Official codebase for SICQL: Scalable In-Context Q-Learning.
Implementation Details of SICQL.
conda env create -f environment.yamlThe datasets used in our experiments are located in the datasets/ directory. The collected dataset can be downloaded here
Running experiments based our code could be quite easy, you can execute the provided shell script to start:
sh run.shOr if you wish to skip training, you can directly load our pretrained model using the provided script:
python3 eval.py --env HalfCheetahVel-v0 --horizon 200 --context_horizon 4 --lr 3e-4 --n_layer 4 --m_layer 2 --head 1 --seed 1 --rollin_type 'mix' --epoch 400000 --freq 10000 --beta 1000.0 --n_embd 128 --context_hidden_dim 128 --context_dim 16 --c_layer 1 --context_epoch 200 --device 'cuda:0'