Skip to content

J4ckLiu/SACP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification

Preparation

Environment

pip install -r requirements.txt

Prepare datasets and pretrained models.

├── datasets
│   └── ip
│       ├── Indian_pines_corrected.mat
│       └── Indian_pines_gt.mat
└── pretrained
    └── sstn
        └── sstn_ip.pth

How to Run

Calculating non-conformity scores with SACP

python main.py --model sstn --data_name ip --alpha 0.05 --base_score APS

with the following arguments:

  • model: the name of the model, including cnn1d, cnn3d, hybrid, sstn.

  • data_name: the name of dataset, including ip, pu, sa.

  • alpha: the user-specified error rate.

  • base_score: the standard non-coformity score, incuding APS, RAPS, SAPS.

Citation

If you find this work useful for your research, please cite:

@article{liu2024spatial,
  title={Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification},
  author={Liu, Kangdao and Sun, Tianhao and Zeng, Hao and Zhang, Yongshan and Pun, Chi-Man and Vong, Chi-Man},
  journal={arXiv preprint arXiv:2409.01236},
  year={2024}
}

About

The Code of SACP

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •