Skip to content

PyTorch implementation for KBS accepted paper ": Dual influenced Community Strength-boosted Multi-Scale Graph Contrastive Learning".

License

Notifications You must be signed in to change notification settings

HanChen-HUST/DCMSL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCMSL: Dual influenced Community Strength-boosted Multi-Scale Graph Contrastive Learning

PyTorch implementation for KBS accepted paper "DCMSL: Dual influenced Community Strength-boosted Multi-Scale Graph Contrastive Learning".

Requirements

  • Python 3.8.8
  • PyTorch 1.8.1
  • torch_geometric 2.0.1
  • cdlib 0.2.6
  • networkx 2.5.1
  • numpy 1.22.4

Running the code

The hyperparameters for node classification can be found in ./param, which will be directly loaded by --param:

python train.py --dataset Coauthor-CS --param local:coauthor_cs.json 

It can be changed the parameter by either editting .json files or adding it to the command, for example:

python train.py --dataset Coauthor-CS --param local:coauthor_cs.json  --delta 0.3

About

PyTorch implementation for KBS accepted paper ": Dual influenced Community Strength-boosted Multi-Scale Graph Contrastive Learning".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages