π€ Your Workspace Padi & Gist Partner - Transform scattered workplace conversations and documents into accessible, intelligent insights.
Amebo is an enterprise-grade SaaS platform that serves as your team's intelligent knowledge companion. It transforms your Slack conversations, uploaded documents, and institutional knowledge into a searchable, AI-powered Q&A system.
- Instant Knowledge Access - Find answers in seconds, not minutes
- Context-Aware Intelligence - Understands conversation threads and document relationships
- Multi-Workspace Support - Manage multiple Slack workspaces from one dashboard
- Enterprise Security - Multi-tenant architecture with encrypted credential storage
- Seamless Integration - Works in Slack via
/askcommands and web dashboard
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β Next.js 14 β β FastAPI β β PostgreSQL β
β Frontend βββββΊβ Backend βββββΊβ Database β
β Dashboard β β API Server β β Multi-tenant β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β
ββββββββββ΄βββββββββ
β β
ββββββββΌβββββββ βββββββΌββββββ
β ChromaDB β β Slack β
β Vector DB β β API β
β Semantic β β Real-time β
β Search β β Sync β
βββββββββββββββ βββββββββββββ
slack-helper/
βββ π backend/ # Python FastAPI backend
β βββ src/
β β βββ api/ # REST API routes
β β βββ services/ # Business logic
β β βββ db/ # Database connections
β β βββ models/ # Data models
β βββ requirements.txt # Python dependencies
β βββ README.md # Backend setup guide
βββ π frontend/ # Next.js 14 frontend
β βββ app/ # App router pages
β βββ src/
β β βββ components/ # React components
β β βββ hooks/ # Custom React hooks
β β βββ lib/ # Utilities & API client
β β βββ store/ # State management
β βββ package.json # Node dependencies
β βββ README.md # Frontend setup guide
βββ π docs/ # Documentation
β βββ ARCHITECTURE.md # System architecture
β βββ API.md # API documentation
β βββ DEPLOYMENT.md # Deployment guide
βββ README.md # This file
- Python 3.9+
- Node.js 18+
- PostgreSQL 13+
- Slack App with Bot Token
git clone <repository-url>
cd slack-helpercd backend
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# Set environment variables
cp .env.example .env
# Edit .env with your database and API keys
# Start backend
python run_server.pycd frontend
npm install
# Set environment variables
cp .env.example .env.local
# Edit .env.local with your API URL
# Start frontend
npm run dev- Frontend Dashboard: http://localhost:3000
- Backend API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
- Natural language processing with Anthropic Claude
- Context-aware responses from Slack messages and documents
- Source attribution with confidence scoring
- Real-time search across indexed content
- Secure workspace isolation with 4-layer architecture
- Multiple Slack workspace integration per organization
- Encrypted credential storage using Fernet encryption
- Automated message backfilling with configurable schedules
- Multi-format support (PDF, DOCX, TXT, Markdown)
- Automatic text extraction and chunking
- Vector indexing for semantic search
- Workspace-specific document tagging
- Role-based access control (Admin, Member, Viewer)
- User invitation system with email notifications
- Team management with activation/deactivation
- Organization-level settings and AI configuration
- Multi-tenant data isolation
- JWT authentication with secure token handling
- Encrypted credential storage
- CORS protection and input validation
- FastAPI - High-performance Python web framework
- PostgreSQL - Relational database for structured data
- ChromaDB - Vector database for semantic search
- APScheduler - Background task automation
- Slack SDK - Real-time Slack integration
- Anthropic Claude - AI language model for Q&A
- Next.js 14 - React framework with App Router
- TypeScript - Type-safe JavaScript
- Tailwind CSS - Utility-first CSS framework
- shadcn/ui - Modern React component library
- TanStack Query - Data fetching and caching
- Zustand - Lightweight state management
- Docker - Containerization
- PostgreSQL - Primary database
- ChromaDB - Vector embeddings storage
- JWT - Authentication tokens
- Backend Setup Guide - Detailed backend installation and configuration
- Frontend Setup Guide - Frontend development environment setup
- Architecture Documentation - System design and component interactions
- API Documentation - REST API endpoints and usage
- Deployment Guide - Production deployment instructions
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with Amazon Q Developer for accelerated development
- Powered by Anthropic Claude for intelligent responses
- UI components from shadcn/ui
Made with β€οΈ and Amazon Q Developer