###Analyzing the impact of composite index order on query performance using columns with different selectivity levels in SQL Server Fullscript:script
Table Design:
CREATE TABLE dbo.Orders (
OrderID INT IDENTITY PRIMARY KEY,
ShipCountry NVARCHAR(50),
EmployeeID INT,
OrderDate DATE
);
GO
--Inserting Data
INSERT INTO dbo.Orders (ShipCountry, EmployeeID, OrderDate)
SELECT TOP (1000000)
CASE
WHEN ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) % 20 = 0 THEN 'USA'
WHEN ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) % 20 = 1 THEN 'UK'
ELSE 'Germany'
END,
ABS(CHECKSUM(NEWID())) % 50 + 1, -- EmployeeID
DATEADD(DAY, -(ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) % 730), GETDATE())
FROM master..spt_values a
CROSS JOIN master..spt_values b;
GO
1,000,000 records to simulate real-world conditions ShipCountry → Low selectivity ('USA', 'UK', 'Germany') EmployeeID → High selectivity (50 unique values)
--Repititive Query:
SELECT *
FROM dbo.Orders
WHERE ShipCountry = 'USA'
AND EmployeeID = 5;
GO
--wrong Index:
DROP INDEX IF EXISTS IX_Wrong ON dbo.Orders;
GO
CREATE NONCLUSTERED INDEX IX_Wrong
ON dbo.Orders (ShipCountry, EmployeeID);
GOQuery Execution Metrics:
Execution Time: 1134 ms
Logical Reads: 4606
Physical Reads: 2
EXECUTION PLAN:
EXEC
Optimized Index:
DROP INDEX IF EXISTS IX_Right ON dbo.Orders;
GO
CREATE NONCLUSTERED INDEX IX_Right
ON dbo.Orders (EmployeeID, ShipCountry);Query Execution Metrics:
Execution Time: 493 ms
Logical Reads: 4606
Physical Reads: 2
Key Takeaways Column order in composite indexes > order of WHERE predicates High-selectivity columns first = better filtering & lower I/O Composite indexes can cover queries entirely → avoid lookups Execution plans reveal the dramatic impact of proper indexing Always analyze cardinality & selectivity before designing indexes
