Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -294,6 +294,8 @@
* [Ternary Search Min Max](https://github.com/TheAlgorithms/Rust/blob/master/src/searching/ternary_search_min_max.rs)
* [Ternary Search Min Max Recursive](https://github.com/TheAlgorithms/Rust/blob/master/src/searching/ternary_search_min_max_recursive.rs)
* [Ternary Search Recursive](https://github.com/TheAlgorithms/Rust/blob/master/src/searching/ternary_search_recursive.rs)
* Signal Analysis
* [YIN](https://github.com/TheAlgorithms/Rust/blob/master/src/signal_analysis/yin.rs)
* Sorting
* [Bead Sort](https://github.com/TheAlgorithms/Rust/blob/master/src/sorting/bead_sort.rs)
* [Binary Insertion Sort](https://github.com/TheAlgorithms/Rust/blob/master/src/sorting/binary_insertion_sort.rs)
Expand Down
1 change: 1 addition & 0 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ pub mod math;
pub mod navigation;
pub mod number_theory;
pub mod searching;
pub mod signal_analysis;
pub mod sorting;
pub mod string;

Expand Down
2 changes: 2 additions & 0 deletions src/signal_analysis/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
mod yin;
pub use self::yin::{Yin, YinResult};
339 changes: 339 additions & 0 deletions src/signal_analysis/yin.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
use std::f64;

#[derive(Clone, Debug)]
pub struct YinResult {
sample_rate: f64,
best_lag: usize,
cmndf: Vec<f64>,
}

impl YinResult {
pub fn get_frequency(&self) -> f64 {
self.sample_rate / self.best_lag as f64
}

pub fn get_frequency_with_interpolation(&self) -> f64 {
let best_lag_with_interpolation = parabolic_interpolation(self.best_lag, &self.cmndf);
self.sample_rate / best_lag_with_interpolation
}
}

fn parabolic_interpolation(lag: usize, cmndf: &[f64]) -> f64 {
let x0 = lag.saturating_sub(1); // max(0, lag-1)
let x2 = usize::min(cmndf.len() - 1, lag + 1);
let s0 = cmndf[x0];
let s1 = cmndf[lag];
let s2 = cmndf[x2];
let denom = s0 - 2.0 * s1 + s2;
if denom == 0.0 {
return lag as f64;
}
let delta = (s0 - s2) / (2.0 * denom);
lag as f64 + delta
}

#[derive(Clone, Debug)]
pub struct Yin {
threshold: f64,
min_lag: usize,
max_lag: usize,
sample_rate: f64,
}

impl Yin {
pub fn init(
threshold: f64,
min_expected_frequency: f64,
max_expected_frequency: f64,
sample_rate: f64,
) -> Yin {
let min_lag = (sample_rate / max_expected_frequency) as usize;
let max_lag = (sample_rate / min_expected_frequency) as usize;
Yin {
threshold,
min_lag,
max_lag,
sample_rate,
}
}

pub fn yin(&self, frequencies: &[f64]) -> Result<YinResult, String> {
let df = difference_function_values(frequencies, self.max_lag);
let cmndf = cumulative_mean_normalized_difference_function(&df, self.max_lag);
let best_lag = find_cmndf_argmin(&cmndf, self.min_lag, self.max_lag, self.threshold);
match best_lag {
_ if best_lag == 0 => Err(format!(
"Could not find lag value which minimizes CMNDF below the given threshold {}",
self.threshold
)),
_ => Ok(YinResult {
sample_rate: self.sample_rate,
best_lag,
cmndf,
}),
}
}
}

#[allow(clippy::needless_range_loop)]
fn difference_function_values(frequencies: &[f64], max_lag: usize) -> Vec<f64> {
let mut df_list = vec![0.0; max_lag + 1];
for lag in 1..=max_lag {
df_list[lag] = difference_function(frequencies, lag);
}
df_list
}

fn difference_function(f: &[f64], lag: usize) -> f64 {
let mut sum = 0.0;
let n = f.len();
for i in 0..(n - lag) {
let diff = f[i] - f[i + lag];
sum += diff * diff;
}
sum
}

const EPSILON: f64 = 1e-10;
fn cumulative_mean_normalized_difference_function(df: &[f64], max_lag: usize) -> Vec<f64> {
let mut cmndf = vec![0.0; max_lag + 1];
cmndf[0] = 1.0;
let mut sum = 0.0;
for lag in 1..=max_lag {
sum += df[lag];
cmndf[lag] = lag as f64 * df[lag] / if sum == 0.0 { EPSILON } else { sum };
}
cmndf
}

fn find_cmndf_argmin(cmndf: &[f64], min_lag: usize, max_lag: usize, threshold: f64) -> usize {
let mut lag = min_lag;
while lag <= max_lag {
if cmndf[lag] < threshold {
while lag < max_lag && cmndf[lag + 1] < cmndf[lag] {
lag += 1;
}
return lag;
}
lag += 1;
}
0
}

#[cfg(test)]
mod tests {
use super::*;

fn generate_sine_wave(frequency: f64, sample_rate: f64, duration_secs: f64) -> Vec<f64> {
let total_samples = (sample_rate * duration_secs).round() as usize;
let two_pi_f = 2.0 * std::f64::consts::PI * frequency;

(0..total_samples)
.map(|n| {
let t = n as f64 / sample_rate;
(two_pi_f * t).sin()
})
.collect()
}

fn diff_from_actual_frequency_smaller_than_threshold(
result_frequency: f64,
actual_frequency: f64,
threshold: f64,
) -> bool {
let result_diff_from_actual_freq = (result_frequency - actual_frequency).abs();
result_diff_from_actual_freq < threshold
}

fn interpolation_better_than_raw_result(result: YinResult, frequency: f64) -> bool {
let result_frequency = result.get_frequency();
let refined_frequency = result.get_frequency_with_interpolation();
let result_diff = (result_frequency - frequency).abs();
let refined_diff = (refined_frequency - frequency).abs();
refined_diff < result_diff
}

#[test]
fn test_simple_sine() {
let sample_rate = 1000.0;
let frequency = 12.0;
let seconds = 10.0;
let signal = generate_sine_wave(frequency, sample_rate, seconds);

let min_expected_frequency = 10.0;
let max_expected_frequency = 100.0;

let yin = Yin::init(
0.1,
min_expected_frequency,
max_expected_frequency,
sample_rate,
);

let result = yin.yin(signal.as_slice());
assert!(result.is_ok());
let yin_result = result.unwrap();

assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency(),
frequency,
1.0
));
assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency_with_interpolation(),
frequency,
1.0,
));

assert!(interpolation_better_than_raw_result(yin_result, frequency));
}

#[test]
fn test_sine_frequency_range() {
let sample_rate = 5000.0;
for freq in 30..50 {
let frequency = freq as f64;
let seconds = 2.0;
let signal = generate_sine_wave(frequency, sample_rate, seconds);

let min_expected_frequency = 5.0;
let max_expected_frequency = 100.0;

let yin = Yin::init(
0.1,
min_expected_frequency,
max_expected_frequency,
sample_rate,
);
let result = yin.yin(signal.as_slice());
assert!(result.is_ok());
let yin_result = result.unwrap();

if (sample_rate as i32 % freq) == 0 {
assert_eq!(yin_result.get_frequency(), frequency);
} else {
assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency(),
frequency,
1.0
));
assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency_with_interpolation(),
frequency,
1.0,
));

assert!(interpolation_better_than_raw_result(yin_result, frequency));
}
}
}

#[test]
fn test_harmonic_sines() {
let sample_rate = 44100.0;
let seconds = 2.0;
let frequency_1 = 50.0; // Minimal/Fundamental frequency - this is what YIN should find
let signal_1 = generate_sine_wave(frequency_1, sample_rate, seconds);
let frequency_2 = 150.0;
let signal_2 = generate_sine_wave(frequency_2, sample_rate, seconds);
let frequency_3 = 300.0;
let signal_3 = generate_sine_wave(frequency_3, sample_rate, seconds);

let min_expected_frequency = 10.0;
let max_expected_frequency = 500.0;

let yin = Yin::init(
0.1,
min_expected_frequency,
max_expected_frequency,
sample_rate,
);

let total_samples = (sample_rate * seconds).round() as usize;
let combined_signal: Vec<f64> = (0..total_samples)
.map(|n| signal_1[n] + signal_2[n] + signal_3[n])
.collect();

let result = yin.yin(&combined_signal);
assert!(result.is_ok());
let yin_result = result.unwrap();

assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency(),
frequency_1,
1.0
));
}

#[test]
fn test_unharmonic_sines() {
let sample_rate = 44100.0;
let seconds = 2.0;
let frequency_1 = 50.0;
let signal_1 = generate_sine_wave(frequency_1, sample_rate, seconds);
let frequency_2 = 66.0;
let signal_2 = generate_sine_wave(frequency_2, sample_rate, seconds);
let frequency_3 = 300.0;
let signal_3 = generate_sine_wave(frequency_3, sample_rate, seconds);

let min_expected_frequency = 10.0;
let max_expected_frequency = 500.0;

let yin = Yin::init(
0.1,
min_expected_frequency,
max_expected_frequency,
sample_rate,
);

let total_samples = (sample_rate * seconds).round() as usize;
let combined_signal: Vec<f64> = (0..total_samples)
.map(|n| signal_1[n] + signal_2[n] + signal_3[n])
.collect();

let result = yin.yin(&combined_signal);
assert!(result.is_ok());
let yin_result = result.unwrap();

let expected_frequency = (frequency_1 - frequency_2).abs();
assert!(diff_from_actual_frequency_smaller_than_threshold(
yin_result.get_frequency(),
expected_frequency,
1.0
));
assert!(interpolation_better_than_raw_result(
yin_result,
expected_frequency
));
}

#[test]
fn test_err() {
let sample_rate = 2500.0;
let seconds = 2.0;
let frequency = 440.0;

// Can't find frequency 440 between 500 and 700
let min_expected_frequency = 500.0;
let max_expected_frequency = 700.0;
let yin = Yin::init(
0.1,
min_expected_frequency,
max_expected_frequency,
sample_rate,
);

let signal = generate_sine_wave(frequency, sample_rate, seconds);
let result = yin.yin(&signal);
assert!(result.is_err());

let yin_with_suitable_frequency_range = Yin::init(
0.1,
min_expected_frequency - 100.0,
max_expected_frequency,
sample_rate,
);
let result = yin_with_suitable_frequency_range.yin(&signal);
assert!(result.is_ok());
}
}