tSNEJS is an implementation of t-SNE visualization algorithm in Javascript.
t-SNE is a visualization algorithm that embeds things in 2 or 3 dimensions. If you have some data and you can measure their pairwise differences, t-SNE visualization can help you identify clusters in your data.
The main project website has a live example and more description.
There is also the t-SNE CSV demo that allows you to simply paste CSV data into a textbox and tSNEJS computes and visualizes the embedding on the fly (no coding needed).
The algorithm was originally described in this paper:
L.J.P. van der Maaten and G.E. Hinton.
Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research
9(Nov):2579-2605, 2008.
You can find the PDF here.
npm --save i @jwalsh/tsnejsimport * as tsnejs from '@jwalsh/tsnejs';
const opt = {
epsilon: 10, // epsilon is learning rate (10 = default)
perplexity: 30, // roughly how many neighbors each point influences (30 = default)
dim: 2 // dimensionality of the embedding (2 = default)
};
const tsne = new tsnejs.tSNE(opt); // create a tSNE instance
// initialize data. Here we have 3 points and some example pairwise dissimilarities
const dists = [[1.0, 0.1, 0.2], [0.1, 1.0, 0.3], [0.2, 0.1, 1.0]];
tsne.initDataDist(dists);
// every time you call this, solution gets better
[...Array(500)].forEach((_, i) => tsne.step());
const Y = tsne.getSolution(); // Y is an array of 2-D points that you can plotThe data can be passed to tSNEJS as a set of high-dimensional points
using the tsne.initDataRaw(X) function, where X is an array of arrays
(high-dimensional points that need to be embedded). The algorithm
computes the Gaussian kernel over these points and then finds the
appropriate embedding.
syntax sugar
Parameters
optfielddefaultval
return 0 mean unit standard deviation random number
return random normal number
Parameters
mustd
utilitity that creates contiguous vector of zeros of size n
Parameters
n
utility that returns 2d array filled with random numbers or with value s, if provided
Parameters
nds
compute L2 distance between two vectors
Parameters
x1x2
compute pairwise distance in all vectors in X
Parameters
X
compute (p_{i|j} + p_{j|i})/(2n)
Parameters
Dperplexitytol
helper function
Parameters
x
t-SNE visualization algorithm
There are two web interfaces to this library that we are aware of:
- By Andrej, here.
- By Laurens, here, which takes data in different format and can also use Google Spreadsheet input.
Send questions to @karpathy.
MIT