torchex library provides advanced Neural Network Layers. You can easily use them like using original pytorch.
$ pip install torchex
- Pytorch >= 1.0
import torch
import torchex.nn as exnn
net = exnn.Linear(10)
# You don't need to give the size of input for this module.
# This network is equivalent to `nn.Linear(100, 10)`.
x = troch.randn(10, 100)
y = net(x)torchex.nn.Passtorchex.nn.Flattentorchex.nn.Linear- Lazy style
torchex.nn.Conv1d- Lazy style
torchex.nn.Conv2d- Lazy style
torchex.nn.Conv3d- Lazy style
torchex.nn.Conv2dLocaltorchex.nn.GlobalAvgPool1dtorchex.nn.GlobalAvgPool2dtorchex.nn.GlobalMaxPool1dtorchex.nn.GlobalMaxPool2dtorchex.nn.MaxAvgPool2dtorch.nn.Crop2dtorch.nn.Crop3dtorch.nn.MLPConv2dtorch.nn.UpsampleConvLayertorch.nn.CordConv2dtorch.nn.DFT1dtorch.nn.DFT2dtorch.nn.PeriodicPad2dtorch.nn.PeriodicPad3dtorch.nn.Highwaytorch.nn.Inceptiontorch.nn.InceptionBNtorch.nn.IndRNNCelltorch.nn.IndRNNTanhCelltorch.nn.IndRNNReLuCelltorch.nn.IndRNNtorch.nn.GraphLineartorch.nn.GraphConvtorch.nn.SparseMMtorch.nn.GraphBatchNrom
torchex.data.transforms.PadRandomSifttorchex.data.transforms.RandomResize
for visualization
torchex.attribute.IntegratedGradients