You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This is a framework for the research on multi-agent reinforcement learning and the implementation of the experiments in the paper titled by ''Shapley Q-value: A Local Reward Approach to Solve Global Reward Games''.
Adversarial Co-Evolution of RL and LLM Agents: A framework for training high-performance PPO agents against Large Language Models in Gin Rummy, utilizing curriculum learning and knowledge distillation.
A deep reinforcement learning system for optimizing bridge maintenance decisions across municipal infrastructure fleets, implementing cross-subsidy budget sharing and cooperative multi-agent learning.
Deterministic hex-grid soccer environment with two adversarial agents. Implements Q-Learning, Minimax-Q (via LP), and Belief-Q with online belief updates; trains in SE2G/SE6G to reduce state space and evaluates behaviors in the full environment with comprehensive visualizations.
Research-grade Reinforcement Learning framework for single-agent and multi-agent warehouse navigation using Deep Q-Networks (DQN), PyTorch, replay buffer, target networks, logging, and full test suite. Built for PhD-level RL and autonomous systems research.
Multi-Equipment CBM system using QR-DQN with advanced probability distribution analysis. Coordinated maintenance decision-making for 4 industrial equipment units with realistic anomaly rates (1.9-2.2%), comprehensive risk analysis (VaR/CVaR), and 51-quantile distribution visualization.
Multi-Equipment CBM (Condition-Based Maintenance) optimization using Deep Q-Learning with cost leveling and scenario comparison. Advanced RL system with QR-DQN, N-step learning, and parallel environments for HVAC equipment predictive maintenance.