ParameterList#
- class torch.nn.modules.container.ParameterList(values=None)[source]#
Holds parameters in a list.
ParameterListcan be used like a regular Python list, but Tensors that areParameterare properly registered, and will be visible by allModulemethods.Note that the constructor, assigning an element of the list, the
append()method and theextend()method will convert anyTensorintoParameter.- Parameters
parameters (iterable, optional) – an iterable of elements to add to the list.
Example:
class MyModule(nn.Module): def __init__(self) -> None: super().__init__() self.params = nn.ParameterList( [nn.Parameter(torch.randn(10, 10)) for i in range(10)] ) def forward(self, x): # ParameterList can act as an iterable, or be indexed using ints for i, p in enumerate(self.params): x = self.params[i // 2].mm(x) + p.mm(x) return x
- append(value)[source]#
Append a given value at the end of the list.
- Parameters
value (Any) – value to append
- Return type
Self