torch.nn.utils.rnn.pad_sequence#
- torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0.0, padding_side='right')[source]#
- Pad a list of variable length Tensors with - padding_value.- pad_sequencestacks a list of Tensors along a new dimension, and pads them to equal length.- sequencescan be list of sequences with size- L x *, where L is length of the sequence and- *is any number of dimensions (including- 0). If- batch_firstis- False, the output is of size- T x B x *, and- B x T x *otherwise, where- Bis the batch size (the number of elements in- sequences),- Tis the length of the longest sequence.- Example - >>> from torch.nn.utils.rnn import pad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> pad_sequence([a, b, c]).size() torch.Size([25, 3, 300]) - Note - This function returns a Tensor of size - T x B x *or- B x T x *where T is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.- Parameters
- sequences (list[Tensor]) – list of variable length sequences. 
- batch_first (bool, optional) – if - True, the output will be in- B x T x *format,- T x B x *otherwise.
- padding_value (float, optional) – value for padded elements. Default: - 0.
- padding_side (str, optional) – the side to pad the sequences on. Default: - 'right'.
 
- Returns
- Tensor of size - T x B x *if- batch_firstis- False. Tensor of size- B x T x *otherwise
- Return type