- 2.25.0 (latest)
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
StringMethods(
    data=None,
    index: vendored_pandas_typing.Axes | None = None,
    dtype: typing.Optional[
        bigframes.dtypes.DtypeString | bigframes.dtypes.Dtype
    ] = None,
    name: str | None = None,
    copy: typing.Optional[bool] = None,
    *,
    session: typing.Optional[bigframes.session.Session] = None
)Vectorized string functions for Series and Index.
NAs stay NA unless handled otherwise by a particular method. Patterned after Python's string methods, with some inspiration from R's stringr package.
Methods
capitalize
capitalize() -> bigframes.series.SeriesConvert strings in the Series/Index to be capitalized.
Equivalent to str.capitalize.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['lower',
...                 'CAPITALS',
...                 'this is a sentence',
...                 'SwApCaSe'])
>>> s.str.capitalize()
0                 Lower
1              Capitals
2    This is a sentence
3              Swapcase
dtype: string
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with captitalized strings. | 
cat
cat(
    others: typing.Union[str, bigframes.series.Series],
    *,
    join: typing.Literal["outer", "left"] = "left"
) -> bigframes.series.SeriesConcatenate strings in the Series/Index with given separator.
If others is specified, this function concatenates the Series/Index
and elements of others element-wise.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
You can concatenate each string in a Series to another string.
>>> s = bpd.Series(['Jane', 'John'])
>>> s.str.cat(" Doe")
0    Jane Doe
1    John Doe
dtype: string
You can concatenate another Series. By default left join is performed to align the corresponding elements.
>>> s.str.cat(bpd.Series([" Doe", " Foe", " Roe"]))
0    Jane Doe
1    John Foe
dtype: string
>>> s.str.cat(bpd.Series([" Doe", " Foe", " Roe"], index=[2, 0, 1]))
0    Jane Foe
1    John Roe
dtype: string
You can enforce an outer join.
>>> s.str.cat(bpd.Series([" Doe", " Foe", " Roe"]), join="outer")
0    Jane Doe
1    John Foe
2        <NA>
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| others | str or SeriesA string or a Series of strings. | 
| join | {'left', 'outer'}, default 'left'Determines the join-style between the calling Series and any Series in  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with concatenated strings. | 
center
center(width: int, fillchar: str = " ") -> bigframes.series.SeriesPad left and right side of strings in the Series/Index.
Equivalent to str.center.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(['dog', 'bird', 'mouse'])
>>> ser.str.center(8, fillchar='.')
0    ..dog...
1    ..bird..
2    .mouse..
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| width | intMinimum width of resulting string; additional characters will be filled with character defined in  | 
| fillchar | str, default ' 'Additional character for filling, default is whitespace. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Returns Series or Index with minimum number of char in object. | 
contains
contains(
    pat, case: bool = True, flags: int = 0, *, regex: bool = True
) -> bigframes.series.SeriesTest if pattern or regex is contained within a string of a Series or Index.
Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Returning a Series of booleans using only a literal pattern.
>>> s1 = bpd.Series(['Mouse', 'dog', 'house and parrot', '23', None])
>>> s1.str.contains('og')
0    False
1     True
2    False
3    False
4     <NA>
dtype: boolean
Specifying case sensitivity using case.
>>> s1.str.contains('oG', case=True)
0    False
1    False
2    False
3    False
4     <NA>
dtype: boolean
Returning 'house' or 'dog' when either expression occurs in a string.
>>> s1.str.contains('house|dog', regex=True)
0    False
1     True
2     True
3    False
4     <NA>
dtype: boolean
Ignoring case sensitivity using flags with regex.
>>> import re
>>> s1.str.contains('PARROT', flags=re.IGNORECASE, regex=True)
0    False
1    False
2     True
3    False
4     <NA>
dtype: boolean
Returning any digit using regular expression.
>>> s1.str.contains('\d', regex=True)
0    False
1    False
2    False
3     True
4     <NA>
dtype: boolean
Ensure pat is a not a literal pattern when regex is set to True.
Note in the following example one might expect only s2[1] and s2[3]
to return True. However, '.0' as a regex matches any character
followed by a 0.
>>> s2 = bpd.Series(['40', '40.0', '41', '41.0', '35'])
>>> s2.str.contains('.0', regex=True)
0     True
1     True
2    False
3     True
4    False
dtype: boolean
| Parameters | |
|---|---|
| Name | Description | 
| pat | str, re.PatternCharacter sequence or regular expression. | 
| case | bool, default TrueIf True, case sensitive. | 
| flags | int, default 0Flags to pass through to the re module, e.g. re.IGNORECASE. | 
| regex | bool, default TrueIf True, assumes the pat is a regular expression. If False, treats the pat as a literal string. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A Series or Index of boolean values indicating whether the given pattern is contained within the string of each element of the Series or Index. | 
endswith
endswith(pat: typing.Union[str, tuple[str, ...]]) -> bigframes.series.SeriesTest if the end of each string element matches a pattern.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['bat', 'bear', 'caT', bpd.NA])
>>> s
0     bat
1    bear
2     caT
3    <NA>
dtype: string
>>> s.str.endswith('t')
0     True
1    False
2    False
3     <NA>
dtype: boolean
>>> s.str.endswith(('t', 'T'))
0     True
1    False
2     True
3     <NA>
dtype: boolean
| Parameter | |
|---|---|
| Name | Description | 
| pat | str, tuple[str, ...]Character sequence or tuple of strings. Regular expressions are not accepted. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A Series of booleans indicating whether the given pattern matches the end of each string element. | 
extract
extract(pat: str, flags: int = 0) -> bigframes.dataframe.DataFrameExtract capture groups in the regex pat as columns in a DataFrame.
For each subject string in the Series, extract groups from the
first match of regular expression pat.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
A pattern with two groups will return a DataFrame with two columns.
Non-matches will be NaN.
>>> s = bpd.Series(['a1', 'b2', 'c3'])
>>> s.str.extract(r'([ab])(\d)')
      0     1
0     a     1
1     b     2
2  <NA>  <NA>
<BLANKLINE>
[3 rows x 2 columns]
Named groups will become column names in the result.
>>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)')
  letter digit
0      a     1
1      b     2
2   <NA>  <NA>
<BLANKLINE>
[3 rows x 2 columns]
A pattern with one group will return a DataFrame with one column.
>>> s.str.extract(r'[ab](\d)')
      0
0     1
1     2
2  <NA>
<BLANKLINE>
[3 rows x 1 columns]
| Parameters | |
|---|---|
| Name | Description | 
| pat | strRegular expression pattern with capturing groups. | 
| flags | int, default 0 (no flags)Flags from the  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame | A DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. | 
find
find(
    sub: str, start: typing.Optional[int] = None, end: typing.Optional[int] = None
) -> bigframes.series.SeriesReturn lowest indexes in each strings in the Series/Index.
Each of returned indexes corresponds to the position where the
substring is fully contained between [start:end]. Return -1 on
failure. Equivalent to standard str.find.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(["cow_", "duck_", "do_ve"])
>>> ser.str.find("_")
0    3
1    4
2    2
dtype: Int64
| Parameters | |
|---|---|
| Name | Description | 
| sub | strSubstring being searched. | 
| start | int, default 0Left edge index. | 
| end | int, default NoneRight edge index. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with lowest indexes in each strings. | 
fullmatch
fullmatch(pat, case=True, flags=0) -> bigframes.series.SeriesDetermine if each string entirely matches a regular expression.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(["cat", "duck", "dove"])
>>> ser.str.fullmatch(r'd.+')
0    False
1     True
2     True
dtype: boolean
| Parameters | |
|---|---|
| Name | Description | 
| pat | strCharacter sequence or regular expression. | 
| case | boolIf True, case sensitive. | 
| flags | int, default 0Regex module flags, e.g. re.IGNORECASE. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series of boolean values | 
get
get(i: int) -> bigframes.series.SeriesExtract element from each component at specified position or with specified key.
Extract element from lists, tuples, dict, or strings in each element in the Series/Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(["apple", "banana", "fig"])
>>> s.str.get(3)
0       l
1       a
2    <NA>
dtype: string
| Parameter | |
|---|---|
| Name | Description | 
| i | intPosition or key of element to extract. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series | 
isalnum
isalnum() -> bigframes.series.SeriesCheck whether all characters in each string are alphanumeric.
This is equivalent to running the Python string method
str.isalnum for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s1 = bpd.Series(['one', 'one1', '1', ''])
>>> s1.str.isalnum()
0     True
1     True
2     True
3    False
dtype: boolean
Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check.
>>> s2 = bpd.Series(['A B', '1.5', '3,000'])
>>> s2.str.isalnum()
0    False
1    False
2    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
isalpha
isalpha() -> bigframes.series.SeriesCheck whether all characters in each string are alphabetic.
This is equivalent to running the Python string method
str.isalpha for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s1 = bpd.Series(['one', 'one1', '1', ''])
>>> s1.str.isalpha()
0     True
1    False
2    False
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with the same length as the originalSeries/Index. | 
isdecimal
isdecimal() -> bigframes.series.SeriesCheck whether all characters in each string are decimal.
This is equivalent to running the Python string method
str.isdecimal for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
The isdecimal method checks for characters used to form numbers in
base 10.
>>> s = bpd.Series(['23', '³', '⅕', ''])
>>> s.str.isdecimal()
0     True
1    False
2    False
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
isdigit
isdigit() -> bigframes.series.SeriesCheck whether all characters in each string are digits.
This is equivalent to running the Python string method
str.isdigit for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['23', '1a', '1/5', ''])
>>> s.str.isdigit()
0     True
1    False
2    False
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with the same length as the originalSeries/Index. | 
islower
islower() -> bigframes.series.SeriesCheck whether all characters in each string are lowercase.
This is equivalent to running the Python string method
str.islower for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['leopard', 'Golden Eagle', 'SNAKE', ''])
>>> s.str.islower()
0     True
1    False
2    False
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
isnumeric
isnumeric() -> bigframes.series.SeriesCheck whether all characters in each string are numeric.
This is equivalent to running the Python string method
str.isnumeric for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s1 = bpd.Series(['one', 'one1', '1', ''])
>>> s1.str.isnumeric()
0    False
1    False
2     True
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
isspace
isspace() -> bigframes.series.SeriesCheck whether all characters in each string are whitespace.
This is equivalent to running the Python string method
str.isspace for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([' ', '\t\r\n ', ''])
>>> s.str.isspace()
0     True
1     True
2    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
isupper
isupper() -> bigframes.series.SeriesCheck whether all characters in each string are uppercase.
This is equivalent to running the Python string method
str.isupper for each element of the Series/Index. If a string
has zero characters, False is returned for that check.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['leopard', 'Golden Eagle', 'SNAKE', ''])
>>> s.str.isupper()
0    False
1    False
2     True
3    False
dtype: boolean
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of boolean values with the same length as the original Series/Index. | 
len
len() -> bigframes.series.SeriesCompute the length of each element in the Series/Index.
The element may be a sequence (such as a string, tuple or list) or a collection (such as a dictionary).
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Returns the length (number of characters) in a string.
>>> s = bpd.Series(['dog', '', bpd.NA])
>>> s.str.len()
0       3
1       0
2    <NA>
dtype: Int64
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A Series or Index of integer values indicating the length of each element in the Series or Index. | 
ljust
ljust(width, fillchar=" ") -> bigframes.series.SeriesPad right side of strings in the Series/Index up to width.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(['dog', 'bird', 'mouse'])
>>> ser.str.ljust(8, fillchar='.')
0    dog.....
1    bird....
2    mouse...
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| width | intMinimum width of resulting string; additional characters will be filled with character defined in  | 
| fillchar | str, default ' 'Additional character for filling, default is whitespace. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Returns Series or Index with minimum number of char in object. | 
lower
lower() -> bigframes.series.SeriesConvert strings in the Series/Index to lowercase.
Equivalent to str.lower.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['lower',
...                 'CAPITALS',
...                 'this is a sentence',
...                 'SwApCaSe'])
>>> s.str.lower()
0                 lower
1              capitals
2    this is a sentence
3              swapcase
dtype: string
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with lowercase. | 
lstrip
lstrip(to_strip: typing.Optional[str] = None) -> bigframes.series.SeriesRemove leading characters.
Strip whitespaces (including newlines) or a set of specified characters
from each string in the Series/Index from left side.
Replaces any non-strings in Series with NaNs.
Equivalent to str.lstrip.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['Ant', '  Bee ', '\tCat\n', bpd.NA])
>>> s.str.lstrip()
0      Ant
1     Bee
2    Cat\n
3     <NA>
dtype: string
| Parameter | |
|---|---|
| Name | Description | 
| to_strip | str, default NoneSpecifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series without leading characters. | 
match
match(pat, case=True, flags=0) -> bigframes.series.SeriesDetermine if each string starts with a match of a regular expression.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(["horse", "eagle", "donkey"])
>>> ser.str.match("e")
0   False
1   True
2   False
dtype: boolean
| Parameters | |
|---|---|
| Name | Description | 
| pat | strCharacter sequence or regular expression. | 
| case | boolIf True, case sensitive. | 
| flags | int, default 0Regex module flags, e.g. re.IGNORECASE. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series of boolean values | 
pad
pad(width, side="left", fillchar=" ") -> bigframes.series.SeriesPad strings in the Series/Index up to width.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(["caribou", "tiger"])
>>> s
0    caribou
1      tiger
dtype: string
>>> s.str.pad(width=10)
0       caribou
1         tiger
dtype: string
>>> s.str.pad(width=10, side='right', fillchar='-')
0    caribou---
1    tiger-----
dtype: string
>>> s.str.pad(width=10, side='both', fillchar='-')
0    -caribou--
1    --tiger---
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| width | intMinimum width of resulting string; additional characters will be filled with character defined in  | 
| side | {'left', 'right', 'both'}, default 'left'Side from which to fill resulting string. | 
| fillchar | str, default ' 'Additional character for filling, default is whitespace. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Returns Series or Index with minimum number of char in object. | 
repeat
repeat(repeats: int) -> bigframes.series.SeriesDuplicate each string in the Series or Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['a', 'b', 'c'])
>>> s
0    a
1    b
2    c
dtype: string
>>> s.str.repeat(repeats=2)
0    aa
1    bb
2    cc
dtype: string
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index of repeated string objects specified by input parameter repeats. | 
replace
replace(
    pat: typing.Union[str, re.Pattern],
    repl: str,
    *,
    case: typing.Optional[bool] = None,
    flags: int = 0,
    regex: bool = False
) -> bigframes.series.SeriesReplace each occurrence of pattern/regex in the Series/Index.
Equivalent to str.replace or re.sub, depending on
the regex value.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
When pat is a string and regex is True, the given pat is compiled
as a regex. When repl is a string, it replaces matching regex patterns
as with re.sub(). NaN value(s) in the Series are left as is:
>>> s = bpd.Series(['foo', 'fuz', bpd.NA])
>>> s.str.replace('f.', 'ba', regex=True)
0     bao
1     baz
2    <NA>
dtype: string
When pat is a string and regex is False, every pat is replaced
with repl as with str.replace():
>>> s = bpd.Series(['f.o', 'fuz', bpd.NA])
>>> s.str.replace('f.', 'ba', regex=False)
0     bao
1     fuz
2    <NA>
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| pat | str, re.PatternString can be a character sequence or regular expression. | 
| repl | strReplacement string. | 
| case | default NoneDetermines if replace is case sensitive: - If True, case sensitive (the default if  | 
| flags | int, default 0Regex module flags, e.g. re.IGNORECASE. Cannot be set if  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A copy of the object with all matching occurrences of patreplaced byrepl. | 
reverse
reverse() -> bigframes.series.SeriesReverse strings in the Series.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(["apple", "banana", "", bpd.NA])
>>> s.str.reverse()
0     elppa
1    ananab
2
3      <NA>
dtype: string
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A Series of booleans indicating whether the given pattern matches the start of each string element. | 
rjust
rjust(width, fillchar=" ") -> bigframes.series.SeriesPad left side of strings in the Series/Index up to width.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> ser = bpd.Series(['dog', 'bird', 'mouse'])
>>> ser.str.rjust(8, fillchar='.')
0    .....dog
1    ....bird
2    ...mouse
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| width | intMinimum width of resulting string; additional characters will be filled with character defined in  | 
| fillchar | str, default ' 'Additional character for filling, default is whitespace. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Returns Series or Index with minimum number of char in object. | 
rstrip
rstrip(to_strip: typing.Optional[str] = None) -> bigframes.series.SeriesRemove trailing characters.
Strip whitespaces (including newlines) or a set of specified characters
from each string in the Series/Index from right side.
Replaces any non-strings in Series with NaNs.
Equivalent to str.rstrip.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['Ant', '  Bee ', '\tCat\n', bpd.NA])
>>> s.str.rstrip()
0      Ant
1      Bee
2    \tCat
3     <NA>
dtype: string
| Parameter | |
|---|---|
| Name | Description | 
| to_strip | str, default NoneSpecifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series without trailing characters. | 
slice
slice(
    start: typing.Optional[int] = None, stop: typing.Optional[int] = None
) -> bigframes.series.SeriesSlice substrings from each element in the Series or Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(["koala", "dog", "chameleon"])
>>> s
0        koala
1          dog
2    chameleon
dtype: string
>>> s.str.slice(start=1)
0        oala
1          og
2    hameleon
dtype: string
>>> s.str.slice(stop=2)
0    ko
1    do
2    ch
dtype: string
>>> s.str.slice(start=2, stop=5)
0    ala
1      g
2    ame
dtype: string
| Parameters | |
|---|---|
| Name | Description | 
| start | int, optionalStart position for slice operation. | 
| stop | int, optionalStop position for slice operation. | 
| step | int, optionalStep size for slice operation. | 
split
split(
    pat: str = " ", regex: typing.Optional[bool] = None
) -> bigframes.series.SeriesSplit strings around given separator/delimiter.
Examples:
>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(
...     [
...         "a regular sentence",
...         "https://docs.python.org/index.html",
...         np.nan
...     ]
... )
>>> s.str.split()
0                ['a' 'regular' 'sentence']
1    ['https://docs.python.org/index.html']
2                                        []
dtype: list<item: string>[pyarrow]
The pat parameter can be used to split by other characters.
>>> s.str.split("//", regex=False)
0                     ['a regular sentence']
1    ['https:' 'docs.python.org/index.html']
2                                         []
dtype: list<item: string>[pyarrow]
| Parameters | |
|---|---|
| Name | Description | 
| pat | str, default " "String to split on. If not specified, split on whitespace. | 
| regex | bool, default NoneDetermines if the passed-in pattern is a regular expression. Regular expressions aren't currently supported. Please set  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Type matches caller. | 
startswith
startswith(pat: typing.Union[str, tuple[str, ...]]) -> bigframes.series.SeriesTest if the start of each string element matches a pattern.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['bat', 'Bear', 'caT', bpd.NA])
>>> s
0     bat
1    Bear
2     caT
3    <NA>
dtype: string
>>> s.str.startswith('b')
0     True
1    False
2    False
3     <NA>
dtype: boolean
>>> s.str.startswith(('b', 'B'))
0     True
1     True
2    False
3     <NA>
dtype: boolean
| Parameter | |
|---|---|
| Name | Description | 
| pat | str, tuple[str, ...]Character sequence or tuple of strings. Regular expressions are not accepted. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | A Series of booleans indicating whether the given pattern matches the start of each string element. | 
strip
strip(to_strip: typing.Optional[str] = None) -> bigframes.series.SeriesRemove leading and trailing characters.
Strip whitespaces (including newlines) or a set of specified characters
from each string in the Series/Index from left and right sides.
Replaces any non-strings in Series with NaNs.
Equivalent to str.strip.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([
...     '1. Ant.',
...     '  2. Bee? ',
...     '\t3. Cat!\n',
...     bpd.NA,
... ])
>>> s.str.strip()
0    1. Ant.
1    2. Bee?
2    3. Cat!
3       <NA>
dtype: string
>>> s.str.strip('123.!? \n\t')
0       Ant
1       Bee
2       Cat
3       <NA>
dtype: string
| Parameter | |
|---|---|
| Name | Description | 
| to_strip | str, default NoneSpecifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series or Index without leading and trailing characters. | 
to_blob
to_blob(connection: typing.Optional[str] = None) -> bigframes.series.SeriesCreate a BigFrames Blob series from a series of URIs.
| Parameter | |
|---|---|
| Name | Description | 
| connection | str or None, default NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. 
 | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Blob Series. | 
upper
upper() -> bigframes.series.SeriesConvert strings in the Series/Index to uppercase.
Equivalent to str.upper.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['lower',
...                 'CAPITALS',
...                 'this is a sentence',
...                 'SwApCaSe'])
>>> s.str.upper()
0                 LOWER
1              CAPITALS
2    THIS IS A SENTENCE
3              SWAPCASE
dtype: string
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series with uppercase strings. | 
zfill
zfill(width: int) -> bigframes.series.SeriesPad strings in the Series/Index by prepending '0' characters.
Strings in the Series/Index are padded with '0' characters on the
left of the string to reach a total string length  width. Strings
in the Series/Index with length greater or equal to width are
unchanged.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['-1', '1', '1000', bpd.NA])
>>> s
0      -1
1       1
2    1000
3    <NA>
dtype: string
>>> s.str.zfill(3)
0     -01
1     001
2    1000
3    <NA>
dtype: string
| Parameter | |
|---|---|
| Name | Description | 
| width | intMinimum length of resulting string; strings with length less than  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.series.Series | Series of objects. |