- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
DataFrameGroupBy(
    block: bigframes.core.blocks.Block,
    by_col_ids: typing.Sequence[str],
    *,
    selected_cols: typing.Optional[typing.Sequence[str]] = None,
    dropna: bool = True,
    as_index: bool = True
)Class for grouping and aggregating relational data.
Methods
agg
agg(func=None, **kwargs) -> bigframes.dataframe.DataFrameAggregate using one or more operations.
| Parameter | |
|---|---|
| Name | Description | 
func | 
        
          function, str, list, dict or None
          Function to use for aggregating the data. Accepted combinations are: - string function name - list of function names, e.g.   | 
      
aggregate
aggregate(func=None, **kwargs) -> bigframes.dataframe.DataFrameAPI documentation for aggregate method.
all
all() -> bigframes.dataframe.DataFrameReturn True if all values in the group are true, else False.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        DataFrame or Series of boolean values, where a value is True if all elements are True within its respective group, False otherwise. | 
any
any() -> bigframes.dataframe.DataFrameReturn True if any value in the group is true, else False.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        DataFrame or Series of boolean values, where a value is True if any element is True within its respective group, False otherwise. | 
count
count() -> bigframes.dataframe.DataFrameCompute count of group, excluding missing values.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Count of values within each group. | 
cumcount
cumcount(ascending: bool = True)Number each item in each group from 0 to the length of that group - 1.
| Parameter | |
|---|---|
| Name | Description | 
ascending | 
        
          bool, default True
          If False, number in reverse, from length of group - 1 to 0.  | 
      
| Returns | |
|---|---|
| Type | Description | 
Series | 
        Sequence number of each element within each group. | 
cummax
cummax(
    *args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrameCumulative max for each group.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Cumulative max for each group. | 
cummin
cummin(
    *args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrameCumulative min for each group.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Cumulative min for each group. | 
cumprod
cumprod(*args, **kwargs) -> bigframes.dataframe.DataFrameCumulative product for each group.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Cumulative product for each group. | 
cumsum
cumsum(
    *args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrameCumulative sum for each group.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Cumulative sum for each group. | 
diff
diff(periods=1) -> bigframes.series.SeriesFirst discrete difference of element. Calculates the difference of each element compared with another element in the group (default is element in previous row).
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        First differences. | 
expanding
expanding(min_periods: int = 1) -> bigframes.core.window.WindowProvides expanding functionality.
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        A expanding grouper, providing expanding functionality per group. | 
kurt
kurt(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrameReturn unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
| Parameter | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only   | 
      
kurtosis
kurtosis(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrameAPI documentation for kurtosis method.
max
max(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrameCompute max of group values.
| Parameters | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
min_count | 
        
          int, default 0
          The required number of valid values to perform the operation. If fewer than   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Computed max of values within each group. | 
mean
mean(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrameCompute mean of groups, excluding missing values.
| Parameter | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
| Returns | |
|---|---|
| Type | Description | 
pandas.Series or pandas.DataFrame | 
        Mean of groups. | 
median
median(
    numeric_only: bool = False, *, exact: bool = False
) -> bigframes.dataframe.DataFrameCompute median of groups, excluding missing values.
| Parameters | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
exact | 
        
          bool, default False
          Calculate the exact median instead of an approximation. Note:   | 
      
| Returns | |
|---|---|
| Type | Description | 
pandas.Series or pandas.DataFrame | 
        Median of groups. | 
min
min(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrameCompute min of group values.
| Parameters | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
min_count | 
        
          int, default 0
          The required number of valid values to perform the operation. If fewer than   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Computed min of values within each group. | 
prod
prod(numeric_only: bool = False, min_count: int = 0)Compute prod of group values.
| Parameters | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
min_count | 
        
          int, default 0
          The required number of valid values to perform the operation. If fewer than   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Computed prod of values within each group. | 
rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.WindowReturns a rolling grouper, providing rolling functionality per group.
| Parameter | |
|---|---|
| Name | Description | 
min_periods | 
        
          int, default None
          Minimum number of observations in window required to have a value; otherwise, result is   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Return a new grouper with our rolling appended. | 
shift
shift(periods=1) -> bigframes.series.SeriesShift each group by periods observations.
| Parameter | |
|---|---|
| Name | Description | 
periods | 
        
          int, default 1
          Number of periods to shift.  | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Object shifted within each group. | 
skew
skew(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrameReturn unbiased skew within groups.
Normalized by N-1.
| Parameter | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only   | 
      
std
std(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrameCompute standard deviation of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
| Parameter | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Standard deviation of values within each group. | 
sum
sum(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrameCompute sum of group values.
| Parameters | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only float, int, boolean columns.  | 
      
min_count | 
        
          int, default 0
          The required number of valid values to perform the operation. If fewer than   | 
      
| Returns | |
|---|---|
| Type | Description | 
Series or DataFrame | 
        Computed sum of values within each group. | 
var
var(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrameCompute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
| Parameter | |
|---|---|
| Name | Description | 
numeric_only | 
        
          bool, default False
          Include only   |