@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class AutoMLJobChannel extends Object implements Serializable, Cloneable, StructuredPojo
A channel is a named input source that training algorithms can consume. This channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2).
| Constructor and Description |
|---|
AutoMLJobChannel() |
| Modifier and Type | Method and Description |
|---|---|
AutoMLJobChannel |
clone() |
boolean |
equals(Object obj) |
String |
getChannelType()
The type of channel.
|
String |
getCompressionType()
The allowed compression types depend on the input format and problem type.
|
String |
getContentType()
The content type of the data from the input source.
|
AutoMLDataSource |
getDataSource()
The data source for an AutoML channel (Required).
|
int |
hashCode() |
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller. |
void |
setChannelType(String channelType)
The type of channel.
|
void |
setCompressionType(String compressionType)
The allowed compression types depend on the input format and problem type.
|
void |
setContentType(String contentType)
The content type of the data from the input source.
|
void |
setDataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).
|
String |
toString()
Returns a string representation of this object.
|
AutoMLJobChannel |
withChannelType(AutoMLChannelType channelType)
The type of channel.
|
AutoMLJobChannel |
withChannelType(String channelType)
The type of channel.
|
AutoMLJobChannel |
withCompressionType(CompressionType compressionType)
The allowed compression types depend on the input format and problem type.
|
AutoMLJobChannel |
withCompressionType(String compressionType)
The allowed compression types depend on the input format and problem type.
|
AutoMLJobChannel |
withContentType(String contentType)
The content type of the data from the input source.
|
AutoMLJobChannel |
withDataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).
|
public void setChannelType(String channelType)
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
channelType - The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
AutoMLChannelTypepublic String getChannelType()
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
AutoMLChannelTypepublic AutoMLJobChannel withChannelType(String channelType)
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
channelType - The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
AutoMLChannelTypepublic AutoMLJobChannel withChannelType(AutoMLChannelType channelType)
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
channelType - The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels for training and validation must share the same
ContentType
The type of channel defaults to training for the time-series forecasting problem type.
AutoMLChannelTypepublic void setContentType(String contentType)
The content type of the data from the input source. The following are the allowed content types for different problems:
For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The default
value is image/*.
For text classification: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
contentType - The content type of the data from the input source. The following are the allowed content types for
different problems:
For tabular problem types: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The
default value is image/*.
For text classification: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
public String getContentType()
The content type of the data from the input source. The following are the allowed content types for different problems:
For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The default
value is image/*.
For text classification: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For tabular problem types: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The
default value is image/*.
For text classification: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
public AutoMLJobChannel withContentType(String contentType)
The content type of the data from the input source. The following are the allowed content types for different problems:
For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The default
value is image/*.
For text classification: text/csv;header=present or x-application/vnd.amazon+parquet.
The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
contentType - The content type of the data from the input source. The following are the allowed content types for
different problems:
For tabular problem types: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For image classification: image/png, image/jpeg, or image/*. The
default value is image/*.
For text classification: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For time-series forecasting: text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
For text generation (LLMs fine-tuning): text/csv;header=present or
x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
public void setCompressionType(String compressionType)
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression
type should be None. If no compression type is provided, we default to None.
compressionType - The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the
compression type should be None. If no compression type is provided, we default to
None.CompressionTypepublic String getCompressionType()
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression
type should be None. If no compression type is provided, we default to None.
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the
compression type should be None. If no compression type is provided, we default to
None.CompressionTypepublic AutoMLJobChannel withCompressionType(String compressionType)
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression
type should be None. If no compression type is provided, we default to None.
compressionType - The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the
compression type should be None. If no compression type is provided, we default to
None.CompressionTypepublic AutoMLJobChannel withCompressionType(CompressionType compressionType)
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression
type should be None. If no compression type is provided, we default to None.
compressionType - The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip for S3Prefix inputs on tabular data only. For all other inputs, the
compression type should be None. If no compression type is provided, we default to
None.CompressionTypepublic void setDataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).
dataSource - The data source for an AutoML channel (Required).public AutoMLDataSource getDataSource()
The data source for an AutoML channel (Required).
public AutoMLJobChannel withDataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).
dataSource - The data source for an AutoML channel (Required).public String toString()
toString in class ObjectObject.toString()public AutoMLJobChannel clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojoProtocolMarshaller.marshall in interface StructuredPojoprotocolMarshaller - Implementation of ProtocolMarshaller used to marshall this object's data.