Stay organized with collections
Save and categorize content based on your preferences.
Create a specific version of an instance
This page describes how to create a specific version of a
Vertex AI Workbench instance.
Why you might want to create a specific version
To ensure that your Vertex AI Workbench instance has software
that is compatible with your code or application, you might want to create
a specific version.
Vertex AI Workbench instance images are updated frequently, and
specific versions of preinstalled software and packages vary from version
to version.
After you create a specific version of
a Vertex AI Workbench instance, you can upgrade it.
Upgrading the instance updates the preinstalled software and packages.
For more information,
see Upgrade an instance's environment.
Before you begin
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
You can create a specific version of a Vertex AI Workbench instance
by using the Google Cloud console or the Google Cloud CLI.
Console
To create a specific version of a Vertex AI Workbench instance,
do the following:
When you create an instance,
in the Environment section, select Use a previous version.
Click the Version list, and select a version. Versions are numbered
in the form of an M followed by the number of the release,
for example, M123.
Complete the rest of the instance-creation dialog, and then
click Create.
Vertex AI Workbench creates an instance and automatically starts it.
When the instance is ready to use, Vertex AI Workbench
activates an Open JupyterLab link.
gcloud
Before using any of the command data below,
make the following replacements:
INSTANCE_NAME: the name of your Vertex AI Workbench instance;
must start with a letter followed by up to 62 lowercase letters,
numbers, or hyphens (-), and cannot end with a hyphen
PROJECT_ID: your project ID
LOCATION: the zone where you want your instance to be located
VM_IMAGE_NAME: the image name; to get a list of the available
image names, use the
get-config
command
MACHINE_TYPE: the
machine type of your instance's VM
METADATA: custom metadata to apply to this instance;
for example, to specify a post-startup-script,
you can use the post-startup-script metadata tag, in the format:
--metadata=post-startup-script=gs://BUCKET_NAME/hello.sh
For more information about the command for creating an
instance from the command line, see the gcloud CLI
documentation.
Vertex AI Workbench creates an instance and automatically starts it.
When the instance is ready to use, Vertex AI Workbench
activates an Open JupyterLab link in the Google Cloud console.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-25 UTC."],[],[],null,["# Create a specific version of a Vertex AI Workbench instance\n\nCreate a specific version of an instance\n========================================\n\nThis page describes how to create a specific version of a\nVertex AI Workbench instance.\n\nWhy you might want to create a specific version\n-----------------------------------------------\n\nTo ensure that your Vertex AI Workbench instance has software\nthat is compatible with your code or application, you might want to create\na specific version.\n\nVertex AI Workbench instance images are updated frequently, and\nspecific versions of preinstalled software and packages vary from version\nto version.\n\nTo learn more about specific Vertex AI Workbench versions,\nsee the [Vertex AI release notes](/vertex-ai/docs/release-notes).\n\nAfter you create a specific version of\na Vertex AI Workbench instance, you can upgrade it.\nUpgrading the instance updates the preinstalled software and packages.\nFor more information,\nsee [Upgrade an instance's environment](/vertex-ai/docs/workbench/instances/upgrade).\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Notebooks API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=notebooks.googleapis.com&redirect=https://console.cloud.google.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Notebooks API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=notebooks.googleapis.com&redirect=https://console.cloud.google.com)\n\n\u003cbr /\u003e\n\nCreate a specific version\n-------------------------\n\nYou can create a specific version of a Vertex AI Workbench instance\nby using the Google Cloud console or the Google Cloud CLI. \n\n### Console\n\nTo create a specific version of a Vertex AI Workbench instance,\ndo the following:\n\n1. When you [create an instance](/vertex-ai/docs/workbench/instances/create),\n in the **Environment** section, select **Use a previous version**.\n\n2. Click the **Version** list, and select a version. Versions are numbered\n in the form of an `M` followed by the number of the release,\n for example, `M123`.\n\n3. Complete the rest of the instance-creation dialog, and then\n click **Create**.\n\n Vertex AI Workbench creates an instance and automatically starts it.\n When the instance is ready to use, Vertex AI Workbench\n activates an **Open JupyterLab** link.\n\n### gcloud\n\n\nBefore using any of the command data below,\nmake the following replacements:\n\n- \u003cvar translate=\"no\"\u003eINSTANCE_NAME\u003c/var\u003e: the name of your Vertex AI Workbench instance; must start with a letter followed by up to 62 lowercase letters, numbers, or hyphens (-), and cannot end with a hyphen\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: your project ID\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: the zone where you want your instance to be located\n- \u003cvar translate=\"no\"\u003eVM_IMAGE_NAME\u003c/var\u003e: the image name; to get a list of the available image names, use the [`get-config`\n command](/sdk/gcloud/reference/workbench/instances/get-config)\n- \u003cvar translate=\"no\"\u003eMACHINE_TYPE\u003c/var\u003e: the [machine type](/compute/docs/machine-resource) of your instance's VM\n- \u003cvar translate=\"no\"\u003eMETADATA\u003c/var\u003e: custom metadata to apply to this instance;\n for example, to specify a post-startup-script,\n you can use the `post-startup-script` metadata tag, in the format:\n `--metadata=post-startup-script=gs://`\u003cvar translate=\"no\"\u003eBUCKET_NAME\u003c/var\u003e`/hello.sh`\n\n | To enable the JupyterLab 4 preview, use `--metadata=enable-jupyterlab4-preview=true`. For more information, see [JupyterLab 4 preview](/vertex-ai/docs/workbench/instances/create#jupyterlab-preview).\n\n\nExecute the\n\nfollowing\n\ncommand:\n\n#### Linux, macOS, or Cloud Shell\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME \\\n --project=PROJECT_ID \\\n --location=LOCATION \\\n --vm-image-project=\"cloud-notebooks-managed\" \\\n --vm-image-name=VM_IMAGE_NAME \\\n --machine-type=MACHINE_TYPE \\\n --metadata=METADATA\n```\n\n#### Windows (PowerShell)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME `\n --project=PROJECT_ID `\n --location=LOCATION `\n --vm-image-project=\"cloud-notebooks-managed\" `\n --vm-image-name=VM_IMAGE_NAME `\n --machine-type=MACHINE_TYPE `\n --metadata=METADATA\n```\n\n#### Windows (cmd.exe)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME ^\n --project=PROJECT_ID ^\n --location=LOCATION ^\n --vm-image-project=\"cloud-notebooks-managed\" ^\n --vm-image-name=VM_IMAGE_NAME ^\n --machine-type=MACHINE_TYPE ^\n --metadata=METADATA\n```\n\n\u003cbr /\u003e\n\nFor more information about the command for creating an\ninstance from the command line, see the [gcloud CLI\ndocumentation](/sdk/gcloud/reference/workbench/instances/create).\n\nVertex AI Workbench creates an instance and automatically starts it.\nWhen the instance is ready to use, Vertex AI Workbench\nactivates an **Open JupyterLab** link in the Google Cloud console.\n\nWhat's next\n-----------\n\n- Learn more about [upgrading\n Vertex AI Workbench instances](/vertex-ai/docs/workbench/instances/upgrade)\n to ensure that your instance upgrades only when you are ready.\n\n- Learn about [monitoring the health status](/vertex-ai/docs/workbench/instances/monitor-health) of\n your Vertex AI Workbench instance."]]