Skip to content

Elementwise

Elementwise ops operate on a per element basis. They don't change the shape of the tensor.

Unary Ops (math)¤

logical_not ¤

logical_not() -> Tensor

Computes the logical NOT of the tensor element-wise.

print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2798
2799
2800
2801
2802
2803
2804
2805
2806
def logical_not(self) -> Tensor:
  """
  Computes the logical NOT of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([False, True]).logical_not().numpy())
  ```
  """
  return self.cast(dtypes.bool)._apply_broadcasted_uop(UOp.ne, True)

neg ¤

neg() -> Tensor

Negates the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3.  2.  1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2808
2809
2810
2811
2812
2813
2814
2815
2816
def neg(self) -> Tensor:
  """
  Negates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
  ```
  """
  return self*-1 if self.dtype != dtypes.bool else self.logical_not()

log ¤

log() -> Tensor

Computes the natural logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log().numpy())
[0.     0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
def log(self) -> Tensor:
  """
  Computes the natural logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log().numpy())
  ```
  """
  return self.log2()*math.log(2)

log2 ¤

log2() -> Tensor

Computes the base-2 logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
def log2(self) -> Tensor:
  """
  Computes the base-2 logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log2().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.log2)

log10 ¤

log10() -> Tensor

Computes the base-10 logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log10().numpy())
[0.     0.301  0.6021 0.9031]
Source code in tinygrad/tensor.py
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
def log10(self) -> Tensor:
  """
  Computes the base-10 logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log10().numpy())
  ```
  """
  return self.log2()*math.log10(2)

exp ¤

exp() -> Tensor

Computes the exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1.      2.7183  7.3891 20.0855]
Source code in tinygrad/tensor.py
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
def exp(self) -> Tensor:
  """
  Computes the exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp().numpy())
  ```
  """
  # TODO: make it generic, and same thing to log and cos
  if self.is_floating_point(): return self.cast(least_upper_dtype(self.dtype, dtypes.float32)).mul(1/math.log(2)).exp2().cast(self.dtype)
  # TODO: behavior when DEFAULT_FLOAT is bfloat16 and input is int32?
  return self.mul(1/math.log(2)).exp2()

exp2 ¤

exp2() -> Tensor

Computes the base-2 exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
def exp2(self) -> Tensor:
  """
  Computes the base-2 exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp2().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.exp2)

sqrt ¤

sqrt() -> Tensor

Computes the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1.     1.4142 1.7321 2.    ]
Source code in tinygrad/tensor.py
2905
2906
2907
2908
2909
2910
2911
2912
2913
def sqrt(self) -> Tensor:
  """
  Computes the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.sqrt)

rsqrt ¤

rsqrt() -> Self

Computes the reciprocal of the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1.     0.7071 0.5774 0.5   ]
Source code in tinygrad/mixin/math.py
508
509
510
511
512
513
514
515
516
def rsqrt(self) -> Self:
  """
  Computes the reciprocal of the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
  ```
  """
  return self.sqrt().reciprocal()

sin ¤

sin() -> Tensor

Computes the sine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0.  1. -0. -1.  0.]
Source code in tinygrad/tensor.py
2915
2916
2917
2918
2919
2920
2921
2922
2923
def sin(self) -> Tensor:
  """
  Computes the sine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.sin)

cos ¤

cos() -> Tensor

Computes the cosine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00  0.0000e+00 -1.0000e+00 -2.3842e-07  1.0000e+00]
Source code in tinygrad/tensor.py
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
def cos(self) -> Tensor:
  """
  Computes the cosine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
  ```
  """
  if self.is_floating_point(): return ((math.pi/2)-self.cast(least_upper_dtype(self.dtype, dtypes.float32))).sin().cast(self.dtype)
  return ((math.pi/2)-self).sin()

tan ¤

tan() -> Tensor

Computes the tangent of the tensor element-wise.

print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0.  1. inf -1.  0.]
Source code in tinygrad/tensor.py
2936
2937
2938
2939
2940
2941
2942
2943
2944
def tan(self) -> Tensor:
  """
  Computes the tangent of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
  ```
  """
  return self.sin() / self.cos()

asin ¤

asin() -> Tensor

Computes the inverse sine (arcsine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047  0.      0.3047  0.6435  1.1198]
Source code in tinygrad/tensor.py
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
def asin(self) -> Tensor:
  """
  Computes the inverse sine (arcsine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_81.htm 4.4.46
  coefficients = [-0.0012624911, 0.0066700901, -0.0170881256, 0.0308918810, -0.0501743046, 0.0889789874, -0.2145988016, 1.5707963050]
  x = math.pi / 2 - (1.0 - self.abs()).sqrt() * polyN(self.abs(), coefficients)
  return self.sign() * x

acos ¤

acos() -> Tensor

Computes the inverse cosine (arccosine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
2959
2960
2961
2962
2963
2964
2965
2966
2967
def acos(self) -> Tensor:
  """
  Computes the inverse cosine (arccosine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
  ```
  """
  return math.pi / 2 - self.asin()

atan ¤

atan() -> Tensor

Computes the inverse tangent (arctan) of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249  -1.1071 -0.7854  0.      0.7854  1.1071  1.249 ]
Source code in tinygrad/tensor.py
2969
2970
2971
2972
2973
2974
2975
2976
2977
def atan(self) -> Tensor:
  """
  Computes the inverse tangent (arctan) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
  ```
  """
  return (self / (1 + self * self).sqrt()).asin()

trunc ¤

trunc() -> Self

Truncates the tensor element-wise.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1. -0.  0.  1.  2.  3.]
Source code in tinygrad/mixin/math.py
261
262
263
264
265
266
267
268
269
def trunc(self) -> Self:
  """
  Truncates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
  ```
  """
  return self.alu(Ops.TRUNC)

ceil ¤

ceil() -> Self

Rounds the tensor element-wise towards positive infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1. -0.  1.  2.  3.  4.]
Source code in tinygrad/mixin/math.py
347
348
349
350
351
352
353
354
355
def ceil(self) -> Self:
  """
  Rounds the tensor element-wise towards positive infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
  ```
  """
  return (self > (b := self.trunc())).where(b+1, b)

floor ¤

floor() -> Self

Rounds the tensor element-wise towards negative infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1.  0.  1.  2.  3.]
Source code in tinygrad/mixin/math.py
357
358
359
360
361
362
363
364
365
def floor(self) -> Self:
  """
  Rounds the tensor element-wise towards negative infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
  ```
  """
  return (self < (b := self.trunc())).where(b-1, b)

round ¤

round() -> Tensor

Rounds the tensor element-wise with rounding half to even.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2.  0.  0.  2.  2.  4.]
Source code in tinygrad/tensor.py
2981
2982
2983
2984
2985
2986
2987
2988
2989
def round(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise with rounding half to even.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
  ```
  """
  return ((self > 0) == ((b := self.trunc() / 2.0).trunc() == b)).where((self - 0.5).ceil(), (self + 0.5).floor())

isinf ¤

isinf(
    detect_positive: bool = True,
    detect_negative: bool = True,
) -> Self

Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False  True False  True False]
Source code in tinygrad/mixin/math.py
327
328
329
330
331
332
333
334
335
def isinf(self, detect_positive: bool = True, detect_negative: bool = True) -> Self:
  """
  Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
  ```
  """
  return self.eq(float("inf")) * detect_positive + self.eq(float("-inf")) * detect_negative

isnan ¤

isnan() -> Self

Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False  True]
Source code in tinygrad/mixin/math.py
317
318
319
320
321
322
323
324
325
def isnan(self) -> Self:
  """
  Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
  ```
  """
  return self != self

isfinite ¤

isfinite() -> Self

Checks the tensor element-wise to return True where the element is finite, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
[ True False  True False False]
Source code in tinygrad/mixin/math.py
337
338
339
340
341
342
343
344
345
def isfinite(self) -> Self:
  """
  Checks the tensor element-wise to return True where the element is finite, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
  ```
  """
  return (self.isinf() | self.isnan()).logical_not()

lerp ¤

lerp(end: Tensor, weight: Tensor | float) -> Tensor

Linearly interpolates between self and end by weight.

print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
def lerp(self, end:Tensor, weight:Tensor|float) -> Tensor:
  """
  Linearly interpolates between `self` and `end` by `weight`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
  ```
  """
  if self.dtype == dtypes.uint8 and isinstance(weight, Tensor):
    w_i = (weight * (1<<(W_PREC:=7)) + 0.5).cast(dtypes.int16)
    return (self+(((end - self).cast(dtypes.int8) * w_i + (1<<W_PREC-1)).cast(dtypes.uint16) >> W_PREC)).cast(dtypes.uint8)
  return self + (end - self) * weight

square ¤

square() -> Self

Squares the tensor element-wise. Equivalent to self*self.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/mixin/math.py
289
290
291
292
293
294
295
296
297
298
def square(self) -> Self:
  """
  Squares the tensor element-wise.
  Equivalent to `self*self`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
  ```
  """
  return self * self

clamp ¤

clamp(min_=None, max_=None) -> Self

Clips (clamps) the values in the tensor between min_ and max_ element-wise. If min_ is None, there is no lower bound. If max_ is None, there is no upper bound.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/mixin/math.py
300
301
302
303
304
305
306
307
308
309
310
311
def clamp(self, min_=None, max_=None) -> Self:
  """
  Clips (clamps) the values in the tensor between `min_` and `max_` element-wise.
  If `min_` is `None`, there is no lower bound. If `max_` is None, there is no upper bound.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
  ```
  """
  if min_ is None and max_ is None: raise RuntimeError("at least one of 'min_' or 'max_' must not be None")
  ret = (self < min_).where(min_, self) if min_ is not None else self
  return (ret > max_).where(max_, ret) if max_ is not None else ret

clip ¤

clip(min_=None, max_=None) -> Self

Alias for Tensor.clamp.

Source code in tinygrad/mixin/math.py
313
314
315
def clip(self, min_=None, max_=None) -> Self:
  """Alias for `Tensor.clamp`."""
  return self.clamp(min_, max_)

sign ¤

sign() -> Tensor

Returns the sign of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/tensor.py
3004
3005
3006
3007
3008
3009
3010
3011
3012
def sign(self) -> Tensor:
  """
  Returns the sign of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
  ```
  """
  return self.ne(0).where((self<0).where(self.full_like(-1), self.full_like(1)), self.full_like(0)) + self*0

abs ¤

abs() -> Tensor

Computes the absolute value of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3014
3015
3016
3017
3018
3019
3020
3021
3022
def abs(self) -> Tensor:
  """
  Computes the absolute value of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
  ```
  """
  return self * self.sign()

reciprocal ¤

reciprocal() -> Tensor

Computes 1/x element-wise.

print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1.     0.5    0.3333 0.25  ]
Source code in tinygrad/tensor.py
3024
3025
3026
3027
3028
3029
3030
3031
3032
def reciprocal(self) -> Tensor:
  """
  Computes `1/x` element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.reciprocal)

Unary Ops (activation)¤

relu ¤

relu() -> Self

Applies the Rectified Linear Unit (ReLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/mixin/math.py
367
368
369
370
371
372
373
374
375
376
def relu(self) -> Self:
  """
  Applies the Rectified Linear Unit (ReLU) function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
  ```
  """
  # NOTE: if you write this as self.maximum(0) the gradient is wrong, passing through half when self is 0
  return (self > 0).where(self, 0)

sigmoid ¤

sigmoid() -> Self

Applies the Sigmoid function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5    0.7311 0.8808 0.9526]
Source code in tinygrad/mixin/math.py
378
379
380
381
382
383
384
385
386
387
388
def sigmoid(self) -> Self:
  """
  Applies the Sigmoid function element-wise.

  - Described: https://en.wikipedia.org/wiki/Sigmoid_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
  ```
  """
  return (1 + (self * (-1/math.log(2))).exp2()).reciprocal()

logsigmoid ¤

logsigmoid() -> Tensor

Applies the LogSigmoid function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
[-3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486]
Source code in tinygrad/tensor.py
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
def logsigmoid(self) -> Tensor:
  """
  Applies the LogSigmoid function element-wise.

  - See: https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.logsigmoid.html

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
  ```
  """
  return -(-self).softplus()

hardsigmoid ¤

hardsigmoid(
    alpha: float = 1 / 6, beta: float = 0.5
) -> Self

Applies the Hardsigmoid function element-wise. NOTE: default alpha and beta values are taken from torch

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0.     0.1667 0.3333 0.5    0.6667 0.8333 1.    ]
Source code in tinygrad/mixin/math.py
414
415
416
417
418
419
420
421
422
423
424
425
def hardsigmoid(self, alpha: float = 1/6, beta: float = 0.5) -> Self:
  """
  Applies the Hardsigmoid function element-wise.
  NOTE: default `alpha` and `beta` values are taken from torch

  - See: https://pytorch.org/docs/stable/generated/torch.nn.functional.hardsigmoid.html

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
  ```
  """
  return (alpha * self + beta).relu() - (alpha * self + beta - 1).relu()

elu ¤

elu(alpha=1.0) -> Tensor

Applies the Exponential Linear Unit (ELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
def elu(self, alpha=1.0) -> Tensor:
  """
  Applies the Exponential Linear Unit (ELU) function element-wise.

  - Paper: https://arxiv.org/abs/1511.07289v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
  ```
  """
  return self.relu() - alpha*(1-self.exp()).relu()

celu ¤

celu(alpha=1.0) -> Tensor

Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
def celu(self, alpha=1.0) -> Tensor:
  """
  Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

  - Paper: https://arxiv.org/abs/1704.07483

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
  ```
  """
  return self.maximum(0) + (alpha * ((self / alpha).exp() - 1)).minimum(0)

selu ¤

selu(alpha=1.67326, gamma=1.0507) -> Tensor

Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113  0.      1.0507  2.1014  3.1521]
Source code in tinygrad/tensor.py
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
def selu(self, alpha=1.67326, gamma=1.0507) -> Tensor:
  """
  Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

  - Paper: https://arxiv.org/abs/1706.02515v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
  ```
  """
  return gamma * (self >= 0).detach().where(self, alpha * (self.exp() - 1))

swish ¤

swish() -> Self

See .silu()

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/mixin/math.py
484
485
486
487
488
489
490
491
492
493
494
def swish(self) -> Self:
  """
  See `.silu()`

  - Paper: https://arxiv.org/abs/1710.05941v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
  ```
  """
  return self * self.sigmoid()

silu ¤

silu() -> Self

Applies the Sigmoid Linear Unit (SiLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/mixin/math.py
496
497
498
499
500
501
502
503
504
505
506
def silu(self) -> Self:
  """
  Applies the Sigmoid Linear Unit (SiLU) function element-wise.

  - Paper: https://arxiv.org/abs/1606.08415

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
  ```
  """
  return self.swish()  # The SiLU function is also known as the swish function.

relu6 ¤

relu6() -> Self

Applies the ReLU6 function element-wise.

print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/mixin/math.py
390
391
392
393
394
395
396
397
398
399
400
def relu6(self) -> Self:
  """
  Applies the ReLU6 function element-wise.

  - Paper: https://arxiv.org/abs/1704.04861v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
  ```
  """
  return self.relu() - (self-6).relu()

hardswish ¤

hardswish() -> Self

Applies the Hardswish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0.     -0.3333 -0.3333  0.      0.6667  1.6667  3.    ]
Source code in tinygrad/mixin/math.py
402
403
404
405
406
407
408
409
410
411
412
def hardswish(self) -> Self:
  """
  Applies the Hardswish function element-wise.

  - Paper: https://arxiv.org/abs/1905.02244v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
  ```
  """
  return self * (self+3).relu6() * (1/6)

tanh ¤

tanh() -> Self

Applies the Hyperbolic Tangent (tanh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964  -0.7616  0.      0.7616  0.964   0.9951]
Source code in tinygrad/mixin/math.py
450
451
452
453
454
455
456
457
458
459
460
def tanh(self) -> Self:
  """
  Applies the Hyperbolic Tangent (tanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Tanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
  ```
  """
  return 2.0 * ((2.0 * self).sigmoid()) - 1.0

sinh ¤

sinh() -> Tensor

Applies the Hyperbolic Sine (sinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179  -3.6269  -1.1752   0.       1.1752   3.6269  10.0179]
Source code in tinygrad/tensor.py
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
def sinh(self) -> Tensor:
  """
  Applies the Hyperbolic Sine (sinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Sinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
  ```
  """
  return (self.exp() - self.neg().exp()) / 2

cosh ¤

cosh() -> Tensor

Applies the Hyperbolic Cosine (cosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677  3.7622  1.5431  1.      1.5431  3.7622 10.0677]
Source code in tinygrad/tensor.py
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
def cosh(self) -> Tensor:
  """
  Applies the Hyperbolic Cosine (cosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Cosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
  ```
  """
  return (self.exp() + self.neg().exp()) / 2

atanh ¤

atanh() -> Tensor

Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095  0.      0.3095  0.6931  1.4722]
Source code in tinygrad/tensor.py
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
def atanh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#atanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
  ```
  """
  return ((1 + self)/(1 - self)).log() / 2

asinh ¤

asinh() -> Tensor

Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814  0.      0.8814  1.4436  1.8184]
Source code in tinygrad/tensor.py
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
def asinh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#asinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
  ```
  """
  return (self + (self.square() + 1).sqrt()).log()

acosh ¤

acosh() -> Tensor

Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[   nan    nan    nan    nan 0.     1.317  1.7627]
Source code in tinygrad/tensor.py
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
def acosh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#acosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
  ```
  """
  return (self + (self.square() - 1).sqrt()).log()

hardtanh ¤

hardtanh(min_val=-1, max_val=1) -> Self

Applies the Hardtanh function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1.  -1.  -0.5  0.   0.5  1.   1. ]
Source code in tinygrad/mixin/math.py
427
428
429
430
431
432
433
434
435
def hardtanh(self, min_val=-1, max_val=1) -> Self:
  """
  Applies the Hardtanh function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
  ```
  """
  return self.clip(min_val, max_val)

erf ¤

erf() -> Tensor

Applies error function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205  0.      0.5205  0.8427  0.9661]
Source code in tinygrad/tensor.py
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
def erf(self) -> Tensor:
  """
  Applies error function element-wise.

  - Described: https://en.wikipedia.org/wiki/Error_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_299.htm 7.1.26
  t = 1.0 / (1.0 + 0.3275911 * self.abs())
  return self.sign() * (1.0 - t * polyN(t, [1.061405429, -1.453152027, 1.421413741, -0.284496736, 0.254829592]) * (-self.square()).exp())

gelu ¤

gelu() -> Self

Applies the Gaussian Error Linear Unit (GELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588  0.      0.8412  1.9546  2.9964]
Source code in tinygrad/mixin/math.py
472
473
474
475
476
477
478
479
480
481
482
def gelu(self) -> Self:
  """
  Applies the Gaussian Error Linear Unit (GELU) function element-wise.

  - Paper: https://arxiv.org/abs/1606.08415v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
  ```
  """
  return 0.5 * self * (1 + (math.sqrt(2 / math.pi) * (self + 0.044715 * self ** 3)).tanh())

quick_gelu ¤

quick_gelu() -> Self

Applies the Sigmoid GELU approximation element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542  0.      0.8458  1.9357  2.9819]
Source code in tinygrad/mixin/math.py
462
463
464
465
466
467
468
469
470
def quick_gelu(self) -> Self:
  """
  Applies the Sigmoid GELU approximation element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
  ```
  """
  return self * (self * 1.702).sigmoid()

leaky_relu ¤

leaky_relu(neg_slope=0.01) -> Self

Applies the Leaky ReLU function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
[-0.03 -0.02 -0.01  0.    1.    2.    3.  ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42  0.    1.    2.    3.  ]

Source code in tinygrad/mixin/math.py
437
438
439
440
441
442
443
444
445
446
447
448
def leaky_relu(self, neg_slope=0.01) -> Self:
  """
  Applies the Leaky ReLU function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
  ```
  """
  return (self < 0).where(neg_slope*self, self)

mish ¤

mish() -> Tensor

Applies the Mish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034  0.      0.8651  1.944   2.9865]
Source code in tinygrad/tensor.py
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
def mish(self) -> Tensor:
  """
  Applies the Mish function element-wise.

  - Paper: https://arxiv.org/abs/1908.08681v3

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
  ```
  """
  return self * self.softplus().tanh()

softplus ¤

softplus(beta=1.0) -> Tensor

Applies the Softplus function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3158
3159
3160
3161
3162
3163
3164
3165
3166
def softplus(self, beta=1.0) -> Tensor:
  """
  Applies the Softplus function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
  ```
  """
  return (1/beta) * (self*beta).logaddexp(0.0)

softsign ¤

softsign() -> Tensor

Applies the Softsign function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75   -0.6667 -0.5     0.      0.5     0.6667  0.75  ]
Source code in tinygrad/tensor.py
3168
3169
3170
3171
3172
3173
3174
3175
3176
def softsign(self) -> Tensor:
  """
  Applies the Softsign function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
  ```
  """
  return self / (1 + self.abs())

Elementwise Ops (broadcasted)¤

add ¤

add(x: Self | ConstType, reverse: bool = False) -> Self

Adds self and x. Equivalent to self + x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085  20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085  2.9089 1.9159]
 [2.9856 4.585  4.4089 3.4159]]

Source code in tinygrad/mixin/math.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def add(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Adds `self` and `x`.
  Equivalent to `self + x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  return self._binop(Ops.ADD, x, reverse)

sub ¤

sub(x: Tensor | ConstType, reverse=False) -> Tensor

Subtracts x from self. Equivalent to self - x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915  -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915  -1.0911 -2.0841]
 [-4.0144 -2.415  -2.5911 -3.5841]]

Source code in tinygrad/tensor.py
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
def sub(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Subtracts `x` from `self`.
  Equivalent to `self - x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return a + (-b)

mul ¤

mul(x: Self | ConstType, reverse: bool = False) -> Self

Multiplies self and x. Equivalent to self * x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431  3.2549  2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085  -0.9089  0.0841]
 [-1.0287  2.17    1.8178 -0.1682]]

Source code in tinygrad/mixin/math.py
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def mul(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Multiplies `self` and `x`.
  Equivalent to `self * x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
  ```
  """
  return self._binop(Ops.MUL, x, reverse)

div ¤

div(
    x: Tensor | ConstType,
    reverse=False,
    rounding_mode: Literal["trunc", "floor"] | None = None,
) -> Tensor

Divides self by x. Equivalent to self / x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs. div performs true division.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715  0.3617  0.303  -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5    1.3333 2.5   ]

Source code in tinygrad/tensor.py
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
def div(self, x:Tensor|ConstType, reverse=False, rounding_mode:Literal["trunc", "floor"]|None=None) -> Tensor:
  """
  Divides `self` by `x`.
  Equivalent to `self / x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
  `div` performs true division.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.div(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
  ```
  """
  numerator, denominator = self._broadcasted(x, reverse)
  d = numerator.cast(least_upper_float(numerator.dtype)) * denominator.cast(least_upper_float(denominator.dtype)).reciprocal()
  output_dtype = numerator.dtype if dtypes.is_int(numerator.dtype) else d.dtype
  if dtypes.is_int(dt:=least_upper_dtype(numerator.dtype, denominator.dtype)) and rounding_mode is not None:
    numerator, denominator = numerator.cast(dt), denominator.cast(dt)
    if rounding_mode == "trunc": return numerator.idiv(denominator)
    if rounding_mode == "floor":
      truncate_div, truncate_mod = numerator.idiv(denominator), numerator._apply_broadcasted_uop(UOp.mod, denominator)
      opposite_sign = ((numerator>0)&(denominator<0)) | ((numerator<0)&(denominator>0))
      return (opposite_sign&(truncate_mod!=0)).where(truncate_div-1, truncate_div)
  if rounding_mode == "trunc": return d.trunc().cast(output_dtype)
  if rounding_mode == "floor": return d.floor().cast(output_dtype)
  if rounding_mode is not None: raise RuntimeError(f"{rounding_mode=} is not supported")
  return d

idiv ¤

idiv(x: Self | ConstType, reverse: bool = False) -> Self

Divides self by x. Equivalent to self // x. Supports broadcasting to a common shape, type promotion, and integer inputs. idiv performs integer division (truncate towards zero).

print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2  0 -2 -2  1]
Source code in tinygrad/mixin/math.py
122
123
124
125
126
127
128
129
130
131
132
133
def idiv(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Divides `self` by `x`.
  Equivalent to `self // x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.
  `idiv` performs integer division (truncate towards zero).

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  return self._binop(Ops.IDIV, x, reverse)

mod ¤

mod(x: Tensor | ConstType, reverse=False) -> Tensor

Mod self by x. Equivalent to self % x. Supports broadcasting to a common shape, type promotion, and integer inputs.

print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2  5  0  2  3]
Source code in tinygrad/tensor.py
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
def mod(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Mod `self` by `x`.
  Equivalent to `self % x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return a - a.div(b, rounding_mode="floor") * b

bitwise_xor ¤

bitwise_xor(
    x: Self | ConstType, reverse: bool = False
) -> Self

Computes bitwise xor of self and x. Equivalent to self ^ x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
[-2 -2  0]
print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
[False  True  True False]

Source code in tinygrad/mixin/math.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def bitwise_xor(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Computes bitwise xor of `self` and `x`.
  Equivalent to `self ^ x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.XOR, x, reverse)

bitwise_and ¤

bitwise_and(
    x: Self | ConstType, reverse: bool = False
) -> Self

Computes the bitwise AND of self and x. Equivalent to self & x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
[ 2  4 16]
print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
[ True False False False]

Source code in tinygrad/mixin/math.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def bitwise_and(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Computes the bitwise AND of `self` and `x`.
  Equivalent to `self & x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.AND, x, reverse)

bitwise_or ¤

bitwise_or(
    x: Self | ConstType, reverse: bool = False
) -> Self

Computes the bitwise OR of self and x. Equivalent to self | x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
[  6   5 255]
print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
[ True  True  True False]

Source code in tinygrad/mixin/math.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def bitwise_or(self, x: Self | ConstType, reverse: bool = False) -> Self:
  """
  Computes the bitwise OR of `self` and `x`.
  Equivalent to `self | x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.OR, x, reverse)

bitwise_not ¤

bitwise_not() -> Tensor

Computes the bitwise NOT of self. Equivalent to ~self.

print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
[-1 -3 -6  0]
print(Tensor([True, False]).bitwise_not().numpy())
[False  True]

Source code in tinygrad/tensor.py
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
def bitwise_not(self) -> Tensor:
  """
  Computes the bitwise NOT of `self`.
  Equivalent to `~self`.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, False]).bitwise_not().numpy())
  ```
  """
  if self.dtype != dtypes.bool and not dtypes.is_int(self.dtype): raise RuntimeError(f"{self.dtype} is not supported")
  return self.logical_not() if self.dtype == dtypes.bool else self ^ -1

lshift ¤

lshift(x: Tensor | int, reverse=False) -> Tensor

Computes left arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self << x.

print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[  4  12 124]
Source code in tinygrad/tensor.py
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
def lshift(self, x:Tensor|int, reverse=False) -> Tensor:
  """
  Computes left arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self << x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0 and not reverse, f"not supported {self.dtype=} {x=}"
  return self.mul(2 ** x, reverse)

rshift ¤

rshift(x: Tensor | int, reverse=False) -> Tensor

Computes right arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self >> x.

print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1  3 31]
Source code in tinygrad/tensor.py
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
def rshift(self, x:Tensor|int, reverse=False) -> Tensor:
  """
  Computes right arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self >> x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0 and not reverse, f"not supported {self.dtype=} {x=}"
  return self.idiv(2 ** x, reverse)

pow ¤

pow(x: Tensor | ConstType, reverse=False) -> Tensor

Computes power of self with x. Equivalent to self ** x.

print(Tensor([-1, 2, 3]).pow(2.0).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648           1           5]
print((2.0 ** Tensor([-1, 2, 3])).numpy())
[0.5 4.  8. ]

Source code in tinygrad/tensor.py
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
def pow(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Computes power of `self` with `x`.
  Equivalent to `self ** x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(2.0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((2.0 ** Tensor([-1, 2, 3])).numpy())
  ```
  """
  base, exponent = self._broadcasted(x, reverse=reverse)
  # TODO: int pow
  if not base.is_floating_point() and not (isinstance(x, int) and x >= 0): raise RuntimeError("base needs to be float")

  ret = base._apply_uop(UOp.pow, exponent)
  # NOTE: pow(int, float) -> int
  return ret.round().cast(self.dtype) if not reverse and not dtypes.is_float(self.dtype) and dtypes.is_float(exponent.dtype) else ret

maximum ¤

maximum(x: Tensor | ConstType) -> Tensor

Computes element-wise maximum of self and x.

print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1  2  9]

Source code in tinygrad/tensor.py
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
def maximum(self, x:Tensor|ConstType) -> Tensor:
  """
  Computes element-wise maximum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  return self._apply_broadcasted_uop(UOp.maximum, x)

minimum ¤

minimum(x: Tensor | ConstType) -> Tensor

Computes element-wise minimum of self and x.

print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1  1  1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2  3]

Source code in tinygrad/tensor.py
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
def minimum(self, x:Tensor|ConstType) -> Tensor:
  """
  Computes element-wise minimum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  t, x = self._broadcasted(x)
  return t._inverse().maximum(x._inverse())._inverse()

where ¤

where(
    x: Tensor | ConstType | sint,
    y: Tensor | ConstType | sint,
) -> Tensor

Returns a tensor of elements selected from either x or y, depending on self. output_i = x_i if self_i else y_i.

cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
 [1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
 [  -inf   -inf 0.2753]]

Source code in tinygrad/tensor.py
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
def where(self:Tensor, x:Tensor|ConstType|sint, y:Tensor|ConstType|sint) -> Tensor:
  """
  Returns a tensor of elements selected from either `x` or `y`, depending on `self`.
  `output_i = x_i if self_i else y_i`.

  ```python exec="true" source="above" session="tensor" result="python"
  cond = Tensor([[True, True, False], [True, False, False]])
  print(cond.where(1, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  cond = Tensor.randn(2, 3)
  print(cond.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((cond > 0).where(cond, -float("inf")).numpy())
  ```
  """
  if isinstance(x, Tensor): x, y = x._broadcasted(y)
  elif isinstance(y, Tensor): y, x = y._broadcasted(x)
  cond, x = self._broadcasted(x, match_dtype=False)
  cond, y = cond._broadcasted(y, match_dtype=False)
  return cond.cast(dtypes.bool)._apply_uop(UOp.where, *x._broadcasted(y))

copysign ¤

copysign(other) -> Tensor

Returns a tensor of with the magnitude of self and the sign of other, elementwise.

Source code in tinygrad/tensor.py
3384
3385
3386
3387
3388
3389
3390
3391
3392
def copysign(self, other) -> Tensor:
  """
  Returns a tensor of with the magnitude of `self` and the sign of `other`, elementwise.
  """
  # NOTE: torch always return in float, we return based on the broadcasting rule.
  other = self._broadcasted(other)[1]
  # TODO: remove other.sign()*0?
  # other.sign()*0 keeps other in the gradient graph (gradient=0) without affecting forward (works for inf unlike other*0)
  return self.abs() * ((other < 0) | (other.reciprocal() < 0)).where(-1, 1) + other.sign()*0

logaddexp ¤

logaddexp(other) -> Tensor

Calculates (self.exp()+other.exp()).log(), elementwise.

Source code in tinygrad/tensor.py
3394
3395
3396
3397
3398
3399
def logaddexp(self, other) -> Tensor:
  """
  Calculates (self.exp()+other.exp()).log(), elementwise.
  """
  m = self.maximum(other)
  return ((self-m).exp() + (self._broadcasted(other)[1]-m).exp()).log() + m

Casting Ops¤

cast ¤

cast(dtype: DTypeLike) -> Tensor

Casts self to the given dtype.

t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1.   2.5  3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255   2   3]

Source code in tinygrad/tensor.py
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
def cast(self, dtype:DTypeLike) -> Tensor:
  """
  Casts `self` to the given `dtype`.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.uint8)
  print(t.dtype, t.numpy())
  ```
  """
  if (dt:=to_dtype(dtype)) in {dtypes.uint8, dtypes.uint16} and dtypes.is_float(self.dtype):
    # NOTE: values within the int32 range and outside the unsigned dtype range will cause values to wrap around
    return self._apply_uop(UOp.cast, dtype=dtypes.int32)._apply_uop(UOp.cast, dtype=dt)
  return self if self.dtype == dt else self._apply_uop(UOp.cast, dtype=dt)

bitcast ¤

bitcast(dtype: DTypeLike) -> Tensor

Bitcasts self to the given dtype.

When the target dtype has the same itemsize, this is a view of the same memory. When itemsizes differ, the last dimension is adjusted and a new Tensor is created.

self must not require a gradient.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295          2          3]

Source code in tinygrad/tensor.py
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
def bitcast(self, dtype:DTypeLike) -> Tensor:
  """
  Bitcasts `self` to the given `dtype`.

  When the target dtype has the same itemsize, this is a view of the same memory.
  When itemsizes differ, the last dimension is adjusted and a new Tensor is created.

  `self` must not require a gradient.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bitcast(dtypes.uint32)
  print(t.dtype, t.numpy())
  ```
  """
  if self.requires_grad: raise RuntimeError("can't backprop through bitcast")
  dt = to_dtype(dtype)
  if (ns:=dt.itemsize) != (os:=self.dtype.itemsize) and (self.shape[-1]*os) % ns != 0: raise RuntimeError("unsupported size in bitcast")
  if (not isinstance(self.device, str) or not self.device.startswith("DISK")) and ns != os:
    new_uint, old_uint = to_dtype(f"uint{8*ns}"), to_dtype(f"uint{8*os}")
    tmp = self.bitcast(old_uint)
    if ns > os:
      tmp = tmp.reshape(self.shape[:-1] + (self.shape[-1]//(rate := ns//os), rate))
      nones = (None,) * (tmp.ndim - 1)
      return functools.reduce(Tensor.add, (tmp.shrink(nones + ((i, i+1),)).cast(new_uint)<<8*i*os for i in range(rate))).squeeze(-1).bitcast(dtype)
    return Tensor.stack(*(tmp>>8*i*ns for i in range(os//ns)), dim=-1).flatten(-2).cast(new_uint).bitcast(dtype)
  return self._apply_uop(UOp.bitcast, dtype=dt) if self.dtype != dt else self

float ¤

float() -> Tensor

Convenience method to cast self to a float32 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1.  2.  3.]

Source code in tinygrad/tensor.py
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
def float(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.float()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float32)

half ¤

half() -> Tensor

Convenience method to cast self to a float16 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1.  2.  3.]

Source code in tinygrad/tensor.py
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
def half(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float16` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.half()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float16)

int ¤

int() -> Tensor

Convenience method to cast self to a int32 Tensor.

t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5  0.   0.5  1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1  0  0  0  1]

Source code in tinygrad/tensor.py
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
def int(self) -> Tensor:
  """
  Convenience method to cast `self` to a `int32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.int()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.int32)

bool ¤

bool() -> Tensor

Convenience method to cast self to a bool Tensor.

t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1  0  1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False  True]

Source code in tinygrad/tensor.py
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
def bool(self) -> Tensor:
  """
  Convenience method to cast `self` to a `bool` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 0, 1])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bool()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.bool)

bfloat16 ¤

bfloat16() -> Tensor
Source code in tinygrad/tensor.py
3960
def bfloat16(self) -> Tensor: return self.cast(dtypes.bfloat16)

double ¤

double() -> Tensor
Source code in tinygrad/tensor.py
3961
def double(self) -> Tensor: return self.cast(dtypes.double)

long ¤

long() -> Tensor
Source code in tinygrad/tensor.py
3962
def long(self) -> Tensor: return self.cast(dtypes.long)

short ¤

short() -> Tensor
Source code in tinygrad/tensor.py
3963
def short(self) -> Tensor: return self.cast(dtypes.short)