- 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
MultiIndex(data=None, dtype=None, *, name=None, session=None)A multi-level, or hierarchical, index object for pandas objects.
Methods
from_arrays
from_arrays(
    arrays,
    sortorder: int | None = None,
    names=None,
    *,
    session: Optional[bigframes.session.Session] = None
) -> MultiIndexConvert arrays to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> bpd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex([(1,  'red'),
            (1, 'blue'),
            (2,  'red'),
            (2, 'blue')],
        names=['number', 'color'])
| Parameters | |
|---|---|
| Name | Description | 
| arrays | list / sequence of array-likesEach array-like gives one level's value for each data point. len(arrays) is the number of levels. | 
| sortorder | int or NoneLevel of sortedness (must be lexicographically sorted by that level). | 
| names | list / sequence of str, optionalNames for the levels in the index. | 
from_tuples
from_tuples(
    tuples: Iterable[tuple[Hashable, ...]],
    sortorder: int | None = None,
    names: Sequence[Hashable] | Hashable | None = None,
    *,
    session: Optional[bigframes.session.Session] = None
) -> MultiIndexConvert list of tuples to MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> tuples = [(1, 'red'), (1, 'blue'),
...           (2, 'red'), (2, 'blue')]
>>> bpd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex([(1,  'red'),
            (1, 'blue'),
            (2,  'red'),
            (2, 'blue')],
        names=['number', 'color'])
| Parameters | |
|---|---|
| Name | Description | 
| tuples | list / sequence of tuple-likesEach tuple is the index of one row/column. | 
| sortorder | int or NoneLevel of sortedness (must be lexicographically sorted by that level). | 
| names | list / sequence of str, optionalNames for the levels in the index. |