- 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
PolynomialFeatures(degree: int = 2)Generate polynomial and interaction features.
| Parameter | |
|---|---|
| Name | Description | 
| degree | intSpecifies the maximal degree of the polynomial features. Valid values [1, 4]. Default to 2. | 
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y=None,
) -> bigframes.ml.preprocessing.PolynomialFeaturesCompute number of output features.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.SeriesThe Dataframe or Series with training data. | 
| y | default NoneIgnored. | 
| Returns | |
|---|---|
| Type | Description | 
| PolynomialFeatures | Fitted transformer. | 
fit_transform
fit_transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
) -> bigframes.dataframe.DataFrameFit to data, then transform it.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.SeriesSeries or DataFrame of shape (n_samples, n_features). Input samples. | 
| y | bigframes.dataframe.DataFrame or bigframes.series.SeriesSeries or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations). | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame | DataFrame of shape (n_samples, n_features_new). Transformed DataFrame. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
| deep | bool, default TrueDefault  | 
| Returns | |
|---|---|
| Type | Description | 
| Dictionary | A dictionary of parameter names mapped to their values. | 
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._TSave the transformer as a BigQuery model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | strThe name of the model. | 
| replace | bool, default FalseDetermine whether to replace if the model already exists. Default to False. | 
transform
transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.dataframe.DataFrameTransform data to polynomial features.
| Parameter | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.SeriesThe DataFrame or Series to be transformed. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame | Transformed result. |