diff --git a/.dev_scripts/batch_test_list.py b/.dev_scripts/batch_test_list.py
new file mode 100644
index 00000000..8acced2f
--- /dev/null
+++ b/.dev_scripts/batch_test_list.py
@@ -0,0 +1,344 @@
+# yapf: disable
+atss = dict(
+ config='configs/atss/atss_r50_fpn_1x_coco.py',
+ checkpoint='atss_r50_fpn_1x_coco_20200209-985f7bd0.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=39.4),
+)
+autoassign = dict(
+ config='configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py',
+ checkpoint='auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+carafe = dict(
+ config='configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py',
+ checkpoint='faster_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.386_20200504_175733-385a75b7.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=38.6),
+)
+cascade_rcnn = [
+ dict(
+ config='configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.3),
+ ),
+ dict(
+ config='configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=41.2),
+ ),
+]
+cascade_rpn = dict(
+ config='configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py',
+ checkpoint='crpn_faster_rcnn_r50_caffe_fpn_1x_coco-c8283cca.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+centripetalnet = dict(
+ config='configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py', # noqa
+ checkpoint='centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=44.7),
+)
+cornernet = dict(
+ config='configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py',
+ checkpoint='cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=41.2),
+)
+dcn = dict(
+ config='configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py',
+ checkpoint='faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=41.3),
+)
+deformable_detr = dict(
+ config='configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py',
+ checkpoint='deformable_detr_r50_16x2_50e_coco_20210419_220030-a12b9512.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=44.5),
+)
+detectors = dict(
+ config='configs/detectors/detectors_htc_r50_1x_coco.py',
+ checkpoint='detectors_htc_r50_1x_coco-329b1453.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=49.1),
+)
+detr = dict(
+ config='configs/detr/detr_r50_8x2_150e_coco.py',
+ checkpoint='detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.1),
+)
+double_heads = dict(
+ config='configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.0),
+)
+dynamic_rcnn = dict(
+ config='configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='dynamic_rcnn_r50_fpn_1x-62a3f276.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.9),
+)
+empirical_attention = dict(
+ config='configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py', # noqa
+ checkpoint='faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=40.0),
+)
+faster_rcnn = dict(
+ config='configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.4),
+)
+fcos = dict(
+ config='configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py', # noqa
+ checkpoint='fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=38.7),
+)
+foveabox = dict(
+ config='configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py',
+ checkpoint='fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.9),
+)
+free_anchor = dict(
+ config='configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py',
+ checkpoint='retinanet_free_anchor_r50_fpn_1x_coco_20200130-0f67375f.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.7),
+)
+fsaf = dict(
+ config='configs/fsaf/fsaf_r50_fpn_1x_coco.py',
+ checkpoint='fsaf_r50_fpn_1x_coco-94ccc51f.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.4),
+)
+gcnet = dict(
+ config='configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py', # noqa
+ checkpoint='mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202-587b99aa.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+gfl = dict(
+ config='configs/gfl/gfl_r50_fpn_1x_coco.py',
+ checkpoint='gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.2),
+)
+gn = dict(
+ config='configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py',
+ checkpoint='mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.1),
+)
+gn_ws = dict(
+ config='configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py',
+ checkpoint='faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=39.7),
+)
+grid_rcnn = dict(
+ config='configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py',
+ checkpoint='grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+groie = dict(
+ config='configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py',
+ checkpoint='faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715-66ee9516.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=38.3),
+)
+guided_anchoring = [
+ dict(
+ config='configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py', # noqa
+ checkpoint='ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=36.9),
+ ),
+ dict(
+ config='configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py',
+ checkpoint='ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=39.6),
+ ),
+]
+hrnet = dict(
+ config='configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py',
+ checkpoint='faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=36.9),
+)
+htc = dict(
+ config='configs/htc/htc_r50_fpn_1x_coco.py',
+ checkpoint='htc_r50_fpn_1x_coco_20200317-7332cf16.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=42.3),
+)
+libra_rcnn = dict(
+ config='configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.3),
+)
+mask_rcnn = dict(
+ config='configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.2),
+)
+ms_rcnn = dict(
+ config='configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py',
+ checkpoint='ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.2),
+)
+nas_fcos = dict(
+ config='configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py', # noqa
+ checkpoint='nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=39.4),
+)
+nas_fpn = dict(
+ config='configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py',
+ checkpoint='retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.5),
+)
+paa = dict(
+ config='configs/paa/paa_r50_fpn_1x_coco.py',
+ checkpoint='paa_r50_fpn_1x_coco_20200821-936edec3.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+pafpn = dict(
+ config='configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py',
+ checkpoint='faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=37.5),
+)
+pisa = dict(
+ config='configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.4),
+)
+point_rend = dict(
+ config='configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py',
+ checkpoint='point_rend_r50_caffe_fpn_mstrain_1x_coco-1bcb5fb4.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=38.4),
+)
+regnet = dict(
+ config='configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py',
+ checkpoint='mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=40.4),
+)
+reppoints = dict(
+ config='configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py',
+ checkpoint='reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.0),
+)
+res2net = dict(
+ config='configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py',
+ checkpoint='faster_rcnn_r2_101_fpn_2x_coco-175f1da6.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=43.0),
+)
+resnest = dict(
+ config='configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py', # noqa
+ checkpoint='faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco_20200926_125502-20289c16.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=42.0),
+)
+retinanet = dict(
+ config='configs/retinanet/retinanet_r50_fpn_1x_coco.py',
+ checkpoint='retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=36.5),
+)
+rpn = dict(
+ config='configs/rpn/rpn_r50_fpn_1x_coco.py',
+ checkpoint='rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth',
+ eval='proposal_fast',
+ metric=dict(AR_1000=58.2),
+)
+sabl = [
+ dict(
+ config='configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py ',
+ checkpoint='sabl_retinanet_r50_fpn_1x_coco-6c54fd4f.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.7),
+ ),
+ dict(
+ config='configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='sabl_faster_rcnn_r50_fpn_1x_coco-e867595b.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=39.9),
+ ),
+]
+scnet = dict(
+ config='configs/scnet/scnet_r50_fpn_1x_coco.py',
+ checkpoint='scnet_r50_fpn_1x_coco-c3f09857.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=43.5),
+)
+sparse_rcnn = dict(
+ config='configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py',
+ checkpoint='sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.9),
+)
+ssd = dict(
+ config='configs/ssd/ssd300_coco.py',
+ checkpoint='ssd300_coco_20200307-a92d2092.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=25.6),
+)
+tridentnet = dict(
+ config='configs/tridentnet/tridentnet_r50_caffe_1x_coco.py',
+ checkpoint='tridentnet_r50_caffe_1x_coco_20201230_141838-2ec0b530.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.6),
+)
+vfnet = dict(
+ config='configs/vfnet/vfnet_r50_fpn_1x_coco.py',
+ checkpoint='vfnet_r50_fpn_1x_coco_20201027-38db6f58.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=41.6),
+)
+yolact = dict(
+ config='configs/yolact/yolact_r50_1x8_coco.py',
+ checkpoint='yolact_r50_1x8_coco_20200908-f38d58df.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=31.2),
+)
+yolo = dict(
+ config='configs/yolo/yolov3_d53_320_273e_coco.py',
+ checkpoint='yolov3_d53_320_273e_coco-421362b6.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=27.9),
+)
+yolof = dict(
+ config='configs/yolof/yolof_r50_c5_8x8_1x_coco.py',
+ checkpoint='yolof_r50_c5_8x8_1x_coco_20210425_024427-8e864411.pth',
+ eval='bbox',
+ metric=dict(bbox_mAP=37.5),
+)
+centernet = dict(
+ config='configs/centernet/centernet_resnet18_dcnv2_140e_coco.py',
+ checkpoint='centernet_resnet18_dcnv2_140e_coco_20210520_101209-da388ba2.pth', # noqa
+ eval='bbox',
+ metric=dict(bbox_mAP=29.5),
+)
+# yapf: enable
diff --git a/.dev_scripts/batch_train_list.txt b/.dev_scripts/batch_train_list.txt
new file mode 100644
index 00000000..7fe77b46
--- /dev/null
+++ b/.dev_scripts/batch_train_list.txt
@@ -0,0 +1,63 @@
+configs/atss/atss_r50_fpn_1x_coco.py
+configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py
+configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
+configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py
+configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
+configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py
+configs/detectors/detectors_htc_r50_1x_coco.py
+configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py
+configs/detr/detr_r50_8x2_150e_coco.py
+configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
+configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
+configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
+configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
+configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
+configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
+configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py
+configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
+configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
+configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
+configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py
+configs/fsaf/fsaf_r50_fpn_1x_coco.py
+configs/gfl/gfl_r50_fpn_1x_coco.py
+configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
+configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
+configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py
+configs/htc/htc_r50_fpn_1x_coco.py
+configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py
+configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
+configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
+configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
+configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+configs/paa/paa_r50_fpn_1x_coco.py
+configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
+configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py
+configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py
+configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py
+configs/rpn/rpn_r50_fpn_1x_coco.py
+configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
+configs/ssd/ssd300_coco.py
+configs/tridentnet/tridentnet_r50_caffe_1x_coco.py
+configs/vfnet/vfnet_r50_fpn_1x_coco.py
+configs/yolact/yolact_r50_1x8_coco.py
+configs/yolo/yolov3_d53_320_273e_coco.py
+configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py
+configs/scnet/scnet_r50_fpn_1x_coco.py
+configs/yolof/yolof_r50_c5_8x8_1x_coco.py
+configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py
+configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
+configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
+configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py
+configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
+configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
+configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
+configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
+configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
+configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
+configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
+configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
+configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
+configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
+configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py
+configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py
+configs/centernet/centernet_resnet18_dcnv2_140e_coco.py
diff --git a/.dev_scripts/benchmark_filter.py b/.dev_scripts/benchmark_filter.py
new file mode 100644
index 00000000..81b363ed
--- /dev/null
+++ b/.dev_scripts/benchmark_filter.py
@@ -0,0 +1,166 @@
+import argparse
+import os
+import os.path as osp
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='Filter configs to train')
+ parser.add_argument(
+ '--basic-arch',
+ action='store_true',
+ help='to train models in basic arch')
+ parser.add_argument(
+ '--datasets', action='store_true', help='to train models in dataset')
+ parser.add_argument(
+ '--data-pipeline',
+ action='store_true',
+ help='to train models related to data pipeline, e.g. augmentations')
+ parser.add_argument(
+ '--nn-module',
+ action='store_true',
+ help='to train models related to neural network modules')
+ parser.add_argument(
+ '--model-options',
+ nargs='+',
+ help='custom options to special model benchmark')
+ parser.add_argument(
+ '--out',
+ type=str,
+ default='batch_train_list.txt',
+ help='output path of gathered metrics to be stored')
+ args = parser.parse_args()
+ return args
+
+
+basic_arch_root = [
+ 'atss', 'autoassign', 'cascade_rcnn', 'cascade_rpn', 'centripetalnet',
+ 'cornernet', 'detectors', 'deformable_detr', 'detr', 'double_heads',
+ 'dynamic_rcnn', 'faster_rcnn', 'fcos', 'foveabox', 'fp16', 'free_anchor',
+ 'fsaf', 'gfl', 'ghm', 'grid_rcnn', 'guided_anchoring', 'htc', 'ld',
+ 'libra_rcnn', 'mask_rcnn', 'ms_rcnn', 'nas_fcos', 'paa', 'pisa',
+ 'point_rend', 'reppoints', 'retinanet', 'rpn', 'sabl', 'ssd', 'tridentnet',
+ 'vfnet', 'yolact', 'yolo', 'sparse_rcnn', 'scnet', 'yolof', 'centernet'
+]
+
+datasets_root = [
+ 'wider_face', 'pascal_voc', 'cityscapes', 'lvis', 'deepfashion'
+]
+
+data_pipeline_root = ['albu_example', 'instaboost']
+
+nn_module_root = [
+ 'carafe', 'dcn', 'empirical_attention', 'gcnet', 'gn', 'gn+ws', 'hrnet',
+ 'pafpn', 'nas_fpn', 'regnet', 'resnest', 'res2net', 'groie'
+]
+
+benchmark_pool = [
+ 'configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py',
+ 'configs/atss/atss_r50_fpn_1x_coco.py',
+ 'configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py',
+ 'configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py',
+ 'configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py',
+ 'configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py',
+ 'configs/centernet/centernet_resnet18_dcnv2_140e_coco.py',
+ 'configs/centripetalnet/'
+ 'centripetalnet_hourglass104_mstest_16x6_210e_coco.py',
+ 'configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py',
+ 'configs/cornernet/'
+ 'cornernet_hourglass104_mstest_8x6_210e_coco.py',
+ 'configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py',
+ 'configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py',
+ 'configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py',
+ 'configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py',
+ 'configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py',
+ 'configs/detectors/detectors_htc_r50_1x_coco.py',
+ 'configs/detr/detr_r50_8x2_150e_coco.py',
+ 'configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py',
+ 'configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py',
+ 'configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py', # noqa
+ 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',
+ 'configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py',
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py',
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py',
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py',
+ 'configs/fcos/fcos_center_r50_caffe_fpn_gn-head_4x4_1x_coco.py',
+ 'configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py',
+ 'configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py',
+ 'configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py',
+ 'configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py',
+ 'configs/fsaf/fsaf_r50_fpn_1x_coco.py',
+ 'configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py',
+ 'configs/gfl/gfl_r50_fpn_1x_coco.py',
+ 'configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py',
+ 'configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py',
+ 'configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py',
+ 'configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py',
+ 'configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py',
+ 'configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py',
+ 'configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py',
+ 'configs/htc/htc_r50_fpn_1x_coco.py',
+ 'configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py',
+ 'configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py',
+ 'configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py',
+ 'configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py',
+ 'configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py',
+ 'configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py',
+ 'configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py',
+ 'configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py',
+ 'configs/paa/paa_r50_fpn_1x_coco.py',
+ 'configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py',
+ 'configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py',
+ 'configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py',
+ 'configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py',
+ 'configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py',
+ 'configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py',
+ 'configs/resnest/'
+ 'mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py',
+ 'configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py',
+ 'configs/rpn/rpn_r50_fpn_1x_coco.py',
+ 'configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py',
+ 'configs/ssd/ssd300_coco.py',
+ 'configs/tridentnet/tridentnet_r50_caffe_1x_coco.py',
+ 'configs/vfnet/vfnet_r50_fpn_1x_coco.py',
+ 'configs/yolact/yolact_r50_1x8_coco.py',
+ 'configs/yolo/yolov3_d53_320_273e_coco.py',
+ 'configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py',
+ 'configs/scnet/scnet_r50_fpn_1x_coco.py',
+ 'configs/yolof/yolof_r50_c5_8x8_1x_coco.py',
+]
+
+
+def main():
+ args = parse_args()
+
+ benchmark_type = []
+ if args.basic_arch:
+ benchmark_type += basic_arch_root
+ if args.datasets:
+ benchmark_type += datasets_root
+ if args.data_pipeline:
+ benchmark_type += data_pipeline_root
+ if args.nn_module:
+ benchmark_type += nn_module_root
+
+ special_model = args.model_options
+ if special_model is not None:
+ benchmark_type += special_model
+
+ config_dpath = 'configs/'
+ benchmark_configs = []
+ for cfg_root in benchmark_type:
+ cfg_dir = osp.join(config_dpath, cfg_root)
+ configs = os.scandir(cfg_dir)
+ for cfg in configs:
+ config_path = osp.join(cfg_dir, cfg.name)
+ if (config_path in benchmark_pool
+ and config_path not in benchmark_configs):
+ benchmark_configs.append(config_path)
+
+ print(f'Totally found {len(benchmark_configs)} configs to benchmark')
+ with open(args.out, 'w') as f:
+ for config in benchmark_configs:
+ f.write(config + '\n')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/.dev_scripts/benchmark_test_image.py b/.dev_scripts/benchmark_test_image.py
new file mode 100644
index 00000000..b71ffe1e
--- /dev/null
+++ b/.dev_scripts/benchmark_test_image.py
@@ -0,0 +1,68 @@
+import logging
+import os.path as osp
+from argparse import ArgumentParser
+
+from mmcv import Config
+
+from mmdet.apis import inference_detector, init_detector, show_result_pyplot
+from mmdet.utils import get_root_logger
+
+
+def parse_args():
+ parser = ArgumentParser()
+ parser.add_argument('config', help='test config file path')
+ parser.add_argument('checkpoint_root', help='Checkpoint file root path')
+ parser.add_argument('--img', default='demo/demo.jpg', help='Image file')
+ parser.add_argument('--aug', action='store_true', help='aug test')
+ parser.add_argument('--show', action='store_true', help='show results')
+ parser.add_argument(
+ '--device', default='cuda:0', help='Device used for inference')
+ parser.add_argument(
+ '--score-thr', type=float, default=0.3, help='bbox score threshold')
+ args = parser.parse_args()
+ return args
+
+
+# Sample test whether the inference code is correct
+def main(args):
+ config = Config.fromfile(args.config)
+ logger = get_root_logger(
+ log_file='benchmark_test_image.log', log_level=logging.ERROR)
+
+ for model_key in config:
+ model_infos = config[model_key]
+ if not isinstance(model_infos, list):
+ model_infos = [model_infos]
+ for model_info in model_infos:
+ print('processing: ', model_info['config'], flush=True)
+ config_name = model_info['config'].strip()
+ checkpoint = osp.join(args.checkpoint_root,
+ model_info['checkpoint'].strip())
+ try:
+ # build the model from a config file and a checkpoint file
+ cfg = Config.fromfile(config_name)
+ if args.aug:
+ if 'flip' in cfg.data.test.pipeline[1]:
+ cfg.data.test.pipeline[1].flip = True
+ else:
+ logger.error(
+ f'{config_name} " : Unable to start aug test')
+
+ model = init_detector(cfg, checkpoint, device=args.device)
+ # test a single image
+ result = inference_detector(model, args.img)
+ # show the results
+ if args.show:
+ show_result_pyplot(
+ model,
+ args.img,
+ result,
+ score_thr=args.score_thr,
+ wait_time=1)
+ except Exception as e:
+ logger.error(f'{config_name} " : {repr(e)}')
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ main(args)
diff --git a/.dev_scripts/convert_test_benchmark_script.py b/.dev_scripts/convert_test_benchmark_script.py
new file mode 100644
index 00000000..a78d28a6
--- /dev/null
+++ b/.dev_scripts/convert_test_benchmark_script.py
@@ -0,0 +1,116 @@
+import argparse
+import os
+import os.path as osp
+
+from mmcv import Config
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(
+ description='Convert benchmark model list to script')
+ parser.add_argument('config', help='test config file path')
+ parser.add_argument(
+ '--partition',
+ type=str,
+ default='openmmlab',
+ help='slurm partition name')
+ parser.add_argument('--port', type=int, default=29666, help='dist port')
+ parser.add_argument(
+ '--work-dir',
+ default='tools/batch_test',
+ help='the dir to save metric')
+ parser.add_argument(
+ '--run', action='store_true', help='run script directly')
+ parser.add_argument(
+ '--out', type=str, help='path to save model benchmark script')
+
+ args = parser.parse_args()
+ return args
+
+
+def process_model_info(model_info, work_dir):
+ config = model_info['config'].strip()
+ fname, _ = osp.splitext(osp.basename(config))
+ job_name = fname
+ work_dir = osp.join(work_dir, fname)
+ checkpoint = model_info['checkpoint'].strip()
+ eval = model_info['eval'].strip()
+ return dict(
+ config=config,
+ job_name=job_name,
+ work_dir=work_dir,
+ checkpoint=checkpoint,
+ eval=eval)
+
+
+def create_test_bash_info(commands, model_test_dict, port, script_name,
+ partition):
+ config = model_test_dict['config']
+ job_name = model_test_dict['job_name']
+ checkpoint = model_test_dict['checkpoint']
+ work_dir = model_test_dict['work_dir']
+ eval = model_test_dict['eval']
+
+ echo_info = f' \necho \'{config}\' &'
+ commands.append(echo_info)
+ commands.append('\n')
+
+ command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \
+ f'CPUS_PER_TASK=2 {script_name} '
+
+ command_info += f'{partition} '
+ command_info += f'{job_name} '
+ command_info += f'{config} '
+ command_info += f'$CHECKPOINT_DIR/{checkpoint} '
+ command_info += f'--work-dir {work_dir} '
+
+ command_info += f'--eval {eval} '
+ command_info += f'--cfg-option dist_params.port={port} '
+ command_info += ' &'
+
+ commands.append(command_info)
+
+
+def main():
+ args = parse_args()
+ if args.out:
+ out_suffix = args.out.split('.')[-1]
+ assert args.out.endswith('.sh'), \
+ f'Expected out file path suffix is .sh, but get .{out_suffix}'
+ assert args.out or args.run, \
+ ('Please specify at least one operation (save/run/ the '
+ 'script) with the argument "--out" or "--run"')
+
+ commands = []
+ checkpoint_root = 'CHECKPOINT_DIR=$1 '
+ commands.append(checkpoint_root)
+ commands.append('\n')
+
+ script_name = osp.join('tools', 'slurm_test.sh')
+ partition = args.partition # cluster name
+ port = args.port
+ work_dir = args.work_dir
+
+ cfg = Config.fromfile(args.config)
+
+ for model_key in cfg:
+ model_infos = cfg[model_key]
+ if not isinstance(model_infos, list):
+ model_infos = [model_infos]
+ for model_info in model_infos:
+ print('processing: ', model_info['config'])
+ model_test_dict = process_model_info(model_info, work_dir)
+ create_test_bash_info(commands, model_test_dict, port, script_name,
+ partition)
+ port += 1
+
+ command_str = ''.join(commands)
+ if args.out:
+ with open(args.out, 'w') as f:
+ f.write(command_str)
+ if args.run:
+ os.system(command_str)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/.dev_scripts/convert_train_benchmark_script.py b/.dev_scripts/convert_train_benchmark_script.py
new file mode 100644
index 00000000..db4181b8
--- /dev/null
+++ b/.dev_scripts/convert_train_benchmark_script.py
@@ -0,0 +1,98 @@
+import argparse
+import os
+import os.path as osp
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(
+ description='Convert benchmark model json to script')
+ parser.add_argument(
+ 'txt_path', type=str, help='txt path output by benchmark_filter')
+ parser.add_argument(
+ '--partition',
+ type=str,
+ default='openmmlab',
+ help='slurm partition name')
+ parser.add_argument(
+ '--max-keep-ckpts',
+ type=int,
+ default=1,
+ help='The maximum checkpoints to keep')
+ parser.add_argument(
+ '--run', action='store_true', help='run script directly')
+ parser.add_argument(
+ '--out', type=str, help='path to save model benchmark script')
+
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+ if args.out:
+ out_suffix = args.out.split('.')[-1]
+ assert args.out.endswith('.sh'), \
+ f'Expected out file path suffix is .sh, but get .{out_suffix}'
+ assert args.out or args.run, \
+ ('Please specify at least one operation (save/run/ the '
+ 'script) with the argument "--out" or "--run"')
+
+ partition = args.partition # cluster name
+
+ root_name = './tools'
+ train_script_name = osp.join(root_name, 'slurm_train.sh')
+ # stdout is no output
+ stdout_cfg = '>/dev/null'
+
+ max_keep_ckpts = args.max_keep_ckpts
+
+ commands = []
+ with open(args.txt_path, 'r') as f:
+ model_cfgs = f.readlines()
+ for i, cfg in enumerate(model_cfgs):
+ cfg = cfg.strip()
+ if len(cfg) == 0:
+ continue
+ # print cfg name
+ echo_info = f'echo \'{cfg}\' &'
+ commands.append(echo_info)
+ commands.append('\n')
+
+ fname, _ = osp.splitext(osp.basename(cfg))
+ out_fname = osp.join(root_name, 'work_dir', fname)
+ # default setting
+ if cfg.find('16x') >= 0:
+ command_info = f'GPUS=16 GPUS_PER_NODE=8 ' \
+ f'CPUS_PER_TASK=2 {train_script_name} '
+ elif cfg.find('gn-head_4x4_1x_coco.py') >= 0 or \
+ cfg.find('gn-head_4x4_2x_coco.py') >= 0:
+ command_info = f'GPUS=4 GPUS_PER_NODE=4 ' \
+ f'CPUS_PER_TASK=2 {train_script_name} '
+ else:
+ command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \
+ f'CPUS_PER_TASK=2 {train_script_name} '
+ command_info += f'{partition} '
+ command_info += f'{fname} '
+ command_info += f'{cfg} '
+ command_info += f'{out_fname} '
+ if max_keep_ckpts:
+ command_info += f'--cfg-options ' \
+ f'checkpoint_config.max_keep_ckpts=' \
+ f'{max_keep_ckpts}' + ' '
+ command_info += f'{stdout_cfg} &'
+
+ commands.append(command_info)
+
+ if i < len(model_cfgs):
+ commands.append('\n')
+
+ command_str = ''.join(commands)
+ if args.out:
+ with open(args.out, 'w') as f:
+ f.write(command_str)
+ if args.run:
+ os.system(command_str)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/.dev_scripts/gather_models.py b/.dev_scripts/gather_models.py
new file mode 100644
index 00000000..0c1048f4
--- /dev/null
+++ b/.dev_scripts/gather_models.py
@@ -0,0 +1,257 @@
+import argparse
+import glob
+import json
+import os.path as osp
+import shutil
+import subprocess
+from collections import OrderedDict
+
+import mmcv
+import torch
+import yaml
+
+
+def ordered_yaml_dump(data, stream=None, Dumper=yaml.SafeDumper, **kwds):
+
+ class OrderedDumper(Dumper):
+ pass
+
+ def _dict_representer(dumper, data):
+ return dumper.represent_mapping(
+ yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items())
+
+ OrderedDumper.add_representer(OrderedDict, _dict_representer)
+ return yaml.dump(data, stream, OrderedDumper, **kwds)
+
+
+def process_checkpoint(in_file, out_file):
+ checkpoint = torch.load(in_file, map_location='cpu')
+ # remove optimizer for smaller file size
+ if 'optimizer' in checkpoint:
+ del checkpoint['optimizer']
+ # if it is necessary to remove some sensitive data in checkpoint['meta'],
+ # add the code here.
+ if torch.__version__ >= '1.6':
+ torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
+ else:
+ torch.save(checkpoint, out_file)
+ sha = subprocess.check_output(['sha256sum', out_file]).decode()
+ final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
+ subprocess.Popen(['mv', out_file, final_file])
+ return final_file
+
+
+def get_final_epoch(config):
+ cfg = mmcv.Config.fromfile('./configs/' + config)
+ return cfg.runner.max_epochs
+
+
+def get_real_epoch(config):
+ cfg = mmcv.Config.fromfile('./configs/' + config)
+ epoch = cfg.runner.max_epochs
+ if cfg.data.train.type == 'RepeatDataset':
+ epoch *= cfg.data.train.times
+ return epoch
+
+
+def get_final_results(log_json_path, epoch, results_lut):
+ result_dict = dict()
+ with open(log_json_path, 'r') as f:
+ for line in f.readlines():
+ log_line = json.loads(line)
+ if 'mode' not in log_line.keys():
+ continue
+
+ if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
+ result_dict['memory'] = log_line['memory']
+
+ if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
+ result_dict.update({
+ key: log_line[key]
+ for key in results_lut if key in log_line
+ })
+ return result_dict
+
+
+def get_dataset_name(config):
+ # If there are more dataset, add here.
+ name_map = dict(
+ CityscapesDataset='Cityscapes',
+ CocoDataset='COCO',
+ DeepFashionDataset='Deep Fashion',
+ LVISV05Dataset='LVIS v0.5',
+ LVISV1Dataset='LVIS v1',
+ VOCDataset='Pascal VOC',
+ WIDERFaceDataset='WIDER Face')
+ cfg = mmcv.Config.fromfile('./configs/' + config)
+ return name_map[cfg.dataset_type]
+
+
+def convert_model_info_to_pwc(model_infos):
+ pwc_files = {}
+ for model in model_infos:
+ cfg_folder_name = osp.split(model['config'])[-2]
+ pwc_model_info = OrderedDict()
+ pwc_model_info['Name'] = osp.split(model['config'])[-1].split('.')[0]
+ pwc_model_info['In Collection'] = 'Please fill in Collection name'
+ pwc_model_info['Config'] = osp.join('configs', model['config'])
+
+ # get metadata
+ memory = round(model['results']['memory'] / 1024, 1)
+ epochs = get_real_epoch(model['config'])
+ meta_data = OrderedDict()
+ meta_data['Training Memory (GB)'] = memory
+ meta_data['Epochs'] = epochs
+ pwc_model_info['Metadata'] = meta_data
+
+ # get dataset name
+ dataset_name = get_dataset_name(model['config'])
+
+ # get results
+ results = []
+ # if there are more metrics, add here.
+ if 'bbox_mAP' in model['results']:
+ metric = round(model['results']['bbox_mAP'] * 100, 1)
+ results.append(
+ OrderedDict(
+ Task='Object Detection',
+ Dataset=dataset_name,
+ Metrics={'box AP': metric}))
+ if 'segm_mAP' in model['results']:
+ metric = round(model['results']['segm_mAP'] * 100, 1)
+ results.append(
+ OrderedDict(
+ Task='Instance Segmentation',
+ Dataset=dataset_name,
+ Metrics={'mask AP': metric}))
+ pwc_model_info['Results'] = results
+
+ link_string = 'https://download.openmmlab.com/mmdetection/v2.0/'
+ link_string += '{}/{}'.format(model['config'].rstrip('.py'),
+ osp.split(model['model_path'])[-1])
+ pwc_model_info['Weights'] = link_string
+ if cfg_folder_name in pwc_files:
+ pwc_files[cfg_folder_name].append(pwc_model_info)
+ else:
+ pwc_files[cfg_folder_name] = [pwc_model_info]
+ return pwc_files
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='Gather benchmarked models')
+ parser.add_argument(
+ 'root',
+ type=str,
+ help='root path of benchmarked models to be gathered')
+ parser.add_argument(
+ 'out', type=str, help='output path of gathered models to be stored')
+
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+ models_root = args.root
+ models_out = args.out
+ mmcv.mkdir_or_exist(models_out)
+
+ # find all models in the root directory to be gathered
+ raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
+
+ # filter configs that is not trained in the experiments dir
+ used_configs = []
+ for raw_config in raw_configs:
+ if osp.exists(osp.join(models_root, raw_config)):
+ used_configs.append(raw_config)
+ print(f'Find {len(used_configs)} models to be gathered')
+
+ # find final_ckpt and log file for trained each config
+ # and parse the best performance
+ model_infos = []
+ for used_config in used_configs:
+ exp_dir = osp.join(models_root, used_config)
+ # check whether the exps is finished
+ final_epoch = get_final_epoch(used_config)
+ final_model = 'epoch_{}.pth'.format(final_epoch)
+ model_path = osp.join(exp_dir, final_model)
+
+ # skip if the model is still training
+ if not osp.exists(model_path):
+ continue
+
+ # get the latest logs
+ log_json_path = list(
+ sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
+ log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
+ cfg = mmcv.Config.fromfile('./configs/' + used_config)
+ results_lut = cfg.evaluation.metric
+ if not isinstance(results_lut, list):
+ results_lut = [results_lut]
+ # case when using VOC, the evaluation key is only 'mAP'
+ results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key]
+ model_performance = get_final_results(log_json_path, final_epoch,
+ results_lut)
+
+ if model_performance is None:
+ continue
+
+ model_time = osp.split(log_txt_path)[-1].split('.')[0]
+ model_infos.append(
+ dict(
+ config=used_config,
+ results=model_performance,
+ epochs=final_epoch,
+ model_time=model_time,
+ log_json_path=osp.split(log_json_path)[-1]))
+
+ # publish model for each checkpoint
+ publish_model_infos = []
+ for model in model_infos:
+ model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
+ mmcv.mkdir_or_exist(model_publish_dir)
+
+ model_name = osp.split(model['config'])[-1].split('.')[0]
+
+ model_name += '_' + model['model_time']
+ publish_model_path = osp.join(model_publish_dir, model_name)
+ trained_model_path = osp.join(models_root, model['config'],
+ 'epoch_{}.pth'.format(model['epochs']))
+
+ # convert model
+ final_model_path = process_checkpoint(trained_model_path,
+ publish_model_path)
+
+ # copy log
+ shutil.copy(
+ osp.join(models_root, model['config'], model['log_json_path']),
+ osp.join(model_publish_dir, f'{model_name}.log.json'))
+ shutil.copy(
+ osp.join(models_root, model['config'],
+ model['log_json_path'].rstrip('.json')),
+ osp.join(model_publish_dir, f'{model_name}.log'))
+
+ # copy config to guarantee reproducibility
+ config_path = model['config']
+ config_path = osp.join(
+ 'configs',
+ config_path) if 'configs' not in config_path else config_path
+ target_cconfig_path = osp.split(config_path)[-1]
+ shutil.copy(config_path,
+ osp.join(model_publish_dir, target_cconfig_path))
+
+ model['model_path'] = final_model_path
+ publish_model_infos.append(model)
+
+ models = dict(models=publish_model_infos)
+ print(f'Totally gathered {len(publish_model_infos)} models')
+ mmcv.dump(models, osp.join(models_out, 'model_info.json'))
+
+ pwc_files = convert_model_info_to_pwc(publish_model_infos)
+ for name in pwc_files:
+ with open(osp.join(models_out, name + '_metafile.yml'), 'w') as f:
+ ordered_yaml_dump(pwc_files[name], f, encoding='utf-8')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/.dev_scripts/gather_test_benchmark_metric.py b/.dev_scripts/gather_test_benchmark_metric.py
new file mode 100644
index 00000000..c8f3f662
--- /dev/null
+++ b/.dev_scripts/gather_test_benchmark_metric.py
@@ -0,0 +1,95 @@
+import argparse
+import glob
+import os.path as osp
+
+import mmcv
+from mmcv import Config
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(
+ description='Gather benchmarked models metric')
+ parser.add_argument('config', help='test config file path')
+ parser.add_argument(
+ 'root',
+ type=str,
+ help='root path of benchmarked models to be gathered')
+ parser.add_argument(
+ '--out', type=str, help='output path of gathered metrics to be stored')
+ parser.add_argument(
+ '--not-show', action='store_true', help='not show metrics')
+ parser.add_argument(
+ '--show-all', action='store_true', help='show all model metrics')
+
+ args = parser.parse_args()
+ return args
+
+
+if __name__ == '__main__':
+ args = parse_args()
+
+ root_path = args.root
+ metrics_out = args.out
+ result_dict = {}
+
+ cfg = Config.fromfile(args.config)
+
+ for model_key in cfg:
+ model_infos = cfg[model_key]
+ if not isinstance(model_infos, list):
+ model_infos = [model_infos]
+ for model_info in model_infos:
+ record_metrics = model_info['metric']
+ config = model_info['config'].strip()
+ fname, _ = osp.splitext(osp.basename(config))
+ metric_json_dir = osp.join(root_path, fname)
+ if osp.exists(metric_json_dir):
+ json_list = glob.glob(osp.join(metric_json_dir, '*.json'))
+ if len(json_list) > 0:
+ log_json_path = list(sorted(json_list))[-1]
+
+ metric = mmcv.load(log_json_path)
+ if config in metric.get('config', {}):
+
+ new_metrics = dict()
+ for record_metric_key in record_metrics:
+ record_metric_key_bk = record_metric_key
+ old_metric = record_metrics[record_metric_key]
+ if record_metric_key == 'AR_1000':
+ record_metric_key = 'AR@1000'
+ if record_metric_key not in metric['metric']:
+ raise KeyError(
+ 'record_metric_key not exist, please '
+ 'check your config')
+ new_metric = round(
+ metric['metric'][record_metric_key] * 100, 1)
+ new_metrics[record_metric_key_bk] = new_metric
+
+ if args.show_all:
+ result_dict[config] = dict(
+ before=record_metrics, after=new_metrics)
+ else:
+ for record_metric_key in record_metrics:
+ old_metric = record_metrics[record_metric_key]
+ new_metric = new_metrics[record_metric_key]
+ if old_metric != new_metric:
+ result_dict[config] = dict(
+ before=record_metrics,
+ after=new_metrics)
+ break
+ else:
+ print(f'{config} not included in: {log_json_path}')
+ else:
+ print(f'{config} not exist file: {metric_json_dir}')
+ else:
+ print(f'{config} not exist dir: {metric_json_dir}')
+
+ if metrics_out:
+ mmcv.mkdir_or_exist(metrics_out)
+ mmcv.dump(result_dict,
+ osp.join(metrics_out, 'batch_test_metric_info.json'))
+ if not args.not_show:
+ print('===================================')
+ for config_name, metrics in result_dict.items():
+ print(config_name, metrics)
+ print('===================================')
diff --git a/.dev_scripts/gather_train_benchmark_metric.py b/.dev_scripts/gather_train_benchmark_metric.py
new file mode 100644
index 00000000..1ad602ab
--- /dev/null
+++ b/.dev_scripts/gather_train_benchmark_metric.py
@@ -0,0 +1,149 @@
+import argparse
+import glob
+import os.path as osp
+
+import mmcv
+from gather_models import get_final_results
+
+try:
+ import xlrd
+except ImportError:
+ xlrd = None
+try:
+ import xlutils
+ from xlutils.copy import copy
+except ImportError:
+ xlutils = None
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(
+ description='Gather benchmarked models metric')
+ parser.add_argument(
+ 'root',
+ type=str,
+ help='root path of benchmarked models to be gathered')
+ parser.add_argument(
+ 'txt_path', type=str, help='txt path output by benchmark_filter')
+ parser.add_argument(
+ '--out', type=str, help='output path of gathered metrics to be stored')
+ parser.add_argument(
+ '--not-show', action='store_true', help='not show metrics')
+ parser.add_argument(
+ '--excel', type=str, help='input path of excel to be recorded')
+ parser.add_argument(
+ '--ncol', type=int, help='Number of column to be modified or appended')
+
+ args = parser.parse_args()
+ return args
+
+
+if __name__ == '__main__':
+ args = parse_args()
+
+ if args.excel:
+ assert args.ncol, 'Please specify "--excel" and "--ncol" ' \
+ 'at the same time'
+ if xlrd is None:
+ raise RuntimeError(
+ 'xlrd is not installed,'
+ 'Please use “pip install xlrd==1.2.0” to install')
+ if xlutils is None:
+ raise RuntimeError(
+ 'xlutils is not installed,'
+ 'Please use “pip install xlutils==2.0.0” to install')
+ readbook = xlrd.open_workbook(args.excel)
+ sheet = readbook.sheet_by_name('Sheet1')
+ sheet_info = {}
+ total_nrows = sheet.nrows
+ for i in range(3, sheet.nrows):
+ sheet_info[sheet.row_values(i)[0]] = i
+ xlrw = copy(readbook)
+ table = xlrw.get_sheet(0)
+
+ root_path = args.root
+ metrics_out = args.out
+
+ result_dict = {}
+ with open(args.txt_path, 'r') as f:
+ model_cfgs = f.readlines()
+ for i, config in enumerate(model_cfgs):
+ config = config.strip()
+ if len(config) == 0:
+ continue
+
+ config_name = osp.split(config)[-1]
+ config_name = osp.splitext(config_name)[0]
+ result_path = osp.join(root_path, config_name)
+ if osp.exists(result_path):
+ # 1 read config
+ cfg = mmcv.Config.fromfile(config)
+ total_epochs = cfg.runner.max_epochs
+ final_results = cfg.evaluation.metric
+ if not isinstance(final_results, list):
+ final_results = [final_results]
+ final_results_out = []
+ for key in final_results:
+ if 'proposal_fast' in key:
+ final_results_out.append('AR@1000') # RPN
+ elif 'mAP' not in key:
+ final_results_out.append(key + '_mAP')
+
+ # 2 determine whether total_epochs ckpt exists
+ ckpt_path = f'epoch_{total_epochs}.pth'
+ if osp.exists(osp.join(result_path, ckpt_path)):
+ log_json_path = list(
+ sorted(glob.glob(osp.join(result_path,
+ '*.log.json'))))[-1]
+
+ # 3 read metric
+ model_performance = get_final_results(
+ log_json_path, total_epochs, final_results_out)
+ if model_performance is None:
+ print(f'log file error: {log_json_path}')
+ continue
+ for performance in model_performance:
+ if performance in ['AR@1000', 'bbox_mAP', 'segm_mAP']:
+ metric = round(
+ model_performance[performance] * 100, 1)
+ model_performance[performance] = metric
+ result_dict[config] = model_performance
+
+ # update and append excel content
+ if args.excel:
+ if 'AR@1000' in model_performance:
+ metrics = f'{model_performance["AR@1000"]}' \
+ f'(AR@1000)'
+ elif 'segm_mAP' in model_performance:
+ metrics = f'{model_performance["bbox_mAP"]}/' \
+ f'{model_performance["segm_mAP"]}'
+ else:
+ metrics = f'{model_performance["bbox_mAP"]}'
+
+ row_num = sheet_info.get(config, None)
+ if row_num:
+ table.write(row_num, args.ncol, metrics)
+ else:
+ table.write(total_nrows, 0, config)
+ table.write(total_nrows, args.ncol, metrics)
+ total_nrows += 1
+
+ else:
+ print(f'{config} not exist: {ckpt_path}')
+ else:
+ print(f'not exist: {config}')
+
+ # 4 save or print results
+ if metrics_out:
+ mmcv.mkdir_or_exist(metrics_out)
+ mmcv.dump(result_dict,
+ osp.join(metrics_out, 'model_metric_info.json'))
+ if not args.not_show:
+ print('===================================')
+ for config_name, metrics in result_dict.items():
+ print(config_name, metrics)
+ print('===================================')
+ if args.excel:
+ filename, sufflx = osp.splitext(args.excel)
+ xlrw.save(f'{filename}_o{sufflx}')
+ print(f'>>> Output {filename}_o{sufflx}')
diff --git a/.dev_scripts/letterresize_test.py b/.dev_scripts/letterresize_test.py
new file mode 100644
index 00000000..b0da3f33
--- /dev/null
+++ b/.dev_scripts/letterresize_test.py
@@ -0,0 +1,75 @@
+import cv2
+import numpy as np
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+
+ # 控制图片是否进行上采样,默认是 True
+ # 如果设置为 False, 表示只能进行下采样,不能进行上采样
+ # 如果输入图片小于 new_shape 值,那么啥也不干,后续只会进行 pad,而不会 resize
+ # 如果输入图片大于 new_shape 值,则会进行下采样
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ # 如果为 True, 那么会保证能够被 stride 整除,输出是最小矩形
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+ elif scaleFill: # stretch
+ # 强制拉伸到 new_shape,不进行任何 padding,默认是 False
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ # 是否要 resize
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)
+
+
+def demo_1(img):
+ h0, w0 = img.shape[:2] # orig hw
+ r = 640 / max(h0, w0) # ratio
+ if r != 1: # if sizes are not equal
+ # 缩小图像用 cv2.INTER_AREA
+ # 放大图像用 cv2.INTER_LINEAR
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
+ interpolation=cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR)
+ print(img.shape)
+ img, ratio, pad = letterbox(img, (640, 640), auto=False, scaleup=False)
+ print(img.shape)
+
+
+if __name__ == '__main__':
+ # mm_letterbox = LetterResize()
+
+ # 0 scaleFill 参数可以忽略,一般不用,不用管
+ # 1 auto=True and scaleup=True,表示图片可以进行上采样,并且输出 shape 要保证能够被 stride 参数整除,且为最小矩形,输出 shape 不一定和 new_shape 一样
+ # 2 auto=False and scaleup=True,表示图片可以进行上采样。如果有必要则先进行保持宽高比例的上下采样,然后 padding 到指定 new_shape 输出
+ # 3 auto=True and scaleup=False,表示图片只能进行下采样。如果输入图片比较小,则只能通过 pad 操作保证被 stride 参数整除,如果输入图片比较大,则会先进行保持比例下采样,然后保证整除
+ # 4 auto=False and scaleup=False,表示图片只能进行下采样。如果输入图片比较小,则只能通过 pad 操作使得输出变成 new_shape,如果输入图片比较大,则会先进行保持比例下采样,然后pading变成new_shape
+ # 综上所述,常用配置是 1
+
+ image_w = 100
+ image_h = 201
+ img = np.zeros((image_h, image_w, 3), dtype=np.uint8)
+ img_out = letterbox(img, auto=False, scaleup=True)[0]
+ # print(img_out.shape)
+ demo_1(img)
+
+
diff --git a/.dev_scripts/linter.sh b/.dev_scripts/linter.sh
new file mode 100644
index 00000000..b0fe0acf
--- /dev/null
+++ b/.dev_scripts/linter.sh
@@ -0,0 +1,3 @@
+yapf -r -i mmdet/ configs/ tests/ tools/
+isort -rc mmdet/ configs/ tests/ tools/
+flake8 .
diff --git a/.dev_scripts/test_benchamrk.sh b/.dev_scripts/test_benchamrk.sh
new file mode 100644
index 00000000..da6dfafd
--- /dev/null
+++ b/.dev_scripts/test_benchamrk.sh
@@ -0,0 +1,114 @@
+CHECKPOINT_DIR=$1
+
+echo 'configs/atss/atss_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab atss_r50_fpn_1x_coco configs/atss/atss_r50_fpn_1x_coco.py $CHECKPOINT_DIR/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth --work-dir tools/batch_test/atss_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29666 &
+echo 'configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab autoassign_r50_fpn_8x2_1x_coco configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py $CHECKPOINT_DIR/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth --work-dir tools/batch_test/autoassign_r50_fpn_8x2_1x_coco --eval bbox --cfg-option dist_params.port=29667 &
+echo 'configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_carafe_1x_coco configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.386_20200504_175733-385a75b7.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_carafe_1x_coco --eval bbox --cfg-option dist_params.port=29668 &
+echo 'configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab cascade_rcnn_r50_fpn_1x_coco configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth --work-dir tools/batch_test/cascade_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29669 &
+echo 'configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab cascade_mask_rcnn_r50_fpn_1x_coco configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth --work-dir tools/batch_test/cascade_mask_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29670 &
+echo 'configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab crpn_faster_rcnn_r50_caffe_fpn_1x_coco configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py $CHECKPOINT_DIR/crpn_faster_rcnn_r50_caffe_fpn_1x_coco-c8283cca.pth --work-dir tools/batch_test/crpn_faster_rcnn_r50_caffe_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29671 &
+echo 'configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab centripetalnet_hourglass104_mstest_16x6_210e_coco configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py $CHECKPOINT_DIR/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth --work-dir tools/batch_test/centripetalnet_hourglass104_mstest_16x6_210e_coco --eval bbox --cfg-option dist_params.port=29672 &
+echo 'configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab cornernet_hourglass104_mstest_8x6_210e_coco configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py $CHECKPOINT_DIR/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth --work-dir tools/batch_test/cornernet_hourglass104_mstest_8x6_210e_coco --eval bbox --cfg-option dist_params.port=29673 &
+echo 'configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco --eval bbox --cfg-option dist_params.port=29674 &
+echo 'configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab deformable_detr_r50_16x2_50e_coco configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py $CHECKPOINT_DIR/deformable_detr_r50_16x2_50e_coco_20210419_220030-a12b9512.pth --work-dir tools/batch_test/deformable_detr_r50_16x2_50e_coco --eval bbox --cfg-option dist_params.port=29675 &
+echo 'configs/detectors/detectors_htc_r50_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab detectors_htc_r50_1x_coco configs/detectors/detectors_htc_r50_1x_coco.py $CHECKPOINT_DIR/detectors_htc_r50_1x_coco-329b1453.pth --work-dir tools/batch_test/detectors_htc_r50_1x_coco --eval bbox --cfg-option dist_params.port=29676 &
+echo 'configs/detr/detr_r50_8x2_150e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab detr_r50_8x2_150e_coco configs/detr/detr_r50_8x2_150e_coco.py $CHECKPOINT_DIR/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth --work-dir tools/batch_test/detr_r50_8x2_150e_coco --eval bbox --cfg-option dist_params.port=29677 &
+echo 'configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab dh_faster_rcnn_r50_fpn_1x_coco configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth --work-dir tools/batch_test/dh_faster_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29678 &
+echo 'configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab dynamic_rcnn_r50_fpn_1x_coco configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/dynamic_rcnn_r50_fpn_1x-62a3f276.pth --work-dir tools/batch_test/dynamic_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29679 &
+echo 'configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_attention_1111_1x_coco configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_attention_1111_1x_coco --eval bbox --cfg-option dist_params.port=29680 &
+echo 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_1x_coco configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29681 &
+echo 'configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py $CHECKPOINT_DIR/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth --work-dir tools/batch_test/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco --eval bbox --cfg-option dist_params.port=29682 &
+echo 'configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab fovea_align_r50_fpn_gn-head_4x4_2x_coco configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py $CHECKPOINT_DIR/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth --work-dir tools/batch_test/fovea_align_r50_fpn_gn-head_4x4_2x_coco --eval bbox --cfg-option dist_params.port=29683 &
+echo 'configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab retinanet_free_anchor_r50_fpn_1x_coco configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py $CHECKPOINT_DIR/retinanet_free_anchor_r50_fpn_1x_coco_20200130-0f67375f.pth --work-dir tools/batch_test/retinanet_free_anchor_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29684 &
+echo 'configs/fsaf/fsaf_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab fsaf_r50_fpn_1x_coco configs/fsaf/fsaf_r50_fpn_1x_coco.py $CHECKPOINT_DIR/fsaf_r50_fpn_1x_coco-94ccc51f.pth --work-dir tools/batch_test/fsaf_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29685 &
+echo 'configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py $CHECKPOINT_DIR/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202-587b99aa.pth --work-dir tools/batch_test/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco --eval bbox --cfg-option dist_params.port=29686 &
+echo 'configs/gfl/gfl_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab gfl_r50_fpn_1x_coco configs/gfl/gfl_r50_fpn_1x_coco.py $CHECKPOINT_DIR/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth --work-dir tools/batch_test/gfl_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29687 &
+echo 'configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab mask_rcnn_r50_fpn_gn-all_2x_coco configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py $CHECKPOINT_DIR/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth --work-dir tools/batch_test/mask_rcnn_r50_fpn_gn-all_2x_coco --eval bbox --cfg-option dist_params.port=29688 &
+echo 'configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_gn_ws-all_1x_coco configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_gn_ws-all_1x_coco --eval bbox --cfg-option dist_params.port=29689 &
+echo 'configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab grid_rcnn_r50_fpn_gn-head_2x_coco configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py $CHECKPOINT_DIR/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth --work-dir tools/batch_test/grid_rcnn_r50_fpn_gn-head_2x_coco --eval bbox --cfg-option dist_params.port=29690 &
+echo 'configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_fpn_groie_1x_coco configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715-66ee9516.pth --work-dir tools/batch_test/faster_rcnn_r50_fpn_groie_1x_coco --eval bbox --cfg-option dist_params.port=29691 &
+echo 'configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab ga_retinanet_r50_caffe_fpn_1x_coco configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py $CHECKPOINT_DIR/ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth --work-dir tools/batch_test/ga_retinanet_r50_caffe_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29692 &
+echo 'configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab ga_faster_r50_caffe_fpn_1x_coco configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py $CHECKPOINT_DIR/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth --work-dir tools/batch_test/ga_faster_r50_caffe_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29693 &
+echo 'configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_hrnetv2p_w18_1x_coco configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth --work-dir tools/batch_test/faster_rcnn_hrnetv2p_w18_1x_coco --eval bbox --cfg-option dist_params.port=29694 &
+echo 'configs/htc/htc_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab htc_r50_fpn_1x_coco configs/htc/htc_r50_fpn_1x_coco.py $CHECKPOINT_DIR/htc_r50_fpn_1x_coco_20200317-7332cf16.pth --work-dir tools/batch_test/htc_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29695 &
+echo 'configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab libra_faster_rcnn_r50_fpn_1x_coco configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth --work-dir tools/batch_test/libra_faster_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29696 &
+echo 'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab mask_rcnn_r50_fpn_1x_coco configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth --work-dir tools/batch_test/mask_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29697 &
+echo 'configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab ms_rcnn_r50_caffe_fpn_1x_coco configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py $CHECKPOINT_DIR/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth --work-dir tools/batch_test/ms_rcnn_r50_caffe_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29698 &
+echo 'configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py $CHECKPOINT_DIR/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth --work-dir tools/batch_test/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco --eval bbox --cfg-option dist_params.port=29699 &
+echo 'configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab retinanet_r50_nasfpn_crop640_50e_coco configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py $CHECKPOINT_DIR/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth --work-dir tools/batch_test/retinanet_r50_nasfpn_crop640_50e_coco --eval bbox --cfg-option dist_params.port=29700 &
+echo 'configs/paa/paa_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab paa_r50_fpn_1x_coco configs/paa/paa_r50_fpn_1x_coco.py $CHECKPOINT_DIR/paa_r50_fpn_1x_coco_20200821-936edec3.pth --work-dir tools/batch_test/paa_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29701 &
+echo 'configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r50_pafpn_1x_coco configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth --work-dir tools/batch_test/faster_rcnn_r50_pafpn_1x_coco --eval bbox --cfg-option dist_params.port=29702 &
+echo 'configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab pisa_faster_rcnn_r50_fpn_1x_coco configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth --work-dir tools/batch_test/pisa_faster_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29703 &
+echo 'configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab point_rend_r50_caffe_fpn_mstrain_1x_coco configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py $CHECKPOINT_DIR/point_rend_r50_caffe_fpn_mstrain_1x_coco-1bcb5fb4.pth --work-dir tools/batch_test/point_rend_r50_caffe_fpn_mstrain_1x_coco --eval bbox --cfg-option dist_params.port=29704 &
+echo 'configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab mask_rcnn_regnetx-3.2GF_fpn_1x_coco configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py $CHECKPOINT_DIR/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth --work-dir tools/batch_test/mask_rcnn_regnetx-3.2GF_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29705 &
+echo 'configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab reppoints_moment_r50_fpn_1x_coco configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py $CHECKPOINT_DIR/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth --work-dir tools/batch_test/reppoints_moment_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29706 &
+echo 'configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_r2_101_fpn_2x_coco configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py $CHECKPOINT_DIR/faster_rcnn_r2_101_fpn_2x_coco-175f1da6.pth --work-dir tools/batch_test/faster_rcnn_r2_101_fpn_2x_coco --eval bbox --cfg-option dist_params.port=29707 &
+echo 'configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py $CHECKPOINT_DIR/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco_20200926_125502-20289c16.pth --work-dir tools/batch_test/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco --eval bbox --cfg-option dist_params.port=29708 &
+echo 'configs/retinanet/retinanet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab retinanet_r50_fpn_1x_coco configs/retinanet/retinanet_r50_fpn_1x_coco.py $CHECKPOINT_DIR/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth --work-dir tools/batch_test/retinanet_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29709 &
+echo 'configs/rpn/rpn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab rpn_r50_fpn_1x_coco configs/rpn/rpn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth --work-dir tools/batch_test/rpn_r50_fpn_1x_coco --eval proposal_fast --cfg-option dist_params.port=29710 &
+echo 'configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab sabl_retinanet_r50_fpn_1x_coco configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py $CHECKPOINT_DIR/sabl_retinanet_r50_fpn_1x_coco-6c54fd4f.pth --work-dir tools/batch_test/sabl_retinanet_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29711 &
+echo 'configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab sabl_faster_rcnn_r50_fpn_1x_coco configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/sabl_faster_rcnn_r50_fpn_1x_coco-e867595b.pth --work-dir tools/batch_test/sabl_faster_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29712 &
+echo 'configs/scnet/scnet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab scnet_r50_fpn_1x_coco configs/scnet/scnet_r50_fpn_1x_coco.py $CHECKPOINT_DIR/scnet_r50_fpn_1x_coco-c3f09857.pth --work-dir tools/batch_test/scnet_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29713 &
+echo 'configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab sparse_rcnn_r50_fpn_1x_coco configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py $CHECKPOINT_DIR/sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.pth --work-dir tools/batch_test/sparse_rcnn_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29714 &
+echo 'configs/ssd/ssd300_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab ssd300_coco configs/ssd/ssd300_coco.py $CHECKPOINT_DIR/ssd300_coco_20200307-a92d2092.pth --work-dir tools/batch_test/ssd300_coco --eval bbox --cfg-option dist_params.port=29715 &
+echo 'configs/tridentnet/tridentnet_r50_caffe_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab tridentnet_r50_caffe_1x_coco configs/tridentnet/tridentnet_r50_caffe_1x_coco.py $CHECKPOINT_DIR/tridentnet_r50_caffe_1x_coco_20201230_141838-2ec0b530.pth --work-dir tools/batch_test/tridentnet_r50_caffe_1x_coco --eval bbox --cfg-option dist_params.port=29716 &
+echo 'configs/vfnet/vfnet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab vfnet_r50_fpn_1x_coco configs/vfnet/vfnet_r50_fpn_1x_coco.py $CHECKPOINT_DIR/vfnet_r50_fpn_1x_coco_20201027-38db6f58.pth --work-dir tools/batch_test/vfnet_r50_fpn_1x_coco --eval bbox --cfg-option dist_params.port=29717 &
+echo 'configs/yolact/yolact_r50_1x8_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab yolact_r50_1x8_coco configs/yolact/yolact_r50_1x8_coco.py $CHECKPOINT_DIR/yolact_r50_1x8_coco_20200908-f38d58df.pth --work-dir tools/batch_test/yolact_r50_1x8_coco --eval bbox --cfg-option dist_params.port=29718 &
+echo 'configs/yolo/yolov3_d53_320_273e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab yolov3_d53_320_273e_coco configs/yolo/yolov3_d53_320_273e_coco.py $CHECKPOINT_DIR/yolov3_d53_320_273e_coco-421362b6.pth --work-dir tools/batch_test/yolov3_d53_320_273e_coco --eval bbox --cfg-option dist_params.port=29719 &
+echo 'configs/yolof/yolof_r50_c5_8x8_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab yolof_r50_c5_8x8_1x_coco configs/yolof/yolof_r50_c5_8x8_1x_coco.py $CHECKPOINT_DIR/yolof_r50_c5_8x8_1x_coco_20210425_024427-8e864411.pth --work-dir tools/batch_test/yolof_r50_c5_8x8_1x_coco --eval bbox --cfg-option dist_params.port=29720 &
+echo 'configs/centernet/centernet_resnet18_dcnv2_140e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 tools/slurm_test.sh openmmlab centernet_resnet18_dcnv2_140e_coco configs/centernet/centernet_resnet18_dcnv2_140e_coco.py $CHECKPOINT_DIR/centernet_resnet18_dcnv2_140e_coco_20210520_101209-da388ba2.pth --work-dir tools/batch_test/centernet_resnet18_dcnv2_140e_coco --eval bbox --cfg-option dist_params.port=29721 &
diff --git a/.dev_scripts/train_benchmark.sh b/.dev_scripts/train_benchmark.sh
new file mode 100644
index 00000000..82020a53
--- /dev/null
+++ b/.dev_scripts/train_benchmark.sh
@@ -0,0 +1,126 @@
+echo 'configs/atss/atss_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab atss_r50_fpn_1x_coco configs/atss/atss_r50_fpn_1x_coco.py ./tools/work_dir/atss_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab autoassign_r50_fpn_8x2_1x_coco configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py ./tools/work_dir/autoassign_r50_fpn_8x2_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab cascade_mask_rcnn_r50_fpn_1x_coco configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/cascade_mask_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab crpn_faster_rcnn_r50_caffe_fpn_1x_coco configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py ./tools/work_dir/crpn_faster_rcnn_r50_caffe_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/centernet/centernet_resnet18_dcnv2_140e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab centernet_resnet18_dcnv2_140e_coco configs/centernet/centernet_resnet18_dcnv2_140e_coco.py ./tools/work_dir/centernet_resnet18_dcnv2_140e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py' &
+GPUS=16 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab centripetalnet_hourglass104_mstest_16x6_210e_coco configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py ./tools/work_dir/centripetalnet_hourglass104_mstest_16x6_210e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab cornernet_hourglass104_mstest_8x6_210e_coco configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py ./tools/work_dir/cornernet_hourglass104_mstest_8x6_210e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/detectors/detectors_htc_r50_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab detectors_htc_r50_1x_coco configs/detectors/detectors_htc_r50_1x_coco.py ./tools/work_dir/detectors_htc_r50_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py' &
+GPUS=16 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab deformable_detr_r50_16x2_50e_coco configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py ./tools/work_dir/deformable_detr_r50_16x2_50e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/detr/detr_r50_8x2_150e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab detr_r50_8x2_150e_coco configs/detr/detr_r50_8x2_150e_coco.py ./tools/work_dir/detr_r50_8x2_150e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab dh_faster_rcnn_r50_fpn_1x_coco configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/dh_faster_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab dynamic_rcnn_r50_fpn_1x_coco configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/dynamic_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_1x_coco configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_caffe_dc5_mstrain_1x_coco configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py ./tools/work_dir/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_caffe_fpn_mstrain_1x_coco configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py ./tools/work_dir/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_caffe_fpn_1x_coco configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py ./tools/work_dir/faster_rcnn_r50_caffe_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_ohem_1x_coco configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_ohem_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py' &
+GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab fovea_align_r50_fpn_gn-head_4x4_2x_coco configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py ./tools/work_dir/fovea_align_r50_fpn_gn-head_4x4_2x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_fp16_1x_coco configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_fp16_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab retinanet_r50_fpn_fp16_1x_coco configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py ./tools/work_dir/retinanet_r50_fpn_fp16_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab retinanet_free_anchor_r50_fpn_1x_coco configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py ./tools/work_dir/retinanet_free_anchor_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/fsaf/fsaf_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab fsaf_r50_fpn_1x_coco configs/fsaf/fsaf_r50_fpn_1x_coco.py ./tools/work_dir/fsaf_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/gfl/gfl_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab gfl_r50_fpn_1x_coco configs/gfl/gfl_r50_fpn_1x_coco.py ./tools/work_dir/gfl_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab retinanet_ghm_r50_fpn_1x_coco configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py ./tools/work_dir/retinanet_ghm_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab grid_rcnn_r50_fpn_gn-head_2x_coco configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py ./tools/work_dir/grid_rcnn_r50_fpn_gn-head_2x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab ga_faster_r50_caffe_fpn_1x_coco configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py ./tools/work_dir/ga_faster_r50_caffe_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/htc/htc_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab htc_r50_fpn_1x_coco configs/htc/htc_r50_fpn_1x_coco.py ./tools/work_dir/htc_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab ld_r18_gflv1_r101_fpn_coco_1x configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py ./tools/work_dir/ld_r18_gflv1_r101_fpn_coco_1x --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab libra_faster_rcnn_r50_fpn_1x_coco configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/libra_faster_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py ./tools/work_dir/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab ms_rcnn_r50_caffe_fpn_1x_coco configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py ./tools/work_dir/ms_rcnn_r50_caffe_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py' &
+GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py ./tools/work_dir/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/paa/paa_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab paa_r50_fpn_1x_coco configs/paa/paa_r50_fpn_1x_coco.py ./tools/work_dir/paa_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab pisa_mask_rcnn_r50_fpn_1x_coco configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/pisa_mask_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab point_rend_r50_caffe_fpn_mstrain_1x_coco configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py ./tools/work_dir/point_rend_r50_caffe_fpn_mstrain_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab reppoints_moment_r50_fpn_gn-neck+head_1x_coco configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py ./tools/work_dir/reppoints_moment_r50_fpn_gn-neck+head_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab retinanet_r50_caffe_fpn_1x_coco configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py ./tools/work_dir/retinanet_r50_caffe_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/rpn/rpn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab rpn_r50_fpn_1x_coco configs/rpn/rpn_r50_fpn_1x_coco.py ./tools/work_dir/rpn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab sabl_retinanet_r50_fpn_1x_coco configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py ./tools/work_dir/sabl_retinanet_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/ssd/ssd300_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab ssd300_coco configs/ssd/ssd300_coco.py ./tools/work_dir/ssd300_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/tridentnet/tridentnet_r50_caffe_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab tridentnet_r50_caffe_1x_coco configs/tridentnet/tridentnet_r50_caffe_1x_coco.py ./tools/work_dir/tridentnet_r50_caffe_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/vfnet/vfnet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab vfnet_r50_fpn_1x_coco configs/vfnet/vfnet_r50_fpn_1x_coco.py ./tools/work_dir/vfnet_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/yolact/yolact_r50_1x8_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab yolact_r50_1x8_coco configs/yolact/yolact_r50_1x8_coco.py ./tools/work_dir/yolact_r50_1x8_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/yolo/yolov3_d53_320_273e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab yolov3_d53_320_273e_coco configs/yolo/yolov3_d53_320_273e_coco.py ./tools/work_dir/yolov3_d53_320_273e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab sparse_rcnn_r50_fpn_1x_coco configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py ./tools/work_dir/sparse_rcnn_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/scnet/scnet_r50_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab scnet_r50_fpn_1x_coco configs/scnet/scnet_r50_fpn_1x_coco.py ./tools/work_dir/scnet_r50_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/yolof/yolof_r50_c5_8x8_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab yolof_r50_c5_8x8_1x_coco configs/yolof/yolof_r50_c5_8x8_1x_coco.py ./tools/work_dir/yolof_r50_c5_8x8_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_carafe_1x_coco configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_carafe_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_mdpool_1x_coco configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_mdpool_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_dpool_1x_coco configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_dpool_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_gn-all_2x_coco configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_gn-all_2x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_r50_fpn_gn_ws-all_2x_coco configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py ./tools/work_dir/mask_rcnn_r50_fpn_gn_ws-all_2x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_hrnetv2p_w18_1x_coco configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py ./tools/work_dir/mask_rcnn_hrnetv2p_w18_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_pafpn_1x_coco configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py ./tools/work_dir/faster_rcnn_r50_pafpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab retinanet_r50_nasfpn_crop640_50e_coco configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py ./tools/work_dir/retinanet_r50_nasfpn_crop640_50e_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_regnetx-3.2GF_fpn_1x_coco configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py ./tools/work_dir/mask_rcnn_regnetx-3.2GF_fpn_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py ./tools/work_dir/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r2_101_fpn_2x_coco configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py ./tools/work_dir/faster_rcnn_r2_101_fpn_2x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
+echo 'configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py' &
+GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh openmmlab faster_rcnn_r50_fpn_groie_1x_coco configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py ./tools/work_dir/faster_rcnn_r50_fpn_groie_1x_coco --cfg-options checkpoint_config.max_keep_ckpts=1 >/dev/null &
diff --git a/.github/CODE_OF_CONDUCT.md b/.github/CODE_OF_CONDUCT.md
new file mode 100644
index 00000000..efd43057
--- /dev/null
+++ b/.github/CODE_OF_CONDUCT.md
@@ -0,0 +1,76 @@
+# Contributor Covenant Code of Conduct
+
+## Our Pledge
+
+In the interest of fostering an open and welcoming environment, we as
+contributors and maintainers pledge to making participation in our project and
+our community a harassment-free experience for everyone, regardless of age, body
+size, disability, ethnicity, sex characteristics, gender identity and expression,
+level of experience, education, socio-economic status, nationality, personal
+appearance, race, religion, or sexual identity and orientation.
+
+## Our Standards
+
+Examples of behavior that contributes to creating a positive environment
+include:
+
+* Using welcoming and inclusive language
+* Being respectful of differing viewpoints and experiences
+* Gracefully accepting constructive criticism
+* Focusing on what is best for the community
+* Showing empathy towards other community members
+
+Examples of unacceptable behavior by participants include:
+
+* The use of sexualized language or imagery and unwelcome sexual attention or
+ advances
+* Trolling, insulting/derogatory comments, and personal or political attacks
+* Public or private harassment
+* Publishing others' private information, such as a physical or electronic
+ address, without explicit permission
+* Other conduct which could reasonably be considered inappropriate in a
+ professional setting
+
+## Our Responsibilities
+
+Project maintainers are responsible for clarifying the standards of acceptable
+behavior and are expected to take appropriate and fair corrective action in
+response to any instances of unacceptable behavior.
+
+Project maintainers have the right and responsibility to remove, edit, or
+reject comments, commits, code, wiki edits, issues, and other contributions
+that are not aligned to this Code of Conduct, or to ban temporarily or
+permanently any contributor for other behaviors that they deem inappropriate,
+threatening, offensive, or harmful.
+
+## Scope
+
+This Code of Conduct applies both within project spaces and in public spaces
+when an individual is representing the project or its community. Examples of
+representing a project or community include using an official project e-mail
+address, posting via an official social media account, or acting as an appointed
+representative at an online or offline event. Representation of a project may be
+further defined and clarified by project maintainers.
+
+## Enforcement
+
+Instances of abusive, harassing, or otherwise unacceptable behavior may be
+reported by contacting the project team at chenkaidev@gmail.com. All
+complaints will be reviewed and investigated and will result in a response that
+is deemed necessary and appropriate to the circumstances. The project team is
+obligated to maintain confidentiality with regard to the reporter of an incident.
+Further details of specific enforcement policies may be posted separately.
+
+Project maintainers who do not follow or enforce the Code of Conduct in good
+faith may face temporary or permanent repercussions as determined by other
+members of the project's leadership.
+
+## Attribution
+
+This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
+available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
+
+[homepage]: https://www.contributor-covenant.org
+
+For answers to common questions about this code of conduct, see
+https://www.contributor-covenant.org/faq
diff --git a/.github/CONTRIBUTING.md b/.github/CONTRIBUTING.md
new file mode 100644
index 00000000..c6696262
--- /dev/null
+++ b/.github/CONTRIBUTING.md
@@ -0,0 +1 @@
+We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 00000000..56bbd88f
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,9 @@
+blank_issues_enabled: false
+
+contact_links:
+ - name: Common Issues
+ url: https://mmdetection.readthedocs.io/en/latest/faq.html
+ about: Check if your issue already has solutions
+ - name: MMDetection Documentation
+ url: https://mmdetection.readthedocs.io/en/latest/
+ about: Check if your question is answered in docs
diff --git a/.github/ISSUE_TEMPLATE/error-report.md b/.github/ISSUE_TEMPLATE/error-report.md
new file mode 100644
index 00000000..23cb9c1a
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/error-report.md
@@ -0,0 +1,47 @@
+---
+name: Error report
+about: Create a report to help us improve
+title: ''
+labels: ''
+assignees: ''
+
+---
+
+Thanks for your error report and we appreciate it a lot.
+
+**Checklist**
+
+1. I have searched related issues but cannot get the expected help.
+2. I have read the [FAQ documentation](https://mmdetection.readthedocs.io/en/latest/faq.html) but cannot get the expected help.
+3. The bug has not been fixed in the latest version.
+
+**Describe the bug**
+A clear and concise description of what the bug is.
+
+**Reproduction**
+
+1. What command or script did you run?
+
+```none
+A placeholder for the command.
+```
+
+2. Did you make any modifications on the code or config? Did you understand what you have modified?
+3. What dataset did you use?
+
+**Environment**
+
+1. Please run `python mmdet/utils/collect_env.py` to collect necessary environment information and paste it here.
+2. You may add addition that may be helpful for locating the problem, such as
+ - How you installed PyTorch [e.g., pip, conda, source]
+ - Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
+
+**Error traceback**
+If applicable, paste the error trackback here.
+
+```none
+A placeholder for trackback.
+```
+
+**Bug fix**
+If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md
new file mode 100644
index 00000000..33f9d5f2
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/feature_request.md
@@ -0,0 +1,22 @@
+---
+name: Feature request
+about: Suggest an idea for this project
+title: ''
+labels: ''
+assignees: ''
+
+---
+
+**Describe the feature**
+
+**Motivation**
+A clear and concise description of the motivation of the feature.
+Ex1. It is inconvenient when [....].
+Ex2. There is a recent paper [....], which is very helpful for [....].
+
+**Related resources**
+If there is an official code release or third-party implementations, please also provide the information here, which would be very helpful.
+
+**Additional context**
+Add any other context or screenshots about the feature request here.
+If you would like to implement the feature and create a PR, please leave a comment here and that would be much appreciated.
diff --git a/.github/ISSUE_TEMPLATE/general_questions.md b/.github/ISSUE_TEMPLATE/general_questions.md
new file mode 100644
index 00000000..b5a6451a
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/general_questions.md
@@ -0,0 +1,8 @@
+---
+name: General questions
+about: Ask general questions to get help
+title: ''
+labels: ''
+assignees: ''
+
+---
diff --git a/.github/ISSUE_TEMPLATE/reimplementation_questions.md b/.github/ISSUE_TEMPLATE/reimplementation_questions.md
new file mode 100644
index 00000000..6b358387
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/reimplementation_questions.md
@@ -0,0 +1,68 @@
+---
+name: Reimplementation Questions
+about: Ask about questions during model reimplementation
+title: ''
+labels: 'reimplementation'
+assignees: ''
+
+---
+
+**Notice**
+
+There are several common situations in the reimplementation issues as below
+
+1. Reimplement a model in the model zoo using the provided configs
+2. Reimplement a model in the model zoo on other dataset (e.g., custom datasets)
+3. Reimplement a custom model but all the components are implemented in MMDetection
+4. Reimplement a custom model with new modules implemented by yourself
+
+There are several things to do for different cases as below.
+
+- For case 1 & 3, please follow the steps in the following sections thus we could help to quick identify the issue.
+- For case 2 & 4, please understand that we are not able to do much help here because we usually do not know the full code and the users should be responsible to the code they write.
+- One suggestion for case 2 & 4 is that the users should first check whether the bug lies in the self-implemented code or the original code. For example, users can first make sure that the same model runs well on supported datasets. If you still need help, please describe what you have done and what you obtain in the issue, and follow the steps in the following sections and try as clear as possible so that we can better help you.
+
+**Checklist**
+
+1. I have searched related issues but cannot get the expected help.
+2. The issue has not been fixed in the latest version.
+
+**Describe the issue**
+
+A clear and concise description of what the problem you meet and what have you done.
+
+**Reproduction**
+
+1. What command or script did you run?
+
+```none
+A placeholder for the command.
+```
+
+2. What config dir you run?
+
+```none
+A placeholder for the config.
+```
+
+3. Did you make any modifications on the code or config? Did you understand what you have modified?
+4. What dataset did you use?
+
+**Environment**
+
+1. Please run `python mmdet/utils/collect_env.py` to collect necessary environment information and paste it here.
+2. You may add addition that may be helpful for locating the problem, such as
+ 1. How you installed PyTorch [e.g., pip, conda, source]
+ 2. Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
+
+**Results**
+
+If applicable, paste the related results here, e.g., what you expect and what you get.
+
+```none
+A placeholder for results comparison
+```
+
+**Issue fix**
+
+If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md
new file mode 100644
index 00000000..290c5c8f
--- /dev/null
+++ b/.github/pull_request_template.md
@@ -0,0 +1,21 @@
+Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.
+
+## Motivation
+Please describe the motivation of this PR and the goal you want to achieve through this PR.
+
+## Modification
+Please briefly describe what modification is made in this PR.
+
+## BC-breaking (Optional)
+Does the modification introduce changes that break the back-compatibility of the downstream repos?
+If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.
+
+## Use cases (Optional)
+If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.
+
+## Checklist
+
+1. Pre-commit or other linting tools are used to fix the potential lint issues.
+2. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness.
+3. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMCls.
+4. The documentation has been modified accordingly, like docstring or example tutorials.
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
new file mode 100644
index 00000000..0d56d621
--- /dev/null
+++ b/.github/workflows/build.yml
@@ -0,0 +1,161 @@
+name: build
+
+on: [push, pull_request]
+
+jobs:
+ lint:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v2
+ - name: Set up Python 3.7
+ uses: actions/setup-python@v2
+ with:
+ python-version: 3.7
+ - name: Install pre-commit hook
+ run: |
+ pip install pre-commit
+ pre-commit install
+ - name: Linting
+ run: pre-commit run --all-files
+ - name: Check docstring coverage
+ run: |
+ pip install interrogate
+ interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-regex "__repr__" --fail-under 80 mmdet
+
+ build_cpu:
+ runs-on: ubuntu-latest
+ strategy:
+ matrix:
+ python-version: [3.7]
+ torch: [1.3.1, 1.5.1, 1.6.0]
+ include:
+ - torch: 1.3.1
+ torchvision: 0.4.2
+ mmcv: "latest+torch1.3.0+cpu"
+ - torch: 1.5.1
+ torchvision: 0.6.1
+ mmcv: "latest+torch1.5.0+cpu"
+ - torch: 1.6.0
+ torchvision: 0.7.0
+ mmcv: "latest+torch1.6.0+cpu"
+ - torch: 1.7.0
+ torchvision: 0.8.1
+ mmcv: "latest+torch1.7.0+cpu"
+ - torch: 1.8.0
+ torchvision: 0.9.0
+ mmcv: "latest+torch1.8.0+cpu"
+ steps:
+ - uses: actions/checkout@v2
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Install Pillow
+ run: pip install Pillow==6.2.2
+ if: ${{matrix.torchvision == '0.4.2'}}
+ - name: Install PyTorch
+ run: pip install torch==${{matrix.torch}}+cpu torchvision==${{matrix.torchvision}}+cpu -f https://download.pytorch.org/whl/torch_stable.html
+ - name: Install MMCV
+ run: |
+ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/torch${{matrix.torch}}/index.html
+ python -c 'import mmcv; print(mmcv.__version__)'
+ - name: Install unittest dependencies
+ run: pip install -r requirements/tests.txt -r requirements/optional.txt
+ - name: Build and install
+ run: rm -rf .eggs && pip install -e .
+ - name: Run unittests and generate coverage report
+ run: |
+ coverage run --branch --source mmdet -m pytest tests/
+ coverage xml
+ coverage report -m
+
+ build_cuda:
+ runs-on: ubuntu-latest
+
+ env:
+ CUDA: 10.1.105-1
+ CUDA_SHORT: 10.1
+ UBUNTU_VERSION: ubuntu1804
+ strategy:
+ matrix:
+ python-version: [3.7]
+ torch: [1.3.1, 1.5.1+cu101, 1.6.0+cu101, 1.7.0+cu101, 1.8.0+cu101]
+ include:
+ - torch: 1.3.1
+ torch_version: torch1.3.1
+ torchvision: 0.4.2
+ mmcv: "latest+torch1.3.0+cu101"
+ - torch: 1.5.1+cu101
+ torch_version: torch1.5.1
+ torchvision: 0.6.1+cu101
+ mmcv: "latest+torch1.5.0+cu101"
+ - torch: 1.6.0+cu101
+ torch_version: torch1.6.0
+ torchvision: 0.7.0+cu101
+ mmcv: "latest+torch1.6.0+cu101"
+ - torch: 1.6.0+cu101
+ torch_version: torch1.6.0
+ torchvision: 0.7.0+cu101
+ mmcv: "latest+torch1.6.0+cu101"
+ python-version: 3.6
+ - torch: 1.6.0+cu101
+ torch_version: torch1.6.0
+ torchvision: 0.7.0+cu101
+ mmcv: "latest+torch1.6.0+cu101"
+ python-version: 3.8
+ - torch: 1.7.0+cu101
+ torch_version: torch1.7.0
+ torchvision: 0.8.1+cu101
+ mmcv: "latest+torch1.7.0+cu101"
+ - torch: 1.8.0+cu101
+ torch_version: torch1.8.0
+ torchvision: 0.9.0+cu101
+ mmcv: "latest+torch1.8.0+cu101"
+
+ steps:
+ - uses: actions/checkout@v2
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Install CUDA
+ run: |
+ export INSTALLER=cuda-repo-${UBUNTU_VERSION}_${CUDA}_amd64.deb
+ wget http://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/${INSTALLER}
+ sudo dpkg -i ${INSTALLER}
+ wget https://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/7fa2af80.pub
+ sudo apt-key add 7fa2af80.pub
+ sudo apt update -qq
+ sudo apt install -y cuda-${CUDA_SHORT/./-} cuda-cufft-dev-${CUDA_SHORT/./-}
+ sudo apt clean
+ export CUDA_HOME=/usr/local/cuda-${CUDA_SHORT}
+ export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${CUDA_HOME}/include:${LD_LIBRARY_PATH}
+ export PATH=${CUDA_HOME}/bin:${PATH}
+ - name: Install Pillow
+ run: pip install Pillow==6.2.2
+ if: ${{matrix.torchvision < 0.5}}
+ - name: Install PyTorch
+ run: pip install torch==${{matrix.torch}} torchvision==${{matrix.torchvision}} -f https://download.pytorch.org/whl/torch_stable.html
+ - name: Install mmdet dependencies
+ run: |
+ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/${{matrix.torch_version}}/index.html
+ pip install -r requirements.txt
+ python -c 'import mmcv; print(mmcv.__version__)'
+ - name: Build and install
+ run: |
+ rm -rf .eggs
+ python setup.py check -m -s
+ TORCH_CUDA_ARCH_LIST=7.0 pip install .
+ - name: Run unittests and generate coverage report
+ run: |
+ coverage run --branch --source mmdet -m pytest tests/
+ coverage xml
+ coverage report -m
+ - name: Upload coverage to Codecov
+ uses: codecov/codecov-action@v1.0.10
+ with:
+ file: ./coverage.xml
+ flags: unittests
+ env_vars: OS,PYTHON
+ name: codecov-umbrella
+ fail_ci_if_error: false
diff --git a/.github/workflows/build_pat.yml b/.github/workflows/build_pat.yml
new file mode 100644
index 00000000..7da6a9b8
--- /dev/null
+++ b/.github/workflows/build_pat.yml
@@ -0,0 +1,24 @@
+name: build_pat
+
+on: push
+
+jobs:
+ build_parrots:
+ runs-on: ubuntu-latest
+ container:
+ image: ghcr.io/zhouzaida/parrots-mmcv:1.3.4
+ credentials:
+ username: zhouzaida
+ password: ${{ secrets.CR_PAT }}
+
+ steps:
+ - uses: actions/checkout@v2
+ - name: Install mmdet dependencies
+ run: |
+ git clone https://github.com/open-mmlab/mmcv.git && cd mmcv
+ MMCV_WITH_OPS=1 python setup.py install
+ cd .. && rm -rf mmcv
+ python -c 'import mmcv; print(mmcv.__version__)'
+ pip install -r requirements.txt
+ - name: Build and install
+ run: rm -rf .eggs && pip install -e .
diff --git a/.github/workflows/deploy.yml b/.github/workflows/deploy.yml
new file mode 100644
index 00000000..2f9458b9
--- /dev/null
+++ b/.github/workflows/deploy.yml
@@ -0,0 +1,24 @@
+name: deploy
+
+on: push
+
+jobs:
+ build-n-publish:
+ runs-on: ubuntu-latest
+ if: startsWith(github.event.ref, 'refs/tags')
+ steps:
+ - uses: actions/checkout@v2
+ - name: Set up Python 3.7
+ uses: actions/setup-python@v2
+ with:
+ python-version: 3.7
+ - name: Install torch
+ run: pip install torch
+ - name: Install wheel
+ run: pip install wheel
+ - name: Build MMDetection
+ run: python setup.py sdist bdist_wheel
+ - name: Publish distribution to PyPI
+ run: |
+ pip install twine
+ twine upload dist/* -u __token__ -p ${{ secrets.pypi_password }}
diff --git a/.gitignore b/.gitignore
index c04b9dea..c5d4592c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -103,6 +103,8 @@ venv.bak/
# mypy
.mypy_cache/
+data/
+data
.vscode
.idea
.DS_Store
@@ -116,4 +118,4 @@ work_dirs/
# Pytorch
*.pth
*.py~
-*.sh~
+*.sh~
\ No newline at end of file
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
new file mode 100644
index 00000000..64b48983
--- /dev/null
+++ b/.pre-commit-config.yaml
@@ -0,0 +1,40 @@
+repos:
+ - repo: https://gitlab.com/pycqa/flake8.git
+ rev: 3.8.3
+ hooks:
+ - id: flake8
+ - repo: https://github.com/asottile/seed-isort-config
+ rev: v2.2.0
+ hooks:
+ - id: seed-isort-config
+ - repo: https://github.com/timothycrosley/isort
+ rev: 4.3.21
+ hooks:
+ - id: isort
+ - repo: https://github.com/pre-commit/mirrors-yapf
+ rev: v0.30.0
+ hooks:
+ - id: yapf
+ - repo: https://github.com/pre-commit/pre-commit-hooks
+ rev: v3.1.0
+ hooks:
+ - id: trailing-whitespace
+ - id: check-yaml
+ - id: end-of-file-fixer
+ - id: requirements-txt-fixer
+ - id: double-quote-string-fixer
+ - id: check-merge-conflict
+ - id: fix-encoding-pragma
+ args: ["--remove"]
+ - id: mixed-line-ending
+ args: ["--fix=lf"]
+ - repo: https://github.com/jumanjihouse/pre-commit-hooks
+ rev: 2.1.4
+ hooks:
+ - id: markdownlint
+ args: ["-r", "~MD002,~MD013,~MD024,~MD029,~MD033,~MD034,~MD036", "-t", "allow_different_nesting"]
+ - repo: https://github.com/myint/docformatter
+ rev: v1.3.1
+ hooks:
+ - id: docformatter
+ args: ["--in-place", "--wrap-descriptions", "79"]
diff --git a/.readthedocs.yml b/.readthedocs.yml
new file mode 100644
index 00000000..73ea4cb7
--- /dev/null
+++ b/.readthedocs.yml
@@ -0,0 +1,7 @@
+version: 2
+
+python:
+ version: 3.7
+ install:
+ - requirements: requirements/docs.txt
+ - requirements: requirements/readthedocs.txt
diff --git a/LICENSE b/LICENSE
index dd5a8619..04adf5cb 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,21 +1,203 @@
-MIT License
-
-Copyright (c) 2020 深度眸
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
+Copyright 2018-2019 Open-MMLab. All rights reserved.
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright 2018-2019 Open-MMLab.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/MANIFEST.in b/MANIFEST.in
new file mode 100644
index 00000000..e3959f03
--- /dev/null
+++ b/MANIFEST.in
@@ -0,0 +1,6 @@
+include requirements/*.txt
+include mmdet/VERSION
+include mmdet/model_zoo.yml
+include mmdet/demo/*/*
+recursive-include mmdet/configs *.py *.yml
+recursive-include mmdet/tools *.sh *.py
diff --git a/README.md b/README.md
index 42e388fd..a8b5950b 100644
--- a/README.md
+++ b/README.md
@@ -1,221 +1,174 @@
-# mmdetection-mini
-mmdetection的mini版本,主要包括一阶段目标检测器,结构和
-mmdetection完全一致,系统通过从头构建整个框架来熟悉所有细节
-
-## 0 蓝图
-本仓库属于长期项目,计划分成n个阶段,每个阶段做啥事情我已经有打算了,目前还处于第一阶段:**解读mmdet已经复现的算法**。这个阶段主要是对mmdet已经复现的代码进行深度分析,每个算法都会有配套的详细论文和代码实现解读(后续会增加视频解读和汇总版解读文档)。故如果大家早当前阶段想利用本框架进行重新训练,最好还是直接用mmdet官方代码库,在后续阶段会重构训练逻辑代码,新增对比实验等等操作,请各位朋友不要着急!
-
-## 1 为何而生
-很多人可能有疑问:mmdetection那么好用,你为啥要自己又写一遍呢?没事干?
-其实不然,基于我目前的理解,出于以下几点原因:
-
-- **学习目的**
-mmdetection无疑是非常优异的目标检测框架,但是其整个框架代码其实非常多。我希望通过从0构建整个
-结构,来彻底熟悉整个框架,而不是仅仅熟悉算法部分。只有自己写一遍才能发现一些容易忽略的细节
-- **方便注释**
-这一点,我相信很多人都碰到过。主要原因是mmdetection发展太快了,更新特别频繁,比如今天我拉了最新分支
-加入了我的一些理解注释,过了两天,一更新就发现完全变了,此时再pull就出现很多冲突。天天解决这些冲突其实蛮累的。
-所以我自己写一个mmdetection,然后加入注释,并且实时同步mmdetection到最新版,不仅可能清楚每次更新的
-所有细节,还可以不影响注释
-- **新特性方便增加**
-如果自己想实现一些mmdetection里面没有的新特性,就非常方便了。比如我要在debug模式下进行可视化分析,
-如果直接加到mmdetection上面,会改动一些代码,一旦pull又有冲突。由于同步mmdetection过程是手动的,新增特征
-也不会出现冲突
-
-## 2 介绍
-
-完全基于mmdetection框架结构,简称mmdet最简学习版,**基于最简实现,第一原则就是简洁,不会加入一些乱七八糟的功能,一步一步构建一阶段目标检测器**。
-主要目的为在从0构建整个框架的基础上,掌握整个目标检测实现细节。 并且方便新增自己想要实现的部分。
-
-由于只有一张显卡,故不支持分布式训练。
-
-总结:本项目目的是学习,希望通过从0构建每一行代码,来熟悉每个部分,而且自己写的框架,后续我新增一些新特性也非常容易
-
-**更新可能是快时慢。在掌握每个细节后才会增加新代码,欢迎有兴趣的朋友共同学习,也欢迎提出意见。**
-
-## 3 提交日志
-[文档链接](./docs/changelog.md)
-
-## 4 已实现模型
-- [x] retinanet
-- [x] yolov3
-- [x] darknet-yolov3
-- [x] darknet-yolov4
-- [x] darknet-tiny_yolov3
-- [x] darknet-tiny_yolov4
-- [x] yolov5(s/m/l/x全部支持)
-- [x] fcos
-- [x] atss
-- [x] ghm
-- [x] gfl
-- [x] pisa
-- [x] paa
-- [x] faster rcnn
-- [x] cascade rcnn
-- [x] libra rcnn
-- [x] dynamic rcnn
-- [x] ssd
-- [x] vfnet
-- [x] guided anchoring
-- [x] sabl
-- [x] reppoints
-- [x] reppointsv2
-- [x] cornernet
-- [ ] centripetalnet
-
-
-## 5 模型仓库
-[文档链接](./docs/model_zoo.md)
-
-
-## 6 安装说明
-可选安装流程:
-[文档链接](./docs/install.md)
-
-推荐安装流程:
-考虑到很多人反映cuda无法编译成功,故本仓库将直接采用mmcv里面已经编译好的代码,新安装流程是:
-
-1. 提前安装mmcv-full对应的最新版本,参考https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md
-2. 不再需要python setup.py develop
-
-也就是说mmdet/cv_core/ops/csrc里面的代码是废弃的。我们目前采用的环境是 pytorch1.3+Python 3.6+CUDA10.1+MMCV1.1.5
-
-
-## 7 统一数据集
- 由于coco训练集图片太多了,跑到论文效果需要非常多时间,而本框架目的主要目的是快速验证
-思想和算法(代码和mmdetection一致,应该没有错误),故对主要以voc为主:
-- coco
-- voc2012和voc2007
-- wider face
-
-
-## 8 使用说明
-### 8.1 训练、测试和demo使用说明
-
-开启训练过程和mmdetection完全一致,例如:
-
-```python
-python train.py ../configs/retinanet/retinanet_r50_fpn_coco.py
-```
+
+
+
-开启测试过程和mmdetection完全一致,例如:
+**News**: We released the technical report on [ArXiv](https://arxiv.org/abs/1906.07155).
-```python
-# 评估
-python test.py ../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth --eval bbox
-# 显示
-python test.py ../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth --show
-```
+Documentation: https://mmdetection.readthedocs.io/
-开启demo过程和mmdetection完全一致,例如:
+## Introduction
-```python
-python image_demo.py demo.jpg ../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth
-```
+English | [简体中文](README_zh-CN.md)
+
+MMDetection is an open source object detection toolbox based on PyTorch. It is
+a part of the [OpenMMLab](https://openmmlab.com/) project.
+
+The master branch works with **PyTorch 1.3+**.
+The old v1.x branch works with PyTorch 1.1 to 1.4, but v2.0 is strongly recommended for faster speed, higher performance, better design and more friendly usage.
+
+
+
+### Major features
+
+- **Modular Design**
-### 8.2 darknet权重转化为mmdetection
-
-转化脚本在tools/darknet里面
+ We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.
-使用方法就是参考模型仓库文档里面的链接,将对应的权重下载下来,然后设置path就可以转化成功
+- **Support of multiple frameworks out of box**
-例如tiny_yolov3权重:
+ The toolbox directly supports popular and contemporary detection frameworks, *e.g.* Faster RCNN, Mask RCNN, RetinaNet, etc.
-1. 首先到https://github.com/AlexeyAB/darknet 对应的tiny_yolov3链接处下载对应权重
+- **High efficiency**
-2. 打开tools/darknet/tiny_yolov3.py代码,修改tiny_yolov3_weights_path为你的下载的权重路径
+ All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet).
-3. 运行tiny_yolov3.py即可生成pth权重
+- **State of the art**
-4. 然后就可以直接训练或者测试了
+ The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
+Apart from MMDetection, we also released a library [mmcv](https://github.com/open-mmlab/mmcv) for computer vision research, which is heavily depended on by this toolbox.
-### 8.3 yolov5权重转化为mmdetection
+## License
-转化脚本在tools/darknet里面。以yolov5s为例
+This project is released under the [Apache 2.0 license](LICENSE).
-1. https://github.com/ultralytics/yolov5/releases/tag/v3.0 处下载yolo5s.pt或者直接运行convert_yolov5_weights_step1.py脚本,会自动下载
-2. 运行convert_yolov5_weights_step1.py脚本,但是不好意思,你不能直接在我写的路径下运行,你需要将本脚本copy到yolov5工程目录下运行,并且必须pytorch版本大于等于1.6,原因是其保存的权重包括了picker对象,如果不放在相同路径下无法重新加载
-3. 利用上一步所得权重,然后运行tools/darknet/convert_yolov5_weights_step2.py(在本框架中运行),得到最终转化模型
-4. 然后修改configs/yolo/rr_yolov5_416_coco.py对应的路径就可以进行前向测试或者mAP计算了
+## Changelog
-支持yolov5所有模型
+v2.13.0 was released in 01/06/2021.
+Please refer to [changelog.md](docs/changelog.md) for details and release history.
+A comparison between v1.x and v2.0 codebases can be found in [compatibility.md](docs/compatibility.md).
-## 9 mmdetection-mini独有特性
+## Benchmark and model zoo
-- loss分析工具 tools/loss_analyze.py
-- anchor分析工具 tools/anchor_analyze.py
-- 模型感受野自动计算工具 tools/receptive_analyze.py
-- 前向推理时间分析工具 tools/inference_analyze.py
-- 特征图可视化工具tools/featuremap_analyze
-- darknet权重和mmdetection模型相互转化工具 tools/darknet
-- 数据分析工具(hw ratio/hw scale/anchor kmean)tools/dataset_analyze
-- 正样本可视化,需要开启debug模式
-- 支持darknet系列模型权重在mmdetection中训练,目前支持4个主流模型yolov3/v4和tiny-yolov3/v4
-- coco数据可视化工具,包括显示所有label和仅仅显示gt bbox格式,显示效果极佳(即使是voc数据,也推荐先转化为coco)
-- 支持任意数据格式转coco类CocoCreator
-- yolov5转化工具tools/darknet/convert_yolov5_weights_step2.py
+Results and models are available in the [model zoo](docs/model_zoo.md).
+Supported backbones:
-## 10 mmdetection-mini工具汇总
-- voc2coco工具 tools/convert/voc2coco
-- 数据浏览工具 tools/browse_dataset
+- [x] ResNet (CVPR'2016)
+- [x] ResNeXt (CVPR'2017)
+- [x] VGG (ICLR'2015)
+- [x] HRNet (CVPR'2019)
+- [x] RegNet (CVPR'2020)
+- [x] Res2Net (TPAMI'2020)
+- [x] ResNeSt (ArXiv'2020)
+Supported methods:
-## 笔记(持续更新)
+- [x] [RPN (NeurIPS'2015)](configs/rpn)
+- [x] [Fast R-CNN (ICCV'2015)](configs/fast_rcnn)
+- [x] [Faster R-CNN (NeurIPS'2015)](configs/faster_rcnn)
+- [x] [Mask R-CNN (ICCV'2017)](configs/mask_rcnn)
+- [x] [Cascade R-CNN (CVPR'2018)](configs/cascade_rcnn)
+- [x] [Cascade Mask R-CNN (CVPR'2018)](configs/cascade_rcnn)
+- [x] [SSD (ECCV'2016)](configs/ssd)
+- [x] [RetinaNet (ICCV'2017)](configs/retinanet)
+- [x] [GHM (AAAI'2019)](configs/ghm)
+- [x] [Mask Scoring R-CNN (CVPR'2019)](configs/ms_rcnn)
+- [x] [Double-Head R-CNN (CVPR'2020)](configs/double_heads)
+- [x] [Hybrid Task Cascade (CVPR'2019)](configs/htc)
+- [x] [Libra R-CNN (CVPR'2019)](configs/libra_rcnn)
+- [x] [Guided Anchoring (CVPR'2019)](configs/guided_anchoring)
+- [x] [FCOS (ICCV'2019)](configs/fcos)
+- [x] [RepPoints (ICCV'2019)](configs/reppoints)
+- [x] [Foveabox (TIP'2020)](configs/foveabox)
+- [x] [FreeAnchor (NeurIPS'2019)](configs/free_anchor)
+- [x] [NAS-FPN (CVPR'2019)](configs/nas_fpn)
+- [x] [ATSS (CVPR'2020)](configs/atss)
+- [x] [FSAF (CVPR'2019)](configs/fsaf)
+- [x] [PAFPN (CVPR'2018)](configs/pafpn)
+- [x] [Dynamic R-CNN (ECCV'2020)](configs/dynamic_rcnn)
+- [x] [PointRend (CVPR'2020)](configs/point_rend)
+- [x] [CARAFE (ICCV'2019)](configs/carafe/README.md)
+- [x] [DCNv2 (CVPR'2019)](configs/dcn/README.md)
+- [x] [Group Normalization (ECCV'2018)](configs/gn/README.md)
+- [x] [Weight Standardization (ArXiv'2019)](configs/gn+ws/README.md)
+- [x] [OHEM (CVPR'2016)](configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py)
+- [x] [Soft-NMS (ICCV'2017)](configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py)
+- [x] [Generalized Attention (ICCV'2019)](configs/empirical_attention/README.md)
+- [x] [GCNet (ICCVW'2019)](configs/gcnet/README.md)
+- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16/README.md)
+- [x] [InstaBoost (ICCV'2019)](configs/instaboost/README.md)
+- [x] [GRoIE (ICPR'2020)](configs/groie/README.md)
+- [x] [DetectoRS (ArXix'2020)](configs/detectors/README.md)
+- [x] [Generalized Focal Loss (NeurIPS'2020)](configs/gfl/README.md)
+- [x] [CornerNet (ECCV'2018)](configs/cornernet/README.md)
+- [x] [Side-Aware Boundary Localization (ECCV'2020)](configs/sabl/README.md)
+- [x] [YOLOv3 (ArXiv'2018)](configs/yolo/README.md)
+- [x] [PAA (ECCV'2020)](configs/paa/README.md)
+- [x] [YOLACT (ICCV'2019)](configs/yolact/README.md)
+- [x] [CentripetalNet (CVPR'2020)](configs/centripetalnet/README.md)
+- [x] [VFNet (ArXix'2020)](configs/vfnet/README.md)
+- [x] [DETR (ECCV'2020)](configs/detr/README.md)
+- [x] [Deformable DETR (ICLR'2021)](configs/deformable_detr/README.md)
+- [x] [CascadeRPN (NeurIPS'2019)](configs/cascade_rpn/README.md)
+- [x] [SCNet (AAAI'2021)](configs/scnet/README.md)
+- [x] [AutoAssign (ArXix'2020)](configs/autoassign/README.md)
+- [x] [YOLOF (CVPR'2021)](configs/yolof/README.md)
+- [x] [Seasaw Loss (CVPR'2021)](configs/seesaw_loss/README.md)
+- [x] [CenterNet (CVPR'2019)](configs/centernet/README.md)
-[第一篇:mmdetection最小复刻版(一):整体概览](https://www.zybuluo.com/huanghaian/note/1742545)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/252616317)
-[第二篇:mmdetection最小复刻版(二):RetinaNet和YoloV3分析](https://www.zybuluo.com/huanghaian/note/1742594)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/259487104)
-[第三篇:mmdetection最小复刻版(三):神兵利器](https://www.zybuluo.com/huanghaian/note/1743266)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/259963010)
-[第四篇:mmdetection最小复刻版(四):独家yolo转化内幕](https://www.zybuluo.com/huanghaian/note/1744915)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/265950384)
-[第五篇:mmdetection最小复刻版(五):yolov5转化内幕](https://www.zybuluo.com/huanghaian/note/1745145)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/266916615)
-[第六篇:mmdetection最小复刻版(六):FCOS深入可视化分析](https://www.zybuluo.com/huanghaian/note/1747551)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/267346645)
-[第七篇:mmdetection最小复刻版(七):anchor-base和anchor-free差异分析](https://www.zybuluo.com/huanghaian/note/1748811)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/272471302)
-[第八篇:mmdetection最小复刻版(八):梯度均衡机制GHM深入分析](https://www.zybuluo.com/huanghaian/note/1749031)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/272474618)
-[第九篇:mmdetection最小复刻版(九):广义FocalLoss深入分析](https://www.zybuluo.com/huanghaian/note/1749472)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/271636072)
-[第十篇:mmdetection最小复刻版(十):mAP和PISA深入分析](https://www.zybuluo.com/huanghaian/note/1749740)
-[第十一篇:mmdetection最小复刻版(十一):概率Anchor分配机制PAA深入分析](https://www.zybuluo.com/huanghaian/note/1750308)
-[第十二篇:mmdetection最小复刻版(十二):Faster RCNN深入分析]()
-[第十三篇:mmdetection最小复刻版(十三):超强cascade rcnn算法分析](https://www.zybuluo.com/huanghaian/note/1751181)
-[第十四篇:mmdetection最小复刻版(十四):检测器不平衡处理Libra rcnn](https://www.zybuluo.com/huanghaian/note/1751369)
-[第十五篇:mmdetection最小复刻版(十五):two-stage动态版本dynamic rcnn](https://www.zybuluo.com/huanghaian/note/1751370)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/272473267)
-[第十六篇:mmdetection最小复刻版(十六):iou感知VarifocalNet深入分析](https://www.zybuluo.com/huanghaian/note/1753374)
-或者 [知乎文章](https://zhuanlan.zhihu.com/p/271757527)
-[第十七篇:mmdetection最小复刻版(十七):语义导向anchor生成](https://www.zybuluo.com/huanghaian/note/1753795)
-[第十八篇:mmdetection最小复刻版(十八):Side-Aware边界框定位](https://www.zybuluo.com/huanghaian/note/1753776)
-[第十九篇:mmdetection最小复刻版(十九):点集表示法RepPoints](https://www.zybuluo.com/huanghaian/note/1754350)
-[第二十篇:mmdetection最小复刻版(二十):加入验证任务的RepPointsV2](https://www.zybuluo.com/huanghaian/note/1754857)
-[第二十一篇:mmdetection最小复刻版(二十一):关键点检测思路CornerNet分析](https://www.zybuluo.com/huanghaian/note/1755495)
-[第二十二篇:mmdetection最小复刻版(二十二):引入向心力解决CornerNet虚检问题](https://www.zybuluo.com/huanghaian/note/1755583)
-[3W字长文带你轻松入门视觉transformer](https://www.zybuluo.com/huanghaian/note/1757637)
-## other
-
-1. 目标检测通用算法流程
-2. yolov1深入解读
-3. ssd深入解读
-4. yolov2深入解读
-5. yolov3深入解读
-6. retinanet深入解读
-7. rpn深度解读
-8. faster rcnn深入解读
-9. fpn深入解读
-10. mask rcnn深入解读
-11. cascade rcnn深入解读
-12. fcos深入解读
+Some other methods are also supported in [projects using MMDetection](./docs/projects.md).
+## Installation
+Please refer to [get_started.md](docs/get_started.md) for installation.
+## Getting Started
+
+Please see [get_started.md](docs/get_started.md) for the basic usage of MMDetection.
+We provide [colab tutorial](demo/MMDet_Tutorial.ipynb), and full guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with new dataset](docs/2_new_data_model.md) for beginners.
+There are also tutorials for [finetuning models](docs/tutorials/finetune.md), [adding new dataset](docs/tutorials/customize_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [useful tools](docs/useful_tools.md).
+
+Please refer to [FAQ](docs/faq.md) for frequently asked questions.
+
+## Contributing
+
+We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
+
+## Acknowledgement
+
+MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
+We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.
+
+## Citation
+
+If you use this toolbox or benchmark in your research, please cite this project.
+
+```
+@article{mmdetection,
+ title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
+ author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
+ Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
+ Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
+ Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
+ Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
+ and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
+ journal= {arXiv preprint arXiv:1906.07155},
+ year={2019}
+}
+```
-
-
\ No newline at end of file
+## Projects in OpenMMLab
+
+- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
+- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
+- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
+- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
+- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
+- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
+- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
+- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
+- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
+- [MMOCR](https://github.com/open-mmlab/mmocr): A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
+- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
diff --git a/README_zh-CN.md b/README_zh-CN.md
new file mode 100644
index 00000000..a1b80096
--- /dev/null
+++ b/README_zh-CN.md
@@ -0,0 +1,192 @@
+
+
+
+
+**新闻**: 我们在 [ArXiv](https://arxiv.org/abs/1906.07155) 上公开了技术报告。
+
+文档: https://mmdetection.readthedocs.io/
+
+## 简介
+
+[English](README.md) | 简体中文
+
+MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
+
+主分支代码目前支持 PyTorch 1.3 以上的版本。
+
+v1.x 的历史版本支持 PyTorch 1.1 到 1.4,但是我们强烈建议用户使用新的 2.x 的版本,新的版本速度更快,性能更高,有更优雅的代码设计,对用户使用也更加友好。
+
+
+
+### 主要特性
+
+- **模块化设计**
+
+ MMDetection 将检测框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的检测模型
+
+- **丰富的即插即用的算法和模型**
+
+ MMDetection 支持了众多主流的和最新的检测算法,例如 Faster R-CNN,Mask R-CNN,RetinaNet 等。
+
+- **速度快**
+
+ 基本的框和 mask 操作都实现了 GPU 版本,训练速度比其他代码库更快或者相当,包括 [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) 和 [SimpleDet](https://github.com/TuSimple/simpledet)。
+
+- **性能高**
+
+ MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 *MMDet* 团队开发的代码,我们在之后持续进行了改进和提升。
+
+除了 MMDetection 之外,我们还开源了计算机视觉基础库 [MMCV](https://github.com/open-mmlab/mmcv),MMCV 是 MMDetection 的主要依赖。
+
+## 开源许可证
+
+该项目采用 [Apache 2.0 开源许可证](LICENSE)。
+
+## 更新日志
+
+最新的月度版本 v2.13.0 在 2021.06.01 发布。
+如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/changelog.md)。
+在[兼容性说明文档](docs/compatibility.md)中我们提供了 1.x 和 2.0 版本的详细比较。
+
+## 基准测试和模型库
+
+测试结果和模型可以在[模型库](docs/model_zoo.md)中找到。
+
+已支持的骨干网络:
+
+- [x] ResNet (CVPR'2016)
+- [x] ResNeXt (CVPR'2017)
+- [x] VGG (ICLR'2015)
+- [x] HRNet (CVPR'2019)
+- [x] RegNet (CVPR'2020)
+- [x] Res2Net (TPAMI'2020)
+- [x] ResNeSt (ArXiv'2020)
+
+已支持的算法:
+
+- [x] [RPN (NeurIPS'2015)](configs/rpn)
+- [x] [Fast R-CNN (ICCV'2015)](configs/fast_rcnn)
+- [x] [Faster R-CNN (NeurIPS'2015)](configs/faster_rcnn)
+- [x] [Mask R-CNN (ICCV'2017)](configs/mask_rcnn)
+- [x] [Cascade R-CNN (CVPR'2018)](configs/cascade_rcnn)
+- [x] [Cascade Mask R-CNN (CVPR'2018)](configs/cascade_rcnn)
+- [x] [SSD (ECCV'2016)](configs/ssd)
+- [x] [RetinaNet (ICCV'2017)](configs/retinanet)
+- [x] [GHM (AAAI'2019)](configs/ghm)
+- [x] [Mask Scoring R-CNN (CVPR'2019)](configs/ms_rcnn)
+- [x] [Double-Head R-CNN (CVPR'2020)](configs/double_heads)
+- [x] [Hybrid Task Cascade (CVPR'2019)](configs/htc)
+- [x] [Libra R-CNN (CVPR'2019)](configs/libra_rcnn)
+- [x] [Guided Anchoring (CVPR'2019)](configs/guided_anchoring)
+- [x] [FCOS (ICCV'2019)](configs/fcos)
+- [x] [RepPoints (ICCV'2019)](configs/reppoints)
+- [x] [Foveabox (TIP'2020)](configs/foveabox)
+- [x] [FreeAnchor (NeurIPS'2019)](configs/free_anchor)
+- [x] [NAS-FPN (CVPR'2019)](configs/nas_fpn)
+- [x] [ATSS (CVPR'2020)](configs/atss)
+- [x] [FSAF (CVPR'2019)](configs/fsaf)
+- [x] [PAFPN (CVPR'2018)](configs/pafpn)
+- [x] [Dynamic R-CNN (ECCV'2020)](configs/dynamic_rcnn)
+- [x] [PointRend (CVPR'2020)](configs/point_rend)
+- [x] [CARAFE (ICCV'2019)](configs/carafe/README.md)
+- [x] [DCNv2 (CVPR'2019)](configs/dcn/README.md)
+- [x] [Group Normalization (ECCV'2018)](configs/gn/README.md)
+- [x] [Weight Standardization (ArXiv'2019)](configs/gn+ws/README.md)
+- [x] [OHEM (CVPR'2016)](configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py)
+- [x] [Soft-NMS (ICCV'2017)](configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py)
+- [x] [Generalized Attention (ICCV'2019)](configs/empirical_attention/README.md)
+- [x] [GCNet (ICCVW'2019)](configs/gcnet/README.md)
+- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16/README.md)
+- [x] [InstaBoost (ICCV'2019)](configs/instaboost/README.md)
+- [x] [GRoIE (ICPR'2020)](configs/groie/README.md)
+- [x] [DetectoRS (ArXix'2020)](configs/detectors/README.md)
+- [x] [Generalized Focal Loss (NeurIPS'2020)](configs/gfl/README.md)
+- [x] [CornerNet (ECCV'2018)](configs/cornernet/README.md)
+- [x] [Side-Aware Boundary Localization (ECCV'2020)](configs/sabl/README.md)
+- [x] [YOLOv3 (ArXiv'2018)](configs/yolo/README.md)
+- [x] [PAA (ECCV'2020)](configs/paa/README.md)
+- [x] [YOLACT (ICCV'2019)](configs/yolact/README.md)
+- [x] [CentripetalNet (CVPR'2020)](configs/centripetalnet/README.md)
+- [x] [VFNet (ArXix'2020)](configs/vfnet/README.md)
+- [x] [DETR (ECCV'2020)](configs/detr/README.md)
+- [x] [Deformable DETR (ICLR'2021)](configs/deformable_detr/README.md)
+- [x] [CascadeRPN (NeurIPS'2019)](configs/cascade_rpn/README.md)
+- [x] [SCNet (AAAI'2021)](configs/scnet/README.md)
+- [x] [AutoAssign (ArXix'2020)](configs/autoassign/README.md)
+- [x] [YOLOF (CVPR'2021)](configs/yolof/README.md)
+- [x] [Seasaw Loss (CVPR'2021)](configs/seesaw_loss/README.md)
+- [x] [CenterNet (CVPR'2019)](configs/centernet/README.md)
+
+我们在[基于 MMDetection 的项目](./docs/projects.md)中列举了一些其他的支持的算法。
+
+## 安装
+
+请参考[快速入门文档](docs/get_started.md)进行安装。
+
+## 快速入门
+
+请参考[快速入门文档](docs/get_started.md)学习 MMDetection 的基本使用。
+我们提供了 [colab 教程](demo/MMDet_Tutorial.ipynb),也为新手提供了完整的运行教程,分别针对[已有数据集](docs/1_exist_data_model.md)和[新数据集](docs/2_new_data_model.md) 完整的使用指南
+
+我们也提供了一些进阶教程,内容覆盖了 [finetune 模型](docs/tutorials/finetune.md),[增加新数据集支持](docs/tutorials/new_dataset.md),[设计新的数据预处理流程](docs/tutorials/data_pipeline.md),[增加自定义模型](ocs/tutorials/customize_models.md),[增加自定义的运行时配置](docs/tutorials/customize_runtime.md),[常用工具和脚本](docs/useful_tools.md)。
+
+如果遇到问题,请参考 [FAQ 页面](docs/faq.md)。
+
+## 贡献指南
+
+我们感谢所有的贡献者为改进和提升 MMDetection 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
+
+## 致谢
+
+MMDetection 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
+
+## 引用
+
+如果你在研究中使用了本项目的代码或者性能基准,请参考如下 bibtex 引用 MMDetection。
+
+```
+@article{mmdetection,
+ title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
+ author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
+ Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
+ Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
+ Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
+ Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
+ and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
+ journal= {arXiv preprint arXiv:1906.07155},
+ year={2019}
+}
+```
+
+## OpenMMLab 的其他项目
+
+- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
+- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
+- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
+- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
+- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
+- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
+- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
+- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
+- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
+- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
+- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
+
+## 欢迎加入 OpenMMLab 社区
+
+扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3)
+
+
+
+
+
+我们会在 OpenMMLab 社区为大家
+
+- 📢 分享 AI 框架的前沿核心技术
+- 💻 解读 PyTorch 常用模块源码
+- 📰 发布 OpenMMLab 的相关新闻
+- 🚀 介绍 OpenMMLab 开发的前沿算法
+- 🏃 获取更高效的问题答疑和意见反馈
+- 🔥 提供与各行各业开发者充分交流的平台
+
+干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬
diff --git a/batch_shapes.npy b/batch_shapes.npy
new file mode 100644
index 00000000..18f776f3
Binary files /dev/null and b/batch_shapes.npy differ
diff --git a/configs/_base_/datasets/cityscapes_detection.py b/configs/_base_/datasets/cityscapes_detection.py
new file mode 100644
index 00000000..e341b59d
--- /dev/null
+++ b/configs/_base_/datasets/cityscapes_detection.py
@@ -0,0 +1,56 @@
+# dataset settings
+dataset_type = 'CityscapesDataset'
+data_root = 'data/cityscapes/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(2048, 1024),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=1,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=8,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_train.json',
+ img_prefix=data_root + 'leftImg8bit/train/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_val.json',
+ img_prefix=data_root + 'leftImg8bit/val/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_test.json',
+ img_prefix=data_root + 'leftImg8bit/test/',
+ pipeline=test_pipeline))
+evaluation = dict(interval=1, metric='bbox')
diff --git a/configs/_base_/datasets/cityscapes_instance.py b/configs/_base_/datasets/cityscapes_instance.py
new file mode 100644
index 00000000..4e3c34e2
--- /dev/null
+++ b/configs/_base_/datasets/cityscapes_instance.py
@@ -0,0 +1,56 @@
+# dataset settings
+dataset_type = 'CityscapesDataset'
+data_root = 'data/cityscapes/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(2048, 1024),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=1,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=8,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_train.json',
+ img_prefix=data_root + 'leftImg8bit/train/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_val.json',
+ img_prefix=data_root + 'leftImg8bit/val/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/instancesonly_filtered_gtFine_test.json',
+ img_prefix=data_root + 'leftImg8bit/test/',
+ pipeline=test_pipeline))
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/coco_detection.py b/configs/_base_/datasets/coco_detection.py
index 3583da29..149f590b 100644
--- a/configs/_base_/datasets/coco_detection.py
+++ b/configs/_base_/datasets/coco_detection.py
@@ -1,5 +1,6 @@
+# dataset settings
dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
+data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
@@ -10,19 +11,14 @@
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
- # dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'img')), # meta_keys新增‘img’,用于可视化调试
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
-
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
- img_scale=(1333, 800), # 单尺度
- flip=False, # True,那就是图片数目翻倍
+ img_scale=(1333, 800),
+ flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
@@ -33,21 +29,21 @@
])
]
data = dict(
- samples_per_gpu=8,
- workers_per_gpu=8,
+ samples_per_gpu=2,
+ workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
- img_prefix=data_root + 'images/train2017/',
+ img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
+ img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
+ img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
diff --git a/configs/_base_/datasets/coco_instance.py b/configs/_base_/datasets/coco_instance.py
new file mode 100644
index 00000000..9901a858
--- /dev/null
+++ b/configs/_base_/datasets/coco_instance.py
@@ -0,0 +1,49 @@
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/coco_instance_semantic.py b/configs/_base_/datasets/coco_instance_semantic.py
new file mode 100644
index 00000000..6c8bf07b
--- /dev/null
+++ b/configs/_base_/datasets/coco_instance_semantic.py
@@ -0,0 +1,54 @@
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='SegRescale', scale_factor=1 / 8),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ seg_prefix=data_root + 'stuffthingmaps/train2017/',
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/deepfashion.py b/configs/_base_/datasets/deepfashion.py
new file mode 100644
index 00000000..308b4b2a
--- /dev/null
+++ b/configs/_base_/datasets/deepfashion.py
@@ -0,0 +1,53 @@
+# dataset settings
+dataset_type = 'DeepFashionDataset'
+data_root = 'data/DeepFashion/In-shop/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(750, 1101), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(750, 1101),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ imgs_per_gpu=2,
+ workers_per_gpu=1,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
+ img_prefix=data_root + 'Img/',
+ pipeline=train_pipeline,
+ data_root=data_root),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
+ img_prefix=data_root + 'Img/',
+ pipeline=test_pipeline,
+ data_root=data_root),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root +
+ 'annotations/DeepFashion_segmentation_gallery.json',
+ img_prefix=data_root + 'Img/',
+ pipeline=test_pipeline,
+ data_root=data_root))
+evaluation = dict(interval=5, metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/lvis_v0.5_instance.py b/configs/_base_/datasets/lvis_v0.5_instance.py
new file mode 100644
index 00000000..207e0053
--- /dev/null
+++ b/configs/_base_/datasets/lvis_v0.5_instance.py
@@ -0,0 +1,24 @@
+# dataset settings
+_base_ = 'coco_instance.py'
+dataset_type = 'LVISV05Dataset'
+data_root = 'data/lvis_v0.5/'
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ _delete_=True,
+ type='ClassBalancedDataset',
+ oversample_thr=1e-3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v0.5_train.json',
+ img_prefix=data_root + 'train2017/')),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v0.5_val.json',
+ img_prefix=data_root + 'val2017/'),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v0.5_val.json',
+ img_prefix=data_root + 'val2017/'))
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/lvis_v1_instance.py b/configs/_base_/datasets/lvis_v1_instance.py
new file mode 100644
index 00000000..be791edd
--- /dev/null
+++ b/configs/_base_/datasets/lvis_v1_instance.py
@@ -0,0 +1,24 @@
+# dataset settings
+_base_ = 'coco_instance.py'
+dataset_type = 'LVISV1Dataset'
+data_root = 'data/lvis_v1/'
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ _delete_=True,
+ type='ClassBalancedDataset',
+ oversample_thr=1e-3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_train.json',
+ img_prefix=data_root)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root))
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/_base_/datasets/voc0712.py b/configs/_base_/datasets/voc0712.py
index 13ec9f87..ae09acdd 100644
--- a/configs/_base_/datasets/voc0712.py
+++ b/configs/_base_/datasets/voc0712.py
@@ -1,6 +1,6 @@
# dataset settings
dataset_type = 'VOCDataset'
-data_root = '/home/pi/dataset/VOCdevkit/'
+data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
diff --git a/configs/_base_/default_runtime.py b/configs/_base_/default_runtime.py
index dd04e585..55097c5b 100644
--- a/configs/_base_/default_runtime.py
+++ b/configs/_base_/default_runtime.py
@@ -4,10 +4,13 @@
interval=50,
hooks=[
dict(type='TextLoggerHook'),
+ # dict(type='TensorboardLoggerHook')
])
# yapf:enable
+custom_hooks = [dict(type='NumClassCheckHook')]
+
dist_params = dict(backend='nccl')
log_level = 'INFO'
-load_from = None # 需要是全路径
+load_from = None
resume_from = None
workflow = [('train', 1)]
diff --git a/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py b/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
new file mode 100644
index 00000000..9ef6673c
--- /dev/null
+++ b/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
@@ -0,0 +1,196 @@
+# model settings
+model = dict(
+ type='CascadeRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ type='CascadeRoIHead',
+ num_stages=3,
+ stage_loss_weights=[1, 0.5, 0.25],
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=[
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.6,
+ neg_iou_thr=0.6,
+ min_pos_iou=0.6,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.7,
+ min_pos_iou=0.7,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False)
+ ]),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100,
+ mask_thr_binary=0.5)))
diff --git a/configs/_base_/models/cascade_rcnn_r50_fpn.py b/configs/_base_/models/cascade_rcnn_r50_fpn.py
index 303276b8..cde2a96c 100644
--- a/configs/_base_/models/cascade_rcnn_r50_fpn.py
+++ b/configs/_base_/models/cascade_rcnn_r50_fpn.py
@@ -92,92 +92,88 @@
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
- ]))
-# model training and testing settings
-train_cfg = dict(
- rpn=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=0,
- pos_weight=-1,
- debug=False),
- rpn_proposal=dict(
- nms_across_levels=False,
- nms_pre=2000,
- nms_post=2000,
- max_num=2000,
- nms_thr=0.7,
- min_bbox_size=0),
- rcnn=[
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.5,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- pos_weight=-1,
- debug=False),
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.6,
- neg_iou_thr=0.6,
- min_pos_iou=0.6,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- pos_weight=-1,
- debug=False),
- dict(
+ ]),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
- neg_iou_thr=0.7,
- min_pos_iou=0.7,
- match_low_quality=False,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
- num=512,
- pos_fraction=0.25,
+ num=256,
+ pos_fraction=0.5,
neg_pos_ub=-1,
- add_gt_as_proposals=True),
+ add_gt_as_proposals=False),
+ allowed_border=0,
pos_weight=-1,
- debug=False)
- ])
-test_cfg = dict(
- rpn=dict(
- nms_across_levels=False,
- nms_pre=1000,
- nms_post=1000,
- max_num=1000,
- nms_thr=0.7,
- min_bbox_size=0),
- rcnn=dict(
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100))
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=[
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.6,
+ neg_iou_thr=0.6,
+ min_pos_iou=0.6,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.7,
+ min_pos_iou=0.7,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False)
+ ]),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)))
diff --git a/configs/_base_/models/fast_rcnn_r50_fpn.py b/configs/_base_/models/fast_rcnn_r50_fpn.py
new file mode 100644
index 00000000..1099165b
--- /dev/null
+++ b/configs/_base_/models/fast_rcnn_r50_fpn.py
@@ -0,0 +1,62 @@
+# model settings
+model = dict(
+ type='FastRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ roi_head=dict(
+ type='StandardRoIHead',
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)))
diff --git a/configs/_base_/models/faster_rcnn_r50_caffe_c4.py b/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
new file mode 100644
index 00000000..6e18f71b
--- /dev/null
+++ b/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
@@ -0,0 +1,112 @@
+# model settings
+norm_cfg = dict(type='BN', requires_grad=False)
+model = dict(
+ type='FasterRCNN',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=3,
+ strides=(1, 2, 2),
+ dilations=(1, 1, 1),
+ out_indices=(2, ),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=True,
+ style='caffe'),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=1024,
+ feat_channels=1024,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[2, 4, 8, 16, 32],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[16]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ roi_head=dict(
+ type='StandardRoIHead',
+ shared_head=dict(
+ type='ResLayer',
+ depth=50,
+ stage=3,
+ stride=2,
+ dilation=1,
+ style='caffe',
+ norm_cfg=norm_cfg,
+ norm_eval=True),
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=1024,
+ featmap_strides=[16]),
+ bbox_head=dict(
+ type='BBoxHead',
+ with_avg_pool=True,
+ roi_feat_size=7,
+ in_channels=2048,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=12000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=6000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)))
diff --git a/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py b/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
new file mode 100644
index 00000000..5089f0e3
--- /dev/null
+++ b/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
@@ -0,0 +1,103 @@
+# model settings
+norm_cfg = dict(type='BN', requires_grad=False)
+model = dict(
+ type='FasterRCNN',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ strides=(1, 2, 2, 1),
+ dilations=(1, 1, 1, 2),
+ out_indices=(3, ),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=True,
+ style='caffe'),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=2048,
+ feat_channels=2048,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[2, 4, 8, 16, 32],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[16]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ roi_head=dict(
+ type='StandardRoIHead',
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=2048,
+ featmap_strides=[16]),
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=2048,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=12000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms=dict(type='nms', iou_threshold=0.7),
+ nms_pre=6000,
+ max_per_img=1000,
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)))
diff --git a/configs/_base_/models/faster_rcnn_r50_fpn.py b/configs/_base_/models/faster_rcnn_r50_fpn.py
index 9ed7a753..c67137e9 100644
--- a/configs/_base_/models/faster_rcnn_r50_fpn.py
+++ b/configs/_base_/models/faster_rcnn_r50_fpn.py
@@ -1,5 +1,6 @@
+# model settings
model = dict(
- type='TwoStageDetector',
+ type='FasterRCNN',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -21,9 +22,9 @@
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
- scales=[8], # 尺度base
- ratios=[0.5, 1.0, 2.0], # 3个高宽比例
- strides=[4, 8, 16, 32, 64]), # 故每个位置一共3个anchor,面积范围是(4x8)^2~(8x64)^2
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
@@ -51,61 +52,57 @@
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
- loss_bbox=dict(type='L1Loss', loss_weight=1.0))))
-# model training and testing settings
-train_cfg = dict(
- rpn=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- rpn_proposal=dict(
- nms_across_levels=False,
- nms_pre=2000,
- nms_post=1000,
- max_num=1000,
- nms_thr=0.7,
- min_bbox_size=0),
- rcnn=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.5,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- pos_weight=-1,
- debug=False))
-test_cfg = dict(
- rpn=dict(
- nms_across_levels=False,
- nms_pre=1000,
- nms_post=1000,
- max_num=1000,
- nms_thr=0.7,
- min_bbox_size=0),
- rcnn=dict(
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100)
- # soft-nms is also supported for rcnn testing
- # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
-)
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)
+ # soft-nms is also supported for rcnn testing
+ # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
+ ))
diff --git a/configs/_base_/models/mask_rcnn_r50_caffe_c4.py b/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
new file mode 100644
index 00000000..eaae1342
--- /dev/null
+++ b/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
@@ -0,0 +1,123 @@
+# model settings
+norm_cfg = dict(type='BN', requires_grad=False)
+model = dict(
+ type='MaskRCNN',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=3,
+ strides=(1, 2, 2),
+ dilations=(1, 1, 1),
+ out_indices=(2, ),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=True,
+ style='caffe'),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=1024,
+ feat_channels=1024,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[2, 4, 8, 16, 32],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[16]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ roi_head=dict(
+ type='StandardRoIHead',
+ shared_head=dict(
+ type='ResLayer',
+ depth=50,
+ stage=3,
+ stride=2,
+ dilation=1,
+ style='caffe',
+ norm_cfg=norm_cfg,
+ norm_eval=True),
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=1024,
+ featmap_strides=[16]),
+ bbox_head=dict(
+ type='BBoxHead',
+ with_avg_pool=True,
+ roi_feat_size=7,
+ in_channels=2048,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ mask_roi_extractor=None,
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=0,
+ in_channels=2048,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=12000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=False,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=14,
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=6000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ max_per_img=1000,
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100,
+ mask_thr_binary=0.5)))
diff --git a/configs/_base_/models/mask_rcnn_r50_fpn.py b/configs/_base_/models/mask_rcnn_r50_fpn.py
new file mode 100644
index 00000000..6fc79082
--- /dev/null
+++ b/configs/_base_/models/mask_rcnn_r50_fpn.py
@@ -0,0 +1,120 @@
+# model settings
+model = dict(
+ type='MaskRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ roi_head=dict(
+ type='StandardRoIHead',
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ match_low_quality=True,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100,
+ mask_thr_binary=0.5)))
diff --git a/configs/_base_/models/retinanet_r50_fpn.py b/configs/_base_/models/retinanet_r50_fpn.py
index 21cb4fda..f3b97b30 100644
--- a/configs/_base_/models/retinanet_r50_fpn.py
+++ b/configs/_base_/models/retinanet_r50_fpn.py
@@ -1,15 +1,15 @@
# model settings
model = dict(
- type='SingleStageDetector',
+ type='RetinaNet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
- frozen_stages=1, # 固定stem和第0个stage
+ frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True, # 除了frozen_stages外的其他bn都采用全局均值和方差,但是可训练参数依然可以更新
+ norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
@@ -26,11 +26,11 @@
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
- octave_base_scale=4, # 每层特征图的base anchor scale,如果变大,则整体anchor都会放大
- scales_per_octave=3, # 每层有3个尺度 2**0 2**(1/3) 2**(2/3)
- ratios=[0.5, 1.0, 2.0], # 每层的anchor有3种长宽比 故每一层每个位置有9个anchor
- strides=[8, 16, 32, 64, 128]), # 每个特征图层输出stride,故anchor范围是4x8=32,4x128x2**(2/3)=812.7
- bbox_coder=dict( # 基于anchor的中心点平移,wh缩放预测,编解码函数
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
@@ -40,23 +40,21 @@
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
- loss_bbox=dict(type='L1Loss', loss_weight=1.0))) # 注意不是smooth l1,而是l1(mmdet改了,说效果更好),原论文是sl1
-# training and testing settings
-train_cfg = dict(
- # 双阈值策略,下列设置会出现忽略样本,且可能引入低质量anchor
- # min_pos_iou=0 表示每个gt都一定有anchor匹配
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5, # 遍历anchor,anchor和所有gt的最大iou大于pos_iou_thr,则该anchor是正样本且最大iou对应的gt是匹配对象
- neg_iou_thr=0.4, # 遍历anchor,anchor和所有gt的最大iou小于neg_iou_thr,则该anchor是背景
- min_pos_iou=0, # 遍历gt,gt和所有anchor的最大iou大于min_pos_iou,则该对应的anchor也是正样本,负责对于gt的匹配
- ignore_iof_thr=-1),
- allowed_border=-1, # 边界位置anchor不排除,通过其他方式排除
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100)
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ # model training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100))
diff --git a/configs/_base_/models/rpn_r50_caffe_c4.py b/configs/_base_/models/rpn_r50_caffe_c4.py
new file mode 100644
index 00000000..9c32a55d
--- /dev/null
+++ b/configs/_base_/models/rpn_r50_caffe_c4.py
@@ -0,0 +1,56 @@
+# model settings
+model = dict(
+ type='RPN',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=3,
+ strides=(1, 2, 2),
+ dilations=(1, 1, 1),
+ out_indices=(2, ),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ neck=None,
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=1024,
+ feat_channels=1024,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[2, 4, 8, 16, 32],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[16]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=12000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/_base_/models/rpn_r50_fpn.py b/configs/_base_/models/rpn_r50_fpn.py
new file mode 100644
index 00000000..b9b76183
--- /dev/null
+++ b/configs/_base_/models/rpn_r50_fpn.py
@@ -0,0 +1,58 @@
+# model settings
+model = dict(
+ type='RPN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/_base_/models/ssd300.py b/configs/_base_/models/ssd300.py
index ee7cf3ad..ef5cd727 100644
--- a/configs/_base_/models/ssd300.py
+++ b/configs/_base_/models/ssd300.py
@@ -27,23 +27,25 @@
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
- target_stds=[0.1, 0.1, 0.2, 0.2])))
+ target_stds=[0.1, 0.1, 0.2, 0.2])),
+ # model training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.,
+ ignore_iof_thr=-1,
+ gt_max_assign_all=False),
+ smoothl1_beta=1.,
+ allowed_border=-1,
+ pos_weight=-1,
+ neg_pos_ratio=3,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ nms=dict(type='nms', iou_threshold=0.45),
+ min_bbox_size=0,
+ score_thr=0.02,
+ max_per_img=200))
cudnn_benchmark = True
-train_cfg = dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.,
- ignore_iof_thr=-1,
- gt_max_assign_all=False),
- smoothl1_beta=1.,
- allowed_border=-1,
- pos_weight=-1,
- neg_pos_ratio=3,
- debug=False)
-test_cfg = dict(
- nms=dict(type='nms', iou_threshold=0.45),
- min_bbox_size=0,
- score_thr=0.02,
- max_per_img=200)
diff --git a/configs/_base_/schedules/schedule.py b/configs/_base_/schedules/schedule.py
deleted file mode 100644
index 0559030c..00000000
--- a/configs/_base_/schedules/schedule.py
+++ /dev/null
@@ -1,11 +0,0 @@
-# optimizer
-optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
-optimizer_config = dict(grad_clip=None)
-# learning policy
-lr_config = dict(
- policy='step',
- warmup='linear',
- warmup_iters=500,
- warmup_ratio=0.001,
- step=[16, 19])
-total_epochs = 20
diff --git a/configs/_base_/schedules/schedule_1x.py b/configs/_base_/schedules/schedule_1x.py
new file mode 100644
index 00000000..13b3783c
--- /dev/null
+++ b/configs/_base_/schedules/schedule_1x.py
@@ -0,0 +1,11 @@
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[8, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/_base_/schedules/schedule_20e.py b/configs/_base_/schedules/schedule_20e.py
new file mode 100644
index 00000000..00e85902
--- /dev/null
+++ b/configs/_base_/schedules/schedule_20e.py
@@ -0,0 +1,11 @@
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/_base_/schedules/schedule_2x.py b/configs/_base_/schedules/schedule_2x.py
new file mode 100644
index 00000000..69dc9ee8
--- /dev/null
+++ b/configs/_base_/schedules/schedule_2x.py
@@ -0,0 +1,11 @@
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/albu_example/README.md b/configs/albu_example/README.md
new file mode 100644
index 00000000..b11ae56f
--- /dev/null
+++ b/configs/albu_example/README.md
@@ -0,0 +1,19 @@
+# Albu Example
+
+
+
+```
+@article{2018arXiv180906839B,
+ author = {A. Buslaev, A. Parinov, E. Khvedchenya, V.~I. Iglovikov and A.~A. Kalinin},
+ title = "{Albumentations: fast and flexible image augmentations}",
+ journal = {ArXiv e-prints},
+ eprint = {1809.06839},
+ year = 2018
+}
+```
+
+## Results and Models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50 | pytorch | 1x | 4.4 | 16.6 | 38.0 | 34.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208_225520.log.json) |
diff --git a/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py b/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py
new file mode 100644
index 00000000..b3f879a6
--- /dev/null
+++ b/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py
@@ -0,0 +1,73 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+albu_train_transforms = [
+ dict(
+ type='ShiftScaleRotate',
+ shift_limit=0.0625,
+ scale_limit=0.0,
+ rotate_limit=0,
+ interpolation=1,
+ p=0.5),
+ dict(
+ type='RandomBrightnessContrast',
+ brightness_limit=[0.1, 0.3],
+ contrast_limit=[0.1, 0.3],
+ p=0.2),
+ dict(
+ type='OneOf',
+ transforms=[
+ dict(
+ type='RGBShift',
+ r_shift_limit=10,
+ g_shift_limit=10,
+ b_shift_limit=10,
+ p=1.0),
+ dict(
+ type='HueSaturationValue',
+ hue_shift_limit=20,
+ sat_shift_limit=30,
+ val_shift_limit=20,
+ p=1.0)
+ ],
+ p=0.1),
+ dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
+ dict(type='ChannelShuffle', p=0.1),
+ dict(
+ type='OneOf',
+ transforms=[
+ dict(type='Blur', blur_limit=3, p=1.0),
+ dict(type='MedianBlur', blur_limit=3, p=1.0)
+ ],
+ p=0.1),
+]
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='Pad', size_divisor=32),
+ dict(
+ type='Albu',
+ transforms=albu_train_transforms,
+ bbox_params=dict(
+ type='BboxParams',
+ format='pascal_voc',
+ label_fields=['gt_labels'],
+ min_visibility=0.0,
+ filter_lost_elements=True),
+ keymap={
+ 'img': 'image',
+ 'gt_masks': 'masks',
+ 'gt_bboxes': 'bboxes'
+ },
+ update_pad_shape=False,
+ skip_img_without_anno=True),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'],
+ meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg',
+ 'pad_shape', 'scale_factor'))
+]
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/atss/README.md b/configs/atss/README.md
index e835a8e6..8aa7746e 100644
--- a/configs/atss/README.md
+++ b/configs/atss/README.md
@@ -1,9 +1,10 @@
# Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
-
## Introduction
-```
+
+
+```latex
@article{zhang2019bridging,
title = {Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection},
author = {Zhang, Shifeng and Chi, Cheng and Yao, Yongqiang and Lei, Zhen and Li, Stan Z.},
@@ -12,10 +13,9 @@
}
```
-
## Results and Models
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| R-50 | pytorch | 1x | 3.7 | 19.7 | 39.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209_102539.log.json) |
-| R-101 | pytorch | 1x | 5.6 | 12.3 | 41.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.log.json) |
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | pytorch | 1x | 3.7 | 19.7 | 39.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/atss/atss_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209_102539.log.json) |
+| R-101 | pytorch | 1x | 5.6 | 12.3 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/atss/atss_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.log.json) |
diff --git a/configs/atss/atss_r101_fpn_1x_coco.py b/configs/atss/atss_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..695779ab
--- /dev/null
+++ b/configs/atss/atss_r101_fpn_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './atss_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+)
diff --git a/configs/atss/atss_r50_fpn_1x_coco.py b/configs/atss/atss_r50_fpn_1x_coco.py
index b2a0cdad..cfd70ed4 100644
--- a/configs/atss/atss_r50_fpn_1x_coco.py
+++ b/configs/atss/atss_r50_fpn_1x_coco.py
@@ -1,9 +1,9 @@
_base_ = [
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
- type='SingleStageDetector',
+ type='ATSS',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -45,18 +45,18 @@
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100)
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(type='ATSSAssigner', topk=9),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/atss/metafile.yml b/configs/atss/metafile.yml
new file mode 100644
index 00000000..b40809b4
--- /dev/null
+++ b/configs/atss/metafile.yml
@@ -0,0 +1,43 @@
+Collections:
+ - Name: ATSS
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ATSS
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1912.02424
+ README: configs/atss/README.md
+
+Models:
+ - Name: atss_r50_fpn_1x_coco
+ In Collection: ATSS
+ Config: configs/atss/atss_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ inference time (s/im): 0.05076
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth
+
+ - Name: atss_r101_fpn_1x_coco
+ In Collection: ATSS
+ Config: configs/atss/atss_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.6
+ inference time (s/im): 0.0813
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth
diff --git a/configs/autoassign/README.md b/configs/autoassign/README.md
new file mode 100644
index 00000000..c0dba824
--- /dev/null
+++ b/configs/autoassign/README.md
@@ -0,0 +1,25 @@
+# AutoAssign: Differentiable Label Assignment for Dense Object Detection
+
+## Introduction
+
+
+
+```
+@article{zhu2020autoassign,
+ title={AutoAssign: Differentiable Label Assignment for Dense Object Detection},
+ author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian},
+ journal={arXiv preprint arXiv:2007.03496},
+ year={2020}
+}
+```
+
+## Results and Models
+
+| Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:------:|:------:|:--------:|
+| R-50 | pytorch | 1x | 4.08 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.log.json) |
+
+**Note**:
+
+1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation.
+2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch.
diff --git a/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py b/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py
new file mode 100644
index 00000000..c87d2350
--- /dev/null
+++ b/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py
@@ -0,0 +1,84 @@
+# We follow the original implementation which
+# adopts the Caffe pre-trained backbone.
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ type='AutoAssign',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs=True,
+ extra_convs_on_inputs=True,
+ num_outs=5,
+ relu_before_extra_convs=True,
+ init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')),
+ bbox_head=dict(
+ type='AutoAssignHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ strides=[8, 16, 32, 64, 128],
+ loss_bbox=dict(type='GIoULoss', loss_weight=5.0)),
+ train_cfg=None,
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
+img_norm_cfg = dict(
+ mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(lr=0.01, paramwise_cfg=dict(norm_decay_mult=0.))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=1.0 / 1000,
+ step=[8, 11])
+total_epochs = 12
diff --git a/configs/autoassign/metafile.yml b/configs/autoassign/metafile.yml
new file mode 100644
index 00000000..f57a708a
--- /dev/null
+++ b/configs/autoassign/metafile.yml
@@ -0,0 +1,28 @@
+Collections:
+ - Name: AutoAssign
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - AutoAssign
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/2007.03496
+ README: configs/autoassign/README.md
+
+Models:
+ - Name: autoassign_r50_fpn_8x2_1x_coco
+ In Collection: AutoAssign
+ Config: configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.08
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth
diff --git a/configs/carafe/README.md b/configs/carafe/README.md
new file mode 100644
index 00000000..768cb984
--- /dev/null
+++ b/configs/carafe/README.md
@@ -0,0 +1,32 @@
+# CARAFE: Content-Aware ReAssembly of FEatures
+
+## Introduction
+
+
+
+We provide config files to reproduce the object detection & instance segmentation results in the ICCV 2019 Oral paper for [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188).
+
+```
+@inproceedings{Wang_2019_ICCV,
+ title = {CARAFE: Content-Aware ReAssembly of FEatures},
+ author = {Wang, Jiaqi and Chen, Kai and Xu, Rui and Liu, Ziwei and Loy, Chen Change and Lin, Dahua},
+ booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
+ month = {October},
+ year = {2019}
+}
+```
+
+## Results and Models
+
+The results on COCO 2017 val is shown in the below table.
+
+| Method | Backbone | Style | Lr schd | Test Proposal Num | Inf time (fps) | Box AP | Mask AP | Config | Download |
+|:--------------------:|:--------:|:-------:|:-------:|:-----------------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| Faster R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | 16.5 | 38.6 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/carafe/faster_rcnn_r50_fpn_carafe_1x_coco/faster_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.386_20200504_175733-385a75b7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/carafe/faster_rcnn_r50_fpn_carafe_1x_coco/faster_rcnn_r50_fpn_carafe_1x_coco_20200504_175733.log.json) |
+| - | - | - | - | 2000 | | | | |
+| Mask R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | 14.0 | 39.3 | 35.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/carafe/mask_rcnn_r50_fpn_carafe_1x_coco/mask_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.393__segm_mAP-0.358_20200503_135957-8687f195.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/carafe/mask_rcnn_r50_fpn_carafe_1x_coco/mask_rcnn_r50_fpn_carafe_1x_coco_20200503_135957.log.json) |
+| - | - | - | - | 2000 | | | | |
+
+## Implementation
+
+The CUDA implementation of CARAFE can be find at https://github.com/myownskyW7/CARAFE.
diff --git a/configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py b/configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py
new file mode 100644
index 00000000..dedac3f4
--- /dev/null
+++ b/configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py
@@ -0,0 +1,50 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ neck=dict(
+ type='FPN_CARAFE',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5,
+ start_level=0,
+ end_level=-1,
+ norm_cfg=None,
+ act_cfg=None,
+ order=('conv', 'norm', 'act'),
+ upsample_cfg=dict(
+ type='carafe',
+ up_kernel=5,
+ up_group=1,
+ encoder_kernel=3,
+ encoder_dilation=1,
+ compressed_channels=64)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py b/configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py
new file mode 100644
index 00000000..668c0239
--- /dev/null
+++ b/configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py
@@ -0,0 +1,60 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ neck=dict(
+ type='FPN_CARAFE',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5,
+ start_level=0,
+ end_level=-1,
+ norm_cfg=None,
+ act_cfg=None,
+ order=('conv', 'norm', 'act'),
+ upsample_cfg=dict(
+ type='carafe',
+ up_kernel=5,
+ up_group=1,
+ encoder_kernel=3,
+ encoder_dilation=1,
+ compressed_channels=64)),
+ roi_head=dict(
+ mask_head=dict(
+ upsample_cfg=dict(
+ type='carafe',
+ scale_factor=2,
+ up_kernel=5,
+ up_group=1,
+ encoder_kernel=3,
+ encoder_dilation=1,
+ compressed_channels=64))))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/cascade_rcnn/README.md b/configs/cascade_rcnn/README.md
index a1937775..0adcc3e2 100644
--- a/configs/cascade_rcnn/README.md
+++ b/configs/cascade_rcnn/README.md
@@ -1,7 +1,10 @@
# Cascade R-CNN: High Quality Object Detection and Instance Segmentation
## Introduction
-```
+
+
+
+```latex
@article{Cai_2019,
title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation},
ISSN={1939-3539},
@@ -19,33 +22,33 @@
### Cascade R-CNN
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: |:--------:|
-| R-50-FPN | caffe | 1x | 4.2 | | 40.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.404_20200504_174853-b857be87.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_20200504_174853.log.json) |
-| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 40.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316_214748.log.json) |
-| R-50-FPN | pytorch | 20e | - | - | 41.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_bbox_mAP-0.41_20200504_175131-e9872a90.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_20200504_175131.log.json) |
-| R-101-FPN | caffe | 1x | 6.2 | | 42.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.423_20200504_175649-cab8dbd5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_20200504_175649.log.json) |
-| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 42.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317_101744.log.json) |
-| R-101-FPN | pytorch | 20e | - | - | 42.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_bbox_mAP-0.425_20200504_231812-5057dcc5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_20200504_231812.log.json) |
-| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 10.9 | 43.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316_055608.log.json) |
-| X-101-32x4d-FPN | pytorch | 20e | 7.6 | | 43.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608-9ae0a720.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608.log.json) |
-| X-101-64x4d-FPN | pytorch | 1x | 10.7 | | 44.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702.log.json) |
-| X-101-64x4d-FPN | pytorch | 20e | 10.7 | | 44.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357.log.json)|
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: |:------:|:--------:|
+| R-50-FPN | caffe | 1x | 4.2 | | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.404_20200504_174853-b857be87.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_20200504_174853.log.json) |
+| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316_214748.log.json) |
+| R-50-FPN | pytorch | 20e | - | - | 41.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_bbox_mAP-0.41_20200504_175131-e9872a90.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_20200504_175131.log.json) |
+| R-101-FPN | caffe | 1x | 6.2 | | 42.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.423_20200504_175649-cab8dbd5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_20200504_175649.log.json) |
+| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317_101744.log.json) |
+| R-101-FPN | pytorch | 20e | - | - | 42.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_bbox_mAP-0.425_20200504_231812-5057dcc5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_20200504_231812.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 10.9 | 43.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316_055608.log.json) |
+| X-101-32x4d-FPN | pytorch | 20e | 7.6 | | 43.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608-9ae0a720.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.7 | | 44.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702.log.json) |
+| X-101-64x4d-FPN | pytorch | 20e | 10.7 | | 44.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357.log.json)|
### Cascade Mask R-CNN
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----------------: |
-| R-50-FPN | caffe | 1x | 5.9 | | 41.2 | 36.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.412__segm_mAP-0.36_20200504_174659-5004b251.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_20200504_174659.log.json) |
-| R-50-FPN | pytorch | 1x | 6.0 | 11.2 | 41.2 | 35.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203_170449.log.json) |
-| R-50-FPN | pytorch | 20e | - | - | 41.9 | 36.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_20200504_174711.log.json)|
-| R-101-FPN | caffe | 1x | 7.8 | | 43.2 | 37.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.432__segm_mAP-0.376_20200504_174813-5c1e9599.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_20200504_174813.log.json)|
-| R-101-FPN | pytorch | 1x | 7.9 | 9.8 | 42.9 | 37.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203-befdf6ee.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203_092521.log.json) |
-| R-101-FPN | pytorch | 20e | - | - | 43.4 | 37.8 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_bbox_mAP-0.434__segm_mAP-0.378_20200504_174836-005947da.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_20200504_174836.log.json)|
-| X-101-32x4d-FPN | pytorch | 1x | 9.2 | 8.6 | 44.3 | 38.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201-0f411b1f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201_052416.log.json) |
-| X-101-32x4d-FPN | pytorch | 20e | 9.2 | - | 45.0 | 39.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917-ed1f4751.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917.log.json) |
-| X-101-64x4d-FPN | pytorch | 1x | 12.2 | 6.7 | 45.3 | 39.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203-9a2db89d.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203_044059.log.json) |
-| X-101-64x4d-FPN | pytorch | 20e | 12.2 | | 45.6 |39.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033-bdb5126a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033.log.json)|
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R-50-FPN | caffe | 1x | 5.9 | | 41.2 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.412__segm_mAP-0.36_20200504_174659-5004b251.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_20200504_174659.log.json) |
+| R-50-FPN | pytorch | 1x | 6.0 | 11.2 | 41.2 | 35.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203_170449.log.json) |
+| R-50-FPN | pytorch | 20e | - | - | 41.9 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_20200504_174711.log.json)|
+| R-101-FPN | caffe | 1x | 7.8 | | 43.2 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.432__segm_mAP-0.376_20200504_174813-5c1e9599.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_20200504_174813.log.json)|
+| R-101-FPN | pytorch | 1x | 7.9 | 9.8 | 42.9 | 37.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203-befdf6ee.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203_092521.log.json) |
+| R-101-FPN | pytorch | 20e | - | - | 43.4 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_bbox_mAP-0.434__segm_mAP-0.378_20200504_174836-005947da.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_20200504_174836.log.json)|
+| X-101-32x4d-FPN | pytorch | 1x | 9.2 | 8.6 | 44.3 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201-0f411b1f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201_052416.log.json) |
+| X-101-32x4d-FPN | pytorch | 20e | 9.2 | - | 45.0 | 39.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917-ed1f4751.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 12.2 | 6.7 | 45.3 | 39.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203-9a2db89d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203_044059.log.json) |
+| X-101-64x4d-FPN | pytorch | 20e | 12.2 | | 45.6 |39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033-bdb5126a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033.log.json)|
**Notes:**
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..f42165d9
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..9212dda4
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py
new file mode 100644
index 00000000..d069f8c9
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py
@@ -0,0 +1,2 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..b371ed75
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,38 @@
+_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py']
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..49ab539a
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py
new file mode 100644
index 00000000..1296dc45
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py
@@ -0,0 +1,5 @@
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
+]
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..d05eb50c
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
new file mode 100644
index 00000000..0cfc7d78
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..33629ee6
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
new file mode 100644
index 00000000..e64c22cd
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..8e8b830f
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './cascade_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..66666517
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py
new file mode 100644
index 00000000..9cb35819
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py
@@ -0,0 +1,2 @@
+_base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..c576c749
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,38 @@
+_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'))
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
index 30505098..87e21fbf 100644
--- a/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
+++ b/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
@@ -1,5 +1,5 @@
_base_ = [
'../_base_/models/cascade_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
diff --git a/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py
new file mode 100644
index 00000000..6f886e1c
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..1fbe6ce9
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py
new file mode 100644
index 00000000..1afeeef1
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..b249bfa0
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ type='CascadeRCNN',
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py b/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py
new file mode 100644
index 00000000..500b48cf
--- /dev/null
+++ b/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py
@@ -0,0 +1,14 @@
+_base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ type='CascadeRCNN',
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/cascade_rcnn/metafile.yml b/configs/cascade_rcnn/metafile.yml
new file mode 100644
index 00000000..54f8c57a
--- /dev/null
+++ b/configs/cascade_rcnn/metafile.yml
@@ -0,0 +1,329 @@
+Collections:
+ - Name: Cascade R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Cascade R-CNN
+ - FPN
+ - RPN
+ - ResNet
+ - RoIAlign
+ Paper: http://dx.doi.org/10.1109/tpami.2019.2956516
+ README: configs/cascade_rcnn/README.md
+
+Models:
+ - Name: cascade_rcnn_r50_caffe_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.404_20200504_174853-b857be87.pth
+
+ - Name: cascade_rcnn_r50_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.06211
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth
+
+ - Name: cascade_rcnn_r50_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.06211
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_bbox_mAP-0.41_20200504_175131-e9872a90.pth
+
+ - Name: cascade_rcnn_r101_caffe_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.2
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.423_20200504_175649-cab8dbd5.pth
+
+ - Name: cascade_rcnn_r101_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.07407
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth
+
+ - Name: cascade_rcnn_r101_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.07407
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_bbox_mAP-0.425_20200504_231812-5057dcc5.pth
+
+ - Name: cascade_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.09174
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth
+
+ - Name: cascade_rcnn_x101_32x4d_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608-9ae0a720.pth
+
+ - Name: cascade_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth
+
+ - Name: cascade_rcnn_x101_64x4d_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth
+
+ - Name: cascade_mask_rcnn_r50_caffe_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.9
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.412__segm_mAP-0.36_20200504_174659-5004b251.pth
+
+ - Name: cascade_mask_rcnn_r50_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.08929
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 35.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth
+
+ - Name: cascade_mask_rcnn_r50_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.08929
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth
+
+ - Name: cascade_mask_rcnn_r101_caffe_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.432__segm_mAP-0.376_20200504_174813-5c1e9599.pth
+
+ - Name: cascade_mask_rcnn_r101_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.9
+ inference time (s/im): 0.10204
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203-befdf6ee.pth
+
+ - Name: cascade_mask_rcnn_r101_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 7.9
+ inference time (s/im): 0.10204
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_bbox_mAP-0.434__segm_mAP-0.378_20200504_174836-005947da.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.2
+ inference time (s/im): 0.11628
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201-0f411b1f.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 9.2
+ inference time (s/im): 0.11628
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917-ed1f4751.pth
+
+ - Name: cascade_mask_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 12.2
+ inference time (s/im): 0.14925
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203-9a2db89d.pth
+
+ - Name: cascade_mask_rcnn_x101_64x4d_fpn_20e_coco
+ In Collection: Cascade R-CNN
+ Config: configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 12.2
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033-bdb5126a.pth
diff --git a/configs/cascade_rpn/README.md b/configs/cascade_rpn/README.md
new file mode 100644
index 00000000..aa7782c3
--- /dev/null
+++ b/configs/cascade_rpn/README.md
@@ -0,0 +1,29 @@
+# Cascade RPN
+
+
+
+We provide the code for reproducing experiment results of [Cascade RPN](https://arxiv.org/abs/1909.06720).
+
+```
+@inproceedings{vu2019cascade,
+ title={Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution},
+ author={Vu, Thang and Jang, Hyunjun and Pham, Trung X and Yoo, Chang D},
+ booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
+ year={2019}
+}
+```
+
+## Benchmark
+
+### Region proposal performance
+
+| Method | Backbone | Style | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR 1000 | Download |
+|:------:|:--------:|:-----:|:--------:|:-------------------:|:--------------:|:-------:|:--------------------------------------:|
+| CRPN | R-50-FPN | caffe | - | - | - | 72.0 | [model](https://drive.google.com/file/d/1qxVdOnCgK-ee7_z0x6mvAir_glMu2Ihi/view?usp=sharing) |
+
+### Detection performance
+
+| Method | Proposal | Backbone | Style | Schedule | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
+|:-------------:|:-----------:|:--------:|:-------:|:--------:|:--------:|:-------------------:|:--------------:|:------:|:--------------------------------------------:|
+| Fast R-CNN | Cascade RPN | R-50-FPN | caffe | 1x | - | - | - | 39.9 | [model](https://drive.google.com/file/d/1NmbnuY5VHi8I9FE8xnp5uNvh2i-t-6_L/view?usp=sharing) |
+| Faster R-CNN | Cascade RPN | R-50-FPN | caffe | 1x | - | - | - | 40.4 | [model](https://drive.google.com/file/d/1dS3Q66qXMJpcuuQgDNkLp669E5w1UMuZ/view?usp=sharing) |
diff --git a/configs/cascade_rpn/crpn_fast_rcnn_r50_caffe_fpn_1x_coco.py b/configs/cascade_rpn/crpn_fast_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..68c57dfb
--- /dev/null
+++ b/configs/cascade_rpn/crpn_fast_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,75 @@
+_base_ = '../fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ roi_head=dict(
+ bbox_head=dict(
+ bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rcnn=dict(
+ assigner=dict(
+ pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65),
+ sampler=dict(num=256))),
+ test_cfg=dict(rcnn=dict(score_thr=1e-3)))
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=300),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=300),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='ToTensor', keys=['proposals']),
+ dict(
+ type='ToDataContainer',
+ fields=[dict(key='proposals', stack=False)]),
+ dict(type='Collect', keys=['img', 'proposals']),
+ ])
+]
+data = dict(
+ train=dict(
+ proposal_file=data_root +
+ 'proposals/crpn_r50_caffe_fpn_1x_train2017.pkl',
+ pipeline=train_pipeline),
+ val=dict(
+ proposal_file=data_root +
+ 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline),
+ test=dict(
+ proposal_file=data_root +
+ 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py b/configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..bad86e6d
--- /dev/null
+++ b/configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,92 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py'
+rpn_weight = 0.7
+model = dict(
+ rpn_head=dict(
+ _delete_=True,
+ type='CascadeRPNHead',
+ num_stages=2,
+ stages=[
+ dict(
+ type='StageCascadeRPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[1.0],
+ strides=[4, 8, 16, 32, 64]),
+ adapt_cfg=dict(type='dilation', dilation=3),
+ bridged_feature=True,
+ sampling=False,
+ with_cls=False,
+ reg_decoded_bbox=True,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=(.0, .0, .0, .0),
+ target_stds=(0.1, 0.1, 0.5, 0.5)),
+ loss_bbox=dict(
+ type='IoULoss', linear=True,
+ loss_weight=10.0 * rpn_weight)),
+ dict(
+ type='StageCascadeRPNHead',
+ in_channels=256,
+ feat_channels=256,
+ adapt_cfg=dict(type='offset'),
+ bridged_feature=False,
+ sampling=True,
+ with_cls=True,
+ reg_decoded_bbox=True,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=(.0, .0, .0, .0),
+ target_stds=(0.05, 0.05, 0.1, 0.1)),
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=1.0 * rpn_weight),
+ loss_bbox=dict(
+ type='IoULoss', linear=True,
+ loss_weight=10.0 * rpn_weight))
+ ]),
+ roi_head=dict(
+ bbox_head=dict(
+ bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=[
+ dict(
+ assigner=dict(
+ type='RegionAssigner', center_ratio=0.2, ignore_ratio=0.5),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.7,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False)
+ ],
+ rpn_proposal=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
+ rcnn=dict(
+ assigner=dict(
+ pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65),
+ sampler=dict(type='RandomSampler', num=256))),
+ test_cfg=dict(
+ rpn=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
+ rcnn=dict(score_thr=1e-3)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/cascade_rpn/crpn_r50_caffe_fpn_1x_coco.py b/configs/cascade_rpn/crpn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..5562e696
--- /dev/null
+++ b/configs/cascade_rpn/crpn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,77 @@
+_base_ = '../rpn/rpn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ rpn_head=dict(
+ _delete_=True,
+ type='CascadeRPNHead',
+ num_stages=2,
+ stages=[
+ dict(
+ type='StageCascadeRPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[1.0],
+ strides=[4, 8, 16, 32, 64]),
+ adapt_cfg=dict(type='dilation', dilation=3),
+ bridged_feature=True,
+ sampling=False,
+ with_cls=False,
+ reg_decoded_bbox=True,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=(.0, .0, .0, .0),
+ target_stds=(0.1, 0.1, 0.5, 0.5)),
+ loss_bbox=dict(type='IoULoss', linear=True, loss_weight=10.0)),
+ dict(
+ type='StageCascadeRPNHead',
+ in_channels=256,
+ feat_channels=256,
+ adapt_cfg=dict(type='offset'),
+ bridged_feature=False,
+ sampling=True,
+ with_cls=True,
+ reg_decoded_bbox=True,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=(.0, .0, .0, .0),
+ target_stds=(0.05, 0.05, 0.1, 0.1)),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True,
+ loss_weight=1.0),
+ loss_bbox=dict(type='IoULoss', linear=True, loss_weight=10.0))
+ ]),
+ train_cfg=dict(rpn=[
+ dict(
+ assigner=dict(
+ type='RegionAssigner', center_ratio=0.2, ignore_ratio=0.5),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.7,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1,
+ iou_calculator=dict(type='BboxOverlaps2D')),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False)
+ ]),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.8),
+ min_bbox_size=0)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/centernet/README.md b/configs/centernet/README.md
new file mode 100644
index 00000000..be3b53cc
--- /dev/null
+++ b/configs/centernet/README.md
@@ -0,0 +1,30 @@
+# CenterNet
+
+## Introduction
+
+
+
+```latex
+@article{zhou2019objects,
+ title={Objects as Points},
+ author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
+ booktitle={arXiv preprint arXiv:1904.07850},
+ year={2019}
+}
+```
+
+## Results and models
+
+| Backbone | DCN | Mem (GB) | Box AP | Flip box AP| Config | Download |
+| :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :----: |
+| ResNet-18 | N | 3.45 | 26.0 | 27.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/centernet/centernet_resnet18_140e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210519_092334-eafe8ccd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210519_092334.log.json) |
+| ResNet-18 | Y | 3.47 | 29.5 | 31.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/centernet/centernet_resnet18_dcnv2_140e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_dcnv2_140e_coco/centernet_resnet18_dcnv2_140e_coco_20210520_101209-da388ba2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_dcnv2_140e_coco/centernet_resnet18_dcnv2_140e_coco_20210520_101209.log.json) |
+
+Note:
+
+- Flip box AP setting is single-scale and `flip=True`.
+- Due to complex data enhancement, we find that the performance is unstable and may fluctuate by about 0.4 mAP. mAP 29.4 ~ 29.8 is acceptable in ResNet-18-DCNv2.
+- Compared to the source code, we refer to [CenterNet-Better](https://github.com/FateScript/CenterNet-better), and make the following changes
+ - fix wrong image mean and variance in image normalization to be compatible with the pre-trained backbone.
+ - Use SGD rather than ADAM optimizer and add warmup and grad clip.
+ - Use DistributedDataParallel as other models in MMDetection rather than using DataParallel.
diff --git a/configs/centernet/centernet_resnet18_140e_coco.py b/configs/centernet/centernet_resnet18_140e_coco.py
new file mode 100644
index 00000000..52c86a5e
--- /dev/null
+++ b/configs/centernet/centernet_resnet18_140e_coco.py
@@ -0,0 +1,3 @@
+_base_ = './centernet_resnet18_dcnv2_140e_coco.py'
+
+model = dict(neck=dict(use_dcn=False))
diff --git a/configs/centernet/centernet_resnet18_dcnv2_140e_coco.py b/configs/centernet/centernet_resnet18_dcnv2_140e_coco.py
new file mode 100644
index 00000000..52bdb0e9
--- /dev/null
+++ b/configs/centernet/centernet_resnet18_dcnv2_140e_coco.py
@@ -0,0 +1,110 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ type='CenterNet',
+ pretrained='torchvision://resnet18',
+ backbone=dict(
+ type='ResNet', depth=18, norm_eval=False, norm_cfg=dict(type='BN')),
+ neck=dict(
+ type='CTResNetNeck',
+ in_channel=512,
+ num_deconv_filters=(256, 128, 64),
+ num_deconv_kernels=(4, 4, 4),
+ use_dcn=True),
+ bbox_head=dict(
+ type='CenterNetHead',
+ num_classes=80,
+ in_channel=64,
+ feat_channel=64,
+ loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0),
+ loss_wh=dict(type='L1Loss', loss_weight=0.1),
+ loss_offset=dict(type='L1Loss', loss_weight=1.0)),
+ train_cfg=None,
+ test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100))
+
+# We fixed the incorrect img_norm_cfg problem in the source code.
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True, color_type='color'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=(512, 512),
+ ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
+ mean=[0, 0, 0],
+ std=[1, 1, 1],
+ to_rgb=True,
+ test_pad_mode=None),
+ dict(type='Resize', img_scale=(512, 512), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(
+ type='MultiScaleFlipAug',
+ scale_factor=1.0,
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(
+ type='RandomCenterCropPad',
+ ratios=None,
+ border=None,
+ mean=[0, 0, 0],
+ std=[1, 1, 1],
+ to_rgb=True,
+ test_mode=True,
+ test_pad_mode=['logical_or', 31],
+ test_pad_add_pix=1),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape',
+ 'scale_factor', 'flip', 'flip_direction',
+ 'img_norm_cfg', 'border'),
+ keys=['img'])
+ ])
+]
+data = dict(
+ samples_per_gpu=16,
+ workers_per_gpu=4,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+
+# optimizer
+# Based on the default settings of modern detectors, the SGD effect is better
+# than the Adam in the source code, so we use SGD default settings and
+# if you use adam+lr5e-4, the map is 29.1.
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
+
+# learning policy
+# Based on the default settings of modern detectors, we added warmup settings.
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=1.0 / 1000,
+ step=[90, 120])
+runner = dict(max_epochs=140)
+
+# Avoid evaluation and saving weights too frequently
+evaluation = dict(interval=5, metric='bbox')
+checkpoint_config = dict(interval=5)
diff --git a/configs/centernet/metafile.yml b/configs/centernet/metafile.yml
new file mode 100644
index 00000000..88cf6932
--- /dev/null
+++ b/configs/centernet/metafile.yml
@@ -0,0 +1,41 @@
+Collections:
+ - Name: CenterNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.07850
+ README: configs/centernet/README.md
+
+Models:
+ - Name: centernet_resnet18_dcnv2_140e_coco
+ In Collection: CenterNet
+ Config: configs/centernet/centernet_resnet18_dcnv2_140e_coco.py
+ Metadata:
+ Batch Size: 128
+ Training Memory (GB): 3.47
+ Epochs: 140
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 29.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_dcnv2_140e_coco/centernet_resnet18_dcnv2_140e_coco_20210520_101209-da388ba2.pth
+
+ - Name: centernet_resnet18_140e_coco
+ In Collection: CenterNet
+ Config: configs/centernet/centernet_resnet18_140e_coco.py
+ Metadata:
+ Batch Size: 128
+ Training Memory (GB): 3.45
+ Epochs: 140
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 26.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210519_092334-eafe8ccd.pth
diff --git a/configs/centripetalnet/README.md b/configs/centripetalnet/README.md
new file mode 100644
index 00000000..543cf065
--- /dev/null
+++ b/configs/centripetalnet/README.md
@@ -0,0 +1,26 @@
+# CentripetalNet
+
+## Introduction
+
+
+
+```latex
+@InProceedings{Dong_2020_CVPR,
+author = {Dong, Zhiwei and Li, Guoxuan and Liao, Yue and Wang, Fei and Ren, Pengju and Qian, Chen},
+title = {CentripetalNet: Pursuing High-Quality Keypoint Pairs for Object Detection},
+booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
+month = {June},
+year = {2020}
+}
+```
+
+## Results and models
+
+| Backbone | Batch Size | Step/Total Epochs | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :------: | :--------: |
+| HourglassNet-104 | [16 x 6](./centripetalnet_hourglass104_mstest_16x6_210e_coco.py) | 190/210 | 16.7 | 3.7 | 44.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804.log.json) |
+
+Note:
+
+- TTA setting is single-scale and `flip=True`.
+- The model we released is the best checkpoint rather than the latest checkpoint (box AP 44.8 vs 44.6 in our experiment).
diff --git a/configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py b/configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
new file mode 100644
index 00000000..e9c5defd
--- /dev/null
+++ b/configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
@@ -0,0 +1,105 @@
+_base_ = [
+ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
+]
+
+# model settings
+model = dict(
+ type='CornerNet',
+ backbone=dict(
+ type='HourglassNet',
+ downsample_times=5,
+ num_stacks=2,
+ stage_channels=[256, 256, 384, 384, 384, 512],
+ stage_blocks=[2, 2, 2, 2, 2, 4],
+ norm_cfg=dict(type='BN', requires_grad=True)),
+ neck=None,
+ bbox_head=dict(
+ type='CentripetalHead',
+ num_classes=80,
+ in_channels=256,
+ num_feat_levels=2,
+ corner_emb_channels=0,
+ loss_heatmap=dict(
+ type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1),
+ loss_guiding_shift=dict(
+ type='SmoothL1Loss', beta=1.0, loss_weight=0.05),
+ loss_centripetal_shift=dict(
+ type='SmoothL1Loss', beta=1.0, loss_weight=1)),
+ # training and testing settings
+ train_cfg=None,
+ test_cfg=dict(
+ corner_topk=100,
+ local_maximum_kernel=3,
+ distance_threshold=0.5,
+ score_thr=0.05,
+ max_per_img=100,
+ nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
+# data settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=(511, 511),
+ ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
+ test_mode=False,
+ test_pad_mode=None,
+ **img_norm_cfg),
+ dict(type='Resize', img_scale=(511, 511), keep_ratio=False),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(
+ type='MultiScaleFlipAug',
+ scale_factor=1.0,
+ flip=True,
+ transforms=[
+ dict(type='Resize'),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=None,
+ ratios=None,
+ border=None,
+ test_mode=True,
+ test_pad_mode=['logical_or', 127],
+ **img_norm_cfg),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(
+ type='Collect',
+ keys=['img'],
+ meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape',
+ 'scale_factor', 'flip', 'img_norm_cfg', 'border')),
+ ])
+]
+data = dict(
+ samples_per_gpu=6,
+ workers_per_gpu=3,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='Adam', lr=0.0005)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=1.0 / 3,
+ step=[190])
+runner = dict(type='EpochBasedRunner', max_epochs=210)
diff --git a/configs/centripetalnet/metafile.yml b/configs/centripetalnet/metafile.yml
new file mode 100644
index 00000000..dfbe670e
--- /dev/null
+++ b/configs/centripetalnet/metafile.yml
@@ -0,0 +1,28 @@
+Collections:
+ - Name: CentripetalNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - Adam
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Corner Pooling
+ - Stacked Hourglass Network
+ Paper: https://arxiv.org/abs/2003.09119
+ README: configs/centripetalnet/README.md
+
+Models:
+ - Name: centripetalnet_hourglass104_mstest_16x6_210e_coco
+ In Collection: CentripetalNet
+ Config: configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
+ Metadata:
+ Batch Size: 16 x 6
+ Training Memory (GB): 16.7
+ inference time (s/im): 0.27027
+ Epochs: 210
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth
diff --git a/configs/cityscapes/README.md b/configs/cityscapes/README.md
new file mode 100644
index 00000000..b790771e
--- /dev/null
+++ b/configs/cityscapes/README.md
@@ -0,0 +1,33 @@
+# Cityscapes Dataset
+
+
+
+```
+@inproceedings{Cordts2016Cityscapes,
+ title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
+ author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
+ booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year={2016}
+}
+```
+
+## Common settings
+
+- All baselines were trained using 8 GPU with a batch size of 8 (1 images per GPU) using the [linear scaling rule](https://arxiv.org/abs/1706.02677) to scale the learning rate.
+- All models were trained on `cityscapes_train`, and tested on `cityscapes_val`.
+- 1x training schedule indicates 64 epochs which corresponds to slightly less than the 24k iterations reported in the original schedule from the [Mask R-CNN paper](https://arxiv.org/abs/1703.06870)
+- COCO pre-trained weights are used to initialize.
+- A conversion [script](../../tools/dataset_converters/cityscapes.py) is provided to convert Cityscapes into COCO format. Please refer to [install.md](../../docs/1_exist_data_model.md#prepare-datasets) for details.
+- `CityscapesDataset` implemented three evaluation methods. `bbox` and `segm` are standard COCO bbox/mask AP. `cityscapes` is the cityscapes dataset official evaluation, which may be slightly higher than COCO.
+
+### Faster R-CNN
+
+| Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :---: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | pytorch | 1x | 800-1024 | 5.2 | - | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502-829424c0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502_114915.log.json) |
+
+### Mask R-CNN
+
+| Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------: | :------------: | :----: | :-----: | :------: | :------: |
+| R-50-FPN | pytorch | 1x | 800-1024 | 5.3 | - | 40.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733-d2858245.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733.log.json) |
diff --git a/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py b/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py
new file mode 100644
index 00000000..5b17451d
--- /dev/null
+++ b/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py
@@ -0,0 +1,39 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/cityscapes_detection.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained=None,
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))))
+# optimizer
+# lr is set for a batch size of 8
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ # [7] yields higher performance than [6]
+ step=[7])
+runner = dict(
+ type='EpochBasedRunner', max_epochs=8) # actual epoch = 8 * 8 = 64
+log_config = dict(interval=100)
+# For better, more stable performance initialize from COCO
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa
diff --git a/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py b/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py
new file mode 100644
index 00000000..0a4d7ca8
--- /dev/null
+++ b/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py
@@ -0,0 +1,46 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained=None,
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=8,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
+# optimizer
+# lr is set for a batch size of 8
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ # [7] yields higher performance than [6]
+ step=[7])
+runner = dict(
+ type='EpochBasedRunner', max_epochs=8) # actual epoch = 8 * 8 = 64
+log_config = dict(interval=100)
+# For better, more stable performance initialize from COCO
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa
diff --git a/configs/common/mstrain-poly_3x_coco_instance.py b/configs/common/mstrain-poly_3x_coco_instance.py
new file mode 100644
index 00000000..c22ed945
--- /dev/null
+++ b/configs/common/mstrain-poly_3x_coco_instance.py
@@ -0,0 +1,80 @@
+_base_ = '../_base_/default_runtime.py'
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+
+# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
+# multiscale_mode='range'
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+# Use RepeatDataset to speed up training
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(interval=1, metric=['bbox', 'segm'])
+
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+
+# learning policy
+# Experiments show that using step=[9, 11] has higher performance
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[9, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/common/mstrain_3x_coco.py b/configs/common/mstrain_3x_coco.py
new file mode 100644
index 00000000..80ec8b8d
--- /dev/null
+++ b/configs/common/mstrain_3x_coco.py
@@ -0,0 +1,76 @@
+_base_ = '../_base_/default_runtime.py'
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+
+# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
+# multiscale_mode='range'
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+# Use RepeatDataset to speed up training
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(interval=1, metric='bbox')
+
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+
+# learning policy
+# Experiments show that using step=[9, 11] has higher performance
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[9, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/common/mstrain_3x_coco_instance.py b/configs/common/mstrain_3x_coco_instance.py
new file mode 100644
index 00000000..50f39bef
--- /dev/null
+++ b/configs/common/mstrain_3x_coco_instance.py
@@ -0,0 +1,76 @@
+_base_ = '../_base_/default_runtime.py'
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+
+# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
+# multiscale_mode='range'
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+# Use RepeatDataset to speed up training
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(interval=1, metric=['bbox', 'segm'])
+
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+
+# learning policy
+# Experiments show that using step=[9, 11] has higher performance
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[9, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/cornernet/README.md b/configs/cornernet/README.md
index 9959f1d6..a060196a 100644
--- a/configs/cornernet/README.md
+++ b/configs/cornernet/README.md
@@ -1,7 +1,10 @@
# CornerNet
## Introduction
-```
+
+
+
+```latex
@inproceedings{law2018cornernet,
title={Cornernet: Detecting objects as paired keypoints},
author={Law, Hei and Deng, Jia},
@@ -14,16 +17,17 @@
## Results and models
-| Backbone | Batch Size | Step/Total Epochs | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :------: |
-| HourglassNet-104 | [10 x 5](./cornernet_hourglass104_mstest_10x5_210e_coco.py) | 180/210 | 13.9 | 4.2 | 41.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720.log.json) |
-| HourglassNet-104 | [8 x 6](./cornernet_hourglass104_mstest_8x6_210e_coco.py) | 180/210 | 15.9 | 4.2 | 41.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618-79b44c30.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618.log.json) |
-| HourglassNet-104 | [32 x 3](./cornernet_hourglass104_mstest_32x3_210e_coco.py) | 180/210 | 9.5 | 3.9 | 40.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110-1efaea91.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110.log.json) |
+| Backbone | Batch Size | Step/Total Epochs | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :------: | :--------: |
+| HourglassNet-104 | [10 x 5](./cornernet_hourglass104_mstest_10x5_210e_coco.py) | 180/210 | 13.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720.log.json) |
+| HourglassNet-104 | [8 x 6](./cornernet_hourglass104_mstest_8x6_210e_coco.py) | 180/210 | 15.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618-79b44c30.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618.log.json) |
+| HourglassNet-104 | [32 x 3](./cornernet_hourglass104_mstest_32x3_210e_coco.py) | 180/210 | 9.5 | 3.9 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110-1efaea91.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110.log.json) |
Note:
+
- TTA setting is single-scale and `flip=True`.
- Experiments with `images_per_gpu=6` are conducted on Tesla V100-SXM2-32GB, `images_per_gpu=3` are conducted on GeForce GTX 1080 Ti.
- Here are the descriptions of each experiment setting:
- - 10 x 5: 10 GPUs with 5 images per gpu. This is the same setting as that reported in the original paper.
- - 8 x 6: 8 GPUs with 6 images per gpu. The total batchsize is similar to paper and only need 1 node to train.
- - 32 x 3: 32 GPUs with 3 images per gpu. The default setting for 1080TI and need 4 nodes to train.
+ - 10 x 5: 10 GPUs with 5 images per gpu. This is the same setting as that reported in the original paper.
+ - 8 x 6: 8 GPUs with 6 images per gpu. The total batchsize is similar to paper and only need 1 node to train.
+ - 32 x 3: 32 GPUs with 3 images per gpu. The default setting for 1080TI and need 4 nodes to train.
diff --git a/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py b/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
new file mode 100644
index 00000000..89f38764
--- /dev/null
+++ b/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
@@ -0,0 +1,105 @@
+_base_ = [
+ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
+]
+
+# model settings
+model = dict(
+ type='CornerNet',
+ backbone=dict(
+ type='HourglassNet',
+ downsample_times=5,
+ num_stacks=2,
+ stage_channels=[256, 256, 384, 384, 384, 512],
+ stage_blocks=[2, 2, 2, 2, 2, 4],
+ norm_cfg=dict(type='BN', requires_grad=True)),
+ neck=None,
+ bbox_head=dict(
+ type='CornerHead',
+ num_classes=80,
+ in_channels=256,
+ num_feat_levels=2,
+ corner_emb_channels=1,
+ loss_heatmap=dict(
+ type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
+ loss_embedding=dict(
+ type='AssociativeEmbeddingLoss',
+ pull_weight=0.10,
+ push_weight=0.10),
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)),
+ # training and testing settings
+ train_cfg=None,
+ test_cfg=dict(
+ corner_topk=100,
+ local_maximum_kernel=3,
+ distance_threshold=0.5,
+ score_thr=0.05,
+ max_per_img=100,
+ nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
+# data settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=(511, 511),
+ ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
+ test_mode=False,
+ test_pad_mode=None,
+ **img_norm_cfg),
+ dict(type='Resize', img_scale=(511, 511), keep_ratio=False),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(
+ type='MultiScaleFlipAug',
+ scale_factor=1.0,
+ flip=True,
+ transforms=[
+ dict(type='Resize'),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=None,
+ ratios=None,
+ border=None,
+ test_mode=True,
+ test_pad_mode=['logical_or', 127],
+ **img_norm_cfg),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(
+ type='Collect',
+ keys=['img'],
+ meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape',
+ 'scale_factor', 'flip', 'img_norm_cfg', 'border')),
+ ])
+]
+data = dict(
+ samples_per_gpu=5,
+ workers_per_gpu=3,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='Adam', lr=0.0005)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=1.0 / 3,
+ step=[180])
+runner = dict(type='EpochBasedRunner', max_epochs=210)
diff --git a/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py b/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
index 93960a84..873d5984 100644
--- a/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
+++ b/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
@@ -25,7 +25,16 @@
type='AssociativeEmbeddingLoss',
pull_weight=0.10,
push_weight=0.10),
- loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)))
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)),
+ # training and testing settings
+ train_cfg=None,
+ test_cfg=dict(
+ corner_topk=100,
+ local_maximum_kernel=3,
+ distance_threshold=0.5,
+ score_thr=0.05,
+ max_per_img=100,
+ nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
# data settings
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
@@ -79,19 +88,10 @@
]
data = dict(
samples_per_gpu=3,
- workers_per_gpu=0,
+ workers_per_gpu=3,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
-# training and testing settings
-train_cfg = None
-test_cfg = dict(
- corner_topk=100,
- local_maximum_kernel=3,
- distance_threshold=0.5,
- score_thr=0.05,
- max_per_img=100,
- nms_cfg=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))
# optimizer
optimizer = dict(type='Adam', lr=0.0005)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
@@ -102,4 +102,4 @@
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[180])
-total_epochs = 210
+runner = dict(type='EpochBasedRunner', max_epochs=210)
diff --git a/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py b/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py
new file mode 100644
index 00000000..ef749ccc
--- /dev/null
+++ b/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py
@@ -0,0 +1,105 @@
+_base_ = [
+ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
+]
+
+# model settings
+model = dict(
+ type='CornerNet',
+ backbone=dict(
+ type='HourglassNet',
+ downsample_times=5,
+ num_stacks=2,
+ stage_channels=[256, 256, 384, 384, 384, 512],
+ stage_blocks=[2, 2, 2, 2, 2, 4],
+ norm_cfg=dict(type='BN', requires_grad=True)),
+ neck=None,
+ bbox_head=dict(
+ type='CornerHead',
+ num_classes=80,
+ in_channels=256,
+ num_feat_levels=2,
+ corner_emb_channels=1,
+ loss_heatmap=dict(
+ type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
+ loss_embedding=dict(
+ type='AssociativeEmbeddingLoss',
+ pull_weight=0.10,
+ push_weight=0.10),
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)),
+ # training and testing settings
+ train_cfg=None,
+ test_cfg=dict(
+ corner_topk=100,
+ local_maximum_kernel=3,
+ distance_threshold=0.5,
+ score_thr=0.05,
+ max_per_img=100,
+ nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
+# data settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=(511, 511),
+ ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
+ test_mode=False,
+ test_pad_mode=None,
+ **img_norm_cfg),
+ dict(type='Resize', img_scale=(511, 511), keep_ratio=False),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(
+ type='MultiScaleFlipAug',
+ scale_factor=1.0,
+ flip=True,
+ transforms=[
+ dict(type='Resize'),
+ dict(
+ type='RandomCenterCropPad',
+ crop_size=None,
+ ratios=None,
+ border=None,
+ test_mode=True,
+ test_pad_mode=['logical_or', 127],
+ **img_norm_cfg),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(
+ type='Collect',
+ keys=['img'],
+ meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape',
+ 'scale_factor', 'flip', 'img_norm_cfg', 'border')),
+ ])
+]
+data = dict(
+ samples_per_gpu=6,
+ workers_per_gpu=3,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='Adam', lr=0.0005)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=1.0 / 3,
+ step=[180])
+runner = dict(type='EpochBasedRunner', max_epochs=210)
diff --git a/configs/cornernet/metafile.yml b/configs/cornernet/metafile.yml
new file mode 100644
index 00000000..ec075bad
--- /dev/null
+++ b/configs/cornernet/metafile.yml
@@ -0,0 +1,58 @@
+Collections:
+ - Name: CornerNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - Adam
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Corner Pooling
+ - Stacked Hourglass Network
+ Paper: https://arxiv.org/abs/1808.01244
+ README: configs/cornernet/README.md
+
+Models:
+ - Name: cornernet_hourglass104_mstest_10x5_210e_coco
+ In Collection: CornerNet
+ Config: configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
+ Metadata:
+ Batch Size: 10 x 5
+ Training Memory (GB): 13.9
+ inference time (s/im): 0.2381
+ Epochs: 210
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth
+
+ - Name: cornernet_hourglass104_mstest_8x6_210e_coco
+ In Collection: CornerNet
+ Config: configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py
+ Metadata:
+ Batch Size: 8 x 6
+ Training Memory (GB): 15.9
+ inference time (s/im): 0.2381
+ Epochs: 210
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618-79b44c30.pth
+
+ - Name: cornernet_hourglass104_mstest_32x3_210e_coco
+ In Collection: CornerNet
+ Config: configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
+ Metadata:
+ Batch Size: 32 x 3
+ Training Memory (GB): 9.5
+ inference time (s/im): 0.25641
+ Epochs: 210
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110-1efaea91.pth
diff --git a/configs/dcn/README.md b/configs/dcn/README.md
new file mode 100644
index 00000000..044ff295
--- /dev/null
+++ b/configs/dcn/README.md
@@ -0,0 +1,52 @@
+# Deformable Convolutional Networks
+
+## Introduction
+
+
+
+```none
+@inproceedings{dai2017deformable,
+ title={Deformable Convolutional Networks},
+ author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
+ booktitle={Proceedings of the IEEE international conference on computer vision},
+ year={2017}
+}
+```
+
+
+
+```
+@article{zhu2018deformable,
+ title={Deformable ConvNets v2: More Deformable, Better Results},
+ author={Zhu, Xizhou and Hu, Han and Lin, Stephen and Dai, Jifeng},
+ journal={arXiv preprint arXiv:1811.11168},
+ year={2018}
+}
+```
+
+## Results and Models
+
+| Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:----------------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 4.0 | 17.8 | 41.3 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130_212941.log.json) |
+| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 4.1 | 17.6 | 41.4 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130-d099253b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130_222144.log.json) |
+| *R-50-FPN (dg=4) | Faster | pytorch | mdconv(c3-c5) | - | 1x | 4.2 | 17.4 | 41.5 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130-01262257.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130_222058.log.json) |
+| R-50-FPN | Faster | pytorch | - | dpool | 1x | 5.0 | 17.2 | 38.9 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307_203250.log.json) |
+| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.8 | 16.6 | 38.7 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307-c0df27ff.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307_203304.log.json) |
+| R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 6.0 | 12.5 | 42.7 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203_230019.log.json) |
+| X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.3 | 10.0 | 44.5 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203_001325.log.json) |
+| R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 15.4 | 41.8 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203_061339.log.json) |
+| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 15.1 | 41.5 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203-ad97591f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203_063443.log.json) |
+| R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.5 | 11.7 | 43.5 | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216_191601.log.json) |
+| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 14.6 | 43.8 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130_220843.log.json) |
+| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 11.0 | 45.0 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203_224829.log.json) |
+| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.0 | 10.0 | 44.4 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202_010309.log.json) |
+| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.0 | 8.6 | 45.8 | 39.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204_134006.log.json) |
+| X-101-32x4d-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 9.2 | | 47.3 | 41.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-20200606_183737.log.json) |
+
+**Notes:**
+
+- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
+- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
+- (*) For R-50-FPN (dg=4), dg is short for deformable_group. This model is trained and tested on Amazon EC2 p3dn.24xlarge instance.
+- **Memory, Train/Inf time is outdated.**
diff --git a/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..081b998f
--- /dev/null
+++ b/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..3b3683af
--- /dev/null
+++ b/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..daaa4729
--- /dev/null
+++ b/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..a01df33c
--- /dev/null
+++ b/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..aa664bd6
--- /dev/null
+++ b/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..f5fee7e1
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..8787088f
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py b/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py
new file mode 100644
index 00000000..1b695f0e
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ _delete_=True,
+ type='DeformRoIPoolPack',
+ output_size=7,
+ output_channels=256),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32])))
diff --git a/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py b/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..d1bcf3c1
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py b/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
new file mode 100644
index 00000000..d0ab89c2
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py b/configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
new file mode 100644
index 00000000..ad7b0346
--- /dev/null
+++ b/configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ _delete_=True,
+ type='ModulatedDeformRoIPoolPack',
+ output_size=7,
+ output_channels=256),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32])))
diff --git a/configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..8357766f
--- /dev/null
+++ b/configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,15 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch',
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..cb340022
--- /dev/null
+++ b/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py b/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..ababe58d
--- /dev/null
+++ b/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py b/configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..5ca2a67c
--- /dev/null
+++ b/configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/dcn/metafile.yml b/configs/dcn/metafile.yml
new file mode 100644
index 00000000..23216c30
--- /dev/null
+++ b/configs/dcn/metafile.yml
@@ -0,0 +1,246 @@
+Collections:
+ - Name: Deformable Convolutional Networks
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Deformable Convolution
+ Paper: https://arxiv.org/abs/1811.11168
+ README: configs/dcn/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.0
+ inference time (s/im): 0.05618
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth
+
+ - Name: faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.1
+ inference time (s/im): 0.05682
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130-d099253b.pth
+
+ - Name: faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ inference time (s/im): 0.05747
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130-01262257.pth
+
+ - Name: faster_rcnn_r50_fpn_dpool_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ inference time (s/im): 0.05814
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth
+
+ - Name: faster_rcnn_r50_fpn_mdpool_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.8
+ inference time (s/im): 0.06024
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307-c0df27ff.pth
+
+ - Name: faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.08
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth
+
+ - Name: faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.3
+ inference time (s/im): 0.1
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth
+
+ - Name: mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ inference time (s/im): 0.06494
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth
+
+ - Name: mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ inference time (s/im): 0.06623
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203-ad97591f.pth
+
+ - Name: mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.5
+ inference time (s/im): 0.08547
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth
+
+ - Name: cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ inference time (s/im): 0.06849
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth
+
+ - Name: cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.09091
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth
+
+ - Name: cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.1
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth
+
+ - Name: cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.0
+ inference time (s/im): 0.11628
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco
+ In Collection: Deformable Convolutional Networks
+ Config: configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.2
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 41.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth
diff --git a/configs/deepfashion/README.md b/configs/deepfashion/README.md
new file mode 100644
index 00000000..68e57e4f
--- /dev/null
+++ b/configs/deepfashion/README.md
@@ -0,0 +1,56 @@
+# DeepFashion
+
+
+
+[MMFashion](https://github.com/open-mmlab/mmfashion) develops "fashion parsing and segmentation" module
+based on the dataset
+[DeepFashion-Inshop](https://drive.google.com/drive/folders/0B7EVK8r0v71pVDZFQXRsMDZCX1E?usp=sharing).
+Its annotation follows COCO style.
+To use it, you need to first download the data. Note that we only use "img_highres" in this task.
+The file tree should be like this:
+
+```sh
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── DeepFashion
+│ │ ├── In-shop
+│ │ ├── Anno
+│ │ │ ├── segmentation
+│ │ │ | ├── DeepFashion_segmentation_train.json
+│ │ │ | ├── DeepFashion_segmentation_query.json
+│ │ │ | ├── DeepFashion_segmentation_gallery.json
+│ │ │ ├── list_bbox_inshop.txt
+│ │ │ ├── list_description_inshop.json
+│ │ │ ├── list_item_inshop.txt
+│ │ │ └── list_landmarks_inshop.txt
+│ │ ├── Eval
+│ │ │ └── list_eval_partition.txt
+│ │ ├── Img
+│ │ │ ├── img
+│ │ │ │ ├──XXX.jpg
+│ │ │ ├── img_highres
+│ │ │ └── ├──XXX.jpg
+
+```
+
+After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the `mask_rcnn_r50_fpn_1x.py` config
+or creating your own config file.
+
+```
+@inproceedings{liuLQWTcvpr16DeepFashion,
+ author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
+ title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
+ booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ month = {June},
+ year = {2016}
+}
+```
+
+## Model Zoo
+
+| Backbone | Model type | Dataset | bbox detection Average Precision | segmentation Average Precision | Config | Download (Google) |
+| :---------: | :----------: | :-----------------: | :--------------------------------: | :----------------------------: | :---------:| :-------------------------: |
+| ResNet50 | Mask RCNN | DeepFashion-In-shop | 0.599 | 0.584 |[config](https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py)| [model](https://drive.google.com/open?id=1q6zF7J6Gb-FFgM87oIORIt6uBozaXp5r) | [log](https://drive.google.com/file/d/1qTK4Dr4FFLa9fkdI6UVko408gkrfTRLP/view?usp=sharing) |
diff --git a/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py b/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py
new file mode 100644
index 00000000..c4e86387
--- /dev/null
+++ b/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py
@@ -0,0 +1,10 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/deepfashion.py', '../_base_/schedules/schedule_1x.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(num_classes=15), mask_head=dict(num_classes=15)))
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=15)
diff --git a/configs/deformable_detr/README.md b/configs/deformable_detr/README.md
new file mode 100644
index 00000000..fe68002b
--- /dev/null
+++ b/configs/deformable_detr/README.md
@@ -0,0 +1,31 @@
+# Deformable DETR
+
+## Introduction
+
+
+
+We provide the config files for Deformable DETR: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159).
+
+```
+@inproceedings{
+zhu2021deformable,
+title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
+author={Xizhou Zhu and Weijie Su and Lewei Lu and Bin Li and Xiaogang Wang and Jifeng Dai},
+booktitle={International Conference on Learning Representations},
+year={2021},
+url={https://openreview.net/forum?id=gZ9hCDWe6ke}
+}
+```
+
+## Results and Models
+
+| Backbone | Model | Lr schd | box AP | Config | Download |
+|:------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | Deformable DETR |50e | 44.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_r50_16x2_50e_coco/deformable_detr_r50_16x2_50e_coco_20210419_220030-a12b9512.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_r50_16x2_50e_coco/deformable_detr_r50_16x2_50e_coco_20210419_220030-a12b9512.log.json) |
+| R-50 | + iterative bounding box refinement |50e | 46.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco/deformable_detr_refine_r50_16x2_50e_coco_20210419_220503-5f5dff21.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco/deformable_detr_refine_r50_16x2_50e_coco_20210419_220503-5f5dff21.log.json) |
+| R-50 | ++ two-stage Deformable DETR |50e | 46.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco/deformable_detr_twostage_refine_r50_16x2_50e_coco_20210419_220613-9d28ab72.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco/deformable_detr_twostage_refine_r50_16x2_50e_coco_20210419_220613-9d28ab72.log.json) |
+
+# NOTE
+
+1. All models are trained with batch size 32.
+2. The performance is unstable. `Deformable DETR` and `iterative bounding box refinement` may fluctuate about 0.3 mAP. `two-stage Deformable DETR` may fluctuate about 0.2 mAP.
diff --git a/configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py b/configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py
new file mode 100644
index 00000000..546f8271
--- /dev/null
+++ b/configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py
@@ -0,0 +1,172 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ type='DeformableDETR',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='ChannelMapper',
+ in_channels=[512, 1024, 2048],
+ kernel_size=1,
+ out_channels=256,
+ act_cfg=None,
+ norm_cfg=dict(type='GN', num_groups=32),
+ num_outs=4),
+ bbox_head=dict(
+ type='DeformableDETRHead',
+ num_query=300,
+ num_classes=80,
+ in_channels=2048,
+ sync_cls_avg_factor=True,
+ as_two_stage=False,
+ transformer=dict(
+ type='DeformableDetrTransformer',
+ encoder=dict(
+ type='DetrTransformerEncoder',
+ num_layers=6,
+ transformerlayers=dict(
+ type='BaseTransformerLayer',
+ attn_cfgs=dict(
+ type='MultiScaleDeformableAttention', embed_dims=256),
+ feedforward_channels=1024,
+ ffn_dropout=0.1,
+ operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
+ decoder=dict(
+ type='DeformableDetrTransformerDecoder',
+ num_layers=6,
+ return_intermediate=True,
+ transformerlayers=dict(
+ type='DetrTransformerDecoderLayer',
+ attn_cfgs=[
+ dict(
+ type='MultiheadAttention',
+ embed_dims=256,
+ num_heads=8,
+ dropout=0.1),
+ dict(
+ type='MultiScaleDeformableAttention',
+ embed_dims=256)
+ ],
+ feedforward_channels=1024,
+ ffn_dropout=0.1,
+ operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
+ 'ffn', 'norm')))),
+ positional_encoding=dict(
+ type='SinePositionalEncoding',
+ num_feats=128,
+ normalize=True,
+ offset=-0.5),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=2.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+ loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='HungarianAssigner',
+ cls_cost=dict(type='FocalLossCost', weight=2.0),
+ reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
+ iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
+ test_cfg=dict(max_per_img=100))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
+# from the default setting in mmdet.
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(
+ type='AutoAugment',
+ policies=[
+ [
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333),
+ (576, 1333), (608, 1333), (640, 1333),
+ (672, 1333), (704, 1333), (736, 1333),
+ (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ keep_ratio=True)
+ ],
+ [
+ dict(
+ type='Resize',
+ # The radio of all image in train dataset < 7
+ # follow the original impl
+ img_scale=[(400, 4200), (500, 4200), (600, 4200)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(
+ type='RandomCrop',
+ crop_type='absolute_range',
+ crop_size=(384, 600),
+ allow_negative_crop=True),
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333),
+ (576, 1333), (608, 1333), (640, 1333),
+ (672, 1333), (704, 1333), (736, 1333),
+ (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ override=True,
+ keep_ratio=True)
+ ]
+ ]),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=1),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+# test_pipeline, NOTE the Pad's size_divisor is different from the default
+# setting (size_divisor=32). While there is little effect on the performance
+# whether we use the default setting or use size_divisor=1.
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=1),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(filter_empty_gt=False, pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ type='AdamW',
+ lr=2e-4,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(
+ custom_keys={
+ 'backbone': dict(lr_mult=0.1),
+ 'sampling_offsets': dict(lr_mult=0.1),
+ 'reference_points': dict(lr_mult=0.1)
+ }))
+optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
+# learning policy
+lr_config = dict(policy='step', step=[40])
+runner = dict(type='EpochBasedRunner', max_epochs=50)
diff --git a/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py b/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py
new file mode 100644
index 00000000..01f13df4
--- /dev/null
+++ b/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py
@@ -0,0 +1,2 @@
+_base_ = 'deformable_detr_r50_16x2_50e_coco.py'
+model = dict(bbox_head=dict(with_box_refine=True))
diff --git a/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py b/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py
new file mode 100644
index 00000000..2aa840d9
--- /dev/null
+++ b/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py
@@ -0,0 +1,2 @@
+_base_ = 'deformable_detr_refine_r50_16x2_50e_coco.py'
+model = dict(bbox_head=dict(as_two_stage=True))
diff --git a/configs/deformable_detr/metafile.yml b/configs/deformable_detr/metafile.yml
new file mode 100644
index 00000000..bb80d072
--- /dev/null
+++ b/configs/deformable_detr/metafile.yml
@@ -0,0 +1,51 @@
+Collections:
+ - Name: Deformable DETR
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - AdamW
+ - Multi Scale Train
+ - Gradient Clip
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ResNet
+ - Transformer
+ Paper: https://openreview.net/forum?id=gZ9hCDWe6ke
+ README: configs/deformable_detr/README.md
+
+Models:
+ - Name: deformable_detr_r50_16x2_50e_coco
+ In Collection: Deformable DETR
+ Config: configs/deformable_detr/deformable_detr_r50_16x2_50e_coco.py
+ Metadata:
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_r50_16x2_50e_coco/deformable_detr_r50_16x2_50e_coco_20210419_220030-a12b9512.pth
+
+ - Name: deformable_detr_refine_r50_16x2_50e_coco
+ In Collection: Deformable DETR
+ Config: configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py
+ Metadata:
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco/deformable_detr_refine_r50_16x2_50e_coco_20210419_220503-5f5dff21.pth
+
+ - Name: deformable_detr_twostage_refine_r50_16x2_50e_coco
+ In Collection: Deformable DETR
+ Config: configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py
+ Metadata:
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco/deformable_detr_twostage_refine_r50_16x2_50e_coco_20210419_220613-9d28ab72.pth
diff --git a/configs/detectors/README.md b/configs/detectors/README.md
new file mode 100644
index 00000000..37c151f3
--- /dev/null
+++ b/configs/detectors/README.md
@@ -0,0 +1,59 @@
+# DetectoRS
+
+## Introduction
+
+
+
+We provide the config files for [DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution](https://arxiv.org/pdf/2006.02334.pdf).
+
+```BibTeX
+@article{qiao2020detectors,
+ title={DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution},
+ author={Qiao, Siyuan and Chen, Liang-Chieh and Yuille, Alan},
+ journal={arXiv preprint arXiv:2006.02334},
+ year={2020}
+}
+```
+
+## Dataset
+
+DetectoRS requires COCO and [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) dataset for training. You need to download and extract it in the COCO dataset path.
+The directory should be like this.
+
+```none
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+| | ├── stuffthingmaps
+```
+
+## Results and Models
+
+DetectoRS includes two major components:
+
+- Recursive Feature Pyramid (RFP).
+- Switchable Atrous Convolution (SAC).
+
+They can be used independently.
+Combining them together results in DetectoRS.
+The results on COCO 2017 val are shown in the below table.
+
+| Method | Detector | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:------:|:--------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| RFP | Cascade + ResNet-50 | 1x | 7.5 | - | 44.8 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_rfp_1x_coco/cascade_rcnn_r50_rfp_1x_coco-8cf51bfd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_rfp_1x_coco/cascade_rcnn_r50_rfp_1x_coco_20200624_104126.log.json) |
+| SAC | Cascade + ResNet-50 | 1x | 5.6 | - | 45.0| | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_sac_1x_coco/cascade_rcnn_r50_sac_1x_coco-24bfda62.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_sac_1x_coco/cascade_rcnn_r50_sac_1x_coco_20200624_104402.log.json) |
+| DetectoRS | Cascade + ResNet-50 | 1x | 9.9 | - | 47.4 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_cascade_rcnn_r50_1x_coco/detectors_cascade_rcnn_r50_1x_coco-32a10ba0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_cascade_rcnn_r50_1x_coco/detectors_cascade_rcnn_r50_1x_coco_20200706_001203.log.json) |
+| RFP | HTC + ResNet-50 | 1x | 11.2 | - | 46.6 | 40.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/htc_r50_rfp_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_rfp_1x_coco/htc_r50_rfp_1x_coco-8ff87c51.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_rfp_1x_coco/htc_r50_rfp_1x_coco_20200624_103053.log.json) |
+| SAC | HTC + ResNet-50 | 1x | 9.3 | - | 46.4 | 40.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/htc_r50_sac_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_sac_1x_coco/htc_r50_sac_1x_coco-bfa60c54.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_sac_1x_coco/htc_r50_sac_1x_coco_20200624_103111.log.json) |
+| DetectoRS | HTC + ResNet-50 | 1x | 13.6 | - | 49.1 | 42.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/detectors_htc_r50_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r50_1x_coco/detectors_htc_r50_1x_coco-329b1453.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r50_1x_coco/detectors_htc_r50_1x_coco_20200624_103659.log.json) |
+| DetectoRS | HTC + ResNet-101 | 20e | 19.6 | | 50.5 | 43.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/detectors_htc_r101_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r101_20e_coco/detectors_htc_r101_20e_coco_20210419_203638-348d533b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r101_20e_coco/detectors_htc_r101_20e_coco_20210419_203638.log.json) |
+
+*Note*: This is a re-implementation based on MMDetection-V2.
+The original implementation is based on MMDetection-V1.
diff --git a/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py b/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
new file mode 100644
index 00000000..4430d8a6
--- /dev/null
+++ b/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
@@ -0,0 +1,28 @@
+_base_ = [
+ '../_base_/models/cascade_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ output_img=True),
+ neck=dict(
+ type='RFP',
+ rfp_steps=2,
+ aspp_out_channels=64,
+ aspp_dilations=(1, 3, 6, 1),
+ rfp_backbone=dict(
+ rfp_inplanes=256,
+ type='DetectoRS_ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ conv_cfg=dict(type='ConvAWS'),
+ pretrained='torchvision://resnet50',
+ style='pytorch')))
diff --git a/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py b/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
new file mode 100644
index 00000000..ccd9319b
--- /dev/null
+++ b/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = [
+ '../_base_/models/cascade_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True)))
diff --git a/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py b/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
new file mode 100644
index 00000000..f7604043
--- /dev/null
+++ b/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
@@ -0,0 +1,32 @@
+_base_ = [
+ '../_base_/models/cascade_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ output_img=True),
+ neck=dict(
+ type='RFP',
+ rfp_steps=2,
+ aspp_out_channels=64,
+ aspp_dilations=(1, 3, 6, 1),
+ rfp_backbone=dict(
+ rfp_inplanes=256,
+ type='DetectoRS_ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ pretrained='torchvision://resnet50',
+ style='pytorch')))
diff --git a/configs/detectors/detectors_htc_r101_20e_coco.py b/configs/detectors/detectors_htc_r101_20e_coco.py
new file mode 100644
index 00000000..93d7d2b1
--- /dev/null
+++ b/configs/detectors/detectors_htc_r101_20e_coco.py
@@ -0,0 +1,28 @@
+_base_ = '../htc/htc_r101_fpn_20e_coco.py'
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ output_img=True),
+ neck=dict(
+ type='RFP',
+ rfp_steps=2,
+ aspp_out_channels=64,
+ aspp_dilations=(1, 3, 6, 1),
+ rfp_backbone=dict(
+ rfp_inplanes=256,
+ type='DetectoRS_ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ pretrained='torchvision://resnet101',
+ style='pytorch')))
diff --git a/configs/detectors/detectors_htc_r50_1x_coco.py b/configs/detectors/detectors_htc_r50_1x_coco.py
new file mode 100644
index 00000000..0d2fc4f7
--- /dev/null
+++ b/configs/detectors/detectors_htc_r50_1x_coco.py
@@ -0,0 +1,28 @@
+_base_ = '../htc/htc_r50_fpn_1x_coco.py'
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ output_img=True),
+ neck=dict(
+ type='RFP',
+ rfp_steps=2,
+ aspp_out_channels=64,
+ aspp_dilations=(1, 3, 6, 1),
+ rfp_backbone=dict(
+ rfp_inplanes=256,
+ type='DetectoRS_ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True),
+ pretrained='torchvision://resnet50',
+ style='pytorch')))
diff --git a/configs/detectors/htc_r50_rfp_1x_coco.py b/configs/detectors/htc_r50_rfp_1x_coco.py
new file mode 100644
index 00000000..496104e1
--- /dev/null
+++ b/configs/detectors/htc_r50_rfp_1x_coco.py
@@ -0,0 +1,24 @@
+_base_ = '../htc/htc_r50_fpn_1x_coco.py'
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ output_img=True),
+ neck=dict(
+ type='RFP',
+ rfp_steps=2,
+ aspp_out_channels=64,
+ aspp_dilations=(1, 3, 6, 1),
+ rfp_backbone=dict(
+ rfp_inplanes=256,
+ type='DetectoRS_ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ conv_cfg=dict(type='ConvAWS'),
+ pretrained='torchvision://resnet50',
+ style='pytorch')))
diff --git a/configs/detectors/htc_r50_sac_1x_coco.py b/configs/detectors/htc_r50_sac_1x_coco.py
new file mode 100644
index 00000000..72d4db96
--- /dev/null
+++ b/configs/detectors/htc_r50_sac_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../htc/htc_r50_fpn_1x_coco.py'
+
+model = dict(
+ backbone=dict(
+ type='DetectoRS_ResNet',
+ conv_cfg=dict(type='ConvAWS'),
+ sac=dict(type='SAC', use_deform=True),
+ stage_with_sac=(False, True, True, True)))
diff --git a/configs/detectors/metafile.yml b/configs/detectors/metafile.yml
new file mode 100644
index 00000000..bf309a4b
--- /dev/null
+++ b/configs/detectors/metafile.yml
@@ -0,0 +1,109 @@
+Collections:
+ - Name: DetectoRS
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ASPP
+ - FPN
+ - RFP
+ - RPN
+ - ResNet
+ - RoIAlign
+ - SAC
+ Paper: https://arxiv.org/abs/2006.02334
+ README: configs/detectors/README.md
+
+Models:
+ - Name: cascade_rcnn_r50_rfp_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_rfp_1x_coco/cascade_rcnn_r50_rfp_1x_coco-8cf51bfd.pth
+
+ - Name: cascade_rcnn_r50_sac_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.6
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_sac_1x_coco/cascade_rcnn_r50_sac_1x_coco-24bfda62.pth
+
+ - Name: detectors_cascade_rcnn_r50_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.9
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_cascade_rcnn_r50_1x_coco/detectors_cascade_rcnn_r50_1x_coco-32a10ba0.pth
+
+ - Name: htc_r50_rfp_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/htc_r50_rfp_1x_coco.py
+ Metadata:
+ Training Memory (GB): 11.2
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_rfp_1x_coco/htc_r50_rfp_1x_coco-8ff87c51.pth
+
+ - Name: htc_r50_sac_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/htc_r50_sac_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.3
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_sac_1x_coco/htc_r50_sac_1x_coco-bfa60c54.pth
+
+ - Name: detectors_htc_r50_1x_coco
+ In Collection: DetectoRS
+ Config: configs/detectors/detectors_htc_r50_1x_coco.py
+ Metadata:
+ Training Memory (GB): 13.6
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 49.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 42.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r50_1x_coco/detectors_htc_r50_1x_coco-329b1453.pth
diff --git a/configs/detr/README.md b/configs/detr/README.md
new file mode 100644
index 00000000..617a8fbd
--- /dev/null
+++ b/configs/detr/README.md
@@ -0,0 +1,27 @@
+# DETR
+
+## Introduction
+
+
+
+We provide the config files for DETR: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872).
+
+```BibTeX
+@inproceedings{detr,
+ author = {Nicolas Carion and
+ Francisco Massa and
+ Gabriel Synnaeve and
+ Nicolas Usunier and
+ Alexander Kirillov and
+ Sergey Zagoruyko},
+ title = {End-to-End Object Detection with Transformers},
+ booktitle = {ECCV},
+ year = {2020}
+}
+```
+
+## Results and Models
+
+| Backbone | Model | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:------:|:--------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | DETR |150e |7.9| | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/detr/detr_r50_8x2_150e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835.log.json) |
diff --git a/configs/detr/detr_r50_8x2_150e_coco.py b/configs/detr/detr_r50_8x2_150e_coco.py
new file mode 100644
index 00000000..45f64141
--- /dev/null
+++ b/configs/detr/detr_r50_8x2_150e_coco.py
@@ -0,0 +1,150 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ type='DETR',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(3, ),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='pytorch'),
+ bbox_head=dict(
+ type='DETRHead',
+ num_classes=80,
+ in_channels=2048,
+ transformer=dict(
+ type='Transformer',
+ encoder=dict(
+ type='DetrTransformerEncoder',
+ num_layers=6,
+ transformerlayers=dict(
+ type='BaseTransformerLayer',
+ attn_cfgs=[
+ dict(
+ type='MultiheadAttention',
+ embed_dims=256,
+ num_heads=8,
+ dropout=0.1)
+ ],
+ feedforward_channels=2048,
+ ffn_dropout=0.1,
+ operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
+ decoder=dict(
+ type='DetrTransformerDecoder',
+ return_intermediate=True,
+ num_layers=6,
+ transformerlayers=dict(
+ type='DetrTransformerDecoderLayer',
+ attn_cfgs=dict(
+ type='MultiheadAttention',
+ embed_dims=256,
+ num_heads=8,
+ dropout=0.1),
+ feedforward_channels=2048,
+ ffn_dropout=0.1,
+ operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
+ 'ffn', 'norm')),
+ )),
+ positional_encoding=dict(
+ type='SinePositionalEncoding', num_feats=128, normalize=True),
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ bg_cls_weight=0.1,
+ use_sigmoid=False,
+ loss_weight=1.0,
+ class_weight=1.0),
+ loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+ loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='HungarianAssigner',
+ cls_cost=dict(type='ClassificationCost', weight=1.),
+ reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
+ iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
+ test_cfg=dict(max_per_img=100))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
+# from the default setting in mmdet.
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(
+ type='AutoAugment',
+ policies=[[
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
+ (608, 1333), (640, 1333), (672, 1333), (704, 1333),
+ (736, 1333), (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ keep_ratio=True)
+ ],
+ [
+ dict(
+ type='Resize',
+ img_scale=[(400, 1333), (500, 1333), (600, 1333)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(
+ type='RandomCrop',
+ crop_type='absolute_range',
+ crop_size=(384, 600),
+ allow_negative_crop=True),
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333),
+ (576, 1333), (608, 1333), (640, 1333),
+ (672, 1333), (704, 1333), (736, 1333),
+ (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ override=True,
+ keep_ratio=True)
+ ]]),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=1),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+# test_pipeline, NOTE the Pad's size_divisor is different from the default
+# setting (size_divisor=32). While there is little effect on the performance
+# whether we use the default setting or use size_divisor=1.
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=1),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ type='AdamW',
+ lr=0.0001,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(
+ custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}))
+optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
+# learning policy
+lr_config = dict(policy='step', step=[100])
+runner = dict(type='EpochBasedRunner', max_epochs=150)
diff --git a/configs/detr/metafile.yml b/configs/detr/metafile.yml
new file mode 100644
index 00000000..a492a1db
--- /dev/null
+++ b/configs/detr/metafile.yml
@@ -0,0 +1,28 @@
+Collections:
+ - Name: DETR
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - AdamW
+ - Multi Scale Train
+ - Gradient Clip
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ResNet
+ - Transformer
+ Paper: https://arxiv.org/abs/2005.12872
+ README: configs/detr/README.md
+
+Models:
+ - Name: detr_r50_8x2_150e_coco
+ In Collection: DETR
+ Config: configs/detr/detr_r50_8x2_150e_coco.py
+ Metadata:
+ Training Memory (GB): 7.9
+ Epochs: 150
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth
diff --git a/configs/double_heads/README.md b/configs/double_heads/README.md
new file mode 100644
index 00000000..872211d2
--- /dev/null
+++ b/configs/double_heads/README.md
@@ -0,0 +1,22 @@
+# Rethinking Classification and Localization for Object Detection
+
+## Introduction
+
+
+
+```latex
+@article{wu2019rethinking,
+ title={Rethinking Classification and Localization for Object Detection},
+ author={Yue Wu and Yinpeng Chen and Lu Yuan and Zicheng Liu and Lijuan Wang and Hongzhi Li and Yun Fu},
+ year={2019},
+ eprint={1904.06493},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
+
+## Results and models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | pytorch | 1x | 6.8 | 9.5 | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130_220238.log.json) |
diff --git a/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py b/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..9b8118b4
--- /dev/null
+++ b/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,23 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ type='DoubleHeadRoIHead',
+ reg_roi_scale_factor=1.3,
+ bbox_head=dict(
+ _delete_=True,
+ type='DoubleConvFCBBoxHead',
+ num_convs=4,
+ num_fcs=2,
+ in_channels=256,
+ conv_out_channels=1024,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
diff --git a/configs/double_heads/metafile.yml b/configs/double_heads/metafile.yml
new file mode 100644
index 00000000..93f7b721
--- /dev/null
+++ b/configs/double_heads/metafile.yml
@@ -0,0 +1,30 @@
+Collections:
+ - Name: Rethinking Classification and Localization for Object Detection
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - RPN
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/pdf/1904.06493
+ README: configs/double_heads/README.md
+
+Models:
+ - Name: dh_faster_rcnn_r50_fpn_1x_coco
+ In Collection: Rethinking Classification and Localization for Object Detection
+ Config: configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.8
+ inference time (s/im): 0.10526
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth
diff --git a/configs/dynamic_rcnn/README.md b/configs/dynamic_rcnn/README.md
index 647831e0..2b087c3b 100644
--- a/configs/dynamic_rcnn/README.md
+++ b/configs/dynamic_rcnn/README.md
@@ -2,6 +2,8 @@
## Introduction
+
+
```
@article{DynamicRCNN,
author = {Hongkai Zhang and Hong Chang and Bingpeng Ma and Naiyan Wang and Xilin Chen},
@@ -13,6 +15,6 @@
## Results and Models
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| R-50 | pytorch | 1x | 3.8 | | 38.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x_20200618_095048.log.json) |
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | pytorch | 1x | 3.8 | | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x_20200618_095048.log.json) |
diff --git a/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py b/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py
deleted file mode 100644
index 60f9c504..00000000
--- a/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py
+++ /dev/null
@@ -1,28 +0,0 @@
-_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
-model = dict(
- roi_head=dict(
- type='DynamicRoIHead',
- bbox_head=dict(
- type='Shared2FCBBoxHead',
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=80,
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- reg_class_agnostic=False,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))))
-train_cfg = dict(
- rpn_proposal=dict(nms_thr=0.85),
- rcnn=dict(
- dynamic_rcnn=dict(
- iou_topk=75,
- beta_topk=10,
- update_iter_interval=100,
- initial_iou=0.4,
- initial_beta=1.0)))
-test_cfg = dict(rpn=dict(nms_thr=0.85))
diff --git a/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py b/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..f2deb99e
--- /dev/null
+++ b/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,28 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ type='DynamicRoIHead',
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ train_cfg=dict(
+ rpn_proposal=dict(nms=dict(iou_threshold=0.85)),
+ rcnn=dict(
+ dynamic_rcnn=dict(
+ iou_topk=75,
+ beta_topk=10,
+ update_iter_interval=100,
+ initial_iou=0.4,
+ initial_beta=1.0))),
+ test_cfg=dict(rpn=dict(nms=dict(iou_threshold=0.85))))
diff --git a/configs/dynamic_rcnn/metafile.yml b/configs/dynamic_rcnn/metafile.yml
new file mode 100644
index 00000000..5a3804a9
--- /dev/null
+++ b/configs/dynamic_rcnn/metafile.yml
@@ -0,0 +1,30 @@
+Collections:
+ - Name: Dynamic R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Dynamic R-CNN
+ - FPN
+ - RPN
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/pdf/2004.06002
+ README: configs/dynamic_rcnn/README.md
+
+Models:
+ - Name: dynamic_rcnn_r50_fpn_1x_coco
+ In Collection: Dynamic R-CNN
+ Config: configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth
diff --git a/configs/empirical_attention/README.md b/configs/empirical_attention/README.md
new file mode 100644
index 00000000..f8647bd8
--- /dev/null
+++ b/configs/empirical_attention/README.md
@@ -0,0 +1,23 @@
+# An Empirical Study of Spatial Attention Mechanisms in Deep Networks
+
+## Introduction
+
+
+
+```latex
+@article{zhu2019empirical,
+ title={An Empirical Study of Spatial Attention Mechanisms in Deep Networks},
+ author={Zhu, Xizhou and Cheng, Dazhi and Zhang, Zheng and Lin, Stephen and Dai, Jifeng},
+ journal={arXiv preprint arXiv:1904.05873},
+ year={2019}
+}
+```
+
+## Results and Models
+
+| Backbone | Attention Component | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------------------:|:----:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | 1111 | N | 1x | 8.0 | 13.8 | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130_210344.log.json) |
+| R-50 | 0010 | N | 1x | 4.2 | 18.4 | 39.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130_210125.log.json) |
+| R-50 | 1111 | Y | 1x | 8.0 | 12.7 | 42.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130_204442.log.json) |
+| R-50 | 0010 | Y | 1x | 4.2 | 17.1 | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130_210410.log.json) |
diff --git a/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
new file mode 100644
index 00000000..a544e3ab
--- /dev/null
+++ b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(
+ type='GeneralizedAttention',
+ spatial_range=-1,
+ num_heads=8,
+ attention_type='0010',
+ kv_stride=2),
+ stages=(False, False, True, True),
+ position='after_conv2')
+ ]))
diff --git a/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
new file mode 100644
index 00000000..bbefd27a
--- /dev/null
+++ b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ plugins=[
+ dict(
+ cfg=dict(
+ type='GeneralizedAttention',
+ spatial_range=-1,
+ num_heads=8,
+ attention_type='0010',
+ kv_stride=2),
+ stages=(False, False, True, True),
+ position='after_conv2')
+ ],
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py
new file mode 100644
index 00000000..13a4645b
--- /dev/null
+++ b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(
+ type='GeneralizedAttention',
+ spatial_range=-1,
+ num_heads=8,
+ attention_type='1111',
+ kv_stride=2),
+ stages=(False, False, True, True),
+ position='after_conv2')
+ ]))
diff --git a/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
new file mode 100644
index 00000000..b1f26c08
--- /dev/null
+++ b/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ plugins=[
+ dict(
+ cfg=dict(
+ type='GeneralizedAttention',
+ spatial_range=-1,
+ num_heads=8,
+ attention_type='1111',
+ kv_stride=2),
+ stages=(False, False, True, True),
+ position='after_conv2')
+ ],
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/empirical_attention/metafile.yml b/configs/empirical_attention/metafile.yml
new file mode 100644
index 00000000..bbea1f06
--- /dev/null
+++ b/configs/empirical_attention/metafile.yml
@@ -0,0 +1,74 @@
+Collections:
+ - Name: Empirical Attention
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Deformable Convolution
+ - FPN
+ - RPN
+ - ResNet
+ - RoIAlign
+ - Spatial Attention
+ Paper: https://arxiv.org/pdf/1904.05873
+ README: configs/empirical_attention/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_attention_1111_1x_coco
+ In Collection: Empirical Attention
+ Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.0
+ inference time (s/im): 0.07246
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth
+
+ - Name: faster_rcnn_r50_fpn_attention_0010_1x_coco
+ In Collection: Empirical Attention
+ Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ inference time (s/im): 0.05435
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth
+
+ - Name: faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco
+ In Collection: Empirical Attention
+ Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.0
+ inference time (s/im): 0.07874
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth
+
+ - Name: faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco
+ In Collection: Empirical Attention
+ Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ inference time (s/im): 0.05848
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth
diff --git a/configs/fast_rcnn/README.md b/configs/fast_rcnn/README.md
new file mode 100644
index 00000000..3be862a3
--- /dev/null
+++ b/configs/fast_rcnn/README.md
@@ -0,0 +1,16 @@
+# Fast R-CNN
+
+## Introduction
+
+
+
+```latex
+@inproceedings{girshick2015fast,
+ title={Fast r-cnn},
+ author={Girshick, Ross},
+ booktitle={Proceedings of the IEEE international conference on computer vision},
+ year={2015}
+}
+```
+
+## Results and models
diff --git a/configs/fast_rcnn/fast_rcnn_r101_caffe_fpn_1x_coco.py b/configs/fast_rcnn/fast_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..6db24b1e
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './fast_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/fast_rcnn/fast_rcnn_r101_fpn_1x_coco.py b/configs/fast_rcnn/fast_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..9a76b399
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fast_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/fast_rcnn/fast_rcnn_r101_fpn_2x_coco.py b/configs/fast_rcnn/fast_rcnn_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..c9d5b4be
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r101_fpn_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fast_rcnn_r50_fpn_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/fast_rcnn/fast_rcnn_r50_caffe_fpn_1x_coco.py b/configs/fast_rcnn/fast_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..178deb60
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = './fast_rcnn_r50_fpn_1x_coco.py'
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(type='BN', requires_grad=False), style='caffe'))
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=2000),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=None),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='ToTensor', keys=['proposals']),
+ dict(
+ type='ToDataContainer',
+ fields=[dict(key='proposals', stack=False)]),
+ dict(type='Collect', keys=['img', 'proposals']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py b/configs/fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..d2f080e9
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,52 @@
+_base_ = [
+ '../_base_/models/fast_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=2000),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=None),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='ToTensor', keys=['proposals']),
+ dict(
+ type='ToDataContainer',
+ fields=[dict(key='proposals', stack=False)]),
+ dict(type='Collect', keys=['img', 'proposals']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl',
+ pipeline=train_pipeline),
+ val=dict(
+ proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline),
+ test=dict(
+ proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline))
diff --git a/configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py b/configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..228e8564
--- /dev/null
+++ b/configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './fast_rcnn_r50_fpn_1x_coco.py'
+
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/faster_rcnn/README.md b/configs/faster_rcnn/README.md
index 6cfcffc0..261e69e1 100644
--- a/configs/faster_rcnn/README.md
+++ b/configs/faster_rcnn/README.md
@@ -1,7 +1,10 @@
# Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
## Introduction
-```
+
+
+
+```latex
@article{Ren_2017,
title={Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
@@ -14,33 +17,51 @@
## Results and models
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: |
-| R-50-FPN | caffe | 1x | 3.8 | | 37.8 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_20200504_180032.log.json) |
-| R-50-FPN | pytorch | 1x | 4.0 | 21.4 | 37.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
-| R-50-FPN | pytorch | 2x | - | - | 38.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_20200504_210434.log.json) |
-| R-101-FPN | caffe | 1x | 5.7 | | 39.8 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_20200504_180057.log.json) |
-| R-101-FPN | pytorch | 1x | 6.0 | 15.6 | 39.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130_204655.log.json) |
-| R-101-FPN | pytorch | 2x | - | - | 39.8 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_20200504_210455.log.json) |
-| X-101-32x4d-FPN | pytorch | 1x | 7.2 | 13.8 | 41.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203_000520.log.json) |
-| X-101-32x4d-FPN | pytorch | 2x | - | - | 41.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_20200506_041400.log.json) |
-| X-101-64x4d-FPN | pytorch | 1x | 10.3 | 9.4 | 42.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204_134340.log.json) |
-| X-101-64x4d-FPN | pytorch | 2x | - | - | 41.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033.log.json) |
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-DC5 | caffe | 1x | - | - | 37.2 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909-531f0f43.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909.log.json) |
+| R-50-FPN | caffe | 1x | 3.8 | | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_20200504_180032.log.json) |
+| R-50-FPN | pytorch | 1x | 4.0 | 21.4 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
+| R-50-FPN | pytorch | 2x | - | - | 38.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_20200504_210434.log.json) |
+| R-101-FPN | caffe | 1x | 5.7 | | 39.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_20200504_180057.log.json) |
+| R-101-FPN | pytorch | 1x | 6.0 | 15.6 | 39.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130_204655.log.json) |
+| R-101-FPN | pytorch | 2x | - | - | 39.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_20200504_210455.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.2 | 13.8 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203_000520.log.json) |
+| X-101-32x4d-FPN | pytorch | 2x | - | - | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_20200506_041400.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.3 | 9.4 | 42.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204_134340.log.json) |
+| X-101-64x4d-FPN | pytorch | 2x | - | - | 41.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033.log.json) |
## Different regression loss
+
We trained with R-50-FPN pytorch style backbone for 1x schedule.
-| Backbone | Loss type | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-------: | :------: | :------------: | :----: | :------: |
-| R-50-FPN | L1Loss | 4.0 | 21.4 | 37.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
-| R-50-FPN | IoULoss | | | 37.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco_20200506_095954.log.json) |
-| R-50-FPN | GIoULoss | | | 37.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco_20200505_161120.log.json) |
-| R-50-FPN | BoundedIoULoss | | | 37.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco_20200505_160738.log.json) |
+| Backbone | Loss type | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-------: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | L1Loss | 4.0 | 21.4 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
+| R-50-FPN | IoULoss | | | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco_20200506_095954.log.json) |
+| R-50-FPN | GIoULoss | | | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco_20200505_161120.log.json) |
+| R-50-FPN | BoundedIoULoss | | | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco_20200505_160738.log.json) |
## Pre-trained Models
+
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: |
-| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py) | caffe | 2x | 4.3 | | 39.7 |[model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_20200504_231813.log.json)
-| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py) | caffe | 3x | 4.3 | | 40.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20200504_163323.log.json)
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| [R-50-DC5](./faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py) | caffe | 1x | - | | 37.4 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851-b33d21b9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851.log.json) |
+| [R-50-DC5](./faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py) | caffe | 3x | - | | 38.7 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107-34a53b2c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107.log.json) |
+| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py) | caffe | 2x | 3.7 | | 39.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_20200504_231813.log.json) |
+| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py) | caffe | 3x | 3.7 | | 39.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-f002305e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054.log.json) |
+| [R-50-FPN](./faster_rcnn_r50_fpn_mstrain_3x_coco.py) | pytorch | 3x | 3.9 | | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco/faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-3a066a07.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210524_110822.log.json) |
+| [R-101-FPN](./faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py) | caffe | 3x | 5.6 | | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210526_095742-9178be4b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210526_095742.log.json) |
+| [R-101-FPN](./faster_rcnn_r101_fpn_mstrain_3x_coco.py) | pytorch | 3x | 5.8 | | 41.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco/faster_rcnn_r101_fpn_mstrain_3x_coco_20210524_110822-78060bff.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco/faster_rcnn_r101_fpn_mstrain_3x_coco_20210524_110822.log.json) |
+| [X-101-32x4d-FPN](./faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py) | pytorch | 3x | 7.0 | | 42.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210524_124151-e8595dde.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210524_124151.log.json) |
+| [X-101-32x8d-FPN](./faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py) | pytorch | 3x | 10.1 | | 42.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210604_182954-002e082a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210604_182954.log.json) |
+| [X-101-64x4d-FPN](./faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py) | pytorch | 3x | 10.0 | | 43.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210524_124528-26c63de6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210524_124528.log.json) |
+
+We further finetune some pre-trained models on the COCO subsets, which only contain only a few of the 80 categories.
+
+| Backbone | Style | Class name | Pre-traind model | Mem (GB) | box AP | Config | Download |
+| ------------------------------------------------------------ | ----- | ------------------ | ------------------------------------------------------------ | -------- | ------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
+| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py) | caffe | person | [R-50-FPN-Caffe-3x](./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py) | 3.7 | 55.8 | [config](./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929.log.json) |
+| [R-50-FPN](./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py) | caffe | person-bicycle-car | [R-50-FPN-Caffe-3x](./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py) | 3.7 | 44.1 | [config](./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car_20201216_173117-6eda6d92.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car_20201216_173117.log.json) |
diff --git a/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..95c7238f
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..4947bb4e
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
@@ -0,0 +1,47 @@
+_base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(
+ depth=101,
+ norm_cfg=dict(requires_grad=False),
+ norm_eval=True,
+ style='caffe'))
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..d2edab11
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py b/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..9367a3c8
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './faster_rcnn_r50_fpn_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..625ca552
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py
@@ -0,0 +1,3 @@
+_base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_c4_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_c4_1x_coco.py
new file mode 100644
index 00000000..92344a15
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_c4_1x_coco.py
@@ -0,0 +1,39 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_caffe_c4.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
new file mode 100644
index 00000000..ee2010c6
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
@@ -0,0 +1,37 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_caffe_dc5.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
new file mode 100644
index 00000000..14eaef2d
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
@@ -0,0 +1,42 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_caffe_dc5.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
new file mode 100644
index 00000000..403747f1
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py'
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..762c72be
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,37 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
new file mode 100644
index 00000000..4f1f376c
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
@@ -0,0 +1,9 @@
+_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
+model = dict(roi_head=dict(bbox_head=dict(num_classes=3)))
+classes = ('person', 'bicycle', 'car')
+data = dict(
+ train=dict(classes=classes),
+ val=dict(classes=classes),
+ test=dict(classes=classes))
+
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
new file mode 100644
index 00000000..b5dfb4fe
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
@@ -0,0 +1,9 @@
+_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
+model = dict(roi_head=dict(bbox_head=dict(num_classes=1)))
+classes = ('person', )
+data = dict(
+ train=dict(classes=classes),
+ val=dict(classes=classes),
+ test=dict(classes=classes))
+
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
new file mode 100644
index 00000000..4b87b2ce
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
@@ -0,0 +1,42 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..df58973f
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..9cef2e66
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
@@ -0,0 +1,43 @@
+_base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py
new file mode 100644
index 00000000..74dca24f
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py
@@ -0,0 +1,15 @@
+_base_ = 'faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
+
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[60000, 80000])
+
+# Runner type
+runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
+
+checkpoint_config = dict(interval=10000)
+evaluation = dict(interval=10000, metric='bbox')
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
index fb8e1b46..009bd93d 100644
--- a/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
@@ -1,5 +1,5 @@
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..e77a7fa8
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
@@ -0,0 +1,5 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
new file mode 100644
index 00000000..648081f1
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
@@ -0,0 +1,6 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(
+ reg_decoded_bbox=True,
+ loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py
new file mode 100644
index 00000000..5556c497
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py
@@ -0,0 +1,6 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(
+ reg_decoded_bbox=True,
+ loss_bbox=dict(type='GIoULoss', loss_weight=10.0))))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py
new file mode 100644
index 00000000..ddf663e4
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py
@@ -0,0 +1,6 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(
+ reg_decoded_bbox=True,
+ loss_bbox=dict(type='IoULoss', loss_weight=10.0))))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..faf8f924
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py
@@ -0,0 +1,3 @@
+_base_ = [
+ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
+]
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py
new file mode 100644
index 00000000..f897e7c5
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(train_cfg=dict(rcnn=dict(sampler=dict(type='OHEMSampler'))))
diff --git a/configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py b/configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py
new file mode 100644
index 00000000..759ae3a7
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.05,
+ nms=dict(type='soft_nms', iou_threshold=0.5),
+ max_per_img=100)))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..c536fccc
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..92760920
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './faster_rcnn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..e081be24
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
@@ -0,0 +1,15 @@
+_base_ = [
+ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
+]
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..7b916fff
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
@@ -0,0 +1,60 @@
+_base_ = [
+ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
+]
+model = dict(
+ pretrained='open-mmlab://detectron2/resnext101_32x8d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=8,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ style='pytorch'))
+
+# ResNeXt-101-32x8d model trained with Caffe2 at FB,
+# so the mean and std need to be changed.
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675],
+ std=[57.375, 57.120, 58.395],
+ to_rgb=False)
+
+# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
+# multiscale_mode='range'
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+# Use RepeatDataset to speed up training
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..b588b4ec
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..e87d21a4
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './faster_rcnn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..975bed82
--- /dev/null
+++ b/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
@@ -0,0 +1,15 @@
+_base_ = [
+ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
+]
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/faster_rcnn/metafile.yml b/configs/faster_rcnn/metafile.yml
new file mode 100644
index 00000000..b923d334
--- /dev/null
+++ b/configs/faster_rcnn/metafile.yml
@@ -0,0 +1,322 @@
+Collections:
+ - Name: Faster R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - RPN
+ - ResNet
+ - RoIPool
+ Paper: https://arxiv.org/abs/1506.01497
+ README: configs/faster_rcnn/README.md
+
+Models:
+ - Name: faster_rcnn_r50_caffe_dc5_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909-531f0f43.pth
+
+ - Name: faster_rcnn_r50_caffe_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth
+
+ - Name: faster_rcnn_r50_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.0
+ inference time (s/im): 0.04673
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
+
+ - Name: faster_rcnn_r50_fpn_2x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
+
+ - Name: faster_rcnn_r101_caffe_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.7
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth
+
+ - Name: faster_rcnn_r101_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.0641
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth
+
+ - Name: faster_rcnn_r101_fpn_2x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth
+
+ - Name: faster_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.2
+ inference time (s/im): 0.07246
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth
+
+ - Name: faster_rcnn_x101_32x4d_fpn_2x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth
+
+ - Name: faster_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.3
+ inference time (s/im): 0.10638
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
+
+ - Name: faster_rcnn_x101_64x4d_fpn_2x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth
+
+ - Name: faster_rcnn_r50_fpn_iou_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth
+
+ - Name: faster_rcnn_r50_fpn_giou_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth
+
+ - Name: faster_rcnn_r50_fpn_bounded_iou_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth
+
+ - Name: faster_rcnn_r50_caffe_dc5_mstrain_1x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851-b33d21b9.pth
+
+ - Name: faster_rcnn_r50_caffe_dc5_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107-34a53b2c.pth
+
+ - Name: faster_rcnn_r50_caffe_fpn_mstrain_2x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
+ Metadata:
+ Training Memory (GB): 4.3
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth
+
+ - Name: faster_rcnn_r50_caffe_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-f002305e.pth
+
+ - Name: faster_rcnn_r50_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 3.9
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco/faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-3a066a07.pth
+
+ - Name: faster_rcnn_r101_caffe_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 5.6
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210526_095742-9178be4b.pth
+
+ - Name: faster_rcnn_r101_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 5.8
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco/faster_rcnn_r101_fpn_mstrain_3x_coco_20210524_110822-78060bff.pth
+
+ - Name: faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210524_124151-e8595dde.pth
+
+ - Name: faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 10.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210604_182954-002e082a.pth
+
+ - Name: faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco
+ In Collection: Faster R-CNN
+ Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 10.0
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210524_124528-26c63de6.pth
diff --git a/configs/fcos/README.md b/configs/fcos/README.md
index c077fca2..ae5470af 100644
--- a/configs/fcos/README.md
+++ b/configs/fcos/README.md
@@ -2,7 +2,9 @@
## Introduction
-```
+
+
+```latex
@article{tian2019fcos,
title={FCOS: Fully Convolutional One-Stage Object Detection},
author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
@@ -13,25 +15,21 @@
## Results and Models
-| Backbone | Style | GN | MS train | Tricks | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:---------:|:-------:|:-------:|:--------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| R-50 | caffe | N | N | N | N | 1x | 5.2 | 22.9 | 36.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_4x4_1x_coco/fcos_r50_caffe_fpn_1x_4gpu_20200218-c229552f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_4x4_1x_coco/20200224_230410.log.json) |
-| R-50 | caffe | Y | N | N | N | 1x | 6.5 | 22.7 | 36.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco/fcos_r50_caffe_fpn_gn_1x_4gpu_20200218-7831950c.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco/20200130_004230.log.json) |
-| R-50 | caffe | Y | N | Y | N | 1x | - | - | 38.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco_20200603-67b3859f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco_20200603.log.json)|
-| R-50 | caffe | Y | N | Y | Y | 1x | - | - | 42.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_4x4_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_4x4_1x_coco_20200603-ed16da04.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_4x4_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_4x4_1x_coco_20200603.log.json)|
-| R-50 | caffe | Y | N | N | N | 2x | - | - | 36.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_4x4_2x_coco/fcos_r50_caffe_fpn_gn_2x_4gpu_20200218-8ceb5c76.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_4x4_2x_coco/20200130_004232.log.json) |
-| R-101 | caffe | Y | N | N | N | 1x | 10.2 | 17.3 | 39.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_4x4_1x_coco/fcos_r101_caffe_fpn_gn_1x_4gpu_20200218-13e2cc55.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_4x4_1x_coco/20200130_004231.log.json) |
-| R-101 | caffe | Y | N | N | N | 2x | - | - | 39.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_4x4_2x_coco/fcos_r101_caffe_fpn_gn_2x_4gpu_20200218-d2261033.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_4x4_2x_coco/20200130_004231.log.json) |
+| Backbone | Style | GN | MS train | Tricks | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | caffe | Y | N | N | N | 1x | 3.6 | 22.7 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/20201227_180009.log.json) |
+| R-50 | caffe | Y | N | Y | N | 1x | 3.7 | - | 38.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/20210105_135818.log.json)|
+| R-50 | caffe | Y | N | Y | Y | 1x | 3.8 | - | 42.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco-ae4d8b3d.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/20210105_224556.log.json)|
+| R-101 | caffe | Y | N | N | N | 1x | 5.5 | 17.3 | 39.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/fcos_r101_caffe_fpn_gn-head_1x_coco-0e37b982.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/20210103_155046.log.json) |
-
-| Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:---------:|:-------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| R-50 | caffe | Y | Y | 2x | 6.5 | 22.9 | 38.7 | [model]() | [log]() |
-| R-101 | caffe | Y | Y | 2x | 10.2 | 17.3 | 40.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fcos_mstrain_640_800_r101_caffe_fpn_gn_2x_4gpu_20200218-d8a4f4cf.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_4x4_2x_coco/20200130_004232.log.json) |
-| X-101 | pytorch | Y | Y | 2x | 10.0 | 9.3 | 42.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco_20200229-11f8c079.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco_20200229_222104.log.json) |
+| Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | caffe | Y | Y | 2x | 2.6 | 22.9 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco-d92ceeea.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/20201227_161900.log.json) |
+| R-101 | caffe | Y | Y | 2x | 5.5 | 17.3 | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco-511424d6.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/20210103_155046.log.json) |
+| X-101 | pytorch | Y | Y | 2x | 10.0 | 9.7 | 42.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco-ede514a8.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/20210114_133041.log.json) |
**Notes:**
-- To be consistent with the author's implementation, we use 4 GPUs with 4 images/GPU for R-50 and R-101 models, and 8 GPUs with 2 image/GPU for X-101 models.
+
- The X-101 backbone is X-101-64x4d.
- Tricks means setting `norm_on_bbox`, `centerness_on_reg`, `center_sampling` as `True`.
- DCN means using `DCNv2` in both backbone and head.
diff --git a/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py b/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
new file mode 100644
index 00000000..c25561e5
--- /dev/null
+++ b/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
@@ -0,0 +1,51 @@
+_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ bbox_head=dict(
+ norm_on_bbox=True,
+ centerness_on_reg=True,
+ dcn_on_last_conv=False,
+ center_sampling=True,
+ conv_bias=True,
+ loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
+ # training and testing settings
+ test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6)))
+
+# dataset settings
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer_config = dict(_delete_=True, grad_clip=None)
+
+lr_config = dict(warmup='linear')
diff --git a/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco.py b/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco.py
deleted file mode 100644
index 10dcf98a..00000000
--- a/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+++ /dev/null
@@ -1,55 +0,0 @@
-_base_ = 'fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py'
-
-model = dict(
- pretrained='open-mmlab://detectron2/resnet50_caffe',
- bbox_head=dict(
- norm_on_bbox=True,
- centerness_on_reg=True,
- dcn_on_last_conv=False,
- center_sampling=True,
- conv_bias=True,
- loss_bbox=dict(type='GIoULoss', loss_weight=1.0)))
-# training and testing settings
-test_cfg = dict(nms=dict(type='nms', iou_threshold=0.6))
-
-# dataset settings
-img_norm_cfg = dict(
- mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='DefaultFormatBundle'),
- # dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'img')), # meta_keys新增‘img’,用于可视化调试
-]
-test_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='MultiScaleFlipAug',
- img_scale=(1333, 800),
- flip=False,
- transforms=[
- dict(type='Resize', keep_ratio=True),
- dict(type='RandomFlip'),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='ImageToTensor', keys=['img']),
- dict(type='Collect', keys=['img']),
- ])
-]
-data = dict(
- samples_per_gpu=4,
- workers_per_gpu=4,
- train=dict(pipeline=train_pipeline),
- val=dict(pipeline=test_pipeline),
- test=dict(pipeline=test_pipeline))
-optimizer_config = dict(_delete_=True, grad_clip=None)
-
-lr_config = dict(warmup='linear')
diff --git a/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py b/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
new file mode 100644
index 00000000..72b90f88
--- /dev/null
+++ b/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
@@ -0,0 +1,54 @@
+_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)),
+ bbox_head=dict(
+ norm_on_bbox=True,
+ centerness_on_reg=True,
+ dcn_on_last_conv=True,
+ center_sampling=True,
+ conv_bias=True,
+ loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
+ # training and testing settings
+ test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6)))
+
+# dataset settings
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer_config = dict(_delete_=True, grad_clip=None)
+
+lr_config = dict(warmup='linear')
diff --git a/configs/fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py b/configs/fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py
new file mode 100644
index 00000000..9f502e7b
--- /dev/null
+++ b/configs/fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
diff --git a/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py b/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py
new file mode 100644
index 00000000..6c38266f
--- /dev/null
+++ b/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py b/configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
new file mode 100644
index 00000000..81f61c6e
--- /dev/null
+++ b/configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
@@ -0,0 +1,44 @@
+_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron/resnet101_caffe',
+ backbone=dict(depth=101))
+img_norm_cfg = dict(
+ mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py b/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py
new file mode 100644
index 00000000..6e124116
--- /dev/null
+++ b/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py
@@ -0,0 +1,105 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ type='FCOS',
+ pretrained='open-mmlab://detectron/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs=True,
+ extra_convs_on_inputs=False, # use P5
+ num_outs=5,
+ relu_before_extra_convs=True),
+ bbox_head=dict(
+ type='FCOSHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ strides=[8, 16, 32, 64, 128],
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='IoULoss', loss_weight=1.0),
+ loss_centerness=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100))
+img_norm_cfg = dict(
+ mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='constant',
+ warmup_iters=500,
+ warmup_ratio=1.0 / 3,
+ step=[8, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py b/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
index de92fffd..2816b16f 100644
--- a/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+++ b/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
@@ -1,105 +1,4 @@
-_base_ = [
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
-]
-# model settings
-model = dict(
- type='SingleStageDetector',
- pretrained='open-mmlab://detectron/resnet50_caffe',
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=False), # 注意requires_grad
- norm_eval=True,
- style='caffe'), # 注意style
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- start_level=1,
- add_extra_convs=True,
- extra_convs_on_inputs=False, # use P5,而不是C5
- num_outs=5,
- relu_before_extra_convs=True), # P5模式下有额外的relu层,C5不需要是因为resnet输出最后就是relu
- bbox_head=dict( # 可以发现比retinanet head简单很多
- type='FCOSHead',
- num_classes=80,
- in_channels=256,
- stacked_convs=4,
- feat_channels=256,
- strides=[8, 16, 32, 64, 128],
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox=dict(type='IoULoss', loss_weight=1.0),
- loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))
-# training and testing settings
-train_cfg = dict( # 在fcos里面是不需要的
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100)
-img_norm_cfg = dict(
- mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='DefaultFormatBundle'),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
-]
-test_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='MultiScaleFlipAug',
- img_scale=(1333, 800),
- flip=False,
- transforms=[
- dict(type='Resize', keep_ratio=True),
- dict(type='RandomFlip'),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='ImageToTensor', keys=['img']),
- dict(type='Collect', keys=['img']),
- ])
-]
-data = dict(
- samples_per_gpu=4,
- workers_per_gpu=4,
- train=dict(pipeline=train_pipeline),
- val=dict(pipeline=test_pipeline),
- test=dict(pipeline=test_pipeline))
-# optimizer
-optimizer = dict(
- lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) # bias不进行权重衰减,bias采用2倍学习率
-optimizer_config = dict(
- _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
-# learning policy
-lr_config = dict(
- policy='step',
- warmup='constant',
- warmup_iters=500,
- warmup_ratio=1.0 / 3,
- step=[8, 11])
-total_epochs = 12
+# TODO: Remove this config after benchmarking all related configs
+_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+
+data = dict(samples_per_gpu=4, workers_per_gpu=4)
diff --git a/configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py b/configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
new file mode 100644
index 00000000..497d03f6
--- /dev/null
+++ b/configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
@@ -0,0 +1,39 @@
+_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py b/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
new file mode 100644
index 00000000..fc576f6a
--- /dev/null
+++ b/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
@@ -0,0 +1,59 @@
+_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/fcos/metafile.yml b/configs/fcos/metafile.yml
new file mode 100644
index 00000000..44a98861
--- /dev/null
+++ b/configs/fcos/metafile.yml
@@ -0,0 +1,111 @@
+Collections:
+ - Name: FCOS
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - Group Normalization
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.01355
+ README: configs/fcos/README.md
+
+Models:
+ - Name: fcos_r50_caffe_fpn_gn-head_1x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.6
+ inference time (s/im): 0.04405
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.6
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth
+
+ - Name: fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.7
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth
+
+ - Name: fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.3
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco-ae4d8b3d.pth
+
+ - Name: fcos_r101_caffe_fpn_gn-head_1x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ inference time (s/im): 0.0578
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/fcos_r101_caffe_fpn_gn-head_1x_coco-0e37b982.pth
+
+ - Name: fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
+ Metadata:
+ Training Memory (GB): 2.6
+ inference time (s/im): 0.04367
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.5
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco-d92ceeea.pth
+
+ - Name: fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ inference time (s/im): 0.0578
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.8
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco-511424d6.pth
+
+ - Name: fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco
+ In Collection: FCOS
+ Config: configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
+ Metadata:
+ Training Memory (GB): 10.0
+ inference time (s/im): 0.10309
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.6
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco-ede514a8.pth
diff --git a/configs/foveabox/README.md b/configs/foveabox/README.md
new file mode 100644
index 00000000..b9b5684e
--- /dev/null
+++ b/configs/foveabox/README.md
@@ -0,0 +1,41 @@
+# FoveaBox: Beyond Anchor-based Object Detector
+
+
+
+FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper [https://arxiv.org/abs/1904.03797](https://arxiv.org/abs/1904.03797):
+Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object.
+
+## Main Results
+
+### Results on R50/101-FPN
+
+| Backbone | Style | align | ms-train| Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | pytorch | N | N | 1x | 5.6 | 24.1 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219-ee4d5303.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219_223025.log.json) |
+| R-50 | pytorch | N | N | 2x | 5.6 | - | 37.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203-2df792b1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203_112043.log.json) |
+| R-50 | pytorch | Y | N | 2x | 8.1 | 19.4 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203_134252.log.json) |
+| R-50 | pytorch | Y | Y | 2x | 8.1 | 18.3 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205-85ce26cb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205_112557.log.json) |
+| R-101 | pytorch | N | N | 1x | 9.2 | 17.4 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219-05e38f1c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219_011740.log.json) |
+| R-101 | pytorch | N | N | 2x | 11.7 | - | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208-02320ea4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208_202059.log.json) |
+| R-101 | pytorch | Y | N | 2x | 11.7 | 14.7 | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208-c39a027a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208_203337.log.json) |
+| R-101 | pytorch | Y | Y | 2x | 11.7 | 14.7 | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208-649c5eb6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208_202124.log.json) |
+
+[1] *1x and 2x mean the model is trained for 12 and 24 epochs, respectively.* \
+[2] *Align means utilizing deformable convolution to align the cls branch.* \
+[3] *All results are obtained with a single model and without any test time data augmentation.*\
+[4] *We use 4 GPUs for training.*
+
+Any pull requests or issues are welcome.
+
+## Citations
+
+Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.
+
+```latex
+@article{kong2019foveabox,
+ title={FoveaBox: Beyond Anchor-based Object Detector},
+ author={Kong, Tao and Sun, Fuchun and Liu, Huaping and Jiang, Yuning and Shi, Jianbo},
+ journal={arXiv preprint arXiv:1904.03797},
+ year={2019}
+}
+```
diff --git a/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py b/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
new file mode 100644
index 00000000..30dca04b
--- /dev/null
+++ b/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ with_deform=True,
+ norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py b/configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
new file mode 100644
index 00000000..a02a814f
--- /dev/null
+++ b/configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
@@ -0,0 +1,27 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ with_deform=True,
+ norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py b/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
new file mode 100644
index 00000000..e7265bcd
--- /dev/null
+++ b/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+model = dict(
+ bbox_head=dict(
+ with_deform=True,
+ norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py b/configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
new file mode 100644
index 00000000..8fc39bea
--- /dev/null
+++ b/configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
@@ -0,0 +1,25 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+model = dict(
+ bbox_head=dict(
+ with_deform=True,
+ norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py b/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py
new file mode 100644
index 00000000..907bede1
--- /dev/null
+++ b/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py b/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py
new file mode 100644
index 00000000..92963935
--- /dev/null
+++ b/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fovea_r50_fpn_4x4_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py b/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py
new file mode 100644
index 00000000..fd392570
--- /dev/null
+++ b/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py
@@ -0,0 +1,52 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ type='FOVEA',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ num_outs=5,
+ add_extra_convs='on_input'),
+ bbox_head=dict(
+ type='FoveaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ strides=[8, 16, 32, 64, 128],
+ base_edge_list=[16, 32, 64, 128, 256],
+ scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
+ sigma=0.4,
+ with_deform=False,
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=1.50,
+ alpha=0.4,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(),
+ test_cfg=dict(
+ nms_pre=1000,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100))
+data = dict(samples_per_gpu=4, workers_per_gpu=4)
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py b/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py
new file mode 100644
index 00000000..68ce4d25
--- /dev/null
+++ b/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/foveabox/metafile.yml b/configs/foveabox/metafile.yml
new file mode 100644
index 00000000..d07f4f76
--- /dev/null
+++ b/configs/foveabox/metafile.yml
@@ -0,0 +1,124 @@
+Collections:
+ - Name: FoveaBox
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 4x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.03797
+ README: configs/foveabox/README.md
+
+Models:
+ - Name: fovea_r50_fpn_4x4_1x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.6
+ inference time (s/im): 0.04149
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219-ee4d5303.pth
+
+ - Name: fovea_r50_fpn_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 5.6
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203-2df792b1.pth
+
+ - Name: fovea_align_r50_fpn_gn-head_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 8.1
+ inference time (s/im): 0.05155
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth
+
+ - Name: fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 8.1
+ inference time (s/im): 0.05464
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205-85ce26cb.pth
+
+ - Name: fovea_r101_fpn_4x4_1x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.2
+ inference time (s/im): 0.05747
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219-05e38f1c.pth
+
+ - Name: fovea_r101_fpn_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 11.7
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208-02320ea4.pth
+
+ - Name: fovea_align_r101_fpn_gn-head_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 11.7
+ inference time (s/im): 0.06803
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208-c39a027a.pth
+
+ - Name: fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco
+ In Collection: FoveaBox
+ Config: configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 11.7
+ inference time (s/im): 0.06803
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208-649c5eb6.pth
diff --git a/configs/fp16/README.md b/configs/fp16/README.md
new file mode 100644
index 00000000..171aa1b9
--- /dev/null
+++ b/configs/fp16/README.md
@@ -0,0 +1,24 @@
+# Mixed Precision Training
+
+## Introduction
+
+
+
+```latex
+@article{micikevicius2017mixed,
+ title={Mixed precision training},
+ author={Micikevicius, Paulius and Narang, Sharan and Alben, Jonah and Diamos, Gregory and Elsen, Erich and Garcia, David and Ginsburg, Boris and Houston, Michael and Kuchaiev, Oleksii and Venkatesh, Ganesh and others},
+ journal={arXiv preprint arXiv:1710.03740},
+ year={2017}
+}
+```
+
+## Results and Models
+
+| Architecture | Backbone | Style | Conv | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:------------:|:---------:|:-------:|:------------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| Faster R-CNN | R-50 | pytorch | - | 1x | 3.4 | 28.8 | 37.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204_143530.log.json) |
+| Mask R-CNN | R-50 | pytorch | - | 1x | 3.6 | 24.1 | 38.1 | 34.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205_130539.log.json) |
+| Mask R-CNN | R-50 | pytorch | dconv(c3-c5) | 1x | 3.0 | | 41.9 | 37.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247.log.json) |
+| Mask R-CNN | R-50 | pytorch | mdconv(c3-c5)| 1x | 3.1 | | 42.0 | 37.6 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434.log.json) |
+| Retinanet | R-50 | pytorch | - | 1x | 2.8 | 31.6 | 36.4 | |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702_020127.log.json) |
diff --git a/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py b/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
new file mode 100644
index 00000000..78fa5b6c
--- /dev/null
+++ b/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
@@ -0,0 +1,3 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+# fp16 settings
+fp16 = dict(loss_scale=512.)
diff --git a/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py b/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
new file mode 100644
index 00000000..f506ea81
--- /dev/null
+++ b/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
@@ -0,0 +1,3 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+# fp16 settings
+fp16 = dict(loss_scale=512.)
diff --git a/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py b/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..ee5cca7d
--- /dev/null
+++ b/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,7 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
+
+fp16 = dict(loss_scale=512.)
diff --git a/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py b/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..7e21454b
--- /dev/null
+++ b/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
@@ -0,0 +1,7 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
+
+fp16 = dict(loss_scale=512.)
diff --git a/configs/fp16/metafile.yml b/configs/fp16/metafile.yml
new file mode 100644
index 00000000..079a268f
--- /dev/null
+++ b/configs/fp16/metafile.yml
@@ -0,0 +1,56 @@
+Collections:
+ - Name: FP16
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - Mixed Precision Training
+ Training Resources: 8x NVIDIA V100 GPUs
+ Paper: https://arxiv.org/abs/1710.03740
+ README: configs/fp16/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_fp16_1x_coco
+ In Collection: FP16
+ Config: configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.4
+ inference time (s/im): 0.03472
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth
+
+ - Name: mask_rcnn_r50_fpn_fp16_1x_coco
+ In Collection: FP16
+ Config: configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.6
+ inference time (s/im): 0.04149
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth
+
+ - Name: retinanet_r50_fpn_fp16_1x_coco
+ In Collection: FP16
+ Config: configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
+ Metadata:
+ Training Memory (GB): 2.8
+ inference time (s/im): 0.03165
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth
diff --git a/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py b/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
new file mode 100644
index 00000000..519c4dba
--- /dev/null
+++ b/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
@@ -0,0 +1,3 @@
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
+# fp16 settings
+fp16 = dict(loss_scale=512.)
diff --git a/configs/fpg/README.md b/configs/fpg/README.md
new file mode 100644
index 00000000..10243e08
--- /dev/null
+++ b/configs/fpg/README.md
@@ -0,0 +1,29 @@
+# Feature Pyramid Grids
+
+## Introduction
+
+```latex
+@article{chen2020feature,
+ title={Feature pyramid grids},
+ author={Chen, Kai and Cao, Yuhang and Loy, Chen Change and Lin, Dahua and Feichtenhofer, Christoph},
+ journal={arXiv preprint arXiv:2004.03580},
+ year={2020}
+}
+```
+
+## Results and Models
+
+We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN.
+All backbones are Resnet-50 in pytorch style.
+
+| Method | Neck | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:------------:|:-----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:-------:|:--------:|
+| Faster R-CNN | FPG | 50e | 20.0 | - | 42.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco-76220505.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/20210218_223520.log.json) |
+| Faster R-CNN | FPG-chn128 | 50e | 11.9 | - | 41.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco-24257de9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/20210218_221412.log.json) |
+| Mask R-CNN | FPG | 50e | 23.2 | - | 42.7 | 37.8 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco-c5860453.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/20210222_205447.log.json) |
+| Mask R-CNN | FPG-chn128 | 50e | 15.3 | - | 41.7 | 36.9 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco-5c6ea10d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/20210223_025039.log.json) |
+| RetinaNet | FPG | 50e | 20.8 | - | 40.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco-46fdd1c6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/20210225_143957.log.json) |
+| RetinaNet | FPG-chn128 | 50e | 19.9 | - | 40.3 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco-5cf33c76.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/20210225_184328.log.json) |
+
+**Note**: Chn128 means to decrease the number of channels of features and convs from 256 (default) to 128 in
+Neck and BBox Head, which can greatly decrease memory consumption without sacrificing much precision.
diff --git a/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py b/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py
new file mode 100644
index 00000000..4535034e
--- /dev/null
+++ b/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py
@@ -0,0 +1,9 @@
+_base_ = 'faster_rcnn_r50_fpg_crop640_50e_coco.py'
+
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ neck=dict(out_channels=128, inter_channels=128),
+ rpn_head=dict(in_channels=128),
+ roi_head=dict(
+ bbox_roi_extractor=dict(out_channels=128),
+ bbox_head=dict(in_channels=128)))
diff --git a/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py b/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py
new file mode 100644
index 00000000..3ab2a2c5
--- /dev/null
+++ b/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py
@@ -0,0 +1,48 @@
+_base_ = 'faster_rcnn_r50_fpn_crop640_50e_coco.py'
+
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ neck=dict(
+ type='FPG',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ inter_channels=256,
+ num_outs=5,
+ stack_times=9,
+ paths=['bu'] * 9,
+ same_down_trans=None,
+ same_up_trans=dict(
+ type='conv',
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_lateral_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_down_trans=dict(
+ type='interpolation_conv',
+ mode='nearest',
+ kernel_size=3,
+ norm_cfg=norm_cfg,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ across_up_trans=None,
+ across_skip_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ output_trans=dict(
+ type='last_conv',
+ kernel_size=3,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ norm_cfg=norm_cfg,
+ skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
diff --git a/configs/fpg/faster_rcnn_r50_fpn_crop640_50e_coco.py b/configs/fpg/faster_rcnn_r50_fpn_crop640_50e_coco.py
new file mode 100644
index 00000000..95f4e91f
--- /dev/null
+++ b/configs/fpg/faster_rcnn_r50_fpn_crop640_50e_coco.py
@@ -0,0 +1,68 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ backbone=dict(norm_cfg=norm_cfg, norm_eval=False),
+ neck=dict(norm_cfg=norm_cfg),
+ roi_head=dict(bbox_head=dict(norm_cfg=norm_cfg)))
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=(640, 640),
+ ratio_range=(0.8, 1.2),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=(640, 640)),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size=(640, 640)),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=4,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+optimizer = dict(
+ type='SGD',
+ lr=0.08,
+ momentum=0.9,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.1,
+ step=[30, 40])
+# runtime settings
+runner = dict(max_epochs=50)
+evaluation = dict(interval=2)
diff --git a/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py b/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py
new file mode 100644
index 00000000..baa4a5af
--- /dev/null
+++ b/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py
@@ -0,0 +1,10 @@
+_base_ = 'mask_rcnn_r50_fpg_crop640_50e_coco.py'
+
+model = dict(
+ neck=dict(out_channels=128, inter_channels=128),
+ rpn_head=dict(in_channels=128),
+ roi_head=dict(
+ bbox_roi_extractor=dict(out_channels=128),
+ bbox_head=dict(in_channels=128),
+ mask_roi_extractor=dict(out_channels=128),
+ mask_head=dict(in_channels=128)))
diff --git a/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py b/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py
new file mode 100644
index 00000000..3c9ea276
--- /dev/null
+++ b/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py
@@ -0,0 +1,48 @@
+_base_ = 'mask_rcnn_r50_fpn_crop640_50e_coco.py'
+
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ neck=dict(
+ type='FPG',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ inter_channels=256,
+ num_outs=5,
+ stack_times=9,
+ paths=['bu'] * 9,
+ same_down_trans=None,
+ same_up_trans=dict(
+ type='conv',
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_lateral_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_down_trans=dict(
+ type='interpolation_conv',
+ mode='nearest',
+ kernel_size=3,
+ norm_cfg=norm_cfg,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ across_up_trans=None,
+ across_skip_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ output_trans=dict(
+ type='last_conv',
+ kernel_size=3,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ norm_cfg=norm_cfg,
+ skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
diff --git a/configs/fpg/mask_rcnn_r50_fpn_crop640_50e_coco.py b/configs/fpg/mask_rcnn_r50_fpn_crop640_50e_coco.py
new file mode 100644
index 00000000..8dfdbb44
--- /dev/null
+++ b/configs/fpg/mask_rcnn_r50_fpn_crop640_50e_coco.py
@@ -0,0 +1,74 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ backbone=dict(norm_cfg=norm_cfg, norm_eval=False),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ norm_cfg=norm_cfg,
+ num_outs=5),
+ roi_head=dict(
+ bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg)))
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=(640, 640),
+ ratio_range=(0.8, 1.2),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=(640, 640)),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size=(640, 640)),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=4,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+optimizer = dict(
+ type='SGD',
+ lr=0.08,
+ momentum=0.9,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.1,
+ step=[30, 40])
+# runtime settings
+runner = dict(max_epochs=50)
+evaluation = dict(interval=2)
diff --git a/configs/fpg/metafile.yml b/configs/fpg/metafile.yml
new file mode 100644
index 00000000..e514d8d0
--- /dev/null
+++ b/configs/fpg/metafile.yml
@@ -0,0 +1,99 @@
+Collections:
+ - Name: Feature Pyramid Grids
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Feature Pyramid Grids
+ Paper: https://arxiv.org/abs/2004.03580
+ README: configs/fpg/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpg_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 20.0
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco-76220505.pth
+
+ - Name: faster_rcnn_r50_fpg-chn128_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 11.9
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco-24257de9.pth
+
+ - Name: mask_rcnn_r50_fpg_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 23.2
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco-c5860453.pth
+
+ - Name: mask_rcnn_r50_fpg-chn128_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 15.3
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco-5c6ea10d.pth
+
+ - Name: retinanet_r50_fpg_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 20.8
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco-46fdd1c6.pth
+
+ - Name: retinanet_r50_fpg-chn128_crop640_50e_coco
+ In Collection: Feature Pyramid Grids
+ Config: configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 19.9
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco-5cf33c76.pth
diff --git a/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py b/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py
new file mode 100644
index 00000000..9a6cf7e5
--- /dev/null
+++ b/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py
@@ -0,0 +1,5 @@
+_base_ = 'retinanet_r50_fpg_crop640_50e_coco.py'
+
+model = dict(
+ neck=dict(out_channels=128, inter_channels=128),
+ bbox_head=dict(in_channels=128))
diff --git a/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py b/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py
new file mode 100644
index 00000000..504ed5ec
--- /dev/null
+++ b/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py
@@ -0,0 +1,53 @@
+_base_ = '../nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py'
+
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ neck=dict(
+ _delete_=True,
+ type='FPG',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ inter_channels=256,
+ num_outs=5,
+ add_extra_convs=True,
+ start_level=1,
+ stack_times=9,
+ paths=['bu'] * 9,
+ same_down_trans=None,
+ same_up_trans=dict(
+ type='conv',
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_lateral_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ across_down_trans=dict(
+ type='interpolation_conv',
+ mode='nearest',
+ kernel_size=3,
+ norm_cfg=norm_cfg,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ across_up_trans=None,
+ across_skip_trans=dict(
+ type='conv',
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ inplace=False,
+ order=('act', 'conv', 'norm')),
+ output_trans=dict(
+ type='last_conv',
+ kernel_size=3,
+ order=('act', 'conv', 'norm'),
+ inplace=False),
+ norm_cfg=norm_cfg,
+ skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
+
+evaluation = dict(interval=2)
diff --git a/configs/free_anchor/README.md b/configs/free_anchor/README.md
new file mode 100644
index 00000000..5014bc07
--- /dev/null
+++ b/configs/free_anchor/README.md
@@ -0,0 +1,27 @@
+# FreeAnchor: Learning to Match Anchors for Visual Object Detection
+
+## Introduction
+
+
+
+```latex
+@inproceedings{zhang2019freeanchor,
+ title = {{FreeAnchor}: Learning to Match Anchors for Visual Object Detection},
+ author = {Zhang, Xiaosong and Wan, Fang and Liu, Chang and Ji, Rongrong and Ye, Qixiang},
+ booktitle = {Neural Information Processing Systems},
+ year = {2019}
+}
+```
+
+## Results and Models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:--------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | pytorch | 1x | 4.9 | 18.4 | 38.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco/retinanet_free_anchor_r50_fpn_1x_coco_20200130-0f67375f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco/retinanet_free_anchor_r50_fpn_1x_coco_20200130_095625.log.json) |
+| R-101 | pytorch | 1x | 6.8 | 14.9 | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco/retinanet_free_anchor_r101_fpn_1x_coco_20200130-358324e6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco/retinanet_free_anchor_r101_fpn_1x_coco_20200130_100723.log.json) |
+| X-101-32x4d | pytorch | 1x | 8.1 | 11.1 | 41.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco/retinanet_free_anchor_x101_32x4d_fpn_1x_coco_20200130-d4846968.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco/retinanet_free_anchor_x101_32x4d_fpn_1x_coco_20200130_095627.log.json) |
+
+**Notes:**
+
+- We use 8 GPUs with 2 images/GPU.
+- For more settings and models, please refer to the [official repo](https://github.com/zhangxiaosong18/FreeAnchor).
diff --git a/configs/free_anchor/metafile.yml b/configs/free_anchor/metafile.yml
new file mode 100644
index 00000000..846b32c7
--- /dev/null
+++ b/configs/free_anchor/metafile.yml
@@ -0,0 +1,56 @@
+Collections:
+ - Name: FreeAnchor
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FreeAnchor
+ - ResNet
+ Paper: https://arxiv.org/abs/1909.02466
+ README: configs/free_anchor/README.md
+
+Models:
+ - Name: retinanet_free_anchor_r50_fpn_1x_coco
+ In Collection: FreeAnchor
+ Config: configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.9
+ inference time (s/im): 0.05435
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco/retinanet_free_anchor_r50_fpn_1x_coco_20200130-0f67375f.pth
+
+ - Name: retinanet_free_anchor_r101_fpn_1x_coco
+ In Collection: FreeAnchor
+ Config: configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.8
+ inference time (s/im): 0.06711
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco/retinanet_free_anchor_r101_fpn_1x_coco_20200130-358324e6.pth
+
+ - Name: retinanet_free_anchor_x101_32x4d_fpn_1x_coco
+ In Collection: FreeAnchor
+ Config: configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.1
+ inference time (s/im): 0.09009
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco/retinanet_free_anchor_x101_32x4d_fpn_1x_coco_20200130-d4846968.pth
diff --git a/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py b/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..9917d5c4
--- /dev/null
+++ b/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './retinanet_free_anchor_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py b/configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..28f983c2
--- /dev/null
+++ b/configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py
@@ -0,0 +1,22 @@
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ bbox_head=dict(
+ _delete_=True,
+ type='FreeAnchorRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.75)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py b/configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..e2640c07
--- /dev/null
+++ b/configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = './retinanet_free_anchor_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch'))
diff --git a/configs/fsaf/README.md b/configs/fsaf/README.md
new file mode 100644
index 00000000..4d64392d
--- /dev/null
+++ b/configs/fsaf/README.md
@@ -0,0 +1,45 @@
+# Feature Selective Anchor-Free Module for Single-Shot Object Detection
+
+
+
+FSAF is an anchor-free method published in CVPR2019 ([https://arxiv.org/pdf/1903.00621.pdf](https://arxiv.org/pdf/1903.00621.pdf)).
+Actually it is equivalent to the anchor-based method with only one anchor at each feature map position in each FPN level.
+And this is how we implemented it.
+Only the anchor-free branch is released for its better compatibility with the current framework and less computational budget.
+
+In the original paper, feature maps within the central 0.2-0.5 area of a gt box are tagged as ignored. However,
+it is empirically found that a hard threshold (0.2-0.2) gives a further gain on the performance. (see the table below)
+
+## Main Results
+
+### Results on R50/R101/X101-FPN
+
+| Backbone | ignore range | ms-train| Lr schd |Train Mem (GB)| Train time (s/iter) | Inf time (fps) | box AP | Config | Download |
+|:----------:| :-------: |:-------:|:-------:|:------------:|:---------------:|:--------------:|:-------------:|:------:|:--------:|
+| R-50 | 0.2-0.5 | N | 1x | 3.15 | 0.43 | 12.3 | 36.0 (35.9) | | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco_20200715-b555b0e0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco_20200715_094657.log.json) |
+| R-50 | 0.2-0.2 | N | 1x | 3.15 | 0.43 | 13.0 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r50_fpn_1x_coco/fsaf_r50_fpn_1x_coco-94ccc51f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r50_fpn_1x_coco/fsaf_r50_fpn_1x_coco_20200428_072327.log.json)|
+| R-101 | 0.2-0.2 | N | 1x | 5.08 | 0.58 | 10.8 | 39.3 (37.9) | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r101_fpn_1x_coco/fsaf_r101_fpn_1x_coco-9e71098f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r101_fpn_1x_coco/fsaf_r101_fpn_1x_coco_20200428_160348.log.json)|
+| X-101 | 0.2-0.2 | N | 1x | 9.38 | 1.23 | 5.6 | 42.4 (41.0) | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_x101_64x4d_fpn_1x_coco/fsaf_x101_64x4d_fpn_1x_coco-e3f6e6fd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_x101_64x4d_fpn_1x_coco/fsaf_x101_64x4d_fpn_1x_coco_20200428_160424.log.json)|
+
+**Notes:**
+
+- *1x means the model is trained for 12 epochs.*
+- *AP values in the brackets represent those reported in the original paper.*
+- *All results are obtained with a single model and single-scale test.*
+- *X-101 backbone represents ResNext-101-64x4d.*
+- *All pretrained backbones use pytorch style.*
+- *All models are trained on 8 Titan-XP gpus and tested on a single gpu.*
+
+## Citations
+
+BibTeX reference is as follows.
+
+```latex
+@inproceedings{zhu2019feature,
+ title={Feature Selective Anchor-Free Module for Single-Shot Object Detection},
+ author={Zhu, Chenchen and He, Yihui and Savvides, Marios},
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={840--849},
+ year={2019}
+}
+```
diff --git a/configs/fsaf/fsaf_r101_fpn_1x_coco.py b/configs/fsaf/fsaf_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..95a7ae2d
--- /dev/null
+++ b/configs/fsaf/fsaf_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './fsaf_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/fsaf/fsaf_r50_fpn_1x_coco.py b/configs/fsaf/fsaf_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..67f3ec1c
--- /dev/null
+++ b/configs/fsaf/fsaf_r50_fpn_1x_coco.py
@@ -0,0 +1,48 @@
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
+# model settings
+model = dict(
+ type='FSAF',
+ bbox_head=dict(
+ type='FSAFHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ reg_decoded_bbox=True,
+ # Only anchor-free branch is implemented. The anchor generator only
+ # generates 1 anchor at each feature point, as a substitute of the
+ # grid of features.
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=1,
+ scales_per_octave=1,
+ ratios=[1.0],
+ strides=[8, 16, 32, 64, 128]),
+ bbox_coder=dict(_delete_=True, type='TBLRBBoxCoder', normalizer=4.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0,
+ reduction='none'),
+ loss_bbox=dict(
+ _delete_=True,
+ type='IoULoss',
+ eps=1e-6,
+ loss_weight=1.0,
+ reduction='none')),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ _delete_=True,
+ type='CenterRegionAssigner',
+ pos_scale=0.2,
+ neg_scale=0.2,
+ min_pos_iof=0.01),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=10, norm_type=2))
diff --git a/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py b/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..b966f249
--- /dev/null
+++ b/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './fsaf_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/fsaf/metafile.yml b/configs/fsaf/metafile.yml
new file mode 100644
index 00000000..90a31b7a
--- /dev/null
+++ b/configs/fsaf/metafile.yml
@@ -0,0 +1,57 @@
+Collections:
+ - Name: FSAF
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA Titan-XP GPUs
+ Architecture:
+ - FPN
+ - FSAF
+ - ResNet
+ Paper: https://arxiv.org/abs/1903.00621
+ README: configs/fsaf/README.md
+
+Models:
+ - Name: fsaf_r50_fpn_1x_coco
+ In Collection: FSAF
+ Config: configs/fsaf/fsaf_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.15
+ inference time (s/im): 0.07692
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r50_fpn_1x_coco/fsaf_r50_fpn_1x_coco-94ccc51f.pth
+
+ - Name: fsaf_r101_fpn_1x_coco
+ In Collection: FSAF
+ Config: configs/fsaf/fsaf_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.08
+ inference time (s/im): 0.09259
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.3 (37.9)
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r101_fpn_1x_coco/fsaf_r101_fpn_1x_coco-9e71098f.pth
+
+ - Name: fsaf_x101_64x4d_fpn_1x_coco
+ In Collection: FSAF
+ Config: configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.38
+ inference time (s/im): 0.17857
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.4 (41.0)
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_x101_64x4d_fpn_1x_coco/fsaf_x101_64x4d_fpn_1x_coco-e3f6e6fd.pth
diff --git a/configs/gcnet/README.md b/configs/gcnet/README.md
new file mode 100644
index 00000000..cd240a2d
--- /dev/null
+++ b/configs/gcnet/README.md
@@ -0,0 +1,59 @@
+# GCNet for Object Detection
+
+By [Yue Cao](http://yue-cao.me), [Jiarui Xu](http://jerryxu.net), [Stephen Lin](https://scholar.google.com/citations?user=c3PYmxUAAAAJ&hl=en), Fangyun Wei, [Han Hu](https://sites.google.com/site/hanhushomepage/).
+
+We provide config files to reproduce the results in the paper for
+["GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond"](https://arxiv.org/abs/1904.11492) on COCO object detection.
+
+## Introduction
+
+
+
+**GCNet** is initially described in [arxiv](https://arxiv.org/abs/1904.11492). Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.
+
+## Citing GCNet
+
+```latex
+@article{cao2019GCNet,
+ title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
+ author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
+ journal={arXiv preprint arXiv:1904.11492},
+ year={2019}
+}
+```
+
+## Results and models
+
+The results on COCO 2017val are shown in the below table.
+
+| Backbone | Model | Context | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------: | :--------------: | :------------: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R-50-FPN | Mask | GC(c3-c5, r16) | 1x | 5.0 | | 39.7 | 35.9 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco_20200515_211915-187da160.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco_20200515_211915.log.json) |
+| R-50-FPN | Mask | GC(c3-c5, r4) | 1x | 5.1 | 15.0 | 39.9 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco_20200204-17235656.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco_20200204_024626.log.json) |
+| R-101-FPN | Mask | GC(c3-c5, r16) | 1x | 7.6 | 11.4 | 41.3 | 37.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco_20200205-e58ae947.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco_20200205_192835.log.json) |
+| R-101-FPN | Mask | GC(c3-c5, r4) | 1x | 7.8 | 11.6 | 42.2 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco_20200206-af22dc9d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco_20200206_112128.log.json) |
+
+| Backbone | Model | Context | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------: | :--------------: | :------------: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :-------: |
+| R-50-FPN | Mask | - | 1x | 4.4 | 16.6 | 38.4 | 34.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco_20200202-bb3eb55c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco_20200202_214122.log.json) |
+| R-50-FPN | Mask | GC(c3-c5, r16) | 1x | 5.0 | 15.5 | 40.4 | 36.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202-587b99aa.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202_174907.log.json) |
+| R-50-FPN | Mask | GC(c3-c5, r4) | 1x | 5.1 | 15.1 | 40.7 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202-50b90e5c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202_085547.log.json) |
+| R-101-FPN | Mask | - | 1x | 6.4 | 13.3 | 40.5 | 36.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco_20200210-81658c8a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco_20200210_220422.log.json) |
+| R-101-FPN | Mask | GC(c3-c5, r16) | 1x | 7.6 | 12.0 | 42.2 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200207-945e77ca.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200207_015330.log.json) |
+| R-101-FPN | Mask | GC(c3-c5, r4) | 1x | 7.8 | 11.8 | 42.2 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206-8407a3f0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206_142508.log.json) |
+| X-101-FPN | Mask | - | 1x | 7.6 | 11.3 | 42.4 | 37.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200211-7584841c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200211_054326.log.json) |
+| X-101-FPN | Mask | GC(c3-c5, r16) | 1x | 8.8 | 9.8 | 43.5 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-cbed3d2c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211_164715.log.json) |
+| X-101-FPN | Mask | GC(c3-c5, r4) | 1x | 9.0 | 9.7 | 43.9 | 39.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200212-68164964.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200212_070942.log.json) |
+| X-101-FPN | Cascade Mask | - | 1x | 9.2 | 8.4 | 44.7 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200310-d5ad2a5e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200310_115217.log.json) |
+| X-101-FPN | Cascade Mask | GC(c3-c5, r16) | 1x | 10.3 | 7.7 | 46.2 | 39.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-10bf2463.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211_184154.log.json) |
+| X-101-FPN | Cascade Mask | GC(c3-c5, r4) | 1x | 10.6 | | 46.4 | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200703_180653-ed035291.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200703_180653.log.json) |
+| X-101-FPN | DCN Cascade Mask | - | 1x | | | 44.9 | 38.9 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco_20200516_182249-680fc3f2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco_20200516_182249.log.json)|
+| X-101-FPN | DCN Cascade Mask | GC(c3-c5, r16) | 1x | | | 44.6 | |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco_20200516_015634-08f56b56.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco_20200516_015634.log.json) |
+| X-101-FPN | DCN Cascade Mask | GC(c3-c5, r4) | 1x | | | 45.7 | 39.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco_20200518_041145-24cabcfd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco_20200518_041145.log.json) |
+
+**Notes:**
+
+- The `SyncBN` is added in the backbone for all models in **Table 2**.
+- `GC` denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
+- `DCN` denotes replace 3x3 conv with 3x3 Deformable Convolution in `c3-c5` stages of backbone.
+- `r4` and `r16` denote ratio 4 and ratio 16 in GC block respectively.
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
new file mode 100644
index 00000000..5118895f
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..464aef78
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..fa4b6f12
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..b76e3e6b
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..50883ffe
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..31fdd070
--- /dev/null
+++ b/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..ad6ad476
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..29f91674
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py
new file mode 100644
index 00000000..6e1c5d0c
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
diff --git a/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..781dba78
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..32972de8
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..d299b69f
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..5ac908e6
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py
new file mode 100644
index 00000000..0308a567
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
diff --git a/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..e04780c5
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..980f8191
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
new file mode 100644
index 00000000..f0c96e58
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
diff --git a/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..7fb8e82e
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 16),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
new file mode 100644
index 00000000..b1ddbee3
--- /dev/null
+++ b/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ backbone=dict(
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False,
+ plugins=[
+ dict(
+ cfg=dict(type='ContextBlock', ratio=1. / 4),
+ stages=(False, True, True, True),
+ position='after_conv3')
+ ]))
diff --git a/configs/gcnet/metafile.yml b/configs/gcnet/metafile.yml
new file mode 100644
index 00000000..5dc18209
--- /dev/null
+++ b/configs/gcnet/metafile.yml
@@ -0,0 +1,347 @@
+Collections:
+ - Name: GCNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Global Context Block
+ - FPN
+ - RPN
+ - ResNet
+ - ResNeXt
+ Paper: https://arxiv.org/abs/1904.11492
+ README: configs/gcnet/README.md
+
+Models:
+ - Name: mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 35.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco_20200515_211915-187da160.pth
+
+ - Name: mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.1
+ inference time (s/im): 0.06667
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco_20200204-17235656.pth
+
+ - Name: mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.08772
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco_20200205-e58ae947.pth
+
+ - Name: mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.8
+ inference time (s/im): 0.08621
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco_20200206-af22dc9d.pth
+
+ - Name: mask_rcnn_r50_fpn_syncbn-backbone_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.06024
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco_20200202-bb3eb55c.pth
+
+ - Name: mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ inference time (s/im): 0.06452
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202-587b99aa.pth
+
+ - Name: mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.1
+ inference time (s/im): 0.06623
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202-50b90e5c.pth
+
+ - Name: mask_rcnn_r101_fpn_syncbn-backbone_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.07519
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco_20200210-81658c8a.pth
+
+ - Name: mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.08333
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200207-945e77ca.pth
+
+ - Name: mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.8
+ inference time (s/im): 0.08475
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206-8407a3f0.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.0885
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200211-7584841c.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.8
+ inference time (s/im): 0.10204
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-cbed3d2c.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.0
+ inference time (s/im): 0.10309
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200212-68164964.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.2
+ inference time (s/im): 0.11905
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200310-d5ad2a5e.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.3
+ inference time (s/im): 0.12987
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-10bf2463.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.6
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200703_180653-ed035291.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco_20200516_182249-680fc3f2.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco_20200516_015634-08f56b56.pth
+
+ - Name: cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco
+ In Collection: GCNet
+ Config: configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco_20200518_041145-24cabcfd.pth
diff --git a/configs/gfl/README.md b/configs/gfl/README.md
index 3c51b821..51a6aa1b 100644
--- a/configs/gfl/README.md
+++ b/configs/gfl/README.md
@@ -1,11 +1,12 @@
# Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
-
## Introduction
+
+
We provide config files to reproduce the object detection results in the paper [Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection](https://arxiv.org/abs/2006.04388)
-```
+```latex
@article{li2020generalized,
title={Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection},
author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
@@ -14,17 +15,16 @@ We provide config files to reproduce the object detection results in the paper [
}
```
-
## Results and Models
-| Backbone | Style | Lr schd | Multi-scale Training| Inf time (fps) | box AP | Download |
-|:-----------------:|:-------:|:-------:|:-------------------:|:--------------:|:------:|:--------:|
-| R-50 | pytorch | 1x | No | 19.5 | 40.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244.log.json) |
-| R-50 | pytorch | 2x | Yes | 19.5 | 42.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802.log.json) |
-| R-101 | pytorch | 2x | Yes | 14.7 | 44.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126.log.json) |
-| R-101-dcnv2 | pytorch | 2x | Yes | 12.9 | 47.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002.log.json) |
-| X-101-32x4d | pytorch | 2x | Yes | 12.1 | 45.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002.log.json) |
-| X-101-32x4d-dcnv2 | pytorch | 2x | Yes | 10.7 | 48.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002.log.json) |
+| Backbone | Style | Lr schd | Multi-scale Training| Inf time (fps) | box AP | Config | Download |
+|:-----------------:|:-------:|:-------:|:-------------------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | pytorch | 1x | No | 19.5 | 40.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244.log.json) |
+| R-50 | pytorch | 2x | Yes | 19.5 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802.log.json) |
+| R-101 | pytorch | 2x | Yes | 14.7 | 44.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126.log.json) |
+| R-101-dcnv2 | pytorch | 2x | Yes | 12.9 | 47.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002.log.json) |
+| X-101-32x4d | pytorch | 2x | Yes | 12.1 | 45.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002.log.json) |
+| X-101-32x4d-dcnv2 | pytorch | 2x | Yes | 10.7 | 48.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002.log.json) |
[1] *1x and 2x mean the model is trained for 90K and 180K iterations, respectively.* \
[2] *All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..* \
diff --git a/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py b/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..eab622b2
--- /dev/null
+++ b/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(
+ type='ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py b/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..c972d0c1
--- /dev/null
+++ b/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py
@@ -0,0 +1,12 @@
+_base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(
+ type='ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/gfl/gfl_r50_fpn_1x_coco.py b/configs/gfl/gfl_r50_fpn_1x_coco.py
index 74ff9e43..29fb0773 100644
--- a/configs/gfl/gfl_r50_fpn_1x_coco.py
+++ b/configs/gfl/gfl_r50_fpn_1x_coco.py
@@ -1,9 +1,9 @@
_base_ = [
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
- type='SingleStageDetector',
+ type='GFL',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -40,18 +40,18 @@
loss_weight=1.0),
loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
reg_max=16,
- loss_bbox=dict(type='GIoULoss', loss_weight=2.0)))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100)
+ loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(type='ATSSAssigner', topk=9),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py b/configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..b8be6014
--- /dev/null
+++ b/configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py
@@ -0,0 +1,22 @@
+_base_ = './gfl_r50_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
+# multi-scale training
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 480), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py b/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..a2370e23
--- /dev/null
+++ b/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
@@ -0,0 +1,17 @@
+_base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ type='GFL',
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, False, True, True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py b/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..4e00a059
--- /dev/null
+++ b/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py
@@ -0,0 +1,15 @@
+_base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ type='GFL',
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/gfl/metafile.yml b/configs/gfl/metafile.yml
new file mode 100644
index 00000000..29a56901
--- /dev/null
+++ b/configs/gfl/metafile.yml
@@ -0,0 +1,93 @@
+Collections:
+ - Name: Generalized Focal Loss
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Generalized Focal Loss
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/2006.04388
+ README: configs/gfl/README.md
+
+Models:
+ - Name: gfl_r50_fpn_1x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_r50_fpn_1x_coco.py
+ Metadata:
+ inference time (s/im): 0.05128
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth
+
+ - Name: gfl_r50_fpn_mstrain_2x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py
+ Metadata:
+ inference time (s/im): 0.05128
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth
+
+ - Name: gfl_r101_fpn_mstrain_2x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py
+ Metadata:
+ inference time (s/im): 0.06803
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth
+
+ - Name: gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
+ Metadata:
+ inference time (s/im): 0.07752
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth
+
+ - Name: gfl_x101_32x4d_fpn_mstrain_2x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py
+ Metadata:
+ inference time (s/im): 0.08264
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth
+
+ - Name: gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco
+ In Collection: Generalized Focal Loss
+ Config: configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
+ Metadata:
+ inference time (s/im): 0.09346
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 48.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth
diff --git a/configs/ghm/README.md b/configs/ghm/README.md
index 46bd05f7..2a51ed8a 100644
--- a/configs/ghm/README.md
+++ b/configs/ghm/README.md
@@ -2,6 +2,8 @@
## Introduction
+
+
```
@inproceedings{li2019gradient,
title={Gradient Harmonized Single-stage Detector},
@@ -13,9 +15,9 @@
## Results and Models
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: |
-| R-50-FPN | pytorch | 1x | 4.0 | 3.3 | 37.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130-a437fda3.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130_004213.log.json) |
-| R-101-FPN | pytorch | 1x | 6.0 | 4.4 | 39.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130-c148ee8f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130_145259.log.json) |
-| X-101-32x4d-FPN | pytorch | 1x | 7.2 | 5.1 | 40.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131-e4333bd0.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131_113653.log.json) |
-| X-101-64x4d-FPN | pytorch | 1x | 10.3 | 5.2 | 41.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131-dd381cef.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131_113723.log.json) |
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | pytorch | 1x | 4.0 | 3.3 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130-a437fda3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130_004213.log.json) |
+| R-101-FPN | pytorch | 1x | 6.0 | 4.4 | 39.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130-c148ee8f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130_145259.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.2 | 5.1 | 40.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131-e4333bd0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131_113653.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.3 | 5.2 | 41.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131-dd381cef.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131_113723.log.json) |
diff --git a/configs/ghm/metafile.yml b/configs/ghm/metafile.yml
new file mode 100644
index 00000000..6069cb63
--- /dev/null
+++ b/configs/ghm/metafile.yml
@@ -0,0 +1,72 @@
+Collections:
+ - Name: GHM
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - GHM-C
+ - GHM-R
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1811.05181
+ README: configs/ghm/README.md
+
+Models:
+ - Name: retinanet_ghm_r50_fpn_1x_coco
+ In Collection: GHM
+ Config: configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.0
+ inference time (s/im): 0.30303
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130-a437fda3.pth
+
+ - Name: retinanet_ghm_r101_fpn_1x_coco
+ In Collection: GHM
+ Config: configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.22727
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130-c148ee8f.pth
+
+ - Name: retinanet_ghm_x101_32x4d_fpn_1x_coco
+ In Collection: GHM
+ Config: configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.2
+ inference time (s/im): 0.19608
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131-e4333bd0.pth
+
+ - Name: retinanet_ghm_x101_64x4d_fpn_1x_coco
+ In Collection: GHM
+ Config: configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.3
+ inference time (s/im): 0.19231
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131-dd381cef.pth
diff --git a/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py b/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..18f899a9
--- /dev/null
+++ b/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py b/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
index e519f638..61b97510 100644
--- a/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
+++ b/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
@@ -1,10 +1,10 @@
-_base_ = '../retinanet/retinanet_r50_fpn_coco.py'
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
model = dict(
bbox_head=dict(
loss_cls=dict(
- _delete_=True, # 防止合并字典时候错误,设置为True会忽略base相关配置
+ _delete_=True,
type='GHMC',
- bins=30, # 将g纵坐标均匀切分为bin个长度,论文中的M
+ bins=30,
momentum=0.75,
use_sigmoid=True,
loss_weight=1.0),
diff --git a/configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py b/configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..a89fc138
--- /dev/null
+++ b/configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py b/configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..88013f5f
--- /dev/null
+++ b/configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/gn+ws/README.md b/configs/gn+ws/README.md
new file mode 100644
index 00000000..8001b0d6
--- /dev/null
+++ b/configs/gn+ws/README.md
@@ -0,0 +1,44 @@
+# Weight Standardization
+
+## Introduction
+
+
+
+```
+@article{weightstandardization,
+ author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Yuille},
+ title = {Weight Standardization},
+ journal = {arXiv preprint arXiv:1903.10520},
+ year = {2019},
+}
+```
+
+## Results and Models
+
+Faster R-CNN
+
+| Backbone | Style | Normalization | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:---------:|:-------:|:-------------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | pytorch | GN+WS | 1x | 5.9 | 11.7 | 39.7 | - | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130_210936.log.json) |
+| R-101-FPN | pytorch | GN+WS | 1x | 8.9 | 9.0 | 41.7 | - | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco/faster_rcnn_r101_fpn_gn_ws-all_1x_coco_20200205-a93b0d75.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco/faster_rcnn_r101_fpn_gn_ws-all_1x_coco_20200205_232146.log.json) |
+| X-50-32x4d-FPN | pytorch | GN+WS | 1x | 7.0 | 10.3 | 40.7 | - | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco_20200203-839c5d9d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco_20200203_220113.log.json) |
+| X-101-32x4d-FPN | pytorch | GN+WS | 1x | 10.8 | 7.6 | 42.1 | - | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco_20200212-27da1bc2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco_20200212_195302.log.json) |
+
+Mask R-CNN
+
+| Backbone | Style | Normalization | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:---------:|:-------:|:-------------:|:---------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | pytorch | GN+WS | 2x | 7.3 | 10.5 | 40.6 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco/mask_rcnn_r50_fpn_gn_ws-all_2x_coco_20200226-16acb762.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco/mask_rcnn_r50_fpn_gn_ws-all_2x_coco_20200226_062128.log.json) |
+| R-101-FPN | pytorch | GN+WS | 2x | 10.3 | 8.6 | 42.0 | 37.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco/mask_rcnn_r101_fpn_gn_ws-all_2x_coco_20200212-ea357cd9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco/mask_rcnn_r101_fpn_gn_ws-all_2x_coco_20200212_213627.log.json) |
+| X-50-32x4d-FPN | pytorch | GN+WS | 2x | 8.4 | 9.3 | 41.1 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco_20200216-649fdb6f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco_20200216_201500.log.json) |
+| X-101-32x4d-FPN | pytorch | GN+WS | 2x | 12.2 | 7.1 | 42.1 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco_20200319-33fb95b5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco_20200319_104101.log.json) |
+| R-50-FPN | pytorch | GN+WS | 20-23-24e | 7.3 | - | 41.1 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213-487d1283.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213_035123.log.json) |
+| R-101-FPN | pytorch | GN+WS | 20-23-24e | 10.3 | - | 43.1 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco_20200213-57b5a50f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco_20200213_130142.log.json) |
+| X-50-32x4d-FPN | pytorch | GN+WS | 20-23-24e | 8.4 | - | 42.1 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200226-969bcb2c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200226_093732.log.json) |
+| X-101-32x4d-FPN | pytorch | GN+WS | 20-23-24e | 12.2 | - | 42.7 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200316-e6cd35ef.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200316_013741.log.json) |
+
+Note:
+
+- GN+WS requires about 5% more memory than GN, and it is only 5% slower than GN.
+- In the paper, a 20-23-24e lr schedule is used instead of 2x.
+- The X-50-GN and X-101-GN pretrained models are also shared by the authors.
diff --git a/configs/gn+ws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py b/configs/gn+ws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
new file mode 100644
index 00000000..a5f6bd22
--- /dev/null
+++ b/configs/gn+ws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://jhu/resnet101_gn_ws', backbone=dict(depth=101))
diff --git a/configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py b/configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
new file mode 100644
index 00000000..497267b6
--- /dev/null
+++ b/configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnet50_gn_ws',
+ backbone=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
+ neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg)))
diff --git a/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py b/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
new file mode 100644
index 00000000..061ca699
--- /dev/null
+++ b/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnext101_32x4d_gn_ws',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch',
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg))
diff --git a/configs/gn+ws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py b/configs/gn+ws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
new file mode 100644
index 00000000..12689806
--- /dev/null
+++ b/configs/gn+ws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnext50_32x4d_gn_ws',
+ backbone=dict(
+ type='ResNeXt',
+ depth=50,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch',
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg))
diff --git a/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py b/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
new file mode 100644
index 00000000..a790d932
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
+# learning policy
+lr_config = dict(step=[20, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py b/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
new file mode 100644
index 00000000..4be68176
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://jhu/resnet101_gn_ws', backbone=dict(depth=101))
diff --git a/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py b/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
new file mode 100644
index 00000000..55168085
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
+# learning policy
+lr_config = dict(step=[20, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py b/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
new file mode 100644
index 00000000..b83e7b5c
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
@@ -0,0 +1,17 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnet50_gn_ws',
+ backbone=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
+ neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg),
+ mask_head=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg)))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py b/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
new file mode 100644
index 00000000..cfa14c99
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
+# learning policy
+lr_config = dict(step=[20, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py b/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
new file mode 100644
index 00000000..dbe88770
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
@@ -0,0 +1,17 @@
+_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
+# model settings
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnext101_32x4d_gn_ws',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch',
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg))
diff --git a/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py b/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
new file mode 100644
index 00000000..79ce0adf
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
+# learning policy
+lr_config = dict(step=[20, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py b/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
new file mode 100644
index 00000000..9bbc86ea
--- /dev/null
+++ b/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
@@ -0,0 +1,17 @@
+_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
+# model settings
+conv_cfg = dict(type='ConvWS')
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://jhu/resnext50_32x4d_gn_ws',
+ backbone=dict(
+ type='ResNeXt',
+ depth=50,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch',
+ conv_cfg=conv_cfg,
+ norm_cfg=norm_cfg))
diff --git a/configs/gn+ws/metafile.yml b/configs/gn+ws/metafile.yml
new file mode 100644
index 00000000..e74cdeed
--- /dev/null
+++ b/configs/gn+ws/metafile.yml
@@ -0,0 +1,210 @@
+Collections:
+ - Name: Weight Standardization
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Group Normalization
+ - Weight Standardization
+ Paper: https://arxiv.org/abs/1903.10520
+ README: configs/gn+ws/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_gn_ws-all_1x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.9
+ inference time (s/im): 0.08547
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth
+
+ - Name: faster_rcnn_r101_fpn_gn_ws-all_1x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.9
+ inference time (s/im): 0.11111
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco/faster_rcnn_r101_fpn_gn_ws-all_1x_coco_20200205-a93b0d75.pth
+
+ - Name: faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.09709
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco_20200203-839c5d9d.pth
+
+ - Name: faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.8
+ inference time (s/im): 0.13158
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco_20200212-27da1bc2.pth
+
+ - Name: mask_rcnn_r50_fpn_gn_ws-all_2x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.3
+ inference time (s/im): 0.09524
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco/mask_rcnn_r50_fpn_gn_ws-all_2x_coco_20200226-16acb762.pth
+
+ - Name: mask_rcnn_r101_fpn_gn_ws-all_2x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 10.3
+ inference time (s/im): 0.11628
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco/mask_rcnn_r101_fpn_gn_ws-all_2x_coco_20200212-ea357cd9.pth
+
+ - Name: mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 8.4
+ inference time (s/im): 0.10753
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco_20200216-649fdb6f.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 12.2
+ inference time (s/im): 0.14085
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco_20200319-33fb95b5.pth
+
+ - Name: mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
+ Metadata:
+ Training Memory (GB): 7.3
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213-487d1283.pth
+
+ - Name: mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
+ Metadata:
+ Training Memory (GB): 10.3
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco_20200213-57b5a50f.pth
+
+ - Name: mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
+ Metadata:
+ Training Memory (GB): 8.4
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200226-969bcb2c.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco
+ In Collection: Weight Standardization
+ Config: configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
+ Metadata:
+ Training Memory (GB): 12.2
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200316-e6cd35ef.pth
diff --git a/configs/gn/README.md b/configs/gn/README.md
new file mode 100644
index 00000000..5c6e41f3
--- /dev/null
+++ b/configs/gn/README.md
@@ -0,0 +1,31 @@
+# Group Normalization
+
+## Introduction
+
+
+
+```latex
+@inproceedings{wu2018group,
+ title={Group Normalization},
+ author={Wu, Yuxin and He, Kaiming},
+ booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
+ year={2018}
+}
+```
+
+## Results and Models
+
+| Backbone | model | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN (d) | Mask R-CNN | 2x | 7.1 | 11.0 | 40.2 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206_050355.log.json) |
+| R-50-FPN (d) | Mask R-CNN | 3x | 7.1 | - | 40.5 | 36.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214_063512.log.json) |
+| R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 9.0 | 41.9 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205_234402.log.json) |
+| R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | | 42.1 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609.log.json) |
+| R-50-FPN (c) | Mask R-CNN | 2x | 7.1 | 10.9 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207_225832.log.json) |
+| R-50-FPN (c) | Mask R-CNN | 3x | 7.1 | - | 40.1 | 36.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225_235135.log.json) |
+
+**Notes:**
+
+- (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [@thangvubk](https://github.com/thangvubk).
+- The `3x` schedule is epoch [28, 34, 36].
+- **Memory, Train/Inf time is outdated.**
diff --git a/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py b/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
new file mode 100644
index 00000000..0fcc5580
--- /dev/null
+++ b/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron/resnet101_gn', backbone=dict(depth=101))
diff --git a/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py b/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
new file mode 100644
index 00000000..12a9d17e
--- /dev/null
+++ b/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './mask_rcnn_r101_fpn_gn-all_2x_coco.py'
+
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py b/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
new file mode 100644
index 00000000..9c85d26d
--- /dev/null
+++ b/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
@@ -0,0 +1,46 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://detectron/resnet50_gn',
+ backbone=dict(norm_cfg=norm_cfg),
+ neck=dict(norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg),
+ mask_head=dict(norm_cfg=norm_cfg)))
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py b/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
new file mode 100644
index 00000000..f9177196
--- /dev/null
+++ b/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
+
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py b/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
new file mode 100644
index 00000000..89caaafb
--- /dev/null
+++ b/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
@@ -0,0 +1,15 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://contrib/resnet50_gn',
+ backbone=dict(norm_cfg=norm_cfg),
+ neck=dict(norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg),
+ mask_head=dict(norm_cfg=norm_cfg)))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py b/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
new file mode 100644
index 00000000..66834f08
--- /dev/null
+++ b/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
+
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/gn/metafile.yml b/configs/gn/metafile.yml
new file mode 100644
index 00000000..224e2e53
--- /dev/null
+++ b/configs/gn/metafile.yml
@@ -0,0 +1,118 @@
+Collections:
+ - Name: Group Normalization
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Group Normalization
+ Paper: https://arxiv.org/abs/1803.08494
+ README: configs/gn/README.md
+
+Models:
+ - Name: mask_rcnn_r50_fpn_gn-all_2x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ inference time (s/im): 0.09091
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth
+
+ - Name: mask_rcnn_r50_fpn_gn-all_3x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth
+
+ - Name: mask_rcnn_r101_fpn_gn-all_2x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
+ Metadata:
+ Training Memory (GB): 9.9
+ inference time (s/im): 0.11111
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth
+
+ - Name: mask_rcnn_r101_fpn_gn-all_3x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
+ Metadata:
+ Training Memory (GB): 9.9
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth
+
+ - Name: mask_rcnn_r50_fpn_gn-all_contrib_2x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ inference time (s/im): 0.09174
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth
+
+ - Name: mask_rcnn_r50_fpn_gn-all_contrib_3x_coco
+ In Collection: Group Normalization
+ Config: configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth
diff --git a/configs/grid_rcnn/README.md b/configs/grid_rcnn/README.md
new file mode 100644
index 00000000..30cb6e06
--- /dev/null
+++ b/configs/grid_rcnn/README.md
@@ -0,0 +1,35 @@
+# Grid R-CNN
+
+## Introduction
+
+
+
+```latex
+@inproceedings{lu2019grid,
+ title={Grid r-cnn},
+ author={Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie},
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
+ year={2019}
+}
+
+@article{lu2019grid,
+ title={Grid R-CNN Plus: Faster and Better},
+ author={Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie},
+ journal={arXiv preprint arXiv:1906.05688},
+ year={2019}
+}
+```
+
+## Results and Models
+
+| Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50 | 2x | 5.1 | 15.0 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130_221140.log.json) |
+| R-101 | 2x | 7.0 | 12.6 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309-d6eca030.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309_164224.log.json) |
+| X-101-32x4d | 2x | 8.3 | 10.8 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130-d8f0e3ff.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130_215413.log.json) |
+| X-101-64x4d | 2x | 11.3 | 7.7 | 43.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204-ec76a754.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204_080641.log.json) |
+
+**Notes:**
+
+- All models are trained with 8 GPUs instead of 32 GPUs in the original paper.
+- The warming up lasts for 1 epoch and `2x` here indicates 25 epochs.
diff --git a/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py b/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
new file mode 100644
index 00000000..cf8b648a
--- /dev/null
+++ b/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py b/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
new file mode 100644
index 00000000..4aa00ece
--- /dev/null
+++ b/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
@@ -0,0 +1,11 @@
+_base_ = ['grid_rcnn_r50_fpn_gn-head_2x_coco.py']
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[8, 11])
+checkpoint_config = dict(interval=1)
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py b/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
new file mode 100644
index 00000000..6ed5bcbb
--- /dev/null
+++ b/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
@@ -0,0 +1,131 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ type='GridRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ type='GridRoIHead',
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ with_reg=False,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False),
+ grid_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ grid_head=dict(
+ type='GridHead',
+ grid_points=9,
+ num_convs=8,
+ in_channels=256,
+ point_feat_channels=64,
+ norm_cfg=dict(type='GN', num_groups=36),
+ loss_grid=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=15))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ pos_radius=1,
+ pos_weight=-1,
+ max_num_grid=192,
+ debug=False)),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.03,
+ nms=dict(type='nms', iou_threshold=0.3),
+ max_per_img=100)))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=3665,
+ warmup_ratio=1.0 / 80,
+ step=[17, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=25)
diff --git a/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py b/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
new file mode 100644
index 00000000..14c1eb28
--- /dev/null
+++ b/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
@@ -0,0 +1,23 @@
+_base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch'))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=3665,
+ warmup_ratio=1.0 / 80,
+ step=[17, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=25)
diff --git a/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py b/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
new file mode 100644
index 00000000..2fdc53c8
--- /dev/null
+++ b/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
@@ -0,0 +1,12 @@
+_base_ = './grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ style='pytorch'))
diff --git a/configs/grid_rcnn/metafile.yml b/configs/grid_rcnn/metafile.yml
new file mode 100644
index 00000000..d5002acc
--- /dev/null
+++ b/configs/grid_rcnn/metafile.yml
@@ -0,0 +1,72 @@
+Collections:
+ - Name: Grid R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - RPN
+ - Dilated Convolution
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/abs/1906.05688
+ README: configs/grid_rcnn/README.md
+
+Models:
+ - Name: grid_rcnn_r50_fpn_gn-head_2x_coco
+ In Collection: Grid R-CNN
+ Config: configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 5.1
+ inference time (s/im): 0.06667
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth
+
+ - Name: grid_rcnn_r101_fpn_gn-head_2x_coco
+ In Collection: Grid R-CNN
+ Config: configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.07937
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309-d6eca030.pth
+
+ - Name: grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco
+ In Collection: Grid R-CNN
+ Config: configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 8.3
+ inference time (s/im): 0.09259
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130-d8f0e3ff.pth
+
+ - Name: grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco
+ In Collection: Grid R-CNN
+ Config: configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 11.3
+ inference time (s/im): 0.12987
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204-ec76a754.pth
diff --git a/configs/groie/README.md b/configs/groie/README.md
new file mode 100644
index 00000000..c38b70b6
--- /dev/null
+++ b/configs/groie/README.md
@@ -0,0 +1,65 @@
+# GRoIE
+
+## A novel Region of Interest Extraction Layer for Instance Segmentation
+
+By Leonardo Rossi, Akbar Karimi and Andrea Prati from
+[IMPLab](http://implab.ce.unipr.it/).
+
+We provide configs to reproduce the results in the paper for
+"*A novel Region of Interest Extraction Layer for Instance Segmentation*"
+on COCO object detection.
+
+## Introduction
+
+
+
+This paper is motivated by the need to overcome to the limitations of existing
+RoI extractors which select only one (the best) layer from FPN.
+
+Our intuition is that all the layers of FPN retain useful information.
+
+Therefore, the proposed layer (called Generic RoI Extractor - **GRoIE**)
+introduces non-local building blocks and attention mechanisms to boost the
+performance.
+
+## Results and models
+
+The results on COCO 2017 minival (5k images) are shown in the below table.
+You can find
+[here](https://drive.google.com/drive/folders/19ssstbq_h0Z1cgxHmJYFO8s1arf3QJbT)
+the trained models.
+
+### Application of GRoIE to different architectures
+
+| Backbone | Method | Lr schd | box AP | mask AP | Config | Download|
+| :-------: | :--------------: | :-----: | :----: | :-----: | :-------:| :--------:|
+| R-50-FPN | Faster Original | 1x | 37.4 | | [config](../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
+| R-50-FPN | + GRoIE | 1x | 38.3 | | [config](./faster_rcnn_r50_fpn_groie_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/groie/faster_rcnn_r50_fpn_groie_1x_coco/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715-66ee9516.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/groie/faster_rcnn_r50_fpn_groie_1x_coco/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715.log.json) |
+| R-50-FPN | Grid R-CNN | 1x | 39.1 | | [config](./grid_rcnn_r50_fpn_gn-head_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/groie/grid_rcnn_r50_fpn_gn-head_1x_coco/grid_rcnn_r50_fpn_gn-head_1x_coco_20200605_202059-64f00ee8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/groie/grid_rcnn_r50_fpn_gn-head_1x_coco/grid_rcnn_r50_fpn_gn-head_1x_coco_20200605_202059.log.json) |
+| R-50-FPN | + GRoIE | 1x | | | [config](./grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py)||
+| R-50-FPN | Mask R-CNN | 1x | 38.2 | 34.7 | [config](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
+| R-50-FPN | + GRoIE | 1x | 39.0 | 36.0 | [config](./mask_rcnn_r50_fpn_groie_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_groie_1x_coco/mask_rcnn_r50_fpn_groie_1x_coco_20200604_211715-50d90c74.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_groie_1x_coco/mask_rcnn_r50_fpn_groie_1x_coco_20200604_211715.log.json) |
+| R-50-FPN | GC-Net | 1x | 40.7 | 36.5 | [config](../gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202-50b90e5c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202_085547.log.json) |
+| R-50-FPN | + GRoIE | 1x | 41.0 | 37.8 | [config](./mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200604_211715-42eb79e1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200604_211715-42eb79e1.pth) |
+| R-101-FPN | GC-Net | 1x | 42.2 | 37.8 | [config](../gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206-8407a3f0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206_142508.log.json) |
+| R-101-FPN | + GRoIE | 1x | | | [config](./mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200607_224507-8daae01c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200607_224507.log.json) |
+
+## Citation
+
+If you use this work or benchmark in your research, please cite this project.
+
+```latex
+@misc{rossi2020novel,
+ title={A novel Region of Interest Extraction Layer for Instance Segmentation},
+ author={Leonardo Rossi and Akbar Karimi and Andrea Prati},
+ year={2020},
+ eprint={2004.13665},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
+
+## Contact
+
+The implementation of GROI is currently maintained by
+[Leonardo Rossi](https://github.com/hachreak/).
diff --git a/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py b/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py
new file mode 100644
index 00000000..0fc528bf
--- /dev/null
+++ b/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py
@@ -0,0 +1,25 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+# model settings
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='sum',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2))))
diff --git a/configs/groie/grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py b/configs/groie/grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py
new file mode 100644
index 00000000..8e4b4ab2
--- /dev/null
+++ b/configs/groie/grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = '../grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py'
+# model settings
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='sum',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2)),
+ grid_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2))))
diff --git a/configs/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py b/configs/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
new file mode 100644
index 00000000..8b837221
--- /dev/null
+++ b/configs/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = '../gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py'
+# model settings
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='sum',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2)),
+ mask_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2))))
diff --git a/configs/groie/mask_rcnn_r50_fpn_groie_1x_coco.py b/configs/groie/mask_rcnn_r50_fpn_groie_1x_coco.py
new file mode 100644
index 00000000..81dfb487
--- /dev/null
+++ b/configs/groie/mask_rcnn_r50_fpn_groie_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+# model settings
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='sum',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2)),
+ mask_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2))))
diff --git a/configs/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py b/configs/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
new file mode 100644
index 00000000..852c5ca7
--- /dev/null
+++ b/configs/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = '../gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py'
+# model settings
+model = dict(
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='sum',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2)),
+ mask_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32],
+ pre_cfg=dict(
+ type='ConvModule',
+ in_channels=256,
+ out_channels=256,
+ kernel_size=5,
+ padding=2,
+ inplace=False,
+ ),
+ post_cfg=dict(
+ type='GeneralizedAttention',
+ in_channels=256,
+ spatial_range=-1,
+ num_heads=6,
+ attention_type='0100',
+ kv_stride=2))))
diff --git a/configs/groie/metafile.yml b/configs/groie/metafile.yml
new file mode 100644
index 00000000..cae4b64f
--- /dev/null
+++ b/configs/groie/metafile.yml
@@ -0,0 +1,88 @@
+Collections:
+ - Name: GRoIE
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Generic RoI Extractor
+ - FPN
+ - RPN
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/abs/2004.13665
+ README: configs/groie/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_groie_1x_coco
+ In Collection: GRoIE
+ Config: configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/groie/faster_rcnn_r50_fpn_groie_1x_coco/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715-66ee9516.pth
+
+ - Name: grid_rcnn_r50_fpn_gn-head_groie_1x_coco
+ In Collection: GRoIE
+ Config: configs/groie/grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+
+ - Name: mask_rcnn_r50_fpn_groie_1x_coco
+ In Collection: GRoIE
+ Config: configs/groie/mask_rcnn_r50_fpn_groie_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_groie_1x_coco/mask_rcnn_r50_fpn_groie_1x_coco_20200604_211715-50d90c74.pth
+
+ - Name: mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco
+ In Collection: GRoIE
+ Config: configs/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200604_211715-42eb79e1.pth
+
+ - Name: mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco
+ In Collection: GRoIE
+ Config: configs/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200607_224507-8daae01c.pth
diff --git a/configs/guided_anchoring/README.md b/configs/guided_anchoring/README.md
index c1a392ac..34d6b0db 100644
--- a/configs/guided_anchoring/README.md
+++ b/configs/guided_anchoring/README.md
@@ -2,9 +2,11 @@
## Introduction
+
+
We provide config files to reproduce the results in the CVPR 2019 paper for [Region Proposal by Guided Anchoring](https://arxiv.org/abs/1901.03278).
-```
+```latex
@inproceedings{wang2019region,
title={Region Proposal by Guided Anchoring},
author={Jiaqi Wang and Kai Chen and Shuo Yang and Chen Change Loy and Dahua Lin},
@@ -17,32 +19,28 @@ We provide config files to reproduce the results in the CVPR 2019 paper for [Reg
The results on COCO 2017 val is shown in the below table. (results on test-dev are usually slightly higher than val).
-| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | AR 1000 | Download |
-| :----: | :-------------: | :-----: | :-----: | :------: | :------------: | :-----: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| GA-RPN | R-50-FPN | caffe | 1x | 5.3 | 15.8 | 68.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco/ga_rpn_r50_caffe_fpn_1x_coco_20200531-899008a6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco/ga_rpn_r50_caffe_fpn_1x_coco_20200531_011819.log.json) |
-| GA-RPN | R-101-FPN | caffe | 1x | 7.3 | 13.0 | 69.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco/ga_rpn_r101_caffe_fpn_1x_coco_20200531-ca9ba8fb.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco/ga_rpn_r101_caffe_fpn_1x_coco_20200531_011812.log.json) |
-| GA-RPN | X-101-32x4d-FPN | pytorch | 1x | 8.5 | 10.0 | 70.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco/ga_rpn_x101_32x4d_fpn_1x_coco_20200220-c28d1b18.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco/ga_rpn_x101_32x4d_fpn_1x_coco_20200220_221326.log.json) |
-| GA-RPN | X-101-64x4d-FPN | pytorch | 1x | 7.1 | 7.5 | 71.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco/ga_rpn_x101_64x4d_fpn_1x_coco_20200225-3c6e1aa2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco/ga_rpn_x101_64x4d_fpn_1x_coco_20200225_152704.log.json) |
-
-
-| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :------------: | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| GA-Faster RCNN | R-50-FPN | caffe | 1x | 5.5 | | 39.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718.log.json) |
-| GA-Faster RCNN | R-101-FPN | caffe | 1x | 7.5 | | 41.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_bbox_mAP-0.415_20200505_115528-fb82e499.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_20200505_115528.log.json) |
-| GA-Faster RCNN | X-101-32x4d-FPN | pytorch | 1x | 8.7 | 9.7 | 43.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215-1ded9da3.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215_184547.log.json) |
-| GA-Faster RCNN | X-101-64x4d-FPN | pytorch | 1x | 11.8 | 7.3 | 43.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215-0fa7bde7.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215_104455.log.json) |
-| GA-RetinaNet | R-50-FPN | caffe | 1x | 3.5 | 16.8 | 36.9 | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020_225450.log.json) |
-| GA-RetinaNet | R-101-FPN | caffe | 1x | 5.5 | 12.9 | 39.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531-6266453c.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531_012847.log.json) |
-| GA-RetinaNet | X-101-32x4d-FPN | pytorch | 1x | 6.9 | 10.6 | 40.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219-40c56caa.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219_223025.log.json) |
-| GA-RetinaNet | X-101-64x4d-FPN | pytorch | 1x | 9.9 | 7.7 | 41.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226-ef9f7f1f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226_221123.log.json) |
-
-
+| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | AR 1000 | Config | Download |
+| :----: | :-------------: | :-----: | :-----: | :------: | :------------: | :-----: | :------: | :--------: |
+| GA-RPN | R-50-FPN | caffe | 1x | 5.3 | 15.8 | 68.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco/ga_rpn_r50_caffe_fpn_1x_coco_20200531-899008a6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco/ga_rpn_r50_caffe_fpn_1x_coco_20200531_011819.log.json) |
+| GA-RPN | R-101-FPN | caffe | 1x | 7.3 | 13.0 | 69.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco/ga_rpn_r101_caffe_fpn_1x_coco_20200531-ca9ba8fb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco/ga_rpn_r101_caffe_fpn_1x_coco_20200531_011812.log.json) |
+| GA-RPN | X-101-32x4d-FPN | pytorch | 1x | 8.5 | 10.0 | 70.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco/ga_rpn_x101_32x4d_fpn_1x_coco_20200220-c28d1b18.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco/ga_rpn_x101_32x4d_fpn_1x_coco_20200220_221326.log.json) |
+| GA-RPN | X-101-64x4d-FPN | pytorch | 1x | 7.1 | 7.5 | 71.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco/ga_rpn_x101_64x4d_fpn_1x_coco_20200225-3c6e1aa2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco/ga_rpn_x101_64x4d_fpn_1x_coco_20200225_152704.log.json) |
+
+| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :------------: | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| GA-Faster RCNN | R-50-FPN | caffe | 1x | 5.5 | | 39.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718.log.json) |
+| GA-Faster RCNN | R-101-FPN | caffe | 1x | 7.5 | | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_bbox_mAP-0.415_20200505_115528-fb82e499.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_20200505_115528.log.json) |
+| GA-Faster RCNN | X-101-32x4d-FPN | pytorch | 1x | 8.7 | 9.7 | 43.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215-1ded9da3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215_184547.log.json) |
+| GA-Faster RCNN | X-101-64x4d-FPN | pytorch | 1x | 11.8 | 7.3 | 43.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215-0fa7bde7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215_104455.log.json) |
+| GA-RetinaNet | R-50-FPN | caffe | 1x | 3.5 | 16.8 | 36.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020_225450.log.json) |
+| GA-RetinaNet | R-101-FPN | caffe | 1x | 5.5 | 12.9 | 39.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531-6266453c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531_012847.log.json) |
+| GA-RetinaNet | X-101-32x4d-FPN | pytorch | 1x | 6.9 | 10.6 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219-40c56caa.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219_223025.log.json) |
+| GA-RetinaNet | X-101-64x4d-FPN | pytorch | 1x | 9.9 | 7.7 | 41.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226-ef9f7f1f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226_221123.log.json) |
- In the Guided Anchoring paper, `score_thr` is set to 0.001 in Fast/Faster RCNN and 0.05 in RetinaNet for both baselines and Guided Anchoring.
- Performance on COCO test-dev benchmark are shown as follows.
-
| Method | Backbone | Style | Lr schd | Aug Train | Score thr | AP | AP_50 | AP_75 | AP_small | AP_medium | AP_large | Download |
| :------------: | :-------: | :---: | :-----: | :-------: | :-------: | :---: | :---: | :---: | :------: | :-------: | :------: | :------: |
| GA-Faster RCNN | R-101-FPN | caffe | 1x | F | 0.05 | | | | | | | |
diff --git a/configs/guided_anchoring/ga_fast_r50_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_fast_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..e15bc29b
--- /dev/null
+++ b/configs/guided_anchoring/ga_fast_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,63 @@
+_base_ = '../fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ roi_head=dict(
+ bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))),
+ # model training and testing settings
+ train_cfg=dict(
+ rcnn=dict(
+ assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6),
+ sampler=dict(num=256))),
+ test_cfg=dict(rcnn=dict(score_thr=1e-3)))
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=300),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadProposals', num_max_proposals=None),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img', 'proposals']),
+ ])
+]
+data = dict(
+ train=dict(
+ proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_train2017.pkl',
+ pipeline=train_pipeline),
+ val=dict(
+ proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline),
+ test=dict(
+ proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl',
+ pipeline=test_pipeline))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..f438a479
--- /dev/null
+++ b/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ga_faster_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..b0add92c
--- /dev/null
+++ b/configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,65 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ rpn_head=dict(
+ _delete_=True,
+ type='GARPNHead',
+ in_channels=256,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=8,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[8],
+ strides=[4, 8, 16, 32, 64]),
+ anchor_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.14, 0.14]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.11, 0.11]),
+ loc_filter_thr=0.01,
+ loss_loc=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ roi_head=dict(
+ bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ center_ratio=0.2,
+ ignore_ratio=0.5),
+ rpn_proposal=dict(nms_post=1000, max_per_img=300),
+ rcnn=dict(
+ assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6),
+ sampler=dict(type='RandomSampler', num=256))),
+ test_cfg=dict(
+ rpn=dict(nms_post=1000, max_per_img=300), rcnn=dict(score_thr=1e-3)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_faster_r50_fpn_1x_coco.py b/configs/guided_anchoring/ga_faster_r50_fpn_1x_coco.py
index ab19e5b6..e3d82389 100644
--- a/configs/guided_anchoring/ga_faster_r50_fpn_1x_coco.py
+++ b/configs/guided_anchoring/ga_faster_r50_fpn_1x_coco.py
@@ -36,29 +36,30 @@
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
roi_head=dict(
- bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))))
-# model training and testing settings
-train_cfg = dict(
- rpn=dict(
- ga_assigner=dict(
- type='ApproxMaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- ignore_iof_thr=-1),
- ga_sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=-1,
- center_ratio=0.2,
- ignore_ratio=0.5),
- rpn_proposal=dict(max_num=300),
- rcnn=dict(
- assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6),
- sampler=dict(type='RandomSampler', num=256)))
-test_cfg = dict(rpn=dict(max_num=300), rcnn=dict(score_thr=1e-3))
+ bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ center_ratio=0.2,
+ ignore_ratio=0.5),
+ rpn_proposal=dict(nms_post=1000, max_per_img=300),
+ rcnn=dict(
+ assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6),
+ sampler=dict(type='RandomSampler', num=256))),
+ test_cfg=dict(
+ rpn=dict(nms_post=1000, max_per_img=300), rcnn=dict(score_thr=1e-3)))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..c9a035f1
--- /dev/null
+++ b/configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_faster_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..87bbfdc8
--- /dev/null
+++ b/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_faster_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..0048965d
--- /dev/null
+++ b/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ga_retinanet_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_mstrain_2x.py b/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_mstrain_2x.py
new file mode 100644
index 00000000..85fa2f5d
--- /dev/null
+++ b/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_mstrain_2x.py
@@ -0,0 +1,167 @@
+_base_ = '../_base_/default_runtime.py'
+
+# model settings
+model = dict(
+ type='RetinaNet',
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs=True,
+ num_outs=5),
+ bbox_head=dict(
+ type='GARetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ anchor_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loc_filter_thr=0.01,
+ loss_loc=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)))
+# training and testing settings
+train_cfg = dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.4,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ center_ratio=0.2,
+ ignore_ratio=0.5,
+ debug=False)
+test_cfg = dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 480), (1333, 960)],
+ keep_ratio=True,
+ multiscale_mode='range'),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+evaluation = dict(interval=1, metric='bbox')
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=1.0 / 3,
+ step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+ interval=50,
+ hooks=[
+ dict(type='TextLoggerHook'),
+ # dict(type='TensorboardLoggerHook')
+ ])
+# yapf:enable
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..33512011
--- /dev/null
+++ b/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,62 @@
+_base_ = '../retinanet/retinanet_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ bbox_head=dict(
+ _delete_=True,
+ type='GARetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ anchor_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loc_filter_thr=0.01,
+ loss_loc=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.4,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0),
+ center_ratio=0.2,
+ ignore_ratio=0.5))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py b/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
index b3cc88ed..76947235 100644
--- a/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
+++ b/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
@@ -1,4 +1,4 @@
-_base_ = '../retinanet/retinanet_r50_fpn_coco.py'
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
model = dict(
bbox_head=dict(
_delete_=True,
@@ -33,7 +33,6 @@
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
- # BoundedIoULoss是考虑xywh的,但是这里其实仅仅wh而已,考虑代码通用性
loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
loss_cls=dict(
type='FocalLoss',
@@ -41,23 +40,23 @@
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)))
-# training and testing settings
-train_cfg = dict(
- ga_assigner=dict(
- type='ApproxMaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0.4,
- ignore_iof_thr=-1),
- ga_sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0),
- center_ratio=0.2,
- ignore_ratio=0.5)
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.4,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0),
+ center_ratio=0.2,
+ ignore_ratio=0.5))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..18daadd6
--- /dev/null
+++ b/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..1b18c2ba
--- /dev/null
+++ b/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..8d154763
--- /dev/null
+++ b/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './ga_rpn_r50_caffe_fpn_1x_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py b/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..7830894a
--- /dev/null
+++ b/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,58 @@
+_base_ = '../rpn/rpn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ rpn_head=dict(
+ _delete_=True,
+ type='GARPNHead',
+ in_channels=256,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=8,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[8],
+ strides=[4, 8, 16, 32, 64]),
+ anchor_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.14, 0.14]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.11, 0.11]),
+ loc_filter_thr=0.01,
+ loss_loc=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ center_ratio=0.2,
+ ignore_ratio=0.5)),
+ test_cfg=dict(rpn=dict(nms_post=1000)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py b/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..27ab3e73
--- /dev/null
+++ b/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py
@@ -0,0 +1,58 @@
+_base_ = '../rpn/rpn_r50_fpn_1x_coco.py'
+model = dict(
+ rpn_head=dict(
+ _delete_=True,
+ type='GARPNHead',
+ in_channels=256,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=8,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[8],
+ strides=[4, 8, 16, 32, 64]),
+ anchor_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.14, 0.14]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.07, 0.07, 0.11, 0.11]),
+ loc_filter_thr=0.01,
+ loss_loc=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ ga_assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ ga_sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=-1,
+ center_ratio=0.2,
+ ignore_ratio=0.5)),
+ test_cfg=dict(rpn=dict(nms_post=1000)))
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..1e0fe493
--- /dev/null
+++ b/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_rpn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py b/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..bf66b6b9
--- /dev/null
+++ b/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ga_rpn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/guided_anchoring/metafile.yml b/configs/guided_anchoring/metafile.yml
new file mode 100644
index 00000000..554f7249
--- /dev/null
+++ b/configs/guided_anchoring/metafile.yml
@@ -0,0 +1,125 @@
+Collections:
+ - Name: Guided Anchoring
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - Guided Anchoring
+ - ResNet
+ Paper: https://arxiv.org/abs/1901.03278
+ README: configs/guided_anchoring/README.md
+
+Models:
+ - Name: ga_faster_r50_caffe_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth
+
+ - Name: ga_faster_r101_caffe_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_bbox_mAP-0.415_20200505_115528-fb82e499.pth
+
+ - Name: ga_faster_x101_32x4d_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.7
+ inference time (s/im): 0.10309
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215-1ded9da3.pth
+
+ - Name: ga_faster_x101_64x4d_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 11.8
+ inference time (s/im): 0.13699
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215-0fa7bde7.pth
+
+ - Name: ga_retinanet_r50_caffe_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.5
+ inference time (s/im): 0.05952
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth
+
+ - Name: ga_retinanet_r101_caffe_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ inference time (s/im): 0.07752
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531-6266453c.pth
+
+ - Name: ga_retinanet_x101_32x4d_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.9
+ inference time (s/im): 0.09434
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219-40c56caa.pth
+
+ - Name: ga_retinanet_x101_64x4d_fpn_1x_coco
+ In Collection: Guided Anchoring
+ Config: configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.9
+ inference time (s/im): 0.12987
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226-ef9f7f1f.pth
diff --git a/configs/hrnet/README.md b/configs/hrnet/README.md
new file mode 100644
index 00000000..f446f16b
--- /dev/null
+++ b/configs/hrnet/README.md
@@ -0,0 +1,88 @@
+# High-resolution networks (HRNets) for object detection
+
+## Introduction
+
+
+
+```latex
+@inproceedings{SunXLW19,
+ title={Deep High-Resolution Representation Learning for Human Pose Estimation},
+ author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
+ booktitle={CVPR},
+ year={2019}
+}
+
+@article{SunZJCXLMWLW19,
+ title={High-Resolution Representations for Labeling Pixels and Regions},
+ author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
+ and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
+ journal = {CoRR},
+ volume = {abs/1904.04514},
+ year={2019}
+}
+```
+
+## Results and Models
+
+### Faster R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:| :--------:|
+| HRNetV2p-W18 | pytorch | 1x | 6.6 | 13.4 | 36.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130_211246.log.json) |
+| HRNetV2p-W18 | pytorch | 2x | 6.6 | | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731.log.json) |
+| HRNetV2p-W32 | pytorch | 1x | 9.0 | 12.4 | 40.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130_204442.log.json) |
+| HRNetV2p-W32 | pytorch | 2x | 9.0 | | 41.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927.log.json) |
+| HRNetV2p-W40 | pytorch | 1x | 10.4 | 10.5 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210_125315.log.json) |
+| HRNetV2p-W40 | pytorch | 2x | 10.4 | | 42.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033.log.json) |
+
+### Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
+| HRNetV2p-W18 | pytorch | 1x | 7.0 | 11.7 | 37.7 | 34.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205_232523.log.json) |
+| HRNetV2p-W18 | pytorch | 2x | 7.0 | - | 39.8 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212_134222.log.json) |
+| HRNetV2p-W32 | pytorch | 1x | 9.4 | 11.3 | 41.2 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207_055017.log.json) |
+| HRNetV2p-W32 | pytorch | 2x | 9.4 | - | 42.5 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213_150518.log.json) |
+| HRNetV2p-W40 | pytorch | 1x | 10.9 | | 42.1 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646.log.json) |
+| HRNetV2p-W40 | pytorch | 2x | 10.9 | | 42.8 | 38.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732.log.json) |
+
+### Cascade R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------: | :--------: |
+| HRNetV2p-W18 | pytorch | 20e | 7.0 | 11.0 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210_105632.log.json) |
+| HRNetV2p-W32 | pytorch | 20e | 9.4 | 11.0 | 43.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208_160511.log.json) |
+| HRNetV2p-W40 | pytorch | 20e | 10.8 | | 43.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112.log.json) |
+
+### Cascade Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
+| HRNetV2p-W18 | pytorch | 20e | 8.5 | 8.5 |41.6 |36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210_093149.log.json) |
+| HRNetV2p-W32 | pytorch | 20e | | 8.3 |44.3 |38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043.log.json) |
+| HRNetV2p-W40 | pytorch | 20e | 12.5 | |45.1 |39.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922.log.json) |
+
+### Hybrid Task Cascade (HTC)
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
+| HRNetV2p-W18 | pytorch | 20e | 10.8 | 4.7 | 42.8 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210_182735.log.json) |
+| HRNetV2p-W32 | pytorch | 20e | 13.1 | 4.9 | 45.4 | 39.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w32_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207_193153.log.json) |
+| HRNetV2p-W40 | pytorch | 20e | 14.6 | | 46.4 | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411.log.json) |
+
+### FCOS
+
+| Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:-------:|:------:|:------:|:------:|:------:|:--------:|
+|HRNetV2p-W18| pytorch | Y | N | 1x | 13.0 | 12.9 | 35.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710.log.json) |
+|HRNetV2p-W18| pytorch | Y | N | 2x | 13.0 | - | 38.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110.log.json) |
+|HRNetV2p-W32| pytorch | Y | N | 1x | 17.5 | 12.9 | 39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730.log.json) |
+|HRNetV2p-W32| pytorch | Y | N | 2x | 17.5 | - | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133.log.json) |
+|HRNetV2p-W18| pytorch | Y | Y | 2x | 13.0 | 12.9 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651.log.json) |
+|HRNetV2p-W32| pytorch | Y | Y | 2x | 17.5 | 12.4 | 41.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846.log.json) |
+|HRNetV2p-W48| pytorch | Y | Y | 2x | 20.3 | 10.8 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752.log.json) |
+
+**Note:**
+
+- The `28e` schedule in HTC indicates decreasing the lr at 24 and 27 epochs, with a total of 28 epochs.
+- HRNetV2 ImageNet pretrained models are in [HRNets for Image Classification](https://github.com/HRNet/HRNet-Image-Classification).
diff --git a/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
new file mode 100644
index 00000000..e8df265e
--- /dev/null
+++ b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
@@ -0,0 +1,10 @@
+_base_ = './cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
new file mode 100644
index 00000000..d410f23a
--- /dev/null
+++ b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
@@ -0,0 +1,39 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256))
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
new file mode 100644
index 00000000..29b1469f
--- /dev/null
+++ b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
@@ -0,0 +1,11 @@
+_base_ = './cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py b/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
new file mode 100644
index 00000000..9585a4f3
--- /dev/null
+++ b/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
@@ -0,0 +1,10 @@
+_base_ = './cascade_rcnn_hrnetv2p_w32_20e_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py b/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
new file mode 100644
index 00000000..ec1bb76a
--- /dev/null
+++ b/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
@@ -0,0 +1,39 @@
+_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256))
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py b/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
new file mode 100644
index 00000000..bd43e472
--- /dev/null
+++ b/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
@@ -0,0 +1,11 @@
+_base_ = './cascade_rcnn_hrnetv2p_w32_20e_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
new file mode 100644
index 00000000..9907bcbf
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
+# model settings
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
new file mode 100644
index 00000000..a4b987a1
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './faster_rcnn_hrnetv2p_w18_1x_coco.py'
+
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
new file mode 100644
index 00000000..190e81c7
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
@@ -0,0 +1,36 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256))
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
new file mode 100644
index 00000000..63c87171
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
new file mode 100644
index 00000000..d0fd9fa0
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py b/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
new file mode 100644
index 00000000..585cc2c3
--- /dev/null
+++ b/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_hrnetv2p_w40_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
new file mode 100644
index 00000000..20bffb95
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
@@ -0,0 +1,9 @@
+_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
new file mode 100644
index 00000000..34975959
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
new file mode 100644
index 00000000..b845128d
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
@@ -0,0 +1,9 @@
+_base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
new file mode 100644
index 00000000..98f1cb74
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
@@ -0,0 +1,69 @@
+_base_ = '../fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256,
+ stride=2,
+ num_outs=5))
+img_norm_cfg = dict(
+ mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
new file mode 100644
index 00000000..7b381307
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
new file mode 100644
index 00000000..482f8872
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
@@ -0,0 +1,39 @@
+_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py b/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
new file mode 100644
index 00000000..452b0fe2
--- /dev/null
+++ b/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py b/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
new file mode 100644
index 00000000..391636ff
--- /dev/null
+++ b/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
@@ -0,0 +1,9 @@
+_base_ = './htc_hrnetv2p_w32_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/htc_hrnetv2p_w32_20e_coco.py b/configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
new file mode 100644
index 00000000..aee78089
--- /dev/null
+++ b/configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
@@ -0,0 +1,36 @@
+_base_ = '../htc/htc_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256))
diff --git a/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py b/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
new file mode 100644
index 00000000..abf6fb55
--- /dev/null
+++ b/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
@@ -0,0 +1,10 @@
+_base_ = './htc_hrnetv2p_w32_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/htc_hrnetv2p_w40_28e_coco.py b/configs/hrnet/htc_hrnetv2p_w40_28e_coco.py
new file mode 100644
index 00000000..7067e8b6
--- /dev/null
+++ b/configs/hrnet/htc_hrnetv2p_w40_28e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './htc_hrnetv2p_w40_20e_coco.py'
+# learning policy
+lr_config = dict(step=[24, 27])
+runner = dict(type='EpochBasedRunner', max_epochs=28)
diff --git a/configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py b/configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py
new file mode 100644
index 00000000..815f2857
--- /dev/null
+++ b/configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py'
+# learning policy
+lr_config = dict(step=[24, 27])
+runner = dict(type='EpochBasedRunner', max_epochs=28)
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
new file mode 100644
index 00000000..82a5f464
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
@@ -0,0 +1,9 @@
+_base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w18',
+ backbone=dict(
+ extra=dict(
+ stage2=dict(num_channels=(18, 36)),
+ stage3=dict(num_channels=(18, 36, 72)),
+ stage4=dict(num_channels=(18, 36, 72, 144)))),
+ neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
new file mode 100644
index 00000000..ca62682a
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
new file mode 100644
index 00000000..f533af6d
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
@@ -0,0 +1,36 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(
+ _delete_=True,
+ type='HRFPN',
+ in_channels=[32, 64, 128, 256],
+ out_channels=256))
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
new file mode 100644
index 00000000..63d5d139
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
new file mode 100644
index 00000000..5b10c166
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
@@ -0,0 +1,10 @@
+_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w40',
+ backbone=dict(
+ type='HRNet',
+ extra=dict(
+ stage2=dict(num_channels=(40, 80)),
+ stage3=dict(num_channels=(40, 80, 160)),
+ stage4=dict(num_channels=(40, 80, 160, 320)))),
+ neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
diff --git a/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py b/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
new file mode 100644
index 00000000..3a2a5106
--- /dev/null
+++ b/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/hrnet/metafile.yml b/configs/hrnet/metafile.yml
new file mode 100644
index 00000000..cc8d6017
--- /dev/null
+++ b/configs/hrnet/metafile.yml
@@ -0,0 +1,440 @@
+Collections:
+ - Name: HRNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - HRNet
+ Paper: https://arxiv.org/abs/1904.04514
+ README: configs/hrnet/README.md
+
+Models:
+ - Name: faster_rcnn_hrnetv2p_w18_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.6
+ inference time (s/im): 0.07463
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth
+
+ - Name: faster_rcnn_hrnetv2p_w18_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
+ Metadata:
+ Training Memory (GB): 6.6
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth
+
+ - Name: faster_rcnn_hrnetv2p_w32_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.0
+ inference time (s/im): 0.08065
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth
+
+ - Name: faster_rcnn_hrnetv2p_w32_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
+ Metadata:
+ Training Memory (GB): 9.0
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth
+
+ - Name: faster_rcnn_hrnetv2p_w40_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.4
+ inference time (s/im): 0.09524
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth
+
+ - Name: faster_rcnn_hrnetv2p_w40_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
+ Metadata:
+ Training Memory (GB): 10.4
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth
+
+ - Name: mask_rcnn_hrnetv2p_w18_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.08547
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth
+
+ - Name: mask_rcnn_hrnetv2p_w18_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth
+
+ - Name: mask_rcnn_hrnetv2p_w32_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
+ Metadata:
+ Training Memory (GB): 9.4
+ inference time (s/im): 0.0885
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth
+
+ - Name: mask_rcnn_hrnetv2p_w32_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
+ Metadata:
+ Training Memory (GB): 9.4
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth
+
+ - Name: mask_rcnn_hrnetv2p_w40_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.9
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth
+
+ - Name: mask_rcnn_hrnetv2p_w40_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
+ Metadata:
+ Training Memory (GB): 10.9
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth
+
+ - Name: cascade_rcnn_hrnetv2p_w18_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.09091
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth
+
+ - Name: cascade_rcnn_hrnetv2p_w32_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
+ Metadata:
+ Training Memory (GB): 9.4
+ inference time (s/im): 0.09091
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth
+
+ - Name: cascade_rcnn_hrnetv2p_w40_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
+ Metadata:
+ Training Memory (GB): 10.8
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth
+
+ - Name: cascade_mask_rcnn_hrnetv2p_w18_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
+ Metadata:
+ Training Memory (GB): 8.5
+ inference time (s/im): 0.11765
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth
+
+ - Name: cascade_mask_rcnn_hrnetv2p_w32_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
+ Metadata:
+ inference time (s/im): 0.12048
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth
+
+ - Name: cascade_mask_rcnn_hrnetv2p_w40_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
+ Metadata:
+ Training Memory (GB): 12.5
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth
+
+ - Name: htc_hrnetv2p_w18_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
+ Metadata:
+ Training Memory (GB): 10.8
+ inference time (s/im): 0.21277
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth
+
+ - Name: htc_hrnetv2p_w32_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
+ Metadata:
+ Training Memory (GB): 13.1
+ inference time (s/im): 0.20408
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth
+
+ - Name: htc_hrnetv2p_w40_20e_coco
+ In Collection: HRNet
+ Config: configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
+ Metadata:
+ Training Memory (GB): 14.6
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth
+
+ - Name: fcos_hrnetv2p_w18_gn-head_4x4_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
+ Metadata:
+ Training Memory (GB): 13.0
+ inference time (s/im): 0.07752
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 35.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth
+
+ - Name: fcos_hrnetv2p_w18_gn-head_4x4_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 13.0
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth
+
+ - Name: fcos_hrnetv2p_w32_gn-head_4x4_1x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
+ Metadata:
+ Training Memory (GB): 17.5
+ inference time (s/im): 0.07752
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth
+
+ - Name: fcos_hrnetv2p_w32_gn-head_4x4_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 17.5
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth
+
+ - Name: fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 13.0
+ inference time (s/im): 0.07752
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth
+
+ - Name: fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 17.5
+ inference time (s/im): 0.08065
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth
+
+ - Name: fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco
+ In Collection: HRNet
+ Config: configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
+ Metadata:
+ Training Memory (GB): 20.3
+ inference time (s/im): 0.09259
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth
diff --git a/configs/htc/README.md b/configs/htc/README.md
new file mode 100644
index 00000000..16258272
--- /dev/null
+++ b/configs/htc/README.md
@@ -0,0 +1,57 @@
+# Hybrid Task Cascade for Instance Segmentation
+
+## Introduction
+
+
+
+We provide config files to reproduce the results in the CVPR 2019 paper for [Hybrid Task Cascade](https://arxiv.org/abs/1901.07518).
+
+```latex
+@inproceedings{chen2019hybrid,
+ title={Hybrid task cascade for instance segmentation},
+ author={Chen, Kai and Pang, Jiangmiao and Wang, Jiaqi and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Shi, Jianping and Ouyang, Wanli and Chen Change Loy and Dahua Lin},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ year={2019}
+}
+```
+
+## Dataset
+
+HTC requires COCO and [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) dataset for training. You need to download and extract it in the COCO dataset path.
+The directory should be like this.
+
+```none
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+| | ├── stuffthingmaps
+```
+
+## Results and Models
+
+The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | pytorch | 1x | 8.2 | 5.8 | 42.3 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317_070435.log.json) |
+| R-50-FPN | pytorch | 20e | 8.2 | - | 43.3 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_r50_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319_070313.log.json) |
+| R-101-FPN | pytorch | 20e | 10.2 | 5.5 | 44.8 | 39.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_r101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317_153107.log.json) |
+| X-101-32x4d-FPN | pytorch |20e| 11.4 | 5.0 | 46.1 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318_034519.log.json) |
+| X-101-64x4d-FPN | pytorch |20e| 14.5 | 4.4 | 47.0 | 41.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318_081711.log.json) |
+
+- In the HTC paper and COCO 2018 Challenge, `score_thr` is set to 0.001 for both baselines and HTC.
+- We use 8 GPUs with 2 images/GPU for R-50 and R-101 models, and 16 GPUs with 1 image/GPU for X-101 models.
+ If you would like to train X-101 HTC with 8 GPUs, you need to change the lr from 0.02 to 0.01.
+
+We also provide a powerful HTC with DCN and multi-scale training model. No testing augmentation is used.
+
+| Backbone | Style | DCN | training scales | Lr schd | box AP | mask AP | Config | Download |
+|:----------------:|:-------:|:-----:|:---------------:|:-------:|:------:|:-------:|:------:|:--------:|
+| X-101-64x4d-FPN | pytorch | c3-c5 | 400~1400 | 20e | 50.4 | 43.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312_203410.log.json) |
diff --git a/configs/htc/htc_r101_fpn_20e_coco.py b/configs/htc/htc_r101_fpn_20e_coco.py
new file mode 100644
index 00000000..de3d5b76
--- /dev/null
+++ b/configs/htc/htc_r101_fpn_20e_coco.py
@@ -0,0 +1,5 @@
+_base_ = './htc_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/htc/htc_r50_fpn_1x_coco.py b/configs/htc/htc_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..929cf464
--- /dev/null
+++ b/configs/htc/htc_r50_fpn_1x_coco.py
@@ -0,0 +1,56 @@
+_base_ = './htc_without_semantic_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ semantic_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[8]),
+ semantic_head=dict(
+ type='FusedSemanticHead',
+ num_ins=5,
+ fusion_level=1,
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=183,
+ ignore_label=255,
+ loss_weight=0.2)))
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='SegRescale', scale_factor=1 / 8),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(
+ seg_prefix=data_root + 'stuffthingmaps/train2017/',
+ pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/htc/htc_r50_fpn_20e_coco.py b/configs/htc/htc_r50_fpn_20e_coco.py
new file mode 100644
index 00000000..7d2e0116
--- /dev/null
+++ b/configs/htc/htc_r50_fpn_20e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './htc_r50_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/htc/htc_without_semantic_r50_fpn_1x_coco.py b/configs/htc/htc_without_semantic_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..d028d98a
--- /dev/null
+++ b/configs/htc/htc_without_semantic_r50_fpn_1x_coco.py
@@ -0,0 +1,236 @@
+_base_ = [
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ type='HybridTaskCascade',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ type='RPNHead',
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ type='HybridTaskCascadeRoIHead',
+ interleaved=True,
+ mask_info_flow=True,
+ num_stages=3,
+ stage_loss_weights=[1, 0.5, 0.25],
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ mask_head=[
+ dict(
+ type='HTCMaskHead',
+ with_conv_res=False,
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
+ dict(
+ type='HTCMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
+ dict(
+ type='HTCMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))
+ ]),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.3,
+ min_pos_iou=0.3,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=256,
+ pos_fraction=0.5,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=False),
+ allowed_border=0,
+ pos_weight=-1,
+ debug=False),
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=[
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0.5,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.6,
+ neg_iou_thr=0.6,
+ min_pos_iou=0.6,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False),
+ dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.7,
+ neg_iou_thr=0.7,
+ min_pos_iou=0.7,
+ ignore_iof_thr=-1),
+ sampler=dict(
+ type='RandomSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True),
+ mask_size=28,
+ pos_weight=-1,
+ debug=False)
+ ]),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=1000,
+ max_per_img=1000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ score_thr=0.001,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100,
+ mask_thr_binary=0.5)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
diff --git a/configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py b/configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py
new file mode 100644
index 00000000..b9e5524a
--- /dev/null
+++ b/configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py
@@ -0,0 +1,18 @@
+_base_ = './htc_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
+data = dict(samples_per_gpu=1, workers_per_gpu=1)
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py b/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
new file mode 100644
index 00000000..b140f751
--- /dev/null
+++ b/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
@@ -0,0 +1,18 @@
+_base_ = './htc_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
+data = dict(samples_per_gpu=1, workers_per_gpu=1)
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py b/configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
new file mode 100644
index 00000000..da89e09c
--- /dev/null
+++ b/configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
@@ -0,0 +1,42 @@
+_base_ = './htc_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch',
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
+# dataset settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
+ dict(
+ type='Resize',
+ img_scale=[(1600, 400), (1600, 1400)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='SegRescale', scale_factor=1 / 8),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
+]
+data = dict(
+ samples_per_gpu=1, workers_per_gpu=1, train=dict(pipeline=train_pipeline))
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/htc/metafile.yml b/configs/htc/metafile.yml
new file mode 100644
index 00000000..8494898f
--- /dev/null
+++ b/configs/htc/metafile.yml
@@ -0,0 +1,123 @@
+Collections:
+ - Name: HTC
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - HTC
+ - RPN
+ - ResNet
+ - ResNeXt
+ - RoIAlign
+ Paper: https://arxiv.org/abs/1901.07518
+ README: configs/htc/README.md
+
+Models:
+ - Name: htc_r50_fpn_1x_coco
+ In Collection: HTC
+ Config: configs/htc/htc_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.2
+ inference time (s/im): 0.17241
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth
+
+ - Name: htc_r50_fpn_20e_coco
+ In Collection: HTC
+ Config: configs/htc/htc_r50_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 8.2
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth
+
+ - Name: htc_r101_fpn_20e_coco
+ In Collection: HTC
+ Config: configs/htc/htc_r101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 10.2
+ inference time (s/im): 0.18182
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth
+
+ - Name: htc_x101_32x4d_fpn_16x1_20e_coco
+ In Collection: HTC
+ Config: configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py
+ Metadata:
+ Training Memory (GB): 11.4
+ inference time (s/im): 0.2
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth
+
+ - Name: htc_x101_64x4d_fpn_16x1_20e_coco
+ In Collection: HTC
+ Config: configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
+ Metadata:
+ Training Memory (GB): 14.5
+ inference time (s/im): 0.22727
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
+
+ - Name: htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco
+ In Collection: HTC
+ Config: configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
+ Metadata:
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 50.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 43.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth
diff --git a/configs/instaboost/README.md b/configs/instaboost/README.md
new file mode 100644
index 00000000..02e9676c
--- /dev/null
+++ b/configs/instaboost/README.md
@@ -0,0 +1,44 @@
+# InstaBoost for MMDetection
+
+
+
+Configs in this directory is the implementation for ICCV2019 paper "InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting" and provided by the authors of the paper. InstaBoost is a data augmentation method for object detection and instance segmentation. The paper has been released on [`arXiv`](https://arxiv.org/abs/1908.07801).
+
+```latex
+@inproceedings{fang2019instaboost,
+ title={Instaboost: Boosting instance segmentation via probability map guided copy-pasting},
+ author={Fang, Hao-Shu and Sun, Jianhua and Wang, Runzhong and Gou, Minghao and Li, Yong-Lu and Lu, Cewu},
+ booktitle={Proceedings of the IEEE International Conference on Computer Vision},
+ pages={682--691},
+ year={2019}
+}
+```
+
+## Usage
+
+### Requirements
+
+You need to install `instaboostfast` before using it.
+
+```shell
+pip install instaboostfast
+```
+
+The code and more details can be found [here](https://github.com/GothicAi/Instaboost).
+
+### Integration with MMDetection
+
+InstaBoost have been already integrated in the data pipeline, thus all you need is to add or change **InstaBoost** configurations after **LoadImageFromFile**. We have provided examples like [this](mask_rcnn_r50_fpn_instaboost_4x#L121). You can refer to [`InstaBoostConfig`](https://github.com/GothicAi/InstaBoost-pypi#instaboostconfig) for more details.
+
+## Results and Models
+
+- All models were trained on `coco_2017_train` and tested on `coco_2017_val` for conveinience of evaluation and comparison. In the paper, the results are obtained from `test-dev`.
+- To balance accuracy and training time when using InstaBoost, models released in this page are all trained for 48 Epochs. Other training and testing configs strictly follow the original framework.
+- For results and models in MMDetection V1.x, please refer to [Instaboost](https://github.com/GothicAi/Instaboost).
+
+| Network | Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :--------: | :-----: | :------: | :------------: | :------:| :-----: | :------: | :-----------------: |
+| Mask R-CNN | R-50-FPN | 4x | 4.4 | 17.5 | 40.6 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco/mask_rcnn_r50_fpn_instaboost_4x_coco_20200307-d025f83a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco/mask_rcnn_r50_fpn_instaboost_4x_coco_20200307_223635.log.json) |
+| Mask R-CNN | R-101-FPN | 4x | 6.4 | | 42.5 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco/mask_rcnn_r101_fpn_instaboost_4x_coco_20200703_235738-f23f3a5f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco/mask_rcnn_r101_fpn_instaboost_4x_coco_20200703_235738.log.json) |
+| Mask R-CNN | X-101-64x4d-FPN | 4x | 10.7 | | 44.7 | 39.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco_20200515_080947-8ed58c1b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco_20200515_080947.log.json) |
+| Cascade R-CNN | R-101-FPN | 4x | 6.0 | 12.0 | 43.7 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco_20200307-c19d98d9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco_20200307_223646.log.json) |
diff --git a/configs/instaboost/cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py b/configs/instaboost/cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..723ab029
--- /dev/null
+++ b/configs/instaboost/cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py b/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..a89a81f5
--- /dev/null
+++ b/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
@@ -0,0 +1,28 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='InstaBoost',
+ action_candidate=('normal', 'horizontal', 'skip'),
+ action_prob=(1, 0, 0),
+ scale=(0.8, 1.2),
+ dx=15,
+ dy=15,
+ theta=(-1, 1),
+ color_prob=0.5,
+ hflag=False,
+ aug_ratio=0.5),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# learning policy
+lr_config = dict(step=[32, 44])
+runner = dict(type='EpochBasedRunner', max_epochs=48)
diff --git a/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py b/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..7cf5f307
--- /dev/null
+++ b/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py b/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..c2819477
--- /dev/null
+++ b/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_instaboost_4x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py b/configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..55ca62b7
--- /dev/null
+++ b/configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py
@@ -0,0 +1,28 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='InstaBoost',
+ action_candidate=('normal', 'horizontal', 'skip'),
+ action_prob=(1, 0, 0),
+ scale=(0.8, 1.2),
+ dx=15,
+ dy=15,
+ theta=(-1, 1),
+ color_prob=0.5,
+ hflag=False,
+ aug_ratio=0.5),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# learning policy
+lr_config = dict(step=[32, 44])
+runner = dict(type='EpochBasedRunner', max_epochs=48)
diff --git a/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py b/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
new file mode 100644
index 00000000..0acd088a
--- /dev/null
+++ b/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r50_fpn_instaboost_4x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/instaboost/metafile.yml b/configs/instaboost/metafile.yml
new file mode 100644
index 00000000..e0027162
--- /dev/null
+++ b/configs/instaboost/metafile.yml
@@ -0,0 +1,82 @@
+Collections:
+ - Name: InstaBoost
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - InstaBoost
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Paper: https://arxiv.org/abs/1908.07801
+ README: configs/instaboost/README.md
+
+Models:
+ - Name: mask_rcnn_r50_fpn_instaboost_4x_coco
+ In Collection: InstaBoost
+ Config: configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.05714
+ Epochs: 48
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco/mask_rcnn_r50_fpn_instaboost_4x_coco_20200307-d025f83a.pth
+
+ - Name: mask_rcnn_r101_fpn_instaboost_4x_coco
+ In Collection: InstaBoost
+ Config: configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ Epochs: 48
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco/mask_rcnn_r101_fpn_instaboost_4x_coco_20200703_235738-f23f3a5f.pth
+
+ - Name: mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco
+ In Collection: InstaBoost
+ Config: configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ Epochs: 48
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco_20200515_080947-8ed58c1b.pth
+
+ - Name: cascade_mask_rcnn_r50_fpn_instaboost_4x_coco
+ In Collection: InstaBoost
+ Config: configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
+ Metadata:
+ Training Memory (GB): 6.0
+ inference time (s/im): 0.08333
+ Epochs: 48
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco_20200307-c19d98d9.pth
diff --git a/configs/ld/README.md b/configs/ld/README.md
new file mode 100644
index 00000000..0177f1e6
--- /dev/null
+++ b/configs/ld/README.md
@@ -0,0 +1,31 @@
+# Localization Distillation for Object Detection
+
+## Introduction
+
+
+
+```latex
+@Article{zheng2021LD,
+ title={Localization Distillation for Object Detection},
+ author= {Zhaohui Zheng, Rongguang Ye, Ping Wang, Jun Wang, Dongwei Ren, Wangmeng Zuo},
+ journal={arXiv:2102.12252},
+ year={2021}
+}
+```
+
+### GFocalV1 with LD
+
+| Teacher | Student | Training schedule | Mini-batch size | AP (val) | AP50 (val) | AP75 (val) | Config |
+| :-------: | :-----: | :---------------: | :-------------: | :------: | :--------: | :--------: | :--------------: |
+| -- | R-18 | 1x | 6 | 35.8 | 53.1 | 38.2 | |
+| R-101 | R-18 | 1x | 6 | 36.5 | 52.9 | 39.3 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py) |
+| -- | R-34 | 1x | 6 | 38.9 | 56.6 | 42.2 | |
+| R-101 | R-34 | 1x | 6 | 39.8 | 56.6 | 43.1 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py) |
+| -- | R-50 | 1x | 6 | 40.1 | 58.2 | 43.1 | |
+| R-101 | R-50 | 1x | 6 | 41.1 | 58.7 | 44.9 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py) |
+| -- | R-101 | 2x | 6 | 44.6 | 62.9 | 48.4 | |
+| R-101-DCN | R-101 | 2x | 6 | 45.4 | 63.1 | 49.5 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/ld/ld_r101_gflv1_r101dcn_fpn_coco_1x.py) |
+
+## Note
+
+- Meaning of Config name: ld_r18(student model)_gflv1(based on gflv1)_r101(teacher model)_fpn(neck)_coco(dataset)_1x(12 epoch).py
diff --git a/configs/ld/ld_r101_gflv1_r101dcn_fpn_coco_2x.py b/configs/ld/ld_r101_gflv1_r101dcn_fpn_coco_2x.py
new file mode 100644
index 00000000..19398c14
--- /dev/null
+++ b/configs/ld/ld_r101_gflv1_r101dcn_fpn_coco_2x.py
@@ -0,0 +1,43 @@
+_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py']
+teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa
+model = dict(
+ pretrained='torchvision://resnet101',
+ teacher_config='configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py',
+ teacher_ckpt=teacher_ckpt,
+ backbone=dict(
+ type='ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs='on_output',
+ num_outs=5))
+
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
+# multi-scale training
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 480), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py b/configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py
new file mode 100644
index 00000000..2352e985
--- /dev/null
+++ b/configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py
@@ -0,0 +1,62 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth' # noqa
+model = dict(
+ type='KnowledgeDistillationSingleStageDetector',
+ pretrained='torchvision://resnet18',
+ teacher_config='configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py',
+ teacher_ckpt=teacher_ckpt,
+ backbone=dict(
+ type='ResNet',
+ depth=18,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[64, 128, 256, 512],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs='on_output',
+ num_outs=5),
+ bbox_head=dict(
+ type='LDHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ octave_base_scale=8,
+ scales_per_octave=1,
+ strides=[8, 16, 32, 64, 128]),
+ loss_cls=dict(
+ type='QualityFocalLoss',
+ use_sigmoid=True,
+ beta=2.0,
+ loss_weight=1.0),
+ loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
+ loss_ld=dict(
+ type='KnowledgeDistillationKLDivLoss', loss_weight=0.25, T=10),
+ reg_max=16,
+ loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(type='ATSSAssigner', topk=9),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
+
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py b/configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py
new file mode 100644
index 00000000..905651d1
--- /dev/null
+++ b/configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py
@@ -0,0 +1,19 @@
+_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py']
+model = dict(
+ pretrained='torchvision://resnet34',
+ backbone=dict(
+ type='ResNet',
+ depth=34,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[64, 128, 256, 512],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs='on_output',
+ num_outs=5))
diff --git a/configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py b/configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py
new file mode 100644
index 00000000..923c6263
--- /dev/null
+++ b/configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py
@@ -0,0 +1,19 @@
+_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py']
+model = dict(
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs='on_output',
+ num_outs=5))
diff --git a/configs/ld/metafile.yml b/configs/ld/metafile.yml
new file mode 100644
index 00000000..3bb2ac41
--- /dev/null
+++ b/configs/ld/metafile.yml
@@ -0,0 +1,67 @@
+Collections:
+ - Name: Localization Distillation
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - Localization Distillation
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/2102.12252
+ README: configs/ld/README.md
+
+Models:
+ - Name: ld_r18_gflv1_r101_fpn_coco_1x
+ In Collection: Localization Distillation
+ Config: configs/ld/ld_r18_gflv1_r101_fpn_coco_1x.py
+ Metadata:
+ Teacher: R-101
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.5
+ AP50: 52.9
+ AP75: 39.3
+
+ - Name: ld_r34_gflv1_r101_fpn_coco_1x
+ In Collection: Localization Distillation
+ Config: configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py
+ Metadata:
+ Teacher: R-101
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.8
+ AP50: 56.6
+ AP75: 43.1
+
+ - Name: ld_r50_gflv1_r101_fpn_coco_1x
+ In Collection: Localization Distillation
+ Config: configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py
+ Metadata:
+ Teacher: R-101
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.1
+ AP50: 58.7
+ AP75: 44.9
+
+ - Name: ld_r101_gflv1_r101dcn_fpn_coco_1x
+ In Collection: Localization Distillation
+ Config: configs/ld/ld_r101_gflv1_r101dcn_fpn_coco_1x.py
+ Metadata:
+ Teacher: R-101-DCN
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.4
+ AP50: 63.1
+ AP75: 49.5
diff --git a/configs/legacy_1.x/README.md b/configs/legacy_1.x/README.md
new file mode 100644
index 00000000..38a2a0e4
--- /dev/null
+++ b/configs/legacy_1.x/README.md
@@ -0,0 +1,53 @@
+# Legacy Configs in MMDetection V1.x
+
+
+
+Configs in this directory implement the legacy configs used by MMDetection V1.x and its model zoos.
+
+To help users convert their models from V1.x to MMDetection V2.0, we provide v1.x configs to inference the converted v1.x models.
+Due to the BC-breaking changes in MMDetection V2.0 from MMDetection V1.x, running inference with the same model weights in these two version will produce different results. The difference will cause within 1% AP absolute difference as can be found in the following table.
+
+## Usage
+
+To upgrade the model version, the users need to do the following steps.
+
+### 1. Convert model weights
+
+There are three main difference in the model weights between V1.x and V2.0 codebases.
+
+1. Since the class order in all the detector's classification branch is reordered, all the legacy model weights need to go through the conversion process.
+2. The regression and segmentation head no longer contain the background channel. Weights in these background channels should be removed to fix in the current codebase.
+3. For two-stage detectors, their wegihts need to be upgraded since MMDetection V2.0 refactors all the two-stage detectors with `RoIHead`.
+
+The users can do the same modification as mentioned above for the self-implemented
+detectors. We provide a scripts `tools/model_converters/upgrade_model_version.py` to convert the model weights in the V1.x model zoo.
+
+```bash
+python tools/model_converters/upgrade_model_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH} --num-classes ${NUM_CLASSES}
+
+```
+
+- OLD_MODEL_PATH: the path to load the model weights in 1.x version.
+- NEW_MODEL_PATH: the path to save the converted model weights in 2.0 version.
+- NUM_CLASSES: number of classes of the original model weights. Usually it is 81 for COCO dataset, 21 for VOC dataset.
+ The number of classes in V2.0 models should be equal to that in V1.x models - 1.
+
+### 2. Use configs with legacy settings
+
+After converting the model weights, checkout to the v1.2 release to find the corresponding config file that uses the legacy settings.
+The V1.x models usually need these three legacy modules: `LegacyAnchorGenerator`, `LegacyDeltaXYWHBBoxCoder`, and `RoIAlign(align=False)`.
+For models using ResNet Caffe backbones, they also need to change the pretrain name and the corresponding `img_norm_cfg`.
+An example is in [`retinanet_r50_caffe_fpn_1x_coco_v1.py`](retinanet_r50_caffe_fpn_1x_coco_v1.py)
+Then use the config to test the model weights. For most models, the obtained results should be close to that in V1.x.
+We provide configs of some common structures in this directory.
+
+## Performance
+
+The performance change after converting the models in this directory are listed as the following.
+| Method | Style | Lr schd | V1.x box AP | V1.x mask AP | V2.0 box AP | V2.0 mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------:| :-----: |:------:| :-----: | :-------: |:------------------------------------------------------------------------------------------------------------------------------: |
+| Mask R-CNN R-50-FPN | pytorch | 1x | 37.3 | 34.2 | 36.8 | 33.9 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/legacy_1.x/mask_rcnn_r50_fpn_1x_coco_v1.py) | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth)|
+| RetinaNet R-50-FPN | caffe | 1x | 35.8 | - | 35.4 | - | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/legacy_1.x/retinanet_r50_caffe_1x_coco_v1.py) |
+| RetinaNet R-50-FPN | pytorch | 1x | 35.6 |-|35.2| -| [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/legacy_1.x/retinanet_r50_fpn_1x_coco_v1.py) | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-7b0c2548.pth) |
+| Cascade Mask R-CNN R-50-FPN | pytorch | 1x | 41.2 | 35.7 |40.8| 35.6| [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/legacy_1.x/cascade_mask_rcnn_r50_fpn_1x_coco_v1.py) | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth) |
+| SSD300-VGG16 | caffe | 120e | 25.7 |-|25.4|-| [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/legacy_1.x/ssd300_coco_v1.py) | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth) |
diff --git a/configs/legacy_1.x/cascade_mask_rcnn_r50_fpn_1x_coco_v1.py b/configs/legacy_1.x/cascade_mask_rcnn_r50_fpn_1x_coco_v1.py
new file mode 100644
index 00000000..5899444a
--- /dev/null
+++ b/configs/legacy_1.x/cascade_mask_rcnn_r50_fpn_1x_coco_v1.py
@@ -0,0 +1,79 @@
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ type='CascadeRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ rpn_head=dict(
+ anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5),
+ bbox_coder=dict(
+ type='LegacyDeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1.0, 1.0, 1.0, 1.0])),
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=7,
+ sampling_ratio=2,
+ aligned=False)),
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ reg_class_agnostic=True,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='LegacyDeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2])),
+ dict(
+ type='Shared2FCBBoxHead',
+ reg_class_agnostic=True,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='LegacyDeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1])),
+ dict(
+ type='Shared2FCBBoxHead',
+ reg_class_agnostic=True,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='LegacyDeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067])),
+ ],
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=14,
+ sampling_ratio=2,
+ aligned=False))))
+dist_params = dict(backend='nccl', port=29515)
diff --git a/configs/legacy_1.x/faster_rcnn_r50_fpn_1x_coco_v1.py b/configs/legacy_1.x/faster_rcnn_r50_fpn_1x_coco_v1.py
new file mode 100644
index 00000000..fb2f2d1e
--- /dev/null
+++ b/configs/legacy_1.x/faster_rcnn_r50_fpn_1x_coco_v1.py
@@ -0,0 +1,37 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ type='FasterRCNN',
+ pretrained='torchvision://resnet50',
+ rpn_head=dict(
+ type='RPNHead',
+ anchor_generator=dict(
+ type='LegacyAnchorGenerator',
+ center_offset=0.5,
+ scales=[8],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[4, 8, 16, 32, 64]),
+ bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ type='StandardRoIHead',
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=7,
+ sampling_ratio=2,
+ aligned=False),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=dict(
+ bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn_proposal=dict(max_per_img=2000),
+ rcnn=dict(assigner=dict(match_low_quality=True))))
diff --git a/configs/legacy_1.x/mask_rcnn_r50_fpn_1x_coco_v1.py b/configs/legacy_1.x/mask_rcnn_r50_fpn_1x_coco_v1.py
new file mode 100644
index 00000000..04581bbc
--- /dev/null
+++ b/configs/legacy_1.x/mask_rcnn_r50_fpn_1x_coco_v1.py
@@ -0,0 +1,34 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ rpn_head=dict(
+ anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5),
+ bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=7,
+ sampling_ratio=2,
+ aligned=False)),
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=14,
+ sampling_ratio=2,
+ aligned=False)),
+ bbox_head=dict(
+ bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+
+ # model training and testing settings
+ train_cfg=dict(
+ rpn_proposal=dict(max_per_img=2000),
+ rcnn=dict(assigner=dict(match_low_quality=True))))
diff --git a/configs/legacy_1.x/retinanet_r50_caffe_fpn_1x_coco_v1.py b/configs/legacy_1.x/retinanet_r50_caffe_fpn_1x_coco_v1.py
new file mode 100644
index 00000000..ef9392f7
--- /dev/null
+++ b/configs/legacy_1.x/retinanet_r50_caffe_fpn_1x_coco_v1.py
@@ -0,0 +1,37 @@
+_base_ = './retinanet_r50_fpn_1x_coco_v1.py'
+model = dict(
+ pretrained='open-mmlab://detectron/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/legacy_1.x/retinanet_r50_fpn_1x_coco_v1.py b/configs/legacy_1.x/retinanet_r50_fpn_1x_coco_v1.py
new file mode 100644
index 00000000..6198b971
--- /dev/null
+++ b/configs/legacy_1.x/retinanet_r50_fpn_1x_coco_v1.py
@@ -0,0 +1,17 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ bbox_head=dict(
+ type='RetinaHead',
+ anchor_generator=dict(
+ type='LegacyAnchorGenerator',
+ center_offset=0.5,
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)))
diff --git a/configs/legacy_1.x/ssd300_coco_v1.py b/configs/legacy_1.x/ssd300_coco_v1.py
new file mode 100644
index 00000000..b194e765
--- /dev/null
+++ b/configs/legacy_1.x/ssd300_coco_v1.py
@@ -0,0 +1,79 @@
+_base_ = [
+ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+# model settings
+input_size = 300
+model = dict(
+ bbox_head=dict(
+ type='SSDHead',
+ anchor_generator=dict(
+ type='LegacySSDAnchorGenerator',
+ scale_major=False,
+ input_size=input_size,
+ basesize_ratio_range=(0.15, 0.9),
+ strides=[8, 16, 32, 64, 100, 300],
+ ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
+ bbox_coder=dict(
+ type='LegacyDeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.1, 0.1, 0.2, 0.2])))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='Expand',
+ mean=img_norm_cfg['mean'],
+ to_rgb=img_norm_cfg['to_rgb'],
+ ratio_range=(1, 4)),
+ dict(
+ type='MinIoURandomCrop',
+ min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
+ min_crop_size=0.3),
+ dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(300, 300),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=3,
+ train=dict(
+ _delete_=True,
+ type='RepeatDataset',
+ times=5,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
+optimizer_config = dict(_delete_=True)
+dist_params = dict(backend='nccl', port=29555)
diff --git a/configs/libra_rcnn/README.md b/configs/libra_rcnn/README.md
index 8cfe5251..ef2f6fe2 100644
--- a/configs/libra_rcnn/README.md
+++ b/configs/libra_rcnn/README.md
@@ -2,6 +2,8 @@
## Introduction
+
+
We provide config files to reproduce the results in the CVPR 2019 paper [Libra R-CNN](https://arxiv.org/pdf/1904.02701.pdf).
```
@@ -17,10 +19,10 @@ We provide config files to reproduce the results in the CVPR 2019 paper [Libra R
The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
-| Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:------------:|:---------------:|:-------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| Faster R-CNN | R-50-FPN | pytorch | 1x | 4.6 | 19.0 | 38.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
+| Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:------------:|:---------------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| Faster R-CNN | R-50-FPN | pytorch | 1x | 4.6 | 19.0 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
| Fast R-CNN | R-50-FPN | pytorch | 1x | | | | |
-| Faster R-CNN | R-101-FPN | pytorch | 1x | 6.5 | 14.4 | 40.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203_001405.log.json) |
-| Faster R-CNN | X-101-64x4d-FPN | pytorch | 1x | 10.8 | 8.5 | 42.7 | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315_231625.log.json) |
-| RetinaNet | R-50-FPN | pytorch | 1x | 4.2 | 17.7 | 37.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205_112757.log.json) |
+| Faster R-CNN | R-101-FPN | pytorch | 1x | 6.5 | 14.4 | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203_001405.log.json) |
+| Faster R-CNN | X-101-64x4d-FPN | pytorch | 1x | 10.8 | 8.5 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315_231625.log.json) |
+| RetinaNet | R-50-FPN | pytorch | 1x | 4.2 | 17.7 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205_112757.log.json) |
diff --git a/configs/libra_rcnn/libra_fast_rcnn_r50_fpn_1x_coco.py b/configs/libra_rcnn/libra_fast_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..efbedc86
--- /dev/null
+++ b/configs/libra_rcnn/libra_fast_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,50 @@
+_base_ = '../fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py'
+# model settings
+model = dict(
+ neck=[
+ dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ dict(
+ type='BFP',
+ in_channels=256,
+ num_levels=5,
+ refine_level=2,
+ refine_type='non_local')
+ ],
+ roi_head=dict(
+ bbox_head=dict(
+ loss_bbox=dict(
+ _delete_=True,
+ type='BalancedL1Loss',
+ alpha=0.5,
+ gamma=1.5,
+ beta=1.0,
+ loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rcnn=dict(
+ sampler=dict(
+ _delete_=True,
+ type='CombinedSampler',
+ num=512,
+ pos_fraction=0.25,
+ add_gt_as_proposals=True,
+ pos_sampler=dict(type='InstanceBalancedPosSampler'),
+ neg_sampler=dict(
+ type='IoUBalancedNegSampler',
+ floor_thr=-1,
+ floor_fraction=0,
+ num_bins=3)))))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+data = dict(
+ train=dict(proposal_file=data_root +
+ 'libra_proposals/rpn_r50_fpn_1x_train2017.pkl'),
+ val=dict(proposal_file=data_root +
+ 'libra_proposals/rpn_r50_fpn_1x_val2017.pkl'),
+ test=dict(proposal_file=data_root +
+ 'libra_proposals/rpn_r50_fpn_1x_val2017.pkl'))
diff --git a/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py b/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..8e36c9b3
--- /dev/null
+++ b/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './libra_faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py b/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
index 9e9b6172..89a0d7b2 100644
--- a/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
+++ b/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
@@ -22,20 +22,20 @@
alpha=0.5,
gamma=1.5,
beta=1.0,
- loss_weight=1.0))))
-# model training and testing settings
-train_cfg = dict(
- rpn=dict(sampler=dict(neg_pos_ub=5), allowed_border=-1),
- rcnn=dict(
- sampler=dict(
- _delete_=True,
- type='CombinedSampler',
- num=512,
- pos_fraction=0.25,
- add_gt_as_proposals=True,
- pos_sampler=dict(type='InstanceBalancedPosSampler'),
- neg_sampler=dict(
- type='IoUBalancedNegSampler',
- floor_thr=-1,
- floor_fraction=0,
- num_bins=3))))
+ loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rpn=dict(sampler=dict(neg_pos_ub=5), allowed_border=-1),
+ rcnn=dict(
+ sampler=dict(
+ _delete_=True,
+ type='CombinedSampler',
+ num=512,
+ pos_fraction=0.25,
+ add_gt_as_proposals=True,
+ pos_sampler=dict(type='InstanceBalancedPosSampler'),
+ neg_sampler=dict(
+ type='IoUBalancedNegSampler',
+ floor_thr=-1,
+ floor_fraction=0,
+ num_bins=3)))))
diff --git a/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..e9455329
--- /dev/null
+++ b/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './libra_faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py b/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py
index 236e901e..be274209 100644
--- a/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py
+++ b/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py
@@ -1,4 +1,4 @@
-_base_ = '../retinanet/retinanet_r50_fpn_coco.py'
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
# model settings
model = dict(
neck=[
diff --git a/configs/libra_rcnn/metafile.yml b/configs/libra_rcnn/metafile.yml
new file mode 100644
index 00000000..e9ce88b0
--- /dev/null
+++ b/configs/libra_rcnn/metafile.yml
@@ -0,0 +1,70 @@
+Collections:
+ - Name: Libra R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - IoU-Balanced Sampling
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Balanced Feature Pyramid
+ Paper: https://arxiv.org/abs/1904.02701
+ README: configs/libra_rcnn/README.md
+
+Models:
+ - Name: libra_faster_rcnn_r50_fpn_1x_coco
+ In Collection: Libra R-CNN
+ Config: configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.6
+ inference time (s/im): 0.05263
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth
+
+ - Name: libra_faster_rcnn_r101_fpn_1x_coco
+ In Collection: Libra R-CNN
+ Config: configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.5
+ inference time (s/im): 0.06944
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth
+
+ - Name: libra_faster_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Libra R-CNN
+ Config: configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.8
+ inference time (s/im): 0.11765
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth
+
+ - Name: libra_retinanet_r50_fpn_1x_coco
+ In Collection: Libra R-CNN
+ Config: configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ inference time (s/im): 0.0565
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth
diff --git a/configs/lvis/README.md b/configs/lvis/README.md
new file mode 100644
index 00000000..157e8724
--- /dev/null
+++ b/configs/lvis/README.md
@@ -0,0 +1,44 @@
+# LVIS dataset
+
+## Introduction
+
+
+
+```latex
+@inproceedings{gupta2019lvis,
+ title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
+ author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
+ booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
+ year={2019}
+}
+```
+
+## Common Setting
+
+* Please follow [install guide](../../docs/install.md#install-mmdetection) to install open-mmlab forked cocoapi first.
+* Run following scripts to install our forked lvis-api.
+
+ ```shell
+ pip install git+https://github.com/lvis-dataset/lvis-api.git
+ ```
+
+* All experiments use oversample strategy [here](../../docs/tutorials/new_dataset.md#class-balanced-dataset) with oversample threshold `1e-3`.
+* The size of LVIS v0.5 is half of COCO, so schedule `2x` in LVIS is roughly the same iterations as `1x` in COCO.
+
+## Results and models of LVIS v0.5
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: |:--------: |
+| R-50-FPN | pytorch | 2x | - | - | 26.1 | 25.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis-dbd06831.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_20200531_160435.log.json) |
+| R-101-FPN | pytorch | 2x | - | - | 27.1 | 27.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis-54582ee2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_20200601_134748.log.json) |
+| X-101-32x4d-FPN | pytorch | 2x | - | - | 26.7 | 26.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis-3cf55ea2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_20200531_221749.log.json) |
+| X-101-64x4d-FPN | pytorch | 2x | - | - | 26.4 | 26.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis-1c99a5ad.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_20200601_194651.log.json) |
+
+## Results and models of LVIS v1
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R-50-FPN | pytorch | 1x | 9.1 | - | 22.5 | 21.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-aa78ac3d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_061305.log.json) |
+| R-101-FPN | pytorch | 1x | 10.8 | - | 24.6 | 23.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-ec55ce32.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_070959.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 11.8 | - | 26.7 | 25.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-ebbc5c81.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_071317.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 14.6 | - | 27.2 | 25.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-43d9edfe.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-20200830_060206.log.json) |
diff --git a/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py b/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
new file mode 100644
index 00000000..18818650
--- /dev/null
+++ b/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py b/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
new file mode 100644
index 00000000..2d2816c2
--- /dev/null
+++ b/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py b/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
new file mode 100644
index 00000000..92ddb526
--- /dev/null
+++ b/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
@@ -0,0 +1,31 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/lvis_v1_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(num_classes=1203), mask_head=dict(num_classes=1203)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
diff --git a/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py b/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
new file mode 100644
index 00000000..d53c5dc6
--- /dev/null
+++ b/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
@@ -0,0 +1,31 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/lvis_v0.5_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(num_classes=1230), mask_head=dict(num_classes=1230)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
diff --git a/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py b/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
new file mode 100644
index 00000000..5abcc2e0
--- /dev/null
+++ b/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py b/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
new file mode 100644
index 00000000..439c39a9
--- /dev/null
+++ b/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py b/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
new file mode 100644
index 00000000..f77adba2
--- /dev/null
+++ b/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py b/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
new file mode 100644
index 00000000..21362554
--- /dev/null
+++ b/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/README.md b/configs/mask_rcnn/README.md
new file mode 100644
index 00000000..77cfabea
--- /dev/null
+++ b/configs/mask_rcnn/README.md
@@ -0,0 +1,48 @@
+# Mask R-CNN
+
+## Introduction
+
+
+
+```latex
+@article{He_2017,
+ title={Mask R-CNN},
+ journal={2017 IEEE International Conference on Computer Vision (ICCV)},
+ publisher={IEEE},
+ author={He, Kaiming and Gkioxari, Georgia and Dollar, Piotr and Girshick, Ross},
+ year={2017},
+ month={Oct}
+}
+```
+
+## Results and models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R-50-FPN | caffe | 1x | 4.3 | | 38.0 | 34.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_20200504_231812.log.json) |
+| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 38.2 | 34.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
+| R-50-FPN | pytorch | 2x | - | - | 39.2 | 35.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_20200505_003907.log.json) |
+| R-101-FPN | caffe | 1x | | | 40.4 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758.log.json)|
+| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json) |
+| R-101-FPN | pytorch | 2x | - | - | 40.8 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_20200505_071027.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 11.3 | 41.9 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json) |
+| X-101-32x4d-FPN | pytorch | 2x | - | - | 42.2 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_20200506_004702.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.7 | 8.0 | 42.8 | 38.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201_124310.log.json) |
+| X-101-64x4d-FPN | pytorch | 2x | - | - | 42.7 | 38.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208.log.json)|
+| X-101-32x8d-FPN | pytorch | 1x | - | - | 42.8 | 38.3 | |
+
+## Pre-trained Models
+
+We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| [R-50-FPN](./mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py) | caffe | 2x | 4.3 | | 40.3 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_20200504_231822.log.json)
+| [R-50-FPN](./mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py) | caffe | 3x | 4.3 | | 40.8 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_20200504_163245.log.json)
+| [R-50-FPN](./mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py) | pytorch| 3x | 4.1 | | 40.9 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154.log.json)
+| [R-101-FPN](./mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py) | caffe | 3x | 5.9 | | 42.9 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339-3c33ce02.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339.log.json)
+| [R-101-FPN](./mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py) | pytorch| 3x | 6.1 | | 42.7 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244-5675c317.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244.log.json)
+| [x101-32x4d-FPN](./mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py) | pytorch| 3x | 7.3 | | 43.6 | 39.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410-abcd7859.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410.log.json)
+| [X-101-32x8d-FPN](./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py) | pytorch | 1x | - | | 43.6 | 39.0 |
+| [X-101-32x8d-FPN](./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py) | pytorch | 3x | 10.3 | | 44.3 | 39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042.log.json)
+| [X-101-64x4d-FPN](./mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py) | pytorch | 3x | 10.4 | | 44.5 | 39.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447.log.json)
diff --git a/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..230181cb
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..252e0616
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,53 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(
+ depth=101,
+ norm_cfg=dict(requires_grad=False),
+ norm_eval=True,
+ style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..db02d9b8
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py b/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..c8cb2d87
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..1be11c37
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,6 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
new file mode 100644
index 00000000..a44c0183
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
@@ -0,0 +1,39 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_caffe_c4.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..0471fe86
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,36 @@
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
new file mode 100644
index 00000000..5d6215d6
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
@@ -0,0 +1,45 @@
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
new file mode 100644
index 00000000..4f7150ca
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..1b48a210
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
new file mode 100644
index 00000000..86c5b133
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
@@ -0,0 +1,41 @@
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
new file mode 100644
index 00000000..431e5ab3
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
@@ -0,0 +1,57 @@
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnet50_caffe_bgr',
+ backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
+ rpn_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
+ roi_head=dict(
+ bbox_roi_extractor=dict(
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=7,
+ sampling_ratio=2,
+ aligned=False)),
+ bbox_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ mask_roi_extractor=dict(
+ roi_layer=dict(
+ type='RoIAlign',
+ output_size=14,
+ sampling_ratio=2,
+ aligned=False))))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..6a6c9246
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,5 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
diff --git a/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..932b1f90
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
@@ -0,0 +1,5 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
diff --git a/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..b3d9242c
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
diff --git a/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py b/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
new file mode 100644
index 00000000..9eb6d57e
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
@@ -0,0 +1,23 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..d0016d1f
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..d4189c6f
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_r101_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..b02e49a8
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,17 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
new file mode 100644
index 00000000..ee034b71
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
@@ -0,0 +1,63 @@
+_base_ = './mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnext101_32x8d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=8,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ style='pytorch'))
+
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675],
+ std=[57.375, 57.120, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
new file mode 100644
index 00000000..1c124328
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
@@ -0,0 +1,58 @@
+_base_ = './mask_rcnn_r101_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnext101_32x8d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=8,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ style='pytorch'))
+
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675],
+ std=[57.375, 57.120, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..7913ed2f
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,83 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://detectron2/resnext101_32x8d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=8,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ style='pytorch'))
+
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675],
+ std=[57.375, 57.120, 58.395],
+ to_rgb=False)
+
+# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
+# multiscale_mode='range'
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+# Use RepeatDataset to speed up training
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..31e59432
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..9ba92c5b
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './mask_rcnn_x101_32x4d_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..4334b703
--- /dev/null
+++ b/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,17 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/mask_rcnn/metafile.yml b/configs/mask_rcnn/metafile.yml
new file mode 100644
index 00000000..e400798c
--- /dev/null
+++ b/configs/mask_rcnn/metafile.yml
@@ -0,0 +1,360 @@
+Collections:
+ - Name: Mask R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Softmax
+ - RPN
+ - Convolution
+ - Dense Connections
+ - FPN
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/abs/1703.06870v3
+ README: configs/mask_rcnn/README.md
+
+Models:
+ - Name: mask_rcnn_r50_caffe_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.3
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth
+
+ - Name: mask_rcnn_r50_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.06211
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
+
+ - Name: mask_rcnn_r50_fpn_2x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ inference time (s/im): 0.06211
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 35.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
+
+ - Name: mask_rcnn_r101_caffe_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth
+
+ - Name: mask_rcnn_r101_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.07407
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth
+
+ - Name: mask_rcnn_r101_fpn_2x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ inference time (s/im): 0.07407
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.0885
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_2x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.6
+ inference time (s/im): 0.0885
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth
+
+ - Name: mask_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ inference time (s/im): 0.125
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth
+
+ - Name: mask_rcnn_x101_64x4d_fpn_2x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ inference time (s/im): 0.125
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth
+
+ - Name: mask_rcnn_x101_32x8d_fpn_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.7
+ inference time (s/im): 0.125
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.3
+
+ - Name: mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
+ Metadata:
+ Training Memory (GB): 4.3
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth
+
+ - Name: mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 4.3
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth
+
+ - Name: mask_rcnn_r50_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 4.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
+
+ - Name: mask_rcnn_r101_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 6.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244-5675c317.pth
+
+ - Name: mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 5.9
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339-3c33ce02.pth
+
+ - Name: mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 7.3
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410-abcd7859.pth
+
+ - Name: mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.0
+
+ - Name: mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco
+ Metadata:
+ Training Memory (GB): 10.3
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth
+
+ - Name: mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco
+ In Collection: Mask R-CNN
+ Config: configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Training Memory (GB): 10.4
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth
diff --git a/configs/ms_rcnn/README.md b/configs/ms_rcnn/README.md
new file mode 100644
index 00000000..f36b64c5
--- /dev/null
+++ b/configs/ms_rcnn/README.md
@@ -0,0 +1,26 @@
+# Mask Scoring R-CNN
+
+## Introduction
+
+
+
+```
+@inproceedings{huang2019msrcnn,
+ title={Mask Scoring R-CNN},
+ author={Zhaojin Huang and Lichao Huang and Yongchao Gong and Chang Huang and Xinggang Wang},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ year={2019},
+}
+```
+
+## Results and Models
+
+| Backbone | style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | caffe | 1x | 4.5 | | 38.2 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848.log.json) |
+| R-50-FPN | caffe | 2x | - | - | 38.8 | 36.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_bbox_mAP-0.388__segm_mAP-0.363_20200506_004738-ee87b137.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_20200506_004738.log.json) |
+| R-101-FPN | caffe | 1x | 6.5 | | 40.4 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.404__segm_mAP-0.376_20200506_004755-b9b12a37.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_20200506_004755.log.json) |
+| R-101-FPN | caffe | 2x | - | - | 41.1 | 38.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_bbox_mAP-0.411__segm_mAP-0.381_20200506_011134-5f3cc74f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_20200506_011134.log.json) |
+| R-X101-32x4d | pytorch | 2x | 7.9 | 11.0 | 41.8 | 38.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206-81fd1740.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206_100113.log.json) |
+| R-X101-64x4d | pytorch | 1x | 11.0 | 8.0 | 43.0 | 39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206_091744.log.json) |
+| R-X101-64x4d | pytorch | 2x | 11.0 | 8.0 | 42.6 | 39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308-02a445e2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308_012247.log.json) |
diff --git a/configs/ms_rcnn/metafile.yml b/configs/ms_rcnn/metafile.yml
new file mode 100644
index 00000000..e53c821d
--- /dev/null
+++ b/configs/ms_rcnn/metafile.yml
@@ -0,0 +1,136 @@
+Collections:
+ - Name: Mask Scoring R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - RPN
+ - FPN
+ - ResNet
+ - RoIAlign
+ Paper: https://arxiv.org/abs/1903.00241
+ README: configs/ms_rcnn/README.md
+
+Models:
+ - Name: ms_rcnn_r50_caffe_fpn_1x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth
+
+ - Name: ms_rcnn_r50_caffe_fpn_2x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_bbox_mAP-0.388__segm_mAP-0.363_20200506_004738-ee87b137.pth
+
+ - Name: ms_rcnn_r101_caffe_fpn_1x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.404__segm_mAP-0.376_20200506_004755-b9b12a37.pth
+
+ - Name: ms_rcnn_r101_caffe_fpn_2x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_bbox_mAP-0.411__segm_mAP-0.381_20200506_011134-5f3cc74f.pth
+
+ - Name: ms_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.9
+ inference time (s/im): 0.09091
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206-81fd1740.pth
+
+ - Name: ms_rcnn_x101_64x4d_fpn_1x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 11.0
+ inference time (s/im): 0.125
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth
+
+ - Name: ms_rcnn_x101_64x4d_fpn_2x_coco
+ In Collection: Mask Scoring R-CNN
+ Config: configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 11.0
+ inference time (s/im): 0.125
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308-02a445e2.pth
diff --git a/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py b/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..3bd33c40
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py b/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
new file mode 100644
index 00000000..202bcced
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ms_rcnn_r101_caffe_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py b/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..5845125a
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ type='MaskScoringRCNN',
+ roi_head=dict(
+ type='MaskScoringRoIHead',
+ mask_iou_head=dict(
+ type='MaskIoUHead',
+ num_convs=4,
+ num_fcs=2,
+ roi_feat_size=14,
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ num_classes=80)),
+ # model training and testing settings
+ train_cfg=dict(rcnn=dict(mask_thr_binary=0.5)))
diff --git a/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py b/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
new file mode 100644
index 00000000..008a70ae
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py b/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..0a163ce4
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ type='MaskScoringRCNN',
+ roi_head=dict(
+ type='MaskScoringRoIHead',
+ mask_iou_head=dict(
+ type='MaskIoUHead',
+ num_convs=4,
+ num_fcs=2,
+ roi_feat_size=14,
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ num_classes=80)),
+ # model training and testing settings
+ train_cfg=dict(rcnn=dict(mask_thr_binary=0.5)))
diff --git a/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..4a78a252
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ms_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py b/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..61a0cefe
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './ms_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py b/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..54c605b9
--- /dev/null
+++ b/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/nas_fcos/README.md b/configs/nas_fcos/README.md
new file mode 100644
index 00000000..21a2b221
--- /dev/null
+++ b/configs/nas_fcos/README.md
@@ -0,0 +1,25 @@
+# NAS-FCOS: Fast Neural Architecture Search for Object Detection
+
+## Introduction
+
+
+
+```latex
+@article{wang2019fcos,
+ title={Nas-fcos: Fast neural architecture search for object detection},
+ author={Wang, Ning and Gao, Yang and Chen, Hao and Wang, Peng and Tian, Zhi and Shen, Chunhua},
+ journal={arXiv preprint arXiv:1906.04423},
+ year={2019}
+}
+```
+
+## Results and Models
+
+| Head | Backbone | Style | GN-head | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:---------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| NAS-FCOSHead | R-50 | caffe | Y | 1x | | | 39.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520.log.json) |
+| FCOSHead | R-50 | caffe | Y | 1x | | | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521-7fdcbce0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521.log.json) |
+
+**Notes:**
+
+- To be consistent with the author's implementation, we use 4 GPUs with 4 images/GPU.
diff --git a/configs/nas_fcos/metafile.yml b/configs/nas_fcos/metafile.yml
new file mode 100644
index 00000000..cb8e266d
--- /dev/null
+++ b/configs/nas_fcos/metafile.yml
@@ -0,0 +1,39 @@
+Collections:
+ - Name: NAS-FCOS
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 4x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - NAS-FCOS
+ - ResNet
+ Paper: https://arxiv.org/abs/1906.04423
+ README: configs/nas_fcos/README.md
+
+Models:
+ - Name: nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco
+ In Collection: NAS-FCOS
+ Config: configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth
+
+ - Name: nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco
+ In Collection: NAS-FCOS
+ Config: configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521-7fdcbce0.pth
diff --git a/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py b/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
new file mode 100644
index 00000000..1910312e
--- /dev/null
+++ b/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
@@ -0,0 +1,98 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ type='NASFCOS',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False, eps=0),
+ style='caffe'),
+ neck=dict(
+ type='NASFCOS_FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs=True,
+ num_outs=5,
+ norm_cfg=dict(type='BN'),
+ conv_cfg=dict(type='DCNv2', deform_groups=2)),
+ bbox_head=dict(
+ type='FCOSHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ strides=[8, 16, 32, 64, 128],
+ norm_cfg=dict(type='GN', num_groups=32),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='IoULoss', loss_weight=1.0),
+ loss_centerness=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
+
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ samples_per_gpu=4,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+
+optimizer = dict(
+ lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
diff --git a/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py b/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
new file mode 100644
index 00000000..ef81123a
--- /dev/null
+++ b/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
@@ -0,0 +1,97 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ type='NASFCOS',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False, eps=0),
+ style='caffe'),
+ neck=dict(
+ type='NASFCOS_FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs=True,
+ num_outs=5,
+ norm_cfg=dict(type='BN'),
+ conv_cfg=dict(type='DCNv2', deform_groups=2)),
+ bbox_head=dict(
+ type='NASFCOSHead',
+ num_classes=80,
+ in_channels=256,
+ feat_channels=256,
+ strides=[8, 16, 32, 64, 128],
+ norm_cfg=dict(type='GN', num_groups=32),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='IoULoss', loss_weight=1.0),
+ loss_centerness=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
+
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ samples_per_gpu=4,
+ workers_per_gpu=2,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+
+optimizer = dict(
+ lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
diff --git a/configs/nas_fpn/README.md b/configs/nas_fpn/README.md
new file mode 100644
index 00000000..9862b9a0
--- /dev/null
+++ b/configs/nas_fpn/README.md
@@ -0,0 +1,26 @@
+# NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
+
+## Introduction
+
+
+
+```latex
+@inproceedings{ghiasi2019fpn,
+ title={Nas-fpn: Learning scalable feature pyramid architecture for object detection},
+ author={Ghiasi, Golnaz and Lin, Tsung-Yi and Le, Quoc V},
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={7036--7045},
+ year={2019}
+}
+```
+
+## Results and Models
+
+We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN. RetinaNet is used in the paper.
+
+| Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| R-50-FPN | 50e | 12.9 | 22.9 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco_20200529_095329.log.json) |
+| R-50-NASFPN | 50e | 13.2 | 23.0 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco_20200528_230008.log.json) |
+
+**Note**: We find that it is unstable to train NAS-FPN and there is a small chance that results can be 3% mAP lower.
diff --git a/configs/nas_fpn/metafile.yml b/configs/nas_fpn/metafile.yml
new file mode 100644
index 00000000..65eaad15
--- /dev/null
+++ b/configs/nas_fpn/metafile.yml
@@ -0,0 +1,42 @@
+Collections:
+ - Name: NAS-FPN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - NAS-FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.07392
+ README: configs/nas_fpn/README.md
+
+Models:
+ - Name: retinanet_r50_fpn_crop640_50e_coco
+ In Collection: NAS-FPN
+ Config: configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 12.9
+ inference time (s/im): 0.04367
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth
+
+ - Name: retinanet_r50_nasfpn_crop640_50e_coco
+ In Collection: NAS-FPN
+ Config: configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
+ Metadata:
+ Training Memory (GB): 13.2
+ inference time (s/im): 0.04348
+ Epochs: 50
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth
diff --git a/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py b/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
new file mode 100644
index 00000000..d4c7c98e
--- /dev/null
+++ b/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
@@ -0,0 +1,80 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
+]
+cudnn_benchmark = True
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ neck=dict(
+ relu_before_extra_convs=True,
+ no_norm_on_lateral=True,
+ norm_cfg=norm_cfg),
+ bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg),
+ # training and testing settings
+ train_cfg=dict(assigner=dict(neg_iou_thr=0.5)))
+# dataset settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=(640, 640),
+ ratio_range=(0.8, 1.2),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=(640, 640)),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size=(640, 640)),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=64),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=4,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ type='SGD',
+ lr=0.08,
+ momentum=0.9,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.1,
+ step=[30, 40])
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=50)
diff --git a/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py b/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
new file mode 100644
index 00000000..8a2ef260
--- /dev/null
+++ b/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
@@ -0,0 +1,79 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
+]
+cudnn_benchmark = True
+# model settings
+norm_cfg = dict(type='BN', requires_grad=True)
+model = dict(
+ type='RetinaNet',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ neck=dict(type='NASFPN', stack_times=7, norm_cfg=norm_cfg),
+ bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg),
+ # training and testing settings
+ train_cfg=dict(assigner=dict(neg_iou_thr=0.5)))
+# dataset settings
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=(640, 640),
+ ratio_range=(0.8, 1.2),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=(640, 640)),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size=(640, 640)),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=128),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=4,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(
+ type='SGD',
+ lr=0.08,
+ momentum=0.9,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.1,
+ step=[30, 40])
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=50)
diff --git a/configs/paa/README.md b/configs/paa/README.md
index b5cc8455..3e9b6e31 100644
--- a/configs/paa/README.md
+++ b/configs/paa/README.md
@@ -1,22 +1,35 @@
# Probabilistic Anchor Assignment with IoU Prediction for Object Detection
+
+```latex
+@inproceedings{paa-eccv2020,
+ title={Probabilistic Anchor Assignment with IoU Prediction for Object Detection},
+ author={Kim, Kang and Lee, Hee Seok},
+ booktitle = {ECCV},
+ year={2020}
+}
+```
## Results and Models
+
We provide config files to reproduce the object detection results in the
ECCV 2020 paper for Probabilistic Anchor Assignment with IoU
Prediction for Object Detection.
-| Backbone | Lr schd | Mem (GB) | Score voting | box AP | Download |
-|:-----------:|:-------:|:--------:|:------------:|:------:|:--------:|
-| R-50-FPN | 12e | 3.7 | True | 40.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.log.json) |
+| Backbone | Lr schd | Mem (GB) | Score voting | box AP | Config | Download |
+|:-----------:|:-------:|:--------:|:------------:|:------:|:------:|:--------:|
+| R-50-FPN | 12e | 3.7 | True | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.log.json) |
| R-50-FPN | 12e | 3.7 | False | 40.2 | - |
-| R-50-FPN | 18e | 3.7 | True | 41.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.log.json) |
+| R-50-FPN | 18e | 3.7 | True | 41.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_1.5x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.log.json) |
| R-50-FPN | 18e | 3.7 | False | 41.2 | - |
-| R-50-FPN | 24e | 3.7 | True | 41.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.log.json) |
-| R-101-FPN | 12e | 6.2 | True | 42.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.log.json) |
+| R-50-FPN | 24e | 3.7 | True | 41.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.log.json) |
+| R-50-FPN | 36e | 3.7 | True | 43.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722-06a6880b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722.log.json) |
+| R-101-FPN | 12e | 6.2 | True | 42.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.log.json) |
| R-101-FPN | 12e | 6.2 | False | 42.4 | - |
-| R-101-FPN | 24e | 6.2 | True | 43.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.log.json) |
+| R-101-FPN | 24e | 6.2 | True | 43.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.log.json) |
+| R-101-FPN | 36e | 6.2 | True | 45.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202-83250d22.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202.log.json) |
**Note**:
+
1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.2 mAP. We report the best results.
diff --git a/configs/paa/metafile.yml b/configs/paa/metafile.yml
new file mode 100644
index 00000000..6e4dd772
--- /dev/null
+++ b/configs/paa/metafile.yml
@@ -0,0 +1,99 @@
+Collections:
+ - Name: PAA
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - Probabilistic Anchor Assignment
+ - ResNet
+ Paper: https://arxiv.org/abs/2007.08103
+ README: configs/paa/README.md
+
+Models:
+ - Name: paa_r50_fpn_1x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth
+
+ - Name: paa_r50_fpn_1.5x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r50_fpn_1.5x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.pth
+
+ - Name: paa_r50_fpn_2x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r50_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.pth
+
+ - Name: paa_r50_fpn_mstrain_3x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r50_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 3.7
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722-06a6880b.pth
+
+ - Name: paa_r101_fpn_1x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.2
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth
+
+ - Name: paa_r101_fpn_2x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r101_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 6.2
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.pth
+
+ - Name: paa_r101_fpn_mstrain_3x_coco
+ In Collection: PAA
+ Config: configs/paa/paa_r101_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 6.2
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202-83250d22.pth
diff --git a/configs/paa/paa_r101_fpn_1x_coco.py b/configs/paa/paa_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..9d2b1a69
--- /dev/null
+++ b/configs/paa/paa_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './paa_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/paa/paa_r101_fpn_2x_coco.py b/configs/paa/paa_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..641ef764
--- /dev/null
+++ b/configs/paa/paa_r101_fpn_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './paa_r101_fpn_1x_coco.py'
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/paa/paa_r101_fpn_mstrain_3x_coco.py b/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..6f23df75
--- /dev/null
+++ b/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './paa_r50_fpn_mstrain_3x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/paa/paa_r50_fpn_1.5x_coco.py b/configs/paa/paa_r50_fpn_1.5x_coco.py
new file mode 100644
index 00000000..aabce4af
--- /dev/null
+++ b/configs/paa/paa_r50_fpn_1.5x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './paa_r50_fpn_1x_coco.py'
+lr_config = dict(step=[12, 16])
+runner = dict(type='EpochBasedRunner', max_epochs=18)
diff --git a/configs/paa/paa_r50_fpn_1x_coco.py b/configs/paa/paa_r50_fpn_1x_coco.py
index 916118ff..cd844108 100644
--- a/configs/paa/paa_r50_fpn_1x_coco.py
+++ b/configs/paa/paa_r50_fpn_1x_coco.py
@@ -1,9 +1,9 @@
_base_ = [
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
- type='SingleStageDetector',
+ type='PAA',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -48,23 +48,23 @@
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.1,
- neg_iou_thr=0.1,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100)
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.1,
+ neg_iou_thr=0.1,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/paa/paa_r50_fpn_2x_coco.py b/configs/paa/paa_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..663d2c0d
--- /dev/null
+++ b/configs/paa/paa_r50_fpn_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './paa_r50_fpn_1x_coco.py'
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/paa/paa_r50_fpn_mstrain_3x_coco.py b/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..91fa28cd
--- /dev/null
+++ b/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
@@ -0,0 +1,20 @@
+_base_ = './paa_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/pafpn/README.md b/configs/pafpn/README.md
new file mode 100644
index 00000000..9602c6da
--- /dev/null
+++ b/configs/pafpn/README.md
@@ -0,0 +1,26 @@
+# Path Aggregation Network for Instance Segmentation
+
+## Introduction
+
+
+
+```
+@inproceedings{liu2018path,
+ author = {Shu Liu and
+ Lu Qi and
+ Haifang Qin and
+ Jianping Shi and
+ Jiaya Jia},
+ title = {Path Aggregation Network for Instance Segmentation},
+ booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year = {2018}
+}
+```
+
+## Results and Models
+
+## Results and Models
+
+| Backbone | style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
+| R-50-FPN | pytorch | 1x | 4.0 | 17.2 | 37.5 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_20200503_105836.log.json) |
diff --git a/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py b/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
new file mode 100644
index 00000000..b2fdef91
--- /dev/null
+++ b/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+
+model = dict(
+ neck=dict(
+ type='PAFPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/pafpn/metafile.yml b/configs/pafpn/metafile.yml
new file mode 100644
index 00000000..7eb30c4f
--- /dev/null
+++ b/configs/pafpn/metafile.yml
@@ -0,0 +1,27 @@
+Collections:
+ - Name: PAFPN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - PAFPN
+ Paper: https://arxiv.org/abs/1803.01534
+ README: configs/pafpn/README.md
+
+Models:
+ - Name: faster_rcnn_r50_pafpn_1x_coco
+ In Collection: PAFPN
+ Config: configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.0
+ inference time (s/im): 0.05814
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth
diff --git a/configs/pascal_voc/README.md b/configs/pascal_voc/README.md
new file mode 100644
index 00000000..69e02201
--- /dev/null
+++ b/configs/pascal_voc/README.md
@@ -0,0 +1,23 @@
+# PASCAL VOC Dataset
+
+
+
+```
+@Article{Everingham10,
+ author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
+ title = "The Pascal Visual Object Classes (VOC) Challenge",
+ journal = "International Journal of Computer Vision",
+ volume = "88",
+ year = "2010",
+ number = "2",
+ month = jun,
+ pages = "303--338",
+}
+```
+
+## Results and Models
+
+| Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:------------:|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| Faster R-CNN | R-50 | pytorch | 1x | 2.6 | - | 79.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712/20200623_015208.log.json) |
+| Retinanet | R-50 | pytorch | 1x | 2.1 | - | 77.3 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/retinanet_r50_fpn_1x_voc0712/retinanet_r50_fpn_1x_voc0712_20200617-47cbdd0e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/retinanet_r50_fpn_1x_voc0712/retinanet_r50_fpn_1x_voc0712_20200616_014642.log.json) |
diff --git a/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py b/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
new file mode 100644
index 00000000..7866aceb
--- /dev/null
+++ b/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
@@ -0,0 +1,14 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(roi_head=dict(bbox_head=dict(num_classes=20)))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+# actual epoch = 3 * 3 = 9
+lr_config = dict(policy='step', step=[3])
+# runtime settings
+runner = dict(
+ type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
diff --git a/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py b/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
new file mode 100644
index 00000000..12eee2c1
--- /dev/null
+++ b/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
@@ -0,0 +1,75 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(roi_head=dict(bbox_head=dict(num_classes=20)))
+
+CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car',
+ 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
+ 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')
+
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/VOCdevkit/'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1000, 600),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type='RepeatDataset',
+ times=3,
+ dataset=dict(
+ type=dataset_type,
+ ann_file='data/voc0712_trainval.json',
+ img_prefix='data/VOCdevkit',
+ pipeline=train_pipeline,
+ classes=CLASSES)),
+ val=dict(
+ type=dataset_type,
+ ann_file='data/voc07_test.json',
+ img_prefix='data/VOCdevkit',
+ pipeline=test_pipeline,
+ classes=CLASSES),
+ test=dict(
+ type=dataset_type,
+ ann_file='data/voc07_test.json',
+ img_prefix='data/VOCdevkit',
+ pipeline=test_pipeline,
+ classes=CLASSES))
+evaluation = dict(interval=1, metric='bbox')
+
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+# actual epoch = 3 * 3 = 9
+lr_config = dict(policy='step', step=[3])
+# runtime settings
+runner = dict(
+ type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
diff --git a/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py b/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
new file mode 100644
index 00000000..b4b050dd
--- /dev/null
+++ b/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
@@ -0,0 +1,14 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/voc0712.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(bbox_head=dict(num_classes=20))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+# actual epoch = 3 * 3 = 9
+lr_config = dict(policy='step', step=[3])
+# runtime settings
+runner = dict(
+ type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
diff --git a/configs/pascal_voc/ssd300_voc0712.py b/configs/pascal_voc/ssd300_voc0712.py
new file mode 100644
index 00000000..271ebe32
--- /dev/null
+++ b/configs/pascal_voc/ssd300_voc0712.py
@@ -0,0 +1,69 @@
+_base_ = [
+ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(
+ bbox_head=dict(
+ num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2,
+ 0.9))))
+# dataset settings
+dataset_type = 'VOCDataset'
+data_root = 'data/VOCdevkit/'
+img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='Expand',
+ mean=img_norm_cfg['mean'],
+ to_rgb=img_norm_cfg['to_rgb'],
+ ratio_range=(1, 4)),
+ dict(
+ type='MinIoURandomCrop',
+ min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
+ min_crop_size=0.3),
+ dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(300, 300),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=3,
+ train=dict(
+ type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)
+optimizer_config = dict()
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[16, 20])
+checkpoint_config = dict(interval=1)
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/pascal_voc/ssd512_voc0712.py b/configs/pascal_voc/ssd512_voc0712.py
new file mode 100644
index 00000000..365a65fc
--- /dev/null
+++ b/configs/pascal_voc/ssd512_voc0712.py
@@ -0,0 +1,53 @@
+_base_ = 'ssd300_voc0712.py'
+input_size = 512
+model = dict(
+ backbone=dict(input_size=input_size),
+ bbox_head=dict(
+ in_channels=(512, 1024, 512, 256, 256, 256, 256),
+ anchor_generator=dict(
+ input_size=input_size,
+ strides=[8, 16, 32, 64, 128, 256, 512],
+ basesize_ratio_range=(0.15, 0.9),
+ ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]))))
+img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='Expand',
+ mean=img_norm_cfg['mean'],
+ to_rgb=img_norm_cfg['to_rgb'],
+ ratio_range=(1, 4)),
+ dict(
+ type='MinIoURandomCrop',
+ min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
+ min_crop_size=0.3),
+ dict(type='Resize', img_scale=(512, 512), keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(512, 512),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/pisa/README.md b/configs/pisa/README.md
index da4c9a29..3ae3392a 100644
--- a/configs/pisa/README.md
+++ b/configs/pisa/README.md
@@ -2,7 +2,9 @@
## Introduction
-```
+
+
+```latex
@inproceedings{cao2019prime,
title={Prime sample attention in object detection},
author={Cao, Yuhang and Chen, Kai and Loy, Chen Change and Lin, Dahua},
@@ -13,26 +15,26 @@
## Results and models
-
-| PISA | Network | Backbone | Lr schd | box AP | mask AP | Download |
-|:----:|:-------:|:-------------------:|:-------:|:------:|:-------:|:--------:|
+| PISA | Network | Backbone | Lr schd | box AP | mask AP | Config | Download |
+|:----:|:-------:|:-------------------:|:-------:|:------:|:-------:|:------:|:--------:|
| × | Faster R-CNN | R-50-FPN | 1x | 36.4 | | - |
-| √ | Faster R-CNN | R-50-FPN | 1x | 38.4 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco_20200506_185619.log.json) |
+| √ | Faster R-CNN | R-50-FPN | 1x | 38.4 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco_20200506_185619.log.json) |
| × | Faster R-CNN | X101-32x4d-FPN | 1x | 40.1 | | - |
-| √ | Faster R-CNN | X101-32x4d-FPN | 1x | 41.9 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco_20200505_181503.log.json) |
+| √ | Faster R-CNN | X101-32x4d-FPN | 1x | 41.9 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco_20200505_181503.log.json) |
| × | Mask R-CNN | R-50-FPN | 1x | 37.3 | 34.2 | - |
-| √ | Mask R-CNN | R-50-FPN | 1x | 39.1 | 35.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco_20200508_150500.log.json) |
+| √ | Mask R-CNN | R-50-FPN | 1x | 39.1 | 35.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco_20200508_150500.log.json) |
| × | Mask R-CNN | X101-32x4d-FPN | 1x | 41.1 | 37.1 | - |
| √ | Mask R-CNN | X101-32x4d-FPN | 1x | | | |
| × | RetinaNet | R-50-FPN | 1x | 35.6 | | - |
-| √ | RetinaNet | R-50-FPN | 1x | 36.9 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco_20200504_014311.log.json) |
+| √ | RetinaNet | R-50-FPN | 1x | 36.9 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco_20200504_014311.log.json) |
| × | RetinaNet | X101-32x4d-FPN | 1x | 39.0 | | - |
-| √ | RetinaNet | X101-32x4d-FPN | 1x | 40.7 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco_20200505_001404.log.json) |
+| √ | RetinaNet | X101-32x4d-FPN | 1x | 40.7 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco_20200505_001404.log.json) |
| × | SSD300 | VGG16 | 1x | 25.6 | | - |
-| √ | SSD300 | VGG16 | 1x | 27.6 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco_20200504_144325.log.json) |
+| √ | SSD300 | VGG16 | 1x | 27.6 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco_20200504_144325.log.json) |
| × | SSD300 | VGG16 | 1x | 29.3 | | - |
-| √ | SSD300 | VGG16 | 1x | 31.8 | | [model](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco_20200508_131030.log.json) |
+| √ | SSD300 | VGG16 | 1x | 31.8 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco_20200508_131030.log.json) |
**Notes:**
+
- In the original paper, all models are trained and tested on mmdet v1.x, thus results may not be exactly the same with this release on v2.0.
- It is noted PISA only modifies the training pipeline so the inference time remains the same with the baseline.
diff --git a/configs/pisa/metafile.yml b/configs/pisa/metafile.yml
new file mode 100644
index 00000000..6d1d5c22
--- /dev/null
+++ b/configs/pisa/metafile.yml
@@ -0,0 +1,105 @@
+Collections:
+ - Name: PISA
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - PISA
+ - RPN
+ - ResNet
+ - RoIPool
+ Paper: https://arxiv.org/abs/1904.04821
+ README: configs/pisa/README.md
+
+Models:
+ - Name: pisa_faster_rcnn_r50_fpn_1x_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth
+
+ - Name: pisa_faster_rcnn_x101_32x4d_fpn_1x_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth
+
+ - Name: pisa_mask_rcnn_r50_fpn_1x_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 35.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth
+
+ - Name: pisa_retinanet_r50_fpn_1x_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth
+
+ - Name: pisa_retinanet_x101_32x4d_fpn_1x_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth
+
+ - Name: pisa_ssd300_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_ssd300_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 27.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth
+
+ - Name: pisa_ssd512_coco
+ In Collection: PISA
+ Config: configs/pisa/pisa_ssd512_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 31.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth
diff --git a/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py b/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..71e65b0b
--- /dev/null
+++ b/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,30 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+
+model = dict(
+ roi_head=dict(
+ type='PISARoIHead',
+ bbox_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ train_cfg=dict(
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ sampler=dict(
+ type='ScoreHLRSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ k=0.5,
+ bias=0.),
+ isr=dict(k=2, bias=0),
+ carl=dict(k=1, bias=0.2))),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..16edd99d
--- /dev/null
+++ b/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,30 @@
+_base_ = '../faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py'
+
+model = dict(
+ roi_head=dict(
+ type='PISARoIHead',
+ bbox_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ train_cfg=dict(
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ sampler=dict(
+ type='ScoreHLRSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ k=0.5,
+ bias=0.),
+ isr=dict(k=2, bias=0),
+ carl=dict(k=1, bias=0.2))),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py b/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..047a2934
--- /dev/null
+++ b/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,30 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+
+model = dict(
+ roi_head=dict(
+ type='PISARoIHead',
+ bbox_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ train_cfg=dict(
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ sampler=dict(
+ type='ScoreHLRSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ k=0.5,
+ bias=0.),
+ isr=dict(k=2, bias=0),
+ carl=dict(k=1, bias=0.2))),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py b/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..2186a8f6
--- /dev/null
+++ b/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,30 @@
+_base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
+
+model = dict(
+ roi_head=dict(
+ type='PISARoIHead',
+ bbox_head=dict(
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
+ train_cfg=dict(
+ rpn_proposal=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0),
+ rcnn=dict(
+ sampler=dict(
+ type='ScoreHLRSampler',
+ num=512,
+ pos_fraction=0.25,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ k=0.5,
+ bias=0.),
+ isr=dict(k=2, bias=0),
+ carl=dict(k=1, bias=0.2))),
+ test_cfg=dict(
+ rpn=dict(
+ nms_pre=2000,
+ max_per_img=2000,
+ nms=dict(type='nms', iou_threshold=0.7),
+ min_bbox_size=0)))
diff --git a/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py b/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
index b6d35bc7..70f89e22 100644
--- a/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
+++ b/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
@@ -1,9 +1,7 @@
-_base_ = '../retinanet/retinanet_r50_fpn_coco.py'
+_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
model = dict(
bbox_head=dict(
type='PISARetinaHead',
- loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) # 原始retinanet论文参数
-
-# bias是最小权重偏移值,k是指数系数
-train_cfg = dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2))
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
+ train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
diff --git a/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py b/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..b97b6720
--- /dev/null
+++ b/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,7 @@
+_base_ = '../retinanet/retinanet_x101_32x4d_fpn_1x_coco.py'
+
+model = dict(
+ bbox_head=dict(
+ type='PISARetinaHead',
+ loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
+ train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
diff --git a/configs/pisa/pisa_ssd300_coco.py b/configs/pisa/pisa_ssd300_coco.py
new file mode 100644
index 00000000..b5cc0064
--- /dev/null
+++ b/configs/pisa/pisa_ssd300_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../ssd/ssd300_coco.py'
+
+model = dict(
+ bbox_head=dict(type='PISASSDHead'),
+ train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
+
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/pisa/pisa_ssd512_coco.py b/configs/pisa/pisa_ssd512_coco.py
new file mode 100644
index 00000000..3219d6d6
--- /dev/null
+++ b/configs/pisa/pisa_ssd512_coco.py
@@ -0,0 +1,8 @@
+_base_ = '../ssd/ssd512_coco.py'
+
+model = dict(
+ bbox_head=dict(type='PISASSDHead'),
+ train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
+
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/point_rend/README.md b/configs/point_rend/README.md
new file mode 100644
index 00000000..fafb29c9
--- /dev/null
+++ b/configs/point_rend/README.md
@@ -0,0 +1,23 @@
+# PointRend
+
+## Introduction
+
+
+
+```latex
+@InProceedings{kirillov2019pointrend,
+ title={{PointRend}: Image Segmentation as Rendering},
+ author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick},
+ journal={ArXiv:1912.08193},
+ year={2019}
+}
+```
+
+## Results and models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R-50-FPN | caffe | 1x | 4.6 | | 38.4 | 36.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco/point_rend_r50_caffe_fpn_mstrain_1x_coco-1bcb5fb4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco/point_rend_r50_caffe_fpn_mstrain_1x_coco_20200612_161407.log.json) |
+| R-50-FPN | caffe | 3x | 4.6 | | 41.0 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco/point_rend_r50_caffe_fpn_mstrain_3x_coco-e0ebb6b7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco/point_rend_r50_caffe_fpn_mstrain_3x_coco_20200614_002632.log.json) |
+
+Note: All models are trained with multi-scale, the input image shorter side is randomly scaled to one of (640, 672, 704, 736, 768, 800).
diff --git a/configs/point_rend/metafile.yml b/configs/point_rend/metafile.yml
new file mode 100644
index 00000000..f360d856
--- /dev/null
+++ b/configs/point_rend/metafile.yml
@@ -0,0 +1,49 @@
+Collections:
+ - Name: PointRend
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - PointRend
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1912.08193
+ README: configs/point_rend/README.md
+
+Models:
+ - Name: point_rend_r50_caffe_fpn_mstrain_1x_coco
+ In Collection: PointRend
+ Config: configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.6
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco/point_rend_r50_caffe_fpn_mstrain_1x_coco-1bcb5fb4.pth
+
+ - Name: point_rend_r50_caffe_fpn_mstrain_3x_coco
+ In Collection: PointRend
+ Config: configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 4.6
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco/point_rend_r50_caffe_fpn_mstrain_3x_coco-e0ebb6b7.pth
diff --git a/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py b/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py
new file mode 100644
index 00000000..0c0e563d
--- /dev/null
+++ b/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py
@@ -0,0 +1,44 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
+# model settings
+model = dict(
+ type='PointRend',
+ roi_head=dict(
+ type='PointRendRoIHead',
+ mask_roi_extractor=dict(
+ type='GenericRoIExtractor',
+ aggregation='concat',
+ roi_layer=dict(
+ _delete_=True, type='SimpleRoIAlign', output_size=14),
+ out_channels=256,
+ featmap_strides=[4]),
+ mask_head=dict(
+ _delete_=True,
+ type='CoarseMaskHead',
+ num_fcs=2,
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ num_classes=80,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
+ point_head=dict(
+ type='MaskPointHead',
+ num_fcs=3,
+ in_channels=256,
+ fc_channels=256,
+ num_classes=80,
+ coarse_pred_each_layer=True,
+ loss_point=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
+ # model training and testing settings
+ train_cfg=dict(
+ rcnn=dict(
+ mask_size=7,
+ num_points=14 * 14,
+ oversample_ratio=3,
+ importance_sample_ratio=0.75)),
+ test_cfg=dict(
+ rcnn=dict(
+ subdivision_steps=5,
+ subdivision_num_points=28 * 28,
+ scale_factor=2)))
diff --git a/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py b/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..169278e5
--- /dev/null
+++ b/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './point_rend_r50_caffe_fpn_mstrain_1x_coco.py'
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/regnet/README.md b/configs/regnet/README.md
new file mode 100644
index 00000000..ed3769b1
--- /dev/null
+++ b/configs/regnet/README.md
@@ -0,0 +1,105 @@
+# Designing Network Design Spaces
+
+## Introduction
+
+[BACKBONE]
+
+We implement RegNetX and RegNetY models in detection systems and provide their first results on Mask R-CNN, Faster R-CNN and RetinaNet.
+
+The pre-trained modles are converted from [model zoo of pycls](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
+
+```latex
+@article{radosavovic2020designing,
+ title={Designing Network Design Spaces},
+ author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
+ year={2020},
+ eprint={2003.13678},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
+
+## Usage
+
+To use a regnet model, there are two steps to do:
+
+1. Convert the model to ResNet-style supported by MMDetection
+2. Modify backbone and neck in config accordingly
+
+### Convert model
+
+We already prepare models of FLOPs from 400M to 12G in our model zoo.
+
+For more general usage, we also provide script `regnet2mmdet.py` in the tools directory to convert the key of models pretrained by [pycls](https://github.com/facebookresearch/pycls/) to
+ResNet-style checkpoints used in MMDetection.
+
+```bash
+python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH}
+```
+
+This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
+
+### Modify config
+
+The users can modify the config's `depth` of backbone and corresponding keys in `arch` according to the configs in the [pycls model zoo](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
+The parameter `in_channels` in FPN can be found in the Figure 15 & 16 of the paper (`wi` in the legend).
+This directory already provides some configs with their performance, using RegNetX from 800MF to 12GF level.
+For other pre-trained models or self-implemented regnet models, the users are responsible to check these parameters by themselves.
+
+**Note**: Although Fig. 15 & 16 also provide `w0`, `wa`, `wm`, `group_w`, and `bot_mul` for `arch`, they are quantized thus inaccurate, using them sometimes produces different backbone that does not match the key in the pre-trained model.
+
+## Results
+
+### Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| [R-50-FPN](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.4 | 12.0 | 38.2 | 34.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
+|[RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141.log.json) |
+|[RegNetX-4.0GF-FPN](./mask_rcnn_regnetx-4GF_fpn_1x_coco.py)| pytorch | 1x |5.5||41.5|37.4|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217.log.json) |
+| [R-101-FPN](../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py)| pytorch | 1x | 6.4 | 10.3 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json) |
+|[RegNetX-6.4GF-FPN](./mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py)| pytorch | 1x |6.1 ||41.0|37.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439.log.json) |
+| [X-101-32x4d-FPN](../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | pytorch | 1x | 7.6 | 9.4 | 41.9 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json) |
+|[RegNetX-8.0GF-FPN](./mask_rcnn_regnetx-8GF_fpn_1x_coco.py)| pytorch | 1x |6.4 ||41.7|37.5|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515.log.json) |
+|[RegNetX-12GF-FPN](./mask_rcnn_regnetx-12GF_fpn_1x_coco.py)| pytorch | 1x |7.4 ||42.2|38|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552.log.json) |
+|[RegNetX-3.2GF-FPN-DCN-C3-C5](./mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726.log.json) |
+
+### Faster R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| [R-50-FPN](../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.0 | 18.2 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
+|[RegNetX-3.2GF-FPN](./faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py)| pytorch | 1x | 4.5||39.9|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco/faster_rcnn_regnetx-3.2GF_fpn_1x_coco_20200517_175927-126fd9bf.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco/faster_rcnn_regnetx-3.2GF_fpn_1x_coco_20200517_175927.log.json) |
+|[RegNetX-3.2GF-FPN](./faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py)| pytorch | 2x | 4.5||41.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco/faster_rcnn_regnetx-3.2GF_fpn_2x_coco_20200520_223955-e2081918.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco/faster_rcnn_regnetx-3.2GF_fpn_2x_coco_20200520_223955.log.json) |
+
+### RetinaNet
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| [R-50-FPN](../retinanet/retinanet_r50_fpn_1x_coco.py) | pytorch | 1x | 3.8 | 16.6 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130_002941.log.json) |
+|[RegNetX-800MF-FPN](./retinanet_regnetx-800MF_fpn_1x_coco.py)| pytorch | 1x |2.5||35.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-800MF_fpn_1x_coco/retinanet_regnetx-800MF_fpn_1x_coco_20200517_191403-f6f91d10.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-800MF_fpn_1x_coco/retinanet_regnetx-800MF_fpn_1x_coco_20200517_191403.log.json) |
+|[RegNetX-1.6GF-FPN](./retinanet_regnetx-1.6GF_fpn_1x_coco.py)| pytorch | 1x |3.3||37.3|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco/retinanet_regnetx-1.6GF_fpn_1x_coco_20200517_191403-37009a9d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco/retinanet_regnetx-1.6GF_fpn_1x_coco_20200517_191403.log.json) |
+|[RegNetX-3.2GF-FPN](./retinanet_regnetx-3.2GF_fpn_1x_coco.py)| pytorch | 1x |4.2 ||39.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco/retinanet_regnetx-3.2GF_fpn_1x_coco_20200520_163141-cb1509e8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco/retinanet_regnetx-3.2GF_fpn_1x_coco_20200520_163141.log.json) |
+
+### Pre-trained models
+
+We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
+
+| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-----: | :-----: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+|Faster RCNN |[RegNetX-400MF-FPN](./faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py)| pytorch | 3x |2.3 ||37.1|-|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210526_095112-e1967c37.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210526_095112.log.json) |
+|Faster RCNN |[RegNetX-800MF-FPN](./faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py)| pytorch | 3x |2.8 ||38.8|-|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210526_095118-a2c70b20.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210526_095118.log.json) |
+|Faster RCNN |[RegNetX-1.6GF-FPN](./faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py)| pytorch | 3x |3.4 ||40.5|-|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-1_20210526_095325-94aa46cc.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-1_20210526_095325.log.json) |
+|Faster RCNN |[RegNetX-3.2GF-FPN](./faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py)| pytorch | 3x |4.4 ||42.3|-|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-3_20210526_095152-e16a5227.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-3_20210526_095152.log.json) |
+|Faster RCNN |[RegNetX-4GF-FPN](./faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py)| pytorch | 3x |4.9 ||42.8|-|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210526_095201-65eaf841.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210526_095201.log.json) |
+|Mask RCNN |[RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py)| pytorch | 3x |5.0 ||43.1|38.7|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221-99879813.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221.log.json) |
+|Mask RCNN |[RegNetX-400MF-FPN](./mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py)| pytorch | 3x |2.5 ||37.6|34.4|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco_20210601_235443-803b87a2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco_20210601_235443.log.json) |
+|Mask RCNN |[RegNetX-800MF-FPN](./mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py)| pytorch | 3x |2.9 ||39.5|36.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco_20210602_210641-e843d02e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco_20210602_210641.log.json) |
+|Mask RCNN |[RegNetX-1.6GF-FPN](./mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py)| pytorch | 3x |3.6 ||40.9|37.5|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641-6e63e19c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641.log.json) |
+|Mask RCNN |[RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py) | pytorch | 3x |5.0 ||43.1|38.7|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221-99879813.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221.log.json) |
+|Mask RCNN |[RegNetX-4GF-FPN](./mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py) | pytorch | 3x |5.1 ||43.4|39.2|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco_20210602_032621-c5900e99.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco_20210602_032621.log.json) |
+
+### Notice
+
+1. The models are trained using a different weight decay, i.e., `weight_decay=5e-5` according to the setting in ImageNet training. This brings improvement of at least 0.7 AP absolute but does not improve the model using ResNet-50.
+2. RetinaNets using RegNets are trained with learning rate 0.02 with gradient clip. We find that using learning rate 0.02 could improve the results by at least 0.7 AP absolute and gradient clip is necessary to stabilize the training. However, this does not improve the performance of ResNet-50-FPN RetinaNet.
diff --git a/configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py b/configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..d210ae6e
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,16 @@
+_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_1.6gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_1.6gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[72, 168, 408, 912],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
new file mode 100644
index 00000000..4fc61a3b
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
@@ -0,0 +1,56 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_3.2gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[96, 192, 432, 1008],
+ out_channels=256,
+ num_outs=5))
+img_norm_cfg = dict(
+ # The mean and std are used in PyCls when training RegNets
+ mean=[103.53, 116.28, 123.675],
+ std=[57.375, 57.12, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
diff --git a/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
new file mode 100644
index 00000000..612490b4
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..af52a7f4
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,60 @@
+_base_ = [
+ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
+]
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_3.2gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[96, 192, 432, 1008],
+ out_channels=256,
+ num_outs=5))
+img_norm_cfg = dict(
+ # The mean and std are used in PyCls when training RegNets
+ mean=[103.53, 116.28, 123.675],
+ std=[57.375, 57.12, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+
+data = dict(
+ train=dict(dataset=dict(pipeline=train_pipeline)),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+
+optimizer = dict(weight_decay=0.00005)
diff --git a/configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py b/configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..16ef0aca
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,16 @@
+_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_400mf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_400mf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[32, 64, 160, 384],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py b/configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..2d8adbd3
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,16 @@
+_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_4.0gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_4.0gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[80, 240, 560, 1360],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py b/configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..78ffbae8
--- /dev/null
+++ b/configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,16 @@
+_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_800mf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_800mf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[64, 128, 288, 672],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py b/configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..963aaf6a
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,25 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://regnetx_1.6gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_1.6gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[72, 168, 408, 912],
+ out_channels=256,
+ num_outs=5))
+
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py
new file mode 100644
index 00000000..104d6d43
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_12gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_12gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[224, 448, 896, 2240],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
new file mode 100644
index 00000000..19168b54
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
@@ -0,0 +1,57 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_3.2gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[96, 192, 432, 1008],
+ out_channels=256,
+ num_outs=5))
+img_norm_cfg = dict(
+ # The mean and std are used in PyCls when training RegNets
+ mean=[103.53, 116.28, 123.675],
+ std=[57.375, 57.12, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ # Images are converted to float32 directly after loading in PyCls
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
diff --git a/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
new file mode 100644
index 00000000..dd5153e6
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
@@ -0,0 +1,6 @@
+_base_ = 'mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..e4107e7f
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
@@ -0,0 +1,65 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_3.2gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[96, 192, 432, 1008],
+ out_channels=256,
+ num_outs=5))
+img_norm_cfg = dict(
+ # The mean and std are used in PyCls when training RegNets
+ mean=[103.53, 116.28, 123.675],
+ std=[57.375, 57.12, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py b/configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..ac78c80a
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,25 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://regnetx_400mf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_400mf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[32, 64, 160, 384],
+ out_channels=256,
+ num_outs=5))
+
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py
new file mode 100644
index 00000000..8830ef08
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_4.0gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_4.0gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[80, 240, 560, 1360],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py b/configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..0981298f
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,25 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://regnetx_4.0gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_4.0gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[80, 240, 560, 1360],
+ out_channels=256,
+ num_outs=5))
+
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
new file mode 100644
index 00000000..7569ef38
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_6.4gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_6.4gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[168, 392, 784, 1624],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py b/configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
new file mode 100644
index 00000000..7af20783
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
@@ -0,0 +1,25 @@
+_base_ = [
+ '../common/mstrain-poly_3x_coco_instance.py',
+ '../_base_/models/mask_rcnn_r50_fpn.py'
+]
+
+model = dict(
+ pretrained='open-mmlab://regnetx_800mf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_800mf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[64, 128, 288, 672],
+ out_channels=256,
+ num_outs=5))
+
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py b/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
new file mode 100644
index 00000000..b5890264
--- /dev/null
+++ b/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_8.0gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_8.0gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[80, 240, 720, 1920],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/metafile.yml b/configs/regnet/metafile.yml
new file mode 100644
index 00000000..6d77e2c0
--- /dev/null
+++ b/configs/regnet/metafile.yml
@@ -0,0 +1,330 @@
+Collections:
+ - Name: RegNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - RegNet
+ Paper: https://arxiv.org/abs/2003.13678
+ README: configs/regnet/README.md
+
+Models:
+ - Name: mask_rcnn_regnetx-3.2GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth
+
+ - Name: mask_rcnn_regnetx-4GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth
+
+ - Name: mask_rcnn_regnetx-6.4GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.1
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.0
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth
+
+ - Name: mask_rcnn_regnetx-8GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 6.4
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth
+
+ - Name: mask_rcnn_regnetx-12GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.4
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth
+
+ - Name: mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth
+
+ - Name: faster_rcnn_regnetx-3.2GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco/faster_rcnn_regnetx-3.2GF_fpn_1x_coco_20200517_175927-126fd9bf.pth
+
+ - Name: faster_rcnn_regnetx-3.2GF_fpn_2x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 4.5
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco/faster_rcnn_regnetx-3.2GF_fpn_2x_coco_20200520_223955-e2081918.pth
+
+ - Name: retinanet_regnetx-800MF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 2.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 35.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-800MF_fpn_1x_coco/retinanet_regnetx-800MF_fpn_1x_coco_20200517_191403-f6f91d10.pth
+
+ - Name: retinanet_regnetx-1.6GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.3
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco/retinanet_regnetx-1.6GF_fpn_1x_coco_20200517_191403-37009a9d.pth
+
+ - Name: retinanet_regnetx-3.2GF_fpn_1x_coco
+ In Collection: RegNet
+ Config: configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.2
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco/retinanet_regnetx-3.2GF_fpn_1x_coco_20200520_163141-cb1509e8.pth
+
+ - Name: faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 2.3
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210526_095112-e1967c37.pth
+
+ - Name: faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 2.8
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210526_095118-a2c70b20.pth
+
+ - Name: faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 3.4
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-1_20210526_095325-94aa46cc.pth
+
+ - Name: faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 4.4
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-3_20210526_095152-e16a5227.pth
+
+ - Name: faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 4.9
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210526_095201-65eaf841.pth
+
+ - Name: mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 5.0
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.1
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221-99879813.pth
+
+ - Name: mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 2.5
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 34.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco_20210601_235443-803b87a2.pth
+
+ - Name: mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
+ Metadata:
+ Training Memory (GB): 2.9
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 36.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco_20210602_210641-e843d02e.pth
+
+ - Name: mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 3.6
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.9
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641-6e63e19c.pth
+
+ - Name: mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
+ In Collection: RegNet
+ Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
+ Metadata:
+ Training Memory (GB): 5.1
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco_20210602_032621-c5900e99.pth
diff --git a/configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py b/configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py
new file mode 100644
index 00000000..4f2beb85
--- /dev/null
+++ b/configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_1.6gf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_1.6gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[72, 168, 408, 912],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py b/configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py
new file mode 100644
index 00000000..8f483a17
--- /dev/null
+++ b/configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py
@@ -0,0 +1,58 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained='open-mmlab://regnetx_3.2gf',
+ backbone=dict(
+ _delete_=True,
+ type='RegNet',
+ arch='regnetx_3.2gf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[96, 192, 432, 1008],
+ out_channels=256,
+ num_outs=5))
+img_norm_cfg = dict(
+ # The mean and std are used in PyCls when training RegNets
+ mean=[103.53, 116.28, 123.675],
+ std=[57.375, 57.12, 58.395],
+ to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
+optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
diff --git a/configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py b/configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py
new file mode 100644
index 00000000..fe1d659f
--- /dev/null
+++ b/configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://regnetx_800mf',
+ backbone=dict(
+ type='RegNet',
+ arch='regnetx_800mf',
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[64, 128, 288, 672],
+ out_channels=256,
+ num_outs=5))
diff --git a/configs/reppoints/README.md b/configs/reppoints/README.md
index 2d0e7cdb..fc589158 100644
--- a/configs/reppoints/README.md
+++ b/configs/reppoints/README.md
@@ -7,6 +7,8 @@ We provide code support and configuration files to reproduce the results in the
## Introduction
+
+
**RepPoints**, initially described in [arXiv](https://arxiv.org/abs/1904.11490), is a new representation method for visual objects, on which visual understanding tasks are typically centered. Visual object representation, aiming at both geometric description and appearance feature extraction, is conventionally achieved by `bounding box + RoIPool (RoIAlign)`. The bounding box representation is convenient to use; however, it provides only a rectangular localization of objects that lacks geometric precision and may consequently degrade feature quality. Our new representation, RepPoints, models objects by a `point set` instead of a `bounding box`, which learns to adaptively position themselves over an object in a manner that circumscribes the object’s `spatial extent` and enables `semantically aligned feature extraction`. This richer and more flexible representation maintains the convenience of bounding boxes while facilitating various visual understanding applications. This repo demonstrated the effectiveness of RepPoints for COCO object detection.
Another feature of this repo is the demonstration of an `anchor-free detector`, which can be as effective as state-of-the-art anchor-based detection methods. The anchor-free detector can utilize either `bounding box` or `RepPoints` as the basic object representation.
@@ -32,16 +34,16 @@ Another feature of this repo is the demonstration of an `anchor-free detector`,
The results on COCO 2017val are shown in the table below.
-| Method | Backbone | GN | Anchor | convert func | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-|:---------:|:-------------:|:---:|:------:|:------------:|:-------:|:--------:|:--------------:|:------:|:--------:|
-| BBox | R-50-FPN | Y | single | - | 1x | 3.9 | 15.9 | 36.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916.log.json) |
-| BBox | R-50-FPN | Y | none | - | 1x | 3.9 | 15.4 | 37.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330_233609.log.json) |
-| RepPoints | R-50-FPN | N | none | moment | 1x | 3.3 | 18.5 | 37.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330_233609.log.json) |
-| RepPoints | R-50-FPN | Y | none | moment | 1x | 3.9 | 17.5 | 38.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329_145952.log.json) |
-| RepPoints | R-50-FPN | Y | none | moment | 2x | 3.9 | - | 38.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329_150020.log.json) |
-| RepPoints | R-101-FPN | Y | none | moment | 2x | 5.8 | 13.7 | 40.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329_132205.log.json) |
-| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 5.9 | 12.1 | 42.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132134.log.json) |
-| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 7.1 | 9.3 | 44.2 | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132201.log.json) |
+| Method | Backbone | GN | Anchor | convert func | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+|:---------:|:-------------:|:---:|:------:|:------------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
+| BBox | R-50-FPN | Y | single | - | 1x | 3.9 | 15.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916.log.json) |
+| BBox | R-50-FPN | Y | none | - | 1x | 3.9 | 15.4 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330_233609.log.json) |
+| RepPoints | R-50-FPN | N | none | moment | 1x | 3.3 | 18.5 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330_233609.log.json) |
+| RepPoints | R-50-FPN | Y | none | moment | 1x | 3.9 | 17.5 | 38.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329_145952.log.json) |
+| RepPoints | R-50-FPN | Y | none | moment | 2x | 3.9 | - | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329_150020.log.json) |
+| RepPoints | R-101-FPN | Y | none | moment | 2x | 5.8 | 13.7 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329_132205.log.json) |
+| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 5.9 | 12.1 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132134.log.json) |
+| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 7.1 | 9.3 | 44.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132201.log.json) |
**Notes:**
diff --git a/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py b/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
index f225a320..8d5013d3 100644
--- a/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
+++ b/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
@@ -1,12 +1,13 @@
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
-model = dict(bbox_head=dict(transform_method='minmax', use_grid_points=True))
-# training and testing settings
-train_cfg = dict(
- init=dict(
- assigner=dict(
- _delete_=True,
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1)))
+model = dict(
+ bbox_head=dict(transform_method='minmax', use_grid_points=True),
+ # training and testing settings
+ train_cfg=dict(
+ init=dict(
+ assigner=dict(
+ _delete_=True,
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1))))
diff --git a/configs/reppoints/metafile.yml b/configs/reppoints/metafile.yml
new file mode 100644
index 00000000..49c32df7
--- /dev/null
+++ b/configs/reppoints/metafile.yml
@@ -0,0 +1,127 @@
+Collections:
+ - Name: RepPoints
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Group Normalization
+ - FPN
+ - RepPoints
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.11490
+ README: configs/reppoints/README.md
+
+Models:
+ - Name: bbox_r50_grid_fpn_gn-neck+head_1x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.9
+ inference time (s/im): 0.06289
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth
+
+ - Name: bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.9
+ inference time (s/im): 0.06494
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth
+
+ - Name: reppoints_moment_r50_fpn_1x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.3
+ inference time (s/im): 0.05405
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth
+
+ - Name: reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.9
+ inference time (s/im): 0.05714
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth
+
+ - Name: reppoints_moment_r50_fpn_gn-neck+head_2x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 3.9
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth
+
+ - Name: reppoints_moment_r101_fpn_gn-neck+head_2x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 5.8
+ inference time (s/im): 0.07299
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth
+
+ - Name: reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 5.9
+ inference time (s/im): 0.08264
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth
+
+ - Name: reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
+ In Collection: RepPoints
+ Config: configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ inference time (s/im): 0.10753
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth
diff --git a/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py b/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
new file mode 100644
index 00000000..241754cf
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
@@ -0,0 +1,7 @@
+_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(
+ depth=101,
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py b/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
new file mode 100644
index 00000000..19efa0dd
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py b/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
index 91e777ae..8df2a8f3 100644
--- a/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
+++ b/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
@@ -1,9 +1,9 @@
_base_ = [
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
- type='SingleStageDetector',
+ type='RepPointsDetector',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -40,28 +40,28 @@
loss_weight=1.0),
loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
- transform_method='moment'))
-# training and testing settings
-train_cfg = dict(
- init=dict(
- assigner=dict(type='PointAssigner', scale=4, pos_num=1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- refine=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100)
+ transform_method='moment'),
+ # training and testing settings
+ train_cfg=dict(
+ init=dict(
+ assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ refine=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False)),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.5),
+ max_per_img=100))
optimizer = dict(lr=0.01)
diff --git a/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py b/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
new file mode 100644
index 00000000..feca44aa
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py b/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
new file mode 100644
index 00000000..c33019da
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
@@ -0,0 +1,15 @@
+_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch',
+ dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/reppointv2/README.md b/configs/reppointv2/README.md
deleted file mode 100644
index 135f1792..00000000
--- a/configs/reppointv2/README.md
+++ /dev/null
@@ -1,137 +0,0 @@
-# RepPoints V2: Verification Meets Regression for Object Detection
-
-By Yihong Chen, [Zheng Zhang](https://stupidzz.github.io/), [Yue Cao](http://yue-cao.me/), [Liwei Wang](http://www.liweiwang-pku.com/), [Stephen Lin](https://scholar.google.com/citations?hl=zh-CN&user=c3PYmxUAAAAJ), [Han Hu](https://ancientmooner.github.io/).
-
-We provide supported codes and configuration files to reproduce ["RepPoints V2: Verification Meets Regression for Object Detection"](https://arxiv.org/abs/2007.08508) on COCO object detection and instance segmentation. Besides, this repo also includes improved results for [RepPoints V1](https://arxiv.org/pdf/1904.11490.pdf), [Dense RepPoints](https://arxiv.org/pdf/1912.11473.pdf) (V1,V2). Our code is adapted from [mmdetection](https://github.com/open-mmlab/mmdetection).
-
-## Introduction
-
-Verification and regression are two general methodologies for prediction in neural networks. Each has its own strengths: verification can be easier to infer accurately, and regression is more efficient and applicable to continuous target variables. Hence, it is often beneficial to carefully combine them to take advantage of their benefits. We introduce verification tasks into the localization prediction of RepPoints, producing **RepPoints v2**.
-
-RepPoints v2 aims for object detection and it achieves `52.1 bbox mAP` on COCO test-dev by a single model. Dense RepPoints v2 aims for instance segmentation and it achieves `45.9 bbox mAP` and `39.0 mask mAP` on COCO test-dev by using a ResNet-50 model.
-
-
-
-
-
-## Main Results
-
-### RepPoints V2
-
-**ResNe(X)ts:**
-
-Model | Multi-scale training | AP (minival) | AP (test-dev) | Link
---- |:---:|:---:|:---:|:---:
-RepPoints_V2_R_50_FPN_1x | No | 40.9 | --- | [Google](https://drive.google.com/file/d/1QBYTLITOJG5dSjU35YewE9efSCH_VGg2/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1ZvJ3gk_FVOVHmvmy87cr_w) / [Log](https://drive.google.com/file/d/1Ra2XC-Zjfpx6YG91ZRY_8qI_XnDe_Txu/view?usp=sharing)
-RepPoints_V2_R_50_FPN_GIoU_1x | No | 41.1 | 41.3 | [Google](https://drive.google.com/file/d/1lbYUpvA33GHaEImKRhbR7H5S36Dxubcf/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1kyt5YNWO-gg_W4iUuwZxiw) / [Log](https://drive.google.com/file/d/1yDwNToYAZdPWTs4vxzbBNqRCLIrRxx_H/view?usp=sharing)
-RepPoints_V2_R_50_FPN_GIoU_2x | Yes | 43.9 | 44.4 | [Google](https://drive.google.com/file/d/13FfoXOfTsO-eLTcO__WXUxQRRWNzAdrL/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1QAvjzGI1zrnockXX6cZrZA) / [Log](https://drive.google.com/file/d/1yDwNToYAZdPWTs4vxzbBNqRCLIrRxx_H/view?usp=sharing)
-RepPoints_V2_R_101_FPN_GIoU_2x | Yes | 45.8 | 46 | [Google](https://drive.google.com/file/d/1MUb1Y1_OoqhwFkvdyE6QthbUc1l2ixYS/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1YNxbnmeq20mVef5ZAlMTxQ) / [Log](https://drive.google.com/file/d/1m5BM1PWXWKwfsvEc54b0fCcMIlXKPFG_/view?usp=sharing)
-RepPoints_V2_R_101_FPN_dcnv2_GIoU_2x | Yes | 47.7 | 48.1 | [Google](https://drive.google.com/file/d/1VaBAPWOzku0tfpUWa5FmOsu_Fn_3UWaY/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/14V2hz6VrXJv_acQ-SQlBUg) / [Log](https://drive.google.com/file/d/1f_WwyNFlqvCSU-P723b-LHG1kpRhddns/view?usp=sharing)
-RepPoints_V2_X_101_FPN_GIoU_2x | Yes | 47.3 | 47.8 | [Google](https://drive.google.com/file/d/1rThw_7yXi185-VXfeXY81iJNwoAywQVA/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1Vp4vtkSSfAbkI1_--jDQ5g) / [Log](https://drive.google.com/file/d/13Nj__4nvZEEJtwNhvIcKjDwbmu5eQZoo/view?usp=sharing)
-RepPoints_V2_X_101_FPN_dcnv2_GIoU_2x | Yes | 49.3 | 49.4 | [Google](https://drive.google.com/file/d/1db6cK7pEjRgN8QjaGV8OnZYp35nuxd7G/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1idrD8kmgYTP_q5_mSSlpTQ) / [Log](https://drive.google.com/file/d/1DlCYQiWUanPVwyowjFLrgKCYz57EJE2S/view?usp=sharing)
-
-**MobileNets**:
-
-Model | Multi-scale training | AP (minival) | AP (test-dev) | Link
---- |:---:|:---:|:---:|:---:
-RepPoints_V2_MNV2_c128_FPN_2x | Yes | 36.8 | --- | [Google](https://drive.google.com/file/d/1mnoXOyzp6dCYbQx7rKbzjKlc0RzitOpV/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1_sEMkhDjYjhJwMSiNNoYdg) / [Log](https://drive.google.com/file/d/11UQGvOuOykFD0iW3xz1DsqJSwJaw2tmw/view?usp=sharing)
-RepPoints_V2_MNV2_FPN_2x | Yes | 39.4 | --- | [Google](https://drive.google.com/file/d/1xk8jGZiRs2iskywf3hB6tINMK_3lDL3u/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1OdiEtxWe5f45GaaprITdrA) / [Log](https://drive.google.com/file/d/1A1ldy4HzPStKjz0Xm96sPnyB-NS2wzMk/view?usp=sharing)
-
-### RepPoints V1
-
-**ResNe(X)ts:**
-
-Model | Multi-scale training | AP (minival) | AP (test-dev) | Link
---- |:---:|:---:|:---:|:---:
-RepPoints_V1_R_50_FPN_1x | No | 38.8 | --- | [Google](https://drive.google.com/file/d/1DMoTicyL5FejCL3042rwZWPojTC2-qRH/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1t4zaVFCH0A35xEDXo3RUMQ) / [Log](https://drive.google.com/file/d/1Oq-3DFnfbJ6F5doJobuhZU9y7BkRC0NH/view?usp=sharing)
-RepPoints_V1_R_50_FPN_GIoU_1x | No | 39.9 | ---| [Google](https://drive.google.com/file/d/1IJp3bBCrRuDDQcxjwoUenBuA-KSzYWkf/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1swvcTxgiUWSRCOSKOJ7Mjg) / [Log](https://drive.google.com/file/d/1bRCfSQPYFjxXIari9F8AWXOYUUS4VVJg/view?usp=sharing)
-RepPoints_V1_R_50_FPN_GIoU_2x | Yes | 42.7 | --- | [Google](https://drive.google.com/file/d/1tZpfOGmxzToaikaFdpyhjCjm8ltOJaYY/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1pFvleWnZjVsFeHJjiX3dpw) / [Log](https://drive.google.com/file/d/1iBSrXp4ngug9jaWb1gndSj4NQQQzbpAC/view?usp=sharing)
-RepPoints_V1_R_101_FPN_GIoU_2x | Yes | 44.4 | --- | [Google](https://drive.google.com/file/d/1YiR4m8GNWQ472tgGXOdeaWbnS2KiAR4z/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1BhVjPvBJaWM3Okq1Ytk8Iw) / [Log](https://drive.google.com/file/d/1QhN3vedurGiRAl6aiSwtGNwxN3TAOXuP/view?usp=sharing)
-RepPoints_V1_R_101_FPN_dcnv2_GIoU_2x | Yes | 46.6 | --- | [Google](https://drive.google.com/file/d/112jG1a2TUnABqCR1ccKrIzAE6_8P3LAe/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/18e0zGQah6aqCY2qIXe88Ew) / [Log](https://drive.google.com/file/d/1ut23n60vRY0f8VF97bgh2KWN05rmto9N/view?usp=sharing)
-RepPoints_V1_X_101_FPN_GIoU_2x | Yes | 46.3 | --- | [Google](https://drive.google.com/file/d/1UohtogF-znE0NnqXHSrcGBuE9B3pNaDr/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1qbCyHBZksS_l-eXH8Wh5Ug) / [Log](https://drive.google.com/file/d/1wOBP8-oBg53llJOfspddecA5NNpdcRix/view?usp=sharing)
-RepPoints_V1_X_101_FPN_dcnv2_GIoU_2x | Yes | 48.3 | --- | [Google](https://drive.google.com/file/d/14oSaFilmT6EMTkAuP23OyQtLbWRB0BiN/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1Xl5VUG7z7IQlz6F8267f6A) / [Log](https://drive.google.com/file/d/14u0m5eFdLFRGJT--mx7wzsdIVNb8Atu8/view?usp=sharing)
-
-**MobileNets**:
-
-Model | Multi-scale training | AP (minival) | AP (test-dev) | Link
---- |:---:|:---:|:---:|:---:
-RepPoints_V1_MNV2_c128_FPN_2x | Yes | 35.7 | --- | [Google](https://drive.google.com/file/d/14l_m3lLacfw7mTafv7cuvczhkWeF2cn4/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1hHeV8KZLdtLNvVYRl-najw) / [Log](https://drive.google.com/file/d/1pg1gW3ajOqgB4oLmEsiKJ2cReAIdxRkp/view?usp=sharing)
-RepPoints_V1_MNV2_FPN_2x | Yes | 37.8 | --- | [Google](https://drive.google.com/file/d/1Ex6us97waqWP25H20xBZZEfQXfI8mfjW/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1AyibFbRgSc8bug0KZDO1Yw) / [Log](https://drive.google.com/file/d/1BanM614yhFaxtLeSI_vYbtTjsarj-Xxl/view?usp=sharing)
-
-### Dense Reppoints V2
-
-Model | MS training | bbox AP (minival/test-dev) | mask AP (minival/test-dev) | Link
---- |:---:|:---:|:---:|:---:
-Dense_RepPoints_V2_R_50_FPN_1x | No | 40.5/--- | 34.8/--- | [Google](https://drive.google.com/file/d/14l_m3lLacfw7mTafv7cuvczhkWeF2cn4/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1W2FyECYBVD5WUvYFIT7stw) / [Log]()
-Dense_RepPoints_V2_R_50_FPN_GIoU_1x | No | 41.5/41.6 | 35.1/35.4| [Google](https://drive.google.com/file/d/14l_m3lLacfw7mTafv7cuvczhkWeF2cn4/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1TlTkJZNwQl_8keFjCnEVEA) / [Log]()
-Dense_RepPoints_V2_R_50_FPN_GIoU_3x | Yes | 45.2/45.9 | 38.3/39.0 | [Google](https://drive.google.com/file/d/17VWteFLHYWJCuGwafCiwlTc0Aga-TgtJ/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1VCAJLin53228fSQM9UjHXw) / [Log]()
-
-### Dense Reppoints V1
-
-Model | MS training | bbox AP (minival/test-dev) | mask AP (minival/test-dev) | Link
---- |:---:|:---:|:---:|:---:
-Dense_RepPoints_V1_R_50_FPN_1x | No | 39.9/--- | 33.7/--- | [Google](https://drive.google.com/file/d/1DKcxMSXnpNwQe0cFz0e9C00KdMSTMJR0/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/12rS_fEONPFSgHZvXyKvFIQ) / [Log](https://drive.google.com/file/d/1iD9BX5x0dmzbwWDw_S48Vp-DpMZ9JJNz/view?usp=sharing)
-Dense_RepPoints_V1_R_50_FPN_GIoU_1x | No | 40.9/41.1 | 34.2/34.5| [Google](https://drive.google.com/file/d/1GH3Ut9fzPBwRCOQD6j_uLFVIIs-i09bT/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1TWsRzCTZoC16BwTZbqWJ7A) / [Log](https://drive.google.com/file/d/1xKTY_XmontMaYt8ShhvdbNOoNebzPXH3/view?usp=sharing)
-Dense_RepPoints_V1_R_50_FPN_GIoU_3x | Yes | 44.5/45.0 | 37.4/38.0 | [Google](https://drive.google.com/file/d/11t8P5lGRdpLdZS5UY8kYgDLUTPQXBzlF/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1zf5rdh_5Kz1SrjbtBbjlzQ) / [Log](https://drive.google.com/file/d/114ESFYzhALGj4bL1OylnRvQzEd4jYTVa/view?usp=sharing)
-
-[1] *GIoU means using GIoU loss instead of smooth-l1 loss for the regression branch, which we find improves the final performance.* \
-[2] *X-101 denotes ResNeXt-101-64x4d.* \
-[3] *1x, 2x, 3x mean the model is trained for 12, 24 and 36 epochs, respectively.* \
-[4] *For multi-scale training, the shorter side of images is randomly chosen from [480, 960].* \
-[5] *`dcnv2` denotes deformable convolutional networks v2.* \
-[6] *c128 denotes the model has 128 (instead of 256) channels in towers.*\
-[7] *We use syncbn, GIoU loss for the regression branch to train mobilenet v2 models by default.*
-
-
-## Citation
-
-```
-@article{chen2020reppointsv2,
- title={RepPoints V2: Verification Meets Regression for Object Detection},
- author={Chen, Yihong and Zhang, Zheng and Cao, Yue and Wang, Liwei and Lin, Stephen and Hu, Han},
- journal={arXiv preprint arXiv:2007.08508},
- year={2020}
-}
-
-@inproceedings{yang2019dense,
- title={Dense reppoints: Representing visual objects with dense point sets},
- author={Yang, Ze and Xu, Yinghao and Xue, Han and Zhang, Zheng and Urtasun, Raquel and Wang, Liwei and Lin, Stephen and Hu, Han},
- booktitle={ECCV},
- year={2020}
-}
-
-@inproceedings{yang2019reppoints,
- title={RepPoints: Point Set Representation for Object Detection},
- author={Yang, Ze and Liu, Shaohui and Hu, Han and Wang, Liwei and Lin, Stephen},
- booktitle={The IEEE International Conference on Computer Vision (ICCV)},
- month={Oct},
- year={2019}
-}
-```
-
-## Installation
-
-Please refer to [INSTALL.md](docs/install.md) for installation and dataset preparation.
-
-## Get Started
-
-Please see [GETTING_STARTED.md](docs/getting_started.md) for the basic usage of MMDetection.
-
-### Inference
-
-```shell
-./tools/dist_test.sh configs/reppoints_v2/reppoints_v2_r50_fpn_giou_1x_coco.py work_dirs/reppoints_v2_r50_fpn_giou_1x_coco/epoch_12.pth 8 --eval bbox
-```
-
-Please note that:
-1. If you are using other model, please change the config file and pretrained weights accordingly.
-
-### Train
-
-```shell
-./tools/dist_train.sh configs/reppoints_v2/reppoints_v2_r50_fpn_giou_1x_coco.py 8
-```
-
-## Contributing to the project
-
-Any pull requests or issues are welcome.
diff --git a/configs/reppointv2/reppoints_v2_r50_fpn_1x_coco.py b/configs/reppointv2/reppoints_v2_r50_fpn_1x_coco.py
deleted file mode 100644
index dd76e7ab..00000000
--- a/configs/reppointv2/reppoints_v2_r50_fpn_1x_coco.py
+++ /dev/null
@@ -1,100 +0,0 @@
-_base_ = [
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
-]
-norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
-model = dict(
- type='SingleStageDetector',
- pretrained='torchvision://resnet50',
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- style='pytorch'),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- start_level=1,
- add_extra_convs='on_input',
- num_outs=5,
- norm_cfg=norm_cfg),
- bbox_head=dict(
- type='RepPointsV2Head',
- num_classes=80,
- in_channels=256,
- feat_channels=256,
- point_feat_channels=256,
- stacked_convs=3,
- shared_stacked_convs=1,
- first_kernel_size=3,
- kernel_size=1,
- corner_dim=64,
- num_points=9,
- gradient_mul=0.1,
- point_strides=[8, 16, 32, 64, 128],
- point_base_scale=4,
- norm_cfg=norm_cfg,
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
- loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
- loss_heatmap=dict(
- type='GaussianFocalLoss',
- alpha=2.0,
- gamma=4.0,
- loss_weight=0.25),
- loss_offset=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
- loss_sem=dict(
- type='SEPFocalLoss',
- gamma=2.0,
- alpha=0.25,
- loss_weight=0.1),
- transform_method='exact_minmax'))
-# training and testing settings
-train_cfg = dict(
- init=dict(
- assigner=dict(type='PointAssignerV2', scale=4, pos_num=1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- heatmap=dict(
- assigner=dict(type='PointHMAssigner', gaussian_bump=True, gaussian_iou=0.7),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- refine=dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_thr=0.6),
- max_per_img=100)
-optimizer = dict(lr=0.01)
-optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2), _delete_=True)
-img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='LoadRPDV2Annotations', num_classes=80),
- dict(type='RPDV2FormatBundle'),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights']),
-]
-
-data = dict(train=dict(pipeline=train_pipeline))
\ No newline at end of file
diff --git a/configs/reppointv2/reppoints_v2_r50_fpn_giou_1x_coco.py b/configs/reppointv2/reppoints_v2_r50_fpn_giou_1x_coco.py
deleted file mode 100644
index 59c9fdbd..00000000
--- a/configs/reppointv2/reppoints_v2_r50_fpn_giou_1x_coco.py
+++ /dev/null
@@ -1,6 +0,0 @@
-_base_ = './reppoints_v2_r50_fpn_1x_coco.py'
-model = dict(
- bbox_head=dict(
- loss_bbox_init=dict(_delete_=True, type='GIoULoss', loss_weight=1.0),
- loss_bbox_refine=dict(_delete_=True, type='GIoULoss', loss_weight=2.0))
-)
diff --git a/configs/reppointv2/reppoints_v2_r50_fpn_giou_mstrain_2x_coco.py b/configs/reppointv2/reppoints_v2_r50_fpn_giou_mstrain_2x_coco.py
deleted file mode 100644
index b6c93a27..00000000
--- a/configs/reppointv2/reppoints_v2_r50_fpn_giou_mstrain_2x_coco.py
+++ /dev/null
@@ -1,23 +0,0 @@
-_base_ = './reppoints_v2_r50_fpn_giou_1x_coco.py'
-# learning policy
-lr_config = dict(step=[16, 22])
-total_epochs = 24
-# multi-scale training
-img_norm_cfg = dict(
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='Resize',
- img_scale=[(1333, 480), (1333, 960)],
- multiscale_mode='range',
- keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='LoadRPDV2Annotations'),
- dict(type='RPDV2FormatBundle'),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights']),
-]
-data = dict(train=dict(pipeline=train_pipeline))
\ No newline at end of file
diff --git a/configs/res2net/README.md b/configs/res2net/README.md
new file mode 100644
index 00000000..864a891d
--- /dev/null
+++ b/configs/res2net/README.md
@@ -0,0 +1,65 @@
+# Res2Net for object detection and instance segmentation
+
+## Introduction
+
+
+
+We propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer.
+
+| Backbone |Params. | GFLOPs | top-1 err. | top-5 err. |
+| :-------------: |:----: | :-----: | :--------: | :--------: |
+| ResNet-101 |44.6 M | 7.8 | 22.63 | 6.44 |
+| ResNeXt-101-64x4d |83.5M | 15.5 | 20.40 | - |
+| HRNetV2p-W48 | 77.5M | 16.1 | 20.70 | 5.50 |
+| Res2Net-101 | 45.2M | 8.3 | 18.77 | 4.64 |
+
+Compared with other backbone networks, Res2Net requires fewer parameters and FLOPs.
+
+**Note:**
+
+- GFLOPs for classification are calculated with image size (224x224).
+
+```latex
+@article{gao2019res2net,
+ title={Res2Net: A New Multi-scale Backbone Architecture},
+ author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
+ journal={IEEE TPAMI},
+ year={2020},
+ doi={10.1109/TPAMI.2019.2938758},
+}
+```
+
+## Results and Models
+
+### Faster R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+|R2-101-FPN | pytorch | 2x | 7.4 | - | 43.0 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/faster_rcnn_r2_101_fpn_2x_coco/faster_rcnn_r2_101_fpn_2x_coco-175f1da6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/faster_rcnn_r2_101_fpn_2x_coco/faster_rcnn_r2_101_fpn_2x_coco_20200514_231734.log.json) |
+
+### Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+|R2-101-FPN | pytorch | 2x | 7.9 | - | 43.6 | 38.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/mask_rcnn_r2_101_fpn_2x_coco/mask_rcnn_r2_101_fpn_2x_coco-17f061e8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/mask_rcnn_r2_101_fpn_2x_coco/mask_rcnn_r2_101_fpn_2x_coco_20200515_002413.log.json) |
+
+### Cascade R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+|R2-101-FPN | pytorch | 20e | 7.8 | - | 45.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_rcnn_r2_101_fpn_20e_coco/cascade_rcnn_r2_101_fpn_20e_coco-f4b7b7db.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_rcnn_r2_101_fpn_20e_coco/cascade_rcnn_r2_101_fpn_20e_coco_20200515_091644.log.json) |
+
+### Cascade Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+R2-101-FPN | pytorch | 20e | 9.5 | - | 46.4 | 40.0 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco/cascade_mask_rcnn_r2_101_fpn_20e_coco-8a7b41e1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco/cascade_mask_rcnn_r2_101_fpn_20e_coco_20200515_091645.log.json) |
+
+### Hybrid Task Cascade (HTC)
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+| R2-101-FPN | pytorch | 20e | - | - | 47.5 | 41.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/htc_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/htc_r2_101_fpn_20e_coco/htc_r2_101_fpn_20e_coco-3a8d2112.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/htc_r2_101_fpn_20e_coco/htc_r2_101_fpn_20e_coco_20200515_150029.log.json) |
+
+- Res2Net ImageNet pretrained models are in [Res2Net-PretrainedModels](https://github.com/Res2Net/Res2Net-PretrainedModels).
+- More applications of Res2Net are in [Res2Net-Github](https://github.com/Res2Net/).
diff --git a/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py b/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py
new file mode 100644
index 00000000..50df4e2d
--- /dev/null
+++ b/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
diff --git a/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py b/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py
new file mode 100644
index 00000000..1cac759a
--- /dev/null
+++ b/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
diff --git a/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py b/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py
new file mode 100644
index 00000000..85004e02
--- /dev/null
+++ b/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
diff --git a/configs/res2net/htc_r2_101_fpn_20e_coco.py b/configs/res2net/htc_r2_101_fpn_20e_coco.py
new file mode 100644
index 00000000..3c4cc751
--- /dev/null
+++ b/configs/res2net/htc_r2_101_fpn_20e_coco.py
@@ -0,0 +1,7 @@
+_base_ = '../htc/htc_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py b/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py
new file mode 100644
index 00000000..a6201888
--- /dev/null
+++ b/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
diff --git a/configs/res2net/metafile.yml b/configs/res2net/metafile.yml
new file mode 100644
index 00000000..8fb82c97
--- /dev/null
+++ b/configs/res2net/metafile.yml
@@ -0,0 +1,89 @@
+Collections:
+ - Name: Res2Net
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Res2Net
+ Paper: https://arxiv.org/abs/1904.01169
+ README: configs/res2net/README.md
+
+Models:
+ - Name: faster_rcnn_r2_101_fpn_2x_coco
+ In Collection: Res2Net
+ Config: configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.4
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/res2net/faster_rcnn_r2_101_fpn_2x_coco/faster_rcnn_r2_101_fpn_2x_coco-175f1da6.pth
+
+ - Name: mask_rcnn_r2_101_fpn_2x_coco
+ In Collection: Res2Net
+ Config: configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py
+ Metadata:
+ Training Memory (GB): 7.9
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/res2net/mask_rcnn_r2_101_fpn_2x_coco/mask_rcnn_r2_101_fpn_2x_coco-17f061e8.pth
+
+ - Name: cascade_rcnn_r2_101_fpn_20e_coco
+ In Collection: Res2Net
+ Config: configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 7.8
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_rcnn_r2_101_fpn_20e_coco/cascade_rcnn_r2_101_fpn_20e_coco-f4b7b7db.pth
+
+ - Name: cascade_mask_rcnn_r2_101_fpn_20e_coco
+ In Collection: Res2Net
+ Config: configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 9.5
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco/cascade_mask_rcnn_r2_101_fpn_20e_coco-8a7b41e1.pth
+
+ - Name: htc_r2_101_fpn_20e_coco
+ In Collection: Res2Net
+ Config: configs/res2net/htc_r2_101_fpn_20e_coco.py
+ Metadata:
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 41.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/res2net/htc_r2_101_fpn_20e_coco/htc_r2_101_fpn_20e_coco-3a8d2112.pth
diff --git a/configs/resnest/README.md b/configs/resnest/README.md
new file mode 100644
index 00000000..a23a39ae
--- /dev/null
+++ b/configs/resnest/README.md
@@ -0,0 +1,44 @@
+# ResNeSt: Split-Attention Networks
+
+## Introduction
+
+[BACKBONE]
+
+```latex
+@article{zhang2020resnest,
+title={ResNeSt: Split-Attention Networks},
+author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
+journal={arXiv preprint arXiv:2004.08955},
+year={2020}
+}
+```
+
+## Results and Models
+
+### Faster R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+|S-50-FPN | pytorch | 1x | 4.8 | - | 42.0 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20200926_125502-20289c16.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco-20200926_125502.log.json) |
+|S-101-FPN | pytorch | 1x | 7.1 | - | 44.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201006_021058-421517f1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco-20201006_021058.log.json) |
+
+### Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+|S-50-FPN | pytorch | 1x | 5.5 | - | 42.6 | 38.1 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20200926_125503-8a2c3d47.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco-20200926_125503.log.json) |
+|S-101-FPN | pytorch | 1x | 7.8 | - | 45.2 | 40.2 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201005_215831-af60cdf9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco-20201005_215831.log.json) |
+
+### Cascade R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+|S-50-FPN | pytorch | 1x | - | - | 44.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201122_213640-763cc7b5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco-20201005_113242.log.json) |
+|S-101-FPN | pytorch | 1x | 8.4 | - | 46.8 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201005_113242-b9459f8f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco-20201122_213640.log.json) |
+
+### Cascade Mask R-CNN
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+|S-50-FPN | pytorch | 1x | - | - | 45.4 | 39.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201122_104428-99eca4c7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco-20201122_104428.log.json) |
+|S-101-FPN | pytorch | 1x | 10.5 | - | 47.7 | 41.4 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201005_113243-42607475.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco-20201005_113243.log.json) |
diff --git a/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py b/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
new file mode 100644
index 00000000..3995603a
--- /dev/null
+++ b/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnest101',
+ backbone=dict(stem_channels=128, depth=101))
diff --git a/configs/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py b/configs/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
new file mode 100644
index 00000000..f2cf444d
--- /dev/null
+++ b/configs/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
@@ -0,0 +1,118 @@
+_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='SyncBN', requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://resnest50',
+ backbone=dict(
+ type='ResNeSt',
+ stem_channels=64,
+ depth=50,
+ radix=2,
+ reduction_factor=4,
+ avg_down_stride=True,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_head=dict(norm_cfg=norm_cfg)))
+# # use ResNeSt img_norm
+img_norm_cfg = dict(
+ mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py b/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
new file mode 100644
index 00000000..53964a3e
--- /dev/null
+++ b/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnest101',
+ backbone=dict(stem_channels=128, depth=101))
diff --git a/configs/resnest/cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py b/configs/resnest/cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
new file mode 100644
index 00000000..78a154bb
--- /dev/null
+++ b/configs/resnest/cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
@@ -0,0 +1,116 @@
+_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='SyncBN', requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://resnest50',
+ backbone=dict(
+ type='ResNeSt',
+ stem_channels=64,
+ depth=50,
+ radix=2,
+ reduction_factor=4,
+ avg_down_stride=True,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared4Conv1FCBBoxHead',
+ in_channels=256,
+ conv_out_channels=256,
+ fc_out_channels=1024,
+ norm_cfg=norm_cfg,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ], ))
+# # use ResNeSt img_norm
+img_norm_cfg = dict(
+ mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=False,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py b/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
new file mode 100644
index 00000000..1915ab1b
--- /dev/null
+++ b/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnest101',
+ backbone=dict(stem_channels=128, depth=101))
diff --git a/configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py b/configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
new file mode 100644
index 00000000..422fbca1
--- /dev/null
+++ b/configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
@@ -0,0 +1,62 @@
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='SyncBN', requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://resnest50',
+ backbone=dict(
+ type='ResNeSt',
+ stem_channels=64,
+ depth=50,
+ radix=2,
+ reduction_factor=4,
+ avg_down_stride=True,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg)))
+# # use ResNeSt img_norm
+img_norm_cfg = dict(
+ mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=False,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py b/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
new file mode 100644
index 00000000..89e077d6
--- /dev/null
+++ b/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnest101',
+ backbone=dict(stem_channels=128, depth=101))
diff --git a/configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py b/configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
new file mode 100644
index 00000000..29f21fd0
--- /dev/null
+++ b/configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
@@ -0,0 +1,64 @@
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+norm_cfg = dict(type='SyncBN', requires_grad=True)
+model = dict(
+ pretrained='open-mmlab://resnest50',
+ backbone=dict(
+ type='ResNeSt',
+ stem_channels=64,
+ depth=50,
+ radix=2,
+ reduction_factor=4,
+ avg_down_stride=True,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=norm_cfg,
+ norm_eval=False,
+ style='pytorch'),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg),
+ mask_head=dict(norm_cfg=norm_cfg)))
+# # use ResNeSt img_norm
+img_norm_cfg = dict(
+ mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/resnest/metafile.yml b/configs/resnest/metafile.yml
new file mode 100644
index 00000000..b1cd5929
--- /dev/null
+++ b/configs/resnest/metafile.yml
@@ -0,0 +1,131 @@
+Collections:
+ - Name: ResNeSt
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ResNeSt
+ Paper: https://arxiv.org/abs/2004.08955
+ README: configs/renest/README.md
+
+Models:
+ - Name: faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
+ Metadata:
+ Training Memory (GB): 4.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20200926_125502-20289c16.pth
+
+ - Name: faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.1
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/faster_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201006_021058-421517f1.pth
+
+ - Name: mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.6
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 38.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20200926_125503-8a2c3d47.pth
+
+ - Name: mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.8
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201005_215831-af60cdf9.pth
+
+ - Name: cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201122_213640-763cc7b5.pth
+
+ - Name: cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.4
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco/cascade_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain-range_1x_coco_20201005_113242-b9459f8f.pth
+
+ - Name: cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.4
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s50_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201122_104428-99eca4c7.pth
+
+ - Name: cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco
+ In Collection: ResNeSt
+ Config: configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.5
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.7
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 41.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco/cascade_mask_rcnn_s101_fpn_syncbn-backbone%2Bhead_mstrain_1x_coco_20201005_113243-42607475.pth
diff --git a/configs/retinanet/README.md b/configs/retinanet/README.md
index fbc2ee31..c499fd29 100644
--- a/configs/retinanet/README.md
+++ b/configs/retinanet/README.md
@@ -1,7 +1,10 @@
# Focal Loss for Dense Object Detection
## Introduction
-```
+
+
+
+```latex
@inproceedings{lin2017focal,
title={Focal loss for dense object detection},
author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
@@ -12,15 +15,15 @@
## Results and models
-| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-------: |
-| R-50-FPN | caffe | 1x | 3.5 | 18.6 | 36.3 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531_012518.log.json) |
-| R-50-FPN | pytorch | 1x | 3.8 | 19.0 | 36.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130_002941.log.json) |
-| R-50-FPN | pytorch | 2x | - | - | 37.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131_114738.log.json) |
-| R-101-FPN | caffe | 1x | 5.5 | 14.7 | 38.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531_012536.log.json) |
-| R-101-FPN | pytorch | 1x | 5.7 | 15.0 | 38.5 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130_003055.log.json) |
-| R-101-FPN | pytorch | 2x | - | - | 38.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131_114859.log.json) |
-| X-101-32x4d-FPN | pytorch | 1x | 7.0 | 12.1 | 39.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130_003004.log.json) |
-| X-101-32x4d-FPN | pytorch | 2x | - | - | 40.1 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131_114812.log.json) |
-| X-101-64x4d-FPN | pytorch | 1x | 10.0 | 8.7 | 41.0 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130_003008.log.json) |
-| X-101-64x4d-FPN | pytorch | 2x | - | - | 40.8 | [model](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131_114833.log.json) |
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | caffe | 1x | 3.5 | 18.6 | 36.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531_012518.log.json) |
+| R-50-FPN | pytorch | 1x | 3.8 | 19.0 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130_002941.log.json) |
+| R-50-FPN | pytorch | 2x | - | - | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r50_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131_114738.log.json) |
+| R-101-FPN | caffe | 1x | 5.5 | 14.7 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531_012536.log.json) |
+| R-101-FPN | pytorch | 1x | 5.7 | 15.0 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130_003055.log.json) |
+| R-101-FPN | pytorch | 2x | - | - | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_r101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131_114859.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.0 | 12.1 | 39.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130_003004.log.json) |
+| X-101-32x4d-FPN | pytorch | 2x | - | - | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131_114812.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.0 | 8.7 | 41.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130_003008.log.json) |
+| X-101-64x4d-FPN | pytorch | 2x | - | - | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131_114833.log.json) |
diff --git a/configs/retinanet/metafile.yml b/configs/retinanet/metafile.yml
new file mode 100644
index 00000000..5bf12467
--- /dev/null
+++ b/configs/retinanet/metafile.yml
@@ -0,0 +1,147 @@
+Collections:
+ - Name: RetinaNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Focal Loss
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1708.02002
+ README: configs/retinanet/README.md
+
+Models:
+ - Name: retinanet_r50_caffe_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.5
+ inference time (s/im): 0.05376
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth
+
+ - Name: retinanet_r50_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 3.8
+ inference time (s/im): 0.05263
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 36.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth
+
+ - Name: retinanet_r50_fpn_2x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r50_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth
+
+ - Name: retinanet_r101_caffe_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.5
+ inference time (s/im): 0.06803
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth
+
+ - Name: retinanet_r101_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r101_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 5.7
+ inference time (s/im): 0.06667
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth
+
+ - Name: retinanet_r101_fpn_2x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_r101_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth
+
+ - Name: retinanet_x101_32x4d_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.08264
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth
+
+ - Name: retinanet_x101_32x4d_fpn_2x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.1
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth
+
+ - Name: retinanet_x101_64x4d_fpn_1x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 10.0
+ inference time (s/im): 0.11494
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth
+
+ - Name: retinanet_x101_64x4d_fpn_2x_coco
+ In Collection: RetinaNet
+ Config: configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth
diff --git a/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py b/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..21d227b0
--- /dev/null
+++ b/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './retinanet_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/retinanet/retinanet_r101_fpn_1x_coco.py b/configs/retinanet/retinanet_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..1e6f4634
--- /dev/null
+++ b/configs/retinanet/retinanet_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './retinanet_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/retinanet/retinanet_r101_fpn_2x_coco.py b/configs/retinanet/retinanet_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..c12088a2
--- /dev/null
+++ b/configs/retinanet/retinanet_r101_fpn_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './retinanet_r50_fpn_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py b/configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..028c1a3a
--- /dev/null
+++ b/configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,37 @@
+_base_ = './retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py b/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..eea9690e
--- /dev/null
+++ b/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 23])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py b/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py
new file mode 100644
index 00000000..80576507
--- /dev/null
+++ b/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
+# learning policy
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/retinanet/retinanet_r50_fpn_1x_coco.py b/configs/retinanet/retinanet_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..04bd696b
--- /dev/null
+++ b/configs/retinanet/retinanet_r50_fpn_1x_coco.py
@@ -0,0 +1,7 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/retinanet/retinanet_r50_fpn_2x_coco.py b/configs/retinanet/retinanet_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..927915fa
--- /dev/null
+++ b/configs/retinanet/retinanet_r50_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './retinanet_r50_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/retinanet/retinanet_r50_fpn_coco.py b/configs/retinanet/retinanet_r50_fpn_coco.py
deleted file mode 100644
index 9c234ec5..00000000
--- a/configs/retinanet/retinanet_r50_fpn_coco.py
+++ /dev/null
@@ -1,7 +0,0 @@
-_base_ = [
- '../_base_/models/retinanet_r50_fpn.py',
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
-]
-# optimizer
-optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/retinanet/retinanet_r50_fpn_voc.py b/configs/retinanet/retinanet_r50_fpn_voc.py
deleted file mode 100644
index b61da295..00000000
--- a/configs/retinanet/retinanet_r50_fpn_voc.py
+++ /dev/null
@@ -1,13 +0,0 @@
-_base_ = [
- '../_base_/models/retinanet_r50_fpn.py',
- '../_base_/datasets/voc0712.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
-]
-# optimizer
-optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
-
-model = dict(
- bbox_head=dict(
- num_classes=20,
- ),
-)
diff --git a/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py b/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..9927f8f0
--- /dev/null
+++ b/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py b/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..cd78b6df
--- /dev/null
+++ b/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py b/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..cc40f260
--- /dev/null
+++ b/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py b/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..eac05a64
--- /dev/null
+++ b/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './retinanet_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/rpn/README.md b/configs/rpn/README.md
new file mode 100644
index 00000000..03b293d9
--- /dev/null
+++ b/configs/rpn/README.md
@@ -0,0 +1,29 @@
+# Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
+
+## Introduction
+
+
+
+```latex
+@inproceedings{ren2015faster,
+ title={Faster r-cnn: Towards real-time object detection with region proposal networks},
+ author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
+ booktitle={Advances in neural information processing systems},
+ year={2015}
+}
+```
+
+## Results and models
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | AR1000 | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| R-50-FPN | caffe | 1x | 3.5 | 22.6 | 58.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r50_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_caffe_fpn_1x_coco/rpn_r50_caffe_fpn_1x_coco_20200531-5b903a37.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_caffe_fpn_1x_coco/rpn_r50_caffe_fpn_1x_coco_20200531_012334.log.json) |
+| R-50-FPN | pytorch | 1x | 3.8 | 22.3 | 58.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_1x_coco/rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_1x_coco/rpn_r50_fpn_1x_coco_20200218_151240.log.json) |
+| R-50-FPN | pytorch | 2x | - | - | 58.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r50_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_2x_coco/rpn_r50_fpn_2x_coco_20200131-0728c9b3.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r50_fpn_2x_coco/rpn_r50_fpn_2x_coco_20200131_190631.log.json) |
+| R-101-FPN | caffe | 1x | 5.4 | 17.3 | 60.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_caffe_fpn_1x_coco/rpn_r101_caffe_fpn_1x_coco_20200531-0629a2e2.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_caffe_fpn_1x_coco/rpn_r101_caffe_fpn_1x_coco_20200531_012345.log.json) |
+| R-101-FPN | pytorch | 1x | 5.8 | 16.5 | 59.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_fpn_1x_coco/rpn_r101_fpn_1x_coco_20200131-2ace2249.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_fpn_1x_coco/rpn_r101_fpn_1x_coco_20200131_191000.log.json) |
+| R-101-FPN | pytorch | 2x | - | - | 60.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_r101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_fpn_2x_coco/rpn_r101_fpn_2x_coco_20200131-24e3db1a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_r101_fpn_2x_coco/rpn_r101_fpn_2x_coco_20200131_191106.log.json) |
+| X-101-32x4d-FPN | pytorch | 1x | 7.0 | 13.0 | 60.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_1x_coco/rpn_x101_32x4d_fpn_1x_coco_20200219-b02646c6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_1x_coco/rpn_x101_32x4d_fpn_1x_coco_20200219_012037.log.json) |
+| X-101-32x4d-FPN | pytorch | 2x | - | - | 61.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_x101_32x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_2x_coco/rpn_x101_32x4d_fpn_2x_coco_20200208-d22bd0bb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_32x4d_fpn_2x_coco/rpn_x101_32x4d_fpn_2x_coco_20200208_200752.log.json) |
+| X-101-64x4d-FPN | pytorch | 1x | 10.1 | 9.1 | 61.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_1x_coco/rpn_x101_64x4d_fpn_1x_coco_20200208-cde6f7dd.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_1x_coco/rpn_x101_64x4d_fpn_1x_coco_20200208_200752.log.json) |
+| X-101-64x4d-FPN | pytorch | 2x | - | - | 61.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/rpn/rpn_x101_64x4d_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_2x_coco/rpn_x101_64x4d_fpn_2x_coco_20200208-c65f524f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/rpn/rpn_x101_64x4d_fpn_2x_coco/rpn_x101_64x4d_fpn_2x_coco_20200208_200752.log.json) |
diff --git a/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py b/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..e616fdf4
--- /dev/null
+++ b/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './rpn_r50_caffe_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet101_caffe',
+ backbone=dict(depth=101))
diff --git a/configs/rpn/rpn_r101_fpn_1x_coco.py b/configs/rpn/rpn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..b2af6119
--- /dev/null
+++ b/configs/rpn/rpn_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './rpn_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/rpn/rpn_r101_fpn_2x_coco.py b/configs/rpn/rpn_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..6908d300
--- /dev/null
+++ b/configs/rpn/rpn_r101_fpn_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './rpn_r50_fpn_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/rpn/rpn_r50_caffe_c4_1x_coco.py b/configs/rpn/rpn_r50_caffe_c4_1x_coco.py
new file mode 100644
index 00000000..6da0ee94
--- /dev/null
+++ b/configs/rpn/rpn_r50_caffe_c4_1x_coco.py
@@ -0,0 +1,38 @@
+_base_ = [
+ '../_base_/models/rpn_r50_caffe_c4.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# dataset settings
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_label=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+evaluation = dict(interval=1, metric='proposal_fast')
diff --git a/configs/rpn/rpn_r50_caffe_fpn_1x_coco.py b/configs/rpn/rpn_r50_caffe_fpn_1x_coco.py
new file mode 100644
index 00000000..398f3c14
--- /dev/null
+++ b/configs/rpn/rpn_r50_caffe_fpn_1x_coco.py
@@ -0,0 +1,37 @@
+_base_ = './rpn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_label=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/rpn/rpn_r50_fpn_1x_coco.py b/configs/rpn/rpn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..26f95a34
--- /dev/null
+++ b/configs/rpn/rpn_r50_fpn_1x_coco.py
@@ -0,0 +1,18 @@
+_base_ = [
+ '../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_label=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+evaluation = dict(interval=1, metric='proposal_fast')
diff --git a/configs/rpn/rpn_r50_fpn_2x_coco.py b/configs/rpn/rpn_r50_fpn_2x_coco.py
new file mode 100644
index 00000000..2f264bfe
--- /dev/null
+++ b/configs/rpn/rpn_r50_fpn_2x_coco.py
@@ -0,0 +1,5 @@
+_base_ = './rpn_r50_fpn_1x_coco.py'
+
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py b/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..83bd7003
--- /dev/null
+++ b/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './rpn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/rpn/rpn_x101_32x4d_fpn_2x_coco.py b/configs/rpn/rpn_x101_32x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..979afb97
--- /dev/null
+++ b/configs/rpn/rpn_x101_32x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './rpn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/rpn/rpn_x101_64x4d_fpn_1x_coco.py b/configs/rpn/rpn_x101_64x4d_fpn_1x_coco.py
new file mode 100644
index 00000000..bb7f0a63
--- /dev/null
+++ b/configs/rpn/rpn_x101_64x4d_fpn_1x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './rpn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/rpn/rpn_x101_64x4d_fpn_2x_coco.py b/configs/rpn/rpn_x101_64x4d_fpn_2x_coco.py
new file mode 100644
index 00000000..8c766f05
--- /dev/null
+++ b/configs/rpn/rpn_x101_64x4d_fpn_2x_coco.py
@@ -0,0 +1,13 @@
+_base_ = './rpn_r50_fpn_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ style='pytorch'))
diff --git a/configs/sabl/README.md b/configs/sabl/README.md
index b8f9738a..c3bf1698 100644
--- a/configs/sabl/README.md
+++ b/configs/sabl/README.md
@@ -2,12 +2,14 @@
## Introduction
+
+
We provide config files to reproduce the object detection results in the ECCV 2020 Spotlight paper for [Side-Aware Boundary Localization for More Precise Object Detection](https://arxiv.org/abs/1912.04260).
-```
+```latex
@inproceedings{Wang_2020_ECCV,
title = {Side-Aware Boundary Localization for More Precise Object Detection},
- author = {Wang, Jiaqi and Zhang, Wenwei and Cao, Yuhang and Chen, Kai and Pang, Jiangmiao and Gong, Tao and Shi, Jianping, Loy, Chen Change and Lin, Dahua},
+ author = {Jiaqi Wang and Wenwei Zhang and Yuhang Cao and Kai Chen and Jiangmiao Pang and Tao Gong and Jianping Shi and Chen Change Loy and Dahua Lin},
booktitle = {ECCV},
year = {2020}
}
@@ -18,19 +20,18 @@ We provide config files to reproduce the object detection results in the ECCV 20
The results on COCO 2017 val is shown in the below table. (results on test-dev are usually slightly higher than val).
Single-scale testing (1333x800) is adopted in all results.
-
-| Method | Backbone | Lr schd | ms-train | box AP | Download |
-| :----------------: | :-------: | :-----: | :------: | :----: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| SABL Faster R-CNN | R-50-FPN | 1x | N | 39.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r50_fpn_1x_coco/sabl_faster_rcnn_r50_fpn_1x_coco-e867595b.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r50_fpn_1x_coco/20200830_130324.log.json) |
-| SABL Faster R-CNN | R-101-FPN | 1x | N | 41.7 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r101_fpn_1x_coco/sabl_faster_rcnn_r101_fpn_1x_coco-f804c6c1.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r101_fpn_1x_coco/20200830_183949.log.json) |
-| SABL Cascade R-CNN | R-50-FPN | 1x | N | 41.6 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco/sabl_cascade_rcnn_r50_fpn_1x_coco-e1748e5e.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco/20200831_033726.log.json) |
-| SABL Cascade R-CNN | R-101-FPN | 1x | N | 43.0 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco/sabl_cascade_rcnn_r101_fpn_1x_coco-2b83e87c.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco/20200831_141745.log.json) |
-
-| Method | Backbone | GN | Lr schd | ms-train | box AP | Download |
-| :------------: | :-------: | :---: | :-----: | :---------: | :----: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| SABL RetinaNet | R-50-FPN | N | 1x | N | 37.7 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_1x_coco/sabl_retinanet_r50_fpn_1x_coco-6c54fd4f.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_1x_coco/20200830_053451.log.json) |
-| SABL RetinaNet | R-50-FPN | Y | 1x | N | 38.8 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_gn_1x_coco/sabl_retinanet_r50_fpn_gn_1x_coco-e16dfcf1.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_gn_1x_coco/20200831_141955.log.json) |
-| SABL RetinaNet | R-101-FPN | N | 1x | N | 39.7 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_1x_coco/sabl_retinanet_r101_fpn_1x_coco-42026904.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_1x_coco/20200831_034256.log.json) |
-| SABL RetinaNet | R-101-FPN | Y | 1x | N | 40.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_1x_coco/sabl_retinanet_r101_fpn_gn_1x_coco-40a893e8.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_1x_coco/20200830_201422.log.json) |
-| SABL RetinaNet | R-101-FPN | Y | 2x | Y (640~800) | 42.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco-1e63382c.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco/20200830_144807.log.json) |
-| SABL RetinaNet | R-101-FPN | Y | 2x | Y (480~960) | 43.6 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco-5342f857.pth) | [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco/20200830_164537.log.json) |
+| Method | Backbone | Lr schd | ms-train | box AP | Config | Download |
+| :----------------: | :-------: | :-----: | :------: | :----: | :----------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| SABL Faster R-CNN | R-50-FPN | 1x | N | 39.9 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r50_fpn_1x_coco/sabl_faster_rcnn_r50_fpn_1x_coco-e867595b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r50_fpn_1x_coco/20200830_130324.log.json) |
+| SABL Faster R-CNN | R-101-FPN | 1x | N | 41.7 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_faster_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r101_fpn_1x_coco/sabl_faster_rcnn_r101_fpn_1x_coco-f804c6c1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r101_fpn_1x_coco/20200830_183949.log.json) |
+| SABL Cascade R-CNN | R-50-FPN | 1x | N | 41.6 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco/sabl_cascade_rcnn_r50_fpn_1x_coco-e1748e5e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco/20200831_033726.log.json) |
+| SABL Cascade R-CNN | R-101-FPN | 1x | N | 43.0 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco/sabl_cascade_rcnn_r101_fpn_1x_coco-2b83e87c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco/20200831_141745.log.json) |
+
+| Method | Backbone | GN | Lr schd | ms-train | box AP | Config | Download |
+| :------------: | :-------: | :---: | :-----: | :---------: | :----: | :---------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| SABL RetinaNet | R-50-FPN | N | 1x | N | 37.7 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_1x_coco/sabl_retinanet_r50_fpn_1x_coco-6c54fd4f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_1x_coco/20200830_053451.log.json) |
+| SABL RetinaNet | R-50-FPN | Y | 1x | N | 38.8 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r50_fpn_gn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_gn_1x_coco/sabl_retinanet_r50_fpn_gn_1x_coco-e16dfcf1.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_gn_1x_coco/20200831_141955.log.json) |
+| SABL RetinaNet | R-101-FPN | N | 1x | N | 39.7 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_1x_coco/sabl_retinanet_r101_fpn_1x_coco-42026904.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_1x_coco/20200831_034256.log.json) |
+| SABL RetinaNet | R-101-FPN | Y | 1x | N | 40.5 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r101_fpn_gn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_1x_coco/sabl_retinanet_r101_fpn_gn_1x_coco-40a893e8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_1x_coco/20200830_201422.log.json) |
+| SABL RetinaNet | R-101-FPN | Y | 2x | Y (640~800) | 42.9 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco-1e63382c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco/20200830_144807.log.json) |
+| SABL RetinaNet | R-101-FPN | Y | 2x | Y (480~960) | 43.6 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco-5342f857.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco/20200830_164537.log.json) |
diff --git a/configs/sabl/metafile.yml b/configs/sabl/metafile.yml
new file mode 100644
index 00000000..6fd74739
--- /dev/null
+++ b/configs/sabl/metafile.yml
@@ -0,0 +1,135 @@
+Collections:
+ - Name: SABL
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ - SABL
+ Paper: https://arxiv.org/abs/1912.04260
+ README: configs/sabl/README.md
+
+Models:
+ - Name: sabl_faster_rcnn_r50_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r50_fpn_1x_coco/sabl_faster_rcnn_r50_fpn_1x_coco-e867595b.pth
+
+ - Name: sabl_faster_rcnn_r101_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_faster_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_faster_rcnn_r101_fpn_1x_coco/sabl_faster_rcnn_r101_fpn_1x_coco-f804c6c1.pth
+
+ - Name: sabl_cascade_rcnn_r50_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco/sabl_cascade_rcnn_r50_fpn_1x_coco-e1748e5e.pth
+
+ - Name: sabl_cascade_rcnn_r101_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco/sabl_cascade_rcnn_r101_fpn_1x_coco-2b83e87c.pth
+
+ - Name: sabl_retinanet_r50_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_1x_coco/sabl_retinanet_r50_fpn_1x_coco-6c54fd4f.pth
+
+ - Name: sabl_retinanet_r50_fpn_gn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r50_fpn_gn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 38.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r50_fpn_gn_1x_coco/sabl_retinanet_r50_fpn_gn_1x_coco-e16dfcf1.pth
+
+ - Name: sabl_retinanet_r101_fpn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r101_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 39.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_1x_coco/sabl_retinanet_r101_fpn_1x_coco-42026904.pth
+
+ - Name: sabl_retinanet_r101_fpn_gn_1x_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r101_fpn_gn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_1x_coco/sabl_retinanet_r101_fpn_gn_1x_coco-40a893e8.pth
+
+ - Name: sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco-1e63382c.pth
+
+ - Name: sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco
+ In Collection: SABL
+ Config: configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco-5342f857.pth
diff --git a/configs/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco.py b/configs/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..03220064
--- /dev/null
+++ b/configs/sabl/sabl_cascade_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,88 @@
+_base_ = [
+ '../_base_/models/cascade_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ roi_head=dict(bbox_head=[
+ dict(
+ type='SABLHead',
+ num_classes=80,
+ cls_in_channels=256,
+ reg_in_channels=256,
+ roi_feat_size=7,
+ reg_feat_up_ratio=2,
+ reg_pre_kernel=3,
+ reg_post_kernel=3,
+ reg_pre_num=2,
+ reg_post_num=1,
+ cls_out_channels=1024,
+ reg_offset_out_channels=256,
+ reg_cls_out_channels=256,
+ num_cls_fcs=1,
+ num_reg_fcs=0,
+ reg_class_agnostic=True,
+ norm_cfg=None,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
+ loss_weight=1.0)),
+ dict(
+ type='SABLHead',
+ num_classes=80,
+ cls_in_channels=256,
+ reg_in_channels=256,
+ roi_feat_size=7,
+ reg_feat_up_ratio=2,
+ reg_pre_kernel=3,
+ reg_post_kernel=3,
+ reg_pre_num=2,
+ reg_post_num=1,
+ cls_out_channels=1024,
+ reg_offset_out_channels=256,
+ reg_cls_out_channels=256,
+ num_cls_fcs=1,
+ num_reg_fcs=0,
+ reg_class_agnostic=True,
+ norm_cfg=None,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.5),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
+ loss_weight=1.0)),
+ dict(
+ type='SABLHead',
+ num_classes=80,
+ cls_in_channels=256,
+ reg_in_channels=256,
+ roi_feat_size=7,
+ reg_feat_up_ratio=2,
+ reg_pre_kernel=3,
+ reg_post_kernel=3,
+ reg_pre_num=2,
+ reg_post_num=1,
+ cls_out_channels=1024,
+ reg_offset_out_channels=256,
+ reg_cls_out_channels=256,
+ num_cls_fcs=1,
+ num_reg_fcs=0,
+ reg_class_agnostic=True,
+ norm_cfg=None,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.3),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0))
+ ]))
diff --git a/configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py b/configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py
index 4153c2da..4b28a592 100644
--- a/configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py
+++ b/configs/sabl/sabl_cascade_rcnn_r50_fpn_1x_coco.py
@@ -1,7 +1,7 @@
_base_ = [
'../_base_/models/cascade_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
diff --git a/configs/sabl/sabl_faster_rcnn_r101_fpn_1x_coco.py b/configs/sabl/sabl_faster_rcnn_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..4c797cad
--- /dev/null
+++ b/configs/sabl/sabl_faster_rcnn_r101_fpn_1x_coco.py
@@ -0,0 +1,36 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ roi_head=dict(
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLHead',
+ num_classes=80,
+ cls_in_channels=256,
+ reg_in_channels=256,
+ roi_feat_size=7,
+ reg_feat_up_ratio=2,
+ reg_pre_kernel=3,
+ reg_post_kernel=3,
+ reg_pre_num=2,
+ reg_post_num=1,
+ cls_out_channels=1024,
+ reg_offset_out_channels=256,
+ reg_cls_out_channels=256,
+ num_cls_fcs=1,
+ num_reg_fcs=0,
+ reg_class_agnostic=True,
+ norm_cfg=None,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7),
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
+ loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
+ loss_weight=1.0))))
diff --git a/configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py b/configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py
index 382fed92..732c7ba3 100644
--- a/configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py
+++ b/configs/sabl/sabl_faster_rcnn_r50_fpn_1x_coco.py
@@ -1,7 +1,7 @@
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
roi_head=dict(
diff --git a/configs/sabl/sabl_retinanet_r101_fpn_1x_coco.py b/configs/sabl/sabl_retinanet_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..ed3a96c7
--- /dev/null
+++ b/configs/sabl/sabl_retinanet_r101_fpn_1x_coco.py
@@ -0,0 +1,52 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
+ loss_bbox_reg=dict(
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/sabl/sabl_retinanet_r101_fpn_gn_1x_coco.py b/configs/sabl/sabl_retinanet_r101_fpn_gn_1x_coco.py
new file mode 100644
index 00000000..ec78263b
--- /dev/null
+++ b/configs/sabl/sabl_retinanet_r101_fpn_gn_1x_coco.py
@@ -0,0 +1,54 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ norm_cfg=norm_cfg,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
+ loss_bbox_reg=dict(
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py b/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py
new file mode 100644
index 00000000..2a47c60b
--- /dev/null
+++ b/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py
@@ -0,0 +1,71 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ norm_cfg=norm_cfg,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
+ loss_bbox_reg=dict(
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 480), (1333, 960)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py b/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py
new file mode 100644
index 00000000..f26062fd
--- /dev/null
+++ b/configs/sabl/sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py
@@ -0,0 +1,71 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ norm_cfg=norm_cfg,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
+ loss_bbox_reg=dict(
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+data = dict(train=dict(pipeline=train_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py b/configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
index 59a0ab3b..6fe6bd66 100644
--- a/configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
+++ b/configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
@@ -1,7 +1,7 @@
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
@@ -34,17 +34,17 @@
loss_bbox_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
loss_bbox_reg=dict(
- type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(
- type='ApproxMaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0.0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/sabl/sabl_retinanet_r50_fpn_gn_1x_coco.py b/configs/sabl/sabl_retinanet_r50_fpn_gn_1x_coco.py
new file mode 100644
index 00000000..6acf080a
--- /dev/null
+++ b/configs/sabl/sabl_retinanet_r50_fpn_gn_1x_coco.py
@@ -0,0 +1,52 @@
+_base_ = [
+ '../_base_/models/retinanet_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ bbox_head=dict(
+ _delete_=True,
+ type='SABLRetinaHead',
+ num_classes=80,
+ in_channels=256,
+ stacked_convs=4,
+ feat_channels=256,
+ approx_anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=4,
+ scales_per_octave=3,
+ ratios=[0.5, 1.0, 2.0],
+ strides=[8, 16, 32, 64, 128]),
+ square_anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[4],
+ strides=[8, 16, 32, 64, 128]),
+ norm_cfg=norm_cfg,
+ bbox_coder=dict(
+ type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
+ loss_bbox_reg=dict(
+ type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='ApproxMaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.0,
+ ignore_iof_thr=-1),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/scnet/README.md b/configs/scnet/README.md
new file mode 100644
index 00000000..3757be13
--- /dev/null
+++ b/configs/scnet/README.md
@@ -0,0 +1,51 @@
+# SCNet
+
+## Introduction
+
+
+
+We provide the code for reproducing experiment results of [SCNet](https://arxiv.org/abs/2012.10150).
+
+```
+@inproceedings{vu2019cascade,
+ title={SCNet: Training Inference Sample Consistency for Instance Segmentation},
+ author={Vu, Thang and Haeyong, Kang and Yoo, Chang D},
+ booktitle={AAAI},
+ year={2021}
+}
+```
+
+## Dataset
+
+SCNet requires COCO and [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) dataset for training. You need to download and extract it in the COCO dataset path.
+The directory should be like this.
+
+```none
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+| | ├── stuffthingmaps
+```
+
+## Results and Models
+
+The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
+
+| Backbone | Style | Lr schd | Mem (GB) | Inf speed (fps) | box AP | mask AP | TTA box AP | TTA mask AP | Config | Download |
+|:---------------:|:-------:|:-------:|:--------:|:---------------:|:------:|:-------:|:----------:|:-----------:|:------:|:------------:|
+| R-50-FPN | pytorch | 1x | 7.0 | 6.2 | 43.5 | 39.2 | 44.8 | 40.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_1x_coco.py) | [model](https://drive.google.com/file/d/1K5_8-P0EC43WZFtoO3q9_JE-df8pEc7J/view?usp=sharing) \| [log](https://drive.google.com/file/d/1ZFS6QhFfxlOnDYPiGpSDP_Fzgb7iDGN3/view?usp=sharing) |
+| R-50-FPN | pytorch | 20e | 7.0 | 6.2 | 44.5 | 40.0 | 45.8 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_20e_coco.py) | [model](https://drive.google.com/file/d/15VGLCt5-IO5TbzB4Kw6ZyoF6QH0Q511A/view?usp=sharing) \| [log](https://drive.google.com/file/d/1-LnkOXN8n5ojQW34H0qZ625cgrnWpqSX/view?usp=sharing) |
+| R-101-FPN | pytorch | 20e | 8.9 | 5.8 | 45.8 | 40.9 | 47.3 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r101_fpn_20e_coco.py) | [model](https://drive.google.com/file/d/1aeCGHsOBdfIqVBnBPp0JUE_RSIau3583/view?usp=sharing) \| [log](https://drive.google.com/file/d/1iRx-9GRgTaIDsz-we3DGwFVH22nbvCLa/view?usp=sharing) |
+| X-101-64x4d-FPN | pytorch | 20e | 13.2 | 4.9 | 47.5 | 42.3 | 48.9 | 44.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py) | [model](https://drive.google.com/file/d/1YjgutUKz4TTPpqSWGKUTkZJ8_X-kyCfY/view?usp=sharing) \| [log](https://drive.google.com/file/d/1OsfQJ8gwtqIQ61k358yxY21sCvbUcRjs/view?usp=sharing) |
+
+### Notes
+
+- Training hyper-parameters are identical to those of [HTC](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc).
+- TTA means Test Time Augmentation, which applies horizonal flip and multi-scale testing. Refer to [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_1x_coco.py).
diff --git a/configs/scnet/metafile.yml b/configs/scnet/metafile.yml
new file mode 100644
index 00000000..c558a7aa
--- /dev/null
+++ b/configs/scnet/metafile.yml
@@ -0,0 +1,87 @@
+Collections:
+ - Name: SCNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ - SCNet
+ Paper: https://arxiv.org/abs/2012.10150
+ README: configs/scnet/README.md
+
+Models:
+ - Name: scnet_r50_fpn_1x_coco
+ In Collection: SCNet
+ Config: configs/scnet/scnet_r50_fpn_1x_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.16129
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 39.2
+ Weights: https://drive.google.com/file/d/1K5_8-P0EC43WZFtoO3q9_JE-df8pEc7J/view?usp=sharing
+
+ - Name: scnet_r50_fpn_20e_coco
+ In Collection: SCNet
+ Config: configs/scnet/scnet_r50_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 7.0
+ inference time (s/im): 0.16129
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.0
+ Weights: https://drive.google.com/file/d/15VGLCt5-IO5TbzB4Kw6ZyoF6QH0Q511A/view?usp=sharing
+
+ - Name: scnet_r101_fpn_20e_coco
+ In Collection: SCNet
+ Config: configs/scnet/scnet_r101_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 8.9
+ inference time (s/im): 0.17241
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.8
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 40.9
+ Weights: https://drive.google.com/file/d/1aeCGHsOBdfIqVBnBPp0JUE_RSIau3583/view?usp=sharing
+
+ - Name: scnet_x101_64x4d_fpn_20e_coco
+ In Collection: SCNet
+ Config: configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py
+ Metadata:
+ Training Memory (GB): 13.2
+ inference time (s/im): 0.20408
+ Epochs: 20
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 47.5
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 42.3
+ Weights: https://drive.google.com/file/d/1YjgutUKz4TTPpqSWGKUTkZJ8_X-kyCfY/view?usp=sharing
diff --git a/configs/scnet/scnet_r101_fpn_20e_coco.py b/configs/scnet/scnet_r101_fpn_20e_coco.py
new file mode 100644
index 00000000..cef0668a
--- /dev/null
+++ b/configs/scnet/scnet_r101_fpn_20e_coco.py
@@ -0,0 +1,2 @@
+_base_ = './scnet_r50_fpn_20e_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/scnet/scnet_r50_fpn_1x_coco.py b/configs/scnet/scnet_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..e4215a6d
--- /dev/null
+++ b/configs/scnet/scnet_r50_fpn_1x_coco.py
@@ -0,0 +1,136 @@
+_base_ = '../htc/htc_r50_fpn_1x_coco.py'
+# model settings
+model = dict(
+ type='SCNet',
+ roi_head=dict(
+ _delete_=True,
+ type='SCNetRoIHead',
+ num_stages=3,
+ stage_loss_weights=[1, 0.5, 0.25],
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=[
+ dict(
+ type='SCNetBBoxHead',
+ num_shared_fcs=2,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='SCNetBBoxHead',
+ num_shared_fcs=2,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='SCNetBBoxHead',
+ num_shared_fcs=2,
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ mask_head=dict(
+ type='SCNetMaskHead',
+ num_convs=12,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ conv_to_res=True,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
+ semantic_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
+ out_channels=256,
+ featmap_strides=[8]),
+ semantic_head=dict(
+ type='SCNetSemanticHead',
+ num_ins=5,
+ fusion_level=1,
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=183,
+ ignore_label=255,
+ loss_weight=0.2,
+ conv_to_res=True),
+ glbctx_head=dict(
+ type='GlobalContextHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=80,
+ loss_weight=3.0,
+ conv_to_res=True),
+ feat_relay_head=dict(
+ type='FeatureRelayHead',
+ in_channels=1024,
+ out_conv_channels=256,
+ roi_feat_size=7,
+ scale_factor=2)))
+
+# uncomment below code to enable test time augmentations
+# img_norm_cfg = dict(
+# mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+# test_pipeline = [
+# dict(type='LoadImageFromFile'),
+# dict(
+# type='MultiScaleFlipAug',
+# img_scale=[(600, 900), (800, 1200), (1000, 1500), (1200, 1800),
+# (1400, 2100)],
+# flip=True,
+# transforms=[
+# dict(type='Resize', keep_ratio=True),
+# dict(type='RandomFlip', flip_ratio=0.5),
+# dict(type='Normalize', **img_norm_cfg),
+# dict(type='Pad', size_divisor=32),
+# dict(type='ImageToTensor', keys=['img']),
+# dict(type='Collect', keys=['img']),
+# ])
+# ]
+# data = dict(
+# val=dict(pipeline=test_pipeline),
+# test=dict(pipeline=test_pipeline))
diff --git a/configs/scnet/scnet_r50_fpn_20e_coco.py b/configs/scnet/scnet_r50_fpn_20e_coco.py
new file mode 100644
index 00000000..3b121a6a
--- /dev/null
+++ b/configs/scnet/scnet_r50_fpn_20e_coco.py
@@ -0,0 +1,4 @@
+_base_ = './scnet_r50_fpn_1x_coco.py'
+# learning policy
+lr_config = dict(step=[16, 19])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
diff --git a/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py b/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py
new file mode 100644
index 00000000..a0ff32ba
--- /dev/null
+++ b/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py
@@ -0,0 +1,14 @@
+_base_ = './scnet_r50_fpn_20e_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/scnet/scnet_x101_64x4d_fpn_8x1_20e_coco.py b/configs/scnet/scnet_x101_64x4d_fpn_8x1_20e_coco.py
new file mode 100644
index 00000000..9f3ce6d1
--- /dev/null
+++ b/configs/scnet/scnet_x101_64x4d_fpn_8x1_20e_coco.py
@@ -0,0 +1,3 @@
+_base_ = './scnet_x101_64x4d_fpn_20e_coco.py'
+data = dict(samples_per_gpu=1, workers_per_gpu=1)
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
diff --git a/configs/scratch/README.md b/configs/scratch/README.md
new file mode 100644
index 00000000..6b304471
--- /dev/null
+++ b/configs/scratch/README.md
@@ -0,0 +1,25 @@
+# Rethinking ImageNet Pre-training
+
+## Introduction
+
+
+
+```latex
+@article{he2018rethinking,
+ title={Rethinking imagenet pre-training},
+ author={He, Kaiming and Girshick, Ross and Doll{\'a}r, Piotr},
+ journal={arXiv preprint arXiv:1811.08883},
+ year={2018}
+}
+```
+
+## Results and Models
+
+| Model | Backbone | Style | Lr schd | box AP | mask AP | Config | Download |
+|:------------:|:---------:|:-------:|:-------:|:------:|:-------:|:------:|:--------:|
+| Faster R-CNN | R-50-FPN | pytorch | 6x | 40.7 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_faster_rcnn_r50_fpn_gn_6x_bbox_mAP-0.407_20200201_193013-90813d01.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_faster_rcnn_r50_fpn_gn_6x_20200201_193013.log.json) |
+| Mask R-CNN | R-50-FPN | pytorch | 6x | 41.2 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_mask_rcnn_r50_fpn_gn_6x_bbox_mAP-0.412__segm_mAP-0.374_20200201_193051-1e190a40.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_mask_rcnn_r50_fpn_gn_6x_20200201_193051.log.json) |
+
+Note:
+
+- The above models are trained with 16 GPUs.
diff --git a/configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py b/configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
new file mode 100644
index 00000000..636f3f67
--- /dev/null
+++ b/configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
@@ -0,0 +1,22 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained=None,
+ backbone=dict(
+ frozen_stages=-1, zero_init_residual=False, norm_cfg=norm_cfg),
+ neck=dict(norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg)))
+# optimizer
+optimizer = dict(paramwise_cfg=dict(norm_decay_mult=0))
+optimizer_config = dict(_delete_=True, grad_clip=None)
+# learning policy
+lr_config = dict(warmup_ratio=0.1, step=[65, 71])
+runner = dict(type='EpochBasedRunner', max_epochs=73)
diff --git a/configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py b/configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
new file mode 100644
index 00000000..6277a97f
--- /dev/null
+++ b/configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
@@ -0,0 +1,23 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+ pretrained=None,
+ backbone=dict(
+ frozen_stages=-1, zero_init_residual=False, norm_cfg=norm_cfg),
+ neck=dict(norm_cfg=norm_cfg),
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared4Conv1FCBBoxHead',
+ conv_out_channels=256,
+ norm_cfg=norm_cfg),
+ mask_head=dict(norm_cfg=norm_cfg)))
+# optimizer
+optimizer = dict(paramwise_cfg=dict(norm_decay_mult=0))
+optimizer_config = dict(_delete_=True, grad_clip=None)
+# learning policy
+lr_config = dict(warmup_ratio=0.1, step=[65, 71])
+runner = dict(type='EpochBasedRunner', max_epochs=73)
diff --git a/configs/scratch/metafile.yml b/configs/scratch/metafile.yml
new file mode 100644
index 00000000..7c495e12
--- /dev/null
+++ b/configs/scratch/metafile.yml
@@ -0,0 +1,43 @@
+Collections:
+ - Name: Rethinking ImageNet Pre-training
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - RPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1811.08883
+ README: configs/scratch/README.md
+
+Models:
+ - Name: faster_rcnn_r50_fpn_gn-all_scratch_6x_coco
+ In Collection: Rethinking ImageNet Pre-training
+ Config: configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
+ Metadata:
+ Epochs: 72
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_faster_rcnn_r50_fpn_gn_6x_bbox_mAP-0.407_20200201_193013-90813d01.pth
+
+ - Name: mask_rcnn_r50_fpn_gn-all_scratch_6x_coco
+ In Collection: Rethinking ImageNet Pre-training
+ Config: configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
+ Metadata:
+ Epochs: 72
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.2
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 37.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco/scratch_mask_rcnn_r50_fpn_gn_6x_bbox_mAP-0.412__segm_mAP-0.374_20200201_193051-1e190a40.pth
diff --git a/configs/seesaw_loss/README.md b/configs/seesaw_loss/README.md
new file mode 100644
index 00000000..006a7fcc
--- /dev/null
+++ b/configs/seesaw_loss/README.md
@@ -0,0 +1,39 @@
+# Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021)
+
+## Introduction
+
+
+
+We provide config files to reproduce the instance segmentation performance in the CVPR 2021 paper for [Seesaw Loss for Long-Tailed Instance Segmentation](https://arxiv.org/abs/2008.10032).
+
+```latex
+@inproceedings{gupta2019lvis,
+ title={Seesaw Loss for Long-Tailed Instance Segmentation},
+ author={Jiaqi Wang and Wenwei Zhang and Yuhang Zang and Yuhang Cao and Jiangmiao Pang and Tao Gong and Kai Chen and Ziwei Liu and Chen Change Loy and Dahua Lin},
+ booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
+ year={2021}
+}
+```
+
+
+* Please setup [LVIS dataset](../lvis/README.md) for MMDetection.
+
+* RFS indicates to use oversample strategy [here](../../docs/tutorials/customize_dataset.md#class-balanced-dataset) with oversample threshold `1e-3`.
+
+## Results and models of Seasaw Loss on LVIS v1 dataset
+
+
+| Method | Backbone | Style | Lr schd | Data Sampler | Norm Mask | box AP | mask AP | Config | Download |
+| :----------------: | :-------: | :-----: | :-----: | :----------: | :-------: | :----: | :-----: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| Mask R-CNN | R-50-FPN | pytorch | 2x | random | N | 25.6 | 25.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-a698dd3d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-50-FPN | pytorch | 2x | random | Y | 25.6 | 25.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a1c11314.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-101-FPN | pytorch | 2x | random | N | 27.4 | 26.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-8e6e6dd5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-101-FPN | pytorch | 2x | random | Y | 27.2 | 27.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a0b59c42.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-50-FPN | pytorch | 2x | RFS | N | 27.6 | 26.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-392a804b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-50-FPN | pytorch | 2x | RFS | Y | 27.6 | 26.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-cd0f6a12.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-101-FPN | pytorch | 2x | RFS | N | 28.9 | 27.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-e68eb464.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Mask R-CNN | R-101-FPN | pytorch | 2x | RFS | Y | 28.9 | 28.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-1d817139.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
+| Cascade Mask R-CNN | R-101-FPN | pytorch | 2x | random | N | 33.1 | 29.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-71e2215e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Cascade Mask R-CNN | R-101-FPN | pytorch | 2x | random | Y | 33.0 | 30.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-8b5a6745.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
+| Cascade Mask R-CNN | R-101-FPN | pytorch | 2x | RFS | N | 30.0 | 29.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-5d8ca2a4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.log.json) |
+| Cascade Mask R-CNN | R-101-FPN | pytorch | 2x | RFS | Y | 32.8 | 30.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-c8551505.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.log.json) |
diff --git a/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..44125daf
--- /dev/null
+++ b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,130 @@
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_head=dict(num_classes=1203)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+dataset_type = 'LVISV1Dataset'
+data_root = 'data/lvis_v1/'
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_train.json',
+ img_prefix=data_root,
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root,
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root,
+ pipeline=test_pipeline))
+evaluation = dict(interval=24, metric=['bbox', 'segm'])
diff --git a/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..0f299484
--- /dev/null
+++ b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,5 @@
+_base_ = './cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
+model = dict(
+ roi_head=dict(
+ mask_head=dict(
+ predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
diff --git a/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..853289e6
--- /dev/null
+++ b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,96 @@
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/lvis_v1_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(depth=101),
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=1203,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_head=dict(num_classes=1203)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
+evaluation = dict(interval=24, metric=['bbox', 'segm'])
diff --git a/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..262e76bd
--- /dev/null
+++ b/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,5 @@
+_base_ = './cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
+model = dict(
+ roi_head=dict(
+ mask_head=dict(
+ predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
diff --git a/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..dbcc0da2
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..c78387e0
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..04d588a0
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..a1f9b420
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,2 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..743f5f26
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,75 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(
+ num_classes=1203,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0)),
+ mask_head=dict(num_classes=1203)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+dataset_type = 'LVISV1Dataset'
+data_root = 'data/lvis_v1/'
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_train.json',
+ img_prefix=data_root,
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root,
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
+ img_prefix=data_root,
+ pipeline=test_pipeline))
+evaluation = dict(interval=24, metric=['bbox', 'segm'])
diff --git a/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..0af89210
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,5 @@
+_base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
+model = dict(
+ roi_head=dict(
+ mask_head=dict(
+ predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
diff --git a/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..4fc15049
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
@@ -0,0 +1,41 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/lvis_v1_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(
+ num_classes=1203,
+ cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
+ loss_cls=dict(
+ type='SeesawLoss',
+ p=0.8,
+ q=2.0,
+ num_classes=1203,
+ loss_weight=1.0)),
+ mask_head=dict(num_classes=1203)),
+ test_cfg=dict(
+ rcnn=dict(
+ score_thr=0.0001,
+ # LVIS allows up to 300
+ max_per_img=300)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
+evaluation = dict(interval=12, metric=['bbox', 'segm'])
diff --git a/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py b/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
new file mode 100644
index 00000000..0ef6bd2c
--- /dev/null
+++ b/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
@@ -0,0 +1,5 @@
+_base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
+model = dict(
+ roi_head=dict(
+ mask_head=dict(
+ predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
diff --git a/configs/selfsup_pretrain/README.md b/configs/selfsup_pretrain/README.md
new file mode 100644
index 00000000..ad5c69f3
--- /dev/null
+++ b/configs/selfsup_pretrain/README.md
@@ -0,0 +1,95 @@
+# Backbones Trained by Self-Supervise Algorithms
+
+## Introduction
+
+
+
+We support to apply the backbone models pre-trained by different self-supervised methods in detection systems and provide their results on Mask R-CNN.
+
+The pre-trained models are converted from [MoCo](https://github.com/facebookresearch/moco) and downloaded from [SwAV](https://github.com/facebookresearch/swav).
+
+For SwAV, please cite
+
+```latex
+@article{caron2020unsupervised,
+ title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
+ author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and Bojanowski, Piotr and Joulin, Armand},
+ booktitle={Proceedings of Advances in Neural Information Processing Systems (NeurIPS)},
+ year={2020}
+}
+```
+
+For MoCo, please cite
+
+```latex
+@Article{he2019moco,
+ author = {Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
+ title = {Momentum Contrast for Unsupervised Visual Representation Learning},
+ journal = {arXiv preprint arXiv:1911.05722},
+ year = {2019},
+}
+@Article{chen2020mocov2,
+ author = {Xinlei Chen and Haoqi Fan and Ross Girshick and Kaiming He},
+ title = {Improved Baselines with Momentum Contrastive Learning},
+ journal = {arXiv preprint arXiv:2003.04297},
+ year = {2020},
+}
+```
+
+## Usage
+
+To use a self-supervisely pretrained backbone, there are two steps to do:
+
+1. Download and convert the model to PyTorch-style supported by MMDetection
+2. Modify the config and change the training setting accordingly
+
+### Convert model
+
+For more general usage, we also provide script `selfsup2mmdet.py` in the tools directory to convert the key of models pretrained by different self-supervised methods to PyTorch-style checkpoints used in MMDetection.
+
+```bash
+python -u tools/model_converters/selfsup2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH} --selfsup ${method}
+```
+
+This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
+
+For example, to use a ResNet-50 backbone released by MoCo, you can download it from [here](https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar) and use the following command
+
+```bash
+python -u tools/model_converters/selfsup2mmdet.py ./moco_v2_800ep_pretrain.pth.tar mocov2_r50_800ep_pretrain.pth --selfsup moco
+```
+
+To use the ResNet-50 backbone released by SwAV, you can download it from [here](https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar)
+
+### Modify config
+
+The backbone requires SyncBN and the `fronzen_stages` need to be changed. A config that use the moco backbone is as below
+
+```python
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='./mocov2_r50_800ep_pretrain.pth',
+ backbone=dict(
+ frozen_stages=0,
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False))
+
+```
+
+## Results
+
+| Method | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
+| :-----: | :-----: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
+|Mask RCNN |[R50 by MoCo v2](./mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py)| pytorch |1x|| |38.0|34.3|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco_20210604_114614-a8b63483.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco_20210604_114614.log.json)|
+|Mask RCNN |[R50 by MoCo v2](./mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py)| pytorch | multi-scale 2x || |40.8|36.8|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco_20210605_163717-d95df20a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco_20210605_163717.log.json)|
+|Mask RCNN |[R50 by SwAV](./mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py)| pytorch | 1x || |39.1 | 35.7|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco/mask_rcnn_r50_fpn_swav-pretrain_1x_coco_20210604_114640-7b9baf28.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco/mask_rcnn_r50_fpn_swav-pretrain_1x_coco_20210604_114640.log.json)|
+|Mask RCNN |[R50 by SwAV](./mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py)| pytorch | multi-scale 2x || |41.3|37.3|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco_20210605_163717-08e26fca.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco_20210605_163717.log.json)|
+
+### Notice
+
+1. We only provide single-scale 1x and multi-scale 2x configs as examples to show how to use backbones trained by self-supervised algorithms. We will try to reproduce the results in their corresponding paper using the released backbone in the future. Please stay tuned.
diff --git a/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py
new file mode 100644
index 00000000..d71ad546
--- /dev/null
+++ b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='./mocov2_r50_800ep_pretrain.pth',
+ backbone=dict(
+ frozen_stages=0,
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False))
diff --git a/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py
new file mode 100644
index 00000000..b5592862
--- /dev/null
+++ b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py
@@ -0,0 +1,31 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='./mocov2_r50_800ep_pretrain.pth',
+ backbone=dict(
+ frozen_stages=0,
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False))
+
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
+]
+
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py
new file mode 100644
index 00000000..7a4c2c15
--- /dev/null
+++ b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py
@@ -0,0 +1,12 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='./swav_800ep_pretrain.pth.tar',
+ backbone=dict(
+ frozen_stages=0,
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False))
diff --git a/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py
new file mode 100644
index 00000000..bd046cb8
--- /dev/null
+++ b/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py
@@ -0,0 +1,31 @@
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/coco_instance.py',
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ pretrained='./swav_800ep_pretrain.pth.tar',
+ backbone=dict(
+ frozen_stages=0,
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
+ norm_eval=False))
+
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 800)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
+]
+
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/sparse_rcnn/README.md b/configs/sparse_rcnn/README.md
new file mode 100644
index 00000000..bd5f1571
--- /dev/null
+++ b/configs/sparse_rcnn/README.md
@@ -0,0 +1,28 @@
+# Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
+
+## Introduction
+
+
+
+```
+@article{peize2020sparse,
+ title = {{SparseR-CNN}: End-to-End Object Detection with Learnable Proposals},
+ author = {Peize Sun and Rufeng Zhang and Yi Jiang and Tao Kong and Chenfeng Xu and Wei Zhan and Masayoshi Tomizuka and Lei Li and Zehuan Yuan and Changhu Wang and Ping Luo},
+ journal = {arXiv preprint arXiv:2011.12450},
+ year = {2020}
+}
+```
+
+## Results and Models
+
+| Model | Backbone | Style | Lr schd | Number of Proposals |Multi-Scale| RandomCrop | box AP | Config | Download |
+|:------------:|:---------:|:-------:|:-------:|:-------: |:-------: |:---------:|:------:|:------:|:--------:|
+| Sparse R-CNN | R-50-FPN | pytorch | 1x | 100 | False | False | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco/sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco/sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.log.json) |
+| Sparse R-CNN | R-50-FPN | pytorch | 3x | 100 | True | False | 42.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco_20201218_154234-7bc5c054.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco_20201218_154234-7bc5c054.log.json) |
+| Sparse R-CNN | R-50-FPN | pytorch | 3x | 300 | True | True | 45.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_024605-9fe92701.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_024605-9fe92701.log.json) |
+| Sparse R-CNN | R-101-FPN | pytorch | 3x | 100 | True | False | 44.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco_20201223_121552-6c46c9d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco_20201223_121552-6c46c9d6.log.json) |
+| Sparse R-CNN | R-101-FPN | pytorch | 3x | 300 | True | True | 46.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_023452-c23c3564.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_023452-c23c3564.log.json) |
+
+### Notes
+
+We observe about 0.3 AP noise especially when using ResNet-101 as the backbone.
diff --git a/configs/sparse_rcnn/metafile.yml b/configs/sparse_rcnn/metafile.yml
new file mode 100644
index 00000000..45bdd029
--- /dev/null
+++ b/configs/sparse_rcnn/metafile.yml
@@ -0,0 +1,75 @@
+Collections:
+ - Name: Sparse R-CNN
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ - Sparse R-CNN
+ Paper: https://arxiv.org/abs/2011.12450
+ README: configs/sparse_rcnn/README.md
+
+Models:
+ - Name: sparse_rcnn_r50_fpn_1x_coco
+ In Collection: Sparse R-CNN
+ Config: configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco/sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.pth
+
+ - Name: sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco
+ In Collection: Sparse R-CNN
+ Config: configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 42.8
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco_20201218_154234-7bc5c054.pth
+
+ - Name: sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco
+ In Collection: Sparse R-CNN
+ Config: configs/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 45.0
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_024605-9fe92701.pth
+
+ - Name: sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco
+ In Collection: Sparse R-CNN
+ Config: configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco_20201223_121552-6c46c9d6.pth
+
+ - Name: sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco
+ In Collection: Sparse R-CNN
+ Config: configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.2
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_023452-c23c3564.pth
diff --git a/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py b/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
new file mode 100644
index 00000000..e7a94dbe
--- /dev/null
+++ b/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py b/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py
new file mode 100644
index 00000000..0439fc1a
--- /dev/null
+++ b/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py
@@ -0,0 +1,3 @@
+_base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py
new file mode 100644
index 00000000..512eca60
--- /dev/null
+++ b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py
@@ -0,0 +1,95 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+num_stages = 6
+num_proposals = 100
+model = dict(
+ type='SparseRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=0,
+ add_extra_convs='on_input',
+ num_outs=4),
+ rpn_head=dict(
+ type='EmbeddingRPNHead',
+ num_proposals=num_proposals,
+ proposal_feature_channel=256),
+ roi_head=dict(
+ type='SparseRoIHead',
+ num_stages=num_stages,
+ stage_loss_weights=[1] * num_stages,
+ proposal_feature_channel=256,
+ bbox_roi_extractor=dict(
+ type='SingleRoIExtractor',
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+ out_channels=256,
+ featmap_strides=[4, 8, 16, 32]),
+ bbox_head=[
+ dict(
+ type='DIIHead',
+ num_classes=80,
+ num_ffn_fcs=2,
+ num_heads=8,
+ num_cls_fcs=1,
+ num_reg_fcs=3,
+ feedforward_channels=2048,
+ in_channels=256,
+ dropout=0.0,
+ ffn_act_cfg=dict(type='ReLU', inplace=True),
+ dynamic_conv_cfg=dict(
+ type='DynamicConv',
+ in_channels=256,
+ feat_channels=64,
+ out_channels=256,
+ input_feat_shape=7,
+ act_cfg=dict(type='ReLU', inplace=True),
+ norm_cfg=dict(type='LN')),
+ loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+ loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=2.0),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ clip_border=False,
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.5, 0.5, 1., 1.])) for _ in range(num_stages)
+ ]),
+ # training and testing settings
+ train_cfg=dict(
+ rpn=None,
+ rcnn=[
+ dict(
+ assigner=dict(
+ type='HungarianAssigner',
+ cls_cost=dict(type='FocalLossCost', weight=2.0),
+ reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+ iou_cost=dict(type='IoUCost', iou_mode='giou',
+ weight=2.0)),
+ sampler=dict(type='PseudoSampler'),
+ pos_weight=1) for _ in range(num_stages)
+ ]),
+ test_cfg=dict(rpn=None, rcnn=dict(max_per_img=num_proposals)))
+
+# optimizer
+optimizer = dict(_delete_=True, type='AdamW', lr=0.000025, weight_decay=0.0001)
+optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=1, norm_type=2))
+# learning policy
+lr_config = dict(policy='step', step=[8, 11])
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
new file mode 100644
index 00000000..36f1d62e
--- /dev/null
+++ b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
@@ -0,0 +1,52 @@
+_base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py'
+num_proposals = 300
+model = dict(
+ rpn_head=dict(num_proposals=num_proposals),
+ test_cfg=dict(
+ _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals)))
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+
+# augmentation strategy originates from DETR.
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(
+ type='AutoAugment',
+ policies=[[
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
+ (608, 1333), (640, 1333), (672, 1333), (704, 1333),
+ (736, 1333), (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ keep_ratio=True)
+ ],
+ [
+ dict(
+ type='Resize',
+ img_scale=[(400, 1333), (500, 1333), (600, 1333)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(
+ type='RandomCrop',
+ crop_type='absolute_range',
+ crop_size=(384, 600),
+ allow_negative_crop=True),
+ dict(
+ type='Resize',
+ img_scale=[(480, 1333), (512, 1333), (544, 1333),
+ (576, 1333), (608, 1333), (640, 1333),
+ (672, 1333), (704, 1333), (736, 1333),
+ (768, 1333), (800, 1333)],
+ multiscale_mode='value',
+ override=True,
+ keep_ratio=True)
+ ]]),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
new file mode 100644
index 00000000..2fa2a807
--- /dev/null
+++ b/configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
@@ -0,0 +1,23 @@
+_base_ = './sparse_rcnn_r50_fpn_1x_coco.py'
+
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+min_values = (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, value) for value in min_values],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+
+data = dict(train=dict(pipeline=train_pipeline))
+lr_config = dict(policy='step', step=[27, 33])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/ssd/README.md b/configs/ssd/README.md
index dd436ccf..c50259cf 100644
--- a/configs/ssd/README.md
+++ b/configs/ssd/README.md
@@ -1,7 +1,10 @@
# SSD: Single Shot MultiBox Detector
## Introduction
-```
+
+
+
+```latex
@article{Liu_2016,
title={SSD: Single Shot MultiBox Detector},
journal={ECCV},
@@ -12,7 +15,7 @@
## Results and models
-| Backbone | Size | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :------: | :---: | :---: | :-----: | :------: | :------------: | :----: | :-------------------------------------------------------------------------------------------------------------------------------: |
-| VGG16 | 300 | caffe | 120e | 10.2 | 43.7 | 25.6 | [model](http://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307-a92d2092.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307_174216.log.json) |
-| VGG16 | 512 | caffe | 120e | 9.3 | 30.7 | 29.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308-038c5591.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308_134447.log.json) |
+| Backbone | Size | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :------: | :---: | :---: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| VGG16 | 300 | caffe | 120e | 10.2 | 43.7 | 25.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307-a92d2092.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307_174216.log.json) |
+| VGG16 | 512 | caffe | 120e | 9.3 | 30.7 | 29.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308-038c5591.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308_134447.log.json) |
diff --git a/configs/ssd/metafile.yml b/configs/ssd/metafile.yml
new file mode 100644
index 00000000..b1183278
--- /dev/null
+++ b/configs/ssd/metafile.yml
@@ -0,0 +1,39 @@
+Collections:
+ - Name: SSD
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - VGG
+ Paper: https://arxiv.org/abs/1512.02325
+ README: configs/ssd/README.md
+
+Models:
+ - Name: ssd300_coco
+ In Collection: SSD
+ Config: configs/ssd/ssd300_coco.py
+ Metadata:
+ Training Memory (GB): 10.2
+ inference time (s/im): 0.02288
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 25.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307-a92d2092.pth
+
+ - Name: ssd512_coco
+ In Collection: SSD
+ Config: configs/ssd/ssd512_coco.py
+ Metadata:
+ Training Memory (GB): 9.3
+ inference time (s/im): 0.03257
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 29.4
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308-038c5591.pth
diff --git a/configs/ssd/ssd300_coco.py b/configs/ssd/ssd300_coco.py
index 50496159..75c5e4e5 100644
--- a/configs/ssd/ssd300_coco.py
+++ b/configs/ssd/ssd300_coco.py
@@ -1,10 +1,10 @@
_base_ = [
'../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
]
# dataset settings
dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
+data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
@@ -45,7 +45,7 @@
]
data = dict(
samples_per_gpu=8,
- workers_per_gpu=0,
+ workers_per_gpu=3,
train=dict(
_delete_=True,
type='RepeatDataset',
@@ -53,7 +53,7 @@
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
- img_prefix=data_root + 'images/train2017/',
+ img_prefix=data_root + 'train2017/',
pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
diff --git a/configs/ssd/ssd512_coco.py b/configs/ssd/ssd512_coco.py
index 82c2457b..44d2920f 100644
--- a/configs/ssd/ssd512_coco.py
+++ b/configs/ssd/ssd512_coco.py
@@ -13,7 +13,7 @@
ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]])))
# dataset settings
dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
+data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
@@ -54,7 +54,7 @@
]
data = dict(
samples_per_gpu=8,
- workers_per_gpu=0,
+ workers_per_gpu=3,
train=dict(
_delete_=True,
type='RepeatDataset',
@@ -62,7 +62,7 @@
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
- img_prefix=data_root + 'images/train2017/',
+ img_prefix=data_root + 'train2017/',
pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
diff --git a/configs/tridentnet/README.md b/configs/tridentnet/README.md
new file mode 100644
index 00000000..b6263f27
--- /dev/null
+++ b/configs/tridentnet/README.md
@@ -0,0 +1,28 @@
+# Scale-Aware Trident Networks for Object Detection
+
+## Introduction
+
+
+
+```
+@InProceedings{li2019scale,
+ title={Scale-Aware Trident Networks for Object Detection},
+ author={Li, Yanghao and Chen, Yuntao and Wang, Naiyan and Zhang, Zhaoxiang},
+ journal={The International Conference on Computer Vision (ICCV)},
+ year={2019}
+}
+```
+
+## Results and models
+
+We reports the test results using only one branch for inference.
+
+| Backbone | Style | mstrain | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
+| :-------------: | :-----: | :-----: | :-----: | :------: | :------------: | :----: | :------: |
+| R-50 | caffe | N | 1x | | | 37.7 |[model](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_1x_coco/tridentnet_r50_caffe_1x_coco_20201230_141838-2ec0b530.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_1x_coco/tridentnet_r50_caffe_1x_coco_20201230_141838.log.json) |
+| R-50 | caffe | Y | 1x | | | 37.6 |[model](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco/tridentnet_r50_caffe_mstrain_1x_coco_20201230_141839-6ce55ccb.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco/tridentnet_r50_caffe_mstrain_1x_coco_20201230_141839.log.json) |
+| R-50 | caffe | Y | 3x | | | 40.3 |[model](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco/tridentnet_r50_caffe_mstrain_3x_coco_20201130_100539-46d227ba.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco/tridentnet_r50_caffe_mstrain_3x_coco_20201130_100539.log.json) |
+
+**Note**
+
+Similar to [Detectron2](https://github.com/facebookresearch/detectron2/tree/master/projects/TridentNet), we haven't implemented the Scale-aware Training Scheme in section 4.2 of the paper.
diff --git a/configs/tridentnet/metafile.yml b/configs/tridentnet/metafile.yml
new file mode 100644
index 00000000..1b2b541d
--- /dev/null
+++ b/configs/tridentnet/metafile.yml
@@ -0,0 +1,50 @@
+Collections:
+ - Name: TridentNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - ResNet
+ - TridentNet Block
+ Paper: https://arxiv.org/abs/1901.01892
+ README: configs/tridentnet/README.md
+
+Models:
+ - Name: tridentnet_r50_caffe_1x_coco
+ In Collection: TridentNet
+ Config: configs/tridentnet/tridentnet_r50_caffe_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_1x_coco/tridentnet_r50_caffe_1x_coco_20201230_141838-2ec0b530.pth
+
+ - Name: tridentnet_r50_caffe_mstrain_1x_coco
+ In Collection: TridentNet
+ Config: configs/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.6
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco/tridentnet_r50_caffe_mstrain_1x_coco_20201230_141839-6ce55ccb.pth
+
+ - Name: tridentnet_r50_caffe_mstrain_3x_coco
+ In Collection: TridentNet
+ Config: configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py
+ Metadata:
+ Epochs: 36
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 40.3
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco/tridentnet_r50_caffe_mstrain_3x_coco_20201130_100539-46d227ba.pth
diff --git a/configs/tridentnet/tridentnet_r50_caffe_1x_coco.py b/configs/tridentnet/tridentnet_r50_caffe_1x_coco.py
new file mode 100644
index 00000000..a6a668c4
--- /dev/null
+++ b/configs/tridentnet/tridentnet_r50_caffe_1x_coco.py
@@ -0,0 +1,53 @@
+_base_ = [
+ '../_base_/models/faster_rcnn_r50_caffe_c4.py',
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ type='TridentFasterRCNN',
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
+ backbone=dict(
+ type='TridentResNet',
+ trident_dilations=(1, 2, 3),
+ num_branch=3,
+ test_branch_idx=1),
+ roi_head=dict(type='TridentRoIHead', num_branch=3, test_branch_idx=1),
+ train_cfg=dict(
+ rpn_proposal=dict(max_per_img=500),
+ rcnn=dict(
+ sampler=dict(num=128, pos_fraction=0.5,
+ add_gt_as_proposals=False))))
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco.py b/configs/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco.py
new file mode 100644
index 00000000..c73d9eaa
--- /dev/null
+++ b/configs/tridentnet/tridentnet_r50_caffe_mstrain_1x_coco.py
@@ -0,0 +1,22 @@
+_base_ = 'tridentnet_r50_caffe_1x_coco.py'
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode='value',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+
+data = dict(train=dict(pipeline=train_pipeline))
diff --git a/configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py b/configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py
new file mode 100644
index 00000000..0f402826
--- /dev/null
+++ b/configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py
@@ -0,0 +1,4 @@
+_base_ = 'tridentnet_r50_caffe_mstrain_1x_coco.py'
+
+lr_config = dict(step=[28, 34])
+runner = dict(type='EpochBasedRunner', max_epochs=36)
diff --git a/configs/vfnet/README.md b/configs/vfnet/README.md
index 4dc892be..363f1b90 100644
--- a/configs/vfnet/README.md
+++ b/configs/vfnet/README.md
@@ -1,6 +1,9 @@
# VarifocalNet: An IoU-aware Dense Object Detector
## Introduction
+
+
+
**VarifocalNet (VFNet)** learns to predict the IoU-aware classification score which mixes the object presence confidence and localization accuracy together as the detection score for a bounding box. The learning is supervised by the proposed Varifocal Loss (VFL), based on a new star-shaped bounding box feature representation (the features at nine yellow sampling points). Given the new representation, the object localization accuracy is further improved by refining the initially regressed bounding box. The full paper is available at: [https://arxiv.org/abs/2008.13367](https://arxiv.org/abs/2008.13367).
@@ -10,7 +13,7 @@
## Citing VarifocalNet
-```
+```latex
@article{zhang2020varifocalnet,
title={VarifocalNet: An IoU-aware Dense Object Detector},
author={Zhang, Haoyang and Wang, Ying and Dayoub, Feras and S{\"u}nderhauf, Niko},
@@ -21,19 +24,19 @@
## Results and Models
-| Backbone | Style | DCN | MS train | Lr schd |Inf time (fps) | box AP (val) | box AP (test-dev) | Download |
-|:------------:|:---------:|:-------:|:--------:|:-------:|:-------------:|:------------:|:-----------------:|:--------:|
-| R-50 | pytorch | N | N | 1x | - | 41.6 | 41.6 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_1x_coco/vfnet_r50_fpn_1x_coco_20201027-38db6f58.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_1x_coco/vfnet_r50_fpn_1x_coco.json)|
-| R-50 | pytorch | N | Y | 2x | - | 44.5 | 44.8 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mstrain_2x_coco/vfnet_r50_fpn_mstrain_2x_coco_20201027-7cc75bd2.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mstrain_2x_coco/vfnet_r50_fpn_mstrain_2x_coco.json)|
-| R-50 | pytorch | Y | Y | 2x | - | 47.8 | 48.0 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-6879c318.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
-| R-101 | pytorch | N | N | 1x | - | 43.0 | 43.6 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_1x_coco/vfnet_r101_fpn_1x_coco_20201027pth-c831ece7.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_1x_coco/vfnet_r101_fpn_1x_coco.json)|
-| R-101 | pytorch | N | Y | 2x | - | 46.2 | 46.7 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mstrain_2x_coco/vfnet_r101_fpn_mstrain_2x_coco_20201027pth-4a5d53f1.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mstrain_2x_coco/vfnet_r101_fpn_mstrain_2x_coco.json)|
-| R-101 | pytorch | Y | Y | 2x | - | 49.0 | 49.2 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-7729adb5.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
-| X-101-32x4d | pytorch | Y | Y | 2x | - | 49.7 | 50.0 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-d300a6fc.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
-| X-101-64x4d | pytorch | Y | Y | 2x | - | 50.4 | 50.8 | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-b5f6da5e.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
-
+| Backbone | Style | DCN | MS train | Lr schd |Inf time (fps) | box AP (val) | box AP (test-dev) | Config | Download |
+|:------------:|:---------:|:-------:|:--------:|:-------:|:-------------:|:------------:|:-----------------:|:------:|:--------:|
+| R-50 | pytorch | N | N | 1x | - | 41.6 | 41.6 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r50_fpn_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_1x_coco/vfnet_r50_fpn_1x_coco_20201027-38db6f58.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_1x_coco/vfnet_r50_fpn_1x_coco.json)|
+| R-50 | pytorch | N | Y | 2x | - | 44.5 | 44.8 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mstrain_2x_coco/vfnet_r50_fpn_mstrain_2x_coco_20201027-7cc75bd2.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mstrain_2x_coco/vfnet_r50_fpn_mstrain_2x_coco.json)|
+| R-50 | pytorch | Y | Y | 2x | - | 47.8 | 48.0 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-6879c318.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
+| R-101 | pytorch | N | N | 1x | - | 43.0 | 43.6 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r101_fpn_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_1x_coco/vfnet_r101_fpn_1x_coco_20201027pth-c831ece7.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_1x_coco/vfnet_r101_fpn_1x_coco.json)|
+| R-101 | pytorch | N | Y | 2x | - | 46.2 | 46.7 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mstrain_2x_coco/vfnet_r101_fpn_mstrain_2x_coco_20201027pth-4a5d53f1.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mstrain_2x_coco/vfnet_r101_fpn_mstrain_2x_coco.json)|
+| R-101 | pytorch | Y | Y | 2x | - | 49.0 | 49.2 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-7729adb5.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
+| X-101-32x4d | pytorch | Y | Y | 2x | - | 49.7 | 50.0 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-d300a6fc.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
+| X-101-64x4d | pytorch | Y | Y | 2x | - | 50.4 | 50.8 | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-b5f6da5e.pth) | [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.json)|
**Notes:**
+
- The MS-train scale range is 1333x[480:960] (`range` mode) and the inference scale keeps 1333x800.
- DCN means using `DCNv2` in both backbone and head.
- Inference time will be updated soon.
diff --git a/configs/vfnet/metafile.yml b/configs/vfnet/metafile.yml
new file mode 100644
index 00000000..86f6e4c0
--- /dev/null
+++ b/configs/vfnet/metafile.yml
@@ -0,0 +1,111 @@
+Collections:
+ - Name: VFNet
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ - Varifocal Loss
+ Paper: https://arxiv.org/abs/2008.13367
+ README: configs/vfnet/README.md
+
+Models:
+ - Name: vfnet_r50_fpn_1x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r50_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 41.6
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_1x_coco/vfnet_r50_fpn_1x_coco_20201027-38db6f58.pth
+
+ - Name: vfnet_r50_fpn_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 44.8
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mstrain_2x_coco/vfnet_r50_fpn_mstrain_2x_coco_20201027-7cc75bd2.pth
+
+ - Name: vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 48.0
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-6879c318.pth
+
+ - Name: vfnet_r101_fpn_1x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r101_fpn_1x_coco.py
+ Metadata:
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 43.6
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_1x_coco/vfnet_r101_fpn_1x_coco_20201027pth-c831ece7.pth
+
+ - Name: vfnet_r101_fpn_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 46.7
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mstrain_2x_coco/vfnet_r101_fpn_mstrain_2x_coco_20201027pth-4a5d53f1.pth
+
+ - Name: vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 49.2
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-7729adb5.pth
+
+ - Name: vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 50.0
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-d300a6fc.pth
+
+ - Name: vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco
+ In Collection: VFNet
+ Config: configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
+ Metadata:
+ Epochs: 24
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 50.8
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco_20201027pth-b5f6da5e.pth
diff --git a/configs/vfnet/vfnet_r101_fpn_1x_coco.py b/configs/vfnet/vfnet_r101_fpn_1x_coco.py
new file mode 100644
index 00000000..09521310
--- /dev/null
+++ b/configs/vfnet/vfnet_r101_fpn_1x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './vfnet_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/vfnet/vfnet_r101_fpn_2x_coco.py b/configs/vfnet/vfnet_r101_fpn_2x_coco.py
new file mode 100644
index 00000000..334657dc
--- /dev/null
+++ b/configs/vfnet/vfnet_r101_fpn_2x_coco.py
@@ -0,0 +1,4 @@
+_base_ = './vfnet_r50_fpn_1x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py b/configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..f8ef6ec0
--- /dev/null
+++ b/configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
+model = dict(
+ pretrained='torchvision://resnet101',
+ backbone=dict(
+ type='ResNet',
+ depth=101,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch',
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py b/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..be7f075f
--- /dev/null
+++ b/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py
@@ -0,0 +1,2 @@
+_base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/vfnet/vfnet_r2_101_fpn_mdconv_c3-c5_mstrain_2x_coco.py b/configs/vfnet/vfnet_r2_101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..8da31226
--- /dev/null
+++ b/configs/vfnet/vfnet_r2_101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(
+ type='Res2Net',
+ depth=101,
+ scales=4,
+ base_width=26,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch',
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/vfnet/vfnet_r2_101_fpn_mstrain_2x_coco.py b/configs/vfnet/vfnet_r2_101_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..2bcf779d
--- /dev/null
+++ b/configs/vfnet/vfnet_r2_101_fpn_mstrain_2x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://res2net101_v1d_26w_4s',
+ backbone=dict(
+ type='Res2Net',
+ depth=101,
+ scales=4,
+ base_width=26,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/vfnet/vfnet_r50_fpn_1x_coco.py b/configs/vfnet/vfnet_r50_fpn_1x_coco.py
index a0575bcd..76566bdb 100644
--- a/configs/vfnet/vfnet_r50_fpn_1x_coco.py
+++ b/configs/vfnet/vfnet_r50_fpn_1x_coco.py
@@ -1,10 +1,10 @@
_base_ = [
'../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule.py', '../_base_/default_runtime.py'
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
- type='SingleStageDetector',
+ type='VFNet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
@@ -43,24 +43,23 @@
iou_weighted=True,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.5),
- loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)))
-
-# training and testing settings
-train_cfg = dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100)
+ loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(type='ATSSAssigner', topk=9),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
# data setting
dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
+data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
@@ -106,9 +105,4 @@
warmup_iters=500,
warmup_ratio=0.1,
step=[8, 11])
-total_epochs = 12
-
-# runtime
-load_from = None
-resume_from = None
-workflow = [('train', 1)]
+runner = dict(type='EpochBasedRunner', max_epochs=12)
diff --git a/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py b/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..24d2093b
--- /dev/null
+++ b/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,6 @@
+_base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ backbone=dict(
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)),
+ bbox_head=dict(dcn_on_last_conv=True))
diff --git a/configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py b/configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..6078bb98
--- /dev/null
+++ b/configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py
@@ -0,0 +1,39 @@
+_base_ = './vfnet_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 480), (1333, 960)],
+ multiscale_mode='range',
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+# learning policy
+lr_config = dict(step=[16, 22])
+runner = dict(type='EpochBasedRunner', max_epochs=24)
diff --git a/configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py b/configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..ebeef6ff
--- /dev/null
+++ b/configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch',
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/vfnet/vfnet_x101_32x4d_fpn_mstrain_2x_coco.py b/configs/vfnet/vfnet_x101_32x4d_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..5ed26504
--- /dev/null
+++ b/configs/vfnet/vfnet_x101_32x4d_fpn_mstrain_2x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_32x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=32,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py b/configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
new file mode 100644
index 00000000..2e19078e
--- /dev/null
+++ b/configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
@@ -0,0 +1,16 @@
+_base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch',
+ dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
+ stage_with_dcn=(False, True, True, True)))
diff --git a/configs/vfnet/vfnet_x101_64x4d_fpn_mstrain_2x_coco.py b/configs/vfnet/vfnet_x101_64x4d_fpn_mstrain_2x_coco.py
new file mode 100644
index 00000000..4329b34b
--- /dev/null
+++ b/configs/vfnet/vfnet_x101_64x4d_fpn_mstrain_2x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
+model = dict(
+ pretrained='open-mmlab://resnext101_64x4d',
+ backbone=dict(
+ type='ResNeXt',
+ depth=101,
+ groups=64,
+ base_width=4,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'))
diff --git a/configs/wider_face/README.md b/configs/wider_face/README.md
new file mode 100644
index 00000000..b8fe4742
--- /dev/null
+++ b/configs/wider_face/README.md
@@ -0,0 +1,43 @@
+# WIDER Face Dataset
+
+
+
+To use the WIDER Face dataset you need to download it
+and extract to the `data/WIDERFace` folder. Annotation in the VOC format
+can be found in this [repo](https://github.com/sovrasov/wider-face-pascal-voc-annotations.git).
+You should move the annotation files from `WIDER_train_annotations` and `WIDER_val_annotations` folders
+to the `Annotation` folders inside the corresponding directories `WIDER_train` and `WIDER_val`.
+Also annotation lists `val.txt` and `train.txt` should be copied to `data/WIDERFace` from `WIDER_train_annotations` and `WIDER_val_annotations`.
+The directory should be like this:
+
+```
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── WIDERFace
+│ │ ├── WIDER_train
+│ | │ ├──0--Parade
+│ | │ ├── ...
+│ | │ ├── Annotations
+│ │ ├── WIDER_val
+│ | │ ├──0--Parade
+│ | │ ├── ...
+│ | │ ├── Annotations
+│ │ ├── val.txt
+│ │ ├── train.txt
+
+```
+
+After that you can train the SSD300 on WIDER by launching training with the `ssd300_wider_face.py` config or
+create your own config based on the presented one.
+
+```
+@inproceedings{yang2016wider,
+ Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
+ Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ Title = {WIDER FACE: A Face Detection Benchmark},
+ Year = {2016}
+}
+```
diff --git a/configs/wider_face/ssd300_wider_face.py b/configs/wider_face/ssd300_wider_face.py
new file mode 100644
index 00000000..5a3eb38d
--- /dev/null
+++ b/configs/wider_face/ssd300_wider_face.py
@@ -0,0 +1,18 @@
+_base_ = [
+ '../_base_/models/ssd300.py', '../_base_/datasets/wider_face.py',
+ '../_base_/default_runtime.py'
+]
+model = dict(bbox_head=dict(num_classes=1))
+# optimizer
+optimizer = dict(type='SGD', lr=0.012, momentum=0.9, weight_decay=5e-4)
+optimizer_config = dict()
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.001,
+ step=[16, 20])
+# runtime settings
+runner = dict(type='EpochBasedRunner', max_epochs=24)
+log_config = dict(interval=1)
diff --git a/configs/yolact/README.md b/configs/yolact/README.md
new file mode 100644
index 00000000..da3559bb
--- /dev/null
+++ b/configs/yolact/README.md
@@ -0,0 +1,71 @@
+# **Y**ou **O**nly **L**ook **A**t **C**oefficien**T**s
+
+
+
+```
+ ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗
+ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝
+ ╚████╔╝ ██║ ██║██║ ███████║██║ ██║
+ ╚██╔╝ ██║ ██║██║ ██╔══██║██║ ██║
+ ██║ ╚██████╔╝███████╗██║ ██║╚██████╗ ██║
+ ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═════╝ ╚═╝
+```
+
+A simple, fully convolutional model for real-time instance segmentation. This is the code for our paper:
+
+- [YOLACT: Real-time Instance Segmentation](https://arxiv.org/abs/1904.02689)
+
+
+For a real-time demo, check out our ICCV video:
+[](https://www.youtube.com/watch?v=0pMfmo8qfpQ)
+
+## Evaluation
+
+Here are our YOLACT models along with their FPS on a Titan Xp and mAP on COCO's `val`:
+
+| Image Size | GPU x BS | Backbone | *FPS | mAP | Weights | Configs | Download |
+|:----------:|:--------:|:-------------:|:-----:|:----:|:-------:|:------:|:--------:|
+| 550 | 1x8 | Resnet50-FPN | 42.5 | 29.0 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r50_1x8_coco.py) |[model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco_20200908-f38d58df.pth) |
+| 550 | 8x8 | Resnet50-FPN | 42.5 | 28.4 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r50_8x8_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r50_8x8_coco_20200908-ca34f5db.pth) |
+| 550 | 1x8 | Resnet101-FPN | 33.5 | 30.4 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r101_1x8_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r101_1x8_coco_20200908-4cbe9101.pth) |
+
+*Note: The FPS is evaluated by the [original implementation](https://github.com/dbolya/yolact). When calculating FPS, only the model inference time is taken into account. Data loading and post-processing operations such as converting masks to RLE code, generating COCO JSON results, image rendering are not included.
+
+## Training
+
+All the aforementioned models are trained with a single GPU. It typically takes ~12GB VRAM when using resnet-101 as the backbone. If you want to try multiple GPUs training, you may have to modify the configuration files accordingly, such as adjusting the training schedule and freezing batch norm.
+
+```Shell
+# Trains using the resnet-101 backbone with a batch size of 8 on a single GPU.
+./tools/dist_train.sh configs/yolact/yolact_r101.py 1
+```
+
+## Testing
+
+Please refer to [mmdetection/docs/getting_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/getting_started.md#inference-with-pretrained-models).
+
+## Citation
+
+If you use YOLACT or this code base in your work, please cite
+
+```latex
+@inproceedings{yolact-iccv2019,
+ author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
+ title = {YOLACT: {Real-time} Instance Segmentation},
+ booktitle = {ICCV},
+ year = {2019},
+}
+```
+
+
diff --git a/configs/yolact/metafile.yml b/configs/yolact/metafile.yml
new file mode 100644
index 00000000..775ef3a4
--- /dev/null
+++ b/configs/yolact/metafile.yml
@@ -0,0 +1,50 @@
+Collections:
+ - Name: YOLACT
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - FPN
+ - ResNet
+ Paper: https://arxiv.org/abs/1904.02689
+ README: configs/yolact/README.md
+
+Models:
+ - Name: yolact_r50_1x8_coco
+ In Collection: YOLACT
+ Config: configs/yolact/yolact_r50_1x8_coco.py
+ Metadata:
+ inference time (s/im): 0.02353
+ Results:
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 29.0
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco_20200908-f38d58df.pth
+
+ - Name: yolact_r50_8x8_coco
+ In Collection: YOLACT
+ Config: configs/yolact/yolact_r50_8x8_coco.py
+ Metadata:
+ inference time (s/im): 0.02353
+ Results:
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 28.4
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r50_8x8_coco_20200908-ca34f5db.pth
+
+ - Name: yolact_r101_1x8_coco
+ In Collection: YOLACT
+ Config: configs/yolact/yolact_r101_1x8_coco.py
+ Metadata:
+ inference time (s/im): 0.02985
+ Results:
+ - Task: Instance Segmentation
+ Dataset: COCO
+ Metrics:
+ mask AP: 30.4
+ Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/yolact/yolact_r101_1x8_coco_20200908-4cbe9101.pth
diff --git a/configs/yolact/yolact_r101_1x8_coco.py b/configs/yolact/yolact_r101_1x8_coco.py
new file mode 100644
index 00000000..2864b590
--- /dev/null
+++ b/configs/yolact/yolact_r101_1x8_coco.py
@@ -0,0 +1,3 @@
+_base_ = './yolact_r50_1x8_coco.py'
+
+model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
diff --git a/configs/yolact/yolact_r50_1x8_coco.py b/configs/yolact/yolact_r50_1x8_coco.py
new file mode 100644
index 00000000..d0e5ace2
--- /dev/null
+++ b/configs/yolact/yolact_r50_1x8_coco.py
@@ -0,0 +1,160 @@
+_base_ = '../_base_/default_runtime.py'
+
+# model settings
+img_size = 550
+model = dict(
+ type='YOLACT',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=-1, # do not freeze stem
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=False, # update the statistics of bn
+ zero_init_residual=False,
+ style='pytorch'),
+ neck=dict(
+ type='FPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ start_level=1,
+ add_extra_convs='on_input',
+ num_outs=5,
+ upsample_cfg=dict(mode='bilinear')),
+ bbox_head=dict(
+ type='YOLACTHead',
+ num_classes=80,
+ in_channels=256,
+ feat_channels=256,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ octave_base_scale=3,
+ scales_per_octave=1,
+ base_sizes=[8, 16, 32, 64, 128],
+ ratios=[0.5, 1.0, 2.0],
+ strides=[550.0 / x for x in [69, 35, 18, 9, 5]],
+ centers=[(550 * 0.5 / x, 550 * 0.5 / x)
+ for x in [69, 35, 18, 9, 5]]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ reduction='none',
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5),
+ num_head_convs=1,
+ num_protos=32,
+ use_ohem=True),
+ mask_head=dict(
+ type='YOLACTProtonet',
+ in_channels=256,
+ num_protos=32,
+ num_classes=80,
+ max_masks_to_train=100,
+ loss_mask_weight=6.125),
+ segm_head=dict(
+ type='YOLACTSegmHead',
+ num_classes=80,
+ in_channels=256,
+ loss_segm=dict(
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='MaxIoUAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.4,
+ min_pos_iou=0.,
+ ignore_iof_thr=-1,
+ gt_max_assign_all=False),
+ # smoothl1_beta=1.,
+ allowed_border=-1,
+ pos_weight=-1,
+ neg_pos_ratio=3,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ iou_thr=0.5,
+ top_k=200,
+ max_per_img=100))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+ mean=[123.68, 116.78, 103.94], std=[58.40, 57.12, 57.38], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile', to_float32=True),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(type='FilterAnnotations', min_gt_bbox_wh=(4.0, 4.0)),
+ dict(
+ type='PhotoMetricDistortion',
+ brightness_delta=32,
+ contrast_range=(0.5, 1.5),
+ saturation_range=(0.5, 1.5),
+ hue_delta=18),
+ dict(
+ type='Expand',
+ mean=img_norm_cfg['mean'],
+ to_rgb=img_norm_cfg['to_rgb'],
+ ratio_range=(1, 4)),
+ dict(
+ type='MinIoURandomCrop',
+ min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
+ min_crop_size=0.3),
+ dict(type='Resize', img_scale=(img_size, img_size), keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(img_size, img_size),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=False),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=4,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)
+optimizer_config = dict()
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.1,
+ step=[20, 42, 49, 52])
+runner = dict(type='EpochBasedRunner', max_epochs=55)
+cudnn_benchmark = True
+evaluation = dict(metric=['bbox', 'segm'])
diff --git a/configs/yolact/yolact_r50_8x8_coco.py b/configs/yolact/yolact_r50_8x8_coco.py
new file mode 100644
index 00000000..b3adcb74
--- /dev/null
+++ b/configs/yolact/yolact_r50_8x8_coco.py
@@ -0,0 +1,11 @@
+_base_ = 'yolact_r50_1x8_coco.py'
+
+optimizer = dict(type='SGD', lr=8e-3, momentum=0.9, weight_decay=5e-4)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=0.1,
+ step=[20, 42, 49, 52])
diff --git a/configs/yolo/README.md b/configs/yolo/README.md
index 274f1877..25af46ad 100644
--- a/configs/yolo/README.md
+++ b/configs/yolo/README.md
@@ -1,7 +1,10 @@
# YOLOv3
## Introduction
-```
+
+
+
+```latex
@misc{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Joseph Redmon and Ali Farhadi},
@@ -14,12 +17,20 @@
## Results and Models
-| Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
-| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-------: |
-| DarkNet-53 | 320 | 273e | 2.7 | 63.9 | 27.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-421362b6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-20200819_172101.log.json) |
-| DarkNet-53 | 416 | 273e | 3.8 | 61.2 | 30.9 | [model](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-2b60fcd9.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-20200819_173424.log.json) |
-| DarkNet-53 | 608 | 273e | 7.1 | 48.1 | 33.4 | [model](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco-139f5633.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco-20200819_170820.log.json) |
+| Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| DarkNet-53 | 320 | 273e | 2.7 | 63.9 | 27.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_320_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-421362b6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-20200819_172101.log.json) |
+| DarkNet-53 | 416 | 273e | 3.8 | 61.2 | 30.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_mstrain-416_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-2b60fcd9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-20200819_173424.log.json) |
+| DarkNet-53 | 608 | 273e | 7.4 | 48.1 | 33.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020.log.json) |
+## Mixed Precision Training
+
+We also train YOLOv3 with mixed precision training.
+
+| Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
+| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
+| DarkNet-53 | 608 | 273e | 4.7 | 48.1 | 33.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_fp16_mstrain-608_273e_coco/yolov3_d53_fp16_mstrain-608_273e_coco_20210517_213542-4bc34944.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_fp16_mstrain-608_273e_coco/yolov3_d53_fp16_mstrain-608_273e_coco_20210517_213542.log.json) |
## Credit
+
This implementation originates from the project of Haoyu Wu(@wuhy08) at Western Digital.
diff --git a/configs/yolo/metafile.yml b/configs/yolo/metafile.yml
new file mode 100644
index 00000000..c9e556a3
--- /dev/null
+++ b/configs/yolo/metafile.yml
@@ -0,0 +1,69 @@
+Collections:
+ - Name: YOLOv3
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - DarkNet
+ Paper: https://arxiv.org/abs/1804.02767
+ README: configs/yolo/README.md
+
+Models:
+ - Name: yolov3_d53_320_273e_coco
+ In Collection: YOLOv3
+ Config: configs/yolo/yolov3_d53_320_273e_coco.py
+ Metadata:
+ Training Memory (GB): 2.7
+ inference time (s/im): 0.01565
+ Epochs: 273
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 27.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-421362b6.pth
+
+ - Name: yolov3_d53_mstrain-416_273e_coco
+ In Collection: YOLOv3
+ Config: configs/yolo/yolov3_d53_mstrain-416_273e_coco.py
+ Metadata:
+ Training Memory (GB): 3.8
+ inference time (s/im): 0.01634
+ Epochs: 273
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 30.9
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-2b60fcd9.pth
+
+ - Name: yolov3_d53_mstrain-608_273e_coco
+ In Collection: YOLOv3
+ Config: configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
+ Metadata:
+ Training Memory (GB): 7.4
+ inference time (s/im): 0.02079
+ Epochs: 273
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 33.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth
+
+ - Name: yolov3_d53_fp16_mstrain-608_273e_coco
+ In Collection: YOLOv3
+ Config: configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py
+ Metadata:
+ Training Memory (GB): 4.7
+ inference time (s/im): 0.02079
+ Epochs: 273
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 33.7
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_fp16_mstrain-608_273e_coco/yolov3_d53_fp16_mstrain-608_273e_coco_20210517_213542-4bc34944.pth
diff --git a/configs/yolo/rr_tiny_yolov3_416_coco.py b/configs/yolo/rr_tiny_yolov3_416_coco.py
deleted file mode 100644
index 9cb3e13c..00000000
--- a/configs/yolo/rr_tiny_yolov3_416_coco.py
+++ /dev/null
@@ -1,35 +0,0 @@
-_base_ = './rr_yolov3_d53_416_coco.py'
-# model settings
-model = dict(
- type='SingleStageDetector',
- pretrained=None,
- backbone=dict(type='RRTinyYolov3Backbone'),
- neck=None,
- bbox_head=dict(
- type='RRTinyYolov3Head',
- num_classes=80,
- in_channels=[256, 256],
- out_channels=[512, 128],
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(81, 82), (135, 169), (344, 319)],
- [(23, 27), (37, 58), (81, 82)]],
- strides=[32, 16]),
- bbox_coder=dict(type='YOLOBBoxCoder'),
- featmap_strides=[32, 16],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')))
diff --git a/configs/yolo/rr_tiny_yolov4_416_coco.py b/configs/yolo/rr_tiny_yolov4_416_coco.py
deleted file mode 100644
index 8d599ddd..00000000
--- a/configs/yolo/rr_tiny_yolov4_416_coco.py
+++ /dev/null
@@ -1,35 +0,0 @@
-_base_ = './rr_yolov3_d53_416_coco.py'
-# model settings
-model = dict(
- type='SingleStageDetector',
- pretrained=None,
- backbone=dict(type='RRTinyYolov4Backbone'),
- neck=None,
- bbox_head=dict(
- type='RRTinyYolov4Head',
- num_classes=80,
- in_channels=[512, 256],
- out_channels=[256, 128],
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(81, 82), (135, 169), (344, 319)],
- [(23, 27), (37, 58), (81, 82)]],
- strides=[32, 16]),
- bbox_coder=dict(type='YOLOBBoxCoder', scale_x_y=1.05),
- featmap_strides=[32, 16],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')))
diff --git a/configs/yolo/rr_yolov3_d53_416_coco.py b/configs/yolo/rr_yolov3_d53_416_coco.py
deleted file mode 100644
index 5d1750dc..00000000
--- a/configs/yolo/rr_yolov3_d53_416_coco.py
+++ /dev/null
@@ -1,122 +0,0 @@
-_base_ = '../_base_/default_runtime.py'
-# model settings
-model = dict(
- type='SingleStageDetector',
- pretrained=None,
- backbone=dict(type='RRDarknet53'),
- neck=dict(type='RRDarkNeck'),
- bbox_head=dict(
- type='RRYolov3Head',
- num_classes=80,
- in_channels=[512, 256, 128],
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(116, 90), (156, 198), (373, 326)],
- [(30, 61), (62, 45), (59, 119)],
- [(10, 13), (16, 30), (33, 23)]],
- strides=[32, 16, 8]),
- bbox_coder=dict(type='YOLOBBoxCoder'),
- featmap_strides=[32, 16, 8],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(
- type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0),
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- conf_thr=0.005,
- nms=dict(type='nms', iou_threshold=0.45),
- max_per_img=100)
-# dataset settings
-dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
-img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
-train_pipeline = [
- dict(type='LoadImageFromFile', to_float32=True),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='PhotoMetricDistortion'), # 光度失真增强类,同时包含了多种增强,例如亮度,饱和度、对比度、色调等
- dict(
- type='Expand', # 随机四周扩展
- mean=img_norm_cfg['mean'],
- to_rgb=img_norm_cfg['to_rgb'],
- ratio_range=(1, 2)),
- dict(
- type='MinIoURandomCrop', # 代码目前写的有问题
- min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
- min_crop_size=0.3),
- dict(type='Resize', img_scale=[(416, 416)], keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='DefaultFormatBundle'),
- # dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'img')), # meta_keys新增‘img’,用于可视化调试
-
-]
-test_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='MultiScaleFlipAug',
- img_scale=(416, 416),
- flip=False,
- transforms=[
- dict(type='Resize', keep_ratio=True),
- dict(type='RandomFlip'),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='ImageToTensor', keys=['img']),
- dict(type='Collect', keys=['img'])
- ])
-]
-data = dict(
- samples_per_gpu=32,
- workers_per_gpu=16,
- train=dict(
- type=dataset_type,
- ann_file=data_root + 'annotations/instances_train2017.json',
- img_prefix=data_root + 'images/train2017/',
- pipeline=train_pipeline),
- val=dict(
- type=dataset_type,
- ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
- pipeline=test_pipeline),
- test=dict(
- type=dataset_type,
- ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
- pipeline=test_pipeline))
-# optimizer
-optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005)
-optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
-# learning policy
-lr_config = dict(
- policy='step',
- warmup='linear',
- warmup_iters=2000, # same as burn-in in darknet
- warmup_ratio=0.1,
- step=[218, 246])
-# runtime settings
-total_epochs = 273
-evaluation = dict(interval=1, metric=['bbox'])
diff --git a/configs/yolo/rr_yolov4_cspd53_416_coco.py b/configs/yolo/rr_yolov4_cspd53_416_coco.py
deleted file mode 100644
index 80de5290..00000000
--- a/configs/yolo/rr_yolov4_cspd53_416_coco.py
+++ /dev/null
@@ -1,36 +0,0 @@
-_base_ = './rr_yolov3_d53_416_coco.py'
-# model settings
-model = dict(
- type='SingleStageDetector',
- pretrained=None,
- backbone=dict(type='RRCSPDarknet53'),
- neck=dict(type='RRYoloV4DarkNeck'),
- bbox_head=dict(
- type='RRYolov3Head',
- num_classes=80,
- in_channels=[512, 256, 128],
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(142, 110), (192, 243), (459, 401)],
- [(36, 75), (76, 55), (72, 146)],
- [(12, 16), (19, 36), (40, 28)]],
- strides=[32, 16, 8]),
- bbox_coder=dict(type='YOLOBBoxCoder', scale_x_y=1.05),
- featmap_strides=[32, 16, 8],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum'))
-)
diff --git a/configs/yolo/rr_yolov5_416_coco.py b/configs/yolo/rr_yolov5_416_coco.py
deleted file mode 100644
index 6bafe5c6..00000000
--- a/configs/yolo/rr_yolov5_416_coco.py
+++ /dev/null
@@ -1,88 +0,0 @@
-_base_ = './rr_yolov3_d53_416_coco.py'
-# model settings
-
-_yolo_type = 0 # 0=5s 1=5m 2=5l 3=5x
-if _yolo_type == 0:
- _depth_multiple = 0.33
- _width_multiple = 0.5
-elif _yolo_type == 1:
- _depth_multiple = 0.67
- _width_multiple = 0.75
-elif _yolo_type == 2:
- _depth_multiple = 1.0
- _width_multiple = 1.0
-elif _yolo_type == 3:
- _depth_multiple = 1.33
- _width_multiple = 1.25
-else:
- raise NotImplementedError
-
-model = dict(
- type='SingleStageDetector',
- pretrained=None,
- backbone=dict(type='RRYoloV5Backbone', depth_multiple=_depth_multiple, width_multiple=_width_multiple),
- neck=None,
- bbox_head=dict(
- type='RRYolov5Head',
- num_classes=80,
- in_channels=[512, 256, 128],
- out_channels=[_depth_multiple, _width_multiple], # yolov5s
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(116, 90), (156, 198), (373, 326)],
- [(30, 61), (62, 45), (59, 119)],
- [(10, 13), (16, 30), (33, 23)]],
- strides=[32, 16, 8]),
- bbox_coder=dict(type='YOLOV5BBoxCoder'),
- featmap_strides=[32, 16, 8],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum'))
-)
-
-img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
-
-test_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='MultiScaleFlipAug',
- img_scale=(640, 640),
- flip=False,
- transforms=[
- # dict(type='Resize', keep_ratio=True),
- dict(type='LetterResize', img_scale=(640, 640)),
- dict(type='RandomFlip'),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='ImageToTensor', keys=['img']),
- dict(type='Collect', keys=['img'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'pad_param'))
- ])
-]
-
-data = dict(
- test=dict(pipeline=test_pipeline))
-
-
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.0000001,
- conf_thr=0.001,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=300) # 1000
diff --git a/configs/yolo/yolov3_d53_320_273e_coco.py b/configs/yolo/yolov3_d53_320_273e_coco.py
index d5a7bc1c..87359f6f 100644
--- a/configs/yolo/yolov3_d53_320_273e_coco.py
+++ b/configs/yolo/yolov3_d53_320_273e_coco.py
@@ -19,11 +19,7 @@
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
- # dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'img')), # meta_keys新增‘img’,用于可视化调试
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
diff --git a/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py b/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py
new file mode 100644
index 00000000..4ef2422d
--- /dev/null
+++ b/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py
@@ -0,0 +1,3 @@
+_base_ = './yolov3_d53_mstrain-608_273e_coco.py'
+# fp16 settings
+fp16 = dict(loss_scale='dynamic')
diff --git a/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py b/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
index ac788132..9c65305b 100644
--- a/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
+++ b/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
@@ -1,7 +1,7 @@
_base_ = '../_base_/default_runtime.py'
# model settings
model = dict(
- type='SingleStageDetector',
+ type='YOLOV3',
pretrained='open-mmlab://darknet53',
backbone=dict(type='Darknet', depth=53, out_indices=(3, 4, 5)),
neck=dict(
@@ -13,7 +13,7 @@
type='YOLOV3Head',
num_classes=80,
in_channels=[512, 256, 128],
- out_channels=[1024, 512, 256], # 输出特征图是从小到大,故anchor size是从大到小
+ out_channels=[1024, 512, 256],
anchor_generator=dict(
type='YOLOAnchorGenerator',
base_sizes=[[(116, 90), (156, 198), (373, 326)],
@@ -37,34 +37,36 @@
use_sigmoid=True,
loss_weight=2.0,
reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')))
-# training and testing settings
-train_cfg = dict(
- assigner=dict(
- type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0),
- debug=False)
-test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- conf_thr=0.005,
- nms=dict(type='nms', iou_threshold=0.45),
- max_per_img=100)
+ loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='GridAssigner',
+ pos_iou_thr=0.5,
+ neg_iou_thr=0.5,
+ min_pos_iou=0)),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ conf_thr=0.005,
+ nms=dict(type='nms', iou_threshold=0.45),
+ max_per_img=100))
# dataset settings
dataset_type = 'CocoDataset'
-data_root = '/home/pi/dataset/coco/'
+data_root = 'data/coco/'
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
- dict(type='PhotoMetricDistortion'), # 光度失真增强类,同时包含了多种增强,例如亮度,饱和度、对比度、色调等
+ dict(type='PhotoMetricDistortion'),
dict(
- type='Expand', # 随机四周扩展
+ type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
- type='MinIoURandomCrop', # 代码目前写的有问题
+ type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True),
@@ -72,12 +74,7 @@
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
- # dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
- meta_keys=('filename', 'ori_filename', 'ori_shape',
- 'img_shape', 'pad_shape', 'scale_factor', 'flip',
- 'flip_direction', 'img_norm_cfg', 'img')), # meta_keys新增‘img’,用于可视化调试
-
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
@@ -96,21 +93,21 @@
]
data = dict(
samples_per_gpu=8,
- workers_per_gpu=0,
+ workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
- img_prefix=data_root + 'images/train2017/',
+ img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
+ img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
- img_prefix=data_root + 'images/val2017/',
+ img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005)
@@ -123,5 +120,5 @@
warmup_ratio=0.1,
step=[218, 246])
# runtime settings
-total_epochs = 273
+runner = dict(type='EpochBasedRunner', max_epochs=273)
evaluation = dict(interval=1, metric=['bbox'])
diff --git a/configs/yolof/README.md b/configs/yolof/README.md
new file mode 100644
index 00000000..e16e8a27
--- /dev/null
+++ b/configs/yolof/README.md
@@ -0,0 +1,25 @@
+# You Only Look One-level Feature
+
+## Introduction
+
+
+
+```
+@inproceedings{chen2021you,
+ title={You Only Look One-level Feature},
+ author={Chen, Qiang and Wang, Yingming and Yang, Tong and Zhang, Xiangyu and Cheng, Jian and Sun, Jian},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ year={2021}
+}
+```
+
+## Results and Models
+
+| Backbone | Style | Epoch | Lr schd | Mem (GB) | box AP | Config | Download |
+|:---------:|:-------:|:-------:|:-------:|:--------:|:------:|:------:|:--------:|
+| R-50-C5 | caffe | Y | 1x | 8.3 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolof/yolof_r50_c5_8x8_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolof/yolof_r50_c5_8x8_1x_coco/yolof_r50_c5_8x8_1x_coco_20210425_024427-8e864411.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/yolof/yolof_r50_c5_8x8_1x_coco/yolof_r50_c5_8x8_1x_coco_20210425_024427.log.json) |
+
+**Note**:
+
+1. We find that the performance is unstable and may fluctuate by about 0.3 mAP. mAP 37.4 ~ 37.7 is acceptable in YOLOF_R_50_C5_1x. Such fluctuation can also be found in the [original implementation](https://github.com/chensnathan/YOLOF).
+2. In addition to instability issues, sometimes there are large loss fluctuations and NAN, so there may still be problems with this project, which will be improved subsequently.
diff --git a/configs/yolof/metafile.yml b/configs/yolof/metafile.yml
new file mode 100644
index 00000000..d4eff9ee
--- /dev/null
+++ b/configs/yolof/metafile.yml
@@ -0,0 +1,27 @@
+Collections:
+ - Name: YOLOF
+ Metadata:
+ Training Data: COCO
+ Training Techniques:
+ - SGD with Momentum
+ - Weight Decay
+ Training Resources: 8x NVIDIA V100 GPUs
+ Architecture:
+ - Dilated Encoder
+ - ResNet
+ Paper: https://arxiv.org/abs/2103.09460
+ README: configs/yolof/README.md
+
+Models:
+ - Name: yolof_r50_c5_8x8_1x_coco
+ In Collection: YOLOF
+ Config: configs/yolof/yolof_r50_c5_8x8_1x_coco.py
+ Metadata:
+ Training Memory (GB): 8.3
+ Epochs: 12
+ Results:
+ - Task: Object Detection
+ Dataset: COCO
+ Metrics:
+ box AP: 37.5
+ Weights: https://download.openmmlab.com/mmdetection/v2.0/yolof/yolof_r50_c5_8x8_1x_coco/yolof_r50_c5_8x8_1x_coco_20210425_024427-8e864411.pth
diff --git a/configs/yolof/yolof_r50_c5_8x8_1x_coco.py b/configs/yolof/yolof_r50_c5_8x8_1x_coco.py
new file mode 100644
index 00000000..e7b31a1f
--- /dev/null
+++ b/configs/yolof/yolof_r50_c5_8x8_1x_coco.py
@@ -0,0 +1,103 @@
+_base_ = [
+ '../_base_/datasets/coco_detection.py',
+ '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
+]
+model = dict(
+ type='YOLOF',
+ pretrained='open-mmlab://detectron/resnet50_caffe',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(3, ),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=False),
+ norm_eval=True,
+ style='caffe'),
+ neck=dict(
+ type='DilatedEncoder',
+ in_channels=2048,
+ out_channels=512,
+ block_mid_channels=128,
+ num_residual_blocks=4),
+ bbox_head=dict(
+ type='YOLOFHead',
+ num_classes=80,
+ in_channels=512,
+ reg_decoded_bbox=True,
+ anchor_generator=dict(
+ type='AnchorGenerator',
+ ratios=[1.0],
+ scales=[1, 2, 4, 8, 16],
+ strides=[32]),
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[.0, .0, .0, .0],
+ target_stds=[1., 1., 1., 1.],
+ add_ctr_clamp=True,
+ ctr_clamp=32),
+ loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0),
+ loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
+ # training and testing settings
+ train_cfg=dict(
+ assigner=dict(
+ type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7),
+ allowed_border=-1,
+ pos_weight=-1,
+ debug=False),
+ test_cfg=dict(
+ nms_pre=1000,
+ min_bbox_size=0,
+ score_thr=0.05,
+ nms=dict(type='nms', iou_threshold=0.6),
+ max_per_img=100))
+# optimizer
+optimizer = dict(
+ type='SGD',
+ lr=0.12,
+ momentum=0.9,
+ weight_decay=0.0001,
+ paramwise_cfg=dict(
+ norm_decay_mult=0., custom_keys={'backbone': dict(lr_mult=1. / 3)}))
+lr_config = dict(warmup_iters=1500, warmup_ratio=0.00066667)
+
+# use caffe img_norm
+img_norm_cfg = dict(
+ mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='RandomShift', shift_ratio=0.5, max_shift_px=32),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ samples_per_gpu=8,
+ workers_per_gpu=8,
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
diff --git a/configs/yolof/yolof_r50_c5_8x8_iter-1x_coco.py b/configs/yolof/yolof_r50_c5_8x8_iter-1x_coco.py
new file mode 100644
index 00000000..c95c02da
--- /dev/null
+++ b/configs/yolof/yolof_r50_c5_8x8_iter-1x_coco.py
@@ -0,0 +1,14 @@
+_base_ = './yolof_r50_c5_8x8_1x_coco.py'
+
+# We implemented the iter-based config according to the source code.
+# COCO dataset has 117266 images after filtering. We use 8 gpu and
+# 8 batch size training, so 22500 is equivalent to
+# 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch,
+# 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large,
+# the iter-based and epoch-based setting have about 0.2 difference on
+# the mAP evaluation value.
+lr_config = dict(step=[15000, 20000])
+runner = dict(_delete_=True, type='IterBasedRunner', max_iters=22500)
+checkpoint_config = dict(interval=2500)
+evaluation = dict(interval=4500)
+log_config = dict(interval=20)
diff --git a/configs/yolov5/yolov5_accu_optim.py b/configs/yolov5/yolov5_accu_optim.py
new file mode 100644
index 00000000..daf87ddb
--- /dev/null
+++ b/configs/yolov5/yolov5_accu_optim.py
@@ -0,0 +1,125 @@
+# custom_imports = dict(imports=['tools/misc/custom_optimizer.py', 'tools/misc/one_cycle_lr_update.py'])
+
+_base_ = [
+ '../_base_/default_runtime.py'
+]
+std_batch = 64
+total_batch = 16
+num_gpu = 2
+# model settings
+model = dict(
+ type='YOLOV5',
+ backbone=dict(type='YOLOV5Backbone', depth_multiple=0.33, width_multiple=0.5),
+ neck=None,
+ bbox_head=dict(
+ type='YOLOV5Head',
+ num_classes=80,
+ in_channels=[512, 256, 128],
+ out_channels=[0.33, 0.5, 1],
+ anchor_generator=dict(
+ type='YOLOAnchorGenerator',
+ base_sizes=[[(116, 90), (156, 198), (373, 326)],
+ [(30, 61), (62, 45), (59, 119)],
+ [(10, 13), (16, 30), (33, 23)]],
+ strides=[32, 16, 8]),
+ bbox_coder=dict(type='YOLOV5BBoxCoder'),
+ featmap_strides=[32, 16, 8],
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=1.0,
+ reduction='sum'),
+ loss_conf=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=1.0,
+ reduction='sum'),
+ loss_xy=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=2.0,
+ reduction='sum'),
+ loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')
+ ),
+ test_cfg=dict(
+ use_v3=False, # 是否使用 mmdet v3 原本的后处理策略
+ score_thr=0.05, # 仅仅当 use_v3 为 True 才有效
+ nms_pre=1000, # 仅仅当 use_v3 为 True 才有效
+ agnostic=False, # 是否区分类别进行 nms,False 表示要区分
+ multi_label=True, # 是否考虑多标签, 单张图检测是为 False,test 时候为 True,可以提高 1 个点的 mAP
+ min_bbox_size=0,
+ # detect: conf_thr=0.25 iou_threshold=0.45
+ # test: conf_thr=0.001 iou_threshold=0.65
+ conf_thr=0.001,
+ nms=dict(type='nms', iou_threshold=0.65),
+ max_per_img=300)
+)
+
+img_norm_cfg = dict(mean=[0., 0., 0.], std=[255., 255., 255.], to_rgb=True)
+
+# dataset settings
+dataset_type = 'YOLOV5CocoDataset'
+data_root = '/home/PJLAB/huanghaian/dataset/coco/'
+
+train_pipeline = [
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
+ meta_keys=('img_norm_cfg',)),
+]
+
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ # dict(type='ShapeLetterResize', img_scale=(640, 640), scaleup=True, auto=False), # test
+ dict(type='ShapeLetterResize', img_scale=(640, 640), scaleup=False, auto=False, with_yolov5=True), # test,和原始v5完全一致的写法
+ # dict(type='LetterResize', img_scale=(640, 640), scaleup=True, auto=True), # detect
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img'],
+ meta_keys=('filename', 'ori_filename', 'ori_shape',
+ 'img_shape', 'pad_shape', 'scale_factor', 'flip',
+ 'flip_direction', 'img_norm_cfg', 'pad_param'))
+ ])
+]
+
+data = dict(
+ samples_per_gpu=int(total_batch / num_gpu),
+ workers_per_gpu=4,
+ train=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=train_pipeline,
+ filter_empty_gt=True),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+
+evaluation = dict(interval=5, metric='bbox')
+checkpoint_config = dict(interval=5)
+
+# optimizer
+optimizer = dict(constructor='CustomOptimizer', type='SGD', lr=0.01, momentum=0.937, nesterov=True)
+optimizer_config = dict(type="AccumulateOptimizerHook",
+ grad_clip=None,
+ update_iterval=int(std_batch / total_batch))
+
+# learning policy
+lr_config = dict(policy='OneCycle')
+runner = dict(type='EpochBasedRunner', max_epochs=300)
+
+log_config = dict(interval=30)
diff --git a/configs/yolov5/yolov5s.py b/configs/yolov5/yolov5s.py
new file mode 100644
index 00000000..f6245697
--- /dev/null
+++ b/configs/yolov5/yolov5s.py
@@ -0,0 +1,152 @@
+# custom_imports = dict(imports=['tools/misc/custom_optimizer.py', 'tools/misc/one_cycle_lr_update.py'])
+
+_base_ = [
+ '../_base_/default_runtime.py'
+]
+
+# model settings
+model = dict(
+ type='YOLOV5',
+ backbone=dict(type='YOLOV5Backbone', depth_multiple=0.33, width_multiple=0.5),
+ neck=None,
+ bbox_head=dict(
+ type='YOLOV5Head',
+ num_classes=80,
+ in_channels=[512, 256, 128],
+ out_channels=[0.33, 0.5, 1],
+ anchor_generator=dict(
+ type='YOLOAnchorGenerator',
+ base_sizes=[[(116, 90), (156, 198), (373, 326)],
+ [(30, 61), (62, 45), (59, 119)],
+ [(10, 13), (16, 30), (33, 23)]],
+ strides=[32, 16, 8]),
+ bbox_coder=dict(type='YOLOV5BBoxCoder'),
+ featmap_strides=[32, 16, 8],
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=1.0,
+ reduction='sum'),
+ loss_conf=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=1.0,
+ reduction='sum'),
+ loss_xy=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=True,
+ loss_weight=2.0,
+ reduction='sum'),
+ loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')
+ ),
+ test_cfg=dict(
+ use_v3=False, # 是否使用 mmdet v3 原本的后处理策略
+ score_thr=0.05, # 仅仅当 use_v3 为 True 才有效
+ nms_pre=1000, # 仅仅当 use_v3 为 True 才有效
+ agnostic=False, # 是否区分类别进行 nms,False 表示要区分
+ multi_label=True, # 是否考虑多标签, 单张图检测是为 False,test 时候为 True,可以提高 1 个点的 mAP
+ min_bbox_size=0,
+ # detect: conf_thr=0.25 iou_threshold=0.45
+ # test: conf_thr=0.001 iou_threshold=0.65
+ conf_thr=0.001,
+ nms=dict(type='nms', iou_threshold=0.65),
+ max_per_img=300)
+)
+
+img_norm_cfg = dict(mean=[0., 0., 0.], std=[255., 255., 255.], to_rgb=True)
+
+# dataset settings
+dataset_type = 'YOLOV5CocoDataset'
+# data_root = '/home/PJLAB/huanghaian/dataset/coco/'
+data_root = 'data/coco/'
+
+train_pipeline = [
+ # dict(type='Normalize', **img_norm_cfg),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'],
+ meta_keys=('img_norm_cfg',)),
+]
+
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(640, 640),
+ flip=False,
+ transforms=[
+ # dict(type='ShapeLetterResize', img_scale=(640, 640), scaleup=True, auto=False), # test
+ dict(type='ShapeLetterResize', img_scale=(640, 640), scaleup=False, auto=False, with_yolov5=True), # test,和原始v5完全一致的写法
+ # dict(type='LetterResize', img_scale=(640, 640), scaleup=True, auto=True), # detect
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img'],
+ meta_keys=('filename', 'ori_filename', 'ori_shape',
+ 'img_shape', 'pad_shape', 'scale_factor', 'flip',
+ 'flip_direction', 'img_norm_cfg', 'pad_param'))
+ ])
+]
+
+repeat_num = 3
+max_epoch = 300 // 3
+
+data = dict(
+ samples_per_gpu=8, # total=64 8gpu
+ workers_per_gpu=4,
+ train=dict(
+ _delete_=True,
+ type='RepeatDataset',
+ times=repeat_num,
+ dataset=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_train2017.json',
+ img_prefix=data_root + 'train2017/',
+ pipeline=train_pipeline)),
+ # train=dict(
+ # type=dataset_type,
+ # ann_file=data_root + 'annotations/instances_val2017.json',
+ # img_prefix=data_root + 'val2017/',
+ # pipeline=train_pipeline),
+ val=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline),
+ test=dict(
+ type=dataset_type,
+ ann_file=data_root + 'annotations/instances_val2017.json',
+ img_prefix=data_root + 'val2017/',
+ pipeline=test_pipeline))
+
+evaluation = dict(interval=5, metric='bbox')
+checkpoint_config = dict(interval=5)
+
+# optimizer
+optimizer = dict(constructor='CustomOptimizer', type='SGD', lr=0.01, momentum=0.937, nesterov=True)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+
+# learning policy
+lr_config = dict(policy='OneCycle', repeat_num=repeat_num, max_epoch=max_epoch)
+runner = dict(type='EpochBasedRunner', max_epochs=max_epoch)
+
+log_config = dict(interval=30)
+
+custom_hooks = [dict(type='EMAHook', priority=49)]
+
+# 注意:暂时 fp16 和 AccumulateOptimizerHook 不兼容,只能开一个
+# 如果你总 batch大于等于 64,那么不需要 AccumulateOptimizerHook,可以开启 fp16
+# 如果你想使用梯度累积,那么就需要注释 fp16 配置
+# 如果 batch 大于等于64,并且显卡不支持fp16,那么全部注释即可
+
+
+# fp16 settings
+# fp16 = dict(loss_scale='dynamic')
+
+
+# std_batch = 64
+# total_batch = 16
+# optimizer_config = dict(type="AccumulateOptimizerHook",
+# grad_clip=dict(max_norm=35, norm_type=2),
+# update_iterval=int(std_batch / total_batch),
+# repeat_num=repeat_num)
diff --git a/demo/MMDet_Tutorial.ipynb b/demo/MMDet_Tutorial.ipynb
new file mode 100644
index 00000000..c95c6211
--- /dev/null
+++ b/demo/MMDet_Tutorial.ipynb
@@ -0,0 +1,1656 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "tJxJHruNLb7Y"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "aGYwt_UjIrqp"
+ },
+ "source": [
+ "# MMDetection Tutorial\n",
+ "\n",
+ "Welcome to MMDetection! This is the official colab tutorial for using MMDetection. In this tutorial, you will learn\n",
+ "- Perform inference with a MMDet detector.\n",
+ "- Train a new detector with a new dataset.\n",
+ "\n",
+ "Let's start!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Wi4LPmsR66sy",
+ "outputId": "8eb8aadf-1c70-42dd-9105-1a3dad85c504"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "nvcc: NVIDIA (R) Cuda compiler driver\n",
+ "Copyright (c) 2005-2019 NVIDIA Corporation\n",
+ "Built on Sun_Jul_28_19:07:16_PDT_2019\n",
+ "Cuda compilation tools, release 10.1, V10.1.243\n",
+ "gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0\n",
+ "Copyright (C) 2017 Free Software Foundation, Inc.\n",
+ "This is free software; see the source for copying conditions. There is NO\n",
+ "warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check nvcc version\n",
+ "!nvcc -V\n",
+ "# Check GCC version\n",
+ "!gcc --version"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "gkGnB9WyHSXB",
+ "outputId": "f1360573-c24a-4a8f-98cd-cc654c1d7d05"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Looking in links: https://download.pytorch.org/whl/torch_stable.html\n",
+ "Collecting torch==1.5.1+cu101\n",
+ "\u001b[?25l Downloading https://download.pytorch.org/whl/cu101/torch-1.5.1%2Bcu101-cp36-cp36m-linux_x86_64.whl (704.4MB)\n",
+ "\u001b[K |████████████████████████████████| 704.4MB 26kB/s \n",
+ "\u001b[?25hCollecting torchvision==0.6.1+cu101\n",
+ "\u001b[?25l Downloading https://download.pytorch.org/whl/cu101/torchvision-0.6.1%2Bcu101-cp36-cp36m-linux_x86_64.whl (6.6MB)\n",
+ "\u001b[K |████████████████████████████████| 6.6MB 60.4MB/s \n",
+ "\u001b[?25hRequirement already satisfied, skipping upgrade: numpy in /usr/local/lib/python3.6/dist-packages (from torch==1.5.1+cu101) (1.19.5)\n",
+ "Requirement already satisfied, skipping upgrade: future in /usr/local/lib/python3.6/dist-packages (from torch==1.5.1+cu101) (0.16.0)\n",
+ "Requirement already satisfied, skipping upgrade: pillow>=4.1.1 in /usr/local/lib/python3.6/dist-packages (from torchvision==0.6.1+cu101) (7.0.0)\n",
+ "Installing collected packages: torch, torchvision\n",
+ " Found existing installation: torch 1.7.0+cu101\n",
+ " Uninstalling torch-1.7.0+cu101:\n",
+ " Successfully uninstalled torch-1.7.0+cu101\n",
+ " Found existing installation: torchvision 0.8.1+cu101\n",
+ " Uninstalling torchvision-0.8.1+cu101:\n",
+ " Successfully uninstalled torchvision-0.8.1+cu101\n",
+ "Successfully installed torch-1.5.1+cu101 torchvision-0.6.1+cu101\n",
+ "Collecting mmcv-full\n",
+ "\u001b[?25l Downloading https://files.pythonhosted.org/packages/30/f6/763845494c67ec6469992c8196c2458bdc12ff9c749de14d20a000da765d/mmcv-full-1.2.6.tar.gz (226kB)\n",
+ "\u001b[K |████████████████████████████████| 235kB 15.8MB/s \n",
+ "\u001b[?25hCollecting addict\n",
+ " Downloading https://files.pythonhosted.org/packages/6a/00/b08f23b7d7e1e14ce01419a467b583edbb93c6cdb8654e54a9cc579cd61f/addict-2.4.0-py3-none-any.whl\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from mmcv-full) (1.19.5)\n",
+ "Requirement already satisfied: Pillow in /usr/local/lib/python3.6/dist-packages (from mmcv-full) (7.0.0)\n",
+ "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from mmcv-full) (3.13)\n",
+ "Collecting yapf\n",
+ "\u001b[?25l Downloading https://files.pythonhosted.org/packages/c1/5d/d84677fe852bc5e091739acda444a9b6700ffc6b11a21b00dd244c8caef0/yapf-0.30.0-py2.py3-none-any.whl (190kB)\n",
+ "\u001b[K |████████████████████████████████| 194kB 53.0MB/s \n",
+ "\u001b[?25hBuilding wheels for collected packages: mmcv-full\n",
+ " Building wheel for mmcv-full (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for mmcv-full: filename=mmcv_full-1.2.6-cp36-cp36m-linux_x86_64.whl size=20243694 sha256=8742a849334b62e8e3f7b695fd546b033111501586a94fe5612aab54f7edebfa\n",
+ " Stored in directory: /root/.cache/pip/wheels/40/39/64/7c5ab43621826eb41d31f1df14a8acabf74d879fdf33dc9d79\n",
+ "Successfully built mmcv-full\n",
+ "Installing collected packages: addict, yapf, mmcv-full\n",
+ "Successfully installed addict-2.4.0 mmcv-full-1.2.6 yapf-0.30.0\n",
+ "Cloning into 'mmdetection'...\n",
+ "remote: Enumerating objects: 50, done.\u001b[K\n",
+ "remote: Counting objects: 100% (50/50), done.\u001b[K\n",
+ "remote: Compressing objects: 100% (49/49), done.\u001b[K\n",
+ "remote: Total 15882 (delta 7), reused 5 (delta 1), pack-reused 15832\u001b[K\n",
+ "Receiving objects: 100% (15882/15882), 16.93 MiB | 33.41 MiB/s, done.\n",
+ "Resolving deltas: 100% (10915/10915), done.\n",
+ "/content/mmdetection\n",
+ "Obtaining file:///content/mmdetection\n",
+ "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from mmdet==2.9.0) (3.2.2)\n",
+ "Collecting mmpycocotools\n",
+ " Downloading https://files.pythonhosted.org/packages/99/51/1bc1d79f296347eeb2d1a2e0606885ab1e4682833bf275fd39c189952e26/mmpycocotools-12.0.3.tar.gz\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from mmdet==2.9.0) (1.19.5)\n",
+ "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from mmdet==2.9.0) (1.15.0)\n",
+ "Collecting terminaltables\n",
+ " Downloading https://files.pythonhosted.org/packages/9b/c4/4a21174f32f8a7e1104798c445dacdc1d4df86f2f26722767034e4de4bff/terminaltables-3.1.0.tar.gz\n",
+ "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mmdet==2.9.0) (2.8.1)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mmdet==2.9.0) (2.4.7)\n",
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mmdet==2.9.0) (1.3.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->mmdet==2.9.0) (0.10.0)\n",
+ "Requirement already satisfied: setuptools>=18.0 in /usr/local/lib/python3.6/dist-packages (from mmpycocotools->mmdet==2.9.0) (53.0.0)\n",
+ "Requirement already satisfied: cython>=0.27.3 in /usr/local/lib/python3.6/dist-packages (from mmpycocotools->mmdet==2.9.0) (0.29.21)\n",
+ "Building wheels for collected packages: mmpycocotools, terminaltables\n",
+ " Building wheel for mmpycocotools (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for mmpycocotools: filename=mmpycocotools-12.0.3-cp36-cp36m-linux_x86_64.whl size=265912 sha256=1e5525c4339f76072ed09fecd12765fe7544e94745b91fb76fca95658e3dea7b\n",
+ " Stored in directory: /root/.cache/pip/wheels/a2/b0/8d/3307912785a42bc80f673946fac676d5c596eee537af7a599c\n",
+ " Building wheel for terminaltables (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for terminaltables: filename=terminaltables-3.1.0-cp36-none-any.whl size=15358 sha256=93fdde0610537c38e16b17f6df08bbc2be3c1b19e266b5d4e5fd7aef039bb218\n",
+ " Stored in directory: /root/.cache/pip/wheels/30/6b/50/6c75775b681fb36cdfac7f19799888ef9d8813aff9e379663e\n",
+ "Successfully built mmpycocotools terminaltables\n",
+ "Installing collected packages: mmpycocotools, terminaltables, mmdet\n",
+ " Running setup.py develop for mmdet\n",
+ "Successfully installed mmdet mmpycocotools-12.0.3 terminaltables-3.1.0\n",
+ "Requirement already satisfied: Pillow==7.0.0 in /usr/local/lib/python3.6/dist-packages (7.0.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# install dependencies: (use cu101 because colab has CUDA 10.1)\n",
+ "!pip install -U torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html\n",
+ "\n",
+ "# install mmcv-full thus we could use CUDA operators\n",
+ "!pip install mmcv-full\n",
+ "\n",
+ "# Install mmdetection\n",
+ "!rm -rf mmdetection\n",
+ "!git clone https://github.com/open-mmlab/mmdetection.git\n",
+ "%cd mmdetection\n",
+ "\n",
+ "!pip install -e .\n",
+ "\n",
+ "# install Pillow 7.0.0 back in order to avoid bug in colab\n",
+ "!pip install Pillow==7.0.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "6hD0mmMixT0p",
+ "outputId": "5316598c-233a-4140-db12-64d3a0df216b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1.5.1+cu101 True\n",
+ "2.9.0\n",
+ "10.1\n",
+ "GCC 7.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check Pytorch installation\n",
+ "import torch, torchvision\n",
+ "print(torch.__version__, torch.cuda.is_available())\n",
+ "\n",
+ "# Check MMDetection installation\n",
+ "import mmdet\n",
+ "print(mmdet.__version__)\n",
+ "\n",
+ "# Check mmcv installation\n",
+ "from mmcv.ops import get_compiling_cuda_version, get_compiler_version\n",
+ "print(get_compiling_cuda_version())\n",
+ "print(get_compiler_version())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gi9zw03oM4CH"
+ },
+ "source": [
+ "## Perform inference with a MMDet detector\n",
+ "MMDetection already provides high level APIs to do inference and training."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "j4doHX4exvS1",
+ "outputId": "688ef595-5742-4210-90d0-b841044a7892"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "--2021-02-20 03:03:09-- https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth\n",
+ "Resolving download.openmmlab.com (download.openmmlab.com)... 47.252.96.35\n",
+ "Connecting to download.openmmlab.com (download.openmmlab.com)|47.252.96.35|:80... connected.\n",
+ "HTTP request sent, awaiting response... 200 OK\n",
+ "Length: 177867103 (170M) [application/octet-stream]\n",
+ "Saving to: ‘checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth’\n",
+ "\n",
+ "checkpoints/mask_rc 100%[===================>] 169.63M 8.44MB/s in 21s \n",
+ "\n",
+ "2021-02-20 03:03:32 (8.19 MB/s) - ‘checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth’ saved [177867103/177867103]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "!mkdir checkpoints\n",
+ "!wget -c https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth \\\n",
+ " -O checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "8M5KUnX7Np3h"
+ },
+ "outputs": [],
+ "source": [
+ "from mmdet.apis import inference_detector, init_detector, show_result_pyplot\n",
+ "\n",
+ "# Choose to use a config and initialize the detector\n",
+ "config = 'configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py'\n",
+ "# Setup a checkpoint file to load\n",
+ "checkpoint = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'\n",
+ "# initialize the detector\n",
+ "model = init_detector(config, checkpoint, device='cuda:0')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Wi6DRpsQPEmV",
+ "outputId": "8ea1de7e-d20f-44cf-9967-24578d51ff16"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/content/mmdetection/mmdet/datasets/utils.py:66: UserWarning: \"ImageToTensor\" pipeline is replaced by \"DefaultFormatBundle\" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.\n",
+ " 'data pipeline in your config file.', UserWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Use the detector to do inference\n",
+ "img = 'demo/demo.jpg'\n",
+ "result = inference_detector(model, img)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 576
+ },
+ "id": "UsJU5D-QPX8L",
+ "outputId": "04df7cef-6393-4147-da43-ab89f3b29a56"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/content/mmdetection/mmdet/apis/inference.py:205: UserWarning: \"block\" will be deprecated in v2.9.0,Please use \"wait_time\"\n",
+ " warnings.warn('\"block\" will be deprecated in v2.9.0,'\n",
+ "/content/mmdetection/mmdet/apis/inference.py:207: UserWarning: \"fig_size\" are deprecated and takes no effect.\n",
+ " warnings.warn('\"fig_size\" are deprecated and takes no effect.')\n",
+ "/content/mmdetection/mmdet/core/visualization/image.py:75: UserWarning: \"font_scale\" will be deprecated in v2.9.0,Please use \"font_size\"\n",
+ " warnings.warn('\"font_scale\" will be deprecated in v2.9.0,'\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHJCAYAAABNDRsDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd6xm6X3Y9+/TTnvb7XPvzOzM7M4uyS3cXXF3SUmsKqRkUQWkLMmO5NgGKEBWYCeRECQRIoQKEMRx4ACxkYYgQID4nxgIZMWKbIeyxYgqK7Nv4fbd2Wl3bn/raU/LH+eaEoJEiBIpXFDnAwxeYO5bzrnveZ/3154ZEWOk1+v1er1er9d7p5Hf6gPo9Xq9Xq/X6/X+r/SBaq/X6/V6vV7vHakPVHu9Xq/X6/V670h9oNrr9Xq9Xq/Xe0fqA9Ver9fr9Xq93jtSH6j2er1er9fr9d6R+kC11+v1/l8SQnxeCPGZb/Vx9Hq93rerPlDt9Xq9PwVCiL8mhPidb/Vx9Hq93reTPlDt9Xrf9oQQ+lt9DL1er9f7k+sD1V6v921JCHFDCPHvCiGeA1ZCiA8JIX5PCDEVQnxdCPGxP3LfvyaEeFMIsRBCvCWE+Onzv/+sEOIf/JH7XRNCxP9z4CuEeBj4b4DvEkIshRDT/3/Ostfr9b699VWGXq/37ewvA58EAvAc8FeAfwp8H/A/CyHeA5TA3wOeiTG+IoTYAzb+JC8SY3xJCPFzwGdijB/60zyBXq/X+/Osr6j2er1vZ38vxngL+BngN2KMvxFjDDHGzwFfAn7o/H4BeEwIkccY92OML36rDrjX6/V6f6gPVHu93rezW+e3V4GfOG/7T89b8x8C9mKMK+CngJ8D9oUQ/+t5pbXX6/V632J9oNrr9b6dxfPbW8D/GGNc+yN/BjHGvw0QY/xnMcaPA3vAy8B/d/64FVD8kefb/X/wWr1er9f7U9IHqr1e78+DfwD8iBDiB4QQSgiRCSE+JoS4LIS4IIT4MSHEAGiAJd0oAMDXgI8IIa4IISbAv//HvMYBcFkIkfyZnkmv1+v9OdIHqr1e79ve+ZzqjwG/BBzRVVj/Hbo1UAK/ANwFToGPAn/j/HGfA/4nuo1YXwZ+/Y95mX8BvAjcE0Ic/5mcSK/X6/05I2Lsu1W9Xq/X6/V6vXeevqLa6/V6vV6v13tH6gPVXq/X6/V6vd47Uh+o9nq9Xq/X6/XekfpAtdfr9Xq9Xq/3jtQHqr1er9fr9Xq9dyT9x/3w6of3oo2BNM+IQmIbQQwLZDBsbhbMy7tUVYOtA64BHyHG7l+9FgZkkIQ2oExOng2JziO0JChLDC2Nr0AM8G3DM48+yuLlfW76U/Sa4dOf+DQ710fMTr/Ol7/8IoffKFCFRFQr2v0Vw2GOuyK4caPivU88yCD1/PY/vsUj3zECo6jiCTJpCXWOSQYc3G1Yu1Zz76aHaY6ZrBAhZZAEGidIR56NUc7bN1aQZjz8rifZNCOOT94gRMXadspzL9wmGVRIanSUtFVg5aB1AoioVNBaAIkm0kaNn0E4dAQbkKOE3auBvHC0PicKhwwZZ0cL9vbWSIZL9m8qqlKQ555YWIpxShIbrJRoPcaWMxoDMSiCEzS1JcvgoQc3mR6XXNrbZb5omc0cZYwIcopsRFmtUFpjTEJd10gREcKhg+HozVtoY7DHLSKCMiBGA+SFCbbxDMeGK9sb+Bg5OTnCTo8JypA3kqaU3LtbIUKkWGvRa0BlqE8FTYAgW95z9QqVWzI7ndPElGwkEMkKrQLtNGE1k9ShJck1k60JeuwROqNtZ8gKRFYQjWEwyDidHjE7KgnOARIhA0IY8kKQ5i22TbBLQ5ZX+BBIWoNSjtpEZJLTzGtkUDjjwWka77iwrlitchZ3Gi5cEwwvOprGYxKF9Z7R5ojj18AeB1ITEVFQ+oC3QACdQGbWqOsVIdZoZQjeEPFAxHuPlF1OKIAQHArQMRLxROkxqSTNhyyWDdY79nZ3WMyWxCjx3qNEZDat+cTHP8l7H3ucX/vHv8bh0QEIj5SCtnXkeU5EsFyuyHKFcApFBVKh8k30sMaFOYtjRVXXiJAwzC1bkwTFhKqJbF/c4L1PPMbXn/sGr716A+c8xhiMMbRti7WWEAOtbwnBkRhD8JEQAlmaIYTA+poLF1Ns4zg7FqgkRyjITE5bl6ytj1isKt599V1gBS/fvEHZtjjbkGaR6/fvgQjEkGPEGm0zo27POJvWaJOzvjFiOJRkA030S47uTjk+sRAUAI4aIxRparCxARRSOkKwrK9dYLI2JE1SlmVNkiesr13gxo03OT25R5IYbOuIwRGjIDEFNjTovGGybUiHOSRwfKtmeldz8fIFxiPDzbfuUi8bjFE4F4ihJYqI0glFkRNxpBmkacJ82tC0lhgjzgaUUqQmRQqNbR3WthTDlCzLqFuLEIIYBS54bNPS1DVCCLJBzmh9DF5x99YhRZIyHK2zalb4WKKTHBEj1jV477CtReIxGoQQKJGgtKEsK4QQaJOChKapkUIgBQgECIGUkJqEEMB7363zAZx3hOhRSmGMwXvfvQe+RWuFRIJSRCHIBzlXHrhMwHN0fAIyRQjJlcsXkbHm9ddeY7WqGI4HXNjdxIeG2aJBJ0PWJjnDoeDo1oqzkwXRJKwNh2RJyeuv7SNjRgwegSRGQZ4XDIcGF8/Y3lPMTz2H+y1KGbRK2dhJuXh1RFmvcXDzkNq2SBuBBd5krMolwXsSLclTTVNFXCtQShJCZDAcsbm1weHRXYKXCOloao+QgrquSHSBMYa6ciBrQgikaQ4EfGyJURNjShBLhsMhSZpycHiKDzAYFqSFQMrA6eGKne2C42VEa0umBNU8sjFIKBc1jcvwviZJhoTgUcbiPRAVaappAxiVEkWLyRpK27C+s4ZwNQc3LDiDVA6pIEkSFvMSlODSpT3mizNsJbCuJAaQShNFwLZgTIY2wPlnP00NzjuiEKSpoa5rnHO4xmGMIYTunyXO85wQAs45sixDK4NAkCQJbdsCgSTVNG3bPZ+D1tZIpc4fU9A4y9bWFjF66nLFZKIYrcG9O54ohlh5SOscgoRRsUmqE44ODrG1RUkJEaRW3bqaGKSUJEoTY6RtW6qqoshTANq2JU1ThOyuq7qumUxGDAaGqlqijGQymXD3zhFN1TIa7OGcJckrqtLSOk+UiiANOho0kjqUBGHJoiAGRSJzrKxpRUZgzjgfUZ+UfM9PPsXsnuXwpRvc/8MTXr5jyZqLXH6P5NW7zyLu7QGC4WAPpyyurdjcHXP25uvcenvJ1qUh83JFkSpWJzAcBZAtizmEAGmSYgnkaXeuw0mBdQMad8L6WIERvP6bJ+JPJdL8/0h99rOf/b/94X/+9/+jzxZ5gYuRum2J1iOx5EaymB/hvMXZQBSAFFgHSWoQMiLgPOgxhBgJLiKNJs8yjBA4bxmRo4oaHQ1nhyfc95FNioHk+LkZqpIsTi7w5X92zP6NFbb1TJtjPvWvXeZrz1VceWaNW/eOCIxZW9PMbpWc3q65/phg5xoYU5CuVey/aUiySJYnnB0s2VxPKcuKqBJa0SJ1gVSS8SgyO61I0gGuKXntS7f51A/+FH/rb/0M0QmIBfcO3oAAUrQYUjICMUZ0Zqh9IAbF+dKOJhCIROVYnyQMBpJL903Q+RIfYDQGgSMRnmaqqJYtg4lhe8+RxJzFviUdC9AWaokZCFaxwkeD0BG59LRtoMgVoyJhOV+wu3udpoV7J0tiUpAPtzE6RwRIjSHKgPUeKUEJh5YpXkSyrTEbly9iFzWyaSkMNKZF1pbcBqr5gtsnJ5ikYmfrIjJfJzSRSoJiyXhYs7XhuO/BTZy0ICNOtuhyQLlqCDLhbFqzeXHC2rs0DB1yCAwNxUDiFOxe3CaclviVI8hINoR5ucDWmnSUE3zLanZMMgRnW4I1ZEYzGmkigqYWZFlgXESUiCiRQAJ+5aFNEJkgqIBrA94GfDR46RDSEJ0HAX6RMBoWFJstUWlaH5BEjJKIdkR9Bq4MeBtBamKISFJGgzWImqpegIgIFCEInLNIKZBSIgTEGAjRkSQJPgQigWGqGKcKrTTzqmHVWIiCqmxwvnu8Dy0mNQyGQ+bzijfeeIt7h/voJCM5DyCbukUIwcbmJsPhiPl8Rh0aHn/yaWrvWVTHnJ3MCE6zNUkJ1uOsRxlFEAXLUrC+tckHP/wRtB7y0osvMZtOkVKB6BZo7xwhBJqm4bEnn+DqlQdZzpZ4b1FK0X0XRdJM4Z2jaRwhdAFN9JYIvO+p95NmkqPDO3zyxz7NJ374h7h583V0DPyNz/wMAkG1gAs72+wfv4VjRWISTmfHYBZsXdggSVKsc6TJJjFR1G6JROIlJEPN3u4YqQKn8xnOt6RGI4TChcCiqvDBQ5Bok/Ho40/hnOLWnTcQyuKcJwSB1hlSDaitxYsWKQLN1DLfh9N7FltWGNXifKAoMoQIlGWN0gIfIy5oQugSEyEU3kfKqqKqWgiaGCQhQAgRoyVIR8ST5yk+eGzjkMrgg0ebBKk08/miW2+kxBhN8J7FdAnWsz4uaENFU88YGklmDK5tsHWNaxu8bZmMh1y+dJHJZAJRsSprlFYIYpdIyQhSIKTsrs8IWhuIAd8KyrLG2pYQIEtzhIx4H0hSgw+uO1alkVKipCJNM4gS6JK7umlZLVrWNyYsV2fd70G0HBwcslrU3X2dRgpDmit0Hsk2cmQTODmcsjirWSxXbO1usD7IWB7UeDFguVxQrkqEkCR6QJpGdi4M0EmNxzNZS1kuWoLTaBNRWlLXK+7cWHJ4Z4kzS5yr0KIlJpEYUgoZGeZjRNDYNmDMkCtXrrJYnqETTesgRE/glHIZELFgNC5YnwyRpAQX2dzYwMcVPtSkqcZ7SVNHtNQIYUlMRDOkrSyrVYOIgizLMGlCPkgYTyYU60P0fM52tsaDF9/F7VcPKdIBu2ubXL34EA8+cp3lsmQ2OwYcbePIswxEF4wEH3FEfLAIP8QkA7KhxtY57UyhEo+SBq1yBIokSTBaMhoVnBwdo0R3DUjVJdxG5qSJxqhIbkbd++67REUAhHj+P2UIQujiANs6pJLk+eD88xXJ8wIpFYvlEqM11lqstRitaFuL9448y7GuhS68YG1tgneOtumS2qap8Q6iHTA/CzRNS+tqimzCZLyNs9CUFVVVQQzEELq1WIJznhgjIUY2NjbwMWDblslkBMTzJFOhpEQphffdeSaJQSrB2ekpaapp6pa7t2fEdp3xJKd1p1RVt8YHL4l16PrWIYILROEQAjKZ4VtNayxaBmoBAwy5H2JrRTbQfP93foQvfvVlPvSzF2is4ud+8pcYhJRnv/Qsp7MlLuSEZEQeF1SzSHN8QD7wFEmLS2rauWR9mLCcr5ACpIlEKVguuzXEW0hGGUpFgtTgh6QbkfseaIkLy8IP+MW//ou/8mcQd/6J/bGB6t/5+7/0WRdsl324gJGaRAo8XWVU+IiRkhgiPnQLcl07jFLEGMFD1F02nsiIKQpc4zi4cURVWharFrmIZGPFfFrz+henLA8sbMK92T7D5AXS9ITttU2uPnqB8WDB8eGKuorcnUesDdhoWRsI4lmC55RWwGrmOHh1xa0Dj/ORpm7Y2MyQIePwVonKBcE6hBBIqdEyARfY3LzA/r0z0ixnb3OXyc46jz3xML/6q5/nC3/wOSabEh9qjNCEpiUzAlUklC5S14EQIlJJhOg+oAqBVQleNeAM+2+XFENDFJCuJzhjsDJQXHAsfOB0ZTguW1rRoEYBTjRr2wnJeiR4gbQBCIQ2QoBRUWCMoK5aNtb3ePK9H+alV16n9YKsGOCsw7kZUrcgJE1rSTNJkggEhihbomrIsMz9imJrgDctAcdWOiASkVXg0lZGEJrDgznl6Skbly8x3F4npoK17U3Wd4a0heNwuSSGAflowOZeZH03sL6rsEnJeE0x3BnQ5oZmuSKNhiAMJh+wtb6LzCXySorZBL+QlLMSPcyJQDQG6yONXWKdgxBRXiFCJB9KhLKE4NACskQTvesubhlJdKRpIoP1DBctvo0IBUIlJEkE2T2fzlJS1bC+4/GJxYcBRmqMBOssyUBw3/U1Nve2uuz/1BMiJKkmTTRSBrzzaJGhZIJQkRADaZaxe+ECTdMtuEIIvO+qDK13DBLdfYZEQtQJMYKSkuFwxNbWhKJI8d5x8eIeW1tbVFWDDwGpI4NiyHg8YTzewHmwbUXbNiiVAIq2aVnOFsynU7x1pMkAISWtragqwdpgg2I0Ih9vEoOirmuef+EFfud3fo/FvCTLEmL0WG8RRBSwMVkHITg+mzI9m9PUNSF6tJZEHEpFwGDUJloNQVgQHqMlSktOz+YsZgug5c0bd3n4iQ/z0z/3Czz9vd+DKTb46pe/RnQrVqsVs+kC23qinJENGkKULFdTpIrsbF8hGyiOp29jsoTR+h62CSRCI0ROEPDEk49xae8Kp0dn2KZBJQqhYTGvmJ3NWdUVB/eW3L1zj6qeEqMlOJBC4hw0dYsUEsEYQoFRA5K0QBUJ2VrGYKxwbYUUGmMyyqXF+wgqEoQgxogSBiEMQiYMiglpNugCeA/BewKOQTHkgx/8GNs7Fzk5OWNre5vFcoGPnigEPkSs9XjrUaIrcHjv2Fjf5Ed+/NM88vhjTE+mXLh2hcHGiGpZsiwbnnzmaZ5875MU+Ygnn3gcayvquiExOWmad4mQUnjrcLar8Lauu9XGkCYpSkiilzz44AM89dRTHNw7pm0rnG+IUSClQgiQsquKadUFHUmSk+cZdd0QCZjEkOcD1jc2WFUrklTT2obxZJ22cawWFRFH8BJ8RggBrTKE0hgj2VzfZO/CdXb3JmzvjJnPWs6mJWV1xmCYsbm1SdtalFQkqWbv4jXeen0f28DxQUmerCMU1E1DkVxgd/caq+Ye+bBBiZb1NcFEKCbDEkzLcqooUs+iXCJFToiCs/kJddOeV5FbVqsVro1IaTAmAxwheBKVEELg9u0jUqXZ2R7S2oa6hMRkGEOXAJIQoiPNUpy1GJUQo0ChAcXitCQcRKoFPPLYd/EjP/5plvdeYiOpyMebaDXi4M7bVPMZO1tDtIgEq7G2S5IjEikck/WUfOhYzhtsrVjNA/USvJ3jQkOS5GiV4n0APFW94vR0znCQk8hIVVqc6xJQ5xuUHCJFhgsLnI/n65oEBEJ0SQqB7npVEq0VMQq892itMTpFKU2W5gxHA3wIZGmK1n/YUZBC4n3AWkeSGIQQOOdp6u49FkhC8Fhf0zQlqRqRFQWz6YwQJbPZEYoELSV1VRFDACI+eEII59etIMsH1E1FCAGTJpRViXeWSCBGjxRdBd2HSJrmJGZAkQ15+qkP8OYbb/P4E4/zwz/yEQ4ODvjEJ36QC7ubSOWZL06oVpYYHVILlAukaUYbW0yMuLIi2RJMhorVkcGsSxIdSQpHOljxH//d/wKnHZ9/9gt88JmP8sbzSy4/fp033vot3nj7G8g2YXf8EFfe/SDXr55hzC2ahaJpZ8zOFFWlCacTfL1ikA1Q0hCipao9UqTE8zVZJCmhsQzGF/m+j3w/z7/2RQopsIcQBrv823/159/5gep/+t//ymdVrhFJRmsjUioCGpSEJCPTHkFgUuQIG9kYbPDAtfuZLmdI5ZFBUTnPpQsXuP/qNWazFb5xuKpGKkMiPUsHYanxRpCNPKSeDENMAz/8A4/x8Ps3YDTlnz97B1qPKDVGa0p3hvOexnoKvc19e+vcuXOALuD+64GdMVRngWUSkFYjpCUbT0isQNqagRTk2uAjKJWS6ZQPvP/DrOqWVbPkoSfu5/p7dvjC//4qX3/ua8j0kEANIZJojasdTkWWLnAy61pOWgiUEkTRlfRTHWmCQ0ZIvUFGyWRToRMYb0pOb9e4RqI01MtIaBzaKWjASInMPdNDR2ILNPa8xRsxRiOCYHPPkOQS61seeve7Sc0mB3f3kbYlNorhUOL8lEV1gtYZqS4wShOCJIgMYsRpjcN04xlaEDNHvj4gGa+R4WkGOS5VFCickvg0cPLKlM2NK2yvX+SoWlKtKrxdgm2Y3rDs31ZkzQgrAt5AccHiyoZMXiTJJpisQKUDdDLEZBsIlZCOMqqoiB6WJzVKJ4jhkEGegIjk+SajwlCVFTiDQIIWRN2SFJrhOEPorjLqIggtMD5FpxI9crgY8JWAKPA+EpVH2m7xkCpipSXPI/lYEnRAJw5VtJhcIHUE0SJ1jStKisuO3Us55Qx821KuzmjbkmExpm4CAfDBobXBNpbjkyOUkHjniSGglMb5gFRdZVWZhNpGVrVFK41WChsi3nqSJOXS3iWUVLzy6hucnc05PTtjWc6xzjKZTEjSgrZp8WGFCyXW1mRZxiAfUjUlrm3AdwGFsxbbGMbDMeNMsbO9w9lqzuHxPapVRYyO8VpGnmYIERkMc0IMeO8RUSAQtLbFOUcUFeCQQhHxSNlVk2NUXbfFVUipULpLCH2IrFYLykVDFJHKHvPlr7zM17465+aNY/7F//ZPePH5P+A73vcIT73/CY6ODjk7PcPHmhAd3ibUywQlhngfacolici4d7Pi4M6KYB2zs1NMknFhb4f7r14jesnNm7domva8fedJTEqW5DjfsixPiLHBKEOwHmu7ym8IFlwkBoejxceWYFukV/gq4E4bfKNYNJKq9ugEnG1wtSWRIGNARI/zDiEiSguapqZpaoTwXZtWKfI0JzM5zkWOTs6ISN718MOYLOXg+JhEm/PVWOBdN0Lyr6pXIWZU9Zj923Oe//pXuHvrbUIj+MDHPsZD73mE0WiH7/3RnwCTUVvLG2+9wZ07t6mWK5xrzkdTJNGfv7/nrxECaKUxSrOxtsZkMqIsu+7Z2fQIKQ0xdOckEITYtfuFkN8cU1BKIaUkyxMi3aiI0poYPa1zFIMcZMvp6RJlDEJ7iqHBWs9qZZEi7YI+LONUUlQCFySlkQQVaWpJjBItM4zOaW1Lkqa875mnefr9H+SNt17l3vFdjOzuU+QDYpRk6RhPSxMWbFwIPPDAgMUssHNRkAnJ+vqYhoi3LeVcUQxzhFCE2FK3FTFq2tajtejayD5FaYMPK2wTiV6S5prJmuZd7x6ytQneaxYzj9KSQINUuhu1UBIfHFVVEoLHJAkScG1DW9bYqiZSMVzf5mRR8qu/9mso5xkMCm6cThlu7fD4Q49w586bTMbrVJVHKNFVwZUmzQVKVzRzDV6DjsRgyZQl2hJjBkhpwHcJdGIE3/mdT+Gd5YH7r9OUnvFgxHCYs7m5wWp1ngSL0BVjpCBNs656GMJ5655vjgoJIQjB4/15NVanjIZjpJSsVqvzgFHgnKNtGoToxkzaxmJdS5okIBRKKRKTEmN3bkolFEXB+vomSWZQKpCmmmJgkabBB9jcmJAkmqqs/3CURYrz67S7dc4zKAZonXSBdhSEEBBSIIVCaU2eD6ibFiEkg8GIra0LjEYT7tzeZ7lYsb3+KJsbu8wW9/jGy1/lhedfoa5XgECrgkpapOiKFja0CKmoG0W6mXPtfZr9l1eIwYSr79vi8ruHvOcvJPyVn/5LtFXKogj80r/589w9nvHq4e9S+5bf/Ce/RTpc45Pf+xcYJxtcv7jD7/3ul9m/LVm/Jtl/2dPW6zz50JPMju+CMPg2YKsWIaCtPM6BSiXFaICWEd8ERpMdptObhFixUUz48DPv4re/9hV++d/4D9/5gerf/q9/5bMIiS09BMF4nOKcpW2mpEqS+ICvKwQOZx0iajY2t7BthXclUqYQI3XVdrN3rUdrhTIwGCrEWJIlgnrlCD6g065dEWOKQvKlLx/wwnNHqPXA1lZGUwYoPemu4WTqkD7gnKb1c65fe5JPfPwT3P8eePvGTe67pqnmIxYWCgNCpQTXcG1jg8VR4KHrE/brOY0QpEWOi57nXn6VJE+QScXxbJ8v/fZXeOWF19DmDKMkWS4RMSGEBhG6z/5ZCTaAEiC7+h8RiUcifEKqLc3dhLBs2djzRG0ZDjISLVguwRNZlV2Apckw2uM8OB/JRELwmrODiuJS94Gdv+bxAnwWiFU8/1KVeC9RQjGf7TOfnbCcThkORwwnI1Z1g3MRoxK0SJFKYjJFlgoSFQmNIFsokjpCYhBnMLu1wC9nNMOG6SowSsbU0aG0Ry0sZ7fusH19kygdzXzOar5A1FD4gsWyJtEZ5XHF2VGKHgkIgtPZiqSoiSqlrgWJHpGuQVJAszjDHy64/dV7GJlSXBmTDNeIq4Q0aaAWLI7nJKnEeUtUkUBLcALhINoWLQER0EagSFFtSkOFyAX1yuMbgRCGeL4QCadYLlqKNMPGQJIosqHAi4BRiupeQbU05ONAMYooAkkW8QZO9wPtTNG0FYlJMUYD3bySlJLxZJMYuvktrRVSCLRW3XxWCIBASEXTOrwQoAxKaYgQQ8D5gG09p0dThsMJ1gba2hK8JMsHRALOdjOjR4fH1E2J0jVJFliuaqyrUTqi0wzvPc757stIakL0bIwXbO/W3Ly7z717S7SRTCYFWnfzZHkxwNqWLE/ROmG1rKgaS912gZw8/1JR3zxu0bW6YtdRiLS00REDDNOcpqrZ2bvKT/z0X+d7vu/72d3axFaS46ObNNOXeebdVxG25Oje2zz2+PsIFDz31W8wn88YFXsgCkZjRZ7llNWC3csDNrd3OZ1Ouf/qfTz6yBUu3b/JpetXefDBB7m4d5k/ePbLbKxv8tGPfoyjo2NOT85IU0OILbNZjbUOrQPetljbIDEo2a1xSmpkCjIJFGlCJjXYhkBDzAU+0eAVsYk4C1mWkucG13pCDIQg6PoqESm7iiNCIgiAI8bQJY9JgXPdzN6yXHLv8IDFqqR1sJgvETFgTEKMkbouGQ4GXLt2jaIoSFPNux68zLCAYpTz0MMP8dijj3H58iPcfuMmv/m53+BffukrvP7ai3zli/+ScrZkkGXE6HEuQFQQI0rKrjPpA9okrK+vkScJRZ7Rti2np3Nms1MOD++dv78epcF5iCFiEoPSCuc8VVV1XQGl0Eai025utWlbYoys6jnOe4RQXHtgF+9bAjBZLyiXjjwtaJuafFDwwLUtQnmCFW1gt5cAACAASURBVIKjmwd44YCE6e0ph0f3OD4+AS9o2yWbWxPqEuazhpPjGZfv26Bqj4hUnJ0E0rRga3uN2WLJqjmkdTXBGu686Wj8GFtvdEHehmK6mjEaSKzNEWJA2cxZljWDwRrFIGU4HOCspGks2jiIkUR3AVNiEuqqZjTR5MNAcDnBC2azGfkgZzBMyAeKVdlgW9GNV5huTtLbFq0EIbQkiWIyWUMmBXvbFwntPVQzY2vrEnsPPcKdO/tsbl/k3vE9bt4+IEpD4y11W5MVhuBaggsIcqKVKKnRJqNuAip07W/QxGjJsoxhMaAsV+zv3yFGzivCtyEEdnfuZ31zQqBhPl0RgiKqrjppW9slrbEbH5Gym6mv6/qbgasQkp2dHcajCWVZUpZlF3xo0VWlnetmZOL5PL9SpFnetevP972AwJiELO26SHk+YDJeJ4aCatUyGBhUekoUHi0KbA22tRAjaZKgzmdcO+cBqejmrUeTEVVVs1zNeeyxxyjLiuVifj76kmGtRxrFslxSlSvu3r3JYnnKhd0Nlu3rfP63fpflYoXWirpZoVVBDBoXKpTMMaIFuYlMKmQJV9+7x/f+62O++IV7bK6vc/2966z8iGc+NOSrv3ebBy99hrdO/jnHh/DVN2/zT3/9v6WYjHnupS/yE5/4MX7qkz/Ds1+6wY/+7Kf44ud+m2d//0WKwrJcDBkqhyhW3H39AKMkTlpm0zmbG+vUzQobBEEokjzj/uvv4uT2fpd4JkvaZsUwhwtbA65dvMJrt9/iFz/zy+/8QPW//B/+s8/ayoIPFMMBNiwgCh68vIVuAqvjhtmsIc0SrJNYbzg+OMPXFThHK7pBmUDABUeeZwgliDqitSAfKIQMqDHkRiCcIEehcoVSmmBq2ipQnwgm4jIffPIZZnctVhlE7alD3S38QTE7c3zmZ/8t3nxN8OKr3+BkKkFH9l/SyCSgU0khDA9srhGmnmUbkcMRWjnaRU3wATNusG2Nrw0oRyG2yfNu8rjIBwQHIXji+Saa4BV1e97+kqGrcvhu7gzhu5afs1T7kmvXtkk3PEoHkJ7WC2TusU7SNB4lNF60+ChJh4G8gNUiIFNHnoDQE+rGkSYeJyJrg5wkDyACi4Xj8u79nB3WSARHh0tWS8Xp9IRIy3BYkCQ5ShdoI2nbFVvrI4RLaFzDW/t3aBtHeXqPJIvUJ1MWbUWxk9EuUvISYtoQbMrZa0s2L+dcfiblaHqEcIpkMuK4LllFgRk7xmstemBJtgLruyB1g1QOMZbIuERULbPnW8RsSSNPKc9Oqc7OqIolMhpkKRld3KE5W3J2a85oJDm7vaBZNpixwIn2/MtSUJ8KPvGhH+ThB69z8+Y+2hhitOAsWhmSoSfKCELT+q6SZbQiOo/JQZJAOSIQmYwseZEiZIJ0OUcvtMxuB9Y3xzCIqESC8OAlh1+PNEuJ8zUiKqToMnSlJbuXdtneuY+9vT2aqqRpKiQRKUCbhLZtumDGWhACjzjfvCJorcUkKXmeYpQmMYamqmjb+rwiK84X9q6NVtcl49GItbUxw2HBd7zvKQaDAcvlnNA02LrtFlppUCZQ+wZH4L77h5hCYswatha0ztO2trv+rcM7hfWWPM/RImEwXOPp7/punvngd/OhD3+Is5NTjo/nKJUgpUCgEOjzxd9RZGOQpqustgEfAtPlnFdevsl3f+BD/M2f/5u8/cYrvPTSCwSh+do3XuHl19/Eu4bnnvsSX/ny17sFSmk+/Rd/hu/8ro/ywouvcHp2zOb2hMWq4tU3bnByfMzTT32Y93/oI9y8ecBrL9+mtlBXljSRPPTQIzz+vg9wcHTA22+/Rtt4rl9/hI//wA8gleLkeEZiMoT0CKnZ2t6jGBkcKwSeXGckaUoTPEk2xJgcX63YlA0XRpDmEecDy2VNXXdBvBAST5dsRN9VHY1JkHTtRqkiMXQbc7yvWFU1VdUSfLehpVwusW2JlgKlNKlJ8NYhEJRlyaVLl3nPex6hrmuuPPwQa1ev8cCDj/HQUx/iyuMfxdcrvvC5f8iF+y6gfY1dTZHenl+jXWXFeeA8edLGkCQJUkm00Rgl8W1NDIHlqjof3Ui6SpOMmCQhCokUoLSibVuc86RJ1q3bweN9F8Cs5ku8DRAEMUSEUGxubbKzvUWiM5TU3Ll9lzzPkSgWsxnhfEPWZHMdORgSRYavK5JcITPB4e0F1dkCjQTjGQ0nPHD1Ed584xZHR29zenaT/Tv7jAZ7PP30h/GhZH9/n+l0yWo5RWmJUQWzuSMZ7PD0E+/DyYbjkwOO7q4oW8GqTml8YD4tsc6SZ2OCi1hX0TYVaVqQJgWSSAgVUkq0ASEjTduymFfcvFFzfBRYVYJyFWibQJENISjOzqZo020eEiLgXIMUkKUZShkECUam+PmKOye3aNvAejEEA7fvHpL4hDu33+LO3RsQFVVTdpuOpMa6FiECRT4kRk/AE4AYBN5WONeidNZ9X9FCjFRVTV2358kLtG3Nd37gA/zyL/8dbFzwj/7Rr6NEhgs1UgUkiiwr8M59c7OoUuqblfQY4/lonSJNU7TqNvHW5xsBTdJ9FoxR3WxxkjBZm9DUdfe71Jqq6jah/atEu6pbEIK8KJDGsCxL6nrJfHHIaDgmBs2lS/fRVI7ZdEoIFiEUw+GwGztQBim6YDrPcwBa2zBZm2Btg3Weo6MjgvdEESnynMWqQuruNyVl1z1ItCZJDXVTs5hHjHFEDEKk7O7u8pd+6i/z7LO/DzGiQ4OSgsq2EA2BiDcFqzLl8uUhH/9UwR/8Lzd55OH380M//gwvfv4m3zj+Le7Uv8/pzQU5L3H1qYrV3QXhrEaM3s3R2Ql/8JUvoeSI3/78P2T7yoTNiaA8WaJjiikE6xsVbVxSrmAwXGe+OiOagMkTat+ydWGda9eu8Przr3Hx2v384I9+sFt3qpJvfGWfF54/Qw8Ev/CZf++dH6j+J//Vf/BZZyNJluOUgUQhGTI7OGF+q+RsGUgSQ7mscQ2ExuDd+RC1gUYGpAioBIL0BOdIswxMipIZNJbDA8/u+hbDNUGapcycJdgWX1kGgw3yQrA7WmPjcoFdbXPhoYRZe5vp7SULYRDeo6ymrle8efQFlm7FYDTheHqX3YHCl4EqVtjYosYt4aRF3DyhGldcGq6zKQrevX2d0HhkKrl48RLlrKb1NdPpAp1otDa0zjFeT8nVLnV5ig6aauZxSNroSTIoUkNwkhjB6IgnkiSBUbLNZGNEq4/QmWS5ErS5xVmBrRwmpuAsQnX12CyFYSrQiSKkATPI0FVguV/jlGT7miQZOmwKB0eeohhjK89zz77F2sTg/QwjBuRrgXzQ4MOS2aylrCNpkTJME4Z6jWG6RVNN0bbCaMnWhTEHs2PkIGcVPc5CupZQ+RntsUYbhdkQ5MMdKrUHzZyjOzcp3ZKxymhXDQvnyYUkzxKEcFQBnLIoDcpmsJ+ynELdrrClQ6GRE0edeIZGI1aKptFMT2ZM3zpmMhTkI8HhnRnrW4FWeaTMkY3GCY33jkevP8N7H/4IX33xi1CcIY1AiQGzaUmwgbyQNFawarrF21cpifFYadEmkIaIVopQJZi0IClaFseB1kvasmVSGMZbkixL0VqyeV9kZ2PE7ddrtFa0ztK2NVqltK7h6OSEo+M5REdVzomh28BWVSVaKdIso7WW0SAlSbNuxts2hBBQSUpRDEmkROlIxGGMwHsLRISENE9IM4UxCU1Tk6aGIh/gveLwYM61K+/m5GTKsqoxyYAaT4wWJQQ2QrSG07uW6SxHqzGr1RznHYiE6CVKCnTSBfVZWjCfLqlax/7pGe969FFMlvLSiy8yXkswiaKtXTeHJlqcq/E+UBRDlO12zl9++GE++am/yO7GELs44YWvv4k3a5wujnjjjTdwFdh6wWSzIM8TtJIYHM6uCDLw2hu3eP7FV1CmZWfnAvNFC2bG9rbD2cDxkefw7glZonjogYucHdzlvvv2+Mmf/BTWaYJUqNRx460bLOdLtEn56b/6Gb7v+7+Hbzz/HPv7++dt68iynONVxdalgEgc02lgPNgilTnzkznOWXb3tpiMMhCBh9/7KB/44HewuTekrE5wTbcWKhQSff683UY6pTRSgHUV591ylJZIpSirFVoLRqOCRCtEFOAFwXus7YJLrbtq1cnpGauyYri+w86DV9m+v2BWHXN8MOXF17/KrcM3aRYlUgekCiyXK+qmJMu6gMBaz3iSE7BY67qRIvd/UPdmP5an93nf591+61nq1NZdvc30zPQs4myc1RIpUQtpk5EjWRJExVFMOYkTOHHsJIBjx0gcMFe5MJKLIFdG4gsjCZwYShBbseRoMSkJ4iaOOBxyODM9Pb1Vd+111t/+Lrn4nWkJ+QuYBgpodHUVTlef857v+3yf5/NYOterwbapSLQiOEfXWxDXyX7ZbwScIxAwJsI7h3N9QEYpg5Qaa3syhBQKUATv+4uMEEQmZXd3G2M033/7I5bzgtFkhLOauqrQwuDaQGtryiqwqixF2RGlYzySw+OT3j85mOBMRdcGBAOqlaNpTnj6xkWeeHyPuggs5zWN1zz59HW6rqEqViSpQXiFcw1ZkpLljrOTBUV7RJQ6QtRi24AtwImWtukQIkLKfkgVxBgT48KKJA3YpkOrAVXZYtQQJYcUS0ueD4gSi8Vx4dIQYwJd23vpu2ZJkqS0lQYCXdsHh5IkoW4qhBRUdYUnsHv5MmGoUYVlM9/A6ZTti5f55b/8C0g6ZkeHDHKBEJ7O9qo4IULLeP0886wqgTQWLQJaJaSDDASIYKkriwCcb8nzhChWbG/vEEUpGxtb/Ivf/irv/uA9qnpJliY0ZYvAkyQRkj5E97Ga2quUgizL0Fo/8qT2FoCAMaZP0AvQWpEkyfpSY3HOU9c1PoT++eU9aZquv9ZijGJjsoHtPMuiZD6fM1vMSTIYDyY0paBtHA8fHLCYt8R6Ayk8UkJTN0B/wXcukCQxdh0MjRNNZ3s6i8cjJERGo5QiifvzPE37jZlzjra1KBUjhaSuWzwdqECkU5R2tI3nm19/CxM1KB3jmhaRG+I4Id+GvU9GjLYryuKINtP8yAt/mf/81/4Gi3lFdeGY4e4dhluW55++wKd+9CWGkeO3fuOM4XAXnRimR+ccvvcBjJc0B+9zfm9JF1tWtSeSmulRTbcUGK1INi115RmPJ5hEUlHTBk+QgcFgyP17R/iuRaeGm3ceolSgLs5xrWV8KeBdwn/61/7OD/+g+r/9r//NlzutqXTCYKDIQsDKQBkq8C3RxBIniuA0RnSMt20vKdJhG4+MQAwDsRkhmoYOEEYQhYgoapme1LRN3adXVyWXH7vep51ty2gjQpaK8STi+OSE2ek53/7uexxPp4yTp5iXpxTLBp0LhHBERnL98nWKacH5bIYtT0k3x6yk4ui4wnuJST1WW8SOxEs4dQvycsKmjojihNtn55SiIYkgHirqGrSw5Cog25bV3FJZS3UO3UHvv2w16CyQG4ESnjZoyroP9kgTQCmcKumac/JIkW0K8i1H6BKCavEBRCdpvUf3Fkp8C84leNdilGZn9wKzskbmHWmWMxhZvNPM7xlsa+lkTOiWyE4i9yJUIclzhUgVdZvQtTFdVdOUHctVzZUrFxhmmnrR8NilS1y7vMvh6REi22Bz5wohBEZpzkAolm1NiWYwyRBUOCGROkNbx6yrSSKQzvY+Rtuig6L1AhM82hhs04GTBBRCBLoQKJeeeuXQpBRdhVpKci2osoa6FnT3PKKKubC3w+gZSVk5mgXE22BxaCvoZIcRjuE44d6H3+e9H7yNHJ4RS4ntHL4LvPniq1x/7DLn89N16tQyGjpSs4t0CU2oiGNBpiWzqaOaWnZ2NGyVLO8lGDumbEtsiLj6WMz776zwbsjO5gbnc8mDD+cEK/tgipW0nespGM6Bb5jNDkFa2qYmjjzjcc54Y8BoS/crf6/6G74QRJHuqQCuoW0qirKkrDuCCygvSU1E07UEFfXbjSZQVnOUEjStZbFcsljNmc3PeO/971GWJUJotNRIJ8H3qzoRLFJ7glSkSYLt+vBE8BJvPVK3pHlvF/AhUNUlXWexXUNbnXPznff4zjfeYTE/Io5zuqYPh7Vd0x8aQhFQ1K2l6RoEgvPpjLqO+NVf/Xf40q/9Ff7SL3yB+XHJ/VsLjo7uo0zHtRs3kBFc3N5hczzGCoGXKc4JhFywOclIIsOqmFGWC7rW4WPJZ37q83zxl/4tDAnzec3hfM4rP/ppfvmLX2Jy/QmW5Yx21XD9sR9henTGw4f3KcoVZ5XHRCl2Mefk7IzWNyjRYb3CVgnVClZLx+7mBZ64cZnHn7lGbCJO94+JzIA2aM5XistPvc7F6y9x/+EJp0cHCKFobb9KD4R+A9PLrMSRBm9oa0kIHtt5vIv6cIhsMUbSeUPV1ARv0VHUq21dh1ISIRUq0jjvmE5POT2fsX93yd33ptx85w4fvv1djn7wXR6++w6nB0dUy4qLOztopZnPWl5+9VluPLvH6dmcvSsX2d4ZMD+rEOgeI+UdKvQqdpInSKMIvvfzfezdFeuQmNa69yV2HQBR1OPYOtuipFwjfQQuOJTsBzKHAxmYTafMZlMIFttKhIO6KOjKljzN0SqhXK7I4ojtrQF1ueo9ik5weP+Yi5s7DDJFtajBS4pixnR+RNtZqlpy5doNPvnq8zTtnIf7t7h954jNzS2efuY6d27fpu4cTW1IkgHSJJydPCRWDXXV0tURBBC6Q3gJ3tB1vdIopUILye7OBa5evkJbOYqiIRCIYo3zHdkg4vLVXZxvkFKyNRwifMpqWTPegK3thqt7A0LrKJcdnfO9p1QqmrbD2j5wlcQpj1+7jkMR1bDqun54yydMNgdcufgk6XDI9//4D8hNRNUIrLBc3N2iaKY9GM8K0nyDLI0pVyVRlPQqI726HUURl/d2KGuLd4oQWYTX2MUMjOKdH7zP+ekdXL0iNprWdly+egmt+9da44r+PAngg6K1ga6t8XVL6x0tkK7/LZubm3163jvKqsDaFucsTdMQRREQaNsGY6I+jGcMk8kEHcU0bUsUJ0wmEwaDAdZ3VFVFmiS0ZUee5ygTaG3Zi2TSE0SL8w6leuyVVhHO9YO0EH0Qq/+9IjiPtf3zeJAPkLIfQltr6bA467FVh+88wXfYrkGIXglWkUGaFN+sMDrG2TnLWUHZerzr2Ly0y6WXrrL99C4L2aJGJU3boLTm7octp+9Z2p09Lr+0xere/8XtWy1PXnmW4mDMa5/8Fb7+la/x+//8Dt0AHr/yGv/BF/86X/i5n+Xtt7/B2fSQ+/stTnhs0xHbDfJUsXW1w8eBsoQoksRxTxtwGLJ0iK876rKkbleoge7tXWZEvlFz8INzSEasVh1VWfP3/ub/D1b//+0/+gdfJk4YxBmuCFQrwzjbIAo1tqsxEdBpgm3xnaJpweERqacoNb5OGA4Vi0PPlce2WdYNtqmIpCJELZEB10qqukbJwOnhrGfhBYetA8W0ZlUGRK6pKsswFoSo4ng+58KmJh/2CkGxDDQoKrvC1p66PSFONEp2zM8lTWOZ7HiCHxAax93vSWRkSAee8mzKwweeebkkG0GnKzoT40OLDoJYaAwWozzjzQs8PChRpibUCWIDFhUkiWCUZeTDnGVZEBnYUENiA1J5VBwxGEd0tuHihU1kXFPVHXUFXW0wUtB512N8giBWGqFakkz2L37nqKqCNNEkg5YgPcuFY/bAk6YakhoFJK5lc2/AdLYiTT1JkpNnEUY0bA4nGJUyGiYUsznXdp5gMNjgz33qx1lVGmdjyumc6rwk1yOaeslpUbC3t8NGNgAXI82IVdeB9IjQUS1bjBJcvrbHzs5FyvmCoq7RcUyeZWADUaqpmpbGeoJwRDkMt2JULlhVDi1S2lJTtE3PjI0sow3Noq3Z2+0YZYrlecPytCQdSqKhQySK1llsCxtmi0SMCfGCbOIJSuCtp3wQmJ+mCBFhw5Kje4q9SyPSQUuWtNTLDB/6YUpWOaEVdE6yNRkhXMTDjwpwHUnc0paC+VHE8hSO7zY8+LDBlwZXOiIToVXUKwZRxGCQrQ9AQWQSbKsYDmOcDXRdxGJVcHKyWB+W4KzHOXp/pxc41/tDn33mWZarFV3jwXu0SbBBgPJUdUUQDUkqCQS0iTDG9KGmIFAywugEcLhQEXC0ne3JCNqAj3GtR2uPMQrn/drHJbHW0XVirfgFrGtxrlsr/THSWKwrCBiqoqZpKnzov7f3bm018wipQCuQglBX7IwG/MQXfpbrb/wo8fYeL77xAq+/co2jh+/x3T95l9VpQzmdcny8z4OHZ3StJY46vKvZ3tplc2OHjdEum5t7dM4z2dqgXnoev/YGL7z0WTYmezz1wnNcuXCReJjz9q19Prh1zrPPv0xqUkyaM96U3Pvoe0zPThnGCZ//i3+JX/4rv8Ti7IT33/sALyAiwocG6x3GxAgtiBPD8y++yKWrVyjbJZaax67u8OKrz3L92adYLlb88R99A9848qGiapd4FyDYNQVkvRIVoExFnBdoo4iMZOeS4emnL5EYzbxYkSae8UYgziRd3VDXLcZopBR9glj0fkgpwbc15fkh05MDLlxMuPpYhhTlmncq0FpSNQ1xHGFMSVM1PHn9Cd547QZNUXL31glV069yoyhC65i6bWi7jshkaJVS1iXWuT70t6a5/H8/+uG1T7JrrdFaP1JuQwg42/REFBmvrS0SrSOqskNJ0YdUVUtAEOgYbgiaxtF1ECWGjdGYrmzY379LkiakowHT6XnPuw39YCKlQxvJ7t6Qk5MjvvaH36OuGuJMc2HvGjtbT/KV3/tDAo4Luxd49tkrRKZFhRxHRxNSOgu+8eRJSl05lnNoWovEYDsYDDLSJGEwGDObLphOpxRFiVI98SCO+8BPURQsFkum0wXTacHp2QwTabqyITQeWzbsToakSeC8DIg1Y9kT1oFHS9t2zOcz9u/fpypXLFyJVgaSmPv3bnP75n1u3nqfabmg8ZbTZU2QOeWiRWEQIllTO/q0uzGGPE9ZrVbUdY3WmqapUdIzLaZgO4ZRTtvV/Htf+hnKg3vcPixJ0ghHoK5632pTN6yKGoIlNglGa+o20NkCHzqQEhE66DpkcGuBoveEeu9ZrRZ9cG9N5/yzn+tZ0z3Oz1pLURREcURZlj2/2Xvm835G0EpgncO7sMarCcpq1ZMDuv6cE0LhbB8CV0phdJ8BiIzBh35obduWJE3RUURV1QDUdQ30gUCCRgQFQuF9h1Q92ccHS5Dr886X2DYQdMLFGxtcvfEYb/70q1x8XGG3ckSW0RQPEKbA1iXVwQaPX/8Eb9x4imsvdGh3iwvjLU5PZgwqwZ/cOaDY3+Jzf+GX+cbvv8W7d27yxI9c52d++hd5/c03yUTGv/z1/5upPSK4fsMmhCeSHhlsjwlNBHEk8U5gbU0IkuH4IiZWeLckiIDQAzY3J8TJdcY7gnJxyNm9mqvPXeF0f0ESS/7uf/Rf/vAPqn//v/v7X1apQdmI6eGUwcSQDiXW1iwKR1dKtJREylEtBWnu1kELTdtYdrYj3ErgK0+SpUTJmNh0tM0KYQxxJPsbtXA950sIpLLkqaKtHCJLUKpDdB0qBTsIuGLIP/wH/xMucgRhuXx5j7P9Yxye3Ysdwp7hlaUNKZGUHB7PkCikcf0TWPieHxkpRGX51K/FrGK4PZ2yVBaLZjmtsac9hmRrYpgftlQrqDtL0dQ4p3jmhT0aJHWnMTKlKT1l2aCNQdSe5kATCoWULXGuEAoyHfPBNyrO7k3QpkMqj7ceWztUDBsjUFHMamYZjkBFfUChWLUoTZ9azR3zuWB+FpFp2Qc/opzYaHbTMdZZGjpWs8DpfMFsvkIbw2iUc3J2Tut6csDj156g8Q13HxTcevCAw9N77Gw8xovPfZJVe8KtB7dQ2rK5cRmjN+isR6mIYTqkbApULtkaG6I0UHUtJ4cnbI0TTCrpnKCuFMEoLBHCZMRp1q9hmpaqbsgyRTxpqU8MeTykqRoiBEne0JqW8UXFIDLEuuDkQGFEjE4Fq2PNaiUZZv1KO7cS21TYLlCeQD5p8UJTH41pm5p79+5TLiTzk4K2FmRxRBYNifWYEBqCaOjOQdDRBmjLivlRTdcGhvkQbw3el9RNfzgbIQltw9nB/BH8vqr6g38ymfQ+q659xBx13mMdJOkI6zxNt1YQQoRzFcqANgrwONcz9pqmZHt3g82tEUnSKwkHR6d9mKlrsNbjO7v2kykQmsik/QrNW3ywIDxKZGu+Za/ca61wXUDLiDwTXL6yQ1GW/cEsXP/3XEACIXSE0F+eEJ40lQTRr9pD6B9vFClG4yFK9ZD4EHq7gA++/9m40IdqhEES8fqnPsXWY9dZYWmRDHe2yJMhn//MZ/jSr/0CIpV8cOsutu1AdLgOgoXJeMJiseTw+IgHh/dZFmdkgyGJHvHgzildMmLlPe9++ybRSLFxOWU6v0uz2uf2D+7y7ru3WTUte1duMH14yt277zOdT5mWFrW7w2Az4+TeAQcH5+hIQK9jkeiMYtEwyPe48eQnuf3BTfbvHvLZn/1Fbrz5MudVhbMaJSQnD+8zPZmRZDFt67CN7ocwr4B+5W87uLCXsjGJKRa91y6JA1FsCEFj24Y4E8SZw7UdkoSu7f1+rAcOgLIosJ3l2hM3eO7V59EDy3zVcffukqLuL71tWxOEoKga6jagVMyFS5fJshEffnjE++8fcHB4ihAxISguX7nC62+8wqpY9R5bbwkSqqpZB/HkWpHqrU09johHq12l1Bq95v7MRx800kr3QcLgGI2H7G7v4Z3E2Q4hLMFHCJ8ilcJEA5557gZt13I2XTAYjdgeT7j30R0QcPn6VYqqZjab9hdE160fk2Q0StjeukBTNwRKkB349AAAIABJREFUXCewTrFcdSyrU4I860tOYs3FvUuELuG9H9xERSmdb/tBWxnSQSBY2BrvcunyBWaz0zWKTuGt5/TknMXqnPAxI3a92l6tCtqm699fVM/U3t66QjpImS3OkUYjVIrzKctacDqvqa1DKklnLVJK4iRhPN4Aetj8ZDImSSNG8Zhrly9y96M7iNZyeHZI8JbR9iZaD3j1tU9y+84HBCeJ0l4UkVbghQUCq9WS5XKJMT1FouscWZrTdo66qsnjhHplufrUk7zw9BYfvPUOi7DNIIIIw2MXJJ/YS9FFS2Y0w1RRz0takYEv8EGhCER4hMlxkUYE2fvXJcwXs/XQzFrN5FHwyvv+vOh/9Yp9r4ZK6rrEud5a1NY1SRzjg+svw4T15UhhbUfT9Or2n16eAnGcIIQiimKMidbna7/paduGNMtwzrEqC7TWWGtRSj96fqdJgtGKOJF01hFFQ1QEbduB74OZKkTE44Rn3siojaZJI65df5KN3cvcOnjIeNxxZdMyHCj2b2VMNib8+Gd+iZ/7uRf5V9/4HV7+cz+LrQzNQPLh945YiNs8uFPzwk++xuz9Dzk4usXFx7aou5oP77X85h/8FifFV2iKPusT7DZZbtjablAyYn6aE0WWSEc40aBETAgxdWfpmsAo36FuO3YubxKLLRqvifOCtjrg9Vc+g0gEDz48wRjB3/1b/8UP/6D6P//jf/RlqQpCJbi8sYPUnkYplAnYqkDGjsgI8jQwP/JU04gkCoyHBuNHHB9W+K5niQ02IqI0kEaXUMmC4AzSdNjG4jqBNp4oBecEUinSgaAuLc4DSYINQC1plpZZcQpiwuKB5XOf+Sxnh1PynTkvf3qTB3cUo82W1cPAw9uKaBho2g7hwaSSze2Iq09aFrOIeENy4RMX2X/PkfkBrmwQXZ8M9E6gTEB6R2gTVsuOugo9RqgIWFFwetKws7tHmo5YzTuKcoHRim4ZaBYBu0oZ5ynBdcRpQ7vwtNMB5WzO7EyQpzGHN2O0lGxcFBTnHhUbtvd6UHNdaeKkV7KVDmS5R2g4PQIlNcK3pKOkL2KQNeVh3l8SogJpJUUbsE5QVS0miliVDdb3QO0rl/f44P4+xeqcSWY4OrjP29//Lq0e8Kkf/4sc3Dvm+OSUk8MpJw/vc3JwwuUrF1AJTOfnaDLiXFO0FdZL9rYuYoxHxz1zTgIulBitcK5FiBYbGoQSSCOxosNoQzsv6coSKT1d0ZAMElzkCc6AbFAyo6ljImIckh3RYs9rkoHE5y3MLE1lKeYdyxPHzqURZ8cd5Ymgqhx5HqGlQUlJu9IU5zH1QnH8cIqgQ2twy75JpxOCQZTgG4lMBGhB3Xm86n9+xvQrI0/HeDxE6l5hiqIIpQSIwPHxMU3TMBgOqLsC5yTWejpbo6OAkAHvNNa2xElKEmdUZU3X9gpekmRsbW/TNA1PPvkMr7/2BpcvP85wY0hZF/2a0QjSJCWKeianc4GmafphWvRvDEIKui6scVi9IqC0JM1SiqLkxZdf5Fd+5Ve5e/eAk+OzR54trTXa6D40hgTR49CUMnSdxXkJXvaBwKZeN7dERJGhbe0aYG8YDUfIdYpXxDGz1RnSOl5/9Xm6VvP9t+7QNYZXXnuel157kSgZ8Fu/+bu8+4O3kdoh6ZXktnH9m5yssLYmS3PyPCVLNlEy4vJWzJOXtnh4fMzX//C3+dq//A3ioLhx7XFE6Jif3yOVBU9cucRsWnPr5nvMV4e9GlwtWTWnTLZSIuE5eniXxrZoGbG7vYdCEkTHk88/TZSOufneHVbzMzY3J5R1x3I1YzIZURUd7793k+OTQ6xr8K5vtlIqBuEf/Sz3rsS88MlLVIXmow9mNG1FVXXEZoetrT22tjaIoh0e7tfMzxwBw9b2BhcubCGUo21KAh1ZlhLHmoOjc+7ePqJZlMSt4/reFoPIcOfDOzSVXYeXatquJE4GpPkG79+8xbvvvUuDw8QRwfWXkytXr/Haa6+RZiM8huPTcxaLGXFk1sxP1opheNRClWX5OpXdq1Nd1z2Cv3/cRCSlJNIxSZqgIwlScD5dUNUVcdxbU7rWEkQgiIrWthwdHfStcG0g1imHhw+p24q9KzssixWz6aK3KriA4E/VuM3JHs71xA4tBVVzRpRorj25STYqWRbnRIlBiBGLORyfHTDeSdja3EajidQ2Ii4pq5rYZMSRZLGoCNRcuJzQNYay6giyRsmIIDqUMVy4eBFB/xqUos9ajEYjqqrChxa5zh5YbwlSUNmOs8WCNgSM6csrlO4LInrvY9N7TZFUdUue5PjWUyzmBNfx8idf4s03X+HWzQ8IC4+Jdvj8X/x5EtNx59ZHqAiC9CgF1ttH/uKAhyDWFw2B1holDXSCxlXIRDDOt/nDr75F0QqSjQFDZ3n8+hO88eYXkGaXsu1447VXmB1M+atf/CWiMOODu4foSBLpIXWIcaIl05rGtnRt01ua1sPpx0Plx+Grj58v0A/PH1tK+tChRAjJcDhgmA9omqYPVnWWPMto6prOdmR5tvZKW+q66X3haLyDLMuJoghrLbPZDK0N1vakA2MiAn0blQ+BPM8JITwqH7DWYtsKZKBp+uBr4OMNWMDoiDyNKMqaH/vXr9LpFfPVBJkqjvennJwuSOLA1qjl0mXNH//BPdJxyjOvPcXi7CErX/L5n/gC792c8vDkJsNsh+OzD3F2xmj4Cv/aT3yGg9MHfPWr36apLN/4rbc5OzqglB8hkhWjC5rj9z2+AylbBsOEYtlSLA1ZDkIJhNRoHUAEqhLKpUPLiM56Xv1zP8mzP/Is9w/uEThEi5RnPvEaZtDxwbfuoQY1f+9vfvmHf1B97MblL0/P5rz7wfcoQ4uMY8gidJpRz1e0tSG4wJPPJFx7IuH2Rw0uQJJGZHlMUXUkA0+SK+bnlr3HNagU6zKK8yVlBXEkqQrLcJRw5eo1BoMx0hRESUw2TqnmNViIEoULHTLyzM7P2RguOD+f8/xLT3L/1oLSPqRTCY1c8uQnJBsxPLjjYdBhfWBzDJvbCTU13kdMJoqj/Yb3v1lTLFekW/1tWQhPLTyZ0gij6LoWZz1CB5AeW+WAoyzBtZ4gBEmuSAcRRq3wrmM0FsS5opUBLRKyNMI5ycP7Htf2oZMQFKsTQegaBhsCEte3PbWW4abBB9tbK4InjQ0mcpgkUK6grnocVpRLFkXHzshghOP+foNUDZt7GXQV1sUMxxGbG2OkjxlkG3SuJU9iEqmYZClP3Njh4ekBSiYMcsvx/vt877vvsGoWiGoFymMSheo8oRJs715kujjE+4KqsnS+JE8ijFCk+QiV5GxtT8hz2ftc6hLrmn4tbQMihL6xjASpHMOhJskyqqomHsTIVCPiliRWeD+iCktsK4hshhoYrugVu1pyUmniCNq5JYgMbRQ+eFYrEFUMTrJ9MQdZ88pLn2JrssnhwX06O8Pasm/CcYpY5rha0OJROifWGZvb2zRd/9ida5BCE0KEDyC1IXiPp1uHCBRSSYL3VFVFksTEcb9y61qHlC3K0IPPvSRJUkKwaB2jVNSjYQZp/8bctWij1rD7Gfv3H7L/4AHf+Na3aJsaFyxaGYLvm7hc6NuMQnA47/i4ZkLJCO9ArNuOvIfOWrI8R0eGuqqRMuX+nQNu376N94LJeHvNQGVdWKHXCqlnY3wBfIy161Yz3fuAP1YdqqpiNBr3DS+u//Pr15/Ae8uqWIHQSDQP757x/vdWlMvAb/+f/4R/9r//Jj94r+Bbf3LMV776Pb7z7T+iXk3RQlM3gcefvMozzz3FeLTDjzz7IpeubHF+NmN2XjJfHHLw8B4iGhK0YTE94q/927/KJ25cRwxSnnvzz3M2L7j18AdcfOoTPPOjn2bRHaKlpVqUnB09oC1b9pLL5GbCoqlZTZcU5wuk1gitUHFLOmo4PTrh67//Tfb3P6RuKvI85+UXP8HF7avc/vAB3/6Tb4EJfPonPsUgHXB0cECa5oTQV9t2rSfLIl599TVeeeUzCCKuPr7H3qVL7O+fsljOWS6nJNmExbzg+OQBcRahRMRjjz/JK6+8jvdwenpO1wWcA2sDGsEg0kwmW4wubFIpz2DrEo/feIwnn9ojEjGuBaMiZqclD/Yf0DQFWZaDd3RNjZISE2uMTnFWceujO73HuVohpWSyMebixQvMZrPe/yf+lEU5GAwA1mUW4dHa/+NwjdbResjtcN5R1x3KSJ557gnyPOHo8Lj3gyqL0A1NI8jylK2dUR888wrXOCyW5156ASsss7MZtJ5YqvXQ5VBKoDRoJUnihPlsSVVaZFB0ncNEWxwfLUjTnCwbonWKdZ44k2xduEBTWZbn5wxHS/Yuj3j8qZyiOqUNC44fNvhg0VGgLkAI3SPKQr9hMMYwHOYsiwVN1SCVoq4rqqpksrmBVI66rNgcb+LaDmcbcBYtNEpodGTW2KSe85nEMe3a0jAY5DzzzDOsihnH53O2Lm6ysTNBxUOK80OC1+RmQc0Zv/l7v8e9+8eksUF6ECKB2KOFpm371rrhcIjREePxmJ2dXZx1fUDKzfABxuMLlItjdFKz9BaahJ/+4hf523/nb3H18oR7t+4zPT5mMBGoYUKyfY3bb32TzpUsnaHxLZlukSFQdQ0J/euo63p6SBzHj3irH6vvIGma9lHYCsDavtkpzweP0v/B9/XDeZ4zHA6ZTuc41wf7sixjOBjQtn2zXF880PtPre36kJbvEXLGmPUGrKcTzBeztS2np3OINddVCIhM3IdsAWOGVNWSl199ljQZU6walFkRnEZFGU//2DbW7eGbDNdaLu9sUzUr0mSXYA+Z2nMuP3GBn/ncLtg9hnnMjatvEI02uWQbRvke8/oud86+ynAw4rnnL/H8tc/yzd/4Gn/0lbfoygB1zWhrhZ97EhV49gvbfPTVComlLhvaNjCeDDl8uCCKFNFgif3YNxz6jY5tLV3TIMyIZHCZa0/vcP+jtzl9eEhLysbGNSajhLe/9jbprubv/vX/6od/UP3UZ1/5ckLK5pWahSvJsx1Cs8B0GtW2FG1JWTpWM4VMW5INhRkmTFcOPV4wGnmKlWD7msMHx2wm2L66QZyMGEaKBw9P8V2fzBuOU/J8mzu393n++SeZnzo20i1UpJielyR56DviFwJjM17+zGscnDzknXfO+ORLj5FtfkQdluzd0Aw2xiyOAmcnK2oXUPSVkXHuqSrB/k3JbFojBmBiT2oUna0JMtC2AYlnVbj+hmeg7RTWB1QEtuybMcYXBLEMrMoaK5Y07TlZJtjYiNCxo+ocKoqwxSWidIZRkuWpwTNHaw2hxQhBnsdcuZHisgphNVEuIO5QPkdKR7E0RJHv4dJCUFV941c2UNSdR2nYzDJsA41wKGHYvDBgelSTbimGmzFZ3g+CbXDINUB8lCeYyYD3v7tEW831p4aI1HA6ayAsGEY140zSBEEdJNpJVicLmrpERJaWgiTyGGWRtqZpS1ZdRQgCgUTGYOINrHNI2SeICYEsivGNQ3sBkUWlHkxLOgHyDqsBkRI6iOMKrxSTYUyzXHLv/oxJ4hkPHbcXAi0T2sYRvKWrITIRwq87obO+R3x76yo3nniWO7cfoHWgrQ1aS6JEMMh2yONRnx7NR6Q6R0pB7UqWyxLXOBR9oKRrCyS970/rNfrKxHjXq5YfM/o+rhg1RhMnuv/aOuP64xdRpma1DBidcGFvB2ctq2KJ802PuRI9YzOKBEpagizpXIU2NYfHpyRJQMiapm5x3uM9jEYjmq7BrUMZzjmSJCbPM+qqwegIqfp2OHxAS4WJNMfHhxwd7TMcGYwRZIMcpQx1XSFlWEO6O6SIKMua4XDAL/7iv4H3cHB4j0Do+anQMz7blvlyQWf7xq6DgwPqcgnaEACjWzAdt/ff4ttf/1fMTh8wO/uAP/naP+NrX/nH3Pvwu+xuZSi5ZLU4wTeWLNkmScacnh2x//AOZb3PxmaCCBGrZYXQisVZwUfffZfTkwe49EkmT71CvTrl5Oj7HN+7ycF37vLW77/DV3/nD/nOW2/RBkA5zk8foEXMT3/+C1x/6ROQRNTFioP7D3BYiqJkOa3weLZ3crYnQ3a2NnnjzZdo2pb/53f/BMmIyUbO0ckDiqohiy5RzlpOj+/2gTXVYCJLkipGgy1EGHP/7hm3bu4zmezy2hsvUtsp1s0QquX4qGI8GRJnnmJZEumUsm754IP3uXnzJt6vNylCYz0oE2ODpShWzM/PWZ5PObx7hO9StncvYDL4+V/8eT71mR/j9v67fS2qlwTb4BqBJO2LFKxgPl/x4c0POTjYZ2tngytXLrIqFxRlxXK57JP76yCKtfaRetr3vMekadpj1x55DVlbWURPlxYwGA3Y3duh7Vru3P6ovxAJ+kKNIAlOr+kZmq3tDQiB06NzZKJIBhnHR4e0ZYNvLd72FhPn+9a+QT5ksjWkqRvOz88QOIwaY1LJ9lXHaNPQlJpyFaNijzQrcIbpWcV0esbu3oiLezGHdxeUC02yveT41FPPe5pBW8YoHXCutyr40BGZHGtb6rpcD+45bdOtPZaO5bL3Ku9s7/TDvBA0LiBNTOscUveXUil71FfvPVZ/JiEfkaaGRVXgq5bX33yV61cu8Xu/+dsURcl4sMNzr/0Uj127xL3379OJBDPY6H2KVQ14six7NBRa23tfu67//2vbhuXijNpJhvGE0FkivQAXuLB7lRdvPM9rr3+Wn/qJV7hz54TP//xP8f7N7/I7v/Ft6qZjVpzghaJJdijaJQbFYDAhz2JEkPQLdruukRbUdUVd14/KAPpQniFJkjXKqldZJ5PJmg7Q+329dRhjSJKUpmkZDIYIIRhPNnrV01q0UpRl2VuN1pWsENCRIYoj8kGvun5sC0iSfjsglVorvr7//DpwpXSP2kP0dpumLRBSMJu2FMWCjUlC1wqW05ZXPpdxXjVc3H2OK5eHvP7ym/zkZ16l6QomG5pidY/B9hOIXPLU7rOMzXXe/ImfJFMVv/7Pv84Xf/bf5713f4s/+PB/4fqz2wxGlpWd8d3pP+N7b3+VB0eSjSc96DF5voWMzwmt5aO3HbLJOHnQkGUZu1ciTk6W+CZFKUU+6a2HeIHSEbN5SRINGA93GGyMqSh4cLqPPQ8spw9xUcrlvefIkorv/fGHjC5N+Nv/7n/2wz+o/sN/+l9/+Wj+EDOOEdEE6yTBnTI9O0HGEm0sUQyuUxR1R+cEXjik8gjp8SHi6evXaCtJJzwmqyndKU3tOT8+ZjR0tGVAq0CWW6Yn55Qzx+m9JavjOctqShobatsSrMXYgBwKLj2V863f+AgTLZlOT/nSX/5PODy5yKL7ATExDz465XxfIYynqSR5YlHKYPEYBBtjS1GDrxOiuD9MDZ7OBXylUI0Eo4mNIo5SitIhDNRFYJAotJJsXzI46SlWns2tiM3NDBcarPd0PpBmE65evcJoe0hZRZw86Ei0oq4LvI8Y5RdABGynufyJmCauqeaWyZ4mqL5FabQFy5lFRR4pYxbLjtBTGfFeUjWwkUvqtsOHjiTLaQtFNA60hSHfjjk9n4KJWK4Kyq6mbkLvH57k7N87JUocr775FOPdLVQ0AOkYDBKWyxZvMtI8YqA1wglk7CkoCDKQqpwQOoxMMCZBGEmgIeok9bTCSyjOLXQG4ROSJEdFGZ2L8TLGS4Xvkt6UTkLTRnQ20NKBbEmNRKgeU/LgVsfu1tOEkDFfBPygpWgB4YlNysBEyKDWQY0UlcR0tkSEhLJc8PVvfo04q2m7QN0ucDbQNj0SqO1K0nGOEhKNpO0K5vNzFLLXJ7VAqwgpDISAdxIRNF3b+/SSNCWKYrIsXzP/+o8oiskGEQRF2zSkUYJREKghGJraUpQV1jpWq5K2cRiTEjwkkUIrh3cpqyU4a8jSAVXZkCY5TdOzO7WK2dzaYblYrtOzhrZtePmlF3jjjVf7DvWyIE0TBmlGXZT8yDNP8cTjV0giT5poTGTwQTCfL2nbmo3xRl+YoASCBGfbfiXbdrz9nfc5OnpIEA3wcbDG41kjZUKfcjdGr1VmA1IgdYtEEOjDZ2nmcGKJSh3pJEbGngu7A1559S9w5ROfZHSlf20cHt7m8OE+o1HC7oUdmtqgRIITJUonjAe7/NTP/3meevFZ5tMp3/nG7/Kdt/6A8cYW06Lh3Zsf8GD/Lsdnd6gWDwnLJacfHVLMS0wGVV1SyRFyPKJZFNz8zk1Ozg5QkQYXGA0SnnvpBs+/8iatj0FFxGbEzXdvcrR/j8/85Kd5/vnn+e5b3+LocJ+7tz+irg649tiQtvMUpScg6ToPKuBYMl08YFUdsv/gAe+88wEP7x8zn1q6DtI4pXOOo4NjtifbTLYHPHhwh64rgQ6lBVlmsK6hszXOWoQK2FDjveGnfvxzfO6zn+KbX/t9Htw5ZjK5xNFRxW/+i99ntljhQ0OWJzRNADxBrHBrWLs2EhMJ4jhCBENdNkRGk+VpP3D5/rLcD599iLWu60erW2P6dLz7M8OAlAKpBISei3nx8i6N7bhze580TVCqrycW0hNFCVevbbJzYUhdWfJ0wPRsRrGqGI4HLGZzXNth6w4tNUIJfACjI6IoZmfnApHJmc2OaZoCoxO2dnOCEWTDEctln4NQKuA6SVO1HB0f0rUtaWbY2jXcvTXDtznTxZR0kHDjuU2mBxJJCkI/ssEYE/fJ/CTi4t4e0+mUJEn7qk3rSeMUpeS6Ucngne/VcO9QScRkZ4SIa5Rpyc0Q21mU7Akg0TrUE0KgqStOTo5oKsnrz1zi++9+xOFHH/D0Yxe4/sSL3P/ofS594iXaVcl2qoi0Zf/oCBMLZPB439sImqZFSU3wH1MbPHVdEUcJzhlUpFDaURYldeOQckTXWYqq5uUXX+Cje3M+9dk3+Se//lv80//j1yGdovUmf/VL/yEf7H/IanqAEgmLqumFEBHhQosWtg9V0ltAjDFrxFlASs3Ozi7BecLaex3H8SOvc1VVFEVBbAzb25uUZfHofDs4OsKvg3xSQlGsei+r7f24Wqu+StoosizvWdBa03Ydo/GY4AMhwGSyQWc7iqIkiSPgT6kWaZxg12SAXoRwGBXTVAKoKKo55bzl07+wzY//Qsy3v7Hg9GjMq6//GK++eoN37/8uH977ComDx668wBNPvMDRnY7PffoXePzak1zeeZyvf/M72JMls8GS2/f+R/KLnvs/KKAzpJvAxhlyLrnzTcXlnU3EMrA8nNLJhHSQcPpuxfncI4ME2XH9uZSDBw3YmKtXL1EuIpTySO0QUjI7d7QrSds2NFREGymthWr/kMX5isFuzoXNXb71rT+C1rFxYZO/9aX/+Id/UP3v/4d/8OWdpySrqqaeSSITsZyWaAll2+A7QRzFfQov6lskFII0ckQ+ofaOJ3Yv82/+yt/g7sMV89U+TRN4+LDAKEG6bmYZZIFqZRmPEnZ3wBUdUfBcu5FxupjjXMDX/y917/msa5aX510rPPGNO599uk/snGZ6pptpJjTDMEKCQlhSCckuDEjCMq6iAAXLpZIKFSOX+aBUNlVW4bJchYRs7LKQkEFkhhGMmplmQs/09HROJ+689xue/KzgD+s9G+k/EOfzObv2ecOz1vqt+76uhPGmYHnq6QvDxk7Ctd2PcOnSBllS8Ou/+jn+4Nf3eP6p70YgODi7w3QzZz2/yvZkl1dfP2C6tYadeR57Muav/O2H+O1/ccAozehzRy8dXZlhko5eelociXR4b4JHHUsSQb8Y4G1P1YJPPMJ5sJZ8oIlHZmUdgr5rQW4y2b2frctTKvcaG9uGbJxT9x2LZUFremRSs/VwjRwkrI00Pmppqow8axmt5RRli/SSpu3x0qPu5SSNRUjPejJm3nQkucc1hvHYICcwnxuqeU8cS9aGU+YnNV3TIb0gMp5PfsvH+C//9Me5fu0+7txt+Nf/6vOc7s9QDja3LrB1aSO46hPN6ekpbW+ROkarFB1phusCJ3IOjxe0vcEJQyxSZm83nL5bo+IhpSnofYMTFuMkUZSSphE6giSKkc4jrMSrhrox+F6HgL2PmWYpvQ/gnOG0pyw6YjvmYFmzdJrECQZpjO0KYpHQqxqjoKo9hhY3tzg6jHVkucLrBnxK1xmsD4gWLT2DSc50bZO10ZTF2YyqK7BG4noPyq6u+hqiWAYUmw8MSYHGmACids6TxPk5mDrLU+q6oW09OupJU0Mxq2mqmjh1SOWZz2ocBh35FZ4ltKYlhvFIoXSH9YrRcIQ1MvD7hMA5ydrGGoPRmN4Z9g7u0LuWKImwJkzM7tzZ55uvvMpwPcLTMjuqydSQa1c2OD6+wd6dfUwrmM8b6trzyEMfJktH1E2HlClt09E2NVIFkgFe0bQN1pco7cKCI+RqgXEorVYtXrEC/vd47/Bxj/Ae2SvwEVpKEKzea4H2Omy2vOTsaMlLX/4PvPKVL3O6twAvUBjiSGGsx/aKLBtQ1CcUdRkmvqYhFgPef+cWp0dHfPwTz/HkUw/y0he/yFd/63Ms9+7Sd0t2t7e4eP/9yCjB0lF3M+zCYxuD9wXjJKY5O+bg9vvUZRkIBt4xXt9m576rdIVnc7jF1WsPc1xUzMpTskHKu+/f5vO/9yJHt2/h+opISfJM09uGKEkZDNZou5ps6FFRz3JhsH3Co488yaX77+etN9/g2z7xSf7iX/w+bt/c42xxjFYeKX3IxBdm5TVXPHDtEdan2xzsH7O1uctwOKFaLvGtQ0cjslHK3t4xL33lNaqmhUhyfHSXg1tv0zYLbF8wzDPGww3WpilCNpRLR6QHKB1KK95DFAnKckbXdayvbzGeDDk7OwtFPGPPDyfG2JXOMgD+m6ZdkQn+KMPqnMfYHut6nPdUTc9iuUQoz2g0pO88CsV0OuH0qGY5MwwHQwaDnIO7JW3X8siTD3F2fMz8eEZvRnNKAAAgAElEQVQswmard5YkT9FRjHEtO9vrPPTwdeaLU46PFmgZgzAgNK331F1EZ1oGg5gkCVi3tgDtE3TiGKaCo4OTsIFPMh557EPcubHgvdePMJ3D0xNFGu8szrrggZcd2craVlUVWmtOjmdIqTB9T9f1eAF1bwJFQWsEDi08s6M51DGpGyGjMGmUiKBBtn8UqXEObAt5lnBwOqdoS5588jJWKIrDGwyHE37/93+fg+MzLqxfYC3yZEpS1j09ks61aBmdF5eA1fsSsuiDYU6UOhKvKZoClETGCiM0QkT8lR/9G5zN3uMf/c//O22V83/9i39CXx2R5Tt0wvKHX32Z4+M9xsIyEWdc3R0xGOYslwXlsobVaxathBI+cNpWzFUfXjelqMqKfBA2lGVZUlUVSZIQRxFaBUB/XdfnMoHxZMRgMKSs61Vh0QV5hdLn0QIpJXGaYLylXJZB4RpF53lU0/ckSYp3Du+CUVJJuboNCzdT1jukylaHiGB0E6oMdIyq59mPX+FHfvIxfun/nXN4UzLYSvBRzK2Dr/C5F3+Vjz7zvXz6uT/JhcuP896Nd9n023zk+T/Fxd3L/OL/+vMUfsC3/bmH+fIf/m8c7DnUJU8+FBy8WnD0TsLVZyfsvdEy1k/yxDMP8sWvvM1gWyP1lNl+TdvHeOXIBh19K3jwySkQsza4gCLhrXfeoms9cTRGyZiNtQ2atmB+VlAbz+Z918gyx+L2+1TLmGgomR0eMFsW5Jlm99KAv/oX/hhsVP/hP/0fPzPZjGg6hxExXrQUi4bi1DNMJLFyeG+JU0FvgrtZqojWGAwOlOXwzoJvvPg15vsNLQE31c49uRYsCodSPd4IEANkLJBJxYULabhStQ3DDPIUmlIzHcdMx46UC9x845SHH36CH/yrP8j6w8/ywudfIhUnXLx8hQevfwdZ2jCv7vLqC4Yf/+t/jWQCb77+Dl7lDHY1H37mUSrneO+NGSkr9lpscV3IT2oE9p7qUjm0DBM0mfYkeYQSHUmuaJaONIK9dyGX62xsdDSNBglnJyccv3bG0d4BCztDrvVs3Beznmq61lKeGHavriGThPe/1jB/N2F3N6KTYUolI0lbG2wPwgv6RhBph5Y5dDlZLhDaBui01xgvsFKTpRNkJGi9ZLI2pWoLZvMKKQR5rBjkawzGY574lk/yG797k+uX1jl46w3ev3GDk2KfO7du4fseawyDZA2Noq4KpNIYaqxoSZIBvuoYJENi7YllTj505HnHsvCQeaIow7kO5zq8d6GR3rfYvsKYGssCb8JnIRYmnIidRQuJijzro5w402TJCDudo9M5sm2YHzs2s5zpKOX4rGLReryLSZVinCtE52ktWB+yRt5pmlLQ1HV46BCue7yERI9xpmN39wLZMBidkijCeY8QnntueC1jtEoCU89YpBTk2QCtIqqqpesNSZIymUyCNnQ4IJYR3sW0PSBBywwpIqQKBahIhwXVOXFuUOk6S6QjvIfJdAvBgCgv6XqD9Y6qbsnSMeVywfysREuJ7Q3SR8RxhJCWfDBka+d+pjtDLuxs8/zHP0pRn1FVhrb0jKc1ZWvJBlP6HvYP91gs5lhrmC8PiRONjhLqJrAIjTPs3neRwXBAU9ehpCNlyHmtkFb3cnb37DTCO5wPG1SpQKqO3vU4wiYlzxNsC13d4oxHRZp0IkjzDlufUBVzBBrrV4gsUWHVKcigOs2TMcONDb79k59iMx6ixYD7H3icV156heXxAVcfvkSvNTob8cxzz/LwIw9x68Zt9g/2iGLobIWlw3SWOJnygW99jg888xTzxTFHpzeQwqBUSpQMycYT2l7w4h+8yFdf+hLLcomzPbYu0bJg52LE2mbIuXWtpuscXdfSFBW2sfS9JB8rsjXPvKw4PpvTmJrJ+pCToyVf/sNvcHh4K1yN1hLnNMNRysWLa4wmknlR8cxz38YP/dAPcLp3l5fffBcRJWjlqPoubJycoyjnVO0c53ucaYAetCLLBxjb0bQdKhLEyYDT4xJBz2AUYW3A2AyGaaA/WItSmqJYspgtwa2efSJogoPOMhw6wnQq5FPTNCOKAq+yb3uE8MAKzyU1dVUjhSJRKbGKiaKUZVFTVRXj8ZgkjSjqgiQfEY8yHn36MfL1nOvXrnPj7ZsoGRB33mtMG7KQo9Ea+WCE94LT01PKaoHHoqOYputY25gyGSTEYbDH7GxOMS9I4hhvHLFPaTvBsvAo6emrhtnhAaOBYJCscXYyQ4mcLE8ZbRjSgeH40IDJ0GhOD48Co9iAimQQAiSK9QsRfQesJtZCSKIkYTxdpywKpBI0Xcheah2T5ilRHK1a63YVmXCIRCFai3EWl6Qszzq285jNSxsc7d1lc3dIVVrevHGbaLLJhUvb7B/cwBqJTnKsX0Wv8MRRtGq1h+txgK7pqZqK6XiK92B7x/bmFoNBjqkL/t2v/A5bazlffvG3iZOEou4p6oaqrHGuZZhmaKswccmV3vDyjVM6OcCrnoH09IiwlmnIUo3WAh0FNFakIrx3RJEMAyETUHhJkrG+tolFkQ1HSJ2Q5SNOz+YY4xgNJ4yGY9q6R0rD5cuXSKOEpq7PM9QAblW8klKErKk1ZElCXZbEkWa5XOBseK2ts/Qrlav1PtwESYWz4eDhfA2iR4oE1w/Jxp4f+G8+yf/zcy/zjc8e8sR3Psfy/YLh5iEvvvgCtkhxx+t86ju+hzfffJvTw4LL1x/i4x/6CF//4td5+eQLPPzB+zmqf4n3Xzvj8J11rj0+o1lEPPihCX6w4J3frejPBnzpP7zHW6/tMUwTTKNYnB3SObCyIUkm6DSGuMX2Qw72FhjjOTg8BCDJUqpa0tmM0XDK2njKyfExrhcMVIzKlpS3lhjTMbwQc3RYQOMYbgy5/PgFfuC7fuQ//43qT//M3/tMlqYMxhrXp6RJzGI+oy1hPLZk6RQVabo+nEK8F+B7shQUEIuEOG44PlpydnZGvegR3ZALF1JGU0lZ9DSVRSEZDvPVA7anqXq08DiS1ZUZeCU5OZGsX5IMtxKeePZZZKz4+Z/75/zmZ1/kkesbPPTgdRZNzNYk5fVXWg7rm9x465R3bn6J6w9MiOUCT8Xr3+z4lV96n3xYghfUdY9zir5zpGkeJgGiQ6BCUxsdSibeEUWCjc0U6xWQ0okWQ8JwGnHrHYMmYueSoLOG8RAaURMLQXc3YfG65uyWR4wydp6IuHwt4Z1XFhy+GUPh6SrF4OISlSls7Tk77rANwf/u/ap17sHFtH3DYGioqx7hFXGk8c4QZzFSCxwVkiFuVfLRKiHLE+I0QYiUuwd3+Pd/8AovfeOrrI9TPvTBB3npa2+SjyxJYlkctZzMSk6Oj5lMs3Al1YQJY5B+hswVuiIfSKIoXKckuSabOIq+R6sMKTRShQWu7yxdGx5wUnlUBOiexllkHpFNFTrK0H4b20gOF3PqhcJVEiF7xFCxcUUhbcv8TGBMmFqoWCBkSxTD+voIYx1104TXChAIgkya1fWTWp3uIUngbFawt3eAjjzHx2f0fUuaxect59BClfRdv2q5J2itKcuCS5cvMxwNcS6E+kPDtKdtg01otjijMzXTyQ5SRnR9TRSNMNbjMHgvSeIhzvc07QIQIZLQEt5/X5MOS9q2o28lWkecnZ3Q1I7RJMNTc/nKRQC6rl05swV4h/MRDz74JGV5ysHeMR/7+PN893d/N3t7S+qupHML6qpm9+IOUhkWywq9Qrg4HyDz3jnyLOPihQs4a6mqCu9Ctuxe1MEDQsrVVDW0jdM8IdYQ60ATUEKjhWaSrPPdn/5u8J5HHnuEZ595gt6c4UyJWfQ0C/AqR8sMnENqFw4MaLo6oq6ga+G7/uT38exTH2OyeYk/85d/gOc++gF+65f/DV/56ufZ3dlESEPZnVEXHTfeOePVV25xdHKI9QXbmxusTbfoO0Pf9pzOZiTJBN/l3Hz3PdquCnzfZcnRwR1uvn+bt994lZP9m+yOhjxw/yaanmpZBqOXFOATulbhXCjOLWYNKlIMJxqPwjpF34d8cVO09JWirSQHe3eZz44QKw6pwNM2Pc7Axz7xPE9/y7fw1rtvMDtuuHL5Cba3N3jttS+zODugbtoVSkecZ6TVKnM3yHIee+I6G+sJt2/uM8hGXLt2jevX7+POrZsU84b16RZ4WCyWpFlCkkTUZZiqKyXp+3bV0BbYVRYwmLbCZlWtrnXv8VTTNCXPc2azGUqLc/2llDIYsFbA97ZtaZoa07chTmDCs2v38ogr13c4PJjjrObw4IB8cIH7tp7izTdfQUcWrYfEcUKSaqS6l3V0OBOKe13XEUXxaoIX1rHZ2Yy+D43wQT5kMlqjLlq8syRpxeaFhvGapS1i4kgxnERs7jzApWv3c+v2TYaTjO0L61S1QPi18JlXS9o2INgm0xEysiwWFc57rG+Zrg3Ic8UgHbEsSrI84OPKYkkUhWvoYJZrAxs2SwEoy/I8BzyZTFBOUfmK3mrGKuFi4jFpRpxvM97e5PbtUw5OTsiGEUcnJ5ydHpOkGusVOspxtqPvA5lDyT9SnEoVGvjL5XKlA61XsY1QZkqSlNt37qCjEIFam445nZ2uxBOCOIkolguarmJrbZtFOWMSZZwgmDUtrm+J4hShJabr0Epy5cpV5vMFXWeQSASS8XhCloXsaVEuESiMdSwWBVGSMBpPgsHKWtouKMJPTk4oigJrDRvra6uf2eFsiBrci59orYni+PzfN01D27YURbnSqCZkWU5V1wH4LwRKy/MoQlg7erQEKRSSBEmEZ0aaKz77669y582OC5c2+caXX2F7WrH95IL713d58PJ9/ND3/yjZVsO773+Bqw88xvOfeo5vvnCDf/JPf5wn/3TBq998gXjY8NIvLnnrZsv6Q2PWtktab7l6ZZt/9b/MufmuD8zlOGE4mFBWs1VURuK9QmvBcjkLAxgV01QdVdUglKc3bZAhKI2OYqp6wcnhPtZ4bG9ZnJ2xtj1geVBhrCOeeoxpA/9dZ8xmhr/+l/8YTFT/p3/89z9TVi233u9YWx/ifEldtOQDj+0hygTFooJV9sdbj3QZsQ7NZOc7ZARxnNP3Mc89+yf40R//L/jhH/leXn+l5bQ5wOMpW0NjWrx2GC9BKpKRD/kp6el7CRI6K4gyzaw6RccxKlry1nvvspNe5Du/58O8+nrJ5ihj/+iYt995jf3DA1zruPRAStVWfPXzR9QnPVL15LmnOI5YlC21ERgTdH9pZhG6Q0uNFpY8gSyLaBtLlCom25LGNiSjEYNkg6ab4ZxB0jOKx8z34Hi/YXs7oZcdo7FmNK2YfqAlXx9Qviupjg233jYYD1eurHF2ViAiR+MNVz84wOkaW3mUDyUYLcLDBWHxPiFLE1Rkw9TKgBYJs5MGKSHNI3QS01mJtymSaPVlTchGGUgZTom+R/cHrG1LbuydMN28j9Ycc3y4JMtHMKzJ4pTRYMjR4dGKgxhUfVK7wLh0iqruGcQxkWsRQtM7i0haoiSmqRqE1zircdbhbE0UC4RUOC/xImCdIiXoG48UEUJYOtOzrEpsKSg6Q9k4hDUQtXhlGCVTDt7rw+FBapo2HDRinTGbFXR9wN3I1SIukCRJTJ6n6EgxGA5x1tO2NUIahA9MvbJcIoVY+asN3rPKiwUIN0Caply4cIEoilgullhnSZKE6XSNzc1NiqKgXC2YH37mw/z5P/8XaOqOuqmp6xbnwLguTJl0WOwjrVEa4lihZIQ1knywTpxK4sRjraCtJaBWIGuBUlBVNWmS8tijT9E0ZsUcbGmalqqqmEyGnB0teeXlV7EeLl16iCQe8Ydf+Qonp8tVS9ZwdjanrlvygcNRBXanDRMXKQPGZjGf09QBhH0P0m2tXeGwwnRVSI/HobViOh0jM0FresaDQchjezBC8Nobb3HrxvvMZj07lx7nyoOXWFsbcvG+y5C2VP0pnW1QUqAESBmuXBGedADZCG7fPuaRD36Ub/+e7yIa7TDduZ9nP/IhdrbX2diaUraemzf3aOoFXV/TdhV5HvPUkx9kOt7iYP82bTMPUzp6bt64ycsvfYXl/AAdBW2jEJJcD5DOMFmb8PBjj/Lo08/w6OMfY7o1pugP8b5Da89yUSOlI85bhmuKdKCpmxYH6KSnbXpsnSFdjkRjbA2iYjLJUFJgrQ9aSwkXdneYjNe5e3fBnbtL7t6+w3JxSkuNjwWRhDSOKdoWa+z5te69P9570iRlkE+Zz2rmswWjYU6ep5ycHHB2ehR0um1DWVdEkcLYDmN78BJ82IxM18ZsbGzS9x3OW/ACKSRaBfxY3xmcNSgpQ23GWoqiOM+n3uOrOsd5JCBJYoQMgHbnIM+G6Egymayzs32V+WnPrRt3KZcznOkoF5Jy5un6Y9p+iXcR1rUrGgsMhtmqIBQ4msYY0jSlLCusC3rSumpo6xYcjLIRwgrKRYmO4OLDKU70nBxCU2lAgRxx484eb7//FpFIiOIMreFg75Bi3qIjx2giKJue/CKM1tcYrWnuvzIkkQNin1GeHtNXlpPZcnWV7FbRCo1SOmR6TY9WGoFgPgvfr2j1/dZaMxqN6LyjbnvWo57HN3PSaw8gR7t89Uvf5MmnPsp4LeW9G+8jlFwhnSKaxiIjTWtLsME0JglFz7IsAzJt9TnJ81C8CeYxj/OORx97DAHcuXOLLI/Js4zDg8N7Z/0wSbc2rAnOsL25S+ssJ7MZtRc4rRlkKXXbIHBsbKwzmy2YzeaYzsBqMxyu3AMuq2lqlNJkg5zRaBQ+v6MBEsXt27coigKlQqF41W9CCEFRFOca4KarAwZLgrEWY4OnuGkaohUjte974njF9XWWfDAKFAIZ8Gpah1xx27QoCeDxVoAHZ4PYJI4UVdkTywnDdY1ZNFAadh7a4lN/5lsZtle475HvZP2y5Q+++M/Ru0ua04LP/fI+v/Avf4Grj3j0hZqdC2BuXeLzL9zl+NYBb352gRoOefDJi5y+2vK1F3vWpgPavsJ0PcZWNLVFiCHWdUQyR+tQGovilEjlCCLKMqDfgmZbYWwQj1TlktFwQFW04CVKarQS1HOLJSLOE7q2JU6D0GD/zhGf+Zt/DPBUP/XT/+Az1dKEqxZTMUhHnBxWDAaKOIlBBeyBcwKtJEkKTWmJ1QRjLGrgiVPP3o2cH/7v/hI/9N/+BaL0Pl5/c8Fv/ubnseIW3mmcW7Eg6zAtiSOB7S0eGTZekcBbi3SG8jhifU2ysxnziT9xhfH0AQ7eusut2w2j6TqPX98mn+bcuH2XuukQxnNwp+XGW2dkJoVmgNMNTumga10hfTQ9o9QhtMOvFoyy18wLR9kEE0YaK4QzCBNxsl9ycesirhtzOj8jGyjUsGTrkoNKM3/Lko02EOOeqodmNmZ5V6JMgrEFI5lzdtCwOCtJkjG2bxmlE+rZgLWJwDioComOPN5rUAYVQdd4mrpFIrAmLFDCe7rekQ+zYAZTMX2vUTpiOJiQZDFdV9N0NbP5nGUR1KEqS6gwWNHRLBq+/Vs/wje/+hbLsiXKNshkg3BBT9utFjLvTZhExGkoF2jBMGnYHiVI6Wh9jTNDtF8Lpi0cSlmk6omilL7XCBkjZLBw4RTKaRKtkN5TLjpimbKzNSFJPSKW4CuyeMAk36VvDXJcMhnHHN9u6XuJ8wrbC9rGI2WGcxKhVDi1rxqedVPhcQwGg1VpIaXrKrTK0JFFKoOzkKZRaII6SZ5leA96tbAIIdjY2KCua/b391FaYo3h6OiIra2t89a99wTGXwdbm7u89fY7nJzto7UIAH5f0/cGCNPmrqtCNs0nFMuWi/ft8mM/8WPUXUNjb5HkJV2bhvZx2xIlBikjhiPNZDrgjTfeY3ZWnrdX4ygj1gnzszMODu4ynkSMRyOuX3uU+XzB62++zvXrV/jE89/O0dEcIeDSpasEMEPI4I5GA7RWIRu28nh3XYexIY/o4N4t8PlETWt1zkGs6xrfW/oSHn74QS7ev06xWNBWNX1f47znws4W87O7fONrL5PFW8howsnxIdOs5eqVdfpOUxQ1QkIUpRgT4Zxgur7GJ77tk7SLBUk+xg6mfO3Vm3zzpZd58bc+z1f+8GVu3NynLcNUO8sTokhRVTVV0VMVHX1rkUKtoiEO5zuSBLIkRUYCLywW6F2E7S2feP5b+Us//CO89/YNfvXf/gIXdjrixHBnb07TGaq6pa7ClXM2NBhXoWNFPgwQ+VG+TaxiqmIJwjAYJKTJkNnZkqrog8XMOHZ2dvnxH/sJnn76SX7t136J2zffQgmIVMT61i5PPP0sm5vbRDKjrHsW8zNgxatdbQy10pjesL+/T9t2xImibioWixJrDI8+fo1nn32YybogG6hzveRgqNjYzmi6ZaBp+BDrcMbSd91KWhAOiM4F7eR/fJVsjMU6859sUrWOz8tVzjmUkly4sEPdNIESYPrwHEDw9jtvcnR0lzRRTIdjkiSlriuq8pS2OcVas+KBWmzvWV/boG6W9G1HmmQh2qMUQgqUkkghVz55Dz4wSiWStm7o2h7bOWanHcvjDFOE6Rmmoq9qcp2QCIvtDabtKWaGNE6BAtMSSsBeogo4uTNHWCjKmrOFQaSKJz/2CCQxiUiZz5cr1rIKOmLTBYGCceflHSnl+Qb13p+qqvFGQWcY50MqEdO6mDwf8dyHPsiHP/pB9vdu88Yb7zCaTFeHbOh7hxMWT3iWJnGyeq96dKTY2thEa8Xs9BS9UpUuFotztNh0OuH9926EKIA11FVJvkJFhamjCsVSb5EKqqqnag2N9/Qu/D8UHqE01vZUVU14XMjVdL0/v5XqjT2XjuhII6VmMBhQVgVpllMs5vRdy2g4YDQZs7W1xWQ0Xj18QEcRzhqM6Yli9UevsXXn5ACArm1X2ekwcQ2SFc/m5gXy4ZDFYoFzIadq+j48FzwokSGEBgRKO5AGZ1MSPcKJGcYIyC3VouM7n/8O/sHf+Wd86PqjvH78//GlN/5PPv9/H/L8f7XFz/7kb/LFz7/NvD4i1QnPfs8G7ijnl37mFkflPoM4Z/fSmIOjBYfvb3L3rZjmzgwjF0RiCkJgXEWaJKsbVoN34aCqlMZ2wV4/na6HDLltSdIELQReKHoT9jBZkrI4K1A+lIPL5ZKut0FUhMI0EiUl2UCD6fi7f+2PwUb17/+jn/qMRxFFlt446tLgrKMoA7+sqTSmV1RLT9P6kGtrW6TKGU+2KKoTnNPBY2xP+fVf/wK/9dnfZlEf8vKrryBVg5AWY0EIhcchVwaUyboG7Mo57kh0ShQ5ipkiieDsqOT23YZYC3w/YnEiuHJ1kw8/8wQvfelVPv+VL1EdneKsId+E6WXJcL2nqHqSsaOrwQlFXTu0EMjacf/O/Wxf2OZ4OUMmmmIu8MITywyBwFkoF44kDYvzomnovQgnfevxSEg8+Ro4Lzh5tyKfKCZbKQdfq+lvaaKBQEc5i+YUrfvAN+tCPCARHWd3I9CQ73qa5p6POEHIDmcm9C3kuSTLQ+YTgtItHwf7lXEaJzSWUGCQMsHYhqpaYvoO07akUYyUDq1jYmuh0PS2RsQRrV3QFiWbSReYpxiyzKOUxxiBVDGIkE1GevJ8wijTzPY9TZeSDgRVYVmeWbJBGh4cpkMqixDmvCgAHuE1OlmAbrFILB1ZoqhPDMfvWaSK2Brcx9Wr69TCs7X9CB984jnmxzV9VdAtU0zfg7Jo5UC6cHJ25tyKFADO97JPAfa8v39M1wUXd1lVjCYxa+vDEKB3FiFihIio6uAYl1KS5zlt29K27XlY3zmLsT1xlND3HUdHR1RVRZqmSCGZzyteffUVlsXJqlTgMb4NLWJcmNwaz/VrD5BlE4qlYW19yk/+1N/irbe/yZdf+SzZxilJLqhKR1V41jdTLl7KqasWISxtW9J3DmskHkjiiDiW6LhnfaqZDAcMBmP292acnZQIaRlNBow3FHsHB+zt73H9gWt85Fs+xt7eHoviCCHAWIk14bqsLKvwEDOBhylUyCfew8nc24hEUUzfGUxv8U4gfFC6np6cMZudkA0G/Pnv+68ZjIbcvHmLJ598mh/8/h/ku77rOziY7/GFL/w+ru9pGsHstOV7v/fP8tQHnuTOndvUVYtUPXVdMcouMjtR3Lx7yEl1m8/+yi/yxV/8N7z5B7/Hu2+8xLI9wqkKJfzq9w48WSEcbTfHuhmCnqbr8YQJitQwHq6xNt0lzlOquqaqW5xwXH3wUXavXOfWwR6PPHKF7//BP0XdG774hVuUy56dC0MuXbqAdY7losKaFC2njKcpOmoZDhKGA81iuUBHEaZXbG1d55Of/E4m03xlgwqHmLIy3LlV8vrr73BweJM4SsAJHB2xjnnuI59i9777+Y1f+ze8997r4Dm/Xr93YFCrCMHWzjoPP3YVIR1d33Dp2gXuv7LJxuaE61cfwhpJ21Ys5hV1HViWXQ9xNCKOB2TpgCSKmc1mDIY5m5tbRFFo+xvTg3crf7sLnwEpAlxeK6QK8SecW5Ws3PlBZjQcMR1PSGJF27UBpu49UoUsYaQUzgbOq3MV1hUIBEoocI6+6RkNBwzyAWW9ZHNjk67tMKubkJAphDzPMasNfFCGdiwWC4qyDJs6C66JkMKRD1PQjiiN2doaEUU9feuJB5okj7A01E2BlpJ85Ln0oOfS1YyrVx9jMBpx+/ZdulbRNS1N6aiLho0ty90b82D2QqzKaGGyao1DyoBA6vuwWU/TjM3NLba3d2ialuViSexBJ5LepxxVHbY546MfeJIbd/ZIxhPOjue88cbrpHFE3wXboafHWYckx/sQtUjTsGmL44iu78PBQ4bveFkURDrCWUukNcdHR8RxwMohgmmybfpVUXQQppZK0lQN1lj61tB7B1qhfDiwRFLS+/68QBVFUdhguYASGwyGdG3ITUdRxKXLl9nc3CKOY/5HwKoAACAASURBVG7fvk3XdVRlgdKQJBHzxRmT6ZSmabG9CzGOwRCtgx0M/MpYFZBTQRscnxe5kjg+j33FcWBhe0JZSqtoRbFoV6KKQF/wLlyf6yjG2hBvyvJAJmi6CiEtAw+i9Nx37X5+9ud+hrbb4oUbX+B3vvjzfPWfLVnO1ti5oPnNf3Wb9QuO+eGCD330MZ77tvv5Bz/6AkdVyfrwAvFgDTEZozvN4Y0Ze8cndPUSb4a03TxEcITG+RalA6au61uUTJBC0bQh3uGc5fTslPW1dZq6RQhPUTTsXtjFGcPh/jHCa7wVRFohvEDGgvFEIwBJQll2xCrGd4q/8zf+7n/+G9V/+LOf+UySOaQINqq2syA0UezBR3hv6DpHnHkGk1VgPAbhm9Cw9CnWGyabLfPigKba49Offpb33z/kxt57pLnEWIkxgafnUSjtGIw9Qgl8G4cFTzpk5EA46gaM12RrNQe3Cg7uHnP7vQOe/9ineeYjD3DtyqPoZJt//4XPogc1So3oaOiMJ4lBpY5kDY6XHrvwPPHBCZNxwumpRyWWzd11yrmnnC3JtENaD86SJjFZPkLHCcZLdi9fZBCPOFns07cRG9MY7WRQPzrLaJpAOaK4a/DacuGRiOHlFqEbiv2KJB5gzIRwUrNIMaGyBVEasVj0bNzXYpxBSouKOqII5qc9zkmGw4y+DadUoQU6zvAiprcxngSQSCWRWmG9DHlFZ1ZFl2D/iBONAvqTitP3S9rCceutQ6SUbOx2gEOrKJx6bQ8CekuwgHiDjjReaOaLHqjJxh6dS2TSk6YRbZfgvEEQE+I/BhV3DMYQRwpvBQJLPgghd49FxAIvHVE64ORUshkl6OoWkbOMRY2lJtveJKq3eOOLBzR9jdIeLUPbXIig7ItWxijn7ErxCEI6siwgdEK+tEHKmCgxqyttj/cGfEyaDkKD1FsQkCbJ+Qb7XkM/TVOSJKaqAuRbCkFdV7RtQ12VrE3X2dqeYm0bog1djdSeJM7oW0dTNyihkTKg3LquxTHn45/4CE9/4JP8u1/+HLcP3yCKc7oyYjxUbO9M+PCHH6Oqlty3+zCuz5mdVqFhjCFsfsP3cH1zhPSS45OWnZ1LfPo7nuf9m29xMp/xN//7n2Y62eFzn/ssy3aPdFTz9ruvcXB4RNeCtzEOBwQk0drGJkIrkiwJTNRYoZTAeR+u5L0njWOyLFvdsITFqfMOoTxdY3j4oSfYvHCRfLrBkx94jjwf8NZb7/KRj36S69c/yCsvf5XpSCNVzvF8TucaTk8qnvzAh5BS8d57b6O0IEkiZrMzJmuSb3/+wzz+wBUuX9rikUd26Ot9es4wSOqlQKk4/I7e4oxHqyHDfEIchQmJ8+GQp0SEMYo0GfH44x/g2Wc+RVN3YWouJIM84+q1R/jQU88wHO5y492SN169wdnyLkJ11IWgaxLqqqe3FTqSSJEzP7XcuVGwf7tlcWYYDac0lWW2nLOsF3zzG+8xHm3y/PPPUSwrjk9P2dzRVP0N3r/xdtgAqh4nfIjDzEq+9MLX+a3f/G3Ojm6SZQqLRK2mcPcYplIKokhjrONkdsJoHDEYDNi/u6Cthmyu3YfShrI6Y37WUFY9xnia2qHEiEiNWC5Llss5TdsiJFhjSdOULM3PHexytUcI6uswZYviiEhH6EgjVpPXe1OtMIW15wYzKSOaOgwjhLJkaUykM4TTmD6UW6ztUcQ4qxA4cIJYZ8RxIBXct3sfxjiWiwXOhQO0Wyk4i6o+99rneRYW+0gQxRFtH/Ltq6Q4TihG61MmOxssmp5lDelwxGRzwsUr69x/bS004yPF+s6U4+OC9163tJ1CxzGnZ3OUCpEsrXu6yrE4NvTdatMo/0i3KldRiThO8N6RZRnj8QSt48B+3txEKclisQgDBwneNiTKM9nc5Oa77/Ly62/yxjducfvOGwwGGd4plos5Ah+c9oRcpdYr5JgImX7n3Wqz7MLmP4owvcFay3g8JssymqZZQfmDWCIofAVegMNRlEX4GS4MO5w1RGmE1BGJToPlDo93Qal+L36FEKuiaMj9F0WxwmZ5sjxHKXUeHVEyfK6KYkFvQixhvlxwenS8Usuuk2UZi3lQs0opsPY/1bAOBsPzAUNV1mxtbSMIumcIw6b5vGI2m7G9s8VisQg3wSpkqp0zSO3xQqIjjYoEG2s7VFWNtV3I6cuYuawZru1w+F7JT/wPf4t//S//La999gg12kVZwxtfLihNT2QtXsTc//iYX/k/XmD/pmDjvos89OQuVWu5+8YtlsclTdMwjEBlE7qywdOv1ieNIEGQYlyP1hlCCrzzoThmDVmakacptrdk+ZCmLuhbQ6TCBFWhyZLh6rkdBiXGQ28acIK+7zB1R9+2GBPx9/72H4ON6s/94j/+TJyAk4auBanCAtUbi9KONP+jBSsfgneSSAgylUMHRrZ4VRIngkhDng55+82SmzffDWyvzodpZvgYMx1oYukZZ3EgCgiLE+CQ9NYRZaE4c7KfsLHjGU8Mo2SXT33b0zzxxBMc7Uf8xud+ja+++g5vf/OryBik7zAWrM/ojMG7YHYaZDm5V6huyn3bDzBcT1DplLt3johEi2jzYOPSCSqxFEVHnDgu7qxx8P6c1I9Zj6FhRu97lO4xViC0g2bAwTfhrO5Jk5STOwrjO9KLLfFayii7wP7bZ6RJie8Vwjm8cLSkxAp0H6N1y3DbkqU50gmWJwlKRqRpgqMMr40L+R6pM7wcIqOc3oXTuVY5QhlMHx7GAokQms6UON+T52Ock0TSkK1lpJua0XpBXzmaZViYWmeZL3t640MLXkcI6UjTCGcVadwhhcZYi5OOedGjGFGX0DtN27TUbeA3euHI8pi+q5DSYt3qYWEsygsiGSHMFOFj4gT6PkU0Ay4/fZ3TOOFjV5+h+8qrHN18mWV7i7I0LIqKSEUIERPJbHVKvLcZDU1jYwxRpFCr8oCxPbsX7+P+S5eoq4I81wzyoDE1xgcUVN+t/PZpmLoW1XkGLs/zcye0xzMeB7VfsD2Fa6++61BKhuKUFngjcabDWUfXeoaDmOkoZ7oeNtCnJxWnxxVZPuTRx57md3/7Bd5592vkeUy9dEyHY+oFnBwdc/vmKVevXafvPXduHqFlxObWVjBTeUOkU3AJVdnT9+CE4M9935/lkUee4Otf/wbxMKd1Oa+88zvI8V2EsjgkpnfUhUMITdu3dH3QxuoopjeW8XQKEtquIYokgyzBdiHmEPJejqZpzrNuQggSKZA4pPYUyxLT1Lz+8td57Wtvcnx8QLG4y+/+zuf4tV/9FerZHrZvSeKUSEi86/FKIFVgZCZJxGx+gjPgrELrAYvC8sLvfZ3XXrmLRuP9AUf1jEKmpDrB25rOhelZpDSjQc5wkLNclMRxytrWFmVZU5UdXsQsiwWvvfo6r792C9O1OLOkszWzk1NODwwu2kKMJAfNHQ5nJ5wdHeP6mulknaO9GWWxRCtNWQBCkA4EaxsTnvzAY2RZxq1bd/FAliVEGhw1R4f7fP2lN9jcnPDUBx/k5OwAYys21oc4KylKi1Sa4Wi0OtAcEyUtQsXUtQVhmU6nJGlKXTVIKQCHFOB8iFLNTyuKZUvbtThnWVubsLu7TRQJEB0nxzWzWcsTTz3GB55+iLPZPlVVrm5kHFqHaW1RVBRltcL6hMMIPjB0lZJEscY6C8KfywAEnKsynfPEcZjsVVVDPtA8/OgOp8cNSZQFikFVrDaUDqUMSkQ4GxrY3lnwjijSNF2DijVJlFIURZiiuh6EWxVlcro+FN2EFPSmIxtmjCcT1rc2Wd/aZjAZEGctTVVQnYHvHaYxzI8bmuoU5zrSfML6bs/xfJ+mFfSmZ3lieeqDTzPdijhZ7GNcR981tG2N6Swq8ujIAIpIK5z1iJWDXim5OjgLuq7jHvQ+SRKU1CyLkr29u8xmM4w1eKGItWQwHNI6S3dccNaViMTj+jNk5DGdA5/w3HMfwguYz+swiFDhdYuiiKZpUPo/asQ7j46igHWKI5RWXNjdDc9yH+pEvQ2WJ+9D9hw8TVutJpJ2xcAWeGcRkSaNE/quIc0Tiq5eRWHDAf+etlUpxXJZcE89nabBWFXVNfP5nLIs8dYEs1m0wnSt/q5HBPGNdxTLBYv5nCyLzrWsYhU5ufd8juJ72eBgnYqiiDwbIGTItjrnyPOMtqmQSqOUIsuS1SZ9haxSYcrYdxXGBLvgcLCG7XtcwPGwJmPqxYIXXvwDvKtInCOVkrJr0KKhavpA6+klLsvYPyg5erXDZY4Hro25dP9VXnrxLvXihM2LErxgoidEUrMsZ6t1SGOMQ+mIfJQw2RhS9iVdVRGSLX6VqXU4+/9T92a/nmXned6z1trzbzrzUFNXV/U8sjmLZFNNUqFE0pJlUbFiJVAGJEZyESS2EkGSbbGFQB6QxIiuZCQwAgNBBgeObxxIiuJAEiOxKZLdTTZ7rO6u+Zw682/a45pysXaVlP+Aqsuqxqk6fc7Z+/u+932ft6OsAyNZdy2RTDg9OmU5XdI0NdZCpzuKIgXh0S7GNR3CSzqtkT7MJDJR/L1f+bs/+oPqb//T33y5rELvelMrnDCo2JHEwYfmnQTlcB6Ej0jjmCzqqM4s1alhJhzTI8vmBqyuRxwtWo5Ol2SFZnOyxnCiaFrbe0JdL8+Fy22UqMDf9AIih/Dh0jMcQnkCV69scfmpc4ztBt/4r17md/7Bd9i60HJt8Sav/Mn/w2Qg0RJE50l9hJQdkRMoF+G8o2sdgzXNMG957Y/u0lYRedGxPtnGiQKf5Bh3hjYa3UKaFXjX4Pyc7R3FfHrKNJ5RjAekfohYGEaDLWozQKaQxgV/5aUvsrq1yt13b9OetYzGA1pZ4kcCYRzTEwWRxxgbOqgjgbMNSMvukxOaumV6oKAtuPmOY20LVOrRrgm+4EiATPEyIxlGGF+CIGxaHpDhatF1DXFSoKIE7UuK0YA4KahsR2QNriupTEtnFD4zVN6jvaLTEQ5BlAiQAmvD10sIT17EFAQ53ztLVUm8KOgWDdJIjNAIGS7CnQ7dylEkyAuFxGG1g1jjsWjnSLKEo72W+Z0cfeiJFgZv5iwai4kFqd1gNTol3d7lus4RwjA7qsmSnKausLYjyyOcN31towIEsZK0XUOWx8RJRNt15HnBZGWFo6N9nBEMBhkeibWBlWdMh4rCw9qY4MlMeuloPJ4wmawihCRNErI0x+iQbE+SpLdqCNq2RUgP1iN9RJaM0aajbkrGwwmTsQc0i9McYwWffvFZPvrRT/HHf/gKxs4ZjB3WVHg7x9SKam7I84LLV3cZFuf57nc+4JlnHuWxxx7lC5//GsYqjo73sK4mij3jccp4ZYiNPBcvPc63X/k20+WcYi3nzVu/jxy9T5w45lPH6VFN24Z0d1t3rEy2eOjSFdqmZr5c0HQdg9EQbQx1vcTorr9KKPAS512f+Pco1WN1JIgkJikSijwB0WJEiZVwenpMNZ+SFxJBSzYoSdZajmclTS3J84yqLpFJxmCwRpKkNHXJ7KzCGogiWC6n7N+7Sd0cMz+5yVs//CFHZ1OiuMYbw7K01E0YaqWUJEnMcJijVEJdG4bjIdkgZz6b07ULZFST5oIkFdTdIfPpQagaFIo4z5gtDvnhd1/h/bffYSRi3MmCo4P3WNtJkeScnc4oBhnD0ZCqamhqS5aNOX/pAnk+4Oho2Q8fLbrV2E4gfUSkPKZrmJ7MOdyfUy66wMu1+gFjdjjI2T2/hYglzdwAGaWr8EqjemuDNSEgE+R4SRxLpHRkiUTJ4MOVytF2LWtrIy5dWuPatXdYzC1to3jyyed48XOf59atu/zg+28ihQRvQjo8DqHE0MaWEUUxMopI05RLly4RRTGnp6cPPNKCsBxL2bdSedfTAgRSRoEXLCJ0Z9nfO6FpSpBNXyE6wDjNctlidcR4MmB1fciiXKBkxtbWCtvba5yeLYMNp+mw2oQh1Yc64cFwxHA8YV6WJHkGQjCajFlfX6PpQilLozVeWR792AYPPap49LGcux8eo2vHoHCMiw0imTKvzlgsSgbFmI3tgu1zA6YnS7qq4+xkijYJT39kl0tXU7J0RNd6lPCYLqHTHmfaYIX4CwGzcB1zD5i0bduFRbFuaZoQWLQu+ChDhlZgvCUWjkp2iCgicRCnMc6mrKwN+cjzz7CsFhwfH+O8RQBdG0o2XI/pU1GEigK7uK4b0jTFCsmFi+exxnLn7l3qqiLNsgfeY9s3CnocTrp+8Hf07QH4nvThhUA4MC6oY7U1ZCpBSIUQ8kFlqfNBqQve3BAWrvsQWZwECkIcRSAczoWClQD3J1iOvEXIfkEyHXme472naRrW1zaoqyYEN00Iw7Zth7UOgaIsK0x/cIhjhTYmWLfSMLDf//poHSwAHo/Vcd8aqAgEPo13Gt1orDMh46IUrW1JsjHC+BDO1g5ZW2ysKOcRm6MxLrYYBA8/UnO66FhZHeGHmuPFB8jygE6ndJGEJqJul0xdQxbl4XshAeckKq9Ihw1llZIPc5JY4PpF8f73mPOG1dUVynLR205kUDsUZHlBXZasrq2iEmj6QGac+YChixSijVDK0QEv/+rf+9EfVP/hP/mHL9ddh14qtO8YJAojPaoH/ljhycKtLjATbYt1kiRKqQ4cvmzJipy9fbh0eUSMQdqAeYqU59zmCBWnaNPQmXCZzTJFUYRUHnGK9ISGIgFxFKErzfbaY8TyHF/46E/wt77xq7zyvTPuvXWPr/3NT/N//a9/ysHJHVZWItrO4WOP9qByj44FWSpRnSMZedIMPvqpj3D7rVOEnfOJT2bMTk5YWd9ifTzGWgmuRlgfTv2xYrkQaAvblyT1wrJ/A4bDIflklcaVxLJgZ7ems5qbbx5xNl0wb5ak446DWx27ayNGA49abRnlOfNTSRwlGNuBTomEI88Ux6cL5h9OMLMJ05OStbWI0VqN7hqUFwgtiLxHeAXeYts5qpVk+MAxJAbriYohre5I4oRMxiRxgbUJzoBYnmKdxwiPMT40iHV/AebkDCqOaLWk0ybA361GGUGMYXkcodsIVBwGZClJijE+zmi74F8jDlW0w3SFCxe2WVQnYSPvAmFBmojOO2ymyZIJap6BcVglkV2HrRdsxuusryWkaxd5fWopY1gsSgpV4P2c8ahgMhoxnS0QxOHBqDRCWnCQFUO8aIkJvrTFrObw3h7OFL0cZcmzHN11D14g1vtQE+k6kjRCipiu9UxWVojjiMPDY5yDs7NpbzsQaN1/HB0YkpFyKBzaeJ7+xEco7RzTakxrODytaU0KkWBty2BMwwfv7XF8fMjstOTsbEqeNVx6JCUpJHEUUyQFESnT+T0uXbrEJz/5OYyJeP37r/Lq975DuawRLsF7g9aGtluQpfD669/j3Q9u8dCVq+R5xuJ0wTjb5NZbNbMDQyxSgr4oEQTkkDOWtutwHqw2bK5sMilGLOdLnHE4EyTmNItJYgIfUQl0Z4hURpxIskIzGkUgDNbb8PFteKEFrJIny8aBQSvX+ImXvsra2ipV2XB2uuRof8qtD2/xwXvvgg/NTE1bYpxGKtEPYKGScm17FSc9zid4I2mWJdI5EhWuMF3n+MznvshLX/gyl69c4eT4kNs3bqIihbaWJMrIU0kkdV8zm5AVBVImOG9Joo4rD+1w7uIuajjgYy99jKuPj3j7tXe5c+OQtY2YNI1ZXVnjkatXcKZjdnrK2fEJx4d3qZYzPAahHHEaIWNIU8UwG/Gxj32Chy6f4/r19xiPMoRMOTptQUZMVjKkhPmsopx3wZIhNcoLlAtynu6Zx5FKiCNFlnn6dls8gjjOePjqZYrRiIN7R3St5vBeyc0bMzY3dvmrX/83kErz+qs32N+/x3x+RFGE8A/uzykPzmmcC2pDFMc889yz/NhnPklZLnnyqSfotKEYDFkuKiQKaz3GGUSf+BdKEg9zVtbXmE3PiBU8/fQjRCri9HQZbDGmIY4jdre3WFmZoJTn8Sd3SGJJGq3yc1//a1y7dp39e/cYj0e0VodFXCZ4HX4O04GiGA6R0YCVzYBw020fMrKKri4xzRJbVxzeWZJMBizqmrsfNCRRFCD9tgYtiSJozzzO5Tz67JMsqxPOXxxgvGFZGx5+PEGqOboVXHtrThILhFNYbZEyMF/zZIy30HVNaHxTDiE9wimc9z2EPwTRwgDoQsWnc0iCd1d3LdpYpBeYViPjGOvBe00cpbz33gfcunkXKaJQ6axNn5IHQQjFZWlGlmZUVflA3rZOUGQDnHVYbQNIv1ySpSnWGDrTBl+6pA/qqeCBlipc1V243CdxQjEo0NoE/JSXPYc8lIJIGWF0R5pEjFdWMEYEFUA3bJ9fR+uapm6IVEycBqZ0WdU4H2RvIUAJgRQCHNi+tMA6TafbwBLG9YFfj5LBcwuOOFZE0iNcS9ctiWOHd12QyL2g05rlsqTruv4aqx/47qX0/fGBXq2gLzgJaqbpAqLMecFw0A+VsrcbSYe0CYnS1E2NsYIosRQrkiReZWNzDa0T0kLh8o7V8QWaWYaxS1Kl0NYhpCXKoOs8ohNcuDhk53xMrLdplcNVHdZUJCoiVknPo4VOe2QCo0FBWQWGukpSrAuM2Kpckg8GWN8Fv7KKcA6SOMYrF1rUPPzGr//Gj/6g+mu/9Y2Xhe0behShI71L0JXBeEGSBU6EUTkuAiUtbeuxSrF2EZqp5cWfXONnfn6X3/vf7iC6hOGKpzUxjW5pjjqStCVNPVnqkBaklrjGI40ll2OSgQGnkFYG3FURU9WeTz7xU2w/8ijfe+UH/B//8l/R+CMqb3j1B98m3wmwcE/Eysiy2PcgwzyVtDEP7W6weTlGRVu8+XuHHJ3N2Vov+OyXH+L28SH7377HoEkpHrocmIZRiY88Xii8Ci8bax15skJVevI0RckhHkfrZkR5w+b5miqac3J4RuIFQscochYnHcOJIi4s8bolahWzI0OUDUmyEuGGNE5RzSyDcZC/IrlCvlqiimCkxmVBjsdhnEUKiyLF+RLrErwPPsoI6MwS58MlXKUJQkSobkZhO84NR5TTBVY7oqQHHQsfronO98qeRMieS3efqzmArNAhrZx7tO2I4oQ4yXtMTY0XHaPRCl47CiW5vHue6d0pEYLGVtTCkyUpSIMxoW6zSFPa05JESDrRYFMXANrDFRbWsuo0t+68g59pqsOSKPLo1oADKTKMq0nyhqyA8SRG6Aw3qBgOavIspdMK2hAcS/L+RSA9eIfuXGg5oSM8X0M4SckMJRI8FhV54lgxm00xpsb5ChlB1xmydNBfch2jcczqWgIiQcYaGZUsZ2dMhjH1UtNqQxSltLWjyBW6lSzmJaiONB2Q5AQEzsaA+Znn/Tc1RwcND115il/5tX/EV77yS7x/7Rr//H//X3jjh99Ha8H5hzIQFaYTRLEjzRJ0p0DEXHn0EbbPbTFfnDI7m3J0sODgzgxnwoOpqRucDTWWwRrTsiyXPPncU3z8k59mPpvx8OUn+IW/8UscHx5ycnpAnEGcWJQyiL7KNs1y0kwwXh1w+cpDxHKVs1ODsznGRLS1wwYrbX9lsxhbYw2sb2ZsbW8wGq6yvr5BVmRE2YLhSsf62gbW5Kytj8kKR1U1geGLxDtJp0OYaGfnAk1tmM9q0mSAVBYVhQutjOCttz/g5o3bGNNxcHCP6fwU6zogwOxXJgV5HmOMJ8/X2Nm60tdu1lx5asjqRUXdtLz9/Tf47ivfZbbcR8s5yWDIzqV1Hn3qIlcefo69O3MODvdDW11hULFA6/tBo6i/zmhao5jVLbXJmFUJS32GEQ1luSCOJFkaMR6toJTi9OQMZx3D0YA0i0PPvTGMhgOKQW9d0RolBGkyQMksXLv7gorFoqKuKuJE4rylqkuUgDRTtPqEN9/8Aa9+74fUTclwmLG+vo73lq5ryQvVXysFWZ4Eb6y1zKct9/YW3L61z+nJHOvCQNGZGm0bVCTJskEI6jiHdR7rBZPRhEhIutYEBJPuKKsytAUlGVEPgg9oNBFKHqIWfMo3/+jPODi6Q1HE6NYxjCWCCCcNVhjiNOUnv/YJXvrJJ7l1+yaPPfQIzz93gaefeJTRSGG7JdJCOVuS9g1Jy3nFxuQCbWmplhVpHoIqUhqM7ojycNm0OuWrf/WnOd4refVPb/L8jz3FV37iqyyrGW9+f0GSCqzTtKalGAzZ2llnUc6IZYS1HQgP/WU5ibNAK7HBR3+fFiL7JqZQJSpp6hB8iuPe9yvCezggVcJS3bYdeE9RZGjT9iHbMCJKBdaZXk1qaLtguQqFAuH9PZ/PAppPCpqm6Rf1YN3Q+j7VIYY+EBYCfOEdmKUpzoWEfeDjNujOIKToSSnQNIYkzonjnPFkLYD0vaZc1njX0TWernVYI1BxsDBNp7PQTicFSZripUAKRVu3JGnac9s9bdf0AankAfkiiiK6Tgd+aBRTV6ECWkjJeDjsP/eQ37DOIUWwh3hPr/z1y3rvr77vsQ5DrGNjY5O8KAL2Kk6x1jEcjVhbW6frNFEUk+dFmBFyRRIXtGYKrHD+Ss7ZiWEx9SzOlmxuJYiiYr4Pa+s7qKzi9NaCYjKmGDeYKCZlhPaGx14Y8NSzP86nv/BFFtWU6x++QdPGDCcDrHfo1uBsKKMxTU0iIopRQZ5nWGeIlMJa/eCynWUZm5ubzObzgEtUEUEVk5i+We3lv/ONH/1B9R//0998WWpwKkaiaLXh3/vpX+Tf/w/+Br/3B39AlIDpBCrVCBWhG09RxAivWFtXPPSxjFtHDdOlp2ta6qWnKSOUtCTSUc4SVrcFbTPC0BDLAR6NUo4oVXTdktFQUE0dIjWooUJ7ye55QzWP+eonXuSzn/80R+/fozy4S7ZZ8/pb17h4oSNSFh85aBzdcUIcpTRW45RFRg3lPOfTT3yWf/DfmNItBAAAIABJREFU/ucMNpfcMu8i45g0d4we3eTsWFPNG4rC0JVh6/WyCi8uD77LWSxq4lQj3QYbG5tYk+N8wt7dkmKcMLwgiMqM4w80wiUQV+RpyuzemNE4Jl2pGE0s80OQNgMvyEYta5MC3XVoH5H4jOFQsHJhSetT8BFaN6BckOWkQvVSERE4MoyLUAIoLNIXSAvaLqiaCmdqsrSjXSjO7pzS1I4oSzEoGi1AhBCEcAqkxDoR5LQiR8UaYxzrGxltZwKPLpUgLUkMcSJpmgCn94hegqowdcfxXUdqznF55yHK+ghVeHSrcTYhFRKFZrKSYmtBezRARTpseJHhdHnC6krCpchx8/QE40JDV1Nr0jiiqT3LsmR9I8dohdERQjiWtWOcjHBWYG3M1u5lpu0yYEicIcuLPoTUksYJ6+tb5ElKXdUIHCp2ve9UkqQxcSSYzZZEUYqSWcD6GN+38zis1bRdTRQpqrpFa8e5Kw+xnDc8urHOhdUBZ0vHUmd0ukSiefLZc0Sxoyo7Nre2efHFH+fnvv6zVO0xd+/coVkWpGlBZ0p8pHn73bf4n/7ZP+f9D79DnEnWV89hdMfZ2SnOW7bOZQhpuHzpUT7+8R/n7v4x779/ncVsQde0odJUAEajOx1Yt0KSJDltq4NHSYbgw7LsuHt3j9PTE9q2ZXo658at9/uUsMQZiRIZcZRgXV9liCCKJmTpGovFkqYNL5I0SZmMV4iimKquwHmMc+guZnUj4snnR9y8eYe33/qQs+UexjUMRylZvMLx0ZT58h5N01GVGhm1CCEDjkwFWR+hWC5bynnH+voWa2vrlEtN2xiMbhkUA557/nGktLzxxg9YLM5w1hMniuGwYGW0zWc+/WUGxTlu3bxL08w5Pb2LoCSVioPbniK6yMYkY3Fyj9lRYOmtDlPWxgOqhebN1/a5dfsGy2Yf6yxFsRI4v13bjwQJ3kZkORTDGGyEdI5qtke12A81nQhimTDOJtgODo4OMdb0VaWuryBW6E6DS7h65XGefOoK8+mUIhsQxYo0VWhdB/5pv4xZY+l0S16EsGDTdmjTspjPOTk9CenoNGK5WBInMVmWYY2j05rJ6ohBMWQ+XyL7xqSm7lguSw6ObtF2S+qmpCyXfdVl3Cepg4RcVxUCQZYVSCWJ4gSF4ujwmNPTKZ3WgGM4HCKE6kkTS8qqxBM64oPXM6KqqkARiWA0mdB5QdfWSBPwU1vnJqhMkmUTNrd2uPj4eZ77yItsXVjjvRvvsHX+Iitbm8zKFic1pmypF55qJrFmwWSSsbKaMRit03QO5wXlvMY4T9dZFsc1r732Pcabgsl4wp/+4Q1e/fYHdE0gjURZR1oI2jbG4YiloKk6hJQ0bReuynFE01ZBHpayD1rJB0PRfSi/EHD5ynlW1iYcHp2QJKqXw4MM3FeD9XaPQI3IshByS9MU54MdRAiB7huynPe0Xfj3OOdQkSAvsmAV6FpkJB8g54QM3s5QDW0Cmec+CgDxALGVZwVVWYeWLRX3/tKYwWCEMY68yGi6FusNo0lBnEQ4A7PZKXkW0XaW8XiNzd0BTe3BpUQqoyg8xoRCkbYzxEnGeDzh3O45mqbG4VFCBf9yP7Q757Em4L4Cc1qRZnn475SibhqyfICKQso/KPeBZe368F/bBq99eG7FJHHSL1oO2ZcmeC/Q2qCNIc1SrLUcHh4yGo2CEgF0TUsc5+RF2mcbYrSpaCvDZDzi0hXD+UsRWXyewSTnw3fOGI1XWNvRHO+VNK1DNZ7l4ZyPfWYXbY659sY99u7c4Tt/+Ca5ixhOJMMiRndzimGGccGmYb3DOMnsZEFWJFhtQiEMoLUhSeP++h2420pFD9RA3XXhEi8E3/j1vwSD6m/99m++XBSBhyaVoCgs28OH+I//o2/wu7//++zPD8mSFIlCiY4kmYDXjAcN09uavXc7zl0ynB62dJ1hshqxKF2QggTYzjDZNBwf17huRNN0DIeONI+4+qQgHyWsXO5YPz9g/8OOZ556juNlxfruChubp3z7wwPefK1huAZf/KWv8Yd//BonZwcMhgKtOhot0NKRrVhsB8YIXO6ZLwDd8fWv/zinySoiW+KWp+iqoz626DJm+MiQR57IePiRC1y/vce8LBGxI1ZQz8FWoaYzLxRJVnL7xhRtZ1g0aeZY3y4pRp72rGO6l1BMMjQSJQvwipM9SyHGXH1qxNm04vC2xfSd0IoGKRWLCgYJxCpi0WkmW4K2dEgbI5JwSYzIwwNEdnhRYIgQUUYxHCMpqJwjThVRA+1ySUPLooS2rnASXKpoRfAUgUfKAHMODSGGOErRnSVJJSsrMVIapIrROgbvgtTRb5pd2+GMQUhI0gTvDHXZ0dUR1jpm80Pu3jikXQjGSYGYCKalQymHyhx1UpMNFM08BMKkrzClJp0MqAYRS5fQDApKYVnZyWkXJdXS4kwEaKrS0bUKIQ15tkrtBLlK2drZIctjqrmhNEtWxxcplwtC25cizxRV1VKkA7w1WNMhpQv+X98TKXofVF5EoU5xtEqWTDh//iJtW2Jdi5SBQahkQqQKmqbiuSee4MmrH2Pv6BQdjTg726denvDZz/wY69tDjk6mrK5ss7KyyYcf3iZW60xPDLf33wZn2LioGaw7TmeOwSDi9OQ2Mj7hbFoSqTE/9ulPsbk2ZmW8zuNPPsHpfMrJySkff/ZzlFXF+9feQesmeMC9pakbdGtoa92zBxMiFWFNCFHcB/pLKfBWUM5KpLSUiwW3b3yIbkokPAi5hMCVZ219iFSgNTz88NPUdc3J9A7GLqmbBUJK2q5jZ2eXR648QlVVKBkzmoTrysFeiZCK0XidJFnl+vVD3nvnLgf3DtC2JB8qtrbXkFKwXAZ5S0qLC2XNJHF4WQgZ0s0np0dY16LigNQbDnKMceztH9J2NVIJNjbXeOKph3j+ucf5yle+xksvfYHhMOXm7WvMZuFq7KTEoGnakuVUsrPzMOcf3mDRLNjfq5nNVQiSjATbu5vUleb0eEGW5BitaRpNnHjSvMPoui++cLS1D2E058AFnmueDFAi4exsRqM7fI+cCml5gzEhsBa65WPGkwFZllItNHU9I88jxuNVhDDkA0EUC3TX9Hio+xKzY7Go0Z0NQVhnaOsIfEwceyCmrirOpidUdUeSDUjTAVLFKBn4wuWyRYqEJI0ZDLMQ8HQW5yxJooJEKkMYJYmCumONoWmbMDBZGyRcPEU+YDgsqOsKKQVlucA5x2g8xJiOZVlydlpTzh1NU6GiwI9O4oQ0kfi2xhiHkxbnYHNnhSgd0PoLiPFFvvPuh+ztHfP297/Dq9/8Dj/89ofcfO8mputwOsEaS5HHLJdLsqGgqiyzs5qutUQpPPvMOhurhpPDFt8K7nywx+72Rda3Nvj2H73NbHbAcBjS/m3j8T2SqShSXvzsV9hYXeXDD25CHzqUkSIrYtIk4BjjKDRSOecfXO7iOH4waD366GNsbmxy+9ZNvPXEUdwXLHjiOCLPC0CQ53nvtbchCBkFHmndJ9yB0N7kXEBFQT+QBuZxUCh6hJbzpEVBXbe9FTVcnu+XNmRZ+Dfr/gIuRPjYtmcsx2kKCJzzDLIRcdZR1Q2T1RFx3nBydIxpI4QwDLIdjLXMy2NOD5ZoZ0izDJiH8BwRrXFMVtZZXVmnbjpWJissqxKBJ1KB/RpHCXgRLAw2kCSSJCFJ8rDkeUvTNTjvSNKUPB+EBicZnu3B0+p6nJZHwAMmdPj6gEQRxRFdZ3ovcfh1vwkr2L908ExbGwoEVIL3GnzKcJQwn3q6VjM/1Zy/ULBcGK691XDr3jFpGn5GtYa1UcEjz68wP6rxUnP+mRGXHn6MxXTG2fI2q6sJtWsYraasrm8yHA/xaOqyI5KB5KCcYnN3He9Ad22PsROkaUrXGqI4pus0VlucDfbKJEmQShAnKc57fuMvg0f17//2yy+vbeU0ZUsUW9bGBX445Y0f3GQ632fazvGiwxtPU3lk5LFasrk2IFKSZy5+lZ/7a/823/zmK0hpiVJH5z0iSqi1ZryW4KSl1RGVbmg6S2dgbTfl8GBArMZMm5QnPqaZ3hhw962Yy1dXee/de1y+fI7rd17h1e+9zmPPXuTlf/A7RPIuW1dKxpMJh9MzZqeeRgvOpgKwpFIgbEwUWWwV8dpbr/P+tRu8/u7rvHttya2Dit2NiAsywvgl19+6yxMPP8+XPv9lvvXKd0OSMrUYB14qVJxSNy3jwYAkjVjMKlS8IItWaKuWtfUNHn9mk7JuuHOtJYoahFNs7YzJC8fdW3PKA8Vzn5yw++h5DvcbmqqjbQakqWWwEjHMBIuZpTQtK1ua6Z7BW8iHMIzG1K2mdgYZCywFUhbE6QCNB5YIYem6mkhBqgyDyJBIj4gcWnmcCheXNA17srW9v00JhJJ4bxG+R5vYIN+dnWjaStE2HW0X3EFZmjzAg1gLWTpkflb1D++YNLWMVh3Ehqb06FNBFmesbRmqqUGJCBEJZjfH2MOILHPoVrB6IaV1UJkKcompYywavegYJ+s0lcbLDmskf/uX/zPWdxzz5QneZVTa0g4Eh4d75Kkjlh0j19KUM2rdPTDNN3VLonJOT46RcdfLqg4nQotUFCmGwxGbm1sMh4PQCJUNiRPBsjql65rex+dJ05TBMCNNw9Y9O5oyn804LA+5fueIy5fHDIctRXYRH6doH3Hr5pRlOWVjc8z+3QNee/1bASOWjtE0zBcGayXnLgw52msxTcJkkoEveeONH/C5z30R3Sm++93vce/uCcoPefvdt3nzzTdAeJIkbMtCBDmxaxt2dnZCuKQKlxDrfA8ED+bGwKRsUQqE9IyKUShAIFSrKqGIIol1hq7rwqW/BUSKinJOp4c0dYlSKc8+8wKrqxscH53Q1DVrqyvormVZTUPohwxnM06OK25eP+Do5B6Oht1LknOXYna2zxHLDe7tLTk5WeAdqCiEgwQC50Wos3QWpUL9a9P0vd8uQWCo2wXLco6MAr5LioSrjzzG1sYGpovwdsSbb37A+x9+wMnpAWcnx0iviLwijwbs7GzxmRef4ad/+sv4LuPaO7fZ3V1DRYL9vUNODhqyeIWdrV26xlGVC6pmyXxWUi1adOPwxuMMmE6SxpI4FbTWYhUYHOWyZhAXPHL5MlIK5os5KorR+s8RR0JIlFQ4JyiKlHMXhljXsH97zsnxnMXyOFRmJgWDQYGzjqpsUPc5q04S9U1WcRKzMimCz1ekjEcjnPE9KSMNnOV8GIDizoeLe6d75JBEyhhrYHf3AlIo5ot5kKijsOTeZ+1678J1TwAIjO7o2roHk2ustQHj5DVJqkiScGUsBjlbOyN0Z2hrj/Ma3UGkMvI8oWk0URGa3JxznLt8kUtP7jBrDnHNkvm969z84XusDVJ2dja4eXufbJiilCYVgiItiIYZeE2W5yzKjjQeMcyGxJlg6+FNtj+6SnGxwDiF1jBYiairOXvXD0jiGGRHpBzeOgQNpg2sULzg1ofH7O1dJ4szjNF0ugf9O4sgpNED0aC/jkKPEJQB0G8NH9y4zrV3r/XlKtGDYVNKSZaGWs26bmjqFmsNkYr6C2C4nOVFHoKeadI/A8SDxL2S4Rp535px/xKone+lc0We5QE31cv79wdCgaTIi344M3Sd5rnnnuWzL36WH3z/B6RZFtikdUdZnwUVKlasrRVIkTCfthRFhPEdKo54/Mmn+Vd/8C+YThtee+3PiFSB7nRfQiJIkoK1tXXOTs8YDUeBt+4s6i8wrpu2CkErEd5dQoY6anW/VtUFYoRzYZi3NrB9lVLh/2sfbhPwYGm4X08cx/EDkoR8sEAGD2y4igcPqzOm97KGApQkFdS1Zb487RfOhvXVDbKkwDYTLl1eZ295A+VjtHDsHe6xkq3w9AuPcf2De6yf3+Tq8+dZWXuC89tPcG/2PoYYR8eVTw05uyW5e3NJpBKM6Whb19t+PMOVAmvv5wGCtaHrDIJQhJEXQ5SSWOeDvcIHP3F4l1mkVPzdX/k7P/qD6n/zT/7+y8VKy+76mP17Lds7Cf/FP36cD+7+HhcezXjk3Bpaz/jCFx7jE59U/OBbM2IMB7csH/v8JsnDM/7H//mbpOMqgNxLg3MJiI526WEuWd+I8UbQLB1rKzHVzLK7k7C1LanblHLm+eAHDcJGzE9mvPf6IWvrQ3YeGpBFHTcWZzTuHpE5JbJnzMsUpQWLuzVV5eBQ8lMvfQpkwv7hKeORJ449MnZkUUK27YnFJo8+OuLc2ohOwIfLiry7yoXVbV575R7f/uM9tJ+hsjnOxcynjkgqRGSJI8fsrGV9bYXhaJXp2ZQ4BdtF3LnXcvHSc3zqc49w6fw6ril5/NFLPP308/zwrbdpRcvZ3ZLTA8fVj2/z1KdeYP/2EdJC3YESLSdnC7IhXHkOFlODK8esb7e02tHMPUQOYvBihMcTp2PyIidJIjorSOMBXTVnoCTVHYE5hdUVj5Whf136GG8cWOgawIV0aNOAkh5jHVIEN9Ny4bGGgLzyDm8S7rfXxBl9AtH3fx5RpDF5qkilBmvwMobcUawoqmXN2b2KtMjZvJhTFBfI1Ard8pDZYYdILJVxbDyzjU2gmzryeIxwLQeLYzYmm1w5f5lbN/e5cvUCn//xz/KtP/0uVX2CjCsWy45JVHNuR9HWOcM1S9tGoCTzUocUqw8okDyPEV6QFcEnKWXo4s4GER5o6o6nnnqSy5cfZjFv2No6z3R6yu0716nrkjRNwoaqEkDSdbpnF0rOqpb1rXU2xwWumTFfajbOPcS1D+/gWGc42uDw6ICyXNDVIQE8HEVYnSIZYqsIX0uunD8HFvb3T5E2IvWCL33hixSDMbf3Z1y78R4H+7doFyVd1xJlnvFwBD7CWkGeD/FeIpXCuI6NrXWUjKjKqq8FjFCR6jvjfe/jAisc2hg2d9bZPrdNPo4ZjMZE8ZC6KdGmRghPXQc8TGeW3Dvcw1hNpGKs8RwdHgXPGaCkYH9/j7pe9n9+v5tbo7VhZXWVtfUxKxsWoy0nhx1dk1JVMJ9PkZFGRQ6lPCoKFz5vA+Wh7Wtwg3yagg9hGCWigB3r+mpc5/C+Zbmo2Ns747133uLbf/ZNrl1/nXSg2dnZollayrLCO8izjC/9zNf4t/7Dv8X6xmX+4Pf/gHSQ8kv/7i+il4Yb73/AeOw5Ojjhw2v7IW1rGyBleyfnwmWPQNJUKVkWceXxlI1dwezM0C0ipBMo5Xj8mSf4+r/zC/zCL/48F85t89471+iM6RPTAbcmELRduHQZo/AmR3ce589YXY/DwtAppMoYDCesra5jtKCqK5QMwHwhw5CfJgnnLqyze35ImhTMzureG6jwNoQujNa03YK2aeg6Q6RARaEqtdUdKMNieYa1AS4upUDJCLxCa4vWYWHIsrxv1QnYN2sN2nQ9gaXrh3Dft6BZqqpGSsVwmOKpaKowPEsJw2HMcJQxOzujiO63zimiJGVz4xLPPf8ZXKTYOL9NPHR85PmXuHHtNj98/W3SLEZloPIhn/jMS3S6Zf/OAcYIJuO1cIlWwcbjTcbN759w+80FfikYREOEV0RZQpLHON+hSGkqh9MpschxJgnfb42k7Q57yV0QRzI8XFGMJit0jcYbGXBQzvWqjQslIsb06CpHkirSNADppZBBaRIRUqbUdbBVWOsYDIYP5OlwOYsQSNquJY7i3lNq/39X1YBh+vOBLAxSrj9QBHC+6RFacRwQWkmahRxCX0d6n9sLntFkzPvvv8/G5gYAbVsjFUAMRJjOPbjGp0lE2wWOZ6OXuOYKy+NL3Nx7hRs3rhHLIUY3CBmwUc4Hr3VdVxwf3mOyEqpPmzr8HUWRB0IB4bnQdW1voQgeXSl88Ota86CByxiLNm3w5Pb+VudcQDFKSRSH4JgxwUud3Q/cAuB6Trek65pgjcCj+guvEOFyGakYT4SKLV1raOqS9dU1sgGcHC95681bZIMBnpjp0ZI4sTz71BNgBqTDiN1Lm5weVaRkvP/WKxydNCAKhmqdk9MZqlY4DSeHJ6jQN03XOVY3Nzi8d4hAUFUVSZKGwoz+a+d7r3TbNhhjH8x81hoGg/wBpeHXfvnXfvQH1f/6f/iNl71OuPRIxud/aoff/ReHNIuUL/2Vy3TC8cK5v8ne7Rl/9H++y8Q/z+/897/MS597geefepRvfetN3v3gDqOxpUg99SmMJ5bDfcuwgI++MOH29Yp8MObilfO8984Jo/UILwR371qsF0jXMVkbAznTg5LVzYztqymzquYjzzxOMnJ01yvaaoHOWvbeSZisGa7fnjI/9WyNUnYHki+/9LNcefJTvPr9byKsJFWS9bUhtpIM4vPo2RnFsOTWvXvc+N4pZtrQrbeclRGPvLCFmpzw3vXbCJXitMWUkkh4vAoYkDgN/ePDwRXSvKCuaryYs76W8cNX30eYCVvbu/zJH32f47sl7197j0Z3CLdKlLa4TnF04FG5YXbgofZEwxLbBoj+5sMxJBWne57Yw3BF0bSGtvOMJilOaqxPUWlKkedgWtAtg8GI02aObiyTDmS9RE0UXWqwbaADOCse+IBCStQHFqEI6f/xKCaKPN6BJAEE0kOsFEJ2yEjggKYOP+BpkoTK1a6hrS04x8ZmzmiSMF82KDUkywuiXJKKhLPDDqEN6yuCy+eeZjK4QKWPqeaQCsG9OxVdGSMSmM0aijRlZRzR3C54+smrHJ3eZLHQ3Nuf8sF7Nzg+mhNFoV993nSMswn5asFsqUmTmLNjz7mVgiurObWLyPKcYpjQdZrNzW0QkuPjKVXXoY2kbRyTySqLZcUbb7zF/r0Djk72yEeOj77wceazBbPZlDRLUComjlIef/xJjg5PiSJLGsPp0Yyyjjh3+TJNHeGtpOlOODg5pKk6skwTRx11WYfErrHUdUlVHVKkniJe5cXPfoHbN49DSUKh+PVf/S1e+NiX+Nd//C3eu/mnyLThP/1P/kt+6qtfYr4sOTk7Q4ogX2nd4oVmPBnTNA3OCKql4PDeIc50/cXLkiZJD/m2oeCg985J5Zkvl7RtiQDOzmacnZ2F1HJ/8ZAy7n14LboP8AS5SfcpWkvXhkYjge8TuRbnQ5DOe4GQFt0ZymXLcm6YzzVGC8qyZLE8BSRxNMAagdGSOA4yVYDHC5IoeM3oqx89lp3tLZRSnL+wy6d/7NMUxUp46WnHdLagqueh0CRKeOypq3z6xedp2pr9vUOc0winEbLlYLrPH//Jt/m/f/dfszrwnNvd4LU3P+Ta7Q8hEVgPH//4C/zcz/0M6xsrnDt3Ealijk/ukeURcQxda8jzCaPVIXXjUHIS+J/GkuYZmw9d5uKjL7K58xyzxTGvfOubfbjF4m1Icmd5xs7uNkJAVdYIKVhbG7KyMuLstKJtRM8YDc1w2ji8Cx5V2bdfhaCSpO00urNMxiO61nB0cIJzAkFEnMR4R7iEekskRWhpEw7nW5I0Dl9zlTIajgJTkkAG8N6GpLru+qEppLjzLA9Sow24qoCu8mR9OCbPChAyeNx9CHLGcY42NdaGhSTNYff8kKrqMFgWvsRpRx4ZikwwGGxQ1nOuvfsdvvP/vk63NOzduM67b7/KaBKjncZKRzKCw8OWmIytjQ2eeuoqQiju3r4TAkzasZgvsY3HO0NrDPP5Al23NBqciCmSqE+AO0bjguEgxboKr8MlcmUyYbmsiFREVS/7QUj0y6AgjXOctz0lRDyQrMNJL4xDVodlOkvyB/ivJI3w0rK+scLFiw9R1RVJnDEajanrOlwalSRNQ4tY27Z9MEpzv3AgMESL3pPZcr/VTPTH3SSJe2k9/IaUgTyS97L+n1fkhr9HyGAjOTi4R11X1PX9BSUs8fgg0+MkujNUVYk1giRJcK6jM6f82ff+JQd7ezzxyBOcnZ6S52C0AwXadIwnA+p6gbOaKFIsFnOGwwIpJfP5rPfWB0ZtksRhWO3VA2ODvP3www+F+tjp7EExhu8H09CuF0Ja9wsanA3Sf2gbDNfXtm3BhWyCdY4kSYlVjO9b4tI+YBYu0YLOVBgnES4mVmOM8VRVw2Bc0LkK7xtEnLCzlvLxT69SNge89b33+em//jVe+bPv8+br75ANBEnq2NhZY15OuXPzmAvnLnL1iatsnl9nuSxZTCsiGQVJUwcikHYdSoq+3thRV034XKWgaer+c73P+XFYa4gT9QAn96t/+y/BoPrf/bPffHl1qLj2wZKf/etPYr3i5usHPPkpuHNyhosOyYYFx3sfsL054ud/8d/kysXPc3H3Ii88+1l+9w9/l3ykKEtBoy0ru7D7SMrFyxkSyd6HGpUarl8/RqqIzd2Yk5MW76GqO46OOo72SpqmpnSO49KTjTq8ain1jIsPv8Dbr3Q01ZKrn+yYd4b/j7o3i7UsPc/znn9Y0x7PPFRVV3V1VU/sZnNokhJJ0RRljZENObqhLCuxA0mxEMBwEjlIHCcAYQMJgtxkUoBMgC3FCSzFlozIskRHNBU6lCgO6m6OPbDm6cx7WuM/5eJf57QcBLmNVDcNVJ3q2vuctdf6/vd73+fd3BohRcbDA8OHX8q5+dI1/tHvvs4XX/sDtrMGDvOIvAoD3Nmc0+YJN687Lk3mWOPZuhw/gAeLFc3hMQ/u3KGuZgjl6DpHVYdIAFAB24JAMZrAxr4lGZ0RxBDrSppGUz7sGKeKxw9nLNsRV58fsjysMLWgdR3aGQZjcDKFTuDPliwXD3FCk4s4IBQ7DWtPOar5Gge3LISOIBVkDhckWR4w1iGSBKnWEbrDVDP8osVpTe4LsCVLu8IMDINNRWcCdRewNq58HQIToh9Pq+h/8ibeKKVUSOUxRvQnU48ggFco5fEE0iwhyxXeecajHNlzApXKsb6jajpCmjFem+BLT7P0jCfbpFspisDiERH2LJ4QphqRSfAdwVs2ti7jfKCVZDibAAAgAElEQVSpG4JxzEQE2X/o+lUePZpxeHyMp2FVLhmPJTptyYsRzqfQwsnZAtEtqOcNzli0XtI4Sy0KZsslaZoBgSwfgoj2FaVzFov4kE0zGcHWQTMo1hgMC3yIffVJGh9Aw1EW/Z9NTZomPPvcDR4+uE9wLUjJbD7HtguKNOXpZ57m1t03QURAeVcbvDEokbA23YneWBEZhW0DN198jmyS8cWvfJmkGPLjf/6neeaFD3Hv9A7/3S//F9y6/S2GeaBZenzY5MHhkrdvfYN63pCk8Nxzz7G9d4mmNRwenNCZls7WaO1ItOLatafJ8oSmrlBaxpaTEG/C3loEvac8aELXI89kIEscUhmGoxylwgV/1uMoBik7+7H603aKohjgQ2B/fy+2V3lHUeQEfN8AE1doInIqohdOpFEl6tdxeZ70gZFYhRph5h6lI8LlPFWtZdo37Vim4zF11TCbLZhON+Mg8vgewXuGg5TpdIMPvP97eeH5G6zKBYtVgw8JWk34vo9+nOnakO/evYNxgdFawKvHfPC9H+D7PvpD/J9f+AO++Pufp1pFpmawNd5knJ6suH33Ng8ePWJZzmgby+ETz+mJw3Sa1nQsVkvqBqpFLOgWWmGdoFlWfOdrX+E3f/U3+dIffI1ldYSSkdebplnfQGNI0hhUDMIwmkSP8Wx2RtMtUIlDqQxrFB5woWW+OGNQDNna2iRNNVUVweVCCLxJWc49y8UcJaOqCBLrW7TKEAFSnaOkjlQMH/3ric7QuiDLNqnrDmsNeZZi2hjSiyvSWJlKiL315WoVH4c9VD5NUwSSQFwrO+cp8iFdG9mW+/vbIAJtLbA2sqN3trfZvTTmwd0ZWkwxVYlwCh80Zet48PgBh0dPSLVCCRBJwdb2Lk1XU5kVXhoSlTIuNFo0HD06oWssJ4fHPHlwhGkDxlg2t/eQ0tN2JRQCYxqUV3S0NE0FbYdpaxobbUJ4gQgSKRVpKmIltUgIQcYikkSjE9WnqyM/1DsX65596Ic+zWAQw0ZxaNL9vSDQdW0faJI4B1rneBdblubz2KjUtVEtJbjoOXc++jb7ooELbypxoGrahs6ZC4zVuWc1EBVK731/z4yvp2mbvsAhWlC6rsOYDggUwxjEyfM8Kq09V9kYC8IzHBbRo+3biJPykezgfEeeDWmqjkGRMR4pylXJeDigaxuCiKEu6w2rcokIHiECXRvLK1KdMBoPqes6ekqdp6rriwbB1hjSJKLWzvGD3nvKsiJNitg+pRTD4fBCIY5Vs2lsXyTiqLq2i+HCruvbC6KVRfZ2iUExwjlPkkQxR/d2Cu8tSEtAYVwHvqFpV7EVTXgEllUruXrF8/T1gtlxYCDGVK3na199i2V5l73JNY5XhiA0W6MpplV0/oDtrR1OjwxtveDo4Rn1IgbcOtNQVQ35YIQPXV/zHVX1+JrlH7vnCrx1sazDOZJEo5RktSpJk4S/+Yt/MpqpRPQl/L//eu6HRHAmQQhDtRjwM3/1BnU7Z++ZgllZMcyhaRWFPsNUI8bhxzn5xoSPf9/LrNIpf+c/+xs03KY6TZDB8dwrKRvP5Fg5485nPfVKMZo63vxmBNHuX28IynP6SDHdcMxWYOoMn7UoAXYlWL+syCYaIcdMh0NA8OCbt3nx5TFHZ57lzPL9/9o2X/ylQ0SmkMWYtmmYbi8olyNYSuYHgXq45Op+AarlYz+6zff+0E2Wjee3f+0+9XHDdrHDwdljjk4WtF5Qto6yiYlLJUAr8D6jlR2pkYz3HEWhyY4KRi8Mqc405XFgefsRSieInRHPfeBprj01ZXUasM0T3vjDt6kPwOqMhBHeluhxyvy4ZFQoNjYEal1S7Bfc/4pBtEsW1jEZjpnu1MjUUmu4PLzEg8YyzjXGzAhLSzbYoJ7uIqsFSzenmp8hXGBrf41FOac5Dj2uIsr+QgJBRTXKO5xRWOMoihQpJXXdRF5oiAc2KeJNV6emB+MHNrc04xEIC3XlaHxAeHAGEFDkE7a2plTtEfNZh3UF3cyju4DrAtO1nI0bHXVqKBtNGkZk9S7HZ3OmY0G5bNl4ahOaJe+7uc47d05487tzXn7he6gax907X2GiC6ZbgsVxyemi48pLBd0M0o2StY0hx+84RJLj647jw0Be5HRdRVUaBBlSQZJG1UNSgPBYV7Gzsw0hYbGsWK3KuKZUkOcZUnvqqiPLE7qu5ge+/0e4fesxnY1A+6ef3uW1179O8AFFjpAmqo6dJRtoqkWF0HHN3lax/KFcNNy8+Rz7l7f55rfewJga76GtEpTOGW8YUiUpFy1NY3AuYLpYHZmmsfLPx3ZTkJFZ6HpVJfQeNxVk32BkGE4cxUDRlJqyNDFYFSLGxauAIxAwBOcZZRk3bgyZLzuU0iQqYT5rMJ3HeYUxHmsh0OGdZXfnCoPBGJkITk6PKFclRT4g2EDXVgRalBJk2YAkKbAhkBQJ1jTUZR0rMSN3HGvdhZ8uTRISHUh0bNCxrcS6qOR1zqJFfH9SSYrBhKZusd6wt7+HkLBatIyH61x7ap/OVJwuFzTW0naW8XCCrRcs509oO8PW1oDd/XWmG8/z5MmSN9/4MqNRykvvey+dMbzzzj2a2tI0S4qhJs0gLzTOBZra0rUxRHVeDKGUpixbQlAoiCvv4C/WvE3bYJyN6W6hESqGJ60JsRRESLJEsb7ucGisWWNjbYQIgbq2qDwDGZidnhICDPKCoijQWrJYnMWSDGt6Z6QkSwrW1zYoBkNOT2cIKViultBjokLwFx7mug9FZVmK6AtUQvAXw0G5WiGVulCnYvuS7hPr5x44TyAWAICJ12kQSBVXtMVwwKAY8OTRAVkyIHiL0p5BMWb30hoPHxxjfY3pPONJzovvm3Lw+Iy19YS772gWiyXT9Sm718acHDU0pWA8VizmS8qyRWsDPmE0HNFUJaYLKJXSmZrd/S10knF8PGdRligb1c4gYyhM4QhBYrxnUORY20ayeCiYTMeslscIoek6F61ZQSBDipCGNNFIpVgulySJRorov/RYWttR5GO0lpycnjAZTREh4tikjMNilhY4byjL8mK4jZ8HSde1F0PWeRMYXiCV7YcijZQaH86/3/1h5Y/hrAQysl6F6K018f/XdR1KKareWpPnWRycg4r39kG8v7Rte9G4lSTJxTVRFEMWi8XF2v2cdlCW7w6VxhiKIto72i7WuCY6R+oc0y1QQhB8hvHRchKCpshTUqWpqhJCwPfsb+ccUqdIiEMjYEy0VWR9k56Q8f0651BKXXhxi6JASknT1hff41hEEFVTawxSRC9/HO6SC6RYlmUXiK+2bZFaEUPKqg9sxXkrz3OKYoBWmsFIU/tTsqFgbXONzjoOTkom65v88Kde5bUv3ecrX/kK156ZcP/unPFmRt21PHP9/Xz4Q0/z+c99no3pGt98/R6bW0PKsmRte8rhwYquhLatIjXDS5wxJEmK9wIfIgVAyQSdGrpGkGZxi+a8J8s1y0fNu3Vm/z/++v9WVP+nv/OZvNBY63jqBly9nrK1r6jMknwwYrTdMd3axGcbbO9u8p0vHvLb/+hLfPRj7+X3fufXeOONL7N/aQ0rV3iVcnw74ezBkrYWHD1RCOmQWrG1r8nGgmVpsT7FS48xgVSkVD4QWk8WJwgyBUWhscJQNnMez1ZUTcLmeuCnf/JFvvmFMz74IxDSTW793gmDcUmx7XBCUp7A7FGsyPyJv7jP1lMFs+WCIrnM535jxje+esA7r9cc3wdrV7zyvc/zxtcfsKzjKVMnOdbEwEaSZFSnbXwQ6sDCQlgFjt42+M5T2YSuPgKZMN1JEGlLVQqczzmuSw5lx6sfmVIaw8mDhtEg46xc8SN/7gexTnBydERVO8abE5b1ivndlkEmCFJTFJ6B3sYJj8wkyycN47U1Hr55gm0D47GAdETrPAVDQu3YSgS57hAVrOWepgs4H3q0RyBROQiDUAFFAli0FggRKEsTsTReINGxVk4FhHJYA6BJUk0gpo1VEgghwwkHQaNThdQe62Kl6mCQkqaBzDlSl9CKFj3NyXRJu5RMphtMB0uMrXlwv+L0ZEXIMnauXme8ljFd32YktgjDBhF2KGTBG1/9KvP5irUtwXjP8/CBJ99I2d4dMj/JsZVmkMgI4+4yvNN4lyBFgrUR6yJkRPhkWcLGVoHQC6QSFNmU5bKKIOyiiCGV0BGcpO1KTOuwnUCSMsjX2Vhfp6qWpKnm8OgRn/6pv8QH3/sqy7M5Z6cLitGA+aqksitG0wRpHctZTZYM8cFiXMXWxjYffvWjvPmdb7FYzABDnknSFPJCRq9wJ9GpJCiHlx2jNUVaCFAaeb7CElF960wcGs8Hj3OAe3wQJRErJyS2S3E2R2kIKISUKG2j8mczUp2QFB2zZc1q7lnOGqrKIog+WGOIcH+haW3PWW4aqrLi4OiAyszRicV1FXVbEaQjyL6isQ+22dZjGovpu8mtO/d+cZHCjYOTRQRBlmZopTG9iheTvgpvPW3jQUiMrwky1lWW5QohEsajEU2z4O3bb3OymINKCEjq5YrTg8es5nNWbYMXYDroSrjz3Yc8efKYn/2rP8u/8bN/mbJacHL2gKo+xXQWhMOFgNZpDx2PQ6oUCVpnMblfG8qyjTgjFeHhzhqcs2RZHtUpF/vXlRaxhTJEJUuriADSOkOJhBAKpJqQ5QkQKBeBQAuiYrksWS4WUcU0FtuZ3gKg0Srtk9wRfaWTONzNZnO2tjcpioKDJwdkWXKxxkySlCRNGQ4HbG5u4F2gaVpGo+GF/zGuruNWyhjTq4Dioh1MCHlRtRvXyT1AHoFOZN/9LrHGUldlTIALixQpTWOj7zhRzOcr2q4mBMlwsMv1p5+NrOOwz4vPfQ937r3FZDOjtTnbe2vMl2dUHVhSNi8r1i93WB9wy1g17bynXDUQJF3jOHh8ijMGEWJDHFhscBAEqS6wrmMwyiOuUGqybMAzz1zF+0DTtuhE935oSZooikHOYJgzn88JQD4Y0rYOEeLhMlqvkn5V36BUgjVtvKaIHtAsyxmNhvEQLSU7O9usVqsLIP0fHwDPfZLORguMINpzrPUEby9oEsZ0KC1RWpNnA0BeUBxARkWceCBPU02eZaRpijGmr0AdkCQJ5aqKAToiGqvrOoDebqCoquritTVN07/GGLYzJoZw19fXmUzGUbUXsDZdQxpLFxakKkMIhQklQgsIihGe1lmM6S489VKJC4/uu5Wr0LVt7LuXAm/P74GBpuk4L2wBLhBh56irGGLsA27OkuiEPMvoyV/xPtPzVrMsQylFWZYxAOk9xhrSNLv4bLzrj7Wx3KSqOTubk2cTjNE8uX8GLiXVGW3Z8sU/vM3J2QwfPOVyRrMIZCrn2pV1Rsk2x/MV69NdTk9qnjw8xBqYrg3Js4zZ8hQRXGTDymFsEu1tJRcoQZVQDJJYFBHAB8tgsB6fMQ7+w1/8UxCm+q9/5TOf0SogQ7xxLI8nvPTBfdJCE7TjO38kef1LZ3zh7z/hS7+x4rRdkjQT/t1f+DR7L17ia3/4O/hhRzYI1I/2aGfHXL2puf/YkilB0wWODgV71wI2WE7OAmUTT3ROeBalIwRPIhVGO4S3FDqlTgSFLqiaDmFbholj+3LGj336BX7o5/c5O234rf+lROYatREoncHOJc1hx2gk+Fv/1Yf4C3/lI3z+t2/xjW822PyQtR3D8d3A5a0MoU/48z/9Il974wHzVc1gMMa4eFpLU4V1ka/3iU++yHJpWR43JAPJWAfe8yHBoBgyWfc8fgiruma86cmGOYIMbTNkXTFC8NbbNVdubjFNco4Pj2jrlNPbB5SLmny7RmYZ092OahagcmRKU9aGna1LHD45JRlqVB5QJnDwoKE8ari0l9EZQYWApCDNFSu/JM9HmIEl057yRDBrAgGJ6CtwsyQlH0Q/WzCaNItNQuBj7akEYyIeJaqMgWExRSUGlTisEZhOobQjK0AE2Zv8U6yPepxKARJsJyiShDAMFLsFjdM41dDlCWWbcfqwZWdjwvauim1gpx6RJFgXuHPrLvfvP+Hn/uJf5+mrn+T1r73JO9/5JlVZkU8Uww3BomrxXtK1hkdv1aw6y/paTrVoWNQaTEuWFiwWC4xteghyrFKVKqGsKtJcsr5VMB5NqUqHNR6t47qqbZuIFRIgQiDRFiUCu5tPs7dzmf3LOzw+uM/x4YKyqfi9f/4HrI4WPLh9i1W94IX3voeTk0NsV3HypOW9L73Kp37wozx68hBFYDzJ0DLjycFjympBvYx+zp39Qexrd4KubdnY3IyNL86SZRnBS5yTKJ2wtbnL3u4uxpmLB4j3Hi0F3lmUFD3axaGUp64dwWWkmSDQ0bUW06/pBBKFZ9x7edGS7f11Mp1TZGN2ty8hhY+BsK7FulixmmjJeD0jG6cgNCpkpCQEJyBkJHmOIzAarzFd26Q1js52GN/iRYdQEeqvlML1w1JU586HG3o/bBz40iyu/trOkiSaK1ef4uq1K7gAy4XB2XMuZEBrydUbV9m7cgVrO+azM7JEsz4d0dQlBMt73/8enn/xWcp5RVO2kHqMqlBK8f0f/kEu79zgH/76P2N39yk+9Wc/zL17t1nNIuJlVdbMTiP1whpBXRtMZ7EmfhbSTPcYHoF1DqkUgyKuW5erEh8CUsXmnfFUM5mmdG2N66JK5lyDyjwqFVjfsrW7zv7eNk8eHmC7jnJV0rWB8WBC27TxwRk8WkvyPMX3XtXORJxSTD3HtXFZlszns/4hHNVqKRVN0+JCbBlCqjjkSEHXtbRtHD5c7+k7X6GeJ6u99xFGLgRSy4sDslQybmaUghCQIsEYjxCeEGxPEYjPhCtPbbNa1hgT24ikisOttS0P7i24f3vFwZM579x+izQXBK8pz0q+9bVb1KuKJKkxbUu11FRLgWtS2rKNFaYtKJmiJHS2QesIRxdB4jpwNkWnnizNyLOE6XRCWS0Zjwp8EGRpjpI5x0fHFEVKa+qI3SPFGMuzz97guWdf5s033yIf5EzGa8jE4Ex8D3k2hCAiSlBopFB0Xd1jrTRpmmGMjSgpIEkUdV1TVeXFwTME15ckRBVQSRWH935VL2TksJ77lJXSvRczetKDl1Fh9DEARlDkecp4PAYCi8UiKog6guGFEHRtDFEqHQedNM0QgovhM8uK3pPLhZo4GAz6Suqosp//XpIkVNWKwWDAZDKlqitWTYOTGUKmdCGghER6QYekRSFcFzdVSiOV7DdICoQk2PNwmuuvSQU+9Id098d8tvpfmnvOD2bn2Kn4+TAQ4vtKswxj2ugDTvOL99Y0DXVd07YxyCWk6CkO74ZUzxFfET8W64S9E1gnqecGrKZZttjaEKzDN8c0sxXtrCPRQ7qV5Sd/6qf43k99kLduHXDr3htY1/HWt98hzRS2SwDF8fGCybjAOUmWrOFcwGMQsiHNI4P9vF7aWBvLOqTCNLGtTEiHdfAf/Xt/CgbVX/p7f/szMU/hSdNocr9/Z8HNl8fMZw2T8YjP/uNb/ORfGXPrdcVr/+wJO3tjfubf+QX+3j/8DSr/DWqrmN/OefBazc7mkOk1w/HMkfgMMsvGRoF3ggf3IxtRSHBeIJUkkdAGgTSCfBrY3RtDnTDd2qWpLZNJTp7k5FnNyf0B/8f/9ojT1uIf7/LaP79PPrGEUUC3A8QyRQ80e89KvnvH8Ev/w9eZVYeMNxxXnknYvd6RTS/xoe/5NG9/Z863X7uDQZDlIKVmdtqgJAgde5OtCbz3A7u4QYOddVQngmee3uXVj91g+gw8+2zBYpHg1RBrHFIl1MpT6DVGScbmtWf4wPe+yOJkyYM3j+lWNq48TEnnaj768T0aeUZwgtkDTYLDGokThrYz2EYyXdfkA4+rMmaHmlGi2H+qA+nRkyFaJDHlm+eoIqHBoDrL0a2AnnisCaQppDpB0JHngUE2oi5blIiNID5Y8kFEVsVVsooGdwLOyeiXw5EPIhC/WlkSmZPlHcFFzycShJMIJQhuwFp2g9QJgrIUXjDQKbYcMk43ubx3CecMy9MlwzXNcCIYDdbIkzGLsxMGE0WaFxw+OeC3f+PX+e53v0GiS7Yup2xd0tiuwdmcQSbJpEILj8saqlVHkiacrQLCQb3KqOpln9wERGC5NAgJOrEEn3Jy2DA/C6yWHUKBUjAYDPuHeqzbS3XC1naKd10ccBDkgxQh4ejoLkoH1kZjmuodkmLJqrU8fjhnlLYktmVzZ8qNF1/CSM2Dh7fpVi1rkxuMhlfo7AzPkk9+6vv40R/7Ub7xxl2W80CaCj7ykY/RVEse3H9ItWpQaJpVIHiFNw6tNNeevkYgUFVVXFlKeZFuDd73g4vCe3A2slMHI0+Wg/eO4FT0IwrNeJST5YrNzSk7O5f5gT/z01zZv8Hbb77N6fGCJI3BkHiN5KRJgfCel9/3EtdffIbFbI4vW7zraF2D1LA2Hsa63K5jd2eLwTCPTWsqRYq8h/VHJFLbRoUm0hQEpjN9WpdYLSkgzRSJjoeqpm7JiyHjyQbL1YrBUDMaj6ibBq1j1eudO3e5e+82VVWSCE1b1ZydnmK6GqUDQgyp65SynONdSYomFXF4+8OvvcWXvvYa001N1634+mvf4vH9UxAejycvRqyvr+OM7YeAuFjVOkGrWMkrZaxrPO9V9+eDIzGkEQ8JguFgytr6Os66Hp7v4hDiEtI8J8sKTo9W3L9/D+eqGJbSKVefusLly7tY19E0FUmi2N3dZTpdZ3a27HFlgc5E716iZd+jHpWiweCcBRtZrBGIHliVq/h7SiBF6FWzOCQopftWJdGvUSOmyEUvSFTSfBxQiyIHJN6GixWs95asiPWyvgfNeyPZuzzmA69e57tvP2S5rEFaREjI9ITOLlE6MF1PYxOfaNnc2uD973+Oq/tD1qYZw2yd5WmDAqajgraymMZjbd2HAQUIh3UtUvnoIfWetPBs7oyYbma0rWBtbUC5muM6zQc/8F6cyaK/Oy+ZnZ0xHGscK5aLeK9UOpDnIx49PObu3dtMNx1J6jg5qRBobNextbWBkjpuTry/uNYlcQOQZdkF1D5J4jXTNA1VGT3xQDxsK9EzTc27h4Ag+8BXiGKBEhdqporsuTjcqpRExxajpln1wxoUg4TZ7CzeQ3o2aNf/vE1ncc6jkvgzP1fKx+NJ33IksJ0hz3LSJIVAFDpCFDyi8tr2yqrorwcoyxWr1QpjDdO1NZZHp9jKUHhJknqWbUcuEnzTohPZX5fghbwoOQg+9GEwhdK699nKCxuKELIv0Yih4hDePWCdH7LOr2Nro0/3XA1drWrSVDEej2lNFz23IXqJozoL9DmNLM3JMt0fJnoPqNSRs9oZvBOkeWSSe9eiJCQ6VvB6G0iHhiLd5Id//OMslscs2pKqLvniF/8Fb731DtONIft7+3hvqVfLHsVlSRKJSg3eR+ZrZ1akuSFJY0OnMwHTaQKmt+8YlEoYDFOsNf3BQfLv/9t/CsJU/+3f/U8/I9AI6Ym8MJifevZ2thmOK44WZ9z5Q8udbwrqmWArbTEBfvfzX+b0zluoKwd0peY7v2fJM43Tls39QFU5MAqpYX3TU61ivZd1gTQTEGJHu5aQDkAbT2DA/MySU7Hz1IA83cPWnmxdoKYlZplw5WrF3vMFn/vfv814LccmCq8r2tOOwiUYK3Ci4ehRjU5X5EPwQTHcAF0oOn/Mt771ZVBL5mVLXVXxRl03KCFwVlysw52Drq4JMuPSUxN2djJ2L1/j1Vd+jDo8i2MAZsH9ry/Z2N/DDJeMyXj7y4dcee4GZ6bmye0zxvoKV5+5yp037xGsYqFqvBQc3a1JsynSDWkXC3IVaDrQ6YiyrvEOsJZqkbKYL2ibmr1LGVeelhGO7TXCa9xqwWi6hhKBTGZ0JzW4lnwqWBsOKXo/02RNRAi1iUlu4XOEbi9qcpM0oW08zp0/cCVeeKzrvU9CIETHuBggbGBYjCgKyWIRkMKCl0hS8mKCttucPTykXlTkWYHMV+TDKVJn7F25wtXn3seJn3F6OifRDcPdjsWyYz4TbFzZxHYJTx7f4/pTC3TeIqWiM5KtacGLNyeYzmCrMWerjs2rGRtbQ5bHNaZp0ElKOtCsylNwMaBjjCXPphjbkecJ49GU1WqFdzGpLaRgMs7Z2d3h2pVnWS0tRTHCdh5YIaVjWGywsa3oOolUKUHA6ckp3rWYleFD73uVbLDGooOuWnJlDTIl2Nt/H2ezkm+8+TVsC6kc8dT1yzhRIpTn5s3n+bf+zb/F8UHN7//+F3n/qy9x47krvP7619nZusJPffrTrMolR0fHuNBgnYEQG3weP3nMyekppjVIztPxEq00WmlUr46LSL0mYMnzjNFoENXKxpNq2Ls0ZDKdMF+UrG9s8MrL38MXPv86X/i9z+FcS9vF6kRrW0KQQEIQAucVs7OGJ/cOOXlyQlk2fWNZ4OZzN1jfmPDsjRt4K2iWlr3ty6wWFeVyhTNd9FD2Sd64Ok77wERM8HofE75CvuuD1JqY1hcx2Xvn3m3qqmQyHdAZQ1VWaC1I05wiHZGKNLJXhcHREbxDS4lEcHZ8xNHjhzjb4WUAFVBJwBqLCCWektl8ycOH9yhXM6YbKeubE/JsE+80dV0xHBSMRiPquupVpvhziAii9kLZicpNrzoJgZBRdbQGypXh5GhG1xoGgyImjL3Ge4EzHUpKklRTDBRZLljfnrC9t0ndVFSriqapGQwLWtMxXyyomgaVJDh8v8b0PW3C9MpcPIier5IjxkhSDAt0oplOJ4wmI5qmwtru4utiYw8XvveY6O7T5oj+z+PXBuJh6HzFHHxEN2W5ICs60kzhncIbSQiap67u4EPNw/tnWAs6AaUExSDhxvUXePmVZ3j8+Dj6pO2A8XiK8BOePATnE7QeIrTA+I62sz1eKdp3Ah1Ih9IglF+Gye4AACAASURBVMBYASjSXLJ9aZvLV5/DhxFCNqzKFXmyzc/+3M+wvrbN5z73BbZ31hmOQmwFEobxJKNrE3Z39+hsRd3O0SmkiUYngJd0tYhUkCwleMHZ2Wk/4CiuPf0UVbWIdaU9TuicazocDi9S+mmWXiTvheRCqQMuuJnOxoE7qtgerVRsj0LF7RmQ6B5hlw8QMmBdrGGNP/t3W5rOqQHnP0cEZHksHEjTjDRNLtL+Fx5NIWjb9uKaOG+5cs5RldXFgSUWUSz7z0FcpSupqFc13/8X/lX+0i/+NYK1XHvmOtMb+xweH/HJT3yKg0ePI9mCHt3Vp/V1vzFCRNpAfA324h54nsw/X8NLqS5e9/l/IRJNovJ8ju9yjMYFaZbRtLGYB7go0zj/++efB6XkxcB7MSTLeGAdDAbxcOYM3reEYOnahp2dbdrO4IKi8i2XLr9I2VRU3Zwf+bHvpeuWXLm8SZGMmFcdBIV3DXVVkmYBgsS6mr39NZSK6MDBMCNJNfOZZTqZMp6MWcxXJFpEcUF4tEoQIhaBmK4F4fibv/inAPj/3/+vn/mM1DG84G2CDJr6TPA7v3bI9vqET//cB7nzxgnf+SczsrJhuAPl3HPntftoccbu09tka4ZUKR7e8eQTSTYYsVpZBpmn7lwciBAELG0bHzzGBJI00AiBbeIHYyVach3ABg5WC5q2Y3OiUMqSy22kPcQj+c7bLYkraNqAAxKXop1BMMIXDX4YWHvasHUpQ+QKs7LsTgVXr+bsPJVCKpkvKkIXkEHEtYIAHwIbmxOcAe8CWRoTtZtqk6PTgvU9yfv/zKscHMx4cOeA8doGl64MaQ/mPHp4hGss8qilO+x4+613+PDNZ2n9A37/n/xfHB8vQQlW81NGqUZZMFikN/HfbjucT6hqCcKikhQhDKOBI/iW1SKNCdvMMjtRFFmB1YZycUq9tKzvTxCyRegzDm57sjAmzyzLk4a2DGxtJ2htmZ/ZfkUKPrTIJKp3gthV3tYRUi1FBK4bG9tRBBbnRGwxkR0uWI4fG3b2BqRFQGeOVEUEksob0nTOQAwYpDtsXtql0CNCOGTr2gZ37s64/fUTtPTYpiIJA5JJgvWWQb7NvQcHzB4vcGXLjWsFnU148sCQiAG7mwkpipPThqprqTvPWSVoliO0BBBcvjKKqeRTjVAOqWA62URqxWQyZDRap65C7Dr3Gc7BU1eu8lOf/tepq4Zvv/lVpO5YrZZAXKXGxK3C+po83+Dpa88zn884OjqGEFCkrG1s8/DolNPFgt3tlGv7goNZgDRQLu4wGYyYzzo+9YM/wCsffD9vvfMWx0enKN3xD371V/mtf/pP0WnHpz75r1DOE+49vMXHP/Fn+aEf/nPUXcu3v/0mjWkRWsXEW3+yDuH84RTVgLT3rkb1SuBdF5WXnn9ZLl3f+pQghWNvb5O19U2OTpd0rmE2P+NrX3mD5eouo6kmLwYMxinPv/gMm1u7rMoG503kF9Lh2gpTlTgZyEY5a2trJGnKBz72UV7+yMdZtYHvfvcWOlNs7GzgQvTr5dkgcly965UfekUnBh7O4ffRvndenRitOVkWO8Z9cIwmBdO1Nc7OViwXdbxeJZGj6xqMKftiA0GiUpRIaBpH03hkKtA5BGtpSkvwgiRVxLBBQms6ylXD9q5kOLLcu1UyOyuxrouKUBsb+U6OT/DOkaYa8CAcSRoPe6Kvzry4Iferwji1gtKCJIn+xSJPKDJB1xhcsCgNiSpQSrC5scmVS9dxLiXV60ynOxwenLKYL0FKyqrCGNsPNQHrOmQ8n6CVIkmTqHYRvbAheEzXIYRifX0d6xzOO0ajIUrC7PSE4Bw+RE9q8PHAd/4rttXFgUSr6EF9N2CTRMU+xPuJgFirGQJpAjv7A5SGcmEJXsUCEqE4OSyxVtF0LVprEp0SvGQ2m/Pmd+5QrxyTyTrGzVktO+7dv8fR6RMeHTzg6OwxTdNhOkFTu1irbGIo1AcIIqc1DidM9H1rx+Vr66ytXWUxEyyXS5rVimeuvsB//l9+hu/5yEf45V/+FeaLE4QghinTHCUTbAdSOAIVybAhSSVd6+hahxQJqR6yvb1LWS57dJREZzEshdBcv36Nvd1tHj46iFW2LlwM/E3TXHg8z/mrSqseXC/jml9KpIpYq1hzasmyBKUFxhqk1Cgt8RiMNUBkriotsLbrMVnRx/lunau4QGhZaymKIaPRmOFwRJqm/c827T3I9YUCmSZptCX1A5wQItoS+uCRs5ZyVcZrsFdbvbfRVx0Cxgvu3znmC7/3OR6/9SZl5XF5wtG9eyS+4OjsEcbEryc4grP99RvwwSN1HDKjahrVzlitGj9zvufOCnGOaOrVdeAc6m+tu+C0KhXvq7EcwWPduygwH3wfVBX99072FhLXD8Pvfs6lEgyHA/IswVpHVTU4F0jTHCEVUQ8SjJJNnjz+LgdPDvj+T/0gL730EY5mK3aeznjtW39EvfLIEAOWTdmilaKt40Z6Meto6yi2KK0Q9Cq4DVRl0ydtIc0j7SfLUhAOQcr1Z/ex1vI3/tp/8Cd/UP1v/u7f/ozHkxZgmyHTSWD2cEguBIvjBUmzQ+lm7N0sOLjdQhMIiUJMBzx4XLKznqG3K55/aZ07bzRsbm1TDK5Sm45xnnLjlUC5khw89DSlQqhzU3iC6EMW2SDFWwMOlB6QBIl0gS5pCb7j8e2Ke6/XXMlvcmnrGgffvo/uNDJtIS0ixD5JaVXOwi3JCk+mCnzXkooE7y3TXcnW5ZzFUc78qObxHYVDkCsQKuCCIE1SBiNoy46u8mxv5eQ7nsXjGXv7OUfHCaflCVv7GcKc8Tu/8y+Y1bfYebGge6J4+NU5AYUsHNNszOvffosrTw94dj/j8M3HiOBBOWTQDHROCIZhvsF83rC1lTHaEizmklT6mAbuUtY2c7QQLFcNg2JIPgncu1vTlYLh5oBmUYIMqKRjcXfFaKKYP3RUD1eM8g02xhucPFkxGqV0XUtdCZSKytNgDHmRUteOtoG2DoQQVytKxapV5+jDOApE9CRZJ9BJjsoUq4WjcQ1VKWOtaJKwbDumU4kq13l49BhXC84OG6q6I+iSurZUyycsHz1Gak+qL/H4YTz1l6slwywhEZYPv/wqL954hbdv3cW6CqU8QVZc2rvG2WrB9t42iRuyrDqSzJDlHc4ZxuuW4VCTWE8+gc5ENc2Hmtms5ux0BVi6VrBcLbC2pmkr/uiPvs5bb93i53/+5/nEn/kEX/nK61TVDCFSOmNZVRWCFOMCJ8cLXnr5BR7cO+bylT10Fjg4OeXw8JS2saQ6oWtGPD4t8apCi479vWuUzYrDoyNu3zpB4jg9PmKxWLKxsUbXrbCm4/XX/4hvf+cNvLd899bb/Mr//Pf55je/hVAC7yUCRRCuv1nKiJORMtbiJTo+qJQkEPDeoGRC17mImBKGpukIIWFrc6tX4DxnM0tZxfBTlmte/dD7SdMpJyfLWMdpGo6PT1nMOqwJtG3Xh3biw6cYjRFJxqUrT/HSK6/wkU98H4vOc1LOML5idnbMaDji9HTBwdGMqjb4wAVUPPSpcnrOYUwJR1QVPZ9R9JWcURkmeiGFwPYHzu3tnCxNqOsW5zu8T7BBo5IUqXKa0lKvWkajgve8cp2PfPIlLu1vsjZc4z2vvsDHfuwVNvcnHD8+xTUO7xS7uzu8/PLTZHnHzZs3+MQnfoCqqXj08EkcRBOJEI7BMCFJo4LlXEyXE1QfzPyXVbA/rsoUuWYwUDSdiTzfyYCdvTFCEocr6L8/jrZtePDgEcvFnLbpqMp5//dzijxnkBdkWU6WDbDGo0SC7geD4D2JThgUw8g59THJHIjczz6fT5EX/aBUXaw3z7PihOgnlkL1QSL3rjcR+kE1qrZd1/UqboTKJ6kC6XAuMJms8dGPfpDBMMV0ntUqHi6cDRwfL2KRRG9Xif+uI4gSpTuC6EizQJGts1q1KBUoMs0gK/r6UYkzFVoGlARn6t4fnNDaBpV71rdzBlPFjReuopOM6eAys7OKs9MHaFJuXH+Z69c/xu989nf5zd/6x2gVQ2yDwYCdnS1c7/dbLpe0jSEIKHLJ2saI8XBIXXuqMoL5V8sFAUiLPHqAe37s6dkps7M5bduidXqBhzq/Rs49lee/71ysrU6SWFXdtR2uh/orJSBIkjTvQz3xwKWTwGgSQ3RtEwforlthXUcIEq2z/sAXh+C6jszNLIuBwDRNGQ7HiB77dH4dN03DcDhiPJ7QtR17u/t9OMszHA4v1MXRaHRRPhD9qkmvOEbv5vk1kkiFCAsyH9FPx0cPCIuS9730AV77+pdZ2x5iTIdWmixJCN6RJSmyDzkleT8kS4HkXCnt71H94Pn/JBHE+S1er9Ef3NMriASRqEDHwFcMZDUX/vlEJyRJchGccj3+63x7oHWCMZaqqns11ffXsgQUSiVUVcXW9harasnu3iWyQrGz9xQvvOcmn/3s53jj66+Bj9SkrnU447A2ILzGGk+aKuKrVeDpSRrxfTnvIaRIMSDPxiSZuHgfu/v73HzuGY5OTnnuheusVhV//Rd+8U/+oPo//oP/5DNKgXWBzd2M1Wng4I4jl4LdtQ1++9e/TpF4BlcV+dp1Hr1zgJYWrw1UIygEaZHyxmcddJp0mHBwUGJtznyVsnkp4cYLA+7fbvCuQBUVxijSUfQKhjplXQZuPLPBIFeouqF8YhjIXYb5gMn+nKu7moN7NTde/BA/8Zf/Y1774lvcu32IGrYkhQOR4BYwHkjW9xy538a1HY/bjgEedGBZK27dbnnwwDKfd4ROITAIGZBaI/pkeNd1ZFqSpwmrWYN1iqAFwlZ4NcQtLW+88WUChlfe/3Huv1UxuRS4/vx1Tp+cMj9dUUwyGm8pLDz+bkk3DCyOOm4+PWRjusn9BzOMiqe/VDlaO2Y02GG28DjjoAvIxJGlmrNFR1t5RuMU29RsXR6SZmPadkEnJS6FRngmepOTb52yLC3dSlPolpVR+HZFvYLjw5ZiVOAxID35IA4F1crhnaRpAlLEEBlAnqdY66KCqnxM86o4IAWR0BiHkwbhHXUb1ViJJx9b8ommLTN805C5mnlZkqYG20JpHdtXGibjAcXGNXavrXP38AFN3XJ4uGJ57JEB5quKm9ducvbAc//h26SZorGKbOqYLU/RuWRtNCIvGo4PKxK9YiAkZqU4mXkOjmqU1lgnSNLI5NNqiNYwHKW0raFpa4qBxvtYnzqeJCwWJfduLfnDP/gGs8XjfnVWo2RGlkdPb1MbmtpyNntCZ1dU1ZK6bVhVdQRMy4xVteRgPkeEwGLR8mM/+hOsqsDh8SmPHz/i6PAx9eoEF2qG+TqrRcNkmhEpLo7xeIQUluBbBoVACtczTx1SeKSXBGt7T5rCO0vbxhWe1rK/YSryrMD7QJJKglcURc7N57fIC0ldS1Z1hQ0NZb1kZ2cdKTTra9fY3L7Mg0cPOTs7I0k9OnOMRhOKfIix53iaBqkCJnR0pkY5xf7lK+iNgoP6jKcuXWe9WOONL32VkZTsra3z5MEjzk7OcKajqVdY212s5Jz36ET3LEiBVuqPgarjui8mzz2JTkkzhZChX1umPPPMM1gDJ6cR9N11Fmss48mQS09vc/n6BvtX1xmOBhweLFidep5/z8tsXpry5Mkxki02Nq7Q1HNmZ4dMpgWTtYT79x5QrzJGxdPcvX3EbPWYtU1H13iW8/PkvuK8cQj6WmIZ0EksOjh/yJ0HLdama2R9krrrfD+sxNrU6XiXNBmxXCx75Ty2xRnrWN/YZDwecXwcA1VtHQe9qmzwnr4yM4aptATRK0Cuf1iazlyEiM7HS2OjItO2USWuqgr/f1P3Zr+WpWl61++b1rSHM5+IODFUzlVZmVmVVd3tpt3GchnL2BgPiKZBQjKWumXA2HABksWFRYHEJVzABQIhuMJgyUhICBojQEa2bNOmu3rI7srMzsqIjDnOtMc1fhMX39onsiX+gPa5SkVERpyz99prvd/zPs/v8QElRFphqvRwhaRa7VTZ1LVukGN9pR9rKHdDC3BjcXBuQAiHd4FMV7zzzptUE8V6veHVqwVlUZEXgjt3TyhKw3q9SjWlJJLI0Esys0eRV9QbS98HpOyxdhwE6FBSYQeH1G4c8CHLJaenh5hC872fO+X+WzmrdUtRTfBBsLqCdn3NcvOE4/0Dvv3eO/zDf/QP+dVf+xFDGDi9VfLwi0cpYOs8zRbs4Gma1WtKg3bIqNksHetVw9AHzs7uIPTAar0ZB5tUz1oWU8oqo216mm5A65TK3vFPd4pkVVXArp52DBeO15i1yS6T1rjgXJf80CJPwSabajKVdpzcnuGdZ3Hdkmc5gXQoVLJEoJAqqaQpeJVW3K99yIa8LKnrOkHvjeHq6oosy1itVlhrRxrAlqura7zftW3tVu2p+rRtmpvwknNu9NkK2ralKAqE93RhYJblnLcbvNIclAdMj45pV1vO3j5ksViksg+VWL8xePK8SAfbPEcqhXcOreTNZ2CHi/LeU1XVzQFASnlDqtjB8HcVrQl5lQ77cVS4kRI1rvn9GBbchad2Q7H3KXmffi2F2KbTCX0/MIxV3umM7bFDh5KJF1xvt7x8dU5ZTJnOp3z5+Dd5+uwpZZHx5PF1OoSLdB1riuRtjpogG0CQ5wUiRhCR6BUhmJEJ7tFKIGVH4wZOTu4xmWes1y1XiysikcE53nznAX/xX/qlP/iD6n/1t374wyAChpLtVc8XvwlFUIQuUJ7uUZQB2TmuHw3UjSE7kCzOOyo5o2eLsBnf/JmSV+sLHv+W5/6tBzR6w6LpcX3No388cPEc3nx3n9l8hvUbpPZ0vURmMJkJtp8bNheKo1t7vPq9BoVh6yzvPPiIf/pPfIMvPnvF5mLCl599wv/83/8trB0o95ISUxjQsuVyAf/iv/pnySvFxdWavDwmCyWrlcOHgvqqgwtFKEa8RhkQiWmPyQKZ1gjvkEi8F6jcIjPQAjIRWHeBoV8x0RV/5E/+FLV/hd+uiHbCxdOXXH5xzQ/+uZ/h2dNXmFVNdI5aKCoFq60jSs+f+Wd/wO/++JrLq4Y3Twxvnwy8WAmmkz0ePDijiy3tZkP0giZYhFUUk8R1Q0SE1ixe9eQ6sndPshUWYSNVKfDWo8noznukcAQNBIcpciZFj4qRTGeoORRK0COxHkwusV1kOoPB5gQCegQVW5lUktT5neoPtZIQHVKl/1YUTKTHlZKD0lPOMnKjiE7iV4piJukHjRVQ5gV6uSGXGrk/pchuYYqM1dWG6WTO/nRCoQLtEJGy5PrpU24dL3nv7TNW3SGideRV5PFXBuUU2cEaN9Ts7RXszzVFeYCLgaHzYAvaruf4/jGqLOmHQLAegaTzkdYGhE8G/ywfu6EHi8CDrLFuhXO7h3kcawJTw1cIkTtnJzg3kOWaoe+ZFhMybdBasH98gPUD05mnnMVUGlBXPHz4ivV6wbff/x4nJ3fYP9qj7lZYP+C8o64blosWPxg2mybVHKKJ0dB0lqbrcT55hv2OnYIYeYESRGLkBg/z2R4xpqCEjwPGwNndE6oq4/Kqpu8Fs705eV6QCUXf9dx58AaqyLFdw5effcF6uULItHo0KqNr7KgiJfC+lJFMGRQK21uqyYwsL3jx+AkvvnrFdjOwud7w5hunnNyZcbm6pu0bvI84Z1GakbGZUsoISWZKtCpQOuHOkqczecaliNw6PaYoMpqmRamCLNNoExhsy5c/ecr19WK0BAjyQqFUxnbTslwusV4yPz7g5M4x3bbn4Y+/ZLOpufvBezx45z4XXzzn6cMF9bKha1ccHB/wwUff5sG7c/JZCwIeffWUZ09fgJ/yxhvvcXg0Z7la0dYDeZZhlKTMKw73TnCDu0nK74IXuxRw3/e44JNKHh1GKzKTkDVdM7BYvEyDeJSjt82PGKSS+XxOJLDd1uS5IkbL0LcQPW23xbqGYWjph3RwyrP85uFsnSXPcmD0EtrkyVNSIkQK34kk/iKVpigmhJg8bin0k+HGgWTHltylw/cOj9CFJtCitSQz2YgVShghYoYZ1TSlJINtePjwFdttj3Weph0IXtC2A3XdItU4bPjkn98NOM4lO08kBQaVimN9qMPH5BFOSqOmLCtUXoBynN19k4vLBpMnBu75szV+GFITVd2Ta8PzxxeURlMWgYvLz4lyRb3t6dqINgV1s8CFtMKVUmOdHC1TEkFOnk/JTEGMnuvLa6KIGGUoixKiZxg6yqqkrIpxY+Vw3mKtpe1adhWdVVURYwpJChmQItU2O+vHEFha3Vsb8U5RTXMevF2QTVZcL1YIBEcHd2nqhouLNXmu0WbniU5/hw/ptfLepVYjv7unxBsLQNcMrNdLZtMpEFivV1g73ByEtTYpnIckz0um0/nYutem1rJgyfOSutmMBIc0RDZNqqUuipw+WGKAfFJR6hwVItZbVosrjDF0G5fseDHyrW9/k8EPqWKYSPQR26dSlaqoRi60RypJVhZEITAyERZiACnAOz++zmK0YkSsTfYoYyRaCYhhtEYonB2tBgHyLKeaTGi7LtEujCaGyGw2v2lbk1KPB1I9UjL86NmO45YrYoqSW7dv4x3cu7fPl188Ji8liBSm1CZjPpswNI563RNc2px5nyxFImQQJW0zoDONkIrBDkhlcKP9JAQ7Pr8j63ZA+ZyyqnD9hkWzYXHekZlj/uov/+U/+IPqf/q3/8Mf5lKjguLioUAOPSFmWNFjvMcUisurNaaYsVyv+Nb7Z9QbR9Mm1MHViy3z4wl71W2++uwSsEwOZlgHhICZBvou5/oyZzorMMpTb2r2JhlH+1OGc4dYZXRdj5pZJrNAXgTyecem2XD9FNZXC+pFy9FRThg6ZlUkL2rWF2BmnrLKubrsubrecv5qTWuf8+bbt8izCXa1oaxKJvuW2UkACWEQDE1kUlWgAqur1LDjnaco5vjQJoxPZgjKghbs70+4f7qPaxc8+3Jg7/QWkwfXHJkr2vWEuCnobI2qjokXnsPC0peKIAeE8HRbwWz/PkN2Se+WFKXBlHu8PI/8sT/5x+mblqifsVxvEDFPHDySx7AsSrTO2Wy2TCcVQ2+JmcfnETt45tMKu8mgd1QTiFEjyGm2KYSUF3P0IcR5Qx8Ctg3kWWofMkTqAUIsiXFAFSlJKZxAWYWPIfmerEPrlHbWRqDkaOGQcOU8RhraTjOZGGZHATUXnH/qubzQXL1sCL3geBr4xn3Ho59YfAzcf+s+VXWPg+qExfkSpaec3jsiMrBabIl6y9ndj/n0swavlvzyH/7TPDgfuPuzb7O42rBpPN7lnNwWbBaeixd1wqb0Pd3QEwLsHRzS1h7rLPP5BKyivWoJXWp18l7SNA0Rhzapv3x/75Ck5DREBpROSs1kMkFrycHBnM1mzXK5petaTo/ucHx0gPee1aql67rUYiOSuuAdNN0ls30Y+sh3v/t9TOH44osv2S57PvrgY+7fu8v3vvcRB0d7VPMJH/3091FlldZiwHCTxBU3K3+lX6evd3gWNSowu9pEKRgbWZLC0bYDXTfgQ6rn7LtA2zQcHe+xd1Txznv3qDdLlosVWhmUgulkgjFFGmjUCAuPARElNg54epTWEATNZkPsB+g7ihDZmyuaesmPf/sRr56/wIcFdgjEkKP0WN0oDNooqipHaUGMjhgiQ5fad3bBn5Tg3SF31MjpjKnbXZnUP4/Ax+RxnVRTzu6fog20q4bYg28Md2/d4dsf3QHT8OxiweJyzVQb3n3/Lb71/nvcv/2AetjQDA2xP+DzTxd88XvPePSTlwy94/adWxid0zaWofNjZahj6BJzuJhEBt+z3rQ3UHw/9r2/VnTsDWYojnWv3juk6kF0hGDHYSDB9gWpYa7vB5qmpu/TUBN3KWu4WVVaNzCZTDg9PaVtW7q2Q2vDMFisdXjnyUw2HgBS6AQYLQmMTMnX/eu7r93adNcQlMgSEe9i+ntMie2SWgSavgsIpYkitRj1Q4fJQQnFxcWa66sVV1cr9NiU0/f9jT/zpgZ0tC3slEbnHIjXeCExeme9A+8FWhXMpvvJAykDbT+wbbbM5lNCMBgjWa1ekKk5oZ/i+4x5dcxHH3/A3v4xv/u7nzI7yBn6yMX5NcvLga6JRAacdWR6itZqtNik5p/gIVOpfGNaTblz+xYvnj+jmlTU2xpIFpemadJQNXpEw1iDOp/P00DWdyiRhhxrLW3bYoy6GSB3K3rnPWdnd6nKaVIay4C3EwSOu+80XL+c8e4771E3Sy4u12SZoihSK1jbdsQQx+swWWl2AaKdj/P1FkMQxpKHYRho225M7pfkeVJv8zwnz5JdZBgGDg72E0nCpTa6Ii/RWpMX2Y0NIMbIbDa7uU+F8QC3+z4Sq1Sy2Wyxtme7WTMpK6rJBARcX1+nWuKQwl5KpU2XUrtDE6lBzweKsgQfR1tRuo8kxmhqDJNK4l0q6rhZnft0j8myDCkUchdEjSlQ9ZrBmlqfANq2HTcLqdlqVyjQNA1aq4S+gtHXqomkQTjLcl49X1BNpvR2ICtSZW9mkqWgbbepYMVZskwnVnZIB4m261BaUU0mOGfxweF8n95T78iyIjG228RR7uMW23u8CBiVkxeWy6dX/I1//58APNV/9t/+Rz9sa09vA/szxfrJFB9D6krOYkrbasVq2+M7aOo1Op+y2tYo4cBHpKy4Pu9oNx1ucKxXWybTiv35DBemOF8TCZTGIGzkjbcO6GuBb4+4euzIJ1ve+ynFdTPQE9g7gTxLb2TNFfu3C1RhaH1HdRgxU4WZaUSWsXdQsV7V6BzadoMPLeXUs22uaPpznOvZXgvaTUSWAUFA5SkoJWVgehxZXDgyE8irVCmp80i9Sck4IyNaRbqtZutr/uW/9gZDXPL5b7zk018deFZHjmeCy42iOtzjo8v/DgAAIABJREFUvduKlw9fMQRwnWfpIAsTpPS8rB9iWdEsNCGUXG9bTm/dYv/kFs8ef8Fy8Yrp/oSLZz1HRzl7R4bNOqWUs8wQCEjt6PtINgMKj1Aa0ZfULwXOOspSo43F2hbFEVF4zEGNmvZ0EaoCTo9ndOuBvIDBQ+dKfOzIEPRt6oIupwDpMOJD2GHrEIA2cgxoZAzOMgs5QQyo3GM7z6Q6JO/g6RcW2w1MtabZ9tx503K+mnH65hnH1T627hHTGVJq6u0l6+018/1D+r4mzxxRar74vZd8+/27vH1vj3/wK/8ne87TZBM++fQJxEi97VktBNVEkpc9y8tAcKBVQZEVeOmJcSDTOSov2WzXfOvdDzg6OOPV4mpcUabTtXMJlSSVoOu26QErU4Asy3K01sxmM66vr6m37c2DwxjN6eEDrq8XfP/732M6PeDy6jneCoYeul5jrcY7ODq8w1ePXvHVV18SgaPTu8z2j1Cm5P33v8fh0R1+4zd+ixfPn0EIrJYLrpeLlA4eod+7Yefrq2QYgwExIlQCYIdx5auUgSBZLTd4DwRB11m0MfjYoTUIqSmKOddXax4/fIqzlunccHrrFpkpaJp2bGNJ9bp2sHgX+PCtb/HTH36HGCKb7YaoIy4GDg4PODo4oW8C15dXSNFRbzZ0TcBZwzA4EAPgR9WvSApRn653Oz5o0nCX2JB9P9B2PV3fj/ieflRBNCKKkXsrEmTfpEDUYrGmbhucD0itmOwXFHsZpqw4vnOXe/dPOT3NCb2m0Hf4Y3/8z/DhRx/y7Nnv8ukXv86XDx/z0Qff5Gf/0MdcXWyYlKdU5ZTLiwuePXnJalkTRURqT4iOo9MpD97aA+XobeJPpqammMD+pKYcM9YdhjBgsgT4T5WbFoGkKGbMJtOEsRm5kLvgTEKEWYzWaG3GoEe6Pk1mRqVTMJvNCT4m9elryWep0rCz85fqLBvVOXezukwUBsYUdRh/3xK+NjSmO0QEGQh+YBhapAwUuUZqxWAt3dBDSKG4/f09bt3Zo24ari42bLf1OGQYtFbsoPfpQJQOYPJrKe3dNb7z+aaUuSAiMblHZwKkoOkakJ7JXDGdK6RULK5XnL9a0HY1p6eHnD/pyWTFndMzts01MZbcf+eEj/7QMZ/89ucsr7fIWLF/kHHnwYz1qkEKjfUtPqSDSXACSUGq+03Bsu1mw3a7oaqqGyD+DYpqDEAprUbPo705GFjrkhUszzE60SS+vo7ftVZprZjNZ6xWK1bLFUCq9JRbrB148pNAkU9Yb9ZcXq6QChw9IcLgXNq8jUNYJCBlOmjALrGu2OX+lDLsWLi79977MPqgC7quI4Rw8z62XYMdhnSIEgnu3zRNeh1E8ocaYzg+Pr7BYPkxwLcLazlnRyVTjkHRyGQyGd/7wKuXr7DDyJSWAqHkDb3Au3R4Kcoiva5CjZuCMbw1zt83wcZxyI1hPKQBbrSSeJ+G1909dhfuvBEApMS59OecszfNWzsu684Xm0gKw839OjGVLSKKRChp60SjKByBgabpETKpt/W2H8knciQrDOl+EvzN6wOBqDzKKAbrIESKIl171ll8sERrUNri8QyXLZO9gmhTE2HwHX/jr//wD/6g+t/81//xD/M9iao85b5j73bBq5drfKspJ4IsL7B+S4yeYBVDD8vVBiEjSnoQkfWiZbOoRwO4wPaBrm7Z399jfnRIXgVC7Fmc9/gg+IVf/AU++eQCLy137h8h97dsbEOUGjXLMUIhoqNuExdydTUgVcf+oWa7nKPznryEQIvzEu8ypPbk00AMEikzlIF8FsimAjcMECU2dxzmKUgkZUUXJItrByGjrR2zuUqhE5PM8QCB9ICospSU/s3fWtMucj58/4DBZqwWgnq74Oh2zrMXzzi6+xHvvXvCxU8ec+5k2sZuunT6U1PqC00uC6LYsF5Z/ugPfsDnX3zG1fkTtJKc3X6bjz58n+dPX6F0YLnsEwONHikqlPIElxN1z2x/n6g0NJLuegMh0jSpk/3oyEBUTL6xjz48ocwCcuLIFLhoaSN4kwEe16cUo5CGv/QXf4G2r9l0DdnU0271GJAAQrpZhhioigKtJnz/m9/jwAeW647gIcrA+Zc9l59nhNCiKosJHj0xOJuzXbTMZwUxFrwSFicC59evIFimU8lXX10go+T73/0Gz5+16Fwxl1Om+QnHH7zDrz7/kkWzYv/+Kav6Emct66tI10j29iqqYoZRVQofCIeKhrncQ/SRvekE5yLlZI+u37BaXUH04w1l7G82AufbpHgJiZT6xm/nvWfow9cQXlBVOdYGHj56xP7+AT5ELi7ORwU6x7sUgGjqhp/9uZ/mT/3pf4btZsvDnzwhzya8/a1vMpmXfPrjz/jff+X/4ke/8Vt0/ZbtZknfNYSxtzoZ5/l9rL+vP7x3UO1d2t86l+wARGzf46xDK41zAecCJktNY3bkl+7tHWJ7z5PHT5JqKTXTsmKwgaurS5zvKAuDQNA2if0pZCQ/OqJVhovrS6K1aA+Hszm3Ts949NUzXrx8SZ5VdG2H9w6tS0ChTAp/RdLDpe87pEiBuhA9EFOLkZJjaMenIWtExTjnmUwmfPe732U2mVLXS6SMBB9To0z0iChQAqqsQMsMF3rWqxVd7Tg6uEMh5qnNSXSgIrnRBJHz5Yuv+OrR32Nx/Yr9vXf4xX/hl7h755s8fvyI5fqC58+f44PnG2+ecXbvFsPg2G62CCGZzmYoPeXyfJPUZ6lp6pFHKnf6CzeJeKU0AkPEIZWlKEoKvUfwgqZucdZjzI6/2qe1odYoyaiii3HIGxu9hBiZj2kAqZuEl9op0alNS0FMDz7r/OjRl3hnMSapX0pHqipL37NIg+ZODUsw9TBej2astE0Pz8OTQ/YPD7A+sFrXBC8wKidGmM9n+GDHWmdBUeVEkTYZznn6vmen5O3+na9/pWtejio7N6vVokhBnelsj5Pbhv0TT9c7mg0I4VONcV4igCqv6LYCEQzf/c57XF1c8OzZU/KJRcuK54+3LK42ZCqj7beE4MjyQN878kKnIhQrIWiqskIIKMtiLC1IKmXf9zchOKVMSn4XBbsa1OQrT+q01oa27fDOY0xOUebozOCtvQlUCZHS48meNKSWqxjJsoyTk2P+yB/9kDff39JsJNeXAzF63nhP8+CdnuePLVmRkRqxBkCOhyKB88mX/PWgUeKQhvE9ToPV7n03xtyk+1/jrNyobEaEiAxDT9e1iJ0liXTg6doOqRJd4vLyIlkaxkPI3v7ejUK++2wku9X4vYikRNbbhqoo8WNFr1QapEAJPQ7UIIUkBoEQaSuw4whbl7ZRu+1GFIy+1AEl1Q2OSyk11h+PQa3xz3+9NCAN9K8DcIJkyxCjZ8YYTZ7nyfrg/c02ZVeukbBZyRJmrWN+mPONtw5ZbK7ZbDvatqdpevo2hVUjjP7WdP3HEJlOJglTKCIIzdAP3Lt/OwUWbY+1ASUleV7hveGNt47Y39vjp7/zIb/96084vC1ph5Z33/kmf+WX/uof/EH1v/gf/oMfCgVKCmyMlKeRQh2xeFoznUyIIg2kWjI2nMC0KEe1I6JVhhQS533qMo8OJQQBQVnNEFWAWDCb7WP0PoNbc3m1RGWG++/u0foLVt0W21YIFJt6ixaReb7Hpu0IveDF48DxoeDkNGM2kxQmx/YDCk2UBV5s8S4FgrouUG8FQ6+ZTCR7dyuODgYODwV7Z5LloidmOc3WcvHCsllkTCYKokeKiNYFCeib1mh9l+F8wEiJVgERNF/8Y8uP/u+Ob//U9zk8zmm3jmg0t8wxv/l3PuNi3WNNxna5Yj47wEiDCxU+tmRCYExBiBmnhye8860P+O1f+3scHue8elGzufZcr65YrrZMiinrbcOdW0cMrhlZtxrvB45OC3wsyAtPc9FgIjgXqKYFXT3gbYGnI5tWdO0hw+MrXBuoXwjmZYkoLRMK8sFwmEdUCUwtw3ZCW0ea4ZLpJNBuIj6MPjetEDKQZ0kd9NbxnW+9i2xPWCwCsbHU1z1VMYE4EAaF8IJ/6lslZ7dnGAz7RYdzDZ3VfP7lBf1GcPvsgHrV8uKrdAOb7s/YNCsGJzBS8vLhIyDjD//Mx/yjTz6lrA5YXVmGtkXKhONomi7RCXJJ8IG9vQypJYIJUuUIFWi7mt57nl1fcrW9Yn+/hBjpe4sbLAiBNqmJKq1kScxNrWBMpTvrUFpS5BngWK8b+r4jiIG2b3n81XMuLxfpAR6GdEp3gem0Ym9+wHx6m9/53U/49nduk5fw+CeP+eLzT6i3V+QF6HwgiJYoIkGkh2H2taDFjrNYVRVd192wC3cw65FGMj500s8ipEQbc9Nz7ZxjNq2YzaapblFE6nrLZr0i+j6tVNE0TU+9SRw+JSHGNOyenJwiSb/W1zUXz1/iB0c3WCb7B+yfniBMhsok1rf0tsGYgrYbaNo13g/jDV4RQxpGy0qTZeB98nkpocakqwOxQ+ior/2syVf25PEzzs/PyXJBZhIVQcmcSGI8ZnlOXiiCt8iQozB0bcvlyytevbpAyFRnenI2Zf94wssXjzlfPGRw1wxbw/7kDX70a7/N3/yb/x0vzx/R9WskCudSi9t0z1DuBbrBYZ3n5OQ2k+KYq/MFfV+TQmCj6XNM1subsEeyPjgXKcoSbRRdGzE6R6q09htsqjkOo4dXKzOqnJ5ICqCZTGNMRts29H1qNfLO0bYdRptxKyDGcEkYAx6WIECPw4fzLqF+ZALxK/X6HijEa37k7qF7A0snKdhIKPYqLB6ZqbHSt6UsCrJMcng0wVpP1w20Tc/Qu69du34MrrhRYUyvzS5lvlOjvq7mGm3GwUEihMaFNctly3adKkXzLCd4g7MSERO9xHmfCia6SJ4PeN/w5MkXidcK/N7vPmWoA8dHEy4uVrgYqOZTtqvkgbWDgFAxmVRok7YAQsZUzuJcsuLolLJv2yROpIFU3GCmYky+xq9bGTJTjDzaXV+8JY7oqDTwpIFESMF0OqHrujFB7+mHnqGLrK4tn//OkqIsEELSNi3nLzXOpYG+bXp8D6cnp0yq6c1K2pgkRAS/s9SImyE6rZjlzQD39aEtvW+RySTdR5qm4eT4CO8t9+7dJUZPs92kUKgUlGVF8I71Zp3qWd14vY3sVj2m7Pu+x5jX4bJhGAjeJ1yXSMqiyTJ6Z3HB3wzJMSaMWmbMeOCJBJdsBbsD4e4a3v37zrpREXU3h/7d9aa1Hn3zaVMjeF3tnMpIXNrgjKUKeZ7foPWMyW7wb2kzkOwIO9VdyoQKlEKijebO2QOiCFxfr1FqwnQ6vVFvbdcn648Qybng/M1BxxgNMTKblSgpuL5cIqNB67FeOjgOD2cwBJbtJbad8pf+jX+FH//4Uy7Xa0oj2Zsc8Vd++Z+AQfVv/t3/8YfbZUuQPeW+5Kv/V7J6siY3mn7ryCcWgcJbSYjpjdM6DSpKRkIU+DC2roTko0JElPIIAvnBGds6reaVUQgxcH21oO0u+PzHD7GtZTIxuHZNaEHrPbRuWF0PhJjTdYHDW4HjuxltBzJrQGhk4ZBG0vQ101mB1EVaZQ+CvnN4G7k+98wLwdvvzSmOGyYnAh8FXe05OjRo6VkvYW9f8uFHZ7x8ucJkgHBkeUYUHhUF1TQpq/WgyCaSo5OBV19aSgRvfvM9lqtLrpYrtv1ANt9Q7LV88PGcx5+1tE3ETAJRagqTwjgmz2h7y7QyXC+3dNuXCBOot5rtumGx7SkrxXwyR+p0iOiaAWEsdjAUVaDIFM+erphPDbGbEB20TZfaXKSn3lpiVNSbmqvra+K6wfaG1cojhaea5/TXLZnVbF6CrjTFgeP5TxYcz44oJuk13G4ttichd4zFFJHgUg2isz17h2fMqzPaxUMG25J3A74TzCpQWeBbd0E7yXU85IVtOTopsL0GldFZxdXTCwgtWkQWFw1FbpgeFKh8j7zQvPd+yf239/jid55iX33C3p7H+i2uP2deAaLEh4GT4yPO7u/TDwNN7fmZn3sT2+UIB9U0o8wr3rz9DfYKQ6EiRmX4HvreYcd61SLLMCZLKz47EIJDGzBaJqVdKKoyw8eeLFejl6ikmhik0rStxZg07IaY+r210kipOTu7y9Onj/mNH33CZrPl7O4Zzx6vuX3rNnmRMFlSRiYzlXiTzqDIxiT/69UhJFXVmIxt3ZAqFdXXrACgtSIzBjXinHaqT/L8BbRRuBiwbkCbwO07hyAEXdMhYgqupLVYwGjGdROpxlRr8kzdrN67tkOQHqq3bh0xnRQ8+eopd26f8v633sWYitO7Ei9qNusOIcWIRPLjQ8Lj/UCWyVGBNBAEQz9w5+yU+XzOYP3Ng16IHb5nrCiUelR3w4jaSWn/ELgZEJrW0juHF5Z8kkIlAUdeauZHM6b7mqaruXjVYPuWvcOM5WLLlz9+yLOvHrFavyIrBpQCoiYvNLM9jc4Ee/v7CJFxdblF6ci2XhNcx8npFDs4utqiRv5lJFkzpEwP/RBDuqeOr9/JyRHHx0cUFUznOUYXaJWhdWImxsCoJqVDyM67mGUJMO7s678rBSDNjYfVmGz0tyYvXYLxJ7HBucDQdxgtMEaQFwm15YMj+EjwjOnp9O+loJK6WdUKAdWs4uj0gNlhavLRCu6cHtK1Lc5CZnKauh1ZrDu+qks0ivE1SXir1+zLr6/4d+zZXUo73tTtBrq+JoYEs8/ygm6r6BpFlmlcqLE96bA3IgjzIpKVLavlkjwX6V4fNZmacXx4G2Jk255zcueI99//Hu16zdB7lCrS6+J7tNEJedWngKH3Aes8LgS6vkePg1EI8SapD4K8yMcgjh+vUYk2Cu9CQrERcP0wrppfY6raNiXnd+n15BNOFI/l1YYXz2p0PmLERFKUQ0jNZk3TIKNkNpuTZwUJ1N+lw06IN/YUY7KbQTUNowl393XWalEUv29g3R2Wg/M0dc10NhnVz3UiCiiJ9Y7B9uyYz7twrlTJ77yzeezubVpr6rqm67qbg/mu4coHnzzNOn3uQ0wlJjE4hIwMfQekYU4bTZZpgoO+G9Amhb/sTXUqgLjZ2mitbw4GNwg5XoP9d0pzopRAnhe/T/Xu+548z9Phpe/Z1QqnITX9PyFEhsGN712Fd567997h0aMn+JjQY8R0z05BxHRYMFKNW5hIlmls3zOfzwg+MPSC6MdhnXDzfCDAMHgOj0/ow8CkgF/5lX+A75eoScCIKXk+56/95X/rD/6g+n/86ic/9DHQxRfMM1j/BIZVIK80gwUpB6TOiDGDkGonmz6dxkRM3dJRJNZmcDKl02RgOs3BO+rWU2YZea4TyJ6MvoW9vT0Ojwt0BOs3nB7fpuvXRGVZr5O6eX0RODzUzKsjHn02MK0ylNBgarQKKCXQOmJdxNmBalJA9FRlQDhFXwemq5z8uKc4UxzuzQktdOeR3lqKg5JuHem2lhhXCJFWcMqAwKekoQr4PiJJNWjOCvK5oW806+cLfvT3v+Dg+AF37x9QbxegGy7agaX17B1VrB9vCSIm/0zfU1QFHkfwW7Qsubh4SaElqBnb7ZqzN8+49/YZl88WNF1NWVRcXSzJswqpkqJJ9Gw2HUZPmasJq2XL4dE+xEiRlQidDgtVVTLLSlSAYiKZTxxSBkKvUT7DLjzBR0R5iwfvvkvbLTBG8PKxpW9KTDVQmAznUve3j370M4JWEkHkww++RzMoLj/9lEUIFGVPFUsGnVHqCU9XFZ2Z8MXVC7YS6lDy/HqgFwWtH5C+J9iB+X5B3XYEB0RH2wzICL3t2OiWftMzrfZwpqfd9gQ54fY3Cpq6Zug1NnRsNwPOSga/pm3A9QKV56ho2K+mGBGTX9A4dAnLTZ/q/XbexpD8cc6l6julNFleUDc9wQkG68iLHKkkbnz45FlI1z6B4HLyInJ2N8N2Bq2zETbf0fcpHKGNQCnB+fkr2m5DO9Q0fYOSJX2f/KXCS3CGIjPYsRVo98BOHMOefhjQRo8p2tenfSkYfU3JU4VMQP10800K1q7lpu97YoDBe9brLSJAmSlidPjRt+VH1SLPS7TKaJuO5XJNjHD79h0m1ZSf/yM/z5/983+eD7/7AW+89QYXr654751vUumcX//Rr9L0C/rW0zRDWveHVKghhCDPDXmeHvhd4wg2qRVZZnjw4D5FOUHrhM9Jq7RwA9YWo2c3hoizMfkz86RkEBJn0A89KkJVTtEy4+z2MblRDK3ljTePmc4z2i7QbBsYHNZGHn15zvlXF9h2TcCRPv274ShtlW7dusc3HrzLdtvx6OFXDMOWsgzkhaecRqROB52hTyv4oizSMOLSw2YY0s8ikBBS8v/W7WPeePuU2b7m7OxNFheRxXJFnlonsTYwDCFVM1pLVU64dfsWSiVY/W69mXrZTfLbjddNKksIZCbDjOBy5yxKpnIPMSrUiDEc5nbcTUcMr9fsX2+euoGj24izgbIsKbKKZt2CDRiVUa9bnIfgk82j67tRNU3FCmWZM5/vJ1UWeePF3H1JIchMaiqTQpLlGWWZFKN+SMPAg/v3AEnTbShykCrVtPZdj4x5elahUyI8ekLsmc4qpPKYTOLjQDmRoHLqdsN6e05Z5ty6rbh8dc2LZxfJ78sWIQfqJhCDxrkeIeJNwCbLMiRqrM8MBO9ufn3HBk4BtTSs7JQ751zC542e3J2alixXDudSoUeMkbbp6NqOLMuZTKpx3e6oJtW4hk/ZgcxkhDFgqVUaXMqyGj83vF5DZ9kY1hM3ftTdQHZjTRGCHed4FyhyzrHZjHWezpFlGdPphKZuWVxfkRcKo8DaNv1MiJF9nA5sbrSPTCezUfX8/Vam3WtDBG8T/q2sCmxISmwKDlkIYPtUtHFycojAY0yGs2EMBaZDAMSbEGraLI0BwDwp0MNgMSYjy8q0dRocglSsIMTOu5s2GzsqQ55nxAjbep2eidqM92hBUaQP7c7i0/cDSiVW6w7fdnJyivOeoipAKJy3yeKnoKxy+q4lRhAq5USU3oW6Ai6M5IcQUVLgbApyziYHDL1j6G2inuiIqUouri7Zm9zipz9+k288OObzz66YnwSk2OPf+df/CVBU/5P/8j//4e07b+EWnu2TJUbP2LQtwXlENLhaoGeGIAekt/he4bRPQ0uAKARZPsXaDg04J0AmVaevI+0itSm0dct0PqHtW6Lw4GfIYkE5hbqNXCwuEVoRlUgp5WFgXkG0E9YLwyQraTYwP9wymxum84yhz1I6uM0oKsXyemBoCk5vCWR07E9L6tqSTwLXjwL2ZUaYRZaNJSs0ORIpHUMbqaZAkKgsIKRCSEHflGhjk6VBKaKwqBjR48+/PVdkwbO63vCdj38KW6TT1OFsQuiOePXblqwLCK0Q3qUwRCYxlBjhGYLn6NbAy2eO6eQOtpcc3a+o9gue/+QFe7c0We7wziFUhykEp/ccvg88+MY+iECzWKLyjFevtiNqpibLZgRKijyAzvCiZy3AWIOz0FvP9z7+CBcUuJaz798i5Lc4v7gk5HvUjWfzqkfHA6xtgZSQhCwlKYuk6LRbwby6T/QFv/Y7n+AwhDBnGw290myXG7yOVAcT7tw6Zb3oqRcOv/H0zRKCIghNpg29dUSdU5iKelnTrDaEPlDEimevrjnYz3ny2TV3zh6go+er50vqlaPZCKQ0CN0xeEvXKaqypF5JJDnBK06ngrmo6Tct29azri1XizV1V6fB3QukyBAxWUBitGOCU9J2aTgAyXQ2p+8DwxBp2i5xgIcEY3cu0NaBLB+YTWFxZWmaDiEMs7lg70CRlzmr5ZYPP/iYH/zgBzx+9JR6c02ZG7QsGFzE+hapDYMLbLrVTbL669D4ECLVZIKQCmdH2HRMayjJ66CLGHEocuzCvhnsBIAc1TKJHBmZmdTEEWaOVInaofN0OhcxJbwtOJsOmvfunfHh9z9gfnDMwd4Bf//v/gP+p7/9v9J2jnsP3qKLA0+ePOT6vKZr0qA59CnUo9RrlcbagEBhTA4EjFFMJ1Nevbji+bMXbDdburZNw7dOA85O7RAyhVGIaTDNy4TN8l4ihMJJT+tjUvFcS7tpOTo65eBsDhPD3uEdpBPU1zX1ekvnetra0a9qJBGkwbs4hulMClA4T9O25EWJGwKLxSVaC0Axnc7xQ4aWMw4PT1gu6xSSyTKstTfK2k3fOAKldRr2BsPprTP2D+e8fLFk22zYP1BMq0niVdYtITD2uoNUiumkYjIpGQZL1yVwvlZ6TBmnrnNGxFxelnRDOuTshv7oU+94nhuKwozqb6JfDL1P9owxiLXz4O2Gil19ZJFr8iyjqzfgPRqFBIauxVmL8/24eetQOiCiQYicGCTTyZSIZ7ttbpS23SFLjrVa1qbDmtJpUO26/sbPmLBlnmFocS7inRjLA1KwBDwxeAQGhE9e3z61TN1/c8bQO1bXmtn+Me99dJdstuHZ4w2zyQScYPEyZQOCtzgbaTtPURmm05LZdE6W5bRtw/7+QfL82rS2z/MMrVJ4qKwmzGZT+r6naRuEVDf+Rq01amQG717XLMuSato0MELdd9aepPolNjKRcS0MPqZrw3s75kcM2gSCT9dYluVsNquReyvQKtXmNm2qOE3K7+593Smq6S4ym00pipKu61mvN1hrmUwmzOdzDo8OUWP18eHhETEGvBvQMuLDkNoChca6YQzoKYRM96Pko/ZpDT5uhPo+MZp34SRr06FJaYWPnum0Yhj69H2S/MpaT4GIMQnP1zapedE7kVBhIZDlX7OvhEAInizLR+8wEJMlT0mFVtnN9a5k+mzA68phIVK4tmlaVqstf+7P/RmWyxXL1YI8K8ZAmGcyqcaNw67I4bWNZTKZjAO0oPdbiBk2tLi4HEstBIeHibnbNJZymugJO8tXEoNThW637m/uI23bpuFaihQkkzLNN4UGI/kL//zSjRziAAAgAElEQVSfwinPb/7od5BGE7uBf+/f/ut/IAZVseu0/f/7mnzzID64e496rSnsl2w2W4q+wgaL9Z7eCuaHGSF2iCjp+wSODiFglESKDKki26YniEh7lfEXfnGPf+3f/DartsY4yezwhL/x737Kjz654NbbR+g8Ipmj8wtsXCJEYOjceKoHZSTtxrB/JFi/zNH9QBErqoOW6u4W1RkO3zZMJg1PHgu2i0gUYCqD62f8iR/8PP/b3/l/mJ1d4m2OjAO59ugThes8koIXn2X8/J8qeProil//x577d3OyXOFMkywEW3j8peTsbjLA4yuEGBBZxEvLtICHv25YPwmIGPjuH/1pbn1wn+X1mvPnX1AVgXYZaS9aFq/WZChiBpaACAqdKZxIq5Fm0xFtifcRoQfyIh8VvYEqlwg5oNjD+g1ZnlKeD96puHoVePawQ+qA7aHIZ+SFwPmBw4M7mMzw6vwR33jvHo+fXbBcrrl9/5AoDKI3GNux3G6Zn9xitdwissBy2aAJDCpn/0hjr5bkucNXkXaQqCApS4fMAa/Zy4+5dfQhv/njX+Pw9A55obi4eMV23XF8sI/cB7vcUFWnXNeXbC/WzIsDDk72uTx/QhRw++QWIitYby7wnSV2OU2/Iao5YqgJmeDbueTkzY/4+Oc/5n/5lb/FTz67ZFZVyKyn7zy37x1SX/fYtkDkjmquCLMp6IG5n+N6RX6yT4g1548fY7sNXavJxJRuGHDCp9WpdSjGNGkyvYyfokD0KcRyMMv54NDy5NpwKdKNtqsHJtMcIUpCyFCmI8QVzSYlsuuNo2kGDo/2eeuNb1K3DV89fojQmzQAdzl1uyXLUmVwUh0tWhYoZej7blQ00rV+fHLCMAxsN01SurTEDT1+HITi7iE2VqemKs+YlCmZOrOFVISgKIqCKJIaY1TO3t4+69V18s2aKcHD4AaUTozB6AIn+8coBJfLNc0QCXhUFonRUeQZeV6yWvY0w5ZqopAykBeCGDRdm1b4UmQgJN7bm+9LCMHhwT5VWbJcLtms66R0j0qK1nqcoR3J86mJXiKFRyjPfDajKA3dsKHvHFpNiAG2tcV5eOude9y+fcjDLx+zWTXMj/YQWhKsp1kn/2RVGaoqo8gDPtRslgNlccydu3e4urrk+auvUJnGDTlSGUyR1nRt23N4eMLhwS2GrqNrEtPUuR47eECNVgdHWk+mNajJ0oCeqynvf/wBt9/NqOtrMjFH6woGuHh2yU8+/y18BOfTelLEiBYZJjMIHM51SXlRI7cUkpcOOaK80rVYFInisNnU5LkeV58WYxTaJG92GANSzvmbFHgKbe0e1uP6VoCS+sY/rBREHC54sjE413btzQM+8TvHaOA4uHiX1DUxeiHjSEnYJapNpslyAyPntR8CghwpDEJEjo/3WK4T77QscrwbRvULCAZj0gALjnv3z2hbT5ZrlqtX+Oh5/3vfQRvPl19+yeZK0TeBEGqKvKIcDyNSOqzfUubHlFXyFjdtz/n5c6aTGR988BFfffWYeluTGU0qfEiqV9t3KUDjI8NIUYARN6U0Wmqs7W/sDsYYhmH4Wrgo1ViHmBBHVTVJa3Dv2d+f09SbxIn2EaFHf6+URA8hjJ99kQ4rZVnRdZtElxAKN4S07vYD/x91bxJjWZaf9/3OdKc3xZAROVRlZo3dVc1uNrvZJkW15CYBkYJtSrZEg5IILQzBC21kArJFyTJtNOyNF156YS9lgYJkwQMIypBIT7IMUjRtiTO7uos1ZOUUGREZb7rTGb04NyLbG23dSiCRucjIN913z3/4vt83hhxTWhclWmZqAyJzmbXWtH1uJrTOzv2maZBCsd29oG+zttoUI95lbaVQw6RvLdh32UyVkkAXhrJ8hbS6Xp9fY7AAyqK6+ftyueTy5cWNi558FSIF9HZEpmucVp7Uex+4dXyClJL1en0jv7g2R2W5gcE5l9O1hoFxHKmqirqZQxIM4wgi4txIM6/RSWTKgRGY/UB5csB2P/KnvvFvMD+Fv/d3f4mYCpRJSDmimCOkneQAFcn1+JCIKm/f8JJZdYAwiaoqWO9bqhU4LwFL0wTWV2Ea7nkOl4dsrrbsNvvplUbqqsoN+GRKSymbxMrCIHVuJEMMuGRpqiXWpun1KITMoQAxRrYfh1crjP8ff/0LJ6r/4J/9wjffvG8IQySaGXE/MPo9PQFdFXgLRWEojCREN3Uf+YJA5OguNwgiWZPY7xN/6Wcbvv6TPaIcOTi55M33j/i/fq3ng+9EmlXO+CZOKUihR6UMVU9RUxlPt4kIFZnNBajE2GuEGzCrHj0rUERe7h3CH5J4gx/8wa/y8cdPETphisjHH1yxftHgk+PwKCBKcFbgx8CiNuwGwbd/o2N/NZLSm3gxsn7ZU9dgaoURMDOSi8cFi0awnBeMrkMtAioZRGdQCIojw/qJYuYaNi8fc3zvFj4ETg4O+fTxd2ju7mjPBclmjYxLUJQFWhU4PyK1ZLac59UHLUI6ClPQ7jsKlXUns6ZAKocyltVyRlUuGIeRF89bdmuoipKqlkiRbw7LRcn911/jww++A8GTlOXJ8xafBPNFgXVgXdYezhuFKTWPP7vg9uo2VT3j8vwlB7ePWBwfMvRrJIp+L1CyRFce5yNRCupG4LclX3jvy2w2nquXV+y2WzZXl/Rtj5FgrSMOIFRijDuiryi1Zj4TLBYl5ZFhDHklvnm+xhqdV0LTgaa0Zow9dSgI1HzlG3+C80+f8IcffcbqcM7ssKSer1jMJYpDNjEw6BYXBNY4duOWmAybXctL17IOe/puZNxvMcwJzrPt+syovElNUSQhGL1HCYk2q1yqKo+SBSlqkoR7t+cMNjIk6AdPCgptYLR76lnWwPlBMHTZ0FA1htfv32Y+m7Pebnj02aesDmb80B/5AmdnV7iwZ3WYGHtL8DmJSoualPLkYzarc4qLEFRliXWWfdvf6KrGMeOc1MRdFQKiyIgZrfTEAsxFd1XWKFXc4J+KIkfEhhD54//qN5BScn72fFqrS3yIORUnBaxzlGWWPxRFRVlV7NodqEg9qzBGTgk+PUkMnJ7e4vbtU7SWOCumJKGAVnVmj479DQYmu/9Hdpsd2+3mxnjgYzZKSAWIbPjJmi9FzLojkH7SOepJiyZIURGn1KUYIjFlbmXwgc1mjXOWRT2jKQqs7RlsT9GUzBcNy8WCUhXYfiREyTCObLZXDG6fL07K7DpWkUSYHLgZb3Nxfslus8kYIx+xQ5rSgsRkssghBloZCp3NUVJqvLMEFbj/zl2qWcHZ+UvWm5fYbuDl2Ya+dShZZA1uiJSm4vT0NiF6xmECwyuRo1dTloAkuNEwW+umaMxrHFS4MfWAYBxddgoX1Y0m9VoXB6/kJdcu8ZTSlDef6QOLxRyhBKPzvP7aPXyIdG02d8V0Hd4woX6EwCiNzuR+SBPbc1qvXj+WMQZdliiZMGUFVCilKUuJDxmDZIdAu2+JKRdaRalwoc+peiJNBaPn1skRD964x9Pnz9jt90hZsu86zp6d8+TTM3ZXLSIqCpP1rUrDbCFRemDoe+YHif1uZL3Z0vV7Nlf7aTUOjx49ypNfssPd+yxfcS5P5rwP2cw1sUSvp8YZJP8KfeScuzE9XoeN5EQkR1WXGKMYxyHrgpua/X4LKUua6rqBlLIefdJMAmgDCM/Qj2jVEHwkJTd9vwp0IbNByeYCv1AFTd3Qjz3Oe6RQRNKNflSpXPAKIfJ0PxWTGcwz2p66XGCdx6d+0urnVbibGpKyavJrDHlLI0T+nGOMN6YkH3yWCaQcXxr8NYos3Zj6rHX5OozpZqUfQqQwuZFr23bS1NY3/z5fx0zXfX7smCLKyHwPjZauH5gvZvm+OA5EF4nCEZLFS099OCcMkT/2r/wIj9bn/Nr//hugBpQ01KUiuUgIu8nAmj0+gpCvg5jxdHWRk8eKUrIee4oiUoiBuw81W7unT4myNOzPIoESN45UNbg4TDrVMnO15TU6KyFVNjWWVf5++uhyoELnJhmKpzAS5wND76bvV8Hf+Nmf/56YqP6LI1T/h5//5umtI77z2x9zePsUox19u2MeKkYEKQiG3lGUgoQjhYwS0TrlfFzUtDLwlLph3Fv+/E/9JG88PCSyYXk6oywVv/C3P+bsUnOwOqLUAaUTnQ8YvUW0OflBN4pSesYrTaLOhpC0QhYJ+3JPfQei9DifcKpmu9+yuFvRVPc5u/iMJAYUEMeWYTdwcntOuRgZxYiWoF1B/1xycBu+8qX3OP9WYmd3LA8cRnuKEhZHkiQgjoe0w8hwCacPBS4kFDqvaNTAGCO3TuacfWvHg/sP+fd/7q/zP//Df8Dv/NrvcXr4JicPT9m5c9zG8vJ57hYRaXrvBM0i0PWSq13L2AfuvXbKya0Dtps9y3lJCD2SRN1EjGrwVnK4eIvLFy2LpciRfi4jb5RwpGSpCpNjF0OA6POUqTF0g+DW6YKYPFovWS6XnJ9dsH45osua7b6jbCqOT465utow7na0u4FZXVJVDevLkbKeUdW3ICkQA0Mn2b/Q/Gv/+p+mbwOffvIp7W5LaRQyKmazghQESEv70tFtPV03gpK89vopT56f0ywFJI1ts6DfxJIQFbdOGows6NsRIyXOBfaD5cmTj7GPf5MH925zfPoGYf2Yy03gfBc4X68pjpZUywWHy4rFfAHB4C49905PaeazjKmJkjgEfG/QAfSsJHmPUSajTqQmKYXUCoNAiP7mZlhVEqMFu27k0/M9nZLEJHNBEARKC5bLgqGP+FFS6BltP/Bv/9k/x1tvvsPTJy/QRjOMG5TJuKHPHl9ko5r2aC0zMmZIKFFOE5VIjP4GB3OtC/TOU5qCWZNdwP3QA4myKm4OvRASfqJziATXKWPApBPMN7R92yEQBJ/4+ONPOHv+DOss42gZrceFLNKfzxcURUHf9SQkm/2Ou3fv8v4X3sYlx3bXEn2kqoqpwAloXbBve3bbHd7HjAFL2eFrjL5ZN363kxyy618gGG0+4Isy6xnzCg6qskSkXFylFLJTXRb5MErZGAIqyzrIK2qpwoRTYoo0TFT1jLKpcUNHGC0GSD4XhLrIhYy1I1IpdCEpaklKkhDylG+5akgp0vdd5uzOlxnwPXQIYs5Vx6J0zEQJOUHKpUJJg1JZv0i0pOSJGIIvOH+2ZbfuWC7KbPrcXGXGr8jT65gESpislw4j1uaC0DmPjxEpFFVV411Oo5IyI46UErTtPrMnJ6OM4BXizPs8yUyTm/laVwncTLyvpQRSKqQAqXK60TAMlJXhqz/4ZYwxPHn8FLKAYlqH+un/uYbKvwoYSCkXr9fu6qIoqKqKEANS5Ugh6y3Ot6SYzaJ2zNr5sqp586036Po9R0c1ShSIMKPvW4pSUpZz5vNDrG/ZD2tenK0xhaCqDPPZnLHbo1NJXTYYLRAIvAPnI1IGUnQMY+ZO7zYWKSQuDMSQbvi1RVFM8g5PXVU3kZzWu5v3MUyF6rWEJ8WIiJFhGL+LI5rfI6VeYaG8z0ahTGLIg6MYPTFlCLwxGlMU1FVDXTdst7vJDKkm3mt29v/I179K1STOXjxDMKPQC7RRmNrQdh0gKabGNmtjczGDyAVzxnDpzDPuuyxpMYZ2v0GrRNttSSkya27hvckygJgm82S+7oWUU3CAvLkXxZT1zSEE2rZ9FZCRIkIKDlYHOVXNZQRUnAyFMcTcjCBu2KfX4RdCKA4ODrI3oLOcnt5h1ixo9z3Hx8fs97us7U8R66GZzUhTQ1zVBd6PKC1zAiMQpSAqg3QCNyqMNJxdXXG1fgGuJyWJ1BopS1AJO0biVCuVVUE0ki4CukTFSIlgfrBk7feUM8nyqOD4zpzDo4KLpyPDuqFoEvfefkCpoG03pBQ4PFpRNfnzCi4hVQ3XUfBSYgqJNlmaZwpDjAHBFB07gdAFgVlTUZia0Sb+5l/9m9/7heov/dP/55tUDad379L5itHP2F1eopxlUlPhHTRzQ8SS4iSmV9lANfYWrTIT0UVF2zmCiiwfbng5bHj6aEDXiV/8e4JNGwl+JPYR61vk4jluKJmHkv26xQuDDhVFE8AIki+wzpK0oogReRTwIREQeOUokuSguMNnf9Dhx0uaxQgpw6ZXdwK+cCyYE5SjkCWhiwRvOO8S633H6nYimBYpP8/r929z+fIFRTnno99yfPrbI3Ot6Hclskwc3Z4hRMvlc0NZrZitALEDecQPf+UH+IPf/ITvfPgIO7Q8+/gZJ8e38ipKrHjx2Trn8SYFwqPNDF2VSKmZzSuCD/R7h0glZVER44hWklLWbDeCvoOyFLRtz2azwfsBbzXRS5IPxJQTeoqihKSIgClLoohQ5QLs4vKC7TYRoma72+Spncyd/K4bsUSqqmJ7dYkMAT8mUtC028w2DDjaoUUMkkXd8Oabd3nv3S9yfHTKetPy8UffpqkqCpMNGKqQKFXgu8CBNHztqz/Em18MXDw7p9sHjm4fMtcF3SZxdFLysrXUumGMsCwOUUUiyh1FFUhVSbVMXDze8hM/+g1+5t/5aX71l/8Jp/VzDsqOq8KwenjE7vkVOJjNDfu1RRHZicDLYUu1XLDdt1jfI8ucAtLoBmEgjNmRGgUkn4tmHyIKgRRZC6nRhAgqCCrpmS8PwKtpIjBl1OssoO/aQNfCyekRt27N2W5HPvjWR3z22ZMpEnFktD3XufXBJxCREGTOsJdzjC4pzATfFtwAsrOrPesLs1YvT8EAQoo5sEKbmwMiK9SuIdfpxul6Ld8BJoxOnsxKLbPBRkqcv8arCOazGcWEkIkxMYwDXT8ym89xMfDixQVdN+BsoJkVHB4tEaJmv+/xwVKWNcFfP3eP0RXHt26RUqJtuxtnb1VVzOdznM3OWz3B60P0zBc1Skm6dsjmRJsz3XPsYQb8x+RvDA9ymqSJyQEstWS727NarXjn3bfpe8vFxRXeWooi3zd2XU8/DKxfbvDDiNa5MCQpvM8mxbKoUdLkBiXl6yUlblKfxLXSKiWE0BAz0zjGzHnNRTPE5HIims5g8uQDYzfy4skFru2phQZXI8WK6FKeXE7XQgqZWdm2W/yUua61wRTF5KzPZpAYr2Mb4830/VUiUKYQhJSwLkyAdDW5msVkYMuTt/yz1c06/noN64OnKDRFmU1Lb731Fkorfuu3fpvgM+vVT2ZFo/XkIs9YpMIYtJQ4m8MLYgg3U0Ah8msYBjvxgHPhVldzvIdbJwcc31qyWa/pdo5uv8Vbx3ZtKasZhycH2GiRWtPvc/Kc9Za+y8W0FGUuKmea4AdAo1WOnSRF9vsBN45oUxCjYhg79vuIFBXBW1KSKKExSk9UjGyQywglOa3IFWIyDxljICWUzChHySSD8H76XsYbV/y1xCfrVQ1S5XTAotAgYBhGUoKyKoCUjTQhB4IkEu+/9z5XVy8Z7cBsVnLvwYz12vH6a19gtLDbtcSQMCUgBpgYuQqJlooYAtvtlrqpbp5HWRU47xiHjH7KWKvEev0SH/a56BkiUkWamWF0O5SeNLtTwRpCYD6fT1KTeGPuhDSlcBmqqvr/SACEEDR1czPBT0lMTZS+mVRfa2qlVJOhaWpmq4rdbkff5XCWsqzROj+GkIIQIocHB8yXDcPYEZLl6OAo03OSJgZB8FkGEIOmmTWY0HF4UjDaLfthj3SQtMc6gSnTFBE9cHhySii3PHh/Qb9XpH5gpkp0TJRF1hX73qJCIu490TT0ZeTsakvsNHHIJt+X6w2LhaTrerwHb/NE2JiJ6esdUmaDczHRWq6/K0M/4l1AiFzYD70lpkBZmhtpZ103/Nxf+bnv/UL1v/w7//03Xzze8Ox5x6NvXXH+/DmVHgmMFGhCTHgPzVxTVhCCIiUJBEgCqU3WKYkKaHEDfPHL8Kd+pqepDaqEaqb5xb/b4qLg6FhxfrZhthpBFATZU41LfuhrP8yQwCdPUY9UM4EOJfOjUx492XG4aikPNOOQ87HrUtFIwf7M0K33XF211M0SaRzJeWI0ubNJHckIpErUq4LLi8DeR5LwPH3RIkSkt5YXZ88ZB2h3jnHjoYNxEwjjyPYCyqrktTdKrh5pPvina46WR8xOBCdvHnKveJdf/1/+N95453V2HsY0sjnf0j1KdMMlQnlef/0IpSMuDoSk6boW0ogbI9FaZtWS9ct1xmNJgRIKqUAqRwj5QOm6gZQUJIMdPZAh/YlIUVaMNrJtR3wS2OBwUTBYOU1eDabWjG5NsJFkDYe3a8oqsd/2hDHgerDRMooRIfQ0sRhRIq8p53PJaqXZrVvefvA17h5/GRf2bK52PH32IQjJODrKmckHn9GMg2W+XPF8uOTgzQrvJKvjmp2LqPkRzl2iyghDzfHqCO/3dH3H6AIPvlAhzQy7tgw2UR8kbFHyi7/0OyyH57z5RmCxKHnytGTXRW4dC+49fJPdHg6agg6LCwPeWcaupYgS345kX9vIreUhdmizCGtKOZEI3DDmqY8QxGQgZNzJKCU2Bj73zm3GkNjtOrwfGAdPUSmaasVoB4oyoo1jGCzPnq85e/6SO/ducf/BHa7WV4w2axYLU3N0qyakEVMYKrNg6AYkBT7kXHClX+kLlcqYoeuYPikls7ohppQPKjKbbxzzCjKkhJb6BhadU4z0dznnc+edC5d8s0sTVByyvq0wGkGiKsssLRBqOihyws5uv6PddRkcLyNVqdBScnR4zDBG+mEPBLp2uDESVVWNVIL1evNd05WMQMpRjT2JPH2J6bo4zBq9EDxGKWJIrJZZy5q5oolEyGiwGJHCMJuVSJNX/j4GnI/UTYmPI8+en2Gtp6wrhNST030y1QHExPHxiqOjRc4tt5GqmtFUc+pqQaEFfd+y27ZYO1Ka7LQmQQpZIZrd4BEfB5QWE/syS2JCzAWeVArvLEoyTZsDWiYODgpM4fnkD5/x6NMzNldrxqHPrMiizHo08kSxKAymqLIOVkqUKQg+FzBCCpqmvlkrXxee1wa7nHiVpusqP+9rvel3BwnE+GrFKoTETeD5qqom57hgsVyx37d8+OFHXKdopZTd3q9UhFlLxzWTNWVtY94A+Ju1eL4mr1FEhsV8wWK+YrfrUdLwAz/wJY6OD5EGvvEn/yiffPqMvs2ylP1uw269RUZFqRQJgbOKxarMusgxUyNS2rHbdGhtpohZOyWiebSRPHj4GkcHhzx+8gylNZIKKQ1FUWYGps6xvVkSlyZzmSaRcjhDCvR9iyk0Wme9IDKbvZiah3Iy6VmbDWPXjcQ11N4Yw/KgzoapCaEkxFSYTWl6y8ODHK2ZEvu2x8fAg4cP6WzPtt0z9Nlc9NGHH3J2/hxTCFwcJv2pYN/uqEyJEvKmUK9n1QSrjyReRZwKQc63Z5KWJJjNDhlsh9Ia7wUxwDBuWB6UuF4y+hFjNIeHBxPO6hoPFaeGR99sgbKMaZwQS5ku0PfDlOSVm/CiKKaGRjKfL6jretJSy5ufU0rRdQMhRJbL+Y1RK393wFlHUeYp91vvfp4H9x+w2+6zxCDJmwbD2pHFicJHT1MJTl+fsV8EktXovsKoBUNwzJuaQkdEHBFxia4TB69XDGrPi0cOJR3zmSFJT4gWRTZtlY2hnGuigtFecbC6S992CDWSvMH1DqXE1ChHUlIIkcNaVkcVzTzS7iPeJ5zPFIc0Gcq0Mhn8ryXIOJlQwYW8dK1rjZADP/dX/uPv/UL1P/vP/9Nv3n9QYaJj/9klyxPNspC0u/0NGy54gVSBeqbw7pXeqjAFWktUSgxDIGlFwPD8xZY/+edus22PKdWOorjD3/9vzolsubjY84UvfREvLhi3ELWljCU/+Rdu8Xt/sOb5iz2y7Og7zefffpfhStOuLU2zRZiQ2WshoXRCi5pbh6e07ZbtRrPbKeZNpFKRsK8oTcCXic0mcrhocB7OvlPy4tsDr90+5uS4hBjxqSWMioSnbMgGp/OCokjUWhJGycXTlkrO2L0YSYPmyUc77BbSueDFs5c8uYrcunuf73v7lMsnZ1xdjaSyY1GW2EEgRUW72zN2khCgVA2r6gglNSJ4ykKR0gAMRJ+diaZ0KJ0ILhGCIGCRKjGbNyglWa/zgV5VDf1g8UFQ14ckIUkygS5xtkXpjLiwKXBwcIrwiqqSbLYv6UZHWVUc3J3hnUeSc7MNirIyJGnAesZ9jx0CD948xcmB73znMS+efps/8vWv8/z5Oc8vPmToLYeHx6hCEFLWSM51Yru2bLd7nny247X7t5nVjmcfX3H5/ApVL9lfCIzZ8me+f8/uactWnGLme3RdcXW1xw6O2szxA3Rhjz5oOb4teXKW+NXfHfCjZOg8fVCMwTObK4LrGLymFoZgIckMCa9V1hG/9d77rNsNYejzDdMoiJnpaYxCkp2ioggIkQ/UxmjuaMHnKomynhQiQQhCUmgl6XtPVQuqOne2QhWUdU3TzCAxQdkH+r6bHJuShCMmKOWc48M7jMNA23XUVYWQgX4YqKrmZhU7n89vNFoh5LVOjHmlmMgA96qsbiamMXgi+fOPKfNd8yroOuHJTeCYQJoA18B0SCpi8JASXdsTfOC9996jKkv6frgpoJ3Pzm5jAkWR9U9PHl8ShWO+LBjHwGKx4sHDeznhLOUVVca1QJY3xGna+spU9d2Q+etDTZCna0pqbt06oaqqG6akmlbQUmhCDPhgp+CGnCykVYVSEmtHvEucnNzh9r27bPY7vLWoINmt94RpVS5UxBQSUp6YOZfXiONg6drdhK3JyJkYMg3AjTmGdzabcXh4QFFFFiuB0mRywXSgXqOYClPjrMfagUAkJlDa8N6X3ueNdx/y/OwM73IyYF1nRFgMeYrkbCREgTKaqqyBjC5zzmOdZepQJuNapkeE4PMkNSbkxPi11k1Jaobl6oC6qmnbPXbMTm0hRMYQTVpirfNk73oiZqY1vbWezWY7rcXVq+UAACAASURBVGWvma95vVoYjVaSG/YqWeuqphCCXIQZTk5OuH37lLZtb9ip1xPrZpa3TW2745NPnvLZo+fEpDm9+zZdt+Hi7IKiqvnc+29ycq/g+DTSdlt2XWRxUFPPDaujQ4R02CFNWmlJUpCExTsHQiKVyg2rdTw/e4mUiqpakIczmSmNyo58oaCuZzfTwMzODHhvGccBU+SiaRxHlDHTNjLv8KcdB0zrfK1zJHNVlTfXvzaKg8MlwzAAObgBITBVmRsVnXWPbdfnNX5h2O9brHM0zQwfAsEWmEJweGsOKjJaz6I5zJ+DChNaMj/nmEIm/OjcONZVM6H7cnMhyZQIQcJ7m+V/wmHHjE9zfktZasYxQoqUtUErw3K5ZLvd3rBRi8KwWq3Y77c4F24A/845xsHerPJf8WjjTZN0eHjIarFk1mRpS1VX071jYo6agrKsuEazZclJ3nwopW5kOkYXXF1tuLoc6TvHvdt36boeJQRSBhaLIv8+rHj7/Rn1USI0C156y+FpyUwL7GWklhNrOCX0HMZomR8c4N3A+ZOOw9U93v3qmwx1NmMJD3bnKY8WmDslu9EhUsBtA+snI3HMDFuXHNWigJgRiG6MmZNqrnWogb53KJU3mUppnA0IZJYAuUgza0BOBsuUiMByeYhzFh9GpAr8jX/vX4II1X/yO//jN2+/8xp4w+KW4cHX7tJuFetHZ9BoXB9QKjsui1LgfTZ7ZCODJ0QxoWGy0Sp6y1FT85f+8pLLz17w4POBrl3wC//VS/7Yj77F+19b0pxKpH+LJx9c8MabC3Tl+ez5Of2gWBx4gpOk1BPcnJ/6N3+co9lrPHzn86Rxx1W3o6g1MiqefCC4+tjS71s2m5bFiabroK5qotxQ1gViFBTa0q1H+haOjjpEZXh5aVmejlQzSZSKZqYAT1WtOF6UtE8tBZLBJ4QBEQP788wX9WokJU+6nLEfe04LRXc58hf/3b/Mzg7EUfP48WNUoRA+MriRocurOwEIZSlk5HjuUXUWOksSZSWYzxbYocjGCQHjKIFiQrtASHD37j2s62hmBh/zNDWEyDgGiqIihpGQHFoYDlYHKBVQpeH4bo74FF4wjntMsSSJGhdHTt9aUpqaODh0MmggiHyAfeGdd/nhr32N2YHkrXde58tf+wHKxlBwitQFbdcy2DVNs+Dy6gpSyuY7H4lRkOipy4Y7rx2z7Z6zuYz0m5Y4RLwIFMFAaXnfSB6/sDwPnvnBIUl6ytpQ3GnyFHLnaA4a4gz29YgvEs3xIVf9gI+A9xRR0nU5M9ltNrQ+EKQkypxvP3Yjq0XNuLfs1xu0gMXRId1+T2U0qimQRiFiNmHUZUldl7jkSUPgqCpZzix95XncjfiQE2L60RJ9oh8GLi/6vFbTjiQUw2jpe8/Z83MSOXM6hYBUgrKo8aPC2UA3rCduqs968JQ/06ZpMNqw3bS0+/aGZ1k3NUYr+nFA6bx+lTLrV6/z3aXMk4HvzqAWEzA9m3hUbjZ11k+mEPL6V7zia14fruPo2e9bfvzHf4Lbd+7w7OwZztoM3CZPe4KLOJcndPW8IgSwg+Xk6BaFabhaX+F8nobk4kTePM9r96+col+Vyi50IXOxFELKKKuUnb1919N1PTEGlPYoLSBqpFBoozNeSWiqsiQlMTmM8hTJ+8h+t2N3tSFZx9j3zFcLPv9975GEYLfdc3gwpywl3TDiQ57sOtcT04ibYl1XqyVGa4Z+QCuF0YqmqXHesb5a41xAqxlVsaAsmrz6nybFzlusHwCHlgZlmqyRTpEoJOvdwNnTCzS5EDV6RkYVeaSWhJgoyowy2rcd2hiSgBA9i+UMow0pRlKM2HG8WfkrbSjLKk8JlcToVxOtvuuw43BzrRitbyZgSmf01fUaVqk8VZzN5jTNLBeXUjEO9qbpyPiqcjJJ5YbjGiAfr6N+hbqRmGhtWK0OuLi4zFPIELE2MzPXV3uiNxnuXwsOT2qCt3z4Wx8Q2j0HByU+RQ7vHuGMpTw44Bs/8aM8fOM2b737BnfvH/L0xScMXaZblMUCQUXTQPBDPsxjRMkSpeusJxUmo8dETgKq6mwkFGrk8PgALRWmmKGNoZ41KKPYtbucLEfCBZ+B/jFMHgU3vS5P9DlhTEp1M0m9llnkSOvckPWDpSprVqsDrPeTQY58FgdP21mUyJpXZx2mMEip2Gw2OQEq2Mn9X+bpGgHrbDbWmSrLRFLuUeeHDfW8ZNt201ZJUhQl+33WBue1eZpiYiNNU9HUM0LoUELz+uuvc+fukpPXoJp7Ls8tha7ou4FEXrcXRclyuWK/31NVNcYU2DEjAefzBcfHx6+0uZNu/fp6TCkyDv2NrlcIuFpvp03RK+nItSEtT6kLQN5MhZ2zDGPPnTt3iTHSdTu6doOzfZZnKJ3DOgZHVdZs1pbzZwOqXnDrwQHYLU7kZLLhxTl1XRLLgUFBeVCxek2yb1sK3XNrcQ8rE+vNM4bdluQF+IwGlFoRGLH9yMuXLTYohHJEOXB4LLjzWolRWeqh1RTHXRicH9jvOwgS2yuWhw1tu2cYLMFF/MTvlYr8vmomJqHEqMy0D35AItGy5K//7H/0vV+o/v1f/p+++fzsnLbzqLt32e4Em6eO4cWnFDpix6yz8cGxWJQoDdZm12oIOU9cqzzuT0JQlgW2c/zZn1ny5R88oKhKnj2t+Nv/9Uv2V8f86Z/+KX7j93+d3/xnH/DGnRm+t8jlyNU25xR/9fu/Qq0WWPuCdtwzjA13bj9EzW/z6e9/ghVrjLYMjxRF7wkpP7eTNzQP3l3x+LPAvbsNMe5IoeK9H5zzfD3iQsHVdkRIOHxQcXgHvBiQe89urajKvM5oFiuEKzh/vCUJjxUS8Bm6bRpcDIjgKKQkKpGddMnj7I7f+/1PCbHmw0e/gykifu9JQRBRJGX50vffI9oliwXcvW35oa+csB0tm8tE9AUkz2Yz5BSw4DAqv6dMq2BnJUbXFGXEuoCzkSgCEk1KMPZZ4F/X+UJMDrphpKpK+hEWt2pSjFw83aLkyGxZ4qNDuMh6fUW3DujS0KceYyBKEMHx9R/+MVbHd7h9521+9zc/o6nu8+mnG7717d9js80axPPzpyAkbrQQJEQLPrFaLQjjiJiVOKPoLz3KK7Ra0VQLdHCIWuLahJ8teFYafGwpqyVXVwPt2RVXu8DJwwXz2pG0Z7NrqWLFfHXAvdcesr7aYq8sy/mSYRzwm4iIElFpylpQykAhTNbRlXvaviWEHuUSvbNc7TbI4KkLTX28ImpJo/NUI2ExSlHUFcNoOetHLp3kbB9JvkFkqNp06GcdWjMrefg5OLzVcPlCcf/h/akDdmiddUZZUpZw1oPMiWKzuaasHWWpCL4EEdFSYwdH3/U8ePiA09NTjDF0XctobebbCoFQKk9qUpoi/8SkWeOmsBUTTBwm1+tUhJaVoaqyflCIjJCJMWUNZcrO8Jjg8OiY/+Dn/hpvvfM2v/Irv8Lz588oKjMlJkFwAjdmMb8uEsMIQ+dZLZYMg+PsxTkhWhB5enq9hr7mSWZs1qt896yPS8SUV4xZ6phNPEpInLM4lykAs7lhNpsxDilr+PB4p3DjBPY2JUJEggMps3takKdEKQQKlTBSoEVOZxrGnpASVZNlNs5mqYMyFmUczkFVrtBGYcceNbnXlc7IJsgnfwyJoR+p64qmKRmGHUKmyfyQ+ZZlVU96WksKDp0EVy83BNsyq3LEarMQjENPMyt4+MZdhNB0Q0bojKNFTLrIw+ND3v3cWxweLPHBYe2Is45Z02RndkrT42WahNJ5Sn+tsSyMmVTN3BzyZZVXrXG6rq6Lh2KaFnrv2W7XuZCAGy21vGHliknbnFFX17npwXmcDTdg9jzt6nn27BlKZv23FBIpwWjN6mCR19bO5vVyn+HoehZIwuKcxAbYdZe4MPLxty75+A+27LodH370IR89+ghTu9zsaI8bHWO/Jbr8WpzNU11jakCDzNr/1+/f5a2375JiRT9000Q+QjJoVXFyespiscwc1akQtXbEFIqiyHrca/1pLpoEzrncWIpXUarXDcD1368n1ylIVssDnPX0wzilK43oIp99IhY5gSn6m+bBW5919jKbPY9Olvl5OEXfDYTY5/875vsMAqQWRGG5deeI5eEcOzpImZIRQkCSU5FIoJWaGsBEJZek6PHR4oPl8WeXaH3Iu597j81+z9X5NmuVnaeZzbHWYa1jtTpgvd5QmJKHDx/inGMYhhtjWQjhuwgIr66bwhiGoaft9jnowmW5UlmWN6bM6yIVIlIUmCIXspAHBCkluq4lxoBRkpSyGbBpGs7Pzqf7euLqao1PllqvuHh8hSNRqYTre0TvaI5qLlrP/S8FohBs9x11uSQBd9+4z35I9H6N944vfemHKIoFMkUEkSASFIK7917PxmadSMLhvEDrOUoYup2nLGf0/ZADZLzFucCsydSAuimYzUvaruPW8TFVVdP3/WSmE9SzghRNpg7gsrRrdATH1Jgl/sO/+i+B6/+/+G//1jdv3z7i0bfX7F7uefnxGf3uChU9Uo54kbCdRgjDfKHzRCKWuTPWiVI2jDEiYkIlR1QlLztPsxj46tcbkh549FHBr/zDns0w8vjRlq995YvMDvcc3Hud5lBz8emWqE4Yuh47dkTRUMkeq3esLzZ88p0P+D9+6R+zubjkVqOwW03bKkTyJEZmS40Qh5SmpCqXJJFYHBxy/uIly1PD8UPBbtPhbU3XeYRzWF2x6xNqmyiKBqd6KhEZ9iNPPt0jWwCBThFBjtWE7KSvo0b0kXJR8yd+7EdJmz/k+KjmO+eep48+IIge35FF6liCgoOjGcLBZ4/W3HnziLfee5P/+9cfcXZ2HcmW4yTtOBLSmG/eusyHQRGmLl7lhJtE7v4wpBBv4vCkEiDypKcoKpz3oBJSGYLzvHy2od+OlE2BTTBfHTGODuscyeWDoe96RJTEJLh7+x4jgUefPSIZyf/5j38dUzu+/cnvsj1/xP1bFadlZHlwjz0dyQaOD2qCUkQrqYzA+YE+KqqDhnHXcu+1+xzfOcXvB56vX1I1c0IINMua87anXkTadcnmRYewgXtfeotxa+nPHEnW9HtDe96zOqzZe0e3sQw7C2Q6hQsaYTSjG8GD8J7tGJHBUCro+oi3Jk/wJFgfWZQVtVSIlBi7nnbTMvQtWqbMqI2eQmlizOxK7wNaGRA+N2sqYEqdE3ic4fS1I+6enPC5d97i008v+OzRYzZXW5yNtPue4B2JhC4yDUIrgZSeO/cddhSsL6/XrYYoA8jMuzs9vctqdUo/eq62V0QCKfjMFJQTS2+KZSyKAmKe3mmZD8DZbE5VZ7yNFBKRIs7nww2YDA7cOPEFMjvMiSAVo/X87u98wD/6R/8rTx4/QUifV+w+H+jRB+7eOWU2m7Hd9BAjZS0p6po43Siz8XvKE1cSaa7jVCeuX5oMX4IcG5pkXndyXbjmdamP2UCShKeoMqA+xYkYoPXUSLuJVRoxVUSZXPiGEIgh8z+VhJQcPiZ0YajmLuvCfQIchVEELxgHi5CRkCI+iHxYS3AOVocrDg4WbLdrYgw0zZzCFNgh46K0yWio9XqHDwlpDEJqnIsEFxApYAxoLRBJEaIkkpitGg4OlwRnqZtDivmM/TBwvt6y3W2pCkX0FpJAJw1R0tueJ8+f8ejRE/rtQBgj1uUJbEZJiYwbCinLQvzIOAx46/I1cX0wTBMsrSRlKafJd7yJ3BQyfxZaq8mFnn8sT74D11Gc19ri68lhLsAKRJqmdUbfTMquI1GzOUaiC4kNAzHlg9uOkavdFSkmyqKgKMGOlqFPDIPAmJoYEn0/knxktayQuse1V9QGzh4P9PuC1UKyqDOrdYxZ6uVDgiR4+OYpIXV03Y4MOwisFof0LTx48DpPnn5K262paklZNdhR03eJqoazp4+5vDjH+QHBSJKBFHRuZKUhUZKwpAnWX1WrHH4z4ZK+u6G8/jPERAqKrt/R9bupUVCUZZU9DBJiiBBLjEnoKXEOmYsyoQJGz3E2M0HHoSfGrB+OyVM3FSIp+n6PIkI07DY5fS16x9BJZJUIftKtezAlCB2nTUvEj1uMPsL6HjtCkCMpFcwXBV/4/PdRmcR2t0Uww/mOFB0HqxOsdeiy4MG9t/j4k4+JKU/ht5ttph+IRIoZj1UUBSnGjFgcLfWswTlB08z4C3/xp1mtDN/+1iPKqsTomqo6JMo9UkPwjhCuwzam2FqdY6DzlN8SYh40BLnljc+f5DNfNihlIWpE3NM0NY0+oiwXHLx2wureEXXZU9aKNCzw0nJ0tyCNPgcJJM3zRxfMFwUnDxqsGxm7gXZ0bKJDLoBYQqpYb68ylUcaKlOx23S0O0e7D7RtT1PPcWHHfJ6pDF2XzWcpKuaHC1wceP3+GwSxoWoUCIegBDx+jIBByEhhmkwMKQQhCHxw/Pxf+0++9wvVv/XLf+ebH/7WYy6erTHFgKxK+k1LYRSEHUoYgpek6DAFVNVsWhvmnODsRiyJQVCZhpgUQ29Rfsa/9ecNmDmPPjb84n/3ksPTA16c77hz+zVqXfLPf/U7LJZfZP3JGafFnMNyycXFyAfP/5DLfYl0iSB76irQHBn2LuZJROzxNmF9IqExes7mZQcuIkXg6mIgMnJ0u+DqbEuUI2HbUC0km72DK4HdOjARGRJNc0BUklEMiCpQphVhHUhCIYwiTDoiVMoTJxQ2BFwa+bE/9kWenF2xe9mz3cPhwYLj5RHnmzWzRnNwVCCNwA6RFCLaFOy7ng8/OOPk8D4HR0fsdm3GsMhrDExeX47jiPMDKZbZterClCUcGdqM+LoWnl/rBYEJ2ZMj3UDR9h0xBmaLiqLShJQQMn9OQ9/lVap1GGXyAaI1IsH65RXKJVrXs91s6QpP63aEsMXUK/R+z5fnl9jmLueXa1SKdKphlCN1M0OpBWJwzIuG/S7D7A+qJR996wmb3YamkUQ/MnSBu6+XfN+X73L53NNuBqTaUZeSYd+BM4TeIQfN+2+/xp/56R9mcC19u+bs6Ro3jMTRsd/2VGVBsyiJRPrRk1xJcppqFpnfahh3e4QP6GqJkJnbGohQalRh6NsBERMSyXK5JKmSYYyMNkGUlNpQaElTlSQSgwOdNGUEay2iCvh94tFn55y9vMSNnhQcadJZ5VMpfzYx5KmlVBIhKt56+P30+4KuG2hmEjtaoqumlTK8vLwkxhFr97TtHqVyNGgMuTtWMic1FaUGArlSzyigkFLW1pGfQ15B5xU5KYPhgw+TySqvIoWIRH+djBWJydH2WyIdUmfdVxSBpAWIEiELhnHAest8NSOS8nfFWvzo8XbKha9qdI7TIU7SISNzEywmZ7SYppKZn5huDheYol1DXmHfuXOXxXxJ2w2EmIhTxOPR4dFkGgvMFzOappoMW4F0U1SlSVqg8c5P8bkKo2bMZwsAXBiwdsyJWs5hBwGUSJkL2eAj7d7S7UeGIfHOW1/hR/7oH2e323JxcT4VnwJJQisxcW6zM1wrhZJACjcxlnHiLKYIy9WKdz7/Fv0wcPb0CSr2hNYzbge0ELlYMTmSM4ZJ3hFzMWkm/WdRGGbzOePgb96LqtKMY4eUOe0ppYz3gdwcrFYLVgdLdvstpshyhhizXjBr3eKksc7F7CsN4XWaEaQpMSkbdq5xV3q6t8mJW+xA5sjcGJn0vkx0gYR1GWfWzAuahWV1lCh0LkS0yVSCg+MZxSKbwJxzWDsgUVT6IBeJ3lDIFYuThs9/7gsM24FhJzh/EfEehl1+bFLi8PCAslRcXFyipL7BCb68umLX7bnoPsIsemSVJRZlldjvryDmKWg/btGmxOdsB6RSNIs8WR6GgCBlHbUTaF0Q4wAx3BA58hQwTw6vzZKFMXiXBxF1nZFXbjLfeR9YLlYYU7Bv15BCpncUDVU1pyg1dT2jbCymkOz3fTYOAFpXkCRFoYiuQ8gaJ8CnET9Y+m2fmzIsyQpunxqqRuNFDhUWKaJdIqwjTkiUkZRzxeBapPQoCZv2kn/+ux/w+u173H/wJk+evUArj3eC5bJhefj/Uvdmv5ZeZ37es6Zv2uMZa64iizMpSqQkUupuy7J6cLe7ZXfbTtKIYQcJfJGbxLCTdqcN5EJXAQzkIgEM3wRBfBEYiYMg9kWn20aP7jFKSy1KoiiKUxVZVafqTPvs6ZvWlIv1VSn+DywCvOAA8px9zt7fWu/7+z2PJi8MH3zwAxAdzgmMLgmx5ZnnL2FdjY8508mEKAJFoanXkohHikT1+PQrn6fZptjPgwf3qMYwnw8xmxAJriDGHx5QH0dSUuY35aS1kvQ2xQY+98ZnGI8LlouWzFTEaBFoEBVSRLrakk0su1dyNouI8zk+V7RecHjlacajG/SNY7Pp2G5gPBKc3w08vLOmyAy3Xoh8dOchys7olg3bk4au69jZmdDU6/T/GH72MXqEeUxq8RBTUUqq9L5o24Yr13NOjxtE0Bw/fERTW5qt5PLVy9R1Td9LpLFUI8PB4Q6npwvkUKidTA8xWcGv/r1f+ff/oPo//ON/+rXxgeZi9ZDKZqwXLWNtONuu2ZEe6z1CKCBQlSmwH/HDDSs1HpVMGJTObYihpWsir79Z8Dd/OaMH3n838ke/U2FKaPuaux/ep9lsabpjlDrG5CN+8pe/wCdHiouTu4z1hNmo4ItPvw6mY+lOuahLbB+YSI1QEYRC+4ymbSnzEmdbjK44e7RkcdZSZjvM5hmXnurRVcXyrKYPPdW0xG8tRhi20XPpUs5f/Mu3ee/dLdAxnRnsesvyfoYuoLEWQzIUZYAIgm3nsSpy5co+0Z3y3tuP+PSP/xQ/97M/w40bh3z3nXusG4dRDVlmUiu6d4OPvERl6SBZZPucnZ1gnU8P201DiElbWRTFsP6IdL3DWbh6/RClJA+PznDWkmearnNPUBVK/7slFGNy+q5PZiKj0Jmmbpq0Gh5A8qToHZnK0wMS0jRFJFTJNlqiLsjpaPolV/f3eebWJe5u1tjW8fzNq5xIzSf3L8ikZ71esFlsiX2NsAK8xEmLEgaQrNYn5MbT2gbrW6pJllBUONarCCJjuTnFOWi6QGw0XaihVFx5bsy1Z27x8CLw8YP3WJ215GMoJoLxZMx8fshisWS9WSJjz+5cYirLdrNhf3TI7nyX4/MzQoTNZj0UPaD1Hl3m1G2LjGCEQuuMxluaPuJiRBlNJjNyBFl0BN8Oq6X0IPfeIqUhCskXXnuGpnYcP1rie4dEJloD+knDPcvzYR0VybMCo0ecn3Y0zZYQEsxfKMd8N01fQKZsUWhp2z5lSOPgwnYONQg5UoY8NZfTATiBreVgAbDOIpE4+xiBk1Sj6esarEQhrdOzTKN1oiK1TcDojKJI6stMF+ky5CXaCXzXo2VAifTQzosKY3K61uL67gnLL8tVQtUQiSJFDIxSaJW+TjVEErRSKVcl4hOOY/pDPMkyPvaQb7db6roZNKLJ2NO0LXXT4IOndzbxDLOSosgQIuUFlUoTxBDT5CmKgLPQtB3L1QUQGI1MOiyH5HO3riZEl/J2VpPlkmLkEbIjLzQ3n7rFtt3w1lt/Towd3nliFIgnpSaJtwERIc/SBQSZpmRKps1NEjGknPFiveGisZhizHhe0rQ9bR0G6H/K+KbXJ2WORcI9ELwf8EaKnd3JsI5OtqO62Q6XJg1BDeB0eOx310aS5walwbr+CbIK0jQ7hjj8bqXfERBPohyPkUrpoCqG/LEaIgIpJ+2DS0pN4hAfA60lXd88WfWmS8OAopAGEXM2K0tTp9Z052t6CyYbs7O3z3g8IYaI7RxVkTMeC4wJ9P2WhgtQgnoLbd/g/YZqLlC5TWvyTlFVGZPJhNXyYjhYB2Jw6SIlBC4mZrKPAlBIYQZFsifPDL2zSGNQhaOcapRJxrLJvGC1TPi6GEELg6BHqVReikECP8QMxfhYwmEwSiX9q3BDVngoQkpBUeYJk6Zzdnf3Wa2OkVLTtYOUR4gU7eodwWdoHbB9QMaMQAOiQwpB33uUMYlqoUFLiRcaneVoHSlMoJoZmsYhcUgMRujUnpeaz/zELW6/cQOTeU4fnREZSnc2IjEII/n4gzMeHt9BGRjPRkSvePaZ2xwfn3N8vKDMJUqLoQQEXesp8oJLlw5ZrZeslw0xZLz4wqe59+AO9bbG2khVTGibNd95+zucnh1BSFn0rok4J6gmhuVykS7wIpmlHhc1H/+ZtisJZ2d0xtnZKY8ePWSzanE24F3amrWhI9NgyHBR4HxNjCuceYAut5w/2nJ6vKLddshwweHeDqul4dbNyzz1bM5qtWYyvcZTNz/Nt9/6PppAtC3PP/8K682G7cWGYCOuE0gMcdDDFmWepr5OoJXGupau8+TZaOAXe7RKE2+tE75LF4K63TDeyWl7j7WKtvYUxQjXR7o2MWKjiEQ6fu3v/6N//w+q//xf/69fu3HzJoV1jA4CseqpVz19X2DiOZKB3iMFWZElU4WESHrxhEqNUqEVUpbgHSEoTs9q/sNfvsRoEvjztzRf/2OQGgozZ3c3w1RLdq7P2ds95MM7SxarwHfeuoeSPbv7l3jwyYr/5r/+7/D2gHfe+QPyPNC2ggzIdWqtLs49mkCeZdRtzdXrT/P8c2+wXN3l+N4Wiefa8x5VjNnWGy5d0jRbie0miKJnsqfBwng3MNb7FPaCO9/pkb4CH7F9i5KabAgmSy0QTiJUjoyOQyUJWclLleZhveDWy1/h4PJ1/uB3/jV5JgleDw+rHIjoPOW0vOvIM8knnzzE2uStTraQlDfTRqZSDYGm7clySdtajA442yOiROlIkRdIqZ9oBh97hLVKh0IpNWWpaJuWoqwQaAQmGaOCI9MJqh4G64fWmhADkoQpEjGSlyVKRlzoKbIxZeUJWUaMGVVR8MUv/8fcv3/B9oOj+QAAIABJREFUR++/w7gYk+ke10VmxQiLo/eRdbdhMt7Biw7fwfKk46mXLlFmmuWm5dL1Mddvlzx6eMZyWUOoQGq0Tr7n2W6G0ZKDw4oH9z/gB+98iBQxoXFyTZ6PmR1O8PmGYlwgyWlWHfQlyhQcXB2xXrd8fO+ErDRokZHrgl56RJemGHXbENLLQJ6XYCTOSDCRbCKQxdBSDgIp0so7yyeMywofO3whiLIgek9ZXqYoBb1rCV6mnJf3uGBBebRRQ+kpTbGsTT/XxcUFIVi0MUwnI249NSPLI33n0lXJK9abJmWOhKbtGtquHQD3EiVBKwkBtMpQ0iDEkyI/ApFQQiEync4oivQhmLzvw2RnyKfGYfqTLCiGGzev/dDU4jvGoxEiKuq6QxnNZFYhB5c6ATarTcpMx/S+UZkiKkkUgzP78eEnepAWhEsYFjw+JO0nUaYPadKEW0QxTKbjUBBztG3zBKcF6Xs1xgzvhVQQS23qkqZu04rTxKEFn0pZSIka2vtiWJl6KxBSYlSBd5Kuq9EGxjNNXhr6TiKRTKYa72C7scx25lRTycOTj2ibhkxrguNJ5tf7kFbvMk3Q3EAXSPlck3K+Lk3eQgj0LrBdt9htIFMZk8mIQMflS1d5880vImXPenVOplMDWGcDA3WYzEYGta2KhJAKUQRFkRfkeUbXeqQyjKZlmtoMmWDreuq6Hop2OmGihoMugBi+fiHSa9RZ+2Qimzip8t/hYCYjln9yCEv51oQRSrnogDGKssrQRqCNQCo5cH1TS1uqpFq1rkVrQzWaYHKByXK6OrBaNGw3Nn3mFQV951MDOkpcp1mfNJwfn2G7jio36OjAgykK2jqyuzehabe0TQOIJ0MCrQp8sGQqgz5HWINRqayzWVtC0BgFWVHR+55s1KKK1Jpv25amTpzcp56ZYLKOi7MWJTQxpOFBgrAnC5G1lmpUYLSE6JAqXdryIktlLNKEtygqbt56mtPzBQ/vH3N+dsZorAGJQNL1jqwQWL+lHAVM6XFdoN4mXmtRFASX+OjeW1xvEy9WWbTOiT6QZeny09tAZQKuGSEldG3Hwf6EfKdk98VrPP9zVzhenRLqc07vWJpGorOcKs8ItiU6Rzl1CO2ZTiqqcc58co13f/Ae5+cLdJ4uWK4T2D5N7U2m6bvIx3cf4KNjXE7pui33H9wjRMdP/tRPMtvN+OpXv8q3v/tW4pxGP8SWLCF6urYbtgbqSRb/iX41xicmrBRvUUN+OkVjbOfSxS0+xrVBPtZsVjVKKLwVPLrf0G8MbjMloJiOCrLRhslkyurc0vgOn2+hrNm0Sw72Czbbhj/7fz5gbz+H4GhXJePLDik6VqstIabLn8oDWeExeTq0ZzpHCEXbtZhMoWRBWZYJS2gzMgObTTP8PYHOHd5pjCqZjEc0bfpcbrbN8PkeAMl4MsVkhn/4X/wITFT/8T/9H792urzASIutNMvjlu70HOsdXkkqbXFWoFRS/CW4sRuaiwkpLqMAkaUcTN+ii8h2M+XHfsry6tMz/vhPDf/yXxwzvzal7ltySqpqh7U65Rv/5i4FGx59coLcNHTdlm19yu3dWzSjO/yb3/1DppMJ2eiM3fFtTPD0/TJNf3owuqIPHVWV8fHHD9Gq5KVXbvHBB3cSWH5vzsmdntf/4ghdBc4fRA4ODnBOM6s0PgS+9Y3I6p7l+WcKlmeeD78dmM1NmkYGgck0VnicSoUO30dKH/jiM8/y3Guv8cFbb1N7ydFpy8HVa3hXUcxmPLpzh2Ks6DuY7YyIIlJvW4wqqbcNo8mM6CzExGtru57xpBzanHZ4wKYsVzVKGcx625Hn4KxgNBrjnKNtu3QjHU4kUiS8RQiJNJAeyj/8ZZ6MJkM2Lg6A8MfYmrSuk0rSdS2vf+ZVXnvlRR48eISXQLSsmoZNGyhCx2x0wMuvvsbRgyM26xWbbc9FtyFKSUaHdwVtv2VnVrA/forGnfFjbz6Ht4LrL+ywf9CzXNRkasLu7BqLsy22FUyqOcGtyE3CbFVljrCKzYkjj2OM0rTbjs2yo75o6boepStCyNi0WybzkulOxfQwZ9m01AuPyjVRC4RLQfa+j/jgMVIiB7tayt5Hmq7BhYALCSOmpUmt7iAZa4mOHUWejgGrtsUXllx5CBbd54znO2RSsjldU4eaIByz+ZyqHKeMpoAYOmzXD9k+QRQ9WQ5gCN5hTKQaS47u14OFx9J36WGUFxKTRW5cu8HVy1dSe7zv02pVPM65DQWVASouU3GZVORwRBFp+wZEOuTGGOl7x2N71WPHu4/w0z/9c7z+6Te5+9EDlhdrlIo42yCj5/qlXV546mmuHFxldVFTFhXjaZk2LUYTRMS7DqVS4UsEDwNCyogkChEqlYu0kRSFoqxyYoh0rkuWJYaSWIwURc50OgaRJnNKgckU2gjy3FCUOdY5+q5PazKZDq/WuicHrulkjtF5KosgiQhiMMSQDmUhRrrW4T0Yo1ACnAUhdSqP5p7ZrhxkAA5rBcElfWjrznFhhdY5Wk7SxDs4hNBolaX3tQGlGPK46VAqZJpMxhhRUqSSbhRURcnetEIIR54bPvO5V3jm5duIHEZ7Y9quobnYIJSgdwl15l164GuthjKXo25abJ8yu6k4lXLFUoWBE2sRpJxkkiwM3MbwOC7C8GBPmVLrHrMwGVBLyTSVDt4ptpSmo/GJdtMYTVnmA8IpPPn3pDRcu3aFPM9wLq09vQ/46JFKU5ZTRqOCrlsDSbWdVzDbi5QjSd806cITHTH0iUbjHZ1Lxh5UoChzhA54AS56JtMRNhg2tWU6KhEy8XvThS3FbtLhmJQjJTDfzcmrQNPWCa+Wp4OfFBpTFJQTwareUJTJ1pXpHVwvETHy8H7N+UkPUSFkAGzqJfTqCbBd61Q8C9Elwou3aCOf/B4mXz1cu3aLrk+Hj2qcbFFNnZ7NxhSoDLrWEqMgqwLGCBbnAd8D0uP6gBz0zMSIziNaj+j6lhgd2gSyDJzTjEY79AhWfUvtPFqP2K46lqdb7t9Z8v0/u8e1528yzxtOPrIEkQ7KXWuJ9AhZcvnmAbNpRXQjHj3oWC4uEKpJKvG+H+IuioSQcsPBUpDlScrQd02iIojIl7/0s/zqr/4Ko/EuEcdv/MZvMR1PkkrUOxBhiAZZxBBxEuL/l9uHJ3GVpAJ+zO0VQ6TCQNTDBT/S25Tj9r3H5DNMDlJYRuOCrr9A1pazZSA0CtfA+sJycdwynY+Y7EpyU6EwfPK9NVL3TMaB/b39VAatGy7fGHHj2RGO9Fmsc4WUkbaNEDSZGWOdG6x2kr5zHFyesamX9F3P4eGcB/fOcD3Y4AZ2c0/0OSIYMlUy28tZLheUpUKpNHRMUiBF2zQ/Gmaq//k3/97XpocdsmkIsqQ506xqxbjaIxcOFbcQ9fCDdEn9pyMxpLWFEqmw0/eBGB3BC1A5ddsQBfzyX53xh19XfP3PS/av7dL0ikdHR0QbMOUBt2/ukM0q9O6MW7dvc+lZz5WrGVNR8v2jM6ZXlzRdwCvL6SfnnHxsGe846tozFhN6lVZMwivK0rM4e8hq7RjtGpbnNSqbYRrPy19uCFOD7TtWpyO6Zkv0kvFuifZX+OCtO7z643vc/vQeJ/da1ostJi+Igx9dCFKuLmoQktZ39KpH6xFnRw9o+yWrswf86Tf+X/quYXv8AVEKojCYKufHv/QXeHBvQd/UQ6FEp1yoFsMbLK3RlBLDAVUn5I8yON8N9qEMY7InlhLbe8bjaljHQl23OOefgJlDCMlHPjSkqzKj2W4JPuCsR8tk/gqDOSaNjdMtXoqI7Trq7RZferanjlJAQIKNrFcbbIBPv/5p3vvouxw/POPqrcv0rcMIxcGtKc3JBnykmO8xncxo6iXzmxlmFtkuPXs3D8lzC9piXcYLL99CmRznIpk2aLNFqoImbgkahLRs1i1RTpjuFQTbkU0i1aRCALNpxu50xqMHLR7DjRfmKO3p6m26GceYBAkGtPJkJiMqRfCpXZ+bbFjnizTtCzEVqmQkzwyKZKMJHqSasN5Eqp1Dqq5jpiSHJvLK9ZK1lLB8wBuvv871Z1/m6OiU3BQQYTugs0aV4fKlWZpqDbpQ7zxZlg5XbR0Qomc6hbxMN/0YUlQhLzTe97zy8mf52b/88yzOF6yWq3TYkGI4BKWHHTFibYLLj8clzg1GGOmIMv1uZ3lOWWQQk3KV4fCRJhAZZ2cb3vr2t6nrMybj9HvX1pHd+SVeuv4UO3lJZUp2ZnN613O+vsCKSOstlVRcn+yRa421PSLAbD4lyHRAzXJPPkqgfm/98P/UdG0SVQh4YsqCNB2tqqTW9CFlz2JMIP/HUPQQHiNa0qVNSkkUjtlswng0JdMjtMroXYtUCaEUQmKbCqHJMs1kJznjtRYo7XE2HYyF8vQ92D6txqtxzuGlaxxc2sMUHYElk8mMtlEsz9foTCCNpqqmXLlyhaLK2NZLGGD9RAHyh9GGGALWJhkDQtI7RzUrmV+aEUyOVxnn6zOOHqb1ZL3e0rU1h4eH7Mx22aw2w6ozTVGFBB8iSmUcHu6zszvl/HRJDBqjJSYTaJlsPsmoNJTyhqSFdSlv+Nhelj4LE00ihLQajSGxbx/rWI0xwzo1Wc4IKcpRjgqUThPlSCAMkoo8L+k7x+npGV1nsQNrtshLTK6QKuUXf+zHfwKlch4dn6K1oWkC63UHPm0suqYjzxLdICs0QoLtA7QOFxzBK6QTFBlkhaZvWwwKYwR1vR4sc4lgk2UVUii8B6TCBUE2KZC5oHEtkHHz5jVmc8PivAXZp1KOi5Rml+gKXK/pGkewAd8nAsCV6xP2DsecnWySitOkZ0wYcHUu+CG2kbBhzgWUzogEettTVRV13XHz1lNoo7hYngGe4NIFs+sszgesDzivGE8n2L5is0q4LKMk48kIkwVC3KKMwkXItGBSBdrW0fYRR0AGzbQacXG6IdewOxkhMATlQfVEK9G2pF8byjjh44+OqeuW3fmEz3/2dZ5+4TY3PzVjvpPT956TR2d0tcfGNTp3EAyhLwZSwQ8B/yDxIdC1lhs3bvPa69c5O1/jneDV117j/v1H/LP/5Z/z7e+8jbMNSveUeUFejKjrRGTIMoM24Hyb4jQDhxV+qAZOFIDHODyVtgxdm7aUvh+e/RJiQJDT9g1KF2RqxOnihC9+4RWmec22q7AbR9cENILMKWJdcPaoZXvWcP5ow/JRy3OfeYP57oTF+hNc9HTnHfVWsWlhu/R0XaBrPV0TIco0FcMScAQ8o1HB5etjmvaCvktRjrar0SpnPKmSJCBaCAIpI7arOTvesru7B84PlqqI1jIVF0OHd+5Ho0z1r775P33t5rXr2PYKZ4uco6OzhPIpx9TSU4UNIcY0XSRDSs14LHGuxzmRigBZTKs7N0JnqeluVOTuBz1f/RtX+M77Hb/7Gw078wpTBkIjiB10IVCN91DxAGXnbC/OeeX15/mLP/0lrt0quHv0MeszRxYFQbRMDj3rE4HuBZmsuNiuEMqkQ3Qb0MphMsVma3nh07d580uv0apjPvjuMbdevsTZccF8Jvno3Q2T4grjnR1OH63QmWPzqOP8JPD2tzdM8xKdeTYrl25QGFRI0zgf0wfG/PI+l1+9zUEYI0xgfmVEtl4xzaEWNbN2gQ6ObGefH/9LfwWlJ7z3ve8T/QajKvIip8wdXdOzs7vD/t7eoMYLGGOGJm1SbEoJfSvQOuW/2japF6VMq8vHDER43GjUaJMeHFFEtE65Jq0V0Tu6tiUzhiLPKfIC1zu00In5p9PaNLiUvRqXmpXtadY1o6lmsnOZvq6xfcv+5Aqvv/4m7377uxzd/4i2t8jOc+XSPnKScf35EbVf0XjP7MqWa1f3WTQtp6sHbE4jfRxx/5NzrPU0nefqzetcLNccPbyTpjHOst7KpIgMBvqAdw1VWVFvHaOZpAuGIDRZHlmcrDj6qCZTkskscvTggh978Wf4hV/6S9w7vUu9WjGdlrRdD9ajxzmI5J4OLskOpBBP8ndCKIKRRK3QxYjaWTauY+McdYC1dTyzd8jhoeBSFSkDxK6lVwU+H9N7eP+DY7bbLcEtyIsGcPiQUE7OaWKwRGxqHQeDlA5jcqqiwpiOaiSZjNMBIWLT9EaVNGt49PBD/vhP/pCjo4eJaxgDUqTVFtGjtESrx8rKhI2CVLarRoaiygghtYSlEk+YmUImzFyC7AeUanBuhe17nIu44DBZKm01zvPK5z/Pp978LK//2OdZdw0/eO9Dui5B3V946hk+98pr3Lz1FD/xlS8jlWZxcUETWjbbFa4HY0o0Oa4HZy3WtiitmM0rhPDYx430mKxGXd9hbeJF5nlJCHGAtacDXySgleIxbN4YjVTpv+36wGbTsK3XZNnjQ30YaAA9IUKWS0zuh0uLe5IlLKqMpon4ILh0dUxwEfwe5WjO0cOPWa7OuHHzOl/6ib/K5cNb3Lv3EZvNhkBamW42G7y3EAd+6BMMVBjIDcn4RRT4EIbtVcD3nnI0JkTD0YNj1hc1WciZ5SMODnfZvXpIdNCuG0pjEDHFJ5Q2pBxoajx3XUPXJV6oiAx8VDf8nAckUPAoKcmzwTgoH2dgf8izhERWSF97WqPKQSrweHLlXBIfpNc/HQKI4QnXNUU4EqHEDxcLJZNtKcuL4fKWUF9BOBJmCI6OjqjbLUIIjM7JyziA7ku6toXYJ3mCTxcB7z35eMTVFw35Tps4s+Qsl448q5iOC/quTt+fTJN8az1EndBPUiaKBIK6Bu8lWaZZX7SU5ZSyMiwWG4pKpCa2zmm2jtVFjRAOQkT6SBSOvDDM9g2HV8YDzqtACIuSeohqAKQ4Q98Hmjq57Z3v8c6S6WRNs33PyfEjTk4e4vqUk5VCpqEDfoj1CrJSMZnO2dZ1yiVKk8D6AbbbFikDRSkwUpKPDOQWbzWhVkgSqut8vcQUGrxgu6oR0aQJulQImyFjy+r0nELtsbe/y8svv8Dlw0t88MEdjk5WeLPi3scPePcb9cDp3RI8SUzDmtFYEpFs1w1NnbBct566xu7ujL53XLt+m9feeJX/9O/+bb75rT/nc2+8zu//3u9z9+N3cN0WYzT7e4c4FzhfDN2NQrG/P0+XnkEl/Bh99riolnLA2ZC9TkId53qUfqwozYCBbECF1gVKOkLYsnOwy3/5X/0KVTXm7W+9z6qTeF+zc7BDvXX43oLu8V7jG41UlqqYcV7X9NstSlRsG4ldt3R9ZLloEAi22xYlBN5FJpMpWZFIM08/d8iomtP7mtFEYvIRCcKgiFajpUnSFeuoqpy+C2gl0Krg9U+/yXe+9VbaXEmDDzbxjSkgJsTaf/urPwIc1X/2v/321/q6YrFQLO8+om0cXjboKjLRY0R/QQg9AoEKFcF6dNEhZCC6gugkTkkyUSKdIwiBjx25UZw8EuixYHxpzu/8X+/jtgvOl2syOWJcKVQxobeCzfqYqa6oyhqH59d/4w6n6/vEdeSD3zsDteLg2Y7Q7jAWgvnOmFV7QaYLZLBE31EUGflIc3HhaZ3jk49OqWY9N26/xO7ujLe/ec7Z21O2DyV5CZmeM9u/xPffesBqvUJtoT1rsLWj3tQE1aNCRhQeTwIvRxFxQIbgmZs3ObhyyHvvHLHoDE0/xakR682Wk/NIQeD6zR1O25aLxvPh3Y/ZLpZUGezsT/FxS2jSLddZy3qzpW06/LCebJp6mGoI2iY9DJx1NG3LdDLG2gAy6UCTJShNJ/xQBAghEQJ2Lk3QRuF6R985gk3rfqWTOo+giD4p2HSWGH9EQd+1XN4/5IWXnuXuvUdEkZi1fVcj0ezt75GR8/prn+ed777L4mJBWzvqek1z4Ticw+SlnJu3X2QmBa3PuFgLdHfBjWuHaDHn/rs/4MatKbpYsd5suDgd09WRKousTrZklOg8MMoCxAZZjtDVFN/1PHXtOp1rcO0WJQIilDQNPPX0Ll/5mc9yerpA6wl/92//fcbxBX7zN3+b3X3PjWuX2PaSYjRBhA3tpk030EELmQ75Cmk0QUlC34ON2LbD2i41zwXJla0U227Nve2aB7VkpHcYZz13zh2LpWezfkBQ51RVy/VrGWURqWtPDCUBhZSGrusxOufgclo/GqMYjSqKsqdtHa4ZsV0JlosebSLBC2bzittPX6dttrS2piyzIYPohrV/urgkhurAo5RxQJol4HcUFpMrCGnNypDjSm5xhbV9OsAIiZYaSZIAeB8SA1ZBFA2L9TkPT89AFjw6vuCTuw94+aUXuby/x8XpGYu6ZrJ7wKtvfIEbLzyD95bT4xO6fo3yHhllWnlphSIbEEUCbxWuD+zv77K3v0PbJpD3bDZBCEHX24TuiWnal+XZoPJMWds8zwbweTr8aZW0osT4ZNLio0PrDC0LQDzhtSotk/zCJ32sIMNZTQgKnSmuXL/M4eElAj2tqxEyYvuezbJnu4KT44bVakO92bKtazKjyY2mKLKBsSoYlVX6nvXjWINP5A+hhjVoKnnFECBKFIZRXlIU4JyhQyHmAVd4hMnIouHRh/fYnF9gMpHUrD4Qhm1YsjulUt+VK/s8/ewhTbclhvTPwpOijkyHaZEwUeHJRumH/NTHjX/gSXQh/XUc8u2PsWeKqiyT6Uelg0D6xEvT1DQ5Tqv1NKwNFHmBGnSjbdfgXGQ0mjCaWo6PFzgPWRHAp+a87QOLZY+1keBSu54gcNamvK/QlPOKq9d2cdGxqRW7OyOeubFHrjSb+hRnIzFKvBOJKYpMZiXSayB0JMtAxR4VHKG3CdiuDBcXW6xrsb1DMESnRFI7F3lGCB2jLOfS5SnSCNYbx0c/aMhNlYo6vUv5XpHWsUVRpgJt61AiKTBHo4EdLA1FlhOCRan0tWW5IcvTITUSKCpNVih04RhNBBcXLUpWTGbQ9Q3BZfRdB9I9MR7uXgk0qwzXBIzKCTKkjwlyqjyhBnUWCUJTdy02evoWUD3COJzXWL+hXnvWFxdstgvatsUogejGnC9rbj4958WX9nnw8YLnX7jO0SdLujpy+/Z1nnr6Fs/cfpZf/KWf5T/4j34BISTrZc+NW9eZ7kre+f6St9/+BGNyPrl3h9XqEbb12NaiRcbFcj1oUwXVqEBrwXK5pGsDIiZBxuNL0eN43GPuqnOO7bamyMeE2CNlpCwqJpMpy+UFxiiiaNGFRHQZOIesDvjSV36Rf/JP/nuOHy0I/YaRqeiaNX1j0EJTlem1NRJ8B4XJaO0F9qShPrFEBfR+4OimwdBkPGazbRmNS4wxbNZb+iZweGUPBGzXHesNSJGlTadLZJdu06E0HOxd5cq1A8qi4vhkwZVLt2iaM86OF1y7dsC23jDbqRL6TyjqpsGo7EfjoPqv/vDXvyaLnLNzn8oBhcZ1jt1L+/hSQttQ2BXOa9AJmB2VwCg1KNMiOIcPEffE7xwIaLrOcv8Dy+4tw1vf3KBGcyqTE0X6AA55emOM90u8LxlPexaLh8h1TbQt/Ymi3S5Ynlmkzfjwm5a/9tWfZD6teO/9e+SzVEhxdkw1y3jjS8/w7ncuqPICo2BaBfL9ClvNUNNzTi9O+ejdU7YXkdNNzenphlJK4tbjmgZlkoYxy7KE5IoBKMikwImOGD2qFzilyfKM5p2PWZ+cYndHnL57j5//T/4GerLD+z94m2w2YVuUNNWMu0fvMD8QTHZHeFFikThAjwpEEEgtyLWGaEFB24GUESMEusiQMufK1SuMxiOadktR5kQnEiNTpwJGMpuExNYUyV+qMPRaonxOu3WpzKMZQuMx5VVMhlApGxbtFh0VtpNcn5f8nb/+eWKxT3/eMR8LTk5WjKuCPvQsLlqm4ymvv/YG73z0PkcffMTn3rjMZ778LDc+s8uGkvO7njvf/pjTky3bC02zbdh0K7o2MB7vcXHhOD9tGOl96AT9as3+TBCdZtvW6HHg6U9Bu8mwraDzlqAaTB7pmgypPD6mhme9aYgxMjuccHJWIww07ZI/+e4H/Obv/J/U2yOi6nmwaGm7jHG+i5Ewn85pmhaTC6RJGTG77clkTmGGCX2dpgE6MzSbjrKsODyc09oNF0FgvISgWOpIORM0NpLJiJSecTllby6ZjQoWZ4JtlySgmdEIXxOcRecTbjzzDE3bMQ7Qh5KuldBbrt2KTCY9de/Ynd0gcxn7Bzf5O//Zf07drXn06AH11mH0GKXME5h8Yi3m6XAkwTmwztM0Hm3ypCZ0AWky8jJFTnCaaA1KGsqipCxHKJPIErdu3uDG1at0TY0PXVoB+ogQga5ecrFe0EXJ3v6Ey9d2OXpwysn5fQI9To5YrgNCVSyixTlL0a4JaoPMJZmSlFmOFGmyGVFkecKzWNeyrRv6dkDEycB0JyPPFX2TPPUCz3w+ZTTNUzGsB4FHy7TS90EnGHzX4kKP0QVFNsboMVmWDxlZIAiCE+kzDkU1qiiLDNc0dK0n+KQGrbdwtljQ9BsEIV1kGvCuxtuGi7Nzzk4e0LsNSmbEKHCuwxiDVokQ4YLF2gikMiSPubUhMqi4SJpThY+R3rYIBZ4CmWUURaRdd4l8Um9ZXGwxZUY5KsgmJdXehLZ39NuePNN4kWD8wkdmkwlPP7dPWXqW5wucVUSfDqxSJ0KE69PaM7nlw/CAf0xcSAxKH+wwAQ4IIdMhWyikVoSQWJJKpWKoHOIbMQpiVEliUFWEIWoTI5RlRVFVtMP6H6FxIiIyyfVbh2zWK/o6oIUnBvXEuFWVI8p8AOuHHoRHSIlUmjzTKA93P1rTtoGrNzIuTjYsFzVtHdKFP0JvFSL2CGHpgqLMJ4zLEWhB0yfMjyokk70CL9NBdrNaYTKY72YpWjXS7OxO2KwdnoiPfbroNBlt29M0nvHM4L1juWjRskergkAgRp3eVyqVK6fTgjyPXLp8DWFy1psGIw3IYSvjBV5G2j6msmnVt/8ZAAAgAElEQVSlsNFjSpBZQMmCg73LTIoZR49OkHRMqxmohmqu2KxBSAdWM5pXRAnWFVhfk40FWQ7tNnDj+nXqbcOmq8lHOaNRietrhGO4ZBZUo4hCEFzN8fEFZxc1623D6qJhu6l59rlLPPXMjO997yNe+dQLfOr1m9x86hY//Vf+As996kWm89tMZnucnl3wB7/3Df7g3/4eR0dHnJ8+4uT+kgefvMfdOx9y/PCUk+NPmBRTbNszn+8gjMPkBme3w/RUUW+3gAYUUQaMkoSgmO/NyIpiIOGEZK6THk2FlB0CixCaECTlOCeERMkIXrIz38GRBnHRt/z2b/5LYt8znUzY371Kbz31pkeJiI8NTdNjZOIFjYs5ZDA/DFgi9TaC3xAFOF+RlY6RmlLMBLa2ON+zbTpG1YSnnr2GN4GTowt25hOa1YroUqmurHKQBTev32RnR/Po5IxitMMzL7/Cne9/QB1qurChNDl1d0FdK7JcUVSaxXnD9RtX8bHh1/7Bj8BB9X//rd/92rf/+C0+/M7HzA/3+fjeQ0oRKLM548s7KN+yOjsmLyv63uOtBxWZjCva1uJ9TE1xKVHSJKi0SE3q4CN9G9DjHdbrkkz6xKDzGcqUoAyzvMB6Qd827OxeTpnO+ZQXZjd5762PaETgzTdv8t7Xz/jiz13nS3/zdf7ot+6yfnSEtIZAhhSe7ban2jVEJTh9cIGkBzlhcnPKJycfkucO3+S89NxNTo9aqnHBJBesLzaE3g7sTEUcsp0MWJ8QOxQJh+VtaoR3NIyzwFUdyaZXuPGpp/nFn/9JXvv05/mz3/8ux+fvMdId573irG55/qWrPP3sDe7cPeds1VDtF+xe38GZEnLJhW3Zu3pA35V425IVjiJX0Gs6n96Q8/mUrnWs1xtc3yRXr3WYTDIa5XjfIlVqj2RZjtESqSOTcsLmfJMeQkIkQLSI5CaV44LomY4lo/mUKt+hnJWs3JLPf+5VvvjlLxLlnI8+vEOQHZvOsr93jboRtN0FB+NdXnz5Od75s+/x6mcyxvsTFs7z3tunfPzNI04+WSCjpO8Cm+WK9dkCLQpyNUIQef75A8Z7ko/vH3Ht1nWyUUs0His3FFOPLiDYnNLMOT9ZMd3LcF6RGciKSJ5D0xtknh5MPvREr1kuNuAztsuO9fm7jMsalQk6GzjYy5kVmrZesQ0rRqMCqSMWy+7uiOdeuo3ZrZCVpa5tMs0oTTkqkTKxK3ub1idCZijrsF7gg0dUim2E2kh29vYp44Sdw+dpfcmdD1YsXUfEUlaR8a7hog6YXLKnJaujFe2jJXlVEvNALhXTmWavbNDGojOJbTf02w3b9Ybf+rd/wJ2PPkFriXcx6fOCSxEcndBizva0TWC97iEmOHRRZBgjsL5L0RAl0KUcijRZWq13NQLS911kNE2LFwlTtF00jDLNzrxAackrrz5HEDk7OzOuXpkznV2jvoh89P73Wa7XaMbUi5rN2X3e+vqf8u533mGWOfKwYnHeUTeS4CW+z2iajul8ymQyJS/S4WmzsfR2eD+iaFvLetWmzY9P1iqtMvKioOt7+jZ508syRymD7yLtumF3OmM2ntM1LVkmKPKcm7du8cxT1/DNhn6zRRCwOLro8K5HeVCC4SBhiMHh4wYfaqClzCv292/ihaAPW7Qx9F1al3svB3xWKgzFENKK2wVs31OVE/Z2LyW8XKbIjB6A5MOhcDBwgUwkhRjQJufg8h43n95nPNP0tmZ3d4YR6dDW2YDKR5TjOcZU7EwmKO2puxVGG4iJQDAZj9nZKZFKUdeOzbpFiFSSMkYNLncoq/IJVipl3hOv9YndjHTplVINuuSU8cyLLOVEM0PXtcM09rGwQQ42sjQdh0hnI1J7skrgo2O53AyrykhZ5VSjEi0rXnr+JS6Wp7Rbmw54sWUyr8iynLpZ03U9ZVmSpAEqRZ3wZCYnKwxN3UOQlLrCdhbXp66Fc+mAI00PStO1Ah97UCGV1GqJCwGhSvJyh/WmSa+DEEk6IwZaRFSsV6mUqKTEdwJvDVp56rZB5QadD1GurkXLQN96Ip681GkCPhSnvA/U6wAxw4VNKo2xJZBRjhXj6jKbiy2ZtmS65Px8g85FEkWMp4nN7QN7+5f42V96E5Wdsd4syAqFySSRHiVz9vdmPDpOWx0RUrSnLDKywrM6t7QuURC8d1SmICDpnCPXmiAdQjokFQd719nf3+Fv/a2/xufffJ7LV2fcunGdGzcOePW1T/HSy5/liz/+FW7eepH7D5bc+fCM7739Pb7x9T/nj3/3T/n2N77F99/5Licn9xmPR0kIkjUok37RJnsS9JboA33rcGxRKqes5kgBbZum+l3XPsE1CplIE5nJ6XrLL3z1q3zhC1/gu995C+/Sz0EgyIsk3PGO9DkpIuvNknE1oa09eZ4EC49jcel3OyOElKlfbRa07QqpQiouE1FmKJsLgyxyDm4eUB14RgcNV67u8/D+CukNRvesGg9ZKnGORoogDdZbpEgWss2moXeO04sLHFAvOwyG8XiPcqyxmWSx2LDZtFi74u67PyBGgwyRqD2ht3QNCFFiu8DObo6LG3JTYfueX/sHPwJlqn/4j37taw/uPGBSarr1iulUs391zMHBZa5enjHdmbE4PmKzWhGDQgx2ESM91qV8UIweqdIaSww5Me/TBGSzCgg1Y7Q3YVYZRgeRZq3JqinTasp5tyYuz2lqgdGRzEBoNR/fvYttz8jGkTd+5ie4/so+zfV3+frba8SFZH3xCMqS4GomStFsPXvXJ/z1X/oKf/I7b6NNZLJTcf7IcfNSxYd/doqOmtfe/AxXbh/ymTdv8a0/ukfsG4L1yPi4uZpSbkJEHkPHjdDDJIBkWClzlFS0i4b5red4+sXXuPf2R/zfv/5/4E7ep9Ata18ixhJVCGwDF49WCNfTbVdU2YhRUeHsCuuXyKzDtpZu3fLSc5/CeUsbHJuuJbr0AFtcPKKuG3Z3ZpSlpGl6JDmzWUVRGvq24eDwgLru8VEmIHWVoXoLWLxKOS9DSIdgEQh5xlgLhHcszjo6ocn3I/tPlYRM0BcFj+oNfb9CeMf58YIHDx4ymuzQNS2zMuPGi88j3ZLXvnKJD+4c8c3feh+ahiLLKeY51SRnvarJS9BlRlHllBND6yKf/cJr7O/vc+/oDst1Q+c1nYvML3n29sbkZo/1QrBdnxOcog8O52MC3DNms27obYft/f9H3Xv82pam93nPF1be6eRwY4VbVd3V3dXVid0UmxQpqUmKkmhKBG3LokDaECcOhAFJJmAD6pEBGwZseWBDtkceeuIRYVkWSNtkMzQ7V4fKt+rmE3dYeX3Jg7Wr4D+BGtzhucDe+5y9vu99f7/nYWe+IC0CdsvozKaS2aKg3HQ0G0uWTmi6gcPTHVabmlW9ZmevYO/EEycwi/YoK0vZtfi2pu8dvRuxJ0rHW8/8iNyJ4wihBf3gGYLHBosyhm7dg5gRuYbbc401Ka++/mXqruPB/UcE1/PS8zMGa7i8bklEwV6ekwZDoOILn9hn5TTrSuOwROnAoRL0TrCqFRHHfOkLf43L5TXLzSXCQ5rFSKVoux6lxtyokoooisamezAj99iNjVal/bYsl4yTRmKyfIo1itWyZDaXpLmjbQybVU/ddNv86oyToxvkueHuzRt8+Suv8cKLd7nz/F32d0946cXPkMYZZxeXvP+Ttzk7v0LIGNs7rK05PFiQpTF1WRLM2ECvO8WNmy+RpTujuUaOBSnjWsqywtgWIcRY8MJu0VYjGD/S0agr1dAPluk0Z3dnTltaimnKrbt7NM2oJn7hxTv86q/9Hfb3D3n3/fu4YCjLGqVS4mTKct1QdgO9NQQf0IyHOuPGYorziq6x5EXO0fFii9GyFHnM5nrA9YJ79w4RIpDlBTdu7lNVJWkak2UJbVODGNmmY4EjMJvN2Ns7JIpiJrMJwVvartpePCwijHEj5+z42r3HO0ExTXGi4Xp5hVYRcTKh7R1VuaLvGuaLjGKqsL7HS49MPFIGhtqMcHmpmM0nTKZqW1yCatOOaJ/gUWosPhk7Gs9GhJYExLZsNBZdpBRbBi9j8WM7fZ0vFiNBxDn8VuFJCON6O7CFmcPu7g5JptGxYr2pSNIcQkLXeYpiRpYXuGDJ8gQpLb7XuG7O9fUZOu7pzRjCstYyDJYQLJNJDmK8vFvrCUERvKRcl0hpSeN8jKgFT9802N4hGPWlUgmm+wkyiumbcTI5P4pQaSCZDgg14MxAs67xxlDkU7LplChJwMYo7fFYlEywth8ZosITQk8/QJREBDUKaerNgLMjFxnhQQb61iFljFJqLAkKS14IdNwirQUUydQjIs/B4Sl9o+nbEtNEWN+gZIYXht29I26cPk87rEA4NlVLPYz2xqa0mH6cBk9mCqkHnNX4MBBFAq38eGAXCusaimnMdCZZrjumWU5wls702ABCGLyEPJlg7cCmXHFxsaQsc5CH3HnhFbL5ApVFfOub7/Gdb97nz/74z/nDf/mveOdH7/Pk4VOOX8iYH62ong4kSSCOR0Nb1xmEdOwfZyyvRx1oPwxIEbN/XNANHcGNU/myuqJtK8IW+xbFAoHe5qNBiBEN6YNjva754P13OH92MZZbxYCO4rE4KjVxnG5JFoY0S1ktNyihURrKctTAah3RNM0Ya8lz2rbBWECk4MU2upcQ6WRrYvMMrqSuAl1nuLocwI2wfhVNcWJAqgQjIZYDKgqUdQDvMLXEhkCWeiaTOXjL0EheePEmz72keefNczCCq/uX/MIv/ixf/sIrvPb5l/jy5z7Ds6vHnD20fPozB8i05/IpTOaKZt3yla++xmZTsbyqKCYz/vF//G8Cnuqf//dfX5wcUfXXCKP56i+8zuK5F4jmOZcPnxHnCe1qQ726RokCgiN4SZIp+mEg0qOlI2xboR8bZdyYH7ODQsQZQWvyeMYrn/e88+YF8WxFlhjatUWQkBaCL//VhMM7ik+98iKT44zlhw16Z5/zZx1J25CowONHT6jPN0Q+IPsWT8HK98RKY5uYneefI5lMOT5dcPrZ5whxwwfXS/ZvHnP0XELbBn71b/46l2fw4fuPsE09pqdDGLlp2xXVtmQMEqTWmO0XrRQgs5R455CH1yWPN9c8ffaM66s1S1uzkBXT3Tlvl5K0aGhtwFlBuWqpqpJikjMYx6bZcHiyx63927ihZ71p2DueksQLuk1DdbUmSwRpMtpIknj0Pg99Nz70rCBNC9q+pe/GpmSWz9lUHYMPLPb2kFoRLSSRNkwlZEVGaVoi7ekGSyRiit0Jg4bZNGFxZ07t1rjS8fS84sc/+Alv/fg+r3/pVW6+eETdOjbnHmuWtH3L7PgmL9/9NGrHUTrL6eKUsyclei+ibhpUb1g2a6ROSJMFQg2EoJCx5PBGYL0x/NH/9X3qTTPqeDOYTwuky9lcKfwAbdeQRnOkkhjXk6QJBM1mXdEPUKSSpiyxrmEwPVVbcnrnhKZb09aKfD6n60r8ULLY2eHhkxWbtWUSTxnWEMION24eUbGhq2q6ZYdOPPWyQeuYYlLgzIgn0tuykQ8WLx1pnpPGkiLJufnSPp/7/OfIFhlaVVy/c41QM+pu4P13v0/XN0x0gosEG+MwG8HdAw3a8GEpiPIUphPqMmazWeNMS2hSEq24bATVIMfCV5SRzxOSSUecSobejZxVyXaKAEka4ZxhMA4XBFolJJFGCPfxodUHQ5wppB65l9ZY+qan2rQ4E2GHcfUdZyPfcbNaU5VLvviVl7lx+xRIkGHKatNTZDlD54miGTvzCfff/QnrsiIIT1WWHJ6k7B0fkU/3scFRtS3rpmU62aMoprTDE7xYY4zDmB7nDNPJLnk6p+vGw7ZSMYII6x0hOEKQ22b4eCivNj1dVzGbjxYtZyOqauDWnZf5d//BP2JVrnn05D2iOHB5/ozgA9N8B2scZ1cP8dIwn8+ItScYh1ZAZNBxwJieKEo4ONgnTXOqaiCEiJ3FMQyO7nrD1dOOi2drimxOnh5wdbVhvVkhcEwnBSfHx6RpStfWo/oweNbrFRcX5zR1CcITx9sy21a84LbudinGnLF1HqkU88UuSsRIEUMQtGWJDJ6dgwU7Jzs0XUOz6dksB5J4SpEtMP1oNJNSM18U7O4nSDTWwGbTYIwj+DErGmk5TkjDRza1kfXqrB+ZqMYRJ3o0nm2tU4QtZ1ipsaRlRyIDWxblR952tvg048fSHIxCjSiKt4VAt8WTOeIoxQzQVR5jex49fp8gPGbIODg8opgPGDvQtd22WDpeYo2xaBXhrcN7S5ZNydKIxbwAH2jqDVKOLG47KJSU5JOcLkiqvmaSpRQ7Odm+RceSREb0naaYLEBBns9J45xqs2ToWoauIVhBnhzStCt29wrmOxLBmDENAnSUkKUpbddsRQYw31vgkXijEcqjtlB+fEwxE8Spxw+C3VlgeTXQdJ7BSgbXgFphB0kIPYTxghqn46H/0eOnqMQRxRFt57HCMPSBR+8LPv2pT2ONY7m8JtIz6o0e5QK6QElF362xPfSNREjNem3QkccYjc8bdnc9rvUEleCsGjsPsidW6Vh2e3afd959g+/8xZ/z/e98j7fffpv1xUPqzVN8WDOZJmRZYHAd+0eHbK56Vk97dBxhjQChmc4K7r5wjIw8Tx93aAmegDMxg+nAa9p+YD6PybKcoe+REpwfZR/DMCrER3qL3vKBodxsqOvRkOi8BxXojMW5eLQQBoPSAes+yo4KhPAf88nH0vKYYx+5rGNsR8mACGOkQ0ceHY2FLaUDO7sZV1cVUdKxO9vj8btndKUhjXJqs6KzAS0HTG84PcnIJineKULt2D+5xb2XMxpTcn21wpnRWHn3xTusy46DowW7hzHruuJLv/S3+dVf/BX++f/8L/izP3mD6tIjdz1X7w/81u/+Hdb1isePLlkcTnnw4IK2bfAhx8vA7/3uP/3Lf1D9b/+X/+nr82lG39TEyYSXPvM8b/7kCe++9RZPHlzw4QfvIowndhY/ioxoq5Yki4nSmK7pxrWrC6OPNwRG9vOYtzKDRSTjDfL8uubkdOBv/MY+l48Vl08b5tM5T6/WHJw0fOITr/GpvRd5//KM2a1dbh4f8r03vsvd5+7ys7/wVeb7+3z4nR5z2RKkoR1yvApoL9CJ5Pys5q0fvsXOnYL4VPOTN7/Phz9Zstn03L6xQ9vFbBrDD99+h7fvv4f0geryEsK43kNsY3BqyyTdMkWd3RZThMQFSzrNWHclKosRUUy5vGKZLzGFp7xybJRmEClxHLPeNOzvHrIz36HvHCZ42tCyON7nuhpXOUMVCH5JP3hWyyWzNKbZQIfn6Cil7wbm8z2UyMZJXzfgHCQp421scBgTOLtYoxPNdGfKst7gA8wPd8ZsXtPDYkrINKkPaCURJtCGnt4K0kgj8oB1ivqiwXmBMBKdKx5fLfHxPu9+cMYrn5lyejjn6XtXHM8P2H/lBuVlywfvPcTPa+Kk5+zdDZ2VKCVI9Iy+67FuhQSG1vPKJ+6xKWs+fP+MKGpwTiGjCB0Jur5heWmJiJnkCdflOd53OD8gtGWwA0NnPi6ATXdyZospQhTU1ZgLbTeeYaNwzcD68oxMw3QyoW0tmSx4+e4uER1t7XAiotjb5fzZFSqOx9JNb0kWagRQ6/ESNvSjLjNJMowdb9wq0vRBICycLy9ZG41POyZUZJueYCMal3J9fQ55j0JiipSNSInsqAqtLPTe0VvLZOcWr33mNVzXUA7XDFguNgN1p1Fo9ncXVFXLctVwfb4inUxo2wFnxkY0wSK2xqXxge7wVhK8Js0UUeQIXjOdzdg/2qMfOtwgmGb7dHXP0Ncs5jsgFIPrOTw64pWXX6QqG4zpmc12ETJDqJg419Rth1QRaZGitGW1OuMv/uL7XFxe402FC5Ljo1Ne/eTznJ6+wMMPz3j29CEvv/gy+wdHDH1L1Vzh6EBEWAtJLpByfFhrrem3D/YQHCqyJGmCFAIYSOIYJQPBgRIJ00lEUQis9bSNZegMDz98xHtvf8DF0yuePHzM6nrJ3mKf527foSqXrM4esptG7BYzDnZPkDql6SsGE3B9IEs+KhvFOOep25Iojbj73AscHz/PJJcU+TXd0LB/cIOj010ePHifzWY04gz9KFToB4sx5uOi48hNbpHSE6fj4a5ve6QYNaJjqWxscyuZoaME5w1106KI2ds7QClo6grT98zmEw6P9xgcxLpgbzFn7zBDaYlzKXEuMbambwJxkjDbi5FCYnvPalUzmPGBrOVYLAyEsfEeKbwbdac++LFctd2axfH4GXkXPqaPfFSaipMYGB/6PowYK4QkimIG60Zz0nSKc2PExLvxdzdJs/GAN4zDDudH/FVwnmgLhw/eM13A3Rdznj3eEFyGjiRKgZCeJFb4ISBlSpplFNOMSEv6rtu2zs14UBGCJEnY39ulbjuSYsFkFiPCMNroMkHXDqzPPZtrh7UjQrAqK+qmRgYQwRJJhXfjYSZOMvYOZ/jguLoqwU+5cXNOUzVEkUfJMet+fHpAZ1pUoug7TxQHkmycjAQikmxczxvn8QGQMRaHQuHanGYjyQqFcwO4BB0bgrII7ZnuZOg4omkdwecM3mxZvSUPP9gwnUzZrC12cLStYbErKSYxT8/O2dubk0QRq1WF9WakUQRNOlX8yj/8MlnUsXxgcFoQCUesFZ2xCJmS5GOsKE8Vs0lKqmOySCHJSLQg+BiHp60C04MD/srXvsTnv/wl2pXhwePHxHmGEz1JIXAMXF+vUTLFYxlNcmwz9pq9A0nX9ph2LAmm2wu1kjE3b99kuVxz8+ZNDg7nPHl8QZqmYzTuI9FfFPBCcu/VVzg62uXq6gIlJVJr+n7Abe2M4zBuJFwkSbplCY+fdds2xHE8boKcJU0lzhqUKra5c0uU5MTzcYthXU21bvnUJ19meX3G0AaKLKbrLAL4az/7y/zm7/wHFNOGs8ePWbcVh8cnnN6MGWxOMvckMufd773P1cOGat0TTVLqsuLmc3f48M0/p7o0/Pq//Xm+9Yc/4tZnTkl1w5OnMTIq2VwLuqZHR4bJYuD4dsHQwT/5j/4NOKj+i//1f/y6ciW2dgQaNpuSbl3Tr6uxexoCpu3JhcM7gZcSNxiUVnhhsHa8vTo3YmBGe4b4WLknlKUpEyaTguJkztWjBO9OIdQImRK7lp/7W8fs3THM8psQvcK//sPf5+JHK776yz+HEwNv/uQ+P/zwAT9+9B6vvvZpDvdv8uMfvUsy1YiuIlExIgQmsWCSC5h6pkeBUFvu7h0SFxkPHlxSritoO052Utar+yyf9pi6/vi9kFulopQKRNjiQiQKhbcGZECnKXU30NcW11i6pkLFBUe3d1A6cH01sNlUpFFGte4AS0zO5bNLXrl3l+AspgnYzjFJI/r+ikmS86UvvMyjx1dIHLPkEGtakrTF09P3INGUZcUWcjmabkIPhK0zPhBlEUE5iANSgQmO68cr1vXA7Xuv4Hdm1G3DrcnuiKfxFi0N02QHrxKulzXlpicuJCEMIApM7WmWa8qLR2SpYO9OysXa8IWffoXXv/gasd3hsvkAL1oePrzk9NaC0AWuzjeoqKdsAiqWRMmYS3ZC0pk1s11BnA6EkFLMI249d0BdDpTlBrGdulxcXKB1wtFJSlUaAlCuB6QbrUDOe4yBnZ2cphqNNXaQTLM5RTwnVQVf/PTr3D19gdXSMZvvoYQk1Smz4gZpvkfTtawfX7G/m9L1G5IptIPGt26rdBwzT1E82n+EjNA6oS4rhtagvMPSQQ992VBeX1NWM6YHM6JU0nSOdbMheM/tBWhjuBZgfKBVgtprXAi0jWN/MuHe/i6Pz9cMQyC4AeMGiijC28BmYxh8wMuOVFq8dQQR48MIiVbKgduW5OQI0Q7BoZWgmETMFjkvPPc61sY0tUOEnKzosUPDZtWOZSwhadoGYwxl2fL4wye0TQdKY33E40cXmAGOTvdQxUCQHc4ONG1NY2ruv3ufEGJ2Znt84Us/A1Lxxvd+wg++9yOcaUmVwFtDbzt0MqpD3RBRVZZ+GCjylDSJiSKFtaM3XIqIJIMbdw7I84KqatAKkkRuyRierusp1wZrGVv9FoZ+fHhY23B2dkbwipdefpXPf/ErvPTyp/ipn/kpfv6v/hSf/MSr/NRP/zxxusOPfvxjfNhsc4Jyy4wWDMMI6EfCweE+Lgx89/vf5Nn5BXsHL3Dz7nPEWTaWGdUFUSyYTXYoipi+d8xnu9y4eZPJZIIQktlssc1SQpqOOLqPkEwBMTJII7mFwY/GLqX9NqMXuHF6k6OTQ6q2xBHAaXCaJw+vKNc9h8dHCK15+uyCEAyLgynzxYKrZxumxbhxCi4wdI6r5QZr/Pj9J8MWHwXGuVEUgcAH//EkSSq2RU6F1tEoQXHjA1wpsVWg2i3PefuzgI4i0jwnyXPWZUU/DKNxKYyA97b1eCsxxo+wfiFR8iMUYk/XOAQxWsN62bNcNlgj0ZFmGLrtpUyh5SjGiCJFMUmwrsGZnq7e2jYUWD8qWoUytG1FP3jiLGNSFDRNBUHhbUJTl1gnSDOFYiyZxToQRxqEGg/03hJEBLJntltgbMnQj0pUa2BoW+q6o5gqhFLE8YTZfM5VuWLnYEIcgzEdSRZRTCMG1zEMAZ1odOYYQoIjJs0VMhQQDLZz4B1RIsYJnOyJYk2UaoQSeK9pmjHLbUNLtVTEugBamnKDNQNDP2KRxkLXSJRpakXftwgPUVTgQ8Abx2R6SBfDxeNrlo86ip1xi2F7R5QkBNFiRTf+rliBVAGhFIMxGAkKTxARngAu5u6re/SThun00xztKL73xhugHEKPl1LvJV0tiVPApzg/4JxksRfTmZ48Hw1auJF8YGyL1gkvvfQqk+mUy8slL730Emfn4/dXHKUg7Ih8zF0AACAASURBVFa9rEbxgVf88q/8MlovWS0rNqseJVKMtRweHbFab0aNbRDcvHmLsixRaiypdl378WBuaANajRdsITO8jcimGp06NmXP5z730xhT8/DhOXfu3ebsck1nIJ12HJ/MOLqzoK0tTZtwfhnzmddfJtCwrFZUxnPvtX0m8z3uvXSHvPDsHbXszPd4+TOH/PCN93FmQrADu3crdue3OLzzHNmO4ifvfUhQmqf3P2B5URIpxa3nUpJs4PJRzu5exPmTiv/8H/8Xf/kPqv/6m3/09YvrMy6uKzbrNX0LaaJZL3tu3T6hrFuUFKTB03Q1vZVoPM4JJotonHSoaISmawmCEV+D3GoYFaZtmexMyPcnDL3g4klJEqd8+gsnnFct+aDZOznm//k/v82//P3/g/WzNV/9xdd59+0N3/rjtxjqFWZYI9eee/ciqo3m6Vv3mU2nOC/BBRrfEk32+c1//x/y7uMzOq5JzQHHt57nrbefEXkzstp6yYsvPc/p8R3e/84H23UoIEcEy0cj/wDYEBBej03kMN7khIqBGKUi0iwb7Ukx2KXDrgU+ROSxR0Xj4dEiaYcOIQLL5TVdZ4h1hO07qvWSnWmMkCnRtGA99Ex2F3RtTxrWvHwoGeQ+dWnGNmsYG90jyuX/Z7EJ4yrO+rFtGscx09kUZy1apyQ6p3eBq6sruq5lcbiP68eJjQk9XlgqerwbRQ82eLT1aJ8yNDXHd45Ji5wbRztMM8HFozWHR3MoYnR+wJ/+v3/B299/A9s1XJ45ys7iI0u2EMQ51LWk2FFYsSGdpshkIM40iBzvLHVTgkuxQ0RdrZlOYpqmwjrDbLbPwe4pl2cNxllwObEUxJFDxxGxlmihAUuStjRtgxtgeVnzt37pN3jlpc/yJ3/0fZ49vWQ2m3L71j3eefOMeuPZbCq6qwadKPJCElxEksc4SqIoQfWS2zdfROsE43qm8zGG8dFDWaLonMMQkUQZxBG9bxCxw9YN63XH4e4UaSpy13GSK4oYVk7gJgGVGhgGUmakC0len/Ponfs821R4NUf4hlkBWTRFxwm1qZjPd8gLQYha2lZhw6g5Cr5HS4dEkGhJpMGZAD4Q6QyhAi4IvE/phn7L7AXTD5TrdkQ1xZ7BDRTFhCxPMaZDBIHUEU4MmNARvOHy/JzHD5c4N5IS9hY77C4O8Epx++5tsrhgtWl4dnbGo4cPMHYgTsZ8qbGO+WKC9wNPzs+pq47pXCIjyzA4usbSVQZnO4rJFHxC3w2oCNrGI2TEZJLQlI6m6pHSEYLmE698mrvPPcd607Apa8IW8N22BkcgKENnKi6un/Dd732Hy+sNxeyQH/3kPX7/X/0B3/7xe3ilee7OMYlQlOsVvXcIpQnBbsuVUJUdzgju3r5LkSVcL89YbkoePjrnevUQ7zdk+oChUTTVEu8MaRpjnaOuy22hX1DXNaZvkcITnIXgSZN4m8kdv5PG4lLAh2GE4wtQQjIMhqZuxovaMLCY71BMFngFQXVM9xVB1VycP2VnNmWxO6PqesqmJRAo0ojjgyld11GWHeWmoR/cmNAXI2JJSDXKE8I4+bfG4Xz42JU+MnsFaRJvS1p+LHjakWf70UHVhS2qSiuklgitSLIUL/zHU1dwdH1PEB4ZWbKZZDJLsSHgvSNNB+JYEcWCLItAOCKd0rWjjc17SLMU/Gj8iqLRgS6FHp9JIeCMIXiJddtuhVLbOIncvqaIvqlpSstnPvs5TB949uiKWEfEKmW22IMop3WOOI/G19j3BDPgACJDlAWmC8eTxy0iJGgZEyUlXRdwLkZqwabqtqTfnrruiaMYqSXWD9vM5Pi+WCtJ032iaIrFjKYi2eBChzECGQduvGTYPZyxvGjpTSDNE4TKxgvt4EfTW5IgnMTaHm8cSRRvjVgCbz14jXUtewcLNs0aMwRs68mSKUL1xJEizyNsZzG+5ad+9nV+57f+Q771p99lvn/C5z+/S3OxRvocLRLs4MZikh8ZdiLySDzSCZwSVEOJd4Ld29BH5zz44D2+/cffo2sDOooQUlNXniQX9J2hmCS4kHFwpBgGx85BQRSnrDcVk4mkaz0hDNy8cZe///d/i6KY8ebbb3J2dk7bViyv15jBEbBE8cihlUIghcJYs7XWVbz95gMiWRDHEcPQslqvIXxEjogoy3JU3Ob5qEF3o52zKAq6vhuHW9LS2Q5kxOmdfT752l3aoeJH33qTvfkB6/WSyTTn8vqKF18+Js0tVVVzdLpD2dQ0/RPe/vE7XJcNN46mLJ88ZnZ7h4fvXSDcAV4PNM4SMs97j84gVpw8l3NyEmhLuHvvFe594iZvvPEud07u8N3/+9s0q55iMkXpwNHJgr2DnItnAqkidDzg+oJ/+p/+k7/8B9Xf+y//2deH2tK3LULmuN6wubyibwxBDVjGaU0aPH3fYIhRfsBYKKYaxJhZ9c4j1dgqd06MNzHvCEKge4FRCdPDKX2A0NVUdUySZDT+MWl0TOzv8PjZj3hxesRVZ1kKzwffeJcQf0jpalaN5LjY4ed/5YvcX/+Ai7davNiACQwqw/uOSBe8/rUv8c0/e0DcbZgvdnj1pZ/hT/7oGyxyjwoTNs01508bEjHl+sEFRB7PSIRxwaHEWBqQWo0YLjE623UU4bwgiQq8dMxu5Nz83Ant0tFXG1ofsENHEAKnIRIJloDvAmkk0SrQdQ0COZY2cKTFmKNZNgPXyxLXeWQ0o0nOWFfjH+Fg1LiKcJbgFQjJfJ7Stg3WexQagkPHYvs6EpJ0iukHmrrEiwHb92yaNTtxSqoEZ2VJXdVYPIs0JyiFERHWCXYPFpTdNeONQ9D3HXqSUTYtm+WGzaXm577yGl/67Of48298yMHkBnHRc/cTt7i6Kln1PZ0a2Ck0cZbgWo8IBu8ku/s5eeG5efI8beV5+vCMEBTCjRNKyQYVNAJHFEmSOCctLJeXJU3ZMwwBwsjnaxtPnETkiwSPpMj2uLwYmOYTFsWE3ZnmE8/d5Rt/9g3ee/dtlOqpq5bLJ1f4Zs18WlPEnqoPzPYVle+oQku5UezOFoTeIJgwtBHeCTbVFZ6OJE3w1hNJCNagncCalhB60lgyTzOKfMp0SMmnMQeLOS8WgVt7DfPbCVcyYdN4LBrfjOiwQYB3MJUp3ghUNmV3keL7HhMsVdehhSRWHvqOthJcmYgq6hmsRcqIWAdUcCQy5mBvB6kcddlzeHDMwf4N6qZEyBihJL2pqco1fVsRgJPTW0gt6U2PdwJrx6mI92bbfA444yiygiQtSLIU6zpimaOZ44mQaaCqluSTE/J4itYlDx59yObqAkFHMZmQ5AmT3YzD/VNcI1hdXiF1g44MZWUYOk8cjaxTb+R24tZhjRsjL6anbTpefvkOO/MZl+cr+s7TD47nX3iBo+MbXFxeb1v2juAj5otjAnILTJfjgzRAXV5RLq8or6/wbmA+S9BJTT6NOD49RoiB9dUZ3kIIKXYQ21jFuJwNDqpVR1d1SDmQJD2Hx5o48lw8XdO3hizXqGgYL5lybLEHDHmeEQLUdYXWYpt/Ex8/AD/KfYot7ikEAejRihc8Wo9w+cENHJweotKEsllSbi6JtCGfSpJJxs7eDnGmaaqOpgMZS5AtJ/tTTg/mXC6XrKueoXMMgxlb/Vvbl9YxY3zLQRgB7x9xmkeNqkRpRRLFY8TLjEpVHWmUltspsCAIQRwnqFgTJxFJllBWJVme4YKj7TuMGQ16eZGTZDlSx6goIYojiumEmAnexcznCwSK66uaJI23ulNNlqdkWUqR5VhjsWarzxUB53qsYfwcnRu/41WOTjx3br3AND/g/PyCkfTuSJOMOF/w+NETlHeoSPPq517l6rKnbnqSVI3vR1Ag7Dg5jAPFLB0xZ2QYY6iWnmAEUmhkJPFesNjVDKZnDE4MY2nNl9hgSOM5aabRsSWOY8q6JcpG0gIGhDSEYIkyjSVCxinpZMbZxTXKpSiZo7RnXVbjunwrK9iZ7yKCwHvFZCLJMkFXRXTVBm9gZzHl+MYek52UW/cyPv36AXmW8eTDK+LEMvSaxXxOrCS5XrB79xW+963vcvnoffaOP8mrL93jR2+9QYgcOhWUdU+ezdCRousNOtZABP0YDcEoQhu4+cKc/Zu3mSan+P4RbdugI0dTObJ0ymK/IU4V1aYnmXqObymkNrR9S9MJ5vMZPhiEH/FRr37yK9hB05meN9/+EdnEEyUBgWY2m+GDJU8muK1xSssEMDx++IzHDy4JPkUpwc1bByyvL0BqlBw3xKOcwpMkyVYWMNIExqGFBW1wNmF3f5fXPvsJ3nvvQzZVjwmG6c6Uz732Og8e3Of0aI++XXP1qOXenU+jRAvOkKU5IY6Q1pHrjsfLJTNtOFSCS+/IH5REqqfqHlE3jssna9YXHdVGkhYTXv3kMb/29/4BzdUZD86u2FtYunbF5fU1Mo8YBkljKjZVT2dyfuFvfI2yfcZyXeOF5z/7T37vL/9B9b/5H/67r2/WJc5JsA65NaRYM1CVHZEQ1OsG7xomeU/oBlAp1nqKPEVKh3cKrfSYKbIRUkh8GCCMWQ4TOVzd4fqYSZFz5+4h+ULz9MNzUh149PY7ePmQvb277L2wx4fvrli/fx8zcXR1AoODTvL8nbs0eeBs9QRzVtE20HlLpiXCSFQG5VDx4Qdv8dlPf5FNX/HjHzyicxVVFbD9uApFDzx+8AA1MldGhIVS27KURGrFMBhEECOUWSuikKBlwO3EdHLE/5xdrPGRxfcS7TTz2YQkkfR1O5bJxGg7CiGMKjwZMXbSA1JrlIrph4HpZPyyXa16hrZkGu3QN4JbLz7PTAfMEFF3Pdb3KOfJc0lSBIZmnBpFSYINgbY3xPEoXGgtxIuCeFIw3T1gvpOjIolpE/rNQKRBRxNCUlB1bgTfu8Dmao1tPEVeYGxLXOTgA72xdNUKbSK++JW/zv/2v/8xwQdu3bjJTx69yex4xvlmjdc9ojO4OkJEgc0wMMsmFLsavEL6gboSBOOIpaI6N9y+eYPl6hLigWw2rk8lCaZztLVHxwmr8xoVGqSa0jYJwhuiVNI7w3q1wbSOLElGDI+TFPGEZuMZhpLgJZ/9zGcwpudqecVkMSGfTHn2xGB0IOie2d6EdVlx++6co+ltzp/0WOVpuyvKaj2uXTFYo+i6cVOgYkk2n9AFhxUKPSQYDb1tOdACrSLOHl9zUZc8qjXPNhnvPfO0rac1LfQSGTTOWvww0NuW527cYjo7InQrrCk53tul6QakjpkmEbtxD2nAT3Nir4hCzOAHprMF+2lC4i1l1dGYjt5BEu8RYkXdrShmE6S29AwkhWJ6sGBwgpu37xIJyXqzxuLovcGb0aCkBMzSnERHFMU+k+mEsl7R1QOr64rF3g4vvfQiXdWzqgxPLpbIheL0hX1ODjISNRY6qrLB9x2Bjg8fPiPWMc+9cBPpLeWyIwqK0wImUUQUxURKoCQo6RFSYgLE0XZ6R8znvvR5fu3X/i1uHN9m6Evu33+Pd97aGrGExtiAl4HpbIfT02Ok6ug7y+7OKXGcsFlvODo65jf+vd/kt//Rb/P3fv3v8tnPf5lB5yyNxQwNbrB0ZsC6MWqAlxAUSkkG27BaL6mbFu9j4iwjzzOOi1vs5BPWzZraBIppik4HNpXBCz1mnHtDVdYkWcaLL9xjb3/B5bIExsKP6QwmjIYh7wVKiVGwgEMKj1ZyG0OIODy5gRWW1dUZi2KClBkySum6gc26xPYFV5fXrMqSyVQR6UCWLDg5OOLsUc31dU3XBsww/t+CsUQzDhwM3ostVsrCtkWPcCg5xhOiOMIHgbE9bssa9kFibMCFQJrnxEWORxInKUjNYM0YGXAQSYUWiixJiSJJ3/Z4o7CDGv8u/EAAjG8IIrApy3HabAAHzvbYvqNvWpwb2+sQcGaU1DgntqYvRz9YnAUbxu2RlhEn+yc8eHIfhCKOU0w38PD+QwKevCiwnaHZQFN17O5OqNc1aaRw7hqtDEURkeSKqkwossD8YKCrJdJl6FTRrB1Hp5DPBpbXklgL8nxshRs7sHOcMz/MKS9hXVUEq6iegGPCK5+9xfLiATLRNA0gFV0DkcjRceDk1ox12ZGmCTY4NmuDVgk21AihiVTEZlUzeMP+Qczx6ZzLpytso0iTCWjL4mBCEmIePLrki7/0WbKjgsfvtWzOV+AUwXqCliyOHMc3Mh688wZnT99GJYLNZYsxPU1T0vXdGAFAo1WEkiCCJ48nWKlxtsZ7QRRniEyg5wsOT+9y/92niDhw8bBjllvKWiIPHbGC/bszTl6YsL8X8e0/qYmilL7xSDfl+uqarlRotYd1nk254QdvfJt33v4h3g5EMma9qmgHw968wA49BE1gZP86FI1peelTL4xMWCzO9lxf1AQcOsoI1iGCRBBASYK3KFKk9kx2Uk5v59RXjsHB3k6CbQN7h8dsynOwCTuLhAf3N2yuLbvPRXzy1XsU00PufeJVdvJ9br14j5uvvgpe0JQdddPh44jOrlm3A5Oj2zDUlFmHL3LwEfODhGJXMc8i5nspKg+cHB/w7Pw+D5++jbVLtJIMfcHe4T4HJ9A0DXuLKV/64ovUy5pv/MF3cG6gyCak+Yzf/Z3f/ct/UP1n//V/9fWICC2jcd3TDUQqRitJKhR919B3hjSWTHIwRhKIcdaSaPDCjGUkD03bjY05NfrinQ1EsWLEAwqssDRtQx5PmO0sKKYJphd89lMFn/jiPZ578Wv8+HtnuKFmdxFTrlaoOCFKNEFYyotrvL7k1U9+nssfl5hmbNAa344bJC94+4OHvP7FzyFFwup6xU/eeAPbGiIhQLTszBa4SqBcQEuL9eP91vsR+i2lHLV+zqGVAgaccERC0Q0tO6cnREnOJBVMd2PiSBNHyejYFqPeTukEkAgPgxlQavSN62hEuCitscYymU5Ik4i+dSyvaiaFRqDIogV1ecHqeolpBL2SNOuK2wfHpLOccmjY21mAc+MUNRpbzkWeEyWKJCnYO9rFOk8iHBERfRsoJgWlueTuC8dUdUe57CirGm8dWkVoNeJeHA4vPdOdHBEJTo73EXFgnmhe++kFjVjRn52jg+H49iv88Ec/4Ad//k26sw1m09CtavpmIM01z988oFlG7O0ckEUZbWXGfGQ0sKlavAkoGZOlkr6RaKXIZ5a6FkSZxPYpfWvQchj95HGEdxHObteQWwuNCClNVbN/tGD/8JCL6yV1VxJlCus9ZxdrOn/O7MDw9FFLUzkWO5pm0zI0EZtnsJee8tUvfo1nTzY8ebqhaVrm87FMp5TmYH+BGQacGbE9EBhCS55m5JOeLB9h9X3fMs8l+VyxXm2w1tJvHHVjiIoJg3QkTrI3nWFTg5CWWZ7SRppeZ7yYCurVBWebUb85K2Je2NOUIbARjpVzlCYem+DC40zPXn7EbpphmiWznRNML3B9h4oE3q+IVYr3U26ePo8xgjiZIHxMU9X0TU1ZbRjalliAcm476dMYHxikJY4j7t28QVcPXFXX+NAjcDx78gwVYk5u3SZNCoSXrJ4+40//4HtsakfvIgaZIgTszDq0GJjoKUpq7F5CsQNR32PNQJYmeJHj5wXxTkGWZ5gWkjhhbzehWVn2D2/xtb/5S7z62l9hunubo4MbrC6XPHzwIUqC1g5jaoLv8daxvFpRbtZEkQc6mvYSRE2cxCyvG77w+S/xi3/77+LiOY+eVFyenUHT019azs+uaPqGSE8RQY94rCCx3iCVQWtFkkUksUJ4zXw2Y8Dy5PKavuuwrUF6SRxF7B/OSZOUq7MrbN+ixKj4zHducPPuJ7FVT18Hdg5vETT4YLGdG1FojKB8+REOCghbbJc1hjxLmU8zbtw8RXhNuVzSbRr8YFgvl3TdQJ5kZJFGeoUWCUWmeeu9+yzLCtPVON+P/OvtKt4aO2ZSfRj/bUkuo5p0tH2lWYKORhSQtRatJUIEjO3xwaLigFAeITXOaLpmIE4S8jzDOU8aF2MeUo4osKZrSbMUay1tUyNVIElGfJLc5lWV0NtpWEAIRxTHZFlKkiTbdrfEOzfazVzAWMPgLMJp0jzmxvM3+Hd++6+TpA3vvPmAJ+dPiGYaoRWDETjrOTpa4IWh73vSOGddXxKEAbEkmxqEaimKjHJj6RpPbwxSWQ5PC2aLhPNHkp0Dyc6Bpx968iJG6Yy948BqOSBDThRDb3qiRFNuOpRPuL4OBG/I04y9k11kpOnrlizN8WE1MlnlqL5smpazR4ZipkgWBlxBuarJ0hjpJ/x/1L3Zr2Z7fp/1/KY1vOsd91y1azx1Tp+hzjk9mw7GjrENJokjIZHkHhBXIGMGOwoKUl8BQVGQUCKuiAS5BS6RQCGRLJvYbrvb3e12T+ecqjo17vEd1/QbuVjbzb9g39Sumz3offde67e+38/neRCCpneIPDKbHXC4rylLRYqG7XKLjJLptCQzPc8+vcD3gVE+5Yff+gmvvl9TFoI+De/1+1/qyUsPyfPy85Zmm5hO9inHAZfWuF6z2LtNjIl8JNg1NaR8iIpknoyI6z1ZldFZSyE1q4trfvz9z/B1R399zd5pzt33ZqiQ2O8zZCq5ON9R9zkvf7iiXWucdSijWK8airxCZwmp7bApSJ4qN3g7FMDqpiM6SF5Qtx3T2Yy6bQZ0mMywVnB0fMRb75ziOsmbNzWkhEGSVKLzHUp6bA+ZHhBmPgoEGWhFGywP3j8lCcFutULKjPme4PLNGTZKju6esFpd0V2t2TUtWhdsri/5yY9/jE4HvHz+KV5csGkKXp3/MXrcIzIosjH7M8jljG1nsCOLXUM0iYNFgZKRrrFUoymL+QSt1jSdpescsz1FTHB5veXsZcfR3YwuvOHttx5yfSZ49uSS81crurbj6JZmW19zdRH4+7/19/7iH1T/wT/+J9/MZgMPLjeaLvSkEIgeeiRFCjgE43JEdDU2miEsHSDEjrwcAsX+BmYtZEKQ0DofFIBIiHpwKAuHlJqz5xes1mvmhyVHd+Z85aOv8fRpw//1z/9vTIQii9gucrVaoSwY2eMazd5C8+jD23z3Dy9x1zucsvRbi8gZcopBkVc5W1tzfXXNarlllM2YFDOqcUlejNitekyIGOHp/MCW/HPLstJyaJO7wS2ulUYLgwseLQ1KabooWK9bikywdzijWXd0bRgu4r3DO4vKM6IPKCJIdVMo8EP+zPubjFe6sUElYGiX217Q7iy73RW5yWi3Pe998DHtxQW6tXzpS18mSsGzZ2eQFCIKlE4YI1GyuNGoDm3WTb3Fp4gykslc4WNHVmXMjsa8eXNJqjWy80ilSAHCDVQ9isRif8HhrQM29ZrY9kwWGikCVTXi3kcj5ocP+Wu//neQ2ZRt3fPi+XO6esN4PGU03SOvCkSKZLnABo/PIq/fPGO7WjE7yKj73ZBJswotInV3xRfe+QIiLWjblsl0D+cydjtPUTRIL0lRsDgYYzT0dktWgJaQvMb3YjAvpQ6PJcqEzD0iC2RFSVKWdb1kNCmJCaTOObo1tEBtO6xkN6sNb93b40tf+ojXV2/Y2nPq7YZiXNFYiw+BEAUugPMSZUqkEfiYkNEhkATBYBcLJZ6C7SagG8dJZpmmwMiMEWVGqoZA/rZ39F0g6w29ToiUWK+39P0aPBwfH1LKjumkZ8OI51eWlhzrDNFtkEJiGGO0RgtJHhq87Mj372L0nNV2Q64S41wwX9xHmQUXF29YX71ExpZZPiLalna9ofOOclZSzQpGowIfgZgoisS9t95hcXBC7SznF6/xa0cmNOghEhDwVPt7N+rPwO3TjFt7OWcvrjj//Bmyu0Q6R05FhuFg/5Bd7diuOr74rz/i9KN9soUh3ytZrnZ0zlMejXF48lIzXpSomHH/9A5f/bkvk4sp/+pf/g5/+Hv/gouzM77w/rs473n2+Yubg0qkKA3GaIp8ONTstpbbtx6ymO/Rdju8jzx+/CF//df+bWTSfOv3/4DtxWsmVcX9995jfDzj1csnXJ1dsd3WwyYmDXiogS8aB+FAAKEEBKi3G67Xl3TWkmuwVnC9iTTbRKULVBRYJ1ic7JOVE6J1JL+l7z33Hr7H4Z07NKnHjCWz/TmuDXRtTwz+hokrbg6tN/rSOGQ7hVLsHR+xqTua9pzpJGO3sdhu2HYl71mutjR9R5KCUWmQqePsxRVNPWhPEf+/XlJKcSNv0QzzyeFfKYcboSCRZZrxuAIEMXADN5eEmNBGU1Q5Qg7/T0mRvEFrQ+cakgiMRhXORjabFc57Ykrk2ZA77fsOCDdDgAyjNLYdbtCCYVJXFjDfK28Urwpre7wfVrIxxBv+7RCpKKSk95F8lJGZkqr4kHtfeAwm47OfPqEQOa632LZDxMB219H2AZ8swQWU0EihKSpD19dYG2h2nr6L5GXOZK/g1umYv/JXv8zlm5aLq3N0NWjE1xvJZGZYLlt2TY+SGud6igKSTOy2fsiF2uE1u/fOzZZSGcrRiPPn1xSFw3YSISyZGpFlHqXAWonJFKe3jiBtUAqWV+2N/KQmlyU6GWQUGJFxMD9CihHX11uED2xXO4SaIETLeHLEqxdndNdbFIL1tiEGxeF+hXcF9WrG4/e+wY9+8BTnBd5KQuzxcQvJ4OKOlHom4xlal2y3gwBju+4Yl2O0yWldM7Q8fSJXBnzEBEtGxuH8AO3g4cEddBdwncKeB5ptT/KglaMoDdNpTvBD7nJUaZLcDQVXIVA+YW1PEkP0sMhLJnlJH4bVfQhuyJzmo0E4lEXK2Q67s4wPJEZ6slQSgiPLDClCriY0fcNoNqIoNUqEG3lGTiZhVoxpm4aud+Sjku1uS70JXF82dO2aQlfE6LC1ZDGf8OD+jO9+53vUG0s1kfhiRSkjMRaMZg7hKiqzwLmEUxm+7Kn6nrNLOD4cDwSOMOL4ZErbbyhlTmcTzcAz/wAAIABJREFU7U4wneVokTEpTzAG9o5adsuc1dk5P/6z1xiT88EXTzi+P+Hpp5e0O0NVJf7ub/4lMFP9d//oH3zTSIMcj7AKXD1YaUw1xvaBXEvmt44RKaGFxXqIPg6twFJQjAwxBWIcAspZNoDxtSxuDqqa6N1wEVQFRuZkShBF4NX5BX0v+elPL1lerfj441OePjnn8yef0dRb6uiYzkbkYoKuAqfv5nQuR+wi3fklwSTwBUIJlFCkKCATbLsaozWb7ZqqLMmKKUIWtLYh9B3R2gHZIYbPGy7CEq0kzrnh4lbkA0cNhSky2l3LqCroCdTrlmAtbWO5PFshZEZVVDR1Q5nnKCXwwSKIFGWJVDccwjB4s7XWtF1HWZRUlR5UgWG4IWkpUUKxXXdY26ONZpE6MuEgG3F2fkaed1jf4m7c1DrLkUbiHXgX6YMlJMHx/X2iqsmMwTYSZQome5K9vQljtYevh/ytyYZWuZSDzaUcVWy2G1JKTI8rLAnrHV3oWT4PfPr91/zL3/kOwWUcHe3x5NNP2W7OWexNB4xTcpA8zlqSzBBhxzcevYVSnk4uMXaEvTSMtKasCqTueXOxom4DUUX6PkMKj0bQu0CpKowu8FHS1R1lsSArNN3WMiQGLRGLyTR9H/ChJcaG5XXLcnNJ3wVC2rJab+hdZHGk6eyKi9cRnU+o+5Z3PrzDwcke1fSA15fPefnmE+7cG9O2LUoIClOwud5hhESJbtDtpYwsV0RrsLWksxojDClEVFlQFQVCKKZac7JfMr9Vsawdq61HFdA7T5IdVg4ZPT3JyKaSuhcU5YLD6hC1W3L+pufycofMEjEIkpQU2QQVFCMSXgSiklTZlDdnO3oU01lBY5fY0qMWh3S25PrsCc3uJVJ0g22pUpjFHlZ4bGzo+qEJG0TEh+GmPd2fowvDm2fnvHn2hg8e3uPksKSJjpjkjbseDuZzThYFb71bcvJ4QnSa5KbsLyZkpoM8cHhywmLicP0ZdbdDBcnJnUOY5Ny9d8zt0wO2yx27bUsvFPvzOd11w+6qJleCtg/85Mnn/OCT71LqSKYKRtMFx7dvEYlcLa/xcdgyRBK9hXcefcBHH31EXW9ZXm/p2p7Ndscv/Pwv81/+Z9/k53/xl9i7M0ePFFebK1Kmubh4xe//7u/R146vf+Xr/Nq/82tkmeLlyxfDOj4JYNiS+JjwYfDKz+cLDo8OCdZRaH0DKo+UoxylNUEIirFhMj7EdpLV9hK8wzcBHzO64DAjRTWr2LY1IiXa7VAqHNbvw4st5LCOHAxHFqRkvjdhubri9fnlDTtyONAao4kkVC7JRyXB5xSm5KAqwe3YbtbEmJNlGXmhcdYjpcT5gfKizU1pc7hMkqJASNBaUZTZAPb3w6S17z3h5nsqLUkiESMQB5qE0glpEgg/SE2anqIcsHTjyYjDw0OUHPSdi/2SlAKb1Y5u5+i7nq6xkCLTqWZvf7Av7XYNMQy5ZnOjBfY+QAJlDOPZjHxeIrMcGzzzg4rl5if86bd+xCd/9jlSNYgY+fBrc05Ojrk8H5rd04Mxo5GkbTpMBkpC17bUdcBZRfAgtURnCaE9MQo+/emS66steVFwcJJDmHFy+y7L1RVm3CFiQbsd1NdJdqSomM0meGfY7jaMF4oUNc2up+56kDtwlsIsECJnMT9EaU/EUpSCzjYolbFf3eZgccT+3gRkB/Tcu/WQx+884sMvfMTJ8ZzHH30Bk3KeP73g7HKD8JB8ZHRc8Tf//a8wO8x5/4Mpq/UGRMa9t+fcum9oGs/zpzvaXeL1qyVCWmaLCbt6Q9dH8kLRW4+3jhBgt6qxXTfklMVNLI2MUSmJQLiZeiclMTkIq+hcjh9rDk8EXMAq1ChdsFp3pFIPiuViglE5fT/0SdbLHaE3eDeg0QqZQRiKUlmu0EbivaNrWogR78Ig6xGaECNdtOgK3v5owcHeu+RTSd+3vDkb8vQP33uXWMD1xRm3bs+G7WgDIgm6brjvvP/4EbPFhNW6p14n2s4T8RgtGSmJkppt36CFJvqGi4sVtvEomVGUJVpFZncTl6sVUo4pshLnPMZkJB+4cwj1045xlXN47zYBELlHjyzT8R7nl1tkscBuarZXBt+VFGaP4CRZ4VheJJpdy5uXO3Izoa09Tz89x3YRoXvKkcJHzd/7zb8EZqr/5h/+w28mFRFNy/r5OX0fmExnlGOFmkPfS/S4ZLdeInxNpiTO9UipUZkEBvOJlIYQ042ZSqLk4D923iMBFyJKjW5Ye4GQPD6VqDCUIdbLLc7n9Elz/+EMpS22y+hdjdKex199wLK/ZrXbsl+VLF/XSBPZbXvyLEeg8MlxeP+ETBdcX6yhlJwezkiZ5dXZK8amotttkFrgfLrxUw83gCGuMJinjDE3GtiIMZFEpGs9e8fzm4NUT1WWCCHZrDdoBK7vcSEOZSrrh7ZlVhCCvUG4RFxvMTf6NSmGlbXKJNPxgjzPWa2v6RrLaDTl3sN9ml3PZrVhawN5MeFXf/mX+d6Pvk9SFiUHK5LrhkmIjx4wKJ2TJAQlyMcRGQoyci5enSFVYrnesWssl8sLVBbRIsNZN1h4vAMBTV3jXWBWzWiCwjeO2/cnnD2/5q985WN8F3n+ySuODwe7zieffoY0jrrbYFtLvV6zt7fP0dEpbtegpON0b46MGWerHSorcXjwYsiuZgpdSjb1CpUJyjKnKCDLIn0vCa7Hhoa2rwem3zgwnmouXvSUMzAlGFNQlgqjPPUyEluDBjJtIeibzHFJSC0m97jO0Ow0Xbfh5F7g/a+PKWd3qFuB7S9p2y3rreNqvUFIg9Lw+PH7bHceHyPF2BBSQksYVTlHBxOkTpQlqCRIQjKtDFe7RBsNne+4IKeOICroe4fOFDqfkGk9tEaVxm52+K5nHhvGqYeZQFcjigLamGjJSEJBciRlSEnjvQQlWHdbMtcyFTXb9ibDrSpiPiLWG+g25IDOIkRHXih2bc+6boeHPAwogymy4fc2G4w661VNt2k5XJR8/MUjbp9OuLjoWW23Q0NcGd774j3e/7k9sj1J2/S8/M73eP3DP6PZCULIWW+2mPGY6f33YXyHw9P73H5/D1/0NL3i+iqw6y2z4xLGkulsRhky2jfXrK52TLWia3a8vLqmTJpRNePF2QXf+aM/5k+//2325wtGozHr5TVZMXjTfbBEHMvVOSqzN6pESVUVlMUBP/j+M37vX3yHq6c1zeWWi+tzXrx+ze5shYyJ8ckMXSqe/fQFn37yKd7Xw8ErCYT0xOgQKqCkQpFxcHDMfO+QxnpiklQigg2smw6fejrXYG3HbrMmxobxRBGEHDYBuzfMRhm3bp8ijRpKTERiGkQMJjOD+Y8B/yTV0GaHRLCO3aplVBqqKqdtPV07rG0RCi+GrYFB0jUd0dXMb3BlSUg22x1lkbF/WLBa7gg+IRCkKH5mpkopIuSfT3QjoyqnKHN88EgZqdtmuHbmkmoyIi8NMUW8B9+Ddx3WdozHexwcnrBaLambDcE5Qp/oOwtojMnp+sE4l+cjYlQE36ONHEQJ0SJVomsdm3WHlhlp0Gr9zIaV4oAS8yENeKQbkcFm02B7z3S8x9uP7rBcv6GoDI9//g6//rf+Pfb2H/Htb3+fvh8MXkdHC4gC62uEjkgNZZWhs0BeBspRQmeGxWHGZtNSb3ZEhlJaoSpc9Jy/viCmnjtvSV6/GIqB2kAMA5szpJbRvGAyPSQbR7brHeuLSNdEkg/g4M3rHWVxwGisafsdde0AT1FU3Lv/Fq3bkZJkOqm4dTRjf37AYvKA07v3MEWOqSp6W3O5/SGjqWR51pB8x5e/fpskOtarkovPO7qQcevjQw7eURwe5rz60ZaLlztgOPgEnzg8PL6ZVrdYG+kaSV4klBIE5yiyEW1tUUKTkqWqcpb1lhBqlFQDUgqFixKd55TlFBETTiQOiwMm6T4XteXdh+9xtbpm1yxJyZJnFbu2Rgg/WPZ0pMjN8IAiDCIJsiJju938OXaIzjmq+YzjoyPa1lGNK4qipO9apJIUowKTJ378Z9f89PuviCGhcoWrLX0b2aYtD472eOerX2bvaM6TJ0+JBGIyzCaH5IUmyYZaL4mscLuIkYbgPUoZrO/JCoMxkhTA6Al91xHi8CDX7hLlbM50/4DoFbPpmKzMuN6u2K0DaQdxJbn3wOCDIdQV1Sxh15b7o0fY7hWX5557d9+maxumsxn5ZMfr1y+YL4548+aKvnNII2jrnmA3jHLN2fMdKeUc3F7Q2Ia/9xt/CfBU/+if/c/fVL0k9jCaFpzem/PhN95ndDBndVaT8owkA4v5jMODKfXymiI3+CjQmSRFh5QKIQaWKjCUkqQensS1xEhDHwR4z3ha0iaPd8NEBJ2QaWAoXqwa6vWW3Ix5/PVvcP/ubb7w8C3KvURdB0JzwLgyvHhxjTFT2t0GSGR6iBZEFbEi0jcDa1AVGY9O3+Fv/Z2/wXa14sd/8hmTYkSMg83DAOnPywnh5onrJkvqvUVKgVQeHwSdk1SzOSEJSJrg+xv0T05VFHRtT3fjhU/eDsWHMiPZYdU/Ho2HdaGPQykEbiwaw8fFYoZSCts5qrEhxp66achHBp2X9D5weHLEqxefI2zAoBBJkVxCZ4noNQmJDQ5ExnRRIHRit+u4vqoZj8ZMJxP6PrLd7lgspswXc67PVlhnMcagM01eGLxzGG1odpawteQ6oW1kMjvizkcZo8mUgGf/6DaT8oDvffdPad1mwJFFjVEZKRlsk2jba7Jqj+dv1nTWo3WODYHxfMJmWxONIyVN31nGVYUg0LYbQgpkxZBtjFbjk0ebhO0zvvTVB3Rt4OJ1z2hcIXXEGIlE0NWO+6d3OVzMmY3meJfo2gZBpG89AkO7M8iUQwyUTNmbjdl1KyweaWo2yzVvXmzYtRGZIiJAu4JJuUBLj+sso3zOtCpJ1Ez2BRLQcpjAyjgiBoGUjmmhsV7j3B6NFqh9iTYlQiRCDDSbwUijkkOGMCgNQ2Jvvs/U5Hz6okWojHpasYzgZE6lDSZF+iAwZY5EIFOiDZ7xSDPPBFe2Z2vAuoTuEnMckWbAVqHZGx/zV7/yiFszxXq5w1mFzBRCJ7QZI9MELzRFlfH1x494+70Fswclx8c53XrDp88vsH1gVBoUAZOVTA/GiKR48ydLnv7xp1w2Gy5sz+ura06OTvBdYrUL6MmUfDqlj5ar7YbrdsvWXXJxveXNZU9UiXFVcb3saa1AlYYkJaPplL3JHu/e/QKnd/bIi8DBXs5kZLm6fINtA8FH6t2O6AOZMmglqdst11cbrHUcHx+gZIHtLC9ffcYPf/QdxmNPiq+5OntCu73k5atPeHn+OZt6ycWrV/zgu99js1rexHOGkU6Ig1t8EC8PjfiLi3NePn1Jvd6y2dbk2YgHb93nwaNHLBZT6mZFsxuA+bdv3WKU7XF1cU1eGmaLBYv9I2DE5es1yee8fe99Htx/yPXyit12S5bpG4D+ANEf8u6DZaevPd45Dk4mTOZ7oDKatqZrPK7r8Z0jhoAuPJO5YLE3pqkDy02DMT2jkaaaKDabBu+BJIhxwA3+eXEqxgFMrrVmNMqRCmIYUETxZoK52N/HFDlCafKyoiwmpJDoupqqmvLowceMJwuul2ekYFlMxz9rULdtQ9vuCFhMNkysnXNEx5BTV4lqlNN1lr6zpCBQMgMCKSVSBB+GB0mpNKPxmK7pKWNB17aYLKeQI149XyGyBXffT9iwYXN1xMH8Hn/wuz/ixeefU00dCEdvO4pcIpTEOolzCueHaWZeDp0G2wuKsWAyNwivePTuPUiaq7MNLga2y54UE+cvhqHIqBoBbiBA+JIsT7StQhc9SI/CMJ4YTB5ZnxlSbxC5Yu+ooAstRVGyWl/RNpqyzNjttkwPC6LYcLl6w/W2Zv/kBK9bnr54xWpzxrNPntMuV+TjCeP5glv7U6a3M979xgds6yXjItFc7RDCYcY5UWi+/Tuf8frTmpgpYoxM5yOqaUZRFAS2zPcKJnPYbDpsl7DWc3xyRNd4rq9blCkRWpGEp5oqMjkiKwY7XpYAH3FRITLPbDEiE4JyU9H4BmrLnZMTzlcXXG6WFGVJ3bSDVY+hLCmEpiglzkaUCCgt6NpmgPHHiFQZdZ34j3/jN5nN53zrW9+mnIxodhuMMiQfGBdTLl9uWZ2tkBZmeY4eF0wqyfZqSWc9Yz/mz374nLNnz8CDySImL7AxcHBnn1QGNs2ao3uK01uPGZspL5+/QoiCqB197emtYDyv0NIwGlVobXDuGi0V9965y9235ly+7tnszhG6o6gCKndcXGSUizHjwwyXSzonCcoxGlv2RxWHB3f57MUnoAvuPio4uzrDx0TTr7m6bjm6dcD1+nPiRmG7yOHtOfsnmunBCKE7phNFbAv+i//kLwGe6r//H/7xN8v9jPd/7hEPPnrI9M5tuk7wyZ/8BGEDB6e38H3NdLZPZhT11cXApssLNB6hAsHL4YslMWRSByY9WuVAxLlEBJL3zA738WWJ6wK5EpSzPVpXMzIF09mUTCk2a8vWS0Jo2KUWnS0YmTn9VcHrp2dMpzmZksTVcNPwyd4E+SUyG0L7wYHJDK9fnvPpj16wuaxZX19itII4ZK+M9kOmSg/q1yzXN2stidZyYGUmTddGVD4lkAYvdTaUlrJMYfthraYyhWt7tJQU+eAHttaSKYOSEtf/OfZFY63F+XADtFakOEwxRVQUpcK2lstzy3hscFi0qJF55M3lmth2TKuM4AOxT+QZaCmw3pBlI0JwIGFvf8FqtWG+N2e92hEYLuJ106BICC84e3lJDIPgIMuHlv6u2RCJxAhZXuBdx+G9ffp1y8c//5hPngT+4Hf+hNO3DvjiRx+zurZ8/tOnNOtrDBLjJUZpXB+wmx19UrCx9DtH6yTJGaYyo7mo2dYK7w0x9Ph20ERGH8hzAzLgwqCQRCnyPJK8Jq8UhwenvHm6wdoN210PSVKWI7JMUZkJx3u3efvtt3j48B3efvQlXrx4jbM9RTFMDUM3o2t2aJkzn40ZTXLu3LvDi+cv6dvBHrK8HuIqtusQIqKzjOVqCcLhrGS77ammg23o4syxq3dsmxZvE8FbkvCU+Yy7t4+QMUNkEkJB1InkNqzO6+GBQ2vcrkHbhBYKjEDFhFELbh2/g7YrpF7TSsvotsIIgdso6m1iOsoheaIYfl996uhFokmCnXTo/ZLZZEK0NSHuUGWBTbBxksYp3n3/Q0azW2xa2DX9ENuwPaHf4eyWJBIpSTYp4hF8dHrMOD8mjd8mpDGXZyu6rh4ydtKgxznT+YTQnNFsz1juYHvd8uHjR/z63/7rBGno+0Q1nhAI1O0V3nX4PhGahNsmXBsQreHqvGPdJ6ySBKMwi5LRUcm/8dVfZJzv8e3vf5sYS/YWd6mbmvWqATQqsyjTIVXEB0vbWWw3TCKVlGzWO9arCy7Oz7l/95ivf+0tluszni/f0As3rLizRLanUTLD1z0H84xbx8fEmOj6BqWHSXZKApIhIYgqoBSM85yHd0/5pV/+FX71b/xtvvj1X+T27YfcOn3Ig0fvM5nNuXt6n7PXS549e85iUlKoHKenTI9OGI/HTMcz9vb3kAju3X/IeDrnxfPnODs8PEfSDX5pEKskAVF0dL1lufQYUxHo2dkdZWEY55rJdIRSGRgFaCbFmN1mTVFm3Lt3mxAtm82Wtva4fnjfE8NUVghIxGFblkAqRTXOBnaqjQOf1A3Z73JcERmmmd4NsoS2bgb3egxcL1fUzQrralJKlEVJCIIQE6YoGI1H5KZglE/oW4v3AZE0UimK0hDjEDMjJhJDbjjGgdUagSgYCBnzKdV4xHq3pQsBeYMHs7HD9h2r89e8eram3ibsZssP//T7fP7Jp4wyRVGUWC8xBoRqsDdiEYEZ4l+doyjGKFlwddEipMLbwOVryLM9fCuGdb8a7jW7VSS4xGw+IoRE27jh4dR4RJJsVhbrJCkotJKMqgwhLU3dY8zw3iahOLl9wKjKOHt9TVUF2qZHKeiajtXS0QfHvXdvsTg9QpQ9s0PF0R3D5L5FzUuCmPLqyZJ21aCyjJ/84DWTeIoKGUf7J5zeOSIazf5Jor8KXL7YoLRkNM/IR8NN/c7pffrO8vzZGdVYUZY5ImmMzonCU84jD947Ip9AKjpOHlToTLNeNUzmU4SMaDEwd1MSuH7LpKiYHZVop9irR3x18TXa4Hm6eg5lgYwepTUoi9AGITJMZmjantn+lKg8zvXon2nPJVIbYhTcvXOfP/zWH3J5tRwQlM4To2L/YM7+yZiLyw1GlXjd0+x2vPXR1/nyL3xM6Gsury/xUfDxz7+Ntzt2ywFLVxYl7aZBuAzXZrTdjOUmcf/t99hbzLg+e411WwSGg4M97j8u8MGxuWrIMrheNVR6QlMLzHiHmoypqsVAYkg7ttee6CTGlCTl8Mlhph6p1ngrkKblevmKg4O3Ob6dWG8Un32ypLMX9L1lu5IYZVhdW1JwzI1mtxFEBOSe3kUe3L/Ldrll82bB3/2t3/iLf1D93/6ff/rNx1/+kKvG8vmLC7YvVvzkj37A8mqNUCVNtwZrud62jCclmQ20fU2Uijz0oCXO3rTmhUAkMxTwY0BJgxBqaMzhED4i8pLq9i1Cb5F9z3QxIRiNCDnFKCPoAiU9fedJPqJHB7j6jPXTwOWr14wnHTrraOoWHzzaFYgMYoqIqJFKMpoMk7hcahgJLp5fsb1aUVYZre8Bj5KAGFb8eZExGpWMx2Os7YbPLTKs7VEU1G1PUZW0fofJJE3T4V3LdDJiMi0Y743oQ4fwiUwYpBqYpiloUgw/y6YKBH0/UAC0HibOUgiMGTAYIEhBEnw2RAdiyZcff4CejbEuQwfNcrvm8Zd/gYuLjiR2lMIOCBaV0XSJhEdIx3ZrsX0ktZEUEsoYet/fgI8HRMzxrVv0O0si4mOP0LB3NEUXGqXNsOKRFldDHxw/+elrXv/0c5StycyMzBxihOKnP/4hqpD4XEFh0JUh05qJGJSBMnhccri6oV8HlrbDJYEKAk1kNrND9CCBT4LeWkTSDEiDSBAOiIxHBTL3PHvyOf3WE4K5KYL0pOAZVxWud6yuLU+fnPPk2Su6vuXi4g2CEi0n2N6Tomc8VlTmmF3YcfJoSrNNnL94TbSS58+XlGVG7HtkEoiYIaOiyAr6GoITKDEcqFU2yBtkLpBGUOYF+ahA5IFqNOXqKnAwPiFiub68ILSJpg/IHEAhjSKJRCgNdR9QcsgKB+dZ2RV9XOIchIMpeTEl8yU6CUIEmQ25LNs5WtuRVx6ZCbpMsX86Jy3BX0UQml0M7KygRpKUAqX4/LzhsydndPWW1teQS2RukFrgUyD1CYWkF5Kt6xjlgjw74kdPVkwXlkz2rK5rfEiIEDk93WM01vhMIRYTJsd77D2c46YVb7/3ZY4PbrPpW1y0jLTBRsE2JdpdT/QekRRd02FtSyE1IkRs1xP6CCpSFBMeH98h91tePfsJm1dPePn6FVfNltb2bGtHY4eISKJAKIN1Dh8sxkDwgSLTjMqM6WjE17/yFb7+4UccjjSjkSKVsN6uqdeJsZgzywRa1ozyMW3t2W5WCClvWt4JcSPbEEQUCmIiqICXcH3dMV/c4fbbjwgqcHF2zsX5io++8nX2Tm/z8N23+fjDt3n57HOWyzUffvCYL37pG6zrmq5z3L5zn9N79zk+fcDh3jHb5ZIXz58yGhWDjCQGnA/IBEqkgbEcDSL2bK4uwcPB0SEiB1WIYQ1ee/LMoIRBBdhtN2x3DWevLskyw2rZD38faThgIcNQjhXiZu0fSUjyPKccZYToflakss5h8hxlBJ1r6PpmaERva7qmoygyskywfzSh7q6o6x3JD1isJKGaTJgtJownJTB0B8ZlOaz9tUKZMNxH7JB7jX6QsoTkCTdRiLKqOLl1G5Nn+OhZ77ZIKckyjRkJfIBcaTIjEMbjPDhrKEczHr53yGpzRoqDodCHwHblEUlTjM0gODABoTqMETR1h9KB8bQgIjAiZ7JX8vzJKzbrHeVYEDpP2zmqsWY0tdS1w+g4UGFUoMg1Ug6IRGUy6p2jXUtClAg1xMWCyxBE2jqxWXcsly2Tiedgv6KtLSH0WOtot9BuAkWhabsVUi2w1EwPMr7/rRe4ETz76RO6yyuoGoppNmwcymETeLXe8vzJJZcve3SouHp1wXbVoMsJi/0FX/m5WzR1T7OLvHj+hpQEfafR2rBdDwOfprNkkwl6DNW+IJ/MeHPRc/ygwLmapnU459BGE9GkBMoWLOuaTS0Y7085rg7w45yX7QVe1XT9CiUl49GckHZ0vcLkGUk1g9ly5KgmC4yUqDh0tZz3JARG5Vy8Oefy/JzxqBqUwT6AKDi5u8eD96ecrS5xK4+aTNFeMbt9l6/9m7/C5sUlT5/8BDMu+dov/Ls8/uA9vvV7f8jtB8cED33T0jUtm+aS8vAWdqc4PXoXUXg637NbrfCtY1Tl/NKv/gofvP8VvvP736Vuav7D/+g/4KsfPeD3/tUfM55OuPvokINFRammnL9e8ubVMFUVQjGdlIQu43K5wtAyKgx6NELkkh/++AmvPwNnA9Mpw6avMMTmhC998WOa7QuadYsLYugcuIppVnH79pjr60u2O8H1VvBf/9Z//hf/oPo//u//9Jsvnlzx5rM3XL16Qepa2s2SxWRMTJ6j48MB2Jzn9F1LXPdI2+P6gE8K2xdo0wMM6lTlbtZhOSF2pD7QMzBEVRjc1KrQaKPpdz2Ns7iuYT4q8K5HGYXykSmQZYluE9GpQOE5Pjygc568OmS2UGwuW2QmSTGglAApSUJhXbyxfpQkmxBEpB5Ww+oGt8JNNlUIzagcsdvubjAsYN2g13MuUhCwQiFGw6GCJCjHQ7u5Xiemx4nNtmVSHFKae0QbAAAgAElEQVSORkQJeZYhRKLMZpgoyLUheY/vWzIjIcWfWTEiDpllBDGYrASJSZWjZCKEDofA28R2tRlc4THy+tUrdrs1ypQkUdBHORz89HDxliobygxEskyybTZMJxWPPnjI8mJDjJ7YDdMrH92N03lY3bk+4G3CtX6Y8CWByTOmswl2vaaYj6iyitefvOH2/m3Gh0f88NPvY91uYNH2PSo67h4ueJCNOT0uOXwr587pKd4cMJ0ZrO+wzoIfIhAxSmJvIEYEiWoCPgpm8yl97/F9wLeOZhVxu4hOkDDEoIAejMRnkSAbyqLCWo9E4m3Len2B957ZdA+pIinkxBjIs5yskLhtx/mzFbvacu/eMWefXA9rxzRAyyWGPAtUeUWux3R1RxIe6xPWJ7JCoHOPKQRCFGx3Pa3tmM/mkDK6LZxfvWC5XhJiQGsYjTQmT/TJ4q1HCY3CIIIjkxDsAInftFuaqOhVhpElm8ueixdb3BYyqfF0aCnISklSPSYbvOzFaPh6e/MDRqakaVqigpA6FJpcS1TyfOHeWzx4dIu9yYJ5WTHO5HDodW5QRGqQRnA4KehDy/PrHeuu53Cv4KOvHvPOOwt8L7i62NC1NY/efYsvfuOLlOOSMbd59eMVVuacPjjh1vEpOhnWF9dslx0qhyA6mnpLby0ORTXJyTLBu+/v8fB+weq8wWQFygiuV1tmRcXHdx9ze3LCdGyobcfVboOLiQyo5GBzErliNJmAyilFwb3FIfMRnBxU/OI3vso3PvqA3WbHatlwtLfP3nzMbJKR5SVCQpXBYZVxsn/Irf1junpLItE3lk+fniO0Y1IKolc0dtBFamlRQ6cHbxP0nirLWByeEoTiO7//+3zr//1dlCmYThcYaXj2yXO+9+0/YjIt+Ll/7d/i7tsf8vSnP2RvPObOw/tU+wuaPnFxeUV0ns12xfV6Oaw3fcAIgw8J5xNK6UHhKIYyq7MemRRS5ay7NSJajCggDiKQ5XVL23g2y4a2tUip6fsO1w/6yhgHI1XiJsM/uKURgkEpbAzOhp/lQkFhlIEUIQUO9w8IfaLZNoAnMzmLvduMZ3OScHgbsb2/caQLpAYpc9o2kGU5Mcnh57rRWrvWEX0khHhjzIpDjjZJQCIx9K2l71s6u8EHS5HnZFlBUoo8KzFKIRI450ALzDijnOfYxpJPZ9x7+y0a22NGBeMqQ8pAOSsQLt7E2Qx9nRDkCOkZT8f0vcLZnvnigN3W0tUWQcLbhHUBkyekiUQ3YlRWxNTjegkhJ4WCvoe2S5A04uZ1d32krwMpSIoiQ5qI0hJnHeNqjHMRJQva1mOyCXKUkFlHbjJOj0+o5oqL6w2hjzz9wStCm7h+uWNvv+DO+xnVQUbfZ2hRUhYlyWeAQAZJvW6o6xqhLHtHmnIahmuh6Xjxecv1RUNRKnrXDoXJtsP5Ht8Jqv0pQsHnf3qBi57Lix1Fr3G+Z/rWGLlL+DeBcjZDdA5pNMkHcqlodw3b2lKbxFJumB2NsL7j4uIcKjWowZVCkJhNZ4QgMLmnGAtilcinOW5rEZ3ARYtMBoNj1XZE7+lTzbjK8UJQ5prxwZzPPnnNB+9/kYfvfAElLsjkmOO3vsCt02N+9//4P9l1a0TvWJ97qqMxP/nOd3n38dfYbFdsmmtUHpFWkuUjvA/ce+cdNp3H6Jz7dx5y+tZdfu5XfpXR/JSDowVPPv0RoR7z2//pf8X/8s/+Vy6vz/mbv/7XmN4P7FaK2/tf5PAost78gKqcY0YtNkom04ysELgISU5ptwlvWwo1YrowFLmlc4L96ZTz1z37+zmXry8RuUUJ8KHnnbceUs48ITfcf++YF5+/we/22dU7/v5v//Zf/IPqf/tP/qdvEq4oNag4pt46vE90IXL66AH333nIpm3YdR319opmvYIY6OMAdB6qaJEsUwgRB4zKjWISJCEGwk2rPnoPImGywfIUXRjWZl1gu2mY7E9IUVEVFTkVo1H1/1H3Zj+Wp+md1+ddfvvZ4sQeuWdWZu3dVb1Vj7tttxvjGWPDaISHxSCBDIPEiAuQACELJMMfwL/ACCTA4gLQXADyGDNYdnvrbnd3dVXXnmtkZMQ5cdbf+m5c/KLKXPliBNLMiYtUKqTIPEdx3vO8z/N9Ph+8cczOXpBEEXlSkGQjhIyxTUuz3qKUwl2NiKM4ojWWTVkx3d1jvd4SKX2F27J9kPsqW4boHdpCgFbqKpcZUwzGVGWDtRBHCdZAsV/gVIq5chg3raNIp7hQI4zEVJ7BIMO2Pcoly3JEGHL33h2Obg7ZuzbktS+9xN/4xa+ye7iDD469gwPKsu2FCKYHNUskvnN0lSWJErwNbLZbqrLsuzXOwRVLMY4jmq7FB/q4heoxWEprjDGoSBPHPRfVuIBAUjcVzbojThNiEeFMj5opiiFCSsaTMVJKym0ffDetwZiGwc6QbJDSdi16kNKUDUJH3L73EomQLBYzgvTY0JHKhF/cf43XyhQRGuK9IfHKI/KbVNGbPHj1mOxaw2ZTk+g1jXW0NVe2l97MJLy4uqQIuo2hLQ3tJsO1Md4J2kbSmY5AjVIClQiiRKOUJzhBrAc0Fewd5OTpqO8YW8m2XJNmHqkiqq3FW8tgUJAlMT7EvPP1b7G3NyEuYDGryYoRzjoindEZjUgs04O+666lYJBKFtUlnY0xtoeL58OkL3YGEYPBiO1sRbmsydOc4+MjXv/SAzw1ZVlCcOAhiaM+fhIUrtNXJIsEHcUI4dg/2ENlnuE0Ze+kANmxXHq8d+gsQ+sErQVCejrT0DQdy0XFYLzHves3GQ9iZhdrtIiJhWZnuMe/8hu/wf17d/jaq1/nxrU7jPLAnZMBi9WK83nZZ8ijmM4EDqYZX30t53quOUpSJnnGtopxcUyjDCd3ThgfDVht58xfbHj2vGJ9vsX97AOSzVPIJxydvEZddTw6O6XyvRCj7Dp0oknHCts1bNclURGDljiZkuxo9NDgOo2OxwwnO1yb7rA7LjBa0MmUMiiWmw2HecHBKMUoQ2cFMSNCA19++SW+/c43ePZ8RT69DmrCh+89QtISScM43yfWQ06XK55vSlqfkuc5ZbPk08cLZhvH2m6p6YhzzWiimExHjDPNcCDI4hRbOzorQcYIHWMax/HJDb71q3+T26+9Rl2XPHr/+2yfPmXv2g0OX3md2lkSDAMF588vkEmBmo6xWUSSTaBTuNpj6pq2vmT/+h5Iz8MP30fTDxu8vMJCEfqltiv9MwKMc1RlTde2pGlCpK9+R0NfWK6XW7yxmPYKxaclTdtirSf4fpFK9CyoPv8JVxctTZ5neN9nQj8vHIUAJEgdcfvufb781tf4+JOPUFL0+C4tUZFiuVxxOZ9dcasdWa5JkpgoTjH26v/cWNq2Q3x+HtZ9TCAEUKrPTALEsUbHEhVf6WZVRDZICcrhCfig+mVDE1BSsVlt8a5fFhaq54ZLoTG1odm0ZNkuy+2Crm1pOjBKkg0m6DzHKUXra2QEWa6QSrItK+rSMx7tkeaa56fnBPf5hSEQRf0ymI485bZHSsVpL7BoraHtHE1r+pG0s1eCh3Clxu7P8RD6aZx3PavcOUsSFzSNJckFNmyQpEjV0jWWs6dLoiTnza/vs103jIYQR46jwzE7u/TqTDFkb38AouNysaBaWcZphhMVZVfTloHbr5yQHyScP99iXcflc8ducQMf5iR5RFtZXNvjJ512xMUQFZdMck0exywWDbtHYx58fZfalUiRUz6FnWKA60pMa8GWV4i/Bh0BwXK5mLFaLbiYnbOta1yAymxI4pgQJFkyZjgaIaRDaYm1mnE6YfdoD+86FvMKlUY46/ooWezx1uCDJnIR1sIrr7/FO3/zX+Lkzsvs7B9SDHaYHu9x49U32B3fwNgt6XgD2hFsxutfH/En//DPqaSlrGfY5Zo4TolNzstfeYtbb17nV/65X+dgZ8LBtOD68SH7h9e4fu9VSCNiGVOkmscff8Ds9Jzv/8Wf8PHDj/nur/06k+MjnpyV3L31DvFoTW3WDEcTVssN+5Mb4Gv2DvZ49MmKwShDqyEHu7cZZicIaVnMauJhiwsNFxeBr7z1Ld58+xoPn32MsTnbruXaresksSDJNF7POX264pWXjqiWltlpzX/+2/8MFKq/+4/+h9/pNhHbhacqV7Tlmlxr6m2JqXvrxcfvf0JXVuwUEluWQOg3jYNF4PGuz2TGaaBrXW93kvSsT9Vv47Vd22+rCoF3nvFkhxaPdI5hljOaDHgxaykGEQd7E+IYdChoujXD4YAkybB4zBVwG6uZPX+GD1dbqQS6riNKMnb3DzDGs7Mzod5ue8+z84gA8Hkntf9Tqd75G0UKKQVltSYEg4x6E1HwguFhhPOSroEsFxhTEazgzq3rGFtTjPpNW4iIlGA5XxMJifQNZSOYnW+p1oGP3nvKpx88Y/ZizXK2QXjBcJxS5Cnj8YhIaTbrNd5Z2qYmBI+WCtMZtOo3JoXqQ2NBCKb7e0gVsa1qjOkXHXqzjLhSMIo+z4XCtrYvsHzv1zbVX3mye0pioKxK2ra7ej0FURQjI0Gc9NpDYzqSQUHTtNjO89ZbX0HKlPc//RnJUPH6rZvc37vGweSI1bYkPZ5QvJ2xeN6gfESTf8K6/UmfZ40CKsvpOoXSLWmSEqzH2Y5mG9NsJLYB13iG+YCDQ43zG5TOkXGgGGvSQoP2mA6kdEQxxHJCV4t+Q1iUvdNbxMwXF2iV05kGHXm8EdjOsDPeZzjMWS6W3Ll1hwevvcyTJy84P50xHI6JdIIzAud6j/nJyQ3Gu5prd3fJdwYM93sslu0kXVcjfAReU25a5os1R8cjpMppfcNgqpjNVpyftRztX0fLhqbZ4LsBXQ14gdYOZItUksluipewbQzWCzrrqcMWEsFkfEAhNd71usi6NhQ7I9LhgHLdcfvaPQgw0AmDbI+yKWnKLa+//BqRhgcvvcW/8Zv/Ju989R1G0wn7+w3ernn3vVPWZX2FJ/KkUURdak4mN3nlziFZEmiqDeV8zvJ8xunFBXVlyLKc4eEAVWgGeUJoVyRcsu1qLr3k5PotcjJW2y3rekkWJywvN2yrNQf7Q3zjaVYd+IiqNTSNQ0cxIUC36dhsV2g8bxzf4HiQk0WKQZRjVw33bt9EFQUfPTql2pZ0tUXYFtNUaJ2S5xGrF+d0szN0vaA8P2XvYMqX3vk64/0hK1fzuLrgeXtKpwyd8awbz8p2zJcv2LYzjLDEMufw8A5CDnj8fM5g74CTw0M2y4qyrZGRR0hDJCyLxZoqeLLdAet2wfWTE37+577D0bVDNptLXjx/zsJ6SAra+RMWzx/jbEDhWTx7zs2ja6TDDBElFOmERA+4e/s+TVPz8OFn5HnPh/U+fJHT7N//fBEpklJgW0MwUAzGRGnWxyHajuXlJbbtAAhX56e1Fu8g+D7vH4L/q8kTgiiOGAwHPT7n6oLdF6oBFStUpFE6ZbGseO+9n/V5xARkFJFmKTs7Y6TyNN2aNFUoqdE6wVgFIcY7ixQCgsTbFkm/AKakwLl+YaprLQDZIEdpCcIjFJS1I8ki4iJFRBFpXpBkA3wQSA/O9rIZoRRZkZNmKXmWIXwgL1KCb5kvnjOZTJBKYYUjHRQAFMMB6UAxnG5ZryxtEwjW9gIG4qscr8V6h3MGrR3eBYwJFKOYOPbEcYzzLcNxAgLSLO1fW9UXrlHUA+2llF+QHbSWfVHu++LXBYNSKdttx+7uBBm3JGlgc9niTEGSBaK4NyKulp6d3RwpLc3GcPa4ZG9vH2cUZ2fnHJ0MyIoepdhuYLnacPZ0gUbjbM38fM3j92d0pcY4xTBK2d8ZMj2KeH72AukikiRmtJfRbgNHdyX7OzskRcze3QGryzXb85Rrd/a4f3OP+SfnPPn0ksHOkFe/dMD09oioFWy2DT700T3n3FWu11I3Fa2paZ1BkmC7fm+inxj0iuEbt66xrRfAgHv3foHru0c8+eATQOCCILjQ0wBCjAV0FBFHiihyXDaX1MbQdJ4k3yHoATLPwLRkxRARFahRwYM373O4e5v57JQkLSjnS7ZVy8mNW3z313+ZP/j9PyAWt/ny21+hMiuEyEFKns0/RscFR7s3sXLCIBkxe/qYerNgsT7HRZJf+9v/Ondeuo+xgk11zg/f/32y9C5f+tK3idLAxYsZy3PHg/tvcTF7ho4HjEcjhoMBbVsyGubMLi7pguDyPDA6uMmqes4Pf3DKyfGruFmLL2esNtu+tmvgxo3X0Nkl5cpy+tyw3uT8F//ZPwMZ1f/yv/6vfmd7UbO9uMTWDaN0hKlrdCwpq4bFi3MiK5CNYycPHEwnzGcLlEwJzvZB+6DxwTAYaazxKBVdnZiSNE17U4gPCKXAe1xjEVGEkYKm7TjaL7hxd8CyLLFtQxaNiTON9LpXhEYpzgtCf09GaI/oUqrVOVEKTdP2hyrQGdvDmk3AWYOtG5x14D/vPPRdByn/Cm7d46h6BqkkRlxla6vGsHMwIRln7BylNO2GtlHcvnOXyV7GdDzi1oMDLpYz1utAMRzRtCXOOZJEUm62LNdr2rrl8mLGerliMiw4PBhxcn3C7bv7bOqW6XQPpKAoUoajAiEhyWKM77DGkWXp1evcP0cRAsZZmqZBCEUxHABXuCshQIoeUUU/5vLB92NJ6bCtII0TkqjfnvXO03YG7zw+9PaqJEmoqhopZD8+i2LWyyVxpDnY28dUHbY23L1xBy8knzz6kMa3jIo9dhkzX8x5d/WIa/ducHT3hLlq4UbF/j1Qo5xVFUhEwWbu6bzlzv0Bk8GYUTGlrtcE0TEaK2TUEauMWy/l3H0l48bdEecXl0Q6ZXqQ9bQJBUU2IpaSYTGl3FjqzZa2tvy9v/eb3L1zkw9+9gllXRKI2NnNyfKEndEUnGVnOiSNFN4FJtMpIpXU64bF/Jzp9Brz+Yy2W6FkwHYxLy5eoGLJYlMih3MmOxJvNdtLRaJjbOtJooBtA9ePb7I/3COWnnKxZXNZsd2sMK2h/nxD1cWYzpLECVHUd0+CHeDR6Fhj2obG1qhCIGVHWwakjxiMHN6X6KBRIsK5QGsd26rBtg5Ttdw4PuZvffdXKbc9e/Gb33yDu7fvcPell9jdPWA0OiDEOZ89OiWNPSGCP/rjn2IqQRwlVFWJoyHZkZTbhmbjiLOELgSkCuxcH3Fw4wYyyVg2Fdu2YVMZnp8vWNQ1w9sHlGnB5bLh/u3XGeYx29VjVsuGmBQvDE2wbFYV9boiUREixAgV49oWs3bEDBkOM7y37I1GvHrjAUM9RvgIFeXsH+1xOB1x9uQhsbe888rLfOutV/nlb36ZW4dTns/W3LrzgG+89Rp3HrzC3S+9TT5OyCYp2e4YJxznq0vOtzOmuxNGg4TZi8c0bUmRZ5zs7KGtpNsGjvYOwGgefvqEy7PHFGIXbyJms6cE05GrpF+AsL3Yoyy3iM5RxBnZeIfxtbsMJ8dsNzWffvg+i9PHmLbBVA22rhgd3CQb7LK3O+Lg9k3WxkMErm3Zrrd47+lsy+XsjHK9Run4irjCVccxfHGu9+dbL5EwraduOqQWbNcl69kS4TzWhV6RCl90TYMP8HleHv+FCUtIebWxrK+EKP1zdM5z5fYjAElacHBwDCKwXJ8T8GhVYK0kjgr2d/dRKtBUAeciIO2XaozHXl22ZfBoCQKLCB5nDN6FfnJEjy5L8wzrLEGKqwLZIyJBEJo4HRKnQ3QcEelAHEmUFmRFSpQowGNtg61rkkjRKYdOBLG2rFclDgHCQWfJc02abrHdgkQNWZ03FLmgrh1NR2/ayjR1W9F1BiUDRZGiI41OBFEi8GHAelOhdEzTeNo6wXR9HCFJxVWXuLdsJXGCNY4+8ADO9JY4Zy3B9oYypT1H16ZsNhs264b9/YQQtRwcXUfQE3h8SEkKhZAJm1lFU/e598Vszng0Yjnv+Oj9Da6NUcJQ1ZbQVUwmCecXc9qyI5WCKAIpNFVV8fZXvsG///f/Q/7gf/9LFvNLipGnGOXYWrFaVeAEnbacbltu396jejHn4XtLtEuoXtSUtmI4zbl1/xAxkkRdRnlpccaj0CjZX4Y62xLHydVnWofwMbYLBAumMWxWHeuVo9xYFJqTl15hfPCAQZby4tGnrFeXffQtdGgZ4SJDaPtsbHSQs4m3LBZnvH54i+88+AZn2xnr+UNOpnfIJ4dsqyXVs4eUds3e9a+ymz/grV/8NnuDlKePT/mNf/e3OD9f8Et/528zHGk++eHHFLtTjl8+wfqIdJD3E7VsyuNPP8WFFpVqrt+7xauvvs6P/+IH7A2vs3/8EtObh5yd/oAX5w+pmjWbckHVXbBaranaS4rBLm1dcb58l0FxRJCWTx79JTZs8MFRDDUiHEDd4JsZbXkGfsrNu3dJREy3CWQHCUIUDIc3mJ9btC+gG7OceZqy5Lf/0386Mqr6r/1mI7lxLeEzuwS1R9UYDJKok0yyHDVMaRqDMI7RsCAERzrIMW2vr/z84Sx4K0lSRdd6JAqpBW3bIpxABnF1lPWaPWsM8XCCyiR143j4ac3JtQmhjlGqty8ga6RIqZsWFWkkEhEgdA1YT55IDI4sK7C2w9N3bIfDMUlS8PDRp8RBwefYLBGuOo09Q7XvqP7Vy6P15+NwqJqag+MDJvsRjU1o6xWDYYdrPHneUQwNzXLL5Szw4umG6f4eQXTEeU4xHuCMRkS90jF4w2R0Qp7ElOWGbNwfos8XlwhVsFjXpEVO1RkIiuFkByklJ8UtlrMZz0/PACjSokcn+tBnMI2lbLc9/qooEFHcL2/1Em2yPEPHgqZtCMYiI0Eq0x66HHpOrEAQ6wipFZ0zeBuIUkmR5Vcfgoq2sSjRawCXF5cEG8jihFRrOp0ySncItuTs0RPEcEMxzqkiz+W24+P/7We02QXFjmL1RGC7kjtHCQ/ZoiYxwy4QREznPMZ2fPM7r/L+e6dYH3Abh04LPvxsyU9/IhhOUuIiZTLMqcqSpmwZ7o+JVcb82ZZOSiJS4sSg9ZB6Y/jRj3/MfHEGPqcYKf7Gt+/z6MMtbSnpsoosjYjwmK7v/l1PcpptS1caNqsV1ji6TtJJQLWc3BwRREN5uWJ9Cc+ifrQofUxtLM411HUgSQdEsUCOB9y7e73PSnWe9XpO07bQgLWS4HsrTrm+JM9TokSjU4uILDJKodFEIlC/6CBJkFGESDLKEppVjC0NhBapA7GMiDzkSYoPgsefPOO/ffo/kuUxKMXZ0wWn3ZJtZRhPP+R7f/SXHN28h6tbXn455ic//hOCh3d+7nVWqyWoV3jvJx9SLbYcv5Lz1msvI4NjXZa88eaXebh6zF+8/ynPXyxoyoY8SUlzSRF7BsMhu5MpbV0SOkvXKsyoIY4qUtmb7FQS05aOsm5IRASxREQKYxq8c7ggsIsVKobt1pOpji5s8SrHWYfUkjxSJGrAr/78z6OVpBhmtKZfCguDZ7iPnvLZsyc8uP9NxkrjcLzy9tcIPqXrSpzvaHcinq/nnD9dkw9yJtMTxuMRvolJbUrsJc48Z7Fe0hoNsmRvHDHdCWSjiDeKVynilocPn/P4RYPOVV98uIr9/X3e+YVfoawkphV0wpGPM15+8x5Z/Bq+VVB9mc3qgo0sSAcph9eOMTKw2VzQbrakac71Oy+xWlwwu5iRRBrUVaZdOJzvEXiE0E+tpLzqgkIQfXnXVg0vnqxQQSO9QPg+DuTpzxPjHEr0o3wRQIp++fPqyO7PeOcwpaHrWoo8I1z9e0r2tq4QxJUQoWW5PieKJM5Y0J5Ix9S1wfsBkTqiM0+R2mJ9i0IiVUCiIThE8AihcJ3He0NA9AtT4qrxESTWCJJ4iNACpCfN+46wExqPwhiHkP2iGxJkKvHGo1HIAL5zyODxpkOnGfWmYxjvIdKKremQKsVYi2kUhzeOmC3OODt9zu6+JtIwnkZ0ztLW0FUSoWNi7RAiJc9HBFGz2W5Is13ywRH5cE1TNZiuoWkDtrU426ATg/H9BUN6B6LXj/eWQVBS4m0AVK+5dQ5jJRcvNggdkxcxxrUsLxVFIUgLwYvTLftjTWcdo/GI1bZl/3CX+dkF1dYxf3GJsQ3FOKFkTZEc0qxrnIhZt5Zrt/aYHue40HL2aI7uDMOb9/lX/62/D/GGV944YLzT8dEnj2i6JbVTaBtjGyjUgOV6SRilpIOEpnXMNxVxmnLv2iF7OzE/++ljFuWWTAru3rjPtix59uIZ267G4dCxAtdTUOJkiKcjEPAWpIjwvkMJS71uWZwHxrll9+SM/HCPw5ff4snpYwZxRFCS1hviEGiVRESwayuKkHLv+ldJTkdMDkZ8ffoqD3dyVh6GoWOQ5WS33+ZooEl9zLxeYBcjRtfv8S//27/F7rVbHE7vspy33Pvad3n5pdfYmBH1NhBMQIqIRB0CETsHA4RXCFKsSMinA37zt/49RvmApVlydvl/8/7Hf8KNa69x89ZbPD//iJ+++6dMhy9xdHyLy8ULnGwJfgx2lywac+fmHt4MkKqiqRyTtCDbG9CVF+xfexvr97l4ckaaekbTfcqmQ8mYzbohhIbLc00S17T1VXTzn5LHX9tR/e/++H/+nboR4FJM0+DaCmcsw/09kr0xepQRkoTJeEzkW9bLTX+zrw3h//XG8qE/qJJU0jbd1cZ/P4LO4pSuM7jgIYj+Fq41o51dLDEiRIBiWy4IPmKQjVEiwVqDQ2CEwQmDsx6I0HFM061p21k/Duo8tjMIBQjJrVsPmJ1fst0skeHK5iL6DkP/l77jIIQg9LFPICBFj3wxtiUZKL7+rS8TwpiL+QVR7nj1/htcXlhquyAuWrJ4xO7RNc7OLmhMhfeeLJtgjKNra1bbFTa0RGkKKKqqYVk2dE5wuSpZblsUisV6hdb9hnJVbftOG70GbjgYcHBw1GfHXOhv20KhhboabY0D/KYAACAASURBVASSKMJ0bZ911QqkwOKwwfZe7qhfVshHKbYJWCy4QF03xHGMjiKauiGJY0zX9hIDFWFaw2BnQls3CCHQUUS5WCOlpiorXnnwMgLPe+99QN0ajgYjRnHM6fKCZVfxpH7BUj5nL97DtBozazg4GmB2tjRdRF5EVFtDUwl8iDk4STm5PeajT2bMLwMmSBrjSHJFNtAEYSgGEqmgbQwgydKY7abFbS1JOiCWObtZhLENT0/PGe8OaV3HYlnx9ttvcP36ER+9/5jTZ88p8pjhaESiE1554zoP3vkG0uc8+uBjlBQMxwWbbU1rtggk+SDC2i3VRvaRka6ls4oohb39IV3borTAC4uKBLW5xPslTz95ga8M00GBDDmIlOn+lKA9ZXnJl958i1/6pe9wOV9hnCUpHEiP9TWlNUitKJKY0AWqcontOkSruLG3SxFnFMOctmuIpCZWMVL1SKFxPuFg9xipNNYGVsuW7dpijGM2XzG7WPDo4w/57NGH/ORHH9Eua/Z29/nWL/4L7Ix2WC1KdsaKybTm1s2Xeeeb/yJRNuVyZfno45KnL1bEwwTVlviyRmQ5+e6A0ThiMBiQDYZ0psQYz+1br5HIwOryjOXW4lTCarOkWV6SBYuvO7wRRDJB2L7DcrxzHWs821XZL79Fmpf2dtnPwHVrItGgg8cYSYgkQQZ8bfG2V4UqKciV4O7hLod5QVeWLKoF880WEwTresVqMyNIybatma3mdKG3lV3MF5w+e856tkFEmsH+CINhtakoqwqZanaPxkx3J+xMR3ztG3c4urHL6dmcpi2RWlJVJdvLjiSdkGcJrtpghWcQx+wkI6xPsUIxObrGzo07PLt40k9d9o7QKub8/CkfffYznjw7Yzaf4X2H94ad/QF5ETOfnQPuiisp+7x6gBDEF91VKQU+OCSgRF+ofb4kZa8KJBH63xel+k1sgfzCghXgi47tX4kGPMH3cYPgHd57oighSVPAUzUbnG2Jr+gmCH9VQGt29w/YbC9ZrRdEcc8WVTJCeEsI/d6CFP5qQUvgnMEaRwiSJM1J8/xqBCyvjFmqN0SplCQbIpTGBoO1LXHUm7aC6LneUlxdvFuDc4E0zthsKjZVgzD9Ei1SI1C0xoOMsA4Gkx28aiFaMtnJePbQslnESBGTZwWrecdoNMaLGmRPu2naCiQoXdC5Pk85GIxwrqGsFqioZ/5aZzHBo6RAXn01dYe3njRN+0aKiHGuRalAFKUEF+M85JmkqpesFpJ8MEJHjmYDyB52bww4EzBt15sleywu5abjYH+P4BuCjXC+Y3m5pmsrnA+slw6lE6zzVKXkzfu/AKnkH/1ff8RmteB7f/jHtI3m6Nou0/0Nm43Adg0y0eRFRNxKzHZLbTboRJLICC86ZvMShebsvKFrPNEwcGfnVVaLOZtmA5HHq9705p1BCoekx5EFH4ijCO8tkYZI9Q0vLQXlecXDJx/gak97WTI7fch4MKRzlkCMRhIkXJ8MeF0OecWfsFeecLT3Ck+enKMuHUEK7MEOphM4JXAqIhVTus5yvnrE/PQjQlxwuHuL1byBSOGxmDYn6BitBgRjGWRDjLOgwdnAKM9Jsww6RXJFz0h2hqjxkCAd7777B8RjzcXsOduyQgtDUxoirRmOYqqyYTRKWaxKOgNlc0rVzlgsT9k9lLjQUq9WPJy9i0osIhmCrqkvVzx+9CmmfE69PWNTPSXoGZtlhYzm5APFcuVpWstv/yf/0T/9HdWLx0uWzzdoD2VVEoLi5KVjxkdTns1XDIiIBhHb+YYMCB3kaUJXGUJQ2C94dpK6MuRFio4geE8IEqEEm2oDQqIQEEt8CNRlybRp0XFG40peunNCnB6DqJBNh992SEZsuzWd6/pQvhNYOmwbUdcVy2VKlq/RKkUEiXVVn9lclSznSyI+P3jFVXH6ORtQfDEa06r/ng2uV7ChqcqO1x68ymrV8PDZkmQ04eT4GoPBbZxYgPTkwyM+fPcR+6VgMC7YrFqyKANjoANvS9IoUNU17bZEioQsLlAqwkpL3W17c4uX7IzGFGlGZ1pUANc5kmFMXTXYqu8Ga5mxf3TE5WyOJGBtd4W4cnRdBwjiOMZ713cdzJVXumkpJgVdV5FlKTSgg4PWMxqMr/S3fRcmuICWEdkoB6AxjmEaIbuEalPTVg17gwmdAKNMzz/UAh0EWgVKtyWYlrKu+tB8AqVMWG83ZNWI0VjjVaA81ewNYkxSkdxN2a4sm/mS+RZO/3BDZyVx6smyjLIsiZIWa0I/AjMFi23Hzr7DmJj1smI0HJEOYxySrt4w2ptQWXh8/pS1W2CNZGcv52J2yaf/8CnbzazPjIWADZbj63eRseHg/gPO3n3M7TsnfGLXnL2YY10giTKCa/C1pFw74jyQTzSdy6DtCJ3mxeMaayKyPGU87GHrzmhU2l9QqjZQnm3pfEmIK1ypgUAxkhydnLC/8zJavY+KVxhvqJoOgiL4Dhckajpg79qAL995nScffkRVLzHB8NV3vo6xnu/92Z+z3W5J0qjvTPmOa9cO+Nd+8+9yePOY2nS4zuBMoLUdnTV0TUe7aUAG3v3xT3j3z37ARw/fZ7h3i9/4O7/OBx9+RgiOr795B99mbC5rXswbfvDepzx9sSQfaKaDhpQOESTz2YbVypIngspekE+eIpVDiQSlBcqDlhp0gpIxGkdWZBRpQt02bGtLuW5IipwoFjw6e0Zwjmt7x8jIoaMEqaa4MCToBiegdaF3wgsw3uPj/kNpuTVUNmfv2uuEVLIZ7xHRMn/6E9ZNTaJavN9CMNANKLIR+8MWbyrkZkZkWwaJIhOStlpwcWlRPmVsBE50vPL6S7z16qu8/+FnGDvDmjGTnX1Ojvd4/nxBWiiyOOPsxaf83u/9Lj//y3+LN+9/hSQfUdcVp4sXNG3DZJDS1Avm5xsiCaPdgk8/fI92UxHcFudLpoe70M352U8/QCSSIBxOSXYOdllcXPaIss706mqt+26ks32+UQiQimD7BVcf+hG70hItZc8fFQLpe9aslqrPvcLVSB8I4YtcoJSaJM/YbvpFVqkUPniQgeFkiA2WuqnRUYKzDq0jQPeCGDRSCwIdRZ4RKU1T1hjX4azrtcR4vOgzmj0f1eGDIkkSuIobJMlVRtb2NivvQCuNMwHnLVJ4jO9wRiJCn/M0xpAmCV6A0jEmGCrrUFmOsr4ngqgWEyQqKLpug0pSojjhybNn5EPDgzcmxLphPcv47F1D1zrWlwrTNmw3ETqNENKyXG8xxlIMs15qQodWoESDFJAVGQGLFbp/b0tHmuX99nvZEMcamUQ459CRQGCIVQxB9/SctGNnGhOCo15FCJUTLGwuKlwHBsXdN45Jsh6ZqLVjMesYDzJC6EBYVqs1ddUSKd+zjL0gChntpmN6LUfoiuWLBVFRcLr9jOX6OcIXNOWY8xczdJIym7fs7adcO+kw3rPatNgm4XDnJkJvsXNDsJ5msaWmIskOOJ8ZxlNFMYwYjnM+/PinrJYtrfcELUmSnk8cpOuXn3UgdF2/gO1KfPB4J4h0QSTB+JKgn+NnBe/94z8kjxXTnRxjW5zvEE7gZEcSSda+4aPaMzy6g95UfPjp99kUmvvzKXI0ItVTrO9jiuSKYNZIWXHjeI+ZEhQ6pqoDkVa00qPkgMxsaUJEJFriyNP4BSQR+F6UYTuJjhRCCrwK+GARTuGcRMgBb3/157m4fMa7lz9lf/IqQT0mWlRU5ZaqTNhcBmbnnzIoYtpuRZS2tK3vqTCLjOFgn2eLz7h1cpv15ZqEKYqE63fGbJYPGciUbTnE6Q3GV0ymQ9rNsseDGojM/z9F5z/J468tVNt5R37let8/uXEFtI6x28BBMcHVHaUrGYxH2NmcbdWyM8jp6G+qIvQbp1KqfgPQ9py9prYIel6cjCUa3XcanUVoQRoE86fPCJM9podTVuuKqHXcffkGD44n3NrVnM0fMYzuYVGU2w2ha3FhS20kWfESv/sPzqiNARnTNA1J2kPjnzx6ius8SdKzQHvdAP3CgezBxbIHcPYtCNGrX4UMNGXJ0fGU3f0BW7vkeNpSVp4XHzzn+0++x97+HsqMefiXZ8Rhw/t/XhMnmkhHbDYNQW5AwmCwj5EdA5UTnMcbi8T1hULT0nSW1liWZsXR0RHzi9Orkb4giVPq7aZfmnIWAnhjiVXaQ7uDw7iW9WYJzpPnee9U7gze9w5nLSTBBBQRTWWomxrigG0jjHPEoR+FmWCI4+RKk9iPW5SQdJ0hUjHaG8ZxxGik2XrLbjpiVm64rA1plNECXdKRYtg62AZNPhziTMN606AsdHsZfujxgwqzVfgNSGKePm1Jhn1xXNYW042oty0Ej44UgZJIQ1c5FAoZC4xpaVrDaq2pm47deEBwoi/WEwtInJGoSJMMUupOIoIDBE+ePqFIR7z2+us8f3LBfH7BaHLCcJLw0adzdlYVl8sZ1gjSrEDHNaa8ZDCY4H3CZm2Y7IxRylK+aBjmFi16qUMyhc3KkqaKpgrsTSYgLL7qON6dcrbdsF4vKKYxZRMo65JIJURRznvvvccnHz7m4vIhTmyx0vXP33lElaCjjur8OaEaM/25XyOKD3n08Kfcu/86d+/f5Q//z3/MdlPiQkvXtQivGQwmPDo750cfPuLbx29ApNFxRxQSUiUQWqDpL0UH+zss1xUPnzzk5nTIj374Q77z7V/gV37lu/w3//0/4C9/2PHVt6c8vTjlT/7iXU7PZpSV5Xg0oIhh2QRWbc9O1qLFhkCmYpJuxKrZYitLVVmKqcSi8K4BW6EjxXZZcbnY9mzaSJBELdJuiYe7yClYI9jakuVlySjN6O55UCNoBCoWDK/MOV3d0liLU5I8S1ltznn26DP8pmXn9nWmBzvkw2NuxIEPTn/IbDMnWImILGnsuVxukUFy/+AOTVWyCS02T8C2jJzk9WsDpodDJtMp14/32T/a4aPPFtSdZzetKRcluycTvvud+1yuVnz8aEacBpwVbC8vsGWDznI+/eh9Nqs5Ihh8gNNywdnsKctyQ6JyXrv3gGvXCxaLFZfLNfXlGWfP5hwd7rOzd8zZxVMW6xXOtCgJcZJRd/XVxVshZX/cC9GjjpwNKK2JIo11BodHJArnPN5ZFAIbeqKIM+JqAbO/uPY/h74RIQQ+eNqrBSzE1XkqJEJqPJ7ONkRpgq9BRxmt7fBeo5OoX46N+k5uEBrTdkjVEdwWaz1SKJToO7XO9qrbru0QIiHJUpTspxgQcM4QCBRFhvMB4wNVvaXrWqK0H8lLKbFdb020riOLEryzfZPENCAEOk/QQmI6i5MCGSTKW7QKjEJGuJqyieDZGQ1x9Zof/chw/tgS5zFCeqxVKJmxWq1g43FOg1DEScrqsiPNC2RsaLsa6c1VBtOjNKTDGJ3ErJYVWvdLs53pkEKSxBpjAl3b4PFX8baW4GqcD5yfmn6BViqS3LNd1Qyzgli3HF5PuX6r4MWzLe2qpWocplWIoUAqzWCUomRCU0riFLwxTIscIsFq23J4fJ0bD0Z8+uRjLl94ln7O66++xFdf+g6PnjwnSRKcNygRsdk4rDTsX48JWLSpGQ4cF4uOm9duYtqKH7z3GePJlEgaDq5NKHRL2bWcfVCy3rRU246dgzFNu6WuWyKRoJOUrusQCvJcUpYlg8Fuz1X2DS6UaJWQqJzOdojg0Tk0yKtLUd/cQXiCjICIzlj8uOP319/j/tE3mYibTNeSPz//CW/ufJtOeJzoSMUQZWI2/jO+96d/wKu3Xufea1+jWzts1CKDJBExynZ0kUZ7CMFhgyDIAmU1KjiCMPgkpgsOLSUOh6RX/nrnUFHHo6c/5fnpzzjc22c2u6TYETRNznCccXq+IEknvHTjK3zyyUMi2S9Vt8FRrSVLuaSrDTdevs1+GuP3TzifrTm9WJCrhDv5Da7Hnu+3HxNnKV2YUm876sqhokBtQcjs/+t685/48dcWqsE0BC0hTyCWJLJgWzfMV+u+YDqf0zhLLVPGassgcSQWMjIMDRbbG5YUdJ2l3MJ4J0XpDtd5lPNEcULbGmzw/XjJeEQIgMN3FeW8I9k5wYeSri5ZbW7zC3/33+HWieT7jyo2xnI5X5AmBteAaD8jqtb8H7s/YvNsTdA11nkyWeCDxdktoK6UrpLg6REpwva5TJEghILQgkhwoT+Q8DEhpPwH//E/z7WTA6rSsa4X+Fpw+mJNltzmo08+4+GLlk/fn/HlVwdcG6fs7O5z/ZWU4AXlwvJnP3jGclkxf3yGHA1w7Yavf+OE1948IVTQEjGMEvLhDi1rXFNhXEsqJlRNSW1afGOJ84jSepIQo5Qmjz3eTOgwHOy/jowt2+2W3/u9H/PsiWWYgoxTvK8p4inWV1SqLzhlXtCVLd5oFIoo0ixXS7RK0HFPZujs1RawVSiv0Fow1GNa75F6Q2pG5JnCA2VWokVgaz2x0zgRUElMpjznT89Jdor+UFlJxsMh0rxg3SnWrSVysLhcMpwWbFeGdqMQLmJdzohlDNZD5HFCooOkURGmaglGkY5akkTRlo6R3eHO8T4fny+pgyPeKvJ4jA6K0BnSwZTlfIPxkGhQWczO3i465IwnQxIZYcslH3z4EC8TdNuRpillGsiKlL39PUwIBFFS9uIjdB7IckU+GrNdeXTakWQRRZGTFoLxZMhydYGzJWmcMIoTFssFW3+JiocMBkdU5UP8wmCGEkRNU5fcuXWDlJqHs4bOdnhjEcRMhpr9nZu88rU3+NO/+BH/y//6P7EfFUhi9IOI06eb/4e6946VLMvv+z4n3Fjx1cvd/TpP6JmdmZ2wgStyE8MuadimDJsUKEE2DAsGDNGQZdAEJAuGJUPwHxboIEgWLIq2BIkKtEmDZlqSy7DDnd2ZndmJPTMdX/fLr96rXDefc/zHre6ZtQZLy7QJ+gDd71W9G6pu1b33e36/b+DJK8/QtAmvv/EaKlrD15rDvXt87w/8AE88dQ1jHTazOCkW/D+Lo0ASkxU5MhwznoxJh5bnP/W93N97j6987be49thjtOIzTMcD7uxOuL+7i99s8MTTz5IOh3jFlOmsoD+1ZHmMUoaygLQo8HyYzEcUMiWwISazUBqUKJBSkRiY24LltTZnl2JUNaW7EbNxdp3+0Zibt084ODHMC2g2UqQ/Q6IJvQShTxGepBI5pSkoCyh1RLSxgkwyZDpDu4zAk5hmk0pphrMJh6MRqIpusEJ/5ybTeYYKFEM9RxeWWEUMlUL2NgjzDFcUXL6wxdZqxLkrT/HoU89QJKc4U/He9Xd5+Vvvc/mxazx5ZRUx26YyFbcPdrCipOlJjK2tgdLZhFd/7xswg6qaMRz1kZ5HqR25ciTTIeVsgqPJ/axkvrzGNEsoignKzKiKEdOige81mUzHDE4OqKxgudtF+o6qmhAvYplTm4EFjUeJRIgakBYs2uTGYSuLcIJaXlo7BNRuAQ+EpnXEzwMhlbMLkipiIdqyeJ5HnuWARXsahCZJS4StKLUiK3OEqmlHVlWYCvwQlHKU84QymSF9jajr/3XgwyIhsLSGIjdYoYkbIWHs184GpUUrjecLlPawwtYg2tbSryD0kUrUwsI8QWuPKAyJZEhZ1baEaZKQFSntdhutZJ3qVeZUDjxdi4GNlCBcrUQvUqSN2L855+brFVG0SqvnyNMUpTVFWlIUSV1UsIog8msthgAl6/SuqqxoRR1MbkhmCXlV0l1uIUQdHRuEFULPieOAvDLkkzo8wtkMbA0ui6rE8zQmcSx1As5dWSVsCwb9MTdfP+aJF7bYvKyxlc/KepvKzVFimayVUFYF9+4MSfMhWVlRFgFRw7B5XpBMBa5NLXQWCa2GYv9en2ZLcX5tlXxwRDm3KLvM/mlKczPgkStXGE5GlEVCMk/x3DLKjupqnl7Ca2uCvEmWzTntn3Lp7AYCjZKSbFDR3ThDNtxlfDJDKkMn8mj6BuHFyPEYU5WUIUBFmoPWISoOmeQzmo2IUHWo8qwOWqFCyxjpB5iyIAgLsipBENa+tBgUPtbmLC3HpGfyOhkrOkYOz9EXUwp3j/HxOmtnzjEWIU7keAgarsHTTz7FaucKxTxDKIV2Cmup9S5SI03NpxZC1UWwWpFYZ9WgkNbUiW5UUGkQAiULhsktpHZM5gWbG+sIu8bh4X0qWXLl7BmWoy3evvVtMjHg3v6gtr0zhvnI0GpHxBegSgJGoz2S+ZTOpassb2XcurnH8498ARFmbL/0FuvLEc3jBrdI6TYigoHCdXyWV5uc3N8lD5r/rwHNP+r4rkC1LEvwI2xV0ukskeV5nZaTSuZ5RukJ3HQKocS/ep58PmVybweXOlQvhMSnMnO0ZwGLtR7WOHA+ystxTi4spD7gOj3gixpj6YY+LtScjMe0WktkZcHbd17nH/3C/8Hf/Ct/EZnc55d/8ZsUUc7amWVkGdJdfp7LF5cIln8HdbRXi1C0ozI5xpZEUYPEWqqqqhXwViKVWnCwFuxh6xCyBmQ4hy0dpsj4hR/+JJ98fQyvjz/6gPnnYQvYeuQ7nz+Fu7HPOz98if/I3eBJ4YCPfecyyYcPPDCYUSsVmkCTVCsiFNQTwHqoD63jHnyaEQzTxZMBfOYTH/lSf+dkzJ9/+V2KLMePBIEMyQ3YsvbglEKA8pDGqy25VAPnBNIaTFmweeUM155tk2XL+K5ACM08sVzRlkef7hKvVRzcy+lYy4mbkh0lXLiwxvf86Au89tIBqtvi8RfOs7u7zaNXznH2zDKBv8IrN99GbTim0zFuT3PubMCgP2aeBijRZXIyQ3sRUcNjejjgkSef4NPPfZxf/9VfY+5GSN+yFDZY8xUbLUEgG5xOR6S5pjIZkhlhVbKz3cd3HazOyG2G57e4P7hLeKFABT5GVJwMBvhhk3ZbcnDzJi0Ug6NDbty4j3MNltc6WFnS7lqqKsL3A+bzOdJ5SOEwxieZQpU7tG/JkxmeXiPQPp/55LOc3eqRjcdk6YBJVvA7X3mFFa/H5qcf52Ryghf6tP0NDo76jBLLSu8svaxPr7POKJtw7cmPoWWX3Rv3eOHiYzz+7DM0Wsvs7G7z/q372OI2f/rP/hjPfOHjbHzlKzz25BOkRcE7r36LT37uiyytXWE8Hdd8QHyMKcA5PC0xZk7lHHluWe4so4Rlf3+Xxx5/kvevv8u3X3mdJBtiJQymGe21LvFKG6E9rlw6x/hgm9F2RiuUaDcnzw2FKVFhLfbBOVphTOBCPM/HiJJKWgqT0gjWqOYZp6N9wssx7XYH7YUMM8H+sGQ4rwjakqiQTIY5k5mk22vhWw+V5+RFjpQK6Usql1N5XY5TgZ7kbAYeQsbkto00Bu0C9g6OGGUT1s9cRMoWcbfLJDthnpQ47XFh6zIbqx327tzHGEGj24NizMHAkSiP26ObvHp9RGWn3N++zd7+CfMs4e79U779yhJnN3sstTWTLERGPSo/qSuERQXa5/Bkhzdvx2xdvYC/0gIJo8mYfFLS7iwhwwaRjFnbOkthC5bDHqJa4vh4HzzL4PiY08ldSpcRNlp1FcdaVOjT6HaZjiZ4vkbLCFcZjMtrb1WnH1pJPbj21qqCeoiHaLQWS9V2dg+6ZOJDLf+6molztS2TAuvpmtLlSQwWJxxB4NUWUouENfsAYGofieDe7duMB0M8JergEVtv3/OiWrxUlRhXuwfE7SZOVCjl42mJ9Rx5moGx5MbUnqC+QEkoK0O1CEGQWuGLAOdqVxlsHVmklCYIfTxfY6oSKUKUpyAOSNIMT4HnBRRZRlWVSC0pK8tgOl50nRROQ6vToCWazCYZzaWQMpsyGk5wCLTWKCVJ07Q+NlJRlAXjZIqkJo9robGlo0gzuktddOBR5BnpLEc4BaKkMgpcXVUVRtIMoEwF3bWYZz9zHunPONqbsXl+mTMbEb2zLSpd4IoOJjHs3kno9poY4eMHjjCSaB3hREkQCZZ6IZQVp/0hcbCyEDjnKCnxPUEz7tLfO2HQl7Q3Ql55/+t8/JEWz1+8Rp7+PlcuXWT/aIfS+MSNNsVsibjpOB2MOToJCX1JlhvWVi+wv39CGApaSx5FOWP3/gnz9ISo6ZPOHSvtVYQ2jLMpVjmiaInls+uc7G9j7YwkM2itiJsBlSsJYo0MQxq6CTiSoyGlsFhZ1ZZjsxwslFRIZRDM8ZRPMhbobkjYLjDmlHm+y7SQnJ7LIb9NUDyHH6whXE5aFKigy2qjgSr0gqytah9zZTHOUok6YEMB4uH5ZKhdjiVC1hMo4WoOuROOIAoQMuPgzoucDocsdx9labXJt16+z5nzHVpti51dYmVrC3nwBvOTOVVgKUvN0rImKYY4uYrngedZWr3zRPoSZ89doD86oNnM6PcPeOJjzzBZuUOSzCmDFrqfY0VBKlM86zEZD7l85XGskvxJGd8VqFaeT0dHnL9yiXEyq9XMoxG9lRW6y226F5uc9ncpS5/xNKfZWSF4NKTsTxjt7xE1QyBEIPH8EmsyrK2tg/K8wPO8h60kraCsHFp7uAWHKpuWbF3eYmoqsknF3v0jKuf4n37u70Oe8F/91Z/m6cfbvPnehD+48SaD2W0Ob8HsdJnp8QF+IB62p6QEqR0SVwMxqUE63MJ7DR74sNVWLgIBuiI0PpmsMNrjp37zzT/a0f7Hv8v7o9n/o1Wzyv7R9v0Rw33odyE+eJw8/GNOBoszrV5ACIcvJe9/c8z73/zO7T3W/WAGdpN3AGgD7cXXrLrT5/07fRqLZbZvDSgkfOk//DytRo9Cxbw7vs/2cR+TBAhZ0mku02us8Obb95mlUypX4oqC5ESSlAXp3OPG3RS9dAmO73Ht2kXWL1zlX//8Z/HNW8jxiM3zy3z9tVq49MXPbjIoM4qZ4eRIs7Kl0VHCu+/02b65xw9+/jPsHQwp7Qypz9e+jVnMUX/AnJizqz02aMcYIQAAIABJREFUVyRxW5KZgO27in5/TlWUFGmKqUA4Wbdeo6COljQWUUlKW+LJBInh26++yWD4FI8/+XHOXVwibrZ577bh6Y9d4PKTT/Otb7xENphSpobYm9GcDLl4YYvKGp574ZP4nuS3v/pVnvlTH+OZ555lqbVBpiXJdLRIyBEYKXjjrXc5f/4xVp/+BHeGJ7Rkg09/+UfJqog33rhHtyOJgqgOuPDryUlaSqQwlJUjzB3HxwNOR0ds94+YVQXSSk72DhYiOk2ezHj6iccppMdgmDMd5uzt9jkZpZgyxxRQGYUXeIgA8jyhyhVRHNeA3s5wFqhAVA7lw8rSMu1OwuB4yI13Ba1WE+1nFEVOpCPGk5TpuHYN8XJQaYUSbbzwDJopypNI7RO4lKjdIatKrAwolCKRJ1QiRZCRGIEf9XBmyq29b2Lyina0yqNXnuD49BbDYZ9qeITwwCRzbh3t0Bssc661xMHJiHk6ZnW9watvfYPJMMXLS/Jyjhct0d48iws0b904YFaMETEYJ/AKh/A04ONLSVHOuX3rHVorMecubDEcDOg02pRhxVK7RZ6URJ01vOYK+bBPljh0IVlpnOfy1lVu3XiFyemARmuN9Y0GIksZnAzIM4Mf92gttTg9PoHM4UTtJiFwCA2UtQepMQa1CAZ54GT1YUurDyyuHlRT5UOj/boq9AFvVSv1YKVa+a8kVVowKXOkF9RpUqZAIgm0h3IwPDmmSHM8ISjzGkgrX4GzzJMMKyq079GKl4ibHsZlZFlZh4FIiVASv+lhXYkSmrKsyJMC5Xm1t6uUmMV7qIWlHmEYUeYJxjmyLEFKjdaaIIjqaqYMaDUaBIFPlhZEQUAcBIzHY8qqwlcavyURzidN50yHJVVVoiJJ5QTT8ZhOq0nQCqlKS5GXBMIn8AKSJGGWF0hR2341GxF5XlBVhulojrWWKh/ihELi4axBCo/Ql1TW4vmaF569xGh0yK03B1y91mPryVXyYEQzCmgu+axsRBwdnHL9+pgLl8+RZfuM9zLMNGT7+AgXtol98P0GZWFothqk5ZjxuGBwMMeWPsKNUa52HBEY0jRjNBgwn83IkpJqt044PNg/4P33Ik5P9zHUVJFAOEaTPsZ4hO0EvIy94wQlINIdKMb0j+pqcaujyYuMyey0pmTYjGani0HU6ZJaEHQ0+bzEU3Xqmh+ECKXq9CtbEkU+lakImzFaeXTaXVxZMdsdEMdLCDyky+v7vnNQKVJtCSgpEkc6UIjIY24C2p4i7swZ2wlXNp/HVwG2rAGdH0W16LsQKGo6nK15dTXXm7p6qjyFKy0W91ALIxYC89oKs77xCuHI8xOG0z7b29ex3jGj8SF5IhhPIMnH5KXg9OaIZtDl/Z0XGU9OiYJlKjNkOEiIG8v0epvM5wl5ltFu9aiqmHFyynTyCL3uEyw9cRVrfFzpKKYVUU9xOpvTtiFaaYZmDqUic5L793bx1P9PWv96lmPjBvdv3WV41Ed4ivWtM3UmfewxLxMqzycKW+TjlGyW0lteZX6S8/Fnr/HWO+/Vyk7A86HIzUKN6bBGIzyNtWbxASqksDhbJ1RJLUiLKdPZGBk3abQjYt1kc32VpacVaXrCV9/4Oq3sDF//1T9APyIITIif9umtRiCyOlnKk2SZWyjeJVVR1OV5HnxhJHW116G1XqQAAcKSVRW2ESLnHs0wgqxuf9+eCMIgRPsBeV6fRLBIDlnAPSHBVYY063/HMf0owPnMSpt3hzMK8+G/PVDWun9p+f8vhvtuu3EP/8M5yM1Hg+bXTyb/Svt8MNP863/zRco8wzhDmqckyRyhFFJ53Mn6i13XXFJraxeJ+sgIbo1fYvv1V6nKgsoYqtMZb/3Bu3z1n/8aoa+osjlhEJDnljyf80u/5teuCcaSpYa4oZDS1eI+Ad//b0g2Guvs34lYP7fK5vIaJ8MB2b0Zd+/NuXZ1i3h5jTtvHbC7e8pxf0plFirgQlJVCZ5vQBjmeYKvPfwFAPAJKUrIspI0nXD6jd/mzW9/A0920Z4gM47Xqg7X775ILCeEpebS+ZhnXjiD9mpaiq0qMEPQIX/6xx/j5u33ScceJ0eH3Ll3hF+mnB6fcFjMCAPH26/u8PorX2OcG3yleGRzi3F/idHJgG6vR4MuRVFXv4TvYUULKBGk5HnONIhRxYizqzHTcsLk+A2qvCSdFAgVITUI4eNVAaa0+GlKOj9hfLBNOS/ZWF5D9xyTSYIzPmmRUOQSZSTjwwxf1pU6Ha4QtDKkv0tVGar5GBEJeptdDvvb3L27z9LyEuPhlHRaUJaSCmjECiEtyofSppTZGJsnlLkkDHxCM8WlHjENlLa0gjkdCsZWkFWKTrzO5tnLLKVdDga7jKZ9oGKcJPQ6l7i8+TQeCfPRIUkyZl4MEEXJpUaTjpaEUjAZzUmFoHN2HQZD3EigvA6bW9e48thVTgd9Xn/rNY5P77O6tkpyOGQ2S+p0uyJHGXDFjHtvvYk2jl5vndyW6KiB31ghjA1lVuBjiRshVVnS63RZXl0migROJvjNJcJGk/bSBko47r7zBid791g536G5dIabt+5w46230FqhJRgMCP2hLtYiyeqBN+pi0v6Bt3St9n9grl9zUD9YTym5QKpiIZLKEAjkgyISdbVQSo3FEHiSPMtrHmmagrX4ElxVAbWVVVkYKgs6sDSiFg4f4VWoQOMqjVRVHVlsDEhJFIdIJLPpHIlH3GyQ5oZ5mhMEAUpZ/MAjjHUdR1rUziYWaLfbFHlFmed1CmBVcHLcpxnFhFGM70eEUQtnHGUxZjavU70asSCZzxELy6TZaEZsAzw/QHp1YMx8nuArD2ctWZLgaY9GGDObJVhqw38WISy1CNbVzgYlOFHipMNTdU69lLUgTvke3bUIEfg8/31bnL98jswbY3XEaGBo9AQ37t6iqkJQjpe+epveUhNXaqhKSjNF5hLrK4JIkaczlA6IoyUmwymNRhtX1XGcUGIKD60Dmk3BYHgIyrF5DobHijCQTLNDpuUmfjdCtR3TkxEq1LhSoIMJftiktRIxmY2xmWA2nBHIoHYg6SxjKwEupNnLyOcxQawoC8fMn2BKRRA2CXSJqBwba8scH3sYZ1EVeFahlF/7fVtQJqLKJMfTnMde+CF6yze59+7bSDrkBGAsigIhMiLhIY3F0wFYQeFmZLJJ7jUZz+9Qhh7dpafwvGWyYgpOUaWG2JMIo5jLAk9qUCCseyjQrjU5Ai0XeOJD91JHfU44BM4ZZODIizlvvfktPA/ScYul6Ax5eUr/zgzjSd57+5Beo8vymQHF+IRkbMnVGCFywiCgfzAnaki0VyAcjPKEKIJmw1AVJaaskC4kDGKq/IRZvyRa77GxfMjpBCbzGZsrEUHgMeiHCK9Eme8KD/9Yx3d9JWmkYDYHTxGv90gHY2xW0lvv0ektMRxNcPMEBEQNnySxTA6HZEnFl//tn6B/+k/on24TRoKyDPD9irIscIh65mEUAo2ztXm0kqK2bxAsGlCW47uHdDbWaa40KAqHrJp86fu/xL2dI178xou4cUqvIVBll1hlrD0S4nVha/Myrx7fRIoPSdfcIp9JSqSUlCZH1RV7hJAP+VeIhd0KAldkTMqcIGzQe7AZKzDW4coKXwowlqIyCCUWhtcfRAt+eBg0sBAcPIRpi206FvOu2lbjXDOi5Smsg0FWsJ/k37H8+C98mad+/ve4P0tZCX1WIx8t66pnUhn25hnZRwDKldDjXDPiJC3Ym2f1vj/yFfGvDJEfrP9R6323baeVIvSbvPWFy3zmN15hx3oUhaXM7cPcbiU9pBAYDM7UAg4poDJ1dUQqhSsN6XTG+voaBoESEhU0EbKgqhKcsThTW79I6dVVZFOnvlhXIaVgcphBpZGlZXpYcXJnwt7hHYqqQqo2p/2EX/nlr3Lnxg6tsIVWgEhA+uSpIowCZoMRSjmE7zG3U1IHaZpjTQ2+2502QSNA+5ZAFhhOKUyGyTL6u8c0Zytc+b7vI1A+0/4BnrrEdH6PaTKg0W0yr4bcefeI/uGU3d090IJsWjCaFFy5cIb2RszySVi3lVzCIBtgc0Nicnb1lNwuUxQzJuaIWRmzubLK5lobJUPm0wEbGx6+yihKqOSExy6s8/0/9CNkJsGWCx9QCpIqo7IFphSkyTFJmvNoGNCKOzTDL/Dq+2M21h8jbPToH++hsylFaknGtZCRoMKplHMX10gLj6yIKCqLlpZPf+qzTGYzBif7fGJzmXw1Y5wMKWUTveaRZiVlUYsJB7MZy8027VaI167wqIicR1alDLMpDb1G7EFaCUoRggVrJIVWTF1BeTik0VziwtkNxm+8xHQ8J44TZDDHcxUFFhW0WDl7gRzJZDZlYgyrG6tUiWF3d5/ZPGH94ia0Lfv9U1pNi5U+2/t9CjPD2Ix8NuaRJ5/DlR4v/f5XCYWH9sLa77Q0DAYnuDff5tI1gbfcIaoU60sbJDbh8N597h8d0Go3aDciRuWMndsnCGsYzg6p8hw3LzieOi4/coazl86xc+cee0cJ13oxn/n8F4jbbV7/2st1BTLwwJgFCFWLeM4PfFYfVFM/DFIfANO6C/bgcZ2AVV9TwT6MTRX19VaoeruiLlB4gWN1bR0hDEcHx7WgM00W6VkCJyRGCPKyDpDoNBsoL6coK4rCEEqNMSVSegRBWIthlUJ5AcpXdVteKoqsxJoKp+RC3FVRVsUHtlso0jSnkobSGIwB3/dptFpkSYIQkqqoGJcTirLCoUjTgmbcJAhC8qIkLQqccFhTQiXoLbdwOiZNM8LII88ccRwS90JGwwl24XdY5AW5K/CD2tu6LEsC38MPfOwCpDrj6moxtR2bKSzWeBjhcKpi/cw6fgjJfpNmD/YGR3Q7kv5RSU6F8iSN1hLJzLB5vsfVK4Ibrx2Q5TOMUCyvbZAnKVVZkqcVzUZMks5pBz0CT2PEBN/zCbwIrSTzWUGRGbSOqSqJFZZG26fRyynyBOF6UAqydI6ONUFHM5/OaXcjCuMzGUJ7xUcIjTMRWVoQNHI83+Pk9JDKhhiREcVNSlPQ9JdAOPzVhCoRZKOSLI2I/SWEgSSd1xPa0tFud8FJTFXQanUwlUTIiK2zF2h1t9j64iUkJYe3t0FViECh8lrBL02J1A1KaUj7Jdc+to5NFEtLPWRrk95ghs4l5CmRMGzf26PV7RFuLpOX4AlRW7gtzhVnDUoo9EKw6GTt8fvQcPhDd8S6uuohbEa3dZbv+cSP0ulGjEZDKCOQO9x4+y5H/buk+W1yP+H9G32qYk6sWhQCuu2zNJo+toDDgx3CVkzDX6csHeV4xCxLOK62UYMYX3lcvPIIodYsd1rcuzuizErKdot2FODJksl0hKBHIVIwf3KMVL8rUA0KQ7DUIJvNqaYZWZYyHA9wviDJM2aDOUtrDarKkc5KyqxCakVaJNy6vcuZC5I7dw1hoGvPThVRFCmmklhrqMr64vAg0vMBgLRYbOUQpsLLStLjPg5BEDr29/Z58aVvsfV4gzt37nG269M7/yzTao50fY6zhNE9ODi4QRiEGFO7UlvrQNTgOM8zgkCjlECquhrwDz79DF/cWP6uB+tzv/h1AK52LdRN8Q8drMXP8Duffn/0we+Kig9gc+0w8J2grn50oRlhHLwzmKEEXOk0qJzjOC34qDEp6tSpv/WnrvH5syuU1vKr9475i7//9nds35OC1SggrQw/8ehZfvyRM6yGtRXT6ycT/u5b2xymOc7B08stfuLRc1zrNVFCcH045a+/cpOXDof/0v79hS9lYRZG49RUguBBlWUxLFAs0mo+eLdwvLsNOD73i4fcGs8pF9w0RclWM6Tl6RqwFyWHefGwovoA/qbFrHYl0JosS7l//z7nY5+2p7iXVqS2NvyOpSDCry8ulBTWcTJLmJTVonLt+O9+5pf4qf/03+eRT36K/cGUg71Trj5zlenYcGf/hEY75gtf/gme/cQBv/vrv4ISijjugdDM/BknJ6c8ce3jDIcnjEdjlPPIsoSPPfkEjVbA9t0dlPToNJrMiynj4ZQgdEgrsNrSXZH4pePlF3+b3NYJVM1Lz/KJZ3+M/MY3+JVf+DX6+YA8SZnNxnQbAY6KNEnYOLPFPK945/oNyszhtTSN9TMM+ymmnEPlGB7O2OlOqWSJrODS+Q3mlzzSUpNPB0zGQybzHr3OCmU2p5QZSta8LlQFRuAFPlYVmNziaYkfACYnUIqqqLCxx537I0YnM1aXt7m3s0tWSbZWLbGwuKZi977hwmbA2prEC3KO3jvlYGcfa2zNH4tgba3D2YsVSzpnOnMI9QQCy2g0Q3sN/AjmkwlJmYPzOZjBQerwAo3MDZHfoLuyxkAEHJ+coitJahtMvFWidR8vnxOEDYaTKU77bF69wtnZExzsbSNlQmd1g25rg8H+LQ77OzSXV3j844+zf38bIQv2Dw+ZpRmGlG7ksy5DTrMhVWkIoiaZzUhnY6TJcFlCu7nC2spVLqw9QjPwePlbL5PMZniBQmkfV8JwdEpx/ds88YlPcenKNYSojcIbcRuLhy0tR6MjtJKcjI+5fecGyg/xFZSlwek+aV6x3gg4//hjtDdW0V7Mt97c5vzVZ2m2e3zr936HNE8JAh+blR/4oC7U/A/a/P/XyumHR32trjscD5LxnIOyKiGvt1WU1eK8L1Ceot1t0+61QBiSeR1WkIxmiIXLgHCyFiw5R7NbBxwUZUmSWVbX2iRpgq00zkqKMkWqCGPr4JhmO2Y+LynyDOnqCFbrChoNjcAjTTOUkigpyPOaMqBkhBcofFnzRifTMb72wFq059PpdCmrBKkdWimMLUizKV6k6UVdZvOEJM0XrjCafFFtzgtD3j8l1AGlUjgLtjKIh77dLCbfCqkV1hjSeYIfhcSNmCRJEAIqU6G0whiHtRXaBycMvtdg9+4JnqfQ8ZRZZsnTkv07jtk4Ze18i8Nthc0VrabjaG9OlVWUVY6rPPJM0S9SHClVkRLHLdrtBkoVpJMpng+ep5gNckwFWvoIAVHgkWcVlTMEDUeWGqJWXrfBS41DIbBk04x0GlAWErnikH5JVqXcve3RW/XJiwnCNVGs4OwprXZMsxUwHOdYJH7QpRGfoXSnSE/RXFLMKoWVAbYQTGcFynlgHEoH2BKSNCdqxHhBTNBoI72YRq9LjMeMgKe/54c5ufVzKE4pAS0EjoDCywl8DW6MnEU0zNNsnN8kbDxGZJdYvvwYXhyTygytQ9bOnUEpR55XdfSq8+rvvJIoJXDGUgmDlnXKmanACllzmD9EMRRCIlBYl1NVZe3yokJGwxyI0Z5mOpvROduk4jytxjpGwXAyQUWvE+oGo3HMeHKIr86yvLSKdjHNcJ1Qx0htmSVHDEcz4qjNbG5QQe0YIzNDt2nJM4+94zamkZPPEuYiIgw3MNkpSSaR9o+nm/t/Z3xXoNpcapBOp5R5jic9vLxkvneMSAs6Kz3KacLEJlRGM5mM6LZ6FPmcbqfN6WjI5ScyRtOA3duKqJliSwVIlArR2pImGWVlUXKRH83iJF4Iq6SsM6uLZIIZK0rTIJt7/Ppvvsgny0vIaER/JHhPeDS6EcZmtDuK7VdO6B/2UaHCUUfv5Xm+4GBplFIYW6KVB4vK7X/50vv8Yc62D/ilsVb81LNX+JELayyHPvvzjJ/6+nU24pD/+OlLnG9GJJXhN3aO+Utfu74AVnBtqckgK2n6ilgrdmYZo7yGrg/uBZ6UNH3Ne8MZ1jmMg6MkZyMOOE4LtKgtYz48Cuv4e59/illZ8eQ/+V2udGL+4Q8+y1965hI/88bdh8udb0YczDNWIp+v7Z/ys9fvM8hLtBT81eev8rc/9xTP/NPfQwnB959b4edv7vGVnT7jvOLPPXaWX/jy83zqX7zI7vwDkK7EB6KLD1eRH9za0o+o6n4oXgEA39mHFIfjf+8H+cS/+H12ZhnnGhGVc7wznKGE4Eo7xoSOozT/yA2ahTdkV8uH81frHMbULZnMWHZSQ1ZWOOdoaMmlZkBSluSLPHRw9DZWufDYZznnwXu3B8RasHf3babK442X30KzRLMTU5Q+7VZAu32Ww8MhVy5d5cd/7Dm++MXP8bf/9s/w8rdfx7iSshI0ele5evVjiOA9imJAI1R86VOf5Q9ev8GN6+8xH9zAU5Y1FbMR+pyagqSa8Nijz5Cc3Ofv/+yrpJMTpqNj0mKMK2uB1jQpkZ5Podrsn4x46kLAp77/EqFsYzF8ffeYJ3pdLi1tkOSQpgU0fPKixFFiRYYrDjm8PyAOmiwveczmM/b2DWdXPPAmlOUI7flIpZHGI0unCF3iSZ8stSRjQZaBFBLlOWY6ZX9/QqxauKTEdwmjsWCqHb6GdJZhCkM68klCRXdZ1zxCJRFSUZWWweldyvGcIIip2hKl6wmltRleOwWZgJQ0W4pAW4Sp8GeO0AmsUlw/3KehSoTtkHYvsLLRI793k9OdY6bljGJmUSpEUJGWQ+6+/R4379yi2Wriex5Frjk5nNM/vE1ezcllk/RwStbOCNbbtPwu09MZB6M9qqKiFUfMVYFpdVg+t4IKDYfHO3QbLc6fOYPIBK+//jbzScXTLzzDcltxcnzCG2++hlQWayVV6VC+xGZzbrzyGr2VCzz5qUe49Y2v4QZ9ti6cZ286QLuc9WaPXnsD5n2Gk5wXXvgecpPx5nu3OO7fpxlskReOwc4JOvKYpAPSYoMnn/88raDN7/7GLzNPk4UoahEAICRCSoypFtck8fDfh2NYH3hNSwlSSZwVC1FVbVpuF5HUtYtKnfAXxzGra2dwwiKFR2ulwe13t8nSAjBIJ7HGIaTA8zQ60ljPIrSkEcd4fkgDSb8/IbO2rt6KKUifIAzAQp4WzGczAh3gqjqiNJ1nFPkch6TZioFayGVKhzGgpMZJR6vTpGkDqrJkNp5iC0sYR8SRX6ddmYqqtNiq1k9orWnEAVoLkrFByAfUCUlR5GhnCQOFLzS7RwdoLwApairaPEVJTZ6nREFAI4xQQtLutJmnKbayD2loZVkhlUAID4dBa79O4pKGe7cO2Ty3yfrFKarSnE4LnAiYDiRPf3yLuzd22LkxxPND0hRCpakKgxcUnB7NCJsVvq/J8oLZNCWKG7WYy2SAReg6CMD3BLbU5KXBYVBS48sGxiQM+zVNT0cCG/o0V1dorzhmR21c2aFQMwJ/Cc+X5LkgnR8TNzSeE+CGSE+Sl455OiNuhDTbkpOTku3tQzqrM8y8oEh8dLWCa4zZPNPj8uVLvPX2a3SXFMapWqDnan5wnuUoz+ApRVk60smEUjUQZcI0nSEChazUoupfx/HaLMHTsLF6ibNXPoeIQlIZEOoVVnCklcUqi1AxOgwIfXDOw4oSz3oEcYz0FEKpulsh63RHrEFbiRKamtNtQDyY+GlwAucVKEvd6aMikC3KMqcZCPZOd/nmt9/kkbOf4MKjXXYP30PNQ1qd8+RzS6/bwLKO73UYjHZphE1KO2U222F55QzN9iWiVkoQLRF3PDylqIxGFgWxp5BqjvULus2A5HSACBWloQ7QoIF1KX9Sxh+i+s/xYx/jDJHysYvWxPh0wHQ6wXOG2cjDV21UkZEmfVIMS0sraFdidZ/P/msF//C/BU97VA6qSlDkjrghiRoBWZYhdd3GNaXhQYlcCEEpcywewsW40iBxCF8jPXjntT2eeqLDzvSE3dtztlZXiHoBd+9YXnvp2wQtTZGXSCXqqEAp6xl/UZP73cLkX0hTVxIWVe7r0zlC1HxTUzpi3UII9R0czv/mM0+y2Qj4N3/lVe7PMi62a9KxLzT/wVff5P3hnAvtiJ//oWc52wjYnWfESvGTT1/kc2dX6Pia3VnGX37xHTbigL/ywiOsRwHzquK3d074ufd2Hrbt3/wzn+Of3dzjB7dWebTb4C+/eJ3//W4dmypFPTO83I75wrkVfvw3XuVSJ8YCf+/te/yFJ8/zd9++R2UdK2E9K56VhtUIdmYZgwcgGdBSsh4HNH3FSVryj97fZT0OGGQ1kP3Zd3f46eeu8txq5yFQVQI24pCOr9FSUFjHzjTFk4L1OCBQtYBhUlTszTIeQNZrS01Os5LWRwB2gLxyWAcNT3GcFvwvX3yGz59doVhUin/yYaX4A94s1EpnLQWbUcTtScI//aHn+OK5Fb78y9/kpcMhBvj85hI/+fRFnuy1UEJwb5rwN165xW/tnQBwfDziP//pn2Ge/i1+/N/9a4yqIUutDoFfcHhwiCmmjEfvM9gPwWXkuWC5d5af/s/+Gh9/7lHeeuMmyawizRICaSgqiS0q9vevk+VHHB+fIJ3l3OYqvp/y5/6dF/jar1p+87e2iWJNW0miJjz7zCe59r3fg1je5Jf+t69w8/orjCY7SGFpBT5OeSRzRdBQKFlSpAmEEdv9kpN+SuTP8DttpjNLJSom0wLlh2jPEhc5rRiENVgXLOzXcmyh2Ogt0R8fcNTfYevcoyg/QggLzlFZg5IVnhIoESCFxm8GWOchvRJrc6rCokQTpXMcOdpfou0HDIYJSoRoIYn8kosbAXG7QnoWLT2EMYgqxeZzlGzjBwH5bMhwOqcTtyEzCFfg+Q4tNVpZZBaQzSRlIyWUhqY2ND3H6bygFYScW1nFsxWn+6c0Nztc2DjD2WbI7vGY/bRP7hzT8QmPPXaJxy5c5r1bt+kf3MUISdxsIM2IThSQTOe4MqW30qNSIcmoREhDWVh85YiVzzxp8vWDBCESzLxPIxuipSH1BAUa48Usn+lAVHI6HZEVKc4rEFoiXc1lFErgLVKdp5MR3/zN32YwGON1oWoJtqdD3FyyurLC0fAALS0/+iOfZ14qJhPFnfs3qJgyyWF/PGTa38dzdbJOah033n+bUX/EJ557jj+z3uMf/9z/SGF4SHmSi4KBFXWyj5RyERIgKMtycXN33xGKUl+L6QX8AAAgAElEQVSrF9QlV4NAJSHPinqb1tT0rlyz3NxieXWJd6+/y87e7doX2apFimFtzF/aOnlN+g4jKrTnE3geSZoRejHCJoBE6xoY6NCnLHPKMiOOfKKgS56WWGkxpiKdOqyBMKgz4T0PfE9RUIcGTGdzwtgnr0qiyKPhB6TpnCItKEtFnpV11Q5QqhZCOWvJs5xJNifUPj6atc0eSVpgFXQ7DZLThF67R38yqvmKrvaDbbRb9JZ7jIdjPK25uHWeKi+YT2c1qE5TJGAWn4fnK5wrsbZECok1CwGyX5JnFYe7fc6uXuT+9Vt0zzSYpmAqyWAvob8zYW19he33j2m3Wii/JFcOW5RcuNxmOp/gXIRWDifnICVZkeBEhRf6yDQl8kNM7qM8h3EZOA9Ph8ymOZ7fpOFbsmKC0hKXphzdK5jNLVkypdVcprcSsn0rJWo4vKBEeRJHTBAGVEmFo8DZED+UIOdMpxrhJwwOp4jQY+uiY3Q8ZXDX8sjWI7hywq0bb1OUgvGkjo51RiCswuYlo/SQyaiP8kIm/fvc8yM6S2eoJiOsNCjpEGWJRGBEic0gjDSJqQh0ydHwmNsvH9HoCFwu8UWELyOS2S6D/QNaYbeeoAU+wrNUpUJHEUZKCivQgU8YhngL3YryPJTwHgoVpZIoWVdYcRqrFZ6sEE4jlcRIqEyKqHK6vSXOnTHcuPMujdVlhuN75JN1pIDV9Rbl3MfKDoHXZOfgDlG0RKPRZjbZpVAjOq01NMtkRVlPunxFq9NAZB0SU4u4nKxqkZ5uokQT08g4GUpkZZHC/8Pw4x/b+K5AVTiFqCqUtDS7MdksRSiNFK52SNIRQhlKCqxUCOPwhcHmBdJ3lImi96Tj4qOavdvQ6JTIvIUxU4wLweULz1QPnML3fHJbPJzF+yKoLbJkQZVVkHmMBsdc2rqKn8cM9j3On38GUXmMT8bMxxW7O4cUWYUVCcYIpPKQov7C5HkOokR7jqqCSlTEXoCoPuBiWFuzna21BFGEtHW6iRRgHKyEPv/WlQ0+87++xP1ZXdnbnqSA4O4krZNahGN7kvIPru8Q61oB+z989mNc7sT8+d/8Nm+eTrjSjnFAy9f8jVdu8Gv3jjnbjPjnX3oe4xyvHH9ggfVnHz3Hf/Hy+/zqvWMc7iGIdQ4sjke7DUZ5yW/c7xNpRdvTvNYfc6EV0/QUubEsRx43R7Xl0APM/en1Lv/sS8/T8uuvwX//5l1mhcEBqTH4Sj6scD+x1GQ59Hh7MH34ui60YpQQi3a9w1f1ZEAKwb1pSmEsvpJcbMdsxMF38GxXIo8744TUWNQCcH94tH2NcY6/89mPPawUbzZCfuGHn+c/eeYyP/PGnQ81/z8Y5xohJ1nBl7ZWaS/eFws6AkDX1/z6/WP+69dukVWGH9xa43/+gWf41P9J3ZtHW3bd9Z2fvfeZ7/jmmlWDVFVSSVbJkiwsDxjHNKYZHGjDioGGBR3CaoYmGAOdJmmGkBCgAYNJB5pucAwBm8FA8EqC28aWY9myRpekklRSDa/qVb336k13vmfYU/9xXpUkbJykk2669x813LfuPcM7d+/v/v2+wx89XHN2PVjnMXrK5z//p8TdNusywBiNwJLMtokWOpheDtvb2NCxur3Kn3zko8wtzvPU2RVm987jnAIVUxV99h6YY25uHlfW/pfdrMlcE8qd53hp/RG+4o0nOfdCh6qEN/ztB3j+2WuoPYcoo0We+ujDPPHJP0OX2zTjkDIvGE8NMnLEQYCxMB5qhEsIG002BhNW+wW6GhG2QprtNmvDKdOqNkKf786ShpKJmSJzg4igDCSRFiSiIG4mdNotCCbgFO04YsdWCOtJRUVlFdK1iKRACk1mJLkpCZ2i0hIpQkIbYUvIWh0C1WIwmGJyRyOcJW06pCiYuhKHYTLRJJHGewlSYX2EL3NaYUrQaKMriSoaeHJkZmsz8UFE6SvGYQ/tBM3dDPViJ8JPBYNBwbjwjIoW+5OMfOccjy8/xIkD+2gvNOlrXfOSVc7M7H6WDt7J5s4217Yf5eKlFWbnO7QX5tBVzuWNVfbPLNHuzHBlc52xzjEup7QF7ayNEiE20KStJl7N0N8Z4l2MSwQbo3WW9h1jrjVL79omadQhjpvs7IwZre/QaS+yZ3HI9WtraOOJA08hag/TZqiYjFZ46i/XWDh8hMOvOYm0nn5/nX4UMdOqKArHtc2SZraEtDv01p7HVZrhANJkQrOTkZqCvJqyOZiyMDfLnXceIkkiIjXP8dOneerhxwlVQCU0TlqkB6hTA4MAAiV2OajcTKW6wVmFWtLovEFIUTs3+GA3WKCs6QEqxHmFClrMzuxjMhywfnWdYmIReBwaL0VtX1ZZVATdbpPIttFRSRZllBZK08M5iBsxwkoQirRTEcmAQnq2dgYoKcmSCJzGakEQtVBhRVlOKIvxbgXdEQZNlE9RiSVJQqx1VBX01nfodJtEQUjpNLqoHS+98Rhb+//m7Kb7lZKytHhnaicHlbC/O8O58y+SNWNuP3qIaT5mp98jSptIb8Eo2vE8Bw4u8tj24wilWL6wTKsZ4EqBkR4rJEJb5pfa9AaTeo4zjkyk6CrHKkuYgnQdnBnSXUhIFgzzB2sKnbe1qfNoWpAXktGkwkUwdRXdMKMROiYDSz6VOJNRuBF75vfSnZcMB5Z0LmY6NlgjwSuUj6jKkmYzoCgSnPBYJ4mjlCBUdJdgp+cIGwY3LZn0RriigXOGRlIR+gbzS9vkk4h2FuFUxLSsiJoGpzO0z7FO4+ngZUl7JsM6hdAx+WTCzjWL8BmNmZRqavEeTj9wnEcee4xGOlNrS4SnFAava7/daupQLcOoXEdqxcxcCma6u5YFgMVoDaEAQqzLUVbQaC2xr9Ph3z75+8wtzmG1pT+a8po7T3OwrShEjzTM8SVUpqrFfQiyoMOzz71AUVSgbrhhOMDXQk8ZoK3Fuw6oSc0/doZQdKlEQeAjHAYjAGHAxRCO+dq/cycTNyFrTNi4VocHzd8l8bKiGVlevDYiDzZoRi2KMmYyKhlvj+jnMVZssdNPCItZ9h7ax3NnnsbYCGuXubU5ZH+rYKeXICYV+nqEXJBUYkK6ndIOOqz7HjL8/wtQtTUYOnryBBuDPsmeOczOkLLfoxXGBFmTiRkRNpq7HnCC6WCLIAgxRuP8FG9jbnuNYOWliiiR6LzC+YiqdLSaEUZrvLNY/3KL6cbwxqJECAjyvGB+doEjx49jdMVr730Ng62rnD9zntyM8UrSae9n5eoWwmt8UXu0Gi0Iw9p41Ps6IefGMTIVgd1Np3gFb7imICgSkeKlxBh7ExEdbNYk1CujMZF6tZzvzftmeffdx7it2yCSEiUEb/vX27vgdi/f8tEnuTKuQe25fj0JLY9yTs408cDF4ZQPnFvhXbftf9l7Dfi9F6/x0mBCaWv+1is5nnXlMWBYGTw1B7TnNY2wBsitMKAbC65PK/Rf4Zw8cr3PLR/4ON045Adfc4QzW8Ob4O+GOYGgBue/85X38L6nl7k4nN58vR0FXBnl/M/3H+frDi8xl0RcmxT8/U+fZV8W80Onj3JLK6Mwlk+v7fD9n3qWye6m4A++6l7+5QtXedO+WV670OF/+NSzXNj97JpVLFhMI77iwDynP/gQQ20wk5zfe/Ea33n7Qd73zCW0e7VgrRMFRFIycIZ//MAJfuyzz/Ohr7qXQAqSQFIaxx9cWHvV+a+Mr/Bdtx/kgaUOf3axQGvN6rVVvPc88omPvWJBfhkUt+dmMZWmGI+Ym1tgYC7z0PpFHvvsn9LbGVJUFZPxoG4BqohJb8y1KxtEaYrJJ+yodS5cWMb9pcJamGl8hvFoTFFYtneGZNMRZz/2ER76hgf5duCX798D7Pki39D/+PHJrSHf/fhlEm/xaUC1Y3ByjJQxyewsUWlJvUA7xTRvkQVT2o2QuWZMO5IEWYIxjiIPiYMQI3JQcW0U39NkacTe2SOkcg5hLaaaYXZxD52oxU7veVSrS28YsNa7ShlJ7th/mtnGHFPbJ4xTgnAFqQRRLKm8JtcFaSdgdXWDi+srxEFRG7aHDUS1RlhCo9NFWk2+06e0Iw7M3MJSax6/EREXnk67gQot8yZmb9BkdfMqz54dcKC7RNUAm8VYFfP4Y49w5folDi3u49ShA1zpvcjq1WeJbETgHLYYkHZbWNGjUhWdlkTm9eIYVQ1m5vdgI0tLb3D6tad48XKXtWvL7OsmKCMY5jvsTK8yrUqurJxnqdWi2w5oz83y5q/8arauLPOZz30K5wVUBuUqZFq34ISzbF16iWJ7i4VbDpG0AygKUpWShDMMt9e5srJFFmfIICV0julgk2t5j/m0we37GhxYmmUwtbx07jLrVwrm98xz58mD3HL8JBefX2Z7sEWkQFiHV3WKoLrZorzhl+pfoSOo5xbn6mS/G9oCu+tDXesRFB6Lp0BIxWR6nY9+9MM1QKCm2Wgt64hWoNmd4fChWRppTtJNuHj+OpMNDQ2FairmWosU4xEyDikqjdZ9QrtAGKVMhjnOearKMJ2UBEqgZIKuKpIk5JZjp1i5coW8GGGtxMcFRTWmLCqSsEEcJkgl6bQWSOOASo9ARSAVWpcEoWDv/gMImbBydRXlJHlvQhZKrHagPQmKQ/N7oNK0Oind5gxr61dZmOlgVERRjjBOM5xsc+bsMs5WuMIjSekPR7TSDnGqKMoJSdRiafEw08l5wrIk12DjXaqC8AgjcXJMnHjMOGRrRdNpNFleGTLYzDl+bA9hBq4YMBkIFuc7jEYDxv26elbmBquHgEQbRab2sbRoWL70NLOzbXAF07GAKsIog7UB/Z5BiRZB4pCBQ+saoF+56EiSeVyUYEyBVA4rHE4UEJZM3BQiidIxlZvQ3y6I5AxKGbQ2eB3jpWU6KnEypb9tEdJQTSWShGIYYIwlikK2rw9pd1qsXLlCp6tIUsl0VACGdqfBZJxjAkuWKRwaPaqI0tp7e7KxU9M8hEUoh4oEVrg6XUzUARxp2qSohkiZ02zVPNEoEzRmWnhfoVyMIqWwBqEUCoEXGl1OCaSn0agLa25X/GudI1AJ3o+JVIZlghcGbxWQ4oMBkQpx1hDICpcblGxh0XQXlugNNzHDmMMnFll+YZ1pH0w1IGsknHtxE70lCbpjxExKpiTTUY+ry+dJVJsrz/TpNLchapMGFVfOPEOvl6ONpHN8kRN3HsJV17E+Qkwl6TQjTRVBFNKrKtIgIrDqi64lfxPjSwLV3nCMlBBv7eCVoipL8qJAhAFa1NnJcdbYNc6H0Xhcx9/NhhgscRJSlB7rNTKAUhuixGBLjbERUgYo5ai0vUkwB27aSmlf76CQdXV19do67/zmb+feL3uA+x68n44XjItNcn2dM888zS/8/G9QFRMioYkjh6dOM1FK3RQF3ADDSimMNYRZg6wRwVbdzm5IyY/cc4x3HN7LbBKyNq348UdXWMpCHlvTBLuCg9ctdnnkep8b0qDjnQbv/1v38GtPX+LHH3mBlXHOO2/dC8ChVk0NuDLO6wna7VZEgTfsneUn7z/OvkZCpGpwO6w04W4rHeB6XqCdw7yiMnhjSAGltXSigPQVBr2tsP7VjrVlfzMhVYo9Wa34UlKQBZ40UJwfTBhWmg9fXOMjX/M6LnxkwtM7I9TugRbTmD9++3184uoWP/XYizf5pXL357/4hjvY04h5x795jOVRztF2RiOQNDsZP/fEeS6Pc/Y3En729bfznnuO8VOPvXjzHL/j5AHe9dEneXp7RKIkJ2de9mF1eE50m/RLzaVRTiwlCsFL/QmHWimdKKBfmpt8XSUE+5sJFwdT/vmb7+I3zl5mfbeCK77grtXXMKgMX3Vwnrkk5LmdV/vbnp5v09OWq+NylwP7Mih2ztfeqAjG0wmTyiCDkME4x1UWFdbUlWYckMQK6x2lLupovSCkKPJaTLhrzF4FEQiw3tHv91gb1tX0G+K9/2JDOrav7FBph9q9K9pDcWmnzs72ntWz6yDq/OnPPfRk7ZHpBdqCxFM/YjWX0BhV/1x68AFWA0iSNMVYjQokZVWRl1Ocq3nBt7/pLgabU9bvcJy87TaUUSzMKQpdMNU52mniTHFpfQXbH7E+6LE5GBEGgkTFmHwD8gIlFM4ltELJsZN7MWPHzk6P1gP3svfO28iGYw4sLbLQnqd66lHOX3iewsYEScxaNWY734KRZ227REuNd47WwTvoNlI2t1fpxp4gDkgjR5zklL6q04pySWdmhqDyXN2cYkJDSyYI6entbCPldYJqSpeCdhpTVuusnN9h/cIFGu0WraxCmXUqneFGY+bmD9M4tJeXlpeYAKqq8JOC3iRHCY01AmTCcDhicOYMswtdDj1whLlj+9i3eA9rV6/yzFMfxoSKqN3GiIDjB/fw9q94M8cOH2O4+RxX1pdZqBRvf+uD7A8E584/z3CwzdzSPGGmENsKFaUYl9fdJ2nwzuGdwrhXg9SXh+CGl6rYfZqEdEh5Q0wpak9hkdQTutJoU+FdhERhtMFYW/Mbg4CF2T185dsfYGbxCs+fXePk4eMsX9ngmRe2meQpVkgmE0GQQbPbxBmJLgRjPcZ7Q6OZkQRNbGXZ2d7CoFEK8rHnyoWrCJEgdF0xHg0rjK6N4o0uKe0UGcDMfBttPXES1hGt1rE4u5dAKu49dQ9pmvCkh057hvOloLczIGwIpAyIRIDQln1zC2hboKc5kQrJpyVBJyDJMmzoEZFEVgEUOXGgOHpiia1+QjNIme2mbHuYTj3KC8op6ElI0CwoCo8QKSL2lFVR+1mrmHxnC394PzOzgokOObD/ENvXRrSyBideu8BouxYs67KiLCxWGKJUUBlNFDUJ4iY7kylXP7PJ9mZIkmVEWYbzIybGMM0N3gfUmwu726GUGF2hlMDahEF/Stzs4KzAmgCV1l2BIJ4lDBJWLy/T7dQhPmnDE/uKYhDgvAJRR7166zBao41HhiCkptGKqSYC5yxVlTOdrnPw4P3oXGImXYwMCbKU6aBismEJpUQ0LFVV4H2Cq1IKBlzt9UhlQhKH5M4hZU0XEUrWWhVSrNE0dv1Xs6yDVCEQEacR7bku46sX6w5ApXFUlLqiGQVYoRjn09qHOKyTGY0xuN1Y30pbAglBUHcfvA9QMmNcjTFSIG2Ak45YpUg5QrgCEQT0tqc8+7mKYuw49/wamYFmKRlvNZi75x5uvysj0xUjvUxlPI3sCEIkHDi6Q5IqAr9IHNVK/yAL2HvrPoRKaHUTLn3qs6zuaITyVK4kjWcIy4CqzIm7gknRYzKsaGTd/7Lrz3/G+JJANZ3tEhpHf6NPICTT3hjlPVEag7cIKQmlIlIxk2JCqgLSrF23xKjTIArtWNiTcuRUzqVz0G0KKi3w0mMdCCURpi6T1wrSusfunUdZi5B1xVMKhVOWf/Wh93P3m7+cf/PQGbbGisRXVJtDnvrUWa5f3CCKDM5HFL4iiqKbxrpit2JbCzJqe5UQRxqG6OmEGzFP733jKQ40Gvy3D11keVhyKAsRQpAGksvjihcHBX9+6Tr/8P7j/OhnnufJrTFHWimHWhmRlFweFTy1PeHkTJPvPHmIT17b5sqoBsGHmgkb0/JmdS6Sgt9522n+t7NX+KXPX2CoLX/vjkP80Omj7GskrIxrMnMzrEHZF8ItiKXkyiinE4csZTFr05K9WcxtnQaXR3XE7A1hFtQA7XAro7SOtWl9Xs7XjgChkhxupzyzMyILFbNxyPv/1mn+7eUN/sEjL9w85q4LFt0o5BuP7eXL/ujTXBnlRFKwNim4rdvgoytbuy4Fns284sMX13jr/nl+9omXr+JfvnCVF/uTXQXmq0dpHc0wYKTr65ayPsedXS/bVCnG0mJs/c40kIRS8p23H+T22SbvPXMRtYumb1IA/sqYTyJ+4Q138P7nr96sFAM3QfqJdkoiBWt5RaIUv/TgSd6yf47KeT50aZOf/NwLaKNxxiClIksVKnAEMkABDx5d4j0n9nNHq1k7K/RHfNenz6IDTywkaVIv8t96bA//6K5b+Wefv8gHrl7jBoW9F9eJQEUlqAqJJCBQEkSIQ2G0x1lD3Q7weGz9XAUhgRIUWlNKze1ZDTBeescbuedPHua6MkShQona8ivXFR5JHErCQCFFiNaaqtDEUUSkBFoXeKUIgrD2LASGoyHtVpsoDOkPd50XpCIMawBbak2ZF5TlFO0NeMHqtVV0MeKlS9vsjJ+jGx/g9O2vIwwSwiAhUKACQX8yob+9Sl5OaFhFvjlmvbQYISG3LC202H+oQ5IFrGxuUU3XyfMxZVnw+rvexMJcl0Ym8WG9uL7m5Gni5B7++CMf4tzKCrKVUE5GWLPNtCwRMmKiP4lyoLwhaiu2Jn3G10q6UUArCekNSxZm9nBw7yE2wlWu9yfkbko5FOybPYJp7+WF7R5VscFsYLFjy2r/BdrNLjIK2B5PWZyZEFnFeDNkbf06mVhGyYK45Qg6ATNZg/ZYcfGFKdfHCqks1k/RkUS5mEGvz8c/+TRx8wAPvPFWLm9cZVTldJJ5msazOu0RxccYDDo8uzwmD5tsjyIy0SEKu+jFA7zu1IOsXHiCj33iL7CVpRHWBuuo2pqv9pGWWGNre7hXWFPBDVeAXeDqXp5Xasuq3QAA4W7SAiQBmDpK0lvQtgRviKMApULitElnzwyjaYXcgH3dFvffe5SLG22MbPDUswOm/ho+SglkBzOtwAYEHpLI0QkiApnSbM6zvrlNI2tgyqo296diMBqiSGpKgrWEPkB6iTAWZzxRGNNsZIQiYOf6Nq12k+NHTjDbXeSrv+FdTAvNeGq574HTvOt7A6gKfuLH3sPGw48SiKzmnyqFtgZtDTIM8FbUlV9fF3iWFvdw5x13sD3qs2dhgXtP3MWJA7fz+KMf532//Vs0sw55lTLb7uBUSdQIkUnBa75sD932Et5bnn5slZ01xd5b9lJVmt5Wjztef5o3fP1hPveZTyHDBIslTRP2z7fQJqEse6xd3cBphfAQpSFeBHTbMUjPZHvKzuplinKCchG6rwmbnv5aiRQBhDlhWt+fKhcIEWC0B5fUqZLKAJ40SpCI2knHBwSBIwoM0k2YbG8wvZ6TdFuIIKSdGeJYYUSFtYZQRXX3AEhjQWEsSZrt8p41qJw4nEHQxpQGE0iq0jE3nyFFhmyMKKoxygkqGxMFKSqRlE2BKwKOHz7CysVLVPVuG+dM3WLHE6oAQYSkJE4gzwsqbfHKUZmcycgRyphhXtSibGNBanAeY6nFj2VdELG62p1/A7yoO7kqcEQyxlhfh1fZGFfd8PvJUF7jvaUqFboKSVINXlFMByx0DmDsCLVTEWQCmTQoreHFM08ihUSritaCA6+42uuhiElSz3SsCcMhYaJQIsWqCuEEIlKEqUWvb+HjBiJ2hCJGmwIbp4RxTDmact9rH2TjUMXG9sYXXTf/JsaXBKrSQ6BCpnlOoXOyLEUimBYTnPfEIShfGzcPh0NaMx2kVQx3tmmo/USpI59Ab0dz8BhcW05xLkYIT6U1ReHqqMNd5Wmd7lCfkveeEk8YhXhvsYUmFYrxtTX+6Q+/h0GumA56CFEhKAmDkjCEqjJIAUkcY6wlDEOMridb527YQ9TXJ5RgPNxGhXVWUjcK+caje3nbR57lws4EIRSXJzVVYHk0rR9S4Ps+dZafft1xfudtp2ntCqN++cxFfurRF/nx+27l5x48yVObQ/7oQi162swr/vTiOu+551be/emzXM8rjrQzEiWJlWSsDZXznOg2+O5ThzCurkqcmm0RSsHUWDbzkkhJtHUc2KUfiN0/tgvNo9d7/MqbTvFPHj9PEki+6bZ9/PbzKwDoXZP8lykDnnce28uHzl9jdVIyE4d8752H0dbx5OaARqi4f7HLr7zxFL//0io/8/hLr3oubjAIWrv0gsvDKaGURErU5y4E9y92+e/vuoUT3SaJkkgh2MjLOjt89/5f2QXigRRfECKgnWOnqOhEIYEUhEKymMXYXcA9qgyvWDuZaMvquOD77zrMuz76JC/0x5yabQGwU9bgthOH5MZSWMfeLObPv+Z+ntgY8JOPnXvVscPdDz43nDLVjsONmJ/5spMMK8OdH/z3HFya5wOvv5WtU4f49QubyEBSVRXORchAoQLF0Tb87/ce55fPrfD9q89QVpqTnRbWVIRB3e5MEsXeKOA7ju7nud64rkS94jzyvFm/4iEKPc6Luq5hPc5UCEytLt0FCM7XPpbeuZvP0CupNFBvMorSUeaW+dTxiw/czlv2zlBaz+9fWOdXXriG8wXGONIsJQgzVBjiCse3H17iW2+ZYyaq/X2f7k1436Ue16wiiStOpYrfe+NxptbtGlt7nh9M+NqPPYkSNd+5GQl6lWW7l7PdX2WhNebu43fTzjpkcUpVlAQyYjgekleOII7JfMZS6zDlwpie3mR1uc9oUnJ1bRujJFhbV2qShFFvzJXVNbJmg0g1iKWikSlKZ3hx+QLr2+tU+aQ2GBcOrx3Sx4hGSiGgmkyIVEzYd2ysjxgPc8LFFguLXY4dWEISsDbYwoaQzCjK4YDZdJ55KVlf2WJ8fZtJpyCM4TUdz95bGmw5zbWdHpO+xnUk803PlavLbE8sR3xE7Ka0mhEu9oRCcOJoxNF2xMc/n7M5VMRRQD6q8LpCBIpi7PnYRz7HpWeu056riFuK4WibdjKLLAvOv/QUl188Q5o0WLrjKGk7Ie22uDi4wMrZJ4niGR68/Rhf8/q38uGrf8iO2Sbd7cBUEpxxKCdqO6VdP0gh6s3iq/ipvm6bQv39rkmqDnaFqkEg6s2TdBgTgBM4X4GwSJGiC4HF0VhsovYuoq3hlsUIa2Yoq4CZ7hKN9pjCrpPKmIYTLEYpw7FBKEjCiJPHb8VVBu8iXJTQy6e0IoGy0N8e1D6kIkJXJVJ68BFOaIwrCO54GSoAACAASURBVGSEchJnDN1WB20rTOmYDgqqRsHV65f4nV/6NVABeRnwZ+//faIoxLmSlavnCOKgVvoHdeW5DpSxGF0RB0kNViJJ6SyjnT7L51bRCCa9LYZrL/D8wg698QUO3b1I1XdMd3JmmjGhDJlp7ePBBwNaR0cI5UgTxbjoUYwLOtFeVgcrGAcXX7rExV86z9yRDu0uuHJKMtdlc2ioKsN4kFDkA5opSGlQQmFNwGirQgWSKJPg2uzbf5RK54RRk72HobDLjPojDhxs0tsoGA6HBKJLGIFXFhEqhHOkqdgNOREUxQRrc1zhiaIQYQvQIXZqiJOSQCSYMiJ3EmcEc3v3M9kxeFtXd0ejOj0yiRsEKmQyrAhDj3QNnJUEQUicZkSRptFSuxG7BkNANtcicCU6t+Q7BWEBUTtl6dbT3HXrMS69+BIylHVkrncE6mW/YGcNWnsgqgWNUURVOYJAISX4oqAY5lhXEakmVQlR2MDYCuk8tjJESmKtx1iNDEIQoi5gCIsMU6Ty7DvSYOXFnCAKESUoUeJ8gHQCmUkas/spih2q0ZQ4arDV72GNpxmHGF8RKUEUago7QlQpsbSYtZgoFoRFiXdjTCGJnSSwE/TQYWOFtWVNF3GSibR0Gi0mqmJYFAgpSaRCiJiq0oSV4vqVbc6t7vCqBfZveHxJoFqWJZW2RElMkqW4vMQLgRaC0HsKVTvdWq0JQkmeTwiDiFbawEuHELW32Moly12nJbffo3n6YUsYe5wIKQtNkqgvuB83qqBpFNc+biIgCA3WeuKswcVLL+AjSRRYsjDB2ynee4zOUDJChgZj9W6Mc5089UpvQCFBSI8OJMKBNRqI2NOoW+PnNgY4wDtNEAYIJXnTnhbndgpiJZEC/o/nL/Mbzy3zQq9u55+Yybg+3eafP3tl9yLqiTxWtT/n933qGf7Rfcf53a+8h24csjLO+fv//iw//PBz/Ph9t/Hu00d5YnPAH55f49tOHODSqAZxlfP0y9rzM5QQKcnWrp+qEDUIvZ6XfNfHz/BzD97On3z1fZTO8bvnrvIrZy4R7dIBfumNd3CwmfLOf/cE5wdTbutmfPwdr6cdBYy15cnNAd/zyaeZTSJmkoh33baPPY2E7z51iO8+dQi5C6He/fBZPvjSKh743EZtEvuW/XNcnRQ3Vf/XJwV/8XUP8C+eXeY9Dz/HdqH5e3cc4p237rtpuA3crPJa/1frqfX4xLVtfjEKeOv+OVanJdt5xX0LHS6Ppgy04ZZWihKCC8MpHjg502RPFvOn//X9QE0HAPjgf3UvHzh3lV99+hJ72hkHmwnvfeMpPnFtm3/4uXOM9cvCsQCBeQUJeKfUvGa2yZfvm+OeP/w0Q225Mqn4X19Y5QdO7uc3lzdppCk+TnFAWZRUwLvvPsInrw/5wMU+cdRBKMNzucOLCHYVx1Y7fuK+k/zqi8v8N/tqmoh3LwP2aaF2OVQQOY3yntILjN/14fMBog5cqzHCbpVAqbryWlmLUqCEu3mPlQqQ1JZAv/6Guxlrw91//igLUci/evMpCqn4zYtbhB7a3RZSCJQKkTLg4Z2CTw03GFhHMZnwjUsN3nf3Pt7x2Cre136WxnlO/eETEDgKX2JdHaRgrMNbyCtPI8so8oJxuU0wnzG3MIsuBcJXgK65ml5wONnL5mSb69UmW3qHfFOhWpKsm9BRIQu+w84opzuXEqcCL1qkzZDLOxeYnjcsLR1E7FznM09/imcuPM9oMEEKTWlzRoM+3YVZpjaknE4Jq4J+UbdUZzoNtIKqGJMqgadkdXNEXAi6c01SamVumgaYPGCYT7iuRhw8aJjpjPns5SERTRZmNKka0ltzaC9Y2i9IOymulZIuDgm3++hqTKBKmirBBxG6qqASHNifcd9Q8onPWgalI41CnHBUzhCmglGxypmz60SJIkpDbjnQZX6uzfLKgHw6pBiVFMGYotDEcx1Ov+F+jt1yK8OdJ1i9dobPVut8xzu/lZ9+7X387M/+U559+hmiJAT0bsQkdRHhprL/lVXVl7dUQtxItqr/XwPZ+ruDF1hXOwoIHF5Y8AqjA5wtWdzf4JbbFun7hGHu2bd3kTe+5U6W1y8TqwZFVWKDjGbzIE2p2ddJObDQ4rKqSFozzLZSdCHRLqAUkv37DnAEeOyJz3HX6Xs4fFRy7fxlzr90niyNUEJinMA4iVIx1gscFaGSBGG9yZa7Bu6xCslSiZMDpLU0wgC0xlUSIxUJDi0U2LrAUlWafFpQ6rKOBcaS51MEmgYRctLHyA0QlonJ2SnPUp3ei9ovWGq02XxhRNaIacaS5v4WS4czTLDAM5ev0pnJ6F28xqQUfOU3PUg37XLp4jbnn5twdaVPFnWR+zpU2xPKSmGDMb0VR9iIme6MyIImvnRI1cRqh3UaUXksEjMCZ4eUGw6j+sRxm4WFBcx0TBbFOFPPV0kWIFC1Z20zoSgLhNDIQLK4JyHOLGYakXRbRGGDhZk9WGORYZvFg7cQBZbRpI45VbIWf841l9gMrzHVFV6AdlOSoE57FN5hzQRrAyQZaTvES838UsagN0bJBlVuiZMGSEcQgJn2KCrF/a97A7cdO8YDb34rq6Oc5ac+g7WWpBkxnU7r5DGrsMYTxx7nS0SQEmddpmaLqFUQpo4wsGxtjZDSEcqEqdvEVwWCAGsKRGDwVmK1QfhaeOgJMa4uaMVpQiQihqVm4ZiCYFob/MsQ5BhdCIJgSiNLiBpt9h3bx9lnN5HCEMgQg0MzJmrtRRURxJqpFiSySfdgQN6zFKUlVhlOFmjvsM7hkFQOfKBITEgaJ3hlCVSM9ZowkChhUYVnYkraLsWMS0TmyKKMtUlFWVU0g+yLrst/E+M/AFRzYq8Q2uKwTEdj4naTvUcOkY8nJHNNQiMYr+5QGE0j7VBoQ9zIKHxJPBU4BUdOCFTouPVOxaVnLZOdGGt1HWuKxPOyb5/bjSEDMN4QBEkttpIelKLyhiAEJ0uUTtDaEKgUi0VEps7VNcFu1JzG74JVY8zuVTmE8IRhgDMQBikCDQbWJ3UJ/8R8i/OjEmsM1hqyMOE333Kcuz94nZ2yxHvPXBIyn4ZfNHHphl3LKz2txtryP372BX7ysXMU5mXT+8c2Bnx+a8hzO6ObnNSff+rCzfe95oMP3fy3dh7NK4EeGOcxeFYmBd/yfz71Bb/DGw4BP/Tp5171+rsffu5mnOsXg4nf8fEz8PEzX+QnL4+N3Urx9911hB96+Fle7E852s6IlSSUgrM7Y57v1ZXNrz+yB0ndvr8wmGJfcdC/zlf40mjKJ65u8W0nDvDuT58lCwN+8O6j/PbzKwjgel6S716DAB693uOuDz60S6uQVM7x3Ld8Bd/7qWd4bKPPVlHRjULe+8Y7+dD5ulLsXvE78r4GzTcdCHYV2Ld1G4wqw/KoFsI56mriLa2UTAisMXV1SdZJMpKQNyx2+Ph6n99/w23c2kq4Mqn4tYtbfGyygbMWKS3vPLzEVBv+4to637hvz+7m5mVVX6bgR+5e5O0HO8zGirVJxY999jKLWcQP3LWXQ82IqXF8dKXPTzy6wnQ3zeahrz/Fh5d73D+fcddcxi8+dZ6/vLYNgKFBENYUj6/YN8fr/uxz9AuD9YrfPLfG996+n59/6hJhUCcNpWlG6TXTMud835BlGYGKgDqdbSkJ6aQRRVXe3HDKyKOtwRmzmyNfq8Ytno31AcJ4WnMBR2+dR1jDpStX6DQ6SCEw2qHQOFPxwsY2o3JMpx3gnWcyNNhBTiOVzO89zHwnZiS2kNEB9i0cw7ZyStPnpedXeObsU3hzmYWDKaa7xfyeilYTpNxX27CoNbyy4KaUZR3vivVoVzKZKtKgQapSZCxJGt3aN9pXrFy9hhtrshTiJEKYlGHhyINtZjsNSt2p5xM0wm2QFUOSPCOLb2FYTjmzMmCz1PQ2c8IgQ0mHyRVJkDEpLWngaTctxjlOnoxZmJ3y9NmclX5GP8vwVUE+mhKr2g9aW8loUFL5CdoXiJk9vOUb7uWOpb2YcshwvM2V5WXOfOYzrI3G7FlYYDGK6fcmPPTkZb757W/j/te/iaeffQoRSAIt0EbghUDctK36Qi/VG8WEWt1cT3hSScKw9ot03u12cWpOoAoVk3FBVUmyRpOjJ/bQWayz1dteUNkxl14c87ujkuv9HsP1ZwjTJi9cG3B4323ctqfNLW3F8gtXOHHkNVgGpDJiJzc8dfEZtsuCxZ0tEhGxNLOHfUsHsFISq4Qjtx3h8088zs7mNnGcgLEIGeCsQcqYIIgIggynLUHcII5ivJc00gZxlCJ307CcK7G+hDBA97YprCaVAucdMghotNswEQSBQCCZm51nYjXtrM1sO6URdwmkp5yMiLsZ3ZMxj559iXziOLR/geRESJwYCtfjiZVPI2RCnKYMt/skSFa3NRfbLxIpSW99yrCnufOuA4xH27z0xCUUU0RzBhFrzGiEHYRIUxFHMbHKQAcgDM5CFCR4p/A+R0aAnRAQEgjHtF8Si3nKqmB9xZGlTUbjHs1WQNZsMcnHOC9pNBtMxyOsjYhzweLcHPc8+AbCsE0oPdujy6jQcfyeA+S9ELeyjjYjtFW1Y0jc3I0Z7VJpSWs2odWJeOm5HaK5FkHoySeeJKtIWpAXCa2ZhOXlFYpiyPzcLAGSPJ8STDMif4jv+YHv5vUP3s0zz57lked7NNuC5YsrKFUD7UCFVEWOChSBFBgrUJGk2W1ydeMqlNc5cDzFySGBUpyauYfuUpMXPzuqW/pS4V1J3BCgY5QM6mLYjblPUtOxdr8f1lgacwlzewX9FUmsPJPSMPWW9swMh44EjEY5m6uWnWt9mEoS2cb4gsWFRZLZjCRVbDw7JrJdgsTxv9y5lwcafyVZ6D9zPNHP+Z+eu4TO9tEbVkg01oz+w2/8f2l8adV/VfvcTfMSrSsaWYMjR44w1AVRw+OsZTrMyfMcKSXd2Rkm0wJbabIgIs8tV9cEx+8IWHnRIQNNuxsx7TuE9HUUqbVoo3d34sGrW5Xeo4SlMhUIQZwo8qpE+YBQtzFqQBDU6joVSIy1KARKAXWIJlVV+3NWVW17dQNIKiUIRITxmtxULJLQrzT/+tImP/PAYX7kkcusjHL2pwFJIImkxLi6EhYryVwS1AKbL1INvAFSxc3SQv23x+OcuCmUEtTAbSMv/9qq4v/Xx/d96hl+/N7b+JOvvv9VleJ3f/o5fvp1J/jVN53iyc0hf3B+lW87cQDt6ojYvzq+6NV7+LufeJr3vvEOPv93vpzS1pXi9565hBS1yfgv71aKv+nfPUHpPKuTEinqVKwbt3RYGYaVIZaSHzp9lP3NhO85dYjvOXXo5qF+5DPP8eEL6xxpZlzdpSQIYD4OaIcBY21edV6D3ecqk9Czpn5WvcQ7h7aa2Tjk6w/O8d898hJP7Uz42gNzvO/0Id68cp2rWnOgkfA9tx7knQ89xSR/2W6sqF6+N7/84AEW05Bv+eQVlvtTDib1s91MQn7wM5d5qZ9zqBnyW285xg+f3ss/O3N1F/V7vunoLH/3E+d5tLfF6VZ48zON0ZRac1tjgUFluW5DlKyw3vJ0f8yhZkIzcIytpjAhdlKnAOVVTlkV3NEQvP/1R2nu2q791qUtCieIowhpDIEUPPzV96AEnNkZ8k+ePs8zvQnW1YCnNSsYb1fIIqDseaZVSWkL0sYepEixPiRJUpgMGA436k2sqbltWatimjuidotGs8toqhnpGD1eZ7Q8pDcyDCcDKDVves0JFH0+/dDTjExJe0+T2X0NJmsWU0ZInSCFJg0CTBYQJxG6DBlNAka5o7BT8JogjrBlQFVOyHWP6XYfb0OSpI2toHKWUW+bcDigne4jSRrEyQSlijpwJGthkojexhab0yEYR2wVxubkLqDvZwmFI/AVHRnTjqGVRYxHIdr0WdgX8HV7W2xsSR46M+X8mkapuHbwkBZvHZEwFOMdnj3bI4xTjruI2ROnOXbbfaRZjhmusbl2hUsbPchCovkTXE7WOXv2Uf7xS+dIzA5J2kYZA8LVboE3UqleEQjwSpAK7ApUd2VVQhKFiiCQlGVZd9OkrO0HPVjrkCrk2PFbeMff/lriJOXxzz9Hs9EmikLO7WwwMjnPPrPBpdWLDPJVks5eXJJQjK7RCzy6iNjMCxaDFsIlVGrM0E8J4op2LIljwem77uPYwSP0d7bpTQvmX38nh/ft494vfxO/9ev/gq3VbdIkRtsS6ev2scMhwrohkTQivLVoX1JoT5FPCaMYJyzWCqqqAlkREBGq6a7oBiZVRW4MGl/HhFvwUjDfnUPgKU1IwQRBgLMprVbIxmQbgoDufAtSj0kFM/N7ufD4U0xyTZKFzN62SF402bOQgrhEZR2DQcX84RQblNxyusn6uQmjScGe/bOsXxOISGCJcaXFJ+luWIAnSgN06YmSDkqAVA7jugQiqsG2ipFxyOWNPq05QUPMoaYBUZTSaMyTFyOMFhgcSdamyCcYHaKNpDmfEKQLlJM+pa1oxhUjM0IPxoRhm2JQMppsEMdtCDKst2zuXKfSJVIFiADC1JM0NYt7m0TEVGNJmtYboNacx/SGWDHEWsfi4gKKkGk1rUVZeGaW5jl3uWD52jluv3WWmfYGD3/+E2yvPkcc1Xx/JWIC5dCuqt0qAo+2Eh9VtOY69MuS62uXSJqKSHbYv6C40nsSkfWw4wmmqlg80KIoRxS9NirTaGsQQmCcRVtDmmWESYw1hkBK5g8nbPeG9Ncke+YDptt9smA/B045kqZho5qQLQZsXL9Se6qGTRYXO0zzPhQajGHPqQSsxKoJP/rRJ/9jlub/5HGxdDi3TWlsvQH1EiHE4/+PHOyvGd77+77Y618SqEZhiPQKk2uSrEE802asc3COVpKwtd2DQuNMSWtuFhmFFNMpe1odJCPaM2BMjHCaZgfKQpJ2DKgAJRPKckwYZQiiXcITSAVSBIzHU0DgAhBBhBSyjiMzEiEclinShwgRIpRDKrC6TniR4W5ogAThE5wvajGV1GRpE2umGO3xssRWnpn2HIxq4PGjT17gR+64hQ++7TjdKGB1WvEz567zM8+t8cg3v4lWIHlmkPPo1phvPDjLWz9+FiHgD95yBz/3+DJ/fH6zNqOW4L3gaNtxrl97ikItHjuYhWSBwgN9bbleGFQYofDsTSJCKbiS1+djdUUoXs3h9MDPPnH+Jlj665gkN8DfF4tA7EQhlS13v2D/90HyWFv+wSMv8BOPnkMIcTMi9XPX+3zg3FWSQFJZj/WeX3jqQh2rysuV4kTJm43E69PyCz5/q6j4to99nlhKPP7/ou69wzTL7vrOzwn33jdWru6uzt0TemZ6oiZISBppJCExBJsVCBDex4DsB3sRyGDELgastUHYlolmiSaZaIFYZSEZISSNUBjNjKTJM93Tcborp7fecOMJ+8e5Vd09M5J2MfCw53mqq/oN973vDef8wjfs7Gskg0PXdqX48m/oPDvV4onf+h8IINGSynm+/77HePN9j+28drv6HSuJ856zg3RnW9eMNTnRS4ObWKR30g0pBRNJ0JhLrUMqiZBhxXY4pHMMK8PHl3rcv7KJkop3nniWNx2e5lVz4/zOUxf42XuO82snl5gfQl6ImjgAg9SjCUSvbzo4zqvf/zSnexkCx/mhp9HQLK8GhYI4lixVjv9+ZpPXH57gv5xY3bEjftfpNb642ccJKC+DE4TcqaJNRr80pLnBSUFRlqxlIficaEWMho6qysnLoJ3sRTDOeHC9z8s+8RjjCbx6rMtQNREyQmvN+UHJqz70EMsiIcLwzw5P8e5X3cbdH7qfxVGBQ2CGkOgmlY/YWo9oq5hx36TKcooyo6EUTd1gA0uz3UREEhsrrLd0p2LsWsbGxiafzR7G5DmmqEKlw24iRILAsHtmhvbkIUYpHJi5hVFmOfHESR5ZfRpszPTYXvCexYV1HJZGK2JsTKMiR2ElVSaCI5CXFGlOPlygs9UG7ZmcmqbRVKwvj0iHm0BoC5a+4rHNCyg0hS8Y2zfJY1st0uWSrNB4lZEgGZ/ukicNRoVDNQ3r6QBfeows0cIxK8ZYPxcTRXDToTm6sWG9NyKaSNh3cMAXTi9hjafRiNAKhDdYJxAkoWptK558/GFOPfYkzbiJjGMOH5nl3q+9nZfefphuZ46oMU2rczv9/iprK+t86eEHufAlyWikUbpCeLBW4AUIZCBYPUc60NUuTJ7gZ66ihGZL0e5ELM4bpPBUrgQpkXFMVVna7QnufMkrGd9zEydOniQtJMkoCeoX1qKTmLRd0Jjx7J86Tq+Q+Fgx7gQrF84zTNuM793NZm6RoxEdk9MWlj0TM+TxOEk8xXC1z4neKYb5FmlWIRY3KbcyXCK465Wv41Mf+wCNCHqbFUZLYglJJDEYUgE2aWG2Rmz1U6JJjS0tWEez2UA6SxJFZN6SlSmmqALeVklsbtlKR6TZJq12C1QwidG0qLwlLw35cIQEvFSUyxF2y7C5OkDIEafTAd3xMRbG11hd38JUjik1xXC9YGpPh74pibt7WXlmgbZuUaymzE03GPVTnHbcdHcL6zosLFaoosGolyFkgvOWViyJWhI6num5hGxVM1ivsLpk76HdTIxDUcLS5jpZmTM21qCVDLn47IADu65j7+wYRZlxemFIvxgy1u5QDEeYMg9kJNmko9sU5QYqytkcLbK6PkBHJTopaXclUbuiPatI13L6qxWNuMPyygLOAq6gOyWQkxo9rpkwMFzydCe6jHKLkxWpH2EairXeOhurPSanmxS5Ia8KWlGHifYEW4NNBk89RoeKlb9cpL13ErF7hY2VJSIvcU6HNr9QRFJjrUNEGlmUdOPdHLz6OO31NqOth0mXh6y7iqz3ALrhiJua3ZNTbAxK0v0D1uZH7NqdoNolvbygyCrKXNIcj2lOCibmBEuLKY2kQ+kLhssQK4FsamgbYp0i45T5pYrISZq7DFUh2VqGudkZorgM1uG6hfOCSho2NzeY3nWpHX/aOBq+jZIQRU28kDjrMNZQ5hllUQAeqVTgLvhL97HWklhr8rLkmskw719448u5830PcXaQXqnH+A9gfMVANZnokvfTUO30gHFk/WC7t7B8AYFBe0+sIyrjmV9YojnRRmrFsLS0FRw5VqBEQrNrWVtwXHWtIN1ynD+Z4X3AwbZacfDLJbBJKxNIVUL5gG5yDqVq3T5rUFpjhSOOAqZ0OxBTSqFCORVby1F5N0IRI0UCKqeqhuAFzpW4XOOdYnZXE1sHqiPjeNuXTvO2h0/jnKfZbCOk4FN4/uD0chD1qSuzv3RyGe8lUkju+dhTZFmK0hIdRUgZKgv3vf6lvPTdD7MkfWAy4ulkGwCsd2cRQrBXhoxwW/3FedgfBF9CAOR93VYVdTzveffQM3v4amYF9cVXs23r3x5fZ0Twc7/2S2jVAFExO7Ob/lbOX33ivfzBb/8h3oZMUGvN1tYmjUaDTmeMPM0pTYmzHqUcreYYQmiWF8/zPd/93Xzi45/AWsv8+WcReCSCmWZMJ9IoEbC188OMTqSZakQoEUhhw8oylUSc7acY7zk61mIpLRhUhs3LnLKOTXQ42RvutPYdnv2dBt1I430gSC2mxc69dDledbuODdBUIUA9NtHhmd6I0jmUEDuQiERKjPMc6DQYlJblrNi5nk5upSxkJecGKd1Yc7Db5NlBjitKju/tcn6QMawcmArngsNZmBDgic3hDju6KMsQ+EiFVAqlNK+cm+TmqQ7/+ro5vPeMxZpbp8d45dwk3/KRB3f0es/2+kgv6nNvKUvPK/eO84M3z3HVWCPo9UpYyw1FjV323nNuK8XingeI964kSRROC8ZiRWjIB8zreK2OsDmqMMYhhaQ9PkVWKmwxRJLijSfLLUUl+O2lRZ7+lq/hnz54kbNpSaPIcThmCfvxnpPzfOuhXXzXkb18+HxgkN53zwskzCuPwQrQqH/I4cB4+HnuOPL8h15wpD1IL/v/oZnwszOmgEP/Lzf2AqOWtf3U5hZvOXkSLRVeQGEzOm1FUQ14/FQPQZtms0sUd+iOK0bpiP5wSJqXWJfTiASdTgMVOxqxZ83mbJwfIoWl1Ryjc3icTHkqK4gnxrnhGCTO8vCJdba8IGlJtNL4XCCcCcm5MCAkRbVKVTgefniRxx89QavZJGl26UzNcvzmm7nmuuvYf/gQc9cPmdjzOfrPrBKJCGMMFglSoLzbuR8uT3hFjYuWIsxTVVURJw3iWNekVReqdBbIDR6NF56lhWWsfICV5SWsF0zvanJm4QJRBP2tPhtbOdWoSdmUdNuCYVEy2koxZkjuJZubfVSUEJuMpBExNBmro4LRcIG2Xqa/LFjdyPjVmw7x8l0doA/LC5fO22tu+5uf88vHi3Z/mSf+P0r6HDr4/McOXnPl/2vlvM/lA36s26BIS6wY0GrPsjk/otINVGsCnVZcf8ywtpFx3U0HSHyDzaUNTpzfortrCtFwDMoMOhaXG665ahcz+xpkRYnGMxFbpBgny4e4WNOddfTMReLRLOkgIx+laFfhRgKfOVzlyJ1Fa4NXltJcZDRaphzmCC+Zmm4zynNGbp1K5GgtiBueqSmHdUXAL4sKpxStac1IDdjKSuJ2gotTthZzxucazOwxlLpisGbprTtiLRkNMrwLSjVjY+NU2uIGFrl1DteExa1lomSNySmN8QURCqUF3npcaUEGLL8qPcZr4rbjyfvvp737PDLxyMYkcT4kLwswjqPHd7M5TMnyEp0aCqUZzgwRsaJ1KMb7MQ4cP0TWHFK1ljFFjG5GtDoRqbE02hpRNRjmjt27jzA2PYuXQ+Y6gtXBs1Spx5eWuUNdJmY9sYrppTpIcbkUF6Xs2jNLqykY1ZdFU44TKY23tuZH5JR5gTElWim0UlSXw9J8WBmllCgZLFy11Fzez6xMnHDcSQAAIABJREFUha1hkrPNiN94zR1XvWT35FjhnHvP6cW1H/nMk/PPN0V//njX191+9OsOzk6+/iMPnvj4xfUhwOuP7hn//psO775mvN1UQohTW6Ps7Q89M/9XF9eGX217XzFQJa9QBtKiYGp6mqmZKZY2VkFCa7LLZGeCzfVF0o0ekVUIYbHliDMnTjPZblLZCOsr8CXtrma4Icl6nkg1SeIUvKYoDHEcNCmttWjVIC3K4AolQ8teqeDNa61H6zARJklMkOUR6OgynVS4pPuHxCEoyhQhKkQQ0MCjENIzyiJedM9uXvraW/n4f/44AEdj2LZxrQ/CpfP45QqP27DCnYW2vPR/4EDHEgWj9SvetrayGEgxNWXBORfYs/WCcKlDLnYqf5GOaj/hbUZukCYSIjAUqWW4thUBpFB85tOPIWvJojheYNiDg0dv4ujRqzj1zGm01rW2bFRjhH0NbrcksUD6BmWR0WqOIWNJ6iSVBeMkVgatWgsslg7KEoGgLIL0VWk9G0VF5VztWsWOgoF38NTmECkgqqP0d9SV4slGdMWxMi64fTW0pLDbGN9LIenCKA/nXOwU57cPHR54eK0fKqtK8kLj1NalqGb7vVpK9jaDicEn59f5yTuu4Qf++gnmmhFvvm4ff/DMImVlSJKYJIqJIk1lLA7P755c4P/6mmP83okFHh8WfMPhSQ53Ej61MsA5x53ve4BOtwN16/Rnb97P51e2eOd8IKhdGIbjd2RG8ehKH+egE7eIpOC3XnkV/+GL87zr7AajouJNx2b4347PYW2Jd6HqW3mLs6augl32nX24104MK8ZjzTXjLc4MB0gBt8yMc2FUUEpFHEG72WKs08b1AlkxiZqBMOAFg34OPrDU9yjHaWN4ttd/3nHNrWM5LTjRC3PR37o27N/TuO/1L33Bx18xOU4+csQNTVnkDGzB1PRh2p0GWb5EMeyzubRJu92l3YoY9jKstXjpsM4ylILKViRKkSeOtJVRZJayHPHgiZyV/iTC5fhC0Fs0dLznjuubHD0wzVOnh5w/l7FeFqi2pCl0YPd6cMJjRC2/oyXG5IzynLwYsLp6nnOnHiduT7Pv4NXs3h2T5xIZCZzwKK1xxlFVVVjg6irM5Yz/MLYTIR+Ii16Q54Fdb63bBjsh8Wjl6I53efFLbmH3vjFOn1ZspBk6SWm2PUXliSLDxBQUkSBOcrxPEYXERA2yTkTGJjYf0NYtNqpVTDxJLx8yyAuIEzItGJvV7Op4fuKTj/69XBd/3+OpIuXal+2loec4/fQWuw506IxFjDcniP2Q9vUz9N0mY+1pyuUWR45M0Jlb5PxKio8t1x49gvB5SBJ2d1FbJU89dQ6VdCkKg1QVDkVvtWLv7jZVbCjjeYgqxlUMVYt2Z4LFlTXmZtuMN8YY5COiZkSaFfR6G8RRF932pFXJaOCChKCQkIDTFWpS01IxmysVlRFoKdmcL0PQN1GxubkFok1jKmPqQEJVwLCfMDGpcKVjemKWvBxhTIFB0WgmICqiues5+vKvYbK5xbt/47e48bbXsjp4EKnBVY5IiNpqIqxv1loqGRFHjsEw5eBVCf1UUiwH9Q9blAyyipljE/QGF1k6mzIzN4sVlnwzY6Ab+ApiEZOMw+nzJxGTbSb2KtLNjDhus7IkmZzrIsZ6VL2IqT0TtNvT5EayegHanYiyWiUd9hhrz+GSLeJuQW9hiB5vszGYp9No0BCTFMOMpQsb7K5XqDKrqMjRCspU4pzBmVDs8d7haq1v7+yOY+QlDo3DOpANhxJyB3ooqBNS7/nNVxzHOccN7/zko7PNWL373juu/Yk7rrFvf+iZpa90jX7nNXsnJhP9vNhyMonUbz/57MpHn10d9Etjf+Dmw7N/9Nrbrnnp//3px88OsuqFtrU9vmKgmveHqCjgVtozE6S2YGJqHFOWeGPJq5zKWCandpE6SyPpULmKViK59qpZ3NQprIWyiFDK0d+oUJHn0DHH4oUIhMRjydKSZquFIPhcIwRxHOQehAgBrJS69jwOYv0hFAvVIO8FQgQ5CQHgQ9BnrSOKNFJpnAsSDbpV4X3MxpJk7jDc+vJZtrI1cuFp+L/9Wvd/e+rClfjGehQSxiZCRXi7+huIXQLvJd5JEOECq4WG0EpRFBVpmmGsJdaQJDFSebwvCfXncDxCRTXgpFbXPxGcYmqijq0cpZ2gKEdUpiSOG1hrSZKE0WhEs2lCAC0UxhtiBHiLMSWNpMMTT32J6158E8UopbexVleZCZVq74MgdB0kOSEC4Sa+rNI6KkiUZPdYjBKQGhcqrQ3Nf374DBACg7vf+zme2Lwy2To20ebprZSq5nA4a4ikJBLbFV2FEgEDfGGY0daKXWPBz367ojvdiDi9FSqvR8dbLKcl68Wl+ySuM4Sj3QYnt1LODHL+xX2P8fMvvZ4n3/gKKu/5kzPL/PJj5xBSorTmP77oCPvbCd/z6ZPEWvGR+Q3e/qWz/PrLr2cy0TyzlfE9f32Cc8MUqSWrFnIjsC54gJfOMzCWDRc+ey0v+eT8Gj9/19W844unWEoL9rUjYimJlaQhc/YmKYdmmvyL47vREq6uC5BawJ4mHB97vrNIK4kQw5zz/SGfWe3zk3cc4S33n2S2GfP91x/gvYt92q12UBrQEaYsseUIY3O+95ojfHazYCU3zDYS3nz1LIXzPJMH6bOXzU0xP8w4uZXRijRvuekws42Yv7i4Rl7DD57MszqhkCRJQjNuoVyEcDJMrs5hjaurch5nHWf+ye284oNPs5CacC/UVTwhAh7XGlOTJf0OZjKM7VbXpYRG7PzDDvPxcka7qBMb5x2Fyyhc0AK+/rNPBItR7aFSpHnB+VfdDkAz0WymOYnWCK9ZWOwx1o4pbUZZpGSFw+KpXExZleRZBrIiVjFSR1RpgZIJrqyJpMYjvcbYiJXNDFtV7JvZx/QBwdLFi7jZPah4lQOF484b2pxZtzx6omJtJaXVCfOBNXlwYapA4nDSsT05RjrCYCiGi5x/ZJlzRDjl8LJW4PDhGtJRRLV9H9dz1Lbo/3YxQEmJqM1f8jwnTgSBsCqC2oMXaC3RKmbv0SmINzl34QKiIdnVVZg8o90xDDYEXhhklNKZ1GRFTn8rI80zWmPTtKZitFR0mlNkoxQdtcNnF4I9ezps9LcQNDEoaF5Kch8f5ggZ9sXV3y2c93pW3a4A+HDsldBELojab6894VoLBKlnv+suXvruh7k4Kus5r07sCVJdgXgW4ExuR2mG52fPz6t6iJ3tCSnwwjIs+wgV5tPjnSChKIVic72PHQ5oRJJqo2Jjuc9gMkfYjGbSptOdYG1jC5+NUFuCsUMTTDYd1UCiKoHVls1BCTKhZfrsmetSVhHxZJd+L0NouPGq69hcWaIoS4jGMHaVwliyoYOxPuOHggZnpBSjXp/ueIqx0O+XzM5GrK700B1LtxtjegqbQyNuUAJ5UVLZPjExkfKoWNLoSqx12LKFFw4RGRI3wdragKwnEFGDzmTK2OwcW/0SrR1JMk1epvQH68EJanSRhz/yXoQTdOI2y2eeIosHobhjLJUp8LbuzkoQXlBqUFYQxYYzy19CdFvs3tVm/mKfzcyifExsm5S9nHbUQBhYWawoh02yHFY2B3TGNHOdFkIq/tHXfwePPP4XrK2dpTmj0VMFpciRooRM0FsRdPZNU5gRaboFukNZCLIcVJXjqoJyXHDNoWNc3Fig3Y5JdEwcRZw6sYhQERDm0sgV/MjtB/iGgzNMJRELacGPf/YMu9sx33/TPg50ElLj+MsLG/zkg+fJKotzjvvfcDvvW9jiruk2N443+bnLyLZSgHeew2Mt7tk7xV1/9tcXN4vKbhaV/fXHzy295eYjc18pUN3VjNXb7rz2wDf/+YMnHvr2u2+6/LnfferCxuX//y+PnF39Vzcf2fuSPZPts4Os9+W2CV8lUFW6ojPWZbY7i0wUxjqE0pSjlP76FnaUMr1rD91mG1OMiHSCrSQTuxrQXGNyFzQ7UGbB07k70abZHjE5LXj8iwXr8wntVpc8L2nEXaSSbGyuE8eaqsqBaCebV6oWGzYGfVmwrlSw+FMyTJq2luQJwasizQZEukkcx1hrECKiP8g4cmw3b/jnN2K1Ji/hG3/sbjwVmRVolSCdQBS2hh9YrDcolYDQCBzOVpeyEqVDwKFrHJdQCBXhioKTHm70+1Ba11asgkhrdKTxJZTWohNBnreYbt/N/OIKo6HBeolwFUIrlBJMjbewecmH3/tBpNoi1hZRjpjYNcm3ftcdRC0DCJSOcMYGmS4tqMwIUymSROOcQXiJtzmTE9MkDzzLtktXUVQ4Z4iiaKd6ogV428AnBlsJIiRV5bnllqs5erxDnvV58guqruICeKwPslCjUQgavPAs5SVLtVA/hGAgN46tQQjgt6Fv65UJ5xP4mYdPM5/loUp8RXQRhMVlrdfobMBglsBoeGXFGh/0VVeyKz97OSt2tvfk5ojnjrzGwZ7cSuvKpmAtr/jujz+K9552t4tAoOIE7x1ZlvGvP/MUgrCQK61oNFv82UKfd80/SrvdQUpFVXmSqEGr0cJaw2AwRGuNVJI3PXiBSEco2aiBFI53fPEU//z6g/zS3TcyFmuW04Kff/g0v/jIaf7ljYd4621XcWJzyF9dWOPrD+36Srcypr5nOs2EtvV02g1+6uQi/8fVe3joG26ldJ73L27yBxdWEM5gHfzEjQfY24j55w+UGO+4aaLBD1y7m45WjIzlS+sD/tkDp1hOc8BzfKrDL738OJNJTGosj673ef1ffIGFNN853tskOCE1skrAKbwUOwmZcxIvZBDHxgdyDyFwNK4CL5iONf/hrv28fK5LYR3vOrXGzzw8z3Y84IUPcl11MNBQgh+9bT/fcGiKbqx4YHnIv33gPPO1yocEphPFv7ltP6/eN46WgguDgu/55EkWhimlK/CmxNmKrKwwhORye0ztarE1X2K9IdYaW2Vsrg9oNBK06hLrAmsq0qHBW4eWMRCFIEhrlJQUrkBZgckckYrpTswgpGK110NKw3gVBVma3R2m9u5jfWMNJQX7rh1jTzTG2IzhsYcvcO78gML4YCOqCMYOSLwWOGFxpgQrkELglMALBz5HYEOiWYGQDiSBJS3YmQ/C/ROgWM5ZtFJIIbC1HE86yrBWoyNFllbgA8/BCsXM1CQ333IVeblGURkq51EjgVQK67doRWPkZc7KxiJJs4tSFqskOmkhS4cvDZkwlMWQorRoqSizAZE3VEOYnmxgI4V1GhlfStDk9p8enLU1NEqGJB6/g78VXpG4aAcrbtkmOG5HtrDdOquMoapKQDDTjPiZl13D3XvHKazjT0+t8Y4vXgAh6m5XkPna3kJDSX70tv18Y30tfn55wE98/ly4Futu2L+4fg//9NpZphsRy1nObz59gfvnN+qv4Ui6kgPHurTjBufmN1ic7+GkYny8QaQjFk/2aCYdZuYkFy5cQPXHaHRitlaWydd7tCdb7Dswi3CeZ9f77Nu1h3bbMuxnjHWaRFqR5RusDwuSuIEsBZFLMKJCNns4mZCuFWz0MobjJZUDZ2C8Aw1RUfUq/MAjvUIkTZIkYjPtUfVHtBpN8kFOJBSuaILJcbbiwvk1TOZpdRvIpsL5jE5sMSPF1HiTpfU+h47uoipKRlmJ1J4yX6ahEmSjjUew9OwTOJOTph1mb+hyvjzJeJHQjAN+s7IVxjqsr7AmQMBiY/BVRJEq+kXKgSmNso6Z6Sb5KCWNU7qTMVZ2kLogTTPWLm4y0Z1gY5AiswgbJzRmJxhGK3z8c58jbm2gm+EaaseW3oZAqyaxjHnZy76FF991nKXeCu9/50fpuQVsWRIlgsqmRCbihqvu4tixIyx+6I+Y1JM024rV1ZQoboEZA1YB+PmXX81cO+Z//dijPLNWcnSiCXgSLfj+T57k1FbOobGE333Ndfzgzfv5uUcuAhohBN96YJLv/vjjPLo25ObJ+LKVQiIQHJ9qslVWnOiNdogjX1jdGu1tN+KJWMteaV4QAfDLd9948PefvrD8zNaofKHnLx8vmh1vjseRfmStn321137FQHXvoVkazS5nzy8QJx2kjumXQ1CauDuBlA2kTHj24rO0ZpokjQ69/gDfUsQNw2NftAy3YNf+kompCG9yFp5tMDmbc82tsHTO4lyB1po064cMXQsqU5HEjdA+8rZe5EPFaxuDKkRYvJSKECJUG7cnFCklKhYUeYaSDYwribRBOEVvXUJiufbWNk9e7JPnwTkiiixaVQjdQKkShSdK2lRl0IjVuhF8ll1OrBsIukjt8cbUAYpFKYc1VQiaEWRR8MCOfAhmpQrfxVsPTlDSQ+omzWbCxsomn/vQe4mjqnaDkciGqiursNZtcf7UOYa9DZIoLG5OtFhd2CIbDKgwWKcxzqKkwlYaVKgGlblAa4tSgon2AYosRohNBqMhQssdAk6SJAyHQ/I8J0kSWnGTUV5hXMC8lbbEGkFV9kAMcTLiu/73e0jUOK7KkKqiwLGrs4v/9GPvRYigU7dtNRBgF2HiD0fI11WxgHcL4uGhevP7yxs0psdo1A3E7W3c93V38ZpPPULaS4mt32kp/22P+17/Uu78s0+R1JahO0PAVVG9eEWC4Gj23MqlA38ZMWy0eeXT21ARBfggjQbsIEZW6kUyM45feewcv/LYuSve/tj6gA+du9I15PdPXNz5+40vwArVNe5o2pRUroJBRT6An1pZv+J17foH4Ne/ENzI9gJo+OWHTvLLz9sybCM/f/PJVX7zyWef93xyWZnzWHK5rErOFdAauAKloITYaUntSzKUDcf05192A6mxfPv/eIhYR/ziy26gVxp+7fFFtrEegbXqQQh+/PaDHJ9q8fUfepyRcfynlxzmd151NV/3wcdDMKUEf/jqa/jS2oh73vcYvdJw7WSTUeWCnqG39NcyokTj0eAMSePS1LmwMkDJoDriscxO7grVUWFoJA286ZFmKVpGqEhSFgbnLSgQQqNlhFMy4Dt9zigf0Gg36chxBv0QTM7b85jCkm1AtrzE7KSi1erSL7tcc/Uruf5FN3Ld8QcpioQTT5/ngc98nFGaUhWGUeUwLqiqxJEmiiKEdKFVCAjvUcKhpMaa4NyHAu/MjmU0UEuN2Z3OjNIyaIbWS5YxHjMqg7A+weHMGc/u/VO87t4XMzs9QVaVqLajKkuU91hhEaIgiXwgaDlJfyuj3fUoHVFmBqtFwMk3ErJhhXaALml1G3hT0F8u8VWMUwKJoeEvdUeCXFAgc0ohcbV0lpIycA2cQ6CJrK6D1EuB6TYfACHRQmD89trsduaxX73nWjILL33fo7Sl4I9fex1bpeU3n15GKYmpu2lCSvCef3vHAY5PtviGDz/BqHL8xxcf4r+9+lru/fMncd7z2v0T/PAte/knHzvBlzZG3Dir+bNX3czbyqd5aHWLsrCMtfawvL7G1uYmXiukcORrKWNlQjzdpt3ZIh2mZFkb21Tkw4rJiSnuuHuK5aUlTj2xiVOS/qjADh3Vxhrjs4KtYcnUZEI1MKwupBhRceCaA1gnWR8NiRueTFoqJ2l3I5KO4OLFBfI04uDehCwzTO5qISlY6+XookXey2jEivFmzCDfQEcRSUNjspJYBZtbHLz+m76ZscYE/cGQD3z4z5FJxLCo6HYjMIpEtYljxXDJ04i7FD7DqxQnIpKogXaG3tYQg0DadRokRKLL4bk5zq4/TVqUCA3ey7o7ENYfZ8FHhqq0qFaMzVKcaqLciIZtM7a/hWtYTOZRI4tfgTe//p9iRsvML6/xsfueRJKzsrZF5TyFOU3iU7pjLcSYYe1ESlqF9bNVlWz2PR/+2Kc5f/EZhsMVRMMhcocnaMmOdXaztjpgdeMhpJIMsiVOP1pQDCy2KsD1ONhuMhFHfPPRWb72/V/kwiis82f7KUIIzvW3HScdpzYqfu/JBb7t6t380lNJfT3DO88s8dDiGu3OOKW7JInofFiTO1rTLy89DrCRVxZgIonUCwWq33H13on9nWbynR/94tnnPvfcMddK9O+/5tarfu/pC0tPbg6fz6J+zviKgWprZoYiN0zt3k0xrBj2BlhjAUWRF8QtyWi9j5KCsvKY0qCVpBFLMDljEwKTa3AVjRhK78jzguV5zdxBD1QoHeExJI0Ea8LNr+tKlTUlWgU7R2MtQoSAQOvaY1rUk+iOmLms8Rc+TEba4ypZexNLTCXYM7eX73zT6+nOxvQrEKIkHVY4NF4GjIcnx9qKsjI0pGNrs48pS5wvkDILlS9aKAQ6VigdWHReS5xTSKEoXEVMjHACY22YRFUUWkRaBPxnNEtZWiqX0WhqTp06RZJAWVa0ml3ydAVrFVgQ0jC9a5LSZXgX4UcOYQQ6EcQtjRVlYN8q8N6gY4A4LEg+J4qa4Csyu0GFoNMIAGtjPa6Wo9lu51lrQ+U6TtDaIXSLskhDi7WqWNtY5zp5lMJmNFoNKlMilEWJCOEjimw8VEpsFazjQvyJwNZM4u3AUwSnkLq1hjP1o6HChqiJHF7U8ALHr5y+SL8yXFgPGm/5Cyd2/1NjW1VhOS13yFyXj0fWno/F/LsYf1dB+N/1kAimGzHdOMAwjPMspwVaCn7n1bcw10rIreMzixv86mPndohtf/K6F/GR8yvcNjvOsckOP/vFSy2p7bGnlXDHrgm+86NfYGQsI2P5tScWectNe/n1x5d2MFiBSBkChG86NMWP3n+WjcKC8PzCI/N89ltu4a5dXT6/3OdbrpplLFb8+P3nsHUb9+RmjpSBxJaoBnPtI5wZPE2jKUnixuUActLU0ekqpIPKWrJ8SD6qkJEjqzIKZ7C1vqJ3UJUFKBvMHCqoKFGxxpYGZwWNeBxNk6oqKdwIZ8FkGY2GJhnTPLu6woV1wcyuNkPfxaoupVrm7GnHtTcexXdTdu+/hv0zXb7m9hvopZtcnF9haXGFU2fPsrg44g9fcyuv3T/993dR9LbCzwuOSVAWlIKDx5731BVj7AXePvv8h17JPAC3tVr8k2P7ecXeaWYaEfOjnLc+cII9zYQfOn6IQ51mrUW8wb/7/FkyGxbnB95wB+88uczL5sa5dbbLWz/9DO8/EypZ24nVkYk2r9g7wSs/8BgbacmmFPzXp5b5geN7+K2Tq2xLFPo6SPZ4vvHgFD96/znWsgBV+bmHL3L/t97KnTNtPr/S51An4cmNjC+ujNjdNAyHFWf7KVeNt3lodYubux0+OXcQOAj76y97/XO//eXdlblLf6bA2NXwNS9wDAG2+WEvxDOc3fPC77nq0p+fHo3zQwbiluJAs83mgseJipXlFXSkGZ+cpbc2JBIR3biBKhVD36DbnuXlr3w9jz1xjm7TULkPI4qCVmMCaZogBVMznv7WBpHtMjneYphZZLkb7VKK4QZpmfHhb3kxd7Sj5+/jS2/9Ml/4q4xrL/t7nECgvAEY1p3vXdPwbXe/8Hu3D/vzDlut9nRUwNH6gN8y95zX1F3wsf3A/vCZl41XvvezO+ZEzhccaktow6iC5VRw99wYP3TrAa4ab+6Qbddzg7UOmqHwtZBbxqcm6znu8oA0zH9D4xiLrizATDXCA1svEKTONGL1Uy8+duA7P/rFU19tRT7QaUQf+Ma7rv3M4kb/Rz7z5PxXeTnwVQLVt7fbvGLubygsu7YfuDGUZ3LgzHM+cQF+7g1/s03/T48zT17any8zHjIJv1jOsDVYYWZXG6/XmZnp0GrNBkypLPH1Qqbqaq6xlkajhTUgSXCy3PGbR3qss7ha59JYi4pAEOOqiEg3sSZCNC1xkmCcAh1RZEO0CG5YWV6CjLHWoaTDex3aaBV4Gug4CQDxoqo95y22ckgfoYQGpYOgfaQwrkFva7hD3lJKUVVl3cIP+oilybACGkpjkcQqRkdbLC4NGGZtXCUpco214Xsal1Bpx+Mnhtz9bW9gcyHn8GHL1J4cTZBK8VoQ4TA+SHgF6TCQMkJ4i5QJUkQYm+GokxKjES6i0ZRUtuCNVvOBt78TgOVWvFMR3gaCh7zF1dlhOP7BaSckOPjtQNkh6hLedsX2xL13ceD3P8YvPXqGSqjAqPbb/LavgGH2deC9o85QKzVsg9SlYO1Nr+G2P/ssF4Y5ui6jmvqGeO6WPZemD09oW263YOVlVa7n7UaN67wcT7g9fuZLZ5m3XfqyhfcOXztkBQKdqzGinrIySBmhowCXKX2OcRYhPMZAoxnRbkcoVWP+xLZmbQisd7UStBSc6qeUzpMoiRCSxAve/JnznB1WHBlv8esvPcgbrov4uSdWsBYsknsPz/G9f32eJ3vPkihBYYIN7nzZZqGMOTbdZqs0fHrRcrQOWh5ZHXGwk9COFalxO+fZ1WRLIUBJWcNKartP4PhUi/uX+7xkd5ez/ZxfeNkR7tk7znph+KOTK/zOUyu1iYPk+skbcS7nQn4eqRzYS2esKgv6qUJ6QaPZIG5pGklMWQSIgJIC6SsEFVXlUUIGxnGsQHry3CDKgJnUOqGhY9JsEKownTEUImAOHcyMNWnt6mLwWByiAWujJZ4+uYEvRuTZiPkLSyQipldWnFzIMb7J7NzN3HCj5I50kSefWuanP/UAP/3gl7+c/ybjH0pidWyis7Mve1sNfuXRs/zIZ5+idK7GnwsSKfnQqSVK64mk4MhYg0QbNssSPHz7XzyEEIJffPQZMuOYiNo7hX8hBUoqjk912CpNXcEK2N8nNlMOdBKaAkZ2G55kdwJWUSfq4bfY0ZS+cabNF9ZTPnyxxxuvmeUle8f56wvnuGv3BHOthHedWvj/BSHx9KgPfkgjUXgHRRaOgRcZw/lRbaHtiQ5N0KvtU5Os4N1/+kHWeiMQI1xZ0Om22L1njkhBFA+QYxXnny24dnaW6dY4G2eWwMcUXhLHkrZSvPWjf8sX9N9w/F3cB8cmOldsf72VkEE6AAAgAElEQVSG0hnnOLl1Cb7mnOC3Xn0X//7BZ/jjkwtkxvK9NxzgB246RC/fQJQBujNKUwaDPt57Ui6FlqYqsbbi0ZVNxpOII93mDWcHma/3QS+M8nKzqK4stQK3z463Zhpx/N6vv+Py8J4/eM1tV//pqYXVt9YB6dXjrfj933DntR+7sNb7wU8/cfG52/ly4ysGqm/7q78bYdl/COPLsXi3xx264NMfeR+HDk5x652H0bpFqiucBe0kRjk0UGu97wDujamriEIhrSQrHDpKsKVDojA2VImlV1RGY02J1FBkBeghExNzOGfZ7K0jvKfRbLB71y76/R6mqoikr7GuklDC0WQjRzwuGA0KvFI4L6FUGGw9MQjykUTHYL3F+y2EbzIcFkgVY0yFtRXee6IooigM1DZzShhMNSKK2iAKGt0G5071GK6OiMYNVWFB5rhS4X2KEoJhCVXRAmGprKWsDLkboXULjCAzBlBILA6D9yYYNhhTB6waKRReCFxhEYR2jaxA60DC2x6ursjCpaow4hLZw3t32Wt36rj1vyq0/7aBac8NFx1oIdnbjuhEQZlhswi6t88dO2xo79nd1IzV1cTUOBazKgi0158wlSimk5iZRswP33qUO3dNkBvHfz+1yE8/dJq5mbpUUuPoiiKnLApakebf3H6I1+4boxspvrCe8lOPLrGUGUKpWvBth8b47qOTzDY1zw4r3vH4Cg+upQgEv3++4F9920/V2EJJMMWweGEQ3iBdaIcuz88zf+ECeVbRGhvDC8vS8kXSmYzlYkhnPOYVr72GsQlLJDVCxKRmxAf//XuYiCPe/4138vWfeIxe0qQoDUIpKEFawbnUEscxS4XnT872+Kb9Y5gdz1r4k9MbPLEZWlfFZYm7EsHDriVhUFqSOGIbM5HWVbCOlozMduAdHLHA8lcXe/zLG/bwhdUBo9Lxw7fsxXlPp64YTCWal82N87bPn+OHPn2GGyZb/PFrj7GeVbzvfA/nPWWpOD55K37dcD47TRQ3d/ZNK4k0iqSRUKSeUX9IpxVT5o40S1EyEIqSuE2kPHlRYDHgJc5IvPO4qsIZCzGkZcWgZ2i1m8TKY2xJpCNsaRgO++SFZTQq0FnOLjocOTTO/kMxvdU1Op0WnTGPLA3F0DL/7BkWFpfobeTs2b2b6ZkZysuC7Kf6OdZZbH0MdxKyy26Fy6k/YvsJURM32U78IBGSpTe9jpveeR8X0iJcY5dhha+AeFyx0a9MYr1pusWJzax27qvb8sLXsBwoasLS9maeyjMkATrSjTXn+umOlnBRM6Ere6kjV1rHWl4xmegr9nE9r8hN4IkX1u98dyk1USLpJhGDyuKs3YGk9WrycieSDKuQKHnv8S6QpD4+v8Wbb9zLoxsZI+N46637cd7TjQKOdTWr+PCzm/zRq65GiqsB+PH7T/J0Hfxk1vFof7hznpSE2LeIkxaRTupkvdamlmEeNJUN+tP1fHLujTfzmr84zWJaUhQ5VWXqc759HOUOJKueTJEarE5J0wxqJQjnA7RCeMn1rXA/aCXxXoSWug8BeoAEh1a7lCJYoTc6vO7el3P/X34KPRlz+PAB1r/0CE4p9oyPYRSkvWeYmTmCjyMuLgxxWYNuu4OXEc5FaOUYjfrsmT0cAuJ6nBgWtMdaQXBfC/r9USBU1tAOz7abWv3LQaM1QTtqBx1SF875duHjzHfczD1//hTnt4K2u44VtjLBvCfWOBc6kKIlMeWlLnbh2LlGSy9qDL2vZaK2L32xsyaJF7gXdO2kCSFm+Y6/+AInekPW8pIPnl3iHV9zPT/46ce5MMw53G3SUIpECYZVifOGm6bafO8NBxBALBw1LBvlHZF/XrxJrMLnnx9kfGJ+jbe/+Lr4++57rJhuROIHbzkSvfOZ+YXnvQm4b2F9ePu7PnWF1MYjb3zlzT/y2SfPffTZ1QHATdPdxnvuvePa95xZWvvRzz31gtv5cuMry1PVY4VpRM3kdD7gGKyxoaVds0JFHSAEBq2D9hZK252ToCOoykB+Ofe/3Ms9n7yPZ1YzikwgUTgfWL7eb4cR/hI5Yrt14i8FIJdPlJcs/sC7gB8SIiwAQnichyiK8d4zNdsC4fmJoxF/+hsPkqiC7/i+OzHVHL/87/6IN735dfxCGi6Mg1dNMDexm+mZFhcXNvGtRggWvSMSLYyqMB6091hrUCLYa2ohA/7FCCKhsKVB1fsfOY1znkhF5EWFjjSJFBRKgBmyvrEIzgWlg3oi3dzc3NHp3FavCp6+JZIYJRQ4R5VZZCTQkUAah1EK6x3GBi1b6S3elEQqobfcD1ALH7rvcZSQ5xmCCFMV+PoOM1WwIwVPZTxKNOj3Bsyf3+T6O/aRFYF24DVgPZKESDVIooi8N0DpmEjHFKXBOll3TD2RDqLiSiR4HyGFRqvtxUCE82WLejIUIAMpwblt9vJzR10l3bkGw5bczqTgd4LW7eVO1PJeAk8sI8r0uVhTwf52jMNzYiu0rg91YhxBt/SKT68ZxXtaEU0lONXPcV6wrxVxuBNzYisEX20laSnNxWHGO15yPYV1vOEjD7FROt752lvpFYb3LAV8pReBFBjFoVr+b2/exbGxBt/68XOkxvLvbt3Dr961n2/+2Bm893zdvi5vuW6G77nvLCe3Mr79yBS//pJ9vO7DJ1hMwwJ68uRpvA0YaKXCb6E0UghirdCxQkdNDh27gUgkiMgTK8F11x5jqxywsLjI2f5Jqg1NKafIKkNWbBJPh0lvuyW1YIIbjhMOUVhiIu45OM33X7+LI52YWAZCz3puuFTPZgdvperntxMArSTWVAzKirFY0Wg2wAcM/q5uQNX2i9De2o6BttnYb7v/HG+78yAfuPcGpBD8xuMLvHb/BGtpiTWOYWlZGBX8zhNLCAGPbwx579l17j00xZ9f2EJKSTtSFDZi74Hr2FjtkQ8u4Y61UGip0NTKGoUhz4IEkI4jPI7SWFQUKsu2qnG5zoWOgRBUOITyOF/hjERpQZkXwYo6kcQ6xhmHLwXtjmLXVJvZ7mFuuu4OVocDzp9doqET2m0QIqYqYya6be6681aiJGKjf4HKrjDe3U2s9vKeRz4PwMzMBNZ5jK3Is5x023RjJ2+7lNbtnKXtrsHO6wQ7cc2l2xHvPTNJxC+8/Hru2TdNYR1/fHKen3zg1JUk+Mve9KMvuoq33np4Bw4C8IGzy/zwpwNe+mv3z/CWmw9x43QXLQRn+iN+9uEzfOj8yg4pM3RJ7I7knRKC//Ti6/jHR3YzFmk+t7TJ//nASUztMigFTCQR33f8EC/ZM4mWkqU057v+8mFW0lqbmEuBqtYKaYLmdjdSO8Gdc56xJMwhw8oFJL4UuNpiUwrBTz54gR+/fR/vu/d6pID/+sQiX7tvgtW0xBjDD96yj398aJJ7P/g4T24ucWyize+95jYqZ3nnM/N1sCkQdTLWUOPEcacmb9V7WksWuvoEbSfol0fhWV4wykqwhtlGzH948UFePjcWyImn1/iZRxbC5wjAgakckWjTVhovMn7iRVfzjw78P7y9d5xdV3n3+127njp9RtJII416sSQ32ZblSgwJJA4EQgslIQHyEhyKgdf0agIG4yQkJDFwQ96E4GBjh44BF3CVbcmy1cvMSNM1M5p25tRd1lrvH2ufMyND3nDv5967Px9bmtE5+5y99yrP83t+z++3jCbPYe/kPF87MmiaVrXhBL9lczd/sWU1y9M+AwsVPrLvBE9MzpvKjYJmfw3rezbxlHoM2/I43H+CWlTGUhbZljxr1q/i4ss3Ep6NOHz6MDqXYWY+RVAsQ0rS1t6MDKtYoo3iQplaVG10CngpiyisYQmSZNVQx7SoAxJL8iRtJA2pKUIdJbrhlqERsliRk4mKkGU7dKR9PrV7DVctyxNIzb2DM9x2YISorHDtFDHnI6oWghVpr6F8U44UYxUj2QiwLO3SmTo/FKuvjaMlI5tYR2lPL5QbdLd3PXaEv9q9hR/+3uU0eS7jpRrvevQw73v8GB+7dBO379nGc+cKfCdxhQylYkUmhWMJlmd8ujMpRsu1hhkRmNhudTZFs+dwx/Onef+F6+wTb7g+EyjFv58c07fu62slIeR8+ZoLvJ5cWrzq/v1BTarEYvz8Y7hYXTkbRArgpu29XlfGd968eeWKN29euUII0yn70adODL1QEeCFx28UqJoOTxMhhbWAMAhBKyPNYwuEXZcsSZAtJRGWwvVMoBMEJihJiIqACbayOUEUQJvr8KXdW7m+u52aVNzVN8atz56izl3Uwgw2rU1JOm0LPr5rMy/vTSbKxBzvf+o4Y+VaI9N8y6aV/MUFvSzP+JwpVvmrwyM8NTOHEKaz86EfDvHqP9rN6ZNjDB8VOJbkxle8mKOHJmCD4Y7c+NoXcd+dj7Er3kVvbwuVikXayTJXPUcUemhlNEAt4aKFxPi8J5maFODYxEGIEJbZsBSEMsJ2bCKpTUlfWsgQHMvB8RyUrKCVjWM5ie2kRS0I8HwXYVsNMV5T2vVAGeFeG4vmfB4pFFJF+CkPW2lKpRDXyeCnHDQWnpNhxbI83/3lM2QyWWQsqVbK2HYapTSRjkzXq5T4KQspHWzbSQI647nuunDgqZNs3LmSONZIXLBsHCciCCUyVjiuBGUThppiqWpcaoCU76OlRocKISJsxwFlGVkY4aCkpBZUUWGMwCgSKKVwXRcZSaOusGSLS1s279rYze8sb6XVc5mohXz80BmWZ3z+x7oVrMoYiY6Hp+a57cQIFWlK3L+4/kLuGz3H7vYmtjdn+diBUe6vnL/AtHg2//PitVy5vI32lMtYOeBTz/SxsTnNazd2J/w2yU+Hp/nYM6ZE2OzZ3P07l/DNk2e5ekUrl3Tm+dJzA4yUTAKZdy2GSyFdaZ/rVrZzyT1P4FtQDGP+7tAg77toLf95diTprtZGfF2aJO63V+T50NMjjM4V0Upy274aT736IralNU9PFnnJ8mXc2zfFs2PTpNMp/u34OG/b3MErVub4m4OjoOHIvr0kvhDJ5ms2PrTA8z16168jl8sxdW6SsBaAbZNK58jlm8jls6xcvpGVy3uYOTzC3tnH2bS7k5Wb2umbMoHbRNIk2hIFTC9UEdokZdlUiq/sXs1fHzvHd07PUQokf7yxjbdubjfySclaaQnTqV5PyOobRRhGRHHMifkqTZ5Dp2uTDCk2NfuMlAKKkVxMZKkvN5pSFPOhvYPU/ek3t6TJew7PzlZIpz1OFmtc1Jkjk/FNkCOSpk1hzDu0BjflUSlW6VQdbGnayon4+cY40bFlmj0ltHe1EoQpJiZmDcVAR9gCdBARhQvYtoeTVAtkLFEqMtuoNlJlGiMLpYVCyhhLK6KaRRxFeK5HZLl0dXey6+pVIBU6KjE1MkulUsHOKObmJdVaBc+K0KkKcfskVgYy7RFKNyEskCwG2dIx3f6ub4PtUQuihDpyPgC6GJQm63f9H5Lqhf1CVDSBOL/+oh0Uo5jtdz1GW8rlOy+7mLkg5u8ODi5uBCw5GfD42Tledf+BRjCxoz3beEWL7/L90xN85KkTDC5UePOWlXzt+p289IdPc2jW8NalNNWueiDwycs3sbk1x7Xf3Us1kvz11dv41ksu4mU/3MdMUMOzLH75BxdyYq7EZfc8wVwQ8dI1HZRj2fhajuM0EFhhO4Dk2FyVZs9hTT7FSMVIJ25pSjFcrFGKJLZlLJVNpccAD4Uw4kN7h9CY69/ckuaTl9k8NbmAZQl2duT42cg8p0tmcJ+cL/OToXP8dk+nCVQxQIjWkE+14NipRHarbnCTtJ7qBts/KRYJHK2JkofqWCB0DJbN3169lnIk2f3dQ7T4Nv/2ok3MB5I7j0825pMlIAoktpPi05euZWtLimt/uJeaVtx++VZuu3Irb334IFrDK3qW8aGd63n1Q89ybLbEmzas5O4bLmX3955s7NHNnS0MjJ+mWCtA0aFaTNMsfEZO9+M1gQx8Bs920Zau0dS8hmyum7RbAt8hjizm5gqkW7Koao1aNWDTtlUMjg0B0JTPGoqd1gjbolYtJVXIZD1ZWkCrJzdaYwmB69m4rk0cxThi0dVPgAG+HPjSZasoRzFX3neIZt/hmy/eRDFWfPXYJNGSBqS6hXpn2sOzbfoXakitWZnx6M179BcCEAb0OLcE+PAswabmFPNhnDxvQaRNGB5pO1m1oc33uP3Aad716FEcS7CuKcNsLWLvVIF/PWWSmnrPzheeO82qXIq0bbPj24/iWUbOcW0+w8n5RerAmnya/kKFY3MlpNbsm5xXoVRLyAGLx3seO/p/7Oxv/vpPl1qu8I5HDofveOTw0vcc/z+9f+nxGwWqKc+hFkoq5RJKS1zHNo1B2gSlUi7xvNcaSxiBnTrCZdsJ3O9YDdmPeobuuBZ3XrOdUiTZee9jtLgO97zkEuaCiL87fAbLMk0R9ZVRa/j05ZvZ0Zbn+h/spRLHfOnKbfzHDRdz3fefRKN5ee8yPnzJRl710/0cnl7g7TvX8Y2rNnPdj59ldNY0SbQVYWoypDBvMztRpjQ3DXaJ0fFyI1AdHdKUyoonHhph9eouyioAXUMrSVydpKc3h+WaoNK2bGQcNRZus98JcvkMcRgZlNmycD0XLcB1BLZ2iRNtM1c4plkc28hvadEYZLZt+D7YLNkhwLYdKgsBURiQ1g4qDonjCGyFsl2UlLiAlopydR6ETcpv4uzkAv39U/iOSxhUsW2jYek4RstOWEYXUUqBsByCWoSfBinBthxyTSnGhyfoOzLGhbvWMz45SjrdDEpiY+E7LjJUhnuqICUcUo6mVotQWmILC0vYSEsjEs1MLQEdJNm/xHV9dKywlUFFhRAQaxxR19A1x+d39NKV8viTp04wVo1Yk02htCLrOLzv+QH6ixVWZ1Pceekm/mL9Cu44OdoYq6/t6eIdTw5yqhCSchzON3qAL1+9lZ6cz6t++hxDpRpr82l826In5/EXjx7jxFyZNdkU33rJhbz/wl4+s38geafgjzd384YHD3JyrsyOtgxpZ8m5BWxry1EIIobLNTY1pUjZFgdniqzJp0kJqCUovYxjNJooNHI/cVgjrFUAjfLNdWxr9dl7djY5tdm0NEkHJ3BBe6bxO9MoKMFOeJK24U7HoaJYVMzP5sjn0khZoxoU0FIwPT6CsBSWZWPbGdqWL6e7ZwUXr78BZkqcOzXNxJRpAJgPI34yMssXd63jw8+MMFaJWJNPkXIdPEswXwupRRGbmj3evKENAaRc16ByJFurMkmwEMZJBozxhwBGigFPT8zzyYva+cKBOZo8h3du6eAnQxNsbP7VUhaYBqxQKmaDiNW5NB++tJf7h6aI4gV60vDk2FnesXUZN21p5gdnJljblOEP1rTwtwdPs8I1ycs/XNi/5Iw+cEXjp8Hf2/1rP/f/0+NgPamqmFV8kw0E5r/ONJBQE46/UPLQNDR9P/lpbSB5y9Yeru1up9lzGS3XuPnxo3Rnfd574TrW5NKUY8lPh6f46NMnqSboy3OvvoZv9Y1x9Yo2Lu5o4r2PH+VHg5OA2Ry7sz5bWrJcv6qdP7x/PxLNfBjx7VPj/PkFPTwwMsVCKDlbCRvI35bWDFnHIu1YXNCWYbQUUnhB5/EPzkyyuTVN33wVhOIbx0e4+cL17FneypHZEqpe28RowhbDmN/vXcZ7nzjGbDXCty3ueO4M+157FRd3NPHA6Cxv3rySFt/l9ucHmE2CgzMLFcrRorObZdmNdUMrg1IOLVR4dGyej1zaw/seH6A5bXHTjm6+dWoKkSgkgG5wpjWK1XmfQMJUNWR9c4rb96zlnv5zDBQDhIZ9U0Ves76Du05N0leAjc1ZfndNJz8enGRdUwZbCL7xW5fw4WdHWJnN8I4t7azKelRjxYPjC9x6YJyqNAjv47+/mbtPz3JlV5YL2zJ8aN8o94/VG0E1SsGaZp9rVjRx3Q+OUIwkZam489gE79q+gq+dnAKM5rGwbZSURFHMjWs6+OBTZwjiFLgxn392gEOvvYYd7U0cWijxit5lfOfMBEfmy2jg3wbGeM/2tbxhQzd/fcRUf2ZGx4gXyriOQbNkUCO0ZrnuhhWUrCo5u8ID9z/I7msvId3sU55WtLS4TJ8tkUlncR2frNWM9ANUtYZeYgOeti1u2tLNDV0ttHlJA93eE6zI+Lx7+5rGmP7ZyBQf23eKciiJHMXTv7+V+wbnuaIzw47WNB/ZN8r3h0wzp5JGWrK3Kc1VXTlu+NFxykpSrii+enySm7Yt586jk1iOBYnoRM7z+PBFa3jF2uU0eQ6jpRrve/wEPfkU//PitSxL+8ncOsfHnj5FJTaBzv5X7+FHg5Nsa8tzcWcT7370CN89Yxr56vrSnmWR9xyOz5WQGpRUTFUDlqX9RH4xecp6ka7T4rmMlGrESuNYMFEJ2NqaI+valBPaqS0spquhQaM151U2lh4C6M6mvBbfsW0hRCmScqRUDSOlGw+iI+U5nWnPdS0hAqnUWLkWlSL56xfp/+b4jQJVWQ24eWsHv9u7jraUw9lKyIeeGmJ5xuGmC7qNsKyUPDAyz6f3DxMm5beHrrmOe0dGuaKtjZ0tzXzk0FF+PHHW3EDMDVydS3N9dwe77nuMhTCkUIv4+yODvG/nOr58+MwSK9T6DdO8onc5733iKDO1CCHgcwf6OfTa67hiWStPTc7yit4VfGfgLIdnFmhqTfON48P85bYe3rBpOX9zdBDbdtl2sc/Bp56ntS1H//FZtBT0rGumZ9XiLXn+kV/Qsybi8FOPEo+3IbI25do8175oF6I7C0mAZ3SFNMJSiMT1SinDSSWSEEVGN9JKsjml0VKhXQcsiSFfemjLxijDWEY/VOnE7MAsdHEcgzZNQSZLsBDaxhYunuMjI7AtzygRxFAM5mnJpHBcgbByaDuiOd/Mgz88QXmyAG15gxZZdtLkZRGGAa7rApowAMtWWMJNqBcmI7QtQSqd5Rc/OkBLxmfztm4WCgtEkSTSFjrS4FhoGZC287SnWvEcQehKYh2jicx5yJkAyjblFrRpNlNKY0mBsjykkvi2g5aalO3RsJXFTLzf7W7nxkePMl4zJgXDFWN8MFozSJVluYxWI+4anuQPVnaABtfyQQu+MzhHf0kiLIdyvFgWSiYZN/Z28cafH2A4cYk6U6ziWQIbSX8hQGs4U6zxjeOjvHajae8sRqab+5snxzk2W6I74xEq1WgSL8eKFs+m1fcoRjHtvotrCUIhWEg2ybxrUQkMb1Al/Nk4jnhwZJabLlzFgakFSlJxy6W9ht/mmefz4Mgsn7h8LfcNTHO6GvPGLctYmfMZLNYam2wcxgklIsJyFNgWSkqUMnNsYW6GsKuT1uYmypUK6aY0maY0rgOuB9WFCudG+pkYGqCru5ue3nW4lSyXbljL/RiK0ieen+I927r499/aSItnM16J+PTzE9x6cJIP7FjOZy5ZyZH5Gj8ZL/LK1c0EUUycoKFxFBKHIcIyqJGqIxoChGXcV976i+f5wp6tfOellxJIxbf7xvjs/r4GAviFK7fSk0vzhgcMx351LsUdV22nLeUxWwu5p3+cO54/3ZC+Ojlf4g0PHODTl2/mf1ywholqjS8c6OdfTow0xsP/Xw0s/x13/v/t45ZLNtCR8rj58aNMVAKk51CpBOQ8m7f/8iCn5iv05tPc9eKL+cBF67j12f7GPPnjzSt5wwPPc2i2QGqJ49vKrM+5akST51EIIp44a5IYW1g8Oj7Hxy7byGQloiPt0JV2maxEDZQo7Vhsb8vzvd+9jFIkeWRshnsHxhNEV5OybaTWhErj2bClNUer7zBcrBoKlFY4ONS13iYSKkN3xmN7e5ZQ6UY6unt5C+OVKjesaufMQoWP79rIZV0tTNci7h+a4suHBhvXpJWiHgvJOEkgteKmR0/xhSvX8ezrLiVMyuZfPT6ZqJvAX13ey8qsx5883IfWmo1NKT57RS/tKYfZWsx3+s/xNwdHEl41/OOhEXKO4K6XbKEttZ25IOLh0Rm+dWqM0XKNUqz5s18OAIKUrnDTowX6CjVW5z3+5foNvHNLB7cdGG1QL/5oXRtve3SQkws10o7dQBDjyNg+b8q5FMKY/pkStmMjLJujs6YhLGsJSrFKrJgN/c71TD3LtV18N4Pr2TQJs25tbM6AMtUZoXWDYmQoeLCjPY+f9giDmCuueQleqsozzzxNc9tyPJFj664Wtm5Nc3a+Sovn03VskqGxWa69dBUdqQqlYIFatUK0MI+QCuEpUkETkRWQzS+i7p++YA1dKY8/fvoUI4WQrqSROec6vOOxI5ycM4DAt264mPfvXMtnDwwgVYjWmtf0tvDWX/RzZLaMb9fNQkysIuOYtSkohDF9s0YDWwvNoXNlenIenpaUwsXA7st7trAi4/Gex46wb6pIW8rolTb7DrfuO8XeiQI5z+Wul1zI+y9ax637+xGYqtLL1y7jjx44yPPn5pK5lXwPUZ8nZh4EchHFq8YKz7aMnnwDCf51BJvzD2MzrrjzyBDTtYCujE+T5xArzXQ1FOdq4QvfwspcykvbtnVyrlyTWuvVubS3vinrn5g3m2WL59jLM747UCgHValUR8pz1jVl/ONzperSYPY3PX6jQPVzl3WzIufzpl/0c3q+wpqcKYNkHMFfPtZPX6HKmrzPN160mffs6Ob254cafPzXrlrFnz55gFOVIq62qWuvGwRes60pRyGMGCxVDRprWRyaLbAmn6bJtSnFiw0yQoNOyneWqBORTRctwI62PE9NzZpHozWptE82k6a0YEjt29vy5JrSKAU7r9rKJddtZWq4ysTMI/gpl5e8fA8tKwpwwCxuv/X6reRzKUr3HKClo4nt129gbmEey/GoBgo7+VKObROGAShQcYTjGMRQWZJQSWxHE8oAS3tUoxDPtvE9i0pcQekQIQNsZeH6NipxK5Z6GD0AACAASURBVDK0U2UE4S2LVCpFGIaEsbEKFVqgVQ3Lhmqlih9Yhl7haBxH47sW6VwnUWjMAxamI+YLc+SzAWdOT5PKeITVEK00TsZJAiKBa7uJDSem0SpM6BTaNB5JGYMtcV2PUrnMj3/0BLXytSxb1kzXynYKlYBAGMQuFhLh2YRI4lqMZTkooQmVJI41wkoQB1vjWsos/kJjOQ7CsdGxAG01Gq1knZyflEHqfMjBcq1OlUvGlmBPe553rl/BumwKzzI8tNkgRldtaqHpgBsvR0ipG8jj0ipkT86oXYwm564fFrCrs5kv7FnJhuYMvmW6yKeTLsyzlQgNBDJmY3OK6VpMk7aQyS5XiCS1WOJZgmbPJWULSpFCak2Lb6RVytLwoaQ0XFWljG/6x/cO8PEr1vKTV1yMJeCfDo/yO6vbmAslwrG59/QMnSmXf7h+E20pl58Nz/HY2QLzQUy9aUxh3Mw830MREsuYODR8NmELqrUKpXKRXEsrmXwObEg3tSCETca3ae8UdK2OOTc5zfTYKLMz06xas5a1+UWdmpoSfOHINLcdOYfSi/zdp6cqfKt/Ngl0TAD+t8+PAaYz/rd+fCLhl5PodarFSg3185h7/daHDzZ+H0iDxdYf1HsfP5Es6GZT/cnILPePPvmCFdo6r3nhsYkif/noEfoKSzlbi8HXVJA+T/lBCOhwTWXrXFhvrErS7/PK2bpRNq/L5plkzFioSq0IZYiyJI7ncMkjB3FswfreTkqFMgqbUi1g2fIurr3hAtJZo60cxgqVoNCuZTM8MM2Jk1Ncsms9rU0ZHv75EYSy+b0bLyOT00SRRCmZ6E4L+O6TtHguv7Wqgz94/DhzSUB3NoyZK1UYLC9W7U4XK/zziRFet6Ebnu1r/P7fTo5xaHYBgaAmtdHLBZo8l+emS+zqslkIY+p7d6QU55INIGVbzNRiWn2HCR2Z+6Thu6cn+duDxoxhdS7F7Vdt4XO7t/Di7+8DYZqHVMIg60h5/POLLuSfjgwzVq5Rbw9MWzmqmAqDQvPzkXP84bpuvnf6HOVYcsdVW1FaU44VR2bK+LbF7uWtfOjJE7z5gYNc0Jbn3pddwtGZIt8ZmGg82bpahFHHkAhguhrxtodO4LieCcr0Ej6o1nzwydOL4x14cGSWB0fmkuvVpnogBMIyrlZSKT5/YJjbDowQ6yK2EGxozjJerhkqg4KBWYOKDsyZyiXCYrgQ882Tk/zh+g7usM3nC+DugWmOzS6AFpTlYnnZsgyNLO/ZFEOJ69qYBlpJITCvMw1hqvHdZTIfHxor8OdbOnl2qkg1lHzgih6U1mRcB4Tg52PT3LprI9/uP8uxuSJ/urWHVdkUZ4oVglqEEDaDp4c5OzGMlXEpVuaQwxVe+uqriZnDczzSrQ49qyT7+ycZmVpJW1MbsXSYmBhAaIXtQWH2HJZw0AKqoZFaq4MX19//HKMlcCyPGVtQKM0xWKoYQEYIBos1vnFihNet70br09QFUv6jb4ojM0Uj3chiU5lKVE+afJdSJHEcYXSIpaIYmv2o2bMpBWZ8d6Q8XrluGdd99wkWQkln2mWoWENpkErS4pu+gMFilW8cH+N1G5cDgpaE4/yvJ8c5NJ1IMEqFY5lQbV3ep8kV3LCqg7dtW8O1391LZ9rFswTL0j73vmwXO+9+nLFSDSEsNjX7zAaSnGPx0V0bWJ5J8cYHDrEm7/K2bb28at0yvvjcGe4fmuCCthyPvPIqPrj3ON87PcGe5a186cZt4iN7T4Tf7h+vI6HHAR5/5Z4Lb9l7/ExfoTwP4FjCe/o1V+/4w/v3jzw4Ol36+osuXDdRCQrveuzICBinxcdetWfHfQNn5z729MmzZh7pXfyGx38bqLZ4Li9f284NPzjMwGwFhGawaLqM67IcCMGZhRr/68RZXrO+i9sbbU5wz8gofbUitgOxVDT0vhOOSNo2i5llCYPqaE2hjix5LmUZJoGEaJS9fzZ8jnfvWMuz0wUqseIjl6xHaU2T5wCCnw5P8dkrtvDzuQr7x2Z427ZuVmV9BksVykngMTA0SkdXJw/+9CDbdiwn5Wd46Kf7efXbL8KU0MBxs/hejpfceCn3fvkAO/f00t7SQqUWYbkVbO0Qq5DIAu1JLOHhWy6owHSw+xmQsbEVxSJUEZl8GhVVCeMqbiqNZWVwHBcRZ8hkUqgIojDGtW1QYQNNNRwpYbx8pUbJGMf2CGSFiAK59hRKeZSDiNmFKsXpMrWFCebOFQgrNguFBWRkY9uScrFGJu8SJ4mSlAG2bWFZCsetAybJZ7ggiI2PfWS4VlgaN2WRS1nUIs1PH3yWVAquuPoCWpe3YntZAi2pqoBSVMYJIjxbI2NBLI2hAdrF0sogqpFG1FkwAgQBRAJ0jCUE5Zr5PnEUG+Q1GQh1PmRP2mGgbNyPlNI4wFcuXs/tJ0a5r3+OSFu8aX0nb9nQjmuncFIJSi9Mw461NK5IjpEERV2TT9O3ECQdx9Dk2Xx29xY+uW+Afz81Ri1WvG3rKv5yx2pzLzVIpRkrR5yYr+HbghUZl1K9g12bzt5fjM3whT0OrmXjW5qpasw1K/IMFauUY21QTm0qE0pJUJqiVNzyeH9yGs3mlgyf2b2eJ8bmGtzlrxwa4Z+OjOOnUqAkT7zyIr58aLTBx9JaUQtqplPdNtqdru0gLYnWFlEYUlhYINPcQjaVJVDmvK7rEAibMDBUkqZlXWSackyeHuH08WMsTC9y4cNQNoKzuo3k0iixEcclzx9hoXRyzUo1GiLr47D+/zrq9CvHC3+naQS89QB26fuWUFgXOWpL/lEku5YjBCsyDlnH4vu/t4PvDc7zN4cnGih34+MS29uUbXHzhd38dk8zeddm31SJT+4baTSygeD1G7r40y1ddKVdhkoBtz03xtOTRfMFhObqzNW0rs+y/qouxiemmVuoMlus4Hs+IuokIzLYqkoqZaNtTSxtPM9HdlqcOxvS3bYKiwi0g+c5pLwUhAor1liE6FhR7y+sJ3pD5VpDntSybISwuHZ5K7dcvI6NzTmD0ggayVj9yocTJzh93kM1RyAVpShO1mSz2Gddi21tGQBW5TzKcdKNngQDQsDxuRJzgUzOX+O9jx3n6BuuMfOwUEFqA1IsS3vc99JLeGR8hs8fGGBjc9qU/bVp2F16fPzpk3z00k089IorEAK+cmiQl67uZDa5nlIUM1aq8dWjxqzi+ekF7uk7y8t6u7j3dJ3OYC2W/uvPPaluWRgXKqXqgaBuDK5GV3fCV1Sq7vKVcD8bLouiwSttJDuaRkNYff2xLItMNoOwBFd35bnpgmWsy/uN5sTZIMZPp6ln7uNV09GvEYZytUSyzvNcKsqsacbO3HyPfKKGUQpV0uSM2XO0mdeffOo0H9u1mu+/dDOWEHzt6DgvWdlMIYjQKO7pn2BZyuXr1+2g3Xf5yfA5Hjk7y1xg6Eu2LThx5FGqpQwZWyCiClbeoblpFdJqoj0f4Ts2m3rhSP8gfSeeQUuBq1M05TLMn5sGS+LYrXjNGqlTHD32PJklY3q65pL2HGxLEEQRtm1zVVcT79ve+ysAg8asiwIYq0RYdce1ROYPQNg2nutQjiR5t04/0+fdr2K4iG7WgY6BQgWloT3ts6HZ/G5TS56bL1xDTy6Nu+R7WMIokChgaKF63rK2KmfQ2JFSwMBClfXNNfO5lsXZUBEGNXKuGUspyzz7OnDZ5tsMFQP+4pHj3HrFRh58+WV4tuDvDw/zOz0dFMPY0GSimPFyjTuPDpO2LU4vVLhv4Gz8u71dzpJANRmu4jy0tp7EXdzZlHlwdLpU7zE47y3ABW35DP8Pjv82UK0/+NOFqnH50EDinX318iZuvmgVG5YIy05XIxOiWmayDpeqxBHYltFPq9/8pD+ESpwEmAmXQqFpdg2yVAzjJRyL+iSGjzx9gk9fvokHbtyNAP7x2BAv7eliumZ4bN/uH6c7n+WOC9fRevkmfj42xxMTCxRChVVzUL6kODXLmVMTCFWkVKtBOkXnaoe9zxzj3YlK795nTiFqNdL5TrJdAY8/chirOYP0K7gyR2uzSyrtoS0Nlk2lUiSdzSWBpY1VDXFti0qpQrFSA8cHioi4ytpVyykUy9iWRyZjQ6gpFkrYwkZohygCYRnxfaUUxWIR13FQUmFr8BwH4dqkM3mCss3UUMzMZImJsVlmZ4o4oY2wJLYjENIiq21iC5SlaG7Koa0yKjILopQSz/Wpa/3FMsS2HbRyQMTmuSmB6zQTxGViVcG1PWRkIVPKaE3aguf2HyHbnGbHzutR0qHJb2Hm7AKDp0fxUx4klIaUY2FpG20HWJaFUgKkwLZMKUURGfUtWzSCDiexmrSEtSgFE0b8ZGyaT27v5ZbnBhguVVmXz5LWHp5lUa7ZSHw2Nvn80do2EjY9ljCZvzhv4T5/Vk3XQr5/Zor37FzHdO0kz06XWd+UZm3ex7Us5oOIQCo2t2R527ZVjfd5S6Je3xb0ZD3mgpgg4VpawkiADJeqPDo+w+d3b+Tzz/aT91zes3MN/3rSlDmlUo3NRiVNNj05n0AqJqshG5sz/M21m/j2qQn65ytoIO/aLM/7nCmFtPkOH9jZQzGK+c7AlLEuFSCSDa9SLGG7NgqDWqtkfimlqVZKxGENz7Yp1iqE2qYcxQSqim1BUyZN2vNwvRRX7O5hanyMvr5TDQBSaYnQZlOWSi0mPvUATy/xRyfBHJe0gTeKbcIECH/9/CjztbhBA/jVatbSJb0ekScf9StR7K+eQNSXFwySK5VJjLubfJSGk/M1Xv+zU3zt+nXMVlr52pGzhoqUaItHQYDSmg/v7mVbi8/Lvn+QUiT53J513HntWn77ewdRwI1r2njPjhW8/qdHOFGo8sbNy7nzmnVc/73nOVuJEzvSJtRslrOPRpyanODA1GFwXbRUPPPMIa696kquu3wLLTlQMkKGGidlM+t4+I5NSzaHZUkcWwExrS1NeI5ChcbnUklFnNDE6oneumya6YoJOm3bxXcd/v3FF/Gp/adMMiYVb9+ymr/c0Xve3axXIupl+aU7k28LjsyUaPZd1uTTDBdrrMn7rM5nGCpWeWaqRLvv0JF2z3seJqdZ/JTGM0/+sRpLVmZT/PuLt3L/8BSf3neKrOMSqsQhS3BesyVAMYq5+fFjjZ+3tGb53JVbeHzcJFeHZ4pc3NG8OBgWtxrzscm4EMAdz41QSAKuesCpG2XWemBaH9WLygimKrg4x5aEu4tjP4lvTeVDg73YEOZaglCZykcswdPwD1et4bbnzvKdM3OESvPHG9t56+ZOwiDCTrxjpdJ4rotSkloYUZ+kWkqU1BydKdPkOaxM2QyVDJ1pW4vPcLHGfC2g3nBZ/6pCQCnWfPipQYQYQgjBhqYUn7jM4flpg65LLfnykUG+fGQQELiW4Lk/vJo7Dp9BaU0US4STQrgVI9sXuVhS86PvPYST1jRl01SUz1WX7uSazbD/5DFal2WgGmNJl1xTjiAGTYgOHHw7jZ+ZoDq6OKZXZ1OcXgjQjkWtUkUT8C/X7eYz+/v5Vt8oVal425ZV3HRBLwJDb0MIFALbdhBaUotCrOQ+RmGEUnB8vkKT57DCtzi9UAMt2NJsGujmKtVGklsHOtY1ZThVKDNaDBCWhSvgwZfv5qtHh/i7Q8PMhzF/fkEPN21fjWcJMk6StC+RVRQCmj0TqoXJPvL8uQWafZeOTIqRpBqypTXLSD15XDJRZ4OYqtQIJXlvop6xoy0Nls1nLt/IM1PzKA1HZ4tcmMwDuSSB/3XgwKNjM4V37exd/sTEbLkYxvLTl29aaWTWHBvg58PnCh/dtXHVXafGZvZNzVffvXNtx7KM742UlhBo/28c/22gWn/w61tz9BWqRstIG5Hkb9ywmc8dGOWe030EUvNnW5fzZ5s6zQZDvUyS/JnMwjqwZLJei6PzZZo9lzW5DEOVMiIW7GgzyFIxlixW2+rlPRP53/zEsca6uKUly2cv28wTE3PUl4B/OniWrx2ZQQgL37F57BUX8PdHC1gijaNg2exv0VIpEv52jfnxfqYnz9Dc1MHM9AJ0mEA1kNOois90ZZqW1W3EcYFwooaVsQm8IkFJ43kpdBBQqdSo6ggrsCmWBLmMIas3t6SJrRirpggCheO41HTE9Mg0OnJJWRFSOOg4T1OTxHXMhu5UAty0TSmCnO+AyqJkGavZxyImxMKJYqxmn2OHBqAsEekUruUjpMCzY2wdETo+kV0hnQpY2dHN3EyRWkUbSaK8i+9YWLaiVpEEkSRSHq1NMWHNwtJZUGWKKkapwDSRuSAkCCR2ysIhRttmEbYxCEkkbZwoxLEt5uaKnJuexXfAtnwsp4aUIBJNWT9ldFwtyyHlp5FSk/INn1c4AYIMMk5KptLCwsJxFneR9zx9klu2r+GuPdto9V3OViJuPTTFZw9N8v4LlvGpi7o5Ml/j/rEif7C62SDVyWEJYawU/4vjPY8f5yOXruOfX7STZt9lshLwiX19/M+9J/nUZev566s2c2y2xEOj0/zeGuMG49tmYV6VdVmb95kLYqaqS0puAlbnPDzL54vPDXDzznX84PcuS6R7zvKVw0N0tixHKcWtu1axMuvzpgeOAprNrVk+v2c9bWmX2VrEPX2T3HFgqIGENHk2X79hGz35FJHSPDw6z+t+fpxQmbmjEyOHusxcFMek0j6u5xpr3Nhoe1bKFYJKFT+TpqW5mXx7O1IItFREWuJnskZyrFgh8lJYHd1ky1V+eKXJ+t/yzAqWdS6nnI4pz5SIZqpYUpHJe/T0rCRcmOP4wBCz5RBbWI2OakO/MHJ1Go3ruziuzcMjZXrcHixXg1YE/lOA4Va9ZWsPVy5rpz3lMF4OueXxPrpzKd51UQ89OZ9yJHlgZJbP7B+iktSg977mEu7um2LP8iYu7Mjxgcf7+cHgLI+88kouv2c/o6WA1fkUT73mUvbc8yy+tuibnufOg2PcdNFK7jw4et7qHSrjuPa7ve3c8uQA55LS6ZeeG+Hp11zKFd0tPHOuxO9v6OJ7Q7OcKIYoBN88Ock7t3fzmvWd/O3BESRwerifoUGLfK6ZfFMLl6UvZzA4zZnaaTpaelnRkcP3NfPzBbT2iIIYuxYwNTfD/HyRweEhbE+zfEUOG8nQyDAp33jAOwaAOS/R++XYNB/bvILbymUmKgGXeOAtb8W3beZDk2Btacnytm09jes9LwwUdWmqxfuxEEaszKYYLQX8cnSGWy/fxPueOEZ3NsXbt63mfx0fxbcE7elk+0kCNa3hd1Z38ODIDDO1iBUZn9uv2sKJuRKDC4aK0JtL83fXbOcHZya5dV8frmXRmcwHkq8hlTxPIH15xufETMy5asyGljR/e+1G7j41xWjJImVl+c/+ed574VreuWMj3zw1yQVteV67oZtPPztKa6YNFcfsbt3N5ELAj09ZrM/2YuVA6hjPTpFKuZSKBeIoSvjzdQUHldwbAwaY67QRQmPZZty7rml6DWoBGogio7pgCYFuNsH1LRdvpjvrcNuBfp6YUPRkbDxhZANnKlUWymU2tWR444Y2E1haViNg0ppEOUSipUrsbetJnGKoUObRcdMQ9v4nBmhLubxzx0q+dWoSlgapIrm5GlblXKpRzHRNsrkty+171nH/0BTDpSoCQ/1YkfE5VSjT4Xt87NINLEQx/9E3ZpqeLNDCRqsIK3aJqeE7WXK5mKBWI6yFxFWLvLuKjTscSqpKNpdnYU4yNDhIKp1GRYowLuCk2ijLObZuWUv/0QkDXgzP88mLV/CJ5yYYLQf05FywsviWYD4MqUnF5uYsb9uyunFxSiQJglREUYiSJnGso+RKmns4VKjy6Ng8H750Ne97vJ9W3+GmnSv595OTCQpu7u90LeR7p43O6fufOMbAQkBPLk3etfFsi8lqwHwk2dyS5a1bDdDR6jtUYrVEkaC+si+ZcUlCM1IO+eX4LJ+6ZB1fPNBPZ3uGmy9cz48HJxdNhurrUxJ19mRTBFIxVTNNpTdftI67To3TX6iwMutyd984N+1Yy9u39nBX3xjrmzK8av0K55Ynj/9KcPmex4+OfOmqbasefsWVWy0BXz82PHH9yvaWmZrxDP76seGZZRnfvfP6HetaPNd5eGx67pnJ+YVC+KtmAb/J8d8GqvNhxI+HZrl11yre+/hphosR65vTpFwbz7IoBJJqpNnQ7PPG9YYnorVGln0Q4LiKTNYEpkobWQwA2wFCxWSs+eXYDJ+4dAPvfeoIzSmPd+9Yy7+eGlmsoPBC/mCaQCkmqwEbm7P8/dXbuevUGH2J1liz67A2n+N0KaTNt/nQJasohpJ7Tp0jUiBimB2Ksd083v5OWuwOVrrtXDQ1gq3thnn5jRMtTNZCejt87CBkLmojsGwKqZDt2XYmCgvMhDGlfI6u5pWkRqaJNjcxm3PxogB8F8/2yfkWTb7PPFArVVAh5Jtd5udtIqdAGoc2kealF6UJfY+gqIgyLiKdZmp6lurINMK1CbN5hGPR61nk083MuVXmazWarSwZWWNCSezYobowx3w1xlI5ClKyTGUp+lmKcY04G4GdRmmHlOchZUjNBemDrChKmRI528fyPMpUsEVIiysII4d5NGkpyOBSFRpchdYeqBpK5PAdhatBuIIgMqYHYJHNWTgCkCSuXhrfT9OaSpPL5ikUSkg0sQqQQlKNbaJYI1RIyk2kcjRIaWEJSRAuBn6lMOavjozzN8fncYWbWMLBofmA748WzxvL/1f/XFKi0Nz48CDAry3714+yVHz0mX4++rQptwvLoJtow89bmmnWX1OMFBd8+4n/8pyR0pwu1fAsEzS95ufPN5BskVARVIJCfmz/KAaxMRPhwZFZHrj7hXJzi3DgeDnk+vuexXEdXNczCKYA23VMoqikaSBS9ZKWIFagY03KT+OmBKVimSAMqQYBfiaNjkIKMzN46Sz5VBZXuNSKNaq6YnR4LYdyIGnu7gFMmXR8YAAdhHT19pDr6KKyTpOOXaySQLi20RiNNLYSICRRLTJdtdrwUi2M3aRG4dg2GoWKjV+2WJJY1BuBXnP/4UTwOoVjOXQ2OXzw2bP0FQJWpCy+evUa3ndxL7cfMo2cQgjeuHkZf/7oaY7NVUk7Fum0qRy5to1tWWxry1IIYs4UK0YgW1gcnS3Rk0+Rcy2KS9ZbnThv1ctdQhinNzcp627vyLF/pmJ0YQHHspAJ4iwEbG/PJki/IN/eRrVYZGpuivmCT2dHJ+vzF0BkMVcuMXx2jt61K8lmc9SqVSxf43ppHJEim8qwvKODTF6zsrMVFdsoEYOO0aqMlBopLCItGrqMb/j5c3SkPXKu0Xg8s1BhohKw/T9+SVvK5YKWLJVY8vs/3keb76KSTe91P3uWs5UAucSUoYbmuu8+ybHZIhqjX/rGBw+wLO2zLOMyVqrxip88w7lqiAL6C2VWZlP0NhmtzdMLZSpxTFfGZXnWRWrNB/ceZy4ICZQpO1dkzGt/9ixKa9Y3L1YRAymR2qwLt125lvV5h1v2GvWbtU0Z7rhqLe0pl9kg5r6Bab64/0xCqxKMV0L++METfPKyXj66azXnapKvHJvmZ2dLOK6DEuA7MUJXsd081aCMqlXRyqZil/E8l1TKM9WvMNEmtpLqjetg2zYZx8b1XDKZdEJvMg2sUsYUCgWkkmhME4xlWUvCfrj50T7+as9qvnzNdvKuw2gp4INPDvChJ/r56K7VfHHPOg5Ol/juwDSv39SFQBAnTjRSSoIgBK2T9cvcI7kEqX73YwN8fvda9r/WNITd3X+Ofzy8qMf++SvXsiqb4s0PnsCyYWNzis/tXkd72mW2FvOfZ2b47sCgmQtakHMsvnH9TnpyJmH++cg5Xn7/PkJlutNtYSPCGCvRLI1qmmwqR2d7C7XqAo7t0tzdSbkwzczMBNmMRVSbIwocWpq6QMQU588hpUClYnJ+Hqu2CEC855cn+PBl6/jGVT20eDZj5YD3PXWUDz59ik9eupE7rtzK89ML3Hv6LG/cuDIJMOv9ADEquXe6Tjmk7mpoLL7/8pE+brtqHc++bhehVHy7b4p/PDzWQMOXZUzV7V2PHuXjl23g3pfuojVlgI4vHOjnM8+c4l071/KxXRt57twC9/ZP8KbN3bT6NuOlX1V8emFVSAgQtuAdvzzMV6/bzo9uvIxQKv6jb4y/OzRMe8pBAF+6ajNbWrK86cGDCAFb27J88crNtKc8imHMXX3jfP7AGcP5FR6T1ZA3PXCAT122mc9csZmZasgXDvSH9w6c/ZXgci6I5FsfPjhU//mijqbURy7d2PPwmCHWauDW/X0Tt+7vmwDwLUscfcN1O/7+0ODZX7nA3+D4jZqp3vtoH7dc3MN9L91Cq+8yWgr40NNn+MjTg3zkklXctnsNB2fKfH9wltet78BxPGMao42kUWR0hc0C7iYZXcUnlgFC2PzF40e5ffdmDr7qOoMs9Y3x90cGG59/x56trMqmef2Dz4EQbGnNcfuVW2lPuni/3T/ObQfq3D1o8l2+ev0mVuV8IqV5aHSe1/78BLWk5KURLJTnsSMQBRc/5ePv3EDLcBUlQzCGIPgTGdbiscHN0R6VeGyiwpr2DC3VZuZmF1inAy7vzlIVHrOjM8izFTrbVxA4imzkMTqlEdmITbQwP7dAbXWW1oJg/bkKtajGeNrDaZdkzsU40xLPr9Le6TISCazlTVh2kZfQxjlqFNeloZCnzS3BkMXCuZDVF/rQ0oZ4bpy4WdLa7FNREWum21iwYVIU6KrErHPb+XZlgZa4yoVOFq0VZ1pgXYuLOCOZ9CVHkGxclsavVXhauKRcuCbnMjovOKpmaXLhxdYKxtFM2ApXlul0PMpVSSXVRV6GqLRFaGWxJHiWQ0ANy7aRRDh2Fik1tpsjk3bMmIigXKohI8NJdISPLYyTSsqyUcJCKwfHtfBcpjq1DgAAIABJREFUB8/10UR0Lsty8rAJ2DzXJWtncC03yWZeUEZcylVsHEv/npTjXsA7rJ/AaCCC7dqNgLG+cCxJoBfPfN7vfl3Z+QWvX/Kyhri0VMln6KQBRy+NR5f+9ddcz+J5DERpNWgOAoFrGQMDLRVaaGSkjGmHNC5oru0Q65BapYxuaSYOQ2QcEYU1iucmcf00URzh5zIsVMqUaimiaoSTdLQCtPR0UysXqM3myGab6M0tozxTZaYSUVQFpscmKVfKKMtGysi4CDk2AhswUmwN5Fcuyt8pFE5Suqw3Av3Jg88xVg4RCM5WFem0zRMzIZEy922orLhrYJ5X9rbgHJ9tPLu7T89zfCHG81NgC5xEM9NNpcni0pnPUooVmVQatMbRglIiQpl1rIZCA4DjGs3jh0bneef2lTw/XSESgg9cbFyHmnwX27b5xXiBD1+8iu8NznBspszrN3SwMusnXH/zwNyUh59qw0m5lAoLjE+P0xK10tu6kebSNCf3DVIRNTas6aa9KUcsK2S1R4gg0DEVHUIIYU2BpbFEnFSzTUe3khqposZ3DxGMlSNcy4AmkbJwLUVVSs5WzgdSJpb8fGzu19tEPvLKPVxy9yMMLFSJ0CChFFV+7WuB80TC/yvR8KXSbsOlaoMbWx/1L5xlH957ht784vPZOzHHN0/MYVs2jucRx2FinpwYxgjBk+MFXvbDI/ipdMLtWyzPy0gyVQ6xPR8dReigZsxdLI3UMWEoEZZGODYtLa34fqqRlJBQq+JYEgWSuWqFOA7RSCM/l9isWo5LFMX4fipZYxT1KyhFkq8cHuQrhwc5NSuTryV4emKBu/qmEMLGsg0l6h9PTDfkvvZ893AikZU0bKEbAarhgxuznHOVgLc+dOJXOIX140NPLvqNy1jwwPAsD43Oo6TEsmwc16E3AbA9VzAjJTfcv8+4VqGM4o0jaEl5xNJBads4IHoeOgxxbBvXg2XL29Eqg1YOFg6WPc+yriZWrWojn0tz97cfYnoqprOrBWMC5P1v7t48WNPsru/7nOVZ3u3uve89+6LRgjZkYQSUSDlxgokDBlMUBicoZZK4DHbZZnHFQaYgpmwBDtgVB5SYXWDATlFIIghJSIhBaDSLRtPd093Ty+273/vuz3K2/HGe9723NRIekrhQ5Uz1TM/73vsuz3PO7/zO7/ddKCYFp09e4lu+5Rv4n373D4CorPKDf3iNH/xkXJtCCCZuyNPbQ/6Pq3cOrbUD/PizNwCJEJ63/eofNwgWMccWz6BhUYXEo5Rmv7Z890euziffLFYJIg9nJg9VWfhHT1/hHz19BePvd1P8yedv3zd//+kzh9f49b/yB4fwk2ZbmhHcUhnnbOI9wxp+6OkrrE8ME1ORSsnpTkPsFIK/+8mrPLKYMetGf+jOPh+684cAPLmcc3VYYRtS58hE44dPbfb5un/3Rzyw0GK/MmxNq1fbMAIPLXbSwrmwPi7Nk6u9/H/5i6+7+Fs3Nvee3xuVAMtZos518+T5vVF5op3pH/3KR8+MjXP/64u3d7/4LPvTx2tKVK3U/MizG/zIcxvxhNHM6M8e1Hzg5mG7nRD4iecb3T4vece//RMCoNUCITi8B9f8rikVtmhTCcPEGr7zo8/GjcnH1znq0/73PvXSHG8mEHz47i5v+MDHgcOkIfqgxyzh7qTia37jGZqja3PT5SEwWgQm4ylKCZSrqUZDRp9J2V9JmWweBuPfuvcSl04pfvm5wKO2Zn8l5V0nl3jm9gG72vF4q8Wdl/Y4MAM6TyiyBxbY/vDLjPyEYsHx0MICbd/hyv6Yvujj1hV2v+Smh1dsyqWsJG2d4tatfYrzgdWu4sU/2eWK05zOX+Fdq13+5IbFPlQxubjMiWuOjbtDJqXlU5Mx7+h0Of0yFGmH9lcusLK5w8MTzTPPDFnqtXnTuTY9K9ibOJ5qtXnn8TWuXB0RXOD1+RLhrucPbuzztsee5K/m+xyYhKrynM8CJ5Zyzk8LXhx6Hr50nLPVmEfcCtcmBZ9Id3lidZWTE8GNyx123JCvKlfwOXxiv2QcojVrKhwnVlssLx3D1o5iOqWsCkwpkCJFJCmlKcg7Kaa2WBPIs5xUg5SBJO1RlTGge++ZTgukTNhcP9z4pElASmyINTghYsVKCNFUJ5q2t5/5a88IPrFCWhsfq7zEoPQvPr8zB6H7BuaiEjXHVh7dFg/JPjNUJXOG+xf0zIDAj33mRgw4R3bWZvbOgC0EaMhm4X6c3Px0/8VRl0ffa1YFiEYBUZPUN4c0TyTTCCXAgxIKnSQYU1NMi1lPkHIyxZgKoRIyKcm6bbzweOGRRtBu5Ug8TgqcT3DucN20V45HTK6DzfW7BCFIk4TR+jrT/Yqhr6mCQfqoyYwPuKqORD0iZCY0eD+dpGg9I/IBIoasGXb+zjhqKKZa085z0Jq3rrX5nseO8cBCeh/JJNVyvqlslfH/1Vxi7vA6ew/TEEkSSicRiGAs3SRuNuPazaWK4nWO//OPP32b73/TOf79f/YEUgj+9UvbfN1pz16jrvFrN/ZZzRLe947LLGeaD9054OP3BvRrO68UJ2mGlmC8wwpBNZ7Q7+9j64rja8do1VOufOQKdy7d4PiJY0zNmLMXjjPeM4wN7JmCA1/grECoiEsjREMNqSJPYFZ5hFhIum9C/YfPVn+msZanvO+dj/OuM2tUzvPzV+/yPz599Uu+zXc/cZ73PHGBtTx2BJ7ZHfLeT1/lmZ3h/Ge+7uwa/+Ttj3Cx1+bmcMoPfOolfm99b/68tYYvPLxFAXhHqG2U+SM0LndRgkhphZSySSKJEoIhrsXgHdarWJF2FVIpQoO3ly7GD+8iKbAqK2xtopORsVFofv5t/XxeIxptbJpuUROTCEfiyHwcBpQkyRBi5jbVCPwH33y2MIfYzk/LR2wyY2LabPmCSFoUh5XI2a/Mt0xxJAw1/wrBo2SsDltjGg7F4Wc9cWK12WtVPFKKQAhy3rnSiWY8nrJ1b52lpdOUvqKuKp584vV821/7Hm7euE07WabTUeAMxlmyrAc4fvkXPopSNdNyiBCe5ZUlNrY3WD1+gkcffdP8MwjRVECbCm7AI7WYFx1mLfr7WuyBhi9xv0rHDKM6O3TMk537MMWze3T/8pkR6OK1/0I90hlG/9VRfWbIcrTlf2fcEIe7GS0tMD5wb2rZmBhOtDSqrSmdZ1A7lrMjn/lPG0e2s1uj2JF6YLGNDzRJ6mF191w3T1MpxfUGgvPUaq/1I1/56PmlNNH92trfuLGx94OfujIvwy+lWr7/697wwKlOnlrvw8fu7Q/+0//zj65MrQv8PxivTUe1IXMcAt1nySHwhSHn6M138YJJlRN83UzqxprTKVylMNow81o4WjiS4ggQneZGhnmdCTEDqs+GmM+3GHw8zQYUEfZC+FkdDCFiuyG0LSmaoEGUnmf7KUtPLM9f8tvf+w2cPHWGjXsD2rLHyukV9qt7DD9/i6X0FHnaYuvGOotpQu/hHuVAMT01QqoDTp1qU9qCwX6GdJ6V3kNkZ5e5ffU21cCy1vXkGVy7OyK5dJLjX3WM/UnNzbCP3R9y+o3HePqW5dneBm94rEdNh5fSLe7YMbsHlu5XLFE8ucQnXriCXL7I2gXB+lTRf3bEPhPe8qDm9iuvMHAd1vcLHj+2xm/d3eET2wUPn2zT/vyQsjIMigP6L7/EG1da/Jvrd7ngMi4tt+mvt/mjqqAeT3lcn6JT1PxScZ3O1POfXFiiYz139gUPP3CBtzAhv77NK3ubvOEtj+H+wuv4zLW7vPKZLVpty7QcM50e0E57LCy2sFaAVzhvyXRC9F/1BFFjRI1Os4ihlaCTZsmKBKU8IVRAPteb/P6NR7l47BFcUNQYFLDYatFuJ4yNpzIOLGQiKlXoVFEbi3GOwmUcDEuG5SievI3nnjes/41jAPyL6bt54uuf5B1f/3qe/XfPs3vnAGcD47IkmJqyKCgMlLVlMNin3x8iXEAEcEqj8jYHgwFlaZEonpnAWy9alIRfemfsmnzvi4/T6+Y8cOE8S2urXL99l/VXblO5OpojEOjv7zEaDDB13eTLfs6Sn/OTGriA847TJ8+wtLzEnfUNiqpCaIWvanyosbZurqdo2lk+GlUQgzohspJNXeOMo91tU5UVk8GQoHWsusqE/sEIoT2tdpuFbo8kBYjf6dSxVSYSzHSKyBJ2DnZY7C5y6uIaG+km5brGuxTRishZ46I8UczVBLJxI/Pe4WyN1BrdtNdn7NIZdv5sN+fmyNJutwjRVJyffsc5fuy5LT5ws08dAt/x4Arf9fBqY4s4KzSL6EDjouHErHKitUJKz0v9koVUcbadsDGp8c7z+GqbO6My+rsf2QVUoyE6dfAPP/VKfJ1E8+BCyg++6Sx/uDmcE+J+5nMb/MsX42Fei8AffMNTvO+5u3FTkgLjPHVtQEhanS5ZmmGHY8rRmPV7jpPHT/Bg+gCv3Pg8n99eR6QZewcHuKmllSyws5+TLXqcSfFB4EKNCNHmUwrw3N/F+2JEiaMx9bUmrlqIuS7t0a3oX3/NU4yN5fFfjFCCX/9Lb+agMrzv2Ztf9HU+fHuHX3t5g/3KkEjBe564wC+8+008/ou/D8DFXouff/cb+dsff4HfvLHJX7l0kp9/9xt5+699Yl5pjUnB/XbIUor5XD90V2feIXE+4L1rSH6NUkUQRBeWgDd1U4NVIANZkuHqCt/sXTEJDJRl0Rwqm0RFNPtQk7SEIKKBCVENRgTR6AN7lBAs9Hq0Wy10ori5/9zsIx5+D53F+2hKnIkJ+eH7zUw9DhPdWfEmmu9EXOz7nrvH2B1WjQ8TuMM99Oit92GWNsX9NybqUSFiRsybjSztEeayGrMNXUZcqg+4EHkqvaVleostsrULXFpZoXPsMv/bL/wRV6/cpL/f5xv+8l/g0sU1qIaMx3c42O8zGExodVOKakoQisqW2GAweD7z2SNOcQ3pbJZsH8lIZzecwyLWjKAp5ocTCHNlDELgJ1/YYGxcA086qjxyOI9mlfmjC+q+w8ZRj2EhkGGm8jDLSo7Ml1nif/TGK8GPPXOdZ/bHjOpDNYKphQPj0E393QbNTmnnSerVQTV//cNP/QWHIAE2BNajvA6FC/e/N3BnXN6HSfj1G5uDX7+x+TxfYtwcFeZNv/rxz32p5/+s47VVVOcn1MMLGG/R0YSVw+fvOyXEU3y8A1FU/MdnzElEc3Pj78Z5LRqyh0eKiE8D5qV4ANGoKYsj7z17PyEESmukk5F5PJ8QTbACCJ5OW4DQzRpSYAUD3aM8fx4mMeANw2XG+wkiP8ndzSEbL97m1vUXGO7uka7uIJIUW01pZzniOiiXkHZb4KbooaH2lqVuCysrVF+R1gU6LMFCSr0o2NM97EMFqh3Y2qrwVnPuzRfJA7h2F3Xc8+a31ZA5urqFWREce2NJYUpUpmjnqyx/81OMBgWuTFl+8HHap0eccY61E6uMtvqI0YSONLRczqAc84i0XF47we5miSm2OasFx9eOcXNquPzgcbpBoBeP0e8P2dqb8MipLlM8n3llk0HvNJ1ui0JWXB1XlF3DwcEdpjsj3LikLDXHjy9Q3nqOx04e49wbjzOZ7DEsj5F3LrG/n7A32iDvKHxQSDOTK0mwaTavbtUmJnZKR71ZgkDKFnVlaLUWMfZwzbzusSexY8HBaApptL8srUOJFlZYRLAIPEEqEhlwLiY+iW6xvVdRlBOOtTWZDKh2QndhkZlSVmv5NOff8CRXPvYKo50CJTUyjQxMGTw+xJ+9dvVlQlXx+MMPsrS8iJAwGff5408/T1sqzl04Rt5uYcuSTApOnDjBLKl7+5teR5Jr8izDOtAh0Om2SF1ONK7zdHq9hkUfyRl+Vg0Kzcba4B1DCI2kCkgluXTxHLYyTKuCsiywxmCtwRqLaaxZvasxdhZ8BTMHq9IapuMxWimcMfT39inLmsVjxwghsHxshYXlFQgSgUQlh3jBpNfGDvYZTguSTCOsZToY4no5K2dXEdqzuTGlLG0TW5hLwkBMwGPgls3GKaOEG9FNCw6JQH/n9ZfZctvcHtWcbmlSqUilYGQ8FsEjSznf9sDKPEbMxgxyEatRfr6RzPatO+OST2yO+PtvPM0P/OEtOu2E97zuDL90ZQsvuC9RzVo5zlhOZYrCWLaKmku9lB9720V+9eUdXu5HNnAvUZxop1wflSynin/whjMMjeNXr21HvGqDUQzEilun1SZJU/zqCuXBAQfb+2zubHBsbZmL7Ue5a6+z196kXxZIm2JCYH1/nbZykYgmUhKVxuTIS7RKI25chDnZaHuU8nfedJa/fGmJpTTh3sTwE89dYy1P+asPnr7PmeoHn74SyR4Env2mv8jPX1vnq444U11rrBiDhESlPNxZ5mvOrvHOX/kMwvXoTwX/6rkt/vs3XOBnnzu0cRVaIBOBKS17YwlkLAhIRJQkOt3JOZWuMjaOv/HwWV7YnfA71wseX+1xdTDhhb0J3/X4g/zkCxtYa3iQR/jIN65wdHzXp06SdduIymMxbNy9w+hghJRJlF1q4DEKQRARFiMDuBAft8E1WD4N3tDKUgpvMJWLrk0hJrozYXznXUxCZ0WT+f4YsaKhed24N4aIG5cS4yztTgvr7Pww/tXv3+Wj3xiJE9/0sdMkytPfvs1of4DWCdYHhBJICa12N1aCnWs6lALhHSE40nyBE6fP8PlK8tTaJttb27S6nYboJWJS27SwZ4dGIWNyLjURW+4C5y5eoNXtUAyn7G7c5sKDl/mpp6K014e/7jvwOsEGQ64D00rRyiW31+/xu//Xc4SQ0upYXrryItNyii0Euxt7/P7O77E/nKATT/CGzc1omWpKQ6DklfVbLK6sURQF42mFEi3Gk4pEtfHVAZ/+488eXq+f20WrDK8cwQv6x+8guzXeCIIX1FXRHO4l3lmEgqwlqfs9To3Oo3STLHrJ8vEz3JTHeevlfZInUoSwZIlqiiigXU7SVowHY5755atYp/jYd/YA+NpfGvF73xr//rc4Q1lJECX4QFso9jYP2Pn4Lqb2HD9xAvdkRrvT4uBjdxgeDGi1u1T5MwC84jJ+6uUD8nSZ450sJtYumlAkSrFG7Chss9yISxw1SYpE2lmhMQAf/cYn+drffomXdwaMQ4lQnke6sUv1/KCEpoNnbf2abU7/Y44/NVGd3fiv/cWiOWlKwCOCxxHZUULI+Zc6PBF4hBakOqMsA1/55tczGOxx794WkyLwu69oHuxcRCwKrq9u0fab1NU2SrdIZY7zktqMSXSbqqrwDVs5toDjZuK9jz7wTVtYEFnMabvL8onLnN2+TJYqrPVUdRRhN8bEJEQGyqJEKEGiLK0sp5gMuDe2bH50G94cLVR/6f0fxMmaTp6zP90iQ+Iqw96wpD3q00pXSFNFP4zIaonPNXqoSXE4N8ELzRa7BJ1TFUN0npDVmsrXyCyl1xZMDRRVybF2DyMTJuMCrxxJiI5UmsDUlizpHpMMVnuLlHVN2Z+gdEqaSUxlMC9EnB+ZxxvNYvsOqZRMbYJuC3JhkO0uk/EOu9UBWdKB9nG2iwm39guEl+TiFNu5Z31Sstg7SbpguKUdWZ6j8pOcW1xkcSlhQ1vKoWNhqUViUzqhxIg2rdoSzndID4Y8dvEBeq9fotvrsLy0xJWXbvE7v/3bPPLwKsZP0VrihYptNVtDiPhJiWRhocd0MqRfCjq9FB9KnDconUBI8d7AtbjRrSwvMainmMpQ14LgDFqU9IsKGRQtDUp6igLyLCY/jsDGxhaj3T4XLy1z/PQxgkiwXmCDgMb6+MJXP0p3ZZHrOy8yKQ2q0RrUCJyS2ABawOlL5yiEp0YxqhLavYy8JxA4Ll6+zJnz58lSjQoeGQRJmsx4RyytLMRqlxTU1tFaWqKXSOzUYG3TBZCAd02baFbXOIqNmmVNolkncZNSUiBjiIr/OBeDl/dUxkYvee+wxlI7G3GrBKz3BOtIdbT7DXmHXm+B4E20vfWQpRmyDEjhEMpRHlTQ4NRuf/ZFJv0+tqoQWUo7z2h1NMF56sJw8tQpLl44h1YJxhj2D/bptLsgAv2DA8p2yU6xyfbBFmrUgnGGqWu0zkhSMY9aP/qZl/mbj53n5955gcVUsT41/MDTd/mBp2/z9153ih9+00me25vyWzf3+eYHVjC28V8nhoHYbhVIJedn7KiHGbVcv+9Tt/nht5zl9//Kk9TO82tXt/lXz9+LB4Ug+N43XOZkK+OvfeQ2hMADxzJ++C0PRdehyvKB63v8s8/ejQL1PtDWkp/+qsuc7aQRO7/e55s/+CKlO4SlaCEIWuOdoCw91kYzh2RpmWWlONjcZmt/n8XFBZbkebp+Fdvd597dHbyyTNZH1ANL1s0QQqNUTsChpMAYj/fR/W42/ud3XuJE+9CZCtflzIKlpRXv+dhzXOlPudjNo4vP66Mz1Wy+fcfDZ/jW332G5/dH5FLy8OKhO5AEHl9pM6gst8dmrjTw4kHB+YaQNjGNKFqImf9MVuqtJ3r87Nc/Qi+Nv/Mzz91j3JDXHl9p89zuoTc5wOf2Cx5bbke9aqlQ8tXbmko6tHrHsUmFCjU62cQHi5CANQgULshmr4lVTymIz4eI70aASCTd7hIhCDoLC7SM5WD/AKEiPCj4iKWe7YeCKLMXYRdRiitJkjkz34dAlqZMx1OKsiDNc7xSFJPD75hlhwoGo82X8Q6sq0nTVjwUIFFJQqfdJc07EAI2RGe7enKAUhllVeKFJ0lTtIxJMniCCwgfE1QXHFutPZSKEnNaa6S3HB+fpJhGbKzz8XBprcM6w8raCqfOngZionpz8w6IDFMFJpM+hU1IRM1wvM3m9nWSZIFkAIP9MSIRTCa7kRciBU5I0q5CuJT1OxuEomQ0Ekhd0R9O0KobTSukpqoKummbuq5QVjPe7kOj0b7T3aSaWmpTk7Q0xxYXqeqYrNemisYKzhNwCJVivUMjGZg9hmbKQ/4SAYkIgkG/z+52wnPTK5y4fQbj6kaxIUOmAik8Wa5oJTU30mucm14EYnI6S1IBfpr16Lx8dFwALswUjBv7Y4bwX6ZA7Op99W/EZy+qGbSqBqZN2/lV0zyOpvgnVZRPs9YhhUSqQ/jDT724w2jOheALKqiHBccvl/HaWv+ujidF75tNL+pZzrgrQYIMARcCMgi0kNjgcc5AUMQZHsAHTDUhWIEnwwnPcqGZrtVoqTHeEVyN9xohNSEEVNJUrxq2opQSpMBWFhkkSZJgTR0rEkEgpWZ1e5myrNBJhlApOhVoFRDCMhoMyNKEycRw6tRxelkbi6NwJVIEevqwldFeknS6a7h+RdXp0G5L9jZ2WegGTj6WcWIhRcmcwZ6jMAm2riLxxKSk7Yy6HmGmrhHcHuFTTW1j5akY7iDtMlWwyMrTZ4oSgmpSI6Qml5C2FuhPtkHAQBcIJ7m9fx1cSpIktBX0D2rqskLlinriyXUHJcasD0ta3TaubFNvlSTJmOAynK1QaTu2Z9yEENpkLYH1knpasry6SkcH9stNSKAlc6wUjPeniEQg2pC6BGqDUwKjElIfsB5aOsGLiklp+a3saVSSsrrc49Txy+ysH3Di3ISltWWCPw7BYJxH6YQQBNa5BvocnatUp0cvmYKYItEo2UP4QJLmeNcGYqJaTT3dXpsTxxapnEf52DI8KAzdlkYlkhAUneBRKkVIqKaG5Xbg8hvOolpdDoqc2Hx2c7gKwO5Bn5s3X+GVWxuM18e0ex2kTppkJtb6pY/OWQvLxxjs7TIpDW23SruV8rq3vBOlFEHmmKAwIiAVmCMBYBokSfDsbR9QVI7t9Q0O9gbkqy3StIWzLlZzmpCiZo1LAQLZtHQF80ynwcB47yJ8onl8JvskRJR+EmmGFrFBmgItDvFtQQhkiHHQEoW+E6Gija6YYahm7ULfbNCHUfP9bz9K7CybP4MvHWDOf7EHW8DFL/rjs+BdWD8nmRwd22P4lo31+x77zes3WAVw8Nc/GPH8q83l4sh/TyRTgmk2hQDvffr+z312afa3wD/7bCRA1FVk2X7wlYoPvrLTZDeyScJmnaXAnVHFu37z+Wgy0cAuvLdNGTdWi8+fu4CzMZ4VZUllTLRqBHyWkrS7jPb67FW7tNod2q7LabXKiWOnmXRHPPXkGUIYM61Fo+zRxdmAtR4TLLUxyCThHi+ylCb855dXefdvPE/dmJzcGpWgLOuTkiuDiEe7OSr42St3+eYHTkFDWgX436+u8/z+CIGgPJL9xoZ5oJ1KRrW7T9ViRkLrJoqJDYgQQIFIgSrO1ae3Rrzu3/wJvUzyXz10jI3JYQelkyjGzWvOxqC2PDyv6AvSNOcLx2Bnm0kxxQePllCWkzjZfSDI6CSYCkUQgeAdWkBANO35I9+sSaoTnWPqgmkxRWiFUhqdaLRSpEkaOwQyQSqBMaapbgl0kiBVrJw7Hwlv3gaEVAQhUVmGF4JwRN3CmJpZFlZVJXnWJetq9rI9KmMwoULnGaMspyqm1FXUSJUusDZZQwkR92xnKKuSRFqsqUlUSrsrOVjaJYRAnudcWlql22kjZCBNNanKsJOaKy9dQ97sIUULU0raHcVkPObkyVWq0yYuceDa1XXqchoJZE6jlEUoQakLxLGU3dEubjwmtCK7PiQTdCJBRflCJxzOKMrak7YUmStpt5YYDPcZT/cYjQZMxkPa7Q55ltPvb3P8/BlOnT8J1+Lp/8VvevJV9///3dgjJo6zeeiBGenvCFHwW9/y//H7/tkslZ/Zy/knzy2Qioy69rz9LV9B0hVkCq6+cJfdcYnKHdoJni8Eb73guOuv82J2AyFrPvr1kUX+wG++AEphnKe/ffs1u0f9xxyvKVGNrYkQxcGPMKvFjFFMfEgRW/GemLB6H/XglFa44MAFZPBIp7CiRoRAbqBA4YRB0iI+lcROAAAgAElEQVQEiTGGJAUbLEoprHXNfw9JANZ78lQhFVSFRUmFSiWmKqmHU4SsGZQalWmSNCNRPZI0I9MaX9cIAv39ISPVpzIW7wK9Xg+tD0+vSRCE0jMoJozNlKKakK5UPPb4aR5+4jzBgpIaJU5S+4CtK6SSDSHM0MoXoi6rE6TZOWpTUUwqEJKy6BKEwjqDJFY50iRF+Eg8GQ9GTIoxa7KLNRHz1m4nTOvYVmq1ctwkoTaaPFukMBNoTszOSKxr0WqJyKgPOXUJpg4kus1kXGCdw5QC70paSQeVZPRdicBQOaisIREtCiyTYsJkPGJleRFZiSjhk2hKPKYu6Y/HICwma1FOhxRlyUJvEes9g23Btc89i1KeY2cfZjJtY82YLMtQSEJjH5q3chDxfa0zJEnCUneRaTHGO0+WJTgrcc6j0sNNcXvgSDNFe2kBO5iwcW8IUiN04KB/wMrKAmsnV+M8FSqSp2Sg111kNIXxQUVthxA83kbMJ00ycvC5z9B/scVkH6xzHOwekCTRSjRLFEHEx3GCRECv3ab2Fl8cMJ0meJWAtIyLfZTKSNME6+rm8BbHYGQZHuxx+8491vIMe/sq5d27DNMcffIk7ePHIqrQOWJdJ0o3CRof7aZlN4O3zLBOzjU4ytl6bWw7pRBIreYbvZx1Qmbr/EjiJpEEEbF98YSu4yeYJb8cyuiEYHmpWOLRVv+1hZT/n4zCQBojI0ECSGZKC7MRZsbv942AmOlJStHYqjqKoiZpZahEs9TrIrynqB21s2TdJZaOn2K0ucXWnbvIVBOEpsUaF5YepV8POG8fYvlMzvHXrVIZC45YYbMOqRrdThH49K9/eE5IuzkoOdPo3c/wcdEm+PFX2wQfqbwcOlPdD2iLh53A0Bp6qUJJ1dT0aZyqYGLcfXM2KCJRL8j5aw4rx8+9sMnz3/5mrh1MeblfMjGObqruw/8tZpqxdZGZ7Y64KR0Ze7v3CDs0CXOsDCIERTCsqw1ANFhjT0rKaXuCBhsSkUCNasZMX3Nhoc3+fjHfn5IkQSpFRc3dbLuxqpV466lcJAwByAq8t2RakSSayWjE6fI0SsRK8MHOAcEGulk0hwG4Gq4AMQlaz9e5cP4CRYj3M0WQeI2SCqkVqt0i9RZEtBYXNmV/Z8DCbgdtA74uqaXAJ5pjX3sZnTt6reOkKkGpKKUllG7mcSQp6hOOdz10gQ/+6ofI1gN72/copkM6Sx1OvPsSUz+dJ6q616O1vESQcW/UMsoR1t5yd7hDGE8gEcjcUxSOoMQMORqNZ7zCiwlOa1bPXiYcDFlc6PLSlRfBWLoLPUbjMbb0yGVJmnborR5DZAvc6Bzj8mTnVff+z3vc6BzjN8+9vSGLCqSMncTgZMSMN+Eh/pEgJd5FI53vu/rvAfj+nTeTmQ6Lx3uUo5JJf4/JyDEe7bB3sIexBc6PcGZACIKiDrxya43l8+dYlCXXX3qGQWWRKtrwigBJptle3SURCuyRVLCBDagvn4Lqa01UGy9iIUAeNhrn+NBmsxQNs36+1ymJrf3Rl4lYHiCEmBR47zHWkXU1zkT3HKlo8DWBqqpIEj2P+1JKqqqet5K8CygRyQJCCrx1TUszYL1BWokpSxQJMldknQUmgwOUDBhTU9XxrkkJ1llOnj2U2Tlx2mL8gN4xRZALyLTD4kqLC5fO4IPDNRUqGwJ5u0Wr0yMIF0VjQ6z+LWtJohOUhrKecqqVxvaq9VS2IEkSlNSkOqWuDWmiCdZR14vkWQvvPXVdY32IVokhgHSkWUI1MTHh04rRuI9O4oaQJm1CENTFFCEEWZrHAB0E1trGnjNQl5GNLKTAWUeWnqEuK1KVUBRTypHEWIcxKdb2omOHiJaNxaSgKgwheKztQFD4YCiLBeqiR7fbxjpLRFso9va3ePHKFXaGLd72jjeRtBLGZYkX0G632Rv30YkmJAHZUlShprQ1Ia1RKotGAyIg/P3yOv39LQQpSM24mDCtA0IGtNMRpnHjDlObYJ2aJ3CxTecop9N4PYJDBIcUTVW1SVSL0RaiWsSaDsbGe3P81DIKxbioAU2ahmgiIAIL2QpSxsOYqyOg3/iK2sF4UrC3s48xsf080+rdWN9hONyFEOjfvYkf3aXVnpCFCeNbY3b391g4fxahdMQaiqbKI9y8ojo7KM5x2rOqaiMcHu1xoZxOkEqSplmDmztShZ0tUXF/UjVLjENj/ShlPEhWZUXeapGkKTMnnX955wxKnYs+9jZWCiObWjWxQTXr2s/JXLPKsJBNtWoWb2KoiaTK0CB2pKK71gM+eV902rVNi835Ji6FecIVQpQNCgKCdXOY0syA5Cj54aeevcfL+5KxSSMLXwqsNQQbsdRByPl1ngc0QkzXw6HmIsLNW8Vhdk2DOMxdZ2zgOalDx0gsBN3SIq0gSAMywhI6QBYk06qmNCXSBrSH0f4+Pm/R1ymJFXQ6HfqvTCn2HMN1gc4SfPAsn1vg8lsvYYylNIbQlAhnhLSLCxmGGVZYooXnvW9/lH/8Jy/ziy/fo7CO73rkLN/zxIX7rvuXImIJIUDC5w7GLGaa0x3N+sQghOCJ1Q53RhWjmYe8OKxwRIvOgELOSBBIopPbhV7Gy/2CF/cnvOPUIkcz5idW2nxycxQ3enm/Tejhh41wjpKS3WyXJEsJweGdRYl6flu891hRsdVUz4rak4WMU/YUNHM2y3N29nap6xKNAO+YVH0mKyNanRwtipik+oAJlnwpZbWzSN7KCT6gpKDb7ZDlGYPBlOLOEHvdoJJoVZtnKbU9jHFOH/49ZJ6N4Sa1nV0rEH52QI3QBU+Uy4oufmMKX7Ad7iIrxc2t6wB44cg/18bbOMfUDFgkJSrJSHSsCiedqMrRzTOS1TZV0sdnE+qkRXbqIrd2NhrMfRzDcU3wHp1GPKdQCVIGhJIIkeG8pygrTDXBh4hNN00BStAoMCjBtKyY1lAZyWhcsrffxxhD6SMULdeK6XTMwsIKSqcURc2vHH9zlMRqFlpdWxZXO3zk3/4yL738LKlOcHU8ODR9JVyIBi02aP7m3/pe8u4yVVE2c1hG1FWjBCBnRgqhUWaZ4cmPrAc5h2I1hDwVYSC4eL/knLQlCcKj5OE6iu5lHkHcw44O268YTSaUxtNZXGHtbItzaUZVnaU2Bu9qXF0TjKMsppS1i9yPQZ+N6Q7HTnU4lbUIxjUGEB5H4F6yhavsfesp4OfW7V8u4zUlqonW8wqBgLkkxtFKTPxOPoLEmyjjnUWEwyQzbiA+Wo7OE8+4aWitKafR+k2I2C5xjjkTMUpgxGQ4SRKEbd5LRMmNuqlmZo0LC0JCYxMXgmPQ36e3vECrt8y0rKCaIJRDuJhkSCExlad1exmWYqXgqTefJQiB8RUoCCImeM4ZQNFuZXjvqeoKVxeIRGNdja1jAlnUBcYavARf2djqsY5xMcUYg3aaWnryXGKwaK2ZTOtIohAKa6K8ktYKV1cUkwkqyeMkq2qmtmBYTsjSFOscwUT8jPUS50JzeIC6ihabeZZSUyKSeN1lK48Lz3kyKZAikIeEtZVliumUonR4UeODiRqoqgVBk+UpdT1FC4WpDVIK0jTF1PHE6GqHEBKtFJNpQZKkFMUJPFVshSeBae1RaU5wFutcTLiVnOONpRTIdkLwbQQ5oSFFIRzuKJMlWMAjfYLwBUonuEZIW0lNXZUU0wE2RHJdBNGDMzXONRqTwUUSi/eN7mCzOJY6tPttdkoXGfhJhlaKl154iTu3N0FHlywps5hY4cmSjCxPSVo9sjRDaU+aZ+StFu22ZzwawxHm9WSySzk5IJOCUX+dYMZo4dEZpJWh2N9jnKa0T0Yhbx8CXkbMY0TbxjFvrzarNCblkT0eGp9uQnSnKQtHolOEaoJRQ2aM/xZHIEpi/lzwPsqANZa+iQBXjQlWIVRToRUSY5lHXiHA1TZ+25keYVPhDSE07dFIlgshVnBj0ybKRimlCXIGehAYU3OwUbyqHfbej5xE5Dm+qrDWEaxDCY1upSR5gkrzuCnaOsoJIbANWYba4QS0L54mWVvi208PGN/aIhQB4wrGu+v4siSxIWJqOx1skkaCSkNCEVpBplFaz65gfI6AyrJ4jV3ECEc1A4838V5E8pqLSGIhOLh2BakSdJLGBL8hx/lUonRKVlX4/R3WnGVtaY3W0gKJ1LhJRWVgc1whpUbmCbqVxEPKC5IrT19DKsiPKVYejeXTfm34nbsHvPcrL/LPn7vG5rTibDvlXDchkZKBMZTO8/Bih//60XOH8+zIpnakFn/fCD7wymDKx9b7fP9bzvEPPnmLhVTxnidP8AtXtpllojKR6E5KVRUYZfjOR8/w4bv7bE5rljPNP3zjJUrn+fSgj8sMH7izxXueOs1furzAy8Mh7zqzyutWOnzfH96KZELrCIuWCGg5HJ93VxACWp0WJy+cIG/lmNrEuXfku8hG2k42a8PYqJowujui1+8RgqQ/OJgnJJUxTH3NfrfPhYsXcd6RiZW47prYIoREKk2QsfpaEahKH+25dZuwbLiRfA5lJeenl7i1PmGru08EMcLmtx3O92v/xev58xvHmz+zMQZehq1DOEiEOEjKhiQulEcGhxeGRGmyJMWnHmk1XtJAvkRTzW2R5hopEsbjkrvrm9SVZ0hNq9VhdHBA7WzUXs4SalMRRMZgMMD4iDnXWjX421iUMa6kLCoI0Q3MYRAiHhaq2sa8Ik2QCMajMT60MHUdEzWhY7ItZx2kw5mvlEIrgXfxvWY6tcx7B03RoNFznq0Uh2MW/4UQmLo5TMswhwNFJRd3n6TVsJxgrEFMBaPJkH6a0u72cNhYdPAOvCA4ycLiKqmw1DbgTYnQXU6vPIqrFZaoBBLP1hWsX4PgG1Lf4ZDwBfogf77jNSWqARCN/M0MmxZCQM1qw00mGoG6hyx97wKJliipm4SRiOVRGoNDNYz8mARpQohAbe9ju1FKTQgeY2ZgfElVVbE8Hg6rrhCrLQQf379pySZCYTVxw3aBab9P2lqku7jIeHPUtOgidkgpja0dqsyZ4U8SsYB1jpbqEAi4xjknuoo4qklMFBKdYSuD9OCtRJGShhbFqKCjOwij8Qh0mkbnEt+hs9ihtjXWhehiozRVXdFKF3AmBlrrLHmaNz7tJVLWZEmKUVHLDhc3R4EizVPqusRZSyLSpmLVXBclsdZgSkuvtRhZqc6AjJVoYwxJksXDQlmys+HxPkOmFSFEjJu3PibM1lJPDInu4qgIrkWQmqLwJLpNCAZvRygVqIwlT3KClbTUAsHXKASmX+O9IfhILChtjZYK4y1VVdLO2vGg0lTJa1vhXEWWLGNMYFoc4ga9cdxZ3wASrPOU1TTCKbQg1AaloH+whxcqtrkbgergoz+78D4KgAeoKnsfEWP9hU3S3XVa5y/HKqH37O7s0j/YIs1KlErJ2zmJVlhTUk6nlOWE2gj8YAvhFSqJ9FCZZKyuHkOplLo6FDWv64J2K6Xa2kCPx1gX26Cq8WfKraXa3UMsL0Cm0SEQot9fUzs9coBscIAzrWPfPCGEjHOTxp5XKYSatfSPiDnOf36e7gLxNR0WESQSj3cG4wxKxrkuUXOIwRd2i0TDpg6N9M88nHuHdwq0jsmqj77koRH2tCLgGyy8EhKlNbohd33hqO/eIElyJgS2rEG1c7K8RbHrGikbhyDOdQWkaUpLZwgpUAh6nS5mr48vpmArJqMh7SSlrcGbGtWQEYpQUzmNkyA9CKHwRPatbDa94EPE51uLszVBDOPhWmlUU5ENAlAhVkxDYyThgdnveY/xUU5NEQ9tpnJgA8p7hI9QJ1Fa7PZBQz9OsbpEpylaJYhSY8cSIQNBCYr9nKzdoexn7N64O792P/DZu/x3DxznJ77qSRZSzZ1RxU89f51//ux1fuiND/Ljb3uUZ3aH/NrNTb7twdNxftx3E0RTm/qCPaNRo/gfPvIyP/rOy3zym56idp4PXNvjZz67zgzA+yNvv8jZpZzv+PgV2p02X3Fymb/7hkv0EsXYOJ7dH/PXP/p5hlKiWxl3ast3f/IqP/QVF7nYzbk3iWL1twbTZj9wLC4tcYgnbOJE7lFao7qa8XTM/sE+UgicuV+SSiDmCYIPHm8N1sX4tx0UrvQoo8jzDOcczlcELSinFZNnD5gVU7TSiKbIoJM0qgogoyWjiK5lSiv6iSRLJWceO4v0gUQodJZyvnOGT9eKN6dfTunCnz4+JxeQMo3f3ZqIdRcO4RzolBMnz9A9vkQwir3dbfq7B/Tv3SU0VunO1oxGU6TMWOxOIwxBeMrJlKKY0FvsMd7aBATTskBr3ZC6HLbJJYyZdVIi1KsqS4qmsxga5RStdSSWBkgSHWW2jGc8HqPTJayxJFrjRSD2yeP3m+mihgBWBGrhiVK8TXco/tC8U3R/lTK222frYmYqQAP7wwWkmkmFubkyxGwktsI5QVkWSComZU5d1KDBeoezBu9BCU3WyimqyFFQpCgpSSRsbm4wdFXkYDkQYYQPNhL9jrxXrCL7uRTgl8N4ba1/f/8ZWjbYtznG6Et8ISkjdgaa8nmIiYJvkkwhBXjBqfE5itVbSKmigxUK2QiS23DoDiGlRAo9DySz6pcSEp1mGF/xQHiciw89wmQyob8/YDQZoVMFBpw1TIcHrKytUiUJzgsChpk0T8Dgj4hhO+GRaQpBUluPd8SWkfeEYKntiDRJoTkRhiBwLpDqhKL0KN2Lv2ciWL4oDHmWIr1kuDehpkLphGJakGU54/GUdhoDoFIRs1SEMrJRvcPYCueH0ahAa4SJlV0RmsqYj0xPrZtrFHyDfQvzU2an4xiORxTTgtVjJxiOhjhvkQpUqqjKCTQLJmmleOfRStPJMw6KAo3CTiWZWsTKAbWp6bRXGPYL0kxjbU3eSgiUUOckWtBq5zhvCMKikrgAtcxQKsEUjjzvxdZVEheUVppWrkllQpJGseZWu0WaLlBXIlarfv8jAFx+4ASfe/YZNje38SFBNrqHsbpl0VKwd28DhMQHi0oSHn70MSBeF1NF+IMjkKUJ6uhclj18u8b66POspEARsLVBioxWb5ne0hIheCbjKVkSpamk84SqRueCVneBgGY0KWN1WVWIIxg64QKJkhwMp1S1BJMhqCinMalRWhKcxddT8jRHhBBPuqJpb87ax81DfqbAQZQkwUddUqRAJodYwagnKRtDhDDvdkQw6pHXRBw6WckYvNJUkYRD8XwhfBMLZhE9JjOHhdroATSrpgKIEBDB403VbGgSgmfGyQ8hoEIj2YTAWYGTKV4krw40SmFshQmBVCS0l1ZJOhktrbBKYnwM/HZaxU5BUSDwTSvQMN7ZZrq1hRUBFzw+0XSeeAzT0pT767SrmgnQFyIqGRRF1EGUurlWce3FTx6xS0qnkTDjLErIaGUKESIwi59N0hoFvmbHghjXbFXjvI8STU3MlMHjFLgkRQSJr2qcrREBtJIxeQ0i6s5mKUJrZJqT5ClCFRTplHyyQLt7SDbqmhHvf2nE+1+6/5I+vzfin75wq+lAxCLFjzfksQBzw5V4r199S4SIehPbZcV/87tXmVnMzp3WgCA8f/8z18k6LYyzmNrwtz/50rxzMNOZjFfmcL/50K0dPnRrm8e6cS48tzuNMAEh0EnGeOHVn2fzW97+6ge/7Merk9T/NjzUmJfIuJc2UBQpJEI186e5HzIIwEX8qowk0HhSinCvmITNbKEjDGOOXZ9BKJyN+3KYaQ3H4pAUAY+j213CGEdZlmRZRuocQsRk0BOwIb6OUJKD3V1u3L2OHVvqyQhswNloGiCbjo3EgTNYU6KEI9EwqQvKsiRNJMfW1hiOIhFOCYlIU/I8B2OikoKYFb8AqUgSj8AjRSD4CD/xIZp06CTHugql4vdVSpGkGh9cNEbBHnaDBSBBCt0kpXHNem/m83IWil1o4mGIsMTZmGdRDUQyattGslkMBPF3mMEYjxgp5CqwtbVJFRKSXCFVjiknsRMl46HIOc/KseO0WilFXWOtpNUOlFODlppyOsaEklRGx0fna/KFjGIyjRXZZsyu4Qxe+eUwXiNG9f4RN6DD9v2XSlid84hE3RekYqslzG+EQJLaFiPr5xjX+KKxrd/OW7jgG7MAP794pq4RSXJf0uydJ5dtVldXqY1l7eRJWsOUvb1dEDq+Tl2gQgTS17YmvlzcImKyefj5B6NpFAnXkvFkTCvPGPWrphVuyJM2o8kQa0zENlkbJaWUxhtPlnUoqoo0TWm3uyiZUlY1k/EEZy0mlLTbbUxl8KomWI/qtbBlTavXppN3o9OJC3S6yzgbkNIjlYvg6SQQHCwvrUa9S9tUngUoKcmSFtPpNPorK0VV10ghObEcsNagteTkwmpsvWgVMYFSopIouG5DCxumOD9B64AtBYu942Sqy/LSKkmSoBNNq9UjhCjPIsWsuuaRUQUenSQRSC5CI82SAtGtxDlLmqYxP5IqHkQa/UHpLUppvIunWx9cxIBK5olqkC0uP/AAzhUU4xG2DtTGUBZ1dOdppmqsaHjOnr+AkhIfIM8li4s9Ep00bSNNkqTACwBkvS4ii+0UKR39g32q8RRrPbotSbKUTrvHZDqmsgk+SDq5QPqAlylpJyFv9/DO0ko0Cws9JpMRg/EhU7SajLnzynX8YEAIHuU9mW8wjU1aWWsXyYgiNM5SEtls4rMT/qyDH5r6lhAiKnE4D809iZVWGVvsUs9lmGZOLXObogY6+H9z9+bBtmX3Xd9nTXs407v3vqlnqVsttWRhyZMky5jEdlQpOzhFIBR2SDkkFaBSQCinkj+gyGAqE1V2FRRFkaSACkUoXA4EKhRxPIBjE8uWB2xZ3W5JbrV6et395nvvmfa0hvzxW3uf+7pbsnASy7Cl7n733XPPOXefvdf6/b7TT1bn7FAfc0ZHpCCrAlIaI4ZyQTFWW0kxjaOZNtyD7kk000kcyRFE1ylF3Ei/kp9/RIsTHUq9ffPujRVdu/c4o5kVDqcdfragPLmCtsIqpAjN5j63Xn4R2yZW8xnD+hy/lgk4aIjBM0TNMDQsjx9iPbvEK/fOaVNCJ83MWYzRYsZBpoypFFF5fQoI0qozUmFMQuHzJpavxyj5hwowUZE4/APyfBZ5zhTyNGoVSUaToiF5JQBATOggLbYnMEQvGdI60Wz3ol20BfP5guXJEX7Yc/PlOxS2eNs5fOuxC3HKA32gCSF//u/wx/F4/2rOkb24tYyDV9565IvF78EB7re0HfGhK7MHvv5HH3r7vPR/GY7fKI946PI1SDLYI6ac+JEHdaDVFLavtcZkOvri/iySoJgzqwNhXBPUmJnK9PMjSqiNBPurLM3ROf/Vx4G6XHDzzVucHC9YLOf0fYeAADIBj1TC0GEKw53GkLQnWE8wMjrZYYUejyFnmkYUHqvh8vElBu/pzu8ACR88TdPS9z3LS5fw+57ZrGa5WhDWW7Q12Lz/BZ+ICpZznRvpSMKiVMqFvjAswiomhig6Q6VHlZIMcAihO/hz0Lmg0yKv0Ub8BugpKmpknbU6ZOhOx1vqpJQSPrZYWxDDoeHI4WaYC1LrRpU8+p7HuPHFVxlaT1UHhn7DfiuGvpgCYVAim1jvib5D20DfG7Alukzsdnc5O98KEh0Uy0XNlScv89pux8XCx8dIYe2XBCC/GsdX7vp/4FATRXhRcPvWPyfAWj3pLaSjkw8xpkM3p2CC+WMaiF7j7GE6TdcfzFMjiqq1FvSwMHSDp7BFNnFIcPLp2Rk+BB575CGatmW3E52pHzq2Z+fMFkuqWaDtWgY/ZOQqMasXjG7Lk+Ia1bzAWk1TtDhbkRIUhaNwQuf2vSQTOCtIa1EUhEEm2XShZb1b0/c9u33LrLzE0eqEax+4Tl3PpBCfzeTOSBpjHc4WeO+xOZ4rKSnurS3o+4jVGm1i7g7FnZl8zKaTMHXUReFodgNFIU7OlM0KPgSM1WIgQudsUun8VEa2QpRNKiaPs5qQEsMgxb02Cj8M0nl6i1YFZW1FQhGdTJuqSlS0DIh7f+Sgx88oxojRVqJgbHbhhpCHwGhBmLTBhwalK3wWmRszI8aecCES5Of/75/neHnMv/Id34kmEJuWrmu4t96xbTqC72EcqTp4ympGSDlg3paSnToEUoTdviPGHnIc5Ouv3WFV1iwXK6GmPQSrMVqQm6RLoVtQzAqLj0aMVVqitmazFYUrOd3eROFZ3zhHRPSHBUAVmpNHrpBOlhJD07aSY5onq/kEZeFwZcGQJ1JpL3RUTB6lMo2Uu3yJ1BmTUxUhDsQhUJTZ9BQTSiWsNlkPNd6zolM6aFbH+zibBnIgeTrApONKMBH+04APkM82F2MXi86RGlUkSGFC18a1pGs72rbD58bVWU01m1GUNXHoCeHtc+ODNaR9gw8RU1XiqLYWvTjG1JdYlOAKQ7Kae2GP9pFCaypjCSHh00DUCZMEDSmPj7FGc+sLL7K+fYdKSdM8qEBIovvFKHRUxBAISRgTXZTMqwoFDF2bKbyxoRANakKQk2mKTWaXRqPWOOrXaJl4FVOeMa6kqU/JSNGqEyiD0dIk6BTxKmGWNW4xY3f7FOehKMXA8oc/cMoHr41s0X6K+PpSx9xonpm/NfjxNz/+58++xnZ4x/HgvyOOV1bX+bGnvhkysisFG7n3OhR1cilrghLpRYg+s1L52ym76vM+lmJCYcbxNLnpkCZF8l1lbZXpV6CMIsSEVTKXUfZBuQ6kORNwx6s+G7BkMtvlFFEpo5rGEL10qSopSfmYEkAks1nnaW2SLHGYwDYWJmNsltyX4x4+ZtomYhogWZQtSLEH0yOMh6GkhLxv1PWMysnUujDJ/yAFYf9MaaldhVFG9nZToCME+iwLEvNP0uCHSNu0LGZzQhq44QcK5+iHnjh4uq7Ddi06CHJ7dOlIZGJGZEIxBULOWq8qiw9+amILIL8AACAASURBVH6T0EAoFcSUbXPCQYS6qqirGotC6URUBhWL6dzE3FclUtac+/y9C5MyR4+gFundIXQ/nxDIJiw563VR4WxJ1/XSQGg1XT3hwjo7tI7jR1Y88i44P1+TYqDZRWGLI8RsSDu7+yr/7FO35RrK9YHSBcZ6tmf30ElJVOLgSWXBaj7HKs3wVvReKfzbxr5+9Y7fWgvLARX5Use4OZksSp+2shQlMw65GQ+Pl7BtrRMY6WxSSKJPzReZUgrnLG3TTF/3fkBrGYtZFCVD53nz1k1m8wXb+/fQRcHlhx5m98LLmHwT7/Z7qrlM8DjQHUJJf/R7fzd89u8B8PGP/T5QQgJYa9E4eaMqMLZKstFqyX31YdKGMo65TJ6QWoYQCD7Rd566Kun7HpLj7LTHOUfXdxg9UFVQ1zV9kkgqYyxGWba7DavVgqEfSCGh9QxsIvmIqywxiK4GLVq/mBTVosDaUXoRqcqC6KPc8H1PQvIAY5COs+8HZrM5IfQY59ARhii64tliLl21VhSFYrvdYQ2UM0cIER8iSg+oBG3bo+hISbPfNiJw15rX7r/KyeXLaGtlXKd2OFcQY8BZjc2LsUpM5qXAgDJiG4qxJ5GI/nDdfNef+D384//zn/Lms2+SvEMpi8qLpUoJZ0r6QWgMjeb8fMMQIkNe9Nq+E6omZC1mSvBuee7rVxYs3Zzd3ovmVQWGtqFaLTk+PmExnzNbFKSF4eQ44IdIP0TadiBqoWCD0hi3pO3OGVJH9KLbnm7AqmS+fEw2sX5P6Bp88pJskPJM+USespZI+lAIOgpCiHStFOQhU7TjdDbnNK5whOCFOrNFnoEdCLHJ1zKTNk+az0NzrVRelEdtFimzU+NmnsaeNRff8sNpRG/HlSJdxAszKiFcNjEJurPb7bl79x77XYMf0oQ4is7P4Zyjni1YHj04cQhAvfdp7K2buPsblCpxTcCoSLfbcrbfcp4CrqxZLGbsT8/RES7NFpTKcNp3DL6XyBglZgdb1cR6QXPzNqprmOXiIRkJ+M5dBFElkhWdaV0vsUUlbIDTaFfS7c4zIgMQ85KRw9ajNBMxI+KMU4xy1RQnw2CQe3rSDQ/5vIrkIhZZLhHFAU7f0d4fKKzDlY697zlr1vyJTz73Jdfq/y+Pv/m5135bXufLHf/qP/i5L/v9u7OfBh5srC4e3/9n/hwppUkfPRaRMtY7PoCUJWOEus6Rbzqlaf1SAEFjx+dQCqMKKeSi6NAjCp0iLkslIgGskc8/KWyUZBlFHtOarxOj8/ViYm5gslxCIRQyCjUBDlLopkwPyyADLQ3tyHrIJQSMa0DK9LQRtkOJrl4hYANGgBFrDSH02Pw1pBxrJ+tQ0AKuKKPBQuc7htbTNTtMkNfRVuKYvJd1tqpmDEOgHwLORkk2UArnCrxzlJXDGEXT7hmGgB1jtUZ9aMqSqVGiEMEVAipJk4D4UawWVEd6RGxeH402UrcoQWOzag7y4CHrLM7abNyScypNgJkagck0GfI9rWDkyMZR1QpFObdUZU3XtvL7K003dPR9y+DHkH/Yrs9JqSP6SFUvsIXj6OgyzRMR3+1Jn+9kHx4iIXm6fk/fe4ie2O3ot4GynkEf6MKQpRs9MZhJwjUeWpt3Ikq+qsdXZqa6cAEfuL3xG+oCK3Thewg6YKzKs3eFJjOa3HGNm3WCZFA6YYwjhB6lBEGzmXIoi1IKUiUoqysKib9B5408kQiknKO3PV/z0BPv5trDV1Gqoi5n3HQ3JHjZOVKM2ZQFVhvK0tF1LYtFzQe/6T2Qh4ZpU6FUmmRo2lpJPIg5aibJxq2NoXCWPvWyiBhBq3T+r9ISn6O1g6TkJkKiciSeS36u6zpIYnza7XeCZkaoyppnn3uO973vfaxWK2HL+gabTC68W1JK9F0n0zhcIQXn0JOSxFrt93tu3brNYrHKTLCkMgx5WIL3A7vdjqqqGYYhI6se7z1KKcqqQmFomg5tLF3bMV+U1HUpiLcW807pSoYhTnl8290WZzVFWXJ2dkbx2msUpcN70RRVpaDUVVVRFBU20/BKaZRHOvqsXOy6nphk03h3vnpM7fjIt3095ls1P/HX/y+++PlXSGiCjzib+MhHv4E7d095/bVTrl97mLt3brFZn1I4yzPPPInWM8wTgZ0/w4d+GtEJ0LUNrz33GkfXrrC6cglXlNSlIGYxONHEKU1dz7BGidEopjwBKIrT12j8smDbLLh39x77zamgZ/lYn+4JUfRWKbbo1EMaBGUgZgZdPVBMpihGj74LbNZb9s1e3M4RRsGgUjIBq65qjo5XFKWh6xusLTDajXfe4Ra8YBoYb+M4PiJnsJqsq5RQlozAqGyOSjA5R1O210ily0WzzcE5m3NdtWK/a7l58y7rzf7Q1KaUEV4tJrlmz363Y9+0PEhDw+u3X+ehy1d49Jn3E/sO33YMQdGe36dtGrxP+KS4rRTRd1QRUtPR9FtsSBRVjm/zgaqeUxpNf+cuab8Hq2mSWHNSkgIlwmSO0TGJ1KMb2A+Rte/wWnTHRUqYrB9PajypMp6TrFFLKs9pn87K+HnkzzwhhYciN/e5SBVr3FRdjGg1IaCigAH7NHC72z1gK/rbn/gGfuhXXuVHvvgyv52H05qnVjNePN/j3yHnFOBS4cTQtW3e8fu/1cNng6TNQ2P8un3g+9cfevjBHxhp2+lLBXlQhuxbgqLFfDFoJSxQCgfHt6BqGsxhUlXK95nKReZYACs9RrZlE04USYyPXqK65F0IOqeEqpcEmay/HMEJ8p2RhHGUlmdkrGQdV6TDvZpkb1P5vhaTJoftnaxlVTLeOGpBjU32QCitBQhJVvwoBhQSRxfz9ShDQgJJaSqz4MnHnqRpG5qzFX0Lu9PbtPse5+aY0uFjwNgKlKdpW+ZLg48DVidBWncNVmloBlKIlNUMVwJqwLhaBkikIpN4PcZrWa9S9jZohTaQdCR50CqBNgRlKG3NamFpNCQCkS2Vq2naNegenzq22w0nx9co6hPu3jmnrp3s22hh3rSVxiWzMNFE6mpO4Qr2u4YUA9rIHWy0xaSe/aaRNSAljDWcHFV4r9ntDyjnr3e/zPWjE7rQ0m0HQjQMTSCcaYwJpKZHqQJrZlTVDCPWGgq9EMPYsMHWDnwta4byqLJGm0g9K+jPD0WxQlD7i/rar/bxFSKqYxSVFKYXO9G8F02o9qGozdFRRvQdepzbnVKmEEfwW2iwsizoGtFYBp8pyqwbnA51oP5lQfcYXTL0DTENaDUnpcilSyvOz9esLl9m2A6UlaKaLRhOGyBRV3O6MCByE5ntfHJyiT/y5/8drly5NL3cbFZKtl8Qisj7gDJKxrgmQX6NNsQQuH3nNovFkhBknnyKkX23Zz4XnShowhDxPrLbb6kqh/cRHwb2+x3zubx3owvW6zVN07BYFLRty2K5Yrlc8YUvvEhZVkDKeaBjrqWXGKysRZ3NZhIX1fVCgWYdTdP19OGcSMoShUHihnJECLrARyNxOyiqHL91yL7UzFczSWkoLCTFvhmQzEAw1rLZdQz9MFEvcvl4UlzjQ2CfWkGZkW7TGTuN/Ex5ce97Eb1bnSNGfMdowkhR9Ef/ev6MPvnJnyPhmc1KHvnYCa/feJX96Z6UoPWeX/v0Z5jNF4TQcOONl9hvd/ih4crVa6w+WNCnHrsoqMxVQuilOGtvAtBsNtw7u4udWapVJVNWrCGGyHa/Y7ffo815vgki1oz6SkHenTG4yqF1gCHSNXsCidQdSofHH38IawtOT884P+1Znzd0zV6o9nx7ih4tEoOf7q0YI127J3g/3Y3jphQzfex9pNl3rNcbrl47YXVpno0TmaXIm+5bmRG5dzmgRyNNSGKy3Sum8lM9+K/D36U0oQnTaxh5fwEpfH2I3Lt7yma9kzVCiyxAhgoIshrzOKwYA9vNGXD8wPv13Z5u19LPe2xZUCwLtLOU6lgKd6UElY/5volR0CYfWe07+v2OsNtjtw11UVIvjyjqiraouDNbcefOHXTXocffx+SGIUSUT0StuDPsWSdPRBGyoa/ShpV2VEnl/iHTxOpC1nQ6GFjGVAYQF67CZPdvnO4l2eLyUAHSZJBJWpoXoxUmKVrfcR49bQpvcelLjM949F7uOafl+b2yxBj4h9/1jfz063f5oU9/8VCwcVjfv9yhlOI/+/r38JFrl/jD/+Qz09/J82sGDoj73X//O/jw3/0kN7YtAU1CMXDYIBfW8HBtKbSmj5E3G8/Wj4VuunCtHo6TwnC5sFgle/LtznM6jMZbxfXKsXCSkbnxkdpq1v7txfO4JsWMLh7ig+TVtDZieEmS560UeZ8bo4bG2EYpLqWhG2MD5fMjyhQquWfHAjnnHyuRhEmBKoS8sCvj9XGxmGYygsY4FtBmah7H576o/744MYykRU6SG9DDEaeC2qoLzGcOb40RnHM4qzPVrbMb32cEORBwFC5R2woTZygfYShJrPFBwChtBkJKtF0ktIHSBmxp0Ulxeu8UrSzb7SmtF2mZ14rBKBb1itLNqIoaV87kGg0JtMW6gjIEfOhJUQY1BJUkOxclngen0MpiteXWzZdo4+fZbvfEQTGEhs12TUqBspIINe/9dA9qLRPJJDXHkZJ4Q5x12YAeOdvumc+XLOo5fd9SlQVjPRVCRJkISWegSmRFSiv6TozWfzx/Cp/+Nx7Pf5rzlR+j8dQjk/6mKzt/L+fzPvQwcGjWlJHlRekH142v5vEVFapqwr7zRc94Q43dPPm/4/floSHIvPrJpT9GXMUJqyGBFCN9J+H92jL4Hls4oX9Rkwv+ohEjpYQ1Fh8E+h98wBWi6+y6jiuPXuPGG6/h1573fvg9hBRkvm/XsvMRTMRVBVZb9o/s+Ne+5/fS2pZPfuoX+EP5vf36889PyBFkN242TSiVx+HlUPDbd24xn8/IcAhFUdAPnqos6YeO0TaotKZpGmazaorfUhq6vpHhBrZE6UQ9K1Fo6tkS7xMQca4Ut2KmHLwXqYS1pVA/Ss7zbtdy//5aFiqtGHov+t0gtH9CJBlGJ5qmm0xqWgu9IoVvwObEhvV6jSskVkw6cy10eQxZTyt6YeccwQdifm/tvqWqSqxRU4MhMU8ysBRtpsgOhWQgaqVEM2wOWXhSgKVsqJPNYLxfb7z6BZQCV1iWywWPf8tVbn7qLtvTBh8M282e7Xaffz5S2JKnPv4unvnwI/jCUdhlnv8eJsqMN6VQffj6k5TVCh0Vs2JBUcqggBACXrUEnyRxwQtlF4bIEGWYQ1SS5CzB84GcFYYzlguAKq03+GZg30Hba0J0JFOBiaITS4ngs+s+VwpKQde3DMMhCPwiqzFOqhIDm2LwkTu379G1PYtlTVWXgvgrMyEvUxM66SbzdKUoSKKsXLKCjQXLRbpoLFlH2nBsadFkhHVEZ2UjSSGiC8d2t2Wz3U3PJ7SkbAA6Sw9ihDCkrGV7e0Gxd3u2b97k1hu3sEYKvKStmC1Lg3IKrEbrAoWwGhEwWlFYg4mawtXYE9nodk3P2XrHfrfnbLum7TqmjEQtDvuR3tVasVWRtYqilU2COqkETQwQe4wuqbTk1pK1xCojV6MOPZEROoRNMKMBlYRGYbMJZNIQj4WO1VKNRUHWFIqQYJsCWyKz+YrjoyWvbi7a+i+Udeodvn6AIXvrn76y4y8++woXh79cfCIlAaNvsVfJI49Lxw989H182yMndCHyY6/c4b/6pRc4GwIrZ3hiXvDCpmXISPIfff+j/LEPPM6V2hEiPH+64X987hV+5uYZgx/4/g89yX/8oScZYRGFYuYMf+2zr/Gf/9ILPFYX/Pdf+wh/8ldvPPhu1OFEXMwLv3iklHPAcyMhj4ugUr5aFFq7C43gg8kXYljKJlRtLiCZh5QbUMSocjrHocg0WpBYlaRZ0Safa6WEtsxM3wiqKG3yczAVp0qLb2HSkMcHM2XldaTYiVmDpDUErTCmyHuXJwwdVeFQOmtlg7ChSimGpEhpwBrLrHRszm+z3txle7qhHyJ2iMyKQprx2GJ1wlKgg8d4xdnmHufnp1ka0FGYyNBtcIVDhYZ9O9D6QFCadr+TfG9jaZuWpFvM7pQYW3TWfIfBk1TMkiNF9DIVU5mBN978Dc52LbF3WFXgikAYNmLYWjgaPYBykHSOoougIlYljEmSJuIsziq6fYtzltJ0xD7SpT2zusYQ8n6cmbgiMAwdIcJqZogp0bYdTsukxE+T+Dr7Dkkn/z8dP3N7kxFVjf0XrVAdEa/pkF0lIyaHLhGQzjGbORQR6+y0GYYwZinCiMymGHnJvczj1mK0hPgXRSF6nOzI01qo47ZtpxiJtm2lsDUJnWQggcgGFFoZVpeW3PvFe3zg/U+zOr5Es++4+vBDHJ/UPP57rvLYo9dkbKsuSLVhuazZZZp6PLbNXi7KFElRHOshRmKQTE2VKXetFWUxp+9kkYpBaGqSot03OW9PNGoj5X1+tscPvcgDYpTA/pTjeLLBDOWxtsjUwqEDnhbFKWPWTtMm5OOJeC+yCx88hZEJNUM/yEaRC8nCadmEtcKagr7vKMuSfpCQY6MU/TCwXp+zXC5wRZHH2MpmqsmfT6YIxkgLrUXQ3g2RfmiwTqj48ToqCidRKn4geDGjFUWBkWFAWCeaxIRMLRHjmpEs2CHgjIXuFID/abU9XJf9mYBt32WB5Ze5onewewF2X/66/y+u/yxc//KP+X97vP7SF9luNwx9i/cdMGQEx6CVFCkpbyo2x0bJYIJc7KMODt0Lm6DkQop+TiUY+sD9++doA84ZdFlmSjNv4NJCo/QhExWtJzPGqMGSyXQHNOetAJsUsSk/b5pQJAET00Q7aR0x1tENa0LIUg+Vx1iq3KAkMaUZY3BOmIN3Mo9H3ROCxXvEaIQwCGNEV9Qyr4cgVLwQ5zGbT/SBDiJToGksCgMxhixFUjkEQeXxh1H02Dqx1omgDaWxuFKa574dCCrRpUCTvCQw9GkqPA8lXJrA6JQRVWGoDo+5+OgpCyIX/0kricoSOgKjBNHtiNjCsVzMWR0djf5QAJ5YVjyxqCmNpguJN3Y9PsfyHTvDSVEwt4YrlWPh7GSOul6XLJxhNwQuV5IccLftubk/0Ia11Twyq5g5WRPakHh530/X5cIarhSGyug8nerBIvi/+dj7uNMO/K4f+Vneu5rx17/9a/m+9z/GX372Fc6HwOUQOS4Mt1t5Tz9x4x7/2xdvcdp5Kqv4Mx9+kh/8lq/ha//uz2KBv/SZl/ihZ18FFEUKfPtjl/lfPvH1/K8v3iTExJ1u4NuuLXmoNLyZn3MYhqmohQPiHUZ1TGYXU0xZpkTOXx5RUbln0Exxh0qJEfWQNZ41r3FsxM3UNIx31iEt5/AeBEWP0zquVHb4jyxlRnVDlBQNjJ4aAzUVqkyu9Jjs9LwT4zkhu4kQJVtahqUoCRhQmpAgJY0OmhgUMRlS6Enk4UAqEGJCpVKMwYOlLkqcCZTW0duSMGgiW0iyb4YYSRjKsma73jPEjt12RzWfs9/uKEpHPzQYA02zZbVasd28wk/++I8QlewtbbNBpURhDdp64r7B2YT3SERiytniWozX2jgkVC5CajHKs1gsKF1NosMOS3yIxNagQ02zb9FaBkHM6opuaGn2LWWhqOwMFQ1FWqBsgUJzPKvp+x6nDJUqqKuK3gwMvUcHjfYLTOwFDY8Jo6CcV4QAfd/zPzRbbAjUswJXKNbbBqsqrDZoNdBsPCiPxzOfL6nKJcfLI+alpaoMZ9sd83rJcuGYzbQM6FGKxeISL714mxt3N+x2O27dust+3zAMA+9/5nEZmPLbWCD/ZsdXiKgeFszx6weo+1yIjnSfdF+RFD1GiUPRX5j4I6CA/M9o2IYtw1CSkqZrZTTlRRRzzEeTjVX0V6O0IEaLpM8kEo4UE02zJYbEIw89wfs+9Awv3XiToR949LGHeO93Pc5WeU4bRZ88KXmGu55bdpuf77ATvvjCC2MpwGg2kvgnxeADOiMccTJAxLwIGNEQMWYngvdhcl2mLGnQWXsm1EEx0SXj762NCOm7rpuKEWMMbS/C67o8ZK6mmMRFmmMl5LPS+KGXka5IASu5r1KsxOBFY9pJllxZlVI05uLAWocZBuaLxTRFqHCSDzktZinirEzSIZ8HY0wGkEXXJYauA9UsX48IngRx11Wdf8cRqR5D4LMT0oji3Q+idX7thR2Pr2/9c13sv9OOz+2PUNpCCqTUYZQ0ATZvhCEKOk2mD1MCa52MTwzy+Wp9KFRjPKByY+FqrUhTUkDujV2PVg1KD2hXUJTV1BDK/8RrKuMCpXGIUcxn1jqMNQcnq75AE6rD+pC/hZ7SQQ90t1JynUqUvWUIB4BQjwNEkrh1jS7o+p7B+xwTZ1H+7dyzTyUmIzoxjUaGPLFFng6pGiJ98IxDQcZyFsaxtEJ8SAEr/6TxUs262wlNTpoI7FSk1YrlcsW1Kyf0Q8duv8c6z3a9ISboSdT5nIiMOElDSz5nKUmU1NQ05DU3HfKrBZQb584zFTVmNPUAxEhE0yU5x6RE2zdS4I+Hgn/v/Q/zV3/9RboQeWhW8YPf8gzf8vAxV6qC203Pf/LJz7LL7Mbf/sTX8U3XjrjT9Pzgr77Ic/c3nHUeBfzg7/4aPnC8AOCXbp/xZ3/+s1TWcLvp+d5nHuNj1474Iz8l1P8v/oFv5idfvcPXXlnxNccLvv/nPsenb59d+BQTj84rPnb9mG/8ez/HZgjcbTv+xmdf4z/8wOP85WdfAaAJkepCbs8rm4OetTay3jw8L/m64zmNDzQ+8Ebn8bmr+jfffZ3n7m/51XsbuNAMfGBVc7OTptdZ+7YObGTxxnzXiT3UeYjNCHCkkdaXD8mMjKLUYlIcMiLjaZqANd6DjMh9bvpTGlmK/EZiBoVGmj8DP9qYbOo5MEOHKXP5+vYX121ZW6XxOvxO4756aDNVzkA/XJPWZJRYS9j8tm2wZcngI7Yo0UA3bFEGbDoHrUmpo6ojVVnKgJWZR9kdui8I+Z4sC0fbJkiR5cLS7u8wbO+KvlJ1zMrItavXCcmTVGK2mJNCYGhfl8QAAkeVZjmbc7Rasd2dcnfoiL4XZBk5z973kkakE6gOrWcMbeLyyVXe876adj/QtQk/GBaLFU0j5qbFbIbVss/PcJRlQdFXXJprqrJm37QURYlVmkJbnJOJmfNyxqyuGYYWrTSlLbFKIqmCl3QGHzuMzTmyA1ilCEPLwhRoHShjoAhzVqsVi7qicol5VbBv9xRFge89NvuB+mHNopgxq+aYGGm2p2CPQReUpsK4SAo7jNvx1GOOsnqEu7crtpsdVy5fJvhIDClPmvydcXxFhWoMQSjMt2nZsrzc5KlQeTMyWgxFqjC4IrsiM9853hA6R92EGIk6ycab5O+ck+B48nMnxP0/6Zz8AAiVbeyocTH4EHmzfg23mfPqK69y/ZEjtq3ni8+/xtxp3LtavvDS83RqoEgFUQn10rYtxhqKskB4T/n97tx8U37PMWvNDxhrIKmcSWqwNk8Nzo6rGAJFWaKAvh+o6xnBp4wUAUrGukr0icp0BBAT1hWMZizR5ymsdtiipHAFJrvnlwgNXpQun0s7SSycE32kFCklwUslMGp9nbVTIZKSP4wtzcjS5E41olMVisTkxUoMb8Y4fPB5Sq1IL7Q66Le0EwlGBqKQhVcy3mLu2slub0U2XmqNjxGfEj5YQh9xWvSJKuYHKUhRCrCfeObb5JrILs1xsIEAgaIddsZgdMT7Nv8uSHeMNA5ajSi2bAhSrAX+1HM/CsCf/qmSh089UZdsn3iEjZU4o6AVKXk0Dm1d/j08VgtDEKNn6Fu6dqBrG2KAsl5wvDpisahxdUXTJ27dvMHm/C7RtznmBqQ6ynpT1DSzfjpSktzeFA7UoVJTI2jy/eK9R6GzGxaUloippm1IIwKkO4zZi2Y8n5+Ui7KYRguUbJR+GARh1VPpyRhcrXJ1NVG9SuX4JfldmBpbuR5ClNSMoihou440GhYzijSbzZjNSmZ1RdP0nK+FfteMOroHDz94go/47NxP2qBtQV1WkhzS9qJby/PeJbMxHhCxmKn3zPCMAw8So0Zxqgun4tEoRUekJeFcidOGwpX0Q0/XdaxWl1AR7q/P8AmSR6KIRuIpJbEIjkVpRrtUHk19QO4OdGzKfzUiqnLaD9ifVhKP1PoBVRbMF0sS8QH3sELxw79xizZfL//lR97Lk6ua/+Aff5p9iMyd46yXtffffs/D/Kc/+zz/0U8/yx94z0P8hY+/n+/+P36Ju23P9VnBf/vLL3C/69n7wA985Bn+2rd/mD/+05/hdtNPW8U2xKl9+e53X+f7fuoz/PKdNZUxzOxFLBU+cDxn03tezsWnUYrn7m9417Jm6QybIRASlDz4cx+7dokf/sSHWRayxv2tz93gufMGEz0PzUoeqwte3vdYDd/5xDX+yrMvZ5mx4mopP7NwZmrw6+qg50vZ6T3eF4fOLGWTcHxQlhZHSYDGBw9BsqDHtVWADJ3jiyR/M4WxMMzPm+Q1VVL4mEewcrjPgOkaSUZYM7IhU+Z3qMN9ORaYOQtU6uM4ueQl5pCM3upJcjWO8qxKR9c1aGOo65K+b2iaDbu95HFudmccLXsMd/Fxg5QUiUUZ6LqGwlXowmPxWO24VC3Qg0I5Rbvd46MnJUNh5rQhEEOH9wNGw2c+8yyFP2fb3KcoCsrC0PQbyqogEjk7v82ymFGVBc4Yrpxc4crxHBVl7VyUV7Em8hn/RZStAE+MYI2DPHrUFhqtI8EPEAoMS/abU5yr0CqyOQvMZwswDXEILOZzjC6I0cjvtgr4XhJXTi6tctqA5/79U8pixnKRARilUcmSQqQqapQzspfqnhgDVXWZuirQSOyVimCt4fioRhG5c/ces/oYbRxVVWJ05Gg1YwgtR6tj9psdvu+pXi/JDAAAIABJREFU64Ju6NGuQLuCq/0x+61IwOpZjVIGnwY2mzOeec8zlIUi+sQH3v0U52dnLBa1MHBdT1U+mE/81Ty+okJ1kfP0jJGL2WaDzhjJZq0UVtaKjrH6GjJCqLn20MOCKtiGL7z0BRIBbSSeyFjJIYw+MgyBGMc5vTEXq2IYGqMexi7Te481hmQsfeioXS03YGzZxDWzes7jjz3GdrPn07/866zv3eaZ7yy49LBh3SCayUHmlWulcIsZTdPitJ0c/gCLSyfi7LZi+BkTeK2xxJRwxSEU1xVFXqRkLChJgxrQVrSmZLREG3EOjyHKMgJV4X2kcI6YUpY+yHx5ax0xSAFcVhU+L3whhikzL+bCX+idwyi3MftScktzZ6/0RA0Z7fDeU1qRBoybYP6/FNEhoDL+NUJOSWm0GYtkcgxdkik81hERF6oeN9x8Qn0QikvlTWJEsUBChmNickcnFD6N0T16QqJHimrofY5akucOIWK1mbS4SUPfJ1BBKNE8Jk+rPIHECsI4IVNZZ3tR4VI+8Rj30218O3Dz5ms0KTdTKKySlImYZIqa0gmtHNYUWGcpqprF4piHHi549dUXSbdex53ew2tDMCXnRc15e0rCZxrHZA1ukFSJjEbGEUnL+YveB/qhP2xaSuWhCY7FYiFFujH0fc9mvZkKWlBCcEXwQyAaMEah8KQhN4wZOZGXlEJ0pAnjGMeGNAIHcxCMF/dFTeLBNZ21lLnKUnkTDCESehkTLJup3FtFUWCMZhh69HxO8J7CClPSd/2FQLvDMbOa5XyFUxDSwJASfZJGMQYZL6h8mM5Z0im7nEEnLQVsiJiQZJtVOiPZIy2vc+Ge0SsgqURHwhvJ1W2aPfv9Hq0t8/mSk5PLqKg43awlCYIkcVxM3cBE646nO104Y2NhnMa7YbwwM0I2JkAMuaFICpmaRqJPkbqqeOLxJ9BWs9ld4P2BG1txvV+pCn7/Uw/xPT/+K9xsei5Xjj54aqOZW8PPvH6PF9c7rFb8zc/d4L/75g/wyKzk14Bfvy/o49OXZux95C/8yhf41B/81reUkEwadIB/9PItPn1X3ksbIvU0+UZ+au7MAxmsISV22QS1dJbNEJCBhQ82K79w+5yn/s4/5dFZyR/9wKM8f7aT7OWUuNf2vGs5QyOFslGKH331Nk8vSlKCu7283mk/mnQT0ctwjemUj+h2zkzV6tA8GFMxUceAMilT/4pCW0gWMZvKWqmnPHAvIILy8mkmNdHxo+wqESkyg0fK62lmDJTO1bOO2Ch6S+usrE9TEkTAOQnnnwbRpEQIskfJPnPIYp6ut3x/phipC0MoanmMjlTGMC9nHC0disT1K4YPPvkutFbEVJKiJYWEU5G0SIDh/uY283rF3PUsqh4XDI9dOmZ3pWS/99y69QYqtQwo7m/3VGXN449cY5k2JN3wzHuuo1C89+n38tyzz3L55ATrDHVVcXR0GWMTRhVUZUnpIk3T4FyBqy1FnQi9yCC0tqAtSke6vsGYGYku+1wKFIn16T126zXXrl2n2+4pTSmDdLDU9ZyykpSauq7xQRhWM6+mnPfVasngW1YruS60KrAmm+VSiSJRODF6paiwbsEo53HWsZjNKawmepFIXLpkMKrgaHkFpRM+JNrWY6whJLB2jjEFyrTMFiucq4hJIvHW5xtaP3B0dIWUAn0Y0BQMfY+1Jdv1ho1xLJcrtpuWs/M9ex+pSifxW+43Hwzy23V8RYXq5W+ay4WezQLOORmRFsRIZJwUnrNZJchd7QWB7APFkWXXdpiV4uixY27fvsHQS3QPKZBUoqoqnCvxvWxw3nusk1gJwoEy7/t+QgaVGtG+coq5Maog4LmzuMWdO3d54/U169MbPPGJa3zoOz+K3i04KTU2JZTVOJXDs3NKr7WO0hbwyb8DwIe+8eN0fZed0kJzyPQi6RpDCqIXjAdnpMiHDt2xRFLpjCp5oXqCdLYuo0MxJVRIWDfGBonrU8cgC5zVaJvRRSsZoTEbnbTRqCBGsZH+NUac6TCVCQwh5nivlF2/msEHjLF0Pmad1SHvTynwfQ7m5yIKnuUROZMvASqqg5Deh8kwknJYeRz1UVpwAxHwZz1unoDDhACI0cZkxN0Ym3NaQ6azNTEcilSl5DmU0oIqKoVS8vsnBqRAS0QliHzIFFCMnqQE6Uh4dM670xe22qvf+jSfPz3jrG3wAygj7vsUcpplnr4UfS7UUqJXFkm0jNxV4vrf79ecNDtis8UkMBTEWUUxM0Qt4VtKO4wyeSPxMlpwLB5jnGi8kNkNhRTfKSVcUXD12lWqquTWzZu0TcvJ5ROOjlec3j+XYldpkpI4o5B1lx5FiLksyvXTFACuZMNSiJlJ4rYy2hLiCO3liVVS+CnBA2DCYsnFXi7GxsI6I1Gxj8QQhKlErltj5P5fzGcURUnv79P0DcZaUjaVvfWIVrNpe8xI5CsFGEzSOJOwlct3pMrIUQIibdvSDj1VVVElRdw2MBzkOkpJ6LZWCq0tcWSMYqJPno4IyqCjoPTN0LGYLVitjiYpReksqe8ZTCJopoi9ceKWROfkuz5JiDuKac3JXcN0f0iNK3QhKksqFNiExPakhEmKoRu48fobVHVJUR82nAQ8vpQRqo/nUapv7GTIhI+JW53ntO3Z+cDzZ1uevb8d3wTApD19clnzX3/sGT52/ZiZM1OSwPVZyW+cH4YyHJzvPKBlfadjNwQWF6ZTtSFxpZI1cZM/l8poMcO+7VDcbnv+/otv8r//3o/ya/e3vHS6fuAR3/fM4/z9L77Jb2wO72NpNW2IPHveTtepsSOTkOn1TJGP0XVjRqoxmkhDCANl6QixZ2yku67FuQJjstM+p8WPYzHLWvSKOpXyvEmQPptZJp3ZqpgC0YtpVRuJiWKSeIFSMuZTZ7OU90Hyo7MLnTTmeo470oj45rgtJSyiXGpSrCttZKwniiH0B2Q/KbSS5nJWXJK9R2tSKEj09MOOlCL7/Zo27rlz+yZ1pQkp0JxJo/aeR6+xqAroBwpjqMuae/ceRSmYzRakZKiLmrosWM4qIpIqMPhAXc145rGHubRaYYxh1zS0MdG2O6pqLikJtKyOFgQUpjLcvv8m3keqWcnQBcj3nzEFISB7K44QBo4uLXj66RV35ndZLVY89cRl2q4nRUVZ18znC7p+oO1ayrpku91S1wUxQtt0k/ygqirmdc35+hyNZ1aVhACXj0/wXSuNiBE5nO8HttuNrH3KEIaWpCzWKIyNbLaKsvCgpXlv+5Z6Pmez3tP3ltL5rBHWaGfxQwc6UhjH3M2Yzwx+CNhC0fWes92azWbLybUj7t87ZVY4+lYYEIXOkYc7QOH9bb7jy96xv33HV1So/q0n4cExeF9q8sgFd4oCKuC2aJQ4AT7xFPDUb+Ft/laOl+HrAWbAFn7lp/65n+FXnn8Bk3V+Lo9rdc7JxlY6tIpY4yQaoygpCsljbNuWpmnwQ5dp7kDM1HIIB1QwR9kJ5QgM3mdq8cLmnpLMIlaSJ3mBILpADcskp0nXFgWhSmksnM2EDuhcQci85kxwjsjBBWnHSHkeNqlMDY+vnUbH6+jolgLx4mSjsQEY0WT5txTJiTTptka90+G1s94XcvwOoFIueg/fh8lUnt/VOA9mzKoc37k6IFHZ56D0iOYcBk9IkXN4I1cev4z/zvfzuR97jtPX70szYQvZRcg6nqHPNJ4s/Cn66fdTKPZref/FIw+zB+LgGfqedd8RBmk0fIyZcpO4l+Alxuxgjsv/UlkvhqAuKZ/b1WqJDHSQLNqm6SiKktnsEl3vJfpJi6kiZtgkJkkskC8jk9hAC+KfLqCrY1HFGMumgGkiTz7HWp5n1Myl8YymkdSUsmz8fAUQCrmhyvrbwnH5yokwDdqyz5m9y+UlQvT0Xf9OXire9e5389IvvoT3YYQmM10qbYokFYwuaXnvKkUZTao1M2+ptAarUUrKXZUlDqSDHlELbExUMhTWx4AyhusPP8J8MafrJZN4s9mgtRZUx1gGAkkZUf+qBFahohH6X24kuSuU0LcGJaavCdE9FHtaidZ7nD4kSR8KExUmIiyEkiZys9lgrWG5XEznSgHf897r/KXPvMBrGVl917LixfMdWg1cKx1NLgoVgnL6mOiyVGBs4/7it36QN/cd3/sT/4wbu46T0vGpP/itlEZzrSqmRmVmD4XlW5HQtx6fPd2xLCzvWlS8sm056z2/62TJa9uGzRC45Ay10dzYv/OI1CHCzgdKrXh6OeOV0w2Xy4Ktj7z30oyPP3TMD/zi5wWVTVAZxUOV42+8fIdN6A6/nL6JtZrBDyQVhEVAIXH2EUyi71pCTj2JEWxnQHkpLCMMvsMVCkKeUIQiBWQwDIqqLNh0Ch0ci9mKulpS2hkok4tNi8JgtWNxsgLAD2IWLlzBFJqaP2ubGc6+l4LbuiKPEZX7wXtZixNiApRlVWf/x1gUy5oe4zDdv1bniXZA07YT+jpEz367puk2bDc7UvSEbqDUhtJ55jPNUW1IqWezX+OjJ6TE1UuXuHx0TG1Lji6tGGJiubqEdUoitbRlsVywPj9jIBGTpul7jILd+pRiVnNzfYpzBdpomm6HtoqgO7pBpHRlWRIDxNhxf78jUmJSDWGP1nKPaGPofUT5iK0SQ2iZLWYcH18h9oajxTFlZYh+wNpxSqSsYevNnqAG+tgRdmJd3G5b5ssj/G5DSonF/JguBK5dWrKYLyhsgdWGPgVWl1Zsty198DjnuPbQdbyHth3wQWqEFCKhTyhX0HftIfVDFdw93YM1zOoanQa6YU+zHSAdYYtEHwMv3bjL0eXLnJ+v6doWlQJVYcUPsrT0oaGcOZIu2Gy2oGExX9GHgKot55tzYvwXxEz18+vIx1fvRLb9y3981q5wLo/zNKB01nEmL7mtoct0ikzQUPsWrXaMWqQQZHivykjriEpmLlX28FFElA4uzFzyTQjmeEhxdSgBxr1/LNgeyLtMB+fmdGQEWl3YK6akBpge+0DkkD7k7KW3bDIXX0sKlgtfp/Tg80yPT9MCKKjg+NtMVfEDz3+g+8ciQfb5mN/3iH6OL/VgjMwhIP/wLi4+//i4B//uQq1Os+04eeQhvvHfmvPmp16lPd1z69YdietyBdooCu3y+LtM2ydZLMc0h/H939usUSjGj7BPEd808tgLn5VsGPHBCLfIpFubTBjIcIv5rCYGz/17a5xzLJYLiqpksVoRw0BVljS2EZpby5hgoSFHijC/Tr4WY8pFfcqFZcrqzUQ2/IzF8gGhUUqBTxPKOn4oKlex8vxpulZgRHge/Ey0ElnFfLag6wa22zXWGS6tLrFenzO6g996LFfHRF4iEqfzI1NzZNPq+0HG03rFbFZzfHRCcdXQVDvO16fcuPM6+qxgMVw6SD+8XDOanJKQpMmwSlOagqhy0U+i6z163zP4HmM1PvToZCgKmcDnjGFR1uLPShKNMzZmPsr6kXLjERRYV04GyVESEHMcXEpePojIYfiATrnoVQwIcguRWT3j+Pj4wQYU+OEXbnOtLiiN5p/cuMuf/NCTfP5sy2vblkcXMz5+rWRuDVergut1wRu77m2f1bKwvLjesxk8x6Xjz33j04CYm5aF5UplmVnN1dKy8+9cWD54KG7sWn7h1ik/8JH38qd/9nmOS8cfevoR/uFLt/jgpZo+Rl7d9VM0FcCf/bp38w9eus3nzhtOSsef+tBTdCFy1jQ8tZqx84E3m44//8F38cu3z3hl0/D0okQj0qL7/cBfffGNAzBAoh9uE6Jmu9sgZlBLYUtQELwnxMDge1mPVCJGzdBrnLMYnbBOYU2k6/doHLYoUCj6GNAKCldC8hAjrjAMfsOw2dE2BX3XiVxHuXxPRMrzGmctw+CxWrTHQ5dHuiqY1SvabY/ouxeUZYH3KSd2iH5bobKnQ1iuoijEe0LE9zFr/VU2ftlM9cv1jVIQA0aDdYaikEzTu3ffwKr7hKaF6CltSW1nXD1eYbRCVwXWJQZ/JOHzVckwyKjUq5evst/vuX92ig+BISffuKLg/q013dAS0oDHyDCUzHx0p6eydjVQFQUqGKyyNNs1iUoK8a5lu+04uVqz3TX0g6DRSstIaQEUIkVhUVETg8EWNbsm0EdDF+Hubo/tEyRFXdZ0fSv/5JHrYWgZokcDy+UR9cKS6Ni3p8xmK+7fv8vR8jK7fiConlnlCN0OUqSLa9p2j7GO0hnu3r5PPVugrUNpw+LyVXabLUVRYQpFs9mgc167soo3b75JPV8StCMWhiH0LE6OOds3nN89p0+RZhi4d7vhdHvGcj5je37G8eoYa2qCF0Z03+zzqGZHSgPbriEkRYwNu3aL4l8Qjerv+9FfJATRi2okeFgbPdEZhRX9zOhGlz8rrJEZ8vs28N2//7uYO8Vzv/YZXrt5m6paCDGqElXhCFExq2s22ze48cqrGF0APcaWmf4MWCtd3WiEGI1D1pX0Q0vpCoYhELI5aOgV3/fv/jGWJ1fo+0HGThqVKXtACb3tVMnojpfMu4ysKdF6PqoOTkylcuF2ofhIiBs9Kp3fm8SwjNR5TOMEnzGfcoIuAR7QOo3HxQJvKlXG4kQdUNa3hrQfzCoPPmYqeHORk2J64DHjfx8oat/ydxN6qfU7vtaXev8Xa4oMaF74SqJ13nYCLnwdL5zrtz630Pdve/l3fKqLeecPnJep0L1wztThSWPqCT241YyHPvoki1mN+8nn+Oynn2e/25GS6IlndS2moBgJwRPD+Jxp0gj32aCiFRhthDZDIlL8hc8zPvC5pul5BD3N+YqTFlTGi+62OySWTdMNUjT3fcf6/EwCqJ2l7/yEdiuEgpYYuREZH5FVdSHT/yJKPbYZF7MW1XQOya8/IskKJuPTRd3zAx/G9FvGSQd7++YdrLMZFUmUZcVuv8/jD2WTfOtRPl5RXC2It2TjDUPg6OiI+WJBPwwMwzlZd8KTH3mar//2b8DNLS09/dCzWZ9zeus+fjvgrJlYBqMt1jjmqzk+Dpy9eMqt529z581bDD4QNBQkzk7vcT8ljo+Pca5mPp8zn83Z7nYMPmKiZ9/uMPlchdysxpSwzrI4PsGVBeqyonjUUTonIylJGGuxzgldqC1GO8m7THnssLGYuuL81TW/9uOfYb1eS7Gb4P9h781CbdvuM7/faOeca63dnOb26u6VrK5sS27KRpLtUE6lKkUcqgwBk5ckEMhDIFQIgXRFCHkMoRIS8pSnPBRpiBNDKDAUCWVjS7HLLrlTJFnSlayr5rbnnL1XM+ccbR7+Y6619r1XlwRMWQU14XDOPnutNeeazRjf+P7f//uGfkAp+N53vnc8V5/71S9ireUQpGHp3/yNL/Ef/sRL/O9/4y9zr3O8spv4d3/rS+xT5vVx5uXbuylRi771P/rCV/ivf/4v8a/+yPN8Zzfx3/zRN/mXX3yWORe+NybemDL7VPjWXsbEWuE7+yja0XYeHr+tq1gBf+d3/pS//akX+ZNf+TnmXPh7X/s+//nvfeN4z/2Xn/kY79/0/Mo/+EMAnl0P/Oq/+JNcNButf/zmLX/r17/InzzeYap8vrWWX/nws/ynv/tVnoTIm+nufp+p5ewuF5vDcQx0nacWWYBSohAT3nE4RKleOI+2tBS8Hu+GVlHJWKcJYW4VoPZc9YoUc/OqbnHQZUfKMI+R2pphFRznvFIndodC1/VNX17xu17ARVHUnKSaVhUhzGw2F+IJbCRDXuuM9yu8WwkxUVpjj8pM8w5vPX1vyClRshapl17OhqbqhKJitAGcdPyXysX6gpc++GEoH0BhKXWCmqhZFnbjeCBncKqSjWKedvRKMx72GKXZ7m5JOVFw5Jhbs2emxIguGVMyGuhU5fJiTZodcwz0w4Bt6YBPntzQ+YFSAjGMpCw2a8YbMjCFyDwtTdiyOMw5HQmfkiWy1DmHc5U3H73JG488mZnb7WN874nZsKlJUhuHjrEEtBcf5bA/oE0h5EwsEVSkW12D9lSz4+bwOsUWOGwpMVNy4mJ9n6FzVJWwxRC3b1DRPH60JROpSvMk7MixSUwskCHHKPaRK4e97tlOIzlY3pxGUsj004Fp3BHTiLKgnGV/iKgiVabrew+Yp0SII0oZrDI451EmAQVrLCEmSoJqYL1Z48zlO8bav6jtPYHqX/mrn0WDWC5oj9YGa+3R61Are0xHMqZNvkr84owx7PaB933gRV7+0pd5+pkP8KM//blmNyQZ9n2nOBwmHjx4yD/+R7/Fn37561xddqCddHFnhcLeWe2eg6RShHkSELCYzktSxObyiot718zTBG2Qp4ncF3ulpSYtlWfdOpVPbJFCNx2QnA+h3kX1uTR91eOsriWa7QhiOWo1F/B6pykC7oCwdwV/y2K2nv3Qtnf7nHNW9XxbOvDPt5NNyTtB6lkS5um7LJ9zxrye++ueH4Nqg/OdQ2nn+Xi6lKKmBsXf5ZjbW05M65E2lb9KO85zS6TTd2vXdGGEz8g7VRGtoVLSHXr2fY7s4PI5WljRWBLm2qBWmvWPXqG+YgjbhFYQkRSymCK1WcfkUqRRAlqmtjBjVovuuuSMLgKIahVXDdX0t3L/sdDQx1L6Qg4Lu3ZKbqoarPOsN+tWPtZYbRj3e3bbLfeu78kkU4MAXHtyAqhVWJYYmnuC0WfPWD3d2+0eqAututwHiiM7Qa3E85XD8j3a9Tj6SyL3h0gXlvvvdH1iSnS9aN2LLozj3LyCxXFgWK2Bu0Dj/S99iNc/+CrfePXrUhZXit1hFDCZIiUlHtc32Lzvguc/9RzDw4FD82Tu7Yp+fcnDZ54Vr1orTQ6Q0a1JEK3JtfK+T36MBx//Dv/3//FbjC8/QitLzjKhdF3HarVmnGZ22x1KeaYxcHl9zXNPPcPjN9/i+6++yg1PeEu9RUkJPwz82E/+NB/+iU+LrtqA6mpj6dLxekjIhkUp23S8Gq0tnXXUnOiGjtW9C77z5Bvcfv3bPND30Y+lsUTVkYf3Vzx+S86V2yi6znF4Q37excTf+d0/5T/7HcmNjmhyTvzS3//d86cQgKv//teP//7d15/w2V/97TvX4e997Xutw9nwX/zBN++8/yf+18+/4/PebXs8R/71/+uPf+Dv//0vfPXOz3/7t7/8zhdVOCtGMZXCR/6n38Au1ae3vfzUtS834npYs+rXrelV4ewpPa+UwnplQBuMNhLAYqSPYt+kFtYaQq6U1GFsJaUgPtkUjDaEeUQSnxJomOeZknPzrRSday4tpTHOaGcIecs4yj07HyQFMOcsNkap0ncDpWT2456brTixgMhPqLYBaTHp11qcAnLKbNZXOOvZ7naMh4nN5qIFy2ScddQqJXZrHL5bHxeiJRuM7klYjF5jraLUGY0X+yafWgqcwpjKajUR48R6I4xmThHTFbzRTOMe7yRMRitFLwM/MUZKTdSimcYJlKWza0qWnhBTNON8K/0sNZJjpvMObzwmwvNXD/kjtcY5yxxkgVWVJsWINTJ3FAXKWGqZIRaeu/+A73/nZS6NglRYF8g3NzwYekrIdG5AGYk7v7h8QGogL2kljG7VVBLri4EwK7puT5wz1UZCHDkkRdU9lMxmtSGhiVF6dZxzpJx58vj1Jr3LVCRdzDuNspqYCjQZ4Tg+pusvsboSppE47+l9f/QxL3hM7/CuxyiPXYH3FmMVN0+2aCsBLilGjLV0riPUyvpCtNU1D/ywbO8JVD/7mb92ZORUmy1lLm0lAexxcl86fvOZEumZHFmvLwn7yPW9+zz77Asi3FVGyhI6YdyK1eqC9eYBpSqMBaUtIQRSyneap87L4UegWsE6S0rl6CeZSiHEiDWeWYdT6bpmAddtpErHVA5psGj9CfIoKsTvkGZhc/Y9l29/8r6T7fzfWktk4/KZgjPfVo5v2zuA4tl+hD0rd153fh7ejXF8V7BalpJovfOat4PY5Tqfs7ZHPawSFqgg+1+Sx5YEJUCy3+vdBcVx/20HS4X4JCN92zmpC3d3RrAuZeP2H+eClHc5pW2f5QSwzo7lBMTvXrt3stTtPqOl/ewD9973NC999CWerN/k0ZuPjnGvVPmM0lKCaosxFdq3MRSlyS2UWKw5a3n22WfYbDa88sp32O93x3tVSDd1BLDHxVKtDeQJ+2qs5eHTT+GcY7/dM44jOSc6LzZiLAlTSglrUkrz6xWmabXqMXYgxcw0je0yniHH4xVautQbO9QagnQDvV3f073P8cbhNXzneenDH4ZS2b68Z3x9IqZEjLHZmi1XryANHM3hIGdWg+fiYo13jhAjtc5o41poRmYYOuDUrAPQ9ZpP/PxHeX36Hq9+6TX6MpByIo0JVRVv1tcwzxl+7l/6BV785EekW3Y1iBVUKWQKGQmwKKE1r2XFlGcSEgccY2I19JQ+Ee4d+P7wbTbxgvv1aS5Wl1xdXVNTJocD964HNitDngvrZzp4YaJejTx8qeehecDFW5GbR1vu37tg8I/49je+gFKiiby4XPPwmftUEsZ5UqhM+5Gu83S9k2qWUnR9Jw2AVOpB453lc3/lRX72s89j0YRJdIa9X9F7z9f+7v8JwHrj7zwv6vgwHO/6tz9FvO1JfNdNKbGE412qRKf76L0/Y8xFcNqfw/aOStXbfrfIsYCms15U2hVVJdEpzIHVak0timmaKSU1Vw3bXDoq4yFirISnhBDY76P0FGgHWWOt3Lco6LqOeZ7IOR6fH+s9JYkbirBaQRpJSxbAGHvRklPQVDrvqVVs9bq+k7Abr6AWaVoa91QSIRVqzahosabDJU/IPTllbm9v8N5Tgd34iBQLu92OrndkdSVVyCrso3Xi7tL5Hq0cKQmB44dePp+M1Rd0fY/zhpo7SlJ4J/p363oJiakZ5wa021CqpvYcq1qrTppm5xigtgZDwPaFqjI5Bi5swhhpdJvDiK6F1cUF03yKdV7YAAAgAElEQVSg1sSqq/jNhQTbzAEHWLXmyaMJpQzOewG7SONvKanZJ2pSyJDBVEMZNSYZ7l1csN8ljEqM84zvOglPUAZtDb0STbC3PSFMoD2HMeA6BcaSsqI4w24bWfkrqjpI+EPRpJDQGsb9KHaMKWEs5GSoGbQRQiDHgDMDVSVCTFjXEceCseIkEFIg7m5Z9xfEFOmHNZvhmpQiOU1UK/d0mSuJCd/3TFMghJkYA6t1xxRHtLbcbh+x2VyhjOJ2u0frilHvFZrzT3Z7T6CqnFDsptkrLPYctFJALYmF7lkGP4N4qqJk9aKdpuQokgBrSMZQjBFSpFqsMaAtfX8pE1hLjKCBoVMEqwwq4ulZpBO5Smkwp2aOj0woRsmKx9qOWiaU0ceBSVZQ8rNT7sxb7hyUIWW6xpDqemKFqgLyiS26oyN9G9jR6gyocZe9g1PilzoDd8JIthJUM3x/O4ASi5J6TNF5+7b835J2kd8O5BbDzOOxnQbyev5DO9ZjobkBVV3lGExjx+7W+M9A4bscm1p2+HaA3Y7nOJ0tP/8ABvrEHt894HcDye/2/nc7b+98jQYihdj8Qw0KxUu/8COMX3mar//x13nlle8QUjx2ci9+s75rGrBaMWqxZZLPzjmzWq/5+Cc+wWa94fmffp7yZfizL3yLvJUSo/eeeQ7NWkyA5l1dMC2OtBCnmdubG7lWRnO5ucJ5i/Pd0c6m1MLTzzzN1fXV0R2iH3qurq6P1iovv/xNvv+978skWsTV4nQ9gebxmYs4VPz4X/sUT730kJwLq/UFm4cX7OY9Smk2FxeYWtEjhEPEaM0f/OEf8pu/+Ru4J5YrfY1UZQwK8SbOueJ9j0Lx6NFjpmnm4mJD3/c8fvSYFAtPf/wZ4Jucb7t9YPPwAZ/5q7/A5/Vv8aU/+GOmaYSWnKb6ysee/zj7ceZ3f++LLelLUUIhh4xxkHIizNIsYq1iniau1hesh57t9jHXV2tWD+/h845P/tjTvO+DHRdmzYPNQ7wf8F0n4NI8xf0H1+QUOeyucStHdplxvAStuFityCkwTweGztL1vmnEJETEeofvLFMUBqhznuY8R2mhDdpI1UpSxzSS6pMwZsDbSxSaWBIoGXM1it/45c8C8Gs/9WlQiv/qP/nvAHiyXlGBe3sB/3+WC7v9gUWLrJBGwZMMp0lnjs+hxliP79asXAetSXFZ8LL81aoscPeZ/m+/+gZ6dZ/7/lSdub/c42f7WbZlUXinwlSX2aGxfbXgtOLZIl3/b60GQPHgcGg/r47HAvDv/Qf/GorKNM8Yo5lGcQtRGInirJnxsEfCKiKlzX+yuMgMvWeKCiFIKzlGlM1iiReCsOVKsdtuxQu7SqXQaIWm0DkHyPudHlqoR6QkJ9+tGJQqWA1pLjjfU0omTgVjJFin8w7vHSlZnHNiy1YzYzhQcsZ0mt3+gLGaojJT2st1jYlp2pN1oZoNU7plinL9Yyx02lFrIYxybucQZY7dafrOo2pPSpph5YFMCeIXarXG+xXVGkpJeK2oubIeLilZXDQUCm17caJJlcura0pJ5CJWjTVXnO4xyqJcCzAAVsMDoFC6wuVaGMyqI6U4aZYqiWlO6H7Na6/fSgNbqZQosptaFFZ3YiPoBLBrY8jV4vwDhtVI1hXlFF1vUH5mmmNzZKgQpIyvVCGZyjjuudjc48HlfQ77Gzq3RhvDFB4TSsLnTAiRa7+hVEPOAUik6RE5RaqKzHPGmDWb9SXKJm63j7HekkuiVIhJs5tGjDHMe5FCaePYT99GlYE5iPSoxhtiHnFWk5Oi67ojo9wPA1obYgrUkhgJpBjpuhVPtgce72aM9ozTrs1bdwmBv8jtPYGqNlJmLEIfChuJag0f+jjBwdKVupQphZHJWpFUJeWAWzlwhrhN2N4DRYTMJYhuz1iZlFWhVDGbl49ZwEg9lnJzrs0ux8sgUBNWGVKMKC0T8zwecM5gjOTA0xibvAx96szzsVY5nvPvDqRylwVdOtFp0K0sHd7vAoxKkcalZaAV/eM5wGrn68jyLUOtlKblGJo3KmfWNCygWej9dyDL06h93I++w2acZ8G/C5A8A9OLNvXtjV1w4keOusczNvd4vpay9dmxcPZzVYsWapnJjq+mUoXhervh/Z3trCv+eD0FxAmweo/3HifPduyqNp3k+WtmUAWLOvsojb70bH7sHs/tn+fV114jzNIxvCx4lBIwumhRxZcwH895KYUXP/ciL/3lHyHlgnnY8+lnf5pPfPpHqTFjtXgEvvI7r/AHn/8iNzc3gJT7jteoWZjGmHjy5AmH8cCwWnHv/gPGceTNt97i+uISraS8r1A89/zzPP3sM0e/1AX81ioefh/80IeYpok3X3+tTeQcWey6NGABN8OWz/wLn+PT//zPgFeiydWanDL31pvjd8wUyhrsxmG14cc+9yme/vBT2Kj46h9/mW/+/iuwFSsvhSInxWE/ohVM054YIzAwjQdu3RuYj8DliwO8zeXo3/7K3z/98EkFn/zxH3DRv/1Ow5KlsdXAnd4BB/BE9uWB8U145c9Ov7+wwAzluzAhf5bt0Q/Y/Q/B9rd+/w/k7wZc3779zZdf4U+/+mcS3RwiWmn6fk1OhcNhPGr8Ui703cBPffTTfOD+x7i5eo6Lfk0/CLkh6XO0xYjcZzHGo0xMpovCIxS/9FOtlNskYxLeIWloEi19ekYX+Uit4n2slCLlCHWZLxRhTjztNf9x/AcA/I8/+1PM44F/449EJvA//PjHyCUy9GtizoSwp+s6LpsfZl4sEZVIxmqlMYgVVNe8f+WYLzcDCiOR1U63xXyi7x197xkPE1li+gg5oowSWVCR8BTpWQwyzmtNqappSCtzGLHGoFRmDhO2pQOqUiFXckrU1sQZQ8C5Hu86UoxUnYl5kjkvZ4yO8qznijM9uRScNmQSw+qKnMX4P6aEVhKv7H3BqAGtKyXH9n0vSEn6PrrOUlKh6xQx7qRK4zrGcYt3Kw77EVUMxlRmLRWcbdizO0iFJedMdh6traQgfbty7/qSznlpsJoCyluccaRQ2G4nYsisVpf0Xc+qH5jznsvLNXOasO4CYx1KW1LSvHFzy+tv3ND3vcgIWviE0QbTEhbTrHGdQ6nIPGtWFx9gP4F1BeU91YB2kWEFJWWsLkzTAdfLdc4qktPAzMDudsfu9oby5pauW2GMYdOtuXd1j2leEeIsjGyniHHimQ89x5tvvAFKFhK5KmqxOG9YK0tnLVNKjCETSgZT0bqwnwtmvQZlSWvL48dPsFVx8+breOvbIrbIgvfwhAnNathw++hJm9czU8hY7UllBN4ipkAu0PcblBKLM2t+kLvTP/ntPYGq1UtU2hKRKiJ+rcGZ5sd5xECtXHiqUWJUjzWWOM04bTHKMriBVDVOKYpRKG0wGrpuwDW2VKtObJV0bkykdFsuq3wBscLExhgRG6bC4pGoteb25slyGFJOWDwpm71GLhExY1bHMq2MhWJIXuDUZV9b9+355N3eJ5XcBuLqkWA+ptmcGFUay3zWXEVdAmmO2x3Ax4n4FI/WxjqoRfZwF/C+g008YylBHf1mlxNzB2wun/RugLIBD/WO/Z4x0edSgiO4X/w/77LC6uweqe1LLu+r7fxWOKax/KCGKpbb7njyZb/6zjm++12W95+Y+hMwl0ngpLO0zlJycw/QpV1PZGJS8OI/92Ee9Y/42j/8GnpsyV5I6TgtwDTVBmJl3yVn1h/d8Imf+yT91YqQEllXtPKsnu2aHEJe+/6f/xD+wz3bJzc8/tIjXvnqK4zjKMcpX4IQA5vNirVZiaF3iuxubghzRF9eS5knRHzXiWH1B9fYex3aiE2O2DBVjNI8bQ3v+7n38/u/94/4nS98npvbJ+0GkWtYUgFt+NFP/SRPffRFvv3GLSmXNoGKREWeh8KSCarQosFFYo5Xl5dcX27YseNx+A6EPUqLh2TnV3R9Zr2Zef9qwLn7KCwxBj7gPsjqcs319cQ3X1/z4rjnn21/vts3h47HT7ZUhJQwzWM6holSTpKrnArGOD7wgQ+xfvg8sXuIxRzHkmWcWPTqmNMzdve5VMfxXS++ee2ZP6autXtnWbovIR26yWFqXVhUaGa+jcw4e46VRbnu+PPD63ugIiChK+76kr5bEVNCYQgxkJN4NXsnITaq1qaNFJMqpZq3sLXUKou0mCZSyjh7IX0cOUPOdNYzhSD+y2ESgqNUqk0tBEUWtlmMPSXQw1RCmNHKoFWlpMg4paZPFl37PAcqmq5zaC1+ouO4F3tnAzFNTd9s2O1mnHXkUtAYvO+Y50DIc/NslfmzVukCDyGI7lWNDcRWKKqdY3E1OeyipERqwQXznFgNHbkUduFASQarO7R1zGkmF7mSicphFuvG6WYLSjxFQ4zsd4/oe491jnE/EYJ4fKaYialyGCdc17UoUkfRSoA0kd41EI1ivbri0ZPvM40B39mW1Cf3nLOeXMW32RmHNgXt4Nvf/Q7b7YxSK2I6oNVAzhPaSGOnMeJ60NuVWGLVjEfR90DNOH+J8w9FX+41ORmUqeyr45BGqD0lJ9IYUXrDK6/NlKlnt7/l6mEHOjHu9wzdhsvVA7wtrFShdlCR+yOHwHD1FCFFpjQBVzzX3ePJbiSUgvOKecpoJVWDuc7kEjk82bJyTuYv7Rl8IZVMUrIoUMqSKOhUcb4lDv7wJKi+N1ANUTJ4hXxRR62q5IBLyc4cy8ENSHHyd0xp4mr9DFUZvO2pOaONRreEpMVcPKbYfAfXFGZSnqlF0o9Kad50NeOMRWvRo1Ihl1m86WhG6FVhdEXryltvviUsZa3HWDullnApharSXKWVIrXGCYkBFWZvWVGf0OcCchYLHOmcXgAucGTwJHavspQel62eySd0i3RavFQX8Lk0wktXtrxPJAKtyauq9rnLftTxeOEE5CS95DgVyAcpMduX0n+hNk/Gu1v7HH1aFMhXO30PrRGDfyRfWliQU+luOY5SJGZVSN4TGF1qmWIhqY9geGGKcxVn2XoEO41BbOettmuw7G2Rb8iO5RorhaxQW4lvAabGLKEFLXyBU5xvpR6TY2jXwFhOgL/dB6UUnNcUrfnJX/wZwiuBb/3JNyUBicWLMFOKoiLl2SWooPug4xd/+bNcX18w5tK6/8WmiNrY78ZeqgvD0x9/nmd5HvcThl/7n3+N7R/u8GlpQtLEEJmmwPW9a4wRnZzvHA8ePqDmwuGwJ+fEg7/0Ak995gX0RcdcI7nMJCopSjNVnA7EMBEOI2+FW/S9HqMVKYyAxWiLsxXrMm+8+TV++x++zmrT0Q8dxnguLi/YbFZYq+UZU8IMDYNMomEOdF3PxWZFDG/ywnNw/69/glIj1g5oRNSvlMJ5TcyjMHOmB3pqLXi3JqaRX3tmhbXX/Dtf/y4Af/cD96B17xqtUVU383RHKpGcEl3X4TuPVpL1HdMs4KhWOtfTeenELlSUtijlmgY9U2uGKuk2VkvSkDNe/DiTAAHd2PPO+7Yq1XTOkmMgV1nUH8aRlBO+68TdoULfdShTmaNo8p33x+fEKCN6OwND38miB4lCHKc9N7tbMhqUyJ7EEaE2ff6AMR0xzeQc+Ztf+D0Afu0zP0MthV/+Hfn5f/nJT4iTixv41iuvMx5m0Jmso0g8jKaiiTlRgVQqaMP7P/ASz7/wcbR/jsm4ZsO3yAKqdHw3feOSJb8wq0fbuNoa8ZbhifPFZGNMWfoiztoma1MYCDJubhPLGAm1FG6k2LUMe3T29Fx703GYxAVjIUi2Nzcobch5SSJEQkNiIurCOI/SAGQMKUdW/UDX9YRZk4tYk80pQNHEOGGsRqlCUYoxTKQcxYGiJa1pY3CuE69cVTEqMaU9qhZySMc+gFRnSlI4r8hBALlWQWK4W6XxsA8CGJU45JQis7DShVwyWkvFZB5H+dloDuMt3glLPBdp2JrHzDQmfDdIY7CK5Bgb+Nc40xFqJqYINRPigZhkPA0hsD+MUrpWihIzxnhqTfSDY5r3eLvC6oFaFHOYcAZyUnivRROJVOH2hwBESc/qBVDv5wNKW4pOFFSLwjYo3RPjDHpmP+1RVZ6fkA58/9VXMcaSYsE5z2GcMMZinGfVDUJc5UTJlr5bsd2+zhf/6AvEdIuzPdZ5nO2aDGvGGseq7zHW4ZyAfqN6rFWSSKY9fliJ8lFrJIVckSj4zRqtKxUJ8Vkax2qvudg8wDhDqQG/SUwhM++F3S5ZKqfee+bpQAqVnJ+w3T1hvVmRwgGlMilLD8A8S7Pafvcq87zn6t5DqOJE4YxDa0uJmcvNCih03rHf7ylqxXZ3INYCybCbI5uLf0o0qh/92IdJKTE3VibGSIiBEAJznCRrvYExoyVnWEo+ghqsNeQ0E9NIP7j2/oz1uqV4WGrNFKSjV8adxZ0QqALItNGUotHWNlPgZn5facxrIWdaDr2i1JHdfn88DlhKRwv4Kiia7ko3H0tOD/6ywn97l3uDkGdnaAFxd1nGBcwqpZuj0GJP1Trhq0gqFm3nkU2spZWJAFVkwNEncLsApXp0ys/NokkfGYnlWI77RV53Rj02AHvS/ByZ4vPXtHOwxAEuYNIYafA5MsJGBkRqFnaugX0xJvfH/R3PzqJnFbegIxNurTtqkQUMiPG0yEuEvS4lt9SYVmZfjlcvvqyNe9HS+GVRkj5ylC0s1mFynAtQUUpTkIjNWk7LSN0aB+uZ7ERVYfMFXCaM1vzsv/JZLlYbvvX/fIObm5tmYm9QiG61Kvhe/T4f+fRL/MLf+OtcPfs0T0KCLBZR2iw6aYkyjSnKvRBFf1VSYL1a8/zH3sc3Xv4K827EWsPV+IChDoRpZL+1MsFoi+8uGKfI7vaGV/N3OfgD4cnM7ve2KG3xnWOcDyILiJm+d1iX6XswquD9DZ/+1JrLez+ONjCOM8OwxtosFmxV492AcRrfdRjt6fqBrusam9oWDrlSa0CpTHBJBnOTyKpgO41XjpQKRs9yrzemRtuKUSKdMFVsyJxfYY3HW092ifMa/jNPvdCej0qYZ6x1ONshAQRSyTHakEtsTJzBGI93nWgNUS1xriXDVUXMMqaVtMiapAHUO41t3relVpTtMMq2hXnm8X4rfpfWYa07LtxDis2uSOyqahWmT0K+inivGkOYAyHEY9NOSpmxJA7TTOc6hn7Fbk6Uahg218zzxDQFrHEtjU28NmtWUBMmJ8593FbG47oTaFuvV21stEyHPSEEjHbkWIVMUK25rEJMEe89z7/wAV544SN49zxar9pCr7TqVKG2lKTjg7qMc22sq00TtVQ/FmLjRACcqnNKiS9xTvU0/jWAq1A0VHDcVSlZyId6+s5GGUo+3S+HaWY/jQz9SuzkCsSo0KZSa2aaIqXNJwV5xo0xR1mZs45pntkd9mzWl2JmX2Qhg5YUoXGeySnjOmG2JMRCoZZxrirCHMAYqJmcA4XEuB9ZrQbpA8CQY8boAd3ccmqRyGTpGxEm0zpHRebAxTkkpUzKAbSh7x3jlPFWtLAxZWIqhDihskFrCxF2u8RhP1MJ5JoJYSSEjNEd3neUMpNzYlh5ri4viUGTSmS1Es3sarWh1MKqX0Enzcbojs26hy2kAFVLo5r1HYt7R7fp5FxhWQ0rDgdpehKNtGjI/SBzQj+sMdYcddvaWMZpxnUDJVv228IwaOZ55tFbAec0292eBw/usd3JmN55i7eGaZYo6mHtSQl2u5FvvPwVXL9viYldc0hZSDqDaQtVpRQxRDbra7T2WCOWelrQdiOaFJ3rWa9XhJwoRVjyYVjTdT0KLa4QRZPmQkoQoxDxKRdSFrlITJmSAzGEphf3xHTN4VbGTKOrNOhVkZb43lLNDj2vyFmTUmK1XnN7O2Ndbbpri7UKlzVdHbBG0288cw7cbEc2pseEuxXJv8jtPYHqG6+9gTEG6xyd69isNscLV6toT3PKjEEsZMI8U1KUjv0Y0cax2x3Y72e2t3uefeoZ4jxhtKMUBQYZECl4b8hFupF9Z8lJSkxiTF5QyhBm8aBDZXQrJ2VKK5sUjLGt7JPY7XZHlhF4R5lbN2JvyXQ+L5sf31eXEnYDq/rEMN553bts8nnpyELX9lbpNVCNTW7HomEByAuzCLUBP1pM5WlrJkIsDVpKSW67HNOpY/wIGJbkpZZwI786ldpEZ3u3zC7A7BykL2Gsy/tp5TUZNGTyN5zkGSJQPzWpldbF3lhpOUmtk7KV+vXpXAPNYkWYaGUUVevjpCfHZI6TWWns8rFho0AlSSMSYpiugJITRtvWYCQsT0pZmJKYObe7+re++L/9wOv7ju0jwEc0cO8HvOCh/PXqb8Kr/98/9s5mgF/66Hu84O0RlSvgR972f7n9WcC7sHCnnzVcPLj7cu/b2zRHUWcCxgKM7c/N/59v8ue6Xa4v5B7RitqtKLUScyYlacpQGOnpt3JPGdORcsQZj3eOmGQRbq3DOS/JQIh10AJsQe73WApFS9xwmiM1K4zObXEhYQ2lVlKFFGMDJZWYEhWRSagqEYcoGMeJUiPGKnSWlDTvLLUWQpjIVRaVJWVCOnA77rHOo63FaI23lq6HFBOxrbG0Et1iSAGJET4B07nEty3GLH2/IddCCIl5mnGdA+TZ1NpSkJL3ZnPBc8++wL17L7Dq34+iO5sP2mIWWfguhvWnhf6RROXUENV+cbZ4V62SJePnSSOvWqToKcGtHMmN5YmNQbryL6/WbG+2x+9odGssbVvJgc5ZlCrMIaCVpA6mMGNsA7t6iTNVbQFzYnoV0nyXciTltshC47QjNV3oeJjEFiiDtgalMyEGnFZgzXH817U2c/wO1Xn2ytAPK3JKpJxZb64A2wziZcw7jOF4XyvV3G4AnJAIxWSS1rjqGHpLTgVrKoPvqMoxzSOuKqxzxBCZY+awm6UjfJ45TEEWaEgsZynSke78Bq0nSraEeUUMmZwN+6wp1VNUs1Rr+l2lMro60pSpZSDnJG4GxjBPwkLnpHj8+LaZk1SsNRhjsdZKbHYF4yzPPvfCUecvvSiaMM9tQdJxezOSYkJjGQ+Ft97akWMLRFitsNazWW8w1tD5rrmziI+xuJ1o+n7Ft771be4/7Alhj3MbCoF+6BthkhmGntVqAFXRXSWUgLcDc4ESPSpWiZU30shY1QX7R5mUKyEkcq4oLH2/QmsjVQsrUgeKzN8FzTxHfOcFsM5Z3HSwAmaLQqmeqtpyXVsKGaOUEEnG4vQV2IgqgZWR+OzMLMlTHWyDIu0Dr6UZbwxaJ7rOglZs9xNozVkR4i98e0+gutvu7wK1trKwVjoevTdoY7DO0/cr7LV0+5UiUaAxj3z5q1/D+05YOBI5T+x2E1SNtlJG7YqUQaw1aC2DqAxUi67JQpEV8aKRTDm11bYhJRoDoUlpFpo8TKQUUAhwlSr2OfMZ0fZUspaBTx9BODTWsZ5KU7WcBl7ZJFxvOTd3O9QX0HT6HnACY1VrFnZg2edSnn6nhdXJ/ot6+gzRMpo7+zbNdH2ZCKo+P667QHVhfU/7OAH203Wvd47j+C8lViELc6KygHDRwNA6W0+fUUr7/kqx5C3XBsaPwLZ1o8s5aPtpnyM6YiOAswFSVRuwVIpaxIt0YY8aOdMAdxs4W4l/AQ+FBNpIolEposWu8K3N03xo9zr/bPvh316/f4034saRcxUWx2hsTuA9WoubQC1iA5NLOd5TJRemPLUEK0sImWncCdtpJflLSqrijSsAT8a/ru9JpchrSiYEYWdKzeRScVY1naXc272VYynN0s1ZK3GJtESzoqBmjNIoAzEEUg4Yo7Gub4s2kfPMYSIkhfOOVBTzPFJrZjVsACOxqqZIIYUeZ/vj+co1so8nE//dfs8UZ1LOfPd73yeXiNcGcmPvasFaz9NP3afv13h/zWbzEkr1EkJgpaO6UoU1tFYWj0sFAt42prXnexkd2phTmkQAXY9jQy0cpTonoCvVjZRkUj/p5uUFzlkpJU8jrGWPvcp03SkOcjCqVbsM0dTG2GY6I6ydG9Yi0XCGwzhT5oxrjYwxCnBRzTy/5MiqG5jGmVozuoH1VT/Q+Z7eCugqtSPGmUpls16z30uscUoJ7z0xCshe3xeHgporN7c3qBzRuqKdRWCJxus143SDyVZY+Gls59qJVKkUSBlve/KsCHPFuYE0i5TJYtG6YJXDD5lVr7naKMZxZI4z2gjrGUPBdQPjOFKrQhvNNPfShR5mQgxoLc4HUBnDLD6/LjNPUhVwXvFkTwN6hVwSOUeMsmLfmMR6S9j4hHGWkkfGcRTcUDS28zy5HUXWZQxhmmXRGCNVV7a3gXmKOKOJoZAj4r06JdAFqxWPHotxsC6e7fYWax1911OqppSJkgqXV5rCgdde27JaG8Biuw4wjGNAaUhlQluP92KZF2IlE6g1cph2hJBIc6LrO5SqFB6x2+0kJtsaCeyo0tBVaiVNGec7rDGtkVdTqyakwuXlBd5Y+n7AGN+qqIYcIjkXcoGCoWTp08kxNGs03cIbPFVZYlXUKu4cpYrkLVNQ3YpiInPVeOfZp4TWle5igzIS5fvDsr23PVVj+gTdCCuWMizHP09mKZYfNTWdtbIq0prV2reSeuCZZx7w4Q//CLc3e1KO5BSZ5iC+j2VmCrP4PhJbqXlhHAU85FyOWsJzQOmcpZKOg1mtpRnnRlKOx8Qb0X1KefCoDW2rKpqWk1biXRjDc5B20lCeQGet+uzf8vqlrCzHfSo33cWeVVjI1tV+DlTFDqZ9JueA8gRUl/+TtJAFxC4ZQXe9UpfPkIO4C0TPTBuOx1hR1KxOLGeL6Vt8UI8NESByDBq4RkPRR9qkosg1nDSo7SSJh2djyTWUuGhIzbEB4njuKw10i8bTmJZ/3kT/d1ly1c6NaaUZ3SbPeGRy1cKEpYSxFoV4/GklUZelJBSFX3/xp+T/Sccse2sNzllymp82KcQAACAASURBVBmnA0ZrrKvs97ekNLPb30omdE4MvUWpjNE93SpidUZh8M5g1EquUQHtOnk65gPOi3ewMgZtRLfdWUfJsxyvEWDUdY5SwWhHjCOUSufWkpJjhHF2vmeOmZxj6xqubLe3KJbnyNF1AzGNzGFCa3uMS3R2hdYWrcVkW+kZ6wwpGCllmyTds8qjqrCzFXGfKFkWgp3rGJoGrOREKVIKP/rIAlo5WXgUiTrVWuJbje7aEmyW7uVScc630qtYBoU0UWrGmA5rHLoU5mbgH1MSV1TTGuuMwzhDTpWUSnNAAFSmYMm5sD8IQ6W1byDV4nxrCNIGqsZWjdGOECfmMFKRErCwH0GaLAa5n0qGzeaSlCOHcYvzHmOlcYcEVSnGIiEG/cpTMW1ykbFLA1pX1q6Te6rIeKJ1lQz5zmKaUTgN3CkMUwxynrNkl9daqNHAWam/8x1dvz7+XFSiUNjuM9/+zutULUk7KVaGoafzG5xZUbKilBX3738M58QeQWuDVoZYz8B8G19qXeJ3z8afukTnClhfgh9QZ1WP43goYBXuuocsDZCnBT7iDlG1RN1q0Tr74wIcvFX07gRUr/oV2mhiLFS7kt07cN4jJedCyhHrNEZlaqqn7nkyOYz4vsMZw+BWlJKoRjyKre0owJwCiogqitpkC711koSEZmXFvs67ppkeDzhrsb5nnCZqVVgFZHBGH3PmO78CpZhdJQZJF7LuuskXZG7c7Z/gNj3TFLnZ7VEFBj8cz2s/DIRZLLjmKUj3einEKTD0K6x1bLdbeq0J+xssihBnqnXoIsA+1hmlIs533N5u5RpozRgTsS0cOu85HEac7Ump0vcdIUwyz1gloKvMrSJomOYJh2sMukJbTQwBVWBscgDnLDkmkYJoja4dw1BAZXo7MOmA6jW1wGrtwHhSjKwvJKDBGMd4mLDOYbTFW083eHLSoCtdb9nvd3Qri9PXVJvafORkwUFhtxP7rpSk6qKU4nDYy0KzSRLMzqOqoliJ4tVW2O9ahWktJaNR5BQo2yxjrpJwmNx6Qx5tDYNfSQCKccQ54n0n+tiU2xw+QNVQNfM84r1FG0tJGqU8VmlyyXTdgKqWHGaUtW38NBhdUFUaXo22LE+dVgbj+aHZ3hOoSnb5ie0SEHRq2glRBiitxBSdAoc4QoVcMqvDit4P9N2am5stL7/8TTQWYy2roePy8orr63t4r3n2KbEiCUH8T40xzPNI13XULKXtBSgurOqyShP/uNTYUQEuYQ5UxPKkFprOSDfq/Qw4LqXns5KU0fpUdj8ysCdW+dS92n6jzsAS56xre+jUSet63pVvlL0rT1DCtB4bojhlsrfpndpCCs71s3ePj7ufd66dFSwioBJ1/Kwjq1FaLGk96TrzeZOWEg+6I4Nby3FSkmPJR3Z08Xk6NlHRSvVNL6u1pRZ5OCQBTHxjjZEu11oyi2ZRgJHs3yC63ZwLnfVipk2lqIpu8af6uGCxVITtEi1axipD5w3GZGKY6TpFpRDjhHZy1mOc6ZxG68zQD0cWutZKMjPGRmm+sxltRbN5//41XeeJUQy9weLdwDjNWLsip8IYA84oCqLbTmOh7zpKTcRZYYxv+uvEHEbiFNqxOgm/8I45zDKgmUKqkRBnQo4MrDHRQtEcdkEmrjwLAFUQkwRfKDEaJKSIcy0yscrCqaSEqpGaMlOa0drQdfL7giz0OufJWvRWJSmUkmCBnBPOKTrfkWOiZmlg8M2zMoYkEZHeYKwlhoJBmJuUArlC53tqCkyTWPFQClpptKrkMFKKwvsBVcXHcAyJ1XpD33lZYCmF0Q6qMJdKFbJO1CI6RO88SmlKiY1Rs5QaqUlJCImxdK2rOsUAGoz3wsimStEyXlQlTGPNUSa7wR8dKqAeU4NSiFgUBqgpUVM65qsrpQhJ9KiHaaTUQud71qu1ZK7nhM6Kvl9Ta2GeZ9EhNu/qcY6EkOg6zzCI9nCaIyq0ioIYVQOaPJ+8s954VHj1e2/xi+3nw17R9SvefOMNHj85MAz38N0KOtNY38x2e8t9s+FjD94P6wcsK1tJzjqxnLUUSnOBqK2cf16UWbSlxwU4oMpd6zupfuQ7Y+zCpKKkwkJbzJeShfVpJU9j5Fkex0zfnVjkYj1Rnaa6ar2oIw04LUx8SgVtKtO0k6a6WumHQZrsSsQax1I9CyHgbY/vPLvtjkrk/v0rSiqEKAy7s4b9YQfWH79PLmCcYdpP+M6JibuyDL7nenUpc1itOGWw1uMHiWR1zpNiIOdA59ZS+r64IEaN7xzaiPRjmkTnfG+zxjnPHBKpJFLKSIiNPkaAlyHT9wP7eSaXgLaK/WFsvFTFMTGsPN5cU6nMUYJexnAgF8Xt1hJjogDu8pLSvJUfP3lCKYVpmvFW49x9chIZnCoWbzq5Xq1ZEZslea4aTKmoVOi7Ht05nLUE1YvveRVJgMj8FH3nmMYRbTTrYaD3toEtDUqY7s1lx3TwxKglOKiRHPeu1yilGMcJq2BzMXAYI9b2eO8Yhp7KzDzNxDCJBEEbpjlhrBFJTql474glU4smhMTgO+YYGtFwaH0aIg2qJbcUT8U8zQxdh6KiOwkcUErGKykFZozVxDQSxoSLe7RWWK2ZcqXsM6uhp1KoM3RewGrWlaw8KWtqsUyHyKpzjfiTRQMIbrrYXDFOqUkmpfNfIlUtsUhQg3P/lCRTLZnlkiSjGm14Am7OL40zi45IKGZZOstEL2OQhlqI6UCcI1UZxkPfrKI0/eBIc8Vae9R0xiSMg7WaahSHw4yz/piZXkrBOvG8c+0GWJq6ahF9mNYK01lUkm7uxW5Ks3SBJ+nyrhWUPRtT9bFBYNnuAMPGbp6kCZy0Vu3/lwEWdQJ5QNMmLZ9Rj7GtC8JUnMClTAMFaqGI4d6ReZUIvuXfTW6BEqcPJezWOaPRhvc2obZyedWnkpqSErwWJItpjgbHEn376qcSnXR3l1oEUJgFdDcLLA2liM/ewqpqwDd9qALQ0pxVcmrNVJVSZlKYcc6SUqTzK7TTzNOIQgaHzlsZZPQIeQYy1hSMqe2cSslWF4exBlSgmubHqBXOeEJIOC1G2ZmKqpOs1kuiFmHncg2kMkFVpFSaPARpQtCVGqVrfj1siEtzoYK+X3E4BGqxqLpCqR7nCpSEpqC1wdmBWqWruhRNjAlVKzUXDJrOdFQNMQm75nxHLUayvTtDijC4Cy4urtu9pAkxk3NqMcWKWqP4JjpHUQrvJTdemhQ02nqs7eU655nictO9aZz3Yp2mxB6o2kqKE2FOGGNx1mGUkgk0yoJ2vV5L0xKR/X5LrXCx3tB5jykKg8VVRZkTLiuMV1Sj6buBXOR+1EZAc21NgtL0JqbmqlRsrzFqha/QV9Emz3lEefmeShtpRirCqlak2SQXacp01hPTLGXYWunWA916JQ0ezb2ilIq2ou0zOLzXFCvnVhuNXTXD1apE694kQgaFMU5AcJGMvpgycwhi9K4UNQvYXIz45f3iVa2UllSgUtAGnPOMrYSai5iGV1TzPJRydOc8OVViHGWRWPWxATPlgrVKohLb9vjmNT7/+S/Cx0RLbV+feXI58d3vvsJ2+wTjVoQ5UHJmv5OF5kO75lNXL7DqVjxGqi7QyrnHhap4bC8Lb0mtU8eqiGYBm6q95+7ifWnOXGwERTaxAFIZZ4SkFSu1nJfehErfL70JMtbEmLlwejEwYaqKw3TSb796+4h5nmXcTHspmWuL95Zx2pLiDNXgDgPXF1cN6GkJl8kSg7ofI4c5ybiAJh4iMUSGfpDdKsX11UOq0q3R2JxdWw2uudwURzFKPIerTBO5gLGecU5QpOO71EAumu1+RKuC7zxKKw7j2PyaDcZKT8AwiE57vbZMYSLlxNXFlZyL+SA2dk2Oca9fA2u00VyuZUGfU+Zq1UvpXWm82zDHiRBHCvcYpz2D8dQq4RQV6LwA8vyB91FK4uZ2i+86nPagFDc3W3IuTNOEMhZjnLC5aOxa7LAu3UocN5aZrxSMLThrOeTEZnPR7jVJ9su9aGxDjGy6NSkfKFaRosN0a1ZdoTc9OQ/HJECtwbv+qIHNecT7ns2mkrMsJmIqxGTxPhPngFaVoe8Is9y/uhuoCF7xRfTpuor9nlaCa0qZ8b2o43vTE1OScbgUuV+LLOxyFba7UqUJE1pDeMUbJy4kKknTp5GKWMmJEKMs1EImJwl0kYqSOVahqgnso8TrhihjOKVStcH1HauLgXl7IKUdSifmceby6h773Y6oOugu+WHZ3ttH1SpOXqIFli7wxlihLKpI8k7J5VhCrUZhSsXanpR2LKyntZ6StDyoDWiVElE6EUYRyp/K7gvoWTRK8hQvWlJpnCpNFnCuVRKfuBiCUPh+RSoVXQq6dQtaI917lVPy1bmt0wmk3lUT37GaqvUo7F+Y5uXXtZwaC5bjl+G6nH/YsbQlYN8cmcml+30p6S9m9E1d0ITnix5TPtvY1mTQ9mGsbt2zTefZgPSxDI+AlZIzMYs1krCZC9tKKzlrtNLCEiopOS9lj0yWY9Ya30l5VcoWUnIfemGUvbfEeQYKXe8YJ/Hms3ahb6UsFOMsko20J+WK8ytyviWmzP6wY70aSEF0OrfbxzgH8zxRkSYZZ8Xz0BlDChGcYh5nFq2cMQ6jHDGMpFjonWOaEzFFCpk5isVOKZlpDgJyrCLGKl3ktRKjWMAorQgx0HXu/6XuXX4kydLrzt99m5l7PCqzqtQkuymNJEAYCbMYzGr+//1sRosB5kFSJLuruyszI9zdHvc9i++6R/WmlhLpQKGA6uhMD3eza/ee75zfIeUd76Tj+nrbWU4K7aThCDzKNpwNkA80Fe8mWpWHrzSTaIz3WO2G0tyZraH1SowbzrtH2UY8FMe+sm8R/fTKaf6MMo4YI9M8qh+PyBwmchUn4H3zZAdsvLbGFJbBN6xjrClKVi3SeGKdoWSpLRSyQ0UyJR7vlmEpaBQrVYvee7yf6V2xzJbT6URJSf67C5KM1RbrFNux0Qt0a0k5ElNmPzZhF3dRzFvP6K6x2mIMzPOMNY6oxBe2H5sosbmI11g1nPXM0zI2NA2vxQKkVMaYQMqJNR6UmmTcmpKMYsf7NmZYgHrHWZl7rZcLrVWC90w+yIRgqCneB2ppkpQ3Fm0UTcu61XoXxW4O6FpFGdZK1h6rKSXTemeeJs6nk5BPjCijzpox/alQO9bKSDCnImpRa6zrRbrAm3TDG6VQuhKCkAK0lveXM491AODzZ8v//NtP3E/VvzXfc7nurJdX/vfn/4wL/uHjvfOlzekTfP533KyTgykMe4j5xVh+bDx7p1U5bDD853cRgfuhmL+0JxljpQTg4T/vQ1n9hb++M6Zj9zCVqMXOjUILdV9/pTlNvapHvu/nb18fQgHAz7cvdPpQ0TSKhLcO27W0SnXFNDm6rrzvbyhtsS6wbcLmNsZQotBv5ulMmCeO7eBIO82Mz3uEYlTro/pTc+RMaYVcIkRR3t/eM84qTrOHVvBWCgbKtklDVT5IpWNcZtskiKxN4zgkFKpVp2Tx46W0yWHNCF+8tYSzlvNyGhD9gmoKbdUA4Fem00xrinXdURqc0yjd0HaCatFTJ5ZVPn8cc5hwyrG4BcG2TeScMMpQumAmm2r4s3ynVNBWs7zK5tNoQ66VnAv9uVP6mRAmSqlcbyveB3qHeER6B20KHc3LPDOfzizLwr6vj8lVbfL8h0ApJ4wpxNypVaN0AmUwkxd7Bm1836CNwhmN859BdXJZWddKK4VcbrRuJZynDH4Sesc0TbI/MHpYlgytaYIzuOdnckp0YI8RcAQ3Y7s8k531aC3ijwhpgqc6yo63Xu6hIvdDmE7jeTt+WIkdKaaEbgqUox6Z2ju6OdIu0x9rLbk2CeK5iPeKGAutFrxbRATRml4LP/3hJ16evsM7ULoTjOE0P4Nq/PC80Jsmxhv/Ul6/ulF1v0ht36U3bcxggFnhcBq5+JRuvxQGcUZjgockoSc3TWhlHptfpUbeuGusc6hSHnWAtI7Rdmxm3OCIiofr0WwylD2tzVD47u9auIK1Z37317/jh9984uu3jVYbe1rJqZFyIqb90VV///e9aUsuHI1GlNg2moXu+JV7jWjj4/etVYy7xmgaZag5eox9hsTaNQpHp2BsoTOLPUHJwmy0qCNaFSChdRgjsnFAGItzr7KxrcjFfB+/1SIbLT1Oe7VJuEMrRatGNmFd1EpjxK8SrMKbsfiWY/wOHpTghJw1bOsNF9QAQd+gN4LXpHLFOWmGqdXTlaLUxHlZKDpDz7ReKUXApvK7WLbtZ6ByxIK1Fms879fIun+R6jwsrSVUeSbF0Q8P1DZTOuyxo42M0YJSlFrQqhPzTu2ObRe802yepFrSQm8CmaYbaS9RmiMLJqZTCLMsuM5papUTv8LgtMVNipKHOqUdHYULinKt4il0k4ymnMFqLyxRI/5H5wxdSfuN0fJ319HjnXMhTAuoOwe4D1RVZ9+uTPPC+fQkBQJFOu+dk3DGabHEI3LETa5d3VimGdVPVBuYJ0vKDpQfbUKVfSuEyQg6RkFMu1wLVlOKx5gTvTViPtDKPGDasgG592Q7jnTQUsJ58W1payiqUeuOMR7rLDEm3ORISnHdr2htmMKZXiop79Sq6VELlLxnvr59xTlLmCZ6AW0kvNSzFgYkYjsptYLqxBhJ8QAlxBDnLFUZtlRkNEojN+HT9lbQSjrXJcAHrWW6qSht0NaRUuF62ZmCY5o9sRVSysRYcNbjdCB2M2qeHXs37EcdQPImD60iwaiSy8P+VGvBaIfzotiVrrHNSoivCivSjCBQqZmcG600sWy0Too71ss6knPDmgA0wdFo8Wc6Z/Fhgg7OB5zXY5IAjcgvvfLffffKf/lP/wH+6f8B4O/0X3Hkg8viOf3778UuUT9sTCho2rH7GeiPiZCMMaUNcIyUuHtHhT1rBqZtqOO/+Jm7ynq308QYZaLwi+HSPYcgIVz5j22QBVqrwvlswN1VN9R1+TsV1XwEQX769jPefxju/ny9SY3ksEDVJp/hbd3RyuKNI4RICJZTcBz7OIgoqa4tWVqevJu43d54Mc/s6ZCGuBx5enoWnGO84syEc5pp8pQkafUjFlrPeGe4vH/DWct359/SEdKN0go7ObZjR2mNdYqqDIUuI/oj4p0cIFOJOBvEHtAcGEdOheA8dMPXdaOVzndaVD8/LaR05Z7lqCVh7YS1hpwTuUs63RpH6wWV5CCWYsZaT85ZgPzeY6wixi4qcqm4k5drXylScezbTu1FrtmOcIy1xTpPyZUtHvSOHMRNxzqY/QtGw77LoSCnTG4a6xKld4xuGBtxdiHWCyUxKo93rB6hyrLhpknCTodYdp5f5pFN6BxHJOUNrQxbvGK1RhsIzuC9YekibsXUyHViH6UBxmiOQyayNRcoRhix+UAZQTJabTFB7lfvLGRFV3l4sqXUwFkt9a1+JlTH8/OTiDTLLDXSQbitIpoJDUkrzWQCc1gEPZYTYfKkmOkIauzY7uQDOC9PhMnz7BRae2ENtwbd4pzmODY8BYuotrprJufJpWCdBSrOfnjZ/0e/fnWjKkrMvV9IFEEJNQx/6BjFKPpAZ0goRsYwFWXlNFlaYV4W4aD2MpAvI7Ffi3AzvRWPnrHU1EbYQhTPGKP8vNbUVqSuzghkGxi+M1H/cpZNYkw7//jffs/n71/QWE7PM5/8K73KeFdrUQzv/2zbSjoiHTnNlVy4J8qbkg2oNuKTMV3GfYy+baMN1nhq6yOw9REQKkWaPzqiBijFKBaQi0Ep8Wy21gWir2UTqpjoaGoZD5mWkNG+RmGI8SA4i7VilrbGYE9yM/beqC3zNIuiBLJ4LPPCsTW02ekqs6Yd6400MBWofcVYWSydk5N7KY1UVnRTLM5z5G/iA6yaTiYn6Ep8YbV2jHXkvNFb5YgXci54HzidXmRMFjXONdnA5iIsQSt2gSWcKKUyT0+yse2NEDRBSROJHd6/bhDYdspYa2UT6BzW+NGFLsns0hTTfCbGFaUV8zKhsUPd6ZymM+loVHZqqUzhhLGNdMByMuRyI+Ybc3glxYJ1hnl64nbb6MozBbFVCN7GiOo2n0hxZxreau8C676ideLp/ITWmnXb0E1xPs3M8zwKEwrT5LmtN1FZu3RgT26hq8J60zhn0eZMyZlpnni/Ctw/5zQ8WAO/pJxcr3UgzLT4Fzsa48Jo0OnUrklHRqk6DjSR1gulHXg3E+Muk4vmKHXjrhTWCtbCsV25UyNKKTCsGc4FYpR7zBhFzlWqmOvdg2zZ9pVOQRnxoRoXKC2T1+u4rxXWzvQG1+2NTpb0urK0VnA2EJZncjnIraGaHMxKETC7UprrlhEecaUUWc/EdzijrafWBHYCM2FDZTFBRsrKYI2jlw3jM8Z7tpxIm/h8yygXaaWwbTdQwsIVhGUlxQNrDdZoUqq06jDW0lqW0WcXRM4UZk7LwvV2Yds2vnv9RG2Vn376I73BNAeOtBHCwjyfKCUJVaBK6tfbCaM8StXhz+74MLMsZ3rXvL1fMUZxPn/4Nf/+H39izh/Bov/6+3d88PTzZ8LyCbEXIe6tsSlsraFGraj877KBLEVUud47tVe6arThNzVjo6i1eYzxkT/2McG6Xzs5Z9Z147Qsshb9wrcvwsB90nRXWkWwkPfXHlOm3qHTmFrl/P7RY/vPP319CAoA//CPfyImocMoxkG7N46U0VoKG7w1WCcHoFbFux+8Q+nGcQfHGwu1MY8Q3XEcBD8zL++yrnVh7s6zxQx27Gl54thXSo1Yp/FmRmnPT2+34V8W5bn0Qk4ZozwhHPz+9//Eclp4fnkmpYhzhRijoKasG2GqSiuicD+dn9AKbvuVfat8fj8RjOFvf/tbqlZk3bDBsVjDESPeSWiwtYK3HWsG0cZalilwHAfzcqYWseFY4wSJ5BreabrrOK15fjrTgdo65XkmJWHvNjq5Cq4RZdhV5OzFu6+MiA2n5UwtGRcm/CTe2FQyqewoJVOsfdt5fnrB6M62BbLuTNM0LIESyCsvgmvKpRGnyrwEak2YavBe48MJrSdizLTe8NaR8wgXGUPMBh88+7GTYiIagzKSHVgWh9GG62VDt8SnECB45vnEfiRRtwlYpzifT+wxc2yCyJKw6SRqchc/dTUelSKmZZYQOPZC2ROvs3yOJTcw9ZFVoRmc0thTAN2ZMVIRmw6e/uaJmMTjP03zsMk4Suko06i9YsyMVooYPNZMD5tlaxrVFdaIMGisHMT+pbx+faPq5MsTR6GGLv41PapHUZk7bJl7UEcBSqPoWKWkkvLhY2Ik1eH+0Os908aiqLXCO0+slZI/xuAygjYP1dI6M6wHemxeq3hOBij9zlL9/T//nr/9t7/h29cD6y3aIRBfrSRI4kShOp9OvDw9Py7UMjaHtWZizhzHTkyJ/TiEZ5iyqDbdCsDbKJRRGG3o97E8CMPTDhRO0zRVQUmwA+Wgl0drkVaV3rOEMEYS3ihpupkmz7J4YlxJ7aCR8KeKYsdbzfXtG59eP1PrFa0rNli+fPtKz00qbHMmHhfQZ2rvlCOjdOPr2xdCqizziVrElB+3DWs82+FAiXJuraXkxLom5iAMOjNO7lqPeV6rhFkgxr0KJPu8vKIQ7EYr4J0jph2oOGcoOeG9YZ4sx54x2uNn4Rx690xKmZwSr6+vshA1mPw8xrbCqLx7zZyb0COcM8+B2/UKSvxIvXWsMdJspjTbthKCwyuN9ZqYA910zvPENHmiKyzTidaeUKqxbjemF49S0kZkgkNrxfn5BaM9Cism+bjLdCBMlJoIy4ILAdUK58+fRcGolefTmfV6YQlnNIbzdBJPUvBYZkouLMuJvRT2I/P125/IpdGNQ3XNfkQqBuMDR8rElMjrBd0Nc1hwznAkcFYWW20MMYqit66JRqPWg1hWcjnoXeDgrWWMNczzTI674N2GDzCnRqt3D6kiV0unjWBbETVm2CKWZeHYj0cYUivHNC20Xti3ld6g9gOlG6rJJKFVpKO7ZkrZUFjCbNDaI31f0kintaSrcysEJdzEnCspF2rZiHmjq441Ho0VD/Cor0slcX27YkwYinfC2QljPDEeg6/b6Ygiuu07vYvvOOY4piqiNGndCEPFrFVUjdbreJC3wYPUlNzJWTNNM61nrtcrCgm9tVyHZ1kqpEsb0z7VuO07f377StOd1t5R2LHUilUj5Qql4Y0eYUNNCLMEQY14xI8jjutKwwhG/Nf/6x/4Kz4/XE2324pa9xFW/Qhy6jv2TksZgh14pruN4F6/OwUYRvyhOJpHGPXexHcf59/97Xe6xwdJRSZsKaWh5nwk/dWYJj3g/siGVGxjQ/lV902qbGx1LXB7g5EF+fr1qxgdFlGIjqOgtSUe5WGzamo81FMV8UIrCUzqu7Cg2doggyg1phQG5RT9vUmwGAkE2sv7OKhJLsI5KS+xyqKUrBXiOc3yOXdBCSllHuQEentM+FCKy/s75/MZa/9AyhHumZDWKLniQ6AUwX5ppcVvXQs+KJ6fPvF1O0jHxluMvDyfUaph90ZJmXW/4K3n6fSC1p1aDrx1pF08lM/PzxxHIyJeyZw657Mnph3VHKU7lHbYeea271ze3yUQpTXWG97XK8u8YLQUWngHZy+lCcpklIbgF7ItaDswg92JtaBklIF0FKqSzVwtjaNeMdrhzwqonL1Yr0KQzMH1doEjc/r0zPPzC7f1nWPPhMmSs2FZzpTcsUZ843ePMwqWGnh6emHdVlLaaK3IprY18dsbR//hCasURh1S5xpmUGbkPqw8X7xj3VZUt1jtKDVhjed2k3XReU2KwqNvJaGUZtt2pjBjrSi4l/djWEcsqQieTGtD7QVUFy/ztpOUZnYTT/OZvGSxgKXE6/MrShm248KeDnKuEhzFIplfoYNY40AlapI2JaA7qwAAIABJREFUSa0Uz0//SsJUqg880QOAL8dWpSRV28Y494EUQdKwdElRzgNfUkrBWv9QX4VL0uhF+sa1tsR8yCanCwooRkF03F/3VL94nj4wRnWQCe4LotZ6oGlAsDhKLkYkiWhth1rZVUNpL8GD1h6LsdJKRv9KMXk/xqxnXl+dLMRKRrr0Rsm72AjiwbZtlFJlrJDG+GMsstYaUG0syoZWRQ0uPdKqIL4aK84apvDE6eXMy2vAOzGN//zljxwx8n75MyldQGVO54n5/D05bty2P6D1V5ZponZo0eBd4u3yFWcd63Zl297p6kd6lwYebw2nU6By4zhWnHki7ZnWMs4vEgTCYZ0srEbZB87LDe/Z4k9oo7BOs2+7gNKHsig3fqa2JCOilHHmhEFUXhcM2TpybuS8YbTBuYmcxHtIm3g5v1BChQq2SyOI6fLQ2PcNpTSnsEi9HYZ9jczzgtcBypU5eHzTLMsLJRXpIy+Vv/70I8syy0MpVZJ1GGNGaj/xOp+YwoxiJoSF/BSRxh9Hb5Xr9Rvn5QnnROHLqVB7RgPWeIKfWLeV3ivHtnNskdP8RKqFlJI0zyhDrpmaIqlkfJh4u9449kP6v7/dWNM7KUeu1yvLyXHd36GLJeay3oZXWawlMSaCO7Ong6ocvRr6fqOUndwyRi+0XCglkutGTJu07lgZf7Yu40iqolU5UJTS6Bzi1dULuntq22lIkj7nMt7D6FofGxXxllmcW1CMzV9XKBVkLKwyCodWDmPV2Jw2rNN0HMbL2HpPN6ybiTmSS4HuqFXhvQMKW9wJfsKo8AhV5SaL+Z5XNJrgLbkmSi7UXsbhpozNUsPZGbphvW0fD3pbQXe2NY8WlzaqdUVNNk7jvMa7CWcDtRUZ3eVfoNDu6+Ugf6DfxDZVGtaIRadkwZ8FP9Fs5/LlZ2ptnJczVVtSXclHRKmB4lEOY7wo9VbjZkcYrNichOWINuTSSbs0LB35wEYFn+Whc9l3Cn+C830UPoJX5a5i/oKAwt3apH7x7481+UMt1Y+1V5UPG5X426Va9oOS0vGMzel4yNyDp7fbDUEO+keIk97H4eEjpHXnsPb7Q+ruku0fhQMpx8dGNeZdPMNjo3onYEjo9Z7Irzy40l0UL62lIlwPRFlHDZ5tHypWIcWCdwFrHTFleoKiCi1VSi90U0lRgrA0RYwSEtYWepfvvzUI00IpUkXqnWUKDkbASmuLCY5YMrkJw9RYTU2F2mR6mbvMPe/1y2Q5MJlquWx/QCN/nvn5K856jOvUrDlyBGT9md3TIE7cJMAWDTbA09OJnAs5V4KXtPr56UTLkf164IPFe888TeSS2W43pjDhrMVPIk6doggNLy/P9CIYJwk5jvzGIHzkktj3DauDeLpdxzOjdUSrwOl8JsdEjoYwif3g/f2dZTlhzF1Ag9l48umVZmemINeTUZHT80SrYnOwxmNNJ8aDZZrZ9nUwbzU5rzw9BVI27McV74UVr8jj/pulLUo58fUHzymc6U1jscxTkMmYFx/6PJ1oWRTfHz9J+cs0BVpulJLQWkLpOSXmeZb1oWbaX4so15US/2kFlB58dJkgrLeVlLPYUzqD0Wsw5gwUjlh4WjxWN+yTBLdSTWI11HI996KYZ0/cM84b5sWT4y/GEP+DX7+6Ue1j0Wr3jeDYZAq0XXrT6U2UlYEYoo/WJ6MxVpFKpAzcAsbKSbR30Jpm5Chszb2fXZFSxJjhfzkqx3HQBoJIVFMZbYcwjXBL5t41f8dW1So/c+wbxmq67uLZGgGAOjh+Hw0akqSNaUdrzaGGbxU3FFsZ7ekHo1MwPOK50Tw9feL1u88yLkS8orlkQZ2kxrreKDmSohQhGFO4XP5AMV+Y/Qvear78+f/j3/+7/8jz6YzTO3/3//4f/E+//VuOFLnd/sx1vRAmg1OV53li1haXG7l2zj/+SGlNEE3j4YE2PIUXWt/Rs+N5/gFnBbFS8kFMHa/PTPP31Cr8v+Iiry8/8vXLhfM5yMZ7jzg/Szq+RfbjRmtaKAzOM81hnM5GjWNraMQ/mlUmaEFfLD5gmhK8lZmw3RBsx3Sp3k1x53Q6k7unmYZWni8//cRvfvMb6ArjZ3LKoqxQ+avv/w3v71e88UyzqHjfn0eiXcMPr99xmgLOSojPGMOx77QmozrvAjY43i/fmCbx0KZYMGj29ca+vjEtJ26bpGYx4jHWRvF+uXJdMy4sooCXIhxgq6itELyXBDLStJJb4bqtHMN39O3tGyE4rF9IOXG8X+TEHCMpR5qSkWsv4pmbvcErz7p+HYnuirOJbavMpxnnLNN0wppA74XL9Q1nn2htpZPY90zwEMxCbgddV6zztK6pLY/xagXVKPVg3S7UFqklDhJHkIe16tIk1yQ41zoYBPlmnNyzHcil4v3C5O/TkyKbuSRJcKUdqjtyUexbHYfLTm2F1jW9QleZ1jNHlIaeUpOM8mKhXhtaTbTaqLWwzAulJo6USFmoIMZAbUmsMbWTUx8II6GC9NbIuXAcP8uUR4kyJaGoPkbCkOqoDh6H6JQOSBobrWwM+ybWnt6GMiFrYikJpTxaVxqykZWKZ1GKjB4HV2PJqXNLN2I6oMN1v6FUJ6dd/OhGQ1HUusvmwxqC88Ss2GOUIGYT7FUdJJPeIdZIV3VMxOS1x8jREpw/ATw2mCCTKa2EzSlr6H0TO0a28Ags6SFWjD/kLzawv0T4qaF4PjynStRWCZaosRG8B04ZoHdRE5133NnSqJHqz1mCnEMsECX3HrBqwwbbByJuXH3tLxvnUs7s+45zbmxU73YFixnEhLsgEYsE1pwL1LGJ7r1jah/Ts451Guc8zksdb+sdYzqtSAFCKVLokHJBjxCOG1B94zzWBnJtlB45LzNP5wWtKmE0E13eb+iuR+lAo9LQvbPHjRhlmkhtmNFWpnoXK5yVat99v1GSBtOk2lcHUJne9XjmFfRu+dbFr6nUQS2dyb/S4saXyxdabw+OZ60Feh33k8Na8wgayfN5hA/DhB5TLa1vUhT08xd6L8zLRMkJFTPPL2diEs9oq+pRd1xrpVtLPA6cm/j0+sy37Q1vJHy0pSJB7jYPpntnnjzrvvL+fmWaA8Ws/PTTH0k58nz+zPVd2M6MA76zE6flM0qBtR3nRwtZEIye5YC048MseYGe8WbCm0nWyBrl542iNYU1HmMdKR4Yb3hyrxjdCcGTWoEKp5Mf/G5oZHofBQHIhFghFkfnJuan+cF93badmDPWGbZd/KjWOZ6eltHmJmjN83mSliprKS2yrkIcyDkR5hMlH+Ry4P2JWzo4zYG0F7RqTD9IkCvMltvbv5qN6i+S6+3OtesCOVKCc5BkvnuMesTk3tHGclaauq5s71eccVSlKEqjjCHWyDRK4HuV+q8+/EZNNbTVWCttGdYaUTtH2lyS/pI4h/tiax4Wgd5lg7Cu26OhYlKWriDFjFJtVMT18fNyqlVq1MV1ScTnliloequ0ch9JyGK9RYtehS6gjcZbPzqItWxincOFE+cnx3L2zPPM7fLG3/3d/0nTK6eXROiWdPyJTy9nvrNPzOxsP/3f/O53f0MoX0nbmevtxpc//4HLdmOeJr5/fubkTgSlUAVizHSr2LNgP3JJ8uDeM05rUgFv5gErj8yz5vn0iff3jSlMBOdIvfK0PNNbwnSHI2FxdDLnJTBPJ7RW3G6FczizH5Gn+Zncdvb1Sp+CfBet4a1l2y48PZ8waLbrTquK5/OTHDhKlQTqXjC98Lx8xzJNHPHKaZoIL58oJcs/61d6jkzTLGqxdzw/v7AdG0rDpB3Oe2qtLPPMMp9l1EJnj5rTMrPedlrPnIKn9ApasafEGjM5R1qLsjlC/IatgXWCnVK3XVBPltGYI2Ea5y1/uv6MepPCCecC6y0xzTNHurDuldbAWwH6W+cpvYzAnyBQbsfBPEae6EJMArHvKqNUp9QD1CH4mhbQRE7nV2pPKC2J6MlkpnBCdWmB03ak3JFFrKmMMY7Xl+9xIZBLIu1XseCoE7ROjqIYliYUhtoqzWy0ngCLYqY3N+65zLbtww4ii2ouZUwlqiSStaP1Tso7wXnBjlWhSZSS8H7CmSD1y+0gpfvD/0AsIQsxSuuKMQ56J3gLqlB7wzn5ri5vf2S9CZR93WV9KsWwHTsxSaOettB1oxWF7gFjNM4IFspYJan0Lu1SfbT+CG5N1r1KRTtNK1BqBKWx/l7OoUYARdL7MCgO7V68oahdSkfutao1V1rckBZNJ958k6mMETDChS75GDanPg5QsnnyXhMmK4G3JGzPGHdirNRSMRaUllKNjqjaosp9cErXm2x++eEvN6oycpa6Smvdw/5035iqoabef1cJa9ZR4PGLNr+HdWBwUtX9v32Es0RJVY/P6U4gUEomSNLypQaQ3GGdG5XZ97DW/QElz5yCHBLuflnfi3Bwx2tbb1JROV4579SayOWgUXHWy2eCKFR3brOMz+vHc0UpGdNbCRSH4LHGUdb0uB7uv2/pRTBF5d5Zr5nnwHFAKpGurJAjwgTKoHt5qJW9a44kGxh5v+L/NsZSamHdpE1tCgteG8rwZLdUUFZhVEc1EYGKylhnZWRfJLwqh7BGSjtWObZ9xeiKNYpmACTc5vyJ3mBbNxGYRIKALgdEPwlL1XY48oZWaoTiGnvMLEV45rW+YayHLsq10khlei30CtPPHu9HNqN6zucF6yWYuF+vbNsFrRZucSXFQ+D8KuLsmZbhzsyupfLd64usATGitCanCzl1pmlm3wTzVbLCeakMPs0vlPxVJj3I9zxNgdKE77rMk1ijyjvLlHHOYFVCa2mDc0YxTQGpR5ayI5UbWgdq6VjEMqW6HFBqr+yH3DPX9QKIGv2+JbQ2xE1YuN458nFgs7DMT6eJrCypRppOlFaIWXjTelhqjNUsfgYMtQ/OdizMp7NYWFzDmkprhZOfqFnzfJqoOTF5R++JJRhkuFJ4evpXgqeajXv4hKoarQs0tJIzulXt0fyTU6INbEtX8qGpePAf/tbz9r/+jl7f6CrQMeQCyll60vSm0dZQS6bmhp89pcqDT5Ax+qGU3jmrpYhvzlphtt43sKKsil9LktOrdLurTkkROwnM22kJVNEVqvcxsgbtDLVU6XxX95FmQTG4pGMj3ZXUGNaSmOcTMRbysY2FVyrbZLxdebv8ga9f/4nvXl+YJs9xXHh+mmmps8XAFKx0IRfLLQnu6Nvlz3z6/nuO4+ByvbBvG/t2o+aDYDpPc6BbRyKz14P9OCitSY2ttry/faOWylEPUha80Tw9UVLHh4mUZSHct2/Ms8O7E7dL5HZ9E6uCCeTY+fb+xrJIovN0ehajd21M04mUknxvUXx+ugsSJ+7ykP3y5QufXz8R9wtP5wXVd3Rz/JtPvwEFMa7EDZ6c4zzN/M0Pn0kxYYzj8p44Py3M07/ldDqRx0O5dakRPM2Cior7Ti2SSO21k5IAwAVzZvj6fsEYS6uJ9etKSlEan8IMyrLv76KCuRO1JopupHrgVcBNC71EaJVWHNKCJBOCnJMo+P3GsVds9hypUJVH2zHSivlRKRjzldv+lRAWSXQzKAhRrrM7deIeRFRK0QfVQLZMhhgzSkWMdVinOPaCnxS53oT3qaDWnVoPOsdIexvxmpWNXA+24xulvWGMWBxaFRVzzE4kSIIoJb1Ir3TqO7Ve8c2AMpSa8V6DHpD1Mb7b4wFkXl9fhFMbM0dcMUUawIyeOC2f6F1jjDygjes400i5S8JZtYFFyfQOe6nEI1F7Z48rMd/T65VjSxx7ph8V7y3OTsQo338vPEam1ioK0Kqmlk7q6eG77uTHGLmMZhZrDJ0Mo8rZWjVU1rtFsg+IehkWJtmU1VIeQRgJFkndqtZCA+itjeS4eNeNvntA29hoWPFZa4UxXWwqDWqqo9VG44xC9y7FGCBouSIYH+ftIEaI/SZHafwy1lI+9mzDkvCBaupdPUJJWgtoPpdMbYO0UetjzN7H3/0o/xhjeTXS+/qXXlR1946Oxj314d2/bzi1kqYypT7e0sMz2kQVVUQ45P9z//8L7mqIFUqNg0V/2NIwH78fSK1q+wX5IJdI110UPd2pbTTjNRE/jNOPkG3L0FURLrPSY7NlxmeUcW7GGNlsO2sHqsyM9zl4oFVwZ603ygh9VTrXbWc7xJsOjDKETt2utFrZ9ob3E8aJFe3IonJPyxnrLFYbsIbQu1xT4znKsDOUKgcYazuld+bpTCpynwojvWF14BReyVXsea0XejdYPSZQqqFGK5819sFq1Zhh+crkIzKHRSxQI8zae+e277TaKangfMfbQD4i1mpilnbK4gxZdVyV+5VSuOUdHyDGXeyH2mLJ3NYD1Rv0irOBZV7o5zIONh1VFZfjQqmNqjolJUoSJT/XxJ+//p49XvH2PDBVjnRkUoyUWmi9jnYwI+B+rZimGessl7dvnE+LfFdNlPSSq/jNkenyHMIQ8eR6UF1g+koZ2S9ZuQe8l0mcNqBMYJo9x75TihBGlJZD2nGsOHcGwPsNbRrWiq2haos/vfB8njmiPJNySVzXxHKa2dYd1Tt2Cmin6EqCq3tcx98XMTbg3NjflYLzQhJKNZJbwunl17aH/11fv7pR9eofSHn06paEG1WHVQnIv4yF24ZAyjdKTugepB7TW76RmJ4D/8v/9hsK/42SHBYvakXtxGLoqrP4T5R6o9SVoJDQVnc4J194SlLFed+EOiseTzG2a9r9NPyLU70xhn17QxHxpvOnL3/k6WVBK2ka8d6x7zv7fvDy8kxtneMWmecJM3ixXk9s+451luDMeC8DmYWmAedgKBZOkyhbtUSmyRKPDRcuzGrixf4GHyxPT0+clv+ItwutdrqBeTqjJOshY0kUfTD/Wu58+rHyn9RQd4ZaYfSAhVtZXO9dv3SFdYIQ6UpRy2XQE9T4nAA0pRdezldShDB1ejfUZJnCE8YIPWHfNs7n74b30PN+ubFFaWHpSVTMeZpZTmeOI+FNkBBWFa/qt8s3vn/5xPff/4hujfN8IqeO05WUM0/LwuIdl+vPhKCpeWHfhQVq/IR0UGXKCGzFtKFQLPMT376+CdKmHRzpGEgXg9KSflVI8UHvmu+++0SJiePYJbwgrghKjgMOv8Nog1pOJ3pz0MRfprSmu0JJmd4EQ610ZdtWlK5450i5olrBuETXjXn+jpItioDRu6ixVTYDtURykpPOFGY6mf346F0vZShUI5wSjMHZSZQp30b3ciFF2dAdcaVWxxyeqSWimqc2A0rqGbWa2PeIUoleHbVmvH+iVincbXrDeNmQtQZKG0GqqIw2gc6B0pngBRfWesO4Mq5Rj3zICGu5dwkKKU2wXnrDD/EMO5eYp8bLy/f0puldyXXfHconatmY/QtHLGxXaV4Kk6c3CRjEfeVyvbJukd4lKKKVFBLk0sktUMah2VqL9S+CheuKdiDYlV5IeRPKgLFoqygZGkqS2WFCYYSBrIx455UF7iriqA2uCtWtWAXuqmPrlBHIKCN13Rto41BNSWCtNZQS5FnOmYIcbJ13GGXkgd52OaRYI0UnrY7vUTZntVZyLCM1JMzqe8C1taFkGsOyTDjbqKWhkWvt/jpPf5nkvSuqQjURWkRtglVTSmGbHozdPnz85qFqaq3x3v7FuivWn7t6eldix9qsRkBqeHjVsJChJLjUuqB/lP4ocBkLO62rkb6XEO0dMwZtVMjK94CCa1/55/T3wG/G96MfAS5gBEpksiFV2nddVw9Vt6G1jN3bsIsIOUWjpRtv2NcMpRdqlQ12LJmc5Rq8h73u5RVG3+0T8r6PfC+uibhsHgeF8cFhtKPkjLEHdYR42ghYOesotdKqYBydczKVrGqEVAtKdYyzeGPJNcrBS7uBkRyoNhWpZqUr2bx7C7P3GO0pWawxJYudRSgLjZKKTAhUZU+V3mQyIAhFM2grktFQTaayGAkIFpXpttPMOIwrgzdSjlGqJR8RVEEb8MnTqHjtSBFq2+gtcj4v1BrRKK77V0rZhYVsR8ioDv9yh640MYGmCcRMdeZlRnURpFrJVHVgrWW7boLq04bbuuO8lQP4caCjqPrKKLb9IEyO1hKpVKz2kkVYd1bv5XvvYEf9q3V+fH6KFDOtNqZFCkaMCWjKBxGji0g0TWLnSinibKaUOixrAR8MYZcihpI7x1EHM7exHxu9N15e5dDUWoWWiO+Cssq10JoilsrlsnE+nbAlclomehNcmLPSMpqG5fNfyutXN6op/RPOaFCN4K0oZklQFufFc0THfhxMJ2GqTm2iVQnkWMk7QEt89+SpHBzpNpAbHUtnsZ5UQfc/k0uj1JVUJTWakmFerMjuo32oFrn5nQvkFHEuyPhnJP3lxD2A90aRjgvB/gHbv/Gb7zRu2ohrpteNiTPKb+hWeZruCKg3aJrT8oK3C05BUBtKS/3jFBaqF+9t7RWrQLeEn8/88ONnjmPnSB5lHJ8//YBVBfNXAgUutWJMI9iJkiqtR3Jt6DoPuLac2GOOMjJCM00Twdnha5XQiyRgtdT0jVGdNgIV7kXGd/o8zNajd7w1OW07b4lpjHpLomEJk3ixaqwCeW8JpQcXtgnHTms9WknywzskHd2VY9+5rRe225VcK35ylD3y8vxKPmQ8prX43jqJbX/HWSvJ0OmJaZJ63X2T4oFnrZnmE8d2sN1uNAN+Dhx7JMfEc8pcLhe2uNGUoHv6OIHKyDmBKrSc0Uxcr6MpDfFHeu/kIdMbtR04b4jpBiqgdBA0kzGUeqMhalrXDe0lSEaHHz/9wHGs1Br59PwqdXrOSbNMs8Rtp3Xw3mF0Fx5xlXHqeRGg+u32hnUSo2u1Dj5lx1lNLfdWnzDqHMXgDrLYeS8KkW6BMJ2xRg4noiaPDSSZ4J5JeaW0nU7BmxO6K/GXWcNsZXRnjNxHtUtJQSPTmkIFwbp4e6LUnSNdsMOS01plW3cZu/lObwlvZ461ks0+NlAz8ais1413fXBb21CdMkZPlLJzvSTW9aD2SC3STiXeUgckYr7Su8X1M2c/DeuPLKBGzzjnKBVqVfRSHhvGME2iKqWNVA86CqO8KKNISYFxBt14KHG9N3Ip0gKnhOUKUIuESluXcaxWjAe4xxlPjGmocvK51NpB2XH/xRGEMuQimD09NnTOGmpupCq96xo9OKCdENx4TxVlFWBlI2A0JTdaBR9mgq2k1Abn12GcKHNae9poaEN9qIl7yh8bQBA7ihL4vFT1FjoVZYbH1GhpmUui0lmnhzeYBwYO5BZrg8RyFxXu437FCDr1v2zK424ZUB3Q4jdENjdyuL6Xkyh6liIB6wzaALWjjHiL779NS9JetbfM31++cN+o/vz1Iu/tt/Jzt20fCuxYG7VY2ET1lVGy1vKZNe6FAqJga61GWYwh1Qalg5IxtdBdOrlK9qHWNtYbwTDeX+Iz76IgdjUOp8i6O6xtxoxrokEuhf04UKOs5m4laQ+6xAjcDPpNrRXdRQ1sGCCOaeA+SAx5WGMUyot3+2w9p9OHxeKIWUA/KqPsJP7snB68Z5R4MvUQQGrfJbB1/zKqwgVRj5WxCKRCPLu5iBfcugmt+qhXVtTOwz5QykGYAnko9ChZ8/YY0VpRyiZ0h8xYT2TzqZSS2nUEzC/1rY2YrWDp1KjVjglp4WtYOm6ZKTHBQM99+fqNZVkEAWdlHTiOym1d0TeFccLKBkuYAtM4wO3XndfXF5RKNLWhVKAybIO2C8oxrSjtkONwJe2JEDzeeHKFtjf6KlSHt/gNYxxussR1RW8WP7i3qWxcLkHUfq0wJtBaI43niXOB0hIl3/GiMv3w3qKtJdadUhPXbed8nmmqcMSV0/ID9DwKSP5lvH5dUbWOyRsMna4MSnms0tKiURMQWRZFr5kWG59ezlzfvkka1mhS07RamCzkJqzM7Az7euN8XnDGcpSCc5mcqiRqjaKWnVIbpczDhypX/8fIp0jHey6PG1UwOffkpix+Rz2Yl8jLOTOFJ2LdePaW65pw4cAQOU+a53Nkve08LwmlNWHeUT3x+Wx56xeCM8QYeV4spSpa2ygUrPM4XaBtXL++4e1Mvl2wLhAPyzVVXl6/ozRFmM7EvaKCNGcpNaGNqF26G6yZsFrhJkvKbSRToZWCN4aasnwOSrBDujeUmYi1ULP0QRucGMUp1Jpx2jOKpii9ko+MHfgshcUoDUUUMBY5QRs9o5TCB/HLBS/qyTQ9ixJi1Dg1NnlPp056PcjpEMXSICn8wb899hVM5xYrca947UeTmebyfsE6y7FFdp2ZlpnreiVm6Vm23nDbrlzf/iQjGTRL9ZyeJ3Tu5LVhmkc64A3WOybrRe2vO7k0Xp5lkS1FEC61NlLMOOvo/Yyxnpa/YX2gxEqwHqs63p9prTDPZ+IhnrnaM8E6Fu9RpdHVxMvzM/uxy6l83+jAp5cztRZOp1c5CJQ+KlgrlSjNSMkQgrBP78UVMR0ShvHS/taaQVsJYqyHmPZLLRzbQWuJU/hEjpnYZbKgB9f3Xi/sJ4PSM3mVYEZvjZIikz/JIq0LxlVCmCXE1SJocOZEilLjWdCi2FB4On9HmBy1JfYtYbWi5opxFe8CnCRdiy7QPDk1lE7cbpFtX1n/tA02b2HfMtZAOhrrJmGu1oZiqQrOBMIk3thOIUc1FF9JWyvV8M7S68SeEr1GLDJdsUZjmqgr3kygKrkegKYmwWp1lUF1uQ4qrPshD+CuqUWBZlSPKlHcOnQyxkgF4R36XaMA8lsrYo+ywiKkiydXdYNqTtRPErUVKqIgVgW1VPHHdaBL7adWEPt9o9doDpwVj63WI9hpxDdbUqZWebiTNxnP1y7rVJVxvBxyfwDgut5EeRwvpT6A+jKSL2O9vSvJfSiewx5hZTfXepfnArI+3INXIR28rF+5h07l33xYVAdqqvdGchPfltfxZ6jhX1XDY9FlnWKqAAAgAElEQVQf9tVa5f6x1kp5xwNT1R7WAekUeBhgqe0jCCLe4Y8CgDg2RlrJlOzeqFSyHOD0qO2V8haZ7ZSBAMulUs3dzypIK6UZfkhptVJGFHKFHgofspEdG3OxCtzDvB+HJMY4uHeZ6IB6nDG0lcBwrjI5QAk2LOWM6WJ3Kq3Is8Q5jv3A9or1WvISRmx2NI11p+G7zIRZFPcYE8rIwbnTmE4G7yfKuI9LBt1FTEi5DyyfoapIyRVdKwonkwQNqisqDHa45aMQR5HigcLI89NZUixC7/BOKp+9R3XY1vg4CLWW0LrRYsbogLYW5ydsMKRvb6z7iupKEIDDwqGNwjmxNB3HQON18cimERQFKLuQG7z31BFEs9YOdVxLnqU3OhIw7h1UNfSembwmFSmC0Npg3UzJUm4Qwoljl2B2GkHSWhVKWYSjOq5B5TiOSnMVekM1aYEMIQhDmMyRIjlFwLJMDWnik4ayfb8yTzP0Y1BlJKxldBgoXEfOB4Iuk6nLNE+U0nBG8fOXN77/8TPejX3T1wvohlbbr20P/7u+fnWjejInYaGOq0/wnpZU5UTfUsYGTclpYF/2MTYxlFYH5kmTSiPmirYO5ybe88b1kpgmjz8tTEFj2Jn8M0Ynmi7YUSEotAHxJkmjlTyMvXcyCh0PaJr8/C/9QXHbSNcLUy1MpaJrQWuHO73QrRUTPDDFiFMdf3plPTb29zdiSRyT/f/Ze5cd2bZtPevr9zFGRGTOy7ptr8PNsuRjuwBFoEaNEhIlKtQRL8Ar8BqIIiXewAJLIEAgKhQAHw4+Z5+191prXjIzYlz6nULrkXNtG5YtS/a2kLs0pXnNjBkxxuitt/b/38+erqAnlFU8rx+k46EFQXM7CsF6QVvcIt989S25fOR0fsOHDx+ZpxM5v7DtnduzpfWK1ROn5S3r+iTMwF6ZJoc7XbiuhXn5Cu8WoSY4h9UGZy0dOUHnLAgaQxftWrmf9ouMpnvHKksrjVyzdJ0rWK2pBTGFoQhuQhk1uqvxtYMh3UYGp7QO4PvYFF6NFXKBay9wbOc9UQvxwBmDOgEdSlcc+4afDJrOcRw4Y+k189ArR9nJKeIXcYXPy0QqB+u+CjJEzeRUWa8rbx4fJDIzSSGmu2Pxjzjn2LZNpAfKUWsk74VpeuR0tpzmN6zrRo439m0Ts0kVPXOOReJDh2g+xhVvPMexs8wTp1kCCCYn8OQtZrSXDrQPE5MXtIdE8CVKjYRJ2LwdEdC35HFWk8tG64XaROP5zftvBxKoU7JoAr3r1CZJVkordJcinB5x3slm2SOtK7RzdCWsxpYFAu/Pb6ALG9Z7Qep4d+LxMlHawXGIqURpKUhazWJ+qvKZGx2Y5hmlNaplKWB0IZWbbKTdUnLFuiCdVd2ZHk4cx0ZtO94HrFnEMd0SKclhYZol+erpacfaCWM1+3ZDdUdKlWXLKOXoRDqZObzBu0kmGFUKslqgVgnKyEVCClCwbQdNVYJS1Oo5dmGoOqtxWviDtWZ0djR1R6Y1gfZTUcbgnUf3OsDyhmZEfiNQfzWoI5XJO5wTzE+MiVKk0LUacr4XLlLIHUcUacCouU4n4Szuw3SitKLkhPNywMw5j+AD6Zp6b9HmHrUqsO6cMjIZAI2mlCa0j3Y3AUkXrjZFKWm42M2r3hbgfJ7/oGhTowg12gpycHTppJYdkoc+isHaxshSAZXWNQbwaaNff8s/aD/jqHyIm3TNtCGEAINiAaOxd6cJGItd3/M33XccduLp9EZoAPXL2L/1Rmti4tFWpAK9S7eptS6HCDNq2lGkyuv+Mup3xuLunV9EI6y0E0KKEUoLSEFsBhf6bqrTWr3eH0oLoQYt10Zvhq6lKw6dVqVQykl4xK3dOa1t6M+leMolQ/+yT4HEUBsDqD5Mh04S40YzRlBqEjgTk+hulVI0Bz445jmwrbehgXTkemD8SHjTCj97IRMYj3WOlHZqSxxxk2vSQGlC0Nn3DF26oL03YsykKE2gVDK1g3NKGhKm4IKj0jCDvauNIu0ZbSzK+C9pYa0wFGr0EdyTc6QUBnFD4wyoYDFKYa1inuWwum0RRre1G9lP6hZZphkXnFxnXZBvILroWir4cThSmm4yiopWDq/DQOM1VBNxQGmyL6iuOJ3PrNuNVHcx9VmD1p15DuTah4Y5s/UrOpthGpUu+bZHvDeiYx2UI20MvcjkR8zhDqU8+3HDWYvSnZTlvnDGIWI/YZ7GnAYSUD73XAu1ZPZeqRiCC+zjeaSV5vl2xRlLjDvTMuN6o5WM1oYjF/Z9J4RJJhKi4WH9i58wJg3u+JXWO1P4wwj5P+b61UL1Fm/4bknpkKLIaI5caLGwLBO5KfZbxviMso2P24ELjqPuoC1tvWEH07SUSo4b1gWKlsz30m8ct41bLORkOV9m4rFJhu19/MwXsLGMRAz3WNK7mep+wgZeC9XWGtt1ZX1+wRyVtjdOj5acduia55efsalyOs3UUlBW9EbTMnG9PeONoqckOJEuDxvVo4z7lcdZz9YKedtFqB4UWu9YU9m3T7x51JKelFcezwu3lxv0hDeCu5htQhUBnD/fbjx90PjlHaU8c348EXPjuGoeH95wvQkWpOQup9wsMoemM9ZO6DrLyKkM5mL3OH+mtURvCloTxJZWo9uSSVmkE13JyPBIggGzw1ChtLiGWxuygm5EcpAqjTujliESH1zYWqgjNcxoS9AadzIoK+J6ZU5jRNjJOTH5N1zOll7le2AkzlBdn7hYw2IVD28yX3+d8M6T90hwhnV9xli5rmo7wFau18rpNFF7JdaVtGbyp8jL0/MYxSpSzlhvSFm6Z346c9tf2LfE6eEtxnZybtTWebm+cDqd2bYDpaRgD0G0RdsmiBzOE70JizTGgzmIszXtIhPZj4zSCT9p9nSlVkPrWXSkHWIUaYRCNjjn5HoupYnmLHhyrUxuIoTAERMpJkqT7nppkTBN2NTJWRKberc4u2Btp9ZIbwWw9FYFdp0iMWeW5SSA/VxIWVznMe1DVyevSTuNbkOe0EQHmEtExcgyXzBGEpyOQzb7ZisxifnQ+iZpaeYsqJ5umcMwKeqGevde9OI5c6SV1hpTOInmsXbojtNyovYiAQ850ZqjZIOxUkBc9ytb3Cn5RGudeGg+f7pSSibnNAyWTpiNZiaVijFVNu8cpWiqhtoVWgeZDFWhDQjs3aAn6apK505Ys0bJyNaoLtnkg+3cWhtcWU3zFjN4qVpbnJdxeAh31NfgjVojxb+VwslqSQMsrUHLMOQHOSXZpJG8bhmfW5kX64QxCt2doOaMxgUnzM9/qJtYe3mdzsIoVJWYD1uP1FpoTeRN4gOQYkUpKcTrwGPdYf3aGIKCXl5Yy2/H+B8yBYNFZemQdtrAoAEMiY6GpfyeB/uB7+a/CedHeU1DQiHN1T70vlKk3nVz9+ZpH8Wk0tCUmLjkPf9DTarSX/7XIhWtOG9RSvS4rfXXeHAZ21cowq7tXczBKSdCMKK97FYwhHUV6UiX71vrXbbTxvvjxpTjfh/d33ct5iwtOCfpOguFAq2xXqQfFrm3ZMysxiFbphzHsUsB1hUxNmI6ZOqIyDe0QZLmIiMdKonpscszsNR9ZMFX/Igqr7WJhrdpwA5+8T1N7MtefFt3WoOkHM4qwiyHc62FMWy0kxCbJt3mMDk6cuDLWhohox8v0hPnMdqKl+M8Da8INA72LdK7f50ySpp4gV4oRfS6D6eZnDM5j8PBXcpzKGpeoSu0ba/vda8K2zWlV/wU6KWRa6UMvOJ6fZGQoabEsKdhT2mg7JD713RQMt2tsY3P+JCCMHWsEU2wApxS5NKGDAgx83WRV6SS5BDiHMGJ0RUauUVKlnhXpQ37nlBGEfMu11IFYxV5hGh05PopOZNNwdqJ7bjBMSazXmR4jUbMkZbkviqtUotlPsHLSwZVmeYzXf3ChflHXr9aqK515emaOJ9PvFyfZGNylm2/EatDqUmMNN2yTI48bqLSdmrR1F7QtZHjMT70ynbUcdNEutIcUaGpvKx9cMFmahLdjxomAhSgFTlLy9tYNYpYGd3AGPvAcI+KpvO2RQqG89uZfCheBpeyYVC2EYLk8sZSSCVitCcYz9d/8g1vH9/w6dPKMs/CNLPweLkI3aBoNIp3Dw8c8ZAuZ1N8/vATRjUu04lpmin1oJbIsW8EbbGTQxuDVop1r1hbefv2Qtgt+7FzPje6Oih7puUDtR3EMjGFGV29QO2viVrBOU+MlpIs8VCcTid+/OkH3n/zFqMnnJnxIQASK2vcfYO0GCezONfEDdlqxmmFtl6E21Vc9MqKJqq0SqkNbabRzTWIz0QK4NYEt2NeXb3yGXQlmsM74gWBJkgB4x21S+Rn12I0ielgDgF1uuCtwZjAfEfidI26KFrJTMtX2GCHPqqQ0sHL84uAstVbHnWjt84xUEytS6hESplGISwPxBSZXeCyLHxIn9menvHecVw3jI2CADpuaC03fjxuaKVwzstG2DJPnw6MtSjVR4SffC7zvJBLI+edEAwpjhhNbXg4PxDTjZhuhHAaFh0pFmLKvHvzhhgj27aSixTvCkstwujDanwP1FZxfkJrh19k4zHGCIrJdE7nmVpnbrcrcGC1IkakIDOZRiW4SVRStZC7dBev27O87skzqwutN4I7U7WMokpZSeWQDb1qYjvQKjAFL5DrPNBcbiKXY6S4ScSyTEEkjc1ZkRNY23kzXUQysoPqBmMzOWb2PXIch4zySGzrlettA8Rck1IaD+gqY7KqWKbKuu6sx4YyjFGeIhfB/qhuxT3rKuAwBOmOdZm23FnQbaQQaaUw1klXs0roSO8SPuAmh1JRSA+Tkq9nhWoQY5GNRUvYSO/70I6Owk/XYQYaKU4MjWJvYrRExn8GjVKNpgp64MNKH+5gJSNlrfpAhMnsqSNj6tKkg/9LxqnQGb50SsSRr7knchkrhV1NYjKTjmsH3dFtBL106RqrMfL/WJ746fi/OdpGG9ezTMMi9IaxsjmLrvGuVZUNfm2ZPy+Fa1q4tO/hVZqkhuTA0LREcSvVX2ULSonEq3fh4kqndUz+hynrvpwXOcTrpqetRHrmiPPSge10fDASLVzuDQ95X8QsNLqrvSB2EyV6ECWdqj5G/b23MTZO0k0rIp/QmkGakAMKTb0WU1rrUZwgnV7jOWIVkDyKnDLO3Q19Ih3oXUI+elds2w6qj4NAxzkxZL70naEoICeF8wBGNNd6dPmaaI5TMSjt2fcVNfTQOWVKjuM6kfdDNMhOzJg0GoIIE3pGoZY6JiuS2ij+ETX2cSUdeW0oqkGX16SyuNmXObyO47f9xmmZ5QBVG/PiKbcd6/XQXYup7TiEEBKT6E6HWIWcktQZ3VB7BBQpVoyB1hPHnoQd3iMhyPusGEzhYRb0Vrw3DTiiYNPmSaRkOWcUDeMGBSIlTqeF2hJQRfpTm0yjgdqlMNdoLEakVr3gjOaIO60HdCnUImY1e78Pu2JylnW9YqeF5/UzKe9czmdiKizMcq+XTCkiB0EbulZUpchNonatUqIpomCsaE/jFpGBa6c2aF1j/UwpN1KO+PDlsPfHXr+Op1oCOhlcmPFZYPXWGpbTmVQShp35QdNLQduAMcLyM93hJ8NeGtSOtnIKC36iKBk916wx04QOCX/qYCPr8Zn3X5/YY6IWjXN6GHvaq2PyLmwXrI+MVL4AowX2D11MMqsUCH7yoBXXbWdyUI6DKUimdCoFpQyzm7CTJ9dE7J0tJqxTnNTEx08fOJ/forRwCycvcPbQNZfpzC3vxH1HqcRy8dSY6eP1GqM4toI2mrB0OhUfZo6cBJ9RHcFPLNOFUjf29TPOeRZrqJMnpUihYYxgT3qN9FI5UuPBPnK73TC5UqpDx2f6Fmk68HnLKKuGflNwTNoYtiMynx5YljPXIu+dc2KyOp9PtIEDs85T80bJSbRMYcKaobVkFLAVzMDotNpwzgMdbcQs0mqnZoErG63RVh4HAgpvMr6tVZBNSmONGEqmsIiWpmtSjnRGQpoWjqVuokk22gMCOA7TIhggJP7RGEN7J50kYV3KeC7XJBG8NIgSpfvV+8zz9WdyipzmKsgOZdHWsR8bzlZyTsRjl8K7JekC0HAU4QHmHWscs5s4h8B6OzBVE9cV6wI1ZdyiqHknrYVWDcZlwS81hQ8npvmBIyq2XaD/1hhakUJfG3GTOtOZgqfkytE7H54+M4UZ5wMfPz5Dh3maWdedXi3THDhf5ACSojBmu1Zo5WS8l5M8/GsVnbN/5DgmaMJJtmaG7uktD2OCoTeD8Z5aGt4HvA/Qm2gmR5yocU4A/GXFu7PA/DPUdh0u8gdCCAM/JzggZSTu01jpIuxD36x0k6xsfYMh+Xl5XtFOc7qILMNZg/MSGLCtFx4eZyqVI3du10iwSniSTliUMdpR2DTBVuWRDmPsKxpJNt+E7vcD8whi6Eo2PAq1iglxCoKhkcKj4RzUFsj17jgXzE9L0hXVSqQ5qkvB32qjKpCseYV1MuarrSFRr7N0wEuH141JCmGrNdoYrIN43HmXI8mPNugFsnIrQnYYS4pYPcIWhLhgrciEci5Yp2STQ3SbtbQxymUUIh2P4VFP/Fw+Uiv0Lvdqqw1nBjVAfXH/tz4MUEpDMzynA8wLD3roQ5WR7pvSKO1xU8e4RsmJqtoXw86Y99ci3b57IdebEr3vfZNz+lUjCfIaSi2j825H0pkkPmljcH6ij/Gu1g1lBl7MDi3w0NiiJH9d6S/JbK2N980G0Wa2MjSvX9BcrTV6K6imh+b/Hjxj6KVLiFWrcr11yFmaOBKAoEj3ru8wDyolExmlNKp1ah5Nm4G9KwW2GoVAgoSu+CBRwEb7YYIS2cfkJnJOGOWwIZDVfYJpRFTdLRQZq0/zicQmJsAkndlpduQYoRas08NIxyDOyP1jlMEbJ3HDNeOdRfVCOlbWUljmwL5vXJ0ZhWonzE54pMqMIl9el9ayz1xvN+yQHlQaKReM8/KcN+31MCZA/U7XlXF3EJOM/K3WpBSx1hEmT6yZWjtuSLykFBdzXW1ipipxTGaQhpfIgqJg3lKSyZi1guscpr2uBkYN+VxzreRd9o/P2wuNztu3D1LjUNlvm0yUbUE7OZhV3dHBCF6wgbJmdHu1oDG1pynw0wnjArOfUEqz77tcZ0oRZkOtByiRQbVmhmRIk4s0GP5FWb9aqG7pBW0cv/v5B4w2LJMkltQqGe3rdsUqsGbiuu30JtB0VJBitEisJOb+TFLkCk5rlHek4iSbO4j7utRE6R5tLa0JgNYaMwTIGmP8SJX5xfhnCNTvqBgRE0kBm0vh89PGb74ZpqwexLFu7lF5gosxKM7hhPUTH58l/SceEaMbMd5wTnRDrVRyriyTQpvCuq4oErkWuilM80xuhlI7La7Uxsizn6kxc/0s3aEjfcQHi+uZlx8/URuEOWC0Yw4naknCk9wLtTXSvuNsGQ/KJGPs4+BzTTxeTqhFRnKnv/Y1FUvOO48PhpJ34pGYTeV63fjw8TPnyyMfP/2OD0qj/cJpnnm4nLg+fyI++YHPOBHCRGyVbbtxu105Xx559/Y7WrO0rijNYuA16UchQHh6Jx4JN3mstsLFvevTuhI0kOmkJG7o1uT6QOkBERedTclFRPnaQK/iPKYRUxWnd5bAACivzk43InAlnELMV/QuBcpg7H4xPHeqdTQqplXeu0dqPWQkpz1GK0qHOR1SJLYqG+WIhU1pR5WCVh1jO+t6lU6ZVbxsG/F++s6OXBtHTMRykFOkVSujliXKQaQoQtKUojniQYwb0+LpJYPSLPOZ7iz78UKuifNZNoqqOtt68OnDZ3LRfPx4RQHeWXKSxJ3zeeLrb9+LxnYVece63rDW4sOMMYaHx2Wk6RRBm3VFjoUwa3KOxGOlU2g9UkqioznNZXSeEta+4Lyld5EPaCtdvFI0OYtebJ5lLJ2y5GFbOxFT53rdOdKVUg+m6UJr0uG1zpBTIyXJArcvnlQOQlhAW+w0XNNGuuyxJ25r5NiTFNNdsd4KMWXpQKHFOR1Fi3jsGWgjvUcmM3J9VBmFA0YSA4RkUkcy0sC91d7HNQmqKmqRjaKUzJ4T0qW7h5hI6hCtobRimWeMFRj87C70btnWmxhGBi7qcgm4oIdJNHCsmlIUl9MD6Mpt/UzORWgHmOHEBh9kFCxGm7Fh6y/dRWv7kJjIUvoeeCLBDXQr95wtgmkrXZ6RVo3x+ehOjqKzNsWiHJpFJksMGVCWTbsbO+65BsNcVFsV1/SQOmAGR/iOytJCShHlV0fT0G2A/vuX4pou2CF6R3eDGv1cY+ygRsjat/yluGVImagY46jVUOsw4w7tsugxX/8ysedhltH05l8lEMLFHEU8cE8n0yOW0hhxld/jWlut1C6JWZKOJJHQtclImy5BHvb14+koY8UQpOyrTKO1RtzTSNaKr7piXjvKo7HTK9OkXzW0Psy0Wtn3jXwI4xXTUUZ0oCkJ0F6jSWmT70nAWZHh1VKlj9oqOUZUr2SVaC3hvRSR3YreVEyEoHVFa0svjdYyJWe893jtkHdC47UcxluOiDqgE2ygV5l0qu647qsUjJ3Rza4ydu8d1SWIpw0yg7HSFEnDeyHplfK+CX0go6wGKgbBq7ng6U2kD7VE2iA59A4lyXuN07xsN2qRWNR2n9YMJNltBDHs6WDSGu2kIGyDOJOrsJbjVnDagQJNH9p4+a9fjw3rLGs8uBsVS2ssy0yqMrlz4cSeZGrYjUZ3QcKVLHtjrpG0RaZwoo7JROkdo7rI34w891zwmKyoSj53uiKmXeRoRogY/6KsXy1US1vp3dJUwfuFWKWtnVuUVKSWoc/UXOm1M7uF0sqIBRsnjy7EUaW1AMl1Q1vH037F6TPrsaIng1KB1jzpkII0azFoGR3oPY6NV06NtYr2THQqUqjWWochSM4+DHH0Dz/8xN/6G2/JKTL7E9okUAbtAz7J+DHVg6wkQjKmTAgGWuR6y+SSsEGz7lc0XsDiCcCxbjdCkPhMpRRpV8Q9441jiy+4aaKVBLbTSheNm+4c8WA+X1AlsF6f8ZPjtm6obpiDJAZ5l9mOKKBl69jijcfwAFnCEKCyl8SjPZNzYjs23n71tXQ7emaPK7keeO/Z0hPWK95/FXj37sSHj58ppeN1YWJHHc+Y/TOmerwxsD2Rdk0sFUXF142n3/+Wtv5M74EwnwAxk10uD7QqkHtjhf3Xe8WXwLJ8JSOi3l5vet0KRsk4U4vNV5zPqtCQkVXvCqO1/F6tg3Uo43srrXQMDWMbvVlx1/YoEoGRlobaac2OqMcmN7MWNqW6P+zLgcLSu3RA6AG0XEetNzGDODGJaRsgSLqWHlraVgVf1VpmeYi0VihVWIqnB+l+llrYj531eObp+cbL805Kn0mpoJVh2zZOp5l53vDOYHRnco5UEj/+9JltTyjjCPNMVVnwZUApBe8upLLTWpYQh73QiXgP5+WR1go/f/jM7SZIsjtaLKcqaCEtQPgPP3s5cHSIKUrYRhPUWO+B1hOtb2Pkpgn2kZf+mVw3rJkFjN4LWk/UWghTB15Q2lHKAeoqHR8UuexYY/A+s+4r635QW6fUBOqFlOT6tk46KSnLWFNGj4p5PomLN25AHrxCgetbE0ipUOozxgpBQKSORrR6NcuYXEloSOsVUyVZz5jRFesN7YbBSoaBaO3JuRDbGPPSRdduJGaRpjk2wfKBIKF6vzvkNao3CcSwGmsck/NYC2YKnKZH6JbLEtCmirGnN05nI91SEzAGtqlQxyFdjEontuPgOCpTEI166xntO9Ps0cqRs6FWTUpfuonfffteumKvS9zL2giiqmYpLI0VY1hNAx+kzCh4pWuoNcg0fRQoXYyuks4kCYWgxOQ5zKeidW1o3XF+FKY0tO24aQQAKBn9g2YKEkV8xINc1NAnqjHuF9e00SIDGVhTQNFzpfcvEapy7XwZY1rrRQLTNSFoOk0ibu0XjSpKpjjKOHQrIgVWRhz9veHMoMt0ia3sGvn3LYt0ioEKHHriPugFeohrha/aMcoKYcAKdUArJVKPFumqoQfBRhlNr2L+uXdFe1Pi7O7jLK+E1yleA5EhlDimV1is8hQK3ooMybuZlKI84/qQmZguGMjBEr4TdbTusje0EWSwjENUt6QoiXG1Soe0tYLTHppCaYtR8r5qpZm953Q+obvhmq8EfwJViTnTcuG8PHB7WYcEpw73/ESpGq0rzggmEwVHLhw5ozBMYWY7xmfeRarSVCPHitaee4pmR5GSNFhQjZolLGBdRS/KOGykcghHu4kHYzt2kWoANRWaSkIcwqEsHPkKGoyd0U0A+1WV4buotJqovQ0KhEgfjJb3NqWD5TSJVMQ1tIfr8SId2DYkGbHQVRKPgLVDd13p3dJTJqcbRnlMifR6oBGT7hETl8uZ1iSRbNtvolUtciBMsTKdHC5o4tGwToyktSXSL5Bqf+z1q4Vq1klEw0GR2eiqj27YBq1LFGIUw5MdMZ45ywjxtMwcLRJjAeVoNbEsAVMNxnSq0nxef+a0BCbvWPfM0VbeaEeqMlqVi7+MMY6cXLz3KCp3h1+YJtF0DRai1ppa5UHXNMSiOD044lHw3vJ8TZig6EdGO8Pp8sBi3xNTYU+RajRJI+5O1VGqcVpmijO8vKyESWHszB08flkuYqKhM/kTPx0/EPOB8zOtH2AK4Xzh6fOGtZ3l4ji/f0su0G2DaunO8vnTZ/61f/V71uuK1Z41J5pqhLPndJppnwq9VR4eF663JxGbZ0UjMZ1m7HzielsxznBaFtLxgmkR5wSTU1RleXdmeuv59vIVRzrou2wkRWXcu0AIJ2pplF7F2PZyRbXOvEy4YqGt3D7/jOEt6Sg8ffxAOgVckNz4aT5zWzfm5YR/+54P28r58gZjAkoP12drArHvQwtEQYUBLdAAACAASURBVHuBq9es5CFn+9gsxSVbojiczXDGykGli8u5Be4sxt4E25JyFgZmm6jD1Vwb5CzmFjVGccYwTA937Q6g1OiUGGrO6KaH7qlKj8xIFrSxEyGICzzmxLRcXjv7zoqbUtHIJdOpvHkX2XcxPLy8fKIjWKF92/DBoslo1Xg4zVAFLxbmR663F0qNHDESU6XsG3vchGpBJefI5eHE4mZ0O2hI4R+PgnUdoxvp2IfzVKFbx43uDa3SUuOIcXQcuhwWdMeaiXJI4aV0H51KSZ6rLRGC5u2br1Dacl1v7Ie0xr1xqAr7tlNaJDeRDNUsCCDlLKlkFM/3yS3Kip5LMFCifSvVUlKWiOIRhVqrJucVpQ5SjijV8NaLuxeFt1I8KTwtG7ouGNVoudLoaCxODc2oaXTsKEY7k52xxpCjTHH8fWxIwWgtgR4K9v0g5U5Rkk7Ue0MZJdrGWjFO9jutLaobMaZ0hbMzuip6VaRSSLqigI3PUhBYJcZTpJh9TqJxrG1D2cY8zZguiWe5Zo5aKM2QW4WSMFoObOnYWa9RumNoFh+YwpeEmfK8cdtW+BvfALBuPzGFRzEYNcFqaVPGmFJhvKG1TM0dG4xsjm3oSLtoNSVty46mghRudiStbeVAjGeWRqHRhMigzAhB6HJw7XYUoiJH8t6LPOn2MgwpmtrGQfQ19WukYXHnksrkrfZO5hfcUnf3LnxZiv4ai3vXn2o02g7WrupiRkNRqhr6Yi0j+96xVlBMwCv79o6cUiMhzFon4TC1o1DCuEUkE9YEGRm3jrWTjAdNEeZqqlIgq7tpSGgt1gZiOvDe4U6BlDNOn0aXWUyyatjq+8Ag1VSotWMdQ8YVqTVhzQTInim0iC4mQ0RqY91gXzeki2eEJOKsTFWdvbDtG7P3FK/ks61FDo5FgSooJEBEK8EG5rLjreXh9IhRmrePj8QtjojkRsqJb77+lt/+5V9I0tMUyFXMYVN4kIPMwL+V0onJU9U9Kl0Rj0TrncvpQq47yjTaHHDecewbSnum2XC7VXw4o2wk75HaLeu6YozoiLW9G7QFnQWaEiUCO3jxtTjnSLGRu4zKS9XQpca4+ybAY3wBLUmDvVWJTraGFDe0O1FHx93NTTS0SDy9M44jrtCNPNTqjtKitS9VJkVKQbaJmg+0qaN7LHVTV5WYKko7KoWXbZMUtbBIaldPqB655UxLj5iayKnhXIWSSVnkSf+irF/vqNaM1YHL8oafP/wO4zJOSUKPVTPWebByA2sct9shrXff0E3GZZN/EBlA9VyW96St4sPEyUUmt/L+/QXdDxavsEpSKnoFq4zw7drQpQx9ixqn0XpHSaiRhqLvqSKFWhvOg2ma25OMYmpKbOUDxgi/NR2V2K+0l8Z5ecPz50+gO+8ezpJM0zTzGVo9o61F9wp2J7YIzbCcHL1OHC0O3M7Gu2++5dLf8/T0xPntG7wTvZS1njdeU2pkmj3GeGwWDetyuvD0csO5gLae5aIxBF4+rxiviDWR10w3mqMUdFVsJTFPojk9WudIBec9T9uVy8OJvF3JCh4e3mB9QJXET59/Jq439Hyho1j3nVsUl6joCjt1vQm0XhtOqfG0/SwuYispQM4o+rnx8fgZ1Q3TY2deGtY0ciq0/Jk3s4JesFkzN0f8+QMoj59m9IjO2wpM85lpfqRRSA2sDsS4sW9PnE5nvDsN9p90SrwK5Jpl3KELRXW08lhjBWmjDb0nSoPFX9C605tsQtaKBrNW6XKkmEQH1qWzJoDyIqdpxDGstcKaLkam1l5NIMftoJTMESP7foi5Dgmh0EZjjWWZA85YwuzResQiNpGixAgwY4wkTrkgJ2mjxUF9O2DfbhxHwtp3hPN7TD1o9gVc4tG9451VKJ041s5+rHhvCGFhqZ59fyHGxhFvKMzgaErnxxqLnWaOJLy92jbinsR8Z2e08iitcR6C9xg9GIAlMQWL1pZlfqB3xbJ4MTjkIoc1H2hV45zhiKKnKyOgQ+kq5hoaqlVqdzQtCKRSC7XnofcqaGPpOJSxdG1I2pCqZLIri4xSG0zeD/d2Z5oXtBJzlVFCqxAWex8j34Ye+rwcM60rlNXouw64dmpuOGYMHQsE63He0tpBPA56FRRUPrJcV62ie8fqwXodspeepRAzxokBronRyRlhJ5Yiyji0wmoJ8yg104wi9YbBEbwwYFMqpFzoOrFNFaMs1oj+szQnxrWtEZFpjFOGx/OFx7dfMYXAmzfveP/1n3DswM//GwD/wb//H/M//6//I/cO45//X/8Ly+nM+68eeKve8FVsHEGxnd99MaZaTR+hAlpZ6mBuiR4UopvQ53+FfyNf+fPye9Gx0pmmiSncOasNZ91IzGkYDBgnJttyUPMw5Fg5REoKlqVUGYsbLWgfMeZprOujyzkSkOrQQnY5WCn7C9d/EknHfaWYkAK0UtugOyBUG3m+jJGn0pRBh7h7JESXC1rJgcv5O6S+k1LDaIdzhpgF0N9afX12KN2HPALoUgC1VlFNxvq9jcOkFTSdyNUayhgpPJF72Bg90HQdY+qrgcwYjergvSQfBu9f455lCpTQRjG7RaRQNTNNYRz8DbnKgU8OVo7gA1olljnIGH+wgUuqxC1zfnhAmzhMR5J8p7Tm5CbivuO9oSJyOaP6cKhXnl5eoHfOlxOxV1KRDvx0WrjmSHi84KzBO0PfxSxVu0EbkcPEeFBqYTpNnB7PfPzYOZ0v/KZ+K3IKp2g6Mc12mAR3cn7DPM9oXdj2A1Aom+lV9oBcH0TSkArv3r7niLuY1LqlN8vHD8/DQtfxwaGVZl1XYky04ghzYJrOKJ1xfaO0hvcGYx29V+bFsW+Rr756z+Vs+fjxR2KMrEfh7fsZbzVhVlyfI1ppHh4mti3RsdQietjL5ZFti9QaCVOkFkPOhZwSzsuBw+oAOpBSxXmPtoqXY6O2hFONkjvWOeIhuMRgAtdtk4ZGrBLU1DXGBLKN/xQl5T+b9auFqq4LtcDRN6wyTC7Qu2yqwU/kKDoYrS3L9MDD8o5SN+K+4Zl49zDh3ZmYVkpJLFPgHBTHUVAWvnn866zbC9//5h1/FlZJRxqZvZ1MU+L27OoXOo76C7zK0KfKmEV+9268klFY4ccfn1A2ULVmvgRKCeS68vPz75EgySvv3nWWy8JPH3/P0VfCdKYWePN2Ih8DzmsV4XwhpYOP10RSncU7MZB0h1kWPq5PmHnmjZ9BN4rW1NpJtbG8eUCrhlGaVjXzsmCwXB4emJZP/OY3fyJaXjpxP3DHjp+9dJK6QvnAsW+i7zo/8PunH3Fh5rS8Zd+e6GxUBZOeMVaRauWprNB2Go2jF7wy/P7DD+QCkxVXtjGKjx9+xjnLtJyFkYvm5XqjlSthnml0rusmIztnSETCPNGLQc8e1UTn00tGzZaWG1vvaHbJllaanib6oUlJUlj28pESZ0qrHAes646xkVJWjtsbvL/g/YIxDjvNLMs3yEjf0JWM/lpX7GkjRtFOKqNJSUwVpSWUsjhriWnj+fpMLZ31dgjzrnW5yXOWDXWWDkMt5TX7GZWEldiRsSqOGOVhnnMmpn183y/Rh85YMYZpYeVJJnodTExBzXRVZaPqYhwpTbRFzlqOeJDiIZ1ZPxEmL6PArjDmjLEaHzxaV5YgXbiYZSw/aYHiK3NjWjSzO9FqQZGpRT6/4DS6OSbtuZzPwjPFU4rmq/ffcr19ovcdqyu5iCifatAtiACuNaw2xCOSU+Y0OSZtWTnQFBQWNyuCNuy3TIpiOAohoAduhy6xf9pq/HJhXQ9SKphZ4VzgtiaOfKOYhp88kwqUXEY2O3L4Ug5NEW0lYrooWkbLIFze4B0GQ5IWoDzu9H1ca9Bk6ewpTc2AbnjXUbqQ0gutebxzQ3taJdJSScqbbvdZs8SXeluHJEdjxucfgsdMM9oIK7P3TvdD66garYAzAVQdWfRS+FltMT6QgkI5R3BQc5VnXy+UVLAF3rkz5+++5XRemOY3XM7v+e433/Pw+DWlgnWe7Yj8vf/278FIUf1bf/rv8e79n8Lf/S8A+P67C58+f+Tl08bL8Zfo2fB9/55nE3iaTtKpVApjlBSqWnLLEQUurXWKC0zhDV/bB37Lj2MsDynHUUzpQd7Q4xnexYgpQFiUEkOndEmNSHyMGUVWwRg7TFpgnci6WtXCbB4dKWlVMjTBCk943ceMQrqxv9g3rLXD9S7Z9M440SgjXc460n16a0P7F+RgVUSG0gxyeIkSFypqsy++boUlHQ1rQA9zSq9tMFtFslDqPUb1y55FFzlRHuYktLjRW2uUHEeB2cah2KBUgibdX+scvTasUXQFzhoxbRoZhdeK3J9mkk62k2fWvovBVHS90jm9HxTmSa5j+bqGGPcx7bKcLpcxaXES7hJ3Hh8fmWZNLgdzOPF0Xbler9yuG0FP0BVHWgHF+pRYD9GQl5peyTFiUJeutDMGYxTrTag8b9+dBNPWO8ZW+PRESpE3uXM+P2Kd4tPTM34yrCmhOpwfhDDTsMSUMO7EvDhiWjE2YC6dUjuqCQLNKMc0v2WaV7w1WD0RponL5ZH9uIm50Vl+/Cnz9fSe3uRA8/hw5uX6xDQ9EA/ZJ6zWxHQw+RNPbcU0TUud7776DbVUMpVcdqZwEslJ1bx9+zU5P6NMIMXEdd/w9i3Wdh4uknwZponbNXHETu+eaQpYK4edWizrrYE6eHgI1KyZ/TuUTjQ7UqyYSfmgFkU4gTYHk4OcCnSRcK3b7Z+khvznsn61UFXd4Z1HqY7VE97OMipuCa08l2kGmjjPehM0RXjk66++B9qo/gsPlwfW7TM573z17juMW9n3TK6Fnz585F//62+47Rs4gZ13LUxIazwoaIgDUls98s4BRJysjXDNam2vGiprPbUUqlY8HSu70rw0h7YL61HpePybB64vBykdfPrdn/P+/XtK7/zV737H5XEhTI78/IZjA+sU0+T5+PkHUl6peWLNCw8XRymRnGCeT8TrjRAmccU7NSIhm+Qxp4NWM8tsoYHVC8HMFAdbi8JxzQ2nNFuJtElzfrew7oKsMFPH2cC2HpwvM+W509uBKTes77xcd3JULLPmw4cnOp3zZWaetADtTzPzNFNrZlt36InTdKKUg8fzhLOax4dHYlF8fr5hjcMvFjV0VtpPTJPnSDt+ksSMcLmQSpKOSBG27bpX5nBBOcOnDz/w5vHCtm64lKBqgveo3qgUcjzIWToUpdw4zxfcdEHRuT79xOEd5zePpP3g4/MTtzUzLWeen6+C7qhi1FEaQvA4N5NL5+npM3/1w1+glBvd0EZpYgqh6yHpYBxupPAwWmgESouLuJZCV5WSB3y8J5QyOBPofUSe6mGmGB1ppTQ5S1Z4K3XwOIc2TyvRVoHoF83QttEppbJulf/EvvC3VfxyZzbg/y0c5PpPcms3yM9ffqnHrZ4b8s2BCJgH+X0D3D4DCtQyvC8D/zbZL4+K3uAXuemkX7L2FMTKHyxjGEwYvjhaNBjR1rE2wIP34+sDywT8YSb9H3XNf+wXwD/mNVSIH+XHx//jH/nT/+gX//bf/q/+8z/4s//y6w2+vv+F8Rnw+/HjF8vy6x/JBbgY4E9/7YX+Y9Z/J9fkL9f9DPiLS/AfWW78+OV6/NuvP/0f/s6/+Qd/9D/9nX/rn/4l/n+s//72wn/2w59Loa00upuh9QRtpPtLUxjtsYPTS0c0zMNbcdfnWm2pVJnkGU0twsbV5h4VXYd73Yrhr7bXr++cH+mESLAAgsyTtrN01ERrrbBODpx0RTwq2YDSGmvhiDLSXo+KswLBD5MfemWB8T9vT5QiDvics0wG7ITeM8vJc3u+sh+RoxykXkakdhAuqFIcuVBLJIQFheF6u2KUHAqtNUi0r2jkRQNdOD4Jv5VuyOUQ859S/PRxJYQPAyW1yUTISWyydXdsmKPVzOk8czqdeHn5yCnMoCAlIdqcTo71tuHDgtINZxW9GkpprNcXcttI8cAYx74bUmq0vkHtGJvYVs0yvee0JIxVvHk4Q4NaFO/eJP7+n/3v9PaW0/QWN2Wc2nj6lMhd8/K80RSs27N0/bXQGS6XgHGd2lfSIaY4nTzGNhYTmGeHtR6rFdZDPBoPjxO5PHOe3/BwTljneX5auVy+Fv22UuTUwXSmcGbfP/Pdt9/y27/8M1Ls5KhR9VfLw3+u61dfiXHg/YSzJ5wpLCdPbYlt32gFHt49UnLh09MHtviR1qFdLZXvBBGxr9RSebi8JbfMvh2U+gGtJa7z6fY7moMfPv6etSTsNDOQ1li30FvmzsurTTQj971OWvptyKMHk250WO/ideccHz4+8/ufX/h8u4rmtgvc+fHhr4HaeXn5GdV2rvtnKSS0XOjbkfhcN7T2+KDQayOXDVQlN4k9fdkPeuls+8Z6rEzTxH57IuYdpWBaLhxxxRiPt2dqKbgjU0vF6IXL8o4Px0dyyUzTgkLTa+E4rpxOni17rtvGut/gmokx0orB+W84LydiXjEmM09ngpmleLLQSqa0xu2pEdwjs5u57Td+/PhXnE4erTvx2HB6Ix6J83LG6rt+r/DVw8y6HbgeUBquN4mRXawXVd/Ik6ZrSlxxFs5ngQnHFDmOJwyK+WTRXrifWksMrQ1CLpBxnud5u6Ft4/G7M85cyHuh1MhL3pjdI5+ebxQin54/8X/+/X8ASnMckqrUuuBfLpczU1jo3WFtkGzsfYVuhTgwrgdB1ovBSis5xWtj0FmNhCExxkgMp0ebxnleRsrMzrYdGO0GgUKA2KXKQc1aQROVnHHe0IzBGsklr2XkVTMwKFawY3Uk7DA6Tf/pf/13/1nf7/+/Wf/Nf/jv/rFfwr9c/3K9rn/n/IBGitOaD7TSLLNDaUfridO0EGMWjbtS9JbxVvB6d7zi3XillKYOo54EEXTh5jaRPbQRf2qtQ6tZkrLGeF+63dKwSSmj6Dj8qylV63v4gaKWPoxlDYYEKmbpjBojyKsji9beWsvLKqfmVOsohiW1qyEBEZ3K7Xc/o1XlfFlIUTihrTeOKK7z1jLWiybY2oCxBesszjsaipo7qCzPRdXp2CGNCiOdbhBkBpzfedHn1lpJ221MWLucAbKW4jZmlpOlNY3uiuu6o/pnUIXVNUrLdAoxHtghJzvSJ7QV3rP4I/zgm1paq9R2w3lDfVmHJ2Dn8SVD1WzbDwRnmBZNztKccd5hfOeb799yWb6hFoMyicfLjPML+1bYjkglUlkpTaRgvU8jbGknpsLt1rAJejOgGg/nQEziBbLa83ZeqPXKNE2o7Mk58O7rN9S2E0uiKU3rjmly+LnhvcXoibdvJ5yb+f777+lNsW2F/foPn/7+eOtXC9XUdrbrQXBnWjVsh8I6TYyrpNjQ6T3TVGHPhdY6Kd/YfniiUXHW4+3C/rSKy7HAbTtGTnBlLRsGzQ8/P/H5ZaS/IHgM3aC0MlBDwgNVVfhpdMnjVb8oTCWpRX4t+cmG86T58ONH/uovf8T4K8d2QulCI7Hvhu14oXIwnzw5RxGp+3f0XjjiQekR6624OYvBOxFpa22otdNNIufO6XLiiAe3/cAFg5smcpZMedUlYtaojZwzKVVaB2s0qf1uIEdEh6cHB48uWeg1G+Ih3Mnr7TPTonFuYbvt/w917xar25rmdf3e4zh93/zmnOu01967dlVX16HLrorB1tY0JCiQCAQM0RCQRPtKjAJCjIlBkStIIAYJHoiRKCaABCNGLzgY0xAxLQ1I213du6urq3ZV7fPa6zAP32Ec3qMXz5hr7TZtabzoyLjZe675zbXmN+cY7/u8z/P///5sNw1VyXjtdLzhfPOIplGEPHF574IXV8+JaSLFDoPFGYt3nrbtV9hwYAm3aN0IBihF4iSjKt9YiCeGi4egMiGIznA83tJ2AzlmVBENs3eOzdBxvrvPPEXMGTx79oySA5vdmehxrUFbSzUQcsD2jnlasASCmmWkmi2HJVCS6HrymaXYyOG4xzctoRzYXVpilMjAcYyEGMlxYQ6J4+l2NXMI69B7DyhSTVirOB4Por1yLTEIlLr1PXFeMSTNgB+2xBjJsdBtz1BqRhOQeN4Fo+86GnUFyK9JKQpxepe75JO77GfRlHlvZRPCrLxEGT3aNUCjVnD21aP4l/75H+HP/OLH/I8fXIGSzWddelfjBHcfrW5i6aDIhifMT60/tWWpu/QhXj4rdxrDl8+O0rzeef7ar/0Cv/Unv8UnS/zli8Eq9/ztj3f89sfn/N6f/q6MStcutLxmleesAPC64pjqepi01r4EsWv1qVS5Ku9OUlMqpeaX3W7g1fettRQCJfPnv/xAtKbGUMW+xBIWSePJiXmeadoe120YT0em45XgZypY1wontc5o5QVRVArHwyImSSdUh3FcGKcbKhlVWzGTuAawLPEoUh7TvgwiGTYSH3s4jhjraJuWZZ7EUW40F3XLZdmhMbTF00YnXaiVBz10G9qmo2sGznf3GPot2jSgNO998D0+eP8DvvDFL/HGZ95kCYKp08D3vvsO77zzS/zQD32VN954i9M4CbmhFp6/+IQnT97h9z16CsBPvvG7APi1H/4VAP70+2+w3ez44R/+Gqz3UsoL+/0Nz549Q9dEyIpnbiBuHxFiIpaC85pYEvt5pu08TY1MN9/muzf/UA5nRQyJxgjuKhWhTtTVaxBjQilwFtr+NR4+/PXc6++x3eyY55kYIksYefToNXKeeO+T/5lj+AVur/ec7x7yev8V2uNrPLPnDBsntIcoCK067vHTz/Nn3pB27L/w4XuEmPibn/s8AL/5/e8hiDGRIaWUGE8nSWtDkvNqkY6ks1aSvapQEe7wULWm9QCr+Ntf+Ap3N6oxak2nqjSNRauGWle8V9Xc8V2VltF9Rb10et1hppYlYFDoCgqJ1S0pr0xdeb6NNiJTKkcJ4igJiyHVsiZZyfRIzG+KnCTz3Trhj94hwEoRjJa2RtbppVLKnUQjoapDAXEW/SlUie/Wdz+HSuss2hZilohvZQyH6yMKR7YSa16TgZXQIel3UJ1lXjIhHSl59QcoR0XkDcZqyMIFTimjcS+7wMIvXmkdRfjHtd6tg2IEG08T1lWck/qhkklFQwJrhNN7CgvGOypCF2GNW01pxtmOWCKpJJY4obVjSas0I86EXLGmY63ZmZeFkguxGKJvOIXMcRbDa9sOaBTaFOblxM3NLd5X3njjAfv9iRzMin00WOVQNjKHyBgypcy0XmRn+0Pk3oOB03RElS1xOaHMQi3g7ECIME0T3kp95P3M9XP5eavaMR5mlIIwzVinONGD2jMMlbDcrJHtHUM/MLTb71ce/qpe37dQzTWTSFAKtayZxlOl6x1aJ+YYiGnEWgkFSEn0cFVnjPZMy0JVnhLFpdtYOZXUZFEmgvakmgnRcrsfRauSJMazhEQ7bIlxERRMMaumT3J5BcBt101XrVBtBVVGJXcQ8GmOvP3z3+PH/rn73L6QAk25mavje3IqrJVx0lCNpAjFZS2CwfmOlAIhZLbDY1JMdK1jQRIwjG6Y88S8ZKgWbSwhiPOxZEVYTuuYIzMmmWmlKMabJU7ojLDOauV2vqXkQOsc3jtOpwXnIhYHNXHv8h5NO7Df3zCHI+ZkwXiaxrPMB0yj0E4co1oXNhvL6RiZTkdu1/SOzfaMkr1kOdOgixWjiF3w1qGMxrmGxrXcv2jxjXTQzzYbxmkSTmyWAtw5z2ZwgpJSmhIhBuEq2qZHKUMshVQlPchkIxpDVSV2dlnIesHZSpgFqO8bS1YCPs9uYS6KT24+xjmYThXfWZZ0wrYW5kJlpu3l4feNJ+dIjDNpmbBlYIlBTsm2YVkiw7ClpJEcR7LWHINapS2KFPfEeKLkim9atK7EOFKyRRktiVZ+i/ealEUfG6PgnkTfpshVtMfOWYE9V4kuFOyN5GiLc7iu/65MBpawMM2/vDAsq4FLqbUbW3lVtCrZwNDryHDNEa9rwSe+c/USNG6MXjVfMn6Xou9Txez6DNlVa2u0XR3oa1WMevn3a73meWuJJr3fKf7dL7/GlzctjzvPH3n7A/7Gk1spSLK4tSuS8gSrdq5W/r2vvMlvfHQOwN96esOf/Ma7LEUKXaMU/8rnXuP3vPWQrTN8/Xbkj3/jXT4Yg4xHtebx2bnot1XFu46m6dZn+bDq6FoihWwrZ92G9sEgGPyqUNazhBOn8JxKg7fnGKu5PRxYQpD3WBxhSSzhBc5WjOowVpK9Ujbsj1fkFGncwHGciTmx3Z2L7KMWatV4Zzk/u0e/tJwtHQMtm9q9dFPnlGmcp2kGtPIcTzOlKB49foPNsJVOjnWEMHN9fSPRt5utbORA4xwpRKZppO8bNputRK9quT9yzMzzCJ8C/gvG75V0oxbD+cU9fNswjeN6r4kxbllmttstQ9Oip0Aab4jV84lvMVXwNsoL1qvGExfREHjA+/Hpy7SoHDIxhdVNviaYpzWGVisGPfB591mi6iWBT6k1yjOzOzvnYT9w/e43ub5+h24DQ9vT+krgA5TLaHXOsuS1G7lmsR8ND/QZcFrf8/zSwwAwz0fRXZZCLmpFNTWrMU66feh1/uI0m7bleDgICaZIQhsITzWmV1KXrvMr8D9SCpRUca0Y0ErNdK1wqkspNG27qlx6kdNFCZhYloXOW5ZacM7JIX0J5FUPLBGhrDG6oE1aTaIyglfKoDUSlqMsOcuaq7U8yhrZP5WWQ84qPKfrPClnvBd9rTGG6XTCGE2Icph3zqCUpd7tvwi6CZTsq0HjtZcwmLisTNKKUZJHD3WNa7YSQpErBkeJadXdGlKSDqteD+UxilGIkmA1pqKSRBeTVjZrpmk7Kk4wWFrJ1NJYtBIZgUQBC4/WWIc2YpRSugpCzTXUCNY7CoW261HGMM0zzjlKiWidV+Oxl4YAHbVorK0Y3VOBmOtq1gzkFIlJNrsMIgAAIABJREFUM80n3BiIy7pe2xs54GO4vi2Mpz26Ck1GDvQNuEAplZxGrNXMJ5lCa+2ZThM5T1g9ME7jSx9E21ree+8JjXMYIyg9bwsvnh9wzhDjkWUOGC3JYdoUYrmlbXpubIFqaL3F+0LbJho3fL/y8Ff1+r6F6rysMOlShMumpIjMsWBNhyqK1g6cpgOxjKQMIVfmkLFWQdYsLmGUJcXATGTotpQCYRY6wDzvCbNlf1jWVJhI1zfs58BbDz/D9fVzDmW/bnayqNxl2gvDb6Ujl3UDV2JgokLW0PYNb//c+/y633TOEq9pmzNJjKkTFkfVIjZYlkw5aob+jHGa6Voxv4TAesOdOJ0WfGiYQwQ90rcPqCUSFqTTooTrmqKw0xKQlpG2a9CqxWqD1oJ+GceZe9tznO2YpyhJFiRijUynmcZ35LhgSTTas0yWlDMxC/R7CZW03HJmLvHOk/KRaUqcjkeokb5tyTGRcZzvLtjvr1BFmHPuLgc+K4ZuYDNssUav4v6M8wZXPbf7K6w3WN/SW0/FcTocUN5iW4tvFGFJaK15+vwJ4zRivUY5BzSURZyuvjWiZa3CIowlY1tN124Yp0QoCtdYvG9RqnBze8UpHKBa/GZEq8LWDaSYGMxM23Rszi948vF77HZbYih0/YZPnnxC30jTvYRI1xm8b/GNIwawtnDYn+h7xWbTolYMV4jSDbV25Pb2QNOeSwwwBXTDNC/ENDGaW0qWfHbnhc23TBLo0PieUpSc9pOI/e/YvpKCsyYfaTjbnvHg/g6tFEtYuL4JhPgpcV4VSWcR98PLbqZe27cyRVjF/7C6qlmLSZGR6rULqdfkJ620nONebth3lpi7pB/FuDqjx3lmXISwcdeRvStu775e9ikxb/2Dm4m/+MEtf/wrr4lGzwiuzZi7ruj6JtZv9g9/+SE/MDT8iz/1LVCKP/W1z/Bv/9Bn+RPf/BAU/OaH5/yrn3vE7//pd3h3DPyBLzzmP/rHf5Df/VO/SFXwkt2ZKpe7c7abDY2TjsrSGio7lNJcHW45pQVrCn0xNLanOk2qlclqts4Q1yQW51p6VZgnR84rsseA3V7grOFss8M7z/X1zHEaOdttiRXmuKwEhcr19TNiEke5NQ0pjvS0fKbexwQlWnXfMrQ7+u4M71s0Buc7pmnm/Q/eRhnD59pBoht1QqtEjBPeZt584z5n2w1aKbx2aAxLOJLLwsXljqYVvZ22+mXnr+SE96/EpUatU6n10tqw3ewEL2UtxkAKSdaHuqDUJW27A0ZqypRaSSpzqwwG6ExDpjKUhi4a3jM92/61lREsh4YUxACb650hrEi5VCq9axm6lls03jfiol5T7nbnF3z49F1+4Rf+FkuXyUFT8STXsXSarks8nve8HzarEWiNaJXe3Kv3aAzdp9K4+m5AG9ZwC1mPN5thnUaY9QCZaVuDMpW29XgnvOi4FHHVl0zbeQ7jKx14yWCMg5Vc0LUNKQdyylhr2Wx6Ul4Iy0JFOoVm5Xc33hJCoOaI8z0iL804rcBqQq14a+n7hpAk6bACquqX6WhyINVrnLPQTmrtVpmU0AGM8mK4lLPsarxSgpXKQRK4jCWHglGeptPklfPgGiOHqxXHmEte9w0EiVX1KpkCvx5oUyqkNVZV2MYLne/WA77BtIZaHVCEAGIKxouBNaQgLnSVsc6jlaUicH3vHdMiU647RvNdYyCtUaTOtigVSFG0mzXptcu8TlxsS0iKUida1+CcX0lHHmcGcl3Q1dOYBqedNLCqASx9J80IWVStUCWqwtpKTAshWZSyLHPCmY5a5JlyrmeZFpEQZMt+P1KrQZEwaCm8S0In8VLkkkihgVVX7F3DeBSfSMo3lKpp3EBME9okUpb1zLhCronTSaZMOUvN0bW9dOZjQmfpqAclpmKrHN4YpilyOgY23dn3qQ5/da/vW6h+852PZNwWEyiDdZqzbYtSSVKEgqPWwhICt/ujdFmMZZnDWuCCVoWh61bHosc5cfHPywmcIsy3NGrDzYuCtxWrJCLRtg3j6UhYImebc5ZJojzvoNIhG8oSoazMOsmHW81W0kVSCpzLPHly5ObaoNtKVjOpWpZQCXpCVwU6o33D9f6aq5sruq6nKsN0mtFGMy8LY3jC1fWB1m+YY8L7jFGRmG94cO8HiKHw5JN3Od89Zh4nNucAimo0GXGCz2Gi7xqWIHFs1q4jqxro2wGbDUppxumWoj0lLSxphG5HTRMpTdSaySfD0J+TcmEME41vKLmwzCc2fQvV0zUDRjV0bYc3LZ1tcE1liQttK1+7xBPbfkMSRByNVSzzyHwSDh9kTuOMdxuqlYdJG3BWU2vicD3LqZVKLJl+uyHkGd84aqnMMa6dg8KyyOIqi6SmoqlagNrKJMb5lnE5kVJljAdCvgIs2gZQWnh0rtC5HajIxsLZxeepNXA8LAxdRwwdMU7UaqjtzHazowJnu4FaNxwOI9vLBu89bTtgdUPbtMyTpHGUrOj6dtVQR9JcRU6gJpQ98PC1HTdXR46nE4cjxKgIYcI5T+O3svEY6TA410CtzMGjlScskc3GU+rIvDxnWka6piHFKpGp9VWXCwWf3TT8t//sV/jKruc7h5n/4Gfe5edvR5TS/K7P3uPHP/+Qx53n/dPCn3z7ff7XT/ZUKn/wK2/wo/fP+PrNyO/87D0A/vL3nvOf/tKTl1KZL21b/p2vvM5XzwXr9PbNiR//yW8RVknSP3HW8a9/6RGPO8/PXJ/4wz/7Hlcxy2g+l7UIF0Pa0ynxV96/AQT3V4p0ie/ex51pra4djVYrfsujHX/wZz/g2SJj///kW0/5j3/NW/yJbzwhVvgdb9zjv/vgmrcPiZIVf+obH/F3ftPX+Op2wz+8PkKt/Ny3r9lfX7MZGtrGYI0QFxrX4ozGOknoKipKrrhWmIGXI9XL7gw9bJmWE6dpYjwecErTWoleTSqT4oLKFacdNgt6rLWa0kBbO8Y5EfOIWSVQcZlIeWEzDDzQO7ZLx5BbLoYz2nsbtGrZ70fiYnG77ar1lmLj9nDLzc1zHr/+Jk3TSvqfddK5TzObnWF3dg9tBHdjVodviDPbs4aL3SXWSLFmjF5jOAvDtuPCn8P0HQDMmkBzd73++JJh8GvRIWuoFJOKs7NLdmfnkmLjG4rNhBBp989JuXB2LvzVnGZMnlmoPEg9+wDfPnwsmrjC+vw6FAWnK3ZNvSm1YIYLTtt7tE2LqjCejljn6LoWTgee/+JP82R+TqcaxmOm1sx8vObsvCM2C0ot7OYfYL95uI6j5YB1OiR4LO+xb1rC8qqj2thunVBYvF/B/lqRa8bZBt9Y5vG47leW7cbhneN4PFAGhaJBKcVms2HYvKILDL1insXX4By0rWYaM7lEDB5nhWpAMeSa0GhiiLRNg9WGNx8/5unTjzmdRt568w2urq4YxyNGS3deG4NxlqLqavBU6/cxrB1OiVqueKZpRJkCRWOdI5csa7c36zRoETJKNULVKXklsCw463FWIjiXpUqgi7FScDtFTEeaZkOKhqyko8vatc1pxhqPhCm0WCthCk13N43ZYnAclpFaJ9q2k0NFLRgtE4RchMrRekfKipQiOWu6zpOjwuhErSOWBt9oQpgpJVCrpWYtyY61EiO4RppXqiqcM+SYcK4hxZZKxfmGtm3JeaJpOjFh54wxPRpDsZIWV4rC6Z7OG+6S4FKVyOhSJEDAKINWBmsqujhKlWQ9Z0WXrPVqEDOOUjPaCGNZVWm45SKpbZSwSozUOmEo695ZJXSlGnIATETTksICKhFmYebmmFG+oZYkiWFa0ViD45y2FY8FqhKWCMoSU8DbFhDShlZu1UH/IwL8//CjT1DKkaKcqawVELNvvESFjZLXXoFpDLRuA+VE4ywpVmJJpDzSd4e15e8JAXzbENIsp1kCvemYx0zrzMuIVG8ttzfXaGVwxqFazeG4rL/0ijINumrJOy4Cob5bf6WzpEhJxjH7Q+Tv/m/f46s/8ohxCizLkWmK3Hu4Jc2FGEc2fcvN/sTxeEvT9Gy2DTUZusES1nxn3RTG9ILjdKIpmrx4NjvH/rQHNDenFyLMzoVue8HZ9pLTnBjnGc2MqqLROhwi9+5fcjweJBK0bTgeryVzmYzzjXRz40zbdQQVSHVlUdbMcfyYWCreG26nG/rasul7qhEJRoyRRGG7PUerSgoL2jhSWhccKlo3XO42hGXmsH9B4xt6v8HbRk71jcFWByWy9ZZTnLnYnOOMjCxP80KqwmR7fntAO4kN3I8jg4qrOD6TsnATQwyQI955Sk3EUDiOBxkPlkBRmRAyTdMzx1u2ZwO1ao7HSAiWvh1QOhJiRauWZdnTuA3WKtouAwsPHl4wL46HD3uqmpjmW5wzNI0S1FDjSHlinBfmOHM63bDpdmiEN+hMR9tuiflIGAOn04yz4BpF5zbEmHj48DXc7QtOxxPjuFBVRquFXAQHlFhw1tD054QQuLmdqEWA8Dd7ca6iMv3wjG3fM42ZGB1t/+kxi+L3/MBD/o1/8B2+tZ/58c8/4L/6sS/yG3/ibX7r6xf83i884g/8g+/yzf3Ir3t4xp/9p7/Ab/uJn+fdk3Rl/6n7G/7GR9f82v/p63ztfOC/+XVf5iefH/k/rk7c94a/8GNf5M99+xN+3997h1QqP/pwKwVlkWL5t7x+zu/+O79IKpX/8se+xO//4mv80Z/7AJXLGttZGKdJNoBPdUtlcwiM40hdF9lXz6Nsrp/d9bRG83MvDqLzLoWvvzjQGc3rTvPN24kvbRr+628/IQZxpx4LvHtc+OLQ8vee7QEo1WPbDWMMnJYs3SxVaFxGq0zTGHbbLV3T0LaGiOYYCmrJUCHMlVoXYgncjkf2hwN923G5PafvW3yzIUW5JzGWcQk8uXpB27Z07ZYUI9ktkpRlOh7PvWSFp5Gu7djZe+w2l3g/iGTE9jx/fsVHH73LgwcPeeQaUsmS9U4h58DlvQ2PHz/ijg1trKWkTIgT3kugBmvXRWsxqZQUsF7jbIPW0i3WWlOopLQIxqxrYFrvrFWrfHc9fO0C5z3UOxKGJD71Q8/uvEebYV1bhQGqYqI3hY6ADif67Rn9dmDTX6DqI74yB14crvmhw2scmPmEA9eHI9MSWaajRGWixSzSDKj7P0jaXrDpOqZ5JmUZ48YUef/qAz7af4em2coelAtKOYxugY6bcWTku9iQOLmGR/253C954uc/+AZ86XMApCVjPoWraiyUbEk5CroqA6pQlSJTyaaiVp2jUZrxkCkdeNeRcmZeRrxrOJ5uZD9ar8uLgdsbjVKefmgpJXFxdknO4rZPIYqevAhDt/EdOUnBYrTl4vwcbRb2tw2PH7+J1pmYFlIuhBBISQISFNINts7hrcZomS6mLOQR56CkAd+kNT5UtMLWaXzr6PsNKS1cXT9lngUdZ61FF5kEWWdpGkdYqgQSuBatLNMUcLYhTDMhLNQqfhGZFGmUcixzEI5t1S87ycoZVK3UVEQCUCR1TKmCNhVYWbNZyDEUQb4pHeX3pjWpJHKcmMbEbrchpD3OtGiVcM7KAVS11KpovUJpWBZ5TrIpKNY0MJNISaGdQE2cE7SiRiQ2tdwFwiDyHS+ft3dMb+3QWuJZ26ZnjlGMtEWtEeBZ6Ei1omrCGAlPyLng2w01Z4oSIqs10rRJS6KsB39nHbXqlQQo5AfTWJaV/VtIIquLica0zDGgVcZ5odWUGFBWDGFFKUoCcqbte7KO1CyHXI0Fs2LXnMb5jhihqhPedsS84N0/ImYqq3pyFVE+xRITjIcR58Q4lWtZb2QrJgcWvKvkMLPMhdM40bSWHA1aew77A8pafJzIdcaUfp1TJlo3SKJT55nGGWcbshZh+DTO8ktFMc8SB+msIaeI9w0qKqZJup/qZTd11dYVg0bxcz/7AUueaLotMR15cX3Fo+tHKKVZwhGrT5Sc6fuWq+uR2/0BozZsz1ppN5LwXWGZJLawFosqmhRbPr664fLykkePPsfp9Altq6C0GNNhdWY/PZOCyXYcjonb4wnTtNiqWNKIiYkYDnjfEOKJs80lzdCRSiQUKDFJZrpyktLiC1fHD7h3eclxOZBqRywzzjg+2T+jZPCu4XIraA1J+Arc3ky0XU/VGUhotyUrz1IqIUyMUeOcx3tLVIaYKlM5YWtH1pkx7pliImXFzXwkE9F9RyBQwkI4HSkEwq2hbQbQmaphniYZmbvC7WGkEldMlKeSaNyOOR2wTqNW8oLzAzkonEk0bc9ud8lxfIrSM17fZ1kCKluWODJPM950DMOWvtuyxCtKNVh7jm8tMcDxIJvBaRzxvZeOTnY41/L86S2QOd9N9P1ADIlpWfC9R6uC9Z6YA88++pDXX9NoY1C2sLtsaRYwWpGiPNRtLwk7Mb5AGU2/MQzdlnE8MU/zytBtafvExgcaXRmniOLTWKfKX33/irdvpXv4X3z7Q/7lz97jN7y25cc//5D/7Jee8Iv7mVwKf/vja37q2YHf9uY9/uw3xZz33ePMX3rnE1CKn35+4Bu3I189a/nfn93y2994xLunhT/3bfk8RvH3r0bZ9Ly8h//8nWecEOzX33hyw7/0mXu4NYDcWL06du36nb7q7KDuYhy1GFKqyApEDytJZGdevm5G0ThBy5W10L0/tLwfCoM1zCjpIq1O6FMpnHde3KwK/pkf/VG0krGfMaJ/y2UmpQmFRisvYH0FWmVqltGcRpKEpunIdLxBaYdpDS5pjO3R9kKMfyqTdQAnGdsfPXvO06fPadqOx+09LuqGrRnoOSctGTs5Bt1jtg5lPV17TtvuyGXVzRe4urpmv9/z5mc/i3FWCihjVrRb5v79HZutJJwpLVKNnMPapWpwtuNOxwaGnGeW+URaInkjoRcqB8GwlcQyHwnLRB0uPnVvKUkvuvtIK5xtpQsuOg9yySiTaLuBUj0pFewaCep94eHn3mToDd/+3lPGJZGKJ1fL+bbj3kPHvQcP+Hwq6FZzZOYwjhyJLLuI0oEQ4OZ65OY4Ec0DVGxlAjMvEkmr4Mkn7/Hue3+XpsuYJKQS6/0qWDHMo6SnHVMilWccPvopRtMwbB1hGXlRXjHclll4kndX6ztiWDAbifYMIeFbizKG03FiymCMQquKJpCTZR4lUrMUMcOkINpTv3kloyjBcLm7L3rPJMWp8x6jDafxyLJM4tovwjRtG49qJWGv1sKHH33ANO/JqfLJJ09QKIa+E1lQTWgFMRU657Gm4JyEF6iqKcnRdxtyXSBHNhtH225YlnmNbjX4xuJsZeg93m/Y7Xr2xz1933Nzs6ei8Y2M0JWWhCqRhEAIC8NZT06RYdgQ80IsE8r0OL2aRCvYVWJRVUZbA6Q1uCFBzaAWrDP4Klr4XFe0pPGUKtz0rhFPgVJe5IA1r8lvgWHoMEZjcegKJWaMdrS+FYNcBmdbOUwYhSSfrR6WjKRa5cz2bBAd7hgpOVOzppQJZy3OdIKgsoZKXtc3UEYMgcdxRKmEsx1934h2OCWaxjEHYb6nnNZ0rVZ8Akr091hNRQp3mb5VlJXC0zmHNgqrFbkUicm2HudF96u1yDBRRSQmSuNsK+u2EvLDppc1txYlRj4gphOlSmRsRa/KH0PTipdEI4f2iqZWhdYtXqLqvl95+Kt6ff9kqqjIZEIcZTHFU4rkGocQ2PStjOnRGAeqTlycbTjuM3Gp+NzQFk+eMkvJ5EkzDB3h9iQ3qBL26Vwjpir6ZitAe+WouaJVYVxGSpaTmEYxL4lSs7jrYlzHjHeZ69JWFX2WUAdSFOfmzYuZjz+AflPZ7jROG25ezKtLfAEKQzewnBLTWNFrp+xwmzDGEdKEMlIwh9lRNx25Kvanwwqez+zOtoTgyK4ST4VpuhbU1XKUk2Py60kGbq9HtpsLDuMVqV7JSMJrhv6c/Thh0kijDcvxlqbpSFWT4sQ6WRbn+zISS8LUhEqGVNUaOziijOH5dFqjNA2YwDHumW8rDx68hmJhOS00vsNtLjhOB6oaCdM1A2fsT6MU/iWSjccYx/40o7zndjoSFdSiOSwjWE1aJjDy/d/c3mIoWOUY54UQZxq/oSoxU0zzhPcW31hilHmx8ONO3L88Z7e7zzQvq27U0jQK5fZoG8hpItcjTdvR2g3jHOn7LdZYcT8qTWHGuZ5muAAVOR6eMXQXnJ1dcJwNvoPjYeHxo4c4bzm/OJNRa1uZx4Crmk3dsj/eUEph15xjlKFLlaVeMU+J/fGW84sN3cYQ8i1nZ/fJsUHbiabVnE4zcbRc3NtgdcuDR2fM854coOlE7H+x3ZBi4fmLvRiX1ksBH4yj6JpKRqvKx9PCI294s/f80a99hj/y1TdfvtgoxZNpQa1c12dzeqUnVTDlQm8FgfNm3/Dd4ywA9LqaItaEt7UK4OmyLt4VjiHTG4k4pa6BBYUVur12S+GlrEBwXWsHtayxxvVV1/WUZPHrFIxF4ibP1iL4mCtVKU6pMGhDLmvSEIqN1RxWdm6t8MGHRxnxW4V1XhZ5KwZH5xtZQ1g3R61RLhOWQq2GXDOnosl+kAVeJ6xeiAleLIZ8mFnCkcN0JCbpdnBdOD/dh71mKhXNInrUAmebHbvLR1xc3ufFzTUfv/+M19+4oG09KS8Yo4ghkOLI5b0N291OjHK86kLHOGOdWZO5pKtTqyIsM/uba/phQNsG1F0MsGSET4dbtFUY11LXbttLQHwa0VSMfRWhqtF86laD6qSrm7M43HNmPN3w7NnH8PAz7M53lDpjMBQjKT/jeATdYl1DDbyEvV9fXUOe6DpP129oOtEabn3PtjVkpaGDp8OJ/lzxxWHHtj3n629/xPeefIS+eIgpM3V5D+s+4ge/cE6OZ8zzSUaiiEehaSwliWZP2R3WZ5YwkuJE2wWWcOLR4y+/fIuf/+KbWFdfMlq/+rUvYW1atd4Ctq8qcXN7w5Mnz1FaM08LxrQ4pbm8dw/vG+b5RMwLYTkHLOO48PDhJVzPANy/fI1+02CN5vnza6wx9H2LQrPZiPwnpWUtPLWsy1oTF02Kke2mwznNOJ7IeaLvz0hR9siu0ZjBUtbsipQkCvhUNRcXG25ur+maC5aQ2HQdIQT6xtM3luPhSDUWNHhnGI+35KYHMmfDgDGWxtmVNgBlpYIoCqgoaEhVsFbG92hFawaWsGD1GohSlGicrZhMY17YtB05BdmbVWVZZlrfyHRNVTCOHBK1OJSBs+0GpYSG0DaBlMTotSwJ6y3ayAHNGI0JDaVoum4ra08pzHNA31GBcsJYTdMYKoWYMjlJk6HrRItsdIMxCe0UeakY09J3HTEWYlmoxWOMrFF3kppKZNgIMUGbSq2iC+27FmMTnVbcHsbVwBVxql9NxIoSg4RLWPG9KCUNL+ckQbDrOpYQxKxXKyFIaE3jnBBntJP0PZfxXox71nR474kpMU9HmrYlhEhJlcY7bCfyCZQkoRmrgEYOhFUOwyVLHVVKRmvEgOwKucz/T/Xjr9r1fQvV8TTR9I6mafBbRa2GtCi0knhFbytdY/CmwRmDczO6aDwbLh+cMc+yeYacxcXuWcfJFWt7XNvIYr4YarJ07RnXV88xXbu67wvWZLQza8dJ0zYWtHR1Gt+R1nFk2/gVl1FoGhFFGy350EorQnKEkyFPmTIrmuaCVCslV2qxaO1o2p4YRjrtqHWhZEU6ZbQfCJOw0i8uzrBG3N7724qyEv94Ot5y9XyPoTL0Cqc+ojxVkiTUZxpnIVqGzRkPHl2QMyyj4qw55+zikuNhZJr3+NoQwsJ+/5zzs3vkLAtALpWm2UialLY4c07JVZya3YYwRd7/8AmPX/sMH3z0MZvtQIwZZSa25wPGtFzdHlHVMX70lFoiThc2mw3gqIBvJH5wP+1Z0gIloMoGZSd01JRsaE1iyQfCkmm7HUss8hAYg9aO0xKxXUfSka67tyYvGTAduSwCsfYJ37ecxsgc9xhONK3l+vY5vpET8/X1xPbMQ9XMxz0+KsJSoDbs52uc2dJ1BaM1pWypuhDqnrTMGN2hVEMqgWHYsN3KQjqFPf1wxjyPNL5hHCdcrrT9wDwnQlp4cXPkdIiM08y8HFliIJbA5qxhOBvwpiGVSL+V8WpVimHbcHm+pcYtId2idGV3ccFZ+walHHj2dE/TO6p2zCTJrscTVCX7gNtZ4qR+2bP31tDinEUl0X497huezIEPx4U//fa7/PUPnmGsWbl+EhoghoIMiFnuzshUa1nZf4kPxpnf8sY9qUnXEfNdQZvW1SDnhEQ/FjF01fpSr5RLplR55u4KWylYxfGVUpRuNy9BBeuL5D+/ECNzLvxAY/ipF0cU8MP3N0wp8/bTG0Kp/OLtyBcGx197XyqLXmve6hp+9ule4g8rfP3tbwjsHOFCipHErK5njbWarnF0jXQkXGuoVTOHTCwylanZEkImprzqyQIpBMlEj4laKmel4RzPwBm98qvBcmFRma69YHd2wdn5Of1wRqrw4UfPORwOvPWWbJAoSSZKOWEdPHx0Qds1a6Eqh4eUxEDkhw3KuJdfl0tlWQTF491m1f4J3qzUTJhFH7sZdljnV52zIMpSTtSc8abFulfEf23sy0QkgF//7K/Ds19h8e+B47fgVwqnCcDVens1v8Ln714T/m8+93+5fsPd/7z41B/e/b0eGH6lf+TTf2bBfupjv/tlrzy73BJzeFmoPnj9DKMrh/3E/vaas/NH9P2Gs23H/ctLur7h+fMXHI8L2/6cfnBoWu7d/7xMnsYZ5w374y1N18L1ewB87guvcTzdYk3PAyN6wr7dcjxOeCeM5r7rGDZSZIQgDZtahJP62muPmGbpvAoay1HXkbTWMM2nl+ahGAamaebB/Z579waePa/07SUlP6QfLPv9DWe7HmMUNzdyEFyiOOFPpxGlZuYlMI9KpB1UHGJ6BbDOEGrGt5ppkoCfWhKZUGQRAAAgAElEQVSNc4J3SxXtGrQJlCxR4NMk8Z/zPBOCJS2RUjXeOcZlIsdM9UIg0aZiLLiiSTXimwZvPdYJbaTzW1KqpHwUqUDnwUgxZUzFOUfOsBk8uc6M44TWsB0GUl4YnEOhaZq7CZdMJdtWitN8F0DSrilcW0kU01rhHKTUrB1xwzQdKcXgnGMJI/1wRsmGZRlJOdC4Dmul/lBWk7tWkFy1rgQEs2pQZdqUYsKt+1xKUrvMcwBkUtx4J2g/Cs51dL1lHEeoCu8c2qo1dKClqkQMaWXjRkGTaYv1mrYzlDzjFCidSBH6zovBy2uJ/17XbmMcJS2UEjDKEVMmpdP/uwf4V+H6/q7/U2SZC5vthmlKoCJDL+lIWvXkAEueuB5HjLLstg6SJcyaTW/pes1pHCmp0jc9tTFoo7nYDXhvqIjLe66JMYkbsqwxhNSK1R6jFqiZrhX9SeMtcziiVCYks26kvNxM9cpTLVl+6TJ+AKUch6sT1Mx447BOCcXAeLSJeKu5nk80TqGNFeSW1+Q6sxkatFZMS2EaI761hCUSjhFlA8YojBUFia4deTRkJkKyuAZCqthtS+/OyMGxHCHmwu3VkcsHPRt/j/4ictjfgNIstwfGG0scI841xCAi7JwX2taz3Zzzwfdmmh7GU+R0PLK/ueXps+e89/5+RTLJ6bvrFbvLhHeVq2eZplGcTh+hi8W1maY5Umui72V8en6xQ1slho6UQB/ZLwFvPXNIbFRPLIUlHmi6DWGRkbpSitO4Zw6BB48e8/TZDeN4Rd+eQ93w3vsvSOXAPC/EHGibLft9QNlb2tZjTOa4n1jmT0BlppNifxgIy8SyjLSN4DvaZsfheM00vaDrJC62tQ9p2hlt9/RND6lg1JFmcExLIobK/nDNfn9L4zcsc2G73XJzfcJYGStNy4RSitubmRSTRO0ZcZc/j0diTtKtjiNGa5wbGE+F6BbabkOYLdQTKc+cbgqbs0KarpjDDcY0XN2cGE8Th1tJTfHO8uHTT3DO0Xdb6SyvV6XyO964z9/88AW/dMj8+Oce0WrNT3x0RaMVf+iH3+J7p5lv3J5QKfFrLrY8nxa+fZhXLWh5CcYGWYjuHOB/9Xuf8G9++XX+tS884C987ykhZv7Jyw0/+fSW3MizUovwBAW4/YrxeMdbfdV9lSrUrwBxpcAZjdeQa12zsXn5+kplKYX/4b3n/MGvvM43f+pbVCr/1g+9zn//3gumtfj9y999yr//tbf4mx9c8c5h4g995THvjzN//5nkbUPlNO7RRoIklM4oBIWllH0pPzhokQLlum4Cq7NXmSrPU0zM00xMhbL+jEB0s7vccll7trpjUH4t9AvWNQz9hrZtuby4h+9bYVdqzc3VC15cPef8fEc/bClVpBB1xQoZK/IUYyx3zNkKjOORaQpc3j9Dr6l8IF33EGa6rme7vRTiQy5gVorKPKFQONetXMy1s60gLjNpWei2F3j3yvX/I9/58//fd4t/RK8/9jzzKuIKvv2dJ+x2Pcs88/HHn/Di+sjl5Y7NMGC1I4TC/fsP2AyBECPGGebplnl2aOVpm5a2czSd4TS/2syts2y3G0rN9MM5CoM1mr5vJB55Tmw3W+7d3/Hi6jmnUcbMoGjbnloTZ7stOXuur68YhgbrLTEKW3VztmNZJtqmw5j7XL840g8Nn3nrdZpG9tRlTvgWHj1+A60c03Ri2HhijByOE90wsCwbJDzHMJ9O7PcHzs52HA4j7eTwjWdZFrQu9EPLaw+2nE4nmkbJhEAr5gmOx4W+t/RnEmua50C33dKfNcQcpXismr5tUGlG9S19v8V7xxJHChHTi3lRME8O76Rz6XRH1w3kcsbxcIOyiWma6PsLlqVgqDRb4fUu0wlFpm8GznYD45SoaHLSQKZtO4ZOxuveafFrxMQ8FSIFbzY0XhNCXg1RMLRbRvYYXWmbXszACkGNJcFBGdUw9D2iG5epoNaaYmWq6xsv8re2xTlPDJFSIcZVu6sQVJwSfalSms2ml707ZZrW0/hBAiOGnpolwtx6GKcjyxw5350TwkQugc3gGE8S75pzpOQAZV4xczv8oKWrn2dK7alqZl4i2+25mPo6CyqxTCKVckbz/5fr+xaqXQvzFJkPE8s8MU4jXdNhdcvQGZJV+GZHSjekMnMVM633dI3jNN3Qd+eUqmjbhrbpyEUzTwnnWnmIxpmb2+fMc8TYSlpO7PfXdM0GrQX83XqP0oW2aQQ7BeTqgYQqljAvbIcNpZaV87bqWKk03hLLQowV7z0VCzWTknSEaoGmAVRkAW6uTmw3PUoFrIXtWU+/7RhPM89vntF0jnmOjJOMimqtECNOb+idxTcQlx5QLDGCallCYZoL43Fk8BWtNB89uUJZCQJ4tve8/9GRplMs40LVkTkUDidNLQtdVwSxkSrTsme77bHqyHhK+M6wLKeVWScFmTYJbRS1zrSNYRo9zz65xpg9OYP3GkiQNdXPLKvz2jtNTJnLe3uqTjR+oHcd1kdc3xDHzH46sbGDbNh24sX1x8QAMYkJ4+b2GuMsH35cOI2BWG9p7QbnOl48vSLWPTEG0TZXS60KYwPONHStnLSP+4mqAtOYKc+eU8pCmMHScbbzKJWIeSKkE8+vKvMcOD87oGoixJHz7SVp3mPMzHa343gS7bGgogzOTeRSuN1fYYyjLrJ4+NZRspLUFKuxfmCeJAZ1CTPPPjnh/EgMmdYPWKuYp5mua8kxktPHoAJaF07HxHbT0vcnKomUNDk5YprIoRAWBWokx5mUTvgmoOqrR7FW+Ivf+ZA//I+9xQ+fb3jnMPLj/8vXuZpm/uK3P2RJhf/wR77Im0NLKoWfvznxx37mHdEmfXqsS/0Ujkq6m0/Gid/5Ez/DH/k1P8jv/dJjqPCzVwf+zsfCBQUJkYghUf5P7t6cx5Z13dJ6vj4iZsw5M3Ottfdp9jnVqCiwyimzHCwcBFIZXIk/gPgBuGCBkK4JBh5/AAshJByEcLCQEJcCgaqAe2+d3a4mmzlnRHw9xhuZ+5wSHAkk6haktfdaubKNGfF+4x3jGfvA23sXL5wSxVTWyhlRazv/65/83BL1p3/3b/Knf/dv8h/8z9/xH/4vP6C14j//F/8F/rPfPfIf/cMf6L3z7/2D3/Hv/J3f8l/+S38HgP/iu0f+3T/7izeF9j/9x5/5enD8x3/vb3Nyhv/uy5V/47/5h+LO3AdkoyytF+Ealld7ZcXouo/WUjQg1a2ijmpW4dpqI39nxCvYq3qzECkNdxz4Rp2Zlad1AXY7a/nw/ius8/z400dJYIdAQ1FqxypIKTMOA+/evwejxcak2YkcG6VotJkEFdZlpdhKIy4b7Jiq1holZYy15Bx5fnlGKzD2dVjuoMW/VnOhKkPXwnXsre1tNo1WI4NXjNMIWvE4/Jr77dv/Ww+H/z++/bd54x/9+TNff3hA60Zqjr411h+/MA43rHZoo5mmEbogtg7jjPeNv/jdP+Z8fKC1Qv0iUP3Xqw3g008XfAhY32kaSm5oZHAoVVTAl+uVmDO39cL1emUaFLUYUnnGB818OJLyyhoz63bDes26RHqH6TBSq6S4W4w8XRZisZyeFdd1xVU5LM3zgTt9EkLC1jkcDjw+PdL7AefvifmZXDLeO2wYmU4a5TzDrLBDwDrD3A+4waJQfP3V1yzLwjhqlvWJYZxwNvD0/AzNS7kJMi/c350J3tEUbOtG0CPGan74sXN3dye8VKtQeqRRGYc7GfZVJacqr8WaGCehANVsGd/fk+uVYA0NTWyCyRx85fsfvnCYPVY3ejG0nFFNnvexVKbZU3Kiork7H1iXK6obrPa8uz/wdP3EclswDOQYqVpjzUR/RYblhdYs4xjQRpBcwyAWmdPdO2KUlGJv7CoqaMTyFMJA1+wHYLVnbCLnuyM5Rck6IIKA3VfxzgkbPaeNTmMcHeuaOJ6OHAaHMp37uxNKFZ6enhmGGa2VBME6PD+/MA4H8ZXbwDRofvjxO85377AW4ialTM4GctE8v1w4HA0//vCJaT7TurzP/d2J4P/ZAf6r/odPtj94+9f/zb/dr7eVmhU1GS4vBdUc83yklUIzFe8OdL0AGy1P9OLwDnqT9LrRig/vHzgejrw8L/z00xdui7DibtcLMV0YpgPabKg68+XxE04FuVGwcb47s20rKVaenhasDSirGCePavD8/PwmoU+HA6VUUkoCVXaOVFdK8cImM5IkpMkaupVXWPpGR5qCXNAYI7Vy3g8cTiO5NJ5vL5zuRdVdF2l9UFbhTEO1EecaxnVyGmgacpM1flcd54TVSY9Ya9hipbTM6DWti1ncakPJFWM1sa40hBNpnLQhqW4laamyGLG1oSEnINULrTVqAecGgRi3xN2DNIptW9sHjIK1HqPEB1faBaMDrRpKynQt/cS1QUMz+AHTG24y9FTYSsc2BU4LomoHTMeSKUWaiMIgtau5JJreW3eUwukRVKXUTtsr8vpu1dB0Rj9iDCidqbWRkvi2jOnERaO753BUDBMo5bEhk9ILy0X6oONNMCbBD9TcaV3aQFr9GZQ9HQKH2aFNBSrOeNYtobTHe4O1juWVO1cct8uGNp2SlbBWe6JXhdUBbTe896SoMUrgydZYghtJaeU4H7i7P2I9fP50EeKCiyg0cbVs24bRZV+xyG3s+mefAPhHW3xb8e4v05//+/dW6W0H5EtK9XXNvyfwefVAyru/1jS21ndv3j/xwfb3ef0Yrx/ntRXq9eP8a3/ja/7kb/yCP/mv/uz3Pt/uXds/ngSgXpVXteNdfg5W/fyN9Dev5s82gt3XunNfX7++N3vB/m//1X/lX6Y3UUCMsW/r8N7b60KGVhHLUJdUNPvPSsoSRFWVbnXpZz9mx9w8c3cMRXy5zjnO5zvO5xPH44kffviBf/A//Q/88le/4W/9c/+8pHuVWIh+/OEHrpcXvvnNrzmeBAFnrCHHyHe/+x0xJX71zTcc5oOo1loR142fvvsO5x2//OYbUJpeG85ZLi8Xvv32L5gPI1//4je8qtZozbYu/PDtX6IVfP3NX8OHkb5jbGKK3B5/YFA3/PFrur9Do8Qmg+L6/JG8fGI+fUCFs4RTnYPeeP7yiafH77m7f8f54Zu3lrBa4fHLRz5//78zn2bs4YFSRC1uvVJSgfyMd5mX6MHMaArKOAbryPGZbbvy4f0HulpYlmfpT++R3+kvfMv39Ko4nz6AKnx8/JHxcKBShNuNxhkrD3Xv2FIWtTwJV7N3RS5RHrTlRu8GpTytraANxk6EceS2PNJyZR6OYp+oEbrBOYs3jtY0xmmct2hlqHmj1cbpcCKnhSFI411OhdYUp/ORf/9ZvHz/1kGUsXGc3wgtvcM0GlJMjGMgxkLKndILcUs4q1EELrdn5uNE64Jf0qaxLgm6qHigJQFuhHl6uV1Ytw2lJ+5OZ5RZQGVadgxhwjsFqlGyplG5XG60ppnmia4il+sLWnt6qajXMJTSOGf3TYoUE5gO8+HM7bZwmAd6bwzDxHwYqXXjemkY0xlHERGc0QTvOJ5OPD0/c5rvSKlwu62cThOPz5+Ex9qlPXJ0RxoruWwsNynbyHnjfD6isYKjMhpjC58+f8Z7w9PTleBPGL/w7V9+4be//Yan52e+fL4Q/EQYAtoYeb39+swP33/ifHfHMCq29UpKnRCOeD+wrk98/PSRw3RmGEZijMzHIwrxdH7+/MR8PDNMM6VsvFy+8OHdA9uW+eXXv+bTp59Awe0qh2BrHbVWYkx4L1vIbdvesH0S9nKkknZclWxNhiFwnE98+fLE8TxTa0SpxuEwkVPl4f6OwzSgFTgTpGihV9b1iRAmculoo7henzkcjhymO+iBGD8S44Y2SmwGg5QU3G4rxogfuqP47vvvOJ6O3K5X4jLx6998wLnAn/7b/8kfetL+it7+qKJ6Ptzx7u4dWmuevmx8/W6Uh4iuXK/SHWut4GqsmSEc2JYkwxMGYxpGhV1VWoHMu4cDpX7GmIVhbkx6xgdPR3OcTsxnQSrM8xGjV+7uHyi5yABhf0Rbx/27B6wxvHt4z/ff/05edEoRhpHbbcG5mXVdscqQS5DVSd4hy0bS5tYKtDnFFaVHhnHCGOmG1xq6EhTIWgUN5cLEFjNaS4OTIGAarTtRQbdEXSq9y42xElmT1JSpVXijnZVUNLVqakssvePdIIGKpNDaoo1AiVuW7SvdknImeFlZrHHFWcT/2wPGgXVQe0NZT6HvNx/F5Zow1oDyoCzKdHJpLCliXEGrDvvN1HpN617wKUr67tctYxqsKRGs4Jda06SYKNWJZtWK1F5Scd5SmwRxAKjCTqQXeSAgwOm8pd0YL9V+Q3Ci7FJpLMKscwdQQWDRg6VXBOMDUBrH88zpGFgHuRkXZyThuEVij5Riiakh7YdKDhhrektkhuApeeHlRfBRPji02g88U2C5vbCtCW1gGCe8H8hJMCWqg7eeaRwxuuzGePk8W9qopfH4cuO6FIxtQqRQ4hlythPTRimVLdcdRaLw4ffWLK8D1etw+srN38H8r1Oj3utJf/8dXgdUuqIr8Z5KuGZP4bMn8Pe314H4tVZV/d5w+FqmofdaG7V/Tvmz3XEj23L661J+H6DF96r2b+fVMsDPJQXylfDz6Kl//j66kADU27fVf+873L9PJeqhNZZhCDvwHUoWBFzv7P50aWPKRdrmtNZobbFWptnaKnfN805NnMLE1AL0ihoVfhjlITUKb7a0xsfPn4gxcjweMcZQUsRYTamZUhIheLwfefUHs4elYoo476Tadz8IqKbIMUoKeTyjtRaLgDbSWBYjzgXm4z0o9dbvrlojbRs5V+bTSd6//FwpTeuE4cA4HGlaal21luukt473jsP4AIyk2lCqUUuR/vScZOU4HN58zFrvrGqtOZ9m5vlMUp5u5BXZq6hIx5N49a5RrB9daVTv5BpxtnF6NxLCgTC+Iwwjra18qI13+cBv9B2bjrwcMo+3xi/evcdgKL2gpyyJ6kUYkn503N8F1m1FtYFWtbw2AWUb9/4dKTWUhiVmlrWhWsOisMrRdyzQEDRBa7ZVGKO3bUErz7ZesH4g+BHahuqK7XPGWbEQ5WRw3pHLlcvtBQ7CK8654Kym1sz1dtmb3iy9ia2tFGlGKjVz216Qqs6Gc5VuKlsWsoCywvlWLrBtC9bKQUs1BNSuNddFnqfGaF6WLla4esObI0/XJCQBEt4Enq9fUEruj/pFvJYpbVjr6WR671K+clskOKSE5zmEI0Zl1riyrpktD7TasXYRq43WtK5wRqOfNM40wmCIW+bDV41lfeb55Sp+Sn2gqcqWKl8uT2g14pxl1RXURusFo/3uhbco5RlGz7okjJVQ7Ve/eI+1ig9f/YJcMrkM9GZ5/4s73n11zze/yay3G84FrAso3dE24vw9d+dfctu+5Ve//i3PTxvWCfN6W4/88lcPKBU4jO9oXLjeLjw83FGz5+H9jxgTqCh6cfzi6yOH6cC6RMZJYezXKJ3ZYieXq7y2hjM5rwR34un5J263EWXFk2zNhFYSirxdL7hgWVfNNN7x4f0HBl+pXZ5pfmzk8oIxAyEMlLoyDRMheKzRBH+HMbJd1ha2vNBM5vn2hHYD8yGw3jZql2u/60SpYLWHDvM8cZzhcsl88+tfcz7PXC/PgMePBq38HxsP/6m+/fEK1RfL+198Raey8UiqhpgLNnRas+SIeEOTQfsRpTqH2QoKoeldJXOEYSbGjjGK08njhonWG5fLlY7e21wcxhoOxwlnnHTXuomYEtY6xnnkwy/uKa1zPB/Y1kxtlWmewDS0Ech66YVpOlB6wTtHWwoxJ2wwUmXZ99OOc9Sc0B7GcWYYA7lWRuNIORNjAQo5b2grKdP2itew8tBtTZG6kZ7jIq0r4pcz5BqxOGpv5JjwfqAUUeGMcWjV6fvQZ0xAKemQjyXyKgkZa2Tgl9gOdScZGAu2WWrWGG3pLUuKUslw2zqU0khxkwd1vqE0hEHTm6XWjnFdkB8UFA0/DCjYuYAarSveSQvZEI54J2GUtSSCVdjQSUk8e9sW8YOntkKOOxi+l93rKDWEMW37KjTRq2a9RoyTISljgEopkdp39MbrUIama2maSaVRrk08QnSMdmxxR2g0eUi3qsCIqllLAV4VOiRMEwUELaGYvpvkJYEbBsMQZnIqAmqusiauVQJCzgZoQpvozaHYawWNhJVaLeTcKBVCUGwp0tZETBvTOLPcCs4Kd9B5hWYgxUzw9g9IIOr3Bry3QfTt54EMgG+K6z74vamN+0inXpVT9fYxO4LSev03Skljid7Dia++1leV9vXfyLArX8n/+HiVOXk3WL4qrq/Db9vT/rwN0OwnLhmSW3/1zqqfh1tkEPoDfbe//ev9O1KS3n9Vd3un9kJtidxfkUziE+w7nUAapwxKdfSOV6q5gq4c64FTG2i9MVXH3C2tJZI3jPv683z3wHiYJUXbGylGtm3jfL7jdDy9DeR9r9NNMTJNkwywpdKRKtW4iSo3DiPWmL3yUpTYGCU06pyTMoXW6UoSv+u6ClXFOdkaVfH6tlqFVdsV3g/01qRRxzmMUm9+xMbMcLCY10FfK3oWJa8Hg/MWw6vS3kQQWBeUblg7oJTGoFBGiS2kVZx3WBdo3VJ6RnVFb5qm2l6/aaBnlNoPC1UOw8dhZD7AdU2gR7z/gDaZnp7prXJUJ7Ja+eH5CyMz9X2lpQ3jMi4EtB3ZxheM3us/bWXzMI4nbpco17YZUAaut2dSEeUv5/c8Pl5IdcGqxuxmtLcMo8MNK61YZutY15VcN8ZRcZo9y5IZ7YRzZ+7vZtbbhdF7Uqw8Pj6idOH+7j0p/gxFf/8wSwuYKtzdG66XvBceRM53Z1JCBoWuCNoLJ7dLkn0yllISp7uBjiJfGtaOqLaBkdVwyU0IKiZgvDTV1RZR2r/5HNdyhRbY4gZsNCuHuhj3e5VGRBGjMLZTs2IcpBHMOEUj0Xva+aZeWva0prXCbREu6ZbWfbXsQSeoGmcO9JoIozCyt9KkojPGnUl64ctFynPE/r7SWsM7u7cpwfl8JwKTdXz+/IX5OPPytPDw/kjaIvM8ovBoXbjFz9A1Rg38+V9+z93dO6YgG8zaixQdGEVpFT+MOG/wbSS4ex7uM0rvNetqwAVJ6G/xwjBpDoe9cMPPfPXuFzw9vxDCAD3hjKV3wzxPPD195jDfUYqWKlzkWujNcH8+s9w2jgfHw/k9S3xBacXtmhkGz2E6cL0EhuMoVsVmmY8Tfz38NZ6evoCSZ3our0d6UFqTcsTZiRA0rWdKbfhBi6UxRtCVLW58fPyRW3zCmoGUbpQodbLe6v0+30ixMIyB8RAIExwOd3z14Tes8YWYK/Px4f98MPwrePujg6pj5MuPC0p3rBopvZPWyGm+p5kVfBQv6DDtLR4K50EpQ36rDCxsccUaw+EoNYd+lL5dpQ1PT88iw6jOFheUapQSmcYZbQ2lFl6eL+ScpSpNaz59El/ry8uF0iKl7X8XE9d1QXuHspqtdDKVaiqlNdReGZZbpccruQiv9bat5FbRtlM2MWLfbhu9V1knD/NefzailHgOey/UYoGEzppOpau+t5w01O5ZKbkxTAMlCURaKl7bm39NW1kxdQq9F9KW6Du3rW5NXhxe0xO02oXZmRJGWarO5FIlgU0HJUnvkrok5HXZe4o70JB3Ey9mqa+J7oazA7VpapcHbU4NrTvKdbRptJZZ1yYPIfYWk1QFlN0brYnVY9sWVPey6q0ZMDjrKEWGVqMcJckDzWiNRhO8NHCUktHayuCN2sMnUqnbuqNXWZEIvNrw5XGl1SSDEbKqAmk2CWGkGDGkO2cppUhYpu6Dm9Ys24ZCVHjvNUrJ+57PB5blhnUTcek7VUAUucM0il+s2r2pRdFql3RuVdTc0FgOoycEt6uVnpg8Ru/INeT3XmvDWYdRklBvrfFf/33xev79P//fqK1jrai8fbd29L356lX9NLtpPyZJhmstoGij7ZtyTAejPUpZeo84Z/B2eOscFzamp/dKKulNXXVOfg/SaKPFKpKlveh3OfP3/vrfwnsv13Itu4VGkXOl5IJRCuMsxgZqaaI2eo9SHesQZE0Bq/drqhYZzPfhz9q9CrEJkkoZzzgc6ftgleITxlhSKljncC6wLKIS+RAotaELlCQ1sgCn4jk2sQkcmmXqWtKutVNU4XA8cffwns8fP7I8LhyO99RaKVUGtLRfkx/OH/DD8NbA1XonJgmChhBkQ5Kj/NxaZV1XQDxrSkMvrwG1QowRYwzO2jfcnlKKGCPLuqDVz8xaehcs3z7EotgHcaExqCbcx3VdeX56wTnPfJR7E0pqJmO88uXzI8fjidNdR5mG2vmMpSRiFFalBLB+toj0pljXK70VpoOT8hc0TcsQW0tm2zq9W5p6E9Nl21Llnn67KfGEpkzo4Y1GoGgEpwlV8dvuyU5z0wvLu4XeFjqOjmWeDxwmCdmUfpUAonKsIYrirDQxV67LE11vxKzo1cvruxg0A1oXpklhDcIfJeOD58Np4mmEaZoJwxnvRpz3tBZ4eBe4XifO81eUXLiuP7EsC/PhA8Ng4L//HoCHdyLMWDeAUqI8GlBqEC6z84x24OV2lXtAhxwTvWdBbrXCuoldKqaFUjdSkoFPkGUGlFBvnA203hmcBRq1NrEd5YzfW/EExWs5T/dcLxshWCGJKEVpV3JemaYjp9PMy/PKfJq4XJ4o1VBKYnAj3UZa0yiTUMrhnBeV1wiG67ZFNGoPGTXYZJt3vb7gww7L14FYryyLVIwfj0ecsVxfsmzykiWVwnVdKXVD286WVrZPkZo1cQ08frmJ5Q5ZWw+zWD2Ce8+WN56ef8AqUEiTlPMDyja885xPDyxmResDl5eV41kDhuX2hNN3eAPX+IRWjbzOHKYzt+WCHRN0A57cMJUAACAASURBVNVyGCZeLldyXHBWms6Uhl43rLakeGU+OnIpUBM5KayrTOM9qo8E53BDhfoJ5xRWi00PXbl/f8+nT595vP6IVweGw0iYDL3MtFw53w9sS6O2gHNWihi64ro8k9uG7Y6cC0rD+XyPVlcJYZcVYw/M0wGrDM7OOKM4n+7JuVCSUECGEdZtw+rA6TQSYmXbBDX5z8rbHx1UzWj58duFd+8PO4x95TgbvDYEo0gI7mIcB3ItHI8HnNfM85F1qXz++AltDC/Xz7z/asSNM9dLofTIlpRUCKoX+v6gXpYN7x3bJgOIcaLUXJYrtRZCD2hjebpcAMMapQbOecsaN2ptbCnTFDv2RYuvk4a2u89HIx3ZRYZnNNSaua0RYRdCbY0QAjG+egAV1gluore2V8Epmm7iq0QAvcbqvaFC4YaJUgSH0algyl4dKOsrGZoaVEU1nVRu+/oYnPH0JivMUjJGG5SWAEkteffWKZTp9CreopozPhjWdUUrJwPWDmY32rJtkSKpJ6ATU8YaTa2vq9RC7bCuUlObcqNWhfeK1vfuZOMpLUtNYbFgKyknlIZ1WwVzoeUGIoy5TqkSyjFagM7O7elb3TBqRCtBkeVc8MGiNFgjfdUxyuFBoWXV6zylqB1YbGmkN+8jWu0cyU5rBaOhm90jafaHeanYfTXd9haU1gzrKgNYTpn1+oXW5EU/2JFehVVnvSjgvSW0BmtlaHztvO9VoZGGEGvFfqG1lUHQSGtXpcp1UyBvoHUV/qeWa+btRekcvVTxZhmL0lZWyHuAqZSCteLNrHWPcygZqFS3+3UpiiK7NzHnJEE61aitiOKqOsZaUomCZfF+N/7L6rYU2evnKvXF1liqNuRWaaVhvJO/qwXV9a6gK6zXKNUxztBbZ40L3mlJ2+/xk1qF4eqCpzdD1RpFld+5NhIYqlk8eqbT1Saftyla6ShGaApageJBO6zOtKIpagC1K29uQOM514mv28TUpUJQWwmKlFYZDyP3d+843d1Te+PTl88YZfEh0FEC3+/CjjbGMh3mfe25805bJ66b2I/CsBMEdiZhLmyb+MF8CBKIqhVrpfEvxbh72yxlPzi01kgp7mzNGaPNPrTL76bkQilyCPVe1nOvCnitlbhtaK0ZwiD/tlb0rkSXnHFO48NAA8xusRCPe+FwOHA8numvirmWqtbeulA2jPBclenUlmWdjbB8e1fcNqmFpO9M195ppbBxpVSP8vciGpREVxbVDesi99jgA4MxzMZx3DxLHchq4tl/plHwITDqGdcGUbB8Y10i2nVu64Y2Fd0a707vWdKVL18esa4wH8Tn7owj58rD2aGUxbsTqBWtAl9//Z6YjvQOxnZO8zvBGiZAbxjlGQdNdgrtPOOo0Cjef3UCZFCNW0Gbjm2BLa6s8UYIwqm9Xldarxjb+Pz4TCxJNgo6Yw2UDbw5iI0hV4xR+NBJpRPTTYJ64xFjDbfbxhiC2CicIWdDzjdZlFTZ4mlk86RtISc4zJ7gFUo5jFHEojifHjge7rEerLXMx5kQpIAixog1M7flM1o7zuezEG982OkCe0ioB9AbXSWsHylZY52mtMj18Vk4p6kT64IfAs4arteNd/eewzjy8DDz6dMTyhgJtMZIGB3OnWi5cz7eS3OXcczzxOVyofTI3f3Al6eVMBqG45HrRZ7n63Ijbol5NqIu9kZcP/Fw/06U0vZCTJrDeMdteeHh+MA0TuRYGCbDtoDuhsmfGQPkvDIEKPmFwRkyFWdlc3e+O/H8OfL+/QMpXFGqE4aB55cX6mo5381sqaDZMySxM4wzMd/IceX5lpjtiYYguFqPrPnC3fkBoy3XLeMMbNtVqmSz4nScqeXGMAiX17v6ljlwxvFwvsebkePxyMvlCacnHu7fYUxhuTSOR4/VsqlUyqIzuCFxUZbz8Q4fGmWY2UKn1f+PpP5/+dUdkzlxup+ofaX3o9SfboX3X514vFzIWfBMMXUOs+d8f4dzjvGQGIYHKpkwaQ5HzXJdWLfI+d3E01NFmwy2oZShbI2iFL1AKopPXy5olzHasSyCaKndypqpQ22ZHBvaguW1iizTgWVdyTnjh3EfrDrWKoyRobS2jEKhtaO2TBi8cNaSeIH0rii9KineWbZY0VpUROuVwIN1wfodGaPkc6TYKLkyBE/uC1oHbov0wddcxQStGj7I8BRTpGm56TvnUF3UxnXLoqTuA4r3nlc8kPNGglM20DXiYXLSwjE93MlpKTe0H/ZhR1qhStmLESq0JoYCY/1eIyd1kZLIz6AcpSvyJp+7N01Fvl6tFQq9q4mdlCO1CpnBeU9e5YXX6eQUsc699XDLhrihtECkY1xoiN9QOo1F4epdobRCKVm1ayOHFuUMxkGrClUN3gZRJ93uj82V3rN8bXofipvYJqy1ovb2TnAebYVVV4ooEqDIMe+JyIKbxLNKF3Us7fYFqyyFhtm7moVdZzA2iO8sF1K6IkxPQZf1XqRVpDvUziF+DS8Z7f6JXmW9t4k1OhW9K+yticUFDX0/jMWYdjVZVvqt7b43v+OYvJXFkVI4r3b0kWCTassSeutdVsBK1NWUs1Q07sGAWjO15l2h0fI6apVcC0uM5Bwxzop/EhlISymUdMNoLX5o6+iq0Ep5C4+5AKVbWvO7kppoRIwdQHvC4NFKlKeYK9db3A8HohIqBa1ulF6wOuA1oDu9r6ScMMEQnOauH/hQBkb12jTTZW1oPXcP7zmd7+RnFTyPP37P9XLhm29+SwiBlAV5V0ombitaKYYwodTr9axIKctwaPQe7BEoP13Uz1JEadVafjevB6UYpTJ09n4f3uXg33ujJGHRDqPkAkopaMTeknKitsYhBKxxtN7frBe9FVorTONA8H7nJCra3iJI75yOB3xw8mNo4i8uWYgPh+mA9zJQi29IXj85RbQVprZSmpw3brcb1g0oOs5arLO0LYFqb7af3uVQF8KRXOSe0XSW1qeqyHHh6eUL3ZyZT1/z8vwjqi8MZuCYJ5SXmsz+vmHsQK6VphZ6caxLxGuL0Y7LduV4nmjrwt38FanO3LkRqy2H2XF5udGbxugzIXjmozQZpXZFEXg4zSgCvWuMVvSuuW1P5KVgXMcbRY6PPD498fT0UVb6PXB5+bkB6+Uxsi4FE5Skxatcu85bcq4s25PUoRaxYuSa8FNFdU8v0E3eG4wUpSjm6Yy3j1wvC8NguL48MY0Tvcm1Y4xjiZHWLK1WrDO4vVxCqU7wnpQq63rlfHeS6zhHnD7g9QFvTrSmaaVJ4KfL4VhykRWlpK6z98bgD5R8w1qDVo5apEJ1UJlSJLnemmwVlZG8gTEOaz2X24IbBlrzpJ7wKpBTg1JJW2dZImEYAItRA7UYBusZDwPv3r0ToP6UOcxeLAm6YRxM05Hj0YNu+GCZwoFPP1W8K3g/kvKG9yO5rDw+XlHK0VnIMbA6uT+03nl+eaQWT7zJ1kGZjSEMQMYb0JOj1E53iuAGgp9Y44pRhsPscHZgngfSlljWTVbrCtb8zPP1SisOBdyd70FptpQxrqKd2Ncuz0/cn35JyhpcEU95czycFI1MaVdQG8YGtPaM425nM0CxjF6IBOu2QlUcxxM1VnpUhOPI3fmOjz99z+U58XB/ZrneUDpizYGgM616StlwbqDVTFxXlLLclqf/Z1Pl/wtvf3RQHQbP+BuDUpY1LWg949yZMC3k1JiVIqXIsr1Qe+Hp8owJA7W+gM6Mw4G0XRnnkS1uXJeVmDpx9dyuG81sXFZZdaS96UZ1SdttKZHXF8bhSMqdXDdCkgd1U51c8567kDUZgHMBoxCcjHMY3fDeCfM0RZwXv5q1WkIsumMw0JW0WJUNa+S0cbssjMewDzFR/JsOUUyNomTp8NVahgVt2G8OhlwSxshToKNw1ok3rYnR/lUpqy3J0Ncr1mppsyh9D+cozK4utl6pOWO82xXDBl0eiiktkgT1lnVJTNNMayvaFOLeCmKd5+gDt1vHe0spGdU9GGG6ad2kotV0jNPECEpV6IlaKqUiCdouaq7VnRhvGAK1JWpLeHugVYN1lkEN1MJu2LcobUg5v1XpaWStbbRiXVa0M7uiI33b27pK45APEs7DYC27/SPsD3NFqYBVNCBXIQTorkhrxlrhwoIoOrU2rJbfjULJQ5UKqu++zV2l1gbvPc6LGd9asbDIg7sxOId3IzQpodBaY73HGidhqi3vLyuHMcgAawzGTOKrrLCtSRTvjiSZMT+vd5F0qLGi2OWYdktpp/WCQzzEAnWXz9/Z6RVNwd7Q5rwSDJyWjnZJolaMlRaUtK/VlRhQpXe+S0AC2JPemZTFk+29hEAsFu9f7SQFVKGpTCuZTsVazxrra5QIrFTGGu3oraK9/Dx7LyhVMSai1YrxTsohiiPlRO8G42SYrk3CjSlv6KYIIVC6UCdSL1jVsNpBk+vWOo0zMmwcYuArBkKF1pIcPl3Ae2Ga3t2/w/hAKQlTK7ebqL/n80m8s62K6ryt3G7PaK3wPvyekVaRU6SUxDiEtwOZ/AwbJe8EkuDRWr2RGlorrOsmSmIIYk9pDevkQCIHQmEx1ipNfFprWq1s2wq8IvdEnVb7OqYWsVCM04AymlqLvAp224DWCmcDr0QG8TbL8JyTHAgDUsdY94G718p6u0nYSFtRmEpFK4PVhkrat1l7+415Dcw1aB2jIYQTeT/woA1Fa1SpArb3FmU8jQEf3nO9fSTGlcNhQq0dn06oA1zGC1vcOB4mjIHjFJjCRCMzeIv1Dtct0+RAn1DnB27LhlKGMN2xLBfG8YAPI94atGmMBMYwMfqRVsWe4pzi+flK7ZbYKl4ptk1sXXXZ6FsnxUpKK/GlA2JhiC8by2UljIIm815Uu2TEf5+L1HK6pkAZvHXkZIi1chgmtusig+JOzShbQVeLbY6gvTQY1cZonRwaW377+dNh8oHxLrDcojSTm8ytVfwpMDjHaT6IfUoNpOy4XTeMj9SyopVluWxoKxuClBPVefH8K9mu2d2eYnSQA7sZCIMmPSuUdvJnTrOlC1obTsf3GKOJOeL9RCmanCKH40iKlZKu1EdLrY1lWUUccJYiKytybjw9L4QBbrcVbeQ+cDydiXljHAIKwbh5N1ByZxgnpsGwLJnj8UwtnfuHswgm1pGrZYs3wPFwPhJzptQFWuX56ZG7uzvOQ+N2fSLYE6OZ5Fqcj7zcPmGNJcZCyUKSGacDpcH18cJhOtIouHDAegP6ilYaFyyDt4yj5nKVEghUYn434t2EUQljEoP2+7Z1I4QT0zjQVOHpKfP1L+5ZrgWjHePRcbtd0HScHxhCAJUw2nO9LJyOwtvNsdCmxtPjo9ATtOb5+YUhjFwuLyy3C6eTZhje8bxcqZ9/h2qGaQps20b+OVn7V/72RwfV7y4fOd+d+Pzxyu32TE4joz/hx0SJmsfnR1IqrNttXwVVfvj8jA+ytrDa83z5wjyfqVURl4WaHZ+fPrPlF2oXuH9vfb9pQ/CO6+WG6hobPDFHSuvUslH6hrWGaRpJpTHPJ/LOdUwxy7pPabQ2hCBeGq21oIeawnq3Kw99h+KLoiWGd/HOeaelts5KPWOtdVc75dSizc9rPWcFyWPtaze0wgZDKYpSotS5NQjBiB81eHKBkhPCERWkhFZS5ZdWsT644PB+wJgGvRLCQM4JZw0pLTi/46VyorUsgZS9T73kKitGIJUCykiLiLGUBM41DrPBaM8wOS7XF+KWMM7jiqaWzOgHconEeMXuwSYZqsWIndu+5jWNlFeCl4G918Lt9sLxfGC5bXt9nsEqS+4dZwxGSbjEWUtJde9ybqIJGi0YL93loV4Fh9Z6pnYhBpRU9mCMIaUiXkCt6U26lb0JtGbp1VHbRmtltyRotNKkkjjsgZeU5eRL0+ItpO/4F6lq1CRq7YxhIMaMq5J81rvNoNWKUTJwdm329XmmK40Ld1ibKbni3Cg+1t6hG2q5AlVWsN6TkvRnv75pY8h1R3jtHD6tZRgtJckGooBRMlRbI9dS7nn33MlKWGHYtpsMfvQ9gV1xVkuVn/Z7Aliq/UII5CwBGWMNOWW887LKKxmvA0YbUsy7HaMIENtLf3ZK4vvNSVp1vAto1ZmGkRBGbsuF1jLzLA0w3h3wTqFNweiBbdUsiyK3ZyorjUCqogYWCuEgSe6cL+TthtIOdMchr9mWwTklXeh+YI4Tx2VEW01qkZwb59MDIcxcLjeGSQn8u9U9ANWIceN0mpnnWUgJe6orpcgWrxzG0+6jFp+pqNqR1jLeH4Vx+doeta/w6cLQFEyXHIharbtqLaSPUsrbIaEWsdq80gxKLdIdjiHntLfZSA2iKN57FW4XW4AxGuu8DJq76kuTJprr9cI0jQyjDLFGS2SvlMyyLAxDQCuxirSmMEZJMUIUpUjtDFqtNeMw0dseJOxdfPnWSDq9NUqr8vrj9f8bXRlahaIa6ExvldP5AeOCUA78xNH9ivX2zG2rKN3QOPT3mnaXqGfDkgd0chhtedkSxlkSjo8/XUkx8fHL72QLXh23uMn9zTi2eCMMA/N8JOUi1iw/8PDQGEJCA8Enpinw8tJBDXjt2a431ijoq3xTOHVAOxm041bfugRaWgm2ozPQLcOo8KrTKgTtUCrRayNusj0zVtOa4hAGgrWUpqA2rNd0lSnxBd0Hzoc7vAuEw0hMi6DbdpsRamQaD3SVgc7xeI9+6KzrhRQLh9AZ5xOH8YFO5fH5M61AM2LNaL3QKAx+FMTgfi/WWhHjSi3ybBMrVhRlX1dCkM1XSo2WDVWLZ1PuyZp5lpKJ2sXS9frM1NpzvV5RvdHqKmn6rkhZ5gitFKfTkVoyWmnMdWEYHVpZzJq5XCPv333N5XpF4dmWRGkJHww5ZrGp5USKBT/tA7Ud2OKNb7//jnHSPF9vPF8jL4ul1YJ3A9YaUctvT9xvE58/f+Tu9Cs+nA48X268V3BbNrTqWJtw9sCyXrluC629sKwvnO9mpmmmds8YJtZ8IefGfD4S8414+cTLJXJ3ekdOlVxvhPsjw3iPtoXPH6/cn++p/cZtWYmpMhwULy+VX/3yPVE/kcsKVILztCwhbq0MyyrzzOAnwjBSaiImx+FgeH5+Yj7OtF643l4YRr0ru18I+Z7SHrkuLyhdsXoCrNRK+/+r2rl/+m9/dFD99PiRZW18eXrm+rwR0wvD+D1bLAzuxBofuV0KHYNxnU6ltRsueFCiHF6vEfu4ortwT52LrLGgjHQJG+P3TnBJMdLkNH+YRrCay8sLuWaR/FWXFVYfaV2jLFLHaiQ9mZMk34ZhYF1XWfk70EYS+tY6atl7i50SX2LOskqwYlQP44DSCT9Iqk7bilMOEAap2tVAwVsoWtVMoyPvJ6xaGq05trVwOg+icmlwVtZ33it8kAG3tQO1VLZtw+lAzYUwB4yRlLszcjP2wcFapVqNwGEOxJgxvaGzYRg86y3j3ShBsG3DmC7/3yHGhHXtjSM7HyeUshhrMNowBEOtlWEaWdcbzndBPmVPq1ZWgApqr2xbg26le9ho5vFMqz8PyzV3elH0WpnHQEV6jTWICtWUfF25U1uhIV3x1jpSriilRbErid4r3p3oiP9Pq0ApEcquvmbptC+t4J3HWSvtHVajyBgrw0frjWEYd/Zcw3lRHY+HEylmcpMwmtGCXYpxw1nPGCTQs6yRWireWWpJ1ApKWXmY1yovo95wwaLcq5KeiWWl1A5asW7PAHh7wAdLbeIVLVUe/DFFXpWZTqXUjPN+pwGoHQNU5PrTGmscCgnisQeMcpbVudKOskZK0pSS8EHW8trKgbCXjNdOAmxGfrd6tyJoLQcJOfAhgQgKvYsVoLdC3RmAwXtZZdbENAxYnXBOM48HQhCfdO8dpSsoGXpbk3Wb0YZxOuKcZxw9W1xZnqSdqplAI9J6RnmLblJv2LWhtkJlLzwnQeu0bMlkNApaIN0q7/XA1/rI2LWEOa3n/ftf8fVXv+Xbb7/n48cn7u6/xlhDKxljHOu2kMrGNB/xPuyoNkG/reuN1hLDOAjVYm+xqlWGW61gCJ6+/5nVZn9tLxiDBFxg94jLvaAWuW6FktF2H6kk/nPODINcD6/DrTRciS1DlD855NVWoSsajXVd5J4GEnKk4hCPe9w2rrfb3oK0e4AxcoBJWQZXe6B32V4oNKorUsmkXKQVR2upat1LC6BR9lWn0hqDwRopAWld72l8OYDm0t7u+1UVeu1QCnhL60hIs2ZsCByO73n6/IkYM0MI9NgZnu4pqvE0di6lU1Oh7E2GMXXWRawF2wZUDSpSm9gy6JHabvTnC+XbH8V61A3OB3549OhmOE7n3fvdKcVgnAQf5R6S6TRuNwU7b7X1QGnPb4PqMMyArN61kcPIsG9MtFU423YLh0crI3aZXPFG0dLGoBXajBhjiXmhFwWtMo2jMDhTwSkrQn5v9ASxFs6zR5u9KnSNOKuZxyP+HLgtN7EJKM3tdoXi9vKTBVCoBvM4QoXDPPP0/AKt0lsmpUKrYacEyDVmjWdZF5yTmtB0awzjhNIJVKVVh7MTWls52J1mYm5saQXV0OpA7YmcCtBI6xNWT/RmxNNP4bZciamicHjXeXwuDOHEdYncbgs5fua63KjlRq2ybZWwKChdKUmIBPnjF9Iq1/n1emXZLujnFdXuyHWjPcomlG73pijHy/aZx9uBUhufHv+CH4NhPMysfaWT6KVwf37Hc/rM48tnrO9sUQSyj48feffwAdCkvhDThS2v6PXEdz/8RDcr83ziL777brcBFS5r43z6JcOo+d13P7GunfFg+PH7L2jTuDsfyZvm5aVwuxWc2+koRQNpvzYVWntyfq2F7sRcOMzzHvKWauXr+iiq63Khts50COT/g7l3a5Lkyq70vnM/7hGRl7oA6CEpkiPJTKb//3M0ppHZNNkgUFWZGRHufu562CcT/dRGXWgz8QKDoVCZGenhvs/aa30rNaq9o1RlDE1td/7lL//K4+NXwRv+D/L6m4Pq9aWwqSupHjAkfXy/33l9qyxR/BNNDeKykNPOmH67nGT15W0k7wlFo9Qd6wLBeKQE2ko/ueoc2441Cm0CNVdicAS/cE+VII5mrBeZv/fKy8sVTeDIhZwLhtnWgXApexevqA+K4E/sx5Vtz5y0pVbBPhmjQQvORoJSHWc13nlqkb50qx29SfAkxoCznuPoM6lsBEeh2lzfW6xqDCzedcE+LAlnH7HWk8qd7TaIy8B6hXWVdESOu2Fww3uI4ZkQB/fbgfWZnB3OiyVhUEj5RuuFnNUMXWScHzx/joTg+P79DW0d93vD2Ip3hlIE0SMdyQqnAzUrFJWWNVSHswarMpezZ/QDaxWX80I+CuDYdkGgbEdhXdwMIO0Yjdz4SsM68R3GsHDsO944Hp4ubPvO/b4xhoRKnJGU/5ESzkOvfb5/nZGFrKA75JQwzmF0Q+EZTTOoGNVwLrI3sUKg8gygCR6tj0xvVep3tcN48/EQ1crAZKUKA7bQR0JrsVtobxlDUEopH6gha9VWBb4cw4nWZireWrw9Cw6sd8YQDqKgmAyt36Xf3VryaOQmG4OciyTa28axV5a+ssaVrVwBSVkepZD7Qa+F1gT4rY2mK4Wda0GtRWkDaKmKdcTraYDvtDYYWFzwwuCbqW7nV0GX1V3WsFlUQfEhD+mv7okYFsCJ2j0OrBuMLpQD78XicT4vMBytZZ4+rdRSuN0Lxi7ENUyFr5Dyzn3bOJ9XQgj0pii18fp2g2GIy8p+7NyT4MlqNSgdBZOjJmtVA10sH87bCfmXB3brld4zKEsd8FBWflFPRGdpQ4DlP//09zw//cxoiu/ffqCU4XS+CDFiiGq6H3dS3ricLyhtxBqhpMp02+6MATEuaGOoXRSsWjI53QX3Y7yw4YbElEop5GMjLsusNO6MaeOoRa5Tt66i0LaGMooxBOkzmqzhUWr2fkuCvpRCqxW9RPGbD8E/DWXoE0nXutB0tdIzoDWopbDvB0abSQIRfzbMLUkVK5U1UkvdW/+giuUkwa4lnsQmUtt83+Q6eydO9A7KzGKB0TFd6lyd1ZQ2KG1gmISSZumtY4YQNQyaph1Ki7qrJ3Gi5ErwXv5MM9ikUKfGN38I8WNIk1EbMLpnDI2LZ0bTIm6MgnWFVgd97OLF1Rk3A0RtZO5HppXMUeT32HqCLl5ro+TacM6Kp7gWbPAyKA7x+L+/jF0wStqFjNXUItYhayxtFJZxprZOjGdSknKKt9dXgjIYHzBRo4ynlIZC+NbOOWh8sKetNXKPPXZ5fqnOcb/TOyzLyn7fCN7x9HhGG4dqhZYrP77duG9XUq700QjR0rLGWUNPWooMWqUmUQujcTT9Sh6DXjWtVJyxRO/JR6KXQlc7ziuCN2z3QoiBsJ45Dmn709qjmkfRMDSxPphOCCta7WL3w6GMHLhr6cToAQkcltQYq6GUxO32O+fzA/u+se9Jyh3amDmPgzorSEOQsGTtnXuqbLeD3He0tvgQebvdMKqyLLKVPZ09b9c7OR84f6LVROmdsKyUtnH9PfM8EtckgoLB0PB8//Y79/uGdo1SG8Z47tfC778fGANPTyu5HuAa5vtf+P79B60nzufBy/cXXLDk0risdx4frqR65fXHld9eXojR8fpjwzn4l18D//w//a+8Xt94ffnBeTWM+EBrUnFb6+C33195eHwm9xvffvwLD0089EoPXt92lBGi0rbfuJyfefkx7YLWk/sd3Sw+aFK5ooaik0j5juKP6uX/3q+/Oahud4W1hX2v+CBq5J6kkzfXTO+aGB3BO0EmGUeMgT4qSg0okYe14Lyi2YZ14lVbF4UynWOHGFacFr9fSeKLCyEIY81nhjIMItYFnI0y9PSDsErFWTqKhDdKwpjC+SxJ16fHTxzHjcfLRW4W7oa1ms9fBKlzu+04Z9HG0lolRod06A+AOwAAIABJREFUvf8QJUFpxrCcTw/kkmbCuuJ9IB3SMIQe1JqpBmrutL5j7YI2mWUNXE4rp5MnLp02HK2e6erO29uOC5q4dB4eNC6c2bbOt78MfKzkIkrX/X7HBTPRJDBGmdiSjLOeoaWUIOdXnI9cHgbKHAR/YT8Sp4vh+jooRVZwazhTUufeBBdl7UzEd4PVgVYzozdq8gQbqFk8ixJas6jusM5x1IKxYsy3KtBrwwZLbwO6PNjD4im5sd128ekYS0kFVBUCQW0Ee8EMYcRZNMZLJ7bzHq/FR2o0HNug7oXlJAENreC0BIxeJNVaD2qRoJl3C22eqt9ZmhLocNQyyAlMtFiNPLyKKFy9d5SVh0z0kePY6X2SGlqRZL4z9OEFKWWkoEHpjlKOPmDbC7W/kxXA2YjzhpwzLizksqN0pehB6YmqO0dPWCxd/RGmalrS/bkVsaGYQZwKRmvibz3qQRsFj6OrJl5oE2jVUnJmiSvGerQxMDTtyAzVReVUFVTCBY1zEENAMyipSsjI6I9gRO+iZBuj0U4LOcEJWs65zpdPCw+XT6yr535L/P79xstr5vZ6fNR5ajtYVs/Xr2cZaKrm5cftI0xUWiIl4R3LOnRQ8/igIbRWyTnNVbSdfm6FUpbeoeUGyvJJfeKxn/hkHzh1qVz+6cuf+OVP/0gMJ5S2vL58577feHx4JITwMYyOMdi2K71XCXYosZ4YbWTIO2Tl6px4n8dUQHNK7MeV6CNKzYafyXmV9XnDe/GuymWhPkJWY7TJfZ1FCkrRaqXkJIdK7+U+M4p8P10sS60lrHlChkwhI0ipgwTfnF+m6isreqUVJWVyOrBGbvnv1bgDqcktucw/q6dCOwfRAaVkqXE14k1utc2g1KzY7R0128H0exuZllAq833qM8j1HubrfUBruKAYyH9vvaG7Rc2v+86XNdPbXmrBdM3lRyMFGVbHGBhjhA6hmF/bMAQ8CUNLjeyAPi4SWLOz9WzM0N873m8eWqwaMxdQxWJVdxqD/WiknIhd7pvCVnawyuf29e3OaQlMYII0DpqF03mhliwZhNbxwdPXwfXtDU4nlnXB2gXvHSklki6sSyDninGa48jY1Yu/2k6iS234GDC6UQ8h0dQdetbkqth04vqyY7xm1EEqmVaE2w0dg8fqhV4qoxuG0tzzDTciqkWcBad20IOmNTk14UXXircWTaP2hJB2BYOlWkBb4Ut7t4hXuzm8UrTRsD5IgK8ZrPG0nkGd5JrUjf040EUBVe5zJlDboEhIglISHfFCl5JRxkxriyUuYinJueGDIk0ajfaK63awxIWhNXBmPxqjW3JRqK6pJTDoHHujD/l8p7zjraW3wOvbIczZCsEH7vuvbPcbY2jevr1itcG5whjw9vaKUoZ0NEGzmURv8izpvfHj269yWW6bKNbHwvdv/xdtiL1wP+58+77jnGZPgyMVwnrmdn/j8WGl3RPb0VnXhV4rOb/SuuVerijbedn+DewjwTqOVCbVSLGEDZD3svaOtprbfScsg33fiRFyygQfsGaRath++/86X/7/9vqbg+q+J2IcKLwoNANqG4TIXG95rJbWoOAjvXdqy3gvEn4tO0/PJ/ZjwxhRuAQR5bBGY1eH1QsmGKw1vL3suEvE+4VWO2FVXK8Ha/zEvheicbjziRoNy2JoHaLzWFfwfhDDI4/PFmUaoxg6nqcneEoPWP/A69sLp7Ol1oMvX34iHY3WN06n5aPaseSNh8tXarHcbh3rHKBIhzw8es+gO2NUeViiOZ8D17rhtaKPhPdIalKfcAvo0AnuTG8LfVh+++3Ax4XPnx1LfGLfb4SY2G5XHj/FCdh2DAqDRIjniR5q/PKnz7OwIOAXgft6J6fw9WSJYaHXM7lmYoRz1Pz22w/G0ARnaE2T9l2g+jO8MQrU2WizuIXRAmXTOHUhp0xLAz0GTil6LVhVWRfLaAsxLhh1cIqGkjSjG6yJ0BTpduCVm2q1IWpLLZVzFNakMyvdHLNXOYCXIgXvPU4HrBm0nglnw8ZO9BZj18nV7GLJUAarMypA7xGlHOjKcWwAKIQ/6Kyl14qznhhXrB54ayjes23b9HoaWUcqiD5MNJmE70QxknBI7VXg7MhBwXtP7XKjFe+iEA+8O6Gr+Ke1jaAcQzfaKCjjsUECLEfJePuHH8gEjWWRFakfjKHRdiqp1khIhTa9gIButKHJR4LRBDumGr1nWp3+wCYHxtoTcVmI8QFrRGXWKHKqtKGxztJGoxRJz2ttCG76Z1WakOkFpztaSf94CAvRrdiHB6wLoL+R84l9T9zuO4v2xOBROEbrGNt4el5pVXGkjeNo5FwZI4NyonaUPlftnlalnW2owtCKoRylVVG1uuFIha/qgX/yv3BRUcpCbOTT88/86Zd/IsYLKWe8VdzuN/qoPDydsc7Q+sDMVP39/oYxlhhW8X7WClaU1iPdOa0L3kkifoxOH5r92DiOndN6QRn9V/5U+WwONaTeFE3rdfqp53p4XjtS9y0HppIrx3ETBJqRDVKnYZST1XjeUUN8qEqLAqtmc1irhdElkGKd2BBkcJyD4Sj4IED5jihQfYiCOUb7IIv0iTwT/+mg1DqDo9Kc1bugv1BCUZm76I9BVcJ94gmXf3/3kIt6P7rQJ/QHw1kCosZ0sYnU8T43ShDVyWr7dpsrSxf4uRlM13wPaVrHBu8FGdJyNJF+ZtpP0Bgjg5LU7fZpQQl4KwN3750+2mwEHHQr/lLnH+i9YC+P+LJhrSHXg9oEG/Q+qOaqKdcdSfVJhaq1hh83TfSBy+kkSLIsHtVeBbIeQmQMOThLWHeyUlcnhQBBfk8Bef9qyizOo/pAI13wp1OgpcYaF0Yf1CyB3HYU0qzJPPsLdhhKTdTUCUEkgt4a9WhEc6ZbTS4dYxSmiQd68SvVeIaqjCbV5L036ZgZjsWtDD/QymGVIboAteGMFNdIcNZjjOK9jlcbhzWeXDJ5dLz3+OCpLbOEE9t2xbsioUsmvzVJ4MpoD1qKAvQ8FCn0VL3vKESFHTSiFxV7vxdGt9Q8KKnRs9yHaSttOJQSlGKuUnOuRqNFxShCv9F6gJpbA1VIk6Nq9CpB6SpFQwxNSpUxjCToU6d1NUNyhtE11jkB9tcbGsN+CHptVHnOWB0xQ5GPnUblz3/+r/xuz/zy02cezg+spxvffvxgdPj0aUhJji5s9xv7PaPHQa2/cToHciv0uvL83BnDUW+Nx4fAtr9yu27ou6X3RG3z4MJBqgNrVwT58T/G628OqkpV0lE+OnBba/z88zO32w0Y6N6p+WBUK2uH4yAfhV4bdRS8sdSq6TWjjSWXuRKrFRUj1hhKPui6k/Mh6WADxlZCXFBj4eEi5QCri/jFoszGtml69WjdMFqSj8ZoTsuJXgvrorhuFesttR+0Dif/xNNjIISVZX2QGrOxcpRfOZ08NVsG4Fzly5e/47dfE8YevLy8SQ1nFzh/aYkQxdOZy52fvvwdwRuMaeQCxmouD2dut4Ou5fRy+y7DSlgSOTdqWait8W9/uRH9yu2WccudeGqko2NtkD9vF2ox1KwoWQoExFpgxWiuPKp3SrKiQtWBGY7eCs5D2RrBBp7Pl7nCHHSlKGiCDUDFIHglhiHdGqezQw9F60z1DR5PZ4yRVjJjHFqLUik1eJ6gG0ZXLpeFUmZZQcv04aZwMWZqHpiBaWlaGaA8Rz7QQ2GsY4xKOe4yQGlH7xJw64sE5PIh3kA9Kqez57RGardYp7m+NY7cwWhCPDEaok6rmbxfNd4pvB8oKqdzxNqF61WGQFESK7UW1tMCXZQu8W4a7veN1jJhEYRQq5PjaAYhOo4kq89l9aAMCotzA6z8/D4uXLcrvUtblzWWhwfhX5a/arhpvaMQf6QLQTA3vUqDlo2SvFVafL9IyluriNKV1hNhuYhamaW8otRK74WmJuYqJVr3yLavsG8bRluMlsBgaxN0PTytJYZ+5fPTZ7xf+fb7K7lUmir0zaJ/3fj07Ci9onUgt4iNK26J5Npp40pHo4xDmYJ3QjjwfuF+zYwRqG0HJf5WpRu1iY3IugEqUZvCGicVvaPNkA6MUdE0vppH/pmfOY8FZwNxPaMJnJZP8/2S+tQ+BttxI0TP5fIIM9WPsaRjZ9tueC8Wn9bfB+HOtl3JZefz+gVj/YeftJXGvt+BIfcrpRD7poSRtv2G0hrvl4/GrndPda5JNgbWMuYDQc2Gq5IT5/P5w37Q59ah5URNO34OojIwM5Vr8VYzGs5aUVQ/HjSKVrP8Nycov9H7RyaglkxrhWVZJYQkzKqpJtaJfxMjpnB7O6qJ37vUKn5hJcHU943HQK5PCa/KIC0H/S5IrAmk10bLGhyp5mYikd4DZcIZNkLjCMu0NkC0nl+6xeH5EQ+5z7yXWMyvO2CGKRHfeB/MjgYZmPq0OKj3imH5nMqQq9F0tGHmKILQFHiSbV8rrEuntg79zwA8Pv2jtAQiyD6tB70flJrJ1fDylrld3wjeyjCEwoxB/biWxaZknaJ3S6sJF+IHus9ay2id4RdGm6Feoxlz4EF32bxM5KPWUHOmWS+foeFZrCbawBgKjZ1hzrsUgbhAShVv5SBi18/UUWltEE4P5CIIK20N27FhmsaaBacsLTWM6zjETnfb3ljOJ45jp45BmG2OylhSn0N0qYyWgNMcnBdaC0S3UqMi5RvRL/RuoE9VHo2xYsl799QLr7szShJazuRbp9KoqpOz1MR2ZyVYjJoHRjPbJpHPtFFQkHurUqiuaKrhlNyr+wx+gWMgDZRr9JNW0tCsjKEIXg6eY3RoETWEXmKCF6VaO1SrBKNJ6cppuVBrJbed4AJGRQwab7tsydpBqwf/9pd/5eYPzhfP/Z5IR+b4uwd6t/z8p2euLz9IR6fXTTB9Cn778Z3T3Mqui3BqP386k1OVzU+vXM4XUrphfODYG6M7aoYYHv5fjJT/Ma+/zVH9WWrAlC4YA9pEnp4C6X5H206wmlJkyOzNYFQjlUyvoGddmwy4MNrgfn/jdHmALitNhqeVzLCW0u6C5TEG3RPeq9lZrbC6Ey+BNgq5HOz3xGgG7ZOsQZqid0VKhX5UGCu3t40yOvebxlnFtr8QoxcKQAtseWONC9ZG3t4y3j4irvgbR67c9zvWwLG/opXw9epkS0rdo+J0euByfqKUXfihVW7oA433F0YrfP+tsW+V/di4XBbut4w2ge//Vvnx/UqMTVTQH4kYAiUPlkUziqdlTWuDvdxpveOXyNuPY55kFT4EWhPjfYiGkizHNWMseOcYZRCXhuly4zVa/I9PF/FCpqMw+iB6WXf0qkl3AeEr1Uh1Z10dy/pAq43oFaM5+pDyABsaZgwWc6L2g+gjVncZalOjdz1xJkY+5GoQQiQXCZF4l8ilsbDI8KZlnZt7QqksD48uiowPnrjIcG2NQevAcl55eDzz/VvG6oVl2Sn9hdrBqBPGiecu5Yb3EiLw3tCHWBz2lFiNmOVrreLVtZHWC+sp0rMgWVI+GL2znoIwgc9Bygl6Zt8S58uZZXH8eF1IOXF5WDA2kFLDB81987RuKXmwHVe89figqG0Ql4DWjT7+WLOoOSDUVimm4V2U5L4y9GHkYeIi2oD1slKkGToF6JjQ0EOjEJaiaxI2EWVOql1L6aQkVbelJEJQDNUZdcy+eeEpKqPY687L7UoMT+x1CCO2ZdSheNszL/fE+Xxi9Cyq8tCgX8l7oo5Cao3aA9iBclCaIm2H2CvUQFswThrjShG8XOuikkgrl0brM9DpJKAINaPBV/PM/+z/E+ceMVh++vIPjOb4y19+5XKp08LTJ60gU8rO6bwQgjxUxhzKtv1GLZnHh6e5Nm9ipayN47hjjPBT3/m1CoStmja8c+LpHZ13GkAumXTcWJb1Dy/pZHbllEh5J0YZllurWO0+PMK9V3yIH4GL99V4yQe17MTlCW2cHGhkNpRrpWRhaTo/sVNjqqmQ0iaWAeumgit2gfrOc61Zwmhq/m8KRhfvNqPNtX//aILTyKDU6vvn8Y+Qj1ZSUKGQ+7nSGm2kylX+esF6eSdNatKqowW31hW6I9xWrWaewAqtwssmJr1Xy1pNbJBPEh7TzIwdQj8QAsM8ILzjuJDfH+/hXa2m5/sdxePmPwdDzYFeiwIN4K0o1SdzAuTQwTcZVNfTRd6jPghxTPV4TB97obfCw9MT1qhp5WqUmrndZRNpjWDSxshYGzF2oJsQUkaH6/WNJQS5J6XM4+MDygy0tYK6Kh3nPFpplhhl2xYsQyty7qjhWbyVYNhotArRrhgl39++ZUA84L0p1nAClfn27RvGL1yWx0lvqHSrSe1gCXJAu6xSPd2r8I1Va+R9o+bMvme8D7Kd8h7TFc4aTFhIh8fZs6z3c2XxAa8dJx9xqjKapeZE07Li10ZRc0JpTbALpcozbF1Xfnz/xhjI4XFI6DTlO713wmzfs8YwjHyerAkMk8WqpeT3a4zCTGRcqwV0wdjwQbMYXQoyrHJoZJgtVeqLW60ceyYupw+ko6XKcVFJoUZwpynQZQwKbT2GhdYT3lYYlZwHyjmMbZjxhW5eUYhV7n67kQ8r25DW+cuvwoB9+VGxThNC5PW+sywLt2vieoe2XLndDafYOMUHfv2XjSV+ZT1pvnz1/Pi+8fDpAYbh5eXKEhYalbTn/yez5H/o628OqqclEr0XTE30yIl58PRosH6h5z59WbDvG0t0OFfpCI7lOA6BVKvB4+VCcBplNEWLNN8V9KEwqmHNHCSCJPhrTjg/SIcBq7nnb1IflqEVjfeQjgTtidJeCYujJI1SnttbElk7dkpe0WhSurPfKvfbxro+Upp4XU/nheNoOHPjfj9I+cCHRC4JrzSX04nXlzvnyzM5Z7b7hvOay/mENobv31+pNdNHIrgT+ajzpmBIe6M3hTGOoC8cb4pRNSp2KJ7T+iStLw1KspStYnXkeux4u0BvWD04PwbiEqmtY/SF++3Otm1YPKNZenYYv6DMYN8STWmGqyxugSps0dvrLmvGLhDx3gfYKp4tJdxNXEQRxfPZdtbFs54cSwzc7m9c4hlFxMzAWWOXBiV9wrkzqMrwU03Rg1QKLnreu8Rbl7SwsRZj/WRIniSQMTJKafJRWZYHUIlcpPlnSofy8xsjDWB0Xq6vXLdvbPeENycGB0MlepthF1sJwVFaoTZma5g0UFmrSeUgX0VxVcrIqfxohOj5/uNGL0i97WhzVdjx0dCuCZ8r6zK4PJ7xwTMUH4D8bc8MKq1BG4HeRCGvNRNcQHWHY3DkO295ELyDbj4+d4bAUAZlRLGS5jYouVBrmf8UO0VpZdZBbuz7jgsGZQZ+caCaNKdpxVCy3XDWYrSEDgdgTcQG8WcDlF6pdErt6FGxWtGV47fXVxhXSclSsCPM9puD377/4O12UMqLrHSV1G+iO1oNjgrbUfntmxN+bZVQmzPgXZlQeoe2nV4zvTtAfHXvnx9Uo5YdpSrGeJSaSqr6iVPzeL/w9fPf8+XTP/Bf/o//wr5txDjB/DVjtCOlg+O4c75cpIVrSIJ29MZ2f6P3RvALfVYcSzNR5jjuOOvxfpXVcu9il8iJUg5CCJOLPJXIIYB8aMQYp7onpAJJ9e/0njGz3rhP9bLVRs3SjW6tn4P0mCv2LkEeq4UGMQdwlGZ05uq6TMX0r27rSlFLnfQBhZ3Vm2p+n60JxeEdWfa+Gn9/lZKoLcGIEiwcotL2IVgqGB9oLPTEbyHhL+hYqyVgNQw0abFqqk3fuBAgWu9YPaaPD3rTHz+rcJgVdBhKYSaX+XZ943xeccrwlAIvPs/3VwbF3juqyxAqhSyAkS0RekwP6RALhZIaX8F8mTmQd3rrc9YX+43Sel4bRSxgozPUX/GPR5u4MLGGiBVCf/hmtbE4+zDLRWTQD7bSm2wx5PKRQpo+hFFbS6VVOcxcr5XX1yQkgpI5SpM2wu3AOY0xHr3dUF2LrSQEUq44ryexw6CxGKMF/O9E2R1YSpnnKA1m1uKWlFlWx+V0Yb/vnLWsw0qqKAzenFCTWvJ8+SoHwVpEAbaN+/WNWjPU9+tYMIEDQ8CzeE/ooLWljEzt4IbhEhbK7cpiI9drJXpBseXSscZwtIrTWqq+MbRSGFVKXFJKpH3HOjsHSk04ywHHKNlWDSW/Kx8iw8j13JqQLmIIeOs/lP9SEktYGVWxRPcR9LOIWl2HHDKUbuLvdIN0vBHjMtnIk6Xt5LBjNajRWIIlHQkfViHY9C73YgfewmiN0Qyp3GeAVGx7yljaUCid0NbL57cV7rcdYzW5yKBbcqeNyuI+YfTOfu+0Y0c/GNIbPD08c1pWfs2ZP/+3H/xv//vfYYxiCUOqdmPk1z8f//5J8j/49TcH1deXnbh4SnpPikpzymkVs/7b/SYDmzaMWgirZ1081jmu1ztutaIknhc+fVq53wSlkJNi32Vgul0LVne8v0wPa6b1OFs1MunoJLXhQkcrQ3CB4hQ+aLx9ZrsNfHyUFWHJxLAwVOYUV/zaOC0LOSXoJzob7bDkodiOwZF28i6qjdaZl5cr3q30rFlPD1zWwH/6+cJvv/3O8+cv/Pm//ZlgHdaL1eHl9RvGZnKuLIvH4BjKMoqSJp8eiW4Ql4g1kR8/vmGG5dNDJOdBLprBIfyyHkkpsbiIsoqSOpfzicvDwvPTWdKMolFQS+PP//IXemm87Y2TtyzWE5cTV/Mb3q2UQ9pijJG0bjkG9/vG49MjDCVM0yhe4D4SS1zx7pEvn3/m7fobL2+/o8bKuipAWmeUhofLhbBU8dKVhtWB4B55uDzy/eVXcm6gPNhOd5JyBwlG0aS33RiDstCrkVpYEm1UuTGMhu5GVqJKWK2NQ5LIVTrHj5Roo5BKw3rBHt0n53FdLMYA44axCu0GFy+Q5nRUtF1QRXiQIqIIXmd0RVFQW6ExbwC1wUxPex9pdbAfnZzEqO+9wduG0QcoGSTbBKULLN1iTKV1eZBrLc1UvRlaFfB6b1CLprU/EpZKG0bLjK7ROIyS77W1Ri8CVc9HohrN2MD7zhhvqBEY9cRoUQIgtdPKxDwNhSWiMXQt9gaawWj5vUooTOPQKG1kSzFkwBeIuxwwlBJETS1NQlYKMDNEpoTXa23HOZkMSpUQwn3LvLwe8n5qi7UeZxTGJJQaOHsCGrlWchHUnbFKGq2GKKlaD5hK6s/2mX/Wv3DqgSWe+OnLP/Hp6U/ULEnqdV1ZV8EwyeZXuupLPQj+K+9tT1Zrcsns+1WCfNZTJ5vZeU/JB+nYWZYVZ71chxOnV8oBo8tAjJ5AfUnN13rgvSUuJ8YMZiklqmHvmRg9xgb63I7U3qk5Tdi32J1Gn+tDpT44tdYaXIh/2Azm+r4VORxZe8LYqQpOEXe0CqoT14jSdq7IG3RRhWEQgpPVMpJF0HNYlbBWlYOtEjaqQq5nGa7yR35BW+HajiYDoazRpQXNWo1S8jVpcjgwWtH6PIyq99X7EKpAl3yANICJ2iXKpvxM4hkf6KL4xTzg3MGrSx8DrlJ2BswGXSu5d45Z6dzfh+0hau88CEv4THBaeii66nOlrubgPeXmASU3/PwdfXxuGXjvYFjxIysRdkTxHvNQ0iZiUTzJxgScU4y+zOH/vfr43c8rDNI+Kt49iMDTyyxy0JRiQQWOVFEzkNnaTjkS6xp5+fZKXAzLIrSN1jrL4lCjcz5fYO3C6DUWFWQl3kciRE+roJUwmVsTS8Ro4K0jt0oMK7lUSjpYnEWPweIl9GkwqK5pNVPyIMaFUg5Glp97aM1eDrEc2CFD+ViJZiWMwOrPcs0+WQmLjk4vG04ZtBW1WA1NXBZG6dSjsLiFYDzGCqGh944PbqLIZFUfgqPT2FslOC+BKytFGtvohCi842Mr+KDFgzomxtEaTJABWTlPc5Y931jUQp3IPecG0ryYSOUKfcV7hxqCIVOjc17PtLFhlfi/l2ClcKKDtYqn5wWlYLvulJHJqaOMfE/nyyJr/1xZV0/eC0prTidPY+e2X9EqYJVBq4p3Z1AFZzRGW/btzuojb2+vjJ55fS3kVPiv/+e/4t1KCIocFT4Z7rf07xwj/+Nff3NQHd3TayDlO7FZjqOgdRdVcyRoitvbhnOBXjU0i9OGkhTePBFXxRLPaA37PZH2xuXyhNca1Q+M7gTb8Sbw9PBAOsQOsOU3UIZRNT13Go0QPCUpRtM4sxDtYKgFd5FgUG8n7u3G4zlyHIqwKB6fL6Rjp9aO1Za4SIWZMoO8K4IJjJI5naVJ6aenr+RSZPWmLMFe0N3x5dNXAJYQ+PLpCznLifIUMi4UkhLWXc2i1i3uAbtUGAqrraS1a+H54cToC8F3ogl0P8QioCp307GfNAyPj4O3txunNfJweuDkTtyvr8TguVzO3Fvi0+UrPW9EPWjmFesWluWR6AtWR17axnI68/AoPqTz8szb7VXwL2LLo6aIDWJsD35hDEMuO6kctCbruyMVjv2OdR3v1fTmCgUhKFGYat8o3eECNBS3+8b9eCXXzvXtOpPaMuS01ufvMknPd7qB7rQuzS9Dd9oQLFMdYw6JgZYLrXRQhRgNe/I8xMKyngAoVfzPUvQqKJWhFaVWSUj2LtgXVfFeo61U32qtGF0M8Eob+UA7NQdzUcNKLSgkQd3qQBnE91kU93QX5QYnjFd5jKKsotcObLOKN6Im+B0ETq/NKr7SVmR9P19a9+nRk/5zRSd6R8qNOqyEEHoTRIlSUvnYjahlrZAPAW0756gl462sLDWLrIJ14agHIxu80wz9xwN4DMUpnDmfPvP6+huDROtV1MShcDYyxuDH/ivWX9B2wYcmK7kioSilxdfXZ4sbvdKNpNxFcZPBpg3ISTyNfaRZrvHO02xYLFo3SklYA9YEvvDMJ3Xhy3jm1BYeHp755ad/ZgnPaGW53b9x5IPHp59EsesCDq+1sW1vOOf5YsAcAAAgAElEQVQ4rQ98+FO1Zt/u1JrEo6k0vVWGUrQ2JP06OutymQ1l781SnZSkX3yJcg320VEISL/1Cex3fpKCJdDzHoo8xQVnPe+podYGtRUUlRC9HBZmQl6h6FXoFtYorJXw55iwb4Z8n32ID1ppO4N+CoaUj7RW0PYsCmZrH0NwrYIrstahtZo4K1EvR5PQqHOitI6pAkqkflBKgnFIink2hTHGvB7lz9oZIrEY1LsVYSgwEjQqVTYRczM/7RYymEpITE9vokLACIpBZ1kjzjpqKdR74stU8V+cWJdgYK14Ow3mI9w1ELyWbHgabbwTVZgMVf2hKOs5JL+r6GqixZy22GHRKEz/I3Aypj9WWgWl8RDe1TIr1ceIhxOYvli53nuTWuD3nxUqSlkGUvxhlSGEE8Y8InWl8nVqaaISK6R1TylhDc9hH/UsIk5PKCtWhdteKCmRm2Mtch2PPj6uWWPFryp2t0TrmWVZJOijQBmDaRBixJaO1VIWknPhsp4RnKPntCxYo/j+7TqpObNcREuobQ1nQnSk4yZKe6ps+U7ZD/QM/kKj9c79dsMEjVNaKpirDHU9SxZGK0UvndPpQm+NNtGT2nS0knIVNeQaX1bLdhyMbmlNSAxrFLTYp0+fuN7eZG6ho7t8H6fTmTZ2lGqU3jAmcrpc6C8Qlsi2S3hXkGUK5+RwYHSEXvn8+Sz3uey5XCLLaeV23zBK7ineiwLrHFhbWdfIqx0Y+wy643zg2Hd+vGzQLZrA82MEVfn9txceHk7UlljWhdt15/wQabWR8ivOG4yr5KMyjGXrb1gVcV5ELL84rtedY9v58uUJu0POGzn98Uz67/36m4PqerpQi6Blgj1xSwfGHtA8vXZiWMTA35v0o++K0gttGNZlxSFhkNv1DbB4fWEUR/CRYgZjJM7LQgiRYBdc1KRc6O2NMnZijNSjEewJOyzOeFkTBcPiNaMuDC/eO2ueWPzC09PCj+8G56Tz9vtWWLzmfHKEKDzDPW2EJ09wD2iX6KrRq9RNvl1fqSURQ+S4J7qv1F4ppeK0ZZSB1wHvHRZFKm8opxnZYNqgtYPLo2fgsHbgrLRs7KVwXqRPWhvF0Q5OiyaGZ0rbWZ48y+r58fqCGoFPT0og9tqy7RsvL684q3h720gpY6zh4Xzi6TnwdoOOI3pQeuHYKi40jKsch+ApnDd8+vzIb99+AyUcy9b0hP57jpR4e3vh376lGYCSwaft0lCjhibVjDZ39KiE2KWSLidKvtHZ6KNxu0lV7rYfUve2WnKtGAf7/Yo3K6VlKg6jLHXs2OFpY8gDfSi00XPdW/EuiFcRMF5CB8pYgnM8PFlAwPtKJRgGpR2aijaO/Siy9i9prvUCxyHgbq+DoLS6sG9RCqM8vRdGttSZHO5KoZUjlcRAwllGS6LTGukZFy6rUABk9adY7BmtOx0J/ORyF4M90iRVa6LcNUp3rBko/4eiWlue6o5hUKhFKn6DDSxBPH8xSlOOsRpvBUtlredIb9R6oAw4Ozgtgbg8sYSV7VpxQWpHx15wp5WaO6k0FINWDsB8rE5DDB/rb+sGtSVZK3dN8CsoTWkFh5RCuOAwFo4tsx9y/dIF4SaDmihsRlusMeSaSHnDOflcja7RStb64l2UMNVA1N+vnPnP5hee1IXRFZfLZ/7uT/8La3ySAyadbb9izeD8cOYd36TNtBq1g/N6IoR1ejQHbQwhRPRK9CekmlcCI7VVWkms0bMswhAVD6YcXnI+ME5U2DFX6YyJbxqd4Fdhqw4AsbCMkjGqCh0BPZP1MuD0Ju+PdWH6UtvH8DZaAeTaV2YqphPH1HuVUGofDCXwfEZHzcR72jdKOlCXZ/oYwobmr8ND8llu/d3P+R5QkRY4H2TdOHpnNHEKj97oLePsVCeBUYVGIKNdwagh7X3qfYDVdAW6S1GAGpWh7Me27t3DS5XGMxkM5ZOltJQP6CHKtXMSkNTW8fb6itoLX1hwFZLK/PCZodr0uQ+8VQzTJ/JMasFr/wMz1vq7VsvHYFrHexBr2j3mL2OMIWULvaL1Hw9za4x4HYdkMkQNl5Wyf2/5eWfcGo3qHbSEfzCKMWRo0dqKmmktoxf5exDUVysZba3wepVCjUpv+uOeOUbHu5Xh5P9ZT8/0kSk1Td+xEqTiDJn2VlFmoY0MupIqmGHZk7ChUR2rFbU3UnqhFQmaiupdwID1MkaEEKT8YSrLWs/BXVt8WNDa82AMYwogzjoMmrwnnFE0I4eoYz/wY0Ubx5Y2YlwIXvypq49s1ztee4xW3PeNdX1g2zY5LDnF7bajVMTESE073Q5UcSzrmdv2whrPBOdopVKzwnvF4gOfnp7xURPsEM9pOTCpsTw+ou2Jl5fvEhBcdkoRPOYpnjFGc3leuKUb0VhyubOeFqI+4aMhtxuPDw+c4pnRCuHkiGfDc10wAxgLShuOdCVGNUPGCesV52XhSHe+PEfaY2e0ytdPD/z48cI//MPPfN3v3L5vrHHw8q9v/Pz173n8+cS27azuzF5+UEsUyofTNA6xD7TGreyUPlAYah8o27hub/Q3Q0p3Tqfnf+cY+R//+puDqgwhncfnQM1lrnAMp+WR47DEaHE2UkojekfORThzMdBypiAnUovldDrNhhCwDKK1gMI4Q4wrJckJqJnK8+MztSbhxA2L1QIY9zP0M3rDKEsInjbmjVk5gpfu9J++fqI1UWwvywNKG9bFoFTHuYDDY88G6gXtM2/bC+jIYGdxK/gFZQXF0nIWMPviaErN1O0jIw9U10TzNIuJBDYf4wVUo+Uuq6E2FVofpudp8HD+zGg/oHXSJoPy6bRM1MuBdys+hqnSVa63N0qrdBz7cZWQQC6MkVjWE7korIPt2GStpDPWOXJ9xZqFgaUNTYwrD4+RVA7uW8Wvkl6vo0h1a2zctxsxRHpvlFGxKKT7ZWG7XdnSgdEetw8+f/6M9RbtMindoTmOfEWZRlwEVI2NYHf8Ysg54lwk9202iWWULtDk5zRmYNRCq5pWu6zrjOK277ReOJ/OjHaiZLlppyw90QLpj6RDktrOGgkL7Z0+oBmpMaVLxWxtEhqig7Ki2pRaUFr60GmdoSFXqVV0XviDxothXhnwRh4W3nkwTMauZT+KYI9aQiuLNRbtnFTgOiUKlTXEJbBvea6RzVRS5FVrQxupE0Y1NA5rpE7TSDAYFx2lSXBudEM+LM5ZWg+UKtW62/2OOhmgUfLOdttYemDPifsxMHpj3zfa/Dxp5VAMtvsbb28vLKvHBy0lB7Pk4r5f5T32J2ruHMcrrU+MkA0YI/ibMT+noysZOrSiV1jCSdSVAqp38deqTskVZwLSSiybiCPLQeNP7jNfzGd+tp94YMEow2l95uuXfyT4izQsmUFtjdYOnp5XLufzbDuStrGcD1CNdTlh9DvwXgones04I2q3KG7igWs90/JBdB7v/YTrj48/Iw/kgNJ2wudFJZMA0sDZII1a83dbhyC3rFWTHiBeUaWALr5WUe4cM4EjvsveKeWgtUpYTtLg0wWXg1KTg3qA0SjtUUqu4z6rhVtJOCPNO20OZ2p6MsfIRCd2DLGojNmQJevp4MQn2psczhiDNhq9N5yWhHSusv1QNBRWHoq9EK0Mb3mMmfLXM61e0VRAQiFGawln6TmpjoozwnhFi+L+bkVQSmEAqzVtyECxXi5c315ZxuBzXChYlDK8mF3OCGPMytrp6Z3WBq0M2rz/3cJzfefq6iHr+vcA1vsULRFFoGtpH/srRbW3Tq07zi1z2K8o5OdrtU5rRUdpUZeN1bSp/GoE29SVwlpNt0EG0YmPkh9DPMW91o/302jD+4BttNht3jmu4h8GhpMNk4z8jBEZiFWp1M4l+untnf7e1mgtz22THLpaa2A8vSVy8+Sc2PM+vbGafZtkjb5jtMwJ277hneY4EtZYOVx4J3YZr6i5UVXi+dPTZJbKcH29b5Kej+H/pu69emTbriy9b/ltwqU55hqS5VqCIOmlXwTo//8EAd1drarqYhWvOS4zw2yzrB7mzrz1RHQJIqAOggCJe+KecDtirjHH+AZ3uiNFz93hyLdvXylrYd/tqNlKYC0rfPOc5ws5Z3qTUAmshvU8gYU8KVZdmC5XtLNoBjzwdPuFmCr7cYfOijJnnm9XTscDYxix48hQILtAIrD/fsDrwGX+wmtbXFA3piXyw+M9P39ecMMOrXpqpyjOsRs9TTuaUgRr2D96Yl4JKuBHzTx/hRq4v3/H+ZLQZqKzI6nB+/c9ujnJO+SEdw989/7I7ujpe8Nf/f7v+PTpX/mP/3uguW/Y9oHj/pHf/9VH/u//+kfJMiTL8/nM3bsDtRlieiF0dxgaxiWsjZRUcX3H/Tjw9O2F0rxkRvT/KKv/kgjOU2IjrReCN3T9CYVH60hDESM456lFc7r3pEWg/Nb0HMYdyzJvbRqeEjPWWDoX6F3HtM4o3Qg+UOJCK4XOOfrDnufnZ8EpWEhpou8tznmmm6Brejey32tyHnl5WcBcMabQ+z3OWy5nOaWFfUCrwBKvWNuoKRFcR64rOV+J6yIFBURynmkFCkkuOixpW/M3tdAwaBOZlxvedpR0Yb87ysncKEEj0Xj69sR+f9yGU9CtSmNQFV/XPMsQg9LM84vYKcxCrDfu7nYc9nvmOInVonmcF5yVMR2hnwBHznBbFmIpxLjSMcpaUUe0acK7HeDhsaOWhlYdxig8BrtoxnGPth3ztLLEM/04YoMkxo1RaHaiNLe0KZMZbSy3eUWrgo2KlD/Rdx7tFuIkQ5vtAuREQROjIkcJxLQS6cNJViPaoZslKo3WFa08FIvdavqUlhOd0z05ZRoC0ZcualFmSk08P6eNcWqxJqB0pZXGNEeMraRVfgy8F2ZfznkbnDxae0pN9CGQqwya/TiwzBIAKa3gt7DHvC6i9pbM6zhZakXbREG8e9ZJYMFYR6OyxlnwVsqiKnjb4z3yQ4jB2Q67l0rRnKv4L7db6HpJghsAI4cglfChFyWnFFqWL+mYVkqR5qCUJb2dsvzYGrVjXQ1fv32m1iRq9dlv8G5PrTcUgnnJiOk/pa1f3WTmqZKiQRtPraJeK6WI8QpaVmedH8l5IZXKfLtu3fHSirLEhGqG3c4DlaEPjH3Puiykmhn6IJbFVikaOu9RvPoRDcErDvmOv9G/5114lOGpNoZwh7N7QBLYqIrRlnWJtJYYxwHrurc1aq2Qc8QaTR8GWQFXqevNa6TmKAqQseKB3JLtOW1VpsFtqfb2tgIXD1yid/s3LidKUZtYY2ot23AvwQht9NtBVVtHxfLWBKsUeVNotdJoEzYbhhzWci4s87SpZZIPKBuVoG2c05RWguslNPPbv3jbJkhrkHAcy+aPlOdBTWi9sXq1kkOfFv9rbXItGB3QVdBxla3GurbNzlMlANVEIc2IVUHVTFWZmNuWE2yi0CHPq5BBCVu7NWhmQ0q1Qm7rNsRLZbXe/lM0NCUBU2NEPVZKMQw9tMblct5+awIfksaYyku3WRuMWJxyFt9oq5FGIzaFsY2c8vb61LcAl1MarapYKZraVNV/8z5uVIrffi8bJTeMrtvQqLagnNqU8/KmklfUxgDd8gxWrhmz+ea11vIdY+RzYjaOs1JWNjjbfY3e0HvWgmLbwsj7W0re8Ftme/03PNjr0O0N2raNXyt+eK3Ejynicd1KIH4bfJVWpCLD6zIv5BRp9XWTlN6oC0o3QlOMXUAxi8YeM61maknymJXGdoahD3JYL41lifR9h/MdTYCrqOLph0oXOubphtaa83PC2YV3x4+kPPPjh+9IaWU/7qlVcTwOfPnyBe97Xr6+4IY9p/3I52/PzOeJH747EZeRh32AumKbIsWF4DV6KYRgOPQj9/2enz594Xg3cnroIXvW2RF6T6xXvqmOuRU+3u3oXcT2O1StVJO4TgsfP/5PeBP5+vUTvu8xbqVNir1/xLgLT083SnQY3XPYP2LcwtOXK31/JyxktXI8PLDEG6qO2KEy9JYffzSklNEE/u4/vOfnz4ld/47j4QOH3ZH/5X8+8fOv/4WHOvLl6xlc4nKB7959z+058t0PD6zpRVBdvWe/O1HKgvU9rXU8Pc2U9vTfPUj+pW9/dlB9d7+jZcM8Z2wQlqHSPTmv7HbCD4tzwqjCOOz4/sM956cbujb6bsf+sOOsxQ/UWuFw3OHshkoySlifCTobMLuCVoI2qbVyHEYe7/Ys04QmYLaT/WDYTryVwzEQF0UtCmUN1gTxH5rMbhjRuhHcHoXGL9KulXMh58iyLDQ900rjuN+RE6yLtDOs6UznRGFyTjx9RkdOh3tu08K7h5HzU2Q49Bz2A8/nM8Y50lPF+47npyfa4Di/SEOHC4n51jgcDjQK63KVEEJNuOBRSrrhS1koZaA2x8+/fMG6SvAnqp5QrtENCVTB6J5OSQd31TN+UDQV2e+N1OqZwPU6cziO9IOmVcs47nl6+kzOCaMtUhOaaEpWzbfbRRhzWr44Wh1YS6RV4f1N8yxcvpQxVsnhJa3Mc5QqRO1Q6oZxhVwz6wq5SsKxrZbaMq3Pm1PPYqrCGk3O8kPhnXwR15Jx3mCNpRUBYxcFymhKXQAhG3RBfKcxVbRyJFVpZFG+UiUuE7p1WKM39E2SNZSRmlxrO7JWoAwgPwhqa8NKGyLGuZ60JmKMjOPwhrKhNXItsrapgLKy4lUKrWSgdsajrbR/xaWJslbapoqI6masrFCt7THmt6R1q0Z8hbkCUuta60pD421CNTDKEVdNLk04mlVajUprtGpAWbpxxxolDa2tJiXNMm3NWTkxdCPeGS7XM84pWfM6hbH9FtLJMhA3QyzxjRfrzbY6f6M2SBAHIOcVhQCyc4oSxtAOFITOE3wTxcwamjEsSeO0wTphF1ptttWq56N94A/qA0d9IEV5Xofde85PmevLldOxoY2o5FabDfu0EPZH8eo1WaWXnFmXiVYbWstw+9sKP9JqwmhPbVYg6tuQmPMKqmFD/6Zitg3bFNeZnOI2BKi3lLek85ftg7GldLbBt5YqUH4tQ4N5HXCrVM2WvGKDpSGBrFYLBcW6Rmmjc3IgkwG1bn7PRs4CN3dW0ER1G3BpUEsmlRXnpao1vapzQCuVdV3lu1O5zUNcJBhWC+t6oZmItvu3gajWLOvrKmxerZug53jdKoltQ5VV0v2lIauVJvQ/lODvTKMoUYWNgrpNQxJszRhr0MbRtpdRbYEmgeiLJ1qrEaXkYHQ4HmnA9XxBa+iD4X0buelvrCZTLFgdMFYqf5sCpYz8ACqgycAoOC1Rlc3m8W00Gd6tkUNOE+aXUg1tfqtQdc7hvJHHpMDYjtrk+4Lt8/H637YF8tDS5OesFStGa5Qsn01lhFIi6q96O2DY1z9b6xZ+qrQceW3pqu3VviH+2Fd3gt5CZdYYjHGbl1Y8stZqnPVv1x9KWqiUtmit8L2X0g0UtUnYMg2V8/Vlu/aFLvF6HTS1iQo0+jHDVvigVaZujGLdKt7bbR6wzMuCdVVaqXQCVUlF0/REbZ6P333g6dsTrVb6vtDawGF3YolnrPE4JxubsT9hbeby8sDOOZ6fz+zGE/vTyH/6r//I1/MTH7870I2WwQ5YlZnON8Zdz7BzPJ9fCL5jDAOGwCkEuqpRL4nDrqeFnjUpjBt5f9cRjgc6lfFWkZWiLI1x33HTZ3q94+HOsDxHjHX4sCObGz4MnOcnYuxZ4ldefv7C34b/g3eHR762la67o7RvhDAQV+jDgXl5ohs81gTmyWH8TK1JruEG3u65v9uRFkMfDL//3e9RRfHxXeOPP/2RwSvevRv4Wl84jY/clkhrht14ZOiPvFwWdu/2GN1h/UqM9d87T/7Fbn92UP39hwfWpTHdILcLoes5vxSOdz1hMDgCDwcBat8d7+n7ER3h8TAKT1QVSlLUpgl9x343kmpmWRecNxzGgLNhAwkHrM7byQzuju/RFczBset3AhlnAfbsd3u+fv0Tw92JZY48fhjJuXK7RNCJruv4loQhV3Lb4LuSmnbBom0VFa1VnPUMvWNpEw8fT/zy6RsP3QnbQVoSQ7dnWa/cP7wnuB1af8R5w7/88ROn+wHvB9597Il54e6uo0TPGBzr+sRlmrl7COTc2O01/dAo1YFKtOqZ4g3nRozTrPOKdpHzdOW2ZJ7PLyg98fhYsd3Ey3lhdxo4Hva00lPajbBeuLs/YNQg6yagHx19b3l6unF3fGBZz9sQVbGuYV3P508XlnWmVifVerWQ1MLtGul6Q/CO8/NnchWe3DpF5uuNrtvKBAysMTH0e9KaqNmhgiFGqTRMVXizqSQMFe8aWhnSMmNMT8wNSiLVK1pZWpkI3pPXvPXXy7o55xnvjxIY8ML8bBXiWghBo410jdcmAZSYmqBCTMUq6Y+2AVFoiiiGykBVhZglPbtOMvwqpbndpMiibNDvEgsGwxC2RqLWaEoJEsoF+UHTFtU2wHrNLMv8ptqGwVKzrNKMEcB1KpmcK8E71ly5TS94v2JMgI2vfDlfKCWi1FatiWOaIrfrmb4z7PoBrx1pFe+Zc56cG847SgWNrGpvt4VSV/bjkUrjel3AVWpO4q8K0ixnxjuMUzQKXS9KZIoVhaM1UVFc11FbYl0WrPYEJ1WJWmf64PCuw1nPGm8YraXqU4niqnSjNYtVFoOl9wrf9cxpJdWI0oaUiyC+vIOmMdpxV+456AOgscZxd/89moF//vaf6fpuq1p+VYogrpOsq/0oilSrSOFBZF0naLw9p1oblcwaZ1JOEh7Bbh7CSslF1u2tYlwnJIZtAJDazW0gV/bNn6qQg1yuGWe2wgrZPUNt1JxZlxltGy4oFJvKth0Wa0uApVYFSPNPzVuAibop9kGG2+2xyGFtQRtN2JiWdbMMUIVxvawTQ79D1Pm0PVYlr0tasPYIWHKVVZ8ulZJEIWsO8acq8XcaY4TLrFaMybQmyX3hUG7NPSUTrCDSliSDqqzXRTEtOeJD2V5TJclrrbZWuMaw82IlS3IIqAgYHxpWK4ZTT2qwJLv1pgIoxt3I+fmJaVpxpqMPiru58tncMMrijabzlpQzc44Mu5HeKOYlo3rL5SrbrRQTu+OO1grTsq29tWz0ylaF6b0MqKr8dsB0Xmq2WyvbbKreCkNakzW93hAD9RVR1SQM1eoWcpOnCSiMFs7sq+3h9b5yYJDH9fq/2/aZaLXIkAsSHN4axcQqIIQIY8zbANz5DrNVFRut8c6iFFgnVgKL+IddcMzLQq5V2OlrIRvxs2olDW8SOTWEEIRzGgI2mM0WJIUtgsDSTNONFCNUERKUVixxobZEWiexkrUCVfFyPlOL4eXlhefzN5zp2e8HwRC2RMpi7xmGI0Pfc9iPzNPM7//wN6iaOb7/nmASn74+87/+b3/HEi9kG3h8uOf5+cK7uwd00ZRSSXmhYgluRxccu75jsIY0NQ7DwHF3ZJ6/8OlPnzgnCbk2U1EmkJaOsQ9UGj53HHdHYlm4fV2xdMRpprWOohXKZ9aXxGn3gfN6RamOGCu1zWhzQ3FiWn5mXd5Tk4emcKGypv+G73eo9js63zhvDYS7MbDzHwjWoJ3D+shu93u+fv6J1im+//gBrQ1GF3Z/GKB6jqff0wfPy9OEVZ674z3WwzwVHk6PCCbw/x+3Pzuo3h0OqINjnhqXeeFwGjnuLce7jjVPmFaAPUbt2Q0dy1I5DkfGcY/Roridhg7X9RuXUCogb9MVNHjlcE4Rk5xira7Sh64sx/1ewLdmIq0zurMs68z9/QeGbkdWe5acOd4fOB4Dv/z8RE6V0BvpN3/+inYnlnjB6MBtecGUyM4d6fodfhDe38vzwv2joebAMDgOdx/pxsCaC9P0wul0oJQHQrAsk+Ph4cRtOvPXf/eOWF/QJO7vvuN8vjD0kZbhb//67/jHf/hHHp3m8UPPH//pM+9+PHC9XmnVE4aKMwNzhhyb+ACZuH/Xsa6e63Thux8Dz18j4z7z7v07nJ54//Geu4eevAbOl8Ldu/c83v/I5TzThyNxbaASSlfu7xxDN8i6uWVu043DYUSpnpodt+mCUoaffv5XDI5hsNRcUSpRygrmiioWqy3BVtyxY7cbud2u4lHsxKdUW8JuakXVBm0KKsnHqiOAWbndIoM/cNhZanGc8xVsA6KkbKk412ONxXsjg05MLLOEDrRpm5ogbSvjrn9bYTrbb56sijVOmI80fBhEHTKNmjK1QVwEiF6bcHVfU/itFmpVNCcMX4V8gVvksZRWWVLcFCok3azYetPbhowRQH2KFe+C8P7mRMlK/IJ5QanGvMyUUlEtoGjk1FjWC86mt+tOtQxVSfK8JnJq5FihKKq2mH4gLgJkVkaS2imzddE7rtNKLQptjXA1i2C9gvV4A+ukOIwDThtKzLy7vxNbzXKjHzpKSUS7biqvWDG8t+SSmBGwu0ahjYD0nZHQ1HK7gWpoZ3E6sN8PeNsjdcoS1KIIU9O2gC0ZVzUKg7UebxzeSOPRoRzpS8faJF18d/qOu8N3/PzzL6xx4vHdA9YKh1RpCU2t6xWjNc73iMopCfWUErUmutAJjWBTOFupTPONaVmwbsAoGaRk7Q/zPAtmzLhNSaroJu93isvW0mZF3UQ+gzmnza8sg29t7VVXJedIjDNWBWwTBbypRqmNsqmiaLu15ggaTUoPKo2CUr2QB7ZiAaNkDZvygrEaawNsIaxX9NM0XUglooynwealbVu6XrrA1ZtCJ+q8eBUz/RAIQVGKvC7Cxxe+pxs8uwGuU4VFgdnS87WhWmV/CASnucwVaxtlWz2XIqULoZP6X72pj0opqcdtjb4X5icY3iL525CrqewGxzUqliTWA0XbgmCVu+OwHToX9v2ev+4fMd0qQ7x2aFOpqmKcxyghiQzaMq8L3V44lKbref+44+nlC2ldOZ12LHOUrIG2wnM1isM5YXYAACAASURBVGWJ5PybRzU4RWKr5bWGsh3Iy+bqqS1Jy9arL9dorK6b5aCRKLSNFyuqo6YU86akmje1c3ud4c2/qhC7QdtIKYAcZJq8Z1Inu33mWtvsA3JAsEZjnEc7g/Oevu8Yxg5rNb2V7zgQlmva7i9KszRYiTe3UKr4xLWW762+72EjHBhjWZa4fQaAWpk3dTYXIbKgOozpqS0Q1LhRFApHc2KeF1lV2yPogZgNy3qmXGeWpTIMiqZWbmvh169f0KrjOkWKcliT8dby5euFU6nEWEhl4cc//MBpb5mmiX3YU2uiVnDGCwkgjKxrwbSO8ehQXeXbeaYURUxVAnprIZYLuhvxrmM/DERdWY0D6zntb0zRMe4Glvkzl2tmf7+HWvnx9I6iG+PyO3b7I62M9Kby/vQALTKYA7fbzMPxe0r7grUjL5Ph15//mdE/0Pvvef++sk6RYfeBslSma9yKjIQvax1cX2Z2u47T8T2X67+wzo397sg47nh3uuMf4t8LnUTL+xDXmXHvmabLv2+a/Ave/uyg6jtZZ+a68u6wwwbN4/t7rFMSxmiStDba0QeD7+SJWi8rWF8MfX/CWLehgQw+eMy7e67TFecD55czqMrpOBDTwl7tmecZ6ypu7Hl+eeG8XBh3B24p8RA8v758Zl1uLOuKduCWTCo3difPvE7ophmOGW0mHsYDOWe63UDXnVBa0/eW2ixGw+4w8t0P98RlZZ4nxv1IzAnUQAkLSmcMDus0u93Ay+ULXRg53o2sqTHNmZfLN3zoCUNANQi24/sfP9CsprSFDx8fGPeOJZ45HAaU9lgd0OZIrsJbu3/X04+a20vPX/214vOXP/H+7p5+hGHYMf7NI74bGcaG6j3OZo53P0rScezRqrLbedbF8fXrM+Ouk2o874nTglJiS/B2x9DvyfnIPEXGnWVZCqWKmhqjwfuefle4vmSsaaAM4ziKKmmk2DolhZovouKVgm6Fx3cD2i7UMpAivFwu3B97Hv/mjtt5IYwnPn2LdLZyPHUsq2OZpTP+dDqg0bx7f0+MmZwjz8/PGGcw18r5esOaHmsDrwxLvaGavHc8vzyJSqCF+5rWirGNuArn0aiAVo24ygC2romaszQHbR69ipAB4rIQKRI9sEJGmKYFZ+RHJq6bZaM5WQGXTFwKVCtBM+2wGqZlhmYJvmOZJlSztOwoZWGZZ4zRONtjyG/IGrkoFcYFCUIozZRX7k8DzjiWeaEkgYRb4wldJz+WDUqMEhCpkhy1VokvepVVqVVgrMX1mhrl6h/7EW8tfSeDhSjihX4chTVrCkZbWlFgA4ewY1kuWwtOh0ZLExKatUZqi6iqGbsjfRBofc0NpeV9KjXLQVJZHI7BjJQGznUE52g1cWw7fuB7eh3wYeDu7gf6cCSXyvV6ptEYhnHztWW0gRQXlkUwOG9hqU2diqsgtqwL2xAgCCUZKmXYV9sPcquFtqmmpSSs85KmZmsaao0YF3KNjMNuC1LJoFqr2Ioa5d9A9+sb8zOlhVwzXu/k/WpSKlC2hqtSpT5UK0VqdSubaKxxIuWVYThswbtXD6pYSEqJOOcwzm8KrgwsrYqXc3fYYV14A9GDeEqNqYyjVNPW18F4A+TXWsBU8dIqg9pCVnXDoe12HV3QPF0mQKNeW7nUFqrSlXnVpBRQqmzKfIOaOe47hp3n6QW826JKSpTV1yanUq2s1ZVYBSrCH3UKVDPkIp5OkMGsNEXNhbtTwHeef/3Xwssl8VcfHvnbEdbhRm2WW70RhsDD6cDzpy/EVhiPJ6bZSCr8MjGOB47Hnn134DRcefd4z+dfP1GKqNjGBbRxVAauS4Rv8k7ve0hWo+0OFwJxrZQ0b89PVMPXYJ3WgsHKm8W1qQbak1vZCjCaUA50e1ONndW/3d9JKQZbGE8qPaHmTc19HY5roebXhjCLd6JuWmkJwRrBfmndpPq2KXKuxFV832mzARgjGxdaJa2FVsUCIQxcg9LCRbZOGMh1hTUW2iL3MzoxzQv1tT7XKJyCVGdUydSUhfphPev1JhB8GsUIjN+EgeA8YXgnfy/Q7IBthXGnJMCMYk3C4a2lcb1d6IcB1W7UJszRy+0XcrPcH0a+fH3m+8cdT7cbP3/5icPhyPc/fMf5fGOeIq4pprmQ0gT2wHI+s85NQl6PH3l8NxCnKD7tpFibiE5qO/zd3Z0Y7YC5Srh57PYMQfP444HPv0x0TjGvLxy6H0ktkeuCqwN33XdonSj9kWs3cX84Mux2vLxcef944ufPP/H8cub5W8C4iNGaMZx4mZ5Yl4zTPfOcefdBqoin6yrEnFo5v3yjxR2//+6BmGfimhjHHTFFQgjM6wvD0HG7PjHuwn//JPkXvv3ZQVV1BaMdab6hTCOrzFovfHu64YIhaIXzDudWbvOVUiPrmkl1xZcObQs5Fbzq0NrRdQPz9MJ+v6cLGpzCdpU0LzQtRQE5FzCNMGhepivrqgjdgPWBw/4jL9eJp/NPeGfpR82cvsF0Tzf0WF9ITaON4tSdQGmGcMBoy7JeGIaB88tFoMxKbZ3jitwUlylD0+T1gjKVNa7kUilVi5+wKBQX5nQh10qHIcdAqZlpfuK+7+j6Hcu8cJ7OdHvLEistat6/f8dtfmK3H0ThQtP1Dm9GYoWD17S6Z41PHA8jj3c9jkbXBZZZMy9Xxh2kfMObe5oq9KFnncTxGZeCdjPaOFA9xjicDbSySodwlPXIw90H1nXhdntmGEf67oTzA2uMfPryC8f7Hme+4+VlQpnC7CZJoFtDVY3LNDEMnaBbVhgPnq43LJOs8/qdpQsjSnVi+dCJ7z5o/s//+B5rCv/X3xueppWP7+457jxfXxZJ/qtMLgmrAssykbdwiw8NHzzTYrfOb1GLtLY4N5DShi5CY51G6bQFUBxKVYzSzLPwCG3oGLuOr98+CeJMOS5xwdlMUZJAtkE4uKBYl8g1J/zQQxKAP6kKfH/zpk7Xhevlyn6/J6+RdV7Z7RxFF1qpDP2BlDaAuNYSYlIySFkttYjWW5raSgq2m9MdGFHSQhhxRuNdw1uD1RaY8b7Huz3Oi6pyu02gNdoUrO2IEYxvOKeoqWxhi0xTlWHosNqjkTaXYALBOrQX+0JKSPisQWkzugnPUKofHdiAVU3wXG+MXEPnepb1ivcdRjtKmWV4i8K11UgntlIWrR1DMFjtuFwnjHI8qHtChWPdsWPE9yOn03u6cEetMlhO042+6xmGEahbOl1JE1SrhLBDqU3l1JKIX9ar+PmM3/q6pa0tR9keWG/Q1myrU0XVjZSFEtB146Zwbt67VoUfutVBylpV1rjCGBb7izV+a2wSP2wthRjnDYdmhC4EMrCmzLpOG2zebwqtqNmliD0h54jCvK32tdpUuLiQ8kLX7cXT2RqvKfBaE41CP3RoY0kpbc9DBhgfFMOwZ509eWvVqmlrYauRphZU7rFaBtFX7P1GFiXlyrq+IpskNKQUWNtQOnGbnPCQc94CTBmrKod9ACy1QDVifVBKFFdNxWhNQuw0G0pVnlctONOoeEqTnIME5mRAhkwfwDjN4XDP16+/8ssvZz7+bocdC/qjRs0Lx7s7vDb4UXjKw77x8P0jwe2Zp4UhiD0guAMf7g50wWGzVI2uUQgTxmtKhXd3PfwnuW7v94XbDL63KGuJFloRkoA1Bm2EP1tbeTu8lOzeDgk5Sy/9m+dXNPAtOKXfhluFrP9p4LY1vjES5Cu5ULK8lq2xVfDKTW9pfKWkkUu8rYqqmgg1LQEyWBuj6fsO6wzWanwwGCNUixgztQjvNtdCLXVTSmXDUjakVm1y8G9UNHWjR4BzhmHs8M5jlKH3wPD67dfYj4Z5XZjXRQKjWSwxa1okoFg9rWVs2GGMBV2QUl/xV0tznfh8u16utRIjbX+PVsjsoTMpRi7XTMXT7e/ww0jRFtcNaNMxLTM/fv/AedYYZdmbe24uYweLN4GaIrvjI9VMzN+uDHrg/uHEp0+f+fj4wOG4g0ukxX9iiQ67s/hxwGhHXDPgGf0OHTTfLt8oNWJUAG3Y7z3r0ghdR6tXnLoj2MTD6R3H/Uf+4Y//hS9fz7QFPn54JK8Kowbev1NcL1cRXKIIGt4rnNWcX76yH+5YlRY/f37hl+mKUpYvX258/PHIuO/4+uWZy/Ub/fD9v2+a/Ave/uygmmuiqoYNjVwjeY6gRBloyqGMQfKbjQKkUjbcemKZV7rRgtHQEsvywsfDD8Rr4pYuaGW4Xp9oKrM77rnOkd2+p7HSSiPWwm2a0BacO0g3N1I72fcd+8OINT1xjTQ0+9Oe5+dPnO4feX55pus1JTm0S8SNKn5dnnF9z/kc8d7iciPVG/O5cF1muhBo7UIwFqxwRFWniNNMWitKZYpqzPMzS3GsV9gdPd0QyGXl06dP24/WJK1DTWFco+SMd4Xd8EArVggExlBqxJkeFzpyhueXG/fHPfM0czo+opAh3ypoTDRVMViU0ZynJ6ptaLwoRnGmUrg+L8RFgkOCHJD+529PZ25DJJWZl5cX5qnhXOXrt28orfj29cqheMYBbteZ2iJxUWidpBFlSbSaSFFRsiKlxLjvRLWxAjm+Xp7Q7QOKlVobQ9BoNfL3/5TYHwyfn57F8D7suM4zKVZokmo9ny94k6Sysc4405FyxS2JZRYg9rpWcovSQa8CiojBktcqPjbliOuEahVne2o2lGQwVtZTa1xRyrDOcDwdOR4+sKwTX799QZuMDol1TnTek7PAsTutSGlriDKKzmsGPZBSIZElmFYVzjiyqYQQGMdAaYVmPUpX1vkZbzVWK5b5RtdZ9vuRtBhc0OKTXH9bIXad3fruFTVHOq9pLdJqxnv5HB7291A8WhUSNw77HcPOoe1KXDUxNrw3aCprSljrCd4xrQJ7vr8/YLQirYngO4IftuFMWrhUc0zzTeDsTQYm1aTO1NqA1kLDcMZjrARLSjE4HaDIWllg5Um4rnVA4TdV2RBbxFjhUQ7jwIO653ftPW5j22rvOB4+4P2JlKU6d1lWIHH/cKLre/FG0mhbqt9YK4xUpbaVu3xO5Z85lHa/rf03S4DgzIJ4TV9xlcCaFmnsse4tmPKKgsp5pWlQ2olivEHjS5EgCBqUkoCJJLUF9L+mWT4Xr9WoCFpNah0rxjkhAjTEg6plBZzzgjZCX3hDJTXItbLmlYpQHABazVvgTyper7cLezMyBDlsyECnhXTSMkb11CqPgbo1JqmGcYVucOQUaOW1AlaQPPL/KqkolBYMXduwXa1WnFVS0lFeK00lkFRbw3pRka/XQi4eU2Ro05sC7L2j6xwxO6ibCqs0qmlMg26nKbqBsmzABHk/q6xiu8EyzY0Qeg6HA7/8/ETw93x/ukPdZ3haMEXW5A93Oz7/+kTXW0InnmE/gO801683en/cmg1njg8jtUbMbMitiiWpNOw22AF8OI5M/kpE6rtn4G63k89Dazw9XfF9j6axRnD9iWm5ULIMhK0ITF4VhdJFEH55C+K1LApjaagmhJRWxWdqnGUIm8KqjaiNpZFapWUZKvPGdTV247uiaM29bQmUFNK/0SRKWZnnG9a4rZEOqYqur+Grbcug1m1IbdvfuV2TbSuO0GKlccaQogzka4E5STbAaY910nzpnai8D6cHqcAGTJXnHqMm56sUu5SOeX1CoclVb/+8kXOjtu1QaSqlZKbZ0PUH8ccqCZFpEqkmtM1c1oqxA76zJKv5cikYJd7MohrnqaLsHm0M1+uFlDUtKa63C1YZxpPl+TyRS6J3sGYo1RDnzK/TF5yS8OT1ZeIYjmjV+OlffuL5+YKyHb/7cKIVjVUDh71c2mhLU4HhaMhLlMeSJxSVP/3LV8bjjt3wSIya822mZM0Qem4XsU0KtrDyL//6K6jCw7sTwXe8PF358OE9376+cH75Rtc7puXK7ToRM0xTRz8MlPSZ4yHw7cvP/9558i92+/OKKo75NtH1I4qOZZk4HU8c9obzy1XQIQput4mh3xOC5rJ+w6AlBV81odNcL5lUZuYyszaFNXIKm/NMLgthONCSZUpV2KkopjUTS2V/tORoyLVyXX5ht7sntHd0vWWZmgCwdcR1jorn5XplWhPNFcoqFYyfPv/Kbt8zzRceHj6S28I6N0wr7I8j5+uMcYmUBnwYBLirZYW1rpklrux3A8uy4XbGnlIXrGuUVOnHXuoEs5zqnNfEvKKUEhh7WRj7PUb1pFbYjR1NNVwYUKpnmZ/QdsFiSbOok7SMUYFWbwSvScVifGNZzvR+T0kZFRrnlwvGdExTIrWZ20Wjm+br0xNGWe7vT4TOEdfKf/vj39P38jzm2xWlX3h6uhF6C03z9deVePxCzQmUJljPbm/JSUML0l5VPKlVuoOnc4Z5LgRn6DrL5VyJc8QHJ33UeeF83vHyTfF8+RnjK/3unmm6kmMjrQUNtOKoyI+uVQPoynWRCsJlvrHGTGpZSgqapuXCmiZ2fU9uRQaSMqHQlNToO4OqnuACxQl8vNVKrpVxHKEUdDOM/Z6cJXVfSUzX9ObvSVk6pmtcUcUTQgAS1in6MNJKwnjD/eGBZbkSfMd8K9w97DkcRm7zjZf1Kvch0NsdCs03Gg+P92ilecqLtBeZxqp+86h2A+hFUwp4DyFYYTq2gjfQhV7OfxTGwVEJONvjfYfzdatlFUW5xEQ2Mhg93u94OQ+0DIe9NPmYfaAVQ06i3Cwx0orCO4s1WvynzQh5AU3fD0Al5RmadJgbY1jjTC0G1KZqaIe2lliEFuFDwJitsUcZVEnksnLIe96rR+7akS5bChljHN7uMXrgFS/bWiOmmb7XHE+DHJJf61HL5m3XCmv9259vDTmkIs0ualOxlJJ++bil860JKOy2upb7przQqFI8gaxStRKFaonTFqyyb4Nja5ByknS+sYDZIPKibuWSNgyRQ2vh1coqdVNIjcI6jwyRr6qotAU1VejCiA89IP5gpRS5FXJNWOewtuN1hGQbxte4sKwru3qH2mqRlNJQhVO8rosoyC1s6t2r9qYIXSdowixlHCiNQJXEC21eAzoqbiv77Z4aabKqjpTzppTyNhD1vaMfAl++3sglY6tCZYcBjK6MO7+phg5l1OvLsA0+keYbcUloOqpme/2EqGBMpqBIRQo89rsj07Ty05/O9HeP7O4V2iuIidqgsz13u0Zne0qqxPhMa5GyKsq6Evq9VEGngukNNUPnDtRWycWy73rS+vntut0fH+lcIRWN6xpTmxh3HU41nDJ0rWG6TEmZr/ONnT9RFkhEQreT4VUpDCPoQkkJYxspVyQ/D8YWNF6Ei2qoLRHLipq3wJ6BYK18vvTGafVuG0Qb1rIF4BIKaUys1YA328FIIlGtiGKfayaXVQK3JULbUF7WbvaTItaY12bBf4MgS6mgtgkjZ4Xkx34jRIjPWooI2A4pzlmeniac91hnCU7wl6Fz9KonpVmsJ/kdSityquRUuF4nUXuzDPtrzKR1JhdDmhfZhvDKg5Yh2oeANpaSFctapDLVOILbrhXd8cuLPL7aEp+/vLDf78jPC/M8s9/vWPWNz59ngnfYy8Sffr2yGzt+/fqPIk54hdOWuK7Ub2eUrjyfn3HOcr584RejePf+jrhWTt2R1ASJF2PgNp/ZhRHnBkpNTNPE8/OEMu/wnUWpjDOF2zniTyulXIjzib7rmeMLtMq0XLkrR0y1DLZjPt8wzbOsjWIblMoyrxxOe+I0kefCqX/E+QM/Xf8HGVSNVfKB2XA1JmtSkhSh9QL1t7bHREWO0n5kTMfp+EgpmqfbFdNWtJM187QuLFmjYuH8MuM7xZrh+faC0R23W6ZH0XlHig5lJ7S1rLeVXAsxzeQyE8KAdz1/ev5nxuHAsDfc5onSNNfbla7r3tLn8wqhO5JrwvsDn798w3tHyxUdKsvSoDn2w46Xr4ZmHMOoeHm5oo2iJIVuRsIi08zpcMf96QNfvv4TVml0regMaU0chnuKyjSVSMuMNggLzU2UdsRay+32wuFwoNQVVQvr+kJOM8ZqPhx/x+V8Y7ldRKUL48bd0yhV5T56wJYe3wWm9YoyFu87ujiTJmg14Ycdt89nHg7fg6rcpivOdNggSBlUxYVKSYnDfsf+ZDgcCik2jseRuDZCb7hdFk53e56+PaM1aN3hzI7zZeF4F1jjxH6EZY4c9z13++9IecJ6TauiUNCks95ojTMD1mhSmbF0eBPo9orp0sSjGAq9H8nFUuPMGlcuty84t0dVQ9DQqmdZIiataCenZusLzgqmrNvv5PRcA8MY8FbUMWOUKIEKdr5grCOXZ5wuPJx6np8irTTu9nuM8nw6f8YFT/AKjGMcPOfLlZo6bO/pxoC3ikUrBq/YjQfiWDG24FDYBqPvKEbRTKDzI13XETrLhw93fP3yhPM3nLWM/YHn+tsP3v3dPSlKW1Qfug2gn9FoCQQpTV4r4/0OazTW9ttqeMNieU00kV0/YnTj6XqmtsSHh5HBd7Qim5HbsvWOZyn3qERyWkgxoZAAitYOq3doo5mWZ6wT3mQu4j0TT6pcb2hJPkutqyaVSowV3410gwzGtbS30oRj2fM+PbJXRxSK0hLWBtYVopJBXbsNw1QrKUdpgnoNS21p8lQy83LdVpqWV1h9a1ItmvJK6I4ypG1t8aVk+T6p6zacIkEwpbZ1qRQ3aG039fNVhY2ktOK9wxgjr0GVtXjJcfu7OgnItN/qOWNaSDnRu0EQfJtCS4OUV1JK9P3+DX8mNoONhbkpWGaDtr96BkrJlBwxWrzRr95UeZqVuJEOrB5E1dysDWyDc0wJazskv1a34VmsJFKi4bZBVgbUVxXYOo0PAnkHgzZyYKCJn7TrPUrZjZep3jyTWsE4Si3xPBdy1eQshRQNsF2jGwzrmqlbm15F1PpWK5XIGldSHN7ey1embKuZZhamqEll2NLlhtPdHb/8/DP/+J+f+EMZ2P1NoB4LL7cz0d0RhgPP0xXve4wxdO5Ijhd2XcCqhDad+I5T3tawDuuAlGg20pJ+u25NV/H2JOxkkxh7R22est6w3vLucSSmG3NOnPYW1Z553HWUupLKRb6rbzcWJozzxCj+/RgF/1dbwzqB8F9vC6GzqAYpL6w1ydpfFUw1aAzKN2qV8gJZv1tKWalFI/xkQQ8qbWSY1fLnnLGCB1MGmyO601trbsUY8W9LjaiwT18V/pgipaTtWs3iy14bKeVtqNVb5e9riUKjtoWcMtSKc5IxSCnJEGsNpjnBfgXhZSsUPjiCH1Gmomre7hPFd6vFZlGapdHTIbSf2gqlVGjisRKniMHYyrqs9P1IMKIolyzteSkXctMbsjKTWsecHMsiaKyvL5XzeaLWHh8kuGo0lNkQ84hynssl0QVF5y0RS4mFZemw3uH7xq+fnwi94XI5czsv+C6gzcrT18/ERfHwXiqBQ+eZp5X9rqPEG12/57v79zSEdz1PV378+AOn+wd++vlP1Bw5vHvA6g+UqGH1/PDhnjVOfPl2I3hFTC+UCMfdPU5nptvM2HU8PNzz6dNn7ocf/18Plv9f3/78oOoyXmtKXaEqpuUKRj6s2hhKzdymBYDSFiw9h/1HWgvEeEHrwrokrBbf3zxFfBcoJbKuUTANumOJhTV+FR/frZJCT6sB4yrfvl0ptXDs96A6geXbzG2SE940rzSluKor1+vCMOxoaNZ0I+aK0pFu6MjZE/zAPP/0/1D3Zs2VZFl63TqzT3cCEIjIzMrKqhZpFGn8/z9FJmuK3azqyiEmDPf6eEY+HEdkP5Ukim00XbN4QWYggDu477P3/taqjE4Fzp24vn5i6FtUaTF6JfqNYAYkR7Qs5LAxtA6nBzq3kfPGeLuxzAsiWLpzxzYHMh6tPWTDuL4w9Hd7UjRQiKzlRpYKVCBGgVQN0zIDCykWojc0p0Bi4XC6kMrIGgPHg2W6rtXlLRPn4wWjHYfhQHjNNL2k1ScGGQibY3aRIBbOfcf7d+9J4hl84PJg6Np7fPrMNB5qkEe0nM8/Is3M9XZFqx5ne3JULOFvWGO5HN9x6E6s242coW16Hh4c2zZyGAzTNNEaQ2vPtH3BB1EDeAl6d2ZaPvPyZeZ8HFi8gBIRvu79HfsObTOqBKyxDIeG9+8vPH0Z637p6oANKQbGceHQHXC25cvnT9hy5P19zzxPlFwY+jPRw+Pje74+/YJpPUYLlNo4NQ3GSqZxxSrD/YcjFM3Xr68IXbg7nmhlvXmfe0cKCiMlTsKPH76vvGC/ENaOvuswKtPYFiULuIwPCmsVjXUV+xU9Q9vgkgAcm9hwrcS1gtP5nq6zpG3gch7IyeCMQpffLSDH9oDqDNZU29TL69e6k90MGFW7cVoK2qFlmTei93TO8HB/JkVPEZppWehsz91l4H06gQi09sDgRhrXEYLh6/PC6/gFn1eMytim4Tjcc7u9kMuMEn4PR7bc392Tn2a28IJUgoKmIMllqxxTA7koSpakEghpwm+BLCxCWZatEh4QfOuEncuZkz4hqOzaxg2UZHn6+ht39z3K7PByIckpsfmJDCjZ8Kb/rK9NtTZ1bfstbFTHpODDQogrgrs63qcafTYf8aGuOkhpEbLebKWsSl5KxuhmLwDhbQ8zhq3uDtvmGx6q7LDPkDYKuepRxRtbta4NbNvCsni6Vu+dq2okSyWzbvMO7zZ7Ujvt3anCtm2EzcNBfyMAQN0VjDGwbQvOWZSs2KpcSi04d3Zn55qqKN1pBrCboVRkaB2Siviqd26qpEIWjFMIpb+ly3dJKpCxLmEbuI01aKlEJXKEWEfq1mliqOsP9XkVVXogC85VffPmC1lSJSXirW2aSTkTgt47wPX1LdQQmGsqSztQKQyl7IG5GoPHuqqLhr1oF4LGNVzuzvz62yeefjF0TcM4fuXa30D1LMvCvFzRq6NxHUVeavhSCrRIuLTBvnNpZMe4LvSu7CmS/AAAIABJREFURTq5Bzp/v186s+FjIQnPtK20Tc9BGlx/YU2JIhVy7wwP/YGQEjHcmGcocaNtEy/Xryy+YHRBNx/Y8krwG8o+EENEWEUIkhhnSqmH1/PdQ+1ua8O2+QrKT6Ui/WJknheMjeRYkCrRNJoSawCyiGoPE7K+BlrttjBdQ9Jd60jVXLIzdgVVaVwPJ1JWb2EtJmpxmXMGH9DKsCweKVL9eqoc4n0vjVJKJSKIvbEhQSpJYxqEqIdeHUVd/5AFqXwtQmOuq0PKVe6xYieo7IfOXHXn2thvDNngPYgqRKjUFblPFwpGiNoECRspRlAK4ZoatvSekjJWSnTXkqHWA66payq6HiCarqEUMNYR92mF0RLttnq9NorWVUJN0yxIGXjoJU/tE1odOPZHPn78DTULLvdHlvErXXtkfA07fiohQ0XQLfPCGMZqs5SSQ2uRBVp3YJsDp65HI+jbE8fBkUIirJnT8UgqLQJD250o0u+TV4FUkbW/0DZHuhaev8Ll/v7/aR35b/74v+moKqQUTNO8j0hB62oukbKGQEIONI1m2xKtcqQEt9dnhFoZxxtCZpyLlKzZ1soSRQTatuO2vLJsn2iaAVEc1gm2bWOeRowBScPtNmGMxG31whRzYFkzqxiRKlHkjA8C7xPTfEWIAqVBqrpPaU1iXWcOw4VpnBmaew59x6/Xv9H1GqUhp3qSvqZq0Iihdnca3TBPC05oYtA07si0fGRdnquuEMMWE0L09F2HazX+2WGMg6yZr6+ocyZGg9ATcc1ILNP8zNAf0Npxm55R1KTgEq94btjukdtV4P3E4dQiZYfWgv7gWGePETNNY3CmJYuCFInDoS5Jn+8cH19+5vvHR/qDxPsqPjBNQapA7y6UmDhfLihUdRH7nmHQrIsnRYsQgXF8wdgzIWlsI2gayzKvPD58QKuG//Jf/pGu64jbEx/eX1D5wsv4Xzkd/8A0zRjjOJzekcQFzV9ozT2fb09QCj5Izvcd9w8/8Ne//SOP7ywle8gO5yTn47Em0YeOaXzPP//Tr9zdHSqLz1oud5plLPzww4Vl+0pYNV3nuL5OnPqBeQooXRl958EihOV0OuC7ma45cHd/4tPHrzV1fmh5//iAv79nXTaGw4Hn1ys//fQeCzye2xrkCQ2tVRyODuscL89XurZHD5rr60LjqtFF6xYpIsfDkdvzDWsd6v5MLKVqJiUQMpfDkb6vO9ZhW3HvHmGsYzMZPW3booTFKsWpH+pF0XUYU2/CUmSUhnd/+AMib7ROcnd+IMa6WzmvnuwLXddxuDwiZCFsgWnUaGNQqqVxC91LrKPMXLDNEaPfc5teeH79F5b5ihUSpQMhXasFTA+ENNP2DiE061qYZ49AoE1kXXNVmhZJKAapwZfdL59A6dplPKczNjlCTkBAacfh8B0ff/3Csm24ttm7ZRGlBCEGQlgwpnYPa7amdnE3X/FMTdPvO6N5T9PXsaVUEqXtnsqpO3gxvKmN23rD2wsqIVTtqJZSJ0lS7wnquncXk69wdFNRUJTybXfVhw2BxKi2Fqp7KCrnxLpW7mp9/TKFerNMMRCSRypdx/dCUkoNCKaUCGFDaY21HWJn9YpdAxq8J4ZI1w7fPO91rAopJqy2dM0eQixxV8DW30EIQdMcCKutumJR6qi9gHGapjWMt41U9iKe6qKvM9HE5j0xmPoaFbHvrkqUKgiRWZaMUhr5zQRbdpVuYJ4zMRYwmZhAyL3TXSJ+U2xrNdblImqYquzILc2O4LI7aeGtc17/rnOKmOsaRyVmVK+Vcw5RIl8+jwzDHUM5EItAnySkTGvrCHy6XQk+IkWGEoi5Q4xXoNIxChklMyVV/vYWFqT03+6XawqEItCsZD8SpST0AV0cxrq6MtUOFAxCaw66sluRBq07pB5ZlyMXoTBdIQWJlboay5gJIdMfDnVsS4O2gqY7cTydGBdPLLCthrbtEWS0bAnZk1KiP0quLxtNa5FYXl6eEaLgQ90njzEgBfVQhCKFmj5ZSmDzlYyR804VyFCyJKaIFAWl6nTBWrOj4BIaRYmZRivcXrwKrUhUC1ahIrJUkTTO1sPSjgvURtUgl5SceocxirZ1GCuR7JILn/fJQMXQVS7t/jmF/QAq8fHt6/VAWSkZqQbBYgLUtwlMtWhqUkj4Ul9XWQRqf38LXdFkpeQqqUiRLDTIukYohKTVApTi2NTpoW56UgSjGiQCbSRNY+pOL4Lj+UdEbhBEhvMPlCQwxjCcFpQ0xDWRy4rWiaBmrLMgVpZ1Ypoj67LUQ1xr+fkvvxJC4IfvL+gE0gum14C1knVZ2X7zGCu4HM7EpNGq4Q+PJ56ff8a5nsG8HaInvvvuQvn/C0d1mTNG64qKyDXRFzZPLnX5uR/OjNNTTYVvgufXF2IU9P2BUgzzOuGcwJYDIDmeep6ev9IfOqx1NGlgWZ4pydO4A04P3LaMM5p1mXZIcItSknmKCBlY1oWSj5wujnFM5LIh1JHsE30z4IxjnTT9cMIqCH7CGofVjqf5ia45EbYMYiPGG86cK7YorBQCMUTaw8Q6jUh5ADLee+bpC8PRYWzLMtbdV2EFEYszlpAEBM8WNMfjA+NtoesaRJGUKKtCVXgKuu6OzK8MzXtIpqaOpat2J7ny66e/UvZ9n3lZ0fJctaXSsMyv5LQguJBVoh8ObNNGEpItb4TlhVwSD+8ekRqsPjGtiRBGcl6w6o8I+Svv3j3w87888Tz+jC4/0XSWEJ9QumGNXyG3aHGgqvJmTocTT1Mkny1ZQNtr1qkqJI00+NVDaOjNI6of2XxClsLp8j0qFUpwuF5DaSEEuqPDNQe2u59oWo2QC+sa2KaVxlq0cJwuA6dDQTBz9+7Cy/MMRdK0DfP8yuO53yHblnkaOR8blHBY+0di8GxTQKlCipKf3r2jaSXbGhFF8+cPPzC4L1iruJzu0UqBAGNbfv30M0obZIK2lTw9XemOF0x74HBsyFnzz2vhOHSkvKF6S0yRobPIViOKQeuMaCWn4wFpJV+fR0SqSstxmjn1Z/yy7kndBVF+B4c3jaSxNTW+TDMpgdBgTB2j+m1Dmo1GDjSuZWgPpLiwrRFre5xLlLySReL5ZeQ2vdD2Dca0+FCYt4BSkuADXTeglSEBWdYbyvF8IMs7kCttMyBoGZdnbGOR6sg4V/h8KYo4VxGHLBZSVcfO6xVrhh0OXkeM1qm6v4nkHI68jycG4Qi7Aew4fECrlmm+1T0x1701yurhxq8gMta2IHZzE7UzGWJVliLU/rU6loyxamW1tjVNX2qgR5bajSykb2tNbyPMInId9ZaC1qZ+bbftxF1VWgNlDaW8hazKDnovGOMqGaG88UHrukBKCecqJSClVDvLpdT/Fj1N474Vm1DH7DEFINE2HVY3375eu6L157RGY2277+ClbwzNdV3wfqNr6yg65lI7m6XesLXWSOzegYRaKO4hNFHIaas7rKXeIoSohBEhCshASpmc67hYZBCIfb2mwtdDyDtpoj7fRUDTKoyCr7eVjKgillyIKaNEoWn3aUwEbSq9421vNudAiAty68lZVZwTO4GgZITcXyNfg2RQ1yfSHvK6v/RsW+ZvP1/5h+ZAs7V4kcnvLALJ4dSxbYVlG5EIcoqUecW1A7fbCz4n+h2aP60LztRuOfL3m7nfPM52CCT35weKlOToGZeJZhBkEVFUBa60knY4kYEfHu/YoidsDqWOxJAJWpK3xF2n2fyNZdr2MGUkzjeO3R3fffee/tjw5csLbW8Z18B3j0eUkaQkSWHGdgNNM5CLYHAVX9TYC51L5LLgV8cWA7apUovX5xuqCBqtyTGwpZWYUsUc+lB7p7kyiDP1NS6lFlfWGrxfdza2IPga6o2pjv9DqgfiEDOLD/VzUyKS2kmtXNhIEplpDDTGMmuLDJmEx3iN1Yq2tWSRCaEqxFOskqBKwsh7gzdhtNqFHAXnmsrspaC1IudECKGKaKKvdJzWgoDbuFAE+BBh3yUvORNjfc0rS7YavqYy0/UNYVs4Hg6InNFScBxa2taBhJig2bXYhSqEaIYWgcJHcKbH+41h+JGY6xSlyQe06gg51V33UhGSUmYaWWhjRkqN9hPPrx+R0uwB14XX1wWreq7bhjAC/9Xz5csTp2PP3X3Pto08vdzQJtG7I89PXzge3gEruXiMbTBNxzT9npv4X/34u4Vq2Pakr9TkmNBGVlyRVPh5rRfuterRhMh17Igh58C6LRgnQdXuwLyOHM8dZlR7Kg0ogYe7R6QwdfwmNjrXcDrc88oL7NYX2xReX184DMPeSdHIcqbkBYTGyANzunI4NrTdQPYJZzNW3vH0vOD6jnGcaFrL6l8Yl62ahFJE7KPF15cb2ghebzNddCihiPGGMS0Sg9YR5zTzrOn6lpgKMa/ELLF95mV8QccA4sC6Htn8RttYolcIGWnska8vv9A5SyGQU2GapnrzEoLgS12LiJocBe0gud4i6xyxrCzrK4ge53q2+My8BbAG4xR+0fz29ZngJzYfqor2+D0lbygNRvZ1TycGrq83ul6zLDfGaaYbLkzXkddpwhiBVTMhjHz3Q8/tS8YC/fE9KUjIG9fxBdsWLvcPeOe5PlumayD4K6fDO1L0PNzd8+tvT/jtmXkSPJzvkclj5p7z+R4RF9bs2fzIf/oP/0CMGz5sTPMn1jVyOnWso2RwjmgDw58fKTg61dK0imm6YoXiPFhcYymlYbKG/nBkGTONOxHCivCeebrRuiOPj4+M0wuqc0jpOJ0u/HDrca4m143RICTeQ2cesc7VHaUUKdnz/ff32Kbg/cZt3Pjw4QEZN2KC4dQQs+Byd6yqw5iJaUF2tUOckYxXyTotvHu48PPtV4zYk/LRI0vEGge75/7QdeSYaRrFtubK3CXS2ELOimUuFBVZ5oUvX3/jZrv9tY50rsOaaqUKW+E632pY51ng2gbyhs8ZY3ty8hhTSJtnixntFCFdEVIxLVMNqlkqzs22aK3ZNmi6lpQ9Ma7oRtHKASEUPgSQ9c8SXhESfKh2KGUtdxwYQse7cscgGgqZpmnp2+9p3T1+W1jWZR+rWUqpdqaSwYcZSHXnu1BVnaLumsY412AS1WSEeAtSrbUDavo6XuQNkl7DUuktIb8/xK40DbF64JUy39SVQghSjoTgq85T7NzVPWD0pi3V2n77nm/sVR88iIhr3Lfd1frv1TE8gFbVs55T4q10jNGT8oZ1HUqZfc2AnTAQkbLQ9y1uH5W+TaErazOh7W51QtYdTvaOK4WmE2iTqz1pD5qkDIiCNanifZDEwjcsV4XQB5ROuxpUVvbmzgilJJyrbM0UZV31IFMb35LGSYyWBF/255D9ep5BZYxWeJ9IuRaxMkMWuXaI80aMKznW/eS3CXLOlX1r3P5cr6BtRW2pXBAFJIXvvht4uS785S8jP/8i+e47w/pxYTkGltuVR6HpuyPbfCPngJUaouLueOZ1uvHr01fSpyfOx47OnSGN9E3DcDr+fjMVkpg2cswMdxeWMBPHRA6B6euvaNcjZCCFBRUacpYs00jfXei6gS/jFd1YfPgKa8/pdOG2PbFsmdPlj2zrlb/+7TeMamCLXMfMdPvM7frK8f4RnTIqTmipcNYxb884VlyGnA9oF1lTwJqFwQimecV2hlY4TvfvKWiatoeccEogS6Jtjmw+oozBbxvWasgZKQvTMmK1QYiqRa+MVlFf8xjZ1pWQ436vW9h8YtsC8xJxa+Vb189vIu7v7Ugi+hroClnyNbzSOE2KLUZ5uq6q23NJKG3RMlJKxWl5H1G6yj+EkKScaKwGagBXWlNtWbq+b+v/pxGy2zmxlWYxjRMpFTbvK+Ipp6oQF7qaELPFKEfTtEhZcX/IvVg3rgoPSmKLvhIclCKsdf1RKlfFCVtE6YROGSkCMtZOvRARJyEhsUaQ8kLxEiUt1ugaYhVVSiBlhzse+XB4t0+SaoMipUD0mWWZcK1knQLSfMfdpWMLr3z9OiLkAdfDukysm8Aq6IYaoHt5Xuj6hi2P/2/ryX+zx9/HU4Ww70pRl/CzRCHo2oZtjTy/fmYYDMbC7bbRuCNCmopTEYnGGMAydJZ5fGa+jjWpnT0p3FiWjeGokDxy6B95ev3HCg/PpV4Mc6Gxd4T8lb5r0PLI0Fed2LoGkJmuOyOlxHUNId1oiWhTOzsyd5yOD+QUWbcbShWUrZahbRQMnSSmiZx7tD7wMj6hjSMGTdsckKxIKYhBYHW17yzLzPFoSbnCnEPy5KwYlycG2dN3gpQFPq6ULVCSxmiNawwxgNcj1/ErzvYsaqbvenwIrHNAtS3LEui7Q+Vl5mfWFeZtIsaRlDU5g+0t1xnkIvDTZ6R4AxNH/FUgiudJPPN8feV0uWMYjjglmbcbpcwIOkqJIBdSbBmXv1U0Tmy5Tv9CChPJH/FZojuHsQfG6zMf3jdYWwMs7y7/wK15ISxAydydFdY4lFacTh2Iwu1lpWsU7y49ZVX4lDkNijT2nI+PzOvM3fkI0rPMgWc90394oLVH5sNKYz3rVvDeYcyB5tEg1crrU0vORxo70AyOcd54//gHtBV8/fyZd3d3LPMrp6HBL2CMQ0rN6TTQDTVBH1JC6wN91xHSWoH+uiMLz+l8wFjJFlYolsvdT/R9T0g3np9nnG1xj+ByR8oOREPMieHYAIKSIykqjACjBeuSMd+fOR9b7u7vOfYCpxtepydShtaca6H6Usnhj3cngs/ovvrCD+09MYxYm+mH2mn0OaBURtgZDJxOLa/XJ6KEEhVFLiQR6C4KcsPL7QWtPVY1+Dkg9A3dSYrMpK3QdC1ZBOJ6pXEDZvOYpscNGaU2bN/VYI9cwNRggqOh7+4IPrP6F3SMaCdRrmOePaVk2mbgGI60yfCQLwyl7mlVJWjPof8Oo08IKZiXlZQSp/Np36vcu2Qpk4vHWrl3OWu5JaQk+o3MhrW2hptK+VYoxlgTu9a6uge5737GWIOZ9f+1+95d2cf+YR/vV6c28C0MFLxn25aqiha/UwJqF7AGgqy1KAlvZWMpuTrkdaZxFYNVYWp1NUApwfl8qvu5b6EX+TsDM2WPNsfaueIN9M/OE877fmrdZ2UPYJVc17SarkUKs++Z1l8i5wyy3iRDLOTi6q41Yt/NLFi7/8LZ8maHEkggog00jWOZBWB2/m89jECmacRub1P7KkEFyiMkxtTCMiVZdwe/hfoz1TClmOdAyjWMmHZlssgSIRLISI4SrUTV45b6c6WYUHoDUXFhMYeqS6beuyo5IdK2EuuqXvp0vKNpHOGlcpS9DwT/dednb2xJMTQGv3gO/YF58fgQuI4zfpEYWYh+pqjfl1RjKuQC25Iw40xWBWksS3hluo24oNBNwuqavn+ZvjIvz2yfBH94/4GtBCiF5mA5tg8k6Vl94ngaON+dSbnl5uHx8Y7r9TObXFA50p0HTK9RuXZ1s3CcDgZiR8mZbR0ZesuWAqdDx7J+YR0rHcDY+txuT3/Bmpa+SMbN441mWmf6pDiczsQEpdFsBYTKdQ85ZnIqSGVQ1PubAZZ5oaSK09o2j7WWtwm8EpLWVp1tQeKDJ4ZEzNWMJpTG+92KVyDlgrUSZxRSVPVvjIGuc1hra1dR1dU02I1spWK8KHKfdFQBihB1lbF+xgpaOxQOoUGpmlFQWtG3PSnU64j3HqUr6s0Ys196BJK9AC61MyyV2o/BEqFAKZCqQFG76layrYEc66QmhUAKARIEvSKoxA8h075CUeUOwmecMGgp9+lbIJeIUYXoN2Ku1z2jG1L2JBUx5kjUgsMlE7OiP2QuUSBVYXv+hf58wdqG4WhJaUOYZ3IM6E4gsmZ+/oxOJ2Z//R8oKf9tHn+3UC3JM149IUw83L+rIOEcKmqhJFzjGM6C1Y9M0wYohkOHxKJtRxCFHMBoQ+9OjNcnzqcz94czv/42Y1Tlq/llhHJH9JD8hkgvbOvE4dhjVGS8vqC0YtnCftGMaN1itKaUBZ+WqqwLhW1d65J4Nkg9IssJWRrgmWVdabsehePQa3Rp8WFF2YiPNwSBxt5hTcU1hVBYxxnhMmTJ568rOQe+vv5GCYJtm+j7R6ZpJWaBlqfKRCw1MYwQRLky3jwhT0DEdR3+WTBPH/nup5/4/PpCCp5pDBRx2LshhhAVff+e+TVwfX7m/n7ACEUxHULAdCukPNHaBWUkh8MBP56Z7BONvcdfZ4bhByQnnj9+5Ic/3LPNK0JF1kXRDZIsFMSFLBXfXT5AgXWtHLj5c6nYmxh5fv4F0wuUSMR14cPpHSel8UpzOhgOXcupc8zbAsYQo+enP3/PX//rwvsPH9DC45oLUWg0ihAyQzOgTECVCsc/Hi3afODQnDh2J15vP7PNXznd3zMvAdd1HPqBeX6mVWdiHqEoHh4+8HK7kVUdqT4+nFDFYI2hHQ4oBOs20roO5Q6E8krIG1K3jGGkREMuktuWODewhhun0xljG9Ywc7nc0bUtH7/8yrrcaGzHw4f3PH35xOXuQpYN6xy5LTPCRNal/lzaakRWSC0QynO+a3n33UBIidP9O7wvtGvCaUfXHFjXK/wftVD98P0DIU2oRjMvG1Y6wiaxrtC0BmE75m1hOHa7hrKgzcJBHMmxwThH3DzarRzPD0zTFV0Sp3eP5ORp9UxIG7lIrFJ0x6o6FUKDjDhnGPp3e4dhpWRdD2uumrq2lwmpHMELcvJIE5HFE7eKgnK2w+iOZb7yTt7zI3/AbHKv3QpSglYNbfOIVhX3k6mHy8PJcvdw3FFSO0A8bjgn6PsTWhneXOoVOl4L2BpuUtR/ROz4m4i1b6PxvYiVkpRWYlyrg1y5eu8pO9M01d1V5yqY+w3mXwo1jSzybhGrHQx2m08hMRwsh74np10qsBeQ1QBlscbxJpWSUtTdUBnpG4NRNYTxphSt9ixoG7V3Jvce4o7PSimCCDg3kJP+FpQSVHVqDBtKJYoW33ZspRCEnNEq47RkXFVlPcPvKXpRMFqQsiQX/e1QQal/31pJYzv8LPbEeGVXgqwBxEbgt0JB7W75XQKgJG0r2ba9ENWVbpBy2TvrBtcYXm+ZlCp6TBRByZU3LWTEGkvINUhVn4o3okBAq4Sg7pPXD0UtwOq6R7XMSdVyPhk+ffrEp08jf+rPmM8bw58P9P2B19snrFVsU+0CllIYxxEpFVq1HA8dudTi4nA8sI1XXr++frtfprySc8+WAp9ffuPh4UfMMZOTgKYFK2j7DiUUygri9IVle2XbLCrPtEOHzAZjT3gWptsrjTbYtmPzI/3B8f0fB7y/Mty1UAy9OZF9pGlaXGORNKz+RkgjCcnp7j1kuN1+5fbygrUD0/LCcrO8e9exPH/BuZanj7/QdQ5lWl7HgLQdMS2UZSTHO7ZoMU0DJRKj4Hi8IGR9v3pfaDpDLpEUAkGpKp9JdfWmG3q0TWhX7zuSgtAKIzNFlN1cx14cKmKKvLF+k6+IuBA9MUWsriGormmrTUuJ/cAiahBM1oaayBElBFkZYk40zlAKbNuKEq6GUkUGUfFWIVS0WzX6SaTVyFKvKwhB3+/Xgb3zmwK7bS7tqmlwtiHGiDUGa+v7NlOFDIhSJxY7CUcbSSmaKATS1DWClPbPkpLEre7IKmHrioKRhBjqaslON5Gy4gN92IhxgVIPqBS/66jr7ryQhSLqwe50uEMcNWFfY1Bm4PzuhCRC2QjxwPndgcaeyWv7/6m4/J/5+LuFqnOaENY6whdVCRnTgs0tyzozHHs2r5hGydAdsa4gS6KxDTHdcNqSdT0FdH1L02eIupoTUHSNo7VHSly5Tj8DBSUUOXs619PZltv8TCkC7yMhjpU9WqqqcFuglBEfNiQt1mputwWpBaV0hHTDqoRRJ3JKGD2QfMTplkPnKkw3eraU8NvE+fTANBZk1tyWK1JbXl8WFnGjcy1StgQfaM8WETXu/EdUGWhPiXG2dN0dL+MnlvEX3t2fmafM6/yZD+/+xPPLz5zuTxjrMOpIKCPhZshr3VFZ0khJgW2JXI6P+16cou0yZdU0neSHhwtSXfhvnz/SmsgtzbhjR44tfWN4137gdtBofeS+PXL+8d/x1//2C//yTz/T6oa+s6weZKtYbhOPw4mDbWgax0M/kLUgrh0qF84Hya9fJh6dwXcWMziEX4leMjSOZf2VzraUe82lcdy1Z15ngS+Z67jg5xUrBDotqKZhaM/42XOdnuiPLW1v6OV7rl++sM0Tum0Z+p7x+on7o+NyuvDb7ZXWGUo2GGeQwuKae1wjWbxkWxa2CMp0zMtXlGhxjeHr5y8cDz1JNKAj6y1gO8PTyxMhPqFVwzAciQXa/sC2bjRN5Vx2XUvrLCnXi6UQHaLofbyleP94z+GuZ3zVTPNIUoESC+hELpFtuwInlMkUk2pCWUMUHq0M8zaihMH2A4f+HUY4tm1hFfHb5y66RAqV59McWrJXFCZ075jDjGwKkkjRQC74OOOXzMP9n/j85YXr+IkiCzkJehTSSc73DzTtmZfXF9YwI0RExAZfMopA9BONveD0UIscnfZxrtt3G7fKWBQWZwdKtqQ0ERNo4VCyRRuPtS0xGGIU3Jc7/p36j5zEHYWNGCsFQ0hJig5BR0o1tet9wLrMD6dL3anbk+i1I5bRRmC1gVSLv0LF9AhR6m4Y1YYmVKnhq5DIJVSlqrDfGI+1U+kp+BpwkJUHWepCKd57cgq7bUvuXdeK1NJGcn9/wujmWwELEGOiaST9oYWkSFHU7o9QpBSxVtLbI9tWQxQ1PCR2S1RCqvreEcLwxnjMKWOspOkOSGERRZJJQL3hCfGmP7Usy37zBxC1E4n0NV9QKv307aeVAqwRKCEg67p+QPm2Iy1VPUisU32O627qHngqeS8wJSWJirUSomKzhECI2tHyW0RqhZL1Oc0lYTQ4p3h9WYhZVsB9rEUkFFwjUaYGtnLzkhcgAAAgAElEQVTKu/MeioScPUYnlHB4VJU2lFrgllI7y11r2JZCLqKui6RMEpm8j1at1ayT4zj0TPPM9Xrj9ann8GPDKhaQkqbt0EDwC6Y1WF1Y/IQstXOWc0J3LY3QSFs7gjn9LupAJHRJKFVB+GmbmUtg3jZM0zCc72lcg5UNPq10xiLv/oRxB7anv9FmSRGJLx9fKS4TvKJrBON4Q6pAFp5lfuLl9YVYLP1wQveSdXmpnXd3YfFzvf8lmNeJgXvWmIhSVB0umRBFLRBJjMuEdj3tYSCGmfHqUfqAs4LWCWTYuD79E9Ns6YYGgSfnA2hByc8Ya7nePEbe7dIZSTM01Y63Rrqup+kGcpFIa5EkcgRpW1oV0bZUvJ1YMLKGuJQWhJRr9794gk8UeYdzEkOiZEcsASkSMRZCLMRQqt9GCmKp1z6jJBKL3KlDdQKSUaYWcDlsZBEq8xmNtpV/rHT6Zo8qOVSJQMq1SwvkEmEPFkpjdstXIZVMphBSIa4V1VV3Zqu0QAqJNm/2w4q7E4i6YmnBew9U5XTJEanq3rcUsgaihSJnMNoRYyCLTE6hKsdLwDqLFHUX38iMzJre1FBjlLEyqbUllYwUCUQipIwoFSWWs6BtH7H2Ae83+tPhf7yy/J/8+LuF6hY9qMzl/B3eR4TO5AxSWqSIiJxZXgWH5gHd+YqA8A3FlN3yVB3MkDjddSxri98E43yjOQyIAjmYuogvFX3noBQE9Q3z/BTpTgYfeubVk5JAl4TRHS8vFZrrvWFbV87ngX7QPD9fGZePKHEko3E2UHI1bGjZ8PzyL3SuxwZJXEfG+RXXniveYlOEMDOOgSID45SRRpCmwvM888fv7plSYblFDIIf//BntsmTwpX39z9wmxZO/QdK+AtaWXIqrC+SD//7n5jXJ+7v/8jPf/lHju2xBg6ur/z44Se0dcj8K+8f3jM+j7wf7hlvX3kNmX//5x/p/tzwfz3/n0jX4MdXVNmwbWZoHG135PZlwQpozw3zbwm5PPP9f/r33OYRXT7x3R+PJDYuF8v11XBqDMbNpG3D6AMHe49VUNoOYTV9qyl5YxoSl/MBd+i5PU8c+g7zYNiWxOZvNLbQ2RZdCsIITpf3LOMrdhhxrLT3B3LeGFTLfP1cXech8PB45tB0lFL4bfqKCJ6X5y8c/vwTYb3y9PKCNh226dASjMyYlFEi4bdE0dB1PXGZuF1fuc0vnM8dOaY6amocrTvtSBKBaztSXOlby9dXSNnDdMUYzXS7UaLHSio+aBiY14zfJu4fHpCqYUtVbVeRHhI/BpQpFF8PYRQDBIrUHPpHtqCQMuDaFu81ScIWFqLa8CljbSKVleeXK1oXlvVKDL/f8JJMbBnCOCIAJQJFTryME5QD0ghisdxmX4skpzHWsPiVxIIPI85dCDGzrpmmfaBxjmW5YuSALCf6rhYfuURSLjUYsN5QGkIs9XPRKNqmqclZGaoCMguM7RAIpHEc5UCKkphnzpeqQc5JsqyBP47/gT+Z/0xjB4TKxLQiyYzjjV9+eSGVTOMAJDFuuEYyDD0palIuSFW7qrkElEiUovY/dXyXU0KbqhqO3u3XmtppS7EmkrVukN9g/lXrmHKq0wLjaldQiB2RRGW16sqrfQtSAcQckTrStR0ld7UoRu7dzUDT1iJu2fK/uoLuyl+d6mgw125QoZrScs60raXtYJs1Mb+RTOto3zWKw+HCujlyKt/S94KMMYKm1TWYtT/ewPqCQNNWW1zY6vcqhW+6UW2q/jPEsv+MuySgVMtcATafEUUhZA0Q1aBZTe2HmEnJVswftTjMJLRR2D01rXfdJ7ATKmroLIZKVhB751gJBTLTtooUIPi6CpBS/v3vS8Fw6MixygqKyPshpuK4lBZoo5nGTIaKgMqQZQ3AtS4hyORSRTSXy4lpnPjy5cbl+3f008pNvNK0seLYlKFpqxHQZI01mvK80rU9xWlyWKtoxSiy//35jwtkWUOM0c9M8SNoRfCx4opaweoDH84HYgkc++/o1UCIV+hPqObMujzxPH7ClQMkyaucKMVgnWd5CWzLwvP1hXGOqJe/8dN3/xtOeabnEazgy9ePKGs5DAMRz6+f/8ISBN//8D0NhtY4+vtHZNEIZoIwDN1ASZFNBgZnKKXj3bsjX56uuPbE0cB5OFHSwsv1lfF2o++gaTXSe8r6lcjCchtpz3fI6YUsNc8vr3SnH0h5JMQNjcQ2imsYiXMgti1580gM67ZiNVjVoGRmWl4QUmM7xcdf/8Ll4R9whxOsHoEmlhWxRcJWQIGSe4Enq4QIqQgozP6+l7JQEljboXTCs6GMRRfQuh5khcykYIg+scUFkKx+ru9XKufKmGrmY1+JrFrbwjhOQKFtOzYfcK4yiK0zIEDtu6kg9tBZpZlUgkImhBro0tqQUg07QkZpicyCECJa2z00WvfMY0govVJEJgWP7VtutxGpDIn6+0BECF8PvsZ8Uz47U9W9stRw2bqF2pDwsTYEpEGLf+X1/l/8+LuF6jQtdJ0hhMy2bXXXjxaJZujvWcMzKW40TceyJsiGnGFaXzhwrnrGxrF5T9NKnj5HhqND0OB9QGRBipIi38wwkZfrc70glFTHTlIScsSHSNfXfdVxXrH2xMPjiY+/TDStqLYXVbtAPihgQZkL88vKutx49/ADy/bMOE3E4HHGMa0zEQ1ecjwe8KvAKsfxYGj7ho9PK2PauL88soTAelsZLif++rdfMUpgC2TVMI1XLu86xunKw/EOnX9gnK50Q8M/2P/M08cb5/6e+TnweHwPW8/94UQJV757/yNPLxOX4z0/fPge7hKGggwKZVp+uHvgctJE9ye0z4TOI2INaF0ezoSr4dIluq5hjRODcwhmbl/+yrxlbN7qHlJZuQwtZb3RRsflfOGaJ0iS4XJmvj6TN0/XGgZrGKfAoAvLNhFNoqRIXCWmG0AGVM5cjGO+Lbz4Z+gVanZ0pu6GDXZA9YYQVuavn7guI2jHu8s9ujie//bPuBZEXGlsS4mB4CeG4YKSjo9/+yvvP5yQuuoNc0y0jSL4G/NcQea9rjs2WU0MpmONKyVEHg5Hog+gwo70CUzTDdc4OucoAkTeSCnx5fU3DocjrWvBe75+/UjbHZCiw8fMfP2VmEZ0Kawb5LLR6ie2uHHsL5TgKVIRN0suGqMN2W9IDMumWVZPKoEsa2EVkWS/cb1ObGHk0PdQ6v7im2fbb5BivYCu20zRI5qOeVlx9o3lWXcBte7JRTIvG+P0ihSWtnnA+4UiVub1CrLFmsht+kjn7hj6HiESKUa64YhSji1sZAJSKbLfgMi2TjirsE7iQ8Cae0pJxPRa9zGVoXUN6zbTGYOWF3wouEbz7uY4zI+sq4AcUFpj7IGhbfn06415XnFtV0NQRSGERJu641X+VcFZT/oLzkhUaWs3qFSrTYwRUbaavs+/J9NzqgWiMXV36w2ijxDklJAycRgGtOohyxrmEXUn1FpJP5xompY3YD/U1QBtIkor/FK/HaLuJAqRkTqQ0ZQiv43na2GYyXlj2zK5HCuejPytaHRWoaVmSfXnEHLXT5LRhpqcX/XOR2XvDEcEAUomBgFi38fcv6+SBa0KPpS9sI+VQMBeyOpCpLKOa0S6MmmrhCDtxJFahGq5s28TZCKZjRgdBV2DYaTKpCRjNOQ97KqUpIiyr0CAUpmUAzHVMS3ld4e9UgpnaxhvXRPG1eL6Tb1qdS3oX55LLRh24QGlygmkroGalAwpF4TayQgFSol0jdrfSxokNG3HcDj+d+bea8mO7Mq2HFu5PioEVJJJsqp4b/Xttrb+/2/o11ZWlywWkYkEQhzpcst+2B5I1gtfi24GgyEAhDgR7r58rjnH5Ho+cfwy82BaevWZZboye0Vb78EJDrs7BBZjCobzwK6+AxVZfMAKkFpw7n9NRhfKcBpHRCUoVIGfLaVo6UzLOC+M5yNJgZEzS0psqg3BX/Bzn4ttXIBkaLYbRu/Ydi2ju9IPgVpmPvjkZ2RRsq0kyzKxhEDVNoyXM8N0Ywwj0jrSEFC65Hj6Slk0XG9l3nLdfSTpghgdSz+y21eMtyPH6YzpNKYo6ExN0Ugunydks0cVJY25wxSBVCdE6zB19hXPy8g0nHn6cuH+4zvG4Rf++ucrH3+453S8McyeoW/wHlqzZyk7TCO5vPzMdv9HCJG+fwUJ49Sz0KBVwflyRKqC++ITVfWeRMn52lNHw7QsqEaQfELq/CBUVhXz7IgyM6ZZV/TIBYlEq4gssuUoxKxoSlUjU958ZHKHw/u8XQjeY0xBXXWEmGtohcznp0Cta/+EkBZILMu4blbydcN6TwwBJUNuOnRuPbeBlCjLPHpZu24pSJRlgV4rm/M56UlRZmKCC4Swlhqsnu6mLfLmR2YvbV0bYvxbbF5ieEMeioyOy8g7S91UFMqwOCBJtm2NFCoXgVhLXajvD4r/CMff96gKSFIyLTOn8ytVXVHImikOPN7/hsGOCDPTzzPGGIRMzG5mWq4cbwNt1VA5yTTP+BgRdDjrmPoFaRQhLCgZ8IC/9tiwEOKCqTSkRNfWvBzPvJ6PaFnRCFhmyTSN7Lc7plEj9ITzltP5RhB5HaPljnmZaZs9Onlqo2nLA+fLE58+/o7b5cg8OppNR1lsmMdEoSukDhhV0xYGfM3dQ4WUjrBYTKNIr4HaSP75xx8QsmHXNthpoOu2FJXht7//wDj+gqBGBqik58OPv+HzX37i0/0nLscjHx7f4QZNWUTifEeZIBrF+w8/0hWGqBPRCbrmnse2JFyvjCh+t/uInwfmbU0tX5j8QFPtiDYiqpqqluxS4LbZMFUGexroupLd/o5heqEwEiN3NOrKsszcrpayLHM6ep6RUROs57h8o9ndA5GubEiqwC2OtlH4IZvBUZ66LCiqDfPiSV4QJguzZ5KKsttyOl0ZL6+YpiROA0Jr6lLQmIUYDSnNMBv2mwPKNLz/9DuSEVzGAetOdOVCtJbRG8q6RmnB+XpEqUA/fEUvBZ/e/TPT+IrZ7vKNXwXm60Bd1gzLRGkSUQpCgGBhii+IwuBdQ9cK5mXJJ3kIiGDx0eZ0uZXIItF/O9EYQRAOrXJC1wtYxEK7ecD6BWc9ppPYm2e0C/u2WdfVitfLM4u7sb/bI6XBR5hmh3cjwed1Z2VadJQUpgLOAMyDpW1rTKkwqmYcL9hIfkiUEh+XHCDUJVLmC5kPFu8kSpSUlSBxRmtJFCPTMmNt5p6OY58HLllh9IbgI85NJGmRCpSq2G7u0FIzzwNKaoT2SKmxSyDEhbIo0UYRgiJFTwwWFyWsSCF5Kqm/PZKmhkV5gg8kAXVTcjkd+dP//J9gFHXbrN3iIRM4ikSMa3CTFQwTAmBzMj2uuCgyZNx7j5KWEE1ea4m0/p+IlGBMHhzfkE4CtXJVF+pGEb3GLm9bosw0bRpN3ZZ4m5XbfHPJ1ZJlkdZmntziBLkxS8qElD6/Hukt8Z9X+1LmwckHkVF1f9MshXD4aBFWkWJWiVOMa1AKEo5pSoRQrVfkXxUYoVdmGVXej79ds1NEyfyQ40O1BkjywJzX9JCEZ3EShEayDvArBiylgPeKhPmuNAu5qrEpt+55n9Ui8mY/e0nJnCrnPCnl9kIp08o7harMNBjrRG40AhAih1rW4Mm8hOz1J1fcihiR5GrV/PHXUBxZOc3BMY8UAWdF7mFfKQ1ZQc6e27qqcCECeg3oKXa7HbfriW9fTzSHB3a7hj+/fiHoim3pUYvBmA2FnpmGifvHd7lK3Fm69gNNu+X49BOX8KtHFWNpisBkA/VuR5Q+M3ylgK7KD3cV3K5fEarg5mdCUnSmICZL9I6xn+jniddpYvCJiOPp9RudbWiaLUZ2lPVCVVek+JFxmXDnG0ktPF8t2mikknipUSYwxx67QHr9hU2hOV8L+mmhKBN2DOy6kmF8xnSaKWT6QyoDI5b7Hz7h5gmE5TJ8plM7iq7j9x/3jNcjbhq4TSfG8YLedsi2RaXA6/FEsy2JNnAenvn22fH4/gOBF376OvEv//q/Qjji7REzf+P535/R1YZ2D6+nK5v2E96PlPWMG0CIDsXC5fiM2f+GyfYYnUOWRSEpRYGnYMKjlcnbh0je6iqPSDUSj1JhxapJFrtAstn6k/JQFuOyWgVyuDT4RFFKvIcleCQakSTOZTxbUZSE9bzsui4rnFJTaElI2T4QQiIlj3O5pS1fL+Q6nALi18ILKeSK1ssWpPTWpkUmr7yVfIBYUVmB4GXedKWSobeZ+xzz5igFhy4UJCjMylOOEVZ12PvMnxVCEKzFJZBqRXipN+bzP8bx9wdVkwgiJ9yjCVAkHAPWDZynkn7s0YWnUBBSTjL66PHJrnDjHcPtSiIxDAs+DrAE+qui2+fgg3Weaco8s2mZ2B3a9WllIcaItTnU5AkM0wm/SE6vPQ8HiZsFhSmZx4FN01KkHUncCH5gv/kN+/YRb2bePX7EW0cpBe8/7PkSfmLuZ/7w7gemMVBta4bhSigXnHUURjNPkfttTdkeONn8xHd49xGrew6fHnk9WlTy1EXkw90Dpmzol2fsPKJT4P2uJfrE0h+537dUCMy2YpkCh0PN8DKipUILwfvDBmMaFjtjyoCNFm0SXVXjiNwuN7YdHJ/PLKVhmGb65QyFodYbpEq83HoeDltisKhkcPNMdJbusGE4LVB1gKZpPiKZqFQglQIRDItz9PZGZyqCjwQjGK5nts0jzo00ZYkLI3NYMENBVBYRPIPzxKLkzjzkVVJT8Xw58mGviNaRXI9zlrKtkYWGCPOwICpBu92yabbYqPj6/A0dA0a23MZvpHChMSUuwDJPDPaKIBBcRGpYgsOLisGP9IsnRI3QDh9nQiGZiQx2ZrYjSI2UJVZOGBnx3tEPLySlabs9oZ9Z5jl3sceErkv66YZKPSaWtPUdwrTc+ldC6FFVkXEeLhF1zzA5KhOyv3FZMHc7UlS4sODcmDFV6SPeKUKaMlCcGiUjRhusyy1vf7swTiLCmnqVVCzziaq2OdShNSptSWR8TH+95ZBCXTCERF1XJBaUqolRonVEUjJPlhQ11o5o73IoKwSmZULIvFYSkpz+lB1IRSENzmWvo5CC0Z6yGiZKVGmYpymn5F1EqoSPzyhdsz3/E1xbgoykOOMRKKNZFsGf/u3f+PL1G48f3uFDQCGzV8oPqDABKucNyMxT5xe0TkhhCJk6lIefBOAxJq+JcxAp8zVDcJgCirpgmVQON/Gm0Ga/q9GK2a0NTsicVE8RqfPbsoKSvx8h5ICklBnnlKIAuXo3EeQi9UjweeAT8teVuhAeJSXCF9nXJuCNZypVBAKLDVn9WwfV4COYQMLjnMoBIZmVnkwG8AgZiFGSovxVvRVAygUKUhmEKAkrBSGu3epCBRIO76tVQVlg9aEqBUWpCUESo0RpuSrKeYANcc782igRUq2IqZXNup6bIZIZxFpl5moKgKeuFd5ZvJcopRFxjX+lgDZZyR2nCLLIFgEfQEpUisRocRagzdaIN8JBzINqoTOZJcQ3JSoSyXii2iikhGVMhFXdTTFRFCVN03A+nXn6ueX39ZZt3VFtDxyqCq0EU/Q87HbM88LHux8RpeL//bf/h/fvf6TZ7Bj6V9692wLf8s9JXNjs9qTxxu16oao6TBGIQTKmGSMNImiUMRQ+0l96ZG2Y3Ihzlqau8H7h5fKFl2Hi9mXhsDc47xCj4+X1K3f377hNP6PkFskHytJz2FQoKTjennk47Hl5OVLUWx7vO5zvuQ0z8XDHdv+Op9dnYgrU2vB6OfN88TzuH1FIvPUkbZmGxHG0FJXmdj2hhKUqDE8vJ9AVUmsGOzGOR/x0o24b9r/bcDmf+MPv/sD/IQLH1yNaOgSCRgWIE81G8uEQ8NNn3n9sGS9/YVwuuPhMfz6CrCik55e//N88PNxTFJGf//xXdPuJQmn65yO7ak9tRtx1xsYC0yperz2Pn36HqDoEGUkmgDF6CAKRXG73Wu0oSgWSTFzOV7ybqMqG7eYeUyjAozOBCxcsycW8KU4BTfZ/FsWKzSw1EU0MHikl1DnZH3xEF5kgIlW+XpVVkR9YAG1MrpEWYsVphXVQhuD9ej3LrOuiMKu3XFIUOlswyXWy3kViCng3YrTO9iQpviu0MWUah18/P5nemvQEy+wyJzblj1eURWY9q/I76zn9TVvif/XxdwfVKAqSSsQ0YmpFAHy0+GR56X/CLg4TFPXBEFwi+IxiMLrh7rBDJkEUC/v9I9++PtHbz2iz489/mvhv/1tFKR6IIWXcT1kiJXT1lqG/YK2nui8RznK/v8dZTwoOQk2t9nRVS1nekWjZt1sq02J0zfPrRGta7ncdm0oyJ8Ohg6dfrvzTjw+I1PHhznLTr9RBoBXsuwppewbncs2dFJSN4K5tiX2Pq2vKOqJnRUwWO48E55kvgeQtbhJcXr8R3ZE2dIzjgtwk7vfv+Pb6QlW3XG6vNE3BbCW3aeZ4u7CtElX9DrsILpdvbLYboi15eX2hbgy/3Dyq3dBfRlyS/OXLZ4qDQXjwwXK59cxqopYwjQtBCxYBWkTQC8vs6V+/MdpEdBEVz6goafd7hF3og+V4GXn/7p6v3/7EH3/4HRu14/V4QhLwzmHnXPF3lTNVWcD1FaEkXVMxjCNusjze5672a7+ASjydn7hdR95/+A3WZjtGSgM25rVgHRPLOHAeJva7B27XC4tfiOqIDTNKKa7WUXaeBQt+wE2ebb3hdluQ2uA9HM+v9NNCiCWmnFEqskTPfH3CjiMIz2Z34NZbpAm5P3tMCN1zGQJeWqKYqUpD8JZpdhR1Q9FoRIqoIjIuCfxCP1/QZZUB+FIgpCaIhSThNowoCTIpFueZ5xldCeq6xgSNiCWFFozLmRQd3XabQ0RG46JHSkfVtL+ed1KRhOY2nlgmRxSJiCIy4OcJQbkGbmZIimXKipMQgro2OJdYrGSaLSnWmCKb8m2wmKLAeYH1C+N4YRoDTauoyoLt5sD5/MyyXNE6D6rz4jCzQoiIUVDIgnGccd5ifb7oeR9zwjTOqNeKeKky9mldHYUYUSnx9Zcv/PzzT1hvM0rNOopyVS6xJOFWRXJNuEdB8AumSHmoWmeUvPL1SBKlrohJE6PMOCQyjkizZKQRZvWTrcGdtdErxLUd6W0Qizl5rLRYPwf1fe0fYw42KSWxcx5s8+Z5DfUkj0AhKMkBPMFbxavSGYru3ZpWJ31fw2utKErNNKyzl8wJ5pgSirC+/8xx+t6OniIxLSA8MRlCjHmABkTKzVsujIhFEnyTX6wUcilXSmTPmkaQCyWkVDlMJUAIhxAe50DIJg/qYrVfeIdSgbKoSK6FkF9vIVYFXAWUBLtkz5tc24dQOYwGFuciUubWru/1sxHKQhK8Z54SUurMyE16/do8Ap+93ulvB9G43uCzJWhe8jbtbbCOKSe0jYGkIKzv760qNqZIVTeY4crp9caHd+/5w6c/Ij8YNlXLMB1xacHbJtvChhnvAre5Z2sX+vMZHxJdu/t+3hrTUdf3qGLH8fKCjxMqdTRVzdVPxDRymxJ103K3uWfyPVUtOL9+QVLhl4V2v6H/jxPHp2esdNTqge3mPdHnoo+/fP6/Mu4sWrpmxtU7jKi423fINNFPA5fLiWLwFFrz7cszzfaO4dZzKrd8ecllJvuwp7/9wjRK7ne/ZRpGpITb+Uix2xGXmcvlwnWa0Mqw+eET0+2VabhQlgXDvDC7yMd3G772gV+eBopq4XR5Zf9uJY20BY1PMEmKTvP4/iM/fgz86fOfiXGH4spxcGzuNmyFZuoth11N3F9pm0BwjmUaQC+4ecSIMz//9f/krt3QH0dCUbCRO6bzyNAqRJtDRiYZ0AWz94jZYQqNj5FpEVR1s/rfWwKW0hjarkKqgqoumaaJKATWRRa/MM4eozVKJ4IIhOgIfkSmiiSz3Sc4m68RWjPP7rvPNFt8YF4sxoSVsSpxNqwlFwIf/boFERl5GdaKY5kf6JTMJQR+LR/ILOs5/5yLhJKSGKGsDZUoV8pIvv6EFLDLSj+IIeOtQnjDdaMUeCfzIF1WOfyVAsZoYvSrJ/4f4/j7HFXrOE03yirx8nylqXZ0uz233jK7Z+q6Rqot4zyy3z1wel0IIZuMH97dMU4Xkq4Jyuf6SKExsmHXKe53G47PE6Upc5IwOPbbmv2mw08zu8MBXTvqoiHFDKP1LnF5Wfjh4T33ux3jvBBDvglu65amFbx+g4/3H+m6PQVkIPzsKTHsm5bT68Jdt6FRimUcaTYJa3siYzZVm5Kx94hi4tvLT0gRqLct83giiNxm0y8z7z488vrliWkamOyVWrcoX6CMJlYlLnludqSst/TziWQsftHEeEM5zawuFKHjMg9Yv2BMxRQthW4ZlwKfArOY6b9eaYoWbWf6eOax/ESBY1GGIAJFKTg+P6NNRalKjpcnrD0SppHD5oFNc0B2NXYYqe823JZnStlyWSaSdAzhxGUIKARLtAhlGF4H7j/uOY+5Zk8VIFKB1rmJyRJpC41fFqZx4lYklFI4r1Ehcr0+MyeJE9ucqG9zm4woFKdxIMw1lQr89Xji5fiKEoZhXogmrwCtS8Rk8dNlbe2qmW6e28uRbbfJCp6MDJPAxhGBzOn/WHB8fcW7id22QKmK6CXjMLK9b9d2Ho8SBkTJPC/UTYdWCu+zMVRFgalKpnlmDiMvQ08lKppOo+rMiZUuI4pM8w7rX+lvF+o6Y39cdGtndUVVSaw954tUWeF9BU1H123phwGZWy84Hc/rkJMPpRLOOZ7On5nmibvdb+jnhcTMrb+ybT8ilST4kdJsuFwviHGhbmquNxCyIBKY5oHoJa1SmbmKyQpcjJRlyWIj1h9RVlGVHW5ZcEvE+xnnNEt06NLTDxnz05UKVQraast1HEkCQnQZ4C4S9bxn9/LPNAsPlNgAACAASURBVO6eoqqQSmZBDRjHnpfnb1hnUTrjUazNzOPgA2WVMkM55BBBBnZnxa0s5YqpIlsFRLYEFKWnqSXjWOYkOiG35qSElFl1jfGNMcr3fxOTxTn1ayuTyKvknLAVxPUa9hakiiFRFNk/6+w6MK7KXoiBwuQGHLv6RX9V/RJS+fwxc5tqHj5XdVOqrHrEmLXZPOSutoVCYbRmcdlfmTmoGaSO8JhSELxAoJAiJ/sTIg/NyoOsiGltkhJ5uE6Qm6NEQYpZ4RFFtk2k4IApA8ZD7nnPNP/EW8tW01ZURcVkS4R4GwpXMoDMKeIU6+84nrR6UZVW2XIQNUpn5FUMKodRhKTQEGwkBbUOvrn+MsXsCWzqkojEB4H6ToLIHsCyVGxbwzz7/+QpzqvPgDGJJCWLWx8e1lBaJFGVmh9/uOevn098+2Xg8dM7QnNmlhEnFLfxwk9BsGkM/fUZ6wM/Hu6RccaniqKqWMZfw1RClZBgsdDtHjH6gokdMYEpChbvcC6yKWqiMWwOG4R2jHPk4f6OUkb6eUDGgg/Ne7p3FURDsIYUDL+92/Dvny/87uO/UogaRMCrhtNrT7QRKQvs7YLEYMSG0+srjd7SqB2nlyNykgg8wTva+x/Qdw+cxILQNtMnQsQtE3/5fKLrCsIyI8NEpKNs7lBLz3y5MNwGXPCIaPBJsIQe7w11VAynF/xQoOqGpoLK1FyHmVYbfFi4BU9dlbh5pu1ano832roDBMllO88f//WfsIsiyQA60A8DMRZ8+uET19uAmy80G41NuZxB+iv9t4FgCjZNRZgd5WaPE5qtkhAEtenwc2QaFrQpKU1LXdV0VU0UV15PL7iwy+ziMaJlg6kKlj5SmZaiXkghJ/bP1yeirdkkTX+DHz59JHiPkopuawg+P0hJqUgRlNRIoQBFDCvmLiU8eXumtcS5QN7CvKHixKqexrXBLiusUspsEfjeYLfWCq8+f+tmQsiVySHlLYxRGfcmZd7SaaNW218mD+QcQCAzn3PgS0iF+5ug4H/18XcHVZlg7ie0rOkvkWhnNjuBkg39LdDWhsJkXqLWmV9ali0vr0c+//wfSFPgF8/yeuVw/4EYdogUOPx3zcYoTnxht9vhXa4HrQqJn3pKaXjYbbExh2u8czRbhRENZ44s08D7XcV/9APWnVFKMF6v7Jqax+2GaQrsyh3TOBHDjfEyUxlJfzrTX4503Z7Ddscv4xVVdpAKFhcwpuawv+c2XVn8zO1iUSJCYRBSMs6Ww90dx3HiehswbUnSM7Vs2LUHTsdXVJH9KY6J0/MLD4ffI8uZ2zQjhWDbJcrmETmVLLJCGnDSYrYtfQDlJnbvW47HC7p0SOHodlum4YndXUVRd3j/kpPNDGj1kSkAFeASdrgQloXLsPD+oaFqKg6HHV+/ZEC92G4ZLleWMHLY7DB+wOvE+8OBYejxMtBtGkRhcvqy93RKUYTMDzTdluAXhrmntOBi5Ok88fHjbzMqJiYe9htsseM0XWg6zSJndKqIIXK6nHClpaoMSkvOpwubTcPiNXXR4pZcpYq2eJlQi6TZ7unthehGytBSVi0+LFg3Yd2Atw5VJmKoSUFQmQ6pBIv1eHuFYPGTxjlLoTXEClOUjO6KUi1uSSSvKbRBiZhxUMEze8ewOO7ffUSIGx64uYHZOoQJBNdyul4IacSUDUWlWJylUB12WRBElC7yA8E007b3qLnIwRipmacFrXIl3+vx/P28C3FivF7x8ca8BJZlpG0Vl0uPswuhAqRnnB19f2FeJpROlHXD4mbGYaSuthSmzKBqq3Eu0JR3LHYmqYEYCtwiVl+h5HSceXZndrsDxBo7OYSIVG2D0I5huHI696RO8+7hIxsqlnDl9fyVpr5jGzfUpwO1f0dZN5npuILrQ/D89NMzKSa6rmOaZ5x3Kwy8hOgoS0WpSyarvyNdnM+e0LoscV58b69h9R/ud4a2iblKWWTV9y1UVVW5o/7N+ynWVTDEFbuVYfY5FEVGXam3izVreCmv+kN0SOHXm41ZFeAc1pEi0TQm+1BdWme7N9U0EuJEtJEU21VPTWvgyJLiRIqSGPX3z4O3NLwk++fIA1sS+euKMQ+iuZUrK7+knIxPMQfMylKiVGa2SrV+7SEHMOrKoJVZbQh5yFRivZFplRX3qUAIky0oqwtPa5UbeDCEIBFK5kEcRSLbGJSUkDRKK1LMvuQYBKT1xhyyksqK7oKIVoKmLLJS9TbMrw8JKQRcnAlR4WO2JYnV5xdDIMZAVWS/nfMruSHldxJTICWPKnI5zGKb1ZKREFFAEhgt+PRuz/W28MvTkbu/bvkYas7nHv3bzBie5oUleAgWJQ2zT1QFuOByC+KqdANMy0hQikt/oW02qLbBIUFVNM2BIqo8lMfEdbqyDIGmK6jrHSEFtod3+FfDP//mv9GUG9qHjuO3n1nmmYo7MAud+R98+O0/Eazn5XkhViCiJIXMmb0cHUVxYLfb8NOXb1Sq4fQ8cei2fHp/4OUkMKVGSUm7eY9IZ7QIXOYrO2XYtJHX05lAQbCSu+2OECKDN4i6Q+onQpqp2obbeeR4i9gpsr3bkOyELhTz5BHG0wgyZ3STg1u30wVVdLSbA/31iC4OtI3OhQECtpuReXLEaBBa0TQtgQnKESkEwWketp9Y2omqEUzDjPOBsnK0LShj2OwK/CIIcST1C5OQaAM+XpG65Dr1CFvQ6BavPMsCl5df0LJCuUeCKthuO5IKFGVDHXOGwzQFt1v2AHfthqutGYcTIWqqerOu6hUBjwoRSaCfZoyOaJ3QCEKYsT4iIhRlg5ERG2YSBUYqKAwMI8poArmAQ6ZM6ShMkUWc2ecmTy1JApY5+3QXl7MCEPE+C1hSZU8tq/FJSZ0DjOJXDjEy5HvK2jhaFFUemmMi+F9/tv+rj787qDblPZcw0dV31GWkrhqu5ytal3z4+JGuLNl0kkLueNh9onpfMPUBN0Zi6HFO0jQFWhlUkmw3DyhtGS5XhIe2NBQisulaKr3D2p55GsEahB+pjaJVgsWVuN5hTGRftDxdvhLnhUZLirJCyZr+dGE8B+43LV9uJ6Q4s3iPMY7kwJQ5GCG14nh5whSO3eMOFxVSGNrtAYRhCdDuOxg0Sji0LBmniaruCIVH6Ts0Xzi9nOjqjrv7DeM1sniPagSzt7i0kESk6QyOG2iR04Tqiiy3nPorIQXaTcQuM1IbejcRnGe69ez3Fd5MRD/ihGeYf6HUBV25ZRzOJK3Y1g9cLl+5XXra7p5Bek4vnylFQFd3fHj4PU3aYMeZrtlRmpLj6Yl37zpu/hcqVYHQ7Nr3jEqQ3JFYKupUEqXEqYaUcqJxvFqavUHpgnnRKD+RksNUO3AXZFTIYHC+xxLZdg/gBbONbHdbruceESKSxN12s960Ek3VoFFE1WMdNLLB2SUrWhIQBcs0E/QFWQzUWhHjgpcV/TRQyNXno8BON7wb6bY1bVdhTMHpMjNPC5tuS1PXnN1CP09stncgDdFLhqlHREHXVixLwiVNIWtEzI0q911D3RScrj1RVEQMXlhMXDg+/cK85KYuOxlklW+gp+GE1pGi0DRNR79efGRw3MaJKhjeBoDj6Zw9a0X1/bzrbwPWLlT1Hc6MuDlRbDq0WGjLPdM044cLIUBTPZJGiTF7jNoi5USMM4ud0Uoji4IYAsEnVCupNEjVomROolaFQWuNWwSm2JNSAWlku9H4GAi+IMTApumYY4HRLUoKNlWF9gHfvmMTN9wN74l+S1lvaZo2m/gRFEbz0+fPXM4XtNLUdY11jhAjLnistRQ60jQKgSH6X4M53jtqnRAxraGn9J8qTbU2pOAIgZzqSRBjxjfFGEl+tQSsXZ0xRKQKGdtk31bha/gmRsCu/tGsPubATiIlBzhiKHISPfHdmylSRCqfDa1vYSnehq1ASgGChqjWINWqbqZIio6U2qx0vymfUayge4f3ghjKPPySbQF5yAsEL0ghrwXzm7NSa+1MlAsidX9jQXhL0ds8zAfBm6WVlMfnrNB4wECqyDe39D28JGQEKZjnCMjVm7uqy6v9QKti/d5lVmxkLaUMPdMU8WGT1cy19CCJiFbQ1gW3OecbMlLnTTFKJBwJgbMxrzNjXO0Pbx7gSD94rMtBw6xQ50FXiEwtsIvI6eoyE2WFyIqrkQFpIrvdhq9PV758eeH9/UcOco8fExwyJxhd0pqGFAK3eSEp8HHi9TQizK/3y89PX9jsPrJtJNN4Y3GJsnREVXB3eOR2C1BFXq8XSm0IVlEheXy4Z1yuRATvHz5Q6IBNhsCWw11i9if2zR3DdEWVkdfLkcNmy+G+5DKdudve03UROzmcqnm3f0SqGRMEMki6UvPDbk9dCKybMEXN6eWZD+8+IZRifn0hxZnbBO2u4YcPj7wcb0RdUe8esJcLt+krp9MTe1MS5cwwKuqm49S/8PLSU3cb+v6K3FUkYQnjSFu8w4WRIDKMX5eC0lSotkaMOdRXtkUOWguDVBnL9HI6c7i/53oaqbYdT+cXhJFMy0AIE939BhscgQpdw+7+gDQlm6IjCI86GManV5gHQnmX54wkoJQUm4rzzy88f/53to/v2LYV13FEm9xWN+mC94c/YplwF8ntdEUgUcUd/XHm0+8/EpMh2i1lXVB3LX2/5OuOEdjgKRKUMjEvkVgEVKmJYyIqjXUDGkmM2VccneW6eA5VgVdvG4OFEIr1PIKqLjG6wNqZwlTYJaALw+yndc2/evtFQCuJkrkJM0WBePOZi0zIiCEQyeSQXAYgCD5bbt6sWsZkRTf//o9x/N1Bdb+5YxoW2rLlh3cKISqQI912wzD0dF1N1yX2dcend/9C22r++tefeNjdI0yFKjbUZYuWjtPxhUJq2rrG3wyKxL5skF5Qt7lSTaIRomC321C1iWEOFHXF+TqiSoeuNixhoj0cOA4LxiiGW0QpT9UYQjBMPnH3fsvr+Yr1EGWgNC1LcggioxMIA8ehR9Ub+usrdVWji4y1ud0ulHHO/iVZAyUieqyAzaPmeBpwCUyrGaPFDwPDDR7vG5Y4E5NkCY6uLZhTZEov2EmSjGez2XDtHSE+Z9U1OLwrwGkIiWkcUQlej0d02eQGHDFBMTDPklo3uPEFqSS9BT9KQgVdt4PZMesj7/cfUb6h2RjOTxdEjJyewDqHEAPLmNgcdtjB46cbsdyinAC15+Guxr+ciHXDFCImltS1YBwHTGGQIge5jBmxvWAyjrJu0EHh3ciyOKKCy2kiCUkhEsIZ3GgplKSqa3bdATsHlnnJ6eRmw5QclVoIoUdogaIgioWURppWM9mFomgxRLRW9MOZED2bbUeKDq1qLqeS2V8oK40sZ1zQPL7/Pa/PLwRhUWWJS5Ki3tFutwzTlbpqmKeFxfdQlXhvMKpDFTWNkQSZcqMMC01T83w+I9iBnHl5PQOS7WaXn8YxJBvQQmHtF4Ss8EGwLI7r5UZV7bhdn3PgI3X0wy9ZpV9OCGe4L7vv510MkXmaUPKBqhTMU2AYNUJt8XbOFZFqhxIhlwaoBSkUbvEs/URdd1h/REhNU+4pS4M2idvtCmLhsH3gdusxSrHZ7tBaMw4BJRuW2VMYRdtopmVByIgSkq48sDGK9+8+ME0TSkvwJQ/iDxymjjiUBNlSVTVVnTErRhumaeTr169YaxGlZLF5SBUyq3/zvFB0eTAMPg+jSSRUUqS4IJUDodZVsVoDR4kYPJfbQFFAiBtEXAfAEFEyEP2CdQUpZY7h23rLmISSChtW6L6Iq98U4A3nJNY0ex4oERnIH3xurMsX/rxsT6vvSwj96yBJ5qQqGambCmcNy/LrYCdSDnNVdUmMKiOVVlvuG/ZKmRzoilEj1/70N2xXrmY0+dc6UCbyJkeoDPhOMd94YsoDXnYOhLVWtoAkV0V1ZdImh0wOQbcOzivHdPXMSuGIQa04rHVQz69AHgoJOEf2A5P/XqSUU/dtjTaJcSryg4ZYFdOU7Q9J+HztQCDT+n2IWbVuumyBuK7BkTzArkr3WtMZolyFgPUEWtVYJbJ32PsiV2EaSRRyVb0D222FEoAwtG3L+XThp58b/vW/v2f5cmKpZiglbb2hbEpOr6/sNjVxHFgcXKyjqP+GuBAlpS5wrgeZw33WO6wbMUNBfxtp6oa6ypD4rrtDETAVqFCz2AmbJkYfmZeZjR6oNUw24sUTMgZu041xdsgETV1n/yWezX6D2ewzJi4ZrA182t/TlC1RFpQCdCz57cf7fO3VLW6csojXB/b1AVFJUtGwKS1Plxt1lZj6Ea13aNmT5pHm4Q9ch1eG64V4ELw89ygt+fz5J5Y5MFwD21YyjT2VPpDEwq03/PjDHdN4I6REP1xwiyW4C+3dnpevVxA921ojlKbrNizTCRUaSl3RasP5dEaVKpN2LgvLQi5/KRLSlYzzgB0ts/AUQTGeJ4yu+fFffkd0C/1twMiCtjCo/chy6zl0ETlcKJWjbu8xKlGUM69f/0RVbVBhZH46sXtocKcLG7Fl20Yu5x4tBLvtNnvFo+flOLI97Ek+MHlBqku0Ghkmw/37hl+eXtnddTzcbfEikJbAHCWF2VKwEIRnGC0bXUCKiGARKJyJLLdLphIlAzIQkiXM2T6TK9s9oAhB5upWafL5IGOmoaS0hrT8dyxeENle5W0uNymKkjflNa//+U+M5v/q4+8OqpuuxN8/UFfw+//9t/z5Tz9z2P+Wpq15Fl8Rq/+tqnacX14piw6pLNu7ElMI9odHnr+eCO5GVViWecLoPUKEDKteU6vjNNM8HJhGsAR2+yabsaua18sNaSSmKrDeECXI8o7LeEOGwPF6pmorurZiTDnFtmk6bjePHUeG4cr93QEfF0xxZbYaaWam0LJMf2VZrhSu4d37T8zOkorA0+WZ2jXIUGQigTRsdpHeFVyWgfv7Hb98/RlVRW7jDcR7nsefKCuPjvdM45EyCo7XE4kefLkiJFqWydK0Bi8Kjq83KtlRtxJVeG63K2WxpW0euAwLspQIFajbHacRCiLbaksUgetyodRbTGcQZqYJNU31QN3USBdwdkZvBOfbK4fCMlDw2G0Z5jNN9wnCC42WYBxptpTNHdXuwPX5hWBHQrIU5QbrPKYy9NNCVSgWP1BKTVEqRjtStTXeOUZ7Q8mC4AcWt7B7+MQ8L0xxQmsoZKQQDqygVgVJjhlsXG4QtqIxknle6DZ7vF2LF5Yr0RxISRLiQjICbRqM96gUEUnjnMM7y3a3YWNgnhMIRT8tSNNTNoLrZaD0mihztd/xeCKmGedn+mFGyMT5ciMkjTQjXi0UpkJJzTL3TEtEFzVGzyx2pDINloCLmv3hI3fbHcOlZ+49wSlqfaPQCesNnprgZm7LwPZQ4K3lcgnMbiAR2e83DOOI97/2Khu9oWskdvIkGdlvHimLBjdNbLcb+uvMx49/wC49wzDQbTUpLYyDzYNUUpSmJhEYp1eE3FGWVVY1VJmTni5RGklVVDjrUdIT4jNdt6Mu9iQ/E0UOAhHzjV8KQQgC6xOn8RfMULDrDXFOzLNZ11MaozVlUaKU5t/+7f/j9XjMgYDgWeySvYlkPIrDARpnwS4hY1eURwhJitmP6YPOXeMpfB+MUloIKWF9mVXTdcqLMWB0rl4l6u8DaDZiRspSoqXO8Pjvgaj8b8qiQEmNXdPjSUTSG4/V5LatjGVK34NUSuWVvPeQsS9vaKSEJKNmgsxtSmL1yYYYKUykLDXTJL8HqWCF8+MRIhJW7+objzSjq/yKkMo2CMEbuSA35hSlpGk6/Pyr1CfWKtOy1LStYhjVf/Jz5vh8RmJp2eCFIYmQleVVuZTKZdVINN8H+azyZotDaSSLlYj8gqyTf7ZCtE2bazFTrp6FuK7m8x9D9IyTy0ruqnZCQhNpSp2Dd0sFKuRZP71N9C5nAoIiolDrjfZt6C8r0DLR9/lnLniPUGVe16dI15YZPxglu/2ep68D3771/PjjPWWrWY6ScTsiKCmNyeEUN+HsjPVQd/e48PT9df74wwfaGl6ee7rtBkXg+DJgtgdO/UAIC51qKLxinGdCvNJWBaPzXPqeWVukTBTNllo7hLeURcPW3DPZG/P8Cqrl8eE9CcHSj8wxd8fPi0BqQd3uuZ2OdN0du8OG2+WFaS7oHu9ZYqQuW5al5N2733M6/YT1kWhKmnqPMp7n6UayDfcP79kXhvO5x2w2MG/4H7975Pl6A1/S1PlcfuhqJht5Ol9ouhZrHfsPPyDtwnj5hbJ9gJSQGEJwjOMrswvUyaNkIIwz2BsAstpzuhxp2z2vpyceD7/len5BRU2cAyk6jLjDeYnSkUv/grnB+8ct9nRmRGBLy73dUzctaVMyOYuLM719RfYjm8MGVXg+vN8Q48QSBlThsCz88Jv/haa2vP7yGV1I0C3v8Shh8UJTF5bp9B8UseHSv/I0vqCM5HyamWIiuXvqUnK+SR4+bAnjV6LfosOWolAINSG8JdUlwgqebzd27QYnEnawCKUwXb5mqUJjXQExMfQ/cVq+IiScr57Hd5/YNAvJGXwoMKbC+wjCEJMjEXFBUhaC5N588HkwfcNivQ2hSulsDfIBH3y21ax+1X+k4+8OqsjcF12WNVUD7cZRFpH/n7r3aJJs2a70PhfHjwqVqirryifQgKEnNFoPe8J/zkGPacamQTSAp27pVKGOdsmBR9Z9nIAD0oxgTLMqqk5ERpzta6/1Le96rq8kpxeXb46NZnGWczcQwoiWmtvrGw59D4Xl8PwVEQ2maDBlxZmJ2SVEldmM/dJT2JZhcfTTguoz1ujt9YbD4wtG5jrVhy8HVqsAWmDlQD8cCIVANAWqXXE8nSmriGLNLAPd/IwNE9rPKFoKUyLSwv70iJItzU5w2D9Th5YbrrAhoQtNSJEvX85UtcP5gJYlVlr6c6IqG4JoWZwnuDNlWVFWgsHucamkNh5VRYZlROKRNJiqIoSAHRdMYXICWESWpSdi2ey2jHZACI0xVyjZ4vwB71rW6w3jEKk2DefuPT/t/hOTC4QS6tjyODzx/Xe7DD82Dc/9nkJMrMp7XAJRV/jCZFC5XxBLZLYdrdli9MI5eSYGFC2fPr2nkgEhFLrQPO6/Mo4LP737jvM8U1SR2c+4UXJzVSFkwRgsKVqYBO3qBjtaAhEPIBSkwLpaMZ+fkFoyTo6yqVCmJArwKtL1HUpY3JzQdUBpTV1sGGaPtQKfZiojcB7G8zNNY7CzpU9zVsHPJ66uI9erlmmcWUZNjGdO3QsSAQq6cSKJSD89s8wTWpqLmuYoVHWp/xMsCPpupJBrmtWa46GnrVrwM1V5hRQet0wQS4T3HJ+fsaeJ6CxVsYJoqMprJtszLo5q2yDCQt0E6kZxOL2gVcV2/ZaYEnZy1KZiHH5Fgai4pTBbDCciJbvVG0xlGPqe1fqWggkjNaqqmOYzMQiqssIbz9XVDmsD1kUSC5GBaUoo2WDnRJAROy8Uak3bCCQZhh+dREiL1o6qWuUqw6DxVlGWEu8sShrmqSOJDudHqr3JvuigkKJEXtLeINFK8fj4lV/+8gvOWpQuWJy9eCUvambweC7NMDIPgv4CySYouEDulzni7KWJiEgMeUCsqxZrcxOWkHmVGJJDKoEUee2f9c3LLJYCSiQUOoP+LxaCEHL1Z91UeA8hpFyDeQkXlKVAa4NdxIXXGnNNZ8o101KGS+OSvKiNkCc1j11mlkWC+DUsl1Jmf8aQCD6jnvJfjIToESzEFHAu5urF9FrnGpDKImXE2nhRA+HVviBEbqx6vfZvOvFFTS2qvIKNIaue6TKoxxAQeIpCXli5WZ2MKZFCrinNLNNICDnMkS6kgOwZjmilmWL21EIe3gUCqSTGKOb+V37j6/sohaCpCsAT/F/RHr4dAhJNVeBTyn5cGTP/ioQICa0ilZHM02UAFv9XT13dFAiRWKwnoS/826yEK/JNuesdqJqyzJSO07nnw8cjv/ltS/iLQ7wD6pmxmzByjSocHSfGkCiXgbL5tQ89yop+7lCFhtgyuJ4pHKlVmWtwS4GPA4vNRJaQBhQLLmbO+Nrs0AaCEAjlSS6wpIALGlWu0MJSmXv+7m//F5Sa2X/6H3z4yz+w3rachiOp0qxXJVf1/cUz7VCjolIeVUvmc4eyuUCDELh/c8fTg0NvNFQKU5doPyJmKIodzkeK0iMRPH1+ofnNjxgx8TIM7G5axm7kZtcyfP3Ibtty9+Y7UrAgZq6ubuhPJ8p6TbUSzNOIkTWqBKkjwg6UtWF2E0LOTP2Mq1bUVU0/PuGi4Ll/5HQa+P39W4yCKSTmSVAkyTCfsEnRlhAnR7PaMfYjYU7EVrK9WfNl/0f+eHji+t0NFIZpnjgeBraNZrtbcewnzr5Hb3as2hXD/EwINbff/czDy1cOh8Sbt98hTj1qvUHbhbHvUWYDaeaw/8p8lpzHmZ/+5i3z4StWBcalxa8cfnQcX/4FlXqapkYsB7788kT70+9J3cjzwwHe3VKu16gyIp2jqlccDxOCFV2YaXXLdrvhuA+8nB8YnOCtWVPUgaLUGFNdMFiR2eYNj5QLghY7TwihkUJSlr8yUZXSeO/x3uNcBPk6uCZC8JcmOsk3PMB/gMe/O6gKranWiqI0dP1Eu26IIdCde7ZXFRjLy2lg8g4pLNWlpCMR8S7x/stHrne3bK/vCR7KYkPZXlEOgijOoAxGKrySBFHQTXu2Vxv6cWS7bekHj9QmN5Z4jygF++4FaTTDMtAvJ253v6NdVQQS/Rw4TUfaqxv2xz0hLNTrClmBSDWzs5yGR9abLc/PR1qxI6WEdZauPxCj4uvnPdvt+mLWFzlQ0khiLIkcmeeC4/HM7e13PDxOeCsgLmzWbxnHM9Pc0dQ7xtGyXlUYU2QTcxJ03UDVGFwITIOj3awoRYUpax4fXyirDUjJ7GZkIVCypChWuBjptqZqGwAAIABJREFUxw4fHb5InE8LQRvqKmFHTz8HlAi4pee5O3J/12K1Yn86kpJnHjva3YbDfORuveF5GlnXKxbrGZLj6Gfc8kw/TKxbw1q1LN5BYVDVhEsSaRTj0iN1gXVnzoui3VYsfkACw+AJxQlUVnIeHj9RNDVNseI8H1FFRRcEE45lWXAuIZuK0U50zlJqyewdaThidIERLevdLUVV8Yc//+9YD3aRxCVCrCmKFYEZZdboquRwmvGpIAXJMI7M4TNleYu8eB1dbFCyRCBZ1Q1TP2OaLaVeY5dHytpgrWCxlm5IKN3hY8Q5SI1nmQQpWVIMROf59OkXfrj/jjAKnpfP1FXBuvmOxS/088xsC6x1zNWEjzN26KnaOwg5TXq929B1C94dKArB6TB9+9wVuqEfXyhMoCprJnvEpYr15grne5pV4tR9YpgPSKlZ5hpT1KQUmOczTb1DCMM4zazqG5Yl4X1uGSuLrDi5ZaKqFKSC2rTMY0ArDUnj/IJEE52nNRVNLXnuX5BFJDJTtQWyu0W4gugbRFrDX9ViCpGY5pE//flPdF0HZC6fj+ECnH7FDCXihVyhZOYlh+gRSZEuKypE5l/GlLmZQqaLIqmIntwDfuGLxpjVAyE9IapvxQFZaY0omTmazpEV2lwrlZ9XZ/XUeX5daYfshywKcVFoZR6l0muiPeUQmKkZ+l9T7tnnGlBFDihEry9DbFYqlISq0iiZ13c5Qf+ralqY/P+M4TWMlitYY0pUpcptf7MiCQnqwgRIAXkJkaWY/+zFaHAJ74FWiWmc8e6SsiZ+sxsYk+typyl/g78iuGL0CAJlqdHKsEQBOqueImV0VQoLMUpivGiaOc4Pl+ctCpnfD5GH9ERe+wsiTZ0B639d45rSJcymc9XtPAmsy4cJLo2FyafcRS8yEivGHDz55jlO2VdrbSImBUiiDwSRO9cLlTvll57LwRw22y3j9JWvX07c3taUsqA4SYqy4XTukd7z809vGcuGwQ7MywGj3n773HrvacwKaTTTHJiThVISneWqXrE4T1GUDMLinKMoFH03svgzbjHcbH4gMTBPM1N/xEjJkhL9WBCXhNGSUgee9v+MXUZqMaNXBcVqTVomRCNJJWzaN/TDE+Pkqbc3vLvd8XV/Zk6elakR1chpfOa63qBrA6lmshPCbFBqi3VHRjtwmC2FFog+kGTPy8sTP/7wji8P/53H44wdHTJZisoRF8XYWd6+q3j68siqvMbGwMPDX3jX/J7+9J6pg5vrN0jVkSjpJ4euDVEIqrIleEsSOYgXUuDh+EylbxAqsvgBa0rmuFBpzfPnD/z4t/+F7Vbw+IdfUOsbNq2h9vD5+EI3dahZI2pF140UUmNuDB/efyWEW3Y/tBgZmUY4nTv+59/9Dc+fPrKdS1xc8/7DnmkWbJobSis5Hv9CeBIsouDupxtSrLj78Z7leab2uelPS8fzYeH+u1vCPJAIMHfY4cjUfUZqj7QCN3SMh461cWzLhTfVCr8qmfo94fyAsoJoLI1PbLYKbyPf3f3A7e2OIeQArp1m6qZiWnqWJVCUBqkUZbVlmUZiSMjc4AJCoIoifwc7ly0/l++xEB1VY7CLo6pKlM6NdJWpM2HkP8jj/0ZRrSnb3Jc9TCNSVoxjz5IWFl8zzgvb7RWn/oCpIh8eHiBp2tWa4ekJGxaGaaGpC5KC0c10T1+IAUypcttNcPgoCFEQUbTthm5/ZCk9s4tsVzuG8QtpVPTjSKEnhhG6uWe1WqF1xefPn0lYumFis604HD5iihFd7WhXJVF6hm4huA4pBP/57/8r/+2//a8MfZ9Zl0XN8XRCqxJnI227Iwafe9jtMykq6qoGuRBdiZQapQPbzS3TfEaknMo72B5TbKmbW6Z5T4i5LWWOFucXkInJjzgHzWbNMp4pm4phWYhS0k0HiqJAyZbZy3yK7OH3f/cTf/y3DyR1x8PpiI2OsAQSDZvNDT4aXk5P7K5WyFLRWcsSH0nFQBIwu+7SpBE5a8HD1xNce1QqSUbig8P5ke1uxyISz8OZJQxoIymagpfTC154FBEbEk0tsMIynnJT1KpoqdqSqAPWBjQaxEIprilExSAEk4dlHqnbFdOUOO4/UaxX+JT9dTYIanOFX3rccsQbSV1Gnp/2SCVAWvq5o2DNPGt2VwXHYaCkIYhAFILH5yN3Nzek6GmrVR7654HgM//TOwVa45JlXiJB2stqN1HohqeHjrJRuCWwXd3ilommbYkpMgweIT2FCihZst3eUZZ33L/9iWn5gnUj+2FinA6gJsqiQcuW6B1Vm2t9V6sd527Ghz19l4hBcX9/xbIcuNrugBcATG1ZF5LFJ/qlA+EooqSuNiy2Jy4JoQpiXDKonwXrn6lbibNLhrgjSaHA2VyvG4Nks6mJaWSZAiIFTNXQdWe0LHHxjBINUjcczwfWTUsQmtFPnF5Gzv2ZtjUUtKSnNfVTS3IFMbVIUeSF7gWan2LiZf9A1x2++UNfm4JSunRxvyp5OgEj/TAxjQahWmQUpBCRwoLwOKcv66hLYj5lj6uzC84VJKFzgCoIBDL30cdIiFXGM8mcAi+0pDQF3ZDLHeTFK0lKSBGYlxHnypx4TzEPqjHkMoOQcF5n/NRlmMrqhcj+1AsPUYjsTxUE6krnppikLyGrdCEGSIpsnc3r/dfu+stwrlQixdz89Rr8IYqsJMts69AqFxHkboGsikuZm5xsXmfka08CYsIUkrYpGAZPTK/Kb/a9Spn7x6WMEF8RUfGvvKQOKRLEXNf46wgsIHmQHucvnFORLlGrPCAHPzHPEecvNoxLzW0e6D0+TAyDx3n1muvKYSguobHoGMaICwUp+AvMPavxVWkgwTT57GO+JMRSikgRc6VkcN/CWzGErD4lRaXAh4CPRbbLyEBZtzRNw7nredlbfvvbGwZ7JDyBLzyrOmHnDpUKVs2KGC3D1H+7XSo9Y6odvfXM7gQpIm2BJXEQFqlbwixZhgmCJ4QZJRVGbfByZFp60jyjdW4RQpd4PzO6A26GYBM3QXF++kShYVU3HE8Dk32gakqm5cjYA6lAoNFGIXTFabS8DJ66MgQpabY7TscD/uQxStMNPT4lypCw9sASHVJZmkoQpUKFwN39O6LQvLyc0WXBcT5S6y0qLfg5/y5+ffzCavMb2vYaFRNagg89U/eMkeDUzP75I81dSdefGGeJ3NTs6h1Nq1nGBY2kTIIqBZzU4CaeXgamJRLwOH/ieQzsdldMh0dadYNNM6k788Pv/jM27uHze/7w50+8uf09b24D//B//CNv3rxjd1dRCMXioXML1g0UEaSfGfbPDG5CKo+SDburNRsj2a0T3TJTqoLH4ZGhqIiHFYV2DFawvbpB9Qe6fsGYhDI1w/jAFBPDPFBWFV8ODsnIti3ZrDa8//QRbM3f/qcddj7xj//yb9Tf/cT1riaFHq0Mox14d3VHEieO4yPazLRmRoRAXBIh9AxTx2Kg0C0IiSoUShk82S6ZkgGRmxdRItexXgpLRAKpDO06b3uRGh/B+cxPnd1MdP8/8ageu466VYzzyHbbcDweOE8DyJlDr4gaZA1pVoii5XT6ipACJ2CeLLd3tyghkFrz9HigXVXM/sDURW7lG2Yx0o1nEpHQS4KaOfZHhEn0yx6hdljv6OYzVtWczz1//3c/8PHjJ7QRlHVLP31mXixlk1itDW3bcjh+ZNXesqre0mxK3n99z+I7alOihWF/ONFuK1SRKExDWVc8PX+gpOK7739msT1FqZmnmaZuUKpFF55pkTTNmhgVdgm0q2tCKqmrhAsT4+i4/qkEuVAYQ4x5jRaixwWPlhV9l1ivGspCcfaW49Bh9BptmgzmlYKu7yiqisN4YLu74jTukSpSmoovD1/RxrOuSnobqJWiqFpECV1/oCjg5XSkkkX2o2iIBmZrkbLk+dQRk+dkAzHuaVWNiJIZi5sPWFFkpE5yLIeB7eY2n9CUp60AkZitpGwtzGs8kllENpsGXbZ0X37BNAJZVCRJbgqKgmkZmIOlTDukTtRNgWdm3a459gPn2bOqS9w0UJYeGWdevj7y8PKZn7//nk17xal3zKNFixXPx5nzqWfVNrjgMbVEhISPgd3ulhBq5hhp2xX9qaeqa5J0nMYDKQrq7ZYUNSTHMCeEWRi9J9qSutFcbe4R0iJ04NxPDNMTxkBZbrFu4u7+HpHgtHzMHdEiMYcXhLFcX13hbcLaMyKVtGZDWd+BjLTbSH+eWBZJXW8hGgQld7c3vA6qSYysNzXLfiYx4GzP0PfE9oa6ukOT05pXu7fEqIlxoWryoChVYHFPxFAgkrzcqPNgvtteE0LFPPZUtSYSGcaREM5UlaJdXVOVVwzDhA2JJAPLMuGtI1y2Hm5ZqJ9byqXEsSLQ5uGAdGkzERyPR46nJ0JyWQ2NWRmNGYx62fDmNLqSWYWdRo+1CmU8IiQIAlMnTFnkVq9LHSZREqMn4hDSkNCEGNDyEsBJHmMMPmhCBKEiJEm6oKliVKSYB6ok4iX5npAyr74uwl4O5KQcLFjshFaKGBqSeG16it8YpcFDesXAXJTdQkmKQuFd/tmrzzQrmP6iJudw1mVyz8rupRlHYDLaSXqEVJfXzqFVuAyfl4GZyzWQQftakwsEIiBzLWN+eJROSKG/JfZfY1jZn5pLFV65s1FcXoiY0Dq33SyT/Ia7Sa8BtORQOvtpM0g9XRTl7Bf2qcdZSYzrvx5vSfFy2SIxTQFrBcKoC30hFxfUTYHSBcM44KMGH5BZBEcSKQqDdZ7FCYKMmXxwkYiVyg1CQxcvHlvxV7xIjxAQUsHsxOW1jSAk6/WWaRx5fDxze9sgRUXxKaJ+COhmTUKhtEAHTdVsePbP3+6XRmiO3RPWSRAzrhP4pKm2a0bncXOHEgvJOZQsSTIy9gum2FG3KdMaYsLPjrpdcx4ccbKE6Kn1HWotid6z2t4g44jRFSs9413HqlgxjILIwvn8BVJDszb4JWLDC49PX/jtT79Dp4YoHPNyYJ4DWpVMU0+1vkZJgylbfBhwS0AbxfXNmlIqxj5hlWNZOpRpub/eEc89daF5Pp1QxpCE5Xg6I1Piu7fXaLNhOA18fvqFu+0b2usVnz494+c1ovTIWNDNA8HPpJXhPDi+e3tLsJYf3vyGh9NH3n96oCnW7HZXfHj8iNSKsqgwpWe2B9QZTFOjREVAQbHl3Xd3fP78zME/Uj5XBCTGJNJ5YmUMTow8Po60dZWJOGVFWEbOU89pSujtHbHN9+1P4wMhClrdcv3zD+DOfPjwB+pNg5bALn+WJmsp1gkXTjx+Xdis3hEiDCycl8S2LolR8PV4xAtNtUt8/fyIMpGDnRB+YDzMuCKi08RwOmPEDskeYyrG8YBeBDIlpNgTrGOcB7SHbnrh5s09ppmRIRDtwO5OkULNpyeb6+21zq1yFPiYueEpRVSAZV6o65ppypiqoshtW+I/zub/3x9UD6cX+lGy2Wzpx7x+qlc7uu6ZzW7F58dfmEJHWW2yebdqKAqBKVr6s8faCSEU45QxI92wsNvVOXIgYRhzNy0JijKw+JnBPlGU6yyTC0+UuYfcx5Ah19HQtGvCnAgRXHT8+PPv6Yc93vcEX9OfK9pGI5Ql+mvm3qPMglAVQnn+/PF/4+rmDXYqCSz44Nmu3+GiQ5mBqZ9w4YjRW9r2mkTJ8bQHNOMQMYUkkJVKU+YP6NB5bm/uEDj67oxUJWVVczy9sFoX1PUVbpaoemHV7Dgcv7Ld3rN/+YRsVii9wnrJECyLPbOubvINQOz545/fI2PDu/trIjMuzCShCeLEYg3O51VX158p64JlXmi3WxBgx4GyaVnGmaWICAzGNDRmzTB2zPNCCC1OCkpNDs7ERKFWhMLl+jVtqNuasdvTrHacTntcSuyqN5ynESt7AorKVTgfOI8dqlR0PtJZyzidWdzMNM5oecLoyNXVdwxhZr264dxDXS2YsmKacmJ0a95Q6A2blUekHafziKAmxsDxPLE/jdy/2RAj2FlwdX3D2D/ysn/k7//mf+IP//YJU26oV4aIxRQDq63h0E/oYsXN7g2FrunHE9JYkkg0dcu7t9/j3ERZGXRRczx/JqYzV1cbunPPqXtht91S1xJvZw6HZ8rqClQEpQnJMrqeZZ5RYkYSCUnjQ2QYDiAdVdkik8IU+aYvVKRe/+qvc8uUfb/es6oqTlOP70EYjTYRjc7K9UpnmoGHZZoIvqCsCqSa6U4TKeZ09+l8xJjMqiQ2VOWMUBPWQdvWDH3HZv0GKSvO/QuqgBAt2tSYokFEjZQFdbPB9IqtuaaIV8TUIDHElFuClArYeaE7P+L8xGId3oXLev1XHe5XLFRAFzlxaheHC5HkPbog47SUykzOlMHZSb5moiJNU6JVSRwuCKQkMiZJOF4TsCnlOsUU8mClVcY3zbMALkPRBdAvZcytSK9oo9egkEik6AmovJZ8bTaKkUKH7Pey+bvoNZz0ylCNPlwwWJc3NuV1m5TZe7pYefFx5yS9jwGlEnVVXKpTExAu6X+JVg6lM2cyxF9xMnltngNNpZGcX9f+l8Et2wDcZWi9NDQpvg2UpFz1GqL+Rhb49fph1VbUpWQcJElkO9TrzyFeKid/tX7EeFGHU6AwYF3Eh1fyAJdDQ6LQitJohiHgI6h4eV4SiEhblxRKYy058f9a3kCi0lBXBYt1uCAyPSDFi/2CvLJOgXnO1y8vfNXsyc38XiUK5sUjyEO60pLVes3xeOB47Pj0yXB/XxFGSyXh8csXlustFAofM2C/Mb82ymlR05/3NO2KrlsQyqB1yeIySzOJmRQyecSTsK6nKFp0GUlKEkKirTSHbiQ6hUuWldmwqa4RUSEKRT+dicKji4KHxxNVVdCUBT7MFHWRvcVeYwdBdbPh+fBEU2vurlsqI0lx5OWlZ3t9T98HSqNIi2I8v3BSNc6vsKHHFBv6cWC9E5yXkb5fqFc1spUoq2nLW8p3NR/f/wkvDff394RPX3DLC+d5otnWuHFGqJbj+AGH4r69Yzaa/jzy45sb+qVHeIGIkdO5w4mCoz1Ryg2/uf+eh/4B2ZZ0PvLu5paVG/j+h+/58rBnWRJRJ9pVxB4FpoHn8RkXB07LhK40aUlY7Xnz7g0311umxwPWemJV4FMuZhiHA1QlsPDD/fcMx47npw+M3cwPP/5A0hBMovcHovRYu7BeKVQFRXKM9oyODqkjS0gUjUTLhrJtwAXwC3eVpJIrpuUF067Rpmb7VnL880Rbr7j7eYO3E0/DmdMYuN1dc3zqeDr8ke21QMk14/yCjFvubkuU9CixInDGdxOFqOkeP2KutqRwwA0L7HaQHG7WBOvQwjFPmTNtZFZfg8qBZJECbpqom5opjUxLR1Nd5SDtf5DHv+9RlZ6UDLPtOHUTm9UtpWkYZY3zAW+hrddELxB42tZcDPeO1bZgHBfihcXZti195ynNO+ax5zwNKNFQ1pplGTCFYLu+oe9P1CtFjAbne4paUFcNIY1stzv2h4Gm3REwXN+84V//9d8QNwIpIm29Zpokbb2jqRucT7zs/0DbFCCumaYzq7tb2nqNsxZByzRYhJ7Yrt9yOp/oxgeifUNhctBhGCzrTYMSW5S2BBKqcEyTZbPeEMXC48OJqmhp6xpnLcM4IvTMqnpLCM/5OdYLPpYgIy+HPbvdlpRKdCnwYuFmc8df3n9GysRmW1CbFSlMRH/GqIZ5USzWsV2VzH5ksrmqbRwiTdNh5A0DT8SkWWxHtzgSJbUsGYYDShmMzOrw4vdINaGNwfkJgcDohrpcczw+AIlz39G0LYeXgR9//C0hRLrhhFA2+xjHgmf7QFGUqELwy6f3rFc9ZeX5+OWRN/cbbD9SGg9qYH88Eaxi6p9ZrWGaQBWRvgtIIfFzQNYKZQxjr7DOc3Vh2/ogMlc11jS1QK3ALh6fPMEvlHXNpr3l+eUTiAnrZ7ZX1/glcj6/sPgDzilO+4W2uUbpmuimrPgtZ7ZtwXlINJXm7dWW52dBEoGX7oVxPrDbFpjinrZ2DPMz11fXVGrN2Z/xLrcWVVUNQXIeXkhxIEVNoSE5i8Ry7vYs/ojWgm1zjxLZLCl0IMaJr49/+fa5q2SFsyM6gvQlN+t7buqAVCZ30F+SzcFN+Diy+IkUG6qiYbFHpCwyNiVZCm1YlkBpDJUpCDOZnFCsCLEkyJECTVs3HPoX+vHMut0ilEcqR6k3DN4jdEGxGK76HaW7Isg1pjaIJHHutY1Lcdw/UtczNnjskltOvil3ZBUuV2oKSJKqlLS1ZOgkzkcyPzUflrRW+JB9wiRJSDlIpeWrWulJ4TIcXZL90uTVcfCvyfx4UTsjSr2yODMkX3DxWJLX+zGKC5T+IlrGSMKSwf+adFlny8uFSBXxfmGeU1bnL3JfjCnjiVCEkAgp5lAfkJLAmMwoHMZIvNQnRhIpBuqqpC4F0+yJCVTKAQkfAloGBIlp9oRYonS2EmQlNqFUgCTxr6vzi00ipkihZW7P8jGrwn9VR2okVAZsgJjjddkSESGJkKHgLq8QlU4Qs10gxADRIwDn5GWln/2t8bJ+L0uDd5lvyyV9nEQkkQ/8SsE0BZKQxChRMpskCqloqwK3WBYXvynyMeYQlqk1dWOYpgkfEibGi2qdDybVuqAsC2ZrL6979hALIZFSUBWCZbbEoCkKlRnbMiFlQVk12NOR47Hn+lojsJSjwDPw8DKiyyp7nadsD3t9mGZFOVQUKVGpNdv7a6ZxBpmo24oQS+Y5K/vruuR0XNBSs96WHI4943gi2AqUIcaZ+7sb7LQQbIE2nmnpstf/dMRZz/PTifvbW7pzQIgO0cL1bkVwAWct+xdLDJbZCbbtDY9PD7gwU9UblL5luxXY5xd0kdjUBbM9M08L03xitV4xTjPHfYFdPLvdFTEm+n7Gh4CLX9juMod8fXNDs77hautJYiDoTImZ+4GiEbTbBj85nvcjylT4DjA5xFjXKxqpKI1C6AKpAlNY+O//+o+sy4qySchig6xbfvjN70lx4Tzu8UPk9oc7rBc8Ho7Ew4GyOWG0pRstp7mjYmEsNhTAy/MZwkKIAe8UHs/jpxPrq5L56Nj+dAOxQKgGo8/MOjANlp9//p5/+vzPBCwxDYxDpF2vUVIwhYlGVQQpSGXE6UB7f8VK1QTXIpZAZQyhW9jvH+lZ+P32io8vn5H9GrODIQ105z1iLnGlQJuWh2FEGqhLOA0983lCFjbPvapAh4rKTPTTyG63YrNu+PzpK1MnaKqZNATWN9eEcKKVG0ScWEsJ0VLqBhsm2vKWpAPYhN7ODOfEu6sd+3Pg+dRz2Dvadvf/aLj8f/Px7xJdretomy3n44Szke7kcEtuTPE2MycLXTKOPbpcsh80GBY7sd1prnbfs1nd88P3vyeFJndsB4EpWzbrazbbNVVds/iRvh+pygapFNN8unxplTg30rQNWhmkEggp+PT5A/M0UegCU5T86U//g0Jr3tz9jA8dQh9ZZss0WVKC7foOLZt80pwVwzDQDydmO1KVW4IXuHCGFIiuoFBrjLxBiJLjwVKaAqNz41Vgjyk1ShZIUdEPM82qyUUCxwPdcMIYQ4yaru/YbtdAYHEj8zKw2VY4P2HdSHd+pCo1kzsSUqQsE0oIlGqQVYWPYwaMhxqS4Lif0HJHtBUiFShW6KJAVxKfoFmvc6hABpSaOHYvLOnAEgcmuzDbnq7vIWlseAGhqcsfmJY5p1CDZxiOTH1HVWaIeTd07Pc9/TCgSs/jy2dUUSMLSTe/4NJAobd89+57wBPFiPMz52PEhcAwdXRDz3qz5v7dD6xWVxSFoagSq9YgVaBdFRRlwdeHD2gteHP3I8FNLO6M1pqiVKRUYMqG69srmnVDUQtQjrItaNYFSxhp2g1Swv78ibJqKBtDVSdurq6xvmSJhkJtuG7vcHPH0/6JUhWIuaAtK27etHx+eI9gYR57/NLjZwtRYmdYra54c/cOJRuEUFTNjqa9IwlHjDk5vVoZ7DxBEFSmzr9TacC5IyIplKhY7BkhIs5O+HnGnkfC+GuYqjKKShpKo1DSs2rW1HVNu65p2joPiJrcYBITRVFjTIF1M9MQsHNBoWqUTLy9u+P+9p7WrGn1Bhkj48mj/JbkYwbEQ/69ILDb7kiQodZJ5gpbrdixZfOyIp0LpFxTVi2mLFCFRmtFaQqmYWCcH1HljF0i3ouLcf8bBymnwV9T8SJxuy24biLRWbzPIQrnLCnlISD4VxTTayVqRBaRkGasmy9+UcFrm1FZFshLmcPrYJnI9Z6mLNC64jJqfvu5EBf0lss+0DzmpQuf0OVGoyReGwAgXWgJMWBtbse5RL/y370MaS4E3KWO1YfX0FdECUVZrBCpuNAIQCCRUmXmrTY4l3JATSpiBO8XpCLXZFouz/V63QDh4tt9tS+ki6c3s0yrQhO9wNqUPa3fEFsgZEbz53+THHa6vGPROybbM9uQB9HoCSHbIhKBJOYM2g+ZopAtAdnbSwooyTfGbD6sZDWbFBA4nLeESymDIF3wW7k3vW1rptnj3GtxQFbuQ3AYo9GFYp4DMcQL2UCSYlZfk4iMk8cu2UMcI0Bu5TFFgS4k82y/eY4Rr1YPQVUX3NxtkaJicRota4ZfEk4bktas64o6KMTQ0Z8O3z63U9fTlIZjP9Lu3mBMiUsWnyynk6U7gyk1UXQsS4+3kbLRKLFmGi3LMpNiQVM1mKJgmixLEvTuxKlfOJwOPD4+MvYz3aFn26wwKTOyp6nHzg5/ijx9fWFZJvqxJ6ZE9OC95bB/4PHhK935yIf3HyhUhZsts114s73D+wHV5PfvdN5TVRWr5hqjaq4330FUaF1hKkEQgsN5oL2+QhSKQ2/ZvFsjyjV3Nz/Tjz2iVljbkdQ937/7HT6BkAuVFuz7gWpVoU1gWE6sNteUxYpte8WqMbxcdxbPAAAgAElEQVT0HwlK8/bqDW9vvqde1cQk+MuHZ5RJVGUgTob3v3zGBkvwZ07HJ7QsCJNFCYmWE+MZhu7Ax49/yHxhJZh9z7HfY4MFqVitr3j4+sKf/vgXDs8DfedxS+Tr1z2H/ZFhOPH0MLBZv8WFxOeHZx4OTwzW8nx65sPnB2ZVEoWiadd0roc4c7VqKHRiTo4gZ26/byn0AKJjGRdkWaPCmBukmsTbt+/YXgl0U9JcV1TrBik1zaagblq2W8NxP/C4P9DNC0WZmz//9P4jqYi0JHZVhUsz/eGICpbl9AWVZmRw3G4UTTVQr2eev/4z/unPdF//FWFfGI+fOT9/Yj48USyOtZmR4Vdby//Xj39XUS0KxeJOXF3d0HUjKUUWO9F3Ez/9+JayKuiHR5RObNYVSmyYxgdWG4OdNphC8ubNW+ycII0ICT7ONKsNfZ/rRp3VGX7cXtN3C4Vq6IYnMJvcrFMmQsin4X54pip3mCoRRc+HD3+hrg0h5JP1l6+fMUWFKRSHl553P9wTQ75pb7eSaZpoyhv2x6+EJOn7B97c/UCZNgz9QN/3vL35G8piRWSiMIahf+b9+69stmVOyBmPErn9YRx7UohcXd1wPo8sg2O7rVivG6annsV/QegWKQ3eQ9Ua5lFTlRX74wtalMy9p91IHh7+ANLhgcMhMbuP+FkgXcs4HIl46uqO1WrNOCSkmDFmjVAly/LMOH6kbXYoUbOqPCo64vzIlBbqdss8D5yniF08UUqqRnN6HqkqT4wD+2dHoQxte8eXzx95U2tOxwdWq5bT6Uy7NqzWV0QWlAGtC67Mz5mNOSmub65QsmSYP/DmzR3LpNhdr+i7CaNqbm6ukcKw25Y8PT2x295jJ4cpJLW5Q1+XgKWttsQ0UumKsFjKYo3UME9nyjLmIRDJurmlqRKkClNqTvsHtEzUZU2wI4NLGNNSFQoZVywUmMozdjPFKoILWDtQXq9hbqkEnE7n3NyyMtSNYhgtSgjGfsaYksU9ooqETC2d+4qSK6pqiykSh+NDHrqba1JZ5354uUU2Ez4MbHYVJINWNX33zDxDVV6hdUb7KNUCuUZ1tM/YyVOUK4QS9FNPdIHSTExLVjllpRGioCk3mEpz6j4TfKIpd/gwUpmG3eqWqmrzUOIFdplza0ktoZippGQZElXVcB4ObDe3bDctz/uvLIukqW7yzfysqPsKOReU5o663pGUJIaEw2FqQ3foWMYXTDUzu5nT2RMC39qR+Dasvjoqc7a+LCXWW/phzIULUeCdQmqRV+5B4MNl+LvYBXxcsDbgfXlRL1+Hy4CQEe883hd5sPpGPMpd1wl1UUpfCfuvdaUS7y7YrJS+KZFVqVBKMM18C0tlxdCBsDnc9RriIX1rfNI65RCgUN8CZcSQA0FIUhQ51Q+XBLzIHd5YfNCQilzZ+s3bKi/reYcPFy7rhY2YUm7cEgLmSeRSCZUn2JRAiUShJSFAutTGiov6yGXIDSHgnP5mT8heT0FRFNRVfaEr6MtQHXL4NUYKFUlJ/Wp9ePWnhogQDojZmsQrS+vCWE0BIQMxFaRUfCtRuCBUUeKS2vcZWi4S2T4SI1E4hAx4D8MYsk87BKTQ+TnwRCKHYyTR5LcgkANp0aOKRGk005jvLdkTnBVhHxw3N9e8fXPLPGYbilQOK3uU3rCqS+x4oJY5eDP2v2Llnr98gqZl9iXDsuCV5HR6pmkNh8PCNEj+5u9+RtDQdZYYYQme0I0gElfX33N9c8vnL38iIXned7x9+z1VPXPcnzG6YR5HNs0VOk2IFChLQ7nSuFFTNjuevvyJT6dH7q9+y/2uwfv8+i/LGYWioGYZFwILf3r/TxRFjYoN52mg649sdt+xu/6Obnimrg3d+cTLyyNKQRIOkRRSyUzNYEYFiZRwHj/gXabQCH0iyYm2vWGxJ/pJ09zcUvoTVVEgVUG3DFg/0pqaGBOncU9MASE3xFSy3dxQlAVLXxD8DE6gy3wQVX5DUD3PLy+c/Ym6WqEWgWkVzs6sTT44p5OgWa8xtWLW2VN8eHpGGk0hDJQL43DmensFWqJUZOgH1iofIJtG8ec//AOrquXtzR0hDMzdBDozqEVURDejCfhlRowCb3rO5zNSR+bJs16X6EJTN5pVU9K9HLm7uiXMFW/fvuXP//Q+U1mSZacCSknuvqt4/28nbq9btrcN3mnm+USrDd1hQMsWOLNu1/z5X76wvr1itdpyWxr6ZWBJinkeEayI7sxsDWpZuFvdcD69sN3eMqqJtm7x7kSyJXbu+eMf36PVwv/J3Js0Sbal61nP6na/vYsuM09Tp6p064IQ15gwweDH8gOYwAzMGDCWwZWQBFxV1alzTjaR0Xi7+9UxWJ4nryZlGMiQ3CxHnp6xY2d4+Lfe732fd92siEHw/vXH/0/D5b/Px18dVOsmx06Rer2m7wbu79dMk2e93mLyyOu+Y73ZMU3gl5xhmrB2YZwsmVwT4wQSfvnwiRA8zapE6pTePV+OFAGMfCB4yTRGYjR4FzG6YFks3TJz+5Dz8jJiihmtYVkMZb3CuRE3ZozjK9vtltn2vOx/4f72G+5vf8e+OGJkhsgCl+OIziJN01LXBZfeIJzGKMU0JvB8UTQU2w3LpFg1JT5C3/doPXHYh3TqYUHFhuenPU29IniDpmK4pITcw8136VrczG6j6PsT1vXEUOJ8h9Y5QxdYbQtczDicnzACzntJ224wpaEfToRZIUOHlC0ey+JOTJPldvtN8t3GEe/OmCg47D2Tf4YomYcSt8xUpebpaWA+STa3KyIwnDs0ltuHHd1oef40M3aR6puMGCTdZeDdmwytS5pqj5sNCs/33/2W/gIuLBil2W49/eVCWa4Qfs397Y798TPn8ytllZHHNW1T03U9Nzc7Ynimre5x/pnZz+RqTbsyxGjpu5nFnxGURN1xd9dy2luUsggx4WeHMbd4N9LmJdtdxeFwwVrJbneDDC55+sqa8TyhRM8yDQRXo7MLTk7gAxrIEax0TbUqIMyURQFdR9cvrMscpoHl0NHcZvTTM7PrCC6yWa0Y5w5tLArBYh2TfcGHmcoUFKZECY+whjyL4BXb5jfIbOZ83oNYmCZHloPJFrxXVMWaGAKL9cx+AqOJUn1940nN5Bf8nFLxIc4Y3TC7gSgD/TRTNRukjyx2INNrSr1CZj1KTFixUBUNSuZcLgNVYzh2Hct4oirXvPn2jnEeWOYFZWqQLUWZ+uKLrGa3esPh3LNMM/KysD025KFG0GL0CiEzpJSIEJBG0Q89p9Mn8mzC5CloZJ3/R1zLLxNRGg7jdZiRQjI4+LB3nIbryt6nFpWyMNRVwaVPVatKyKt6GDFGoE2GnQxfoPeJLPDF/5n8fjHGa2VnINcJBzXN/qviSBqCciWvQ3BSPFNNauJtFplGiYB38jqERvwVyp8CWCr5Y69+znQN6RpDiL8O6wLwziJI9YfWzcxLRMhr21ZM3s1lGel6iQ/llWeYVulKgVIphGWtxl/ReUJ98dQmu8S8CEJMYxdCXgkEC84FHDmR61D4j3JtdWkoy5xz/8WakYZJHz2ZltRFzWlO6XmpQAR5DSa5VEdrr0E+HYhcm7sIhDAxTIF50cm3e/WmfuG3Ki3wLgH9xVXZDFHgfSo2GIaBfgpXqkGyMUSSF9mHiXPXMcweH1XCmsnr34mOPNc4F4kiHTRCCOn/LTrIUrp5muKvvlpIHlulJe/efsdmvcavk3q8LJ66Mry9vaHPF/67//G/5T/7pxVv7wVy+Lr6rzYrFiG4axq64x4Va3LdsIwCDZSlRQroe1BC4BkYOkEmR3AKJWsW2zH0R7RqyXPD2J2oqpyq6BFCkOWSsskwpWfoL0yuw46OOl8j/YXefaKoFc2N5vXlFzK9RRkFQpOXqV66G3qC73EjiFaiPbz/vEeLDBEEU5jxbqY/d4yjpcgNw7jHZAUBz+n0ilQqDbPFitX6G+53LefznqhmhqEjLwtsCGRVydoIToc9hbQUssWpmptCpsPtfKHvAyjF3V1DsCPOKrIqY3aCTGU8Hz6hqluW0wu59AwXl8oajKTSd/gA8xzQJkepkna9IraGw/iZyIIkIzcNPmjO3YWmuSPLNShPkUvOxz1No8iNYI4jWkG1LiiKkjGUlGXJpql5fH6l0Ird3fZa/qG4u7ljiB0+KgptmOcjy+CQ9xV+/kTXWYyoWN8/0F0uIFsq3fA6j1z2r1e2r8A7y/tPn9hVBcvznsU6xmCpNwV2ipT5lkoFzKvg7uGWT5//xOWnRx5fZqrdiv1+JmQn/vL5I3pzSze/8OlV8ObtjsxESiN5efqRZbKc5sj67luimGlmj1Qt9c2ZD38e0USm+cAvjxdm+R+PovpXV/9aKqrsjvNxSC0O80LfzSglmOaeS/9MlmnmKTD06ReLUjnjYBGqw9oT79//hJAOqaAsNfPoOO47imxNsBlT51hmy+Pje0QUOKsRsaSqcoRynI6pmrNpWopiTYw1Q1dgbU4UqVVoXiKr5oGmTi1G1jlMntZXeVbx/PqeaU6rjNNxSi0cSvGHf/J3aF1x6c6YXJPnBSa3uDBwOD4zTSeMkuw2G3CGqmgx3JHphu58ZrNqISqcW8gLR2Ti9eUAPgGOpSgJHrr+mct5z/H4hMpSgMkthqpYs72p6XqLnQsq3WBciZsH7NwxzyemccAYRWYK9q8nuv6Eix1KG07dLzieKYs1/anAuYUsk4Cibba8uf0t6/oNOq6QtqQpKprSsWkkw6EjKzKslxjdcP9ww+3NFkGgqQ0K2KxXTKNjnkem5RlrX8hVyc36nnnsqIoFvKWqIk1d4/wFouV0PFNXK4Z+wPuRsAQ0Dd4qTudn2nXJNE44FyhyjXWvLOOAHWei87TlDWWmkEIhREJChUXSFG+5v3mLUpJMm6T4zzPH15Fv3/ynvL3/A5KKPK9QVCx2ROcFKgPBQhYFisAwzXhZ0Jhbwiw5Dwes0Ny/vUNLgR079q+fiL6nqSqqrMYtIypqhC8xJilwZa7IhCLXglWVFMymKLD2jFEQSL+059FByPBWcdj3QEmWlSz2wmwnoswJ/+jMKGNDWb6hyhtW9Yqb9T3rZsPSC9bVHZt6zXSeCMtMaTKwjlwa2qJm27Rs6jVGRmx/phCaUq7JVcU8p2atS98zWUuQnhDhcDxgrcW6GbtY5tGmUN1+pH5WiDHibYnWNyidAZFwxZhEB8en90hxIiti+rDgBhEqpExqC+Kqo4rr0CbSYJeZtAr1JO/tFwXQWY9RyQdpl3CtVr36HBHkmb6qX198nwF/JQqoKwU/XNfAxEgMUOQ5Rkucu9YIxnhFP/nUSx8E1ibv5JdhSsRIphVCKJz3hODwwV8rYAVKJZXSX3mtQshfkU3LPDJPnhjUtVHKE0JihyqVkGyp+ek6UJOCUzEsV5xS8ryK67AvRUASsUtaT6fBPCXWg08tP0YbYlSplOCqWYfr8G6MuBJI/NUrkIZRraCpCrQqkg83fh1WY4xJEev2yTJAJOCTX5yIjB4t0we2uHaFR77UnILJUvlDiPpq3fgyFEa01lRVhkBfCQohralDRODJMpjtwKkbr/ABT4ohC6RQ5HmGdY5uSEFI51OzjvcpGKWVRpBQY1Lq9LtEpo+8okhM5XRQ+GJJSI/1es3NzR1EdbVIXO0vNhB/OvHnP/3Ef/8//M/8q3/zhM8rst3q19eeZk9W1BTasK7WZCJje/sNSq2o6jXv3r6hOx5wY0cmPJU25EahfKTNM+a+Y+w6hHPoEHm42TEML8zDESMjy9DzcLemKTzj+YUmNwiR4bxnYsT5kdv7b/j9t9+gi5mAwjEjpEAree2BJ4XnZOIyFziG8UKmItYKlGkQomfoOiSarMpQpsJHw3r1HWWVY4xjuBzxg6K/jHSvh8QHnaHrJOME4zRiMgsHz85s0SIynhzLYgnassxQlQ+EUBDjSKYyVnlLHB2F0MRw4fXpM4VS4KCqCpZ5JC8NRZaTqZrtquZvf/MH1nnJt29vaOs1N7s3CKXo+sBvfv8tXX8kulTPrHOTanT9QpXVfPPwPaXZIFh4efmAXzzr1YrtpiFGy+V8YgkZUud8ePyFVbvh/u4G4kSuSm53a6LxjIslDDO4kTY33LQSz0SgYLSWfujReYkIgeKupZ+fOM2PWH9mdCS/exRoVdIPJ54/vmLnI8fTif2po59n8uIWpyesKPj2b2/INy31mx1hDUErnOz4ePqEbtZII+mniG4tcTnx/umRT/sT8+Dpj2cupzMfH9/zy+MeuWqYvSczK/7pf/63bO4zHj8fQfTk+muZxX/ox19VVMfecLtr6PszRheJvyhgtao5HPbc3Ozo+o66Fmy2DfNUk2WWxQlMpgiuQMqMm11J34GIkvGyMIyvrNYSI1dYQnoT6UB36dCqYrV6QCpBDJ6hdzzcblCy43ycKIscpQpOl44QTqw33yAwaZ0XDM5mvH//CSFnqnLLYi1VVZLlKTHeTyfKosBZj10i3UlSVTXLMjKNPbvtPYP9hW6a2K0rCBXn85lvv/2O6AtitNRNwc9/WRjGZ/I843juU2uT7ZkHQVa8xbtICBYlW5zfk+cNQjqmecDZ9KH07uEHnvdPlBX0vacdAnGGu+0bTt2H5N9dLHm5oVqVLMtVpZOWw9FRlAXBgTYr6nJit2rJchiHBZNN1DeK/eOZvMxpNxtkEJz2Z1CSUm2oijVzP1FVOat1y+HQgdTU7bf04yvj1FPVtwh1ItiZLM8piwyCJbiWm80K6xzLuGDUA4hId/4ZO82otmYYRwpdge+o6h3dZSEzgfPe48YLRbGirNaM44h3kbl3VHnN1E/U5T2aBanm9CHvI8f9GWks223OPA0oAePc8en9j/SdoywrvC1AC9p2x/mikDHD2gt1vuFyOWG95fbbv+HPn97T5AqhFmQumG1AaMUySDIUVZUG3Hl8ZuzS2jjkE9hAVgu8EnTnA1qM3N1uuds1XLrkqS2yCWc9dZlT501auy8dpPGEsigQMg1MJldoJYhW/Pq+O+5fyaoKHxRaVVTlhrFfKHRBbe6QMjKePiBDoMo2qZiCtJG4X3/H4fRMkJYoHWPXMfWOqqm43dwgyJFWgZvwcqLISmQjmN0CrsG6hXnpic6zmxuUlSA3GHOD0qlNbHEOJQTLvHB8+owIR9raoPOCwEJ/6vEhoLW+ru0hiJh63q/fY7wOlQaVqmLdl6BTIFyboqz1TJNN6p1MYang3VU9VCkNHyMER4gCgSX4iPOaEH0KBYWkVGud0vvWJRU0XYS4DrIueXIRX1mePqCvyCq7CEKUV6VRXhU+f+1uyYjxi4p4rU6NDinABXEdvJISK4hImZqjRMwBdx0K0/ehVCTPDSEqUk3p1dIQ0r0qqwxrHT6k9ba/FhYQPFqRDs0+oqS8itgpZq80CCWxngQCVyEVEYiIVqAljKMlBIn4cmtI9oDcpIHff+GrxhS4SqcAh1DJ1y/EtRnqyroFqMuCvJCMk7raDBRCSsBiFCgVGLoJkNfXwhd81XpVYIxnnsN1qPdXp0bCZdV1sn0sNiQE2fUnS6CRJm0+liVP3NcY0CbZAlxwlEVBXla4MKV2OtSvBQY3N3fp4IJDyuthIVgI4OaZf/sv/jkvz4/8/f/6M//Vf/NfkJVfPaqVVPSniTFOlJliFoHlAsIYtptbqiJhxtqiYBovaQsmPG1mWJaeqDx5VbPa7pjGhaap+f5mzTj0xDliu55y9y1hWcCWFFnJ6TyQmx1BXnh+HtjeP8B8QsqGLBOcLz1CJOJIWbYJMCE1eZ4jlEAJRXlzx6byvL7MLG6mLVZUv8mYJ8146UHNTNMBeVizu9nR1At23FNlkagEzjpwC/5yYl2smDOJcIGq73n+Vz+y+oPB3pQYCg5PvyDbNaHvKetb2vyWb+92ONtQFCWnZY9YFFpO9J8PPIWFqrhFZRnTrKjud2xuOi7HHqFzPn3+hWVa8KFBVKCNRijJfHpliHd89+5borU8f34kbwV1VaVGtCpDiYJlGikKQ9dZMJr1ek1ZwePzI915xgaBqTIWMfLzpwNts0NryTKNnLqRJQyMY843u5qn50d+95vvWGUay8jxPKELxWU583Q+MvZnyGHpXrhMDq9+y+g92/UN/rBQ55L+YMlNxnC+UK16+vOe7iA5mvfUDbTbt/zy/mdskKzudlR3M9/8zZb+9MyyXnM8BYyJeHJu7gz201+4WMvlMPHD7p6z71FAf96zyXeQBbxb2K43aJFx2MObhx1ZI3g9T//Ppsj/Hx5/VVGNvmSaztzetWw3N+RZwf3DDusWqrrmdvsb5ikBxYu8oWla2rYEBNM0JGVEl+Rmw832ge68sN3UrFYFq3aLiIr1uqapNmxWNyx2oqgCbbvGLZL73Te8vfse4QVTN4OX1EXO0B9YNy1lscYtmqrYEmPOOAqC1yxLpCjWeBc5HXo2mzu6i2WYRtabgn7o8HHgp/d/z/H8E+/ePRB9Qd8f+NNPf0+7zUB6ZnemqApCFDy/nHk9vHA4vRKixeRw6frrCm/g6emFrpvp+5HPT48piHRa6PuRplxxu/0N2/U3zGOk689IZfj06YnLaWbqJ5Qs8EGjCkVmbvGuYFXvWDW3OAvLDEXRUhVrlPGUVcVwzJl7zfPTR6pCYGSLFitiyBPuhoCQFeMiicYwWI8qchZmbr/Zsd5UNLUiyyDLBC/7Z1AjWZ7Uh6pZUxTNNTBTMM7PTPOJee6J3nE6dMxLDwgOpye6c0ddtFRGY8JCaUq68wvenYluQXiDFgXLGBDIX1O7dg7IKKmLkiKP1LVCYNAyEO3CdPFEP/D0+Y+cDu/Jlccoj1ssMjqqUnA8/szL6z+g1EhmJEWW0+oVRYBK57hgUdojF4+7jGRZCcIhdCAvN0QWumGBrEaYkiZb0RbrpAaHjEbfor1AM9GfLqiYEyI4N/D0+Mj5uMfPE1M3UucNTd4SFkFTrHi4u2G7XlFow6opkEJS6DXarCjrNQRFd/4KDp/diPN7LuMzL8fPfHz6Bz6//oLJJefTmcPhld12i5Y558OJ7vLC6fRKf75gZ8c8Ouxs0dIT7MwwnkHAdrdlvb4h+gw7e4SDUmpu6pabakeZ5QzTE1EMrEJOHg3EFVo9oExFlBLrAz5G5sXz+OEvOPfCeltRlnVK3ceIXVJFnVIKJTVKfkHAf2mughg9WWYoshQIcNcQkw+OQMRkKcy1zC7x/6LHeQu4FDITX1FSSR2MqU9bSKy9xvb56jVFLPhr81S4Ko3+HwH2nXO4a/91uCLahAgs88IyRQSp5lQiic4hcRgpf1U3ua7eg4+UZcZ6tUJKk1BQCLRKw1yeZ0ghGIceuK7ZRVpnG62pqpKkH1xvFPJqk0jNRNFLnLtev7eJXRtSEQDoFHTiiwKdrkuIVFiw2PjrGj0F5hKbleiJ/ouH9GvYTQooTI63GufV9ToFIiRCQRCWAMn68IWS8AV3hUcKyzJZvEvs2fSl08GlyvJrO15IRY0iBZ0goqSgKmq0aIgxS+QGvoTGQEgPzCyTS17fkGgQPgScX5DKoowgBHW9/18UZIFUEESfEvAu3dt0DxOhoCwLxnG6hvDS61LBi6bbd1z+5Xt+WD/w008/8/f/2//BMB9/fd+2mxpVKGY8Ns4M3RHChXk8ctwfmGdLURbooiSqHItndungoVROXimWMHOz+5Zpmrh0JzabVQrgqQqtC37+8CP740S5KpidQ2rBqmlgkqw2N0zjgpSK6fIKLnC/e8uyWPKyodlUTLYDo6nbkqLU1HpHKQWni2e1rRnnl3QQEYbRDXTTRxY/0qxrpnDg8/6RYZ7Z3d5jSk+mDVWZkwnBXVsh5YV6VdOUK55/PGKaiv30ATcNRDvipxnbTXx4/xc+/vwnnLXkYoXwMHUT03hEyZEitDy0N6yaim1TcNl/ZDkOnB87VnmDiBaJZ+wutKUh0JObiF88Td3wdnNLf3qmzAxu7PHLTAgWayNNs0LpmXO3p6gMSiu2N/e06xobLvzv/+bf4EOBLjKKQrM//8w4Ljw9P2MdeFfh48w4OS7DhTALoimZo+HpOHLqPcJZmtagnSYrBK+HPd088/njgcWCWzyPz2eypqTZbZKdZ36hUJq7uzvubm95s9Vc+le0GmgayCpBUANPjxeyzPH49Jnvv/8eISU3uwe2D1v6qcMzolYL4/SK3tU0W4ULlkUH5izyGo+co0WXJVZceHnd8/z5PZ9+ep989rpkCYam+rot+A/9+KuKatPWDMPIqi0pMs1pWJDCMQ6WLDMYaSjygqEbObw+43xP1bbMgyQvJS52LJPCFRlFrQhhoetnIGPTvKPMZ+Z5oa0auuFEXRxpW8M47ZkXC6FGSwhuoao24C37/SeGYWa7eYcQBZBh7cLQW7RSXLoT292OSKBuai7nV47nJyAgxQ3LEhmmE23dUDcrghf0XQq8VJVmPi+8/+nMYiemsWcaA/tDT3geuLnLOB1HnPNE0TN0kv7lE0Xt+fTxhUwtaNUwzWeck9glUlcrMlPiFsHx6IlIVvU3zMNE1x9o1551VrCpt0gzM7kzuZ9ZrbdYZ6mqt/z5p39Ou2qYluu629dsb9ZMh4WicmjdsF29ATmB0CxuYFXXzIMlK0GoEhsniluJKSR9l1NtBN3lTLvL+PzpM9N8SoeJ0wdWbYu0I47AZTAYqTifTkjTsc2/I5OKz6efmM3E9uYtbfuGcfpAd3nl2zffIu06DYIxUpcV7x5+z+PjJ3KdIYUmKyPRGpq65Xw+UzY10QMyDTmFKZimI4QxdWQ7qMqMxS24qWfpGooqYt1IbWry24LzuSeImabJ0dIzDS/kRqPUwmw1x8uZzZs7KiU5XR7Z3X7D4geyWjEtDjcOoCM62zArzexGCIbj3lIXVWplyjOOFzDFmnGZ0VIxW4vznibfsNvsOBovT2kAACAASURBVHUX7Azb3YqwgWkY0a0iYpmmicw02FHRGEO1qjEGvJ2o2xxIw+qqrfDRI4sc5yWvl08YkbEVWzw9s5upqcCXeH9AiCPBa2LI2J8/EkTELgPOz9TrW5RbUMZQlAVjvxC8Y1U2SAkaRaYSBP/cv+LimXouqfY59lji/Q1SFTgfECEidapDPTx9hLinXpXorEYrsN0erRMRASaUFMQrvsenyem6dU4r3rJQGEVauUeRgO3eo6QkMzJVpNpwXXOn9LtRKZRkXVrvX1M4yYeaKTKl6XxMCqj8MuB4rF+YFonz+rpqv4aYRKQsDc4JrPPXQVoQYiAz2ZWmEPkSB0oKpyfPDHVRMtvEdpVc4/dXlTLGcEVkpdcIIVHKUJc5ReY5n0cQafX95b5kRlyLBfj69YS4elgXnNOpwSlIhPyasJfSEyOMw4R1JPlBhKt3FYySaYPk0rCJiNchNXlbnZ0ZZ00kQ37xkIY0MBZFRpwdcYHAl6HPAw6Fw9uIC1/bqr4cGmKc8H7EzjmgkyIqA4SkLBsDSugUHBMJORUVCJ/un5GCeQTn4pW6EJKPNaTnRLzWGofkMw0hgo9E3K8Uir0N+JD+vYQhE2S5ZrupeHx8wXmBQqdmnght26aSFhcxJtkgkjqd1O2ff/qJMMz8l2/+E/6Xw79mvVpR6a8d6of+glQ5UkuyXFHPE1mbM08X+t5TlJLFLphM01tHUWY0Kse4AqXh5fhKXpVopajLhuPlhf0lKcIlgrzdMZ7fI6XDqIzZntnctFz2L6zrlna743w+kWUtrx/+gXHJua2a5GePgrn36Kg4uldWtKyLlsufZrr5wlIHpCopk87E8TCQZRXv3j4wjQVVXTLMR8ax53J64Ydv/xaZa4wr+ebtO8I0IETLEg3eNGgTqL/5AZG3qKbj9eOJJs9QrsGYNeOUM59e0eIvNFJR1yV2Am0abm+/ZX94YXV7R1Uo5mWgyTJ+/92On18/8Oq23OyatKUQNyxuJrAQXcan50+smoLS5Dz89oH94wtE+P67O4SGECakdEQh+fzyM3e771E6Yu1ElVV8fP+Zrgus6opqJQlRME+aLM8wuubldY+PC4Vpadc5y9xw17a8HvY0q4rz0DHOI99U9+giIwuCbj5TiIjNDSuR4+cDm3XBfv8Tq/U93fkFbVpq06NFhhM5VVUS3ERZvCXTEoxgDha/XFjmSO9eeT2lYODr48zNeo2pS6qmZfaOxpRkWlMXGfv9SFZG5rjQxZFSV+QrwUWc2XcwTj1uLPj9777j85Pl4XaHFWeK/D8ePNVfHVTbpqI/TfTnhapUlFmFUYHcrBiGjg/nD7TbnHIXEPEjedHilUSZDC01PgwcT6+UzZruJSZvZ3/GhZF5GjFFGjCqckf/8pksk3TnESE9RbFhdp6uf0KqGWcN8ziRFxmrTcE0T0zTQFFUuOixfsCHE0quEn9QS1AZPnqG08DN3RYha+blgtAOt8DYiTQgBI2dI1q35MbSn2cmu7CMgf3nV/YvHe++W9FdVsmuMBuiNDgrmMcJY3LiUjHFwLs3b1nshWhXBD+Rq3sux08UxcDnj3tu71uK8obu/B6jQIuKqm7o+xN39QM6DATvGQbNLNMatm3eIfULOpPMcwpojMMZbRTeD4SouQx7lE4d0su8MAwDIRj6856Hd7+hyrf0x4Whd2RyTaFLXvuBpsoxSuHmiWBmClkjZsUqb5jshA6SMI1UzvFw9wf8UqB1oFYZOqvZtjf88vgJGy3rZsPl3Kch/3QhMyVFcY/3GZnRFGWNd55L94m61AzdiTLLicEyzTN9PxOsoK1nytww9BD1gjIBJCzRgjP054lxtmzqzRXYLVHGIAhkWc7QLTh7Yle/YXIC62aKzDCOgs26JS4zp5dPbFaarhs49Ae2zQ1jPLGMltkuLGJhg6RuW4q6oAsvtPqW8+DZbW4oS0+wkri2lFmFdjkSgwsduTScuxNlaRiD53ycGIfAdnuLdwo3Cw6HT3htCGNEiJmm/OoHasst+/5MnhWoxRHLFVXZoEIyD7TrG7QwBNkj9IxWDSZrcV7RLa+4RVHXFYMb8cOJvM7IEMRBYaLgZlvTn3u8WzBC4maJjQ7vZx6271h9uKc7ZfSTJqCxcUbbJfEmp8jlvCfaR5o2AhlaA8GhZWRektIQRQpnaXFVIr3D/zteVUluBCFapsUTiCiRalAzI8h0YoJ6l/yH0keiFxRGI5XELyQckYDExxTUhUmlFdEmVue1aEDiUUrgncD764r4qgBmMiHhpmshgbzC8r+EtorS0F2ZplIIAiCkIMsU8gv26MuK/so8jdHhHXh/basSX7baESUTnzREQxCgrmqhEILMJItADCb9IERPEJIIKJkKV8LVYyDil6+XQkxKwbw4XJCoL+Gt4NEiUpU6tXrFr21WV+ETo8B7zzCLq6c1/BpsAkuMMdUuRglRJrX2GhozManyMSr4dVBPz+VGUjcFZ69Y+muwTgTEtRVMao9zC94HlLwOstefj7IwmCzyejymAJvQKYglAhAojELFxFK+QrZ+pQIgBGWWgxMscyCoayHCdQA3SpLJEiUbvJ8IIXmuE+qwYJoWtL4eZqQECUpIzscTf/7zH6+4MMdqs+Gf/d3fYec//fq+lcGjs8Dr+EzULSKXHF9PSC0JYWLxPZ+eTjSrFWWWE5jw84QqarphZrjMSGkY4pmAZ3EL+9PED2/eYkj1mO36b9Aip6nXHM5JmVvvtkghGMYLkYW//HJC1xXddCY+Hbi7vScGB2Jh1VT0lx57mrm8anSZ0zbvEPWFU9dzs1njJghLB6KkLN9SrZM1SAtJ2zRkyuCYGadItlKMoiIw0S8BVWyv1b4V3/z2ls/HFKRWpqS+veXz5ZHbrOYPv/sbMpXeq0VrGO2Z42FByQ1vf/dfc/nz/8TPv3xkXRfoXOOs427XsFUbPr/0NIVh7hfqlebybFBKMg8XpkmyrUvGoeflAnnUDNPETV1wOLwSwgVrbzh/drTFjsXOaJEY5Z07E61m1axp2oYir/i8f+L188j2TUQYSdEqfvz0yC4TlCuDXwKyFbAsPO/35GXOMPecxltuNxmv7hk/KVY1XCaNyjw4g2nWTOOROHmG/gj6nqbecfxwRGnPbBVFdUOTTcw2kK0dU6fIBJymvzA6T1Vu6bpXHh+fCPJvkEOHVobT4cKqWfH0OlP9UGNERn2zY14c3gZUmOl6Txd68rii3W4Jbubl8kTWFmTGIUOFMfb/7Vz57/3xV1f/l/OA1orDvqOuGtYbwzwKVm2Bd56X/QGhPHdvcpwD7xqG8wovR0Z/YewXdFbQdx3HlwN1s6EoWsqi5HH/yPF0pmpqbLTYMFM1LUIkhmCWa+ZlYFkmiiInikDTtjRNRYwT2sw4O/O6/4gUAolBScHr/hOfHv9CP77ypz//X8zhhXmJ7A89p9MRpTK26++59ANlWVFkLcEbZFwx9w2HV8fQL3gLWhTYWVOX77jdveH4siBlRttWDOeMywHOp4HHD2dydcv97reU+i3nF4OfDG31wDgOrFct3l2TudFjdEamS+qyoC3fkImWYXjFLh1FIZinlLpMAsZAWYARDbk2SA8iLuQSQlgYhjNKO8Zxz+vrHiktRheUZcXQD6A9YIlW4X0O0dAUKxCGpl6DLShNw5ub31NXGXW5IoRAWe5SB3PwlMrx3dsfWDc3nE8ndN6y2u7Ii4Y//fhvOXVPjOMRHxfOlyNBzOg8gaa7aeQ4fsKJhf35icH2yDwyLAunc8+qLcmjQi8TqywnLAMunjmNE9rkCKFQJgUlxnkgL2uyPGNcZs7Oc3E9XruU4MxK3CwwMqc0K4ReeHkd+PNPe1wMBDczdmeMypjmkdEtjOPMPI6I3JPX93STR+ucqrrHLwUmy4lk9NPA6XzA2o7JXlB5xbAk1m93GRKb7/wM0bBe33K5DHSHiSIrkDGnEls2zT1FmVHVkcnOKWjjDY1smS5fMTfV+o66zKiMoCzgbvOOXftACJaiqGhXK3QZWO1qvIhYJ1LFqAqUlWF3cw+xJjcNRIezHcJN2EuP9h4jFKO3WOEZ55HLcGKaX7mpGprphu5Usu8zrNf44FjsyGxnLt3Ay+NHsJ/ZbSXSBxSg8EQfKbMSPzqWxaUGIyUQUiKVTKvf6x/ilWeZSxZnmRZ3XesmeL2SUOQR7ycW665rbIfzSS0zJoVkuA7BX1LvWW5QKktd9jH5SYOPKCVpqxKjzL8T2go+oKRMHFCXQleQnk8A/ZQE8y6tgIVIkHshIk1bIJVkWWyawYS4rrXTyjxGcFd2J1+Yp8Hj3JAGSqeuiqi/KnqR3GRIMvwV2P9lwpUiUOYFRpcpbQx8YaSGmFBLZVXgfcTZr6Gk4EFKh85SqOtLe1QKCSUAv1aSPK+urNNA4KvaKoWDuLDYcD1hpMCaC9dVeZajZJYGYEgHA5KanBtNrk0KfF3ra1NyP6nLJjNYF4hBoBSkJ9MBRmeKKALj7AhREoW/NoIlmkFdVdR1m15/xYl9GbK10jR1RfDpPRHDta42puvPjUZIyTQli4n3DufSSh4i8zzjvb8yYSPXeBw///wTh/0+qexS8/vtPd6fGK+FAgAmN/R2wM42UTX0wtj3RBuI0TItkaKqWcYJozJyU+GnkZfDCVho8owib0AJPn16pr/M7FY5eVlR1LdEoKpb2u0WlXnaosCoHGcdwzCy+J4PjwcWa1nGwMP6nlIWxGVBCc393QPzHPhh9TuYRw7TAfMu4xxOLE4SbcCOgtwU1OWGLPP0w55pvHB46lDUrOqaVX0PIbDdNWgt+fjyf/Lz4585dyPnU493Pc8vn7EEFjshhOB3v/stQlmqtiJvau5/U9Det7QP96ibhl4PnMbPPJ9+5I/v/zXS5Mk2UljmODL6keM8MkVN0Rr2p57jGHh8eUHMmtvdBucmwtEzny113bBcjgzDRBTwcr4wR4EpVvzy/pXzYWEZFKfTiefnE+36DeQaWVuylWb0Fi+hzEvu7krmeaBpNpRlzW634tvf7NCZ4XZV03UHFueYR0+VN9zvHuj7M8+nHlMpSpMxeov2IVle8jcsvWS3uuPtZsXSTyg1ssTILBYmPzG7yGwj5/MJXGA5O+Kk0ZnFesPbt/dsqh2rZkWwDnxkXWfMneNmXTF2L4z9J+ZloC0NUgUux0+83awRYSZ3nvv1ivPiOHQ9Xg/85f0viNLyxw//gvPQ049fP5P+Qz/+qqI69JZ3b2ten2f63mJyS1k2OGeJTvJ3/+wPvB6fOZ0lh0PCDh3PF7wd2d2uObsZoRXn0zP32zestxXWT5TFmo+vn5heD2S5IkTPet2yXd/x6p8RskztGNWO/WFgmhQJe+KYZotWOY+PHymzjCIrOB9PjKOlagQhWJ4+fcDHe87nnqbJE1vRK5QaeX4+s1nt6M+RY9EhZST6jGkKTPPI3c23FNkKoWaG4YBdDvz+h79Da0vbOs6HnrbeEZymuwwU+rfYuEcpwZv7d+yfHNv1ls26RGcVUnuCn/ju23/C8/OZm9sVh8NHfOxYr3ecuwNNW1G0kv35M9pIMmU4XR6pmhVRLSgZUb7Gh57bh5r9wbJqb8iUYJgypCxwIiDVzKp9g1rVHI8HZByxcaHQK5Zhoiwkdd0gY6AfO5SSKBlYNw1FVlA3DefjJeFtTGQJDjuNlHnDvCjk4ri93zG6geiTD+vYvXLzsOb19UBd1WR5wzT3FE0OMjL0PWN/pq1Luq6nKAPzMlGXJQ4IOsGjRZby1kVZM40d7apC66vXzgfsEpkniJWjKHccR8fh8oTWgUI8sCwTozuSZxXGGJQKPF9O/PHnD/RdoGoi9duK0QfWu+9oH77ldPmINgNlFrHTOV2LG1AioHSDC4J5XliWF0wZOU6PCN3QzQfGR8s0Oy4Xi/SCzWaVEvFzZP90wtrIgiWGQJEZFgJ//viJpq5YG8PtbsdxkmyaNZtSEA8Ah+ubUrEubhDmgp0rvDC464eNlJHT655MaspmA26F0gO58XiXg4WH+3f8+JefGMeBtijJi8hsT2R5xeQlcow0dUkIC64fWRWGORaMe8Xnn8B2CicUCpAhJlVqnpnOe3YbwbuHLcFZRCHRJsM7i8kKhDD4uKRhJIK4+iPFl775LybDCFp+8WuaKw4qPRd8wGiDMYJzt2CdQ8gUlgwR8jwpS9anMg8hv6iAgWUZ8U5d6QDxGjCLaC3JtCKNFOFXX2sM8ZqEltfmpGsK/EoFMEqhZHFV5EhreJ866pWWBDw+JAZqGoaSOquVxDqP9Z7I1yS9kYq6UkQhcT5RExDXkJVI/fXeBhYffx3CRYwYJTBaMo8Ot4hrKC3+ipcq8nRIn2aHDwrpfbI2hIiIjhgV86ISGeFKU0hrbUFVGlL7m72yWVPqXoRIWSqyTCZl+FcFV+Bj4qc2bcEweeKSriPExDmN1zTVOC6Mg0Drkogn/UQku0WmFctiQajUzBUTlSBZLyLWLzgPITo0+qo0p6DYalXhgqcbZoTOrr7YSIwSY9L39PzUsSwKU/hUpysUhEimCvJszbwkP55z6fCTZRmLXVBSYa1FSoFSORAZhoE//vGPfPG61jrn9/dvkeFEvHz1qPq48Msv73m7u00WptxA2UAUbFYtL4eeprkhyCN1XpEXnv50whQ6IdJcSuXvD0dWecX9wzuCmFIHu8oQwfH0/EhVb8h1JM4L1WbHy+svjHMKTwqV8f27DR9+/JFVeUu8zSikYJkEYhJAQS4li4/EVjJMlsPlgA0lVS5R0YEfKaqKBc9w2FPkJeCp8zWXwxPBl0TtaZqSYT+gM3jzww/0hyOXXsCSiBDDMFFXW+xyRZuJwPff/QHnF+wyYl0EYemOZ7QoKFdrpA68vP4DWgVUbQm+wE8zwUcOpyOmUARn6XvBatPgl5ksl0Sv0aqhKAVaC4bhhPm/qXuzHsvS9Drv+YY9n/mcGDKzsqq6qovdJikZlgwKMqBrw3/Wf8AwDMGAZYs2KYmi0M3uqq6uHCJjOtOe9zf54juRTd80IJqC4X2VSAQi9hn32u+71rOE4Gxb8qyiLCuSoDjXNVJ4VGJpe8PudsOpO7C+2vJwV7N+pRlNw7lzlNWK3c0b2uIj7qQIU4adBN99/R2pC9S1IJsp6sN7Vpst3377JU+PdyRFST8MnPcjP//FmlN3ZEpyrmcp3eQpMo8+w9X1ljxRaJ0gneH0/Mz+dEdqt5jR4/uCq6trjocHhpMjzVK8UazWW/J0hw0WM525vb6hSBZoMZJrybxU/PTTD6zn1zzfPzLfFDzdv0NMnmQJYwsznZCJhM4EJtczBkOZZxz2Lac60I8/4IeEf/Xf/wOV5T/y8cc5qlXCze0NXfvAYGoWyyvOdcfT44EyW3C7+4LmLEgSSza3yMSzmDnCMSXzc9ZLzaFp2K03ly+mlr6r0XLGfLbkfG4ZTE1zPrBdXpFwzapa0pua0VpG02KMoZvq+KXuU+pzw/XNhrpuydaCefmaw1BTFSkf3/9AmlasFjN+/TePLLaB/WPD1XXB11/+gn/31/+evm/401/819x9/IQUgavdF9TnjqyE3fyKafR8/eWf0nRPPD+cWC13LOYV5/pElV8x9S3CL9jtMpxVrNZz8uIN1sYV5qs3Nzggz5bk5YJxatg/Tbx5/S0f7t6T5p5yJmk7x3K+wpiWcarpuiNFtsSF6JtaLpeorMM6T0BjfMt6Medcn2JloiiRcmC9ukXKgsm0eE5orZHBMnQDV1dLjF2zWVXYfKIZFcuqQHgo5muOz2ea5h7vBvJc8vwcqNsj88WKc1vjZB+7tn3CSEMuPUokTGZEeM3kA9W8JEk0RbGiyDdYZUAG+iZWeOIHhJtR5Tdo2TG6E3XtmM00jIFELngY3xGUY7HZ4esjOgRm5RJj92ilGF1CknqkkqR5greKeXXF4fwBJQvsoEikJq9K8rLi8XAHQBqWfPvNLcvZjoAgn93yX/3Zv2S+eE2a5Rz2e77/zb/mcP9bnJmwtmVeQlFU6KA4mxadxGCa9BpEBiJDYGi6B5J0wdQ3ZErTjylKBqSPoay0nCFUh1EOo1ry0nI+1/SD4nbxljT0SNWymmf0Y0dRzj9/7oZmwHiFnwwOyXyWIwJMw4CbBpyxuFAR8sByfoWxH+iGhiKboZKKff2EVwaRpgSpUUgSqUnzGU/PnxjqZ6rlAi0VmEBWKdxpg/mpYKoLBDHhLZB44Rn6AYY9m8Lys7dfk1UF9el48R2mCOfhYrFoO8PkHJ872y//EuElTCXwIpAkkjLPAfn31ucv6XdJ8AozcSEaRPyUCJokiRBQa/1FGEq8E5RpTlUWtN0YRaB4WWVfwPIO+iFEML38A30gyeLU10YdxR+QTpCmUWR+zuOEKEq1jqn/0URLQLhMC4OPjytPdUSgXYSXFBELpVOJVoJ2sLjgiXPI+LsINgak7CUEdQnuO+fItKDIFJO1hKDjRDSWrsbJp7IYJyIj9tKuFHNJgUQrEplSx5zYxX8bgfyZAiEsdWswVqP0xYXrX4SzYOgd1mqEipNRIfSl9GDEWMtoC5wjIrdeKk4JSAUuSNzlfENwf7joSE+aaLrpMtkVIGWsMcVDmWdUZYbzdaRDyBji8sTXRSeKwRgmFy/yQvyBzypEbDabjMN6gX4R2MIivGWannl8ai5FAgJrDbOqQqu4XlaZ+vyav9ywvH//nvv7e9IkvTBqFbvtis1M8+E3958fV3tu4/Ck0GRmThE0VPd0Y8PkZuAjfk+nJdaAcOCMI0kmhm4iTSTzqiDZ7uiaPfP5OrbPhYbTU0OW5JSF57R/YD5b03YNy/yKzdVr7t69IxEZDokYDevZnESmrG5vmc4N3jQ8Pf5IH3IGEgZila8Unlc3K+zoUD6hyEsmO9J2PV4pimJJmWeUeWSOJsmOtu25e6iZV0u0OAM3jBcm7dV2Rdc/kS5yvBuRScZ+/4gZJ9IcbFejE4kxEmMsVaYZ+4HFckFzFuzWK6ZpJM0EAonzIta+6mtGdUDpGd4b0jRlu3uNCEvOx2cmA1V2xea7EhN63t8fyRaaVboh1TluNPjRs16XJHrOMHaY+UQ+U9g05/H5HusDVQ73hztScUPbaK62Gw4PU0Q1BUvwnrncMJzuufvtT+y++o7r1zfMM03TtpzbjorAzfwV788/8vQISZmBE3jpMJ0hX+RI1zHYjhBS8nJOkkKzr5HBYpozBE2WFCyWkmlSnA41bnIc24FilrJ/PpGmWUS16Tmvb3ec6zvKXHE+7MmTAgJY4yMus2lZrBZ0pxbTDjyPDVdBEcIJRWSp+wD1qSd4aJoDMiT/+Yryv9DxR4Xq8XzkVG8JUnG13YCSdMMJQUY1l3y8PzIMAzf5iuXizP7+TJhGdss1x0NHufIUeR7rRqXi7uNPOGN4Ho4Eranbht3mlnSuCaOlr49kRcGvfv2ObK5RGiY7oCdBNSswZkIowXE/olgQzIb66En1DELCeT+S5I43b77h7qcfkdJTpDckYUVzOvA3/+f3vH27iiLk2bGad6wXjsUi4+3XtwRf8fvf/56Hh5/46quv2G/estoqJIHHhzu++eqfkxc/sr1WpMmG9WZLNzzw1Vdf8uPv7pByZLly1I3j493v+OLtVxyOe+bLa851jVKa5aKC0COlp+8MTduQpQVa5qQ6Yz4rkV7T1BNBGMZpZJhqtApMfcXY9uy2bxi6NiK8gmW+SNkf7iNKxhmKMuPV7QytLUW1RImJU7sny6/AJYzDiSBSjG/Iy4TmbGiHgefnPSqbeDy2ZFmJVJIyK3BmIJ/BYDrGIeDQSJez2d0w8yX74yd2q1dIIRl9zXJZcj5qEhLms5Rgc3I1Z3O94ONzx2w+I2CoqpzgFXmxICkTfOJRlaQ9WcT0RHpRE0laQZhYroGg6foGVcwosgWzuaarR7J0jtQTRZ6jVbyJKEuYlTuCLxByhhAldVPTmd8xX82oVq+4/fIX7J8+Ybo7isqhshnz2ZahGUiVQuuSYrnEmlgzq2WClR5mCVm+RKQqevdkTuozpmnC+IEsSIpCUyQLpqYhzyq+2K4Zp0CeZohMkuWa/eFEPbQUKvv8ubNjg9CAExjVoZnjXMC4nlmakV+XmHZECkOqIVVLWisIQZGoimkcyfMMGSTKG2SQaJlghhTpcpIwRs8jljDm1A876vcp41ldFp0xbW6cx4wntG15s9OsN3O8E0y9AykJ1uAua/tArOAdxylC5qW4hFBU9G1C9PwJAc6hlSBPU4wLn+H84eL1zIsErROMlXgR53Dey4uwmzBGfF77vmCh8iwhyxSnJk45lbp00QuPxMV1qI0XPnXxyMakvmeYwFh/2dLHwoIiTylyTT9E4RurNmM6PzZZeayLYidORS/1qFKQJArGJCqROFq+oKlcZF5OLq7hpY01qhdh7Jyj7T0+JJGgL6JoVUpSlAm2jcl2IWJdaRTOsZHJ2Yhksi5chJ9AEsizFK0yrIuT7viFH0e8UsZg1GhAiDg9jC1QIgpCLekHQyD/PJ1+MSVoGQX+OF2EPC6CFgAfTOTZCoXxAv8iJC9UAa0EIsAwBbyQEf3mPPLiSigyjVYJzgqU1NHGgUQK0CpaL+rW4tFoJWMYDRDCkyYK6yb6KeCIif6XGJjGU5QwjDXTGENKQgo26zWJ1hc2rkLKOMkWQjD0A7/57W8uAby4GZBaslqUeNOTz3Mg1h9PnaeczQkGbG+wSlCfa45Dw6xQmLbDhJZsV9G0B/ToKPKcWVrh3EjvBuzkuNosOemR+6d7FosZ1+st1VXJx7sHqipnnkukUDhlWJUzurZG+pxZluLUQKbmbL9cMQwB+ijge9vinWNW5rS9jPSLrmEQnlwXjMETRKC1I1VVkTvLp4+PfPvLX+DMSJ6l9OMeO2akyZzdJqCEZrAJpIqmm8iVQqUBJk1RJIxWoYWgF85DsQAAIABJREFU63qqouT0HNCpY8SjZUpZpMyXC8Z2AJ/SDSNIh7cto02RfoERnmr5htubW379Y4ubArJMWMw2DKEnwzBOA0IrVLZElSnd0GB1znpZIFRCnhU8PN2jsoLlZo5WCeEw4AfF4fCRwcR8wds3tzw/fCCMKUGOjK7hp48/ft64zNcZzjrung7Ioef2iytEgMXuS9Y5/P77f8eXX/+CxDkqKRh2G3SSkqwqOB2YzV4T7CNZsSVdCVRZge0xwhGGDoVmd3WFFynH00Q2n9EcPbevvwAFs/wNztWczxYnRh4f97y6vWG5CBjTkyYZMlj6JuftmxuOx5b1asvhcE+aZGyWM54+9gglGLqB5LagPf+e0S5ox5Fu8CyuChINqd7iwx9INP9fH39UqDbdng+fNMGlTG5LMIrFck6mcmazkqRIcE7y6f0Tp+YjyieU+YKphzFMHD7tub5+xbuPPzGflRyOT2iVoFWKcjmHhycyMQMXWzDKrCTUzwQj+fT7M3rWISmQXiORFOWMzTzn7351x/65pr+SVDPL9nrF97/9gfl8QdtMnPYdeZaQhIRf/smfsbup+Nu//Uv+2T/7ii/f/Am7bc4vvvsOa2ueHu/56qtvOJ9GvO+x7p6mO9A0GiU9s1nJ4/0BoSzLjeB+31L3J16tvsWcLXVd8/T8gFCGrBDoBLJckxaefnwAOeI4cKwnlHJMgydLSvQs5+7+R4qyJBEzcl0Rpo7XV3Cza3n4aPl02nJ+PiB9SlmAnwzLWcbVZsv+qefq+grjzwRGkD1tI8iTgtPpCfxEkZUcHves1wtUkjMrFySJBNHR1jXGC8piyXa75XjYI3V68bpZpFRImTBOGm8Ny8UMn3rMeKbrR3Y3S2TiUTZB+pyqKJnGHm8dZV5h8xEtK5TwFDNFoi3IkUynvH61wvpTrKLNHAsyJtvD1F0SxoFqWWFMz2QMt9vXPOzfQ+I414Fl6TjVH8nzJcZGjNjkBL43WLdBuRmrZUZmO9QkeTrfsd5+iTFP/Nv/4z8yecPtF19xdXXLZAxpmWNdRTd0OCVB9iRKsb16xeGpp8yW6KqiH8YYJgmKdMwp51tCltE0PQHNPC14bE4UpaTMHCUZiagwSUzKG+dJVKwRHtsJa0CmOao9ker88+euWGRI42hHRXd+4NmC9BlZNWdAoUZDlhd4J0nSwDQJVts1D09nmqeaar4hSTKc6VgslszLFVO3R8qeTbVETBnaLznUE/au5HQqmNwlLC6j/9GOA246MpM9P/tqzWJV0o8TY/uMUuCFw40DLgiCSqnyjEBgnDzWgE7lZyrQy+pcCPk5bJMkGp0Imm6MYSn5kjiKIU6pUowhZpHkpfnoMolzPkRhGRTBi0vIZ2Ka4nP8gjKKfzWQ6WgHmF6mpi/oIRG5psZ4rIsWhRBe8uuOEDzWxYvUC1rpZb1NSKLHODjk5TkLIbJBjTN0w4R3Eqni7/MenB+ZnMP5i8c2Zuyx1lLlkqzIOHVDXNmrgLt4UIW4iF8RgzxCxdZYf5nu5lmCDz7WWgaBc/bzJNp7iZkUw2BxXiMvoTAu08cgA5ONvtL4fy/BL0+SSfop0haQkYPrgwdvSXIJQl2qNH0E8iM/ExB0onD2RUBeXB+X6aaWUQxPU/TuRv9vFKwKidaBtu0wJqC1QiJwOBCCRCu0gmmKtiB1eR0JCiUCsyJH6kDTjoSQxAIAGS43GrGBcLIWYxuEkBHZtlhgnYlta0DwHqFBS8n7xwfu7j6RpCn+EsTTOkEwcbh7Yp3ugHcApMpSG4dhRpmnpH5glV8zjprUZaznFUWVESSks4xiLui1QgZDmc5QTpJpSLRgka9p/QnlBafnnkQPCNFS5XMqXVGt1gwfWxIz0dcfCd5gbcH2uoh1stkcgWMaBNXsLad9z+P7nu9+ueAwDVRlxsPxgevFit6A1Dl5pmjPZ4TzaKFYrir68cj52PH65hucC3z89I4/+e7PsJfQr1RrggYpYbG4wtARkhSnAm0zUITA7e01VSEZk0A5rzieDyyLG25vS06Pe9JUMZmGVDf88Lua1e41WjiO3SPLcsn6+g3nbs84DJRzkConSdZ0/QNBTfTjyGpxjRdw7BvSokTmPVLNmWcF9diQZBnWCt7dfWTqB2ZlTn00eD3w5os/ByZUYglIqtkVfXvCI3l4fGK3WuBUbNGbJotXCVfXG6xxuN6TCMV8/Wf8+b8oGfoj3dNIXlk2occOkvVuxce6xssMLWMlsS1LhK04nT7QDPckY8ZqPqP30fccCoVRCZkumUYHZs1/+xf/A3/91/8bnz7+iqvX8Yav7wfKPOf73/7I11++QgRHnuUoVbBcFDzvP6FloJqnnJ6ecFaSVwlX64rBtCwW1wRbcDg8MLgT2VCS5IJqtiQpZv+vxOU/5vFHheruuqDrO5rmkck0rJdvWa9mnM0R1WRczT3Wtjw+nGmGkTe3M1IpedyfcbklyIL7h2faccIrSZosWcw2NO3Asljz4BsUmn195LDvQDyzXmZUeca7373n1eKG43PgOA0gz+x2K8ZuT9/0dKeWqz/9GV54mu6O1VaSqRV5CpNt+Zf/3S+p8pTNTuOd4LvvfsmsCvixoO8tv/jF15zrBz7d31OUOcfjIzqRdN2B1WrOp0+/ZQwTXb8jy0s22wXH9jcYPlB3EvmQ4f3I5E+cast2e8XjwyOSCi8m3ry+wVrFrAyMY4+xjxRFTqJTpFBM04hUCeudZOgCWZKhZM9peOR2Bl/+csH3//PEfLaibkacCbx+s8RNYMzAclsgQ2w7cq4BV9A1A/MrQXPqefvmlqY2rGc7sizn1Boen+/Ybm5Yrr9hHH6LEoKImpFkeUm1yLC2wxJI5Jx27KiqnPbg2D9YynWC8xM/+/ItMl/w/LBnvVqR6QY7DSzmJd5v0WIWm4tmnqGPKJois9RNw2KxINEzXMgYvMEnPUoYXC05HQeKYslirQhK0pxbXPD8/tPfUTc9m+srhPDk2YypU5eAmmaxWOFxHA9P1N0zmZ6z2dxwev7E4+lAWgi6qcX6I9urHafjATqLO9ccTyeakyVflgivUXjsMLDcXeF9QjGT5GVB150QMsV7A8EyyypsN1FPHc6MrMoZOjEsNgnBOawZsMmKYD1egpKWxBqatsdUcHo+Ekio5ivKtED5P3zuknxOkgSmEEjNCuNSKq1Yz2c8NT22CSSLjME3KAT9aLlZ3zJbK9o2kgB8mHDespQ7tvKaUc1wSmHNQGg9p99LTueC3kRBE9e+EmM9dmxRtmG31NzuVpRlGr88CSSpQhNQKsWKBCMVkzUkiaA5G4bRRdFnY3sX4e8JVfnCBo3+1Nl8yfEcoj/UCwISKR1ZFsNQMcQUzQPOespZwWI+p+tHrJmQKs5YXwDz1gaMkZ/9cEJIghdoEeLU8fKDIsREvJKCRCcxLBQuQjoAIYaspmmg6yORQF7CPFGsWoZpYBxlnBJKcQmkx1rRcTKMxsc1PZEzSggkSRr7682LsH1ZV0fCQJAwuQigDx6CjIJaSoGU0SvqgkAJ/7kMQOnIaK2biM1DvdgVLmEooZgmxTBagorPhwsxnBaCYZw8k1Wfz4UQPofXYuvWRagHjxcBfPz7WSojVN/FClhxsSEEH98jUkPbOQjpZagsscFdppieaYpMS3kpT1BSEoJCyoBUsejB+shejWrXE4KkyHOWiwX3jzWf72wu9gHhBVmaXG7GdXxvEBAeHLGdS6cpp7bHO0dZZLx5dUuWaqSJ9gxrJsoypyxyvLf88MPvGCdDHpEMAGSZpiolIkkYwx82ISfbkhRb+rHBCc1utcQNHWVSMa9K5olCpzmySsFrjs+PjEqSastssURPgVxnDMbx8e4jN2+/wBjLsX4AEr549R1loekHhxSe1Avq8x2JnpFXnsW6xE0jTX3GZyNPp5GxS9EfT2SyY7Z2PB/+jurqW5bljt0moa47jFXoVHPq9lTZNZ07o5OEYjnndD4hSOj6Hp0smM1b2q7BGkvfNWhVkEmNFz3Oedqx53G/59XNAjNNlInm9mrH+fyMSjVtPyCkQqiAVJK6aVltVjgTuL6+pakV6+WWcbzj6y++Iq0cp/MDQloSaaP3tRUsS0mRpLTdhCorjqc9SqSEaklvG5QwNMNALioImnG0kfKRBp4fTiyXC7I5VNU1TftMnmpa15KlOdki5fnwAYEg0QVDP+FThZaC/f6Z9fKWvp7o+46yWjM2j5zali9/8efs333Pk3uPFZbtcskgB8bnM2MjaMo7ciALkoOBwhxZzRYcpgfSsCDJC57bPdPkCNpxOiSsvi0Zhp6b7RXBjdR1z5ffbGi6H/ni6ltWVxXWnggu0NUdUjiGvuHwpFlvC0SQYAMuTIzNQC4WaKdwypEGxaba8enpkfliSTlPcUPOcqU5NCfKvPrP1ZP/xY4/jqdaLnm6H5iGAZvPub9/xzhs6McD4zTSNCOf7hqsm5h8wuFgccWEUiVdt8d4ydQN5Ks189mS/hiY+oKnfcPT3Xvmi5SnT0e6qSMrUjwTfVcw1BOrxYLd5kue73/k04cT1zdzxr7ldKz56u2XfPftt8hEkhQJnXkilwXr6mfsNjC6J2bFLYieU1OTF57d1RxnGiZjAE+WC7JJcnt7jQtHsmzAWEeWFCihCVZhpo794T1KrNlsbjme7kE2FMUVQ+dAOaQS9NM9D88nvI/VmHef3nNzm3N7u8ZZwfH0iFIKr5ZsN69w1vD7n37NopihfE9VKAIdy43EjVvuPioe7mqcT9jtrvn2T1Z8ePdEWSZQBU6njvVsRn/qmZUbzkNNnmxZLyyb1YKpUeTJKw7mPbc3G56Oz7TDkXmZc6qPkGh0LrCTwDqHVglJmtB2lrwscOYc74C9Js3geWjxzlPO52zmt6Si4vmppcxnFFnJNE1UVUGSVGSJ5/b6NW7y6EVCl3Tkec7gLDKZ0Y814+TY7m6h7znt31FVJUpJbBipFiu80JzbR8bQAClj1+O8YF7e4PUZM0JVVXhrYkBEpGRJRTlTzBeaadQ8Hh8ie1NIlMiRsqIsIS9LEi15tfmK06nB9h1TP7DYXrO9uaJp7jHdQCIVg3MgDHV3IlhLvT9T5AqhHC4JkXvpJYWuUN7QdG28sJpAUWU81SeqwiLCyGKZUmQVMinYH/f0diLLoqDwKv+8NgUYzg0hCaRpzldf/ROOXUsmLSoVnM8ntvM1fhLoJsFPgVVxRf+TpUznrLNrlBhpTyd21c+Qv1c87n9EYJDFNe2Ycj4b9o3BoOKqE4GZ3KXudmCWWF69nVPNFCIEptEhpEdlKYPx+GARwaGTLIqoIAgy0PQj4xRbomLSO4pMf0n9vJQPBWJznXUTbdfGCk0VvYGxpU4y9FH0ChkFr730zmslL9O0iDvyPq7/0zS2Qzl7qeoErLMkUpFqHXFR3l88o2BNQKciWgT6cBG3F9h9gCxNYqrfDLH1Kvw/ywqmyTGZFIJ+CcMjgDRRCBHieVxS+wEPwsUCBJUD7hKG8hc/abxZGIYBY1xcw4sLczY6VWm6lraNwvOSrb+QCxzDMDJNNgpz4nPvQyDLJbNZhrfRgyulJ3YaRM9okkh0ElFM3vvLYv5lihvtHaOxfKbBXsSsFjHkNIyWIDKCf6mB5WIPcEzGM04x1e9DXOtzEeVChovD9iVkd3mnCEGqNWmqeD70eC+QSiFC7EMXPk6WkyRjHKNVI74eF5KEVBRFQlPXTKNBJNmFZHAJj10oDn0Xz+v6asf19RXTNMVKVjMxDANZmiKV4NPdI+/evyPPMrxz8XUK0U4hEolLJEn2hw9uayU3aUnvHnnqBqr1Gl0WbNYFiVR4N9IJhx9OnPYBoQc2+RXWdBiTctjfM0qDyjUil4yjIwhHUgRkyHEOPn66R2pNohPqc0vjatLiFp97Ot/F7vgsfkeN4xE125LZR14tt5As2O8/YuXIstwyL+echu/RQlCmKYmekxQl+1MNI1SZ53CaqCrBuX8gNWsQFZMxLBdfkKbP3L2rKcXIaq04nu543rfUrWVVjqiQgxC0XUvXe9JC0PaGPF0x2BMfPo28/dmf8/p6wdQVqDIwW6S0x/f8X//2B/JygcNRVDlJJpHyS+q6pioyJv9MMCNj6wi5YhoGFtkMlaV09QlbW8ZxjzSCokiYlzOOzzXb7Suyb1JQBo1kmlKMG+Lnw0E/nRGDJy/WlwHVjtPTQBAjx/qZup4IY4csC4au5empYblZcej/J57P37Ep50xuROqB8/7MrFxRH09obRjOhkKtMN2RfmiRwjCfZ8yTK7JUsz8dWSx3DLrmeNqTLxTOD1wtZpRZwn/827/iZ9/ccP36F/yn33jOj5blcoMdem631+hkwHUarKK1B5zbY4mWOnGeqNIUj8bbEQIUWcL77z/ghGGxu6WotghvGMMZlOfd+/f/YGH5j338UaH6+w93ZMzIMoXwGXef3vHju3dobbi9+gI3BA7HljS1eFvx/d0nXr+dEWyJTnPOT88s5hW/f3/PmxvD44cB14xs39xSlimyeOb8+MhydkNZZkgxUjdnQtDcfPUFz8d7dq8q0lIxnwVmxYJffP0XoCI7dL1dcapHWvMbhO5ppnuKvKS3Z5rnjiQfmVdXnE7vaXtYLQumIa7U6pNnNivIi0DTH1CpI8s7inRBUVYEp1hTMV8p7u4PlFXC/iApixVt23C9ucb66APtu4bJBebzLUJphPI4b8nLjOfHHpXEJGnfd9j735LoGf14IqB4tfyCx8dnhmGgSEsyueP5nac5Dbz58g1lvmaz3NAeR8w4IJOAViV5VtK5R4QrkK6iKFOGzlBVa8qF59Ac+fKbN0gF/eOB+WxBWWXU5xPPe8tqXdE2DanM6YeO9WbLuWvpx4F8VjBbxqmn8SOyCLy+2kJIKPId7x++R+jAbv4zxrFltkjJKsl6syW65jq212seTx1BOqyc+PDxE0WZIYRks1nSjHtUogkhozlbQhhwtuHTp18xGMt8nSBFSZZskeKM1i2HwyN+hGloWK8zQNAPhkprmrbGORiMpa4bFktNOV8yGUtaxTvLIptjphbnAvfnO4bBE3RCuXJMzZlJOOwY0OmGYbCkeQlI3NQhnEMx4EaH9Yp2PFIucoosZ+xbjLUED+M4keYFpo/Bmrp/jpPEXpAXJaqQdHVLXszYXt1yeDhHlmb6hwvebrPm8PAeJwLbq7fk8zmf7t4jVcZytmam1+ghYO8SciqE9gxjR55mlx76nBUpAcXpfMJMBmM9zeOebioIQSAShURijYkJejtQasdiHdju5qSZIkwTWqafp6Dee4KMQsZ4g3aaBEWeZVhvaZoJYz0OAZYYLpNcalQvAPsQu9qV9kzTkb5rooBRAmctqZKkqcSYidFMCOI0ERE5rdaM9MMYWY0qfPZqJkmCDyFeqIk97d4bilnJar1mfzxhTRun4sHywjx13ke/KBGG7y+cUSE91oI18ZxfwlIEH8/DwWgvU0gfJ3cQrQlSCpyLYS/JpVYVkFiGwWBsAuKSZL8I+XEcsB5CSKPnVUTvgkSglGcc4/RToGPCHokQDq2j99WFeJoX0utlKgxCetqXYJePojkIgZSBLI8s12maCP7SECXFBUnWYX0BIoHgwV+aqYKPoRKikL1UU4GMfzkEh1Txs+CcurROXUT3BRGltYj+5xdMo5AXCwCXxyNwLiEIi7oIXIJECoFSlqY70vYTSmpEiI9VECd0Nlj6frr8vogcc8JfsGEJnsA4erJM8/VXb8my9A8lD96SJglpmuKs5/vvf6AfR4okwfw9+0pZFTgFn9qW9d8jPOZ6IvgzAc311RUSy2b3BisMDBIrA8NwYOxHvBOIxOGcABLOjQchOYwHxOiZlzn74xE1T0jTifb0SNecSAvJ2Fl0ojHKkJdzZivNsT5xPMB6u+apPjCcO7JCIxhYrud8eNyzmm+p5kt++PADXmakChKhKRYL5osZh6Omn1rGIaCE4TB+womRp+OB+WxLpjSpTJn8gV//puZn37xhc5NzPte0nefpaU+i5ygG+laQphpUQj30OOXRqebNq+9iMK3wfLh/z83111jfMfY1p/09TjwytkP0L6dnlotbggg4HOViSV4sCKHhdG7oJ89mN+P+eKQsdggvCH3NulxyGlNEkSGEIZU5gx1AGA7PPW9+9hX3z++ZhpFUQlWmBBlbLHWeYG2PGTXlZo13sSbWWwchIVElq9kVq1XBkKcsjKDcLckTTxAW09U8fHpPWZbUjePYP6DEgmoZbZHXi9eY/h3j0558d0tvWlyfkd9MuIee0CRc7a4gwPXtNWnw2NPEUfYUswVhqmn2BdfXb3j83d9wfF5xs87ZbaBpe8bWkKWS2h7BLajtGWFadvkt5/OJfJMQtOL8VLO6uuLU15TFnMF6NIqbbcm//5ufSGYZvvv/CZ7q8DSQJRPTZCluKrx23N39itDsuF7ekmUVZenoxj3BKdrhzOE0keeBRVLF0EE+4R8cH969Z1vdYP2aVT7nL/7Ff8Nf/Ye/5M/+aUVTdywWCx4/dVx/kVIfoTUnkjQwtEu++fmC8/meEBS76zVerPji7Rf89O4JnTwxThNpJmmHD1i3ZDlfUewqjqc7uv6B+bKAkND1hmmMHcvrm1uMa/DWkxYZz6cPbLcFKggGc8Q7yXdv/gndeMLbZ77//lcEvyIoSZ6tsN4SppEiUczmP2ccIVMJVTmSiIrm1PH0eOR06PHijJSSYRgJGFrbsZzPKWfXJGKLnY5UZY7rtzzXlmouuCoydpstuIT3H37D9mrFuYnri0QGcCNVqanrM8U8YzZf8vTc0w4dXrb07EH8c56eH/HCkSY542jJioKuHTgdJ6wVDNMj1UxxbMbodxwFQyuYsgYuX/qL1ZbeDCTSM5kzm1VFXpZY39GPA0kuOHf3mI+xK/up+cTQSoZR0Q8jOi0J0nFsHphXb2hbCPJEWVR0vSVNYZwaLI481+TVnMn0aKmZVSvsecKGlrE/UmQlSkJrW3COJNUYd8D5HKUkbdMz2hbEFe3U0Noz7elAkaxwWIapxhlYrTZ479Fpwma+ZX/8ifePd/ipYrnIKKolHz4eyMoJT8tYO6q8ROpA1zT4dGR/7tlsFkzWkoo5eZnhdI0RilPTU1WCosqxxjNMlnZ4jF3SRUFVLsl0SZ6PnPeHS2NbPKQu8CzpLZiQMyt2zPMUY+E6WWF/XaNDigKsM1hj4tQpCISTGBuwQVM3E+dOMpqMYRIYFFI6VBCEwSKcw9oWKTp264LXr28QYqJpz5igScnAWdABfOxDd9YihUSrHGsNzkyoS3B96CasjxMsAAK4EENWwocobERASk+WSKbJ0g8mei0l2BBIlKbMc1ozYI0naImQkRiQZAopFca6uLoPKuKiCBDiqjqEF5Ynl8moppotaQeLEHWcBl8kotICpf6Aj5KIz7xN53tGo7D+hTvKBekkmc9zEh04tSFO0AU4H0hVQKtIGPAvKC5eQjuSvIjBKWfjdA7JpXbV4qyJQS7HpVEriixF+Iyfcnb8fB5xAurJc5CJpetHfJAXr29ABE+iFN46mqbH+fQSRnuhMcQK1nHyeKcvItRdptGB4Caa2mLM8uJbjVNI5xxCWbJcMTXyMqF9YZlGgV0WGinHy1Q5uwTlLg1bPm5wQrj4WdWLPcR9FrLj2GOMj6Gmy2uvQgy/JUm83jhvkSrjpWY2CuCAlPYijpPLYyWWI3iL0hqEZRwmbm/fst1tMdaQJAnGGASCPI9e8f1+z/t370l0ggsv5t04cV8uKlKtkSrh+e+xJl9vr5iVO/bnnrKqon3EGNpuYJ4tEF7hjMGNMctgjKBjIs0GRlPz6vVrDud3NOeJyTuCtNipQciEc1uzmG0ROiHPlpyae0JqSRdzjK7J5gWg6KeJyRn6sWW9/grfDXgn8HnG8zix1DGg1pzfIaxCMSNdFjRTz6nv8LYnGEO1TAhhwbbQPD69J1WO0/Ed1+ufs1nc8HT/nzgdCqrlhjfLL2j7TwzTRDnzqF5SlkuMr+lbgdSKvHRMg0SJiX66Z/++BuDf/O//I9fLjMQpRgOqmHh8Hig2FRqPeXrGecXq2vDwoWM535ClliwrOJ1q0qs51ytNmlSc2idkyMjShMUGqs0VYRjwJuBlxzhMMHWYNifTC4yuSYucT0/vUEqRpJr5fM3DfUMIkr4/UzewWW85PPW8vfmaU77nz7/9V7x9e0uSVrTNib/6N/8rX37zT8mKgb/8X/41x84TRIcorihSzTDcY13J7vaWMKpY8FIGktQzjA0qL+lMYL1eM5maLLvh7asZeSKo9wakorMNt+sZw7nF6o8UheZVucC2A8PMkOTg9iVy3lKUBXrwpOUO9yTIZwWDT/HzCotgsZrT1g1BC65+vo0aJYfWnHn/UWPdxLAXbBebf5Co/C9x/FGh2h97ktkSM1rM2IGd89XbFQ+/TanvPOm653DYc24eeP3q58wWa4QULDZLPGeKQpEUnt0qRckV23nFf/jxnvWsojkoKn0VPVHmRLikPrO0ZPWN4NNdz2a1Ra6vWF9Z2rNCKIsJJ+pmJDt6dJ7QHh4IBIZhItUF3gfyvIIAi/IVD4ffcPPqFmsUP/7wwHyxJknAy5quP/P4cOD169cEYpWYd4K+f+Z69wUfPzwwuj3DMKESkOpMkd0yn+0Yho5FtaTvU169WfL+/ZEQNHmpub76lk+Pv+XT3SNZrjjsj1RlwWq5QwpD17W8uvmKwA5rJLe718zm0NSWoTuy293y008GCXT9EAMFSuCcJkkkZuoY+5G2jl3fy9UK6xKKoqTta+r2kSAdkzM87w+ozNGPZ4QIDFNsPDqcaoQvEMJwPDtcGFnMr/Ehoz8d2K0WXK9LDs9njHGcux6R1KR5gwiKx/0TaZaBHFAqchAPpweElugkY/Q93fSMF45j3ZPmKRmomh8BAAAgAElEQVRXNN0T5/Yjm+2G+5/e4b2jFCmT7QgqRSiJUI4yWXM+PtL0j3TDM/PFFi1yUEfs1BIoEUmgGw5kmcZMKXkW0SSte6D+eEZLxTQGjLEsFwYTWrwHOyryyTB0LUmaEKRCZint1JLrHCt6LCXNcE/jGxCWrtGINAM70eMoypTz/iNpprGkjCrQYajWM9rjmazIQHlIEvKioG0PtGNL/XBkNivxfc9gj+gk4BJJnm+AJwD+5v2v+eFvHZ/uDX/yvsLbd4h6JEk8mxOI80g6S5jNcrzX+GABz/HYYK2kG2GyMBjPZCUiRMETiLxRJTwqWIo0sFoJ5qsqrj7dhDMdSfDklwmZmTw6FcgQEM6TyajMJmsuq17HaBxSZRgfvZVCxiGcI4BzBH/BVb2seJHMyhItNO5zDWocCeZpRqoUh8nE6aiIJAKlBVmq8U4yDBFXFUIUSImM7VPj6LE2fPYSEgLOG9r2kbbt8F4B4EUgeMGszNFJwNjh4mn0fPZgiID1lypWoXjhhGqtyHMdRbq1lx8VCC9JU5inPV3nESFDKHERYYEklRR5Sj/YqDQvAaxY1arZbmIT37l2aPnyPAE4dJIihMbYAS9eWFmXZL+IVc2T4fI8ustzGduhtFI4J7DeI/0fSAmJDEjhY3XxixFUiM94qcVshhCGaYrBrhdOabjYArRSRLRYnJrHQFUMXMXaaxcnqv7Cpr1YHYR3EbVmExwaLWQUqcIjIXqzzYCzabyJuETipBAIGdBaME3j5/eNEDFtJy7hMJ3Eib24iGZCJBmEAIhoV5NK8vX/Tdx7NLuW5dl9v22Oh8e1z2S+yvLdZLRCE4kSB1IopNBnlgYKDeQYVLDV7OrqqsrM9/KZa+GPP9tpcHBftSYVEoMU9/AicIEDYANrr/8y336DEKNcAMJXqYrWCh8CHz58oG4b4jjBuGE8WASJjhTz2RTpIVYztPxze8+0eEVZnehNjbIpQ99jzYZJdkEz1Hjf0tVgnCFNNHWpWNxMqOqKfjjw6W7Ud19evKFvW7ra4oezFl+nlN2BEK24XOVUfYp3MbvjPUoodBQjhWToLcJJLldXxFqw61rSrCDNFfcPn7HNJVcXv+V59yPBdHgJ5S5iutboILAhZblcs75M2D42pGrBz99dkRdw/+WAFjGBhF/88q+YTC9wvsdaaHY9aRaNpRyJpxs88/k1T8/vWa2usZ1mMAEfNpjBMvSB5eI1NtpyGlpmswW9gVdvb2nE3XjosBkPz5+ZzW447QLGjPFtVkLTdTij6DvB7foNf/eP/yvojMUkZVs1rK/m6ODZHFvwDQM908mCan/isPtC4wbyKEGYMY92df2WKLU0TUMS51xerJCqp+0Mkda8frVGegE2YF3Lof7ESv8n/PD+X/Gv//X/RNXM+K/+u7/BuB15kaNTiXWGN9dv8Ej6IWV/GBjaBxI6dLGgsg03kxgSzalRWFGhC8Fp6JkkOU8POxpjuZ7O6M2Rh3vNxSzj6f49Mp9xdIGVaGn7GI3DWMnlNzPaciDqp7i+QemEq5sFH58rEpVzmc+ZSI2+vkF6T9cNGOuou7E2XhtNnBfYzvw/IhP/Y6+/CFRxkjxeM8sEfSlpjg1Xby7xvuHTp4akbvjuF6+pv6/5q7/+JZ0xbDZ7dBKACReXEC0FrvFE8YKb9QXFv1xyOVng3cDtTcHz0w1FbEl0zJvXC+7uH5iv5ogwgoy6fmB5+Zbb1xLkCR3HMGz44eMHZtMb8okiqhI2+8/87O1vqE6B3W7Hr3/9K7YPDUmUYHtJnl+g5ZEsB+cEh31HO1hWyyuG3pNGGWW1wfaw2+0ZupSJfiaKC6IoRyaO169+hrMKLSKSSHO5WvPD+48Yr5ERtENHb3t07qnbmvVyzeH4iTSZIoWkLkturt4wm04IJuLQPLBavEWrKcH3zOdz2saSF0uKHKzNSXIo9xVdLwkSdscnFCl1ZRChwzlP18Pz8x1SK7abEiSYXvLw+BOL5ZK63VLWB3zoR2DkIoSS9MOOKFIMnUTriMenJ6z1FLGiPE1IhgWaQIgkSV5wOB3Ipxl1c8BJaMuSbNqgyEn0jCxXPDz9iaxQ+GGNigac6ajqnmKScDjWxFHC0FVUlSDLJvSmxDpLlq+pqxrjK+p2YJJdc2qfKdstUaIIwZIkMXXjadsGQSDKwzjSUaB1Rln1xFlMVfXY0DBJZ0TRjCxL6fvqDOg0iZ6w2T0TaUVvOx43j8wXE5xQlP0BLxLadke+VOwPPVleMJnnGNHRD0fMEHCVophf0nkDquZwumO5eMupjHE4ZBRo7EBTnlBaYoxDJxFf7r+QtRmTyRQpHtFSkagV+9Px67Zr25p/9a//lr//hyf+9/9hwTSK+ZvLn3M7W9IpxWI+oQ+W8tRg/cjgDcYiGBnGIORY7yRG5i4Sgkh6tIbZbEKSaOJYkmUJKgoYZ+n7jlRYYi1wKiKgwVviOEKrCNN1OAdRGiOQeDMQgkMrjVPQeU9vzyCJEcByrjB9aQ4SZyD4NWieUTcaxBkEeU9RxCihqOsB6zxK+vNkWaL1qDsdBoezY9STIKBjTZJo+sGMhil11koGQRIrpBaYF42h+DO4iiKFdw7rxFmfOYJffZYfeD82PAklz6BnZJStGXNeX8BdYGx0UtJAX9FVYmyBk3yNZlIqYG1H13uE1Ofx/ugwT9KY6bRg2FfnFAFx1p9alHZjzWxnz0z1eYzuxxF5ksQEHNa+aDbVKEMQDiED1hp6M0oknB9lEQKPjgRFEo+fl+DOaQ9jk5dUkGUZkOD2bnTN+5HlVUKSpQlKK7rBENDnqK8zq+ot/tzs5J0en68fhcHh5cDkLcaMhifCi2541AFneYyQjn5wENS5MGKUnkRaMZlMsU7jXIWKON9/LCTQSqAjgbGWF83ryJaPrGwcK4R0XF9dc7Fej9cqzjIN54mjiCRJeHp+5v2HD1/lJOLFLCckcazH71BrWc7n2Lb8um/L3lO5hl1dQpxghoYsm5HkMfXxxHKek/cRk/mCQ/uPTFV6lkVkDMMJrR1VZZnNAz4oXLCIkJJNFDrr2TwfSeyUzfYLdXOkqSVSDMwmC5pyh7cR15fXBGmY5Esen74gdExvHc4Z1osJf/o3f0L7v2Z9dcvT80+kWpFoSRIEszhikFNEbBg6iTEGay2ryYrHpweiJOX66pLdfotUimP7xHbzTF9nFJOM9cVr9ocNQhYMrsHYDClgtzmhtWYy11zeTPj86Yn1esXQWRbrN2w3Hwlyyn5/z+XV+D1/2GyJlEOqgc3zJ361/BtK/wVjHVVdYy0Uk5hIWz59eU9V1eQTzfG45W5zIpkvqcs9+2rDapHRl4Krq1dEJPTuyNDB68s3tPsNf/2z32J8zsAG7ECW5izmC3bHJxK1Ik0tXW0Y2jH2b3P8HX//DzvefXvgd7/73/jmu1dsHn8gzf97/uv/5r/l//jb/5OBlLkPXM497z+XnFqDjDq07mhMQno5RQdQkSDD0LQt5fBAzoTD6QtifoFHsFpOyKTEm4jd7o5ptuR525PKLSbStM6SxhkPjzX5YoK0FYWa4FeGT4/P3N68YrYsmB7GtJBJmtDWJw6hJyNluXhNVf1AWTXIOND0O4ajZzpdUixm/z4w5r+X9ReBat2VbDf3BAuPzxsub9cIv+LVz9b82799z7/87m8oihm//itJZ3r6wSCjge3uQJx1FGnB8RC4uVkxm3zH26vv+HJ/R8yJY/s9b97+DGRBYRzG1uz3DYvrwGK95u6zIkkj8nzKMDR4/cw0X1A3G+r2gNIjVU+ASf6K+4d7pJLMFymJvKBI3rDlH1nNb7EmpjpVxAkUecrx0IOPiNSKy/UVn3/6TDPUxOmc590jabQmUQXtcKQZWm5eXSAVbJ4MaVYzzZdY07LfHknThLYeR1xCPXL3eWAxv+Lbt6+oqg15HlOkc9I4Z+jasVUmaLp+7Lsu6z3l6UCeZyAOqFjSDi3d4NkeepIMmq5hXzYkaYF1guliwqAsLgQyLdnsa0Q0VgF23RbEQJYuqZsSaxVCaLKsYLevCD7ntLcELEH0uHbK1dU1AcluU+HkHp1EnMoK1wWiOGHwLTIqkErx+PwTi/mK+mgQUcdu1/Pb3/wzvvz0RBQ7RAjUpwprGpIsox1OKJnhzZQ0VpjBsZi+w4UNBM1y/gpjDEV+gWQLskIMMadyQz5ReJsSxR4fDG1b4q1CkYFwtFWHFhOOuwOrRcx0MkXomsvVDYfjkUl2jbOCWEd03RHnBLEeA+09Bp0kGHsimwqaribgaIeOi9WEw64hEo7Z/JbjYcdqmdB2HUPvWS5m1M2OuLhiMD3WW1SUnPWREMcxxp8wXTf2qSeexXzsWr5YrghohqEhScaqWj+MIOJlLdcrfvFXNwxbwT9LfsYiLvAe6qokTQqKbyJub5dIIjpTIRBjwLkR5+54h5BydM0rRxwrskQxSSKydEpnLH3XjGH5ZnRqKyFwjJWRUiuMD1hj0EqOAClAkJ5DdyJT+Vj8YO2o8RSBtjV0vRlBZXgRFo4gKAQxVqoK8MERa0UUxfRDi3UeKUawI4QlTdX4PvQWj0eGEfhIKdDa09uGwZqvesjR3S4JAawdR/8j+3lmcINjsB7jzk74M7snZUBIh7UB70eg9SIJGF34isEIEP4MsCEEj9QBMPRmBEC8jMWDJ8gYl9xgI4/HjYe8M8ErzzrNl1H5yw1jVJTFDCMzJeSfHfjWWdJUoLSkPtQ4J5FRNMZjeQHCMPgK3NkxL+SfDV/C43xP33uMGU1n3o1aViUkSaRQQjD0BsKZafajZjdNFFmWcqoqjHXESp21wI6AII4jrHEMw3hN/uz29z4g8Gdpg0YwZpJ+LUzw4+EgSTTH6mwI44WBl0g8UaQRIgbs6L5jHP8HF1BiPH9V9chkSwXCjzpY7wORHuOl+sEhVTYePvxLGYAjeJAq5+0371BaYa09H17GPZsmYw7yH/7wR5qmIU4S7Bn0hnM2bTGJCKEe3etW0Tanr/vWBEuczdCVIzDGHQpfcNg8EilF32mCt+ATCAlpAkiIU0tkBFoVXFxIdtst02nObFEwNH70GVQHJtNLrq7esN0+oKTheDhysbyk7yusGWt0m75hsIEgauqu/apLTicXCJcSJ4a7Lz9yk16hkhTsgulihfUlcTbH1RXSJ5yedkQoqmPH5U07eijyhMPxkdOxZb7WfPzpR5ROiJKMug788198x9AbulaR5xLHieDHSWjZ7EkKTV1ZIl1wc/2aze4OrXKmsxVt0zHJMnabR45lSxRnODe2yvVDSXU6naUvDcMAWmuCaNlvHmnbhiJ/S1ZIPr//QJEW7J8f0aKn7L8QNVcInfPx7iO5TNFxzHoe8+nLe1KZsDmd2O7u+cWvbzD+SC4lwzAwtI5IWpracjyMe9G7FGtLIiX4/b/9n9Hpiuu3Ea6S/Pjxf2SG4/ZyRcgyhv2G7e5HdvWBJH/H7W3Cp48bZJJho5buGCHVjFQKVNjxzZspb28u2Tz+yOkYUyLJVILNLT/dPbJc3bDvWy6uVmRLQ33y5KqgMj2bpubnNzO0WFBMUj5s37P3gm/mOadqj3MdBMH3H59AB/w55SD0ilmR05clbdVTpCnBOfJiRtf/mTz5j73+cjzVas6qmLGeL3n37hIbYoxPyK8G/tP//A3Xrwrq0vLNt7c8b47stgccLVrlPD1+4Ve/WfL4ccs0nhEnnk8P3zMYQ2WfSIrAh7s/sr5K0b2nPjhav8e393y8G1hcfIM1zyRp4FjvSTPHH/74xGw6ZRgUDIrn9shkWpDFa64v3+AsLGdrJtmaY/2JKIH9Hi6u5ghleJPfsphfYrovWN9ytbyhPp5Io5wsX9F0km++ibld/xWTIuYPf/qR1m7ouoH5fMXz0xPi1MHlOIZAOVyQVENNZzxoy9NDRaxS0ijiVJ4IwSLDhq5NWa+neAY2jyeUbJmt5nR9RZIrvv/+C6s3d1zO/5qH53t674hVzGnnQfV0tkIYTdt3rJRhffmKp+c7hIbm1JDnKUU25xjf0zaG6TRGacnD/Rdev3mFMy9tQ5ooijlWj0wXOYvilig1CDTXNzc0bYREY/sx967z/XjyjWOSRBEMmC6QRoouaKQqqOsSFzymGdlHHWYM/TPe5mSZoyrd6IwWisP+wHJ+QdOmJElEmiQ09cC+24wZlGY0KzT1nmw6o6sDUTRg7GmsbcwKpNJ4K2ltw9DFhJBRt/bc/BMTRwXr1QQtZpD0NE1Dnq6Zz1YorTidHiF4ynpLpKYkSUQcBayJEaHDugEnjkgXkSUFvqjBdShh0ToijidopWlag3cD1kRE0Yo8n+OGDt9bIpGCHqtolVIc9nvSbMLl+oKyHPACdBQRGI1IeTEDngGYz1a8++6G4k8LolKfQ+UFWmuEksgo4FyP0jApIlKdo+KY3WlPqlOElBhXIZ0gCIU9aw4HF2hPJwKeGDUmGwwQUHhnsUIggkYMDmNb4igiCE8/9MRCIgkI6+iH8jwG9sjIE2tNsGE0JMk/Z2q+5JJ+XSEQXEAnmjidUbcea17GtOM1xrHCekM3jNq/4CXGBNJ4/H9Dzwgsz+1KwQfiOAYkg/Vn/BdAhLOZK9APHYN1Z8f8qEsIBJztzkDrrGU83xYpRZ5Nzsah5p+47EcnfZIKqsYQgn6JgEedo5vKIXAyDi/kmBYwOshI4ogkjnCuH0P89UvuEsTR2NLTtMM5Ai18dbQTHM5anBud8uJsHhsBviW4ga4PODf9moHrvT2H34+mIGv9mIDh/CjNUOEclTea/4LQZ2e9Hxl4rZEqUDcNzmuc98jwEjEGSsQ4K0bwG8ZM1xdRsFQQRxHWS9z4on5NAxCA1iCUHtvDznfzvMzmHQLJYDzWjbKG8dUb9SQ6EgQGmrYdyyPOjLY4HzykspxOe7rOIV9YcKnwwSBFoMimzCY3TCYLjBnO9x3NelE01vQ+Pj3x/sMHlNbnVsCvbwRKKpaLOfkyYasrEq3oou7rx7vr2nNZhcUaQVsKrmdXNN0WHUsOxwOxnNM2JVUJ85mmsVuOhyfiKObm6h2ncgN5AeFEWdasizVeOIQsSLOEU1WhIwWD5tt3b8ZpYJYTWUdvTljjGXqJ5UQymZBqCN4QR5LeCWYX36C14lQOvLq+RktJT01jAm3TMkkt7Tbi1dUlT5v3zOav2Dw/QBBcrFZUVQthQIuMVF+N4+qoZb9pGYa3FJOENI1pm440m5AULU1bUXUbsibB+oLFYo7WMXhBX5WAZzlZIsLoMchISNSE+Szmy3NDJDX77ZHL6zlV/0BVxVxcrKhPjqYsSRLQqQD3ilfXP+NyPaHzDV92DwSRIXWKDR2DHZjOFF3vMLJmstRstvfYAMVFziAdg69QRlA/lkzSGW23xR4UabogzZKxHrmzeCzZRPLq16+R7o6g4cOPv8MdesgTRNRz3JS8erXi0Dsm0UBZeurSE4Y9QuRcTOc0Q89slpEkS5Lkmm31xOJmxh+/r5i+uuHp+InqySLiJes3NzzefSLPFMZLQuTpXMXp1LOY5TT9jj4U9IWnwRAVKbWpMPWBQ2OZFTlEgslqQr0ZJX1Z3DHRt9i0QznFq4sbyrpieTGj3jf/LpjyP8j6i0D15vaCWBTc3L7Dek0yhbuHkn35EWM6tocHLla3VJWnLI9Y1zCfXtO0LUOzoO/nhGHDYCIet99DiFjM5vz+Dx/4zc/f8rj5AaIFdRVTlY6rqznvP2z4/vf/yL/4F5dMphlPT3dMpgW755IsnSLsLbNJ4OH5HilaktSgVc58nvL69pecji2f7n9PnFqyeE0xz/EMpHFO8DF93zPYBnyEdTVZNiFWgSR9w+7UEKWWumkQouPm9QXHk+Ridcvp+IzSlvlyxva0AZ/R6A15PvZYbw5blNZkU8Hx9EwZBG3T411Hno0h1ftjSVPuQCb0Qw2RRcspxXTOp8f/hUrd0faGaXqL1HOIBC4E7NDQ9o8MpiPg+PSlJlF7JtOM/a4jzQRRvGR9uWZX5bRdS5qPOZRZLjCmQwhN25VMr2bkoiDoHE/CsflE6iOCy5DihNQWISJESLABhChwukdmFanUKLHkVFbIKEZIxWJ6S9O2SD3G+HhgvpjhiWjaMSi6677gRQWiZbIItH3JbHqLVD1N3dI1ljzVOFvTDyd0kp1/wnviuKDtSqTIMX40c0kJWbYgUnNOwwPFLMUNE6yTSFdgzUCaFCRxwtPzjvn8gkhH1E3Jze0VdStRMmUwHVJAVbVoOQKe2WTJsfzCdJYRxxoRRra2PBqCt0ymKVXTkic5KpHM9JxhMFT1js1mRxbPiaOcuq2J4lGnJEh4fmi5uo6YpAlhKBHAdHrLw+MDWaromuHrvhO15Wf5GpMeqMp+FHwyxjTVTYvtITiHV4FYZrRVi44DOIH1Y/F633Vgxr5qITwugHUjM6q1RjqJdePfp9MFQ9/TtRW+H8X7BIl1DjN0BBRRNseYHkGMThTOO0JglA0YGIIin01xqscbCwTM4M6gS4BwyNHDThCG3emRUzkGbEvpRle2lASgrFq63vBihjHWMikSIq2ompG1HVm4EXgprREqxvnurDMd5QJajcUDxgSM8WfWdtSaJlFEHAvqpsM5iZAj8AZHkoxmn64bxtFx8COIZTQcWcvYHx/CyMEGSRAQxZ4oBind1xau8X8GIi2IIg2MkgkhXljKUfeqtTzXsZ4d6GFkduNInR9Xn4H/KJdou564EKxmV5wqy46BkeOVECRpkrGcTeibGmfNVxI3BDdqdINhMIxM81lUEM7JBs4Z2sZih3EX+nNLFkIig8U6A0KMLVgE8C8BVqODen0xYbc3ON+hzga6MbLL4oWlt44QRt2vOFeLjfrp0VylfIK1HSgBfnTaIwRS2VETacTIwn9FwRIpFXEUUFohRThXso5yD29BK0WezZhNr/9sRpOS4XwgkkLQdx1//7vf0XXjgdsY+1V2EAJESUyeJ9Qc+FJ84ZV9g4jU133bdnsWi5txwtHHTGcJk/QavOFYlZgzqHeupR46VD/gbUKRrxn6jo+ffiBOA9ZqpGoZmpzJesKhO+CdojeWj3fveXVzSSABlYy616FH6R7kePjVEQyDQMmcZqiY5THWHWgGR7ZImS0yNs87TtUd09klu/sDZWOYTTNOzhPHU6xIWFzPySaev/27O25v/hoVJwQGbr9Z8PnjgdXqhg+f/y2XFytOxx0//PAn8mmgPJ3QKmG1ukIpR9mcKPIly+UFj88P3F6u6VtDlqdsN1vq2pHdXrGczBhai84zoiiiPjXEUcHVu2uGVgJnw51uUNEKKTOmi5gsk7TVE67ZM1veUPd2rP89GlY371BK0PYnpHJk+YTD6YG2LLmYr7l5Ndamd0PF/f0TxSRiGAbyZML+sCfJIgYzMPQNxSQnnykeyp7O9UyKC7q24uluoEgkj5sDihZcTkrAh5TOx5R1x/70A3ZYECUpQUkiXRBlksPHLwhTIKOap43AmsChmNC5A2+mV2h7oq4sv/z5a5rdE9acOHlFtz9ieovKPLbzzGcx+77ktNlxc/Oap0PJfFJQV93ob8FzrEtWl5dcX6/5/ePfkUxSLi8u8H3gZnHLKghs67m6umF72OCd/f8MKP9Drb8IVKNMIqVl1x7IZzmPj3tef/MN7fsnpjYiTWcgJNY4oigjiRdMiiVSPfHNt1dsNzvmsyVQgI942v2B/TEhn0XcPT6DgO1zidIFjw8b4mTGm9vvGKo5fS1YLNccdnuCdygx5/p6zu65Y7GeM1v+HNNXLOe33D/cE6mxv+TiYkUQRx6fDohFzOXVhGGwNE3Fm9dv+PT5J+r2yOXqDUWaUx0HkIY4WRMnLfcPDxTZkvXVNb6vWS4X4+iMDq2hmCju7gekjFG6pe4bZtMlVbcnT5ekckY4ZwxGycC0WNJUlkkxJU47DuUj68uC+tjyOrrhVJ44tI/84re3/N2/2dHVX/jVLzVaJ5zMj1RWMS8u6DeQpCU+GJybUdtH4JL9ruLdzxPads/v//QTg2l5/eYtWkrapma5zhjaAecNaZbiLCAtSZzx5eGZ21dL+h7EuX2nqR+JE4PmliSe4Lqay+UF+80jOu1o2g5HjOTA29s3dFUYe9Qr0LHGhoa6PxKlU3z7DEEzyV8R5JEvD3dMiynGGE6nHRcXS451QxSNoCTW2TgONob9ccfgYhQGH7pxRCcNXd+RJho55HT1QHAD3gpsrykm4dxP3NI0NVIGjOvwbswANabl/vEn8nyKNYHF7IK+b7BGkiQRNuwJBrzXgEIJzbG6I4klSTqhq3qquiZSF/S2o673TPM5k3RKFs3Y7U9MigVSaA77J2KZslxcsHnuuLlckyqNPzXMVUE3VITOMYlTNIbpPP+674ah5aq9ZpdBI55HFkyc7TXBUR56bq8nxHE0/oDGCi8HPD1Sp3hhUJEawZfwBOkJxiMRZMkUrzRWNEgcSnjqag9SobQaGUWtaI2nNQ4lY4IKeDUaY6w1RDIn1ZKyaygbTTck1L0kCMOkSEZ8ESxd01JWDuv8yAy60QwhpWB/+MR+Dz6M9crWg440UazoBscwAOfRsTEDSmSkacqpNgjkKME9G8SUHh3nzr2MijXBidEAKRjD48/fuQEHYqyokjJGiJgg/DnQf5xPx7HCWUffj21Fo2Z0ZH2TOMa6QG/s+DhfnVsCpxydBTtIVAjIs8FoJIvDmHdqzvWzL71ZPmCGjt68MOfjs/Teo+Qo2QjenYF2NGp/EUgliaJx1N61bmxp0pKXvKw4ipnmGabrx9dFn4G9OLdr4TB2lIyMgWJiNJKdK2fxcnSL+zNLC3CuptVqbPNyfnw9XxIOvPdYK2jaga6zZ5d/wJ81sIKxOMFajw/6q+ltlDoI0jxlPi143pbjNQp4yVr1ePToMsM5jUAD5/SEs9xDynM/vBPfnwkAACAASURBVPtzxiov+mYhmM8vyNIJ1hqEPlezCoFS4xHq4fGe+7svxEnyT2Qio5TFS4gThY4l1o+GoXjieHj/Z40qOuCQdL3h+uId11czvvz0R+LYc2gPBMFYHy4lF1cLuv4B28dIPWF/OjIpHMEUOCOI4oh8ktGZmqo7ciy3+FKQ5BIT+jHHVTik0jTNnhA0i1WBDBqhYOh7qnKLDZ5IR/SmI4uvCL5n8/SECwkin49mqqrGu47B9Lig8e6Bn563zKYCH3KaToEO/OMP/4AEJrbABsP95j1CeOq6Q0UBGQ8Mg6DvGmTheHj+E8dDzXp1A8LhhUHrDBVJNtsHJtOIJFJEszlSSbzMId5wPJ6YJwmdM+R5gQkDi4sJT09bknTBbHFif9iQJgtmswVFmjBPI2Id6DB8vn/gZrkg8Zo8j+mbE0NnaZsjT/cnkkSS5mtWixv2+w27zYm3317QlTUCh9IRk1lM0x5RekK5fyKL5kQq4f7ugbopMV6RqojH+6exiW4/gkYpFlzdztjcbejtkcYUCB8xycH6AR3lCJGQz3KeDk80w47j4z2XsxWu9YChF3OuLxeoMHC5+jWvXxXkU8dPnyqKfInoJpw2zzDrqK1hKA1Pu88Ui0synbI/3FGVA5mu8cD9/gvzeIaxFlELDv/4QDTPaLqBH5+3TPJA6CcUC0XZH1GuYb+veH1z8f8ORf7/sORfuvHu6U80w4GHwz2b5h/Yd7/nxw9/iwRmkwk3N5f0Q03TPxPFkkgnCOFJs4Q4huvVa5Lsgte3r4ijNa9vfkOSzPn25hfk+ZRvv/0t37z7FXk+YbFcM1+uuHn1Db/5Z7/kl799R98Gvvn2Cms8y9WS1eqa5UVB8I7bm1uUWBPHOUIari5e4WxNXXYsFyuWszdIFZPECZGccn294njcMZsVFPmUtj9RRJPRNLNIKfsT1jmydML8IqcZFM9Pe7zv2OweUFFMXdcc9ydUSEn1kvXsF2TRa46HDtPDZBKx230GAWl6wXz+GiHGetDZdEmsXpHECYfyE7PikrZ1oBvq/o75POe/+M/+S1b5O+4/VXz4+J5D9YwRO3a7R477EuFz0lRi/YCn41Q1/Oo373jenDCuZnf8iFIwdB3Cg7eCoR/o+opj+TiG5PsUFRtcsCArIr3A+xiPRKoY5yGK5kiV0LctceooyxOgqaqafihB79GRJ40U68stRTowSSRK9cTRnL6v2O3fs5gvMEPN9vkDXVPijac+dQTn2R9/4v2Hf6CuD2RpzH5/4HRsmU3ekCRrmranayL6LmBaQdscKMtnwCGV43j6AaErlFT0Xcd0OsUHw/74hA0Nh2pHVQ/kWcLu8AXramTUUTdb0nhB05YcDvdIEibZCiEkThjKtkIoT1MbDmXJ9jBwLGOEnuOCQutAkWU0TU1wgSSyaCxFPEH4lFN1ZDAVs2nMaj0HOeOnp4/4GLpBkRYRNhhEHDjVd6SxQ1tJaNzXfbc/1ZhhYLnKUWrkycJZ7xhpxWZ3pOp6jOtoqppuMFjGvlHTO3TImE/WJEmGMR0ySAhjkHoILcfThs70DMEw+BbrWkzXjOYh4Rh8T5QkFEWB1CCDpx9qHAaUpB1gXws2h5jtKaFs5DkPcnyeNgQQmiQfM0wXiznT6ZSiyMizUbM9yV4R68nIAL70dgaPUiMgDP7M1IUxvkkEhw0Bew6BH7WMI3voXM0w1AQvz0ymHCUBkUZpeU4IGBMPxoeRSBxD29F159xRzvpWIUniCBWJM0v4wvhxzkIdzWfjtOGs3WWUGSQ6gHcYFwhSnO8rUVIRRQrrAubc2PUCb0fHvKXtW4wNiHOSQThng0aRRISREQ6Mhq4QAkoyavSlxDiPPf/9K7sZHGYw9NYTXsbkYSxK8MGdgerIsocx1+scIeWIlEUEyzCMTvzg/dk5H9BCobSmNw4fxpIGEcQIWoMgBEszNHRnNjKIF0AuUFKymk/J4uRrJNhZbIzHkyQCjaGre84k6td4qsB4gEqifAT06iUvduS6pQzEWtNWPda/GKAkQmg0isViwcX61Tkq7Cz1eHkTEOz3B+4f3qOikXH3Z5PXi5krUtGYCRy1lGlLpCN2hw2npv66b5+3O07VQJYnPDx+4Hd//wOnukREmiAr6u6RdDrlm2/f0bR7iuySqulwQZPNM6brGYN3pFPFoazorePgampjqdsaM/RkmeZQfqZpLNPJgnw6pR80y+W37A/PFNmc4Aaa5kDVfyGEhrbtqU41Q2NIoil9f6SpdzijqMoBLx1RkWN8TdftiWJYLBMIMNiBi4s1dfPAly8/0PUlh8OOIAxt43l1c4OQCqkiArDf3+FdhzEHjGm437ynbvbs9xvev/89xlrq7kjnnmiajvXiHYu5pCp31HU/6sltT5LHHIcnymbPaThyqCuyLGfoBy4Xr/E+sD1ssX1NEWcQWxoXE0KLDA0qEUxWBQ93nzHDgG00KsTg4WK5ptoEnBnYbu9JY8lQOXAN1gasG9vcVouLc/dxShRZfvrwI58/f2EwirxYstneczgdqJsDk0VKmuSslgv84Ij1gm/fvaO3huXkmm9fvwYrMQNEqeCwr2nqAxKIdcrl4i2vX71CxglBpFxeXDOYA8MwTkA+333G9oYgIrZlST0MKB2PJQVNSXPaYpsKq0o2+0d2u0cObcXxsEEz4P0zVXPP5vl7qvqZfbkn1jHONliv2ZcHDscjp65mu61YX8z+ScTef/z1F4FqU4+xJnFqMMYy9ANPmz9S1vcMxrLfHnn9aj22gOCIkgodeYKXLOYXzOdT3r5+jXN7JlPB1fo7fvbtb8AlzPIbquN4ck+jJfPplMXsGhkKtpsDaZrjfYQPA1macty1TKZTXl3/GmcV93ePxNFkdP1HCYMVBKl43NxTt0e+++5nXK6/o6w6yuqBvjecji1tu0eEgBss+9MTDmi7kqHrGVpLJBPSSFPuDEm8YLcv6YYdBIGOA11nKPJLpK44np558/qW+eSG1fIGIT2RzilPnqo+MnQeITJ0HLGvP2CDJZ/MkaIgz6ds9xuO5RdEEGweN8SJQypF3youlm+Yq19SyEuCG1isFBerW2J9zXz2CqVidFKh4jEP9XDYEbxHKU/XjfEvOho47UusCRTpeuzfVgfiwmJdzGJ5w8P9gce7msOuxvQteXTJNHqH9BrhYo7Hks9f3nN19Q7MLWm8ItITRJjzpx83PG8DdTMhnWTMZ5fM8rdEckIcjz+c1g/IqMWYCi1j4jiitx2dcRhnaM2Ru6ePCKWoaoGQGUrO8DanaWA2vWA2eYs1EbFak0aX1GUAYQheUGSvmOS3dP2eYQhMihlmcMymS5I4Js+WKKVp2hNSWhCGz3ffExeWU3/EB0uqFNpJpE2JopgsXdINJafyiUkx5+b6G7pagI9RLJgU10wnV0ynV1irGTqJM5I8jejbI107NpJMZxcoHfHq9WrM/xSGbX2k8TWnuh0d0q1nks3ZVoev+643Hd3QMJ1HpFkE4twXj0PKMYKmbSzOW5JcgnQ0zYASo+7Q+1Fna/FYNRDEgKCl9y31UOFdDcEw9DUyKCbxGi1ihm7Ae40VAW8H8A7nBgQOYyxmiCjrlC9Pjo+PA2VzNhTJ8YfdO+i7gb5psN1AsAGtY9K0oJjMmM6XLC5XeJXyvNNYPyMvZqRZNh5uk4RhUJTVubGJkYmVQox5udYwGDsCPTk+tpIQhKNtO6wZTVejNtURJxFxnBHEmBP6UkUqQmA+mzCfL4DRvPQCcAkC6zv6YUw5EC9tVQicNzjfIIQfqwlD+Ap2hPBI6c/a3TG6aWT6RrDmhR8lFVKOWtmz/lJHEcUkR8hoTEA4yxZeFBNS+jOo0me974uuUjAtCpIoxwxnNjSMzxMkQTg62zNYiRRqNHGeDwCxkqRJhHGjGe5FYjoaySRJNiZXDJYzmhuNWCF44lSjVKBt29HgdD6ccAZ1WaKJpcQMo6wjvLjvOet1RfhquvO8RKaJUd5iDabtwb1c/AvlytnwNOrrrX05Noix7SxYkkRwvc44VwwgwliRK0IgTRN++ctfoPTZqAZjaoS1OGtpm4b3H/6IFyWjtvolm1UjzlprKSVKeeRk4EvxE9vdM5vNkdk/mYRcrG5ouxOdaWm7jsfdj+hkGCObotHUKERgf3zCmJK2rQmqoxm2tEPF5nCH0IHeV4gIKnPCoVBRzGQas15fMLQC6Qrm05zH+3scPSacqNojWTZO9nb7DagWpTR11RNCwWy+YH/aUVYtxiZ0w4Hnww8E6UgzTYImcROSaKCujnSdYDG7JlYpTXPEuZ4kjbi4eINUUFcVRT7DhhSVKDI9ZS4nXBZz+m7HqT7w+PhAHFnqqsT1EdNizn77zN399/R9h1KKenjmw8ePBBl4eP6ADAl5klAfj8TaI+IO25XYIcVH0PsTdWmZpFfcvJpTd1uetvfc3+9xRhCnowyntU+U3ZaqPjFYh1A1aTzHB8/meYNSFdvdT2gRsV5N2O+f8DbQtw2276HPkTblsH9GhJa62jMMFdNJzsXqktO+wtmSLBvNgVJBkkYoLfl8/4HlekpwMXGUkWYZQytJoiltXTI0Ysyr7QWgiFTBZDmlti0qSkmzmK6tCK2jrO/58P4j1cHSDxWH/ZGr6zmLlUax4FV6QzaZEs+u0CqiLQOGmChN2N1v8H3Gcjnly8ctSiVIHfG8f8IFh4rHyWFdt2y3G/q+wzvDYjlBJ5JTu/93gJT/YdZfHP0XxZKqfqbqn/DbjGlxQdU+EGJB0z1zOGzozJxf/eqv+fGHB9r+mTxraMqMxXJCnitinRI6R1XuyTJFHuckscTZiIeHZw6HLdYoptMJuJimO5AkI8M29B1KJvz2tz/nD/9wj7OBPJsimVCVJy4vLYiM2fQt37//v3j1dk7b1Vg75XnzDCJCSMOp3DJfLBFiYH94QMsZxaxgd6zICkldV9Qng1aKKIKfPnwgjudMp0uqtkUqSdMdyPIptlNkRUfbG7ypUdoTx5JJMWMYKmbFir4fYzW2uyfeffvPmQrLw9MPzBYl8+klQU3phhJjHUI4rDkR6Rk/fvieLJNc3awJXjCc4Pb2F9x13zOb5gQETQXrVcHTs2E6U/z04QMyNqyXK+6/nNhsnhnslqVLWc4uaG3NLCuomhNXs0vSCHaPPabzFNMrSlOxXs/Ik5w0taSZojoKjqcdWXqNGXpmswXlcWC1mpIV12y3R4b+hJeGzdahaVitctomoHQ5Bpj3GXXYMwxjqHGeZ+hIkRcxTe8oilvqcsd+/8Dbb74jVlNgAF3y5csTi3XBbLIkS9c4Y1jMLpnMFux2O7wVzPJfMJ1cY4eI7fYRnfbMZivq9ojzNRezC+KoYLc5EURNEJAmYzh/19UcDgPGQ9NVeNfjvaGYzBgEOF9TFPmoRc1THh/vAUue5YiQUXcHrGtZLRcctp8oj5YQBLNFwnwyozM1fS/48PGBOEmYz7Mx+oeAQ2GdI8kTJlEOladtThzb49ftuJjNyKqMMIxxTWU5fAUuQYxj4eO+5+oyw5mBoe8JQqCEAO8ZvGGwljyfAGOOqUIxDBYdpSTZaMayzlIUMwSSSElgNF55b+j92HcfxzOMhary1M3onn8BpwjPMFisPY+ez6NXgsYaj+/NmcnkjJ9GR7+U4xd0ODvzQxirUWWU8OWhgSDJp0sK4YhiRRLHrJZT8II4CmTpWHwhgoEQ+L+pe68eybIsS+874mrT5jpEqqqs7mkJEvNEgCAwP59DTlejp7IqKyszMiPCpemr7z2CD8cisp/qgRywSQMCITzc3MzczG2dvdf6VhzleBemeUHRCyQ6vLZMhzUueBbPN0QqSRRLZCTOFa3h3wUgNedaTBlW5PI8FRSgIo+KLQ55LgY4T/18CBF54RlHG0JUhDdMh0cyhNcE6ecxoiP4UOMIhDaY0YHQ50CUO4vnYKEYhhFrA9Q+AENDcl9ITz+0DMOAQOLcp3vhAUPdVRxKgxTn1i3ChyIpiaKYqjGMxqHjT/Wy6gzZh360jMaBsgHNKsE6g3UdMsqIkhhbGrTUn4NokhFhDWOXhqpGHAoVBp8u3HYpQ3DMWIc8j0ncWdBLBHaEYfAoGeGlP/NmQSEo8kDWMDZcD9J/9tV6N+BthRIa50Nw1J2/3t3dLav1mn4YsGe/t3OBThCpiJeXe+rmiThRtI0hzlO8E2ECf26+woOIJG7q0Mxpxi1ZMaPIFsA7gMBkFYa6PjFd3HF9u8S7I0/P96R5RhZfkGVT2u6FLJmwPzwSRRFSDhhzIk3WgGAcW2TUczweGfyevhtYLdbgBbvNnvXyFc4KqqpE5xFRHgpX5pMZ797/CWsM00XC0EGSFXjRI8goJprt8c/gCrSOcc6wP72wWkT4Cu5u1xz6iseNZbVaY7uIPFW0Y0nTwmp5BXJgs3khiSIeN/+V0/g7vridY7ua2eI1X766Q7gpXbTl/fOJm9UbIpUxNJqk0PRtgoo6imnE/vSRNC2Qkcb6gaY/EUURReHYvOxJkgw7tETeM5/O2TZ7HBn76oF+gEW6JFEFUhjm+RVZ6jhuW+bFDNc3YBVKD9Rly3JVoERC0xw4lS3TaUI/OLSK2O8PWAujCY2OaTpwMVmy2Txjm5LF4gqd9mz2FTKaczztGEx5PqQ6tCrou46mO7JcXJOlGadqh/CeU+lYzgqsNazWE0bfcqxqpK6J4rC5XGRTdvtT2GqeWcSd6YlchtaOKDVgNQLLfLZmUuRMiwWz9TXxqLnRhqIxzJKC7ccTb25v+D//5b8xSaLAg41bZkXL69svMcYyTRtEnGOdpetburYlTTRNWTObFAxDR1l1n/3j/1+4/NWJ6nq9RmlPGi0YhoHV4oYsuqEbH+j7jijteX7eUNVl6AUXijRL6M2GY/Wednzhp1/+QNt3OC9p2obdfoNzgouLK7q+wgwa4RO6rkPriKY7kkQZT08fsa6iOgWg/H/5L/8bp1PN4fTAOFouLy4Zx57DYcs41lg78PDwjtki4fb6Gx7vt9TVM1mahBCWsHR9jTGW+cUkdMBrENJjrWEYmrAa7neMDHilqNpnBlPhfcxoW46HPUp7DqefaPsN1vY8PT9yeTUhTkCSM/QSxEhZP2I5sHnZMpveYqxGypT9cYNxDU7sma0Ny9WS+XyGkhIlYopighCem9s1kRacygPVUbFcveZl84JOd+QTx6vrb8n0FYv5NaPpWcyuWCxWIA1Nv+PYnHh3/wEizXR+RdPV2EGhXYq2ayI54mzNN99c8NUXr1HCsVpPgudt3JOkktncc3VxQRQJslxwdTtHyzmvX70hjgukz4iTmHr4yOgaynZDNx7QUYoxEX07kiYKpRKqtmSyUHS2ROoeM5ZonWCNIkkiBrchKUZO5SN9V4P1lKcj/VBixY4kTSjLLVkecXtzSxxHSOFIM0daWIyxDMOAMQ3L5YKXlxNxpJgtNItVmKSYQTOf3pBlMxazW+aTOU23p3ZP+MgQpTFtU1MUKXd3X7GYfIsZLZNZzGK5Jo6nxLmhMw98ePieh6c/k6YznOgZXUPXCeK8oOoPyETTu55j9UhdlrhR0Pcjx/KIMwLbO6SHSZHTDFvi/Fc8VdREuCasZC/WBVqf4e8iiBWpBId9g3cSLVPSKKeIcjIZM1QDQkS0g6OtRgqRo02EN6C8J1YaayK8jcjinKar2ZdbRizoiERnRD5FkqHVDMkKO66QckWUztCxBDEw9B1d3dFWFU19outDS9lgLVaA16CyiHiSEeUpOk2QMsIZydAPtE1FVR6pqwNdXdI1DW0bgiFeOvJJzPpiyfXNDTe3N6TJFO9y5rMLbq5vuL685ubqisvLC7ScoeSU6XRCkWekSUaaJng/0nQNzoXhnPDBi60EICxN3TF0QWCc+4+Q0mNdH1icn9BSXoU60/MK2FvABbEYJpGhznQwDV1vED5MMOW5HEFJj3UdVdXiXJjOSRHA9FJapO759zWjgYDgUQpULHE+HCI4r9/PWgvvB7q+ZzRjmNqeyxWk8KSJJo5jjA1hJH+WsEJ6dBRW48YojOUzGs2dxaPSEdYr7Nk7GlBf4ozM6ui6LniIz95dhEL4cABIsoR+HGn7HqXUZ+qB9+7MOZXBbvD54BXuk8QRJWCEx5zrbD+1wYrzIUziKE91sJmcDagO/9myMVhB1fkg2M/BvOVixpu3rxmNOeOzxPn7Gr4/TVXzlx9+IMsVfQfeq3PS3599xO6MsBIkc81htcP2iiSeMnServt19d80DcLNWMyuscaw2ex5eHihrE4MbYoQkr4f+OrL39FWjjydMY0vwWqm2QJpM7qmRMuEWCWkscSLhsHU7A9b6nZDkivKuuXp5YCIe3aHJ5LoEhUlyEgiVRr89G3A1eWFBm/oh5oiTxnMnnFsKbILVosVDCfSQtERs+8/YHpNVx14eHxHY0/sy59o2galBVmWcjw9kyQJb7+8xdqRQnhM65muVxz9kXfbDVevv6atW1IP1oy0TYNxPdYq7m5fM8kvOewrqrqnbTx3b5a0fQlScmo+sNnviJIMiyM2GbmaU9XvKU8tkdLISJJMHO/fvcOOEXXrmU1X9P2Rqttw2Lf0bUdZH1kUK2aTKZEK/O84URSTC6I8xjjPaj3FozHeY6lYrARpZoGeqn3Hvi6JpyNCZggJQzsi/UCsakzdUB9PdJUliyZ0zcDQV7TNgceHdxhj2W0feHl5BDnysn+gHVoGe+TlZYNhYDZfMHaG8rRh7B3eKKwdGVwEUUI/DESp5pvf/hatFtTtCRFZsnTOfn/g2Ibny9XqNVe3dyyKCReq5puZ53/9n/6exSwmU0v+9ndfoXDMpzlZHDIap2NFkgiu1kvWiznVLmiEw+5A07T0/f9PKlS1iphO53ibslx6vNixXEegChiv6PqadNZxf/+BLJ2SpRnOKpA9m/0TVlpm0wt6u+fy6hXNaaTpHzkc92z3G3TsqKuO337zDe8//Mxu94KQlsPpkSxLmC9yDrsTf/r+O9q2p+9aalvS9iP99sDYK3TUMpiW68srXjb3HIePvGwKvO8xo6SqH0jijON+S9kc8aKnHQ9sTydwht2pJ80kKo65f3pHFC1YXF7zvD3h+l/IizkSSdMeqcoD02mEUgXPL39mPpkyDGvev39ERB1Ct1RHyXy2JI5SOteT5pKXzT1SVSTRDVJEWJNStXsWWUoa3yDMktl65HHYI92aq5uCL27/E6aHuttjbUJbK4QKmKyuJpyA2oS2OzJP79i+bLC+YTrPGK0iVgvq9pHlYs7+8B7vPbv9jjhROCco5jF2cGh14nL9JbvtB9rWg5iwutTM53cc90+sViuqH5/wqsa4iO1+Tz51eFGxXq7pxgNCC3758ECSWk5VhzUROo0QTpGknmW05P75CNpTvgykkQA3slrPSOKviVSOykJ9Y133rNcFSsYcTyf2xw1xbCiyC/AJXT2gxQShTxyqI1pFDMZRNx1enpgUV+AU87nA+BIhPYqENMmJdYrQniLXzOZrhL3lo/kORIEqpjRjxTD0NBXAlvn8irp2rBZrympH2ze0/Yb5fE5RzBgHT92dcLKjmC3Q2tOblmGEdqxJEs/pcCTRcyJmSLdlOZvie09fDvSJoekaRLogVzkQmIzxo8aUA0jL9dWK9z+fOI7dOfwhkRLquuN46Mivw2oJoWmrkijRZEWO9SWmb7EyRsk5UpdMJwnDANZZiiwnEpLGNahMYqXCGE0iCnQUEalwnaOxRPGIUCN0jrHrMMOIHQOAXkURMoow1mKtw1pDb8zn0M+ntakUCiUjlFQolZLIsGJVKmCKhAsTQY8LjFMz0lUjbdkglQykAqk+r4SlCOzLPCtQMiJNYhYLifp3/y+A5RuksCSZxVqLGQISK1ICY3q8dyg0QUwZBIZ+6PDG4P3k87panIWnR34WRp//3YPEhckl0dnb6pFIJIok0kjhGIzgEyIr6DeLtR1d39H1aRCgMtjiArxgYDQCYxX+LM4+VcQGDqyh7UMoChQIibMWrUUoOhkc3im8DGt34cJ1ZEUMylHWDdYJpAUtP3ltJXEcUdfBdyoU52axEGBTyjEaGwKY4lPiPXhIrbOopCDOMtiVIYTkgqoXeOIoUBCM+dVzLc+zEoGgH3ucEHgZalc/sX0dHq1ASU8zurN1AvAChcf6EHzqXfhZoKQH60jimLdvX5OmKV3foZXCORfqUkWgGfz47s+8bF64fX3D5qVFyk8FBsEvjLSo8/2cTBKM8mgBq/U1VWPJs1/fQueTOd45elPTdgOCCI9jvtBo1VPWJ64v/oHLiy/5OfuZSAuq6kRnTwg34WK9Ynf8mfFUMZ3M8WLA9iB8Htb43Ym72y8ojx3toEAoqnJPJEOJR1XXTGYXaC0Zuw4hGybZFWaA7eEHpEtIoytUqmjbI1mWMZ2s2G16+t5yOOQImWHUie7UkeqaQ9mRJjETrdkdnnHWU0wWvDzXrBe/Jc8T9qc9Vxev2G8f2B9aZAJdX5NFK+IkpS4NAsd6dcVm+wHroWkPjKNi6DuS+EuM8Vg6+v6AHi6YzizG9BTRgmYYaPoHrMuoxheKyWvmxZJe/55urHGiZ3gZSVSEY8ryMuNwfGLwgogiAPR1jnOe02kk1Ji3pOmUdmyxcqCYzUEZ2jYmikY+3H8kzS+YYlnMX/Ph/QPCCybFhEk+ozzeM8mv8aJHKo+xdRCZIyRxSlvVNHXP+mLBfv/EDz88sVwtwE3JNIgkZ11kFFnGqazZbiq+/PoWNWkYjMH1MV6BtZbTrueLN56nl3uK2WuSLOZYHemcJ1176n3NRGZsNyP//E9vmbg/sJYz8qzixy5ntVhy2LacNh13/3hLudmyXORMsguenh9wxjF0LbfXr4iiBJuP4ZC3Xv4/U5f/Ay9/VajGOmIcNXESTmdVeWDoLevLnP3mSFWOpMXAOHRMtx3HMgAAIABJREFUiillvSXNL5lOFzTdjt3hBSFivvnqNxxOL8ynC172FXE28rx7oDp1TKcL6uaIMT1xkpPla15eduTpDWX5DLLh48ePeErG0ZPnE4axp25qpvkcj6PrQ+d6nMB++8R3f6q5urmj62EVz3jcPlBVJ64u3/LL/TviwqGThKraUTY7ouwucFSbJVV/YDw0/PDzA3/79YI097SnisUq5nQMU5GujVDEzGYzrPHoaOT55YH5bAWiRccTZtEbFFP2hwdub17j7Dd8+OUDF1fXNLWkH1t2h5bi+g1Pjy/c3rzi9asvMKZHugUP988B2m09SRpTlUfWyxsSlbLZ7SmmkOQxpwdHsbbcft3ww196rFGsLua4IWOx/gcmhePD/Z+YL1L6riTRt6TJSNU1ZFLw+LGnrX+PTBpethGLFXTjCxP7z5wOhn54F9ZZ3QMqnqCjmPJoEV6TxCB0TtRJvI3JkgIzdvTDjukiI3I5aZxRVY7r9des5hmnl19YztcMnSWNY3we3p29izHGIkWOkIIokkSRxjMwnd7Q1j0ChR0lx/1IOhsZzZGuz3n4WDGdJ1g/YkZJPxyJYsHD0wtpfIP3CUU2Q2lN09Z44TntRu6uL8OkTq44VhumeYZUsN1sGWzEepnhvOD+4Ym+P2GNQcUdkXrFpJCcDi8MY4XWGpUAoseOgle3vyGJC4ZuxySfoYho6xqsYZnfYuSIzgp2zY5BROTplATNJ6HaJAOzLEFbTRILptOEY1nzyffIOVW/3fQkcYvWHUKFyUkkBf1o0TLCRJZWOpAGi+bUw+b5RJJpvFB4q3C2wEmQMgYnaTsHwqBFjfMmrL+twDoT2JcypK+NEZixPwPs1XmtG/6sVRR8nM5/Ri2F9PU5Xe4cCEusY5Jkgj5P3qRWoftdShTynBh3IU0+DoxjG8IOowkCU0VEiSaJE+IoIYo0aZKiI43WCqU0QhQUhWKqCVMy96kta2AYO66uLeNgMCZYGKRWRJGnH4M4EcKFoJHz6DQwYodBnX90+vOiPYSbJBqc/nceWkA4tA6Lce/OPlkRIPbO98HbKlKcDU1dnwoSPi/xz1gxf6YSfA7VRZIszziVHdYPOAbw6tckezTghQVC/fIneD5egXBhjT86nA3rPXMOVGmdkKQqBJLOe/cwxXWEilKJlhF8IhqoEHUCj5ZBsBoXAdFnrFW4P/YzpaLtRqTMCAUC7vPzx5ie0UkGmwQOqvdnpFjAdKVJxKkcsM6jfRCQ1oUDbhILEh3qRpWI0FLy6u4Vy+WSfugQgvP/DY+sd46Xlxd+/PEn8jwjSiTlqQ23hYAcE16daSPBsiKkx40JRarxo2A+LYBfK1TbuiPSMavFGm+qAK1nwDtFUUxIsgQnDjw9/cLXX/+G3XbHLw8/M1tqxs4zup7VxQVl9ZGyKZFyGibJqeZUlkgF+0MT6mlHC2aKoudweKTIp+hoRjEpaNotdoxI0wnlaSCJC6TM6E3NOHoW8yVlWbJaXbPdl7iuRCvDMGRY3RBPZyznKd2u5vLiKxAjdpRgJPPpBf1Qst2UfPHF10hp8JWhqTYMtme6SBFCsZpdoVVK126RyvDyfE+ceA6HjyTJiizN2G5fmGZT9tsNXoxcXLzGyYgP7x+ZcUkcO6K4YLL+ks3+F5x1RFnM0/2Gq+kd16sVp65nvz8xiSPm10vqqufiasL+JQi0unmhLCtQgvmq4P6nP6FUwmJxTdUc2HY1kZbMJ3MSvcBFHikgSvfM52+4upRU+5FUx6xnb6jqnurQsJzdsV685lC/p2sBYZBa4rzF2YzbmyvGcWS0itlsRje8Z5rfYbsFSh2x40hsPB9++IHl4oJhaIlix6nu8KNAOE+iYzox4fIy4+HxHUW6ZrEoeLzfYwxk04j9bs/z5kDbOlaLBFEUNP0bojcFMslJnmriVDN0iuX8G5I4x44nlssF1WmL7RPSXDNfTlgvLinLElF3TPIL4iT7v6sr/4df/qpQ7YeSWfoVVf8DSSypqoo8zbj/uGU5u2b2+pLTscaKA1WzRUcZw+hZLtecTkdO3YFh6DBGUB4aquOWYTB4D8v5Dcfjn6nrnpfdA01bs1i95l9//0eUtgxmR9Oc6PsaVEfT1DTDhtHNmUyWFAsJYkPbxSA0h9OPPD0/c3lzjVCabjyErmkxI0oUovVMphGz6YzTxoPs0ZMYc3I8Pm2Z6AQPTGaCXx5+QKJYLu5ohx1Ca9puADLy9ILD4SccUJYDWdwFa8AgUTIiSwVDNyJ1R1zU9HvLbvcLWZbiRoUZLAiD8zFdf6Ssn1ldpuz2T7zKv8aMPV1fMsti+rZltVjy4acfWSwXJPoSKSvSwtN2nuksQaqSfHbADCkxXxHlhm7Y0FWG67cr6vqF+fQV1lXIoieNY07NDkRHP0hUlPG0+4WbV1c03YA/HNExocVmVBy3JZYWLy1mELRNx+XFFfvDhvcfNxTTKW3bkWeSOArexFG2TPIVWi7YbjZEyrOcXTOeLJfLKxCSbJLQ1CPt+MJkMqGqW5IoYzZ7RVU9E0ea2XTJbv9AVbYI70kSyXJ2zdPzlrruSDJBXR1IM81ifkPT7ulES5o7FFM6UyKjGuFTylOFTjq6rkTFI8J5nvcjTdMh5AtC1FijQIx0w8DMT6nKlmFsaCrBZJrRyw1JMgmdyJElzjQ6CgJb6DDR1KJgEk14fHhmOUtZZGs2mx3FbMRaxXFXEimFET2LySWVEzTtHtX9Cg7fTLbIasacFf3YkRafEElnAPqZOfrLhw1NV5NEmrb36CgiVppkMoRJJp44kljf0I19qFrtAhgd32B9QFgJPDiJMYEV65FopfHWYH34O59S7PLs33QueB4FiHOtpzdBkHxmYnqJUDIItTPmSQmFUhKHwzlL3X4Sa8HneOZOoYRAq4g4iUjjmEmenZ0P4swSDSD80YaVbtd31NUn0XDGSUmBUioI2igiTjQ60igVI5VC65TpVJ+DMvL8WDisHzCDO+O0DGMfWrdU1KFlh/Di3HUfhJjwnIUq2NGfW6M+CdVwW6x1CBGQSKEZSwW7jwpiKEyT/eePe2GJ47BOHwYTSg7kp9W1A0ITnRkEeImQnyTz+fMJmxPrHF5+kr2hvhY/MpxpBwKPd6G4JNgVDKOtGQf7OfAVvt+WJA7r30ALOAtQF1BX3nvSNEIrwf7QgY/CNPZTAEwESoF1JhxuZNj7uzCLJZKWKDoTE5wDL/kcHROeJAkFJl0/hMmxM0gZ1vQOE5rLEAgfXMHr9Zqb2zXDGLjCIUinzoFTxfFY8sc//gnjPPMsxVlJ35lQqvH5eR2EsnMOqR1SW7wNNofmNBJbQZSkn1+3Tbvh9vIbFpMp2+ca70bWl1dUp4rNJtRxo54oyx3Xlxfc3NzyvJ9xOOwQOOrqwG9v/pb62GC7miiNuVi/4sPzO0bTksYDSnek8ZLpJGwGrvI7jqcHRnNiNIKmienNiJQDiJSyfeFp8zOTSYZSoKMUhCbLC5rGnCfZliy+RYkjaIPwt2g90OiGLI4Q5KSxxhvDrLjETyb0XU8/1AgvmRWXFLnDt1MEC7CGq9klv3z4kbKuKeaaJHE4V9LVDZgCp+D2+hrbwXq5JpsoTuURHUlmxZxJNEdGkvLYECeWSTbBeo3ONVdXki+/+JqPDx39yyPSaKZLTd3VpEXKx8efuL68ovId+3ogySXdWJMNCZNZjvQTTqcdSvXs9kdur78CYcmTO5z9gZdHy9//8z/wl5++5yZ7S9W9x3aebHZBNp/RDQ3WZTTNC3VTsj90fLl8Qz4BlVj60RFlGXV7ojpVTCcZcZTz8/ufSKIarWK8c2xOJw7HR0YTMZtNeHj/ntllwWbzjDIT2sRgBs0iEdQnwXpxSZqFQc3N1QXH7sSpk3z15luOp4+UuxPf/eEepTImc4U9NGivedk2FLM4hMGHHeuLKdYKfvn5njgqyKOYKBE87Z7RSjOdTelawzD++p70H335q0L1VH4gjmLS6BKtLVEEdoyIlOHi8iuqskbqI6+vvuDp6WekCy1Ap+qR3b7i4uaS6TTmT3/+F9pqYDKJSFPB6QB11TCbXAISYyuE8vzlL99zLH9mMktohxL8BGdj5vMLzJAyn15wPB65vfqW42nHh5cfuVhdM3SS6WzObHqF8ksQltH+TDtWPD5LYhWTZPD08g4pNM7nWNNzOjYk8YLjtqcZP3B1o2hLyUS/5pv/tOa0B3f2ctomQpDhvMEzMp2ktN2JpnIkyZLrqy9pugeM1+TxnNGe0EqS5pKq3JLEa65WXzC6EknMJJ/SdimnQ8dqkaAjx+m0w3tJEo/8+Yd/YzovECJhuUpxxjCYDVXXBhhyvcejWK6meJPw8JcpSXHFh83vWS/X6FWHlSd21QNfvP5HDoctUdyi1MhtcUffDTy9/EwUxcznX2EGB7REYsHFYknX1Dgc88WaffUjkKIiwXK5wDnHen3Nd9/9gdG1ZHlON2xo6iM3l6/IixvcGLNtXqiqmsXCM3Yxp70jmUh612FFh+kFOtYIqYlTyWgaTtUWHVmG0TCfLii6W8bBI+jJ0gWQIuIjiZzQdxuEUERxQpxGNO2Upt0TZR1ZesskKXG2ZRhqIENYMHYA25NGhrI5IpQD3xFpQ1lvcN6j0+FcO1lRN3viaEmcpoyNoix7qvKB2XRN23VoK4j0lP2uZLXIqfY1Jz+ihSWN56E3Pc+JY0Uc5YzdQN2XODfy5XrK2LXstzWFy4AA/b9cLSn8DP8s6YeKyVwRJxFt6z4b+JESbwLzM05yXnYnRtsTRTH+2COlRiuBYghd9ToIEynlWQhYhA9ILIHA+k9gd49whs6M57VsCFcFMRWCXJ/A8+K8hldSo85hJaEAEfyeAnVGQlmGccC74IHUUp+B7Hz2Tnrnzx3xnG8TCNEhlCCOgtDUSp9bk8LnKiXIohSlFUoqPvUYQRBo1g6BVtIZurqhPlmMNTgfwlVKRyRpTJqlpHFKkkahy12n5GlMFEuU/CRcJI4RM3aMF4LBGMahwYyWvhuIdIaQBqXC6l3I4J2051pdL1TAKiEDdN+6c6I8hJacy4KnVQS+gxCBSxwe/3Awcbiz7QCQJoTHzqE0SZhWOm+C99Nb2tFj/XkKL8FLgcSTRALvLP0wgtDn8FYQxXEscGZk6MM09nOi33uUkuRZwdB152an+Cx1LU5AkiZEkQTGMIH1OnzMh4NHnCRnEX6eWp4FrLcOKSXL2ZKyMWxsaO7yzoXrP5t3hZQIqcPzEXFOWDiE8BSTgjjJsLahmEy5vl7jnMN7g9I6bAaMQXjB0Pf86fvvOZ1KkiRGSkFTD/S9JU7Pc3LhztaUMHGOMkl6o3lut2ihuVx+iVeCU7P5/H5ZZBOWsyV1ueXqasH7D7+AWDL2Mc417PcbZNQTRSn7gyaKEi5WCw7bPZNJRBwbqsMe1xUsJzO68cDj0z2TSXHmZ9esVjMW+TdM8hWn0wun4WdEJbFGo2I4np4o8jmelm44BN6vytBRQZRIjHGgPG1TcXx6JE3C4xbHgiTK2B8PlKcNSWpA+nAIdxFOjdTVkfokePvFW373m5w/ff8Ds8klSZaTpJKhEwh7xdUbycf37xibkYvlK6xsWC40+J6uHZlkisEpJsWM9c2SSC84Hl84HH8miZcsphdY1+LanCTbstn9iauLtzTDwC8fHoiV5d1HRdXXPO2eiRcxPTvKg2eyWLHf/sz1t695/9OWOMtZZDFtK1gtr9lsH0nzOWhDcxq4WL+lSK/RynM6bBnNSNc/8vNPC4wxHDZHZpMZyXSgq0tkrELwa/AIDJGekc/hw9M7YnXJZnsi0gnd2PHFm1sen75jqBMWi9ec9u+wqsLLOVYrXpoNTdtwcbPgd1/d8fO7P+AGRyw1i4Wi7zv6Lua4faZv4fpyzn7/QNfBt9/+lvL773i1/orlVYQ3wYvvFaAUx3IbsI+HGqET3t7NiOJwIG2GLUm3Zn15A7JhsCXr/JauazieaqTyWCuI1K+HsP/oy18VqtZD2WxIJwWCFOlXnKoHVGzp7DNeS5xuednuww8d1XHc9cxXkmHwnI4tq+UlghapDVIkjEPKP/7T3/Hux59Yra8YzI7p5JLd/oH9/oDSmuOxJrnKMBaK6ZSy3TDJCpRfcb2es3nacXn5mr72RPKAUTUfPp64vXkDpuBxc088iRDeUtctLg4v0NH1mCHm6nKFo+a7H77n5vorJlcLyvYDi9klzlR889u35HnKx8dfUPGa5+dn0lSzvphTtVtOB7hYLoi0R4opUa4Z/InaHpAkIJc0ZY02Ei0mXK9nLOeXbF6O3N1+y2Z74HH7HWla0Pc9ddOSJlOUlgxdx2bzgtY5KEtZWe7evGa33zKZFXRthHeK9SKlrE+QrGi7OaMoeXr4jrdfvgKXYaMK5wxJktANe7K8wDmNtTV9OzCaI/PF67ASM46HDx9Zr9asVzmmM7zsvqdsK25f/SMqeUvd1Fg7Ir3j/ukj02nMq9ff8Pj0nnw6kBVvGIaO06lmUoRU7GhGxtHS1CnxbGQUJdNszmFT0g4HJumci+VbysqjVUvfb4ijGdbFHJo9g3FEImU6STBmxJkMF4cCiaJIsXZKlsVU9UA3HokSHfxPdczT8/dMZxHT4pq2eSFLJULm5Nkc7wOL1lpLMUmp6gGDxWvFcb9BCEcSzdA4jKuJlaCsAw5rsAcOxwOjVRhXofSEpi4pkhnOjvTmibbOydIJm9P23MPdk3QFaa7I8ylRPqGs93zYvsePlkxkTGYXQAXAqX6hX/RcthdElWQRZ6RZRdv1nOc8CC8RyvPh/oRUNVoHVqfSIvhAtTojl4IkcC4saINAAv6dN1BIEUI0Sp+DI+eE+VlIfFpXB9EUEumBq3lOXHuHcybwSkM1evgKIkxmkRIlNCLifP2fKlPPgvTTFFCcWaA+dKvjQVhJT0inK2nOftfQYKRVmEhGWqGU+jyljKKIKIpJsyxgmQBrw2r/0+/GGMwY8ERNeaL2p4CTEiJ8vo5QWhFHEXGSBNRVEqO0RmnNNE6R0+k5MBW8ZOM4Ml8YrB0x48g4GMZhQEU9YIhaBzbcT+fC5FCqc4jKSKSTeBnEmfCCKI5JEo2gCvJbqlBXSvBfKi0DxFuEgJg52ySSKCLLIvpxDHWtIvCuHIJIKbJYB/C+c+fHWQSLhfQ4A30N1pz77c/fG+eCj1ggaIeO0foza9bhzsEnicPZUC/tpMdhzp5aHypaPRgfrCBSnqe/ZzZWpENlaj8EQSpDTVWgEQBJpDDGMQz+PM0GIcIqXwlBkeagwpr+6mIFhC1YHEVhI3D2ydoRfvzpB+4fH0izAmsGpBjpuhrr5LmVzQV/sdIoBcaM6FwxvvVk+wlpNIHEst8fyLNf38y//uofacoDT49PLFevmU/viCJNfXpksVgxmzmOxyNC1XhvebjfMZkJptMZWkiyaMZ2U3F9fYtxA33pGMYDizQjTW7AZ/RdxR8/fEeeT3n3/l/JJ1PSDKaza9quCofrUjGdzmm7A0kyw7uUcdBU1Ybbu2vavuRQNmRZTt13XKyn9OOBpqwpa4OjpO09q9Utfd9ixz1eZtSmJFEZVf/MWEKkU14OTwEzOIBSlvnUcjhW1L3l7pvf4GzPfj9wOhiubuZcXMHrV9/w/PIR6QWnfY3QA37sWcxuOR4No/ac7IF1ccts8ZZh/556PDH0MI+nJJOaD0/vUCpiRJKYCX6I8P5IdbxHCPjff/9f8aZgsZa4scC2NUNXcbW4oGoc8SRnObtEkXD/4SOz6ZTFfEmUFuRtzMP9T8ymF5SywSGYp5dkE0vdHtlsOn73D1/yvH3h8NJiU6ibGhEnpFHC4C1pUrBQU7Z6hkxjhq4i1gnTtKDsTuT5LcvljD8fjpjR0ZuBzo64suNivca2Rxg1Qjv61lLkKb/c/yunCpIi4/uffqLtGoSU7HZjwHgWEdWphLTl6alhvo4QMsW5LfcvFZPolrKsafoar2P25YHZXNCPDc/PO+azBbv9Ft8Jrm8uaatf2xL/oy9/VajO5iu8z/jp549crpZcru8Q5YQ4dbxs35PFKzh7hcpK8k9f/y8cn/878yIjfmuZzW4QzrOYXbL3H9E6QTAj0hE3N8GrWfc7vE2xzhDHEinumE5TJpM5x+rIMDiyNEcQANbLxQUv+wd0eyBLZ2x2G2azNUncMp2s2D63rFeaup1g7ROz6R3WV0zyBW3tGX3DapXxvNmR6StSvWR1cc3woePN7X/Gjn9gtCNxNqPte2Ibo5hS7Q9U8sB88iWrC8XgLG9ffc3DwwvWBL5bJFKkTul7gzGey5spfZWDkCTpgtFtqNua5Sqj7tacmgdW8zu6VmGUYzZJqY4d81XOYnrBf/uXv3B9I1Eq4ub6htl0jVo5vv/Tj3gxImRM2xni+IiITvzNt39LVmgO+w19ZzH2RCQkXfOMtZp8KjB9yvPLlvWVY7N9wDnHm9cXzIc1h8OePJ3j/Eg31BTpjONhy3x2TXm6p+ot1xcpwqW8bD/yu7/5J54eV2w3H5hmK7xsQQwYrxlMHbx0WYkXM5TOSbOCdtizmE9xO02iPHnqmBZv+P6HA+v1N8yn39I1MZbfUx1avv32kufHA14oomSk81ucS7B2ZL2cczj2KJlz2NesZjkXV3cc6j3l+MgwLOmkp+1NwBCpIJxiPWd/eOJYHkibCcgW74NFpUgn4CV9X2KcYzQj0+kl+92JYSy5uLxiHBRKG/I0pavDlqG4yIljEMwoJisirXHO0Q8v4C2IkXFwNL5mOrlkbB1O5ygZakyLyfzz6+54bBh3J+hHik4zza6YLwoOh4aQ/pbntHXwPHrnGLqzQhRhXaOUOns1I5SOwy8Z/IpBR3rsWTScWfvnGVcA43MWsFrJEJpREiVFcPCdofHGBuEqhUD5gCD6BFIPPFCP9WG6hwM/BhYncJ4mcg5bqfOfg9D49PlBtLogooTACYv6xLR0Eu9Dm5NzoJRHKRdqSm2oDGT87PT8PA3m/NWjKCGO089rf3UWwJ/S5N67c4WsoS077MHizmtpeRazOo6I4og4DnzgKI6Jo5gkSpCZROpgmfDOY4xhtXRBxNqBcRwxZkTpCcPQ08UueCAROBeEo1JhkmlHd6aG6jOCShIpMMbSDQap1OcptsSRaEUWx+zNgLEeITVSSITzxJEnT2O6fjgjmNQZweQDczTKSbQ7B6jCRNx5FyaMOLr2QD9YrNNIz5kGEHx96jxdN6NFCo0847nwFq00aaI5VPU5lR+Cc58OKnGiiOII7wfgkz0iPA8QnigW9EPPaBxSntnC5++VkhqE41SNzJdrkjRhGAZ0rPHComxoxPLecn//xF9+/JEsi0OpBBFShdrMT57i0EKmgnUBjxSSNIsYzUislyjWCN8SaYV1v3pUD8cju80zOppRVg060dRVSxQpRtsSRRmxLlCx5HDYolUBPqdILrlYL9k8P/P0+JH55JKyLdnvSnRxYnc4MbQZq8Ulw9AwmhadjKTxlH/69j+zPz3Qdj3TbEmRzdnud6TJhLz4hufnX2iaPW9f/xahCkCx3byATGj7gSz37Hc9bduwnKVM54bdboNWMadjjY4kcarJiyVxnFDVR14OFc4ohFQcynuKieCwrVgsFsTxidNpDypmOp/yb//2e+LUAQVp9Iqrq4K63gcihWm4uv6Cst+ynqx5fNngJgeWk1vWuSNWksOxZLfrefN2Qd29cHV5g4wyDuV7VrOCV/kXRFGMHRTSa1SU0PUFD8dnIpFzt1zyeDyQxwVZMmWRz+iqIw/tkUg53OD4m9/9z+z292zLF1azW968/gfeDT9g+po3b7+gLJ+QOsI6RZpNmK9yoqTg6jph+/A95ui4Wb/GtCXGV0yzC1Z5xuPmGeET8iyi6zOy2SVGNkxyiJyh2VvuvnxD32w5lDHN2JGIFB3PsX5A49k/fWDuvyEvFFm+4H7zI9lyzi8/N6EyeG7pO2jaHbP8a1IlGPoDAs+p7JgVU/LpBEwS2s/yjOfNSLEYydMULSFN4vNhV1Pkc7KkQAvJcvlXoVD/r17+qlDNoxuOZUusIqxrORx3oUNbThnGlNYYIh2TTwoeP+4pj47f/OZruv7EF6/ucHh2+w3TaUbXLlksZgxjw/3jO07Hmt3hA1evLGU1wRrPaCRZmjNfxgy15uZizv3mHXd3X4NTJDrml3d/Zr0c0f5E5y1fffF3/PmHP7JcezQpZjzStxtm8ytms7/DGkNXt0yyO4yusXFLeTrRtSVXtxlprKjbLXkR8/D8I9vjz0RNwmhHpsUV3gre3F7Rt1sGY8HccPFK87z9yP39E7P5nGHsOZWKV3evqOqKrtsiZYodY2DE6gPfv3vGGMPp/YHpNGU+nzMMA9PJAu8MbbuF1Yzn3Tumi7cYb7C2oWkf+Nu/+RbvNe9/eQEMx/KR9dWaOF3z4f6PvH1zxTx5xdDF5GnG6fiAUJZIKrSecXVzx/H0xMfHD1xcBCH29HBkvs5pTpay3hEnKXGvePfTR+7eZMyKa1bTv+eHn/4PpB+oy4E4jlFywnI18PSXn3j37s/M5ncMdk3VbIgig3fBp5tGlxwOO+JkSRRrjGyJ0jnDYJGRZTbNmc4du+ORxfQSyZJUZzzef+Dm8kuup1/RRQ2nwxhaWFaSsn3BlJ6+3zDYKUWsOBxrJtO3fP1/UfdmPbJsd3bfb+8d85BTjafOdC/vbTbJbqotwRAM68E2YPgD208GbAi2YQ0ttSyxm31J3uFMNWdWjjHHHvyws4r9RMMGJNsBHFShTlVmZERkxtrrv4avX/P93/0ds2/nNO0WIRT90JFGgkBmRFGCHi1tM5IloFRKEK6xThMwIUwk0/Kc9iA57FZkmUU7jRgNfTeSpRO6cc1ut2dWXpBkirZd0bUD81npq1o7Rzm5YjotqKodVfVEkGmwitFqmn4q2g+OAAAgAElEQVRgNndoaqJMMo6WNM6RYkQ/Zw4BURzhRsW9e2QaJJThGbNZxo0KGEb7D/LtnmOrjhmVwuv6nLO+V10PdEcgipBH5lQSBJEHsCrw3erKG48CFR5jv8AYyzAazKgZuuFopjk2P8Fx5K+O2lPpR7VHRu+5ElMem01eHPPOg0XrHNaao15xxOoBgY9/EjzHNknf267kUV/oWV11TAuw1mH06Hvs4Rj0L5Hq+LfPUgQhXvbRp0X5Y2et9oAEUIEiDEKCICAIAqIoPn7//Pz+ObU2mHFk7Ac/lhtG2rahOuyPtaAeNEnpGd44DomSkCiMUGFAGAYEYUySJORH5tsaL3k4PTUYMx6LFQzj0CKVZhwcaSqQ4+ArbDE454tBtIG+8wy0sV77j7UEgSKKMqxpcab1ln4kSkjCQB1jkvz14zNkfcyAEopJXhKFPdZWnu6Wx8QBacnSgCwOWG/NM52OsRInHIG0CDlwODSMo0LI8GixMseQfcc4NvStz3yV0ms/nXA4AcaOdINg1H6/OF63/hxatGnpeos2vGSoHuMV/CIljLEuYTpPCQIvsUA8pw44nJA8rZ748NNPREGElAGD1ThhCIKUYYxAqBd7nFT+eHmq2JJkEVKCsRVte8dpfI6zI4f+/uV9e/9wSxKHRGFKVdVEqcapDYd9QyFT2q5l7ANm6RRnlsTZyHazZTot0OOEKIWT85D1/vc4W6CiHcJaAgqiNEPIg4+Wc5pRG4LQs/Wb7SMqiCiiU2QgMOYLRldEQY7QimmeUh1uKMsCqzvm04y+h76DNJoxDg5rO/pRYbrWS+c6SVRWVAfHm9ffEKoJYRjw6fonijImyzKMseRTSRTlRLMLrK3YNQ+EaUi9rtjs7immU/aHJXkx5/37XxCGHU9PS4RzPK5u2Vdrqn6P1A11WzGdRJzM3kDSsXpYMV1M+O73v+Orb96RliFVMxIlKVk6xdqMIEiII8eX+x8p0pLLsyvaKqTMrlg+dJydXfLpccX7VydYU7HcjczzFPO0x4UTHB2bzYpRG65enfHp83dM418ym74lSQLKco51HUkRsN2tPaEWl+yrjr5XFPOQqPLHUcUldfvAxatL7q9XTE4Ubt1jspgwSrksLmjMliQeqTcHBFNfe0yN7TWn85KbD7dEkYNAYxuNQRNlgvunj8ym7yiLc4zW9MPI2eIr0olh+9SzmL0nUJLtU8frN7+kmDzyN//hO67+4hvq9oHd+sD79+dUu5ZymhNHATrRYCGNJVaHlPkE3VuMASk1Xfv/E0ZVjz4H7dX5a0a7QwYNMYqh9W01WZJxcvIVVse8fm1pmi3/6B9/y7/510+4uaRrR9rar4+365YiP6FteoTs0NYipWGa/oqngyRNBFcnMYES9OOe69sfuBhOuVz8gv22JooGZJiQJ2c0wzUqyHj35h1ZcsKX689IUfHD999RlClFVOIM9IPXbRgdMnQj/dBQFlNWT0+oIOD9u1dslyGr7Q2gabctaRGDi9jvIU2h7hri9JK4yAhsi0SxfrqnLBKGNkOJFGsGsiSkbbcYWzM9UWxWltX6C46Ri2lC0CVkZUysFlT7mtXjHqUiDhuJVDlaP6BHmC1ybu4eCMKMMAo5Oztn0Hs+fliSpRlV1aNUyCT3cok49BdbkWf84eYnwugdd4/XNP2Kr97OCEk51I/oMUSYGeiSLNtRVSl/8Wf/Nf/yX/wrlLAYHZBGJZXb01YxXQuReCRQCUJEzGcnfPPNL9huaqI4ZjIpSOIpd3ef+Prbc5q6J0sX5PkUY1fUhw4lU8r0jG5sqeotgg1FOkXbPUEUMegYrQ0Py2vKWUKYhDTDDYNQHLoDfW9RLiOOJUGgSRPJdqexssHKnG3ToB08PS2Zzne4YODm4ZFklrBfBwgtGRpDFs9IgxBjLG1V0dkWEUhOzxKESOnrCVk6IQvP0cGOopgdwVBDmlXUzY5JuWCSvacftnS6wiERFPTdPfv9jsJmKBkjGIl1hTkmNiB6smhOfTBYU3HYNXT1yGz2irKcUFVb+qHn/umHf/DOi5nPFEO3p4pqNpsnorggjkNG3R7jeY5jU+HHqn7Ef2QhOeaGCt9hzotj3IK16EEz9t7JfoSSCOH1mGmakGcZcRyRRAHGCowROBeAUB4gWt8Xr0eNRGCVwAbHyCDxHEnlAZBz9liTecyvlALpPJMXqAiCo/5QuBetpOAIRI1FW3NkuDiC2H8ArINjUcAzQD2CUOdg1OalgtWbaY6SASkJAkUQht5YFXhzlxBHN75wjOPgMwSPTKGUnp0WUqGEJIpT0qzwHfHK/53WmmEcGLX21aVdR98PdNvmKIEZcE4QqJg4DvyCQMWEUUSa+hG/CgLiJCLLFVLOcdaiR8Nk4mUKgx4Yhp5xGAhCh9YNceg1ntZ4575zjjAIkS5i6BzWWKx9XthYoighzmaM+y1WDRyH6FjjI8CCyDEaw2Ds0bx2lCLg5RDOGoZBY0SEckf9B8ec0ThCj8d4LYmvanX4CYBt0aP0xQXHJICXBZcAhKbtHdoc5SdHA5iwjkD61jdrB7D+XAnwWanOogKFthFKTYkCgVKef3Y+AwxlYbfd8OOPH3DOm/uM8ZMCKR1ZJtjdtf526JQ34ckQKY+iPykIQksUw35jmMwynp58lvjsbAE8ATCZZgy9JY0n6NGih5rptORp2TKOGiE1QjgO+z2TsmQ0G+puzdnFLxhNj8URxTlSRNRNhdGOaXnFqGucE3SNoaq2JEmCGSTDeODz429odMUiv2K93uFoSMMUaXu2q5aTxVvS3LE73BNE0A01T7snFDNm00u03iOkIIoS9ocDQjYoJZlOZzg3EkYj2u4pk5DlakUYS4RSBJFiaPek0TltMzApE4TsaRpNFMRoU3E47AjCCEhY7275cvMD//jX/xW//uV/yzAu+eHH3/Px+l9z+/uaqMyY5DPGfk3dPCBcjHUxehx59fqUvh+QymA0dF0FTvgYrsEyzU9493pE2gzbN+hxYDHLkQoGp/mLX75D73vs0DG6itoq0JZpcULv7ri7uWHoLLPJFRi4vvnCr/+zf8T+0PK02yCU4+7pnsV8TttWjLahri2b9cD5xRU2e0CIkENfY90UaR3VcE29jpEuxNU7cDkzMiKbst5VXL5eoCvHUzUSRRlDX1NOcuJU03d7wihBBCFpouiGJWGkqOo9V29e8eX6C2kWIIMErfeo0KGtou464kJwqDeQPHF+ekEQGoQGpGb1tGe5/MK8fE2kcna6ZrNaI9UAZkKzq5AKJuWcNA2p9+7/AaT8j7P9SaC6aw40+hPT9AphcoQ0jFiu76+5vExJsgQlEmbTC7q2RkpF1ziy9ITH5S2nZ3OE6IjjgrfvTwhURBhMCJMDQShYzL+iayzTuSGJ5lTVmnfvL/nyqcG4hjgreXo6cHV1Rd+0TPMp+80Tb9/8mru7hu32ie/X/5Z3b37JZv2IsTfsqxua2lJM5vRmjRInBDImnwg63VA3mr5TtF1NUcwJRE6eTdntl8RpxjgEYCOCQPL48BmDJgwzzs5e8emn35EkeybxW3JVwknCanNPoFLGUfO0XjE7TaiqEW2Nr6XUe26+tJTZa8LIMnaOvveO5321pGseODu/ApcyaEegSg71jyyfIv7JP/6nfPl8y2+ffkNRnBKn0ssS4jPGYUQPA9P8hKZqqOMtX319xmZd44jJZ5qmhdP5xI/00xxjDGGYcLb4iiypuf7YUk4LnBkQTjGO8ObNa4ZeIhNfKTmdzHn79hVfvoy0teDkLOfht3dMpxl9V1OUEf2wo8zP6ZoKa9cEcY92NUk+4Wn/mTiaIkSEPNZI5vEVbaNxtqPvd0RxRtM2jLYhm2bcLu+IoxwjasKkwbYx9d4Rxoq2eSKZeC1q1WtOZgsCG7FaLqm6Dq1WRCIiEjOKMqFva7pWo4KYt69/SRIMrLd3pHGI6y7p+5G63bDZbHjzKmccBG3fMZuXnOY/4/r2A2maMilnrPWSXBUYaxj1ATMYVGAJg9TflHXgA8BljLOKcUyZzs5xRhJGAUPdYgaJkDGPqwN5GdO3HZune/LMj+UAmm7FZPoGHQRYGqpgxUWZUZQBTas8EBAgji1Vxzvy8at8GZk6Z45z+KNj3z0DsuPYNQQQR72pxdqBw75nv9t5JeyxwlKIgCCIkEGICgI/9g7DlwgxKYOXUHhjfS+99SXwx/0AJZwHlUq9VJm6Y3rAs3kIjsBQ8KJVFfL5tR7ZY0/kYZxlHDSDMUfNowesgfT7FEUxcRZ7gHlkap83d4xc8qN8g5XuuD+eETbPznOcB9xHZvZZV+tH/4HXsSqFlLy8piBQJEnCYuFrc63zhSLGDIzDwNBrxrFn6DV921DtN6yMedEGC0LCKCBOAqIkIggVoQpRKvQgM/YZo+Og0SLj6nJKP2ovH+g7Bm1wQcjtqqHXkjiKkBwBu7W0bcXD0rDf915OILxz32uVYXQdddNjrEIE4lkTgpS+gCAMM5zrn9c+xxMi/TmxEAYFjvbYyPV8vH20Vds19H2AEBHWGQIlX669MBQY5/Wt8phg4DdJFIYkScxu16NU5HUDeOlLpEIWswVhMPW1YuLI5ss/JmTsd08sHz+AGJFBjKHnuXHqWbLQtsOxWMOP/ZWURMqDf19tO/J436KHCjUpaZqeIJJkyYxnoFptW2QATbsnCRXT2SUfv9xQlCXabQhERF4krFZLknRGFCSUkxnd0JDlKdtthVQhxvTeuGcr0vQ9kbX0HYzaEUe+716pAKUkd3dLsnRKUxmECMiKgKGLqPsKFcZgR6SLETZn7ATV4Yn2oPj2/a/JCsGn23ukGunamCBMifOOoU74+uuf8du/+46imJAXllFvcVZydfmGtmnoGri8vODm0x7CA02zpCgTMDl5uqCfNAyDRomBrPSL0puH76jbB/6q/i94c/UtX7//J3z71a+4PP0bfvzDv0YFJTfXt2zX3xMWBVmmWd6OlPmcvmvozYGQCZEK6OyBKHQIDr5I53FHEjqqZslicUXX1Ug0SvcEYUg5ybAix+73CGkoFwWNPqA7zaTMGMIEGWnC8IRv/2LBen+LsR23y4q//Kt37D4vMcQszgIeHp4IDYz9is1S8v6rBd3eMcYzquqGze2Ot+9P+fs/fOD09C3tfoOQBY1umKc5uZwz6ohxqMAm5PNzItkgTUQ+OeGwH0iiiN51TNIT3yJoNUo6hNC8fnNBEFm+fPzAm6szuv5Aaw8IFzDqLVmZUxRvKDJH29ekWczTuiGMBBeXV8RqwjC27HcdxvYk8YQoSdkf7gmCkN2u4VeTX5H8f8dL9aeBqkxgqBXtuKNtBoYhJ00jgtgw9DGBnLBcbnEnCUqFpFnMjz/9iBUWIxp2u4xB96y3HZfn78mynKa7xxhDls7Jkoy7+498+/pXLO8cUZgw9CNRmPLm8tcsRM10Cu/PL/juh5+42/yB2t6T9pKTs1N+/On/4M37AkXMcrkliWMcCXGiabuKYh5z2BxIphZERlmestvtiXPNZr9ld1Cczc+oqpYolgx9QyjO+dm3b3laPzCYOU5ohFI4GSPDlFevS2w9YZKf0owdSkZI1SNVSNdLtpuR6TxGypxB75FBgDAl1aEnTgWYHmN72m5D1+84ubgkSQRCeuf8btdxcjKl6xzjIIhigYhyijIhiTMO1ZL5YsH93S1RMCFLJGmS+o71dmCSXREGH8gncx4/tbx+BXHwjuXqgcuLr5DRiofbkUn+iu3+M0kWUFeKLBO4QLNcfyIJ50wnpyxmJ9zcffatOnWF4ycMc57WN8zmOV37yPnJN4x9R9suEUBzEASt4uTsnLoz9HpEBZYiTjFjwP7QcTKbgdT07BGxJ9wMmt32mixNj3q5FJBY0SETS1V1jDoiKUYkKXFscXaBIATVEMqUxVnC03bJw11HJCaU8zlx0LDf1TR7waPYI2VGFOYMXUuaxBz6hkDBZPYK5wxxnFC1kiiOGMaBi7MLmrbBjAEwMo4BSZx7Y1kQMp0o4iin7bYYUzGfv6Zq1ihlieMUrSOgw4gRGU54/+7n7KpHpEw9qxm0ZDNJV6mX992oNfcPN7T9GiENpnSk+5QoUQineG5JB8+a+nu21xH6UbIHsc9xRz6LEp6zNI+k65FR/SMD6wSo0AfS+7pO8Q9AXY/WHThH5zzQRSrkM7sZBkRxQhhGXh+rfAC9D8g/PoazGC1etKJCPetUxYvxKooCovDIjloPNMyxCsobpwKk9LFG7sjsvmhPna/GdNYymgHd+LQCdRzFP792wR9B53NKwDMT/Rwl5Z6NRuJZRQlKeRAcx5EPj3f2GGovMcbnbErpgXovBsSxucmDQIkMYvI495IG6c1m4JnpUY+Mw0DXGYZ+YBgb6vX+GNoPUvmoLSEVUvjjq4IQfGkWMohIlCJyltFYhhEm8xOm0v5RF+wgVP71BYEgS40HYqMvCkAYej1Qt4P/HYuXjDiFQOOkoektQwcY6x3G+OsxCCEIBNW+9n8jjnkOAoQ0nklX0ueTCvViuMM5lHJEka8Whuc2K6+zdjiEMIRBQBgmx0WLP22BUuRFQZaVVE2HkB2BipDqyKA7wf6wY7f6wulFxKHtqSqNCo7vBwRg/KKhd96AeFyEqMDnF4/jSF01BMrxcP+B89M3hJEgzQNkMB7TUvymTUUcnBCoAIlmPi24fxTodsC5jiBISdOUJI2JIsHy8ZE4neCouX/oaRtDOTNUh5Yifc3pSc6Xu79jkp/7iDITkmUJyJbHxwNXr17hnPW1vaNh0BsILNVe8PrtK3a7PeO44eZ64OLVO6wd2K5b/vLP/xv+6lf/HR9u/zmXp5eMds/tl1tOz06R+M/fh/sdaRpjXE99SAiDmCwdsS4iChXKjui2JIlqRt1S93tfirPTnJzmaN3TtT2L7BStN4yjIUsLkAP/67/8Hzg7OWMxv2BRvOX2/oGsnICKycoTslSxafZo1wAJlp4ggsik3N/9wMniimGoOLQd3379DYdtxcg9sZIkaUzbH82tbs1qf0DlJTkdddfT7jRfvUrYr2rscKDuGgZtyKaa7cFgZUSWztDjLUN1YDafYo2/x7a1RpoCaUriLGC+EDS7DWP7FZNSIYeIv/ov/4q//t/+FwL9jqvTilCVbJo91j2yOHvP1m6J5QQ59LTW+Nzr7kCap9TVAfoFZWooogWzvMNqAWLg7v4aKyxPDyvKWUbXOCQaN2rOF6c8bZYM3cjYCerqwGx6Rhg6nIvYNp8oshlhEHNxOufzp3u6wRHFoCiYlCX76p5JvmAYHLPTBIGiqg9/Ch7+J93+JFCtmjV9p9ncQhBK2uGaLLoiYkJXt2y2S1arHU3rY5Xy/GjuSf2tdDqZgcm5efwNSXLDzS3sqmui2PH+7SXCFLSV4/b2B9Yrydn5lJvrJ/p+9KPg8ZoobmnrEmci7h5umZ7C49MjRSZ4++rXtPUdT4cPXLzOUW7Cxy//nsurc+pDyPurb7nm39N1hv3OMp0uKLKS7f6GopzhnGSzuyYKUsKw5NVFzH4DSRyThAVnUwDLqC3t4SOx2tIdcqQNKcpv6DYBTfsHpouQaXqOEYBzHHY1UbKl61vi2DErDWn4iuXjI69eBURtTK8Nb85fE4gT2sahwo5QFPSNIS8Veem4ufvCn/38K65vPrF6+oySgkiec9j2hGHA6VlBSIEeO9IwZr1+ZJIbzuZnbHeOywtBEc/QIuEvf/7P+HT9Bz59WJEmc6q2pesbXl38kt1yySB8CPrZ6SnYgIfV94Tpgbav+PjxI4dqQxCOfPywpR83KHlCmbxjv9uhZEwcxIyjIQwtzkqeHg2H8QFjNYtFwjhaxqHFmJZd5fPj4lyS5xl3nzcEUU+cJd4gZA31/om4TH2lpnP0csuhH0iCKWFkMd1Ic3hi8faKujYYE3Iyn1NkMX03EqoYZ2BSFgy9ZDa5wtGx3V9zfn7FetMRx3PipKVuWpwVdP2WNIuIQkt1WNJVgklxznx+yd3jD3jjRsRkckrQJAgGuh7W6yXjaJjOUqSI6RuIEsiTkKGvmM0W2LhhO/YokWDsQDEpqN1I34Q0TcRuvwO8oWp72GPMQBqnBKHCmISuUb6fPhiwo2e7nfMRRwjL2fkMKTVN1aEHdwR4HNuink1OzzYqv0nxrAV0R7B7NB4drfvPIAvxRwe4Z/6eGU//aEb3jENLU++PKQAehEl1NHOpEHUctQfR0VGvQqQKXthTa7zU1mmDAf/7QXiMZXKMo8Yaw+jEy7jee2gMDu01tFJ4IPvMoB4BMkfwOeoBPRqvjz0ysR7Ee12sCjx7F0WeNVZS+aQE63hu2FJH1lYBzhi0sx5wOkAYtBAeVEqBMEeQKwXCes2k0SNi8KsC+zxWPzZHBSpkNklfWGDrHNb4MgJjRgat6XtD1/aeYap2PudVa8wRLyklUaFnsIQSiKPWUgUCFfpMWWTIZCYoZ8fHH/3xCALr60kJKIvumBLhMGJEoNFWs28btHNYvAxEGomQPu7M4ePOpPTPK/ExYUoGZLkjiVOketZTqxddslIe4A/agfQ/96fN58lK6dBmpB80EPqEChkQevcih6rxpikJkh4RBAhpqfcbHu4eeHWeEihJ22ogerlun2tc+/6YGxumXpIS+FKEcRjACspZRjDvOV3ktE1N287Ip/C02hCq/OV+mRcThLRou2Mx/YauVsSJwDFF9IYoKBgHQxJNCIOIKEzRvSLNejozIgONNRmnJxcIm5EkMRv3QNdXtN2BLHrPfJGz3xp0HjGOhpPFFeM40vcNrms4n79maO4IXIyyEaPrOXt1AUowjgqCERP/nv/+f/qOrttxejIjihNeXZ0RxzHaKKYLz+iv1x1BHPKwuuHi5FfU3R15NkVrizYDYZAhSFFqxDkPtLUd+XT9exbzc7RpaeqWJJ6yblcEwYgvBJlwfXfD9rDl363/mrunD7x9dcW7d/+UpMiw9sBsVtC1AdPZCUGQ0vVbdruR+ewtQmqSNCGK4Pvv7xg7SPM3WCyr9RNxmFPMC7bLCtTAr79+x92nn/hys+PtxQkPmx0iyXHjyNW7t7RDTdMdaHY+OcRquDj5ljZ7YhSWatcTqxQ9alTgs3iDMEIFMSqEp/U1+yzHWcnNl5AoL6gPNdKWnL46RcSSSAVkmeXzjeHsNMK0lpNFggphu9qwfKqY5BFnJ+ckacaHHz7wOj3FKO0N6ySUxYIgcSSl4OGmZ5KWNM2KTJwziU4Z2NKTcnkx58uXjyRFzGx2xvt3v+TxYclu1fCrn3/Larmm7fckyYxsGpDEU15dLdiuNc5KwtjwuFzR6z/WA/+/vf1JoAprlOyZT16he4uTGmkCokDQ9w1P2y/02jCMvmN7tf1CVQnmJxn7aot0IVEwJU1jbh5+hyDkZP7nbDZ3LFfXKHfP7ESy2+8RoeDNu1/x/XdbNvu/p5i85qenAbdXRNsfSdJXMBYEJiIvS1arFaZcMykvmSQTVpsf2TefSdKY0/lfMJvW/OZv/x3nlzGiiYjjiP22oeu0lx3kJxTJBfvDE0WREMcF1sBoVlTtHUYnaNORpTOqw4ZuWKNCxf19RVkkfP/hmi83f08+idDWovUjaZYz9iN1/UiSwXRyijMKYw8Yo7FmZL37iUn+M4axxLQBbd8ShDldd8DFMcVUIl3G0D9QJpL1ekUUwzgueP3qz1gve/qhZXX9SJ73BEoTqYS27ZGh4+FhxbS4oMxPSOIOxpRqv2NsAxwtSTSlKGMeHrbs14L2dOTx8Zqf/+JbhhEO+4rpdEIYTHh83CFI+fGnH3j77g3DEDIMe5IkYL/dk6UT6vaRoRd89dV7rm9+ZNSWaXlCP1RUfUs5VdTtmoebhlevc0TQ0/VrZNCSB29odytOFjnLp4ZibtkelpwuJiw3a4I+IixHXxm3PhDnmXc5C81i+powgKreEqdnmNGiSJAMKKGYTs7p9wOH+kAxiXCixcmRKIkAD5RG3ZMWUDUeXPR9S2oL+sY7joUQVNXBZzcaUDJCqIHd/gFshLYtbdsiRYYZe25vlty6PWk8RakSHVnCXCKDlKFVTBZTmqFlt29oxwNWK4Ze89On32F0ALEHqvsdDINBF4osDxHE9KFgfjohvjXo0bcleZAqcW7k4rLk1WXuwdPoR+pN07PbNxyq9nhzgXEUDP3AqEfsMT1ACF6YT8/PHVlH/PhePI+Oj6099qhLfPk9EaACOM74X8b4zhqMadG6xXXiiA+8PlUqgQojoijyYfxhTFkUlEXqgaxQWCEwzqK1z2Htu5Fh1Ghjj0wbBMrHUUnlI41UoAiUOEoIJIE8agyFIwxDRC6OethjasJR66u1ResRow1N075keArptZtR7E1QURwfwbBfIFhrPRt5ZGstIDRo4d358qVq1Z8rpZ4NTL60wAHCPsfxw8iAaPET9eMCQQhBEITkWUZ+xEVW+6pXz75qr6vtBoZhYBh7uqb3+nzjjjIO30gQBAFxnBAnEWEYEYaKJEoIAuVTByxMyinTiUNbX6gwDhpnDVEIWjdEQe/rRYW/VpzxFauCEOfEMfeV42TEHweko2prhjFBKX/b+SOLbeiGjnEIkcKzqPZoDPTtVA5tNONokDJChYo4Tn1VLs5PvQQIFyGEZRw7ttsl69WaUIUkYcjjzQoz+Ig0f0QswhnCSBFGEcYKklAeW8P8dVrXXoNdLkJ2FzvGdiTOU7bbB7JSYq0C1b7cLVVgeXh84s2rb1ChY7t9oK8lwhXMJxOubz8ThJbJpOT29okkLkmiADQURU/f5iTRhLY74FzPemORIiZSCS6E04sUsAQu4+y0pB/3VAfNz958xXr7SNfvMYNjNktpqicmWUYzKCb5hNv7e5xRpLLksD2Q5yVZmGOMou81CC8/iSJJoApmsxmH/RYRZAgFD08fCNOGyJxQlDlP64/87rvfMZfQ+tAAACAASURBVJuUhLEiLQraQ8XlxTlh3JElGYdqxcNqxbu37zg7uyKKfJnErm54/fprjK0Z+pB/8u4b8nzk99//LVIkFIliWkjS6BIVStbba3a7ljyb8P79n/P589+SpadI0dH2axBw/7gnL0MINZ1tuF/eMBhDlivuP9+zq2ofz6giaiPIJimBSdFiRI+CNInZb28IRYgzzl9fzHja3fop5+SSoa8I1Uhe+pryNDkB0aCkoHc9cZjy2x//Z9pecT55zeLyjJvbe16fXYGCer9jHu04NAMuKui3I06GFPGULHfEcUB9uOPQpqiioulCiukFTb1BBQYVSLIoIwp6grChTHK2lUG4AWklk2ROLzskhjiNGF3LbrMhLSYY01EWGQ/3GyyGJL5ARZIsD9g87SiztyTxSFHmfP/jbzk7e8NJHP/fBpT/sbY/3UzVt2TZCZqRdbXiZz/7hpvrNU5pwrzEmJ5yPmJGOLRLRrsnTCbs6xYt9ny5+0KS3NH2K4IwoCgly933COWo+4H5RPG0bVhvOtIs55//7/8j0+w9oLi9u2OeXxCnKR9+WvGLXx8oyoSu79kfbunHjiKYoySM1Z5pcooMLPvOcKgNq+Udu3rFOW+JU01VLxmaDKdaFukFgoQ8j7H2gru7G/7sV5LlnUWqgB8//EQclkgT8/7twsd1BBlpcsrYP6CN4an+zMl5gnMR9b4iiALm85TPDxvevLmiOlScnc7RQ8IwCH73w2+5uMzYbkbq3QekGPlHf/bPuL/vsWGHUZf0VhMBcZCz2X+hTA903YgxgvnkyuvKwgHlJNa1KClZrr6wWFwRZhdsn3Z03RKZNCgl2K073r6esd50tP0TUVTwl7/6hh8//Ia7u9/y1Ve/5tPnT8zmAU+rFft6w2Ab0vwUY0LiMEHbEecC6loTRqBdhx4VUeKra6VyIDT397c4JI+PFU/rjjgdyfKcvhlpqkdUNGHUgnFsGLuaSGaoUhJHMVo78jJj0ANxnDIMiskiJIlS1vsOaw7MohOUgENtaHrBdv8TWRig1IwwtQg7UB3uOHQN0+nkCJpGynKGsZK6GhhtTVs7pHwkTVKqeoc2hjhOmeZfs+q/UDctxlqsntB2G07mU9puhwC2m5rZ7BRrNdZ1xFGBCmCzWbF62lFVWywjeXrOrHuFChxBfKDvrzFDzOu3OUVWspjMiCPJ8mnHYbujKHxPM8fPBT1KApFh7UgUTsBm3KdLCjLCGKiP7KfzN2ljLMvllrMTRZmGhJMcKRV6HDhtc7QWqFjSD2DGkkPVst1sqaqarqvpu84zqkpi3Xg0ID6D0WdQeISuzh3jq+QLA+uZS/ssIjh+tUcgGGBxRyPU8YPFSRwGPTYMfe1lkNbyKCVhGBMEEVGUkCQpcRyjAukzQo8xRpHwH1tK+DTY5zxXYy1mMNhQecNSEpEksWc3j4LJZyb4OZ1AKukBWxAQHl3+zjmMNhhrPIurR8Zx9Jmr1eiZWPwoW0lxTEwIPIsonhnSZ2OX9Syz1TgcRjy3SHF8HL+9SBH+oX9BHDNzj4kDuME3xln9sm/OOh/FJQRJnpIVxQtD614YdYMeR4bBywuGoaPvPMASTrxEmannPNpjcoJ8SUHw7V04RxAUXL32o/3nHbbOV5yKwGHEgTJXR62vlxYIIFAJmo5hMISh16g+N5gFyj9310l/PKRAuePE4MisdoMGYvK8IEoDnFXH4gd/bUokOEPTDDwu72nbmiwpkRLiVKI7//845RcURxCtlKQbB4yVSGcJwtA7/y1YGTAaQzxWSLFhuf8D09nXnIRv6NotSZowDn+Mp9KdZagzTk+/4vrmX+G6EcGUtIg5dDvyPKcoQxwds8Wch+WSi8WCJHpLWoy0ciBOSja7jxTlCYIZUTjC6FCpZOh7hEl5Oyuo2ZBlOe2wJB4HXpUx45Cx2n3GuhxrD2inySaWh80dg5lytbhkEitE4nDJhHG/Zt3tKJMZqcqYlFPa4YnmMDD7+WvqmeT84pTffvd7mv7vmWQ5662vYW3bAKMNZ7MLyknBDz99z7c/uyJQE8JEMPR7kiDl5CShOvRkeUIYBETBGflVQ54lHKqBSVEibI81Aeen71BBT3XwE7txcDgFk9mMPL9EDz2r1SNZOqdrLLP5CW6ecXd7QxD5czCZFjRtTdO1ZGnJtJhjnSMvSsaxY18dvAFJnRJPJENr0GZLVlwxmY1kUQwuwNqaw+6JSJSEQUgcS9Ztx3Y1oKIFra7ptjWTWcLHm09cnlzQhw1v3/45g+gwbcHJ2Stenf8F80XKevMTm6drHjd/jzFzTs6/pWp79CiZvknoq55I5qxWK9Ikx1rHmLR8efgPuDaimM7ZHFYId4YKY04vF5yEJ4jomtXjkiI/wSpBkBs+fNqRlhOyLGPcQbVrGPuRpn5g32yIkpTFScaP3/+IPb/CWMv1lxVhJMknKeV0wqgHyiL6v8KP/8m2PwlUY3uOcBFhHBIXETePH9B2ShjELBYx232LIEKLNVk8pekayrKk7nqEgq6x5JM5+7s9TjqCRLK+uaMoFoxGoBsYzYBwHVJGrHc3WKsJZEwSTmnHinI+5ertnP3WgjJ0XYMQkjgqiMM5Dw9LQgFCgTE5QlT88OHfcDY/5fzkZ/zwh594//UJRoeU04KndcuHjx95+/Y9y82S7jClbQb2Oz/qqusnyvwUPRqQsHraYsWAUCOHasDakTgd2Ww3pHmJEJBmiTcqiSlxfMOkLAikZFfviPJrVDAnmy64vq4QYkSJNZOZgTFgv6wJJgdUHjAMhsV5Sp4suHuQJFlE1xpmsyldfaDabzF2QIqYwKX0TYceItbLjizfMpo1dX+PeZpz9foVYoxwFLx5PefT9e/YbQa++fYtXTewOFW07RpLR1nO+fjpJzqzxJqM3/72PxAFMUM1MJlFhAJuP68QqgVpmM5KgnjksGsJIsfsNOPxYcvjakk/COqNYbqI6bUlVBlEPWlsaBpfy7bfNFwsLuiGitHsqaseg6beVOTJOWEekCcpu+2W2J4SyYhD0xLphIv8DBNuuL5+QC0uSFKBcBUnJ9+w26wIao0cNXHmOIwjFkeSzGn2ikjBKCo2T3ecLs4xdsf9ww2hnCPsHaN9wmqFFCFDV5PFBV0dkOclva4Iwz0CH7E1mh1YgVIhlpZR1wzjgLaaPDestrc0TUOgIqLYt7s07ZZyAqcnl5ydnvDh45Ll0yPnZxdk2R+ZGast2jaEsdcOSuk72Z1z5FnKfltj7bNbXgCKobdsDxX9oJC0pHnpR68GgigiTmJAYFSOVClRmFCUDW3bsF6uyQrHxauC0Q5YE/D5wxPbbXWUcT6bV0aes0+95tTf+J/lAUKIF83rs8HLwUvD1YtBypmXVIIgeNbmHtk1qxnGkbar2WyNZ3OPof1I5Ue+YUAUhhR5wbT0/eZx/MzUiWPDlfHsnrZHnaQ32AipUIE3gEnpGWTvM3IM2iDMHzWHQRARxMd4qucfCo66QO3/aY3Rhn7sMZ05ZnMeD9dLLJbyukUlseJo4LLmGPrPS3zTC1H9Iq1wL8dVHuO2nD3myh5NTu4oITDWYMzRxAYvEg151IZKKUnTmDxPvYb0+VrDYo31wFwbhmHwMVzaHFvIjvnDYXCsofXMchx5Q52KPBvuzUuW168X/nga7U1kxwVBHEuGoUd3Wx+zZcBoibGaJEkpiozD4YDBvyZ/AMEpgUGyOwjsGCKVYxi9sURaQATgLKPu2G42rDdrpFIUxcwXO9gemcSUp1P07RbpfKOQF80Y4ijEDNqbxvAmKueeTYQOhUWFBhVbivyK+rAlzabEUYpTAYtyAuwAnw5xfloyL3OewglVu8RiEHZLN25ZnJzQ1TXWWrIspcxS0mKC04bV6sB8coEZB2Jxga5hWpYIYejsgbDMWN/f88t3OT/7pkUkcJJNSIoJfRPy6dPfcL+WjCYmDAPScE7tOkIb0RvBLIkY6gfScoKzA323ptEDcQDtoSZLS4SJiESGFhF/+MN3KJny+HCH05b3l/+Ufb0mz2PCqOZ2vePd1S8hdDys1gSxIArnJNGUrOz46+/+liByvPnqG3abBkdD0xuag+D87JKmqbm5/cBs+g5dNzStIUnmJNGCTgpG07N8rPn251+xP+xZL1cgR/r+jrdX32Bsj0Xz+fo7FuVfEKXdSxJIGKY0dUsYRGzXHVkmaPolMhDsqifm8wIZ9Nw9bnBjyNm7kHq/YZIV1MOWw37J7mARakrd35Kpc4ZDhXCdz522NWE056nfU92v6WuLWTgOdzXq7JQkHehExf2nL9jwI//i3y55qn5E94oyLpilIa9OLxDBjrY58Lj6ghynzGYnnJ8vOOw7LDFBPMFWHW8uS+73FW0/8Lm7YWYlsUgRk5LF9BX1fmR0HaP2dcaRmvPrX1zyd7/5kTDJqJcND08rxmSL0oa4atDDGkbH/cOG03mJk46HxxWv376lyDNWD2sYij+NHv8Tbn8SqM6KKZqBcQhIswueNjfEUUVenHPYDhxqS1lA3xmk8HqGMj9DqppdVbNZ3zIpEr59/ws+X9/wh99+5Gz+iv32wNXrgnrteFw+cXYxJWTOvATrYDI95+uvfsl3v/k7fv/j31Lmp5gh5etvTrm773DOkOcFeZ5z/bFiNhesnx4wsuHy4s9x+hZjlvzlr/5zfmMOCBH71qzDgTw/Ic9r0ixhuwYZVKRlx+PjLUEQ42g5P/uWag9W7PhyfYNlA6rCCUeSLcjznHs9MCnestnusDR0/RabJ6TRhM2yQuuGVfsZ43oi5fj2q1/y19d/QxCvaZqEk/krfvzyB9aV4+urSz49fE85myFdxmF7z6w4ARGjRMg0u2K1P2DMDwyd4u3bExQjaXLCx09LnFYYuaacCMrsgrbpGUdNGM2xRGzWT2g3YG3HdrejzAsQ5zTdQB7D4+MTyJFpcUbd7thurlEuQ0WW0E0Zx4FiXrJedSjhKHLF480BYt/atHxY0XcJTW+wwjEYqIeKvouZTARp7Pj48ZqTxSlFESJcQTduWC1jymkIoscYhzYWlGC13jMtYw7/J3Vv1iNJll/5/e69tpu5+R5rLpVZW1f1dBPkDAURFCAM9MX4gfQyehpgJEGANCNi1Nya3c2uLSuXWH1329d79WAeWa0HNSCKA0j2ksiI8HB3C3e3c//3nN/ZW3z92dfski11vef11QuyfEi3zscjAukxtkM8r6XMUpQ11EE+3K8J/CuqquH29sB0lmF7Cx7uU/aHR6R0yMoH6jrDsmySpGC9+sD5RUTT9CjZU1Qrri6eE/gOdWXosfG8Ebvdjh/fvWU0Nfzy6/8K3Wkm8YK28RjFmrx8pCpaHGdMp3dkxQGVK2ypaOqGMHK5eV8ynabYjoNlW6RZix94Tw2q9L2h7XK6RGOwqKtbonBKM36OdE+ijwHwDgZlQZ5V7PZD9aQCFsLGthSu46IsKMsKo2OapqcocoqyoKqG7XRthnBIFHvUreHs7BwlPH7z6zdUVYWSg2Dq+57ZfMRiGVOWLXmW0zaKpu7RpvmIuxq2YdVApTqJUk7BGiPMT2mY4dnyB5rsJHQFlhKIE/NzkFPDYbRBty1l3ZAeD9wjTgloG8f28P2QMAzwfZ/A9/A9H8d2Bvg+w3Z713Vo3aB1/1Eo9qd0d9efrAUnkoBSg2fRPjV/DZPX06TRdvA85/8SzBq22weh13VDSKpre8q6PoW0nkTp0zR1uK06BdNO1tphIaDNYA94Kj/gpwDc03kaWpzkT18zw+98+nmtBZxE50/3/WQneHpuNq7nnggGA3PVmIF8oPvhtk9NWn3XkScpBUPAaxDhgzgSJyavdQoj2Y6F5wVINbx2XNfn5avpx/PddZqubVBKo2RN5NtkWtO0gwVj8A9Lem3R1nL4e8kUqxmKDSwpMVpQ1wl1U9J2EEQxUtm0XU+razxL0LYd6aFGnCphhTEgJNoI2q6maYbK4SfvtTEaaU6VtVJjKxdH+7R1xdXsT7B0RejELK8u2a93H6+Xjh2AViS7DaJzGY0u0cJwSHYUeco0ng4FM8uIh/VbLOFTJRWu6yBMRdPuKStBFE/YHzZIO6TrKtrkSNtFvH7xM6YLg3YcqtxjvxGskoL64FDpERUti8lL0mJFWysW8Ut0V+BbmtfXC95+83uieYhnLdBRjthr0txiNG5YPdwzny6gc3C8AalWdTuyTGLZkqoq6doCJzpnHE+4OM9xvIZWW9hhiuUr9vkb5vaY3U2F0S6WJSmKivFkRnJMcGzBQ/6e5fKS+/strn1JMNIcDw2jUcB+uyUX+YDha0uQGt1YdG2FY3t05kjoz8HKMFJTVz6WchiPR1S1Js8TpHQIY0PymDCfRWhTkGQ5eXFkPp+jrJbDcUdZCVbrDyzPX3J70xM6w/ceVz8Qxws0CsfWNGlCnbvIcY/wbEYXZ6z3R/LtAUf6CNvi+WVEUiTUeU09ylDmQF42eKrCUylz22J+9SX7omExmaLajP3xyN3mltg9pzM5vcn58e47fvbZ5zxuv+WYp+jAxbDg+vIFxlph7BVdXVPlkpdfX/Ltd9/i3kcEoxPOTVUcHm0+/eSa7d2G+tAy+cLh5m6DVIJl9BzHnSNMws3NLVF8ztiLmc+nJIcdk4XFtz+8YTYfYRRkzfafISn/yxx/VKh6XkxW36G1pOtzzhfPqbs9QRije0mS9STpgeX0GcgdvagpqjWObZHtO5QG+pxkd+Dnr/+M9zcRceximgcW0QsCK6XrDFFo4aiIOJqzPa7ZH1PE+3e4gY0tPIQJGC9ctoe3BH7Mfr9nXT5Q5BWLsxGe54Lw2RZ/i9Yt0/GcrsupyyPPnp3z7v0No1EwbPNUj8SjS8q8x3EA6dL2EoSD64ZorUiSI1LYHHY7lFJ0jeKYpCgrxIQ94SjGj6AqXbwgYr1qQcbcrb9nFFncvsvpxQOTxSUf3m6w7ZrvijdEgeBs8SVCRyznn6AETO0PZN2Gi8tXNE3PbpMQhz5Xiy/IixrPdbm/eWC/Tfn6Fz8j2YOlXPyo4fzynKKq+d/+418zmVn02iee2ByzI87OYxzG/P1v/yeWZ1OMcXGcmB/f3NDpA30XYbtHyjJHqSnPrs/57e++oxMNdVNRJgY7dIlmgs2xxkiFUZpgJMmqHZWpUMYhTw8c9hnx6BOePb/mYXVLPHFpuooyNwSeYPvQIUXPYbNjOfsc6VdYwiOvFdubPRdXAaor8PwQgSbyxrRFQeCPKdsOx2+4uJyRNwlZaYgnYzzXITkkeNYA9V5nPzCezIjHDrodc/fwSHJYUZcahI8SHVlxICtT6iqgbjM8z+B5EWhw/J7N/g7XDWlKi64XPDyuCIMjjjOiKAuMNuR5ju/CyAtYPzyg9QAKn42X+FHI/aqnDiuEdmmbc8KgoqlypAnx3BpneNFxPB6ZTReMggvKquKp0hSgbmuMsOg7zeFYopRgszvyD+o7ZvUYgwVy6FEXZpiadb2h7UA4g+hp+x5hKfq6PdVk2jTNAHM2RtL1Q1tSXTcgW5RlkaYlTVsBK2aLEeOJT/3Y8MQi6juDbVt88dUZiCHU09SC3//2juNeIpRFrztgaDYaqk2tgURwSuYPUzoxwItOHNghyCVPk9lhK3kIij1xOk9czJMTUggJyqAsd/BwAoaOsknIqwPr7YAoEgxCyrYcXMfD9Xxcx8HzPYLAx3XtITRlWYNI7FrarjvVq/bUXUfb9x+DZpIhJPUkVm3bwrUdbMfCshXKHlquPpYTWA6W7SGjwZcqOInPvj9VrnY0zYCtarsO3dSD7aQfQklPjNthIvpTgQGnNihtNEK39PxkZfhIGHhq+fqDUgZzQn09+ZKVkEgj6dueru0+TnOHCe5AYpBisAM47jARFqciho+2D23QvaTratq2oWkNlHJ4XSqDxBkmsq6kqls2m+0pSMfAe5XqNF3XGCHp+pqmLdG9xmhxel4aIZ2TVaCjNiD6wS6idcvZhc90NuJ4hK4fmrEAlIHIs7GVJs/bn2wWRjFYVxRS9jRND0aevM2Stu+RTyUVSMahh2l8PH0gTx8IvAmb3QO9JXBt++P71nVj4pFHnq959/43LC6u8QMPz3ZQwQxXGeqmpMp8aB3GsYcmZ7+rGE8mJEmCpcYck3vquiRNHmn7gufPr7GiiMi95Ps3N7x561JlJe9Xv2dz3PHy7BortKnMPdNQI+UFo/MQXR3ZHzcIY/im+x1l0WDvN9ytv+Xq6md8/vpTPtw9opTFs2ch282B474jCAMs26JVhqqUg23MDRmNBJv1I64XIWTPOJ5zzCoc18dgGC8KPtz+PY46Q9g2x2OP6/c4VkvXGRw7YDo+4/5ugzaa2WTOfrtGCEXgB9wXOWdniqpJSY8Ns9klliN48fwrfvPbvyHJDzy7WrLd3+K5M5L0yLNnL2m7LXWn2e1SHNei7hqkGkoizs6uORwNrutS5BWT+DlZltJUhsX0NYuzC1Y377GjiKI9kKctV/OXGNEROT5nn19j47Pb/Jqs6EjTijytaArB2fkFL168ZLP5lm7vM5oaLFVze7dCihHnn9q8Xl5hC/jbv8u5WMS0fYeSIQ8P91jWGMtWlKVHV9e4kcPdekvZWngjyX5/R1O4vHu85PX1nF2aMZrPaPYp64eMcOrjUHNYZ8ThBbbq8H2X9e4D+22N8ATHw4FwHDGeTdCVQLcW04sxeZWj+gjPMYzCaKAoVEcOx5Rooqi6Ft/3/7m68l/8+KNCNak3JOmRF1czylKR7nui6YhG50jlIe2MyDujpyI/GpQ1QYqQqjry+Wdf0uYvKYoDUnh4bsgnz3/B3/39XzOKJ2htoWwbYTV4Yc9iOsaxJuyzByJXo/uWeDKiaSSO09A0GXQuZdWzWE44bjrO5p/w7Zv/yOXVJfOzC8b9nyNFz3G/w/dt2kogGcIZbdMxHS3AjWn6irLLcWzAaHQbUVQlcprSd4aySlmt1nSVQVodVS2w1TnrVcq3x7/j4mpDUdQ8PkRYtmS/T9Cmw/cOXF8t2R4eabuU0XiK7g13D0fGk5ZR5KK1YjqO6boC40gOSYXvjYjHQ8gh3easH1c8v4j46ue/4Le/+R3H7FtcOUcpizAW3K0eiOOIm/sb8rzHj1wcTzAZT6jaOw7HPa49w3FW9KZmubzmm3+6YbGYkeZrinpHnjXML3xubyCOazbHD6y2Dzx/sWQUTvjrf3zDq89niN6lqTPe/bjnfLlAG8XdfUJHTSQDjgeIwiuErNGdR+DEXD0745tv3lF0Bt0YyqPP4jxgMTtjfZ+B7nn9+hnJ+i0Yxfb+QDQKqdKWY3XkbBHi+Q1xNGefrOjagtCJsKIpo6imLo70veSYb9FUOF6PP+1BK+qyQqkON9Ckact4blPXNlm+5nG9ou8FRbkHO6MpQorCwnVtvDAD0RO6YzbbI02bI+SMY7qmqW8JgqHNYzKJ8ewIYSRllVFUGa4zwnZLyl3HcvaatLghS2AUTtFiR5UfBgj1LMayPBzXQgiFbffs90cm44jZfAk3NQCtrug6jbKGCWNVSYTQ3Nw+EjYeUnnQSxD9CfczCNWi7CjailEYoY8Zo9gB05MVmtA7w7GmtN2QzB22njVt2+AFBttRw/RUyWEibKeMYpfdVtH37cCWVLBZ59x+ODKZWwh6bMc+wfBblBIgrcFHaXqun82YnyuyIqOtbEyr0G1PWdWUVU/bD+UDMAiVXosnA8DJ98rH6esT/3UIzwxtQwxv358mhFIMqXEhECev7BDgaiibirzafaQSPMXFhJRYysb1PBzHQZzsAY7tDfWo7okicGpS0ifPZ5XXNO3AqX3ywCp1KhOQ6oTEkqcp4+nrpwpf2xn8sMoemp6kiE6oKjGUHLTtEIpqaqqqHqpD2/K07fjT45dqaAQbChAkllInwT98fxCSJ4sBwzka8KEDiFefbAlSnRYJp/MuTuuDjg5t2o+T2CeWrZTDJHa4X4VSzokf6w4+XWkNdg8xLDbaTtPrjqYtePvmG/K0OPlLBxKCZTt4jodtC4Q0A4bsxKkVCJRQSNoBD+a4BGFIFMbYjgJpiMcuh/2RIs+H2tm2/0gyAInjedTtcfBqy4FWoI1GCjMgr0yDsgafr9b9aUHRYUyPsgRGCZKk5YvLrzhk9/S2IU9LHu7fEU9/uphrI7GsiN12y/L8jLrPCB2JaCTxeEQQ2LRlzXGV8Oz5Ocf0kVWqKOsUVVTDzp8pEV2Noy1sU1JWG35YVci9RNXfkWY5i9krYisicit++Rd/Ti9b9oe3mMRjs0k5n7/C9Hvu1w94wZS+rrjbJRwPPe74FYV45Ha/IS8l58tLoihGqy3bbc18cUGSPXDICibxGZMZvLs5YLs2WVqBMFjynMnYJ0t7fCdkt9sS+AFd+RJXxBTlFtuxefbijP1+w2Ff8+L5ZxySe5o2w5iYOJ4TxQ5Fo+kbl/n4FR9UgiUdimOKJX1s6ZJkKUVpIS3F2fwLmqZCSsFqdUM8OqPtJboHbTouri4oii2eN0bJivX6EdcaY6mArpEEXsQo9DDtGG3D4ixin+wZjSIMBVmaM5s84/nlK55fLzCNJhwFWEpw/04zedhQVj2VBRcXY2TQsdm9RdoRTfc7pBpjq5jXX37FcXvEiIhvN4aRzDnkOe7oQN76nM8+Z7KEsu8YRxGxHVHlCQ+rFaO4wQssLNtDVBp/5vP+7jcsx78kSXZE5gVni5i3H94g/TGt29GpgrROabMey04InRHxeQyyoW89aI8E1hjlC3zHI8vXLJcXFHtJEAoe13coxyXNWrK8oiz3bNYPLJfX/6/E5b/k8cebqfoa35kjLBfP9VHzhrLNSbdrlBoRj6b0bYA2B6I4Is23HJIVftASBs+JFhckyZ66MWTdlpvbO0ZnQ797kqW8/vwzuq6mbu85plvaesdkPMNQI/AwOqMsMjwnZPvQ8uxZhhthkgAAIABJREFUSOj7SC2ZjqZsN0d+9sWfcjgmJIcSgUcQtlyefUrXlShjgQrpljV5mnM+W7JdFZT9msNxzfXlM3ptyPIhCVeWQ382MqUqzZD2L1s0gihcImROU/cc9nuM9ljvb4hil7KqqOoC1w44nn5vdnB5/zbBsiIcx0abjrKGb3/4jhcvU3z1nKZqsHAJvJgkXZEWJcmhZ394IBzFbNdr3r79lovnENgj8irj/vGO5GBRVRrHc0mzhtCL2e8esVSJxmY6neK4DodkgzAR3/z+PQ/rt/SmIBh5SDklr79n1CmMaNjuWxYXEV/+4hJH+lwsn1GlDcpakB4N5+cT6qJi5Hus3+9RlkNrGnZ1QVPZnM8W5PmBcCrpWpvVbUUc+4S2Q1vX5PmRWX1OV3foviQMLoe6QUfQVB1KKgI7oqQiCAbT/XFn6Js1VuBRHWxc7VBbhjzbUVcpTe/gWiOSQ0vZrBmlsJyfsVptabqUc3UOQNmWrB7XA9xZNnTGQkx6XF/Rri26pifPBSM9XFjb9kgnUloKDqkaWLaWw2HfI2WDJKZS5aCArG64wKke2x6THg4o5bF97BBC0PcFZdEN3eTKUNYl9b7Hcnqms5iyyIGetq24vXkHXABgOza+P6WqGkBjqaFIQJuBTiDkgHGCk9ySgBZUlcaPrAG63zTsNjWeF2BZPtoN6E5byf0Jsq+1QUgYxQ5dWwICx/NOEzyLxXLM431KlrUnv6OiaWrubvY47gjb+YndCqBPcH+QCGlwA0UQG9yRTeQvsLSDZ/u0bcv2sMPgkiXl0ORUdyRJcZr6msGn25+2/A18xGidtrzNiUowuAqeMvPDvrnWAwLpY5SeYbpoD2iCkx/xJ6as1hVZVgwfeqffNTQnnUSZsrEcF8txT5QCC9tROL57arw6iUw9TKnLpsWYZhhEPwXJ5KnCVgikdbI2nCaf8sSdfaqB/diUZVn4oYXj+8PC4iRU+64b/JcnL2lb1x+rQp/8rOokJu2Tt9SyrEGEn9i4P/laW7p2sAXIjwiu4bZDgYE8eTlOQlebj/0SWg+Crmma03O0UGrY8nfswRLh2Daeo1B2gO96jCcxZVXhOA69GdA7fV+Q5yW2JXn96lOmswV93+B4LlLauLaLEgLbsnE8D9f3MEKgacFA32lGcUgQDu1dVVXR1PWwXd01bHdD+59lDwtBY7ohJtgbykoNntNAnqbd7WA06QfqgjKGoqvY9zlhOcYULn4gCK6ekRx2rG8TnnZDLCdlv0uxLBfpzLAoiOIL/KBCtw1Keux3a2g1th4zUhF7veFqPuNh/Q1t7XB+dsEoWFKQgEwRxiU5bLmeLJDS4E59TLfD88csxyOyY0JuUqSw6SqHq7NziqIgzxNsGTMKQnBtdu8zlAubesXl/GuiMOZXf/+fSZKU5dkZQnUEYcgheU/dtATucvDFI3Bdm+06Y7lcYDvtsAAQEsspOKa39K3D9PKcvDwynkw43N4TegFpmlBkNVp3FHlD6M+xL+H+/h7bjrFlhOf6BNE5vnzFf/tff4E/yvmHf/gV949vePfjb7h8/opXX71ivX7g6uJT3t3+HyjLQzkpVZtQpBWfvfpT0uyBfXJP6EX0uqWuB0tQkuzpexiFI7SpyRI4W5yRFhuqosWzBauNxbOLMf60YbspeNz8I4d9zsNDhd/naKHAjhifPaduamZaE/MNtf4lrR9gOTZX1895f7NG2pK6t5lMX2O7ijwrWS5GXDxz+bB5Q2Uk/guNrEGXHZbj0NY5XdfhBy5NK1BugzIxVxchWbdB1YJDv0XYLn5oofyQ82XE+7uU+eyayYXNYd/jh1P2h1tGQtKLI22tWcyf43DOy4sXFFVBXRdUqxRbjomvJG195Ic3N7z89Eu0ASFSHh8TTGeT7A7/D+Xkf7njjwrV0IsJgin7w5qq6gjHDgaHyJ8NXb+UJM0j6a7H9VqkbKm7A7b22R3f4wUOZVtwv3qD7WW40RmLxYLb2/dD89NO0ouKrgsoa01VZET+JZ7rc0yOTBY9Iz/Gt6dMJzCKIqpcoIRAOA1O4JJmO4riyPXFzzgmK/KswVPnzOZLVvc3aN2jVM8oGCFNijYbJJpnz55Br2kKhe2CEhFBKLi7XaO7AeBuJPR9gDE9eZYyW0xpcknfwcX557zP77BlSzQzFPWGKgtROuL64jW/Xf3IeLZgurCxZYcftRx3Nn1Xsl23NOWGzz4LMI1Leuy5vd9jBw1C2EziKVm64m/+8X/BjxVKLbjf3rNO3lFWCZPoU96++56uFTy7fkFdF0OHNy27VYUXaYx+ZLepCQLJbvcjfqiJRgl361uiKMYJAkwfUdePuF7I3f2Ott8zic7Rjc3zF1MaozB2wW7fMJ1ecrmMCYOcshSsHpdIGoyVkx4r9rshbFM1Ba4bMhotCM8lN+/2xHFPXRraxmU0mnBz+w5lGz7/6hXSqTgeUvT2SNN2NLWmSB+wRUCWpghV0TaQ2AVe0mNJjbJsDseSZJsTjWLK0oNWIZsC159gexGr9QEnsCgbzT7V1L3EUmOKLMG1RnRGoBuFZbV0fUea9sPr7rDHsgzPXlzT1YYyh6YWtJ3Btnwe1wV9WyKVxA9tHBfKck8Ua/xA8f7mG979+IDvD0xOKQKkrWh1i02EcjVFWSOOR5qqQilFXZ8g+yf0UBTEhGFIltY0TYFSDn1fD3xY1wVpneIgQw+5PoVwtBmETlWVOGpIbLZtShS5SAJ0L2m7IXRjzODXCwIL31dAS98JmqbHsqFrFEFgEYQOeV4CHYZhW/uwz9jtLC6vxzi2i2Vlw4ecFoMd4cQVLfOSrowpyx5dZPiOSyMaOjNUgMaxz9VFjKUsOkdT9jW9NtRlQ56mJHlBXrbUB02bGrp2mM7pftjaHyZgpy1vcaqI/YMA0sDjNCcLwR+Glp7+PwStpJDY9inU9REEP/wrDGjTUlUNukxPHsYT/1Nag7XAdnBtF8txUPbgX7Wsp6Q8p5T5kMBve43unrbpT0L1FPSSEgaU1VBfKoVCCmugBJyez5MdVtkKy7FPobUnf+rAzO36YYra6p62bKDkRGB4CnYpLGtI2jv2gJowH4X78Ng6ozFtj2jNx/MyILYGa8lHQsCJWyvlUD16kvm0fYswkr7rhxS/HKgJllBDhZUZvKICNdANpEYoyWQ+59MvvuSYHOj6nq5p6fuWqunQZQ1JOkw9hTyF4hTKGqbZPCHApI3nSRzHpe81Td0yiT2icAjqdX1Lf0KR2a6D54R0pkOcgmlSga0syjInPRwI3ZgsOKezXbz5QFuI4kt057B7+BtgCsBxtWU+OcfxxuySDDqo0oK63dBWitYNuf7kGe/ffMtqt8GSFSPHYFkBkT2hpaHOc87Pn+NZNheXM8o84Pknr2g2W1okLTXr/T2xH3K40Xx4/JbpxZKispgsZsRxQG80jjVH6mFxkeYZYQSudNhtHxhzxTgEbRKqNgNxjsCiqB4JI4fRaEqaJbSdT2yP8dwYa+wzn74gr75DSZuiyLBUSFEcub3JOb+8BtWxPTxgTE1Vb1iGn1A6BY4Tstk+IsVwjTA9BF7A8jxAWlc0dc2bH3/Hy6tfEngTvnj1b5hPzhGipe6hLSpi/wrbEvjuhLTYUlU219dL6t033D28GUpAdI/G4ri/ZzZZYjshUkOeF/RdAzJjMjrn4e6ORhe4doh0MyJvzNi74sUnz/j3//4/sO9zhHOkISAxFbpuMG3C6iEh/fDIv/2TryjzipvKYkzO8fEe04cEYYtxYH9YYVkFJB1ROGaT1Dzsc5bLn2ONBGWz5+5+w2J8zYe7HxGNx9X5nPy+YDm7xAk0t+92xHOPetXS+jZVWbGIx2yOG4wcsbnZk1Y155fndI1NX+fEniHtFabp0NSsHnY0eUfXx7y7+XbA/ekRy6lFmxU0ScPEtZh5Idm2oEktzhaX7I/fI1QwcM3/P3L8cY+qFSFlRxBNsGzY7TeMQoUyNmVWs0sSgviI78eMxja373K++OIVTe7x9sM/MIomhIGPUpLPv/ict98lPN4/YCuLLNvSNi2W01M1Fo49I4om7FYrXr48x5aargzxPZ88bYnjEePwimy3pRFHIMWzbPKkZTyJQWYgK6IwoNMHksxlPr8kzTP29xlKpWTVnLJsaTAUdYnuOxxrzstnX/Ph5j1VYXj18l/x/fc/0FQO8/MRTZkwnz1jNJI0tY/rtkhhiALBZ59dgt2wWh0IAg+hHS6XVxTlnqY9MpucUaYJtt0wjedsHn/k/CLk+uoLVqs155dnWEw47msW9TXKyymrCtEFoFf02BwOGfvD4LmBht26IZn8DqhwxHM+vLul7jenfvCKOB62xM6uAg77G9ompW5TZC3YJQce72rc8IATNtS1YZ+2jHSNlD5ldmARTVmtP2BJZ0BTkXG5eEXkL6mrko4IFXZopyZyz5lMc/rGIwwNVfPA8dgQBEcE5/S1hWUFvP7sGZPwNZt1ynbd4rshWZnyeHdkPB5RFAYjG6q2ZLfpaZseRxb4nkVb1die5vKZR1FogpHG9iGcKJrG41jlBN4YSUOWZpyNLkjzgi6XyFqRHQteTl9S9iVn52Nu373leBhCX8Ibwiau49M2BZ3SNE1LdnQxusCyNFor8rTD822aqifwJcIGy7HIypL22FK1JcIz4PikRcpk4dI3ml472J5kf0wBF2l3GFOiVU1vLM4uLsmLFGE6wtCDYRcchUWe5ri2j+dM2W0SpLFpuwOFyInsEFHBIAkYRK45NRihMHpoU5P2MOGzlEXXd2jd0fXNaZLWY3RDOAKlBELahKGP7iW73Y7145bFWUwQglIWXXfyNSpFWfbUpcS2XIyWQ2uOGXx9cOpyx+B5IZ7r4douAoXjKpq2GWoibUVKQ2MEuilxnlmoM4umThFtwdgIbC3wu574eIZ+tOlajRSKIm/Is4qm1WR5TZnXFGVNUVYDoL4z+DgEyjvNXZ/4sB/7vH6atp5QRTy1Nw2JLjh5YfXASzpNO38qEuCj+O1oq46mzAcvrnmiDAxTact2h7Yt18U6Vc86J28mPPkshwln2z35c58epWYgLQwTO6nkUEP7NOR8SvaLJ3YtQ2+7tIaCgj8IeQ2inY/2haarMfUguj+2kz0JzVMV7JMNQkrJ02nReiALdH1HbephXiw4TYwNlrJxXG8oHlAMrX5CoIVBWhBPIrgDQ3+61/4jVaLvet6/e4elHOquHc4hEqEYhLZ98v/qoRRA6562rSnLE23hqT5VnBjAxsJIjZQC51R1a9sKacUI0w/yXkPXdShjI9A40kEqQ9+1pGlCpyukDEnzDXUT4fkKv1Ukjxuy8pGL+TWshmm80Ir9dsfiMqSpakI3xJMdt7dbvCBGqZyu7knbPSp38KVhHl8OafpozGFfELhTqiKjLisKT/Ds5RleNEV2Pp8sf0aTr9HNb1gsFuy3b/HcDtf1afUOWy0p0gpbWdhOTHrcgAipW4XjLFlOAgLXwrYd7lcPvHz+KaPxiLzaEgYOWX7A96fYjs900lLlLqZTdLVHmmScLxuSJIegIMt29HpPpw1e2PHh7hviOGa7WWMoke6cLDsOOwBtBaZGubDb75jNp/R9w+phRVGmKBlxt/0VTb/mr//zMBCYTCXj2AFpUwto+wfe/nBgebnkfv0DXWvYbhPCKGa3XnF99Zy+tUnSW8oyZaMLbDWnrvaMw3OqsmAcnjHxr9iWW8oiZXp5Rta02MZwOOxx7yLG4YyispmdfQb5irH/HN2NaKsOy+nh2uGfdEdbnKGtDbt3D4zcS559csHdh5ymH0gpTV/R6XuqTcEo9hgvrpkufR5334Nx8O0xdbWiSgouZs/YHO6Yxgtc2VOnJVX+wM2PJa3WeLHHm29vCYIRRZOj9JHUtLiuTaULHOPgBkce7rco5ZAXQz22E45RAVTFhrwr6TuDp1rKPqY3kufnL8k+3OCpCdt9ytlyghcq1us9X3zxc4rq/ycT1dFowbubW8LRglFkUxWaIs3JykfKOscVI55fvyI3Pfn+R0QrqfOG9KD55NlnPHxY84s/+TmKmPc/HIncCNeN6Fqb0L5EOZrIW5IFe7r+SFt6nC8vh+74sYcUMzbrDaOJj+5j7rc3JGUDak8YTDgeU7zAQkjD9rBlOrfJkhrbMhSVIZUWyAo/eMZ4bLHdHgkmM6haPGmo6xRtKjwn5uL8mqJI8FyPSbxkPu84Xy4ZBztev/oSY615+/6evJowGlkEnkP2sMb3M4oiwwjNeORSFgdc12d2NsIOD6zWHdN5gDENX3/9ijTfkGYZbuhwPBQooan7nOXzACnGrB41pbynqSzCCPpjRehr6rpHWjlKDf3lunf4+b/6kn/3P/yPPHsZgp1iexMCb07avOXucU04CbgYT9keM7brFdZognR8DvuCM99hm+yJznw+e/YVb3//AWVGpMcVuhEsLiK2mz1xMMJSLtvDHcdqgzdykMZiNE6YjhzyUtDLAuUI8rJiPjmnqgybTUIQzyj2PSN3iYx8lEqYTUYcjzmBrxF9S5aXCKU5bDqUp+ip6VqFJy1aCb2R9FXLdnOkayWX3hK310ynMW23QxQ5uuop2x6pKuq+HK7iymaX1CgRY0mXUPR4dcGl3+D2HZvOp8jMqfmpoS5blOsM/qbeomk0VScQpj21I3UIDE05XPaPeUoUTXBCj7qsyQpY79b0XUkcxrT1AOb3vYD53KOsSoQctsZdFXF2vsSRIbpvGY0hDAK4G953QWjTNj7x6IzHxw+4roDKJQpjHvwN10WIkO5T7nu4keAUWhIoyx2CNAzoyK6zqWqN6TuaU8NR2/ZgOpTVo43Gwjp11huCwCXPSppaE08CnMeMbiirAgbfYXqs6TuJYzsn8SNOE5Ofmqk0PY2uiMKIvreou5Jc7HD8gHYJ3rmmt1se11tsM8LcC7RJkQaaEhqTcyweWDkZ7tmIKBoxjkNGQhC0Hp02zLoQgc3NzQfevX1E9DZN1hM3irGxyIqKPK/oWqC36FqNYxSusPkJ7/VUK/sTxHRI8puf7AWc2JrGPOnYkw9TIE4d8dIa0Erm6Wd0Q1tX1JUe6mBPCwslh6auwYtpD/QHZwh2OSd0lpASjPhYEdt2HU3d0ny0OQyP9w/xU5YYmrOG7f9hsjwk80/3LORQeWs9+XjFR2H+RAMY/paDtaDv2xMf90QTOAWMnvy3PwW8BsEthKBvG9q24wnkKgcVi5BgW0MIUKkhrf8UyBqm8IPdoixr2m6YeDZde3r9Dn7qj6G7k11CKjkE2KRCSVCWPdgm5ElVm2Eh2rWGTvcYM7BsPddHKPs0mRV4ePRaI4C+b0mSI7cfPrDbbvns0+eEoYMyGtmDbmGfJIzckr7pCC5eAt8BIEcW2a4hqBNm0Zxs+8B6leJ7Y4TtoLWD3XuMJucIy8aVAXWpGU3O2ZaPtJ6isHPGkY8T+Pzuw7c8VgV582toNZ75T4wwVFXCQ3xGZWsib0KkIsJJRFFWOE7Ew80jr7+ISVRFUxvikYfpBZ7y8WfnoHscJ+b8/At6cWC7OxCNxszrFqUtXMvgOZ9we3yDbkIsbIosIfTGfPXqL/nbf/hrpjMfIzRVYxG3E/aHexrTEQQBjV6TVwfKomYazimLAxdnZ+TllrP5lDCOufnwI5+c/zmOU+GHE/xwxuP2yItPXzE/k9y933LzsGWoG9P0smOXvOP86i+YhK858HsQa3Yrh9lkgWXc4T1+8hjbyka3LZIJvm3zyeVnvH7+F9zfv6OrEu5uc/orzWQS83if4EeGH27uEf4M0wpGwYT7u/c09YTFPOTh9h1nFy4uDt0h55BvmE4lth3SoYYArqg47BNcv+e43SGVZjKy6VEsF2cIqyY9uFw9d+j7Uw4ma3lsvuGTr/81ZEfy/MiQR63odYhnx7R5he0PdeKOsvDkmEnUkyU9sWyxAo0IarZ3FcFFRZX2yGZJp3PadkrXCEJvhAoF2/WWKHf56vOvcPw5q4ffcmhh/irGwsXzQq6v4PWrL/nHv/31P1NW/ssff1So3tzkbHcHxosQZUs0R6q6xFIwieZcXz5ns36PbTkoEXJ+JdC9pKr3jJVPr1vu7u9ZLi64e/iWaBlT5hazeQgm5N3tG774Ny857GN++OG3vLj+FNd3+PFth/YCQtdiMplgOwNjtMorQJGlJaG/QIopQdRzOBzoapebtKCuU457+OKLz6nMGs+NKKuSyeScXu8ZjUJs2yUY5Xz37ZbJdELdNDyu3qKUi9Az/uxPv+bNj9/zm3/6Nb/4xWdkRcP68HvieMLbImEcu1wsP+W773/LeDHn09dnPKx+4Oo6oDh6NHXBcnLGZALFsqBpE2aLBbv1juXsgsi/ZLXes9ndEAYuSknqpqVtS2xXMF3G/PjDhulC4jgzjKhodwlCGC6vYyxxxt3qd+zSb/DDhiCcopTEsSKMOVK1d3z/3Z5ocoZFirRKonhC3/aEUYxsbTbvH7CinvOrEduHB8r8yCfPvx5Yca1FXtxw9cIl33VkWYmRmslkiT+SKAnLyTl+MOOffvtPzM7OSbMMKS4JwxFFnaJ1x/74jjwZ6klvD1tsG7qypkw7NB29trE17PcpeVbhBhZND8Ju0Hh0TYVjeZSFTWYkQSB4uH1knMa8fHnGdCKwXE1VgO06Q8CqXCG6GKVGSOVj6Ll7eEBowcEWND3UvUdWa6aTCX4UsrrbEI1muJ4gz1pGsYUXhqz2K5qmIgyGD2WpPOq6GLZsLX+YtiYdTavoqgHp4loBgbNEeCnG1symMdv9mrLI8QOfIAzo6p7tdofv1UShjxE9Wkc88alG0YIi72n7lmgS02tNsyvxpEcQW7iFpDkajH4SCgYl1cm7qBmf8ExSCkrZ0/eCsqzA9LRdR6tbyrIkCiXLZQjCkBcljuvQ1i1h5GDbM6RU+L7Nbp1TlcfTdjsIqUnTnDxtiS5DHNdGiOojVklKiTaarusQwiEvcvB7xMiQuDmld8QWMXFhI8UAo+/qAtf16XQDQlJR0PYdnRbkyYr5TLLd1tzdPjCbxXRdR1VXTKZzoihmeeEynp8zm4+ZjpdURUeSljxuKvQ2pcpsdOVS7lP8ImTUR1RVS9N0VGWDaiUu7smb+kQpGITZkC46lRycmLB/OJI16I/cU/NxInoSwUIgsZDWiSsrhkmpNhV9C00DJjs5WU/kg6cCgYFbOjRIWZaN6zooZQ1cWXMqODiFpdqup9bdsKXOMFkVJ4FoPWGjTtWuUoF4ahwDPgJcn4SocrGehrEMRQ5GG/TTIPkURuq7Ft11P01lhRi8i9ZTda7CUgbTm6FCVnfDe0dZ6F4jpTrZNk4MXgNNU9O0DZ7vYxsHgTixWPXJn9sPDWK6G2qZ68Hb+/R8pVAn8a5OZQwS27GGxdup9QozINGeFnlPxQtVWbBaP3B/e0dVFIOtw/VAgmPF2ELT1ik4ikTnKKtmv3v38Xp52HfMpxFNVdAB0rZZjl8wnZ/z5u536L7k5SevkfcCIzMCAXVl6FTGId0xnXsctjnCNAjjMp3apKv3uO4SOyq4u/sRe/kVn/zpz1ndfcvqQ8LLlxcIS7Hbd/SiwgiDEwg+3LwjLfaMwwWLxTn7XQ5GkCYl47GNbwUcjzuyNCUc+wjtMRtf0jeGqs7Z7t7ihgojDbae8q8/uyS/3/DhkCN7ENrF92Y01R26uWU5vSA3HXmTEFoTyqphPPHp9QqhDGEcsVnfgvYRqkB3CtSB3bZmXDVE3pTkeI9tdfRlg6tt4uWSfX6PtAIao6maI2/e/cDrV18gVh2Ob3C9FU1e8XBY8+LFS87OvuSb737DKHhFnh+5GD/jkD8SRs+peoev/+wvef+9w2p15OGwZVrOGMcjfD9kvd4wm4+R1gGMha1iluNPKOo7ivYR2/ol/91/82/ZHX7gf/3f/wO2LWnKGqNbLKuirxXa5BR5xmGXcHYek6UrBFNev7CpmwzdOGSHnGRfMYuv2faP+G6IL0O8UUcrOtLjlsnykuQARkmm0yWbVYKUDbayGMUe3W6ELTO2Dx3p+w3X0xham3S7RbcWMrQY+zFp12K5PlE8xnU71vd39KbgV3/3KywnptltefHZXxLGY37321/x1efnNOV7duuE2UX8L6Ex/0UO9Vd/9Vf/t9/8n//Tf/9Xljes2A/HHX2r+eT5a9rS55OXLwj8KY8Pj2ixpso7Am+K1iVhMCLwfdoWvv7FVzQVWLZGSU3bgOeH7I8borHHdpfx4f5bpBVyTLfs9lsCN2Y2dThmJcfkESlsPNfD9HBMdjRNSVW2jKI5RpTst0c836euasbxhDCYoinJs57L809JkgRpacrqSOgtKIqUY3qHsiSWBWm6ocgzZjObX/9qS2d25EnHevOeLz/7JY5tsX5MUBJGwRmfvLqg7xxsW/D82SuCICCMOhwrYDKDxeyM+fSaw6ZmFBssR2MrmzQ9Mvo/mXuTXlnSNFvrMfusb7zf/T5NRJxsItu6lKq4RT9BQnCBARNG/JbiV/ATEBISElRxhRADUF3uZXARZFVlZEZmRsRpduO+t3fWm30dA/NzMsUgGYBQ2XjLt9zdXLa+913rWekSKTtEuCOONX3/TJaHPD4+EkQK4U0wakKah0yyOc2pClFJiy8WLOcv8eMeqbe0zcDZ+RzjWHzPYzqL2Tx9oKwKJtM5Q1MTp4L5bEnTw+ubGy5eXhG5EU+Hd6QhWO3jEfCDH6yQ0ifP5sxmGWW7I59mmH5OL1ui1HKsK0J/SZbmHHcNRVvgGkuYuiwvZqhmQCmHsu94etzjJw5p4tB3CmUrokTRtxJf+GNnvROiVExVS1zPxREZ2iRI1YMTjK1Mrod1RiyIVDVhbKhKOBwKwsil6zTH6oAhQAQtnl/z8vqHBMKntz3K9LRNxf5QkM6v8NIljh/T9AXXl5+xWOUMvWI2O6NqDnShZwRLAAAgAElEQVRdi3AieimRssITEMczHN8/rex7hBviOCmOq6nKbgyM+BFRELHIz1jNFyQxTPM5fTfg+2K0ZAif6WSG74fUZY2xGik1x2JLVbb8x2IELP/Xww5jDU3Tsq8admUJ1sH3A1rlMpdz3Mr7A31hwBEYbUhTD99zkFKfBEWIUt6Ir5KatuvGbvC2ZT7zSDOPMEgIgxjX+dg/PzIrHWvIkgCjLftdg9YfJ1owDIo4jpjOY56e9pTFcBICp1pNA8tlRj71aUzPdvGEeaWRLjw9r8dWOOmz223x3RhjeqzboBQ4novCYG1A34+WDscR+MHomcrynCic44cRXb+nbncnkkKIcCaoQVCVHYaAQfekqeTqKuXzN3OuXqRc/uCM65/fMP0yJPpC0i060knK+WqGPzEobxgrWO0f1MH+gcfVdU7Vnaf1MXxkCJwmseMncBKN9gQucDi5ArBm9GeO00nvRAUYJ5+uMwopYyTD0NLUFVV1pCz2FMWe4rinKQuGrsVqNYaYHIcg8IhCnzAY/bEfA1nWGrSy40G/HfmzXd/T94pejocJbcZvbSxK+BjYGr3A2rgjG9Z8HKo6CN8bS2CikCiOCeNwrJYNfDwx+nLHNqxh/D+9+sTslYOkqWu0Vp8sIh8l8UeR7/sBjitomu5TLayUarSrWIPjugShTxRHpOl4+EuSmDDwCU72AAeLlJK6bhGuQxSFWDMeM8bmLvGprUwrxX674+3bb7n/8B4l5Snc5nJ5MSVZGppJzWTiUXV7zlaf49ieri1oVMFfHMb78v+8mZDGIb4T4toGn4B0ktPWFWW9IY2zU6GFTzrJaaqeKDuj0wcGNZClCVE4Zf3wzCSbcHE153B8IEqnrLIVy7MpQ1Oy21XUtuHYPVIeCpp24OrFBU+7B6I4wvcjyvrAfHHJcj5FSkMYRLiug+wd8mzGYdcRhi5dY7BOx+axIIwEm8cnPM9Dm540mZNPM9x+wSIP+OabrzgULTefnTPJX9K3I782clwWyxuq1uJoi2kC0jQkSizHsuDs/IbieESbkOnsNcbf4wcJURLTdFtUX7LZPHN+fkUSC3QV8Pr2FdvdO/bHNbg+h+LIYnmOCDS7/QeKekPknfHy+gWP949cXVyRZzOkbum6jsBPicKMyTIgSTNsp/j21/+cd9/8jiwLSScOfb/D9yOMCklzwfP2jtl0QTdswIYI1yXJErSSzLIYx0a8ePmar7/5BcVec3t1idI9UZDTdk9EwRJPaLa79Vi9m+ZIacjTGcLRdMMToR/hGBffSZjkAVoLPnv9Gj1saaoe7UxwnJbfvvsGYQSz5SWOkAQiwqie1fwC6254WheEvkuWeEReQvXU0vQhkTdnGAzSiQmpCcMFnvUp6zsS55YsnkF05Nt3e9LM42UY8qd/8u+TJdc83P+Kw/4tT0/PWM/gBAN/8sP/4D///0Jo/r+9/uhEtWyP/OjHP+Hx6T1NpbhavUEPFqslj4/f4doVWgqMgYuLc543PZOFwXNnlIeBODFM0nP+5Yd/xnSp8J0lqxcLBBP2h459URInHlUbEMUtUh6Ypjl1Z5iaFdCffH2KvqsIgpzlYobrzXDwGFRF31ZE0YI0yRFOxiALgqSnbWuy7BXPzyVpNuXpcct8NUeImPXjW5aX8RgycUKGYU2eLlBK8Xz8Cv/O4f63OT/9R7dcnGf8+qt7ZFcRLHLihUtThxh3y831iu3+AUzIPL/lWG6YL6YUB0uvnjg7n3LsdkzThKenR9Lc4Vh8wLWG1WrKZn9AU/Bwp0mSnH5ocWwBtmWxWKGVizVwc/EzmsmBIBDsdnv8cODy8priUOP4BYvFirZ2kVriBR7L4PMR4u5IPLcinWmCtaV4brm7/wWrbM7Pvv+KaX6G9Qxn8y94ev41rjtgjMMge6p6IKnm9K1kv99TtgNF5ZCkHb/4+6+ZpDP8RDFfnCOSiLvH96i2xY88zq8mNEeJNB1omE4DoijDCxqieUjbStAhcvAp62ccH5JkSlm3GAyDcogiQdE3GFsRBAHWd8HPkDpheziwEAEPdzVSWaT1KI4ls8kS4YbYSYrDFpcjyyTkPL0k+eklj9s9XdcwzRSBuKRuG7RT0w8OStVI5RDGOWE0pem2+J6P0RFh7NPT8ni/ZZUvETZE+C4OHtM8xPMknmOZTqbM8hVNUyN1z2ySMPgG1Ut8L2CxWPHw8EhVlvi+h0Cj+gFDR6cG8EdSgcWl6fpPXkHduVjjIpXEC8U4iRJjeMlxXIz96FMU4BiGoWUYFFGUIpU4IazG9anSA0Pf47kW4RuwPm0jmc8mYzWsHmuEjVW4VqMVTCYxcRzQ9zU4AsfxcBzJYV8zDBLPcz/B0j9yUT8ilLqup7qqGHLJRKxYLnK6rkcbOQb8fB9HW7J8CSjW65LIzciSHOn39EPFzfUL5tMVYRjTdg11VxBHHmEYUncKowxaBYClaXoqPRD4FiM7HGnxggBHSJqyZbc2CK/BrvYEkWARC+ZnM9AJwnNQyqUsIuJDQlJGHA8l9bbB6SK61o5UAnXyk5qPk1SBNc6ntb/zkcH5MfXvfCQWjCLe5WPXvR69muYTwBQ+Cd6TJ9Xj0xp9nNSORQLD0GLLEalkcU68Uw/PC/CDEM8XJ0tBMDZICR8XB2s1ygxji5U2DNKcmKyjLcF1/28sWPejfWD0rBoLWmqQfPLFnnwnAJ+IAZ+Yr84o5o0e35mSljCK6LoOz+WTzB8n9WDQ9ENHrNQ41XZHS4tz4rraE2FCSoODRLgurnBOdIMAV3j44ci4FUKM01gAO/bZj4Er52RJtrR1zf39PU+Pjyg1fKrAHUW5pe9bjBEoe8eHx5H/u324Z5bmDN6EYXj89LwM/QGpPIIoxQxbPqz3+EWCUYYwH38fdx8+ULWKpcyoD4pUSUTo4ZqcafI5ZA111dAMB5omR3kRQoR0XU/b7lBNipgOlPtHtAbhCSwDT5sjZ8sXHI8lnnCJkhCtYozuiYKUJPNYbx754rOfsd48MMg1fTvDCRt2u4rz81uen3bEiUeahrz/sCNLLbvNnkHuECpj/mpFIi1eNMMPDcsoZ/v1I+ezz6jKPcOx5rMXr7i6uuZ37/8PXNExSV/y2dWSX//dr5nOZhzbD9i2x3d8ymJADwZHSPwgxFpD3ey5e/uO9foRP+6pG5cgCYgzl/2x4nx1Sdf9mtCd4FmHroHV7JwwEBS7gsf91+TpK4zt8L0I1UCQ+by8WHB23vN2fcfx6RuWnkYHgjI0FPuOOF5wcb4iy0K0mXDcbzEGbl9fM2jL1epLnrdr/tn/9td8+/bXTOIr9s89eX5N03Tcfyj54fffsDr/AqU1sndZzpc8bQ906pG//dt3fPmDPyOJXdbrZ6LYR0tBLECpI8+bZ8LgHCN2uL1hOp0QSUlzPJLkmqFryaIzynJHPg+5uZ6AdggDy7e/+oo8veB7X5wzyZZ89/BbHOGiDxovNMSRT+CmlMWas+WMsouZhA3D4QMf5Az7i3/OUa5ZrAKsG/ObD39PdPBpmn84Yao/OlH95bu//su3327JphaPc+7frZkvxk7kOPZxnIEglIRhhu+F9I1Dlk3BBjT9mtub1+z2B7QSyEHRt5YoinjebXja3uMlAV1XsFxckyYTtO5G471vGNA0VU2aRlgdggs3159RVAX6hMHJZzlJdEHbNfRDSZLGhMGUqmoIwxXz+ZTHzW8QQc8gOxbzS+rSkk0NRfmENYL9riRJYpJUsN8VJJnm1Wdn/ORn3yMMzqi7J+rS0HR7ri6u0Kqj7p5w/YG66ambHQ4BXV9QtnuCcAKEJyLCM0rUbPc1+/0zWRzy0y/+gjc3PyfzF9ghRfcRD/drEAMOEQgXPzE877egB7Su8NyM2Szn3d2v8eMKxy7x3JSyrDgeNZDz9a/fUpVj247Uiqo64jgWhUcQB+jQJY0j5pdT3mQzfpAveGwrWn3g+elAHl9xcfMFh2OBtgXN0HC5eEEgEqp6oCgHHOExqI4gjGg7i3EGri9fsDvUWHcgYoHraYxwuL2+ojV7Aicnz1KW52cEUYIyBV4oeHxQhFFOWe9whYPwI5quxiiFkSleYHl6fiafzoiTjOVyShKl1IXBOg5SK46HCjwXnAjNQBjkoBdsHo8EgY9gPIlLk+B5K4pyQxRmpHlAN9T0sqfvWjZPR4r6CVwFNiBKBIdiiyd8jLasn/YY18HzDUkUY7XEag/PjbDacH6eE/kB56sVruuy222w1lIUBbP5FOEKqrpGK4vjiDGFqiXL6RzXCuaTCUkS8u/pMfb/1+64/m6kQljQQ0NRdwzGIKzi1llhWw9jTgD8E/pISUOauuSTGOG5gKDrPJRxR4GiFdZahn4gywST6eiRHIaevh8nv0obBqkRQowram2ZLaaUZU9Zdp9S744DUiqms4S6bqnKnhOkE/e0xp0vMmzc0+UlyVKw25Z0jUuS5AxS8bx9JAw9JvMcHIE1CY4DUeAyTTNcMfbMzydzXOPTNR0WSz/0hEGI7ztINXC2usUoh6au0MoS+P6p7cdwuTon9mcMrcv56hVXl5+T51OkqTkcjjgmp29cympPUT2h1Vg1atIWrhRFviWZery8OSM9s5y/Trl5uWCSeSSpx3SWkiQ+rqvxfXBdM67VHU41tzA2PX20DJxEq3vCZ1nxyXE6Xqdq2pMv1LEfyQOnvbvjnBLvpxW7cEcx6QIotOrpu4a2LqmqgvJwoDoeqIojdVXQ9w1GaxzG1L4feIRRQBSN01jx0aJgDEoqhkHR95K+G8kHUhqkHNFYStrRa4qL43o4YpxSGge0tRjGaa4x9vdeVxykHKjr6pOPGvuHftlR6PtBRN8NKDkeDJQ6YcvM2MpmT5+DI8b0v+N6WGuRStH3/QkPNxIuhmEschikRA4DQzfQlAXrh3u+/d3veNqsMVqN/l7399+G6wquri+YrlK+ev6G9XbDdJFi2xbXxCxvb5kGU768qwD4xWpCM2zYPO0QYQCBTxDkLBY5fefSDQNni2tm04D99pGq3PB8vEOYkCwJaUpJXbY4ruBYvyf0z5kkNyThWEYxWV4yO5/Rmp55eknuZ0xnC6LE41hWeN540Ll9cUFVNbiuZpIzBh+FNxYydB5DJ/GDFtmGTJYZXWcIE8V3b7/l5Ytrtk8VRVFidE8mMpZnOdKp+PbbBy5WSyLPRXYlrmMoqo7V8gY/7NBNyTzL8OKQwdHEfsgkzXh9NsVpCwbj8Hw8spgs2K8PzCYzgkiRzRPqrmUYavqh5vx2Rdk80ncVUZohURg6XCGoy4owCFGtS55k1G3BcjknzwIe74+Eicv58nuU1RbfD6iqPffbZ9ZP73nePfD49AFrJMo33HcR0/QS4Y2V7E2t8DxB14ArRhLQyxc3FOUDh50iSQVyaJlmM9JJyPv7DW8+fwPWRw6A39NVIS9eLmm7Cj1ETPOIyAk5bCr+9T/7dyiObzG9R1+3XKymFN2R436P71p2zwd2+5o0EghfYjrNsTziIZnnU+q6YLurwQrKvWA2zQm9CbYrmFxdsi02VE2LFDVu17HKF9g4YPPwnkl+zuQsoC6fEXbCajZlmeZUnYvr+bTtM0ZLposVIgzBeCRuzp//2X/4D2Ki+keF6v/6L//pXxp7xHPPcazBmo48XmJtP3qchSYOzrm8eEVT+qjBJU4ilDJM0iVCJOzK32Gtg+pT2rqlH2rcYAAzI8ClbQpeffYK4YXcP72jbCtwJR/u70mDHOEH4GScn5/RDZpjWaOtZrt/IsmgOFjuH+6YzHN++/UjcZxRNxrhG8q6oWpKhGdQlAyNgx84aGfD//g//A3nVxmO49F1FW2niKIJDgYhPLq+Ic5mHI4KKwxhGBCHIYeDIkhL4mxCK6EfaoRn6IaOII5wPOh7xcP6A3XdjIJBJ3huSFMOZP5nrB9KNrt3+JHLL7/6DZunLU13YJJnaNNitaE8HHFdw8XZG7Qy4DYMsuZwKJhNz5C6wxEag8uh3FPWR9QwipfHxy3TeY5WDrYL2W4qzvILgulLnuqIID3jm2/vOQ4lQZwSpbDdHzlWLUE4ih/XC1ByoO0kSjs03ZgUX28OeEGMVJqm7dDK8uH+LcvFjMib43nR6EfabAmnDbc3Z1zfnNOplqrpUfZIFMaUVUvXWQQxbdcjtQQdIbTLanaO8H2GrsdzfaQc8F1LWxTMJiHzRUxZFbihxLgufeeg9YB1WubzOe/vRvtD7E84tJJN+Yzj9nieZV8e0aIi8FysSnlab5GyQRmB7wYEQcigNEZ5+CLAGIUXGoxxqMqCLPLJ4gzfE6OPz0pev76kbzuskWMftawIQ29cLbqSdmgYZEsQ+uNa1PTkecx8OsEazZs33yOKY/6N4xj7/yunwHUMQ9/iOQ4uCqkaXFeymi95Hd0yHAxKjlMfTsLIGoc49oiiMVwilUPXBxgrTr6801pea6YzF207PBESzmKieTZSD/oWa8b6QtfxGWSP5/uAx/NTgVTqkydQKUOUBChlqOvh5PsDnDEAk6Yx4ssW50KAnnAqeSJPboAQxx2nvP2g2Gw2OMJhuZowtC2yUxijqdua4lhilGF3+EDd7onjFNf1UcowyJqmbhl6lygMCKOxmMBzUnx3Oq6be80kXZGmEwYp2Txv0aZnuZrguA6y9/BEgh+4CGdCU2mq6kBZlSjpEy1WbIMtT/4d7o2DGwg84xEvfCZnEfPrhItXE85fzJhceEwvBemZIZs65HFCHAWEgeDTUPWTO+CEHTi1cH0sNBgnqi4fq1lPJK5Tsv73gveTP/b0Ws6pbUkID+F5I5TfY2T9WoWSPUM/eujqoqQ8HqiOO5qioK1qZNehpURgCXxBHAUnO4E/tm+JsUzAaD3aR/qOthtO076Wtu0++X61BszHBqvx/YxDdjuyq8uSTyceh080hXH17zOfL/ADH8ezuN44Nf2I4DJGo6WkH3r6thtT+647EhVOlgDc01TYNWPzlQU1dJT7PZvHBx7u3rF+eDjVp44i2Zx+HyekAkHg88WbW9zQcggVypcEIVxMviDJlrTG0ncVP1+3APzdVcpqlbJ/KnD8jOXyAtNBV/QYx3Con5gko/fbWEOS5GgFcWTp+47Hu2dcT4LKEDZnmmbo0uL4crRAWI/Hh2/w3SWeyJlMQ0Lfp+kOWBMwnUe0/SNDL2maiqFviXyPp4eKJFxxufoxV5dTBvnE0BjU4KKNRg6W2XRCliQY5SBcn/Pzc7wgoNI1rVJsDwe0dpgvl0hteD6u+eq3b7m6ukYEDnGYgex5vP9AqwHPIw+m7A7fcf/dnjDMuVtXKNeQZgGr1S03t5eU5TO/++YD2SRH6d34XYoFZfuMIzNmixnK1oDgYnWJkpI8PqfvC4wWzOZz2kYyDA33dx84O1+Ov2/lkWQerSwoqyNBFJMvztiVB4L4cwbOsYEAqRF2Spy5fPfte25vXxPHKVKNlbvT2Zzjc0FzONA2B2azJYOWJMmS0BMMRuH5GVW7ZTKd8c13v0F4gmO5QekAS0sazMmSYLQ5hR6b9TMvX97ym6//Di8JqPYlt7cv0G3Py+vv8eX3bzgUe7ApfX8EbYmDGYfyLUEwQypNFEzJJg775y1ts+fdc8ubNz9AOR1KlMQEDFogPAev7unKDj+KaY8NroGzsyV6cAlTjy+//ILHu3vm04T9viFMBaHwuFgs+PJH/+4/CKH6R1f/ff9E3x847hxm05DFMmCz+ZY8nzObL3h6WoNI8FyXtiuZLzOetw/M5zOEk/NwtyfOz6nrDq22XF+/Zr1+JIgCoiiibTakyRnffVPSmx19B3Gc4mM5m8fEUUxZSJQqKJs91zevURaatgRPsn4ssaZBW03XK86vPmfQNbiSpinxg5ChNwjh0nQtyaSm7N9jjcfPf/5zmqZjkl5waB/wfYe6jpjPLrl+EXEs36O6isPxAYTDYjrHenDo73m1uEV7CR8+/A2+OxBGP0AQ07ceRbUHleHgkcchzbFB24YsTZnEc/6nv/nv8D3Dj3/2mqe3DZc3HrPl57y//x1ny5e0Q00UGbpmIAy9EwJIMvSa0J9TFQ90izuMXHDYVRTtHjd28UMP14lougZIeHHzE0xn6fqKfVXz9dcbKv3EY1fyy1Dz2eKCNPPoyxbXSoyytGXF+VlCsa1wApd+aDkeaurawQ8jZOMQ+gGPD3dM5yly0Pzt+ndM5zHruz231wltXdKWFc/bI7ZS2PKRNmoIowm+DjByRdMOBJFHFPgMnaSsB7Qz0Jc9aWhJ4ilv79YkKQSRoq0H+k5g5Ii/cV3DbDbHDQf6JuBYSBzHEsRzfNfy5vNr1ps79ocNh3KPH3vcXpzTNR35xMMYSx7krOWRPHZYnk14+/6AIMKahraXxH5IVRcjPkj0KGsJPB/TC1q9xxjBzdlL1BCg+o7AFziuxvMdhOdQ1CXgYVxFVTUMg0Rp8N0YpQamkxXTZcx8NQVhTuvf8Qo9h9l0ymIS87w74HmCwPc5Hir6vkbHPZ5wkC5w8kuOQR+F6sdVchwFdJ3A4o5e1dMkz2iN42ocF+I4p7KS+3CDE3tYAxdOSqZTtIHBWAbRU9YPhMGUKA7p+oGPtabGQFNpPH9cK2tjTw1OGsd1UWqsYLSNRoiaPFtSlQP745q636B45mz+GnSEYytC4RF7U6LlnOOxYHd8pGoOhGGKF0YEymdQBt+PRtE1eHSywzolqpMMUUQcR2ipmc81USTZH7cYx6WnpZVH+q6j7Q4EWUDdD3RtTd+7QITWEs/VzOcXWDdgGI74/mRcOaOY+gusFvzq+LeILGM5v6KqD7iOZjaZ03cOxihEMNDpNUu14qp9hZGGsqrom4S+dbAe9HKgO1Uyykoi5Bgw+tiahDUfoVJ8atmyp4MJv1+7j7YO/oDIcFqnW073lMuogMfGJxCjauNjMt6idccgG0xl/iBkdLIT+CORIAgCgjDC9wMC3yeORr7rx9vWaHuaeuqTH3Y4hbrG+3NETI1IKaP639sG/oCi8FGgK6no+w7XFUilcYX3+79xnZG/6gk8xx/LK1yHQQ6ok2fX807tX8GIpJK9pqtq6nrD4binqQe0UmOT2un6RH/A4vLRgmGxSuFZzSSznN/+iP3dA+XQkaxccGFXHT+9hlEV9e6c1eQVQZRyffk5lfee97/do0VGGKY0/UB/KLGuwfPgs9sfocye9cMTi9kZQdhz2B6Z59cECIy/J89WhFHIoXiiLVpubxKeN/d4yYKrxSXv7r5BsufhQ8x8dolRLotpQFkdWMxuMPoDYSQI3BWf33yJbjLmUQHuI3//q9/iORnDMcGzLmerW7y44cOHDYuzFYF95qtffIeRA2EQE4iE9fYDaTRlmvZsNnfM5zOur36MDQ9EE0mcxGirKYsGz5+gM8sv7ypmU4c0YmQS64HdoWC+WHF3/0xT9PixR99JyuM9mZ+PtiXjUBUtN9c/IA2nxJdzmnZDeey5/P4rghC0HCgOktki5+vf/JLl8oYsu+L9++9YnF3z5uUN9e6AUAmpf8MPX7zmwzd3XL68ZujHDV4Sa4QvR6vT3OXXX6958+b7GNPgaZ8QcGxAsW+o9AEpXfJ0wvuHLRcXOUEUsd9qJjOP7fZAPrnCcwOeyreUVcvV8pKHhw0/PP9TVjcubx/eEeXjYaR8uuM3vy14c3VLGNQ83zssoyvuikeS5BLZb2n7I6F3xWAhSn3ypGX94ODqjunljP7o0XZbynqHtD5qKCibjn/t85+zedzTSIWvBlInJPEzyuIZ103xgoz3m5IvfvKG9d17smRKKyt+9L0fU5fr/2cF+f/T9Ucnqv/Lv/hv/rLYwzRPOFu9JAkmHA47Pv/ilsNOYnVDns/oO8Hj+j2TeYgnIopyBxgGJdG6JvBTYj+n2Fc8Pv8O2Ru+efsrWudAEt3wvP+OtjpSHwoCclbzV2Pwpra8evk9HtYb2qEkSQOet1t2x7e8fnVLGl4ThRlRaimKgeublK7xiJIBX/ik2ZTpXNB1kqf1jigap3RRcEGcjE0+vSqou+OJy2dJswll2RCHE2SlyPM5coDpNGO7e+Zh9y33uzu+fXhLknq4doZLSlWWlGVJVRgwBcvZBMQERUM6idg9H4hCwXQakWUBq/OU7W6P40WkWcoPfnQLFlxXIvuOaTbFCzVKGaqqHaHjjWE2jxB+yPHQ4/gdyjq0fU9VVyitSVKPvh0oyyNPjzsOzVseq3uEahDCoT1s+OlPXzKfCj48bLA2pG07tK2omwHhNwivp+sGhIgZhphe9tR1QZr5GOmxXm8IopihdZCDRfaGrm/JsghjC25ulywvUt6+e8bXAYs0ZTU5Y7feEos5oDBAGIVIWaG1QPgC11FkcQTW0vUlwndIkjnCH1FAcRCxXC6QMqQZBpIoRXYatODV9Q2vX17R1yV1WROHOa5vqZsjWe4xWyUEUURRrulLi1IdTbsl9Hy0UVy9SDHDQNO0uAFYNT704jjG8xy0Bd+1pEFCGqfkacAky4mjFM/1cZ2AJE65X6953u7pug5rDV3fjDLSGQNN1jr0sqZqSo5VQ1EZmrbjeXvgnzB6gv7aLdG6xQ9dfC+layvq6khdj/iga2+F20ZIdZoA2Y+95OPEaTaLyLMpxyMMmnGdehI0Wkui0JJlLoPX83fyd3TJEZyO7fMRd+mhzwN24YF22fMgHvimfcuECXIHTT3wSVWcAkZaGaRUn6pMXcdFK8N0FnH2oxkqsDiio+9rpB6o2xptW9q2BuNxvnpBFCTEQcpkskB4LlKPkPyqLrHWJ01WCBFTlSB7D6VbmuaIMRZPxFgLZXmkqRukami6JxwXtIXnpw1VuSeMIlwnIoympElO1ynKskLKAc8NT9aHmjAU+L5L3yuEE2FthTYlxrgMAwRBhOcJlLTEcYDjSqqqOLFWM4qixViDyKZUseXOfmAtHnCvfPzbGGwsDBgAACAASURBVP9zF/+LluT7DuEXgvlNxIurOcublNV1QjS3eKnF810862KNPHmQnU/Czn5cl39Can0UVx+rYU+Tyo/IMOCT2rOn0e7JxmEdcD0xAvSFGIONLriOxZphbA/sG6qqpCiOFMcDZXGkPJa0VcPQ9WilcDDjoSr0RitB5BPF7ifBaK09WQokauhHpNWnytvTW/g4lrcGpcfWK6UHjFafOK/WaLRWWGs+tXl9Et1GMgw9TdOw3+5Y333gabPm8nrC68+mXF7lLGYxy0VEHHkcjx0fBSoOn2wrDiNz9fImxct73IXDMp8wIUa7iuxmRhymLKY5P/hmB4D+t39MVQ14kUcvj9RaE3oJWTod0/OJxhOwWuRMspTy0JEkU1ZnS+qqGTcAbU1b97y4PmeQB65evAHHkEQZD5vfsZheMp3M8f2Bhw9fc9wPXN4sKOoHjDEIM+Hi7IxjWaClixAeUtV0vaasv+P+wx1//7fv+Yt//K9i3RbTx1zdLPBFShRaij1k0ymd7MYpuK0odgdS1+d5/UwQTpnMPepdw/X5OXEWsX3eoLVHnIVoKxl0Q9ccMQMkYcqmvKNoS87nKa4MySYZQZCy3+6oyp6zZUJbS25uv8fjw4ZFPmc2jcGkWCvxfYfl8pI4jImDhKIokUbjuiFNUzGbxtSFJssz2r4ijhOK8ojnBLy8usAOkrI2LOZnvDp7QdU+cuxdbm5/ROKlbJ7vSfIA2bsYLfD8HqMEUZgQunDYP1Aca85Xr6iLHuFK4kTwdGiJgoAwyDm/nLBZr4mCEOv0yMEwm09pm5KmKImcGaEv2G8botCwfdxxffEZWI0aGozvEXpLlqsFXeUy9A0fHr6m7GuMFoRhAq6D0pLDoSVJYqyOEKLFCo80ybBuw9//8muurq755u1XFH1Pkl/hS0mUh9hIkEYTwiAnSFOkDblIM4qypix2JGLOPJ9Q1FuqbsPuueVf+dP/6B/ERPWPCtX/9r//L/7y8nxFHCagxImTqJhMU46HFmEHlmczHjYPaLfBdROm0wWO13J//8zli59w9+GOLJ7x/u2G9+9/SbgAX/o0w0DXKw67Bs9TCOFzPPT89Cc/oixLsD30EcvlJbv9A7KrCQPB8+6R1ZmH202p+wNBDLe3twxdDVKTpBJXuDTNQBD4tF07TsWU4GyREfoxVdmTZCFN05JcSGpTsZrdkkcLDocjxtGgZuTJAu25+KFkt27B78iiiED72MFi6hnb+wBrB/pmwLMOy8k5i9kUqXbUUhPHKRhwkVgGLBLXFUSRxY8CtHY4HGt8P0EqByESnndrppMlcbLizZufcr66GsHWckc+Tblfl9Sqg8AQJCHW1RyLZrQdNOA5sHnc8MX3bskmKc+PO5JJwtAHKNXhByFGCPJ4QRreAAHPz1tCPyTyLsjzC4pqjW/m9K2L6w3s9xLhOpTFmFavSotrXFxHE3geOrAI2+JgmSQLng8FJhgQKuDzl58xyb/g7btv6LsWP4yxVlIVDU3bEiaCrrMs5ktefvaSvjPM0zlpkqAGTZQmJOEcoQYuz5f4qWCQDdZ2REGKG3kslyu21ZE4aka/mu6ZJAOh43B2lhAkEU/bPVpJ3nzvnPPrjKasmC7SUSg7Ma4H2tW4juZ8esXNy9ejELOWZuhwBpcsyDDKIRABrZbUTcU0ienbgiiJ2B8qjscW2RuqqqTv5NgsZWKUDpHGMKBopeGpOPK4OdB2iqbp+E/TGQD/pdyhbIcbwfZ45FBVKLfDnjiYt94VbhfSS/iUmHbHpPV0kvHq1Yq+txxLizIfhcm4JpZSkmfApOdX6iveHd9TFJq2VbhioKx7PD8lCARadTzebZCdR2QE/W6grc2Y7D+JC601Un2Et48CyHEctNJEi5SbP3lBZQ90rcZ1Qra7R8riiFIeGIVwNVm2oK4V9+sHhmEAC1VxZJAlQeARBiFVc2T99EBZHRhkOT5824YgiAgCOzIJVU8QaIpyR9f1BH5AHOTstjvKY00gHDxPjXXGsiFJopFZCHj+gLWSKEw4lmuadscgW6SW+L6LYwTWejRDQ5As8eIZvapIwhhfRERhQhTH4A64nsYBsjQln05xvADhO0RxhJSKw25HWWw57va4NsSbCYZVSfzCYfY98F8947xsOXs5ZTmJCJea85dz8mlMGEAceidfqoPjnr5bc5q6Yn6PCTvdHo51P1EJxqnraBP4vXo9pd/s6E39vT9hrJ713LFr3T21WXnjMBFjNEp3dF1DW1fU5ZHyUFAejlRFRdvU9F2HkgrHWDzHwT+VFkgpkXKE+n+KkH1ktTojqm/oGqxp6NsK1Xc4tkPJFjkMWKPQuj8Fyxr6rqdpKqrywH63Zfe84bAbaS5JGvLZ5zMm04QkyglCS5Jm5PmUDx+eUXq0e32Kdjku1oEojDj7Imd3+8DTocSahHQRQ2B59+0z9aHDovnZXQnAL1/ecnZ5hhcG3Jxf8bD+dqzsvJ4ShYbjvkN4EUmaIxyBEKP1ZXfoME6A70k8JC+urslXOU4qaaWHq6AfFEM3MM8nSFmT+AvyMOKv/up/RgsNRjOJlzhOT7ktmSxu8eKxEvaw35LPz7i6ekGvnhDJeOj4sC7Icg8RCYrDE/M8wIsMrZIIv0frEse4WAau01uuJiEinBInAbLr8KIEK12MaTge1ry++RLXtSip6LoDWubMljNcYwgcjzh6QTyd4YhhtMOFDkX1gGvn3N6sCEKLdgTSSnxvQpZExH6E1T55fI2UG5oKpnOXsmwRQjDPpgSMrXxnF1NU33DYa25uPuMsnyJCj6opcd0AVyjazoAQnC1umOVzuuaZh8cNZaVZLc84W81x1QSrNdvnDdaO9cNFu+Hdu3L0zkuPQXmEkwQjFWeXE3A1m4c9r6/P2TxtiKcz+u5IXUk+f/Oau/tvubl9TT7NSQOHaTJHJx0f7jbMZy+ZLwOKRmNVQKsMi5cJ3377KzzRIHuHxWqCdSS7wwbPyZmv5niRJk0mDE3N07YinMR4dciLz18wtCWqO7Berzm/PaO3iqKU+KFivy8pCpiEHq6zZ1NLhDMwiwKsNfTW8FwfcFrLn/3j/+QfvlD9F//7P/3LNDnDFS6D3PLw+ICxHUW9oWx25FMfPxB89/aO1VXA8+ZIX0M6gb7O+eHrL3n34St66ZGfZ2Tnc372j/4M1AzcAascXFGwvt8Q+RMuzq7J8ymOaBgGC9rj7um3fP75GwLfQzgxq4sFWmbIvsHxOpQzGozjLGO7PZJONLGYkkVn1G3N5nlDOvE4O1vRtP1YIRhEeKGP56fsy5r5bI7nxjw/lKSTgO1+j+P4iETw3eOvEbHCEiJ8MFYRRDmP6w1GNGg0wh+YLV7iioirmxesn99xaEqassYVYxvU2eocz0tQqiNOR3p6FF4jdUE+meI6IWEUUVcdZ6sbXr7+nOaoGVo4HJ5oh4JeH/juuxon9NkfSg6bLZ7r4eHjWEEax+x3O6LI5ers+0zyc457KKqCoTeURYvRY7Bgu6lP9XItu+M7hKcIRITrSlTvkOUJvRZYa1CyIolzwjBHa8HyLCHxJ0Shh+sYEt/DakmnepLgnPXdDieomUY+qJjz5S1NGfGw+xY/NGgtCGcuqecTiRwXODubcHO9ZLXIEVZzdpaTTZcoRxFPIi4urhmqFm0dtNsRRYryaLHSZ3Wd8fbdO9bFhvkiIBTwb/75Of/WX0z5J3/+OZ9lHk0B3RCQx1Om2QTluvTKULUQxiF921H3BX44kPkTtBF0pmW7LTgeS0BjjUJJh7KGQ9PTNi1WgTYORd3Q6o5Bd1RlgekNSoHnRZyfvcL1LG1X4PsBkb84AfUh8H0CIejajv9sdgbAfyXfEUQRsT+hrp5ZzDMiP0OIlom7ZKlX2Fog5bjGdU7eRTUoFrMJL14uKEtJUzvoU73oiENywGoWS5/vkt+ysc90cqDpBuq2RQSWui2QytB2Em0tx6rFjxKatEQXGqcMx7agj+xMOInWjyNWgDHI8pQ3VNkjhg5PZBTlHmUKfN+nH3q6rgPHY7c7ogeP3bbCGMN8do3vCxxXsj8cORz2dH3DevNAWVbM5xN833LYNwhyBtXx9HyHVJZeqvEBtpzSyprHpy1DPyC8gTCMqZqOfmgxtqGq9mjl0rY1TbsfU/PuFKkkQWTwgpHJFAY+Zd2wLRqi85rG+5ZffP0VzVCwOM8R7gRrXJIoQdmKut/i+RlCJNR1zXrzjkEWRGFKJ2usqHCEABsQBAFhNPJ5j8cDXddT1y1SKSpaDskGeVbBZYA/cVnmPtOLmLObCRfXUy5WOVfXS7LMx/MN/xd1b9JryZae5z2xom93f/bpsr+Xt+6tll1ZEgwaMCnJ8MBDwx57YvhX1N/wH/DQHtiALcHQwKYpU2YVWRSrbtXtM09/dht9s2Kt8CBOZkkTDgwYoPbkZA4OcgMZEeuL93vf53VtA9syn6D6+om3+hTOwmB4sg4wGE/MWD4wTN/jp97bDZ7+c8e/P7Fbx3CX+SEQZhjW6Ik1x3/3/fCsn+gETdNQFSVFnpHn6ah6VyVK908BMEbFX/zuOhoYiBOP1x/PWJ26BKHNcjHl8kWI60kcZ8APO6ChK2vubzaUeUaRHqiKgq7uUFJhGMOIH1Imvu+TTFyKrAVMPM8nzTLeXW2eglzi6VJ+r1Eb+L7H6jwiN3dMoyW6lJg6Ip4uWE4nuLECU/D978b1//898zHFBMdPMIaauqjwYwcbDaZFmnVMooDDoaDpLGR3ZLft8GIPNfTEic8kiSiqkrvNhrI0sJxRGGoryfNnP8b1PC4vvocdLLn6+pq/+Muvef69CyzV4/g+wkswDY9vbt+iRUX90GKqEN3tKdsaf+7R5iWqLGnbI6tZyHG/4bjbUpQpCJteSg6Ha9RQ0eMgK4VnWxSd4tXHf0TfCMLAojZS6qagyHtWqxV1c6CX40vqMAhOVmt8byBwY9r6KVCoLU5OT7i6vuPNm8/wwgNFsacuFclsjuf73N5cM50NXD6L+c2/PeA4PsJtedzdYAuf07M5v/3NNwShiZYWStZcXd/zwx9+H8+BvKxYr09p8oqskCxWIWm5wfcW7NMtqnexTM0hu+Xu/p6L1Yy6OODPXDpd8rDJKdsDJgZhaPO4O+DHEUFsYJkuYTBlMg/xA5PbzTWWMKnrhu3jFowKN0ywPJsq3VNXA5PpgsgP2B8yFotTJonPMTuwy3KazmS+Etzc7Lm/2yLlDi+UKOVgGQ5d7bFaR+x2N2jlYZkuQRhSdQeOxwOJ5xEsJ9zfXiMIeXGxIi8z+k5g6BysGNNxaEvF4ZDRVAOHek9hSByv436z5TbdM52dYlmaydyhqTtc1+N8OuHj7/9n//AH1V98/r/8zLSmfPn1rxkUTKYxVS3HVVez5XjMuLu/Ja8qTBEim4quq+hqk93+yGHzlu//9IeUe42pjzAxKLcth90D4XxAZhZBaHN28grXc5ivIrTWXFzMkarAdkqCyYqqe2AxnSKY0ps7etXRdimyrynKjrTIkGx5fNxg4tDXFrbwyKsDg9EQTX1sM0L1FtoYqGvJgMk8Ht9+HBFx3NWUdYoTLNjlN5TySFbsqMuWuttjWD2+69O2HWlxJPR8LpeX5Icex7Koc4OmKvj0zadsNjejD6Q4cvHshHn0Cj20pMeUXir6HspckeY5eZ5S1wZdJ+n6imGwiJMINdTcbW5BaK5u7hFmj22u0Fpi2QNhaBD7U3Q3G835vYljR5imy6AdvMDj3dsvR29cKzBEj+eG5AfJ9z/7ffbbHIFmtTgjz1Mst6cqJGFocDweCKMJUkNR7zGFie4NLNukqQcMeiZRzCSymM9mBK7JchLwmB9xLMF6FdAPLfNwSVMPPL+4xOgd8nrLyeUSyxG4DoRhgOxDkpOOH/50DqbBF19/STARTE8tNtsronCKFwwgLWxl8YMffERW5JTFESlsfH/Gah2hGs3F+gVmP6Bki2kF/OJX32EYBnVjcZCS2uwwbZ+ytsh1S4/m9vod83lIP1i0rWJQkq4bKIqGJmupOk1TNyz8GN0YYPo0UpHXR0Z7C5RtT9m17LM9h/RAFAZME4/JNCaKFrx+9RkGNpfPTgGD/f6I6gcmYcI0mlEcOmYTn/8ymADwP5vvWEyWeGZI3w0oabBYLHn54pRP9GvOgyVV1dOMW0tGf6oBCpLYJ4wEh6NE9iZjRaXGEiYMA7atmc41e++Knb4Bxma3aAZlm9N1Ej3UHPMD+3yD1Dlpusc2BafDCrU3kZ16OtjHlIr499qSnrx+w8C93CBmFQjoWqibakyKY5IXG3rVPQ1zNY+bew7HHQOK/S7lmGbUdU2WlmBYON4IzC6KHK0GhHAwhYMg5HiQOK6LYWjqqiMIJpR1SlZtydI9uh0wDY9jtqeSOYoGhp5B+cTREqU6qqrCtlziJMG0BvbHO5SuCIM5XWPTyZ54NiGcuITzhngmCUMLxwwxZAAKlMrALEa80TD6TZu6RpgwncxRg6KoDzjeiEhquxLLbdG6opcVjufS6x4hbBwzpC0lvZS0bU6eK+rOpYladl5KvdQYoUtfKKJlyHTtEk7gfD3h/HLO+cWMyVwQJTaeb2PZAmHCU+HVB8MAw0gZGAZjfAExxvTWgB4DXWL44Cc1GFmvpjAYBAyGflJi9Qc/7O/YvmNTmRBjRa9ljQ1So0VlfMn5ELQS7w0L778ThKHHqzdrLFswnQVEsYPn+eihJ5kGRJHPdBbzeJ+Rpg3iCSk1jJ2yGKaBYQps00ZKiWWZXL6Y08maMAxoupKuV7z7bvOEFePD0P6eRJBMQj794QWFl1L2mvXyGXpoEK6JEBY3m7d0A/zBdQnAw4+/z/5+TxS53D7eYWqTuuyxTJuu67Esm7ZV/PBHf8xiMec3v/47AifC9S3KOiWOpyTxGUW7oVQ7JrNzJvECy+nZ7UpOTs85pHuUivnm3S/46u2f86f/9D/hz/70z5B5z/XDNZY94bMf/JTmeIUQCh+N3cZoq2KnUtbzS7KHHUG0YBIJ+i4k9nq2aUaFxLFr2nbA8l0eH94BJ/hegBxyWm2xWMUs1zGNLHh7dY0f+JjWgMkMy23ouoZpcoJsBctFxMP9PWWu+ejNp/R9RjKZU7c1whIjCaHu2W32FJlgsZyxOXzNdL1hcX7PYb9nlwZM5z6hG6JliyEnxBMPL56xze8RaoVrl9xebwmjNVpXdE3Odv+ANgoMYVPVJZZtkVc76sJmNpnT9Q3DUHF1c8vHi1c4bsXtpieaONzfP2CaIZZukW3O9c2RuhPQO3St4uLFOUG0wHYE282GvN5gmDNePf8+6eMWIQY6PTKDpRwLLE6WZ7x7+DVp2nJ5cYbjgu1PePXqnN3DljJT/ODHr3m8v0VbPa3yOb08wRHQNBKtNUEYYXsmnheRRGvSfMeQD4SLCLMdWKxW1KqibDu0NJjHMYXR4A8R6+WEsi3xzTUnyymNPIBO0H3GZGkhcFg/v2Czy7m93+EmIQ+7K376x//VP4hB9e8NU2FnfPvdPV5cIKXN9MTlmJVjraUacH3FIGomIewOX7GMP2a7fWB15nHIWi5Wb3CrKStxS3XYInybandkfX7CsX3g/FXMcvEj6rqi6yVSNvTDHbbv4jiCSg/YRETRkjhYofs7rh6+w/IGBttElYpsZ2D5Br4xwzVMdCewpzWmA/vNnukyZtAGeVmwfdzi+3JcXdcGhrJBaeLIxRpi1FAgG4jCmKJsOewbfDMkSGL61uCQDSxWZzw87Fkv5nR9QLJQZM07jvkB3wk4liVajHiVs5NLdBNx2G2xvZKBI71yWMxfYhia66tbslxjWyWuX2E7c7zIZZ/dcHi3Bx0z6ArTcrm/krhuQzSZsD3sEcJBdj5KKcKoh6ZDSoOq7DEMg2+/uSaOFGEU0e5LXNcmdBec/mhFmR8oq3sEPmkWIJjz7CLh2y+/JQgm1NWRzeOWMInRg6KsG1Tn4KieOAjYbLbItifyYHoy55gdeDmZ8v0fPiMxp1RZxaBsNocDrogp2y3vtr/Ci2xk0zFJBDfvcnwPwtCmUzXpg6TKXFazZ4SJpKqOJNOAep8TeTFOInn+0XPqvGM5j5Bqiuo6FnOP25trZtOYk5lP3yTU6sBvrzY0dcj/luV0tRyxOUPP+TNB2zcUu5p9WjGJltS5hWU6rBYhh80O4bvIblQaDQewHfKmR5kmTVPD0GH5DkXX4GqHpuvBkAjLwDJiTtYviPyOqk45OzujqY4YwM3VhjR/JJkIzs6nGLgoKRGGy8lpAM142+lqirO0EINmEi4wzBp6SbqXnBgSxxv9i8YTF3J4f8oyuu26bqBX4yBpmiYYYFsmXQNeIBBmh9IGrjulrxW2pelVg7At2nagSDsGFLVuEKLDI8RfwCy2kM4wBoIYfqfOYXxQ3MbP+LNrFXUDnlRU+oBpCrp+RO10nSDPSw7pO6bJHITAdW0Oxy1iJphMX5FnB5quxRkcqrqhly7CSChLRTIVKN1Rlnc01UAYTjCFx3rl0smOPIV+sDAHwYvnzzEMza6oCWYBhnCwREAczPCcOXXuUpWPJInCdkwGY2AyCelUQxhP0a2DVBWGaqk2PX79mpmZUg63dGmDKToG1VPkW7zAQKmRTev7Pa434IgZtojoOND1kv1NwXy6QIiAMh+wzJaBFtOc4jgBqmsRg8dyeULZZ9TlO6TUdEWJ57xgMXOxHEFVH/gq/gKXiMhxsR3By+ES1bf0Q0d07pMYEW1Xo1qN3Y/khbLOUaqnKEr6DtpW0zYa2arRa/zBLtIzPOGgDMPGNIFhbIoa62VHAoEh3lsGGK0Iw/ChxQwMBv3eJzug1QjsF08hK/F03Q7vjaHGaF1o6oE8bYgm0LUDw9DSC4kwNOgBz40ockl6bMf2sKche6yKHZ4wVwLD0AyDZL8/sNucEEYGh2OO7Sk6WT7dMeM1O6qpA+KDugoIg9lJQn3ckA8ddlKS9YJZkJBujizO/Q/H5bEtmC0ddruvuL5/5DI8YbH0sByXZOLz68+/5rMf/nOeX/4YwzhwffOOu5t3zFZrvLnB1XdXeM9W9FLTdzn77dfsN3PWywW3hyve/fnfcrY447c3v6Yqdnz8gx+w32/4i3/9Vzy/fM16ONINAffHB56dvaHYvGObppgTyWJ+wdB2ON6ai/OARh1o7ISZndB1HXUvqKQiDD16VVPuevzY4mTu8PYqxQ3HvMR0NuXq/i33j3foQTObr9jt7okiB90nOKGgbo9cXrzm+uYrttucJA7otaYfehB8QJbtj/dEgcvp+QXXV1fcXN8izQPCP/L1b3o21wVvPr1Es8OwTzEcl4ebO9wdtKpikCbO3MQyDLxYMpgZnjtlNbO43bxjOV+jjY77xyPJZE1Z57huwLPnZ/z6b3/N+jTm5cuPsAzJ/e2O2YtnyMpimUzB1CSuy/6mwxQNSTyHLiOJP2KwNT//u1+SzHu0qTD6AF05zF/APS6+b1P1NaHlYk8lZXmg61bMJycIW7I5XnF8yLDDE6YnNoMR8eLNKfePdyyX52TVA35gs5ytUNUex1sRRa/ZbuqxRcyQHI8Fl5eXyPsdKo94cz7h5vg537wruHj9mkGUOL7Hqp/xybMFV48PfPrJj2mbEmWYBP0e3Q+E65gBC8uRfHn/cw53Jt97+YqGhjA4/f8wUv7/8/l7FdX/6V/89z973Dzw/PkppgjQWrPb5DTqhunCH43BzhLPd7h4FhC6E5L4lOfPTyhzxeXlcz7/5V9R9TlucoJtTrg8fU0pK17Pz9i2JXebbyjKjNkyQCmJ6yYcjzuqvEeq8WEXh2egFHn1wICLYR1xjAUnySumyZymyVFVzyQ4Iw6dsb3imHK+vsQLQ6RsKPN6XOP5Pb2UTKcnWIGBbc7oKbm4mFOUN/i2w35zx0//8J/wj/6j/5g/+MF/SuCe8cWX3+BYAmGbpFnPYX/HQ/rAd7e/xU88itLk+uqeVub4UUvT1tRlg2Ua1G2GZ53guhZdN1ZZgkVZSq6vHvH9EZMThj6P2yuC0CdwLnh812Iw4FiCx7uSomzoZUSaNjxst1iGy/6ww3ddLCEYdEeZtjw7f85/8c//a/7mb3+JpsTzLVTfkh5LVquAqilxHQ/ZQav2zGYzjscDXdvw4vWUY7rFtGySWcJhn6NUR9tq6rbDtBRVVZIEc2zToFIteZfhCFis1gilQHdkVc7VtuDTV+c8PlxTNA3rmUdXpTheiGsY1M0Bx45AJrRtS56mGAQIU2PbLon/ikUU4Yc2m2LHLr8d+5MXIUVTMQs8mibFFjaKnofNNfHkhLarEEIQCBfLdahUjuwcZKMo25xeKw7bGsv0SI8dsrCw7J682mDbEdN4Sdn2NF1HVRbYRkCpSlqjg06xiCLSvGW0Awz0TY8tDFbTCdNJQBy5BIFHXjScn70gDBOi2CPLU1brkM8+/Qjd28zXU5JZxPwkQLg5/7QYOar/59TF8Q0CNyYMZixXIRgFA5Jlv8I3LPJMU5YahqcDWgwoqZgkAX4QUNYDSr2XiYaxOED2JMmA7Qq+KfZkNCRxRJEW5FmHZYUITAQGx32OfLLfuO7oFQ6IoLRpyuG9nZD3Q+rv4ubjR2vYGgVMa0xHYbkWnerJi5y6K9HaoapbetVgmi691DR1h+xgt99RFBVVXbA/PPC42dHKFmE6gMGz55ckSUiRH9G6YbGYY9sWljWwOEmYLUb/oTAMzk5XnCzOGKixfUWUTIiCCYYCtI1jxwShRzJ1WS7PsERElj+iKWhbTZaXVFVKWdRUVcWgNA4JPid0uYljOfheQCtrDKclrzKKoiZwI1zH5bDf0teCwE0QJli2Syd7PDMijqfoQWAMFkJAr8G0bTwnYJBQZN1If5itaaRCDhmt7HFclyzbsz/coc0W0xhDJgQDe/eeMq5pZh1qoTHOXHbWI/VQE5srlrKdNAAAIABJREFUkpMlnajo3ZzZWcD8POLkRczq+ZTJ2mSydpkufJLQx3UFnjem5w0xFgSMxICnOlktPox5wjT+HUTW++X56Pt8r5V+CHkx+kB/V2Tw79AMYPwdw2QyDYkSZ2ykUhphCnrdIUyTqqq5erfl8b7CtsyRM/v0omQMBsIAyxwtCqrv0RosCyYzC6UGwjAgyytub7IP1/D75L/x5ElI4pDFuU82KZkszpEUXL37nGk8I6sLEIrZ/IRPv9kB8KsXE4rjATU4vP74E6wGnl++4pAdOBx31DUcy3t+/sv/g/PTN7z5vU/Z7q85HAu8wKEqx1Ce5xqj3STfEDozWktjuCbPTt+wmJzgTSTKO7B+8T2ENfrJhdkzDT2C8gFjW3H+6jOG0CI8nbE4X9Nrj9lyhm8aTOYu39y8ozgWFGmBci0GbbCcr5BGh0tIX5U4UUDg+vSyxbYNHCtkffKSdzfv2G8bnr9YU9cjxskybbpWkmU7irxhNltzdrFC0XFId2D1DLTEcUzT1diWQzIz+Pqr74iiCM9zOR5rzs9eIlTC9k7gOjF1L2nbgaouubm65eJiyf3mlgEbPwpHjKTnkeYFZZkyCRPKtsWwFLrp8DyX6WROXWlsx8d1QbWCrta8ejlHmwa//Kt/gztZUomObFMSuiGThUdbuYSJiXAdZtOI2cSmyhW2FyCNLRjjM9rCIoqn2OaRtiqom4ZkOqctCxbzFySzmrurPa9fvcQLY77+4gsm4Ywwibm5fcARPuvzE/a7jrPThKzMqJoI3zfxfcXmQeI4J5xfLimrhv2hxHY0QWwilEsnbX78yXPO7ZrDV3dsjgVRYrAt4dnlGfN4gTe74JPXCZ//6m9YvfgJydTl62/fMVslhM4FWVFzf3wkcmLWyxWP2xbXDvjxj/7ZPwhF9e8dVP+vX/yPP1uuItK8ZDGfEHqXDIOJ6WY0lSIMDRxrguPY5FmFlJIkSnh8SLGcli++uyJZuixPl0gV8cV332FNOr693RMt1zw8POAFmtA7oSwkxmAwqIDsUGBZDobZU9Utj48b4khQlT1BkNDLgUX4KZcnP2B7/IIwNLl8donnTJA6ZXXyHCHGNX0QC9quoK4bDLMgjl2aGkzbJC9KQtfCNad0UnN9fUNb10wmazo54TdffsEhLfj8q7/jdvMNre5oVMXxWLLZHKnLgdAPiaIpWg4cdw19bZDuU6q8Z3+oePb8FZ4fkacNaqhAJ7St4uHuyDFNadoxoJLlFX0vEERcvduw2xYMJqR5yf1NTtPlKGlSVzl1nWNoF9UpZF/RdQqlNabR8frFx/y3/81/xz/5wz/jX/2rX9DKDCE8ZDswXVgcdgVxdIbl2AhroCotsiInmbjIziE9liyWC6Tu6KQgT1N82yLwJ2hrIJh65IeGwHRZrCa8e7xHDR2LecLQK2xHsVonNE3PNAgJgxCJ4JOly3/+vYE//sGah1xgTWbsjzV1a9DplqZr6I2ebXqDIUx65aG1xLcWKHPgIU3BbijrijyzCMOeKlfkxwrfCnGDCXXT8vbumjLPcWzFYV/RNJqqksihQwQDnZyRVxW9obEdC8fyWC6mRMmoTm93R4pmtIG0XUNTSVRvYnsWupe4ImQ6SXBs6FuFbVhYhkVoh1ycrogjk77vsK0Zs+kCx4fdbkvXKqYzl+fPL9hvU5Jk5H4qVaH6hjiGP9mNqf9fvbDJ8z3TScTJeo5SCmH2hFHAvFvhDjaHfUNZagzMp7KdUbmybZNhMGmlwZjsHu9l23bou4bpzKBzCr4qr9i3e7quQauxGz2ILUxbUVUtjuUTeB62FdDpkvvtgSZWxCJBZ2OBwHs34/uVKfA7dXeAUrR4JxIvhjQ/UpQZwjDpWkmepygt6HVNr8b0v+wkw9BTVz1ZmlO1KZ1sGAzokaihJ4j8pxT5gCE6PDdhGl9g2Ro/1AjRY2ARBlOcwECJI1WdUbc5tmtgCxd0g2wPDINJP3TU7QEGQa8UnhtimR51d6DrU9CC6eSEKA7RhkQOLVK1SD1Wg4bBiiBMKNodCkEyuWAynY/eUCXw7TnPz55jmortfo/tGwirxdAOphDY7hgKsUyHurunrDdEkY9pKsrqjq4rKcuxMtT1NYPI6fSeQ/7IYGgcp8O3IwJ7jqDH9zp8L8KyA3oJMLZTtWbPxs7gzKGYZdxZV7SLgTvxwNa7Z+c8snfv0SeKZD1jNU0ITzrmlxbnr5aszn2caCA+cXBnJpNVjBebaEfTUI6cUynGsoKBEak1PFlCRu7Uk1r5fj7V/x5q63d/NjDQmIJx5Z9YNE3HYIx2D8fxsB0LpTTbh5YsrTGt0XIw2hQMGMynVi9zDJUJgXhq2zo5Den6AqUgPdbc36Yjn/bpzPvgVcVgNk9Yv5pQRCmWssnSOw67HMPuaVQGvUk0ueR7X90CcPO9lxR1wbEuSJIZyzDmYfdAp3Ky9ojpuUShhTZS3t1eQx/z0avP2GffUpcwmYU8Hn6LUh39oNGDTxBK3h1+iaE7aCOUbHDMju/uv+T2NiUOp0h54PO/+5JpNONP3qzAvmQyS/i3t3/N1zebEQ/ZllR5Tph4VG2LbE3ixKSpU07PXzKfzbj57i2iN/nk45fkaUNelxR5TeREzGMfpVryWqHVntgPabqe/JDSdxrLhMALqKqcruupqpSb21uCIML1DBh62q7kcNjTtB2TZIVSkkO6xbYtVqtLhGkSOnOyg0GeVWgNSfKSy7NX7Hd7Vos1rhNg2QM3t3vCWKC6nL4XnJ49x6KlrTMGJ6BuO+x+oO1gNj1loOF4PDBLzmnaivnSoqxbpHLZprfML14QLxKaYiDN7pnMXiBcg81uh+3GCNHhe1MGI6OXCj00rGc/wnUkhohIZh4nywVvf/sNsndZX6wYehCWwBZTDKWJo4T6qaWwbzVeFFGVJefLNZ3syFKb5TJml22Zzk+ZJjHlUXJ+fsGAYHku2OcPbHcbmk5i6nMmkclO3eDNQupsoMzvCC8uuXi54uT0glcvPiUJe6aLZ9Rtyn6fIUyTts6wLZfI70F6GCiKQrIMz+hVTyUkg+r5w5/8w6hQ/XsH1c+/+4ufrU/P+PnP/xLXM1mv1qTpHZvNPdN4SVM1tOoW25Mc9jUny0uUhKJoODu94HQ1Z3q6GD2O1PTujrzLuIwDirqj7zpMHBwv5bjf0TaaJLFwHQ+tR8hvP1RgViRhxHa7GfvjrRXT2KKVOwxnYLY8pegLmq7jzZuP0b3Pzc01lXzEtCw836OuNL4zpWs109mSqkvJjwW2qZH12Alu+wLbdulUzdfXX/HlN1d8/vW/5e7xK4SleHt9JM96hs6jLAta2ZMVPU0ZUJQVjpmQphW9ctkfDKQyuH984Ob6wN39jgHYbgqms5BBK7QwqOoOpULqRtJ2HWnaIqWAweJY1gjTZX/c03Zjl7rsGiwL+takqveEE5N4MqWTLVVbMEte8vr1a77+9v+hkhv8UFBVJcOgRvA34Acr5JBjORWGMCjKAtdzaSoTpSxaWfC4OdDV8OLZxdibbirwerrOBOnyw++95nB8JC0KHGFwso6YT3zyWtI0BoYeqKXCNWwmouVMvOP35gO//PU9v31wWD/7hJvbd5TVAUMIilRRFh1oQZG1eG6I1gI/CpB9ydAZvDh7SSs1VdOTuFN810H2mq5uyMojhja5vTvQVTamKyllxv5Q4doJf/yPP6ZqMw47iWm5+O6Krh9XnVJL9vsUU3j0g2aXHVCypZYNtjuqt1oNmNLEMC0qpTCM8YETBA6WYzKIgTDxCBJBIyv8cIppexS5JMs3dF1GnMRkx5o03bI+WVKlNbJpiPwVvh3wj7djBP1XLwSGJQnjhEbuaeWeafKK5WKNfRSYnU1ZDBSFfpoDPhgDUapHCAew0FoxaI0wnyo+VYPvd3w3/YK9uaXpO9peMhg2WglMe6AXY7+775u4hosjYpYnS4oqI82OPLMvceoQ1aknJfV3CtnvalTHrzMlQvkFvVeRpnuapkS2GtWbtF1L19cMg6DrFINW9LIFbTNNzvB9n7LOxwPbUPQoej1gWT6Oa2M7PcpIMcx+HJYtSZSA69nkRU3XajzXoSwzEJLZIkJ2CtdOCIKApqnwwxBl1KTpYWS/Gj273SN102DbNpawmEQLPCfEtE0UmvvdI7Vsmc7mCNvgWIyeecs0aCqF505wXZ+qbFC6IvB9HGHRdxLbtxnsjiAIOD89QxgjHm/ctCiausbQIb47w7QHBrsnmZ+NfORig9INPS1F8YgjPMIgopOSJJ6ymC357voLHNfAEA5F1ZNlFVVbYbsG++OB/WGPsAcMJ0MbNdtdThApTLvisE9pKklZQLBYsw8eecuXpMkWYzVhmFio1Z7+2YFilXH+R2vWP1nCZYm+PLJ8HTJxA6YrF9cSOK7AsU36vsd4IsKOdIKna+XpjHmvxr+3EYxD47gaFkKzWAQMuicKIxzbp2s6uq6jbXrefn0YK1KH97Wz752uI7JKCINejutmrQeUHFitViyWEWVVsN3s2G9bhDmi3Qzef5fx5StKXKZngpv+jsZoGYwa39FsdgeiKCCeJpTpnh/fVAD83QuXtD4wX8/whEm2uUE5A4ZtUsqa28cbAi/G82OK8p5/89f/ku1xz7G85vbuiouz1ywWIcf0EdNImMwSbo/XRPaCub0gCqaYhqbbV0zFJbNFjNQ5tnaZey5ny4jf/HVGMT1FNyUPt+/o7COXsxf4nqZtOgaR890XNcfdFis0qauGxD9lfX5C6Nhcf/05yTRGuyahO6NsMywRYtQmumu42V6z3b7l9eUrWlXwcHONOcw5O0/G1saiomlL3MDFcU0MZfLpp6/pWslud0WvGwLf56uvv+SYFiyX59RNzmK1ZLc9oFTBNE5YzF7w0etPMBqDvLjncVsSTnzKukN2BvMkYR5HVKnifDEjy7a0XY3tOPS6Isv3VJnLydklhpPTyY6uNYjCGWfPQh4etxRlQ9c02L5DMl0hBpe+P2C5PTfXb1FDy/G4Iw4c5vM5eSvplc355Yrt9oG6bnDDCaenDr/99d+yvzX4/d//CW/vbnj28iNcYfLu7kuOu55PXn+furvn6naHZ3k8u3jDrjhS15o3H53zN7/6JVmmQFkksY9WGdmmom0zQNO0CsMcKPMK29b0rUD3A/vjt+yzA9/cfMtXaYm7dtg3ktXsJZE7sLu5IssfePv2inf5lkpr2qqh0TANJ1i2iWe72LZL34Gna9JjxnS9RB5q/vCP/gNopvrf//x/+FldmMynCUr6tE3J6fmM26sDvu+xmM148WpO07x/2zWZREt6aTKdBiSRRXos+c1Xv0C7JZOFy2BMWU8n7I8Z08jGwMIWLm1bjorR9AQtBWm2x3JNBiERho2uXSy75+z0lJt3e9ANbX+gUpLHwx1ZWZOlLbq36fuOq7fvCCcxX3z+iOnVVOU9jhthWBInUmPqutcorTnmN+RtyiSZUZUZWb4hiadYrmB1HhA4ITZLmkbTVCWyBNsOqGswbYvDvqZXDUVRY5gKy3VIc4kaSrIixTR9mrZhe9ijlMnxeMT2bJrGIYhGTukYXLBwPJ/r2xuqqkVJg8kkQGlJlRtMpgHR3GUwbLAkGouyaXEjg32qCSKHqjvw7tsN/+Jf/q8YZkoSz8lTzXq94PG+4vxsTVbconqBJUKkqlHKIM8zosQmjmdgGuRZxyQMCaOEom5IVgaeYxE5ZwSuz/XNF9zeX4O2WMTJyEU15myyFjW0uM7ATrb88JWBX+wo9yWbAv76q567o8Pt7oGub9Haom8NJgtBr1o8d0nXN7T1wKBiBjqePZvy8flzzHqsA+2HFl1HtEVBnsPD5pHH4+NYr4rCd21u7zLazh0B8VaAkoLiOGA5cHdX0nWw32855GO7jm1qTEehhQTds5xPUYPGES6hb2NqC6EMDEMTxquxCSmwCCKXVilsz0dqUIYCyyArMwLf5vnlJaYZIGWD4/b0Q8qgNb435ZPfe06STCiqPfv9kT+tbQD+Yh6iREUUrsnynK4/4lgzrm6+xtxaeIZFlraUxahpjse+eBpUNabpMAzG2JU+jI1GXSuZxA6LZcAt10gXilqSVw1CgOcJlBZ0qqfTJW3bEfs2cTxWCkeejT3YfDb/FCMT1FX71DY0BlHeN0/q4T3+aBwcyvDArt3SNSaL2TlRFFKUR/KixPM8XNejKhRdC7o3UL2gqTWhH2O7NgMmhjEC8hGKuqnxvIA4jvE8AaJls3mkqHJsd6QsCMNloKNrR1yaa0+xzAm2Y2OKACkNTNtBa1BDix9YCCFpmpIkXrBcnqB1TxDEJOE5TS1QCi4uPyKI5lxdf0fX9Dh2RCtTZsmS0D5F9wOOadPLDNlXoF1MU2AKTdOmlP0V2JLIfUUSrrGEQVuDKSLCICb0F0T+ioGGTuXo1sTWDoahMa0BhMP+0GPpCednz5FDT98bRKFPXt+zPb7juM/Im4xGSfbHeyQPzOdrPHeO7Md7M6seedjdYduC6dxm6D3SrYEjfBgckmlEp46keY5trbG0QZd3qF5Rtin1MNZFG4NFVXYk05iKEnmiCNYWiyBgfT7h2cWcaNKxXIVjZW/iECcjr/bJe8H7MqixGvbpvWesdMN1HRaLKbbl47rOCIpnoGpy8rxlc9/gOBZC2CP/VVhP98EwWhEY6HuJ8VSKoZXC812m84As2yE7zW7TYj4FvN4Pue+3A3His34Zcmf+hvviG0zDZTA8CrknsKfUdUbTHPnpownAX8575rMV2W7H9uEKL1rSDzaFBMdvOab35FWJaxskUYAfG1hmQVEccBybIHS5v7+nrDWGHZDMZvhOjGUmLOZrhi7Hjab0oYUyLCzfwbNt6qyjsyt+/t0XLD/7lHhi8+6bB+xA8Ldf3+AMCfHSoy5sjE6jywqhd5heyzB4bPcpk/gEBx+pCoomx7AC9tkVnhXhTWaYPfimTZDElM0By7BZJacsZmuCSJDEE9LDgaI40PYtYRRSlBmr5BQ/8DluClaLCdc3D9h2wG53S5YXnJ+9oKxK+m4Y7xXDQMsBP/DJ8iNZdkPX5sQTB9sJ6JqM5WSB78e0qubNi4/IHrbc3+wQoUnVpiwn5yThhOnCQ1jj8z9JpkBNVVeE0ZS2VVT5kbY+cHb+AikrHm82+PacuilIDymrxQXGkNNVGi9IGNyW+fwlgTfFchruNo/YhsHj/opK5tSlxBGaQQzMFs/xggE/7ilSjWwUz56/YpfdkGU7pvElnerZP6Z8+nuveLi/YTBG/u9yfUHZHEBbPLtMePv2LavVlMfHewwcqvZInva8fDOhajM+Wr1AbwvC6ZLl5JLAcHBtQZHmtK5FadiU9YHdPmW5SHjc3KNDyHcpz5+fc/V2i++F/N7Hp3T1Pc9ePiNtdzjK5kf/QSiqX/7rn8nW5OwioaoqXr/4EW/ffoPnmoShhzAcPF9xvA9GnldbY7sJj5sUqWtMscSNLH79xTdMZisWk48ITZeqkBiqxBI+YQy9HjgeMs5OTtjvHlCDSV7BobjFNae4ZojuYLWMOe4K6nrP+cU5SgseDymOn5Du9zhDyDCMh4rnGtjBnjxv8ScTRAe7ZkfdH7na3BK5guzQ0dJTiQOdPmIaEcWxwnIGTtZTyocWLW36Jkc3NpM4oC0Eq7mNbDzUIJCyHx+WpsCyTdpWoaSB57k0TYljTZDKZH/cIRXYTkSWNVi2z+NdgR95MFj00qDtKjAUddfTDB2DUjj2hMlkimULuq7BcwWDGvCePH96GDjuK5q6Yb6YsJqf0DYlQdAxn51S5j0/+dGPOe6PnCzn2KaFJTSfvPgTum5AaBctFVnagRmxz0vswMKwxBi2GGps06JvOyxM6jynyI+UdUa8dFnNI6aTOVFsj9WzUuIla7KqQ2vFm8ghv7vnUFjsK5PfXhdsu4ZjUbA4mYMTEZhjrWjZSaIgJs1rTFMTmhZDW1JXEttOmMxmVEWNh83xWKG1g+prmjalbaBoNAgL2zU47gpM16GueqRsuLvJyauSrheUpcTEQuoa1Wkcx8G0TJpa4QmfpmoIvIji2OPaEcIcMG0bXIEbTNADaKOlNxo61cLgYFujb/WQ7egH2KUlhlJM4zmykwghMe3xoWkY3pj6bkYbx3QSYZke/2gnAfjzSYTtGBTFgbocsMyQ3eGA5Q5ERUxkhWRpS1UMgPVhrTrKVWBazhPXfRgxQIZAdpIo1li25p4tnddTthW6r3EGC0sbNEULcmBQA0EUsT45Qw7QqJzlZE7sTTmzz6j3ijJvnrBY782pvzvgeRpeQcOJorF7nl98xh/85E845Bvut9coBGE4x3Es8ialbQfCMMQKBZYzDtq2bzAYHYY2UPKpptWwmSVLLKNHDw2yg14OGNrEMFws22W5eIZtuyhVIaVms31gu71h0OAFLp4DfZuiZIUlDOpWEUcnJFGCY00xzZCsuKNuC6pSITvFYAyUVY0fhNie5nF7jdAe88nkCUQfY5omvc4JIwfPMbGtgPPTj+kHTdGm2I6Hqj2EHtuuqnoDWqG1QdsVtF2J65tU8pq8KJgml4RuA8eveBnFfO/5a16fv0b0JiY9l6sFkV0xyIZjMwakHG1SF5KqHjCFRxwm7B73FGlJHPkEUUSaVlRVxjCk9K1EtXNOowu84Un3tGtku8e1p5gqwMRF9i0tBVXf0OsGQxi4zhTVmTR1z1dffY2pbfbtgX2wo9KC0zjBTzTT6IzpNCaMBc9fnXB+viKZWDjeQJFJej1yAD5k/59KClzb5dmLE+J4FDLabkw/u77N7VVGnvaYtjX6U41xvn2vhpomqF59GH6HYQxztVLiRQJha5rKYvuQY5rmh03Ae6+qgWC5ivCmiq1b4HkGlhXStop5PPt/qXuTH1myLD/vuzbPPntMb8qXU2VmdVZ3VXV1NykCAgVCEMCNdlpKWuuPqJW2WmlLCVyJklYiiNYANqmW0CAhVfVQXVWZWZlvingx+Ghus9k1u1cLe5lJ/QfNWEYEwgOG627Hzjm/78N35nz91Uviic/PNuO6wL+9FHS9IKg2RHJg8ObMziN6dc/ptOf9Zz/hyflnuL7JMb+malIsJ+Fy/TGeG6B1Sxy5pKctRX7CENZ4FrM9CINu8JBtReB6fP3yayxnwBB67EqWY/bhvfefU2waAtei6nbMzjxk0xLFLqLVaDfi8r0z7EDQqoEgGYOk16++ZLaYImyX6+s74sClKk7E0ZzkvSX7NMUJBXnzgDAGgshjd/sGS8Tcp6+pa5P3nlyyfXuD7ODi8oosPdJ2A61yUW1B4syJJiu61mQWheTVDtdLkP342egIAxuN7gtgVKA26ZbYDYniOcKe8/jJJX3RoAaIziPSQ4rnT5gvlrh+wMO2IkrmyCrDlg6t7Ch2J1qZUZYts2nCq1c74nBgbTsUpcv8fM7+lJId91gCbM8jLUqeXj3BFDmy81ksVziWQHaSu80btPZZn62hL2gbhW1JbCGQdLx8+4o0K9jsb4gjh74zCeMJQRjR1g3rsyW73Q2qk0ghacueWeRxsb5keTbhm1dfMAljEjdm+fR3HI4vsM2AY3rHxcWH7LMdfujjOOd4hkvVSYLllOX0ktVqgVYmtt2zP2643R6wDQ/DNtAMZFlG13bEdoBWFmGQsC92lF3D/pDSGiHbuuT65Ymn7z3iBx/+w7/7heq/+r//+c9P2S2H/DdYlsn2oeFU7HB9QZKc0+QaP9TUpWK5PKfrFINqgFGr+OLma9I8Zb1e8Ojyfd6+PlBlR47HW3zX4X6343z9MadTx2oVE/gxvueSBGsO+z2mEDx+fE6eVgSRz93tjtXZArRLWbUEyZSvvvkrkuiK9HTL/nRimxcoA5JpQGXcY5kBhppStQdaq6NqcharkM2bjt4TVKpAKsF2U9BXmudPPuabF7/m2YeC999f89UXR4ZeMFnMORUF6TElcSds04IsPxEGLlJ1TCYzhl7TtaOaL88OCG3jOB7QIttROhD4Nn3XYpoDrdSUeYdQFk1TYzsulm2MKsXOZz736YcW12Mc+8ueflDjjaZucFwD0xjHZsPQslxc0VQDd/eviMIJfd9SFDVltefjTy5xzIS8yHny5CnrxQ8o5W8pspa2lazO1uR5hRY9fdsgm5peDjAMtJXGt0MCd0mWnxhEj7Bs3nt0xeNHH3DKMibxhE8++BPudg/4UxMPi6F2yeqGUw/5MPBQ+Dz0DpuqwsXF9cbx7nKyJAxWFFU3rigYGq1Mqq4Yb2Z1S543lI2BHfnsNhtkJVDDgGkMNM1AoxVlJ6krSVEeSSbhWMPhYRg96IHV/BLbcqibjkFILCfAMB2GYSwQm6rlcMxA2WhtcMpGyL5ULU1toZQJWnJKt+gBTKGxTAvfntLWFaFvo5XisE+RXUc/wGZ75OH+nulkQlW3dL2g7SStbCgqQZo32MYSYRj88W4cIf5fk57y2NK0YNhQlXJE/NiCpJzgqYg8hbr+dzimwhhT+BpM0363I6nQ71pWqq8Iwg7bkfRzSe90WFbF2XJOEi6o64GyLrBMh0kUYwLSULixQ37qaVuLtmuZtglmaVEXzbv097f/wog3+h6tKlCDRsaCP/oP/yN+8tO/xy/+6i/49Ve/QCMxTRCGwnIsTMvAdxwcE2xnIAwDtBgw3VGPWTctShuEiY8bGHSywNQenhvj2CGuNcF1A4JgwqAl6Sllt99iObCYnLFanTEYDUIIZtMJXmijceg6Ra1SLNvEFTN845xBGlRNiZSKqq8RtsA0FL6rOex27O4zHp29RxQZeK7PLFmTHvZUZY3rAlrTt5AXO8rqhJQDalBUdUVVtjjOBMcKsAwoyj1ZvaftTyAGtLLpe4nvC3xnhtAG62hgZUn6wyus9CuW1obAygh0yto7oLqa662iGsC2fBx7iml3eHbEk8vPSaZL3t59hewdlyR1AAAgAElEQVRrpvMQLQwcZ+Ql390UlKlJ6AegejzXxA877LChaQ1i84quNzlmb8m7O4r2SOieEdoXmD3IqmKQkjCeYLoFng+TRcg0Sii0wLpsae0G/WAi24Gh70d2trARogWzZbdpkXIMMI17qmNan3fc37PzGZbd0/cDnuuNRaR2+ObLDf2Iox61s0qjlX63r/2thW0Yu6laILAQCJQSLJczJhOfw67msKveUQN499A1FrqGYTCbh1jRwNHJMASkhwNaOtRVQ11VrBbv4TpTfnxfAPBnUYNrhfz47//H/MGnv8fD619TKsnp9JbQueIf/6P/ijCK+Nd//n9Qt8fRumdZ7LYPaCXoO8EpO2GYA5OZB2bJ/rhnMl2MP+9zHjZbztePRz2xTNmdMpQcmxdJGCCLAZOIZ+89ZftwS5rWGIOmqPORS+aeuN480AwWrgiwPZ8oDDANF8eJefToMY08YXsCpSW3D7dYXkiVjvKSydKlqVuysqBTBY3RYpgm8SRAqymrWUB3OlHLgtZMePzoGXWzJa81D2lJr1rmswXYJte7e0JLUFcNabbFwkXonrJoyYsSP0hYWTPKoqMbBizHJ4p8DvtbMCSyb7g8v2B3OBIla+JpSODH2Cbc3zScX11SVAXr85jiVHH5/DOKco+pI/7opwsq9cCzqzX3u284pZInz1dMV1Mc3yfPD8yiNaIfqBoTN3bw/QV3N9f4nqauBIuzOV+/+AZBixoMet2zPx1J03tcx6M3Cno0TSX4/Pc+41e/+n8xxZJk7pPMJxhWzNNHj9nsXtNUCfHUJk1zLi8WnLYZl1c2N9e/xWTGNFlTlA2z1ZRejujDsqhYn03J844ibzFNi8V8TtNqvv7md8heMp8tEGiarsAPocgErmvjBz6+H/L69SuyOsUyJvjWbEQJdh2xd87j8yc8e/aHf/cL1X/xZ//tz8NghtARBlPaRtJ0OQqLeLJEdw73D9esz85w3YBBCfbpnqxocKwQJU7I0sVgwLMj3t7+junKw7ISGqkJAh+lHbBKZvMFh22KZRoY2Mh6wLQV+33K7e0OYdbsNoLJzCPLS06njEY2eM6SusywnAFvEtCZJoOh2B0e+OVffYVt+GDuODvzSPcdD69PFHXL9qRwAgmmpi5NmsIjCmKaLqWqJbutw2GbcffK5MnzS/L+yLF7he56nj1ZMBjQtT29GnBcm1a2xLGH5zm0TU9Xdzi2RVU2GIZPrxri6N0uiGwJwoheWig9MJ9PMQywLRvPcZkkU9q6w3EUpinYHzbjB7EW9L0a06y6Rw0WpjDp2nHXNDtVZKeCoirppcUwGGjR0bRHnj7+jC9+dcv5owClTH751/+apt1SZmOg5fLyEXd3e4QWxP6EwLXRtUEUeiN8vFAos8O2g3FM5YYMjR4B0UPP48unPLv6hC9e/Yb77UtsqZnPLzllByQ2pz7gzU6inZbQPUf1FphHLK/l6ux9qmLAcCSenVDnFm0nkaLDdjvybEANPb4XUbUV97uXDIbB9dtrGlmRpgI5DNRtR1tL6AWuFdEPNVprjseKxXJC6PsEgYUWEmFDXRTUeUXoTDCwyPKUplUYVoBUPUNfgvLoB03djspGxUCva/zQx/MdjocMz5nSDRlStWhtYNoC0zJplUHbSCLfp61asrzBCWIQUFQZvhcjm4EkHPdx/95x5DH+k+IF2+MDRd1SlP0YKFLAYHNlPqLP4Xjo6OS3baR3u3XvVJmmYaG1YlA9AoO+kwShyeXFAtl1vO02GBE4hkB3JiDp+wE/CJjMIkyhMKSmLHLQOZPIpGsaXE+wcCOoDMpsYFDfh6jeAQC+R1QJUEPPR3/yOb//D37Cv/w//zm/+Ks/x3IEwyBom4FOKWw3wrMnRI7F5SoiiHyk7lBWRSslru1j2h11U2K5PVFi4LoWtiWYTBMm8WQMvOkBLzSpu4y83GNbDp4dUzcFZXMg8Hws22N3fEtRpFR1R90MNE2H7UDo+9iGiwYqmZHVJ8QwdnjkcE+aFZSFIIgdDOHjGAGO29PUDYEf4fvGeN17OBx3oBVJdIGWLkW1o6y35NWeOJrg2iF1k5JXbzmlOa6bMJ3GdJ1mv8soq5Tt7o6b17c0jU1hGlT+mKy/efmS6+Nb7us7Xt+/4vqhoDIX6CGGTpHMA1wnQkk47CscJ8ZxTbK8phc1nSzxXA8lO7JDx9n6EVEYsT/umC5mRG6E2TdILdjuCizhYPoFldzRlCaTxOXR5RIhoOs1VZujhh7VF1RZxSJ5gtCCsi1QymQQJtpKsVoXU4nxd4d35impKbKeulYY5vfQ/e9FEhrPt4kSH8u2R+Ng0VBXBq9fPTBO9L9FU73js+rvkVf90CO0/q4AHZFaAtd1uXo0JUtbHu5SLGt8sBvP8PfneToLWV5N2Fn33N3eEwYLBBZ1naJUheOHtCj++GHkyn3xPKbNU17fbPn0R/8JWj7wzc0rHp3/GN9Z47oJ/+Yv/xl3D2/pOsV8donnTMmKtxhCIXCYTs85Xz+mqgfuH1Iuzp/hOAanYktVpwTuHDnk9NTEE580L0nvT8ySNZYyuH1zjRSS1/dfc3v9kshd0nU5yhwwrYDL6Yc8X5+xrzOEZVPkOXd316SnmnACX361wXAUl1cX1G3Bb7/4kmHQXJ095rdf/Yb54oKmUoDNow8esXk4YSgXz4k45aPu+PLJGtk3FKXk6uljqkOF6DXTJMa3Q06HDboeuExWBJEiPynWyyuapsMwIIwilNL0fc/9mz2b/MBJdoQzl5v71xiOi9BTppOYU1WTZim742tUH5AkEYiWvDji+zMMQ3Jz+wK8mPVihSy2GK+2vH81wQyWrJ2aM7Ng7ffUXcgud/nmd1+xjFZ89PxDPvrwc5TRI2ybsmiYJglvXrxEWBWnvBqpJSiq6kSWa95//iGuPVBmmjB2MHAYWhBmx4sXKR/+4BkvvvlbAjPhYh3w9tUbXDvG8hWn/MTD/YbLsyfcb15yPJWU+ZTP/+BD0rTl/PwZpmWxWsbYZsXm9oAfzdjuHsA88Ld/+5L16gItStJTQzKLCf2ArhEcjnc0tYltK+LE4ngocVzBdLoacY15wXwx5XgsmC8T4tDlzYtX/OEf/uO/+4Xq//Qv/pufy2HsBAhcsB/wg5Yy17Ryj+UMFFVDEJ3x+s0Dm/Qex425v2+o255k7nF7s2O9WpKdKkxDo9QE07axJydWyzXlyaVsak4HiyjxyNICz/cpqwzfn2PbEe2QkUSrd50QaNod52drjrUi7yqy+g2+k+DZPnm2RZYdlrTpdU2fu7SVRkpBV3fYymExe8x8+YzX9y9QuuV8fcVpl5OEFl3VUaWa+XTNLP6Es4uYjz76jHCe8Orha2Jzxnp2wfIqxDAUluWhlIHsNbZjMgw1VdlgGzaW6zGokTdomIowChgGsEwbjcXQN/hhiBcEeI7FNIzxXZtnT6/oVYd6Z5Y5nUoc2xvTgrKjrHJmswQ1QFk0zOdT6B1kp2lk/g57Mz6ZCu2j+zGBK5wjXlDjWBPquifwXS4uFhg4uL6BbXfvdqIaIm9BXfTEE02WKy6fxrS1Td9X1LnAcwWogf3+Bj90aeseGLjfPKAURLbDIApMbeGYEY00sByTyDE5n06YLCY4lkEYRRRHE9cxKZpbiryizAvm7/ba8lPPqckxbM397Y6qPBK5Fk3XoYTP7W5H02nyY4WtBRfrp7SVJNvnzKZzXF8wXayxXJvt5oEkCQnCmLJuMF2w7YjAWsNgkedHPNNlnqyxhUlWlgjTpB/AsgWmU2AaBkK5TJIYwxK4voPnzcjL06j37PsxAW302G6E7hWmgiIr6DVkZU5WFkip6eqWuizQWlC3kn/UDAD8z9aeuoXF/ILtZtSBBqGPbDySaoI9GORZg5TiO/8570xR4h07deSwj8n8XkqiyGa5itHuQDfRGFE/TgCaCse2iZNoRFj1EqEsDExCK0EMmro8Mk8SulbyTfk1ujQQmYdS4nsOJnzHUv0W5q4GjYgDXuz/li/f/AW1zBkUtHXP0At0b9HkNgYutu1gmi7xbMFqdck0idFaImUPumMY1BhwMgWyhSgIGIaOpi5oZYYXCIJIUFQZnm8RxBrLsBiZ9JK+s0D7uKFE02CZIa4b4DgGvp+wmD5hGGoethvkAFGsCB0XU8XUTUcnB1x/CgL8QGCaNtvtA0opLMtGGC1h6GOYLVLl9NICZVPkB7JTOhLpACFsipNmvympqj2ObTOJziiKAtMaofz74z19r/DdGdK0uN7v2GxgufgR773/jLrsqSqDY1VjrK5Yv/eUqb8k8te4scPx1FDWNcKAw+EBhMByLDBLyialKQu2b488vnjK5z/6hOO+JwwiqkojTwrreOKUnbjLSpTcI/UOtGA+ucR1XQZl8ebuGkSIrS1msaCjI56eE7gTGEwiN+FU7jnuS87On6JCQaIn2MKiqWscx8GyQ8qi4ZhW2K4DahQljCzWsbiMkojJ3OOUZViWh2UZfP3VLWnaYFr2/48cMIaxTKLIJopt8lMzTqi0+k5aoJRiGHrmy4CHhz2n4ximGrmrMOKpwMBgsQ4xVzm/S7/CFA5nqwuUUuwOt5xfrtBA7Fv8wW0HwN88m6C0pJYn+krw2ee/x9ffvOaU9kRxzFev/hVZdcN6fcFifoWU4301juasF5do3aPpub65oZOa5eKMOLKxfYVtTLAcSTIJ6Pt+nEo4FbKwWK9WWEIThYL73T3rR89A9MxmIYZr4tsBjhp4fvURP/rs77O/27M53eDZNkFoEwZThDlwn/4/BOEMxzN5/foaA4/V+ZokmvDhB59z/uScX/7yV0DDYh1RNSFDqhnMlunknNUs4vb2jsnZGmUGGEpzd3fDRz/4E5I44v7hCyaTM97/+APaWtLXHVVZUVYtH370KWWdIkzB1aMVsrXwvTPu0xcYiSCcJ1gGJNESw4KHzRbPsbjZP+BYA1VxQA821w+/5s3Nhs8++Zjj4Q1qGJC95nL5hNvjjsViTZ3doo5vef3l7/jVX79kGUUIKyNvV3T4LJYBv/97f8Dq8ozjsUJKn1amXN+8YDZbEk1czh67KLGhb8a96KoqKVOHH372Ka++uSEKZ1xexJi14unFGdevf0dbayZTh6o+MZusKfICsx01wk5kUFYN6/WU4zHDDWJ6s+aYpgztEilNbu8eOB0MhNlyOnQ8vD3SiR13b/eEYcw0mRLHHre3dySTOY088eb6JbtdDkKOkzdtsd0cCVyH477A802KsqbIS/LijqZrWSzPODtbkZ8O/Pjfhx3Vf/a//tc/VyJDGRXH3QktUpTqGdoJrt2TNw0YAWk6cLd9yzb/glOes9nWYJicSnj95hasnF//9Wtm04RT8ZqybDGNgKYVfPSDTxlUzauXW7RRUXcZ99s73FAwnT3n9fWXLM/mFIXC8Vu6RjL0CtkVaKNioEHriPP5ezy9eARDzXr+iLareHz+jE9+OMO1E94eCu72t3iRw8X8fbTcc/t2zzxaQGdg9BZvvt7whz/+B2T5jsnCJktBi5xff/VLHg4b5KBx+ohFsiBvc+qmwDBdTNt41+3sGFSHIyIM06IbBhA9XmgQhStkZ9KrFiUEvZY4tmB1fsGxvMF2a2ZRiG0OaEoG+nEZum7w3BjTsOilRAgoqwzHdIljH6FhMU0wTI3jmSgkjmej0ewedhjW2Pl6eHjg4nJKVQr8wCMMfM5XV7i+we4BcO5oy56f/eTvMbQ+l5cJZS/Ji4Llcg695LjNSYILwsBDGBo/sHi4vcUQLk2vOKZ3OK6PZZtoneJ7PUXhktV7jrsDbVPjeBZuVKL7gY8/+oy2sdC0qF7j+1PK8shqdkVeaNpii9NPMUzJYppQZjVeEIEwmCzOsI0FWVkwmdl4yubx2ZrZ/Izd8YHlIsTGY3k2xXB6gjjkgw8+Yn2WsN/vcFyLMI5AKYa2B9WjVY3nW5iGQRxH9AZI3WM7DpPJHA0MUqOVQrYaNcjR7CMtetkhG41tWmjR4lgeUZjg2y70arSNCcUhO1JVHabhc8qaMczVj93F/5QxTPW/9D2qc8nyAsvyCHwXy3RHCsLJgqanaTXDYPLd7P07kKnGfGehUoOCYbw5W05D16dcx9fUYU/VVAy6oip70uMBoQZQJpbpEvkzOjnQdDVdJzB0iO14NJ2irjXTZoZTBahBfP/y/Lup6+++g9toUvWCVN+TnwZOaYtth5jCoO0G6qqhbQtc0yIJpgjL4HQ64joeoR/RNg2D7NG9xhbRiHWxbTzHIM/GtP50MsP1fIoypyxLDB2iepOhg8SfY4slg7KRco/uOwxb49ohjuVjugItHI47g/RY4QUWke9CrTAND8OzyLIKE58kDEF3eK5P03SU1Q7L7nFdC6VH3qPsJVVzIs9bIn/OJIlBCZbzR2OaX5iYpgbRk0xdpKo5pBsUmrYtKcojoe/x/OpzpuElYWTiGYL61HHKfNJSUWuBiGbc5zWmsyYvWqQoiZMZZdliu4owsjENk36oQfRgSPK8xWbBenHF2eyK2JtSlhVZWiLrijhxkZXGUZJpPKcxJxz2Dwjh0HaKxZlH20Keuhh4PHv2lLP1GfNYk+Ydhjkfi3vZ0yuB6VosJhe49gS8lNrSyH2HpTW+n2DaPp1s2W4KTNMaj+93WtUxoOd4JvHUpKwPKNWjesHXv9sw9BrTEt93XxlXXAwMrh5PWJ1H3F2nCGF8B/AfO68jbnU2i5HdwG6bY9nWOz7suCk7vrZBcG5SfnTHJLlACAWiAeVxfv6YcGohZcvUW/LD63H0/9ePx851PWS0acujJz8kSDyq7kivOjb7N3i+jUBjCJOvvvoNptOxnD3F82Ky/EAyiXh4eMvjZwt6ceL27dtRZ9x7lM0dKMHF2XP2u5xBOiynS7LmgG2auJ6BNEaqRH1sWEbP6YYUO3D5w8//mNV0jjPxqPqCzXEspi3PwrEmWPbAMd0ijABTzPH8dyY7J+Tp5QUvr79mUCvO1xNsS0G/ZL3+gM8//pBTV9B2ip/+4AfMZw9cb78gr1qWyyXZ25R9VvH0yXs4Xs5vX3zFflsyjaZ0tuR8sWS3v8N2Ip48+Qhh+GOwN/bJ8iPr1ZQ01UwCj2VoUe8tpvOY9PQG1RnEM4+hrzFUiB9LDocUBoPFfMn51QRbOWjLoJaaTz77lIftjr7X/OqrF6Q65vLzz/mru5JfvM6x3Ce8//4Ff/qn/xtv7685bDL+8ot/w9/+9UsWC5+i2rJJ95iewnVMjtmXPLp8Shg9RZsOi7nLMXvNoX7FIX+JUD6r8zn39wdMfN57HqC1JvB8mjrDcyMCJ6Azcs4vn3K2+oT0uGO9mOPaU4bBZP9wTxzOiWOP6XyG7UUoFJtdwWRyxmq1wHM8plMPQ1gkyQzT6rl+s6GpJOvLBU0z4PuTsfk1mMwmHk0leXzxhPT0wP6QEfrneEFP0+XkpUZJm8uzMz54/z/4u1+o/umf/Y8/dz0TRMXD3ZFp/ITL9SfsH1qyrCCazsjyA9vDPQ+Htzhez2Enqcqeuu64fbNjkIpe9iRJhGkFbI9HetFSlg2bXUHdPvCwuSYIXba7I02fk6YtpmVhBw23DzdUpUapGs+J2G0KTGJ+9OPPsIaYt292XFz5pIc9JgZ1bfDy+hV+1JF4K+73tzR6yz7rOV8nCOHh2S7H/MA0ESTenMRdMNQW5+tnzFcRx9OWIDjnt7/+hu1+w2zhU9cNTZcxj5fsNilNnxFES27e3pNMXFSvGHqwLAutPDzfpuxOaNXj2CG9FJyKHMMELIUcJK4TckiPZKecSZzQdwPTyYI0K5Gy5my9pGkaLMNFDmNLxnV9Qs/HEA6dzHn27DFJ4rM5viCehLhuTNOeGPox/W6YFq7nohhwfWtki9YZkyTh7dstYewThAZvr/cs5+d8/nuf47kRtif44MPPOB53hJHHZnvEcTSffvwz6qKkrRrK9kBXmwy9w+GUoenY7Hak+QbTLjFwkSisIEL2mii2MULYH1pcNFpJqjpjeebhWTaOa2FaPT/90R/zi7/8G9KyYzYNmM5cZGmTpgdWFwlVkWMMFqdjRj/kPL48J/IM3n/vQ7L6SM+A6QJyoKiOWI6FHDTDYKG0wXa3ITvpcVKgOpTMmM18posEZQxkdc6gwbIMZKPwvBDHDSjygWNao80OOQhsLKLQo++gq3r6rkf1LUM3ELkxlvnt7ptB3dY0TYNpOgg9ArKbfqAdUqqmoKyO/OfxaAL57/Y39EONZdsM0qCsTwhhk2YbZtLD6m26xkQr+9071fgeD6X09zt3ehQSaNExWRhgDjyYKff5nrKsaeuBtm0xtEtVdghGtuV+f2CQgrQ6YGqfZ5cfUPUth7JiUILH1hVG5SE7NRYB37OGvkdUadBaMChJF2Rsi4L0OGAKD8f2QfR0Zc7Qdmhh0rSSRmYIp0LoFqsXNKWkrjOGziA9dHT1wGqxQghJ3WTIDqbJAt+3ybMcRIMwyjHDNXmCZycYwsG0NFFsMptN0PT0QzZqjJseSTdeXyWYz5bYjsQyGkIjYqg1eX5EaYnjuTiOje069INAGBbTiT8WtcA+vWO7ewPaYxJdEAUhthFxtnpMGGrybMv58immCJB9w/PnzzFtg4fD2xHhZA54rsNy8pQy7bh9dYvsDbRhkmcNV08+5IPnH4BqOB43DCrA8dbEyQVZdeKY71GyQ9Un+lqSHjL6vuTy4oL3nn5ILzvOzpacrdf0DTx78j6L9Yw061FDzf54SxC7DGJgX50YhMHdQ47vzgj8CXf3B+K5TZSEXCyfEjsWQ9vgeSGq0tzephimTezahJbLq82e2SzAtMawY57v2VR7dAJB6yDrnqY9UdUNh4PEMGzGYlO/k1iMWy2+53B+EWFgsJpfcTrVvHm5wTQNND1g862VyjAsLMvmydMpcWKz3VR0bf/OggXfWtyUGuUBSmkOh+K71P94hI0RkSVMlpczjCsLx7E4O1uMuKz5E54++Zjb+6+p6oLJ8oIfvjgB8ItzG8PoqfIDpuvSNA3bzZ5BF9h2jGn3dH3K0CW0wz1ZnrK+XNHLsfPdS0GSJDhBixdq9vtbutomSRLK7po8L4jsD3n86DG73d1IrPASposZahBs9hu0abOeXiLzcrzGqid0PYpC8OL6G37xzTccTifyk+Tx1XMc1+ThbksSzem6nqYuUUPLe0+eYRomvuVjdIJkOWOfvkTWkulkAVRstnuqNmW7P+H7HXm6R1g9m0POIn5GkzaE0ZTJxEfVB45pTjhZkbgGjhrIyob8lHF2eUZe5mOY0jG5ve75/Ic/BQ192+C7BqHjMY8jHrY3FE3H5ZMrothj4k0YNNSNieebJP6KP/j9jzEtxdv7e57+4CPUUPPm1VseLR4xiI6bh5TgfMrZkyuarqfqJKbt8eFHT9hnr3CjkM7oyBrJfDrlxz/+iKrMKZoHTN/kVOz48jevyPeSvM754uUXONMNq0cl2n3g7IOC2fQSh8do22OfXyMcmyh6xtnFObf3v6PIUmQpMYOYXsDmYWCzf0F+PFBVe7q2gV7hTWyyYsty/jHCktzcvsR2FEM7MElsmrZCDaNR73TKcOyAh4drTseSx+8tqdsepQyiOMG2fAxzoG0a+l7hWONkt24rgihh8/CGOF6DoTmdrlFdz09+/O8Bnup///N/+vOH+y0T/wmr+fv47oJf/PLfYnkFvj9Dmyn74y0GFr20SI8duzuDtq5JD6P9SGuT/f5I3XQcjjnHbIMwnNGkYx+5uX6DoV300LHb5QRBxOOrp7x8/SVptkP3Hk1dYhhwf7cjjGY4nkPXGuzSjHaokMMBS0xJ4jmbXYruj1zNL+m6nF999Q2u7eH4HfVGkeUntrsjrZKszs9IDx2PLz5h6AYsp+fR5RN+86sb5skjjqd7BmVSFxrdK4qDjZIw9IBhMgBC2yAUshb0raCqK9K0wLBbJpMphoChN0B0BJGFRqGQWJaHN2vRwwC1z+lYE88sapkRxwmGkrRSUlQ5jhuOKtOqppcKP7KRw4BjGtiORdNVIEY0SlkAQ0sctTx7+hyDBb1uWZ4blHWFgUMYjAlTYTUMqkcJQRLM2e/eEAQ+i+WCm5sNTXXC9cH1HLpG4AaK3eaAlA2vX71mdRGxWDzid9+8ZpA9lqXYpRWm52IbJpP5io+efcrmLseLT8RRwvVNQdtpzqdLZCuJJyCMgMBz2O5uubp6n5sXL3nYHdB9yzScYbo+12/vOH+8xg59ylSAqGm6E65tMYlWuLHBIAzyLEXrjngaMV042H6PbHrqQtIPmv2xpKgLtA4ZDMEwGMRhwnK1IK9a9qcaL5iSJEuSZInl2ZzylLw84TgKw3BGsoQc+LYFJAwD2VdoNKalxn064aEZSIucwTAo2hIhLAI3RgwgdMswqHfdwlFV+V/OLgH47/MDZZ1hmTa2Ld5heWq6XrJWU5zeZZAuWtvfJaXHXVGN1gpDmN8ZfwalMG3wAhOlen6zvyWTGtf2acqGoVMwWNiORVn2dF0NWmELC9/yCc0IS5mjJEGPf3et5liVi5TfwtrHkf8YdPl+T/VbjeaUhLtjxqEpmCQhSrf4gUvXelQlTCYuseeQeBEX54/pGkFVHZF9ju/aOMaMaXTGZBKSxNEI3FYGSXiOayco3dJLhWW6LGdLfCeEwcT3JkTTFXKoyE63mJaglQP5aY/htAzKQDYGnhUzDy8J3BCERRicY9seZ4szVrMzbNfDC1yqtiTPavpuQIgWC01dVJRliW3FtI3Csgyuzi/xbJsylwgVoYaBoZM8On/GenWJUpq6UaTHlCJP8d0E17UR2iP2nzJNzpjNJliez3ZTYBkmrayRbYVpdpQyZ5asiYMp2oRWppjCITQvaYsW2zUxDI+z1VNmswuaSiMbwXy6xrIqTqf7sYjroKw29HXJLF4yaMXLu99ix0/jOrkAACAASURBVDHR3Eb1A8+efcDV2Zz8UOA5CxarGQ8PG7QcuFzPqYuctu7pbQ/bTHBMg6K853A6Mgk9vNABGjaHnCicQlgzezJBHA1MNLIfOB4kShmY5rt2pzAwxDiKdx2H2WSO5/goJXj1YsNul40NAW2McLZv1anaIIocnrw3wbYNdtsT+anGtN69NxhlFALxXdiwLMamyPg16lO/3bs+ezJj/pnPi29esJifjZpeYVPXOYf9lmmyZhg0v38zhiD/YgpXj8+R0uNi9j625ZAeb9C9Q5GP1r+H3UtMy6IfBgatqNs9w1Bjuz2BN0XKlt3+jizVTJIllmkjhMGp2FBXHYFv43oDh+MJy1a4rsPb1y+wxZR4dsaz957SNin7ww1VI1EiZz69YNvkpMWW077kJ5/8jB/95H0a44SWmvRwxMRhEq357JOfYFoDuofZNCQyTZqiJa0z9sdr5skKy/awbQelS+rqhOd5TCYO6X7H4dQhlUHfWdxf37Lvtxz2Nbv9a6bzOV1vcra84MXL32IZmvnqnMncRfaKXtQ4fksSLZkkMTe3X/Jwv+P86oJBw3R2wfZYslhfMZsH/PpvviG0PYbBIEkiqnJgtZyx22zZ7O7ZbO9BRJjCxjY0x6bExcFwYg7bI6ga3w2YRhaB5bBYrvn661sms4CmzPFsg0F2aNWz2+Uc0xzXWjGb2fjOFIHm9u2J9z86437zFduHgbo2OO0KLPmYn/70j+gODYEr2B23dHLGpz/6mMPpiOwiLM8grfc4viSJPdq65+MfnHE8ZNzd37BYRMwWlyynT5E6Jc1umITn+K7F7j5nEgUEccDt7TVtY+JHkJdHDBuuHj0ijhbc3L0liizC0MVyespCY4k1yXzgcKzoZIcdGEwnMxbzCV1t4vmSunmJKxx+9rP/7O9+ofpP/4ef/1w2PYG7xrI7Xl+/IopWrM6nbB6OFNWGwF2Q7hVNLRk6QZ2DEJIomJO3FcdTiux85Luxat92DO1A37W8vT8S+lPm0xm26dMULoKQpitJjydM9YhPP/2AY7pnMZsySIUyMqq64y9/8YKiOZAsJG/fHGnrFmVqnDDmsN+ROGv6OmC6bihOLQ83msDR7E+Q7wuoNFXTkR80xanAclpe37zAdi2unlzx+uYNRX4iikP0YHPYVrTdwDBYWDZobeBFMbtt9g723aF0z3TqU9UKx3ZoarBtgRcOeJ7HarEAsyFLSzw7JJw62NrharXm0ZMpVjCwzw/UeUdfjQnCySQe08lNiev4nLKCQdU4jsa3Ljgc9gijxXBMWtnz9maPHmwePwno2xhEC5YgSHoUNXWhiL05hiHwEhOtXCxLwuBhCsF2m7Lb5yhhUslb+r7hydVTYmcy4kZkg+lX1J3k4vyCspLIXuFbDpOJhx0lnPKGNq+JgkuatKZttzRNziqekecWs1nC42WCadj0g4UXeQht8LDdE09CTrsdk+WEcDrBcF12ac5qNcFRCQ9vt8SRh+tP8UOPxfSSi6sr4uWC12+/wegDXLPi7HKO5SYcDhld02OKGMu03n149/ihwraM0dMsDXbHe/K6Ybp+RDSdU/Ut0lBoe6BsMsqyIHBtkJrIsYhdj0o2ZHVO29cIq8ePHdqhwXEjppPp+BCgBZbnYlgG+alASAPHsmi6kXVpaJNJmDD0Bv/FfA3AP8l2DLKklzVDL1C6Q/YVbT3wxL4kNhL6zkJrizGlbDBi/xXo0aWutUILjRrGdL1p9wz03KotndVhYmDS03cNdd2itUvTNQidEAcRngWOYdC1J95cv6aua7QC2ZrMhxinduil/hZ8CbzjUL5DZel3RTNiwDSgoKTSFQM9cRLQdwayslgsY5KJje/5XJ0/wjJdLs4vCUOXsjyhNTh2wAcfPeXq0YrD4QSiJ54ZCLMiTTOKrMI0babJGX1n4BpTZtESbdY0/Yay3lDXmqasif05trlmu9kjW4mlLbqiR3TuuCphWbTDwC5LKWuJH0bEk4jAC/CshL4eiPxgxP8UW3SvsYwYYYIcWsr8RHYo6CoD13YIgoDQjZhEU1Sv2WzuOWYHjqcd00nCp88/QfWKzUPO9ZsD/SB49vwDFqun+K6HawuuLq4InYimqjhkO2rRES0usEUMsgItWE7eJwk+pOx78jZH05MXe/I8Q3cmq/mU0J9wf3tgt99gWj11lWP2Nb4poAffT5gupiznM6KJg2xrTB1y3DxwNj/H803utzc0jWSarAmDmLopadueVlfEvmIVTSiHDG20XFw9Yb4IKYsSZRnEwZxTsaV3e4TlMpPnVE3JKRuQ3RgGFN+eo3d7zr1SxIlNPBGc8iNffnmP0tY7McD3KCshBIYwWF9EXFwGdLJhGBgncOY7JYYw3u2+jugqKUc02He7qXx/lk3DYPV0grgoWc/fQ5gDt2/vMLHQlPRDySSOib2Yj1+kAPxLa/v/UfcmvbZt6ZnWM8as61Xueu9zzq1vRNgOG2cak4ZUCjokEh16tJBASqT8E9EmadBApEjopEBC/ABEgx6YFigL2xEO37jFKXa56jXraoxBY50bNv/A2d2NvaW1x9L85jfe93kYlEJLRexmxHFLWWxJognLs/C0pBE2eV7RdS1RMKPrKyxHMIx7jDb0/YDvpYTBjKfnbzHKRxtQykFKB1v6VHl/+k5Lj7NlQoBAiAAntGm7hjwviaYJVdORLWb4tsN0cc2///f+hH/vj/8DgthH07FMfS6uFjAajoc9i/mcYag5HlfYwkFoi+39MxfnM+6P3+K4HkI77PIDSSrIi0e2jwo7VLTVwOe3P2O73nP1+pbn/Ro7lKwfH7l5fcbF9QVNA47wmC0WfNh8Q133nF++Is4k201DkpxxcXlJ21XYlsVus8Xz53z59ee8//CBVrWUzZppeoFuRwLHYbV54NXNa/Lje7pOE/gZfhQTxi6MhoeXF+bxBfEsBNESRSm/+fW/4JvfPPAP/6N/SFGsedp/IJ7eUFU5nhODbAidhOY4UFVH9oeW27sb+nHPcQevb19x3Gour+bYAl5f/ozi0BO454gxYxF/Rb5p2KyPWDrhkzc/5fxsxtDvqcsRz/Vo+5Gbu9cs5jGblzVBENO3Gm0s/uqbd3z62U+YLeDp/QbbJFxcxEhLUTcVfS/wQudk7usFYRRjOZKqaXHshLIuWM6veFk94zgR0PP+wyO+byPxiZIQZUaE1bPePyOkZD69Ic1iDoctvmfjuy51UfAnf+8/+9s/qN6v//IXSXTOOFSMJme6WIAIuLv8FKkkD8/PLBYXlEWFoEWMNhaG6eSabqhBjgx9RxBBGIZM03PaWuA4A57r07UeSRYxKo3UHvfvPuAENt+//Ste332GbQdoWeE4EZqRN69/l922oSo7ulZz7OTJvlKWHIoj0hXcvHZ5eV+z3eTUfYnuNY3qsUWE6TS2CYiylMAPGRsbo12arudh9wMPjweMkLx798jj4xPGVKg+YByhMQ1uHNObAT/wEOb0xm7ZNkHgUbenYpSwIHBdPMfhOBSkcch+VzD2NTY2g6mIvICJTFB7RRrGdE1HoXL00NP0mnpnYTuK2XlCWw54dkyahMynKciGSRYxm/qMncALBUVZ040Wxb5kuTzHMpKhd7h/eU+cxvhRxObliO4U0+yONNCU7YqqluTF0+nqa4woK4tDcyCeelRVSZ6/MKoex5vy7u0HXn36GZv2FLq+XF7w8PiAtC0mM5c0SnC8FD+IWT8cMF2PH1hYrkEaSY3Dwp/yfrvhs89TPFvQt4pu9JjOYp5XKzrR0vcdaZrQtgo/cOlRKNFwNp3z9u1boolDMJXUTcmrq0/Z1QVIh+d3j+wOa8I05ur6jMMmp2gOlG2HtAMG3YOUZGnC0LXYpkeYmMl0iZMEDIy0XU++L3i5f+Lh/Vvyl/dsNs/oVpH4KUmUcD6fYAU2Wjv0usOS4Ng2atQoLQiClCSIUE1DVdUYpZjEMZ7l0Lc1ji8YdEfTDxilTjgwI6lqxT86P139/9PHd2ht03cDeoS+PeVgPcdwY13g6+RkCOPHQfXjRlWr3242Tw3oU/Pe9QRB4CAxvG9XHMcDQeSx3x0xGMIgox9qptMFy+UNXdtyNrtgNpsyWh3KVqjRZug0XTdyZk3wlY8axcfW9d+cV0852ROWUmA0JGnIF5eX7JojoyOZJnN0f6IROM5I6Lucn50ThiEYzTBUtO0RKV2mkwVJEhH6J0aytDyQhmGssa2EvvFw7RhbOpjRoi4K6nwg8ANsBorjCryOxeQKXTmYXpDaIV3dMQwukbvAJiSbJGhcmnrAsmpcyzAMFkoLJlmM4ziUTcdoQTqNMIOkyxXZNCCaSbSu0UrSFScu9HRxxnKywMGm7VrarkDQ0tQrimoFjs319ZdYRBw3AzfnX/Hm1S1JIvGchDSeYtk1UWDjeAEIF90b8uMzy+ic1JoTBx5e4NP2kkmwZJpm2JYhcSMc4xHHc5p6jw+czy845C9st/dcn58Tx9OTJ96JkfaE5cUrsiyiaUaMjlC9pu0twiigGxXVuMPPHGxho/uT6W4SLmjamn5URFGGVj19W9M2Lr6Q2KlNdZQIpni2z2hKdruawJ8hBo/ZuERpxX5b09QaYZuP/N0ft5oKSwomEx/LrXj7wz2HjcS2XH48dEJYIAwWLrYtWV76SOdkPIv8jMcPa8xHMsDHZe3Hg3pCV2mjTlpXPr7sfSQDSCk4ex0xXO3RneRlf4+hZZLEWP6ICCSuN2Xctfz08ZRR/cuvl1RlgeobMDFNV1KqFVJl+F7EQIPQC9AWlrSYTs+o8hrVSzw3xg9C+n7keDywPzxhWRZROmN/aFCjz/nFlDhJ8LwA3/cpypJdXmCIsKyMrt99zMJWvL75HbJ5yPl5SlO/kMUum3LLdy//J2/f/Tmh71I0e4zQVNU9u9XhVHRUhmye4sqY5STFyB4jBjZ5w9n5NZPk7LRxVdB0Nc1Q4dsZN2efM4qK7WGH7Zyy83EyZXfc4/oFQocEQQDekR/ePxAEKRpF1bVUjSaeuKcXBzOyWRcslhNm8xlld+BXf/GvcYVhsHtmixn5ZsehqlGi5bBf4ToOfpyQ5zlXsxn3755pRws/SvEdD2ErVOPg4fH08sKoHN68uSGKfIwwlHmDVgrbcinzmv16w1iGRF7AMLa4c4uffHmOYy2o9MhQjry6+pIoHPD6FiMmjMrjZnmDKx1cP8J2PLYvG1bbF7pOYgWCwJaUVUNoe0wWKW3Xo7Tm6f4Z6TtUVY7qFde3V4RejNVHVLXGD2G929ObA8+PJQjFqCuE9tDWgLR8Xtbfk0bXGHraPmccJQZNXlZk2YIkjTGiw7YsfN+hrTTb/RO3169JvDuCuOPx+R1lVTObL9E6oRkU/+4f/xuwUf2//u//7RdxfMt8ucQPUvbrijgMKYqKeqyJPIlta2xHsduUnC0WdENLPAlpB0NVH0gnIWp0mM192trFC2AYYL5Y4sUxWsgTTsZyUEqfDtVo01QdTX9Aa8PDhz2z6ZL9Yc3hsGW/3WK0RFLR5A16sJhM5hzLil//+nsC74zzyykGiWoF0ooYLZ80i8jiGW2rqSrwvJhd/sy+fEabkTCYst48UuYVUgc4tk2VN1iWIclinp6fUGogCkJWTwcGbQj8EKVGqkIx9JqqyU9UA9+laQocxyIxMePQIvyRRRoyYCFTmyw1LM8uqPYWXdcQ2D5NUzOfufh+xLGsOPYF/aC4eXXL027L8tJlkSYEQcz19YTtfsugPJJwyuJiie96bPZ7EAPV6CLoOBQrpmnAWfoZYZiSxFPqOqEfeqJMoqXFMd+TlyVeoLE8xXfvvsVyJVmc8PCu4P27H9hXNZtqhW9F2NpCSEloeSR+AnZHGHj81b/8My6XMZ/+dME4SiLX47u/euD61QVn0R1G9UhLMo4+Wkie1zuU6tk+70jDCDrNWCks4bJf9zxvfqBTHUUz0JkWpIcnprgIPDfjm+9+TVMdUb2FFzk0TYWNj2P5aGnBMGCrHt13uJaDK51TEUb1jJ3AiJGhqWiKntj1cfWA51qETszQW4jRQ3YuedWwLw4oraianqppaZuR5WKChSJLlgyDQKmGcWiR2iPJJoRRjBAOu90GISTjoKjb8sQ7lR5NPaKUoutr/vHVKwD++5cPDJ3FqCRdp/CtgKEzdEPDtX1OLFLM6JyuPU/P11MW9cdCycdBVZqTjcf1QAiNGhWP7YZDU1BWNVobHJkghMSxXaRwKYs1rtcwmYb0nc3z6oDrBUynMxACRc6VOycyGUP/sZ39Y/P6x7DqX+Nd0UaTZTGTiU+XdBS6I4p8FsuU5XxCGEqSOMYYRRSHLBeXjLpA0+LYEVI4WE6DET1d31H3O7TIOb+4ZDn5lGm64Pb2iraAp/uc+TTj8uIS3wsI/JjIW5yKKHmL1A5pOse1NU2/wXVTYueO0I0JfIu2qRDGB6Ooyor54pqr6zuCIKVpG4qyIgp8xGiQyuLq8oZsMed580Lb11jCYb9u8eSMeXbJchqjzSkPq5SgqJ7xXRvfDrCNReAkDMNIFLpcXS6JIpsscHGkRJue9WpN3znEk0uMgXQ2xXYsXBFxfT3FSMEwCMq8IlssWF6fs1guiANJ2x5ZzC/IkoQotAiCBCN8JtNzuh6afsRYIIwmDZd4TkyVH0jTJU0Dz8/vWcwuuJimhC4M48Bicc75bInveCgF88kFlh5wIxu0TV03BAuXbBpje5q27AnjlLw4UDQblGnIZjbtUDDmA5NuwtCN7Pc5ZaFOxqr/nzzCIIxgMgmYzxIeP5RUpTlhqYRECBsESGlAaHzX5e7NDKU6hr4n8ANWLzld9yP4/2Pw9cRRO135f6Rl/DjE/vbvSkmQQTMpWZxd4gQ9F688ti8jeVnSmZF637Btu9+qj3/1JsH3DdIKsD2bUXdUB/C9jM2+IsuucZ2R3e5betVjmOJaARDSdgVN1TL2DklqkU4s1qsDs+wzbq4v8UNBkbdMsgsmySWH4xale2zHRRh488ktHx4e8P0EpQd8L2QyCVgdtrhuwLHa87y+p8gLUj+gODxzPKwJ7Jjt7vnElfYywjiiyDdo3TMOhsZSqK7D6mBf7Tlf3rJ6XiHslMuzO55efsN8dkkQunz39hvOL6+JopiiLNmsd/zsd/6Aql7hOhGKgdV6RxyHoG1s2wW7AW0ThhHbVc+bVz/FD08CIDVEfPr5DOh49/07ZstrovCa0MuYnDs8PW0IHI++bXl5Gfijv/v36ZoNo24ZEHj2nKE7Uh41bS/IsohpJAkSGyNcHn5zjxsObLcFURjw7oe3LLJPWMyucC2bdGqz3TV8+XcEZbVlu8qYzlKqTcnN3SXfv3uhwSNvDvSVxZtXNwRBzNB0pGnL/eMHZpfn2HRgenYPJfNZTN+3HAqbsduwXVfcvTmn7Vo+PD7Q71Jen2c8PjbEvoN2jywuIp6e1iAMZSX5gz/8OcfigJAxWo/4oQVCc9wJ4tQn8EP8UFEWhrubBZtVjiUVaeLT1yPN0WBZPbY1oBnoxoLdboslQ6IooGk6bMcgjOSP/85/8rd/UP0//vR//sXTy4Zv3/4lzy9v8T0LoxXP2w04Nn0t6DubOMoojiN+4LE9lhzqHDeK6Lsag48QDnVb0vVwdWth9MnXvd89YkmftuzxPQ/HjmmVT9G2GKfEdTxWLzk//fp32e/3aFOxXe+Jooi+6/Gc4OPD0qduNE0LYy+wTMjD+ycEHelizvO24HgsqZs9T6stVdPTNcePzefhFNoPQopDh+o1vuOj9YgtbbQ55c6qsqLIc87PzijygiLvSJKEcTBo1WNMj1INnm/RDRojFaJ38G2J5TlEbkRVNlzfXVDst5Si4yqe4lgWlqi4vb7h4X4NTstkmlIOPXXV4pHixIpjU9OPGukJhOMTxiGeF9M0FT01ahwYhGT9tKdVhqo+ItyQs4XHKCy80CLzzrj75JLdoSUIAgK/xrEThHQxOiGJQ8ahYxgU/TASBReowbDd7Qgij6bvUHbJNPPR44Dl9MyXEW4w4VDnRIlkls04fx1R2BviMMEa1lgW/Oz3fkIyW+DHPk070jcKYduUdU1d1zTFiWjQVB1V2ZNMpuAFVG2HUD59owgDDyNGiqLEYDP0Pf0w4FgBju0hLM1+d/LJL+czeqFYr18QGObzK7oWunZAmYGurxkQtHlFbHn4XsAoYeRkB8rSEwZl0IbZJCGNM5S2CWIXxUB1OGK70DUNZrCQMiBLp2BAnFaZhKGLMgNNW3LYlXi2xzD2mNHDddxTFk+6jFpj0PzjyzsA/unDe1TrMLQCS3hoqZB2hzA2r9wLAhOilYeQ1m+HRCklxiiM1h+jAAZlRpASaWuMUXSyZyXXtKbDwiLLMpRpUSLHdzNif45gZBg66vZkAzNWT5xJHPukMm37ipvghkQtqevxI3/yb7T9/wZL9YSo0qRpwnQWUbhHRKLxfYvpNOV8mZBEMYNSpDPF4tyl7fqT590esWy4OLsly2Lq/pm6PsUqel3h2D6OtBiHDseKuTy/I52MBMHIdJpijCJOPaI4ZugbppMEW3h0oyBLZkhsNJLJdMpiOSNNp1RtS6v2CFfTjzVlnbPZHhhHwahGLDmQhhFj0zMODZbrUFcV99+9Y/d8xLQhvk4JpAAJyXRKHE4om5pkKpktY8rCcMw76r4ijEOwbEwPsyjDkSNSeLysc/7iX/0Zm+fj6Ts0jiyjhDe3r5iEM8I0Ynl1Yju/e/9LPOZk0yV3l1fMvAjFiOe6DNXANLvjbH6H5/kI65TtPx53yGCkyAuW2QW3l+e8rN9TNS9Ip6HrOy7Pznj1+gpjaqQ5meous2siArAlx7ZiknpEtsX84pokPqdpHlhtfkM/DHTGpqpHUB5BECAsTd/X1N0TZV3jjgFx7TOqht22oqkl0vpxEw9ScgL1G8iyiPki4d0PJ4OZbTv8iJFC6pM61UiyicvizGZQA67r0DY1da3Ijx22fYrDYH6MAZy2pgbzUTtsnb678FE7LMgufYrJGm1rWpXTVc/oJsIIh3x3ZGgNbjrnj55O/OM/TezT77IDur7DsSziaIrnhBjRMI4aYwZ8z0PaDnF6SRJ6pPEMz4vph46728+oC0nfwWK5YJJOuX//TNc0TKcZ282avjNcXlzxsvqAKy9IYv/0nLIiirxnGAayNKEodwyDhRkt3n34JW7oMUkusExM3w60pcfb+2/ZHAukPCNOXO7ffUsWLJlNU6QVghUSWhG2jLHTAGl8xqpgGCRXZ5cnW5s/RdiaY/mO77//wNgnZDOYzTL2+wNFteLsbEYUpQghsKRN220JApckneA6M4axoS5Hkkzzq1/+JYGXsNr9hsS/YjpPMYNgeunx/PJAlmQUTc5slrGYnCGskrqGwPeZpDOSScB2OxAGKYGjGbweY4+MzQbXOj/F1XrFMB6YZEt8L6IsjkySc+7vP3Bzc8HrNxc8PDyQ1wrLVRweLXbrgqtXE+pKIWXEw+MviaKIaZKilM0kjVl9+EBf2bz55Ix8fWDsPW7OAvTgMs3OEHHLh3f37I+KT7+44bh54ddPP+BFgnFfYyUBP/mjn7N5eOHu1RIrUhRFzTiGDL1BOnAs9hR5R9WtsZyO/NiynF/z4f6R4CORJ4lnp/5KWfP1F3+XJPH5l//vN3z56b+N5RbkxZ4odelajZSa2D/nmJd8+vktVTmwWJzwl3/48//4b/+g+s/+1//qF03fcTgUlNWOV28+4dvvPhAmEd9998zD6pHDvmC129ENHXmdU/cdg4BjVeA5Np4boKio65YgsLi7uWA6yXh+eiEIbKp6oG0spIFDfiQvRyzb4NgO+02ORYztDBh6MBbbdUNZHYn8mFbZp8KJbdPUDUPXk8YZu11OVfbkRcs+7zkcDwx9QdtqRhXi+RFoQ286hJTYtkvX9uhRM0lnVEXDJEmRtsGyTmB/Yxz6biSMA6qqwmChlKZvDEPbMg41WvWkyYJ+sGj7kkhaHIeSOHG4uboi35U4lkLJiti2cXWCEwzEqWG3a3GDED+UBO4MrWx6ChazhE4VTKczHKbkxZHjUWK5HYOWNF1N3Xak2YzpYsGxODCfzxHGxfJAtQMmkFjelHy/YdAWGsMiuWC/y0nTKduXBtd20WbAcaHIc4p9z6gUdVVTdCXSGlG9zW67xgw98dShrRzWeUm4tDnsH3CN5otPfo9373PyvGAZLejqnrOvNdOLCf/iz/+Mvt1QDw1tcyDPa8qqYrs/IGwX23VQGHol2Rx3lNUBW8ZIPMqmw7JDmrZBMJxc9n3LMIyo0WGSTdiuN9SNoao3WELQ95JjXdFoRVUPWLZHUecIowiFg29rUtdF2B5hGFA0G/KxxbIiXM87lT2Gji8+uTvhX0KHwdTUnUIow2wSg5ao/oTSiTwPGwupTyF8ZUZ2u5MT3RiN43o07UAUu6RphlKAVAgpcFyLf7Q4lan+h5ctriPxXYmUCm0gSlwcx+V1sCAUCUq7J5QOP15V2qfSjho//lSftkVqxPMMQWDz/zR/zrN6QUob17bRKHoNWkts6fKHv//7zGchVd3gBgGTWYbtakY94NoeZ4sFSrskJiTQLm05ojS/pQwg/jpf+ONaVRuN63rEsctav6CCnsUyIfQDEGB7I2FqiFIomw2DqgljQZT6RInF8ZAzDA1BrJCWS9uoE56u65ACtO5pu4Jx6On6Ate3GXRNUR2RjoVta2I/xrcjRtXRjkcmM58smmM5PtlZgLAGmqZheTbh/GqC0RJQ+N5I15Zsdiv2+zVtXdBWLU1Vs9+tWW/2WDhk6YwwfIXQEW7g8MVXX/H5Tz9DuBZ13Z1UnkYQeUuS+BLputRtR10oppM5N3d3BI5LuS2RY8b13SWLRcaXn3zF15/d8ub6kgTIN49gehw6mrJBSofXtzfM0jm2ahi7iv02x3SGWToHFEPTEloW3mXScgAAIABJREFUXXmAqkDVOXHsY5SmrWsS2+fx/SNN3yBdyQ8/vEf3PufzBX274bjfE4Upg1R4XogQHofdC1FgMc8W6Lzh/eM3fP/0nmZoGdUpZ2dZDq4MsT2DsHr6oaXtKoJIcNgpEmtC1vhoPVAUPU0tsayPXSohTnxUc8qh+oFAOiMPH2q0sT5uUz8C/AVIYWFLi8kMkBV9J3Adi2HokMJn81Ii7VOK+3TJLz9mqfWJA2zMR4TVX2tULcvi05/dcf5vLRCmZ/O8JhLnpOmM+6cf2O3XfPrZT0h8n5+9O2VU/3dRkk2WNK1kMgmIA5dd3iLUQOA5WLZHp1rU6HF99QW+5/Ddd9+CsWjamqurCzarhuurO+LURo02lmVTVxWz6ZyHhxdmsyVh7DD2mv3uhfkiY7YIGQeN41rUzZEvv/oc37fpO0XgSPJDyXwZUDcN+0OJUhZGWsTBDcIb6Rq4WLzm5nJB6ExIo5TlYsLq5QOe63EscoSf4rs24WiThoYg9fjw8i2OFZAmMU1TI4SLsAxxNOHsIuP++a+4mL/Bc5a4tk/fBLh2TBqmxGHG+7fv2GwbgjDAdT0mk4jjYUscpfSdzfWrlOfnNatNQZZO0SiKasskvaAb93z7zZ/TVZq/9yd/wvbwiDARYeJyLAq0UKz37wmCiEKv+eb7f8Xt7WenF3BX0LUt2fQzwsDFDWC3PzKbn5MmGVHscf/4gBdwil6saoqNw2IxY7X9nsenb7lcfk2U9Axjg2MWpHOb1WZPOxzQHqj+Ld76QOIscRcugw7oiheaEV6/vub6VvD92xUOGXEcEkU+N8uv8YRiaGpQW371zffUjYvj2jR9gRdE2F7Hdr9jtzuSTjLOlmd0reTp6Ym712cMqmYcFe8+/MCrTyYc9xXdWPO4fkteP2KJc37vD77kV9/8Gf3Ys0zP2a0KLOmhrTV5sSdJI6r6QNOM/PEf/huwUf1v/qf/+hf391vWzwcsy2N3qNnkB/LyyPPjC+2gySYZTT3QdCVKwUCLGvXJ2BLGVHWF75z++TfXCUNXEQQ9u+eBIFvQqQrPkwglkcZFak3kS+SgcbwEgO1+jRosyjpHGJ+66glii7odGYYRgUKYHm062uGEnJldLOkNFPkKV9gY6WB7Aa7wKA4lyi0wo2DoR1zXpe8Uk0mELW26esQmpB9bPN/Bch2UhmyS0g8dtuUSRjGBL6iLljjyTtYipU9GnMBHWj1x7NA3J1TXfrMncsB1bC7vLplPZniuhY4f2OUlWmhef33DeXaLS8vQ5TQ4HPstSeCQuDGOr3h52pB6Acdqx+ZY0ytN4Aa0o6E45lTdkcV0RlNYlL1CDz2dNDw95Uwimw+PDxzLkrrJOVQNaRqgxx5lFIeyxI1cmrpB97A/tiSxxX7bEgcTAueCut4g+hOGq9Ule3XkaXXg6iwhsUPasuXlaUfsOUyTW7pess5LXDVBCEnXVdihZqgbXp53SNsib2qMZZ0eI1Kg9Yll2eua2I8Q2qJpTxQErTW+6zMOA3oQaD0SBhHCuByPO6qmou0LQi+kbxSHXYljx2A8uralqXMWkwQfi8vYYZe3FFrR9gVCaVzbR48aMwpM8NHuNBh6ZehUgy9iTO0hNeB4GNtgrJF4ktCrgc1uhW179N3pWlGpkxKy7TqGoSMMXZI0oO1KjOgQtgF8RtXzXy5Pg+o/P+5IUp8wsnEsje/aBL7Lbt9y7S5JnCl6BKP5iN45lZhGNZxKVEZjtAElEZYmm9t4vs0P9SPakSdsmO7BgqZtcBwbx2358O47qvqFKIVubDD0hJFNEmXcXX1BGk0ZR83j+D1uL6AI0Mo6bXPht5gq/VHbipEfB2bBYpEyTCucLEFais32hUN+RImebHKG64bUXU2WnBFHEf2Q0zYNfa9QSqOH0yAh5SmPWOxLJBGffPL7XF5eMqicfvwI3xdg2ZKeA33fILTNoDo0BtuJEMImCUP6oebD43vGThAFMWka41ohcvQRg8CMHX1fYVmKSRbiSpc4TAiCBNsOSF0faxxRjsflzVfMpnN6FNIPEWZA0mJJC9fy6OuGrj0ym05xbY+xq5E07I8vHHYvuJZi9Vzwy3/9FsnI2fmEKIopX3Yc1ieEzmb3jv1uw9MP76g3e7p1RXPs6TrNLE1hKKnbDuU47LdPuH1D5DigBlQ1wCBYJClmGKkONa+vX4M0qG5DFkVMnXMupgukV7Mvn+g6xVe3X3M+mbHePrMtSvq2IbNPMgUZJgQCxrqnGDucQOD7GRcXn1LmFcd9zs3tK/q+oigOjCqn6wscsWRiZ/i5fzLRtT2H7YBtOyc4/48b+o/X9J5vwAysVwO2435s7/840FoIIfE9m5vbANsZ8L2IJMlOn/MIL8/FbwdSozndRKBP1/+WfbL+/Xh8P75n2bbD7WdnDLOOl/sjiR1StYJmyLHQZNMIP/QZB/i9+1NG9fgPMoS7Q4medGKo8g7fW3BxdkvXaZLJksk8Ybdb07eCwyHHsgYuLhe07RHLcvGcmE8+PRV7jBF0Q8NidonRNnVd89mnn5yY2q3BdzXIkTSZY7tQ1XsO+5xJtmC7e0YrCD2PqqqRls9uu6GqG6aLmNXLmiQM0RLqcuCLT7/EyBY3DPHTjJ6S1WaDY3vUQ8MoDd7Y4PWa81dXrI8Vq+2R1J1iWS6TyZzDoeXy6gIvdMmLgr5J+OTuhvc/7Bn6hqFveXX3CtcduH934NXrS/bHZ4Twub19TdNuMdpwdbngef2O7757D0ISphFNpejHkiyL+fDhPUl4zWevX/O8+hbFySi3XTfsqx2bbcFk6tCNFUU1Elk+x/o3hIuKzYeW3/3qDUXTUnclq+0DVX3k7PwGTcHz6pnpfI7npgjbhrHi6f6RVjwTBD7ueMZsmrDd7NDGZaw1QZYhxIZ5GrHePuIHFzw+v3Dz1TW/81OH+vk3nF3c8tVPIxYULPWKKFrTrjZ4WYad2FBBX4NjR3iOoVGGvOqZX0iGUTEOI4djjh9qPCclySQWCeiYsjyA6Lk4v8NxDYdti+M1uG5Avj+yO+xRyuCHHWHU8+u//IbL5U/57NNLdNsx9JJ0kqAoaaqIdthjOYY8r/n7f/yf/u0fVP/J//hPftHkilEVWI7Nw/OKQbe0jTldj5sWqS3KY0scexTlgCDA9CGeFRFEE7QeiMKE+SymqQay1GMceizpE0cReVExzRI8y8eSmji1MFoyNAPStjjuc2w7IAgyyqJk1AMCi0E1aCUZ+g7P83A872QqcTyc2MLYHqotCWMXx5aEvmbUI34sCYOT4Qo9ECcZVdkSBhGOYxgbQdv0nJ/PT2F9C+qhx3ZOsP7ADxlHgeu5xGmMsBSeZ/A8jyDwOTtLcWxB23RUquAmXYDy6DvJbGbxyVe3uH7CuhjwdM3oVGgT4boSbxYgx4ymWSE9yeP+Gd+BUM5ZLA1qkGAko93QDYbNtsFzfQLHoaxa2nKkG0fG5iRFyLsKMUY4jkNVbEjcc/KmxA0kT/v3dLTsdx1qGCmbhrw7ULWaqlZMJhnNIFnEC6q9IUlSBl1xLI78zhe/C4PDercmTQPe/Xrg4jpiaEssDFVh0FbNaBSWZeFaEeN+YLNegRioa8HY2NiuS9u29ONI3fXYysYGymPNWTahqnviYEJT1VRtQTu0eK7DfDKlrQt8K8YykKYZRhmMKdAYvDAj8j1Wx5y+1YheksUTzqczbqdTAiMww0gxGu43KyzLoRxGBjkQWRIpBV1bohXUlWGSTDjst3TNiO8HGKtD6QYhLYryeDLbYFOVHXVdkcQJ4wijajF6AKnQCGzHQpsBNUi0ViflqtAIIXB9wX8xuQTgfxkLRt0SBhZCuIRRwqg1TVvz2r/A1zHauCcMlRCIj+UTNfYfrzdP1+/DqPEiiySzMVrTTBS1HOi6Hs/1GD9qeW0Zok1FGPo0jUYpD98LiSILP4iYT66JXJfV8yNFnROEEUvOGQ424/gRT/VjMPVji0vAR3+7QBuB62kGv0b5LkVVsD+uqZqGMEqYTs+YTq/w3fR0BcvJNw2Ci4tLomCCUj3aVLT9Ds+zmE/OWCyuGNTAavMOIQyL+RVBaGN7LZ7v0fY1thS4VoTjuGTZDcpodvkjSZyCNeAEEEYhYRSDBR8e3qLGET0ajtsOlE3oeqhe09QtUgqkJRhVjytsri4WBBNDnj8jZIPnndIYahjZH484rsf5+ZSyWfHw/Mhul2MZRWjD4fAMCFSl2L4UOGHK7Zs58zRgf1hTtw0ekl3xge1hxf39mqZXhIFLkkik71L0HT98+573P6xZJOd88eYGY9VsHp7ZPRwIkxlJOkUbsLRmUCO2l3F2fosWA2O94+5qQpRGFHnF5eWUOInxiLiaXnA5u+TwvKbuToW87lDguC73q3tMH/Lm+iesdyseDgd22xX7/QoLgeMF7MsNYZDieS7bzZamKTBK49kZsRUS9wGhG9F3mtWqRsgTJkpIyUfOGVJAHIfYjstu22A5p/MhP54tIU+Z7DTxePXqjL4diOOY2WxOU9cMg2azLk9Eh48lKa1/PJ8CS0qUVh8RV6e8qhQWUkiSM4dt9Ja6rsnrLf2g6HrF7fKG0ESgfNLFjC9/swLgTxdPGGvNJ1/6+FFLsfdpqxGtPVrdYHkO49jhSoPr+YRJTBQErJ4b0tTHdmxsx6Vta/bbI9OFR5omFMcCjOGTTz7DyJb9riBLQnzXIIWLbU0o8hatJVW1pmt67q5/Slm3CGPxsvuBtqs4v0wQOiBLfYptzievMl7dxby56UnsZyK3psrveXlsuH+5p1U9pnWp6wYc+PnXP+PlZU3jSDabI6oZ2R9zPrxtmC0muFHF08Mz+aHn/Owczw7pm5xuaJjOMxbLCW+/f4saLJKpxyj2tE2L5wUY0fP0+IGvP/8J49BxrF6wbIe6LYjjO87PMp5fPtDULRdndyg1cLv8FMHIL3/1HbPJjKurJferH6gLye3dJcdDgx4tjqsDgT2j7Qt+7yf/DtW+5sP3NcHFeza7gsXsipeXZwQRjmfx9LDFj0fevX3GaEXsWcwWtwjjcn15wfQsoT4qLpZTZumUbfuCNUpcZaE6QWq7WNi03gVq/I6Zfw/be/aPLfH0S/rVC/sPT6zKe24yQ92mZOdvWB83KKvm7bvviNMLrn92xurxB55X35JlS6azmN3hO447QdceWM7OcT2LUfX4vkV+qFmtn2j7PVJKbDtCjUc8N2YYRnw3pBvewxBye/kZx/2Gw3ZkuvD4zfd/geV47A/7k+nPuWKWXfKHP/8P//YPqv/sn/+3v3AdjzCx8XwXcNBaopRN0wiy1CfPW8I4xvJsqr5CCcOoRjzPQjoGiU3d1Aht8fi4w/EGytJFjQnVrseWDo4Fvitompbn5y2OmxEEIeuXFa6TIaVh1C37XYsddIy6Y5qdnxqfWEjPRlmCXo2kyQW2x6nN2jT0VATBFD3I0/Yx8jA10LUEcUjTtEwnEwQORg3YVkQQ+SjdYNkS4UiaceRYFEhhsC0P2/bYHVZYTkLd1IzmdA0npGBULVGU0HeauhoJMsEndxOqtsNNIqJ4xq/f/oqq2uGMA2VrcfP6FWYY+fbpkb4rsfyap11HW0vOklsce8m79yu264HdUXFsd3huzNkipS8MXQlilJTlyXXftTVoRT+0NEWL5dm4IjghWZSN0A71UBMFS9QgOW57FDtcz8b3YrpW0XQ10+mU1I/Y7lecnc9Yr59BD/zsJ+esVjVvbj3+4OdXfPHVgqrMaQt49eoSx8nYHg789Hcv8GOLQQ+4viF0J9Bb9GPDIC3SdMpundMNA4ITaceSFlVzAoAPjSGwfWCg6HOE42IGgVQDxtR4Vsh8MsO2HMIwZBirU5M5TJEI/M5mHiTcnM04WwRo0VK3Hc/7nHebLUc10o8G3fX0eqQfNXocaeuScVB0vaHTCscGx+qx0OT7A44nMYNENR2xF56GYW3jWh5DO6CHgSyNGcYa6Qhs2yGIPMIgPkH6hSYMpiSTiLavCfwTJ/c/z06t//9u8z11o5HaoR9aDuUeI+DsLOVT/wanywDrtBk6PX+RglP+VeuPmyONwBD6gix2caTNxtqjwhHL0wShDbag61p8N8Z3XdJ0wqBG9AhqAKEj0nhOV7Xs13uyJEHahrOLCUmTUjyODONf6yl/zKmeNKpw8pcK9Ai2a5jbKdt6zV7l2K5D4LtMswVB4GEJTVWVxIlHFEf07UASTgndKaGXEEYOnhezmF/guiGvbn/GdJaRlz+gTE6SJGBsxnEkCCRKDyg1Mk1nhF5E3VUYoegHTdXVOJ5k6AVaS7QeGJXFoARN16GVjeckROGEaTKjzlu6Gq6ur7A8wbHcUjd7hCNxJjbS7pHSxQsisshjMU0RnoUWNcV+jekUWZRglINSHo4bkKYTDqsd5X7PZDnHtlNAEMcahg7bdehMT9vuSfwYg8NiPuXrzz/n5ovPGSyXyDuVKDebksSGwBXYScj86o7LqzuE6+KGAckkJPYMfbvl7bvvyXuL809+xmS+JHFSdG2R78E1Dr7UHA8NkTchiyOk69EMFp2Q7HdH8n1OJwaGfkTkDc/r93y/fYfwIywnBjlQlTVi8HEDyb74niDwSOMJi+klFh6qU9x99gnxPEE9j/x/1L1Jj2xbmqb1rLV231nr5u3p7rltdBkZWUlFQoFUTBgwYMScCVLBrwipBkgIIVESqkKiEFJNACHElAlNSqkEiSQrmxvNjdudc/x4a9223e+99loMzE8E4hdk+cBlcne5TDKZrW+93/s+735fke/6pxT/B+vIU3kE0LeGquwZ7QdmqsKK40ApkAhrcZyBwB+JowRtR/p+pK01fuDwcLdnGMzT9sE+nRtPyq2QxwHVmuOQKhXWWFzX5dWPLhnOCnbblufPPyIOBEYMYB3OFwuE7Bmbli/eFQD8+qMX2GHG+hYS7yO2DxqtaxaLU3A1g5FYUVPuG2azY/vTLLug1W8oigPT9DV1VdG0Off3OX0rCCOXoT+AtTRVxerslKoceXf9NUpV2HFkt+0I05Gbm28YesuLq48xYiDfd+i+PJaTOCdM0xkwoJTh8Njz+P2Ob/5yy8PDgIoTqjGmHQfKeoujRqpDznJ5QhT7NE2JcCMK3VCPPb3ZInXB3XbL6mxONlUUe8vrl19QlG+wo2C5iGgOEYvVgq7vmE5nVFXJ2zc5L149Y7cvUdISRB5t7eA7Ec8urvDCCtNPkHLCySLl/cNb7CDxfdjne4QQZLMJLy5O+f6b7zg/f8Hd7Q0OMYMsmSUXMB54+/63VIeCJPOYRCnvvntkMJa3bzZ89Mmc2/wrumLFcjXjfvMNfTNSVXs8OcPzLbpzMNQ8vr/HCXxWZ6c0VYtRHrfX15xMZ5wuYr7/mzd8fP4JZf1AOD1n9eIZLz+eoquKb24GqvEZ6vSSXZVDb7l99zd05gwZfM7N7W+RDwU3D28Z/UsWqxnaFjzeXzPWHn3XMIj3KBUy6oC66kC7LKdLmvqasj3QVC1Vs6GqWyaTmPX+azabnCASYCLCVLI/HDhfvWa37rHDKR9/tuTrX+95/ekVrb3DOiNtHZDNXO5vdpzMrnh+ueCzT/7tv/uD6v/0P/+3v2i6AitgMANV2cGomMwiXD+kKEuSSYwfOQgnpegKjGMwdmAYXRzj0/c9fTcwDBZrHaqmZL+vaVtL6EUIZTkUI9uHA0k0oR8sxmjsIBnGY2dz2zVIKenHmsksQNgY13cwQnOoNVpomjEnSUOUjRjahq5qGGrNyXIGo6RsK2QYY9uOs8kJdanJJgtGU6KUZretkHIkiSKmsxilfDb7W5zAp+0NSXYE/CZRxtC3CNmS10eFQOsOx1FUdYnnC5q2ZDQVjudRND1F3VCXDaMr6JWDqUsSL2G/q2lHl1H0OCLizZuG7f09z1+mbDaCro0pxw3fv/mapupo7YiRDbKP0IMgCX02txVmNEwSH+NYAjcG6SIsBNJjkoVIH3xPMNiBsn3kZDInSaZs1lt83yVODEI7RMGEodFYqwkjj2kW0rfwsN1yehXTFCOff3LOT362YFAdP/jDjIdtgQ03nL8IWJ6dEWQTHor3tHrPu+t7vvrVLU3ZYYTP7GJG1e/ZbRo8PyHfH45MXfMEh9cOVd3gxhkq8tG2JktihmqgLmtCT+E7Dk2nGbD4KJ5dnh75ttqQ5xVNP2LUgOmhKXI609DZlm3+wM37W94/bGj6EddRKGnwAsmIQXYGt7doKwj9jNBLAEHoOTjGo2oalH8cHrsOjKfxnJBeW7SwDBaqrsOoEeV7uEFwLEFQLkJaun5g0D2D7nG8AKGgKCsQw9FLJ3+vqP7T9Vv0oOh0heMq5pMlaeQzDVKmfYrqI8QTbgchkPLYZz4+DarW2GMDj4UglgSxwgqokgoZjwShRnodVhqyOCP0Paw5rpAPhSaNJmTJjL6BPC+4ub7F9IK2aekHeNzeEFY+5uDRdwYpn+iXHxhV9gPs/9hcZSz4vkMUOzyYe+6bO1wvZrVYcb66JPRTXNcFIdEDlIeGoRtZZKdM04xRN0d0zegyyVZIJG1lmaTnGA11VSNEh+cLhBwJgwRXeEeYvpeBcejHAZyGtj9wqFq6fiBLAprDhmJXgwnoh5YkipmkMV1zIAxclssZZyfnTLI5yvNRHkhlmGQpZmypqgGtXYR1ePv9O95/f02gFENdIHtLIA1jmaN6mGXxsfbYGRhNT+xlmMGwOxx4dn7Cq2en+GFENg1RsiFNYzo69vtbMB1CWNIwYnF6ShT7uI7LZH7Bs5evuHp+wrOPzxFOgOwlNB3OODJPA4xR3N5e09Qj0snwAp9xsEjr4sgR3VToHmIflvOIMHXxXAc/WnJdH6i0pd3nuNLj5GSO62omyZIgnLBuNqg04PXlK8JgSTZ5yaa453C4Rbgd0vhgPFzH59nFC8ygibyYi5MfYIsYJ3dBwO3dHiHc36PW7NFTKoRiNAZrHIRwQaini5l9WvtbpBS8eL7i4uKEUbskSUpR7hiNJggD2mo8NlApddw4PFlleCqkQAisFUdahuWp5U2wOA/hNEcql2V0ggSc0FL3Pet6S1W1XP/FgX/wtE34i7PnrE5W3F4/0FUekR8TZgGff/wzrGjY7juSLOXx/pFXLy95/+b9UelWluKgWW/eM5qBJJ6RpJJhGHCEQ1ndMInPgIz1eks7rimKA+Pg4QiF67vAeEzT2xqL5O7hPdlkwjQJsdJBKQ+Jh+ONrE4umM8yosDjf/nT/4P3a8u+NvhhwruvS+aTE5zQYKRL3ViybI7raLZ5iesJNo9bjDoylK9evUAKQdcaGBMOm5q+27K5LxGji6Hg4vI56/Weh7tjUYMXtpRNS9XuQUcsF2d0fUFd5YSBpTqUrDclRfuevq3ArejrgWdXH4MYEcrSDluGRjO2lmyagh2YTEO+efcrsiQg80/Zbbf80Z/8FEcMrHePXL06J818/OiUj358wm/++p7p9JT7x+8IvCla50R+zJ/8yb/F2zc7oiAgiiyr6ae8z99hjaJvtzw8PPL5D+b0ZuTucceLqwvSLMRzPQ67W7aNZdcLAuMwX4YUjyl+fIUgQzNDS8lffXdP60mi+QueffwZvido9MD99oaT+TPqdk1bPYLqSZMFNzc7hkHjeQIlR9789sDV5YK/+ptfAjCZBxy2sDq54u33D1xeXFEUJX0fsmu+Rzkeu60knYZMpymd7omzBMNAnE24vn5DEl4QRQ51IfjRDz5h6Gp++IN/5+/+oPpf/Jf/+Bd9a9GmxqKwuPR9jbIuvrAYIemHirLs0P2AZ33E4BHIGcJaRGtpywJXSMb2GOxwlMJ1XOpyoK9rXM/QNccKwWQyYRgM222PCHv6wYKj0XrEc8GaEWxIGPm4QUZvOkZb4HkKV4SM3YAxW/phRI8OSMP5+YR9vsPzFfM05HDIyaYxjkzpxqNnrCg0Z5cnXJ6dHbuBzY75YsEw9sxOzpG+g+4bhAEx1mSJJAkSHtc1p9kZnivoRcUooDUFMtRIpUiWMcmsY+YtMbhkk5BCDxw2Wxw7cnqZECY+373bUHaC/bog33dESUye+2zyLVVVsIhnZOGcQQ4oV9B3iqItUEbiOAGegrZrMY6DEQoxWLKpj+e67MoeI0qer1zQMa6X8uJsyuY+59PPP8aJQn7z9rckJkSlAfW+xIQ1y8sJ67cH3FhR1iV91+F5kmw248tf5zxs9tzeNjxuN1y+8hnGHZUu2A033B+uiSLFKnnObJIyX6QIRra7d+QHjRsEVG1LIB0Eht22RjEBUaNrBdqhM3ti75gCz+sa87Tqs0+Q+iRImfgeTZvT9hXFvkA4LrWtKcqKLFlye7inMBWdEGghQISMvcZzQwZt6BF4vo/ExfczrHDohw4v9lGBix9alHXphoGiq0EZ4tilb6AfNEkWUtcDbmAQKKR1CQMAQVkVdFqTVz2j7EH2jBiazjLYFtwRBQReiHQUnufxHyQnAPx37R5PuHhSYkdDFKUYY/gJr5mLBX3vYoU8sh8/MCAt6KHDmPF4AH8YYtWAchRKCQ5xRRcULBZTXOXiCZfVKsPKBseLAHGsAh4FvRGgJF3b03cj68c9Dw+bY3DKBly4z7ClQ133/K6g3R6/WTs+paePg8RoBjzHI80idqJEpR7TLCOKXNq+QnngeS5KCDzh4hgJY4fRA6MBrMFhSuhMaPZr6jyn2BTUVX0MHzo+aezi+S75vqY5dERKcTI/wXFn5HnFfBJzdX7BaAVajwSeR5quSLwpUg/09BjTEisHoSSd1Yz6SCMRrqTod0fu4thyc/cG5frE0Zx+0FRNxW77ju32mrqpscPAIkuYJzG2d5hEJ4S+y6Z4PAYTtcUxmslJyuXzZySuRNE8FZ1sCV1JddjweH9N3RY0Y8s8iJG9Zr/eoexAr3t2d/dsbq55eHyPdAKCwIdi5pPdAAAgAElEQVS6JL+/oe9a5Cho6pIvf/MbvvzL33JoNScnc04WC6anGR4Fos3x/Z5uzOkYcPyYutLk25LNZs2bb/+GX3/5Ff0Q4wUj9c23CEfysM1BwWQ6RZcj+21LKw1hnDLLPNJpwEfPX7Ocn7Pb1jR5T1Fr1NByHr/gUI7UmzuC2iffH3h4rLBSIZ78ovZpgDxG8MWTjUQeHwsLT95UsPiey+uPrgjDY+JZCIPrBEg1UtUVurOsHyuUwxOV4+h/Paqyx4ue1kcv+QdV13EUV5/MsRc5u02Ln2RUbYcioixvqZsdTmgZleJfPwqqfPX5BIaCTpcUtWWazdkf7tjla+LIJ1QO0/Cc+/s3PDxucANwAsNmvcVRE/RQkudrfDcDBqQcWC4n9L3BD32kUhhTYY3FjC6uf2yQmyQZXbtBd4pBj5R1Q5yE3N48MlpxLKyIPIaxpe8tdrCEfsih7Ll4/YLVM8Gzlwvev33gu+/e8fkXP+T6+gFroSg7kniFG0BdDfQtBKHg/n2Bco52kb7WXFw+x3UShn5NFMPF6iXvvv6eUXtkkxWTaYAyA4tlyDbf8/j4gDNKTi/mlEXB5q5BiI5s5rI7lNw+vmO7uyfNZkjjcyhqTpYXRInl8eENDNA0irxtj6+rtIzWwxiLHusjyzgLmScZ202HcAZcJ6SqRuJgwq++/JJyV/PpJ3/E2fmKaXJK4Hi4MqQZ9kynK4axQSiFm8Ju0/H61eeUZU3fd8xPJux3Dr7QbA6aq0/O+erb71jvbrn+/i3zyYpabpHG5epUEYiaL//2kWiV4bsrsiignjjoMeN+r9gPJUEUYnjEUwsCb8q3b/6Ktus4O/kUVwU47kCWTnlz/Q1OEOOmgrZz+eTVP+QnP/o519+/w3VdVhcefedx9eqMpn2gb5689f6MxUlGWe0YtcKSc3u9Y5oucR3Dav6aon7AypwkTfn+3R3/4Of//t/9QfWf/Df/6S9cEeAbgdKGyI1Jo5BBd1gjKVuLckdcT6OHETcwbDcaVzkIVWLHlsl0StcZhkETxQGBf7whB4FHmsUYa1HSxXEMWhva9sB0OgEBY+8hGJhms6OxvNP4rkPT5eTbLVVdEcYGGLh7WxAGDqEf4HhgbM2ApulKurol8D2qosJgiGKLl4w4KkGbnK7tyWYRddHgCoPRI+vtA8/PX3LY5NRFgbDQ1kfg+YsXr7i7X6PsiBufMfo7ut7iSo9VFJKJGCN8OnsgiUOmc03dlDzuDmhZcHZ6QpaGrE4vqAbJ+9saN+7oupE4mFHXgrvbiqbZ47kuRdXRjIahF0SBRTSSVXjC5ctLHtcPeK6laXq0OCJehvao0LVdQdNqFC6fvXyBJMTxFHGgkG7AanHGd199hTUBYXZc3BppEYNP3u7oaZGBZTo7o+ssJ6fnbB5z9NhjhoD7hy2xF9PvMza3kqE/kISWUE4J1Irv326ZLlJcoagOe9q6pqnBOD3bsmSsc1YnC+I4Q7oOZjyyEIUasFIT+RGHw4HZYo7neRyqEj0eG5fiLKEua5wgpteG/X6P5zt0Q02ahuiuAOvheRG+r/C8gKo4EAcZTdODcAmdhKYp6foO64KfOEil6DsYdYN0HIahwzDQa81kumQ2S6nbkiBxqMoWx/FwFLx+/gLTGYb+CK1uhxqlNONw9DtGQYwnIzACYzqEHGmHAScIUZ5L21X8h9NjmOp/KDe8vFzgBsGx/VyMDEPLuZiheg+sD0I96TjHxLIxI3rogA9BJntE+0wD/EAxDIavy+9ZtztGLWgaKA49h0NFnteMg3vsjHYAYRgNKCRGjwgJQeQekWtSEsYBK5Ux7AxNo3+ngokP61prnwZle8xYCwdjNUEgKIMC7QuUOqK0+rbDaIMnPQIPkthhOpkTxQn9U9OT5zlkYUpsPdAQRRlekhBmFl8Z9DBQHzT5RjOJp7y8eoHvOrRtg+MKlPQo9iNVM7LNiyM/VGqKbYVjXKI44fz8CmkNm809Qro0VYGPJXV9mnbLYdxwqLc4ro/wPRAjaZwirEdfN8ymU7Iow44aEUe00jC6kiAN8LyeyHc4mc3xsLRdA1LzcH/HdpPTDpqHmzfU20eqrmRX5PS9RHbQ7w8oLyJRDtJo8rJiXWm63sGTDmEWkKUeQgxkfkTTHCiqBqsytKswfcfj9RqVnTI//wi0j5EQhJr2sGdbtAiZIKTLTVPw//ztb9kfGl7/OOWHPwu4OBl5vjpldbJitQjIZoJhcMk3JZtyy3ZbcfN2w+nVOWfnKS4lz65eMI3OSWyKpwTTk4y+HQldj0UaEwQOD7t33H/3iMwdgiTm4aHEjE/bAcxTCh+ebmJPvlX5JIAefeTi6bKWJSHPns/QuicI/aOn0g4MgybLJjD6vHl7h+u6x22D+FCl+gHt9kFJ/aDiglKS+eWM9yZnMpsQp7DdrBn7ligGR0HdtKSLlL93e3zP/Vl63Bj6ruJkdsLl8yscEeB4FVXekgRLfv3LL7FYptMpoKlrMFoQBj5R5BKGAXV9LCOYzWOwDm1jCYOUpra8ev2Sps2RIuBsdUWRv6dtFKvlKw7FA2nmAR6+7+CpKV0ruHw2ZbvJ2R7eI6VkMl2Q5wewEX4Qstv2vHr1AilhOlswXwbUbcXp4kdsNgVf/OiSx/uSJMoIY8nDw5og9AiDiNXynCAT5PmW2SJCG0ldjLx4tuLk7BxtDNFEUNeWy/NziuKBqoQ0TBiGG9b5LQ+PG4QjUQ7cPazpepfpbEJR1Ww2N0wnp0inZrO94fEhRynIslNWyzPy/TuaaktbligbEEYJZbdHuJrpYn4MEx1ueX+dc3J6TjaJCGKHpjmSdBhTkqjh/fUD8WyJl1mqYofrQNMO+M4Eo0NOFjPSTHLz7g47Cgwju+JbtOnIsinru4ZQdpihI51NsDZHV4rl8gWn04Rvr7eUnaQu9iwWIZ0u2eaazz/9hHgi2exKyqbi6uIK0w9kWcLl5Ypff/2OfXlPVXhMkxPs6PDxR58Rxh5XL16xnK347IuP+Iu//N9IswQ/FBTVGmETLq7mPD7c46kVP/uDP2S9fYu0CS+erzgUN1RVxzAecxJvvn3k008+w9qGtmnYrDWOb/k3/rV/BQbVf/Hf/7NfhPOQwrioOKNqd0jh0g2abuyPnh414rkJo4YyH4lTB9fliI3yXKzVJGlKliYEoYsxYEeYTEKaQTOODtZUSNmgpEfb5cRJQH1QVMWOIDgOsW2XY22PFA6uckmi5JgKjwPqwnCymJJGHlIImnrA8wd602C15fLsFW3dcLKc4bkKHMt684gXSIJAsV0P9GaD0d2x6qxxycsdbTVw2LaczE9oq5JhGBBSYM1AEge4ZsTEmspsCKTh8xdfMJ0kGOPz+tU5xmqEMAivwXQ9jucyNJrdtmE6dcGcsDxdUtYVTbfHkYo0nlDWOUEoCESCK0P8VKEChS8UoUrwPZ8wgH2+pus0roIkCZG+wzSb0tUalGExXTDJlljT8Pry75FNUjx3gu/MWJ5mrB8fePF6iStadrZBtSlKapQ0uI5AORNm0YzDdkuYSA67BqUOuI4hTRVh5lBVJUVpKTrJu+uaPp/z7OTHtJVg7CzT6YLbzQOL809oRoFwOlbzJYlYUVcPzKYh0u9phh2+mxF4AVEY4vpPzL7R8Lh+wI88hnGkaQaMURwOLfNoiqcC+s4c6xeVYESRZjPquiHyM8IgOb5mo0NT1cymp3R9hx8FSGdkNBbBMYw2DCNplmKNYRwgimNGU1GWR6tCGk/JD4/0fcd0HiJGkOKID7l4dsH+cKDrWkbdoxxIwoAoCAicGZ4jaaqWrtvjSA9wGLoBtGTsLXXV8B+fPgPgn+fv6QZN1bZ4fkDgezjS49QuiMUU8OEJTgVPYH09oMffh6mwBsdR+P6x2hPgenjk8dCQ70ZGbSkPhvX6WA1cHHKqck/XGfoe+qGn6xu00Xi+j1CSk9WCKFM8bq5ZMEXWAW0zPrX6cFS7AGPM0+r2w7ChsQbiOOHglmy6nKHX9F2FEpZAhYSuQ+y72NFQVjlFvSVLZ7x++RolR9abW6quxE8M87OM2TTDJ8CT/pOX0ZJOQhzHZehbpJBsDx3FUCJdwWw+O1YNK4scPXY3O+zQ0XQl+a5iaAeklTSVpasqqnLD3f0DgzVYKbADOMKlLmvaukbi46qArlnTdgVBEjNYUCohTVLy9oG6q2BU5Ns9tpEIfMquomlLmuGA54S8nJ3j0DGMgml8QiQ9xGCYBROW8zPmkzm+ctltt+wf1ijhE7sBqdAEq4Tp2Qlj07F/eET5Hl7i0WvJfv2AafbUrSZdzDm/uCCbRejhAUvHNF3iS1BhS7k/MGqX0Fas5jv++Oc+59MHxvI3LMOW01Tjdt8TymvOXlYEsuXHnz7n49efc/rsNZPpc15cXGHKAaUczldX6LymPWh86fH++p7p1GcyjRnVDG8ypap6bGNZOSvSOOX7tw8MVvA7IRV+d/mx/H/oFk+bgg9/I4VldXIM60ahS9tqJtmK/LBGoJjNFhT7ipvbR56aAv5/BRX2yWpwrP0VT+UZUgmiuWLtP3J19iMWiylFvqVrW5JkhsHDDBFxPOWn10eO6v+5dBlGwaFYE3oBUiVIIVFqoC00pnf5+rdf8eLljLPV0aP53Xc5XtDi+y5ZFnB39w5rJM9fXiCly/3NAdczGHPkMUvh8PEnH1M3O7777jvOludcXb5ktVqiTc+gYTSa6+t3rJavePlyxeP2e7pxc8RVRRPqdg3CI4xD6qrh9Wcr3l9f89HLHxGGIYdiS1V2nJycMZlF6DGnazRhJFksFihHM5tN6LqRzWbPtsgZ+gZXuazze9brW5RQ1DpnsUz521++ZXUWke9uuX1/QxS5rKbPsXbN3eaWNJ2hTcvj/g3zxWuSdI42iiQ64/nVM8qyoazWOK5m6C19XxD4MXGiaA4tjnII/ZDbm/dosSWe+LhyxsNuSxaHbPN7zi5fYUSPH8D76x15sWakxPc9pjMXYVy6fs/XX/81jHPKpgT/QJHvmc2W2NHn/PQZUg4kE8OvfvMlrlowWkEQKtqyxFjLvmwIpynW7fG8iMlyxn57oHQ1J5cnZHLC8mRBrS2ur1nfronCGT/72U+5u3mDGC1KKA55w8NDz6urT7hYnLB52/KjH3zKwIbr9/eMOmBoPYZ2oG8HqvqBfoCXHx39wFKEKGJ++MUf4wT3PN4VdG2FQOAqQVHcEvgBnbZsNrcsFxOaZsth35FNAybZOUVZ8g/+/r8CeKp/9l/9J79oTMW2sgxYhvZAKH2GtgMLQRQg8DBa4nmKKJjhewG+cjF2xI4S33NBVEjXUhcWKRykHLFIiq5DDwWuculbxThq5vMZ4ygYho7lyiVN5mw3e4QcmM5SBJI4CpFSYzC0zYirYtLEp2s128cCRwaEkSL2I7I4o617xmEgjiN03xO4CYl/RlmWHDYd42BZnLgUuUV3x3apthdIL6BpK8r88QkgnuJ4ktPVjNDzGE2C71cUG4MnY8zY8uZ9jwgdTian1FWNcjRtPzL1F4wmQmiX04sVnpwgbMyvfvPl0cuHx3yasVsXXFxM+NkffUyanHN/957pyifxlkQM2N6A35JOHX742Y/p+wElR16+fIHjKkY9crY8ZbGYMEljlAPTScJoXNxAE0Uhm+2W6/e/OlbizS44WczY1jtO05SL049wXcXlyQqrFMJalAPGarohx4kVrz//nLp7oGpLPN8S+yGm19BLhBbEoYMZXYx00NQoJRmtIfQS9tsdgWeIgyW7xxYzehjrs6/2GOswDh1e6DOMDXVdMZlNsMLyuH7EdT2kcLCjoG812B5jRjzXx1hFXrTMF+dUZUtRlBz2JY7j0bQ1ehhR6qioaGtQnoN0Bf1gcZTCUSOKka4xDL1hFC129PAchzAIUO6AFQXCbfE8H8eRKAltA46vGLTGCsMwViRxQhh62LHHUz4Sh7bSyKda0aau6LseObqMg2EcR1zX4x+tjh7Vf3J/jTYhTdNy2BdYbRB4XMpTApNirXvE7DytRqXgqPyO+ilEJZ5+b3A9i6Mc9GD45vAe7Wp0f6wUdl0HZI/RA46IcFWG68SAi5AO/dhSdhVV11LUDW3fUjd7jNWcq1PcNqJrxg+zA8I+KVMcPbL2g6oqn5qzLLw97Pn+/p66LNGdpauhrwwMliqv2a4PFGVN0RTofqQsetbrnN7WqLSlNVt2eU596NmvG+5uc969+5ai2CBHQ4BPlVc0TcvF8oxI+FS7giYvEKYnTcMjkUQpXBfCNODs9IyhN9w+3FGVFbptsWjSaYIeDV0riMKEuqow44CnDKazVF3LvrrHcR1Cb0IsYlwnwCqX+WSG5znkZYM1Asf4NLXA9T2UBEWCFSnS8Xn57DOmkxl2GOiGFieSnE0T+qrk290jheiYzuZk0ZSzF0tefLxiPkmxA0jXJ14smM0mDO0BIX2WF5coDLQtbpiSzSJ8uyWSLYGR6LrD8RRSHnE4u/WOaQKvXuVczr+jvb+hrzXZ2TP85YIhGrGxJJr7uJHPECi6ZENvOsq9i8+EaRwzjo+MqmOWnlHsd4whWNel646WHVcLEj/i4X6HwCWJApLq6OW+vd2jAfkhkmefSBJPw6qUv7e6HB8LhBU4juDZ84AkcTB2ROuRMAowtmfoR4Q0x+a7zYGuM0dSBhKBQvAUrpJPXNUP7x17/Nn03CX7YmQ1f0WR72jLEYmL48GgO7LkiovzKz769TUA//epQ5auuDg75/3dHW+u35PFE1xnpDrUJOEJ86VCKHj+4hW//fprTk8+5+c//xlhYPnq17/mo5c/IQxD2v6A500Jg4Sy2ZAXWxCwXu+QwmO92eA4gqFzePHqit3hAStG5tPX9B1U7Zb5coEUE1bLLzCMdL0hzSL6rgKzQIiBN+//JY7jsN0+onXLcnFBEi8I44BtfkfVbCjLgtks43DIuX7/hslkjjGGvoP5MuXx4YGzs1PevlkznSa0TUmxl6RzRduv6XvDbLYgThVKBQzDgLX6iLETHmZUdIPm1cs/5MWrF9y+vyHLfKIwpG0q3r3/JftdxWr5Ea4bIAhZLs7JD1vsAJgFy7MzjOmYnayoKo0cjp9t3373L6n6HCTMZyccmnuGNkAKh1GDxKJFTxDExL6LGF0un7/C8Ue65p4g9JhPT3jz/TueXS0ZBo3Vx1INISRtX9OUPbPFhLzSXDxLif0RNXp4XogXLhDtnn64Z3+7ZzF3+fLbG+r+wFAZVhenfPvdV4x9BKrgcV0SpFOKLuf67jtuvq74wz/4KeeXE7xgRlFFnD07papvqMobPvnkJeM4IjCURYfvT3FcydC1xMGE+/s3R/LBruf1R5dP5I2I1ckzOp3TtJr9tuCjZ3/Azd1vCILg+DnfVsTJlD/+6b/7d39Q/ef/43/+i6bpsC0444htj6EWP3AIvBgrHKzRxKE8eu1Ey2HbYA3k+wOTeIaQNdZaukYw6BErLBbJoDVN16OeWnxm6ZK61pR1h+M8IV7ocZwMx/WIYx8vUAhhmKYTqqpE+hrP9fGCjqbqiNwpSgacXx3l/VCn7DaPoEYQLp4b0lYVgZPQlgOuH9AWmhevAuoqYnEyZboYGHUC7sjD/YbRNKSZx+r0jLrV9Laj7mseHwt0MKAPHakfofyU3la4aqA8GL67fcfYaaSjMWbG4VFT1C2BP+VQtYyDYLMrGGyBMQIzZHhuSF1XWD1S7EYO1UiYClYXPkPTcJp5zJMlTdMhVUdfSs4vz5hNIpqqY73eIxnYrR/x/YC7u1vafs10es7t4dfkRU++yxGqZT5NMPS0e8OoPFLHI1AFMsi4v39EqJ5Decd+XzAMDp7TQl+jQoEISkSX4waSk8spVSUZG0EYWK5enFG1FeXhQMlb9vmGxeScoetpy45JFhOnsCuvaZoWUCg5ZbvPqboSa0aiYErb9XiBoO16ulZRFYausTy/fMH2cYfvBshgxPUkSMndw5YomhB4AbvNI55SgE/d1lTt8cIgkIxGM2hL2/foscPQoAfD0EkC/3h4Dt2Ao0bK3bGpTAJj3zAOAqUCirKjOVhOTxfUVU99KJjGIWPT4KunxhxhkKP3lCB2GPoOa0asGfH9AN1r4klGkPqMDFgs/9HpJQD/9OYOawRogycdJknEcKg5ZU6sZkjh/u5A/fA19O0RwWMtEoE1Fs9T+IGHkg6e5/C+e2R0WgJP0hQNVVOilIDRwXU9kAOIAa1HzGioh4beGCyCtm9pmoaxlwytYdrFBDplHI+hLvsBSfWEvzyGVp7UKiRCCkat+e36msdqjxAjQyvJNzX5rsZ3QySGXb4jL3qKskUKRaACTk5OmGUp/b5D1+DYlBGfRm+YztzjNmHUuNYh8jLiOCYMJUnq048tBoMXRNRdz75qGJForbEoHD9mX+a8e/sto9FEaUBdFRyKirzoj+1DcsQRBqV9qnzPzeO3eEHMbLakyCuUNgQKRleSTuc4jDhCUNeah7tbPOMThwGu3wACFWYkizN6M/DN9deM3pLl1ReYOMJPQuIwxQkzvGmGiCyRJ3h1+ZznH3+K1gNtWSHCDD9MGbsWO444noerAqbTU9q+JZ0FzC+usLajynfk7cjouEwXE5QH+8MjVdWiR0UYB0ShQjsuVRWgxRKSM77/uuXxly2P14I//8s9/9ef3fKXf/oN//uf3fBXXwaM9YqAiLPLkOlUEboOQTzDBorruze0neZwKIhlyPnyOeW+oMw1aSQ5W8acTZaoDRRVxeN9yTCYI0dZHJFTH5BRRwzV70H/4nerBEgTn49eXiEAPWi06ej6mrpuiOOUURv00JPvW4qyw3GOA6nFgDj6YZU88lqNGY//VgikUJy+mMOF4c2bb9jn1+hhIIo8Xr16wWFfovuOXv6SH3133Bz85of3bLa3mLGnq12S8IzPf/ApZb1GqYDZ3Keqa5AO+2JNWR1QTGnKgXIv+ear3zIOGteXVM2ath65ujynrQVhEKFETBT5dN2A1UukMiipafuW+/saPw74+uvvePX6JX6k+ebb94Sxx7v31zzc5/ihh0TS9TuGxiVNUurmjroaGXQHaKRwqOsCqQSOSnG9ET1IojBDD5p04iJMSpbGPNyvUcojSxRhInB9KPMtuoeLZxcU+SN+kOF5HV9//cirj6/odc9q+YLH9Y5XH/2Q05PnfP3dlzy//ILF7Io///M/ZTp32d5XJHFIkbdEsSKOU+LojNVpxtDD0LiMOsBxXURUcLt+Q+xP+eu//ZbPP/uIu+9/ietFyAAm0UuCWPO4fUNVaA57TZwJ5vMlLop9fuD84hkjmqI8cnvTMKM9jJxdrsjLDff3N2z2t3SVpG72jEawXJwzy2aEXoQfxfSi4wc/8MiExlQFnjswCyZIXfIHX/yIn3xygecMeNlAU3d0g+Gnf/xzdpstb999i58keIs1u+KAM7p4xqICwa6tiU6n/K9/9hecna9IAoFuR1zl4ooli+kZ1jSIMTmi/zY9QQhiNMyXZ+w3hiye4rlTptM5+/2e/JDTNiFRvGR5MqMtfCaTGTe373CdlOVpTF0P/P0/+vf+7g+q/9l//Y9/MVutcL2IvukYhxHHd4kmGSJ0sb3G9wV+AEoK2kJjx4HJJMCMFqE0Ulm61jJ0PsYaXFfTty3T7AQhYagFgS+OXd/plLKukU7LbLKg6DqauiKbRSjhPqV7Da5K6FqBkpb6ABKH5TyjqwyBF3IoCvZbzcT1MQbmixXGBNRNTT8eaOsGhKJs90ziDKMH6tYy2hxj4P5hh+vOjz5BkdFUA1Hm040FXujwsN3ghQkWOHQ1XSPRfU1RdDDAOPTs2wZregZjGIcQo0M6XdFbw3rbUFYbusHSNA1aS/qhpG8GiryhPBj0UKOLPUkQke8sQzdyujrD9UL0kOAFHmjJfLEiP+z56jffYKWkrnLSKMEKiwgKsklImfdUY41UA7HvEidzmnJE9w8YOxD6Ps12R90aul7TmJbisGcwEDo12STCKAc1BFwtEw6PNcXOgJDcPNzR9B3PX1yy269BBBzygcO+IAl9hkYgiCnrHtcLCEOX++s1Td6jUdhREIUZRXMgy1ySMEWJgH6sMbZ7qht0iOKI5TzDc48H2NAP9J2k2JX4nodQAoM9quRFCULRNc2RYWrBjCOOCglc97hGFIbIC3ClTxikREmAoaMuOvrSIZJL4shjOp2wnGdM05h839KPBuU3LOcLIumj2xbPc0hjH9/x2D/u0V1F4vtIGdC2DW0LjisIQ48otgyDwHETVDRQlofjlsEK/tHZcVD9F0V+DOi1DVkSorD8RL7m1DtFqRjLMURyhKMfh8Jh6I6Q/yfVdhyPFa5pGmKtoRkL+hREqAgCj9liQpIKAh8C7+l5Dj1SeAydQesaqRz0YJG4xG6Kr0KEVdhBMGVOTMo4/L5N6EP4xXGOiJ/xaXD+EGCRQtHEBSQjkR8cVdbRYRwUD5s1RVUSpQHg4vkJq9WCaZriI7CFwTYBnszw3QAB9OWa1I+5OH+JE3o0GIznMEqBQXD7+Mjd5pF26OgHTZokKAnlYY3oNW3Vcbt/wIk84ihku95RNQPt2LLf5dA7nCzOcTyHvFgzMKBtS+q7TN0Q2Y1Mkim+cmiGGhPEx6BUX3IYDtRlhT86zGcxUeywKw9Yf8SJfNa7LS2WJF1R7R+xQ8toezwrWJ0+Q80yuqGkL/bsdgfaemToNXVjGAZBvs9p6uqJ6xpStx1tr2najrpc01UHhr6m7EratiBKFfuiYLAO05MZkR8xCRMuzny0XfNYNmiTgTph36Rcvx1AzpmtPmMQUybLZ8TLT1FByicf/Ywff/pv8vzslMk05P+l7k16bO3O87xrrbfvdr93taf9GvIjKUoUJVqCLQcyPDWQBEYCBAgQZJDfwUkAD5JMk4yUDkYQTwIk8CBwJkEEGbHsafgAACAASURBVJYsipTYfd05dU71tdu3b1aTwT4flZ8gj2pSqAIKtd/3Wc+67+vyQp9qvyXPC0Qw4v7xli8//yVJmiB1j6kGht7DSwKm5wGXzy+g1ww7mJDSNT2P64q6O5Zt+dC+h984JI55VCn5zb8ZgLUs52M+/eQ1xvRorRh6jigfc6RsWCxx6LM/lGy3Ja7r8rc/RPzmNwgpjnIPeTxpOcJhcpYwnCrCwCMOUuIoRsoBO2heX16yXPTc3P+SH9yOAPiT6ifEWUbkgdoZXj//COW2eF6KoWFX7Hja3DFfnYHsEMJlUHsct8ExKUoJ7h/eM53MGE9mODI5yguSBbd3j8RRzKBzHMdlNj2lqp847Go6NXAodyA1+3zDr3/9BePJFNXDKIuJsyO9I/BivvPp3ydNXSbZKcK6nJycY2hxZch4dI4QiqLcsNsVlFWF41hCf442GkNF38F47PP11+8xtPSd5ZPXrxhMxe3dDYvJOY4rGXSJYz0+/vR36doDnu+TF82HcmTIeLTCSo/duuB3fvCHlFVOUTRMZxHDUPD0eEeajAHBKJtz9f5zHBExX4wYVMF+v2W1WhIkAZv8Kxw3YjXNkK4g9Mcsk5hWxVw8f03gj7HG4kofYX1c/5G+3+GYGd/53neOBWpt+fLNz+kahzavmU8uOX/2gs3umkFZJvOY9zdfcLL4BGsGfDknjgXjZMxPf3KFkfDq49e8+eKeX/+k5M//bMvTviIZBbx9vGZbKTZ3BdvNE01ZEolLli9ec9g8IhHsDzdcv9+STEtm/mecJSOSasJn3zvlUHVc32m+/dl3eHaheXz/wDi55PTFS55fvsQLGva7A5cvZ9RdQd1WzKfnnJ6ccfX2idl0yW6/Y7V8Rjs05OXxe8pG8fGrF6yftuyKG8azKdloRJIl7HY7fG/C7//g3wGO6v/+L//5j5ump2vaI2JIaZbzOcJKjOlIoxQMGNOhTUHgrkiSjEG1SKfHDVyUirDW4gUC3wnxPIvvCQ7bnukoZZrGfPzqE95fPSCClmSU4nqSJJO0qkOZBmzL0IAejo69p6cN40nGfDxj/bgni0csV/Fx2E18tuuKvrNcni0RMuX2YYvWkqbdo2lpenCCCN+LifyYNBmhscyWAU3hMZ+c8Nvf/y1u336JIxNOzpe0ao/nW+qqJE4CXF+iKot1JU/bB3wRHFmJxAzUuI4gjiLUIKjzguLQ4+AjIsXQFUjj05YW3/MIHYnuOgIvQnUtqIHQFyyCBbPFCKULptOQx+2Wp+0ti9mKssvZPhbUnaIfBqqyRVtDkkS0dYfjCQhDAjcm8Hy6PiJyJS9OPubqusLzBYvxCDeK6MuC2WJCZyNU1VPVFVZBq32qvKDsDF6yZBwbdOPxqy9qtN9R7Frqbc8kjqk3FTQS1e/RtqBRLdJ4BKGi2Hc4SISRqF6T5zuEdKjKkNPlJY7jUFc9WTZCdx5doyjKA1GYobVgv9uxXM3wQpf7u2PZpaxqmspgeovrSAbb0Q4tfadxHY+6q5hOEwRQ1y1WCZqiwXcDsBrPkwjt4EhomoIqb1C9xBpwHOi6FqMMVdHhOsfyxHjuk84SsqlgPhsTEoMVKKNp2h5HugSeS5YF+E7IhzI+WlviaIHSLY7r4Pry2Go2HdIIpPFwpcd/cXrkqP4v5YbtYU8cRYSuQ1cPXHonpM4EIeNjY/kb7qOQGD2gVPcb0D9YjLFkWchkGpFmIb+0X/NkctJRiraaY9gkRhqIQh8rFdI9Dgl998HMNQiGxqIqQ7GpGWqFYwVmkLzZroltTOakx4fFB1OQtQbPdXAdB2O+Uaker1aN1Yi5S7LKsEbS1g1NbbDCRboOQZgRJxG7XcXV1R1F8YQdDKt0xf7pQNkc8ENLXpT0ZY/fRzQ7Q75vKZqaoqk5lANlnlPvaiQO2rT0XU9V9Nw/HHj/uOF+c8DKjH7Q5PUWg6Que6SQBPEI1w9YLuasTk4o+wN5ccDpLG2zZ9A7pO7o2hYcH4TF9ROW00+JlEMgNSZyOAwdjtb40uPuaU2eFxgHDmUOWh7LLl5PlrjkTc2+2GC6Al9AmMbc3N9yeLwnSTMO2uVpm6OkwB25JNMJ4/GENi/Zlz1NNyADQzqJGHsCp+noOsMh73CcjJPlORMU89g5Fvm0JRtFpIlLm7c0XU2cJARZhFYHRp5gOs6oTEA+GLRQnCxmZNMQJ/U5P73ECWt2xR3hKGYyyggltI4kGk0wm5r6UBPOXOqqQ1vNxeWI1TxCDBKjJdvD9lheLTx0r7m5O1ArjfOBY3rcan7g8mI/IKOOsP/f5FOl5NnFscRVlQe07hmUwg/co9kJjoIAffxcPDwckNLBWM0xMvO33NYjRs0gxPGGQEqHyWnIMH+iKbeUhwIsFGXJ12/eUB4Grt8/MAwzfrQ9TtU//VjRNz2qL9nc92TpmMaU1E1BGMb85K/+LVF6ZH8f9i2u6xCGHqPRjFY9MlvM+ejjz3CDgSROEQiybEpZrfECSxjDz372N1xd3TCdxQjZEocpL599Sj80XD47p6hvieMR49EKx3GI/ZSu60hSwWIxw3M9fvKTnzCfnXL78CWL+QKljxIQKSSO6+F5GckoRvgFTT3w+uW30abn6t2XCOmRjFzW64IsSxhPfFw/4ebmPUMTsFp8TBg5aK0JoinX119zd/OexeIcx01YLc94ulvz+PgGL/IwHAfvk9M519dXhM6cOI7w/YT5bEmWJeSHmuUq41vf/ojb21v8wFKUFa7jo/XAfttwunyOKHo2Tz3z+Ypqu8OfviSOJfviDbtNydAK1JAzdDBJT8mSDN07qO6A7/mcnZ4R+BFJ5vO0u+b64R3Pn5/x5Rd3nJyveLivGKUT4shDWMObr79g5H/Ct34Qs34QZEFEGMOu2fPs09dEE59KOBhZ4QfnZAuHn33xS756uyN2n7G6HFGVN3SlQlhLFo2pniLu3m64XD3H80t8kXF+esFf/fRPefV8yl//279GN0vmy3Metwd+/vOf8/T4yNC5KKv58uuvmS+e0fcdSZKBkLSdYjR2KMuK9brg8sUFRrhc379F2gLdjjm9mFP3a8p6x/vrG+JogiDg7/3evwOD6j/7b//LH5dbxTzzOF0u8YPR0WZiW6QV6MFHa3V0OEdjcDukx9EpvO0Jwpiq2RL6KVmaMqgdbamQNmI2iXBlRFnULGYTXF9S2zu0NvTDQJZFHIoOqw1Z6pClMV3bMkpiHMcjCA2hM0KZnvHUxRchjoDAj/jkWx+RZSl5XhOlY5q+paxKHFfQ9ZpGuVhPonVHWxkcB/xIINyWfjiQJIo4nlAcWqKJIpsrBtWjGoezkyWBd3TAl/sWV/RoEyI8QVvXDFpjHEvoS1zrogdLQEjgH6Hmdd/gaoFnIYtimmI4lnKMR5b4ZEFC5HkspkuE8Lh7KtB6wBGWvKyZjVaU+4L9YUtTSnb5FmUGrPGpmx7fg9VqTjqaUPUgjMAjoB8GbN/i4fKwuycdw9Mmx2GgN/DJx99HWc1u957ni5TVWcT6eo1wYBAJYqiRVYcINKQKScc0W2Baie8FnD57TjsoHCFQvWUyvcD3JLoHqyLQgjROqKoKR8Z4vk9Z9WzXO7J4zMnyJdYY8t2BstoSJkfzUlWVTOdjHM9jfzgwqJ6mq3EDSKYRaRJjgbqvMEbj4SGsJkmh2LcYC6NxjO+ER4C5laRJRFXUPD5tGYYOlEMYBPhBy+tPZkSpIM4ky2WIH3L0MF+c4EQHFBrhgBSaqh3wwxFdpxBG0tUtvSpBCIrG0PcuBkOQHMH6nu8w9EeoOK4hCWe0zUASBwR+wH82XwDw3928w3V8VAdJkBCFKa+T86O+lQA4vrDthzf2kcKhfpMDPU6sEIYu43FI15Xc6jtIXaTM2Of1kX2sW9AaKXzqpqZTiv2+xQwxpveo9zV9OaAahR0UajCUec9uW1FVNatwziQYf7g6/VDq0pooDAiCAKUM2gzfKNQp+4adGNh3OWowaG2IIp/V+ZST8xnT+QRrOrZPFVofmcbTdEbT7UEoQt+hrRviaIzrTSjbhiAIOF1MiBwXX4fM44xEWhzVsbvb0eYWxwS0hebm+olfff6Wp83A/V3BZvuEUYL99mjKqtuaKIqPW3tpicKQaZrxhz/8h3z26e+w3t6Slwey6QlKarbFDikDfN9DqIFivWWrckwIoZVMozmOzegrQxplvHh+QRC43G5veCi2tCpiUxS0uiELR0TZhPtiw/vr91itqZqGYhjwApcIhW867u9vuXp4olEtThjjRw5DV7B/3KDzFq0H/DQiiieE0QhrWrb7e4qyYjo7JZnMGbqGd2/fUChDWR+g1zhW0KqWd/cPNByfG5GbUumGQe2RUcLMmeJYy+Zwx9N+zxdf/4qnzQbhJNRFTRadoFvDZnMPxsXtHebpigCHar1hqBSz5QXj5SXK5OT3G8TWY3co2B8G2laDAMMxvvJNdOQI4pdIedQSiw+lPVdKLi/mRGGAFEdck5QeSoFF0+kt2WhCGiYYo3j/bo3A/bBMdf82PvOBxfrNIU8gcB2XZx+dMXm+YBQu8VyPt++u0TZin++ZzKecXK6woeZ33g8A/F/Kcjl+ze3Dlm/9zj/iabchL/a03YF+aHFciZQOQo+JYgnW4+TkhLvriulsDE5H0x3wAnjz5h7wKesH/NCh6R8Zho7vfvYjqqJlv98RJzHjLGYyjRllcxwx5vr2K05PV1ij6TvFKD0SQQ77e7LkHNcfuLm5ZZff8fj4xGq15GlziyM9+kEhpWE2m7HePIDTE7kLXA++/PIr+s7B8VrqysEoS5pNkNIyGMVikVLkO8p+S5y5CGsZjIsxNePR5Lg8qFuubz9nt3lCoKnbHiMUbVtR1jvWTxse19cYHfCD3/4DBlXTdT2L2Qnn5y95+/ZruloQxTFKtXz0+gVN2xIHY1aLMbYauH+6R3outne4+M4Fh+09eb6mb3pePP+Estjz8vIzRlnM/c2BV+cJ6/0Nh0rRtpZk5HKo9/R6z2K65P5ujVU+b6+ueP+m4/QsYzLJ0PaO5fyUultzdX1gMZ7w7dcxX/7innDisNu1vDif8NWXnxOJObNlxKHq2BceXuyRt9e4Ycb5+Tl39weScMmLVynb7R3xOKAcJM7EY7dvWUxfsZimzKchX717x7/6V3/F2flzMHt++otfM5nEPDzcgptT1S5xsqAdem6vHxmNIrRuuHl/oOkK1ps90vHRxiWMIk5nz1kuF4yyM9KRzxdffYnnJnz7s484FBv+4If//t/9QfV/+p//5MdWtmTzEEuI7gqE0nhBR1lL4ghcvyIIBEIOVHWP46vjiVUMOBjCaKDZH409s2lMWxzZjsbu6XpDbWr2xT2h57HZPiKGmOk0wnodSZASuSNC12e/3yGEy6EoGcdTZuMpD7ujyebicsFkMmK7q3lc7+i1pekP9MbQqD1KG7TpCQJDNgrxpIM1Cg+PLMuwcqCuFH1rCQKBUhHrx46+fsTz4VDk1LVhMs94+XrO4+Mj+T7HjyKGIUXr/ngZayyg6JXA+GArjVUCJ3Vom5ZqaAmMxhcxkZMhJQhfILEMZkAIj9Dz6TiW0xCGpq9ph5aqrJhNRqhGMNgOK+ZgB6p6S+AndH3P0A6URUk88o+FtLKlqLZ0jcZRMZ0e8B2X6qljcpbRNBmuheVZhtEVWMnd/a/YmRLjlFycJ/R9TBhEeL5kvT8O4nFoETYgyjIW5wH5vsb3Z2jV0NYVUZjRDS2+bzEqADrauqWsSw57BU6P43i0VYeQDlocM5DnZxc0TUlZ7XF9h7JoKHJDNlmw3VbUVQWiwxiOKlPTcvhgbYr8kDgKqdscP/SpW4M0IdHIRXqK8+UzPHdEq1p21T1WSzASRx5Vo25a48Y90XhgtgzYrQ/c39X4gY8TdGzyPdgE3VlULVFDhXCPeeS+tzjOcVgV2sEOhq4wdGogiiPqviTMNI7bE0YhatAM2hL4Auk6aOFgMfzn8yNH9V+UTzgIxmlIFGc4TsiZM8PXIYLg+FLFHKH6gOp7MN/EAL7ZqEIUR/SqpW4brvWer5+ueHjafNhGq2MUpjuimhxHojpBtdPYzmCGCrAMvWVoNYEXAx5NW2MtuI7PRjdETsjEO8oRhJAorZjPpggB+zKn0QODGeit5s/ufsW92vH69TNG4wgvFsyXIwLPwXciVAdRMOKj1xfMxy7LNCN0Y5oesvkcP4wZ1HHY3+2bY7HJAy/McNMlVdtTPd6R5yVPmxwjfMI0Rfiaqq1pO4fZ4pKTxQLTbzkUO9q2oW9y+rZDW0uxr9g+3aPNgBIej9sH/uIv/5K/+uVX9BKS8YhkOmI8WXCyeMHq9BTpeQyNZjodkU0zbD8QhCHGGnb5mtnplNFkxNX1PVXZIsUx2hAGLrvtGt9xieMMpTrW6wcORU4yiSl0zqEqcayLtj1FXaOUxXc0t7fXfPH2ntvNhk53GG15//6Kze6BfdlQdiV5taFsKohi8EZ0Q0NVb6n7Ad8JaMqGRkBrBvbNhn2zJa9KvM5D1IIkmeD4I95dvQc10CiDB0hrGbqOy5MJvuvRFDt260eKbsfNzVeowCMez2gOBabv6ZyA6eKC8Tjh9v6Kx9sHgsBCI9GPBiNdttuGplVIFzBg5TdX8sdDkBQghYf5BtJvFLEf8urllK7foLUhzWbUXUmb12TjhDAKcZQHxuGQN9zfPgL2eMCzmg/drGOxStgPWWs+INUky9MT7CTgz/71r2jte8qu5mS2YLa64MWL7/Lyxfe4unrD7z0cqRp/OorICxchLJ+8/A75oSCKfZTe4rsOgZvx7t0tnpsSRYKmMlw+vwSgqrZkI4e2gXdXj0SRS+AmeJ4izz2S2cB695bAnvL97/4WnSoo6i0GRVV2VNoydIqz5Qn7/QO3XxwQAmTgM5mGtOWWoYoIfY/J3ONpc8swWDb7HavlGcYa7u/WPH9xySHfIMRAX6Yk8ZTtvgDnwKAHLi5e0XclVsP5xZxOPBDIKfn2mIs07Am9U5Su0Z1gMZ+g+5713Ybz0wm3t1d0RjEoQRhOSMcCpWt2Tz1tXyD9Gt9JOT+f0dcFVZHz7OwTBtXy/vqKqjkwnsY4nuX2eoMeNK8/+RgjYzbdwPvia5zweFPoO5aYFJ0PJOGUotrw8cvf4nQa8bO/esvLz36LUexxfb0HR5JGCX1dUm56XNelbnvqZkd+yPn08jOeXYbsdweqpqYu4PLkOzz7aMrt1RbPAcdvieOEbnhAq4SXH72iaJ6IkhFJ4lPXhqY11G3OdLGkzjXPTk543N2QzMZ0XU5dtKzOZ8ShZpFd4sY9n/96y6vPzvjFl1/y4uX3+cGPXrJcjNk+3aGtYjGLgYJ0csbJbMUkzXj/cEMmY9zARwqJwCWbWm6vc04vI37x818itct44qOt4OZqx/nZKa9evMRxHYQ93gz/6Lf/yd/9QfW//m/+2Y+FsiyWI959XpIkksBPUEYzW4U4BLRti+N4OCLBIUF3AqssSejgBx7CxIzHMZOZj1EBbtCRZDGHrcXxXeLEUhX1Mf8qQrzg2KrsVcE0mzOZhFg6qnrDbjswmWXsdj3aHrBotvs7kihlu32kVz1BEFLWe+qmwVpF11nC2OCHhtPzEaqTDMrgOwlRDEXR/Ib/2NQFrudTVwprJa6NKfYDWrXsDztkoGn6grvbPUmQMomTY9vdKNJkipaSQdZopRHKwSoFNiavckaZT6cGJlHCdDKl3ivKpiFbDOghI02yY6lHNPS2RZuacpCk0QjHM8Sj9JgzimOMa3H0QEfN4nKCmzhE44jW7JjOE4a+ZTFPmc0WFIeOIAyxQnwYeitmJ1MGzzKbeqSxR9cGKG1x8PFihRem6MFlkswJwwnnZy9puxrj1rSdQugI3/eo2oHHh5JBWSQSM0CazckLyf3TDqxDoxTbQ4PnJUymS3pRYWRD4Kb0vcJYi7YarRVFnhNFCZt1wTAItNGk44S8qijKnCBysFi0AqUGQsfDlxFdPRD6LsIKjJKAxHE1w9CT7wa6wsW0hoenB1pzwJMJo8gljl280MXNBrzUMl0F1HXHr//6wPrWIYqSD7FLF3RKXwtcRzD0LXqweMIn9GB1EmNth9WWruuZLeYIV1PWFX4kMbIBOSCkpOsN/dATpRLPcQl8Fz9wiKOA/ySZAPAv6pLl6oQkjfECF+H1LEyKrxMEAcaCNubDChOU6pAfYgbfFKyEEDiewVhDh+bWDhxsjwxA22NbXGhJ7KeMRgFgkE5AW4eE4ZhsFFG3ivxwfPgKKXE9l2wUkWUJZycLXM/lKn84Fr78lMEaequo2prtfs9bueWt3PKz9Vv+ev2WQ1+RJAl//Md/xOWLkw8SywhBgBf44A4MpmJQA8MgsKYjyXyW55dIxyV2PZajjDQEKTqs6lguV+z2hv1hIEhcmqri5t2WIJywOFlhLWyettxcH8j3PlKAJ1qGtqbpJa6T4hiHvlZoIxi0x+7Q0JQKzIfmc7fDDSRhIIj8EFfGdG2FtQNDZ9js1mhhGU1O8OKQp8MOaSMcNyBvCjabnKqsMUJTVgNFrinyiv1+Q1EX7A8H9vucth0w2sUgyOst13fvUFogcUmiiDgZU9cd+7JE+j7DUFMX5RHn1R0oVc+myjkUe7quP7Kuq93xEGNj2tZyd3PHYXNP2xXcb+75i5/8jPXjBo2g1BYjXF6dv6CvK9b1Gpn4RH6MH7hoPZAfKvZ1w66pebzf0Nc9vuNiA0uUrgi8iKeHG07mMyYnCdPVileXLwjiAeNpmnaDtA35ocIxlrCK8LyI7aahqBscT/ytce0DdsxYgyOP6lTkh62ntSSRz9l5RlXn9KpnGBmS7yX0DwWqM/StgKEHjmSPu5stvbLwYfj9JqsqOGZfjbUfClzH0tbpfMHpeEo5qlmcLJgulyThDCcMiBKP6+trtO744X0NwPYPfoBmy+Xlgpvbd3Rdw8cffRffd2ibkrJuOT2b0uo7+k6wWI0xvcP93QNh6CGFw4sXq6PtQA4U5QacgSg6inSqJ4fz+TnbzSOWEeHIo9zVpNkE8BmlGXV5PDD3asN8mdDsSkbJDOn13D8VWFfhuAGe9fno5Ut++eXXfPT6JWkywnMjmrolTRN2a0UYCaQrWJzEYHwuTj8l9EK6oaIqDzgy5ONXv0VxqDEalC5x5YS2Ucwm53R9hRWCusqJgilGaAZKnp52GO1g6ZGOSxSmnCxeMBqPuLn/Ej1A3ynSeMRonrDZ7bm/vaetOy5OP8b14frtFtdNuTib8bO/eM/Q+UymPg9XX5J6ktGoJxARzVASzSPccMVoltH1JV+++QW+lzIOx4RhyC9+9UvidIzrC1wREnoXOJ7lxYtT/Ah2m4rRZMHT/obNfsN4kpLGS7q2JC9qwjDGjxTWGqrCxw00+aHi9GzFZr0mcCek0QmLxYIoUtzebrg4P+flizO2hy2HbcX56hxVlfR9R90Kfvjd79PvS6reIKTmW999xrvrn3DYaL7z2ScYO3D3sMUPPV5ezOjbAUdECBUxXYR8/vYL/vAPf4/d7paH+wPf/91nvH9TIgh4+UnK/f09ZpA4iWa9zlmsxggc4tTj6SnnZz/7HD8U/IMf/Yd/9wfV//5/+K9+nC0EVd3g+i7LecYh35BmAVW9p2oV1jhoA64TYHVPW/f4nsR3XPphoG16ppMFQm7RumN1mpLvDH7gE8YOZ/NTfH9M3uQkI4lFogeFLwKMHpjPZpRlTToOyNJzrNuDVPSqQEqL58aUdYUrE7R2qNuGvnMoy5Ysm5BkPq4XkmQBh8OW5XKOI3yC0B5PE73PoCtcx0ENkr6rUUqjlUtxaIgiF9Vbqq6kbHu22wHPdUiCANNaPDel7TRlc8CIhq5uafOONHLp+g4zSKTnksYOQrpETkwYOUyyBEYKx/Wwfs+zixPGoxhFRRak9ENFGie0amDoCpzBwwtS2qohFJYo9chrRacHelsgPElV15ye+ZydJrx49pwm7xHGEIUefd8hXc1ymRHFPtpp2e82ZOmEIBQMrBFyh8EjzTKmkxFS+XhJxfrpjiRMyU4dvHBgkSwYZSMORcP85BI3SKmrJ6TomWQzHFnz8nTJJInIfI+zUcssLNCq5uFQYEkZig1OmDAYjbYDrivphpa6qomS4980CH2yWcL9ekOcJUj3ONoYLXBdj8CJcF1LEBxzb2XVI12D4xmKqiUKUqLMJZvF9KpglER4rgsotLVoI45GRtEySgWe6Lj7yqDaEencJxq7KAtN6+L6Ka3eU7cHhsHBWIljXZqqwXTw4uwVy/ESVyeU+xLPb0hHEUiJ43toazDC4jiSKA5BKDwR4rk+oFBDy386WgHwv5Z7HPfDRrlo8IRgxRJfj49oKmux5sjbM0ajVY/8zUbIfGjgS+LYJ4xC/nX9N1w1D2h7BPY3VcfQDzS5YvuUU+fHE/Xm8YDvB1g0dVMyWEU6SnE9ge85BIFLkoTEccJkMkVrS15U3LV7Qs/nq/qev8y/5GdPX/DTp6+o7MBqeULghx9axZqhH/ADn8l0RByHKGVQRtL1mrpteNo8sdsfaPuBLB1xtjpDtT1nqxl+IOhVz+WzMxbTKXE0JhsnfPT6hN/9vY/xhOH2zSN+GLM7FJQFBE7A4+2Gula8en3J6eIE3whU1/L12zX3DzltV4EA3wsoS4MaHCSKIi9pOpf5/BWrk5dI49GXPcI4WCuo24Fm0JTlhn5QBI7LevM1eVMReSMOVU7e5OwPB3Zlwbo6sCkreiHQroO20PWSquw5FGu2+y2DOb68jRVIR6PNQN9a6qZnsA2tbtnka8q+pOsUjnQouxLjW6JJRtVAXlYUVYuRHoem5tdvP+d+m4MbEWQ+eVewyVvmq485e/EJMpvhSI9QxtRDT43BDQIcVzJaLnj2asIogZOTc8aLBcuV5Fsfn/DZd3/E93/4nl603QAAIABJREFUx5ydv+Juc8+br94wHk+Jp1Nu1k+8294yNJrIt9xsbvjzn/+CZDTndHHO2E/YvLkhVmO6vudxXdB0Guk48Bv02jdfxf8vo3ocXCVwupzz7NnsuOWfCoaXHu2wp3UeEXsJpieKMgQ+0pXc3T3StBbpOB8Qah8A/x+oFMYYrAHpSKQQrE5mKFlTZw1ZOsZiOZmcs1yds1nfkiYOpxcZr3/xBMCfLwO8oKMfIMtG5NUDwmS8fvlduqHB8wN6VZBGS8bjGVGQ0TQF89kJceIThws2uz2TyRxtCx4e39EUPlGYIZTP2XLF0PV0aket9kjpEYc+SJe/+PP/l6YvqauSj16fouzAdDTlxbMVug8ocxfHN1w8O8PzPbpGMp7EKD2wXLzk8XGL62mscambHKs9knBKOvPYb9dE7jkfv/qUd+++oCwODKrg9PScqmzZbbacnk/pap9XH52y2e4oyzXDMLA/bHj27BVRNMVxBI4rOTk9J4gdHLfF9yf4gUXYMVVds1rN2BfvyNIJQvb0g8CqgMhPGaVTFsuI+9stWgfMVgGfv3nH+ckn+KOWprmhf3jiYmX4/d9/RXGjGIqau/U9MlTc3/2Km7sN+6qnHxJ++INPuL//krywrE6fMV0s+OLqb7h7fEc6SXGDAHSIlAGXz0+5vb/F80Jm03Nm2SUXz6bcPtwxHZ+jxYbdQVHVHZfPnrE6Sbi5fmI5HzN0DVdfP7A6GbHZNESJout2NGVH1+3xs1OmwQwZlPz8F7d866NP+OLqlovpBUYfaLuWr989sTibU9ctYSy5uX+PHzqMgxWzkc/d+o4kjkEI1vkdt+/esZhdcMiPB2DfDyjKHi9QxLFLEiUE7oR3D1cM3ZTpLKOotyB6Hh5v6O0ebST/6O//R3/3B9X/80//tx8bV2GlJEo7hk7y/GWA7xuGMmWyyuhaj7axhP4Ia1uiMEHpDuk6eGTMpimq33PY9jx/7XF/11BVFXEcEkaC3W2JF0ucOMLzS1wnousNoRPi+R1FYYjHPcKBtvN5f7VnvrSYPsGagCCI6HuXXh2vO7e7PVHi4vmSfK/p7BacgZOzFcNgmY6XSBGx267Rpv2wPe0ZZ6tjoWfkUZZHLWw28elMzaG0WCEJogRXpISex347ENmBOM14e/UAgO9CGsyoO81H370gCyYkMfihQ5b6eKFLm3csVilCtuw2LbK3CL9j6AQPjw9Ivyf0R9TWEAQuTTdQmgPbomAURrjSwY1Smt4yGEPb1GAcYn/OJPNZzASzyZzdrqRqap49OyWINONZQtN2xEGA6ms++vic3W6P5wt8X7Ft73lxseJpq5hMYg6HB4Ru6QyMIh/HqdmrnCDweX66oqorUi+h7grm5x6jScLT/QGQ1LsnTHVDu30HXcUk6phFmizSGB2x3nf0wscaiOKYfbEnjkKMUTjO8Vo7in2iJKOotiCOSJa6yYn8FE/6R5e9NEhPHEUMztHgpFBI18VzA9wkIUwjPJdjpEIpepVQVw2qVozDGWFqiaYuwkm5e+9wsjohSDVKtgjHAekiPeiHGq0VfW84tqQ8HGfCbHGK0Q77dcE4G+P5DjgSK4+ShnZQ9MoQxgmee9yadHWD73ksZhOU7sFIRsmUfxokAPzfIUinYzKJmc5GfI9XBFWCMRGOdLGYI0tSHjfLWP2hGALWCrQ+xgCiyEdIxfv+nsJUSBx2jzVmqHGsod47hL6LKyVNqck3A/tNcTwgTmZcfvSKk7MzIteDdiCQLqMsww0ilBBstyW7bUE/GO67glZY+qbj5OSUP/qjP2KUjXjz5i3b3QbpwHQ2YbFc0HYD200O9piTSlIfP+RYZpE+oT9lGFw0HqPphIvLE05Pl1jhs94OPNzlFNuO2fz5B/OQodzWPLy9QyjFxbPnCFcSTxK82DIw0IuUz79+pDMt04XH1+8e2O5bxtMAJQbUoLEd7B5qioM6IsSsQRAySmfc3j2wedgxTif4boAZKqyWROEUxxUEUUo2HfPm6Q13RUmYrnjcPrDdPuI4AX7g0fYlebFDqQbTDajOHjmSxgUpUbalV0dDnTagrcERIZ47QjNQ1DVNZ+iNYdCWdujZ5g9IV+D7Y5raHBWPqmNX5jxtDxzamlwpirah6XrcaIqfLrGOj595BNMxRhv6oWbfVLSmR1iw0qFH8e7qPXmz56svf8rPf/VT8ragL9Ycbq9Z3z7xeHPNX/yb/4df/fIXvLp8yWx+SjSOmY6O8obZfIF1IrLplMnEww4h89kFXd2xfb8nHGK6vmK9LeiVi5TukZ8qP6hOER8+b+IDAxWMAVc6vHh+QhQbWq/C/YGk6B7Y5fe0poVMwj5kGAxSOiijubvfUDct0vnmDfeNgvgD8koch1U+2NWyNGC08ng/vGe3u+PkYkHoW8q2IowkZbXh6bHmd++PwP9/KXbEaYh0Bg67jmyU4fgW15nTdhW73YEXF79N0/SsZufcvLsjTReo3udp+8TN7RVFfcvt/RV+cCTbfPryu4Rpw939A2k2YzwZUTY7gtBlu96TJA5FW3F5/oyy3bKYT+j7R4pGMR+9pugUh+KBi9MFrh0o84r8YAimEhFqXp19SprMmc2mlPUeo2PC2KNTdzgyBCsQeBjlk+83jCcht3dvcH2N7414eLxCG4iCGWfnS7748heU1VE3vTiJWO/WODJgu9uC2xGFE0J/ymZzRxQHzOYjqirnkN/jBz15XuBIH917uL4gTmO0SpHewMP6hqvrKx7ud/zoR7+PtT0P92tiT3Foduw2e377W3OeHivuH8/46Nsv2dQHktWYpte8eftzpMh4+fFziuI9ozCmaAri6cD9+g6kSxCkfPqtVzTdAw93WwKRMFukrNePDKpnvbllnGXcvL/H0mKwdLpmvd0imHDyHP783/yEj19/j9lsSjbyuLkaWJ2Oae0Vv/jrd6xOVjytb5iNL5nPFggqDtsbktUMHHh8vyWdzlm+Cvj6i/f0joMKDX/vH/5Dfv3rz/HwsG1Hs82pipah7SnUjt2hZDIb0w4909Dj5fkrtsWaw6HCd6doHtmXX9OULm0NXqwp6oLEPeHTb5/xxa+/Zj4/4dnLE3abnl61/ON/8B//3R9U/+Sf/48/tlriu6CGHS4BfTNQbhyWK0m+G9hvD8SxwHMHrN3hSsknH7/CWoeha+lbzelJhEPIdB7xcN0grOTsfEY8GfCExPc1N3cVo1HCYj7CuAojD6SpBUfiuhnd4LN+zPnsOyvub++5OJ9TDZZ2qOlUxz7fYwU40kG6Bj+UzBZjlIXTy1OkDHl4vGE6GqNMyWazR+ASRJr9pqdvDYfymjBIaBtNNglxZExnepJ5QNN1dJWh3FTHqz8Fh2pgkx/QAkbRjL4yBJ7i08+W+L7DNM64vIyQfo8xRw3nyXJMZxqy+Iy7u5rvf3ZO24ZHUPZ8TBx4PD2syXVOX+dIccR6SRsSBQFt1yJdl15ppCPougbfl7hWoFuFtT6bfUUvGkarkN1uwEiBH0coZUgTjyj0GdoIKT2mU5/tfosTSFwdoYUm8hNcxvgedK3DanyJ6znc79Zcnn7CkFvSUcTEX7AvH1lv7rHKI44nVE1N09d0qmddhchsSWMCHO+CuhGkSUQYjmg7yWiU4vouSmmGTtF3A57rEcUh0hHs9yXtUGOtS98NBL5kPllhrXPEgruCrj3mgJXqcT155IEql1CmdLbmcKgotyUoH6U6mi7nZLnkP/gn/x7j1HDYaiLfoytcshACmdA1A9LtieIQ1TU0hWKSTfEdgxgcAmfCODvSLZpeYxzBulpT6Q7tCxp6BmEZ+v4Ya0DTDy1JmBA4EdPRGFdohNVI4eB7EQKPfxpEAPwfdqBpe4bWpa57Zv0IX6Vgg+O2R4I1CikEWg248oiH+2bTaq1FCIvjWVo78H545NA1GGWR1hA6Ps3+OCgp1VMcSqySzKcxl2djXjw/o6s0m9stbz+/OmKbugEvjUjHGWmcEHs+nifxQ0mahAT+MedntMb3fJaLFZ5vCCLFaOqRjQJGk5jRJCYIJdKRNHXPzfUD1zd31E2PKyNG2YTFaspsGTGZTMjLmvUh5+3NHQ/r/GjUyQJaWh42DwwCmn7g6fYWxzOMlhmBH3F6fkrXlRzuH5iNIj755JTpRGL6nMBKJllKEEiGvscRIXbwyLc5vh+yPDmhbmue1ltOFqcsZzMcVxCnIVGSEEf/H3Vv8mtbmp55/b5v9e3u9z7N7e+NiIyMiGyc6bTTZblcUDQDJoVAMOEfYZQSAyTEAARCKgmZgRlQVRIwoIQQElUMsCy77HQ6MyMymtude7rd77367lsfg30zXaOawKC8daQz2NJZax+dtc67nvd5nt+CKlN0ZUPbtuyPBw77LT///Ave3u0I3QgfSd9WVKWiq23y4kjd5jiuhWGeCufLqiArdtR1g2X4SAOKosS2A4LYoyxzVGcym5/RdDW7/RbLsVFa4zgBQTSi7loalSONlvTQkiQFTVsjDR/LNmiqhunsjCj2aVXF3e0NTdVg2w6H7YEya3GC6IS0DmLaXpFXDVevrvnlX/8VWkjm40tsz0WYcDisWd5fc3P7ilW+oogt9mXKu9cpn33/exh+R9V0UJp40qVo9twdtizXa1QJWX5AaEld7aBTRP0IyzRYbUuKSmCYpwexvu/fB6p+/RJIIU/9p2gsQ/Ds6YThUGDEmsxOubm9o6lzVNuSdy2N2zCoAlzbwbId8rRhszlg2iZacZp/tQZ9uqb4NZXqfePAaBwzuHCoZkfml1O84IzDLieaTNhn3yDNlseXP+TJFy8B+Ol5iOpM6vaI6wywnNOmQPUwHofc3t0yGV4wHQ/IjlvqvCOIR1TtgUePzzFtRaOOJGnLIHrBRx9/m7arub9fM5wYvLn6FaE/QgvNcpkwHM057LYYtsVktKAoeuazh5TVDdIITxuLoiVJEnZpyq5d09oFWVFiYXD98hW7VYrvWby7fcnlgyckxYbpbIxtm6RHzXy+YBCNyYsNWbbHdT2kVVEUJX07ZDAcIK0WQ8ZUTULbvh/6peDu/pa2VTiezeXDMULW7DY52VHz4Ycf4ToxZdme7IRqT5E1RL6P70YIK6WsG3Rr8ebtV1w+Oud2+ZqLi0u+892PubvZYjsGaX5gvbmhbBR/53f/ENF1vLy6RYYXFCpjnd4RhZfslvdIMj54+AEfPF7w9OwRkWvQKoN4GNKpmvXmFXE0gTog8IfQ16jCJRz1rJcF08mMF08+oSpSHl48oih37I4ZXqi5ulkzGAXU6oDWNcf9CcTyzdcJ3//+xxyrV6SJxWQR0nU9nhOTHTtco8NRPqOLCevrJYetxapN+eH3X3C1XHH18gp7kJPkp+rAqtyzXyfEwQVZtePhw3MG446b5YbvfvtHSCtjfZ+x8J8zmrq0qqWuFXm1IYoXNFWL0BZNbRGGQxazCePhCNWWdG3J8r5lsz5wTA88evqQH3327/7rP6j+1//Vf/4TU5cMvAnUEYPIQQowcFneHRGdweOH5+i+Q2iI3CGuEeK6Dj0NhlHRNS2W0+AHDqK3iGKTQfSI2blgfBljKklX1YwmIeOJi9AFTaOQjqY62Gz2G7AbMGpsyyWKK4qDhxAFVhRQty2j8amSCW3StQ1trYmiiEOyQimIozlJmuB5kiJLT8xmnaJaiRdYbJY9mpSzi5j9rnt/7gJ6g5vVPZYbUNcNkePhWRZlVYFhEQQxcRTgWYL5JGYynzOYO8RTi7vbmm9/7KE7k4tHDxkPPRzfw7FPFKUnTz7h/PKcILT4+uVb/GFPr2vqVJAcU8J4jG/5HHYVkePiGTaGK1C6pykLDOkiHYnnBVRljkBjSBclNEl5wIpCZO9w+/aWBxdzbu/XfPD4E/arlKdPPkJVLcfkcKIUWR539yvCYEhVl1i2x3gwwsBgEJ/x+NEzurYH4fHdT3+Ln/7Fv0AIAyeMsH3N4ZDRVD1VkZFmWzrdIu0xtu8j3JRjZlL0OdfrhK/ebFDCou4kWbY7UZoahW27J9oUNnlen4J5hkEQBtimg2GYuJZFXTSY0jw9BDUNoTMi3ReEfsBoMOC4zQmsCM/0EbLH8U4eOlNIhDb4u3/wY378ey+IJm+5P15jujaT6ZDRWBFHPk1TsTsm1K1NGPeY0qUqQKsK24aybCjKBCF7XLenKGuavkF6mjSrKLKOJi/oihLftymKguM+wXc9bMOgq2tmoyGWKWmb/lRDo6EqM/6j9x7V//5+RVNKlLJRVMz6wcmfqq33NB3jN7zztquxDfm+5F/xPktFrztsx+Dn/T1v8lu6TuLYHr5j0Raa/aaibwscWzAajpiOAs7OJkzHMa5jofqKYBgynU+4XEx5/uQR88kYP3CJRwMMx0IYmvEoZnE248GDM2bzIZNJjBAdN7dvQHQMhtH7JH2I7i2U0pjmyZcmhcayIIyCk9JcN7RNR1211I2maXqKomW9ylguU+7XKbebI6+ur3l7s2G767lfZtzuNmhTYnoxadOhpUHdNijV4No2wog4Fh3SFIxHCw7bls0uZzgeMB64eKbEkgLLsnjw+AmT+ZS2rTCEiSNC7m637NIlTqw55DuWq4RvPl9zPCoM22W13FAeWvb3NRfTD/nxpz/gcP2Gr375Jemxo6o6qvp0X9K6pywLlHLx3BG2aaP6mrpNabqMOIo4XzyjKTV11WOaNm23o9cNSvX0SmIKl7YrUKpGaBNJSKcMkILh8JxhNMMxfQaDmMEgwLcdsiJFAYasqPI1VV2Tly2b5S3b1Z42r6nyjirvCOyIb33wMY+fPSPLK27urlFKIvuIrnMYjM+xwilmOGHkzpiaY6a+4Hwxpetskv0R1VREsyHSMKEXeKZEGw3bfAVK8PB8RuQ4dOuTB/d+XVI2PaYpTrVmWrwnRnGim72vPtW6R/cK29JMZiaVk3E8r8jrDVmdkNc5ab4mbwpcaREeDER/+jlto7m92WHazq87Bf4lRfXUlNH3p4oqhGBxNsKfNtzxGkmEIQPS4xXH4pqmvaVvfSQO33p12qj9X65mMjnDtk+WnLIs8YOIMBwQBWOk1Czml7iO5Ljd8+bNr3BCmygYMZ895uXLN6xWK6azMx4/esL+sKWoT6AQSzjMRhfE0ZhaNaw2W4SlOOzXCENjuZo06WhKi7pNGMQLWnXkbnmLG4anxgFTIgxFEFq8/OaKeGgy8GKEYXK7vCdJIR56bLc3dF1PFMYcD3scOyTN7zgm9xRFw/F4RHUGaVIjZAkYGKbDdOFSFjsOuwotFHnecLl4wuJsxqtXrzlbnFGkNb47QOuOILTJyyVoyWz0lKZsefR4zHFfojqHMJzQNhVt1xNGLrariMMJf/XTz5lMInwvYp9tmc9jNDZhFLG+T9AuPPz2iK+u/oIgmtLXDk27QZoefhxwdf+nfP11TiMN9CHj/nXO+fhDDPNUeYYBPTZa9nhuyPQs4IuvvqZrQn7rt77Du7dLpJHx7voV2nDxQo+ySkB0NG3NbDrl9auXCOFiujb7ZMvDJ1OurlYUeYXnuTx+fI7qUqTOsFTHIJixW+Uow+fZZ1PevnyLIz3ioU1bpwysc3arX3B7fYXjDjl//Ah7qNkuj/TYOISczWKqssd3TJ49e3gKktcKLRStvObdmz2PHjyj1y1FmfH00W8zGhX8+Z9+jmH1GIZJWRik5WvC2CYeufzwk78FZKr/4r/8T39iGwFNpdB9jW1EWEZEUyVMR48ZTUcciy1atPihh2dFuI7N/phTVS1JluEHNr//d3+AqWdc39zy4lsjXC/CcQ164WBri8vFBdgJZlgwDs8oNx3pQbGY+cTBQ/LmGj8I2S1rwiBCypph8IzlIeewTzB0iO46qrLAtVzKKmM4nKJqkzRbkRxTsvedjE8fveDqzQ7bloxGY6SwKcuGs/MIw7ROa/cyoet6XMfB83wsw2QQRUwGcxwjolE5jq8IwiH73Z7buy3zs5iPP7uk1xn79R2GsghjgZA2ih7HDKkqRdMcubh8hNQxoSv5xVff4PpQVjUCh6qG8fkzyqzD8aDKCiw3pNIS3UmKWtEHHa5nUJcS2+2xLJusKBhNYmzHI88rbNsmXRfElo/EIh6ckScplxeXFHnH7c0VSrVY2NS6IckOHI8JKMXhWGBKjWN6HA57OnVah01HEau7W8qqxg0M9sUGy4Gm2RC4IVV+oui4roPtelxMIw7ZATuOUH2F7wQgJZutwjJt4shHSInqFI7jIIUky3Isy8W0bExT0neaIkupsgLbcHAdC9OwaFWFZZuM4xm61biOhRZgmqe6IHRJK8CzY8zOJI56Pvnhh6zyLf/i53/CdnnP6y8FhqGpCoUhHcqyJYp82rJm/fZIWUqmCx/T6OiVwLE9BsOY0cRDmh15Up2QrCrDMQSedAgtB09KPBljOxIwcO2QyXCMLQWmNHBcD8NwyMsKKSWGtOiV4D/0Tp2kf7zf4TgCLUxMp/sNOvW0klSnOh1To/uerq0wDfEb3r1G0/c9ve7QpmLDnmNZYmibZJtSHloso2U2G/H88YLz+YA49hnPQnxnzGA44dHjZywuFywuZoyGQzzPJggDvMBHWgZd11NkOUVWkyUlWZZzOOw57k8hHtu28X0f0zx91uFwwnQ2J4rD9zVAgq7r3q9ZxWmAsgw838a2TTp1wg6nRU1WVkhMLMvEtA00iq6tMbRJ2yl6oyGrKq6vU969W/H27p7VNuWwy3hzfcfNqmCT1Vxv1mz3Nfv0pHZ7Axc3HDCM55ydj3j69JzHT54yCkOmA5dPPnnC8ydzAg/MoKEw79mVNyTFjmOxJ82PSGnjuD5lWbC835IXDR99+gl/8Pd/RFUfefPqHtX01G2O58bEZgxlC1VPk0GaNBRlTduAaUQY0sU0PKqyxnVNZtMZpmVRlTl13uEYAwy6E/q2h7qqEGaPUpIwnOJ6LkUm6Bqbi0uXwTCmbkGpjLJbk9YJvhOTHwrSrMP2LZJsR55uyPIlrU6o2oymrDBMmySv2d5v0bJGWD0SRRQP8YOIeDSk6U0s6XHx4AG9JRHOhFJLhN0zHQ3JdM7V/RtkB57hEHgWvhVye/dzWiXwzDPaZUNXK+7WOa2S/1IdlfE3PlVOA/6vsapaawLfZDDqKUjIzT3DaMrN7TeYRkPkhRRZii8DomZA25wsFavlnt2+QhgSDacg1XtEq6B/H6jqT+9pgeOYTC+HeI9C2rqk6zMenI3YHjZoZRO6F2x27/jt1ame6q8etAhZcXt9eB9AhNnMYTo6x2BAVTYEfkBXmQxiB0v6NKpFYmOaJpbp84Pv/SH/5h/8Ax49eMBXX77k7nbJcNRzPG6RRISDGWW1IwzGfPbt3zndv0pIsorxeEjohzRdzWAgWK03uM4E2/FBGHjmJyRZgmrBs3xif0TXOKw2O4Ql8XyHqq4JApe+bYmjgKZUqBb8UNKqgkE8ZTiYU9clnqdxPZvpPOL69jVJuuLrr94SBgar1T1heAr5xNGAroW27rCkw4tnTwlDg7u7OyzTR5oFVaEZxQGru1t031EVBnH4hE5mRJFJdii4mD7AtQX3NzXf+vjbKDp8x0b3OZZhcXe7pulCopnHF6//ghYHsx+hVYdpKhqVY5kTfD/k5t0t290Nv/jrP+f65p7Af4xhCywvIhxMuVr+iqJd4bkxh3xPFD2k7XKOh4rxzODd9QbLd7DdgCxPKMoM24vouiMPLp8ThC5tl6PNjk7t2W0KpITZfEFZJQjVY7slw+FjBl7I1a++QA9mDB+Muf7iC/KsYjqf8OXrK5oy4/nZM54/GbHf3OLYPpbwiTxJWya4Qci3n31EVVYcc3BMC2F2OL7Pfr3nfnXAdATnZ+cYuMxGD5EmNI3m5vYVDx9d0jQdk1mAMtZ4voXvjfjir1b8e//O34LV/z/5X/+Xn3TKQGsTOCkctmVQJJrj8ZZMVawPa1Rv4nlD0qRnvV3y+t0thu0T+hOqqufZk2+TZAWvXr5D2hW7XcVicc7t2zt0X5JlFQ020vVwmymLyOLRxWMkAcNJyGxxxqeffczmXvPlF9/geh37Q8I2zSjzDqVa6HtMJF1fIk2LvpEUeXbyd3VQpprANSnLhPlsSFs6CEPTNC1haNN14sQelgqhPaTQTMchVSHYbZf0XUfXKO5XNxwOFdOZw9g/pTNnZx8QRjFtvyFPdwhMbN/EsXzKzOKQHIlCB2G1HPcFghGmrXn55gtKGzbbjOEgwLM9yrrieFQ8uTBxteTx80fYjsvt1R1BFFJlDZ7Tk3cdrmgpkopBdEZVHzEsRZH2lLmir1wMo8HsHOquIW0qVustVVcxmA5olUKSEHiStncIvSHrVYugoGoETZFh2w7DwYymKXB9g+u3b1kurzm7GAECXZW0SY4lLXwvwrF88myNF9Zo2ZMcSqKRQ1dvaA4GujfpvQ4tLYzeZBhHpGn2G0593eRo3dMpRY+irU/YUik1gRdiYJzwughU37DfZcSRDaJlvUlIsxqsGmSOYQmULhHCQhkZSdbwq2/uWB1WBANBXmpqoFUlvutgSoFWCqU0bWPSKwOhfDzbxndt4jBgGA3xXR/6hsD3EVKjO4GlTVwpcQ0D17KRlsHwfEhdKVSj8V0P6JHCJPSGFEVDlhf43oi6PA1sUpj8B64PwP8mejQ1ju+impxJM8NjjEDSqRPS1DBMVNdC32Gc5KHfrP37XtOh+Hn1Fa/W7yjTlDLNMbXEMmA0CIiCAKO3EVgEA4coijFMnyCMMGwT2/M47Ev224IkrbhbbdkeU6q6pms6bNPE9xx838b3bOIwJI5jHMcBYWAaNmhoGkWa5vR9Q9uVqE6dUs1a03U9ddPS9epUOt7Up7Q6UDUVtugZBDaGDciOrmkRysAybQzbRhpQNSVdI3CRaFXSAbZpYdk2LSfvupIGVSMwZUA0iLFsh77XlE1LLy2TOaU0AAAgAElEQVSiUUAvNH3Tk9yvKPdbwjBiOBjjui5Z17LJGopCUuU2m2XDfl/jWA6Ba2NYJuOLKdFozOJsTtft+PP/+0853DUszsZ4gcXxkFHnBWBQtwbadNmnJVevdhR5T9+D1ibDYYzQHW1xUpurJmEQBjx5/IzJeIppdHieQEiFaQYgNL2uqOsEIQxcX+G6Bl2nSfM1hpCEsY3Witg7xzPGLO+3HA8Huq6jqkuSvEYYPk4c40QuTbOn7G7IyiWOPG2dhosLzucP8ISLtHqKYkddFEizJEk2FMUBWZXsju/w45DYGbA+3tHXFXbQg6exDRNZHSizEsc7w7eGRE0EWnNzf6RpT7VQ4r1HVAuBlCZSiPd44L+xt8SRg7tQrKZbympNXVdIwyRNcso8JysTXt6+prB7xt0MbXR0SrHd1EjTRPc9ghOrWwp5Qh6/r1eT4tR3Op4MuHgx421zg+lqlGjIs4pOG1hOTNMVDIchn77NAHj5rRFldcDzfRxH8+GLj1gtXyO09d56UWAYLoOxYHOnuTj7hE8++5RHj57y8cff5zuf/h4X549RjUeW73j16mvub1/x5PEz/NDg61evMKwQpVpE5/OtDx5yvfoFsh8znZ9RZR1PHj3lcCgZhkOms2fYnuawP+K5PqYh8DyFaiQ//p3fpao2rLdLwlGE600II4cwGJAec4bhhGEwp9c2Qiq8wGR/SJB42JaFZTdIsyZPa7Jyh+lAnqecTz/A81xUp3j8+PxU5ZiUeJ7Dg8szBuEYU0qquuTdVUpbK7L8QJ5tqcuEu3c5WpksHvrc3q9RysfzepqjxMKiq+DZ86cYrmK1W/P67SsC74xhPKduNvRCYVogtU2Z1BRlT9Wk1H1O2SXAgKRM8byIF89+yJNPnxHMwB1qmh6KUpIXa5JkS5FkDCYxGD2H8hrLgSS5Zbdf8+LDD6m6hCRN0b3Lb/3gx0RDg5urWwzpMBwE3C2vSbKCVpUc9xmua1HXGaJ3EJg8WDwmTcDwQuKzGCVTlndLvEGNMBuqPGc0lYjKZBqNOKx7PD/ADmrWyxVD+yGLuQ+WTXFcUjQtZd9hYLJc3XNY9/zej3+b5eaWyWyGwEJ1Hr0+UtRHFhcxzz98ym5Xkec54KI6getENFVNV1v82//GP/jXYlA1/1Vv+o7N3bslpmWiZYvtnEqhpWEyWFzgWCZFpTke706K53FP1xYMxyP2SYpBTppY/A9//E+IpiZOqPiTP2vxPZfVIaVvBaaoef7sEZSwiM65W6340e+94ObmNWNXMj8f8pc/e8V1nyLtJUEwQigIgw6798lMzU2bYNng5g7StGn6HD8PsYyIXlXYXoXh2OyymqqrUZWHZ3g4hsXN7h0Pzs7Iy4ZMF1RVRRxENK3NeH7Ou5tfsHiwwHIrun0LOmM0OsO3DMZzCc5Dtm3B0HdJckladND4TC9cnNBiNJtze1uz3tV0XcHh2DKZmeR9ynp/pGhKfG/B7foWbTboTjKPbZKqYBgIvMmO+2XO73zn2+ydLWaQMfEe8na1xZUun33sIvsMtzvnanVDXbU4tsLyS8aRz36dMx+N+frNHb2hT3Sv+jWL+YRo9CnH4zeEoSApDJ49XrDarCiLhNAYsrzLceyCm7vXzOdjetkym01o64rt+oaz8zPe7rc0LZjSxo9MlCVYHwrGs4ChE1JXOb49wJ3alGVNcbCxlMB0OjDBs8a4uqKoGto6QZg+gRtQZjuEZeB7A6TWSO2wPyxBVoTehNCXiNCjLUo82+OjD3wO6QY39Gm6Bml7qLSibZcMhj6PP1jQYWEaEfPxHFdoLEMShR62adLrnrKqeXf7DuFkdL1PninCcILlQtWlmL7BIBqSHDVKZSymM9pI4dgxbdthSIuq6CmqHdvlDUVVniwaXYspBIekRccCw2gJbAeThvF8Rq87qqL7mwtPm2jpYTkh3+k+xOs94FS9JUR/6nzsNV1TY/xadZIgEUgtMAz4s9VXbMQ9Wjf4rosd+eRpCUKyP7Ys1/dowHEd5mpOd7/BsROiKEOpjl73J0W717Rtj+oUo9GQhw/PWZyNmM0GTEYjbPtUM9PrjrbpKfKGzeZIlpcsVzs26z15UXJ9s0IjT8r5ez+tYxv4gYPue+qmoWya00CCOClqjosqaizLxHEcVFdSVyW2tOjb00ArkFimxLRNfHfOaBTjOBZaaIaWoG1q6rrjkMBul7B9tcYyTc7P50SBSav2JInNKBxgeTbzJ+coLaiES9+4dMJiEFZ8tOjIE4kpxoy/69LrjK5TNLWmaTq8OKSqaupNyra6oknfIN0xwowZemB125Pik2uEF9EqAcrB92IspyMe2IzGY5JdR5tX2FrjdBauYyM72NZLrChgOphjdDWFkYHlsk9qVvUWQ9agJYd9iYVCKcVgOsBwAoqyw5QzPNtAdjYfPv+ALE2pK4Fp9xhmS1FWqDKjD6AWNa4dMBue4bsjVJsiuz2qFPSGQ0+PdG18Q3A8rAlcF982OVYrcATL5c/ZCgM7cDHcAFcMKVa3COOAZTmMxw8xHQ+tGvrGQ9j2CY8q9Xuf6MmLKuG9lUUDPboXaBRSaAZxgONAWS+RjUWX3VMZmq6GsmzJtc1k+DFFcqR3FVK5tM1pgyGBXoDQ74+HPgW3JCcfrD4puFXZ0VY5u+0XmGLMp9/7Frfv1tjdiKYt8MOQkS9/c9laZkCW3TAcehiGwd3tDarz2Ocb7n+54YMPPsUdr9nlKx5/8iMmi3OaxsGwOg5dydurz+lbhzS5PwFuOrBjzWq156MXn1E/69kfbrDMAcNgxNXtPbdvG84vS6qswRIe2/WG0IlwnDOms5Dr65pW3fDm3S1PHn+K6xq0teDd7Q1e8JxwAAIH3xVIMq5fbrAcmy5q+PmX3zCeBidaV61w7QG+N8JyWt7dpic1uh+xGIYc9j3Pn1p88eVPGfrnvHjybep6i9IJ4XCGoOb66pa6g6ePH7O6O55If55gNPwuh0NKq3q+/OYv+PQHP8Cwa7p6zWwyoipWWLGB9sb0RkFaVXTlnrffvCYKXV5/85oPXnyfi4tHrHfXdJ2PMD2S7J5Pn3/CZA5/+dPXSEOxy1/h+DGyFpSDltBwOe56EmvNbHSO71e8efs1hhGg7Jp//s/+H/7O7/+QKjtyf7zifP6M1W3Oq1dfIKgZuEMQDsdNxu54z4fPv8d2mbBTLePxJT/76c8AzdnFkKopWK9W6F5wtnhBWtTM5mdIfcXdm5SuNWl1ynR+SVV+g8bh7u4KVYX89OvPGcweMA581utr6tLgze4bXoQLdusNaZbT9pJHZx9SqzV1UfP8g4iffvHXFLXNQgzoREbHisloyE9f/TVJWhBFQy5mE777rU/5+RefU7cm5w/OSDcZRlH8/zps/n95/SsV1f/2j/6bnxhui+F2BFGANgzqtqLtC5LiSN/nJ/VLu9iOR1mkdK2FY4/J8h3QIy2JGcDhuKWoNMKUGKZmd9gzDieYls3Lb97Qqx5hdigtWW1W3N4meFFLmje8u1qy31coCh48HUF3TlFI8jzjgw8e0BagCgOqDkdYNHXJ8+ff4vp6Szg08COgN5CGhTQamrpFYNAL8X6d6pFX6uRb7Y5UZcb5YsR2vUGVgsA1SZICM5ogAw9hDEiTJeu6oDMVV/c75mOHwWzKerNlNnuONi0+/3LNen+gVS374wbPGrFbdgwHgpdfXjOYWLimQ4vibnfENmviMCI5auaDMbgt19cb5ouHdAKmQ5NKKlTb8em45g9/3+G7P+j48DPwzIJnI81/8u9P+Xt/eE4vS9z+HDRklUKLliqt8f2MfN1wNp6Si5Tb7Tc0raAscuJBQFm1VG3LYPwITUpRNjRdTqcrLCumKhqULui6FkM6JAeB5/rE8ZBDsqJpa5KkRACRF2KYkKctRZHhezFaajzf4emLKW9fr0F3lEXOaBJQ1zZKV0yGU4pEYhgGw9g/DSmqRasOKWwQiqY9sei1lgyGHgiF6jtsV1I1LWWZMB5HeOYQ0TgMQ4ehH0EZ0ux76iTnzddLrt+u2e+OfPHlL/jlL79iuUzQGLT6lFKPhwFd13A8ZORpyXgQoVuFa8QYQiJ0j+paRsOYsjpyTO5RukRKkyjyiaMQ27YYDIYYhmY8DhiPIxzL4GLxCNuRaF0TxTZ/vzn90/unRkPb1jRpxawbMHAGCGGg3w9x779o6xxTSkzDAn1a+aM1jWp5mVxzKBp0byOEZDgIOL84IXkHwwjf94jCiOlsgmmadF2H73uoXmGYBqpXaDSWZZ8CakhU15HnBWmaURQ1SZqf0Iumie142LaLYbogDPr355NlGUr1WLaNlBKlFIYhUaqjLGuqqqVT+sQiEpK+PxW7C2HSdCc88MlPWYAQ2LaNZZo4ro3rmtiOQBo9htSgFXlekiQZed6wWSesNwnHpGS7SzkcU1TfnUIyoxDXlwxGNpbjo3obzw9x/AhtaBpdsz+eVnqm6TIcnp9+d2OB454GbcvqGcQetmmxfLel3iU8HkfMxia5TtkkBQib4eQh2h5R9lCLBsMSBK6P73ksFlNcO6bKbIqk57DeUR4KDGUwsFzm0ZzFxQcMwzH5/Z5kk9D1NqZpkRx23N9fkyUFTd2TFznHXYXUPlWVU2QVh21Kkq1PjHs8ehSKiij2GI8XzM5GBJFFPBjSI9G6Pa1juyFl3mObLnXe0/aSbbrCtk2atES0PV1vkTQdWV4grJDVPufzr7+h6GpaJRDKI3YChFKoCo6HlP0hRdomRZPS7Dvs1DhZJ1YlnTJPlDOt3/ebvq8K7rv3tWs9WoNl2pydDXCHCuc8wpEBshSovuTqsEd6EybzCeMHD1k8GOPcufRdR5F35GnHKe0v0UKehtVTNPOkTvf6/XEFcRzz7ONLmlHOLLK5f/eWujWJY5PvffgHWGbPdt3z6e0WgD8bK84W30GaDrbVgtIoZZJmCYKaojiQ5jcUaUHfmfyj/+kf8ebqmtXdlq+//pL1ckNV72gqzfGwJzmULM4lSfKOthG0bYftaqazMb5n8ublkrPLKa5vIOwVq+1rkqTDCyy+evmXVFWP5VhsN0uiYMLZ2TlFm5FkBfQ2+/092ui5eDin6Sp832eXbAijAXf3a5pGMhmMWN3fM5/MGYbnSHvLbveOxeySy7MPCYOYyWzIMb3nzZt7pqNnOLbPbPKELN9xt3vL7PyC0/5KU1Q1ya7kfD5mdgk3VyssV5KVGw5bk4++9ZSqVgg9AFy0yIgHHskxwzBbJnODv/yLX1KWDU+fzanqGtscnKwy84DVfYZpelTqHkXBYvwY1zYYT86YxGMs4TEYaLo04/x8frp3GC7DwfRUf1dXLOYzWt4yGV1wcf6QN69vePBoTpY2RMGEi8UHQInuQ4QqyHONcDM6KqRhcDY/47At6fWOxWKB6wZ4/kmt19pEyO69LSdBqSNV0fDLn71lthixmF+yXRXE8YC23eKbIbNJjB+PmC3G3K3XXEye8vTZQ26ubnh3lxAPp5TdjvH4KVE8Ic0LopHkeKwYBDEGgjJJGE5CjoeUkX+GVgLHsDhbDIhcj+s375Da59mLGddv77GJkH3Nb//O3wKE6n/3R//ZT9CKuunwXJ88P+JHJk1bU5Ytpq3R2qGueoRsuLtdUuU9pqNxLJO6NpBGh+eZJ+O6cmnbmq6BtpB4fk+Rl1i2S921bHa3OJ5H2RS0tQF9RBQOGMQLqqZnuy2pm4o0P60d0qrl+t0GVZfopuHszEO6PU3v4UYVbXfEMPXpeDXYlollWxiGTdNqjumegT9GmIIsS6CBrul49vgZsg5IVE0jLI7FPX7kULUFk8mAmy/v8YRg9iTicFBIAaooWK4KejRNJ8jbhkNywLRslLLpO5O63tG2CWl2ZLNbolQJJtRtQVc3eGFJus8YByPaLmcyjun7AU1ZctQZShT0WcPzYMfzM8Vdteerrze8/OLAZGLxvR/NOHvq8b//8zf85TcwjkNeX91hOfBgOuRwXTGeCh48+IztuuLl689pupzR4AwhIjbHHVVVMPAiTKOl7+Hm7p6qrnEcn7v7FZ0qcX2L1TohTQqE9gljk7Ioub+7wzJtukZgGJK+AzR0yqTrHJbLIwjBdrWhqUsMYTEbXZyCbqFD3w3o+gTLaLicPaLKO1SfgpZYloHvukjhMp8PMaTENGEyHpBlCYbpIg0X141Ik4w8zel1hdQeedJy/XbP9bs9725vubp7x6Ha0inYHNcUXUVZKVxzwCg+EbbyIqVtWtLsQNfX+J6H77h4lkNTNUh1Cq9JaYBuT5VmaXIyoUdDXGeAbVrkeYmULn2vCQIX1VZ4todtO6zXKza7awzbwLI8/q3mpI7+8XZHUeZ81j9l2A9wnYi+h647rYiFNBCAavP3RDRAa6TQNCj+dPsVqay5uBwyiG2m0xGe61JXHfv9kapq8DwP07So65q6qXFdF/u9soUA0zSwrdOKXLxngAvDpGkVeVGz2ezZ7TLyrOVwKEiTmuOx5uZ6w93thuvrezabHVVdYxgmQRhjWRaGYdD3PUqp98rV6V6jVEvfq5NKI04VZV3X0ysA8b52S6B7EOKE7Y3jgCgOiEKPwLcwLY3tSrzApe0qqqagqHLW2zVZnqN6jdaSsmzen39FkWsOx5rdISXJD6w2e+43W+5XB7abku32yGZ7JC81ZVmSZAe0dpCGQy8MgnjAoycLbPf0YGJIk1/86pZcjzi7/IjQC0nShiRvKcpTN+x8PCEwTQzd49qC6chjMR0xm3uMpqfAmR8MsYcRm7YmmIwxbJskqehaB6FdqqRE1ScL1P3tnu2uoy5d+taiqWt6pVCNwnUCRsNLirIkKzKGowlZnmDaDr4f0zSwWifkRU/bge9FJ+VeW7iGRHY1bVNRNAlZKZiOv8UgGlLmGfmxpT0WVOst56OYB+MnPJ1/SHJosO0B49GAIi/ZbHbUVY8hIlzPx3Ig7mLm+wWObZzuM7c5PdZvaqL4zTcFokcrfuNTdW3Jg4c+/thDL07Wrq4tiYMhWppkWYljCJbXX5NdVVzaF5jCxDQF21UGvTi5TziV+5+e/E4Dat/rEwZLC1zHYfpgBJc2VacoixxbKFQzoukr1usN0pR8drsH4M9nBll1RBqaotjRNw6PHj6h6Sq03rHbrqlrgy9+dkcovkcUB3z19Vc8eTLij/7h/8xmtSaIMn7213/Ccd8yigc4bstmd83F5Zy7uyW9CinLPYfjksHAJ69XpAk8fPAxTdMxGkfYbk9WHAjjAG3m1JViPhuzT1Ku7l9jmA5NVXE2eIrjuRii5fU3txzWJp9++oz7u3um4wXb9ZrheMLiMqZtWxqVcH2zxI8HCFOz2qxpy9P1aTuSri2oCsV8viAIfL78+qdUbXm6t4pzHCvCtgNG0YzxKCLP4MWT32V3fMfdu46Hj5+zO15zOG5wXZ/ZfHaqwjIFYRjSqSO310eCUHI8rtGtz0fffsZ+lzIeTzFNA9M2wKypSwthZDhxyHxxzt3uDqTA8xYY7kk5b7WkLgskAZ4nUX3O9r7G9x2KTHI5/wzTMGlrjR8aWA788ucvEXRUhcvlxTnpriUaOdSqIfRnLFdXHHcHzhePiWLB2zfXBIGFabrUlcC2LV48/4ib6yWeL3nz+oqnj77D+fmM27uX5FnGfPaE0djl/vaecOChuxKkg6FPD/nTcITpSWoFeZnQ95rzs2dMJzPy6p7QCxkPz2mqlOFgwMMnY7zAx3EFx+SOPEm4PHvB2XxKHNsUaUrkz7CNmDKvOJvNacolg0DwyXf+Fgyq//T//Ic/eXB+gSEEliWQWlPlHQKT2XSEZcdUdQOip9cVru0SxSFapJiWgee5DMYmXQu+E5AfSxyzZ+DHOJbEsDkhAa0BVaUwLYPkWGIgOexyjscNRVHRNh2OZ1OWABaGrSirirqqiMcjJPDkbILl9RzbHj8coVRG4IaY0sU1A47JEdeXFGWK6sH3Y4QnqOuC3i2ZXg457HOmixneIOLq7ZqLsw8pyoLZ2IKuZr0/4hsjPHlK+q32p0qsYlfTFoogNmhrSdkk5A2oOgMlKcuUvgfDUEjL5fa2YfbAp2kEdadZv0vRVUvgBKjCJfIdpNdx/XaNH1fE1pR3r4+oXPEouGfiNLzaNjSVILJ8hqOQyaMR/8c/u+If/+MVn/8iIXBtDtuEL7/ecf5swfaQMxybPHs6p8h8anHHcZvg+xG+2TOJfGgljy8umY9CsrxksykRZkYQ2uz3OdKUKCVY3Zd0nUQ1guP+tI7NsxrVNQyHAU2lsRgjhCZJjiANbq9z8qIiTxsWswWhP+FssaDXLcdjgWP7SKukKlosA6LIOf3d+Ca24aKVxjAlZ4vLU0IXgzyrqJscyzFo2oyyytHawHVtpDAx5ADXdwHNaD4gHHkIGybnMdLymIwHLC5HFG2OkJrZZIwpNWmWEA4mTCYj+h6KosFAM5mEFNUR33eYT6c8evCC6WSC7YJhGJimhR/6+F6M6gEtcVwPYfQYFpRFSZ6WNHVHlpbUTUtZ9yitWa42/MfBCID/cb9hEPsMiojAiAmCmF6f0tC90mig71p8F+jfr0R1j5Dws/KaZXWkqStsp8f3PNAW/y91b9IjS5am5z3H7Nhsbj6Ge8x3zJt5szKrsopV6G6p0RwgQRS11oYLbbTQ3+jfoIWkBZeiFlpIgEhABCG2ultAD2yyq7qqs3K4eae4Mfts83iOFhaV3NWKEFoGxMIREQiLCHe3z97vfd+nqQV1DY7bp8GVbtBa4Lo+vh8gpfUwkJoYpsQwLVqlqZoGzwtAPKihUiIME6UFaVpyfXvPzfU9b9984LtX77m6vuf+fs1+n5KlBXGckWUledFX2mRZz+/WWvcDrO8hjD4kZpoGUgqk7AvZ266j7Xr+u207aKUpi7IfrsuaIm9RnYnv+YxGQ+YH054aEzpEwwA/sPBCyWg8YDIdE0UDLLtHXDZNTVEUJGnJepOy2abcr2Lu7ves1hn7fU2a1TRtR6s0SZKw22cUhWB1n7Fax7RKkOUVlzcrdmlHZw54c7PmF199x4fbLWWjwXTIioI43mFg0FSaulH4gxClJZ47wHFtVsst96s1XSfpOo/tPieuEvKqpNjEhJbk6HRGVsd89fVXSEPSdQbbdcNuDbfLgjQWqNYmyzpMw6OpG3b7gqro2O83rJY70kSxXmbstxnC6CiqnPcX72l1hT9w6ZRJEPYJa0NbnBxO6ayaupPQ+UTRKYZlsd4sOZ495cXzj/H8gLo1uL7fIBzJvthhWRZHh48Qysf3Ak4ezbFdF+n0eO3l+4y5OMQQgrYzuLlNUcIC/gNdTes+ga+VplN9ZZWmYzgY8OzZE0xHsZf3JPUez+s7i7WTYPsdhiEZT4bMTk9xDgyO9IKuabm/q2i0iTBEX/b/sFX7zdFjsAENjmNzcBax9u7oNAgFz87PcLwxtci4uXvF4mTMJ293APzbQ03XtiRxQRAM2Sc7UBLDbtDK5Mn5pxhGyOOzx/zyV3/C6dnHnD8asdt94OzklC++eM6Xf/vXOHbAbDZiOHbRrYvreqRpQegfYZqK3XZP4IeYwqbVmrax8HyPwdCnrDr2u5KT45Me6lE1tK3JcHBEXif84ld/SVmUWGLE00cvKOuYsmg5P/oBVbtEqAjTMPF9h66rWcxGOKZLWdRo3SJNkyLPMVTQ27oCm1E0JU1jqiqmyFvQLW3TMJ0ccfVhzw8++TG//7v/gB9/9vd58vgjPnrxhGRfcvbkmMX8jGjScnFxzfzglLOnA7abnHAoSfJLhtEMz3W5vrpnPF5QtfdoFTIeLRhPx1xf36Nam9X6CiU25EXO7c09h8cuWkt8d8ButaSqNcU+ZTQMCUOPwBqiqbi+WuE4Bq2OyfOM4cinKBRd1+LaPpdX9wzHNml1S5kJdDPjxctTjo/GVHWBZTqMZyNubj5g6CFH8zF1nRL4M7So2OyvME2Ls+PHNFXLIJywWW9pm5JJNOf8yRn7ZcD5swF3d3cgc/KsQamcZF8znBwCIJ0eprRe7RiG/ftDVXWMRjamrMmLS3a7LbY0MejY3JZgLvnq2yuCUch6t6aoaqJwge9K4l3JdHqIZfhY0mEQjJgcddzf31EVHXQNw4HPRy//87/7g+q/+tf//A+vrzY4zohBGD3UyAh810MKiRcOUcRI08A0BNISOI6L7WhmC4/rdYEbGKxWeyzTZDYLGA0D3r9eYpoWwhK0rcb3fQxD4ziyp750DdJwEBLqwuDu7pbNOkeYFvtdhcAkiRtEVRLHGaqpKbOO+3WCPx5gCdBVQ5p0GGZLXmaEgwjDsMmLHOnYCCGhs0H3xdl3dyscKQgCyet3r3nx4gwhFXW+ZsiAIs7xRyOSXOE7mngXo0MLhU+TKOwAyiqlLQNMo6bqltjaom4qbMcgiBSr+4yucplMRnj+FM8a8eGbW0zT4enHUyb+mFE4o0XSlAoaC0obezjENg1enJ4yDSQftiWmHeEGHqu1xdffKv7oj28pmwHre41hdJycT+msAaNQ4qiQQehy/Nxlu83pmj2iq2hzm8OjMcvrDZYwODk9xTEDbKMjHES8vbhgMPDI4o4ib5F2zXq9oWkMooFHFI44mC9QXcN+lzMcHOG5Ey4v3+F7LlqBbXkUBaRpxSgaUJWaeJdTlRVJmtB1LWWp2cVrtJFgiRGDQUhd9j2KnuuhteD4+BjXlWy3a7SCzcN5+J5PmlV0nSYMhhiYtHXNZDRkOBpgPdRUVVVJNBgy8FxkZzL2TTzXJktzomjaBzi6DscdIqRN2uQ0eYlp2Vi2hWWaJPEeJ3AwTBPfC6nrst8QqBrXcanrqg+G0XvsHNemVTW13qFEhmlKRtGU9WZJUVdoLLb7LXkV07SK/2bUk6n+98LCcUKehafMowP0AzK1bTtU1ytMqq0fPJsVWgkMAxoaboEQChwAACAASURBVLuEtK2oqhLVCeoKLMt9UEZNLMtFCBtpBkjLxpIWlrQRRr/1qJuOtu0JPW2jaJq2915WFVpruq6jaZq+xsXQSMsEAW3X9UG4tqHrOgC0NjANu6dvKei6XrHqBw6NVoK6VnStRmBiIFFKILSJlA6mqTFE1w8qXdsHYASorqMoSuqq7i0RSlCWLUlasdvl7Ha9uhvvS9K4osgUXWtS1x2maeL5Ho5jY0hBUZZoBK4XIAwJpoFlW/3AbIMhDcqqpqorDEM8BJBy8qJkvdqxvNmyWWfskoy71ZKqyTiYT5lMDhDSJqsbqqaj0xplGAjLBssirmq07VJpwcX1NUWt6JTNepOT5zW2LRiPfBxpoBVk8Z7bm3uUGPHo2Y8xTEnbFFSNIqtylKkoqoK6zCjrijxrkJaLNjrieEe60SRrSZEnJHHO8j6hLCqSfcL1zZJOtGR5ynqVo5XPeDIhK2AdF/z61Tsur6/YrHcUqWa7vSWJ12SJ4nJ5R9k5HB+fYdqw2fd/k/lkTpamXF7cojpNUdfcrm6odMU+zxmHc6ydgxAOeV5zvy7ohNE/r/pnTw+1EP1A2TZNr6ZrzXjssTgK2BQb9nbO5NExZgtZneJPfY4mU4y2pU4kDiFDO0SsKupGsVrnNK1GaKNXUx/qqdAKQ/QwAeitB5Y0mZ663MhvydYFpjJJmoZSbDG1j7Qkjaj50YcCgG8/Oeejp3+P6cJmuUoZDmfkZQ8sydKaIi9Ybm7Z72LOT16QlwUfPfuY9XLDwfQE33d4/vxzfvazn1FUN30nsRkynoxRWrHavmG1vOP5k59wdHJIWedEkUPbFXiBz2q15erqEiltkn3F06cveff+O65v7pGuQHoVB5MhhjaRMuDR08ck+T3vLt5hhzsMCR8uP/Di04/Z7rccHZ+TbBUH8xl3y7dUdUySZNSli2FV3N7f4Zg2d7c7zs4OGYYHWMaArLjm8vKCw/kps7FFsm9Zb17x/t1XXHxYsV5fk8RLVpsl+23M+3drAn/I63dfEw1Ciqy3DFnGlMmBw4eLLfPFEfPDkKKsubpcM51HuK6N7Wqm0ae8/MER33z7a1x7xKc/+AKtGkR7hKky9ss1QlkUcUZXK0ZRBG1FUVUcLCYU5T2rZYJpappWEUU+liUfLDMu0bjk4rXBk8fPefnpM0xZc3lxj2357ItLLq+uaZqGL370Cft1icBGuoq6U7hujeosfN8HbRHvtqTxkiePntJVJbfbW+gGmM6W6+stWig6ZTEaTEnzS+JtxXQ6xbYtLpcVzx9/hGEXNPuKttUsN0ukpZGWoiwqlvcJbeswGrs0bcfJ4xOyRGE7ClWDow/56NkZ09GQv/x3f0I0DZHS5PXb1+zTjCRtsBwXQ5hMDnyePPmHfycG1d8apqqUYjgN8fyIqtZ0bc3Tj0/ZrnfcXsfYxpamyqirluFwwmYb43qa2cGMfXJLMHHZ7GLKUqN8B6EtiqLi0dNzsnyLZXlI2WCaNWHokGU7XD+iqWr2+x3D6YhWV4TRiLxqQLR9gbComY5NNmsb8o7RSU9jaHLI8hhXeoS+h9YV0jJQSAajiNV2gzBd0AZNVSFJMAyTUTBkGs4x0dhoRvaIqzdL/AOD2aHN5VdLmiZjMhwRRAH77SXjKCRXAnckGHQFznAIaoHveKxXd+S7AWJQ0wkD1x9TV3sG4YiurGnrkmpvcn4SoD95QtkV1F2MgWQxG/Dm37/l4GBOGNiUcUfZ1jhhSKpLXr0qyToLcy85PjnDkYpPnncEVzHnT074qrrHiQwsv8VVOc+OnjF2BjSi5P3dVzSFoEoMpHB49MilUXDy+IzF8QxTurz77i3DyKQuDaQdk8QmZdnhuh7xpiLZgR88YDqtHZttSlO1eL7N8cmM68slgd9zozerBNNyiHctQhvsdzmTaEbXmqzW78gyk65xezSqqajX4AcJ+0QwHi4IPI+ugckkQOuOskxwfYElHUbCxsQhzzNmM4tOmBhGw2ZzR5EpmrphMZ2gVIFrWXQyZ3l/xdnxRwhDk2cJZaUxLIcqazE6p8diJg1lXWGYLXQeSteEkUuXgRfMkVKyjffYokCQIGU/iG23K8o2x/VM6ipHa5vt/h5/4OCFEqVaVG6SxHm/Bnc80qxkOp/1CdO0+/51t7zJGY5Ccr+i8kq6zkBh9phf0YFWqK6jbZq+WEd3KA1/uX3FqsupygbP8xiEw16B1QZSGmijw7I16BYFGMKk6RTCFCitqZsORO+/rKoawzB6JVMr2ralrmuklGigaqqHgVQgdF/w07Vtb60xJG3T9b5iDZZloVQ/yFqmgeW5qJ73imkI6rrElha2I/F9F9/z6JQCHdE2ijQvSdKMtq5Rne4tAJ2kaluWyxX390tA43kOg9DDMDVatximiWnYFEVfhN80HXVdPzDd+0EbobFtD8MoUdQP1VkKHiwPWggM0+zbDIA0i9FK47kuQpmgJUjQhsLowMJFK0krBKrTmEIjpUWLQdW11KrBbDtsy8QLBK3oGB8c4Do2ZVERTkKKskCaBk7go4RB1cBdmlKtYpzNe8LNjjjekm6XuK6FsBxGwwmO1aJ1A6IkLzJ224ROdZwcjXny8RH3yzXvLq5YrTKkYSNF1TcntJLtfkerWubzIVWpuF+9Y7/PCLwJhmgBj7zo2G++xjQKTMvAsvvvAYe/+ncwGobIANIs47uLNUJqVNmwijMc3yQITa7vNnSNRPgac1sTRQ7bXYZCPNRR6e8V1f7mSqB1h+49IBhCYjmw1m+4irZMjFN2F9ek1wWzR8eYdkq9KxC1wqljptEJKi1Q3YCyKem0gq7FsHp/O/Q0Nw3oB9uJ6jNWKA3SthhMXYzJiLaqOD46QZour767IoyGtCL+/nX77u1bbG9AXXcMRxGi63j+g9/hr7/8Iy6vLphNFwxGPvtNimHaOFbJn/35n/DFFz9mvy97dGmecH3/C9b7r6E94Oz4OemdizZq7u5uOJq9pFUFr1+v+dFPPkXoFAXc3m7IsgbXH+AFAZ4dcrt8T16U/PhnL9kll7x/94Gutgg8D9PKKOuctgTDTLi6uaMthjw+f86XX/4ZqnVYzGYstxdc3v8ShGI8PMQdrCibewz7hFX8Fl12RMMTOm1StRWW7RIOItouJ8tu2Cwznj79GdGwY7vZghR89+ZXFMWW5bpiMZsRBBPcsKLurnn7FoIg5HA2IhoEfPn1NzjBgHX8BsQJmorpbEDV3LL9ILm7yTk/0yS5yeXVe9rZmMfnLpfvrzg8eoQpfbppQF76fP75j2j0kvv9FU3W4oUR+/2Sqmw5WTwiGg748tufMxmf0qk9TeXx8gfnZFnKp58r4n3Ccn2FaBe8/OQzEA1B5BLHr5jOJT//+a8o44if/O4J7y7uqNWeo9lTUPfcXlaEkeT45ID3r1vulx/IkopGmhTGl6x+2TCeHOP5Fm/fXLKYTBkNp1xd35AXPmqniQKfqtjgTQTCrKlSg0ePnxAnG7Sy8cMGZeZsi/eItGMYHfD+7QcCd0KrW7JlzNMzn67xefPNBT/87DPcUcivfvGW4UhwdbUlDEJaEoSUZIXzH2PG/I9y/FZF9X/9F//DHxb1hrS6p2lKmkbQVgZ3t3fMDiI+XL9CNybDQUiWVqRFheE0IBSbVYHSNaYSzKc+TZljCkXXtiwWAzqt0drGFObDer+hbgo6ZdCqBsNyEZbC9R3ipMb1AkzpUDUlptDE2466rVgcjkjKhkaWmAKkGZFUOQP3EFVp2rY3cFd6C1aFUgLXtXGkpOkU46MFy/WKNEs4PDlC656l6wQe3cbkyfkBN+sdk5MRRWxyd7MhbQvuN7ecTs/xfYFdBzSGS15tqaqCIIS8yZlOjwFI4gzfC3GlizQUnjXE0CVJnDGYRuzSNbt1gmnb5FnCYnqEE4wpGnj60RTZWZweHRPvM56++AzHG9GJBsvoKPOC5e47FqdPyfKWJ88eUasL6qrk0F1we5eQGSVJdYOhK9Ibm1GwYHowxpvYDKI+xLZc3XN2NiaMBlzf5Fxcvmc2GZLsFW0lyLMKgfdwEWnJ0obry3tM4TM7sHn0+LCvdRFmbwSv4e5mTxBExNsCKRzqqmO93mKaEmlD4HtMJjMsR6OUwPdDjk5CtpsM0+lTuKrre1mLYoPtaLIspWoSDs8cNCmjkcenP/iEpu4ospLQD1gcHjKeRKi6wjBNLClQysC2XCaTkJvlPfs0J8sbDKNjeXfHyeGc4dDBtvuvf7Q4RumOmr53sSs1YRBwv7mmUx2uEaKwSPIYJQyk9PB8j6JM2e+3CMNDSkGW9WGiMu2gculqk6puWW22JGlCWRjoRpLuK/67syMA/vnqBteDY2fK0A4xLQfV0A9pWmEYgroo0Rpsx8GSEm/g04wkuCZNUzM/mPH4yZzZgUc09HB9C8MQdOqh3kr2PZXGA0+yqhtMKb9XsaTsk/aW1a9jTVNiGOZDV21/f9s0LV3bIYRJNIhYLOZEgxBLSizLxvMdbMekrgtU12BJA9OU/eq+KOlaTVW2oPphFy0o84p4n1BXDUVRsNvuyNICgcCSfU2eaYLr9udWN72FwXF7qlcQOnz2w+f88IuPeq65JYnjmLwoaLoGBBiWRFo2tiOxHBNDWHStpq5r2tYArAf/rImU9veqseO4hEFfwWWaBoZ0EKZFq1rarqHrFF0rqLuWoilpqoqu7gf8pmkwhYkpDFAKyxDoTlNlDV0taBuT7TYjL2uUNkmzkiLvoNPYdosbCNzARRoSSwjcoLevWNLDHwxxHJPhyOb4ZMooGjAdTwgHAb7t8Q/+4D/jv/6n/5hHH094/NFz5otDpuMZp4tToijCdl0MEWAZPgYgRa+ab1Y5bdNR5YI06dDapKzbB3XdxrcWHE8XDMKQWpcIF+5XMctlzHZ3h2E2GJbPZpsSxwlVobl4e8P7Nzfcvt7yODwiyRLW2xiND6ZEqJ7oA32myjAMtGrp2h4q47gmT548QtmKdLjlNv6SyzfvSfN78qwi1EPauINSMl88Zhdoiixmqoc4tmR5V1BWIAwLeof3977o/meq7200AOagZRW85st337JOrwksG9P0SeqYvF0z8KZ8/rD6v/nJczbxJfe3a8ajARdv3nFzvcNxfaoyQ3QBj89/SOgtKPMUw3BpVcy7txfYrub+/grPifDcOZbbcHz8A9rK4+LyNdHIwDWP6SqPfbzB86b4A5+2bvn22w9c3S55+vE5na7RhqJuK5SWWPYEdMf7725xLAulLD5++ZSygq+//hVVVnIwPUCaBk8eP+bi4gOePeTkdIypQnbpKyxpgbIRQuE69MjtVUroGUgz5PjknHcfXrFL13jBiBcvnqI6jeoE52dHHJ0ecnX5BikDijZlH695/uRTPv/iKU0bM5vNUORs7hyefDTl1Xdf9YpzdcXtdcJ47DOdROzjW5IkZTwZUNcp282GcGBgSRvp1EipGQRzXr//95ydPaFuMla3FePRAR9uv6LMcoq8ZTiOCByDbXxLvheEgUmXD8nLDUWREw0nfPjwLccnpyhVc3d3x3K1pCxMppMxwmy5vVlR1zv++q/e4gYtm23GLklZLF5wejbg5qaHJkzCR0TBEYZVsVqtmM/7vtbDkyNuV5ecnj3j4CDg5jLDczyiyMUQDaptUKXD6dkJdZYR+g5dF2Poltv3W1xvwnTxCETagyzuvqMocoLI53b9a/LM4uB4RJ7kpMkSyxnwydNnDKI9y+Was9NHVLrh7n5DWSqk09F0OQfzMUmSkKY7Li+v+IPf/6d/JxTV3zqo/k//7H/8Q9Xa5JmmawWz6JDNMsZ1bVApg8GMZL/hyaMz6sqm1gUnT0LifU2VG0SuiWP4HIwHBGZI5M2wTQfpFNQ1KBq8wEUaBnVdY7mCVtU0oiQYDqjqjjQpcPySrE7oWokWW1Rnsb7PGIVj2qZGGZImk7iNx8njI/Imp9tWdEqxS64xXYXpSJpG4jkRdbFHt4qiMEjbDXVTIWrwAgdDu6SbhqYF0TTotiVONd7YY7lZ404NposJ1B2TE0leB+RpTOd55NU9Td0iTUlRdKAygshCqRZh5hjUNHXHyfwZbmCSFBXXN9/heiGWeYDRQpG1uDObycEIW8bc3dzjGDb7JCOyQn76+7/Dr375N2T7e9yRgww8nEF/F11mW4Z2xGZ5yycvf5fZ7Ad88/o7wlGKpU1m0VOOTj/jkx+dYzMm3sagS3ZxS1YLXMdHd0OKoiZd31PX/XqsrirQLnVuYEmTIitZ31aMohmWMSFNYlb3Bav7HNNuSdIdy+USgUkQWNRNhikiDAG2LTg46qt8prMBli1QuiEaGMxmQ8Ko763L8z7TIC0ToVvGEwfb6TAtiyCSNGKJ77oEgYM0bKbTMY5rMJ5EmLLu10Keg0YhDQ/bdBgOPJLdisfnh3i2w8HMInIdRv6Y0bBHA1pOb9fIih3T2YKWhrpJ+y7L0zNMS5LmCXUR0+Gwje9puhJDCja7NZ2qabqMNClxHIlhGiT7gmzXkO1rtBJUZUUYhcRpjOv2IAcqyX97OgPgLwKPo+MBK53xanfBnVUwsAYYHVRdRasb8iRFtZrRcIRhG7yWW9rQ5Oj4iP1+S1lm3w+b0rKwHRvDNHC9Hk/r+T6u52NIEw1Ytv2gXvHgHzWRUiIMA9u2MaWFaZjfh7rQBp7n4Do2oe/1nrrIZzod8tOf/YSz83OGw4DROGAQ+gShTxD4WJaFRtO2HZalWSwijo5mLI4mHJ/MODmZMp2GjEY+x0dzDuYzfN/B8y3Cgct8MeT07JDzR0e8+OSEjz4+w7JMdtuEtjXIspbtJuPmcsMv/+Y1r1/fEsc1Wd6gAMeze8VVqB7GqU20MumU6qu/DLNnwesGpWuarqZtWzQdXds+eGQLlNJo0aF1iRQ2UjiARpsaYSjsh6G01tB0fXis6Wo63SJMA4QkLxrSLKNta0Dj2BZoRVO2mLq/Yeg6qHJNXUua1kRoi/F4ymI+65ny6RrDMhgGY4Zhr/h7jsl8Puf8/IDFgUteJPz5v/0rfvnrS/IKHj+d80/+yU/5L/7xz3jy0QhhGvihRRAldFWN0bnoGpJ9zS6p2KYlVZtjWwahP0DVLoEccnI0IW8T3r1/TatKmqrF1JpBFOK5IUVS05VW3+hitMwXY0aTAH/gcDSac+odonQHWJS12XesadVTo4RACOMBy1vTNR1KaSwbDg8npG3Mn3/3c9KdxYsXLzFszatXF7x9f8F6k7GrGgpZUicNSZXSBHuCfcTtdUbTCAxTIHhoAED8Jr/Vh6l+E7MyBIOFQzzY8ParNQfzA1pjy4fXH9ivrnj19TWePOb3thkA/9rbsr3TDMMhVxdL9sU70C5PnnzGfHrMzd1rPlxeMY6mrO9X+GHIwcGU+bHL8i5HdYq8qAkHPrYVsd2mRFHE1fWKwLdJ8wtc16ZpU9KCngY1OcCwc95cvMYPBhTtjqKuGYRTttsV2+SOfGsS2D6uV/P0o49YrjOqvOXs9JgwjBCGYBN/4MP1BdNZf55lPuSzz3/CLnuPwYTnL8558+Y9VRvz9u01TR2xOF4QuueYckxa3XC/jHn5yWdIOyHeKI6PnxIGDpdXFfODxywWIVp77FYt88MBYRRQZwcoZVAWLXGcEvhDbq42mIbD1fs1w2hE1zWUZUyebfHcgGgQ9qS21kRon+FggTBKVDfg6dNT3r17j+M4DEdD0qIXUwwpKLKc+eEAx1XE64YiN/j4+ce8efUGzwlZHDxFSINOdyRpRpxc8OFiyfHJE4LAw7I78nLbe3/zPfP5EY9OT6ialNvVjvGhzWqVoUSMa9t41pD9tmM40VxcXCBkw5v3b3n05FP22T3r/T0Sn5P5Sz56Mefu5g7HDjk/f8TBeMZ4YjMLfJaXW9592BD4I/IGQmtOUeqeatduiDcGXVshzIK6zvDtT1gcTliutgSDGaNJyCbOMDFpyobVuiLOb1klioE3Z3pUcPH+iiTZUFUlR4en2NIlCCN+/KP/H5Cp/tn/8t//YVnuKYsWS/RoPATM5xZ+aDAaD7i9ShhEJuPpgPNHj1mt3/Fo8YRPnhz2FBVp0VYBo7GHtDu00GD1iX3HMcnLhH2eIKXBaDhnt71mMjwjSwvSbcJ4YqFFhx94GFZCspFISxMOWra7jvGoJzxZhuLqOuPwSNKVK04Xj0mSLfs4JziQJHmNwKerTHRbk8Qxvh1iBTamshiYFrfX98RVTMee0JwRnUy4uH3P0fkB+XaHtBwGgxlWWSM9SbwXpPsY04OmjLFah3E0piwy8rxgYIT44wF1oyiThpGUlNqkTHIsu6E19gh3iG4dgtDGscCTHnUnuLi5YBwGDMMRphVyt7kgOAh5/dUVw5GmVC1tpylUynadMx5aWAFs9zVeOGZ4qLm5XSKdHC1SVquW2eKIXf6Wokx49+4G202JhgZu6HF7v6OrJEK3rLeXZDuNbbtUTYxqDTbrLY7jMBo7xHFC3QgGYUia7yj3JrXeoRuTShc4VsTqXvHsxYJxNEHYDeHYocokrW45/3hINK0whUWcFECDH0gOFhHIHG0UjMZRjxtdCMKJICt3xMUeU4LtddiWR1vOmEwitps1F2/eU6VNX6XT1FS5IstTPL9kNJxjmhLLrVmcDGlVRlnA2XnE4eIptmuS5RleGFK3fape2g6RN+Lm3R1jb0LgTLlb3rNar+m0QtlOH94wWoqqpmpqyiohzwxsx2U+P0c3Bl3uIhuLYDDicH6A49kcHY6whIs0LUbRgPEw4OmTY/7Lh6vlv8w7mtxA1SbhcITn+WxFy6tsyZv8hm/iKzwlcU0D05G8c1JWbcZuv+Pu9oogsHn2/BHj8ZSybmlraBtBXWmaBlrVJ9+rWqGUoFP0IAFtoDR9EEyYDwGu/rFSmqruVUMQmKaJ7wWEQc+lt22DtmvYbGIcZ4DrDPnm62+5uPjQI5GFxHZcBtGAxWLG4eGU0/M5p6dzDo9nnJ0eMp9POD1d8PjxKbPpiMFwQDgICCOfKArxfA/DMLCkhW3baKUJ/AhDmKyWa+q6xJAGWV6SpCXClJi2xJAGlmcjbZuu3/ziuyFhMMCxnd4WwUP1Fz3x6zdNAwITgYHW0LZ9SEQ82COKoqYqW5qmoapLuq7FFD2vHkMgpIHjWfiBgxvYOK6N7di0nSIrepXYsW0MadFpQdUoWiVoNZRtR912aAGGlFhSYjzYPPI8Y79asbxfU9Zgy4BGaZSp8Ac+0vlNgCvj5mrN3XJDlmXcXn9gfXsDrSKOt/zff/xv+L/+zR+x3nyH52UMvYCBHeIqA5XlTAces4Mpi+kMafo0rcLUikeHcwZmx36zYrnvSFJN4IwRQrPZJOjaZrdJ8aIRniep6xrdwnZVUhUC17MIHQ83dqjKjqo1H6qpTHqSaf9/6G8YFF3T0jb1Q4eqSVUmXK0ueZ+uePPVkusPW1RtEfgmg7HN7GSBP3HJqxzdDjjwjojflsw45G6ZUncdhgFos68W6Cfj7697fTuWQKGwQoNi1PDy5eeE3oCry+9YrxR/78f/EM8TpFXMP4h7+fVPJjGnj094c/GB5e6Ow6PHnJwOuV+tsO0RWaoRosbzJR89/wgt1rx5d01R1GDF6FwwGHlc3f6K7T7n/HTOxc0FdVswmHQMwjlpvsbzhzh+zW5/TVdaBN4QupzdakM4sbhfCmyjY2j7WIyYLyy8Ucerd19TNS6zyYRvvn7FJBrhBx7x3T0n51OECdISnEY9gVFYgrtVwWDo8uabt3z+8hHx7hbfn/Di5Ue47pQ02zEYH7KIxsyjKfV6y9XFG67ub8iyjKHvcb9eIaRDVWviZMluv+Hw6JyLd2+4ud7x5OkxTVMRDjxmBxPOFi85Pz2hSDOUKFC1z/OPHrPd7eh0wnpdk6eKu/sbTuc/pFbvMIhwfbi90Pz+3/8JX371F2zWO1zPZBtfEToHgCZJ79CqZpNsiIZztquEl89+yvNPnmD5NpYekJYbtCEY+B6O4zKfnXOwsPnbv/kVp8dPca1B3xvueUyGcxrhIZ2Oumwo1Q5bJkhcWhFweBJy8eFrqjZHy4zJ5Jz9fo1tDqFr6YSmTCwC32Y8OsC0W96+e8XQO2UYjPCiZ3z88ad4ssdx32xeMZy+IJpq7m7fYzkj0nqNECGHR4dURcnnn/w+QRiyXu6YTw8xvT273ZIWyNoKw7LQdsHXX73DtA3SbMd6lfPs6Qs8z0e3HWEkubl9x3/yO383FNXf6lFNtxl+IJlELvG+pEhqTk9P2e3WTA5s9smGxeGcqsw5PonYpDGDgcluU2OpCWUtcFyXdZ4SaJ9BKHHDiO3WJN3cYk5NUOBaLpqCzfoG15pTpClpvGMQzDCkpi5rsqpBWoJB5FDlIJ2O2Swgy2N8LbFtxfPnM376ezP+6P9MCIJD1vcXRDONaBxc08DzXG7e3zLwJZ4zxAvAaG3SZE/jSfCG5FVB3dSYToaxN/BEwPWHLZZlAga7XYyqcmzbw7csHNfldnWJF1hI2yYpYmzbYBi5dBo2uzW26ZEJk2WSMxgvQNsss4TBYA5tRtlkGCX4lsd6s8Yau/gDn87QFCrGs13Onh6zXm0xVEXRtezzDV1loGg5WxxSF4rhbMjRszHX71dcv07whyFRN+b4aMG31Ya7+1tMpYmv9ozHAZP5nOvlkk716epGJHz9zQ2jMCAajljua+pKIGqXpsqRI4e6CVgczjieG3y4Szg9GxDvSs6fBKzvJU1uIUc1ftCx3e5J7Irh0KerNdFUcRhGXL9fMxxHGCLHtg1G0ZSDhYsfeNzeJYAijCo8xyMYdAhK2qbDtR3GE58qsahzxW53w37lE+8y5gcRT548ZrPL+yqVWuFgk+1LfKdjcejRtB1109C18OjJDDAQsmQ8DXj05AV1U/Llt7/C9Tvq3GSz3WFaJm1rsttkVG2BbRHwHgAAIABJREFUQFJVOeFghB04NJ2myR08C5A+zkhS54Jf/Plb6jpnPrcRjWI6nOMGFsPIoWkdhJlzPpnT1i1KSNbLAhYBAO7wACnt3s/c9rx7DEGa7knyjP1+x1dhh+96dNkNza7DMEzCQcBwcoAlDfZxhSkVpmFiOT0lCiEp6wqJwLbdvoqKfgDrOkVdN33QSfdr8K7rHuwBBhrdDxJCoJSiaRriOCF9SOwLQe+hrRtub/+UumpI4hjXdXEdr1+nmsZvKjL70FWjAONBwTXo2gatFVKaqAeLQ6d6UpkQveqpVd8W0A+SHZ1WmNLG9wKcIKJpWyyzL4gvqp6EZVoSx3UxH34Xw+lJR0Ve9I8N43s7w2+qs4QwkIaJafYffZCsRRvGg11C45kSU1p9r6tjIwSUZUnTNICmazu0Ulieg+c5eL6LbfX1U3VVUVc1bdNRNy1VXfXWgU59fz6GEJiGQoiKqikfPmfieQFVozEdl5FnY0kXwzTI0pQsTfvasaJCmpLJ+IQDz2U8Ddntt1xf3XD5bs+f/z8/p6sLZoMB08UBuR6hvCHRYEIUtUzPUmaTCXdXe969/47nx3M0gmgQcnYy5d2bV1xuS8JHExZORCADrm52ZFVNqxR1XVHe3mJ0NmXRYluS4chlH9cYK8ngaIpr22RthhAmphT8pqusj09plBYIIR/CTn2lkDT6PuEsqdmUGdHcpW47NrsKLzdpak0R7wgixT5W5Oot39S/hl2LHfog+psxQxgooTG+j/z/B2/sb7yyaBhFUz77vY/ZpXe8ev1X7Fc+T54ec3H5nuHYo9XZ99dL0Z3w1VfvcMKaoXRZrhPo+tfO692X2NLgkxc/Jksa1ps9SdyAshi4I6KDBX/63V/wPJTUWYoyNd++ueVgHCCUicpHHJ2/xNIfyIo7NuuEYBDRODnXuxXB0CYp1tS5pNllTI5Oubi9xvF8dBuQlQXlTmDNA8r9ksePpyAy5sMzHAGbeMfh5CdcvP9XzMOOk9EXRG7Ni5/+gM3NDV/8oz/g6dkZIjcobYd4/x5VD/j4aEHn5Nxcf8suHfGf/uwPWK7/But6z9HZE7767hWfvXxMnq/omgikRSsruqbg8fyIm6tfU5Y5aPj05Sf8+tdf4dhL1m8rbG/AQRjw6PwpV3dfITuL9bbiePERtguHkzlKbrl6f41rCYbDEa35lrZ9jOUKshjOhsdc3/0ZKIdkX/CjL35IHO85O37EZnvLapMTOg77rMWLcupGEQYjhLTQdcNHzx4hhMHP//pP6RqPuoJ9fM3T85e0Kufd3QeEaSDKHNmUjAKLPJminJbFecbt3Z603NA0ChuXQn4ALbGcEK3Akg5Fc82r14Inj78gLdf40ZRffPvHePopk8U9Zb5BGoqrD0uG4xfcr75FdTNG05C8KJktQoaDc5J0yWh0yB/98b/k8OQRQRAhLYvL+w1lPuRgPGE0Mvn13/6a2TTkYB7SqA2qaTiYj9hucz55ec7t9QfevPuGuvqt4+H/p8dvVVT/j3/xP/8hjYNhNLx4cYZt20RDgyCwsYwBF283fPaDj/ClT7zbIGixxYRxOOJHP3pGvMtYbi4YjSXT8RFFWvHuzSvibcYgsKnaGtPsGeqqLcl3krbO0a1FGBhE05A8rwkHLp9//imr+4RwYKBUh2laRGOL2XBBlVmsl1vmiylV6VGUOw7PoSwNLNtkv24YDhyyeEPg9T6yquiwDYMk3iItl6QtKNsST/ugDO6bDZ4WBJYkrxvyMqFtC6q2wrBAaImqWjSwTXd0KKq6RRoGdB0Df0ijwbAgMnzKrn8DNg2LpKhRWtFV/WrY1C1FVjH0D5iMpuyKPa5vo+uKIk2YjscczKZURU1gB6S7AsOoMWWAa4/RVcZ4OKEoDPzBgGRbMIrOiFc5k5nHZLYgLe/RqqDNIo4Wh6RVTpltWO63xKkiTxqu11f43pgsb7lJ15h2S10XzCZj2tri7PEZIHn/+gpHhL3Fom5AQlsKcmLa2kSbOW5QEAxCtJ3Qli7bmz1KKFxf4dsSbVY4botp1ex2GzzXpmrifhWrLeL8CssyaYsIAxvVdbi2gW97jAdPGQ/HWLYiSbeMJwOef/yMuiuJkwxhWEg3Z7fLETwkzhsDy3JxHB/dWgT+mLyK0aJBtZKybHh78SWtSlFdxXq5IxzbjMYjbL+nJo3GU4ShaBuTpipJ04y2bdCqxBYWgTPGFwHZNmU+HfKzH77k9GjK86enOKVmaB3hGQHnC4/PT4bcXa5oWonjD5FOyH8le2b4/1ZJpO3iuQMQFtLxMCxJq1qapg8UgsL1HCzbZTSdEE1G2I6L1gZtB2hJ22k6DXlWkuVlv9Z+SPe3XUfTtfy/1L1Zr2Vpnt71e9+13jXveThjnJgjMyszO7Mmt+nB7W7LGHEBSFyA5C/THwCBZO4agwQWEsJCiEsk27IMTbfpqqzKrMrKrIzxxIkz7XnvNY8vF2vHyfZN38BFs6UthU5E7GGdPTzr+T//39PQVlXWTQN7N9D1PCzHbq+2DbJdKDIthZByHyWwMQwDy7RaZ0ob7Xuy02EwHDAa9zk+OmQw6NLpePjdFkNVN+XdkkzLbRX7cbvRuqVKtXlYw0BZJrZj4zgOtmvjuC5+4KNshaEMTOViWh6mYVFrKOqaumnrd2vdbvgj21739xlEuefEat0SFJqmuds011pjmmbbu65UKxbl95voUrYIMiElSlmtq0sruquyoKorHMem3+8TdAIcx8YyFU3dRno2q5j1IiYOM8q8RkiB7Sk838V1HWzbxnOdff5WItDUpabIq9Z5zKGoIclSyqbE8ew2ZpQUJEnVsl3rFq2jLIWyFMKUJGnKcrWlrjWT0ZT7Z/d48vSMh4/u4QU+WVmxXO+4mS3ZhiFKtY617XhsdhF1VRH4FoYQxFHGxfWMxTalPxoipAGOy6On93j76g1pmjIYdhl0pty+WxDuClw3YHJgAQ3htmI86uM00M0CHNun1hZ5vj8BEc0eF/Xe2dbUVUJZFEhh4LkmQUeibYPu2SFn9wYoU+O7Nqv1nO0uZBOn7PIN0jHJq4RS7Ih0xPn2mml1DFq2uaK7BS5xd5/cNWHtL1bDb9df8+2vX1CmmuPjAVVZk2YRu9UOW4z4w7BtlfvLUU1eRRjKpC5NkjhluYxZrVf791zBm9dzPvvsE2bLF5R5SyzJ6gx0iOv5bNaaMK/peGNOp484OTnkq198w+mZx/nr1+RRzPSgg0GHQb9Pll6yW71kNY9wu5JHJ5/QNzqUSYFSBqt4Q1YKysrHch0CZ066/YKDw5Tpg4LhxMazcsqqR1FmrFbf8uS+z8275+yuXvDty19Qrtec3HtKUSf8/Gd/ge2PCLOYOMu4XJ2T1TVmWYCdsYm3PDh5hlVrPv/RQ/qWye71b7CrhFRKlskWU1SYKDIp0JVGWTl1aRInc9bzgjiU9PoOl1fvGI+CdlI0u2G52NJUBp3uEMMQpFnILkoIvBOU6fHp7zxiuT1vha/I2KxTPvv0RyRbBdrCUhW6MegNPC4v32E77STFsQIGE5ur2zlSuMzXz4mikqODQwwchDZJ0oj+wGazSVDKwLIcXrx8xcA/wB/DNroicLqcnX4ARoTZQLaoqc2WIuC4YFs9LFezmido3ZAmMQZ9jo8O2j0I2fDm3RtO7t3j9PQ+htkwPLB58+4lp488hBHw+Oljnj5+zHYXMRgdEoUVnjNAGpqiTFGyw/G9Lkk6p9PpExU3JOGSPHI5mI7YbbY8eviALEvwXBtleRRljMBiejDky1/+GiEV0bbi4HDMjz//21Gh+jcK1f/mn/7Xf5pXW/xA0QnGRPEWZSk++ujHvHz9Ff7ARWtFGG4YHmY4zpTusB2bnl+ck5Ypli8xbYvZYkcjFFlZtuxTaSB1gyFMdtEGyxwhsRkMfBxPkeYJedVg24Kz0/uUWUGZ15zdPyDPNcr0mB728VyfBw9OiOOMoCsZHfh8+u8V/OqrF4RRiWnWRNuKZ48/pkgVltXBD1ro+OMHz1htK6Qt6E8MfMehKwJMBaHeYFWQF21YUtkCZEO316OqCookw0Cx3cXUusa2LKpUYzQGXb9DnbdfirIpGPl9qqjGtbz2C99QuNKmyis2mzVKN/S7fR4cP0JXcHn7jslkiKsGHE0fMei7pFlBtxsQrlOG/WOEcMjLkqIIcU3B4eER2yRCmhau0yErQqStaQzJb1+/YB2l9HoDbFvSGAW323dkFXgjk7IxqStFFmUooYm2NSf3TugEE/JEIkVDfyhpqoLVfM0f/t7n/KP/4Kd8+bPX+I5iethlOS/BS+gMTAzXQ5ptg1DT1MS7mF5nQGCPse2K0eCE0XBKmmdIs8FzutSlTRjt2qUT5ZFXFZbZZ7NOMcyU0XDM8iaiLCt812c48kmSkLOze3i+R15UvLtakJcF22hG3YBlBKxWMXm5YbNdkESC3S6nKDNM2yMKLdarrEWeXJ+T5SHD/iGGoRgMJZZjsEtukHaNaduUVU0SQ7/jYWiNoyyaQpInEbpwKbOMJAy5f3bI2b1DTsc9JkGf45PHBN0en33yA35w7LCZv+JnX35D5+CUZ5/8kMFkiuu5/EG8AOBfyoAkStlsI4pKkhcNRZmjLEW/P2QymXBweEDQ7eAFAb7vo2wLx7FxPa91+ZR1t4zi+T5+p9MKN8FeHAoMw6TR7Vjf8/x9CUArzlrdKlDqe7FWFAVN0/w77mOWF63IRdLolvEqDUGvP+D45IBeP8DxLAbDLo5rYRiidRYthVJm68Qq2YpS28L1XAzVPj7TbEXrXV5RSsq6Is1yGt0gDGhESdUUSAMMQyBEKzaVqfYtWOZeUDYgNNW+WMBS7TGSUt65plK27m5VVfvmqVaslmVJVVV3//a9q9zsBY2pTCzbAjRlVZKkCbvdjnxPSbBshe22X5CDcYf+MMDxFFq0v9swTNt64Tih0SWdjstwHNDtBfQHPfp9H9+3sGyDRjR71qcgTXLiKCVNE/IyJctjijKjaTS27eL7XRzHaetIDYFGkCQt1mY8Osa0fCopMWwXv9Pl+PiATtejyHOuLq64uV7i9/p88IPHdDp9sryiPxhzdPKQ4WRMmiWs1rcsFysWb3bkywhfCWxT8OTxGb2eQxpH1GW1x4qZdLs+/b6k2hWcqntYtk+UlDT7DfxWMErQEila57wuc6qy2DvNBut6w2/lG7zAZL2bY1kwPhzQG/pIS9Mf2xweTakqKIuCSedDqlzy8OgEP+yS5w1StC5te/neSdW6Fcii3bMirTKuymtc12azSDDwKPKM2c0lhoAign9fWwD876JisywwZMBmHXP1LkRZLkHfoCw1tgvnb39LuNNUtSZK5hS5JBhNOL9+xXqb4Bkeftdj2Jvw4sVzmrp9zdmW12arq5rx4CFBr+H5q19x8XbBQE5Ba3QZ4JR9apnwfP412/gNdn0MjoG0S+yOz5Fxg45eMVRjdoUki31+89tbwsTg+OSQRbLDV0Ncv+J6vcAwbVAW377bsn79Nf/X//HnzBoLMKCUeIHF8HDI49MzlquYJBaMuw5DP+dXX/6SXXLN1188x3SHxEJiOQ3J7JYsFIyODwl8izhKqUqQ2ubd+RWnZydUpaKoQta7NXlhoGyfpFzTCMnRWZ8o0qzDK+Kw4P7ZI7qdgDDe8vbtSzx7zGy+ZtgfYZoWliUYjlyQJXkqKVOHMvcwVIzbsYnTmCSp+M13P6c7sAmCIUm6QmrFYNQly3dsNhFRtiCNBZ9/9kPeXr9gu00pa4eDA4urF3M8zyXcaTpej7rZEGc5RZ2iawdD2lSlYLvb4NoTOkEH0cCgP+DXX3+H7fQ5OPG4Xr4g2oVQdPBck7QIidIts2WKkDV1CVlicnDic3V7Q10X9PpdymbN7W0EaOq6IS8123WBrjaYWFRFTFOleK4PosBUbf49jTX3758RhlvSNMdxYLeteHj2AXmW8tMf/8d/+4Xq//A//Rd/WjUpwiqpdElDxnja5+LdJYZs2K626FJyMj2i3w0whUEY3rJcvCVPSqTIoQi4fReTxDtc36HODfKkIk9AVCVSVnj2gKrJsWyFaVvsog1+Z9BWximbxWxLluwoc4jDGNu2qSoXL9BUlUuWFwzG0B02LOY5v/irt8wXKeHOIE8KPv/8AV5QYbkpuzAhyxIePTqjqXNKnSJEiik0yrB4dzlHmT66rinTmmDQJYsz8rxCGw6beUSR5jiOT6/bJ01TPEdhSYkjHZqqYTIco2yPsspJ44QwzRioLlmSoi1JP+hTFw1ex0SaHlWaI80W3L7ZRDRGe4YfFrc0jQKjZrVJOT69h+1I5psbwnxLkpQ4Xsr9k6esVymz8BItTW6uZnQHFhfrqxahI5ZEec53L+eYZsPh+AFpGXNxETIa9JgvNwgpydc1dRUzmBxjO31+9YuvKaoEIQ36Q8XqasNnP/iQ3/27H/Ev/uW/wnEkh/cGrOYLHn50zOnRE26Xa3p+QFVa7NYZRqW4/2CK42t0oTBUhjAbsihFuDuqKsdyWgG12SVISxAlMboZtRgiKrKoxNCHGMLBsqAoYLtpmM9nRMkG0wh4dzUnTUv8oEdDjmEElIWHsiyKsuDe2QlCNOR5g+V0WK7WGEpS5AXrVbgvrijJixDHGmCbfeoayiKlTgRW4+KbPj13TJps20peFGlU4CiPg8khgecxGvtUlcAyAupaUOsM5XsYhsPV9Zxff/OSTd1j9OQnnD55inI9hDTwXZcfzi8A+GJ4HyltDGVj2y7KsjBMiZSCphEkcUaeJ5RVfTemL4ucpq7uxvJFmbd4JMPEch1MZWJabVRFGK14lYaBZVkEQYCQsl2s0q2gkYbRuquuR6O5G91LQ+7rVduLshSdwMeyWjesrCryvCSJc9ar9sMPJIZhYVkurusjhCLLK+IkIcvzNvvaNNRNQ1GWe8i/aJdrhAEI8qIizUuKqkbIdnzbCsqGRre55Lbtav/AGjCN1pFt86wtg9X3fWxlUZUt71WKvx5/aB1WaN3V9wL1vZB9//fvRa0Qfz0yUCMNie959Ho9BoMBruuigTStCMOCLNOUZQuvNy2F69l4vk2v18UPAlw3QJl+W4calWw3KbswpiwqBBLHcfADl27Xo9d1CQKF2zGxXRcpFRpJVbdRiSxN2yatXURRVKAFRVGC0ChbsQlDrm9uiMIEtIHn9dEo6kbg+h2GkwO6gy62K/B9n8m0j+UaFGVLcNhur6nrBEsM8YTGFCmTs2OeffwRA1fx9V/9ksuLNTSqJTrIgsm0y25TkIQN2SphpEckSUpZGxjKak903m/dQ+t8NxVlnqCr9rXc6XoYnZq5scBQguPjE/xOQFruuLld7SuDFVoYuI5BuknY7TYMRx5KW+i5QjZq79yKdqLA98z/u/sXLYUip2TpLsAo2G4kSRZyc7UhDhsMVZBnmv/I6gHwZ5fnxEVMGFWYymS+fo02csJtynK9xHEcyswnSTPidIkwXOJmzdt371jMZyR1Qcd3sUyLDx99wHcXvwHRLufU2RBLac4vXuCaR3i+xeuXL1nMdxwMf8C9D8f8xV/9FSePu6TWjijf0TUPSOoc3wl4dnQIySXG+lvGvTFPf+cn/J/f7kjLgHfPb7B9m02c47gjepOA1IzZrQuEHrAjQOqEn/3sL2maAfcejHH8gEDDkemivSEYml9+9SW2DLh4/Yr1astyU3G9rjj98Ie8Xl2y2cYMuxPW65LR6JSnzw6ZL7bMbufsNhmPH/4OjUjJy5jhxMc0bZTVYbspOHtwRKNzPK8tQlgtGk5Op+i6wfa3iGbE/XtPubo6Zzx6xGR4uF9qTZjdbsmLmrJoTy4vLl8jhcHx8QnfvfkNadpgKgMv8MjrkPntjo4TYCuLsq5Y7V6zi7Z0gyGW0yEtdux2LSdXWCV9OaXX7VCaBvef3aOIJYdHD1luE8bjAavFhjyrqGuB6/To+kPyNKVpCoqiZtAb4g+v2axjbDHA0j1Oxo8ZjSR//hf/mn73PsJK2rrfRtLvOySpYJetibY5tt0jK9qK6MG4T5rFbLcRD+7do85MOmrC0YHParFhub5kF19zfX1BGKaYqv3MR1QYUnF4cMhg2MELXKJtzU9//B/+rRCqf2MIQdol4SbDH/Rw/JrtpuDy+hWB3ydNJJbb5exxn+OjETcXBa8vvsTzhliupn9wxLvLixZbFeeUTQGLXdv601G4XY+h7DOY9pktQ1a7V2S5zdOnD8myLpfX7xgPDpEqpQw1ZhC0KIbSZjQ6Ybe5Jo373N5e8fSDE0yliMOSJw8+4OjwIRfXvyZMljiWzcFpyc1VyfX1lqDvYNBldrOmXFcExzWd7pCrFxHSLukfaGwrx6QDpSAqcyzTYrdaobRJXWhc18E0LMo6bWHyWUIv6FDpBlcpPM8h38PSiwpqGtjNsT2b7S4kK2osoajtGtPqYw8nVCImKlIqISlFRZRrDDvl5cvfYJuf4HoOv/zitzx7OkbIjJP7I86fz9tQ+uWMxc2Gex8cUJUpUmWcXyzIyoxJT7DZZijZoBONaxwzm++Yz1oI8tB9xqz6iiiPqHKLkydHJLpksZ5zdCpx/TFCe9zcvmTYO+LifM7Pf/4/UzYNk9M+cRVxeL9HIxLy1MaxIIsX7BYjgr7F9NBmF294+vQJRacmyzVZVdP1Leaxg2P5pEmxH/XaJGlKoyV5HiNlge86mEJxu3gHpcDzJMqu8D2NF/hsw2uq2kVKTX9kkaXhfnM/xvZq6lojlMB0IS0anI5BxQbDVOx2WwSSwbDDm/MZvnDJipw8mfPw4RnROuXmbc7BsIPEIssj8uoGJ+ihBh6r5ZbJJGA8HpAXgt26IssK+t0hGIJgMKAzCAiCDl3VoTjUFJ8+QRuSJq7YbRPyokAI2o3v/cVyHKxa0AhacQGYhkBa7r5Nym65rIhWtDX1vhO9ZZU6jr13h95nQsW/M2qvqhYx5Lo+TdOQZhl1Vd2NyJVSd85iGIZkWYbaO5B/3X3K0gyAoiqRBghDYOoWY5VmBcvVGnSDYQqqqkDK9rbrum0ZMpWJYSlko9GNpqiq/XMAKQVStPk+IQTSVLieQ11X1E2FZZhtM0/RoIW+wwnRNG2n7P7xl3V1h9yq65qqTLCUSV03e/esunNLLat1xlo0lb4TqS0HtvkeQC/kXXyhzcpCrXXLKly3dZpKWa2ballYnkJa7e0mecw2qttjKdrnKGUrfD3XIfA9OqaHpiEvcqqypCkb8rwVuxrIswQpavyOh+3aGBJc38ByJLpRWMrBMBRZkpHGbbVvW3Zgo6nbBS/PB92g6wIpC8IwbRcOlUEUpftK2waB5sXrS4q8wpAu3aDLyfGAXdSwWcPZkxGysWhysD2bzWKLWdv0D0/4+OFDPnx6xnI9ZzbfIKTm0WOY30SMRI/7akxZwmydUdPs4f4mCN1u32uNlA1at9v5hlS4noWwNUWYYxhHmMrldn5OlG6x1YgsTdG6wpYjFAbhZsn9p0/J65jX8wXzxRv+bvATlGzz/e2yHN+L1feoKk1bSmEItKmIU420U9abEtNqGPTvUdYF5zfX8PQMgPlmTmccUKc1r85vODwZoitJEofUdc3r5zNsyyHoGswutzRVwvCkYL2IUCLAaiqWTkRZurx8e4lFQJy0Zs18fsHD+6fcP/mcOF0gZn0eP/iYe6Mt2o+5mkf4o4Yvzv8FuhTc8z/k0JsQJV9z82bFOBjh9/rk4nfxph7/5pcFg+ERjSwx+xpL2pRRwjIpCOOcm5cXnI7O6J49oV4ZnD6esi1tDqePMc2Qt7+9oQokqzcXKF0Q2F3SomEZLlGWheM2hFVNxzmg23U4iE/pDB1WmxXeoA8O/Pqrt6RZSic4wBoolpsFRaHodSdUdcZ6ExKHBePRBCkaPv3w73P+5oJ4u6XbscmSmG5nSMc3+Oart/iBw+HRCdfXzzFVQKfnYEiHXnfM23ff4thdylLwR3//j0nTjCy2mY7PMJRLmVb79Mchf/L7/5Ak+oqXL19Q6ZLVOqc7MOl0A5rawXE1vf4H/PbbVxwd9XkbvsXyuhyMp2zfzgjXOxxnSBXVPPrsI9ApX3/1nMn0jKPpGZoSiaaqcwwpsS2DJHHQ5JSpw9OHD+h2KtK05uMnf0KpK6LcBJUhpWK5XvHqzYzPf/wTbDFjNpvR6UkcX7Nc70CWdDsjTKUYBkOSMGN9G3Pv4CNKc86Lt1/T7Q4whMNkOiRcw8HxIW8vniPqDpNpwKtXr/C93v87dfn/4eVvdFT/+f/2z/50OOoiDY937+aYwkHXDpPhFNc1afKa08MnbLZzouQW3Rj0hyU0JuvlnLevFzRlies0dJ0xvtvn2dMTDF1wNPF58ugZUprM1m+YL3b4rotj2y342284nEwINxndHjx4dMD11TW+3+XDDx8TbiOW8xX3H0+wHYMstRj2PS7eXmCbPllsYNsS14blLCXJSixrzM1VSH8gcEwDUUsMV6FFRZ40SNNkPPW5vr6h1jamytu2LRwaCaNhH1PCJt1gYGIbFk0jqaoCw5AIbdDpdMmLhDCMiNMU1+2ghSRLIoJhD0MLVkmMVArTEMRpxXa1JE5jXHdEmqVoq0YZFslWoEvZYm6KnN1uixSC599dEyYNebZmuQ5RluTwcIiyLWyzwVGKNGk4Gx/wm5ev0aaFLw06ymSbLSm0iWM52IOA3a7BUZIirhiNptzM3pGnOyxp0NQuwhAkyZYsrrAtmzCOCAZD0iLF6ZkIfHa7iCp3WK5vqeuCOE0xTcVmVZAXmqqC7apgE13TGdrIZsBiecV2s0WZeyeoEhRNiaksmsagrHK0FnSCA6qyZjlbYEgXRI1UgpvrHW4gsaw+rt2lJsUPLPpDn6LaIYW1v+2MokrI0prtNmpH3E4fIdredss28d2AzWaLpcbkmUGvO2S5muErnz/+wz9C1+SsAAAgAElEQVTh5PCY8fCQ43sHdAcdXN8FDBy3Hetato0QPv3BhE7Q5+DwkNPT+xxM7+P7/badC0FRFqRRQbyICbcJUkiCIMCyHXr9IR9dfAPA+nf/iN4goNf1ODgY0uv6eI6HUu2GumHuuaZ7l9Uw2sykYSik2TJChZQtAmpfjdqg925njhACz/Oo6/oO7F8Uxb5d6nuR9l6c2XbrStq2tWeItuxVuV9qgjY+oLXAC3yUsmiaCstqxaWpTGzHxfO9NpNtGtiOgzQVGgPTsDBNGykVtu3h2N4+T+yglIUwVOvyynahUWvRFi2odiGszYya+wUkuXdJ2yhCVbdi07L2Y37RXp33t71nxrYxAAMpxZ2oLctWrL1fsAL2xQf53c+bpkYYAmka+wpYhW25mKa1b97aZ4q13D9PA9MU2PYeHWYoLKtlwlZ1RRjtWCyXbHdtW5nAwLYVna7HweGYBw/vcf/hGaPxiKqq9/W0BXmuKatW3JmmpNv1OTk94PBwyKMnRzx+ckrQUdiOwDQETaXJspqi+L7MocjzlkecpiRxhGFISg11Y6Kc1rVN0pyb2zllKel0fJJow2xXstztyLKKOK0I0wotTG5nC54/vyJOUizH5upmzfmbGwSKrupwZA0pyoYoqdGiPamSQqCpEbR/buqaMs+QtFMXKSDOS+ZFTl1DGCVUpclqfUscr0ijitlVxG6zISsWlNSUOiTLl0hpstiWvFzseNKbtK8dxN1rWNBWqN45ukApanZ+i5pzvYped8rp/ROCbgdhNNTmlv/MPgDgX/VrqspAyAx0hWUMsQ1JmqyxDJt+0Gc07FGXYEqbuoogk1TawXA62Fpx83YGuuGLX/+S9aZgOj5gtV4zGrs4rqYfTLHtpmV09o9REl5cfMWbF2+odz73D37C+lwyUA/QFnT7E4SZkeqUJ48+Z5FmXN2YOGOburA5mkxYzkNyS7DcXBKuLvHFALfTJc9NTMfjxatzfvP8gj/4ez8lz9dczjfce3aIKVxS5eANHHRkUBo73l5+ix8MqUTGZrvm9Pghnllx/uo12hSMp2OuLq6Yjob0un2yrGC1WTHsP+Lh00OqpuH8zQxlV2zW7ULtsw8ecXs7Q2gLUyl+8cUv0E1OlqZkRUkSCX78dz4hz1KWmxscJwAMikJyenKGYWlevX5O4E8oqghld+kPBrx5c8l0GuAHU1wzIIlvGHQecm/0jNXllpMTk9+8fInQXku7WZUcTu8TxyGr9ZLhsItldyizDFXmqN0LHg2WfPzDPn/+f79lMp6SpCt63QADH0vZDCc+3b7L/HbFbhMzmQwoa40hfQxpMBmfcv9hl9UqJskyuiOXrF6QhJJHT0+JY831/BVVqairiu06xHIqLMtis92QFBviJKFIDJo6bklLusSzA16+/i2TgyN6/UkbYdKS7TZkt4XpYcDsdtHm8EUH33e5un7DH/3+f/63wlH9G4Xqf/c//pd/2jQpwrCoqzagfHg0wVYCKSzCcIcwHKraQqiIOCrxuy5l0ZCXEUHvEFManJxOeHD/KadnR8TxltVNTVU0CF2TFDcUhUYakqPJE3o9j8FAYdsVaIc8NpFWTN0UnJ48ZjQ44OmTx5yfX9EbQrhVrLcbPL+mzDKktljdJgx6A1xnQpGF5JlFVsY4nYayjsm2NV3PofEEVWlThjmdrqB3bDBf5iwvYRCA3TOJNyHTwTGNNJBN3cLGBx2yXU6VNjQNlE1NQ0NZtx90juNQFjWWaRLFJY5SmJakOwjomB6bIkUYIPISiY2t2i/VMhe4jkWhE2zTopIGyhast3OE8kjKiO0up9Alm2SDbdisNlvyPKUqK9arGwK7jy66hMmKgisOTjokmxpdGhiWx2y75naxwbUVw+GQ3Triw8eHbBcxt9E5wbCLpWyKRqFsG2U1WIbHer2hNxK4wQjX7VAVktF4gmxMoiQlT0tMz6OqMtKmdW9sU5KVgo4/RuuGXb4mCAKKNCNvDMoYHKtHFGaUlYHEp9PrYKoGtEDZHQwT4mROf9DFcwO0Nqm1JCsTHNtnOh0RBAbnb18QJxs0Ja7v0RsYLGcLHHPM02dPKcqYTk8xGQ0IvBFZuaFucnrdDrPrEFPZWLaH42l2yRVKKfrOkLP7p8RpTtJUeIMObjBgNpvhWB1G42OUcvG8Hv3+hLLUOI5PWTRsVglRkrBYRqznS3bbHUVaUJTQaI20bUwhMAxQtgNS8vHFtwCcf/g7KKNhMBzQCVwc18FxfEyjzXQKoxVSeVVQa01da8qyQmtoamjqhqqsUIbCNBV1UyMQlEVJnhWYhklZVsRRi1F773QKIe4cxPdZVaXUXXa1XUJqq1y11vusZitSDaFQpk1V18RJhDQknu9iKoVpmJhK7YWgiRAGlrIx1J6TSbulL4WmaSqgARoaGqqmBtG2W0kp2lH/nkygdQ2ipqxyiiqjqiuKskBA62TaFva+GKCq2gpWQ7bd8W0UQN591mndFhi8px0YhoHrOPu8btMip4Byj6eq630NrIaqbpdp6kbvXdL9OK295XbZqir29bINhrTQ2qSpGooyRQiNZZl38QXTVGi9F8t5TpGX7LYxt7dr3l7MuJ2vWofUVKDbE5C6fh9RUFRlw2Kx4e2bG25nGzbriCJvsJTN8fEBjx8f8+jRIY8enXL//iGdroVSYu90ty1ldVNTViWmEAhdY2hBv28zGfv0+x2m0xHKbhcB+50Bk8GU4WCKE3SwPZcg6OD6NrbrUdaCi7czpKG4f/8MZZmYVcVY96hqSZI1Lc4LcZcPFcJoX89NTplnLT3BkgS+i1AS3fM4GE2Zv7lkdb0hjyXbcEOY7miaAYbrML1vUtU1njFk3OsjRMX1PKSIFY+7Y2Qt+evRWLEnSTTNvr5VQo3Guzfmo4+Pef38EsfXKLONwOyiGbuN5h93Wv7xP08W5HmKKQwGfQNR55hS8/DBAcowcW2T7WbJer2hzBs6nSmu60ORYKkUU7jkpUvgeWyjkKYWrJc7bq+XyMajShXj/hFPnzzg4vIbtrs5g16PwTAgyVM0Npah+P2f/gM++lGPV1dv2cxu0FKhBUS7HNcyUVKwXl3z3Zdbnj56yrffXeEGNtv1ktH0DF1XpEXG6f0hy1nIvd4JvYOa6zdXPJze59mnH3N+/h1F6fHs4ROKeI2uTJ58+hE9z+agf0geZfS6NoPuhPks5vhswu1NzMMnj3h58Wvq2sFyCs5fz6iqgm285eT0jJvZNc8+mrDbFQwGFpYa4fk2UZQR9EuidEkUh1R1RVVLHj58SpKFBN4h46nLepOBUJyePSTJY2gqbNVntZ5RNQVe4NALTknLJVeXCwadAYPRkPOXFxRpzO//4Q/5p3/2X/F7H/9jjk4Vf/XlG374+Ufc3J5jij5CaFxXMp/NMIXPqN/nhGuay+f85If3+OGfCP7tv31DGj5BqyWbbYSobYajUdsmVRQs5xvGwwnr9YZOd8Jye46pDJJEY9nt0ub5xYJKC7bRjuurSywrQEpBKRbs1hGHhwMWiwW97hDf7xCnK7I8Raoa1+nQ7/nUZcVwPGG7XjGdDLD8LW/ezhDSZXowwLY65FnN4fGQLIuZzWaMJx1st+L583OUEvy93/v/gVD9J3/2T/5UFxHrJKLTGeLbHkWTY6khYbJgPB1heRWX7xaEYUaUrsnyCsvuc3XZMOp196Okhk284vz6NUm24eRkymeff8DVYsXReMhw8BGlWXN66rNdxBSi4pNPf0Sc2gwCzeV6Q6AqRu6AZZySbSNcZSC8tlWmF4zoBwPyrG3YQcU0skBaEHR8LBWQo1nEG9IqwhIOfV9xs4g5mB7x6Q8+R0tQdsz9szEj/xGuW7JKI2zT53Q8IV6WiLJhEV0QUuMbAdl2R3fQbuomcdw2tGQFnU4P1xuSFRopJHkR0vEnWI7keh5iKYsi24Kxwgq6FJlJ33cwHWhsi1pn5HVDGq2oZYOjPOL1nEIL1nHLHS2b9kPnYHjGZpeQZTHS9HizWPF6+Q7XdJGGzZvzSxpDUTUp0qhYr2M6A5vByCaOLPKy5sXFW7bFisFwSlNClRecTA6pm5wkt6jMmqys6bqH5FmCqRSYNbtwjm0bVLVgW0YkRQ7SwjJMMExMHw46Y+Zvb+gN/dZh3WZQw3q3odEtUD5OUrK4piwLkvQWYeacHj8h26Wswx1RWWKYmixu0CiS6gZL9drN9TwnDQ2kobB9F12BY1rE8ZoPnz6iN/BxA4cwXHL/7LR14lcrlNHDNWzS7ZrReEIhJbVIuL55Q4XGC6b0ulPevb3g7ZuXDDpdok3IyxfP8bwu/eGEuNxgOgLLdvCdLt1OB6UESbrDtFrEzmq1bEdYUUoYx6y2a8I0Yb0LmS22bLYJq+WG+WzNHxdzAP7b65KXrxe8fHXN+cWMt+9uuLi+YbZas95FZElFkqQt67Rpl5rej6lB0zQ1juPAHgNlmqqdhjcaZVp3QtN1PQI/wDAUtmMjDUmjW1EmpMDaw/nLveOW5wV11exzoALTMO+21aUhMVSbfe33BwSdHoZqeaKW2xIEpGm0KBdl0shW5CGM1hE1LQylMJV1d9X7aIOlLAyzdTsty8Jx3DvxrHUrMKSQWErtt/LbTGmzF59lWaKbGilakLtptktkcZJSlhXVe2bpHYJL7kVSQ1VXmHvxrrW+y/VK06ChXaQyzH1+ta7Rjb7LuTZ11S4S7R9fm2lVd7WgoKFu0woNbVTDMBSdoIPn+e0Sm2Hsub4WpqWQUkNdkWUJuzAkz1sUlpR7N7LRSCkIAo9u18NzbaqiIopyVouIN6+u+fabC55/d8XtzZosKej1O0wPOhwe9Xny7IR7Z1NOTqb0ukG71Y8kDFNWy4T5LGS53LFabdmsQ7abHVEckeUpZZUBFdIALWqUaWFZBobR4Pom3W4Xz+tQFhpVGHRrhzxvqOs2k6/fx0ruHM6Gui4piwwpoD/o8OTJKcLW6G5NoDLOHg0xDIM4bDgePeLm/BbXlGzmETdvUmQhyJKI2buIdKsJw5pFmrCqIx55RyD2zVR76H978tGehEhtkOuGV+lbXjx/TX/konXFelVQ5gV5XOI4Bv+p3Qfgv58tcBzFwXTQRmrSmH7QoRENeS7Is4TtwmA6OiLomETJljjOKcoSiYslfTy7IQwj8iTFUibDwZTRICDcVqAarq5vGQ2nPH/xgl2iWcxStruUzTakLBS7KMQNFK/ffo1rd9nEgjBZEYcR12+3dDoBaRpiSIHjwvNXb5CyIs9C0tTA93yefzcjcC16fZNwneEPHY6P+qw2M95cRAhpoUXDd68ucQ5Nrm5uMB2Tr3/zDfcePMA0AmbzGYv1gl2YE2dv2a0ETx5/yhdf/ZrDozPe3XzL61dLptND7t0/o9EVWRFhOQ6bTcn08AgtE7YLQbcvWC2vWC7nuL7NZqU5OBhiSJPeaEwYpoTbjNVuxfUsY70LKUuLYT8giRp+8Okn3NxeAw2mdHCdHp5vksQZq1XMarnBdz3SZM35iwtevnrB4w/vMT34AfPVFYbccv3ukk63x3xZ0yB5/s0lP/rkczIZ8+bFluORycuLGxSCd79KoXfMYNIlywqy2OLp00d4Xsqr325xHZP+sI/fMahKTZHV1JXGcTTLxTW7TYHjZ2zXMUm0xXcrfNvH6xqsVguU7BD4Ju8u32G5BdGqy5MPR5R5RLhZ0HMP8J2AvJCsFjNsd0BetUuWhlQoy0ILRZZpeoHBJluwS2+J4oKanDeXN3z6O08wKsFPfvSf/K0Qqn9jRjVJV4zGY4pyRbiLKJC4fUnhLJHa4MXL5xxOH1JUIRgVdeUxX6zYbA38fodlseH+YZ86NpjflEwOYtI6JipekRcOvm1y/u4Cw5pzfCzwbI+izii3ipu3FrYNcbjjycMTsk3I68tXDCen2LpkE22Y53O6vR40gnfv3mA7EO0KDg4G9DpjXl8syIsU0MT1FtsKqKipihpduwS2Yj275Yv5hk4fMAuSZMZ02sexPmT19c+wvYaaHOkqmqZESZMkS6gqhT/t0B11iLcFk14fUyq64y6r3Q12MGSxmLdAfdckzm4oUXQGkiQVxFGKcarQRsRmtmJ49pDDB6f8/OuvcKyGwOsRVhXT/oiqFJRexXa1YuCNMHSN2QkwtMcqucW0KgJnxHKzARMCyyArQ7zKJ8mgKCNcYRAcB3iBomd3mM9DhI4RmMRJiJIGu02I5/g4jsd8MUOaEsoUw6gY9CWb/Jpef0AlaqStsROHtAhZRbcYfkAY1vhe2wKyC8u2cSlQHJ0M6HaHzJdrlGUQRwXS9Jld78BcMD7wsSwfag/X76N1wvxyTWOANAWqcckrwIiwlGRzUzE91iRFSrmN8FRBSYhqBI7pUuUG6D7LlWCXXFE10OQGq2WGVAGDnsPA7bEJF0RJwc3tgqxoELbAtYaIQpHHEdfpSwajEXR8/vXXX4JhYuiG3390xvnb77D8jNHojHH/ANtSbNZLHNvl2bMPsC2LXbhFGjWGsCnzhqIoyLKMIskxpIlEU2QlSQNFWUMbkWS1WyIkWIZDkVV3DmLrtpnU0sC0DKQ0EHukkuM4VFV1J6jei9c0TRFCtON7RyGFxDddlPp+bP9+y13sndWiKCiKAkyFRKDrBjQ4dssBZT8u1/t86/sowfdj8hajBa1TWVTf50ANw8QwNY02KCmBut3mNoy2drFpW7GEbIsTWnetzdV+L8ahLGuqoryLJtxt4u9FYrUf1b8X71Ia0GiauqauS4Ro/5/WLZ5L094vWqPrlmwgBNS1wfsFcdOyQLfLUFKa+Lazf2zl3XFvGap7DBaCqmnjA0opJPIuA9weixbgX5QFVZPthbZFlGxbwbkXt+1x3Mcx6mafa6U9qTDAcR0sZWEaJk2j97/3mDTJEI3A9S2UBb2BTRB091ljQZGXLBZL3l1ekMQlWVbj2DaeZzI+CBiOupycThgOe61A22zZrCOWi5DNKiTLijYzXINSbttyRDstkgZYlklVVNRNjuc7JFHI5bslIwI+9s+odEPZaLRoT5De56nfy9V2mQpoQAuDomiYL7bM64RfvD6HPMVwTHq9gL/zh58xGXf4vT94yvnrC2azDUcnRxRNxKvXb7hdRQTTEUK0Qr5qSoTUCGHeLdo1uj3REPuGLE1NRUElU4KeQAtNmsWYpoU0Cg4OxyA05O37tt8NcAObMA65ulphGiZdVzO7aWun/Y7N2RPJdr0h25RghHQ7h7jOgDgqcN122lCWFdbIwPNHDPo9JCGGrHGCkrcvrnn+/IiiMoiyOWG0pduz25iRN+J2cc4XX39JpQsmB+3x+/kvv2HYH+NbQ37963ccTsZ0hxWbzZKsUHjdiO2yx+HxkNn1hiRZ4jpnzC4NtpuaMHxFkT3j009+wq+++YLr63PKJmYy8bDrCgsL2WhkkfCLP/+O3tAjCDrkWYRhDRn3j/jLf/MLer0HSCRhGFOkLo4jWW7eEscJaVITpxmdgcnipuLBgxGvXl5wfRPz4PHvcXu7aEkxCdiewWqdYFsKz5vi2BsWsznNVuF3ugwcm+36Cs854HJ2wcX/esmjx/fY7G6oCw/TNNmsQ6YHY7J4R7g1sZSJ5IDPfvghVpCz2F2hfZ9f/uJLfvSjn/Lxp/+IxggRUmFVO/7BZ0/55HhNap9ye5FxLUZsq1v+2f8Scnx6xur/oe7NfizLFvSu31p7Hs8YJ6aMnCors6Zb19W3TbttNz2YB4RB9gNmkIwlxD/An3AfeEF+Q0ICgbDUQqAGGVsYEMZyW8aA2w10u6u6b92qysqMHGI889nzsNbmYZ+Ie1tCfgGJJqRQpkIZJyJOnhPn29/6vt+XXDHYPUGaT5BdQRQHfP07KQezGbajubmeMxwFDIYerjNku92S5ueUVUGnMjp1wOxQkqYmXetjmArT8LCMAbZTs1klRFGMJYY8ehHSNeDZMx4cjzg6fMDrd79Lpx20MGm7jPNv59h2xePHjxDCw5AOpe7I9Zz371Y8enyAMcyZTh7gGmtefvuSzaX+fyQu/998E3eQ4/+7t9/41087X054c7PBDzosanQ3YDxtECpidbNGa4Xqegh1h2AwGjAaDbmZv2f0cEh5u8VvXMajEdt6w6q4RDU5zx4+RXQWu7KkKSVFdsvDpyOSbUTXdVzevEfLlmdHP6SzMzzb5P27a4bhgJGlKMWQ7y6+p20sPNvFdlOKvEF2Dq5TYRszFmlDWa/RQmG5ElMO2G0TAsfHdSTTg0NOZgd8+/U5/qAiLzVVU6FkyiCeEHoxi8Wcxc2aqhEI4VDplLrLmdhHOAOH9XrNaOiSLDtc08aLNUnR9u5i0aFFSxQf9MeYKqXTNuv1EtvyIJRotWNkD7HtmJyGLM+ZxiFl1VFQIjV0KsKwcwLTRBcWFRlKGmxWKUmVEbtDTqZHvLr8Dt1pTGz8wEE0JZVSCFNgNAajoY8/sEkLqPKUPE/wQptOSyzTxzJtsm1GFA5o6pJCKUyzwXckyTbHcCxcN8K3xliWZr6+xZQOZZ3TyJZGN8R+/yTIS8UkHiJLSRQrMEO2+ZquKSjShqToODg86mcqqy1h4BEFE4Qw2O2WuJ5Do0GrmjRr0Rg01ZyJP8SxpzRWySZd40qHk8lj0nyJ7w/YrTaEnktRl2R1hmlJZFczHAzJC40fhniuxfZ2h7YFmepZsKYO8cOIXXaDazk9HaAzGcRD5psljap7lmmjiFyfaRwzng37FrVh4dkhD05PsSyT5Tzh9qqgEwZlVeB5Hp7rkOcpcRhT5iWr+Rqleuj467evePjkCf9pmALw79pPqeqCsizoOt1PmBq90+e6PVmibVvkXpjcPYfv5k/7bKm4//gdQN405Z4KUPdFpU7ct9ibprmfXG3bBq3a+1xo13W0TYvj9vnUOxHc7lvwP//etu19yegO56SUvi90SSn2x+stptkzTZum6d1KYdz/PHcRBCGgrPrVJ4HoYwxC9v+2U/c5xjtO6t1Igd6vS/URhl5M9oJVolQfX/h57NRd9EFKuWefKpq2pRPcxxzu+KqI/uso1Ze2xJ7BWdc1PZtT9pnWruuXlvrwJezxR3d52X4S1MGyLXTXi+heLNN//aafVr2jDkRRhOPYqKahyHOKoqYsGhAaz7fxHJvhKGY6HeF6JkVRkCY569WOzTqjqjRto1C6wfNs4jggCj3C0MMwoK7qnrmblSRJ35je7XLoOoLQ4+h4yuHxCM+173m0WndsNwmbTUKe1RR5SVU3NG2NwMCUDpYtsW0Tx3HxPJ+otfjCfYBpmyx3GW3bt+97gUjPTxUS0FTZliJN+hW3YYR5YPGNfcPpyQNc02SX1khDYdsCqWF5s2YYRXi+ydXVO1RbogEpPMqm5Hf/6UvmOzgZDPm1wQssw0Tc8VPZjzrshavoYN0m/KH1mrPHMVmW4IegdI3jatoqoK0tfuvoDIC/tnlNq2qyXYcXhCTpAt0IxqMZfiQp6xzMFil9DKHxXYfNNuHx2adMD0KSZMvV1RzPh3dvc0Zjj6K6ZeAf4/g262XN4fQhaXJNrTIaqRmNJ4hOkKU1u22J47kIL+P99Q3TgyNEuWE+X/Dx0x9iCJvZ9JBkkxENOi7e7miMGt2laDUmGtjkRcl8+R7T8FB0fPbxB9zebPn8By/odMtoOuTi6iVV3dJ1IR89n/LlH36LYzmoAlpd4I8mpOuaBydDXl/dUGcdn3z4CZ75iIvVH3CzPicOHnP80OD9q2vqQjOZzDDMlqxcMp6MaCub7e6CTz7+gjwt0a1gtdoQjz0Mq+b9mw1Pnx1TtzsuzhVB1GK5LZuVZDo+5XbxDWm644NnzymrHNO0yYs1ovP56PkLfvJHL5mMPfK0YDR4TKu2hMMK33rM1fxrVBvyF//yF/ydv/V32Mx9nj57yvTY4PZ6wZOTp/yFP/MrlMXf5fz7a0r3L3L+9jUv3/wOjjnF6DoW2w2hKIkOz3AcF8OsiKMJi/X3LG778nAQx9jSRemGOA749ttXzA5mlM2cKDji+PiE9fYdxUoymnhcLN7TGRrHhPlVRjg4YTYeYDk1P/36FfFIUBYKz5mh5QWrdUoUH5ElLb4TIM0V79+uOZp9wnAG3718SxC4RNEQR1oY7DClTVnnuM4BjhXyb/9bf/1nk23/H779M4/+/7t/9J/8eBqPuV4tCf0hw2iIP/BJk5Qs3WGZDnXd8OFHx/j+IVqmqFay3iQI06GsN6xudvhmwC6Zk2YtihQvMHGsI4ZDk9v8CteByHiEG9V4/pA8mXN6fExgh9imw83ihiKfc3j8EFU6bOcXDMZTLtcVXggXVxuK2kI6OYYdYHuPqPSast7QmTmWFSEwKbItke+iGou0yhGG5PrmhqZWDCcK0+pf0E7Ojkl3Nq7vYhgm2VZjW/0vNMscYUqXm/kVjmUymoy43ayppQGOQYcm9EPKXYpjhQhD4jgutmOyWdUEkUGRK8bjgLrrcH1wXZfhcMhmMefBaMbJyREvl+/wrI62LUmajGgQ0LU5jZkTz0Lmb69pVEsYOwwHUe+eGAJNi+85lE2DqgSWKUB27LYVgRuzTlLKRhF4HqoJSZIcx+4dzdVq1QvFpEAKybZdIwyJZXtIbTEdTrG0jWhs1jcJwnagddiuUqqiwrUkE/+UbCmxvYK8qpBmQ60U15s5piMwTIeyqTHdENcyyMsNlS5QQrJNM+q24PjogIEfcrNZMT2ckJcNSgtWqy3QYTmSrMxxfJtslyIQtKokz2tkpymqFCktkiQhva2ILB83sGmlxc16ybZa4wx8kiqnaQRIiyjyaHKFxqASOZE7IvRDLOEwCYecTqbYCAZeiG4UaZGyWu7205qKtm1ZLJaoVvPm7TmtzvEim6xMSbMU1YFp2Lx5/YrdekngWdAqgqDjs8+f4Pk2v171QvW/1fL+yD4Igh4RpXsR1ewpAF0nKBq5IZ0AACAASURBVIryvuijlO7dyr3jaNsOvu/dN897jFVzD+PpekWwR14pHMcmCHwk4DkOgzgm8DwC3ycMAiyzn7dUSvWjAfsMZbdf9LkTc3fFpV7Qqn2L/w47BHuiOsC+sNU7n1LKvgQm7sRzT0Ho/27evzu2uy+OGf3qlmVhOzaWbWFaZv9ziR6bZZpWz8vcZ0lt27lv69+5mn1JzLkX6YZhUDc1jWoRP8dN7WAvNoG9w6uVgu4ut9rHBZTS+9ECY3+k3GfObNvF3pfSesyVwrQsOnqcGHssUtPUaN1imsY9vQF+5ipLKfE8j+lkwmgc4nodhqlp2oYsK1nON7x7e8PFuyWrRUJZKDpt9OtP+/UvaUDdFKw3CTdXW64ul1xdLlktNtRNQxC4PHx0zIcvHvLZ5x/y7Pkpw5FHUZS8eX3JH/3hS77//h3nr99zc32LlBBGNscnY54+e8DTpw84OjrgwdkML4BWVWw3CcvllvntClkppsKhrCpaLUGYe53YRxh6GD9AS1NmdKrFMEwGgwHRbMQuECRZRVUqtAJpWDRtw1df/ZS/9/f/N37/y69ZbPrSTFPWbHc58SCi0QWbLGe9q2mEwU2x5Wk4Rgr2jxO5f7yqfTxDkKuan67fs0vX7DYp24XGNgaE3pDdtsa2BP9q2B/9/4ffvSTLS5SGB48P8UIbVVt4vkXZzLm4usHxBizWazw7JNvtqKqGODygqQy+/uanIEoG8ZQwiBGywnU8hPZo2hLdKV48+xxh7CiKCssOgI7379/hBQ6G9Pnkk8+5XZzjuyZ1WZLuSvwgpK4sqsLCDw3mq0veX71lvUsIAodODbAcA6UaVqslrc4wXAPLtlne5HuGs8+333/DanPJ+4trshwM4fHm3S11k/L+4hUCn4PjiPcXC2YHzzk6jnlz/hLXkUR+RJW7rJKXqC5mOLFZLK8J3DG207Be7lCkJEnKarViPJgym45J8gLTainSmo8/e0GeZxRlzfffX6FbRatLOlpMw+Ty3Y5/7hf/HLbVP79oY7K8wrBNRpOQ9e4G3UJTK96+O8eWBwSxomkTooHPYDhmfBBze3vBapkynR1jGgXffb3go08e8t23r8nKhLIU/ODzX8L2H9DIBf/9P/jb+PYDnn7yjG8vf4qqDMKhIFOSIqlouSXPKuJowDff/RG2dcDnXzyirDTDeMQunWM7FkINMUyFYwscR/DTn3yHUh3jUT9HPZqF/O7v/R8YIqJSJVlVMolHaGUhjBqlGlTTc5p3u5w0rShKaNWGKHLQrUGR14QDGyV2KF2RJAuWywVtZRLHFk3hYboWN9dbnn/0lOdPf+VPxNH/P1Oo/r2/+z/9mFpzcGzj2hmR4zMcDcg3LZNRxC//uR9xc7WjkwZFkTOZxiyXOxTLnpW5TDmYRBhOh+pyHjxxaZoOP7SQZoOUJa/ez5keOUjV8xmzpGQ0iLg4LzmMB4wPJ4wnMb4ZsN3mXK++wbNnJFvN7LAhWe4ok4bI97Asied67LYpq0VKUiyZHA0ZDQ+xTZembHFdj22SkhULLF8h7Za2tXHtmCiasN3eYpodCAfdwvnL1zx7/gnrzYKi1TSVxDYNPN9F0rJJK243K7Sladqag+kRyarAQNBowWDo0DSKYJRT6wrPGxDHJp2oGTgCx5dkjcIfDXBcm7PZA7759itKuSIyh9RbB9eOqLRiuVnjD0dslwq1K7BjiUVAXXc4gU1bF4SBQ0ODMEzqtAGvL0O5hoMdBhSNpipysqLCcwKisU2ab8jzgul0iO0aqK6iajKicEzbSDr6FwLDsPBCm3n6jkT0qyC6WzEe+VhyhGN6OGZDkqwwpEGWJ0hDUFcGra6wLA9LeJRlQxD5aLlF4pFvJRYmx7MxaVrTdT43iy1FkeLHLlWl6JoWx/AQhovt98W5q5s5s+EMs+tnVA0ZMIxjRmOfFsUyyXlwesIHH3zMTVKQtDmh6zOwhzRFQbpJ8G0TQ9aosuDs8CFRFJGmC0ZhRJHldEpQVYrb+ZKmFZR1i+mYCFljmBFZ1vRHr54gr3bYToDqTKqmJx4YpkVSplR1RlZuWSxviKOA6XhE12qOjye8e3/O+Zsr/srABeC3khSJRkhJGEYYwsS2+hUi19231TGwHXPfdu/h+YZxB+cH6J3Su0b3ncgxTQtDGv2R6t4NNE0Tz/Nw7Z6UYFkW5t5lLcuSNE32t6H2QH/Z8/fgj5Wv3H356E60Oq7du6awP1rVPVZrn8/sAf/+fd7UsZ37/Omdi2jb9r2YvLt96I/Ef+a67kVzp++/l/727H32UN47uT9PM7DsHrclhdxjsxR1Xd87rAjRZ2r3E7J38Yu7MQAp5B/jrvZMVUHTNP17Xe8nX3smbd3UFEWJZe0vHnT/oqlbTacETdWjqCxhYkoD1bbUbXNPHACoqpqyKNhuNqzXO4qiRyxJYSL2g6BS9uKwKFLSNCHLc/K0IMuKfbTCousMHMfA8SCMXI6OpgyHA5TSLBdbzl9f8vK797z+/or1qkJKl+l0zMFswLPnZ/ziL/6Qx08e4fsx223G5cWCVy8vefP6kpubJUVe4Tg2Dx+d8Omnz/n0Bx/w/MUZD84OOIhijo0xXWfQ6P2kqexpDd0eT9br85a6KNBtn5uOBhFKdly1O6S0QWnaqkXXmjzdcHV1wYuPXvDxJy/wfQfHdrFdGz8estmm6E6wXOUkSY1hdASG5FEw21MiOnTXYNk2SoPWLUIq0qZkQcPhdIojTPJVjalqRv6IbF2SLUv+6ukBAP/Bl296yodX8fb8itvLhjgccHo2YrUoePz4GU7ULxKdnT5gEA2ZTGPmiwuaysGyC7KsZr3e4tgeYIOwkUKzXN+w3LxDmiWONaZUG7QApUoq1SAtl/ky5d3la1zbI99V2LIjcCb4TsjBNKbrDHbpAk2L64UcnRxQlil5VTIZPUWTobWgVglpofD9QxxHEwVnWLbk+zdfUdeQpB1KGXSy5WpxgyVtZtNj5usVnh+QbK5A9eYLtSCKAt69fU1eJKhOYNgmrUjJihbbLtmu+/xkWaUcHz/AsSKKfEeWJnz38g0fv/hTdEqwWN+w3aWsN9c4jsFwFNPWGsvpH2u27dNUDZapuXj/lqPjA7579ROksaXIO3ZrQZYucFwT5Ia6XqIRxMOY7VLi+orvvn1Nkm56FFsU8vXX3/P0+TGD8ZRdUjMYBmy2t1xe/YSTg4+YTL/gkw8/4s33/wO/84//Z7KsQlclqqk5OJ7gOw5llVIW4Hqauu0wpIvp1BS5ZrNOePLkCeev33JzvWQ08YkHPlWh8f2QAR5Xr78kMieMokNCZ8jJ8JS2XjGbTHj5/Sva1ubkLObi8oLbxRolb0kTSTDwkGaGZfRxEtUIHp49QemC95cXeM4Qz1XotsO0bOabJbWSBH6E7Uiubl/x53/p/wdlqv/ib/97P94utiw2GUoVBO6Iqm2o64bVcsflzXvG4wOqdMLR8RGBe0yVe0xGU9brDfkqx7QEujMw3JLpZEC5c3lzfs3h8QDPa7m+SBkMAhRzrq93WGZLss3pOsXx4QFpWXBxccEgDrm4PqfWLbu1S1EsGA49RoMeTj07ipkvU+aLCtMpWG0WhAMP0UV8+/UlnuuRZhnz1fu+Dez4jGcjdtuEVkkalVFXJXlWIWXvYM1vrvF9j02+I61LytZAtwV1smR2dMqrt+/6Y7RIMgyPsKQNXU5Ztqw2O0bjmHAgefLhA5q2YDAccH25YXoCpmVQlDmVgkEwgDbl5PCYy4sN682a4WzAcltzEA1IrhPaas14ElImHVIoKq3pzIrbdwWD+JhOVOw2c0bDGAxJEHoIoYljj9UiZzqZUtQpuzwjCHyqomW7TRkMYwQmqnHIc1gvd7StxrY9DKWQQu9LEprIGzO/2SBtqFWH5YDoDEzLYbGa93lSV+GFAsN1EKp3iuqmJY58HNOiKjJM4eA6HXUKUegShDaVgk56OJaHFFCVCU8eP+D1m+9pW8Hzp2ecnR6zWCS0TYljSBAOozhANRWHhxHTScggtinLgu02x3JsLLel7hp2lUJRM/RcRlZMIF02aQ7SYRwfQGWStyVhHJKsWmrVEXgDhOgvwoqqRNHt83f90XY8ChlOIvK8JElaikKT5il1W5DnJbvdlqJJ2CY3JNmcLNsihElZSOY3KVdX7ynqDcLSRHHIv2T0TtI/CDqqKkF3oFpNWVZkWUbb1mjdcDdF3k+Stv0O+n61R0pxPw6QpmnPo4R95vKPY5ekENi2heu62KaFans0Udu0NPVdS11RFiVt07uxSu+ztlVFXZf77Oj+8/Yi8O6Y3Pdc4kFMHEf4gY9t9w5x4HnYlolhmvuVJXqMFoJ636q37TsMVncP2++P1u/iDd29G2tbdj9oYPaO8l3koQf693fWzwvQOzGLEL3oNo19FKL7Y+tTgj5OobS6F839hUIvalWr6HTvFJumtc+HKkBgWTae62EYPdHjLqcrRC+Ym6bGsSSDgc94FBKFDsNhyGQSYRjq3kEDo59W9X1su3dkDWkgBZimg2ohL0rKstpHIgQdGq1rLNPG92OkITAMje0KHI8+N21q2rqirRSd7nm9VVUwnsQ8+eCE2WHEeBzw4fOn2E4vIt69veL6asf8tuD6cktdKfzA4vhkxo9+9Dm/8KMf8OjxA44OZ0hpsFwkfPXlS/7p73/Dt1+/ZbVMcZ2Ak+GMJ9EMy3HYZfU+xrGPsIj+/6CPP9Q0RR9TQQg816WWLe+rJUmy609M6l6IKyU5PHrIwcEhYegzGEQgOjpp0mAQRDGD4ZjLqyXrbYrrOOzKhKsq55E7xsBESgtQ2E6HkB3X24TfvviK0wdj/uV/5c/w6GHI82fPODmOqWvJclWw3dX8O097ofrXf++iRyjJDstgf9yqWS0THNdkt1Mk6RzXsUh3muubK6qqplMmrtdhmjZR7NOoCi1KTMvDdl2qsr9Q0F2HakwOJhM0Fde3W45PXtBqHyyBkhsMu2a9yBmGB5wcPKCpMiwZ8fjpjO1u0a8YlQ2xP6YqaxbLW4Yjh/eXtyhuCUKDoqhotI0wOkwtQCjSrEDpDi0EhuHSGVDUCUmSs1msOTwYAy4CG9mCVBrXN0mTBVXh8OKTZ4wnI7wwxosLdskNN7dbQicmyVa49gDXiajqnFblFBuPZx885JuXv0eZ2Tw8O+T89Sss28dyGharWwzp47qC2/lbtG4ZDMa8fnlOVRZ9LwHN0dGE8zdvCAKPrjMYTSeUeYvruCzmNVpUWCZokfVxJ13RacXRic/b8yWD4QOa7h3bueaDp1PWizVHB2d89dVP+Zt/6x8SjkyG42N+9MO/xPi4YZ3tCMYh4dBlcys4OZmxWjQE7oi8XNK2/UVRp0wcK+bmZo4h+1iNZWt2m4aTs4C3by9ZzGvKvOYPv/k/+cOfvETaEyazKcKuma9uGY3PKPKMg6OQ68sNR2cjtNySFwlYHaaticMhjnlEss05Pp5CZ3D+9pzJQUyabRmPRuy2JbbfMTk4RcuazTrFdWsMy+DP/uK/9idfqP5n//nf+HHX1iT1CtUEbDf9bnIQdlT6FlMesFhcovUGrXMW82tcryTLFLBD2A1ptqHMSwK/ZjXf0qqE07OYq7cps9GIcegyn9+yTrdsF4oXHw9Z3LZ88OwZy21FK1/T1DXCsgl8h2dnX1C1FeGgocnWVIVB1wYYdkearBgOPSxL49sjtknFdrMiCjySdIWUTn8EaLnYtqAqSuLohNn0CedvvySOfKoc8kyR5w1lW2E7kuVuS6cdRgdDOpUz9Q7YlCll2XL4wMfCZ355y4PDI9q6ZDCSID3cyCCKDVq9o60N1quawViTVwmOHzONplRK4AUOSXmDkgaN8ondGKu02DYCuoRnZ8+ZDAasV2uUhk7m5Nol8AKCUOD6CkNa7NYpTZETBha1rqjrjCor8YOYuqlQdYHqOvKqQbQ1s9kJXVdT1yVNqUCZeJ6DYSq6VjAZHGOZknSbMwxjbGHhWSGT4ZDIjWham8gf4Ro2jao5mJ6wXScUbc46z7ANi+FBjNrPWrZND5bv2Zo9wL5uapLNjoPRkMAB1zFZrZfYniRXFXVT8fDRQzbJgkoXVE3NZDKhEzbSgcCTnB0+pGsFUTAiS3pG6a/+87+BjyT0Aso6py5z6qymbhuEDetkQ1G3OL7A9xyKSmC6AmEk/QZ8ZxO6McPhAGlCGAcUZUY0iui0xg8GNHXF9dUVvh+idEvdlKTpts86GuC6FlVZkGYZqhUoZeI4HoalwazAEKzTHUVTssvW/JuDEQC/uV6jtUFW5pRVjmVZBIEPKKq66JehRH+EbprGPexfdwqtW+q6pCwLpOxnRbtO7xel2h5FtXcazX3etK7rvshjGLiui2Ea+zUs8z46IERf/OnoMCxjv2LVI55U25JnGezzl8C+da/vi0ZBEDAYDPpZXdU7moY0+2a4ZfdTqftsqpSSsiz/WN70frDg5+IFfdbzZwxMady5t30e1thnc+8+x/O8e3h/13X7XKjuj/DhPjt6t1Jl2zau49zD++/c1LvblLLP8JqmdT8G4Pv+vZBtmwbT6Bv7iJ9ldg1D9m42vTtcFDVVWdG2GlP2wH4pTTotUW2/pqNUPyCSZ1mPrKqbnufaaaQEyzLRWpPnOaYh8X0P13Uoy5KiqCiKlqrqUK3AshzCIGA8GXJ6eszx0TG2aQGSzSrju2/e8+7NhjztM5uTyZSPPnrBJ58+40998SEffHiM43bkRcLFxS1vzq/4+iev+f7lBet1AsDxyQEvPn7EDz7/gB98/pxnHz5iEIes11s2VyvEvGG7K+iEuY+F9IjCu3yzEAKtGpqy6vmqpoEXBFSd4m21petswEYbGsvtCRFaQFaX5FWD7iwMaaM7iRf51G1FkfUM2G2SIwwLSd/qvykSHodjBC1Nraiq3pkvZMFXq3dg2jiuzbdfv0IXJgfDMbvNisdPxvzGb/x5fmG7AiD9tc+IJha38wWeb/Hk8RlFvmIwmOI4MW27w7NCDDVjPJ6hZUXdrLDtAMvy+1W21qRuIc1yyjpFSIvr6zWu79DhcXR0yMtvXiIMiWlOGE1d3py/QmoDU3Ska8V4NGB24JNXG7KiJC0UeVOhpUdRt/hBRNtWbHdzhO4YjGPev7/GkDFlUTMdPURRoeUKsx2TFw2YCUWp6Qyo9DVZXvWnilLi+T6XVwvQLoORw/XNnGgYs1wltDqhViarzRZh2KzTN7x7O+/jCfYEKX08x+L2Ju1fN9sJptmxWa2Ig2P8IGJxvcUPLOo6RXUF22SF5xtYhs168wqlW6rCYDKc4gYJRd4wnZzy/vKcOBhzeHhGmmVIw+LJB4cUxRrPnaHZImjJth2uFbHbVrhun5Nvy4iDw4iy2DIZnrJdSjAqdmuwPQN30LFrbviHv/0PKPIEa7Dk0eMf8PDRGfNFT5ZJVisOxk/wA4NNesNwNCT0Z2gyZkdBf4Fraa4ubzicHWLagrKseH/xms12xW6XMJ6d8NkPXhDEHtEo5quffIkpG85OT9BaMhwNOJgFzK9r6kYRRj4CGy/sY0iR/xwhW6pS8+DkCd98+xXBQCDMFNM2WCZXoGw6VfLk6QtMEWIBqku4usn5F3/9r/3JF6q/+V/++z+u8yW2eYxJyOmptRd6LZPhlMHwiKK+YXKg8b2A+e0G29G0ake6rRGuT1uYOMLAMTSu4xH4YzqxRnYuOhdQwMXVkoPT54yCM6p6SVO7VHXCD/7slMW5y8Mnh5ghuJZkOjjBsDwsL8GPB6RVySabsyt2RKMh2ySh1f3qSJaVjMY2ndJ9w1b0L3wSDwNNlpScPjilbXsHy2IE2mW1vUTpGm1rdusGz/PQtebm+obZZIJjuCzyFMuqCN0hN1dLRoMAKXq8TX/0tsOLBNI0Wc63NHrJdGqQpi6HZwFxPOXByZRdlXE7v+LhyZS80OSZxjVMxuEIx+0olMsqWWA7kOmatK5oKxM/EGyTLdHQJd8V2EbAZpfgCB9VCsqmxhIdputR5jtix0dYFllVoSuYTH2i4AjVVmT5mqooGA4mHBzEmFZHU2uksDEMzWR4RFmVdGbN7XrOerNDa4Fjax7Opqxu1ziexrYaOg1V01BqTadtsFpaISnLlk62+MEEP3bYrEuyLCMMBV988QnpLiVJdoBkNjlCaINttmYYDhAqZ5Os+u+hyfn4wxd8+vGf5rvXf8BkbPPw+BFhOKSpW2hbzo4f8uD0Idc3K84vl1RNwywKqdc5TSuxHBPfMxGmSbXLKbOKg5MBbZVgKIvAD4mDgK5TrDYL0jJHSQtt2mihiOMASwqqsiGMQgyjdyFcxycexOx2tzRqC0oShwM8x0dIizCM0J0GUVPUWzq7wA4ciqrG8Rz+jbBfAvkbiw3Skj2uxd6vCMmOJN3QtDWuZ/cunzT3+dhebNJ1987r3RCAEHciRu3zqHpfTOpbzuY+LiDoC1N3LM+27bFOvfu3d1arGmkauL6HafS5QikFjuMSR/F+GKDnlva5z/5oHgRFVpJnBU1dU1VV7yR1IIS8d3jvRGlVVX2RqeuP5e9ytz/f6tf7XO5dRldI7gXPndi1bQvL7B3jwWCA67r3gjcIgn6oQQoM+bOJVOBeBN/dD/ruz33xTAiBahXGXqQahoG/jzC0bU87sKweyN3UNXqPurprtd/lYW3b6adgm5YOSV03JGlGmuYURUlV1f3PrBRlXqD2Wdi+nNZfnNR1Rdv2NAnVtljWzwT/cBTz4OyIZ88eMjscEA98TFOSZQXrZcZyvmW33VLkOa5n8fDRjM8+/4DnLx5y8mBMNHBpmobbmwVfffktf/TVK15/f8tyniCFxfHxEZ//8AU/+OFzPvr4MUdHIzpalosdL7+54svff8V3P73k8mJNmTf4gc+Ds2M+fvSYR+GMViuysukvUrhzUu/uJ2jbmqYq95ljg9nxlM6HubFBixZDgCVsqmwHWlGWGUWdQyepypo0S3q3lr4Yp5VgvtiS5AVCmiChEw2VrrgqtjwOjugveTSX6ZrfXn3N9NjCIOaHH72A/CVT+5wD+5ZI35Jc/oTN25f8hdEpAP+ovSF0Ag5nUybD4/5+kopOVMThY6DF7CzQkqJQeGFfcLSNEVfXl9zOb9GiYhidEUQxtVqz3mzxAgn0JZemLsi2msl0RFokWMLjcGZTbkuOpocMnBNODw+5uV5Q5CWu5dHoDWWdk2xrlrcrrs7XbBcbHGmhaoOsXOH6Flo1VOWWtNhSVSVVYZDsLvADn2gQsFzNUdoiHIZ0suTi3Q7P8zFcE8u2ubg4p+tMVvmGbVbS1oIsFayTS+pWsk6v6DBoa4lUh8QDA8uK2Ww3DAcjrq7WKC2QWHz84RcoVhjGAbNDD9exqJqEm+VrBtEptiNZL3cYOib0TnjywSNWiwTddhRJyOc//BjD0myWKwQ+QWQzGLicv3nLy5evCKxnPP/oA1ZXG2bTU7755ifMDsa90NNDtEz651+d8ubtFcePD3h9cYkZSKYnLslKczQ54Nd//V9gdTPn1cuO/+Uf/32KW4vAl7w5v2A0VqzXOUFkgfYoiw46g9HwAGl0XLxNGI4clttv6NqAzbKh5QaQFOWSxeoKe2BwOD2laTpuV+8YjXxGscdsGmOaDrar+Sf/6/dEQ3OfO+2jI6E7YxC73G6+R+kM1UhOz2ZUTUPbNsTDiO06xB8OKPMdk/iE92/PSTYLmmqB50yRtsuv/fJf+ZMvVP+r//o//rEfu9Rt09v8xZzJ4ZDh1GF+WzCIbDzbRVUllxdXnJ6+YLHYYFoSywwwqYlGil1RI40h2+uGcieYjGZkhcIPbSYPZgyPGyZDh1H4hDgc4TLicPyQXfKeVvmEQ49ku2UwnLHJFpye9RmWrhvTyYqk6gtRujMZjj0uL66ZHhzQ6AZhhmRlR4dAtR27TYHnS/K8ZVeWmLZJXS+RStOWNVmVMDocUHUVuoTQP6TcbXEGNm2jEHXL9WaFH0W0hkZrEwxBFNl4tsX1dYKwPKq8wdEdC5UhlMkPPvkCUxtMJgaFbGmWHT99/QrTlPihxTg84O1NghcLTuKI3FSsthscI6YuS7LqFluOUGVDWWZ4VkBdwep2zWl8SJMLLGfLLukoqKCRiMZiHxHsuY+qwTZNmqpkMh2zWic4vs22qbBaD9vuJ7DzuuLB+JhCp+yWW7Imo2gKylYSdoKqbVjWW06GE4ysYbtNqTqF1hKlKixp0wiN47voCpoqBanp2pDN8pZx4FAmMJoaqKrD8X1mByfoTmGYMUKkgObh4yFltSYvSyxrgCk98qpmne7Iqi0VJT4d61XCKkuIRhpHdjiOy2qzBrOkLRV11WCFFkbUousWVIUfjWjymlWyYDg64vgowOh8nChA2IphPKQuMqQrqbOCZluya3b4wwEDP2CzusV1BphWR9toqkxgCou6TGibFMccIETAdrcl2aWYZofrQlUU2I5FPBxim5oHJ4c8e/oxTdnwl/du5P/YSdo2wfUcHDtgfntLki4oq13/pJU2dVMjRQ/Kp1PQdjRVhWFoTFv0TNoyA9HerxW1TYPoDCxzn1naPx5MKem6Hv3Uqoa2Lfpyi75ztySdBsOw+8UlBaIT96tKe5Ip0jD2rL7+GF2rXqg1eYnQGnRLWzewjx1Iw6DZH4nfuaeGaRJGMZbVZwyjMGIymvDg6JhRHDOMQgLXwaAj8FyGUUzo+djSxOhA7pOandbUTX0vbHtxXKGUoihLsiKnrPoJWMf1cJx+Y92xbEzTAimRpoFlWximcf87sdMdousLko7jIYSxjxxIyqpCSEEYBbieg+3YuKGP6/XNfsu6c7BbDMNGA3VbY+3zt67nYdn9x4XsM8CWKTGkQLeKbk97KKvq/gJFqZa2UXt+qtyXgKBpFavllov3t/ut8QrfcTk+mvH0yRmff/6CDz54hOu6/3gjAwAAIABJREFUbHc7rq+WfPvNW/7oq9dcvFtSFh2O7XF0NOHZs8d8/MkTHj2ecXQ8QqBYrVacv77gD37/JS9fvufmekWeV0ynE548PeX5Rw/59PMnzI4G2IakqhrevLng5TfnLN7OcTJJ2UgQBl0n7x9Daj//IIC2zmnKFin6i4nUaPiD9gLf84giF9PqsOyux66ZJlKa2KaDavqBBRBUVUuWFXvMG/16T7rDMsU+D2v2Yyui5bpc8MQ7xpSCQtd8s7zENHwmR4KRb6I359h6x3Klefku5Wpt8u625q9+8ASA3zy/pG5tqrYlHAWkVcpwMqHIoaoTmralyAWjadzTVDybvFI4noHnd5gm1IUEo+H4eEBVtFh2x2QyQSnBIHZ59OgR0srJ85Inp59RlWt0a9FKAULz5MVHnL/6KUVVMIiGFPshkCZrcIVNme44nvXCertRtI3k9MEZXVdR5g22HVHVNU0lOZo+oKxrClGSbSo+evScLFtQZYLl1ZLpcITlWJiFYp5vaLwaUSqOJ2cMDqaobt3zqu2IJF1QNDuqzqCo1+jKwTEMynqFqMf86q/8CoETsZi/Zjp2WC0KDFOyzddUZcJ2YfDB06ck6YKD8YxBFJBtMqYHUz768Id0ymWxuWWbpHz66a+CkfN7//s/oZGK2fEDbuZzGlVTtxsi95gXnz5GyYKb1xmVviIOZyTJFs83aZocxxTINuJ2tSIeBgSuj4nN8vYG727CWrtoLUHCj37xYyzpYdjgmCFNqTk+fMz11YKuDfnlX/6cr3/6LcNhSOgFPD57hurmIByytKKpYDIzKfIMrRTHh0/55V/6ZW7ffo8lD7H8DVIEfPL8MUIZHEwn2JbJ9WLNi48/oKgSDqcPKXJJFJhIc0O9i0iyJePxiPHwiO+++56hf0DX5qyWO6qyJN+VrFcJp0ef8vyzA7I05WD2jKOjR/zoT085m/36n3yh+t/8zf/ox2Vi4jkuUegTRSZtWRN5UY86Csbc3l7SVIIwOmK1mTM5jAmjAEGDMlt2eYnrRWzXGXXeITsbx7Y4OpwgDMmXX31PVScsbjN0V+F6cHo6oSpbbjdvePzBmKbSPDz9iF3ylrYYgTIp876Je319yXhwRqtaBuOILGlBaDabFZ3QpFmJVgJFRlOCaQwxLEVZ5YhO0TY7Yj8gTQpMUxAHMePoiJuLOZ2pEFqBKWhLgSUEjm0xjo+x3QG7JEOXJaNxzCavSKotrn+ME7VUVYNvxqR1xsnklKpasNssEG1AVhcEjofvGLRZzenBMVfXO3a7ObEbIE1BXSTkSULo2riWRZbk1KVgcjCh05LVZo1d1wwHEem6ohI7mi7EcwVV1jBxB4yDI4qspalzXN9H6Ro/DNjtJFUFVblGGgY0NUM7IDdaiibHcw08N+DDj0e0VU1T50jXQxgGdlxQZhUCG1d1vF83hOMeb/Ppi8/wmoirxQ2NKWirAtsy6ESNEA7L2y0fP/kElMmDpyG7tKITLq7p8P5ihREqyiqlUpoyy1GlQ1mUCKmIwxDXCfHdgCzZsN3eEAQmNi6djggGMclmxdHoIXmes87O0a0JRsbLt9/TWAWm77C4LZjMDri8XqLYMjsdoIViMh4wnUxYrOaku4LtaoG0HQwEg9khTtDgW30zu1znxHFAVqxIszVRFOJ4Rr88UpW4nktZVPiBRKkaxxkQhaP98wIMKbAsA88esZinlHk/R/qXrP6q4reyAhC0rcS2PWzbRHcVvu+hFRRlRtOkCK1o6py2TSnqJZ0s+3lX0bFJboGyd0yFjWrkHrDf5y0d28GQArV3Lh3HpqxTVNsipUVVVpRVhmUbWJbEdgwcz8BxzP5qRmhcr3cT+7xkL6hMAxzXwHX7vKhrOYwHQwZxTBxGPUnBtJFGzx11LBPPcbD2x+l96cvAMk26TtHRAA22Izg8GnEwGzAYujz54JQXHz/l4aMjDmZD/MDDcd2e74pEGv0ylZCCtmn27iv71SmJuV/ccmz3/uheGn3Gt27qvWg2cBx7nw+19xEAG9fz8Hy/j13IOzw9/fyz3Q8qNFXTl81Ms8/fyr5kZVomnu/2wP+uw3NdbNumaRqqqrpn7eZ5L6Qr1YDsv5euT5/2jvh+JQx6V9uQxr0LDvTFNMfGsnrc1W6bcnuz4t3bS87P3/Hu3SWr5QopO45PDvj0sw/5hR99xuMnJ9i2ZLtb8fr1G7779j1ffvkdr15esVxkNG3H8UnPm/ziFz76v5h7k1/b0vRO6/m+1be7O2ef/rZx743IzMjIxs5y2S7b5RJWIZWEKaAYMGCCxJT/AM8QA4ZI1IAJRSEaCSGBYFRF53Jh48x0NpEZGRG3Off0u1179e23GKwd4WKAJyDkPbq6g6O79zm6513v+/s9Dy8+vGA0cTENnbyouLlZ8PbNLV9+ec3793ekacxoNGJ6MGEy8zg6nnJ+OMdvLIqyRYjhIaAfjBT07NFqqqMqMlTbgRTYjk04n7EkJy8Kirwiy2q6xqRrJfRD3EHTBeHIwQ8sHNcckGlNOxTXqpbFw5qy7BG9hcCi6xtEr4aYTl/wNrrh0A/54+2vsAwDDY0sSZhMTYxRT84hcfsE9+QlpTnCmD/hH4wGQsXPXzzBDDyqrmK7S5FCx/dDxqPZfqh26ZTCtn0m0wm3t3cD1D7Kkf3ANlZ9galblIXCcYNhAaNqinJDtK2wrQDXsRmFI7K0oG5zsrIijlIM2+OzX/6Yoq6YjCcYhsV0eoxUIY4jsF0d29HQtQGx5QYGJ2cHVGUHQiPNC6RuQm9y8fgMaaSs01sMT3B8cIFp17y+fMfhfE5WJFw8P6HNBJbms9puODw4QooG3XSJ05TVYkcWp5TViqoETfoUZUKVGaTpHbapc3RyiBcYvHtzyUffeszd7Q3xysByO84vDpmGM6JozdSf0nZ3OO4heSp4dHLGdhfx7Y+/T1Y+8Od/9gu+/d0zHu43hMGM95fv+ehbh3SqoiobTPOQH/zGR/zil7/AMU4xrZzNdoE31RF9yLNnR6haJ3ACsuoSdJsorXAMQRCe0eoZVqADHV1pEIbWkNlVFaIfFNRC9Dh2QDgak2QRXSeZHB5xMDugVR27JOXJixlFmbLdFmiWwy5aDFcQNHSzJC+39Kpnvd4ymYR8+PLbfPHlF/TKoW1rhNSouiVp4vPyGxf87NOfgJB4zpRdsmC9SPDcCW8+vycIB6Z4HGc83BY8e3KKEDWu56PZkkZpfPTye/wb/+q/y6//4BP+jz/5IaEf4ngdafme+9uYX//kX/vrP6j+4//6H/5Rkgpsz0PqCb3W4HkhlVqTZRXX75cIWWJ7Bm3XE2c7dMNms4mZHrj0oiHLcqTWohsdL189xbQUm/gBw62wHRfbawhCg80uISsfyNOG07MLiqpgejRnm1zRVhoCk15VHB8f0aqKoqhI0i3SrDH0EH/cc3sdc3LmEqclrjsmz2vqLqVpKjQxQgqdjz56QZLmCD1nbM0xDRtds4aBTTaMA5cqz/E9h7LrKXcVk6MAXWjUmaSj5ex4xnob08iYo/GIssiZzk8wDJPjQ4dqt+FbL5+wXK159Oyc1dU902MwrQZT+EhbMpkG3L1JePT0lOu7a0DDcFuSYodCIHoPw/GxbIPtNuZgdkTX1Gi9GoYn18LsLYqsoq5bhpqJou9r+lLx3W8+ZzI9pKga8rIgikum0ylB4JLsOoo8xQwMRG3Q9YKsqPAtl77vkIZGdB3z+NFTPvvVNZY5ordqXCMgyUvG3jHTaUihanqpI/oW2bdYmkledqyy5bDdalu6suFgdgqyJLQ1XGHy8uVT3l/fs4mX+J7L0XTEZlsS5yvQhqKObG2mwZjr60u6tiX0RmhSJ41jaAUn8wts3UNTgqqtMV2gSZl6AWmRDv7pvuXZkxd8/PFv0vSC1eoB29LoGkmtSsKRRBcObdVhGwGhf8T1zR2LxR1FVfIkEDwPBYsyZp1VpJsSoevMAo+0KJGmpKwa0rTB9S0sV0eIHsPUCcMROjbzgwNMqyOKlzT1MDRNxi6mnFBkCk0HY0/F+ENjaP3/N9UGzezp1LAFMnRzX5TqaJoCoToCLwBVUTcZVZ3TtCVlXaIZGnVXkpVbTCnoazFsMJFoUuJY2oDzamrKqsAwBs4pdES7xb5h71FWGZqmo7oBGl6VNVma0+//PaIX0Evqeu+xlwaOPTRlNSEp84K+azH0wacu+h7VdnuffIPowTQ1DFPbx2X2BZq+p+0GbNVQ0qrZ7VKibcJysWW7zagbSVUKNpuYxWLNehNTlg1SG1idCmi65uuWftsp5L55b+wHzmGAHcQEuqFjWhaWMZz8vxpibcdGCkHbdqiux9jjwr4iG8AesdUP0C/VtsNgpXoMTdsrQfflr07hWM7Xg6ymGbiOQ9/3lHtpglKDaEDf54VNy8C09D0eS9GpQY5gGQaaFLiOg+O4yK8Yr6aJJof8a1kUgMK0wDQkB4cjnj0/49kHjzg+nqNJSJKEh/s1b15f8fbNDW/f3LBeRZi2wdF8xouXT/nGxy94/uKMIDRI84jFYskXn1/zs59e8unP37NcJJhWwHQ64+BgwstXT/n2Jy85fzQnGHk0jeD66oHPfvmGt+/uWS4S6qhkjIfQBuXu8Fn2X1uhxF7bWuX5kK+WEtOyMEYeK61iPJ4ShCNsx8E0B3FCWRYURTmYgIqGuu6hlwSByexwzHw+Y3Yw4eHhlu12jesa1E2JkHJ40JI6hm7RiZrbNsPQLXRTYocd4egQ3Q6pdA17esT84imW7/KNb33Cs2cTfrAdMqr/6G7F4j4izxoMaeF5NpvtkrptyPKW2fSMsmrZbNdousK2Qxo1sHLTOCMcBUCHqU8wdQ/dqMmSFM/1kLIl3iiKrMY0TC7fvWa5XFA3HeHERoia5XbLwdSnlyZVnlI1CZvtPbtNi+12SAGrhwbD8AmnDlXZEicF4VgnLzpsX6OqK9pOMJ2ZXL2/ZexNuDg/YzyeEFULyk7gWUe0eYdhaNSVIipW1E3Gyw8e8/bNJcmuJY3WaPUgzDg9nVBkFb0acIu96qnzZm9JsthuCsLQY7Vac3p8wbMXF0itJolr0iIlUTd4ls0XX7yn1l0Oz2wmwYzzF4/4p//jH3N9c0mabZhM5jx5/AiE5OSRzes3b1nfN/jhhBevnnN9vUS1BkJm+H5A22bc30VMRhbxJuPl8wssq6NvfKQw0K0SU4Qs1ncs1yum4SmqShCNTt32g3RFU2hCZ73eECcJs8mc1WpJrzosy0f0GZqZkcYFgd9zf3fF7VVNLzKKtGY6G7NaRYxHU9J0A70OKITs2UUNXaVTtQnHpwe0DRiGR9c3rDYRWZWxXiVkecx2E9HTs9q8ZRQGTKchZW7y9OIjPGeM62pMp1OkdJkdzekoaOs5v/1rf49Hj074+ad/xs3VhvHEIileI2RDmif81vf/7b8Wg+pfaaba7FZIoyRKAhzXYurrFGWL1Awm4RFdEdPhYzDBcm2SWCOKcnzPoixa4kWG6MC0HdJuy2J3g2W4XHz4nKatublOkbpkexVzeBpSVgm6a/HF5ZdIxhxONFq5I4tNHj+12G4UqpdEuw1OEJDXE4qdhj+xqZqKF89HtH1M6Hjc3xRIo8KzXNZxjTFSaJrNn/+fv2Ay1dFMm6LNoRnwTIYJp/NDtts1vh/ieCNk8cDB8QShJJ7nc3/7K8ZuwDbOyIuCRFdMFejSp+oSdKfl9v4amga6MV23gkLno+ffo+4fsNyMA/eM213Em7dXvHj5AabncXn/E373117wsHXYVu8pdjVilKD3PrsoZjrxqeucXlQoHMqmJQxHHM48qrplubijKjXafmjinp+f8ukXn2F6LrrpYwYWoXVEvNvhWDZjz8a3W5ShYYVHFGVM0ccoA0zN4X7xQNcGXK0WzJ7oJJsSz+4xm4xN1KIOC3oz4OHNht/93nfYJh3L7S2/uH5HbwumU5+R8Gmdirv7DVJYGNqMzthgj1re313ysF7y6oMJ2bJDEwYjVzC1piRlxnxsMhmNeLhNOTt+StU0iN5jF62xrB7PcdGljh9MKNMVt3d3QwbUCLl9iBjNQooyo2s7PHuAn4/tHe3E4Xj2AUncoo/W1JHAd86AjvU6YjaZcjiboxkVaZLg1hFqmeD7IZHdUAUFvTmiNXV006TIG1opWa3uMFxwOp8i7xB9iWmWWIzQpUHf1fh+T9tkSN1D9g7bZcT04ATDqWhVhqGH7J82GI9CNEMCOvf3C3rywUoldYQC3/cxdEnd1gjVQCfpe3Pwj+9W9HRsFhHrRjIZTbCdZJ+L9ClrHYWkKHMmkylV3aFLk7rJ0fQOpSriZINuCCzDRKBjGCZ1XaNpkrZuaOoOqWl07XA6dxwXaQrSJKbMJbZtcn56yvHxmOPjAUg+qE4hz3OyPOdh8cD93Zq6Utiuh2u6KDUYpcpqKL017eCzD4IAKYbT+moTs42yr2UF9ArbMnE9G02XKDrarsUwBaIZPhddN77Gc1mWNdAAOoll2l+jo4QQdE1H17WDEUnsz/xCw9AFmlRfF8++Kmd9ZZz6ihPb1hVtU2OaBroGogNNMzAti75XA6ngqwzmXkFr7t9f27aDSnNPJmjblq7t0DVzaP/vy1h0PVVRkOcZnVK0tHhhCL2g7zoEUOQZmmEgBTSlolIdu23E9eUO0zTwA4fpNOTVqwNc16RtWu4flhRZTVW1vPnyhjwvEUJimhYH8ynz+YQPXrwg8G10YyiEFUXN7c2SN29+RZG31PWwnTctg+lkwmwWcjwf8+HLx/Ry8JaLVc1p5FE2arDBiYGqMLzUIKTqFaptB+2tHJi/XduQxDGRiqiq6uvCnKnr0Gt4Xjg8fLRf5Xg78qwmizWKIgLR4wcBQpgo1ZPnGVKTtH2FUoIsV0zCKS9fnrPdpLx99xrb03BdhaNbJKmDbDXS+J7CK3EMna7cEvh/GQux/ALTd1gsI+qyZrkrsC2PuovJchPXqzk8fMYu+SFZkRFvS5xQ4pgB3pHFLloz8k+wjIBt/IDMag4PDtF1l919Rhg6XDy6YLl4wDT3W+wyY71IKPKCoukoXRvLdNlEMYapo+stlpdQFR664/PBqzEPDwvW24gkqVHdmEkXkFX3qCbDcmyKsub2NseyR3S0UPncvF9QdjB2AmwkR/MTnFmIpW958/NfMQ3G3L6+BukQHNgkyxbf9xAq4/Z9zXZT8eTpcx6fn6PpsF6n6FLn8vKGILTZxT6nJyFC6yjrLdvonpvLkvOLKbI94Mmrj3BtE+H7HJ+M+PGf/pTTR+c8fTXnzWXJ2HxKVt2T3zY8e/qSg8MxqvO4924ZH5j8+MevCcMpn3z3u2yiX3L97pYsKzg+HL7++LDibn1N6M559vKCd5e3LK87js8Nns5O+dGfvcY6dzk6esybN1f4wSMePZ2z2jxQ5TVtAxcXz7A9g8WqIgwPWSzusXULTTPpZYPGsFwYzxSalbG8STk8tinzHudoTDhW/Mk/+yFhGPDig+csFzvuNq8Z+QNVoqoKjo+n/OQnKxCQxiPOz89pKsk6/jmW/oz55AV3D295cv6c3tFx/JpGCR7Np2xWFQiJ6gvapsczQ8bThuXyCwLfZDw6IM9TTk6+yY9+9L/y6oNf//922vx/8forzVR/9w+f9ZYNUhisFjmPn00GYwc6vbKZzaZ4fsCnv/wCoUnKKmG3izEsB9PSaYsYL7RIc428TlB9jeuN6elZPFSMJbz6+AT6kOvbW3QnQ/UGk7lNo9YcndjcvWuwTYOxd8Bk6jMNX6GZNZ99/iumRxKagHEwpS4rlssFr1+/YbNOOT09xnbG/OLTWw6OJhR5CX2PpndUdc30yGEXlSTLksD2mJ/O6NuGrozxxj6vb5aEI4cka5nPAuI4pal7ptMZad1SVRmFXuJmNiezQ66TBzptC1VIODJJk4bf+psv8fQjTKGD1ZIVS+ginOCA24eOrqxQ/ZovbnacHx3Q4/HF5eecjCSdNiXJc8qs5+z0mN1uSZbm2NaYqm7oqTEdHdnaRKs1zx4/4vLNEisAzx3z7v17ZvMJhi3JywqlwDZM6lJhGi67eIU/H2MZB2yWV6ByDsYhWVzy6OyUsvL54s1PmT3qyMoRbdny/MUYUsnj8zk//bMFk4OAx4/PeVisuHp/SSV7hN0g647OsDAshaoFjuvRoWhUjm1AVWRMDia4OmRphTsNaNsCUzPxnROaskZIlyKKEVKh6NGkSZ4XqL4CGqSAlo6p71GV4I2muIZFWzU4noZtSVRvowuBpVlk9Yb58SM8zyCKlqRljaNPWD2sODgY8/jJc9ou5s2b91RtSlWXvH97y8nslFQJFukKyFG5y9PTC3RL8eXDF9jOiCSqqKucwA2xdZumSpiEB3img+NqRLsczdSomxQ6h9nolDRJ6FGso3sePzqnKFv+E2PIqP57Zk8U7YjiCCl6XM/d25x6LNNEdT2WYUMvqOoay3bokXRqUJI2dU+RKXRDw7Qlmi4pygzTsgcjmlAURY4hTULvAKV6imqL6jscO8TQbXRDInodIXR0zaCtu31JyqEsK/q+x/N9NH141s2znK5tGIUhR/M50+kE2zYQe7yU49r4nguCPfaqJUkqttuMXZwSJ8nQai9K6rbFMA2E1AdVatsybNw6tH3bfmCm7lWgdY1h6FjWsC1t9wPlcBkX/zcs1yAsGCIW/2I5SimF4CsNa7fPPA5Eg6/UtUopynIYznVdp64bQOD7Hrom0CT4jo1tW/thVcM0dMqqJk7SQdDQ9XSqH3KATUPTDCQFtd+KfoWwknLIFDdNg6Lfiw0senqKLEeT2tfq2K7rKMtB/mDoOromkL2gLnN0TeB6zpBTrGuaRlHkFUmaU1cNumbg+TaOa+L5FtPpsJTo+468qCjznjQp2Kx3pGlO23W4jsNoFBKOXMYTdwDxBx6IAc+1i1IWixXr1Y44qmiaGse1CScBF94hH2vHJHlNmjcgOupmsIbB3jDW9zR5ShbvYJ+7DQIfeeDxM7kcoiu6MWy6235fxOtpuoaua5D7cpyua7jeEK2gF1RVTZImZGnGbjdgfJQsiaOGKq/RtBbXN5iNnvD7v/+3sF3FenHP1c0XuP6Ybb6EJqIvNUzbJm0i+lbjv3/8DQD+nfYtVT7EbNarCMfTmE0nWI7N/X2MpjmEY4td+jlNriHaA2ZHDpPxjE9/8XME4Ngu52eD6apTHZNJSBIX5HmF5SrG4xlRtCFNC+pSUtYr2lphui5tnWM4AV2V4QYhSZTij0f0jUme5rTdjtksZLvWsf0eYWyJdj1BMEMzFNt4h6HLAYPXSkxb4bkHTIND8u2GolIcXoRIBe/vVuy6guvLBYanczp1MDqHsrOp6jXH/gHHRyZSh8en36Zpc16/uSSrc6rK5oOPDrm8ests4rFeL5H42K6gr00O52O6RtG2EWfnh7z+LOVvfPcPyNrP0D2Nvhnz6MkhY9/j83e/4v1lyu//wXe4fLsgWt3j2g6/+du/R5pvefvuSz79/McE3ksOzwyaKiL0ZixuV9DraLbG8n5FGHh47hCTMQyH0WTC3d094cxgeZmjtSbPHh9h+jq6HnAwP2G5vOHq5oYw9FGdTtf2jCc+aZpQVR273Rpp6IwOjsjKe0auThzHNMoniu8Zey5tWVI3NePgMbODkMv375gfTSjzHBCYtsndzTWzgzHbZU3f2bz4cEy8tXjy6JxO1mTFhs8++wWzyTlt1yC0HEs84YNXU3766S+xdJu6SdGEixJrvGDKw03L7/723+PlNzzevrnGcmz+l//5Z+yKn5FEgufPjrh5X/Af/Pv/xV8LM9VfuVH1JxNurjaMxga6o/P2/RrD0AjHgmfn3+P84hE//OE/Q7eqQWNnK3plk2U6adtiWYJNvEUTc/KkZjwbgYKmjvFNB8dXPNznmIakqiowhpZc2RZEm4bb9xUvPzjn42/8Br/82VvKouWn7/8CJUoePznHNsc4Yc9Pf/iWut4R+JJPvvUdfvnpFQ83d0zmit/67W8SJyVv3rzHdhySKGE8PSDd1CTxmtOjAyzpQ6uxWd/w9OyMd7cPaKYBfUjR7ijbGN1u6Rqf95cLCFom4XCa68uOTfRA6DuDhtQLEEbJb37/ET/60Xu0OuXFRxaSCNV5FJGBoTuk0SWpSjmwLIxe8uXigUcHj5nbT2j6Owypc7fccjh5xC5paVsdXbewLRf6iKYtKEsLU8FoOiUpYoQOuqkhZIfp6GidRbJZM55NMG2LNM5IkoIPXj0lb2qKvKHKlrTxDmtiUhcFeV1jhSNGcsLNg4kqaoLQxTiO6NwdLy+e8PP/7XOMXPIv/97f5X/6J3/K/FTnxbee89nn77CQEEjSKsF3Qnohub+65+LFMUmu4Zo+jt7hGBJR2Lh+T1/XaISMnAl6BZah7z3UBbZrkqUZWabQpI0QirrOCQIPIQKSuGQ6PmC12JKZFp7nkEcl+abh2dPvM57NqFlStxsWyZoxIwxjQrl6IFKXHBzO6YXiF599xnQScjA5ZBMVSGFy/tGcuoYjfUZWrNmmHbqAu3VMVt1i+LBZp9ANJ+M8T1C6wvdshJRUbU2xy9F1G00zaDPByfwI27TQ9Y68WvLh8TmqM9CEBe2QL8ySNZNwymQ8Gdr9uk5ZDrixJFntN1eKpm0BiWjlANcXGknc4BguwYEkr1KU7IjTBsu0B/6rbCnKGIWiFy1FHSGFRtWkOLaDkB2qz1mtEnR9GGxty8HWHfquQ5caR0eHtF0LQgyiAakNNrSioigK7h8euLm5oSq7gdHbDRUZx3WGzKuuEfjDYPNVy71uWlzXQ2gSur12VHUM4oKvtKSg7zmoTdNQtw3avsU/sFUFUppIpYbGfVMB/deD6Fc0gqZpUF032Lak/FqU0O8VsE0LXxm0vsJtfUU/+GrIbZpmD+63oFd0HXj2eX4zAAAgAElEQVSOh+06eK7DZDzBcQwELWVZEQQuZd2gSR0hhv/veob3FMUxcZJQ71WyMJAHNF2jl0OswLLN/cYYQnuCpunQ9bRFTUfPZDLb46hymqpEl5K6qthFOdtNju/7HBzOCEMX2zbQ9EFNu17tWK8itruMXVzx9u2Kqi7xPIdR6HF4OOHs4oiT0+lAjegV2+2O9WrD5dWCy/c6kqH45Xse43FIEDocHs548eIRUu/YrmOubh7ohSDLE1aVTt0D0kbsvz/s4xP0A/e2Ux0IuceiDYiuKs+JiiWmbVFbFtpXZAdzEECIWkdJnbpuKaoOfX91MIwB42bZOl4QcHA0o65zNpstutBpu5zF4g5DtzCMIR/945/8KZ43YuSOMYwRtu+iIoVQGtLUUELDDw7I0+uvf1/eXxX0jcZ0OuPi5AB/pCi6BdtdjTRqPGfCx9++QAmXH/3Z52S7mtubHbo06drh4fTFixkIKIsKzw24urpmPB6x3m6ZGzPubzOKJkM3FJ1QIC2CkU1WV7RNTzA+oKgATHoJ4aynSgRCB9EdYls+prOi7Tps65C8fIfQBTYOpuVQ7xGCZ6envP7yDb77BM2XGBik64jVTuPm6hJd8xB+zeFBh9Bt6lzDDzx28RLbGDE6CPnpr94h65rf/LW/z8mjjg8+nPDZL+/5/IsFy4fdEKPRJXWlI2WHoTS6xufDV99ms33N3cMGJwz5nb/zEXUWEYx8HhZXdG2DH5m8/fwNF88OMWzJ/eKW8YGPJg4Z+6fsklt+8hdvmcx1Hp1/kyTfomsu1zcZZ9/5Bua5Q1lG3G5u8bwRp8eHyK5hs11RtRk3RY0/NsiyltFsjC5L/uL1p5w9nWOZNaavEW0TqrJl2+ZAy/urd3z46tt4nkOtdoxnE1arBXH6gKbpfP7ZzxHGA0I/pS3HWF5IODVZPTQUWcnWSGhrja52qaqIyWTC7PgM3dSoEnjxocbmQSNd21hGy93NHZ1ec3Jyykevfg3brfmTP/lzvvPJr7Fc3fDP//k1509C4miDadislxGPnjwhjlN+8OsvMK0r/uk/ueL163tcz2WxXuH4gmdPP6Rtt5jG//MS8//v11+ZUf2H//l/+EeGI4mThqptCGcWqneo6pLx7AjV1fS4xLsWTWgsHm7RTR3H97hb3NJ2gtPzx5R5h0QDJegbQRC40LZUlckm2tLWg17S9yfMxhdUGdRVwdHkjHEw4v7qBpTJ5ds7svyBx+dPidYtV+9/SV1mbBdLumZoIoPN5HDGdpvw9PkJN+/B8mr8oKfIBE3XYNkGdVPTqYaR5xLFWyrZUdGw3aTo9ghneog/cljvFvR0HITHSKBD0dY6y4c1vQiYHY5ZxyVKq3Etn6oUhGOHKq6ZHYR89wcjdvmK3dqmKluEpiizBonBZD7l3RdXaGGO5R5QximKmPulYreqMDVFtt1xNDugyjuKMsWxJyRpQdE2uIZPV7YYjkmeVgitpO56dK3DnQS0RYVj28MA0mnUZUndlmi6RS9bekui2yazUcjx2Tmlajk6fcTIcvji6gsYK0zN5uLY4fCwxhMTmm3LbukyPh3RGx1S17i+e8NkMqVNhkxZ2mWItseWYOmS2Ww2lNxUhVQ5lhbysLoirxSN6IesmWMS73ZURUtetHRdRZqVlGVLmtaoTgM6yjoGWpTqqYuativJqpqyahFKYdmCNI8Ak9l0zotnr1itXnO3XFK1Q7M9z3K8CUMRyjlgs91iui5x2rGLY4q65G4dke8MNNMj2W3Isg7HGzGdGWRpxDTwsbQxWVRhmT26LDian1PmPb5nDSzTqkVKC8uxMPRmEAgol66r0PSeOIlZPKwRQmM8GfO3y+H2/z+oGsex0YXNcvVAVadE2w03N/fkeYHneYNnXWtoupbdLsHQDXwvQApB3dbs0oi2azEtc8h+7tmheZ6S5wWB71NXJff3t+wnQ5q6IY4jiqIgLzJ0Q3J0dIgpdZI4o6qaITvaNaxWS+5ur4YTqhSUZYnUNFzXoyhrsrxEN8yhxS3BtEwUA3e1bhruHh6I4h1lVQ5DYKdo9sNv23UUVTFsUDXo+/05/ytQ/0BNpao6lBLQQ121FHlOVZV7HmWL2MPjLcv6mp86gPrb/cZNp21q2q5DqUFl2rYtuqZ9jfTqVU+7/3vTsvZYqb+0ZVmmQV3XZFlGmqaUxbD5TpKM5WrL7e0Dy1VEVQ+MzvV6y3a7o6oasnwQSbT7bS+wFyi0X3NmPTfAMV3aqqXM6oFiUTQUaUVXtTiWhet5+yzuMHwHgYfrOEzGIcfHUw4ORxg2JHnM7e09l5f33F5tWC4SWgWO63J2fsLJ2RzPt5keTNEskzQr2WxSlqsdt3dr7hYbtlFC3fT4wYjxdEo4GuH4DpZt0nYNm2jLcrXh5nbF28s77h9i6gYmsxknF8c8P3vEpDXIyhIhtaGYh9hLLIY/90pR5SmqG7bcAvBcl7ETEPQm7/IVSZKSZTlJEhNFEXG8Q6nhs7MtazAV2QaWK9B0huhAmrFdbdmsdqwXCW2jcGwdVQ2RGanH5FmF503xfIeiXnCzeM/N6kvuFpdkaY5hefRSJ00KZqNDLNPmD00fgP8ySxjNRmRlwe3DkqRIqKse1ZlkSUKelNzfRIguQAqLg4MJhmZxc7Pm6dMzxlOfMgfTtFGqpGladvGWqmrZRhGeP6OqBjax5Qk0o0OaPU3bcXp2QZrl+L5JrYZoiON6FFVLUTQ0TUtd6XjOmLLuEBpoBghZU+SCNIto2h11mVDlirrQaLqM++0NvVREy5ZpOObm+oZwcsjdwy1SSsYjl77rcN2A0cimylL6wsQyFY1q2MUr1usU1xmR5UvmB3P+pT/4de5ulyTpDjDwzGd8+M1z3r19YBzM+eS7Twc74HhCHkXEkeKjF4+4u7nGto/53icviO4eaKqWo9kFr75xQZqXLO4TdHy++fE5n372I45PnvPmzVuytGY68+naGs/0qLIKKQpWdzXnx0+YjhwcQ1IkDY4x5WGxHC4/TU2yg5PTgHA8ZrNqmJ95PNzf8+aLd7iOC73G08cXlFVMGLrc36+wLIuyLmiakix7w3K94/HFM+qtR+BMKAuP84Nv4lk5ee4SjHvCcMZ6uaVTFapTVCUU5Ya79T1j7wLP6/jVL675zne/xeTQ4Y//+H/n5uaGs0dn3N09cHIWsN1UWPqYk5MTwknPzd0VvjtDNYKPv/kh1zfXLG46fM9D1xo00XN99wbD6vj88zecnj/GdXxm02NGQUhavuZv/Y1/669FRvWv5qj+V//RH6F0prMRaZJhmj15EmFqGrtoPSgj7THv3n/B/NhjNpqzXG3pRM14NqcuGg7GM5Joha5BWbTomk+8KxG6+rrNKtHR9JT1fY3oOw4PjplMHfTO4NOf/BxDN5iEI3y/5+b9mtXinixumR+5PFwXrBcZXtARLU2E0VOWivnpGMmMulHoVolhaojexPUs0nyNose2Zrx9fYUVWhRGwTbNGI1HYMIySUjjAscOaVRFvSug0rBDC9fUMfUAl462bECrMXQfz9bo2xalclzLwTA9bq5uCUcnlGVB2W7Q3Qil1qjGpIzW9LImqgR9VOBpNp2lIUsH2h7NHGG7BqMg5OEugj5HEzpt2VLEKY6jYQqLqslpq6EhWzQCJQt2OViWhuMGhKHDbpMM7FBZYQgXaPBNMKoWWwjGB1NEFnMyO+L2/pJlfMX5yQWG1BHGkmD6Idv3PckiZuwb7KoWtas5fzVnlfdoSqLrNpsiYu6HTJxTDGtEqyXUomKbRyitwvds8rql1X3SqkEKG3dk0HYZ94sVwcSlLXOiaIluuqRpim3Ze+5mj+c5tK2iacA1LVRv4gWH5HnMbvOA77j0UiPNMvIiJk8iJmGAaltQNbIP0XWXh/V7DidnlElD26a4gc/t+o7b5Xt2mSBpFZ0SrHc5y3iBbtiorkTXJU0zFFamgcP8YIzvmVRlQpYmBKFO39cUmcHBwSFS79hFW7paw5AOm+2Cri9Q3fB15kfHSE1xe3fD37eHX3j/XVVRlBF5kWIakjhOkXKwLzXtcOqXwibJiz2s30IKbQjgx2uUBCkDdM3eZxzLwRDX9fS9ZOTPoBvQVp5nIoQkzwb7lJACKXU8z8O2JXkeI2XPZDxGiJ62GwpcRRXTdAVCdmTZEGNQXYOUAsfeg/WFQtHStA1pntNLiWFZNG1Dvkc5tUpRlBWGaSL3PE1DN/ZZRR2JiVJy76rX92zTYWDWdOhpKYqETpVIrUeTAqkJpDZsRP/FIV3tN6ZSDKh91HB2/4qfqksd0TO8l777mhIwZDXNgd265722bbu3UvVfSwB0w6SpOrI0p67aQRpS9zStZLcr2G4TyqqlKhvyfGDJxvGONM/p9vzYXimCIMBzPBxLJ3R1Hp3O+dZHL3h0Omfs2rimjiEURZqSZjnRNiLP80EfIAR1WVCVJUm8I01T/CDg8ZMnPH/+jOfPn/Lk6WOOTg7paciLlDTLSLOcLKtAauiGRt1UWLaJHwRoho7r+biuD0KjqluKsqZTiixPqdsGhcAwbTzXw/Fc/MDHtAZUU121xHHJ7d2G9dWGoNRhD+Nn/xmiesT+QabvFVWZD1owBuuapg+lu12V8a5YI3q5DxIPZjIhBE1TkRcZu11EWZWoVtE1YrDnaTqGlLiezXw+ZjSy0bWOusjI8y0vXlyQZTt224JwZJHly8Gy57iYuoNt2NRdRme01D2oTpBsV0hp8g/8EIB/HN/iOIqmyaHVaKqSphvO6HQOhpUCPb/67B139w9EccVsOiUMHTx3RJ7nPH1+Qp413N9tUKQ0laTMJY6vsVjdkpU7mqbDsmx2ux11p8irnL7paLGpy5S86qmKHGkC6AhMNKHRNCnL9WK4Blg9adIhpYbnBhhGgCYVvjtmvWgJXIeu6jiYGJiuiWOPmR06bLIHhBoxcnRcbELvCJVbjEY+49mIImnw7J5W6ZgTRRY3bKMll2/vUF1NvF2zWGyZH9l0quazzy6ZHkx58vSC7faeXo9Itjq+P5BHjo4uwOm5fn+NbRqERwcYTkyy3tIi0NqGzWbHzXWMZYWYVsPNzRV1MWN2ZFKWCeOJzcFhyPJ2yXQ0xTF9yjLCMBy2y4SmqVBMELZkk97j+yfMj+YUKdRVRZ6m9GXAR8+/gVQpvuOQJT3f/t63kMriYXlJT0nfQxB4JEmKbliUVYyhn/Dq45e8f7fg7OAZ22jJJtlgmA0nh8dstwl5ESM1gRIRdd1ycf6YL1//EtsRPKxyxiOTNM64eHRKrVb89C/e8du/8wO8oCdNG+4f7oi2OZouub1ZM5oErJZbDG1KEApE7ePYkrzYMD2YMT0MSHaC737ybTTT4hc/XTI/cemFYDKdEEUL4uSOIhX83m/9m3/9B9V/9J/+x3+kaxLD0NCkJIm3BOYMIRW6YVBVGfP5MevNFsMcMnDrVYxnTjE1ySwMydId221ErynqvqWoC1qV4Tpj6qpE9QMqxmgs4lVF3mVIT1HkHZvdjvAopOp03t/cIVRNYJlM/HOauqGuTALP5OL4jM1S7RFRJdG24OrdGyxPILWcJO5IY/DGLdsoRXUmhq5xcRxiuibStjGlTWi67OqUXHRYQscsHYS2Q5QaeVLjhS6y11C0dHZPkuUUbYUmBWW5xMKnzEocWyMtaq7e3fHo8QWbKGO5XWHoLtQ+BiM29zWO1XP/sKV46LG9MXlUIpWNJVIcK6Bqc4RhUTYdRRnTCUktuwG43HTkWUUnFI5lkSQdk8khZdbheD5xvMVyAnRL0aQFbd5iOB6Ngni3Qdc0xqFPUeXYfsDVuytKFZPVOY2ocX2QrkIzFaqAn/zkc/Juxycfn2E4Dr/3O3+Hh2jFzdUVppbz8oPHRHGC61i8/PA5x2dz4mWErglKNgRjk/nhCZ7rIzH5/re/j6wK8mKFlgssK0DXNQLTIesTVNfT1vb+LDhYlTTTQ5oQbRO03qDRh8xWm9f0bQt6T4NEoSEN0LWOh+iB++0du909opWUVcnsIKBJBFkaUxQJQtfYJAVREYOhsX5ImLo+vmVTNjlGp9NWWwzHxNFmzMZTur5F6z3yBpZxRFNLPD0kDEOqtqDuSopyRbPPlgrpUyuTXjdAd9GswVGvGRq3t9c4lsu/YjoA/LdNTJYW7KIY23SpMg06iWt7+PYUXZq4loWl+5iGjuMMp+0sbZiM5hzN5+hai5RDJrNrhm22aepYpkPdFmRFhtAkph7StQodRVdJVC2RoqeuG9K0oshL2nZQbKq+Jsu3qL6grlLWmxvulzfouk5V1sRJgh8M3FAEFFWOZkqKIqNqSwxDUNU5cbImSbdE0QrVt/iBPcD61ZCHh6FAo0mJkBLVDapS3egHMUELQipk36GaFtGLfaN+oHcYuoEmDZQC1f/lVk7Qo9qWqi7plQIh6AVD3ECIQVmrFHXdDGIT3cI0bXRD35d3hmyqrusYhvH1yVpKuRcMmLi+i+VYSF0OZjBDovqGTjVDS1iXaIaG0ASKgUYwKGCHSINj2wMn1HMYj0KmkzGu4+B7NucXR7x89Zi/+Zvf5Qe/8THf+vgDvvHhU7754XPOT45wTAvVKMqsJs9bqhLKqmezTXn79pr3l3dso5jdLkFqktnhjNnRAeEoxLAMul4hpEa3f6CBQfeoaUPOWchBOWsYA8ZLN0w8L0DTjQHtpWvYng1SUDUVUteGrbro0XWB7MHsew71KVJa0HfsKV2AQGgS1beopqIpyuF7IwUIQRCEOLZNJVrWMh82sHRDY0122I7BaBzieR6+52PbBro5/JyUVUbX1XRNy2a5QaqBM1wUJW+//JK3b99TN6DrHmg1RZ3SiZ5tGkNvs0tSdMPEcTwczcMQNVkWY5oenuvzr7seAP/ZZoXqezRd4nkuR0enTLwZ08mI2eGIh4eIUTjngw9e0rXg2i5SE+RZS98pVouU1fqObXyPJnUcfQb9YOSaTEakecIonIMsyTNFWbZ09KiuYRfXaFqP1ED2Gp7r4JkOVVWg2kEQsIrWtKonmLgYpkuSLsjrCtMy8T0bU7cYTcY0tGRFzsUHY9oLSRlbHBhzwvERl/fvCC0DVZmEYxd3JMlVw8HplKvohqTO+cYHR2SbBN3xsHTJ/GjKcnVLuqtYxzuioqNqodztoDXZxgo/dDmdn3H5xTs6JUF2tJnLtz7+hE6teHf9K6KtybOzC3yO6XKTx6cXPH7yDKMJOR4/5Xd+9zd5/uQVzy6e8fz8JZ7f/F/UvVmPZVl6nvestfa895ljysg5s4auoavZZJOUwEEgAdGWAV2QkmALsGECNvw72v/BMCAI8AQYlmXBBkhLhi4E02OLpEk1e6juqq6sHCIjYzrznvdegy92ZFK+4Y190c6bBLKiEidOVEV8+/ve93l49sUFSRzy/T/7itVNy8HBKbvdDVbWvLl6Q9vVvH614sHdlJubho8+ep+2ahgdpcTKEFgfEU+YHUVcPD+DSPDjZy/Jpin0CdXuBuMEu3JNUe6ZjhZ88P7HbHdnKDnn/v2H6Ebz/ItzkkTxnV/5Nl3/htdnX7G8htE0oeo2GAT74hW6lSgZUO8sDx9+ROwHuG7KaJKx3W+pqh7Ps1yca+7d/YQgrVmvDEW5YbetePzkIUEQ0vc+Xbdle2P46KOn+KpBS8dme0mUHfL08V1+9MOforXg27/4bW7WL7hZXxJnEavdG66vS2aHE379O7/38z+o/lf/5B9+1/ccgRpxcXnO00/moEY4k5DvVsRJQFUXJKnFGMurZ2tm84Ddfsv1VUMc6qG9KxoIAq42O4I4JUtG1PWSzjYoFRNFNWVeIYXEI0JiqYoVVs2odgW6LOjyjsibEIYZZVmyvik5OMloW4GMJV6kqKolkgDlD6xy6TJ0r/D9mt3uEiVGOD24spu2pawCDk+PkN4Yz0wR1g3f3ByczBfQ9xgnOVgsWMymLFeX2LamrwzG9Lhe43qBMHPauqUudzgjwCls76OUY72+QRiP6zdXxH5A1zZMJwlffvUzFifHuEBSd454dIKQBi8xdEYh/AzPl7R5QaoUnnVI3yOME+o85zgZIaV/a6vRBFJgTcfD+w9wzuAJhXYVRW7xXEJbW86vVwSxIkkcxhn224YsS2naNZ6X4NAYHdN2HV0r2K43uK7FGsfByV0i59Hu9nS2p9hviGeSdDzh5OQxnufQdkmWBFycn+H5Bb1qmB3O0K3hZH5Ivrwh81MWs0MOjwf7jB8JnHG3MOyatqqxOCbZFN0JfC9gv6sJwpDAD7m+eU0WZygRoKylbwzSN6jY4HkJxkDb5IReSpgkpPGUrsiZjKcgQ3ZFwepmh0TS01L1PdpJei0wvUa3PVGQ4vkD1qnWPda0A3B7coTvJ2zWe5xxTKcJb65e8ebqDKUMYRBwvbphudoQBhO0cUjl48mI6+trrO2YTDKcMNws11RVju57EAKhFL97O6j+5zcvCYJkGMJ7RxRJLA1CmeG6sW/oOst4mtF1DZv1+hYqr+j7jrIqyMsddVPhbjN/g+99aJMrTxEEPqEf0jYVzkBbO/KiRvkBo/GMOBusRGEYsd2uhqHXlbRdTlN3jLJDsmTApykPpBLvNoyb7Zbt9pquL9ju1uRFTuB7aN2xWl9SVEuK6oauM4zHhwRejO/Fg2zANChP4PtD7tTYFiEdnhcikNgBBosUHgI5oLtUcKtyNQjrcHbYpCo1RPCdcTjtcAYYQF0DjYFhkMUxGLBuMVlvizhKyUFNa807BeugcZXvPk7ets/fbmzf/g6D0tW5ATkVRRG+77+zZkVRdGu18t4NulEUDV4kM0QOrHEYDXXVsbzZ8OrlBS+ev+bzH3/FxfkKawRRFDGbTXn//Sd8+ukH/OIvfcxnv/CUew9nJCMPozVRNBiQjDWUZUXfaaqq4+zsnNVyNVAW+h4/CG5f1/C5v9XJwqDEfZuffavVBd79mVLD1tLoQfXqKX/Qy/oezjqM1pyojG/6pzgGOL+1Zrh0SIlwDtxQitJtS9+2gx73Flc1Ho2I44hGGPJ0iAt5fkCWTciyMW2r2e8K6qrHugHboJRH4Pskcch8NiEOFXEkEbLH2JqiWtO6lmzmsc8LbB+QJZNbE5qk7x1N2RKGlrIYuKiBH9N1hlBlt8Viy789Hoxy/6gosK4jjlI8mdJ3PUdHGbODCW8uzul7Tdu2VE3BaJzg+TCbTZHS0TQaoSq0bfA8H0/6tLVhNE0pq2ukUnR9T5T4JHFKEk04PZ0TRIL5bIYxLcYM9rQoVBhtCKOQ9WpJEk3o2oa63jIeTfADSd91JMkIRYx1jtk8Zpwq8vo1h48KHjwdcfmyId+3jMKEMJH0XcF2n9OrBjpHmBo26x0ukFR1Sb1fo2tJuTOMJjNEYFEupQkE44czSrvmxdeOxfEIF2ouN3sOD+Z8/N7HSFlR1i37siONptw9fsjF8oJRMuXrZ18zid/j3/v7/z4fPvmQo/mC3/r1X+bB3UOO79/jo09+jScfPCGSJRfPdrz68iVf/uBP+V/+2R9wsdkTRXc5upexvlmShDFZFnJ5vUWEFiUSwmzMKB3zfPkjtq8L8nZD9MGENz+8oXY5WM29Rx/w9cXnvPj8nMenT24f9gueLy8RvsfZ6xtmhwGbbYM1Ke89fZ/XZzlVu6Ms9zx57wFJnPHk6RFf/OQVTx9/Rjr2SDOP3rT84EffZzq6w9XFHt16jOcel2/2hKFjuqgoNzOsKNmsNN/+9l+j7c5oaosKEhABo2nI6ekR6/WG/T7nm996wtmrNfcenJLXe1wy4uWLF+zLlny1ptcBZdPxxZd/ytnXW775rQ/QbYvrDfVO0zc1o2TMr//qz8eg+leXqQIfJ33qusa0El0YlO5pKokVDdtVwqffntDpPZdnDnTC8npJGI3pTU5VWWw3I/Qt+23JzD8m8Bo6u8aLMgLhobuG7WZw3vamoy9zstkxVRVizSumkzscHn04PHm2JT97fUYWB4wfjXl9dUOcJGwvB0i7H5YI1+PMIYuDCa5X3Cxf0pY96cijbffU9aDznExSeit4dfmSptoyj4/paojTkNPDQ66utmSJ4vosJ41gtSwRfcjj930WMwt+yGpbMZo3vHi25uzrCC/McTocHOD+HmdShFKstwUqiNnsKw4XY/ZFxem9Y7768QVRphj5Ccp0bLcbzL4n8lKIapq6Gpiu8xkKR7nf0WjDwWhEVzfgSXwZEqWCpmyRWDb7Fb3t6YymbjTJKGSzeTP8oB17dFoj8LCixqIoqx3bzZ7pwiObHFKWWwIVIrSP8BPwGhLl43eCF9uK7PEjvNBxXZVM4hF1d46XRPzoRzcovyeZWJqw58fnX3Lv7vvsa4Xyx+R5zjidsV7tWa5z3lxbpIjxQwV47HZ7PC+mNxbTOPReoPyAotgShIqmrTBOkIZjxqMxXdOiEPS6pW4k1aZiMp4SBAKloqGksqxAbknThOV+hbACgY9MBL2UrK5WSCUJIgCLtYIir+lcRSRCDoI5znlUnWY6XtD0UJTX6M6gdMu17EAo7t95jDNQdxIvmjAJEzwhQSTESTbkktqWol6y3DoWiwOOj45oqwJPKaqq5/ziDbw3A0D4iq7XxEmPF4UIY/EDR5wMp+8oyggDD6zGdI4smtA3DdkkAHyarsfY4QeV54X0TYt1UNcNURSjraGqhtOqLwPCMGAynvDJp6fUTUtRbXECxqOQrnYczE8Io2Fz6HsR40lG3yqaxhKHycBu7QzaNvSmBiT7fIe29WDHsj7GTsEJtOlxDNm72SShbYfXEccJUkn6rkf2csBPGYuSjiDybk/4Dms1ZVmhlE8UhQNu5Vat6vuDaMBTg1q26zt8IbHC0ZsOh8APAvA8uC1fKekhlALEOyJAFIWAw1pHFIWo24HTOIPuB6YqcKt4HUqxbwc6GIpQnveXKtO3PNd3jLA4gBEAACAASURBVNBbbaxSiiiK6Lpbg9bt0GedwwlJGIVkWUIURbdZ2Q6jB63t2esLPv/8K0zvaNuOMAwYjTM832M8yQgCjzSZ8mu/9ggQbLdbmqYnvyUsNG1HFPloM+R/Oz1spvWt9rXr+3eqV601dV2TJAlGa25ubm41tBlSqWFgE7xDRr3994SQlGU5EBqCAZBuHLeFNDd8vnJ4kEIMulznhgymdRbpJM4OG11jhq+ntsNVbtj0eoMZzPc5OrozvHfWvtOvdk2HtCmu17w5e0Pfl4SBZDJN6U1JEBnSeUjTlhxlEaMoZTZZcHNzzTbf4QUBVV/iexHJLKbrW4p8hR9Igigacs2dffd1D4OIquooC4egpii2YBRBVIKUzA7Td4gzKxXSSa6vb0iTjPn0gLzSFFc1oRcRR4cIz0PKiiSLadqKw6MJm3XBYrEgTX10a2j3Au1pbK+QJiBKJGGY4kUjwrhnNk/Zb/dkacA4GSNcT7XtiTJJVym+9dkn3Oxf49qQDx4/4HJn2PICpxoC3+doMeX58zfMH99HBS3jWcbNVY6rthzef0zcO756s+ajDx8T2Zp4fkDRdeigZRQn7OsdZy83PPjwDo+ffINp8oooyjFAOg3xM0h9n+PTx/zLn36PTdHynU8f05oXqMAjjHzoZ/ztv/O7nJwGdNWe9dUF+1FAEnb85F/9lLP1P+YnP3nG+qrDizyMJ/ECy/d+9AOevWn4nb9xn7/+2wlOXFI0B9x9csSkPGYy8Xj++pz99pL9bMz9w4/ZX67wRYy73nNZbJjNYmIv4C9++MdclyUNHc/fnFHT0oqazM7paZkHmmefP+Pe/W+zL874w3/65yTjjLCPmc99zi/OePr4ff7P7/05TddwfV3yrV98zBc/PsP1U95/7zNurs6QIuXgOMQYjXF7fDXl6kwTh5rJzGe30vStx8H8Q95cPKPWEYvFgsurnNnBiH1R43sRn3/+hqfvf4DwG66ulujdBCN84kxw8eyGg/ln/MqvfsgvfXKAtMecX32BqxXnN2eMsvd48t59iu7y/9Vw+f/lr79yo/ov/ugPvnv18pyP349YXTQYfJKJx/XZjk+efETRdgSB5dXzJW0V01USazV379/ByRwvjnFix9FhTBLHbFZbBhGJT1VZunaP7Ty0VpS6RfoexycjpJfyZn1FNp0QZ4fkheXs5Uti2fHg8ASjNXl7iVYbxvOWaucxmYxIswc4kdJ0a2zrsau2RAmMs5jZ/JTttsbPDFXRMT3wgIqLi5JZOgezJUgMq+s1u+uCi+slkR8wW8yZRCmLLOI7v3TMZFzhY+l1AeTce+jx6uuO/bZESR+lJGXRESQBdWnRFm72G0Tsga/Iy4q+dew3Fa+vWoz0We8L0rFgv8vJokPu351T1wVN1aEij171VLqlazWB8ulcTzCJicOI/X5PloW03VBySbMReVngMEjXEwQSnGY2j+nYU5YlgUwpiwahNF4oycYzqspSNpdo3dM1PVkW4QuPTb5k17ZEXsCT6AS1bNjvt1TGsD5fcjgZ02xb6l1OoDqK7Q7PjUAL+lKzvVnRVQVlUSOlpe9qnPahV+yLmuVyS9MJAm+GEgl9L5iMpjS9oetKut7grCKKEkDTdQPmpypbOtMMp+Wqodj3oCWjNMEPJZ0zpGFM3dQgNLYfWJ7W0zRWDxYWJxAioGl6DND2Lb3uQcAkHRGrmB4Hcsgsrjc3+P6wmZJOE0YTAi+l3NdI4dFbgx96pHGK66CuS+I4wwD7bovwQXohrh+0rNY5jBPkVUlnG35/dgTAf/L6ayT+7aA0bAqLXPPo4QdMp3OsrTG95f69h3zjw495/foNdV3j+cOJNgwjrIWqbijyEikVCImnvKHl7inatsPzfbTt0aalbnPC0Kduc/q+xvdjhBvO7kpEFLthWImihLZx5Pka5VmSOMUYiKIAIR2rzRW7fAViEAwEvs98NmEyTimqLZ1uKaty2CzVDdJzeL7h5uYNfd8T+NFt8cnQtC0IcWuOUkNRqhsiDENRChAO3/fI0oTZdMRiMWMxn3J0OGc+nTAepcShTxT6hKGHc4M6FhzK83BuAPrr25zq2yFKyrdIqw5jB2qBFGp4LxnqXMFtuUuIYbMZBME7KsDbjevbkpZSQ0NdyuHvGCxS+t2Qba1lv9/TNM0wmDpH3VZ0XXULYe9ADGdlP/DxfI8wDojSkHSc4qQlLwrqqmG33bNcbjg/v+TN6zfsdnscEAQ+SRKSJCHjUUIcR4Ci7/t3+tq+6969/qaub+kJPUVRYO0A30+ShCzLUJ66fXiwaG0AMSh0bx8UjLnlzkrBMLp1tL7k0GVDUc3xzrAlcEgcpu/p6hqcG877QiCFJM0y9r7mc7Eceg2+D1JgnRm+Ps6QFzm97vA8yXicIKQlDBzZWCJURxhB0xQgHOvtZlBB50u6xuC0IvRS2qqn7zSjSUpZ7RDSEvgRfT/kVZWMENLSdwJsShAo/p3xCID/9PkLwihCimCwnwVQlDVeoNjvd2gjsFaiNTg7oOW8QCFdeMulrZEipCp71suG6XSE9G/tZy5Adx3T8ZSL80vatiLf57SFYz455OBgRt1WxHHMdrsijIattzYtAOtVg698POWDiTg48djs1uzrCk+G/NIv/BKm96n7GtMrjkaf8MH7DxmlEk963DmM8FIIIst7h+9x7/EhKjUs4im9NThXEYmErrGgDM9fnOF7Ld/46FNGieA4uctBHHJ1VjI/HFPvp5gqY3wIu3PLb/7a3+CHX34f6YV8+N4T6qIe+OYi5Hd+59c4Ph0WTRLDbn/Jf/8//AH/8x/9KX/6xZ/zvT/7KSf3PyQ3S8gkxDHTO3PSw4yT4xatbmj7OX/9V3+LyK8ptjV9rxmNHuD6lsks5OXX32c+esQHH54y83/Azc8+p8exKTJm85CuzDl7dYWLLeNZxE/+4hnnN+eEWQSNT6A6OpfhhSkPH8asrwtEYFA+jEeHSAHX1xtW63Mcit1+SxzPCEODsQ2T+YjV6pKjg1OePP6EthU8uPcR7z9+n9dn1/zNv/XrfO+P/1cO5g+RQcGLZ1vSDKyTRHHE9eWe2B9TVdccTT7j3hNJVW9JszHPnn3Nlz/8IY2puXt4h323I5CGzVVNQ4pxYxZHD/n400/5zi9/k/HoeMj6I/nOt/7Wz8VG9a8cVP/L//o//m6TGx4/GnN4cA+kj7Etx4sHbFfXTE5LqqpCqQlp5lOVG45OEk7vpcRxyNdf16TjMctNw+VmjUoD5osjotDDk4auc0wnM07ujSjLiihSFKueYp+TjUM866Noabslut7z8PQeb15dIqWHcz6jeQqupSwEUZygO0FT94SRwJiOvG1JEsGTx59RNFu21Y5dUeGHEoTFNS1K9oySlN12wH50dYeUHlq12N7y8aenzDLNYtyQ5y8RlAiRY2RPvvX5/Aeaz/9CkyQZaXSHMMiIsttvrPs9fhyDgiQZsVxu2G0q+m44wx4vHhD4irIumC8SdnkJIubxN57w46++IA0ytHQYDzqt8YTHfrPHj3xcLNHbPcIqjO7Yr6uhxOL56K6nKHbEkWO/awYF7ihiND4ki0ZING3Xg9LgPPzIJx177HYVViu07qjbmpKCnoZt2ZMkY8q2ow0F2XFC2eUEE5+icby53hKNPfBr6rZlu6uG5qqzgKKqe7rWQ/gjRgcLtmWLFoq2d4RRjPIFeblHKIeKHEiH9CRtYxhPJjhhKKqSummpih6jNX4gsVbR9gZkTxKHXJ5taTtD0+d43nAiVtInJKTJexprsVlMnE4oNxuEH+FHEXlVYIUmr3L6rkO2Paq0SE8hfcV6uUbbGmyH6Tx8LwatuNlcM5mmRF5A1VTIUKJNTyADZuMpfuzRm46i3mAMxOkUKTy6WtNUFVIGQ657c02rK/6DxSkA/11bEYYRi+mcNIrxREwSzVgs7rDb7QgCxXQ6ZZfnjCYJbVdSliVd31K3BUE0tMU95XN4cIAUAxC9bgZ/tjGWpmmZHxzS6Zq6rZjOjsn3+yF75yVkyZiq6IazuhRoUzOdpwR+iLECbQfItWSE1oJ9mWOdQsiQXmtOjh9y784TPBkiRYB1jt1+h1TQ6YbetgRBQBz5ZGmEkrDdrtG6Q/mCutnT63ooRkmFMS3W9hhrUcq/Be3fclBvrVZvm/pSKuIkJUlSsiRlPB4xnU5J0gQhhweN4Tw/OOatHVBfQgjiOH43rL496Wtj6DuN1uZdeert0PYW/u+co7/FS73Nr76NAggBSg2aRa01vh+glBoMVVIRRuG7jGsYhnied8tGbbFO0naGzTZnnxfstjm7fU7TdOz3FWXV0/cWbRxeEBBEIUEU4oVvRQOS3hjqqmG721FV1UBu6HucswSBfxtL8NCmJ4pioijGUwPKS6rhdb19X/4f7NnbYpuUgjAMhpyxc3/JgdUaP/CGQUsIgsAnFjGTPsRZc5tLNrzdrlrd09Ylfd8OG1rHMKgqRRVZvt++4fLqirwoSNLk3cba2uGkPryGQTG832/RuuPq4poXr16Ql7vhwUMbqrJhud6yLyuyUUKoMjzh09UNNzeXqMBiXItT4IQYMGi+T991pKPxbYGvw/MCdF/y784XAPxzFVI1O3pdkOc5YRAT+AFIRxAGt0QHizGOoixpu5amKegay2Ixoe8tbV8TRiFxInGi4fJqTVNDEAz/TVSF4+OPvsU3P/mIg9kD7hwf03RLbq42HJ8cUjc7jJak2YSiKFndGDwvJhkZHjy6w3Q059HTOTfXEE0028Ln6f33GWUeF9dnTKbHlGvNflXx5ZdfslpvOZjfY3+TU5chXQ6ykiQTw83mklHoI+zw/4BgzkcffpPFfMx8vEBqn6+enfHbv/2rLN+8YrcqScYRLy+u8aTHb/7qL9CwZZJF3L93RNNWHB8vePL4Lm0zYCuNtswOfVbLC55//YY///7n/MH/+EcU9Y4gmfD001NefP2C6WSOUwXPv1zx9P4J6JLl5Q7n3SVJPWQzwjQp6+I5vfXAVcTmiMlizPmLS0TS4VrN3YNDjieWb78vWK+vONuN6M0Nu2tNnd9wND/GVA2xjanXJet9wcPDE4rNGuMc48mUs+c5XVdhpWa5ukK6DCkS7t095Hr5nLKQZOMYKRX77Z5V/hrTZ4xnIYfzR3z2rQ95/fqcB4/us10uSVKfps+xVAh7h3/rb/81envF5UXB8dEBwipmcx+BZZTOkDKgLG/YLMEPQvreMT9IKZqapinoe3h0/xFf/Oxrpodz/uTP/oxX519wdX3G6srw5PGHxLEiCjLef/IrP/+D6v/0h//Nd42TXCyvOLyfkU4adNfjh4owDdFdiHES4UmM3DGeWqYzyX5XYbXl8J5Pvi25utiSJgPnMVQJgoIohLr0uPcgYXmzoS3A1YJRPOLunRmRigkU2FaQxB6LOxMqa6lly7a5pO87mnVEXijwWqqy5eH9FE9YblYFXlZhrOFwfsh2XfDy+Zq8qZnOhwanoqBaCdp2C7LECkHbegg8wiTEiwN0Z1i+ESjto7w1iID9Lma3geevOs6e+1xcKA5PxvS6Bb8ijDL29TnS85GewBmBLz0W2WIYvIVPHI+IEm/4oes5hK/wZIzzoaz3/OjL5yg/YTadMh1l5Jsdo9GIvutoqpr5bMp6syILI8rK4seKtpOEcYRQ0BlLoxtkH+IHw/Dq4bNdV2yWO3TXESeKOIsp8558V+LkHtuGtF3HOD3E9hF23eJ6hdAWZXuOHx2RHIzZrXZc32yZTw9omprtbsf1zZ5OS1rT0pqSpq2QVjGKTmj3Hbq1COtTlS19b9ls9szmGcloTFN3aK3oeofnQ1FtsTTMZ1O0lpyfX6N7QxIr6qpACEHXWTbLkiBQ9F2HCgLicUw8ihFO0JY1zoDnBRT7hnQEQdwhRMg4GZPFCZ7nE4cRvpKgLJ3ROCuwbUe9aZgcnZAmY0IvpmgH/I1nYzw/ZDqZ0tgOZxzz6THWCgyapq4QzlG1e3qgagrqek+gRkySBYvZGGMNwhua1FEU0zRDtu33ZycA/OOmZpTEfPbpNzk/W9PWHcpT1E1B2RSURUdZ7kAZbtaXKGWQEk7uHDEaxQgBd45P2G73CCyhP7RGx+MRfdei+0HhqXyP3W5DFGYIEhw+XdOSxAlRmOArSRKPmUwTDo5DVps1eVEjPIe2w7lZ2xbp98igxzo9KHiloe1LrNEYbel6zXy2oO8MwknSNEUIsEZjjaMs2qGV3NXEqUJ5hl2+pmkLsixFSsFqc4mQlihIESh6bVHKQ3k+fWepyobtdhjghpZ5RVHWtF2P0UM5rOl6hPJuYwMJcRyjnUW8y4x674ZT4HYoBd8P8Tz/3Wmbf+2fvxUJ/OuD69shVWv9Luf6Fj9VlhVt2+H7/u0Abmjb5t1W8+3wFccxSZwikLRNBwyZS263k8YOD1Je4KECBYqhYe40Bo1xPZYhTtD33RBrEAPyarhOqHcb3SiOSNL0XSShbVqEkLfWLnWboR1yw9PplCRJ3pEPxO2ADcPpH4bNrecpYNiodp1GqmHAXzUtW6s5FiFYN5Ta3HCxwBp0N3A83/6y1rE0BV94G+I4YjRKybIU02ucdQRhTJZlw4OHgJPjIyaTEaMkJQwDqqZAKof0LNo2WHq8yIHUg+AiGCGExdiWo+NDRpMI6bd0tsPYEIfHaOwzGo9vecY1zpmBBiF72tbw+0eDOeifKx8pLePRiCRJ0b3GGIFzmropafuKZBQTRwHz+QylFGlyiDGOyWhO23YU5Ybjk1OEV1C3Facn92i6G5I0JUumOFdx9uKaN6/XfPXVFwjZIQREcUQc+7SNoSoG8UZVGuYHMZ3bIFVCEo2ZT06wvU/gK+KRYXp4xKO7KTjDTX5FVXdkQcRsJpgv7nJ85y5VVTKbTXl4MmO7zJkv7nPneMrLszPWN5r3Hj8i32l+47f+TbKs59kXX2A7xacf/jLjOCTJQl6dXXDn+BF+qLBGMcvGhFJzevoN4rijbx1Hi1NMXzCfH1FXJYGnOT6JWV42tFXA8+cvcX5B03Uk4zmj2RQvnrCYPeT1xTmaEXcf3aPrfJbFOcv6CnTILm+ZHwcsjqDYOjbLHccHd7kpf0Q8fo9ZFHNVnmEaeHV+iWenNOcv+P6zCFKD7hTxKMVTitAmlEXPrm6ZTxZMoohmvyXfVMwO51TtimJb8fj9U87Pt3z4wTe4vrpgudwOJj/hiMIJXV+jTU9R1Gw2O6r+guWFJU0Fu3xNnjcof8T65pp4pDB05NuQB09SfvAXPxmIDV7L5Zuc6eSIxSIhTDQ3lw1hUrC8FEwXijAcsdzs2DnDeJRivIp+l3JxUzK/k5L4JQeLmLpd0nUlTdfxJ//X/8Yf//EP+JN/+SV/9/f+f4Cn+kf/7T/47mhsOZhNCIKM5f4aL9XcuaNoq5zVpsWiad0GZE/dDErSF58H3Dk8JYgs4yTi2598k2bXcDS7y6sXl8zHcw4WY9JEcLO8QsmEthpYd7/8mw/5+uwF1suRBz34krsnJ7x5dc5+2ZCoGIVHtdVEsaAqG9q+Q1hIwhGeF3G1foXF8cl738JVM16fPeM3/uYpjb5hfePR7AsmcUTdwsOTb1F3ApValFQsRsf02hH5IbFKkZ4h31e01Zirjc/z55qvnzVUjaQRDUaUAzlA+ghpmB0B0iNIJU0Fzvr0bUMSx5wcnrDPd+Rlyba4Yel6amfQfjSE0fvqFqEyIopCRtMJxS4ni1KkkKw3K6azMVhLGicURcNkeogILW1n2eRLgsjHCyK8MER0Eicdtpc0Vc/iaIRzLYvJAVWtWS/XjNKY2XjBbtkShoZA+fStom8tnSl4evoY4UcEYszEm3F+eU3iR8yjAE9k3FzeIJVAKIYzuwsZTw7Iy4I0HeDV6/0aFQJBTdM3BF7G/fszhAnYFy19WdFpQddpurokSifUZcsoyljebKjbgjAM8ITEIyEMIzxP0HaOKPCRLsYLUk6fjJGhI98bZpMJThvKfYGXOFQkOZqP+YUnj7l6seRqu6IqctqmQUiPVneUVYsxQ3kuyqbI0Ofi9QUSSWl6lPIZxRmNboZWqgwZj+bMp3OCVGApSGKfNB6xq3I2uwolfYT1SOMRRVmwz7c0TUkYhMNZzgmOj4+Q0vH3wgFP9c+UAWvJ0ild33H2+muqpsULQsJYoALJm4tr9tUOP5BDG7rrmIwnhF5M27RcXl4Q+P6Qk0PgqRDlCeLEv82aerRdQxD4NE1HW2tmkwXW9ghpSZIJDkOchbRdT9U0CCXx/AghfaI0AAtlleOkAyEpykHr6exQrvJ8RW/14FK/PRN7yqcuavrO3JaTQkxnwMJ0OsHzJNfXl+T5nr5raeqKzeaGtimGbakSIPSAc7GGrmuGTWiaINQwKDkEZVVRVjVFWZHnOVVTU79ltmoNDI1/Yw2eP7TW+74fWtu3m0Mh5MBtFQKphra/lAIpxLuzv5QS5xxd1w0s2dth9e3wKsSArnpbohqGuiFW8JYL693avQbblveX+CtnMUYjpRiUurcaVxgA9lIJYBiIhxP7gPGSwicIYgbG1/B+eL5HEPggBGVRUdfNO7pBWVVUVYU2+rZND9aaQWTQd3RdMzxcvT3T326I3/7urBkILmZg0HL7+Q++8wDleSjpMMZirCJTEUcmHOKpt6raYXnq0F33blAVwEWz4Xu7n3KwmIEcPiaKApIkxg+CofjZ1RjXs9mtWC2v0X2N1g2XF6+pmg1p5hMlHvl+j5SS3bbCoajbIY/b9C0CQV1bhIhxEoRSBEGCF3r0uma329O1Gl+G6N5itaJrDH0v+Q/vHADwD16/Jt9XKDmUOqXUVO0a5cF+V+DwydI5bdexurmhriqSeM7de8d0TcM+3xOnKavNDUJZyqImDDw838OYCmcts+mc1WpL1/ekyRjjugETh4fvh8N7YR3bVU6cKDqds1jM0EYThyOODuacHD7k6volXihRwqMpKpJowk9+csl222A1XL/Z8ck3v0Ft3rC5tCRpyH5XstptUL5HSMSrs1d04pg4bjl784q20fzydx6zXuYYE/Abv/kZtrXMDsd4geXOwVPQHr40PH404eP3Phn4o/ERUha8ePEzlGypywo/EqjAoJuULItAVsNW3g+Zzg7Y5xV+VGJ1zHuPP6PqbhjFC9abNWm2wJBzcb5lMj9iPGm4M3/AfrOnqB33n95jtVnT1gU/+On/ASriKFxwvWm42u8J6fiTv9jQBDPKfs9uZQjHhlevrjm/vGJd9+z6ig7H0b27NKpEh5a61zStYDoZI+TwvWm92XL/3hP6/oY3Z3ukslQlxKlheV1wMD/GWEmaeTSNYTI+xqo1r16teP/999lsVmjtGM0kL79qiCc96+UGzIhsFINfo/sSpWJ8LyRNFmzXHUmacXQn4uz8jMvVhsqUPLx/j75OKDZbFscZfS8IUp/ldsvxvQU3S0OUJpRVSRwFHJ3E/PZv/t2f/0H1f/8X//C7QexIpiHXqxvoO/q8oqpXRJniwdMJ48l9hFeTZhESx8nJFF0GnNx1lCuPuoCqv2B6POJnL1+yOJZEgeL865aH9yfs9jVhEnB4p+Mb34n5/MVXbPsKPzVISuZ3LaVboa2PaQSRF7K82NLVHulM8tE3HtGWmmrbszg8wKoCi+L05IDUm/D1Vz/kcDHhyy/PeO+TBUeHGaFLkdpneicljS1PPnrKs9cXmMbgukERG3qKpuxA9gil6UxIJyGIPa6v9vSmJZ4rnFAk6YQoHFPdAscdY4IkxhdjiqIhTBVOWfImB0/Qast4GlEvW2IXM06nBKLECkj8BTLpQRrKsmO/2kJvaPoeJHhKEEUhQiqyIGW13HNwkLG8WWFMTeAriqIbYOZdi7Y980XKdJRRlj1926F1hx8k+J7HbHJIVdZoneO5AyaziDA0aG249/gJedei/J470wn7fEvZtygvZd2UlMUapKVsWrAevu/hK5+DbIEyjipvMb0kHUU436IdRH7I+/cfMJY+q92W5W47oKDGx2x3OQeTMR0OTwpCqVivco6P79BWHYEHkR8R+Iqu06gwQgmF0orT42OM7Fjt96TZmM7UeJ7Ho/uHKOcznt1Htxa3qRjFEZuqoXEtPZbrTU5d10ySOZ4NmE5TrJU0LieNfapyS2MdoZ/QVjlOCsq2ws9gv79hubxkk68wNDhjaLoeFwgCGXF69ID93lD1OV40+OsFg30rySLaph+wSsLwu14EwD+pdzgL680WbWriJCEIIjrT09meq5sLPD/EuB6tLVGYonvDarnBGsXDB0+pygIpwfMlvgoIg4Ret7RdAQ6WqzXCSfzAYYzm9PgBjhbpaQ6OTmmqnqJcc3OzxFnFdrelaRrCMGW7r3FO0PUdcRIShilNDUKClNA2Dl/FtJ0lz0s8X+F5AiE0Sg6DRpokNG2DsxqJZTweM86mrNc5Dsl4OmE+PcD3Qxw9SRreDlU7tBlkBA47ZP90h0OjdUvTlnS6GzZMaTwwObsWsNR1yb7cD1eHrqWqK9y77ad5d7aXUg7te2vRZtg+i1t8lXuLoxKgu4HYoJTC933SJCEIg3cfE8cRnlKYW9GAuyUW+L5PGEQ4B8a8BfwP+CvfH4ba7nYDG/g+Qsoht2scfa/xvQCcRN9uFR3gez5xFKOkxLmh3OV5PohBJzoM+APJom1rhHRIpTDaYuygYNVGY8ywFW+aiqoqCfyBBDDKskHGcJtZLcsSaw1C/KVJ620kwtwqcp3TOGNwTiKlxWhBWfUkXsCpypC3hTXrLBaLNZq2rjFGD0IL59h2e143S3zfw/Q9DkfbtrRtQ57vsGiatqDTJV1fYU1NVe5p2wrrGuIItGkwpkWI4X3Oiz1xEhElIdL3QBjSqUdRrtFaU1YteVmhb1FmAo8wjAgCQRj4SNkQh4ooTEmzMX9/kgDwX1ytCUOPSq/+zwAAIABJREFU6+s1OIU2hiJvmE4WKOVjrB66AwLmi9lt7MLHmILN/pIwDuiNYbO7ADdwhdE+B/O7FMUWQcR2m6N7aOqeutJkyZyu9ths9jz/+g1FUWO0JQwy+r6jKiuQAScnd8Fq6iJnPh/z4NGCvFgRRSFl3nN1cwOy4/6DexyfnPLo8SlFccHzZw337jxls3oJ8ZRXlxc8WnxAmkq++PIZct7w/IsrTu+NuHtyzOH4lLIpePrRKZvtmntPTtG2Zb8uOBg9YHroKNqWwztDpnY2mjMaD5GZrkl4/HiOlJKfPXuOUzMend7l/Pw5mBEHi+mQ+w8nQ5xElrTrwTYmZctqec5suqALr2mx3Dl+jyT0aEpzqwtOePX6Z6TJHeLMgi8wVYauNlxdr7l/7wMeHB3xr158Tp5oTg6OWO19posEmo7takXnByA9RqHi9OQO+faM5XqDUiOmkxmYGCkDdB8xmYzY5OesriwHBzH5foduFHEcMT/IeP36Gq0tTd3ieQsODyecvVzSdDlRaqiqnDjy0a7g88/PiUd2MCFKR5Ym5PucxcGCy8srrLXEKfzw+y/ZFjds8muSZMKuesPB4V36siYZBxyk95kuYjzT8vD0AcaWCKas8zOuVjsePL2Ln0ps1PL8/Dm/92/8Rz//g+o//cP/7LuTbEI6blkchlhV0+uGdjciUzG58zm7XlE0axJPMu6P2L7oMXbL3cePaE3LZOLRdHsOZycsJjGRN0YASTZiW65Z3Bvhzda4JOf5yz1CWB6dvodtAjRjPJlgu5Sysshxw/2nY/bLnMD6hPMxxmimoxRre6LI4fuOJPBIvQk36yv2eUlnepoGIm/OYp7hhZbpYYpsY3ZNw/Xugv0yYrdsiGOL6Xw6s2c8iZBdiicSjk6O6Q3EiwgRd2SzFH8WocKUIPWo+pq6NSTpnOVyh+4b7h0dUuwb/NCS59XgoJaa4+kxXbkj9FLSOCBQhrrrWZyckrftsM1st/Qbh0AhPIhCn7Zq6LVGC0Pb92ShzzhLaWtHNlLUbUNTRzgBbVMRjQKMCBEqoCjXCK8DP2a367GtGQoMymO93TJb3CUZhxR9jfUV4TSiKrb4nqHa1khPYSyEIkB3BT6Kigpay3h2PGBOup44G9M3A+omVSF+lGBURFdpdFMQhAJjHD/98TNUJGhMz9Z1CF+xGCe4zuJ0g4oCRJrhRQFdAIu7h0TWkMWSbVtS1A0+4GcCI/9v9t4c1rJ2z8963rXeNa+15zPXqapvviPdTdtukIxskJAFGQIxOiIjIiAkuSkBEJAROQDJkRECEmQZEBgD7unO373fVMOpM+15zcM7EKxTX7sl1AQ01g3uK5V0gl376Eh77/Xf//X7PU9EFqZMopCizlGmYRKdEiYwW5zSVi2H4yNhFlN2CuX4DL7HPEkYbMeQO9ihZXGSgu1YrhY4MkW1BcJYPD/i+dkKUYOyGsd3CF0wg0sYSfLiHoFP2/r0A4jBJXQjuq6n10e0PxBNJK4fUteGTPpUPdR9Qys2NGWB0g7/djyWMv5uP276HMd9iiSM9qSuK1F9zaDMqHHUA64YWZRZvGS5mLPePtD0HXVfUlZHcATN0LM5bABF4Hp07cBiuUQDTdWxnK3wXI/9dk8UBlT5kf1+j3AscRSRJDFDX+O4lihKcYWL6mtcCUJEFGXLsd4hvDFjp3r7ZKDq8VyfyPcxqiXwUwI/wtKCUQjtMUlDJukE3QuOxZY4iVmuLumGlt42RFlEmAR0bUdTN2g9oHVPNxwwtsTS40qBtQOD3uFITRY/I4gCmuEd2hiMGkkHh3JPVddPqCaFMgqlBtq2xVg9IpO0RqkegYs1AuGMdiwh5HjnQFhg5Ij6gYf3BJuXrov7NAiGgUSgaeoKB5Cui9FjO3xQCq3103bTfpvxdJ5UrkoZqqpCCEEcjbiy93lPpQakdACDxXzLq33/mLYdIwRSjmYtKV2kO962fx9nUEaD4+BIiX6CmApHIORY2mnbbryl7gVkSYrv+2itKYuSoe8RjBrbsdkfjiW3tmPo+pEiISVRGI52KD9EBiGOC3XT03QG4Uh0IMnpWNngqVRlxiKVeo8CczBWc9vt+V/WnxP6CYvFFN+XWNOwXa/pGgVOwb68o6tzXKeh7dZYpwGnpyxzEA59p3CMpLcDZatGbKD0EdLiOx6B59APCseJcKQPjmZ1MicIPEIfPB88zyENY9I4pGsbtHJxnQBjLWHQ8G+mI63j72zvabsKiyWNU9JwguPEhJFH2+UIC0W+o2ktQRjiBQ7b/R2+DJEEHHZ7PF9ydXmNGmo8G3J+vuKYb9AmJJ1IAi/DkyPVwA8Czi4yXr26pR46vFjy4affRYYOV88XHMs9WbYgyUqCwJBEPvNVylevbkinEx7XO47bkmpwsJ7DJAiobMV6+2s+37zCNh5//ff+JQbV8sXrt2NRVbnEUUw39CxX5zw7i+kaxQ++9ymr5QWdUpzOz3n+LKUvXNpKoVoNxufq4wgn7lBNxnc+ueTh9ZrvfPacH//0Jxid0qsSz8swwmPoB0IZ0LU7smQ5ZqiVIFu03N8fcd0A6UXgBmhb8ObtO+LpCYfyjmp34HhfE6SW+4c7otDlx3/0K6Djk08/5Xh8ZLurMH3C/EwhRYLv+Vih+PHPf8mL6wuqYuDrdz1WblDF+LpeXk2Ioow0EmALrIkZqgZJwiR2aeuWYqjYdgI3FnS1Qgif3f6WfVPi47NKFxQHhTENh6ZhaHqGHjr1QNFUnF6f0htJFr3AczyKo2K7OzCJZ5yuVnz19Tc4xufqasWbb14h3A7dG7pmIAhXpGcdu+Oa66uXRO4U13q4joOXKr74fMf3f3jNj//05zzstgzelkn4Adnccvu45uxyStHe8fjWoS803/30jH/+9/713/xB9Sc//i9/lM1nDPaA4wR0pcf58prf+cEfcP+45t27d9ihIwkdnD4lmw68vXmLlSsIDFdXKQ8PW5bzK8a4VEeRH+kan6urgLrpuP6k4/GuYL9pmCVXZFHKJDjlfPUBcazQrUEPkjAJKauO28d7Vs9StIhxXMt2c89yNuFkOcWRhtVihevE2CHhxUcfMJ1PQCh+/3c/5OXFBZkfM6gj99sNp+crXn6acMzf0FYOUZaRLjxu7+6YpguyeMlm+4b9tuVQ5VivJooWaOWQJhHC+JT7Hm0tvRqYLGOC0MHRkkDGxFFEGCVk6ZTAz5BS0HQ5vheD9UhCiyN9dGCIpwH1sUXUCqdpmHoJSlj80BIn8ag9FwqjLKE3QStNGqeoQdD07egGdzym0wlS+jRNTholhE8KTYyPNS696ZmtYrStSIOApiuYrpYIL2V3LPFDl65riMMMp/FRTY9EUJZH/MBj0Jpel3SmJnJCfBVSVg1BYAg8Fy+MKIqSoiwxno8XuUjZ4QWWrhtw3Zh2GChNR61bpvMJprck0sW1ks3mgSAcMS7HvsdzPCbSQ+iBvD5SmpYoDvjkxTOy6ZgnTiKB71ukH4w51SQYs5Yzn81hjRv0hJHLen3gcMwJswikhxoUXhKCowlij24wSN+hVi1FmaOfcEjCT6iGGsfVBJ6L7g1ZMCEIJLQGIxZMZjM8O2CRWG+8kIUTydt3d7RNjdsmdM1AshxQ9cDcSzBI+kExSXwCOeXfCAIA/rM3P8HxLWkUs90dediu6W2H9CRN3YEyhI6P741ih6YZMFqy3t1Tt9W4VaGnV5q6dnBdgRcOZNmSu3dHrDDMZyv22z1xEpAkCQ/3G4o8BwxS+qPWdbJEDZqm6ejanq7TSFciXXcskmiHY56D6LB2QFhJHE7wvYjFbMJytiSUkijwaatxo1g1R5Qat3l+oJFOhOt6xKlkPp/juBLfd1FGIaylqRoO25yuHfB8j141GGHGOEKhka5AqY5ejbd7DYogMhyLN1T1gSjMcF1DVa0Z+oEomo2cYyMwWjIMCuFYXOki3QBtzPg8xiC9EOn5T/Yqg7WjotR1x9fO+1yqeYo7uK6HtYxEBekzny3Gprj0RsKAEO/jrU+GrfcbTPuUax2b8+9jAu8zq13XPUUF5Ldby5H1ybdWLdd1/9z/+1ZI8HTe//xeKeu4T/GGJ1yUtZah60mSmDiOv90mKzO2933PGz9jnhizwxOyaugHrDbfZnLfZ23HyIQzbkaNwZWSrutRncaRDr4ynNgQrQ3Cvhc59Az9mI996Av+t92vR1muYwki+W15Ls1CXGkJ45BOlUgpCAN/JE9gwDgkUUbf9cThEt/z6dp2ZAn743tM9YbQjxnoMEbRNhaHAAeHrhHUBQRBhLYO0g1p2oIib8iyGUKMpAFHDrT1wN9ejhnVv9cVqF4TR/EomBDj57CUlratGJQlS1OiMAEEh/2BLJqSH0rubu8IgwnCcQgCn74SBIHD/eNuvBOVRNw9fIP0QOuB+XKOcHzydoOf+EyXK9K5xDgNFosMDWk64zsfv8DaFjHMub5+wavXrwhi2K07pO/ROB3W7bFNzb72+fjFJb/8+ef0ucPuUBGlKU1+i9WavN3Tmw7fpsynkmO9Y5ZdsJqdkcYRdd3y6Ucv+eSzF7SVIZv5JMGKps65eunz7u4VN1/2SKm5vjol8CW90Xh+MJagA8mPf/ITJsk5V89mNNVA2wjiNMAYySHf8Orre4QreHzYkaYBFvjyy1t2x5LFMmOfr1GM5AGlNmzuC7qq4vuf/VU8X2JVhhf0bNcPmEHiBAZJQlUN+EHCbHYCjqAdBoqmZpWecH62Yrfbsd8WRAHUeYnpEpIoIQhjDvsSz/dZP6yxnuZ+84bt5g2REzFfntBXA/lmLIYWpiFY+hx2OdIG5FVDbyqm85Sq6ejamPXmhvVtTej7WDFQ1xVWWOq+4c3tPWXdPjGvIzxfslouqaoDRZ1zODT44Zz9cUcySxHG0CjF129+gYPD2fITzk59hjbj5Cygrjd89erA4iSlV0d+/I++pjq0XDzPKFTOv/wHf/s3f1D94//pv/pRNpnw6y/fMNiG1WJGXlW0TkXrQxYFvHz5ASiPpu559fqOdBVy/ckl1y8+4stfvmM+O0ENPWkyI5QZFxdTTB/jey7zM4fXb36F0FNevkw5PNScTM5AC4wqEdpjqEE6DVHkkSZT4izk8fGAFQ2O0YQyJoszjvmWSRJyzGuk6xElkle/euT2/obL61MCb8avf7pmvznw/HIFKubhDu7efMkyWnE2f87N3SM37244XaXYVqEGjyiKObkIiNIlVdsRpT5f/Porhs7iaIfQE8RSjnpVAuapj1EKx/r4UUQ3NGRZxna3BwxdVzGbToEAxx9oVE3fd1hliB0XZ9DM0gVCuByHilZbrOPgeg5V2TKfz3FdqOqG1eKMqlYkqT9Ctr1Rl+kKQRIHhEFKVWtwwKgC1zVE8ZRhsNTlkbZz8MIJMvTozR7fH9BqwCqDHgZMp5hMEqQradoGz/XwvIiqbKlyjReFGCPJ25yBgSSdogU0Q4eQIZ1SNFVLGk05lCXDULOYJSgz0AtB0dQ41mK7gcB32R0PKBRoQSB8fBlR7o60x4Jyf0AYB6EFrh3RR0JEqMGitUWZgSiJ2G4Kmqbn/NkSogYtavKyYOgFSThBhj75U0knClOOVUcQgRdpfDEDm4Eb4TtqtPBEHngDZdlztpoh6KirnvxY0PU7HB0QTTPKYU/oCJIwpOkqGnVACmj3PRenL/Clw3G/p21b0klAFGQcyyNdZ/ClQ9OU/HuTsT38d9WBdqgp20fqviXNZuMXFe0zS1cIY/GfSjqHw55B9aSThGNxRKNxfVgul7huSFUXxGnAbJ6xP+45VgVpmjEMHVkaY61ht9thDLhyBHcfDkd0PxDFksPxgao+os1AHMf03cDtzQNmGItEnnRZLGdobajLCqsH2roh9GOyOMZ3Ry2pdB2E4yKEoekODL3GFT6OjbEqRCCoq4qub4iiCNeBuipI0hTXHcs5vu/h+wGhFxEGCecn1yRRQNcXTKYJQRBQ1gVFtWV7fEPblYS+z6COWFuTxOG4HawOlMURbXrCOMCT7igWEAJPhjiuxHHHgo/W0HUtSjeEYUAQBGNhSSuU1mirEM6oXVVKMWiF67hgGbXJbUvdNLR9/6QHHYfSIAjwff9pIzvSB0Zck/hz/4BvB1Brx0zo+2zsexSWMeZbCP/74Xl8bu/P4bLgz3iv4iln63s+jhC4jkMYBGilqZvm2wxtGEYjPYCRc5okCa7jIizoQSH+ietF4AekcYIxmrIsnzK2hn7oKYtyLE0O42De0POV2lDZhlMirIW2aen6nttmx/+8/gmg8byAbJLgeeNmOElivNDgeAorJMbRVPWWKEowg8QYcITGEx6BkyB9H1wIIp9+6OmGgdPTJVkSsd5tEa7k7HxB6MVUZU/gCxy3w3EVZZVTdiPuKvBjVD9GRNJsggzGLwmhnPJvTcZs+T/wJW1XMSjNbluSpAmTaUTbVU/5XgdXCuJwgiPG4dyXkuN+jxd6o9VYGPa7HVmSEoWSqm8IkymuN+bAJ9MEzxPcvLvh2fVzPMfh9ZvXpJkkiX3y/JHlNGGaplycBZydxuQ7RZpC1RzZrnPyo4MRBi902G9zknTk2DZ9x+oy5PbtmsnSpyy2fPHlL4miGbvdmovLC7CK5XLGxeWC0+UFaeaSJQnPry+Jk553b2q+852POB4PbB4r0tTF8yGOYr75as3JyQW9uqM6dtT1ni++vuP8YsI//N//IZ7jk6URi9kpVZnz1Tc/Iw5OqZsjXVejbUnXSKxReF5E09bcP94xX50RZwP3D7cMOmRb1KxOXpLKKV2jx+y6FQxaMnAE1+N4aIAQ4yQId89+t6XrPIQz8NXXPwN8lJJICQ+HR1wvJJRLokjSdZq8hOUqoSz70XBnNE3b4obghWZ8XKnxowkWwySOkYlLbTT3mxsOx4FFliEzl11+RIgFbV9QlhVxbFB9xd3bI64cuLvbE0dTvn71FqSh6g4cixrrSIw03N6vka7P+nFDkTt8/wc/YLc/UNUNvW4Io4CusyxWIZPoimHYUdcOk8mUP/r5HxLEEc9eXuI5Eb/6xVsurlOMB9uy5F/7G//+b8SgKt7fEvp/Ov/5f/G37OHhiAMoqSntjnA64Sf/1zekgU8YzamPliLPuXq25OLZCUql+E7I/cMNh7ImjjJUGxCFM7r+DZM5vLj653jz9meIwNAOB7zII8sMjzcGnAIpA44Hy/xSM3SGcj+QTBI+/u5nhOGS7aYkTVL+5MevqfI7jtsNZ4trVvMlm8MNVdMQ+BM8EbE/3jJbGM7PPsTqCVEoaMuavup4KHuEXRO5K5S7Y7K84P7OEkU5bd7guxfcPbxGCc38dMbXrypOL2O07qh2A5OnQsnHH74cgdqNoqxbzi5OkaHl819+RZKNjmptDJ7jUjUdk1nA0GtK1aL7BpeAJE2wGA77gqaCq/NzrG/Z7nKyeUIQSFRjcIXF86CqOuIgw/MkD4/vEMLDwTJfJFhlqOuWY9+jXTU2v41H5CYgPXa7HcvFjIOucYgpjhUniwjHjASAJI0ZKAm8hCiKaKsBPZRcXS2Q7li+Oex7ovmc+3dvEZ7EWA/dGCbLgE61oAK0trjCJUknVEPF0JdY3eH5DtZxEa5PW9QslhlF3RJNE+Jggm0Gmk3NfDVD07M77LDa4IlxSxRPEvxQju530xGEGXW/RpuBNLpml2/wwp5CHwmFoS1B9R6TWNL2PXfbdmxsZhOa1iHLfIw94NuIoihobc93Lq/JG00+7FguLxnyhmeLS/74pz+jHGrOL05pqiPScVDWcmj3zCcTApOwP3QYYZgvM4qHLZfPE3qnpTiEGOWSTCGJAw77mrZryeIMg+LvX33vn947/7fnt+e35y/1/AdDy/rxDmtcumFU5bZ9xXyeYa0YsW66IYknqKGnyPc4QjCZTXA9n/v1A6E/wyoNpmS72RFNUpJsQV11YGtOlkvqImdQlsXyObOzmNevXzFZhHS1g0VxerLkd37wV3G9Rx5fPyAIwTlyPLjcPTwQJVcszjPe3rxm/7DDCMPJyTXhXND0r1BtxGIWgYpJ/BWN3nFx9iGPj29IvRUfvJyhu4zLq4z13Tse7nf88Ie/R6PeUhUOk2XKZrdmtTxjd1fz8tMJ/+s/+Jy//jf+BnX3yM2bW7quIggEZ5eX9F3Lqy8fCGTAdOFQN3vC4AohC7749QMfvPwUPxj1y9t1hReGNMOaps0pKpcgEjQ1+GFIIx7ZHlsW4QeYpsRPWgQeb988MFvOKQqFH7iU+ZFZMiFbheTrnLPVKW2vkG5CXeTcb2756Lvfoa8rPn/1iiCMSZyIy5MpZVdStprJNGDoQQqHrjtS1QV+HFEPFSezBfVBsa9Krl58QLXZ06nx2ueKjk0pOFktMXZLncf87j/7GT//6Z/w6cff4+rihD/9wz9ic39kdXLO5fklRbXl1et7lBaEiSCMfKTs6GMXZ7B8+uwjVNeguoDv/vBj3r59x/3tDR9/9jGTWcpmu2M2C+mLcy7OJ9T9HiM6iqZg8/CONFxwdX3ON2+/wU8k+V7jh5r/9D/6H8T/+yv////zF25U/85//R//6NgeUCLgfndHkkYMtcPp2RLtCrL5FGV6vvO7EZu1ixdrdseey6tT3tx8hSs99pscL9BY0bBYzUinGdGk4VAcmEzmNJVLVWhu3rzDQbN5UDzc5jTtAcVAlfdgXSSSw8NAvRes729IQofDoePh8UvOL1ICz2X9sGY6maOUwHVj3FBhlCKNEk4XU1anKbe3O37+yzecv5zRqh43cDH+kTS7JJss8aMDu01BHM2ZZhlRlNANiqKqmMy8sbHnOyxPAiQh2SxCjSp2egdkIBHCUBxzEIYsC0E7hIGlHzricIo1Y6Ep8BKMkiijyfsK7Xi4gSSLA5pjxzC0zGYRVdWie4EjDMZA28HVs2cURQlOh7WC59fXxFGEsIy3xkSAI13K6kDftHgEOMZjPl1gtCWKMoSjGbqeruoI3YzjruF0eTpicIxHUe0pqxwpA+aLlEkW0zQtbdvhOhGDsgyqRltD11mkA54rGBDjVjuCKA051hWh9IiDGNeTGDHChFUz/j3JJCYvS4QD0vGomhrp+5S2QOgOxzXEi4SLqwsK06DcAc9RDKahqAuMcDCuoSh7Qm/CoCvyvMEy4HcOoV2QlwqEJo5TtIbBVgjHp6xy+q6m7TvqoiNKBGnisQjP8KVLZy2P6w0fXi7Z3lVUfcUh7+mbitXC537d4gOe59MPkij0sNIwTUOU7zCdJiymKTc3O4ZBECQSEGxvjjRNSzKRWNdSdAPfD1OuveCf1nv/t+e357fnL+n847riv313gysitDH4UuC5Ej9wMdZy//BIXbU4rqbveyx6FFdYByME+7KgVxphAzwvwhWCIh+pHEa1+E6KH7b0jcZzQ4SV1KWL9RqquubxnSVLM2ZTibGGPN9w9/aWt980ZOmMsqr45s1rovCcZx+c8+Nf/AzhK5JlxOlyhW17etnzcrXCsZZlMKOXA8+ur8kCSVs3zJcnI495v6dvD2z2LfXhgBrADwW79cD19Uvutz/jy29+wcXZh3z60TWd2vO4e4uQLQ/bG2bLmJvbOxAJetC8/eaA7zqcnSUIG2G1j9WGy2cZ5bGmLgxt1WFNgtaaKI5o1D3b3T3toNB9jyMSts1rDsWGaXxKGg8U5RatDYf9gdXJhLZVSBkS+CFnqzN8X7B+2GOHEClSDJqHhzt85iznZ1inIH8oqasa3/G4Pl+yX68RUuIHgnxfE8YebT1gtKJuC4x1sEogjEMcp9zcPtBZwWyZsjs0TJIpvgjY13uEP5DGS+Jpy5ubbzg9O6GrLPUuJI5D6uYRIcaCoes43N8dePnyE55dniO0JfSgMpZnl2eETkRXdcTxjN12Q99orq9PaJuaoZdYYxiGhr7r+OiTZ7x6+wV//Me/xGkars5OUK3HYDqORcV0NqU6Fnz87CP+2u/8q78RG9W/UKHqBxNWixcU9Ts+PPkQpRymJzO++fotymg+PP2UIZP0fMPZUvLB1aeU84Guu+Xi8pTF7ILNZs9+d2S1mnNyMbIy//Af/yGD8iiLLZPJOYKE6rjksN/i2XNqs8URHjef92jtMl9NqH2fqrkhTreUuebu8YGiGjg9fcbJcs767mYsJwwufWcIvYriURGmCVUX8fahIc5r0AnKGF7fPZLKFGMlm4OmidckfsL9N1vaNkc1ksgLSNMJH05DXr1+JEwMjlXMp1PmK5cvfv4KYxfU647FKsCjp+ksuJam2TGfLrEGlBXsdweMVfSOJE1C0ijlcZuTzVPWh5o0zOjLDiE0ThhiXY2vBJvXaxzfJ4gd2qJlMp2gheL1178iiqcU5ZEknNO2LdJx2ecFwonI8xbXWkTr8N2Pf4fb12/RqqNua8JJRGcqEh1TFo88v1ri+oLz63P22z1GOUynK/paI0MIvZimHHhd7HFlwGa7Z5KBsB6eH4NRGEcReaCtIEyXBL7Fk5bH3YEgCvDH/AHKDNT9OJTaPiDNEu5uNsSxS3/sud2+5uT0klp1tE2H63i0g0I5ir3e0VQlfjx63ne7Ha3V9BiMCgm8hN4cadsjaZTgyhRRGDwhOT9JOLYldTWQRhGlEuD3+FlF7Hs0ugVvBq6kbTtum1uiIISgJc4UZXekcTtOX2TMT1zcOiP0Bf6LA5u7lg+uPsJPFF/+6i3F0PHdH3zEm5t7stOMvM2ZzgK0CjkUA88/XpIlIZvthrrw8bIBL3T5Dx++Yug6luECz0p2+w3aaYnSBEfE7LdbpOtwdX5NHGXk+4Jh6JlMI4IgoG1Ghu1kFhGFKV9/sUZbRTixuJ5LVXTEgc/Q1WPWzrho7XIs9wyqABxCP2Y6jVlMZzQ1VHXJdDZB4OMKiTEDfdvgWI8o8QijgKIoGPqB6SwD0QMOjvA5lvvxdm0we2LG4OcEAAAgAElEQVT/rsG4XD07oTgU1JUGR+OFmiw54ez0Gbv9I13fst/vsdYhimdjdMUx4CjWmxukDPDdmN3mgOcJyrIAJyAMU/qhYtDliNCRCZEniRNJWTbkxYAXBLi+HUuhbYMnIzyZjM1b1yUII9q+HD31boh0YibpAqxAiIgkmTCocRMe+iMqTWlFP/QEQUAUhU+t9wHXkUh3jCuMpqanghxP+CkDjus8sVbNt5nUtm2fMFTjLfv3GdU0TbHW4vt/9rEthKDruicE1p/lUkfZgBkLVVJijEUp/e3veB8FGB+r0WpAOi4Wy/BEKJByHHqsGVWxRo1DVvikD30vO1BKkT+hn5Ikoes6BqVI0gRXON/GDcqyRKkxz9o0zajDLY/je7xVGGuZzibMFxNk4KKfcFfGWgZVMqiOtjuwPxxYzE5xvJLD8QhG47kR5immsVysGPqOqsoJsiVD22BbjeO77G1NLxwmMsEcG8q+J45cAicm3zcs5hlluQMcVqsL6vrA6mRFFAXstnu2xx3T1QQvdGm7Eq0svvSROOR1xWoWj/EIF8Iw4GHzCI7DcrWiafuR+d3UpG7EoDWekKw3a4TnYa3PQE252xE4AS8+vKSpxtvBp1ejQKYqFJ0c6DqXMJaU+5bEBxH5NHlOk7foQXJ1aSmqA/P5JUq5bDYVwulxvYDNbosVhu3xwCRJ+Rf+5vfY3eZ88+UN3mSOawce8h0Hu6X7uuc7z57z6s0bXnzyA9JTl84x7O9aLs6W5GrgbPmSb755hysFD7sb8n3E1dkPefv2HafppwjnBBzLN69GsH3T3NL1PYo1ug/A6TnmGiEcIj/DmpT98YYsu+SDjxS/+PkXKOtQF8cxgpYkFPkBqyPOLubcv73H9XKyZInWHW1+z8T9kKEJ0Vg+++RD3t19xcXyM9bbW/qqRwuHm1e3JMsz9DCw3r5lcbLEaI84Uyibs7kbWM3m9EKxXuekkzlN39EPivX6jsVixaAUfacQOPhRzO27R4am4cX1C8xgR5NhJXkYWrpWcHZ9wRef/5Tzs4z9Y01udwR+ymwac9jm7G5Kvv8DS1lossk5vt+A8jjsFBiX7fqGy8uP0bFH3wXYusXUlpv1FmPgo88CPv/55ywXFyRtxua+xJE5Qehzfp3y+VdvCKKQ+8dbpGtZLZf01lCjMSLmYV9xcnEOnuJQV3+pw+b/l/MXblT/zz/9b350qDQiTAnDBNtZRGOJ/TnPLj5mOX1JkCk2+4amb7l5d8s+f03T1zSdy7t3r3l8ODIMDXmx5+H+wH7T0neWoT9gVE/fOQgscTjjsG+o2gKtLcvVOft1Q9Nt6ZXBeh1Ve2Qxv6IbNIdjzTQ84+rymv/jH/0JQxsT+lM816VtGzw3wdQeXiIouoqyyymK42i6mC04HmoCF6QHbdfStg19bfAcHxcNwh83fqJEOnOuns24eXPA2gNd33B/d2Q+nSGlYRpN0G2P6QZcbRj6kiScMUkz2q7D9yS+H3ByckYSpQhrmU0XHPKSMDa0dYlnfJIgIJI+VdmRzBNqY+msxAYObizx0ohBDChZI1OP0EnI85Ku7fC9gOMxxw8C4mRCVdeYYSCdxWhlWd/VeG5IkFisP7qmz2azkUOoesJYjhvWvicIPPzIYTqLMXa0WRgsvpcxDA5Dr8kmM4a6xhiIgxBDj217POuh7LjxfFz3GGUQdqAs90yyGVa7TxfmAdfxiYIA3/HRSuHiMp1O6Yex4RwgcfEwwif0YyLHQ7QDWZTgWI/yKEimM8pG0degmhY99Fgl8QjwnDFzaJRmfziihc9kPkUYhdFQHEuGwsPXMUa4tEYhhp6hHJvNVd2yWCYs5pL80OKkHslMEknLNJ0jAo/nz09wvZGrenFxwl/54fcJG8H2seBqecI+H7D4fPDhR7y4/oBpkjKZTWktYAdMG1LWe4yuscoySTOOuwPGaoySdI0e9Y1JSBz7qL6jKEb8jutr0mnMZrOl7UqS1CEKYhwnpmkPVFVO01t6oZjOU3QnQHlESUDTaax1kb6D9BwQluksIwgjBOOQgBV4gcSgOeYlZVmw2b5DqQIhFMY4hEGM7wvyYvSaB35KXTVo2zCdTnBFwmyywJMRQ295/uJD8oPl5uaW59cXzOcx/VARRB6InkHXtI2hKBVnp2ckUUbXNRjTkx/37A63SOlhcbi+vmQ+X+C6YmQHywA/hEH1owpUjzzkvh9zohpD07ejnUpbHCKEjajKiqLYUNVHPD/AFT5tqxCOIAqikQzQ7XHdpwuPrTAoojBh6Ht83yPNUupmVLwqo4ARnj+oUcE6qAGlNY4jxixm1z+1/cVTQWk0DwkhmM1m39qu3mtYsyz7Vi37Puf6ns86mqW80SFv7LfPh7FP2Cvx7VD5Prf6/jk8z8PCyDr1JNLzRtGBGUUR5gmtZYzBkx6u69J1o5bzPf9VCMF8PicMQ5pmLPOEcTQOxU/PPVIM4pGHLF0mk4zT0zNOTi+YL+ZcXJ5ydr4gzSKEdBCOxPM9rOhp+4puyNGmx5qepqno+5ayrKkLxdCCNS5+EJBOZvSDQ1k3DLqj7nuMHbAuVH3J5GyCnETUbUMSOKST0SbXdBXTeUKvepQG1/VJJxl+IGm6kqqtcHxLEPo0VY+UAld4WGMRaLI0I4oiwsjD8SSeH1C1Ob7nYixEaYLGoukAwfLkFDVoHG2omo7DscRBgunJkvCJ4lDiuhaLJHzKRnpewgcfXxOmAdnSR6OoG4c4XnB5dQFeTZR57LZjwadobglCyTQ9o28FJ5cJh+Oeuq/55OPv8MHsnO3dnu2x5V/83b+GCQzpbMXi4gJVGeJA8r0P/4Df//1P2a9rFqsJ/eCg1cB3P37J9nCkbR2ef3BJo/YcjorV4pLLy4SudTg5j3l7/yXrTcV0cs7V5QVNVZPFU7oq4Pn1Nftdy+WzDwnigbKpyQ+Sj757xpu7n1A3IbPlgmNejWXKXuF6UOWC55ffZ7/pcAOXxVmEawMiZ0a532C04Nn1xyyXKe/ermnKlnxf0rWC+dRjEkf0reLQ7AiihjKvqWrJ9YtTmv5I1yuEZ/ny1S2rxRmucPGihFYpjsWRrm+woke6AeVxT5IktEOFIyI+evkCz3F5ffOas7NrdNNjnZZPP7nimA80XYcrOgIvwXVDBnWEYYGqBdfPIwK/5uZtgR8qMCG+5xHHCd/7waf4vscnn3xG2+c0TY1xKvJ9Peal4xC8hpOLJflxw2wyZzJzefHiA6Sc0jYD724O/N7vfY/icEsa+TR9hyVkeXFOXh/wIs2gJFa49NT8rT/4d34jNqp/4aD69/77/+RHoon5wcd/hbaMSOYx+3bL86vv0ZRHbje/ZLvbo3BZ3x9YTFNCT3D3ukW6lroUtMOaLI3pK8vQdnT9mmrvEQUxxbHnsDUI1+A6Ce/ePuAFNU0pGYYeaw74wQwvdCiqI1b7VMWOriwJZYrraB7X73CkQOuO/f6e6TQiijKaQvBQvcNal5NFwuFhS1sb1tucwJ/TdgWTZMax7tkXBUmasVmXbPc5Z9endENHW5RgI+LUpTj2pAn0vQHh4DgRtgPpaZTTM9iabujoWsvJ4gJniDgWO4ToWJ5mTKZz9ruC7WbLdJKy323wA5e6zJGOxQt9BhFybFr6oeaw3o8GqdDB9AOLbErqu9THI4kfw9BRHTVDO17s8mL0PFs0r76+AaFxpItxXOqmwRGK589PEK5BC0ldDtxtHpChi1IDQkccHismSYIxlqJQNEM/FhaUjzaQFyVd07GYJ2jVYwJBPF8gfUkzDKThnDYvUU5FlR9wjI/UDm3dE6UZURzgKENgY8qdIM0C1DCQJuHIDQwcPC9mMZ3S5hU4Pa3pCaIY1fVgNVcX56hO4QcJcRAiAsG+2BNHNZPIw6hgBKDnmq4raPqWwA9J0ym97dgc7smSjO19Q0BMQMzpZMJsseLYdEQCUndBMklx3Zgy3xDZFGVa1nlL1w0cNi3LZ1MmZz6e43DM94RRxur8HLf+mmtnx07V5F1CmE3wPUtZtgzOwCSBYl/S1D3GOgjTEgYeL66e4buSdmgI3RTHlfSqIYozQj9FdS2OFnSdIs1Cgtil6iqkL/ACQZpkqH68cB7LPV3rkk5dtGwZcDAWVosMD0FxrCi6A1VVoVWLNgrp+khP0LcdRkmkJ1Cmpe0a2qbDk2PDVkofox08GbJcrjg5OWez2bDfH5DSYzqbjw1vVdL2BRiXpm7phgP90IIN2e5vcVxNVeZgBVaFVLnm4WHL8VhRNjleIEgmCbf3D9xv39D1BY8Pj6i+43x1zdnqgq6vefXqNfePjxzzgiB06duBvtHMZxlZPCWLl+R5R162KKsYTE/TKXw5xZcBdX1AiAHpJvjyBM9NiVIfz5dgQUqLsQ1dX1LVOw7FPYfjnqrK0bokjg1a1OyP9zTdjrbL2R8eyMv1U+ndHRmlgxrfn9bSNh19P5DnOVrrf2Lg49vC1ft2PoDjCOI4fnqMeNrMjgUoMyiM0qh+QLqSwPNH25OxT0QCjbGj4en9ptZ1HbACY8Ztqu/7uN6I3BKugysc4jAcCQPWjpQHd/w7uq77Vqn6njTwfqhWaiyYCdcljuNvt7bvB1atNdaop0HaGzeqVYkQDtpYmq5HaYO2CikFVZ2TFzus6Ngf1lir6IeBti3wPIHrxLiupG0LsmmI0iBciZAdwumRToDbjVxj4UWYTlPt93TtaHOqyyPWugT+lCj28COXrldMZzFeMKKyBl2hjSavjgjHxaIwegDlY5QgiROqssLzLY5rWK+3dEOPNj1N2+E6IxHGCoe8Gr/gWVzapgctyIIZg3ZIkiV1WRAFEWmYEIUSKTMQksUqQ1lLXq2JogBlHby4J4pn1IcO3xN8/PGSLPXJggm295EiZDpz0XQ0hU9xbFispmw2G8rK5aNPLvjsu8/5Zz78jMd3Dc8/nfBu84ZmKPni12949YvXrCYnZNOI21cbTB8zP5uRZRGn2YLq2LCtDmMXJBqwXkmczOgHmEwCuna0sRVlxRdfbPnke2csZ1ccD488O7/i/mGLVjW7ww1KOcRJzPZww+NDgxt23D9+yZdf3HG3LegHQ681bddizBgFSzKJFSV95aGDR465IAtSJr5LFp/y4afXNNWRX335ltubHRrFZLJiMtcjtqy1FEXNZJUwmfrkRcNkuiLKPPa7Le9uDliRIGXMPFwR+5psmrBebwikJfGiEQulYTkPke5ogtNDxmoyw6iBk/MT9vmaJHDZHG65uoj59U/f4fgSz9Psy4GhrQm9BNc7jl8ijeXu3Zbl7AyCA2+/eSCKHOq2QTgDTiDZ7QvOLs55eNizr7ZE8Qwrasq6ZL5asrnfs5xF+FbgBxM2m57d8SsGZbm8PCfPHzBdiB46JosThPIJOPLmmzdUTUmaJaxmc8rHin/lb/67v/mD6v/49/+7H1m34fbhHRdnJ3RlwyJNqOs96+IbtPZ5fKiIIhetj2gVMQwQZw7f/OqRpm3x/YFAnNC1Idv1uCkSwqdXJduDxQsCyoNis36LtQPL7Dl1dSQKA8L4Gb0+UtU9STQib7rap+kM4STkuM0xqiOSMwQ9J4sV/SAojj2D7rAypB0OHMoDxjgoIyjLniQNyKtHmkZz2BWsTpfsthtcXKz1aLuB57Mlg4mJEoevv/yaw6FgOs3IDwcyPyPAx7UdaRJQ5YIkC9FDw2TiM3QaTY/WivxYczzsuHm7pSpLymq0j2Al6SRBoznUJY7jYVpFc1CAx2QVki5OiOM5iA5PSsp8oOtb2q5GCIOrZyhbYqzP/03dm/TYsqXnec9aK2JFH7vN5vTnnrp1qoqsYoFFi7ZEN4IBwhA8cTO2Z/4fNfDM0MyABwYMwwb4B2x4YEGQBx5JlsUyWQ2r6t57uuxzd9E3K9byIM69Ev+BmIlEAokcJTZ2fvF+7/c8dV8jtUAFiuo0EGhFPRWYZsQYx+WLSx72e272Jx6LEzqyaDsiXcjQGXy/Jc3ATZK7h5Ju7DC2Rwwj0vpY6eGc4Hyt2Z+OPNQFy/WayfVkywytA7q6Q/kBkV6w3T4ji2Nu7q7Jc4+XT5+QR2u0kgymxQ8D7DhnDEGq6U2LGQShF/L8+QvKvkYiGUdL251AOOIwwNMCRMShuCdKFWV1xNkGRYDyck51QRwErPIlAw45JWjh2G5XLJYbJguRlxE6nyAZ2MYrlMppRc9pV6CVT5ppymKHNpIwDqlwHE3LOHXEQUYYOeIg4PH+RFE8sMgcSmpCZ6n3VwTLt+SbZwyeIVnG7Os9F5cLwiGmH48cxnvSLKNqDU/OzkmSiN9df+JxGNHJgsUyYxEoNvmWyXU0Q8nkLCrQDNYwTB1NMdCVHkZYBq2praHva+g0ceozioFj0WMAGxgkClFaRC/oRUPVG5SQCCNnXFjf4YSPjiK6rqYZax7rAWd9tFQMQ8doO9LER31etUaxx7sP33B9f42nffwopjAlLSXW9cSBx3q5Zpomjs0VAwN4A0+fbtCBpSoK0iRms13yp3/673K23eB7Eik7VquQaZRY2zH0FZ4vyPOUV89f8+RiwyrLWOQBx/KB06FhtUhZrySbZcrZ2Zbr2x13dzvW6xUDHTd393Q1JEHIdpkTRRIz1ZipJ8tj0nSF9GHy9gyUIHxG02OngdFYqq6nHg29MZzlC16dac7iAd81fPjwNQ+7Hc6O7I8P9H3FYBqqdo+zHcYMfOuzb7uSpu0w07xCT+MlyrM418+DrfhWw2oZxu47e9g0zT04JQTOOsw4YcbxOw7sMMxVAykU4rvPeUhUUiFwqBkuMFvC3DyIWeuo64qh7+ek1drP6/9Zj+p9q1BViiAMCcKQyc78Vd/3v8NszVIBBXImGnjezKTt24bRDDOtwPdwUjAxw/xHO9KbE9IbQfYY2yHUQDfs2O2usGYkT2PGqaGuS4pjjxQKKT2UD8M0YKVDBZLaWsxhJJAeZV9iBoeREVLCwIiTBpRFWIVsJHqM8F3Gbl/ieZainokjUmnqusOhsM4gXYDyLFrGZNEKX7Vzyt5PaN8nXySIacCJibKz7Mo9CsHZcoMdFeNkiTOFmRx2GpFCMvYWT/mMo5mPQQOP7XZJHAcMdiRdxRg3gexwnqSuOyTgXABK0vQNdWVom4b1MkaEivfvH6hODe+vHxH5BAzs3h8xzsPTlhcvnzFQgadZbSLS9MDxpqTeB7z6fobrBaMXcjqMCC1JIkXkZSzip0Sh4Ps/+DGLCGSzRIY9p/IRlQia+sjhcETYJUr4DEONGWuGTnO2PSNOQt6+3fJP/o9/zvn6Nf1Q04wNcbpC6pFPH96jvQhwXN/ck2U5UmiidMnrN6/p+4rJDCg9cvdwwk8tN/f3BEHKze0VVduQ6AUejlRnWGXBb6lqyzfvrhlax2qZ8OJFTKAFWZwjhaUsezYXKdb1dDtFqEPOz1Oqhx3daOknSag052eXvHx9xu5xh5YRUozsT48gQ84vnqLVRN9PnI6GPM/phoZ+KrHGx3MR4zTg+47I3zAOIZEnuT/dkMktz1885/bdPal/hpoE+8d33H4c+eL193jyasPm3Mc0mjRas1xaurFB+QFNY1DSxw49bdNweDyi/Ia6ViSZIglzBBXPLp6i0ozQg0BGLM8Svvrq9wTeyO6xIVgEdNOICDzSVJD7mteXL6jKA0Onebj/xH/xj/6bvwOD6j/773/emQeiYMX9/YE064iCJe8/fOD1m+ecjobRjOweKoahoyxqmsIHp5Ce4md//CPurwyjPc7O5juLJ1MmMVGWhuboSMIQGIgzwXp7ybt3O4TnE2URn74pWawlShnsKEiinONhz2aVUhwOxLFPGAnaSpKnW8qiJ4x86qZAqtmIVJyOCOcRBDFOToSxpmkHgiAmSQLM1DA5TaATghD8UKJ1wiJecmo7Jmco64L9Y80iD1FO07cNTdGyChzT2HO+SRlbS5ZsuLm7oW56wsSnaXrOznLstMAh8P2QJ0+eMI4942RZREvevX/HZBRm8EkSSRxnGAEytKTxAqzFjD3WCM7XT3BWcDpVLBZr7h73nKqK5blGRzHWKZp2h/IkFxcXuHEi8hNUENKZWU0XhzFd0zCWFQgfzwvxfA/lQdfNejczKcI4Qq8W9JNEiJHtSqO9mNt9AdLn9YvXlOUDw9gxjhPWCNI0Aio8b17RaaVZry5xYmKzuSQKc959+AohJVJDx0CcB/RmYOgd23xFHCke729ZJEuaouL++oSn3KxDPRnqekea5ozD+PmfnwCnaUqDc5LNZktT1XjCw9eCKAzJ84z9saJue5wQKC/kdCpwDCySDVXTMYiKSHlssxVt3ZNEAYEWHItH9mWB52UIq+mbBjP0rPMnOE9x81CRxjOSLI5XCPkaL3rFcnHO9f2BKFX03YFEh6SpZugFURyR5yFD03O/u2dX3KN9QaA0U29Qk0+iM5T0qLsTRV2jdYTD4JRgc3aJ8qDpB5ZnAReXKdXpgBlL4szjVFScypKmnXCToK7q+VDDEygFXVMi8Qh1hu9p2m6kMxN+4KO1hxlrRtPQlANd2RGHIf04d/5Mb0jinLPLM3aHPWYaWa6WFEXD7rAH5WiqgSxOSZOYh4e72VrExDC05EmOVoppGHj17Auenr8iiVakmYdxJXcPt0zWw/Mzmq6k7VqazqCDCCF92makazuqArLwCXma8vT5OWGY8PhwYhgrtA/n2wu+/+UzkDVNd5gfCifH9mzJch3TjycWK4XvpfSdz+XlhjiFtumwVjBOM2KuKhqauoVJwOSxXa1YLzOO+0e++fSeb+4e2NU9Og6RniILtyRhTttUWDOCMyjPMPQ9ZXFgMEeUmu1cn22j9L2hrQ0CD5hX0aDoO4NzAqV8hn5ESIUUM6bL9z1g1rzGcUwYBiglmeyEdRMOMw+InvosAPBRypvT1Mkx9iPjMOCwRFH4XSVg7pzOWKm5LiD/Fps1SZJZAmCm71BYMA+e4t/4Xecck3XEScZisWIYzHc9XfuZuzoMHW1fUtUHHg+3dEPJMDYMw4gOJHke4EnN4bjj9uYWKTRSOZQ3fZYTTEShJs0CpPBZJ0vSJMILNFJ6CH9ikoZABwTKR3sBSIkIFYOYOcvrTUY/DnhazWvYqZ0NX978ELDMl4Bgs17PCKxpTqDHscPXmuPpgLAhURDQFWaWPAQa5WlCZbFO48Yl/VDi6YnAS1GeIowUw9BjrUPriLad7xO8gFk5LHzWq0v2hwfaamQCus6x2GzwQ4lQkqrdMU2O/WEg9rYscsnNzTvGMcBTivPNM54+fcF6G6NDKOsHLi4vSTOFGz2ebH7GdhtQ9DX1WPOXf/kNie+IE8syeU202LJeB+A8etcj6TgU9xRNxdXHG9KV5PrjjqdP3jC5R75484pxHNA6mdXMQ4XDcHd7YhwmuvGGYTT87Gd/wFe/vyENX5FtNN1oSbNznHAkuUQHEc4KHna3dJ0miBXt2JDlTzi/uKApO5Ty2O0bLjc5ddkTBh5dVxCFATc3D9zdPLLaJDx/tuTsLKdvHPvdfn4oTXKcc2TJOQ+PO16+eM1yk4L0CXTKRAvCIglI1wU315+IophuPFBWI00zIv2aly9fcX+85+OnPVhNlNoZU1V0bPJznlxk7PcdSkwoPMxo0ERcvtiyzTPGsSHUES9evCROQPsJL1/8gFdvFnTjHVm84u33/oQXr875xS+uiJKnrM9zbm/v2WwWVMURXEIS+TNPWEgCL8UPWpqj4Te/+RUCqPeGOFqw2mxxdIQ6ReqAx+ojy/MLaD1+9MWPKcs9TmmEzVhmOV98kfOnP/3P/+0fVP/p//UXP//m6weOxR3ZIqDpH0iTJednP2L30JGtDF1nWS3OUSqgqyWvXr1hf7jl1ZsNX/96x+6hZLIjCMNi7Zisj+f5rDcrXryOGIaOQC94+uQVu4cTx1NDFCryRcLmwqerNcdji+cbRtMSBT6+H7BcPGG7OaPvGwSS3fEjYRix3/WMRuBrQ9W01M2JzXpD08/A9ixPkcqSLUOaZk9bS7phohuOBL4iyTY0bQfjxN31B/q+IooyojAjSTOEkixXS+JFwHHv2F48ZxQTQRJTtice7mukCFlfxHieR9v1WFeBKPGkjx9a0jxkvcmoCsOnq3uePX9G2zYkScTp2ND1JZN1dHVLEkXEYYgdBG07W3V8GRAnmlEazi4W4Cn6XmPlCSsqAp3Tjz2md/ie5vGwZ5omNss1VVkT6hBlIc4XmGkiTSIeHu5om4muFSR5jhUDOjasggQ79uzNgejskrI68sXrZ3Rtw8NuBOMjraJ4fGCoD/garICy7TBtPQ9DfoBSEb/69a9p+xMIj34cMGLWnLZlz5Ptxax/PR0ZzECWpwipSRaKtz9ec/YkIVm1LFcRRV2yOzQMQ8t6m9BWjvrUscgjrJsIAkkchNR1ObMs+44wjumnmqY7sl6ndOZAli8JgpwwiTBTBf3E+eYST2r6rkVKhfR8+mGgbQaUlOSJJtYph8cOMZ3opp62ClFO4QuL9hO+/nTF11//EucVWDtwuit5vLsliGKUpxkb2O0PpNqj7CsmKYl1RhYuMM2IZydQlvuHO3ozkmQ5Ao+yOtD0LXU3oXxYXmSEcYxnNXJU7B8b6q7h7PKC9SomygQT1SzbmDwGN4CEKAhwZkJKaLuOqqyxsiOIA3y7om9gsh2BJ/GkwvMizCTw/YRlvsUpx9XjN0zOksSLGVovFRaHcI48WaHDiKEZmYaJNNVoLVguIoax4nQsEFYghaTrW5R2vP/0e371q99SnHoEEXVTU7cnyrKhLBsmA03dUFcVWmvieIG0MX1TszvesC8/0I073ORzvn7Fsydbfv/b93z8+EC6iOj7lqqsiYNk7kn6n332wvHkSY4fjLNYRKfz2ljNiWCa+1yc5XhCEAcentdzf3/Dzc0R5YfEiwyIEAR4Svo86ZYAACAASURBVIIZSXTC+facSAcEQQx2oizugBGYgB5re8qqphvnqs8w1ljr8Lx5dd+2s+HIfdaMaq0JtI8Q84PrrOKUCDFTJGDWwnreLHhAWDx/XslPk0FIhZ0mhr7HmPmoS4hZg2ut/a6WYMz0XZfV8+avf/PAa1bBMnfK1WyzQkmk+tdr/m/7sFr7SKk+VxkEQag/d3ENUkAQBAjhqJoDcZzNnfXIIdRIWTT89m++Ybe7x1lLmuY8Ob9kuYxxwiI9jyhMcQbieMEyj/GkI/BDivJAM+wJAsXheEILiY9AAu3Q0w89YRziKY+JWfbQ9wYwSAfWDYzDOA/Wo5sxeK7FDBZnNL7nY2xBVZSMzUCUrRlMx+PdjrPFkihIyJYbmrGZe6eywFcBDzcWY0aUHgEPhwEh0dojjROaeiBfnHN9fYfAcjo9Mg4typuPCoMoJExSbu525HmMkiF3Dw1ahTh75Hh6wNqMIMg4P09o27l6IpWjah4QNqI4dlx/umccWgKpGYXl3Ydf8un3JWcXMYvgDb1p+MH3v8fbt8/IzwRppnncHbi7HVH+yO19wWq5ZXe6ngMBFdF2R6qqpK5GwtBH6I6b6wNNc+Dlq5d88cVLmvaRvlEEkaZreoaxIUyXLPMFf/STH6MDw7t3n4j9nMvLxTz0K8voOprOsF6dc3f9gWmYeHLx9LPMwRB6G6apRTBwfbXnycVLqrqkqUqa2lAUFZvVJUnmcf9wxWZ9ibNwfXXgUD3Q1Ccmx8wkTzzM5Mjzp6yWIfkipjhWBFrxuKtRKuVHf/A9rq4+Mgw9aRgSB3p+ffs+1kqyPMdMIPE5P08RdiSOE8JwpD6M5FnM7vaR3e6aLF1ycX7B/f2O7faMJJPcXF3zeNPT1RYrHB9vf0UQPuEP/+h7jK4iSifak8+rZ1/yhz9dYiqDp7dcbBYMreTy+Quy0FE1jnx9RlkZsqXlYXeFNEuGfqQqH3jz4gdcX/2Cw8cCN0oGem4edvzhj37C5EY+7Rr+/O//HRhU/8k/+4ufl1XJIrug60se7jvevPkRYZByOBxZrXO++t0N1nZs1y/48ss33Nz/DcYITsWB3//6hiBS+H6Mo+cnP/5jbj+0nIpPuGni1786YnrHMl/TVCUf330i9gKSMODm/QPJeYqIH4niFevtFqUsu0dL27VYMbPXkhyM6ZG+pa5b+mHA03M87qxkvdrw+LgnilOsGNmf9kzW0rQFpp3AKsJEkSQKYQMmqylORzxhibRmsYhwThOlc3J3qm9wzsfJgUBHJJtxNnz0CjsNBDql7Xc8vbzg6kPB8XTEmol1+pbFOmC1TTkeWz59OrIv93TGYEWFnSayKKM9TZxtc5IwIExS+rFhsoauHeiHAiEGkiSiHY4oDXbyabtxBql3R4TVPHmyQTgPP4goTyeUkuRZQnMq6YeBKMtp2p6mOSHFvO4bhgFfa8IoQEqHkhN12QKWIHLkqeb4cGSxihASrj7sYJgI/RAhwcoOKxXW5Ng+RiuNmHzMNBKljqp+5P7+gThacnn+kjgMMV2BT8A6PaMpj/Rdy/7QIP2AKNNkS4/l+UBZNiyWKd/78jWbs5TLZzFRNDF2AWVV0zeKi7NLuq7GOIv2Fdhg5srZuY7gqYD94448WdLUjslKhsFQtBWDaWnrGuU8VqtzPnz8RD91DAba1uD7ARKL6WukUMRhRHE60g6W7FlOY1tu7/YsV5cUfc3V6Y676j2nvuFUNMQ6ZLM+J8jh8f4B0RtC74z9oaKsWnylGYaBsjwRCUUchTR2nGsNCJIkJfADiqIAqQj8jCDwmSZNcYSr93eEemK1Smj6hlPZk2Yp/WAYGOc+YteTZQrDSN+Ns8LTTURxyGa9QfgKJy3TUOBsRx7PBrbJCaqhQWrBOPYYM1K0NaNwpOmS9eqCYegp2wI/iJjMRBLHBGHIOByJI0E3NFgDk1EUTYUVgq433D3scUrh5EDbCspixIkSoSqsHaiajm4ciaKAtmtpuxodaoIgwJiBqt1zqD4hfINSIRcXZ/zg7ZdcnJ3x8eM1v/vqK8LUI0kSnBNzshb4RJEC2xKHCS+ffh+lHLdXO0yvCKPZ9JSmOZttjKcs9bFj6gIUHpaes7MNP/3Jz9jml4x1QxZpnm6fk8cJizRjkS7xPEG+8NFaYkyD9iGJY+pTzzR6+Foz2RGpHEJ1IBucG/G1pB9L6uoATuBp/bnDOpMCzGhm2QWCcTSf7VZz7054CunJ+SFwcihPozwfh8BMBl/7n2sAoH1v1sYq9V0Xdv7418ddwzBgjPlbRIJhGGibhskYPmujPqej88D77de3Bi1rR4wZkBIEDjtN2GkCAZMdaNojbb9jnGb1aVHtMCNEYcJ6HZOlCc5KwkDT9EfiNKYfDGVV4ocC7QtWq4xAKrI0oa5LFJp0sURgsQZwDul79NPEODqGXmA7CZNmfygY+gHt+ThnaKsegUASYqaJcegYhomuKTHGcXHxnNNx7lv3nSXUEfkiouk7RARd32BHxdXNNa0RTGPHYHq09snzDKEMXd/Q94YozGjqgtubR14+/5KybAhCn7OzNYPpmcyEpwPasWFyPn6i2B8O5NmG03GPG32afiSPPDxPILwl588zsDUfP97TD4LNKqfvLEyapntkd1/z4vn3cH3C08vXXDwJGAbNm9dv+fv/3k/58//gB/zkR19wffWB3398x/3jI3/5L68YZc2Hj7/j6lPNi5d/gHV3fHh/zXp9Rpwphn7GMl6cf8mp2HN79zuqwrI5y2m7luJUcHf/yNdfX5MvcvKlh45qfv1X7/Gl5PHhEWs63GTBGepyjyJjMiPvP+14+/YHuOnI/rokjRc0/RUwEalz3v7BE+7v7nBmPf9v7BpW2RMe9/dIETBNlrIoMMYiXETbGHxfg+w4lQVdU7PYLHnYNYydxYqeF2+e01UdD1ctTy9f8fKLNZPpOR1rXr/6kvPt8/lodBjpW8sPv/9D2r5iwtB1A1JKwkRx3BVky5BxtIAg9M/phh37/SNpes7z5yuyLEa6LVHi+PDhhjD0+N1f73j+Iub82QZfrhntyDAK9sePONujhCTwfH72058Qyoq//KvfEXsKM1o6RuwwcP14YrCKffmB169e47AU+46Xr8457Rrevn3L2Fa0o+Bkb+mmPbSSy+WS/++v/wWnsuc/+0/+63/7B9X/8X/9b3+e5IKrDzvqShEHaz5d3c7qSb/n5lPN4bHEOoUnEyYOKM+wuzesNxlZkvLs+ROy6Dmn8pamOTBNO96+fc6bV2/5k7/3BX/2Zz8iCjWb5ZYfvn3N5TPN1adf8vL5UxbPNcZAVVgeH/asNyHal4yjJAwFaeYzjg3WJgyD4ezsjDgLqcqaJE5JopAgTOk7SdN1OOYVT3HqwIaoIcCyY7mO0WqNVhG70wPnF2fIcUIEGciJw6nA0xOn44lpHBlahx16lrlHcei4urrh/v4KpRzlseeLN0857Hfc3d/j+x5ZmpKkHkXR8otf/A3WK5hcTxQt0Bp8pUjChPU6Q0gFSoA3UHYtSgqSZL7EHqeWOIno+olhbOgbga8CfDUy9iPCesR6SeBJxqGlqlp8T7LYLqnahuPpSLZaonQwHwaMPXm0RDhJFIZEoSZKNFE022qqvUXHiqI5cbbeom1Me2h5uN5ztszxckkY+SRhQBrOqWJxbNkXR2QI6+UZTrQcjwXKUyRJxirfEoVgx5bd/Y5ltkUh0N58SOVEwKE4UVSPnB4rdrcVntDcfNhTlyfycMvFNmBqNB8/PjC5iYuLc5JUYOkJYh9DjSJgGCaiOMChGPqRKAhYplt2Dyc8NafSUeihcDzbPifwYrIsx7gePxA8PB5xbkAKhZ0MWocssy1td2Sx1Kw3mv3ViWCoWYdrquKIVBVK+NB6tP2IVpplMmN/dsU4d02jPdcPd0TxgqmdCQQT4Mzn3p901G2NpxxSBfTdwPHxQKgj0mSBEgHF/sTx8IiZKoT0yJOUti5m5acQjKbADY7JKqq2R0ro+onJ+Ein6PqROEjwPR87tni+j5kEXVVjR81/9A/+Uwbr2NU7nBa4zwnYMPZMzuKkx2Tg/vZhxq5NPdd3d7RNTRhoemuQ/oSKHE1vKIoDngo4O3+GUB7VzpLFGQKf/f5I1RzoxwI/1NS1oxsMkxhpupogjGYiQRDhez6eH1IUDQ/FR2rT4fCwk8VNlv3uwPX1gTRdcvE8J0oF4wBS+jx7tmWxSGdM2gBmiFEqZOgE59uXvHnzFE/5xGFGFEFTNthekEQZgdYof5wPVpKQQCtiP+Lp2QXf//ILsmTB0NVM08h6tSbNNPvyjrbpyJMNSbRgGiGJc5arDZ7nYaaBYSpxWDyp0IHH0BcUpxvKskAIH18HTMZgxhGlPNzkGPoRawHhcHb+uZBzqjmv8D08P8T3g8+Yq89KVSnwPEUY+Cg1X+2nWQaI7xLTeZUvvhuAvyUESKmQUmHthBRi/nuoWWTy7UHYt5SC7wgGzjGaESHk57W/nZW1QmKNwYwD/ViwP13TtM3nS/eWrhkRbk5kx2HEupE8j0nTkNOxQgiFkxPj1KFVRN9O7G93hGmI1oI8z+htj6cdIpJY7QjygKovGceeIPLwQknRlpjOEYcapQyBFxLoANNLuq7GWYv2ZxReEsWzjWuauaSeitlsn5IsY5h6VsslMlL0HqSrlCyJECP0ZqIfevqxxUnDqShohpLe1PS9Rjufqbd4yuPlq+eMtsUPPBzQDSNtPyBEgFAKkOz2e7brBco5zNDw7Pk5ebyhGzpaRrppT+jNBrsoifD8gdubGxwtSnec6huaUnLxZInnSa4/HSiqFk8b/tU//x3Xn/4F//v/9n/z1Ve3HJp7fvmr97TtI203bw38wPHr3/6ORRZyPJWsl+eYqaNrHdvzBe/fPdC3Cj8WLNcrdrtPXH+o8f2Iqmx4+vIMHfgY1/LVVzck8Za2v2f3uKcsevqhoRsqvnl3hR/m9P1AawzHouf+9hPn50seTnvuH45EQY51I//vv/odSEFZ7RhHgeen5Iuc7fmK9+/f45zFDwS7/T0Cn9/+5j3L5YJTcY9Tc+3v3fsHyqrl4jLh/mHP8Viz2JQ8fap4vIO2CvnpH38f04+cDg1fvj2nbQfSdczmbEnVnmiaEWsgjTJCzyfxVhybgqaRNK3DMFA1A762qDDhhz/8Af/y//krkmjL2ROfru2Js4EoTPizf/9nOGu5urnm66/vef36FWHseLjesVqsKXYVxhgePljOFmsm78TbP5R89ftHjO/oKsVDfYtyI8XpxNWHhrOzDbvjPV99+hWLszNO7T1fPLtg+WRFdOaojwfevHjG1998RZSsefpixX/49/7Lf/sH1f/pL/7xzx8eKnQAefyC3e7E8VDx7OkLrJE09YzAOO4bpG6om3vGQeH7HlfX7/GIeffhnt488kd/8oahs2wuFH/047fc395zf/c7Li4WbFfn7HY7zi4WHE634AumKaWfTphW09Yn8kRT7Rui0GORaeq6ph0rojhEkmOmlrbtKY4tWZKjg4nJjjTdkSgOCCIfOw08f/YKN/lIIQmEh/ZBhxFu8jCDxdOKrqupdjO3DyfYrM857nvqpsbzcrIswYoOpwKubmvQA9vzc3wvY7nyCLTjtDOsNmsWi5ymsAShT90WLNcRkoSLi3O0p1BTgFYR49jRjyPVUFJP5bxSdJYkTZEC2nYkTTOquiMMM8IwIZQxfd+AbcmSS/qmx/dHJJryVBJ6mvU64+bhlnaayBdrwjgmX+Ro51MdS5Tw0DIkyzOC0CPNUrquR/shz84WKAAV0o09XTtwvlozti1+4kijFW3T0fYDX/7oLSL0EF7H2TZDGcE4TUjP0Hc+2otYLCNOxR1N+wDOxw9zJmeIk4DJSkYjyPOczSbHDAPGWLSOsEaj5AJJysdPt+x3HdefTlTVxMXT55xOBafTjs32jN3hQBhphA0pq5Y0S+ZO69gTBpqyKPnizQuktDOkuSiY6p7TfYXls6dcCaRnmUSA9OZKgRlH8mzB4VDgBwYlAzxf4nmSsbMI7eOHHsqFuMnDjzx0IlkvY0JtaaqJyQq2zyvs1IN5ihk6PA+E8jkeKxbZBoPkbr/D9SNxqMFJbm93hDri6cVTzGh4vL8n9EMC5SECQ5RFODMizEQUpAghqOsRZQ1jPc7GlQSaTjI1giz0MCP0tebm4yNDXyOVIM0WZGmC9jT395/YNzusD0hJW/eEUQzK4QceSZSj8EFMeFpiJgjCgDDUTFYw2oHJG2fE2qjxRICyCX3fcjo+8ObZc/70j/8dsiym7vZI39Ebxc3DkWbwGV1E2RRonaH9lKYpGQf7WW8qGAZL1YL0AoR0FMcjx0MHImCygroxlFVP1zkCP2a1yAlCjRQaMwqsFfRdR9OVBAEEoWSxyOdrdRRd19C1R7Adh+OeyTk22zXWOJq6RvktSR7w7PkXIAJu7q/Jcs324pymq7m+/obDcU+cLBAEtM2AMROjqTDuiBPz0SRM4Cw4D1/FCOHwtUB5As8HxEg/lNTtkaEvmaaWaWqRYmIcG4R0CDEneU1XMdm5WzmMBpzDjP2sdh0NXdcxTRN1U1MWJcNoKMuaYZgZsN8yUZ1zfGss/Pa7EDNdxDmL9uf3T+vmasLcbZ3X/NM0D65KSiQSZ2d9JeLbRHjAGkPT1DRdQdefaNsaJQO6xs5pqwPfi1FEBIFPmnlM1mAnhcBHqJGmbRAS8BxRmJCmEa3puLs/sN2c0XQ9x6InXa55fCg47TtimSEMCAdVVxHFAZebLVJN88Gbm7dm0zSSZwG+LwlUTBBIzNBijGGRZ/St5PbmHiksXVdS9TUTjsFYkjxnc5HRFEdiTxCmAZ4PSiQzPkhadJCx3j6h7wam1nBxcU5bl2y2G45FRVHWjGYgy2Mm5uM2JXyiMCUKIrTWSDehfcU4jERhjlUVp+4Rrc7wRQqiZhgHnPHJFjFVMWLsROBfMk6COI24vf/A5El6u+fD726Rvscv/+Y36OWadLUkCGKWZyv2hytOR0caZxRVgfQUZXFHWY40bcv11REsRHHE3f0n7KRJspT7+zs+ffyADnIgwLpk7qHfHhknn8fHnrpv6KaWY7nDC3J2pwqhPaxQCB3y26/eobKRzhREkcfD/sAoJHF6wdgZlJZIr6cfKvpBsznbIryOm9srynJ+XSEs1jriVFDWJ5JkQZx6lNWJuuuI9IIwknhKoUSMdQO9aGbeb2Fpa8mLl+ecTldUVU3fGXwtMa7h69/f8ubNc+rqRHEcOL+4QHqGpiuYJsUoRvzQYpnASdJ1xmap6d3I/rFiu54PS+NwyTAORP4aPzCs8ktuH77h4vJ8tlLaDknAfvceMWxYLAParuGwK/jq99+QXwqSxOcXv9gxWLD2iGVJFCt2xxNRGtG3PX1fky4W+Frx+tkPKPYDv/l1ge9ZTvctVRFw9nJB7yrKfcM/+o//DiSq/8P//N/93E4eX77+Q+I45LA/MvRgXcnQCo6n/ZzCpY4krynLkijYUFUFSibky5A40bz9wQ9pKsnzL87ZH3YcdhqHx2E38de//BXH4kTV19zcPWKcx/mTFXEukDbm4smGw8NElg389KffQ4xPuLr+gPAtVeGRL33atiGKUjyZMbQjURhw2O/xdcCp3HM67RmHkXy5ojq27B8OJLHCV5JlfoFQM8jcjJb73SOj6dnmG9puTse6vmUykn5qQPj0U0mcK2xYMwoJPkyMpMmW4+ERayFbxDDl82pq4xHolCQ+Y+RAFMdMo0dxesRXCVjB5jxBiAVSO/wkwEmN9gR2koxDT1VVKBkwTSN13QMK52qGVpDmCZv1iqocGKcdQRhQnhy+r5BKgKcIkxzpQCvJ+99/TSg8zrcXKCEwU8+pOHD25Bxj52rFarnEUjMqj6KsMKc9mdYU1BSup+0NoxFYN3D59Axfa37z29/Qjy1xnOLpBbd3FZ4/AB0g8LXH4+GAFYooWeKkAmlQStJ0AzoMKJpHxqFBexqrBpyQxFkwCyLsPUqHjNZhhSRNcqI0wMmRMA4ZphE8i1ACawY87TP0PW3Tz9rYzTOQEdITXF3dIQPJs/PnrMIFWnssn2Q09cDUD0xqoJ8kTVsghSXPUrqhI8lCrDWURcdy+ZRo5XN9V6KTGDM6hlrS2gkb9QSZQyhLUZ8I/IzzZUyzG7j6bUfqGbabNYey4v74gPIFbVdjrSENErTzGbsemGjrgcnwGR/kCMMAayzSKUY3MDIxtCNjbZEi4Xg6MtSWqVGIIaCtR4J0wheCTZYQxwo7iZnYkMHFxQohPIwzdFNBFAmatqedJkYcOIknIU0C2qHhcKzwbEjozyk/ngDnEfoRypN4YYjwoO0cu8PMa1WTQ9qJujuQL5es8zPef3jP4+FEEObUrWG04AVzKljUBUkSE/gZn66uadoTnuejlE/XdjRNS75c4nmKSGdof0XV9PixB8LRDfOBn5hglS2QAo7HgqqZawqd2XGqrmmbmjxfUdcdX3/1K/quI45TtNb4Xvj5CNJHOoEZWrCgVEiarNA6pihOTFOP8uajy7qeKMuSY3lH3c39RWMsDzc1Eh8hFIKctp7FJIEWRKGH9hLM4GjbimHocc4y2TlNHMaaaWrR2gEDng+eN79ejBkYTY/WHspz9EMz9/alYw5Hxdx0dY4gjPA8jZCKQAcIIfF8nyAIvkNizYnojKr6lp8q/9Z6f+7MKjn3U5WnMNOcljrnPnvP53QbHPOc68AahqHB8yzWtky2pm72XF29ZzA9UayJ4oChdyThgij0GMaKaRIoLdkfSup6wFkQ3shkHL7OcDKkb1vaZqDuOnQgadqeY3mkGytW8RrTj5h6IAlDnLOMU0+oFQLL0PUMn9+z0kVGcarI85i+7YnCkMAPGboWX8+99yiMkEKT5QmeMqzyjElYjmWDm3qkgepwhEmyWq6ZJkU/tvi+ousczgqiKMCOPmKKyXJwVuLwGcf52Leqj7N1UHgIBdLBZCxd25AlKc46urambedjLCcGhPIpTiPCarTvGMzcc++bkiSJGaaW06kFNVHUNU4EBP6S48MDQbhgsc5oxh4tE05Vg+9HfPOppOsg8nMQBlSJp2LKSpKnPg/7GwId4yaPMMrpmpbd/prJDhTVnrbp8fyQKNF89c07wngFCurW8fHjAzryUfHI3X2HE4qmHhDCo2p2ZNmWMEj5dPcOpZaIyVHs7vD8Jcdhj5SWGI8gEcTRhq7vCQKfh/sj1vYzj7ufKRtJvELgM0wjfWdIsyVpqgkj+ObDDdpTWHqUJxj6js3ZBWUzcX55jmlDwiSkqA8cdzWR9hmmim8+XjG4gjQImYaRMNB88+4Di2XMbtdRND3GWqJQUtUFSENZ1ES5xrYSL4l5cn5OFER0bc/F+QuUtJydL9k9nri/64kSzdQmbC9Dfv3r33B2nlAcD9R1yWb7hM60HJpPrLcX3Nwc+T//6V/z9NWKm6uOp8/O8XCcjvDy7Zp+6LlcP2Xse+7vdyyyNcVjwZ/9+Z/zgx+fschikuiSYarnzVDnWC89/uE/+K/+Dgyq/8s//vnQTAg7Xy5Lb0SHA2m8Jl9oFJqmfyCKBI+7Eilj7m9L+k6wXOZsF5fcPdzy7sPf8Li/5fH0kcn4dL2h7kbQmiBNqNsR5TvW2y1ZsiRfhizXAdvzN6w3a9KF4nA6ojzF7f09V7c1wtOEcUjdliyXTxn6ltOxoi478mzBixcX3N7WDINg7BVxskL7HuNgOe0roiAiiZfsjjfoSDNNkvPthiiNub27J1SKXvg4MdGOJXgN+SIkjSKenD2BaeD6m5LVImB3U81rrnbuyMZJCp7iuLtlkedE0YK66dCRmXFeqU8/lHTGUtYnrJEY0zEOAUJ5KBFTlwdG0xGomLouiMOQ9XpL3xVoPQOXk/j/p+5Ndm3p1vSsZxRRR8xqVXvvf//FyVPk8clMbGO5RQck99xBSAhbooMQbeAOTocmNGy5gy06SEh0EXdhCcmZJo+y8PmLXa5iVlHHKGnETq4h8wJWY801V4wvvvG+z1MShKNp9lz7J6SEQKQsNggpCEJTlQUCgRktzJ4yS3HecNjuWcxCtcnY7TLQAZTmOnYkacI8D3y8fKYdBmzwJHmJFweGqUcKR53Wq3HHW5I84ccP7/BKkmYZXXsE3+KlATXy9vXXaHnPtY+oXFFuKsZlYFkGggu0154kT/HS0s8dQq+HZHvuOTQ3pKnk0r6jOYCxE8gOQSTXW3y09EOHMwqhFbMx2CWQyMj8Bdkz9SNZmuKFYPELi39BqIXLNPPm4WcMlwGZB472kaI6oGXO59M79vcHhNB0p47gIC9yovA0dU3dpByPVx4e9myqgaZYxQIeQ7WRZEpQ+IJffPMV37z+BVp4tukr9vuvOLytyNMbijLHS+j7me3+Dplk7IqKPASiWDPCUVjyYkNwmqJUJMWaLfzm7Vu8iYx2QiYK03vwnohGylVK8Pb1VyRJiXOKXdWQBUnwkaBSNBkiAY1it3nDYuDldCLKHEnCdRyxYkQpjQwZmgRjF3RRrCgunSDiAkph/dqsFkHRjxMqXQed6+nCNPUoJKVK8W5hCZFAjqDACcFz+8JleGFYRqzzZGmBFNAUOVma4Lwhio6iUGipKYs90WeoRJBnKWXS4NyCDTM3rxqKOsOZlFQWlKnkdndACc3Hj+/opzM2Lsx2Ic1LErlHxoxEVeRJAwTMHBiGEeeXVbJQZew2t2RJSZEJfv3r77i933HtO/ABjeP49MjL4wuny5VxHPAikNUVh9tburHFmJb9PiXNPFlWrpnn1LDb1zhnmaaRGBKyTKNTQ5ol1OUOoqYfJpbZYBeDsw7v1mHH2nWzOc09Hz58IC9yjBk4nh/XrLZz+ODxwX/BSDnGaWKaZoxxhLBar8QXQdXfbFH9FyvViphaLVpJknzZ1eyLKgAAIABJREFUqK6t/uA9yReIv3WOeV6Y5gWtk/8fcSWFwHuLc8s6uHQnYpyJcubl9I5+eCLiISYEH1fttSi5PdyTpZJpGJExY3fYkRUlWVoTiSAiWaYgKsbZEoRm2zT0/RnjLT5olnEBFQiAmxxJIgnCMYUJ3WSUmxqBQkeFFJqb21fIRGKtR6qAVhkhCr7+6hu8vxJcSqZqEJHFXQHHssz4IFBpJBEB6RRlHRFBUcgdZnJ4Um5utkx9ilQFxhhubm6RIkEi0aljnCxlkSLlquA8XY6U5Ya7m9eM/YISGdPgKXIoihKdRNr+iSxr2B8avDeEkFLmG+wSyXROkjtcTJntjAoaIWExV4Z5pBtnpBakSc1kWhK5MF56+tMzPiSoJGFycNik9NfPDGZkk++QsuT+8BUv5xfmGaqiZFkkIkrefnsDPuN0fCbPdgzTCzZcaK8DMWpub2/58PQBF2bSvOLdxx+ZTMflMvL55RPdZaYoMvwC+90WgiTaghCveCchRPqTJ/XFupxPKkKf8/UrwfOpZZ4j3ilCEBSlxFnBpn6FcT2n44W+dSSlJdEpm82BPK/58G6grkvy4kBTVpR15Hq5cti9YjAX2qlFioJlGak3FUWe8HL8yDiMaF0RladqbpmWCakUeZFyOnUMY8c8GYpUs0yWYDYM04CIkbcPv2Z2C+N5op0G/DSvsSmT4OxCP1z48OEDaQZRWqQOnE4XFjfStlfasyMsJdvdnuvF8O7jO66jRcgNv/nj3/Cnf/o924MiTQVuTvB2INhAmW/4qz//zHaj+Ms/f+Lu7Q3DcqKqGx4//MTLu4E//Xe/59XbO7ruyvGppahr8rtX/Gf/6D//OzCo/qv/6bcRRVJL3j0+I1JNVReMfaRutgzLBbTkw6cLIQq8D/TDyMObPc4GkJpualE6cP9qw7Z+jVY5P3z/zKuvtvz8VwJzXAidoqoVQgVev9rT9c+8f2c5t+/58z//9ySyQkoYxifyIqUqt2yajPG40LeB87FnchMox6ubNwTXI3PF9WUm0ZH9XUkQPZtNxdB6NnXD4SZFVDkHWVCmKUJH0rrm6d2n9cp9XzIIzeAGgmwJWA77NyTinhAH+n5id6iJMUP4jKKRNEUDSq3mHq0p65x2WjhezjxfP/Lx6RNFVfNy7BimBelWyxfCcLg50Lernahrj+y2Nc4YfvrhRFHD9WzJSk0/RnySIMoUMsGhaLgeR2zwlLlYiznOUhcbmqKhd1eWOLAvd9xuSpyBSKSsazbbL5YZpdA6ZXEwuJHZD4ztgtYZeR7YaIkLFdMyUEiBznIMC8RIUWYkKuH48sTD3WtwHjsFiqxith4lNfu64nF6Rk+eqQ+kSc4wXHHGIVRKmCUmd5hJUogMLTwxDlgbmIcJXZTU+wOFrDDTjNQlwqXsD3eM85VEWobWMNFiXKRMUzbbHXlVYeeFh5t7siRDJpKgPO3QYqwhdRXvP3xPj+E8vaAlFEnOp0+fSHWBtRN5tqNMEu5364N9mhYIHp2X1HVGdzyR6B0qLbl7s+Pnf/CaItU0VUZ3SdCq4c/+3e/43Z8+8u0v39AtR374y09USpOWlnP/GSdm3AK2t2Qqpx97BrOAltTVPdYmBBHIKs3sB1z0iDQnphIbZ3SRkquIWWbub+8pq7WpPYUFpRdu7taM57R4dBbIssirm9ds8xqdKHSa8nw6Mo5XtnXBttkTnaduCuIE/WkiLeBnX9/hekOIKfW2YVtXSC3BK7ZFSVFHXi7PlOkG4ROIkCWBTKYAGG+ZBs88DitPMzoW29KNLfPk8D6sVqq2IyDo24EYZ5w0iKjJiwKvAguSxRkm16PSjKgCrTsjdIIImm4cydMM6RSL9ZgY6KKnn0eSKEjSBmczopMkyrMpNVm6loiqQlNlCSCY3cylHzhfBpJC4wk8Pp2YBoubHX3b8fz5hfPnAW8FiwiYGJmNwZFjp4TraUAlkm5ZMEZRFhoTRi6XlsvxEWuvJLpEqwqlFWZZCyVmspjZUhUp1i+46AleIINmHmamqUUEz9iOKDTnlzPPj88cdns2TYUgMI4X5umKGReUiITYY+kRMuC8JwSLFB4fNFJKxqVlnmYIKWb2LMtCEAFjl9VMJXPsF+FJlI557knkKgNIErWWtpzDhoANgdkMSCBER798Zg5Huqmna2f61jC0Hikz7l7tWVxP3RRs9jlpmnDY3XJ7t+dy7vBB8O23P+fjh0e88Axm5nRZnx8xhpVcAJRlyTKurNI8LQiLYjQDk3AsOGSmIDi8XXjujwQh2BQFUgT6boLoqWuNFpGEFCUV3oMSlnG5YKMh+pplHkmVwtoFbEKxTbl2KxD+8XOLomF3K4mAEAXN7oZpHkhyj04DWqUcbnKclfgJvn57Q9cFhDB4NZDKHbd3FXZaKKoGoUf62eKFwHhDWaZEPxKXjFRVvHp1xzg/83S+oKqUw8OW9nLBzyDygA8RYsrL8UqqNJlSLMvE4gONLiibEhPVF/ZvR6IEwzTgQmC3q3n342fyPOU0f+J6HdnlOUXheD6+sN3fYudAe/lMVW3wMvJy6vBO0h4XPn1qkUlgch0v7ZWIZLPJWYaeuQ8kmSYpvqAY3YLKAp0LiNThR8+n4wkRHEkWyG8E7bzGWNJCErSmPXm0zshyzThfSLKMz59OBOfJkhShd3T95Ys6OvLh3eMqh4gXnBHgcqR3lNU9oKn1gXkM6KzAzhdyWZCpAjP1eOuYh5H9ds9he09/eeTyvCrHu74jzRPGcWa7q5gmSz9O5JmirkrOlwvNQdJdTiR5Sa4yLpeBoinpxxO77Ybd/pZzd6LtJxKV8fndB9zi+ObNA8ELrEg4j2cIDUGMDOPIy9IzDguPj59Y7EwUYmUCL5LARIgabyK7TUrXjkgl+OrhjrHv+OH797x/9z0/fv5rLssLw3Ri6s8EN3O7v+P8+cw//Sd/Bzaq//pf/8vfZtkK+3t6nNAy5/X9t3z48ZH3H3/HMEzsNneUZUkImjSp+PkffMfYGxbT0zR3aC2QYn0If/rJ8ld/9Vf8R/+44rtvv+Xf/tv/BzNo8Bvq24hMI9NgsfGZKKAsNrx/945huCC1YVkmvM/Z7DaczmdOx4WXj2fe/uzAZt8ggmVwGbGYOf/0wnGwpFVFkpX0vSFLNiSZQBQTqhAkWcSngWWyvNiOWM10rqfQGbu3D8zdE0XmkD6nFA/keoOZX3DW0dQ5h/tbrhfF4T7SLyNVJbh0LUWy53odsGHmdOkx1q7XZEqhdEoMkKSafhogaO5uNthpYVtXzH4iKWrmsFCnNV034oxkv7/l5fkFGVOmQYDuMYOhe7yS6Zxx6ZEqpRt6xrnjepzphoFMZwztmWU0JNkGqROG6crYL8xuRIRIDCOyFBy7Hm9Bs2oVlz4ydp4sLenakbuHDWmWMI0Z/Thxf7hj6Cf8As2mYZ4cy2xIVEkIjmXxNKrh/ecLZvBsyxJXwmbfwOJwU6QodiAHXDAoAkJFEp0zTxGvNSpLyOqcsiwZ+hkRElKZk0pNmk48nVomF+imllxWlEmJINDOhqEfSJVmv9kRvCOKwDAOSCHARpomJa88eQ7B5qiYM49XBJEiLxEx4+aQUG8Dl3bB+ISgwPhhlVaYiaqqUbLkeD4zmw6lBC+fB+xS8vr1He8+/Qfa85VSb3j4pub58tdURcH+5it6c6HvryydJfqADZasWl/4Ts8dTbFjuy3ZbDS7Xcb1cmG8WnTMuB5XHEx0CjcHVEyIKHSdE4PA9JYxGNIiR5FQ5AnL2BHlhMwEIWoskUt/QaQRmTtmZ9FZQr3L0XnEeQFEyjrl5nbH7X5PtIJ5NAzXZ6qyghgZxycSpanze8wcaceBpAioNGKtJ4qAEJGyKtBJxNgJ52eUVozT+CV2E/Em4L2hqlKqqiEtCka7YGZBImrMvDAuV2QiWezEMLckOkcQ6OYWMwvMOOHiSPSrW15mket44dKdSVMNLrAsjmVe8G4EGYhOkCUbsmLD87nn/acTAUlZFwz9hAwaFRWXY4eMCV03cul7PBIlC27vX1Nsa/qwMC4zMtVErdftajRrMSwEiqTAjgGM4GZz4P7ugRALsmwtARkzkiiJCJFlmlFaQpLgouf29sD9/S2J1ux3O+7uHxjnmWke2d1u2d9sEYr1844ghGcaO6Z+YGxHlnnCuoWuvXI9n1mmFucm+nFgsT2T6Znmmd1uj3EzQgaKMsM7TwxxtY3ZEaEcEcs4zAgyhBRE6Yn+b0gEM3aZCHYd5pwzdP0nrD9hlonoNM4G8kxR1Tm7/RatLXmhydKMMtszDxPPx584Ph6pdU3btfzw7ieeL0dkoSAJSAGFTtjWe5IEQrQEp/ER2m6gKjekWeCmuidMFmNHMBElUppqx11xh58t0aYIAXW5QyJ4+vyBIitIEkmRSw7Na4SusT5Bq8j+sEFVOS7A/lAhMklRleS5ZDaOw/0tWSXZbTe0l5Zqc4tUjqfTRyZj+PT0TF7smZfA8XTh9maPj3DtJnSqMUQ2zRYTHC/HMyIPBJ2DTklzjbcdyzBSZFvm2ZNlmu66/p93/YVhWhgHhxQFUkeupxcKrZEikmjN4bAneMc0LBR5Q1MlfH58wbMyw6NYUMrz8jzT1HdfWLUSqRZcgK7rqcocbyMOixQ1aRF49+l7xj5y2G3JVIYxhrLOebi7IzBxbdcbQ2MNMYS1QFwp2mEiBosMgs12x+PLB5pyR6YUl5cLRZmu2EGfIGJCN1xI88jSB/KkwUzrwCbVmjENTrDZ7JFCYazFWPjqzYE0zenbYS3c5gWClHFsCSJSNVCUO9prh1ta3rz+ho8ffyQhQeuM4/HIzeGAUpFAZJpnQrBMk4PQIBNQqaPe1pxejkSnydMtebaWoI11KJVh3IBZElK9xZgWb0q++e5AP7YsRmMsjMPE2A207UxRJxT1Fm8THo9HdJ5ho+RyeeH5/IGgEoT3RBdWc6OP5GnJ5fhCUWiscaAVu9s7HtsXjuMJka3lWqJGxoqsSSi2G4xPcK7EOklRpfzl7/8D7z+f+W//2X//t39Q/b/+73/zW+cCjx9PFIVg0+zouwtZfuXtm7fc3Nzz4f1Hbm4bijKn788EDNMwc72e8MFiZsH5+iN5tqNq4B/8x99wfO748Yd3OFtgF8+8tLz+dsvt3T03t68YR8PPvv5HDONnmnKHFhl28Wz2FX/5Fx/59PieXfMVP/8HD1i58Jvf/AqVel7CmeKVQ2UTpydLvSuQURDcTJOXuFGuX6K6WHV9cyATE73pEUXGaE4Mp5Y03TFce2I4k+mG4QJ3NzeMw4m33+348fszSM1p+kg3dhyPI0F4zseBstqt+lDhiEoSgiBNM7wLDNNMVdUssyHGsFqPhhatNULAYK5IqZhtpK4aejPgzZVDWUI0WKkp9xsizxyyilxvSaNCake9L7hePdfLzGafY40n+JSykIxtj0wSos7IckWVl+gkwUcHLqHZbhnsQDteiQ421YbD7o6P707c3KUU9Q1mHrFLS5ApEUuRNSymIzhDXdVsmwKzGEL0NEWNkJ40X68Hv7p/WMHcb7dcr8907Zm7+3uKLKVtW4blQlPu2ZVbrtNEnmhmY/FzZLOrcK7H+IkoJXld4VkY7JFlmrm5ueXD4zPbZs8fvP455+cjBskYW4I1FEmG8CCEwjhPkqaM/YDwAZ0JxhGkSkm0INESswSuJ8v9/QElQERHjClB5SRlxAbDtZvRwiFVRaIznHVYE1jmwDKAiCmLn2i7v9naNPzJb/6I2R+5nk/8/M3f4w/+8Jd8fn/CzjAtkTRNCIYvLL5A3hSIkDKPI9f2RAiO4AJ5luO9w9mZw2FLtJHgAkrlbJoDKk84Pb0QokGWCVILmiYlKwP1psZHQGYomSAkWOdYlolxulJkJcFZhv6EiJ6p8+x3W9JUcnw5E4wjkQnOxJXDmKdoFZlGA2gSoWj7HqtGijpnmQ3BK/KiwFqPWRy7/Q6lEoJbayLBS7ROqasK69ayTyJTijzDCs9gJoILaJEjxWo1G5flS2nKIaWirjZfCoCCukohasq0omhSLubMy/WFxTvyrKBICxbjVmxakaKSDOMFfT9yeX5GRclhc0dTVBgbGAbL0K92uXFsOV9bjJOUzR1VVdFUBU1T4XE8nV5YTMQukaGbyVWBXSzL4te/qwtsmwNvXn9NwNEtV8ZlYl7WnOk4XUmSlGVa9Y5OeC7DC1JonIHuMq5ovXng8+MnjtcTUQMqMiz9mjFeZpa5xy0jqZZURUVT15RFyjy0zPM6DFfFWuRalhn0yPH4CbsElFIsc7+WtlzALiDF3+hkJUKtLNA1/x4JMTDPFmsiWgkUATuPjMMT0/TItLxwPZ2ILiPPKmKckGLVsNZNjXUzQkjs4ph7j10sbXckz3KSPMGoCcNIkooV46MFp/MLu3JDTkaGIrp18Ap+QavA3f6Wptxwerqw2ey4PTRs6z2ZTFAxZ2odWYDD5kBRZjT1hk1dUBclSuRsmh0xrsIE65cV1J4pBntlNIZpmvAiElOJ8ZFpslwvF0IsGeyC8QPDxVLnNafnM0KsSDF8RiJS5sGB00hWuP2yOOrdhpfjBxYcSVKw2T2Q5xn95cQ4OOpNSWRinia03jA6OI5nAgqVKvIqwVmJjAk4g5sm9tWOTd1w09zRX3s22y3BQfsyYJbVcIbuUFoiRbpuxG3k86cjVVUCiufjE2V+w3V45vn0TJrkHA4Vxnl0UjJOPSKR+ChJkwIdHTe727WnkqbkacLpckXqkohGJ8n60vSF+LA7vOHV3Z7Ly0TVaM6nFomnPQ9IEfmjP/x7JNrz4cORxTiQgSLLGM6eIk1JMomUmrKoiDHS9wNCKJyDJC3Iy5RMK5Z5wVpDXmQU5QakwgdDphrSVPL82NFUO5ra44xiv6+Zp5ksK0iTAm8kxhikyAGYlivd1TGahV/95hckesvHDy9sN1vM4ijyEucnlBZY65mXFQlo5oS62iD0wGaXU8hbkCmPLyc2zS2SK9fzwKZpSLOUl49XhI+IIDidzyQqJYblC2XJM11HfBBrqTQIyqSmrnKsm2i7yLAMdG1PIlediB0i09WSp5qs8LStRycSG2aenp9ZjON0vdJPE7/+oz/hv/gn//Xf/kH1f/03//Nvz6czd68SfvWLPwaXMA4dY+f59rtbunnm4c09UPKnf/Y77u+/4v37ZybbUjYF1+vE01PLpronT24Q6srnT8/0beDh1YHZPVLke1692lNWGWW1Z+gjdk74/Q+/oz95rGvxJqWpNzx9dHibc/9qQ1p43v7JjsuLo32J9P7ClEzE6NBOINOam+oNWTlTbxxZlkJQDPMT/fTEZtuwuW1oMscYJuYpUhUl3949kIgce7F894dfkyVbkBadOD59OmGCptxUpJXiMiykRcL1dCbECb9YsiKlqQ6MUySvU7yLtG2H1hprLF+//ZahbynynGHoOdzXtB2kVcrkOmIsaPKC6/FKexnwtqQ6RByCbVNhRoPwCUmaMw5XmkYjlcU4h3Orbi1PU4q85tqdyVOJSnK8dixmRgfN+WnA+CtNmZM3JbevXtN3HWO/0A0GfEocNdZdSbOAl5E4C8ZeQJZT1xqY1gPKriy5GMIXB7wkSTUhBLI0od5XqOiZhOc6zowXQ5nWPB+PSLFioJwXTK1jbBeqww3OXCFIRKaJWSArNUopRhMYe4NGoOWKWJLOIZYCM8x423K6dKS7nO7So1WBEpoiSzlfXljsqpokKObBkSYNzkCW5VhnuXRXyrri/v6BaZ7QmWC3KTifOywz737fctjvaOo9WM12c0f0nmmYeXo8Eb3idnvPMlnO7QtaJGhV4WzA+Ug3tdTpHmlKxq7j9z/+RLXdMEwTfT+T6pLuOjNOBplqCDCOI8Mwcrr2qKRgmhdkIsmqlLa9EIJjf7cnSVO0lwgBifIktUMmEzKuuUsbFOfLxDit1pVtniOioOsXlNB07YS3Di0lRVaQyYJclWg00zCTpwV5nhMCtG1PiJGmKcizZsURhRmdaqKGxVuWeaYuS7QSRAfENROpREGMguu1XfEu9YZ57DifW9Kk4PZuzYmnWUkUOZ8eH5mmE1mRYb3F4cjyGu/BjQvtuCCSSKM1uW5wRPr2QplWzN7y8eUDNjqyNEfJVRYSI8xLTyIlVb1hjB4bPKkWDNczQYIRlpf2Qjf1XPuOxUeiFIzGMjuJiZ5x6BmGhdP1yqeXJwZjKZstQkuGoV0HkpiBjizztGY4teRyfmFYOs79hcmekYnDOs1iHAGJFw6ZOnQmsH5eCRlJRd9PzMvAtAyru3zbkJc51geMcUzziBAWqWBTb0j0+jvnWUKSRXQOeVXwcP8GrRRFlpNrTZ6AIpImKakSSGFItECrQFUJYhwZxgtjNzGPDrMEzLJADIx9x9R3aAWJStFa4NyJabyudAClyXPNfnvD6aljmReSPCXNNDF6mvKG6AXRalRISXRYmaDk1HXN+dgiUdzdPKBUDlqTViXWOhKd4PEEmZCUJQaHD4qiaL6Y6wpEOnHpOpZpIs8azOTYFSX1dsPYX6mbksOuAaeQUbKp1wHt2vYkqaKfIlmq6c2J2UOW3qyGuTiwWIGOkXHoGccRlWist+ADd3e3JEoglWG2E8YaynpH2z5TldB3PcEZjtcL3luMDXiGlUXtU6RMmN2Jy3Dk5u4WYqS/nohG4ZccoiDPNE4sJEnJTz/+SAwTqVLICJLAOJ4gSubeMA4z222NXSx+ESRpRlZIEB7rFo6nlmmacFaQJg3eL2w2DXmagVDkWU7bnrm/P9B1E/3oGeYjabWyQa+XljyDZZlIkobdfs+Hzx9YhoXFCHb7hmk+s93t8T6sVAudkuYVPhqCVUQWnHe8fvOK6ASp0rjF8vT8xDw6yjJBovj+r97x9Vc/o64Vy+JROiC1xXmLWWAaHTe3e4QwXNszy8z6AmYHynqH0CmX64nN7gbpMpSW1PUeIhgzsdhAN410XYsSATMFpunEpqqYxp5qI7hcn0n0ZjUhDiOfPl5Y5oAUit3+BqE8Sarproo0Vah0oar2OLew2a2D9WIGzChIc/j4U4sWEm8Dd3cbvBH0/WfsuOInlQ6MQ4+WDZnKOR0NNnbMiyFtamQi6McWFTxaRybrmFzAu5EskTRFjrQC4VJSVaCUZBp7sjQj/RIFKdMcM3lESNlvd0jl+Wf/9O+AQvX/+D//xW+rTcrrN3f8+z/7C979+BklEnb7A7/81Xd0xvDp8QMfPn/k9mHP6XqiH2ekVoyz5+3bPVmWkWcJwS8kicKalO9+9oYkKdlvNlhrqTcCRc4yBYS2/P777xnaHr9Y8rKjv2QUteDpo6dtTwwdJBpeuhPJrJiWjmGOZN4R25JxGEhjxsuzIasSghDY6Ll52IFKqJoNWRHpPr5wnSyV2JI2NfdvDrh6odiA20vMKXI5vrBpGrTK2Bwqdjc7LsMj3haI0jEMHbUqkX5HimY0loeHHdWm4dPHz+R5TnSB4CLffvUNWkgu5xN5miKLhLIp6HvoxpbFLJg+ENyCElDW+ep1N44ie8UyWpqyZlkWYtJRZBtiVJgpZbYGqR33dxXOtBhnuL294ebuhpgGnLTMbWRbZlS5wkfJdnPLuIyc2jPegpkd9/d39NcjqQoUef3lAF047DXOLIxGsN/ccXxecUFVlaKkZtvc0l5mqiYjzTKclSSFJhGBz9OJp/bEG71lURqP49Vhj0fgwzqsaOHZ1TucWmjKil3zgNKWKDxFljL0A/285v0SBbOdqOuM2G/4o1+/4XBYrSsy2dFNLVWWUNcVUirGbm28lsUGazzWWvb7DWXWIJWn684EIlJr8jrD0nO5tvSz56cf3tO3nlRs2FcleQbPX653pnFinlrqOqcoc/7kN3/MMhi6dmYYDcIoYoDBGp6vMwjBte14OXb8+NNneibGacZOFhEUjpnJLzy8eiARmuvxiBSQZIqyrpnnwGIiWVZyuVzp54myKTDjiCLy5vZACA7vR+YwMw2QUqNlik4FdV2ipUArySZvGK1jsf6L/Ujjo8GHSJqU5HmNmUbadqAoK7772WtCCMyTQRA5HPYkKvD08sLp0uO8w8vA7Ge8tRRpuX7v7YKMCZttzXZX0/cLaSLJCkl3bbm/faCuSqqypqwrunFgmBxPzyeWeaaqFc1W8vD2gd3+AesgVQVSJDhjSfOMpkzJZY5MDsSo0DGiE0k7XJnHgf1my6E6oFlxPsu8kGWSIk2Y55k5emYjGCaD0ZEXe+XjeOQ6DQipkXnCFGZ6MxPVer0sRETnGq8EgzP01oLOuAwDl+FKlAGd53gtmYNFKUVwjnmaqNIc8WX7WRQTKrmiqPjqzS/I8pxhbkmLlYUqhKapdiTJiqhJcsluv6Wstlwu3TogyWS16RGZp4l5HinLkqKscTEQhGOYe8ZpIkQJaFxYW/llljH0E/Nk1tKUClzbM85NaB1wbsQsE/kXM5Y1C3aZSJTAmwV8JFEZgRbnzwz9lWt74fnlmaGfqcoDTdWgSOnHjt0hJ7K61gUVXbdwOT8hkTy8uiVJ1nKVTlYma5mm2LDw8ekTMk1RRcI09dw2G4T1HC8r3WW7Lwk+UhcJWl4psjN13jJeeibjiCIlioTX9zdsmpTPxw/YODONI9FXHPY7kI4ffvqJx+ePpLlkXCyLm2ndlSAdu/yAc4LRdkzzTKm33DRbtEqYlvXza88DwQpC8Hx+eeLDcSTKAoNliSv/NgjH+aVD6ZI089hlwJiwDt6hZh5GJvuEsVem0XB9alGmJEFi7Ep4KKtAleeYcc1LR28JbqGqara7HVE7RjPz+uGePE84Xp5RSUKSJnz33Vckmccz47xAqxKzzJgZCHrl17rIzc2WcTC03ZGiKCEGji9nlkWj01UE0w8TScy52RZ8+vQT3ivuX/2c2Q3r4JxUVNUWncJse6RSJLpcFwO0vyEZAAAgAElEQVTnC96F9XwrM6arodrA8bwQo4FFUlYly+xJ0hJjRmKMPNzdrWxhb0jLhKEfAMWyWJqm4vZuS1llvJzOODztdaIqK5ptzbv3H5EqwThDUZbMZsYLmG3LpT1T12s2Ok+33L++pWkyiqzk/iHSj0+40KPyASEKBDm7+g3GTrx+e2C7T/j08UhV3ZJlKZfzwq9++Wus7wlh4f1PLU11w+nyAZUkCDSfjx/JlGRuryifcbjP6TuHlmKdgZKFZZLcP3xFTCXDPDMuz1y6Di8KkhyyvAI548zC16+2mHEg1bc4LGaMFNWWor7hpetx2kA+QwwEp7iezzTNWmALQXyRA205nwZCKPhv/su/A4Pq//a//8vfbnYFm/pn/PN//l/x9bdfA5r/5D/9OT++/57n7iPd0PH261e8++mRMt/Q9xemaSYvBO1pxpmUwIWyqEjzwN1r8E5gjWXselwQdN3M7//6J6RM1gO8X9jWO54+T5RNytdf/4zvf/iJooKv3j7w5s2OJFv4+H6gtZ9pbjKYFXHxCAFRWDbVA2++3jFMj4QYubv5hle3N0zDhSLL+eH3H3GFJKsagrZ88/N7/uIvfofyOUPnef/7jzzUr8gSQVUUZHptx3etZVkmbu8OfH55Yu4H7jcPeC+52W8hWzFM166jLGrGvlt/PsmpixopAm3Xst1uiSl8+nTCLoaHmzvyJENJwTJbdBY4XjqS4or0GUk6kKQKlRo8V5ZREFkoyoSyqEFCN15pTy1aJdTbO/I8pVtaOtMBEhUkb+8eaJoGISEmFsFMkZcsVpIVOcLNvLl9xcOr1/gwkKUKYoKZB/KqApGw26SIqFjsygHVSqKkXpmv+os7XGmSYkXXGGewMrCXmiSTlEXCPI9EEXl8PNHkOTc3DX0/YhghaJ6fX5BBc7O5Y7jMnM8jSVayv7lhvzuQ6IJdUbJp4Nd/9Asy/Zq//w9/xnZX8+lDT5oWzJMn2ICWkjSVxOhIs5SqbLA2MI0r3idNc3S2RkuMkYyTXdWqZco0Br795pamFMRF8OPvW9Iso6pKvDNIGRmniWs7MvUj0XryImc0HcIIXIxczBUbBcti6GZD7xxZlVGVN5hJfckuS5ABKVdg+9APCAfbekdZbjCLRSWKVw93nI4nxn6h2u9XR/kisPNElJZ+GOiGkURvWExExsir2wM4z039inmyWB9QSvP+/WemsScvFUoq6jJHi2R1aYuIx5HWFUWVcDx94HK+kqqCm12NlI7L5ci5P9H1E2W6QSUp1huCmwgmkIqCn3/7a25uHmi7ln7oCD7STz0Iy83tHjN7goN+6LkOFxYfWWykqAvKrGRT7vAucO0n2nHCmIHIQlUnlGXNoTqQS80cHENs8faCnQP9CP31ivYejWZf7zHzzPl6pswzdCrpx5nz+YI1nlSXeCk591cmGzjsXlFmFUImuBjoxiNBeBJdICVItapKZzvhfCTE9UXPh0BZldRFw7yMDOMLAk2eVYgY0SIhL0pGs+BcR8K06kjJyHRCVWUomRHcCryfl4VEfwG+q4iLjigifd/RXnuUSpESvHcoqcmTEi0Tru0FaydcWLDGkSQ5iwk8vpxpu54QLVoLsqxAJSm72wNOWNqhY7YLz+dnrt2ZIslwNnA6vRAZSbOZRM9kWURGSXAC569Yf6Hrj1z7lmkeaPuBoVekOmNeRqappR97ZhtAJCSJwvkZ76BpGppNCTh8WHPI/dSvG1Gt8RJ22xvKtMGOAe01hapIRcK2ydlvG66nC9GO7DeBP/h2Ryonlv6RRgmKKmeSKQ8PD/TDxKUd6buZcnNDVqzlsOeXE914JckV1sE8B4oqJylmpqVdYz2zRytDqnOsVUilESbS9gsBEFJzs3+gzGu8jzgWjHfkZcG16zkfW6r8hlRJ/vCX3xDDQF1sqIqMw+0N3bXDWkmaeqod+FnQ5FtyMrQT5EVON07kdcloWp4ePxJ9QVUf8DEipSXROcvgSBO9RjdsRApPkmdEcpyPfP70E9Pc46PEGs8yOQ6HBzbNjq7raDYliU749PGRLJMM84i3kdvdDU+fTlSbmtmcacodIL9cKyvqckdUnt3tPS8vLwgZVwVzLohRcH+/smOlUJjZkBcRJdeiaHsd+PrV11z7Z57OHbvtlm8evubjh2eaXcliRkL0FHrHblcyjC1ZnvP08olmUxODYLPZstnUPD1/4Hw+0tRbno5nDjdbts2O9jpwaY/cPzzw/v0nXDBYHThPPVkpkSIyjoG6FszdDHICPG278PbbLcfTlfuH15RlRt9KDrd3pDqhHU7oFFyY6dqZVG+w1tAPkrox3N29Ypo6smIi4KnrLUIKplHx9//xP+Tz+/fc7e7YNIJuGLl9vWG8zvhpobeeN2/u6cYzm32DtY7gA9bNRDWTiIwffvjEpixo0pL5esXMgT//fx95eH3L/uGAzgWLsTiv1lJfqjFekFUNRbHDMzC7DustnoDHIXTGpw8X/sf/7n/42z+o/i//4l/99uX8jvOlp79amq0iyzSX9v+j7s19rdnSPK1nTTFH7Pmc8013yJs3h8qsiVJS6lIX0AgDCzycltoAByTUUoOEhVEmDjYGCITA4D/AbAkDBxVdXUllZWXem3f6hjPtIXbMw1oLI66EBcJBKo67nRP7nL3jjXf9fs9TMfCesc8IdEpdXfi9H/2cw+aAliFj68iTFc7NzPOEmxVJsOX+4R4TCL767RUpNHXZsb5JmGmZWsXXX31LmDnS9MDbryuy3czNi1f88m//mrvbzyl2lvuHR7LMLCapIGT76iVf/vod+1XBMC85RO89zoQ09TN5fEMW7EmNpjqfuH/3iFYh5/JIGK5Jg5F4Z3j88Mjrl5+g5wCH5nW+x0QTfT9TXT2Hm7slj3o+4YXkXD9SX1s+evk5Uzcyq5F8mzOqhqEOCKKZprJ07ZXNdv29icbS9i3b7ZbLeWnYGpERxR5rR6bZMs09XdcTJ4o4lHz05jPqamS7jYhVjvAjSkVU3UAgDM4ufL+2uRLEGXleUGwSnpqS1BicMJxOJUY4ksjjfUbXW6b5mdkqymNLfYX1asM8XgiUpyorlFYgQEpFnmrCZEvdXPnBmwPHY8c01SRFyG6/xTvPbDu88MRJRNe2BCG4SVF1E6bXRHGK1JpUBvR1hzYpXo2EQYrsB5I8Jy0yZj9zra/EeYRMoO3KhUMYBayLFVpIprYnsoJinRBtHE1vqfuKceo43g/8/s8+5+n4SFdfWWU5UiieHo6cTxVZuuSqNpucNMkwOmSaO2Y/oKRBKsN2tWWX39INljAB6Qz15UrTjRxe5Lx6+ZqqLkky+b0fPWCaFXFq6PsLjommb8jCnEELBkZWUY7vJ6q6ZZgmolBhXAhOcr4c6YaWefK4ydC1jm4YiJMQqQync003TjhmlHZ4LFmakqUpbrJkYULVNPR2JjERl2vD0M4UecZulaMA5xfFcBhrEJryZKnKCqM8Yz+CswgkN/ubJXM5TegwREYh/dBxfDih5aLYNVpwOpdcmw4dBOy2GTfbHWM94SdLaGLcPLJb3/DDH/4MZz3fvf+GduyZkYzzjApABQFt2yAFi38+0ERpjFCW4/mZaZh59eINSimiKOB8OXM+HQFB3fVEgeLmsKW8Xng8VXSjBDUw2Avn65XQBNy9OBAnKdey4un4yCgsJjTUXc/p2mDnpTyYJynGeLSCWIbQepSwjGPP9VIS65BYZjSXDgEosyhB51EChlWeEQBSzEShYmxH2q4iS0Iik6FVuDwwGY2Tlm4cAUnXwtRnFPmWMJaU1xPH04n++wywkpq6rumHHodnsCPXuuJaXgC38FKFwM8eP3m8FUQmwk4T09QjPCi5/B9dq4q6boiCiEAJxmFgGmaOpyeatsR5RzcsW/W6vTBPE1GwIYpWeB8wdCPWQt86nh6WE5WsCJYMpllIAOPYM4ye29tbXrzcYcIlCzlMS5xFKoMKJEJPzFNPEsdM3w9h5bVGGs+1eULLGG8lzaVCKU+RJohhIlICK1oG36DjZQPUDD2zNZg4RAaG59PMtQ1x3PD2/YljBaN3fHj/QBQpokwQZQGDXyILXe8wsWdyDW03s1rtQXjiOGOcQNgQJQriOEeKHuMzHBBkgigy1G2zbPuExESSuxcbwjDAaE1z8QjhuDkcWK8MkTY8PRy5PNUwC7TSTN9nt7M0pZ3OZHlE0wxIqaj7kihJ6KYjJjQM/fJQZXxKmkS0VpOul4hIke9wg+N2n/PqdsvThxYTxQx9j1QKKQ15UZCmK87PNW3r0TImSUMUkt0u4e5uT2hSLucLu/Udm33Oh4fviHRGERZczu+xWCQJfVfx0ZsXNHVLP1he3Lym6c7gHE3XEEWLkKZurpggxuiIp4dnDvsDeZbh3MBsLXmeEMkNRluatmd/2BKqiMvzkWHyrLYxj09PGGXomxY7D+gwpJ87hIpRwQx09N3APGrybIv3FqEt1XUkT9LvX3NI6XFu4u7mjigIGJ3j5sUddpgwImIWA9aOXKuKc3vkeu0orwNPz0eqy0RVObQpQOTc3B746ne/ZbXLqGvLF7/9HUr+XwW/PMtI8pKH9xU/+vGPqJsTZVmhTcJqU/D2/e8I4pBQZUxDh53g1es7QPCLf/AzqvrMJKFYG4Iopmp6qu6IIsA6y7UuCYOYIlsTGcP56cq62KJUgFOG3f4GqQzz1HP/7gPnhxOrYk117QhiTdm+xyMRZlEpOxfiMSyR9CUP/B//k3/2939Q/S//q//8L25fpTw9PPDh8WtQF2Y/8OHhPU9P90yjYruKCGTM8/0DUijKY81mHTOPI1VTU6QFL1+84v7+Pc7B7c0Lhi6k2HiSdUeYxjTdhbaMWa037F4r+n4my2easeP+6S3/8M//hHFy/Mu//IZpWFbUWkuybcHXv/yaLAqJ0x2BiLADWHXBOknraqK0IM8ihO9RUnFzc0M9Xti9vOWzl3cEhw6jA56eFXm6wusO3Q84N1EPgNJMrsJEioeHjmSjcULz4eGZVbwUo9b5DYNqeC6/QagDofZcy2e0LkizkDQJKS8Vr16+xvmZDw/3tG1P5APs7BDGMomOa9cDkijSSA9OaOa+JiGFMabq6gVFFCf4ThGGgv3+Fc214/n8SJhlpGnEtX3i2E6s4w3WCexcwSTwViHDCKEbMp0wjUuLcH+4xY892AnnAoRImYaWPN+RZgmP3x0J4hwnRj66+Zy3b0+gL5gwpmscRsUobQmCgCBIKcsGoxwAQ1mzf7FDjTN5HHN/fmaz2RIHMd3ckIQJt/mO69gw01G3M5McMHHIPDhCL8F7UB4tBZfrmVWRkoSC3h/xJuV8Hvjw4Vua/kh5qfg//rev2d9ZutoSmIjj4yObdcFmXSAU5PnSJE5zjTaaODUUeYE2McNQge0pT/f004zU4PwV7TLuPtotRzbC0jWWqqkxoUCGls1hzTQNtNd+2chmCWKGD80ZLyUbv2Ub5wjRcigypk4uZIHZU597Xr58wbVbjmYm2xKHHitmej8wMnO4u0OaGO81UkikcoTq+2HJDnTTRDtCJmPCJEUGM0YYbrd7uq7Bomh7QRAFi+XEz0SJIUxTtEmJspCs2GIZeHh+pO6mZRvWLlSHSGekWY6OBFVbc65nnAApHEakJCZEzleGrmGwgjjMiUPD6fzId++/ZfQtJlZ4JMhFkDHMAwiFdAY7T8z0NP1igEtSw83+I86PNXZuWa0CpHG8uLklTVY8lxW5KWi6ltqeSRKJ9SOEEpPk7Ld7Xr26Jd/mDM7hEEzMyGQ5um+H5Tg+MQFKxfSzxevlJtZ3HTKE2TvqS80mTblb38I4MnQNfe/oxpHZD4zW0c8z1o3gJvq5px1GtMzxMmCaHSAxQUISGJTrmcaa09OF83EAE7Da7pixXMqGrrc4aRFGYIKMKEjph47J9gy+o+1rxmEkNDFZnhGEEqNC8mTNKiswQqAk5GmxaE2tRcuApqnpx4Y8jVmvVkRBzNiOTOPAMFRMc88wTGTpmmmcSZMAoTz90KOUB+m5udmjlcAYwXobstlEWD9yvj5yOi75+s12jZRiMcGlM9bOBKZgf3MgiB2WFhNAFMRMvUAItWyoqolxnInjJfe8Xm9YFQVpbLDKMdolk7rf7HHzRKxD+qZlHAfquiOKFdIEdD1UwwAmwpoAtT+Q77ekYYy1I1pKQPL2+IBUGj8pLIrJdTwe32PdEmWIYkPTlBgRMMwjUlliHVBXFdd6JkyDBY5u5SIJyHf0g6NsS06XZ8Z+4NPXn3J4FXOpjiBivHJ8893XaKMJQoMXI7gZPyukSsjzNY/Vr2kbj6Agyx1+kET6QBhJojghShSzaOlGQbiCdVoghKMsj6SJYr/ZkKdrno5P6CDE+on1aotnQgQj4FilN7T1gDSOti356KOPaJuS8tTzxW/e8Ud/8Mfc339A6YF39x+QMuH2doUdepq6Y3aaVbEjMCPd2NJ1EqEs49AsxJgpYL0tlkHyewNbUeTU1ZUoLAhDQ9tdF0mPkXTXCuEDxmkijDVutkgvuZxL9nc51juMKIjCgP1uYaenyQGnLFZ0eOtY5QfKS7tc3yaiqVuEj/BKgRXU1xLhoKk67NwRRpIs3hIYy/lyYm4twiUU24CnY4UTESJKkF4RhhHn84lxtsv3yKSZJkXdlvSt4nCb8dVX7wmCEC0DinTHH//J5zwfv8a7iCgoOJ+f6BrNZrdFRx1lOaACzcPTE7c3L1gVMbc3+aIX9jNKa37562+4/SzldCl5vl4QsWawE8dThQo9VSvJckGxShByyVJrEzHScXhdUE+O5njEWbug+yKBDDx97xAixE49DsHl1OLmECkUQk2Mw8jYz7hJ8U///f8fDKr//H/9b/7i1YsbuioijjPyVcRX33zFJ59+TBx/RN/OfPTRHffvapquJCsShiFkmgaGVjN2AUEQEMWGyfZMc0e0ctwfv8HEBpKJa3PP3/6lx4ueKJYkiWCTvearL84MbcOPfv6aqEj5q3/5JUl0Q5TOyCAi3mW8/ebIJk/peodUcD2/J1llZOuE87uRw6uYqi95OlWcPnS83OcgU2rfcx7PfPPNGTBUdcubNyusK7keGwKV8vj2QlvVbIqEOFxzrXqE0pyeK4RvMTbCzBGfv/nZgmyqHlmtNuzzO54en4kTTVd23L1Y0VYKEwT04wPffP0WSUt3FdSzXRSDUtFYRzWM2GFA2Yi+DllnBqMiNrs1URYSxzFpvuLDw5EgjShWOUPfItVAkuXUbYuMFJemI4s9L7c3TGNH13aYyOC1IAgFRgaMVvDpj39MmnkeH058+PCBbK0I9dLWjpNwsd54uPYlsY7YFTu+ev8VXs4kmcC2KUmUoWMwgadretK4wAQKDOzXr/HCkGaCtu+ZJ0VzLQmNQRlNW/UESuGUp++WY8C6rdkU24XBqSFMDEoH9PWMQrLKNYfDa+qhxuF4euy5XitWa0uiIz598yN++kevSNcb7Bjy9PSAtYog0Dg3M46OdBWxOdyw2WyXDzEx9+8uVJcrgXZMc0cQhQu6q7Xs1hviwpAnBrykaiua5oQ1itnN9J2lbwfkNFNWJdepIogLmnGCyTI3lryIcHiatifOFHacMAjOTw37w4YgtlTNGa0WJWYcFSiVMM0D6+2aKFwj5YRkpu5qjtcLbQd2sNjZEq/XmECzvsmZbI8SOUYp4ixisjNSwrqI6JoKjVxMOc2IFJqbwy1GL+W0thkYe08aR4zDjJKg5IQ2II1FKcnQg5aOIguJo4h5cgydpKx6+qEFZ+najvJc008zRNANgqGZmIYerCYxMbaDqba0dcWl6pDGIGePbwVSzHRTR1IUJFnKOFSMTYdyKdJbtLOs8gXS74OZOIwIrGKkJ4wEQ9Mu3FwB5/KCVA4TBvR9zzCMpEnANg0IZMC62BEKxTR6Zi8xoSUIQq7XGSFm0jRcqAVjhwk8Wlk0Ej8HmCjAhApfz+RGIaQjCNfs0i37JGG33TIMPR6Iooy6OtO3M743lFUJWpEXGdYKmrbHuu+VmT5E6oin+pFje+I6XTEqQMwSP9rlenVA8j0vVs4RwnnsPKGNQccjaZ7gJs31UhMEBbvDLdJIhAevJDoMUCKkrBsEEVKEGGMoVmu883S1xc4jQagJdcL5cqLrL5zOF8pzi8NSNVf6bgLhyIuc6try9Xdf0nZ2aeoXIVGe8nh65sPTVyg1MLQTl1NJnqcYFRGEkjyLly2btXRty+VSEwYpYaxp545+mOjGkcE7utlhTEJkMrwZ6QeLkgpnBwIdsl1ndG1JXV/w00BmAkYnsVis1bx9+grnBcpJBBZhRoIwIU1TtFgUuVotXFiTGubeYQdHmoQEOmO/iwi8Yr5GFFmOGyLK04k4GQi1YOwNQ++puwvH85XD9pb6ciRUivUqRymPiQQmMmSHFT7uOF/OVG1DlmR4MZOvc5yT9G1FnkZgLee2ZrPfIt1Ma1u0DoiSgPJ6Yr1b46RkHEbSKOHD/RERKoJQUdUd86QJRU6moTyVVLXj7s2e4+UZiAjjjPV6z+Vcs1rlpLkmjDV5mHM+ncmyLVEo8EPIrgiIUk20SjDSc7u9QYsR52u806xWObtdwfnxyKVsWa0TplEQJoprdSFJI6y1XC4NbhYoI3DeESYF09Cx3a6IohAVLHE2YzwmaAmDiGvZsr/ZUXUtzoKfFMoo3DjjBkGcZ7TtBe0l/eQJtGSeFUG4BXPl7tUt4zwwzw4hFcfxyGwLmuZKrBXH5weK7R3Pp2f2acQwOdbbjGboWBW3eBKGqca5iG4809szv/nNI5t9zOYmQoiQ43mRI43zgJAzl/NI1wz88Cc3HMsjl+aIUjljL7ieP6CcRznPi7tbhJwo9opff/EtabphUyi+/u13GGHo247dOqOvBkJSzNxSrFKk9QSJQShFIEOGqSVMDbv0gBcj06jQBrLE0FwmhBfESYqdNihG9GTIizWTL3l1s6e6ei7lQKjgn/4H/+nf/0H1v/8f/7u/sKPHTpbdrfqeZer45ONP+ebrJ6To+Pbre9pry2Z14Hb/Bu8mvIdxdFg78MkPVgtYV505HLbsD5Lb2xV97Zllz/nYoJD83s9fkq48cXjHtWx59+6BP/vzPySLcr794juUz9juCz794Q+4XjRJ3vHjzz7jeIz44U9fkO9TBnruPlrx9t033L1O0PUaV0s2aw8y4HCzYr8b+eKvG262L6i6I0EmOJU9+dbSt5a+gh/9+Mfs7u749JPPKFYp1+bCq4/uqJuKa1UShYZI54zNwM1twen4gfV6zdhBc+3o24bD5sCprkmyhLJ5IEoSno8NaR4jTcg/+Id/xL/9b/0r/Pizj/jBJ1t+9MMf8pOPfkgqc9bZnsMrEFoT5wmXqqTuljJRmuf008D1WjI0M+M4kKUB3TijA4Nnxs8QmpDj0wltBEFsiOJwiWJMjqbqWK/WDL2lvIxAS5qGHNafU10r1psIJTL6scOYiLwImbzAo+naK3kWEYVr8jgB3THNNVolnJ4vmGAGLKE5UF3PBGGAd4qyPNN3NVmeofRSKgoIQAjarmd/e8fz8UKa5AQ6oilbvFBEcUY/NOhkJF/FrDc3DHPEc/mEYEYIu2xl4oyp0aRxiggqusEiVUQRr7jb5axWK2axHMOH8ZpQGZxd0EzH0yMSTxwvRTBBQHUd6TvH2HcoFRDFMfW1ZPY1MlCMvefN3Q3KhehU0tgWKxYRRqp3+P7IPDrOZctqteaw23M+npitYBwkqyJFhDMy6pFqRsmJ/WaFcAmRCcmzAD8bxq5n7gXn55LtyjBPLW4MKLKcVaRJogDtDYHUWNvhBg+1Z7UybLYpXd9Sllfy4vvtuhPEyQqPQepFJxmEEWVd0bQdURQQxZp+rJDBiJ1nhMsWrEzXcny6Yu0E3qKUYprHJSagFYHWOAd9P5Jk2WLREoLy0tCcr2gPWjisc+jYLHGDyTP3kiiRvHh9y2p9QIcBI4K2HRfc0tRh9IwcLKIPUTIivUuZqLhcPyzFCxcyW0+oJKvohpd3b8jSkPt33+JFR7KFa/VIIhP22QsuzxOaABNIgliQr1ZYt+gO62vLPGhCoynSkMgHKKu4tGfqqSFZrVntdthpoG4nnNVIlhvAte6YaZmnhtBETDPUdcdqlTH2DV3TMXYBSbzkxywDGk9sMtq+oxxKRjsjnEJhOZ4fmYaRUCvkqJB9QBGuMQhm239vkdKsViuydMvsLM5bgihmvVnxB3/wObcvIoQaOLzICZShSHPC0NN0LcIYVOAX45yOiOKQy+XI5VISBDFxnDGMHo9jnnsQZjHzSIsMlrzzMEwoYwjM0uB+9fqOza5gtB3HY0fddsR5RN/XaJUShQeSbEeSRSSRZOgHlIwYxwnrO4ptvOQbteZ8vTKMM8M4oETE/fMjySahnlqs7GnbhmHs2B1uCYKcy6WjaSpCk6FETJKkHJ+PS35eTAu43bcYkVOYPWNT0zcWN0qqU48fA9bZDWMryJMDZVVjtEQJhRAB02gW8YLUzHYiyhTOD/zg89dMdsm/xmnBdpcj1MD77x7p2o7ddk9d92iVcHPzmr612AncODC2Fmc9XdsDiixOOD8+o0UIoURLyTxqTpcj59MR10uUA+8XwULXdcyzZ+49BsXYDnRdRxwHGJUyDY6iyKjLI811Jg43qEDSTzV5XKCkwCjPfrPGIDkfH2mblrHzDF1HrHf4WXM6fyBdWy5lR54b3n9RYsKMydaLpXBMCIOC0faUVcVsWdi7QmGdxLmRaZpou5okTjken5imnmId0Q8NTdOSpTlShGgVEoaSru3Z728ZRk99nRFzgJ08SbIIV87VmaGbOexfULcdbdeyXd1wemoJ4pwsCfnu2/dstluq6oi1nsPda7b7LV9+9R0q7EnTCOlH8mjHOE30Y8M8NAxtT9+2DF1DW2pev3pNNzT0nRT/bqMAACAASURBVONy6dkfdnRtiw4Mm11CXffYKWSzixnGC6v8lt0q4PG+5nQ94o2gnRqiSBGT8vlHn/Env/8zfvr5j+i7J6r2yu7mluPTgPRwPV6om4Ysyrjdv8BNV5qLYpUrPv54tZADpKJrPMJIglCjXIRWMau8YGpbNvuEfpipyg4/K+qy42b/gmmyID2bfY4bDU7KZZFynYGIyVrcMPDP/sP/7O//oPpf/7f/xV9oM2IC0KYmXwf86S/+nL/7zW94enjiehTU7RMCz2Zzg3MTb999yccfv2YaxOIXjxdOahpt2a0/pumfaLuW+/c9ty+ipW02G6JEE4cFRVEQxg3FWvJv/qN/l+PjyPHyW376kx+w32949+0TX37xlnzlibcjRZQigoynS01XP2PxmMKw2zju7l5wfJiIky0iGnj9I83vfnvio4/3bA8pYz2w2UUkcUx7zoiF4LB6SRCmTG6ma1oQkjxbcSlrfvflO9arLX3XkCVrdATv3t+TbzVtaymblt1djAlSTucjRZTw8sWKoWsxxpLHa5IoIFARaRpxejwyjFcu14G2rVhnM4eN4E9+8RO6fiQIFCY0JElCXTXL1mCeeXj/HuaJKMpJ4oBhbDgeL0hlSLOIaZpJ4ozACKI4QIiE9++e+OTT12zWW8YeyrKibUtwChjY7TdcThfixBCFMVV1Yb1bUZUNQRTRM9EOLUkYcrd7weVSIXEEYUZ9tcx2ZLdbE5gCrVaEgeZyfaLICx7uzyAcabrAvruhRUjF+mZL2zVo4Zm6hkjrBcPSdmz32wVaPNXUVU1TWsYuQKplmOiGC0mUst284nrtWW8ntJ55fuoQWmBMRt+WfPTmDTKYWW8XhJN1Ax6DlZbj44nz6ZkkiXHWkSQZQmqc8xhtSLOENAtRWlFVJdO4cA/rZiQIEtpxQliNHQYCPKqXTLWim0aC1NM2Fi9n7l4FXM8tTQWDK5djxWvPw9MTl/PENFi8c4ydp6l75nGmaXqejk8Mo2OYW8JsXJ7M+4lsFaJUSF2d0YFGhgKhwVrNzf6G1Sqgm1u0hq69EoYBs7N000CSp9Rdw+PpCXBY6xDSka3kAnr3IeWlJowdURgi3YogUPTjmeNzxTgIsjQBu2RynZuQUuCxzN8rXIMoIssLhPT0Y/09iH4mSwvW24Ak9QQqJClyMJJkpTi8NEgBY+OYugEpB4QbmOaOcBXi5Mh2m/Dm9SuCSDPKFiUDfvj6x2zyLd3Y4aXjdr3j5f6OWdV8ePwSREAW75guM36UhHHBZrPiUOTUdcXoOlarAq0l0swEOsSPIWkScXO7Q0qFl2AFdF2PFBFGRXhnsX5ppns/IBgII41Xgtku0gqtQvqxZxxLhPcMDZwer2TFis1NgqMlz3KCMKabrjgx4l1AdZ1A2eX9a5e/kfKCPFqTBArcgCLCe41Dkuc7pnniVH6g2KzQQYKTHSqwtG1NWV7px5nVekOWJcShYrvLyBPNzz79hE2ec3uzWrBLtgHpKTYrUCMIz+Fmy+xmZudBOOJcMbuRcZZEYc5msyYINMYY4sQwTpZpkmRpih0GsJKpmQllRBKkKBmSFylNWzJbFuRZVSOVAakYhpGmbXHKMcqRfhqX+4IJWa02zNMMDq71hX6c2ewOoAwfHt5htCCNM6IoQUqL0mCUZpxG5mkiC7coJ4lNRCAdbjAYHdB1F/I0IzYr4jDizUcHUB11W4OX5FlGEEm8tHR9C0KDaWjHCuuWh7b1ZsPk7Pds4oZpmtiuc5wbaZoLh8OeplveX2d77h++JTH5QkoJBNM0okTI2Ar6psH7ktubF1wfW8ZhYLNeY0eHNglJkuOkxw4Lr3fhOTtuNndoD01TIrUgCjR925GnCVEosTNkRcSxfMtoBc6DdxlBuMF6i9KWONeEqeLxdCTLV+T7FBU77m7u2GaSH7ze8NlnniIfWL8IaJuWfnSLOtks31dRHC0c2rnh5cuP8SwK0jxPCUPD09OJ25stWR5y/3BEieXEyYkBZ5eIwjAMnKuWME3pJstz9YBXM0ES88233+CFQoYhCkeUGtBgJ4/0AS9e3vLpZy94eP8tSiuCwJOvUk7lGYRmfci5NldwAaGJcG7g/v0T6/WKYexpy4k83CNlS5EfiAJF1Txzfh6WXKyGfr7ivaCua7q+RusQN3u8aJjGBkmBDmc269eYwPLw4Yk0Nby5u6NIN4SBoW5KnO3QQiPmkF//6i2n6zsG33P3+hU6bkjSgqf7E++/a/n0s5THxzPHZ9jfbumv8OI24VqdESKiyBP6saXsOq79M3GgCYIAjyeKFOtNTNf0GB1itGf2A9dypO07Xr1+xdBA3/WLhnUc+U/+ngyqwnv/f/viv/Pvfeb/4A9/n3lIsNYRJpLffPWX6Kjn7VdQXzx//IvXjF3K7359T5j25HnKMEocjmBVc7zv6csVf/ALh+1ink/fgpbE4Y71fuJ3X35Lkd3xh3/0E9rrSJok5FvH3/3qYWm7dSP3bz3/6M//jC9+9Sv+p//hf+Yf/0d/xvHS0U4eaPnqy9/yo89+xuQklhFnWv7qrx749NMVfWMwBNzuDZv1jn/xy2/45JOP+eVffsGf/ekP6eaGh4eOIr/FKMvlcqZpBSI8cT3NfPLmU7SWtH1HVU/c3z+wWaekUcHj+Z48S5YnEt+TFgHKBDTtBUmCEgonThT5gWmusd4hfExVOj68P7JKDI19IorXKJkwNAOB8ux3AdNgmH3P7OBwuOXpeKauO7Az6/WaMDCUXb+w0xQMoyZNC4LIMU09dhywSLa7YolhDPDqzYbfffk1VTVwc7siDiXz6MAJvPdEoUPJgNBsiGKBdxP94BitpJ17hJzorx0vbj/m/uEtebgjTgxV33Btzrx69Yr62pHGC5zahIaybLET7A8Fl/Pp+4a9X6w+WvL8/ESRxQgpCU3E6XRFCUWWZXRDx0yNcwJDxuVcs94qwjCmrEaiPKLtKtKkYBofiIzGzwnIGRPExHGIwPLm4094fHiiKhucl5RVzeRBzxJrJ9I4JgoSmmZgGkd06BFyyTAe9jfcv39GaYlWMcfjhappONysiLOU7Trh4fkJFYHvNcfHFp02GGMYrhFh3iOlYqwMWinGeUbrEC0989DQNhM6mDEBjL2g2KwQQvH+/RkTOcLEMNsZj6QqIctiksLQNhNJZCiyiAnLqbmwTgra08g4zSQpFFGMFJJ8taIdWsp6sQ/FcQpAFm1p6jPajMzWARE3h1uGeWC2I0+PR+Jw+V1PTzXzJEjzBLwizxP68co4OJIkZrYt/TCQJiuCcGmin44V57rHyplNFrNfHXg4PTPOHXOn6BPP9nbHq/WG8XymvZQIH3CpOnYv16zymMAsR3hv393z8cd3vHrxEVV9oW4r0jgi0QLrFT4KqJuaIkxZZznfXN7xcDqy1gXKWq5dSX+1iCnBJIp0G7Db7vHTuKhCnSSMNPPomQdFksWoIOZalVzqB5xVXE8NzkOcG4R0CBUsw7wY6borfT8zjBItI0ITogxooxibAT9Bnq5IEs1ql3Gprjw9PXG7fU2S5ly7R+rmghIrPBInG2bbU5UjYRgTxxpDQKRjhLeEkcK6jmmGeZQorb7f7sCq2OOsYhhqxrEiDgU6VGT5mjjIeb5f8naHu4JpbKmrkWyVUtUlu90BCPAClLLUdcOHD88oGaKlYp4HojBinizGLPDzQGsCGYJdbF7d2NN0liiBJDTUVQ04lJwJk5B5FtR9hwokgcoZuhqhBC9fvuF8vtA1PUFoUIFiciN+cnTNYhJ7cfMCbWImW/P4dA9hiJQa5wRCgpIgvCKJQrLc0HQzTVUxu+8HWBNzfP4ddpSskxusH+mGkc0ux80BgUmBmdVmzV/9zb8gzGMUmmlYht5itQE1Mw6WqioRZiZPV1SXhjiJeT4+0TYtSVwQyJCu7RFiJklStpsDqOXe2LZX4gjWm4Lvvn2HMQYl3fJw0xpmO2DCGjtJApczq5k0jJAyxOslzhGtNG6s8dZg/YAMAyKRkShBN5SMM6yznG4cuL25ozyfmXpBlGqa+ZnZZnh3pj5rPvn4c8axYu4U5Xlg8meC0JIkW9b7EC96pqZFWksY16h8JMk3PD8dOT6DFSFN1/Pm48+xduB6OTP0kqyY0WJFfYVuvMd7z3p9oL5WJGmERxAEAVXbEAQSo0M2xQ14i5A9ZTNhvaesen768zf86m9+SR7tUAKqS40KM4pU0kw1dhK83L5knHt0rHj+7j113XO4vaNqz2gTYqIYrQucWrinY9/T1CO77Zp3755ZFyuSMEDYxeaFKdHcoAJL0zQ0ncUxYZ1BhgNSaK5lT56GSGUJzKLWXecFWb5GaEtiNhxP93zy5kcEkeXvfvUFJhAU6RqtAja7hDTb8re/+Ru8yPH6LR++m3j98kC+Dbg+tygrkGrg+VEwjJrDSw3Kkmc7unrCGwuqp3y8UFcTJhTgvu8AqITj8YkXLw8Mw0h79QyjI89TdC55+K5j8h2rdUJzWaQfaQ7Pj0fe/fVF/H89hP6/+fl/3Ki+f/v+L6xtKa8fUEbwv/zz/51pvrC5sayyl7x+c0fTNGx3Bx4eTmQrTZon3N83xBuJCUe0nimyiE9e/5C6hKbuefEq5fF9z+efv+KTN5+zPWS8/eZb9ruUtlGcL9/y8z/8E54fz1zqBz777FPev3vAaMkv/vRfZfcyphpLPrw70j86/vV/7d+gbUOO37yjbB6pBkdMTrYKeT5+w08/2/F7H/+Mh28vKGVYFysMsH4Vst8e6Luepn9CmJCna8nEheq6HAlppWmaI+fLBy7XE0ka4r2gKmuydIUSM8+Pz3g/k8YpdvYIN5JFOcZI1uuU87FEyID9rVo4dTonjiI+/mnEPOZoE9L2V27e3H5fANtwPnYMbkBqQzcsvEuLJEhjwigkXRW0Y4sONSbUxHGB0ookMQRByDiPaFWwWsfUzZU0T3l4/EBV9tzeviTPA8pzSz9U/PQnP+f58cTz8cxs7QJWnzWRVtRDxWq9Y2o95enC4XbPxMzsBS8OrxC6RynHw/1p4doFFhhJI8PsPE3doYIloC1cwjwPdGOPNBHn85lpnmi6gXFcrnHsZpQ2ICTDPOG8pmkGotSxLlLwCuEDjAm4XEpgOYaWPsPZpYjWDTNhFHLtZrp+4P7bI/NkiYt8Cco7SyITgijCOUsUBozTiBKaKIqRChCW292OtpmpLjXeekxkMQbWRcZ6vcV5wf3jd5AElINjlpp2qgnTAC0TvJ0IdME4SPIsomk6Hp8qpsHhnWWb7Ikzj9czdT8QxDHee6a5Jggk8yixY09fT4hxzc1uS5Yoxmairyfmrkf5mbI8MbQjmc4Y2oF5HtHOEeocKQIen56omgatDUpo7OAxMsK7mSDQtM3E5TiwyjeMY0vfV1wvDX72rAqDHRfP+2oTkWQGoSTXa4P1HVpr0jhHG4U0ChkGjPPM8anEqwmVKop1QWFyuuNEO8wEa81mt6JIc9IwoKtbrqeG8toyWs/qNuflxy9wsyIPU3zrca0ljyLiJEWYmjAZMWZxgOtwQz/O5Jlkl2+pq4F2HsijlCBMCTJFqCfiKCTZpuhEIUPBNDW4fiaOMryS1E2PZBFAWDxIyzA1DFWNcIIwT4nWIdVc4iSEJqLvG8a2RxCRpiuCUKG1JIgUKoRxsngrSGJBvlaYUPF4PnNtLlgB5fWKsBNaRIxuRueeKFPYcUYCSbEwcKd5QiiBMiFOwuRH+tEx9DNB7BC6xXlJYAqmCbwcubZPdGON84Jp1tRDz/FcMkw9Ew1VM+AJiJKc63XgfLnStANdPzK0E84GDP2EtS2RSamvE0oYtIq+H1IFdoI0Tumagctl0dSWZUnXtThpIdB4NaADh8XTzxYCw+g7yv4ZaSTeWpI0Zpw68BOhkRgTMA4TU1UTaE2aRTR9ST9NxEmG9w4vHEaPjENFlq3RMluYqkVGGCzlnLZvmKxcNrDVidubW0ITEWqzFFvCgCD1THRYK7hWHZe6Ae3o7DPDPFMUG1abNel6pu4GzucSr1q8gCzd4eyA0o6+a6kvNfvNDdIJsjhFaIvUM0WRgXKMtsYYibM9Qo68e3zP9TKQxwl+nuhby7W6kBUhdTMxW0eQCryMmNqevr0Qhysiqem6Eqk13k5MdkAIGIclpzv2jmn2RHoF3jJPjrbuFqlINaDUYokqH2umziwUgObE8emRPMu5vVsxzP1yP71UBD7heH5LN4881Vf6bk91XPPhm5G21WSrEB15zucKYyLGviMwhvUm4lo19K1HhxPWerRalghSKpruTJbmS9TDKKaR/5O6N+mVLUnXtB6zZbb65d323ZwmTkRkZHczb1tZFwmKARL/AzFAiCtqQiEhhjlmeiVUQyQkBgghBvALGCBEU1TplvJmZERknIgT55y9t/ert5aBhxgyvjXfLm13udsy++x9nwdvE0AhZYo5BVSSME0tVSV4fnykO1sSFFrVGNfRrG4oqy1u8igMF9cyWcenm89IipphMrx48RKlK6y5atrrSjF2hizLQMA095R1dR1c/CiYObU7DseJc3ciy0rOx4BKZy79ifbsKKtAiClFnlNkFUWecumeqao1Wje4MNDvR0ZzBb/PQeBC4NuvPvLrX3yGGwa66YB3gufdiafdM02zwUVLk3/Oq88CMnjOuxM6ag5PA1988ZKXbzS756t50djIV79/RCQJdZNy2nWcz2fqRUHfGtq+px8gLbNrT8UX7J5P1IscFwTDpQcUZamY+jOJyrhZr7m9WTINln/6H/0bUKb62//6t7/9+o//khCuJ9WqajBjyjCeyYoz//v/esT4DsTEr//sl8z9TFnlbO4zRjPx+j7lshvZ1p8xnGc29T2vX2umseX16wecldhw5HwceLH9Gev6hr/7f35HVjlCMkAMuEGAV8QA9U3Dyey5TGe+/PIrzGPK7c0DQR75F//H3/Grv/jHeJeSyQW/+NWSrt9xv7ihTDZ8+NCz3CZon5Hpnu2DIlDx7u33iNDjnfpRQTgznHrKZA1S8O0379hsGiCh6wzbzR0xwDD1V/1pFikXPXV9w9P+wps3W8bBXV3aU+RmXXHeD9xttsjQE+eSRBiWTcLsemy3wvQ9n336wPnUEbVApIJLf8CNgbpa0LY9Tb1ESkmqU2KMPD4+kqSKrKgIGNr28P/xTJ2JHM8nbjdbzucTSmfMfqSfdnzyyQNtO3I6tsxmZrEoOB2PLJY169UWrRtmM2KDZ+5bbJCcLh126kkSTVSa83BkGiyrjWa5XBNcRtv1LBaaqlpwPs7M48RsHMfjGYTh7uYVWlU875/Iy4aiWdBOHUkiqYqSpqjAB5arFf3Ucx7PTH7GRqibBqRhv+8o8y2P+494cbm6lkkREWQiWDQZbdsj4xKZRM7dyDRY8qJApSnWOBIhWZT1FYw+T7hgsWYkLxTeW9pLj5QpPoAIEh8Dd3cN1hl0llBVCxIS3v9w4nl/oqw00uW0u5lknkk8PH7o2D+3aCR5IXjx8oHuYjifzteJj4A61/zJn36KTwz784VErXBzSq4yyqzk8V3LPEu01qw3i+t3bryQlwopHfM882q7pVmUjH1HIWqGEQbTs1wkFFlJWZTM1tAP3TXLNxskyXUaJhQ+GE6nHjMHVouaqkjo+4lUV+hUoXXK0EWqokLpyDjOzJPg+enA0HvquiR4T9/NXIYeK8I1MjOMOBNJU0VWK1RqwF51gtlS45OR8+GCHyFXBcEL1usNd3efooqUYqFou5Zg9xTlxGBPqMbh0zNJrqmWJYfzmUvrmF2kKkt0OjNMR7rnnsfHj0xzS5or3GiZjhOkJVZHRO7Im5o8q5Hx+jkMnWMKlrIs6Y8T3kJW1HTjiEo03klmY6iahjxvmMYZMxm8D0xmJBEpdbG+xgekR+uMeQ4Y6/E+kmkBzIQoENScuxkfDVIKsiynqHKQEaEEQgpOpz3WGoq0ws0z0zTRLBboTNIPZ3zoMePEPEayIiMGyTTMhGhQSqK0wMWJJC2YrUDEDJCMc4exHc6PV5GBKIjOYyeLRBGjoyxKYohUZUVdrVCJJkk8MWQ01Zq7+yVpGvDOYidD3zryLGd1k7PalNQrTVFnZJVApQrHSFVmSFKsAUSCSlMSLYHAMPbUeQleXEUKKNwcKOqc3rSoVLHaLPnw/B1WQFHVDN3A5Tiyvb1DJzmH3RmtJVIGhqnFe4G1gXmOGOswbqAqU5QomKZAkkRmMxJI8MJyak84GynrBqmuf3/s9jgceXZD8CmJEHx4v+d8HlltMswkqLNbikzRXs4oCTFY6rri4faW4DzWWJpNyc3Ngq4b0DplnHqiBy0rgov0vSNLJGWWkYoGGTRNkxMFLOotZZkQScmahKYurmur7fniZ5/w/NQCgjQNhCCQMiPPE7wJ1PkG52eG7oJ3kfXq7mpLm8+07cA0XQ/45yO4YOjHDqUStF5y6S4k5cDNiw23t68Z5pljNzNjSbISMwuUjJg+MA4BKa9dAmsDAU90hu3NirrS7J73PD3tSJKchxcbxtFClFhjr/n/XHO5XEUF4zihlL5O5YeB9eqWyR85d8+kheLx44Fc31CWazwjXndUWuFROB+oc0HbHml7S5HV9JcTIstJC8VqvWSaJ4gSbw0qsZRZDb4k04pLf+bu4R47eeb5hLfgUUjRsL6p+e7tB/puRgiP1jXzPOL8jDHyKsCQKV074o2hqpcY47F+IlhFkBObzZZ58JyfL1eVMA6SiIkTqW5YL3K2qy3EjvbUs27e8PLVPdFN9MPIZC23r2/4/dt/CVSYcOD2bkuTL1ktSm5u1xgXSJPk+nlVKWaWXLoekWiyMkEkEWJGjA6hPEPnSdBIdVVhxwCQkqqcqizpR8vf/If/6T/8jer/+D//V7/VmWNoNYGef+/f/zXPzwcupxEfHHbyvP48oV7kvHv3e6pckaaW8uaJ1U2G8CX/7j/5J4TY8epFzas3BV2b0qwq7u8/ZX/ck2QntusvuF2/InEJ2+0tAc2pP5HrgpcPv6Ib9rz+9BO+/vrI/csV337zjl/9ya94/XDHpiw5jt/yyWc/ISVleZPiswtf/t3v+Ed/9le4QRNjTZILQhQEDHf3b8irW354+0fsOOMdFHmDiIoyK9m9U2zXmv3hSJnekKqEGBNkLK6w7tEiZSSvalQa+PwnP+PbH74nzTIOxxN9d6LrRtbbNYt1yTwLouipmyXe5xSVIEkli+yet++/58WbnKqS7PYnpArsdgdwmtvNA0TJerXhsN/Tni9sb9a0bUsiEzb3S54+7pnGnuWiIQmSy3FimiNVk7Ne1CQyxTrJ7Bzj3IKMeOfJ05LNdsFyvcHMjq5rWSxrNjf3/PD+kdFemGc4nTtCkqBrQVrmnE4DgqsOczQj5+N10/Lx/Y5IoKoWGCPZbLZM5nrFJcho6jUxzlR1jQ8K40bs2JOqhCzPOJ5bpNYEArlO8PPAOCUkKqJUxLiRRNbEGJGJIyaK9XLNarlkvVgw9MOPJagO581VX4pgNoZx7pGJpEhTlIiY2TK5GZVq6rJmuVjgrPkxe6bpug6lJUolTLZnmFqU1BgvOB17nj7s6YaJMgusG0V7GpFY0miIFu5ub6hVSVlIqqVidp5hODK0hkRUrFYJN82af+vf+TX/6l99xX7XsW7W3Cw2FIVnnntINOWyoWw0i0WFkJLIVRMYEShp0ErSjzNda8nzElEEJhzGSapckypNjNCPM203k+cVWiXc3KxYrXK6LhBiJMsNi7rieDjhXKCscyZjmK2jriusszy+PzK0kRAkMUhevdzgrGC3v1p6Ep3hRWRyA1EE8jwhEVfAvZsSoogMdqDtZ9bLDXVe4fWMWmSImNDvjyR+QKUXioUmLyuKJGPsJ8ZoSJuSvL7qHKfBkUSNTgrW6wIlD5z2z3hXUKicolYgNMPR4oKhuGnIspShv0BULMuXnM+O06mnzjNEYnEiUFUNlc653S5xIfDDh2eU1pBI+qGn259wU6BMc4LzoBUChZksRQZFmjMOjsPxwDzPeB/QqUaG60NMyoQgAuPcYvoJYwLIgMPRTkfatmW4+OvhKk9RWuFcREjNZGYCAaKmzksS5ivQP0KIPQKPlutrqdAPDKMhRsU8jyRSMI49xILb9adsmjussQTpuNiWxXpDVqYkKpKmmhgDAoVUnsl17J47irzi9Ztb2m7H0I5UZU6iPFmWUTclQnnSsuD5uMdHy2hPnC8tIYAdDanUNHVBmkXGoccOARE1IOFHUctsHe15ItMF5+HEU7vj4dUX18O3c3gvrrxadV3f2v7C8/OZRBeo1JMWkSgs8+SY7Xyd3gmNdRI7zERvECogheB0GAkiI1GRmICxDoki02sSXXNpO9puuEZv5sg4HQHLi4ct83wkWk2SRMb+ghkNq+UGrRX90DGbka4f2d7dYbyhHwfmMfDx4wdILNM007eGNE0R0THPhhAzRJKSVRKdC+wcaaot3hqS2jGZkXlMaJYZZZ3xuy+/pyySq57ZWNwUma1HSsXczQTnWa5qxvGCFAnee7bbDaM5Yn1HntYcni5ooVACtqsHVsuaslAobUkzy/sfTjA36FKjq4xpthx3LbfbByZ3IC0L5iFjf/rA9m5FWaVIOVPXiuOz4Y9/P/Dpp7fU9ZrbuwXnc0/fGW5vr+ajNIv0Q4KUAuMvFEWGnWG5XHL3sOHp8QN9GPnm+z9S1hltP2HtlY+apJpEaaSXJMnVgGjCQD8Zcr1gWZaoRiCEoKxSvvvuHdbNnHYXTpePeDeRphXeOYa2IwaJUsXV0jUOECVpDUN3YOqgyHK0SljflFhz5aHn6RolNVIKnLOUWc7z45ngI2kuOZ8vZHWNcddSan+cSKJke5tz6SyL+xXj5cL51PO0e2YyniQtCAGi63h5+4q33z/hKZiwdDzRToHLeMJ5EPLE/rzHYEc9sAAAIABJREFUe01rLqgi8vx+D56rStcKhE65vVtx6ff4kDCOHikj1lhiUIgokXlC17a0l45mc0teFDw9PpNkKX/zH/zNP/yN6j//53/729/849+wahbIJIVQ07UtX/z8NcOp5Itf1DT1BmtSPnm94i//6nNWyw3Hg2W2Einu2D313D80VwvM5Yl6uSIv7xlmifdnqqpiOJfs3p9486ZAhIrd+Ui5Ctzf/pzL/MzbH0aqRUmpS56//8Dnn77ATRlZA3n2Em8gGM/x8j2jMfzx+0fqm4IVa1brz5jsGa0u1HnB+Ry5faP5w9+/Zbf/ju2LNVEpzp3A+kiMmr5rmaxlu7lDixwhZzabGpVq+rGjH2ZmM9AfZx7f9ew+TlzOF6pS05161uWGT24/5fbuOt3t2if+5Oef8PjuzIsXW968+CmLYoUxgahqxHLiqz8c6c6CvjuQuIZSRIYgEDrheb/D2Inb+1uQAkREKMmHx29JZM6nbz7HDDMSRULBarVBaMP+6cLz056szFBpxYcfLpxPhlcvbrH+TIgJWi2IMVJXG6xJ8GGiHw1SNHib8fkXDxy6A60dccIRjCcYh7eR0RiUDszTRFnUbDYLhmFimq/XWs/PZ7Jc8vmbP+O4P3Pp35HnNYGUIA1ESa4rsAl4SRIT7GiJgM5zpFcUWUKqM7w1FFl1LQflAmMESsLQdrTnM59/9gYpC9I0vWY+RY5UOQmCZVGTkHC6dAiVMk8OM8ystyuM9Tw/nwghsqgb0lQjE8HNtiErBed+YmwTmmbBpZ9w3rBcLanWOYtlSSASRUTlkWn0VM0GoS2ns2PRlIyzJdET3ckxdhm3d9f84N32BoJlv9sxtBa8JRET02ywQlDfrlksJIuqAFNQZzV5mtOUNW6MLMqC2VjwCcvlCplDUeWoOmf2hkqVzK1FyRLnNJBdrWLrFca0iMQShGCxvoK359HjbCRRitmP6FxR1jku9Nh54vbmnqauaRYKIS54G+jHiShGEJbJeITOGSdHIgpWzZZmVeHtTBwjBElZVqwXFVoHdJGjRc40jJzanrSo0HUgJOBnxUKXLMsH0rRivSwIvSbzK27KO+6WWxQjadqxKiXzaQK3BqG59HuGwYIWOCUASTCBuTP40COlv7bUVaCqKubRYmyLzANZrlHB010uHI7P+DCiZCALkTQKdKaRmYV0xEfBPCZEqZjngVW9ptA1z7sDKktYruV1umVLhM9Is4hQA/M8Yo2nKSqq5QInDf1lD16g0gIXuV5fl9fDk8XhhSDIgI8B7w1uHnEDxFARlSJVkiwtuL2547Bved49EpVhnBwxCE77I5dTiwgOO1rcPKAShwySRVHhpgEzzJwPA85cUWTzeJ3GtP2J1WLDT3/6OYmSzEMkesU0DITo2NxsEYnAiYFuOhGEwnrH8+7MbBLKJmO5WqB0yv54YnaWc3umblJefXLH+XihUjlNXRKVJcvENZccDCER5DHhcngkWsh0gQjXW4YpDLzfPzKMTyRpoG5y5okrXmm1YLY9dr5i0paLhug80WbEkLFoltSNZvZXVWeaaJq65nB8Jk9TyirD0TLNkWAVUR44n07kmeRqnk2IYWJqr7GcsR+5XE4M48BsAsZKyqZkMi1D7+j7DilTmmWDSh3zeOUtN3VJ1WQYK6+/303KeZhpu4ksT0i1xkvweWQ2hmkaSUKKHQbm+QKDZrNdMbUeIQLVomFsI+umoe93jN3MMAakDEQMmV7ycP+Stn9iGjzPHztclKg8JSszns9/oF6lfNwdOI89URbs9VfMswQTWdUFt3dL2tOZNy9/QpkUFKtId7E0ywJkT6ZKymzN4XnH3faGNE+ZTUTnlvP5Wtb0/sL93afcPVT88bu3bG6WZFnCMIzc3b5kNgO73R5rNFb0rJa39O1MmaxJYsSMFwQlWi5QZCg03gYmF3g8nni9veNhe8Nje+K436ES6C6WcRzQsub29soKLvMlqfK4OZJmilP3nmFsmdoe7xVWdazKjPXylvUmwVlHlgvadubm5g3DtMcYixk9dh64vd0w9IJ5tghtIIorMk1nXLoL7z4cefnqBVEeiHHF27df0s8Zs/OUZcY4v2ceFNMMReP5/uM7mqxgGAf2lxPWJ/zs119wOfU0ecOr9c/5zW/+mh/e/Q5EQnAFi3pN3TR83J/xPkFKx2U4EGPK7tGTqSWJEAQfSNMMZCQqS992KJUitcZYw9C3tNOJ//w//odRpvr/3aj+b//if/htlD1ffvmew/PEenXD/njifH5G6ZTj3vP5Tz+nrBRfvPlz/NBwOXZcLp7vvw388ZvvQPR4a2nPkW+//cjt9iW//93/zX73NdKvWFRf8OHxHX/yF5/w1TfX1ur7p69598M7slzS9wNuSNks7zkdjwxTy3rzCc5v+NnnP2f2E99980fO3QdCsqa+W4HQ/Pzlr5ks4APzZeD4bCkXGf/6dzu+f7/n1J1YLgoSpfn43tMNB7RaUOYVIrlgJsPldEJlkC4U1XLDuR84XD6Ql5IYNdE77t6syEvQ6YJ6s+CThzWrYoFLZ8aTpcgKRFR8/90jeZ1z/+KBcZr53Zdfky6vKr/dhx1u1NxuGwpVk4SMvEy5v19gxxk7G37+858C/mrmCJ7oHXmzZr1acj7vCVZTVhVFHXF25vtv3qPSFGk1y2XG8XDAHHp+9dMXpKkAm5JkKYfdBHjsLGmakq/+8MfrqXjhkLHCuwStW5g0m7ogmiswP4iI95ZpFvhY4YLF2Y7ueOH1Jy/Jisih7ciSBW6cGaaevFmj6hxLz9RfKEKByjNmRjItWeYVm9WWrMyxcUblgbRcYKNnUVeUusC6K+ewyRSBhKhSdJFxOc2UhaXIZvA1nTujMk0/nWiaFUFoLu6Msz1VWlCuF6SpgmipaoUzHpWkiFhQN+XVo25G7OjIMouznhAiWZ7inMWZDuFBiQLlC+w48fLFHYtqBSFhvVJ4YYluwvoRmcDDi3tk0cF44k9/8Rkfnk8czgfKWlI2BbOH0TpUmuGsI0hPFgRi1ozmgLuSHUnCyHKzQabXrJ7OJFIoMlWj9TWLJIKk2dZQzMzThaauWN9oVOJwocTiMQzM8YCMkpvqjiyvycqaGCxCJ8wm53Z1S5IGptni54EgDNOYsNncYt1EVdes7m5RuUIHQ47j7m5Juazx8wUfHZO0KODz2zfXgpusaLIVIYB3BhEnVCqJ6spUdPOE6WcylRCTmePFYY3AqxM3LyTeCN79sIdcEMWCeZIEMTP5lve7Fi9zpITz6Uw/TVdcUZqwaZb4Efpz+PEKLFytciagtWKeDONgr+8l12AD7eGMCx6EZh57RtNjvMZ5TXe88lnTomBT3KAQnMYduvFM88T55IjBoKsJj2Olt6yLNcYJfFDMtqObO5TQVHlDkmjmuSfPNVle0g0D/diRxBTlM1RQPyp/1VVVGw1unrEukIkC2zmCC+g6BR0RUmLMQN9aUr3g5qEhSwLBSeYIx0uPQGLnnvM4YMSPBrPWs17ecrvd4t1ElUmm6czXX/5A1xtUBkkCTbMgz0q+ffqWdj7Tdy0uTAQpqJoVm/WCuZuY+4l+ONKbHf00UucVn27XLFXC6RgQOsNGcz1o5zW9cRymE816jZsd3k44AzKFoCUhSbm0I8Za8jqlTAsIGuOACO1+z9TNKF2i5NXUVtYVznd4ZylXGqkUdrRXSHqaY6KnG1q0Lhn6mefH9xgzYn1PJgWTnfBDjjfJtbQVEtphZrlZoDNHmkbWzQrvBXmZcT5d4wT7dk9ZXikJUijmYSTL1mzuKkyc+PD0RLNccn9/x9z1tKcLeZYiUsGuf8aqCXNJ0XpBvoD98YISkIqKIBNkNuGERRdwOVxYLtakublGkkTNYrHEekuIgLTMfodOag7PMzpVtMN1kjnZlrpZEEPB/nBhvS1pGs20m3lxuyZ4hZkNq9UKlUaS3HHsZoS0FHVBvSyZzUjftQRzxXctVin780cCMEwji2bBYlnS9gemaSSVG6oqQ4qRoR2JpmJZrXn88D19e0FEgWe6ljSrDe2pZbtZMnTTVQIjLbZrsc4Qk4lpkAhmLsOJY9vhJsXqvsG+HWmWG1rXcbtdkODJWHKyR3RSUlSap6dH1nVNmk5EMpxJuVmsSLKAt455CIQ5Z9EUBNmzqO6J3jOPz9R1g9YpfefYbm+YTc9sYLIe5pTz2TLanqxM8dJyPAgyLRnbATMn3L++5f7mDfiEalEw9Z6b5g4Xr6+bRtCpIBNLNnVNv+u4WRR0J2g2W55PLfM4UaQpQ+vJsyVFLvA+cp5bQijw1pEWPT44QtAsm4JC17SmoylTju2BRDUUQtHOe/JVQ+wF/9l/8s/+4W9U/6f/5W9/q+U9p8sHfvKzFxxPhndvj2xvHvjTv7znD3//CCQ4O/H49A3zdGJ/bDkc97z9+K/Zrrc8vFwRBQSvSVTg0h5RWvHpT/6Ew/PIV19/TZqmaJXx/Ljj7duvGQdDkixYLAt2TxP1ssHME0WV8P67icenjySpJUyWy9ORGBV/9evf8OU3B/ZRsVi9YpQF9uj56pvfM5kzWVkSlOCrt+/44fkt7XTmfrPGzJqn5yOCAmN7hOzBFTg7cX9fMwyeokzo+8DlMrBY5XirWC02iNjx5vMXFLmkbnK6/hk/dbhppl6m6HKJCZ6HT14QE4FPIk/7Z/anM8/7PR+PHeehR2cFRbmgbZ/oupkkBZEEtqt7Lpc9zbKi6ybGweC8oWoKZjMjo+C465ExkiiHtZbL2aF1wWqbEmVOVgmcCBwvM69ebFltF5z7a5ZIKc9lb1lvFBD5/d9/w939C4Yxsj/M3L4ocGFEiBSpZ867gV/84gsIEusOaJmzez6RKIjeI9EUZQESTqcTY2+53W6QylEuJC5MPD0/03cOGUqy1DLaEecU29UrMi2xXDj2R7rB48KMEpFCa2KICKnoLgNjPyETzXqz4un5EaEVZaUI00CZ13w8PpGWFQHHZCM6KVDCcbnsEEGxWmxZLwveP7+nn3qsNTgfGVp7XTDFwDzN7HeW7c0G26ZUuSTTiq7tkWkgL5ckKqOsNsh0YpwH9scWh8c5RdEU6Lhg8kdGrzh1IDJPf+moSsUwXXj7wwesj5RVxWxGhIQiK1BK491EJjVNvcJJyzh1RKfIspSqLimXJdZZ7h+WGC/46o/PpKUiZoHd8UiZJiyzhnl2nLoBmRp0dd2IoQOBHusd06Ao9Yrlsr4qYM3AMPec257x0lOqhOgjwV897EjF60++ICqPFJI6K9CJRoQUO3iW6wpdSdq+o1YVbvQMrWG8BIKbWG0kZQnnw4Wn0zPt3JPIlLIqCNYRestPXn4OMuPdh684XnaMpqcsA0miadsTUnSUjWMaJ5z1pGXHNJ05fgDlS1QyMnQjua7QSUKMmkDEzJpUrnn98p5VnRGE43Qcac8DqoyE4MmSilRr+r7Du4x68YqyrBDBINNIsaxZ5LcokxCDRWcJeRLJ05R2MlxGA86B8dysbtClRkTHbbFEakVnL5RpBuKKe1tWC8o0B3Gd6GpVkCTqR0rIiEBeqSJe4sWE0hb3I+C+qmqcC+RZSqo1WSa4u7vFOg9ElFBMw9UQt9lqVCK4HGbyImP2lhAS6kVJ9J7Hj0dyueAvf/VX/PVf/9t88upTNssNd9sHvPd8+LBDikhVC7JcEkNg9gOTOTMZR9+N1NmSMisYuoHhYvBmIIrI8uYlUzRc5gu6TMg0nB5Hvvn7M2iYfMv5dOXXnrqB4CZmYwnWI40lrwuKYkEk0A0jx9MZ7SUvmzX3yy39OGBFRKUlmWyQPqcuaoQwBGEQiSBTNSoBncEwGQ77FutbTJzZPbV055a8Kgk6pTMz/WC4v30JMtB2J+rqFavVisvwjPCCT159ynZzg5kNSpVkac3xuOfSDrigmUeHs4b7h5dYOyKCoEgLmqZktdxyOB2wc2TsHYmaCVwVmqnK0GlKCNf4BZNi7g9IAufDxKKsqDOoCknV5Fy6C8Fl1NWG06Fl9/xIVTbMY2R2B45ti5CC9V3FMM4IJQkx5+5lTduf0UnG3RtHVefEkPLhwzN1nYOcOZ08Ml1gwkyST4gg6E4daZJSpBnn0zN5VqG0ZzY968UGOxm2t0tkEnh+PlCUFcELNpsVXTsRfIJSCjNFzCTJ04xp8PS9IS8Ui0XD6dQzDIZPPnkNwaCVRgaY+oEq12w2a1KdkWcpzSLlcjpiJ0sic6yHvBYooYhu4tweSGNFWpY/4vciXX8kFRXDNIIIWO9Z1FtSXZJlGSpR3N9v0OmE8wKtK1brV8TEszu8I6Uh8Rrnn6jqDe3FsbnV7J/317WsVOyfWjbrBS9f33Fzc4fzHpk4TscjpV6QaYeMNUWRcHe35fuvv2OzqKnrJXPv6LsT9apkGu1V8ZuUfPy44+O7PYtFQaIU7Xng+7dfE0aP8JKqzqmbFbunM9N0Ias1phsx04gQGXXVYIwnRohiBjlxOXcQZ5xXxBAodYbxkBeKuXP8s7/5NwD4/9/993/728fHR375q5/y3bctOi8oKodzsH8+8sUXX/B//Z9/R7NIQVi++sMTy9Wa3u9QheCLz7c8fveW1zf3jIOl2lScuuuiViD49v07hHJMZmK/+0CkY7Y9f/5nf0VVNnQ97I5HEhU5HM8MbeA3/+jPiQiMnXh+/gErAmGaeff4nh92Bz6+/5ZDd+Dx7ddXH3bMmaaJ7bah746YLnBTa37++hPO7UTwJT5eQ9EudFgz4V1Cnmn6biDLawKW77/7SJZWxHhtcMY44iawU2R7+8D53DP0Iz/75BeUek1WFBz7lsPpQDeNjGbiD19/xTCMOO/4yeef8833j6hy5HBsqcqU1TJjGgKb9YJc5+yfj4xzR15oqrohBMFyvaLrW2L0NGVDmefsnzvKsgQCSiuyIqXtDemPP2SlNbmu8a7nux/eE0hRGoILzK2mLBXzJMjTJVmlaYcBoQ2Xy560CAxTz9gFtjdbzvsTq1XK6dihpCWJWxZNwWwNN5stq3XJN1+9R6UJy6YiTRV1U9O1A2ma0pQlqUoIMXB7XzHNgaa6QUXPOHf01hGkQsiAlBIpwnVqZK8++M1yhRQJKI1OUoqspBtHPCNFVDy93+GyHisE82lkuVjhZ0uRaMoiJy0KpE4RUhJmT3SKpw977JCgkkDTQFZodOpZlCVhjhR5gveRfj6jVIpAsGpuQE7kack4DFhzbb8n2tF114hAe9ldNYXtiPCwymrkuObSTpyHEZVpZCp/5A0aEiEQCAgRES1VrkEKDsOJutQsq5IpzAymJ88EPniGyRDQLDZ3hMTycfcOkQiid8zHC4fLBcrA7A2nc8tqvUbnKafjGe8VwQq8vU5XnHG0/YEgA1JmvLy9p6k1x/MBKRN0nrK6uaEuC2bXE6VlnC8436OLwGKTsdquqNY3QErsYff+zDw7tndLiipjHkrK9I6hP2HdiLsIatmwWRbkWpLLipfbl5SlZH+4oPOa1fIGawxm6unPlvPe0l0MTbpEy4yndscQHNv7FVWqsJ2nUDUvt3fgPNM0kWU1QmX0s+XpuOcy7xjMhc1mwc9+8RmOyNBP1MUSJXLm3lMXOetNgU9h0pa01HiTUTUriuZqgKnWKWmRYS6W+XydWKAli9UteZlTpJq7+gbvLE/HM13fM457vHfcrG9ICEzjSFUtqcsaLQXgEFIiRUEqF1RZRbUMiNSQJgXCCmIQhCAo8gyBwDmDjxYhwJuAmfyPbW9Ps8xJULjZUTcZDuj6GRtmpBZ4b9jcbPjVT17Tnk788e07vvryS96/e8/peODU7gjCX/8vHPPsMCZyHi7MsiUm4Xp4KjR9N1FkJUJ06CSyWbzg0p85Dx8w1jCeIsIkRCvZbB7oQ0tMBM1ihTEGkgQ3O/KiIknBeEcMkUQXtG5mdp5FWbNqFohMMgXPyVqSoiZLJLkQ/PKnv8I5wflyJMtTpjEg5ARyYBwFJgiyQjNPhtPHlnk0vHp9h7fQnztWyxRrR9JCYqaJSzvTnx13L+8pCsdpf6SubiiyhH6cOV+OlFVOkZYkSX7l3mpBmRd0/YjzI844pmm+6kOHifPlRKZKlk3Cfv/E8WBwVjDPLafDGQIgJgqVoZWh78+s1mvm+UxVNEih6ccLm81LkkQwjT0//dlL3nx+R9/PzLNDZiNRG5rlgnO3Zw5X1FPbtVz6E4vVLZ9/cQsi43y+GsiahUAmYJ3kZrvAyxHjOp4/GNIsUJaC4KDvBOPoWCyX5IXmdDwRbULTLCmrnLbtGKcIUVDWOUIbHj/uMJO8DnmCwntDIg15rmkWDYnM2O32fPb5C+4flly6A+PQ471FInn16iVFpTkeToyTZbFcEKzHjglluuTYfqRcXLFQUwsJhhgSXAxkZcqiKvjwuEerFBEUOpN4ERFB0Q89VZ0zjTNSZgyjQ0SNDoJ5NAQ5s1jnFMWG9+93vHi443y0jJNnuQ6ApS4XuMnSVA8873c0m8jt/Q27fU+II8FHFosaES196/DOUdcpQzvQFCVZmvL27cerNcoPnNsLl4sHcdULVzX88pe/ZLWVvP+wI0QNVYYxPSJNmEXCl19/T5UrYux49/1H8iJlsuNVQVwoPAEhM5JEMRnPps5xXnA8nKjzhqEbsdFRlgva04n/4p/+l//wN6r/zX/7t79VaWB/nAhobrYrsixjt3skEZrz5cJitaWfjkgNX/z0z3n34Ynd4UiMNWYuKcuaRJecOknvIs/HA+fLM8YMDCahqm8YukBZVRjrePXwS9pOXcPtuefrb766PnijpevO3NwrPrx/5Jtv/0BR5Tx9fM/oDe0wcDyd8cYjLxOrpMCJFoLBB8P+2HI6D2TFgnJR8vbtRF5UOBtp+9O1LZsohi6glGE2nqousdZxOQceXt4zuwtZrrBm4HQYaKqKV68+4ePjE1JHgvfkqkJKzenSEq294q26nh/ef6CuasqyJljH5XRGyiXentmubygzTX++8OrhJW33A3/xF78mAmVZs9luGaeRYRqZRs/YTyglGU9w6j6yWFSkumIcA10/oAuu7dZoyPKCx4+P1+JSkhG8Q2USGRO8kXRDz6tX94zjSKI9ea559/0zZaF5+fCSsfcUecamuacuwY05L17cEJzi6WPPm8/WOBcgBmbjePx44uFlTpEvuL9b0Q8t1kaqeoVOMsDSLHKyUnI4XPNkRaF4fP9I3awY7czhtCfVCmMTnB3RiSZERXs+EuJMTKBeV4zTiTK96mmVkvgOIjk+h2kM1NstaVkQA6goGLuRMs1JkJhuJLiW8/EEQXK3rXh4sQBXMtsJmU0E666qvSQyGEuWLUhzgZ2hKXO68xlvDUM78bB9ye3mltP+gjEdzvTExFOvanRISYLidrO8eqedoVipa2lFBMoiY+ivU5yqqimrjCS5yg3adsSOijzVeOm4WIN3niRK2sHQ9TPL5Yrn3XtcMIgfFaypzlhVCzozEbRBUaNESaCgHSambsD5wHpZUJUACd5ds1omAOFqIur9hXJZXzFFMbDe3LEqSqa+pbUT1kXm3lLlFaXK6Y49tp1ohIQwo6vA3eslN68qOtMxTB3OXh/eRZLx8HDH5vWC89gzHCxVTDl9/MDz85GYJCRKYo2iLhaUeYYZEu5uXvHi/p4yL5jMxCwSJntVNzdVSqqWLNcr0kUGeY6LgdF0JEoilcSFkbRMKKsaRcowjhhvWDRrzGQYhjNNWaKTAudnZOpJiopxhm66ENRIk+coH3k6P/E0tESZsl5vSDLF5Dw+JszzxDqvKeSSH56f6c4jRV5RrDJCTKiyBYmOSA0+SMwIZupxbiQvljgHmRLkWjNNjiQr8NZQKn0tSVpPphOCtyRKkZclddmQiATrZqL8UceapRS6oi5yYqKZjGV905BlGiWvHEsXJOfHjsenI+fu/6XuTXZlW9f0rOevRj1GVLNcxd55TtZOITItuAM6NGjRpGMh4YZlbBogd88NgBCW3AHRMeAOXAc9QEjOAp3Ms/fZe625ZhXFqMf4KxpxLiJ9BaEIRfHF973v83Ssy3LlSGIZXYcuPCKCXSHLM/ppol8XVJayLFdN5bieUBqEMrho6ceF8/nCsLaImFElNWFZuWk+IIQmJiN5VdDs9pwuJ6ZpRpirxajaFtgQ0ElGkBIpEoK1pIlh9jNrdEzLjI0KVYBbJiqpEX7h7Xjhy7dv6MQyzy1VcYNb41WdW+4oy5RpmSjykioxNLsK52eWaUQGEE5yPB7JMsVwHjifFu5udngsh/2GzFxziLlOeXr9gsojWS75+PgB7yNSw2J7rB2Yg0epSFXVPDx85Hi6XLXXwOP9B+bhws8/9TSbgihn5sFf7UxEdKyZ55nLeUEnBS56hFox5o5xvFIScpOw2pZN9RHvItZOKKmJciJEyePDd+j0aq1L80g/BpJcg4l4aZnmGRdGtruaeRIc31usX5AyI0kLnH+luwTqugAxscyWuv4FN481bTeRF+ZqOxxmyionhMA0WaI0RBGY1x6dwNevv6Wpb9jUW9rTiYfbe0SIlGWNkQWXS0uSSYQUOCsgKhCQFYZL3+F8JEQBShCVBClpthVPvz1CKLi5e+RwWyCNoEwrpqGjqARZmqJMCl5fvx/2FXe3DUu3gExJ05JpXNnscqb5yLSM3D/cMa9XhmvTFOxvH7l0Z7p25vW5pawM/fhG1TRE2YGwXE6BqtgR5cKlP/HdLz/RTz3PbxekWejbBe8997cl7cWSpQ03NzV9d31umVHgHW+nnqqp8WFlDTBOPc5p8BnaBKbRcjpduFwcs+u5rC1VUeG8oF9HsqzE9xYZLA8fHri8tpTZlmWaqKuMsXN8frxnml6wU7h2OchwfmJTlSSpAS2wq2SZFv7Ff/kv/v4Pqv/63/wPv7qcJ6Sq2N7mrNbz9PWNP/2z73h7PaPzSNdfeH+bgIzZLvw8k9qSAAAgAElEQVT00xNS16SlYv5muXQeqzSr60kYOf105P5wD5ngx5+/kKYZn7/7zDh0tF1HUe55PR5pp3emwaHVliRJeH8bOdzWKBK+fHulKPZcThM//fAzWV7SjwvWO+p6S6oSsjQjMzXWCoxOKYoNdXlASkB0KBMxqmQYuisKpLmeborsQF5JlgWiF5gMoowcz9/QSpEnByQKuzimueXLl6+sfsGp5TpIb255P77SDj3YSFNv+OHHn/j++1/Q9zN9N5GY9KoLXCJapzhriR7K7I7z5R2dS1yItENPYgqev72yWkvEc3x7QwnDoT7wfjkhtaSsNphU4KxnU9/gnMWGmSozvB5bAp6bbUVdN+RNw7S0eB+JJBS5out79rsKYwKpuSJrIjNpTDDScLO95/OHR95fTtzePHBqX1GJuZqqqoTnbwuHu5Lt3pAlBd99d48g0vcdQkTqTcE0zQRvCdEyDBPeJSil6fuRl+cjmUnJS41MIj4Ewio5X1pu7vb4EK6MPCWY3ERWFySp5v10ok5KohOMvadIal7bI1Y47g8bSAw//M3PhNFRNyXOWZrmhmFcOPen64+ISbm5aRAyYx5XxqkjzTOMaVitIiqF1gmJUoTF49dIXmQII5jHwNh3yGj48OGWbjgRQkSwEpzCVCnR/C7fJDWmKVG15/CppCpr1PWwS5pmCDTWRjbbLYfDDeO48n55I5XxyhhMErq1I+BoT2ec89igSbMCRSRRAmUUWZaTmpSqLkEqLJKl1yQ+Z7MRIAM2LKRR8MvvP5Ebg3eOKAISjyAyTSsKh2Wkm0amOeCDw6SaJKmxw8rx+MyyWIZLR13kKGOYrWMMliGsuCi4OXzAu4hKJafzyDh4mkaTFwZJQqYzssLQDx1vzy0mSbCJ5WW6MK0erXKWZWJdzmglaaqKpkr4B3/2+zx+2PPl2xMqyajyjCwYtumO+/0nkmzDqe9wITKPK31/1dgiIu+nd8qyYrPZUqYpc7/QtQtllZOlmmlc6NoBJQWZyuj7lW/Hdy6XE1lqyTScf+7RY0ahM4iebVlxU9bYbmbtZx62B+osI1USGQP9OrMsgl2zod7mLHMgyypkknPpBoalJRDx65VCYYxkGCd0Iri/2bOMM9MyE5Esk0ULiffhmplWErdahNQkeUUMGiWvXnXvNQHBsjqaSlNXJe0Q2OwO3N03SBnZN7sra9XAMggmO9LcF6zzitKCrNAc+3fWuLCukTRLqTcFNjqc8HgrqMsNxgicX0AI5tEyLw4fLCrVRJESMOR5iTGaKDwyB6+uut3Vrkgd8UFg6gaUJSqHnQSMjkQqpJcsU89hv+X2bs88TthhoIiKTMCH3UdkUJzbN2Y30Y09eZZzf//73Ox3zMuZtjuTJDX9MBD8FUcVhKM9LSSqYrPLuIwtMaZ8eHxE+EBmCqQWPN4eiHJFRoVdF1zsr5IQe+Lt2DHNC852XC7vICR5muPCyCIsJtVonfHTj78l0Vd+8W67ZVvv+fLzC9XmOtS17UKRV8QQCO5KJ0l0SV4W1+2m92wPJYGJcX29YqxcoCxz5iEyTQPW9zjfE1go0ttrEdFNDOMAgF01i7W48DsEn1wZ5sCXr2+YPPLx00eUSPn2+hWVaB4fPpCnOcoIxr5jHjLsOvLh0x37G421M9OyggCTRpSR+CAIBNJKk+Yp8+KuEoZkg5JgZCSukqEdyPOMKBwfPj4wryvjtPDHf/wnvL6+MY0LgZl5nCirBqRhWVe0Nte4SxZpCkG5EyyhY12vaC4RJIebDePokVKRJEC0BO04dxObombuO1Y/U2aCzaZmtQPb3ZbgFSF4RBo49wM2FXSLYFpmlHSU+YofI8cn2OwDaR5wS06zLXDeoVRKuTM4aa95bpXT9UdMkqOVQBuDCAYfAsIsDN1MkiQkOvD0/JW0qjncHfA+cOknvHM4t7JtKvq2JwQHBJI0Y5wWmkKz0QWntxMiUQQruLye+Id/8e+RVTVo+Pr8xuHhkSgkL99OWLdwc19hQ+Bue0dQkR//7pllXNltbxAyZXUtN4ct/+Qf/bO//4Pq//y//ctfbXY7unFini2XyxlrJ56+fGFdFopqzw8//EgkcO4uLGuL0J6m2fLX//ZvKTcz97+446VtGSeBkI4oI3ef7liiYOkiu21Df+nxFoRKGNeZYepYV4sRBbd3BwKWaR54+vLC07c3srwkzVLOg2W0C5s8p5smhHbYccJKS2877g9b2q7nsP9AkecUWhNdAA9VXjMHx7k9kmcVP/32CZVAxOO9Ii8KhBDX03S1pSwLkCvn9xfWObCpN3TjcOVy7necp5bMlLg1MEwdMV55ldZ5qqohBJhmh5CKYZ6o6w3rMnE8zggpCEHibEE39YyL473tkUi6rsNZT9fNhBBomgItJN37TLlPuH/8yDCtjENP8BYhJEJGlBHsNls6O7Ld35AaybhOkCQgBMZotJIYIxi7mWm6UJiadbZ8/nDDblOSkvDh/oYiL/nptz9TFBU6sSy+RyeKSxfYHUoePpQIkWJtwKSB0+mM1hHnJD44nHV471nW5Yp9SgxSpZyPrwRhWELg/mHLuX3l+fUNrVKMUuQ52LAQYqBKcgSCyXkOt/fYacEtiibbI4Sh7xbSXLF5KEEGhssLp28tol/QMaJSw/3jJ94u77Rrz+AdxWZHvinICocdNLc3CR8+CdrWMk6eJElRKpLmirzKkcpBSNntG7rLQDe0zNYzTIGsyjl379TbgrKpWGxkdBPRSVIJm7rg9XVhGCcECeMwIcJCcILoFUVesNtuSJOcr1+feT++UuV7Cp3hmPjpuceT0qQG7UBlFWVTkOqERECzybj0E8ELjAq4YFkd1NWG8XQhEYosd6jUIkSkSbdsyi14yTiMWDuzrBMuzgjlSE1BanLwAaklWmuGbuLl7cjb8Y3ZWZIyZ7NpGKcW1IpSEY0iiRlyAYJEJ9fPzdh16KjY1jsyXRLWhcVOXBbL4DR5UnCoNGN3xHlBWVZ07YhboKn3rA6Ch3lU/PrXT7y8fCFPc8bWcX55RzjLttnQdgvL6rm73XO/OdAkJWVaM8+aYZ7ZbLekpmG8dPTnIwRPkmbYNeAXyzpOaJlRpiXRjwQ5EYzEioS5jYhZsb8tKbcNd59/wd0v7qnrilJVLMtCdshxxvB2escIh040vZ1wi6WqMhY7/G4TCIv1ZEWNtQFnLfv9AamhH3ryLMMYWCbHMnqUuZ72ozUUaUHTFKSJwdpAkmVMy8g4XBm9w3jGR48PEZNWaG0wErxf6dcLTbVDyxTHwrbZ0g4tSZ3SbA1aQ1akFIWh3GbIZCavc5AZTb1Dmshl6HE2EoMnCZ77/ZZpaBmGgURXrFNAa0FVFMz9ShSQZAopNfO0YBKLkhG3RKx1WC+umxwZiDojywXzukBQlKpAScVgZ2bjWFlYppEi3zC7iaxOcE7QHj1/+Ms/Y157JjeQlyXVpmFdZ37zt3/LPEdMWhBj4GZf03Y9T1+/gc+4v7vBOiiyiiIr6dueh/sbRFTY4KmqnHlq0VKSJyWHmx3j2DOvMyoRRFWxrhCjI/sd6me/u6dtJ0yhrwP0sQNWjDR8uL+nyDP++q/+mmZbsKye43kkS3O89WRZAkT2+w2JGFmWjn44I33K+W25yl2kQDjJw/0tUhjS3LG/KXl7e8X5meBgmWc2ZcX5fUKJlPNlIs8ThILESJRSfHt7YbUBpQVhFZxPb2z3kBWS07lncQtZFWjbmblL+f7zFiUCIliefn4mzQpCDAgBaZozLwu3t3ccT2eE1GjRcD6+oZW60kCqPUVWkeqc3bYiLSCEkUvf0tS3bLc3KB0YpwtZWhCcJTUGETXjsGCtJU1SEikZLicux4W8qcnqikNzS1MYuvczgYXd/hZwpEZjZMFpvJBXCbnyRAJ53mCUv0YBlKY9Tuw3D/z6737gdO5oNg/IxFFWKUUucGPGrronSR02RtKyYhpWdCrwcaWfjtigcE7i4oLzgcxkKJlTVSnOzSyzYvULShjG6UJ7GpntzOPjntO5JSiDCysKhbWBNE2Ifma3L9hsGh4/blitw62WdY244JAysjiPdXB6bdlUOUWu+Ju//pHoPbc3G7CCOHuSGLjdbLGzRXjD43d3XKYOLRNkSCirhqrJmaaWzbbiH/9n//TfgUH13/zLXyEC2gjm2WKMwa0BQUY/PfH22vPd519gDIgoqMpHpvEMYmRb37LdfqI/BW6bPQ/3JTKbQBZ8/doyXhz3+z1G5Hz96WfyNAF53XhYu1KVOz5/+AVd33M6Dby+/x1leUueHXh5uTD7DmcspZZc5hEVc2QEIUvkLJm8x6+WP/qTX3DuFi7tiJMTTo18eX/mOCgSbZnniSgkzaYhyypMAtMY6af2qkZrKubFImTk+P5GlW9pqgbrL+x3D5RpwuhW1rhS51u68wUXZ1JdMM0rZVUyjiNKSsZxREZFalKWaSbLSspyD+FqstHK4EJPFJBmiibf0p47xq5nnK9lm6IqWJaFPMm5uf/A8/Eriz1S5hXb6o40yYj6ipwwQTKzAAYZPP3Yc2pXvA3YaUYBWXI9HTal4nZ3x6ba8eW3J+piT5bDjz+8kBX66sxOVvphoB8HTCbIqpJ5GBBR0LUnbFxY3YIyhmGcUMrQd+3vNgTXk+Opf2e1E8u4kJqKbGPQFZwuLcEq0ixjXjpMKskzRXdqqYuGdVmYF4cSKalJOB5PYFeapkb+Dtnl5Yp3K9iUZQhU5YZNXXD7sAWZ8PTTC8t8RhvHNmkQIvL+teX9x4X/+D/6c/7wj44EfsJkM0kGmSy4nM9Y73g7PzNOjiSDVBXEAFFHgoDFLuSlpqhKxsnz9csLSaaIUaJCxjz22DFys91ys79hOEeW8MIyjQhhkNKQGIMQ4pphtlcSg1aCRF1B7dX+Hp0otLQcqh0q1SgZEVGTJIas1gx+pR86MiVY14AmQ8tAWawc9hV5usHIhHXypCphGVesX7DrjDE5SVaRFRlKwvFtwKgaHSRSRbwXLGPAx/WKrfKB/fYGIytsSBBZRr3bobOabp4JasYxIxJJkmp00OQ6JUSYVseyBJqmQUtBKgQfDzdkSQrGYLISIwsOmzt224ysGdjcJ6RZRrPJSOuJLG9IZcXQnfAEnEwRacFlPOHcTPSOr8/PXMaVblgRwqNEwtx5/DRTasPtzT3KVIzDCiGSqYwqL5mXlkQp7u8fGbvI8f1Cv75TlwWH2z3FfYNOMqR1XNozbT8hvGRcRwY5scbANi1QAvp1wChNXecMc0cIkbzJ8QJCFPho8asjTRICK+M0kKUFddmgJFzaM+sSMbrALgtZqq9/VrXkeDrRjZa0LFAmUmY1TZOjjcI7yTj1mOTapFbhOgyrVNAUOd1x4NvpnWldGAZLmtY83N/BKslNxu6+YgkLJgetJUoVFGV+tcUFQZlVVFnN7W7P3DuGIZKUFdok7Dc7siRHkGISKEpBIitutrfY5UQE/KoBgZQJQmRoI5mmCzYKlmmkazsebu4p0pLT2nNZLoSwUG6ur926aPIi5zj19ONAWiacujNaJ5R5dR3UpbjygwvL5rDj9nFPUQhO7yND57l7bDjkG769/UDUnrad6S8TShjabsKJwGv7ehVAFBo7LRRZzrSuzLPDholhtGwPd+jUYLQkTxOOxzPOQgwChUKGBI0iTa9DlpQa7z0CBUrSjTOHwwMfPh3Y7/VVuuBTDocd83RmmD1aFsjoybMMnXj6/pU8F3z9+sa6QFNXdOeJ9rRgVEaalhxuNmRJxeXcokzk8fGWt9eRKt/y6fGRn3/8RlCCiKWqI2FNyc21dBZcQl3n185DGnArfHjcomVNlVWsdqDID4x9R1akSKVwLuI9aHV9fpdjzybfUxYJdl3Z17dsNhv6/sLjwyNRrbTtQlXfsT/cMi5HovCMPWTJBh8sRVEzjCObzYYkz9GJJEvz34k6Bqr6gXGcWGfLZpNip4WpczzefWDuFoIV9NORvmvBBDb1juPbG9068nt3H5Fix/HSs9sdEEj6y5m7mw1plpAkJeP7meEsWOxAmq8QNHlRE41ncC11sqNoBG9vlrTIyXLNNFgkgbv9PR/v7pinidNbjzIWO0sSnSCkR4mMpirJCs22zrlcVkSaIFTEDo6yTHh5+QKhvLb5M4O1M2/fLMsCn7/bMLiF1WqsBWsHjJbs61uapuRyPvLDjxeKoiRNMoo85S/+/E95O77wfHzm8x/8Eauz/PD0he3GcLPZUe9qVndmGR3TaPnn//jfgdb/v/4//rtfjZMjTa82lmEYUcqyLB3zaPjw+Imhm3l6+kJZGIZhRMQUN3vqsqLtL+RVRlpoXk9npBR0rcdLQ7ErWS5HhqOnSAs2e0UQC/00kKYF87TycHjg7374v/FiJM8biiInEjHFSp7vYGmZh56Hwx1pviPLE8IUuH+8Ic8gKSrO/RvWOtIU5uFM+3bBL4p5XLChZ7ff0jQ1zk/YJUHrBB8tRZFS1imzbVmmq7WoKBL8mvD68kSe5HhneP7yRJAKYQx2CLjFIU0kkQ3Be4osYZ4GZBQMl55EGcqsINMpZaWoq4LtZkNTSTIjSY0iS69g9nUMXI49xiRsdzUYibWBaZg5HCreT+88PX0jKzKiV0ipiMLiiazRYmaLSBPsGjAhkOUlWboll4a5mymyiqbM8YvEzZF5Xki0QsuS1b5R1bdYH/j8e9dTxDS1dP35GrWYPMM0sk6WZiNQKkWqmiSXHC8XQFDWGVJYNmVJJOHl/UTRlBR5Q5PfkiSRIcwMbkYoSVVWRC9oNgVSz4z9yL66R3jBZrdhtYJ1dBSZxkfHtqiZ54W30zvdfOL2bouWitPLBSUbNnVGDBapBeM4UiY59aYgREtOQh5LmDr+0//k32ffPPH//b+/4fJaYvJIoGTuE/oOqnxHtAmpMtRlxfHyDomkbkqWxZGnFWWtmOcTREmqCy6nmUQtaCXorCeva6JqyUrJ2L0zLh1JWl3ByzHiHRhpsGtP0+QQPGmZ0GQVm+qeUzvRrW8UZUmZVHRtxzpbrF0pioz34Uhxm/D4cEv3NoCX7JsUFSO52ZKXFc7D+fWEIGBMBdFT1po8K7FzICrFsiq608S0jGy3N+zrW4ahJ0kMN7s9eZZQlRUKwa7YMFzO+DiQ1ArrV5LUUDbNNQawDsxhYVoCmkB7PvJ+uWClQpuEiGKaA6tbWZm4jCPzDAbFx9s90zRwPk/oJGOYJV234uPMue1wzlPUGbo0rGIB7ejGC+fLmXnx9BN007U9XpcZiRa0lwsBRVIUROPpl46X12e8h7pokN5RZiVuNQh7RWc9H9+J2pAXJbk0JCEnLhXzMPP89hMvbx3RRaI/cTp3dK0jSyJawXs/Y62jyVJCiFi/IhLJagPOexAaoz11JTEa+r4nSbfsdncQIuNwhXJroxFiIM/M73zl4ncRjUhWlVTbitQkGL1AiEQ0yzyjjUabjGhXbD9e7UXGgPXXU2iaEGRKWSiEGFgnjxGeqgpEbZCmRAqFiJGnb68I4YFrOTVLHUZVtN1E33ecx1cWIqtbEcpSlRUrA1OcSZOUuDrKvGCYFiYbmWPEK0GmatLEMM0tYEjLFCMEN7sd0+A5the2TUWWqqsVSEB7vKBEzeP9HbfZtcA1s3CeXxEE/GghCIqmxNJT1w11XdOO70yTRQVDs2nY3dXUVcEwXJvfvT3jkhkLzM6RlJaQaFJdXqUwJuJsxAfFvHSgJW6NBGlodgVj/8o6Lnh7FcNM04m1F9zuP/Dx8YEsXznsD4zDjJIGHzxeBvKyYLPLOB7fcYsm+JU0iVfu8G5LFDnTIPjw+MjH7z5xmY7MUyRPa5R2lHlDDJrj+wufvt+x2h6tclKzw3pPmu2IMbL6d9YF8tzhpsjb80zaZBiTkoqGpmhItGMZHYfDHfNyQXtDkW1Zl54QLEIEIpqsyPFhIksUUkZMqjid3zFKkaYarTXH4yvbKgcvSFRxtRb2P/HwoblqsfMKaweKskIIcb2++cDpeMGHmXqT8fPXM2lhGNeJduxIi4zX93cUCYfDgbTIKKpIIlM2dckyweePD7x8+xnclRSyf9hyOvU0u5r3pxeQAVNlbFXN6HpOlyesmxEiUmSaJBUIBcuyUOQpSa6pdwWLW2iPK26RaG2ZhoFpspzPLYuz1PUOt8jrd+92Q5lJnr5+ZR4tMYAQAq0z8kJzfBn58PiAVB4hPaf3E9MIUUve3p75o1/8EUYFlknj3ICQHmMMh5sN/XAmeE/wgZv8BhXh+4+f6M4XhFdsthWolarYUec5eZbz/efPvH39ytJHlBRYRlaXcRl+i6khUw3n54l2sFRlTow9Pnj+2X/x3/z9H1T/1f/43/8qhMDx9IyQiu224u31G4mqqPIKFzQ//fbX3N5s0TJFEckyiXcWgWRuLeiIvtnx3jlKoH99Zxp7jEzACbLckJQS56EdLFleYN1EolM2Tc5vvz7hZSQrMrSULMtEZjYU1ZZztzBcItFZ0sQhRcFlOrL6Fm8t33/3mU1d0V1aLucjXbfifMLDwy1lnpIlBX6F06lDhJqbmw3TMkBIESrQDx4jDVP3SpEphFR8e3ni5rAnSRP648z9hw37rcYPijQJ1OUNRalw4Vo0eLuc2d8drsrLz79H3ihkuiKSBKkU03whzzNCkFgxs157SVQVVwtOfQ+J5u6mYe4nhCyY3IrUmmAmjNKkOme/vaFfRlr7jlQr48Vy29wQ3IlEgXU5iZboaNEx8OnzFhVTmrrh9qbm/uGGutzgneXTxw2Pdx84nY8U+bXw9tuvv2HyA2X1gae3H0Eo1OJ4eLhjWGcm6yhqxen4TJHkHLYlU7cQ18jcC7xfqMo9Yz9Q1xlFVjDNFm9nFAt+EcRgyXJBP4yc+5koSqpao5WnyXcc30b+4I8/834+XQfPYkc/tuQbBVFwf/NIe+5ZreX2/p5tc+D5eWByjsUtJFnNPC58952iqTb0s+c//IsUN/0V/89fPjOOgo/f3yFVzv/1f/YsznL/+MAaO0Z/5HD7wKUfiGKhSEu6dbluMxqNAqZREQIMQ0/XD6hHhVsCn5qGZltxnq7ljERavLPc7z9ihIYA3323uypOZU7wjtVb0piQl3vc79SkSk/kFGhvWJ1k8StposkyRSoTQgfHpwt+Ddf31hAwGob+jXWdabYl09KT54a6qBFI1mW9ol0MRLWwqQqshUSl5JmiuSvQqWYZAjpTrN6CtKhcEYTEE/Cs2NUzXSJhgPPzkaE/oqUgLBEIyFQjsoyquUULTVUbslwwdAN2FqRJSZoqTAK7ww6ZJryf3ql3GXmSsPQtPnpWp66PGQVEEA4cCePqOB47UBoZwa2O86nDzZYqSwirpSpSilIw2zPTMjNNljLNuN3useMAMWJXT1kKkgzO7bXgoWUgrA6CompqhArMziGigGAJ0TFNjmqz5/Zuz7SMtO89iUhJsuRaVnKerutxM/gYcG5ERkdqUqQ3TBfHYgVZnXFTF1Qy4/x+Yl0XpnlACEOSXAUDdb4lrAuj7REqEteV1XqcBpkpLv3A6Ga8ASsCMmr8Ch7BsPSEuLLEgCkTFndBygEVBYkuQMHp8krXnlFBkemUaZzo1xmbRaKceNjur/GVZSVVKX/wp59IbkuqNCWycu57zs8tUVkq01DmN6yx5zL2oCBJA+vkqfKcKq8ZhwkvPTExqKgIU0TEhKTUpFrS1AemccFISJNrmVGbAl1oOrfStxaT5OQ6x9kFqzyLFsjorllUo7nZ3PL89Y3Fe6qbEpUqhqnj+dSRSE2SLpAKmmJP6jzCRZQumexInhVooTk0B7SSRG3wyjJfZkSe0M9n2mnCz46PD595//kZJ2Zu7u/ICoXYSgYxsbSKn3/zlefXDpdK5DZjs9kTiQztQqJSitygheb7z79PnmT8/PWZ/WbPf/Dn/xCpDOfzwOtLS1Nf2Z3jCjqFy9QzrpHUVBQmoe0HnAIlF+blQgwr59cRHAz9iE4ESa5QuUA7gVrgfl+AnAn0tP2FprlB5TCNC48P96y9Ii88w/BGYiRCRNwq8ItEEbDrhM7CVXLQTew3e+Z14LDbkycFby9PpNrw8jYSpGCwJ3TcYITBpCtvzy0+eNJMkyqFm1ackOCv2tnJr/TzzN3NI5EFoTPQC0M3EX1A+oxEedI88PWpQ+cVVS25jG/kRYOdu6uJr9JUqeHl5YQoS/I6I+B4ezlRVjWni8PqCV0Y5BKY58jNveb5C1RJxv2mZlg6OuGRMgc0zaYhyoAWmjrbEG2kHUdyYxhnR31ISVNDO3cIkfFHn35JXjqm3vFwd+B4fCPJNdO8sDscKOqVX//1hWm8kNdAVrD7sGFcJK+vJ5RUfPfxO5wY+OntlXlZiCFFN4qhtWTCMvSapNjx+L3hx990pEnNuT9h8mvH4+35iTRT5CplaGcimk8PW4gTIkrA80/+8//67/+g+j/9L//tr8DjnSBNJWXZIGOFIDAOM1mZcD51NNviCsR2lig8adagtGKzr6/sufPIOJwRLjAuK0LmFElOEAJ04HR5xyQ502xxYebT5wfOp5lxsiCuWa6+m7jd3zP2A9v9hnYYkGLi+++2lMmGn3+8ME8Dv/zlH9K2I4+POePY8cPftjRNQ2Jq9oeKD59LhiHSDy2LnyjKirquGMYT/dgBkbSyxBiYp5FpnFFSUdcZYz9xd/cL5tGxLhN3t/f8+PNv2B22/O2vX0mylSACy+KJWIwy+NmjgKos6LsOIkzTyNOXJ0yWI8jZbGqkjiidMy4dzl1oLxMmJqRlztPTT7y/viPQvL+/cnO7J1GCZZTc7O9w68o8D2idMPQdTd0QvWFoW+ZFoMx1WBg7QwySzTZBqowia1jcidmNdP0FlXqqOkeI/NrCtR6RSJ7f3piXHuctUl1ViI/3DzTbApWdOOxu+Xh/x1//5b/l4e7DNcM1RKwUTu8AACAASURBVF5fWmbnmML1fXF3uKVIIo8PB5Z15bc//ky91UxdytAOZLKirhKyrOL0PrCrNT54+tnz9PpMWnmKMifqlYfvfp/29YRU4FDU+y2ny4Q2Cq00+22JNhaZCHSmEMJiPNw0kQ8PBq0XPt6tLO+KAk9+W+DWjPeL5+uLJaqSsqoIYsBkK1pmpPpAkSXstiWvLyNGJ2w3GVmuObcd0zoyzD1Jari9z3AuElSCKBXKRN5fnwkKRJaQmJKquCFw3bSluQAJIVqkjix2wjlJP/ZEVpS8Yqyq/JpjHZeeYZiwdgXhafuW07m96nGzkiJP0UohRUaZ37Dd7Thf3jBJQZZUV+SPlkThcatlmiLeS6ZpoqirK6sQxbouSCJ1keAVrNaTR0iiINiVRENZV1z6CWlSlIloHciKhMhEmucYU6CkYZrGa6O+SRDSskzX097d/YE0VazWMi+Wfhzppg6PIy8rpFSsfsIGi5SC7XZHmiq8dRzPHa/HL8zTgBGCTCYonzB3E01dkJoEP2se7z5j1+u2v+3f6bqWJCmpig0xroQws9td27ZDN+IXzbnr0XmKVCkmTamqgve3E10/oaREIJEqx/uIc5YoNcM0E/DURUVR1ugMvL8OBsZopLhu0hAr2huGDubFsqszqk3ObBeM1wxdx+vlQkSgjCQi8HHBhYU8aSBqRjeiTUatNyTSYeeFZfZYu+KDY+oG9BqoEoV2Ar9apAiUuUHEq25zmgfCConMiHECuSJUDqJAKIExKUIIBjvSTwsqSoQTDKOF9IpA2mwP7JoD58uR4Bdq9pSm5uX8RtNUTHOHkCsIh1AepSTWRpI0QWaWVZ+JQuNdILiFok6Y7Il1GSm3NZPt6aYjUQjOrWWcoN42nLtn7BDQSmDXAestWkC1qdDC0PY9UUukVzR1xc/PT2w3W0qdk0jJ5TLSvrZsqwzvHFop7g83KC9QSl6zl2RIbzhsa+zisH5g5MS4zCxz4P7DFqUTtNYIb7BLIMsVzaYiy1O2hwPD2PLy9MRm3yC0ZrPbEZTA5JLLe8flNLLb70nM9bdhWVbuH25ou3eens94L+iXF/7qb/6SclMwzt2VgRzeGe0Jk6RczisPHx7wtkVHjxSRNBX4KOnblhAEj48f8G5hv/3A/e0vyPKEGDQ3m4rUpGRFwTDOrNajEBhytNCIOGKAsTvBeqW5nE8vV1FGemX8NtuE1UqIkWVa2G3urrEy26NVQpGWHI9njLlGU0JYMOaKfro7fKS/TJjkmoeXUiJQvL09EyVURQ5CUWwylnnFL4oqu2IB87Th7uaB8+mJaWzpLhPdxbPbPZDmBs/MOEuybCaTI0l8RBYJ/XpG2B1IQ5VJ/HrBiJwff3rGpIYkTa+4QB9JSsN6HphfJ3reae0IwdKPjmAzjJY46zhfjgzTiapQROFpW4fXCpVoohTgIURFnmR83O54f3tFaOjHF4S8Ir+qTYJbA3ZMKfMUGRRlfYO3EWEHXv7uhVyWSJXgteC3f9tyuH9gnQNFHVlDy9w6vvx44eX9zPff3/ObX7/x9v6VZV3Z3WrGacDaQNVci2dK5OhYk6UJLnRgBDYo1ij4p//ov/r7P6j+r//7v/rVsniKImMeJubRokgQQiP0zLJMJKZAqGuDMkaIOM7nCaUcSZHRnibGy8S8HplGR16VeH+F90ZdUVSG+4cDQS4MY4sxKcu88OWHkWpjeH55JVEFm/IOv0J/OVE1OefuDaxiWzUM7RlYuLu/IQTLbrPFLpGnpyNSWS6nCSEdiOuW1NGT5TWHmwqtBUJpkJ7d7sDPX75djS9WkmUpVbFhs9nw8vztd+BvQ5ok/Mkf/iHt+E5T7xnnnk1z4OZhR5JqsjwhyyuGoSdGQ9XU2Liyv7ul7QbGaeHh4z1pqqibmh9//OGqZFwcMa5M48K++YDRgdX3hBh4ePyERPD4+EhVNHSXjjBeN1Jagw8RERVlXuCC49JfyNMNeR1xLiXVW87tE7t9hfcp3XgmCse6SqZ5IS0kqwu8vswoU7E6xxxX0kKjtWR/aKjrLZ8+3bAsE85a6s2VO7evbxGx40/+4I/5vU9/TDt8YxwtdVNy9+GWok4wiaLIa6o6pe+vXNTNbs80j9hJcrjNeXz8gFSCYVz5/Hu3SB2ZFouzMyok3G5vOL+1FJkBOaBQFNWeYRyZx4CWAaMzYljox9O1wKBX+mnESMGHXcmf/4Pv8bMmTXOanUKrGUfJKBTfLgWni6X3MNgLUnkIKcugWEbLsp7ZbUumaQE8MTou3ZHj6czu9oYoFbP1xBjIs5pDfUO7tLx1ZzIt+cNP311bqFnOrtkTGEH8/9S9Sa9ty5qe9YyIGDHqWa9q77PPuefcMsnSdiIhI1oI0aeN3XDHooNNh/btISEhEEjQsJAs6NKkgftIdBJhY5yQmfeee4pdrjXrOcooaYyt/A2ZP2FqrTnjiy/e93mugKUoSqydM17Ow2p9R1nlWAxjO1GIgrxISdKAD56P7/dEp3h6uCMrFKfzATNZUpWzWjZYO1GWGp3lpGnB6fyMjwPTOHE6nxmmgX64MoyGcZwd6Cp3ZHnKYrlBScHZ3Pj+fMCRkMiJW7xQbnKitxwvPTKdWDQrLpeIC1DUKdaMSJUTkoCNnlSXxKAYhwGipWkypEoYJ0Oe57PqfZoI/nMBLAzoQn3GcykmO2DsgDGBsl6wWa85nk5cLzdk0CSJBSfwY8SOBjfMxY6i0kTHnHFuNGWZ0/cj3kfKskarEmMn2uHMNI1Er7jdLJfLjcvpghl7siqnNSPH0xkSSd9PdG1PXZVIJbjdjpAEVustQgna4UKUI4k0iM8b32HqGDrLOAascVhjSBJBnpboWDBNnqLO2KxqJjMb0JRXc+46BR88xk8E79A6I00bzORQKiILTUgMmRiww0A/RoxTqCQnuEgMgWKRYWUgbzKicAzOYIhMyUBveppiTVMuGYcbkThjqm6zjSvLFmhZA4pP+z0yVchEYcyIzBImO1KmEkbD/vmIDY40OGIMxNqTpgmJl0gZOZ1bxnFAJBIpK/J8xqRFLZBiljJMZqDKckKfcjlOCCXoLnuOhz3Ri1nd2nUsm4KmyMiVIPqI9xOlLrieJ6bBkFeaVCaEJOA8FKpknFqGyTL0AyoIzDQiRMp2U1GWOUoWbFdbxm7EmIl6JXn37nu0XLAoSqSAw/ETqBv9ZLFWobUkKxZEl2OGAWsFmc5ZbBXTNNCUGw6XjvES8Eai6xQTEybfQ5CIRJOrAp0JpJpIiCRkZJUgJhM//vCC0gki95zHF5arOxZ1w/7lB6RSRCmoi4bnDx3eOc7HM9iMuijo+ysxarJ0wTBFfPAkeJpmy6JekCro2yvDrSURA8/PnyCRPNw/Ye3IrZ3LTJOXBCaGMdD1lqzI8EHggaxaQ5hIhKDrzninmcaJvm/JVIZWkjIvCU5yuZ7ZbJYQQCqLFIZogURzOLzl+eOZ5WJBVZQcjh/IdM7D/SsOhyN5qjBmIlGwXG4YbwN1VXDrrqQxpVl5urYlkRnLTcrx2HI6WP7gj3a8/fAj37UfMVXGy8fAqs7Yv+wxQ0JwI9U64+X9C9PNE5xkua25+0LTXTyuU/TtldEk7OoFddrw6XymNYZf/uo13jgS5u7GONzQeclu+YQ3M43l1lvSNEcpic5zLvsj1WJJqlP6ywHSjMVyST+8IEXNw+M93XDjdAjoDIpM06wzFsWeJuz5cnniZ0+SX3yV8Muve0o/oBJJlliO7z/ysN4SXU5VlvzJn/whf/THfxelOk6HjizPyYuU1bqibee+0ThO2CDwUdL2A4nyuGCwQ5jFDGngP/mHfwsG1f/un/0Xvz4+X7nb3XE+XrmcrrPr93aem3l9j1KaN1++wXpH349oXZEAbX/kerXgUvIsmwHLJnK4HPB+mhu7vmMcRn737TuIlrJokFT0XctmuaJu1uxfTqyXa1LpMP2ZzWbHNBi6dmCZV8RJcbtegMDYRe4f7jicfsSOhqLcoHXg1Rc7utuA9wpBwhevXnPcH7lcOqwbCSHldu3RecpqveN2GRBCUJdrRMK8xVlsOB3PJMJzd7diNANlXTBNltVyTZpKLucDi8UWH6/gNQJBqiTP+z1lXTKOI8Y4siKjLmtUmnA679FZSVFU9P0NKRJeP3zF5dRhvWG5WrDe7FAyZbOtGW4dOBCJI/EOneXsdnfcLi3OuDkHlwZ0VVDXgmE8k8oKZx1Nk5IqNf9dEgnJyK27Yt1I1xluV4f1s7FisVphnaFpMtr2QpZLjPF0wwuXywWpEpI08suf/SGpSFBSMA4Jf/Zn/xer9Y6XT1ectfS3Fi0FOs04Xm/E3GKjx/sBWfUIlZFXiq9+8sil/x3IiSyvuXUdt84zXHue1hvuV0vOxwt5I6nKFe35RtApngQ3eZZlyna9gRhwBJxwbKpXOCuJPrBoUspU8vbHHwhR8vbjle/fnvl//rVFFCV2kbB7pdFrj7lZMrWiKmucHbHG8+rVG1It0XnF27ef6E2PUBqBxo6KVGgmcyMhEKOnrnYMpidJLd5H6nIGmp+ezyyqklQJbhePD56iyki1QkiHjR2r7YZ+7DnfbiTSIwLUaYZzgajATo6mKHi83zJNF7p2QCaKPK/YbV4hRSDBk+UZw3hjHDsSAX3fc75cmEyPEII8r3A+UlUZqImymv3Z50vHp5cfidmEDYFtuaXWkjRVDF3gsh+ROkWqlCpbQfBYM9LdevrOcm1HOjNAknI5tpjJsd1sqMqKJJFMk+Ny65mmEesmJjOi0wzvLEQ3b8nNDODvpzOpSgleIqUiUyUxJig1czUTD8EnyCRjUTYsliWpVnRjz/Vs2K4WfPnVhmk0dP0NqYAoGfoBZwx11XC3vaMoSsapny/dxRIlJCpThCTBhxkfJ5Fs1kvKMsWYCaIi1w3TONLerqhU4rzDTpY81Vg3cjmfMYMH5rLcYlkBCc4INqsNRSUoSoWQmsuxxQ4OIcAHR5I48hLyvKHIanxwZLmmKhTj2PP+wyeyTFFVK/ZnQ+c8ulHo1GH6ia4bSbNImlV0bU8SBK+e7liv1/S94XLqcFOgKXOSKAn+s8tegLMDIjrSJOVyPTEMA0WRMbSGMiuw3lHpJVko8E5zv3ggmhEh1Gy/SWC1KmnyBu8tfedQSgMJZT7nUr233IYW1zuijyQipc5yds2CVAui7DnsT8SYofMViZR89fUDSgbaW0sqUsarxVlDXWWsmyVjcPzqm5/R9SNd27GsGuqqpu9ahr6HJGF7/8DoDMFF6maJC+B8j9YwTh6ZKywOHzIWTY1IRm7tjadXO8ZxxI45JIIkGEZ/I8aWXCSM3hKTgWqRI13B/vkK2lMVBVWtOHUHJmspCsnYd2gq7DBSVgbvJuq6ITJiTcLLhw7rBxarlOt0Q+gGbyWLNGdZZpwuZ4pihblNlGXB3f2Ch/sH6qIhkZbJjpxOE7vNlvPlwGJT8vHjERk1bXuinS5IqVnVC7K8RmaaoTUIBN7PQodmu8ENe6K1tCfPYpGTaoGPBmMCMY5Ym9C1V07nCzotaJqKabJEbxAxR8sFu7t7rB0xbiIrE/rhSKYVZgwYI9hsNcv6HoIgEQGdK7qu4/HxC+52T7w8vyNNBeNoUUKRpwlNrVk0DXk+cTtHVqsFPlqmUVBWiqLyCJlSVwvKZcPtdKXKNlQbIMtQasmizPExkKWa9bqmrBPaNnDaG6TMKOqJb//yHbv1Gzo3YRNNVSQsmxydl/SXjqqoiVayWi0gCuxksaNFpynLXUoIKdM0UBU1y0U5x9ouHb/66Rtu/YAPliQuKRYZ3dByvThePX2JkCPjMFJUCf4qeGw0p48XTsdAFJHDcQSfYH1H1155/XqD1s3Mxt7uEGlkf+gYbo7rpeXxiwqIfP/9kWYlsEbiw8D5NoGMJFLM2VVj5+8vkaJS/OP/+J/8zR9U/4d/9l/++uFhw/sfD4zDxP1uRYyGNI9czhPLpiErUi7XjsvpgA8Jzip0HvDBkMQcoTRRzm05KSVJhLrKmVxCIiztZeB+e0+qBF07MXQTq0XN6bgn1YH1ckviodCCqii4nQecdfziF1/y4Yf3pEoSvcJMknGaaLsWKRSbTcXpfKC9OBZVzeXYk6USkZg547Ooeff+xMvzGZ1qjIFPn95RVxl28kzmwtPDF7y8vCBEwma1JkRPWWQcDi9YO0EUVFWGkhnPnz6x3lREB5fjmQRPMiaUhWazWLCsVgjg66++ZGx7unOLsQYpGhbNisn1WDuRpxlaZyglWG3v6UdDnldY33K9vqBJwYKSjjQLZEXNy3HP/dOO5bLkcj1QrkqyumbsDWZSJDKy2xYcnkfGaQQ5YewEPqKUwJkEkozRtMQwF3tu7YlMl/TDDZkopFQY4+bWtS6w1oMv0Znj+eUjh73HRUe9FHgjWFcNZZVSlwXjMKB0gSoqjO8YJ4tzPX7SmGnk8aHh+GL59PGFprpnv2/pzoHM57x6bOi6FpElGJlQ7da8XA5MTtEPLUoqcIFUBiAgZDJvg8eRstDobEJERxIDqoicWmhNwrl1fP9dx5unNdVPII6adkhZLwpqWZDJgr6FxaJBSg1RY52lHS+MdiRKQbOaywzb5h7hJO3tBCGSyhylFc/9mdFdIQomk7A/nMnLgqauCNGy3TU0i5Rx7ElixWQCLy8njocrxji88+hsVqE+bHb048htuLBarCmyHIKfW7ZKURQZZuyo65zbtafQK3xIuFz3hGCwxtF3nhgkZVkhk2xuSC9qxsFxeBnI9BozOS63MzER1PWKdR0opcP3OWHYsP90ousntFSUZTGjowaLdxN5qSmrnCRROB8Yx45Mf7aHnXuGz3gZHxypkui8pK5rpISh73GTI5Wa9toh4a+Hme3qnlTpmUcoNc2iwcUJkXi0yAhJQMpAtJZESdpzy9AGfv7zX1Dkmu+/fU/fWXSe4uPMlJRpJM9zplEwDpZuuJBmcd7wmkhW5PgwkpCQBEEMlqrU5JlmmuzcPq7AuiveWEIURDw6S7hbPSBDSd/1VEXK3W4DwjFOA1VZs1qvqesKoRI8htul5XKe85tFOWfzC5WSJookDSAs3hlkEuY4g9TkWcF2syFGCCLFR8VoB6BDmGQu05Qp3oGPA3mqqZI13anncDjgTKDMG1CRvuuQQuKdn9E/Ksc5R3TgzTzEkjgyXbCsGr542hHxFJWm73ueHt9wd7fBO4NILMFOjJeINxHnBsCz3dwxjSOplggShr5ltSqoMkmmE4T3+NZTpyU6ExwOe8Z2QpKRJAqpIlkmGPsRnVQoUmR0uDEitYYkcH9/j8gytNA8f9qTFYphGBmGKzJNKcoMrefBociK2XrnHTotORyfUSInuPQzpg0mZ0kzIATSdM7wFumah7s7JD3DDVRVkMSW2ylSV1vqBvoxsn97pc7rOU6StgTVM7UBN0aqYkmhFLXSlLmkqjKcNwyDQ8QCJRJ8GNlu7tAi5fjRsKzuWFQ5xvQMkyerCq7dga7tEdpR6BWm92y2Kf14wdq5+GndkWaTMvSO9fqRssgo64bTtWW5WxBUj5sSNqsKZ0Z8HCGNGDsj73bLL8jSOzZ3JT4xjJPBRYW1Auc1wQayPOPrr79kGi1Vo0mVYLvZkOsGHyLPh3dkZTFrRHVA55q6XGNNZLFqGHvD/eMjQswlQZmUTK7lfD3SdwNNOUeKrIcs1RSpZOxHpFYoNJfrhRhTjvuR5brkeP5E3xqEkBwuFy7v92RuIEs0puuRIWeWhk9cThdcPJAXS65XT3eLbHcaG64EnyPijjdf1ZzsgZgnLKqE86eesU3JtGMYDSKUXC7PlFVFU2UIJswkMM7hMhAqZbKOzVLjI2yX97xaLTmdzlz6jr4PROFJlGTsLQkFzTLncDrirOR531EsFXnzQKrXJEqjinuS/DVtHymrHc1yhzEOJSZux4EPb0/83k/fIMuJdjjx/PFC30piSPnqJ3f88MNvZ+FMcFRFxuHlihQF1k+kpUBmgnYc+Kf/6D//mz+o/q//4n/69elwYhotj49PxOjmNl654stXv6Jt57Bvf7OczmecDdzOIypziESxqJccrgeSxDJ0jt12h+0tu+0d/ZBwev7Eptlwt17w7W9+S10sEYkjS1PGbsT7QKUrUulYNApjehIkZbbg5dNh9hTfbzlfLpxPF6pm1lu2refl5USSCIKR7J8nnLtya5/pO49IAmVRsFzU3K4ji0aD8CybLdPU4azlfrMjSSZO+wvr7Y7T9ZlUCpJEsWiWTLZHpYrt+jV//v/+K5bLBu+ZocsmEglMvSdRgbyaN1dFkfGyf+F8OlPXC4QULFYNx/OJ0Y7c3++IIeV6HXHB8HJ9z9ANhOgxvkMJQWJz2qvBBE+iPCEK9i8fEdLgmVhtFgyToW0NVVpzPncsFxsmeya6grLIyHXB+XRhtVry6d1I1zl04VguS4LLSeJcirDGk2V6Hlj7ARIgKopizsh0vcNMLanK0TrlcvuE94773YY3rx8wduK7d78hyQuqZkk0DqxBeEGW52zqFaYfKMWWN0/fsNvVmHGkKWYCQo0iyxKKtebD8Tar/YaBMk2IUyCTksQDOJASLyyXS0t7u1GpAms83kBwhjSzJKnEhhwves7HkVz2/Mm/G/ju+xtKLfn6m59wOBv+4v98T1HvsH5PiJ716oH96RmRBg7Hjjy/R6mcoT8y3K7cr+8INnJ4vtHePMNoUDJhioFcS9b1gixmKCERAtIkwX+GoveDBaAsS8w0IKVg0azh83CklWLVPHDcn5nsSJYL3ORp23njLuWsw23qhvVmg5Bu1ovW6/kpOrEIIZim+cJDTBn6+dKWZRlv33/ifLywaJbsdjvayxFEZLW5Y1EtGK43RmMJOqc1F7ywqCxnsVJkKuHTjy84O7F7bKhX+cwOHjwER11nvHp6pCkrEiJlIXl63LBaLUmiRiaKGObCoiQhBrhdb7RtS5GV89P5OD97J8xP2VpFYmJwrsMnjjRXpIWaRQa9Z+gCucy5W23JakHb9XiTsl4vSDPBOEFMUso6nxW0/cg0zk90QmlUmqMyBWqiyDWJm9nKdV1R5DkJgURExmlgciNKBsbuymT6OS/sU6bWMw0dm+0CfOB8vCCkZrPZYe3EMM14o+v5yvnWMwwBrRVetKSlwo4jbhwoihzrDYO5oBJPqircqHGTpWzmzHLf+/miE27UWUl/9CTGoYuU3nu29yuyXHI5XxjHjropKBY1ac5n9F4Pfr4UWDNRFBVFlhNdSnd1KOFROiEvMnI9q1j7dsDZSNcPLJuCuyrnL77713z3wzvSNMyGIhMQKiP4BBCcTyfGaSS4yGa5JfqEqbeoqNFJRncZqYqS6BJePp5p2xEpSnSqaGqBnTriqAgDVLpAkdNUCxLhEFKjpOLd854YmFvhSaRc5nz34T1aJWw396hCg488LhbcDhfyQrNcbAFLUSUoFVgtMzKtud0sJhrSUtDoLdYaMt1wt9kwTheu/ZWsyEjLHGc8w9VSlBlFlRP8wHalWdU1ww0G3zJNgcsnw8O2QiLBWbS0ZHnCjz+eyPMNWSbRUjF24PyISK/s34282rzmaVviYuDPv/8tkxRk2QpretJG4UKkbyeaokAJT1UssJNjUWdEEfjhxyPGz5e+TEuMnZjshBOGQ3vm/DwQuolEQLFqeLlcKfMVdVnQjRNPX3zF41crms0Dq6eM0+2Ci5Gum+HGWhUo7TAmYOzA8bQnyxZ4b1F5oGw0icgQIuV42qN1xfVsCQEmO7LZ3hOTia6b0LrmeNwz2D1lsUXnkbbtZ8W0SuaXlynO5rYwIWOJSC3D2DOMnryIdP2NzeIB53qyIqXMCsbOEWJKnqXEwYL3c+45RLI8p+0s58uJ4KEqVkBgGK9IBUXtuZ0GorKcuxOKBa6f0KrAx5Tn50/cPyw5HXvOpyuvHte87F8YzI2YWIabo65yhv5ERLFabXn5+J7bOJBIxWBfuFzns+vurmLoJX3XoYuMxdJzOo4cj55x7Hj+dOb/+zfdzEZWmn/5f/8l/bXneOw5HJ857ydkatndvUbrwPvniWma0Lrh4anm9VeSb3/zHYu14naZ8BHSXJEXJQmauq4IwX4+6wP/6d+GQfV/+xf/y68PLy3H4zO7uzuMm1hvVlwOI/v9nqLUmMkSrOaPfv/vcLfdzkiiNEGImv52Y323pmsHtFD4EMh1Qc6cTVvWijf339C1Z5IkJ5XFnNtsGmIc0WkKiWW72RKi4Pn5hJBizoOkKYfDnuVqx1/+1beM0wRR0t5mTSMIjJ2d1pmeN5+vnt5Ql0u+fPMlHz6+p++vPD09st2ukfJzOQLJN19+zd3uNc8ffoAkpawWCAlSJCwXKyASE8cXb5743W+fWa4WCGkwUyBicdZhJ0FQkrwukalG5yXHyx7jHCotMH7iuD+R5pGgQKYZ/ThyeLmSphVeWKLoWFRLzqcjeVlSZis+fTiwudvRO4uPI0NnqKuCZqHxIeHa9pBIijzHTGeyNKXtbySix4850XnOp448W7JcJbgA9VKz3TaMo+XLN6/Z3tcE7xht/znnFUh1QlFK3r3f48KAsYaHLyoKXeFHTxIO3N/d8+ruV9jRMA2WfoRmVRNQtF1LU+VcTgeSEHm8v+flhwvvvvvE0EeG8crb929JQolMEtZLSVVVtINF5JJxdATbk9iRZbaFIUXnmjSVFNkMwPZBUdUZIiaY3pLnNfUiw7ievNJMxnE9jgw3R6ZT/vD3UxLdc7vBT1/9Hi71/MW//B4bE8axYxwCIhHc+gtgSLMCrUpWdUXXfiIO8ObxF/Ttlf3xI4nMSJSgWWmEYGbbNjVZBN8H2suVqtRkOmNoR2QW6TpDVVbkuuJwOmGNJ03VXF4sFjgHMhHoTGKiI3hIZY5XHpnPRSYSgfcSvGIyjuV2hU8mjB3ROsPZwDD2eDdv92YDpwAAHUFJREFUxVKpEMCtNWRlzpdfbrl/aBjaif5qKRclo71xfb7iuogDqrqhWSqqXCBJcG7i+DKSpRlZPjKZibEXSDKqLGO1yNms7tBKE4OhLjNef/FIjPOA1reGPM/I0hw7RqbRUFYFi9WSZrmiWa3I8hxjJ4SAMp9h4eu64XJ64Xq5oNP0M9alB68o9JJlsyDPcopSEtREVTUsFhUh9igtkGnBYByH8xXroaoq6qZCiARrPTKV9OMZIWG3ecIahwuGppkLJ5lOMXacc8oio7vCeBMsmg1lsWIyHiUCy1XJ5A2Xc0eW1mhdoJUmeDdHiJAIL1Eqp14tCMLRjh3GGYa2hxCpakU7XEiSnO3qEWKGm6BZKG7dlcN+QKYFh8OR0/OV0XRUy5T1smQYekbXkyYOd1JkZGx3GTALRKoqZxpmP/lqseB2HlmtdqxXC6yBGDQySdE649pdiVFgpp7btWW/P6FTQa5zhtZjJpBaoMuMziXI2JAKgSwkKuScTxe8DzOYPm3QMkcguF568qzi9PGM94r1/YaqyiikoFwkUDh6M1/SgxekyZJEQMAwTJ5bN1HkkrIsefv+e1SuiH4EGdG6RKeauqkw/cRoLCLV2NEgfGS9WnHuLmRlSlFoQgz4RJLnJVPf0w5XvA4QoNYFREkUCXmZcGkHphCZ6BFCgUkpspTEB8r8jiZruJ1vhEnSrDVtOxFsyv39htevd0Q/oqTHup72OiBkwdc//5ppNFyOPZGJspSMY+Tpi2/Y7BpCMqGrJYP31MuMUlc0RTULHBYrUmnZNjlVseJ8mwUBUmWQ3/HVN3+P3/uDP8HagXdvv+Px9YbVboEJYCZLU+ZkRUbRaKSWnA43nh42+HHgh9/+hh9/eMv/8b//Fc+fTnStpco0p+crWjmESoikxMQyjp6QeNI843obmGyPcT3OSabBoTPF9XpFyZymWZGmBUJEdJ7Sjjeul8B6vUOoK84HDvuB0U48PbxBKjjsL5S6QMuU5XLNy+WZ4AxSgbETr56eGIeRjx8/sds9IoTlfDijgkYkGarwZIsSQ6Qd5pZ8DJ5M51gzkekanaUUxXxBkklKWc24Q2sCZuzwtqFoHmg2Ea0zOnumqiPWGvKiIZUlfeu5v7+jrJeY7sLlZSDNwHuHI+Xl9IlMCj7sDzzeLRjGiWnsqYqG1SrleHjhi9dfobVEmBTTB+4fMw7HKzYZeP2LB2Kp+M3zWxJRzK8CS8XASNcLOnGmTwQfX67000S9yFitBFLo2QppS5LYkEjDy7GjWpazvfL+jmAttvdM7chmWfOP/+F/9jd/UP2v/5v/6td921NVa8pGUpQaQck0dqyWFXVd0N4m7CiITkLiKWoJQpHpFbfbFZUp0pCTCset79muVzAmFEVgu9rwu786UpQJ9w9LXDAYZ7ieDI+PK374/iNlKUmSwIcPZ07nK3kuaOqKqQ8URc3LywnvI4lSBAJCzc/ZZZXx8fnC49MS5yeO+5ZUFiTC8le/+R23iyWVBXWtUbLheDhzOHykLjbIRPDy6RmlMpTKSGRKWTQcX16o6hQXJ7qxJ0kk/TBRljv66UJVKfK8RApNU+2QWUIq5i/pd9/+httlT1OuKbKKLEu4u/sJwxQYY0s3tKhkicokMp9mK8gwYbrZUV03a5wVM1stnlFLjYjw5tVX/PQnP5k3kcs7is/FiFQFErcgCsNoRvI8wUwBMw4UeUHVjFy6K3me4Z3iw6cDVV3Sd4bLqSfEEVECIuBjwLiBsk4gaooqYu1EZy2ms7T7K093G7TM+PThyocPn3DOoLOSSIsbPEoGuvGzi9gl/PjbT5zOB+pmRVYk2BAhhfN1ZOgiy8WSk5nIC4EfIsP1QlO+IhELxuAY/Y1+GOnbge56I2Xm0aap4nw6oLMckQRUJrm0N5QC0ycUSqKlJy87vn5IuHSGdal5un/Fjz9e2P/mympdY4YLSmnatofPZp3gHFpJvJ1QiWdXr8hTTTu+0GwKRBFpdjl5VnE5tqhixlbZcUCkFfVqR5J8VkuWGZPtyVRDxGOdoSpz6qqmyHOElEyTIUZJWS2RWqNLyWa5pNA5aIUXFcM0D6A6i/TjCR/mS8Hl1jH0jnGwBCeBFCU1MSQzDsgJVps1dw8bvHWYIeVysOQZiNwyjuAnjwuRNM9ZFDuOzx2X/UT0KZexJy3mmIx0KZocO83P085ajAu0reF6vqBkZLFYAZq+nxBCsl4vccYz9ZbNZkVRzcY0FwQmRNrphplalBIkQWMmQ51XjJdAdxupiwbpclZ1w2bxQPSCqpakOtKZGzY6EIF2OPPux/eY0VGUOYM9MbgriSrIyzm65NxEXdZU9fIzh/VE3SxoryN9P1BUNcbMh8nsXu+wzoOORCFY1Q1CWXRa8Pf//n/Aq6cHvvvhW1yEh/tHtIa2PSCFZBomQghkmQQ/IaIgqyRdNEyjIkskWaZZLJeMw8C17RAqo70Ybm0H0VGVOYicRKbsTy9Mk+P1m1c8/eyRdFFguojwmjTLiGNK6QvydC53xSBQqsFYgzEj0WX018jT/QOLZcWHDydiTJHpjIrru4njeQ8ioNMCJSV53lDlS2SWcLM9gzGUqw1CJUyDY7NesVksEM59/v2ICJGS5zl3myfqpuTWvmDGkbwqEJkhYJlGhxSRoq44nS1lUZKmKVoU6CRjUZRE5zGj56c/+ynbuxwwCJEwJZAkGgSUpcIRicaSScFyeUfdlPRtzzRNtP2AyCDLGhya82Xiw+HA1YyYSVKkFTGNdDYhReD6C7f2TLPa0PUjvfGMYqKbPLkq8dZz97DEjYbJTEQbmMbI3d2a58tbmDSr1ZLVrsKZChE1ISS07cDQW1QZmKzh/ccDZSmwZqSpHlgsH3h3esun04XV01e8HPcE35MKT5pYMq3pukiWZfjRI9ysYlWV5nJz/J0//vf54z/993j64jUPD19QVRVaTuRp5OPzhWGAzGlC6jh0A8PUkQXNQm+QycinTwdi0FTNhtEZ9MrTj5aEitWqZL1pOJ1OPD28YtGs8YQZzXYxrNY1Wa7xNkIo0TrD+o5mUdHebpzPJ4bRIlXg3B65XgM6K7H2QlEn3M4SoTy5vqfrevqpRaoCbyNlEbHBogqB9yPjAPEzp0AkGdZEbteOGCfOxysh80xOkQNZn5JR8OHjM1kFQqSk5GTS03eRhy82lFXKx7cHpMnnfHpfELzGeY8OKX3o6ITn/HH/WTqdsP80IbIJlQaG1nAbDvSTQ2tJICMkI/ebB07XkRA6Fiqbi2ZhpL3Nr17bXYkdR/Isp5ve014DiUlY3K9ISjh8Mvz+T3/Fj99+S+8kSblimAaqqmbyjq5zFNlM1Agxpykji12FEJZ/9WfvePP6a6KLfPvdtxgj+eLNl+g04l2EkBKDpeuPTJMjKxe8fvMl/+A/+kd/8wfVf/4///e/ltnA/eOcSarLe96+fY+PhsWm4NvfvOPV45csFjnNMkfpgiSZt1zH/QfKCl5+nFDS0NQLxi7jen3m9VdbnCkpdcWH/Qt390vMAG8//sh2/UQwI6qYzUT325/zV7/5LYmY9YFZnlEWC6K3yNxwPp94eNghokQwUeYNaVrwu28/kheBGAzLuy1lnjMyH5qXa0BrECLy8Ljh1va8vDxTFBUvH/d0/ZV/+0//mO5iyLWmLARaaDKdcj23qHRB25/RSs78teP3bJdPbNZLDi8HbrcOqT3P748kaUKIknSR8fjmCWEFaalY3y0xU08/DhAVq6oiUSNjr7hdT7zeNkwukouSotYkqeL9Dx8QMuHx8SekQRLCSLNckKSCdmhn/7dlLkkYj8oTcq0RwVHIBaVakWU5UlqSmCGFIoTI8j5jW2VopchTiVIKHSGQQEwZr7DJJT/85nnGixjBx+MVORaoxFLVJZvNE2/ffcSYkbouQKYs65zz4Dgz4nXJ/nDCfhrohpbeTSxXS6qFZrVZQARnPNt1BYxstw9kac7L+xOT7XBR/bU33ouR43NHqTNW65o8r2iWDX3XQYiMU0eZ1Tg/EMVAKlOkWjBNE9/8/A1OpKzygkUGp0PPbvuA9ZK//PP3FE2BigIfU+w4YcZAd7vws2/+ABFTTscDl+uJPG0wfqK305xhdYpgJYfnE9HM4X5nB67jGa1zvB/RQmKCQQpFITNMb8lSSfQTCSMxgRADSklUookmsqxrQvA8v3ykvbVEBM/PB/woCN2F4CJKpiTOYcaE0Q5M/cB4GxExsKiWFPnM0C3zlCRY8iyjqjMUnkoXBCcYpoFiMccnzGRRiQQluNvcUaQNn95/wEwDgx/AO9r9iDlHvn71hs2mpqgCD/c7IME5hZ0kv/jlK5bLiuvFURQFIjqmIcxmoaFjbK8IqUik5nSd2abOO0IIKKnJdIFWGUWRslrUSCJZLlmtCyKWyRq6YeT55R1dd/3chlcsFw0xeC63K4GC1fqRellyOHd0N4HzkUwr7ldLvHVYO82RAtdiaZFpzjJbYLqJfhgQKsHZBDsFzsMFE0HrCjM5VtWWLM95Pu9plhUCx2n/kaJQlJmAseM6dLhckpfFjOkaB56fj39tNHPO0Z3O1Cpht6oRPuIn6Mf58/W3CSETtuslq3U9FzPbkWEcSJVm96ohLRNM2zN1F5omRxcClTiqQlKW2WwXY0KolKKSRBHwMCPMMLgw0A8dZmxZLlKaei5mXC5X6lpT6Aacpm4ylot8lnJEgUoF51uPihJvZrZvd7uyqpZolaNFRVXW5CIl1/OLw8v+A/04ki0KrBkRaYFI8zmvmZeYKSB0QHwup0mZ89Ovf0KRC2IeUImAMBFcxDjB82HPNBmKYi6cTZMlSxNO545+kixXK+zoufUX0qxg0+zQiWC9XDKdB0Y/M20VkgKJNZ72NqLirJ3tTYJuKtIqReQD58uVaegQNmFR1TipKLOKRbpgscywMZIkCWa6sFne8/C0xAbPu3cXmnLBYJ85305MbeTLN1+iM0F7vrLdrLAuoS4XXNs9I5aIoalrlnnO1B3JqwytEnAdIUCWLbDTlRhGensiK1Z4X/B3/95/yB//6b/DDx9/QDnBcrPi+eMHnh5e8/1vf6B3hsH0LNY143BBhYgdE1xMsDIwhIRmu6KbOhIpeXpzhw0SJRJy4YnW8O7tlbLZkceRb394x2jm/9Vcl0z9jTzfcjpemMyZrMxw3tJeB+p6h84UX335Ba0ZiEGjssjDei6cVnpNby8ELzm8fORht8DaBF3DtbuSFzWX25kQHdEGnA0s6xXjeMP7ie1mi1IZ1go2j4/oKJEu4eHxidPYonRGPx0JMSGahARYLLfoVHG7XElFzsuHF8q6oj16do8KnZf8wS9/RbVJuR2OyKujlRfKquR63lNU8+drqopffvNTbucON0mKosTbgTyF9x8OpIng3/q9X9DtL1gdGXqPVjk+OpyKeCHouxt2jAQv+Nkvv8H6T/zlv3khCsPTVysGm/Du+zMqtuzuV7Rm4DZcKJOC3dMbFtWSui4J08D++UzTLJDRky0KFvWS9/sX7u8avBNkKiNKy261Zf/hxP3Tlv468OaLDfvT4W9H6/9//Of/7a9v/YWH+9cM443T8fpZpxfxwfHq8UuU1KRK0rYt1jh2ux3X24lUKV72L7x6euTpcTd74JVApB6CwJnAOI0Y7/GuZxxG0ixlu9ny8f0HBtOzXi14/nhBKmgWBXYSrNYlSipe9s8UlaZpVrx+9QVCpBjTMxn3GR+TUjU5Ra7nBuhtJK8VT3eP/Pa37/j6yzd8/fXPqZqMH797x2qzRusZv9LUJTF6ZCIRCkgikYidJo6nI1lWUpTzAZOQcnd/R39zhDDHD5p6w4ePH9jd3VE0BevVDl2mZLmk0TWeyLff/hYzTmw2W6yx6FSSZxm3q6UqZuXpFCBxCUWVcb7dyFROkSo+fvpAmeWEGJBCcTjs0VrP9htryfIUISPb7YphaHl6uqPvRu62D8TosW5ECIEuCupmSdEUmP7/b+9ediVH8jqOf8MOh+95z3Op6u6pZlghIcQzseYdeAseAIlXYTMIsWrQoJ7paarqXDJPZvpux42Fzw72U0j+5AukZGf6H+F//H+aa9WRJBnGwjj0jMYiZUxdd2zKlNXmQBRJRBAQJDHjNO+6eAfb3YFpGtjuD3RjTz9qTqdnOt0SxH5+DeVC3v50oRtH7h+PrMoVq1WBsZa6adhutxg9kWUpSZLy+nLBOzvP+/Mh49TjvAfhUGHMNA7zLL5xIstz6qZi0iPH447rtebL5wufP1/YbT6y2TxgRkfXjoQiI8Ex9l9ZbUq2xzv+8PMLwyCJVcrr8wu7wx5rNGmck2RqHo4/TTirKYt8XoyEUK437ylAMdZ5jDWM/citqeYM9VRSpCVlsUJFMaGS7xG2mjhSxHFMmsR4PM6IOfhhmLDGMU0TIHh5fqZtGw6HHc5Z4jhhXW5I4oTL7YaMFNv1CmsdWZGSxDGrVcH9/R3Hu3u890QqoCgyyrJEypBAhuzvDyDDeYJFnmKtYxhG+qEnzhO2+w1ZlvD58xdkGJAkEpVGrMqSx8cH7u7XrNcx06Q5v7ac3wZeni84LB9/cyCUAdPgGCdL1zfcrjdut57RjERRyPcfvmOcJi5VhRDMc129x3uBMZooDPE2wGqBdxHX15HXp4axB0HOfrflx08PrMuCNMlIkpQgDLnearSZQw8IAlblGjNN3G4VaRwTygApAwIxv/o01pIlMUJA1VSkWUEk5msuI4X182KgrRu6qWW73SBDiTYWaxyXy3U+hBBKqlvD7XqhHRoGrQmCCCEVzdBze7vS1e0cuhAr0jhGa4P3AWUxn063RvP6csLoebGTxBEyjCiKEqUUMgo5n888f30lThM+fPxAoDxdXVMmBUpJhm4+MeysxXlPka3IixwrLJOxaDsxaoP1kMQxZTH3EI/WoGKFs5Y4yUmyhCAQOKeJYsV6u8H6+cCqf/+IQBCGETII5mumQtqmpkgLAgS36oZKIvIiJ0ljej0x6YFRT9RNxfVyY9QTWZJS5hl6nGjfd/cmp3FC4CyMfUtdVfOJ/MkSyJBbXc/xmXp+E6fijHKV0fc94OfC1Qqcs1ijMX4ikgoVxESB53KriZMVWswpK3Xfk6kE4yy74w6pAi7nE6GQpKnEeUuAY+gdMgwR1iMjxWgcWEMeJSRZxNPzC2bSRFIgZYT3hrdbxTg50jjl7fqV3eFAfemRMkSEHiUVBCFxkrFfb+i6GmSEtgPaGHI17+qrJKNve6Ig4HSqIQg47ncU2RoZJjzcf6Is99w9fAAhaOsLZRLz65df+Lff/Qs///wTSQRWOIauY9IaFQmKrOR6rUnSlKatscahJ831ciUUEZfziSAIKdKUwHmevn4hCFIOhz319ZVBO5I0oa5rynJFrAJO5xsyEqzW5XtRrTBGEEcxaaZ4fnqiG1twgkiFhCKEMATnkUrgPex3R9IkpukHJtegJ8thvwccgx4os5yqajns90x2nOffWsfp9Mo0DbydL+RRRCwTur5mHEYCBErNkeZKRVwvZ5yzrNY5Ss3TOZy3fHj4wMcPR1arjPPlRqQcz6eaSCnGrmF1f6BcS65vb+AyIpky9prm0lCsIqwwCCHZ7/dYO9J2Ginn/vip6ni6nrDGEccpTdcQvM9Lnroe4Ry7/R1vpyfadiLNSvr2hpksWZKyKrYcjlu0s3TdSF7mbNMtb9ea33z/kaqp+fBwBAHdWCNcwKAn7vYHTpczkQTnPdMwUm4zqmvN/d0jTX/FGsv33z1yrev/H4XqP/3zP/7DD5++53Jp0XpgtdowTj0qDun7njIvwUOWJWRZSpqW/Ofv/4OyTHi4f2B33DONLSqS6AlkNJ8aL4sDTX2jbdo5eWObE6uUclvSdyNSBIjQ46ym7wxZpjCmJxAJkYLL5UIQCNI0oalH6qrl118/k+UKrS2Pj480bc/94x6Bp2pa1tmabqqJCLk7fmK9KlBS8evnPyDE/Lo4DGC7Oc4DfI3GexCBp+sqbtcaKUPCMCBLCtr+ipncPKbjPe6wql+RocLakGHQqCSmm1q09tT9DT10+N7N82a94fHhkbYbeLx/IE+Suek5KslThe47it0OoeeUKydAuABnNB8eHijyFD14oijk5emJ+tZR5iU/fvqe6+UVby2THgnDkPr2xm69xVmomytpFnK8v+fr8xnrPJObqM4tz28V6/Wayfq5xzIv6dqBIPS8PJ9oOk1SCF6fTkxOICMBQuO84PT6hgeMdUzW4DxMgyGQCT6QDL1lt8r54e6OD58e2N1vkUGIFx5rLXoyXK81m/WKu7t7LqcrgYzmVCBvyPINZZkgI8WtviGcQwBJpihXKzwOazXb7QalIvRkkTJCRgGRVBg3Ut2ekZEFPNJf2JSCbLVhGDW//HLCi4JIJoSBQEYRTd1gDdw97N/H7owEwjPpAa0t+/2Oa1XNi41Rc6sbgjAgTTKyPGO735AWGaEPsNZiBosXnlAE9E1LkRc4K4jk/HsKpSJLC6ZpwBrLZrMjyzKstdzdHZBhgNbzfYkIeHu5QSBomgHhgMAjI4GzHiE8SRzT9wNfvn4hTRVJ+p7J7SxJloIUDHpAxYpxHDm/VcRpTlKk+NAhgvkBf/9wz2pdst2t2WxX87D7YC58w1DQd/MBwu12z2q9Js4UKon4+vXMOBhkFCBVSBqXCJnMsZFxgp0Mt+p9RukwH4gQAoZ+vnenyc5FQSDJs5TjYcdf/9Vf8jd/+1v+4rdH7g4lSSQo8pgoUgzDRNN0tF2H9QKVKIIooLrWtHVNkqWkccI4jIAnS2OMtYggYFXk9F3LtbkRygjTG5q6pR8N/TCgpxGBYHvcUqxzxn5iGDTeegIhCCKBUopRG9quIU4VUZrwdrnxdq7f+98FiICiTNmWBVKE6Mkj5bxgSeKEaRzx3vPxux9IkogoCtjtdgxDz/n1lSSOOd7dkWfF3FPmNK/nJ6IgJItS+q4hy3L2+wNtUxHIkCwpMFZzrW+Met6JdoEgTmMC53DWcrlembQmS3MCMUc1d31DVV/RRs+JPnGE1nPLU5Io2q7h7XplHDWZUsSRom5vWGsQDrqupRs7AhnSvC/c3qobxk7zvZpE7DZ7inKFw8+zXI2fH+xY3qoLXgTz/zAOGUqe3l5JVEKWJ1RVRaISjNFIFTFOdj7kNk4EYcA0WcpyTd3csGaOUh5GjRkMd/sNt6rh89cLm+OOyUwEUUjXtOwOO15PL7yeXnjcH8FYAumYtMFNhvNzS6QkWaQwztBNE2WasU4LROSZJsd2s0V4R5rm3Korg9asVmussTjRY40jT9ZIGZIVCU3dsd8fmSbNfrPBmhEhIyY7kGUF9a3FOocPJFEYI5wjy7YQOby1bFdHjvuP7I8/kBcb/uvnPxLJkKGp+P1PP/Gv//478COrIsQOLafLiTzL8SLg7fxMU3UIL5EyfI+yhvPrCQhx2s/tMUUJ3tDeKuqqJgxL7u4PeN0zGo8Tbp50kRfEcYD3kjgJMUbPz5Ku53qp2O8OqHgOsrhW57kv2AxgQkatwUBWxuChyHKutzNV3YI0mGnenKnrmravsZPBE5JmCXESYYzm6fmFu4c7Vuuc/eZIdT5jJs049ux2G1QUkaQKFWcYq+fe+FVB0zXIRM6LHinBe4oi4pc//olQSc7n/+brU8uqLNhsE54uDZfXC0W+Yhh6NtsEPTXgPNp4msbjsXz4+IB3GuvmAriuK5gMRjoSNU/R6fqeQAVU15ZYSuJIcr00qBgub5YfP32cN8emkHFouFwqVBzR63Eew1UWVK83tLEoJdnudzT1BS88w9SiwgSCkI8PD/z69Vf2u4woUvTtQJQGWO14O1/ZHkqc8Yx9TdMN/P3ffRsRqsJ7/+f+DovFYrFYLBaLxf8S/Lm/wGKxWCwWi8Vi8X9ZCtXFYrFYLBaLxTdpKVQXi8VisVgsFt+kpVBdLBaLxWKxWHyTlkJ1sVgsFovFYvFNWgrVxWKxWCwWi8U36X8AQIz+svsBKM4AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light",
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Let's plot the result\n",
+ "show_result_pyplot(model, img, result, score_thr=0.3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7GrWIJywLV-V"
+ },
+ "source": [
+ "## Train a detector on customized dataset\n",
+ "\n",
+ "To train a new detector, there are usually three things to do:\n",
+ "1. Support a new dataset\n",
+ "2. Modify the config\n",
+ "3. Train a new detector\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "E73y5Lru-wBx"
+ },
+ "source": [
+ "### Support a new dataset\n",
+ "\n",
+ "There are three ways to support a new dataset in MMDetection: \n",
+ " 1. reorganize the dataset into COCO format.\n",
+ " 2. reorganize the dataset into a middle format.\n",
+ " 3. implement a new dataset.\n",
+ "\n",
+ "Usually we recommend to use the first two methods which are usually easier than the third.\n",
+ "\n",
+ "In this tutorial, we gives an example that converting the data into the format of existing datasets like COCO, VOC, etc. Other methods and more advanced usages can be found in the [doc](https://mmdetection.readthedocs.io/en/latest/tutorials/new_dataset.html#).\n",
+ "\n",
+ "Firstly, let's download a tiny dataset obtained from [KITTI](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d). We select the first 75 images and their annotations from the 3D object detection dataset (it is the same dataset as the 2D object detection dataset but has 3D annotations). We convert the original images from PNG to JPEG format with 80% quality to reduce the size of dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "rHnw5Q_nARXq",
+ "outputId": "a61e0685-6441-4ff2-994a-15da68e507fe"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "--2021-02-20 03:04:04-- https://download.openmmlab.com/mmdetection/data/kitti_tiny.zip\n",
+ "Resolving download.openmmlab.com (download.openmmlab.com)... 47.252.96.35\n",
+ "Connecting to download.openmmlab.com (download.openmmlab.com)|47.252.96.35|:443... connected.\n",
+ "HTTP request sent, awaiting response... 200 OK\n",
+ "Length: 6918271 (6.6M) [application/zip]\n",
+ "Saving to: ‘kitti_tiny.zip’\n",
+ "\n",
+ "kitti_tiny.zip 100%[===================>] 6.60M 8.44MB/s in 0.8s \n",
+ "\n",
+ "2021-02-20 03:04:06 (8.44 MB/s) - ‘kitti_tiny.zip’ saved [6918271/6918271]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# download, decompress the data\n",
+ "!wget https://download.openmmlab.com/mmdetection/data/kitti_tiny.zip\n",
+ "!unzip kitti_tiny.zip > /dev/null"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Wuwxw1oZRtVZ",
+ "outputId": "7f88e82a-0825-4c9e-e584-bd43589feeaf"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reading package lists...\n",
+ "Building dependency tree...\n",
+ "Reading state information...\n",
+ "The following NEW packages will be installed:\n",
+ " tree\n",
+ "0 upgraded, 1 newly installed, 0 to remove and 10 not upgraded.\n",
+ "Need to get 40.7 kB of archives.\n",
+ "After this operation, 105 kB of additional disk space will be used.\n",
+ "Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 tree amd64 1.7.0-5 [40.7 kB]\n",
+ "Fetched 40.7 kB in 0s (165 kB/s)\n",
+ "Selecting previously unselected package tree.\n",
+ "(Reading database ... 146442 files and directories currently installed.)\n",
+ "Preparing to unpack .../tree_1.7.0-5_amd64.deb ...\n",
+ "Unpacking tree (1.7.0-5) ...\n",
+ "Setting up tree (1.7.0-5) ...\n",
+ "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
+ "kitti_tiny\n",
+ "├── training\n",
+ "│ ├── image_2\n",
+ "│ │ ├── 000000.jpeg\n",
+ "│ │ ├── 000001.jpeg\n",
+ "│ │ ├── 000002.jpeg\n",
+ "│ │ ├── 000003.jpeg\n",
+ "│ │ ├── 000004.jpeg\n",
+ "│ │ ├── 000005.jpeg\n",
+ "│ │ ├── 000006.jpeg\n",
+ "│ │ ├── 000007.jpeg\n",
+ "│ │ ├── 000008.jpeg\n",
+ "│ │ ├── 000009.jpeg\n",
+ "│ │ ├── 000010.jpeg\n",
+ "│ │ ├── 000011.jpeg\n",
+ "│ │ ├── 000012.jpeg\n",
+ "│ │ ├── 000013.jpeg\n",
+ "│ │ ├── 000014.jpeg\n",
+ "│ │ ├── 000015.jpeg\n",
+ "│ │ ├── 000016.jpeg\n",
+ "│ │ ├── 000017.jpeg\n",
+ "│ │ ├── 000018.jpeg\n",
+ "│ │ ├── 000019.jpeg\n",
+ "│ │ ├── 000020.jpeg\n",
+ "│ │ ├── 000021.jpeg\n",
+ "│ │ ├── 000022.jpeg\n",
+ "│ │ ├── 000023.jpeg\n",
+ "│ │ ├── 000024.jpeg\n",
+ "│ │ ├── 000025.jpeg\n",
+ "│ │ ├── 000026.jpeg\n",
+ "│ │ ├── 000027.jpeg\n",
+ "│ │ ├── 000028.jpeg\n",
+ "│ │ ├── 000029.jpeg\n",
+ "│ │ ├── 000030.jpeg\n",
+ "│ │ ├── 000031.jpeg\n",
+ "│ │ ├── 000032.jpeg\n",
+ "│ │ ├── 000033.jpeg\n",
+ "│ │ ├── 000034.jpeg\n",
+ "│ │ ├── 000035.jpeg\n",
+ "│ │ ├── 000036.jpeg\n",
+ "│ │ ├── 000037.jpeg\n",
+ "│ │ ├── 000038.jpeg\n",
+ "│ │ ├── 000039.jpeg\n",
+ "│ │ ├── 000040.jpeg\n",
+ "│ │ ├── 000041.jpeg\n",
+ "│ │ ├── 000042.jpeg\n",
+ "│ │ ├── 000043.jpeg\n",
+ "│ │ ├── 000044.jpeg\n",
+ "│ │ ├── 000045.jpeg\n",
+ "│ │ ├── 000046.jpeg\n",
+ "│ │ ├── 000047.jpeg\n",
+ "│ │ ├── 000048.jpeg\n",
+ "│ │ ├── 000049.jpeg\n",
+ "│ │ ├── 000050.jpeg\n",
+ "│ │ ├── 000051.jpeg\n",
+ "│ │ ├── 000052.jpeg\n",
+ "│ │ ├── 000053.jpeg\n",
+ "│ │ ├── 000054.jpeg\n",
+ "│ │ ├── 000055.jpeg\n",
+ "│ │ ├── 000056.jpeg\n",
+ "│ │ ├── 000057.jpeg\n",
+ "│ │ ├── 000058.jpeg\n",
+ "│ │ ├── 000059.jpeg\n",
+ "│ │ ├── 000060.jpeg\n",
+ "│ │ ├── 000061.jpeg\n",
+ "│ │ ├── 000062.jpeg\n",
+ "│ │ ├── 000063.jpeg\n",
+ "│ │ ├── 000064.jpeg\n",
+ "│ │ ├── 000065.jpeg\n",
+ "│ │ ├── 000066.jpeg\n",
+ "│ │ ├── 000067.jpeg\n",
+ "│ │ ├── 000068.jpeg\n",
+ "│ │ ├── 000069.jpeg\n",
+ "│ │ ├── 000070.jpeg\n",
+ "│ │ ├── 000071.jpeg\n",
+ "│ │ ├── 000072.jpeg\n",
+ "│ │ ├── 000073.jpeg\n",
+ "│ │ └── 000074.jpeg\n",
+ "│ └── label_2\n",
+ "│ ├── 000000.txt\n",
+ "│ ├── 000001.txt\n",
+ "│ ├── 000002.txt\n",
+ "│ ├── 000003.txt\n",
+ "│ ├── 000004.txt\n",
+ "│ ├── 000005.txt\n",
+ "│ ├── 000006.txt\n",
+ "│ ├── 000007.txt\n",
+ "│ ├── 000008.txt\n",
+ "│ ├── 000009.txt\n",
+ "│ ├── 000010.txt\n",
+ "│ ├── 000011.txt\n",
+ "│ ├── 000012.txt\n",
+ "│ ├── 000013.txt\n",
+ "│ ├── 000014.txt\n",
+ "│ ├── 000015.txt\n",
+ "│ ├── 000016.txt\n",
+ "│ ├── 000017.txt\n",
+ "│ ├── 000018.txt\n",
+ "│ ├── 000019.txt\n",
+ "│ ├── 000020.txt\n",
+ "│ ├── 000021.txt\n",
+ "│ ├── 000022.txt\n",
+ "│ ├── 000023.txt\n",
+ "│ ├── 000024.txt\n",
+ "│ ├── 000025.txt\n",
+ "│ ├── 000026.txt\n",
+ "│ ├── 000027.txt\n",
+ "│ ├── 000028.txt\n",
+ "│ ├── 000029.txt\n",
+ "│ ├── 000030.txt\n",
+ "│ ├── 000031.txt\n",
+ "│ ├── 000032.txt\n",
+ "│ ├── 000033.txt\n",
+ "│ ├── 000034.txt\n",
+ "│ ├── 000035.txt\n",
+ "│ ├── 000036.txt\n",
+ "│ ├── 000037.txt\n",
+ "│ ├── 000038.txt\n",
+ "│ ├── 000039.txt\n",
+ "│ ├── 000040.txt\n",
+ "│ ├── 000041.txt\n",
+ "│ ├── 000042.txt\n",
+ "│ ├── 000043.txt\n",
+ "│ ├── 000044.txt\n",
+ "│ ├── 000045.txt\n",
+ "│ ├── 000046.txt\n",
+ "│ ├── 000047.txt\n",
+ "│ ├── 000048.txt\n",
+ "│ ├── 000049.txt\n",
+ "│ ├── 000050.txt\n",
+ "│ ├── 000051.txt\n",
+ "│ ├── 000052.txt\n",
+ "│ ├── 000053.txt\n",
+ "│ ├── 000054.txt\n",
+ "│ ├── 000055.txt\n",
+ "│ ├── 000056.txt\n",
+ "│ ├── 000057.txt\n",
+ "│ ├── 000058.txt\n",
+ "│ ├── 000059.txt\n",
+ "│ ├── 000060.txt\n",
+ "│ ├── 000061.txt\n",
+ "│ ├── 000062.txt\n",
+ "│ ├── 000063.txt\n",
+ "│ ├── 000064.txt\n",
+ "│ ├── 000065.txt\n",
+ "│ ├── 000066.txt\n",
+ "│ ├── 000067.txt\n",
+ "│ ├── 000068.txt\n",
+ "│ ├── 000069.txt\n",
+ "│ ├── 000070.txt\n",
+ "│ ├── 000071.txt\n",
+ "│ ├── 000072.txt\n",
+ "│ ├── 000073.txt\n",
+ "│ └── 000074.txt\n",
+ "├── train.txt\n",
+ "└── val.txt\n",
+ "\n",
+ "3 directories, 152 files\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check the directory structure of the tiny data\n",
+ "\n",
+ "# Install tree first\n",
+ "!apt-get -q install tree\n",
+ "!tree kitti_tiny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 304
+ },
+ "id": "YnQQqzOWzE91",
+ "outputId": "455b3e61-0463-4dc5-e21f-17dd204938fb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAEfCAYAAADShy4pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy92bMtyXXe91uZWcMez3zOnadGz0ADDRAgQIIiKZkUHWGbCioomn5zOEIRkv0kv/hP8Itf/aCQ7AjLYVEkLTIsBi2SYnAEAWJGg81u9Dzde8989jlnDzXk4Ies2mff7tskGEQDDXp/Ed333r1rV2VlZWWub61vrZQQAkssscQSSyyxxBJLLLHEEkt8OKF+0A1YYoklllhiiSWWWGKJJZZY4v2xJG1LLLHEEkssscQSSyyxxBIfYixJ2xJLLLHEEkssscQSSyyxxIcYS9K2xBJLLLHEEkssscQSSyzxIcaStC2xxBJLLLHEEkssscQSS3yIsSRtSyyxxBJLLLHEEkssscQSH2J8YKRNRH5ORL4jIq+IyP/0QV1niSWWWGKJJZZYYoklllji7zLkg9inTUQ08BLwM8A7wFeAXw4h/OX3/GJLLLHEEkssscQSSyyxxBJ/h/FBRdo+A7wSQngthFABvwL8/Ad0rSWWWGKJJZZYYoklllhiib+zMB/Qea8Cby/8+x3gRxcPEJF/CvxTAG3Mp4Yrw/hFEEQApDkyPPCnzD9vjhFog4VhfuziMQuRxBCIJw8LX4V3HRq/D8HhnCV4h7SfBxBRiNagFAGJ1wwe8OAD3nlA0FqjtEaU4L0HwGiFKIUA3jsQUCIEH3DOEwjxd0rjnMM6T5IkaKUX7tPHuxN5sNkLfTPvuRDmhy3GU8P79FAI8Tcx+hrmH4YQ8N7hnIfgMaJIs4yAUFtLIKAEtNZorUmSDJ0koDSi1LyftVIX53OeqqoJIcR+knhL4SGNjI9NLu6JxXu/aGsIIAS89zhb46wDCQhgjCExCVrreC4B7wM+eKx1VFVF8G5hqMR2KhFEFEopRKR5Lg4fPN7H55XnOcYYRAQRicc240jm7ZN2CC3c2uJT4GIgizxwjxcjtnmesnCih0Euzj8/pO0/3z7f+Pt2jHh/8W4o70hSEy+hNEGn6CzjYHcPX5YoCQQB2zxDrQz9/oBur4NJNMFbXF1RlyXeB6wPZKJIs5R8MCBNOxACSkNNjS1rlKRMpyXT6RhjNFmWobWmritCCHQ7HdIsRSnV9E8cB9ZDUU6p65qqqHBlSZZqVlZWUSYjKFBaIah3zSsXY+piwMX/O+85Pzvj9OiAoigZ9nJWBz2UNu0bTxCJHq/5Aw14ArPScnI6wbnA1vomeW4wRuFCoLQBpxKKyYSBCuTdBAf4IIzPT+mnOb1ej6AE7y3T6YRpUZOmGW42pagslXWE4BAJRJ+bYJ3HNXObb+cqedfYQsWGSiBNU3rdHsOVVXrdLqiLqbE96xJ/NxHe9bf5PNSMY+88o+MzRqcn1HVJsDX9TofhoEdZV5S2onYWH+KcEdctmjlFyLOM9fUNer0+k+mENMvodrvxrZHFWSlAaN5iCfi6wtma2lqSrItJ03fNjs376R3WWkRAiUJpDaJ4z1za/KSuK5RSnJ6ecX4+xugUbQy9Xk5iBLBYH5hOZ5STMbPK40NA49EizfmB5u9KKbQxZFlOt9sjTbM4Jz3Qzoe3ZaHDASimjuPDA5yb4UKcU0UFtARSUaxvXSLJu3+j5yo+UM8KxtMx1locnjRPyUyCK2umxRSvNcPhBr1uh8a4ma9Xf/0MEAiLN+Hh/GxMOZtgvcWpQGIUqTE4G+dDgkXwiE4Yrm/RyzOkWXuUekhffSB4cLEMczvzwWPe+/TacRog1OCg9oZaFJULFLNAXZWkuaKXp9RFSVkEbEhI8wRtPMGXZKmCSjOZWmolJLlmvQepCLNScTzxkMGwJwx0fB6t9fBhmY8fZm58v57e/9/wta997TCEsPWw7z4o0vbXIoTwL4F/CbCxuRl+7r/8LwhBIKhIjNoJXgKIJwQXDb1m5PjQmMQhoHSCJxpbc4NURaMshEgWIvGweOtQwnyyCD4SrhACwQviFcHXWDtmfHpIMT5FB1BegVVknT5ZfwWbZ1SisOIIdobxJX5aMDufoSWhP1wlGwzweJSCXq9Hv5uhlBBwzGYTgq8xWlNMC8ppRa/XZ7i6gklSjkenjE7P6fYHrG9skuUdnHWIr0kSCChQgkoM3gfq2iIIGoUWhQTwwSIS5otqaBYfHwLS3j/RYKtswM8JmsVWFd57gnNYW1HMZkwmE9x0ykaScPXmHYablzidzdjdv89sek6ihTTLEJ2xeekq1+48xmB1g36vT2oUeaIjgQ2glOHsbMzhySknJydYVzMY9Oh0ujhnIyFKDNZalNZobQDB1hblBYXgJeDx+OAIweO9Q0sgAWxZMZ2es7v7Nrau8LWjk+fsbG6xublJfziMBnrwFLbm9OSEk6MDRifHWOvw3jOdTChmM7Iko9frk2c5Sim8gtPphOPjE6bTKUmScunSJW7euMXa2hrD4QpKKYJ3pNqj8CBCUAobAi4ERBRaKSQIznq8qwneNuRVo1WKUmbBIHAEHCJE8usjOWzJ5SKpBebGBUrhQkvWItEMkXvjrKUsa1SAwXCF/uYGxfkp5b23GGx1CUlKpfrIzg3WH32c//V//l84e+lFOkmNSxTHZzPeeeOAbrbGZ3/8x3n2089w+eoaxWyf0d477L76CuW0ZO+05FZvyO3bt3j8p36SmzeeQtcOs+o4DAfsvb7LQK7w7W+/zp9/84tsbq7zyK2brA6HnBwdMptNeOKpJ7h95zbD1ZVIkGxJYhJGBbz05osc7+9hRwVvf+ubTI7v8fFnP8UzP/bTDK5ukuVdUpNhtJmT9rbPHiBuErDiOZ3N+IPf/R1+69/8K1558WV+5lNP8PM/+WmylTVSbamD4HRKJhZdKzSaoB0TLM+/tce/+3++yNGh51/8s3/O5z75EdKs4HAy5s//8m3c5qPcff4FPteZ8dFPXuegqpl6xRf/5Pf4zI0n+dHPfI5Caqw955vf+ia//cdf5/qVOzy9kvCf/vQbvH10ztn5Pkli8eQgOedFzeH5mDIonE7wohAVnQhx9AiBDE9FnkEnN/zY5z7Pf//P/0ceefQOQQlBAk4iIUwlmTtK5L2WzRI/hIh+s2iUz52bAtKsuaEOFJOK3//tP+bX/93/zVvvvMT48D4ff+QWn//Ex3D1hO+8+RIjO+OkKhidT5lOa0JQVMFTlBWPfuRxfukXf4mnn/4EV65cZVaWrG5v0Ov3CSrgm6lMY5HgCEFjxaCDpTh4m7PDe9zdP2bn0U+wc+U6yXzsBcCDeOpixmx8SqebY7IE0QbIiKaMLHq4qKua57/9PNtbW7zwwnf44pf+nJ//R7/MlZuXSDqGhCmqmrL31iH/9l/977z857/HO3Q4Fs/l1YyhyhCEpJsxXF9lY2eblfUNnvrYx3nmmU+ysb4DQeN9wGjVENOmye/2QC5avBJJw2vPnfNr/+Zfc3zyHGdViesliKlY0RU3+33+yX/3L9i89fQDpPBh76MHakAH0NOavede4E+/9Wccnx4yDSVXnrrNje4qey+9xguvv0y1OuRn/rP/lk996kmUrhE0EjQiFpEq9qfXBAEvjWsoxGcQJOBRBBTKQyg9f/Q7X+DFb32J4+KA08yzvd3h1vYlTg5rXnhtD18ckakp3c0r/Oe//M/4+J3bqMrhfSBNo2M7BFB/C3ay6LxtWPYFoQgBcA1B9YSgAb3wSx//9D6uqQ0t9d7iZzXWC6fjM8zsiOHwCkduwJ+8OuHrz+0yPRFKZjzyyRU+++gl3N4Jb7xc8+K9Dt0rXVY2pty5CVeGivO/1Hzhm3u8bio+8RN3+OVnO6x5y1f+IvAbX52QP93hZz/Z4TM9T+ISrAZHJHY/sFl4YegG4nhoia3A3B5/oH3LJeNvDRF58/2++6BI213g+sK/rzWfvS8E1bwq0pA3mocvRBeUJhqureOrJXXqwlAVIbSTmlxE3oJvPXtt5KS5aAwtvc8gk0jsmhdGKUVojRhpjGAVLvxTTdQGIUaXBNrhniQJaZpGQhR8E8Vz1FXNzM+wlaXb6TEYDsiyDOvi5OG9x9Y1SmJbghK0NojyhACegGoiJUYbQkNafQjRSyiKgI+fExCJE6S0BK7tAwGjm7lNFHiDFbDWUQMqaLRJEBUnOiNCphPyvIvurdJf32Z8fsLB3j3ORieIFFSV5Wj/hOFwjWtXr3Ll6iXy9VWM0dR4ZrZCdw3b/W066z1Gh8cU4xlFcUqeZ2SdHKUkEg+grmsCkJgEFSKpVyJxwhUf+7Mucc6ilSbp5PSN4mY3o5hO2d/bYzqecHhywvlkwmAwZGNzg7WNNfqmT6+TsbmxwuloxGg04nR0itZCmhhsbZlMz5lOxnR7XTr9PqsrQ4bDIaPRKXt7e7z++mucjs64efMmjz/+ON1uL0aiPJhEo0THsSQB5aM3N/gYLTKqjchGQh3HdXQszIezasd5/C1NlA/AORdJmtYXTgvAO0fDkJsx5xeivgnGpGitmJyfc3p2gu7nZHmK72TYEFCicD5gp1Mm43PS1FCUM/qdHNe8s0qaSKqLEWmlW5oQ31HVtBGlo2PFOVywBBzUNh4fAtbPMNoBHkIbAbWISOPRd3EcO4/H4xyIVszqKYGUlbXLTOp9PvLkE7z03IxvPPc8ob/Cp1Z+gjztxSiCj/ffRk1p3usLoyhGOEUMIQg+CNb7GGEWEPGo4DBEhxHBN84hBTr6Rn2whOCwdYkPlvW1FXxw6GnJ89/4Amf5q6zplFqb+M5hCUowOiAGxGiM1rhQsbq+zc7lm+wenPD5O0/x+FNP8fYXvkzlfFwtNVjvUVmCrhKqaYlODElq8OhoozTTmxJPsJbgPJOzMfffeZO6OIMQEOsRHfB+SmI0kDxsQlzihxgX0a0HDVuIH83Kkt///T/kN3/rN3nr/quMj/b56CO3+MTTT3IyOuatu68xCxXntuDobExZeZxTlIXFJ4GPPPoov/RLv8Stm7c5H59T2Zq1jQ26vR6ouEY5F9C6ndDi2qqad04ZQ5qmJEnjWFHvjlnFSLHSCZ3+CiZLo0M3LHy9YLSHEDCJ4drVq3T7PbIs49KVy2zf2cYMMhQB7VISelzZ2eTq5qO8k/wJV9ZWYTYmUQrRKcOVVYbrq2zubPHkxz7KE08/zfbOVTqdXnTySnNPId5TSx1iNL5pTYjvX2xZa+PELkhTTWo0SUhIOjk2sgV0ksc197twmsj8v7gu4GJkK86llkQJcVr2ZFlCSDRJ2jyC+RN4cEz8dddbNJuMAmOEJFEYFRBJ0aaP1hXidWSVypMmgUTZGENqbBpZGA7fL0RBiZ/H1Vo9SnRkB1xdM56c4+oaO3HoLCfv9RkO1pnWOd/6zj7f+saLdIoEbI+ZDkhiGKwkbJgNkqnjrcMTjk/eorNiuHP9FsnknOPZmGk5orPeZXUtoBOFnWmmxTmKCf00oatBOQMWtIAoT6uo+EGhtXGFuV5j/vkS3398UKTtK8CjInKbSNb+a+C/ef/Dm+EQQusMnJOlecA6hBjSbl8waYmbmsvYAIK6IHE+RAMw0EYZPNJ6kIkELGghBPeAsdvCN7LAgGpkUy5+tnBsCGEe6o9GOPMolvcOkyZR4qgVUR1osbYhbXUdJSgeVFdhGoJSliXT6RSlhDzPSZIEaciZqOY8DRG9uG6UjYUQe8wHj9ZC62t3xOhaSwZ98Bftlzjx+lY6J42UcyF6o7SDxgBPlMHX0VOa5AMQoWdShqvrnJ8ccnK0z/n5mKPd+xSnZ7jpOSeH99na3uTS9av0hgNMapjVFbXz5IOMq51rlOcVp6NTzsdnFGVFmqakeYYxqjHeo8EujWSxlQr6Rg6mlI6kvCHNWhRohdIpV5Ocyfics9GI0dmYWVFR1RU+WFbX1kiNQasOWZayurrCwf4B9+7dIzWGoiiw1lJVNdPZBBsc+WCAMQnD4ZAkSTg6OmI6nfKd73yHuq65efMmKyur+BBwQWHSaEQ37gWEgLMe52uMKIyOBEead0AEQvOMWvnSonRVoRb+fYGWgIQQiY5ztvGWXkSuQ4iLgaBIswRCl6qynIyO6ecZaWJASyPZCZyenvDqV/+cYjbGJIairnGqiVYRvbDSnJuGGDnv8RCjwToOMFEKvMMHG0lE8BiJ8iNnp5jEo7REH42o5rUPkZCKQjVjQLRgTEZQhjRPSNM+u4f3mU0mrPe6XL7+CN/+9jd59bWXePKTP8LWdjLvl0haA1qbef+1RC4EGseMgaAJXnBesD6gjG5krz6+K2Kj0UFASQDVLLISMEZQCupyhjaCctAxglRnvPziG1xb3SKsPo73Ub6ENoDHBY8NoNMM6oT+cJPHnnyGP/7DL4BJeepjH+PLL7zM6eQYV48RCdjgkEZOasoa6yw6JE1EVqNV4zAgGmh1XaDxvPnGa/zBf/odLl+6xHB9DQkerXzjIIuR4HYcxXGzXKJ/2BEjCgsO0hCl+XXt+JM/+jN+9Vd/hbtvv8Xx8T4fu3mFJ29d5/TkgIP9e0yqGXUinM8qitJRlAFvFd4rbt++yc/+w5/l1u3b1LXn2tXrUfXSSO9aR6JR6r0Sq8YibGXlupEgtt/FCGFrNiqUSVAmAaI0U6nGGYbngnRcXGV9YwPRQlVXHBwe8db9XR7p3SRVLs49QaE7glpd47A+R9uEnbxHXxLyrUv019a5cv0qjz/1BM88+wlW19Yb2ZqOjlQPzgeMuqA9DV26aIVEB6sQ4ztz6bwIidYoLWQqxacZIoEERdodoJP0Pe/doqri3d0oAQQX5YjBRYVHcAiepCFVIXgSozFJIE6xF0RN5mb5AuHkge584HqtaWaUoJWKCqbgAY3oHqIMiaQEUYgKJMZhpJyTth8c4liRQDNGY5StriomkzEheIqioN/rM9jcQCWR6NqR8PVvn/LN14/Y2VzjM1tXef7VGefjY6x2iKrIcZiioC5H0J2wur7FSseQVBlGTbG+YHNrk831BBGFC8K0rAhMyHSHhB540wygqNJpbbgfGFqCLu/6Owtke8nkvm/4QEhbCMGKyP8A/A5xnvrfQgjP/1W/EdEX6WbzPCKItM3F6BuLOuToCW8nv/kk4D3eOdpg3VwGRWsqX3gbW7HI+99IQ44WAmdVXSHWgkkacuRQ3qPidDk/rwuBhIC1NdYqfEgJQSiriqKYMpvNKIsZdV0hCBMzJYSYC+ca8rQyHDIcDpAmuiKicN42M7SKoekQCZqzLsrtaAhOY4xKI4dpIyyxrwUVZJ6HEPvNRsFAQ3pdY3x773AEgkRJQQiCKwvqqiKgSNIeNYFOmhPqKWtaGPT7lMWE89GYk6MRxydHnJydcH//PvcPdtnY2WJ1c4PuYIDJUjQWPPS6PQb9AdPplNPTEePpmGI6I80STGIiGQ4elJ4/X8KF/FNrgzEa7x22toCgkxylA1nWpdPr0+n0OB0dU0wn7B8eMDo9YWtrk52dHTq9GN1Ls5zNrS36/T4nJyccHR5g64q6rjk/O2c6mzEra7rdLv3BgPWVFQa9PsdHR0wmU1575RXu373LRz/6MS5fuYbJMpQyMQ+uyUeSNlqoHsyNaqXBsph7SZgHhdvxrJTCOTd/ngvv3gMSySCN/CP4JpLafKch+BidNEZQOqEUiYQozSAVplWFU5a6trz62mtMJyNWVgfU9TRKPFtnio/OERWicyRGnZkT6QAxN04MGkFUJDxKKTKdIdrg65rMNDKVEKOIJjEoHQlJS0JFBKM1qAQnAuKxdeD+/SN233qZRy9vY7I+/dUNTKLBSVwATRuF9ijRiGra3RD/1tkhQUfpbRBciIuqDdFIQ6I3W6mAgsaoiqQVBVoLWZ6gdfRvhFATVADrSbXhydvXuHcw5mzvLvtHmzinEZ2TpBq8UFpwKsrD894qZlyTdqE7XKMGKlvx+JNPcD4+YXRUgig6SSSvHqHKK85nJaEoiOabihFOpQnaIFqhVIJScHY24Vd//dcoq4qPPv00/X5OwHLt5m0u3XiUJMub6dS/K2dniR9GzMVjwlzR4h2UU8uXv/Q1/v2v/hr333qD85NDbl3e4PGbVzk/2mfvcI+QCOdVwdmk4qyoKGuwVsDH6NhTT3+MG7dvc3B8zPbWJXauXEJEk+TZPE1BHuIUnTeMaPxprdHGRPk3D4pt4gfNe9h+K4oL339LkxaiEgGkiYLdunWLF59/iTe+8BxD69i8tU7Z6ZKmBm/h2E5YXevR21hnY+UW2hr05W2efvYTPP7EY1y+eoU0ywDmDuJ5uxWAm9NF3fYvi41vVuIQvxEEk0CWa5JUYbzg0gSdGPqJYri6iUny7/rhqqYteA/eIsGTaCE3BpMI/X6H1ZU+WgLGKNKkRs+J7kIz30UQ5H3+tfh5ItCIkhDvCF7w0iGgEK/AOTCexDhSNUFhEUloc4zlvRf6YNEGBxr1RlkWFGVBmqbYqqLX67G2uoYoAz7B4vECZRF46e6Ywc42P/3sGrcq4Y3XRpR2Qm+4waCXs+HhKLEYcayvZVy9tEpHa7KQgBOSTsL2VpftfoIOseMmRYXWNZ0MtJKLkJa6sE8/LFxobpU8GAZf4vuIDyynLYTw28Bvf7fHiyh0492PHrRACG3xANVECKQhdAuTcmtwNVZtaBJ2fBPVUI0EIzTSBa00cxGDj97+IJHUBB/JTGwQC5EthQTFXJrWvFi+NVaJUr15tK81XpsoWFEWUUYhMCumqGYh8z6QZx16vR4gTGZTbG3pDfoMhwPyTpdOJ2tyy2LBDudbiWhss9ZxiWglX74hkBeE9YKktsStPbbtO+9d9L2K4JtoonMW56LuPFrgjUQM0FpFCZfzWO8Rk1K7ijzr0O1muHJCWeSsrm6wurXF7u4uZ+dnnE0nzN4pOT47xbzxBpcu73D9xnWGgxWU6mFMJOWDfpdOZjifdpgVBWU5oywLANI0bcZLjGSKRHlhZR3Ou+j9DCBao0SRGI2rLd45VJLRX11jMBwyGh1xsLdLVZUcHZ8wnkxYXVtldX2Nbien0+3Egg29HsNhn+PjI46PjxmI0HEwnRUUxYyqqsiynH6/z9bWFll2zt7eLqPRCS+++ALOCx957Ak63T6T6Zi6qgBPmiTR3AghSkBD1NArI/MoR2vRxPHejvMLMtca04vvQBs5ap+vKIk5jrTywDg2nbXNb2MEVhOND+/rxgRSKJMSPZI1o6M99u69w9XeICYf+ABBUCgIHvHRk64JceEJoSlEI9GREqJjBhflrEpHb6IrJRKjeoLSDhfcXFoUaD3wF+9WNEoUtavBGBKl6HX6GJ3yzr37pHiublynO1wh7xiMSlAoyrKIEesmetdKL9vIMwJKaWzTtzoxoA0WjRODFYXoJIr6pel78YRGguy8A00jqdV4H2VAyjtAYcTw5J1HOD31fOPseV588RWe/cynkO1NKlujMARSPAbro5RZmS6OApXkiFacjU65c+cWb77+EuVkhEhG3h2gTULtPYNOh0lZ4VzAuhDlzVVNWVvOq5K01yXJuoTgURgOT075td/49/zH3/1dbt68QbeT88yzz/Lzv3iFtTRbGHvv7+Ff4ocHDsE15EEB1nq+/JWv86v/17/l1Rdf4Hj3Ltd2Nnn69g3Ojg8Y7e9Riccq4XQ2ZeYDs7LGuQSjM9a3LmGShE9/+kdZXV2nKCrybhedJpHgtNF4iUVD/F9l6TVreZIk7+MkaNfl1ohtbYN3k8FFFUwzfgVu3LzOz/79f8DXfucr/Pb/+ZusPrXGY598hkfvPIMPCWflGZ/5/CfZvvk0a70nePuVXdafvM7n/t7n6HRzCO36GBU4c5kngJ8RpGB0cESWd+kMVlGSoMQ080PrMm6oW5NGkSZCp5OR54baCb6Tk3RTNgY9rt+4TdbtfdfPVhEiMZaAiG/m9Sa6p4XBoE+x0o88N3i0qgELpPPIX3um+UL/UCwUyQogDlId701JQHuHSEKQHBssuCjXDN7hXYXUYyQ0x4QPdj5pnZzRsd/eYjQMXVVRldU8tSDNcvJOh+5gOHdGNh45lFZMS8f93YJRUfHER65wbUchr82oixF5TzEcZnSNRllPNS6YVQVXh+tc2RjQEYXxGYGETq/H1kqfvhYSL9Q1UbFkBKMCidF4D6KhDA4lgfQD7aV399lfHcRoIW3OZjsU3s39l/jA8AMrRPJetC63+JL5pkDIPDGDqEF2/sEiInHwXMgwQojRh0ixpJnjW99ikwcVYp5XnGikWUyay0tj9NMYvdJ6Oxp5oTEYYwhao1wUSkhznagO8wRxeGIhDaXj9ay1WO8wxqC1wtoZBOh0uqytreN94PT0FNtMInmekRjTkNCmypJ3sdiG0lhrmc1m6CYSocSAitW/fDPRRMPUR6LaEDpr7dxQDd6jtCYxOubOqVh9riWhMRTehng8wdV4W2FVgmiFtRXUFSbNSJIM8RVFVaHQpJ0BXgKdLOX6oE9RFIxOTzgfnbG/f0ivk1NNZpzc3+fK5ctsXbrJYDVWtlMqygX7nZyVfo/aWiazaeyfssJrSLNYtSu46GE1oqjxsZCnVvOKnIkxMQ+wITaio+dvc+sSg8GQ0fExJ6MTjkdnlNZycnrO6sqQzc118ixDKc3q6jqdTof+YMDR4SHnkyk6MUwmE2bTgqoqKcuCPO/S7XbY2NjAOc/Z6SkvvPACs7Lk1u3bDFeGmMTgrJ0Xg9HKUNW2kXo2Epc5IZ2PygcWuChvvChE0pLxxeqVc5ms8zgcah7BUw3n8hdShyYa2zoelI4RJiUGCYqUQCinnBzuMrCWtNvBOkh00hRFaaqHKsEo1eQaxnbG/ErmUUHlY4EcrzTaabw32GCwrkaUwzqLC428snGQzO8PLsatKEKowXkSJXSznDzvMaksZAlJr48yoIiFAmJl1hid1LqVSl4Q3ZYYqsasNdogJsFJghVDZ7BG6QOpyajqGT4BvEd8jKq7YAlJlHgXsxm2KrG2xlUVxhi6nVVuXbtOOYXTd0442rvPvXsn9LsruMSTJR2CpNggpNh7HtcAACAASURBVEpwFkRSTNJDmQxtDAfH+3SGm1y+tMPx3l1cLZgQyLRipd9hZ2MdbQxKJ9QuYCtLUVQUteW1owMORmdYL5gkw2tD5WacjmeUNtA/KzDZGsqsLDgNWBK1vzMQaoTd0YivfOWrKC8Up1P+39/4D7z90kvMjo+4trXJxx97FG0tByfHTOqSSsG4rhlXNbPK4kOU3P7Ip3+U2488zhtvvclnPvdZ0ixhOpuxtrZBkqegGuHd3FoOD6hRFprVBM2iysQ01ZOb6fA9xz5YOTh+KIT3HAcxyiYhEBXImjuP3WElrPD6Wy/zrTe+ym/86/+Dzc0bTMl58/Vv8RO/8FH08DrPPP5TDDfeIrvUIevlhNBIvAONFDoqPry3BAnMzvd59fkv8dxz3+bTn/0JHv/EZ6IjS6Rx9i406mLSJUmFvGPIOxmTwjJYXeXOk4/xicce4+pg/YHKke369T6P9qJDGuWANI4lJRIrJ+cxiiciaK3QugIshIYSSKM6aNv7sM5f6PXWpgo+kDbqB6MUxvsoPU9yUCVKHJmOuemagLIFgpsrRz5oxOEX+87ZGusqfJPbmyQpWZ6jjIl9tkhW2wVZRfuunAUOT2esbQ/Z3pSooqos59NzkrWM1Z6mg4DXOG8IWc7W2gpbnZTUg68V00qhJGEtzRgqhXFQ1FCWnkQCXa1JVbRHg5qLOD/4TmqwOL4ekMVLXMdbG3rJzH6w+JCQtoBzNa1xOi8UIGHBUxKHb1OqIEbJGmMuyilaiUTrFVZR5jSPOizIGtqoHBdGiTSedkHNJxOldVwSmnC6Uqop4x/zx2JumaAu5uEoG2sMQWtrUh1z2pIkQYWYszOdTiiKAqU0WRZz1oqixDbRj1bXH4KjmJU452IxkzxWn6xtzWxWMp1MyJMMIwqd6iYn5yIC05Iwz0XOn4jMCV9wjizNUHkWP28KPrR3YxKNuEggbOWj9IGAV0JRl5TjEd28SydRaKPB14gPKJ2CNigDSZriipI8ydju9llfr1hb2+Bwb4+jgyNmp2eU4wmHByOG61tsbG6wvbVN3umQqJhb1836bK6tM15ZZX//gMOTU8bjMYN+n16niwA1Ho3C6KRJLoqEXxqZnszHiCI0pNVkXdY2DZ3egLPTEScnh8ymFVVlGU8mDHs9tne26HY6ceFLMrqdHkfHx5yPJ/PnNJvOKIqCoiio6z6dTpfLly81ZabPeO65b3JwuMejjz3K5vYWK6uriA9UZRGjpy7M88PaBaaNCLU+iRi5lcbD/GC+0QNv0mKeW2jyOVvS10aOm5POiZq6KC08H7s+zGVN/U7G7etXeOfFFzk9OWE9S9EmYzKeEUIg0Rpva4KzMa+hJY6impy9ZksBr0jFQIj5W/iE4Ax1MNTeAzZKfX0kb+14ja+7x7tYiAQTMDpuuyDWYYKlm2vyvEfayTF5Rt7rkyqQIGiBpNNBBMqyjo6P5tl5315HzautimpInDZ40UyqQNpbRSea8uweSdLFScD6EnGe4BUuWLzT+BAoijLKQl1sc+0DHk2eJty+cpnjp5/k5No1di5dZ6pSkDJWEfXRGWGSQFk7QlBonYIorLMcjw45v7fL1e0dnvnoRzk/m3F0dIJONCv9LqLVnLQJsZiKiEZMQrbaQ7/2JgdH52gjaJORJilpbkjTjNppbMjY3L5Otzd4wEhs8wqX+GGHcHo+5Vd+5de599Y7dLTm5P593HjMpdUhz3z0KZLg2d+9z9TWTAmclQWzEMviR7kb/PRP/RQ//wu/yKR2dNb6bF++hFKB1aBI0rTZdqLF4rYnsQ0PaRbKmKaQEvN86wV+0/5zHmlb/CxaBnrhGjx4TSUxupMqtp7YZO32GjeevsZj3/gGL7/4Cr/3pS/Q2YTty5cI6zcYm8ClR2+iuk3V3zbw0l7T2sbBVPGdF/6Cv3zui7z24lcRMfyoALZGkvyBiFT7l9A4gaW5b2M0SaLJUDz22GN88jM/xlZvQN7mqTc//xvlljbzfLstUaw7HLckCY1zTSgAyzxYKYs5gQuNfiAaJg/+LRCjdviYc4zCANoYgjYxjz5YEqNilc8gaGfjGvPX38X3BCHEKskhVNGJ5m1DYtOmyJnM7yM0zoLFew04CML5cc3u4THbt6+xMQRqOD0tOJ6W5Jd6DBLBBKCE89JSp4aN1SErWjAWphbOa0eSp2x2E3pKoRxYF5hNJwxSw2avRw4oiVFQhW/ykQ0PfW++5311McbmCgvABh+3qgrzOOxSefEDxIeCtAWi9z16eRarCsWJN+BjDgpRjiWiLhTsrQSQdvJuJ8YYMfPeN8UpGo9BbVE6ErK4X1jcL21RcjkP+rUSwkZGKY2e3i9sLeB9JGkKuUiibqIVFyeLUUMRoapqZtMC5xyDXp8sy6it5Xwy5nwyptPpxGIPRRH3DmuidN570iylOxjgBGazGYKQGIN3cV8pRNBpSprl1K5mPD6nLGcx/J8kdPIO3U4nFkApymYPOEVZVvjGgyiAa7ZGsNZS1zXW1lRlibMVIbhY4rkuOHz7dcLBIVtXrrGyMqTbycmSHBs0SsUKXcF78qxL8FGuZUwHo3M2NnY4Oz7g+GCPWVUyO7jP0ckB+7sD9jc3uXTpClvbO2g6VNbibU1uEq5s77C2vsnB0RHT8ZjR7ITEGLI0i5EfnWC9ixGiVBP1B/7iGQsoSSKZV5osyTBph053wOrqKocHB0wmE6aTKZPxjOmsYGN9jdXVIb1enyzL6XS6jCcT9vf243NXmqqqKIuKyfgcW9d0uz0219dZWVlh//CQ3ft3OT074er16zz2+ONsbW3RHwwYj8fUzqJFkTTFMB70UDP/Mzou9EW0OPh5CfvFypGLZE4p0xQAuSCG0SCP7o+5YiQElGm3i2gK9aCItQQdt69d5uyjT/GXX/k2+3v79IdrsUw0QnCu2RfPzh0pF3vheUx0WCJBMI0FFCufaoQMS0LlY8QsShgvomvtu7Yo+VQiaLGIs6jKY3xJpgNaGZAEKxZJE1wlUQJjLRL0fCuHoohSyTy/yBm5WLBipE10NDSCStg7PuNr336RH/+Jz1PPTqlsgVMeTR3b2P7nLiRZdVVzPp5QVTWdjsajyDLNxqDDIzevMUVx6eoNXpkc4nAEX1KUU7RRaFyzNYmh2+mjVUKWp2xurPHam9/i5pUdbt+8Qe0Ck7JiNDomSxO2t7dJs5yqtkzGMyaTgrpyoIRPPvUIlzfW+Oo3XqCwwuUbN+kMe0gilJXj/KxG6Q6ra1uk6YdiWVjiewwNlKcV48NzJicjahWoyjGp8Tz98SdQibB3/4DTcsZJWXJelRTBxYqGQdHNcz77qc/wT/7xP2br6hWS4ZBrj97EJLHaqFZtwa4mp1MuMs4kXNCr9yAw3z/SmLjX58OElO0eifMftWeMbK49aCGE4xd+7Ill38Fkhp0b19ncucInP3vGcOcKf/yH/wF/MOPlt1/gylMr3Lh8nSyN+ygaFs4ZArau2Nt9ky9/6Qt887mvs3v/TUJdYJKcaSmIdMBH4tK2SR6wBQLtbqNJqtFGMF64fuMGg94qdXDkoltq912hrWMdyaCKhZ+MijaVinOZSjN0kuKdxboJMdLWnsFdRNkW+vc9TyG0z7PpE+8wBIwYlBhSrcjzFJ0aHBYlsSiKq6PjVz9QoaXJLWtVPR8AB4g5hwpRSSz0Jh6RmPsf2rEjQqxO/iBBDQS8KKhheqSYWcXtyymrWnATzxuHM45KYS3p0BdFGiBYz7lzqJUul7dTekJMAwgwU55uP2MliZE6EahtQFGz2euwrjVdKgwjcFOMpCBDkOz7Et16WNEbL2DnDv+AJpLTJV/7weHDsTo3OWBxHKjGIIU56ZG2VHlMrIcLQnXhD2i9bu301UYmFi/TGH9NpaP22q08N0SWdxGtaHXNDfmTIEgbJQjtshKJnxc/z79p97KwrkbZ2DLVFBgoZpGMJUlCr9dDa01RFJRl2cgic3wITKZTCJ40Tel0OsxmM8bnY3xDzKy16CDYOhKqsqhJshQdAtZ6Sls2UrDYX5PJhGJWxIiFtfPonfOesiw5n81IsoQ8y6jrirIo8M7irMU1pM2WxbzinSSK3dfv8ubuASvrm1y7cYOrV65y6fJ1usMMX4MRyBrSELQ0xRkCtUrA12xducrqxhrj0xEnR7ucjY6pZhNsXTAenXLvnXe4ceM2OztXUCYluChbSxAube9QDAaMjk6YTaYUtiDrdBrPaCurCyQiTV5BQ+ZF4ubowTbFWgJKolFslJClOaenI0ajY6qq5PxswmQ8YTbbYHsrGrRpmrGiNVmasr6+xu7uHgcHB+RZJMTT6ZTR6IR+r0+n22Fna53JbMbJ2Rmvv/4qZ+Nzbt+6zUceeYTaOcqqitX/YCG/SuaE5aJapp7LE9p911qp63zTcHggKhILgGh8E6NuScV8q4wQ940LIW4OH8TjrMIyz4VGgqebJDx25w5prfj2y69wcnrGWn+Dbt4hVHER987i6hrn7PwaEB0rSiJpk2aD9rivohB8Qu01tQsYomQ05lS6B3L0vPMLhDN6cMWXaJeQKE9qBBUU2iSgY56g1DFX0HmLxLo0iAjT6ZR+v09ZRsdFC60VWsVtEpQGlZhYJAXNG+/c59rdfR69cpnR8S6CQ4UqHifS7C0YJafOBWazgqPDI958801uP3IDrw258nQ6hsuXtzgNiiCevYP7HI3vUk/O2Nj0WFehkyYXsMnxydKUbp5x5/YNXnjpZfCO/b37jKYFVoSNzTVcXbF7uMudO4+wurlKlnYQDKPTc46ODnHVhJvbq2TPPkPhE3Zu3KSz0mNczri3e0A5O0CCoSptO5HOISILZuZ7zWYWDn+YB325vn+wWHwi8tAvmlWyhHsv3yWxiq5OydJAttLj+pUdVrdWuf/m25wXY87KGaOqZGIt3giVdQzyHp969kf4hf/qH7G2MsTbml6/y/rVraZacqQlrlF7hL+BiirmfntMkrC2tk7a6TwYUFtw4Lbkp13r21lqTglbbjW/eR+9KVrinzIjVApRayhj6G+t8/f+4c+xe/w2L796l+cPZ7y1d07vJz/PtVuP00bwQsNW6umEL33hD/nTL/wRz7/wDYwRzs7HlGXg8pUN0s4mmD5t4bQwJ2xtCf6FaKAIRiuM0mgDZ+MzCl8xUDl1WUFwmCydy93bvnpYhKPlHvHEClGaQNyjM/4XcE2BKCHgXUUkag/273f5xLiIUMW5PTGRFBknJInGpAZtFEbHed/T7C0qSVyjH+yKvxXCu/6cd0MbIVUS+0Sa6rjNPnPNgkK7xZQ09kF7soDEWGQF4xPIOn02hgk5MDmreHVvwsTnXEp75GiUJ6p0bAm9nGG/KRbnY/S4VJa0o8kEDI4QDCaBO49cZqXb5fIwJauO8Wdv4KoRyfAqknUgiev0/O1ugxThwX9/V29c2+nzQ98dSb3Y9zWEwKwsObUlAVjp9RGJEVTdrO1/k0v/cOD9BuXfxIHS/uLdqoB3n+Nhbpn3iL3fgw8HaWsQ2sktxMRlUY1xSXyxovQwlkBt9yQLIk3RkQC+7YQLiZiIv3gxG6MwhJioHw9oZBVNnltMEm433AZBNbp4wbvQVF1sCpM0EUEXHDKPXEQj0zlHrqNe3NpoCFXOU8wKQoAkSdFJgvW+KbZRkiUpiUmwtcU7T5IkkXgkhk6nh/dgqxrvPLYomZUVhY6eyX5/SK/Xo/aeWTGjdpZev0eWx724RqMRs9mMqq7xzlHZGjdxFNMZ1jmyXjfmOtUWX1h0gDzvYIOjKGfUrm68VnE1dt6hEoXHs7u/y8nxCa+/9BobWztcu3mHS9dusrGyAlowiSHJckQprLfxeTQy08Qk9JOU4doK5fiMo8Mjjo6OOT45pdftMxqdsrnxDjs7l9jZ2SHvdDE6xSMMul3Wh6tMphP29w+YlQXBKdJOHvMBvUPpWE1SNwtoQHC1a7y6Cd4FvHUEEUzWQbRhI81YW9/g9PSE48MDprMZe/uHnJ6eMxj02NraIOvk5N0uaZaTphnDfp+D/QOKIpZxLqsqVgitSrIsZWUwIO/kHI9O2L/3DuPRCWcnR9y8eYvBYBj3z3GxYIf3YR6lbCPFWgtKfJMbHQjB0hYmcd4hVqG0arajaDfQDfOoGd4RfENG0M3my/FdESD4aGSo1pPqo0wwhEBwHuNjJbInHvsIq1ubfOu5F3jnzXv0syG9YR/ny0gArQcnMQrXSiSJ73LQNRaLkIDT8V0LU7SvmLlAkAQLWOew3s/fe2/B2QChzVV0UTjkNUF5El3QTS1GKfAJvo5E0RMo7Qxra8TFSpqn4zNef+M1rly6xMb6erTlEFzwZCpDh4Ailr9XGpTydIYbrF36CH/x3AtsDn+E3somk9P7cb5p2hRckycbojIgzRLcrOSVl1+hO0zZ2NmmbPZfHGz0kKAopiX33nqVL3zpD9gKwqUrT1M7yJOMLHOE8wpchUhJbVKuX7vN9uUb0BngR2dMzkeUCGenZ2ijAMtbu/dJOkO2eh1uXLnK5Rs32L78OJOjIw4OTlDJAJUP2bh6jdWtTd7eu8f+0TFCRVWe8OYbL3I8ukKWJ4BCSdyjMUnSC0fXPIIhCzbfxfKzqKhqoyMPUrslvmcIF3/E97nZfypEQiMhEprgPS/8xUt8+Yt/Rr+TM+tkXLm8wdbGgPW1Pod7+4REUSo4txWTsmJaV1ijUabDnSee4vN//yfJBh3EKLJughigWZ9jgKvdHzQ2KEZ92vapOeWCNorUFOdQGpV1UHlKVwzBaFxzrodDaN0Iiyb7g/ZoACy2jtJjTUYxmXG49xreGa7dGqKSaKxnq33S7R1evf9t7u1N+dTVLtXJKeamR0ssJtZUUuJsdMx//K3f4o03X6aqC85txWg8AUm5cfMRdi5fI4RmuxIig70o0hAu8pS8R1wV89TR+HrK3Tff4tEnnmRvdJeD1+/xyCOPs769tRDkawnbu8y6cLGlS1DgtUFEk2iFwYCYeQVEhTTKB00kL+25FitxLjy4dw21NsD2IEkUtBFEaWprcKJQ4tDao4whoQ8kJLqP6G587i1R/B6FbFpKP+efi+2V+Tcg0fGOxK14VNNzF3NWoCYWHdaAD0IVYFKWDDqGoRZMDbu757x5MGHmA52OIc1i381czdRbcmPIdbRNxYOfWvJqxtpqSj+xaEkRFVhbDXz22VUy7VGz+0y//kUmr3wD3xU2P/VZkmtDhBxCJ7ZOLtb1xbuMUcMwv8f41cPM//Cu79TFx40z2Nqaophx7/47vHX3LndHJwzX1/jEM59ge22T0BA2s3j6uX74h3WODw/5e9tXf11qQLiY54LM341AdHi3zs25ArD5lW5shYWNzN7TkofhQ0HafAiU1pIo3VS6a27NRVIWJFa98t6Tqihf8j4gSsWy/42EkRBzmOJ+SR6h2YS2mTwRFYt1hGgMhmb2EcBo3WxkGEuyexdQSjchaktbyjw4BU5FYzJALR6v4rWCrXGupq4tM6VJOynaJBilCd5TTAusdeTdLr1+H2lIG9qglY6kTZsofRSF9+Csw7kSbRICGu0hEaGoa+piBkmCzjK0jpGO4D1YSydLSZOk2QssNIYpFFVFVZTMxhMS0XTSjMFwgDdRsxxmJaqs475iKlb2c0lcSAOgRZOYmAvkCdTeEyShrAK+HjM9G3O8e5f9t1/myrUbbGxdYm1tnU6vi0kSRBmMEXzQUbZhorwQm9FN++jeGt31c85OjhmdHHO6e5f9w/vsH7zD/v4229s7bG5dJ+/+f+y995MlWXbf97km7TPlXbvp7tnx67ALgICAJUUsAMFGKEL6EwWJgoBQUASChEhYAgsQJLGLHdvT3pd/9fzLzGv0w735qnrczmKXoQG4N6amqsvky5d5895zzvd7vt8eKEnVzMnKjGs3r7KoawbDIaPxGGNrkkSDysK1tBaBINUJVliMD6IlUipEqrA+qGYqnRJ/wOraBmXZYTA44fT4mNl0zqKqWNQN61sbrK6skGSaVdWnSBMyrTg+PmFR1aG3S8nYHzcnNYZ+v8ulnS3G4wmj0Yh7t28xPhtw8+bLXL58lazI0UmCMQ3ONnhiI3n0b8MbWu0uT4NUQagmSOAH8ZAQBUWbB++QviHxAA4pfNykgo2GtRYhoz+g9AgX5rjxoX9RCA9CoqSiqwtE11HXNTc6JRv9Pt8rv8/9e4+YVQbLBrPphKZeBaswDRgLVihqmWKlw6o5tWqQZHibkiSepj5jNbU8sYo67eCUwvnQVxmooBpQWBuFI6PwjPQpUhfYZICfn1EmFXkqSVVJITo4VWE7ioWdRQSsVXv0vHfrHc4Gh/zsN76JBPKySy0AnSAFaG/IlEcrR+IW1C5F9V6iEI/4zn/9gH/+C29RZhJXBWXKxjVoKck8dLOEpAg0nKS2uMbywYfv82UN62vhdYSEUoExFWvKkc8co0YwnzYo2QkIpJiihKNIHElaMU+6rKqcrLfLNCnJ5HMy6ZkvDNXMM28MQoyp8g5mnpIsKjreUJYpIrtCZ32HYmWPO0+eYXVOJRzpSg95loH0aF1TLZ7xJ3/8u9x99p9YXVsjSzoUeY9Le1f5H37+F+j3epGKHotaSJyQqI9sai1dVOBR/mJq9+ML0n4yPmFz9x4vgk+XxyOcwrsE7yT37z7lX/3u7/H9D9+m3y1ZXe/xla++SbdIefTgHouq4eRsyGg+gyQBr9BSszCelbVdrn7pTUSv4MxOuX7pdda3N5jWnqaRZBkgWpvmj55SVG4WUXDWA0TmACxpk6Td8IjGY+iPzRPBcg5d+E5Y50xA9X3ouTPGMBkdobRlPhmTl326/Q7S99jceRmts1Bw1AbpXDDylppRI5D5Nj/zC7/G9Utd8iT4wflYPBbOY5oG39RIA6nImdceJVLSUuPcnKaegTMgdLAsajOCFplAxOTWoe0YJT2NSxC2ws0XPL/9Pvv33qWZplzau4IQOy+820+6+y3C6IQDDU6naCVJAWE8zisWTYWUUKQpzjZgCyCBJQE0XRar22v9SWTWkASJc6KREIE+pywq01j6qKxEC4ukxosU4Xtoq+mmm+h8C4QONgniBwXDP8wIFgvSx5CP80QscCdCHJgioJmDaHBJgqQLLljA4AMdw+KZI8hRWARzCZUY00PTNaGo+uRoQoNGScNqT5MlCoNj5B2V82zqlAwwyiMT0IuKV3sJ23spZbnAoVHeoJshnelj5oN7LN57m+SD26xPKuqtHuLmNlzbIiTXezhktH6yKPT5rcKBkDH8J6KEPqKgAgg2WIGZFtdgEeHwyCZrGsNweMbp6QmPHz7g6OiA2XxMYywLJN7BgwePgw5Ap4sgeg4u88R/CpCbv/DBhc/t2vNpf3Pxc/zKtzOy7ZmQ4BUWYlOFIMcjnQne0g6E1MHu6wfskV+IpG0+n3Pv9h3WVtfod7rkaR7U26QMSJqI5tBRPEGo6NWkNE1jox9ZCMAD7m7PudIQr6J4sQQce8xaMYYINxBk/cNjjg+BbzCDDPQpIc/l00MFJ/yetQ2uafA29L5572maiizT1DFRwnvyMqfslCRJio1cZ6k0KklpoqSycYLZdIKQkrIo8B4W80WgU+SaytYYHJ1+F6kU80WFG53R7a0gpAw/b0CZZOnXVtU1TZQ5dxFlUkJinWW+mJMkBZJAz3LOkCUZXilsHXqCTGNxNgRhQTwrSPhaa7AIJBoTzZzrasp4PODho4esrW9z5eo1tnd22NjepNdfJclStI73F9BphpMK6T1pktMpe2xubDGbjNh/9oyTkyNOz8aMx1OOTwas7p+ws3uF3b0dsqIk9CooiqIgy3M6nQ7jyZj5fM64mZDoJPQ1+tZTLFQcW1PulkfhncMSRCiUTBCJJs1Ssjyl1+syPDvj7GzA9OCI8XzOZG3C5toK3bIgSRJ2d3fp91c4Oj5BDQZM5nO0tujG0DQ1o9GQLEvpdTuURc5gcMbzZ8+YTebM5zV7Vy6zvrGG0jokbl6QKB1Pz0VRlfAhlaIxBlBoJdvCepjukcLrcQgnsC6I/LR9ne1CvRQleWEEERGiOiVCgBRBWr8sSZKEpmnYWF3l53/uZ9lYW+fv/u4dHjy4T5Zn5J2ctbVeVHkMC5mL9BDnLS4iAV60dNWAnBsKHHnowUNEn8BQnGmtHAQhIFOEar61Hq/AexMSssi5UdG/yRJ6TYk00JZKapqGv/nr77C7vsGNG68AkqTbpVXcbIs5LfHKesFgNGd7dZVH9+5y7/5DXtkJbADrPEImwaKkWiClYHt7k/1HY8bDM+aLTaoR3L97j/SVV+l0c5QOQVu3LLl59So3r73EvTuPefL4MXVd0VHB+9B7g/SWRHlQmiTNyJKURkqUgE6n5Nor1ymzNUbzmsHJfd5+ts/DJ/tsb/e4vNIjTTNG4ymn1ZS1tU3WtzYYVg3zesbjJw+p6wU6kVgbhAlGpwPe/ZtjQJCokl53jRs3XuWnX/06Iu0i9HkAioxqevjzNVYQFVBbtTG7nFcf9YD6yfjRx3JJiHWJ0PetEMZjZRD2OH5ywO/+X7/PX/2Xv2YwOeHN118l62QsmorT0yNOzkYMBkPGswWV9dSNRWUpdt5Qdrq8+dbX+ObP/DzXb2wim5qiu4LIUlLhqC4y7D7HebZL0AsJiI979zIv8ed/8bEDi4/96yL6ZBrL44cPefTgFm99+RU6/T5Z0UcoRVoq0AFhCihkmJvWOYRQPH+yT775Bt31dfJOAiLEAReTl7ZHKtFBpEhri/Kestvl+HTIaDxh99K5FcvF998mQuHJcCjvQq+v0CQ6IVEZTV2Hgp3IQqxxHld/jhF7t1shsljut5FVlKUZvW6PuZiiVbRzac2lRRuYnqPonzjEhbsTMwQvIU0UmZOIOgSVWjqEN3ghKHurXLn8JV796uusb18Cof6bxPYffljX+AAAIABJREFUD61bGa5I83fBnobBPubkLou1Dp2db4DotikfGEmqLFo0KBv8YOsFuBoqIajxHJzUyLzL1csFTWXYUn26NjARKhOUwXtZQ5I4vG5ohKS87Hjz+jWSdc9CDUn8HHV2jH/vXfyd77E4+BDRjNCzEIvZhUEMniEWT/CFBZHj6UdkxgD6woP30STbf+y5kEqE/TgCHNYqrDOMJ2POhkccHDzh4cP7jMYT6oUhTUqKrIfMJEIYvPVMp9Ogf9BpX+Wf2vikQtHnGRcSNheKyuEptyDcEoBCKJTQCBHSLtt4BKHtZzGrOTo95cPb9zg8PPrMV/tCJG3WNDx++Ijj5wd0yw7dbpciLynKkrIs0VkWEziPU+eJq1IKqQTOxAdTyhh8E6sQ8lMh4rCetX105/5VIuj2gwgSsc4FtSMZ/ay0BiVD0CkhBLdtw68gCiWE6rJpKiYTGwNAuexh88JTR/EGJyFRmrzsMRmPmQ5HKCGpG4MxBu8IiJH3FEUBUlBbG5CxVKN0gnCGSb1ANTlpntPgGI3OmM6noboiJV4EpSoI8HeWJXSKgmZRM5qMKLQl1RrnDbWpMFOHdhnWBNESUzV4E/uKcFhTUdcLmmaB9QZJMA9XeJSWNN5RTyfM5xVHR4d0Oh2uXL3KlWtX2b10mW6vT1rkIEAJHaT5CT16HkmS5PRXNJ1On529y5weH3N8fMT+8Rmj6YLD40P2D7a5fPkKO7uX6K+sIlQIotf6K/R6XSbTKaPxmMV8zmJRo6RGpGopGCNEq7AFoHBe4p3hvMcyJA1eSrr9PmW3Q94pOT46YTpdsJjuc3R4xO7WBrvbm2RJQl4WrG2s0e11OR4MwusvKmZzS1U1ceGr6HZ77Ozs0usuGA4nvPP2uxyfnnL5ymWuXbtKlmbM6xmLpiLVSVD8EkEcpK0baq0iHC9AOKTUMT+JMiJCxmTnggrZ0mQ9Piuw9BvEh41etJVx5+Kmp17w+AvegJ5Op+SrX/0aWmd897vf571336aqp7zx1uvkhUYpAvrdbipChHhfOYTyCC0QTiOSDsgaTxKSZXFhAxI+ChOEZ7JtJrcuJICNsCyqOoRWUgazexnM4b3xYCGROvhEOUeqNVcuXeb2e+/x13/1HVZ766xvaUgakiTDqrDFKylRnKvJPn72jH4lWN3cZDqrqBaaLJGkZcl0tghrQwZJbdBKILxhMh5wePicnc4Ox4cDeuU+V69dJk0VDY5EJ7x880vMf77BVN/hcP85p8cHrG5cQ8W+Wy09mQ5ritaSVAeRB6lCYjs8G2I6GisS0jxnc3ObuwdPGI1nLBaWIl+hzjMePrzNaDYn6fR4enyCT3J60YuxWsyZjMZ4UwehlsaiVUqSJui8JOt00WUGWuBkDIGEDNnZkrsVbxcXEjki26Gdb/+Yi7BfwLEsbrf5jRcIr0F4HA7hJQf7h/xv/+fv8P/+6b9nthizd2mHb33rF/nzP/1jbt+9S6pC3+NoPGM8ngOSNOvRNGO8lmzt7fDaG2/wpS+9yo2XtpFNQ94JiGuaCnSLmH3aOcbPEk9r3xNi/fYnF/ps27fj4t6sPm+SHzsuBehUsb23S7ebsbG3EX07ZbhGMpxRS1iSXod/OUev7PHazVc59CVWeyyfXGLwPlRzlNZImaCSoJjsRIet3eusbe6EBMhHImQMqts1MJAe4g1z4Tp45zHWoZKURWWoY+IcWjfaG/xiEvgJl2CZ47bKkW1Ar5QOSokqIU1zrDAhpggH/cxDhiN8fIgLX0il0EqQCE+uBYWWZEqwstJj86e+xhs3Xmbvyi69jT5euU842o8+lonZR07YE6ad8iFp82cjZv/5PzN78JfIr9xErN7E5znBkDxFOBHUMFUNLg97pnHMpWOA43unjtt3D0lMQeNynJGsdnISIXA1jEcNWZ6xupbjhMCiUNKhVw1r/gxbzfHmAHN0n+a928jvv4c8PWRVz0HVeFeDaBBujqiPoHmCy+cgu4QJo+NcimZuLzx97TyJPAfvggeviPMwUvVm8ylP95/z8OFjnjx9xtnZGVmW0e10EKJAp56sKEizFIfHWYF1nrppgHN7+39ay7n4lK8/6d8Xh1/+2EPQECBKvPnoYUtEOkQogjsPjXHUkzEnz5/x/PkBH354h/dv3eHWnXtMxtPPPNMvRNKGB4xhXhuq6YzTkxO0TsjSjCzP6XZ69FdX6K/0yHolWuvQXGvtEva+uPgEHn+LrH0c8lzyTeMFdzbAx0Gzw2GtAWuAYPItCZVjb4n4TFAnDIlh9LuKLxHWS4XSCmMbvHBkaYaSwRDY4XGNQEYYVChJ42wwFE9SdAymEyHRiQuiGQRvFSFCVVBGFKQ2BkfYQDKpqI2BpkFoRZqnmLoO/VFRClwrjfDB/Ni5oA4ZyuKwmM+wqUZaH5Qnx3P8NCR7SilSpamExFsT+tqw4cPZKFkP3gcDVetDcC6lAG+p5lMW8ymz6ZgnTx6xvbPD7t4lrlx7iZXVFcqiRPkUoYOxqncqqG9KTZJK8rxHt7fO1t41BqcnnB495fjokNHojMHZKc+fP2dza5udnUtsbu/EJEaxurpK0e3Q1A1HB4cMT4c4YymKgHQGJElGTzAXXlOopQm1jabQOs1jtaRhbWOLXn+dk+NTjg72mU4qnplDRsMhW5sb9HtdiqIIlgV5TtntMBwOUaNAQ6zrYO0wm80o8g6dTo8sKzkdDHn27Dmng1POBmdcvnyZbtkhSxMEkqY2WAFpkqB18B7TSoXZGPve2nkul8IlIGMC57wPi/bF4FqeS/u2CLJwvCAAEvzNotJq/J7WGpQI52Qtr7/xGp1elw8//BDvGo6P9tna2VjSM9ptpU3apASnHD6YuyFUgRMN3kq8k0tT2PaRDo3zLX1VRbpvqPB6IWmsR6qEJE2RKjTCYwR1E3AHZ4lJqSNVCZsbG1y9dJn79+/xnb/8K/75v/w2KzrD5WFxlUKRqkBVxhN89LRmOB2zs3WNsiuQskZqRX99C6umzBfjWPTR4CypFqyulMxmY06OFDurlzk6OKVTdNja3kCpcF4ba5t8+a23qCvDs6cHZElI+IRUKAWZcnR08L9DQK4FMtWYLCPNUhZ1hfMTKisYDU+oREKnu4r2c+oGRuOKlbVNnjw/YP7gMbvXXuL+4yeknRW+VJQURUGv06Xb7TE6PUHKhCwrQWhmxtJXms76OqqT4bRodXCX9yf0C7Uz6pOX9mWg/pPxYx6hHcBHpEQ4EQSBlAAlGByc8vu/9/v8yXf+gtlixGq/w2/8T7+CIBQv9vf3wUK1qPBWIETGm6+9Rd00vH/7PZoK+qtrrK2skyYFvW6XhDZZDEqMcrmvfoaj1DKu8fhIDoIgRuFcsPFQOgnn4T1ZXsR97/OO2JkkQj5UlB063TK2O/glstO23Sx7zFxr7yNRaG5ee5n5cIpMgnhREjb+F9+KCwGxSjRCJegkQXmNUD0uX3uF/tomxrkA6NH2c8oLbJ+YDPqghK0QKCHJspw0zZnOKxon0VmBuiCS9APHRy5+a/djI9XfC0nVNDSmQedqKVAWznIZEH3i+OiPXvg1KdBpQpYnqIUhlZ5UeNa6Xa594xJb/Q2KJIvgvCM0QsqPHuVHGoLze3sxfXHxZgtBVGMR2JMJ5u5j8gcPkD2FePMYka+FeK/xoKOYGR4vPcIJjIOh89w5HvD33znF14avX3+V2eKMLG9IOhU+tahGsret+KUr18kvl+R4lBGIyQnc/y7V6TPM9Aw33sdPnpCfDZGLCT5b0PgZWgmUq8DOEN0eYm2OF09xLJBcQtAJdE40F+PZ0CmpYhHNhtahdl8HGtMwHJ5xcnzM8fExB4fPeX74lMZZpEjZ2tkjz7pMJnOSLCcVofe9cnVQLhfJUshGKx2us3/xDn5Wgv+FHJ8KE37KPvaxb/tP+DrMGxNBIyUkWoY1w1vHZDph/+iYx0+f8fjJU+6+/11uv/f3nJ4OGIzG1I3FxALOZ40vTNImWml+Ed6krWsq62iqmmo2p1oEw1qltuiv5CgpMM7SelmF6l1s0BQXKlu+Terc+YtxnrBBkDX1Ini7eecwTY1rgry9EATqU2v2iw39SpE5JlzbAC1w1sZEUuBNjXcWa5ulnLHSCVqniEUVKJE6jdVEEYRRfDAA9sYuF8o2gDYmyqpjcCI8mHiBS7PoLxdgb+MrrHdR0UljbRRsaQxNY2JiGRqQZ7Np+LcKNMm6qs83fS8DPc36oCpobHhohUCnaViok4Q0UYG5WweqnkdgYv+Y9hJr64D6aEVdzVksZpydnvL08SMePXzApUuXuXz5Misra3R7K+RZQaIThAzKVx6Bl56k6IIuyMsu29t9To/2OT4+5tmTJxwfHjMcjjDGUpQlRacb6TYClYRg/kp6hV63y9HzA87OBuR5TlF0SLIMKUJfZW1MQDikjGbmEhl9w6QIoil1XYMxbG7tsbGxxcnRPk+fPuRseMZkFrzjdnd2orhIxkayTqfTod/vMxyeMZlMmM/nWOtYLCrq2tEpe2xtblLMp5wNh3x460P2nz3n+vXrXNrbo8hztFTBNwxJY0FIRWVcpO1G83RrISLCLyj9SR90uPHLhN+2XUfL5vYQRITYR7BErkWYgyr21TVNE5MvQV5kCNHQNJbr169y+fIuzlvqeoGxFYmS1Jw/OzFvChVADNaD8R7rNdZmWOupK0MaBQLCoxtRTyWC2IYI5+WEoPYWocLXoqVXCY9SYeFz1uIjpTwgU4HunCYJN2/cpJnOuXPrQ/r9Nf7Zt/4FeadLliZIqUlVQioV0gdKZm0t2WpJVnZQ2mBcg6sNjVf0NneZH1iqeoYFsjQB2/DyjWt0d0s+uH+XfrJOIjRPHz9nfW2NIisCOicl/W6PN159le3NLbqdDLzFG0fTLPCmIsGRqAQvBZmCTpYwLTIYB7EgQYK3NiStToNokCKl11tnURnM6ZjT4YwHjx+jO2sMxwvWsxVm0wrvJErl7O5eZXNtG6JPY2Mcz58fkTjBatkjFTpSuVjOLE9AZNsekvb7Lb7mUXghL2r7/WT8OIeA5dV2mrZOKZzn5GjE7/0/f8Af/oc/4uRon9WNPr/5W79BKuD+7dsI48lUxngywdWh0NlJC1KZkZclWdFB1mN2L11ib2+PPM1RsecsgKcCRKBAi/PqyicGQ+f3PcwO8Ji65vTkjMFgQLfTY3NjO1DwnSNJsiBE9rnythd7r2SMZ4MioPoIXOZxy5VPEGg7gsl4wnS6YKPXo+sFqLBOftQTLrxcWD91ohFJiqoqhJMU5Spp3ouBgccJ24rKxxFLG54YAYooZNR+BAXG2tY4Ea2NZOvHeaGA9UlCJC+8w/b32r8XiGgfYKMCoZSx+/CHlG9sk6LlX4XgCJ0kJGnoUyuShBQotOTS7g7K6+CtKQRIFTthz4/34xqflEC0gikSEYrsViBqTzITJMOUZt/AaIjondEcDzFTSPeuIfsFjoyFgtSGwqd0K0wGDYPZMV995RKFmbOePuXltyxFfo/GOFTSZe+yxWNwTYY6rGExg4MP8Lf+EjncJ6stLBZoMQFX42hYJDVGW7y14GtEV6Ff6yPe6DLvTZEkKBaheEnojTqf2CEmvZjCITzGBurjYDDg0aNHPHpwn7Ozs6AanqYkeYdEaYoip7uSU9UzKjdCCIVzClcLPAqlSoytsMJhjYkAhvgEddf/HsdHEzePijZJCIetFwwGx5wc7vP86VNu37nD2+++x4NHjzk8OmS+mGBshXOe2liSNKOxQYPis8YXImkTAhKplkGiFC2FTQUjRJ2RSAXO09Q2BKdRBlcrcY4e+DiZvFwuLi2qFib5eaDaBqftMuQJSSA2JC+L6RgtPGmiwTkaa0NPjjUs7Qm8wHkROOPRRLexoZ+ushahw5HrKiaXKggrKKVjpUvGvq7gB9ImC01dh4XcBqRCSdmK1IYFwTWEgp9C6xqlE2Sk/CklcN5inWNZ4PN+2V8kRehjci4kVq0tgHcG42zwaxOhAumiapaMSaf1HgMURReRpWidUBR5UM+0LqI6wUPPWIejJiEmQHVAD4Kao2E8HDIejdl/+pSH9zbZu3yFl67dZHNzi6LTIcvz4C2jNIH6JkBYvFckusPVl15ifWOT/WcHDAZnIUB3nrqpSUzDeDZEpwlJnqGSBCUEW+vrdLOc4dmQo+NjDg/36fR6lN0OSkkSqYK5uFKhZ8FZnHVoEeh5xnmQiiRTeBPmzPbOLkUn5+joOePRkMHgGZPJjI31DTY3N8mLnDT1rK2tUZYFg8GAcaRMNrVlsWiYziZkaUanLCmLguFoxPDsjNu3bnF2esq1a9fY2tpCer28l4kMj67zHhF9kUQ0o/dxj8S3ML1vO8nQSgUE0UbELD4LUrZ+hCyTsranzTgb545Aa720FBCCoHqJo6kNeZ5QFD3m8ymjkQnJfqQa413sPw2JnxMOmcpYYFEkSRlkqL0MCajzMSZogycfk71gUB/QUEtj7FIUyPpA27WuxkX0uq7Cuc/nM1DhmGvrqzx9AFevXOX2B3f53nf/no2dy3x9ZQ1XRjRaROqXszSmZmFqnCpA65gYJszNlPfu3GH7yssUq5uMZyOUSpHeoYRjpdflZ3/uZ2i04PndQ7wN5/7k8ROuXbtCp1viPRRFzt6lHXorPfJUh95YocM9szVFpMGiFKkSZMKySDQOyLMMfIqyTVBATXMQFUla0F9dZ+/SVR6PRjRWkWZ9rFMImSFlRpZ20Tqj29Vk1wq0kJRlRlNXHBwfczqaMGtqptUcg6MJdaKoghXDbx8+JyKusAIa70JC7hxZrOiny4U4Fs1+IkjyYxlLpknsyWmMZz5e8Id/+O/4gz/8Aw6PDtjb2uCXf/3blFnKrbffY3A6ZDGaYKYLlCUkTevbXL50BSUVT548pW48K6sbfPuXvs3OxgZFliwVCgMwE6r6IQHRy8LM0pjXh+Lr0n7Et4VTh7OG4eCUuqrZ2tyiu7JKmuZkbTIj5A81P4S4EAPEavfyz5cwkUMKG1EJG3psbQESRmcjRsMxt56fMO0nYCp8JpYqkOdIYXitvMhJkgSZZzCdUnRK9i5d5pVXXwlncDGz+aRsIn7tXSjEemfxLqgBd/o9qkmK8AlJkoWCkzx/7U+fCOcn2RiL1glCSJI0wwFpljOynnndUBSB0nghOPqMi/viebfBerisgZlAojBAVpSI0ZRESPplJyiJSpZUTb884EdP/ce/JnzsbQWJcWxjGNQJplpHztbZbipSO2B+sM9sVLGxUSD8Dk4U1AhS4egngi/v9Dh6NOL1zV2+dbPEDt5B7x2gM4HdL1HlDURnBcwpp7f+jubkkLXTBoZHJM1D5OIhWs5AdvFFjqkbtHXIxpKroKptUlis5qTXV9FvbDDtNFTC0GMNgcb5IBjjvAzotBR41+BFhRcJdWOYTEYcHOzz6NEjDg+PmM3mAb3OMja3tiN7yGOco9dfYWNzjcHZgKPjI4QIDCchQiHU2rCvSpXgXY2OcetFRHM5xCdP+S/qWKrNn1dDwvcvFCCXQ4Se/DDdA736ot6jjc+u857RpOHZ82OePn7Mk0cPeef73+Xh/Xucnp4wn8+ZLhbUTRAMTFFIUYR103uaWsS4/rOv4BckaRPkeXZuTC0lUrZJW0Kig1dRmiRhDYl+UkFwJMrH+payE0rBrVxwq6Lj25qL8LE/J1QkfKQ4CqHBm9AP5AXeOhpnlokfkcroYuXfeY8XEufjh4WmcQHQUCHFaupABfE60s0aA94gfFCrTFSCs47aNZCFAHrZl2d9TNZEFNGI66cN/i0ChRAaIz1CmCBfj4vvBYR0GG9DZSsiFm3QtHS388FE2BpL4hUi0TTCs7ALIFT+hHVBVdAHTrNRnsp4yk6OQyFlQllkyExiG0dTNzTGhOq6B+MMwoXXk8ovVcGEUHhrmYwm1FXN0dEJ9+7cY3Nrm+s3b3L5ylU63S5ZHtAwH9U8QSJUhkDS6WkuX80oyx5aabIsRQrJoqq4d/8eJ4MTXrp2lct7l+iUJUpIOkVOlmrKTs7JyYDBeEQzrMjynKIoSJMkICu1JU1TkiTFWRcFV2xAo7xHJhKvGqyDstNlS+7R768wGY2YTcY8e3bAeDRjfWOdbq9Dnqd0Ol3yPGdtbY3j42AhIKXCGMd8McUvPFmes7bSp1PkDE5PefToIaenp1y5coWXrr3E1tYWaZIGNFO0dNxgwbCMU5Z9a4RnQWu0kEvvM+dd8CRTMiZVwV8wFDTaHjdi3184qo3qU+3XSiuUEqAgQyFwWNtQVw5ragQ+9mGpSI0JiZg1YAw4aclSQaolMvZ1kim8E/how4C1gUoZ7TRazRjngziJ0hKh0kDLdQKtE2rb4KQJFEspsF7SGIuMaKHWCVIGlc9MKDrdLsPxnOFwjHfBbiBRAiVAx0KJtQ0yVZBKahfsCKz3yDRhPl7wd+9+wDe/8TV6a5sMqymJkmRa4U3DxsYmX/+pn2J28jc8339Op1dy/+FDjDW8/PINdBIoVkWvR1YWCK1w1sQSk0BgCWmxwAlBmkhKJRkpjcqC7YQSJU42GFNQyQykIM1T0jxjdW2dqihJ0hJjBmR5l7VVRZ6XZGlBUZQYbWh0TpkXbG6vczYb8HRyykw7Kr/gwekzPnj2mP5qH+tC8aZFAYqsYLPXRwixdLSaVzVHg9MYfys2VldRWYb+gRHiT8Y/aHiPFcFHtJrP+cM/+iN+/1//Ho/v3+XGl17iV37zlzGLGd/9T3/LbDhjOplzNhhijWNne48vf/mrXL92nW//8rdZWenz53/yH6n/4N9w+8mHrK+s8rW3XiHLVFQ4a4uhIiYzn35P2znSBsyosH7U1YKiLFld30IlKbS6k6Klzf2wYZ9Y/slSgMy3eUxMaP0CRGgHkLaiqSWoPHiJZhk6zbj34TPEWkpiaoRLlv3OoUAbjh/806DodJg2hpX1dW68+lV++7f/V17+0mV4AUkS5+d34VP4uhU3E0GN2UqKsqDT7zId5FiTxIS33S9/iGsBKB2LuFqHoqXOsAQqPSjUBS/PGD597rE08ZCRDuYdKiswk4Sm9qx0VlnprraGDqFcGNFC1SqrfH51lc99VhffD1xAJT2gJVjP2XzGO+MFE9th+GDM1+/d5ad2eyzGA+ZnU1x1hHbrSFeSJg6pa3Qn47XrikJukqlTNtP3OKn/A9V8H8kOa9s/Rz/fAt3B+xFF0UO757jhiHQ2RLgznJ/j9YIGhTECqUB5gbASmgqRSbKrG4gbfeSNVdgrkdKTIpFo8Cn4DEQaevSi6N5sNmY0OeXodMjTp884OT5mOBrRNDVl2WF1dRWldfD/dZ7JdIL0nrXVDlvb6wwGI44OB+AKnJdYI5eFUanBOYMxEpkkJGkWkDbvL8xtv/z/i5I9/wiGFOfIzkcqKm0hIQwRxQpbrYP4OwSQYDQacXR0yLOnz3jv/du8884tHj18wHBwymQyxsdWpFB0DvMxaHgHNlk4l/hJn7esfNr4wiRtiVaBKhipTlKGhSVk96EpXwiBEuq8aVleeCgJZWDhW4GJYLLcrg8Xq7zxVcGHIFUGVROUj9z3rMDXNYvZOBhkx6A2eMa1ktYimlYKLJLaeMbzBdW8wvoq7FPRlynLsiVNU0sdpFJ18EtJkwyZFYhS4bxjPl8EL7a2lzied0ATXLBEEBIhNFJohEjCBwIlwbgG7wNC5H2o4JlonByWULGckEJKTGWRqNBsWhlqLXBJCBNdZRHWkulwP5wwVNYxnNb41LCoHcZ6TGNJhCDTCZlOqI1h0SywTiCJ1E5rMdZgTBA5UFpEtU+JNR7vK4ZDw3gyYv/gGbt7l7h0+Qp7ly6zvr6OVIokzUISoCXOhV40IQPNtFX2RAAKJvMJDx7eZzo45undu1y5fJkrV66wurKKlopsbYVer2RtssrZeMRoNGF4VpHnOXlRkCZpaBB3JqI6QeVQJwqpBTiPs+CNQ5GQuow8z+j3Vzk7HTAdjphOF4wnT9ja3mRjY41utyDPC5RSZFlGWQZ60GJekySK6XTCYj7B24a8KNjYWKcsC0ajCXfu3GY4POPmzZe5/tINirKLaRoas4j0xSggEhPsttnd4nC+IUkicujOTeDbEvKS8hbRZxmFa1pEWkoZVBujJ2C4FiEpkkIEOwjvEI1D4lGifTRdTN5NfAGFdxpBgpbgTI3EkKicRAUFJUVQEfWurW75iJoZjAs9dD4eW8sEK4HYmyJlQMY8Jji7y/BsNs6RSYmNQkOLumL/8IDN3jobG5ukRRVESLxbRmhKCvJEk2rJ2t42X/mpL2MOP0QkwXMuTRK8dmzu7fL01hPeuXWXX3zrJunpQdi6bEM9X6Ck4srVK3ztG1/hz//0z3j6/AlXrlzi6OSYTq8kzTO6aQqJQgpHY2p0ltHMah49fUxXVGghkCql9qHClyrwUmKBRbUAJ5jNTfB0zJLgiRcFQKQWlJ2SPM9wzpJnKf2VVbxSSAU6USitcd6xMA3HZwOmzZCFqZAJoDz/9Xt/y7OjZ5TdHrUxyEST5wXOWb7+la/ym7/0bbKiDPPEW2azIf/xL/6UB4+fIITiZ77503zrZ3+WlbKgNW39b1Fd/+9ttLU4EMHCpLH8yZ/8Mf/63/w+z/YfcfnSFr/6K/+S/YNn3HnvfarRnGpcM5nMUCpldX2NX/21X+MXv/UtLl+6RKffQTjPr/7WL3Pn5ITDf3vM6PSUIpHkuUSo1sih3Uni/5eBz/nn0N8pl+uQ957FaIqXNVnZiQVadf634rzK3Y7POzWWfyd8RPXDoibbi4TDiwbXjGmqBdXwlFmTUO6t0FUJTV0zqyvm3tOra5jPSFZ6L55LPFaWpmRZxnQxo9df4X/89V/nK1//JhurmzH2i32GPqw/sVx5nkgKoohZQB6l8GGft54iz+iWJWmSUFn5D8o9xohHAAAgAElEQVRpggVCYIFYH3odpdLBNinSWtt1/AfRI9uw6aOCLBKx3B+cs6gkIe+scG2lz/VXUq7eeJk0LYO2QAuetjRQWruAi9T8H23ER4BW+bKdk9ILrGifE48QnmxjjY1vfgN37QaT2QC9vsbg+IB5PedkNKA43mdn7xWkgNKHdhIyx8qu563tBYgBonpAf7vB2xzyHN1r8OoOtVCI7ozyzRJ/6Rr+0jZi0MMdzVkMgt2TcAJnHVI1zDBkhYKsQF5dRb1xGbFbQF+ANBTe4pbCIwLpW69Dh7EVzx8/5u/f/i88fPqA+QIQkjJP6a+sUBRFVEsORbbZvKJpGoz1dLodtjbXOdzfZ//gBHyC1hnWBwst4S2tlUYAKQSucdSNCboJsCzKtyn8P6zY8v/fWK5b8AIaH96Bi3548ftOEIQGfWyfCvYIjx8/5MNbH/LBrQ+49eEtnj99xmQyCa1CMfEwVYX37gKLkIhKCqQMBXOx9KRun6t/BD1tgkC7utifIpVa8rJb9EzQCizIZW+Opw1SLxwt0tmC8IKLi4uPPxMExO1crMEuZf0FSjhkVqCdQ3rPYhoEBogmpSHXC8cI3QQS42A6rxhNFtRVhbEe60A6HQRI6iAkorVEK8jzlJVOl9Vuj5euXOG1r77K1TeuUTWG9959jwf3H1LXgQIpXBQeXyafMYBtPJCQJgVpVrCytkpR5BhXUzcL5vMxZjGlmk2YTiZU80XglgN5npPlGePZlMYaFtOa3JV0VzdINnpMXc3x2VGARJqas+GA+WKGiwjE3cZSHJ9xNpziXKBzeoIZsxaKRClElmOcoTE10ktEpPOF/jyHtR4pg+KhUlFgxRkSEiaTIXduj3j08D6bm5u8dP06W1tbrK2v0+v3w0KZpEid4GxNmpdkSYJOAsoglaAoc/I85fTwgOHBAcOjQw6fPmHv0iUuXblKb6WPEJY806zpPnmWMZ9WWGOp5zW2DvRBrTVSKJxwtKqGYZ+xIARpnqFs7K90jlRJNta3WO9vMBlNODo55GwwYjKesLa+wvb2RjQ8V2xubsSkbMzp6QlCltR1TVVVTCYNaZLR7wdhk+FwyP7RAePplMFwzEvXbrKxuU6n26OpF9T1jCRRsbgR5qiINCOHj3YMgVqstV6ibt57EqXx+CCGI9QyaXPOYY1bbtA+VkeDmmP8+/h6UokgouNaPzii4bTFYWISIZEiJVUliAbcAoTF1QbpNJkKXk9aqVhJDEEBBJqniwhXoGgG5K4xQY5YCo11FusdxhuEUjgpMd6DkshUh3uoPEmeohNNbQxl0adAk2RpVF0LyJq3DUp4hDcYU/Hml99g/gwmC0Njg2LqwlTIYpXLL93g9p3b3L4nyVKNbRps3USBI48uNG9++XVmszHf+c53OD07QSWSJ8+eUnQK0iIj90lQqo1qn95K7t5/wNnjW7xy5WXWLUzmFU1do4tu6G2QKpixW8dsPmM2GSHSMhptW6QOSVniBUWm0Rqaes765hpZt4uXlspMg3diHvtRzQI5ndEzHn96hsoycut4/t4H0SJDsrW9jeyvUosa9eUvsVIqtJuHddx5erlAuDknh08wxnG/3+Pnvv5VfJH/JEn7MQ8nQjFCOfiLv/0Ov/N//+/cufUeuzs7/Pb/8ttIKTh++ITB4Izx2RS3CEJZG9tbfOObP82v/8+/xaUrO7ja4rHIVKC1IM9LXn/ldW5euUoqgny7cA4v86WPkBCKi41nF++tkHIZDHnrWIzGHJ8esr67jlRJ/AG09hEvpA8/0hRpX5RlTOBtTTU95vjgLicnp7izU0Sxyd72q3TShF63pNvv89Y3vsH1lZTNsvOp6JO1lm6nQ+0ayvUN3njzTTbWV1DUEdlTCC6IbVxIKH17UEkw1Y4F1uDlZJG4oFqr1LKQdvFxOS90fMLbjllla2kSKvugZEKis9A+oTVaJ8t9bXlyP+h6fwSIOGdVCmSasLm7y8rmJmW/g0yilcBHDx0LbRgHUuE5Z3H86GtC9CXFo+I1F/G7SzwoFvH61y9zXUnc/Qcw7yPVgjvv36OZCE4XM8pFw7Z0CNGAmYFK8XKGl/t4ewchnoB8gO6McX6OFfex8hAXXPEwucc5hd4u8Os7yCpHDXZJDjOS0RFyZHFTh/NnUIDcW0dudWG7jygVKEMQeBMIF/ZzVIPA4EUTfiYM1aLi3v0PefLkMVqnrK9voBNFqoN2ghQKY11oU3EuqpGHoq0fL7g/PcI0liLtsaimVM0AlehgBq5ynFU4lyBkitKA8nS7Pcq8WOpXywvz4h8lh+JjfM520YgetQSWjzWwmBsO9/c5PDzk4cMHvPvuOzx6HGx6zs4GTKbTUMCWGoeG1mdZBoV027ZHSbUUjcu0QYkmtF1FYMBFJtRnjS9G0iaCmAIqPshKhkUGcR4ot6CkDwuT0hopghHiR6u3eB/gXaVwXkS/J5arsFvCuyF7liJMQ+ktwimUTJBphssLqvkMb0OwGpo8VRQ9CPCmFwFtmlc1TWMRSqOVRFqBq8CYMAkSHShgSmkSlZBIRSYVG70+L1+7yutvvY4D6vmUxWzKfFZHzyodKpaROuIBYw117RAkpGlJUXa5cuUK/dU+HsOimjAeneGrKdPBKSeHR4xHIyAo2uR5TlbkDEZnVE2DFikd2+fVN77CN37pF7C55N/++3/H/rPHlFrz+OF97j+6x3A25vR0xOxsCvIYp8PkDApNAtMYrDdByEjHzSfNsSqaNpsAE6tE411UI7Sh9yhJZaAgOrPctCpvePpkysnxPiurq2xvb/PS9RsUGzt0V9bp5gXCQ9MEWwUT1R4TpVnf3OTmyzeZ7e8zODpiNhnxZD7l9PSY5/vP2LtyhfWtTbJuBzBMpyNmw4pur0+Z5RhjWMznIUFUGi31sgrirEX40KvlXKCYZnmGNw5TNyiVkKYpeRpM1IejAWdnp+zvHzCdjtncWmdlpY8gVFfLMqfTKTg6OmQ2m6O1wphg+TCfm4C6bW2QTjLG4wm3br3P2WDC9RsvcfPGNcoiwfuEQBeO9F8vlghxW9iQSkbUyi6DKgFtj3xIktoFo0Xa8Ch1vkw4Z1EqzknC+3cRwWoTKSH8Ui1MLOu14J3EWQFORmkvi07BNjNODoecDmqapoKiXIqreO8xtsFdEB2iXRO8AxtN0iPFKvRzWrRSgboTEz3rLF6GKpnznqLbJfEJOk1C76hSJGkwVhfC452hXsxpmorHTx7yZ3/xZ/yz13YDuojC+gbrLQ8fPsSmW3T7q5wMRuxulUgCI6BpDHVjSFWOzj1vfvkNzkZnvPPOOwgVEv2Hjx+TlyV7eR6a+rUEG4oZSM3t23cofMr1X0zw0pEkKUmSEPSBwrqkdSvpHW3TnQlX3lsaU2GlAgx5JmmaKffu38IqSZYXqDTFuFBkSpI0eEeZBbPpFDScjQZBqTRJmS8qvJAMhwmNqbGy5v23/5a/6CWslx0SqfHeczQY8OG732N0vE+SFpzsP2U4OGWt3w/04uW6/5FgrV2+W9DmU/aLT9xrP+UPPuNHP3B8NBBpWQ8fP+AnHd3/gJ//w87kRR3OsIvVjeXtt/+e/+Nf/Q63P3yX1c0+v/Zbv0yZK97+/rssTAXOo3XKjIbLly7xq7/xm3zrX/xz1nc3qZxHaVASPEGROE0zdrf2uHH9OjL6IIYPyzKKXyJsF2SPYrDTov0BdbYoIdhY36TodgnIW0DiwjMdEQRx/l7b/f6Tr5x/8asXGtjaj8C0aaZznj++xbNH32f/4C7VomIN6O8oKh8q6kprym6Xmy+/ztrsFLlooOOje/D5kdtXyfIMPU9ojGEynbDjLdYtECKJIh8Rn/LRVl60aETbgdgGh0GlL9EK5xVSeJQMCsEujerGfD406mNzte2RJ7COrHM0xmK9R0V163ByP2y4fR6pC0AoRd7vkcf7ZxuHUpE0ew51BsNxEwqb6BDj/bhHuKqtJH2MF53DtsV6AUkqKMqUlAW5XiAmDYtxw6hyDATszxs2Z2P6pSSTg5CscYjgGO/2EXIBymCFxpMifIOoz0hJgBIvSrxyCE5pZIUtpyTllGQ3R9htxELgFwKSLdAWcgUarJ/gVSiKITRKJEFUDwhCI00odFKDN1i3oN8vuXRpj3lt8WIVpTzOzqirilam2QHWOJwLvY7zxQIpala7JYmSVI0h0QWJLENbS/DkiUJ7Fi9rrJMURUm320VrHVPkj8JUn0WU/vz37/zOfeSbF//xsW1DvPArn34m4uOHWy4dodc2UCANdT1jeHbG0dEBz58dcffWQz54/xYHBweMRkMm0xF13VDXVYhNjMXgsb5BRo9p4jPoCc+0VCqyYEL9wlkd85MQk1kXem39D+AqfyGSNh/jONnCBBFNI6qPWSRCBHd6cMFHrUWe4u8G/w8f/2uRtRicErioOBAy9N8QaRN4HzxLpAjVDSPOpcjj+YQNyIUqDjHYUC7SuAyNWQS0yREqWDIY+/rEQm0xTTBGthpMImlcUItMkXS8ZCPLKRRUWiGyBHSCVjEglU0wnhYS7dUS3VAyCDgopfFCgkoQSRbVhXJ8lmEE+HSG8IbZYozPOqRph2rW0GlGFAoKlfLyS69y/cpNBqOa2fiE1155lW987VX+cngExvPaq6+xs9vF43n/nTscPzvlrKpYNDXO1CQWEulxicK297FuwrXTIlb8FGkaEFJnLTaKU3gbqhlNY0nTyL1u5d2jKuZiuqCpjhkcj9h/csTulWtcvX4DeWmPsiyCkbQRCBK0LgFNmpesbe2yXq6ys/cSo+GQ/efPOBtPmdU1+0dH/x9zb/pk2XVd+f3OcMc35pxZA1CFiSAFECBFWqIkSgq1ojW4/aHDYUc47L/M/tQd0Q63/wBHuyWqZXZLFCeQIAEQQAE1Tzm+ebjDOccfzrnvvSwMJNhqBm9EApWVWffd4Qx7r732WrQ6LY6uHrJ/sMd2p0s36qKjjN52H6kU0/mM49MTJpMhOhJkrdR73QnnExArMHWFqH0/iZKRVx7ToRqsFJlSqDij3ekzHJ4zmQx5/PCUyWjO9nafTrtNGidk2zlpkjIajxgOR8znC5bLJfP5nKquiRJvGp5lOdPJjKdPHzIYnjIcnPLCzefZ299GK025LDB1EPEQjQDNmtCkpac3uqbPs4F0YUURMNaGYEOEiravXvvmfUJSFsKP5lxhl9Y6xtR1mDse/1RWIZzCSTBUWLtA4TBWYGpBqmF2/D4/+sHb3Lh+iEsNtagCnVFiSv9+TRUq6tbfl5KglKWWGZVxCF0iSwtVhJIJ0pR+ERQEcRaJNYqyEgidU9VgVAzKK0Ta0uBihQiggZbOVx2o+el3v0t//gbXbz6PVI6yglrEPHh8zGA55vnr18k6bQSOOEmwkebRbMLp+YTrWz2cq+h2unztq28wG425e/c+qU4ZiAGPWk/odrdIshglKpSOQMdcObzK9s417jy64MajJ+wcdVgKkKnGCEesNHESMS8spXNULiJyjpQlqUhJrIAaau09JxOtcU5w66M7PD49IctTkjQF51hWFUrFJHGKcuDqikgJWmnmJYilYuZK5vMZy8WCKFIoCad37/DDv/3PJFpha+vXpEhS2xKnNFUd4aqc09MRzz3nAmC2ufh/2obwbJXjEyEpl/KnZvPd2PXdM/8m8Cw+dx+69Pnh3zQ0Gdmcw7kwrlcTZvNDVxchVmrFzd//kkz0mWtdn3VdMvJN6j7BCbsdxho+vPsx//u/+b/4wY9+xFY34ff+4L/DGMNPf/ADBhcDTgdL5jNDUcPRzRv86//pf+Sv/+ov6XRbDXS5AkhxnqkgpAcvRBRhIy+G5emMMtSQGrwdWNHcHM56lFrgQg+bAAu6nXsGBp5uJTb20mZ12nw4z75Swuc0SdD6DYFX04NGjMVbvnia4uDRKd//znf5+P5PWdQTDg8O0K0uk/OSrXmFyYL1iRTITkYc76PznlcbRAT7IFZrmQ+kFUYpSlPx8O5d5oMBdx7c5ZWvvMmXX3k1tO6Fytoq6zM4NnrkkB63CnhsGmXE2qCFIVIaEzuEqoCgynxpQnzKCBG+yqesJpaaRGZMVY6KBLGQSOcBFe//qJE20O6cZdWjJprRsPkZn17WW9VHGwGU8KUSuS5YuLD/OK88qHArAPqfv+LuWRorsZxwQXKjkttUCFMVk84qthB0sxZPFpLhcsLALSmevMveKKKdb2PFYyp3DyOOSfC2FK7KKYt9hhN4enJCOR9ytJVzdHCAzq4jCgMh2dPxHCtHVGKCVSmxk6gkDfTHpqZTI4lw+D59KzTGCSoEWkRI9hC8hBCHWJf637GCYrmkLJZoqYgjTVlZXG1QgIx820BR+4qrNQ5Te0EtoRxZKyHLFRJHkuUYq6lq8A433krK24hYamtxWiMjD0SrEC6sUu5LY+YLHBtDuBnal+f8xj5hN9ZOsY7z/eF90Uz4dxpwxgXbIBOWCem/ACcFVvrfR/rCb21gsXScno04Ozvm5MlDzo4f8vDuxzy8f5vB2YDpZMFyUWBsTVX7Nc7YGussVV1T4/UolBC+OKMVQmsQXjSttjWuLqmtWQnBSRH5fESAlKEw4DYzyU8/fiuSNvDrbiO7L4SvMCEkTiosCiM1Tobqmwsy4ha/MUg8VUO5UC3wSZZHvNcvXKjQ69GsT+EHUlp8cb0G5bwSnQUrpfdKMcabRgvpS5xKIKRDYqmLOfP5GFNXxIF6YK3FCQPaG3NT+usyVmKEvxfjvFphYiz9WBMrx1xZCiUow2bhSWgWG1QTpbGr1cfhe36avj8h5LrXTgpqKVmqhKTV5fqVI04n59weDNDacqXVoScswhQ4B8eP7rOYjZgXjseDu5yPP+bxyQmJgrIWZGlKnu6yv7PFdtzl4vqMmRTcP33K3Y9uU16MPSVDWgoFiYjIglz6MnCgm41d4G0NlPBWCxaPLDgriWVEJCMQPhFYNdxqb2sQ6xRRa+x4gV6U2MWcgpqiWKJVRlWx6plSOvHV0kqjVYud9jZZf5fx8Jzh4JTBxRmz+YS6mDM+O2F394jDgxdoZYmPjpSiv9WjouLR4ynj+QSD71vTKkHpFGkktgasIFYxxtS+QiK8bYIHDhSR1ERxTJzktNp9ZpMRs8mU5fyUrV5Bv9clb+X0un2yPKfV6jAcDhkOhyilKZYly+WSqqrIsoztnT5RHDEajrn10QecnT7lK1/+MjdvPk8UxQjnq5aNsuRKwKOx1ZANPdgDEqbpg3NeHckDA37xsEiEM80s9b1z0pvNW1uvAjDnvBKpk6ECHc5hjUFZH+w5CU7VCLEApzyPHkcaSZ7fjXhbDyhFxtGN5zBFiYwEy6IgjlIk2ifGwqs7+uDRIYXBqhbLeoFQBbGMkXVGpGNUOcW4EmMqMBGgEVZhag265dcDnSEjDywI56BWVNRY6ei0M/IswbqaXZ1QDWo4KCE3QIIkJk63MfMFUsYgK5wwJEmC0ZpH8xn3Hp6S5zn7h32UUmz3t/jm17/JeDDh7OkZkU45Pb4gyx5w88WbxMIghEXHOV9++VUmx+e88/MPePz4Cf2jPgWCha18nGoNWZZgsoQtneKUxEWOxM2RFaROEQuNFd5g3JuFx+T5FjvbiiiS4CpMXVEZQV1WUGuyuO0ZOnWFkgIlImonSaMMLORJRLeVEssIJbVHlrWnvmIEkarRccVkMSfJD7F0OTufUVvH2h7KBVT0kxvUZkj+SfLcZu12o1DwKXvdJh68rgd9saM5x2VfomDD4rzKqBBqAxXfvIv1Nf96h7v05anOUPrchPnScOv2R/z7//v/5Hv/9H2yVs43vvUNsiTn7ocfMZ9cMLoYMx2ASjp86ZXn+Vf/+n/gj7/9h6uEDTy6LkNlyAuCgHAlKgIjBDJPQtIiQ9uYCA9e+nXCCazxCLXvezPUpkIIiZK+X1OE8yOasDqEZxuPRjzzbj/tafhnv6qjXHpOAgPWA4dOWDQSWQoWgxnV3FDrHBV3uXtaMK7PeWVa4nZCb7QSFMIxj3KIU3++YMrtLVkdUlhcVVMuDYvaYLTgzge3+C937nFuLbsvvEktNcoZEAZL5ANJ54AaKxLW6aqnr1nhVXAjoVGiwtmlF/OyJYYliCTco2blObbKisL1IagFaKsQVhNJhXIRRS2otUAZSywTwLedxDLz8ZUT4IyPmy4lzf78/lpV83LCj9wl1T0nw9tshAPsGsizIUBN0hSlo1DtasaA+PWnxTPHuiq7loBZ/VcIVMPACj3fQkGmI+qJxbQkpbXMqyEqnfLcc4fs9h9i7IcYOUYwJ6JEVgI3VoweT/jw/VPe+3DE45MRe/sddv/8G4ijF6juO4aDc8bFOaI1Z/9mStbbQpL7GE6AT6usb64REkkCLkWQg0sQZChinFMIEePEC8BrWNfFEeMsDC5GPL7/lNFwgjdnByFrlHXYymCUw8QKIy0iEoAJvVVeVj5tpagIEiURMqYq/XypCs+EklJhQouPRWIk1M6itfIxMG5jHMpL7+DXPTZXugbGIcQkrpErVs1bDfM9gGRNLB/wXB/DCIuta5/jicgXbBR4FXBDYS3j6ZIPPrrLR7fvc3w24P6DRzx59JDx+QluPsMtppSzMXVd4bQvu7uwETgERghPFY90APNBunWxydZ2xRJqBAyd86qfkZagfGIshUCH/tcGXP6847ciaVsFkBC82jZS7ybDCn+vtUY3pUZ8o60JDV+bm6qQXpWuqSrIwBW3QVnvMp/a0yed8HRJoRQYiREglPJN/6FnSTmvouikw0mBKUuq4BQfJwlZ6ql1lAXOCozzXlFNr1AjuS9kCGCURSpHHHv+soq8IIvnDMvVhgE+mG7UJMFhQkIURVHwkPN9fkoqL+CyKNlu9Xj1led47fe+zt/99Bf8/d/9gKcXj1noBWlH0N3ZYTaf8vRiRhQ5iicFH9+9y/ZBl/3DmwwHM2aTc7qtLtVScPVoj5dvvEqhFF+3Fe+9/z7v/fxd7t27z2K5wNaeriPwvi1WWKRSqx4qKRqcMVgZCIG1wtMsgoKjExZjTFAR1SAjlIyI44wsycjTjFaWkSYJpampqgqtMqyxzKYzEpFiraWqSu8rFylMbWl12qSJZntnm+l4n8HFGRfn55ycXXB8OuL4dMju7h57h0fsHOyxmBnK5QyspZW06WQdrDUs5yVSmeCdpjCmYrFY+LElpeeUo7xiFY3MNMR5TJxt0enlTMdDppMxZ8MBk9mYXr/Pzm6fdrtNu9Wm1WrRanlj7vF4TDSfU5Yly/mUYj6n1WrTOtxjMplwfn7KP31vxMnxCTdu3ODw8JA0b1GWJdZWCOyqGbau61BB84nbZm9bI0Iiw5hzYU6tG8Y3w6nLQakQDU0Zmr7TsId7hcvNeU0j5++vJ9Kal168ybf/4Pf5+x/8gHtpyl//xV9z8eQcFStkpSjqisoY7xNXQxIleO65AKF8k32AUq1dA8BNX6sIlQRjDFXtabSJjr03SlFSVzV1VROnsQ82tSKKvKiHrWqkECRxEhRk64AWO9IkJY4tkY68P1y1REmJUN7MdjAcMhr12dlvE+cpYgaHh/v8yR//EX/zt9/h5OQpebvF3Tt3SdKEK9f6KBGjIsmVq4f8/re+QbfVJb92k7OTY+rKIEXEcmEwTlJbR1EumM0q5sslsYwQgR9vnF85AtmAujQUy4osa6MTr06Gqz0Sbr0ZeVU5iqJEaC+YpJXDUzATZJx5tUtqIqVIdIRD4VTlZZCF8lYdbkmSKJ/URBlZe4887/iwUAiPwH+OCIFgo3r2KSH86ue/9Ghoe78cvVwd7tlv17WuFYu4IWAF0OmynVgzTzb//891bJzLwYcf3uHf/tt/xz/+43+ilS/5l3/2V7STLg8+vkU9P2E2njEZ1eiox8HVq/zJn36bP/+zb5OnGc5atFS4RrhrlU74B6CkQgvVdGZtfPaz/w/JtwjBRmjWL5aFt+1JolV/yOVHsZkgfOodbvxMfOK/TQJ4+Xft6jeaf6l1RJa3SVttVKzY6m9zdnIfnSREWq+qL0ma45RmMquwUqDkpyThzve0lWVJWRlU7lkFk8kEm7VWZthNL9VnDVFfKPRwgJAgtfKgsJJoFfqY3GY99fOOtXGRCAraSoFSPr6II0kriUhVRKQiL9+uE5CxT8JltAKBL79nPuW78Hcb83atsuewoZdOBq9TEfqfEWK17z9bAf/nOi5d++ZFh+tbxR4SynROdVCwkAtU7JjWZ0TRiDd/94ibr/Zop1MUFcpEmDojsh14PKV65ynq4ZRrZ0v20XC9xda1A5L5lOJnH5Luvcjucy/BsM+jR3dIu3voqAXRDB3PgDEwRYoyjNQIQQ/BFthdhNgD9oA+hCQOUnzCLnFoprMZjx+cMhjOmRVgnKKwDqEjwIK0VKamLGrP9rKWxXTBcrZA6ggVKaRTJFFCO0vQOmVZWNx0iXU1UhrmyzKA5n6MqkgTaRXiNUI183Lf1bOrwq93fEp8IbydYs1aJkShPBzivK8dMjBuEVRCY4SgRiJ0Ru28/VZpFhTDMcPTBzy9/S6nx/e5/fA+t27f5fHJOcvKsFx4pfPIKWRp6UYJvX6bSipmUrEoQ5sGPhnz9gv+z3VdU9WVT86soayKkHsEGrSUoV81UKglwbYs5DVSbazDn3/8ViRt/hABKZErb5dmY2+yemvtWrbcetqTsRYnG85y2Hac7+fw+Zlbne/TEjYhvBeFa2gazmfPTiof7SiFU77hH+kX7rooKOsCoyVRHLPd7zMxYCsbZOIjjABTCqysccIQ7DJJtApIdUKrkxFlCiJ8udw353hqGQQ5dtboVCilWmt99i/WNgmbipB+gAgyqVgMR9wtxvRuHHD16hVevvE8L/V22W0r3rn3DvdGJ+BSopGm25YkbU1R1pw9XaDkOcaUDM7G6DqnFWvyTHLt6gEf3b7HfMePlmEAACAASURBVD7hxvPXmNVLzospk0dPSKzALCtKW+KwyEj6knWjpBL89RB+EDfvQEmvqJhlGRaP+AjZ3HOMCDx8IdfqonmeE0vHfFkFoReNEIKqKpjMxlwMzuhHOVGSo5VAa4VRKVWp0Dt7tDt92p1tTs9OKZYLjk+ecHZxwvH5Y/YvDjm6do2yLNFS0Gtvs7dziEQxng8ZjE+Zz2fE2m+GTsNiNtvYuAM1QzuEWiORAkkcJfTjbaI0ZjIeMZ/OeHJ6wmQ24ejwkO3tPkmUsL21TSvLydOUwXDIZDKmKAqssRTLOUII2u2MJN5nOBzz4Ue3ODs/54UXX+TFF16k0+kgiCiLGYtFudpEN6X8V89fqRB8haS6qbiFeePnyarugFSCZvnGrU3YG+NrJ4JQT4DP1si4X8Sc9ZQNjCXSMdtbO7x04yaVqfnxj97i+//wXf74j/6U+/ceUs5riKX3EEQQae2VR2XohxEi9DM6L0lvrUdUBQjhvema+a+0RmqFMRajVpndSqGShhqtPU3SCCiNwQpPOxFS+gRFSWxVYerai+g0dGrrn1Nd1xyfHPPe+7/g6mGXyuwiS4dxNU44nr95g9e/+jo/fftnDC7O6e/scu/eXVqtF8iPDrxokDPs7/SpX36O48ryve/8f2yLitf2j3BGo+PcK6rWFfPFkOHogq7s+i3VOio8ki+F8Im7NfT6Pfafv+kRVFOjJSjpLUqcU1ghmS+mCFugXIUUntGwqC3LomI0GjC+OEUJQ5ImRFGMkRVWSNK4QyvtomWJjmvysuT0wnHzxot86ZVXiLReJ9C/wvYuVgj5Zv1Fhjgs1GVWid1mpaD5+af9+Vc7NvDcVYWH8L21UIfCkXqWGhQqH+LZv38mAfniR0gerQeLJvOSt3/yNm/98MfEIuabv/s1UtHm1jsfU83PMMsZg4sFKu7Q2m2xd+05trZ3aMUgRYUUfp3yFezmI1xzA2ilgtKx3xP9sw7PWYTgWzRtBmJ1e56eXaCkJNbxuiJjvdrs5ccgVnf2ybqkw5OY/DqzkiG8FPO7lVgkQXjs0vN2IJUmzVvEaYpMIg4ODhlezKmiHpGWSOk/O05SnNTMqwKjgsrbpbfl/+RVmVlVk6I4IkszRJYRaf9MPTDx+WICq1MG8Erie4KjyPfE68CQ+FWPVSVYgI4lcSJQqg5j1D80rWLanR36OwfIJPeJm9AeNP0UcP/zErYG6FuB4qz3CRVFq5hrdTTA+n+DXrZfdmzKtwsBKgO5Y1iMhiiRYkSFFDGZ3qGbHBJxgRBDYIFaZLh3Tqk/eog6n9NeVrSpqAVU1ZL5nTGLuymit83ZqxXbndfYfenL9K6+jhCZBzBljWSKsyc4ewGiRooESBAiB9oI0QHaQBvnMnARDe1XEMq9QpDqlL2tAybjOTq21MZQV160rioNykBpHbUUtLo9tBTMBjOE1aQqIxYJwioEETiNc37fl6ECXiwL6rIkir0wl8DhlCKLk0Bv3nieG3Pki8NTm2t6c55PB7uEWNtouI3f9CJIcrVSGCwwI8agqgpXWcrRlFsf3uad929x+ugpy6fHmLNTJsMpDwrBqKxxsoVwSzLhSBLHjWt7XN3b4mirT6Yk90/nfPh0yflgwmKxoAqCLsvlEuus70ULPfc4r/IppVx52jb5i1LP5jbKJ6LOBSX49a7zecdvTdImRGAkr1aqIEKyamy2QUnOreheQkpskCdt+m8CSOVv3TXy5j5RaKo362SwEToB8AmREwJhBdJaZBTjlMYKCQqiOCJKMiaLguFkQimg1WqRphl0DKaoSZKEytSoWqNqh5G+R06i/GIsJVvdNjeu7nPjaJdev41MJU45P2FM5elcQfXSe9IJkGvZ/0Ylr+m588bSNtDGQiDuQPlslMI6fvre+zy8GKGtYbfT5a//4k/5dvTn/M1P/4Hv/9OPGZ5fYEYVqZHIKCOhzdMnj9Da4ExKVZUsF5bpZEq1MEwGE/YO9/ndP/sT+i9c5fbFUx6fHJPUCqfARIKiLrHWUhQFEDanYLjq8MHgOmmQXrwjTalttUrCnfCefUpFPuCONDqJQzUSEJIoilZiGVmWIRKoR4bT02NmFra6fXrdPn6RVCRphjEWHTkO8x793SOm4wFnxw9YLGecD885H53x6OkD9veO2N85ZHdriwgJVtJrdclyxXwxZ3gxZDwee4N14RM1G+hCwtmQ94fE2ljvOWYFTijSdpc4a9HqzBkOB0yGQ2bT2/T7Pfb39uh020RtRRRp2p0Wo2HO2dkZ47Gnozrnq61xknB0dMhwNGEwHPLWWz/h9PScL33pVa5ePaDT6ZKmKbPZbC1UAit65NoQ160342Z5FF7QB0JfTwBRfKM7q7kncD7EEqzGrRf8D4IljZJrqAJ5oClsSlISRzHtJOHFK1eIvlbzgx//hHK55Ft/9MfMihlWGr8oC4ExFmdqVOxw2q8VzonQABxoDCGwsnWFsMZvgE6htSbSMVL53lMhJTqKvFmuFE33kKfRBwK/Uz6Rc8r/vLbWSx8L2N7aZlSN/f2aQL3GP7P5YsGdu3c5PX+JypScPHpKp9UhDfSrN772BlIrfvKTt/27MIYHd+/TTnN6Wz1wFTqCq1f3mB9PGA7OqBZzFrOC+cxQOslssWQ2nlMtFyglybI0qJ36vlojaiQCawucq9jZ7tM/ukZhHHXoW5MIv3nL0I/rCjAFwlbgamrjKI2gqgyDiw6PXI2sl3RbLd/srjSVdZRlRTG6oJUoUueoakMctzk8OmR7O/dtw9ashJw+cy/4zIqu//4T1Zhm0d84A5/53a93NChvyMt9oOBWsIUPMy4F+s2nroEKnqnJ/WrH+uqttYhAXZpP5xzsbvOn3/4XRNL32t754B6jiwJhSqajJVHUobPXpW4t2Lq6xc/fe4s//OZN9ncPA0AZ+YSsKac5fCIm1kmb34+bHz57NAGG/53R+QWD0Tl7B7u02o1kvoAGe3z2tQpCxrWZfK/uduOXNn7smhM5v0daA1I/M5zcSgNDKuV7gdsdyFO63R55mqC7PdI0xq9NDisElRVUBsrwefqZ54+TFIWXgfd+j/7tGxtikNX6cenSP/2Vhj46n4f6vjLnvHKgDcj95TH9OYcLJDUbYiPtkLpGSl8Rj5VAq4ijo+vsbB2ydbCNTju4kAj8qgkbXE6ALiVtWqHjQOXcYFSsmYnyWUzlN3Y8Wxk0laWcVVRFxayC3b3n2Tu8zsHOEVqmSHcb5xa4+UPKH5whfnSCm05QYbwZlVFELWy+g27v0j66Adu7jHc6iHgf3BZR3AHVwVkVmA4VyOsIMQkX0gOhQShWonhNFt+AIrJCWAVO+/FUG6SxdFottrf3mFeW6WRCkub0ul1SIaGuGM4muFjQ2+pRF0uGx+cszRxpBWZZYuKUKrYsrBfeKMqKxbJkWZRenVgK0jiiv91j/+CA7u4eeZqw2++ihWAtSf9f8RKfma/imbVk9TvOIVyBxoDQOPzzEKsCC1QCptYyXlbIeUm6mDG/f5f5k8cY64iE5NWdQ7723JfZSbp054Jb797l//jOjxktT6jrEVnbcuW5NklW0c4s03LGex/fYjkdc3pRcb7MmM4WFKXvk0eEcSUAIVDKCyM2FHMZErQGSGmYRXJzHrh1r6q/1YYZ8/nP9bckaQs3KuUlhGY91xq/NY/2NV4HQgmk9YlMI7AoXLjpwEf351n37zTfy40qT6PS5FxA84VEJr73xxo/pJRzZEmGkhG1kCwx2KpkMpkwMZYYSR5nRFFEbY0vgyqHlA4rnZfVVpJMa/a3tnjlhZu89Pw+eSzIejk60VDwiTEb7h5n8cGqrTHCet+0kIiGX1ofQagBCd3tHZ67ccj1jqT/8W0++IefcO/WLf5LGnHzm1/hjdfeRIuY+9k9pKk5HTzi+OSYhYaspUnTiEjBfHHhk8Z6iSvh5edeoL21RRJHfOn1L7P93T1kJJHGB+M6jjxQ5CxlWa6e+2bSYLGrd6CVXlNY8ck1odImVYQMypsqVD2b72tXo6SilWUksd+ERWgEXZYLHnx8l53eFteuXafd6ZJl3rBbqshL1ztBIiK0ium2O0xnQ84GJ4wnF4wGA+plyfDsgunFmIO9q2z19kjTmEilpIkmCQ26s+mc4XiCkBop/bmV1CgvAhh6x4xPLrRAC4mnpVk6cYs4bVO0OwzPzzk5PWcymbC3t8vOTp80S0mzhDxNSeOIYZ4xHI4piorFsmC5XOKcoNvpkCQpF+dDbn18m+F4ypeGN3n9Ky+ztdWnqirKslwlZs27aOacQAS6akjqGlBgs9LmPCJcGwPWeEpOoLk28HQTptqmau2aAKtJ3Dy4oKT3d7PGgHMkcUQvTdnf2uYbX3uDf/zhD3EK3vzaN6CCqgq0DeGNwau6wCmHdypVyCimDs+06aGUAl9Bc9GlqrrSUeg/DKiY8malxtRgTKh6C6/KWBIaiL1ZvfdUgTROeHHviDo5x1VLhPQ0Bx17ylGapuStnIZ+dHx6zGQ65frV67SyFu045o03vsrZ2Tl3bt8hSxPOjk950unRbh+iMglliRKSTivlxZvP88E/fo8H9x4iZURRzDCTGfPxzBuRC3DWeBVTV7MwhX9GgHCe0hvFAmNLisr3MlXWoYXvi3UC34ukmnsUPrBzfmwoPPXXOd+r2NADvVWBlxG3TlDXNbNpwaI2TOaWyXSBqQUicStE1ycgzwRyYfA0nkoEuu3KV2K1zj2DRl6KbcXmEvprH6vaT8jGXNiDrPDJ2mRZM1ks6UUJ7VgjtQiKa/4KLoPRBtcIkzTo+eclrc/kn2uynb8zpWB/b4u//Is/4Q9+71u8/dZt3nvvDl/96iEfffBjhOvz2D1k92CP/rVtop2Mb/3pt/n+d/4fhKt8YmYczpm1ybJrPst/uBTSe6KyoePoNp4LjpXRrIXZZMLgYkhvZ5ssa3kxACGwpvYjR4eEdePBbAb0jcBLcyn+8Myb9V+E6h41UOHMElMViKiH1MkqB1zl8CFQUlHkPz+oHe/t7nH91d+h32sh8L06BIBJKN8Daj+Rp4Yg0UqMgdoYEiHDHuKrSFEUfX6ytr4L/yYbL1l8T53vDzSYqqRaelW6UDD8xL999pD4x+ewGAy19VXyONYk2oOau/uHSBkh4lB7E8/MlC9YLrnE2GAdY63jLBneczO4/P9/k7Yfn6gMGsdiWPHg3XMuzpe8/vUvc+0br9Lq7wdBmhG4KUwfMn7vMeW79+jPHLiSAoOJWhTRDsnR6+Sv/SFi/xrq8ACXROzRRogUZIQTAZiSAXR3GkEHyP2zEEkATlYyQ4Gq6zz8GUqnQjbzxPjfsQYhDXv7e+g853kBnVZOu+UFpEaTKQ9PHiNiSdZKOXv6lK2tNibPkCgWywINlMsSUxmcg+WyZLEscUKQpQm7u9u88sorHF7Z9+0qyu/vHgjxLTpfqAy8cVw2rW7ekV/P3Wptb8bS5iT0lXRB8Be0YEpHWVuIFZPFjHuPHlNPNFtWc6BucO2Fm8S9HN1PII0QKkYsHdXdC5bv3mNYTRlVU5yuWVQlxfGCshphqwXVfEY1XyCNwxio3NQnYg2FWfnij9xgLhnnWS2N+M1mYWh1/+E/jWZDM+F8LG+pKi928nnHb0nSBkI0nE65nvxhoouQpHgzSrlaJK0xSCVRTVWORu1OegTOiWAwaFcVhWerbEAISmRICJ3fV6VEI+n0t0izDIxBqwhhHd1IIdKYpCoZnJ8zGJ4zK2ui3f1V1UdKE6ho3nxSeIV4Uqno5zkHe9tce+4Kaa4gVcyrgqKuMHhpfE2Tyq77ijz60vT/BeraRuAtAgriF3sv3lxFinhrhys3D7j2wk3SScHbf/MP/Ie//TvEW//E1rUtOlnM3uEOb775dQ4O97h77xY//PF3efutWwyHkjS9oJMnOLxHR21qdDBUfve9d1lstfxzV+seLuv8RHcIksQjcMaYVR+eY43YNNe+KidbgdRqjb+EsSC1QkVRoK/6Xsa1WbSnqiolsRi/AUrB8fFjHt25zcnxU/YPjtjdPaC3tUve6pJmbW+rIBRRnCFURN7qsrW9x3w5YjIZcHpyzHg4ZnQ+4OG9e+zvHnD03FW2D7ZptVpYY1G72xwcHPD06SmPHz2hLrx1gJQSLWNqUwdl0RhBU+n1SbgNIh9xqomUJE0z8nGH87NTHj15ymg8Znd3m73dHVqdHmmW0+n2SVtnTMZTJpMZRVH4PouyJo5TDg4OmExmzMYT3vn5z5hPLnjzzTfIc+8D19AhNxM38JRIFSg+1tqQVPn+UOvLosFPBG9rEQJwZ6z/AhDSj38VgVQUZe2pA9aghOd7y6bfzfhmeqUkUhi00ORJyu7WNkIpvvm1r/Pz9z+gWJT89V/99yRpQm1q0ijBGp9I2cj3UM6WJXVonLau6Y8FrMXUFdgEGZQkhfD+bab01UpnLFopv54IiXGOKCQnKoqoqrmnoRhf7SvrCkRCXVbc+eADdp57heVsjKiXKxSuUZFN09SPyygGobl7/wH7B0dExpJGCa1Om2996/ewdcXTxw85PDrg1se3iaM+1184QCsf3PV7Xd746ms8fffnnJweM497WK3ptrscdXYZL+Y8HQ8xziGNRUSSoq4o6wXGWkw1JY4cVTnFLlJG8xKERAvod7vBnEEhJJi6pFxOEdYE/0wvP74sS+omyZd+LJwOLljaOdZJhMhRLoK6oNXWdHd2WRrh1XMD5NgsuZ+gT20cvnoiV8Fe4wvmrBf+8Oudr1yvFX79Jrm5Fv7aRwgsrHMYAfP5gmK5RFhNt5MjlOLp0zOOz8/Y7/S4urNNr5/T9GWDw9mQPAoHVJhqgXUpUdK6BB7+kgvZ+LNYIbDOeXkIrSU7Owl/8Gcv8Lt/dJ3lsubf/ZtTXn3xKzx6+JDnnr9KZ/cmb7074s6thL3tl8izFpgAljUN/p96Gb6hfvPzm+t2ziKko64LD9ZYQVlVHF45Im1lNNU6AKkDmhqea5P8Xgr8XFNp2wzSNpO15u8NsARRYIsRo+FThsNz+oev0e1dpTH8XbUy4Ne3NE3odNpUScT+4RW+8uob6O4ehZQYU2BNSbEsSJxEyVDVEBsPpvmjBVsbhJAr31cV9kEpZVCE27jkX/Juo8irxQklsEFGrPFtK8sFy+WCTnvjnM2jeubcYvMaA73bSeH3G+fBZCU0xIlfw/HxwyZJWXxiHHz6DTw7Zi/rD3z276znxm/u2EwQjPHx2Gg44v5Hx2h7yEsvf5nnX3mdbLeLoQKmqGoKF1OqDy8o3y7IlxmyDQvZZZn16Nx4k9bLfwD9lxG969g4p9aSpbGYBeSxRivhNQ+c9X3DEIZwBHhg2YkmMF8DMl5dVGHdGkStAIRBywpBhYgseSch1xk7+9tYYylnM6anxzw+fsK7t28zLmZcv/kcr7/xGlf3X8O98graCWbTOdPF0vd0G0lR1hRFCXi2Ur/fY3d/hzRNiFPtQcCN99bUAqVobC2a6//8wf5soray7rk032EzcVt10whwIqW0EQ5JMV9iFgu6WUY1W1AsZnT3t7je1hx96TlAExmFMAJhYW5qHtYLTocDzs8GXLz3IRc/+jG3f/ELTucn2KSgtAW2rphcVB5YrwWilgjbQjjlYxNdEcd61aNJyDOamMg5R6yTsEZ/MsdYK2yHvvqqxlR1sCOznkFnKqq69ID45xy/FUmbD7qDmbZYr3qf1olgrUchZJDudC70kwSK1grpcW4lftAkbp+1mUvhVfI85iHwfTIOIkmkY2IdY6rKJ5DOEglIBaAVRZaziCcUVSOjDihPfdBaU2sL1iBxaCmJpCTXmm6esbXdJ+lokm6CjSKM82bBdqNK4IIwhHFga7+wW+F7VnzlxiPWTa+SW21cXp2xlpLJvEQOxgi7oN3LefHLryDSDg+HZ5yf3efw2hFZO+f+ySlpr8vNV19m51qKFS3G5xWL5Qlnp/eZLsb0Wtu4asjP338fmcQsEsWFtJw8eIyrvEKSD7JCYOXWdFQXaChRFHlKVkOVkw2SsxZSsYGiJwKFbVX1wfPiZajMSZp3D4RqljEOJwleNI7pZMLHs1s8fvSYvb1DDo+us7WzR39rl26nS5zkaOWbfb3PWEy7vUPe6tDp9BicnTMeDDk+e8JwdMb5+IT98yMOjo7o9frEUYTDKwCdnjxlMVvw8osvEQuoXI2IvDCMDobxznmJeSUVMtKUZYmUChknxLGnfyZZynjkxUruPXjEdLbg6tER7U6L7tYOcZ4zm84ZDAaMhiOm0zllUVGVJTKRHB7skcTX0ApP5ZzPL1Wcm2S3SZQbA/qmZ7RBSBuJdk+T9Mjpikpp18pNIsDcASfD92BGCBUFFLaZ1b5RXuBW3iRKRWgd0Wq1qbVC6AgnFUJppI54591f8J3/9z/yv/4v/xsCqOoapSJwktpaahsWRKGCDG+gZ9rgveLsClRuEkshFErJYAkCpq78HA/32tynJGw6LqD2wn/55M7w+NEjHg+WXD3ao9fS2MqtAJYm0ZUqQoiI2bxkNJ5x/8Ejrl65iuopEqXZ2dnhtd/5CtPRiJPTE66lObfv3CHvaQ4P+hDEIjrtNts7fabzMfePLyjzlNHFGW0Dra0O2JrJcMxiMsPIxDdJV0uM8BRRrSTD4ZDzpxdMSr8+9DotokiRZ60gGCMxxZIP33uPxXzKzZsvsnd4zfeWSg+kWOeCCI8Ogj+Gsi59BdRZlK1IrU/elV6Pm2ZVXy/8fDKQEyAaX8Cwngb18NW62IjcgK+cfoJ65f8xq7O7zUH6qx9SCkxtGY7GDC4GXD+4ipYSqQU3ru9z9cousROkWnm5bGEC0OgbzYV1OFNTFSNuffgOu0evsHuQrcbYZ4uxrK/dNQ9lA5F1wfKmEQ3SKkJlMbfuvM/946ck+T5f+9qbvP7VFyiN5OcfDjH1nG9+/U3SrEMjf+0T4uCltrqMEGQgAiX0k9cnhMDZGow3sZeRorfVX79n59Z92eGUjTiHl9sVFKVhMZ/T7nSD0fN6MHiBsfW1NJVHh8OUSxbTE85P7vDk8ccsyjkv5Fdo9a4hxbovtyHRxpGi3cpJpjGFM6Aikv4WVnq1t0hLnLFEQqHDPFMeiWKdtG4g5U5gjK/Y+J6foEgo1nTH1U1/7uErMF6Nzq1ZCM6ghaCdpb6H6FcYs5vhsxMCpzVCJzgUkggpg5n5Kgh3l97spf+vTvbrgR6fSNg+52e/iaOZYypQ/Lu9Hl9643Xcqw6ZKFQ7osBLhaVOYUcLzMdPsB8f01+AinvMRYrZvk7vK39E9OIb0LuClTmIxNMfDUSlxIkCI50fh37T5NIYFmJjbGieFUiyrrHqWZOuK2dxwqKEQagKoQSidhT1kkVhmQ3GTM+PKUdnzMuSl166QdbrkHVzkliTpzEoyXIyw5iKTien2+0TJ+2wX4fkXXo7Jhmqg34Y+3WoWQckn/YOv/g7XSUyzV3aMOdpEjW5ijuK0rJYFshIIYRjNBhhlwVtvUfWycnaiZ+mUqEx2HqMWc4pxjPOTy94+6M7/PjufT46fsqTx0+onj4lvRggiooyjnGuRlKDtOBqZLAZ0pFGRTJ87/c6P8f9GiGkXK1RK8ZAiFMdNvgQBzDbEYB7H6cY4/1iTR1Wd+nHqWkKVb9knvxWJG1weTCs0KTw1fSrefNeT8uRDbXAuVCxESuAbJ3Zr8v1m1TIprLQfK6SGunAWD95ZXghxvi+FalivKyxxdYFQngkPZZeDj+KIgoWHvkVwqs06RppAsgoG/l6iJVCOTBVRRRFdHe3SPoZlYRkXqJ07L3XbBEASBE40b6/zzPLfHJS1T5rF+BLtyGQJGzsQkgwglTntKMWZ6cn5O2UN//k99l/4SvcffyYn/6n/8iNXovo2g0+eHDM8sOPGI7vMpuOeHp6ztXDm3zl8FV+9rP/zE9/+jYPH16wlXU47Y1Iu20qrTmfTZg8OkVZcEpC5L30lNRBPKJ5rw6lvCqflr6y0agZqpB4evNG27D8g3qkV2l0wqsa+kpK+AposbUOW3uj7kZuvvFYioI/1WI+5/7dOzx5/ITe1g5Xjq5xeHREf2uHdqtNlra8caqO/WcZSaebkWd9trbGnJ8+ZTIacnZ+xtnggrv37rK7t8fh4RFb2ztcnD/l3u0POT8542i7x9W9LWZ1yWJeEscJ7X6fSEfUtaUU3ptOKW+KLIA6DHwrJN3+Ft1en/lsyunJCSdnQ2azgn6vR3+7R6eXs7Wbk7XbdLo9Ls4uWMwWVFVNnubs7uzQbXdI8xih/BwxxqstrpU5ZQiYoKqqlcJXMy+E8JYZVfP7ai3oE9hrgcXhJ6p1jtpYamNXksGmsRxgYy6HhcmGnkvCOZROMMZ5A9TUATIoRWlu377DWz/8IX/1l/+KuvZ9nUJ5up7SFUJrhNI4Z/ziLwhUTE8bXHtAhi/pcUMpguFlYxDu+dX+eoLSa0PfDPHVKsmta4OUiuF4TK+TYRKFotmXRTDLdCAUVSWZzgre+8UthIioSkPyckLc7aIlXLt6xGtfeZXv/ej7PD09wZqE23fu0ckiWu0eIEjznG6vw2j0iJPBgGLWIt7aYzwa8/jxfZaxwKLIdIIWitl8zsXFKbiKWEVYA0VpODsbM8dvjJGKcGik8qqZWMt8POL4wQOm0wl723v0tkusSlYbijEWTO3XJ6mpa8NkOsPZGuVieu00JPkiVNtZ5yGfsx+tVgrr/1RbH7QIqRrI1cNqDm/lItSqiGOtQ8mG9r75gc1XoNr9SkGGWCWMsZZcPdzn6v4+URi7xkCiFZFSaEA5T3HDGVa0nmYPkyAjQSvX5Hn6CfS1mWvPfvynPRcbRFyGoxFKSHq9Hq6GSEpKKygWlq29Pq/97pd4+eWb5C1NbB1/+S9v8OT4nNe/fBUlK1ZVNCeCH+YGohJa/o11mPX0XM/z87C2XAAAIABJREFUsJ+OBxcsZgN2Dw+RMghMKAHWehXmJuxb5YPhGQVRrvHwnMlkRt5qr29yI1H71LKMhUe37/GjH/w9D++/TxxXHF7dZ74sME4E+4XLw0wKQZ7G5GnEshZkrR6IyM9/QegxtuQ6RtUCjSKyoBqvlGf6EJ1rgkxPKVZKhX0qGOn+knJSA6qun4g3+I6SyO/rdYWU0Gm3PN3yMx/GM+e1hHVMUKOwMqHV2aPf36LV6oNs/KyaEDyIyzSR8irY2vzELyDg85vPx36lYxMc8XQ2SdzJcF2wlNRihkOjXIKoc1huszyX6BqErim6RyQv/iHRjd+Dg9+BuEUlBUIYpKu8vQMxiYZIx9hAgxZu/ZRZQU/eCsI/rAgRRDSaSrNqPOWaMSYEWkpqV2PqElPPmAwGzErHuIqorCZTEbv7e+x86QZCR0yWJY+On/Dw/gNOTo853N3jpevPs93dYu+gzaagnZTKU0IF68QjXK7D4r0mBatdLSScYvWLG8/5C76XZtj57Ti42Bu/NhTLmpOzAUnSIm/lvhhgS/JWRvvqnm/LsD4+ny1LxqMFZ9M5J8MBH/3kewwe3mZy/IjZ4IynF2ecL5ZMjKMSCmVhUi/QCFyBVxeXCggq5VoSxxFpEpNEEUp6X7xFWXvVeOf7ZIWQq52lri117cVIaltT1eUKGG8qhqv2LBfskayX+1crw22HVhGRjJGR4vjJk898dr81Sdvlsn8Y8E20JzZ6LLiMLMFataihSDaVl2f5zFLKVQ9Yk8BJ4UU7sHivGghBJCihsMYiLJ4LjkVLkFbibI2ra7RSnkZmHUVRkNa19whTEii9XwQWRfgs6506YqVJ8owkz0DpsKH5jF7ryDehGt/g3ASaUgucWSOwxhpMSFSaEqtbLbdgi5JyOefRrXtE0nLlYJ9E1Oikw6ktqfKMK1ev0SkLxiaiVgl3Hj/i3Xd/xC9+9hF1tSRPf0g330WIGYPBjOVozoW5gCSCNPL+KxbqqiKRihoQWiAK58U2N7gdm4mz1hobEogGCWvUdaSSyOBTJ4T0an7hiwaJaJ6J9EIlMvQmKSVxmgbwhaBS6PDNosZY6nLJ+clTRudnPHpwh4PDI/b29+lv9+j1tknSDknWRsqEOgiMtLsJWdZmNhsyHg0ZDgeMhl6E5MmTJ2z1t1CAwhAJR4TlaKdPHTmeXJwyHo+Yjkq2t3fp9zoUpWAxX+Kcr8BWtcE6jQgqorX1qodJ3uHwKKHbm3N+dsbDRycMxhMOruyys7PN1s4u29u7tLIOp8cnuNqQZxmtPEertdVoQ0eT0gu+1PWaN73qcROsLQBESLJDJa6Zo+uX+czkXU1M/7waqnMTVTcKUMIFG466xgoRegA9kKKjmNp6f6XcefqWKWqu7OzRyzvs7ex4awXhPcOM9SbeQvmeFOPWwQbCd6msEWzfO2ewq/kCoXIb1g3dCKOEjUkFlVKfsPlzWROot8bX5pUQpHFCrHS4Hh88KSWpjFf38sIbmu3tA7K8xy8++AitIl64+YIHKawhT1O+9MrLzKo53//JO2jVQaWCB3cSXnwxg1bOfLHg0ZMH/PE3v0b7fMp/+Me36Hf7PL9/hSVzxsqyXBrEdk2CTxoX8xmRsNhaslw4bB3RyrdQQlPWFcYoRqM55dJ7+GSRJEJyuLvHst0hi1NiFbG0BKN2Vgl3Vdfey8cKqjpEGkFAqVmL/Nz2OdfnbeyXhlZYM6zx/XDzsuJiMCSJI1564TqREBRlye3bd9k/PKLdbqM3VOl8MrQpmd6c/Qso14UEoNlHhGjEHjz4JvHUSbnyZ3NAHRJbie+9AOEsypXs72+RtltsUjh/tYfhr9vHS/7ftFs5cgWVOEIuRJrEGEriVkWnq8FZtKt4bi9iN9snlRLnvAKqC7KuHruwrPZc1+wteOR3Nen9zrKYzaiWc4Sz7Ozu+n4wKXzLiWuqTwE1F6FXPNyQbJ6RdbTyhF5/K9Ds18HiOnELCElTmXACZwRPHp3xi59/zPDimOeu73JxMufhg1Ou3nREWq4qBIL1eZT0yXcryZBRghPKJ3oxJNLDf7HSRAhacYIKAOsn34sPuIRYM1uEDG0ZwisgX35vnzKsCEhX8zpFEFOoKsCSJDGtPKPGryFN2rQKcD9jyAjlViNdpTkHV27QynOyLCdptTyoGRLRFXThSwDe0iSOPQVi9Q5+8yqP/62OTdC+2dssDkGJdoV/HjZFmAjiA9TWC1ycv8vOczdJX/8XyCvfwiVHINrgPCZNk/QKi5MW19DynQprRvO+VqE9UAHVxuhUbKqyNvQ5gZ+fZel7rSazAZlY0o6sFyLJO3Q6+xiZkkhBMRrw8P59Tk4u+NkHH/Ojt9/ibDJge2eLP/z93+fa3lX0TkaS5iDWBu9CbABHG9DKpXEWCiLr+fTFs/PPYhRY57CVQwfQulgULJcVadYmz1pEcUScCLKkjZQO4ypmixHlck6xWPD08Qk//vkHvHPnIR89OWUwW1BfTHCTEW55TmRmKCqsMz6xkpIqinBxBEqRW0WsY6I4Q0W+hUEpTaQ1cRyYODiqusROp35dNMbHmMig4m5YLkuKovSxkzCrYsGaItnYjfmh4NXtfT9clESrGEsqhY5jlNZ89O4vPvN5/lclbUKIu8AETzavnXPfEEJsA/8euAHcBf5n59zgl5+M1Q02NMkVQhsqbasXb1fpK0IE1BVPT5B4qK0p9W5W1TaRzeZc1nrKYxOqCUJwEs4phUAqP80M3l2eUCZVIWGIo4j/n703eZIsu878fnd4g48x51yVmTWgqlBAASBBNqRuqUm1mYaFxI1EM620kFn/C+q1Vv0vqHfaaCGTqdUtazMZ1RJBGkgjCQIoVKGGrKzMyiky5tHD3d9w7z1a3PvcI6oKBNkwtdpIOVCWGZHhL56/O53zne98nwImkwlYw1CvpKndcdQjndOYmFzkNmPYH9AfjaAsCDjA4EOIlScSTdCSyrYpIEp9d11SKennffef96C6Kogi04YyGDIHk/0jXrn9KlvXNjl3ij/5+fu0jee9a5usTStkvMU1YyhGirfl73Pnxjs8e/Y5Ozsv2T85RGqDc/Ggcg4aHwiNQ1eOrI4N7SbTVKGNht8pSP9l7NwvN2h2tMhuDuhEXxFiVUR3VDYVzVB9KjV3VQ2TJNclLdDOV8+3Aa1sosolw0Wt0Urw4jk52uf87IQXzx+xeX2Nreu3WF29yer6Tfr9NYqih7VF9OIIhqJcYTMvo4fa+Rl7+/uc7+7imgqjNE09Z3NjhWvrq+BblBU2NkeUpebs9JzTs32EhuFwTG5LLi5miDhC08QKFVG5TQg4EZQ22KJgZDL6/SHz6Zzj00O2d3Y4ODpia32dV27fZmNjneBbmtmczFgyo1B4gksUxrQWQoqOFKT+tOXXneqjTo223nt86uXq6D9CojIn+kIcgEjTjWhhxOU664nLVAetIn3XuRQkpJNt0eeiLUFlKANl2ceiUS4wKEouZhVrK6v44MnLItIqdTwoEUlzxhJkjpfkUxaWIifdkUSiIEiIYgJdAueTZK/q9haiAqTROn4vrbWmaenR4l3ktltrUS5W3iN1u6sa2yi97Nq0Z1iG403+/n/wu/zv//J/4/NHj/nBb3+fk5MT+pklt5bReMR7773H8WTO55+9RBvhKYHc9rn21goSAtPZFNGBb777Jp9uH/D222/x3rUbmB6c2cD+wQn13gTlhUrNuX7tGsM8Y/+VFlPeYLB2g2GxylQUR0f7hHaO94rWQRBHqDwyr3n9tTcB4aKquZjOaLHMm4bpdBopuN7TuhbvfKTVumgY6xfiFomZQNSJUepy1SVt+FdeS7JQ6EAza2Iv0vkFz7e3scbw2t07eKW4mE754IMP+c28T1H0k23BVWVJodvbwyUUp/v1qYy0SBDSPV0KZES65J9YgZUYaC/i2ksiagohJKrhItlDQAeCOGaTM/KRS89iMRuXe+ClW7taV1n+bMSgArYoFiACSiMesjxQzWfMJzW+mdOGU3LTwyoFbs64PyTRSGLwoBSk6nL8HfrK74sOHjExJSHxbVWzv7vL6njEyvo60KaKtYBWC1QZuDLWXVgY9xePtpbeaABkX1XGlzg2KnEt4gPvrqQQZymyMYP+FuPxLebzGefnTQQAJRVkuXTTEoVygm+wWY+qrnn64S+YB8drb7/LqBcRfkM0XF4v85jDall8gC6fRKV4oTufwtJ6qKOXLd+xrLFcHslur1NEOnoHKGkNnTBMUeTo0AFtvzpQ7hLeIFHFcXPrxmJKK0jtCpHR4iX2y4uPexqho44n5PrfMDD/d/XVgfXdSymFlghOaPpED7QujxZkYPFb18ny36F4dQW19jrYa2AMDXE8tUhK3LL0uOKzM12V7SvPUBN72fK0PmSxiYjyiDgktHE/bVu8dzRVTV01CAW9fMjacIAyDaYcMm+EBw8f89mzXZ4/e8beFw84fvaI6aSmDpYGz9vf/ja//1//V3zr7bcYFAVWZ8uEAS6Nd3d/S7A/TtAYdy5FoRJwewUEW7yDL8+ZK0YpXSxPnHfexWr/rA5MpxeMhgP6vQyUYTgsMDYjyzNCCBwenXF4NuNkPuPZ80c8fPA++ztfcH64y9nRMadnF8y8Yi6GJkDe1lhpURpqA8oXGMkoyz5DY6IncqnQ1jPoZWRZibYlSmVoUyzXvPYEaRHfEvBYm/pd0VE0SGLSLeJwbUtd1zEmyVT0wlM6xQ9msUdHi6IYP0GG0mDyJL6oYsKW5SX/Nsy1f1dEDi99/U+A/0tE/qlS6p+kr/+7v+oCqQMkmVurhWx3nDQRxQtBYrCIAdFdRTkiuIk6Exff8u9iFbF61QmbxEzZpmZCL8lRRy03VK3UYoJCvA0lauHDEFJEEc2hFXmRY3sF5Jbp2QQ1m1H0hthMY5WKquEebICgDLXWWFswsL2oxKairH0QRW40JjiM9QTjcSEiubnXSTuo2/AV1hhyG4hAZ2wtjkGCwStFKyDaEDLDnW/c5M5r1ygKwVRCnuX0PZz4GrOyRlEabo48J0HT6JvcrAve+/73aPTv8JcPHvCv//Uf4U4q2rbi4uKEdjIhtxlONFYbciM0dYVGyHCxz8zmuEXyuxxlScm2tiY2XHZSoF2iqi2t95HOIRBSEIyKyJZOwZ8ToRXBK8GpQKsEn5IHcS2qrTESyPKcSseKKSFgVKQFdQeqAKFpadqK6cU5x/unrKwecP3mCRtbN1gZr5EXOVlmMFahtBCUQeV9+kPFhleccIDJchSKufccHOzwB3/4Q97/6GNkWOJ7+SJphxj8D4YDyqIfN3FRsV/RuXiPBoQQ6V5pDlmt0SHS+UYDzWTuOT3e5fx4j7Y659Xbr2CUw4cKJ4qWGhQUGoo2oJL/oQDBLRFh1+qEgQiODGV7eN9ilSWIR/kQpaSJ67IlMJvOGBV9Cq3xBKzWoAXnGpTW+CAgLfgWLYGgNR6FE0nMtxTUKJNM4UFbi3eevMzwLTHYVtAjGvWu9QcMR0MUHnF1rGhZg1YWozw6eJTL8AFEQ+3b5LHo8aGNXjbW4EObArlIZ1BJ/VAjGCVYFQhKE2zBNM/QhcXgUD4qJGo0WabQtkEFyKzCeFK1tIcyDZkVyn5Ofdag2xZDQ/ANrWT01l7h1qtvUx09R7dzzo7OmeUlm5s3MWQMyiG//d57uPOKl3sv2RjkPH76BeM7t1krS1bWrvHDP/8ZxfgJG2XON+7dZG08hkwxKC23bt6indT4xvFi7wXXNq9jleL27Zp8ZUo1WGNS3qOqDX3nYPKMzVFO0dtCmdgDZ1c2eeONN8jznM8efMpkOsEkMROcj/uxBwmK0HpUq+iZAqMzcptBcIjPcU5RO09DjdewhHC+SlPsQK6IL8T9XQOl1dxcH/Hb3/4m0+kM7T1ZbjHa8O1vvcutm1v0egmxluXFBI13gbaq0cFHv8ge4HOUcSA1kKMkUdBipB53UbVMYxbs7kWQxSIzyXRiPqhUTQo5OiHtomtqqck0hNYzOz5l5WYKi5VK6qosvOhUOueEuL81qKRgKMkqISoaBqJQTkMUCtIBdBC0KE5mnvOjC3YePeOVu69hVzRWBVRWLJ9z2o9joL4M1r48HkFCUn6NH9e7wHQ2Y2V1jZW1VS5XwXyQRTIbz9J4/iY9GcTFB6qURVESa+mRLiYmR1CokIBRAaMDqqORpYRNFIiJ4iv9vGTeG6A3rtOvHf3hClala6QqqKjY4iBF9FUMPsqYI4anz5/jlfDmW9/CkzH3Aa0ca1nGqEhVgZDUj1XcUKKeRMAZkMxgxJOH1B+cWQRLoU0KfyNLQKdkPj5as+iaR0saa8hNTk8V5LkmUzm+9TS+xWQlRheg4j1frbIpLtM2O8pl15u4UBwMId6/UvHcpEmWQekMVBqdRUVNlUDqv0X5GsCVClv6zqVF3SVTAdGLjJ/85i3KO1tQWkT1QGWLuQ2denk3Bp1cWqRHg0KURbqkXQJKPEpFeqp0BQaJ7QNn51OevXiG947MKDbXxoxGQ0yoqSfn9Ne28D3Nw90dnn/+gN0XL9g/POXjz59wMplR1zXiKpRvaFsgA68Dq5tv8sr9b1EMyvhRJc4FxWUQZAGTXf1SpWejEtNJkt+qAolSeTGZQ6d/N/gQ13pAET99fB6iLLUoqnmMRZhWuMkRxXBErzeAQR8pMmqrCWTU02Oqg0Pm0wueP9/lL37yCx48fsnB2YTzsyNm8zPadkZbz6ED4kVhdEaJwqqYYGV5js0Liqwk0wWZzqKNiVUUpUEbjzYeER0fGhmB2HakdNz0vEu2VMFhpCWjR9CeNmtwBPKgyRsovVA5RZV5dL/E2DLGbSZbFCIiaJWec9Jy6NZ0BM89PkSD7l/V+/n/Bj3y94DfSX//H4Ef8iuSNqVAlCyUyeL60ZfyeUE6pouH4AUrHStbFhUC1UlDB2IvVdr3leq2UjAmZrodJczY+FBDooVZZRZ5Rtdg3NE7jFIom+GlRdro15IVlnJQYgcF7nzCbDanX87p93sgsZwtLqCDxPKsMSiTU6h8sZBDWvZllpEpjxKHp01qlTFYV4oY+KSKiVeRDpLbWM8yyfdFrCK0sRDfSENTzXn/s/c5cXfYXBlTtMK1zev8R99/j4N2hq5awvkE4w/piWaqxsxQNO2M3qDke+9+G+ctw6IgVxlffP6Qh59+wPHRGfOZJ3hoqorWxNK/1elAsBmQlCzVJQQ2jaju5L4vTVClOtRBL/rSun6W+KMq9SfFpD5KMyucEhyOJrioHBladAgUWpEXBXlRYoyNMuWJC+1DpK12KJCKzC7Oj06ZnEw42NulPxhy59VXWVldY219jeFwGM2zrcUHjQ+aQTnEjxryXs6snjP3jqOLC5r6BScnE7yxCa0WtA6pt6xFG5XUGWNARBBKpfBNhRcXqbAS+xusismbRacYQkFho9S/Dzz5sGDQi+p1rWujUIuNc0vbDKNiCd4kKpKOkoRJ4jg+b2MtWepbqto5NrOIdxTGUJqMzY1r9McrTKqGR8+e0dcZb9y9x+bWKjaTGIjoqPQqeBCPxmFUoAmB2nta51M12YNy5Mam568IWiFGkNbRyb3rIqMwA0yRx7WWZ1itUSEaVDeuJYSMYT/n5ERhJK4FpaJUf3Wpgo5EE+mgDXkWRWHaTrbe+4jGBxcTjmBptWVuTQrQUg8XJAXDgMKD97TNHAkFWinaUCIyoSw0/WGfC9eiXaC0ASWOVue0us/m9bucN+cMrGEym/J0/wjbW2PUH5Dbgju3bvHv/+B7/PCPJ7zc2ebO3YxPPvgp65ub/Kf/6D/jT/70z3ix/ZzbmxsUqkZywRYZIUQ13WxccHpaMRoN6OdDxqvrKDNmeLTDp2fC9umM86ZH5gOFO8OGdbTS2CwmuS5fx26+wmDQozg85bR2aGko8wzp95j0erhaURZ9xoOaPC/o91pC8BS5pcgz+v0BeT5A22pJGVnQ8C7t/csdfgk8oZYHXfqp6+ur+PGQzGiURJnrV1+5Tb9fpJ8I6SoGv8i6LMaUSDulbs7RNmBMhgSP0g1RDKC7icCigyclK0qW9SdJNDZJUtxRnLADpRLoGAyEqFwc8hbRGsFhaBkaQbU1Ku8cEGNl0IfEFAlCaD0XZ+c8e77HXOc0csrqas7ZyZzD/YC2fWo1ZS5nzILQtCPm5y1Fovw++vwRmYLdL55ydNqyvmJBOboUVLpEYjEEX64ILNDLZQ9r+ojW6rj/abPoB+ueVae4uiDzpRhWI4Qm0M5arLXY0iCqTMFri8LjU2XN4lKCoQlykfpel/1uouK+N14ZsDLqMzE1rI7puYyVtQ2MUtiQ6H0kOpwG0ZEar3VGWfSwWYHNc1wzR4vCSwQ5wZG1DtsTMAUxIE99SCgICsHTEnAqoIOjQINWtEqRKYvVi04xlDKRDrpI8pe0NJGYsQWETFkyon1NLyspix55MUg9pjmKxPX/8jhd/mt3qHZIgIn976KjiIWEeCYGCYBB2RySgFcEQ7963b8NuZu6Eluk5D99LUoW1u2kREanZK4Yjxbv62ydlboaLF+NqztacQSbRCl8EvuxJNReIpsq1f3R4plMLjg4OsbmfVYGYwZlhg6Oo91D/vSP/m9+/Gc/4kIrwuqY+WzO5OiEZjJDmhRn0X0mwalE11Y1ToHOSkxWRMAChSiPwoFYlLLpfR0dVlKcfPkzJXEvCahkwC0qCryhDIGYAIYQY5PY1hE/nBJwdYvCIaXhZFZzfDZjazjg2kgjRY6SmtYJp+cVTx5PeL6/y/HOF+x+9pccP/2U8+MDzi8aTqce7w3OC613tCHgUnXb2owsK+jnOb28JLMZNjORVpll0ZM1z9FK4UPc35Ui0ZoNEirwktaFS/3n0TIjgroJTBNBQgt+hM4yyAKiPbqBwlqUKrgQQzkuGa4NycnQOuoz6ISgRMZf0lvwPilVL5M272P/u3iH+wr94Orr103aBPgDFTkW/4OI/DPguoh0XXS7wPWve6NS6h8D/xhiMKZimr7sr7lyeC+59cYuVRIj/cYvGnC1il1pkqoyMYdb9lFdufEv82w7vvNl/nP6ucWP6CiMEBO8+L08zxgMh4zHYy5OL6imFZPJORBQJlLLJAQk6GQOHheZ9yHKBweL6NgwnZksSlr7OIH0JTVN0SrKjLK8T23MQo5ddXTQxXYbMJnn/PyETz7Y5id//gHvvvUmr9xZZ/98n+tvvMKrmxt8+JMHOJWxsTpmZe6YN54dWp7NGsr9XW6u3uTe5jWy61tcH6/xrddf4+NXNnn+fAebD/nk04d8+tkDtLa0bROrbBJR7g68u/yMv/4VP1uSr0uspQ4R7gQhdKxuKp1YdeqrZ1n3pXS9WwW9ssT1G1wTqy1R7lpiH16IgidIVEl00lX1iDL6bcvFbEa/32dza4ubt26xubGBKXpUrcNVFb3MktsorKJEcHWDeMf61grfeuNt1osezcUF3rcoHQNLYzVeXDpBYjDVNa2ihDa0BBxGp0b5lGx2tA7nA5Vy+IEj5YM41yJBcAL4gHeO1ntmumCqQbQQfEXTtEltNc7HtnWRcmUNZfBkoSXoSB1t6xpX12RYbl6/RTkcQ56ze3SMm1UcvtzhjW+8xltv36fs5TQuiut0qq3dMHYmk0p31ICYKHnvo8l1ok0t11mXaAnaJpndNKbBL5MymxlmTYMh0Cst1fwMFRq0SOqJ1IRW4ZoQhSpksffQIaSdgmnrWpo28tJDMMv76O6dpNjqfHqPR7xLKFmiNau4Kds8Iy9iAhxSYC+JFlEWPfqDIVVe0PrAydkFXzzbhnyFe7fucOP6Gp6G9du3eOe73+VHP/oTDo+O8D6QGcO9u/e4/Xu/x9HBIRdnp/SLHjp9tiAKLUIIDlfPWRsPMSpg+yW3t24wnmwyfXrMg/P5IskJQXASYmUz+eqhFaJjD6nJbeyX8UKWW1xukHSweXxSvPVcTGf44BB6ZJnFSaRGZpnF2svUuy9vCpfW7SIClSvfgUg/jfOgOwcs/eGAjunXRWMd4zEASkPeyyDvYX2LVjMkRBaAkCo8KjaEq045WBKQplItY7n9pzvr7l8W8Y4EF6kU1kX6UdDUlASlsXKG7jVk9gI3OaDojYlN76prF4mAnGs42nvJZ598xCcf/RxtWlbWetQb6/ziw4fUdc7W9VfYOz5i2kxpRDGvFVFUA7Ttk6EoS8Xjh5/ynckFihsRDRedhA2uPNqvHYfuNej1GfZrrLnEajHmEm39UsIaEqVf6WTDoEGDd57jw0OKPCfvjxcsrJgjxwjP6PQcVQ1S4VzN/Ow5w5Xr2GJwZYLEM0+RZYa8sBRlwc3RFndu30q2PyxobnHAhOAanPilx5K12CzD+OZKkbFpaqpqzniUL5PENOqXR7xj24TgFy0bIQWEWnUiOF3q1l3/0lzuPj8RFUhWkYgSbFbQOmiDZdRfRalseYO/6qW666S4JUS/txCimJpJok1KGVDLgP//C0XHfxdeC8yBq3HEYqQWZ0X3jkvj+bVXSoBTeoNW3byRKM4jsRQVlVdBKU+/n7G2NuDk9Jz3f/Zjvnj0OXs7L6gvztl9/gVtNWVuNafbgChyNPklS6yQhK6CIsWGAeU9VlusOcWoCkWRqsQRuFHxUgRZ6D3RIVfq8jNIi0mJgHMkbW/wNvrkCigjqTjpCKHi/GQOVY/1YR83r9BFwPZKxsMC27OUOnB4+pzz7c84Pz7mixfH/PjBcx68OOTg+Iz6/Bh9cQQXpxCEuTPMvUVTY21AJaG6MivJeyVFUZBlOWWWUxYxaYOlKNDluL+rZnXxvTapbUQrgheCb1PRICoGO+/SnhL71yTrEYwlyw1ianJrKEWhQsCEkl6Wg3GR+WNMqupFE3AJIQkWRa/a2Muv05kbYxCX4qEk1/RXvn7dpO0fiMi2Uuoa8H8qpT69/I+YWjUmAAAgAElEQVQiIimh+8orJXj/DKDX7wlCVFJRNjVJR7pKpMqoRf+SSZtvt1ZSt0xcZypufp2ClwRJ/FPpfueVJK7LcDs5WKVi9SZurjEp6oK6pUplTKasMbhUZu6XJVvrG7h5w2E4Yl7NaJqKLDc03pN7i2i7SGKW5Lx00JHUY9CxsV1iEud9QCuzqEp5wgKBjlz6pa0Bsgx3OhA4hEDTOoIPVJMpk7MLLm6M+eDnP8X9+Ee8ef8tXjw/ZG3zOu++eYeetYx6CtvPOW3njCYzirJiKx/w9OSC3WfbvHNtnXt3bnLv7qsMV7a4dvsWvY0hk+kpL7efcbS/T6iiyWBHhVwgn1xCvC73F8LCe60LGhWx4hqD5ojhKol8cqOWlNZO0Q86MRNL4+qY9GpNr99DWkebNbRVDCraVtN6h3KONvhF1c0HofVcWvSGtm2p53Mm5+fs7+6ysbHJ2uY18l4P7T2h38NaRU6WbAMEfKDILGsrY5RA21oEjY56GejcpOpOQOkod+3aFhFH2cvRydTPmphYKYmtjSqA1VksapH687qgIsJCeElGrcTES+mA93WcQ0JSJ0vmkCEmdyhFluWg+3hVUgcfN8U848P3P+D08JTf/M53ufXKXc7rhk8+/5xeXnDn5g1W1oaLa+dZfikO6mZiEshJ1fCOFmCUjoqVwWN1gQQIzi3EQLrNTJJojdEm+cjZ6M1oFG3tKe2Qk/YlP/mLH/Lo00d84413sKYmNwV16KODjeqw1iYxIx3V8pKaZrQEWCo9LZRMlVn8Tro9QyWkLqFnC8U4Dz4EtIobrg9RQTMQKditD6AtolqMTh53WmOyknkrPH72kkmt6RcDVjfGiBUaY3jz3Xc5nVzw85/+jMJmnB8fM19dY9gfslqU3Lz/Gtoaghdc0y4kx89OTpC2wZQFWgkmVUCHq6usXyi0eopQA5GGHLTB4dGiEQ1taGmSpHTrG7w4xDcIDpc4/tE0NqrfeSRVUhsyZzF1hVeQ1xUKA6rbO/864gZfn9R96fCAtIf7NMuMWu5+ybs9ATItVnsMHpgS/AWhWUNnm7G/U1VxT1/UiRKoQKL6XQrsL6eTHf0pBt8BUQ0tc6yqEDXE+biORab446dMD56SyV2KcWQhiAHxKoIpeEzekpcTvHvK+mCPjbzl1tYteoMGe6cgL1fwoUKOTxhfW6dpPTu7O1QCre1z0c45PptxvP0E/Iy6rqJ0PRqC+hofrr/6Vdd1BBUXz7ujh339mEXaeaJJBhf77RC0Fcphjs7jmusO6mZeIc2UYpyjFMzP9jg+eMSL4x1o9nn3vX/IsLh96Z4FJNKZy9IytD3W1ke8/cabrKxuXfqxpQ1J97WkTKnzEs2spU37AbBQpM6yzoeJBYDGlUt1wjpxv5MEJAmkPUlfSQS//klBtw6UCthMYXKFygwmL+gN1rh+Y8xgsI6xxddf5OtewSNaEVpH0zaJnqWwNkN3SkBXErW/68naX/f1y5K1r3ulHlMCXjpZOw8hAqoShNpDVc85O3zB/t4eP/v5L/jwo0/Y2dunrirm0wsGRY7yDUYJTdPGGCGdN8FH4ZjOZ9WRKvdBkeOgjWdMVT3CuX2QmzG+FI1SUaE0SMu8VUwuWuqmBgJ5kdHrFbGi2InCoYjm81US0eihlcE1PgHgLd4d8ezJT8myGRtbNwh+HbJNstxTVTWPPv2Uj54d8+Jgys72Li8ffsrR80e08wOqdsLEZTSqh2sV1HNKFynwoHE6J+sPKXPPsNT0Bn3yssTmOTbLYx8pOmkUJD2Ly8OmJAKJIssYhEjrDJLiI6UIEggCVglRSKYrDgRCaGhQNKaHLvtkWSDLCmxmGGaGXMZMvKU5UzRygcKhk6+01lEMSgCll/HPIh+5VJDxCG3wV70ef8nr10raRGQ7/bmvlPrnwG8De0qpmyKyo5S6Cez/da/XqXR9adddoFcRDE4IlbbJbiZN2hRwdQFkqu0ulCW76lQncX45ces2dZWoHp0RnvlStU2p2H+mlcLGKBMfIDMZo8EQt7UFojg5OqWaV7SuRVQ8JHKTY7JIzcpzG024bTR2NioFtkkC3WiNGL0wP5WUl3aIZ/e5An7RaBsWyaVe3q+UaFVirKYsPEUWqCRwcFGz+/AZ7YHjvJry6ZOHHL+8z8bGKnW/5GzaMs5y5vMaJ45CFGWtOJ5W7JzscWdcElRge+c52SDjG996i83rGzx8+IA//eEfs/PFC6zWiL80dosEbvk8Lw38ohohKkGGC/EAtUAnO/W2rkdcqWV3jARJb4nIsPepJ6qXo1xJazWNiop0xmpMC1oLOIHEXfahsyDQ8bDTASUKY2NVt60bqosZBwfHjFdWWV9dxQL9fhnnXRCsVmRWo0Wo51Ma1ZCtZgxGY4rCJqVtwROoG8fZ+YTpdAa5Zm2wwsrqWuzBJCZtzjn2d/cI3tHPB8waz8rKmH6/wCgSqOCi+IeCTkLaBYdIiD5ETYNI7JGLviGRC67TWAiS/Kd61E5xOp1hNOn39JhmU/r9Aaurq/QE8n4fJcLqeESea3xoo4iFi4h26JDFFNnETSsFwxIwxqKsjRXlkOg7aSwRWYAocgkp00lJraPjB6/QGIKbMSx7vPbqKzx++IDJ6Q7v3L8LjYo0RrE0TUSxgnP4dNgtENAEN3am4dHOoPPLUYtxRUiVwkThTftLt1VJQjwFhfOB1ntcshCRpB5V13NMPohjIkLrhdv3XmPt4Qt+8fFnvP7qfb7xzuuxZ8vkaBHefucdTo+OefnsBb0s5+mTJ9y98wpZlkWUVaKyrguxb6KZzZjOp+TWUjVz8p5FWRZUY6PAtxeIN0hoEGJPkmvneGJvYlA1IdRUTcu8mlBVUzQtEto4r9I8q9ua2rWIUdgipw2exgf6WiemVojoPh1T4qp8+uU9/ksbAl8Oq7o9+urZoNL/4zxLIXhkI6SQQyuQtsFXFxg9pQ0zRAoKq5IoT5sAhh6IXmgxLLBG1dVbLlUxYBkgJIAFcRg8hjOODvaYNzfZuKUweg6ZYuPaBn6sIL+IiZrkzBqJPZFWQTBQK9ykJpvPuTFwDJt9CHNujTS9YcYvPvqcd1+9wY0bN/joww8Zrmt2JnMOvTA9qdnZPmB+dkxwFbN5dfXR/nVz5vTkXdPEqvYlNHBhiivdteI4aaWiOB7ggmNyckJv0Kfs99jY2oiBbJdUK4VgaJuGMK/Iep5qPuXHf/zHPPnifaZqxmt3+gTXXL2hlIZrA0WRYZXGWsPqykqS2o99Qt06jb1jCp1FWfPO0gMEaw1ZZpPFSdz/BoM+w2Efpds4/tIl5kv6oIRA0zSLM/eyWrXRJqHp6We/Uqm58mHoKjPaKpSNQVtQhsFwncGoH+dDhxT8dTKMVBYOCcaweb6gt8YocJlQSgqY/s5W2RaVp1/1ugyDd++5uv/Ipb+rJO7Rsb4U4J1DXMtkMuHJ0xd89NkjXr58zs7TBxzs7zOrauo20LokcGMM86YhU9CmZIJUySWd2111N54t3fEUFj3o4gPHp485vdhmZeU6VkVjahegahom1TH7hxV7e2dMLs5p24ayzBmvDCiKjPF4xHDYoyxLctWymp+gQqCuS44OGz75+Am7ewesr/XZ2Cx4+PADxquat23G5Gyfn/7FDidHR+wcnPDh5y95sH3G4bmnmnvyEDCuAneGcxUtOdiAUZaegTJRHfN+D+kNkKJPqQM9A3lRYLM8VsdSxTuOTaQyhgQedeKDy4pkWHxvYQclASceIaBCBHO9j9oHXa4QcFGQxJSEYsxosMbGyPLO23d47d5drvXH9JshH//smH/1Rx9RzR5h7ASlprHIFJazY+Ef3c0WpS8llNGjzfsYj/yVysL8GkmbUmoAaBGZpL//x8B/D/xL4L8B/mn681/8ymulkHzRnNeJRcRYPj4AidurNl3f01J1TpnISV7WryKNogsUYYmSLRK19LW1Ngl8LKW/Q6qqqfClipDWi9KOEhPlnDUE5cmsZTweRwpU2WM2nVI3NQFFGTKKECkxXa9AVzpdJGUQKWLSPY/kOSSXeupspLmIdJMgpOpjDERZ0DtBicaQcfPabdbLgg0jrF3b5EVTM2lgdXyL126/weOdz3ix/4SPf9HSlp4X80Pqec7b1++zUQo31lYwbcNK/wbXv/UelRwwP9xldW2LW6vrhONTJqFm7fomN+bnDMaD2E+oiap7V8aZK+PxNZMqUeP0soJ0iSKazu0YjMXJh+hLVDyWybhOcu15niFFpJ1qIp/YWkVjY2VOuQbjFLrVCzqqQkUpa6WwOi6RSF/NMVrj2wYlQq/IMUpRVxVmahaTNbSO4BrEt5gcxuMRRZnHcpkGj8cqw1l1waeffsoXT59RFn1euf4q9+/eo2kbTs9OGI9GXL9xg6fPdrg4u+Dm5k0O9g+599o9hhvjuPn42M+4tblOXdVUTRMPa2Po9YbMPVRtAyKMBkOssbi6IvhArygoinzRu2lCw9gohs7x7OUO23u7eKWifIRRiI7jsba5jvIOixAk0oQkxMp29HmAziNNpPMwiTS6+WzGfDajPxqSWxOpHYlqVGSWKMAYN1vVBUZpnXbrEGJSbrTBaDAIt29s8YPvf4fPP3vMz37857z9+jcpM0NTNUiI+0NXScuMTp5e0PH5XeK2e+cS0ndpzoosE7cFbNIpx6kFioeKCm6S7A58EDwKk+coo2nmM/q9hjLTqSqnqFp44+1v8eTZAcfHp0jjF/fo2paN9Q1+43u/weTklL2DfZx4Wt+wtr5BbzQmL/tpr1MURc5kNsUjFKMe3ntqcbS+woYSEYvyDppzmqkjzE8J8zknJ8c0tk7zQMhWK05PtsisZm/vBdvbT1ChxSrBSvKWKQqUiclZ3bQ0zuMEWh8r1yZ4nGshy9K+Fjc6WYQ53b66/PviiX9dPPV1gLcCJYKWDuAJsbLnPM43ZLlFJUW3ULe8fPGI5/uPeO/7/yVF6hNeKhTamLRJEjySSD3uVFHjbSqW1LIU8Kd+PYNF+4bJzgMOnh5x/+3/hJwZvj2gnsx48fSAG99tsGaK0oYghv4ww4hCe2hOKx6//xnbHz9jQMPqzTHnB3uY/pTByg1c3ZChuXv3Gr49ZZhPuPP6G0x/8ZQHT054sX1C3Wp8UJydT7mYV7TE3m6tomFo54f0tXvvpbUFEbyI67hLThPwsiw1LmxBlO9WheJk/5jzszNeHa9GqmRmY3ClNVp5fFvRiiW3BlWWGJPh68AXD5/z/NlL+teGaCnw7dedDzFps5mGNs6dtnUo35AtqlKJaZNiA7SKNKREZ1ZIUmaOAmXde8qyJMtIlfe8+8hXp2AIVFWFd36xN4nEhoTOJ7W73iLB/fKrC2YgXsNY0BrRhqIcLERCjF7GBou7vBSLfOmiqU9TYXOLzTMWGXrHwpG4d19eSL/c3P1v+0stxiB+udzTu8ezjDnk0p7VJWZdMhBBiAVbiLhfzOcN59M5+3s7PHn0OTvPn/LixXMeffGcw7MJiGDDLLKpur4wY3EejM5ofIi9knXaklKfdtBxDpqk9xAWIFacb7Gv1OJFczY94vB0n5s3BKWFZu44P6vYO9xm7+gJ+wdzTo6nzOcz5vMpzrf0+zkrKyNGowFFL4FtbopMvqCXZ5TFBnWT8fDhCx49eoYxiuGg5Pnzz5jPzphP/xdmk5ZmPqWpK6q2xemcWmWILSLwHRp6GTGWylfoFUPKvE+vsIx7Gb3MY6xHCo3LMmqtKLHkIY5QbBeJgoJeklDKpfpp7E3v6gA6xiGLn0vAdmJWidZR8VEliw8f8F6l4z4guiXPFTfu3OH2W/+A7919k1c2+ty/s8nKeA0tGjXJYb7HTz8ObB9c4KygcEQhpWipIkrh/eW2rwjZoHQ6uzWZDzG29/7LBf6vvH6dStt14J+nyW2B/0lE/g+l1I+B/1kp9d8CT4Hf/9WXUpfWkKTY1y/QrLBAw9MHV8v30TVkqvTvyUx3qZJ1tVetbdtlRa67SkcxhNSDEjfUuAhYbNAAAb8IQiEGDbEyZmJfUFkSxkKWZzQpmMka0E1C4lWgms9jcO/9gg4ZAK0tRVEk1ZpY3YmKUOrK4oxUDENmo7F3ZrOFb0zs8Yg9f4SAtQUbN+/w7buvsHn7Br3dbSbKYI6n/Mb3vsf6zoiTnzSE85JZUVNPttn54ilnnz5na3PE7u4L7gxvsrV+j5ujb8Jqi6krsumE3Z09to9O0YMek8mE/b19LmbTZbXza86D7llfQT46FCKVFFVXbUtVF32JvASRGig+2hyQRapqN57OO1DJQF06Lz5NZgy6KGirmtSHG3+P6ZLxNqaCEgUr8jyaDXdWBEZFJNVmGVnRYzgY0CtK8jwnECJakvqyQnCRlqaANiN3Q9Rcoa1GW01hY0BfBo2f5OhZn3F/i3425vmzXXZ2X4IS5vMpr732OtW04vR4wvpwi6ODE8Yr63zw+WecT87JjEEk8L3vfIdnT59yenZMUZYoY3jtjfvsbO8yn0YK2K1bNxn0+rzcfoE1mrfe/Ab379+L1V6jCcoTrGDygtHGGvsHRzSA0wpdFrQSohiOOEznCSjJ/yeNlfcuypE7h3dtCnqTMqgxTC+mPHr8OTdv32Jjc5OiVy5MqI2Oqms+JQZLE2sXqZRaL8ZNS6q8h5zMzumXmq2NLfTrhu3nz/jFhz/l9tYbvPn6ffLCoExUqlQLBCj2cXV9pi7J03cFnWzRa7ecp9baZCHAAiGzWYab1ngJselcm0jhzKMpfBBi3x6QWY3BYaWlzLOoAugVonPWN69hTYb2gSyYCC4EQdBcu7bFb/29v8cP/+iHHJ6ecHR+wtknHyEYev0BZVkyGkVfG0FYXVuJ1htGs56vxeepIThPPTljfrrHfFJRHe/RHr/k5fZLpBzhm5rMGsq1TarzY0ajPs+efMHLF8/xTY1BWFsZEXwaWx+o5jVV66HzmNHQuPhMz05OIauZnsUehRC6Hohun+9CnUv7+Ze+c2nj+Or3JIIWyfyPSEXRKC8cvNxnNB4yHsaKg9Ul62u3eL73PEoUAioExIASu+j7EicoG1ChwifD+RACypoYYGNTLaNIn8HhpcVXFfXxc+qdHQb1lKz5jNlxjZMJF6fn/PinT7lu73GPG4wGPayuKY2QiyILLXnesDES7mzmNKdQzTJWV69Trva4qOEv/uwDbDFCE+iNwZQtjx8/5MnTE16+nOJag9ElKnMMhyOM1ThiRV+kxdh84R/01ccoi3Ny0csNse8OEpBG2ttCqmTFXjbQBBeYT6qE1q+yubkVhZCUENr47IJElP/48AVel9wYD7HJpDZ4RZGPyLNV+uUm/d51lO6zPECW920uGag1jeOTTx6wMr7Bvft3Y4Sb6GnxrTF5UwR6RYZNx6g2Ghv0Jf/JaMlT1y1leem5sMhP0+Wi16exNjI0iLYh2iyrbMsp3QX4X57HQCeqpg3oDJsP0FmGMgXG5IQQPZ2imLZcyS++7qVUAq6v/BJIqhF0IcTi3/4u5mm/5PXlRyuXkv5YRIjMi6iPEC1yujMjSAKZRTG5mDA52eHo5Jifvv8R73/4MTsvt5mendBW81glU4aW2MJhVRZ7qQDBQIiqs20bEIkJnDIlIg6tfGTFhGjn5BMVVgA8lxgpFpVlOAnMmsCDx0/Z2DjEoDnenXKwf8be0UsOjp4ymzRU05a6rggShbhOjx17Owrnai4uzjk+OWI2u0BpxXe/811+9x++x2vv3GXzlW9w85XHPPjoEx59+hnHezXnRzPOLuZMHXivUCpHRGMyg7KClorcBMpeYNCz2CxHmxXKckBhMkprKTNNZjxiBG/S5+uELbvqV9PE2lpqbbJZrCJ246akY8FEQKXzne0YMl1LVAw1LSIq+rgFD04hIbareAJBOfpFwW/84Lf43n/4n/PNrTVGBExwIAZ8QKymLFcwakw/HzM3x0BOCA0htIl6HU+Mbm9YsOKQRMNMlXodaZv6VyzQf+OkTUQeA9/5mu8fAf/ob3StryydkPrWJCr9eci6RnSdNilNV4uJ717QlWLUJSSea6JaXR68S/e6SNJEcSXDlS5g03oh/hFCiBUHUr9c4il3jaYaMDpWabI8J4giKI/1AWUiepJlFufaiEL7kILEKFmtjCEvSrIiR/n4XR1idh68j6XyrvSeduGOwtUdtpFuFhHzIHNmkxl+2kPurzIY3eG7W9dZvbbK9mcP6G2UvHfte+Sbt/jo813KVfjm9DX+xcn/ysGLM04mMy4+eYx93fLGu99hvDJk4k558XKPjY3AytYtDic1VePYf/GSj37+AUd7+yiVDjO+fD4sk+PFd7rkukO/pFMtSjMhxDGV6O3AwrQ2eFSa/CF0gTSx4pOOWa01mbF4rXHE/owFrUUn37dUtdVKR7lYYnIRkzaF0Xbxs9pEWmuWFWSZjQpFJsOrEANmL8kEPKopaQ0NDa2ZxX830X6XJNtN3rJ5c4Wz2THHZ/so8WQ2QxrHvdfu8fTJYybHJxCEwli0BFTwhLpCzWpWTM7W1jWePXnKdPeE6f4Za6Mxvd6AJ8+eclyM2Nvew+Y5Sit2t3cZjUY8e/qcza0NTGYJxB4rHzw6YkRRVlxrvDYEYwnGEM1DuwAvljwv94p2TfoR/kvjKoHgXUKiDcYa+oM+EgK7OzvMqznrm+sMhkOUin19EAM5kxLmumkWIEsnla6NQUvi98sECZp+MWJzvcIqyHXOcXHMiyefYrTn7lt3sDbDq0iJi0WZTlUtLPaBDoghVeS6/9nUWNx1bvvkpfjleS0pIIz9cwZ0VDJ0LladCqsYFpYm12jx8eBSmtHKOkXZI1pmKFSI6/3ocJ/heESeZbz+5hvsHh3wlz/9CVme47UmeGEymzKt5hwcHNC6FmsNRa9AW4OXwMrqCndefZVvv/c9ttauMTnY4+Xnv+Bw1tCenaGrC4LRuPwYWo9F4Xa2+eLjn1MUGW3b4pxLFeU558c9QGiblqaqIp1cF2AzlNI4qzk7nkb7hLxETMHmxg2ODg4Z3rm1ALkjZe3rqhF/s4jSGA2+RdpoWltPz/EefOsJXmLFxgmokuHmPX7rB6tMJhWTk116o2GkcYsmuLjfn59OWV21uPqU548/Z3pxzqv37zPaXKf1CjE5mR2giAeyqGmsJLZzwmyP9fEWL/cPePrxH1D1r3F0ccDN1Ws8fnLEv/roD+ltPcQqYZhr3rizyQ/ee52sPWFzJMxOHvD6XXgpni+eHPLud++QFTm0sL5xi6qFp9vbbNxQnNUzjs8MT3dPaGVIbzCidoJWNevjTQZlRnQP9SijklJeIo2qq33e3Z+Xv98Gj2idzrv0ulSZ0Sq2CiCKunFcTGb0+yV5fkliXOJ6aFrH8ek5x8e7rI4tKysrWAuEFlTA5jnD0Tqra7dYv/YKm9duUxTrX5oLYbFum8YRvGI+q5m1NYOBdHHaMl9Jh4jWitxaCmOSumMEDiLdOi527x1tKwuEfjENE5VqARZqzWAwoMhz5lXsbVuII6Gu+LT9klb+GLNoUE4RgmG0co2VrZuMNtYZjdYQkjy/WgpDXGH7/NLK2OX08v/Pyv6q14Jq/RWQKMkz+cigMN2z1iysOSDu594HdvZ2+fTBZ7zY3ubpk8fsPXvE8ekJ57OGxsc1YsQjzqU+ZoMmng0+scokdJUdHy1UOnoey2KgToGUpHsXlc4vWAjQ6dS2EwFr4eTI8+EHj6inf4jBMDmumE5qptWceX2GnzeEtmVezZheTJjNp1TVnNbVeB/BVms1RWbJQs3O57/gT5my9+YbbGxucu3VNVau/XvcuPcGH77/mEcPt7nYfU6YPMHVDVpFplcIAd3E+yx7fVZ7I0bDHhQQtEOpC5RE5kHVGmaVQhlLMDmxE1nAOryOdGkly/0rSMCJRnRSXlQKkxS2LxcHuvXT+c5KPIAIwSHS4mkxCLhO2yKLSZv15EPL6rU1eqPeQp84luuSroaGoA3G9shtjjeWQBbjPFmKn4gEOl/GEASfWofEx/XtXcC5SH81/xZ82n7tVwzKoudFzI4DWttomKwuGyezyFBj42FE1iChUkgUcUj4mkBSg7vKcb0iBQuLBXJly1MJYewG38dKmVJ64bXRgfadeIFLFbFOdW5RIdM6LjyjI9IcfBQ5yDJQKvYgCbQ+4ELktnofUF7SJI0HhlWReiWp90Z3/kDpEAKW5WCirOx0MuW8mrF7MiPbO0EPPIVAb1TAyHJ76y7jzVeZ9L4AP6FfDfn89fu8Xz3i/KzFqJJH28/h5z/im7lnOr/gox//BGsLvvnt3yTvDZDgaEKLrxpcVeG9RH+KpHa4FIC5OuaXvkIrg1UGI11zaSR4LNBQOtAlLOilnYpo9MzTCxQ2Vikl+oXFq8R+HqNQeURinHd0IuOd7o0ORFTIRMN0FuNpFrTW+J+KVhGJQomOdESts6ReJ3jf0oZo+uq8x4qNQg8JXZHgUa0wzPuMeyPcRcNIWdb7Q16cnXD67DmrxnJrbZWLs3PmUjMSzzA4+hIolWc4HHJzdcw+gZ5SjLMMP6toWk9fZazkAzLn0apifXWV0XiIsYq+he+8/SZ3b13DqBaNSqIlmoDBK0NQFlTsuYy0KkACWhRGkudIAjwWifYVepXH+Za2bRK3WxbVsl6vhyiYXlxQ1XM2NtZZWV0jy4vY8BwkKUsasizDL8y9dfK3SX0bBsRrlBKsySiLAeOhIpOC0mQM+wXPn23z8w9/ym+t/IDBeGURzJnFYRcTM5G47haqlZdpLyJ8//vf585rrzOdHiAiFEXOzM/oKkbKROsQHyQJkBDnhLWIUrimwrcVrr5A+QZxDQohiCLLi7jfaRP7LFVAxLO3t0vV1mxuXcMWBe+8/Q77h4d88smDtC9aMpsxKHrR17FtKcsyGqOLEAy4KnCwe8jP6r/g3q37uIs5PRryMCW3QlBDMJEAACAASURBVN7r44wgvZxcWXTjqXxNCPHIzG1MVCRRPZt5jXMuqo+1ERV1rsG3PgrxeINrWjDg3Rxs4OMPP+BPf/TnvPL7/wUhaKz95RS9v0nAGUVfWowSdJHRTKZMJudkxZCV9Q3WNlZS8tBCr4+bT9nbeckXTx9w//VXqZsRKyu3KHo9MIrKeQ4OX3C4e0buzqnOzzja3+HiZJd3f/v7eGspRqtgLRJdfQj1hNDOscqxvfeEm6PbrN5/nY8//xEnF4bt3efUaxdcv9bn8GzEy4Nd1ocZbjbls72f8GrxHU5ePiKXip6Fd958nX5/hTALHB6d06qcvFzl+uYKpxc1vbLg+OSE43PHk51zpk4wRcZFPUMCFFJh2hrra4w4tEqo8CXFwK7P+8qz/H/Ye7MnSa7szO93F3ePPfet9kJhB7qBZjfZJEcSZySzMZnMpPlH9SCZ5mEeNKJJQ7LJJhvN3rAVaq/Kyso9MlZ3v4sezvWIqAKaTdFMEsYkNysgMyIywsP9Lud85zvfl+x2ZI9Eeqy0xCYxbZJNf1tMVaDx1RBrM4pWj91rm5hMi2VG45VpLATDyxcvOB+OuH37GuvrbYLOcfNLrPagZQy1+106gw2667t0Nq6hTPtbYyHGSFU7YlB4B0XeZ3N9nzxrNcUtEq65BHJjINOKwogwhEqMAINZvF5r6TvPMtlXGuN1iQeW8IzSWnrhEmqfZbmI4TTqzQ3D5PWlcHn+LJdMTE53fZfWYJ2syFB5JtLs0UOUtc57sctpenyba/DtxE19x7+Vy/cHKnX/XzyaS9IkSChhWSmlUNYsgDwVPJrAbDZnNBpz9OqYr766z/OXL3n48BFPn71gNB5TV3MKVTMvS1TWIqhMPL8MGJ0KDibD+SSSR6oSqEaRtGmmbVhhicoal55erJxzw1IQbGQZHcVkLzAf5zx/fIyf/SO5LnClpy4Ds7ljMplST69w5ZTpdMpsPiVGEeTLMptk7FNfNwFrNJdX5/zmd5d88+QLik7Bwf517tx8j43ta3z643tsbw94+qTg5VHk5csjxsMJ0UWcE0Cjv95nY3OddqeDzgzRlig1R4XkyaszfDRUQeI1sQyRIVy7Cqfm6XzMQqU1BEDXCdBXCRAMqYjyOii12t8matYGF8TSQ8Ua6W3LAIu2gj276HCqBisWW2Kf4ASs0qmqpxVlVAQMSnmxe1mZh4rUWZHicikypPsWBTQmCguG5uc/wI/8XiRtsLyo0Axin6htGUpZdGowjLHRC1tJnFLNTS+oBOmGsWxClCBn6c/WbFCoFIC+ts41MrApoCNtXAllkeZ/jVHSByE82OY9GlW1uEgEmwSwUVSMIVBXVRp1IgnaNJUaa9DWYIzHBDAhpZ8NhRDZPKy1qCTB3GwiekVNRylN9Ja27WDWC2zPErJAnFd0bYesNWCiNOejS4rYpn+ww+TY03Mz/us/+xNu33uX337+kovTK8ZXz/ns83/gV/e/IfqMGM6oyppf/Oor8qzN2vqA9fUeVxdnKB/QUXx9fN2Y5arXJs8qdbX52WiNRWiIjSdZWNBCRaDEkxasRcUuLpLy5r2aQHtRBo+SaBstm3FMvZMxCI/Z6IjRgagNSon/h1Yak6prsVGSTIqLNjNp7Mh99UmxMWqoa0/tvagRIdQKbXJiFCXQmM4/s4ZMada6GdWGQ3vDu7fucW1zg24r59b5HmcXJ/T7HTY3Nwh1zXQ0YWOwxtZGm3a/x/btDZxz7Gxto9VHbG1tkxeaw5dHXI1GtNoZ+wc7bG0POD95hdKwu7uNzS3KlVzf26IwkUgQVTXEJ1GRQ7TEaKQXLGh00JioxRvRN15scTFnSADKUiUypEUqeZMgMuBa6wXd0BgtBu3O8fLlS4bDIdvbu6yt72CspXZODLGbSni6dk1Vz1OjokaZHGs8kZx20SfXLay6oMgMa4Meaxs92oNemrvigaKUIs8sc0VCJ0n01rj4nNU1QCvNeDzmxo0bvHgxw9eXTKdlqtYJPN8Eu6LMaaSfLYTlgh0cKtSEeo4KFd6V+LomhEY4CXJr8NGjrSZ4x9nlOa/OTtHasLO3z8ZgnT/59CeUoznnlxfS5O4j04shdVWhMcSZA61pdTs0ZvWb3Q1U9HzzxecMR3PyWNFWNcpCpjQh03S311lrDygvx5ydH6EyS4yIQq4yoCxWGelLnFdJfj9A9Ewqaea2SXK5XRS0MyuV6byLi5EvP/+S2fS/o9MtJCkIMVkBNALH/5LqQCRoQwg1Ojii1ZwML9GmYvfadfEt0gqChRAIFLS6O+Ttrzg6/iVunvGDD/4tRbYBJlAUhv5GwV//h78iXB4TqpJrNw44f3nMZ38zpre3z61336e905YKrNa4eUU9PyR2KsZuzuPTQ7Z2r/HNmSK0HXlnm7fu3OTd3V1anzvcr++z2Yrc2MpphxbvHeRc2S2mV1M21na5OHWMr2oGrZzoPRfHF9T+nLX1Gyg34vwVHJ4fc3mlORuWBAOBOXmuKSdTei3HR+/c4vpGh5bymBgBI1Su33OJZ7MZFxcXDAYD+v1+2rOEAtkocaoFkimxZjWdMR9NWNvZRGcClKpYg3bgHU8efs36xhbr+9fY2Vpjc3uTXr8r9wy9AEQjNSYPtAY55sJiOgVrOzsU3d53nmvwAsQ5B0YXtIoeJi9EbKOJH0igYBIV0iiypl9ZiYKkIfmzJhRcgKDvaJuQYbb8Pe0LxiYxMZNUbZPi3h88lFTbFApT9AThT3GLSoCzdzNUVJS1BLRFUbyWuH338R30yN/z6/9/yBGI1MkaR2tFnuc4YlKYrrm6GlKNLnn26AG//vVvePLkGWcXlxyfnjGbi1AT2uCdF7aKj2idEaJOdH/pmzTRIxY7LOwiPFVaP5diWGKnIT1oCpMqcdJ6sZiEcdnq05jR6BATo0WBFusZynVmFxVn8SkmZkyvrpiMZsxmUFcG5adoJf3vnUyEryTurrHaSj6pxS5kXgWizolOMbycEc6HnB9f8vLJS3Y2dun3Num1Onz03i63rrV59myXo5enjK7GjC+H+LqkVRh8LBmVjizr0rEFudKY6KDRAFbivaaViASZEFFReqUdVuD3FB82UIpvcoGmJWhFRViOZfK20IGICB3ekxR2JenVQO2kRzlmEI0iGI9XHo0wjMQ0XC+sZaKCOkhiJuyLepErLP+tKtA3ca/EpTotytYYFHlSMv/PIWmLDdKXKlkLpEGCfa1ErUvQ7/Q44IKXaopK1ASzfD9SdUorRdB6MdC/hVQ1yQQskrTm56Ui4zJh0lqhMNKLFkhJXEhVt2WjYVMhNJEkjy0mp1ZL35vJEm3TlRwPT7maT5h7z7wqxewvSK+cKOopkY9GLURTSNVGlb6DViqJMkgTs0JhTIfuwFAUmryo2D8YoKpANa0psinzoHn68hlbpg3dTZxSzOYV2/0+Wwe3uH3vJ5ycj7k8/YYXh19z/GrC+fmEk9NjMUquAV9z9OIVp0dHQIUKoti2RHOXmavIh6QgLd0DuVV66a/T0E4XNIBIbCaqWiZrmqY/qfG68GnxkwncSF2LZYIFpP/FpQQfbWRx1CK7r7VQWGMyobbWiGBA2qi1aaptdqWKmoABgQxQWiZ/g6hCRFnP8fAlZ+enlGVJt9Ph2sE18VRzjvW1Td7eu8t8XqEM1FbTG+wQtjMuh+f01zPW+ht0vaeczim9obvV4VpvF+c8nbxFb2uAzQt8Brpf4CJ02l22b+yz1htQT9+GKPLsWW7ZuX6DvMhwVgQy5nVFnlmo02aBlqpjVBBEDEejZdmMok7VCMDIt1wuMjFEYhQqamasbISzatHfFhOtctmfJmNlOLxkMpmxM6vY3dkTA3AkAVRJkdInlEy84ESIRpTGM2zUFHmkDJFudw0Vr9A60Onu0O5v0u308ETpNTSpEuicJNPp9KXnNKZKflMNljXjyy9+x9bOTTY227RbGeBxocT5RvU1NUlLOI9zcWGYGUIg+JrcRNomUOIpZyKjnFlLFaXnzlhF5Uts1sFXgeFswrOnz+gNeqxtbFNkOTcPrvFf/umfcX5+gc1EZn0yGlNO50JPdJ7xeCI+g84xq2pOXh2zsdNnfW2Nuo6sdwquZiNMJr5N3ig67Ta9XocwmtCyOtkHiLCFC9IGlhuLNXkC0gw+lCgVCDqiTE5WtPBVSSjlxgrFGG5cu85P/+RPaLUyUTBVQlvzPmJtWiNIVfFmKL0WaMY3/s9yDyAIEyPA46cP+Z/+/f8CKue//e//HR+uf4BdVPg92gS29vZpDT5mMvod54enfPHbn/PpTzfJizbKRtY3OvzxH3/C48/+nqdPn3H08pCDm/vc/+ZLLr74NX/iSgZ/so5SLZF+VnB1dcLDB7/l2dGU0XjC/MsHjMuC927scmNjm4Mtw+T4t3S04+zRF3T3Ovzkv/pvuHfQo7w6Y1hfcXZ2RqZbPHjwkhgi9UbOxwf3KCvL/ftf0u90KKdn/OwXv2Hicjauvc3O9nVaW4YXV5ecX1ywNWjzo7du8NNP3+Xu3iY21qlSbIhRpfWpgSMUwXtmsxlXV1dkNqPIC0H8094Vo4AmceXaj69GaDStImd7bw+VGXyoIDpELd+hTMRmEVSNio5ur03UBlZoP9pkEEpirFHG0x8U9NZa5O2cotNOcvyv328wGG2xxrLWX6PV6tEqutJOwOtHAxaSBIeE4mwTuJtEp2g+Q4Jh6SFTi+G4mP8NaoQoA+fZ0obHGIu1GVZrGiciRROc8a0jJHnSpfujnEPwPrE/HPV8SmYMed5Fmey1Xt7vPv7vysrevP7f9Xjz0HckivH3v+RfdMbNQr1yHX7fGS6fW75CpRMIccHiT5VW6T8fjy559OQxz14c8ur4mPv3v+Hs8Bmz4ZDZbMa8qpjNK2onbTMu2dRoLb3cOopCb4xJ6VBrlHfE6PFe9t/gIegI0ae2DtkrF5S42ADdCdBXr4PbzVhtaHQmgRWxsawJDm0CvtSMz8eUkyGhjLhqRqg9Wvdp2w1sXqQ2GgHMYxDwOzfCZolJvEdpQ1fnuNrjXSDGjKLoUE0dr6YTLs8OybITWkWLrbU+g1bBwc46W+vrzGYV56dnXF2eUtYzJtVcNAdoE8jJaJPZQAxzfKxQVnzSlAoYVWKCRzlRRdaqaDTDUuKmyZQSkDxNT5+Ez5q5vyjMsEzaGnpkDEthQpH0lvlvtElrhiWzOSrLiKYpBsRkcJMJ2y4KndYR0UYqkiamgonwJqUDKiVrTcImQDDY5AsXUpEqhkgiAPyTx/cjaSOiohNkXzX/jCgFqiRqoCLYAvGcSYusCmgjKjAoLcGzUmiVSZIXlwNaqcRRTpS6gF8uzFGkQlWqepGqLSqpy6xSeTTNBW56YaQ1zUVQ2pJlSfIbt/AxqoX4QC9qsiBeSOM4J6g5RM3ly4e8fPGKeb/DdH6FdR7t0udYI0aNEQiSIGpt5bsEMTAN3mFswOianEgwCqtgrEvG0xn9SSS+GBAP9unubqII9K4itVGULqIqz2ZeMrWKYXC0x1N2uvvsbm9iu21u7ubcu30HYwOdtuXxg2/4h88+5/6DQ8YTR1lWODeXngFZORZN7NprYpCETSMCC0pJv2JQiqAtMWgc4KPDR0dQIclrxySsAqTqoU7SzmJqm2gDMcpmbguMziDWOA8+mQXrVLmJaKKyYsruU7IRAzoEgpXm7+gjUYv6qLY2+YbpZXKJAQpCtDg/w8QW0bQIQWNihVWBnALtC6wH6oqnjx7x6OETlLJsbmxSDStG4yGn56fcunOX3Z1rHB+fEfBkuSXLLSF67n9zn+2tlwzW19ja2mY6nvHll19z7cYNNnY2KXpdtBvSa3cZ+iF5UAyu3+Tw4hxjc14MhwzrkjwixtHB0+13cTFwdXpB3mrT7fUF+Jg6WiGCG9NeWwevha4QIdMFTmm8FQPxkAlnqklIlmCFlmDMSyLceCVGPMaCjxXzckqr18ZqMY5V2tBudamrmuAcJy9eQF2ztbtDdzAAxE+lUfWLzqe+NitBwEI4MFGUrEEFS9HpojILETrdtVRprYmxJDpPlqnUc2rxxuKsojaOaZhRhECMFUZZtC6IwFrHYMszpseRndt7QE4VhtTeEXwkN5qynBB8gNhnY+MmT+IhEY8OiiwGcl2iQ0Brj+lsoU2XfrvD3MEoBrSWLcBVFRZNd/sG5ZMnnLx6xunNj9hcs/Q6kfVNTZavgTHMZxN67QG9/nVUkVE5h3GBrJSE8cpXjELNlw+eMRmf0W63KYymrS1OZ5RaE2zGeB7wcUpFZI4mE5lTYpS+4NoFglEEFHmRY5UhKE0ZS6wKoA020+RZh7kOmMyCzVE6p7+xyQ9/+BGZ0aCqhFZmAuIEQHlQDoE37TLga4q5CsDJa5DKEdFggAyPjRl4Tb/d59/8xZ8TlGJ7cw18ECQ1zBif3ef05X0O3vqEbmsXPbvk4fP/yMuJxf1ji4/v/Cltd041aHHj3h2uHaxz/emQ8fyUe3d3efI/HzE/vOQf/uY/MT2bMJ5EWpsdtlTJZgtePCm5/+Al3V7Gwc4mu5nmRgi8v7nGV1/+nOPjJzz8xrFZGK7vbvL5k6dUYY0P37uDG054/tUzNI/Z6mpMscbY1fz2mydcu3XAnY9/iJ9NeXT0ENMKXGuvk3c79Ab7XDrNaVlycB0+2LvOf/H+W0Q/wk8vQa0Rkyqm11DVnrYRWWulFRcnF3jv2dneEbp3UlOMCnIc17bXKLRG4ZlXU1RUBBVotdtyfwHvK5xX5HmLGBzjy0uiqxj0BuSttlTAlKEJjEAA2Rgs0eUoU5ABg6JFL89p2zaGRI18g0KrkiCV1o62zShsm8LkdPMC3VgaKKljNXu/sgYKg5mDVYLqZ7qAaAScgWQcrzGZSz5tK2CjSlGUBoLC6kBhoFd0sNbQ7ve5efMmP/r4A3KlpLK5SFhUc+Ir8UNzjeMKyCx9dRJEZmS9NRqfUF5Tx/t/8hAAUq7DCj0z8RzUaxVymccqRmIDkGux/Fltb4jwmhrmP/9bNZ+VEuxFOqaXNZUE4CYSrFB4TVz0squoRO0vgEcxcjWunDG6vODxN7/h4uQZz5894sHjJxydXFIHw7yGaloSvBN6uPcC0i1iD4VRTYIV8cosfHVVkKRMK4lPIwGCE6Vb12xaS3k1iTEFDG6YHs13lvOHRiBFoVLMm0D8FB+5ENJ4zTBqSnTpfANoVWCLRkF2hou1gIwRVEyq7SS2iIKmcuW8p3YJjNSSMMU6LlS1Q+WpXMCVNeV0wolRFEWLdqdL0S7Yub7B+m6XqiqZlTPKyuEI6IZ5koyRtbJCiUziRAJ8aLwKNG0aDcYRY6QOTgDfxpIlpmaXVDxZFSBcFSJsxM0iHmJJHXMULaDCU1Jrh/Weom5jYgcfOgxL0U8ootAzg9IYYVZiVKR2Y7JsRqCNCy2UngGB0OhoqAx0KgLFuOiNj0YRkrl31AqVGTKVYVaq/d91fE+StmYqpkU6LqswUmWSyWFQjUiYVFpS35P43nicj+hoRKVNa6nYxOX7A0lhMSxhn2Z9TghjTKXoqJs+rDfofDEpB6U/Fm8x3dRvaAQZpOdMPs9bkUQ3GDIlyjkUGcoqdG64c/sWO+tbfH5xwvOjY1SEQmvKCBgZwDlaZOuDR2GwVhR6bJZhrSFGJ2o1i8UhEnXNrBpRn414NJ5ycXGM2e7T6XUZbGzQ2dim6A5YDy1Cbji2hgtX4SdX7OucdqvHRsugpzWjK09/zfLe21u8c/M6+7u3ePzinNJb7t//hvPTY4ZnL7m4PGFWTQkhMVaUeDX5SvjNQiMR9FuulWzq0jemUCaig15UEJvluVENlb1QJSS2mcVpsCREQ8cmSZRkXhmDjpFGyF2QluQJ11TNtBIBEZuqaol+apL5dUShlCGzGegCbaRqoI1Qx4wyOF8h2aAGryFEXOXoFV1y3SbPO3SLdTQ5J8fnTOdzxlczjo+/4vz0kiw31K6m1crZ3d9jNnYcVec8f37KYHDG+voW0ymMhjVHh18TrEa7QK9oMzKedZXT6Xb53ZMHbOUdplXJnVvX6VrLk2dP0FazubXJ1WTM1WSKsQXXbt7E1ZGjoyN6RhF8xcc//gnXd2/gvGcynZEFuXYuXQnXBNTN/VHLpl/vY2q4ZWVOeMpyksyGA5PJCJsZMfROabDNc4KWfsOry3Nm5ZTtvT36a2uAVNJFF0hDCFSuxFgrNGHNSp9JtqBAaZsRY8TYXKiEVjZRo5NXk82xtkVdicmUNoa8XYAW5NsmemEIAR0r7l7bkCpyWRJsJkpiUfjpVVkRI1jbxmZr2OwSjFT18AED0j+oQ5r3XaxtJyQ1UqVVRSEokHKwtr7Ltes3MdpxfjEi1FPae5ZOC3xlKFMAZYwEKN540EKx7qZ+wK1BG9dps7l/k0cPHvHw/td0Whl3btzg4eEJ01mJrwOlEzqvr0uq6YxcCYU3+kgVAk4pvAKlDBYrZBLtCcpJwBYcIcqCbG3qL01+OKPhiKvLK+KNXVSsZK7pDBaiQc2K+gY0n+J2Udlu5jsyv2jWXJ3Ec2Dz4A7b18SQ2WiDpqQ6fUo9fUZRXNFuHTM++iv0fAM3POFaL+PZxRmPDp/y8knJvX7JBz/9cyp9AeoV9z5+l6DeZzSd0tq9xVudnKdfPeSzv/5bjs7nXNUXXOso/t2//Td0uz0GG21++INPuLG9Q3V+znonw1+95GCtxavn8PL5Q9q55607Nxi6mt99+ZhXr045vxihW23aHcvdrU28bnEVDZfDkouZ4/rOdZ5dPGTr1vvs3rZUkzkvj16xsbPNk5enGBPZ3lmnWygeP7xPf6PDB7mhSXBjs7eqhi2i8bVHB9jY3sIY+60IWqvIjes79HsFdTWjrufkWYveoLMIsEjMGGMt08mM+eSC6eiSrU3p+zMma15E0yvaJEpLCwKLCiWhdijvybTQoxZjYWVIKFGEIM+UKM5lLfIsI9Pii9lUYDTN+gQYgykydCaVsEUyFhU6pr5IH8jbirxYZhTBC3C3jBMkHsgyTZFbpjNREn7vg/f56IefsLW+S25t2reajYbFObEYvbIGumQr0qxbNrOvVdLkx/+3Erbff6zWuCSBaM5RiSCPNKLLJWiEWSL/wq/xHRW9N85kNYXzOLFdSCrUtRORCBToGJiMzhlfnfBqOOHvf/eI3/3qF1ydvmB8cUQ9GRG9x0eDjzl1zKiDoXKNx1ezp6UELC1MUhlKZ6SyREmXPmvS34WGERQiWrJbfLK2gRRj6iZWTRTeJNRESqZWBduatp/XhMBStqV1M47mCcxcUvAkRApAKd9ncXviouosgmTL6x5TktG03jS31LAiaJRU2yvvmOMZjkeYy/Nko5HR6XQoOoXYQQWhnrqqpi7nlGWJq9NcMJpQBQH9SfG2kjUkePEyfs0ZT6ce0HRoZD0Kq5XYNxK3xXdSouoYiMkI3RLMDKysljYYqA21y5jVChNBTLqEtQCsiBaXaEpilNYSmeNe7nk6s2Vt3S/uhQ9Bqv7WkCdqtVZ6KYDze47vTdLWLOyrAJU83AxiUd+RYS/VthiSOAjSm5Ib4amqxE/3YeUmkeZZUoMMzaRXShT/UK99ZvN3q/YAkrTFxc8hCLKjUxVI/mjxdaQuo5QklVrQHrEs0oAFlaGipbO2Rau7xpoO2GeH6MwQZm6x4McoFSdRBqoXEqVKi/WATwlNQCijLiS4xDu0q4jljNPxjMOrY17Nrii941/9xV9wy37Euu1gi5ysiHRbHeo6MB2fcjMEppMSnzvaGXhvGU8cv/7N7zgY7NNrdbh3d8DBrbd4//13GF9dMJ8M+bu/+1u+uH+f2ntGowtgLhL4mSU6ybgXtM7QqGdK7VgmEEI3XblfxCbRSombyH+l3r1lH1JIXjzEgFUk8+nXK6Wri93injaKkkonpEwQM6kIkh7XSRzHSHgZPAGb/N8kQZe+EbPsbzDSnzjY2mX3Ws35+RUPnz/ng7X3ydpdukWLO2+9y+Mnzzk+uWJ/+xrTyZiyLoGcPO9ycH2f0WjCxcWQdmeNiKLX7qAnEw4Pj+jlBVMmjHzJxsYOKiiy8Zzb927x6OlTqrMhaxvrzE4u2drehNGc8dEJg/4avnRcPHxOnrdRozntzQHPT484fPmC/a29tECHtBjKdSCkBmmaeSALTYOAsVgg5UmtNVarZLbuefH8GfO65K17b7O/fw1rDFVVUWQ5eSZJllUwmU45fPGCtdmMjc1N2p2O0AdUasz3woNf0B1iSInd0l6gmcc2M8nfxeMJuNrhK085nbLW6eFnc7T3qFpSSLUS3GqjkAbjknI6ZH9vm43NAcfnR7QzeOv2DZ4ejaVXQWmqEKm8Z1bVhBAENYsL3akknhETpTrgXcCQpQ1AEWoPWSCUgcLkXD+4ib88ppxVHF4OKUJByzpcaZk7R/SBPG8TEbqhbuVQSXWfELHKkLVa3LreZ29zk16ueXV8wqPnr5gMh4zHJU5n0rsURPrZ1RU2ajIlipnzqsIpRbRiOt/JWiJaYjxRB3TyloqqFGQUT62l+q11wdXJKx49eMAHP3hL6CfpaIoSsmym4E+tJBiS0UICTBYgTVr/A+DT689HY6ZTx/7uBplShLrE+kPOXvw19cVDyBxPzo7JT8cMjzVeaW68nTPQbX7+698wHD9i+vYGb/3gh7QGmlfHx5SHFc58yO7dd/jxn/4PzI5/xYe3P+bpsxOuja743S9/QTWfcnhxQm0nfPLju3zy6ceEaaCOjmdf/yPnp0/Icsvlq0tu7ffY2thh0C0Y6C7/+OgRD3/7AGM0n370PtcO1rn71gHlbMpXL8+xvQxdtDm9rHh6FdhZP2BzvcejR1+xu9nFMKTbLbmxOcCXIw6fH1O229C7SVWXtH2ia6mIjTCeTil6HVnHMs36zoasvWqZ8CzyDWW4vJpSVp4sy+hmo7iGLAAAIABJREFUfYip7yZCJFBNp2RFTl3XHB69pN/J2L12jaKwlJMxOs++9b6LdRdh0yggJvozILR0pZb3f+VoglUaAS6kXUGb1fLNaqKFsHS8p6pr0LJmhJU9IaT/W5sRQsRFR5HbpYfbMisAJNCyWYaxGf1ej92dXdqdPioImLRIWFjGEb/veHMfev255df5Ph3NXiv9TpIcLUB2hfSeL5KNuPSu+9b3+Od+sSYlS4lh+tvFqIoC30jcaKhjLcl4NMxKz9MXpzx6+pjDF9/w9OGvePX8C0blnOHM4euAxaJqhaYgBo1SOT5If7oPDZ0/LM6m2RvEvuR1UN9anYQyWKxjjbp1TAmcVktLjTevQDMexO5GLRgs6juu1apdRfP/1de9qQr75mNaL5OuN0WhvqURoJd76tKGK6zsvc1gFW6UfO+Ic2NijFxeXmKtpdVqCdMjL2i32nRbbZxzlGXJfD7HuWQ27Zc6FKvfcyFK+EZcLNWsVEULy2ram9fr9divyTdSn5uKaEwSDVSp4CAKr941I64ZfYn5phLVNiml68U6uswRpHq5KBewQJMW8zvROBf3kMVa+PuO703S1iA2cWXgNYOw6TQTiXZL1EaClJAEH4Io03nnCbUnzzK63cECdVBNTX5l/VCsoGph2Qy6uniuBn7NIY2kSyWY5u+MEUGSxQDXmhBdojUmNEKJcpAxOSgLRV8kC6nAKLJeF1XkRJN8J4xUimJqVvWJjimJS5KsN1JJilrLhhG0ePMoMDrQMYq802JdZ8xtZBxLZudTHj96zJkr2eluMBtso693mZctjl8eMT5+wfXzC+oiIx+ALWqGoxmbRYv5dEbbX6FNC2sUdTVhc6PN+iDD1wOM1Xz4yY+pg+b5i/t8+fnf8fibxxAztEWSarXA5lCp2TRF+YJIKCE5RIWgJikjbUQMA0p4zLqpdCa0KEQxUFUBQ+pLWum9+s7KaQMKJHqtUjJxF5CSvHDxukhi/Cjp81HO4aoabQNVjNIYm54PCWCY1yVX0xkmb7G912VtY4M6VDx58oRnz18wGGzQLi45PrnEGE273RXaYLdLtzvA+8hsXomyU5GzvjZgoOH84pSNtQG+qhldTblx/QCbZXzz5CFXV5cUmSz+Pnj6gy5/9Ec/IoTA2dkZsXZcu36dVtHh1fEZnaxgf2+P8/EpVVUSnCO3RugfUZSNgndJmen1DSf6xrNNkhSfKpdRKQEanCfUQn+8HF3x+Zdf8OL5cz795FNu3byFVuIppRZqbJ5WUYDRnJ4cM5vP2dzcpNPpiFdaELVQlMK5egW1lE1V1vklpz3LmkBQQ9QYndHvdJkMH1HP53RswXw2JienntdkHUtDidVaFLRyE7GqZHr1ksxcoesxmVK0Cnj7rdtMJzMuxlOCksqP0tIbGFwtf29l02uer0MUVSxfY9sZjRthcAGCIiTfsH53jcl0Qjmd8/WXX+MnPe7d3GI804zKOe12G9sRNFIoM5ZoAiaXeRS0PJdbTa/fwRrFi+fP+eqrb7i8uKD0Fp/ySo341/gg9CJBqOU95dpKgOZcjTWQaUEQtbEJYZQ5YnOD9xUhOJRXzCdDfvnZP/Dn//pP2drp0vTkqsXuI6HJopC2aEy36fflHrHE18FEaMUIesIguyIrCqyGykdUrFDGo7qRvt1jeH7Ofn8fLjyz9iZXgy5qv2ZXPWEnDOlubNPeO+DB+QvG3zzgwddfoe3bqN4eH/hdNvsDWtzm4Hafdz+tefro58Tzh9j+W9z88H1+/bufMTx7xV//h/+RXjS8c2Of63stRhfQam3gw5xeXvPe2zd4+ugphw8fU/mcn/zgp5yfHNFXmhA008mEqprx6mrCWeUYlIqzl69o7+3y3u27fH3/V7x8dcg7uzfY2l/n7laH3z49Zavb4pOf/ID17R2+fPSSy6tLNm5keGWFXjytmI+GdHKFLgoazF4Zw6Jslq5tDFC5yNcPnvCjn3zM1mY3rZECykjLgefy7IS17S20bbN/sE+nZTEmovDYokjecEt63Gs7qVaohnaXAp+FNHYMSUDlTZqQ2OlYYxIdmuQD1Yyd18pyxAjVbEbtHMpIRVDW5pV9IIL3kclkymQ8pt/tyCkFEU+S94qL9zTWkucFWmsGg7WlxcFqnLBS9fuuQymFtfY1GtcfSvC+T4dSdrFfx6SgFlVkHiPlbM7VdEynXbDe6cnMXsmpm7D3n3VE+Y8kZGLXslwLmjqkgEQRQ4yGcgrPH7/gy6++4tHTRzx4+oDHzx8ymwxRtUfVNagSr0qUzvFBE0OGsS2RXHclPpZAjXgFF6DsSiCtFgmPTgyPxd6TKjgCgEkPfWPBJGteSFYOjVp6+poxLgS6lqJtaXyqZRzcvPafumAxLl+zSgd8829jc22/87mVv09g9mrc1CRsq8lFM5dCjAsVVZ+SL63B1RXzWcV4NCXLLJ1Wi267vUjmWq0WIQSm0+nCl7X5v9g+NUDsElRdViqX96EBFd6cW6/3BZLi6gaYiSlp0lIICp6IQ5mcSAbeYJOE7iLlTgtas65lKGxaIyWRbCiwanGt34SumnEkPe/peoblWPh9x/ciaVsGxOq1xW5JjpNAMSweWXltFFl/V9dE56jLGrynXbRRTbCmGy5wet+mjJOuuFZ60Zj6JoKxOJeUpNEo5KV/4Y3fFxl0CjFUkC5+FaL45XgniFAdwSsiqZyqFDWRMhkn+hiISqf8waCQcqsPUcAtWclApcQl/S5IvvhRqBgoMsWg32ZQdDCxplNO6LRaTCYTzh4+5sHkPg+yFvagxUwN+Plf/xWj499xdFTQXrvBzrU17tzZ4PhkQm/9Bndvv0PXa0bjOWVd8flvf0nlSu7euU01r8jznGvX9+gMtrn33i3a3TnHx8dMr0rpgWp8u1QjeZEGaVwGbio1aMY0NlKhAp2QOx8CLorm0GukKhUheMSMMqCjNOvGlSStWcReS9i0JmiF0halA0Zn4rOV+hoFedGgZeKJ6qRQL0JEJM+dxSnhy0uVtREoUdy7c4e9nT2qOlAUBd1em2sHW9y5eZ0YFLntob1hMp8RCOzt7bC9u4lzJTYzeH+A84EiLxiPJ2xubKDDDu2dAYNeH1fX3JiOOdg/QGvNj1sKX1VsK0WWZ3TaLXzXkm/26fW6fOg/4ejomLkKbO6ss9frUFWOjZ017vjb9Le3pY8SMaCWvg+Pd7Xcr5hK+WmcS29ZAiZiSCpZKl0/MY2M3mG0YmtjnbW1Ac+ePmF0dcW7b7/Nu/feYWNjnbquKIqCrChwaRHrdtoMLy4YDS/Z2dlhc3OToi3Jm/fLxW1VFXb1seXmGtHWgoOiyLh76w4nh+d88Ztfc33vGq0sJ5RSOY9pTVGKpCIamE0uiW5GbnLGly8xJmKzgl6uOJ4MyTPp33ExYIuC9Y0N2p0WdSU9EVp2FqK28k+J4qyr5+hWl0wr2kULrQyV91hTJNCmhdMZaxsbFL01nr58QTurefzsEqcNm2trTPoTOhtrxF6LcjQh8+BMm1aeY2uPcQGUpzAWkxXMy4rRZIq2OVpZfBChHx0tqECW57RsTqYMKoAL0n6tCwmWfTlHa0XRytFWYY30CElPY0ApR0AndU2Dc4onzx9zeTVkc3uABFkS+Gu9DEzkboZFp8oSkW5W/dSfktB9FUAF2TL7WtFbm4MaY7XlV198xu5Owd7Bv+Ls6RFfH/2Ovb09PvpXb3FLbVH2BpyePWSndcmfdRUb737A188e8LO/+z8Yvfx73PyMH376Fo5Djp+MOW7X/OTHP2VQDDDxGDuZQjalnI/55d+8wgXL2Ax48eIJa12FbSl6JqfT26GeVWy1LaOzEc8fP2Wj1+Pa+3e5qnI2drbYbFu2u2CzDs8Pz9FZ4P7JBWdXkVu9gp4Gzp9Rv2zRmlbc3t3m9jsHXMxr/urv/55b997mj+++jzY1//Cbz3jwYsLWjTu89aGhChBCybMvvmBezljb+JicjKihKueoWpO3OymOXiZYQWlmdVJSW4TIKZOPUu3KMlHkzXKLyUyifjliBJ3lsFA8XEqcL9Ss1XKvj87hvPjeLXvIvx3YKyQAtNZifFqXdWyKsasvhCDvO51OCUSMNYvCrTFmxWhcdurh8IrMGjqtYnl+6Wo0ZxMJYBS7+3vcuHOTm/fuCrV05WNJyd6iIvWtZGwZaCrV5Hff/X2/j0fDhmqAu+BhMqkZzqYcD0+YVDNqV3Gwv0O/3V0wUZT8Mc33/+cd365JNY/oxTkkAAiPrwOvDi/49S8e8/Of3ef47FQq8JUFuiJK5B3RT0FZ6ghBSRFg7uukc1ChYgmUxFBjkzesYln5UQkg0EqtaOuoZbCtSMF/SsSSoFxMfZ0Sw6+MjSYxa0CrGBeVJlgCkm/S/Faf0yviaKvJ1O97fQOcrY7R76q8BV7HrxtxvtWq1fLvNTZVqEOy6cnz1JpAM148ZQi4smIyGmGMqKO2222KoqDXE9VY5xxVVTFPFlJNkljX1eIzpf80LM5LKZXaM163NHnzWi4ZQUpAXoUw96IWADoESdpURogZ+AyT7k+Mi49MxROwWlFohZESb3rvRhBlddSuHEqqkQFROI/Jn08Snf8Mkjb5TrKKKVTyy1g+2ZRBQ/DJfDDdtCRWggq0WwVGtXC5owEEffBL+cy0SC4aEWNTcF9yiGGZtL1ZolyUrrVelGRBkGgfhaYILJK4BaUzIf+Nqa+8raAX0YPCEvF4Ih69UMOUwkVYLgTpO2mtxSjVaJSxaCM9C977RZWnkZaNeKpywsnJkEmrTWdjwKDflffodRmNR5ycnjKOCjUKlLXi5MVTLi4nvHr1Ga3iG1qdjP0b25RlxtwN2V77If1OdxGMnp28YjQZcufmPt1um7L0TCYzLsfHYIdkLYsykZj0ZaJcpEQdFZPhpi8oRHAhpsSzESNpEBJBqlTqkfCxEYpN9Eat8EGUmmJ0qCSnu4oKrfr1rSIvcTGBTRKeFCquIK3JzFwvP0clXnrUFhM1RWYoCsPEZQRlUUQyq4nKYA3oULOz3kdnuVSxYkk7h8HeJleXEy5Pz7mzt8MMx8XokswG+t2MTqdHiIE8F+PiuqrZ392QczbQ21lPKm+wn4Q4Ygh8uP0xIUastdSuQlvNdX8HFQOZsdz78D3e+VheY7IW87IGNIPCcP3WLk4b/KRCR4dpqkQqCtc6jcFGqtgYnRA26e1sVB5DFKEZ10gaR6iqisH6Gu+8/TZ7e3scvjjks88+48WzZ7z/3nu88957FK0cH6THrMhzQoys93sMxyOuhkOqqqI3GLC9vUPT4yL0zGTOncbKYj9UEKNLyFpshhH9bo8P33+PR/oh33z1BT/6wae081YSshGjS2NE0lvFQIwOaz0qllgqcqPJraKy0DZwOTzFlQ5fg4qeViuj3W4Jfdl5QdKAOioJpLVs49FX0pUVvfTn2YyL6Zy2zfDaUCnLBMON7R3u/fATvvnNGS9PT/jy4TNavTXOL0ZkaDqba1SFpiLQUZbdvMf2+ib7+W18jKz1BphOzqTyXExnkLUYbA7IQsa8Eip3FqF2JTG3tFsdsqiILnlHEgk64mONAzKjKTpt0JEsa6F1TgwBYxXaeEKsxdqkjpSjOScXxzx78Yw7d28l5b5IVPVr4FNa9CQQi8mLJ0rY7OopRS5ItjwvmyzRMC+HTIePyfIZvc0uqqp593ZGu7NFbja4/t5N6G3zxdd/S2Wek69bnj46xNUVmzs7fPLhHU4mkT/+wYfc26z5m3//JVezIaG6YGd3m1Yn5/GrV1T1HN3dJo4H2Pom84niajLl7OwVnU6PrrXcu77B6ckzHj16hp+1wRkODx/R74KOOe1iwEa/z531dU7GNZflmPn8jHHQ3Lz2FpMLw7yeEOyAg70e/nLCndt32O21+Pl/+l+pVMXtj96jv7HF//Yf/5KLq3PesZ4nD79k7sY8OZ/w6sIkFWK4GF5ydPyIrKx494MPKdotoo7EuuZqeEa32ydHKm9NgBwClLUnxGWgA4KcG6XwdYXSsLa5LsquUeagBCp6QRMXpY1ly4MIiKmVj0rrb/DS3lDkFEWOXo0SV4MEJQlbXmT0TIssM2Jaj/n2yxUoYyi6HZTrMPOWqHxCwFfAnSh7ZVVWPH3ylF67YK3fXqD4zXvFCEorbt65zbVrydsvF1aAMSJ45Bta2Xec/Xee4GJ9ejOY/r4fqTIRFFfDkkePjjiZXHBVj4k6YFuG/rykDoHMCnV6NWj9v5K2LT5xmWO/VlSNsFCFbGWGt+/ucH17h7v77/CPv/yGh8+e8ejpQ4bDl/h6iFUlMQj4g4FaQRkdPukiKBXBKUzIyUyb4DUBJ+C+FrXGRb8Zy4SmsRGKvPFdVwHjRaVKhGeWj4vy9GrS9FriEb9dCfuuFp6IxJ9vJl//nErumwkirPRbGvtaRbF5z9UYeZHMhriImwhBLGzUEsRoaKXSphBQqqaqamazOVpriiKnKFqJStmh3W4TvDDpqqoSdopzorZa1zSSkk1F0PvXwds3k8vVa+NDIFoFSvxnYxBgXqyfHCFGnDfo2E6GA+lmKIlXY+oWMRoKpdCxaZNp7ldYrDcLeqVaxiYNg67JRbReaRH7J47vRdLWYCWvo1ApqNcK5WOiKdGUyUTKvynfmiQ6ESN5UWDQoA1eLas1y09iUcqlubkrN3NV4n/VG2VJp1hOCnnH5eR4s0q3UItp3jvKpuGcmAxHL4IoQiExWFtI4oDCZjYFv4JuNuij1oa69hDtUrY4VamMUsQFpVN4y9pqxvMJRycvsSctDIa86NDutmlby+baGv0spzZTjp4/Q9dzgm+Jkl09ZnYReTSboozi9PSQh5//mrd21lnfWKe/tcVweMHF5Rnz6YzTV6e8OhnR37rBzHnm7nxxXUIIqafPLxZgaegVNUkxrTaLQdwYlkqyp1MCBtLAnvoGYqpnKdWATBgjsudKibBCc8+1FrNS59xr9+/1Q6WSuVqMCUVS8FosaqCVyLtiMmII5EY8tkIQ6pt3DqNEJKoACgMq1KgAMcyZT6+oqxmdosVseMX0YkSYlrR31tjfWcO5mljPGV2OmIxHaA15Vohwh1JUlSNmFoXG5BmT6QRqT6vXJcssFk00ilnaHHwM5JnF1yL/brTm9q27VLUjqIosb9HpdjCxIu90KGPElV7UQIMTaVpiatxPC5aUoxK6LImJWeklC8hCezUaU48nKJCGY6XpdHp0uj263Q5nJ6ecHZ/w2We/4OT8jI9+8AP29g7I85wY3MLGoVO0sJnl8vKSq9EVMUb6/QF5ngswE8EHR2YylJHKc3OLfXCYaAguAobgod1u0e8V3Ll7nVCX3L//Fft7OwwOPsJqmVuZzRIwkqW5KAlDnmu0CuBKRhcndHsHxLbhfHjOdDgl1hXlbJyWabVAK7TOCGSUfk5UVuZnqDHRoaKjrkpq77n/5AkbgwNcq0e0bWYqY+pqQtbCdHuMrs44HU8YZD288lSTCX40ZqI9pasYZDl+cx8dNGvTPc4uznkej7l+cEDMWmSdAbvXM7zpEHSHGC0WRa6gqkto52Q6o5rMiU4MuOvgmVQzfKiZj6+oZ1OKTkbQgTxrY0yexBuC9LpF8apzs5oqTonVjM+/+oIfffpHDHptgp8B4imnVQ4xodlNbc2naZd2h2o+JtYzbJxBNUNbKzS/THP87Lf86mf/O7cPBtx6q4fSCtu5R9bdAjUHAjvXAt31Nrl7xXQy5vzwJbvr27S328zCU8bHl7jTM7784m9Yz3I2Nm9xdnjG8KLiYP8u71y/xXZPocwlVVScj1p0si1mpqDT6fLu3etMLp6QtQb86cd/zOHRkJ999TWTMjKazunODPtFl7OzCVdnx1z/9AZVPeLp00OqeYnvrDH+5jEnhyf01zrc2r3OeqfFODvn4PpNrh49ZeNgn/aaod/t8eLlK3w1Y6Obc35yxHxm6G906fe7FFPHZDrFRQFQDvaus3t9gG21iKFcrG0ms6kYtooER7xXzMta7E2UJGGoSFXWVPMR7bxYGEIT48LrsOnr1iYnhGVQ+nogktbRlfVXZ5aiJWh7p91eQadfP2ROS++qMQrnKubzGd1e6/XXkcBYreiuDTB+iJvnRGrZsWOSEdcKfDLbNhlnZyepeqK+9flRyT6UtVpkRfq8GJJfoezBvpZ93eTftiBYfPvvCJ5XH/t+0SS/nV5JvLN8WhuDzXJizEC3iDpQu5qr8ZTxfE67Jx6Z8Tvu5x86GquFJtKSisibr9ILppFKsWO7B3/0030+/HiHy4s/4i//8gu+/Opzjo8ecHXxnOk0UAWDjp5IRUx9uDKMNVp30NEQncJTEk0tsdZKQi6Jm8Rmr8eXcfHYaqLTWGmotJd+a3ylWLQpKoTg0yVWi94xkPHRGESvUgAhAd2rMe7iXL+j/+07qnjNsfqcMeJPq1jGx9+lC5B+ApJyJ8JcWv08CbvT+SH94k3/exOz1bWjrj1VVad5acis2HwUvUIKEVUlAibOCcvJe+qUBIeEEK2yqJpzWL1ejZl5DAGFI3glRQ+d7LViJZV/Z8lMl0w3wk5L0nZIlbYiM7S1KIYK1pN6+1IvpE6q6jEJ5JHGsUclf0jEuqE5nz+wBHwvkjZAktAFh1wtNoDmd5Cpr1KwGDwoI0i/D5LlaxQqaozSSYluOfiW2e3Sg2mx9ugmyJMybHOsNmQuTjO8UW5eGSCrE1V67pA+NESaVHxyvFC11JIWqJUIrGS6ILM5OilFhggyA1JG0iSpiFcWJnF9taHIcjKbQ/AYVUrFw9VkwYPzjKdj4mRMVitaRYdJDAxnJXXtsf0B27t9is0NmDhMu8ZVE1quJtaRYVXj1BTvOjwZTTh+9CUmM5iigwuevMj57c5v+fDDj9nbbTEua7x3xOAILmC0wWoj8vs6Y8kMjkJTUSE5PaQevkXfVLp/yUFeIYiKpOji1eEjBC9lc++dqDCpQFSeED117V5b9FYbUhukSJpsrQT1KqbEOfmVpcZ4uXNyz3ItXiYuKrIYpb/Hanxl8EmHXhGkodk5qfw1G5CvINZsrvU5Pznl2aNHTC8rbt16i34ro7feR2uYTsc8uv81k8mI3Z1dcpvTare5uLhkOpnR6w3YXt9gsLvNq8MjJicXbFzbo9ft0un2mQXHyfEx8+kcWxTs7+/SNobq1RlrvT6tuaOT5ZQuMBtOUCrDtsSOQhNECSx4kSgOIS06KTlyAaUjOvnNxCB9pT5KH6ZUKQ0BhYsRH+S+m6zAmJxcieloXhR0u33W1jc5fnXEV19/xYujQz7++AfcvfMWm5sbqYcNtDV0um2CgpOTEx48+Ia9vQNu3LiBMQbv/UI5stnYlvM0EGIjKd8EmIFev4X6P7l7sy+5rivN73eGO8WYIxKZmAiCIEVRJEsSJVW5qqtcQ6/2S9n90H+C/y6/2Mt+9LJX92qXXV2lllSaJYqUCGFGAjnPkZEx3Omc44dzbkQAoqr7UdWXiwAyMqZ77xn2t79vf9uVvHP/NsI5Do/3eb98BxE32U/tAwcpqYwlL2tsJw1xjAVriLUjnw7Qpua9O+u0VMnR4T7PHj2mKktEkmKMl4vWRkAUU6NBBVm0KXAmRwnvz2kw7B8dc3pRs/H2O1gR45KW7xcTC2oZkeiY9c0bpL0NimmBaqdEmWZ3/yWHJ4e40Zitby+hpcIWFdW04NXxBUcnF5TTEU5K4jRBpS103CHWKf0kJZFwNb7CZBm2hqmOEWiyThenJbmpMLbi6vKcy7NThKxRiW/Cbq0gimOsrZDaJ6Dq2jAtLNOyopUkfParX/FX/+qvad29xU9/9ANGoxPee/cr3L77PlJFnlmzJUokLNYz+X3YMr66YHDwGF1OaClIM0e6YVlNBX90f4O11RZPH/wWoh7X3roJakLWXcOInFcvP6OnjjAXEFUpN8qMcnuH6kaHH//6c462z/mwu8nb7YTLVsJ4JLBfjKjTHHHnOi8uHpC9miBdye72gKP9CwaTUzQ5f/HtD1Eu4Qe/3WHn1ZjbX/0Gev0lmx9cMb4cIbcFF3tTSq7Y2T3l9vWM53uateurxKkA3ea8MOx98QVatunXBT17yf5YIHTGq7N99naf8vxkn699+B7tOOKDD29zdPKSyZMrjg8OsVcVq5NlVm6+jXYTmlrojbU1tHOo2jO7QsW+RlVF1GWNS1mgLnzAifDKjTyvMLaxiPF1pFEUeTmlAueqhb15/md4dli//WNyhgmb4CTIDhtHfeld7oy1GFO9ZlgzP3zQFScRpqxBOJIs+R3aZkbiWV+zl7Zb2KJLWY6RoSehE9Hs+VJqptOcSEekaUqz2fjU09w4ws0ulZvFAsb4PUNJjQ7rz38bx+uJ7tePJnEtyDJFu90musqRtQTpVQ11CZNJAZ0uzZVzbv62C//8Zw8XzGoIO7Boim1DL1bjBLUD5wyxLFHCIaQgakl0Iuistvh3m58wnf4Ru9u7/MP/812ev9jlfDDidHCEtFfEuqByOZYCV/vEkQgBedP6SamGZWsawzusnctcpVbeX0E0NWCvkwGVWfBBaFReC+BIyMVYNQAc97rz4WsskTEzYxBrre85asO4XYhDv2w8zmMg+zuPLwLNGeCx3lXyS03cFkCfs3bGJrIAcBehv11gBv3rXo/FwCtyTJBXelWPb1SeJAlpGqOUIss8G25MNWfhqgpjQpuCqpoRL4sA902G3QjnxwwaiZ4ptawzGGcxNkKLjFgonG+93mSPvJxfQhJpsqY1Fza4Wfv50eCK+X0XM0WUcAv19+EKNcqSf+74wwFti8h/AWA5zzkHJs5bO0hrEVaEvhGCxq6nuUgCPKpdGEA0uCeANodYaJ4+L+BcHIhvDsqmTuzLdcKLNGcY+FIRgLVnkqRARzK0JMD3x5g15PVyTy2Ut/w2LjC//r/ZZGyyTcYH0AqJdBLpsQ9PKt3nAAAgAElEQVRK+AbeCm+pnDhFbr29sTSOzAqWoxQRp9STgsHVmMvJmOHZK9zlkOGwwsVtVpeXWZe+yfJxMWU4keSVYDopyN0UjILSNzdX4ynf+8cf8PA3D0nbPVau34EkQ8Y5pi5RMkaJmjK0K3ChbsgF5qbB1yLIEGl6qDXX3hP/NB3klZL+HKVv/isIjkPO+DGhvKOYpZ41TF0M5N+k+Z1rip2DVS/zRRdm2H824TwImDOGWkKsvUmOFd4WV0kBSmGFw9E0WcQ/Jn1D6xfbL9l+sU0/XSONMyIkg+MTlJIcHx/w4tET+r0u6bUIKsfp2TF7u/v0en100kblFRmSxHn2rSUkZjTB1IKDkwN2Xr5ifWWNpC/R04okVZjLMYPhhHzlGsYJWv0lUqGQxpsZm9CsHFeDq728V4R+NDSsMYjwuLAhwSKD3GAhqaHjiFa7Q106dJL6zL3S1HWFED4AjBLH8oqk3WnT6ffY29/lpz/9CceHh3z04Udc39wkjhMvLzSGdrtFUfaY5gWXlwOqqmJjY4Ner4e1liiKXssGercpP89niQAhfC1WIuivtFHScefuFv3eKjqYt8Rx+L5Cg4ypncISURtBgSVWvlZDS4iFQVEgDEQuJ5UldTGmKKaYdh/rFMIpjA16Ch0jpKIscx/42gJrisAsGnZe7fHrL37If/fXf4PsdpmMJryzeRepPOhdXlomPrGM8oqd3SOWOh3+7Dt/ztOTY1bWr3N0+RScQDmBMo5qMuUXP/0Z3V6XdhYxOD9mUlRYdU67vcSNjS2uL/dRVUE1LhiWjqPDM/Jxycb6DZQUmKBmcFIRpyk6iamqGmmDNNxplFQ4W1OVFU2Nm5YxVWmx1vH82TN++IMfcfDqJX/3H/9Prq4O+Z/+x3/LzZv3vezO1gxH53Q7q+ioRVn78aaUIM3aZMkaLV2gRAHDSwbbj3j52yfc2LzNklwiVW+BMXz2xS7f6F4n6WwhtObBF4/Y+fwx39xM6HYT9kcPiFstVtIW57/dpd454v31jLPtn3DClBM3wlYZebWMw/L5f/z3bNy+weGLA4yE08srzg/OiQcTXCy4dsfx3ts9/vTP3+fRox1+8Pf/QCkEZ5MpxtaMyor+9SXGg0s6sWTz1k0mJIwLeO+9D3nwYo9xWVFHNaWtWFtaYWu9Td3OORlOeLL9BKNqlm6vsH7/OnmR8/D5Doen57TaHXIryK7HaKEphiNW2zHr1zYQKkh2rC8jsDikVSF4NpjaUJUV6XwxBL9sEWlJPh1TFPUs4IqThDjJ/FND7fUs4HAhSGv2Qp9y9rUifkdeNE3zMiksKN/7sd1uUZmKOPaS/y9jeYTw7Syk8I5sSRyTNjVos3PwL3PNC6RAxDFRElPXXoK1uraGWwh9jLG0Wi3u3L5Bu9OZncObhxNBfmbs7Js5GfYtIYKpyxtf+F/64X73PviiHh8Iaw1ZGqN1gqy8kkFphRA+uRduhI+xIJQ8/NcBNg+b/b4jnUHYCu9IJgBFbTVGeUVVZWpsfUqiErTrAZpg6UfSq4m7jv7qHa5v/lvOTkt+/vNnfPrZZ5xeHHJ0tkdeDnEix8oCRI2hRAhLpATeyr8BbHOwJYPEvQEDKrhM+zjClwx4QGWC7X8w51oYW02sKJWv4/Is2oK80S0olRY+dxG8zVm410ftXNZsXiMW5iSGWHitWNgz5y6R3pHRzcpM3vz815hE54I0ugGzgVXidRAqZsAySNyZSwaV8g7F/pwNde2TwrWrqMuSqoyItF8jtNYoJdBJShonWGcpKjOrh2vAX+NKOb9nfqnTSoOrMdYgjE+1OwlGGBxeJeeIiXSKFm+AKeHXUxv2p1gI31xdiBmR4z9nLndt8MHi/Wn+k0LMrs1/ad34gwFtAZosXBY3m9lNNkMAkfRBsi+lEczSN2IubbNuTok22YkwRuefJYSnxYXwAX/zPRbB48KxWAf35mMmIHtfr2RnskgrPIVqrJdkWBss6p231hYzKw2fmVSeP/Lduk2YvM3Juxm+9Gumdb73Ex6QOWOxtS8cl056iZyTxDW0nKKbZKjakZmaZRWj4xSSkiQz1NIyKsa4EupRwYm55PJYIDo92lpQ6ZLl3hJJtkRRF9TlkOFoQl4J6mmFM3B+OmBwdkFpDC7+HN3qsLrRIdYVk6scZzwL6ntzBf01wbpZujBBvNyCAI4FC5Q+zW0Oslkxz+OKAOSU9u9bm4pJPuHk7JS9V/vEKqbT6fgC9IVF6k1QLgJoE41kdqG2wtGAZhGae4dMC3O2yeIbNoeyOJyUvnm4SjCARPom1UhKB6NpSVE7Li5H/OTHv6C7krK81uPtu2/hpjXlKOdoMEHkgvv33iUlY3h8xWQwYToZoW/dpjPpM5lO2Hm5zavzI5aXl3n/9tsMhpfs7++Rj6f0RyMyrZnqiNOTEy4vLzk+O+et+/d5d2UZnHfjtCFJ0lD7AueziwHxOGNwIQPuGpkwIRMvxEzLPbcDBqUiXBR7x1fhnQZVFKO0Ioo0SmusSWg5S6vdor/UY293j4cPH7K3s8sf/8mf8N57XyFrt70lvfEW/pnIiHSMtZaTk2PyfMry8gre9r/J3HkAPnNztWqWzFFaIrVDamh1Y67JVdKki3Vm5qI4nkwZjiZUNRingQgnvFTSKR84VmWOFTWxqH27ieKKVNSsL3eYnAw4Hwz47PMv+PDd2zinKCuLd3jUvh5RBMeyOse6mroo2Vi7RnEvIRKKR4+esvtqn34lKbNlysGAjTVwtUNkGZ2160Rac+vefZKf/BCmgihK/PW3llYcEQvJ2dERhwd7fPCVe2gMrhpjSr9BqbqNGQkiV7PR15weX7Lz8jmX5yNiFdNbWQ6bna8hk3GE0BpbGrDQijNarR5JnGFtzen5MXVRonVCO+kgjGR8NSJOU/7v/+s/IG2JKY9ZWhJMx8OQPBPUteXoaB+hU2I0qLhJ16B1inIlFREXL1+ylGjayQr1ZcJhec6Ne5tY2efeh3+FXTrli0fb7O4dcPdmj+ff+weq0122z5Q3tuGSt96/R2t5idj2MFLwT5/+E+PjPe5+/VsI2uwfDzktTujYZZ4/P+Tg+ILl9dusXrvD2cmAyAxYW0+o0oT//OlPuBje4eN775CmmifPn0PcZe/kzBuzmClZX5EupXz9g3u8dX2F49MBO/tDslbNzsGIk9xLQONWxv7wnHJ0TrcdE8WKzBmSaxn95YTD0ycMS8fw0jEUGTUGKS2VMHz4lQ8YnQ5ZijX37t2fsebCKSa5wdgysMue3up0l4gTHZilEDyFtSuJo5AAJDjIzjdQ5xfqcG9s06xhtpO//udCJOlmK2lI2lm/FwcHuVZdIeLoTajG/A1E6P8HTcJ80Xjotf26+Q5h/5RKIiONVJJOu40Tevauxvi6m+vXr6P1rOP1LEh7zdFa4IMPJEiBXuxFNvvwecLxX/bxZefQXA2fRAVB1opopS0GeWjkDDhrKQqDsaAXg6//esQWxtcCSyssmNLXSsmY4WjM7vkVe+djXrx8THH1ir/963/DvduriEqAdDhhQHlZmtCCa3eWWLsJt969xl/+D5+w8+qQf/rBpzx9+pST4wOG4zNqNwI5BlGitPVS+NmX8uOiAR2zkS6EL5kIpRvNHliHPm9SKaTU/vcuKFiYB/N1Hfp3ORfMNJrGzHL2/s3fi+U3r5MHcxDZvNf8a79JNPzuY/PfzWMj59zM2fC1sp/fY0Qi34yfmyTKAnDxgGxet7cIEBeZMV/7Z4mV8ol5a73hYJCHVmXp477QBsDi0KEOPYqimSNl40I5NzMJjFxlMaqaGeU4EXlzM1dghHeasE4Sa+9KPL+Ys8gPBCRRRBp5LwPr6iC3bQg5XxbVjBUpZEig2RlptCg5Fk28/88cfxCgbc5gNMAkLJYhkLbW+QDYzalHKb3j4+yEG72o9NkOLzMPHd/F3HbT1sZn94QLrID1zZcXaOHFAdbUtc2sU8P/MwTt/OQsy4qiKDyJH/pyCCGRznpE7ry8zlhDXZXYqoTZDfa0aSRAh8FXq5AoWtj0bCPX8CdMOOPwnXxndSNDawDReH5JkihmKW1TlyWqFsRZjKsq7GiEygt0qjCRgiSjFRWkdoSrBZPRmFpUXIkJg7MhaWtAt9+i046Qy8uotMfkckx1NeSizrHBpAUnyK+u2J2cEWlLXYIg8vVVCBLiGQClAeuzRUrMABkQGjiHaxBAuQDvVGgaZodZqwUbrlJlaq5GY55tb6OcpNfr0ul0abda3k6+ef9mkcEzdjMgiAeZTVG8bdga68GYt+z1pjmFsUSmBluD8dkyG5ipsjLkBi//0grnLKX1kovl9S1Oj8YUVwarNVGWcX3rJr2lFarKcGPrNqY2CCdJW13W17scH58zyq9YurbC8uY6UTujvdIjWe5hMs3GrRus39riUtWcnp9hygqVaVY21zBlTbrUYWJLlq6vcuPuDVSqKIoKof3YFDJcc2uDW2fjcFRTmxKBBhTOhPti7UKyxHrXSPCOWULOagmbwzlHFMe+kaZzvkm51rjakErFqvKgPI0T9vcO+P73v8+L7Zd89PHHvPvV94m0b3HpjVCM/1k4hpcXFPmEa9euoXWEVjpsDP5ezovHHU0dqtKeHbIWImfQUeTrS53AmZrRZMLFcMikMhSVpa5KJClCxZQmB+dQ2oEwSFshrEE5hxKQJhHGWaSIODg+5dn2Dmp9jTr2606qvKFCMYaqLImEIYsVWay5trzEW7e/xrU7d7l5fsWPfvRTer0lfrN7zPBgh/TSUOQRtiXRWYel5R5Ii4pjdJUR68jbDwfnT2EdiVZIY1lb7nHn5iqnZ8dcja5YX1vjq/dvcq3T5vLwgNOrESttyf07G5y2UrrtGCUJMjmfaXZaoaRF2BpRg04cWeLZQ6RExyllWSGEptPp0E5TJvWUSEXUpkQXBS4vqHVELLsIoT1Izgs+f/yMB08e0e8tcf/+V2m1l8gLWF2KQQ45OX/Bk8e/4uvvfpNe9w4bNwoKJuxeHnFrYw3VSkm7NVrvo9yU8W7JR1sVp2rK1v2bPP70gEk+ZVfvMrmuWL3TY9JOOI1TPv7239DtrrH9Yp+9kxMm5op8Iuh31inlmMPRAaWKiOsJrXaO6Y24cfct8scxFwP47j8+wgqL6PbotFKWcsnp+QhXl5yXY1pLHQaXp2yXEx49P6IfaTauX6N2GacXJwg7YSmLeL67w7ERXFtfpZcKvnp/i1yNmQ6vWN/c4uzwjGFZsjcs+NNv/Sln249xcsrgaoKWgrt379DqroCIQuEFJJnE2GSeZXeSdrfv26gsJgaFX1vzyYi6HPv6jhAw+doMv1p6abt/H2Y7d/Oz/d2G6G+IfpzDs84hcKnLiroqSGUDyF5DemFNNsSxJEo0iZNYU30JHxb2Bzd/FULjZIZKpf93AxqZf/bhwT4bayvEcpk06TCT7PA6bGzYO6/GaH7bPMnNn/MHeLgv/emNRPR854WFJPX8/JvaHK90wkKWSpbbba7Ghok1IH0tflk5agOJ9tcyeEaEesbGC7ZJ4Taf1XyiRWDQzoFxGOuojODiquD0cJ/x4T4vnjzl8eEF9eoWUXeZa607OLVEhUOpMvTIlFjnE4bWOSIvACDrQ9aJub51i3fe2WD7xZjnT3f49NOf82z7AaPJOVV9hVRThMz9eA+S3kbS14CFpi7LhoSutY7K+NIMECitUFqjo9hfS+t7loJb2JOUB2qzHp5zdNvEo4vyyEVTteY5zc+LYGzx34uSycVehc0hg/x55uXgGhD55dLIN1/rY6bXgeWbxxwM2gBmvLOmCklMpRTW+F6q1tiZiQnCt9uI9PyaN+fRnIvF11TPEuzSs3ZxHAdgPO/ZWFcGU1sqZ7CmpqorjPN9SQU1tYSKkIQIiSsfjTcpKj9eI6CdeCYfgunawrWxzf0KMa0N99va8MbOGyzO2cl/IaDN4aiDy0xDsHlWJEAT6U1HjPDOibWzoa+WC3b4jZ42MHDW+mC36VbfAKhw9aX09L0Ltpsu6KBlYGKcMUEK4XxtD/NJ0UwWi7fCBjGTZDlnZs42zjqUFcROIkqDqx11BCKKcbWhBVBOcEJRUhMR03I1kaupI6gSSWIksvKN+4gkCJ/1QIGxJVIYIi1IdIQSCUq1MMpgoooyAmF9TZaLY+IR5NZyYK8Y5pJuPeLi4IBqmmO0JFcltgZrprRHE6xUlNYgY42aOrSb4oop5VBiDJx0e9j2mBUpWJVTOpstLuMOYqrJTyfIeoxEUFceOFosaPzCJx3WKZSMiKVPoEnrgnRVzDIpdrG3XWBqTBMweA9NkBqE8kDX1li8Fhk0rXaPpZVVhoMhF8MrrsZTwKGVppW16HU6vu7HWuIoQuAbYWrnUM6GujmfUW6CFSEVDk1dKVqVwQETmRCJiK4raZmKkbHkFjqxZljB7uEZ/X6PzKSewRMp40nB0vpNPvhklXxSEWlFbylDxZonh4fsbG97kJUkrCyvILstbCvlK9/+I4q6IMk0Mo4YVTWrG1ukf9ajsoalfp8iiljfvMknrT5VMaLTSdFZTNTK+OCTbzCZXtHuZsRdybQ4wxlJZCOEkmitqccFk8kYYQ3S1eSywskSpyqsqJFOU1eSAogjBVJQ2wpU2AxwYPGGHg4iBUrURJGXEnircBFkUE2RtvbullpiDcRxSqvd4/j0jBevdnixs8dHO/t88u1vk2QJxlgiqYgVmLpCuJrp5RVPT47Y2LrJxuZNEP5e4ULNoy1RKqXMS7+YRz3AEaUlVpQIpalEjLLO15pF3gCkVAmF1fQU3qhHKQwKKS1SV95VtHJETlK5NjqDOBswsYZbq2vc//Ajels3eby3S3u5Rewi4qrACkvdWqY2lq7OSbBo57h3+zoTGyOEpN27zo23P+Ab3/kqa4OC7/37C+rqiHExZfP6Gu/f+Qpr3RZxMkaKFKwkDYmfOFHh/kQo68GwKXKOLw/IJ+dk2vL+rbdIzQkPfvUzqGoOzwbIzir3ri3x1sYNZNrDaoswoKzEOkMrEuilhNPCUk0rEmlxVN7ARkbkUlMnGQK4sdZn8+Yaz57vYCqHinOupZqWWEZHq/TbH+KiNpWw0O3z1id/zrPv/6/svPhHLp9/lw+++h16Sx9ydH7Oq7O/Z2U9Z/MjSXvrDkzfZu8nP8amI5ZurbH76hG2esT2ix3u37vL2vomsbD0I83m6SYn4wFuq+KjO7c5uxzyaqq4kW5wY+0Or16+Ynhec3DwOaPhhPzoCCUESq/y7gfvM8h3+OWDn2LrMXfu3qSMWzx6esL60S7f+uBPWUtus/vrn/H86hjRyrBXl2y0WiTdFV5dnKD0hLjOOTs45qhSjHPB0FW0rqWgahIBaWuds70LnFNES0ugOgxGVzx4eszqep+j41M2q5y8iHj67Bm99U12955zdXJIJ0nYG19wbXOd4e4+NyeCrV7mnXg1REjvsThDNBJJ0qQwZokvCEybKqiLE4p8iGM1ZIht8wYh5LY4Ec2xCiIUZTS16TCXSwYGICR1TCnQIgVqqCpMUYAtcHaKczVS6tcCV/93iU4MsqVIpaKtnCd/5Rv83ozRA4SGqI/qJURagsywzpuHCAHKerWILXLGZ1dUnRi6KUIoUN7k4jUurynC+7LjNenbHy5w81ACVLiHzHRGHtH4IpTg/WnnNfVejxRYRmbwmDgWrLU0eRRzYgwTbVBpRtLtobQLrT1qwOGsBlPgdEIhIhyOxNYoWwdgFfkI2UzJJ8dMhmeM98/4yed7/PJc8LBKSPMr/k0/51/fSPibd95he/MO/+nJNi+ff8Hx1Q3WbZ+2iFG1AOdLSmrt67C92ZHw/LAGtGDpRsLHWzEff2eZf/XXd/nhf/4xn//yFzx98lsu8hFW+FotJ4Ir94IscF4nJSgqy0wKLBVRIoOZRnhM1B7zK9/6Ze5s7YLDclB9WR/XgsCamjrUk80AmrXzURZA0JuNvmEhVl0AfLPfzz3aZoYfSoU61DAc5mDtdcC2WGbyGmj0w2RWm2qtDf0I32iWLRy1q3DKM1NaxT5mcBZbezl3JuOZ8VzlCipRo/AAfuadJBtAFFRbziGbfo+ErIwUXiau5Owc00SBFZgKsJK6klS1pLIJyoE2BmMKcu1wtibJHJEqkCTe8FD6evbEKZhCXBsKGUCok9QiAgxC+RZC1mkcMhi42eBG6mNUKaNwryF0ePN9J/+Z4w8CtDWHC+xRk7mAZkIEuWMzMJVs+F2MscFbYHHAuqA9nvv0mPAv39thoW+MBG/N6ZF4c7xWtAizgdBkIWZaXgfGQBRpnItnrzHGYSvjs0phQjrhjSnKosCUVWApLFZC5QxFVXhzEimwUuDq5nN89sW70jjvcKNkkIsFUGldKJx0M9cwhUCmKaLbJa0rxoVgNDrl8uSILDe4yymmrLGRZFiMSaQmrhVrLmGCwElN6iL0BISpIJVEiYTK4i7G5OcTrqRFJBWX2lB1r9NON+n0Ei5HFZN86gf5a/m6+f8NQyoDbTxnDZuMg5vJ2aRQPivhQqmg8kGGcI3WPNxX17xGEUUpS0t9kihGSUk7y7gcXHJxfs7Z6IrB2SlJkhDHMVmS+t5Uep5pEuG6Nj0BGytb54cM0lqMcFipQGiU8w6LSEVuLFJJ2kmLyeUlg8E5V0Pf6NmYOiQHQGhBu5cRxQmFddSFxIoWcbrCqBxhiBFRj0mpyW2NtRIVdaiMoJiYUDMHQnTQEUxyyWScI6wgSZfJWisIIZgUof5Pteksb+BExSi3uNqiZcLllUJGDjfJGQ2v0KpNt9cFcUDlpj5THbWpnaM2zmfGpMSY2hvN6IjaVAi8s6IKem0XLtasv4szCDwwo9lwpAyZTBA6QicxqdYsKY1LEsZVxfbLV/zdd7/Lg+fPefve27z/lffZvHYNZVyQP2pEXVGUY/Z2d0BELK9uEEexr6GTPnsnpQ4SSotW81oF5wClMIFJFziiKPKbDl6mHMcarRWFkwgVYQntDaxBGodyEmQasvkOi6Xd7XDz5k2ydovffPEFV+MzPrz/PrFNsc6Ql5Yoib3MyjnSLKPnHEwlSOUX9VBL0em1uffOO2zJdSZfbHNrfYtvfPwJxWiAtM+JZMKwLKidpdKSOpFMtMW2YpSOwUoEMcPBhHw6QZDz6OET6umYq4sB6ysrVHXF6cE2ldBs3rxHv9OmrAdI0UI7y1I/o9dJOKKiuqho91bIeksMqwoT1mNbFUhn0EqRRpIbm6scnR9xOR2wGq3TtZKvf3CfoYtIljOKMJdjKbl9fY2tP/0Gk5OUH//ilxyOX3Eyjdnff45IT6lMjhCO3Vd/x9byN7n/yW1sdYVxjp39PWyc8ZtHD7l97z6KGKdKxqll2475zd4uX//Wt4mKkntbq5w/fMkPfv6f+M32Y/rLfZZsh75wXJ0coqcROvYGSmdnZxRiSjtpMxnmjAYlMlJUoy4iXqMoNrj14V9QHpxymp+BtJR1hrr1Ca3iAnl0TF1LtJV885tf5+HTHZytGExzHjx5zmU+RGiY2oqJc6RxSmkc40mOqw1VNULphFt33qNwlpOjYw4PT4i7y7zYfkFUVUinUUmLYVlxun/E4ckFGxt3Zs1em8Rl2LwWN13PEljrpYeANYYskiSyQolQ09aQZn4bCrCPMDeaerWwf4cWH6g52SYCc9MEitbMv4CIYtrtNiKuEYmeSbdmn+vE7P1rWyPjmMQK3yvThehggfCa7TGiIdwUMm7NP6+hfELM0e6kvP32HdZWV1F6gRJiDkzmgQH/heMPE6wtHv6WuDcemf8sw20qhcBKRQwo41AonDS+dYIw4TJplNWkXYG+Bm7g65Q6ccRalhAbEAYvj48kFb5eElsQieDybCc4U2FdzPF5zcODMx7v7vH0yUPK41Pu6Sve3ezwl/fe5sPb38akq3yYWNLLbV5+8V3+6Wc/4j/85OdUFdx+9y3u3rtPEsVo8CZmsQjhsPWPhfGE9MF+U8ddVQWGAbfvdjjcVzx6fEKRX2CUTzA2+4FaSDY28jsHKB0jAjCQQgRZTsOILYzNwK4YY1+T7S0qvOalNzXGzWvJ3gRfi74Nb7JfizVwiwCrkc6DB2xaa7TWs9q55js1r30TpC2yeXO5ow2fI2eu5w6oTXDrbgikUFLhS1D8a5Ik8VL+rMU3Pv4md27d5cnD5zz4zUNGowm1ctSACfutDHt041rb9EujGdduTrI4gc9SyGC04ovzfZziNBqFjlOiJMLQInKgjaIyBWWcYTNNFBmEKMDFIdkT2DTnXY4xLpgG+iXO1MEpPrQYEQtLn5stiKEFhPOs/fymuZAc+/3HHwRo85TznK6fmX68oee1Zk4bz+rVmislxML7hL4x8nVTkWZw2QW5lgeBizag8GbG4rVJZM0bNqK89v5zoOfDtlkmkwVNcNAze6DhXQqH05y9wxMmkxIlIxy1v+FBkmKDM5BEeC291rPCaCklKkw6GbJCUgoiHRN1NIqIzrVV+rJG7fQQZcVk94SRPaMwNVUkyYqEJVJ6pBTWcaYcBZYlFaNpoTHIpQSXai5PzpG1JG336CaKYXHCxfCEyfEZdSTIkg6VtFRKEJvXXYQc89HtQm87B4H9nEvYmu1ytlBInwHyls+hl4atQ48829juYG1jlKHQKqIdJejY0m63uXnzJnlR8OLZM46OjhhPJuT5lMlkxFlp6KRtVlZWvAuYkkgVslrCg8AmmMc6v+CEMMW5xg7YgweE5nww5Pn2DrqdMDVFkJIYtPYyCClVaGmhsE6QX41RUYpAorVg6+ZWsKMVJEmCFY68zKmsQVYyjHmHjr0Mz/cw9A2sY63RQpDn1mfpkEidARo/8g1CGe+0aR1a1AiReyZKV2ihWFvqgnHklcWiKYxgWlpKZymrmkRZ+p0OOBOcrMSsjszRSAQaWYeXpjRGJcZYalv9x3UAACAASURBVOOvq9Y6FG/7bLwR3jhAWO+QWgvB0fCSYV1RW8fF0+c8Pzzh+HLCxx98jfv379JrpZR1QY0izto4Kzg+PmJwOWRzY4tWNyWNY6qyoihylPIub34dkDNprXM+syywSOGII02k1ayYWSlFHKdUWKz089FaQ+0MkRMINM4KTG2xVY2rDf12h82NdbJE080Sfv7zL7jYP+Ab731CXfkkUVn7ZtQqynxvP60QwltnCwyx8L36lDEo4VlhrGXvxQ7O/RxhCv7o4x4rK+uYKuZyR3NVFYxMwWUxYVBOcSo4uLoYqboYV+KM5vn2OcvdFnfe/gBsRWdFUx4fMRiNKKdDXj35Ncsrm6yubNDttLi5qZkMD3i6/XPe2bgNKmVSjUlri9YptdBM7NTXaJQGMxmy1m2z1FZcXI4oihXGGlxPcWNrnVZPIRwo19RH5ohKURU9ltc/ptTX+d4//n+44pS//dcfkckJnz/YZv94mx8Md/mf/92fs6z7jE+P2dq4xSSRvP21+zzffcTVZYu1610O9w6w3R5f+6u/JL8cwmjEYOeQqh7wYHubJwdHvJO+x61uj3ogads+PTkl6yYMJwVnZwfkzkslbZmy/eCYNNHUecLB4AIVXVKobe5kkvdvrTBRhl/kAw72xyTVkK21a0xHY4rijId7+5wXJVPrsDricnTJcHyJE4YsbXH3rbcZDoZcXY0wVYSwJe1UUzvBaFoyqUsOj05ROuFg/4hup00/zdg7vqBUkvGrIcv9da6ufJsNGVZTayzqtcKM+eFrgr3iIM9zpuMx690OuxhsPkG5EFsQEFIAbgh89ntxIw9/m9p6eRo+SHYyvKAJHJ2bsTkEcxtiQx1551DnRFNmt5DzEyidkKadID1uJIpvHs0eEnad4MDsrf59gO6cZ41rIzGupLvURmcKI2uPMsSXuVf+yz8EbiFE9Hzb7Eo5v+t6sZ4PRO3itXTOuzeKyr82lKEgQfQgTTJ60RrpuGK9m7DUkj7Zq7xTp98XCjA5FsXJpOZ8VHN6uMvJ499QXRxycXbG4aSiXt7izjsf8s537nI7HnBnaYTop+xWJT9++ID/5YefcfTgU45++0Om40PGGqKtO6AjcmcwWFA+2WaEo/AZcBQSV02xVUFe1ewfHvH5b75gZ2eHnZ1dHj98wOn+AdOrIdbUiDhGtzJardYCMAnx6CKY8ZbkWFtTFKEOrK78HGwYrBA/+q1bzABfA/7eBGI2gB8h+R2J5KK52u/rSfamLHL2niHObdi5Jt5ujkXTEX/b3ezvxff9Mt+HCuOdzcM1sQFcCSFAhvES5LVa+bozh6OqDUsra7x17z6D80te7u8zKgsqAZUNzKiz1MYhnUW44FQp7Cyh5HG4j8kb5m9WlzpT0zXAU6F8GgghTFDyeddaHWmEtrSzGNXTtFMHVPNJ0kydZm2S3vRPSu9AKYwI7RdqYJGlDBJIQrxjmwTx7LevYYrfd/xBgLZZcI547QRfe04zSGca4AB68HJG0VD4dn7Gb+pqF/W9i3b+nm52v/O8N3XBvtcYr02ahhVqHKSa7wpghQ2UZ/P+wUp21v08TBChmVZwcTUhLw3OgKlrIiFCw8bGlWaezQxJi9lkmGVCccHEw1HXjsvRlKvzc9rtiFa3hVOatX6PVZtxpjIm1Ey0QBQlcSFwY4sSknYnIYskKzKiLB351YBpPsUaQSvNMIVlrd9jpdfm5KJiMJ1gLVgMqPmEh7n4YvF+NxPLOuslroEBtQsLgqfa5e+81memDN5qWRAt9PLQSqNUjNQJWsd0sgxZ1khjsWVJohTtVotupxNciCR5UXBZDMgnE8pOx4MQY6lkI7FV89HY1EEKhxYKoTw9j/WCI+e8O+YkL3n05Bm5zbFBGlLXNWkSBR22A+NrNqXw7RBQ/ty1lKRxilIaZ7weGqGQkcYJ4eWDOmyE0vfjc6HVOM4SSRncDfHXVWsMEdZInPQF2UIbgpsukYy93a0pUdKiheLk8BBpBaPxlLqu2D86xMWaGsujJ09YanW5s3WDTjv10tJQlN4Y8TQrmk88BKmzDe5SAWM3WHvmuhTGcZRIhHVIY6mE8KYtVY0VCqk0rnIcDyc82zuCOOXu7S16rQQnK/IqJ4sTtJaU0zFHh7ssFX1W19dCNlH7YuOQorPGN3pv5pRvcWBw1vep01rNmLm6NkRJQqolla2gKnzLiRAEOuEBW1VWOOPrybIkZm15iTQyXF9f4b137vLqyQse//YL9ve+Qra6io4SlE5ROvFMqlIoYZnUNVJWYAqK6ZRIaGI1751jpOQ3T55STa64fe9jBuMJeW2I4oQ08UYm48tLnj96wuDinETHXAyuQLRodSKODnfRAtbWlpnWyjPPrYR7d++hlKLVafPgi4cU5/tkvZQlJSiOL3j75hLtb32FvNR88fSQs/MRWX+FlnJcjgvE5JJEhprC6QgcZNahS8FkCuctwY+ePeajbsw3WylZqLtCgSJCqA2uXV/DZiN+/fQlK6sr3Ox3UfmUXqS53b/H5spHqHST1Tt3KS62yTba5NUp/SXBn3znXX75s5/x4PEXRLsxrdUurx4+48ZbNe/e3uLl7jEUhs+e/JaTizHrGzfZvPUW9+6+xc/+/gfsnx0RSXjvnTvsnJyye3rE5WBIXWta6QqmqLi21GZ8OWWpv8TNm9e4ttnnOn3evvWX/ODhZ2SjIcXRAZfFAf0tTXlecJlPOdp+ThJ3iVWLKI4Ynoyp8pLr11Zoxxlp5SisoFA+KZcXJVorLsc5J5evyK0hL2parQ6X4zHd7jJ5Lck6y4wnI67GBXCF0l62OHO+/dKG1fP9DqAoCqqqIk1i7myu8fhzi81HNCDICu8wS1ibm6bGrpnrDdMWVCsqil/bV5sF3DXrBHa+Gfhi9WAJIGcJ29deLSRKp2iVIETFDJIK8eYzaVQXDbgg7KHOVlhTBwmgxbgEg0FFCicgSlMfXC7sN/+tHM2lnp1dUy9EE1uAwAZbfUfsLLGzOFV66TvejEm4YGYT1Eom8qqCpUTRWu5AG9opJFEBVNTWYl2MMTVXozOmZ4fs7J/x/Yf7/Gr3ChWlvNVRvN9t8ed/tMzNu7dQW/coXY+OaTGc9vneg5/y8OkP+dVP/4nDnUNe7Q4YjCyRUsQ2o5jmRJc5T5684C/+LKeMU2JAC0leG87GI64uJwyPjtl5/Cv2Xv2Ww6MTdvYP2dk7YjQuyacVwkmEhSRqISNwkUQoOWOf3rTFhzkoKsrSJyOsZeZd0uBd29Rf+aTBm2zVosxwsV9b89ibsWvTD3Xxe/w+E73mNc17Nc9pWLbm+xtjZqxf81yfrJxb5i8CzDdr13w8F+JcAqMVTN0IbJtznmVTIvaNqI1n+6rKsrt3wP/2v/8fOAvTacVkXFAbi0w0IhJo4XsR22a3bjJH2Fmd5IyeFwtpG0Eop7LBcykEy0rgjPC1tRJQ1qvVAt0iKYllgZJToFpgpxc+y3nfQOt8OmTRAd0GA0K/9ix4YmBAWJxtCI2F++VkQ87+3uMPArQh5qANGlC0CLIWqFnpjRCMCbbqIgSGotFieJtZIQVNu/oma/AmrTybOAFMNbR3M3DfnAS+IbZXhC9Sxc3Pi646Hs9ZXCNpDOyStzGtfJY/aJlrJZi6CHQbrTOsAelU6K4emj5K33zWGU+ZV3VNpP07+0aMQWrpvG24CAtHJSQj4agRlHnJ0dE5xFNaRiGyDKGhvdzh9s3btGRCfTFleDVClTl5VSCBYnxFnlaITJFIgR5XRJljIivcaEA9rWnblEtXMHQ5pfVF4sr4nN088xlsngNL5K+9Lzlumlc2mYbFa+8aVi483gBhIZxvWG1qnPG1f02vt2CwSSQV7SSmqisO93apjaEoS++KprwbWaQlWkk0c3Dm8FkxreZTxH8P6107I0kUKWSQthJML6I45s7de3z43ldIdczTl084OT9iOh1jg011VRZIqcgnU8ajCdNpgbGOJGthrKMsS9Ioodfro1QUztb48awEQmiWOn36vR61LWm3Mzq9NsPhgOHgjLKYMi0LTFVhiXC0SLKUNO2StNpEUcy4GHJ6foKtDUv9DFPBdDxAiylZlFJcTanziljFtDp9dl9c8OrlgFJYTs5OcOWIV9ee8c69t3n77h3a7cxnvuw8uydVWMRESK7MMwueoURgLd5ZM/RKNMbMat2U0r73l5BESQsRpeRlTSU0UbuP0yk7R6dMy5LNtT69dorSEUVd4VsSgKkKzk5OuBpd0el0WV9fRxJYVOeZP0vQWQXJgsRvDlmW+L53aUZZlgwGF6yu9UlaPc+qCYWpCxwl4F2/Fg1YrKkpiymmKtBSs7mxxkdfe59elDA6GnNyeEBclSyvX6e2jrIW1Ajf50x5lyzlDJGrSCLpzUCcZ+dUpMgTxdLNO5we7DLRklxIRnlBXVmiWtBBc39tk/wty9NPv2Cal+wfHvLy1S5KRyRxxFIvZfd4wPnlBStLLWqpOJvmSCU43d1m/2gPWzuiTsLB+R7LvQybFeg04ReffsrFcUmr3ScfHDE9OeLiakKSdoiSDGMFGQYrJBvX7/B0r4AyQsYx5xeXPHhywB9f5Fx/yy/bkYVl0UbceB8rdsknh6zUQ772jW9xo32dk2dfoNoviMdX3L7VphYdTFQR31zm+OSAnafPeVv1ePDZZwxOLnn07Ihbb79HnsdMDuDwfIdPbr7Hr08c5+cltbuO0hPyq4wHD19SmTPydUu5UqEGBpGUxF1LdV4h0w5a9cjSNW7dXaXfMgg3oQBOjr/HH3/U4a2lr/JKtqj6jq38nOJwn2p9nypVRGlEajOUSqhKiPsZx8cnjKcFS0t90n6PweWQy5MD0qSFiHygKFVEbWFS+JYp1zY3KZAspQlrDmSUUldQ5wbjcrJOj6997UM2N6+HPcinDIV8k7Za2H7DGhvHMXEcowRsLPVZTjSptCBsKC/wR1PRFCbynO2aETLujUz9wqc6sMIFGb8hCZlri6WsKoqixDqHEvO1Yh5+SepaUhntY67gYDk/qzeStKEeSwhBPs3RWuJMhRARSkfBYEeiohSnIqaVo68TrFNe1v/lNN6/3GOW1W8SagAimGaFcMmF3zsLVvo1DkEuNAaFcpAK0CHR4oRByRGZc2S2A3GEi8DYEeVol7IasHsw5JePhjw8gr3TCZ18l2/e7fLfv73J335ym6Vrd1hd3iCWEmkKRpXl8bDk2c4Bp9//ez799FN+/uwxR4MjRHlBXOZoI4mqiFxkTKKIqL1CPal58tsnnJ+cEuVTXh4fcXZ0yqNXL/nhrz5jf/cYczmlHJxQTc99Gx7h/RJkFLHUbxNFka/qE36c12iM+12J4CJYaWz3RWMeJ0Uw9PEJPWuCbLwOydpAVb/JWDVAra7ruWLLZ0deA0r+Vs7BXkMoLIK9xdKe1+NSryqJlJ5JPRcBW1MitAj8fJLT/Y7M8ndApxAzz4iGJdRK09AsNlwnLTSRjoikpJiWCCWpaxgOx0ilKMsaqWKMhPEkpy59XJUlMXEUeTVZAIgyMFdCBGM+rf24pIn3Fxzkg5qjedw6H0+LugYlMR7dUTm/dztbEckRkRgjqAJLHyZJ8N/w18Enm5wQCEJDcKeRLpqRE841ba68cdvsmjX5k0D8OAfSvU5UvHn8YYA2mAXw3ulNvjY5Gntx24Ah4andxib+Ncq2+WNhcCml/OQJBZxvFm16UDT/vMV6tjcdc+oFvelrRZgL52GtDbKCee8FT59Dw7ZZY8B5SDOpK86nFXklUSpDoT374nwzP/9955lN39DT96zxmQHjXROtbyiN9XI1ARTOMTYlxkhMXZHEKXHcopjkDMqSq8oiY83Jixe0Ol3aWZf29VWWS0MnTdi8tsro4/d5+uQBmBI7zTl4vktuCqYuZ1QZpIW88jMljiUmAo9jvEmF37SdT6s4hwpuPA3gDQWInvFsNN1hw3UsWMWGzKDUEhUpT7/XNaaea7TBX+vaOgbDSy4ODomcI05if0/CxqWEJA6LljF1cKwMtXUB8AspgzRyzvxBk5ckNN30QYmWHvApKen3er4XkDFc37zBKJ8yGuc4JyhLx3hckGUtNjZuIa4LDg6OODo6wVgV9OYKpVLa7SWyrMVkmuNkYNqkJIkzbm3e5e7du1hnWF1fYXPrGkcHuxwd7lEVU4SpKfIJSdKiMuBszNatu3zlg49odds8fv6IZy+eIKVgZWWVurBcnr+kmp5w+/pNdp/vcrizT7+3wrvvvsf7H33I0eCE57s77B60aEcR19dW6Pc6tNttGilvM+/mKRgwzhIpjbNQVjXjqymVMXR7XdK05bPqTd9B59teWGtQCCKlyZLUZ7Rqg5dWKKyTRFkLhGGUF7zY2SOLJFury3SylKqukdZhhcEJSV5WDC+HVGXJtY3rpGHuOBs2uJAssM43pW/mpzeo8ex4Mc05OT6kjSXtdlA6IlYCKl/zgWl6u/gAONLas7nCJxZWl/tE8S06MsLelty6scX/+8OfkBtBSoW9JylrC4kAW6OVojY1ESXGVGgpUa4O+nlLd6lHtNzn7OyQ1nKf9a1NTvfOiaMEKSQagah9L7VWqoiSjOXVNXb298jrEhVrhnlBXtdMC0dlc9ppQjTMyZKI8XCIzC3KCQ5fHlBWvm/f559bNrdWefJkn9XOCu1WC4RiSUW04pjaCeI0oaxhud/CighaGd3smLqYUhnQ0f/P3Xt9S5Jl532/YyIi3c3rTfnqalPdPd090+MwBCAMOABBwUhckkhKWnzRE/8F8U/QK9cSl/Qkwydx6UEQBQoCRRHCgDPowbj23eXd9S59Zphj9HBO5M2q7iGwxBcQUeuueytNZGTEiXP2/va3v09w3hszmxQ4Y1DaIoRGGECVKFkihqdsugk3WiVNBuyen+InQx59+Bn9Z5YrN7/CML3Ozo0rZC2FsZ7hacng2HHn81OeHE/pbCu6jZSz0wpXCPYeTbh67escndxhNqmYzSyTvGJydMTTkxN+82/9TV7/ZpfDz3f54O7nGJ1Ryg4+aXPl0hvcvHydpcTSaYwR7pzxNOHs7j0efvoB3/ydb/HaSzd59Z3X+dlgyJP7f8Ay0DUdhrJF2ihpNhscHZ7z9Oku0+mEJFXoLMFLgcwSqsphcTQbKfm0itUqwaysKKqKvf0jLJ6GSpHeoRotbJZiRE43UfT6BePRlLIsg8cisbLlLuiKX7YJESn3PszTqRI0FEhvqc2mPcGkRooY1IflLPaUXwQhdcBUJ2s1AHuBK/tAqYvyg0IKdNpA2im1suM845z/8uAVSjdptQXtTkLWXkZHkYdIVF8IKMKvOlAMnyvRSQNESrDv8LHip6hsrPKJFAjiVn/NUraLUlusbIr6jM1P2wKwJkJPe+EhAOGGBBlUg6XA1vFIfQ2rAdaWHA8Unx1Ouf/oIf1nP2HZPmOj4egkW3xn9Ws0X/0G12422VnxdDKLTDNMsoQ1knF/xMH9j/ngs0/5/e//mA/vPWT69CPszOFki9JWqBQkCcJrGrpNmjWZJgaROEQlePzZff77f/JPaGIZPNujd3rKyFT0C4MxgkalaOFopisIJUMPWpogdRCYcQEFBh/aUxQSEcPkxSRlMTGat9UQKIGRs4HUIQi3xuOtx0hDVZkQv+GpBT4Wwf/6cWtj0WARu+Ai1nyxOrdInxQvxLf1MXrv54naohfb3Jw7VhIXE7HaL23uRbiQJC4mjXVxxVvx3OctVu2e64sj4gLWUZVBdV3FVgSdaLyPfYgisGGKwmCsI8scjVST6gQlw4wk4vwDsUvGx2viLzzvAojk5kUaLwQWT2oh9QKVXSAXDoGUSfBglQWJnIUxEQnd4Z7xBAWkUJWzzoeeRhd8k3WSoLCBTeQs3qvwfX0tlOLARzXKmMQFBU6JcRfaGl+2/ZVI2upsVMrFUG8xKapfF06Qi4F3kEZ9viojVfAWt1wMmNDrFT3PFjdRJ4h1Nex5VGKxDD6nZ8og215zkT3P98e9uH8Il9r62nvjQvTEuxKBYZRbHh/0ePpgF9s/D55mMYHwamHQ2zCJBAU+gU5TpFZIrWOS6OYmyNI5jK0oqyIEkVrjRlOUCz5OE2UYSkGpNNpBf++IZ2KfUiu2ljfY8BnX1rdQW5ssXd6iPTtju9GkpTPc6grDo0N8WZDnJb3zKf3BiNJ40pgYTwkoXUAkKupKY10BiaAGc5cfIZ47bXFqeg6RCL89UmqUSkhkgpE+oEbqAjVyeEpT0Ov3efr0CbKypI0sNBKnyTyJt84FDrOI/WU+SN6CoDImmi+GSRRvo0cbWG+jPH7w+8IRTajDfV+WM2b5mI3Vdbavfo2ltXX29/c42N/j6OiQaW6YTocUhefa1eu89vpbrK6dsH+8y2Q8wvsCT4rWlqwB7W4XoTWT2QzjLJcvr3P9+iUabU1elEym5/QH4MjZ3l4m1atoAabMSXSgi56fTxhPTymLc974yk0Kc84kP2Z9fQ3vBUpodrYUJ3uene1NKCyDkzM6rSZrq6vceukml/0VmitLtJc7NJVkpd3GO4OUKsgbx0tY+62EBcFjTJBvrmxovs7zkrP+OdO8YGN9k0aaIoBWownOY6uA7CVCkSqNFjIwR12orEofJJOzNCFJMrJE4irBaDTk7qDHxvIylzc3aaYaT91TF67p7rNdZtMZly5foru8jBKSoixIkiwWCcUFaiZU7AMKPis725t0OiknZ8e0TUGn3cXLoEaaSKAqmeVVRPfCBD2dTTE2LNTNLCUvNeurK7RWl1hqN3Gm4oMPPmWlmfBrb30HpRNkKpHCY6wBY+cecNI5vMkxUiG8ZdY7Z+ba5L0+w5Mz2lmDNGswwTO1JVNXMXIlhbQYlwOCdiel3W1gJzmVryjzClNNaGhLXjZoKI0rBOtry9y4eZ311VkQMREpz/ZOePD4KWjBSTGhu3yDlY1V0s4SS502pjIsL68wGs/Imm28TpnMRvSHU5rdG2ytZOwf7bH98ms0V5c4eTYgNTNS0cOJEU5kGJ8y6J+RpQNaos3t67fIGiX3fvKv2Nvb59mzu3QbW3z1pVcZTgf8+f/9L7j99htsb67RqTJ+9vO7eFqUos1wYvn4/gM2Lm3wyre+hSo3eOUr32NzbYvT0/+Ng/eecjYesLZ1menpiG66zdHdM/7u7/09Plt+yMmf/JiT8xFerfH67W+zvfEKCQZXnPHuN74N9oj+ccl4KHnz27/CwAzYqY740+//gB/ffcBBNaJzMqXjGty8+QaPh0cc9c44m47JJwUvXbvKSrfBqH/KtD+g2+ly/eWXyKdTTs72uXnzOtY49g8OKYxnY+sSp2enHB0f8ubqKv3RiFF/ys61V5mWk8CQkJJ+v08xm4UgQfgoAvBC9PcL1qwaMVdKgHAYE3o5ZEzYLmJ+FVe2OmkiNta/sP9IIwqF7IuynFYKJaMSo3CoZpOMNqVKYyJQV/JCr2vYlyLrrJI1XVSjqoNpF9dw8dyaL6ScK0mmaRb6plEhgPIhCUWAQzOa5AjruexWAzMgCof9tUrc4vwWJDeBuS1QuKZ2IYMTSIyEwkIDT5MKShu8xvwMJxqcTGFUeg7OTkmOPoTeMT+8f8ah26a1dI2bV36J1zfe5eX1nLXtbURyHdwGLAmENLhZj+FZn3tPH/In733MJx9+zMMPfkj/5AlFNUE2JVqOEckSlWmQ6Q5Kj1HkaJ+gfRuDRKkcKGjJLkV/xE//zZ+ROktSlGig0ioAf4migaSVShqt4BHqhQCZYIM7FHYOGPt5hVnyRTrjlyVNPhpveRf2EWyXFFoH6q9WCq0U1mmsq3BOzuPNecsHF7Em8UosJmovbi/SI7/sp35vnYTVa3OdzBhjFoy9ny9WvPiZi0IpX6RhLhQx/MXr44MIEfxSBYKqqoL/abQ58IR2HiHVPE5UEogxvnMeU5jYD69ppJosC7GBJJxvb2sz9Khv4fxC8ljTFBcSZBG0FDQ6xAgCrPAYJInQaClIRUEickJGsWCPIea3CtY5SmOw8zYoEac5Of+skETW7w6vUUpTK4bWOYFAxMrmL97+SiRt9TZH6mJ16sXNe08ZucUqCep1LHJ/Cai+8LEPyNcc2wUFHSkvqjk1ElC73C0cxyLyOFe+c0EQ4MUy8iLf+AJJkBD9h6KCxnzweGeoTIGtcpRtMCkqDnpDHj07RA57rAqPdvVSGJFMH3pvrAtldusCfc/6gO4Hc+lQnVMy8NYVhKDaOVRZIQoDXlJ5z8BVzJREN5toIcmMofAVxitEWYTJrXIwyzmrZhwcHLC8tcPq1XU23niNN199lbTI+Wx3j/MnB9jSkfV7aF9RFMHzwutoOGgvvFgkxOSmnhTi0h+vjagT5YgyCcQccRIxuQsSueGSCR96yWRtuC1CMl+ZislswmA8hrxEjYNXSpqmFwqiApaWlgLqFCReIhjp52iNlyLcWD5QdpSQeCGpvMOJoECohIvfqU7uQq9d1kyQSrF96TJbOztcuXqV3d1nHB7uc3Z6Tu+8x+HxMS93V1jb2KDVTXny9CGnJzlOlKjEs7W9QqPZCH1zYpnjk2O2t9qsb7WD+pQzSG3pLqdoleKMB1NhqjwE/pUl0Q2uXbnOaGrp98Y8frzL2toWb7yhODk7ptVoc/nSFXone0z7I8YTaLW2SPQ6kmWsaSPlKstLDTa2PL2JRVXjaDMi5hPiXCxHSIRcpGiEcyilCvetDkm3NZbj4xO6nSWWl5eZTGfoyAn30geVVCEiEBGQsxBQWbAVifJgKyrnWV5q00o1k0GPo5NTRv0+N69eYW15BWfDZNtIU5yz9HvnVGXB2vo6G5tbtJpt8rwCofAqWEsIGcCQOSKJQyvY2lglKRv0JhNGg3PSVpOslZEKicwSDBIxFkynU6x3TGZTyqrEo9FJQpokZN0l1rJNhC7ZWl/jys4O+4/vQnzwnwAAIABJREFU85Mf/5jrL9+gu90MwIsUoYfNFnhbIYVBYQItxDsaxlD0+sjRhOnpKVQZZVlilaCQnhEVA18yEVVQzYoeNFp76tjYGMgnBWmS0emuoqRmkngOpzn9hw+YTAZ4oZGqyWBimMqUSV7x8Mkxl1Y6HByds7O+xq0b15gOB6RKsbK6yqPHjzkZDDgbjtm5fI2bSxtsrEpKK1jatBg94dLlBJUfcHz/iO6NBiPjOTgq+NMfvU8r87yy02FZlVzdaXE2OubKy5dorrR56dqbtNsbDJ7sIWeO0b09LluJGozpj04waYO0m3LjxlUORgPu7j3j1b/x27x64z9g+eorSJuzuqR57cY2vd0Be6dPYGYoz1PSpEHvScFrb36Xib3Jj3/+Pud9xze//uu8eusmH/z0fSrt0XqLh48fMusdc/21WwyTjJ//7A/52yvf5uDRR/zZZ3coBSRpwne+8y5vvv4uf/DR+zw9PyRbaiKlpNtts9Jp4qZDttZ3GJwPOH70jLWNVZZaDZbaDR49eYZOEqRKmUxmNBpNVldXSLQilYpRv8dgcoe2TMjLKULlXNncIlEKJcWcnF5Tif6ym86SgEa7iAgLAd5hCoMQCUltdblYBSD2W9fMhIXnLmLQoPYcPBLjKiAlpBnaZUgXhLkudlzr/kXREq/jM1HxVYSELQTLlrIo8R6SJAmeU/LFEKdWAA60QCegso7JcACVxtlLQAjEglT7X6O0TSxWMX3sAwrJtHeh99iKoNZdV0/byiJ8jvAZWIUbj5mMP+Sg1+MHn+QcuWvsT4e8oQd872aX/+TXrtFaf5nCrNFsr7OyqhBijNQVkOCt4fB8xp2Pf87p5++xf+8DnhwOuH/meXxacHZeoU2HzOUksxE6dXgtETSRKkUlhlRYGipD0cBqiWwYhKxouQSbJBhnUV7SyZaiZYHDxWQhdR6lPEI7hA6y69Y5itLgXRAFc3N1FYnzOV5UXwpuvKh7IFRIhkOyENdDX15U3mJSLIVHJnqetNWx5It0yXn1auG5+vn6NV/WX7ZYBVzcZ02frD3VLgzAzZziWW/zZIsAiix+5xe3+rG5sfZCP5+3dQ+fDG4ZXoQmsDhP6GiJ4CO4FB4PcaCzHiVC3OtjwmOcwxUlla0oTEKaqCC8ppLgmRqHtxAiKEG7oN6olEZK5nGiUyCwaJOifYKQYGWFEwKHwlkFpsKXE2w5jvdHPR/E+WleTHJYb7C2CpW0uqJXtwB5FwQhQyA/zzScdzhDaIOoQW5bz2e/ePsrkbTV94O1FimeN7r+wubDRZVSRTPXgI6E5y5+hBB4LQNlSUQChfdB4ECI0PTsApKolbhQulr43C+jPVYLWXBdSbDuonlzESFBBBNvIR1SaaQOlcDwUZagZmUxzjE1YGWCt7Gh2xEyEiUivMncuDCo3cV9RVGCoDDkYr+cQeDwvsIUE2b9c6rDY5qFZ2d1g9XtbfYoyceWpkqwpUE7Q+YrhIe0KsErnKsQODKlwFlOemeMTMWnvT4vJykv72yxvLWJGuWko5KN5RVaouRoNGDYy3GVi6aECwiDCL9rUNYJ4mT2fI9gfTkXz/W8DhvZOd7VkysX54iAkAkdHO0LY8CGHj9fljCdomSoqEkhyXRKq9UKVJHYT9bCo1QSxsvC0Lo4mHDcxll0pPeEU1RgzYy11R2uXt0iTRKGsxHDWYGxFbqpefWNV7h64zLnZ+f88Ac/ZDybMM0nnJ6c0Wy0eeP2t3icPebs+ARFl0wus9Ts4vA02w2wKeNewaNil82tLbxP0FmDte4O2jdCn5ROAhIpBV5CVXrWN1a4dusaR2dDkE12D88pbUl3ZZvV9XWW1zZYWWuTppaDpwc0OhmtlQ7D8YSk00A0NEYLVi9vslENGezlOFMGCl9VzSkPgXITFFpFXCCc86CDQItzYKxnMp1RlIZ2q81gNGIyndFqNEjTjE63jReCylZY4UCFa+kECKFw3jCdDihnA9rtFkpJUi0Y5xUrq6v0rOHk6IjdZ7vcfvVVrmzt0G42qYrgk9NqN1ES9vd2GQ6HXL16k1azA1JFvScZUHwZ5pmAHFokjkQKVjptOkstznsjRrMRXpQ0Wx2UkrTbKatuhc7yEhaYlQUOQWWDQpaUiqwRKohSO3Y2N7l+dcb2cpub129Er8jQbzkejGgmmky7QCnGkekALigZEsita28zuHGFRnqOd5alpTblMYEGozXOe8qiDJQNpfDWMp1NyPMSGRPotNlCaM0s93hbURlJPstpZW06jTZVWZFoTYEjazRx5ZQsa3LeHzPVkt70lN6kwuZjUiXQ8jHtbgeZpaSdFslSk5EfkXY8W8USq15SiZJLN1fJWgOGxZRylPDkYJ/jJ6fMeid89vgJ5WtXef2lZZbOV+iIlHW/webyW7S0pizvcOlWTrOzzXLaYTZ6RlkdIvSQWTHi6qWbbC5vke2dMnCevQdPqco/I5vss6Ir2ksFr718hR8+/ojpqEdSSXpjQ950PHp4zLuv/DK/+Vtf59K129y9+4BLW23eeWuDWze+w4PPHvHeex/w7OkT8AN+97/8DtduXWL3+D0+PvuY88YZVzqWR+cVrZfXObYjOh894fzuUzZEwtl4zHKjhRmPeLj/lOXVDqqVMes7Hj9+wOZkla+9dYvJsMf+7jO6q5ssr3Q4PjtDScnG+jo7G5uU0wmuLBjPHFYkWGlZ6ipMWURGB/PYwn8J1eoXbgJEmmJ16GcigpDCeoppgVMSnUpclMYXngshgDBZRz+mL9+9w6MTFQKlCE4IX1d7/AVlrz72OUEyCpTMl5NINZob7AbrHSl17OGrD6kOsBbWc3FRWTG+YlZOyESLRAfK1b+NSvrv61YX2uor5QlKuXVijAjnuCScF1n0Ufk+u8c5j56uMDxJyc8/5LWbH9Bu9vnOK+9gu7c4rLrcXnNcbozBTFEr63jZxgpNITzTqWJ0uMfevfc4fHSHjz7vc+/hIcVswGRwzKTfZ5Z7KpuhXIoRCpetYJIlSlnSqiQbYoiXmkmiqZI1lNdkTtCUloZKcDJBC4nRQcFZW3AVeFtRWIPB0kg1SifopIkXTYwLYK8xJZPZhDyf4rGBPSViwPWiJHvc6j6wxeTJGBuoj/FecC7YZdStF/PxJ4Ki5IXaY4jnaoCw3j9EAHnh/y9WzxaP58U+t8XH6wrbYjJXJ4zGmPn7FrUcLo7P82KyVieBL1JFhYvd6hEgCF5tKgC288+P59X7aH8UCidC1qfOBpaWtQhn0CKJ/rgBRPcygDiFsVQuKEo2Gw10miGjkE74Hg6hVUzUFuJnAcigQq7RaKNxhBYbLxXOa5xTUJXYPMfk01iFDCCTjKBPPZ8Gj+AK4yucNyEf8BaHwTkTQe0Lf8d6JARPvjA+lFKxS+j5AtKXbX8lkraLY1xMmBbQufnTIjqnq/kAcy6o90kR+5Fql/p4+0n1JZPvc+Xn8LmLg34RZahvknnVIAot1MeAcFHG9YVKW32jCgU1hTJ6jikVyCaeQCkTUqLTFkvdtaB0ODkHS5AnVaFcGmTtmQty+PnUG06gdRbpZFisa1lXb8BUiDxndjpAGUX38nVef/NNNr71Dnu9Pr39U8a7e4xNH4oRiRdo6bAK6CSYVGCjtP6gmtLvGaZnE4aZ5n4x5eFozO7RmNHBKaNijFY5E2eoqgxFsC4QkVYo4oWtw/svXP6Fi+/rRC7Cw97V9ANBwFwDIivq1XeOaASkQ+qA7HgpohqYmJ8b8EGivabASRWTDT+vwkLt31JLS4v59fcxaQsosZgvgFKCkh5TFYwG5wF8aHXxytFsZKgkYMhpQyITz+bOGo8ePaGopqA9j548oN8/56UbN9jeXKWa5Rwe7SLEFiurKzgzZW25yWA0RSlDlkGr3UZKgTFTnMtRytBIMyobdNiKqkJlLUSqSZtNmkuelc0NVtNNSl+iE0Wj1UYKQT6ZQNam8IqV5Q0u33yN+3ce0l3fwaoGpYOsu87mVYOfjJidHMaJx6F1WMSo0cZ5JdWHCVurkMQpRafTIUlTTk9OscaysbFBkefMZrMgxpJIdKpwymKlxymwUZbXi0BJdrbAFhNKAvXV2iwkimmgt65tbPDg/B4//unPONze4dVbt9jYWEcpQVkWaK1JE03v/BxjHFev3KDRWsKJDK0WlKCEJMtSzGhKmc/IEkVpCqSSrHY7tGgymo44PTlmtdUl66ywtb3Fm295fvSzT/ACJvmMTivFeU+SJmgTqh6NNOPyzjZpe4XT/adc3b5Mt9tlVg2pygJEkyxJ8FUZ7hhvg7iKtTjvuPLSNd74xtewpmIw+pT3d+/ivUN60MbTRtMVCZkRuNxCqsGJ6J0YDMeRgkbWRAlFrzdlOi0wUtHIBE4r8knOSzevs9xZ5wfv/YxG1mC50+B8NMShmXqNcY5CpLQ6K/hyBgqW19cpvKeznbG0ukqaZXR0E93aYHlrmaPpJ8zGp0zODjCDCW6qGYspJROuX3mJydgxxdK5ssbT3QmHd88YNZsoUyA7MzZeE5ydHJO4Nuezc+7fv49UCVvrlzH7PfKzAUmjzU7H8c7WBm/+0k2SzTXOHjzgRw8/ppMllCcOaRM6MkNKx8lwzE8efsiuybkzhN/97f+Mr3/tDd595yVm0ymj0SPW1xvsNUa0mim/+Zu/w4effp8/+7M/5fD4Gnfe/xmzB9fobrzD9VeWmdz5KW9dv0WWdfhXP/iAb3zvW/zRH/9L8mLGxuoa3hq6nTYaWMqa/Np3foXe8f+JryzKOzbW17hx7SqPnh5QVC5W2jIGgz737+bkswkSRxWNqZOmZjgYc+PyJTrNBkrMJbD+ojjgC5uXQXXWKzWP8pUI823dzuYIa2Ytjl9DbQET/cVJW+itEQgc1ntUTYcU0W9xHiS/eNB1wBnm4cqWWGlJkwSlNfU6Tg3ufekBhGDc1T0zgHEl40kfp0xYkz0gNILkF+zjS/Y5/+vF13/xkS88MwcbF6+VuAjy5gGzmFsvLMCgIa4gzrnz93ARWNav9PH7Uttog/chu/EuWGefjUbsng057A/Ijj7hFk84L1OmszcRydtce+uXuPbaDtrt08luIPUKl51kqaWQooGVkCtPZSb0Dnc5fPSU+5884KOPPuLJ0VNG0x5mXDGcOE5nJaYqaFiw0xFSW5I0RSiNkg4lBQ3VIVWgMUjh8MpSxbWk8gplHakDnKUSFXlhKBxQOHRuUUKSywqlE5oqQWuJzDxO2ZgsSCwWY6uLKuQC/LgY28FForTYQwZgjGE2raiqirrVJ8QSNsam9fvrvufnJfmllHMlx8W/iQykxR60ix6ti6TsRaGSxe3FhM3VbK1YZavfu2iA/TwNkucSwhdpofXfIc6rq27h/rcelFCRFgmLhmZ+PtjDnRgvR12XBCloJgmF0xhklOWvY7o4lr3DVRZHibGepUSin6tU1boIFwC8gGDsLWpqaojhS1FSGYX2Kc6AchXVrKQq8nm1saZNL84L1hmMKYMIYM3MC41cz52jOi7yPgICxGSNsKYLV/c5/ntCjwxNnLFs62ttufjPh2qM8MwlxZ2PWXd4c7z0scetTuThuYTL1WVews0jCOVZnMc4R02/qwdc6IUL76sRqXAzLlImw+Crk4x6yAkhg6iwd0HJ0YTmVmNLxq7kaDZh73zE0nILX6Rs64Sk3aScZeRTi/cGY22sQoVFTQoRglgcwWcmuq7Em0gqEfp/VJDjtdLjKUkBIzMmvmDoHY2lZd598zqvTqaMrp4x+8pNksavMB6O2D8+48nRKYO9M3IlmVlL6RwZGbOqYjQbYwcjitUOOJhUOWY2xhYzRuMJXpb4RAXelfOhp1vE6ztP3haqkWEYx3Pswbn5wPYIhK+lUsMi5Alm5s4FNT1rbegZCgLSFybq3qG9fU4i1kdZaSUkSiXBADoiQgEkCI/XXlsoFUxg4ymuxWWE86HHSimkVvjK4CrLzFjStInLS04PD1hZXWaSz+jnBeurK9hJyWw6pt3p4LFYX2JdEfoTpcf5guOTXWbjU968/Rq3Xr1KXkxA5GQNT9ZMGYwGJKlnNDnH7OZcu3aNlZUuSeoRsiRpgJclRhQkKsGUNlIOJeN8AlrghCPNMtqJJskUs9mEZ8+e8PTBA06e7dM/7dH+2iqvvPkGaXuZSy+9BFkDhMN5Rau1ytrmDnuDc8p8iow3p3NVQMK58E+qbEDDEgfGBhrl0lKbrY0NEqUYDcf0znusrq5gPYymMwpvabQykmZCUTq81whUMEUV4d6tyoLRsA9LS+gsUFwqazg+O6eRZTR0h1u3Xubs6Jjd3V2O9/e5+dJNbt26SXe5S6PRAGB5ZRnnPPfu32Fja4f1zetolWJchcbiRTjuptZYoZlOp6g0VLfTRoqqKrKlLjOpGPVHTKzBNVtstVOWV9aYjQse3L+PvLlFo9kkySTGVFTakcmURtZglYTN12+z3dnA2Iq00aA3O+En7/0pq50W6x0Nrgi+hC5QXo3zHO7vY9P36Q+GHJ/e594n+6hKoCqJrDzaKTKnaEc1PJOXiKqg3ZK4rEE+M9jCkTuDlxY7yzGVwTcyJuMp9iBHC4N5dkCrMUK3W5z0+8ikQaPTop208F6Rj89JlKTVUBhC0/bpyREizbj+8quUFoQJFEvbVHz+7JTh9Iyvv7bOZPyYR8/2OPeOqSzpNiXaGrpOc/rsKfu7y/T2Ztz7/CGD9piN1mVEy5LrdU4Hhm//8jb3Ht3lfFqSypSttWWkOaaZNTGzMbI6Yand4OTJB6zk19jeXmdol2npNnsne+jBiKtpi6PRgNwKxh3N2q1tvvKVm6yvNFhqCZ7uPuOjjz+iNz7je9/7NZJum1/+3re5eW2TzvqM/+uP/jl/9Ps/xZCz7rtsLq1xkj9Ey4rd9z/lUV7S2LjER48+oZ8PuHJrixs768x6p1zeWOeVl26SZE0OT4Zo6Wk1m9y5+zmvvvkOaasL4ohZGTwLHYbRYEJVdrl2aRupO+jzCfl0hNSeb3ztm6wuNRiffIK5soHUnegjdCHJv7h9Gd0pLKomCkZJ5tGOFNGapa7KxADtYmfUyYb4AlYqn/sruPUEUSGQIDNktkTmkqhiWK/VcV0AwGItCBdQemRQ8A1rS5h3wvvqA1j4rovJCz56A4J2ntRaRJEzq0qELcOLveKFU/ULtvrYgkj44iP1iuW5CBgvjqcWAZnj7ojoAuwJFFAbgWsVz23tcRX2XPfSh5Q5BIIBPLyopcVeXhECPeULBCW1HvG0TDmdSGaTAn92h2pywoPjMQduFZc2eKfVZLu1w6Vul6+tvc5ZsYnsaJbXuwh/m4ZIEU6RugFVWdIbW47HBT/66Cc8evA+Zw8/ojg8pBoJhkXGqUs4mYIf9HDWYdI2pRUooWgur4BIcEIF6q9KkdbjhUJIjZEJwpcoXyJcQeUsuU+oKsiqCuEqcuGY4Mkrg7SChggVHiMcqUqDwIUSeO1RqcU7kEKhnUNJRxUl4T1R5AxiFhHP9YKdVGB7MWdbhapSUBB21kTRtFqFPCidB4axnfdO1+MyiOVAKYr5YJVKzgVDAsCYoBMdtBmo6YWhUoiPtjPyImrGEQsEobgg69cSEoSqLL+gKjkfR1wkpUBkf/hIUQwxcg2cXOACC5VAInNNXADhZTix1BVdIULyE2oqCu8D80z6SOj2FmUh9SEGNjgq76lkpC+K0MYgUeAlxguoPMpbsqSuXOkQ87vAsItXNlRJK0dlDMrmOGsxOEoXkj/nBYVLEdWU1qDED8cIV8P6ItyDIs4zBiojGbs0XlcTnvMXgJnzAnyMTH1I5D3BnL5WwK/HSTgv/47qkUKI/wH4PeDYe/9WfGwN+GfATeAx8Pe99z0Rrvw/Bn4HmAL/lff+Z3/RZ0BIynysYoiI7jnn0FKHQe+Df1U9xdUJmZAXj3hqJCAUMGuUIN5+0XivFraIk3estvDcngHv8NbgJHFARRlYr8L0HBEQ72OPjQ8Tfaj0xEXEVUHJ0Xu0czQUICwn1Zg//vRj/vjeXZJWh6S1xubmVbotzcxPMDKnkga8wJqLRNL6aAKIxApF5WSo5IlgGihVqCSFPjdJpUCnguVOB93Y5sHuA/7k8095NJjy7teu8drGNtev7pC8sgbrV2nQ5GTQp/joZwxO3kNYx/Csz/lsQlJk+MYyMz2k4Qc4LRhZQ25mJKJAigKhNNJpXOmwwiGSMJkQK1wiLqoeSbCwj4urCEbHSoYbo56YPGBNGUwLZZwkvcB5iYyGnYiAmIhEY6RA6ITMpyTO04hYqZkHKzL4ggkZja0F4ILipmCeCDsf6UCxmscclQ1VuwRF4oK0bIVDGouSKWWSUTnNUqPLjUvXWNte4af3HtBd6tLMUo4PThkM+oyGA3rDIWe9cxKdILwgH8/wFhKVcHXrElfWNmlIBUlGbit2D49YXd9gNrPkswrjNE5reqcTWtkyk1FJVXmmeYGSEqkbDHNDmizR7a7TaDTpD3o0l1eRCTgMtjIcHR/y4Yc/4b0ffp+jh/tMzyekSUbv+JhXXrvNjZu3EE2DU3mY0I1Ce097ZY32xhb9k30woarbSGVUXwzKi9Y7rPNU1gU/s2hxkShJu5EySxPEUpvRaMLx0TFXr19HpQ2GoxHTyYykkSGERLuMTDQpKoNUYIzF5AXD8QSHYDgrGM0K0jTFWU+qw6LS7S7T1Akby0s8e/yIe/fuMBz2ufXyy7TabbIsi0bWAu8tp0d7DE9H3H75OknL0pZVmD+SBFfNGJSe0jpUZZDR1ykVoZc067ZRoskw7zM9PUaYBlnWJp9MGA/7PH4w5crlS+zsbFE6TykcMxPUKa2xNBotdEeDdhgTpKb3Hn7CT/b3eeutr/Dm195FaYXKOkzyAZW1HD18wrhXMC4E/WmBmhgaEkY+IdEZTqVMTZD6Md7RThRr7ZTV1QaYimI0Q+Uan2TMnKEoc5aTlMoavFeMhxVJoiiqHE9Bq7WETxo4kdBud8F6bJ6jpWO9nbCxmjI4H6FUUJAcTid8/tGniKQDconN6zc4GZ9wdLzPS9sZ0jouv94mb25z8LM93Njy+ttXGQ4nFKJiY2WdTd9h68oyzbdy1pNVGrR5/GSX/X+zy2tvvcJ0PGVydMZXr7yJ0su8/+D73Hhjnc9++ohilNHe6fJ4ZjGjITeH56hLfZ6eHbKSrfLs+AE7icU6yalIyciwNuXK1Sv87m9/i3ZjGVdO2d7YYnDrNqef3uXPPz7je7/6N8m8Q+kZl29cp5U2+eZXbrM/8Nz57M/puH12HzzB6BydZVxbX2H58go/+OgOv/Ub3+XZwzuY4pCvfuUS3/7a2yx1lzg5G/PJo7tUDUHREHz3m7/Ek8MJD58eYYyARoPW+jLl4ABRzcjpsJErmHrWkox+c0ijlfLa1Rukbow9+xGpu40Xr2J8LSDBlyYiXxQVcAhXoa1DWAeiwgqJQ+JUDciI0MAfd1n3HXsf2gF0FpKeIIKyANR5SGpQR4jIxgAhGogkoeFjLaju/fAO6fx8nfPCgQ6gqJbJQmWtDoIXA57nMyXPHF1FuJDupJWg61MutbscHZyDsQS1wDom+MtsdaLk5ylmrWYZbIFjgHdRMAMf2B8RE0RhCYJdCo+mTr+kZw5aQmB4gI0kRonzoVtc+RrdD/Qz5Qw4gRcKpxRT62hJi5ueMD1/Qr93wvv7TT4aXCURmnf1Q253+3xl5wrXLn2Ts/GAm1sZjQRUmiGzFa6iQ5XDJXipqUzB0dFTPv/8A3Yf3OfgyS6Hp+f0h0OmsynOGiYjGAzGTPI+lQ9Aa4Im1aF61swkQmSx0V2RxWRbkIDSKGFxrsSUFudMUO/2PrB/7BSJqG2P8QiUFDSjgJsTJgi5iVANllLikwQndaTcBQBeEipESnhMPNFe1Gt+naxcABIh7xAoqS+ohcjQv7XAhPK+BhM8xtYVpXiv2IsqXUiqnq9gyehnKoRH2KAPLnwFOsR6eIGSCil0HcrOR5oSsfDhIZ37sAVwxFaGsizmfeiLSdoF02yReRZa0C5AbXkBHETWlFRq7pnsfBDtCgKZ4V4QKoj3We9iQheSZ4sFRChMiBifIdASROUweY4fjlGibgWS6CzFqwaVVpTOI3UKBFBSAjNXYhwkUiCFRkbJf1MWgZHgw3ronMM7g5EFzktsnIkyX2HFlEJ7ZCrIrKdrVei1jXOSsw4lKyDDG7C+RV8sI1WKrEocFcYFmqR1dk4BDdchTgWLll4xDnbz8/9vn23+MpW2/wn4b4F/uvDYPwL+H+/9fyOE+Efx//818NvAq/Hnl4D/Lv7+Czf/HB8yNC7WFQ7JYuNlVHqsB5UNU5Ug3vd1iVYy39+LQiHPfWZ8mRRyXpasEcQ6mAtNmvVNpnhxq8vPF4tfXfoOF8prFTnyDoPHCsXZcMxpb4jzCWUlaTc/4bXbN1jfaFOWBd4FkQvhaqNRE8uuYfpQQgb1LZir74Qyb+TJyqCAVTnIOkt0Opuc531Gp31O9vf4g4OPWbEEKuTWMurq17m5c4mXLqUsiyFvbUObimcne+wdDGg2V3jn2+9y6cYOx/fuMpj1eXy2T5ZPSbIpToRmTAV46fHKIGRwh69Hau0Af9FrEdGn+aJeUxZDcjYPBhaulZREqt3F4hhHDEorkjSlNHLex1b7btXTrly4/vGN1JNXMH++mMSE88GIWkbKn78YpzL+sIAseSEpK0N3aZm3336HpCk5KRXPjgd89tkeD+/eZTQcIbRiXORYm7C5cZlh33B2OqEoLFkq6fX6PN3dZXtzA5lpSDX9QZ/+JEcimUxylle2uL65hTGG8WTKaDwjz2dMJ1OMqSgLj7OSleUNVkXKYDyBJGVpuY2QFmNK9vef8of/4n/nvR9+n97pMaLwaKcRUnFyesrP3v8565vb/Oqv/hrf/Y3f5Nr1GzgbQgoaLbqmtyq+AAAgAElEQVRrm0wnI8pRhfAWZ+wcaRMiei3FiT0ocMZrKARJpCd6IC0qjDHk+QwnJKsrXQbDIePxGKRibXmVfKtg//CA4WCM845TX5Fowfr6Ol5KRuMpS0tdljsdyqIg89BuNehkKWKpTXepzenpKc+ePOX4+Jiz01Nu377N9s42nXaHpN1CecF0OOOTjz5idaeFE6FB2ONjs3o4TiE83towE1gH0pFlCXq1RdMnHB/MGOwNGY/GNJMUW1WUuWd/b5/ZdMLm5iZppHEKIWk2Q9XPOEPiHdZ6tE7YWFtm9+lj7t69yycffcw773yVqjCMR1OStMHaxhrf+BvfobN2idwm/OEf/hGfffjzANooQSmgBHJnMUIjkoxp5Tg5H1AkKUnWZjYNUvKlhpX1Da6vrzMrg7rncDQkNyWpF1TWMhzNSLImly5dQ8qE/uCcVpZiPAymOXk1IZ/m7Gxv0TvvkVehp29W5kgxxKae09kx1hacnzia73ydhw/6HPU825dvI8oRnbWUp/1TZknKyekQ7p7QcvDs4S72kufg6ce0m13e+e63+emDO7z3Lx/hBxP+7ndvcnYw4HLjGivtLpPqgJOxJDmVVEOL6R+x/lLCZCIQbsrd40fsTnI2lebZqKKn2tzeWOXXf+U3sIXhePSULU6xZcYP/vUP+fTO53z717/L+eSEf/a//mP+9vf+Qy5v3GZps8l//A/+AT/413/A+fEJx6MJ088+o7Rt1jdvcDA8oSos508/YVzmfPbxZyTC0xuM+HCSo1xGt9PlsztPeXQ0xVZL4Fv0zkcMzgcIIUkaHWbGsrqyxuH4DBLodLvsn5zhJgVKCXJbkDVbfPLRp1zbavHGu5cQIoBRc//JL6FOLa6JzyVu3sem+HrmDCFnZaoQevoL0OzF5MYjQQY6+3OVvXq99c8findhYheAEm5eScA5nK3VIAEl0Dqpj/oFNegvqRjOH6uBWI+L1SxkpLhrEI2MpNNh62oLqZOYNKn4KX+ZLfbpBIiPOuYS1NwQEV9TVy09+CiIgMcLG79vMz4OTlgSaunvFCeDhyPx6IgMHikTDJ5c9oAW+CbKxFSmPMRN+niT8cG9EZ9N2pycPuOrjQfsdGGzfZu3l7ZQKuMra7CV9fDtS5SrW3i/QVMatPTBvseBsTN6Zz329/a4d/8ed+9+zvHxAaenR9gix1YFVWUoyorJNCcvKorKYCwIpUm1DglKTW2pe3jmRafgmeatx5QGaw34Ek8d1wTmEjEp8d6jlQp6ASJYxVgfhEe8CKbYgUbnYiwhEar26NMRSH4+YQoZWX0BIwtnHmPEimkdI7Bw78iF2OUFmqL/krFZs78We9he/LtWPYfw3cvSQBkrRnO6YzRjFgqvZOjhyrLY8hGOte43X6yshd8LyuRfUm2jPmfx8drXdtGS6+JHIkQA5utzUMdznjrhuzgnNsayIgqN4OvEJYBowoU11hmDN2Voi9Aa5ZpIAYnwpELjfYXHBS0MrSl9oFEaFwATJUTQrNChElYVebSuCXekcYGjZX1ouBHeI1W4nkoKUqXI4vgK1zL2xNUFHhm94XQaEmPv8c6E4/Y2zGnUhRcR27Vqivli/+BiX+S/Iz3Se/99IcTNFx7+O8Cvx7//Z+D/JSRtfwf4pz5c9feEECtCiEve+4O/6HPip1HfMbUIROCFRhrg/DXhVfWNWydsSoSsXeCDAz0X6EG9hQEVJtmaVqGlnpe3g0R43VgZst4L+twFJWQRmVg4V/Mfay02lkSlELFCJqiswyExFmZ5hUdQlhJXTRkOJqyutlEyxfvgTxFKqHEfMg4qUfd3BcEHU1VYY9FpHPxeBqd5NM6nlMKhCPK3LSFpZYp+YxVZWVyZc3o8JD/8Mbu+4v1kxupyihIpSytXmJkG49KSyQG32iXf/fZt9K9+nUeHT/nk8T32zo748x/9nMHxgGkOzorgNB8DBhGlUiEe2uI5i/ewnF/zxR8PEdnxcaL0zuOVR6pQWq8FVj3Me9GUiCqQ3seEjXkisUjRqT9jcUINybuI9hAXDbtzDzgXgTbh5pVW4v6lksFTS2t6vXOePH7Cy2+8xBtvv077dECzFapGu0+f8Wx/D6RiY2Md4RxnZ8fk1YgkS6mMoT8a013qsrIaUGulNUKlWONIsoytnVWyZpcky8LkpDRLnS7eF6RJgrceZ2bgNEnSAJ2Rtjqsb2/ipcWYCY+ePOQP/vnv86d/8sfkkympDIuej5VRJaGcFTx5+JDjw2N2n+3y9/7z/4KXX34FR0DSOivrdEcjzmZTnAllf+E9PlZKA4gS5e9dLd37PB0Doo+iC49VZY63FSvdJZQUDIZjJHD96lWajSZPnz6j3x+QT3L2nuwxOB+yub1NlrYYng9weUm7kdFcFkEiWoBONWmqaDYbZGnC7rNdPvnkYw4P9vn617/OSzdusrzcJZWKxmqX8eiM0WBAlSharSZa1kCNR+kEpMF6F3zQRPRhsSKgeEpyeecSs2nC2cmPWG0uRXWoAAqdn/diU/M2aZpGjzgRqC9SBfnfCDa88vLL0ZxU8PTJUwTBx2Y8mlAWJVeuXeLWm68wLWD3/jN6w1MKM8MpR2ErplVB4R2jsqIkYeYS2mvb3HzlLU7GQwbVENl1+NKQVzlapxgHV65cYVbl5EUOeJIkBWEoihkq+tplWcrSSpc0VaxudBmP+jw7OCFLNaWYgGxSCU+61KB/dk5RjuD4EVcvLeOsZzwd8/R0yuePRthJymy0yzvfuMJATbl3fMBkkjA6G3Fwp8cvf/Vt3n71XdqZ4HRvj/OiR54YesMhn39+j7XmOh/fPybzbXqTlLyRMGadspXgrGV2NGI6OKV3cw0/brCWNfn2N3+Z9z99wMd//ohez+CXl7h88zq/9zt/n/c++AH/y//4f9DMgjfep58849GTcz59MgA94+TwIXJ8zn/0W/8pj09G6MyTtRUrKynrG8s8vncHWMZqRzKbMLUlSUOzvblDNXNUzjOZCBKh+eTOHucnH6KTNoVLKWcFhZYcHVVM+iOKWUlhNY2lDqYoGU4qGo0GXa0ZmDwE7baiqByjcc7j6R7FKOXyvTavfs0hswhY1YnSl1TbFntz5kJQOpDoTAQEfWxZqHck5vN3BOTmk6ifP7aYU4n5XFuLN8SmFMRFccyDjxWAGs2TMqlLeQRfpIs5/CIhrD2UXkziFgLxeGzSh/YCJ0LAlQs4nU1wWvHSm7dJ2sth/rIC+UV89ku2+rvHz/J1pPI8TdFTg5cmPpeBJ9bUBGBDFREJ6Fg38HH9lAgf/B6NhwqJFhkCi3QW6StSxiBy+kPJ49MZT46GTPY/Z2vyhB1pmZoNZslbbFx6m1ev3WSjMURnG7h0E52ltNIWUhcgOogqgJDOWPqzgvPeOYf7ezy8f5+7dz7n3p07FNMZzjh0jJPycsY0n1GWBWVlMNZH8DghizQ/RAhWHUFB1HmLt7UNkos+ViGGcDYkFtbMeI5bGmMw60LSJ5WKpq/B40rY2F5BnfyEipmIVSkVBZpEPJb5ZfuF5Y2LeO8Lz8yBZDlPgp6PCesj8fP9fNk+FoU/iMf9vHpjrabuEaIWjTFh7AVZ6VDt0oq0mVFTZZ1zzGYzhBBoGdaX+XEt9E29mIQtHocQIlbKmGtGBOpnzWKr9xfZaPPvH8Z+SMzk/B72PppaCyJzinky7ryPqnShvOddDfJYcMFvVOBRzkFaoZMUkWV4neCRIf5IG3gRLIGcC+0N1nkSpVhqdsF2mEwmzGbTcN69RaIQMkED2jmcVKRKkWhBM4UsCQnZQqQYq2Uh1k2SC60NJVUAD6RE1GwyGURpwjgL/exSakBincNaM9etsPaiX/EXbf9/e9q2FxKxQ2A7/n0FeLbwut342BeSNiHEPwT+IUCSpPOMvK561GpSoSLjYqUjKk3VCP580EQcqwZJvCeo0cSKl7/wXLPWIuQF8iaiH4evmwBZRByIyEG9UIj5cby4zdGL+H8X6QoIsHXSJiQORWkcRWWYzcpgYVBpSuX5/5h7s2fJruy877f3PkPO9+adpxqAKszdALrR6m6STVKiSClEW5TDVMgh+8HhcPjJ/h/86r9BL35xhBwKWwzaQVE21SQbbHQ30QAaDaCAQs1Vt+485Zxn2IMf9j6Zt4podkvygzKAuHXznsw8ec4e1vq+tb7v5OicNJU0GpI4wru1A0L57N8nFD5p8x4gFXPljaeVjIkUSOnLLNAKEdVDo22GdHBtbY2Xrmzx44tjxicnbK6v07AOPRjjygynI+ywoB9LzsoLusvrrGwsku8/5vZ7f0GtGLL48tdIVzp84+tf4231Fsoobn1wi2JY+p4y6SVaXWj+9InO7MbP7nMFagk8slHR7FKaqpBgZvjov19YhEN5hHVyJqtqrMUaPDoXREFkSBjmSdvstjPbUC8lb5dN1/14DAtYFdAE6X8bTryqORfSl6/aIN1aliXnF+c0D2vEO9t01xfRegdrHO1Olys3XsJJODs74mDvsS8dMWOSJGFr5yqNMPlLCyvdFUphKYZjms0O9XqddmuBRnMBoSK08d27URyTJjUajRbNumWx1SVNmmxcfZmlrWvIWKISKM2Ep3sP+X//7R/z3rvfp3d0QiOuY6xDRilx4m0uyqIkUjG1OMYWBR/8+McIbfkv//CfcvPll3FSEKctFlc2GI/6jHoFzhYoKYJ/okNJiRICrbVnIpk32vpafYW2bsY6KSGopzFaG4a9CxrNFp3tDgcHR2R5wVJnge7ri5z3ehwe7dPv9zg/6TMcTOn3Riy02+jFDkUtQemSTj1lodVECM/CprWUtbVVarWU87Nzzk5O+MGf/zlPX3iRt99+m253mSRN6XTaFBbqzRqvvvwKn3x4i/7g3BueSgnSb2JaFwitEU4jnAUZ+7XFOWpJggKyyZQnTx6TLbVZX1ul2WwwGg05OLAURcHq6ipSSYyxJPhr5YRXuHzp5k1azTbTLOf99z/kJz9+n+svvECns4iSkrLM6J3scdLPeHD/PlpPSGIHaJy0lNZikJRWgIrJLMikxbWrN6n3znmaP2X34imRVDQShc6m1NdWOTw6YDIeU6/XfGKpIobjMfWGZLG7RGehg7NgSChNRtrueLPdwYTT/oDM5ayurVKWOWcXPeoLLWQxobtYY6mRkE9KTBLz0WdfMullNPM62ytddh/e5f7pMdo0GZ7l3Nh5lbv3HvH/vPcBv/9b77C9VOPlN1/i4zv3+OSzT9leXWPcO6V0io+e3GKhvsR0sMuiaeFcxjgb4oSh266RFfDXX/ycVKS82O3yeneR39q5wujWlOOzY3KTM6WgEDnbO1f44c9/yFE2Zmm1xSiz1NtLLHc3OTy6zfi8z60P/po0P8O11zntDXj9xlV+452XOHrwAY+KCcY4egdjlhKFE5at7Q2s9MRsd2WV0kCBJu4sspxEXL92jd44Y+l8yOHhEUdHQ5pxwo0XX+Tu03MSKTg7OSWpd9m6do1YT+mPcoajjGYkMU4yyQoatYTxOOPg4AQnQi9K8Iv6RazRV1WhEIAUL2hFFacQRYpISGZboHg2XXq+Z+4yKO37QILQRygKFBVTYL0djrXGI/KyUoqsBE3mlRrVxi/c5Q+pPuirHtX67XBo7/MoYkrnKARMKOl0mqxuryMihcER/fv4I1z6aL+7/c2EzYZrW4UeRvhjpQXpQmAnytn3Ei7CihTPlRsPProIgcXYAikM1sDZUDOalJw8vMvg8Db758d8duo4iF5ia2WL9e01lqKnXF/d4GbnBmZ5lStNSMUEYU3YDC0uTihJUEREztHb3eenP/+In96+zZ27tzk/OyabDEiURDpHLL3nVpkXZFnGOM8psBCubRRXbIKYXR9rDNY5Mu2FzazxMunOmsC+enVhZytWMrz0UiJUefT6fF/ORMGkJAT5LiQHgZVz0ntuSkUUxURR4tm5cDOkkGihvzKmg/mcqMoFBfNkxj0nt//MezgXkvDqZOep/TPQwvOve+555+Ykg49P/XvOmLZAJggpZvPsMnGQZRllWQZaeS4koiIPiEdR5P1rQyJ7uQ9u9t2q7y4q1W87A2Rc0JGYj/3LZEbFhlfVVVVFE9hATkvrq+UqxUUXmDdVWmTpuWUlvYcuTkCpcXqKy0tEkiBMiUgTXBThiBGyhpXBssL6lhoVzkxrgxSSWqNJlMSU0xEY7ceH8uNeWt83qKXwPrHSBoZYBfIo4EcOnLMIp3yHqHOzGS/wlXChEBPn5uIulZCdkD551VpTliVaV2CWgF8wFqvHf7QQiXPOiV9mLPDVr/sXwL8AaDZbrmKxqsbFyoTvcsCtAm1c/V7dUOych8N6kz0rRehPmlPAlwdkhfgb42Vaq4FflXLNnhO+Btda6wMy88x3mF3g6ti5F4avPbaeapupGAoZUZQWayVCRDhraNSbbG9cZWOrS7MuiJRGCUvpCn8uAYtD+kRNCj9pIil8027iFyLhv35AWjyyJPD1w1IZWvU6L65u8/d+6zu4s3M+/PGPqcUpN154hekw59Ht26hiTKcGOSMmo3M2FjrUllo8vajx4e1T/urTP0W23qW+kLL1wgY717fpDYcoZxDkOKGDt1YJVuJcNDM4pfI8m/Gm7pn7G6Z5WOPmi6WcobYOrK9tN2GC+wk0L8Mx2ps1CtwM3QhvFO5t9UnPMW2XWCBX3VuqRfPSucxXK4+qKDVDf6skrtFosLiwyNnZOVGtCR3FNHNEUYfNrTXipE5hC3Z2+rz2yuu8+/1/y+nRId21bWIZc7Z/gCs1ca1B0skpnGE4ybH4sTMeF6ysR7QXlrEIr5wWAAlTGt/KLlMaaYN6ow1RCrHDSc2gd873/92f8t673ycb9EgAM808K2s1JAlx7MVYpJTBQ0YirOKjn75PPYn5p//sn9PZ3sFiqTc6dFfWySYjpkWOEL6XrWqs9cM+KDHiQhlkBsKSpglRktKoNymKknq9Tl5MqKUxRWkQAhppwub6GrtP95lmOc1mi621NTrNJmfn5xydHPufe8fkCxmxlAidMlGS6TSn3agjlCBKYr/mFwXNZpMkillotjjY2+fxo0ecHh/z6iuv8/Jrb9NqJahYEKcpG+sbLC4s0HOOLMvIi4IoAaIgd2wNGI1AEgVAQeHLdoRzrHS7XNnZoX92yKNHD9jY2KDdbtPva0ajERcXF2xubtJutynyEiEFcRKjgE6riV1bxTrB4f4hF+c99vf2MdpQr9f54Cc/4s6920T1Bca5wE779E/2KCcDakogqtJuhPdrTFIGoxFOWa6tb7KY1DnZ2yXLJmyvLlPmJdlkyGDQJ8umIIS/L40GtVodGRkvN7+xznAwpOyNqTdScJokjugurzIaFxRacnYxxEm/EU8mQ1r1GsZYjs77bK0tMzw5pewPWUybdBopb3/zBm+8tc3EHlO6Fj/64C637z9mf3BGs6Z4WvRBWtx0xGg0JC1r9M52+cf/xe/zyaNH/Pijz6jlj/nt16+y2oi5ON0na9bI0ybHw1NGkx7XlpZY21lnpVbDxJKzYsTSUp0XWERtLbPciJD2goPeLWRnxEp3CT2Br914kSdPPmN6/hPaMqYZpQwnmi8entErjpjmEx58+SWd5iK983OMcTQaCW9/820GxweQjUhriihNmeQFd+7dwwrL1asbuERQljkH5/dxwmHlmPF0H1k22FleorXY5lqyQDnu83R/n1Z3nc7yJqa3x+rmBs5dkFhDUk5xzqGd72NyQgXQz6+fxhii6Ku3ey9c9eye5rShmPkpzcv+aklCXCU0wmcYVbhyORh9NiLwwKjAYE3BdDxByYi00fFbdhHsQYRERrFfq2VI2JybM3KXk8pnHoG5my3t4tLzzx3pSg/MIpnkGYMx5Nr3HsZJEB8xzILHX/aotpMZryccM3nNOSQ5S+VECLm0gMiFJNYKnIgxIkZSBnZNofH99lHo2nKAySf0Du8yOrzHwf6QP/mkx63zOnUKXkgPeXNH8o+/+Tr9+ht0VrZ4ba3JSu0FqFvipMUIhbFQygaxKJCmBFOgSdEyQVqBHk15/4c/5X/71/8H9w/3SWsxrXZCmiRgC4wpmYwz8kxjjcCUvhdMxnGIOS04EeTkSzDBvNl425YSb2LsjPes9X1GAinme6kOzJV63kOXKtYKIUJI2mYxharMlisw1/unSRWh4jj4dSkigReycBJdlvzix5wxnpEFISa4PMRdqOypxM2qu+2Coews7hDM4trqdbOE9Dm2r6pOuUwiVD+ddUjpQjwrcaGdREoZrqXAVUmdg1L7HnYqFqwigS55t1VtPlEUzf4XQqDiKBAmEqXmCpOXz7n6XZtKQdH5pBqfdDrcrDLOWeHB9uqehaTNOItQEuEskbZE1hJL5f3z8IlQJbxijMNkpU/2dIls1IjiCKMLXORZwTgKpZwOjNZkeYk1fu9cWFgkXmxTTHtM85xMC0yeU5VaVrNWWYI4igpFtgHDryoP5uHgzOJIWhkqvnyMYMKaGsl57mG0pgjzwhurM2M/f1k29R+atB1VZY9CiE3gODy/B1y5dNxOeO5vffhAOWSa4nKyhkfnrL/x1Re2xoCL/Wbj1UE80m399iED+yFwM3akoltVpLxBsvR1rz5D9lN+lhhcQguknAfsAhnqzy9NNvELJFjD5PCiJSpsQv77WedLjq5sb7OwsMJyd4u11W26yw2y6TmHR4+wJqeWpIGt8uqVzgZmMCCOSlaNobMtY5aEWGMRTtBIm9gIpqMDr+KT5yS1lHfeeQdXaj764Y9Ij07YiGI204Slmy9w7a3XGOQDHnz0EWUxJnOKVDtWOg2GEWhhKIszDh5d8PDOx5z2hgxPe9hSIm0daZQPZkVQyRGeShZCBFNwC8Hjwxjr/cSCIWUwdpstDD5JDSWUzhEp6b14hC8VrYwJER41EkqirQnMnb/3FSI1A2aFV3yKYzULZGaLsKgWPDFvCK1Qo3mK9+yCbe1MYakyrHQ4VldXeNg/YzIYYqaOlZVVbCnoDYY45dmUes2xvbOFxDAuCg6Ojxhf9FlstRhNc8qDI3KrKayhLEfEMviOxHXW17dJ0zpSRkHByoMEsYqQKNKk7hO6SGEosbbkwYO73Ln9OcV0QiwFSeprvW3h0JSQZwhRn/mrRSHhcmEx/tkHP2VlZZXf+YM/pLm0RKlzut0VBhenDIc9MH5sS22DIXxAlKW/fkWRc/vLW4zHY65cvcpid5lGswFAnmeMxiOPYElFNs0YDoZY5+h22qyt1Ohd9MjzjIVWmzSps9Rd4fTslIveBQvtNlvrW6SRpJ565TDPilkQiigSSJkjpaVej6mnDRq1Jv1ej8ODA3728c85OB3xzjdfp7tSR5o6uAQRrmlZGo+4Cc9uijDmrCv9uCsLhPLrkwLqSUqjVuM73/oW49E5n3zyMXt7eywuLtLtdonjmF6vh9aaxcVFlpZWqNUThPRzW0poNerU6g1eeeVlQDAaT3DOMZ1MONs/Zn/3IVp4AZw8yykGfVoSXDZF6BKrDTrPiWyJQGB0xpN7DxDCYtFc2epitOYbb32Ts/Met+89IE4iVKTIsoIoihmPJz4JQHByekZabxApRadVQzDF2YzhcIJ0EZ12C2N80C8igy0LbFEwEI6zsylXa01Wrq2TXutw860GX7vxIu3RmK12g/FwwsOnx1zbSHhjfY3Th08xyvLKtau8vr7O8cFDWlHM1doKK6s3+OzOfaZPh4wOLNl0iY0XbyIXrvLRrVtcjLcY5AYzUgyPj2jkkps3rrC2tUa9bpGdGru7Pb79n7/JRm/CXq8gGmrK/gPOdj8nG/UZTHP2Hl7wtddv4GxJOR5y/fobDPsFh8cXHPc1utbExQnZYEArGuNsjTJdIlMJT47OSaKU9atL5EKDKDm5OCSt19BEnPV6TMaOiCmHhxfsXNlmeXkVKZo8uH1Alk353V//No/PCj7+6/dYWlxE1xqkSZ1SSrSe4ISl011EGkuelbhpjnUOrb1/kXI+AVGSYBD7rDLZ84nQvLdcIlVCWm/4XUVYhJPUUol85njwYhuSCsOcsRLOB9bGBElsmzMeevGltFWvFs8Q7F9K+v62XOmr/mZFBWvOWZjqN+cV/aaTCaenh9TEKZ1Om7GOufXoESd9gTYTnE4R1vhAWAqE/VXVI8PXYL5D+KIw6ZM/xAxZdzhKEfqkDCjrjautjChE7Fk3bUCUlMrLzZOdUY4vOD7O+LPPz/jkyTnjo3tsjL7kxbUF3lh7jVa3i1zc4htXFnhnu01nuQXtNmUSE2GxbgnhJJGr0QAiAVMkViTEWF/ZEtotsI7xoEc/1ySNRSJziNKOcjSlNBNKPfXCREKAjHBCop3DaF9m7YFD7ff/SpTK6CD84PuYtJJYCSKU0wmCPH5lXizA4EvNC23wvUnSr6tKhWqXCiYQs7gKBRj3zD4eGpS87Yz0Hn5SSZTwXnTWeMn3Z8qDA2llq3hrNtbdM2N/xp5QJS1Val4lNmCtjzV8LlqRBd6P+Jnx8xzj9gxbNSMGvICbP0XPUDspkCEZqMb/bE7PcwpUSOJsiFN9DlmRFs+W481ir4ptCzZaVUIXx/EzNgKzvwWgsko2cRYnvMWOfQYgl+G2+XkrQ5JXnZO1zkuLSAmixKoYZxXaWv98db+lxDhHoS3kJVJmpEmDSPh+NL8GBSVHazBaUzGWWpcsdOqsLW1xMRhycjFCALEtsS4QBc4Dy0pF/rqjZuI0QrhZm6qKwrwPYJNU0guvGYs2JVIK4jieVfrNyCJtg8hL6IUM65X4JSz/f2jS9n8B/y3wv4Sff3zp+f9JCPG/4wVI+r9qP9sMTQCPnlg7K62TjhnNqgL6ZrT2KVGFyjkLNgSK0mvJVCba4vJkmPl9BQbAVT04z57H5Ye186SsUqB8vqftMnJSMTLOOd9MbeUMMLTOeTrUWd7eZEcAACAASURBVKSMcKZElznj0RAhpwiRESkZULYg6hBuprcN8z897AbO+MTFGoO1Yo7yCYeTkMYRCMfICYppxqPhY/7qgw954x9t8M2vf407H33M3S8+R7SX+O1f+w4777yGu7bE4/0jDu49JR2XTKOIm1dSdm5s8un5U/YeHVLmEbVUgLY0VIR0OqBmvnxTOJ+4uEC3+EA8dH9XTP6MVvcohZABNWLeZ3FZDMwv0QIlHBIvdOGv07MHOSzaeeWeOWldvUPFsnnbhBkqxLyP0ViL03gcqEq2Q9ZnrfWIeKjDVv7mY62ZlUhGUcTS0hIvv3aDdj7k3Y8+5GT/lLx5itWCwXiCEc4H50Jzdv6Ug8NHFDplMtYBxPB9nMZCUQa21Xk5WVWh6FaEhmO/gIvgc4QQaG2DJHaEUAZrSybjAXu7uxR5TrvRZFr6zVZFwjfAOk2RZwCkSRqUW53ffJxHoMbjER9+8D6bL77CN7773VmpQKPVJk5rOO0X6Krp2bOpIITDGoMxZai1n/DZp5/SaHW4ceMlut1lz1KpiOl0Ql5McA6vRGg0zkGcRKyvr9AfDOkPJkRxjU6a0mq12drcoixzmrUm7XaDVrNGq9XGOq9oKbX320vSOkrG/pYaD6jUG02arQ79/pCj0xN+8O4PePW1q9xQb5CJFtZ6hSfnFw2c9Kxx2N8Bjyxba5DGr1GJ8kIrkZC0W02uXlml02ny859/woMHD5hOp6yvr6OUYjAYMhgMGY3GLC93WV1d9vLNDpI4wpqSqzubLHSaHB4d8/jxE4yeUo9alDpHk2BcRK4UubDEGGSZoacTb30hHCvdBiWGIhuSDfqU+ZhWt8HLr75AJBVX1hfZf/qQPB9RloY4irGJN+mWTjIYjnFCoE2PvChIk5i1pTo1WTAYTjk+7SNkDaFSIhWxtLxCp11jf/8JvV5GPswpc8H+aMoP3/+E1956GTkxPLr7gDe2l3hy/IiziymDseSokRHF8M03X2LjH36P9ZUlsotTmvkqX3/zm/Rzybs/+ZSzSc6/+pN/x6BsMC0T+uqEnx2cEQnHcX9Ee32b0+MRrqhhrSXtrjEoM9aXFxgd9Vhf3qKVOobZEfcPL4hOc/7qx5YoaVLPGh6Aii74s3d/TLfbRReKw/MvGY2HFMay2Jb8V//1f0NtYYM/+aM/orf3BcPBlChtYkROlk94+bU3eOH6OrEe8fDLW0yKIVd3tjg+7ZNlBpNblIXxULGysoCxdaRs8tt/73XaCTRbNYYPdsmzCVIIvv2Nb/Do6T7DQR+H5fr1Ld56/WvsXezy+OFj3GDKUhM2t7aDPH9IJZxDqL89GJjtY84Hu1XZj9/3fPLhgxlma7gIaz2uUgf2f6j6aob9Ab3BObVaQpxIukvLfn+M0rCvqXnw/dUn9BVPzitcLi3687cIFZ3OWs5Ozrn95V3ee+89Pvv5B/zBP/o6v/Hrv8bRRca9219wfAGvfv1VVhdbyNCT61sifqWGttmOUlWO+N40DxY7qfye7cJ+RcEEBSKi5QyiyABBnkQMgUU7gek+4+GUD04THg4yooNPeCG7j8hzzvYleXKDja99j2+ufY/rtSnry6ukay9gFlbpxJKGtWAMztvWYZykpEEkIlzp0MWI/mTMmTb0egOKkxO6NcHytcD2T3Lu3b3L8WhIZ3WNzt4TBoNzTGSZliMMGiMcpTUUuvDAtxXYwviEyflyt5kKtPUqJi7Ec4ggImLdM7tylVgV2gTmTPreQ+n7kbw9RNi7qx5MybzaSXg2y7pQamftjACAIPRAkMQXvs2CYHAtpY8h50RBSFwqdozLCdVzvZqXfpFCXCrEcvP4RlwGjAEnZnHi5feZAf6X+9mqAV3NrSoKEnImZ69m4Og8cfN9+WJeHSQkMoCNs3428TeTxecZNP+LTxTLUqNUSZ4XVGbgSZJSq6Wz76Iug9fWhljAza7p7IN9dunZMyQyikLbiR8XCZKosOhCU1gHUlGr1UjTGknkvfysFGgJJpLYWIGSiCQmSWNfLeQCauQcOvbq5KX2ZtdlnnF2MqZsRLQWF+l01xienZKdH2ONQKQ1hJj60t2Zfcil+4UHZKrbYq0HycpSk5c5hc596a/TRJHCBFJC6xIQs3JKhG8LkkJ40sm6r17yLj1+Fcn/f4kXHVkRQjwF/md8svavhBD/PfAY+Gfh8H+Dl/u/h5f8/+9+2fuH877EdFyWhvDsASFkklL4bL6aBdXm4XydqKv62MR8Ejz//ass93IdcoUBXHaLr+hgUQXss8k/n5ZV2YirfHDCYkT1XtWCYkNiNUNDHNPxkN55j/3HTxCiQbuzwrXrG2xuLaKURyaFjBBOhbwh1GZbibTCJxyW4B/hmzArFSsfaAsKo4mMpl1vcCZTojhGxJKffP4FFypmudsllhArC1FKe2WJxaWUp4MnHOzdx2UjanKBkZbUmku8/OZbXFv7Nd77/k85fPKEb739Gk+ePODP/+ovMU5jKfCKZQohDQKJJZrXmjPb06kadKWr7pWc9zHMrvj8uovwu/DceGjAdnOrCBcCaelZ1NJ5durZ3fyZUXdpEXn2mKpE0kvX+sR7tvKGYKQqJ4jjyNdTB3bVm2Iq9vb22D95wjk59+7fo3/a5/OLMWnaoNZsU1iNjCMWWi0mo4zJKMNKiKTCRjLMBV/WEblKCSm0qIcNRTqBQqKEAusTNWt9Ba9DEKUpSS2mMFPAMOydc7h/QIRiobWI0oJxOUaXxjcYW0muNdZ6KWWVyuD9YpGRQEiHtIK9/af8xff/jNWNdbZ3NrCupFavU280GA1yz2rPLm2FvHkBgCj2CW2aJjx5ssvx8SHHx8e024vEcUK702ZjY50krVMUxczcdDodMxoNaLVaLCwsktTqDEa5Z/WEV3eq1Wpo7ZhOSxBeaa5RT1AyJGyRRMjYm9YLr4TnZEwUS7qrddqLyyyurLP7+A4ff/wxe6enLO28xGQ8nq0ZKvKy17ZiJISblQNhHbosSGLvvzKzbHee4V/fWOc7tW+zsLDAvXv3ePjwIUtLK6ytrRHHMefnF4xHQ/LpmPX1dZrNBqUuabSanhVOOqSpopYqRsMByhTgQMUNhKoxHo/on59giylJmlBPI4R0pLWI69c26GdTytISC8FoOKS70kTbjNWlVZ48usvJySEn56eUNiJOG0gpmEwyqpCgKApGkzGjyZgkiVjrXKHdqdM77xMJxzifsLjURIiIs9NT0miV61de4ChOOTw6J881E6V4dNbHfvGYa1s7bL72KncOjzk920XomOmwwUUyJkoyNrt1BsUx5viUtfoC9bTBx7fuc5AZ7pyfsm8nmMQyHoyxozGTss+112+ysLHIUbbP3tGXNKINlpcXKDPB+/fusv1ig+HhPm9u3eCFqys8/vIOu4cHTHKBzR3v/fwTvvn1b/Dmyzfo5QWilrN/ekxvULK5ucUk36O+1KJVX2R14zqRUrQT+MN/8vvcfV/wxa2HfPngMbW6ZakGB4++YHtNsdZtcdRqsL69TVpvkCQZBktNRfSOT8inCYcHOSqNUAlYfUA2Oef9W7foDzPSuEUUpxw8us/j+/cpsh4vvnSV7c0uUSJZ3VxhOp1wPN6l3qhx9fo10iTBGIeMhAc0ZcWi/QoPqSi1pSz1M4j9fJEMS6ZzYIuwVsc4FEZDWZQkaQLOUK/VWFxaIIqkR6hnlSHi2Yh2vjTPPsL/+1mfMz/fQrGSqILY2XIDQiCcYDya8PDhQ57uPmapu8Af/JM/4Hu/fo3V1VVUM8MlKdO8zitvvEK7lRCrBC+lP1/nf2Ey+dzpVvuZnV0YX4ao/BIBNkfKKc41Q7HjBGdOKCcxT4oFvuj1qe3/kPXBpxjR4q96NziMV9i0Kd0SrkUFv/fmDeTrvwlr26w0YlakpSa8rUoel16yXjmckpRWeesQbSizkmH/lP39ffafPubp4SMeXgw4ORugz/vUXcbyVot2M0FMSk73x4xki1q9Tq0RcdErmIwzsnLq91XjPWRLa0KgLRHG9+dVCbQKiFbVx3PpVs139IoFqZIiIZBxhHUSbS1Ly8u0Wwknh4c47Xc1q+ciGcBMHboaMBXg6xMFz3xVbREOMQOGPT7rgoLlnFVyQZegYpueNzoWs4HJnFEO4LoMPfcuJHt+LFbqyX7cz0o73WUGbV5uWDEx8w8Us7E1H4pVnxkYa9DWS/uLcO0rTzYbBNOq+NNVPwPoYS99zvMJZPXTAyyVcX1IDEXV0hK+q/Ogb2EK5KVy0Eo7ValolqT5s1ezf6uQuAkBVvpSQim8LYi0GiMlMlLE9ZRao06S1n0lnVJEceyFcKJoxrpFiWcDnXWUxrfHqChGCoUpvT8bFqSTWF3SOxswHE/orKyzurJCtNDg4mJIv4SyzBBCEMUxSH8NqivmqnXMgtGOUpcURUFRlGjnK71iFeOcREVBJEWCqkzTS+utqpyPJVU1brWe5RC/6PGrqEf+81/wp7//Fcc64H/8Ze/51Z9TCffDbEcQl1CNMEGM1jhjvQ9HOMYKF6RgPfLnEYb5Qv88C3YZzagatVUUzWr7q8SuStwuv4cNE7J6HjdPMp9h3wL6UZFifkFx4CyNWkI9XiBVgiIrGY011uaUekqWRahI43uyfP+aN3v0bhShZ9kHUuGD1Sy5BG/uYXBCE9dj6tayGMUIkdJst3jx+gs8PD/l1ofvU48S1rY3WX/rZZ7cfsyPPvkRfXHAcW+fTx88JDqBKxsNUDEjZ8iNZXl5mZfeepHT/i5n42Nq7YhGp45TEiMjBCnSRQGxtDjM3BA9XHMrQnoZNm8ZJkOVLCFU8OXw11eGxa9K94R1CK+R6lWfgrmlscFaVDoKW1LY8itTtstNtvJyouhcWNB9sqJU5D3c/uZgnQENEJqA8XK4xlrG4zF379xl7/gJWVRjWkLkIuqug5k6dg8PGWUZhbG0mx0GZyU6axPVAemRQlwozXVi1qfopA8LEDLI01aJW2DbHLjgkSKk7w+R0iEpsLbk7OSQ/vkFkYgQcQOaUIw1ZTYBFRLRUuCMRZcFOo6JlB/FSiqMM16tC8f9u19y5/PPWFlqk9Z8qUSSpmGOeAZLikoDzYYyDI0QwisyRoqNzZLGcMTZ2QUXF+doban1mhgH6+trLK+sYHTJ2dkZvmvC0OufYW3J4vImi8uLjEd+YV1aWmY0Hnq7A23QoynaGFpFnVrsTecjlQalJnyyLS0i8uU9UknqjRZJrUG78Qq9XoeHh4fcfvwjDvaOkUUR1NAinAx+PhWrXvXf4oPJiuWPo8jX5GvPRFhriZOYN954nW63y8OHDzk+PuHJk10WF7u02y1whqPDQ0bDIdtXtuh0Opgy8yii06SpYG2tw/p6h9iLaoFKUHHNm28XV0kiR1bkGCFJ2m1ebr7CpL/E7ukxn352h4ten/FoynA8xEVbxI2U0mimRUncaGAzTZrEgKQoph4McN6GwAmBsYYkSWi3Oyg00vlS3PPBBaPxmPZCl0Jrnu4dsba8jBJ1YlVDiQl5lrO2vohKF1nZeoelnb/DF/feY/P1K+wfPOHx8QnZzw549c1t2q9vsRwPaJmCre0dHroznvzsMae9KdaBqklurq2gmyl3P93jxo2bsLBE0VqgvrRMZ6phNGF1MWEaR0Rpk0lfczbJuHazwcdffMb9h+c8Oh1ykuUY12G12WL//Cm/9911vrl5lYUPFf3zQ44Od7m+nbC09TI//OxLbn77O9x47T+jnvT5+Qd/ycN7j+iaPRpKkVCg9BQzsDib8uj259jVJRrNLnJgebp3wnQyZW2py0vXrvA0tuwfHHA+OODr3/oO5xentBYb3HzjBpPRBb2TE57sDYijiN/8zrc4P3jMw/6URBqKyTmnFxGL213O+qdM8ynnvYzbt2/zxrc1SRp6iNW/j++YD7iMC6Xszs3W36+AQbE6Q0rJtN9nOMopckOzvUittkxncTGob1gvNOJAyQQfAAUEW8zZu/m7Pn+6FdTn8L6oYZ9H4PsnqpjBH+qso7VQ49u/9g7f/vV3PPujAHEKSNZbddZ3boCte31GZQOh4UOiqlTvl16xZ+IrLx9u8YqvVgiwEAkLFDgzYjQoORrBw6PPSQ4/wpkmf/m4wVOxxautjLVOnW63xbd2rjNRda4v7XCt/ndYbihIG5jaIrkI/nih/MxpvIiRKTifHnM0uODpwYTjgzGnewecHTzi4uSI87MRg+GQrOzRyzPKElQOkc5xtwfgpiitsGVKmTSIazH1yDEsR/T6A8+ElQY3K/Uh7PE+0DSuwqktJaBk5FtRLiUn/qqG6ifnwv5tPdNiLaUtIUlZ29zk7//e77K63OFP/82fcPh4l3xUegl36W1YpJBE+LXdi9bMdQgQ+H05JDBCSpSKUSpGVsmcCDoGs4Q/fIEKgKdiPZ5lWOb3fs6WiYA/hC37UhWRT7okVfbuk0T7N9/tUqI4Z79m0WVVvkpVhunBeR/LGiAKn38ptgkxwixhvHQPdKgYqsDn52Oiy+WPyCgkpfPjgNkxQqhQZmpQoZRSVlVTs7i0iudDl63wXswi+Ka5GQHiNQmM9c9HUYRzliRV1FopUT0FpUBGyCgijnyfohe+88CUc5ZJNmE8HgOCeqNBFMWhOssnuI00IcvGYAzZZML08JBiPGJzocnq+hodVefs9AlROg4VC8+nShVbWN1riYoikloKsgnCay8UZTarMosumaXneckkK4LEv/Gq0c7iTKWE+4sf/9FCJP9/PGYDT8ylcWeIhqj+XinS+dpZFcUQaqN9wsczDFtV2iHFfCEH//eq9K6aIMYFeVBXeVi4+Yczfx3MERFwoXegaiS0s4levYevgp1ZawZVKMfK8hKvvnyD7c1NJsMRt754SH9UEtdARdb7QyQJrvQyuMaEBIVQGhlq+KvSi+oaulAaoHWJ1gXTfML05JRJ7jiYZNTzMeejISML5WDA8soqb3/tDa69tMkn6z/lk88+ZfjuLi+s7vDCxgsMXB9qmqkZ8uj4lPXPOrzR7bC6fZUrN1/i4x+/S6Mes7K5QXTvIS7319A6n6hJV5V2VpvwJdERd6lw8TL6Fo67BOU+cycE3i9EzuaMeKZBtaorhksL3nykXbpW83/D/HcZxp61wbQ7ONYTPqtihKvkzvcOMmN/lRTU6zXiJPZytnmOMILR0EvXIySRMETKkBclF+envkRKKbyyWgj8A4rtgqCH/57Bn08olFCzPLZKIEV1nULCiZKUpoDIMBkP2d97Sp7l3pRWCVxkiZMUlZToUoPxjc2VopHMM4QE66IZ+ljdQ11mfPzB+1y/usnNV26QRBHtVpvh4Jx8VMwQSinCwi49uBDHMUmSYIyhUW8wmWasr69jjGM8ybjo97n95Zfs7u6yurpCkkQkcUy9XvOmooVhmo3Ijw9Im0vUaw2MtmRFRhwlwezU+8AMJxl5WVJXILTF2lAWIyTGCUQUI8I5OkDGMUkU00wdraaEWo0n739GlmUkxpAXBdpookQE/zZ/Tfz3kxjjlSWrfSqJIiIlKXWOMZpavUZZ+vLQ5eVl2u0Oe3v77O7ucnZ6ymQyYXV5ESUSzs/PcM6ysblOs92g2WyAAKm8DYQUXg5dKYG23t8mjiTNWoNaGjHJJuTOQS3m2tUdRLHO4sU59x8foB2srK0j4ohBlvF4/4BIKLSMKCyAJMsyb0EX5P2zovA2B+FeWmM4PT1H12KkTDFOU281KZ1H4ItQLnJ4dEErrdFKGuQqxzQME3K6ssZ01GJ15U3e/J3vMo5O+Nd/9L9ylO2R9xz21j7djYij5gmJyvmid8bDL3uM+wnDzDAsp5T5hJX2OpHs8qS2z9OTB/zWb7xGf9RndPCYJWLihTauqVlZXqYj1vjs7IAJ8N69zxHTkuviChuNJQ5OH9FotWit3OBscI/33/0BS5uvMixq3Hj9JcrY0NeOf/i9f8Ag3eZkbDk4u8Py1Q7r16+TO4XeH9A/GzAqJQuNJrWFdcpI0sslnYmid9rn6VGPNIl9EETB4oJg5Z0rtB5NWVxf4+W3rvLll5pufZHD8wt6x7skpsD7ngkOdh9xvPuYZrsFOudg9yErKmZ0MCKtJ9hWnWY9otlsIRGUpSFKFJUowFeth1+VzAmB97+qUPLnX3LpiXwy5OHtLyhyx8bmNdY2rxKljWf2XQ/YBXQe33vrGQjf+/MshfH8h7n538M+5wKKLoWAyAGGPC+4f+8B1jpeefU1IhxGG5QKvc66gAhK7cA60jjGlBYVB9BLejDUBHZEffXX9V8rnM88TplLzVd9L8ZoilyjxyMGp3cY9O7z488e8ahXY7HR4aZyvPPyMr/59S6P5CYvbrzEzWaftCbYaN9AKA8SWRSZEEjrkKYkUTCykGUFejRgcH7BnYM+52cXHO895PDkgL3jEy76F+TjC8xkQJEXTEtJqUFajZQajEDp1Cc1QjLNNVlhMCXoyQibODrdBabOi2Epq5AyDsJvDi+i4nvvKmNvLzhhQ/wVFAHdfAD5cj2f3Pie51Bl45wPxgHjLP3RkE8+/4x6Krno93xXRaQQoQRTXLoXAfF9hrETovp5KXGrYkEZYj98YielmiU7UqowDioQl2fOfUYrXCIALrNUs8gxfNYszhHMvmeV7latS242P54tT5wLpVX/zz9hljiLEP96s8NLSZcv1ZxXk833KoQjjhJ894d8JnGrzqESVZNSYd38mFlM5tzsOB87VXGKmR87S9ifvf+C+WcJ59nMinD3ybdlzsx52wupDCoCFQtcJHEKtLNYp5mMJuTjKc5Y2gtNavWUehKjC0VZanSee8VTJRCxZ1l9uTJMsowC0IWhnI4peorNnau01lpsX7nCC6sF7YWOT+SfvxPOeckN6+9LFMekqgYipTQZxji0MR5ox/dsJnFKrd4gSizGjdHlhCIv0EUBBJbxub7j5x//SSRtILCuQgIF1a3yIiIV+a2wRvpm3RA8G6AMkvCxiAJlOZ9c3suLS2JOXpq92gCdDIaenpycJW1SejETFcQYfDub32CQke8fw7M8M8dzvH8YIZESCJSLZgmlwrcx1qOUmkpZ6a7wymuvoq1Bttr0BjmlziiyIYOLE8qi8CIQoYG8tHhZYCRWeFbJ4Qetc6Ge3IIpjfd+sBrHlClj+r0JdmqYTIfs2im11S6Lmx2cNYz7IyYXJbLRJpcRk2HBtRtLrHeXKE9KtDWoSHCsB7z/4Y8oFXRvvsT48By0wUQRJoogSUjQCOtpeatKJAqsQhCFvkLjJYVDB4DEgbAIUUnIzldh77EhZ7hShTBp6++hqJDMyB+TRpJUQIogJgZRw4nUJ4Sh3r1Cw6p/u8tGnSL0bVxeJp1FiHmT73y2+vNVThIToVE4IanjoMwYj3pQCPRkTDaakGeabDIlTRKmeYmRklazRa1ZYzjOGEuNdjl1oZBC4aRvwnbOYq1GmsAiOxE2GUGiYiIh8CPPX0NnDE57NixOE+IoxTnQWtPv9zk5OcU5PGOiPfqulCRJYpQEmxmEBaV8MlrmuVcmDWNQxjEOME5TixW7j+9y+7NbXN25hlOCOGkS15uMJn2v8hmur9EWnMEZX14pncQ6KIzl8PgUqx2dVodOu81Ct8t4NOL87Jz7dx+glGSh02bnyg7LywvE7TZ5NmUyyemPDygbbVZW1rDGMplOsaYkSmJsuK95abGZwJYTxrmhVo+pNxPqcc0rcOHN2j0K55MSFdfJbEajuUin0eGEU4STlERkVlI3FiUMRhs0IUGWICMH0vufTp1GmAHG1DxH6AzZtEAlMaXWOGGJpOWVG1fZXl/i8ZOn3H/4mCdPd1lYaLPY7XDeH9CfDNna2qK71KXZbKBURJI2yadTBNb77yjAeQUqbSWFcRiPZqGnOTYvqaVtNtaapLU61GNsvUYpHB9+dId2ven95FC40lLkBmcNcZqQxDFJrcZC0uHo+IRCG29HoQ37RyfUdzZImnWm/R4qTSjykrPzM6yBTqNDNvGiMWsL60zzHBLFVE/JXUEmh/z0s78mPlzi0elP+fCD9xieDGjblJ3lVbYW2jw6PSKKBNl0wt2DIZPTmKW1FazJ2Vm5xtFowv7ne6TtOr/1u99hpdvgk09+xOnZKS++9Xf53nd/jx98+hcsdlsssI7UU/Qg5+ioTznNWN+5hmvUabSb1GvQnzo2ljZRtRFPj8ecXTxlbecam9deYWV1m09+dp/JRUmcJJze/4jmK7/D9tfe5Pd+9w84ufMh/+e//GPu3NujEaXoYoSUCWYqabev0mjB7u4DJpnEakdto8Orr77E0lJE0p6QtBa5//Bz9vYPKRrbfHLrHqaccm1zk/Nen0F/wMMvH7Dc6dBcbLPWXcR0F7l1/z55U7DYXmNxfYftjRXPolIjilSQdi9BJSFUgZlK76xfxgWQM7DGTnjBJzcPFv2e6vfYIi9w1pKkMdYmLKzusLS8Tr296He7yohJ+gRGSO9I5v9TGOG7lpSQ/lhBkPw2CBfPo4Agm27x61+eaSIhwShwviQrSSKsijjq9/i///xdBqMR/8OV63QWE6TQNK1BZiXalUwmBaf9CUsLq5ip4c6tx3zt7TdQTd8Do4T1qqvCB6tVx50OW0AEOGNnIgRc6tUqZUKpLdnFLnawy4M793l8mHPUNzgz4u2XF/jON97kFbvM6tpLrMXQFhN2Wg1eqC2itUXYFjJyxBKEklgh0Sjy0jIdjCjGPQbDPodnfR4/2WPv0T16p8fsngwYDzOmvT5FmTMuRuRmgnAl0hpwAu0k2kjQBilKUhkTpSlpLfX7XxxjtGU60ZisIEb4VozSCyuZsvAMCsKbWOO9WJ2U83I/AQgvSFGxbr67YL6H+haJqoJDzOxgJCC0IUaiB2Nuf/AzhPS9SFZrXOmB/YqlEs7NCKi5/VG1efsxDIRz8QIgfhxXHloKpBepckIFmhixQQAAIABJREFUtUU7J1GcncWTMtgYcdmLTVT97j4xLIUldxqNZ1Z8eZzDGUOE78EXVcVR1eNPVcApZonBzCfWelbZhVLgyrPYvyKUGuNmgIwTgPLCIS4wbErFNBrekN6ERE9IQRTPivdnAPSMFAuJtGchJVJEM+Aa5iRKVaV0GaD1LCizhFlJGWyYZq9mJi4YFC9d8NKzeJBaElThBb6XXzmE8oyu0TmuLNHGUuYagaLIC7I8998LjZIdVOIBTZOXOF1ihCGqJ0ijEVmGKCJiYagnaSgrjpAyxsSCk36f88JxZXsTudjhom4xsqQBYa5LsCkCn0tYUSIjr4hdliXD6ZCinFCWOcYWgPVVSpEXMVO1GBVH1NMEW2h0nnlRnNA/dxko+KrHfzJJGyLGT6gZLRMmhcQ5iQ0Ty3ti+gFuJb7WzkGEwJeSecl/grKkDQvJnDafMz3GVvXIeLQlQB8OjZR+8nrvGMFMUlj4BlnnBEIpFBbjNAKv1lj5yEmhMC7GDzvjX24EGCgzQ55pDo5OGOkpB4MzisJRi2PiWh0VpVjtQnIgIBL+HKSnm33/qUUo65MePPLubf0iIhUTRxHWwTRx5MrQtobSQt1qdjox3Rs3ODm44NNPPuPOl7scln0W2uvYWsm7d3/OKg3apWL12jVi4VjZ2WIjSrj185/ROjjl7ZtXuf69X+e9+z/j08+/YJqVxGVEpBXTpMCI0Jge0DeBRNjgCu+klyAXNphwS2RlshcEOqo+OL/MBElbJzHWL1AGhxFglQRrUVgSY1G5htyiS0mhfUAgcVQaLTKwsFXtuVD+/KpFpsrvK+Rt9pidXlWiAxhIREQhJIWziCxD2pI4EfTOT5heXCBLR1QY6k4gC4OYFoCgKByi3oCyxNgcJ7VfuMOi7PEB73PmYF73HU4nDohMIUFIPw7iSHiUJmxkfmR477tJlpPnhV9w8QhjFCkqyZNOqwUIyvE4gJECW2psUSLjGCFVEF/xp5iXQ7Ca+3fuc/aNIcsba8QxxGkdIz167qSb9TBSoVKFxhmH98+RFNpxfnpO73xAo16ns9Sh1WpzZecK00lG76LPcDDg7u27HLWbLC0vEseKNGnQSesU2Zjjp49Y2dig065hR4bRZEy91SSWEWVpcbLGJLOMyzHJ1FAvEhZsi1a9SaoSP62dJVGgIkGhHXGjgyoFC60FmmmdIi8wqoYWCVqPkTpDpQlGxR6TtxYVe9Ws3MBYF4h8wNAInhzu02xLGs02pfbjVimFcCWptCSdOp3XX6bZavHwyROOTo6ZFgUbG+s4A4+f7DOeFGxubtJoNChKi3AxMpY4W1UJ+E2zNAJXOkrj16xanJCiKEuBRZBlU1Qz4Wg0YHSeM50UlK2UyWhApBxbq2ucnY7JsozVlTXiNGYwGpHUYo90OjFTwy2NYe/ogFqjQdqokdSb2P6A897QW084vEHvqEe71abZWQAzwLiSSTHirz//Mz5+8AMSeZXhcJ/J+BCpU+I0Y3u9iR1PmOxP+O6vfYuj8zGn3Q6nT47Jd0+IRcm3fvsfILuG/cd/zs1XX2H9jRe5/ektnjw9o2+b/HT3/6PuPZ4lS7Izv5+LK0I+/V7qrMoSXVVdrTUw3QCmG0NiCGIGs6CRs6BxjFv+H1zSuOCCK244CkYOZowEBjSgiUFPA41pWV0qq7IqtXj6hY64wgUX7jcisrrR62aYZVnWExk37nU/fs73fec7AybuHQ4HR/yjr/4un3/jN9h/+ir/6l/8a47vDsmlZZQsAnuoSxbWsb0J+zev8uWvv8zu5Vv82b/71/zsrfc4m2m+87uvMp2d8NPvf4+XP/dFNBN2uh1ef/V1Eq9p3fgsWvwJ27ng2laHPHMcXN5FqYw8CaDewVaHJNvg6PCE6WzBxv4el29s8eDpXf76R29z58EpnfYuk+Ipk7MRk/kCa9tMpqHg6Le7LJygujhnuJGgkgRqg7UZh4cjhlLw+PEpr18J40Eas+rGmj/qC5bQVDP7SUbpfbNXiSqCxWweIfCQqFa1YTqeYauabqeNyDK621fobl/meUquOUubv0ZEPg4HVj6CabiQoC4B+VUMDgewwJmK09MT3nv/A54+OeY7f//b7PX7pBpUUeBKzYPTc777kx/yo5+9D0rxz//4/8In0BOO13f2MRfn5J2Ma7deYVBbWnkPrbs8fHiPnWuXOGgfoADhPFIYHBbvg9zbCqh9iP3KsIzDpa3JKoMzFZPxjB/fOefw5Jhk/C5v7o056OXsvPlpsmtfxaFpV0d0ej0WsgdCowRM6wRrLLoqybOcJNnEeseiNhSVYTQdc35+zuPHT3lw/x6HT54wGg45Pz1nNBwxn04oFnNcXeKsobYGIcOsORfbSZxxcd82LSEWJwULX1HVQxZmQauVk2dtWh1Nb0Pg/S7eWExVU9g5lSOyV5bK1EuWSsgArEvPcrRPU0A1S6k5tQIzBc6ucrLauii/tmEGoEqhsghvSdOEug6Gc42OxDUr1/vQGhC1iMIGlUs0NwggsSPO5A0lQZNbhPEz0TDDR4MSseyYX7JnqmF6xOrabeyfX/bhE2WDzuKkp/Q1n/vSF9nY2OLDDz/i/PQsSHO9J/GCVIDQksqaaHsf7puXsjEFD/sh1oPCiTBLbLklGobPAmJ1HSLuXxFs8zHhZE/TbClTtD6yPkqghYqO3S4ycA2Ttnx0MR9+PmdeXsba11atQuGiGydwIUIa7pt1Efd3EEY7hAuyVScFzYRjJUOOrxCgQCRBahxAyRppNLau8YUltVDXJdQ1OIPMNJg6FEFYrK2grvHWYnXIz/EVqixIhEZmCp/qeJ0SYzWV91hbY0cDFvMCoz2dL1zn1uYrfDrZxBaWSkg6Wocc0jjKcox3I0bjEwazM0ozpaoLcFWII1iECq7rxofYonVC3sqRLqxV5QVlWUTg4VdXbb8mRdtqESwZlybzjIfJipxkaR/b2MhH8A+5NnyzkSiua3Cfa/CMr5Vtf3MhYVkFC3UTZByxZ8XHU01GZGjJAUV7+EYCIkRAomrhMSIkaTZqpw1Q1objs3MmtqCWjvF8jrOCarFANTa5NAhPLNTw2ChBaNioMHTcxmAaLj5Q/QolE1LZQtSaclHiypJUSeqi4u6H92gddkmTFsPjCcKfcenWNT594yZSVfzN+yc8vfMeB+kWB1cvsZiOuf/xPdjeh8JSTsZsd3t8+be/SX5jix99eAdTVUiriDwoeLEyo2hCTkRUV31/hI1OpOkbCUOEuhr5QbgXcnlvAaSSQeJnm8bjiCIJlv/Gqkfy+de6FKCRR66eZRwtEaWJATCOfY1E6aUXEAeeKxX675RWtPI2KknJO116eUonbzGblwzHUybjaZjrluWAxAiBcQ6pFdQiOmz6JVPbLMYgNYhrlEZ667A2bH6hAruD8BhXY2yNQJIrSZaHYdkFJdPplLIsIaJfQiu8aVy5IMtz2h6Kug4/F9HjqizRaUIna1E7i9QaEUBu8ILDZ894//13+c3db+G8I8tyEp1QN/9G3FPPB34R7lmSoNMUIQVVXWOMYbKYkiQJ/d4mGxub7O3vsn+wx/DinOHwgpOTI9rtnL3dfa5evcH+/h6z+YLzszPa3R7dbo9QFNfUmMCsi9iU7A3SCkbjObNZwc6GZ297hzRPoo6+iR8yWvdq0jQhSxMqgtRBSEGSBHAEglGQjWh7OLNCRmej4cdsOuPdn73NxbOHvPL6G+wfXAnGKdojsVEaFtjznZ0tNne2GQ6HfPjhh9y/e4+9vT263S6nxyfMJlN2d3eRUtJq5ZhEImNfgtIKL+Jgc2cDQikVJBqRaKQXpFqRKhkcrARoldDrtpnNF4yrikQ5NjZC/9rW9jb9fh8vPPNijnOWfr/HoqhQMmU6my0tuefDEUmek+Tt6PBVUdiCyWQSXPScZ3+34LOff5PKVPzNOz9H+YxuBjYrGB8/ZD4f4UWCqDtku9sskj0eXwx55eUX+A8//C4vv/wlcpUguxnlZM7Ozi43br7Gs0f3uRjUDLuCv3j4Uw4fPuFi2qOoWtw/esrZU8F3fu/zfOVrn+Onf/s9NnZu8LnPf5F/c+8JrW6PbqrpSsWZaJPs7HLtRc2iOuZf/PPbfPmrv4EUm8ymcHZ0xr/5o39FnkjwC+5+8EO+9c0v8d2/+BPyVsaljUv4qsTYBe22ptVO8b6g1Wmxf+kq77zzIXWtKIsuBknWT9i/fJ3DwwcMBh9w584JJ0dzhmeCc7tgq5dSWkFpHCcnJ2gdJLLdTpfpeMB8csG8GPPKizc56HU4stDLLjEfC2azIfVOhfezAJwA+Bz8SpK1HvOabarWkHe0jiqTwDa42jBdzEEq0kyTddqkWRoj7Cqx++UvsQz/1ju0r1E+AR+kaBXBRVHbLCgzpGPmHY+Pz3n44Uc8u3eXwfkRPoFPffbTtLYzYI5fTFGLBeejOf/+3/4pD58cYg5P2b12jZ/82V8yHg7JleK7GGRdcW1/h//6v/pDZkrS2tgm2d/hybzEfHSX37q8Q1cptFd4myATh2CGpIXxgZ3MKJF1QeVTTmcFh+fHJMNjsmLEoKxBXuGNT73MZnqZFy47kjxlYXcZ+B1sbTBizPmioPDhzFJK0e9vkCVtbF0zGA0Yjcecnpzw9Nkh9x8/5vj4hIuLCwYXF4yGIxazGXVVU5dlADadDw53LihuLB7rSsxaqiN8UAw1ff/eW2QsWqytMKYKsw+zlE67Rbsd9rFOQ2IvotwOH56fUmppEBVqIb/Mnz7ppr1qJ1m7HhXc9JQM5llJItnZ2MQ5x2y2wBPUICYMuaWpARsAoDH9CqCDRfhV3tAAD2EIt6VxXGys2FcAvoyjlJqiJ+ZablVgLk3oPrG0n5NDLnMZj3Q1n7p1ky995g0m0zl3XYX2wZytpRVbrRadLMF7GMxL6jhuwHiPdYTiUzRHb7jWZaPH2n2VUi6NsdavtSEzmi3XyPallEum2nobCEYRwfSlLPT5frX1z+ic/4WvffLnwr0LeYpUxOKyYftWeimcD+MlnER5cM5gWXIvFIsFeE+NRDiHLQp0YnFeYZzHOENlLN46WjKLhjIVwjo0ElOUFAqUy4MhmrGYqgyMap6QiAA+OGuwlac0UAlHTWixsL7GUmOdpK49haz43ODr3LI5zgumgzkeyDc2kFn4nKaYMR+dUS+GuKrEWIM1JjC1ciXbDfuwGSTuSdOMlkiD94DSqNmMqixw5pf4KKy9fm2KtmUz8dImKmZBy+ItbiBYywVjcu/XvhsX3idnHSx74qJuer0goOmJW0P7mp9p9N4N3bwydhFrWuJffFnvsBJqGZLBYL4hcVIxL2ueHZ7iz8/IN9qIRC8/y3PaZh9dLiMDtYofEaH0q4BirUWYpgcOnBVQZWx199m61WN4dMRsPGYyX+CsYjqfYNwQLSR5Kjl7epv3zu6TJAl5Itjv7ZMWKYcPzpjLkk6SsdPv8pVvfp7CCT6+/S4iXbBIS7IsDy4+IqBvSgRmdNU0+/xLa42zHisDU9A4hCKIAxjd8n6vv1YFWfh7M1bBxYguhH/uZ37JW//C65cV8qvvsZICfHKsQESunXDBCAeP8Y7aORZVTafXZUNqcgvZVsn87j2KooI0zL9CK4x3oILVrTEGoROaM66ZR7jUzIs1Fyl8/KyBYfPR8MVHJNHFYCGjxbeznslkRlXXsbE43q/Yr2d9uO9JlpLleRiE6kPybmK/plIqrOHGKVV5tEyYz2c8eniPL8w+T9JLSXSKVimVF6tG5disvBytIQIQ4glBuHYuSEeaZKCuOTo+4uzsnH6/T6/bJcszXnr5ZWbTMbPZhNOzM07Ph3R7ffobG+R5iyRN0aVmb3uL0WTKdDZHSLC+wkmH0lFa4zXWSM7OJrhas73ZpdPWJJlajgyhWZJKBHAAR3BGDfKSLGlhnUJ4hfMWJVO8r4HQjG3rCT72zsxGU4bS8bH/iOHFjK3tbXa3+3gf5hZKGY2RBGz2++xub7G10efdd9/l4cOHbG9ts7O7w2LmeDSdMJ1OMcbQamckaRKasXWYP+QRoRdJSrKsRafXZVYWbHQ3EQou7e1y68WbnA5GXIxm1EZSVQbnPEW1wA7HbG3usLW9idaKKo5oUFJw5fIlTk/PWRR1kNSKkPQUiwUqyWjlLWazAlNWMSxJ0jRFCMV0PiPvtrClhiJhNJvz+a++xh/8l7/Ff/rbuzy6/5AP3r5Nku+ze/MV6G/xzu2PmIwUeecK/c1Ntnan7M0kbnKNaur4f773Ax6fHJO0M45v32YmCvx4n47NMeoM4QYIc8LF0PB0sMP+za/x+rUrPL7zgL3WFpc33+TpvROcfUR7f4Nv/M63ef/tH/DuWz/gyuUd/vZ7f8Z4ZhhP5rQSzebmNtN5icLiC8Od957ybPhDnj56zKs3XkEUhjsfvsNsPuH4zFGbBc/Ozun273FyNmR78xKD8Rw31qR5zqOnx/zLf/kAb2acnJ5Q1RlG9KlMzUldMp0vaOU5aaLpdjooMjyO0hh8kjO3ntok1POaWVlw/doLLC4mFLMJidxBkOEQWC+QwgZGuAlsDTjaAKKxJyYcZw5fG7yQoXdcSISSpElCkubhDF0ey78aFW7isCBak8c8vBThLVPnSYXDW8l8WjMcz7j/6D0e3r3N2ekAg+fFV17li9/4KleuX6fXztBOwOIcS0klJ7z18Xs8ffaM12/c4v69J7z24qu8+9a7vHDpFSbVgrFd0OrleCdYzNqMvKA9S9mRCcbVPLr/FvVXrpP3NhC0MEmCEZZWPcV7waKUnI7PyMtjipNThouEYbIFLcWBlOxd3eHm1asUdodOq480FmGmTKclM9oM6xKbWEy3hfYZPdkD71kUCx49fczTx084OTnl6PCQo8NDLs7POb+4YDafM53OqKoKUxtMXSN86NNb0TI+KIu8DUyKgCRN6fd60c2ugtjL62K/r5DPg6FShvyhKktMXTEej9Fak+c57XYbmSgy0SbLUpz3zGbhmuo6DCqXcQ2sm4190rBiJSmMsd8Zgpsj6Cxh/8olkiTl9OSM0XCMMZ6qrNFSIEQjUg2tH83aFUsT/wjmx5PQ49fc8QMT5+P7CikDq+NX1/XcdbIqZsK7NOdtOCubHi5j1iV/IU/QwOTigv/7//xjZvMS5yqU8KRCst3vcnVvl0wKxrMFhZeIqqY2ccyE9WFeWWT+nG9aOhRay+dcJZe9afEVAO+Vkciyr1+KqHZqjjNBI4lscuUm320Adu+fnxP2vKPALxZuzXNtQPMArIfYYFww4/hkMBBCoGPHaDARFCHVF9BqtZAIUiHBOirfqN3ivRESq0OOi7UkIvJ2tcMWFRZD7WqUs8EEx5iw7o3AOxNk2kKGlpHxlOGsZI6h8pbapAhpMHaBkClWKA5swkZ/k262QY4k2epTVZZ6VkJpGT044eMPbjManIEpwddLYOCT6yMs2+jPAWHGXpqQSkVbSITW6HlKVZT8qtevSdEWeCTBivkImyTS2sAKc4gBQckgF/TBZU84ViiFDsO1VxT9ClH4JBIUEvLVz4QAFJsjm+Rt/Tp9CHRCeIxZMUYNWmFMGCQpYretl8HdMkwMCyGmrhzzWYkrHUYKZKLQqSLvdJAiSP+cMwiIvV3Ndcd7IjzB2D04zTQNtFJIZLQmBUU73+bqtZf56hdeQ1MxHQ04Pj7n6dEFh2cXnFwcc3L6mMV8SD2vkaMK72pGypL7DL1Q+KpimCsSIRheTLh39wHtbpvTo2ecDJ5wlJRMZwVKKJwMU+1ZFhrNE/NrBXmDCjWujS4ycE1AWWe/1hZ789yjTLB51s41c+qj46dbOVXapeX/37Hq1taCEA2iF59pDIQN5tEEr6WLo/A4ERqtrTMY7ynrMjwVIXh0eIyrDVl3A6Mzks0dtIsyj+mUoioBh7Grxt0G2AvrLMyBWxXmflnACyGiI1vTkBwOMikDg+UtUS/vMc5irWM2m4cholJivAEp0Fqjo6ucEBKtBGmWBROKugw5gXPLA1onOshVl7CnB+E4Pj7k8NkzXnrjJVKXkiYt5gxjUQi1MaBDELc+DlH1YQ/LKDOw1oEJRRJekCQp3nkGgwEXF+dsbPRIkqtIpbh0+SqVMQwGI0bjEeeDC3q9fuz3kwxqQ6fTRXfboVj1i1A4xl495yBRCc6Fwm02W7Cz00boTVqpQierpnWpRNDGO7Oc/2OMwSUJre4m+IT5bEbVuNGiEVKxqByzomI68zx+9ISOus7mpuC9d26ztbfL/v421w622e63QYT+wlYrC5msExzs7dH72tfY3tzk448/5tmTJ8vRAJPRmPl8FvoS1tBVF8EhlSShPynO0dnd3ePS9i4bW5ukiUZ4x3g8Zj6vmc5rTO1J0hY6TbB1RaMGn86nKK3I0oS6roMRjhRMpmOcCzMge/0OQmmMdxhjabfbDAYjhNAhPXCCeVFxdHrG3fsP6G1toYTGmYrZ6II/+eN/yx/8439GN23RlRscHgtuvPoZfv7BjxB1l40rW8yGp/z4B++SZF3Onx1iyh550uX2vQ94OJ7w7a98Br845cdvv4OZthC6ZvvmVf7ht/6Q7/3pv+MnP/sxrT/a5Jvf+DwfDZ/w5P4hly73uLyXITq73L/3hMloyNs//ymnDw/BaC7vX8OWc47ORiwKQSrh/PCIUmYkCjZaGf12j8mizXs//SnDJ4fU0znTyYAkSykqR7uzydHZGfcP7yFEwqw0lLWjtjnpbIPJHMrpmJYS6LSNNTowT9YghMarnLSVga3Y2uwzn5QMBgOm8yIkOVmLw9MZqREM3Jjy3m0kLXZ2N0h0B0FGM43CU8ckVzfBb+1UE0FCZGt0koaENstI8w6+ATmlJG/l8WyMIUmuxdBGRbEWX5cCkGW8DctbSIeiAKeZTCuOD0958uQ+jx4/5NHDJ7TyPl964xa/+/WvsX/9Ci5JsTrDosAHKfJsXiMrjy8cZ89GPHjvPu6kwE3mHHRavDcf8Lk3X+FH7/6IF69tMSkGJIVlMjtnYBK2jQm9NmbB2ZP3GT15hauvfZ56oXg0rRkUE3pnb+GqlHunJdN6wuUNw7XeBq+8/BLnsovqtrjWAWFHGASpc0xHUwonIWthVUKet9iVMC3mnJyPOD895uLZGU8ePebw8JCzk8CkDc8HFIsFVVlijcFUdWDNTE2iNd4TirZ4I4UPoPEnLfXb7TZvfvazfOHLX+HDDz/k52/9nOFgtJxtppTEi5U7tiAMmW5YpfXhv0IIkjSltpbaBCCy3WrR6XQoiiIUb2VFXVeB2foliqZPOnYLIbHOhIHNKpQSRVlw9/59Ll+5ym9861tMJ3PufPQxz54cUs/L+Pn8skwTzVgouVy9eKJ00UUfgyYsylUx18gI8WKNqQtAr5Shh0uyapcAEEvCoMn71hkmsRzMrZUmFQmTi1EAroOTGIkU9Ds5u1ubdFo5dbnAmBrr3BIQXdsxS0azkWMGEiK2KzS5SXNf42+tG4ksgVII80Q/wSk0hEaYV0xTZ0Fzj4gjFETMeZwP/WVr0SKcNW5llrJ2XU3a15gLOmfjGCSJkjLKMBXSB0WWVCr24TVzIEE4h/TheSJXZYD1ApRCJClSe6ppgY/Oxs5azMKQaImlDqogIdDGLa+JWCsoKcA5XO0oFiUlhgqDcR6tHIrADoZ1Y7AerJA4BEmmSDKJVWG+XN7pkWedEFcjuRNyjJAHIxtB7wokb56DFaFFRKQyMIBKkiYpVbrgV71+TYq28FoVbM1mWiuahKdxlWkoX+JClqxkHzKiDJ6V4ySsiqr1GW3N19cLhGVx6GWU3oX5Zys0ptEyPy+9bIqRZgGLeE0yUnjh8oMGNtUJ+9t7dLf7tDY71MKAglTCbDSk9GHBEZ2XbMyRhWzMWhpUY2XjqmSkwmmKIYmQGcYpOptb7B50wFleqiRVrZhXhkU149n5Pd5572f8/G8+JD1fcPVgg0lWYYqS8nzGZG7wVYm1gtOTIdPBBJ1Y2tLhEs8hBZOiXBY8ltCz5AiGLmLtWpsI0cxR8b65bzIWnKuiRK4FyEZWuURxWLFgwUzEx6bZGOAky/+Pj2aZTfiI+n5Sny1iFegazToxSDdRz4cg1qzLJsgve0MI7kHWe8bzAuFgPFlQTkpmtaFcFKE/zXtaeYt2K6eoSubj0XLdNzKLgPQ1fXV+xQA3e154PAbrTfz8LlrtEj9/45IoqGvDolywKBYgBEmaIVzoEgAbilMpSZMsuBulNUmSYKqaptm6cZPMW62AUi4ztvB+o8E5Tx4/5NanXiRRGanOEYREw7oa4wzKhf0qlCRVCmMBKZaHl/BEiSixb9OtZh5Gvf10NuPk+Jh+v0+n06HX77G9s81sNmcwGPDxxx+RqJQsy7h69Rq3br1Ev9vl2fkZ87pC+gQtFViPq/xSOjmfl9SupLIll3e36bbzMArAmOUh55zF2BqlFToJwz13bryE0C2GRycMBwOMWQTJqpQYmeCShIWdc3Ryxm67w97BDWbzivHjZ1wMBhTzMa+98iL9bguhJKpxW3UBPd/o9fn062/Q7/X4+KOPOTkKnx3vo4tosNQO4zFkRFclOtFhsCnBpj9VisH5BRcXZ5xNLjg/O8PUNe12m6KaR+TYhjlaSjMYDplMxiSJ5vr1azhjuDg/ZzqbIVQSpB9S4RDMFlVAqK3l6Pgk7stw9Cslqa3DOYkxitvvf8SnXnuRrKPJasO92+/z2//g27xx69OcPhpy++37XL9+i299+xuIXDA9vkthD/nonXu89OIXOT0v8FPFYHyOTi+4fv0AtZhhjCHZ2IDNNp4JJ6fPOD8yyPeecT4pkWbM0Ud/w3dP3icRu3zw8B22LxsKxmz3d3jpxgEf3nvM7Z/+AJEKknaf9995xEae8tqrX+OFWy/x9N57fO+v/5J5WdDPQw/1ZJyQCsFme5NLewfCbY3wAAAgAElEQVS4Xskoy+nkLY6Pj5guPJM5FHVwX827Aq9UmHFVT5gV4MuC1naf3e1LDIYTJouSYmGYVnN6vYzZbMHNq/u08ozh2YjFIrh61s6Tq5xJ5cilRLTb1FJh5hX9jT5BKBd2uSQkozScxCdAMW8to+GQ6XTG3v4eebuD94LagyMmuhAttWOsXJp7LcP6WgJIjGOruCtiGLcKfOGYnh3x8OFDvvfDd3h8OGNzs81Xvvgi3/n2b7DVv06n3QZZgrdoBMp7jHAYKUF5lDOI0YxsOuemgE/vtWm3Ki5/9jpXWwUv7Xr2uxNe2qrY26h4Nj1BScH42VtMs12sfZ3aGBaLmsf3nvKD//f71GcLnj0r+ckzg20pPrdzzpsvvsGtK5foHHyKvb0Wvqpp5Xto32IhHLPFhEwk1Eh8GWbSDRcV50XJcDxidnTM8MlTTg+fcu/wAYcnh4wHQxaLBcV8wXw6A+/wJrR8OGOXY2ysD0BRIkWI2XWFimBikwdIXDyHmvMI0jSllechWY5Fd3A6DvbifplfNW6I638XS2Cqcbp13jNfLLDOMU1DfAVo5S3yJKWua4qqoqrDjLumTwoCg9cwWs06aJic2lTL83u6WHA+GIJSvPnFz3P91i3e+fl7fPzuHYr5gtl8FmToUhLaQkL7SzP+yQsZP1ezLn1gmtbW43qugQvDohvWQ2kdJPTNL0Q2srHBWy9OPpnzrVo6UrRqBVDUe5QKRXKatRFaczEeMxuPKWrLvISyMktDDxsLyUaqKeJzbkBsKaMp23PM1mpvNXngUuoIQXm1luMs1UKyMfbxzS8uf25ZDC8ZkJWD5nrBCM+3oqwXjUIEZQr4pbP28tp8eCa+KbCjVNBUNoDs1obzxYXRTtga5S2yAltWkKb4VKISTd7rImdlMDgzBoUnSSS19CyswbqaBIVOgsmM9MFhQRKJFhfAD6lj450LX1NSIKyJZkMpNUHC6lQsliXodjDZ6xzscvXmK2x9MOJ4cpfK+CXYHm6jjIaINvCca2sHKfAivLfUCk0WjZn+bqIBfl2KNtEgC83coxWyEb4tntv4zjtsVeNVLJQIyWXQ8AqMCEYWzQJq0KNGHtkUcw0q0bgBrtg3D1F+KESgcdeT/FDIuYhwKILVfrD+D9cdmgul8yjnkcbhaxsGAAtFW2f0shab3R7dXo/WdpeSmnI2wZQLZhDQqPh+jRbbsSoqgCXdjxAYEyavO78qLIzx6DSnFhIXnbyUzsl8ihaKnB5uW/CsGjD/+UMS3+GFz3yJV7/xZVpphp2WzKYzDoenDA4fMB8cUi4mlPOKajZjupjj545xUWOMReCCI6f1JFJTGRMT0Ubb3hS+wa2sYcWEEEvkhrjxZbiRSyQsaOtZPsPQiBsOF6zDRYei5vMrKZfPtDmYiEyp83658Jug6b3DWcFS7toU9k0hTpg9xtrvKZ2EgySuWQ/oJKXV7XF+fMJwPqfwkiqGClOV2NoyLYpgeazUGosa0J2lU5QPA5mbwnEVfMMfpRXWO6ReOUcJKaiNQaoMRJgZp+OQ3KKomooPkPGgMHGeW7Q5lgKlFXmrRVVUVGW1lIMU8zmdTgeZ6OXdVFIivcCYgkcP77KYfwWVp7TSDlnaovAXSCWjTXw8SGLhLRDUVb2c3ZYkGle7cE9ic7mL7plaavJWKxQizjMcjji/uKDdadNutTjYP2Djxk2ctYyHI6bTKfc//ojTo0O2t3fYvnaNre4mp6cnZErTStt4Z8EFSaYTgqKqeHZ8SrVYcPXSJdrdFg8ePqYsa4qiDLKaBmSQkllZcfveQ/Yu3WT7xst0L1UMhmeMhqdMpmMGVc3UWioZPlsz0uDOnXtk/S5b232E8pTFnHYr5cb162zv7JFpjTM1aaoBh9aSmzeuc/XKFe7fv8edO3eYzyaAwNV2bU365bNMsqD1r+oK0WqxGE/Y6G+iEkVeZwjvqauK6aSkrCRCaNIsw9pgOoOAolhQ1RUnJyfUZUmxWFBWBpRGSY0XkrKsKOYFrXa+TPQaAAkUQiQIKWl1E4ppzXg4ZzId8KUvfJZ3fv6fGI/g61/4JtevvcTv/94ue/tXmC1qnjy9zdnZR7z3w5+ifcHN9uf46md/j3//vf+D3/z653j/zjFSC77x5dfxf/63yPMhWatLp51Sjifc7OwyPp/w5Pt/ymbaJukoqukFD48HFOkHVH7CRtFiPqgZTktaYoN+L6MYPsXKfbobeyzOTsnSNr/9W9/h81/8An/8RyOkgkwpptMz/KzGj2pE2kZJxfB8xsHOJq1LLbRKObuYcXo2QMk+eRrMAZTIQFtU6vHSU8yHOFFSGMf5hWexEFiT4iqPd/WymE50gkSQpRmt3MbeVUtZGZK2QLbh2muvc2nrVd7667c5G55THtQYNyaTIfH0JkWIgPxGZASAs5NT8ryF94KDS5fCnCGCcZRMMoxbpoSxdouganNGP8elrV6h+zrOTiL0iM8GRzx++hH/8Yf3OB4vuHSpxde/8Sn+2+tv0OtfRuUJXopgRCUsFokkDT1LHrQDaUAUJdXhY0Z3fog/vUv/4jG/+cIpdZ6jkzbq5G95qTfjwdvfQ57NWNx7xvbcMqsq7t/7D+g3vogZT8G3uPuw5IfvnvDR3T/mxy//gH/0X/w+f/APvsTerVdoUdIzGSrbpFaOsQzzU23pg8mAdMydYuAShtM55fEpo5Njbj+4x92TY46OnlGdnVKenzErS06MoahKVGWi23OYz4QPxUdIImmQxdjL7ElV6JEXPqiRhBfRXU9AnIflgn87xhju3r3LvKxCH3NRxPM1AmBSYV29ek4+SAwbeZuSYpkjhRlcKzA6yCdrJpNJAPrSlDxJSZIEnSbUJqMsS6qqWhYVOs5faxJ6F+eyefyyaPARGDPeMlnMMd7R397mm7/927zxymf46MM73L79PsPROcaU4VzTSTwLJVonkS1MAlgRG6Qa90e5NoM3HpTRiEvHETE+9CHFgtZ5F/HMpi3GPQfQr1ptIiTSsG5oLAnBjRK8N9TWczacMpzMEYThydY4jE8iGBJN1kRUGjUMmrXE42bpMtnE+VUus7qvQoTrbPIXJRVOhdaR59m8cP166Xy5xpYvwWu/BKuFCmZuzfdCP72Na+n5UQFxcUaGLbb5xELFmVCMGePimCyDdxZjLcY5jA0AtBIi9GQbgxKCTp7TT8L9dFWNMAad5aRJEgyWlMRJT6IFykUjNuWoogouTzVpllJKqKoCX5Z0asilJFUJSZJQSYNwFq00vq7DuiHEOCcFha+x3mKWJIQj0RoRR6oZn+NkD/QGQua4ekxd1+ANjjr4KSpwElIbirdgkBjmMDtrISr+hIwqwl/x+vUo2mjYK4A4zR6x7O/BB0cV5wKVHwiAkL0KWBpGOBE2ZMhLGwUvq2DB89T9Un+93AhNYSEQqCVasGK2oEn8GzetZkzACk1YoRoKj44BVSCQzmHrmroo4qwxz3QyQrQlMldLg5VVoIzvG9HrJZLUwCHRLdNZu7yehpL23mJtmA9VO0eNRgiLQlD7YBRfUvNsfM7PP37InaczdqeaW9fnvNbqcOmFq2Q+ODR92nso57hqjrMFZV0xO73g2bND3jl9ytnP/pp7Jz+hmk5wIvQu4MLdV1qAbYrMtUPeC1Y9b+vBYK2AY1XQCEKxZa1bMlJhBphYFq4eF1ymYxBzzi4ZsuVKWzJ2wbRh9a2GzeMTQShe83PgR1hnUmoSpajlymmqqquA4JYli7JA5B26nS5lWTIv5wRJa2gMF0QnLYIkIXxmS8OoyQbkNitEbNXfxrLBGATGhLlv09kcJS29DRBCBWv9qgpSDL/K11by1HjACYlUannAJUlCpcOoBm9dGP7oAsMTzr2AEKVS4oxjPBwwGozYvXwJJXRwGIzs6bJwjs/NOR8KNmOW60EQCtHQgxMOdCElWmqUVrE3KjKxXpDowAYWHmbTKYvFgo2NDfb2d9nZ3mI6nTEej3j8ZMbYGF7/3GfJs4TR6Smqv4kSGUpkWCNBB9TLesFksuDj2X2uXL1MXXvmiwIfr6mubej/SgVSZ1zMSiZPj/BJKFI3Lt1g4+ASz549Yv7uB1ipcCoU1SpRoCSFMZweH3M6HtDqZCjpKZ+OGZyPuXnzJi+99CJ5kiAiENMATnme8eabb3JwcMDZ2VmQQhrwNkiZjDHUpgpKAimo64rFYkHQWzsuLgagYFrPmEznTGczilpSVAIhUypR4WxNkim0khjrEc4xHk/DAFuV4DwUi5Kitgil41BTWBQVAr/sg7HWU1aWurYIpdja3mPKjNF4zryYcmV7k9P9HS7OTyjOCpzz7Oxv85//3rcpXc2Hx/cYXZxjzqZ89sUbfPEzX2V3+4DBcI7IJ3zhy1vMp8ds7PUR21e5upczGD/j3rMnnHhBkvZ58VbKtLjHyy/s8fJXvs5P3r7D0Z2PGc4+ppu2mT9NucgM3StXWNDn8HxMN92ks7lJUQ+BKZVLKcsxf/4Xf879R4/Y2T+g5SwjbxHFgla6i1UaoQV53mc4mnJ6fMzW5jbzuaGuJUiFkiHB29rapKwrziZndDsJpsyQuWRrY5PRaU1tLbP5jCzvYmqJtJYkESzmC3Y3txFK0+31EaqiHk0wRcVcGmS3h081u1f2een1l3n44RBr65i4soyxq9gVz0kPrU6XbrcbFCtS4iMijNJkrV4YESHWen9EjKcxUW3A+vVXtONaxlJbW+5/eIe/+t5fMrVzXnrxFf7+73yTy1eukOcqnpk6xImobfM+DOC1cc9LAdJ6vDH48ZDJkyNOn1wwOxowOTxnuJgwzeboZMbWFiS6TdpWqLYnmy/wi5JEGlAFw+kD6uocaUv2+m2+9uWv81vfeIPf/MLLvPTKy8iNDWZSIekhFhZR19QOzlyNIqFbWtx0xJOLUz568oT7jw85eXrC6NEDxhfPOJqfcmbnOFOSz0raCwNO410474IRQ5xN2yg7nF/m40sJWzz/QwuyCOQR0UhqTdXjvUUlKVJJnAlFlXn8OMSFCIrJmB81Y27Wn9k6++r9qihpztmGvvKsZHHNeV0WBYhQADWzvdrt9motuGCDXlXV8yqnJpGJfgLOirUEPvQ6Szy7B5fo9TfZv3TAnY8+5NHD+4zHA6yrkYnCeUFVG5QKMTNRikSAFwopw5mi04xOHvru1z+5kEGeJ+JAaGQASJukugGMG9JASb0kAdZ72hpwN3hYJyx7zJ3EYEO/Wix0guOGDkYga7loOCObzbSWbHgR2ar1vUvIK2Pvf5hT27BsodB28cxmuQ9ZqpfW32KdoVsvSm0j74s/2zz7UHgFRlJF0qC5o55g+OVcGJCtlSZNU1KdUCwWTCczqiIU3Q3D6r3HsVLENZ4l3lpQKpAXXqJjDiy8QHtP4gn9jonCaEmFC2ZmtYcs9O3reG3Shz0kTDAvlC6M8nCmpioL5qKmFAYtEnTMxTwh/jipgmmcaDI3ixAm+O3GmsX6BOdTHCnOy/j5PDiHcSZ8TuvRMuyFuq6RaY2sa5QOzJoSQZnmTDAH+lWvX4+iLVIFYdGsLeamOzFKsZrEWqrAkDkpIjIVCzIX+owsDQoglhIr4BPUdniF2QiEJFFAUwx5HyncZUHXFH1hVa3T5c//WVHYgkb21/TjuWhcYSjrBaXNWdQlF09GwdrUVNiyDEyKCjIusZasO5rNJVEyJOU+Fm4h/gVmIhQrFiUciQwOSs4nwTFKgKfCIahcwdOTEz6495jZtKQ3tcwuJlSzMDeiFpCIsIh1qwOtFDC0cWztX+Hqa5/jWjXl3Vzw9Ed3KM4nWOlJCNS3iPeCX0LpL5874bkqpdFJgo9Of877pSdNYJsaqcNqgzdNEz4yow1D67ylmTztm4jD6r2W6JALPxHitcC7teAV/wTg6ROZiQfhJYlMSKRGywQV6DGmkwn3FwsyndLb2GBeW7QOfYyCwJ6FSxex8BRoqfEyWsiGqmT52WD13su0K16TdZbSWnIbgrc1ntm0QCmHEBoV57QVRblkQXw8fPAhoQ4zXmJPpNZBc64VOk3QZbTXjRJGaw1S5DGDUjhTB4248iwWM4aDC/YuXUHrnESl8e43PRd+KfsDQnOwdSSxF9M5h/DB3rexkg4Es0QridZ6BTISbOe1Emz0+2xvbnK4WDAZjZiMRnQ7XXb3drl69TJFVTE1gsW8IFWKrc02wsyZz4c4qxFJi3a/D1rinaA2gSW4d+8hRblAKR0apeMfY0Mvq1QJt155naPzKXcfHrKzvYu6gE43pd3bRiUtKhMa51udLiJVJK2M1mafw2eHjMoFxxdDTN1iMbqgmFU4F2fSXT3AeUdZFksm2Plgy97ptFH6IDD8KGREC1WUPznvUFJS1wWmDkxqolOG4ymj2Zjb9z6k3e2SjGdM5gu8D8Nyw9xJi7cCmeUIWSOFpa4s3V6Pfm+T6WxBbWYxYRAYE62xVehNNbVhbuckSUaaZDg8ZRnmx21u9el1ahbjU06PBuz299jqHHH7vTs8+vghL7x+A5VB6hyfevEFbl65Sf0P/zEbOiPrdfEFXL9xk7PiiJ2dHD89xaQ5byYbtPWYjz74EX/1/feZT87Y2YZ/8t/9M05GR/zVn/yv7J895dtf/Qo3fv/bvH/0A54+Ouejnx3Sa2/S6W/y6N4AZ9oYrSgpOLiyARs9LgY108mM2sLG7j7y6GN0Oafb0xjdwZqC/uY1rr94i3/6T/+Q//l/+h8ZzyZUZQ0kIe7Wwe4ZZ3H1jPlsyMXZGYt5D1t7trpbzMYp1hpGwxFZO6EsjhFGoHVG3soYDYacHV9gami1NqhKQyYFWZ5S1TXj8zlnb/2MJx89YUv3uXppk8u7KVq0kF5QlwXC13il0WkLISRBCSbI210cKji+4WMMlDg0Sd4hydsx8qxAy+f//5czbU0h0IzoyXTCwf4N/rO/9w0uHWQBVTYpHo2THkQVZqLJMIIDG0YVKOFDn7RzXJxf8P5bb1NeXHCQpzwt4Pi8ZiO7RXenR3ezHeYzaYnPFNiCcXqE1WOqbMy4njHvSVxnm7Jc0EsM/8N//0/I25rN7TaKYNYyd4qp8CTeI4oKM5pzWEz5+fCIpw8eM79/xMWDJzw8ecbpbMi0qPALD9MJ2AVVUlCrkmI+w1YeX2ukT6gJPe5LrLLJE5Yh3i/dD4X3y1iHbwBoEQsKolNgc7dl6DlGL3MNY+rQJxxfzxVivwTID+d0lBn6AAQ1/eJhFlo4k1bKkHgGxd+v63r59SRJaLVaJEmYD9b0NJVlGfKA2oRcJfamyVBRRAVOAOZDvzfU9QwtFDdffondywdcvneFZ08f8/jxA6qyoNfvkaYBJExUitYCIRxSNfN2g5lOp7dBohKw4KXAy6hMgCXoKxqLey/CWSUIQCYrIH4doH9+HwQWU0QV0fIlmlEB4e9S6kg0PL+flkqzT+4hIqngWfZsy9ie0ziCSiF+sectAiurwsIvz2PnXJi/6D0mFt+rM95G8mBpV4JpCs74zH+Z2czy+2JlDNfK87AGRFizodi18fpiYQgI4ZdLsmHmG/WSlDL0UvvAUvqiCC7J2uCcQMaRG87XeBmZa6eXZjumLPHWYFOJyALInspY2HsbJMjSYoVHxTxQNGtAKpzSWKFpxsn7ZS0QjJtC3r3ao1I2JjEaZx3SB0VT6J8N+6Q2NdoYpLJI75BRgip9yF29+/+Je2TTBwF+zZY4VLtE1G25AWIQb1gCLWVgKuKCsr5h0VYaX63DR12XMDYIiRSsbcL4Xs11faKTM5I3y3+7YQgb2eISifKxcTbkqsGMRIhQtGkoXEFPW3SaMBoOmA+LgCBIhfQuFKK+YZtCN7kTHu/CmG4h4kwL0TgohqlcYXcHp7tcSVrakyBQLglz3XxFIiyVN4xGZzy8/5jjpyewGNEXXS53cjaTDNUUzM/BMmHqBGiCo5NCpR1ckuOkjtatYfG7Fcy7fDWozi8+/CDfcNaCioW5EEtZwIqNEc993qYR20c2QsaN2jzjWN2wjjKvehPX2dcQRK1dIYiNiQZKPvfeDbAgfGim1UKF9Seh1+1x7dpVup0udVkxm82QiyIcSHhSvWpUDex47J3zAYlRUj3f0N1IWoRcumI1eyWwa46irGhbh1AaqYIML+CyoaC3xlFUZegbExIhogTRuZUzqggHgtJhpptUCp0kKK0wdb3cN1VV0yGuOx1MSRAepQXOVgwvBpiqRqskzodpkoUoiWn61EQoLPI0Y6O/gSlqytmCsrQ07l0QJVbehyIxPspw6AUjIC0lqdS085z9vd3glBav9ezshCzPyfIWKu3irGNzo4/qSWajAa0k4+T4Au8NVaXxBKRayYRWmlK7EqkU3lr6/T6LwQUQR3tYcMaRJC1eunWN05NzRqMJxXxKa6zJc4kzIL0CG4abGyyqlbB3+RIni4LZfIpTitF0xtMHj5ltbbOztc9wOCJJoKpKsixjc3MzJFs4alMxL+ZUVRX66rI2SZ7itab2Ie75WIChFVmakuc5vW6PqzdfpLKGDx98jHWevYMDCnPKeBJYMhX7Ceu6xhUlKknIVYtqPqcoaiQaaxwCRZqlmJhcKZ0gcThbLdFdKRM2N3rs5H1mi5qdvX2UK+kmkouTgrt3j7m612evu8v9xw/43/+3/4Xf+f3f4cvf+jpZlpOKBJ059G4fUaUhDLUtWcdzwD6J95D2QGb0UUCbrY3X2Np+gV7nCZPZET9660Ou3voav/ud/4aOvUAPn1C3dvjml77O99WPuZjPsHOBsgY/mdBJu6hum1tv3KAcnzEZzBkvNH/x53/Fb3zzmzw9PeN8fEE7maJTQ1F7WolkMhmyqGouhkNGsxGVLel1O9RFcPTzzgaZmzWcHc+pWdBptYAOMik52H+BzXyHD97/68A2GIvwBVvtTTY3erR6OU8On+HRtPIexaJkPlvQSlMQjnpeoNotWr2c6fER7U7N9v4NXn3xBRJ0OFFVKBSUUngkzoVktjaWo8NTLl8+WAJVQmo8wcQmSXOETJ6Lm/EUhJjERH7gF0o30XzPhX7Vay++yP6lq2TdNlZVFN4gtCD1oD3h3xNx9qp3eGVDIldbzHjGe2+/z3f/6j/y09vvc/PmFX73732V9gvXuNqWbLS3aPV2EInCKsF4MccKyKuSBT2m7TH6luRT+5fZvHGLnZdvsXflMtsbHWSvhRM1RhqchbqqeToecDgf8fTRR9gHE84enXF3cMjtwV0WgwF6ZDHDYFZixByvDLWVJAuPtg5de9rSwcwjrGThNFZLqtQH9c0yJ4ugY6OeiModvF/e22XhRsg1PI2JRvx6zG+ka2T8Id74KgzCVkphpcPSWMSv604+cQyzApwhJJEi9vmI2LrgV7RPzHH8GiMTfrcoCsqyREQGLonKgSRJQpIr5FIRZHzIKYQPDFZZlpiqRiZpKEa0ojaWqqgRSnH9hRfYO9jn4PIBF+fnYXwJHo2M6YbDuwrnK0TUOEX6MM7/apihdabSrxoQhFgrGsIIAEckAdbkkOFcW1/vAhFHL4R5OGHETHNjvffhcxNbgOIvNz1sv4xQWGew4hUvSfJm54klmRbcohvgOhSYhqoOzFhRVdFdNPRKCuvCoO+Ys64buDWAS0MW+DVviV92nc3X12DyCIQHCa1WSRiNJKO6J95TvwZIw1q62NTOjdFOZMpcXeMXAms9XmqMdQhjcHWFwyBTSeISfKKQOvSwJTYUtVprSDNypUhLj/ThOQkJQofZyzaqkcLaCOvUikB4CB+Kd9mo5poN40BYi/QGhYmMmcTaBvePhXNUHi1rhHj/pXMRoIk5rTPLZ/h3vX49ira4UYL2OXxJRq32qmiToX9DrpyIGmpYRMcdHwNgo7QM6P1qA64bk6wGCcZ0uCnyaIqFRtYl14JcQKME0PxHKYlzK9p9HYWxPtrAe4PBo6WgFi441WhBKVxAqvKUel5Q1zVWGLQLFbj6BLgZVBWhsT92SeK9xLlQ9CiaPr3AMmprSYVHOYlwUUroHd5XCF9zcXHKg3uPGJ2OSWcl+/0tXj3Y5aCfk0qH9TKaO4b760S6HBCokGgZhvmWMSDZKHUQcWELokTRxUPeNwFoSZnQzGlzPrg9CiGXKE9T5PmlOYgIQyIbzbSP97s53Hx4dksJQNSFe9+gWTEW0ayxdRZ01QO5lKc2T/W5INUgcStGViBIleLlW7d48cZ1ZvM5b/3sZ0ynU9JUU1sbmVGHqe3SjSmAnoHyd9YvP2fDOjfIWpzOF6XBwYxHqzT2U64OTWMstQ3IvtQarVMsJUVRhYN8BTfEBO15NyylghSxkSNqnVCJ0M+FtZiqCsWelGHOjpZ4W6N0inOOs9NTZtMZeTcnzTK0TqJJhQvzopbXGp6pUpLtrS367S7lbMF0smBSVBTlPOjP48DVpq8OEfrDhFBgaqSHPNVhZpmpaWVZTIDCe9Wm5vDZU/4/6t7k2bLrOvP77eY0t31dvmyRSIAASVAqkpIYkiipOslyNa6BosKuie0aeey/xREeOMIDDzyoqAgPqkJ2yWpsqdRQIkUJACl26BJIINuXr3+3Od1uPFj7nHsTgEv2jLoZmS9fd++5e++z91rf+tb3eTPl8PAmViEI+6xklBdYo/EUtMpwfHHBumqYZTP2d3eZzEdMs5Kmrrn3yquMtKYsRvigUq+NxShDno+pl0fkasz+zTmPHz/g5OgK3zhMhMKKeacHVGbZvX7I7PyCLjgyWzIf7fAg3ufxkyNeunHK+9qzrg9ZLhd473n1lVe4ceM6o/EE7x2r9ZrziwtQBp+XFPMdRkUOQdJdMVeX3gBjNFHDRM2lD8BorpYrVquKG3fvslh1rNcnooKVZ3gvnpG1C4zLsdCGUDRNi2tFBKAoShwq9eSkQz9KYG6MSWCLwjtHURbk4zk7O3OMv2SceXL7Ep/8ZA2VpxgX3KopFt4AACAASURBVN7f5fHz9/m9Pzjj6fkjfu0f/lNu33oVizAgYgnR10QTaGKkVBOcr7A2g2BodMSqMbde/jpvfO0f8eT5Q4zz/Ivf+Id87eu/yg/f0nz7B7/HwY05H797xK2nDa+9/gWe7jzmz3/wE9T5PuP8gH/53/xrnl+uiG5FcX3O137zNZ5eaP7j7/wB//bf/i/Y+ZzgReTFljOcs0x1wXmleOfdd/gf/scfcXF6RG4jNhdBqOmsxDsHdLjOEfwIq6ZkI0U0geUCzs4fseIZq5WjLKfkRY7Ru9w93GFVXXF1fs6N69cZT/dYLmouzpaMi5L5dIxBzorWNTQXgZHaYb+4TuEL7t69TjZxRNWhM41iTIhaqgwIS8ujuFiuuRagF1vutzpRPVY0naPtvCg+6i0xg7STRD4VbKWHj9I3o3ohDAX5TOONh5gzIgcdCLR4MhQZYl8iPpPOZywXFe+9+x7/8f/+ff7qu9+iqZYQHQ/bY/64esrERoyv6GJEY2gXFa2CVisODq4zzscc3rvH137tG9z9whe4sX+DXE0JmaWJHct6yWq14pPzUz45PuX5w+dcPnnO8fNjHj7/mJOLh7jn4NcZ5/6KtX1O1laopSV0E8gVZVZhqMijwZMTvAGTkSmLMUrOzGhpY4fza3wUifP+fNx4marhfOzbLHrZsT64jX1Fagu8lFhoMwFG68153SsbWotOLQreO/Hq+tSjP0e3A/IYBTTrq359QB56i6QEaccUVKutfvv+99u2JXhPXhTkeZ6UCVMPOUHYgkqBtRTTCTb106kQ8CpQtx25zQguJvPhQFaW3Hn5HnsH16jXKxaLK67OzvFtR/AdXVfhfA14TGZFl1xl5OUUnalB4Mv7MFSWtjMw1ccGfRwRSbFoL4AHyqnhPfbURpO62nrBvL5uFlICEFP/Wp+Ub8cfva3KZypXfJbN1b/upz/XWyVU2Ys1VSsqn6uqEqqslfMxTwyq4bZVQ8mCPvpKYt/pGrbWyafWyHA9aZ32Kpt93N2fCyTKfUQNMapKAL3ZCs5MAntJathGS7MSCVjXzotHburND5klJqZQHjVBaZwRsagixXvBiom3dFunQo/VaCttWDrFkNEj9Ma+KokihAwdDTol/b0CqcTSGhUdOrQYWrHB2bqnpcdbqMNRx2GuQ4qndEgFigQsCPPv/w1WkcdPRdImCz5JY0aGcrUoQ4akDimIftzqkelbckKSvR9Qkp6OxebG6qsv1tpPUfXS5hf6kfZb1Y6e07wZRGPS5JIES6JCI4bWYpa75RCf7nij5BCMCrzWrJXm3EeWlxUxs+SzGfrGBN02+LrGr9dYJw2RVoXNoahTxY4AWNA5UeVgcjwiqSolcoNSOVZ7TLR4JwimTnxekITxvGu5WrfYtWLSWYrRmPndm+TjEjWoUvUJm9zSOkKBeLAZEHNfG/B0ItagUtU0VUfF0FNLkpOOIFmpnqhDqjCnErjykhSr1BxNkARQ9QsbCeK1qAchQmKoAFkwxGhotYEsw4RI1rlEzdtKpL0b5PB7HzNpOFaJZrDpF0AzrIX+UNNaY9FScldRpF+1YNrT8YzR3oT3HtynNpHK1XROKCck82MffOKBRzm8lEr5d2pxjduoq5exSL2Muj8IosEHhVKGIsuxGogdRnusloqrySw+QhMjy7aWpCEN/ZA2qyiG0MPG2tNJLJ11KNsrQlkIka6WakpUEhBopUTII7MYXXB+dUndrJnsjIUiYHK0LfGBRMcQoMFaC400th+fHKGiYlKMObx5jWvG0FRrquWS9dWCql4no1Shu4zGFt86EbsJETpP3XWsm5ZMaToVyYKsS6Vljcb1glHXECrFuvY0naIYT5gdZCyuVqi6IgsVOyNNcEvOV546FuyVinKyT56NKe5qRnnkvFaMdueUpuXs5EMe/PU7TMrXyUeWZvKEo5NP2J3tUZSJheQrVCgInewLoSgJdoJtLxl3Y67dewVz8IirJ/fJo+Fw54C9g0OenV3w/NkzaBtoasbX77I/LXh4/z5v/+B9VDbH64AtDLPJiMyK0fa4LOQQTEHH/u4+N2/e5ubdlymmExrneH56ytPTC6qqY1xMcK2na2pa10HUWCuV2OVqQVdXlHmOyTJ0Zglai6eeUoS6oalrZtOxoMqJao6K+NDigqD9zjdCdTOW8c4BrTnhYr3m5tig2nO+dOcW2e6IdbXk3fsPmJfXmU+nYMEr6ACzdVQZU8peoiFTAYVHhY5v/MJdbhz+C9ZXK165N8eq5xSF4+jxU5brlr3yOsEteftbb3Fy9BS9tJS2ZDIpyI3jn/+Tb5Ltet56+/d4cHYfw3XQV+SqoTk7R1nP1XqNMQ7vJ8SxGMDWq5pYR7SXynRbdbSNo/VtEpHSOC+JbAyaWBkwhtA4nj58QmhX5GbMZLrLZHZI1zrqCG3QrCvHfC+nsIZFrMjyTuwljKUY79HpitOTJ2RZy3QClxfn/GT5nD/aa3npa/+I6TgQQiZ7rQLoZddBGUUxGg+UPK0QsQsVOTs944OPHvD6V94gGNlbrVKpSX9zuvZA/3BCDhWEZJcSAyb1z4nMNwl4EgsCAautKMymvtLo4NGHT/jOn/4pv/+7/4HT40dEV5EbaNZLLpeat599QogNIXo6VeC8xURFMZ1w/fYtbl+7y5ff+Bm+/ku/yO71G7QELhdrzo4fcbmuODo75slHD3n87ClPjo44OTnj/PKCs8UZarVGr1asafC1QsWMTrUEsyYmw2Zl2+SNmCXUXWGKHKd7yw3pJVfKo7UiV2BVBjHgnR+sXgSslr0+xr5ylgBP1Uvyy/P7KIGr0MlTgDGAiwLoBS/nSogdpPNKR4mERZzNEL0EpD0QSj8niG9kJDGStEIZWSdKx8TOUMKIQYJd02fqKdZx3gEKm2fyJa2wxmA1GBWxWoSSIFXylCJakVA3kwm2zIgWPCK8kuea6Dq885ggYxGIIs9eFMxyoWLqEDl/fsK6rvG+IxLQRtO2HREtnqiKIRP2PctKS9XLoBOFcaNkEAEVDEYbscbRhoBUB0Oi90WJXtBakVmFKmxqz9CEaIYKFCrxoGJPg9SbpE2Rety3qlVh027TX0xfiZWiZx+vKvqE34cN0wvDAHYq+kRVPhojFE7v45Cs9c8/PKcg5sMY9eD35wmy9Pe7FqW49H6RHkElZQ/lRenUZApSS4RRSYNAibev5G298FwAHSkyjTb980vSp53AplolVl4CAXQErwRExEks5RD0I/gALWSpDy/kGmeELZW1nkIZnAp4A44IqiHS4tyEtiuIUUM6a4hGZsp4sDltgNYLIAJxoEgGPDZmRJV0JhBxQgFCRLhP9CfSRhoiuIhv/y7QI6OkuD3VO30xIU/pWAjJPyR9RZN6nlQQTwYtdL2hgJka+z77UlsUxiT6YbRIZm/9FLDxoRjQxxhTdi0Vg+i99JEk+dJUw0glZbkhtIqiiCPvgtp1VCHwfLHGN458OmOvnHFweMDYGrqLC9b+CBXWiNIAMDDHVQrgHREJylXURGXJigJjDW0X8D7iXcRHobtobdIB2rMPpeLX5QadZxgXmWYlxd4u+toelDkBcFHoUNKxEjFANqA5KlUdOxQdMXZoHQlKpyB7MxZgGBxAkil13PJt67nBKkpNWdMHGL0KWYBkxqgAqy1aZ6mx2qPaAA6cg7UPNCGivKeIIjHbz4tsPClrUSkxj70qZNr8tpAt1SNZfQNzn4Snnw5agkqUIbM5o3JMPplgJmPy2ZhsXEDr0SaDpkFboR6GnrcN8hr9cMaUJCs9bNDDjq2QqjGpoVgbob/Y5MniW7quAhwg3PS2a2mVo+paXKKumZia3unfclqnRoL1LLM0rRFKlTWiFtkEWQNJYUtpLSh62jB9lHG7Wl6xWFyxd7gr1TBlBAEzFqLCBU/nHRabhIMi66airTsu/SUoGE/H7EymXN/dxezsEghcrBbo3NC0DUWmUypv8I0X0ZTxCL9coH2gVVEOd+dxmRhNj3RHc3FCyC1qVNDGSB0N0/k+wSt823AwK7j10h1CNDw4vuT05Bh3sWDnGmTFAePxjKY+53vvPeBkeY2ffX2XsDrmW3/2Nj/39w75xje/zrPlW5ycHzEZz/GxQStNZoyMVQzkFnRp0UVBoTRzU3Dj5svMX7rD6uoTdqYTvvrGz9DONB/+4Z/y+JNHjLuGPHievX/Ea7d3OT0+4fJsSaM01kSM7jj1olRldJTgykugqJVhNt/B2pzpwT7FzoyTi0uyckK1XBNDTIdYoOl8os2J2XvnGoosJysLnHPo6Knrji4GTJaLalf0FLlhXOaU5UR8Db2n6TzGZMQYaNqaqq7IbCAzBd4UFLsjmtWC1rVk+YixKcjzEWU5pQ0GJVKmw2EQldD6Sm2GAFnuk4gOQvnNDXzl1Zd56dqOqOetVqyu3uX/+O1/w9XTh3zy3odcv/VlHsVnVCdPmY1v8Zvf/A3uf/whR48fMMuWqHjKn/3ldzlbH/H4wce89Sf/jqzzZC4nCyW+CzTJLHZSTlhWF1R1ZHG2oMk0s+kIbSzLqzVd1+KJcv8ohVMKT5s8knK6RuGbgG8aMuXZ3dGMJmK70QbP0cUVmY500XB+viR6z3Sck2eK49MrytmYg+t3KdrIUeuBU+puSbdqUMFx/9GEunPMkP3N43Fdg1YWbcvhnF3XFS4ECkwCJ0US7Uc//h5feO0Vbt+5Awn8kHNXDftwH092Ss5jk85yTb/Hp2QhIgGgkz1NGdmjhKppaDpH0zacXVzxznsf8d47D/net/+IuHxEu7hkHGq6phKFRZcsFMoJrZ4T8pzReMbt6ze4desWr7x6j9dee407d24zn884r1p+9J03+eThxzx+9ITHj094+PQZi8UKt6xYVWtcVdEuV8SR4UTX7KMZL+rEkgnEuExVwECrAFr522lqLVUETUSpdgiYBwp/qNlOa30IkpBsgYMxCUr050Kkp0ImvD9NVq9q7dmIlW3o/v1LpNgnSoJGTBXxIP1Evcx6f6ZIMK+TaXXPaElJfOoJk6/3Z5FURXpJ+v71c5slPzlRdy7KUoLvF5gc0s7hg5PYJlVefBBGUuhaqq7BEQSIDAHnRXkbF4QCirA8Wh+kwu8dmkCWWWyeUYxGNC2sqxZCkKqilj4rZfsEAFTQQ/8U6RwmBIlLElgv8YImeKHJEb1oJnifkj4G0TNSnKiNVGui2o454lBF6hUegxel7aA3IG0aqC2qJhBElGcDj5Cub0tlfWjpeZEtNLCIwqbvrS8AxBRbETcJ4AsAdUrY+p/t5xA2Vb7P9LRFUYz1MSW+6Vtapcg8rYG+XcT2FVpAK2kBkuGIeCXxl44SZwUr51kMokjr25agDUolfzktoJBLMaVNRQxtDCoTMSiCS607Dq8UbQxiF9BKjN4YJ3FP9Bgl+UbXaZq6Z/oI0OSDqPlG3YGGJkAbg/QHRr/pLYyw7UWspKKR8lk1TOemMpkq2e7vQKWtRyI0cmT0bxg2ZdeN2bBQAnt4cJtjq1JQ/akK8/A8w/PFjYdb6Bf0pzK8Tel5w13uFWG2n8OH8ALiMCASWhHd5g7pN0ObuL3Be4wWydlHHz5g+TTj1v4+Iw1Z5/Bti0283KgUw1uWmD5dUxySU+nBkqAtFZXoguPk8pTjkyNGN3bICysNOcqjcUzHGQfXZoymGcpritkEOyoIiFx43XkyWzLKJFXrOePDCaH6JKrvbIjDxxCd9NZ8zlykAUEwpc1GJJOYJrKnrcqAyusGQQu9k0RZx5QMayWVqtTf5rz426jPPvtn6Af/fx5Dsq4ETbFW1KQiIn9vjRibe+9ZVxWr5RKjMmxWEFLfnbEG3/nPH5ZhAPqHHj7vk8bNprqhVxhrsDZjPB5z7do1tBlR5pnQCtJiCV48YUxaM33lsU+bFQg90mQY26KSEpjWRrjw/XpPCmC95PL2/dZ2HYvlEiLJuNvSp8wKGExgtSYvSorRBLShcw0qyOHiFwtcVbFSllFeMBqN2NmZYYucqBVdXbG4uKRd1TjrBaVVQr/0TmrQQQk6HDQ4AnmuKQqLLzI6KxTbtm0ZH1xjbHIuT8/Yme+T25LGB64dXCPPLHZdsKpqro4fMjaae9dmgOKTp09RnPGlL99jd3/OZCfj2o0pZ92EplFARsSgdIExCI1UeYz15FFhTEekJoQ1RREYlRBjjdIdxaQQFDAonh6d8MreiMP9PR4+e4JbnRDqimgMRVGmA8BidI7RUXqnkKZyFcWjbTTapekcp+dXPLv/ERf1mo5ehRVW1ZroIkEpdGZkjWnp5YtA5wQJjG26n9N95p2TINLDYlFhtCWzCuegLMconaOUwXeRet1QWgcTg1Kend05F7HDm4YGxUXdMloXFF7TtZF1LX1hICpouTGybmN/3yQxKFSiKecolZOrCfuTQ/TdQ5T2ENZ84xe+wdOnY77/4/d4evKAq+PnvDy5zn/3r/97ysMb/Pbv/huePPkev/2//6/oP79NefAKnap49viKl+68QXN5glt31KtI3TUEq/E+YqPQhC9Xl7jgKExJ07aUhZW9SSezXm2p20Z6fBLl0zno2ohSDbs7Jffu3KbMMzBjzhYtRjdAYL6zQ9c6qtWKk9NLprOS8WTEwf4+P//zX+WVV7/Cw2cXvP/h+7hOjGAzIyI0y9UisUs2wYNRht5uxWgRR7BagDTF5q9zLV9+/VV29m8wms6G/WHA2IZdAxGOIomG9MFpTIExwtDwSn5OWY/WHSFaQixZrRpOz4/5wY9+zE9+8j4fPXjIydkJo5ElcorN1hQjh9eR3Ja4VoHPqCko9m9x/dY9Xv3yz3L31owv3rvG/v4BEDk+PubP/+xPOT4+5uj5M46OnnF1dclquUJhaJxjNB5jvCejYTq2PD1bEmxBR4MZ7ZBbBe2aDagoqtZCLeyD1f7MY1OBjJEsS7TwLYAYGPbtzEqlwTlH6HuNEwhKGmc9JDwvUiG3e/K3PxozZG1SBQ8GrUOKa3RSoU1S+2yCyr7W2bemREI6fyPRB5zzg9daWZZD4tUrDA+qkYmJMgiYKKG2KWM2AiTp/PDBo1JlROKbRNftPF3rRCFQ2y1tgDR2um9XiPTlML/Vj9WrVBZFgc00dVPRhU3FsR+/qKS1Y3Peft5pvJW8RKmiiEx7qpj0UvgJe+7nNk3AMBfbFMZN/1gcPPOU3vSL9d7DiUGZ1tbGUmD70bcH9SrUij4h+/zIQhIjlRLHjcjbCz/zKSDg8763nbAN18wmvlbxU8D39rhsgjBAicBXig1CVGkfEljIJ29eg8IrhdcGbTMB2BMQr1NiaVREGbWhYaLQHowSdVDRlekJj308rQaxwg340OcdZtjDgoO2alP7Qa910QOKacyjI0ZHUF4ov0FE2wjCkhoCci2xR1CA0cOOy5a4jAi3fe4UDo+fiqStX1A9OkE/0WETtsrgKHpuMUMQyzDgITiZlPAiX1iecoMS9JvOkHzFCN5v/YygIds3yzZX+4Vr30ZJ2EIhhqRKDUhMXy5WIMaaq4oOxeLslGfVipPZlLs3Drm5P2diM5RyOJWaNpUWOl5fdUnBskq7RoxOqHV4tIkoFah8w/1P7nO6XPJ0ccIXX3+ZO9dmZNaTWcXIaiaTjJgFQqahMJwuLukefMT58pKLyyWlGfHSzdvcu3ObosxF2Ub3yZBcg0n0DgiC16qeQhPYppZuxqhPbuWfzcYmAhpSgt6sjSHJi3GouG76zvr1osQLyVqUBhecUDVU/xrwOZfytz42qNP2ZcgbkETN0EESDZEf8M5R1zXVuqLIwTpH6BzB+WGDH0CJrcsannv7dT/nWnpz0uH3o9ApFKIuqM0o8cVTnyMRksqU6YVzIFUq+8RNJ90bqU5ZawcaaW92H33EdaKw1q/rAdFTUkFcLVeIKMwWkhwc0pcq1y2sxkDUBrSlI/G+dcDojma9omkdlTbkZUG+LMkmI6JSjIsxN67fhBBpGpEPXtcrbG7wbUsMou5oTEJHrSLXGTs7M9RkRK2hcp5nT5+xOLtiVpa0rWN3Z4+yGKdkp8QaTcigOltj80jbdjw+PaM6OaMcK9YVPL84x7Ujfvzemzi9ptipcN7SuYgPkc5FutbQaYOxuahWkcRVEvVVh0CGStYgaVPXmt2DG5TjXbQtWdQ1Hzx4gLu+w43dHRywuDonsyXBuWTiCjE4jJE9czIeY4sCY0fkKqJtxIVzLq5W2HGJtjlKBVwjlaOsyMlHBY0LLNe1iMZERVaO8J3cc5PJlCzPWNcV3bpCJVp413rW6zopmWlmtkQrjXeRq6slF6cX+AIOikOKvYwiz8hHBTGLnFYNK7dgx1oOdcFPfvQBb33rTf7Vf/lbYtaeG8kuVAIukMBJNlWzibmUBAzKKPYO9kAHYiz55W/+Im+/teJHjz9mNJvx5PEF71c1/9O/+/c0bc3Hj36AyluOn77H6HyBvZxydn7Obmb5L379N1iefsJffvvP0Zkl4mlDS1bOqF2Ja1Z4DHW7kOR8VDCbzQjB0XUtddOAChg0eZbj2jXONbSdA2WYji13b+7z2qs3KDKLi5bmwRGdC4RoqaoaFQ3WjonRQbRYUzIa5xxc2+XmzV0urtbMxmMuLySxsIUkYgGHUr2gFWgs2iJgWHQYlRGBu3euM8pN8sySSLhaLFicnnDn9h2MFsZGCCHRyV/cRDUwxg8JBzriJD3FEdEqkkeFDdC6luerZ3z00RkffXDM++/d5+Gj+6zXK+oqUo6m3Dq8SeuPuLxa41tLXhxixwWj0Q7Xb91lsrPLq699kZt374hh8cUZZ8fP+N733uTJk6ccHx1xcXHGOtmA9D5leSZU8vmoYDTbZ74zZ3V2xifPrsh0Rgw1TR3YvXnIb/2zf8nDb/8NZz95G4VL+7+W89j3570gqLJni+jMsCdvBbX9//t4ROtIOcopixFd11FVldixuIAXbX9hloQo63ur73j7HHjxtfrq2SYe2QhtqQGk6+lxejjLUveSElVh0QZIiWOIWGsS+yJjMpmwt7e38TvbeoQt5cH+LNdaU5gMqzRtiLikLulDwPVnUaqsxAheR6KTaqDY4IrgRDKvQpolgqgQEpJjUEpC0vy0bcd6vSLEgqLMKMuS0EhVU2s9yPRnJkPZTCo5Sio4RmdYm7zRtLTcRCXxJl6qXz1lr098vBNpe4MhBIYEVxJDhvc7nO9sn+9JRToFsUoJaBrpE4wwxBv9vifTvkmeZP7lmfsQszd27iu99LGSFjsDEsAfw+dnBp/XrzbEV+rF197+GZXGSgys5fbQeiM+0idIyqfkFSXgYOwBf5XmQ2KOkBCigMYrQ1Carm976OczBEAYeiaJ2TmtRCMgaTGoBFOEvuVGqU2rjzEDy06sNCQOMipilSGgCZ2lWjWo4NFREq2EbqAQyxux1loRaEVgx7skjicU44jE7cpootFErYlGibG2EnZgjGoj1Pa3PH4qkrYU/dHLWMjm0S/U1Kemki8EBqUMPcc1qp5esK2vt11jkcd2pa3fRAWR2iBhn3dZ8OIi/dseQ7/cgDiqIYFXQHCepqpZuSVHlwuitUysYWQtXb1mvbjEjTNCkZFlUn0Uf9M+4BXETypqMQl4dCkxTOMQPS44YnBU6zXPjn7Cjz/8kNe++DK/8rUv86Uv3CEclOQYxkVOUVqay45n58d8+6++g6Pl5OKCq/Mlucr54r0v8I9/9df48huvYyd56iEEYsSFFrde4123SXyTKejnJWxplPqM7VPz1Gfhus/S6UVNhuSdOCTuMUacC0TnxWg6oYCCaKWKQ0od6Q/azcT+f3qoreRfJ9EbnTaY4DwxWkF30ibuWxH9IETKoqAsRpi+VI9QBEWefdMbstnUYxoaWf8y7YrNZq03G3AvKJAoJM55ORiFwwTERDVAeODIAWiVxvW9R8N0fB4YkgINazb9mCHQObdJuIn0Pmw9pbOuqwHV7cdPGmwjzokgQ+ccSmnK0Zjd/WsUox2ii6wvz8iITHZLQt1Rr5Y0dUXrO3ZHBadn53x8tWRnOmcyHrG7s0tR5pRlwcHOHLsXeH51QVhWSfhBJPC11Qk8C4zHE0Lb8e6773J1csHBbIfrBwfszne59+oe+ajkqmqkvy8vgTXTyYjJtUNyE3h+eUY5y7hYn3H87hMUlrKoeff+O9x62dJVGbzqJZGy0CrwQeODJbQKVYNxCotYRSivsN5iKQBRZdTWcv36HaIqWNeCDK/qhmXdsRcU2WjEznwMQTj5bdsSY0dwcH51SdfW3Dg0WFtwcnZBVdfosgQysmyMsRnrak1TNagQGZUFVVOJWEKQudQmYzyZcOfWbVbLFWcnp0KdjNA0LV3XkYlGMlJ5tVR1RTQRm1lBOPE09Yrl1ZIsg6uZ5fp8DlhMkVH5irYLPDk9Yadpmd0+5vs/fMSTJ0+5+8XXWYTAl7/4CpM8w5oe3YxDD1aAQapeOBoSuIaQVONC4PGTC0x2yPWDLxGXgdfuaR7f/4AHH7xJVhaM7YRMKYK1xBA5f/yE6XTOf/uv/iv2RlOe6XNevrvP0fEVmZny6PmZ9PkZEfboXMBaQ9u1jEc5N25c5+TkmMVCDFad8/gQKUYlvmtwrsX7QJYprIlE33HzxnVOjp5x995LBAzv3P+YdSV2C/PpLioaTk6OOTjYwWYG5zqOjh5x/fCAxeUxO5MJ66sM79Y0zYrcRhH+gQQOROIA3/e0b9kmdqal7AGJekcMuKZGuQarA9HVWFMKlSv4XkyXhKEO87CBNzW9z5FBAu+np2c8uv8JH3z4Dj+8/zc8ebRkce5RUTEaaazJuHG4myq0NaenlzT2GvuvvM5XXn+dL79ym1mhUa7m9OQJ58/f5W++94ccn59zfH7GxcWSalmJkFcnvSLT8YRcazCG2WzCdDyhzAsKq1EW8BVGOdarcxZdFD9TZdid7vCfcuL+pQAAIABJREFU/7Pf4g+PGv7yJ98fgDTZ4iXA789g6TvqQecXAdz+Y1+Z6oNWoifTitm4JFJiVBTAg9TPnBB831P7opx5/dEox9cW4jfs4aQzU6dgOfEb4mZepTLfq9nFIa5SmiQM0Sd6IoqRZ/kAbvdVsq7rhnhpGxTvq1h9PGWtpciLIcHpuk6+T3ICVAqL9Fh7Iq2WRCa4dJbZkPCGmJgDwh7YRHlSNfFBGt18iEPi07YtTVNhMs1oMiLPC8rRaHgPVvdh74sghELGJURJDiMRvJPhI+ATZY7UDxicVEUCcfAvc2l8+lRtG1SWYktqBRkE0BgEx9JApmsZUpkXigf9GuiNv4cYSWuiCkM01f8uw++T1lJap4nEnKLs4aXDp9cUQqzqq6efBhC2Y+Mei96OW+LWeyKB7H1y71XPwUkXhhQb+vtIaYUJAa0yjO697ZJIiZfetYgnM5KAoYL03yPiJVYbUco2Co8fijo+XVOIMk9CfUwgdJJzUVEUwn2raVYNeJ9qgANCiEJUort6RdNe0rqKEDpI9xCk+wZPNFF8/oxJIk8C+IvK9xb1/HPG+NOPn46kDbkZQ1INHDacfumpDfe6T+K0Nmx6vVJwKneFJHVsVHm2S9Tb3OoXEji2S71p3Hkx2RvocX2ZO33+Qlm5R7D6dRo3IhoqCj3Sd47MWm4cHtKhaFYLrqoV1+YT7LggWFlkVmcDEqES4iKVGhmjzUEgSNumuic3QdOJMzxRU9cVDx8/5vruhNs3rzPf22WkJ9goXiqLasn9Tz7iydkj1vWC1brBNYGcnOcPnzExlv1Jyc0v3hMz4pQYtV1Du1wRnIMY0F7ok+lShvnt//28/Fe+LjQO2eUZ+reU3B+bhA1JjpyT1xIuPqnsLF5T3osPjOmzlq1HX517AQ1le6NJaFL63guKkoMXxwa5M17GzyhJzFyiPigFZVFSWEvnJEAxSuGjiKm0Sf3yxRGSDVQNG8Nms+5HoL8HSFLBSgs10mYireto5M5JBuvBddILErasNAbkeOs1ojxXb8gdScakmZWKlYKoIs5LYGBsEi4ZDhyZO+d6+4VEnzGWpm3QHtqmkeQeObSiA2MzdnenGAxXyqM7OJjOaRZLjqtF4o5HduYznh0dcXx8zPJyiVGKnemYl1++y/RgTuYd87xkevsWqu7onOd5veJZlzZ1LZYZretYr9c8PzpmfbkkVB3rqyVGWbJ8jJmUnF9dErxjOh6RWUtRjpjN5vjouDktuffaHR49+IiLx+f4rubq8gRtc9xHLbPpPsGvILYo1UBsCbGg7RrcuiI2kVCvUaEV9b/oyYLHOPEZVBYa14DOyIspNi9Q1mCLAmUKos4pJoZyfw9Lzr27r1BVFcpAkWX85Xe+zccffkjrO6KOuK5hubqCzrFqG5pWpI7rrsMYQ55bptMJl8srqmpN1BaTjSiLEUoZ8nLMeDzn/GLJ1Up6q9pOKEcxShBXlAVZbggqo3OeEB1i4+Hx3RrXrljWnrPTjN1bNzEqJ88t61Ugtxleay5XLR988DGnJ1eU812u3X2Vy7rjj//irzmYjPiVX/g6mc2GgNUDXqnUXxoRuZJOVqHW1LWjLMbc+8LPUYyu81//7K8zPTjkzW/9Cf/n//Y/c3b6gPLaLl/7yn/Gr3z15xnla/7ozT/mj/7iHd544za/+Y+/yrf+8P+iae7z2msFysJ07xpOnfLxx+c0nWdcWorC4FqN6xr29vY4PDzko4/u07YteV6A0jRVhWo7FBnRu+EOb5uWs7OGH//wXb76s1/hxz96B6cM167tc7VYslp6RuMxhZ3QdZ6imBBCTQiO87NjFotTTo+f0iwXGCweTduJQmHrAj4FvcI9NoTWIwr+BoXYbvhEr9JqA6RppZmNCohO9gPvUm/0i0Fuv285Ug9Jr6rrA+vVmnc/fMAP33uXd959n2dPnrFcLcEaMp2zszsleWfQ1g0X1RMmkzGnZ88xmeIf/NN/zvjwFZbnJ/z5W29x/ugD1hfPqS+OWa8u6XxL6zta52hijiMTGh+wu7PDwd4ermu5aGpRTnQBR4dykI0zQhep6pqmc/guELRG5yWLxtGh2b95G2MzaNuhl6zv6+pZG4L4G7RO53PKkbaV8SS+MOl7YvuSZwbnGqEoe+lF1QmIBogh0HabeEjmRA3793Ys03+uEni2UY/WWJuC3aFaJyvPJuGGGLdjozCA2BGP93qj/Jfioj5p6z0/t4NLpTbUyE3MJP31IQRc19G00tPZpeuIWqWKhvTtSa91D9JKIuK8I8XUaCOJhojTafGhU1s+tVFe01ixzmnbFhcdo3GkHE2weRxonRu2y4Z22rZdX89LKp+iPq6jaBSE1NcYkTkejKWjemFOejbVZ6iE/XkbGeLTIakjqWLH+EJ8opT+1C33qaQpSFVO9/GA2lRUg96wcqSVxw/Fjz417JO72L/u51V6tr7Wr7FPv9+h1YheTqVn2QRc3Pi/ua6jCS7tO2n8VP+u4gtvT2upnpVEbGs2tGOPVNkSu4vCCjCrIsH27VSS0G+qa/Sh5fBXpR5wlcRQhDquht6z6DVdHWnXlegt0FsBpCnxitgGuvqStj2ncWsx047bsV1/PVEKAMaitJxa4unXgz5J8CXRNf9Tj5+KpC0VpZIYyEb6FhIWEjZvHHhhs9hsPH21LDVoDjcln/kd+b34AmKkXvjaJtvvb+pBmhUGX7DPW7gqKccMXmF9CK6QioPzlFnO7o0bjPYO8FqzrJaEds3uuGBnlKNDg49OenO0kmbMEFPgb0QJKUqZ2fQbbSot93YFRDBZQZGPGOsRe7tjbrx6h1e/8mVMMSc0Fr+C1emKtmqp2xrXtphVxEVHVztcGyhUwfNwxPff/j4v3ThkcrhDfm1GIbUbtNKMbYHVBq+0+H8YI/S3lILIuMphFBIFhHSgqbQAYr8d+5g247QuglAQskRnkDHoDxGhSah0UwbEVk1uhq1eAhhkkD/Ny5aNKnHw1dYhpT5brZWfj7jOyVjLahVj0SIfNsssyxkVJXWMOOfoGodrW5FFV71RuPz2RuxGIQfWdv9Dfz+EARPrAQFBhxLaFhWuC2Q2p1EpWE5qbDpAZlRqtE6KnFqEMfpkVfotU9OkkgRMaY1Kh79QT+XwEqUzhVYWpXpKjgQwKEPn5FDPcumJCyl5hL5xndQXKhWK2XSMd9L/WRY5eT5mb2dKaxXLy1N8iEz2dzk8POCd995HKYPr5HdNhLHN0K6jqdes4oKzasXBZMZsvsfLN29x+/AGphMVv5ju4bOzM+q6kUPEeVzraOqGru1YNq1Q3YjEAEVmKbQYFD88es7BtSkxRPJyyt3bu1ycPRVqBgAV68VTLs8+ZnlxjKZiNldMishkBpYlE2vIuCTkK4y6hO6YzF8ytjVKrWj9FagxeV4SoyUERV4W2CLHBUVUOS5WXK0ucU3g9p1bnC/OGI/H3Lh1HVNYogWdKVCBvLR434Ivhv2s6xyjckRuDc1aRDPm8xnteUvddXQukpkcYyzL5Zr5fJcsL3HLFaDJywld1+JcIw3eOrCqlmR5RlSBuqsphoO8xfua1sFiVXP0/DkuCyxdS+NbjM7wURTaqtUKHSOvfOE1RtM5e3tztDF8/PEDrk7/mK+98RXu3rsj92wSexiCDgo0iV7kI0UxJkSY719jujtHFTlVCIx3NW/8wj3efOtDYt7yC7/yDX7pl/4Rl8/e4SvNE5pizKywXJ6+z40DePboCS/fvc6jx1ecnVTkNvC1n3mDx58sOD56hLKW5XJBbg1npye8/8H77O3tY4xhva5QRjMajxELSovCMZ+NCa4j+JrlVcN7735MbsecXl6hixFeKeq6xXuo6pr9Wzexec5yccpyfYExjsWF5aMPPuDhxw9p6harLa6DYlxI9VGPiORyP0dPDJqLi0vKUjOe79IfjkoPhfl0ZiryPCOzKbBQst/GAfEZIK7hU9Pj0xGaquOtv/4e3/3e9/n+j37EoqqxNmNSjNmdTIl2RFF4bhxOGBeW6WjKs8ePef+9H7FcXNA1NU1V8sPv/jnn63/P2dm5nE+rCqsMk8ySMQYHJZoSw2WIeC0Bmusci6srMXD2HrwEtF3biXpiYQmd+FVdrSrQGV3scFhqFyiNIVpNXhbodI6H6Ieka2AWSOQwrD75fjpHtBqSNtmz/QBWxkBiWji6psN1LSpGMpsPla6gwLuA12rT48/mvFTpjJIgVqWeM7nfeiNra1OVLCVCfcXMd50keFEhVkEe54S6aGyipg3soxdjnJ76519oJUnJhdH4kL4XpadZqjMS4BtjhnRMKVK/mpwxMVn4GFIc15d8gtzLWolac9N1oBUdyUbJtWTa0IaGoSeJ/jrdEDM2dU3TNkIXNwaf+b5YkpJlvZH+VwxUQrX1p+/f7xMq75JwBhqjNFptVMn7efK9WVcfY5otZeohi5Dk3PXMlF6AZkC345BcbgMB2/HIp3Kd4fUkjNkk87hNgtbbRGzHsZ+OaeU/pAIJL369v7qt39EpxgopWSP2sfWnCiXpantPtE0lWd5f30MZY8R5T3TCl4pRYwuDMpK2ExUhOhGbS9XN6LW07yihfIcYcZ6kki2sq5CKQNKPadHKDxh5WqGoCNErusbR1GsI3bDWe1VXAoS6pasu8W6BwrEtGdOL9RAh6IDBCOtKGeEh9EWfmIovPgqI83dB8h/E10XK0/J57+ehlAxij+XHKJvoUKamD3jNJsMPekAYtlGB7eQLtiRR0022XZXblIRfRLS0UqA3nm99s+ym8paeXKJTREAlJlNhCepjauTXQJbnRDPHxwnlSPp6XOVQztEFjwo+BdNIk2cgqbyl5R4kofM+ghfaRgiCXLVtS1dX5EFhY87b7/yQ//AHv8uoDhzu7rGMjvtPHnL05AjVpOBeA3h8Bypago6s1hXvf/ABf/XmHnsvXeP1+VcpclEg09qQRVmIVlmIMSG8vapSz6uH/gbd2o76wUqJCAOPvE+IgveS1AVRJzNakCKrDb5XB0q9WJLapNL0UIxSPdN2mMN+4+0f/dc+7/HiRrbpldRmy+MtOahba/ExkGcZ49GYiyjVpbpupRk7qXjhJNAJW8jYgM4J7sIAC8mWRw9JSRVYKoySUBmatuP84gJfr9DKJIPeSNdUZJkiS2pNQtvoqY6JepM41T23v1el7G/EHrntE+Smc7RtR1kUqF6JK4EFMUJd19R1TV6MsJklL0RMRLtIlok6ZZ5ZXOjootDDgouUtiAfl9A1nJ8eUxjDzevXRDRgPqcscozSeBfIs369aXamU8ZZTpnn3JjN+fivv8sOluNVTVhNyYuSSZ4n5LUjasPR0XNJtH2UAM5G1qsV9boim07ZnRfkVpFNdnn++BOuzo6pvWU232N/Z8rFyQl1VXMw2adewuhwSp5ZLq8WEGqeP/kJJ0dnTHLDz339y0xnGaU2zMZLYsj4+s9eI94z3CoNKjzhS/fG3N39IrcOMy6uPmGxGNO2IrpjM4vJxPg8YlmuO6a7e3zzN3+Z5cUCHQxPnz+hauGDBx/QBYcyQsNtXUuRaJpBBYyG4B1ZYSkyS9c2jMuS+WxCNIqZm9KenaM0rFcLQoxcLZZkxYRiPENdLiFG8lFOZE1QMC41eZHROodrYzJVF1uHal2J36SKKJtzWXeE58e0oeKqWuGNY2//OlrNmYxyRpnlxv6Ys+fP+KvvfJtf+dVfZjIZc/3GdT5+5yeYGKmqNVerFbXvyIqcMlMYBa6TvsnMZChtQXfY0vHSvTmZrXl6ckJoCp7/4C8Zdy2sI+ujM77zO79DPD7iK6/fZF45/sHXfp4PH3zMH/3Ot/j1v/9NvvyFr/M3P3yb0hzy5PSSthkzUrvM8zntyHNy8Zibh9cJriPPMp48fkJZFkIHS5QubTJ825Epy3Q8oShyKHOiz1hfeNbryE/eeYgpcvauz+iix7mIc54sC4n6DeW4oG5F5bFtOu6/9xHPn50QVcl4soPNI9GsiRqu3bhHUe4lObtIcJG6alEYxvP+fIrDjrxVM2HTaL/9tZ7snoClrXNa94iZ7Lw8Oj3lw6dP0OMx16Y7zGzB9dkuewd3yA9u8tLLU3bninGhKU3J9998i3r5lM5XPHsa+eTBJednp0RzhYkO1daMXUumNSMmODQrH6l9RhsswaeKdhLgaaqatmqIMTApx9RtRwxtOnM8DZ6qrgmto/OG4CMhdjjvsSaiVEfXrTBGYa1JwWVSvhgSMVLfJ0QSfS+NyTYQ90Jyg7Q3NJ2wIZwPuNSLZhCANgQJVFFQZDlKG0Z5RuccmVaD8IfNMmwSizJGwLK2azFaABCI4lMaRKDIKA1KY/I8xS1edChjAj6TJ9bA4LGavCiGQLsHM7dpctvv0XWO1nWyerROFNK+jYLhLBH/swTnapVAA0l+dN9TF8T2Jx3UqKg4OTnh7PiYvWv7jOeTIVkJPqCiobf2+XSiSQS9de0u0Rj7gDqkuVRqm+qZ1nyqgA2xS/pcp1hlSOhS1WyYb8ngh/8PbK6+zztEEcPoS4hx09efMNhhbLXW6d76bPVlaB3qWzj0Vh9Zn+Cl31PDW+ppi+muH4oTfbihtl9gWOv9l7crh5vxkt8Xi65NQtlXf9XWtQ+xVwKIZIziZ56rnwep1nkMGbnRkkyFjTCa0kq8IJNlUUyKeRuZDwGsvQsE5L4yWouCdbqudPWyClXqgUx5R+cCdXVJ6y8IHKDIBUghQudxyxWuugK/REWR/Edt7KR8WnPamqSGqTBRY6NUvE3/N0re4o2W3tb/xOOnImnbTOQm6ZE8JVERQpTJiDFl3H74+U1S1S/+zULcRiS2H4PUf8/X7j1Thk1WfWpxbtCn3hhZ0CwrVQPnthZ+3HqdVN3wqbFYSmZYY8mMoWsaqtbRBFF6cyribMR06X1vjUdfeZEiohfp0yg3qdFWNp0oiARJIGA8KljpQGkNd75wh+r8GX/y3b/g7L2HFB10MeBU3xRssUbkvyGioqXMZwQTcXgulwve/P7bXPoVX/z4Pq8c3GAyH9POC2IbJOBPCIWLajA5V8kLpAdyoU+ESLuj3szhNiqk5GZzCblTSRZZNkOhpYRkwN4XifogCTYqljKbapiZT286w2YZ4sYAmn7MeWFT6ytpw59+TpL6T/QerPgxVXXFer3CN5K0ZlaUQvuaTP/a2x8FpNhUjPvets/Zr4XDraV/zztR3fKdwxCwNqeu1rz//nuUO2PauhafmULhW0/rnTytOH4LmJfOSEna0npKG29MyCjo1GwtPQvG9kqUOgUcCtd11HXNfGeETmOTmQyCF3RLK4rc0naOWNVcnp2wXqyZj+cUFkYmiKJhOsBXqzUXywUql0qRNQZrMqFqRk9WWL75K7+EWyzI2pbrB3v8zBtf4uRqwbrIWK6lunPz5k2y2ZRF5zg6OsYYiyMkXrwYt66rFTvTCbNRwXxW4uyYdVHw/PKCB0/O2b/3GoczaRpeXl5x1S3JzZrJpMD7NYVaYIuF0CCrSBEtB/MR+dhxcfycsytPm08YWYszFaFznDxeocqM3bGiay55/PgD/OQQpW7JmiJK5URFkWtXOatVxff/5m26qhPZ8bZld/+A6WzGhx9+BOnIklWU0EMVCK5Fq4h3LXXlya1lb3dOnmVcLi6FBZBLha2uPV3TsK7WVI+f4nykbgPjUYmxJSaHzGqsCRidkVmx4DC2pCgmaG0JvqYoRrRZR9fCed2yPDnFuzV1U5ONNUtdMJ9NKDOLb9dYYKcY8ae//ztcnT7mG7/486jgePnebQo0b373Ozx7+ozzxRWz+YRcVRilaBsHISOzpdgR6Jp7rx/QuX2cPsPmJdFNqfU5l1fn3Lr2KpcTw/ff/T6Xlw9Znv89vvPW25zUii+8+lX+/jf+Cd/+izcpRo6nTzs+ebTifGEoJrvsTF/GesfObMK9eIt1fcHl+TltVxNjZLFYYPMMF6QFXdHR+o7gHJPxiBgd0/mEcT7nHEW7bqkbmM+mVE7hokQfITjarmVdL8mswuaa6zeucXl+hsKyv7cPMeP4/AJjMub7N+lYcn51yf7hPcrRPhENOExWcHjrBlpHQbMig9E2ad/eJGxavCWVko9I3aHfE+MWtSsQhRGixDOzzC035zu8vHeNJnrKsuSNL36JV+7eZjrfx4wm7O7lBN8yKSzKa559/DE3D65xvjjBdU8JYYkOntwF6UNxkagsTeeowxqHoo2aLkolyuqI8iRJcSuqh15AqappaU9Oh7PbuZpOR7rOMytn5HZMF1co16Jti441zfo5obvAmkiWWbFLCUm9+oX+93R3KYYKnFIK3dsc0AtC9ECwpMhN24nRMSqBb4bWd5gsoyhHGJtobFmB1oY8z4lVRZ7njMfjIQHp2TzGGsbjEbruYwSFHwBc/yLNUSmapiVFUiL4oMDmGWVRkBe52L40DTbZGfSxUh8vAQObaNM6EDb9e31SB0N/v0JtwE4VCUqUYLWRpCODJJAhvUfiUWoobc7F6Rknz55zfnpCjI6TM0XlWoyxjGzJfDyVoNz3lU4xqPAx4Lwji7mcmSlm62MVUAnwFjXqvsrF5q7YgLaaF+Zda0VyBmcANNTWnpvGrJfR75M2IOkwbNbGtq6CD6LQC1JxMrqnzb4YBHwmcdr6Z4hnQtwSJpHv94WF7SR1OwH/7Gsk6imb73/ez/YXMSR4WwnsC2bwvYL08Hx95S0OyWsSAx+KJBKDBLrQEb0j9nNsBVAOmcUnATpwqf+xH5Bkn5R2MIUk+l1M6sdK/AYV8f9h7s1ibcvz+67Pf1pr7eHMd6xb99Zc3e6u7nbajhO77RBwTAIKQ4SEEEg8EJEXEC88wRNSJJ4IvIQgBYkkCCFeg4jlmAzG84RbTrfdXV1dXcOdzzn3jHtYa/0nHn7/tfa+VW0bwktWqerU2WdPa63/8Bu+wxbMuTDMVCYFz/X1KWfXD1nt3KZu9ss7CYLIr5Z0y0tCe03wa2IUpFGMYYQzGyAX64rsA7kLJOuJ6BEqmWImh0SOPSH2n7+2W8e/EEmbUoxVCLYnSslZ8jAa8hCMD92bckPHQHtIvAYM+edN6sYg/aXgfMvTIudRSEEe2ySG0uJnhFl9li83fuft75/T2GHJZTHNBSa5Xq1Z9Z6uz1S6gYnFzixzq3HaoLOoGW3bFqksdak8ThCNsW48Z5WlVa+1xVaBt7/yLm+9ep90d4/v/OYTXrQXLGNLXEoQra0q8I+K7KwYEaaNcqY2Vt7fwpPnz/jDT79P+qV/wm03Y/dwB/vKPk8X56wXK3QElQRLPXKziv/GUK3aLD5DosJWRSdL4lmSdEUxQw+ywAs8MpFjkk0pKkJMEDfVmzxUkV4aQ5tUethMRpjCeL/S58YESpKi7bGTikrksFkZrYUPoZVAJhojnKnjEy7OLyCAczVVMRRVCKQ0FlPF7fGohtrQsMDl8YNfqoBtMOSCk26aCfv7e6wuI6vFuQQBfUtKMiacMagMMYQR106Zc2hJQlIuvAKGql3hR1jp8qWSLIvstUCZhTRMmQsFxpKFSzBes5SohgB2mFspiuefhtS3XL44obu6whKZuMRO05BTpluvCKGnjbBcLhj8jJxzOKto5hO60PP89Jj+8pxXdvc5unWIrQ2RhFeRdfQYV+TnYxYJ9a4jxFiCkCRqTymxWi45uCmcif3ZjBdtZl5XVDpzdXZKdDNeu9nw9r23uH37Jmb9KVcvFvTtNZqAM1dMmiX0E27svsr0zRvQex4df8zZsYgOebdkZQ1+9YLLVaT1GjNtyP0lqAnmqOH2O1+m73dQGmLwouJW1g6jHH3uCmRwwc7kgIMbN2gmc3Z2Dui6RM4WsCjsqLprNFgL82nNyneEIJ2g2PfCB/WRFGRN8H0nXf2cSDHSrlf4pAgJsnb4pAnZ0NgJfbem64MYCpNp25ZuLYbKfddBUDTVnKvQk3XEKhHpsUqhQqS9vuZwlrh1tE+7eoGmY64DeybwW//0Fzg//oh33n6Lt197gLU1RzsTLp5HJjmwkxPKRykI+CAy/zGANtQ7NeGq47vf/JAunzE7mHHzlbv82J//Gt/8J2JfcPF8xYIzPjl+yMO//wFXSZOrGbZ5wkefPqcNmuuLFR8/fEoX5kx2DpjvHWAnmoN6wjd+8uucnz3j7/29v8N6vSTEntlshrMWHyNJyfzxSTyZtMlkepppzcXlCdPbd7n/2gNOn53R9ZFkHOsQmc0n2GhJcVm4Nmt29w4gwePHj5i6mqODm+zvHND1nk+fPWbVOqgUyWR8ckznt7DVTIJfAikHqrqCAosWRb5xFR7XRPLA5x06CAJF2pSSNkUwgTUpokoYpcR3K2Tu3zzi8M//DHs3DrFNxeHNfZy1RErxNWmMadBB1rYvvPsFnn76CX/4vmdnNuP23TXtYk2/0LRtJmsHWsxvAwOMLWNSwCAFzBiKsIBKZZ0pgVfpXg3wPqMzzmmcq5i6CV0CHTIqeGqboTvn7Ml3Sf0p3q+IyZOSJybPhoKRx6KW8Hp1KebK1RzRPOrlvWXw4fQxEkPCOScCqHqTUGljx24FbCCJ27HGsI6OgX6IwrHa6qJIvKLGxG7oMqGUeEmVe0eJn5SR7pqtHFVVSXe3dJW2i9+fDfCH7llk4N2pUehGEuViIzLufQqtc4FKMlJZrFZkqxEkVRCV6gRnp+c8/OgTFheX5Jg4PT7hulvhU6CqGnaaOc0dK8b1W3FYTMVawKpx76yqirquC2SvQNdClE5rUdp8CZqopOAxxp9D10htiriDYNgQtwz3ZOiWjckLwz6ZSgyxSfg311X+31VVSaqEFpJC6f6Uzq8xA9JLYLQpbfhk430qfLaNaqkau6lKf0Zw5Icc2xBgVZSoP/+3ze8yJhCQ05aWgCS828/P41qzmTFjRrn5/uUKVc4yndc0FlBGikhaeGGGU6QxAAAgAElEQVS58NQ7BW0MAsvF4zKIYGGh3ZTChFKSPIUUyVEK0MPnpRgIMWGVAcw4/lIKXC8ueHb8MU/MbfYOYbozk05pSnSrBX59DbFFpcGSJpepJcbyLptSuIF+1RILhLuua5m3GYiivG4V5Bj+2HvzL0TSBttJE+MAGHhGOg18mJINq6HLJq8bPIeGjUYgXwW6kLd4a0qNCcmw8EkFSYZPjBsfKmNsef1mcVRKFlz5nlvB9lBtUptJn5OodKXEGBAP57ZertBVxWzf0TgnBPE2CfdEK8xEFSXQAQ6Xx05SiiVANmVYZ8hxSD42PCxNxuTE0f6cB6/f4sUk0cc1XewlqRqMemJEpYRy0jYeA3rEfNIYJXu3URhTEdeJ1dU1T9srzq5ecPFoTas1ed1RJ3ndGA0MiZqsauPEkQu4lYSUTUYrLQGDHmsv4zWldHNUccccLCJGnlRZKNQ4/1NRgSqZ/9aCtr1e5fGfl4Zj+YrC5xiuid4qt43chgGeWpI5rRQ5RlSMNEa8zFKKpK5HlapjShGUHvHPI1F8+DczTv6cB+rzZnGnVGgHPzq0wVR1KXxoUobKNrzyyj16As+ele1o2FSUIUepKomCcR7Uk8t9yqPIiDFiCK502MCC01A00SMEVWFBi7JaCJ5xOS5BYM4UnLts2M5qGhyNM1Q6UxuFU4YUPYvlgqm1WOdQMZKLKawuBqISCGRizrTe80u//MtUKfDF+6/S7Ew4W1xDNcHHSOt7ps4U2K34s6kkmHutLSlEfAiQBVals9hxaGvxcU0ionNCp8h8MmFvvsOsqbEzOFsc4/0x66s1TiuMXZLjFRrNwe4Ot3YOuVp9l37VUpsZVTOh6xPrlYdgqYKiqWbYesq68/hgWFwumCwuWV4/J0cPCBxKhrgYNRttqKoJ3l9R7TVlszcslx3O1PK8pElROiVaGSpr2G92CMsFXY50MRJ7z+X1NV3bkhE/tL5rIXhJ+IDlcompZjhX0XZh462jLdZqYh8JMaJVNfIoUizzLFlCH6mqKbP9Haa7UxobWJwsWVye0a6uIGmmjeXdN17j+qqhMhOObt7j5s0bXLRXPDp5xDd/77fR/ZK7Bze4uXPEjcMD+rbDmYa9nVvE0JNzj7GWEESEQ7uavq2I7YRqehPVRxbnLeaq5fzFOZfXlpmbUeXIk6cPuXN4ky/ef4fjdklSK84Wn/Dxow9Y+8dMDicsX7Ts7UE973CzS/Z29kjumGxbfOhpV2t251MO93YwjePk7AWYCldPObtcEHzCOMukabh565B82nO9XEBwYBxu4lh7j6lqgbp1LbZyOKXxoWW5umJ3PhGRo0qzbjuiv+Thoyf03tP7FcunLdl45nsH3Dg8EsVNhECfxv6YrDGZolZYAoxx4VPDimwoWKNxLg/Lw/DUXAJWRwlWlILa8OAr7wjf2mpyChJM+hZrhVOLmo1KbErB3uEN7r/yBp9+8pT5bAdTdZw4xaVfsehbjMokv8YqICZyEM5KDJCyJatYOjMKXRIy6yq0ESGvQc0wJ49K6+K15gTI0gcxoibiSKzPj/n4/W/hX5wRfFsSviK4NBSD2SBFJCYtIgJDEW5Y04VjsbWtbPjdxkpXTTzMZCterNYY049BvWLNgOQAKVCu2valbpfO0PkVrGT/sUa8Q22xbdneNwaOVZQJWrjNElQrrYg50fsebYrFQ0kmB4rJAJPcFiLRI0VBeHVGmy0p/U3yidoA9eRzh/2OUiAsKsWImJjsfZH14pKri1Pwnvm0QTuF0ok+StJWG01tNanLI69PKUnQlBEIvyl+qsL3Kzy/YStXqqhnDjoEJeYat+PyvXVJ1kriNio8q01Xdbvbmou64NC5U2MnSZJEkmaAJg8JnNRQHZPpFGcdGUVT1+V1GxsqrSkqnll8NMOgVDh07WKB7r7cnHhp/pafn/s7m8eH2xdDZEC1jWN5K+aVY7vBwVbSVgq7QwFju5NZbv82PUW0jpTECVrGsWsmKBOJGVLS+BSlOOgDSYloTFYZYxQTnalVxiqHUZakFEFByIkYAypFTMwoDKse4ZWmjf6CXBrxY8zKSDetb7m4POORfsQ6Wu64u+xMpqJ43a0JscVamE5qLIGKDCnjjCiLpyiqlSEXUZYQyCHg21W5TCJS11iHrutRofePOv4FSdo2BM4hgVOojeTrcJMBnROKhFJiZOx9FNU7oxjEFHJKomC2NZEGDCxsVcIoWXbe+MwMPiRSRSleF2XjCtFTqEAlmSrwkPIdC2MIpcTYT4k4FiEpgtJSjcwSDs1dzeF8RpcTuVvSdx6SYrH2aGWoXWSihSiZlcAVpdMEZF0mpSdnqQQGH7DaiuN76Im+pfYZg6azK6IOxOsldVvj45yoWrTxBT9eeCDKiuBE6eTF7PFpDcaJtGnoyaFnN4F1u2S7RnNBnXbpoyErR1QZq7zwy0oSF7Ncm0jpLlGgN1nJdc8eYzXaWpmvfqgGD/mW+HTEnLA545UE3S5q6iyKO8qKzLGNoLx4dUWtiSQ0FkryK4pcZWxpgdvlHEs9mVI1LDllTkJyLUlU0nlr8Q4kMj5nuhjoQxDYR+jZtY4b9Q77+5lGZ3LyXK1bji+vCRmUdXhpQKKzQiWPSqoEvzJ+VcrolFADZFNLh84AVhlU0oTsyTmgMbSpSPmbzDoE9nJFCBldZVaLC168eI7BQpSF0CgjnZsQhUeZOyZ2ig49OgdUDIgnXiLkTNRSwEAZUhDzbeXMWG0cgoCkIn1siTlgqxpdFFBhs8grIPuATol5XbE/neCw+L5l5YNsYabiaH6IqhP+aonTE3TSOGVRJBpbU+uakDKVnRL9iuvUcndvl+Bn5P6ISVZM7BJnIsomUvJiTt111NqikiDZY1aitNoFjFcsOs15rlmbNcFAUFIYSa1n1Wa6vuXi6gc8ffJ72JxozJw6VNIRthqvAg+P3+fFpyu+9qOv8Ma9G8RgYQZhmTDLCfiaeVzjK01vYHZ4h9V6ydHOAfOdI5zbwXBBZQ64vlyjfCY3hnUfaPamtMqwWj3i/PwUU1l86FksFjI+UqZC+J99EkGDddfhzBzMBF3XXF0cU9eOhY+SJDfCkamNJuoGWzWEZPBZEnHftzidUTmik4UQ8UWprXKGpqloJk3xapNApl0brkKPz5FbD97i1v3XmVaahx98n8X3e4g9pIQOC27tTLH9DHSFuXGPw4PX+al3XufDR9/iV3/11/FBY5Lm5LxnqRrWsyP07BbVq6+DjUwmNSlWGGpcamkmlsoaTPTMG8+suuCj7/0Of//nfwVnLXuHRxztTnjw5lucnVXYMOX+nfvcOMn8pX/7Z7m+fsS3fvMfc3zd8fgioFWDCS1p5TnYm7NYRZ4/hh88O0PNdtiLlrmBsLpiujdn70BsHZZXHf6sBzuh3rmBm0z4+NNnOGfY23mVPtUEc05OL7h55ybX12v8uiPEnt29PSbTCavFgtOTa2y+ybSacXZ2yXqe6cI552tPjA3BZrQK+NBxsD/jX/mJ97B5XfYuQ9SS+JtSQFOI8uYYMiot/Onh98EiIAdRWMtSDB1SuJwVHikkGmXwoae2dQloZW9NKYgc9vKCqxfHLLsFR7fucPPOm0BFtmWBTyIOcHF+xvJ8zSrA8irSdz1kiCnT94EuFWPilMveB5T9W2sJ/rQxTGcz7rzyCikl2ranbVtijHRdIAZN9BGjwE0snff0eDotnYp5qPhnv/VtVBtxzmCcou1WkEMRbBHIZCoq+iF4jKoE3jSE4EY6k6rEEkY2Uwbke9Zy/brOA0NSBL7vaGNfEiWDthalMglJaHxS5KgLB00XmFbxvMoKZywCfS2xVC4+qSVwttYRY0KXgDwrkdtXShFioKod3veoHArU0OKqhkFCJBWLA20scdhHGewJ5NqXjLXA/OQ6hBgKd06em6IGVZONptciLIEVqFjwHq1k7FgyDVc0+ZyYPDO3x3y+w65rADWqb3J9QmMdVon4lrEOjCLpSCIIxJZYitQlsTSMiuTGGYk/khIYW4noRFG5JKwlcScnEUfRuiARPNY60DIGa2eLN1se+nZorXAWlE54H8kpkKJBG40xUlBJRmKerEGZJIJSWSE9F12QLhajZa4oCyqloppd1MTF1g9rxa82hp5R9bTETClJ8io+cKoUlTcd5E03mTGhSJLLIlSIoWAwiKDJ9xsKGhSFzSFo0nbo7KWx+L5BQL1cQAc1QomVAqMtIcLJxQqVw8baKIZSJB84iWp4OUlFtJK4TQ/0mSGOzJI/DII4MUoSnrUia4fOYLTDq0Ryhk6JcFwdFLmNXLcr/JMnJK+w9+4TouVRuOJp94yFCiQTBMZONXYKNyKBilldk7UiDmJwJFwpehttaOqa6aQRRMQfc/yJSZtS6n8C/jJwnHN+rzz2XwH/MXBSnvZf5px/vvztvwD+KlLi+89yzv/wT/qM4dhGgeWC/8vol/lGRY9clZuulCQFMEg4SEfGIN22bdjjZztjw+CQro0EZgMsbbsPJK1qqSRRVBNTSoXHJBMv54wKQxWu3KgyYSndqoh0f6xWOJXRObI7ndBUE64vOqJv8WGJT4l5M8E6LTzylCUxjRkvqhuliyRBtUiWsqnIJMH16lg6hg7W3Qq/6jDeoFNFwpOVHwUoBny1SsXoL+fCqWjxoSPn4rWy7rixt8cbb32FV9/b49e+9Qt88vEKlRyp+L9ocgHU6LG+O95jpchFGFaqiYmikfXZ0QClMpmH1ylF1hIo5BQgKVSUrpXck0yOCV26m32MW2+rPvfu48N5GDvynFgSda1ksdTDdygviCqOC7MkK0aIpmaAEWSSD4RVRzWt0c7Rx4izljYE+f6FgzjUdoZkv5QexNetWF/koVJFKgtUEjNqq9GhdLysRelMTIKVdqamazuWq0u6vqPvOs5Pn6OzQaNxxfck9h3OatpujV5afE7EroMQRCq7XKihSw2QgpD2TeVKFXPgOmRCDKxWS/q+L/DKCoUWL5skG14uqmIhBNbLFb73TJoaU08xk4ZmMsV7z+nlisX1khASRzdy4chJ8pj7Dt1pZrqmD1BPdnnw7lvcvn/E5XKPh48c1jrm7jlxfSEwmZxFxTNJVynESEIRUqb3kb4PMn7slGufaWOg8x19lPudQiThBJLqFHgvBrK9YnFyhU8L5vdqQm257npOF9esU8X+/AiVMpeVnCvOYbXDeU+ygWwVipqZg1xZmnqOrXZxVrxojKnQWZOyoguB3HZcxpaMIviekALaaJw1pFTI0EMlFYgKGlczmc2ZVZAjzPuEtdDoCN5C6LHWcufuPc4ur+n6yI3Dm5ycXdP2aSR/j9FqlgLXtK6wRW55gD2NHA2VMM7Qh0zVNJiqIeRItgZTVzRhyv6s5uhwV7zlbtzi9HrJIgQm85vcvH2Pu28ecnh0h5PvvU9lKzwzLq7PWWI5O1vycf+ci+UJBwcH3L79FpW1hKypQs/UWKZkTk9PuDr5Q559+jGJVzi6MeELbx/xnW/9Aa/fq3j93pt03Yz59HV+5mf/JZpZ4Ld+7Rd4cXzK0sxZKo2lp7tYMMlTXpzWHLxyn8Pb7/Jk9ZDDu8c8f/Ftphr6vsX0NXdefZ24iJw+/IiJtUx2d9nbOeLg5gEYxf58QmCHTx4+ZTqBxlZ8/etf4/3vfMD5yQX1wQGrtuXi6pr1asn+fIZ1NXfu3uPyesWzFy8ISuNcQ50bdmcOcstysWKmOuaziFJryOIHptVG5Gt7JVQv/VYCLVfgejGjdAYihkROHrRBKUtM0KfM9WrJ4uqClBK1rWiaCUcH+6gskOZnjz7m+uI5J8ePubw8572vfI2j26+Ujoesb8+Pn/KP/8kv8r3vf4ezszO6lLler4CCXMjybwgb7s8IhUuy56Uke3JVVeKZ1YswSdcuWS6WdF1H14r/okGhrSnFWimIxbEwAxenC6IPTCYTfAz0PaA11sq10oV7pY0hJVWg7iIW5KPItotXoXRatgU5hMMkwW9KSdTrdOHpJlFE/qyaoTaKrGwpTlvZp4s8+IA4MggP2TpDbY2YovtigaGGOEbutyn7dNZl71C5wN0VrnLURhMIIuozjo8NLHL4OfDkInlTFE8lodnqXmx3fJRSWOVIg5ecUQIRMxrjHBaF0warFe3VJXW65sFRg9ZTrK1QucOvz2lXLetVKwJle3s0e4cI119goD4kQvZoK6bwMRX4ZELk+zOQIyoOYnIl0dVSsFCZkfO54WJ9RqBnzFpSKeQm0GIoPxQphcsoBTRrjSSVaFI0hcoh3zlGjy30FKUlGREYrR+RC8aUPcz3ImZE4cTlAX3G4ARU4tpBqboUYrYaGHJ/1KbTNcynLQiwdM40KFcKO3KuSufxeg2mKyK2J2lU0klUQUuBaPufkReXXkYQDQvTCL1WYpDd9Z62jQzm8Z+lsMgtkAApk4jGbPi3CfSg9FheprdERgakUy6Jn0hOBDkXrVFa0Go6RFKXRBG9bTl+ekLbQlJ7PL845bK/pMsBnwI6ShNF5eEcRMkUrTBJo53FGSfzzBkaa7FWkktrDVVVY+3nDey3j/83nba/C/xN4H/+zOP/Xc75v9l+QCn1JeDfA74MvAL8I6XUu/mHkcs+c7y0deTCiBraryVgV6XCNLSwh0PrgfQaJSJhaN+W6ttWiz8U7PMwUFJKooLHwLvatGw37V8JzkUYoHRetpK+lDYJ4agqmSNJeZKOoAMJj4+ZoETBLQZPu14SVcS4GTdvH2A0rJcXhO6KrHLZDGTBMAaGtvFL10kxKkYprUllI1Ra43MgKkXCcHp6wfnZufBMsvBABskvNUAlxpb2y5NpuHZaa5JWGK147cF9vvHnfpRny+/y5NH7JZmUxUuVzX9IvD93DI9ntu7xD3taWUzU8B3K3RkrJ8NCIIl3SpGUrMBd1ctjZFjIRi7bDx2EG4iLKuc/TO6hQEBJpLZb+5TrLd5R0IbA5WrJ1fkLri7AVoqgDX3KZKXH7uzAKlHbC+TwuaXaKuWa4YKUxU4J1yiXlv9gXOq9x3uPbWbMZlPMtAISb779LstFy//9W79LbD2994RBJjknamvpVivariNpVUxCezHDDmGEu6SSDOSYSoFgcx03XkCJ1XLNarUmI9AUYzdePwMcRJJ5gzIVtpmhXEMIgXrasLO3z3K54PzyKeeXVwKzUbnAR8CYjLYJZaWYkbPi3v173Hv9TaaHM9Rkj+nBXU7OTrl4AiaYUtnStH0n3XOlhMdRNrCYxKen6z07VV0Mq4udgxbYbl98gZQyzCd77Ogj1Kqlv/Bcna5QVWbma1Q1JWrH8fqSb31ywY0dzSRH3EFFjFNCFKL/TbOHNZFOW3yomJRgWOmaFC0oB9oyme2ICmAxEQ0psmpX+OCZzfeZz2csV0s0G2lvGZaFd4gCLR56Slcc7B0y2TvEmIQKa9ZXLwjdmna55NMnz5nPd6mbhnXbg9bsHezTv7gQzH5RCtVG/AHrpsIVLooo9oqKat97rElMp1PC9YqT509wkynT2nH+4pjl4or9ac2rDx7w4I038DmjKsfu4QEvQg/9kt3GsH/ziPjWm3TPHuMXS67bBat2TeUaJtWU6ODq9II2r0nTPTq1pJ4kcrdmHRJZG1L3gqfPnvO9D5/x41/6c7zzuqVbfMBEAWuDnla0neH7D5/x8dlv8dWvvMbZdeDozn2uz8/Z37XMKsNBEFju+dU58zuv8Y0//6/xwv8Kv/2bv890b4arAueXLTrscXrmYNnhKsdkYqmmionRzCYN7t59pnYXYzKLy2OOj4+pbx7w6aPHNLVlf3efVlmWqyUherRyTHeOWPaRV169y61Fy/rhpxjg1buvcGf3ENW2PH38Cac93Mi1EBi1FM0iYEuhc4Aq/fD1T34Y65gfHICzm/VbRekcRE+MCtyUy+WKX/qVX+fhD94XXqE2vPH6W/yb//pfoioS7+KdZmnchJVZYCwoIhlfIGqW87MTPn74ISfnJyzXK5RzEpnEDSrGmtKF2ULJDPut1qYkCPLY9fUlIXhSDHRdN3JslVKELLCl2jrhdcYC9WOQSBcCeUqwXK5K4CnjOmcl6rd1RQyRlCBGUflEyZxwRfQjp0zTNCQfRDAleVmz9SbxGb5/SqIGOsD3RGSk7GumCCKkQAx94b5BipJYKF0ENFIiqWKtk/VoYLzNR6N01z6/7Qn6QmtFXVVURt7POSdJzhjQ5xGBBMI3V0qS1qqqxB+t+HQOsP+BPJW39nqVM7oE4ahhdwVrMoRI7j1dXPHs0WP602NU9DjnaCrFznyH/YNDlm4BShF9QFtNYoi78ihGqHLhULO5BoPq88CPphSYNoqfpXhbrpdCFWP5rVhJlRhQbwgTWqkiGFX2tjx8Zkm4rClw2Syb2JaezZAAx+IHmEbvxJI4yrYzcrBVKHYCORVq0CaWGhJpow3ZUWy0GOPXIZ7dTqCG77mdlMMQ0yZJhlFCo1GF+lMWkmE6Dj5wulBSRAtmiA82RfGSF0uyNI7Pzftt4m5JIENIkniprY7aVkF/cwwl9RLjFT7SIM+/KY+XfxVgNgBVXeIxpzU5FnP0JJ1ZFQJd5/G9QFFDt2TZZlp/yeWzY9arjr4PrP2azIoY+yKIRykoSSGn6iuqaUM1adBGE7SiI9HHocFj6EN8aY37YcefmLTlnH9ZKfX6n/S8cvxbwP+Wc+6Aj5RS3wd+AviNP/GVn00Y2EyQUYbWWIxxI3wvR2kPy0TZ7lYMVQU5+Y1nmhzbE3DA3MqgYCSp5iyvUwNWPWVBHpSAaLPgCg9ONoCNFGnKEZ89kUjMgZAjOiaydQy9Jp0T7XLJsr/CTWbcf+Uue/tzri9WokKTKMIbkWwdxrhN50OyohKcqdIlG6qOwndSKtLlxNWy58MfPOT0+JTkWzEPLHBUjSwO0qrfQEO3F/thIocQ6LqWbu3wfYs1cLC/y3Ras7pajRWP0Q279KRHc+yt9/rMzf9MxXcYEgOc7uXETskKIB81JjhqfJfhvmutt+T+1SZx+6OSts3FHX/LY9NiWMjkgo1Jckbgn0p4gklnPIll6LlsW9YpYXqDriqCM2L0KPXXcu9k7KmhKlU+b1hghwRRHi+dvbL5GG2K7PP2ucuY6fqOqjY084Zbd+/x2tWS7/7B+1x1Z2jAGmRRUrKJpAJhSYgKZvKe2HuxpsiIIStSBRa/OcU2R1Q2C4XWlqaZMJvNaLuVKCklqZSNmwFIQmErdD0F2+OxrH3g+rLDp6V0tnBoW1NZw3w+xzkjvBTd0JnIapJIO477tx/wha/+CFFrPvjgOe3imolLpNiyYybkKmCyLMt9qcCLCavARHKQXTGmyKprMZUj50ztKlZKYZ1FWScwUaUIPlK5Bhtr/GqBDoJnjzbiWw8ukE3Daec5+c6HHE0cD/b2eU3fQtuax8eXvHjyhHtv3mVv94jvPXvGs+NjfvTBa7zz5bdRR3f59GlE6Rpwws1wDmUctnJE7fGhJ6WAKtAY7z11VeOj+DsO3WIJ3AVKtDi/YKFqDmeHzOa7tP0KTaaPBlvNONo74vzsAl84JcEHmsmMRdvhQ+EUKCVQZSDEKMltkoCXAhdzzhX+DEynUzofWVyd8a1v/hbEQPYtKgd6D82kYbq3A5XjdHHNxfUStdOT1x02tVS6EvsFq9G14+DOA64ef8zZsiWnBSqdU6WnLE/XfPfFQxZXPcb1BH+FChl8xpk1VZWxKE6ePePBK4dcLxdcrxLfef+SL3/9XVxzwM07Rzy/fM7f/4e/w/mzTzi8f4ezVc+k9TTKskwXXLXX6MmMjz58n8fHD/npb3yDf/TzP09qLMcXJyxjw7/6jb/Chx98yIvjf8aDV28DHeiKeTPBWc3k4A6NPeTH7x/yjTfv8jvf/R4nyvBi+QTXrlhfBa5yzeGNe6TkWS0vQTlW7Yr1umd/d4/+4CZaKQ4aQ1odM1lFZn3g6MYD/uy7P4FRc8g1WRkSCTN09X9YcWwT1gLFFseaEjWCX69YXL+gWy1YLZYkN+HWa1+kD5nnL65YLVeEvmW1WjOf7MjeYgxV1cjvXcfaTqhsRdUMHDQ/ft7bP/I23/iZn+Lp8ydctUt88PgQ0YUXPuzL2/Y9w6ELBA9F6Vpp2rbFd62IQ/m+iCSBrSqigkHMLMYg0L3iAyucGfkZkyj52apiWju8bwnBo61lMp0RgwSUsqZ4FAZbCa9zUk9o+w6FqCprbci2VN4H6B0DXL+si1nRNA1KKbquw1hB8DSTIlbgPc4VI++tcx4C3AFilYEQxLBbacnShoLsWLRkiF82RdFhHwU+c403Mdj2vjzur0PymRMqqpdiLcXWni0vlMJ36fIQs3TtEdgtIUIIJO9RKROiIjQ32JnPmc9nOOuo65oqZ5q+Y9a2dOuWmAovedG9tOfnjKztelMMHaJLUxKozOfjkoJv2ey5wznnreePxQxJELQSf0Py5tqmARWmhrixdDbRo6pjKt2yTBEASqJumFMa9/OUQokzQxEiGToxQwMjjzGDcw7nnFjFKIMriTVDrKGHmPflGO/lxEl8VceC9GdiwWGMvNTUKBd8gDfmNKRHmx/DtdUoso6jwuMwNiX+SeNnDMcmiUzjd5LxV77v1gcoSviZh6YBo73DdgwKlBhDem1GgUGjUxx5uCqLHH+lFCRNCBl8IvlAbNdcLdcsLhf0vafvAuu2JbMmpn6Mr8dz0hoT9CZRVYIx8zEXFEvC2VxEoP74Htf/H07bf6qU+g+B3wX+85zzOXAP+M2t5zwqj/2xh6K0JmGjcl+kZWR5RWRSh1LRFs9oeIFSeVS5Kd1puZnDzSvHQKSVCt0gThJRI/RMKltD5WKoOKRU8OGfhfttdRxeTnCiVL5K1SkX1UeFFTGRmGnclL2dGQdGEQxUtSL0PX2/xqpMVVfkGPFl46mcLqy5XERDBv0d+Q6azYKacih2DzUAACAASURBVCKZzGW7JDzJ/MG3v8+zpycQIyaDVapA5FSp1r18TlBUsbZMEVPhFMQgfIPQ9zijqSvB3mcG/t/WUR7ayrM+f/9/2IPj3zYLSh7OCwqWucgJZ8Ee20KcjiWYjFsk8M39+aM/cKi0jXK4Y7VkfIKMkbxJnoRhSYFuKpKGoBWx/ExJQYzoGDHOkI2RsZy2r5VUsEAgBsNGKl9a5kcqi5VWWuT7C+FYrqskXeRclDWjcBIArQ3Re6qqQRvL8nqJpRT8lGLAvEsiLJ09kykqTUWSVmeSgRw8OYvQymC+qtRGTlqVRLOqKoGydK3wPkpXUKatwG/RGltZXD0lmxURB05BhM5TCgAWYyqM1Uwmk2ImC86KhcKOrrkzn/AXf/pP8/Wf/pdhMuV7H/6A42eXVG7G2q9Z5l1OPv2Aq2fP6btYSPTl3GQXK+NWFvF1120SYudGniNakvOM8GhBo5wlZY+PLamy9DlAG9EWsrJQw2odmMUJbajRaYamofULLteeW4evcPvuHX71k6ccXyzIr1pev/8269k+j54/J2PwIo5KQtHHICpt1jBpJvTWUTnHrds3efDmW2jt+PB73xcoKrlQDfWmsKWkuymelob1ymNVwke4Xq7os0G5CTpFjHXorPnK177O737z9/FnV4zuNzkTg6cnUBtHXU3GINM5O66J3ks13lmL7TtM7kgpoFUgE4kRutATcmbRdTx+8oQffPIxqzbw4PZ9Pnj3Pj9x+8dwRhFjYHF9xVd/4k0m9w75B//n/0WlHTWKe4c3ae7PaFvHsyfHxHiBUZlZvcPl+ZrrxQkHswbrErk/4wcfX9HHnkt2CK2i/c6Kd7/4KvPdhmY245vPXvDi6XMu4hVn14KQmHn4N37qp/m13/gV3I2bvPb1H+eNL7zBxN3gK196l197+k1Sttx/8B7/wb//V/lf/u7f5fl3fwUd4fbNI/o04fzykp36Ln02HNy6wV7boS9WvLN/yIuupbL7XJ+/oAuBW/ffoGom9KsFlsTTh4843Nvl+cOHTIxl6gM2Qlx7lII3X3+TP/O1H+X2rRu88c47OL0GehRWOL2pLMDbEdS48H321zIjlCKFwMnjR3zn27/H+ekTutBz940vMr99n5DnmGpKU0/J2pC9qL3lXJR0c6ayFdNmRt/MWTVzmmaOKLs54dwaWZfffOstpvM562fPCWgRXPFxq1C32VvT0AXY+r5D0W9IPozK5BgxSuGcgLjq2tJl8Wwa6ouQ0YUDNES2irLuKTsWbFOSpNDZihjE87FpplJIVStC6Xj0vXhyxhBoV2vSoPw4wDrHT9lceEGxSLI2HNYY6sZxsL8HiNLdbDrFh4gypvDDh5hH+GZd32M16MqOBdnxKPueQAAHwbJN3DKoJ4YQBNqpi4ctLyfM22ii4XV98GILU5SdBzVNYzQxiKXKcM6D2rfA8EoRNClSTLRtoGpret8zbxpeefAa6ClKWwlsU6LNEpFHPSFbT7ZrfNfh10u0q9Cml1wwJGIKwl0rkdeQIGk2sM1hX1dZkqVRnas8nvJGVCWmtOlWD+eDUFW01mhnUFv3NCWJ83LhV4nVgMRlkvDnIstfkraMwES13L8UArEoR6ISPgRyNjSlOJCLYnPCjAXzYS/WWoNh9KjLvIyMGSvSpcg7zqYBTqiG+GBTUJfkfzsDK3/JkuTq8lguMcsQe2+HW0P4pdEFRvrS2422COPYQJolL4/ml4sLA0xyGNEKxo7ygCLTagumO9xeJWqzYhWiqbSlBkxlqGoHlYHGMW8mGG3JSTrwISS60HN97Ud6h6i8CjxWYMKbpG1I3OLQ1S3xacoyRyj2XTkm8PFlsc0fcvzzJm3/A/DXyzf668DfAP6j/y9voJT6a8BfA1H6YSsDHQdYVqMQSAhRjJZLy1Xa0UJijaoQH/PA6SoqVUgg+cOqdMMmYKwZW6mwUbnbPHUY7Jsbvp3UpLSJrjcQseE5hhFOOVS+s0NRoVVFU8+4e/c+Ozd2uGgvWV5dcH15Tde3IsqRRZWw95EqG6IVIik5j0Hz8F3MODn1uLn57Dk9P+fxxQkff/SUxeUSV5QgXbYis6u8SISkJOqGnzk2AjHyGU1VU7uaytrSbYEYg3DMGCCEZaiqrfxoO7FFISTpTVVkvIplIYg5j49tqnMliVNbC9CIrS4KVBn6EOlDIsS8mb3jIvAyjnuc8GWlUmWBTmpInooKVgl6lR53e0mwTC51BEUcEji0dCSMkPczuSREn1k8BwPRcVC+fK02zxsWx80iJH+PKEXBRG+qVV3X0bZrbBADX2MdzXTKZDLBGI1JWRaVLJAGH4UTlXIUci6Qc9gIoshNwBqL9wLDDMFTq6mIv1iLc1VJmAOLxYrj41Pq2lHXjXSHeuEHiuxyg++7ws2wKO0IRbDHx4SJlKRJnptiLwaVWmEMNHWFo2JXT7hVad59ZR8TOmp7i69+6cfgiwFleiLwoov8+j8NLE5OyUq++yCFPEBUpBgg97r3fVn4MzZniOKtpwz45OV2ZIVWjmQndEoRLORJQ+UqGt2DttCLgWsKCpIjUhGTIYviPUobmnpS7B9y4aoochQZ574LpCS4/pTFiNdqSbDrqmau5qyc5Qtf+AJ/4ed+jgfvvMPx8Sm/8au/RjLFYl6NDAEimmY6Q5sZ63XPo+MXxNizN29IyqJMzbL1kKJA6UKmamb0faRd96XkWxQBc5LidcHt5JwFdq1gsErZSFuDs4adaUO4XLJYX6GzorKOvb1dDm/eZLq7y6dPn5KU4s133+Hq9JTnH3/I3/nbf4ur8O9wePsNur5ntrPDbD5hr85UlaFdrPF9RzVTPHj1Der6kNfvXfPi+PvcOqr54jvv8fjJFb/37d9jXkXuziacXZ6wzj2TyS163bNcafpc8dEnlxzdOKddPeT0+QuuLxNWefKqY64zb9w+4ie/8VVOrx7y3p/9c3z1J/8Ce5Mj1teeGzsV+IBVO0yqI37wve/zu7/+S7z7+i771TU7Vea606gpLPuW+3de5yv37nDj6RPe/JGvYJ58yqPzE37/w8dc9QHdZGZHu+xOdnj+8SU3dndQy2tU33Fy/Jw7e3vcqufc2NnhlTu3ufXKLb7yo19jsVrwq7/923zro4f83GyfB1+5hZ1mTA6kIg9rPlN0LCvjVjFN9sKYB8U4CXgrY3A6c7G45PjZI95q1+RqF2OnuHqK0preR5yrUEqECnQ2VHVNDlMm0xlu0eCqOUpVRCzeB7QyWNtw9+59XnvwJn/4wces2l4UHWNfCq+Zqq65efMGIUWOT07Gsaa0xigzJhIhFji3VlBgfsMZx+jBGExlRQBCSDhALgU+6XbEEgvEwk8rMRh1LUIebXtN1/X0fRS1RhTOVYJwCT3Bh6L4WpQI4zayp4THw1quVNlToO87jLU0dU3d1NSVZjabEGNmuVqPPDeBf0nPTpUKt0JsZIyRhFP2gs2eOSSLwsPL4zUSaslmL5TOTmJUR85DPMMYcVtrX0JY5CDrYgxhjI8Gr7gN1UWugyqiJSELN9YoUClTuQplRfToanFJtoa6nqJTwBaxkqSKp67RRCWiIYqANZmgZG3MyN4REAn4wSNsUEGmUGnI0n0dSqdiRVOIC0nUI/PYGaB0zSQuTCXhGTqJcu2Ex6URflLOSThVYwSu5X1LFy7EKIluKRxSVE61knjHlnNIKY0+qSlF4TFSrJC2Gg+SEOpN93Ts9m04oHno/Gnx7eQziesw17YRPmXrH1LRlxKlIamTHSaPfMCRqwZFnVo6kyPlKSPFBTXE2nlMuow2QlfImwR5gzYadua09Zh80vB3KUNv5ta4wZdj2BGHhwZfQ2MMtXPMrKXSClc7stWkSlMZMybglo0KvcRCYfREHMbCMAeGhDXnVJSvpQDkQyBmaPuE1qIwThIYqLOmqP7+0cc/V9KWc34+XgSl/kfg/yi/Pgbubz311fLYD3uPvw38bYDpdJZzTIVYq8eUWSk5SRSEJJnqmCCIBFNJ6ga4mQTBWmVUVgUjHF9qt6atxGS8sGWxHioKaawQbCZ8Kkapw4L7mXN5qQIl18VIBh0hJwNY8T5KmpQK90xpJpOGvb0dVB0grHkRPb7vMSmR6oaMJhRCuB1Mq8fK2HCdtqqQZVMQtZ7A8dkZJ+dXnJ8u8WuPHjl/RZnSCBcwl8k+LgIl0R3+fzvJMcZAygQvnR4hy0ZUNjAMzgw6F1ZsmZQ5ZbIq/KiSrI0JSvnOGoF45CSwhk11VQ6ttbT+jR7x2lrUKWQBSIVjyNamXHLyDddnGwoxjuRNpUeNqxSD4MwIn8iMi8awYJCKFxBSEUMLl8vaiuRLQrzVpdB66JzlUvB62RJiqIgOKqpDtVMawHIfjBZD75A8hXgg1S6t8G0n8CC1XwQIFLWrqK2lqSpUiBhVxkEaRExk44gh4EPA+zh2pL2PxJJASFJXpHidY/BAqqpaoHBdy/n5Bd73fPFHvsDdu6+wuDzl0w8/FOGP4jukShLAsLFkReUcMXTkGKWrNWxUKdCu1wwVUasNRldkDCr3ONvz8fe+xZ139jk4PCTHnqtn72OaCUndILYB78WjqA8ehmBDqQLrEXah0oqu74ihp8k1KgUIPZqIUpmQAilFnNbUVUO9d59+1TE7yHRmQsiO9vQpd/YPub7y6LxgqhtMaMi5dMnz0CFNoBNZSyIUYyahBZrlQwmKJMkf7oMpAaICuq5DkXn+7Cne9+zszDm/uAJbRHlKQEIuCpkorLbs7O5zHTXXV0+p6wqjLLLbmrEgYQFtLArN+dkZWmv2d/e5uLpE5WJ4HINw7MrG7SpXquemzJuM2ZLArpzBkkQRrmmYTefs7x0QY+ZyuSJpESOY7e2w11huVhM++P4H/K3//m+yf/sNXr1xmx/70pdBKbzvWSyvML0qVWKFqQ3VxHLT7RJby6xJ1DawtzfhtTdeY+IM05x5fv0Yoxru3H6Di8s/RBztGvr1ivOLE3IOOHOAMZk+BHac5kD3vHvvJt/95Nu8/d5b3No9wC3g2Q+eM50a/tR77/Drv3iDk6fP+MF3P+Fv/Nd/g8XZB/wn/+7Psjz9iNn0VT54Evn00SNu7814+/CQO6trdm/sM3vvSxytr/iR1YL3Vwl0RXAdJ6dPyLN9Th9+ippOmfie6Dt25zs0UfHK3gF/5r0f5Yt/6qu8uHzGP/61f8qHHz/mn33wEXffeBv3D36F23/wkJ/5y3+R3ZtH9Eo8iPTWPvfyoV76KXtsAqWpbMPufI/lRU3ft4TQ09QNbcrobLGmRmuF6wJ58H8rAb5xVnitzoESPcCMwH61tqMf4MmzEx5+8hirKpxGhDRST2WdGCQ7y5e//CWenRxzdn42WrmIWIfesu8RwQ5SQCmoqylVZSElfPBMJlOca9BJsV51+BhGSN/g5zT4tMaQETM58VnqvYj8pChh6XK5xFqHdRW+D1hjSpHYljXKEknEkKTAzFBc3OynuexRQxKkS3KtxoJnxhhNCJ71aoUyDhVTEbMqPCogJy/xx5C8leJ3ypsOny57xnAeJQsDctlLhVfjfU9OidppnKnKfI7lHDYxj1IK5xyrrpUOWtpwolK53gP6JZdirviFSXBPUmSibAMpSECsofM9dRDlUBc7lLHjtXDOopNGRU/C04YVKgT6diEdziiJq/cCIbdZyTo7xhkDX11jFGQlcWXXdcJfLvBV8bcfYJIF4pbHk3+5AYAU5aNfirKy0luxYOnzleKwqB/KPjga16dRbxEQCyvx1jQFMqfLODBUBf7onJMkmU0yA4y+ftGI0qJwL1/2+NMltiBLsXlsPGSB3hqzif2G+HgwAR+K58MYVmNyWwoByozF+qFhMsAujdGYaEoMBCqFsZiA3rKI0AqTtyGt5VlKsY10k1hpQEVtREWG2G245sMDqjw2Xqscx2uQ03B/ZG51MZKMIkdD23u5ljHKZ4zJ8NY6qqSRFEtSrEZ4afnsYp9kCrzVOoexE7QebDkyzmjsH5+vAf+cSZtS6m7O+Wn59a8A3y7//78D/6tS6r9FhEjeAX77T3y/8lP8M3IRDVBjW1ha+qCUyHZTqjRpCNA3KXl5r6H6IINtWJRfxvDKEUOQKonazpDH85RWpdJQFkPxEvssefVlrO94s6LA1aTSJkqOzlUCG0iBSACTiblntbjixclz1sslSimscZAVWju0cYSYCakoSeWB+JlGDLFsXoVjVL57zJGzs0sePz7j6qIj+QzRy+KThDita4P3HYRN8jd07ZxzY1UtBBG8UD4Q+ojvxYzXKr3hXxUS9zABch5RrmN3a7hGA4xgnLVZNsON5OsGYy+Jkxor+JI+R0IUoQitvcAwoiTralST/Hzn8HNjbuu/P+zIpQKV00bxkXKuavAw2xpPIQRygrqqaeqaLnmRHc4Uid5ybioXo3SFYPqHpG8bz5xL8j0sBMO1kkqoNQaPjLGxoJeG65iED5IyMQai96QgMv7EMG6weuBBFChRVbx9crJjVThlEe8RWKChqitc5cbOWgiBvuuYTqbMZnO6bsV63RJD5ujwJuc3b/Hok48xSuP7juglCOuTiBtohcg+x8y0EihMDJ7aKqIWOX7vfVnspWOJs6x1IgC+vebifMWhv+L6wnH20bd4/5u/yIO332Z+/88SV52oe+ZB1RCss+Qo3kRZp5Fb0vsW362xzEjdGh17jErkHNBaYIEqJiZuzo/9+F9mV6/pU8t3n5/z6eMLjj/peO/d9zgPL+hWz5mwQxU1jZuQjCalKD5o0bMOa+rQiqcVmqAEYquRIEBvcR0HP0npUmdUTLSrNcfHzzGlkKFskdo2Gu0cyhaIkzakrFmue67iBb1yaCw6b3GDo9hxkHJRy+xRpmfd9SgFd+/cJCdfKsGKft3jsyKEipQsOcD19RXWGiaTSQme7Dh/m8oyn06ojGVnvkuMmXXb0vvAxcUVbezZv3FIyJEXTx/z2uFtvvLV9/jmx3/A+eUlcd3z9oPXuLhacnpxxnq1YEJFxHO1aLlenWFcTV4vyemS8+NTfvvZpyz6KbFuWM0OuUgVCzIXT0958vCSlJ7h1AGKTLQSQFTTm+S0YG8y4ezqmpUxzPeOmN58wPd+9zt87b33uH7+gif1Qx5d/4Cf/saP8fa7bzNxc0yuCX3Lk4+/zZ/+6iE//We+/v8w92a/ll35fd9nDXvvM92pRrKK89Dsprol2epIaVmyJMcQrFiAXwLHipEAeQjykIf8BUGe/Gf4JQgQIAHiAEESJFDbmiy13VJLLbFHsklWsapYt+58xr33mvLwW2ufc4vsVgPJQx+AYPHy1r3n7L32Wr/fd/rx9MMZ//qPvocZv8b+3pR3Xr7HV24coJ49wX7pDb75vb/g9Vde5K2nx7wx3mexXqBnY3Ad7dkp+ymiL6/YH4/oo+bnvvAl7t19kXdeeQPVev7P//X/4qNnT/nrpx/R+p6T9SWPvn/B+ScP6P5Q8eGzh/zz//K/YvTCHZIuIf9/2ytBzHsFNU09ZTI5ZDw7YG//iFdfeZXZZMb5JbKH6UbGzVS9gBMF81KiZKmbimbUUDVjMCMSVf41SvbrqDnYP0SFQGMt8+UaU2mqLANPWVL04MEDLhdzfPA7YFeCndCNuqrQWuGd+NmEORMPUecTadWijacxtex/xpK8DJse+CgdIYrawzsZ7aJ0IrjdGa3CL7iQcLHHB890MpWxLJlNGDUNCvDODa6OGIv3fHsWoqCqKjn3rcFaLYEntZXhylENhb88/+K3kW4P0CrjX+V9MQB/kgdRANnSbG2Xwa73X84ZqQt2o9eff5Xaxxh51lftBh8l0MVoOQ+t1jInLrNKzkkTFpOMIIEkexwy2sYqRWMNVkHoe5bzuQDfvSI6AeRtDoExVhQ1xmhaB20XWG46fJJ5fMMeCQIm+zTIVE2+NrCt8+SMDNumLd8rCWqWhNEta7PTrO0yKinRdx7XdQJO5+ZB5cZsW8tkL6GWs7mAzMUbr01k1PeEpkEp+Yw+JqpKUholql7eawylBmZo2MuaCt5ncOHHPO+p2I2SAIjyicQOQJlPC+jtmiXbYyTNNa8lLQ3H4CzLYyZUzuIuyilys2xKiFUudWJ+dgcWLYMXahgpUD7B7kLMjZeCQSqZA1J2BjYMnFrmfbbqqfzSaFDyPmOCzonHTcUELuAtgGXdC5sWclZFiJmAKImkee/I7cq1/qEsmVQUgvm5qCorY5MwCOOsqIyhslr6m5/w+mki//8n4DeBW0qpR8B/D/ymUuoXkef8Y+C/ljeXvqOU+p+B7wIe+G/ST5EcCVvMR/4shfEQdV7YEiVpNWJJyRLIvHFLkk/p1gVF0EbSfdJO41Y6/22hnXb+yRc87fydvOiGGGvi9Rs/IA5bhGnQsEdPCjl+H0EEY3IEOvqgcWlN6644Pr7kB9/7Lo8fPWLSjNEJvK7oei8zR5TFeWmYqiRSkDhsGDu/Tyt5CPIF7bqO09MLzk7mhE5hkiHGkLFw4Yu0FdqeqK59pq1P6XozmmIiebKMK1BmtyQyc6YUJaK5pP0MaU47l7s8kNsLTm40CsKiP3ejhPx9gDWWurJUxmCUmEaNscPBET8vKqu8jx3qfBeN+cz37pxag4xIqYGVGICdwpzlsQNGGZE46EBIIqssDWwZICmmZInQLshUUkXOkDfLLYi2fR95EyoeQaWyDCMJ4iUoVhLEdONxsafdrPCuz4dQlkZEiBpciKz7nkopRqXQz141lKKuyxz2noDOh7BjlLbm/xACq9WKpmmYzmZIQIakNW66jslkgvEho3Tyfq0CkyKNUfjes1ouMbmJgxyVrCTRSRrOhFYWrS2VhimKvTAlXTqSW+DjM9774cd859/+G+7MHPt3b1DdHFPNxJgt6aJZkqqy1j1HLPsQcpJcwnUb8D1hs0YFT21A60jVWAnESAkTLS+98AVeODCct5c8Vsdsnn3M3E1J9hBdtXglQTUVFpu0JMcmKVBqDJ1zLPueEIBo6JKWKOxcNGtyQpj3QBwOVEIiOodRisVcilhj5V7ZugYth97gS9GGqplw/96rtNRsvObg4BaL+TlWZ0lORjIFENe07Ybl+gqMyJS6VrT7WieZJWOlYNzKsmXdFq+wGObt9tBOkcpammrE0dFNNpuO+WqFrRpu3b7L07NjYWOIrDcbDvb3MZuW//gf/y5Xrubq5IwX7t2nGY9JF4m6MtBDijU+JPqNpbWKKlhstFS6wfWKsIks1j39/JymabhYrugc6Lbn6GjEKy++ynvfeUCsPHcntzi7WrJ/MGU+P+Wkn2M3mlvVEX/yh99hxRUfnf4ph+M9fus/avjt/+Sfsnd4wPmnMN2/hdaPCX5OXa351V/+LeYnGz7+8JyPHp7zbLPg9t0bvLM/4+xH7/HVL3+Jf/XNP+LPH37If/vP/nP296e8c/sGjz94SrvWrPs1hopbdsztyYTXX32Vl958jZfeeYvTqzl/9jff5Xvf/g4fP/iQ5mDCPDqulmscDWfnC5hdgdX8+be/zW+fP+Hte4dZCWE/u6F83r6XZM2BwtgR1WgPU005unmbN956m7qqsSlglaEvcz51Re9jmcoj2iirsaMK21aYykqTlH9HGVOjVORof8q9Ozf50Uc/Yn8qjJ4COueoRxKD/f4H7+diLuYU1ShjLnzCaoXNgTwplmAh6FYt0GKsRRsjc119QteG2tbCDJTte4fvQG2TKYuXpwRADHH8sqyl0CvnlRJ5G4jPWue0VXIx6fMYmjKIvvydwhCJmkEPQKn3AVKefyb0D0XSFVIkBURiamRwji7+nXImyJMNStQfBawrkkmFnGVVVTGdTNibTjGk7FkPpMBnaoBS81hrhwTJYm0pe4CLEevcUJNZKyNmUkrC0is5Dy3ZdekjtI7er5mbU4LRhKhBjfFerrUkEVtp/GJkMp7k+xxYbzzRiwytqIZ2bizFVqByMzLUJEoGG+/wN9uim8LkpqH5Kl8flCLleUFhTYMTbnX4WTHXTLoc2qVWyiyQRPbL2zSqXCNh37TJrGzokSUtYG9MOgdAFVZY2gbFtm4r92K3ftl9SVN53QYkt7DcQ5FH77JpW7auAOKFnQWZzwbRJ6Iu5IJ8MKVVVtRktnA8YdIYtO/xThKqS4gfbH9HYa9i9v2hBCRiWI9bzUB5PLxK17IMJE20mKXytaYkSgoIL6C1gD+BbMXR4JIiGdi4SO88ru8hdkSnCDG3qXkunYSkBGIUW8n2wu4sptxTeOdBaXR0kAIpBlRKRK+J1pQn9se+fpr0yN/7nC//y5/w/f8C+Bd/28+99nfISIFS0s2DfKh843VePCkHNqTc7caSnpMLAxn+mVGA3NA9H5+5q8kdPHRDgpO8m4IiQJGDlZuSBtPp7sOw9RPtNDdJ9NZGBYKKhORJyGbjvAy7XW7GfPy44+nTpzz56LEQiAeHEBI6abSqUC7KAFDv8fSMxw2GrTm4NA4SlqCGBVli0l3n6FqPigaDFiljVKgo8jetKrQVE3mRaOw2tc9LJaU50xhd4V2k7xzRB/CwHXKYh6NTBpenYaPTSm2btYJ0Sb1I0Txrra8zbmbLuGGkWQzBI3lw2020NGuCbFxHVa69hvVS0JrP9IXX7u3zm7VcWz2YSodQkZg9Aj5IdLEP4h1D5Iwmz1/RZAluLArrnPCX4nAQFJRN7rGYuVU+fQtaU9ZcMVWrvC7MTqx0DI7ge5J3qIzolAMnlIZVG5JMG5WZc5nJ80E2OG0N0SVSllSsu5b5akk9nVJnUzSAc46+l7EDk+k4H3SapDX7R0fExUqerxAkxS3J/K/Y9/Rtx3p+iSZQWUNVVTgSlVFUk7GgmlF2cmMs1cRm2ekeRu/j4mNOVz9k7TXz+Rk3qn361nFx8YDF6izP7vEkhTQ42R5rjCFlqUmI4hHsuo1IN1yHSYG60lgDdW1pC1bI4gAAIABJREFUqopRVVFpzcFkn+nRiKo55Guv/xzp4AM+/c736I3CW0+oO3yQZlxHhc9rqUqGWmkc0MZADKCDIWDBGDQxo3iBGBxdt6HrOyajlFPPIl3b0rYb/uFv/Rqvv/4azWhEPWoI+YDqvSckScWKKeKTHEzrruNq1eNipO87GmOGQepFMpMrRxmkrSzjpmbTtuzvTbBaMZtOuCISfBjWoFaKu3fv4r3LCZ2JGB1d27PZtFRmhDUVKjfd43FFUJaUJBW4oLdFRpKA6WxGUoqf/4Vf5Nvf/BbHJ6d8KQaq2lDVmvXVCqUb6rFltVwwv1hzd9YwqzS4js1qw/rSsoiGTivqxrBZt2izzzo54iYxXQei9XTdOYuniccf/YioFKdXS8gpgU9OTxnVYG5pJtMRr7/xBfp1z97sEK3H7O3f5d2v/BJ/9u//ivFYvIftZs38Em7dfpdNfMC8XfIbN16ievyI+6/cofniPZbf/waq1sSDKZN33+T2k4f8/OwWn0a4atb0ZxfcnRzxO7/6G9y8fZsz3/GNv/gb/vz9H3CxWHO5WjMfj6h0gKhpZkfEjedgXLH36iu40LLwLU8vjnk7vI5SI2mu/taeLYk0OAWIoMwIW8/Q1QRtx+ztH8qulWTeI1iSivio2PQ9fUg0dd4vNSirUEbmlJYzBAR4lbfiuPvSHb761a/wp9/4Y2aTKWkyY71cSUNR17Su58aNI3rvWa3XgqzvsEHaiPRTxp74oZiXJsOS0Oio0VaLOkQbYTcGGVuJoJcmklLAqjJOJ2GtGpopUdnIfwtDIvut0YaqrvBdj+t7OadSyoi/1BZ653wtYVro7dlXvu5cxDthrLUyEiiTVMH1iUHGApmEhFyloswoyYVy1qbccI4nY6KP+HYbeFIkmUVaaqsKS8I7l8Hzzx6M5T1em4EbpYkbj0bZz4dI8uuaMJ3hncc7x3K5hDzgWyeFLqnaPhJ6TzKO3lTELKnUts8SS4MKDp20SPidJHPbqoIQIPRSCpVrrGXPRevMGm3BeqW1ZI0kGbSckihkyCqegZ3aaaqH5q88IQX8u/YypKxeUECIvlzlQc5b1lhKklcg9X0BuBMhRPq+Z7PJc93qiqqur/kDpbFjAHohDjYiY6Q20GjCT0ghTDuNzfP3tsx6K2D2MNJq4K+Gn5IbT3IDmISFAhkPkLZWDmMMVmuSFolnU1lhVZUmaCO1T74+MUSRLkL2fIfBcy7sWPGKloYyl5OaPB9tEEpKTkPplzOoXWwqBOkpJOhL7Ak5N46gEw5pQjdB0rhFGQIEQzK1gMDBy2zc6PMswDiA+NtaehvoJ/uHE/tHKjaviEoBZzTOan7ylLb/b+mR/7++lC4hD3mvIeu9gS2Nk7JBdrv+k1YyLBM9mE6l0dOQESHn3EDn76bIlGZL0KbcdWevXBkwXZi18iBr0lC0h/Q8Bb09SGSliKxiWMBR4rhjrFFGmqWu7zg5O+dqtSGFxGrVMmnG9H2kqdYDc6eMYTrbozYarB4SgWIOkygztEIMhCS63BAive/pug3BO4gJoyxNUxN9TRiuqcjsSHmQdGmmlNr6DLUYQGMMMnTQSDSs957gc5Oah6/KIS4H4WCcZqdRZntbd27w8P91bqTDcM+yfzFvNDK0VFAmHz2WgNIxR0kDUaSSKezyUTz37x2mLJWtWjFIdkpDVJq2vGkUNKqgTXGn4U8RlJFiwHkncdNeZvOQ5SwpCRCQ5AdI+mSUe1gruW7CTCRi2CZdlRRSuU5yqMcgnkJjJa0rkr2fXvxXELLkO+Z0ySCNUoaxEgweSEL+mUbljSev4bzhxQw66Fz0GaWGpnJLaIonbr1a0dQVSml8iMwXCy4vr7DeM5JZA3JIZflf6yShT1mLazticigtsuLJeMrBwQGT6RhTiS8iomTeUaNZ6IBrKl5/603SrEanmrffeJWXRnschBrbRyY5Zpmk0Eq8hilKI1yCiGKWv8YQ8DkuXJsalDDdMQaRW3lPpaAiYGmJVy0XixPaO/e4c/8m05sTVGPwNhJUSzSJqOt8+ytIHp0Pu2AqvBLZi0FCa0JMEmYQWkB8bMZUVEYDDpUco3rKzRu3aEzkF7/6H3B44wZibk8EjBTmcTv7BfTgAzu6dQ9My6NPnwqjOJ4O61xnqYjP+25ViZ9IEZiOsieyqdjfm9F1GzTizy3F240bN1hvNlycn6OUDAruui7LZ3sUUNWGqKSQtMbQrVs+ffiI3ndwtJcZAUUfOok8rypOjo/FoK4009mU+srQLZZcPjvGHNzE9x3NiQFvaNqaarbChhVVlRiPLM8uL5l3GyZNTd919O2Cq6sN9TRysXrA3dt7/OqXf55xssxPL/nODz9glQxeK0xjOesXvLh/yKv37jA/fcp73/8uv/QrvwlqBMlSjyf88td+mX/1v/9vRLPBUPGv/+23+Dtf/ho3b97HjvZ48/Amb914Aff0U27+4pdwyfIbX/01fv3vRu7cfYE4HnEwMXzx7k30+Yo3Xn2B/Xcamk0kNhXf/N73+eDpU9Z7Ix4v1nQR2nrE1Voz1oaxJsu8Ovb2Rtx8+SYnJ8cs2xU//PAjvvbLXxN2cnfj/dzmLUvvCkqeGZqqGTEaj9HL8hyJxF+KKdl7XBREWkDH3P9n/1I+SiF7lmVXVSgVSalnfvIJp8eP6GOgn18JWp4kDKR3DtvU7O3tgdas1mtiiJnRkqYjZp+XMhqiBDKoHEyVlPjCIVApnX3cGfzN/jU577aIPVrOGR8CMWkqZfLMr3Jp5OKJXSINxbJ4fRu6TU/bi2xSVDCyD8u+WuwfUqhLz6axtqKyMjrFaJ3fl3iMjDF5j5dapcTDgxSqw4BoKgqwJzxIGhiLyhp8LC1fhlWV1EoCyjIodowxBJN2GJDt0hmqnZQoCcZGa8ajEUdHR9RNI5LQKCBkPRpRN4ngZB+IIVApJTHryWCUJDO6GEhI0nJRjzTKobW8B0kbNbmq9oypsAT60NOFVvzAIcq5n6+JNvkAy/VkTJEQwKcCgl5nmMpjsduPFRmuuHDyfSsLofwdpSjJvEPYRVTb5n/4PnISugADsubUUFNIjSUJ0FqLvFXmxom03gePCw6jbP47ov5SKjPYaaeW5TpwXc7pwsxtP2QcnsmYAjqVOmf7+bdDt8vXdzaP/POGbxHWQJpeLT7tlBNZEzIcvE+e6AvL5gd2rPRuAwCRm9EhJVWloSZLaed9lJpeS/02KNHKdc33MKa4BU9i9oxTGGSFT1I/+whd0BBFieRCoHMduleYaDHJkFxPHyMuKVTyqNLE5jm2Kr/XSCT2XkITtUJ7L3VykuAaCfqMxKCl/3iOaHr+9TPTtGE0ymwZDbkpIoNAgdjjDYqKlIzEnGaTq07SuAl7kMMntM4+DWmyzC6Nn3aaK7UtHiFv5uw8aEPRnldxgpTj1Y2QK4LS5zCORAAVCUT6BD4CQWNSwiaDSRUh1iQmrBaaiR7z4v0vMTncsF4uOf30CceXl5xfzBkpjUW0rvuzA2bTPUZa4ZSEevvgsAQwipDll8lo+hTog8fH0mwtCX6NSoGUakKqMFbhfUtDjaXBq5aoczHZSyy6IbMDGoJJRB1QJqBMj7WJuoKm0sROvhe9kQYl3CTaDSiHijqnNKUsDRM5nfeSWJgUJKNliCTiHXN5xlORo5R7aDNaobPZW+mKpDVOOdq4YtUZlNe0qyWqhSY2BMqw4RxKmzfJsnaMUkPkbszMpfgs8oaqZRg2qsz6UPhY0q8CJonMTyVwCZzSeK3pvRilI4GUtMwDUuKByyJbaQw0RB1BBxReBjOSze6JAh+JvDI34lGJ5cREjbEanzwmJnyQdFGjDF3q6WmJvYRwrBdX4DxEkdN4Vfi7hAqJKuao2ZTlf2TFbAE1Elit6VzPXnXAdDKiqhQY8EnYMaUQ9MwFsYXEiK0rRuMZl1cLDhrxSAYiSsu8r01MpNEUM7LsTY5QoceoNSm2RJ9wrWLTB5JRRN2TjAdlmIQxM+tw4wvOu2Nuh5vMP/Ys3RWTvYqbswn1Vc/pg6eE07UEBlhDChZClRPJvPhLA2hb46P4a1JKRG0IakYbZkQlz1i3WbG6mhO6PVSsuDz5mPnxgscPH/Ht9pLLN+6y2Fzg1AtEs4/2lfgO6ohqDNo36LAmpTWhhg01tWkgBkwIqNiLHEpbVOVw2hNVQww1Kjoq1UKsQE25c+9lDu7e4aPjc/7iL7/N/ddf52zeswkVkYaxNdQpoJQlKtHKNzbyxqt3OL644sOPvwsouljTR0VMBuVlj4tKE7WMBKl0pMqFjQ6OlKRY98lB0IzshL4X38/HDx6JoRyFDykf4rI3bBY9prakKtJrLwBd56hjoH12yXh/zI3xlC5twCR81aOMYn804q03XmV5csmq9XT9iqNRjVpcsDx5jFpDqiKnn57SLz03ZxPeffc2s6lG6TFtMnRxAXVDmypGzYh+cYmJK9pFYGE77r5+j1//3d9jVs348Gnk/ZPIZH1Gd/IpzlSsU8U87jObvIY9qlHWcfPNe2gLxBVKbfjiO7e5ee9V1v2CzXqOmd7m5V//R7x9/zb/3duvYVPiw6//GWeXS/746+8z/vMrYtsyGyU+/IvvM5lBkzrefvcOf+8Xfp79114h9Jb/5V/+D/yPf/XHLHpNu4nsHcx40gdqF6jQmKTAexyJmALOeKz20G6IraDDXecJyiBv+CcUBKk0dZYY5byFiKoT1jhGFuoUqVR2rGhF1BJwQyW7nes7RglshKAiPo/PqG3FhBEmWhIehZawgRRAb/j+e9/gz/7w65yvwLkeqzymtlIsA5VS7O8dsFqvB0kjShIEo0r4KGl85AJrIEuUhGZlrgtvdU5NjhLX3+XwBDGc4ULAVDXOSVy80YaYgsxINJUUzj5SW0Pf98IMJ5FpAoSYaF0AU+GigGIhBaw2jGxFnxTBZ9dPBqpDHjQdQ8THSG0tofN4En2IVEnGsBA9WAE9MBaTBJXXmVVUOTRLwstUBtZAxSCy8+iIfYvVUNuKNhedWhkIMY8RUoPEWWuFi3mmpREPN0bOyz44aNfCLoSAiuKz9c5hqorWOy7ncwgJqywqRPZGU4yqUHpFbUUWqZISxkNJdedSJAaX2VlDMIaoEF+uCpLKnDQYQzQyLzIZg7YW40NOQUb4k1LXKTK7FYeaL+nsZfIOX1JIjchQhXvJzJoSIH/LwOWGYQeqL3ViiJGUE8PLzFNSCTLLEtncREUl9a7RIkUMQfxSxhiUAVtX1E0jY24w+BRwQgmKPy+JhzBFL2oaLWRAyE2JQmpgZU0OB5KsgZjEsimfaVtzgahrtCpzkfMnzM2MFB1ZhVbAAq1Qub7ynmwLUTlKP+B1wGuFV5qkK9AVKToSEjQmLLAmoHCxNFViuVBGD3kBor4Q/30BO+R3y/svcmQXPD3Zx1nsTFm5F0PAO5dD1lyWf2YlWJ51qnTI9A+obMGR+6rwQRMrYW3pDSYoRiFwkSq6eoLiCkMSK4xSW+IpM3uSEmrQKo9fyfsNShIpG2uwWuVn/drK+szrZ6ZpK5RiYavKf4oePA4MWgpFl1rQDiBGymz6lC3FEmm7jfkfdNzPXZBreu24/TeDp0oNdGx5p0UznbL0bQukXEc15NHfvu8QI1iFUuItcC4xv1yxCp6182w2vRibfaBvO0xTM51OOdo/4HD/gIP9PeyoIYaeMq+toBCpyBxyOo0ygnDEFJBo+BzokhR952lGirq2AoiYCq17ghd63WhJjouZ4UwpDClUJjdYLgRciChtqaoxqOUOQ7N7gZ+7z2ngcLbIZr4PRucNuqT07FDMMpfkum9Ga5EgROc5PTnmgx/9gIvzCy6v5lxcXKFjomkaUhCpScgzU5QRyr33QaS11pLodtZhfuASBJ1TvdSOHxIoccnlYChImc+Rrr3r6Z0TmUpO2VNZd6AQpmpAs0nb+NuBzt8GwlyDsMr1TOSvD1RYNpBvmcPetfjgSDGxXq2GBMbBJDocQnmTKrHD5RnMO3QamEfxjtZ1TV1VGAT5EmY00rsNJgmim7IhWcy1FVVV473D54H1tqppQxZwGIvSI8aTESZ6SBaiJbnEKji8C/jeDddJ0lwb2lCzTJYfPHzK33zrfRaLnle+8jZHk4rQrTg+OePx8YpVXJLGGZVXBq2FOTMGtJHrpqM05mV9ydqv5B8MKiXatuXi/JzLixHt3Zr58gp3coZNMLOK9z78Llenj6m+8AVMDNQpYrMMIqWADnJgSp6NZtU6Rr2nIO8gBnCZeSSSiyKfgUQIPcYYTk5POTs9YdOtOX/2kOMnP+KVt95meuvlLKOR9WC1wtQNylhQAWs1rtuQfIdWMix7i/5vEcsQBSxrqop+0+K6nqqqwOb9mViIZ2IqEiCYLxagFLO9vWFvgpJgp2Xv7h1177B5GPtkNGJvusdoNqK2hqvFWnxHusaYis1iw/HjJ2il2N+bMZk0hM6wN7HsTTXjqeF8eYVLkYurFYv5FR1X3L494d79N5hvIi4YuugZNxXGWJq6os1shWpqlG2IZkw0NWZ8yM3X3uTdW+/yoz/5Ez589Aldo9iEFhcd2nmayjCazOiVJASaGBnvzbj1wqt8+OCHNLNb7N16Bd/MCPWYe299kbOTY76tAs8mI0Y01FdLmr6jOb1CtSe8du+At998jYObNxgf3mB5/Iz2ZM2Dp5/ynU8eEOyMid1Ddz299zRKS6GtGPwyMYlnqpmMqbQl+kjbChAQlMQNmM/blD+zWWevSMEt87lSVVWW6lkpeHLIhA+CzidEZhaDSOITcZDHhyDJviqzuYNXN4eI7R0c8OV3v8wf/OBPIEJU4uVMKWGsZTyb8uJL9/n+976P9wLGGqMpYQrl7abMiJR6Qmk1FHDaZNbKGowSu4DW6vnsp+HzK+lLB2ld8e7C81JGKQqBoRFLJHyMOSwiMBnPaEY1a9USg8rsmHwOa6wU95lx08Zim0Z+3gBcivdUaU1AfGFGa7SVhisZaSxKzaJ1GQMT81Ehqa9kVjBEAc5MTnve+pdklJJc93LPDXi/BfDy50yIVcFoYYGcc8yv5tiulSAkpfApkoLHJkXbdfkz57WQA+ciEvjiUkSNavEt5roqKZHsG1sRvd/WDyrv19qIhLeEmww82Zbl0oOiimvruhRupRHY1oZbpc21p+MaY7ZVbAGZKcqyx+fDNdJWJpeSZJDHKCnGxaKjd+6fMYbRaETTNHJ9QqkTuDY391p9VOpbRK6oc8NVwvJiURMN9YEa1rnYi3LwSC6A0nAklL8zlAPbR2X3e0s9nrkNpVUOeJffG1IGlVPAKoWysnaV0pg0opYikLpu5LrkMQ+FAZb5ceoaAyfM99YKYoLBZlJ7aNqyrDQU9mrn2oUQ8/oSVt1qg85gU4hbL3YMMb93sYrYaDHeoGMkJBDtTCwU5lArbYkh8fiBzF+sm1r85hkoaayhqSy1ltl1KW7P1M97/cw0bbC7CLZN2zYKV76+G1+q8jcVv1v+2xk9uO7RKgu8vJ73upG795SS6MuHAnm7gcco5uKk0xBbLkxfCc/Yyv9KwO8gvUJidbU1TGYTbt++zdHNQ5pJgzeGRduyXs15lDyXrqOezTgYNxzO9rh1dIODvX2srWVjU1IAyfXJVC8MmxMIUxO8oIIxpUwUKrQ1+F5kncZUBB+xjWjGo8ohAqbMl8tN8o7MURlLUJr5esOz80uuFi3rTuRtkpolT75OW8Zyaxe9dqN3NrbMOhk50EOWhgwNN9vNteiS224FqsL7nicPH/PokwdcXFzQblqU0tT1iFobDm7epKkb1usN5xdXuN5l75Y8qGg1UPK799BIl1aGPIgOvvj6YrnugvJYI4ebxB4XA7nHe0fyZPOsRpkkAxRzIVBiY1P2xW09dtvPPUgxnltfRRpbtt/hwEky+PXs7IJVWBJ0x2az4fjRJ6zXa0g54VLn5MCyKe/cj5h2PZyyE8v7lcQqkcR6gsuMrGHYtKxSpNhjTaJpDCG0WKOIXoaLA/QuQJ1wEUH/bUXw0IfEtB5B6uhbCSKorSH0LaFz2KjQHkyEzivWQbFoK07OWq4+OWM5b5nducPhK7e4XK8I7RozHcN6RRkrIIdi9gEk2SS3M4lyox6lKRFgQJ4NmUck4T5t30PVUN9+iTrd4MZ0yr07E+bv/3uevfcRKEvvIuhahqxnDynRo1LIt1hxdbWk2a+lKcsjOGpbEZFZU0WOI2eipGa6EOn6npXruTx9gt1U3N5TrC6PZG7cZgnEQbpmrMUnhBE2mmfHn/Lk5Ix2s6JuJuhUcEBJQAMpcpu64YUX7vLpkye0y7WkbeaCcPDw5mTSIm13rqdqGiR7qszSyY2eAoqXKIKLHhMV49mMW3fu0EwbmnHD8tMl1ozZLD2x1rz80iE/9+6XuVh+i1XXEWNHomd/v2E8MVTjQJ1gNj1g2UWC11z0Hn+xoNlrWa4sWo9RPqCSouscnY/0MRKNINCbTUe76bGpZrnp2PSeZKbcvHGE1oEP51c0o8it/RHT2V1oNPVkxgZNo2q0Gkl1b8d8/OiY8aRhfON1YjUi6YqkEgtneBQbLsb7PPzhA/zlkl965y2WF5csTh7zx598j9+qNV8YT2i/9R5XiwXLJ5c8eHbFYhOY3RxDMoyqBp0SznVYpYhdD8rggmez2RBC5OpizkP9mMV6RYIc1W4+uw//pNfOfjKsEKXF95GLtFKQuRCos+yxdY4+SBAIWbFAkplififoYxhurQEsfZ94dnJGioFKS6Ebk8xtHFkZkbPZ9HkNSRBDOUMMwuyZLQ4mESpa57lP8juNFX+aVlIsktieP3nFbj8/2eNqhrpjkOdnVqbsuc5JAybNUh6Ym3+IMZrKjjk6OmI0HjEebTBKE3rHcr7AdeLZilFGFAUiXmX2LIXB2y3YdI5cz8xTPiRE4q0/W9/o3MiTxG82m82wBxXzqyVX87kAaxkkEtYh5hAjBV5x/eROW8Ay/57KWiprcX0vDFeMXF2cY+qKF168x43DI66u5vhW7pXr+6ziyJaW3MCjwVSSVqyqimY0IqjcgiVF8NLkuBxxH0PxWZUFlGUx5fOrAoFtLRfXvfrXm7RtSEn5zNuG7/N88T/WK5//3xBGV2rSlChDqUuj4ZPMtS2NMIq8NgXglQCOnDyewVSR8GV/mLXXAjy0KbWJ1KZW21wHp6FOlQj+LZM2ALZI2qPWRdIngHhpOOSeAyoJy1uSTEuadr6G5MCd8v/y3ZXPpcXCYU3NeDpmf1/88LKOt/aZGLeWjd45eufyvMTin94G/hVJozSeiahLnkHc+Z64U4MzNMqqrHclJIoxWmYuhoSKiqhEQRWluMJ7sViVwevl55U1ViTGMuM3g91yx5EUeC3nYooCFmtRfhlthgHokkyUrSM/4fUz1bTtvkoRtcuExaxJHv7/T/Ezdr9vd9PdfW0RhDg0QSp39vKtKiOE1x/WGCUi9PmGsPxZDzV46bal497f2+Pll1/ihXt3GU1GmPGINgTWiwUj4KnVHIxHNNrIcF+Tf3OmrKUA1RJNKtU2RXcccwpeyglXQ8RsApQgkzFJfLvPvrF6mN22RZiuNQiFlEF+1nzV8uTkhBtPRpxdrli1PT7ELG/V+drFHWTus/fqmtY6bWuE/MuHRiUl4U51UjnVR2SdWifads0nDx/ywfvf5/z0BJOL60oblHPE4EUeQOTw8IDReMzJsxOWq/Xghxgi9dVO2qUqcJHasntBUBWtFEpn9BG1bW7yRu2TTLvvexmyqoMCFWQOldeQG0WdvYKl2Y75ENNKX5NnkO+JEEHX13O6duFknpcP8vuvFuew8kTdcXJyysmDx7SbDVWWveTwagbYMSU+7yxKSQbWDkM7lZj9V/OlGNdjwlSy6Ucnw1XrSuNdy2Y9ZzwboxGfVlAid0JLOInrA8v1hvXGUdczEoY+yJpZrTuUSzIgPAqia5XIgSyKvt2IvHPTsjy7JLSeSbPHqDlgtHeL/Rt3SLcSaQHxwQb8mq1J3WQQApQq8pXcrObEx5TEp1FEGCDN3mg8oqorVFVz+PIb3PrSLSrAjSIvbo7J7nWitngqvHcwruVnxDgMko8psml72s4R0SRlUMZKMRh6SnRyQWpB4sn73tE0I27MZtBdsNcE9mrNxCrwHaHboGIkBoVzAR0SPibGteH4+JjACV2IJO/BOlLaJlglSpCNGfbZsncVkKCs8zK/UKTPMe+fxeuava8pM+EpgBK0vB6NZNxD1xJ9pJmMeem1V1ls5gQit2/fRs+OuDE7oLKGp58+5YMfvs/x0yf0MfHee39NuzwDApNpTUeHMhGXHJ1OTA72OboxQvsVi01P2yfqkaXRFhVh07b4mNB1I1IrFF3vcC7Q4lmuV6wurzgOF8xGli/+nZ+j++Bj+i6iXcBORsT9hmCqrO1QoEdgFftHN/FJ0/ae1kV81PQh0S07RtMb/MZXf4M//KM/4/0Lkdmm2nASOh6uF1zMT3j0F9/EfPvbtMuWqdMcphHq4JDXv/iL7N24xfp0zv7+EbWpCV0vMu3O0dQCxPVtT1XVnJyccTlfUk9HTPb28r4v9/CnfQ0qE51lVWhcVPQu4ryniaI0SUH81OWc8TGyDp4DkCCJnJ0ekwSRDEYsdrYeKtBjHj58jNEI6680MUvKjK1xPvDg4UPm87mEUBRmS5VwKwYfnc5gh4wHKUCNGYK7ZNuU4mh3z9tyD0PJf02tszuCpqqq4c+7CdLFe6YUWCsNotFSrPd9L8oHBSkGLAmrNZWxdKHP5wckn/2zud7RRs41dB55kz1vEoKV8kzFhDKfDUhLpQhOwuhNZ1Oci8yXyxyiElB5Dp3Pw8QTCh+DyPZimfNVWJPtuVAUF6vFckjsLKoL1/fCFlVSCFdKiyyv71E+j3hP0pihNLYSv1NAZJECAgUaa0Q66D0uyDDLK9F6AAAgAElEQVT2YdzRENKnyjaV71umO3LTGq+jsqjdcmRYK59t2srn3D4P2//eZbnkC2JR2X3Cdtkw77d1AsieKazqNvFxsIPERLtp8/pKw3m1+17atpUU574fmrbijRd/dgb1c32ybWRSJiDkGcuXYKdC08PXldoCndLEpkyeFCZX54Zy6NeGZmV4ikodn0FQW1vGkwn1dJID5szw3pICXwiHlLhar1jMF0gqY8kzMMPn0cOzttNcizb2esUZt01euQdl3ix5TmQMSLANYpmptCEoiEZ8qiVUTakyPJ1twwoCymf7jaL4DEvjGwlDvydJkYK5lJFi+dLl9VPWwY97/ew0bao0SNuGKhUUYvjCDjIydPbl+SzJhtufd73x2D5sZaPd0szDm6BcPihxqHKT5NcVNHr7HnYRuN3fVxarVkkK1BTo+p4EHJ8cM3o4pnMbbG1RlZXNKkZ0ihwdHDBtKkbGYPJ7dtGRvKAJgsDroUNXkGfZyGdTGeErx3Tut3JiYS4EVZY2mEDbRjCV6JFjIkSPrWqR7LHzAESIATYhcra44uR8n9UmZCQWUjKQqvywF4ZGDRvj869dpk2kgSlDOuVW53sWpfAU2YuWcBcdOTs94YMPfsDZ6QlWaWptJJHKB7SKWG3oNhuWiwVN3TCZTHnxhTvM5wsWqyUulsQwlQ+P7foIKUFUmcJXQ2NcELn8CShDJ4chprtIW0rIHA4NeXadIQ/bTApDlrAkLUPYh+uRD5KSHilwT16DWxQ3JUHtyvvW2jCdTJlNb2LrQ2g8G7+Qz7tYoEMQKVU+LOWP2/U/oJEUxrQ8f6VpMQQS7WbD2ekZMSaa2YRkrIxbQKRatTWgAz/64AfYUc356RlWTgrxt9QNISmUtnS9zLU7PDiktmM04F1gbRuIDtcGYuvEwB4jKsqmFd0KwoqD8AJfeulN7v+Hv46pj5jevcXRvUMOb98gporl9x/hnj2E5WZgEOWQFoQNRU5Oy7HdOVVOrqve6Z0TVW3ZP9hnNB4Rk6epFdVI4ZYXbJYrXpho7k0NdnPByC148+4+588uMbFliyfKoRcyk+CjNGw+Qgw5Ec47UvC54MgpYxl0UVmWVFeWg8mIl2+P+MJrL3PrxVuctIbY96TgSUnGGNRKoW2Fj56Tp8d4YLq3l/cm2W2Lf1FnBLUyhsVyzkcffUSKEVPZ7G/c7qkalaUHadgHrd0iuYIDCbOiNPJ5lXiLra7oU0dMckg3swnP5qcslpe03ZLTh094f7Ph5fv3+b3/7J9zePsF/vK73+Xjjx4wvzondSvoerSqSEFRYViuelyAYCyzvQPGjFCqpqpGNFau68VizXK+JKZI7wPzdkMXIgc3XiAlYTB77zC+o+5l5IKLmjff+QXaVSTpMc4kMIYQEqOEyGOSFM73XrzHZFSTUmBUWWL0GKOwsynTSvP3bxzwSz/3Dp/8zj/gD37//6GuFA9+1DO/WnBxuaHvTzC6Ym/vBuOjFxkf3kFPp5j9MfVsxrg5QuZnjqFJtPM5Ciu+YQxNNcKYKvMYhhTAOZ+Tdn/CzKbPeQXvIXgxqSpDyP/0SVJlYyIPCRZvTWGnPbAKgS5GKoQZJ4rk1ufiazhhVcKoRIwVXatpu0hVW8a2wtoKNZqw3mwAGXr75PGTzCaGIWqelFARVC4cd7MQFFtmA13UNtvzEuRM1zEfOJkV3vIP18+q8u/df8owY3mPAa0dPnhCcHI+xECKcHFxyWjcgI6k0GOCQuWB0jaKd42UiEqsDj5G8A7vPKERQEVl9UdKKfvgRJoegoRdSTrrDsgdBcgln0m966l7R9e1orYgDTLJQMqNmjRDzouqYstQMTRLiW3TUkIzyv8TBiOxXq/Zm804OjwkhURjZR7e+dNnkkIMOb1Yfk5I0MeIDwnddkQtNYV2AhjKTSlx+PJnhXiEIjtA6879hyKTy6zKzr0d7isFn9026FJLbu/+80DpddaurImtVYksdQw+N/tK/OMo0NaijabJ7yGRBrBW5fC70AeW/ZIisd1tlnffR1GbGSsS7ZJmXVK2P1fltPv3cxp7uQ6iYpemqcwDHsD+AejYBdjT8PV8ofK1i8PXTEacC+CrtATpyYxbaT+CQmYKoVAEYZyj+COd62maBpNDcUiJGHItnRu3lNcggNXmGuBf0rhJ286irGGZ51uk21FsOfn+R61JZWZa2ibFJi0AtVJKZrcFaQDFZyhp2CnrrRVxW0NnXygknO8RuafIe0VpI7VI1mN/7j0rr5+Npk3J0iro9/bh2T4QxhSp0vXZYcMUddRgpJQAieua4/KQlZtb5H7btyAafSDPS7neiBXkLgU/fL38nLJx76IhKWbJhdZEekL0OB/xMXB8csK62/DJo4+xtcVUFlvV1NYyqi2VirSrFclaZtMJdVXRdh2X8yuiUuiqQdtMfedi2lqTBzcLZWxMYYuEOeidB7dT/KndoA9BLE0ZmeClMi4PfKF9hSHIZutuw9n5BevOoUsksdJ5FlCQBySniqWhidkeftee/oHZ+klLJDcP+XBdr+ccP33C/OoS3zuqupGwDCNpVNEHgu9ls4yJzWpJ9I47t+9y7+4dTs4tJxdnQxMbdiDX4R7mZvL5EQ9x56CWa1KCQ5LIyPIhKdHHOw9hbl6NMVtZQ/7sQpfndbjzuYtXohyQCjLjlpljlfKA+BzcozXT6R6zvdvEqmftK27fvs0PjAZE0itzydKAbjHclx3AYftY7Vx7+Z0+D+4skc5JyzZilUKnxMH+jLv375IMfPLoE04/fUrqO2b7B4zHIzG+a8Ooqbh/7z5nF0t837E4XzCbzghhAzESfaTvPanviaHJe5qseVspjApUyfHO26/x1q/8PbQ9gLoh1D1Ow6ILPLo6Ze264VrK7LKYm19pzIxBGCLS0BSBJF/KniJ692gM3jtOz0+4tzrgfLGiPrxDqxVPTy+5uGoZTW9CvcdV+5hX3nwXzyd0J8fZW5NkXaY88FcZfFL4uG2enc8IewYCIsIMloQxCU5JBN8zbUZMmxFHeyKhXpyKpJQEfe9IQNf1oBTGVCSlqWvxF0riXpDxC0Fm4PkUZQaj0oyaRgpOSuEr7zHmZzAGiYN3waErOzDWu89qiVOPQby8LgSC92gqkg9opfnB+x+AtfjYCWOrPFWtcOueZ2efMl9cUE8nrFdLVvMFe6MJe6MpoXekTlM3M2KCiTFoFWiaEToGjvZGOBfpU2R+eszYWpQTFmDdbmi9ow+BrvM0dYNBM7+6IpHo2gXKRN649zIHL77Fx6nhSXfOZt7y2+9+habuGSOAmtLkQzxx83DGpNZURjGuElbLGSBndcKYwMF+5PAr93n13j9hdXnB3jjgujV//TcdB9U+R9Mj7PSQ+ubLqIObeK2oZ3vEWmNSTXQ9StVs4oYUNREjAFwQKR9ojLLS9CD3OPost/3x2+u1V/Edke+f95FN7wlJMzs4ZHpwJGsqPxuA+GGzZ3jde/oEljQ0bX3X4aPHux7N3hYkUxBiRUwNdTPhxg1LlQSATNbSHOyjQGL+s7JEq+sMGKWQzieW0TmpTkvYRYpkZiaDT8qI1DuJ71PCUmS4sUIRfETlCeHDPq629UQ5C6qqGmwS5WwLIeRAsogPDomVh74P1E3NdDqm6yIpuAEQkya0Qoet34ucGxzzc+Rz7HmxQJR5kypmd5K6Pi82ZF948cEVCZfczzCoJ8QKUGiS7WcIIeb49J1aS5vhmb7esOQ6KyWqumI8HjOZzRg1DZWVcRBaQR88ve+JTp49pXWuT6Sp9iSiMbTOidRNKTQ+32upR0pzFXbA8nJQDTYKnUcGxSi4W96DQgiYGAVIz/WM1tJkFv/k86/PyCifqxm37M1uvVqIgRzOZU2xSwNsgfa0bSL98FkKiJrvxy6L9DnvbWAJ87k13I8CjQznePne7RlffqqoJrKkOEbZUwYQY9u87ZZsgrVv35t8lgJqZ4A5//rCPieSDLhWRUOislQ54lXIx7F44QgOFaBShsZWA5MYM7g/qhphFUM+J0PEeTeorYa6PI+2kvyJ7Tw+mX+n8nURcEPmDsu5lLQmaUuKAe8dru8H5dr2+uXaMQRp3BD5aswZACl73WLeR1K2lpQUdqsrtIpELUqXyhqx5ewaBz/n9bPRtOVXOewHlmJnpRdcoqy0otVOSlIFi5ApZuTg+aZrd8N9vpmTDYlciCdk1kahU822yy6/e5dd43m9NEPBVWjcgn7EJLcxkej7juUyYCuZ69LUI7ro8XXFdFTRVIa+azndLDk8PGQynWGsZblu2Wx6qlpgRY0kaJV5MNF7YvAUv1T5fD5IMk5p2IQ1EoZJbeGAARWJOSUMY0W+ZwxOazEOBLg4f0b4cAHjwGQ0AdeS+oj3EW09thb0IIbtfRAUfkvJD0UeDMXxj5PzXj8kAvP5Jaenz9hsNlmaI0hu8nkWWb7HWouXp2rqnMq1YVQZbhzsSWFiKtZ9K83qzgMpmSGfRVtDyEZaJZLZsvmTr3PRmxtj6IOMHijkmGyque/UJh8qGZ0qgyJlN89rZ7tOB1QL2WC0UTkUZng4MiqmJPijrolW0dgR4/FYIrrzfWUn3KJEA1+7zrmBUzsbvVKS6Km1DEo9PNhnNptimgY7GmcWTBJVZ/v73Ln7AskmFu2Ks+NjjLU0dS3FST5Ub9+8yZtf+BJPn53zvfd+yKP+KWcnz4j+kuSXVAlq28CowVYW56SIUZU0UGkEqwD/x9f/gDc/Oedrv/YPObx7h6QT67Tk6bMLwuYZoV8Ofq3iNylN8O7BlpAkTJ+2HpLScIcQuJif8+FHH1C7KbNpZFF9ndm9+9y8fYj3G548eMj502eEF17l6mrBxdWay8tLahJJaVrvMSnhEGN0nxJ9lCQtlZO+tDY4L3PWpOSXdC2VpVGu6wgRpvs3ONq/w/6epms9n3zyKR8fL7m6WpJi4uLikth1HN3XWN3Qxx5lasbTPUaTMWY+H5pU7z2aApSJvt95L8WqFrln7x3GGkZab4vnTG2oLPO9xjKXC0ouogQ/EmO4D+goh9zZxTl/+u/+HRB5++3XeOWlO8Rxw/zKs3c4w4eO9WrOjcM93nz9NabNhMPxmEWES3PFZa/xmwQqkDpPpRO39sbUbkFwnsvFBaldousRyll5drVidrDPTFva1rG4uOL3/++vs1iuOTk5xrsW5RL7doSJFT96cIy9+ypPnv2AR59e8E9/97e4c3ALHRMesAY5aENP7JZE7alp0X6NSnvZP5Lwbo61QNeyf2DY37/Ff/pf/DP+/j/6Hf74T7/Jv/n9P+LxRw+Z3biBnx3RNzOM1QQMXZAZQKMMwG1CoDHVAL5cO3tCwiBBL3U2uVv10zdt8vMQaFppkWFGDdUIbMNm07E3LSyLzw2ewvcBr2X2oCcRXcLNN4zGhqZuaPsWrYo8TNjrjMtzdtGyWvWczZ9hggOXCNqirWE6nVHXFSoGJqOGzrsdMFqRtDQ6ST1XtEZhrkrBnozMLa2UxkTxNKuoSEn2tiJdlv0x77cZtCtgVbnW5Wuyl5QGcuu5lj1zK/UKIeJ9wNiKveaQWHV0aU3qJa5dagQZCC7MoezDZSacMeJ98UkYrZA9Q1bL/KtAHOTL5TCo8jkUsr86ZpWBAqkZnBskfZU1OyOT4uCpTUM9kDIQK++rDHA2RbqZ70U5/4JzXJ6fDzJO1/W0m5a+3aBcT6U1k9FIfPre43PUfVQaFyNV1TCdzqiMxWpL7/o8l1PjXB41kc/CUk3EGBjSzQQh3dZxFLmg/J00OK7I6qI42F0iAobuNiTlzNieG9cb1lIrFEZJ5I47vimthnO9zGwTIaqcw35nYPtQS6pSDsj7LyxxkXsmZC7gcH7vNndDk1Vqia08UvxqcTjjSuZCxvivjTySQ78wavlSq1IvbveLXJlsr0fMz1MBWUr9ln/kwIIV7DSfKSomjOBF2KRpVEWFKAnQRvIVSCQlGbQhyjmZTESFJECNtYOaTmuRoKpUmvcMqiRRsJAl07vSWJPrOh9itjRke1RmHKWG0tsUzdJjhDQsvWHN5as4zDbMcx+NtsNcYa2VWGaskC8UBdiPef1sNG07TRTsNlQ7jFZZ7HmhFDq8oG56Z73GYZGrnV+Rdd12y4SU3yNFf1l8W0ZINmoHuahOZY3tPKwliOR5BGYoeMsmmf+e9z7vewHnRAJXW0uoOiqrmOgZo3rK/t4ETWKxnLNpN5i6GmJpa6uxphLNfkqCEPiAsjmFLpFRj4wi5SJKF3STnUJ96BS2G3TpqEKIMmRXSwM4bNQqMpnW1LVh43pWq5bgHTqaHPAtyV+RHTS03Je/BTXa3l+GRmiXqSp/f7FYML+aC9KZFEIWeBEGZTRSkRhXNZW1jJsGqzWu75if91SjEZNRg0ex2myTiYa1lxmytLMGYbg0wjbEQExqG7GbwDuXZ1sVRk0OSLTBZInY0IAqMaPGwvSVjUM+fG6SdJ6tFvNlyHKYLI+x2Vw/bJZJmBmjDWgvEswdD2fMm1BB0Bgu+bYp/knFXRnsPRo1OWo6yiaiFGRGVgZsGnQlPq0hEQrZ2MpF3J9N+JVf+rs0zYRv3P4Gf/WX3+P09IK+PWO9OmF5scCtEliFrayMtlAQlEJN9qE+YqOnfOuHH/Pgqqdv9rh/5yZp1LJIl1zM5xy/f0J7uaLZO8wM5XWmXtaJyo2HFulN9n4OzwLSrFaVZTSZ8Obbb/P6/SnHH/01rj/m4Qcdf/Pt/5e6N/u17Lrv/D5r2MM55451ayBZlEhKlCnLalse2h0g6XSSDtxDnpK3PARI8g91kOSp8xQgQNJIggCBo6STdrcBWy1bkmlRM0lxrrnueKY9rCkPv7X2OUVJRj+qL1As3qq6956z99pr/X7f33d4h+dPnhEfXtH+zm+zUI73P30P340cHhxJNAgKY2s8WjRv2WjB54maUtJEhSjmJWVSHWJiGEe6rqOuEm7wxK5h5TT91ZpPPn3AJiY2+oD1umOz2jBzDmaJ64tLwuyIetawHT10A9pWrDdbjDXMFyM3yxUgzZhWEvmgK50NDxR127LZdgzDIFOMFAlOsmZCTNmgIuVDTDGODqIgl4JeJpJO1I0lBofvReMyeKFiVVVL29asrtf89dPHpNTh3RaAB48f8vfe+k2+/KUvofiM1eUN8+Mjju7c4cmDR2xXoq+0dUVlEi/dPeH3f+s3+PlffYt1N3D+/IJbTctXXv8S3/yTP2erYHHnFvdff41tN/DwwRPZscYRqxUhOoxSuH7karPiblvRtDUpBO6fnTGfz6gXjTSgUaEN+BjQ3tN1a8ZhTWSE0OH7G/wwJznPtt8S+xu0H1Dei7tjPee897z37JrvP/iUT8cb/ElFP08YA73vmZsKmyKaiNGBxij5vDY0SeOUXFtdNEFBnl/vHRpFM7PimqkiomT9NzvylSx6SDCMnsEFRp+4vF7y4Sef8rXTlxiGEe/GPFnS0gikyBhSppfDxeNnPPjsQ4ZaIgG8GwQo2ttk1tuO73znB1zfrNl0K+rgMR503aCpCcOWtjrkYNYyOIdX4kpYnBx1BtmilmIv5A5OIVb4+25+KcqkSZcpl/cE54SVr/WLDpel2N77KOeDhHhLkHwp5vaL++I0GYKntjVtO2c+m2N1hbEaZ+Q6DcNAZeSMHqNYV9hIdrR8ccojTY1Q7KytqK2lQWii2277wuuTeiPrvqIU/NaIcYhJYqhWKnFp4Dx+dIxdL420DxjyFEy+McUIpXzEEKbzLCF0We2NaKuduBZXlSF6MckZhkHoa1pRNTXtkVDNXZB8v24ccNnERhsBHmdVLe6aKjE6h5g6SHEv7HXpDqYzM7dCsi5k0qG1zg7GNrvWSl6vKg1WliGEcs/zobjfoL3wbHzuzyeTD4/QcEPMWX/SWJcGbldfqKlfKXRSbRCGnMrrb4fgZhOOPfpmGRqkNBknFDOZaZ2SXji/fuE95GZpqnXJxldJcsUK2C+/79yNldrlcu5fj7xEckOZ0GRDlb3mmPyWyrgjV6Q5JiDrRcnDhahQMeFHR0ph0muWnOVYGrDSQGcWUmnMi5nJvt40FSdJ7wkxobBTEy+GIZFKS6i5MLSEB15yEven0IV2KddPrk2cgCPFjjKa11SSOkOuidTJ0/OqQFuFtnpyEf2bPn49mrayISXh2O6sdAuaIqiV/GH+mj3UQriueYPNF6l09rup3Q4lKRe//IxCE5j6CZUgZ6GFkBDaSS6M2TVtL/LH4ws/S8ItU87NEESyFPMxBZwbQYkjTq01nbIYA7VWmLMjwdi14uTkmOvlDav1DfOFWGnbqqKu6+kAKvQHY3LuyQQZyvv0QUKn91GA8jajvFWhDKR8rSkj2nL900507j2t0tw7O6I6tDy97lDBE90IscWgsVZR1XOS1gzjKAUcTC4+v2IRTAjMfvOU/0buHTKtHPuB5c0NXdcBEqQ6Ro/OZYnRGqMlA0WTM26cx6fCk/aM40g1W9DOF9R2oGP8hZdT1g+QzSrKfVUZpZKCqbxWbcT9R0A+0e+kkAhlWlUZjBW77F1oqRTslEZfl41xR3sQFKpMxrI+YRxwzmFsNVEvJgAso0JFhO3GUShw+f7vKB+7rk2pHdU35YOiHNIxMtESSjOTlBIgwRqhsRhLY2tUTISk8FFRUaF1Kwe10gTv6boti3GBaWo+/fADPvzoQypTM3YD68slB+2Cg1v3cGPL5fySiydLnj59zHLtGL0jWSlUO+exqiamCqoZ26R4+6fv8uizOV5fo48iTdPw19/+Nrdffg07P0RhmZwiERq00kLZMCahkkYZKYgKCkkSSlJd19w5vMXdl+5RNRVWgb9+TtdGVlbz+Nk5Tx6cs9gqRjWjPX2J9fBjHAavpEk7vHWbxvbcjEvc9QZPwsUg+pHoidHnPD9F0oqAJiRF1/UslytC39EenZKS4vr8OWtVMTeJ2gZ6ZbgaOpbLjmEzcvf0kPsv3Wc5ej67ueHO4j53Xn6VdlbjXI+yFSe3Tmnnc5r5gqGX7BqFIsaAUYaDwwPaWYsyhu12A8B8saCtKzq7IfpECjAmj48B5zxVg+xNIWShnBToEbAaXNfRDTBrWkFjlWU+X3Dn9m261Q2b645URQ6OTuhHxV/99Y949Qtf5uryguQHLp494OkHP+G126fU1kOrODo7JPgB5QbeeutVvvL6yzz7keVH776P10cou6DbOg7bFj/2eDdyc3PNdtuTvEeFQGuNaJH8SDcE1K1jvvSN3+H49fv87aMjPvzwEbdvt7z15Tv89JOfYI5m3D2d4YDBJ777Z3/On//Ft+mGnkUdWS2v+O/++/+Gl4/nzFG899HHXC6vqJJodl596RX+6D/5z/in//P/zkcXNyz7ntYqXjmZSzYVCxanZ1RxhD5y012x7HqSbYn9DVWraCpDb2JeK9L8J9msUCSh8gfLrBbq6K+s4H5xJ95NIVQOzY7gE/Rj4Ga1mop3pRJ+9NRNhUUzROiGkXXnWT98yr/443/Ov/yX/xfX9Pzhf/jv8Qff+L2pXPM5x3K9Hfnhj37Oat0xP2pZALfaAxaHBxweHaFsxeXVDd6NdJlyKC55Qtg12bm3THyizgwGrUkua2uywY61NrsWyjldV5ZmcUzIlHE/+mnyQkovgDylAPQ562nMJhDWaoKXSRykjOQHkVkEeZ6cc6xWW9abDT6KzjCOAQKoIGdPcejUSSaBLmuWlc4h3zFg6pqQwRSdw8ODzxRCdkyifSmIAnzwrNbiVrnZbEk+ZB2RmHyMKcg5PYyA6MHnzVycj2GvYJV6I4TAtuuos4thAXzdOGK0sJ8qYyGfVQqJp0hEMIZRKbY58kAZi7EVTWUxQaIGlFK40dFYcZsl14ZKI/dUJZSS159SQGmhIaZk0KFQKF9soktdOQ0DSh3HXuORW76pFFTqhVqkfHw+TkorjTGlkJcadj6fTT/3xaYNxpgkK3QPFPg8/XJyC/1c0xZCyFljO0fJHeC9q0n361Q1vQ4zaT/TXi2g0k4zv6+bB7L7NVNdMmHoe3X1NFmKog3XKj9vZjdQSZDpkfJ7VKVmkfMuxUREoyswVNSzBjMM+OjEyCwUSVMhJu7e58R+y9m/pb5S7LHuEp+rP7O5HSkzq/QUUaSImEDeS9lJoPJQR0Fu5PLPygYvcqH2qdu72yLeBYqoi3GTZDqjLCHkem13C3/lx69H0/ZCob4r7HXO3iiLq3CyhQIiXb2gbMVgX+cnshSvL1IjYfdw7m9u+wSx/SlZaeQKEi+NTPyl37e87h3v9kXrdx8cIcTcTOZCnYjR4IOC5KmtBIJrBH0Qt0lN09Qstxv6ccTaOU1VTYhCWUCli5dGzUs2T+b0xpIxkXYbQX63cmgQiUqRg5swSed8mSgaNdKuoA+B+bzli/fvEedwtbkmpbWgWcpMU8f5YkHTzllv16S8yYzD+Dc64+w/fDEjaeT3Nv19iqzXa5Y3S9HrlCZCjuFcIMqIWyuVRfBCDbFaSwAiiegcwTqqhFBCY8pI1+5n/cqPMsmT/0xf45wjn3EZgABbVVRVQ920VLNGEMkYMMrivJuKLG30hARPlI744rOQpk26UF69AERTg60o9rLaZEpBFH1TiFHs+ItiLq+dkn8yoZRl893baKdroXaNd4hBjBK1TIPkOqfs4GbklzLZadOCEZqPd05Q3Dpxc33FOz/8IZ9+/CmNqanMjNff+CovvXRASj210czahsqKm6GyhqptiAr67ZKZqzDjnONZi24adFWzHSNYi06aodOMrsV5TfAB9tCtHaJZjL739oCS7ZSR/MJjTyRm85ncj+RYhA3v/PQThuNjWgutNdgk1/P0+Ji2MuAcSoNLiaAMump56f4XuBgEpQ4koopT5JDcCosP2bwDxfOLS8bRcdhIVpEYqCS8qhgxhOjYxsT5VcdqteWoXdBUNW4cIYGF5xgAACAASURBVMDl8wvM7IDXvvwljg4XPHn8gPnigNdee11QQ2W5uVnhRo+KsL2+4GA+5zfeeoumafjhT35MTJFZO2c2axm7DuccVtfUTSVeWW7MLp9CVXNONG+ix3OgRB8Y5eQkxYCKMh0qDmRW12gqBh/ptpqRkQefPeXjjx/Q1A3B9xwfzbhZn3Nz9YhNP1Af3+fo5JjzJw8xjWfTX/Heez/i5uoCpQ0jmjFWpFTxO1//W3x8+ZRnvdAgnY+EQVx7h67j8aNHdH3HYCrOPZxfXaPmDzmqK774kuUkwYI1i/kZ7WLBR89veP/BQ44XiT/91rd5/6NPGEPAOkc39qwePeDqkefQWn724Secdx4doR09Jyevs1yD1cccthbiCj3c4J6fs12t6ZqRWkto+fX1OR9ePyatN/SHt+hvnpPMAYSKysieV4wjrKmpKsOsbRldh0JMIArz4N/0I0UR/YPGZFZHUhZTVbTtXMxxomgUYwgkb0g+4KOjHwbWm47x/JL3fvxTnj96xmN3zRvPn+cibUcMCymy2sDB4SneC0DS1BWz2jKvDLX0/aQwsrq5JFKsy40AqwnRfRXgSUsBKFvSrtHY6bflJxdtT1VbXn39NW7dvcPgPJfnVwzLjvVqPdUl+2Yj+8h90bSlrO0pNP2Q/LRvGyPh3jHGDNRq0fYFofph9I4mn7IDXcwyB3aOjnLs5Ay1EESzGiIVct1TofPlMz5m4FIrhfee5c2SbrsWCmQo+6Fo4EMM+NHjhpFusyF6R20r1CnMZwdTrRODuE1ryJRLT6yqSb9ls5ZoGAaSrajnNlMsw2SJHlIkkBjcQFgt2YwDWtvcZIkus87OnAogG7qEIGHIKSFxD8Lj251ZBThVmmRebH5gT9KiJIw9qqzZzGYSU92mhHoHv9xwZHd+vNhcyVrbNUnW2injrmTKlq+NJKIXgyczNZK7ehQlDYyKEWIgRRmLTRS7TM0tQ4jPv9e9p/gXAfAy+cmjtkkTNw0bPqcXpdQA8n87xcCLe8kL9XUJNf+Vr0qMWZzM92TN5u4mZSMOXVnmhwLYxBTlmcl73Ogcfd/hXY6AyCCLDDFGTPCTx0BpyMukbGdAJOZvSgmN3NhEawyVIuvvoNaWZMzUQxUDksLCmhqNlKenMe3qK7H3mq6ZTAjFvCShiNFhdDbp0kJ59iFkR8x/C9wjy+0vG+luLFsWg2BzoKXA/RwikZJw14uzY8kl+/wi300LsqsTcaKBKDXNbYGCKgiSXAxdYi5aS0NY7lfKk5CUlDSTIYkLXNy56GgFWAmQtgX1UGC1wmpxPjyczzk+PsRojXdCb4kucnB4QDOf40LA6JbgNRMlQAm1TpmcoyR9JaRESAKmpSSufpIVlSc8Sq6TivIAu4xeiu9YxASF73sYe6GeeAdJg2lI9pDKatYMuLqmmR/gukSVanS0JD0SoqCEbdtmke9OFFzuuNwuBcVFkV0jLK+tbFR5ekVEpUi/HenWPbgkAalWHh4dFVmajwFqY6m0FM51bTiczfBupNcDDo2uLVVlMLXBVC9SXEn5PpfJjNrd66jA52ssNMWAT17y7VKiiYaTgyPqasZ8dkQzO2I2n1M1NaP3bLZbbpZLbpbX08Q16axJ2D/8Y4AQpo2MJHQCrQzGiulL9BYixNQjce4KrStxqcKilCWqlJvZJCh1Kqju3hOYp7Oylxd6UJlyBtnMjYz5J4qnQgATbQhR4aPQ3mxVYawUK0QBI6IXGqjXBq811mow0M4alJLg6j6MPPjkA8bhmOA3tE3D0Hl83GKSxVQ188NjDk5OODyxqLHDB8fhyQnrFLi+eo4+OCBFT/9s4Pz8hqAXdGPi0ItdMSVsnnzoJwmGnWijQQAD771ke8kFJ8TE00fPuHP7mi/dWxCipjmccat6hYfrLZuLa/woDXWIKw6qLUYgbpLrefb8Kd125Nai5pUv3OX+2V3ctsNFTUoV2kQqZam0xeNJo8QneGB1eYGOgVtHR7SmputHaUq9R1ei+fB58mB0hY+JjYMhWlyMzNs5uj5E65qD2nL7sGFzU3Hv5ftcrj2tuUVQN2g3UhO40QZtE9vVihhHFI6TgzmVbdiu1lw+f44bR46OjyVs2ViSndF5iSdR0UEY0FiMbXAWlIWq0tA0NEqmBMELA2F0PcvlJYu6IcWItRVNveD68ikHs4GnT55w//4rvPLyPV79/d/m6Wef8r1v/RkXl1c8Hx6yTJqgE69/42s83q5ZPn7M4OB6cYRqXuX3/vDv4x8+4snVJzwb55h2wZ3ZhtX6EWaWOFj09NtPefjuD3h2vWJEc351w7f+9E956eVbzO+/ylu/9wdcP3jAt7/1LX7393+fN94a+NG7H/PNP/lXfPXLd/AEXvvSb/Dws5+QLARqWu2praJuJJtoWC4FlEvwR3/0j/mP/9E/5KMnV/zpn/8lnVmhUiK4gYHEdX/D/Pyc49Zy8+wRcXPB+vqap+uNRDmMFSEFxhhwG8dmtYKQaOuWYeh4+eyA6wjESBNdrm8nFKzswBNiTWZiCKFFo7TN/yjilcfj8QGa6ojDxcGUt4VypDTik6Ibeno/MnaB9bKjaVrSrGUTxKK/rSpsU6FwYgvvNtxcXfHxu085O2tRlQKXGJPjfH3BsF2TlGHTD0RjATFsSLqATxn6LAWshp27oIBmvui7lUKFgAoGa5JMsb1HaRicZxgctq5pZ3M2N1tcjKTMdNjRsAy2Kn6rKpv5+ImmmQoVMSoJyi61BzkOIRuUFE1oLBtsDo8WmwRF0qLJsXVLimI8hLJEjBw8PuIyTTRYcX1GZRfHXMhHLbqc5DUxjMIyGYCoMaoW8zAjVK0UQwbXpJCPRNlPEjmbMbs2FiDXyPsM3uPZ6dRVPjdDyGHuMWK0QhWWUhKnwwRTzueYm9cyvdNGM+TzpW0ahminekAbO02ZbN1AKs2HaMedj1iTm2EK+yWD2Qpiytlwe9TQkidmJtpfJGppPCK7e7g/ufrlYH2RJwQBwYOcaYXhovIkKZFAa+qmFYZQ/nqtskay1K0JqVHFxWLSI5Ya2Xk3TTeVUZJtSKH1s/tVatS0kwTFmIQJke+XykDGr+qzprgf9oce7H2epp8hMW5Cj05JaphkmO5H6XVK36OUkjNDfhDJkJvogLaa+cGClMSIhyRSoM1mQ/RRWEwpZhmjIhmFNTkOQ+3q/dJLTPcpP3+VzaZjGoyVWtxMdU+WtxhhEqErDFYkFIAjMiaZvFmlsUoxpDyhF3t39pvmpESLGZKYbakcc6GtwqRAVA5UyXn7m0dtvxZNGzCNBHcPQymiFSRDiqKfEf4x04QsxETQiaRidj8kq5xjRkz2vlfajXFFYSKGDkqrPPoUrvukA0waRZQJW/KQc83S3s2IQYqlIDtc5qtaQfC1zHUEXYy57RR0y6pMuUN4v2QkgwTWiG5Ia4QOkUS7VDUN3osDZMphkknvWYYPTnKfvHCKUVroFoCJCZ1izkxKpNzNCz1STVzyoMTIo1IRE/wUjKk1IrTUC6K9IyhjPdIfLBjVlpRMjhzoxS1NgXPjbpOOwhlORJKq5SBL5NG7ycWfkcaSMtVEMntIpOhQCIVj7AbGjcNgBSnEo0hUVoMLNCjmRrFoapIXMXDoHFUz4/TwiDE4Vm4kzhp8rVGNwSEW31MDQz6+YjYYySHLSmvQlpiU6HKCQ1tFsvKl3cWSqk+8dvcVdPJY26J0hTaWqmo4PDjkztkZXd9zeX3O4yeP2G6v8XGQVjNlKoNRFANQEL2Q0TZHBiQSHmJDdAXN3KLwaFWjymNtFFpbqlkD1uAGh84U05h3zbLJS24M+QdqUspuVCoLLFSmBssRh3AQEugoTqNaMkySKoe3z5zwEZ2KbssSbEOfN6dmMecLb7zGJ598ymbsCNGz3t5wsK2YtZrN9oYYPc0sUjUa5xPbtWPoR46OZnTBMc4OGUxLGDusHjBNjbYKt4n4VU/nBg7TEQSFJqFVxOhS7CXQdprkq1xoKaMIKVJnnrzPwbkpaCI12h4SLfS373KkX+H9t99heT2wGRtGqwh2g3LPSMYSo8UNjjBcMo+J6BcsE5hKE6sKlyzohmQcaVCkIZBcRx2lpA5GE1RChYDvOvxM3KksDWPshDJatbioaKqWk8NaAtCbht4uqFvD8QnY5phuPRCqgXq8Znv9hMubFTec8XAVOG1fZq62HNnA8cEhm/6Sx48+4+TWARWe05NjrG159PAxN1c3VJXBuS3KRgZvSaYlaMVmu8FUilqRTTQS0VQYCyQJWcbWBGAIHdu+xzSgzYhVc9p5xeChqSxtU5NSZLVccTO/guNDltuB+dkr3OgDHlx9wrOrJwyj4Yvf+E1mBwv+37d/wBENtVZsteXWwR0erxQ//It36ZLj+uCY427g91455I/+7u/SnGg2PvD8gwecxEs2V+ekeoEhMrt9xptvvsnBq2/Szu5x9Mqc46NTlLXEbo1fXdBdPOP6cKRpFcdHd2jrGe08ocwB3cUnuHrkKg7MrKJJnpvuhhpFtzwn6BXL60fgtvRhSU2AWYVvGg4X9zm7c5/bC431W25+8hjdOZ5uLqjbOfZqhW1nLPuBzTCinEOrbDMeRkzcyP6VEmm7EsFXtpX+HIYufxaYzkiSRlMBhqTBKYdqEkpXLNrbHM1m2GTAB4zqiGkg6opuHOj7EQYgVvS2Yvbafbbf0aQx8s53v8c/+1//Gf/wH/0D7t9/iQ9/+iPe/+nP+f7b7/L0+cdEG6mpuLm+po4hT6ktN12PnR+AqlA6Ze1ZQGVnRplQSbSKUlBVOxmEraSmKOZQJM3ogtDUrYB2xWZf5RN6CJEhm5iEbEVuqoammWNthXMBNzpiSGhTY2xkHDYFfhSgEKG1KyWjwpiLS4l7KSYmGYxWkoOntaWqWrS1Od/QMY6JEC0Ri9aV/MyoqFWV55VZbxP6bMpQzkyNsSZrIQXMVSS0McQo1yCOWQ+UgoDcthTk2dwsKVzIACVipa6iSC2MMoTkcaPDWivndZZQlG7BOU80Zqf7NpVM3ILDRGiszkBrwhqFV+LyKSaoSiyYos1gg5i5hCSa5kobfMi5kDE30sK3nqhn0hTk87yAERLrTUzCKrA50NokldX4ChDzmJRt2felNeQj8oXpXp6k+eBQeFmbxhKCSDGqqiahGIOf5A7JJ1wcJSA709J1CWXPD2jIk0CV6yet5Z4qrXMUgDTqKkcT2Vwvp5Rr4CRrTWdX2RCK+6F4NUzmIDHsuqmYU8amyWSRDe3YZRMDbZrYlRolZjAluwxroVVKrSeHa3HUzFUGhkwTRUDf4lwrDtcC/GttMJkdE5MnOTH0qhS7gUAGV9uqmd5XCAHvwiR/EkZeIuQ6MoVxokXqjMonZPrvU8BhCFYzxoSLWoyWkidpTwS2SYYTOkZszMZ+Kpvf5EFDWTARJB/U5+bbKJxLmQota0ErRWPM1Jj/qo9fn6YtQ3771MNio1roiWKoUBANOWy0UtlTOVPS9lz45Gbmv8sdtjaZgoDJY4VCAymN4G48XDQtRXu0PyWCF9ELGcHanPe0cxKM2V1Ja0302Up5cqPMtEQU2F3SPVpnlz6d+ex53BsdwSeC16RsMlImkcJk0ZTQw5Tyop2cJNPeIirNgFxro/UuuyLJxm6NxRpFZWcy+RsHutERQqJpWr7x27/F9bHjgz/7Hs/jY5L36JCwuqaqKpqmxuhqsqyNIeYHcJ9+ml9WRtKKuYZSJfhYCtdMKCCFgB8Hxq4jOC+HpFJyOClFpaSdOZzPOVkcMG9nVMqC98ShY97W3Ll9G91YztdrtkmxsQa90aSMzr1Y0OyQpWk9gOQLlXs6OnxyDH3Hz997j48++IjLi2dE70hKENxh8LjRk1BUVY2xgnLevXcHYxLL63P80O/WVoHI8vreTbxUHjqmjC5rikGONPqaGNVEF4havols2rnRL81aQf2y21ZxpNIZohPE+kW+eJqWUMHl0nRtktrh9tNzkekCot0SBGoYnRhUuEBtLZXRWGNQRvQng3PcLJcsFmcYKuaZkqe15fn5jQR6G8swOtHYhEQVJAbjzbfe4OVXznBu5IOff8xy9Qm9C7iMZBpjchBv2iGaCoyx+QD0BO+mKTFJEM3Ves16s0XRQnHh1DX26A4Vt5kfnrHpRpSZkZInIUYxIYi+T0QEkRgcIEjiptvC8RwbrWgGk5iADP3AGAZIIU9HFCkZNBXddkQlg23naJ2orcqvX9MoS22FflrPZiyOjhgjLG+WrDZb7t4OVBhGF1htHTerkZ/8+F0OXnqL08Ut5hnoWC/POb5zxMBI5yPzqNBVS9AV4xC4vN4SosH1iXjTca89pK3nuFThh5WYxxjP3dMj2rmg5DoplKlISVD9GJQ0cGNku95S1y1G1bQWDo7O0P0ge7W2uDHw9Okz6loMbTabnn7wfPjRA9bbAUtkTFCHwMHoWG2XxHrBy4tD7pgGo+AHP/g+5xfnVIcH6KgwYeTOrOa3X7/P//2df8m7nz7CdjWHiwUGz2Z7jZ9VzI5rXn/zVY7uv8rFGGlmBxy+1PLhuz9A/+wdfvTuu1ydP2HcPOAL9++yXhn+o//g3+ett77I1brhL//Fx1xfXaNMQjtH1Y3MR02dAt/703+FbWp++K+/Qwwa4zTGC7sgGoXVcHSwgLDCDT2VVhwu5txsepz3uM2W5DxuGLAuYjL1K8RIU2t86PFY6rYhmKwZ0cVQgAkknT7U7s8TTGi0Qp7Pwggxbcvp2QnWapzrcWNPIuG8NAyTVpzEzz/8iE8ePZJYiwTvv/8h/+Sf/Ld885vf5B/+g79Pt9nw5OFT3v/pRzx7ei76x5iYzxbMdWJeWQ6PT3i5nbH1iav1ht4Lvc0ETwiVnAtp5wC3C9EWGt3nneRS1LviVxm0AZcjU+bzBatVl4vFTGnKU+GqmVHPDgQ8I5IwqCRuuTE63LirXYpbXvQhTwXFeCJR6grJohJgWV670CAVtpImSNynHSrVQJy0RJKliuCaSkw5RCOkUcqSsnwDpWSCpxUqMzhSkiwp5x3Bx4ltJPlqUhKV5qBcv7YpzI+ipfLZyXJXJ/kcKUHaUQqnc6GA8InsJC1GVSFEnPPYDPZZY9EKBucmLCFFocUNg2OMQfZRI3EOLiS6wYkWKEaJ73CekMVSIUFIMoGzUda3km8qy1yLZRpRzr3JWj/bv09OpHsVQakHSsNSatHy+OjcxCSy+VJmOclZbTHKTti86B/zkCKfv5+nJSrK695pzVRuKq2WSJpEFBCgjNZK6bI3ydp/7fJa0tSg7Nc2n5f9FGAhsdOx7X+v/d8Le6uYnIlsaTeF/fyGI9RFjTFWzE9imGqcKtcDypHNZ3LsEmKgY40mWE1VzalTKyZfMeJimGIGdno+YdjIeyfXlsWTQEAfWW8610VS67joGYMnafY0rrt5ZD6a5T3nd/did7D3XpHeYz86xHtPVAEdDckodJToEacVqTTvv+Lj16dpA9hbHLspW/m7rPEJO9dHKbpkfFmoZSrlnBb2S/D0wq/SmZcbuX+h9xduEXDubz7GmOmGl9dQ+LLAroHLuU7JWlJdy4bHOD2A++PoMsk5PDjk6OiIpmmk2542jukfTq8x5c/3XTW12QVuo8h6trATVU8Tx6wo2GuerDXSJKfCpZbmrTgudSHnaJCoKsXx0YLqtqZpbDatcISINHpVTWUrtDKZqbnTBUguxy9BEsoULuuzyu0XLnuUw4lECI6uE7dKpQoP29BWYucdUmJW18zamrYytFVFo1vGTgl1QSusrWhnMyKKzTASfJhoEIV6K/epIG9Me07ZyCUuQTb54BzPnj7mwWePub64Zhy21FUihZ5xDIxDyHQGMSdR2Y0o+J6zs1u8fO8um9VSXCC13O+YxIlNlUYIpo1Zk6MFjMFPVJAdumxMNiKJUQ6ulHZgBrnlymumvLEJL9tbx7tnIj+PiqnprqylstVEHyh6w0DCe8c4DhATg3Nsho7ziwtcH7k6v8FtN7zxxhe4dfeUfr2iqSvmizlqYWWKGgJXyyXbzQ3e97RNy52790gRoSeECDqibcXgInG1YTavOT494/HTcx48+JS+9/TOk5TB+UypyYG84zgSYqKu25yrlwuYvMkrhMqrjEwgXeZIV3WNzvq6qDSz4zN09RJvfe3rvPPdf8VmG4l+RCEukSkJgq5sjfKOEBNj8My1wjY1qhLDk5QSgxsnrUUgZ/gJhESKBucV/Zg4Pp1hakvvRgwpF6KR48MF2rasuqdoBb0LbLuebrthGHrSsKRLhg/Ob7BGs+009XbkC3XF62+8wl/95XeZ3bqFXcy5Wm/wIdJ7eHZxQ2Utl8trzk5f4vjsZbwPvPLKS9y/e8bThw+5WG3xeGbVgtD0xHHFEBJmdDg8UdWkaOlGiH1EGYeKjuQ8rRZ67zgEwkHFwfFdTu8YHj/6DO8iV5sNlxc/ICVo2wV37t3n5PiI2XyBOlecnBzhLlecWMM//oO/w9sPP+HR83Nmoea1xQkXoaeuLcZ6hmFLGw64d2i5Pddcffwx3/vL7/HBkyXH6pRTe4wbOkKs6G3LpjdsB03bJwwVTTPDuzVXy8T3//jP+ODpNc+fnWNONbd+802WK8vf/sY3+NpvvckHn675zr9IrJcrkgo0CfQYmAWD32xYXV6yOt8yrxoqC5tk8GNPSDCzCw4WM+a1wi87hu2al+/eJmD44JMHXK22KGugrkluQA2eeaupmpZUVRwczPjia6d85aU3uP3KfV5988sEJZNzs7eXlaNR7T/oKZ+be3E7rTFUWqNSIASHURHvPCmMpCDTtda0YpPthVFxdXnFH//xH/PRz34mU4cIStdcX655+3s/pN/2vPnlN3C9Z7Pp6LYDdd2CH6lrQ60TMXhG56kbmRDMZjNsBE+kKeg9KdMh1c6QIZ/PJa+paMtjjJnBYjIgFfAhcf78gnFwHB5es1zK8wIxN2cC6PWjpxtXUuxrDTHQaMTVNimgRWf82FiN95p2NpPQaB+IThomeb07+YYWqB9jrDS+YcDFUSYsJpKiZMiJUVjAaC0T1bxfBQI+qAw6mrxHylRjdJ6oZZKVgs8a3QjJTNMMnRtdmYEnlNFSCyQBg6pKSsS+7+n7fF2MyYDynq4/nxc2F6YhpZx7x5TL5UuRLNjjzpwMj/Weuq44ms1w3tENXc62DQyjw6WEthXJypk7hJ5uCJQMt1CiU+ilCXIjSst+DhncVXItctcl9yJlil2SulBOMFHIl7nRi/6Hu/VVgM/iiiCntUYhZjd2b38vzoUUhlTa6cnKue0zeFAatJADm0sTUv5dCrtpltUGneMaUm7MS85nOcInU448hdTZpKe8q3350P5EsWwQOexh+h7l//djL8rXa4UAlJPMPg8U9mqN0oyiytRzL/svv3aZRjpUlIlvyrVrSkIhjTHKe8jaTfHfi7sGan8Qo0rzuEcRDRGd5P6a/C5TYnICjzFLdHK9twvklmcmZJC1mMWhldRY+Zrv+yZO1zmR9agj4zCKoi9TOl1liUPNuDXoiSH4yz9+LZq2aYrwN7zYlBeArqTwimURa8SVpazQgvQoNT0wkBs8zVSgKZWyOJC8aPLPIU0oiDgFygIJIWR++ucL2hcbkLJArLWE6MRitmlkUXuZ6omzjs7UV5kQLWYzDg8PWSzmVFUFZCpjhmamZjHsIVcpTTlwEvK5c7kJQUbu5eEMMU05LsWxqPDMhRonSFcRPaeYD+aYiFYyZkpTZ3TCWmnerNWEuGugVL5X3gVS9EQlBh1hb9qxf/12C0C2PfL2R7Y/t0KgF0SwLHg3TpMhUsJqTVtVVFrcKlP0+HHAJTncvYJx7PCjY7leYv1Il8DZSg6E0f8CQjhNfctGk6msaq+wUSRpnLSi26xYXV+J+1y3oduOWBUkJDYqdL5XYZTjcT5rCX0PwXH75IjrkxM2vZjVpJRAS+MvoZmykWgyNXhqguPkujRmNymjBb2qrMVhSE7hMkUA9jaWvInuAezT+i3rch9Nmyaj+fOSz5O0znpS0QtUVoCDECNhdAzjyNZ7nl5csjxfUgWF22y5d3pEfeeUk/kBL929y7OLa9A19dmtfLCOjK7P1/KG2ewQYxtiTGJd3dQMTige4+BYzFvGfuSjDz/ihz98h5dfuo9CELxxHLhZLqcDJoRA1w94H1ksJvePbAedXmjiUBpjK2zT4JNQeI010ojNTnHOYNsZ1WyO6baiL0mGEIXyW89mVLOGuF3Te8/WOY6NYT6fE2pDs5hhX3mFB+seFwNjCvR+pBs6UghUymZt2JzF0SkHx6ckAr3vMURsRggPZjNcHAnRo2JgPYhQOyZNNZtxdihuZp896/B2QdSHzOoFdRh48O473DluMbVmvRywtQYsSRnW3YaToxPmixlf/vJXOT++wjnHf/1f/ZfcOzngf/yn/wNf//rL/OAnP+Xh06eoZBmDZdMlOr8hKoWdQTKWMAbidkswoMNISI7gPX3XUUXLpnPcrDsWi5aTW3dYrzeMmw03Vzc8fXrJF1+LDEPk3r3bfP3r32B5c81vffU+f/7ttzk0mjfPznjlYMbl0wE7bDgNI4+eP+DW6atoNUpDlAb0uGJ5sWX+2ivcXA8MvaJHca43pOjAK5SqSXpG10f6bcfge3RMGK3Zdolv/eU7nG8c9w4bGm0Y1lt836HjS9w5PeWTz24Yhy4XpYmqqpi1CmrLyd0v8tpXXucrv/EbvP3D73O5vIYBVGXRlWF2cMjpwZzu5oKLB59SETN4CFVlGceBeXPInTu3wY14teILr9zl9OyUw9u3mS1a/vP/9I+4iC1Pr685PD2dYhnM3rO+X1DsITpEEr1zoAxx8Dx/9JgnTx5x/nhJd7XkzTdn3Cxv+Pl77/L86ROCOcZ72Zt1lor+5bf/Ne+99y4mT5iishm0q3CD40c/eJfNSp0gBgAAIABJREFUquPLX/oK682A9/JcR0a8cyidsEAVI8oFNl1HN3rGGKU4NkL/j4UKmMHKUvx6X4xD1NS0ydvTBDzjGKfnPITA+fmlTHu0oW1nqAzGuRDxOqLrGcrWAvAp0akGFSAYYjYWsUajshxA6UwzS3nikmmQSoHWOei3UKFSphIHOfO10igr57LKZ2KIDjf2YO2ko1Na3KJjUoRUHIOjFPAxEVIgavK0bTcP0C+ctarU1vJ5kjMtKVnrBXD1mYZmrckBwZq6rl4AtEVflZs27+XMzw1SJAecg2S9GiM04xDxTii12hoWbQujYrPdoog4JxO5qGUiGYNoflJK9H6cwOtcoouGKSmsItMF0+Qsao2emBZS9zD9v2jYinlFAfbL+9qB5BNbZUJxS2+iJN4na6WVloZXaz2BhPmbZalF1l6lbPCS69kCHJePFOPnAs3zJBBpvqpaoh/0XhNWKIpl0mWyuYVSenI4tUZPNY4tDqB7jeGL9VAU+vDnGrbP1wjl2sZsohLLhqKyDGN6U8L+0UbnabEWynPwBDcyDj3ej4xezK2wDaZqci0Up/rfy3g7049Fp+czgCDTsSBDmRjx+ecW9pzSOY5A/5IaXpf6PFJM2kqG8/4wSSumSd3ebGnXxpSpX/m+5X+iNN4xepSPBKtFR6oTRM3nXs4vfPxaNG2wmx4V446pU0YoADpTBnfDt90EKuYuuNiyTyYJ7JAArcUS34uDxIR6KJXD9PL30nsTi9KE7H98Xoj6+YVcDg+lds5R+4gKKQlNRe0y5ipjmTUtla0m1EibPGpXeYMvWUgpP8RqN3GkNBepoDkpN2oxZ+gIambykS1WwnKtQ5ImQMP0fsuvHUppRFCbR95tXTFrKpZjxzB2kB8kpeUgqqxQ2MZiYV4QonLnpmu417ADSlJFy5UGJAgy+v1paKGFqqlp00ClNZXWeKWI3uFGEXhuhp6mrkUvZwKbvocQ2PjIYAxbl7OkQpQpRzalKHa05ABE2Rt21rrFCjr4keAG/DiwWS3ZrDeSReV6jA7UtpZmK29eGgHb3NAzqw2r6ytu377Fl1//Ij/5+SeMyu/QuYwMRURfEdUuEnQCEkzRamSXsXzA+hCmOALhdYNOO3qxUBrTZF4zIXBK5YnsXuOWN6Vi/z/Z38ZIyn6++0AA5VdGkz0whCBhlS5hk6LVls31DecXz/HjCLkgyLcYayxN3ZAOj+k2G/p+QKlIt+3ou45m1sjkNHqsUrz68j3u3T7jna6TrBWdaK3GJlAxsl6tpjVtclaPUlknmw9RASkiIYyMbsBGMfeJCIWqH0ac90JDrhpO7n2RtNRsVtfcf/0NNgc3XD78FDDMF7d44/XXWQ4eQs96HOjWW5rG443GJNj2HVXbcHJ8zLO6IimwTYPyRvIhU8IqeW6Pjs6oZnMeP7/g4LCSWA2lST4yaxtIgfV6KTSrELEaxiAUw3Ze47slh7dPOLvzMo/PO5KZicvJsCWOHV1QrPuObnQsMFRGvodtWghS0HSbLccHR3zw85/z8LMHPPukx2jP3/u7/w7trOH/+D+/ydHhCdXtO8wP5vR9x9XNNSmKbmgMjug9PiVMHBHzhJFuHbFBYdtDVpuOpMCoRD96bDMH1dCPiW4IXFyusPUFP3vvA1Bi+KOBjz7+kB+98zbV9YpTFzmdW5oKTL8irC6w2qGAKvWE4Zqmsczbinsv3+bZ5prtKnDrzgFqsyL5Nc5ZHjz6gJ9/dIqLaz78+BOUtYw+8sGnD1lvzunWI2l2QsUZ73zvr7nuW77+5h3wEaMChkRb1XTjQF1VvPrmKyyvN9TW8mR5wds//g71wuLXnq6/IinHdgh0z5+wWm8wYcStL7HJkVJiOwZIhvliwcHBAQeHh1xYTVCRy+UVq2HDHRKzTcPhwZx//id/wTf/vz/hlP+CL331D9D2RdrNfkGxYxLkP9OiW9Vac+tYJpAPPnjEp599zGzxhxwcn/H4/JqPHh9ytRX6Hwkqo7m6fM5fv/1dNqsVFs92s2UMiehTPtMMo3M8e3ZNUz/l8mrFrG5kupESMXqs3gFCo3d0Xcdy0+V9UIO1oPRedpfeWf7nvTHGODk8OudQSuHUOO1/pfAsn3s8VVXRNg0xBYIfSSnbnKMz3Vn2zeAdipFgqzyhKeZOcmaVbEzRtGXb85wblqJo8GNKRC8XvaoaFJEUPWRHO6kb5Fao3GgZI/CdJWYBLkKTU6K1TjFXk8Sp0BStskYZ+RKb646kdvokrZWEXGdAu6lr2qYBZL+vqipPf9wvFOz7Z/p+rRNCELkHu0mRhqwhlCYtAt4lVPD0bqQeRpFa5MlpEDenzDKRex/z9DOV9auZGqpd8xJwwWNtVrJpkxlY2e04n2+SRcmUj5WmpihmY7udId6u7su12X7DisrN3R4rhkRdG5SqcM7n7yWZcWSJRYyRaMyeO2Z6YTJmrc2fh+lexViongIEqxQxeRBg9C5QGnYxGGQabswP6nRuT4Dsi/dy/89irrP2Pz5fBxea504DKCCCgE06m54pCsUwhSg+AlWe9KbI0HV06zXOD6QUsomLfI3O9FmlxFwm5ty+wjIr/YPkD8prNEq8AVIGvGRIp7JJeq7t92SEEiCf3WUzEF1qmWLHP/UE8gWi48tr3Wc93tTITT3MbosVUEGgEpM3XJ1EC6vza+TfCk2bUlOBWrrZydY389WhTHB8XlSlgFbTBlm0NWWkrSgOkrJQi8hRLNOzzo09h6HSBOjd4VZGxoUbv3859x+u8gCWTasseK1k0ZSRdyyZaTHuGoL85nZc4lxQE1BmjxdcejSYcjeKu2GUqjwvajMhNsWuvBTfSisMRrQ2aTc9idFPVINCrSvj5zI5iUlhtWVeN1TaCOLn5OtMZWGAqqqwtkIhVImkS/Pnpns03St2086Usg6r6ImQa+RilAlIkkPRVjW2rvFOppYxiBOZNWIVHOpaqBEqm8sosRnW2lDNZCLS+8AQHBerNT4bsqTpOpWGeteokK9/iCHz+fMmpBKr5ZL33/8xF+fnrG622ewDrEkQI24csNpitEWprOnJNJ2x7wX3HUbOTk6ozMPc6EwjLRnRZ8Ai+Kw70zsEsVgLK+2njbXoJQsNQKiRhhhGdNaqKS2kALnU+6hiPrTKprO/We+hakUkrPKfa6VRsdAvZM34IBPWkOSg9j6iwq45TCFwMGv5yuuv8fOPP2XwiWHw+BTQVlGZisXJGX0zB6XxIVHXFYvFjEonXHLoOHJ2dpd/9+/8IV9+84skv+ELr9zGjYH+juPxo3NGH18o3KqqYpHNAmIM6GxGIs+0m/YIbcQZM6KJylDliVpSipAUR0dnrLo1BwcLvv6N3+X6wWO+++QxIVq0tdw9uw3LFd4brLvFRlmag8Oc7TUyONH3tQcNtqrAaKLWVO0cITMnUnBSeCYYA7ikWW07Zo1CR6h0lUPcA24ccONA8KCNUEN98JwezEi+Z7tasulqfNLYqoWU2NxccnX5hLWDjW6IaA6qxEv3TtHR0zSWxXzG0ycXPPjkI776G1+DOPK//S//Eyb1fOmNV/jks/d5+OgjZrOK2cEp86NbmKrGbDesu0RKHm0sUfUkLfRPbTIiXAld1Q1b6m5Ns50z+JG+k8y5+6/cpesdz6/WvP39n9IsTlkNnvc//pS7pwcYLIcHx1ytr5mdHPH3vvo7nATL0VFLM69pU2BO5N6dI8blmto42oXl9d98g/tvfpGvff1rfPDZX2NoiSRmTYXvRmwKHB0dcnBwyAfv/Yyf/fTHoA191KwcqOjQ44pxY5jVX2BWL/jpX73D//PHG37w/R/gq5ax7wmjRyfDm298iS/cu8f33/4rlusVdfsGyq/50hfuolXg4ulnDNGw6nuGTc/q4hITHI3yqDCKJbSuSLalrmoAnjx5gmlq7r7xRfrVFdEYrjerbMykeP3VV7l7dMSBMRjvmZykf0lNIGJ9OR8CEVdcj7Xh9uktaqv56OgzPkI0ZQfzOeIA6vE+kfoOoxIuOL77r/+M93/yI4gOrSVL1PmA1RbRkkMksO4Gfvb+BzTVjLsnZ7SV4vxJj3MD3TjQVA1qdOhcF7RNA8YStWa1HUSP5gJ1Vb9wFu+Hae/H8OjMxADJEizTBZEjCB2t6zratqWqDFVVU+uKxfEZ694TTcUwipmRT5GjkyPu3T4BEl4wTSprqOsapRRnt2+jtaUfPY+fPN+dwxmINVqo3rbK7JMUhKmQz/VEwlgrJipKM29bQGiGJHkPtqqI2wGra8Dis25H7l3Ofp01zGcNNtM6NT5XhwpTyd43DAMFVlVaU9c1Jk+KSuEvIcO1ZJxWole11k6NzDg6YoKmath2PTHJnl9yYrWpcpauAGfSaCbZK4wmacOm28r5WdV5T/a0s4ZkKoKyuCRFd4xZb5idB0vVoJVFpZ3mO6SAj9LQ2apBUctkMgZi8NOaj2Sq+TSzk+sjbpniqV0otgXuKFEPWktOX4jifGuyWZ7WYKzKQeGWFLNzZf6++7q2fev+wuqSaytwQEqGKscrODcQQm42VT6ncwMhruJyhmtlcxNYwHzI1LQ8nVa7Omnv55d1KuwtAQnK65zW8N7vEwiCyiD6LtM4xERxrC4ynRQibhixM4sC3Dgybjf0mzWkMMlcdJK1gxVdpjGWpBV123C7vs3oxeilyIukEUsvPPsh7PYA7+KUryjymmyUouRnpTxIMdrIhDjLhApQX3qUphLWmxjA7eompSVGYP+efh7ImKKzcnNu1a55S6lAEf8WNG0vvsEytfrFf5PyTFJrLcYFuSEq49FSPKaYsrtOyuNPYBp5w87xZleTTqhBuUlk3VqML7xGv/f5/sRh5yy066u11iQ5o0SEqBXE/MCzQyfkX5ORhKyVSiobrKTceAlVUmf0JBWObijTtEKVzA9oQRALIpPSZBGbhz4oI/EDVsnhoRQTja40DNZaqrrCeXHM0dpQm4ba1CQnr9NoQ4hjRiO9aGhMlbVtdtIRlLllmZpOjfJ0M3ZDmjT50WvJf0qgtGE+OyAlzTgGXEhoAyHA0Duq3ByhA0qbbDsPm37E+EC7WBBDovOR7ejZdgPVfJHDn3eoSEHg8g2dGt7dOsybbnBcXDzj3Z/+BDeMVKYmuIy01AalZWQfTaKywl1OGaEJ3kueTIKh63IAthxuKPXCZdmHasp6lenQDriY1p7K6yubgIQQGAcnm3p+U7qM/PO/lfe7m3SrHF9R3v+LLyY/n3lzC0rttpkM3e9vOwqNGIcqlDZoSz5EhTK2vVwxdj1nR0c8fPyMbrVhNpvRNA2zxTF3bp/RdR2r9Zp+9Iyjl4OwGHHEwO/+9t/i9373GxydHhJDx3p5yXK55PXffZO/+Pb3ePzsgogUIgU8+f+pe5Mny7L7vu9zpju8IefKGruru9ENNAACJCiCEAeJEo0QLYmWIxQ21/LG/4AX1p/grbxxhBcO22E5bIXkSbRFWxxEgSQ4giSIGeip5sqsrMx8793xTF6cc19mNSHKDm/oG5Gd3dVZ+aZzz/n9ft9Jxmw7H6aBxpXpUdyKyAW9DVxu2uTOWC9SAxcFSmp25nP8oeKTb90i/uRn+fX/7Zf5g6/8Fl4UnF+ucH2PUaB0gZzNU7EtYIghafNCQESoipKyKrHRM0ZJO8IwJIes6EecDWy6lsb2SOUwykI0lEVNWc6QStMOAza7k01rRakUJh4iKG2S4QCwXl8AFlPMcMHSdg19EIzSE5G0g8XuJSTT9hanTHK46lo2q5cQRk5OnxFDy/5hyR9+7as8fHQCIhkClNIQKGj6Nc4nP93gbJpea8noXUqDQNIFEEXK3mv7huHZY+r5LkVZ04yOl6uWboxEKdj0nsfPXmC9B10iixnjKKgXB7CYM9s95AtvHdCfrLgIK4JWvPPmW/zI25/n/ScfcbPdsDfb5xNvLbn073ERLbeOj5lriW1HQh9YFBXlsuDo6A7373+Wb3/vGSePPkAGyc1bt1mNkWEz8CPvvEGh4PT5Y95++12ODm/wp9//Ad/73vd4+uSE/Xt38G5EyURVLpRm8+KUg6pgt5qjvGJPC/pxZF8q7pSCRy8aaifonSMWM6q6xjYXiBCw3jPYiLORIAxjdovEKHypQRlUYWhHB7Hlcr1hd2+f12/dZq8s8xYxFZx/viiI174HBDYPzyaGQWkKqroiSkE3jtQ+JnNYdzVtDm6kXZ3z9Q+/x8XZCceH+2iZjADKsmQ+W3Bx3mCKAhttiqyQmr3FDnfvv8HQXCKF5eL8GcGN6XcL2Nnb49Z8zsVqzeOnJwxjMsPQpkC7q9cUEm1kO3iESFXVBB/wfnP1KrNDRMzmZMGHxDbwHjuODH0HsUDrlLG5s5gzDJf0fYfKAbtGSMqyTpb1QlCWJd7aTCVMrIfU+BhcFCgtGUdHCGn/mlUlRVFc5etpg1MpgkAbk/W3UFc1hU4a8bqep709gvCexWwBUuaGMbl9WgIxeiKJRWAKw/7hDWZ1wTiMaBWRcSRkxsBk6tT2PUVVMpvNt6jabDbHu2SaMckvQrbWljknbdpTkwtmn4wlJp3ZtWw7IQRFUaT1JUIepEqU1pRlsa1PpFJp2OlSnieA1IZyNgNVsmp7rE1Nn9IapVPsQrSOwBXSFvHJVVQkFAwpUbqAaHJGHZkip6hmM/YP9hlmhhg9UqQhZsgND5OxW5aIqEyjtWNCgqSU9MNA09pEiywk2ogtDTVR93Kjmd1ZE+qW6sYGkcy5MjI6gQcTWhPze5WoqVdrOGbqn4xb1dnVVyShxdn5eGJcJWrhlPeqrgb+XGu+cqO+bcpeYaxd5RROX1doY2rcJn3YhFIOw4h1Id+H6TtFMvEhONzQ4+2IyEPgQBreh8wUQ7gt4MLkgC4ldV1jTJYxRJHNk3xmBGWH7Bi2DvwhS6KSJo1rKF16X5SUGJGYb0GACn7LigtcxSKkYX68qnFyvRiJ2fzGb/sFyO9zHgxEYq4pJyCHRA2FjPrKVwLXf9j1l6JpA8ivZbsQtk45QjLRGLeLaAttXyssISMkKaTReZ8bIfkKipCa64/ZmIp88FxDFraL8ToyFOMrC/Z6fsd1dG7LAZ9usHyFCU4V1zvS6fen55UaxfT4Ov/+NKmYRI7XohCuPS9iOnQSPepq0Wyb4VdeAxmhzLQSOd2gMQdMp800rWgYMqUpSpkWuydZS4c0WTBFRWgHhJCM1jFcNlSmYDZbIIopfDO5PE50iVcbgek/pk1t+nwmxDTdkBKDKQxHy118VFycvSD0PcRAPzgkPToFhSQRdohJE6RKZFkQVMHZxYpV2zKGSDsMLKs6TYfiD59vfJzvnN7qCDJNHqvSsJhVNM5C8ElAS6Z8yKRfTNSJuLXcFQiqqqbUColECclisaSqK1brdouuxe2Eh20jjrgaIHjvET7RCFT+zMkb1jQx9N7TbBp8tg6eaJphi7KRN9npkMgv8tq7MW3J1/98ixxfm7ale21qfKdNSaCEAj9pGhQuRlwMqQgMgeePH1PXC+baYJYL9vb3qMqCstTczE2b1gnxElKitdhmwfWdpe0GrPV4F9hsOo5v3uVzn/8C3sGdu88YHKybdrv2RKbSzucLhtExDAnJIG/MwaeMooBkGB0vLzYMY2C+rAgxvYvBBzbnZzz58BFny4pYwuMnTxlsxIaCdoiMXUMQDlVWRKWRZUnXdziRLO195+mahhgC+wf7eCE4v2xZrTZIFMt5jdERZQIuWC7OG7QWzMpIZSRWQWstsWlYjY627xPFMufKCRlZzhbMqxkBGF2kaVacv3iCVJIg5vTOsxlGLIKgkj7G4RmtSy6XzZp+cIx9wJiBBw8/4vzyjNm8oKxrnp+d8fjpM3Z2Dmn6Fj9KXLGL1J6LzQbnHVpZgvfZjU/hhEEag64K1DgQvKPUBTvzHTaXDR7B7dff4Obtu1RFwerynBuH+xwc7KPqGqMkP/bFL6Giw8nA65/6HLP9GXu7N/n2H/8BXeM4WZ+zc7jLO/c/xxe++EWq7xgePfkQrZe4AMsbx3SVZmkM+yKy8Za+s8wW+7AoadYd7z86wUfJ/Xd+lA++83XaUSDLHW7MK+4cH/Hy8XuMXcc3vvFdPvvpkqMbh5w+fEIIAnJu48HeLperFR++/z5sGvbmM3aP9jk4OObu8V0ePXxCc3LKvcUOwtY8eH6OteBLlfYNkfRFUmtUFAxjSFqq4FEislgesX94hxePH4AokQrGsefy/Jx/58t/j0/ef51df5Gz8yxo9eeGMNM+J0Rq6xyRcaJO54aoMIbZbAZCsOl6Fss0/Seo9NnKETd09JtLzk+fMS8VCocfHVVR4LXOqLvntXuvEYTn2clzbhzd4q/99F9nXtZ88IPvUocFSt/AKEXbtLRNgw+BO3fu8iM/eoNf+43f5PmLlzjrGa1HyvT43l0NTZVSlGWJMYaDgwOcc1jrGO2wHYymojfteWKqL3JR5p1NLm7IhFo5RxxaQtulwlomhOj5yRlCSW4eH0H0dJsWoyV1PlNSDZAatZ3dHdq2o2vXFCqFGTfNBu+SNk0Klc6sGNEOjEnFd1XOUDLZ/RcmaZHGwRGCZVYvsd7i7JrgNghkQiayaDkV7Ylet246+r5jb2dJjGl2LIXAA5fNmsv1iqXcpVosk0FSgCiu3Divzi9HURQUZZGQxdzghQjGm22DNv0drTVFURBCoKoqnHepuM2GJs45ohAZ3dSUWhOso9ls8NIR8MyXc+bLPUI09C6tIVUUGSEFO/YpPzQmkzEFhEyZVMpjTIUy5XbgFvOhGmOKc/HRU1YlxoCzPTG4rO93IFKwPGRzihCSRl0q5LwmRsHQD7RdSz/06EIzLxcsljVKZnZX/jspmmCSHxiEkAzDgB0tHWxZRyIPXX2OAwgxZHOxaw1GdhhUmVHlnQUlto1yytaN20F5jJPTuiLYH0a/jFsWyvT5TfXD5Cg61UKTnv06TVYIgYwCFSVBeaJOtMrejozNiLWWSEJex2EEPFYIZGGIziLzaxyGlG3n8nNSWuMFDGPL6EaEVihlkGoKY89mXekTSvV/2jmZMMKYy5er3Wyq5aYG+epnUszTVd08NdBCJBM5RXagnqqiXDdMxnFImdZOmEz1Uq3lQorSinHrhZ5r6Ygk5SuqSDICMv8/CNcGMgVs238xUSQnyCODZVtXl+g9IdvgIq+aqGnMf2WPOhWacUsPmeD8eO3w2kK+17rc643Y9DPXjUhe0apdu16BkVO3tJ3k55/YIl6paw9T15anCyEFKHP1+DINEZNgNRt1XL1PV6YrkynJVnN0/UVePfpVgZ+nDmT9U0JDNEon1z1dFCip6WwK6Byt5eGHj3n68Dn+lkKbkhBS/slWCG5t0h3kx043ud5Ob5LTZ2ourqsJk1OMzBMVtreeEJmjHRzWBjrbgzSU9YLRB0LfMwwpD6wuDQhBN4wQwagSpTW2G5C642y1YtU2mCq5nVnv8e4V0dz/o0tmo5Dj42M+9cl3eO9732dsLV5FnAv4kKhvUekUdBN8Wt95FmWtpdCJmuKcRytDXdfbz3FyAJ22mK2LVb4RJnHxNBXTkxg55slQiNjgGPqBzaZJrmKZzpGa4JCnPkDIBcy0Vnl1SLFFQK/9+cepEfHafZumjyJb+UY0GhlTPIEXELQgKMlid8Eb91/n/e98l8vLE8pqTl3X7FQVSiWOtxsG7NAhiZR1yXxRY4PFURJRFLOade+IekY3wtMXlxzdusdyf5+zswvMbIdudK+sfkEKed3Z2aFpO4YhUWzTWyuIHrwLjNbT9Z5NOxCEpijnKF2jTc3YD/zeV/4VX/3Kb+MqjasKzj54Qlkvef7ikk07sphVuP4S54Y0tSbQuTEdnLClY0khuHPnDo+fPOHPvvldhrbFWp9s1YcGKTRHx3u0zyx93yOHSN97ehMoZxUuRs5enrPuB6Q0WGdTaSAj0Sa0bB0CshREN1DrNITpbUMsDDY7gGqR6CxCGVyUOKFwUYILRKHonGP14pSilBwcH1EtZqw3a85ePsW6FaOFoAObYSBaRztuKNSA1GPKe9Q188U+pakxZYkoDLFrGd3A4c4ux7s7nDx9xvzGbV576xNUxiCINKsV87pGqjTpH4NnjII4es4lsLvHcueQudjhw0enrKLg5OySSlbE24pVPzKfVxwV8J2PPiK+FHzq4ICnTcNn3nqLd24c8KR7QVAFQVZcOossNM5IgqrYiMjT1QWtjMwPNHdu3WRnr+Lx957hbMfFqufBoxO6ocv5TOm+6JuW6BWv330N255yerlid37AnU/+CH/7P/gP+dzdO/zxH/0+T188pxzm2Krng2cXIAz9YOn6ESMi0af9QJsK4UcIySFWK7h/701+6m/8Lf6Xf/KPcf1AVRcImXSNPnpu371FeNEQZaLa/0VX8k1NVDMXk653+itCKYqixPrAquvZd4HRCZyHYB1CKWR0dOsLbLtGErDdhuADQ98yjDYh1KVGGMF63XD39df40k/+NMdHtxmalnuvv8bpE09ZCaK1NE2HVJqyqNjd3eON+/f59Lvv8vBXfx0fFTb29IOlMIaQqVzTMMmYRBsuimK7NxKhMDqzeURynctDmBivhpjeO4RXyd0wjjSrCxgaagKmLBgjdN7T28BoI90QEdGy3rSJhqgNvXMIlbVdwbG7t6SsC6Tw1EYTA7SbBh8jpigzoUdlPVxKo0/0PUWMEm8DfvSoQlEVNQhFYcqkowvghz7p3r2fKDsEEelax9OnNtmhS0U9q1nOStargXFsKasqacSkygMCmS350+CmMpq6rum6jnEckFLn8y9Ry1OAdOLqOedfsTWPU+OaWUlbmppzCU2cm7S2EJgiOWZHqVIknEgByVpLFssZZV3SDxOimxAuGxKK650l2DE9f1LaahZxg1CYoqIoaqLQ+QtCHLc0ysmcTUtDDJbRDTn/yyNY9/j0AAAgAElEQVSNAlI+cKKJpgxPkV9/0zRcXq5ZNy1N75CjQOtAWaW1HnFbB0ghDRKVB7kTVTJd0xD2+pma/tzjQqJxSilTbeWTxlUJgcmDcO9crqn8dkifGo1Eqyx82Mpc0nvuX2m8rl/Tf08NXLB+S/n13m/rjevNHQAuooKAQiNKQVEWRAGjvzKiEyIZ0znbIN2AnC1QeWBErludy+ADOc4gie6RevJqiOAdSpkEOCCS6/m1WvyqBr8CbX74npeMCH0ISJ8bUEVyb82tQ4Sc15g1j+GqmfPZ9Mj7FLEk1AQyAWFqogUmu9xPiFoUIpnrxJRXrEkaT12YrWPrv+n6S9O0pStbegJTC5wamgyabq1Z47aJiyI1PVrrLVI1TRBiDutLSE+GN0XMMD/bJjASsj2syDVsuFawXt0AHxfZfpzje10APRW2W23RVNyyrYuvkDwpcmh4QiYmoWx63iSnndwEiRgzfe36u3R1RZI2bNL+sX3umSowvbZtajvbn/ExN1G5OZ20S0obbt25TQSGl567+/fYWewzP5rzo5/7MVYfrjjZbIj+qvGd3iutNVapNBmKWSPIRGHJcyfxcfQwZ9EIkaczKXxToLDjyHroEUJQVTMKIXGqIY7Jjjj4kLn3ic8dhCRESe89VVWgyxnKJrTT50nIhDL+sGv7HnKF5gohMlUiZE1ZikXw2qOlROLoxzHp+HyWqIvkmKSlASJd12H7gaLQtF3Dphvouj6hfvLKBngbgDk1WPk5TQfjhOpKaRN1Y/scIeQsnKEfc1OSKQTEvCGJbTeWcVauqKDXhcbbBXvtM8r5PTJk3V96jiG7lE7PbewH1heXeOsS7zxGrHeM3tJ0PVonwxHtFYVS9H1Ht0lOh/OdBbMi5RQpY5Leq9D40aLLktFrxiD56OkJ/9Mv/wrr9Tnf/NafsljWFIWm60a6tifYkUVV5Hs0bbzWpgZoej8ikenGixGcDXRtT9O2qXg2JbP5IkVZyFRQ7c5Kbt/YpzjcRx8dMd55k+Z0xYuXa0bbYbqW1eU5opox291BCJ20GiLpUrz3tG3H5eUlBwf7bNqGlxcbvLVUeJSSjGOLjQZTGnRh8G1HUBIhDVFoLtYbBu8gTz+HMWmMgvNEC2HwVFrRCViiEdHhxzU2epTeQ5aa2d5u2ht9dv5SJbqoEMpQLRaIKLEigNGsV5fIITC4gd5atKqoZEnTppy6ICRjcKlQtw1FMVCWAVMv0dUNlssD5vUusqgIRnOUIxaWhaHEMTMVYb5L2/WMQzIPCR7WXU/SYiSLbqkl2pQMMYKsGBrP6umKQRcMRaSsd9E9rC87Hjx7zgJHHSyx71LAu43ceO0NwrcfUnvLnlYoWdMxYz0O/PhP/CzHn/5JHp9d0l+eoWe3eeczP8Zs/xb9OPLWO+9yZAT/5H/955yeXXBx8T0eXT5gHBxaQtO0LOYzlvNd7t65Q7NRnDnLg26AF6fcevI+v/u7X+Mrv/m/E9yGfVuzUSD3l8QmoCSUxYw4dti+xXqHDwPaFFlv4VEyoIXieO+YZbFD4y4JY0CEwIuX5zx+8pjDG/vsH+0RpYfoQJTTSfvKPpdO2FzEANY7Jv+3tO/JhGwog48SHwWjjzgficEz9h3RW7rNiqHZUBiB9QmBsTmbURWGoi54fvqU+XLJ53708+wfHbBqN0Tr8ET2Dg6wvcKPA1IZbG4KJk357du3uHP7Nh8+fobWBcq++jquD5WmgnLroKdVCuQW4NwkaZAfOyfFlsngggAZ2awuEd5Sa4VWUBUVM10wyIIXm5amG1FoQog4H5IxSD7gtFGMqwHjDUVp2N/doRCSpm3QWjGvakxRU1Y1ZTVDao1UOp+LkdIYrA1oVaBnJo02pcYUNd5HpFDs7uyhZmmP7/sBG1Jm1ZjNn2zb42LAFCWrTUtdLWj6tO8sl7skkxKNUCm71oVIP1iMstTFjHo2Yy9Ghj6hdWVZUpaGtmtT0eoTrdoGjwb0lHOGSBlaWbtlg09RMbn4D7lJGa1lsCNGJ7MQbQxCKfwYqfTUZKefDd4xDj2x6zI6lVZsiJEgJZYhndUiIlVgUAFdGgbrUNoQg04bSj7rtDZMkpQwrTOn6YceZ0dUVAQx+RYYhEhItXOBrhu4vFzRNh3jkM43FyyD63Guxpt0b6QjUyJjcvSeZAve263N//UG6rqLpFQSJdS2Ad7m6E0FbIzJcMMYMFPcz1SPpppXa01ZCaSzybgHwzZwemKUcYVST9+NMVkvPyZ683y2bd6SVO3KBt97T7QB6cFKR1TZEj8j2FOdYmKxRRSdHRj6REfEh1QT2fSeWO9SFINIgI42JvtzBIbRMowOMm1bCY2WCqMUBE/0DsIVs2giUH+8WI4yrZO4rX9yfXO9iY1pT5mykgOeID1ikmE5h7PJBRkT8+cFApXWcM6v1FOub4yIkCjAk0TCR4eNERfjdg/+i66/VE3b9QIx6c8EIuHc2zdd5A+ceGVAwrXCNqEUIt/oCZ66bsahtCKEDEGTEJMYJ5gzQbpTLwXZQWZ7ZZ6yzBtSnqgmlFCByLkuIm1+MYbkKBOuWYinX5PXz2ToK9IURiYNilLJ6SnBqXkSmIPAoxCEkH9/dr30GeL3uTn0Im4zYbZzkJg6XJnVq8lqNVEwEz9dovICTu4hV26J77x9ny9/+ed59vwp3/rDb3N3tsv9dz/Jjc+/RvX6fR7+2Xd58fwx1qdmIHhwDHg/IkOiAShVEkKywFYliXaSQx6FSPEHPoRE08KghaJSaYK07hu6GNidLalkiShneAJ4izIVcrZAho4wdBTRUWmZeN5RUOiK58PAmR0o9Yy37r1JO4ycNWvW/QahDD4OBDVmjnPKshFC4rPTl7hGA5AiQvTp4PcODww+aXUkyXEvRpfCbrMF7fb3RHGFignBuvNorxGjQHUDnYsIFIGrz1IJINs4i4yG+hhBqkwTDoQwEqLHWZ83+3S4KCkxJjXMaboYttz3KKf7Iy8PkT5vGa7uI8GkMc3OpXlShMy5JXnTTtZoDmKiKjkrGe0ICKx1dMOIy7koIjiiS4L1J2cveXHynJejRyLwXcs4WubeYyPUyyVRG/zoaMcBjKIZIx5NHB1BBIKPvLx4zld+6zdo+56m65j3C8q6oCoLLpuGmRIQTEKRsiV3iMm4w5hEy9FG4WUgaI0UGqyltwPduMIOHbqoEXEkjBvW7YKmqlmg2Ds4olwsqKslXRHohxPcxRlCwrpds2obKqUZbZ9CpMnaiJhE0d0w8OzkOU3X0rYtbnQEa5EmZS4563BCoIWk1tCIZKiyGXqWyxlGJ73FMAz0w0BRzvFhoB1aKANRWKTZwWnB+08fMXRrTKWRPvDGvSPe/fSnMVonI7oQCHag6zZYB348BOH44OFj1peX7B0e8sftBjt0WOdpe0tB5M7RDocHh/TFgkdtpHMS11pYt4gd8HsVd27c5XB+m6KcIVWBLmosIHKEi+tb/ODY3z0gVoZ2WIEp0UVN0DrtgVJB1qzossB7Rze0xM6ivOCpF9z/whf57oPvcxwE9sUll02HeviY1/YCOjR84dOv8Vtf/zrtC00pZvzy7/w+v/P9B2zWgrE5w6vndLLiZttzNKw4qjzPT1aM5yve//oPqHYveeczn+LNN97mzZ/5MX7w9JRf+9WvcjlepkGQFMRCsu5aFvtz1GLOe48f0fUXvOw3dMOGs299ncEIirHg97/9HkeHCx53G0yt2L+xg9A9XTTM5kdIWfHy7AWuPQW/YlYoiArvE5Ly9NkT/vW//OfYZo3RFqUGCmCF4satBQcHc5w6JCoFwuWhXDoPpuJgmv7muxlBwPZdGv7lQaZEUhnBrFBosQCpGaPFBY/zLe3lhrPTZzSrFcFaEIZN1+VxSKJlKaPY3a2p6pKbt28Rx47Txx9RmhlutMjg2Fku8IWk7xr2dw8IwfPy5SkhjPh+zd0bS37xb/0c/81//0/ZjC6hFn4Kn05DqOuNW4xXk3Rnc+5lTG66PmtkVEysBWQKbk71hE4GEsZg3YgpSrxODo0379yhXO5x0TmGk1O8bYluwAiTHSY9hEjjArPaMIw9rvfsLQ7y/p0GespIDo4O2MnGPVMhPZkbaK3ouj7F2GTbeu89Umt0SIwWpSW78zkqFIgY2IhIP44MPpklBamT+593WA8Xq4b5PLmx+qAZBo+UDu8dRkW0TJWJcw4bAtEoMIr5zoKiNEgpmNUVQkDftsTgUUoQhCaOaTishUDJpI0syprBuoxoiRw5ExOaFRXFrIAxn+VBoCMUpaLUhlFotKjAa4g6NW4xoqJHBI8I6bwVIkUiRJ/MTkKEMQZ8EHgXuVhBM444mTL+gkjPWaMQwSG9x49jOud1QVFLQpA4t6FpepquwVqLMiWmSFrHup4hdM18qQk0BBoGN2BEpFSJtaDyYDREv2WqIBzeR9arhnG0VJVhb3dOXV9p/lO0kcWNDhc1LvisJYwkp/6AQBGjT5pR4RK7TEhKFAUTQh6J3jEMXQofH8fsuOjRGhIVMNXCU0M0eRp4HA6HFIJZKVgsDHv7S5Y7+2hTgkxmdi4beIRpYBsgjIHetRSziAotOzNJaEtcH6kEKFPho0CEMUVqBIeznmawWwfn6KfBcEAYgReR0VuQligiIdhUSGuQMuJsi/RwZAylnhBKz+AkfVCMFLQxEqJEAwGHCANSl9iYHVrT6sjxKCnKQ8QRsCghMSENCYIKeJmGBdE7fLQELKUKFIs5yBQNFMnh4EJSGJOM+UJgs2koRosKiqHrsa5HGZFkPLqkmNU/vEHK11+epk2kYnFCFtIgYbKilykYcaJMZsqcyG8MsM0lk3BtisArgsrkFjdN1uKWH0wUBMeVxWiaO6eGLqNCaXA2URynSZ7Ywv9RyDSFkXkFZBpBgjTi9u/A1TQz066zTkYnp0glUSaASJalzqUQSinTDeF8xPuMGsrkZIiIOG/T4vfZ+j1T57ROELoyCqUSTz9kh7Ck2pmMKVSSDwbQObPNB0dVaI4PdtnfqfiTr73Hez/4Gn7/Ht95+Hn8UUH/8oRxWKW/qxIypqJCq0CSxQmEUGhVIIRGkgMYRUSISVcgMyoa8UJhypqlrNgtaiKecHnKy9UKomG3WtKOA2OwID1SjATXEEaB0ZLdcsb+rMTEgPIRI0uGQXLiPHYULKob3Lt3i0GCFY7gW95/9iEX3bdSjEKauW0/9wCpaRISSQo/DsGhU5oDQicEaHSOGF0SwzuHhqRB8QE/UYxIzkkhBqROlNGU4xPxdkChkYhk1CGvHJtkRt+iSFqEKGL6Dkid4Hyl8jQqmiQeHx1CQ1UWVLMapSU4n0S5MVE8Qi5sQm7AtNTJNCIm1UGM/qpZixORNaHfbhxTDphWoFS2sY4YJSkLgxIpA0UpTT2bJ4pq9OjoMFIipWbVWR6cnsPOPhHB+vQF9WyGFfDkxQvWQ8+TF2fossTGyOtvv8PnX/8ETT/w8MlDum4N3lIWM0LwdM0Kj0HqGh8E63WH1gLpPHYYQSWbcBs8CokdRxb1gju3bvHRk8dcrNcMMWIHy9BsGMYNvU30xohkdfECgeMDNdB1h9w6srxct3C5YX56yeMfvI/rOuQwoOcl7CygX3G53iCDoSwq7Djmhm1g7JOea7CW5vkzuqZBEdEy7QnOg3USaSTSO2ZaMK8Um3Zk9B4bHQrNFEofQqAoDYjkkheEBSVpxhUiwGazYlZIZmWFjILPvv0af//v/A3efOs+0Y54OyKFZehe8ujBObdvHBFDz//11d+muzjjBw8afq9bIzwIU0IUVEoy8z3/0S/9e3zrvOG/+hdfhaLE+IbaKxgcLYbXP/EWv/izP89yuSQKRT+OnL0859nzU7QpWO7sECN0fc/F+hJpDEVVo3SNRyFUyehT3o7Umm7oWV1esFvdYHcxp64K/E7N5fOPmEnF4c07bFTB3ETUcM6tvVs8eHjO4WKXfe3ZR2BP1tz/9Gfxv/kNVm2HqzxajRjjefjhNzl/+V3+5s/9NGJnjYmnPPnwgsXODfbnjrOTN3njjc8y9A2ubxCAwTBql4rCIDg533D6coWUkm5osXJECslcCfaiZt02FKKka+Gib6lcQk1eu3dMUDNUfY+dg/s8ff6EMD5hphuK4Bhazxg0TgvGccWTh9/EqJKDe3u8+9Yxx4tjdl//JLN5SfQWt/NJrFhRkVzYpvM2W+Bud7xJ06WIlCLlpPnMyJYRChkowsCi2CWSDJ9SsePpujWnJ88SWqEMRJkztVKyRHJ9K5jXyRRFOAdDT2kK6DfEYUw0vPWag709lrM5wVlQ4MLAZnPOMNRoArcO5nz2nfv86bcfMAJRTHlg0+uaNOpp/yEEhNDETCVM9cFkR56HsFsdGIliHkVyIhQGGy0uQu8cVW3olSC4kW7oid4icMQwIHzBGH0qhr2ldxLtEtLUdQ03Do7p/EjEY6Nl9BbrHcgrgw8tdc5njYyDZxxGmralrEpKXRJVMlCQmoTA+MnRMKAyE6c2mmpes2PmWFXRWk/TNgkNjY51OzI6gVI1zkak8AQ74t1ICAPazFKtJRVBSzAKGTXKe6q6oiwMztrUsOX33EeRGoBIsk2PycCjqGscI67rGYNDWIvwjiAsQnmKmURqBa1H+vQVg0Vn+ie+oG8jne1phx5nLYZAJSKlTtEuxETnFSINI/ts6OGFQShDRCOUzjKatNpDri2j89iuZ3OxolzUBAqULAgy4KPFDpauCbSDRReSqjZZY+yYzecEBN53eC8h+oTElgVayvR5ZPmJjyExh0Qk4OnykE6IOfXuElOU09IlhEDbJF1pqUoQCuvG7AycDN+kSHl6ZWFQSmQ0M2nzZcx+jyKlEhI90Y0ENxC9IxJwXjBagVGalFmcGTci3atBpFip2WLG/aMjlJTs7O1zfPseg4s8O33J+abBxiRTQkhkVaKqikIZylCzcxDYNYbNo0uGS0MfI3Fc0Q8Glx8syqSjHobA4ATWkkxbfDL0CMHjB4csXM69S9mrQkQWixmLmUFLwf7uDe7dusXbN47YnxVIGehHy6oLnG0EF4NmNUQ2fcuLs2c8e/ge9rKDIJCywhMwpYRgiWRnU2GRyqFUQAtNgUDlpi31J2lwIESkrBWmFMx3FjhdpiB4oeiGAakNVVUikUTnicJAiBResYkXdINEF0k3rMuaoq7+wlbpL0/T9kOuiT43MbYmfc1W6HqNO70tKCcaG2yRuOuON1fWpgkQnbJD0uO9qmEL4TpFjHzDTyOTiSomM3Q/xRBM+RTX3HVepQxfjTYnJlqGZJVMqEjiPCe4PgSRUbvc8GXHK6Em4XRuMIXIKJfHW7c1IxFCJAfHIJNINIKNE1KS6Zq5gYLE64/RM+WgBR/48IOPAM9733+PddPyYfuI/+Gf/c+Uv1awGhre/957ROuRMVm4SqXSRpxt5b13jKPNIm6YLGQFCeGTIjnMJTM0zbxesKPnLJUh4hjEHm3f025aDvcXLBdzmrHF2oEYFc5L3Ai1MihVIKRGy0BRSKLQ1BTs6oJm1XDy8gWXAYqq4sbukrt370Ml+ODJe8Sh21IyfUbYtpVAFBmNiCid6QAiTSSHYcxGHymHp6gqDAIvVXJuTJBYbpjI6w6ij0QZCT4yDAN1WQNhG/gY85qUJOpqjBPtVOchQjbsmSz0t+M8tvTE6/bXE39aXPu5LTWQTF0VYWvwM1GP47RW4yTGTjpAZy0uUz9ROukxdKJRGZ00UInukv8fV5mDMYI2FaaaMa6bPIQxFIXGjyObzQbnLP3QMVvucHzrDvO65sbRES5G5vOaRw8/4vLFKTomRE86z6yeo3xCJlUI3D2+xeXpizTBsyPDONC2HUZqooe9nchbn3iLx6cnOOfZbBrOtECZSIwjXdcy2hEdNF3TpkPDj7TNJVq/ybpZ016uWNYzzl6+IIwjb7/zNn/lp77ER6fPePQbv8rL1RluOEdLjdEKkbyCk4HDdMD6nD4kE23Xu6Qpcd6neA2RtYvGgOixzjJah5rcIY2GrmfoB4RUeUrfMZ/NgMCNg31+6oufZ3X+ghfPHjGsR2oJYWixmxWl0SlTSCkiu+gZLA7vUmnP3/33b3Py+EP+6D//7/AkjcAwDGkdu5H79+/zpb/207z/f/4r2uYSpMKEAaUjRal5ub4kmJGf+fIXWS6W9HZk07RIqWiaHlOU1PM5L87OOHt5gTZLjm/exhQmaWOFSKicElhnQUNnW77+R3/IFw7v8vrNWxRlyXp1Tv/h1/l3v/wljg73+IOv/Cb37hzz9rufwvaXPP3GV2gv1/y9X/xFPvszn8csLPtVwbOf+ykevHeCawe0HNHzXcr9Y77zwTeo5iNVjJS3NeNFoBtP+ehhwz/7x4/49tfu8+F3voXOe4O1ARMkYXDIoJktFxgladsG38Od194geofsemadZXV2yk4c8aMDJRldxKqaL/zkX+Xm4RJdHfDa25/BzBSzoqN98Zz2bMOjByecXJ7TiYaL1Tmnj3c4e9ZRzgqKegGi4rvffcDqr36e97/9LW79xGu8c3OZT8ar+BiRSZIipn1NqrSWKqk4ms8xMhWYAQ3CUdaKe3ePuXV8wIinlIFSkFyCTcXOzj7zYsazx08Y+m47nIwiJmt5ZKJMOkcMiq4dGLszJDCvK5xVdG3Dk2bD/ddfY7aY0fYt8/kCOzT0Y4/0DucCn373XX7w0QtWQ5P2rqx/mXa0kM9sqTRCxmt66mkAy194JVOGdL/GzPbRUuCGnmePHhCjpBs9TTdQ1wppAlgBVTLxElLRbjYUSKJz/NzP/yy79RFf/de/nc/1mOmUPrk8miJRrshOydlCwVrP+fkFi50lo/fM5zOsGxFRUBUF1rmU8RYj4zgQpGE2n7HYP0JUSzYWRNMSRHZVdC1GSZxSjDZR1rRKdM71ekM1m7HQi6Q/1MnwQWtNtJ5+6LF9T5U1N965pKeKKYickBAbKQKJmyHzq8iHTYiJahhDjjSKSVcoBTlClH4YCHbAqYT7jm5kPfZ0LgWdqxAo8FQCaiHR0adVbAqCEoxAkIYxgBMSj8bIAhk1GokW6UxNsqQ05h8Gy8vzS3Tfc3DjCGMkTduxblrcaHPNmfSC1o7ZmTytrXazSXo/O2YaZTo4p5iEZEICkwtkjMlJUsRIcA47DFhboQq1lfI4n+46oSWmKFCqQI6CEBzBp1qvLBSFVhQmoTceh0dgVWQkIKJPtSlcNXIBdEggQEreuKqVpZj07mCMpihLFjs7HB0d8ObxDZSQNO3AkwcPOXlxyfm6YdMP2OCSqY3RqKqgD47SFkituNVXFHuOQhhKJdMw0nnsMDAKiNJTxpRZKsaIGsGPAucjY8hUQZl0nm4ckFiE1mhp2FnucLC/y+3bR9w4OuDo8AarTc+fbdZoPySXVCUIRcG4X+HFHCVLdmRgKe/xqe5dTn73D/jge49pnaK1FsuYfJrk1Hek6CeRS3Yfkp9EYrZdZS0XWjGragIdtutxMiDkQFQKby1RmcSACyGZwAwjIkScTwYyMbqEUAaIXuPtx6zzP3b9W5s2IcRrwH8L3MzP/b+MMf4jIcQB8D8CbwAfAr8UYzwXqSP6R8DfAVrgH8QYv/Zve5w//7jTcspXLjTj9R+K+c9/yAZ8vdma/v3jhiHb/zd9QNdElVNzd910AbgyO4kQRKJl+JB1cFuEJm7pnfnVwFVryOQmOFmVwpWu68+LQtM/0oQh50jkr4RoB6JP9DKjFFqq5GDo/NZG1jkHThCCxIeIJeKDI8aQpk9yev5Zr+VtRhcDXee5uHjJBx+8xzD2+NHjY8/v/8mf4sWYJqkBlKwT/Y2QslMSjp/pp6nQl0JmxDA1jCFPBmM+3VXIAZEih5H6JBBezuYsZjNWmxUxBKpC4lEEJxi9oDBzal1QCoc2gYAjiIgVgWZscTYwIwk/vfC0oWd90SA3G+4f7XF8eMju/j6b5wNRXOXSifw8MjCYaARxQnPTBjzaxK0WKrl/1UpTFBUBQSU03ng66/DO5entFZVX6ASjh0wXnDJZhPghyKyfio3UAMZrN0L6rGI+gOPW9CX6FEBpXeKJS+9RiRe5XafTRCHpLvNaUokiJKRIQuDgk/g3r0eZRef9MDCOIMpkWCNNicXR9T3umq2yNiIPBcKU8bmddu/u7jMOkb7rOTg8ZllIxqFhNq8xxnB4dMjO/h7KFBijqaqCgGB35026VcvmxTmL2Q5N2DAvZ9y4dYeyntG1a5p1z+F8CW3P6dkZbhgw2lAYw9ANyJhozYv5kr7vcc7Rdi2VkfR9jTESo4ukQwwJtS90soW2dsT5kZOTZ5w9fc6yqvGd5ejoiNuvv85rn/gExY0Dll/7I54+OyfIlKEUrUPJSFUmq+wYHCJGnB0ZxpHCJKQs+lTQOZ8E2Gm4kqbfPkbarqcbBoxJBaIxBUppnLMJ6M9mDDHvWTvzGZ/91Cf55tc3XBAJSvDgg/f51V8ZmNUld27f5u7du5SLOevB8+hZSz07ZndH0QrJ7sEt2t7T9kPKlSkyahEjOzs7qEJzeX7G6uyE0TdUbc+t1474u3//F/iv/49/yg+++S2ef/g+qyqZ7cxmc8r5kvm85uL8kvff+z5Kal4/vslifx8hB4S0Wf/n8HkS7IVj06x5/P53qWzD7vJdimKOVJr5zhGLvTvs3bzP0fEBe3ff5+D+MfN7N1g/HfHC8Obb7/Ijf/3LmN2SKDuO3jjgl/7jH4c4S+eLG/nON7/JV3/nt/nku3N0dRMTF/zEz/4CzSrwrT/5NjOjOT3Z8Csf/CbPLgbM7hFFYWhWl0QviVpjhaA+PuTo8IiL83PEi+e8e3vO2/fu8vzJGXWt+U6zZm3HFCJeCOpCcHs/8BOfPUaJwG/8zq+DOeHnf+HnqIygqWq6WZFoYbOBdewoFjXz2T7LnYFVf8p7HzwmtieY1+2+ShgAACAASURBVN+m3cCTh2tufMaiQpGKZymuHZdX/64yCiUCFEIR2wbGDmmWCJH0cKaAH/8rP8pyMeeysSjnUMEhokTpkjc/8UnGpuXRoyeMWe8bXCpmdxcLlrt7HB3fwVnLcu+QSmuid9ghuUSGcaSuCsZ+4PL8JeNQo4yiqmYEN2BHz3JW0fcjbdehTcqxkioFX0/W6JPT4ZXTc2LBTLlar5gs/RuvnAGqUtB79A6lJIVWxGAJARZlCT4NcUShUVpjZhVFYehjoDQGvGN3ueBzn/k0f/J730BEULJAa48QNpnWCIWPJGdIa/MwY0PfWvoumQtJqRlHz9HxktBseHn2kkJJhq5nNptR13NclARlQBfoskpF42BxLqEWKaPNUxmBU5kqmKl7IOhHy+g8NkR6m/LNRBSJdh+TgUjbt9Rl0oG54FPzgSCBWzkuJvgt5S41Gp5pTi4ROVxbZJ11ouE7b7FegEi5o9qAs5amH/EkDXAIAR0jGkEhRBoYpCVN1AqrFGiTqG2ywMgCrzS6LKmKGQUq1RtS4bVB5rxSITTOQ7NqMLMZSmkuVmvaZoPKGa9VWWKdS86HMjloRu+zXjNT+gQ4IbAenAdVJP1bnKQxIuTaUWJ0ClD3PjAMI5qk3RMynbuqKDBKYlSRmGBeMZ/NcIXBjQPGpAiAxI66Qq2cEDgBhlfLYpEbtxATkp6eR3YlJyG8QoLWhqMbNzg+Pqac1UgBly/XXF5ecvLiJf1gGW1IUT/ZSE5KQWkiRaaFau+wwbOodrm5U+OC4lIlh0jvPW6wOAVCgxERFQLCgbSgvcCHrHnLsQsmJHTWsGB/ecDh4S5vv/0GN49vcfGy4fTJGd/71gMuNxd0piZqRfQDkoBSBh80o5MpB9YN7O4v+NRrt7i9u896vuLpeUepdFrH1qJ0IMRU56e2IzdrXJM7RZHqVJGcX5WQjP1I2w6MUSUUX6bYDaEUvcrO1UEw9D1uSHIcO44IFdFCQj+g9Ijk/zvS5oD/JMb4NSHEEvgjIcS/BP4B8Gsxxv9MCPEPgX8I/KfA3wbeyV9fAv6L/P3/1ZWao5yZFAM5O48JHQtb84Op8UrXK9+vNV7T13Wb/umKk/0vXCEWXEP0rv1sQody6yXktUfc/jYSN9hfQ96mAvxj3WV89bFipsrlDiE/4FUjNyF/qQUU6aCNQIg463KcQf5/ebLmfUgZayPIkBCblK01OVCmx3U+86Kl3uaYJDOPtLFcXKzz61DJ9cZNYsy0EWkzNdpZX6BSBlbMlvSJepqakbh93WL7JaNAC5Wg6dFhY4eTBl0IdK2oy4p1uAAfUuCwFiwWC0IQRBeIfqSSgUUdWVaRmfEE3+PbnrXbQIjMqpq6qghVQe97nBvxw8ju7pw37r3ODy4vE2k0N0aJXkCeSuevMK0jUuipNhwe3aRfN5z2luAjLopEPNUGLQ0yDDiXHEJz9iLaGExVJhTB+6yJnKbEWek4TXnyoTo5bE4GJeKVtRG2QwfnHMoltziTndO2XyEvrO384hqSLFPDmvRvqSCfhMDgt59Z0solK2chBRRFchxVSTBtbXK3mhy3ZA5Ujdv1ltbl/v4h9XKP09M1bbfm7u17HCxLvB2A1PDv7u2xs7fHi5cvefbiJZ0XGFNQ1XOen56xbjpu37xFWQdkM3J8fIPZfMHzJ5aXTzc8ffhwi7BLDPv7+2yalsePHgEwm81S4xxiRk9TEZhC4kUySVEGH+SWiuLGgdFEms2Ks5MTnj58yKUqKIThaO+AEAXf/8H7iFmFiJK6mlOqdACK4KkLRWU0l+cvcH1HN6twzubGebKIEPiMTfqYEALrfELktWEYB9abNllca4P1Ae+SAcFsXrxiiCSlpGtbHj54wI3DY44P9hjbNZUWdL3j5OQF3/r29wGBKCt6WdH0JX/4+39GbRyD9hi/5oOPPkoCdRESfSZ6KlMitOQ3fuVf8J1vfxO7WYGGGEek8ezsznn7rbdYKMO//srvEYOAPE1uN8klcxwt/dBzfHyT45s30WXg5cVZctYzNUEIhNKoomC0Iy56mm7D/btv8M3vvMesOmVnd4/lcgezOOJ8Y+ndKU/OzhGFI6qROHpu/N+0vdmvbdt95/UZ3WxWs5uz9znnntu4i68dO3Hs2EklIQUERVBFUyqVaMRLVCBK9UKBeOYv4AkJIfFQgICiIiGgSiSVSiRKJIbQOB1xJXYS+957bnP6bnerm3O0PPzGXHtfl5MYCebR0W7WXnuttdecY/x+v2/3Q1+iPX2DFxdbrh4+YlCRpy9ecbWOzGcnlAgvXz7j8cOP2KqO22/e5f77z1mtN+y2ic4d8MW3vwTZE+Oa84sZr4YHHCw7bp2ecOv0gMF7MoIIphi4urpCKc1mteXJ45FPnt5mMVvQdQsOZ0vyqcHrjG01pgTOX17wj37tf2ZcXfH1b/wed37n9/ngw/eZ9Qo9GvyF5uLcczGcs+EVY4mQj1AcEHKBbDCmZfSRnBx377zFvOvqOjaVyNNedr2rodjnGW3XOz569z733ngdO7tdr9tMSpFuOUNpRfAeUsYURDuUNIcHS8psQdvPBeUvgsS/8cab/MRf+ElObr/GfH7Ce++8gx+2OK1x2sp5HhORgp137KLn5asX3Fa3KYNifjBnvlwS80hIYgDx/gcfVLSXygKY1HPXRiK5nvtKGdGqofaGYH/uUcT6H6dRJe8Ha23X0rYNMWba3tGawspvWSyXKN/TLnuapmEAZn1PU+BqvePsxUuePX5MHAPaWlIsqGIAaSblnBHL/zEGXp2fk3yBrFForq7WQg+s7pCXl5dYowmjJ6ZC2y9Q2uBD4PHTJzx7+RLVzBiSNGMpjKgccDqwuhiJPmKUES0dEY2l6MIYMjYEQs7ETG2GizAmrMZZi/eeUoOPc6VlU6zsjSlRkujWjCQ/U2rTNnE6itZkJFrFYNBWkaw0EK5t6RcLfPZc7QZiVtimoVUtIXhUiBiDoHUlQ0VSs1aoxtLPl7hmwbw/pDm4RarGX4dHJzS2pcQBnWWPlhOnOlZjKNShlBETDGU0afQ01tK4Fm0MYwhi1OP9vkGVAb1Ga0cpWfJf3YaDxYymsaDSNbJba4mpbooxMuwG8KCMpu072adtlf8oKCERo2fSmYvGXRoFoxRFZYwyZKXQaKwyGGWlhijXQERRkHUdliOFhVGKppvRty3L+YL5fMFyuaDres4uLnj+7BkX52f40VOUxtqGmIro7IowvrRSqKxoVMKoKE2nbfnal3+Uf+Vrn+J3f/O7nD17yHPOyEWhQsIUcFZjKMJgU1koqUrao0LCGo1pLMtuxr2TI958/Q2ODo+FkaYt73z7Xd57733OLi7YbQdcO2N+fEdo9UpMtyTv0VNCRqVMY8E4h9sljl3LZ157nXF8ytOrM3DinJpTuSbSUevxCXKDPbgRkiCuwkBV5Fjw40CUkQVUN/yiNLGuQ1oZdM4kP+KTJ5NxVtamkgo5ZLnu/4zjz23aSilPgCf185VS6o+BN4C/Cvxc/bH/Bvg60rT9VeDvFFkZv6GUOlJK3au/5wc+pibnpjnJzQZM8sxURYr0fgOaPvvehfkmYvZxyqM8zqRvu+ketf9ZpvfrphvkNcIBN52qak6Kup7ycWOb3N9njySq69dWC3Z9Y/Nh6vQnJ8wkfH2szEknlyFTC9MUoiBrZcrykq9LEiQrFyoHWS7cKQCwZNkMdNWmyWtRhJAqVUNJunzJmAYa26JLomTJX9JZgUpyuWUrItWcaWpzOGkA4XqapLJMKbTWaDROWdBWBlIxVfv8RCrVbUcprLE0jZN8C93gbE/JUkib4ol5IJeMbTtUaeiLw42F/tCxaE/p5reI8znnrFm/fMUHjx5yp3uDN2+/xtPFB+QiFvxFTeHf11ENkwXshAKHECkFXrv3Or11+NWOy1dnXG4GYi6MKRGVwodEjhlnTPVekcbVGCdUuMKN5jzvQ9Dl3NEV3VLVeKYaAxjRM07I3YT+7s/6OnDQNzJVputpMt2R8/vGNSKPLo+hlaBMACHiw8fjIybarWmdmIXU61QrVSeAwj3P0+ZaFz9xBs3kAtvtwMvLK7Y7z3breee9D2VRNUomzlaeuzJaJpLB0/Y91hhyVozDjjxu+aN33yGnyGbnOf/t/wvrWhqtUMHz8OEjlgdLUBrnGmzb0HWtBHwa0cJeXV7duJZrXIjSpJQIXlyjtJYJsNEK7wM5KrL3OBQmZI4XC5b9gpdPn/Py2Qu2IXJw+4TdaksOCZ8jXdvQz1tOD5eU6FldKFJOhBBJGaHFqChGRlXTFhMyqFAQcgZtsE0jnxuDtg6UIWfRtFrb8qlPfYrHTx7z4uUrrLXElPGp8MnPvM1f/JmfQuXA+uKckjytMwzDwDiOeD+yi5lVUIyxRw0DsyYQbKRny+/+3jsQr/jKj/8I27Dhm//4W3z68z/MnXv3ePzyJT54Zn3L4D1tD7dfO+bFq2f8+I99Bb9LvPf4DKsNF+fnQsVqO/puzsHBkvn8iLE4zjYjTdEk27NZD8RtIGXDGBKj3xJi5vT2XXZDwxNdeJq+Q4mZ5eKIppmhCrz37ndYXz7l/jvf5O6djsOl4e7pm/wzP/tX+OCjx/zmL/0SLy9esYuDIOW5MO4CrupWozIc3b3D/XffZXt5gV9t8dvIcnnCdjdQbKa4CLrw+u1j5q6jLYnWKAYtmTxjipRUMEUiJY77BebggD948IKjpufH7r7FJ1475Wi7wSugsbimwxjH5TqidtDaI1r7OsP2iGE30BaD3xay6ulnB9jmLnYmDAofHM6esGgsjTng7Z/4Kid3bvPJe/cwpwdC0TLC4Jv2BmoxbpQmJzB1QvXq/Ir37n/El37Ss8QQMZSsWO08j5++YHbyaV6eX7IdPOOYCT5REgxjpHVaqLrGUILH2oZPvPUJPvvZH2JxeMrR8Zs8ffKS1eWazsAQR3KU4soPAVWC0OnHwK3jW7iuleeqRFebUsE2bV2nYzUWk4FgJdxdE3CUQWuL0tWRUdv9fnvTgff7HtUoKNlK66JSpkqmdUboZznQtwbV9BwcH5E2Dtu3dF3H0DSkIdB0PRrN13/j6wyXgfVqoNSBjHMtORfOzs7JKObzGdbKgOWtT3wSh+PyfMXjp0/Yrrcoq3j69BnaKPqupW06VC6CzudIU/Vnfuvx44602xHR4jroR5xKqKZQosOPHq1a2naG0i3ZyyBmN3q086TqUK2UxmpDqZRtYyR+Z7cb0EZRsiGnGh/DVDMJocyaqhtUULJo3hKi15YYZiU6aqsILjP4hPcjjTqgXxxwmA0XYYPWjlgSlCzNnlaEHIFEsQqlM1GJLOHgzl3U/Ajv5qh+ScyyDwkCJ+9+qg2TmM+4mqEmGWJKaxbLJY11nIdA8OyZL3u3bwq77ZbogkhScqqDaFnDN+utNFk5cXR4wJTztq/4St1tSyH6yDpKJINrHUULJVLsEWSv1FkGoeOwExSzFMk1U0pox6VITqEy2KRwxeAw4v5aa4KkC8GAR8zv5o1j3vXM53MOlgcsF0u6psWPnrNX5+x2T7i8vGQ3DPgUKVoYHb5Q3RBE32/2EVkBlQ2uiONvQHP39BY//Ik3+PDgBa15ilYSJ9MrQyLiSsapBEaRXSaUTDJAgoXpODw44PbpLe7ducObb9xh1hueP3vJ/e9+yKMHz1mvN8TsJaswatqmwSmFIVGyBHKrItpFrTK5RMYI907v8NWf+lneXF3w7W9+lycv1lxsV2zy7rrAq5FFU3kltEhB26QHkPPXSD6FSF1iPT/qkFprqkHS5Ak5DccLGIXKshLkIoZqWStyUpT0/2FOm1LqU8CPA78F3L3RiD1F6JMgDd2DG3d7WL/3saZNKfU3gb8JwomHiaxx7fqklfCGhYCrqllFnu6/zyOZ0DZKFXxSL44bZg7TffaONDcatAJoMzkxXudlGGPIpZqc1J/XN5q170e1mJqTj+vnpg2kPp8Ky0/PzdrrDDNBb5SEUJabzyHW2w3jWF0Ec6I1HWbK6ELyp6wxxOq+k2rIuNHinLE32ChyUtkbtMxcF6T9VKcBbcSBSXA9LdQrU703i6l/E5nYZDXRHWCyN98HLBtdG4RKh0S+zvsF1KKyksmruH8QxhFtC9vtQAgeFDhraWwjTZHP5BRxtqPtFpAGSkyMMTJExcH8kFnuML1m2bcc6EOOu1Ps4SGHJ57HjeNis8K//xEnb5xyuDhkPWzRSmx+S56mz7q21/I6dKWUgqCfT5895fz5Cy6uNlytxAExFqFKCA1E1cV+svIV56UQUrVGluDoUmTKU5gQYSqqLJYxeT/1VHt74Fhz5oqRQYD3XuiMKZK1UFqgitcRbUfMuaJ4qqJ6dWEvGaNkE1geLjk5PcH7wOOnz1hvdlAKVpnqDEktpK4bHa0NRtWAU60ZwxQ9gUQ4JFnspaEvrDZbXrw6J+bC8ekdPv+5z+PmLUZrduMgNNUkmsHJsnsYB6aMvLaxlLAl+i3b3RpzfsXFasvm1RW3Dw/BB3qthYJUnTfH0ROjWGinJJl66/WGcRjFNVJpxsGz2+7oenF0M1osuDvn6BqHVi1dY3HacPf4hKF/xT/9tZ/m9dfu8Wu//r/w8MMHfHax5P533mV3vkLFgm4M3nucLlxdXjJs1ygFJ6e3OTo6JKTE+uFjNAaUIaW8n9gJVSmgtEWRabsZShuKtlxWtG1as0IYASmw9gMp4xii4uv/x+/y3vsPaJ1h1jYsF3MWszl910m4bHOIdoo37h2Ty4KezEFfaA4a3HjGr/zyr9NZw1/++X+O3//27/Heu+/xtZ/4Kf6lv/Yvom3h9Ie+yLfv/2c8e3nBvbsn/Ft/46/zhR/5IhcjDFsxI3j29BkPHzzg7eWSL37xi8y7Gda6/ZqptaadNaCV6FOxXK1GVuuBy8s1L56fcXJ6wu07d/BhQ7+IDOMOQwtJ8+Uf+QKPPvqIP/rmb3Nrrijxgq5J3Ltzm6bVaDuyPDDo9oDMEdvtjnG3YWclCLnRDauLNe/91n1ev3uXtmi8MrzxmU/SdnPuv3+ffjkXcYhdcPD2MSjN5eW5UMtLrtbp4vCYskLbhm9/5485/aFTvvyVL3Bnfsid+ZJP/+ibxBRxXY/tWoIXg5zOZNYXT7j/7Bk/+TM/y8/9C3+ZxaGmhDU2KYxe0iyOcAc9trXCoFCWRic6rVC6ITWKWQ60riHYjCGQMFyNQlt8+fIVL58/5/XX7nHn5ERoVsh6t/GBpy+v2I2aOYYxKy4vNvzi//A/8fjJc/Qv/ybGzInrLZcvn7MritF7tts143YjtOngiSnx2mu3+cwPfYbtZoM2M/p5RmmhZZjGonXDELbiVjgOrNaXkiulDWdnrzg6OcGnSNtagh9pjEYby/HxMajHqCx72eR+Ow1Ci4KmaYm50Fhd88Vqduv3Y9DcGAhrXTXlJTL6AdM21boc5rM5KSaca9gOuz3bwBiN61twFtc0uKal7Syz+ZLkb/Hq8gXH87t0rnC5umK12WIbyZma5APDdou1hjiOXJ69Ig2Jly/O8GEUCuEog5+UIo3RLGct57sNVhdMDhhVMGXkeO6IyeBjwfY9hYzfQa46cFUU81mHHxV91++ztJTK9F2PdQ152EoNUBQxRDQZ70cZnurqPG0dfhinHR9jdA3JFlpYUTXzThlSCaKV1uKunXPGaEccItoJoyeUQtP34Bqa+SG3miUM56y2O0qCGA2qKFY+4JW05yVHMKIzv9t1mPkMZhJNka3C+0hMAZ8D2RTIYgxS6nDWlGvkhCKaq5IibWOZz1rG5Mk3bN3l9UgNQPUX0Kjq3pwrq0Qx+sCr8wsKhflsJhq3XAg+EL08hqoGciXJ3lsQt+CmbXCuPkaS2rR1lmEr+6miMGTRM7eNE4OLXNARTKUYGq1quLYmpkJQ4HVB9R0nJ4e8PjvgpJ/jmgatDefn59x/9z7DMArLRDu8F6fLoLToLEvBaENWla5eG5EMWDKoJCwMElm35JKZAa1uRFaiRJpjKbQl02oxURtURM01pdX0bU+rNZ+88xqfvnuPu8fHRBV5/8FD3v3ORzx99IQwbChEcdAtM1ALUvGEsiah0aqV+IdS4xaMGCJ5BRc5sz084NNf+ypvP3nE2YNXHM2f4s4sOlmMlqFDzqp+rGOeLJIiZZzkwRVZa2JMTBInmPSZGWsNbeewdrq+xbtAGACZYhLTiZjzRFNVlJSIfuDPOn7gpk0ptQD+HvAflFKubmqvSilF/VkJdt/nKKX8beBvA/SzednTG25MwIoSN5xaXu7pDzcRM4o46U1f68Je93PjuV83Jt+ja7tJL7u5aN88bua9sC/kbxThZRKb5v3/CcJQlcM5NZyTs2UuIpwWY4P6uGri48f9GynPpwZspiTNktLVxljc/ZTW+zlXrjEDcd9o1tuq3bvWWpwrlUwRtNYSUKjEfRHYWwvHKjR2rsXVhVUZJXapRUHU9TmKhqzIHI2cjRTEQezzrxPmpVmY3jc1nejVFtFqRzFun4kxGb/sm5D6e1onOVJXm4Grqx3b7Om6lq7RtG6GMqFSFHtign55h75bYtaKw/kt2oNjQtoyv7VBNw4TPFcvz+nbHh9CnRRO51mp79Xk4innkDWG0Y+8d/89vv2tb/Hi8VNULFBt97M2JC2mIWIaIyXDRFNUWqbGWVOb8oL4F5s6C9ZyruTa5Kp6zqnr6U/JktFijOgsKELZ3IfJIgMHKp1y0q1N5jh7nHcaYCDID0rR9R2LxYLNbrdvEBU3kOf69f5aq89rGhSEIO8hpRrnoAFxmQwhstuN9CmjtCGmTN939MslyShs27FcHBCr9bGdldrsgmtHcedyBqUzKTjCaPEq0kRxJytjwCsxflk0LWgpHnIqYK+v90lbuV5vODw6ZgyRQmE3DKxWa5ReyBQ5T82yYblYoHWHddB0PUpZwhh59OFD7p3e5a3X3+IsDmijefH0KcPVCusaUoz4cUsYMqM19I1oFI6Pj1kcHPL0+QtCERvqXGQ9l+GFGNFoY2pTDM1s0gQCKdM0ju12U5H1zKNHj9hut9drn9bsAtz/6AmPnz6ncYZZ0zKf9cxmc5yVjKa27bFO0bQGYw45ahvuHncsT5cs9Zpx8Mz7OX7whDGIJfpswYDh1vERn/18y+HBEY8ePWV5MOdLX/kSn/zkZ8jM0CWxuXjJ7+wuaMopP/3TP80bn/iE6CdRdQgp9GvU9SS+vkQKhe1mzYMHH3F8fMit02NyOQbnyEiofIyZRWf57Gff4o27B+zOn1HiCqcDpIgzA2/daXnrjS/QzY/R7RG5GK42F6zWFwy7kWGbef9Pvsv55W/w9pc/z+zwgNV2y+Nnz+Gg54ff/klODg8liyp6/vCP/oRPfPoT/PNf+ktMvkXzxZKm6QhJ4QOcX654/z/9T7h1+5Rf+IW/QW96SgCVDdZZKfpR4kSYI4qBP/nWNxjC/8jVJvP2F36YW6cLTBmkOCo92Wh8HSIKeRkcMphJKJIKuFBAJ0rZUtC8895D/sH/+g2+/OUv82Nf/FFc8waLWtSjFDGLdcFrb77Gz//Lf4V2ecKQCkMpDKFwdrHhyZOXrMIlrjnApgRhRyyybuQUWV1dELwnZaGEHR0d4ceR5093nF+O+DSjkGkbJ+6QVSvWz2ZYrdmNI+N2oLOGftihr66wXUvTH7NYHhLCIE7SpuqF6p5CmaqDGzNtbYStUP+Xuu7xfSqV79WST/u9rs6OKYu2KRdBrqwS17udD9hesu+MtRRT43Osw7YNbb8gjAd0amS2OKbEzG4cmKOYHxzSdTNmi0UNqY4YwG8Djx88wyqHztA6g8lJKGwHS6HmkbE50pJpSsKUACFispgpYC2XcYtOA4vlkmQzu/VAdA4963HtktXViNaG+WJBUXC5uaCf9Wgn2lhrDWTYbnYYnevkrWCMou1aNjt5zqo2xEYpjLXCqEDVpq2QMhjboqxD5SzrRhbHB5W1OOBmj+tmtPMluu0xTUfTGOIyYbTjfLuG0YNSNL0jh5GUA1HBEAZsAbfZEF88ozQrsuvRbU/IBT+OnBz0ZLWUWtFU7lCi0g1B5Vpl+sjm6gpVEmHYEcZR2EQ1pkdVypxRRj7X4tysYe8Era2qyK4i1iZRY8k5sh0Cw2YHqdQAbwEXrDYycNemJuhk0EJvNHX/pchQvHFWZCcxMw4jKUVKkqloiVkQHy0FyxQ3pa1QG7/0F77KV378y7jLHa8+eMCDR494/uIFF1eXeB9QVAM5lUm5riWUfZNWSvVtqAhbrnVJVrVe15B0IhtFVppGCSvLOocxmrFoVC5YVUT/1hgCYKzm1q0D7ty5yyfu3OOt4xO2z17yB7/7f/Phs+e8WF2yWW8gJIwyovtSCnQiq1111O6xJWJzIWtHUfLelFTwWcALZSxDKVzsRpEqOEvrZGiolcYnpBkvZY/STfuQIHYi7UhFzISKkgHFMHpCEkmKdqoCG8IAcM7K7w6ZEIuca/p6LbrRqQDSKP5Zxw/UtCmlHNKw/WIp5e/Xbz+baI9KqXvA8/r9R8BbN+7+Zv3eD3xcC4irN2I1h1DVVXGPaiFom1Fq/3012f3f+F1/2kRtfzvXxatW15x/ye1S+9vkDjcpjWKsIVly143JdGJT5HdMgcO5FuATve5G2Qy1gSpZ9GWFgjFOCu00iYXlhIkpo2wWfVpKhBRplFAtUhau+RgDPgZKEVqhNJeAqjk0Woo+5yyNdWJkYA2b7RpZmHUNbRZ0L+dMjhkDOJXQukGZlhgzo8/4EjB2angVYZQJlzaV/jVCCJ6mkQZ0/w7udX9KLPCNJSUvoYW6EMPIoALDMBJTIqTEsE3MlnNOjhZYs+FqvWYYt4xDZtE7TO9IxbALjm0uqL4nZUtrLf38CNo5eecxumE2W9KROVu9ZDFfitg4RvLEK5gGBIjNTK7n2Wp1l8JqqwAAIABJREFUxZOXz/id3/89Xrx4iS0amxXWtqhKC1EUlBEbf5EpqnoeC5IcUhYE1jpM1WBQpgbJ7P8uQitVEgOgFEZRXaYiBhG9xhhJKWH0RItNe3Qp165vjzJP1w6lXlOpNoUKjLzXo/dsdjt2w7CPBpCuTO2bfNS0nHHduCFFTohBMk8K+DFJninSQMSQGIZRqGmAMppu1oEWy/ddCGhj6+3ynK1WOKPww4447ihI3k5jEyVJUPbgR3yKom8wlp2PlHGFPT7ETDlON6bxIQTOzs54/ROf5Of+2Z/jV371H5J2IzFFtrsds3lP03Q0TUf0gmgapZjNeopOZGPxBXxMnJ2dc3F5xZ3XX+PhO3/MxXpFKolPf/qTJGX47oPHkBM5Rwa/ozULUIoQE0OIDCETMYQgNOWSoaAls9EKFx4l50CViuCsJQSP1poQ8z6E+PLiHG0ajNbEnEipYDrJomr7nq51dNYyPzhguTjAx8RqveFiswYVUcqj1ZquFN7NW4KJ9PmS5y+vuFyP/P1f+lXW/pKdL3z9//wtXqxecutkSfCaMCb6puXy8pxf+ZVf4VOfepvl7B79TPPs+ftcXl7wIz/6o7z2qXuEPIi9+kSXVgqlHKW0MnWslCNtRffQH3YsdzOi3oHr6K2DMlbdhkZZBSVhbMJ1iYN7xyhzKBVZFnLU4VsnYqOWHDQnUBR39SEoIYqU2PKFN0+43Q78pX/1r6GPjtjmyH/xd/4rZrOOf/Nf/9fotMWGQljvePjwCW+++Sl+4mf+IqQAFMQq1ZATKNPy4YcPibEQVIeZHWFwtI2ihIhCizFDLqAaim3RSiPjrsTl1StC9gxxoNFBKI0qkrLG54BKBVeqCUMROlA0DTmv0bmyHGzk4uyKX/xv/y5/95d+jbc/+zb//t/69/jc25/j8sUrgg8yVKnZXyl4dtuR3/jG77CxSy53I+PVC3QSTWz0nqIGhtFj8ihDqqqh9OOOXCJaFRaLBZTCRx98SNs0ZH3O8/MNuhRKCXWQOdJYTYy1OERJblLMrFdrfEw0sxmua7CHC4IPaBLauD3roShVKeZU1KdAUfuGbaL33yyPbh43tcE3B8ICVCvJK8tQsCQ0PmuhZ2fF4EeOF3OMNRAFKUlJGpO27zBNj+2W2DIyJoXfDhQFrnH7BsBqzWLW44eBEgOHXcv89FRcG4uwJ0Y/CuLSaLIyhDFStmsWBhi3DCXQtQZrlBgwWM181jOERBgHFAmrNK7vcQcHzBa3iPGCkhXzxRLdGMY8koIg+rO+FU2eE1q4yr4WtiIREXOrIEYexkkGXkUpjLV0vYG2Z+Ml/Wi+WNAYiSiw3RyrC2W4IvlAcUJ9DQmcNiRl8VFJdlxnaIpBjxlUxBjLYjmneIfWhaQSl7srMpGLyxWvzq9Ec28cSWuMayho3rpzC8Vt2aOsrKGSGyoeqqoUGq3RORN2A9mPpHEgjGLK1mhpnnRltwjrp5Hr0ci+7KwlRL8/zXKGcfRiFGVBFUXGokxDDLsKAsn5Kfl2Nxo2EF0beY/EliI2/33XizNZ9TIIwct10WgxmVOTLv96IO/HkdnRnNPjW1itef74MR9897u8Oj9n5z0hRNBVPqPErTcUyYQVoKBAzrVJqxnCXLsrUtFLlMJ2DjubUaxBVRmTQoMuiIF4wTYO1TuWJ6fcO7lFtzzk9t3X2G62nD97zm/+/rd5+fAxV2dnDBjG+hhGW9HQFmmMshLfzGQ0xdQhf4GsNEULyqirw1Ipmaw0Q8xcbbekGMSBs15nmcqMqkPESo6S5k1Vs8D65qYkyKgxlkRhDEGac6NRpmCM6A+tknxLpY3Qe1NGIYN0VRR729Q61M5Zk9L3X6em4wdxj1TAfwn8cSnlP75x0y8Dfx34j+rHX7rx/b+llPrvEAOSyx9EzzbB0zfHYFOjstfh/BMNmHycCukJwdk3fTc+n36P2RfN19q4AnttmFLqY3b5+2dUmzumIrg2XjdRPIBcJFuiVFrbNKUv+4ZtKnQ/7hQ5IVulOIHSlTSFqTrV1FcsbYNSKGtFO6AFdRNr5Uo/q81FrJMcbQwmqUqPpO5fCtSkQXL0/Vzs4NkBMqFQymKtGKmUIvo4cqZrimwOriE4CERC8hgn9M4SDXFEDCWMr+LOii4q+7E3V2lV0SFxv5t4hynLNCOmgCdIMY6giX6MoD3t3LJYzGm6hu2wZbfZMAbhmZckTVF2C6BFjZnD2QluccRKF3Yxk0Oh+ESz7GlnC8AyjiNps5H3MWWUnVwUZbNKdar0+Mkj3n/wEWdn5zjXojMYCVETsa0WXdfNLCTZ1eTrVJ07dRE0rm01OnpUJcXJQEDvz1WU6MAQhke14v8eim69nyB0ggJbI8W61gq0uB2pMpmdXFOHZcBQaZNGFm8AU8+verbL+3XtCoS0szcu2IoW55TAXNNQcpZZla52y95Httstox9FJ2nFGn0IA9o2Qvmt0RklRrq253DZE1pDjp6YE4vlEfOZJYQthcguBGb9guglQiD6zBAjcZHBCRpgSl2gs9Bfry7XNK7h9PRUhgbKS6EUJOhTVYcoSiIHOf9bZ4la8/Tigl0pBK243Gw532xwhzPOdyt49CEKmM17QoLlfMbqcmTYbumdpuRE8BIuunrxigePn5LQGAfk6kxljcRh1DzKUrOlqBtnyjLYMfpa/2oqkm6MJqTEOHq6PnIyX+AqvVNV4fxuO5LTSjKMasBw0bqi6Q05lWolrdkMUOwM3RTWY4FmQdKeZ2eX8O592oeO3s2leYyZ8/MLfvkf/EO++IWv0JkT3Mzg9ZrZbMazq9/mf/u9b9J2HU3X0HQN1jmssWjtUGqBUU0dAOn9dFkZRddZbt8+Jp0nOhM5SFtMESQkA2MIPHn8mKuLc05PT7l1fIwqGdPMCdmQWGNMQiUrxWxMaH1FKRckP1J8w4sPH/P0vXd45/e/SX96h3UIXLz/kG1n+aPf/h0aZVEJGApH81vsLka+8evfgBIoZBl8KUPwmWIartYDd2+/wcmdN/nuex8wj4lw/oqwuiLnzDYmvFIk1YJumZnIq/t/zDisefbiPt/47d/EtpF5Y2iyZdYeoruGUQ+YXNCjIbieJnmMskQ3Zz73zFMn6NN8x9nDV9z/zn12Zxc8un+fD975Lq3SXF2uePLwkbjMjoEYAn4cyeOGTdI8OBso2mLGS5qw5vzZMwbdUVOH0DpjjeiXc4mkJCiQVnD79IRZ21FiQjkYdluSuWLetcxmDQe9xZSWsNsQwkiU7AqMdlglRkalgI+Ri6sVlETfWEou1TGx52zl65523ZSVwo2YncmtWU1A0fc9vr++bRpyyRqdlWEMhVQMKYHPGp8kkFkZRdh5RpIg5MpiXUtRDuNmtPqIPFp8WqO1Eh2p9xwcFGLfo0ph3G7Yra+wqnAwX8raqhXWOPrOklJk2K4lv2oYiSHQOYePEfQBZt7hlCGM0hA0XUfUiVjEHdC0HUklcap0jrbrib7QtB2JxLzvKbngrOHwYC56R+OYz+bkqBh2FopohdbrVR0SOSlWtakmKhHrtAwrbYsuhdY6jk9uM2s7jEIaWV0Yzp+zfvWE6DOg8TGhQ0SNkRh3pN2GuYmMaWSIa2LaYmjYXnl0TKLr6yyHbUfRhegD3g91AJTJZMLg0a7BpoDO8tpzrrEDRbT8JUX5nyMlglIJp6TGSQpCqSwuJSZcBej6jlk/Z9wOBC/nYGsNGkPIiVREApMQKYDTDoWtbJZQh9QSkC1In9QCKhWICa0KzooecPQB70dKzhjnqjOwJdb9SE16Og3BGoLVtMaIbkqLYYlTMlQ+e/yUhsLF46ecv3rFdhhR1YE4gTQX1UkxIo2MoVRZUIGSRSMvGCUKqct1ZUtlwDQW07ckpSUWKCZB4ktE4IiCV/DJL36Rn/mnfhadFZcvL3n80UPuv3ufZ8+esl6tiMGzywVPIiuLSl2t1aMEiluDwlGKRbuC7gvZOZLtyLZHsLUgAdkJSomkLHrIkFM1TDFoZ2RQWqRGUmWK2FK1uSoiDqq9a6kLjKD5UtdkxBXVKQ1EdAGnoTHikKkQRmDSiliBplQjuIrKUHQFM8y+9vrTjh8EaftZ4BeAP1RKfbN+7z9EmrX/Xin17wAfAv9Gve1XEbv/dxHL/3/7B3iMfcMFE0Xxmm61p9gVsTPXtbDPVaA/BQ0r4CaV66b+baJGTjTIm8fUrH2vNu3mz+0bx6o52nPoyxTSXZGZfSZH+djjTTlrOeeahVZNR7QYTRijawNZ6sU83XdCotjbqHMDWUSxp0fWaLX6X1CdCVrPOaNy2QssgT2Kaa0TKDxloWElg6pxBvLcK9VSPHwhZ1IYScWJ0LkkopJpZI5QfCZ5TS4B3SZy1vVvMTXDkymGmHE429G0HdY1FC2xBcI1Kti2w6aC1rE23BqlLTmBHwO2tcIB7xyL+YwcImE3st5suNolmGuc1dxqDpi5JWPRbHLEx0KDI++2xFnB9b1k37Qd292u5uckVFaVCiEXacyZ7cUFz5895ezqHKMt2ohrlK5BrqBxTUspiRzyjaanahwnmiJGogCswVpLowwp1Mwbrhs8pdgHXlPfX631x4LjpcCp56KuTUkSmqyEaabaDNahxPTvxrADpBlESSPdtE2NPpim1pPL6vV1uh+U5CzuVSrvkb4MxEkDoKbmVSgzIURCCIQoH7WWQPdZ6wgxsrva0PQ91lhK9BjlMCUxDFtWl+dsdjv88TFp2ZPyiNWW1rWoLM5oqtFY7cREIGdilOeolCCFpVI9YhI0+fLyghQDSoNGNGW73QBZEWMgF9F0rFaXFAZGldhqh3GOT37uszRj5mK3Bi3mBd/94H0Ws55eOxrX0TaWixQIfuT20QmzWc9stsA6x6vnr7habzk6uV2zfmRD19X5K6sbcSQK0YbUibFVhnG3ZRzHPTU2FSl4Y4q4iqIfLOcYbXBGGtCJbuODoDUFcdjLZIq2ZET8HyNsYyJuPDQLSlO42A50psFnwxAzviiST6icRBdYYBhGXp2d8/jRMzoVSDlxeGvGq7Di4vK7+wyiTJGJshaDA2NN3cRk+qiL5GSVDF3X87nPfZ7bJ6csDw54/OADLp9/hFKCTo45EEvmarthtd6ijaVte0pRNLrFaQN6Q8oDSs0YNg05Q0gXpHhOjonkW/K45fLsIb/2R89xboZxHR8+eojrLB8+KXWd1eSsmTUN/YNnbLZXaCXc+YIMp5RtGMZIUQ2271k/fsbf+8//aw66BSZJ7EECNsETqe6luTDXcPXgA7YrzeZq4A+/+S26uaHXLXmr6eyC7tDRHESODnpmdkFuR8bgSUHjzZbLVxts6LC2gXZLz4yf+upP84//4Nv8zFe/xo99/gtoremOjli4lu12y4sXL1hfrditVrIHW8vp6YmYHGw8zic+/5nPkLolyTakFMh+g9WaYTdydvaKcbsmJ48zmq5pCSGIWVQqNMaS4iAOuyMEZWg6R7uY03YtTdfhc2azE8qXTwFbmQeb1RpHwS7nOGO5desWp6envDjfMKS039M+tl/fWKP2soXvc9wcvN4cpGYKsVLQXUVs1rsR0zhyLCRlUY0ML4UBI24uxjZ4E0QmoAxZO7SeYXXHuFmzutwRU2A+X4hZgYLgA37nq4bJsLq8IqRA27UorWjblrYXg6UcPFED0aJKYd73pNkMZR0xesaYBYmxhoRhiB5dEvOuxSihK2rj6GdzvBZzkbZt6LqOrAqL+RxMw3xe1wzr0G5ODAN+3OL9jtGPdP2Mpp1RMKSs2W42hJjIReGcwzUNrdZYJQ2iOPIalO3QMdI1PZuiGbYjWRtc29G0M2zT0jnJLiv+XCawNqJcQmVP3CXaUkhhIO80xmmocSwHi4acPT4MNF2D63pU29Nbg5rcKpWqZhCgEnuNnoqZ6AesybjGoHVDzorsBeGW+lKGlvP5nMODIy7LxT7YWmIVJk2/ous6utkM6xqcbYihVM+EXEPur9leokOOhNGLyVXUsp46R06Z6MMeYIgxQjYSZK+v67fRGoJVRKMIGtCyVjnrcMFTxsBwvuICxfriEo3Cak2oNSlZQsrtVCfU2tJUvVXaDwapWcJT2VBlSUVVrRd4YJcSY8zkXGmlaqJXgp7PCV3H4xfnsB7ZPbvg8Xc+YHh1id5liodtyKSmg2IosVCIkJKAU0bMkbKOJBXQpgFj2Y1QdomoPUpbGgo6ZWzO9FnRUbAxodJ1Du8ePcuFXOUICqmjpve7qWZuU/3QWKFZ5lzq30khcc0FlQq6FHEdVYLelpLQCWwBW5QEr09VeJmG4LUu/lMYAdPxg7hH/u/8abwC+Pnv8/MF+Hf/vN/7Tz7Q9acfQ64q20GoTfUHp2auSAFz7cYDKOFcg3CqJySgVIhpss2fkCxTucelwtDTRSfPQ+4tWSRZQol1qbQO2ZwpGaO0uC0lmXoYjARZK3Fj1EahDbURm+xfpbiX9iphTcbaSpEswieWH5TsM1VUtfJXOG1wFRmcNEQpBrFmLjDp6Kw2tK5BF4GIbTW3KFpRlOgpmqat0xUoJWGsoTWdFLQ1f0TVLA+jZcHLWcSXJY/4QqVJaEpSxFDFvHVRyvFaG4YRF56cDKVYSrYo5WibGcrNicritGPR9AyxEJIHY7BK4SigvaCKpuA6i3Ey5StJ4ZoO18/JbabpItiey/WaHIRa13YzsnUMQQSgvW4p/ZLtZstuF1nePWIdryi66hJq3IRCHJwKEvwdvOfq/JLdeocpTi7UKE5Ok0smZMgy2dt308AU3l5KVV/UBomUSSVSTEPTzdHW41wnVAJbpz1KYQyEJCGaRVVElxaQ7K5c0cmQAqZoUpTsvRglq80WIXhOF5uCinzVBloZCnp/HqusKpwvtF15HVpcwGrO3jTXkFtEiSSuYZByoJBqLoxMPiPiZBWru56KYJUVN1LdSuZSHJi1DV03o+hC23WYtmUXEqUYrGrxmwte+edYdYdI4mq7Y7MO+DFUinRhGEdszowxolOm84m+N5j6GlPJKJ0YxxW73SV5WIHSEuicZEhimdzjEju/5dVlZrUz+BwZY8IWxVE7I8w0D1dnHDS3mC2OePrqiqsYWb52h0Ihhw1aK2bzOdo1mKaj7xecXV5xcbmi7TqU1jTOUiVGFdmf0H5dkVQ5H/Y/oytFxkdx+7QNZImQmN7l+WLBrdPbMnjI1yYlkynDNAgpGSIG62TVCTvPNmzZDFtBk7tA0yb8NkARp66ZscxoaFyDLob5vBdL81IoCMpom0Tbtww+slqtBSFMinEIWGfJuQBJ6C06o80NSEQZNBptGsKw4/mzZ6RY6BdHXGxGHr+4wKhE1za4VihMTdboAKuLFUOX6GYLQh5prcZY8KEQy5aSg+gTcqTQYaxYZRfjOOg6WUeNJSuF7RpiTmyHAZQYPcWY+Na773B6fMDd1+6ijExqXdvK790GNBajFQ/f+4Dl3LKc9wztDqMcTT/SzmZiWnTDAAsNV1GxiUK97bs5bduhskG1Co/CbwbCesOjB8+wpqHp53TW0DQd7fyA1knx0PdVd9yA6xoOZg2zzkoAsjZoZ5lpTdu3dF3LuNtx77U7XG02PH51Qd5JeK49OkKlnpyFpeBToWksqrU4mZCyXl2x222IwaObBqUlhL1rG1J1/2tToY2gchDEqjTY1tEoOOwsL+MONawEbW9amq6h7Tq0AAekmjlp257br53wnfffw6Qsg8F6uUw6brQmlojKWpz09HWR/L1D3Jta91KKDA+ysEOEPpWAQkyFYgy6aUm50Mw6Aj1bb8jKgjZE3THowM5HbJPJtqX4TMaA7vBBMrkW8wOatiVlTcwdY8pkM+e1T71JiAOX56+wTuHHgaEg1GGrsK5BNY2s0yiM1USdCQQZMJo5MQoVzwNDiISwJZbEwcGSjCNnGfilNJLTgKvMGucaMi1Kd+imk7gNZyEpVHZYGsaww6Dp+55usUSbVjLctpcyazSmGjYYyEEo4dsL7HyOUoIUGTLEiCta1udGM5sJZTz5nWRZKs2YLCk4smooJhBSojOajkJbCjoHLHVYpYqs1Vbxahw5W29ZdD3z+QFqdkhxPRZLYz3EglJC6XSNrdm3sso2rcV1DqUyjTMwOqlpcpamWWu0UWBhfrTEWoPfjQwbQaVjlsiArAyu62krjTImj0oeTZLYpX0tBYVMygpRKiiGmImpZT7T4jiPonVWGB9ZkG2tNLHSvrVxon9TwpigQCmSIZxyqSHVFmWs3D9GoYhWjX5i0qkpQpZcPlWL4IiVdsLUga3WBABthQmevaDRKeOSpYyJ1I+syZyVJRrHXIn20qLxqkAKPHj3HcrVmuNmTlmNKILkzOqC0dA2hl2K6JwEcLhxDafKHJMl2mKzIQ+Jq3hBioqYG4ptMLYwU4GZLljbYmkYksbbnqALRbXoACbW90E3lKLQjCg1klU1yYsjA1H07FiaZIhZCWulRAxZaJo+osgYp1CWvVwr5ULK0tQKDdOCEgdU+eOKMzh6kg796cf/K/fI/7+Oia13/dU1t3x6BdN8f1podU2cnzRoGmnq9IR2TaEzH3ugikrccJWMKQksXU+GyaF/b0pSP1fVeVELoRc1IWhTUZ+kkNJoyYhQYV94TUicqhfJPmMLql5JssdEqyJF1cQdziWhSkJPyEsq8lgpCSe7PjehHMsUR3ImVG0OwGpN4xSNdiIMLmKUYY0T3VxFUVIJhOwFCUpUSpsRBC1HpkDkgtA3Ra8nDkwoVx2eEjklTM30EHol7MpWbFEVkj+SMyVr2r7nYLGk6cUFc9Y0dCh0jmxDEf550JC2VcS9xfkZEU2vDF0/R2sHxQBWggqtZtku0LMtu90Oqy1RCX3AGUODYmYaYtezaxvGcccRmqPjW6yHNeerS1DiWCjZd1nQv5y5urhkdbWSaVmuDTJUpEmEuNK/JZwuhDQZSsg5eRP9LbkiyrlQUsRjcM7ROkfTSl7LhFBiNLk2Gs5aoUuKDY2I40MmlkRKgZQ8mqaic4hd8jTVu7EkTOj0dN0J81wExFRKr1V1MoniY6uJ2vcT19dwET1bztUaukwa1MSk80zI3wkl2Ux+5zFo5v2cWbcg5EzW0qw2tkU3ho3f4XPBZIWzPW0Ds24jWXtZkbBstolcDDHKZFyVgg8jaFOduWQSPhkClVKwTpNy4OmjBxwsZxzMGq62g0wLlSbHJEYxKRLiyBhGygC7ILSPPHqsNQzO0fUdyjhoHF9460cYxsLzF+d082OePn1ISju6fobqC9Z19P2S7Rh48vQ5OWeWR0d1WCA6hBtLISB04VKKNJx5Qvel4e+6jju370DJ7IZdFUzrSjfUkhmWkpwrk6PtZHJkZA0lR0DhjBGN4O6MzWaF9zuUEm2DbQ3Hxx0bk8RFLkV6q+i1w2RpEru+xTQNYcgEr0E3FAc4GHYDPnkmywhbi2GlDFCqZqBQokx+5XklGUSESNPPOb88x3YdZ1cX3L53j+fPHjBuVgyXVzRWfGZKzrQFsm1ICdIQRbhPkCiKknCdQeFROmOVQuOwylKMwtuWUBrGcctqXPP/MPdmTZJk2X3f767usWXW1jM9A1AkSMIAYpEEPYEymklv4keniWY0GgURyxAiBpjpnq6uJZeIcPe7HT2c6x5ZPQPwdcIsrbOrsjLTPa7fe875byUvpHal5sz7774h+Ej0EWs8y+WJZbAg73QPNI4lNxDDGAYkNyRlnr//DGnkMO5ZStWhwqXSLmecHwiDOt5hLYsUzq1gx8C8THx8/wE/7HVNbudSo7VCKalTzJ9YA9UPhwPv3r1jv99DXRjDyC/ev+c//N//gU8f3/Nf/+L/4W/+7M/4/T/8Y5a0dDTJMB52xOjZ7UfGuzvu3v2Y56cz33/4nvP5QsqQcqGZQhwUjXbe0srEx48fef/+PdfrVdfz6cTd3R0pZe7v79VlUYQyXbg+fEJKIgfL1Qqv7o/dNdnhWyHUrIVh9bi04K1gvKM5Q0IjFeIw8vbdK/Y7zzJ3XaPoYBDTJRNGh62tiwZu+Ze/rmFb64L1w3mP7bVGroXcjUhCGNUy3jiMtxQCnx4Tpe4xRo0LHi6ZqRgenp9JpUGDNCW8reQkIJ6UJ3JNHIejNkvjnnAYeJ5m/uHDBT8a3HjCDhHvJi7PD+SWGaPFBIeJQZEdY0jSwFY0082D0ZiPhkM84DzL3DClcHAOTOxnuJDLxLxc8DFinSXujvjxiFjVhBUjiPWkKXO5ZjzgrVImfVDdsVQDtdBawVqvodylMj8/sywJ6z3Xp0pNE8fTiWDU6l9a1eFTMwxhhDjwNF2Zzo9MAscQOexf48QzxqPmg5ULtrVOWRO8A2eaNm9WiDbQPLy+35MuVx6vZ+z9O6rzShOVXqtV6WHTjRA8h8NILhdlQLzaEXceGyxxLuS5UqaFPM+qeUdYcmIvjd1xz+l4oC6Fj+8/cb7O2LogCEuuXK4T7GBwDm8FbxrVCmHcUVOGolrQZoQiFWk6HI7ed4mAI5eiZ3HfL0WaasJwavhV1OdALHgsAdVAN0U7dLCNNnBzygw5v4gVUoqgA2UKdYM0KbJNDv1+jzXgUISwNl1TYRh1QJvU8EZSxYjDBLBNKd+P9ohzkb2DwWjsVCLjWkWmK/V6Zs4VSRlxmbC3RHEa+5JNd0FfQwa6Xq83uatW1eGxzSKpUdqCND1HSzPMJVNtppZGzJUSI0YcF/Tcnqsy9gZviMaxZEstgpXSaywH4rFSKU7I3uJEaepOTCeEqa6+5oUia11uSVawxuOD68ZiVl3CjdBQOnGTgkGd2ysgxuN+YIT4w9dvRdP2j71Ww4aNpdjhSP1UWI0a1hyX9VI1JBc1bmCFn/X1Uie0GTMYyz/mfdlWWuT2K3xJmWyt9dwPNeFoKyrIzd6zNfmy4IUvKubVQnadkKyhhRu9YyW5dg5srTdHRiMrkni/MWh6AAAgAElEQVSjY25Tw37vrHVgVQTZqsK5rZme4WaxrWq2UFo0OLNT/NZOWarmhNRa1ajCqVip0IMa+0HXBJxV8eUQInEY8MEjUsgts6QZehGPUWQRU3h+/oT3DVvvCccjwTl2UR2YLmmmlIVSFWVLOZNzxUdHLYbrNbEbNXtLgFar5lUFz/FwwHvbNyC08DRr89I0C8Ub0rwwzxdev33DcX9AWqXWirVs6KUAz8/PfPj4gXmatjdvXX/69avLqNnopGuzLi8GAes6vK2/TpfNSYW9zivNZVmIMehDXivNriY73ZznRVzDape+ZuGJaMZd6TlU/V/dqJBmRXAU813XOr0QWL/3ek2bYQm3pWxefI7czCRcp25SNHPpJeUYePFc9I/auttkJXrLw/m5F6IWFy2n0wkxghPwVThfE6UaajXMy5ov6InBcDqcuPaoRNVwqt7JWKWmzCmRc9b3AENeEt/+8hv2v/fPOYw7ni5zp7917Wp/z0otiihndTzT7MPWNWaGGJW+5L3j88NHzudHvBVKnnl8/IxI0pBjUWrosixcrxOXy4XhdAKzahy+HDT9puJyKzp16sNxv+fduzfkZebbb79lWjSrUGpVfK6pFsZgN1qt9Aab6jCublNVabAsV85Pj8zLhLEaMSGtdZOFrJq30gjBEaJFTNXtzFrGUQc1tmshxSjdy/SVFoPbrtV7rwM4e4t42dZX3wdpqvVNudOuRhhi5P379/zRH/0RP/2f/gU/++u/YioTuYkKy8NAGCOMwnWp5AZYx924A9OY04SLEZFCyWmjvteaqLkypUwWKDWxLDPGNMZhB3HQ4UP/nbt0XZ18a+1W/6t9syIZpekA63f/2T9jdxxxXpGvKkLoeVfGVWzKuBDxMRCt0FLhMO6IPjJPE65CqapVNkZNFKB1ZzvbA491rT49PfPp0yfu7++5v7/nRz/6EcuSeHh4YF4SKWWcV+tqZy3eKDWZWilNmRLee1wt7PcjP/3J10zTwuV64fPDI9dp7qZQ+kzM1zPffvsdz+dL11lG9vsjzkeOw45xd1BKV218/vzI+199g2lVMxlN5bvvIjF4TqcTKRVc6JpWqxbYaZ5pziKlMLx+xWHcUVOiNSFYpwwYVo3Nbf/btOStKSW8FkTapnVfh2Ivn6svBrpdjlDQ/cRY1Ynu90fG44GnecE4R4wDrVnioLlnrTq8GzkdrRonFG1uS8pM04xQKDXxfH4kDgHnFAHbH7+ifvsrLunM4Dw4y/lyIS8Tz09PSE28uj9yPI4YEXJOKg8RqBhcE0Jr5KRmWoIFZxFbqFJo3fQH22hkSkuksjClK0G0qTWdVofRSCFrVaeUcmWeE9Fpth/WseTCUgtVHKaqAYv3PZqpNq7XiYYQjGG+XskpMcbIcLzHhYCEgPGe0JHLuVSu52emp2dySTSvg+DqLZ7G0KN3aFX3XedVs2cFI5WdUVlHsIb7caRYw4epYvKCKTNW1GFZWtmKSj2LtGHZ7XaM48AQ1ZQNC7tdJHooLjJhqdMEreJ80HuLNkTWWfbHPYWGrYpWFWmkZVEji2FQcYBzhBgYdjuKU8qiauKUUSVdM7bb7djFQUOzU2aVyDR19MI733XZyojKuVCt6h7bqtfr9aN1VpHStc5o6jxemz4xarKhZ4nxHmOEUm5u1HEcCM4SnT5lOvT3+KhNG4snT9DSQi5NaeJZyHPicp25LIlcWieIaJB8E7okR2hOn0nvPdlkrDEEp1m/a2zEKheyDYq0zcdhq1v6h+m6b9EiFzFau84lI9bQnOoFlzTxGBLPkrnWhdwWUp0QiVjxHfgBkUgjdvDldv8a0v0muot7r/NX6UnKFecqzgv07E6xQV151hpY1iqqT8D/RxBbf/1WN23SN+Mu4Vj/9NY4vdDU8AK9ku5a99KFct3E189fZrFp7tbaxN0KNf0ZX27q689dX20tSK3BeAe563maFnRmPRTMi6JVpFsi235IrDov3YBbk47wQIfnELG3cGd7uyErcpBSAvtlU1pKIXVnoJYaOelCrwaqMZji8VkRPpxQpXQbWsHZsN5uRXi6OYuIGp1Yq9MBsR1tMkrd9MERnGcYBmKMWO+oNRPmK2v+jUhBUJ3QdW58937i8dMveTzueffqNW/u7tl3nUNujeuSEckY20glcb7MWHcgeM3sUZmdYRgixkLKGhS85FkfjgYildoyKS+IszRTsUEIo+H6nLhcHthfBxwQvSdXpfhl0eLg+XrlV+/f83y54ozZzBzWg/5Gs7mtUTXS0KneirbeXq1/XWe7NTUByTmpg5c0vLPc3d/hYgChH5aqSVvXo+0FMN5tdFn9ndTEonU63IuHalvbao6yPmcdxu/o7Kq7TDn3rLf1OVuRY8MWVvfigHC2h4P2ZvZlHpKxtg9e9KBRO30NsV2WhWWeSMvEh+++5c3r1zg5cn1+4vIps9TCYbfj7fFeN3MXGXd7rB8prXA6veJyOVPCwizQclYBNRqVgVVq6XWemJd5y61rTZivEy0XWipdYxj6s6gUF7o7WCkVsYloB9XWjn5D+mtr5JRZUmJJGR8M3kcu1wdyWbBGncSkZKrX5jzE2BsYv/HrrbVdWP7lDm5evLfrmgvjwDBE9uOgCFkvvGop+DAQvFpDOwyHYWAYB10rKBIXY9h0r8551ew9PXF+nAjGMB6P+KDhxbVWPj88klLC+0CzjVdv7tgdBnKZaaLZZNM8UeqaNRRZ82eWeaakuTvZGujPpTXqdtdEEQlBu7fWGQfS8yq918MuLaqdOpxekXLid3/vX/P//f0/kC8XmqilsgSHaYbUM4aygZoyzhSchWmppDbjHKy+y46uXwiBvR80sqNlLHcYow1d6L/DusdO16mjxlbpSdZu+VRNKjnn7Rn7yU++xsTA58dHVj2zNAHnEWtpRmg1UZYC1vDm/p5/9+f/FusjwWpzK7UpimQMpRVazUhr+Ob7WabGLWCY50Rrj0zTwsPDU8/iU33fqzdv+b3f+1e8fvMWFwa1bC+VljMlLdRSeDpfEHnqDBCvFPwaeff2NTlXnp6emL3jF7/4Bb/4+7/n/fuP1ALORlprPD6e+Ye//4b9fk8Iz1yvV6QVyqR0dCOFqSasFYaYsMbwfF30PHYOX2GISs1zxhOd0kxbTjQMqTXCOPLqdOTzw5nc1j23zxr7OV6rFoGK6rQNvH6Z1boOj1x3zqUvi9P9PcMwKNum09BKbRzu7tmd7in2wrA/cjq+QgqM+wPjTunB85w4nQ46NAuwGw58/v4DT+dHKDoIeHp6IqVEjAdyMYiJnK9nihSG/ZHduOfzx4+kSTPdjOgQ4PlyRaSxzHMfigRaDVhxRKlIThSpasNeodCtyF2EjsCkspBKotLAWYxzGpvRGi1lPbfFKLJvPC6OhGGPJZPzwnVawHtsHDHGad5YMxi86lqb3jPnHPSGzjRR9kJtFFep1hCPe21AQuTx8ZF0veKBYMBQEZmRoqZyvpaN8VERLrUgBo6nE8f9HjsnSpk1vLk07sKAGKtDujwzeC2qjenDR9Emao3dqLVxvl4x0XDaDVivdZczFofbBjoIxGEkDjucDX3vcAxj5sCIz46ny1mD2MeRIQal8GGITjW/WEMLnrYklUnUAj7gurZwtx8YrEeq6hmdd924qjCGoEOTlLchdm0N8FsNK7bXxP3sMtb269T/X5umQtsyxxBlbA3Bq7OtsxyPB+wY8c4w+g6SiKUSEBt0t4kjpiqalUvGGzAVypR5vs48zTNLlzZoNJSl9kEt1iidftF9fgVADAZvLGIdWaSb8fVAk6aNjurJZBMZbb1Bb2atNezjoPmqrdIWuNRCuV74+PF7fnEwnJ0lR0f1BtMqwRhMA2ccBUeVgSZe9eW9TtrqfmM7k0c25LJKj+USITeHbxbaOixvnZKrAzftVzr11BiscRgUlfunXr+1TdtaSOqZtyIX9te/Zm3YYPvvmkAv9jY5e2lA8tIZsn+nGwryA1RAZwsvIwhuqJY+e6ank3GbbkAXcOpUdf1WL7/Hy9ea2VBqxXcHHj1gOp2T9XCp2hS8mMa//N6NX0cvlmXR4qFINyKxVBGK3K7botkaSg293aP1v18gJUYT82x3EGpVi3fv1dVLahfU9yYPbmYn3vutIQBFxIyp2OjYDZbBFshnlnOmlmfcuKP6QMlqWTz0KVgpicenB6x1vHn3Fc5BSlecE4YxEIIl50pJk04LsdSQKa1oFpI1iK24aLCucbl+4tOnKx8fP2CCo+RFJ/yizelSM58fHnh+fu5FWDf9YG1g7Hbgq9OmojR2M5O5rdeXyNiv3eNauhMqzEvjcnE4Zznc3+Fj1GHEyzX7ct29QPI27ROKPNZaOi/+tla27UduA55V6wlokSWaWTbP8w/QMp0M9aeNVQXa1ilezzZbXVK3Z6r/zHVoMi/zZmUdYwBpzJdnWp7J88TnDx94XmaSNTRrsGK5ukQ1lnF3wniNO2ilUUvmerlyfjpTc6E6KLkSYi/EWtcDzhNLSkB3hTJq/3y9XFiWWZ/37sC5BmcqkN+paaV1ZEq1paU1rvOyBZbHIXI+n/n+++87Ve2EtMxwOOFEhw5NlEYcoqKTOWeG/VF1Cp3SuO0xP9izvPc45zTAd6fPQwye6CzOGQ6HPZfnZ+LOc3+643KdMLURnSFYcGZFesFKRUohi7DUyvl81sJpWZDSKEmYEHVkc5acEjTBRYNpiqYb05jniw5PxPB8vnI47HE+stvvCSHQRJjniTxdN/rZei1rA2rQIeS6vr4Yb3SUz9WG9SMfP3xgvz/y3/7mr/mzP/9z/tXv/z7/5frMdH7C0mA2+NCoYjDOEbx+/9waVSCOB1ywOKdT91ayNofrM2HMRtty3mG27ER9vpZlZp4n5mmh1so0zzw+PzHsD2DVLU71cKrxXPLMr777FTaOHI53WmhbsxVbFrX+FhFaLbRacFL5+quvqcbycL4gThHsZm7IuLUOFwLj0HPCujGRtbY3ubpuPn78iLTK09OZUhuPT8/8p//8n/nxT34XN4zsxn2n2Ss6K1VptoK6qF4uFzUOKoXLddJ4GKdhyjlnvv32O6ae22ccmFoR40ilYZbMNKumtnVn32F/JE0XUlpoS2JZdCB1nbIGTnuPd5bRO7WeHwcG7xQRxHTjIsdhGDl1swwoW7HX4RSQpuYykhWRNIB1vUa4DTdfDnC3Zw3D/nji7u7EGAeGMKiu0FoaDhMCu9MdWIeIGmQF7zYEOdnMS5t2Hzy73cg4DhTxGLPDmKbnVJn4/Pi3GDvw+quvQAyX85nRDzoMqgVvlMKaaiUar/KQfuaIag6oVanwIgVs00FVqVRrGcd7duMeMTsqmSKWigen+jUT9lgqgqc1izXdYMtAM5Zhd2B3OJKuT8yLNgrDMHI8nqjiScaRpnkbPmsINTjbGQRV4yTmaWYnilTgLXaItN6M0hoBo2uriWZZ7hypVKY5YTtrpApccyHVxG63J75+RdztWD48UNKESQXjtC4LTnXvBjU6EtOwtg8f+7Mex4H96cicZ5Z8YZpn4hIY3agW7tarp4DXJMQmulkZ65XB03St+aC0uWYanPU8GGJkGAbNX2uGVfduDBjnyMNIzYWWoFnBdwMX17PvbF9Xpg+GnVXdYc6JVLIapq3smL639gvb1iKdAulD0MEsfXi/shmMajiN0+w5awwheEz/HqajgFrT9NrB6GBErBp+4SLVzDRRKqfJhnxJPF4vTNJoVnNGW6uUKgTRGihEvd42Z4zrujvrMZKhI7atdmRtPRN7PpqacZsOdKhmttSK08JHFTNiCT5wjEfG+x0DkQ/LxF/917/gq5/+iOvjmceUqcb27FptqPr4UONYOspZO8qJs9SlboZgClhqjWucYI1a/ltvthw3MX1farU3eGWtxjpDYC2OvmTV/KbXb0XTthaPN7qg+eHfbqiC6VkJa0OwNm164K0uff1fys1B8mUB9LKR0w9umrYXP/tlc7cV2u3mjqcFci9W++f6/pmtmFy/tpZ6E5q/KNxtn3I73+22rSqLhE65Uzu7rRFoTWjNbJTNFa1bLXdrR8VaF5Ia67SoNmC8Tlms6XSPdfPAbK6BW1PaIfZW29aIgea6ne7uCEPsiKEeGk1EaYZpVhdKxZMJGDBtKySkf19rDTiF0mOE0zHyehw4joExOIwXmlWov5WZ2haMseSa1LTBFM7XT7QPmbu7ew6HAyKQ86ITlp3D+QPn80WhRRqlJKrRJqqahdAEw8wyP/Dtt9+w/NJy9/o1YefVAMQA1pBT5rlbHDun12C2Rr9P6L3faHemP4GtTxvXQHXpidbm9kVsTypCyQmkF+25Ml2vWKtBpuNuVL1XU1ciTJ84dlS3lPKiADbqRCWJlNK26a2vrXl6URqrU5rSTkSEh4cHPn/+rN+7/1y+eC5fNH79tf3s2ra1usZOrM/T+tyllJinmVor+8MdIQSm6UpJM84KeZkA4Xg6UbxDgmc3HmigERXHO5Yl0ZpO97UxtaR5ITgdDtRSaba/Z6Y7aZamGoH1ALCGkguPDw+kJel19b9LuVBLN+RBUXCa0JIiHHN/blIpHZHSBjnnBYCnJ0VV3rx5xZIadOxPN3/DsqjhTCpFtSHG4r15gdq2X2vWxnFUFHsYcMov63ugajmHIaquzKo4fVkSQ4yKaC6zZhc5R5FlW6spLZzPF56fn1iWhWCj7lnS+qEoTNer0rE6QnE47DjsBpxpGOu3pu1wPDDu96SsU2ZrHfOSKFnv2UplCSEQQ+iOcn7bH6xTIxhFSyq1I7256GFfaqXlRJondoc9Vgr/6//yJ7z/5uf8Yj5rcVgWQnB4q3oOYwTnoWTDnBKjG7A4Sq2atYTBWKcTTxE1VKqCNMip0LomNKWJlGbOl2emHmbufGCaE9988y3Hu3sOxyPGO4KLzGnq02vhr//bz9gfX/GHf/wn5JJx1uFid8k1GgFijDr+BmuYHy787Gc/w4aIHQbERmyI4F1n0rSuF9b9qXYUSUOudc0qimsVIe4ITWnw+HzhP/7H/8Th1X9ndzhyPJ447g/cH08cxoExRmKM1FaRtGzDnBACzqWe32mJMfL111/zb//t/840z1wuF6brlXmedS+wVp+PnHHeU5zvTWGmGbXKl9qY86IUNFF7dZML0TsIjlqyfs9lYTcOjONIjANxGJmvE9YoUqxbi9mGQt3oX5tgZGvatJldKd9m2zvXffSlS+s8XRVdbeBsYOccw7gnDCPDfsdr9P2qFXKqfZZlcN5QquH5fO6DTEs1hiYTw+ChDGrChahZU0ebl7zw8Pkzr999xT6OhDBwd3eHszBfzpTWeqi35kP5YVQ9tBhaBet1eIUthOiUDlYF60ZiOGHsjpIixVlKjT0QubGUACWwFIcRta0XY5DmqDTmJTOIo4lhmhemeQE0jy3GAetHovWcH59Qoyo193FOcybHccSaotTcJTNfZy3YrSUej9q05ErwgbvdnjKfERq70ZHzlZorJjdsj45ZciZLozjDbrcnOcv3z2dkytgCS64cjntyM8xVqEPAuEBzTpEQZ3FV0ZFU8qaR1Kw9Sy6VZckMu1FrI2Sr2VoTUsrMS+JYKz4GZQt0N0PrDF4s4y4ixvb1GnuAeNPw6z5UsMaqqYy1neYqWKumKsYqhb2KMC+VXBatO6wOFGUdiK61qe2N3VaPKjJMPzvojp7G3RwKS6s6gF8N+ZzrjJG0IdHTdME1i3cGnO86f4MY1eGZNd7IOCoWrKfVDHNherjw3cdPfJovLE3DqIvQ5Tlta8Ca6L5eRGirKsegLIb1uTam0+0Nxq21s8F2r4nWVHetxlWqka4lk66ZS/O4WKleGF4d+Mm71+yHyMdL4XyuPE5CNVF1Z7Xq0EkyzTVaR8bM2nD1pq4BqRZyb5iHcSQ6R2sJqEBVQy2rweRb/Sedqt00e1mQjkobBWpEcxv/qddvRdN2e5mbHsjYvhmtsCdgen5YFz/o4OzL3LXN8a+/kZhbsWhf3Iy1adLpmoBpdBAFabI1ZdHpLVqbv7pqxnoT2frhQOeyrtMORe3Wn22+KJo35MHepiPWepzVjbGJgOt6PrRY1PWrlL2VX6+IyQrNtj5BNKxW/YgheJ1cRucJxjKnRG3li85WTVtu16iNW7t9/y/QNosLvh/qjcHpJCyltInkkb4ZXhqhF7S1Nqz1QM+wk9Vgw2CdEINR5yDTiF4wHqrTh6PVRUX3krFkJJ3BaBRCzldyPnO97tUWeYiEoBOjJWdSabRsaEUwndLhRov1SiNxZL5+eyJNR779fKGz1Fgj1jQwVm3kod97YUNBtQldm29HzunmXrqiXn0ggNGNVPqwQYvBdUGulFjZUMpasgZnlqT0HlmtaO0tw+xFI1SrTpdcn7KbTo+UqjEN0sf0q02tiEBHeW/urOuy6O+lubl/2k4hcc5v9K5mWh8A2M12W5s3Lby9DyjaylYUrc1IiIGUb0MVg9BawVvLGAJYQ3SOn/7O7yAhMqdEuixY65TyaR3LMhE8HHY7nh/0/jlryYuG/voQuL9/xZTPLCnTmrqdlqJUiBUxb61rk3pUgukFYKlla2ZL1WmeugRBKx1VxRCqUxpxd0uLMTCMA7u9NliX61kRFavaliaNN6/eMaXM9XzRwZOBeZk1U6lP/Y3Rw3YcR06nE/v9XosgrwWI0gg7UtQL0GEYOB5OnCfVkJ7uTnz9469x3lFb6Y286j51wFNx3hCGoGh7W2mvBuM88zyDqGvoMI6M48h+v9t6+BD0PZYGwxDUjdSoKcHavNeq+8JtUOW+WGc5Z1JKOO+pmE3PRh/yGNBspdpY5onvvvuW0/2Jn//t3/B//J//jj/+N3/Aw4fveH561EZ0uvQCQ6fNPu5o3uGcNm6uU4+thZITpk/6c6fP1rJGtTSa6D1qTZ/d3W7P4XAABNMc3vrefCn65W3Qa7W6m6YlUVslt8pluhJj0JzGCrk3QNbCmlmZcmK5nPn53/2cw909X/30dzBBMLVivMN5r3rcBgWl86z3svXoltIDelsVUko6Ka5Ni6sKYhzTvDDnyoePnxnjyH4YGbznuN9xf3/HMMb+PqmJQc4aHJxL7c8LnE53DMOeeZ45n89cr2r+tBZlpRSGjga0qtmEH777FY+Pz4zRKbJM00Y3KMXUWM2hCkOPqGiVyzSxLAunKlynmd2+4sKw7S/bmU4vftGmP6dFKai14NwqtfjNSLbep3UAXCmXC8uSVK8aHhmGHcO4Z388cDgdGXY7rHd454lBKWw2Oozz7A93fPXuhDWWnDJO4OHBU+cH/P2RcRz59P1HHh4edG91ldF7pqVANQxhx5vXb9VYKicuT4/QVJNeamHOmRjV0n69jmg9Zcq0pIM+aUL0OzA7UnJclkwIQjzaziqAViNPZ8EvmSlljCvEQfChcbq7JwZLKo1lmqm5gNBzIw1pnim58Oq4o7nAh46cG6NSha3RwWijuzvi47C53EqZyaUxzTPOeJyxvL47kXzjXJ95Pj9ohqMb2A0ByaqjL8aSnSFRWYDcQCrEuEcESl4oRFrwzEvD+oFsAqWp419djdxMR6e7Hr/0Bjh4r0Pw2mhOo3LsigoFj1xhmWdy1uEQVWsaNVVSKcRutwPj8E4bGkTvmdg1kqpBE+J4wE8zZF2fYRjxcVRTkNpIeebp3AdElk7j1ULVOoepDR8VRWsv7j9Gz+qUM0vOYLQmG/p5h7U9q6wjh1WbCR3EaxNl+tDH4iDYzhxyqpHzsTtEN0qvE3T4ZBTkzUI6T3z/8JnHPCPdkK5ZUZMUWfMV9TpkZZuJ0Kw2adIbPLEdTdMdF+PU/6EZg6N1Scc63IwELEFUSlK9Rso4H0gpkx8+c/zqDcvlzIcLSLZUIpWAdSO50eMYtCmtUigtgeh6kVopFAxekUvv2B0OhBGyzMzLmbRcqVJxBjVq6etMBKRp7rHt12FoWKtf56zFIZi2onC/+fVb1rStyIXdGjCwN1hU9FBcp3grwlbXZkNkK7bWLnY1VIAvm7Ybj91uAkKM0lS232adWMiXNEHoBiXIhrJhTefabsOBF9/nRXZVh7hXQ4mt2ezXYaVbdYsG5/ZPt+u/fXSUq+eJtdZ6rlLpYcZ6T0rWg3q330Np1GXWxtN02iXqgoh7gSpyo7HdGuBbcd1KVdTT6UTOOT1wZ7dQu6ZmRZNyq4SiNril32+FoFR3ZYzazy7zQjEGEwPWGqJXLcpcK61ooKd1UKWQ5qVPqyzRRVKeWNKe3bgjeLVTxgilNnBRJ51R8F6UHpZBWiKnCzJ/xLeZN6cdH8+zFlpGOhyvHO28LFCbBmH3N2QFnqQjltbqVO18rp3Gqpt4azcI+ddpuV9qKxB144ROu+0BzGU1gVl1jxsCczMiebnGEKVZePHb+3mby/U1ub7J25P35d+/fAZun7/48zX2wvRBie33ZPvm+pMVGV7vwwvE+sWzWltlGAZOxwNOEhcM0QWmJXE5n/mJc4zHPflzYpmv3L1+x6XN1CbdLbaxXGfm65m8zIRx3FAdsUpZkiTkJWGM64MdvWDNkTNY3y2wWwXcjb6WMimplsKilIiVfirthlWqdlAHEc47nAvshwPDsGeaO/rsLdZ7WqnkXInDwDjuCEveDkuaUhjXPSHGyPF4ZL/f8/btW+7uFJWsrXGezuS8IFnvoVKShN1uYDzsCOPIMI4c707E3V6b7kWNEGxQzcZ5uvJ0uVBq04apCVU0mkH5ipbe8xPiSByiOmUadFpsPXQnLEX91UwpDo5h3Ol77rThdaa/3yJ9oFJUk+lXTZYjAsYFVi2YRWmB1ljGwZGLUBrktPDh/Xfc3R347ptf8ad//Cd8fP+ev/nL/xdrDKUkYgx9ECbsdyOpO5EZdC0s06K61bywTFd8z6EsJW+ojLWh77/qYrk3+0576fqYBmo6sg70vuLXs+EAACAASURBVGRnrGwMMYI6GBZq689Bcxi0WEqLNm8SI7ZmCo0wDvhxUIMAqwhtKw2KFmG6T3oGP/SiQDYETHWo+oox8vz8pAiJ9RpW/fjEeDgRhpElZc7Pk+rG6BlDQ1Da2H7P4XBkGHc6cMHg4oCUQst5G7r5oOYKWF3jL9Grlx+maYP++PiZ6zJjEYboMd53FNGAtajqWQu3EJQeOV/OfPfxk6Ii18TznBnGveryTNqoRSuC9vnzZ7xVelRJi8oAqhbWL5u1l+Yj60tzl4pO1EUoKTFNE8Y+4j56XFB2jAtamDvnGHYj+8OB/emolDjvu4OnPuv3x4FP+4H9eOCnX/8uo/uGecrEaNkfB9796B0/+9ufU3IipcJ8XbC2UXN3FfQBpJBTwjjPMDigDwu8lrRhiIi1uDgQxFKKZUoCOGXIhIGEGuyE4PHDEaxlLhXrAzFq0L06F6paKIbAcl2oOWl8UWfrtFJIy5VpumgGWkc/nHc4bxl3Az4MTFNiWqq67YknL5kQPHEIPF+vnOeJXRg5n888zVeMzF3n2rVnnT2UUkXcgETIUnr4s8MSiN5jU+WyaO6nhEzxhsVqnMzShKfLhNSFljI+F4LzbCiO0QEVVvctZ31nDFXU889q3JJXd7/Sh0zeGZy0zSL/Ok2UogOFEEeciyAasm1sgL5PWPr03Qs2jthc8NHjhx3VqtOlEShiqEXNLkxQA6x1KH3TousQzIb1DGuI6wPnnFQnLw1vG2MpxBY6RdtjnNbXtehwcq1nNz269dQipAYt2y2/1Xmt/3SHbmp00mty7wNRDOl84cPTA805mjebF4Ozq7OxAiZiDM06ijFkoFiDBI0TcDUgLeu+vTJQthq/Z+NKp5iL4OPAYBx747AeslP9Y6vgjaHmxOfvvsFET20H8q8Wzk9nlqWxNEMWjUPxFMRkbfj6mje9tFFqplHKuvfaEBZY0sI8LaSsxjKhGwE524O0tRfcaiHl4AvWGQZvGYbAbhc2Q65/7PVb1rT94GVWzzuzLdKVXod09K21jRpiN/eOW8Dh1gC+XIhya0LWz5VO+CWypGjHzfRhRR7ErE0hW3G/IR7StsVvNtTw9qHfjC+K99oapVRSLgQVOGxNjyLpWgwoWLcphdZLBbpdcW8ArFXxLKIOkStEXlrWPC8RFR+jFu9G6I5RN71dq9xciORWcCO9ERYtXESU6mSdw02zcniNaoVcb7A3CkrTQGmNRCgIet3X65VnY7gLalUs7cb7RrQYldqoVGpN6n4lFYPt2jwt6iyWYpVLH7wiNcYpX3sYdcKHdUCllYXaZlyaCJLYBYPxhmbadlipecSimq5acWLZcn9X9PeL5Wp6wZR7ttutMNjeTpEvWIbrxqsNrBaHOilTul3OmZIVRcGtCIiuAts3wJs+rtN9asWJdNT19m9+/fl60V/1P1jR1RtKvD53t2t++Xw06TmGTRV3tjsBvHR5bf0aX16z/p56XSEEhmEkxMg47qA0JFfSkrAYdfirhegcaZlVl9jpCtTCNF8ZB8thHJjGCAi5KJrcUOShpUJJuVMd+mAINXZYcuJ8vZBq7flzFdeauly1uunMfFAtiXFaRKesdEpnXN+ltOCvpeLsQK3C85Oiwj7ooIbaUbtSuU4zqdSt2MdYdWbsh5NzTouoTh/UYveR1hrzPDPNV0Vvm3pySVUUTdAD5PWbN7x69xZxhp//8huV+fR5Za2Zab7y9PTIPE9do+S06RCD6jahpIrgcEGdD4chYK1DakHdKId1lWvT5oLuULZyPB71955umj/r9B7afsCvAzgd/ETiELHOK+ps0GDS1m7U9/4A1pz5/OkjT09f8Rd/8Zf8+3//f/EHf/Bv+OUvvuHzp4+KlOTaz4nGdJ2xLpCy6q2C9Tw9fGbY7fBBER8AHwO7cWA/aNFaqtKhUsq0jjStqGxrqNbFdHdWYzHmRmlVvVTRQYBdf/es2YfG4Gx4QaFvmrlHgZqJ+5F//Ud/CNZzWdRkqrabLb2awxSmUkiSNkR2GIYvzptSykZDMtgvCtImMC8ZjIaag+rFpFaWUpDrBJ8f8Z3K6kJkt9tzujt1fYoyB4xT9sXAqOeA96SUetO20rf7Pt4ab969ZZ7O/OqbvyfGgf1hwKyDstawXdddU8FII7pCeH1P2B8p14mKVTrxvHD35ivG3R6eLmBqH0bpzrvMMxlI1uowxRilXHE7f1+ewy/pyLbvg87oOWCMnpVrw2JaoaZMTUI2ShF7fnpSYwVn1cThsFdkylp2w44YgjY5lyvzlHj8pCHmx9Me5xrD4Bh2joeHKwe5w1nD54+fmKeJMQ7deEY3bWcdu3GHGEduRSnEtRLFULNqH+PhwBAtmcQYd7y+u8P5yDVV8q50IyI965TC6rrLbu31gJpteet4XmY+f/qIbQtSJhqJivD8+MA8ZyyWZZlwzREHjT0a9jtO968ZpsKwNJo4rNWiNE0z3u+UTTGOWHFK6Z9nkCu7vbImpmnCtcIQT1gfqcYh0WJtxIuaueUpYaaEvS6QlJWSS6bFqLr0HlnSSsU2dbe2K8tCOjLrXWdEPCnaFkecE1rRhkeao1XpjBfda2tO1GAQUdaGdbpnSKuUVHBO8H5lT61ghKE0MKbimsEYh3UD1mdsDODVPKWKmmG4YAhjps2rlrSfpF3jVWqP0zFgQ3fslbat7S/q1LXpEdX2YhU1W3NokdXAQ41p1vrXOtcjJAo08KHdtIpCp/opMuWiJxrwBFgyz9czUgdqTYgUjLeE4IhWHapFTKc8WvBqqGZEqcOmOkxVwyonq3EYvXlDDeFWedCKmFpLEMPYGiKFaiq5NMpUwHgEocxXPInf+fHXPC+W/MlwvjYqjkLE0ofgkhEJSLu5H+u9ls2DItXCtHRqeNaG3drQg0bUtMViyVX9Bah6T1uTzXUSHNZB9IZ9UE+Gf+r1W9W0rYX6rUhcm5wb3Wx1nbPbpPsFNeIlYrEWlS825R/SI1c92/pa6WxffH1HBNZmr7JCwf1peFmBG7aQ401zB2xGKmuR0n8W27TEfIEm9nNHp4LSUY0qOmVFHY3WCe764182pivlS3FKux3epRY9UJQPp01qd9pZr8t2HUItt+uw2O4CFvR3q1U3V6cPibGO6zQxp0WdJfsDtB6ItVZKWU00bG9C0WwdGrUqKiZKlFGKWkdKW9P7p0X9nloh1UUnvdI6KqGcfoMneOWh+174ieu+QlIpaSE3wfqGNQveZGxN2JrUdtibnm1yazHSsrBMM63qTG+jIv2G+369XoEVNVVes6zBQb3h0SnvrXnTRq1vlKYX1dI/7/zy0jVYlrVl79N88+X6s9ZuGR+tF4p+tUn+J17tB9/qpVXObfosv4bMffE/L/6tWqC3H3yR2ZDxVfy/uusNcVDtTc74YcBMM9NlwnvXueJKFRljYAiep8cHjDiWaeZyfmQcPePgmaJjHCMpqUBb19L6HKnRQilJaT56FzHGcF1mtXtvDUx3V+xGO65P0TeNjqHbZlsGB8Z4HX0ImlfETE4LzkXm+co8XzmeTrjgkdqf7z7ImOdF3/tVJ8Ct+R7Hkd1O0Y21AM45b8iADpka1tCL4UJJi0YI7EZCDBjn1HXOeVLVZykOEe8dy/mZKVXEefy4Q6RRaNtAyjqnznO14OKIx/bGbp1YacGB+O3AV71xp7dZtULHQHk+Y3oXJkZ1ZopI9X24SqcgJtWu9euyHfVpRYt/a51SfVAziFKFX3zzHfdvfswvf/WRH/30n3O8f8P7D58oxWCaRgwMww6k4oxwvDvovUBRkpQKMUa++upHWKNBxqbOWKP3Vxvc2vMvUTqxYq04F3TMt1Lm+/PSVmqRd9szXVuhkaltQYON6e+d5tQF5/S574M5HyNvf/QVS22c33+gdWpyKbkP7GSj1NRce3MmWyM1DBHn/KYZPBwOtJJo5V+wOx7ZHe9ZWuPh+bmLNXVfahqMxApFiwjLNPN8vtJEbbl3+wMhqMvdOA7qNodaiwejaIKxX0bTuJIpRZ1c92bHm6/e8unTdxwOI3d3x9uAqhR9BntRGL3HGWjWEcbA29MdOSs9cMmF87wQum7IVHW8s6JFFb1Z1WGh2c5y+XJj+uK17XetYX1nokjtZ7ggVfObrNGcM42AMJQsqu1x/Xu0xvPnZ1K3uX9qnzHG4IMn18rj4yMlQauJzw+Jy/Ujf/fLv+mmBwceHz8RneN6vjBfrvzo3Vt2Y+Tp+UHphN7zL//l7/Pm7Tsu88ScF67PF2SpPH16YEmZUgzn5UIzhmEPJlwR03BeHS6d90jPv4re4oKhdiq+osnqwBeDx1tHzQXTMq1mrAMxjbLMLHPutYRS1oUR4wzDbiTud/jRczCRJoFWwOWFy+WBeZ6ZlwVrbN8LlYZorOV0t8O5xuUhcX1OlJYoBFpUSppzYNHBUXq+YC4Th9rwVvWrS0uU6pmbpS0TRhp3+x2+ebI0cl1RG9nW7tqcXC4Xjsc91jtSrUhN0BwlCTUnpBWcHboGtuFouM4aGsYdTRzznMi5obMgAzjN6RKhYbXxk4a3XlkPQbWNDUtldaXWGfNut6c1jVXxPmp2JmsDpsu1dgqy1oT9zDeaN+i9p1XZ9GitAx0NdYuUlS1k1N17Nfxr6/3p+7VIpRhF0G2tnUYIVjQH0dr+M1rFi6GkhU+PnwnmHl8TxjTiEBh3A1F6CHV3GufO4OOADXHTeOfuRpmrIm1rvS5V9zg1a2FbM8ZasrHYUglpIeeqTpK9Vm7VYKzgpdGWZ66Pv2AXdrx7e8Dv3lGfA/li9EwvWh87c8JIBFH9urTaI27cVmOrj8RqHKj0WzGWXgJug9ia1eRJSv+vNHVsbwLNYUXf/c1x/h95/XY0bb1QWe3vpWcewFpAKu1Imu2N2ko50X++NWyr3++LP3uJCqx//rJ5+wJF+g1/1prg1opWbvLPmzEJqutZF87Lyd1KD1l/vrn9u/XnGHQSF0LYCveVNrkWNdZ1q3SBWnTas8LYpjc3pWhuTs5KD8idHmO9TsZTNwKIMXZaI9AqranoVDYaqU7y1mmNd47oI/ev7tnv9izTxHS56OHqLLnrgHKtVBF2u10XvgotFxVvZlg9zxRmdv3QQ21OpTdeooVJLjo5TMD1ulBqw8eR4+G+O2Ql5mVimQtNHCVXdegbGvd3B8ZhxFnV/Ezt0nUeSnXRNaI8YmcgzzNmuuJ2J6L3fRLb9WaCOhH2MMouW9HJEOtSW9HftUgpsGWzvej+XjR568u+WC/SkbGmsWO43siXpllrrVaM9Z2OaHuDZVbYT58Uq8VeHOLNafX2i/76Y/eb//jXv062K71dCLde7QWA3JGI1hHedaTyZZn0pTlPI+fEPKnpCjXx6eMnnh4euTvdYYwhLcsmUD4d9zx8/MTl6crT0xkXDKfTPZfpWTVhOXfMS3qotrwIl2Y7/FQ/Y27OgVZ1Ab4Axm+OfFJFdbRGm7x1lqTPuleKCVaXtzXMM0qhMRZvPYOPipQa2wNhu51wRx+gW/53ZGuIA4dxZD/u8CFsGl8dQqjBjBgU9aXRaqZmLaRqt9p/+/Ydp/tXm2GCtYEw7nXDNJrvdJkm5pT7mu3IEKYfzlBywaC6AYsK7V13qDSt0pzaE+uBb7dGpokSZkIIisJ7r+ixXQdv+rFeb6nr3qkmLU3WfVenkJoN7LBiO5PC4EPEh4HcDCkVrkviL/7yr/jTP/0T/uh//t94ukx8+vA9UisxeIYYOOwGWrqSsmomc3cZC95xeT4rKu0cl8szJk94MsY4WtOMqpIbTbTophtfNNFCvjY9hG0/I9YCY16uzMu8TcNzmUjpCtiNat1qw/uhD9YSWId38Hg+c/67/451EY2R1ZB0a/0W7ZFb2VzZnFHka0lZG/2sxdVKrd2NA6/v7jnsAnF/pBh1QHzz9i3TnDg/PpGXpEhzLZu2WmTVwOg+nWqjXC7AFeuUTTEGpTvFIRJDuO0tnfqjtKlbLIFYy3F/YDfuOF/OGKMBx5tphXOIdWq44R3R6WDQBofxjsEHxsORzw8P1KquwtY7LSKVnqH3lo5uNNW5rhb0/1jT9kOapLNyc9xFnRBlPXObFqp6pa5HmxlWq/tmBO88g4tIFaQK3hk1CjF6XqdUcVYoRddKbolxd+Rw9MyzRlss10nXTi7E6BnHncZqlMz5fNbGyzhqNZRscAQwYTuDELi7P/Djn7zBSEVawMyOacqkNFFa0WgLK4SqmnPnLM42pBWk9iy/Th/XPVCt16Vx08NXvRazktdENtOM0teQcQHXpQ+tZVJLWBvYjTuKzLTjkeZVIx1jYFku1FI2t9xUoCCI1SmjxUE1ureXBmWmmQLB9gH/grGRmmekZaKzmvuWFf22Rq9t4y4ZQ4xjjwzqNERUOw/dnbvXbKFHpazfw3tHrZ0mOzhas6xsBesczgQdTItSSGtTjZuu676fmabTjq4Hrx0mi8NAa43p+tzXIN2Ea2WBWejeDq6jToquaTPqvaeKhsMbTKfxt60ZK6Wuygutq/vQ3zpL9F5pqbVRpGGtDojIC9IHmmqqokijd562qKFGWhLLU2U/RmJVOqux3VEU2+fAeo1mRSCcxYqaQjkniDOYajeqtbQ1102bNulMH12bdtt/a1Odoe3PpEGZYaCZfunyBAdL9JZxMPz0/iccfvoTHicLi2F5+J6H83fMxlMWwzJX5rngQqa6hCvdjVoEcU4/8IQI3mqcQpbaayPXfy86SNKnWqyD7bWG7N4D/4Mp+29H07aiXrltjQorOsX6OX1arsWxOFF41/b8MhHlixqj7jTSurdIXxToFNE5txXkpiMeanfRm7C18jR0rZrtNKmOE3WY9mbt3icO0mi1QFVKR5MVNdOE+VQapQmrsN4bi3Grn9wNiVvzuqzX5rK2trn8iOsNlTEUg1qEGxRu1+H3Nh0x1lItGnjitLnsVavyxVEd0hqUa/BoZoRFbEMzcJU6GbxljI7goXiLCZ4pLZSlC1fVoo0QI0OI3elObfan6UIrBWt1I7c9oBlpCD3Y0hpt3HLCEghe4eUlN87XTEqq25AWCC7olMuNOLewzAnEUKl8fvrEUjKn04nT6cTxdGLHK5Zl7g/x3ItwQ3CWVrQp9Kkw7IT9aLnUpMLXjkAu04QpjdA30pX0+AUCRdsaQ31Ib4XwirXSH1hsLw6MNgQ0RUOlKv0xxh05JapogGZtnYZmHK4XbJqV2Sg1Mww7zbXpIuRK7dk9RtfqSj3oa6vKDcldf/sXD+IPHkuzbYjr5G/9smLUmdF28SwdpWmoOYmYRskLdVkoJdNM7YQBg3eOVjIlzzjr8GQePnzDMATKsvD543cY45UuOYzU1N0bW0HqDMyk/EAMjbDfcS0XUqvMOTGhYa65FaxpalwjjYpa9yol0nR74X44NkMRz37c45esTogo3doPeriY3p2al/emu0Ld/r7SypXDbiR6sM0gSfPb0nzlzf0r7BpwW4BquDu8wtX/n7o3eZYkW877fn6GiMi8Q1V195vAAQIJ4IlYUGY0STSI4JIbGbf6f2USKeOGoiiChJEgwEfg4fVUw50yYziTFu4nMm+9BrR9TLPqqq66N29kxDl+3D///PsyRRw3NwemGJiCZ4yR6APR2wxFLqSSjKrTE6UNmppcFy+4GvjxT35GjCO1QkmVtCaONyMUleN+fnrm+fmZZVVVwGYzkHp/GyFERf5EKWXB6f730hApti/UdNcbAKKNey24vFOK8/2bO50DSzpvOAQHrdj8I3aIWXdChFazedyoeE2zQzlE/fxKu220dTUALxG8J+Vn3n/3X3n37uf8xS//nN/53d/jw+PP+Vf/1weWdaOkjfNL4zwEhKRsA0vCctUZiMl7nj89EcaRhmdJ2snyFE2SqPjQ8Iiyq52zYXpwvoDLpK1wXmbt5qfEtq7apV83Si5E35CW+Oabv8CJZ4gDN8dbjsc7vHV/xDUqhVyE8/OZX/ziv/LlV1/xt3/77+JaIQj4IFZQOZ2vLKKgooZ2pYQ7rwplIpyXhVwr67oSXp4Zi2f0whYjLTSm6cjNOPLl7S3rsvL49MzT8zPL0mfEvHWrdO7S+y5+VclFE8HtBK12ywHtxg3DwP39rYIuST3uHCpS8PD4gb/8s1+Q5wUPZjg9qkqdFAKBMB1xQfdALRulrCADwxC4OYwgjfVUkXLi9u6Gw5t7/JY0Qc2ZXUh7p4ayjwE0Cu0qrl0DZ6125T2b+RErXvvArsjeffC+G+WKNui796DT/eC6mFdr5pulrJVaKkKh1IVoXqbDdMfoPOIi3k3AxpIzW9My6dPzIy/LM64V1m0hl8x/+JN/p16oPuj3eU8Mg4KM6IhAKysHf8+P7t8ZoDhwX0ZOLyfmZaYrEeacqDVZtzVTUiAdMn6KPJ1mnuaZGiNbSfhwSyqbgdUKtIusCIlSoNZESkrnlm3j5VyYbj3RFxCvHeDjG3ytTDdf0HJhTg+8eSfUxePaxHGCsiyEQYhTpLnKWLQTSBVcsVzIB9bmKcyUtilA4CLj8Y4lrcRWiL4weg25zR1Y2hONTJBAa55KIGdHbQMpG+XbBRoe7w4go55dQ0HGBMuG9wPBT8rsEdHuGOaL6bRg16GdQM2oahC6RmpqBryICm+I05m3KogSZBTQNICg5EpugvhBn33Srn8xMSDn0fsqly5an4MVGRiHG52ncw3fvFo/ZfTziwqCpZooKIio9G2Hd1Fn70reP09pjVRWQg34qvOECpJGRCDgKFEo5sV5yAMhZWYpnAbPwXumMSBFO1K5CaEI+aznkBOHryrSpLdNkGZq2da8UduBC8MJFDQodTVhNFVsbD4ipTI6T/KZ1gpQkZSopxNueIP3haeHDzw8J86j4+arN3zxoxuOP7nn/DKwtpHx3TvmfCTMkVjAs1DnM6dPTzwtCxxvES/8+N0t//Dv/5gf38Bf/vIb/uQ//Rc+vryQlg0fVGyk1apsjebYijUtREg1kaoju7gLLf51r9+Mog2uNv+l63VdsKmsuleZ6BAheIoVLlHcpWIVzDftQifrKo3ARXZ//7mi81m9b9KT2dZ2GfXLL1skhuh1ZKPTvYoNX2uFr0o4zRCES3+w/2C9Nmfv29CBTLHF2YoKE/TvqLTdQb41R7AuQm2GjqAsl76Q1fFeaQDblqCAM3pNaUU9UmgqsCGOIm5PZnZXeXuvdV14enximkYQx3Q8kKp6sfVXq6rsJrCb0OYr5bWL9o+qX9WWjWYFpeiN90DwQgg6pJtN7WwYJ5wbyIVd9CQMIzGOxLBpx0IEmloCvP/4PR8fPnJze8fd/Tucd5Ssw83NCUE8Q3HkZeN0XhhKwufMYRzY0qbKSU5I2YaaTUykYVTCHUy4dJk6UiLyejaiixRcblR//FeCFk1nwi4NYLk00LgkE4rg9n9r+z3ts20NpQKlmnB1AGcdv94O60WHoN1aW/C1aqBz1z+US2G6e801U3RqzdZeNUKrvWdTc8kqRjophVrUt0VNwB1SL/YRNJ1xvL098vbNHSE4HjaVci9F7/UwTVrw5oK4SoyOOHi8bxzGkRY8J0P9XtbVxDM6EovSBnNmy5nzsuwUrN5R0qRMSKWxbnpodbGja+S9cYlLnb79qucoqvbpvcrui6h5tptn1vnF/n3Fh0grEKPj/v6Wu3df8nA+UYLncHuLl8bBUFxpetY7EcLoGYi6/rzXopxqAFEjV+XKl6p6tsMwKT1pGJRiOg48Pz/zVBPewRC0EPRBjZtrUZAAFOTJORtgE4jBYy0E67y0Szy0Lvket53gRWcUX16eyTXZc9ApbEV3u2qv0Xi5GLDr7dREuYjsVMNXSGSraqTeKn4cyPnM8XZienzD23dv+Pu//3v86Z/+Z37x8J/IRf3p6pwZRkPNbb8Mg6einbvSVpbzzHC8YTrcMs/P+gyDrYPamA4H23XOmAmOZXkmpbzP7JamwMwwqT/TbcFURSsS2Dun3uk9GoYJ76NRffS869PGOZnZO6ocl00lGJzNBvbOe7WkpeiMnbvQ43Mp5HlmOZ+R99/yPD9z+PItb/7O30VqIZ3OeDdwM90SQ+B4VOnzed7IOZk/W4LcyEUtTbwTUqdqSsFlTdxENLafzjPOCafziRi9UaCUlltLVWuY05myJsJo/pbWIXA4yJWaMiGM3B1vCb6RlhfytnB62kjLmdu7W4KHtC3E4xvu3r5T9VFTzAVMDl/pqmp7UrQT5Nqeb3TJ8Z3ZQj+DxTrhKK265R2s6+JRrxg8FitEbMZVoNS8x5DaLom6VKyTINaJFG5u7pmOtyxLohTzmxOj2DbBB1WOVmqYzQSnzTovFfENCNr5bcUAYFHbi5R4eXxWMDXoZwtSmKKCMzpPPajyqY9a/DeHn0aqCPdv7xmHwJdfvKNsK+usnpbrNrOmjbStSiereqqVKjgCpXpKcaSc8ampQu2g3REfvcUFeHr5xPsPD5TthcjK6DIlQ2uDecU5FXIwsJyyKpNhCPiAzsKlDSk6RjKFkeYn+/9N1XVN53sr2h/1TthyAhvN2JIJnUikUlgTTIcB5wbO5xPrmlWg5XCHzJm1OF7OmTUn8xX0uCakVc/geVZhDxe6DZB23nr3uuflIXj63Hetlfll1l6msav0kHb7HKyIJ4RB/604o+tZU6GPxvQ12TNgUXEQpKpojsBic9gKFmle4MREu6w7pfZG6GhKDNZpzITg1VJGdKAFvFGDNZ9MpVG86OhKguYyWyskJ4zeMYQBiVqYilf/xShKg/at4oMW47iGl6xzdc1TpKifmt2rPq97PXqEzRSXPm+LCoE0r50vbCZOSmUcNA+kZk5PT3yfz5RPf8HdXeDtOBHliJ/eUWJgenPEi2MaRqKLKh5SINTMT3/6I5aSeHx54Otvv+b98p4PH194en7ifF6RGPBDwPqHNlOoCpRQLF9H82WgXjEBoopc1QAAIABJREFUf+j1G1O0AZ8D/dYlu3TBgEtAlo6+GvLc2t4l09/sdytkeqK4y/H3H2lI+aufexWMr38XVCHp+mt0VqyY2MKrN7m8T7t0Z1xfYHI5HDThvRzofQPjZW9z74l7g05dvL4vrd8H+4xSbGi6CSUXcm54Kw4aSr/T9zKPEYEuSf/q3jide1vXRPCR6ThR90KlH3aX6+gvpb2lfd6j1nqhmlwVEP0XcpGeF3Hk2kgpawI6jsRxQkQ7jy2rjGsME/44mFqmHsRKU6jM88rz84k1FcZxwFF4c39LnEY9nB1sNnAvJgRwHG9YGzynFcSzzIvOBlQtHhs6I2nsjL1we4X4tNdS0mpO+cOvz+/Z/j5Xf93nqdjXqa4Bhxo0r+vKtkYdbi2V6pReUm3N55xt8PUznnQDRFHWy1+0y/O/6sRdC+hcX+v11+1rvPQZoGLGn5l1WbTLLQ5ncr0NHaL2Tr2qUius66YdZAfneaG9PHP75i23b+7xoXt31X0OzAWPHyJ+Gvjw/Kzv1WyG0WjUOWeenp6Y15mT0Xp7kdwaei3aUKeUwjAdVFJd5FWc6M/rOh7EIdrf6/5LOYPz3L/7khACy3lmq8JWKqXMvP+08dXbL/n57/2c//gf/5Sbu4lxcty4EX+YGI5HpMEhDEq/MerNLujTlC5bjDrQclIZ9ZyRlHT/eKPLxUiMAw31Vvr46SOPj488Pj7t+3HbkkmmgxOz8bhSow3uYtIsXEChvhgs7Oq1CEobvFovIXiWeVXfIardp8s9vbY1uN4L4jRu9eRUD2QtprHEJUaVzfdDJISBx4+fuH/zJV//6hv+53/8h/zu7/4e5MSvfvkrphDY5jOlNoaoQ+616YyjGPX15njDll+YT2cONxPH460pxRZKWYDKsq4qDd6Mqt5AWobm8WHk4AfkYB0VcTbQDjUrEtyVSkW6ZYfDu7Ab6V5Ee/R8a02LoJQyzcmOyurPbTav0Yvptt+vlC73eAceaDw+v3D+7mvG+cwXPhJu74jTDfe3b5Bl3gHEcVJBk+PxBhH4+PETHx8+sq7q7bQtG01giKPGFvv5pRnAMAScE+Z1YV6qJqDPMI0jhzipSERTOfLmGof7A9NBlUZ9RVUpMblsKodh4G56R80bz8+PnGeV8V82BSUDnsPxlhD1+zpI1Jqqy3a6ts6erNDBMuxs7mFv39v6n2Cm6jp3eC1opp26Dtzugkx2nvfOXAcI+pmrnWgNGM7EX7otSy6F0d4758oQI6UKeK+JpuiMZuvPtLX9evt+7BSyZPY7XVH04eFB54WDGhcPw43qAniIg1dPQx8YxtGUIyMiHmJAhsD9/RHHV7SUoKgqcs6JZVuNSrjBspLnE+u2kUomNyg5ssyVsgnJVZxkpAbcICBN/Wl95JCOxGnifH5kSRuLJJ7J6klXPUXUKLtog4gqlWEK3N5NDGMgbSvJj+RWoQXceMOcG6k5ttJ0rsiKFPWo1Tla7wK1eU7nmW+//2BnysC6zbz/9MJ5TYQhcDrPrMvG8XhEvKOFI1WEcxYoGSg4SXgCJVcr2IVCwDUtnJyI7nGnbC0VuSiUzaww0rbHWedMCKehwHjNtJKAcqEC7oUZ+6iMsxxV592KiTGtrNuiIKZXEFMXYQdi7Qh3qo45DAMiQf15q+YYKRcKsp/d3kda1fUmRpHuLLWtbLycX3AtchhvzQqh7nNorWGzwQYomQy3C54Aar2i/GMFlo2x5E0F+vos1liXLiq1rc+xq9KvCb/TmvmrtZ7HWyOoQRRlLkUveFsnNRXO25maN1KbSd9+g/zi3/PVj3/Cj37yW/zo3Y84hIl6SsxPJ15OL3x8euTT6RG/fWTIz2zVcV4buTltQhRhGqLVHwrgkRZolVrVF3RNldO8MZa/uSz7zSja+s2U1wWTiOsRdFfFada5ca0LchgVrelm7A+kx7SeClyrRV2jZHuC/VkhAuxBb/9FMw7KZei8qzG2WgnO08xkuSfvuzDIKyS557qXxPc6f+9IgYjKt2abFxMTteg8a2cSqliC3pUHQwiGujoTMVGpaLMlB0TpUyYx3mgQ6n7DxFzvAVUJayrosOVK6BvVONRaDF/EL1I/HMTQ9P2DNeBK6bAXfHQFOUPXa6U0pU2mXJiXSjiKddtG86mxeZfgCWEkRkVFVebacTwcOUy3PJ9eWFIin14YokPkjuAjpWYruBtbVv+jddsIh1uVLUb9k07nmZSzzUbIxdWeCyL7OeJ6vV4+L8o+f/V/v1Y4/bwT7IP6gfT7rXW0Kf2VwrYsbOughNe6S1sqfSmnKxU3HeKtiFF99L164nEpodnX+us5UGhVkzonV1979XX6vfVSLBYtGKWawuF1gS9K28y18O3HD3z/9MB5PpknnTCEETdMPJ6e8UPkeJjwAaPZKko354W2bFTvtCPRdF6helXe7PtiSxvOOQ6HA71L1kUSOhoZo0qc+xB3L8YuENMLl+v9+dmTBFTSt3R1sOY43r9FHl+o8giuqudSy6SabBak8vT8AHFQ2tNyphZY2kyftNDYYE/HBEhqayq40Pd+rbvCrPoXauftvKzaXdwSy/yyJ5vFhvBDCOaxpgdpzpktKQXT2wyb7uuqohdeaR3O6RqkNjoU0Pr1WdfkNL8wDQOnl6yHlLsoH+7d8hBegT77vnFh3xNa7CnLIgbPOAwMVizXWljWla0Jj58e+OLdB05L5o//3f/Lf//7f59f/tXXjNP3LPNMkca2JBBR42aamhW7xrLMhOHAYRpg3tRkXSA4Mfn1Fe9QBDyYt5gN9NNMYKUXT5jaoFOz3dYAb1RSzF5i/3x9v1gst/isbIS6KxD73cNMabslaYLSmtqvWM/i0tW57vR3BLoJxXly0CK3OKU9nh4feX564WY8cH93RxgCy7YR48C8nDSpPoz8KP5I/dda43Q+8fz8TKsQXCT7/vO0Q1DMPkdBIV0bKj+eWM/a7XZBQRfxjulwIAwD67JQks5C+7YgweEl4bnh9qjqsu++/JKHhydOy8qyFYbpSK5iohrdH7Xts2yCJsm+n/dlVNquZXROTDjJYqemG8YYiT2XeN1d6/H0r4vvn8d/7Qh0Bovf68O+H0rR3GedFwNmCz4MpCWjBaZ+Q4hqRVKKdhh2P0UwBd+LCqA0VVgFZSM92p9rAZFAs7nuEHV9DIMKywzjgZvDHdM0IeOIP4wcDhPBKfVVgsNJYJoGJnenapkihAxtU4bKmlXBttTG82lmWTO5alxczytpSVQytaHAklJoKOJYcmUMgSFGJDRoidY2alVKMBKQCmE4MB3ecJwOlCGzultW94JzAy6ObObTeRgG4hSJYTBw3xJ+lWeEvczRfNKFEVcb67awPi8q5CSe5ieW6ggu4kcVcdEOpdtBrpR13s57TxgcwUD4dg2Giv5Eb7oBNWtMVnNuVVLWwqnt1jDL8ws1b9CM4te0sClY/DWrEu2W2bx9KzY3ObOuM1CJY0CYNJfhYmvklfhta1fnSkEF60ptLCnTfXULhVyFVhqSlearlH/d7yHqCEKp3dO07OAVTagZ9ZD0kIyZsKXMsiycW2JOmbYmllrYfGOsGk9yu3gg9zj3mgX3WfOl5zewnzkFzRFqZ4WVBmTKOtPKpiBe01nJrmxZUmYrmbyeaXnmZoz4N28ZZGQtifPzA99+/TWnZaY4jXuHtz8itsDy8IKUxlIyak81EnzUdHlpSjEzJgkN1q0hsrFs/y34tO0dFv3f62Sxe1EZKGadC+Pu2nYI0pfcBfWqtSmN+BrBFaX9dAGIvWgzyebrhPvV5fVulm2+vcMiOjfUE+0+KEkvInuQt2RJ3CXRaVXFP64/a//s7UrNa78PsHfa6FdjyFwpBe8vc3dYMlDN42xXqxFFuDCqDaipN2Ysq4mkUjg6KqLdPEfDkbN2sOKoikRdXtr7uCusbdtGa41xVO8g74IWm/uQuDN00Ypsb+a3IYBgdgmoCtWVmlE32w1hIAyjipXYfQ4+EIYILrNtK+SsBsA3N5TzC3nTJDSnxLaseJNud1EDfGOjVPBFKZ9qiLoyz+oFhg3763rrn+P1LMSlk3VZP10p9PNXX2OXQqwnrb2L3AO8WKfF9sBVXOqIamqVnA+WYCgfPadEk6CIs3VyL7XzBYAwQPlVEX25yMvX73uyXSck/ToteRXZudiXok0LpxgiXtTYubZMCYYClsq8bTytMzixDlKDKng3k5twvLtn2haGKULT2T8dyp5ZtxUXRyQGztvKy3nWNW+CRM6bVK+IyfVrIBZEKbA4C+6Xw6CDLZ93f66Blx4/upw5ogd/srnVl/PC4ei5e/slEiIigXE88nf+1t/Ci+c//Ml/5DAdeXh8IUwT0+gJftBOlUNnCa4OoX4VncqYzTYg2JyQ9kvdReESTRTP5zPraj49JobRD7z+GVJKtg69gR6vP2PDaLuGV+gBqHTB0qp115xegeghf3c87jExJRU6cqKdMp139fuv0g8tLrFu72SgyHDfG1U5U2o4nxLrupovZcaNR3719Qf+wc/f8a//7/+H//Wf/3P+8H/6H/jflxO/+PP/bDTMxnld2TadwtBZW6Ulil+0WLR5umXZyFYshjhCU4EGnZ9vO4KsZEZvlDtDiFslbZZkdBrS3jnccbYd4HCuWrGtHUWhWaGr92zvttv5QTPFUYRiZ0MvloP3YHu/P0d9OQ6399wdJtzNET8dcMMIdUPwnM6qdKqqo47j8QbvA9u28vz8QIgDw6Bm1tN44DDdULJ2x+f1vKsme6+2KblWkw2vOxOlJTWZ7sqQpVVaAR+1kFxFRTqaPW+hkLeN55I4P1ti6BzPLydO88rh5pYxHlhSpXmVr9/jsNjYgcW2PT33XtX+OqrbtFPhPwNZMSqu2CylGOCoQg/1Kkb0M/vSSb4GfHrs7GBqz0GwPet9BHHqIVVUEfR8OpnwVCSEqGBXKwayOJbzTGuF1gzaqeh9s5/TweYet65BEee7+FKlSKUkLRIX53jxXgvxMKg9TvAc7m6YDofdlmWaDlZkR52lE1MddCNCYBonWogM40CtjXdffIV5WVOr7WPZyC0xzyvbqpY2OBgPA+fTM9t6prWNUje8aI1SslCro0oA8YhMtDbR2gHvYDyMhHBDw4MLDG88bhBSXjjPLzQT/tEOtUZV9T/T2b/7+3u2rIVO8x4/HXZgOIYIWEHmuiflJQfYi/poLBh3eQZKV7/YSu35pWguG5z6/JWi4m0iRpt1XnO0WtRsuWRq1a5e5SI73xBaFRxNqZI2MtGVDpXpciaVjWMbqe1Gi9SqYiyNpv7CvQNsKpqC0/NWGtNwsXVxDqLTwqx1iiKZGAeFjppSX4PRoUUagw9Ig3XeeH6e+fT4QpwCw2Fg2RKPzy98/OZbnvLKUjKSK1kaKQhjUdXGIm2/352R1mNoT1NqLQqINh0vImtxWW0kI9VNqcNBc5S0rjQ3IC0TPYyoabsTj1Qt2HKutFDwvnKYJr786it+8pOfcDfesQwn1peZj+Mn/BRJVFpbmO7v8MMBd1wNtJjxEcbDkZ/8+CcMbuKX//VXPH74hnVR8TqTO6CJ0oH/ptdvRtEGV0lg///O/TcDSSuC+Cx51UPOaQfMirWikZhGL/ZeF2HXARXgGgiB10XjKyolGCLS9v/vX38dJEvOZEsqtm0jl3z5ObBLlPYis6P/1/dCUUA9qMSp8lxOqtSos3XXlMnLN/cDI+dMzRnfYPCeiIqe0FEHEfY2eBFq3fYunH6mfthgB0HQwWtRWpTOKAQOhwPeR06nkyVRWrgBxNjV5S5dTv3dXboHogImIUZFkasmvs45hnFiLBUfI1tK1FoYQmU83uB8IG8b5/PCMNQr9U1HShveO+IwcORIGweGcD2jpPSFMEyE8UBOLzqZlbMJtcBm5r9NZKfaNLlaC/t6vayVWrtMyWeF/isQQi5fa+jR5VDt60xerT1nB4DFLSvgdXatpETabhmiaKfJCibxSkvq/mB7gtHpCn3tyXXRpvMy/bq1uLN1ZR2aqiDZboh8vWf06Kh7F+vyeS7XvH9W2OdPUy4cbm8YYiBXpSLlLfPp+cHWqzAOQTshtegAcy2GvH+Fi4Fv379nmVcydRcY4iqhpcieeIk4PKpU6m0f7oqWV4lP/1y/Ri21Z5k7XQndz0pNDIzTUela48Th5p7T6Ynb8cBv/dZvM58Xvv76A4fjPS/njZ++/RHTeMM03OCHYf/8pT8nu4fBOq4iKhjiXVcn609IJbdVcEcNjHVP6mxSsL1Riu4VXYO6jntXolNH/aBCQvrzRcWYSp/30+SyI8RiNNXS0A5Uq/z4xz/m8eETW1q1KHNiXfhqAJNXkYKrNX4d+ztlG3ROcC8UW+V8Ou17r88QK/lh5uu//Avubu443t3x7//tv+WP/ukf8fu//x2lbPyXP/tzRCy+lMRhCIQQ1SA3RF1XVUEwF0amODIvMyJiin0nA+MUuGmmmBZCP58UcCilqcJvLzoF83urRB/oTGdnynrVunMq5tSsuL0wD/oho90pM2CXpp07EUvclZUgtSJRu3hb3ux5XbpP91+842dffcncKl8/fKSmwjgecGVHaLTrlBIy9yI7cjwecd6TUmZbtQv3xdu3HA5Hcs4seeHldLIZjvO+Z5yp63WvzmYzlyLdWsURognfOFX0zPNGS5qcbmVlGgdVY/WmsBwipQnNReJ0i/iR2lV6tR1tHXTUcuJq/0pvcV1B8rt31dW56ZoVxq2Dp22fj+uJcjXES/OPK1TMwCvXvcCa0QCDFny5JAO3PD7orFF0A9u24URBrpw2Ss4cbiK1ZIIT1m3GSaZkvyf/1AvjZweMd0sZlVPfzy77O0EQ89WS3idvTY3Eq+73Uhs1Z2otnJ8fdnq+OO0wifPEcWI6aAF3mI6M45EYouYDQTi2SYHOKiagZdR47yniOcTIm7s7VYvlQpOuNbMsZ7a0UFJifTkxzzMv88KybpznlW49oSqJBXFNKeTDLctWCWHi7u0bxiny6fF7lm29AEdoIdRzp2qFeRyUFrqkhBRv8vuVaKJlzvz3eoe8s4z2/K3aZqfnBhrHWruMKnRxs4uKoVEh0U64qjvq2vROIDiSmD9Za9BFtOR1A0Gu8lwVxWuImDqdFXG0ggpxqMWIisB1lpq/NE68x/lIcEG7sl479OI1b3PGBFCmgc6Gl5zVbgPtFteGKjGHYE1Ald4vKbOuG1uDsQ5IDOTaWNbEsm7MeWUpCVcaRWAtjbTpPiw9T+m5hlxy572jXTKtK7k3wVVPySoEltKmQisOPI7WBmpuyjCrRe1QSlYBlaAsieg8NzeRw5d3vPvpO7766c/46c/+LtPNG5yMZFbwo3ZnpXB7GMl1Zq2VSQK3dwdcnDjmI+MUub+94ac//inH6Z4YDvxSKu+/z6zrWc9vPekp7b+Rok3PvHbVdbumnTVb/NVUjsykudPvOj2oNZpTEYv2Az+jv2+fuflc+v+aTvKa8nXJPhUl06CZ0oV+VkphMyPm08sL5/OZ87IotSiGV++zp1lXharbP7MF4tqorl6ERn7teq6Ktat7VYw66JwjBs/97ZGjwNjUWaJ5KM6Rm7BuhafHF0pVM2zlSvZggCVOesEdlXENmgTzAepo+a8jT+opdU0NlVfXqY9aE+gQImGINAqpFFLKeC0NNDFVbhWCsJXE9vxCHEZAn+U8z+ScjbOvyMzp/ELYAse7O4Z4IDpV89IN4fAxcnfzFXV54P3ySCrqJYQ00paZ55WUiwZerlQ9neUG0rstXWnMEpN2SfD1oND1+Lqj9v9PnezoLajtgnZ0FJEHLc5ca+RNAYJSTUGpKL3Lhwkwyuh+aF8BBHJJCC8/87I69x3UzHeP2svRvYOo96TuYIr3SvWhI4vWiWp9fcOlWOwFqdN1J0521VMauBBorbAsM/M6U6qi+t6Sklob0ehCOWUGU5prWWNByYVWtTuSUoZSrQsh7IIYpWAj/3uR11/9QO7PuD+vC4quncEuQ98pq3Yc73v47du3pOUFKTOn00ZOjRCP3Nx/wdt3XyHOU7JjmTOyQUNFD6rdd2/Fy5oSbt30WdLUN6ldH2C69mopSodcZs7nmXVd9f56LbheF6EKxtRa2da8F1i7xYEV8cWEHARHCGJxSw2Ea09grcM3jqOp7+m8gThVALsGqH4oxu50SFEqdo8nvQsfY9Cu1y6QVFiWBbdtrKAgXV35q2++43cPBz5+/x1/8Ze/4h//j/+I77//lu+/e8/Dh494A0eWNTEEzxCDXYfO8Cmd9oz4SPCOnDYWKjEOKiH+Kk6arQlCn2Pzooc+TYwiqQP9zkFLZ024ayM6TeRLVQ83sUSuF2KpZPMN1CJAbQWwYkForeyiV94G8LUoNyrelf1N7V/jnIq7ILgw2Dr2Oi/TxMQRdC1tOdNagnlmWVamaSJGRc+dCMt85uX5WRPZ6DgcJ+7f3PH8bGffyeabUrKCn727Jl6s+DFzYCAMAz4OzHVBqpr35pJNzU/3WEDnGafDLWESDocjPg6EqudZa71D7PYC7ArT0D9bcilWVIl4u/fKAhliT2BRkZ+dNnntgXrFrGnYjLNcndMXYMp7b4rfxoqpOrMszu/fM40TKWVi0OeHUYJj8DrfNgRa0YQ+p42dot6ugOQmuyUB6DxduypIL6yQaiBan4FvWvgYAOn0g6uYGkotldpM8CaRcwI827xwfnjCOY/zZg0yBIZB9+owqm3K8XjkeDgyDBPDMDJNE9U7Qgk2g2wiGThKa/jgOdzcMrUDNM/wxYHWFBSrVOZ1YcsLrSpdkLaR0sL5vPJ83mgeGoF1q+S6UqswjTcMYaR1ULNkE8gSmmm3CpqnHXwkFY3jCHgp6v3mva19va8pJ5waEICgs+TlInin4muNJga+SdFizWsnOaGgmHei+6Hq/Q1DsOISnBdycCQnCt43MWVmTOqhc740JjijOTYbnhRT63UGHOn5kGg16Jkn7BTJVvSMVismjREpJ803vN+ZFGLWNUrJF0IYqc6jM3RVWUmi+ZUy4vQcdoZvK2BeKU2ooudH1iCJa54g4NB75bwK0/W6oBmw3PbiWN9fpOclsltXSROCC0irZMlXe/Pyey2oxVPVrn6IjhoVqCIVmmu4APdfvOF3fv4HfPGTnzEOt9AGSvEQJpobwA8ImfF44DYeETKlOnJuBO8RCdweJ6Yh8OnjB96nD7w8nu35Oz2DmzV86mUs4a97/cYUbSKvC6fXlfTrzoaIyiM36RzuyzB27w7o4pJXQeuHirGdc7zXPxda1OfUHcCQ8EZOmeenJx4eHvb3fHl6uuo46SyU9x4fLkhSs27MJWm166InU3XvrpUucGLVwk4hbb0Tdino+n3qJry0xs000t7e0aaBUAqtJFIrJCCJo/lMnKN2QKqiRaqAqMjnBQVXxMX515TA3rUIQXaq3+d8Y30LLZRoju7T1GmSTlSmeBgGQt10lq0Uqm+k2kipMh48YRjoqkbLkpCiAiNTGNm2jVQ2CorKO68zWKlsLMuMkwm7OYqKeOXlD9PI7Zt3PD/ekdZnKMW8vlZezme2XLgKi3rYtR4EX69TXn3VVXDYAdjLfdPn7n5tbXbflWqIaLtej4YMlppJAuu2MbpBD4yqQbeWqvTIrKpztSa1D7ii9unPYleA/KFO9PVL95d2BL277M+ewOwUpH0fX+Y+uqJeN6PG1nlp1dRQy54UKU3ZwOPWGMIAg86mlZzY0so333xQ2VyjVtZ5wT0+gXPM51m7P70g6UABupeaFVmKrtrzqeDlUsAo1fCCXl8jetfPTP/dpL/RoWfnvInBqNpf9I71/Awl8fbNPdKO5NrITS06li1zPN7x/fsPmviEpB1mj9K1ncMZjbd3/vTzmQeVFbmqqKZUMJrO+j0+PrDOZ41X26LfK46Uis2w9X0q+3PaNqWNKxjjEKfPPPpIznk3Mt3vheiMZxO93nEcSbnw7ss3rOvCZrNgJSW1GLnqVl4XxP09r+OGN5qbFhsGUDhhGKLNFza2Tdd0biAtk5ujuoHl03f8wjn+3u/9Ln/8r/8Vv/e7/xv/4A/+gPffv+fp8YmSMsF5cloZTZSkq1Lq0Lsqo6VtIY4DPjpeTi9Gv/Ko9pWpALaKd/UqficN1ehMrPejrpOWTeyp0pp2M0utbEnp3BqadAY050TOjccn9Zdct42Hx0dqzTslzbtoZ0jv5hScKIiRUsI5r7YPV6JANEjLxnffvyc7UdouwrZutC3hm1CoFPUg0fd0auOQzme1DPABqnZ9O0gl3kEQxmnk7u6em2ni7nhku79X6uQ88/j4yLquF4ZLLUpP994kxJUedHNzR54T5/VZix2HmiBviRiqdXkqh5s7Gh5EixURtT3Qbr8WRZ3Sq3Yn7HPntXVwsasmWnz1rynQOv37et32fw/x0pVTAbDaJZBfJYbX67qDxHEY2NKqBvSiHo9DnIh+1fdCY+owBJuN1BxhGgdqSUBTK5AYlbpVTW3P+f36rnOoTlO+7DfNd5rFup6L7MJo/ReG6zX9jt4d1YK3x0+Nt6VkqoNchbQpAGJYFrVUpce7gA+RYRiJxyPTYeIwHTlMB47TkWk6MowDLcS9e++dQE3EOOJCUCAreg4ctXBFvfRaLeSSWHOmNS3YlmVjKyvLeSCnI8M46Xw17ABGbVBKYk1nluVFKb4Fuys919L4pRL4cgU+6ll7rW8geBONUpC7Fi1YmhVwfT4X8Wop0ITqDCKvSlnNa7ZnYaBiK/joqK37CxroYvmUoAVKq6b+2+yZe+h+mM6YALbylUXR05o9R2u7oInSCRPLsiHO6zyvd0CnpgqtjxaEhkcB1laagsXuYoehP/1yzxSX0tymNMjN5uxFTClF83pxKhDiPCrAs3eQL0B5zz8vuYqzBau0yGtw+NdeTajF7U0ecU3tZY5Hoh+oeaGw6v72hqcbAAAgAElEQVQIQpsm/HRDGG9wJSJJwC0oW62xppmweIY44p3O2K/nWUVgqDxsT6zTyHreOJ82Ti8blJWaN8srDKwWbw2Lv/71G1G0GVHu8v8/0IVQE8Mrfr90lLIqAvfqqztqyauk9DpxvX7w3Qke2P/+hyiVWtCIIWY6zHw6n3l6eKDkrPNc1ZzRP0vWdzpcD6jXn9WuZ/cwMlSje6z3GTjNb5WG1j9na5eDxtt8mAZrlQSmFryDYImCExuUV+1TdWQvBd/ASdgliJUV5fZg3RrUlq3g6smBu9Am0YKv1uuB+MumuX4+rQcQ6UmaonMuZ0VU9ucdaCQ7RPQE80EYxn5PixpADn3WJ7Gui1Irh0iIfk+GlItXmaIWi1sqakQbB8bDDed8Nn+/xrKtzOu6F000K9ZsTX2+Ol+tlc8Ktd6h68/nGhS4Xh/9zz3Q9G5pX+P2tHej3rxthKEA3hIzRbB6QpVTglj3LtI1QqXv9fp3/rrgRkeJmwEE9nz6nB1XA/BWQAp9+N7mOEV06NvQ/2YHREqJtCWyNLZNaUOlNJx4trLqYLb32u1YZp5fnhl8R/BUgrw8PVGBeVnVZL014hiZhlGNbFt5bRzf0WREvZP21anXWXLZ59tau1AGPy+6sYPHidKN1VS4sZxVier2OHI+nWh5JbimaoclkXIiToHv33/HMI04F5nCQQ1Hvc4tic0VNH8tCOQMCXUa0qs2dKooNUiA08szp+cnak7KPkDVErtATbCZOO2k6T28FN9GwQyezTpkXhxeLpYmWCfDu6hJlHUUxKtA0jhN/OxnP+PP/+xP+fTxIzUngr3vsiw7CNapkdfCGT12qbmyroNeeF9UwvIuuKD7Wrs0zeikUjNZRuaXZ8q6EI5H/uX/8S/4X/7JH/Lv//hP+PabD5xfXiCrn9OyrozBMca4U0p9gMM4ElyjtEyMI/d3t+bvphRUqaoiLE2gZJyYLyUKuDjRgltNxVX0oaaiHmvVkc1KZFnmvZjJOe2xvJTGuiWdyS2VDx8+EIKKa4cYmaYD43DQOZIYKMWSnKD01z5P06lcoEbu3/zqr/j0/jsOd/f89s9/nzhOlFTwEtS3smrZ5rzXM8CKoBC8mqoDuSTr9ui2HqYR1wIlZZ0Raeqz173SDuNE/CKwrhvrtoI0nj991G6sbbtcGojjeHOgrIV0zlSSxt2eYIuqZgYDHGpTKXlpDh8H7aDSixMw5Rj9HLrITFDKvepAXsffa6okVFOsveQMGBUyeGfdwWizQ9UKmLLvp2qoajH1u2DKcSlvSNE50lZVQa+WxuFw4OXlmXWeba5a54cCChT4IXI+LWQbPWhG99vjO6+BuX7WfP7Zms2B9zjeuxSvYltroFNSu11MAz0fgdYKXQhNaNBsDrPnJ/YDGkrzqzmrxPm2sS0r6ekR8Y7oPMGpIXMw4HacDgzTxHRzYBwj9zcjcYi4MOH8SBxviXFCJEJ1KoiBEHxGwoK4yO3tSMVRyob3PyOnGScNKdBMbTcnmyt0ws3NiMi95jiVi1p3k53KCF2ZsRdzymrYb1+Dki0WOwVhWsn794LS8PQBOTY7MLv0f63WITOBGEFzuJtxxL97q2edwXS1d/ot0ZeiD6aGih8GvBsMfILDOJGWDaThXCMn7Yhd52V7p81QAhFvE0nm2VbMKxZH8wrAd4uLZnRMjMnhqifXjW3LSBSG6I1xY7oJtk4byhowLTwr2sSkDzrwfQEfrkuCa4bcNajqva1Z2MGIH+bcAdg55gfr4ppHZrYct1UKhVIzmURF2EqBlIhFoHjTi0hQNpaXJ7b0zHKORC/UAvN5JaUV5yoxAKtnOW+8PK9sK9SWCMHm7asJn5RKSeWvuWZ9/UYUbY0rYQN7OJ0eVjtH1Tk6ktWqDQl72f2MkKuZH0u0+/PqD/a6UINfH9J9jbR9do2tm25e+PrRVP1yzmx2+KrcugZtH/yecOQrywGhC5TUXfXRLoxeiJVaEH8pZ1/RCvd7ZL86bcMuXZOzrN4a0SMUVc9yKtpSRWmOzgs+Kp9bctVt6fqwvSFFwF74m0hEa25XnuuzMXo/L8pa++F5hT5y9Tl6cab3xBCTXszuKL515QwNKrXzwXWzl5RxpdO1OgKoCd153jSW+BEnwmTDsNuWiRK0hmtRD4nDDc/P73GiSYlSMPKuAAc2p9swzrjbD6X9MOzrZw/s/SBk/zcR2Ysq9s9+6Sr0P79at1WFRVLOar5bFQFOKREkQ21q5Dvq1xL095Qy3lc+LzH79WCF+DWo0QPlD7/62rtQAV8J+rQG5fOirXchbDs6UVeJqyRB0OtdzmdyrXinNMeMmpUzqkVDrYX7+zukOp0VTRvStFuxbJvZPpjJeDO1TSol132f9LUoV4cB/Dpd8/NDodOAr6nVtRSqKJ0qBB3AD97x/PhALYng1Kfm5jAiruIDe1H69os3LMvG/f0t03QEhBgGjoej0qZcxAWvSZLDYs2A0AhovKulsKSVXPU+L/OZZT4zn0/UWizJNrq1OO2sONmfS7EZtf7oYxyIMWoh6i8UWBGVgW6Bq0q/C+NogdkanJeFH//kJ4zTuNPiaMWMwfMrz8vPi+BrxdScMzWVC6Xvaj3WHvc72BMCa9oucbAVkEpaV07Pz/z2f/f3+NWvfsnDx0f+6T/5I7795oN2/qJHGKlpZfTCcZp07iwr1dF54XgcKFW9+8IwUFpgXs60nAlOvQKHOBC8EKPOZiG9e9xIubKlSmtOZ/la34uXWZhxODIOR+t0bldFW+X25p2pdWoBEaJj2Vac0bRENElxzmlB6UzUxfV4Uwg7zUaBxpwSp5cX3BDxCDUXaioECcb4FEA7EKOPRk9M2p3wg8316GwPNBV2Wmd8G5nnmWWeEee4u70DRGnJVsTd393R5A4E1vmEqrJGmutAlNL8bm7vWF8Wnk+PBooYqo+JCDkVxLoWA2rbxt7aEZ239T2XsN+Dj9TQkOaQS4j9LDZqbpH7nKQ9rwtAxau1uxc8rercUS/YbA30blyPK506OY6qIrdtiZIr87Jwf3dkWWfWhxXvVCbcB4dHwZpxiCynC4uhlooPKlSi4B77fsViqg8BHyPV5vCLFSwp5ct8sbvsycvLuoNgVh76YStNfSJdjy0WE0ypWtCZTx/0z6U1StKcyYlSDkspEMSsSgqlbaQm+70R52nOGXDlOIyqnhqGA8N4w3RzzzgdOR5vubm5sbjrCcHhgsamKgbm1MaWNwWpRQvLvUNqc6kexzh4YrghhqC9xNoVwXWea5+n2oFb9cRsrRjzxvKT3FlT1eiXxYpZ67ZZ0QJwaApUXJcZgnrOOVuzrWjs1jnDjBrD9zzU8pGi61mqsEmmRkeQqPRAH3hz/5ab45FSNlJZCKMwjhNv3rxlCBNbyaRaSLUg1q1d1xWnAvyWm/dfl66zNz/U2q/dg2uOulZqTTobPmjnsV3Fbd0ulsuKxu1qXTSwfN41Y5v0evjX2TzXf97Fg1wfAdAUzeGsmPwhuqEgMhCCmtM3GqkWzucTTgIRoGWqdeF0RtAopA5iE/N7SwQKvm2keWUuwuJAjdarWhhY4yBlR14zLRVcVYZEbZcOOQ2y7c2/6fUbUbTtL6uoL2i22zth4qxwE8U72IFYCyACdPoWHdvo7WjAFrvbH/ilqttnbzr68BmlQfZNL+SWFb0r6pGVtu0VLcH17ooVZXuVJWiR05oq4LVKLY2EkLbEVlTOtauEdXoc6OUrHak342X/r1gQocGWFtZlZdt01i7lRKoFVzR5wEVw1uGozWa22h5ISm2kksAoGq0H9aqcajWC0p/cOxBd9vb61edwevKwP156YdVvfRdUkf0eNXp7XtHhYvNO4oVaVGmqD3cr8mvFfTVRgnaRY1ZvHc/5/EJyjsEPHMOg9yVveF/wR3BROweNRNoyaU20XDWB7qpvmELwvnraJfhYh/FCzeWCyHm3d0g/VxW7Luxqrfu8SLXv79V5qYW0aXdAnMPH3k63Wc6SaS3inXWhSiGOip73Nd7Rp8u912dx1Rjk+k+vnpkT9m2EiQOJPveLuEf/Du3o6ZByudCB++d1tpearunjYWRsjSVtlC3pvvUqHS6lkrfEd998y6f3H1Rm2YZ0z6dnYvTU2nh5Oe2qifH2zig7hW5t4JwzAOBCmXBOTHL+tShM8AOgCY5woYJdC8b05zYdDgwxEoNnCJFtbQRxrPPM+eWZnFZujkfCECitEMdo4SDw5u07hjixbSqnjDPz4mrd+Fp3s03nHWlNlKwB3ds1p7JSpbIuC48PnzifTkqv2xLjEInDwDyvKsjg1BZjHCeSFUWC06TcCSGqAmLJGR8cTpRqmUnE2ONtXwHW7UIBqmE80KiMw4H37z9xc3tP2lQOOeXCGIUYVcDAWxenyzDvktfu4vEmrd/31+eBE0ccB6J1A0stKoJSCjFMqPkNVAl8+PjAN1//FV9+9WP+3R//Cf/sn/0z/ugP/5B/+S/+T14ePzGfn4khUEtiWReGOKjYRk7kVHFFQLwK7li24URnp2pp0FR0RpzG0S1lEC1AUs7koqi1Fi9qFaBzt44YR5p1Pr33lFqZrIjWxDqpWa9038ZmXa2DrvPWqKaKJqUaPaqZyIWjtg0RlcDXjpYmQKUXgN5rxzIXK4wxynK1tV+Z59nEbwZy2tSDMHijMDdD/JX+1GNyoZDzyrasqOql7p1lmZVNESIILOeFNW9kURXMYRiUJjcccGGizgvrdmLNhVpUL69311NKNGam6ZbgHFvOSq/EKF9W/IUYjGIpexc3eIsfP5DD9S5UQVRZskcte4b9jLvMtV3io7NzEulxIuC8nkvDoCqE27pqt7hpHuDEU6tS119Oz5SykdPGvCyIeZiVkhGURjpNB7bjLTEObOtGLieQQCVQa3tFqOr5zGJdOewsylnnuYp9Pi2tOgCzI96XY0AxWr0XcjlDqs24eXGdjUafI4Jmv6P8N4SubNuNhSmmw2zUVtVPaXaeCJQO5lSez1r0Nnem+k/gA2EYGEe1/gheiEHn526Odxxv3jAMN/uc/BDUbD7XghehlkzaFtJ21rhnDIZaVU1W7Ip1TQjZaQe9z6o7lIpercMK7MVHqaL7qFZazdDqngu0Xd/cyrSaEWc6DG0noVCKgusCxlTR4nfvi/WcwRoE/a/1e5x1bBpr1jlVNa8eiNOAT55GZggjX315w3abya2ylkI20atcK2nVeb8uLNVMoK0UzGXCU5KynMS7vSuvgNeIR/AycHuI3IQG66bzdm5CZMOzYpmDetaZIqZyUwvSiqFwtpZbo+2Lsmf3P0BFbtikVLXhX8cFWbis6f5OWUzB1XmamtgRnbc5bXtv6wCWUnH79mi0XBhjUIaMgJdmypWOZoqX0jT/EssrWs3aSWx2oSh7LmcDglrbTdT/ptdvTNHWKNDnnfqmt2FuEaUSlFqVA1tsrgjRpLhpCGrUKyRfD5FeHPTCrVnw36mKzWg/7WpDFTuQRBDjLvekglbZysb5dOK799/y9PLAvJyhVhx6UAXnUf2rbna66cKQqgaG3kOxjsSW2NLGvMyk2rnIWtTRLsPOelCjKnhBecLOCUMMuKDoRLUAJE1wEsjNcc6NPBfKWZO5VCvnvLGkRSW0lVcH9Yq6J3oA9UDRGkhp+3XgKympP9s+A4civyoUk/eFd6FYavKuRV5XWbRWPEq1qC0hIZBrUjUr1CNFxc20XS2uUVOitWTXpodjpxD2zkjfyDlvpK3hPdzd3pHMj2McRvXvCZHheCB7ITTHMq+kl5mxis4MdDTJhoGd85rotLZTphBUTADlyxcTuOgJn+7HfhBoJ9C5PueodM0QIs7MrvUg9Bro7KApeVW55qQGpeenG+pYSWlmOlSG4S216uxAawXnL/QxMc2n2jTJ0k6MeVWVglQLoOJ72qYJs+sFZdMObetWGoHgR3SuRA8qEZ2D6WhcSdo5qFnpZJSKR3bPOSeNwesMlYjgqya+ToTRC0G8msvXRno+keVyYPU9nRbrnLWm84oiDN5pB25dAE2QmoiFANmT1AsVtXdutIh1PVzsM3iWQOS8F4DjODINkduDdtcc6vU0TAM308DDx/dITdzf35O2FR89uSmSGcIAqEEpbqbL4C9rQdwC9iw04bz8fAx5rrUrpQqtbeR14eHjR+Z52fdciJHSYE0JHwfdP6WBi6ypQhEg2uGm9OLgHds2qxpitU5DLw6MzZDWhArADHrImcrnGEeCC0zTkWVN+HjEhzOtvTAOjlaSFkS1gnhiCFZUowblrXdAsf2i1DC1KFDT724xMlpnYUsb66p0saUsSM7qXSaO3DLPOfH1t9/yW7/zO3z3/j3/5t/+G/7RP/wD/uI//xn/4cMHqI0iGtfXlBEfGOPIEAbtMJWkRZloYZu2bPRxxzIv5FrI6J51XGY09VZr9zEMA+uqYIvzOhTfmibPFRRAK2aKLrrWq2BeWFqkQqfsi5rT45UOCbgaoDlcUzr0NA34qIVnI5OrdvjCMFEW8wd0QmmZbT1xPN4qXS+O+OCZV31O0QklC8n8w8Iw6TkI4CNbUc8vVX8Dqd338GJ02zuBwYpqgON4w9BG3t6+4ad/+7dIbeNwODKGkS/vvmB0kfPpiRhA/Z90plgsK77uXPljxXkhpQ0XBrZc8DbLV0pW4R6b79WuXsCJ7j8tKK/VhC/qfvqyuNvKDgZ143Dx7kKJ3LtuRjsUA8k6UOQUkPQIx9sjo4m71LKxLIvtVU9rjufzC/P5THOBEANLqviadV7TeeRNYBpveVyeyKWSSiCEEYk3eA9jS9RNC8NmgieXGSi7dzYj76WDcNpVQoylIYK4pg/UcijXuyBF9mJGxUNURKRaXoD0ToflY5Zod0N4PauLdas0AUasfpYOlFvyLwpESFWrgyZCAe3c1mpF2w3eeZ4fHlnPD6qOy1/hvSrNDjESY+DmZuJ4PDBEFU9bzmfef/rAsq3c3t4yDINK2NdKyypg1Vv3IQaaa1Qpu2hN74jAZU6yUym7aFxXVFTg76Kl0LuveuZ0QPUyKtOsG29LyjpM1dLhXqRdRJAuqb1latVp9xxhy5oTjeOooydVKLkRnHbDxFWaUd2H4NRI3ivN3N3ZtdUKNYP52urn1c9d+mfJmbUrjxLAHdlwDF740W3gqymwbIWz025fyRDKRqyF6IRAI7VEkURZz/tnckBEQMLewGjGdNOb03O+ss9dqoG33nMvnm5LU3bQwejtzdMcrC7R0qpAThzwDaRo4VqC4NwAXijNYpiACkAJFU+tnsaowInzjOPI4XhAWiDlokqntXG4uUek8vLwyLpVXUds1n0t1HbpENbWrlbED79+Q4q2Xg33xFb/3DsQSNmRLmeeWT041Fyp0vbKWIxD/v8x9yaxtm1ZetY3i7XW3vucc++rIl68KNLpIsJ2pJ1yUlhGRknLIBA4RQ8agITBNECAoIVbSJZ7YEQLyYgOEoWQoAEmbYRl7JSVmHTazjoznGk7MhzVe+++e+85ZxdrrVkMGmPMufa58TIyLITk/fR0zz13V2uuWYzxj3/8v5UIVIVGR9sWVKMRSkecWpJYG9/WntvQ0VyyIZiFeb1wnk883t/z+tUnnM8X67UAPWo2MQlpfQG9/G8LugJVCHiiV+PUcVKBjK1hul4dgIpWKdqNoaytMmi/dI1mqLthrZV5WXj16jWnV0dkLqo0WCurKdR5B6PDSv6timmUtf59r5WnDPE2NaVxHPtz6pNDbHvuE9qFzUXvmx/RdggULTYY8tQ2eRONEIhO0ZDmvaWfaZLLYSByrZIlGhgV6b13zgVLRFSGOhiKHMaRkHba3zGfSCkrkq79+H1mPr2Ip3P1TWpdqxw4G89WDf60RxNeoHUwekU9vduuNa0LFylG/6jUEHjlIjE60nrmfHzJ22+9y35/x/sffLEHITHqtYqzlnORnoDWRk9oKKkhfc7u6zConHLOiZQqFPXSUXlg849z3pK1hhzpxtb6G3JO5LT9D1tfn4IQhWWeVTZ8XpRa43U+tgCXPn/a1m3j77BKqhh7x2g+VmVrFDQN+AejYG1y/tdCMNf3UGrz17JeLtnmdUs41Rhag+N1qbRTNqVEGAdu/TOG3R7xGmDXogGUetMlpGaCr4y7gLNqn5E2dW0oztrXojN5ZXHaH5CS9i2t85n7159oYuAULFBPP98rug3JxjUDd9Q0tWjVbrCKRM7ZAmStoWj/mTdJe+kgTqe1iZDLhWH0lHpiOjzn+Vu3nL/7CeOww7uRIdwQfaDmWXvvhmzqoFuwW0t5sn6Cc+Sr+3Hd+5azqoACrKsmbct8IaeE80GVz0JgGHdICLx6+YJPPv6Iu2d3/K2f/wV+5A/8CH/wn/gxvv6tr/P4nQfGYOpjOGoqzPmsgSjCUlab11g1VsGPYRg5HA6cTmfOJ2EctUIpWG8WWhkVp/TA1n+NAUTUrNW1xlQIWn3Q3kBdkE3YtVHYmsKnCIQwKI37im6q1VitZFZR6nSwXsbgvPnbqVJktbM1Bu3Dy0WpYkVQGtqgHm+VxkoRBY3MtkapmUaJt+B9Pi+9l1ok2/pSoQvtM1brm+Wy4MqIG+H5W2/x3gfv8v5n3+f+xT0ff+sjCJVpv+Pu7bcYPvmIYkrR7UxtyV+MkZRWJj9pz5RTCp1DgyqpgjQRL0Ovs2SQzPmsFcTRbGYata1ab47GFg7QeX7dZ/xmG0XfN0STG56cFQ3QbMmI3SM0KR/HiVJuyVl7Nff7Hbe3t52+XKv2THmn5/6yJm7unjGviSVlxmniM++/zxe+9EOIZPxyYoqR73zn27x+uKckpciDVX/aWeO97S26lWooZIkb1pNJqyzr3q72BZtwi1YdtProWpxgKeJ23m+MBJ78XmhWRhtTRUEaBXBbPKY9ZNqn5JTuJtKZB00lNLiId7FXLkou5LWyXk54D/cvhRD0TB2GSM2Z18cjNFE1ETLKTnn14hPmy4zYPFN2V8EFwfvYzwxdk4Pdo+16Sz+ftnnS4pc2zK1g4FoRQbY/OyZpSW97To/xLN7rcVbvt9PnqfegAsZFdATjrOsyBhVS2U8D0+QpqbLmCiEiLoKLyjhqoCbaA4d3pDqBCwZQK3g0Oa+WN1XYe41bc14VoCuF4DLjmDjsICRhGCuEhHMLnovFocLqHCkXjimTClpEEIe26Wkrj7N4uV2/pcZ6SrZ1JzpfFFmyn4EijoxX4Rc8Uj2ZwFohe407S6kUHPv9HknCWjNurwn/6jJjHK3dQu+RD54gWqDRwrHu47vDDc+f3+DxLGtWu4SsokJI5XDYMw2BmhOXs1DXRpvf7vk2J37rxz8iSVsLfrV64502tm99QpviXZO0d9IcI+y/NqkbyuOgFZWv0ZFe0u5JBYaSOUN57U80s9fNzRnXd+bDjz9kXs69mTwnPVhCk4C/GvEQgkrmupYsaFNutspDDFGRtdYfRkBEN1qlnTUqnQZ0vYQq1eiDmXVNKo7vGiLbBhTWZeXh4ZHT/QNDVaqfyqprRcg7RWu886aqxZOxefNxzX3vKpWw8cTfeN2Tg63RBN74XaNJxXGillET6RDxPlqZHqQUHSujAsY4mJKi9g9cHwiqvmZ9guK0YT9G4mDBdlBkM6XM/cORIhG8MEw3zJcjp2VlrUWtAWxIDBRsuUKfY+3av+cQvx6Dq7H7tPFtSbazg6z3ZqKBX/tsrY2oEMsQI2WeqU59V16/OHH/4jU+7tjvn/P8nfeM+pdZc8FKhFQaNQaT3vYMYSR4bQr3cSSMilA6J8zLRaXHRX3RCk559a5tmsZ1l6LJZM0GkkAVT15XpBTWde1zp5k5Xxtwz2aNoUNhzdZtPGsndW6ghCUhXI3p1uOyJSsteXO9qrn1p1z/fB2IjdNoIKOupeA846hN8v6qH1GL0QE36N5SRQU+dsH3ZNG1irp3RGvsVvplIMSRGHfbEVTrRgHHDve6KbS22RRjJOfM8fjI5fSgh7RUkwwfuo/kMIw9SYuDXn8qRhvNSj1uvSBtbH0YkZps7myJcCmFnFakCjEMHYgQIjl5hIF3Ds95+ck98zzz3nu3+FAIMeNCRtxiVhBWrW2UrL6nWJORJeq+VaursNg+1/rwhgbYtaqLq1ZJVUDCixC9UowD8Pd+49f50R/7QwzO85f+wl/mJ/74P8ff+ZWv8OqTF8zno0pzSyUUqwI4zxiVDUBtNgeREAbWZWWZL4zjxN3tnmVemJeiMt0m7azS/Naj7bV/SUE97U313rHb72FZ+jzagrq2f5hku+0+b/ZftvslUrXXNURC9FpJsWROK/56PSllxCpRzoUegNfGUDATXufUrHtdE87OYb1NmhiWUsgWSEcDNM/LQvRKZW1rSNedXkfrjxzHkRBHUjb6Zs34UnFLwuei3nDTnqUmZIgwqFpemyftvGmV5pRSX5dUo4Lamn3SM3zltygIMTpKTZwvK34xu5kQ+vnknKBkQ/ckVmgJ4zU9Gtr+X7rIRIs1vG++hoHW6637jdK/vClQOO8JRIZxQGTPJg6UcS6wLCtSKqflYgqKlXk+895nPsOP/oGvsqSVjz56RTre8/z2lh/64R/Gf+ubfPTxx9yMo5me6/6tCYNSskD6HrudQ2g/VwPEHAriWE+T9y1h2ZRk3+yHu36/64R3e9h+voVk9rrr7Vz6XLcwluZHaC33lLxSq1kk1KoCOs5YE55O0fStx9MEvGou/f1zzpxPJz3XRdQP7uGxU+NxEAaIg86TYGbi+r5yda9Dv5/X61jbZZ5eZ7tG35h7LUhvqoe1aS90+Bxam00fi09L2gDjd9GUHZ36ApaqirlD9MSoqtrn04XLZaYaY0II+Bh1PjpPDJ4hamw2TLcK1uoV6Nh6z9jOKxNOYfSEODKLQ2Th9tnA7bORsp7BJ4QV8RkXCsFnBlZCXZmPGr/keaVmAzhB7Q2oyoKzpD9ggTYAACAASURBVK3NCOdR4RL7e0XvoQ6JToLG0OvtGV6T0QaIzUsiBwX9MWZNiCDzSi2FwzRxe7hldzgYFVhZPa6f2rqe9P5s93W/j+wOA2FwHI8Xcj6TloQXYT+NSAzUtLKkTKkWf9jd/X66Gu3xj1jStlXJGhLbetTac/QHDIGzalm8kvJv79FvME+TuavEpgWFPXBmK3lXtFze6dmlMC8zyzLz+vVrcsrqD3a1mV8bmWLoTbumdg212k2Xq8AUmwKWJDpLZsQ8N/Qt9ZB2XvssNnWoLVloiVAIXpHHhvLVaspOm6lp6xfR7+57MnK9CQjbxnw9ZjnrtTeKR/t9q3R96iZ+lbBtIhX0hJYQKT5Sc2KqjjhO3BA4p4WStJI5xkiqKttcXTUksCVuhrQVlWFWmkRkYFC035KDkhwQGaeJwUeqOIYwEac9c6mc1mVrwLaqEdLULp0pbzXx4zc2aL9Rbraqm1FNpI31pyOQInSaYQtgqar+d7M/MA0BDC0ODsiJlGZCEDP8hSXNXM5n8prw0ZFlNXN3K+17U34SpQ2GQfuehhgZQwQfEe/xQdF1Seal4qA6r7Z56Ng7KQSnUvfilA7mMWPWmilZxTHSMivib4bKy7IwDINJVue+SW1JV1bGbtH53g42nVf+auwcwqaQ9iYCvonk6JzY+k2crcOnzb49OMzbmo0xquy7CZH4GJ/cO5NcVcnrLLg4MI6D9csN9hQNAb0IMYxM0w7vB8Iw4QiGtGkgPE6RcZiIFhz072trqlko3D8+MM8zOWW8h2VJGlTEyOV8QYVLfA80vaHVoAIm1eTJ4zD2IG4YrKpbTUCijXGb76JoItZHpDDCjioTN7u3eOutz/P13/w6z99+xnx55Pj4CfP8ijEKo8eCrh2tBzIEbw36WyDj2JLX9ot23aAHbelbuoEm0u6B2pZ4qTw+PhhK61hz4pMPP+R4f8+v/fwv8+P/1D/Jj//Tf4RXL1/wjW9+g4eHe1JJZAy8E6VvRcz3qmr/ie7MhRBgmU8w7cCZbH8VxtExjSMuCGmdySmx309qA2HJmjNgbV2WrqTJ1XTq50RrktErtXugc1JVJjV5lyrkmhlHNT0uJfW5X4xp4BxEZzYoBlB6fD/7YlCF3SpaCVL1Nm/+Qib+Ve1ciZow57z2frymTJrS2r9Xq3Jj19JpiM7BGPG1MCIcXOCAY8Uz4FiWmeQLS15ZU1YlTNtHOwDjXAd+cs7s9nul+9VtL/Y+qNC4U0rbE3Es7zpQocnYSimu09xDDfhirQKhVdq28ddA3F318WhK63qFW66eGyyq0KTjyV6fiyWl9F5lve+l98A4F6h4hhg5H4988uoly+WC89rT+7f/5t/ABwWHa1rJ68J5mVlWlWoXzBA6BoJI77eiJQX9+2x/Sj+nTHShxwgbcND3QItznHNQr+Itno7XmyBlA+gaINWA6TcfglpnKECkvwgCu2Hg+e0NUuDyeDQgt8VHJkxn30b3Dk06cxbyupKWFQmetK74YVTAx0AhYTsLvJmL5azUX+8b68mhlp/t+nQPDWMrNlyv5w0YFKEnzgoOtMD/zXtQO1VXE4X69N/b6LhtXKFVRBtN04GLSncMWEXUUevAmh0iA7Vmcm6xYwbfFBOM8eEUxJjiaz3TzIpB2RYjwzjinSNrGVfPmRLwccA5mOLAfnfgEi8Ep0UJT4Dq8TkzlZlxvZDWBT8vMGf1ADBlc1xBE1GuKm0WHtmU6YqmloiH1nyJ0VntFXpLFRgPRIIXqousRUgVsikCNy/TZb6wzjN3txM3+z373Y7dOGpfbHZghQGh2SFF1blIC2EUfIjEyXMXD9TsSHNSFU+TzAx+wHulP3fQ0sGbFkqf9vhtkzbn3JeA/xZ438brz4nIf+mc+0+Bfxv42J76p0TkJ+01/wnwJ9C0/98Xkf/jB/gcW7z+yaJWiV5Dzjqyo0kI3hOCI10Fa03FW7P1NvG5OgSfbg+q1qcbtndXjbdYq3W1G+60eueB+XTuXmy+dzU7CzLahgUlKUXDeW1urvZdxPueIJZaKKUFpy0A1e/AFa1SNxJt1PWuLSrfqaINDcxJ1aFKUVsC77x6R1iPCrWSnfJqNaET9cVoZMArBKwpI22NubrBXKu9XSctTwLaq/vqXOMkbwqeDfmsRgVda4EwUHPmsqx89v0bPvO5z5C/+YL7c7GNWQ/TnDLJFNdyXgHRfhapNE8UHehAKEUDaFcYxwHZBaYxMo0Tu/2O3X4kDsIw71mKMK9Jg4tWCbDZ5AAvGvgUgSLle67z+s8+p984yN98Thu/3oNgKHl0gWCJw343sRsjy+WoTf65WBWg4KjaEOw9IQykZSWtK3EXSdY3JBWGODEFz85b4jFsyb+aeWqCVqSyLolcVtasVTZxDjHIsNTKkmY+fvEhaT2p75drh0/rDdF7sK4L67IalbA8ufZWabtWYW0Is6rmPT3M2sHb9gXBghxatWZDfUspPdECjDa2HXqdVmZVueveliYpPk0T+/2eab/r79OSth68te95NQ+67QamhChK/Rl8YBp3jNMO57WSLD2wtEpXdEzjxDRMfTyWVRNvneuZ0/HI/ctXlJQtoSlM04R3gZw2ylyjBWv/V1LQxzWlrWJmyUHnStTqc7sfOefu56YVPxtD2y+8yag7XzkcArfPAjd3A/ePn/DWu7c83N+zLono98rZR5HuMNq+XFXSPJlQQnBmvGz3wAedZy0paMG6vBFsZlED1Bi80ZRqU2rS7xcC6/nMr//qr/KlL38Z99aB/+Ev/nn+rT/xb/CVH/uD3C9nUim4xyO+CEGAoh57u5tho4HmjKC0oCqq8DXPq/rzhcBlyaRU8UFFaUKYCH5gnc9axR48p+Mju8O+Vwm1milahbb71IE456mmIqeVl/JknpRSKSXRREoEoUjplLN5vnC7P1B9ZZ1XpXLl3McbBzWvFC+EYTDRH+nggFJs0UDOnh+CBtghqLhTscTfmUpbMdqqUg9jr4rpmnQahAVtbRhKwM8z9f6RJJ78cGaH5+E8k6Iwp6VXnLg6/9p8bknb5XIhDgNxOjARAK3oem/gpGgQpMu7gWjFhJX0vLv2Yq21UnKioL2buNDN3Zsdxrb+jRoeKrXq+7Z9QpPW7SyPFmYpG6WoKqGpC4oA3kRlXBt3S05FGHY7Rf1v73AGyK7RIznzcP+yB9OHw45hd8v9wwPny0WVq8W15aD9tG7Q+/UGOHv9uK6OOUS90nh6vrU9tvmsilgl72oP7op+XAG3PdnTOdX/bDt83+vbP9L9+qrTnMJ71NIkK7NgPw3k+aKVTr99Xq0mt297hnPao1iK0tnzsvL65att76+VNC+9D82hFbRxGozU4Qh+MBqwt/u1MRGaSjhsia3S7BUs17kbCObXoobmT8f+OljvQidFOgVVwLyJNQHXT2q9bg5Q5eFa0fYKP5BWNQDX/mDt03Juh3NJBeZs/teqbTw+bN5vSitWMTvlKOr5oqJeZ73O4JQ66jwjwu0YKX4gRofbjxzeGTnWgaEGdjLavVggFmSI1HHA7cAd7qisZFMbra5QfNbPrHpr+1nrDAByvsf4fXykWSeItTRJ1yNo1UkXIjnsET8iEvHDiBu2eMk7qObD7AbH+PzEcjqz3s2E3RWY5XVvVvX4laXMZOdZnXoQxmFkt5+Q4pn2gquBgGc5z+T6CWFRwSuxOK5dw3XV9tMeP0ilLQP/sYj8LefcHfA3nXP/p/3bfyEi/9n1k51zXwX+FeBHgM8Df8k59xWRN6Lc64fQJ3WtLZjXm3HFdIAedDQOtCGVdkOV3mCb71XVqksfXSUlV6G1Bqa1GovMdbU8KdooPlqzvPaTpB5ABOcV0SpamSvG8VX65tYP1pKeVgEsRf2nat/cNtlYDS4VidHX+47QtPnZBCHkCjlrPXDZ/ItqFfNA0arGs92B3TRRpHB/OnK8XGhpIPZdg9FEWoXwujJxTTkJreG4bo3h3+8homPSJKg3hNKqfM7hCEiI5CqslyPf+va3uD2unM+ZnD0pLYzTLTc3B+KQWFPCe5jnqiIg1dMqAs30VBfCSJXEbj+wvzmgAiAWeFZVAPVBKQKXZSVV6EpPCv2DiCFXWKCtB9q1SfD1Bt4OLW1etX/z22F4DUq0TR65QliswoChnVILeVUKjncOrbip+SQipkaacX5gvmiPT14TRbRv6eZw4HJ7yyiOyatJaW0oldP3SEXFEZI02mJShNEALkW7s/oOBXh9/4r58tgFTbZKs87J3W4yGfmRoTjWtPmfNUXGDahpNFmPDtk1SPB0HrYBEnFgaoRtDrZAWFX6tl6tKvTKW6Mp7Xa7Jyhw+27Pb+8Yh4HdbqfJULwCRey5bV3HEMg52c/RlP22rCH6TYRht9uZPHckFw3WVazA0Sq6dS4c5WhBs9J31pSsF67w+PDAq5evVGhChJwWdvsdwzAwX2bdV4Zx+35R1SprVkp5RUg5MQ2RYdTKTJNzTjlZL4f22TaJ7mHwqoyIBjE5V6VHifrh4YXDswNrWnj+/JZpHDg/PuAEggsd9R4GVRoLvvXViP1sVUwHYk3ZWG9bv9stELSEot2P6ANrTSZ577Q4XcvGaijCulTOp8D6+Mjv++IP8Wu//Gv84s/8HD/6+7/K137lawxx5MXHH5GWVUlxIgTJDINnHMYOALRAXanZmkwfT2d8iYQRlosCFI5JKwImelHzSinC4bAHm3/av6yV52iKio0qHIfBKo4KPA3DqOISUjsCr3uHrhdEKHVFcjP/1XJEs2zxQX8nNZk/HzRKLVIoWfSQdQCFtGar9GyJSKMjlpIpotUX7z3LMnc1W51HGmx383rRRET3jkpJmeoFv64cv/sRp8uJF7sDcXeLP9whOSk6vhYCmwhL92ZlU3RuQXJKiWd3E0MYCD7YWIEYfXqIAzkrRRuRbldQa+57Ts7ZhEmaf6ujWSeISP+cBgSN44jvHo/QxIza9+1V4Lrt50gDNUNP0p3D2hxWFVfzrcoRejxTq6o6O+/Y39xwd3tLXma++51vsSwzwTuyg1oz58vFQKLItN/jh1F7jUxptFWRYk/K2zm8+dbSK2CWONVKYzx4r0qBNZsdUQc2VXDkure4nX/fy765At6xfvo+jjx5TgNotNJr8HgpLOcT52FkHEaW+UzJq4k0GZBg1SoFW7fPbUCAs/1+MVp++3ABqGYw4ZWd0CjGwXtciEpFDoHB4lWH+QWXzDAGvV9WFd7aRto+1pgh1WTkt/2tzasWP8SoobkrWpkRUYurSqVIIZqYixdVKpdayVXZOsGAfPVYdJRccSFY4tLiFbTNwVk/pllreVqMslG1m8IwJvYnlgiJOCSDcxnnPGutLI+FFU12P/v8hiU7xE+kOsBwAAlME9TpTIgVQoaQiXuYfGSoyp4qtFqNZyiemJ+qPGtfPmYXUK1VRtjFEWw+q+rkNq81eXXsBhVbqoCLI9P+wLAcmZdFJfeNvnw5n2FwDPcP7F+95u7umVba9LBCRJWWsXlTc+V0yaxecGHHWzcH4rhnmRNrLux3B3bDHvxMeFwJj2dCrp1KDhv77fs9ftukTUS+A3zHfn50zv0q8IXv85KfAP5HEVmAv++c+w3gDwP/92/5CttAdMLy5MuLWNbsvlfKQRDrbSodNccqQVWkewh1pKJum0APtAEsMWoqhCp3L+aNAfMy8/j4wOv715zPZ0XwaH41TtXVdLfrzu1galP+ujwuXWmuVOtTM8nUnI2+oWoPNAl777GNoAkzgOul2S3AbRtER7dsEscQSc7xlS9/mS98/gN+/e/+BpdvLXA+dzVBxAQcaBLtJkvcAuqr66iyiTP8VmXc66C7/Sk2Zk83cNeTl4paH+Rc2I0jpSTu719yWR3F78l5ZV7O+iqvXkX7w956AXTTbM35in4kanE42VNKYs1qgfDW81t2uxt208g4RoosnB5PLPOF43kxnQMVQw5ONymc68m8uCaWsv1/Xelp19+SBx9aRSv2+/R0XLZ+yn5I0T5D7+M6X6jeesdMZbUDGDSk2OOdIvApLYTFU1xGSmWMI/thIoojOq/9aaLAhsrPAqaYWkQ9gGpt90yb5sfRsS4rl3lBSnmqvqYX06+nlMo8ryotL7oZqXhH7JWoaxn99tg25Y2SBGaa2dHaJqjhzKdoSwDboXddCVaEdKvmtQOxiei0Q2AYBsZx5HZ/YDClwnEcG7Kge5O9b/ueeUm9lzP7rb+zCViA0Xelav+AAb+lsgVRXv2YFAXVALBTtq+SxGVeOB2PpLReJakDtVTWahWrEMh5O/SLmah6p6a+RdS7SytrKtmM0Ux0H9QqdowqlOF80LlSCt6oYmGIuBDYTzt83LEkB7Lnxcf37He3lJw5HV9TyoUYHZAVCKoOsqi1hgVt9pFqQIpSJqtUXNFD+RrIaIFNo1nnnA3l1Tk4WJVjCFH7uWolDFEPZu+4nI988Lkv8JXf83v433/yJ/mPvvof8OP/zI/z0z/91/Eh8O1vfMP2X2WwXC4zy7IyjZP6XopVPZP2/KWcuifbEEbGuxuOxzPn04mbwwHnYJx2lOiQulrQgFEXleaqHmvFEuzYE6NwtS5astBsGkLQZKSWpOeNVS5rFopVlbyDy+WB4CN5zbhh0iCRQvBKeSplUequ14pMTgUfRgNOs7FXCiIqa41oP/Ewjjg867qy3+8BNRL2vt2L6/4vDWx1jQbWYudrSsj5zHJ/z3GY2b8Fbz1/m9txoA4D62VWKwPUfPpNoKet45QSl8uF3bow7AelME2TStvnYpU6LEHVPW2IkeZNpiI79KSkJcUhKHDRvM8a6Ng8M5uIjPPOwKCGjm/ngO5vBkpisvbFmShRBQI+WAXSua6mCGKUf6PToWOIc2ahIAQZ2e0OHO/vyWtmHAeWtJLnQkqZm9s7nk1vs9sfqPie+DVQ2ZvoyrZXNsEUOiDQADjFUDbxKJFq/Zvt7w3g7RfwPWDvU4ZN611usRj997W2pK/96XXPtfdqQE5eVx7vXzOEgZJWA/ZrB6A06dv2/7YXBx+I047VQK+2Zz55VNmuxwJ7uxG4WpFsCpxBFRm3s99rxclE2trZ0u6/jsFWBcxl7WullIr3mWVZe+V3Mlp+dKGrg0/7icPdnmfPbrm7O7AfI9EJkpKKBXnPWoRlTeS1klPR/3NlTSvH46OyA/yFw13k5u6WNa1qEH1FsWq9rqWrqA8g9IIA4nXvoyr7olgcUwtCwccdRVYKM8UtZC4kzoSpImUBt+Al45fCQVRy/4RSUJtaqzil4quFk4MhEl0DnbSwARbbu61gU4qxkKLvNPsiRenfJupTgZpKvybn1Ks4isa/KpQzIGuiZDg+nhg+fsHh5qDA2B5iGUycadOFEAI5FeZz5jIkDgdlsa1F8HGEMFLDSHaFJAGx/uLqmgCg7UW9Pv7pj3+onjbn3A8DPwb8P8AfBf4959y/DvwsWo17hSZ0f/3qZd/kU5I859yfBP4k6EG29ZgYBdCrqSDQN8JWtegBc61dFQ8sUZFWRpUt6NG6qVWltt4rRRaspGqvU50lE0NwKlO+riuPx0ceH+9Bqplfxp6M6AXZnHcbtuN7Unh94dtBIG1jYku6VG1MA91Nhrgp+mhZvkom52bW7WzT9z1Aa+papVSGOFKnid/8xtf55MXHnJdLR26xMrjDs9ttZtkaPGhjfkM52/cr1erHV/ehPX6rJO7Nh/feTNOfTAjEgpeb3cAUR5YkQCGXhctyJJNsKM0jyWF8800MZHu7aMF/IAa9pnmduSxncHA8PiA5Iy7hXOKSz5zPF2qlG7NeV2FC8NZqIk8+701Kw4ZSts2v4KpXVcSOFj9V2mxzpStnWuVFq6BGuwgQvdIHcaEHGTilLoVggAFK8cklIF77aSianLf9bhNiukqOKroFi1FifcTjVToX3QyD9+zGQSlOo/ZQ9UAFdM2IwwUNltt89C4wDHrt1wlbezQqoNhhGOPQaXzNNFhRVO1HEUsE23tslRD3ZL6CSf5fIclt3S7L0lF8pQLq9324v9dN3JJMbC6UUtQw1BI4XTW+X7uzdX+NLsegqLrSOQo5q1RyU0cNRqNsp2XvKLDDphlTr+vKw/39JvxTlJanwbz2Eukeqp/fhDOkahLekjHxwv5wIHgFpGK4SoDbd5UtMQ7eq5CNWXMo4O1JJXOIkTVXnN9zODzj4eGRw/6Ap6jNQZftN+9J0Wo2dr1tzEIIOFNP9N5bH5YeYRoINbqZjlFLdpxrPRea7A1RDaN3k3qgpZIJw4CLniLCeb3w4eNLnr/7Du7xFX/x//qr/Ev//L/IL/3ir1JOM7dxTz6doRRyTZzWCyknxmmyimrue+Bkn5FLIYunSmK/u+Hu9sDxeOLh8YH9NDKMEUxMKo5BbQOM3lftPrV51yi5eq+SJtc+sCxLn9sqvKKFMQ02bN8pyZQWM85ZNUlUNGa+LAzDSM6VXBPDqH5Ex9M9Yzbwwgd2+xtKVSuX3TQhONtbC8t6sURZK3c5qY/b3d2dnVcNWFFglLbPVKFZgHjv8VWogvYL2jyufmVNC8VVxOt6iC4Q2Pw/rxkKLWFr+8W6rpwvZ2KFpmzqfWAcB2rV5H70qvZai4Kx1Wj062pS5gaSNDamiC57D2A0tAZPtTNyXRN5yeR1xXkFcK+plE1sqSdwoB5XQ8R1ZcktEaqdiCQ9icxVA/1aNVgNwcTDRsfds+ecTyceXr1mXQtkU/f1jv3Ngdu7O0KcjCFiYihVWRnNByul1Of1m+wGQ6sUILXqgu5tG7PGORWcwqqT14HONYvi6Vmnib3zFuj2RGGr7rS4T5+uJ4uzhBaxuZO1eiFS7R2bH6gxY+R7/a7afnMzDtyG2/679vitxNTa8/oYWUWrcB1v0KtVLendCgPuyXg4NxDiDWJn+5P9rVfpFAxZq3l3Rkd2lcPzPXfPb/nq7/vdfOV3/TC/+3d8kZtpUHGWACsaE61zZj7PnE8z65qYl4Vf+bVf5q/81F/l5uaG3/t7fz8ffP5zaiheMx5hXRZq0dhyTYl5XSmpMMhAzQpapXVV0/RSzRqlsswr8zKT00IqC8cKqRTe/fx7+ENkiYX4bCJWZUdEF3D5wFTexq83hJwYZKb61PJjPStEVTDXMbC26nOtel4Y4Dwoe5ZasvrTDpOuJadrodRCqd4UlCPgKQLjcIPz6q96d3fDQWaOZaV4VYmediOuCMkJKRXW84Xj/T03NzccphtU5qrS+fjV2rGqTpD1tDDvTkjRNbzklTJAjsIyJ9MKdxbnGUBvipg8nYLf8/iBkzbn3C3wPwP/oYg8OOf+K+BP20f8aeA/B/7NH/T9ROTPAX8OYH849K/pLAG5rlq008k9fb0u9KukrYpAqX3T6eyEXgXABrFxfH2XmVctvFa23hZZzgmcME4DcRhYlzM1ZfPDEJrfln6FLaC3GpV9bw0wWtDvQ9DU1DlSzTw8PjIOA/v9xM3tjR0gYp5OG82iFBXACMav13HSfqbSm/q3ZsroAvM843BcjmfuX36CHyKX5UKtlWg+RA7HOE7sdtMThLdt5tebr36P0lXu+j369Hv8/SfB9aaGJmyhKj1IaqJt8K/vX7C+fkkwtbAxjAzDpKip8xZ0RmIciUE9sESElAVxE1AQnyiSePXqE47xnt0wETy8/fYtu2niN797zzKvtOy70VybXxnWx1OMekvd0JDrylk7sBtF5LrjqQvV8Galze5bEyBQyBEHXT4bMzvPteCd9tU5S9iciWTgAyFqdbCUFazyJjnjxfV1gNFxqyWHzZLCo4lzq0w7m9jtUAneM+x2nUZbRCy5NbqFOEWPggX/Xg06WwDTgq4WeHWhjE6VDPpeBKN4mEeLmICKpUrBqp5tPNv4KxghXX6803e972uoHcxigMQ0TdRaTUJ+YfAq7auUqdA581rVfJogioRtHdh9LVZpC85bYhXRjLgSoie61nRv1WvvcAFFiBtFxdbTuq6czifm05mcV5yDtK6MgyqZpbTaMgqUcm154a3qHChZuCwzOO3/DTFo0FZFKyROX5/NjDU43yt5znua+mbzjcN5rXCOkVN65ObOc3ieia9misDltODwDPFAcIpGOgLeZ1UvLQkMXQ1Ggzzc3tI9HovRfLC14DbPRQyM2youjmEaTDDBU3JmnmddA1LJueJcBO9Yzicev/Mh7+7v+KF33udn/9rP8KO/90f58pe/wk99+zv4/Y6Xn3xMWVdKWhCsglqlsw60zSlymRejOEZVnSRzuTywm2457Hc8PBw5zzM7BsYp4KKnov55rV8wNfVdZ/fE5quzub0uCxJV6n+eZ8ZRe2uUgSGktHQaeK2JtC6ktCAUW3c2bhXAKrBkhujI5cKrlwu4yjANhGFk2t0wTreEuOPxuBKtIue0jETwkTFGyppA4O7mpivDDrvB5qslmCio1M4N9fRUf7p5XRg8uOghOtwuwmFgDSrBjYj21Kbcz+guenIV/F+DZ0rF1f1SSlavLTtfXVXwQ7xjLYmSDbxxUfdmy8hqrYgXCFBLhaLCK9dVokbJbPtLS9DqVfDdenWda9XBrRdPKWu6x23vq1UuxWk1+WlqhC7pWVOcVgtSVuZNwLO/fc4HH0QCA69evqDUxHQz8ezZc56/9RagQKW4YFiJiRE51xU1h+DxZQsBrymNItbjJAqxZIurNMRsldSWzISesL+Z5LR5vZ19dtZ1yX07e4xdoZ/dXgulrpaEWfLXAtuyPa+dZbUpY3ZUsvUubud0SsnOVRVr81FFfLz3Kvl+NcdaHPaUWbPFOs3gvh2WpfkX9qql22I0Z71f3vZ/URB+HCbc+LQP8BoQbj3/aje18NGLj6jMxLDgyolBTnzw3jt89t13ORye4/d3BB+5nGZevbjn/Po7/L2v/V0ejkdevbpn9DuogeN5YV4L47Tn5ubAYRqUGh6Cndka2Ca9qgAAIABJREFUT+AiUvc4NxjVtvRxFjaAr0gl4bhI4EREgucwVF5+4zeYpk/4x/7I7+QP372nSsbzC/7Oz/wc3/ratzm885zf8f67/P4hsOSFeV5YcyFloYqniOPiHIsTJGfWy4nz8ZF0OpHnM3WZKesKLqsIlCSKgc9OrGIXLE5kQMQT/ciw25vYkkb+3sM0DirRP+0Yb9Su5pwWTsvC8fFIfPEJwzSyH/e44RYRM4mvQjFQDFF/2vmycL+uHO7ucMNIHCeGYWJ0lUTG1eY1vPUGIxvD6vs9fqCkzTk3oAnbfyci/4stgA+v/v2/Bv68/fVbwJeuXv5F+933fWzo+YY+afNwQ5635K09X9en+Rk5k0tt1IyrTaJV5eRq8+3JlVEQpCVtYoCwF6QUcs02SSs5J06nI2XNPXFpPlegydn1o/lavJlsNlEHUBWp0+kEVRPDKpVpp5v9NDWOs1bcGgLjgwaGy7pQvSNOk/YmOfokahQiBNZ5QdYV7yoBiEH7ahAoVSXhj8cT83zpr+s9bmyHVUoJAXx8g1LwD/nowhxsiJw3KkKpmVQL4iCL9ridLkce5pXqtE9ncJEhDGhDsPYgO+cY4sTz52/x3nvv8+zZM3b7kTkLqaxQPIGAj46aVu4vJ9b5zOP9wH4fefnwWilh4nup+knVTLSnKRsK2nDFT0tY28bv+gH5tCrZFmUDEtp7BK9VByNU9IqzswBKYyATyHGD8tRNwbAiDCEYxax0q4Sa127k7t3GC7cs642AuPa5Xo3Cp5WPgDcOfqN3qAyT0dUsKHA+fM+YaGXpirZ7FQTpQU4/1Ic4kpLKhSuqHBBRawxnohAimjiFGJ7Qoltw0D6jf75VjFsQBy0R9t20WZNQp7QKG5c2TpXWxL71hAAaFAenyXynVYOLJpPuAzX6TuEOVnFUqpHaOWw0Mk1w2/4moDTD00n3m7Sh2y3AqLVQaktQfe/10STRgoBW9cMRh0gc1XgdUSn2NidadYGq3pJNFKPaWDsfWNNKHEaqVG7vnqOUcs/d3duczgulqC/fw/09jtZjqwdYqYUqhRBR8YDdvtNPb/Y7Simsy6zCDFUrRY0O3quYNmdboh1jJEQN2DRZV7GiZTXakVSyKFuCEPAucv/qyOHuGe9/8AX2uz0/+Rf+Aj/xx3+CL37+i/zmeeYw7jjNiwnvREM/tSfIs3l4qRhPwjtH8MIUA8uSOT3esz/c8ezZLY/HR9a8qgJh8KScGcNW0W3VNbkCHZXaoxtEvVKMa156VSDntQfWKvRzoZaVnFZySZr4e4cfVN4fp0yDOATC3quRMAW8ClWlVMk1M4wT63Im5EIc9nrv3VVvkhemaYeIZzG7glo3gKT1snofdB8p+nyA1SqMPgbGsMenC7vDgUN8j8PdgbTbs4RK9kJdMg/HI6uJOmznwxYI62fXvpa771rraU1FK2E5433sarXjOOp+ZGupi4ldgZLe++4LJ1d7yXXS8eajtUqIVfZ6T3lsKrBh+99FnFkpbKCVKdBaHxYGTEgx4FlaQmOVN6fVypvbZ9w9u/D4eARR77Sbm1vGYWRdDc33aDJowmPO0b1sHZ5oAjPX97AlKU6wNouWyFVa/9C2xyvbw9n3esp22RK364dSfDf6/5vPbQlvCE6BV4vfsMRNjLfagHBnPzeZ/xYPeu8tcMcYBHoeN52HkpVOKkgXUWksizZfMEXGp5XCluRftUVcfdD1+X693q+rlNpfqmBzq1K3hF3F+Ix2GjxRm9cQXwiDVomrJEpZqGWBsiBpJl1ueXw489F3X/DN3/wWH33nBd/55nf5zW/8Ax6PR14/PiBeCKPj45d/l1/4xb9PcDBFxzRaT6IIzmvi5pohfQgba+RqDPDqWznY2htD0D5jPxL3E8/2nvT6Q+Zvf8RwWfjC7/kRfsfnvsS7N1/k8/mRnzq+oPLIP/5jP8If+LGvkuvMJa3U2tQtIyXr+Tp4x+g9dZ2Zj4+sDw88fPIRrz/6iPsXH7GcTkBhyY/qqxc8PngzF59UoKVoT/bDw5m//+o1L8rCy5cXlpePXMRUrqNajSxpxQ07PcersF5mHh8eGPcTz2/fYny2U5p7znYWqx+rz5lQEpXKJa+k8wlCgGHg9vYtDvtnrGshX07UkpRB5Fol2fU5/v0eP4h6pAP+G+BXReTPXv3+A9F+N4B/Gfgl+/l/Bf5759yfRYVIvgz8zG/zKUaYwEBpQ5+cdLpOR7fRANrhtCQpT/nUtaMk4MR65Op1cGqBo1To6kpb02XbqNUfShPClAqX84Xj44mczXHd681tPkzOmyWlV/TICbgmvOHguolcRM38RFyn4uW68urlK+bLwttvP+Ott5+R1kSVbFQh66FzrjcyN4qOlKK9Jia/XgSc+b+VVdHF4NUban9ziywzKT1oUlelm/bW2iiFsnHaa9WerGliGkcEmNeFBoTTx48+7vYrHQ9D66yvvp2E9GqD0w3CB5UozlWVb7pYAZVp8AzZk1DEUXKm5kQTaRFUwSylC8t65HS+5/nz54zjnuwCOS8cj69J80krT6WqOhvVpHsL1anBrla89ELa5t4OjXZwcZXU9RGQT1fOUh7+JmKhAXI1ZKBt8tIPK2MbdQBAREz8w1JJe90QtSfCB60+lAJxMGKvFFJGBWqK9nzmqqabitpJXxfVfKUohSzFLCHMPNurOIxWxbQK4hz4MKBJWrSgfztw27W0REqTczM4bddTmmpj68mxdeE3anHvocxbA3wLIILTA0QMbdVEqCVVW/Wtb35VJ6P3rlf6Wo+bc9r/5CzhcdZs3Q55Z3K8Dtd7Yeigkjati6nRBZvD2Nwo5ovmBVNfFJwzvybvO1KNKLrfrr7Uyvl85vTwyLquhGtBk2kiJxXiCT1g1vFrVdmc9XPTmnvwOA6jVbMWvBNCNAVboyXFoL1qUluPpLNeJa8CODTxIeFwe8v5MjMMO9569g6vXrzE4/FGUcxSQZSC7bzeyykGbm5uubt7xt3dnVYoqsrfn84nrSyhdCuhJfMqKtKBDbdVa2SZEVNvTCmDyBOvSmfCJKCBSKZQWfkH3/kWw80tX/rSl/j5n/9FfuWXfoUPPvM5Pv7mt3n+/G3Kmjkv5t/WeiUEyFX1xgXGQROXRictqTDGiEPI6cywOzBNgYfjzJoSh7pn3O24LItRtdWGY7+fGKdRzacvC4fDAcTx8PBA9JFaPTkldrsRnGg/lO3N3o8m3y/U6qmjNuD7qFWPUlVVNOfUPabKWpG9HrLOC6Um2w+UXTeOivxXq5p0KXrUX7D13xwON4QQmeeFlJIK0rjQPc9KEfX1kwaSZiCokIMTMsL+nbf5/Lu/i7ffe5dvvnrJh48nUskKEgXP7nAgZQUCsDNfIwVLopwyTlpf3bKuZPM+dT4QByUeeacUqbo2o3IziQ/BVGp17eZSepVcDDxWcEqumD8bK8RbLOKaE3pu637rDdvA4WVjYBDxfiAOocctIXi8mTVLbVYASg3zSp4istHQg3NQVOAiDKMJAwWCnQshevPSGlSQxeKrtucgVenyfkuSNqDArlKlSGniXtX6xkvJlBx1z6pZGT5dI8BsfLyacVtkQGjnoqFDmiQbhyFs8V29itP0c736s1KRqmtNaoXYzh2NfxDtL4xi1eWge7TeI+kMNh8Co3niEhpw3kBZZVu0PbsUrfps/UXN6sH6NK16E+zv3jmN96RVBRV2pSXdOLp/lICYaEqW1IXfxM7e9lChqg3AcaIA9TwXPvrwNVOceP7sObfPnvHBszveffezfH73Dr/zC1/id37mC/z6176OXwKvPn7k5cePLJdKcYKsibXqPupqYQga60TvnwjiqU+sQDkpENcAX+txVHBT+ncfamVImRojxUFwickVhmGE8ef5e7/0s/zt2xtiPfPweOTV6cLd81v+yl/+kJ/+6f+N/a2qK4/TxDTd4t2IZEeoQixqQ1TXBUkJXzJBKvlyoS4zQSye28HuMHFzuOXZzS1vvfWMZ8+fc7i9ZdwdGIcDn3zywF//pa/xU//gu+SwUKaRqQaWy4WUVuq8kE8X8v5CGAciQsmF+XTi9UvP3c2BKB6XBq3sSdEYh9bfpuun5sJyPKkGhA8cX77GoRRN/b9Q2RJ56XHPVh3+tMcPUmn7o8C/Bvyic+7n7Hd/CvhXnXN/yD7r68C/AyAiv+yc+5+AX0Hj739Xvp9yJLpsoh/6hA+WdWq8pA3zrT+sArmocqPG/k18pJJLVSVImjcSvZrQJldtfW82TM55Ne6rtok0xNvWTk6FZV5Ja8FVZ1x7emOyJocOyUZ18IZmipgJsW5clg7S0ENdm2LoVCWLHhzLnMiLUJNQml+FV88hTPgk5VV5wJMpklWgOrKogW4qQnXajzSNI3lZyblQMnBe1dy7gmkRkWvGO+v9uZZRr2Lot24qJWdNmpwzie3rO/i9P3usZ06kC15oG1ZDuxx4j3hPrua7h2Mtdih7zxjgZgwcL4UkDvFKN9JRLT2oxjnUaWrheDpxPn+o1QB8v1ca3FrQE5Qyo/5M2iDeSw69umbX4VyvWmBJyJsJ2zV63q/fenSum7G9t4RD0GvHWUKnKk7OqrDqFoXS3oomBtqTPagggDManUm5u6Bqf0vSQKraGVHFFK0Q/btl07UURYlK7bTJauvJ0Q7QbaPerCUUUvUh4lzs1TdoiO2GmrZ5BHpgKmqf0eaLKw8VW3NNOTbEYOI8GW80FvXQ0e+eSzaAQil74hp3Xe+vGsdvAXzrizLpHtZ15TLPChZ4T6naSxe8pzkrdezBAk8fnAl4bFW4Rv00/IjglYqnfT6aPIECEKkn5vRDLg6hg0WNRhVCJC0rD4+PXaI9F60a7HY7Us4qXuF1Xte0sCn0ZXLWb59S0n3S7ltwXm0CtGlTgSVvO6pFTwqRAE6DoeCd9r05NJmVwjDuCHHgeHng+Vt37PeB714euD0cSBc1U6cUAopqxxisOjayG0c8wnw+My8L86LS7suqvm/eB6WvuVY91fmjwiKmCGsbu8NRCYgfGccD83zu61tKIYjTioIEQjsEo+f48MjLFy/4whd+iPff+ww/+zN/gz/2x/5Znr/3WT56/Zr9e+/x6puP+h7O60HsIAbPNCgqHgbH7UETqeAjQxhxXv3r5kUVVkOccCEwz4X5ouh1iCNLWTCtIy7LmUo2qiicTyecOMYwEZzSPne7iEg2ALP1fKpoSRzUtkQkk1PBucgwTN0cO3hHHTIlJ/rBGn3vpatGdQJN3tViQdfOEEcOh70myfOiCH3QSm3ORRXWXSB4IScFLktWK55hGJgm9QBsYloxOsRVgqvU4FllpOxuqdMNwz4TTis+ZdZlIWVVS63Vxm0YbU+uV8mWAg9h8Hijn1bR3NqBKiaK6P4gCoiIvWfJWdeuD0y7Ee8jYYhKO806lqlkfND9GjsfnAs4UZGqnkyIJaTO1P5s32mqum0P0QptppaE9xkh9spgle3M0Pke7Ixy4NWwPTijFFYhOkdNif04cpj2PLx6yfHxzH4c2Q8DY4zkiiYvmuahfnm65usVyNYom86Z/FZtQLkBalI0xBTBlYiv2USJtOfKJRNjsPjge5gPllA5rNlBqmkM2RneAETeFC3ZkrcWVwh6P58wH656x4KJPrWYT1UnndJe7R1qLaQajFGj69qHQECYfHy6R4sK9uSyUrKel0ZU4FK1nSD4oMIs3jHtne1N0RK50VoFGiV2E9JwBlQqWF76NRSjQ4KB/gJKoXPU7JAamGvgIcC3Pnxkd/eCFHdw+4yvTjveDysDjrduCu+/M/Ld5xNvP9vx4nbkUgcel4uKl/nKGIW8FuYlaVp/dWZbeApUiiRL4BsyXzYvvAZGI6zikRqRZHFGHBiGiV2c2E8HPplnXs8XpGTWJSMy4M6B81JYljO4Ywd9VVVVvRrxkU6TL2qQrmupGk3WKLMeThxxThhlZBdGhsHjByHsAuN+z268wdWBOVXCfkcdJtZJkCUTa2VeVr3PPrPKhVgC0e+RMpAuM3PIPL6a2MWBnX9GlqxsDgpBVOAtG9ovCNqD6a/mtFWMnaO6YjoEDcBvyf7/x0qbiPw1thjm+vGT3+c1fwb4M7/de189vzf3bwHfpjLYgq8m69mDZH0xTe2mU0ps0VXjNovQNwfNYuvW/2F/71SoK3EG5aqr6s79/QPLMuOFzQuuI/l1+z51E6OofcPRx3Ulpm+atknkUrgsM2PcE4fR+M/FfDmu8wntK3Gu9fUEDdilJYf2p7RNISk1aVB6RKtMjuPAsmjjp/d2AIfWC4SpSFqgbz0/OauHmR9iv55PS162v7cvvlWOuqSyRmQ9GczJW6CkAg6GSSLBsxtHpkGFDwRFhdqnNjPNXvkyGmlqzb0mpLHRbKyi667uh/3/aZP8OglDritsT6s5TyiRvedmo8Nt860hfNB+2BKEdjRdUWpdm2JCE6jRBKq9qFXolOK3WhVmCKoSeT6dNchHe75y0g1aRLrXVwuM21pq9+nNRFSv26q8OAMt9Au2Xq83E9jr313fh57MXT2n/XvrO/u017dHtWRH15P5FvrBAqn65LvpzdZ10ehLzms/q1a9NIFcUyL0gKyZOgvDEIHAvC7mfWgKdvkCEi3xrmTrL91AIgN5K9TcaECtT0gR9pRWrR7a+AUfVEDE6I7t2vf7Pa1Hzzntp1Eas7DJj29rrKHyjTrWhF3aPtjkrzWwatW6LcispWjVxrd7o4n72++8o9SrWtkfDhyPpqYrasqdUlbFQteqq/raZYFlWft809/qXM6ldH8g9YxsFOrar0krP06BgqYuWpV6qRTU0kfAgUndB6iVGANDjMxVqHnl8fVr5rfe47333uUXfuEX+drf+Rrvf/ABn/3cB7x89Qnvvf85zg+voCr10YsoRUkK4240CrIabtdcyZL7/RuHqD6OVYNlqZmcF07HMzd3A8O4J60zwZTmSskmMR7MLN2x2++gKEVKTbmDmQzbfLXKSQyBaRq0l2NZEfEEP+BcIBh7AgJ+nKiSWbOY8u527LfzKHQLgq1faxhGRBLOrbZ/XbFFemCLJRVbn+p+v+82Add2HHjHspyITgPSVIVibJfm89bmvjIMNrEqA/at4mxiFs71ikczGlemgutnZTZlvGEIpuxcLT4o5FJB1F/Ph8gUB4YxsiYFP8TGp8UdzjmCa2ewVY2czeMmSiRa4QmtghU81ahwqlinMz/n/EQE5E2BJudMqCh4NQy2MahkE7HxTOOArCtIJYbQkxUHHRgstuYxsSFvIvttHernb8nTdciiYdjT6peTTZgrxsgQzfbG9oxrpsmb+75+pnnlua0n+VpErAMKxmp5sxfu+ufr8wMDgZ1c9TnLFXPK/s9SIa00il82Kvj1e7X7oH1vMIgCjqZxQq2i1f2qiWGLPy+vZvAN4Ix4p2wO7zTpiEG9H1v/ZTeOb/fIe4LFS62yBoJ4axVQWgdSHcfjzJIWxAnn+axJzHzh9TvvMLiJsgTuTyfOy6JKsN4hZlHlXCWIaSN4T87qh9niArvtNledqUdu97S6qzHtwIT0oodzCrSO+4ndYad2N0HZMDklalb19FqFNVWieEpxXXQrW29y104IQ2fQdfsFp8BxjK1irCfNKE7ps8mxrCiI5jP5IVPjCeQ1+/GODz73Rd569hmODw+cJZFMGTiVhFAITrY1lAt1BXErySXO9/c8hj1lqKT5hCtJFVkRqsuYYUEHpfV79yivF1z1Z1vbXsW+xG3997/V4x9KPfL/r0enLUijoWHBbksMWrCzxbxddltqD/7FkHqHJR11C+xaIgbXi1qDhFrU00ZRZgszRIMcbJF2Ty7ckw2jbX7t5/a8hrZfbzKflrTpQ/sv5rIQ3ZnT6cThZscu6gIQVxXhoQUlvi/sWgVXi2aS0ioeAGpS6732k47D8GTz0qAqEKJVNFy4CpK1L0qTyk0IoFbBha2/5E2uOlwlsmDf7em/tQBQA2vtWXIOglSV1NWTWcU1HETv2I0T4xDxecE77XVsYwp0GqOiLb4RbZ8kbdfPf/N7Av2e/CCPtgCvE7bre/w0edN70eeyb9QbHQeD3nQuUqm2obdvJ9c/y0aDs/28bw0tWC1m9hjqqPKz80Jalk2lCu2XiiZ9XfN2uDa7h+vxuj7I+u8taWt7S6McKkL2htz+lfzxda/km4fvpyWI7f22OXt9f0xQwKpyDcFMpiaqzcVtPlvvi8mVq9eiJ44jTWAiRKNLmtBLO7Sdc6xpweE43DwnBN8BjCHq9ZUqCmigQE3Ognjdg2pW6eRew3Oue7+p2p+zCoYCIw412L5W1Lz2n7tO2FrvWaM46R531a9rlS4fnKnNiiUBW/+KiPQ13vtThP6eKgG/0VB3ux2v708qnDQdePXqEe8nkKAVHtf66vTzFPCpOGeKm0HfsyPqXilWAwOKG1g12lX9ztIotKX3BdqWD1X7sZw32Xmn11JqxtegXphOLUB8deqtFAcoiYf7l9w+e5sPPv95fu7nfo5/4Qtf5P3PfZ7zZSZ+5rMMXpgvZ6L3kJRGWHLGJU8pWvmrgJSC1JUYI9P+wDgFchEkaYVpv9/hXODxeORyWqCOhBgpOTHsJqZhx/F0JK+Jm8MN0zSZ6m+gVtdBCEW/tXKvc6L19BoDwAWTul/4f6l7sy5JtiM77zuTe0RkVt0JEwE20aJapEgNFNfSYmstvejX60EPepCoHskmG0B3QwDuUJUZEe5+Jj2Y2XGPvIWWHqHAuqh7KzMjPdzPsWO297Ztk/Ye+uA1aXR4P3Nynpz3ofaWtNs6sn0pPT1RZJvbxul0orXG9XrD+8DT0xOtMeYFRhdE/RG9urU2HRtSR3zvat3tfZCkNbcBoCzLQqeNGWoa2EbRbuc3GOi39646BT96CEiLhZckq3WmaSK5KAY3rVBqITp0nSG9wbWRdbxFCFEZOPBTwiFxtic1GshtFF3O/kSYGhnfoIlb2w2WSt0Ls5QSvbvhcH0EyMzERBhz7U8tMjPPheH9C1o4vby88De//gtuH18oeaWWDecCv/q7X/H82ed8/tUPifNJ8xIPg13zHIf32n0d+cnhPLPc6eE8cOY0K5fTFGSz0Q4dkb+bw605no4iqkmPNF0t8OVAYa+7/J7oyC/VAtn+u49j01mu4xw20mGXde6MUdezoY0z7lCQH0bEHNUhI/57AcWkSPCSe+FIacL3HVBsvZGbzMWT5ymSum3LI9d0PhB8JHrHFNWYxiSqIUje4hzRBxkF5Zzezyr97i7gVNbqfSdFR82dD9++8p//09+Rrzd++dlnPD99zjk88eGbO7/+5jteloVs7ob6jI85hnzexzPcZntKr6S1hSiQr+7HHQVPu6zRqGsgxIhPkTQJCGI9cQFoAVp3dB3RtG0rpWSWZWHbNrZtG+Bk730AFzbjzruOCPc0x4oC8utq5dmd8b3jk8dXT6Wxos6NDmK88Mc/+xN++pM/4uOHK3W7kTdVxTgIyalEH7Za6Aq0RJdoTQaNL683tvlGd53tvtLqpq1YTc+9spdsbjRMYH/ochS7/96BKoI672Vf/b94RvxBFG1ShClF7EXHDceAYhvKJFNhBBjn3HCQbIoGSWnGQJ525AeEVWMUcb2LxK5zuMF9L8qs/2VKibpFei6jYHlbtI3P01VqckAkgO9930hCXdBZOJ7b/c5vf/c1PsAPf/SeaQ6j+BPNu7xnnI4FGgNFP97V3gpQteC1QCaJv0+RaQrKuG3crqKRF+26aPs9Tg40KzSN9j0m0Hrfx3gDdtSlN0S+iCGlj6gaTgZjr8ud2ScilYBo9qMVhU1lMN4PKWR3ThEKfV7OSpY+4rsV9uaUdXwdC+hPsTgPa/NThZmXg+EY5I8vO6SlGD6sk+APG9hYhL14M7tsq8CGBN4bwi7Pz4+mYD/mxnfEzVGsnRvbllnXlXVZWJdFEn4EmS7aMN9bHwcHHbr3Y88Mvs8xejoGcuQQVvbgFmaI+tui67hW7PmbFfbxvh7X1VtXSHtf24sDhfZu/PfgmLuxVHv/Si8i7ZpOJ+huzL46Pz3TWuO+rIK0zxMtb7QqzElMEejEzZhSYUYkEe1spZJGlaMxS3uBvN6n6DwhQC9u9MmadX9vlWgmE01nJPbHtWZGCznnfQwBu7W/FGtSVLVWB9sFe8O/sQ2CI0m2NQq7A7pvUsne2+EA18TZedJ8ouTGsqxcnp+ZpxNfr99xnsS44va6UEvVeC39mQoXKxOhEjrPeD5WcMvcvwPD25z016nLZC2KajtJhnzQ4k3Nk+ck62NOEylEYnSkGCUpKxKzK4AL1LJy/fiB5+f3fPHZZ/ztL37Jn//lX/Kv/tW/5t3793z92xfSaWbLK701ptOM6435+TLAq4CAYLUUtlVmum1VkonaRfK2bY0QJmKYSFF6715fbrx//8xpvgjqrGNZhN2VQsh16RsOKruSJKYq+GDmFvLstyz9qtZPac9U1o8+1d7ozSlD+f19ZYmasW3DdVV3vBUR8zxjRVStEuPmObHVLCBGErfQZbkPsx+vs/Ral/aFNE20NfPt737H3/3t33J5eqJHz+n5Ce+jSO4cQ6Wyx2hZl7L+9yLHQCCZNZfp3atqxA9gIucV5yClQFRmI28ZH4I6BkqvpP299ehOk/ToTecZ5zw1V7Z105YBAWfknNWZroij6XHOWQh+GIoNsCiI5FEScL/3S2OArp4pXWKI9N9KbHZAdI7TFHk6TeSbpxeYzicuT2eq2wfWSxEuIKwxaK1WkXHryylD9RZEMzmXKVK8t9+vz6PusVqeiXkLAE4MHdJ4X3X6VoDBtf0csJh/PGc7Ar4I4Go5mcoh91JjL8rQol6ZuapnwW6wou9Jp/uDq/jh91qx/HhODcPcvXaUKlPOIn+YN6qFC6OIPKpVGHuqVs15tkNu2vuQedpzi1Ma/+69pzfZy9ZvAAAgAElEQVQ/ii3ruad78tr4+N0r27ry9W+/4XI6M4UTp3CmrPDh2xc+fHwVgw86zsuzOxIauyrIjzaSbp/DuXHmVQV1+2hvkD999IQ0SZ48JwVSLdcxlYkXaWuHXrVYbmWY+i33O7XK/k5TZJrEtMl5J+6PWgxGbySCAiHe5jcaMOCERXQyC6DQad5LpeMDP/vZP+df/Nf/A5TI17/5JcsNtkViEw5iCpReJY6QIAjQ62ScIXkrXD/emMIH5pjJS2Yrd7a6QpNizdRxIxftO7FgeQqgUmQ10/EKB3QG6PP7Xn8QRdtIFB/Q9D2AHW1WbcuKTf8hybX30R3ZnGmoj1aq9i6mFe4Dle+t6YR4TaTVNaPkTN0yvVSRk5WqFLh/2PD7/JbtASU4zuCAT7M9jU7uTvsnHMu28fHlI59/fiEmRdHRnqMuybQsVJUX1LqvinGHukp4Kr0Xtty1D02tir2n1kypcq1Vosxw2RRtLSPQxuiJRBp9ONgdmcPvFT6jKLbHY+G1Yhb93os87NvvvqEugXeTzAGLSN+i6xnzUpTArbpgp/bbuNFP7DRwm9Ooa0ep7XGpfb+I+D6L8/j9xz+P7M1YTQfUejxTXXPp4B7ZXAEiQ6dv98bJKmho74DBMXrHDOWjI2yCNq6PQ6sfoMmugeW+8Pr6ysvrq8zZccoQKeN2dF/DuQe3OvudZnhTaz38HnBN5sWZ45YliW/vpR2Csn7ig/RlHHbfQzfDKHjtZ+z7JmXGQtiTssHaeTfW5T4fCXKpuhbkUC25jsNw2zZyzmy5EJMkhXlZxky9La8YK7X3i0mBMU0yxDfGpGHYWKtE62hfjpiI+OTZSsZgX0NjpyhuW7VUSs2jCNtWQRvnWUZwrOtK730wHruMzVwWO9Y/JOCXMDHTNGGz3ExCaXE2l6LFkjF13TYt3aSZWtzjIz555uk0kvoUkpgddJUBeUFga2343vBeZKsoWKQaBWEmBtgk0kx0KK7DTGsUkMAS2L0AkYJBGUO89MsqoOQQGWMIkPNG3laaMs/QdcZbojbpD/1i/SGXd5/zT3/2M/78z/6Mn/3TP+L53TuutyeCSg6X25UeHbUIuLTcFlrrw/ADdf8qtZCvAgakaZbr71Dyyjx7np/OvF4XavXcriueM/N8ptRVnD1jYNtWWm+yzh0syx1AxpxMEzlnTqcz4NhWk6DG0TudUqKHnZ0tJcsz1sJP5sQFNSgpY6yFxUkbR2C9p0cAxvZdKXUg/95JARSCZz490TvcbjeAsXaP8VFmnsl73m43/v4Xv6K7zlc/+RH/7P17NdrSmKTxvRsg2zS46csSzSlN4+8k8YzKDpvqRWKPD8LGFho+OEIS1qKUPBLxfZ3JXsjbRlWH3CnNhOA5X07Q5GvS31fkTMMNFlvWmrLofmcwhwLDMQBmp8WozYPbd4pcS2s6dzNX8rYRQ2QKnuvHj3z7zdfk+ypnc5JRHU/v31Od435feDfNynrLjDrrCz4OlJbr3WdfmlR6zMZ07MBOFxmyFOFmyOZVNXAEMffn8cmz9tB3ZmfRcUba8Sx9C+69BcEBdaD8/rgd+5xW4A9QUM82+/2fUsrI79pHShzP2tZEmUXYlSFNCx1TEhiraWBZjAKQ11rFZVDf02z0TUlhf9r4GrD+cWHa5ExUMOQO3jdigtNpwsUrMSWmeGJyE1RPXtRcBe0xdpHmOr3s46pG3qJAsV3DYLV7hS75iYonhVkNiTBNRDXDcQ5cZAfU1VfBdXXqLKL62ZaVQh2/a11XlnWRM6c2cfk2hY/TVhAno01qrxhbHIKBo8NxSphghNHszeFcE7fz0PnRT3/G//Q//y/85Ac/5z/95a8Qd8oAOrrHwGlXtWfWJ1Kc5D71TiyJ++JZc+XDyytffDZRXaGESokdeqC3wEBIRt2i0KLlrzaR1fmh6olpYppOct5vmX/s9YdRtGEH82jUkcPGWQDJONfJZWPqCbzMqxob2TEGP4+N1cXYwtzRGGiMIdOW6LphANF0Q/ohO6kDIctbFr36AZm24HCUhB0bcfeFv6M6FrzsIJSAVymtQYhSbXtPKY1l25gvCdfa0PKWqkYNzgsq2BrpfALnqWXFdOAhikFCb4Igyiy3NhamOEE17anp9B4U2XPiDtQqrXfO5wtPF3HoylkMTUTdsAfht8EPfQauCxreFHE01Eqf+EDYe68s942Tn6FV7qWStEcLHyjOM80zX82JpTSxqVaHvOb2PgIpbOqevIbv2zQf0TV7Xo8Hzp5o2MsSVSsgDKF6e6gcCz8L/q03opf5XDJTD01uTQ8uiKowZFXYLieJaKXTbOZYbwTnSJM0gRe7Zv3HOfBOmul/97vfsW6ZdcvDntnWmrE8bxmxB2nE4X68lY6M9e397tTCHviP+8Pu0T6I/lH+uLNij+yzcwcGTQ8Qu3bvdQaZxYgQVAYY5Xq8zMMyliJNnqSJ1279rJImdcZEtf7eO6IXBzbc8bPLtYW4H+iOQN4eUdRcCznX8SxLNbCo0i9FASiTXXd6Ldzvd0rOTEFm0tn9sOLTDvIYo8xcdI9zj1rb5duGiMYYOZ1mALZtGQmMOCqqzBlNKBV170hsKK2MOX0gBjLd6cw8H7gvKylGPvvsPb/61d+xZXg+n7jfb9SWJVmlDSbG7ldpleB3k5kpRebTzPlylr6E4MlFZuWVTZvMna1TJ1LIUpimE6dJrtk7R6kCrLkoTNWWVyBhU1XmeeJ8PokBTu84P4GLNBdZbldiOvH5Z+/4xa9+yb//9/8H/+Jf/gu8j3z38Uauja+/+ZboBKWPUndIgl60Z2706MjICqeyWOcdKYicMW8L3kcu55ll2VR2KJK9p+eLSPdKxceoTNXCeU4qlbT9GIhRrNy990yzsFpbrkyn82AUo12Dk/EQKUa2daVU24cH8MUKH+15vN1uYy+WIsBHjHFIvM7niwzeVYMcr2dKmuIA9wwhFxdTYbxTilo4y9/1JkYnFtdMSmlrodQsRZbmPsICHgdScwBmNKaWiowmMWBFWBrpeUmI0kRmqi3rSs5SsKbBinUYbLcMJgdhHkytkHwgpiTgmYfL+UwuRcc5qBNtrRKHW9V127nfbnIvtXf2eP7b87Ui15J1+bqjlo1cZP/GEHA0tWGP5LKxlZVtKfgELjhe7jem04Wfvf+C8+WCAIZhJJC9d0J6jMfO7bNmrbgzgyXzkBNmpA4g3OLiAO00LuHAq3HUVvYeyVEQgD4n1aiGJj2j0+4uaaBWN8b3UMT5EHbjLJTK0L5xj6hZvPP0Iq7bIYrk1Wl+GI7XquvEcpdhDDO+Jm6nXa/L4ZT52c97AwY6Ot7GeZyT3kpjW42NFJWMfH6a3LvoHEnByJ1VFgC9tUauIrXsXcZ9bOtd47IOWndCMPjgxFVTWfug//POqSKmKmCuAMEhD7Ic9uFPy6/NQVf7tYOLauCVSGqnjzfZJvQguZfXIqjmwlYKVXPosmlffXCEKag6JI/na9dg7VHyIPLeW61uyJaLTYd/B+je02i4JgB5i46aHOfPnvlv/+2/5Y/+yz/h17/6jo+3G02dQtM04dtM7ZWyecqWmackjHgtnN9d+Mk//SNa6/ziF7/kw7ffkRssdSMkjzsn4iz+BW3bCF3GjuRV1E29I312vquqT4rhoAVnwxOnM+l0Ytsyuf3/pGizlyFdhn69/VoHrfgHyYjlGIJOWXB61MLLvnOK8EBrFnRUCObBTB1ab6zryv1+Y11u3F5fxfo+BLUZ39Geh43G44GIPyR530NxDkUPgtw6vMwCa40tF273O8/vzoLGVwuygiT2LsYstGMvYNMNVwRBbFoW6OHr6JRSuV5v4kbl0WTAE6eTut11MUPo4ip4Op2YpiSOfcXL4WfITNPfq26eIlNVa+UY8URxPuzCLVsDcgielGYulyfm6SQFKZleVu73hbZlnDZOp2mGFDidzzxfLriYWEvldl1Y14VaiyCiKv/roueQ9dFMvc7+TP4/rcHH5/RWQtBqeXjmx595i9rF6Ekx7cjbIemwwwD/WFwqxDAQq7HWzYHF6bPXTSGJS6DVSrkvYpDQZB11dqR70kLIigG7T05hXUHGQMcUKbXfx6ErFsdmsW/9J/J6KxU+srAim9oLkGOf29v7fWTjBlup123FxzzPTEmkS2kSRimmpAUGUoAFk2iY7ECRUGeyLUm4Zb/sn0QFlZSSR3IqgIOXPgVN7IStn+QneqNVR+sHhNBDiDqEtGdas0RXHmErhY/ffYtDh/8aqusD0xQOh9feKG9Fq8klvZcEeb+3e3+SMYQm5Wy9SQ+G7lFDpX04SEsQY4WUEiFGcJ7SHd1HLs/viGkmX++cz2e8d9zvN86Xz+i9cV9ugxkLQYwydIECwn6lGJnmidPpxPO7J56fn5lPM7ls3Jc767qQ14z0V3iN0boula1ovUAz2S20opbfiPvdYK9xlJJZ10ULf3VAI1IrNJf45tsXfvLTylc/+jE/+sFX/OI//0f+2R/9jNN8IqYTDsf5+R23j99BK5Qua1Ekto0Y3eHeaUwvDeebDKeWvxSGp2fmc+Czz5748KGybSvrKtLTEB2lbjrCQ/ba/X7nrHLEdd3wypYNyWcVZ1UfhUmxvdV6o6zCsD0/PbFtMkohpaSMLYOBtWte15XT6cS7d+94eXkZTLQxusa+LctCSsL6vb5caa3z7t0Tu6FOG6M0rDfF0ONaxRr+8u6JyXt+88tfYpLAdVtlDWft/9L9byzbW2ZF1sduRY+dwVR6kXNeWARjcoQNA2SYckgjB2gdYQOcuL+20ASgRcCfvWiG1gurJmLei8wxKaPto0pVSx5JaNBRNt6ZqmDvcTPIWJgZ683qI9p3tLdfwSXnVDFURSqbdIzHer0rs5hHzmHAiMXjEcNHLrQDx8c/BdDZi8q3clrn3JirJu6N5huwm8Q5h0o+O6021rLq2WJyRieOlAdwbwB5+nuODQ1F21GasWX2hW7tMF2BuI7rBwXJ4RzRi5frh4eWBYnvu4mOXY/lTMasdez37D2BNsew9yZnS9PcVGPpDmpbX7aY5Ymzq7n6Pp6F1oNqmcrcu4IXj+zjUA9U7VVvjZI7eVvp9U6v4vBoM1+D03E9ToBzMUfZFTJGevTeR24hCgCRJHrn8DEKuxYF0LBh4dajKSCbo1eJy7VkyraR1/0ae+90p+OymqgzfEhMej9iSKPPT+4hOiu5jzw3H9RCW9ilwADNeWKYmBS8kp+Hn/7kR/yzP/45rcPLx1euL1c+fPc1OS+E5AhuIpcV1i69ec7jamb2gc/fv+PzH36F8xO3tbFtsNxfWUvhMs98/uMvef/5V3zx5Vf45mhL4fZ65+XDleUmOe22rgLO5ZVSViGiaLQqsab5hAsTLjoI+xiAT73+wIo2C2XH/943ijFxhmyYBtxe3hLJkUBr0tsMxdF37Y/JuPc77Ss9J4XX1ysfP37Her/RchkRvuv7PQSyTxVt3on5wKFoOzIKR4ZBgomli+IkuRUJWLVWpkma9GtxI3A4p85ZKe2BKHi1BTZEX+Z02ZDkrj8b48Sk/UFpCoSY8OFE613RPLher6yLoPTrloWZUySN4crZR5LkvXQiig28JfYBvNNkrpMmSUhPJ5FtpDiNA7TWhdt1o4RAcZVeG+cpkfFgvee1k5Ln6elMCImn9kRSVO/15YXb63VYf3d9mt9bYW8SgLd/f3ymx+/ZtfuiiDr+nH3/W7kfMFyYnFPLZjzVVbWk135A+QFZz5pNOMSquGoQ9c7QvqbEg/pMaiHosWKsgjJV8ySN0cMx0TlBvziwos7WvpaHzj30AfZPfSY9fEN4NISx97QD+YjkAYdhs/5RrvLmAD9KIo/SY+uruVwuMndM2bPeRZ625m1IOGSqRRd4t2VoYse7N+RLn5YkfrKknRPnKVniclg7tzcIy9/Lb/AuEvwsxYkTKWCz54fZ1as5iCsKXHScMkPr/c5yvz9EuxQjISZh3TlKF92Qstl9LaWSUlSWbWeLrQfO7rskUeau6Ubvzi6tFrmYsD3iiDb5KNp6hMlyDqYkBhm1CisgMtvMNAXW7cbLy7fUuoKT3lh0jUisEoYgRMc8Tzw/n3l+fuJ8FoZo2zJ5K7juiCFxdM+SRFAs02O0vguZXQgoIxLGfKG8FaqarkiTu8gIbf07VykVQvLkcud6/ciX9Uv+yQ9/yD/8/a/42//41/zL/+bf8PT8Oa8fv+X5/ReUvNK2hV6zrne5p7WJYUgIkxZvOseqCevlnTC83sm62NZXQoTTLMzUtlVeX195er4Qp4ltW/HN8fR0pq531nUjxonnp3eU0rjfxQl2Umarlo0wnfE+EmNHjvMykspSpLE/pZmU0pA2mqGNJTvGsskg2sS2bQ99WIIr+RGnJaFVIKV3YTX6zqKvanw0Cm1dz6VW1nVlOl8GmGoJdAiBUmVIekxa5DQPGCsVRuEyz4l9Btw+DLr3viPbAxStimxrxlA6MSXmWUYMCeMjvV4SR4Uh8CgwWpv2nkrhIHEsDQbO+yhNRh5imjifZmIQNUBME0HdUZvG5t6aSDO1AKpVEn5xJFUTNXSWJW6f9Yq8v0+OvK7EELk8PXN7uVHLdjBxEQY958zLy4vsPSfJ9gDT3PH+ABSN6X7cu96lp71pHhGCOLCaQ6Q7RC7LRXp4BC+932WJj+fN/jKWztn54UwaameNjqCJUrDaXDiRLepnUFmcd5Dz3kNvI2S8nmnO2D39vUcVlMXbsaaGAseYyDaKdTnrrIA8AJejZ52H9zVgp1anctjO9XZT9019LvYeTow1bKB3H2vfzhP1JPBJP2Pcc+AQqIjRWCuZkjeN6TKXMXgpNIcrYm07iKA5U3darOlwcZEW2/nhxW/CicrGejd9V8VZyeJoWcVbwCmoP6WJHpVAccJINgUTQeZDxmgGVrpIkPO31EagjnXT1exn5Gi9D4CgO0fujft6g3oF54iXic9/8iX/5Mc/glL55d/8Dd/8wzd899v/m9fX31Lqgoue3rOMdcjiq5C8I3nHeZ54vsySh0xnPn//FR+fruRVxkA47zg9X7i8f+b8/nMu0xPRJ1rutAqtOvKSqaWQt4X7/ZX7/ZVtvbFeXymbgIo+ON1bN/xpl3x/6vUHVLSZK+C+0CXtFgpR/lJzsCOyqQvWHP3GgX9ElTpq4CEyk8ceLG0cr9oITGVdF67XK7fbjVY2fGPMITkm8p9iWkYg4PsmDCAopyUQ9r1SAzWq7/huUifH6+sr83ea6MaZ0RwbVMOdInGayRhKbrp6BqoDgiAK4qmNyU16rcS2N+B8INcqfTheDn2TInRQVEOTUaBTD5T/Y2FzlMbRPURJYM/nmfefPXM6TXSVMBpiXGsntwrzRPKRtTSRdeWCrxAmR/CdvGyUDrMWKMbohSBMnCQF98MB4UZheXxOn3odGaLjZzj2Xx2f45Ed+sfes/U9YfTG6NJlbpZ7lJAFlYQ62NFZ78ZiNv176w1pAnZjgKjvMh/KULIHyWE3+3qUMZOiDkVTATF3UZT72ItwZMyO98T6vj61H46fya7DCg7YZYfHQs2+31A/ew9D7a14G4ho66MZHpM2dy3YtGizZurQC66L258Vbca0CWDi1ArZUdWcJcRIcBMoM4UWZFXRZBwil9O29+b6MCExW/9dCmzJayWvK9frleV2U/twRa97x8f9/hhr0XsfDJvFDpHqBimiigAyhgzbnpSBxnodaHxRAEeS5Ai4YThk1xdwiroKIrpVmOOE84Fl3cQ1zXu+/fobWSsRGY6dFxwV76XHVtau2M97Hwmu6sEsw6U/fvyO6+2VWjq35T7iQc67257Jy6XIl/Ur7oSCXrcm7KGDMSBdbKKt53ikQpIgOCeutJp8OQIfvvuOy+W3/PRnP+Of//yP+Ku//it+8rOf8/79V7y+vJLSieend9yQ3siujn7JR0qWRFJMQZD4ulN9ItfyCpS4RveNZXnh6fJegcdKbbCsK6lH4iyJ2LJunOPMVlfut40cxQlxnmfW7U5KJ5z3XK93So3UFrWnz0kvcJC5b6+3qxQk7Hv5+E/vfeyt1poUkE9PyuRuY/3dbnedE3ge+1zONkkmDTSwvWlxoNbK9XodjEXeMi/Xr7lNr9SyJ/MGRNRS9ZmrZXY/mogdbIjfxIxju4MxszvjHBVUEbBCDBSsV8YAV+2tVKmxQ/aHsHACxgQXaL7TahHprXcqE4vklmkl0ww0CZ4UTgo+6T6tlewKy9bUXCvQnHYyd0QOjAA3xkw67TnKNVNr1168pMoW+OLLrwgu8O3XX7OsH+SeKdBEPzBmrtHcnvN4dhm7xOC9fwh2x17vHZ1DvnQAup3e6zDGDz0WfMfXWxUJWjgKqGYM1vfPakAKSSSuhlHIH4vOPt5Z5s7ujFRDwCnhs4XBFqbLYMo3QOQnzjLvdjmlfNmgdfs+KzZ3xcJOJBggqYYqbl+jp9Np/L7aBKT2WqT11sy/Sc6TuIN1cq06L1Xfy3roYory/fNMp0oP7v2KZB798I+MJMltV7+4GIb6YppnYY9NuaJAvo1Xwu5Fh67AzrIsLMudta2kkJhTYoqJ6JN+TgEgnA80HLVm2kF5M6nxiqw9xn72vWoryX5PwdQXfozfck5Gh4SuEmwauWaojdA73/32N/zZ9X/n+l3h9vXGr3/5D7y8/pbSMjFL/3SvWeYt94YLmTR5fF1Yrx9Zbnd8v3BKFy7piQ810F2h5MJyu/PBvzCdPseFC8lDmCZcj0Qibm4EHPTK56a66RXWTK+FnDe++fZrfvfNb+lT4t30Jb/+1d/y+15/QEXb48setL26Wh/T3wQB2+h+T/qMqpWvuRFsLEDLxtLkSyn+3gXBKT2zrCv3RQ4q1x6ZNbu2twzb43WjCeDeG2SL89gcO9g5ugRo/Wy165DPGhQtMrZCEoDeOttWmUslndVV0Xd8F8lG000+pUkQ8mKHaFPHNUfRIanbllXu7sl6+EY9eGKMeoDuphFiFHBG8m33vUBl96VWOQhbFRTxfD5zmmegDemMfJ+wBsU1/DxDaKTc6ATKVokucJrOTOezjHdQ22u7r9uW6W0/7MehMpCYTxdUv2/NHaV9b4u2fcDzY/Lz+wp5W7lmEhGCNIRLT5YcQh3/5ue6MkU7S1WqzK8LXr6GAhpm04vKalsXkxh5X4bctXeh/FsXNMrGawz0ar8DSIOvmiwok2ejL6zgs3X6cF8OBZt9nrfMmwEVx3tre+EIYtjPe+8FFVfNvyUzTZnI4KL2N8i1g6MYG35I3qhiFGAHT7D+E0sKuyF4juCTMDnap2RyQns2sublvld2EMfRJQZ5M8/wwC7nccFRtsL1dhWGzTmV3TCQZUtOR1Gtv/OtiYvcH5FLVnWwMxmbDAA3kMX2iaxbQfL8sIvfn7od/o4UExR9fgoKnOYzHcf9fufp6YL3gW+//Zbz8zOtFZblhnMNc6aNXuzXd1mYOEHWUliWzv0+7iRbrsIq6BDukndXS1EJcLiffXy23osme9Kv01qT9K53ekWRajU00fXRFEp23pNLZprEkOl+u3K/vfLF+/c8nU/8zX/4j/yrf/OnTNOJJS+cL08s9xfW9SYmLa4Sg5g1Ze31idFpkts0k2vULm6C5pLZnJpeuUxMnnfpmetNhoznsvHZ/Bnn05lWMo7OPJ1pbaHUQurS4xaSY9tWnBcnxtKkYPXIoGAr0OlO14xjWzO1NpL2cLoDmLiu65Acm+X2NM2jALOv5Zzl97qgLpJdARZwseED5FwV2Dwwza2xbUVBl8jp6Unk707HSfRK3laW5c7lIgzctm170fCJ+G0zEIMaLD3kBM5irhWQksDJcwg4l/BBwBgDF3wIlJaHIkfA0UIIIrneWh5nS2uNLW+02klBWLWASLJaN6t3kUaWChFjnQLT5M00fRTKb1UGtl+2bRP2PwSSd7ggA8drreoeGEhp5rPPv+B+u7JtLzK+qMnOiini3d6nP9wje6MvUjSKGVjYi9zRerGfPbhdzu4d+HlSUEdHiGiOpjymnFt6Pok83YyFDgyeFmCf6mV+++pNRE52f0Lov6c4FDWKAVvWG2iulfY7jBFqb3KzAf773cVRPrPEED/6gSXPMDbb2Wd1auaFMcBGLDQFynSWrq1VaV0fsT/E+LAvrSpqKu/1VtTCMAjzXph8M3eiNBrSO+08uFZ3K/ouK0+RTRrSmylMmvRqppTEzTim4YnQescpwEvrMgqgdlrOMkpo26RfLWdy3ugRXGtQKsVlAlp0hkCcZuIk6itPhCYGJb05WjUKVo3n5LAmeKdqo4P/gFEHVbwPZDSPmXoEgovE5Ki9MF9mvnh+R3658rtvbpSb4/W3Gy+/+y23+o3EZFXE0Cq9bCRXyL0Tm4KSH77jY/4Fvf+WngP3lyuhwjQlzjHRa+Pluw+k9I7uE6enZ05TFBmwFu6tSesBzoEP0D2BiGtQubFVaD7w/suv+OoHX/J//m//6/f2gr3+YIq2gX2MjSh0tyTQmliAHtr1sMk1XHQ0HNqQbXkPoX3bKNY6VQOBJZSSaFV931Iy23KnbIskeyq/cIqm7Jf56YLNHTYXnaH5dk7Zt2YOjV3ZQR3YaRvfVZqD6jtq2E+tEGuDKkG8OdjKxrKtpHpRhFmvqXVKtuZVYytEgxxDxEVJflopGoC0KdVFgvOEqAGgyf2MPjGfEtMs7lkOQR5LlgPezA9w3mK1RFoxmJV+Adn9ci8clNwoNWtSDK1XSitMXZqM319OpOcnXl9vuDgzP73DxUS5ZzHgqKoPb1UHLYoz2LYutF7wwSyYx5PZ/3AmY3BDYiFOTnLdYoAghf6eRFvQloRM6hZbdx2TLfTOw7q0AlxK3c6mxiC5FGIQm2Q1hZSBqV6lDh2cb3TrZa+O4r0k0R0cMnMs2ODuLkxxbo3gugy/1ATEaSHmXZB+Nd1TpdZx61sAACAASURBVDZd200TIBnSbkUZve/3rTtNnjXxiTpcG+tteOyNEzbKDlfbe3Zw79vc7lnvhSG1QuRHItGIOm5j2vuvjDXoKm+0vaibbJrEkKJbQY3D+YnewyhMxCFNEOeqjfZBE5fdNEV7AGw+jjpbmGuaUwReZEkKEMjO0iRB95UeNNu68PLxhXVZqKWQkvSlzSnhFRypreFiHHNnct7AwTyLa6QYNkBvYspirmMh2Ew5aE33oxVszsCeIMyB94e5bBL/RGLZcUSci3TfcD0CkSkG5pQo2w3nVmI84XxjKytfnr+ilY2yrZIMNCmMqva25SYza+SeZ5G65FXjkiSN4/lVKbhzLnifJNb6oG6pQeOJfpbQwAWIKmNrjZ4FkMBLoYA3h1GnCaY0OPTuiMFpUeT54sv3dBe4329cnp750U9+yt/+8tf8V9dveH9OtDVwz4E4P/PyesX1TgB62YhemEOR53nMETd4QaZDiMQgUqPgHXNKKuGBl/tK6YEWHNU18rJx+3ijL4XT6cSGxLAwTUzRs20LJWdOp4ktd/omIx9aBR8VzOsAKqXCMyVxqvVd2IJsMkbdF9450jxRswB4IUi/3v1239mpWocT6e70l0ch93r9QPddJPzO0UplWa+kFHl+ehrybO+EBehlxQGlZaqTc6KWgquFRCe4Aj2DKzJnNKSD8kP6cLbNpMJJwL2Crl2nSgPpJfbKRtNNTSPx1jkDs6oFLTrSs2hxs9eGj50YA6d4pvdGLpk0Sw92ocgMqLLSe9XWAKfFquQpJRdq2aDvEvDTHPHBy3MzRtZMqhSUsv6/KptdYmDwrK1R8kZwfqz12itVe8RwO7smwJ2M2KitMk+BlCYxE2tZ48g+YiTo4OcYk8z3036lEOS9RBoqny/FROg2a83YLoEfQzjkSC7Qexznn/XpjuJY2VabJ2g5lNc8y+EgHF2ZDSD7BGCqhQmYcY0aWTWRztsM0lYbxTlataLuUSJ5LBxNpcBBYrvPK9Nn4KQwleArLTF4hx4LApKP9MM+m6ikRk6q/zhJeCUvdE7kn76LKYmeta03yUsVCDByI3hVTTm399d1wEd6ExduelOfBU93iTAnaZOJUZ69qq9MCg0CNnqnLTvbxqZjhLZF4r6oZhQoD47aAZ+IaR6jTIL3UqjFcDDI89QeqE2UQ6UVoo+Mu6/Al9OzuVu/p3pVNP2d0k7SQYtln8STIncxIbqcz4Tm+fjbD2xrodwb1+/u5HolTQEfBfippZK3wtYK1TVKd2xNyuFYHXXNvF6v5HuhbJlaV3IrpAkunz1T88aHX/8dpWx88eOf4p/FbI7uiS7tPhFDyusGkPy6VL75cOV634jzPJQRv+/1h1G0OTSCySZzWtVbVBNrZ6fIrRsoB/SRdDSjTzUxlQRnR/SrultJ46QWYs6kI43apW9r21ZKXvFdNos1x45S0orDTzAJR+RofH0wEKKnzps65YxgIdiC7+B9o3i1Vg2OtRY+Xm8EF/ni6R2nOJO9o7imtuKFkjMhJUEtkSbX1hwQCH4ixhO9F0rW69BA4dhRJdn4YivrVc5jcivrJwLUbaew5CKNwXZAOEX3uxYCVXo7zDCgFri6K845pln62FqTBLg2maU2O6G6y7oyTzOfvXsiBc+Gp0ZPc4EwRciVGKA2GXAsdYI05JaatRAtepA6nJnL2JIJFnL1CGhatKHMqBkIOCu0D7ICrwCCs6LjEVV7WIBjIYiG23kZY1CrsFaDXbIm5VpxVQXC3hG9Z46BmAIhOEGpdB6OSKsCuQrjoJwKeC/DhPveBhhQtFLR3dHz0bQgwZqCxfWr89Yx0uSi/uHzddilgrqQrdaTxNDjNWku24b3xlwpkBADvgdFEmU94zxpmqW3RhFAr8Wq9J/JgeQQxFqkafIknTKIuF0qbYCOIck7qMJobBfQZHfPDMog925SWTf28S4hQg/mqA6lbUhLnQuKdsrvWreN+/XK7foq7ocxUBSierpcABT8qGr6YzJoG0or4xVk0LT0VwjiLs8wREdKZtxRlFWww3wHtITB8tpD6kbcAnTwtiZOzkwNZLjzPM0EH7itL8zJcT55Xl6+pdO5nE/kbZOkogjbI0y+9NbWJix+IODUFr1h91MS5jFLCUGAvRbDdJOiuuEWV6vY6wu7K0lUimHYbROkvyK3RtE+HJs96FW2KmiUDPuu5cZvfrMS4gTe8dnnX/HlD37Er3/9G37x1/8X//q/+++5XwMv106cnzg/f0HZbgQykcocIM0Jm5327vmJy1lmucXBdpfhPBxaGRLVUjZupeLCzPnpjGuOcs9sOUN2zO/PuOAgQKFRqNKj0jMpeFI404og8TFJQBJ2purszRWv5i/zNFFb4fV6Z5pnzs9P0KHkDN0xp5MUy67jEMtqMTrRUQF5w7nd2TDGxP1edERAJNcsTpG69y6nmRQTvRRK2YgxcZ4TpTluy0ZMkfkyj0mVp2niaZrwrdK3Bd+lSd95N0CRWhqhQ/CJ3DKlAi4yTWd8mlmzMFGAAI9B1kX06QC0CtizgyoWSzvmwOdixLs4QMF1y5gCQ/ZOw4VIClF791ac67is1+v9KMKqSRVx0lNeOs5H5vnMNEVO84UO5C2zbcJQ1iIsER2mmGiuaTwTpD7GMIYVP80ntvWuoMTO3ARnoKuAjHsuIn0zkjjuZ5bDCfuk7QoxRZovasggjH/X3MlURxLrVLroJLG3XKfouehx9JGr7V1wLlrcsX4qY08fe3M/1ZIAPDBnu6yygypwTJUkAI8nqeGUAKKVFCeIYfTrdVNnKKDRQaXuTsfb6OdR05hmZ4NdT99j17GQbK0N+aswgeh6hm6fwT7XfptG3tudGwW/PF9pnzkylvtDFNa/9TZaJsQgJZDmhOkt7ezt/iTFlYJM3km/nevaptFVmVEat/uLzqJcKdoTm0tWcFkl/a1Ruxj9+DjTw0RzgToMSxhnUnBOADcvQOzIN7yj67/3NmjJ4fjpnTqDWk6uZ0TrO2vaSsEy9uDFdOr+KgO885bJ60bpd3pYaVX7er0UnD04WnSAp3pPxXOvDm4Zv11F4pgKvWdaF8b1+voqDrU4cnnlQ9mkOC9qqOUjxSeK5jcOiQ3BB5KboMK2VZn52B15q1xf7/xjrz+Mom28LNHYC6MhVdOvmKxn9IO19vB9wFjQlnC9taOHHf2Qrxdy3ViXhevrleV2F9eigZ5/LxXX99j/ZiQVb/7+GHisr+h7EjpNjmXyuxaRrXFfFpkV9HKjfr7xgy++xJ/Ouln2oCEMVtehhVYQOrxPBH+i+0IPTQoYZIG6Jmm9DT81C+a3Qccm1Zv22Q+NtVMpliRBw4Go5BFUfQ+Y/WuulduyspasMiKdBdIr7z9/z7v37yh541u1xF7u8gyqD7goTl7RBwoFnAwL1k+vxfY2DoF9xIPcy5F8y+RCQgxcTuIOd3+90g42y/b8rNh/++97Iu8f1tynZIEAHkV+cn74fnu9HTAqfRCKnKU4no8V0LbO7H63Lr08IU5jfQ6Awa6p9gcU9ij/MEbwuKYf9fPH0RQ7kmms8/G+HV92zzpd7HoNeVTQo6jBgUlDQhBZxnyaH4xIHp6JrvUQJA4Yun2UW5rBz/GaHt0U+8PfD0dQPZx3w4rH3p9jbJGkxYvLY1f5tCK5Kew9EFvOXF9fuL6+jusyJH2apofD1+75uq76vfKMWkfZbLunJvFu4BoxpiGldIpOH0Etk5LV2kTudXiOtsf3dacFsI9aRDum+YT3gVqaGMBMJ373n/+BFGdO81kUCQME0aGm7OvM0OOOo6spgs0VE8mLWMHLMxOE16SScn8qsBuyGEBn8+mMNaxNEGjn3F7sD8DOjCikQ6bVTtOeuBAn1jVT2m+I6cKXX/2In/z4R/zVX/w5P/v5z0d/R+uN0w9+yHp/IfTMefKcUyBOkRADy/0uxg2tsy6rmAG0NiSHrVbOOvNnaw0fIpPzrNvGaX4ivvNc25VeOrdtpV4dYfLMUZx70zThqxN0u8NlMkaj68DkMNyNt21lniZK2bgvC753tRUXZn7bNmgijerNkr/dlU6a7k/Utsf8vbdsB0Is2MQ46R6DXvfB7iVnmXWUpKidp0nmMXUD+jQhMyCoibTQ3B9bRxNxLUSQAdnzlNi2TPCOpAz8tq243rlczjgn5808JYFklaGQM9gKGYW1tLi32Y/WV9+76tewdddG0er97hKLxtJp3ll668mlyveatLmWSm1ikLMsd2HeTmdSSpzPT/TetT9oZV1X6aEtlZJlfE2MiRBOuC49MinNwqBbQaVxyRi7UiveR+Z5wvpCDWzbiwk5a5yHVgsUkfCWvnGvlXuIwxF0OM5aEaH3RWSURxdaLai8H7mAGcbIte5n2lu5/Oi91vd4GO1wOAvG79WYLDC1/17s/5REv1bpf05BDB/2/vo6hkJXZOSRKDDk3PIK2vp+ZP668oiWc7zJ7fT1tu3ibTZ5zA2OeYc559pneXsuj3t9yNmOn9s5xGwumJmJOJLmHsHFUaw1NeAKXlsQSmVbZZ0u9xdVdohzqvRtRxo72OqCZwqB0+VCjDMlF67XG9KbHQne6TzBIM66XkcHBBkjYMXrHveVBZUbTzoWwod/3t7vRh8Ag8yV3N3F7XPhJD7VXMlbpVvOFaSXvauSD2+zNgt1u40B6JjCpjWWZaV/+5EQ1b9g2bivKy9f/4YQEtM0M08z0ySArEmQ0zThwhPbuvH68WuW60fuy4377Tu++d0/fHIN2esPpmjrikY0Or6ppGygN3txIsMsHwu6/T36wz+wJ9xvk+mHar3X0QRtA3dbq3vBpsFNf/Lhuo8b5vieb+n2t4n/8XqrHgTVrs/JZ22IQcfSHR9fX5jTxMmLgYIdYqOvSA+irvI6OrQKtSKuRU3kO6KAFho5BE9UZ6BSC61LY6Xok8tIAkEQohiEWTDWstUymBKTfUrMUKmWonsyI0oawHt35NI0ca9075jmC6fLszRlXhfu333Hum7ymZzQ+qLb7wQiPhRh1TSo2mFnCJsFu/G8VCLmOnQnB9v5LNbVKQgTVGtnq5Wsm/v3FWPHoPK4fvtD4HyQbsAnf+b4c2Ktm0ZhFpIekjHoIF/5jF0T8aY2w4OpsCCHoHZNJRvWsHs86Jxz4/c8gh6MYuE4e/AISJghCE5mNI1G5kMh+L0CR0GJ3q1IkMci5hqzMkyTyp8egY63hbT9t3ee7vffcSy47PvfFp87CvvozHj8uiVc9rO/7xAGKaYeWXNB/npTM6OXV5ZlAdBhx+Vwr/sDEGLrSoYe18GeWbEGTpOaOqyZY4qH9Xh02bPntu8B+x3Hz/X4fBhr14dAb47gZWhqzlVGdDy9Y10qy1L48Y9+TGuQtSDBSZzc0V8zY5H5PrV4WvfUruGpcbCsP+yzoWJQ57+xrvcC07tA8OFh7R6f40jADs/bijYnmaWwpL4PA4hSNl5eP/Du3Wf8+Cc/5ld//3f8xV//Nf/jv/tTcutsOfN0nrlfT2yvH+h14X5baDdxYCu1si0r3nsu5xMlFzWGCmoCJUnlNE30bVOH386yrlyXzHS6MF9mrq83GmJOMjExn2acC2zrInMCfaDlwu1+k/mDPmFzzEKUHrFSRDa+NZlLFRUsCCEQYlRWTO7Xuq40G8gdPFsp9C6yydb389UMbgwYs7EB27Y9xrrudFad9LgJCh1Y10ynilxUB39bMbiuG7lUlWhHYXuL9Do2/d2jx7NWXOi0srHdryy3V6bzheCFVYwmpewNmsrkgJptnqrFi0pvInvrQYCvViS2Si+NONrZ+kra83O0G7de05Izt/vCPM8KSLqx4szd1UnDzXANHvPY8NTYRjEYY+R89jKIuck8znVb1AVQ2LPeO1stXLmzLKuoJfoObI/4hzBz8zzTcdQsUkszHBkGSLZPMfOiDn03lpH9UYS99bvJyzRN4+yi7TO+yohFNgZIYzC7vf4x6bb3szPpGJ/t/h/PhE8m7n3fy8eYYa+HnxdSbkg+eweMcdIKrTtPb7pPHjwNBAwWGXwf5y+0B3dKeQZ6ToEafjlt0GvEaKBdY/dMcDtl0dmv91DIHs/Wtz2Bb89fe5VcH++Hq4RJAbXuVeUgQNiWM8t9Eat+A5ys8LYh7KaGCzIvcD6dOJ/PTPNETBG6Z72v0HTGbRVpf84NFu2p9YEQxezEOTfY45QmyU+VjZKHx0i/j2CqxYTj5816JgcdtZFzVqfjOnJjMVfxUCTPrbUIaKl5irmORj0vnfdEF4VNHNJUTwgzsKk7twCj1a/UslJuLyPPEZl8Yp7P0i8YIqfTmdPpHTk3Pr58YF1e2JYbuEZKBwb1E68/mKLNgp0zpAAUvXCKjO0U9j+WDO+b2fpl+vc3+OHnBBFfuS6vwu5s2egADMHZS5f99TY5PL6O1/T2z7fJvCQReu212k7HNm5Qrfp9WXi933Cns2hwa2OesiIHgnR4L4VVDIGsB0TwHhelb0JbPGVzxCCSvZJZ141lvR2u31h6a+aX4LJtamigUki7T3s/hbpXcugn0uJjIN+atJXayE16Bz5+vPJ6u0vP1WaN7HKNIUau28p3H+5sW+dyupBmaE1o6B72IcRSp4iMTm6rJsj2oUDnv3lOJ3Fj67Vwb4WtLFpUPA6X3ot/K+GVJVCXo30MxVEue5w0oyzqmyLeXtYH41UCAIKEnc8XppMEdrw2kNusAQMrnL2fe1jbpu139pY690T6JITx2XQGU4gRqkidam/iduR2B7GjDfJbFPPtPjjuw2Phk8um7yPryTun9uJSFJgxCHR229/9fd4alIjsRKLv26Lr+BwsibDPYQmDfd/bIu8tivl2nz7seSd9HiZHsWJg2za2ZdEZj8sDYCRFqjxTmZklcxBPpxO9d+5qUDLPs/RKtargiRZ5uZKzSjqDVwZDikcBBm0g7n7/7Bn4kB4+3zEhOxaRAD2IQc58PoPzLOvK0/OFebrw9//wa+Z05svPf8h6W7m+vrIti/YH9mF73UYDfh/AW8dR256IucGudQV0dJ3XQu+7wU3X02+fmaXX3xq9l8Fg2mF9XCv2OYVpVBa0Zul5QgY/JxfoPlBzJkbHZ59/xs//+X/BX/zlX7NumR/9+Mf85je/4fV6pa2buCkuV3rNNKQfN8YoDIY6FKYpaEK8O4K+3l614FS3xNqZemfJhY078XImXGb6VtleV8zp8/LuhJvEBCGETnSevK5igDJPak8vhQC0sZ7WZZFibhb2OmtvzzzPeBzLsnBf7jx/+azfv7O8rZncT4qwEIV5atqPWJuMVgjRy5iKWlmXBdfh6flMDIF1XVnVcdQ5x/16Zz49q4Re5+sNkMbjtf8PHK10XHOqJIDkpe9zud1GjO514+U88947ptMJF6DkBboMspaeKU8plbyK+ZUMAbOkvoMOTzbWHpUhyniMfczGEdCxOGAMmvRCm8xrB1+mSZicUist73nJNM08PT1JnC0ybkGKXz9YLSvC5kniZC7SP960QN9K5eXjC9/87htlThs+CrsnMn+Y0qSsoNOh2Vk48ejHLCwDnLyeE711aEWs4aP0MpvMSHrARU5to08svk0pDXMRf4g/D7H8GFM1x6gyyBUzuzK31cGyWHzSRFrknWoWoqzYkDg6K8psHhoPYxTkexV8PICvTiWtw3m3N7wy+SI1bcObwAp+G6/jnAFFTvvT97PqkRHUnCgEtGlBchSdndn0jLLPo+8AD//Nw3u/jXNvVWcWNwcLLhm29JZuBVMwGOC2F946NmgSYLt2Ybvocp3eO5nZFrVfN+5yfOn9F5f09+/fCzDZBICzFpZeC6XBmjNdlSX2PKc0CWASwj7LLoWxXgdo+6ZgHXuSKLPOkNEHRwUWvasHwj5mRIpSBrHgvNcxJo3sA1EZNOe/z+zJvRYGe5xNQfZRShBSlHaovHG93Xj9+OHg9JxwPumZWMcc0Zh2SfLve/1hFG26mF3fkSLbJAfFpCblPCzKY+IFe1JXq8nkeFjQR/rYNiBOCqZtXam5aG7+/chzvBS57D1R/BSD9paB+9TXJHl5TDadFh1C4wZ8irpxFNU6vG/r1kvS95+TG0jwjtNJ2LXWoJVGyYVSV9ZV+r+cHlBTmvQ97d6ZfGJHvlE2tGug7b2PYHpkLlJIg40REEvRi27GF4JmTpPMfrrfFmHcYmCikYLMnqu16IBpmKdJDVu6zrepGiy9oiUm0WgP62FneRT9c04OWUVa6Q0ZmrpQ1KDmuL7cQ+Gq8lPNQ+29j8/4KMPovY9ezONaAXmuVggN+REyEDsFT5omYppYlruaowiTI8XwYa1rQuxdOFyP06J7Txi7BiM7xESb3/aZN58Igsd1a893SFic9I18Srph/30s/OSfqL1ugRRFNuVDHIjaESU+IqzH/bWjtm7Y9B+LouOfQ0La9j6JT+3btwfA8fWwL998rTlF5hVkaaVwv995ffnItq4jOc8lq7RpL4ABTqfTYOAeB7uiiV+lFrX3LzrnqTdFueMo7OSw1CSkysF5RJmsp88OFruGgUge5G8AReVp03ymNRC7cTGp+PDhI+f5HefzEx++lV6HVstIDKSAlYK6ez9m/vkQ1cLcaXIm9s+WnNoekZve8B5a26W80u9y3G8S8/onMsTjejgOzu0aQ30IzPNESpFpPjFNJ2nY91F6ful8+YMf4v/Df+LP//zP+Xd/+qcCntWm+yziwiSshbQBynVqsllLJer+Llqg5FJZcqXklafTiSkEKJXoHNF1Xu+vpOg5Pz1zZ8Ul+QzX65U0RU5PZ1ovyPRoib9l3ViXlTQHoo/0vlt4R5XTxRRU/aCDroMmNLUyTTPv3r1jCpMqTDYFDcSwwnkpagQ8aAo6pF1CnPZ9e7lcOJ9OLLc79/udKSUulzP3O9xuVy7nM5fLhXUTFYvMJWvKFnpqK6okUBCqN1zT3lOV9pWSlaFD2Mya+fjhW0orPL37jKenZwE01egipVkALj3Log80qlj4B3MJ3AEAFLQrZRuJVSllDBm3OGEywV0aqCz9AEEk1q7reog1+7rctm18TYAr7Yvt4sbZ1RzKeR334+B0kj44IUUaa7rx7fI7rtcr27oxJU3GmzC/A+hoBbITsUmTpune/TC7wIFT5YaccRXBHaSHTz6bPGUZu2HnQCWXPpjHZZFC2XsvvaW299yhhUXvVdfkWWLdXjx1NJ/wDOBXjDzUuEEoK43/8v9e++rwnjhk4WHs/6PqxQrv2vtDDvW9+K4Os15VSWb1uJ81kRA7sA5A2DlVv2h+Amgx+Cj5s5e17ogS5tG12vINex2BKHsd89jfV9RZj+BRNSPPRaSNvR/+3v50qsKJkuQI0xRHfuC8J83TyAV2YSg4dYgoGh8mdX2WZ1epNVF1Zmrp0PU5VVWX9N7GObf2dTCcPvpRGIpDcvxkC4Vdvz13cbzdHs4DW5f2snPBZlTmrC0MmuOIbMAJW+52tY7dc9vb5hAavKeWxrpmZqTtKJwSp6qKgpzH+u1t0xxF4lrwAUKk5t+DeujrD6No0wdnW3Fv6FQLY6fWtSNx3hOco6vVkU3bEZAdbR8o/aFirrUM96WYklqQavNv1yqyq+wORF7n9kr/+5X3PuD2U5rbt4j98e88exARlEcWUHaOKUTpDXKoy08Spx9FKLpzcoVZGYZaKXUhlxvLfcV1JwVbqSpTEDtV7+0+WUPwo5T0+6g8e2LcGj4F5um8D04+MEsjIdZ/z0XmebTeeP/+c+b5RFb9sE67YgbctlK2hUbDJ8/lNDNNjt6kt6a0O9tV5oLcHSNRgX74dz08Qa9J3JW8c8xpIjhpvs5FHPpCDOLWyB7k9rkhb/u23PeDxaFYO5rSeMQe8rgOBjqp8hJAA5EgLDGJ1bRTZooBdFmRgBZxfi+exyG1F48O6LVR+2Nzt8nHjhLJYzA77i8ruo6FkPd+SICOe2Cs26MTmBcXN5M4yb1RZk2Tejm40UOChyLibWE7ZFr5MOH8sIds3x2Zl3meH9he+6zHPTpkxrU+IOp2UBzBodakL7L2iqPidN29vHzgfr0d7p3EkSklYtI5W6v0q1wuF87nMznnwbodi8fehd11zlNKoxRxZJymqFKtqAiglujWf2NJb93vXYzyPFJKDyyyrfEj4CIdLZ75dCZNEx8/vop5UIyseeN+u/GjH/yU2/VFLJ5bEYRZbbD3+CA9td05Kk0ONKeObuFReuucI01R15EUdcHvJjCyr+Jw0bS4HqPK79wuibTPdDxYbf2mJPODWitMKap1vRYGpbHkG19//Rumy4UpzfzxH/8xf/VXf82f/Mmf8NWXX1LWlbLB6XxhBfK2QC/4ustaHeL66X3g+XIZw4ibJuEhOnIu0MRxUGYKdWKUfjWXItOc6NmxLuK0+d13H7jUJ95/9kSrUshF75nPF+7LKkWGAmeSQC989u6Z5+d30Du365VpmjifLqx5o+TCtqycTifut4V7u+r6RuV7kkAVZXljjA+SQAMZLBnN9c6y3piniY48h9d14XQSxjjEBFSutxutB1KK1JKZYlD1jPy+ZbnTWhH2smR6sb7YRqkbwyXVO5ZVWGkfijBVpVBr5t2799IW0GS49+k0Uau4K7fWiMHpYHaR07Uuag7o1F6Youy3LefB+tsZaDPtRo/asVfeR3orbKUxTVGkxMoimJuo9wHfFGAN+2gBi0fCerQBxFV1gZ7miXlK2v8HLjjC+cxtngSgUWfL5qIWe/7hXBHn2CJ7JQQ2NNPqauFOE0bJqQzW99GK4rUP1p73sbiwlgTvPR4x12mt4WJQubuaXWku5724CKK99cde3sfcbR/8/qk4f1RBSByICmY+Fl9HAM/+PsYoRSqPoPrxDNv7Ax0B6YVvTc3rlHGiNVEi2M8jhj1SeCsI15CcTQsxY4vQUqeonNP7MIofHzwx7jlXq1WKoQM4ucfElzvcFQAAIABJREFUx1425yz+2n0K9qTHdR7X7VuAuVUBmfqhb7HUNuahSuEE5Kygm7OHIrGDvTd2DKn3NjJIe1ODsmbdq0lJgFlJmgMY30fRtdJaGWfksix7bnU4x+2zeOdIMSro/1isGottEthZf17u3d66IY7Dqv7QGXtBky67z97bPNSG97uksTvoeNYsCj5xYs2kNIlD+yR5nXeO4Jq6AhcZz+DANYdr+zP71OsPo2jDKvXDayBB0otkjNQx8bSNfpTRvC2U3qLjn2K/xG6vS0/G/8Pcm/TIliXpYZ+d4d7r7hHxhqwpu6olqtkTFwQL6gYaBLTiH9CSggCtBPAH6A9IW620kSCBO2nFBQEttRQgcMsNCQIsVWVnVWVlVndVZeZ7EeF+hzOYFmZ27nF/kdmtXXki8DIiPPxO59j0ffYZA3vbOjQoljPsP+vDQP6Fa7qprrxUxW+b8facICdQtQpYvDSoD5czjuxAk85B0gCtsI0t2NWmzucnzOdH5FwbmuFIKihcCwprYzYAZlWV6wyDDbQE9iSAnMMQRwxxACm0awaY9Bo9rNFYBusWpRNs64Lz8xOOxxPAMi8FYJxO96jBI5cMlxKQizoa3g0DJNEMzsPXgsIT1m3B0+MjAKWqsCRnmgEAcDpg2el1i1mJIYJgc9eUjng8giGB0mWepaqoCFRQ4RUxorYyzGi6G2MJ/Z32EBmyoM/eKGh9wu6c08CBWtWqVqGbmdqi/JwV7GQwiVGXpN03Pr8di/S4zgntKCs/35zOlhMKWAIK7xtFw72wP3pnYWuhdCj2/nz8/iz6a9Peqzb7pnPkosa+Q+lZe1vs73skrHfW9rvb91pfKvM+36x39B8gdi8UUPokplUUb+5HLUrbCqIid34WenUppTmNlDOgCGOPplkSySzV+ForDocDnFMOfhaVQam4Wt+gIK3ee8RB7mfR6+zPlbBX9Q11LYVlRlSXCJswSm8zSddSHA549fotUinYcsbD4Q6n0xG//ptfwXnC8TTCOeByfgZnUR00qhLYene7/o7GJCiWk6nsPMC6B4uCaJbwhXho9DJxzBG1cuuhsv9nlv1kqGofAPfOnNWWOO/BW5VgkLdWsPIxiER+SZIUDQ7f/8738Muf/wK/+PTn+PGP/wmGYcAyz2DnQSFivZxR8gZCbsOivdMkO0lPxzROalMdQhiQIYOYi6KELjg4ZgzOY2PGdjnjdHqFYRrBpWLdKuA9LpcZzhHu7o44HO5kzAI5jKPDvC7gWjQJrRjHoT1TEbk4oNSK8/kiRb/gASJdewWopRUCwBB0xinqUqHJuNFnWZEhSbRkvzhc5gtK3jDGCFPznefUFG+ftw15yyAXsC6EdT0D0Op6TXh8eo9xFJXLUjNADKaMyjKztLDHFEYwKtZNkLpxHMEsFDsqBZfLBZd5QSmM4/GEcZzw/ukdapUxIiLbv2FLW0McrChm9kW+xF4Uvp6t2hcv7ee2lyx47OMLK1RZMp1zVmXggKD9h4ZUGcOFCIhxwDSNcDSITyZgSyvqIujIGAcQi6AJuCDGIONgFPEXF8EYGsq8IZCHjzrYuEJ8Gwmitm5bQ8As+TcBIRtqHzRgr1WSa4uJANJiaFdArHqfEgG6JyUZFEVh0wiQ8M6KaK7dA0MdpVvkOrG6TVps78u/e4HVZsPZWCPAikD7s7bYTtrNxB/to6E0/ivXvq0vYvfnIIUXD5vJasXjHgnbE0P5iyu7TdcIjh1LBC8+ZG3Zdfb2zY4t57ffK+ufI2OGQKfDsrSnVAi6a/ug9wmSrOr5r3o9kHmw0lMdRIzJC1VfUKMCT9LvZj6pWvxA5qudTJezxNMBhIDRYmS9xzlPMGplSvtXX2y9Kp5DGCwxRrDmCJYICktNw0RGi1eN3QLI71wIGEPAMErPHVjm3OZcrtgqFmvKrFBBkU21WyM1lCLI42U57/GiU/Q8AFyT7jndR12R4Ztevx9JW3PYaBREAhqEDSsB6u9uN7C9rn+OLni5rjLcqkkaHMoWvKB/mNweMEgaUNFO60Ma2W3Vpl1i994+4XvpvfbqN3ByhKfzM9JWcHfacHf/CuPhKAsScn9yyW3jp5QbR5hQILNq6t7XBAj9BVUNF2vF/rrpF0BryGywdAgopapkNDSZdtII7j1QxTkuyyoBaMqKBIocNIFRkwS0UTeFg4P3A1AYPo7wBPA2y6bQ9cBchP7lCff3JxABJSXM8yyBokWE/aKCoELizyRoC16SNu8I43SQ5LgyuMqGPxwPraJi11xKwePjIy6XSxs9YdXDa8N5vf6gDsQoDzt6JOiS9dvUWuH8oEqKO43Oxgq0SqVeWiqbqOTp94ZEgaGJl6p1QVgxlav2SvmGQNn6srEOQSvC5nB6pOI2uO/X/W3iYIa0VWa9U6647hFDezSQ7xMzCeSu980tzQWAqsztAgn9XrlF/oDbMQZ7cna7/16iXNjvemphzhkhOizbiucuYZP7Imbbhl3Xyi2oH8ex9RxdLpdGvbJrEMQmN1piVkEG56T/MUaRT05p0UTuxo5AVOpqZe0XDO331qNzzTTYnZAUXkQxMgwDvvryEQzC/cMdxnHAr3/9Oe7uT3CeMV/eI6UZJSc4CEJq1C1mbg4TJMqh0UVFi5WSS6R0Glvf0otlCdrrN28wxEGpz3IP5nm5el7WS0C0B3IWPN8Gd6UW5DUhew+UKtV2pbwoMQtUCx4fCzIHfPfjI+7vH/Dx9z/GJz/9KX748cc43Z3w1VdfYUsZYZiAOGJbL+CUJIEBAZ5ALoBRMC8biCRpMToo4FEg75fWi9oC7qECVBn5csE03eN0HEVOXxPb56cZokg2wHlWmqHH4TBJX6FzOJ1Ows5YRWrfqkC1VKkcQ2xd0PuUUkLNN2I4mhjv+37fOzmntm5szW4lIecVOVfMF1JEnXGZz5IEloRtXRF8bKN4UtowHUKzL8/P73G56POLHuPrOxUQqCLVnTMyC02z1gpXPZgETaPCWFPG0/mMbUsIcYTzAZd1luRlGOCD7CdyUJERUast2cZ1yMiMrAJkWi++YhuM49hQeEOamo3AXvk3zKeUTQevR0RVmq153+PktAgTA0TUSNY5sIK5IoYKEYqAFOlqQS1Z1txW8PT4tfQJ5YTpOAjxs7Ki+Qt8FOQNlcGuAF56mKdBxGhszmMMnSR878tQAZ2J6pw8q0a/DeHaftaqCanXYnAW5IkkGM3Zw20ryDtEH69k3HsWhDlOaaUoIFgvNHVjZKoGy9S8PEiKrzbD156K+Y/dbiidlfeRUPKw0VBxo6dC90rzb3oedlBr9bAWEZvB5VsLSy9O1qOJirBaoqvn6nxo+61WbWOwzwOaPWstCvraE8leKMO3Y1u/P7MWfplhnIq2eBUgkN/tbTbMkLFEdb/eygykDW4V2mJYYytsOyfCJ6jUetIsdgMqoEw1JmvVqILK6bozYTlmGW8gawwIQVh1t8mwXbvtKVZ0Mul59gjuZZ7hNvXvDASSO9DYJo4Q4qBU/ps4WNeF3W9Z8xqXEcBmJ3RklKwLgDUOkyKl9CWXLCJ+GwpIi44xhg/21De9fj+SNuyxNt18D6DN7bEgF9gDRWBftO39Dea8lggFroMU2yDbuu2y9tiTBOLrEyHYwv0wUO1f/WJqf/tCoPvSuV/dEz1GKQVMItW7rQUlM0Ae9w+vUGqFdxVZZ/Zs64rL5YLnpydcHs9Yz9LQTuSFqw4HRwMc1DhptRMvBN096gDo4ExI87RU2CKgoYAjCN1wnRWRyiKdynIfue4qmQ93J1QmUfcKAVQL1m1DgYPPFdE5sJPEkGqFJ4j0PUuVkLyirh28//JLpJtZSvtSxfQR03jEOAwgTwi1yKDXIo57mqb2TCxRNdUwQ3HMkdw+21taliRHu/SRrEdDbu3Z27/SE+FDgNPBplb9M0fREkKS8mB0O1e+Uf2qqeu5tndYEQarQJVSMM+zNuHuQh1WQWyNu7BALbf73IK7Uq+u335uNISWzHoPF0TYot83lrTac5LrZDim1uN52391xft3BOv5tt/b70xVqq+y9ZVJe/X0CVtDV8gMXT9jWxPOOeSScT7POJ+fsS5LoynXkmV/QqiMBGDNSRnWdHWPTazAKGfN8fDe4MzVlA6rDDD2Iqywbas0M5PQN2x99WMNeuf+UpJ2ez8M8Z0OR6RckSvj7uEep7s7nC/vsW0LHh6+j5QXPF+eAehsLqV72Jbw1aHSte2TQe6yIh2ZoxR1uThI/9P9wx1iDBgPJ4QwiB17flalPVHnkqBZaMByH1PrT+rXoK2JNgaE94oxVYDbjCgpAm1pxZYzKoCnc8bdw/cxxAkf/+AH+ORnP8Nff/LX+Kt/+ld49eYN/vY3f4sMgOIAkKjiggRVl+HdATGKsua8LK2fU9Y1AeRQoPLrGrwRM4g9Joq4nM8454pXr97g/uGEp/OMlDJyrricZ4APGOOAShk5rwiDx+l06vqkBF0jcljXDduyYpwmjOOAyzJjXTdhHMQIIiCxqm1iV49NeZO5ZbQrRt4GS5IcV2xpBsCYxhGokqyldUVKm9o/oc5xFcpYrgxQFXETSEBXakUugC+CSrkYRUF3ELpoyhnOSfUeTFjWFeu2wRVRO21zWH3AdJgwTCO2vIlC8CBJdEXRvjCxwTVLMbMJNVTprausYjIhtt408wOGnOWcsSxSRIjDIKqe+pnmD8bDQSiSLPQqch4xSu++qUfKfZWNI0iNidRk5HSG9HWizTYjncOYOMF7wqvXD0jrijWviDHi/nCA12KR+R7SYkqpGZwqyrZhGEcEH4T+BvHN5BxciCDn5JkXKS64bh/3MYIhiDJXriIqDd4D6i8tgHLIWdERkgJO8Nc9gtYqQM0fkOYSLS1r66+UIvPrdJ+LPwC8399ndq5nE+y+omgRo4vDIAnrbdImit4qyEP7ufQ+w161Su84EWnQ79Wv7T5KzoWbamLPFLPvJVnjVnzFTbJgPra333KtUiA2ZHH3CfIRcqyqRfuiMaD6OddSuHbfW9xhNE6tZHgiFZoqQuHNGRsZE47AVRJcT9rL7iyBxY4G70HQVQx9CxjYNRBdJ2l9ge4KpVQwYUvbfl/1mkotyCVr0s7ImrB7VbTl7nlKXaDABxkxEsjJmuHS1pfFgdZPXiuDWGaAysqXcTOO93UoH1zArMqk2ge9bRk5X66Q/W96/X4kbV3Ows33W2Zr6BRaptve22XSPZy7/27fvH2S1Fe113XGvMzIaRNovvbVkQqDBxwgQ36BHS7ma15w79j61y0M/m2ZdJ+IAioVbtLiJMpny7xgiGesyyJol1ZAC6oECucL1mVFToxapZESUF69mUUydE2+mITuJTPCqM0rsVJt1UqOc4B3Q6sO1Vyw5Q0prWAumsCJkRPDIzz2nDKCDzjeneS6vAyQdgxwLaiyo5u4ROEN87zAVY8IaYoOwwFjDGBf4KJcM2lm3dNc9E62+8ilopKIHYQ4YJwmuOABEpqASMxqUN+cEqn88gEhRGxpw5dfRhjEDe5paPuzu910Dg63rx5t3RMEtMpQKQWVgcHLANBiVBa7JhO+YFZpXOOQkwTL3D8/oED2xz4DbO/LsCShlAJvTd5EH6zr3pgmHWBp6J/JP99SEfcKpQkWiLG2Bm0pUcldghUw2z6Rz7djAlbJtn4DSfrsvOT9tNNWHAHsr3oce+SlL7rcPpv2gXo+dv1SCRe7tMwzHp/eAcwyCNy51oPQ+vdIgpeSC0KUPWPPwPa2FUX2ZJm1cpj0+iSgjHp/qypNXTu33rbInZaA2p5lwDgKPex8PoMZrUkcwJV9dM5jiAMeHy9wBNydjlhzwhe//gKnuxMe7u+lelgTtm0GKQokBa3dQYJIECSvQ1SZAaVSEwTtiMHBDR6vHh5wdy9CFrkULPMFj9sTnp4eZR6XD4qEyJFMua2UPZghkgGv27ZdIcP7fpPKPVjUF5uTJ1ITr3aLgLSuePfVV3i4u8f96R4/+tEf4pef/RL/4I/+U7x6/QZffv01lm1FHCfEcZSeaBMPUMQhxiCFrCKJgnNBgpng4CHjRUrNIB0y69mLxkjOOE0j1pJwvjxhOt7jdJzw9DwDJPMNl5kQ3FHksb2grnASfGzbCuc84niAI8K2bjoncmsqsqLOt/cADoMIj3SkMKzbBubSkOFtS03d1Nb6sixIaUMqm6IpCesivcYywFxokqXIUHRBRmujz9noEgA4HCZ5vkSAYxQUnSHnMU4TjuEOIUhfI+CwrUnXhgRu8zqj1IpxkDEJcZAC2rotcEHWRy0V21ogMxYP4ArkzEhJ0FrvHZyP0v/W+XErfNyiHI0Gjh1hRrOLQj+1V+uTBVBLFrqhC6hcda9X9ckWbBftw5Oqp4cgAblWlJSwLTOenh+xzBdwLvBxF2ZIacM8zzie7hFVYMxB1PTSusqaL0kLhMCWqvZtoQkw5FJAzIh+V9297e/u+0ill0ttpxX4NJl2RErBEz9dSwW73ddZsaq3zXsytQtsif/Yi+K9vSZH2FJthYdGlyZV/zP7KFsd3u8J4n487v4TOxaMKgpLBvcxLS25bM/d70kSG0qLZqeY9yJtCNrWoOIbgKp+6n+1lit7anL0rrXU9QyVndpp9nz3bfq7CnjfsYCK9Iq1pBd7iwejGx9kx2YTWkETCbQ2HIWCAQZSldVGTNqbqv1bXhNK+QBUeBGssbVR9mTZk1N7Sm3siKc9Nrjuj3dtf+Wctaizj9QQxFg0C4IWXCqUFrpt8m8pWHJGqhY7iJCQ8xF304RpOgJaLJRKcZ+876ik3A5u7Ccb9ShbWIsmRTQziBm1kiaKilJ6DwaQ8nUf5+3r9yNpgwzPJIMWq8m2SlCqmgUNWpU1ZBthp/aYCEOtuUvWNKln27CyuGVTb1iXGSVtoKo3G7L4rowwADH1+gBoR08MJZENbVvdKjN7oHjLibZXXxXvEzYhs4jBcSGggehsqngJl8sz5ssTJjoCpEmSq4iecBgHcMoiRJGLWhFpiPdkAzV9S3q8QYvMcFxAuphzKbJxdJ0SRB0SpM+pCq2DWNA2iV2q9tkxMhGoSn/ANEw4Hu4wL4sYY+ewpVWqf8MJHD3iEFFQcb6ckciDEoN5QQwZAzMKOWD08GHEGCXwrKWKclsxTrz2YYDguKKiauLgEIYJFR6ZncDVRlonee4xBhyGiGmMiMFpUFewlCTz/EAQUTULPyUYAO+iLo6MI21O+lrh9MVqUmWQC3DwGEPE6D28AzYkZE5AdXDwCBRUTZKaZHoLPIkAJ8/XmpuJGVCKUfUBqHsTMpcKsn1UKiqZsI3SBhQpq7Xu83bMTldBP30MiCFK0GDJqiYPUkDWPSsXLJxx4Vpo8iZrsFWhrOeyN7jOqUpyliIEFLHUnkWxCaaaWMAoEjjAaa+V0P76WUC9kIIF9WAga/M4LMCqVRT39L7WUnGZz3h6ftQAYRcv8d7DR+HBMxFWFadwOjhcb4EmTaPaBxGmSEkokbUqndW2rJfhqDEGmU2oiq9GfQveSzFFHW7eNkEDnNgpUofpYPtAB4O20ETKNpWFYzCNE4YQkLczXr15BfIZDIcvv3rE69ffAWMUWXVAPq+rWjpN1OxeWMHEaHmOqNkx7wjjEHF3HHGYAgZi1O2CtCVwISBVRNuXrXCUQVrN9FQB77AVKVpJ1VzGIVjsD1JRIc1FuGTp6XEqIuO8Vo35quei1AWP73+Dx8sb3A3fxXd++If45a+/wF9/8jP8xX/+Y7x5fcJvvi7YKmE4vMK8CIoQvAOjwqGAHWOcZK3GwSEMAdEfAEeoPCLnATklRWazrNDopM+NGNUx1vU9mDfEccLdyWOeN0HcEuPpKeNwOOL+bkKaL1hSwng4AhyQE+OcF0kcQ4AfIub1gmXbMAwi919ywbrMOg9QUPh5nlFykfWhBQPnPMDSe5qTSnqrwARrvOacyGVvpSCVKmpzavekz0jNhhPEiGsBpwTUClfFRrDu2+CBu7sjCAHLInMJvYs4HO7EFjGQtgQfBpzGA0RQq4KxIcYJ93cPADkEH7HpQGCv87TStuGyzjge7+CcQyosAZJStw7TIP2oJh5TM4Y4YBoDAIeakxarJBBuvW5FNyus2FrhSHpitk3aA6ygNwSJIZZtRQWBQoBTW5DXFaVk6QknQhwjUpHetW2TxFgUaQucA1wAzpdnYbNkQU3Pz8/wwSPGCesm3m06HDAOEREMcEGuBSknbCkLBTVnpeZVOM8AHDxXBOcwhNAo3hUsvfNZZNvjEBG9R+aKrLa6aLJnMc9ahX4qo4eEDeLV94DQxhBxqa1nyHwns/idGAdlFUDjHEOkdp9qlEShumqQ7yXD8eRl7hogAQoJ2iE2XmNOTT5uER4bCSF/Kj31/Xt7cIBQ0J2SrHNLcHxH+yMvrSqqNilxLWPwDoVkri7I6XgkoRBaRmXJHBTlMb8viVmV5EzkbFvCR+BWkCd4tXGEXLMoeorxhI2UQN2Lf4CoAIPMX8AEPLv1bsu/6qxOvS+sPb6VUSrgyp7ggIq0wrgsegsmHV89EIK0ddQqA+JJ5urJ6UhCtaWsqK4EF1WT06rUU1NVlsKcAA1WWGapMILioLP6gEKMrQoNu9SKVCo+/vh7+JM//TNszzP+5pdfIKUZDBFVMjVNBst9h30VOEhi6Z3MNE5ZbTz5VkCXdSHPyTmdEWiLp9NxeOn1e5O0CeOrYWydTLpSGViSB3Hc+0VZlZrUuTckpPXGEAiuVVhqTaIWVpJuAKXxVQlw+yqPVZUsHmbsFZs9+eoXLXBd9b6mlPTVXzt3O07/L8xogZG5gGxILgtaxCxDWS/zBeu2YJjEYBWu2JYZ63LGOs+oOWsFkVqVT+hzIk+9N2AyvFd6Y9qQSxVBlqp0KmbduOKQmBaFufek1AwZyp5YyowdRWOczN+RIaqxJTfSkO2QucJ5QpxGrJcZc85wMQK1ajVkReKKh4d7+GnCxlVn1khfnIhxGPVQK3PKfXfQ2XQxYpwmDNMEoCIX6UkYhoDDOGIaJqFiosCjwtWMSpaIMVxQ0Y5KTRzHnj2z9C055wQ4IkOLdlTnped+VRGDF9p3qfCsg3EDITsSmgarcCQZ7XCnWFQVBSB9byq7tCxBBDMAqaT2tBGjRgKm2KfOoBtUCshaIE0UHZE6833GmnO9C9X80UnFjLQAQYqsuc7gSae3rk0yGXqruAImaCO9WSzKewAoRMAFDENECCT0Wa3meZU79y6AyMO70AaYGt1rXddG+5ICjxZIFLCtVaTBAUloXQXAFU9PT3h+fgYBCD5c2QtZS9L0LT0duaFDdt7Sa2aUHW4U1dbHWNAq7M4RfDD1x4o2Y0irq06DDqfBCjPajBuzh1ylrzFti1b0Gc4N2B2aFaAI3keM0wHL5QKighgY40h49/gOlQn39x+BeUDOi6iucqem5kTBlvX/qaMpkq0jfe6OuAWgRQdBT+MIlIIC6V3iWsClYNsW1CrN4czAplRJ6RGDzr/q6Uvi3feht3J5IXh4WHEMzem64MXW8U6/IVexbc94PL9HuHuF6e4OH//Bj/Cbv/0M77/+Eq9fvcacGb/+8hF30wnhvmCZn3F/GoGaMIyKIiqL2gqQIcp6ycmBqgeoYisZJRWluctz20oGUBE8UMoClxiHwwkEj3MtSHkDc5Rkf004jBO2ZcP58YxhmlAywwfgMs/wkRCnAQUJeRUluDAETNM9iETQY91kttkwDNg2WSPH00lsZC5YV1E/e3iI+/50UhyN04Dz/IxhkCp2GhOSzg0zIYJtEapkBVBIKIjDpKl8yfCORASmShIxxAHHwyscDoTLZZZnZ4N4K6N4hg8mBFJAteDh4YQYBrVfHlwZQxgQfZSkoEph73g84HR/AjggXRYQEYZxAJCxLGeUXDAMBxB5jINvhWRAjin7x8PmCxKR2OFaQEr5S0lkzWXwfFWGh6g9U00gVAxBgtMEwpqyFFpCBKn9Jw0Ex2HEOERsm6jnheCA6hC9w9u3b6UYxxVgKfJ5kr+5v7vHGEcUCsip4pwuOATgMEbEIQrqqoyLSdGXbUu6P0W8ikjsYMm7arD01NIVndZ+1r9M6t57L1TJLcm9jhGOQkO6XSvUWzBbW2LMWmhmzipKAqgH1OIsS39QrfA5gcnBk7RxDA6I1h9EDqkK4sVaFKyl7lgJ7e0Nt/RyYO9lAvAB2ui915liRktE59OlsCW+tU/aCAONaqsEkSZnx3TgAIBDQ6KZutixOBWR2RkH0OfQYuguRgX25FKSRL0WJ4q83huSBgS9/7jqv2NkLbyYlyO8zBZjK5YJSqLgSMdcY+7m3RUwX6s0A2iy+z27RoJTPYZ9sY7poL2VgmtFTdrqVIrGRADp0HqLV2Th6hpzDuyF+RURsaaEzMDdMOIf/umf4o//7M/wxaef4ze/+hI+jCglI5XSCqpW/GTI2nIkNn7bCnyQYfbHYWzIO18uQqMmhYFY7QvXhuG5Pit+4fV7krRZoiUPzjiie6DL7fdWDbVNfa3mIpXr/WVJlSVOexDaFouzz/12ef72aXTb2LoH3te9ML1ctS7auvfY3NKyrvjZbJxotyMcemxRJJSAfZrGXVyCGXlbscwXXM4XLMssM8IYsCGpdjsIJI24RYKjWivCAFStCGj55upeWpWL2YaM7veof/VJagW3njawSNxKxdB6jkTePsQAklkGSuFYMA0DDvd32JYZZVvBOWO+LCLG4BwoepkFNE14wlOr0F09L5ZkQRJ2qfrE6CVodA7HaUIIB4QogS5XgBXCLixSyORFMjkEmWpPWgG7TlH2431guG/O53Zd3SZ01ZqJawWxQ3AOgTyqNsy76OFjQCUxpj1Vx+gCtVYsywJRMvSKxpS29vo1aT1AzgmSZ5TEClUAq0qVJBVxCXt1KPidQilrs6NT6vt79NgS6r1vbO8dcF5m9tg59ecysIqLAAAgAElEQVTVZHp1nxymA+IwwfkgUtgaIDtHnYy7IN9F0ddt2/tWTbHtpVdQ5UdR1VP02xG2dcHlclG6W9TZMrk9v148ppdHl5/t/bh2Teb8jTbVftaSDkKIkpRa8BQt8CNdN3Vfb3I91Pr5dMk3Zw3Ivo2KTvcFp/b8tFr9/PQsQ069x3Q44Nc/+VmjCpe0Im0r1nnRPrXanPjtV+/4vaKPDBXl8ILOVBCeLyuWNSGtK+b5gsyyx1IWtVZyHqX1sElfjFOf4W18hNrwbUtK/SRN3HR9yvjvLhgg5NzPMNqDB0cSeJ+fn3G4P+N4eoWPP/4Yv/nVp/jlLz/DX/zVH+C7fsR5LRhrxTS9xfMj4ThG1LoieMjgbX3GW5axDs7N+qwqSu6pYQUoFdVDZ21Bqu/OoRahI8ciyJrzA56ezshFKEDv3y94+/oOr169xvvHJwTvMY0DKirKIk3vMTIO0xGJMtKchLLkGSICFMBVe+vautgHc8vsId/2KwCVvgemw4hxGqSKb7RlcpiGgyArLLQlB49pOsKFgC2bfQSYq9BmWcRPxkNofVKVBREZxwgXggq1CTphYy8AYFk21JowjAeQ8yKjzoZmB0zTiFoL1nUBKXvhcrmAUCR5YUAGtDNcFIQjREUqlGbtnGvqrzsdW3rRrGBZSxFqlu7FnDPCMDbbBljBVMbQbEkSWxoGDFF6WgOJmi9YZ5QKvIkmXKHMiiqnibv7V5imE8IQMU0jjmPAcQhArnj/eMHGToqbtYLLhnVbsc0MGo8IYdAePeurMp/PKJkxzzOYK6bDCKOktQIt7/3evS0zW202MKXU3me+zjmHIUbkXK5UAHu/dOXDnfWxmQCF0IDNTzURCe+Qa4X1kBk1uxWdwU19nODBjq6O3YqfV+011ie2+6KeSm5Fnr4v2M79JTaNfS/WyOt+ktmyJqBABklDBaxq0elneyuOfab1VjabRh6oWUGJXTyoPz/7mdlo0sKfZuBSAHQMx66hiZ53O95fe3+v9s++Ps7tte//Xt9Pewbbtu33iagxY/rz/ab765yTxN17kGoQMAvT4fpE0JJ5dlJUIwbIewyDQ2Dg7Xe/j+gCPv3pX+OLX3yObV32P2738LpdizT5tdm3nHeV0fv7OxyPR8QYsSwz1nVRJgIL6ttyGwbo29Oy35Ok7ZoeCOBqI/f9NcJT3k/beMOyiK573Bq6VRi7UpDmxuqcoEpvlswAHwb+t68PkLirRXtd3eivz35/+5m9yMO3HY9AkkgEwul0wul0hCNgmRdc5mecz2c8Pj5i21alEGkViwGq4sm4BXkWXGpjZUVnOBlcpApkAaSegPzj9iT0qiJy8zOpJHgZK8AMIAnF7yQ8e0k4ZEjwOA7gQFjXBaVuGIIMcg2OUHxAcIQnesTT8xmUVsSjCIZcLheIilro1kNXE9LvC1eE4HA6jHh9f8AQHZwn1JpE5StvqCwUWOdlRp4nGQhc4ODYKUVDkCMrHPTP/cUv+WVzCua4ekMqa8O1xNhrwz2xBEiFWAICre7mnJFR2ufaK6XUaGn9fbBkzZroTTbdko3Wg2cjE4T0pAZYXAx5qbK2BmiIkIDrrtWqrZWw04NrgVPJf7vuflCtBQTDMCDGQXtWgMPh0GYw2j2y9wKS3Aotq5OTZ8aqkt9py1i3hLSJuFCppckF90IrV/uNCFln0JjOSUoJOW14fnrEuq44TCNiCEibUNWsp8aolj1ytgtiFL2fdPXzfvjuuq4axBj1ymGXrZYgcIqjzlrTgOjWPtDuCG9fhaug5X4fZ2CSSxUAhQDyvp3H3cNrTCqk8NVXX+LjH/whnAOWJEgK1yKKYWxjHK73fz82wWwG6yw5dh6FgXlNWOdZgilVUss5Kx2cmo0CidgESERtALHh2VTWSHoWYhAq7G7zRdqfiIAg9O0+MJRgvLT77Ww4MAGoFXlbcHl6jyEOuDse8L0ffIxfffE3+PPLgtdvv4P/hDx++6vP4DwwHkaZXbde4Kkip02QTdlCyIoaOkVCnQtgWFEiIKOgkp4/Cc2BWHo3axXl2tMdYTycwBU4X2aUInMmv3pf8eb1G7x6/QbLIj2TYuuOQou8LLi7v8N0f8QWVuRkw50FNTOBjefnZwzDKPtwikhpxbIkIDjEOLT+KOmbA8ZxwLatmMZjCyC3usGoWrXKQO/T4V6EO9YNo997wZZ1aappFz6D4UA+IgYCUIC8SDHHEWJ0jRJsNC3nHEI8gpWOnytpT5oUauanZ7z2Hs5LolMLsOWEysAYo8zDg7BW0rZgHD1oCNi2Bd4Nwgpg36S4nXMYx+kqgWMWhorIie+oTKvqywYVxLgwPAqiE3rzVgvKuoL0fTZcPOoaLCoEMgwR4/GAXKr0E1uCFAKO0xFxGPD2ew94dTri9TRhe7pgu/wCLguJbi0ZYSA48lg26XfzXtE9v9uu1idEAafTCdu2ygiGss9oM1Eus919AgGgFcX6QNx8jBUOE0T46zZBuv1Msx1FkY2+uC7+XpIN50RV0tBXUpoekRS2We1fBQlVnQR5tefYJwN93Cnnldv19YU565nrr6H36b1fsetrdpdZZ7ZZIaRhfjCDIe+1v9/ted9nbr3kLdatWRULSRJBu59ot2q3fVUKIMQ38Wz3N3YvxmG8SpzsHvRMFSsC9mMX5HuLI/vY+iYx747f30cR6NheTDqJ6CreAbSdwxHCMMCXAqQko44swdQxK+245DWmSjLKiQHnPV7d3+Ef/cmfgyjgJ//x/8VXv/sdyrK1eNli4g8jdTSFTTvPWvd5c6aO7Jw8N27jKOyaWf//Q0Cgf/2eJG3XC6Kvzn/wzm6D94iB/G5P3OxVa5aZUtaUBW4bXxSndJG98ARuF9Zttm8/v32/JYS3C90M2G0F+jb4h1bSbY6YAV4SfFYUKkhpxfv3j7pxMi6qBpi1oZy0ot2aYwxyVfoBilQ5ZT84ZM72VyJYxDvXmVHB1bVr8tgTvL4Cc3svCAGsoh0g3YRpQ9hkuLCwYyqWZZPBsoNy3gmYRgmOz4oYORdxPN2BGXjeLoB3GMYR0YddOrderx+TlRWKnlCFHVfkdUFZBZ5nztLzE73A8M1Yal8hM3KtyGmvCIEEDf22157o7uImvfG+rRC145L0KQ0xgrzSCtmkfm1wOiOjyBDuzsD1aFpDNxQNscr0S9WvNuewGjRv1SwZqBl8aANTYxQ0xqEidLK4llAZ/SAGSe5yLZiOp6vkJsbYhDBsT0gip9RM3R/btrVh1BZUWNJZclF6oqqB6XDKdU1gFgUrZnEamUURrr9WO+f+/6XAUUFskt3S93M5P2NZFhChjZcQNHQfl9B/rlExdscmtKbbqqdVppn7xukC57wGUNTx81VIYUvNfomb3Onh0nuyBwdWqKpVaIXO2ZgHCW5ZHXaFoBLeCZVJKvcThmHAZ59/hnEY8PDwgJoLShIKtSeCJ1zt/35N9c5dzW5bW4I+ZdQswXVEhPMiypBKFjK7AxhKNXbSf9uVYjTAYB3fAUGimZG3vZ/OQeTFiQjBE5wTqto+PF1Gojgn9FuTISfvELmCvEPNKzxJEeGHP/wRfvub3+LTT3+Bf/z6Le4PE95Fj/fvv8LgCefLGWVbgJIhcXcFkQxvPowT+Djp2oiCMlZgS5LMYBPapwVLJmBko0pSznh8/x53FRinI3LJuMwrQowolXG+XPDq1WtMk8zPKxnCYFABl2XdgKgjYKiCcoX31Br4Zb15hDAAcJjnBcPgcTwedC/JGrV9Xrm0AB3wCC7CsUfNjJI3HA8HwMn4CUeMGEd4H7EsK4hkPAzUngYfcH//CtuWRExkHIS2FaDFkdShNg6sw8xdDAjOo8KDVVlYUClhdfgQkLK0U6xbwrycMRw9pnGCdx7rtohIBFX4IAXRmpP0uQWH6IXqXFXdkihiXZdGIZ2mSVhBzimquo+QcF1AztiLts57eC89XJKA1uZLiISWnrgi+gAfvIiKLAlDjIjDBASPeVnBDCkyOoAdYWNgI4igFylbKW/YUsGaE1KuCKEoUR0aSArrRQReDkrtFsRmmiac7o5ImuBbgtOzAozlYfbb0DUTFZGRJ7syrgXk67rPl+z9R4/omX1kKxwSNfsln1Vbcm7JlAu+CUARhCZZ0aFJDBU9c/r7Pfa6je8safO6BsSWGdoriLIwhuzva4cG7l998bRdLxvSDDGMlqyRxaeS6IhvlML3bVtNf+9a/7CiZV5p++bfmn/vbLT3HlTp6n0EiT0sTqlywR/Ep3txvxP+0nNvKqFXiZhcZztO53e/CTEz39HHTL1/6d9nr+ocXGsrCUIBrbUVbWstcNYED2X+OC99/yqSFcgjrwU//+TnuDzPeHp8Bgo3tUx7DpVzS7Ts1OUe7vE7eE/2jYUk+yMpki50VecIgUw8DW000je9/s6kjYgmAP8PgFHf/6+Z+b8nov8MwL8C8BGAfwvgv2HmjYhGAP8HgL8A8CWAf87MP//WY0DQBV2+DWOVjFNWt/R4QDelawbCFsW+OOy8oUFPO4h+tvycuft87Jv2NmF8KXGzn18t+A+C4Z161lejbjePfW5vKFpw0gJ/3fBqfJgrLpcLtm3D09MoPTxe5qNJ3wajloyqoiBgyJw0nSkBCBpiM5PgSANDUtCRmpIg057QykKUBdwb25euZTeGPR1P7tWyXDCNE2IctPlV6QHKSS6pgKYDxmHAGYyUpbrvnQRAIyLWZZVRDeuOGjW+NnYDyaCm7FZzwnx5guNN+qCItfHaa4XJicqRJoGlVMyXC+atYMmMZd50uHZbNlfXfbtOrtC27j23lTci0qBUni8RYRpHhMGBfcXTNuO8bdiWgjGMiGFAKbXRS4ioqbyZM90NI7fKtlVIZSjtTYLL0qxsaJp3MhQ7RJFnJu8QhogYRHY+QPoEeypjP1zWJJy3lGRuFV2v8zZig/mq4lkrmmNflhm1Cq1VgllZy6RqmYR+7p04uJxZEF4VngFIChJUrq+1cz63lT4b5LnMM9KmyIX2zwj1ROTXvfbsWFBpQYcFKzaDLYTY3mvJqDm7fS6bFaKkR2QYjGollTcTljFqcrgSTKidFPk+NPu2wDUMg3L9WZEQKWYZpcR5j3XNOJ3uEMcJRA6//e1v8eb1GxynCWkTamROGwjK63c7JdyOeYUy2BrTWoDZN5GerpDBryIDz5VQSfqXSN+79yVYFRoaWApS7nVd2LOMUZI4Qw0sqBtGj+AlkJOh0qpkp0msqc9KH3FFzQU5PaNUoLz5CDgccP/wGvev3uKTT3+Bf/BHf4TT8YCHVw94/+4rUIgIo/Qf1W3BEIPQh4kQ4wAfPQi7LH2t0kxvlVfnZMSCzGdyrYfTDE0MASkX5JQwHRiHw6SjHxIAwrJu8M/PGOOAcZBxCdu6YjiMGIYJ27qirBmnwwExRkzTAOaK9+/fCTUvBNzfPyD4iFnRuuPxAUQOl/OCWmWO3vEogfz7x3coRZ+1G2G0oOAChmlQATFFEXMGWBQTQ0BDIGMUMROb8+ljgI8S/F8uj3BgjOPUAv+UNnB12uclTItlWbGlijgdILQy6feqvLW2AceCxE7TiLs7oVWnDZKUVxHbOt2NAFWsa8U4jUqtTghhwDRNaqtIZ/uh2VPnyq4eBKd+VgpRpalfC0Uy+ACyItowwA8ygmFeZrEZqrRcSwU8KZoZpZjKrGrJHvf399i2jHleQOQw0gFLLjixQ2LCmhnPlxWXJQFhgIseW5mxzAkAg92ohQpBvwRd3yl1tSh65Uil9KVgZyj8riGwF6KNPdEXpsV+leajGsOEa7PzfQJoCVuPuhXe+4CtWGb2zPorvXdKOVa1SI3LyRGSUdIlIBQkW2fTEu1jjMxXGnJvqN5VW47GCAYOSFJmBdmdIt/b3h6Juo79OrZXs5N7okLKSgDtSVlfILuakdclMWbHRFhJEUdnQEFpM+WAa+SNu5MgQEVXVEmxo1pe2fSbf4lI2TE259Xal0p3Pww0oQ8+w/6/T1Bvk96X7m/v4zwBrOM3LC+oRRSXtyTjceQ+eRRRRRMEjlWMjwEujL/5/AtcnhcMcUQuSUdmCABCKnIH1KtnaIkaYMjz/vxz3gu81g+bdNas904ZDgEpyXzjb3v9fZC2FcA/Y+ZnIooA/g0R/V8A/jsA/xMz/ysi+t8A/LcA/lf992tm/mMi+q8A/I8A/vnfdRBby1VvgiwkahUJag9Lq1NdkGB/a89eHujOs7bNyNbHxaXdbKf0EKZ9iv1LlYXbQNt+17/n+u/kYfQbtd+8/QIEdtTwg9+r42Zm4WnTjgIAFdvKgsroDAkpBynJLct7pFhLANUmfyvlKEHRTO2Q9hsN2zdSuJP3gqTXDmVPVL8teWNmFG04FXRllGB2Eznr4/EoFDfoUMVSUZIEJuuydIFyViUegcMnPzWjPRNJacLteVQzjI7gSZqkPTHGaUDwSm9kEj6z3grova1FRDykByrhfFkwrxmgDsWQB3OVuBmFpD9+vz567ra9+mcOrs2xH49H/MEPPsbxbsLXl3f4xa8/x7wl+GAcdgkCnL9GeMyY9+iNKaoKtWenOViQb2jPMIji4OE44uH+XgfSBqnWk0MBayFEaGSBAlB3qoh9riVg5ty3lLHpIFdLruzGmWyx/Z04nOuEg5mx3RQ69mdge2UPAORtDkL68yASiV+462KLnXdPebEFn7atQ9e0WOJItlYt0g95dwCTb0mbJWwAWlJmlWgiNPnvfo/3+8Tsh1caqlEiATH2IAso9iohV27y/xIoXdsZq1AXXbfZKKVEOiuLtPIfEYdRVLNywvF4RAgBz8/P2LYN3/veA8AVXAtK3uBgQjbizPug4nYfOKcVRIIi9t0sIxI025HQBZ13gPbsmZ2qVXrmHHQUCVFbRwQj8+60WzsXo6IsywICMIwRBJGcl7Vi+1Z8hSDYSvtBFWn1UuHIIy8z8jEBLuIHH/8I/+E//Ht89ukv8Jd/+U9A9AbnecE6X3D/6i3ScoaLEdFBilA6MFlEaTY8X54lISNCrQQ4j7TpqIfCyEXoc4LWmBkTBVCAUErC89MjHl69wZs3r/C7r95h3aQf6ny5IPkVr+7vcX+6w5dffYlSAgaliNWcsCwXEE2IccS6yvo6HA67Qh88jN5hfnSaJqzrdrVXBFlJWJYF0StdrVa0eYW1mnqR2CzvEQaPw2FEqQXLPAMksz5DlERF5O+zVvyln69U4Y1M0wEAq9qd+HKZR6mMjyKJrHMeKWUcj0eNB7R3rzIOh1F8fyFsS0YuDuM4YBhGWMTmYwRRACezQbntI6I9oTHkR48g98yh7VEfhFJvvpq8FoiqiLtsKYsaca2iWFkr1rxhjCNCEMGXUjMYFYOOqdlSxjyvqBAmA6aDJs0BwQ8q8OHBboAbD6iZkBFQCEA8iJpiTYAWUq233OYIJh1mDrYeV50rR1ZEl01jSbQxIMz+lFJaMa5vATDWgX2GH0ITZrLiSo+mmE0UBook4syS7Ntn9+9jQxwVSWMdMZQ73yiCZbtU/K0P7hNFsyFZmQC352Xv6xMG8VXXvWTXtnj3lQSZuXvNFLMeb/my41WpULXz7X3jbcxo90yuj8Bwe4JmLRd2vJrR+0Fm1lmJe4JFRAhECDE2NfX+mu1eXYMQImjVo2n2d/34LSmOXsfDL93n68/GB2uxX1fOibDVtpmvNSq9vM8EgrxzgAtg0VMFc5Z3VdEOqGVByVVUdlPWHETGglS2sWAfnmeL9yxeR48IXqO43gfU6sBVmAan4wNOpzus6wJHz3j/7nf4ptffmbSxnNWzfhv1iwH8MwD/tf78fwfwP0CStv9S/x8A/jWA/5mIiG/vfn8M4IOH9NLDBIQiBHcd+PQwqlTICnrlxv7QJvfPkAB3mkakZUUu1xDs7Tm89LpN2l7a1P37biHu/nVFm7PklBU7oi6AIUWONJktpSADcL6a1Wp0ulaZ7g9F+n13nqzHgFIjdUqoGExLFDXAqlrC6Dfl7bX2vzO4PUaP16+F3niG0DvnGSqMIIqMuWSsmwwyRa3Y5gtKSljWGcOglDpPmIYjTjji/dMjWFWsADPAvBs7hgyI1dlzABQml4QHEGPGPoIpIKWCbcu4nM9Ytg1EQSg3EjLuRkCfT5+s3/LZ2/1QylX/u/75c3cvTTL/cDjg4x98jDdvH/Bmfo3zMuOyrvDEmFVuPQRBv/peAauAWjJm52Xn2A+iNJqiIXSHw4RpGhCjUyhf5HPnWeipmXf6Za0Mp0qX0ptQ2j3Rq0TOO7e9gNowU+dcQxMtabOqpvMehkte79nrIoc4GEWEg9ekSta1I6+fRy3wtCLQnhhdVyn7oCOtM+Z53pMsmJhJBtWCQamdRA5rup51ZWvAkjZz/lbJ7qXwbx2YPRPfknEJ2iRwuV4zZi/svu/3a3fAFmTqH6KvMLDO1CHn4XzAqzevMcQRj4+PTdhoGkf89JOfACAcDhPStukzlcSLnNBQTBDD9l8f2Nt5eJJZczULSgmtVBaliBE5VC9If1HVryZqUwqGYcAYgySOzBjHiNPpiOBkFIIpyVmyty4LtmUBwFiWFbmIii6XJFLnNsssDHruUv1s99cLfc+7AqoZaZ1RUwbGCW+/+328ev0ZPv3kE/zjP/+HOD68xZvv/gE+/+WnGKc7bOuKyzqD0wrHUv1nddi5bqJ+qbRaHyIqsqjegqRww6JsV6hoAuFUWVKogVsu2NYZl4tQWMdxQGECmRIpEqYYMQ4Rb968wbun9yiFcTgdAR+wzk949+4rlHKHcRxxOBwa+uv9ALAkYA8PD1iWGcyEw3RqSMo8y0D5oKMCapFeQk+EZcsoKWG4O+F4PGBeFizrKsi4B1JakUkq1n7wih5mrGtqaEjJImAlrIpBKLPrisrA8XBAdA45iQS+I8Y4jAjRYcuMdVkb2iABnNA3RaTIYl/GV1//DuARoAG+OJymA7btAriKaTqBq6CyeVuwbULlE5tBiroLcm7iP0Ro4jqy/LVfski/ZK0Vec2IoSI6Gf9RVA1yiAEuCF2P6yT0SJtN6AIKF2yFgVQgg9ujjHApkkQP3sHXgiExYhYVaO8c4jRhYI9aHVJOqMwYhgOGcAAUATHE2YasG/rG1ZQJE3Lemt24FYc6Ho/Nfklvufi8viD4km/yijRb0G7FFqPbmm+yQF98hVFsgyKOe/99jJL0LvMM9h6egibLrLRwQmSJaXISeq7rhnvb9VjxrT/3WtH8yEt+qNljLliWWeyb3gNjm/S22+wbcQUXE9iyoN5GFlWx5ayz2tzuz3vk7iUQ4dYG2+s2VnXwUoTrE0+WolGfGOeSVYX8OsbtEc8+3rs9Vp+o9KwMO7/eD9r9uX19E6DRH8ueCcipqJmoYaa0aiGIEQiAGwQIyBlMypaB5AVZ50hqZAFA1wCKKnjWLlnDzTXv/as9eiq/A3AT1+zFTGkhuiwJuYp67Zav//729ffqaSM5o38L4I8B/C8APgHwjiVFBYBfAfih/v8PAXymJ5iJ6D2EQvnNqSP2i7p9IP2DqoXBweBVdDfhQ8qhBGp70tYHSPvG25O4fuHsn/vBfXjxZ7cbWb7fqyF/1+fcJqhOPYxVZfozYf1PPIXhuVUEaJi1viLAgoar7f5yF5zYoESZfyHHId7hXdbvCbQnfYw2TuMlA9YHxnZMU3CSYdVOJtJDgr5cNq2KCL1iWTfEIWI6joKIeqErHo4HDRJImoi5YIgjhhClqR8ySgBd5YqcqOH54HXezG40RE1KNlqqwLIkMCfwJjLtuRQAQZAUF0CUkcteBbaZVr1BskD89plyrTpA8fp527+9wctZ5g9xrdjWFduywDHw3e98hDkl/PZ3XyMFoSxacm+f0yt49V/g0HrPxnFsVc9eCU2CNpnXYwNwLQDOOcv1dpUlZigFsa3o7rnvg3OtwBCi9MnoUlUUhRsyZGM97Jhm5Oy2XSe6muA5HViMiqLBrqBKRZNrSXZaxesbii8N8dFK3NPTEwBFt1joL6VkoGZ4TXKdI6zbhnXdFKHY1dGMsm2BhzzXAmML9sey7+25SR+ZRy5JqVm+JdovnTvXfc/dOhL52Y0Akq1drlKFZUZ0HtN4QFYH/urVfVPg/PJ3X+Kj734k8ynBSNuKmpPMQIIWyCq187Bj9dRIQGwWaaLoWLq1uBQdMCq0XOkvlSJAHAIGFVxh8jgdD7g7HRo13BGk/y5vWNZLQ3dtrmROGUaHL0WcMXOFg/TX9ffT+nikQuylCBAjyAdRgMwAaw+CAyGOE77z0ffw6U/+HT795Kf4R3/5X4DiAfAHPJ3fIcYDtvyIbd7gIawOKDKeKwFOUNSiY0PM7yj+r/fimjXAatdtHmWhinm+gAgyv2w44vn9o+x5Zrx/9w7f+egtjqcTyHmsOcO5AFLxkFozzucziAh3d3dgZszzgnWR4sL9/YPU65LQw6SnaafECY1NEj0Rf5E+NuYs4xLWWZEPYVk4FxpSeNGG/tPpiPFwQswZ83wBasU4RGCQgeBrFlZIDBGIkOG0mREHAnTgMoFgs+TWbcHT+2cQHO7u7xCnCeu2YVtnMAqGwSPGA8gxghdEf5iOwv6IAZcFyFuBD7qvsFOZe9tj1K9cso4UgaBGNcNVr5RQZYhUsaO5ZKxKZa+hIrjQfDqR9LflkuFcBDmHOIi9zJC5ggRCqqx9cFUHCFcQKrgkRIy4q4z7yjhwQVZhrVQy2A0IQ0TNAMqKlBNAsu6PxyNs7Ij3e08xwRKEglx24SZLvo7H4we28zZ2smTXErLme2sV0a++SN19Vh/whxBQs7ADcskdFd+OWRraWaqI70CZIK5yQ7NikOIOoYBzlnut1MeGKF2pY4o4hFA4g66za2VL8/Xt/Flmb9a6KyD3iOAtQkWW7Juvwh74s/ZUS68VN6TIXreUweYDIL1bpbPDoY0FEpSoKEUyENqIK4g9MaEAACAASURBVIsVyDk4S9jUF5dSULQFpafdvwRmSExCfX1Q/bo5cv1HdUl6US77TPOZ/Xrq1863Jc6AxSUShxAxUlqxrgvAeo2wNREh6gyaSOek90dVYUmYOjLfuaLyzpqRfMMuyFSx2xXjhSjjKpaxc44xwqkiecob5vksbJ4Xco/+9fdK2lh4MD8motcA/k8Af/73+btvexHRvwDwLwBBW/qHe50I7VVUtC/C9Z0yGuXNxXY36raqXTkjZ+mbKZsMobZj31z7B+fUb6CX3rcjMdeqmC9VCPrAvy1I2o9h9Mh2nMooJJLwgjComIEXtrYnCQaEmoIuYdhvoMxT2pOxWmUKvUjPynut76+LHuxXLSDvr7mH+ltSgopSknCAXUUuUl30QSF3dljmTarRFRjjiLdv3mI6jpiXi3CIAQxThHNCp9tyQkCEp4BpnHA8HHE5L0g5wyZdyLMSdS2rPMWoc2dKQSkerI5oTglz2kCFMJEMKhYEQlCEnLPcYxdak3NW2o8lr/0zvF0TvXPu783tugEkkJ+0x0d69gYgAh999BE4RJRKKPlL5CKy5+iqXbd9TFYtI2iPY0ddMyqZJRnWA1cLkLfckg5yeyN3Xz+S73NbVgS0eXwWKMv6ZxTIUGS5R3vDcjX6mXNKI4ZWuW7vy/7a76+seyahRUnfCmuhosI56wmo2tTLoMZ+/BAhXtcVy7JgnmfM8wXTNGKIURxgYZSURFVSE4mSJanmek2vsaBGBFtiS176Jn7Zb9e2hohUwS+I4y1C1whhp7reBkVGEbR5lrvN2Z14E1nyHpozNQQakGBonCbUWnG5zPAh4ng64e7uHp998QvknPH61SuQXsN8viCtCwIVFCSxwS5ere1belDbH84BKnnunSGdDHBRSp0KjWgRSRKwDOKKnFbMF0lcuFadNZixpa3NEDJ0mJk1gFPBGwpgFiTBqy2w3j8CYRhGSexUMMb2dc4bUBLyVvD0/mtwOOHOn8Au4u13voMvv7jHz37yE3z8Jz+GP7zGw9vv4YvHR0H2wwB2Dsu2wiutmCtkvTJAXmYp1i0Lsqr+jJiVWgjUzNg47cEfkfTA6bDjLWWh0gxHjNMJNRdcHjO4JsQYcTmfARDCOGJNGeenM4aBcJykd+L5+UmVTktTbX2/PGOeVwzDCO+zStUT5nlGCLH1aMYYcb48y9+GEVQLximCUZDmDTF61KoojaIGzAUUBsTxBN42VA5YliyUSkTkKvspBKHKH6cJhSJySoIuVbEpOamQDmRES64ZzhMO4wi+q9i2rOsnY4weXHWWG1UQy+w0Hzy4Ot3nB6SSUKsMD99W6bfiUsA1tV4ru24JzOtVcYZZKPxwBMekSPvcaJ3jOCKYEi6TUBmdUF0doaMUMkIQwZFSGMF75Cr9sqXKmBpBgBKCc8jbhsv8CJ5n3N1dkNMF5zFg2RI4zSDyYJb+W15XBMcYQsBStiuUTa4BjdIuQaupGXdokiYePaoWgtD5e9TtFjkxu2A+soLhfWyfab6qp1kLNZxQWe4Tc4VqsWpMuI9VEf8h9PV6Qy80xDPnDYGAITh4mzPXxglU5Jwa4mhBj1D5d1/RF6PMLjcaPBGGIQIInf29ZntdJTps/kn6pMx2sxbV7N6L2bxWnjZWSP+5ZiOsKCcVdoCq/W2XMDCjqlZB1cSwSAapxWxS1oqc63Q6tWdlPu42ia1VaINVC2DXftZ1sWPVuYJSCO7jpn0/fejv+ntqz+Ol5M27KPehFGHWsjHQlLqboC0Io8xUqyw0ZG1PGVRojXXsAsGjoghNuzuOFQ5srbTn+y35Vh93SA950CKirOmc5ZxNUO+bXv+/1COZ+R0R/d8A/imA10QUWNC2HwH4XN/2OYA/BPArIgoAXkEESW4/618C+JcAcDicuDnxl/NUcbgKE1uzqX7QzcboNkrVZnvsm8U5h8q5m7PUHadLPvoHdFsBAq7pP9cbcq94WyJ5m5h9w71tm885J6qFuZkpaFlGK2JOmyeLNlzuML8jkt+VClaqBro7y8zaP6DDe50OG9QEiRzJnDhIIFFtY8vFf5Bs2mf7buPt10goKcEFh5SBd+/fq7MSIxLDhBCcJJvO4/Xr13AOeHx8rxXKDUxGBZFjL8sCXz1mv+BwOGiSK9X6tnK0Uu103RAZZaCiMLDkBC5AASFxRYXT4ZdStS1VFCPhBGkDGa2y6IcbenN9vbfPl3Atnfttr91gifNcthXzOsIxYSnS6/CD738fy7zi6fksQ3mbamC4Uum6qsoRAbRLz9fKKhMsDsEQGXEaAdGQB004nVbESr8+PcFLqe7F9Rzi0ERShOpqBQO05Mz2jw/+qrfC+k1NLKM5JOz70HsPhgTATumRQGc/yLUEpWowvBvZ6z1ZSsGyLBrEVBwOB6XSyvNNKaFqUFG5ypBbDV5ijKhcZL8QIZek17M34lu13lB3SZL3WY323C2RKGVTRETnzSly2L/fXt4HOK1f3dpPS+KcU5nukttzBu/FHEe7MMfDwwOGcQSD8fmvfoWPPnqLMUZsmxa3NHgqNcFRhY8RVdUJb4tWt5XZUgu41IaMV6EG6GBeB0dKQ82iaEfe68gSQlpX5G1B8AE5yaDmYYgYYoTXCuqgKDKR0FFtjAT0jjjvtZ9ZihjbmlBqUbVRVeXNgqAUMAoqqP5/zL3LkixZdp73rX1x94jIzHNOnepqEAJAE0TSKMlEowbiG+gNJDPN9DJ6DQ5kmsg0k0xjaaiZZCJBEGiSYAMEwK6uy7lkZkS475sGa213zzhZaMhkMuswO5VZkXHxy76s9a9//X8xUYjEzEC4+4owHjmdjrx588B3f/1L/vzPf8kf/mf/REVKHr7i8cP3TKc3tFrIabbx0ag5QwiUqoFzzhroay+SJthqxKzn3HuMaCBRBTNUztyCUVF7ivP5mVOcOJ2OSM0sz4+UlPESeX4+E2tlOh5xwVPKlUYjRE3Ol2Xm0+NnpmFiGCfGcVS0X+CaFnxDwaph4DBNa7AeB6X4DeOorQp5IaVqvmhv8CGQjVJMU98z5xo5LVQGVS5FuFwXHMIY1c4hGUjmfWA6HDhf1atsmEaoVf0BS7L5uY3fWhvDOHJ357lc5nUPr6ip+hDv1vUKIrU4mgRaqaS2MKdZASQfcC4CjuucaFmrgohaBahnWyCGkVwqNVfECdPxQEmelBO5VGKIDEPUZAn111SVRk+aFSzu0V23LXFeewlTzjivcz6XQuvG3M6EIVqjJgNVrxc+fPctn9JMGiLfDwFCgMPEdTog071Wjp2jZkFyojlVzyymdtjXsRjDtjaXvr/1KjAW0GolsCcq85yoJTEOleCjViTqxrLQPa+oYNiy4LznME1aee8m11YtE0s4EBDrzy05U5uzMaFxm0gXa4q0pnO6CJbg1pWGrxcXFdDCaduH9dw1VHxJ6kYlTClrEM0mlqFrWCRoAZJm3oq1VYtFt3Xedxp7q2ucpJU860E3P8mXvlzb3q+AkcUKmCgGXfTkZaJy2//Xf25xTvcKVND8RVxiG0CxNppmz9XW1j3ex2i5qlayuzF4X9P3zJKepAMqWreLEffH15/fKmt1nQP7GPo1pct97L3fU14rsNRdXBZCwFtV+Hx+Yp5n7d0PzixzNrVX+wRUAyIgXtePar1/2rLw8rj0OsgKiq9xV90fk4LX/W3Oe2KIhCHgvLIKSs0gDR+cVfj/PyZtIvIzIFnCdgD+S1Rc5H8H/itUQfK/Bf5ne8v/Yv//f9jf/7f2U5nKeqmanalylKl94NtZ9z9XQdrukNfsWtZgRENw9eQotaP+LxGPniErxapSeYmC3wZIe5RIaV1aZdAB9NKXQh+KdIgJFew/Z9+gq6fwUuEN+5RgQcu+ebXTF3Rio1LMQHXKRRZMshpdZDW50IfbTaZaqvKUvcc5cLUZbdEELsTb4qc0wEpb+41KrS8sCLTwKaS6u4aGdPkmBOdJuXDNF8bDRBwHzsuV6/nKYUw8HI5E74mjJ3NlPs98/PSRWhvjQY1bL5eLGqEKzNcrrgbGWHBxQMzHR6h4hKwKznq+SRdfP0Xr18jMJu1aawVxugl3/rYoylpaU7SjNvN5q9SaNFj1FR9QifEeOBgiGH3Ei6wbn1hwUXHah+hUKhsRUmnEXiW17+ty5Nc58XxZuLuH6ByuBJwURu/5w//wD/jlv/t3/Oq77xGvMu+tVVJJWmXyYguwSsoGpz0vzkeGwa80CJyjmoHnlsDp3V4r1IaE4UV1PPam77WuZqV93qi0fffLa3jfK7a62Wqj85bgOq9qoE1Mdc0JHr9+bmsbzabPP2fghQDS54VXsZlWtbJHN1WuivI711QYgpf9rzlnzufzWkEopajUNpqASRMGH6giZipeVdGyFIZxWCuEAszLFUcjiKOkhd6zsQqwBA3qyq7/r1al1KhSZDPk3TEEpeT09aGZepqIWyWVh2heZj3QEQ1gtJJWd31QKq3uaoOqa0gGoh8ZDwdciMxLxvvINB1wwK+//Usuz4/83W/+QPtZa6aVREPV8gKhk6hwsVdJN3NvEVmrkD3oFRoSBJxVXl8AZPqvN/2LNEpVWtqSFqbDqFRn7ximO1t3VKnMGbh0Oh3X4xhcJOWsDIqqiUAqFSeRJWcWk5Ff0Wuv96YHm1UUZ1DgyqnJ8eUj8/OvOI3f4Gvg9/7u7/Grb/+af/Ov/4i/9w//AXdx5Gfvf5enj1dwC/GQkfMj8/NnJqeKltRGcOCkMURPasXmrd5LnCPVLvXtqYsqFnoL3jBKu4gwGIW+lCuXp+/46s077o6RD2fBx6jG5FSyNPwYmI4D1+vCZZnpind4ZRZ8en7iTmA8HgijJpTzUjgejjRgPE3kpCImx9MdOM94GsmlsaSZssxM48AQRrxTkYm0ZPKcGcbIEAMpzQQXSLnbdQzgCk0aSRpuiqRSSangGpTnR1wtRCqkpp5KzrHM2vd0PB44TINWuJrnulQu15kqjcEHmhNN/AsgWlWO3nOZgVxVQt+AFq3SCzivwb9VuZs7aPzlG5a5UHGIBFJWVeOA18QswrIk8rIwTPcMQ2AYPPOSyKXhKoQw4MbA5TIzLwtxGMg4UvWkXInBMw5Re9xaIzSdP8uycG2ZECNxnGAYqEsizQmuF2Q+s8wNj1OQ8XTH8PsnLq5QypWhecIYKEF9FmVetO+niVLx28JlVj+sbg0yjgOuFlxNq4ARrRH8wDgdaA2OU6dbNz59emJZNrBE12uhVcfhcMc0bYF2bmcuy0UTH6/XryJqV6CGH0pzHAK+eUKsNAoKs1pEUhZbPyDPC9l5vFOPv9x0DxuC9tJGr59TU6JmjWdyq+S8ULL2IoZhNMsIoTYoWRkPwS+M0VvvvYHlVd/vMTshE1qSBtJMybKaXVPTz+xJaamZmpWY57yqW+Od9rNYdUtaQ6rZfjitxr1WLNjHkhoTyuq75k0Je1M67MC7JTX2nBid0eFwtZpo1eax6Zz2q/bvWPekNbFqa9KitPtdu5ElohovdEaEtqzUKi/2Ytiqlz0x7X3e/XHLJnqtp0+kqRgNlVL0b+PhCM5xdWeWtJCuus9Gt4Gd4gRXO2VVRUfo8U+nq6KdblqJqxYDYji+4OkVOt3vNG1RBke1fca5iB8OTIcjLSeag1YWXeed9s2G8DcD/H+bStvfAf57UcKtA/6n1tr/KiJ/DPyPIvLfAf8X8E/t9f8U+B9E5F8DPwL/zd/iO+xmGTosdiXaVp1fU6LWej1xfe/+5remqUa96VWTfgPAXN/Nh8N5qmia9xK1+DK73yhdWwn/lprWH3sUYF/luz3nPRLRn6ut4XoiB+b5ohNZcWB9rvdElILKBbe2Di7VYdgmazV0tsPt/XqKiMlSxzWZrYZYNOm1263a9ioI8Arq0c/JwmvEeYbpwHQ8EqcDrf2oapGl4BxcLs+kVohh4HA4crlcuV6TaaFEnNNFM95NjHHiMB5oNK7LhfEw0qgqL1/NZNEC9yEOKlPvnPbfNPCiyGa1ynmXfNWA0vqqXOdG9+bhTViiSwH3xU0pBoVqPQ2aoPWBu1VJpCccNwBBF6Do62qpleuSWRarpnUT6wb3dyfePNzz8fFJA4KsHHUxaqJec21sFunqkNqvsFZxd9W1DgLUqjZ19Pso2/jYKqq7RXtFtNYhQGttVWDdKof6olWZCpSaYGbhuN5rKevrvGw89z1t+MX164utiNpbFD3o0nTS9PmuyJYgTSnF3quB9MV8DW/XjqfPz6owKhCiXjtv0uDaf9mIQ6cEqsDO4+MTtVatVNjYd07Zq96uea5Gv2v9EstG23Visspb5f52PpVSVkpvn1etbVTlru7a1wCbgErlsv4x5wLNOVwVQhiIw8QwHPj0+Xt+9vUdMUTu7k782b/6Ew7TxDhMpnrY+0dM0t173bysiFpb1aQWVjS5NlXf8kHHQHCyVU4NSU8p23k6U3X11ofhaBRKLlYJGBjH0SoYg1b2va5/eV5IOXE+z5SSV4pX/6nfs6hFQxjX9bUfa7MbIuLVF1F0Yxa7foiAE7yHdH2i5HuCPzBMBx6++ppvv/trvv2rf8t/9Pf+EZenwnS44/n5B0KIHE4n3ZhLD6gtkTI6cr82tW70ptZ6D0sjDFFBnOt1nbfee2MPGOLeKnW58PGHxGE8cX9/x/n5TE6FMHiu88zy48L9mzuGGLjktPYl+RAYRs/zc+Xx6Yna1HvMO8dB7pjnjLeYsqTC4XhiOpyYl0xNmTBo1cQPJ3KtfH6aefvuhJcRygUfwUevtMHQQDykZKwZVQsWwapc6tXXclLYtVVczSp2RCbXQqpaBTiYofDnz4/E6BlHVTuNrTEvidrElPIaqQhU8K1p33NznA53jNNEqY3lolUg7xziHSXNxGGk1UBaKuPoCBFC9AouVUGKEMKBEDuo+Iw4ZRhEuz/LPKsgiLOev5Kp4qwH1nFd1EtOPIRhBKeempfrjHMzUxwUVEb7uHNVVeO8CI7AhPULt6YVNAHBEaqjZqWKi6gKJ7N+rkTPdLrDi/rfzfOslVcXGYdRQYNclFXSGt4JnoBaXimw0Cnw9KSgbSJKfUy2pmyOXunuGgQ9QA7DkZAcOZvnWi0Mo7fqmaxUNGlKg9Vev0qr2uubk9JKY4gIwrXOtm+rkE2InsM42BrUAbqCQ60zCmqJ5D2roFXfd9sKvlsBoanVRCnWbiBWMbNiQIwDTmyfK8UAxW4FoABksz25iYGbJSNVE+EiqmDeRd6kr00VXGsEYOjMHjaK6j7GeqnJsMUaahWzWTB0T9Pt0wzwtjXYh0DonoFr3GZJ5LarrN/ZHy/2UDaRlD019paJ1j/nNta+jbtfxE499mgvGW6637oX46+/tj+8DwzTgSZqN5Sy0mMR3Uu2fsl169ySNjqHpVsPabxUS6Vfrf5PqlNbhVYplmy7ZsA/KGvhcELEaT/2krVGhceJVQp/w+Nvox75z4D//JXn/wz4J688fwX+69/4zbtHDw5fBGf6YTcv3NQVb77zRfJz+8/eun2++Tz19xIjuW39GNvXvRwsgE2ElxzcTWnodXXI25LxTx3z/vm6uxb9+pRqSKupPDlLcNe+FgsyWod49lNth2joZ2jFRUQRyWbBbh+cyj3fJ2s7XvbNeewn2n6ilNaQVlffqSGq8GjwntPhiAMGH8mXmWvKSKrEmAghcrp70EpCVnrMMKjS2fv3X3E8Hnh+fuS7737N3cM943Hku+++Y/6ctPKA0RvW67tVXPV8erVDWN3nBajd6mBLspXzr5U0lVeXNZjb37NSK0IG7wluU6bay/X2a/RaY6336s/VTB5cRHjz8MDpdOCHDz+QWmUcBpZlYRz0esxzV75TlEYDereO0RACwQechPV7+2Pfg/hy0eSLx7YQblYQ3WB8j4ztX98/sxQ1ZO4P7w2JdTrmtNeqV9H0ejnX1cv0OvTm5O0YZZ3HANkoOU46cguNqpV5EWouUK2Zvlau16tRvQohRFRUQZO6WjJVNFGzEW5JwEIuefWx0/suPD+faa1xOBxssd421n6cpVaVk7fEsifP3c9NG53rev37e29Bnj0ddr9p7efgPmHev8aJqcA2pWhMR/XcOl8uNPT4H+7vmeeF77//wDc//4a70z3n65lSMnenE4dBBRCcXadGZckLOSVLbgPN6KKtZJpAtyJYAzERZQhUgaaWDNqPIuSsdw5UBW8cJ/WvCYOxjhwpZRNO8OSUaEXvZw8OXu2hMaSzlbQGj+t67o2yJB3B0U23VqXuiqhk/dKEDx8+MUx3PLwdGIcj33zzu/z44Tv+zb/6BX/3D/4BQxROp4HzRdfp6XhHTgvz45kCdJkHHSPFPOXcWn3dU/P3zIi9aNAtOOiaiphI06rX8fTAXXxD+fTI9XrRKldO5EviOE68/+o9nx8fmeeZh/sHSi3c3d2TloXLWasfYtSxcTjw/PhI8I7T4QFKpVWtxogBqyGOSNBe4fk687yYiM+g1LLqra9VhBgib+7vtjHbFg2MgmO+LCCe0+Fee0Yvj2ra4aP2JosnGKB2GEecNC7PAIXWFfu8g6iquh3ddy4wxIEgWrVNOSvLoANPomCxDx5ntOY0n83vMTBOB2JERW8uiVocwxAIYSJGQVzRymJa1CrDCa0kzpdHROB0umMcIksqhBjN90w4Hg8K6Jk/Z4yRmgtXs5qhNIaoa1wIHgmR3FQqnlYQA+KCD+AD0gwIkC0Qr81ERorggmfOlcePHzkYHTIOg6l3LjxftN1gGKIG9U2VF6UoM0WcVXvEUZvQ2Qy2KuMcDENY+8NSWqwvutN9teqlYlvaI45X9Vi8jvnrRfsAxXlbGyN51s8DNayPMTINgWWZmZd5XeOHOHBNxVgmyn4RUQl4Gtor6B0ta4XNWduEVliNmUEXs9qvD34FuxUgU3CtVFVIDjER4wCtEr1b2zHEiQJRPqzV8dagNqcoSFUVdGnNKm6sjCrbXtf4pcnLhO12fevrQmfN9GPv7JeuiqmgoO1q1fbwF0meUT5b2wpzoID0K4lQf7yWPPV1qx/r/rWbCvWXVcP9/rX3+9t/z+1et1879/HVbRGm2z3EGCkl45vWwuA2b2AXRxnddAWs9bo6aS/Gf48ZpWm8sSyJVJa1DaACx9OJh/sT3ns+f35kmS/QdtXCvjf9hsTt/1VP2/+fjxcBpE2S9Sf9BlVas4rSbvC8FnxqhWH/vv2F2G6Qdw6JvdF5e81tBaxvpt30dB9Q7b049o9bxPw20HotafviJ1sgR7NJhk7qHoj1xEOEVeXPseZtrx5HD+rWyewczvpT1qbLm3PZfKJ+4r69ci5SNWh1RfnmKhWuZp2tdHVMq6iAJSyeMY74EElifR9uYIhH7u/e4ULlzt2RSmJerszzlePlzGWeSXnWwAhRXxq7iv0cgw2vvsB15OdLfEDfk9JGJ+pJkTfzxtfud62V5tpaHe2T+bX73RetXp1yUgiiaE+wHoJxGPj5Nz8DDz98+pHn5cI4jlu/jrxEnGBTZVpVu+q2iO/H5e2Y1SDnS7XTl6/bknjZURz2i/Z+00gpreqVIp3il+mUJWA1Q22ymb/3MfpFpe2Le4RZYPQNNwOb4AkoXYJaKDlzuVw0yK+9v0qpxdXmsPfOFLdenn8InmFUfnw3DK1Vfz8cDisIoBuN9jF0n8ZaGnVtwu1mtI4QHYj2vLhddbAv3vv7ddtDm3NmD5/sr/lroJVD14ZctPfocDzig+fz0yNv377lcJy4u7/jX/zzP6JUOJ0e1v5ZL0IYIklMfS2nVUafkilpQRrE4M3I3tGqI7gNBEgmf+6d9gHoJqqBZ+fwa98qDINQ65bo773/Ukprz1ophcGHVeGvj/me7O/HEKICC31LqVVRzdqq9v+uyXJFqtKBgyUmS87k0qjN8fnzE4fjO8LgeXj7Ne/evuMv/+KX/Oqv/4Lf/b2/z9s3Rz49RtJ8RXwgjhPzeSanTMt6n50JktTS158tCOv3a19pXmmm9nhB1wdaUpphRcDDNB14nq+EllnmxBQiNRUeP37m7s0dx/HI41J4fjybVUUj+gE3eT5/fGScJobxpOvwMHG9XriwMI4jNVdiUOP182VmaiN4hwsBAvz6wye8c+qT5jQorjUby6Ey4GzuKH1bnKgX5GDCT3OyPm1PbtUARdvnxNGqmt6PMTANqoRZilZlxauNAM7ZnuhIrbGkikS1EABHroXPT0+ICMksGUSKUcrgfD4jRJyfGMOI95qUeqNMOTzRDwYEqfjB0jJOBsYhUpYrIcy0ltf7WWpiOadV+ENCoJRmFatISoUwKshWsgqNNKPFbnt+hWIUOuXxo55rgda0/7F1yxujK3vvIVdSLvhx5M14Qmy9W4wi7JxWphqV2ZQCh2kkjpOqMJp9Sxyi2dI4q9Z0mprJz7vGGBVQWpaFXBZq2mhuwxDpvV3BB4KH6OPaAlRr5bokVSKtiVoGpEWa9ZOnlpnnSvC6w3vvYefnp36WQiqZ+Zp0fQmRmrMa0+eqyRL9mun/57xQOlgrbl1Xxas3bHNWSWQTyZAGrRRyrUrTF2i593xbMt4KQdoOoOxxiFbhEHQO3O5trTOhbA/bxXD7/fl2veiVte1jFKjei0PdbKHrmryuJ9IrSrsEafcd+0rWbfIEu2Rvd6x7MKr3du9VrG97zV+AUrb23cYqtwnaPunrn/Wit78z63wX9wqQE13lta/DOfdWJeiG7r1a2l8DGIi4v5g9FhGab8q0Mu9JRIHWGCIpLVyuV1K66p7PrgBQNxbI3/T4rUnaYEcf7EEarJtpTxrcKxH2PgDuN6vubn5rL1/HftBZ4lZuRvM+QOqf02ls+36b16pre0TgNtu/Rcd/6p/r720vg+aesK1ovO/B8Jbtg+EHN8hEP8bXUHxdyFTetNMWV3okL5NY98rn3QbU++uRS15pCq4oBcE7x3VetI8FaK1Q/rhxyAAAIABJREFUbJNblgYOojUFl6JVwc+fPzHPM3ECHFyuF1Ka8V6YTkeG52fOl0WRQLSaqKpfqhzpnBjtsSHSJ+o2GVv7UohGq3NYJSxSykBOxegRu2vSES9b2FyvdOzoALfJzW1vY0oZfONyufDh4we+/fW3fPwYuXs48u79W+7vTtyHe1wM/Or7H9f3d3n5fYWl/9Pv3L5j/337XsrbxXL/uE2aWmv4ENbNZL+Y72V8+3wLbgCrMJSiSluNXiHWZD33a2IU9n4f0hpYbOpiOlot+GXbWGqtKiXfqYJ0vz6lNi7LvKq+9c/p6pnr5xv6lkuB0s+/WOVNQNQeIaXEMAxM06S9iFbJVTqhXsd5XuzaaFVJDdRNijl6oCtF1vXzO/J5u4b06tJrSXV/7G0f9uNNRKjitM/Me+0tHQaez1dCCLx//577+3u8F3793a95++5r3r59b72vlshbJarVYn2Zbe09HMdRaaBg/Omi/ZqmEumCIs9KO1a0t2SlvoUw2Xzc/LVU/l+Y54XL5co0TSa0Y+IWuFXMaF5UHU8EotOA0vlIlwttRrXTob4FVc4CsIpWyZ3IKlwzhGBiTHoNow84H8kiXM5XllRw14y4yP39G77993/Bn/7Lf8Hv/8Ef8tX7e378dOJjuSC1MUwn4iEx12ebKz058zbuNlS6J5mtKcDV15bbv6/PN+1dcU5YaqHkxKfPHxlLZrpTM+qEkK4LQQTwfPr0yLt3b3n37j0fP37kel3MiFp94JzzXM5XQpwIIhwOIzUnLpcztWSmw5HBgtDDNHCdL/ghMMaIiIoK5bzw+PSo/nrTYHuYmrtHUXXH3u+6pITPwmE8kAs8PZ/X+9E9jLCeR6XE6jyqRWl8wQnRe6pvZm+gzx/HgelwQJwKtqTW1Ch4GqFkLucL1Mo4RYIPDEOklMLT0xO1qPXMMAR8EGqbtcfVNaZ4MLNzHTfzrJX2cThqUG8V4XEcWWYouRAHtfNQj76CmAJoykr3ozNbSrcJcFbRQoU60H63GAKpQLN2iCoe0HtRxVFFKL0SZsDrMEa8d1zOKuLSijAgxGEgmqJlKYVidOS+lwjWY4o3L6+Gb6I9UCjFrpqvmNIPEyllsymJBr54nBtWkEk934w2iPoPBh9wMay0PS9KqRUTg1K/RfX5Cz7gnK7nOamyr3cq2hPigJkgsOS0WqocwgGckHIlmV9X9M5Ejto6j6jFKHNdfMwZSGAMiaa7VGttVe7u/bu6z1dSTgrKVI1XalWfPXHeet907cF5nGjoXdlRo+tGjlt34l4Z28UNt8D4Btg1OiCGHXJre2B3r+/QE7j9+7uVVo+LLLbphyJbP/v+8RL8fwky7tew/thTaW+Tsv2xdIbBbczUP/+n4s79ce1ZL3uKeWvqvVYqtj/ruFxDoKZskEqD0hDfQeAd++zmOtiVQ1sJwIVANABZrWUq5/PzCpQ472g3n/E37e/98VuVtPXHGjy+ckM0od+SM9iSuheZ+k3W/uLmykY5XJv3+bJqsSZ57AfmTSVpF8i+Vgl4GTx/iSTcJj3r4F2P+SV6YZGy8cr1/9dx1rnj1f7uRGVPxbjJ0lX4dotC/63VtRrQB46KHNxW0ozr/cV9+bJKWe14nFNELC0LaVl2AbgeTJNGlUxOix5NE67pmXGcGMcTQTwihXm58unzj+AbpfUNxhtCeGVJiwZetqgq88FZhVA3GYr25+ghKhrbF6Ym+8ZeXeBCCBZo6mQvpTD7jMiygQH0xEf/78Wi8gqtaf/3/UIkogFtl/w9TBPjFPn44wd+/PF7CMLx/kheFtLc5cC90U/H3X3aI0JC52bvwYf9WN0Wwi/R/s6FV68ltz7fN5N+XfaL8C1VAYTcN9jQVca0wbpl8z9xKrHbYP2c/dzbH6ciyTbWMS9Eq550pas+DmottFpIi5qEe+8J3prFc7IqjSiKbM32vV9VX+/Wc9DgQ8dOjAMxDDbWVO3x+flsx64o7rZhREWfjBoZo/pW5Zzs2opRC1n9zG7HTFcI3SOLpb6cc/1fH8P7ao2uAZ5hnDielKJ2Pj/z8PDA4TBxdzqtG8rbr98RYuRyflSVLadKiCUt1JIp5j3WAbDgNSjp9wQ236Mt4a8rYq4Ji4q1hCjab+a9Vks6qGKVhrX3UfWbQbxWzWCVQffmqdfY1tls93oFCLxKvyPgTb59yYnLVc3q995GinpqwN3oAGJFmmM243UfCz44vnr3NcfpyF/95V/w8dP3vP/Z73D/cMfnp8+UpRKGiel4pKQFlmp9fX2O97HVg9qsyW0tVj3e1Gf777VtrASd39oHE53j2irz9UwVeHjzjoeHBz4uP9JCIIpnTrOew3Xh4eGBd2/e8eHjB65GjSul8PbNO56enpgvT4Q7TUSmQ8D5Qa/V3DhMBwv61Yh5yTPzWY//MASy86ryiyd0YaMGNSfOJTHEwHGaNDAUVUy9zta7ePCkBetDjtBUfCKlRE4zg3luOYSUmhnQK20uN7XnwId1be/rYl4WLumKeFl7iFopODeuFXFdw1Q06XQYTSWzcZ0XarnQmiOGEejWKZXrdQEcp8MbghNoWcemAQnjOCCWWHrneD5fyKWogpz3irznC8fDHSK6Z0prpCXjh1F9ISUjRu0NogU2EaU8NudITYPCIh6p6jOYiiL8OWdqVluV0as1UE51Ff3x3jEdDjofiyq8StCeNNccOduUQ5MkcZVVpAGIUQVAGtOuj1TPXQHYmRgjx+PBKO+FtBSl7OZMGxqncSSOowFBqjaqfb6NelDT62W5mi/jzDQNDONgiYVSpi9LIg6DgXQKZrRSScti/Y2ahLnQ51xZK1nBOwbvmIZIRchN1xtxniqNVrNR3HUv1NjK1DT7vtrayhTYg8Pq8VmUjug6Jb6te7LOYTNp112m80PWqultYP9anKmVq7Ym0Z0Nsqlg9n3Z9oZs1hZNj1F6jNiPoMcybHvpazHufv9BtMD0U+ybfcvDfo/qr9nH2/u/3cbl/bm+v/Zzu63Y7T+3v2f/WT5GpJr6sVVa9bUdKLJ83ixLeizcC0g96dWfG8jf23BWQT4TLMvZ1IBFFHlZTdX1/SJK6/1Nj9+qpK31ZMR+tx3rJqPeKgfr63iZ/HTkXVq/6S+/p+fMPbgrNzLpt5+9//xaC/Ocv3jta9Ws299fe+1PVjf2733x9i340z4gnWj6//Ze4yo36aV4sU1/j8i8PNaOKrd2c017ibttdMK/6Tq9+B2UL27fuczLulh1zyRnq78imp0n7Ey4YqZeC7nO1nskNAqtWLm69X6jmafnJy6XiyHUxqW3Q9EmYq2SqOWgIR2GzK8I0w4x6pe61KTqkKuMsVI7ssuUrjbXegV4ox+8VuG8XaheHSei8ekQA2/fvWUaItPgEQefnj9zPV/4fH420YDDF8ibfndPrm3stC0J2yNO+/ulC2v3uNkSvBCsEXyXnDnnSKXsNv4dbWR3Pv17SmlQqnkKBrsHmEJp3SUynlzLasj6U1Q/YFUzRdaRpk356w2AXArLov0mtRSrzllSbZYJ0b4rWlLUGhqUe2fJ8GDnkK1Sl22TNIS7qDx8a4lOuc1ZzYi1R0F00UeFJ9RkGFKaNYkAanX2uW4VGOr3pl/TfcK2T/77c93qYd8H8CV6qdLocRp4fr6qmfbbN3qeY+SP/vm/JsbAw8ODBkpJJc8dxTYcDcZCsCS0VzwKFgyxzqfaWKk/JRfmdEVNjrUi7HwjRK+2Hrbm5LIQJDJMRws8KsM46oZsY7pUFegZBqVC4VQltPWkxprAc1GE24vYe5Uy3azi21DT82TeZ5tHoN5P3w1v0QSr5oVGI0vj/PTIeLgHEe7v3vDw8BX//ttf8W///N/w/nd+ztt3b/nw8TOPc6a1gg/q26eA1QZwYBXGYj1ZtRVqVQBCCQAqwy2igjo9GZWqMu3qfafBmYp0VlyD69OjUpIlcrq/41zPXM4XlflPVz59+AQVpmni7cNbnp6eeH5Uf8I0J4agSr3X+TPeBYZhYpwCpQWggBRoiRA9d3cDl7P1AHoo6YprhYfDwHRQYZ7r9UpJiegd42HEB1WUXdKi5yO6Ns2pkIsWaxuBWrUqrsmQGpULAlXtJryfWNLMfL0qpU280jSd53w5U56fVI1RBB8cOUFJiRAmjuPEpV54sorgYD1U43hgnq/UVsjlypIS1+WJkmdEPLWqKJZS8mZKuVAKtOMbWoOSEx4FKA7TyDgOCiaWQie9lVJpS7c2OGqg3VRKXm0gPGHwSFCaWs2ZlhcMfTBpesHHgcObt7RDJLiF6AND8fjjHU/VgC2pBFStsDRlrTgzJ+9AQMr6ncfpsAJ3NWeaeMRFxmlCaLoetEaar0arBWfrWbG+qU4V3zMa9vTlGCPBRYrZO5RaWOZZ1xaHechq73tKBTGz6hgC3mnyiGDMBhiGyBQHclZfR+1zbQxRWRDd67WvgcWUs71rUJXq3XLCOxiGaRUSy4j2mopWTFyD5nTOOtG1LZekVXhbY4rNaT1e61cWUZ+4kkjXwnVN3FRYzTuVee9g467QQ1+AttjzpQhJT4T6ftuTjL73dhB/ize2Ko53ahdTa1l902res8ZYk4muhLxnfvTv3P8EKPJlHJ12Pe37Pel2L9vHjntWSf/O2+rdbdVvD1rue7r316qfg+teob0H1GF7lV0rJ6g+cjO6aFex7LHMPjbpIL9VKJvaBUjtgGy0GFjf72VV1Fiv9WuFm596/HYkbfuAEzZfCP3j7mUvK0G3N/rFo708+dsbWNumeFPqZhr4my7Y7WtuKxN7pPvWaHZPifupwdsTKKSrg9Fnj53XlsS6XtWx5BQbQHS+rezf9jKA+8kKX/vy9dtr7P9vKrg/hb5sL9gOZUVtdtQrpSx5QgxroNtsIuS8sOQZTVS9mfBqn8OChljJqG8UmxCi0s1xF/hD53u79bOc0Xw64tRRKUXMdMPUzcdZUOKhdWVKoZt40np1z7847ZeVhr+5KtuvTamZ5nTBv7+74/444b5+y7uv3vLDpx/44cOPuO++51cfntRYYjd2XgMetMdoG3/7CtgtGqWy69vn9OrOa/RHRS9fcsZvz68vnKlksGbrtd8Ip70JwdOFU5wTMH59TwR7IrK/pv1+0nqi2/rgNNl8AyFKIs1XpSTJS5Stn496U22bgqK6agKvgUlPigoplVVIRcd9W+kdKfWeIz22LWlVCpO4yDQNNDKlLpSSVjNt9ULVbH1vrLlHIV/bnPp93SOOryVt3YhcvGM6HqkVzpcrh9OJ0+nEw8MDwXs+ffzA+/dfMR0OXM7PtFaITrRXrQ1qbF0UcbcRBy6oeAs2Zxqq/pcVme7VaRX20LHY19AYvVpdRL8CDZtpbVuVK/f9mbV2QMKv1caUyhoQOmeV2ia4EFWwoWnimLNWeUqFfE2kZKqFzltAriaqlWYKpJpy08pqYeBxLNdnpdDFAZrn/Ve/w69//JFf/OIX/L1/+J9w//CGr9//jMvjhbycdayHQBZBmrd50ZFw1rmG6Bgcx3GN2vbrR0eq9/MWAwQcTY0YGoQmzE9n7k5vmMaJ+NWIiwNPnz8RgxBC5PHxiU7jaw2zv6icTifGccI5oTw/syyL0mDDwDiqEm/Jhc+fPjKOAZpoEN40uUiXM9NxInohz2cQ9dmrpTJM94TgEA/X64WUFlJZEOc1ecmVXFSsqNSs83lJzLUQveM4Raia3Jea9d6FyDDqTMh1NyeKmhZnSxa9wBgDKSnNL4RAGyrXudm8Hhh8ZBg9ucCnz89MU8b7xjB4vB+Yr4uCeM5znRWEUAugQq2zUZATc54pdUGILMu8sj3yklCRr4HgB3yMtFRYSsIZbTgEpwrwTvDRawtGSni0OufjiLgBmoPgefjZe8b4NQ9vJt4MEycZWYDlw/d8KAtLWqwPTvuFvQRCnKilmldtAyrFd/aRVZutwlJqxotXKX8/mmqjY56vnM8z4zBwd3fCDZ60A7/V+y1qH6TN4f6I02DaABrQp5ypTdfez0/mBRgD3kdGN+BNyMz7yHQYQITZbDtKqaRUSXlBWuU4jmvVv6YF77yCA0uy4mtvkakM3hN0CtNqYVkuVITmAs1HfBisv7Kt2KeY4qImOYVCVsGRpuyeXCrzfKGdL6oUOmilNS3FvDI1pghDsVhFE7fBb3RJROMfOvDcweFXKIf755pVx17re9vebzGqgbP9ffu/9b1tqwZue/vL/eflQ2RL4vePWzC377W3MdFrQPd+/ds/3x/7dpDbfvrbpHK/bjrnzXe7rXuuiKhIDPvv62yH3fcrqX63z764CiqkMzhiGNb70RoEVxCpL+7Hi2ta2+2Hvfr47Uja7LFm8j/x/GtVnv73fWDZy5fb46ZHBNakri9U6ytfCaZvB9ZrlZLb43n9+P8W596aoU09e+pob/9/m4Tb/rTSubqEq5bTRXm4zgrejbXs3TP7VcDEPhejAvWeNa0Yv+zv6kHp7fl/cc7230Z74RJvIa0GgCg6JU6Q3JWPwDndMGZT0iqdZindKDsa0lkR2toHRa1IU/pb9FvC8doi1qsTfTI6F9ZzVTU55SYr8siqjldBee97MGGXDH1xn5sGuK9Vt75ImKUoj7pWLpcznx8/0cxYPA7qjfX2zRueTeq/rEIGHRmT3VjuCao2F99SDXtlZj8vSq98rf1bvaevrol6o6qnnyWo+3N5GUyyCzDNtLwosumxRMBrdcbZdaq1EuKwUsX2/YWvXbf9xlVrAaMqLrOaZZesDffOVMz264TI1pPQj/VyuVBrXimntdbVdFsNXrV/q1P/NqCnH4tWENbrWgVxqg42jAMhelJeoFU10nRAFVQ2yGv0QK92vkz49xtdvxbi3Hofh2H4Al1cKS3OIzFyPN0zjhNPlysNuL+/ZxgH3r57wx//s//bzEdHQJPfWjKtZZZrYrleKCWrAXU1FTvR19HsOaM/TeOogbdVFTTom7QS19THTvtZhBhGq2I7Yoh2Da1vywW86yCYIsk+RJy3KlNrlJxUOAkNxmlq24F4alPVV+1rK0rRDeC66qnzuKZId+81qVkrntrbUvGtj82+4VbS8sxyeWKcDlzmwsO7b/jq6x/41Xe/4s9/+ef8o3/8X/D27Xu+nz7w+XrFoWMth0he0irsgPR1QYELrbQZOGIKobWa35FTkCKO1iNUCy2jwIeBYtKEaJjwkgt5njk/PXO4f4M/HDjUgisq5OKcMF+u5CXx1bt3LMcTnz9/1sSiNUQWhjghrnA5L/hQGcaJWmVtwn96PBO853AYAO1lCoP1rwo4H0x4xquFy5wQf9Bj9RNDGFmenrheZ3wQnB/UugYh5wV1FEwqSiFasR+HgZS1CptItOpWm5c5LyxLJgyDVpSjJy9Xak6A7jOuVebLmRK0Uqum0Nq39HyerVriicMRWmO+XpBFe9/uTvcqjIGKXwhwnI7EoVDrovtZXkjLFS8oGt+2ntSUK+N0RxxOSAjUCjk9c73MTIeRcQi4OJLSTEoXaqe0eU9LV3JuuBDBYZX8QhwHwmliGT1pnAjTg+7lz59xpTGFQFwS+Xwhu4qbTrZm6B6hPfqBvMwrI8VJM8GUSMuVy3yBq64pwXs9Tuc5HI54caSlUIwO3q0/9PjaSv3Wio3eN+pMTottUyYGV4Xq4O54t6kLlooLOqfTsrCIVvqzrcfVFBBL0eS8piuUjBenxzkdtP9fIDghtUpwHhe9UhabSu8rI0v9fXOuLGTcAD6OBOcNTND10IlT25NxpAUVjelWMt5FYmzEMChQaeufVJ3j6urTY0Gj0JVMrk0BHVAGkXkMdnVk1zbq4Gt96FtRQMGv3geOUe72kv89MiulruCzIW0aGzq0L79tLThyU2x4jfGhx/HyuG5fcwuc3sZEryVu+8dt0eY2UduDW3uBk33yt6/glaaFgUpdr5cTrbLtA2zB0domzoITRFRIR59T4EwLLN0fNeJcoKRKTlkZYM4hooDB/tjWa9bB59/w+O1I2vYJVeviAXbz6n5gsP5++/OL3y3H2wc8PejZzAA12nWyKXS9ltnffsd+0Oz/fvva16hre25wv2G379+/p1cN1r9hQcb62bvj6IlDp6uh2fsXaAZidMcNkY/bR6xBaE+T95WJrf/q9UrdF7f2xbHvin+7yVsreByOkSbqnUfV5uZlLqyZdS9hp6QLs3PqtYFVWZSjoOqNTfnBuVW6DK4e45bU63n6dTK3pv0ZpTS8b6upZV9kMYuAGAIpBKVv7O7Pa+Ph5d27uTa7MaX3ejOPvl6vfPr0GXIi5YWPn34kt8Lx4cTlfFkX5t4bqP0xfzOo8TLJeeln0hf1zbdFn+/0kj6hlDOfaLiV6tVfezvWe2LjQlw/Q0RUUr1V9kwKHa8CUgyA0D4xYP3//aKvPT927Kv6Y6WhAdIyLwiqaFgsQe8VH+dkNYHdEteustXoKlxaedu80brUfv+svl5sn7HJLNM2CrOanDZyXsw2QoVHvPPWR+kRNLh1aACY816yvn6xOd2uaXvrkf3c1PXAMR4mHh4eqLVyfn7mcLrjdDry8HBHrYU/+7M/43Q6cThOfPz0kWW+cH7+iNSFfD2rwXZr0DwNE4gwX03vAw1HLqpo2SQgPuLQXg3EqTJWaVYt175YYQTiCip1MRABnFdj+b7m9HGr579tdqrEqeNrFcBpL+dCT2aD+TV651cvKt1vKiFGBteVTUWPrxV807USVL47N0+umeenjxxP93g5EIcjD2/f81e//hV//Cd/wn/8n/5j3jy84f1XX3N5/ETNV638m6x7rX2f4cW4aei5LikRGis4oHNl6xkV2QR6Go7gwSP4Br72Hj7h6fGJKoEaovY7haDUSaPaPj+feXh4YFkSIo67u3s+fPjA9XplHOB4GnHDxLycma+VZZkRFsZhYIgnAkrTy1W4MyGbYbnw+PSZ8/OF0+mEBKX5hdExz4ly1kr4OA3oBq1gw5IcvjmcaDJDbQRfOIyBFoVWta9SgyqHGzylCtd5QSocxgNhGGlORTBSSlyvz3hpjMHRSqZmFb5IS6LgTDBDmRkVNGmMwvmqgkWjd9BUNENawBERN1CrENxILtoPezqMauaeErmoMtx0Oulcl0oxReZhGHEuqP1HLcypi3fEVSyr1kzOqm5b00IM6nfmglGNUQGuhlawiYESPf54JPlIGUZSLjwvC5c8M3hHaJlaFu2nTJGlOHxQgZLaKnnO0Iqti30dySafr8wTH4KBuxioVgjWM9p7qbJRzvs6r0rBBec2UQkRYZlnA4QEFxQMFekVaE8LBqiIVmlTWpiXCzn3qq9Ro8Xjg6pSTmMkcMALtKJxT80J77V38Bg81yUxlwwFWs1IzQyuET1WARWaqwqcilLim4udxLbuEzl3k+9myaUJQNm5hOg1sUwF8UIcFLR0TRVve0uAF0eVqj1zRqfXLMvhWkW8xnoNi4leeewBzNuYtQPzt8CnSKdl9n56jYGriUw1i6fYxQuvMcS279hrJXyZKO3jnFsp/9sY6BaQ3f9+u+ftk76+/remgMNgIjv72KF/Z0/onIRdscL6y2iwFid25/iiBWTTPaBV1iqc2DjBqJANBQGWvNIhxd6Xs1oINWG1d3Gq4vKTsXR//FYkbT0xkH7S9UU0Zz+s0tPs4r3Gb93LJrfOILdvsPcgptJTrY/JXNv3R9Ov2b5C0yz4dyJbYLtHE/YBVa1245TTqo7qlijYMewHXA/UrRa2nu9+sq0tioKq3vTkC/Nm2SWBzc49W/J6G1D3hlQNTDWRKV28RLriYVPd091E0QtV1+uznh/bpNrdMn2InpM01grndq36YqNIBiZ2MUQ1xrwuKtO7esTBior3q9WPQUwqvzdpi9fm61Sz3TtZgzHlcG901Z6UNXa9JnZewXxWcm7glR4XQiTEiJvTmhi31qyy/mWStgVnLytF29iysWr0niqQSiUVtVJXpTW4Pl84z1e+/fgRJ0LwXlUcd+OuX+Jt0X25CPTfewKyBcSF2jZzyZUyYNdhS/R0keqI4R7A2NMYYVugywp2gHMRqV10pSMrWnGrTZVGexKUUrZ+H1nNb2VdFDcjz2aVtpwT80UrQrSm987oS6VuyJvfVWFLKep/aH6CXeWw2Ebl/NZr0BOijpw3WE3p52WxNWGbb96rcqkzGwCwyrDTqmk1jrvY/Wqt9gKmjqddIraNpa1HteQCRi0tJaOMsnXx0tniVQ1tmA64IfL0+MSSE18dDozDiHeBP/2Xv6BW4e7ugfm68Pj4iVYL5/Mzg1e0OFq/n65lHsSvG3SfIyrOElYBEA3GROXuq1aCEDX27kIcmsjp8es56zq+NuE3vX99HGerUvngCT4qfQ+lkzXfx2pZE/QuZ92vaU5N771RgVJWkYHBAJDWGmKN45pcFfVXE1GPp5bJFc5Pn8nvzrhpJLfC3d2RN/cHfvWXf86HH3/g93/v7/Pw7i3h34/MWSmyaiCdbT3U8VtqUQS+6ZozxMjVAlVnib0GwY69olsMGlSWUm2uA4gh5roWDIPnfH6kRsfx4S3BH3iIIx8+/MD1euF4PHK5PHO5nPnmm2843d0Bjm+//RbBEQet8B/GE61dWFIy0/VIcI7x7sj5fObpeqW2yWKdSoiO53NSElFThbY4jjQcz4/PawIrAsfDiVoqz89npXZGZUmM0xFpQlqu1Fo4TBOgtN4mDgkOFwZOp1ET4VIoWRNfpcwt2okSBO8GTVKsX/p8vqpBsw8W4E08nc8sy5XD8Y7D8cjxACT1ZWuowqOIBuVOwI2Oes3klBnHSByi9q9dPcs8c10Sh+mIj6Ptz57rUrhcZ6YpEK2irSIXjVaTVXsbrml/1jgetQLZQAjkXJhLoTpvt1r7L3OtDAjNeYjBaJAQmko7eedx04Gl9D7spr2QFLwTYnRG0baxZBWaRiMVBcXEe4agAkotq8CXDbzUAAAgAElEQVTHsuS1Nx0RfAwErx5Yl8uFagI3cYj4oOtkyYllvtBqxvuowGq2ir0461V2UCtVhGGISG7kojYiPnqGcWAYRut3DZRcNUGTgDcxjZK1bWJerlznGQleaZZmhF3wKL2/krKyasQJ85KZS8MPQoyTrXFK7XYSLbYzwNsscnrFqlazLUGrXn71X2u295knZNO1UJwjeu3XLVKQZnsxKoJE1sSZKozDYD3R5htnW2dfx2idObTtvb1q1GPVsgWXtplY4oHdcy/41in9m6BKKrpndYuE22rYRvNT0aG+R+0Fz7qo0/6xZ/r0dW0fc2+vKyvwrsf1EsTb4hux9pkNpO6tDD1+uWUcOedwRHtOgXoFCvcxmrMUfV+s0Fi0tv3rZBVra6Wt/psvE+tKK04N172CctlYQoom/OZq229F0iZAcD1pQ1ecjmw4rSKIBSG0pvQWq2HogN3OVazagmXB9AStFJXzrm01Oc1F0bGSE7VmvFeT116Recm7tcUO1sBsfdxkx5sSjgYr9cXfNjQLO35tc9SApolof4BVgdQPyxI0EapUqhhS49bUheq0J4nW2ydVyafQB+g2SPv31t77hlvRIkRVclb6kZXKVQxAB1iwz+s9LNAnkMBuEHfERjnkKO1mhyDTwDtNPlockK7GBOSlUFHxCtkN5IbmIt3hDRzFlH4QrwktIMGTqt5XcV5fU8XuoVYJSquUYjSNpht6VwvUKorgnTaRKuvDKIRGGaxocBh8NPn5irhOG7Sx0xquaVOwyjtvFcuOrILDi8dXIbhAa445QWrK/59iZJgiDJ6nOdE+q8eQd9BM+QmxxOa1xdRrT8J23+sXr6m1K/bZ76u5ZBeWaNRmtICwVSf7eNqrP+2r1s6pMlcfL/0Y9oDE+nu/Lt58bRDz6DMgwhQYqVggpSp7zcH1cuXz4+ddVczhpNKaI1dAAmGw94uQrbqRkiYLwasxt4qGNFKtULJW5EwCW3bXrrRKypVq8vO5WDUMXW+C06BApBq4oqisd17VUNF1rQtngKpr5vwSHew/+/f2pm5xjrJPfM0E14sj9/sbBqoLhGEijBOpZD5+/kyMA8fpgBPP8+OVP/6jX/DmzVtOx/c8PX3Et6rGzD5AK/g4Kv1p7flURLWVTMuZVDZFsFqSothsyocp5c0sWrz6cRWtMHgfaLmt6484VcVzzpm6ZjPxGk3ygkdV7Fql5IXBB66XM8VVpmkEKtIyDkWZHRWas4BxodSCE+17KbXgrMJAVYU6EVmpsbUp+FZQr0kVytFnaGfS5TPh7kSWzLs3E7/z5sDy+QN/8s/+T/7O3/l9ju/e8PDzn/NXv3zCA8NBrSGW82L3vBI8RklqZkquyfqSZ2pNBOfx4qm1cyzQqmXVfZCmcF4ToTlHNpolwdFKI7pKunyghsp0+pprbYQY8PGgQhtlZpoOfP/jr3nz5j0hjLx5+zWPj585XypH16g1c5wC3ieEC+MYOZ1GVQW89/gPVz788Gc8PDwwDBPu4HCcKE3ptM4FnBMOk4fstd8sX1Yq7nU5E8uV03RkGhvSZsQJl0vm+fGCj4HjcaCJJ04D4pX6ep0XQhCG6JjThZIz4lRR9O5hJHinVOnrmeNxIo4jIp53795qJW5JWmUSOB4PNIeJWWRaqUxO1xFksMWykMt5XWNOB62O51yQ4KkCS240f8BPR2Q44MaDUvxz4/PTBZFKHBwDcDoGDmPk+XlmvlyQFhhiIIwjzylzefyB6XiiukhtDpERFzxxiCzzlVYS1WWkDsQCQxRyyzSpvJ0GJM0s10RunjDcERA8MKkwqfYXA0glm2+eC93wvpFKpTJQxTGnSq2ZEKCmZMqhmmziCk0CpWqy5JxjOIzkkjnPV1LJDIPajAzB42VhPidyukKDYTzgomNZErlli48gjANehOFw4HQ3mSWC/nNScemiaUAp1AJLdTq2vVc68RAJwXF/VGXKatX1WipFBO9UqCQlrbqmkhlPd4xiQmam+FlyIi1Jj0sCaVlWJWLntA+5V4/6ugEQooJZWNLeFYXzkmgIxRVcUMZIEVUTDiaw1UrBAdF7mmuq3ps39kYX61KfUWUHBAMDt0ICxmZpth6Gdc/XOKjYGq3JFmuSZ2qPTfv2cIGCJaKDVcmq9vqyT/qAZlYpPQrpQLKTLabvsSw3NMvXYoP+0P5xjVXXalfb4gY93ab9670fWV4yUm574zvtnl4xtRi2xzIboC/kVHCttw91oNohrTNw+ufavuGsKjc4wjCuFbZa66rwWtsWD3WvyVLSi/jstcdvRdIGt4p6t0IjP12h6O/dZ+1rGRNe/INN2rlzprs0Zw+ebjP/LwfPl8/dPt8/w6/H2/v0lNal6jGyIvjW82n5zq5HQZolEcaXLXXNWrzowPfs6Gw90WRHM30lOH6tpN763/UPL/7eA/c+6LgZ/OvP3WXZEkVDJ9wWdJTWzOtGBS28dzSTL+49Ov3n3m9v/c71ELfr2xPpBvigSGQydSrX3Jok9WN1VlHsQXAI2if3siKp6X1fKPvk6onJMAwqVFKN02yIln7Hl+P1xTns7sn6DwFpSNPFp9XKOETuj5HpaBz654tK1Qrr4rH/zC8pCfs+tw3N2tPt9FytHxLtKdTFTuWA10TBErW9imT/3j1165aKuT/f/THcVodra7guXGFCAtbxtvVZmjzyNu4ql+uF8+WMiKyN7yIqTFBz0mTGb5L5fXxp0NLNrs1IOnoulwutNaI9B1ZxLFsfm16zsHoY7SuOIQ4MJuIi0pOy7brr8W+iRppk+hfX53bsfHFNW6O5Dlxhn6kpp643VimO6lflnOf56UJOmW++/oZhGPjqq6/40z/9BZfrzDc/P5A7+6BVclro3kk9wejHWnvPXa0vlC57stl7BfucG4bwYry12imoAGWl8NDnkGCV02xJlNAVTPtav9J+TFrdObdbDbpJu16fvraLrTn6VW39vdaqdhRRvdPm6xnABDlUyVYBrG0tozUul2e4nBkORwR4uH9D9L/mL/7tL/n44QNf/fwP+J3f/Q/49V//JflilZ1xYE5Bzbd7YcyAxb26m9jadBhPlNyrjTYX6HuaJcbFmAHOrRW3Wju9uyGlcnn6hK+RcbjjZz/7msfHT3z89Mz93T3P5wslV4bhTIyNuzcnDsfIx48/4HzjdHcgDg7nTupXJjBOgbu7E6VkvHtPyZm0ZEJoDHGCQ+A6J5wLXK5X5usz79+9ZRoHC7qhlqTKrjkzjgNOIC9XWoNKZSkVFwZKa5yviRg1aMvJAKHWqClRxev8aZVsa5V3nsM4EUPg6q4sKXO5fGKII6fTAyEMxNEq6E1Nz5s4YtR5uFRTtqSLamhg1qXqRRqDqYL6UjjPKvoxzwmcZ5gOhDBSgRAH1KaircBarQUVDbUeGK/iHuP4wBgmQPDLVSlUzTEeToBXOqhZZEzTRBCzt1kyMnSQVPsyp2HEGSTshpE0L1yXK/enwwoUdaYIohQw7T9TwKQUaK7ofBX1SvPiNEHNCzktiFRc0OQ729rYBYWcOEJQ9cTl+Yn2pDHN3ShMhwOtaS/vMIxgAFatmeBNadcJrWZCOBijoej9rarOqe0Tsxl5N/xwYPAjwzggglWiC+M4WHU9m3WEjtWcygpW+hCQYL2y8v9Q925PkiRXet/PrxGZWVXd1T0zABZYLLFL7Ropk3ZFmckoraQXvej/piSakSJFA3dBLi6zEBbXwUxfqvISEX7Tw3GP8MzuwepxmEBb91RlRkZ4eLif7zvf+Y5aMzsxSFsWVddacX604q5ZhGxaloVSCofDTsBb0ZQgcztlUQWI+kcIIasVaZL9J4daztG1zaHFgyVXZ/hrcKPU5sjZ76cxd/t0pyIS8zepvRalGLRgTWKmDeRdxXMIFEtR1hEh3tr6JPtOc15fv9N8vE7tdl+TeOeamFRKXalK+phhI4g3t+/mkF0aaCuS0Wyg7WPqpltJZfuePr772Os2Xmrv3c5/i2Gu46otvitF0SoGihJToCtg6TI5S2z31RcfPQ3gGwTa+snS2OOt/qtJseTCbwfv9iUD8eGk+dh7dWUopa5iG8D2/mswqWpI9PXn37+3Gel8ELB2k0bVQEU6rsuCoVW3MWeprWjtbrQShlUXyaRp1X4uwCWVvEkRjfrwQekeqPa3sNlmm3Tdz9dz1rL8CxCUk2ugQB76D7OPQNWg2zXYS1lkaFqbyqjVwuUstVINFPWFpP9/Xj1YaIxKn+3Z0u5Nn93qcWrW6MZcpL+vPSnQ/m27gH6Zlw0stbH9cKpdHbO9f703ujIxdZtNMZCnGVcKozGQI+fTkeNlJpZUnay2z38s9b/dv/65ul64rrLJFXTeFvLaToJ5y0L186h/bj6mXb/OXH9kg8iZJQlYVdQm1NVVS9HASl7/O6bENE2cz2cKUjNSR1Nc11LCVhezdj7tmnumdGVMS2Ge5xV89PJEqZXa1iRjLTmItXxzpyxFAiBtVXUy3Noo9MDutkC6AZ62YfSykjY2/RxuZEYrVteliHNpFuBvtBa7buvY7w8cDveEJTKfJ+4P9zw8PHA4HDDG8Itf/APD6Bl2A0sS05+wBMIi3qxSjlZk3OtaQ6lALkuNWg9Ye/Ksz7zeEmxbvZ+5mrtaa3Idg1Zz2DOlt3UKVDOCfmxkQ62mB4h0WrVgpaj1/t/Wh21tFeR8m205StawEGp9bZLn/Ph8xL+M2IMjhJkXLz7h00+O/OK3X/Gf/9N/5n/7k3/Kp68f+fSzT/niVyLzc27E+5mwLOQSKTFVgwNA29rzTlUHxcLpfMJqL4YGre6mEXtayO5WC2Pqsy5Mdq3Zbc8phXk58vjiJdZawjDy+PI1X715g9aGFy9e8vz8zP2DZsQT0xnrIihp03J398D+sCOXxJuv3ohRiBEbfaN3/NF3fsD7pydiyhjtCEtAYdHKkGpfMDEXKnjr0EoCvrIUlhDwOC5pJieZO6GIPE6yOYkYj5KZrfdotxu52+9JObOEaX0mnfP1mS28e39kP46Mg9RtTtNESrAsQbLqqayGKSEELnMQ+Z337MYdy0V6O+oCltYbT44dc0CZUE1vFM46IbmMXOcyL2hqA3Wlq2lWZhh2GG0JIa7NqEVRU+WXNRti3cDeyRzI1QQh523NimER5YpRIgGm5TtkMxESTgx1QsqoIPLt3biroEBMWIw1VXEQSDEyLxHvtLR50JZUm6IL0C4CmFIhBmlGbbTCFS1OiW5zh53nmct0wRrHvpJG0zRzPp95Whb2u4HD7iBmJ3XtN6a6bAbJ1ocFlDbEGNb10GgB57LOidmItQMhJZaYOZ+OnE9Vmm8lrgvLXIn51qBeajFFRi0SxGWZMW6ALDFKCJFYa5y93wijZVnk+VyJ7LLubWLkJKUT3ouaqLWdinGBJKUdxmjM6DExscSFVAG0c26tz9ZalEExRVQx6x5Wuj2ojyE2IlGSHn3LFVXB1lrKUlqvyJskR0fEtpdu5nalgshKgJkaj2vnq+yxrOToLekodXxsc7QCRa0+JK7bHn19XrSZDbT3CPLZiOIWf0h6sY9f+/2pj4X7fbi9Z60jzr2jPC2jsu5bfZ1f28dFnprpnff6Pb6NsTEGjMzlUvcjydyUdX78odc3BrTdBoDtZ/KnBYhwxRDIaH4UMMG1jrVN9I8dvzH3/Y2me8+HYOQ2uC/bT+oDLfJCYWg/huz744pTmV2vR7XsSKoNaVOS2jVtaFJQMdqQv2GteJPjfwQs9q+P6Ya1MZU6STVpzhawtCAyqSp53B6h9TvUllmrP6Cx0jFvbn1Dky/UpFTMqW7oXweHt9fHMhAfe08zkbhdiATAyTFilVr0wXC7JytI7YPk7niSNZFxiVEYuyvJbN09y0fufXvd/k4ktGkFT2lZWC4XltOJOCisEbnJ8XLi6fS8Pgu34Lsfh9vvu/3OPpCWH2yLT3N+7Ov+2r9vAVvPFt1+72oO0d2HjzFxPaBEdSycqrKLLHUHGqlrWuJCqH2enK3On7mq5nOpBjxaLM+dW78vhLBmDvvraNe81FqitnjHjlHtXVClcLu5Y8q8V0qK5JuTowCMUDfMTZ7aj1l7NYLhFlzejs9H/1sOCKpJRwTLeG0rkFXMl5m4JF49vsbZgU8//ZRf/vJXPD8/8e1vf5ucE+fLhTCdCdUpUoa/sYTUhadm9HIFbUpf3ffbdbwBrL59Qtu4+g2wB21K65XRTjHWZzV/cGwJEjQoW+s+hfhqoK3JXayVViHNbbOfg21tu2rlUljX4FJYAylpb1ABsxZDhfPxxP7wEo3isH/g8fVn/MPv3vGzn/yU/+l/PfH4+ILv/vF3efPl7whHkZwO444QF2mE3YIC1HoPlRIxQymJ8+nMYS/XlUute7kh4UolZXJJNOpJ6i9YSRhUpijD27dfsBv3HA4POOe4nBf8MHA+nyV4jRPHY+Thfs/d3SMxiQzZD2LfnlLk29/6NtM88+tf/4bD/p4Sba1udFhTmOeFN2/ecTgc0KNmHLwAvpyYpzPjINJKmszLWualZshMM18RIjMrxPQm18xaDHgrlvRaC/BrZQvLEvB+YHBC3gQVWUIhp4D3jt3ugcv5xPk8MYyDzBWl8M6jlMiocynMc6jlFOKSmhcBZ0ZLiUBGUYqubT7qfhLFOEujOIx79ntpYJ9JzJP0fdNajiGAQQhXrURWOc2LNHcu0h/M1qbySmdiVlymhVykHtRo0M5RsuL56R3Hp/c8vnjFZTrz/DygtWKaZ6TNhmXnDCFLSwattYDlurdrbST4VQZlG3EL8xIwJotCQVGbTNeGzDnhrGfwIwXphZmXS+3DWWOFUgnxXIghopS4FT7c36OU1PBMS6TV8ch6oMSALAWUsygjJP0qaYzSesN7z+A92jiMNmSbsTljYyKEhWVZmCZpM6G0WkseZH1h3RuMNYxmt661Sx2fUkkqg0JXEA+IrLEUeV/9TFiWKmuTVi4xOcYyVgLBQmrrV5E6Jm1RWgxgjNV47UklY1wjUgXM2Eoi5yQ1i7dk1e0+LGuX1O53/Kss2ev+rSpYESKrvf5g3IAiVoFXyaXl9qUJe1s/O2UOtVavj5+c/zAmF7D8YYutW9Am/860OmXYar0VvWt3i6nT2qbh9rpuMUAvl7wlokspHYATE61+vHqS+mMxXh/jfwyMAqu3gqg+qL2INyXP172+UaBtG7Drn62px1xNEEq7qMbipy4AzOtNvgVtH/tTmsynHrG0mS7/UdPJW3q6WWD0r1u5mdS/rBd2NXn6m91fowTM1d65Bqo5BXkwlKoukllYNKT4VXeT9nYsS5Xw9D+7fU8LEEuRfjjrQt6/t5vMKXeuOqXR7lA6FkKp68UklYK3Ui+krWQGLkEahYo0VcbfaCv2uitjpNfAtw8Ie4bkY3NI7gPd50oN4lJl0/sFZau9sraaXHQPZDve1TilVINwWZBEWmcEuNU5U9ag7x8HmT1wSarUInLJtM2XM8tlYrlYtLdiN+8cc7P0/UeAYQOY/ff0Y9sH/ilJNjdV1rVdW7vu9r7bLFF7Xx/4tuxUb9u/nQ/re2C7TyvTVnecRmDkyrKmGFcCJMSZy/nUZcvMBqyUuDt6Y/HDiLe+Ns9UzPPMPM8opVZnyp5VCyFgnV3rBShbBkxkOVvtQgqL1GpVOUi7A65+HhoYLjWr3P9MGL02Pn0mqa8T7DeZHhi3e64UqwRaGanTlMknen/rJLCKCS6XmWEYefX4moc7qT36yU9+yjAOPLy8RxlpJB9rSwLv3XoOpgZPqE3ukVJCGfDWX82P9plWd9FAb0+GtDHor6UZuoCQUSmEq4bh9QOoIrJzUfiIHLRJf1LqnwO1zg2lFAUxqliWZTXhaTLZ/rxLW/MBstSUZK2JKWGNIhsxZGlry3w+E+eAMppULOP+BYe7F3zxu9/xdz/6G/7Hv/5rHl+/4tPvfItf/ewIxjDs70hFGu5GZHxV2+RhXRtb4JBzxntb18Yk97eCM72y4AlJuEk9UJyDZA6NRppSGwZniPFEjJoUd6RQeLh/5Hg8klPm1atHno7vWMKRw94yz6FKXTVvvnrP+bTgnFsBcU6Gr758D1Qnwjrfl2XGGIUfLcPo2O09Rmuej08ElTBma06vlGIKkfdv3mGM5f7+noKufaqkbnueL6Rc2I8Du6E2y9aIAqU6/A7jHufkOk0N5p2F56dnzqeJZU4ic/QDfpC5nIFlWjgeTyijxf1PW4k3lGTfcq33RkXMbiTHLL3/lCbkVBs1G2lMXFqfQbhMJ+lz6TSXSRh47y3GylrklDSZj0HkdcZID7Yl5vr9QgqdLxdA4/2e0nqMKsn8zlPgyy++5N2brwDY7/cYoxl3A4+Pj9zfPZCLBM3OGVqrgmEYu16jZQXs1vl1vrV1T9XnwZRCaAY/1TzIDAbndjhbmMNCLi370ECFWY2Acs1egUzfw36H94McL4oUW2nNOHrmKZFigKxILNja+NyOw6ooCCExz30dkhLTGavxyqE02zWojXjuCcgC1RlWlBm2GgKVXMl2xMio7Y/buivPnrUWSqlZ1kQuUkO/LBMWVz+7GZk0K/lcMn7wsn+HhZxrrb8xsvapSlIipkjmllTq9vMW1zSSS8ALK8gpBazd4qhNdSKxWttb+r25fxXAaVf3V5HJ9wCo/5wqRRpPq2uCtgeYq9LCKErZVBbtehowbZ+lrnFSFysxmwA2RZOLt/dKhkoL8fE1Sq0eSN2Cqp7c7/c0rYW06D/TSN7bWJ6bmO9j49qOI8C1xVOs13eLL25f3wzQpri50NsCxcb498Duw9qzjzH3LSC7neTbTS1XgeLVJPzIgPc/b4Pf1+e090jQ3ztY1vPsArye2S00uZHInUpOqLzVfimF1IBZj1KGkGotlqsPVC2a77+wz6j1mYwGMNdgvXuPUmp1pCsVVK3j22XR5PP9BG0ZqPaACiNsjTBaINLNJTbZQQV9RqGMWQFD/2Dc9p1qY9YDCRBjgjXT0QEIgGGoLFl9wGwNMtu1bGMgVv59D64Qwgf1W1fjRGOari3GW5boNpgFPljsrudYJR3QFFUIKXKZJ04XS/ZGDFWysLIppfXZ7s/n44vEtSb7NrNQirgh5vqc3coG++N+eOyPa8dvr/ljC9nH/t2eTYUw0ZlSAyNdJU4XlnkGEGChQFGIMa+A2lZpnVayGRtniCmugK1JF9sYtLkh7P92vrZJkaoNPJRVSteWarmX3UIcE9mKHDKEIEYGbNLddr1NntePVb+p9RtKP04rEKbJ4qRmK7Zj1GfQ+5Hd4YCznul4JsbE4+Mrdrs9+8Mdv/3tb/ntb38jzbSHQZrTKjFDyVqRohBZ1nTyGyUETaHUTIe92hxv7/0taL9di9urPc9bP6F+w7wmgdq8bGMjYyXfNY7CmgvpoNZnWcCPWc/xNlMsQGQjHBSQY5D+Ts5ia6CAaoRWq/3V5GWBFNF25Dwt7O4eePn4yNPxyOc//TH/3X//V9zd3/Ht732PL3/9m9rw1+LHPRzfi5xPFUrcsraNuGzzNC6hyq4kSNTrWIsJz0ZiQggL1sr8L0XqnQ47CeZddZ8zxpOT1JsNxrJ4jzKF5+MzIQYeHg589dVbjDF867MXWGt5fn7mzZsvGYcRYxzLvDCOIylG3j3/nnEcGUaRsyoL9/cDJc3c7e7xo9SEjYPmd2GpGUVVa1gt+8OBhyC1p3cPDxUQZXSVmE0Xx+AdL1+8IIWZkiU7czydpHm19dhqgR+WGTNNIp3zI27Y8cLvyTGzhJnL8RnnDM5Lg2djDV55QozEJZB1WpvC7w93dW2cmeYLz89HmsTOe89hvxeSKESWKJb64+BXpYeua9huHJimCWqdMiqRgRgD02VmnhfuDgdQmpTBO6kHnKYTOSecH9eMZAwiPbTy4KMyVVIqGT3qs/rq9Se4cWSaJ2LOiJ2W9NvUSLYsFTHOcs6BkroukZsmtDZ4Z1FZTIRKUeicSSju7vaAIoTI6ST1v36wWN2cciVjm0NEWdlXx3Ek+8I0z9XxEvI8U3JmN3rGwZNiZLqcWUJkWRaGwZMoKFXbzJS4yuUlSaEomeooGzns/PqcWK3IThrBp5zXLJkxeq0pKfU4ckBqZk4klQakZKWu4zFGcqwkoVJrI/GccnXQVNIzUFUiMmmcHfDaUOoanaXBISlFYq7Eu1EYms5ZqlRVkZpOqaUVg5G2F2+ZqtTtPyL1DCHV9XGr2xYCbWudE0KoypOw1nK3deY2hm3g1Fiz9sQFId6Nsp1Cosa0BXJVCxUa2KokZ9rATVv6b5UW7Ttb/LyRe+1YYuiynmPuAVarkb4+7i3R3Mcr/Z78Mcnp9r52/OvkTL9fbX+k1+3H8MnteTTitZ1/zjUzbP9LkEeWDw0L+s1+q39QaKPWjMhqCqA23evq3tJt/P1N6n+2fn2zuq1/WtDd7PDl/+0GXBso9EHnh9dVrjJtSu7QNY4usuCqUl0ii8h+Sk7Y6nCWFRzu9hwOd6QsDo46y0MjTVeBch243wLZPkDsx6FnnuqtqAFq/ftmshljOvlZA3fVfhyFroYPCoV0JBHnzsLGHq9GMwoawsxFCuZvGRBr7Vpb0gK2/iXnwFXw2P7+OnfDFmi3WpjbB7XPsrV51rMxbXg+BsrWcWN7T78Q3r63/10LxopSROD5cuGXv/uC37/7PS9eP6IOB96+fc98Cd1m8WHavR13A+abnfnHCIj1mVPXQK2/9v7VL263mbT+fG414z3QbZtO/9mcc3UfU5ScCdWwwDlLCoHz+cg8XUSyYxSpLCIhyYWSRfqy2+1qwKqIIeCcZgrL1tfq5p61gu4VxOUNKPSSFGsMhQ7srnMAVK3PtNai6lwsKVdW8zpr1saiZaN6sPCxOXVLBK3jqPrFv7s3SmPcwP7unv3uQAiJp/fPODfy6vVnaOe4f/GCf/vv/i3jOPLq1YG8YwYAACAASURBVCsomTDPpBC4nE+YtIgDpFKdPDKvwrsGUlsyv59rfbYwxnhl/tIHBf18aOt4X7Nhap8mpSqIKkJgSe1Cqhk0Wbvl2G2ctw1WMnCt4e8G+vr53M7ras1QCnIUH9HczJCA7rMFRPodzpzP7xnGgZilwffrV695enrH5z/9Mb/99S/5Z3/1V1zCwsOr1/zmF79gt3PEArv9Pafnd1vLl5XDE8fMJsFWwLxMjKMYo7TepbmClwZOlRJHYO99NfaQjJaztrYH0TVz5olRsYRMLopXr1/w/vk9TyeRNJ7PF96/fcunrz/j/btTlfvuSCHwu7dv2Y07xt3I+SxNuneHHfN8RoXI4+NjBb4jWomJzDKf0WrAWc3Lly85nydCzDw/HylFmrw/vn69kn2n04nT+YIfB8bdyDgOaKWkBYWzMs7UckZtsX7AOo8xGecGceBtgWLJIv2rrs1FOYwBbSCXxLJIQ23vB5yT3nGXy8SyzFDXM+cM3t1XUxDpVxeCkBzOWQyw30lgPM8XzucLu93I4+NLmVNasnXTNEn/t2HEOgcUrDNoM5LILNPmDBtzIoS4ylJzScRJMkdGKQbnwBi8sZSUoWaJlNbirKykV9gSIxCZ5kRYFrzzGC+EK2p7TmKODKaWdWgl5ixZMtrSm9QRKSyXM5fLpdaMSX81rRXT5VJNPwa8H9jv9rCDZYnEIO6LznruDwdiEdI0xiBjuUzM3mNqYP7w+EhakrjVGsUSFmKstWGlyolVbakyOPygyFnWLBAnYFsDajUMa2a4FKlZviwTqWxZOmcdgx/Y7XarQkophdLVHK3UzGOo/Tlj3OqgVVNpJHSVuNUDSNyCgL8Ypb2HNtV1Uy0y9rWG21ld11ikvYq2pJxIIa97UlMIAFwul1UloOo6KWTBpnARdcdGqm8Z1Ixz/qrXq/d+XaubvL+tj81oRdZ+UTI1N2BVs0MNtGGuidhG0NyS76pmlJT6UKnWZ68aENpA37YvKq5jmlI0SpUP3CO3U7kmQHvy/xa89aS24I0P+8Xeyinl+TNAuYo12jW1vW2Lnyr2YAOlTSX/h17fDNDGtWSQmzq1LfjTGFrAVJAeYJWVVtt/i671Wkokn79mEtpEFFv9xG2gpNlYgQYU2zPwwbjeADRgbQDcvq8/9lWwXKhlzps9uNZGmFE34ocR4wxzjBSlGA57jDFM08QySZHt+hDdHP/rAvkPzmH9XSbF+vtOptUmqUHVVPFmJkCRgmetDdpYCluvq9yyR4KE1yBsHbN629WV3PL6Qbr92e3vG1uxgZS0Ar4mS2uvlLaNsT0c/aKxZno6ANJnB9rD1j6b6qLbDfKVo177+2PZpaufIUufWNhrllL48vjMkiYMkZfnI+PDI+/OEyqzOhveZmf675D/lj99ge3HwKbIRcq6wN4eq2e/epDbj1N73WZMeinmLaFwe38HX13CatbZW8OyTISwQEniRGgMpdQ+NpVAMMYzOi/ub0XsXBRwPD5TULhhWIFEu47GPEqgIc040VtWMoSw3ftaE7JulKZq6ldCSRjrQmaeJnGI1Vtz6Dac/Zj1wLaXDcK1QUz7XUoi8SplI5LWuddifgW2FJyTHkbPz0dO5wvf/u73sOPIuNvz/umZn//9z/nk09dYY5gvZ+IyY7UYHTlnMdp1oLXNl1u5JjTms5c1t/ENIazPYcss9pti//62IWqt10J/Ovl3qW1PUgwsi2R5cmlzi6pAqCQTUmu3xJnWf6+ZOLTvaHOwjef1JisgUJcsTYDrpp1rxrXU+apNpOjA8elLyRC5A0sI3D/ccdgPvP3V7/mbv/khf/FXf8nD4yN/9L3v8+aLL0l5ATR+HDk+q8piy71LWYgDsiIpsFYmzjxfKCUxDgJKlNKVIReCT+uNpDLGMHjLUAMxVTaw39rI5Oqst8RILpoQJj55/QmXeeZyCXz6ybcpGd6+fc/d3T37vWEcDpQsMtz9fi+AbT+CDRQST+/fkZL0rBu8w2jF09MT87JI9mxJWDOglfQLM9oQcgKjGYYBpUTabLxlr6sTX62tLCjmOfF8PDIMnv1uh9/t0Whi2dpKSBZBen9JA2dp1yKEiphyxJykoSeaVCJLCNVwJ0FR7HaDtAAoIh0MC+x2I6N3LGGhpEiYJ8gRbw/sDweMVoQlVimxZH+bUqNJsSUzLW1fmkx/HAe0NkwhcDw+iyQ1DRhj2B0OFXwUzpcjISScsdzv79BI+xmtNFYbipa69GY+orRkCkPKnC/PDNay2w0463DGcD5fOF8uIjc0RhpW13ohaXyuhMwJAjRNzrUOy4LaatTb8+OcJVZnzWmacNU0pq2rYYnrmpBrJklr2B9kHpFl3RTgN0ojcmrGOyKNqnXdN5QWkjhExlGIur27g7zIvM6xfmdbv/QqC9Q1u6SK2jJolayz1uKMw9ca6NbDsbU68d7LnrEszNMk12+3MVBKMiVNuWOMpShqD9zaLzTVdc4LkeB0Mx+Jay8zbTTamVoDty6/V6qo/X5PCLIWtvWzgTYBYlsmbJPbF1r5SiO6GhBspHer0++VNqkDhrAR9tKYvgKdun4preva/WHM28cTimaW1JulbOTZddyuV3CTV8KqdDFrW7cFA+hyTXbexl/t1a/7utvHbxNIwGr41I51G9Osf9+Yq/REbX8Pm8qvB9V9xvIPvb4hoE1e/U26DebkJbraQv4g2Pkgi9AFsv2EWGoT3CsAk/OGzrpzuUXq8l4BboIxNhDXvnP9vPxgDSQUrJOpXduWeRI3HqWrXr1mPJz3DPsdylpCSTitGQ979vd3cox375mXhVQke9fklP3Y9RPq6+RYpYid9XodWn0w6YEaoMpQXafTexefzmWRQmlgoLEz9Ty3cWo1YKzBUAvqWlDdruP2/rXradK4LRhsdTDlg/R7Y/Q/yFDkQsjhAwDXMyrQHtztoW5ZglYUSxHxmP7I/LkF1f3PZH4oVNHEoogUvjqdOM3gdWYicxcgYBncSCpbrVDLcPRz/Rrwflhbd5txaBr/Pg+8AvoOUNye962soi1oTXrRv7dfQG0HOtefA9ZoSrGMw0BOkXmeJJDTCr/foVTV+qtCzq6ygDCOe8ZhxzwvKGUqs7mgtSJlYVj7a25jtjkGth5xsoEty7Lah5dSpHg/9ZtgvfZu3s/zXDXqar32Jtks5bo5d5tLbaPsXRRvwX4p11r/Rhz0i3upTIIxlmEcq6V2YbpMDMPIw+MrslY8fvIp/+f/8a9Aa+7v7zFKsldpCeJIlzKYlmXeNhZj5L+bS5fSoIqoH1ogAFsh+e18b8xvP9b9Gt4IFgnUr8fp43O6rUttL5AGyCXLerSSbSvhEDHGrwFKD+D69UXem5DGu02yoqUmJRkKm4xbK0UmMl3ec5me2fsdSwrc3d3z4uGOt29HfvjD/8D//MX/zvf+yZ/x7T/6I7783e/4+ec/YTd6lovU60ynZ+kBRK4F/lKzZOyWodztdqAK484z+pEUC9b6Kv9Oq5S31HYNxgjppxXElMWau/ZwnZeFEBeyUiwx4Ycdj68eyMXw9t0T9/cvMRrevP+Sw/6OUhLzPPHJJ59wuBu5XM5oXXj5eM/Dy3v84DDO8PnnP+P5/RP60eHdru6BZ5weCXPh/dOZ3U7kmYXE/v6eaZp4fj4yxFCd0wz7w44UI+fTiWma8N6t2amM1F4tIbGEwODF4n05XjjPE95GvK9N7d3I6XQixEjByX5sZJVDSQbWuR0pSTZmmSZiTDh7zzjuyLngva1B9cIlTFIzNjggEUPkcj6SU1glaU3yNk0TfvBobXFOTE9CECfIcXSMowel1gzywe8IaWEOC6lErBlQWXpAtvUohABW7Ox1bfHgrMVoQ6TJ5SSuSKUw7nb4ceB8HlkuZzG+yYFSyQDpEagY9yPaiNR8Xi7MYYEi9u2l/i+mhNGaYb+XbNXpxDRdpNl6JcRszQrLslGIyyJ7j1bsxhGlRFkwTxe5FlUYRy/A1Rj8bmS6zJynhSVpvPVY7dnvLUNOa/3PEhesl3XOWiM9956PDKbgXe8gmiBJ3NH2aT94xv1ILpGYZM1e5pmcEsenJ+mjaa2QASmyAKE+g955iV+0XoG4SB1lLfJePgfizpjzmhfCWo+2rma3ROK6UBi8w1tHofZxq8RYLqKkUdZKvXK5lpfP87ySTj0B2EhJVVmgHlxovdWzw3XNXwNvq/y/i2V1XZsbSEcJkaCrPbr0FZZew7rGxu0arl51zyqIqdCtKu5jpLNaNzp1tR/KeFzHKqWUig0+VK60f/fxRr/f3u65/X7c1Bt9Zu52jNbvYIsP+2vq46L2PTLWste6atAnMtflg+P2r28EaOvh0m1Q2/69Zg1ug5UucOXmOP2GfIuQ1fogV+b8JpP2ta8/8PuPZbVuz+e2Tqtp362SgNVog7ceP4zYwWOHAZxhbx27uwN+PxBVIS4B7WoTyazIpSth7Cbg14/l9fgJl/lhNujqMzcMQCl1gabpfjNb6kxXVrrVj3UmM+28EG5BUWuXOmAVY1zT8j34vJVZ3Y5zY/RTgnmWyd83lpb3V4BdB0zprwe2fQZgu3fVAKKBtpyxWn8w3h8D/re/v/p5lfrFkshWeuXMMfKwcywpM4eEtl4cuZI0he3P65bouAXU7Tp6MNbe31LzPXDuAfStvO/rvrMds79+wRNtdm6fbxbE/QJtlGSZyZnj8Ynz+UTOEWfFpcoaw37cYZ3iMp1QKqONrexoxg+WnArH45nT6Yy1jt1uR1Eiyewt/Tc9f8tIss69Usq6kTVg2INUrTXWDV0/oZotKmWtp2vAUK75+p63DbjfRG/n9e1z2gIF+Z2WXn7yg/V92kgzT5TidBQp04tXnzDu9jy8fOR4PvH3P/97Xrx8yTiMte9UQpVMXGaMlpoLpSTwMB0YkCkv8hNT16p2LY3saOvqx8B8e55asNHe2z8nMUpjbJFPba0X2jGaE+h6zCpxDiHg7IC1juYy5pxHnAXLCprb/W3BjpBAnZpA1fodpVeVgFbVfRJqkCHZNqXA6kIugfP5ifHhdf1s4fWrR968/T3/8MWX/O2P/pbv/9lf8Mmnn/En/+QH/PKXv5DG4UoMceI8STaMTFGpOl2KiQVFjDu0Hpjm4wpox1FkaMZoQtyYZulXZrmczqQQVmt9kexK9nIJM7EEtNVCTOjC5e1CjIqXL18xLQvv3v6O3U5s3I+nZwY/cDoNGKMYRoNSifP5PUUFtHEMu5HHx0/YjXecTmfmc+TucCBFTUmWeZmhWE7HizjrecdSgZrXEmQvy0IqAg7ishCnWTI/zlGyAEdtrTSrTlJXanJGhYzWRoBtgWmemZcJ7zwxBoyVfmEog8qGZkB1uRwpWRwrtVI4b/GDI+XA+RIJU2BeZs7nC1DY73Y8PNxz2O847HfM86Va+heMAj84FAJenDHkEIksBG3JubAfd6AdSlcJOIUYFgGKw479bqzrUg2OnROiKCWMd0IKJQnInXOkIo7SOWVSSeLsqgslJEKM/P6rr4Ss0JDCwhLkHkiTYM3+sBdJqLYczxcZn3VtF5lkyFuWYZ4nUgwMzrPfSzbVWVsleWl9xkoupNQAgOwJ0aVVOjgOQzXWCaQUeT7OgMJ4X/ukGUJKhOWMzllqlAeHs55CJqTWA03kmGM1qEnTmePxyLKICc847hjHUazzq0oiLKGOlZyXZK5r24MpsMwLYV7WMdDe4es+YKupkYC6uk82U56c13tnjJV4Jkmz9pTLJp+v7rDaIPd+CVKjqGU/bDFYKVJbWErEYtef3+6317GvuICWlZjSm5IgtcbikoFGyf7WnDE3e/tNRbMCwCLSzgbEtHEUFMZklDFr7+Nc98E+dmjxRn++8o8t+dKD0Vvjsw20bdeoKkHZIg0BYPKenAroLZb8WIlGH6vcyjL7WHO9jlxoDeevfn4T11H3hHKjFLzFIu3lrKPUBIgfPNaaShj+l1DTBqAq019a9qXd3IrIaRNWXIl0ZW1Sro6L632tEjwtMsP15tW3aGPRulQJQRJgoYQeKC0V3h6Q9Rw6vKLqb6vRS8MypWRJpVWZnzQjrMWmutVVbcx+Y3ABDJJSdt5XPfiBcbfn/uULhv0eN45EYA6BkGdiODNNE3M1pCg5Y9Cb61k7VZqzGBt4qvnX9ZyUgBZrNplQqhpuXQPOgtkyMbk+bDXCL22AbhYTasahtzXN3Vi285S8VP0FZQOcNaO1gUUBlc0tTcazBrwlEUvZpAxy84ih2a2bGpxnSjFI082yNd2uc6Y2qF8f9Fvr9asAUyEL9u1iVEdMqU1y+nUM0hWbVKBUu3KlFd7pNfPqd3vMuCMpCajnOYBtVsam+/4eRFUJgVatlZVkSRrwUqpKafTaHLxJK4QbaZlI+c6WKW0LndYyx1vNj1LVuMN0krbSGZu0zaoysq13n9ZbU87VsXFZeP/+PfN8qQYGO7FPVm0RVoSQSQm0HupaQA0CMqejNEd+eLhHLKP12rx0dY/0tb9MlVKmkqq9fG11ULP9MQRSiLXeUN4nj7/CaDExKjmJAUlKGGtWZrevjSuVbSq5NeDM2Aoc1mxQaVlEuiekOTia1WGxAUhV7y0gvSa1wbsRZz0pwfky4YaRTz79lN3B8+knj/w///7f8/T0xOuXf4x3nsv5mWWZiSEyTRes0aj6LK21vmoDnaUo5EFpmcS4Mpt9rd4tOSXXtBlANdbROScAqW2cSYJP6emYVlJlW0M11tmquFgXN6mFVAljEtIcXuoQZSNP9fxLBXEioRciSfqfGa3qPJbvU0pBlkDH1A3aWlezKbWFuVKg5TPhcoF4waiRyyXg/T0vXz7ym69+ww//zb/iX/4P/5LHP/oe34qBz378E371889x3pKVRluNmgOWLMoErUBFSlYopO8ZKnF/d6jBH3ivMbagSsKQWealuruJLG+epnrOegXAqji8GUglUZS0CEglYIpjN47kbKtBhybFA7vR8vbNW0oB7/Y8vXvLy5cvePHqFWFZePf8jqfnZ/74u98hz2diiKRl5unNG5Yl8vj4ipQLKUHMBjce+OqLL3HW8PqT1yx5YfQjpd7rOM2kknC7kdE4/P0ohIz3PB2fifPCi90d2ooMX2lDCAun45F5mtBaMXipgRur+ce48zVwFdleVtI0ffAG5yO5moOk2jNNK835Is3Gx/HAOB443EntlbVa+hjGiPcD1u4oJZJLlAblOUl/s2GkKEPIC8RAuRzJFXwMuxHrR7z3YpWuNDFeePv2DbvdfgUIOSWW88zlfBZZ9DDgx0Eya9asMr2QopSGyIJfidCMLglTCqfjiZQjh92O3Xi/khjH85lSFONOJMfzEhgGebagtuIJ0oOypMTgPW64ExCopBYrhSBET6cUiLWlirjoyt4qdVyxtj4oaOMlG2YcubQGzbE6WIrkUBwPC5ejZMSMdwyDtPYYDwNLWLhMM8u8VJBmGJ1FD3s0gZgyx0vE6FoPprRkanPmcjqSS8JZJ/WOyqC1ZRgkc9li0JgqWKFUg5UkdaLa1JIUQ2vGK2qMwDLn6qIpe5xTGmJC6ZqxV62cIzGOI1Eb5ulCTFFiuFrLGnOU57k65DYCdoUqFUykahHf1B/KGpyyEIIoAnLC+QFB7tU0RCtKCvX6qvmdNhWAFzGhUuIg3JyXqTF5WAIQhNCzFuMcShnpGVq2eCCtcYTd9rZeoUReXcoLrOVMm1R8ixDbv9q2uAK5zv2yUCCX9qMPANYtEFs/s/6sA4nVuZOyYY5c96IW7677Wksk3WST1kxefZ+zdo2TQOLbFsvmlMhTWvfYf+z1DQFtCt3V3LSsVytEL6UZdOiGBZAAVVjumGtTu1rH0qZCruCiNYym1pjlnClKvtNqBUmTciSHSFMEKaC0+itFBRMSKEhNV32TqjUO7cGqE6phSGXU1pxQFVJlrLWR9L/3HucHrPYMozi+7e/u5WfeC7OYM+dpZpoDKc0sy4nz8ch8PovjpCia1pveJopuyBJhhErJ9Vz6rIlcxxKlMFYbjVNO+tPkQkzy+wbgUo6rHLMFTVs2RUa/VJBFyfVB3tib1Y2SbWK3CdweBlWDK12Hs9mtNmlmbui+tAc6k+sckFuVaiYiEqNIVbasBxjj1vPZsixNFnUt4+szCCsY0TK7LlN14KpNQWUoVTdXAL2B9n7x6FmfBkRyBWF3h5H93cgwOJTONQOmWWKS3ia6NgNXck9a0NxAWs/UyGjWhZGe26jnUc9xXZCauq2hfapBilZr41+llDR1NXp92lrWqo2zMHjV7l7bapst9sPWCPixRvr15RQxpmCNFK7P04kYJsbBYQ/j1b2b55nT6VKdGUUK09zenHXEcKkg3VdDEigYpiWurQycFelYSsJCGwMlyNiSRIoJkEIiLou4hmlbJ6M8C84Ky6wVTJNIeH21++9BCXV+NtOdlFvrCYu2BhprqDQaI6Y9OQG6mxuSDYgxVcKqtt9Ynxm5k86MDP7A4HacTxNPzye+893vcfdwz8uHA6pEfvbTv+P+7sDD3T3G2Nr7qJIdjYhaC7yhafRzMySpm2UuWgrkazZK5p5b5wMVfDY5pdYKa0VO2cBSk4YsYbPdF8Kt0Go7SgWyKScSaZUAueoM1zZ+Z21tyLtJmsMs7LrUsgjJICAIKKkGJ4pCohXwU0SmkorIalECjEtsDnYb4xtTRKmEMpaiZ+bnJ+4eBpYlosYddw+PfPryFe9+8//ym5/9La/+/E8ZP/2EP/vzf84X//AbtEm4MWAJ5Lhgs4bBc04Bq6TZsEJqsoyxDEPNNMSZmCQbYJUhL5FlDuIum6pzaczMy4wbLNYZWUORtiLKSCsAY8Udc7ffY60nJUNYJqwC7w3vnt+hjeZud2C+XDifLgzO80Y9cb5cMN4Tl8j7N7/nsB94//69EIglcXx+R4gzD4+fYIc9OitKSngvjbVLzlil0aXgvGeaLpASJQb8/oDRmp0XN9CSIM0Rpx1OWZyVvmqFgtKWicL9fscwCmFha8NoozRLLGhdQQGFeZF9a6fk2btME2GZGZzDOo3WlnHYE7QQeyEuDMPA7uDIORKDNKBGOVksVc2uOE+oWaY5Sp85O7RmzQvkxLQE3j0/4/cv2B92zMuF0/GZUiIxBs7HM3eHO5RWsqbEQMkZPw4MNQu1qoRyJuYohhp1jc6VaFUpQJwxJXAYLEvQhFnq0Xa7gZAmspasoHG7SmJLLZc1si6GJVBSZLQW7RxWa8EntRF5c1eMMRNTBidSv+Hl/doLM+fA5TLVc97WkZggZo13BmcHhsELCEzSc8/oiNMFpy3q/k6acs9nzuGZcXTsdgPGWg6HPSlmYpQ9LqhC0grlHV4ZUqhSs5SJSjK4xiq8c8RYs2TU2ndlKUZUEhIjLugI8yJyzgVxlyy5SEYXkT/2BK8qEsvIvlbIOSA11zJvClKPnVJmOl9Web5xbiXzGkctJU+tXKZlrKo6LCZKEdVYa5MUY6AYVWMfUEYkd6oqBlhLPmSLd8MoBGmUrGwpzdxJzICscyvRGWpLBpFu59pfUJFDIoWFQvU0UFraO2kh/oTe78hvGkCqfdcodf3WtY1Gi7t68FMl9K358BXQ25wqi5Kkiblxnu+dhuGaXA8psCmvKsnekh+qyeWp2EP2wuYenLuYdnupihAUqipUaEkjWnKnlWFIXK5VO7faA/FrMnj96xsC2liL1o0xa8PoNoM/HJzt4m5Tr+u/O9R7KzOCTcalFNWCXoDUCphX4NNL3ESzK0HYNnmoGSDV9ZOQflsiI5JsW7NbttJzxNqa2t/h3IixHlcLxwtIH5/5AosixMRlmpinmZQnYrowT9JzKseIq9IdVRN9/bWqzn50y8Op9Y9qf6vGkNd+UqX14ikUldG6FucrmXCZDyfXKoVq41wLcIsu6+8/JmssFZDRQHudB70sr//TpMQfk5C1l9TUZcgSOLbAv0msmjwKNmkAbI0bt++6NoQwRoq+c8nSfLVu1KqBozXDqFCFzRGyXM/HD89bFm1nNIN3jNXBSRv5fUzihNdaDNCBy4/JD64MQ0w/h+VnKSlSPRetdQWBDTCrik8ae1vqLKl1YMagrLCyvV1wA7h9M2vnHLpoQlhq4G4pJHSWexzCjFIC+o7Pz7z56i3v37+X2pb9fgXcTcbRtPzDMNJ6cIEYETRTkcNhA0+pkhXzLEXuh8MBZ8WsJMZal5Rl02vFwRL4BlLaFn4qE9fqrloWKlQJX+uTA9va0tdsNYawFSK3+b2BFdUmbt00NnlgL+GIMVanTAnciiqIYQe1KbVHGc3z8xHnPS8fX7Lb73h48cBPf/pTjk9PfP9732e323G5nGjui62NQpvvfRH7dS1gY0uh74nZMoqtHlkymrobk+3zm3Smgra8EEOspg0WqrlUL2tuY9TWhHaefZ3cbTuB/n26Zt1UXZO3THC71rReD50rWbvu1gJku1eqvjehSyLPhud3C94X/GGi6Jm7wwu++63/mh/+8F/zN//x/+IH/8tfc3//kj/9iz/nx3/7I969+Q07v6cQSDGQ5pmYMwaD1dLbbHUVozBNYgozzxOF2ksvFXIQAw1xN90Y6HGUrJoC9rsdqli82aEdaF0wVtYx5yTzsSyFFKU+9+XLl6AVukCYFsISePHiBfM883Q8V3ntwKLhyzdf8vadzFshIT2Hw4GQC5fLGY8GLS6H+8OOkqSpspgyaMIS0Epzd7gnpYQ1Xuqea0A2zRMhRHb7Qw1oC0sQq3kxQSzcPxzY7fZi5FQ05/NJAs4lULJifxhIWVz6rHUYK6TXbr/HGs0yTVwuFwY3Mo47htGwpDNhCoSY8G6PYofRGaVFnh6i1IgNesToodYmSU+/FAOXaRJSI86QpR3A/f09uB1iJOOxznE+XTBG8/BwzziMxJjw1jOdTlxq+4L7+wPKGJYl0AoOcjdHS6lSZiOSb1D47QAAIABJREFU1/fv3knz6HFHzoppDgzsSLng3SCtb7JEACEnpsuF8/HI/f1BmqGPHq131a6+mjYtYvbS4iXnRRYbYyTFyPEipiVayzzwfo+2biV0dVUDnM6ReQlMS6BkJ3tcff4MqhJHknUa7MCwG1EqMc9n5uVEQbJkSlmUknhKtXUkFXLMaGcxlUQrORHmC/M8YaJiGJ00uA/i+hiWmTk00AhKt2x8jXka6VozJy1W9X7A+518v2okZgshtzh0CZKplbWoYLVmt9t1Rk+sMU+uAGEYBjEamSU77JyqvWzF4KWZhbSYVGNI4tW9yrk3tUPdm5UmVkXIkuJK8G77NWsNZSSuCqRUEs3hXHjaJoOU2G0z/Rdn8xajaKXEEd1I6ydV2wSknEiJSsyb9btLjV+vZI0g5AWsZSztXqA22SFli7/WrG+3f/avFdAptcVtbY7Wtb3Bhxa2tb3nlsj/4HUT5/X1hms8piQ7J9/ff6wRsH844/aNAW39jWoo1tRJ2V9sVttG+nXFgMAq72qbc/93C0raMVawuE6ALTWqrwZQQJAYkNSMRmXKlZJ0uLUe6yxGK0znsKi1wRqLMXa98dYNlXF3kmkki71tkl5mrWlsTImQxDq3IH1kmgxBpVKdG6s8qQbmRSiCmmlpC0jNHlYLZJH5CRg1RtyjpOak+q0og7E1W1PWHI0AuhtG4PbBAD6Y1LdsxxV46SZ2e8+aYu50yc31qO/l18azd/1ZH0y72da23znnKmAe17qlPuu1bjBqy641wGaMAS3jaK3FaE2q8lQZFwE3TVqba8axVBZNm63fYJtTNfWF1ko2wkHmRe0gjNIaqxq4rsYXlO485fPteBK8pvWYWrem1dftD3oCo2W9VGWrVM1Kq7yNpVYa25rQWgtGd/Nbr4C41aesvfFUq18T0BWTmMlcLhdSEvOXt2/f8fT0RJiX9R60e5ZzXsFb3ypAa808z2uw3py0WiarTivmJRJjqkSJx1lLDMKC5hSYprmTmOgqn5VnrxEVkknXqzVyoVx9VwOJ/TxfAX+9Rz0I6ud/D7xVzSw1omG7x60/WbXC1hbbwDsKbb2YNVjL8Xhimmc+/da32e/27A8HXr585Ec/+pGYlIwDSteGstaQomy4toJRVQPhenipXzOmumnGdT3Tylxl0WVT2xpCa013vbJ+GGOrecm2Fuhqx26rLKqw9VVs49Sv3WswwlZz2bduaGPfnueWhYa6buVCKbUesBo4SK25FrlWzitIh0bM0N0rec5EKlmQlieR8/k9d/ML9i9eEZeIt4pxb9kddnz+s1/y1T/8iv/2X3yHIX7Gn/6zv+A//OvfY0lkZcmDNBpOc0QXTcbU7yzM00IuUZ4VA8syo5TUb2il0Ji6NhZUNbBSRXpnzfOE0kWcJLES7GpAyb2KVMODGr7oupRYP/DZ6894/+49Xz19hTNC0Lx580bWPvcaraRWpwx3PD+9QykYckKphFIWZzXH4wkbIi8eX6GU1JymKLU+l+lMCAIGnXPs9wfm+gyfjmcoJ169esXh/gHjB3Q1+5jjzPPxGV2D36Eag+QciYnaxLmBXcWyRMbdiLNyDOsMyzwzTWcgV+dmViJP5phj7xzOLMS0kIqAQONlns81u2m0YRyk2XbKqboiaryTWqjBW3KU/nAtM6NyJixRTD+mCyWlWl84E6vaIgSpSfJeMh45tdqfyOk8QS7s/K6T52dE5ifPcN970huPH8A5LzVkT0eGYVdragrOGLy1PF9OnE8ZzYhzUnc4L+lKqVKgazGxERrzIuuptV5MYGosNY6HKqFO8gyWgveOlCHnJNlea6G0ulW5lhAyOkWKjhLk50AhCKlcxIgjxZlSFFZ7USU5qVEzo5DjYVlYplkygN4wXRTLMrPUvofee5xTdWyhlETKkRJzrQcTF01jWJ+vnIvs+ZUMbJl8a704Z69xbC2P0YWxSg9DWFhCIM4i3zTWMPqhXnOpcZcozVQBby1G7ZHar0So66vWCjeIqiGl0hDHqqtqZI8CyeCt8nyFVQrlHDEt69rcQl5Z9w05i8tyyglFrlLGFjfU45WmthIpe9FZapFLZq4ybW0N1ll88hhfn62yKXdafN5IB3EVFVJe1fNSKIzXaLYYvvVxbcdqJlwFyI1UUGLmVKBzWFYbmFQKVZrSAlalHC3ZgdRsq0b6pzWbqJRaDcdamqLtRa0Mor1uM2cbaJOsaPvVFgPUBfgPvL4xoO0q0MllnUwrAJF/1YzAlq25DT43QFBzST0av3m1QeqZlFb31aSZpgMWkmQTNkakhBZqQ0nRInd/a4XRWQIUVD2mSKwE8ChUbYpJnNB6EZ6k5DXAWII0n5Rg3+C0pL1LEc27KoLWS5eNVCsI6JiJUsdI1wASvU7ykmsgQu/ko6t1f3XoUfLwS8JbgN6ayaxsBW1yqu3fNQdwtcDfBt7bpM5rEet2b66zSN1suTrWWhuj9eqI1F7S3+PavKSZIcQYGYah/vHXzHwFIb3hRgP2KChKsj/eOpa0VJKgjk03/o39KaV042vY8GydqAgbNXgx1WhAgSoh0NYKKyXDW4PMrQF0AQH1RTYVW6UXzspcFGcvyQavzo5Fnqm17syqFVCu9WvrvFLr86SUolS77hWIVJBn6rnYajQiQb3UA5WSCTHU+9Ka3Gfevn0n9VQVaHnvhdGsfb56bXg7N2HSFi7TRMkF513tPbPU8Zfs2TwvJJSYhhhpsh2WhaW6SS7zxDRd6hhI37Yt81pZTN1Ys80GOefEXJ1MvfdX86sH+qWIvj/lzSmyJxja+9tLq1ojl67nYU8obeSFgHdjpOh+txMG//n5HdY7Xr58wf39PX/y/e/z089/wq9/9Wt+8IMfiPlFXIjLRFKZGANK10x8afdc6gtVy/ZIBAAr+1zlyjXL18tQ+ud1y3ptvdisNfXZFVmzZMIE2MUqT82pBURb9r8UAZbtu8oKyLbgqT+PlkkXu/cKbpUVJ76Ya/BZgamt+8p67mXNhkr2x63BqpwLpITIZrWYJ+R0YlmeUPkzcnTgCru7zHe++xmff/4Fn//Hn/CXf/kvGF/u+af/zT/n53/3nzj9/tdo5VDjKHWSecJEAY6plNr3T/YFbSyKzOB9tTXPGO/RxosiJEtNkDW2NqS30rQ4RVTOWKdraUskFcnapRykHjNfWJbEPAvwOaQXaOOIIfLixUsUivdP79FGc7i/5+3br8glc//iJdaN4O5qw2apJVdapNBqmpnOJ8ZBnpHT5YJGZPiqqqufnp8ZhpG7u0PNWhhigsvlzJt370HB3d2d7Jtrlivgh0HqHnPgfF6qucjC8fnE4XDPq1ev18bpuQX+JZGTknYAOWGtZjfuKmFRasNeBUWxLGKeIfLZZa1L0sCoxRgjJ01OiiUuNXgVUrQUxfPzM9PljLeaxxcP0njbjCg7EvNCShpnNMZb7g57Bj/UDJJGo5lzwitqywoJnnPOXC5ncsyMbqh1zbJIpSRSSVv74X3y+jXODyjjKWgul5nz+UxOicPesN/tiSEQQ2AcHGFxQCRnqRMLKZKyOAUOgyg/xNxLJG5SUx8roSSOmK5m1nIRGd80LbQMtnDhGWsdw2hRymMQEByWpdruS9bKWS119rV+LIZALnL/rBPyzDtDDJl5msXR1Bmck357znr5TEpMl0DJARC3ymYhL6UZEkBbq/H+ToxDUlwBc/+qyR1A2juIQZWoOC7TBEaAm2u9upIQEBSx9I9JsqS6AqwUpKF72wOGYdjaDbS+okg2ualKGnjTRUClq7L5ZZaWOKYCMbsCg1L3NHE2dV6yu0KCSOzYAL6sm9Kcu1QQjVKoXEGs0VXarNhq15A4Yv1vKVExRszElstECgGXvICotjY34tqs9U7bfqHWaANQUhJS0w/UuEdrva3VFWRJTL71gG17QZ/NLD0BmLpSHdr+rdcWD7aWBMXaoL31sZXJoNZzhRoftzh8VZV8iDm2JEVNTskFrVjk4/Hu9eubAdrKZoyR6wSRwIc147WlLm8/ep09W00+OtDWZ3auJEv1Z6JFphbf14Gt2Ya+mbai2dYLo6mNBWUkg1Eqz1H0mtGQmyEPT06ZWOLV+SQjN6zVkwj7UAs2c60xqdm6wVbTCQXLLMWLwgZILrBN1KKaHEvBaj0q39MHh6U0TbZ8n7atFqoCmyw1H6BrFrBNppqFbGNHr/+9DtbkIflw8vbB7fYBdRWY98fp73FjvPrfAStoa05E7Tjl5njtXFuA1x7sEOIq8+rrs/o+by2ATlncp6zqmaq8MSgU6bHSHmB1bdfbH7efWyWnes8ypUgQ2+QZAqJYdeZN/9wyaVLovp37Cjq1bIANLKxZNfly0czXcWgWzzlvi14DSCKh1NXZD6YQIafK7lUZbm5ZItmoVCmkJL0FY9p6nq3jmBLv3r0nxsjDw8t1zKdpWgF0CFIk30BLk4VoLZmIEKrjVZWDhNqEda6uXMYY/Ch24Q2QNokLQFziStzcOmhRNtndtgEEYgWe/Zp123esAeMmgUmlz/59CG7aXNBa1Sz7lsHrjyvzodWtSgZJadDaUoriPE1My8Jnn32H/eHAsBsZ/MD//W/+ncixjBxzOh1BFZZ5JoWZkoRlhoLpnLJUrlLwahLTGtcKgZXrHG0yEAkugDWD3b/aGtETIj0Qqk+8gLkkjaONNrLGdcB1lZvoD2XHvRlKO4dVQmlEJhlzocSE9cN639esplKCxuidzPo2IS3jvclkUFI/XHQhp5m4BIzZEeLE/uB58fITYvw9n//o7/jV3/+Kb/9X3+flZ5/w3T/+Y378xW/IGYKGpDQxI3JHJfJuV0lBayzOG1IOOGck+5Miu90epapiQ0mNi9TeRKxWaO24TGdyXIhKJL8xBlKS3mSp1vKFBKVIy4SUCs/vn9FWssoPD3vev3/PeZp58eKenBPPx/d47zifjrjxBePuBSUFUpzRGpwTMPH48IK3z0+8ffOGh/s7tGlWChk/OLQ2vH37DlDc3z+sjmrjbof1jtPxyNPzM/u7O6lJqlmPcbdDacX75yfScuaw94QQSQnGUTJFp9MJUVaYlcwzRqNywlvD4O4keE+JSyVgnBuRHlcBpResG/D+Dq0tYRGiJiwTSoEfLGoQ58gSDafzQsgF6wcGL43rz8eBy/nE8XQmp4wfDF47vDFEowlakTF457i7u6PkTJilF5xSTZq41KbZss87Z1lS4Hh6rqFGJUK1QpdNMRJCJOaM8woqWaG15sXDawHUiHpCpN2aeXZcLjM5G8bRk9EoLSBa196A4lgqz3hzatzvBpwfhMAAQljWPaStCVLvKq+QY5WQRkqsRiHGikLJuG39rQYQ1hohVYsmxkUam6Pxgxa31MFjnZDO83RhmRceHl6w3+2xB0VKgRCm6tS5VHXH5uYogLhK1Usj/2Gexcis3QdZC6pksHM73OSjUt+XU64ErKuKKzDKoEwr09Bo50k5rYqU9sc5tza3bsRWrKoArStxaDU5S7ZaQHbBOIvKkpHSVd7XJIxG69U3QCE15PIECjkh1ybgaa2zM9I2R2aXqWqhWrElH6Oph1RV8qiiMW1trnugqlni/4+5N/m1bcvOvH6zWsXe+5x737vvRuEXYYWLCIdlZ8oYZzpJIVmkQAI68CdAJwWCJgjogIREA4kODYSUHYoWQikhIQStzFSaTGdmOGyc4XA4XKUj0hGO8r53T7H3XmvNisYYc611TpR0kLd0dO89dxdrzzWLMcb3je/LMWlxSPZmQbWN9EZKS732vBmZx9YJBl7AatzZipYri2pfyGxn+I4e2c74PbtljQ3lwPie2HBPe7TWrgyLtVBYN6PzPThgrNX+1bwxbJ4VcfdMsPX3u7i81g1J/GGPvxhJm+F7BqD1kRSVGvVeDi/n7JPnfl/ocf/WZj8o26C3f0vTJGvG3FCYjZrzPLDWiWoUOdG/G1txFfCGGgupVqzNPPVseGpCnGzWKnKlmqwHr3ym9VLp6YJQWqCyxJl5TkzXK2mOkCVwMQ4olUwWJM1ttCkZTyPm1Yg1gEx00wZbkzVNFmjJk5FclF3Su0Mk92O/Rzz3lK72nOcI1n4BrJvhTlmoTdyGxjz/jPa8PTq774lsgWDORZLq3WPfd7Wnw7S50HXdGhzuF/H+s2SzKDxer0zXKzln+k4EM0SJVKD1qoWHFjQ2FKfNs42eoEixfDMNikXx1BrZOKqRCmqjj1k9INv4yHfxegBvEunSyCyBTPtdMwltr2+BrfOWablon0sQNSylyzq9ppoVbbVuRY/2KORzn5eGfrZx3XuVNUrb6XTCOTGLb/elGVvP80wIQaSb62YHcX68EON2yLU54b3ner2uAUrfCxXwej1jrWUYDlikqnk+n5UKZ1jmpFXjVuVrRZSN8iloqVTtQwiErl+/574/sqk8tntcSl4PiDan2jjse8jkfkmlsOs6+r5nnmdBHkszfZcAp9RKqtD1o1Ro+55aK9fLFec8L16+pOs73nv9Hl/7xtf52te+xutXr7k5HqEWzud7FeqZKSkS0wJVUJxGDWzXKWPbqJ1u7YGIcdmEPtbixX6P3Xr4vPcrba0Zv24Miafm3Dt2yfes92VZmOeZXumE+7nX5tXewHQrlmh/bi04Kr0X4QCH0SBkh66rOl8pReetg/r8HEEr0oKKFhzUI2kxTPMbbt99weViie413ntef+TEV/7gi/zJl3+P9z/zcdzg+dTP/Qx/8Dufp1bpW8ZIf8jxOFKZFZXweG+wDkJw1Grpeo/34peVi6UbRnIUlELECzIWjzWFlGYNwAzTvFDLAqogmJZEpRJVVU56Owu5QI6F002g76RC3g8DNy9uMM5y//iAM5bT4cj5MtGN7zKOR2qOzFeoZSaqol+phdM4kvuBJUpCJ/2oUnAYjgfe9R6qoHDzdKfKiqKeOxxPq0LqNE2UKvNt6HtByKm4LijCKAJIYgxfuV6vSokWKlnXd8RZUJlh7DgcxNdxmi7ynuOBw+FACL2gJ3cXHh/uMHi6blQEZ8QgapRD3+GcIadFEjhruH+4aDEDWatdh1HTaGsDx8ORbhgwptL3jtubkVoLR5X7t9ayaIGklIJROvI4DtLTNi+MfU8cFqbLtBa4GsrggtAjL+cLS1y4HV+oLDscj0fZi2rhgzcf4r3j5uZW0JNaxejaVYzGEUPXU82AoA1pXXvOOY7HI+PhQD8MOOtYllb0dBTEG7AlGtopjbWWabqy5JnQecZDjylGvRXRGEXOthQjl8sDLni6LohgHI4hHMilWwuNOVV8ZyU5qJXUFXLW9oScSaWuSYokhYZ5icSYKVXGtu86ul7OkOt1IsWyBe6m6BqXtSF7+EbdK9ov1nUdDk8BsRVIkZwSLnhCP9C55hcrCsWt6D72A/SsRt/zPDNdrmvx1XmPs51qCEjfXYxJi3lGE2rxL7ZaqF+i9BNbY5/EB3KeXsGgBuqtGCYG4KLimck5aBzVyitG9s7cKOGayFincIASjEsVwbLG3HFOi7goytjOSenzs8VRppmUI847sJau7zH4FdHGPGW8bQXVSly2Vgrr7MpOWFEFq8mrJpntfK2a5In69RbntaS8JYiSfErhoVq767fTJJKn54HEzNu1Ps87nrfiONvW+T5htKsK8A96/MikzRgzAL8O9Pr8v11r/S+MMf8j8GvAnT7136m1/o6RK/1vgX8TuOjvf/tHfMoTWgv1aUa8Bs7w5LB/EvSzHdKlbJ5C++fq9/k+Ve5Gf9skONE8QnroQG4kNGVD6VlqG5NuIDlhY5M9h1oj7JI+a/Rm6A1GxeO8d5qQGpVDl+/bhSBVGWdZ4sL9/QP3d4883t+TYqIPomDXFITaYxsPRahWRwupXq2y+bUhzApz0+h8ihZpwrbK6MsAyvjt6F3ohBTJ9Lwikq3vbZ9I7ZO1PSIm1ZGnvSxroFx2ht2lrAnLcyi5fcZeua/ingR1e4TreT+Wc1tFpn3+Plnb5o9szPM0rd+3BapCaVAkpBRVM5KNfxNuUDRV6kzrd3EAVTZf552gR6HJC0si6J32I1pHTlk449r8bxuq4FoFCt1xtjFq/X2irLitmxgjS6osiiKlXFi018tp8G6N0d6NsiLNDZ00tdK6hNaejrX/q3C9ThyPR3LO3N8/SFJlLON4kF4mJz1N07JwvWxJlw8dqRTuHx5ZYiQuy7peUy4UxO9KKMgyvrmCdZ5hGBgOoyrltYbnwnWSoLJWSZBTRdS3qlmHqhVr9oisMeiBaJ70deznyL7g0wpAxmyfv6/C7RPYVjyYl5mnKE97H50jttGZWa9X0C3D5TpxmWZevvuK4+lI1/XcvnjB537zN8mxMI4HhmHk7u0brNX+wrRQ8yIHMZIwFaXjYXbsBt0vmsm4fUaHbHtuKZI0SbV2LyRiVIFzQya9ejwtS1p929rzg/erWl6t2kehc3dZlrWaiu4BrSjQxr7tLfMsAgDjYVR1QEGtQxD0ai0keemVad6QrZK631/2Z4n8yD6Zsyih1bxwvVy4XgLDqcOaW2KsdOHAT7z/Cb7025/nT778RX751/4lxsMLPvWZT/Hy46/5+lfe4pVS5U8nTCncHLzGHFJME5TdUIogrQCh87hiSHGh84Mq8AmNJ2bpR2nFjyVmUszS0+Wk4JKy9GlI4Cmen9YVjDOUpfBwfyfeaM4RusDp5sS3vvUtKPDq1Sum64WH+0dseJR7q+jedY6kZWI89ISuEzELMhbL/f09L154bm9vtMos6M2yLNzfPZBy5tSfxBJEPeWOxxNFfdpqzXQhYKj0oaP3juv0yDzN2FHGbFmiJGHDwDgO0tenzJvL5UzJEVM91EwIDqOJybJEHh+/Q9f1BD8Qpw5LwHkRbjF2wbqKozBdM+eHiHNquDxETK30Q0dFkn5nDafjDeMwcj2fhbpVhY7sjAjBHE5HuiAiTFHpfMuyUHLlxYsbbs0tGIMPnZgYl0ycFrz3HA6jFFlorJKtYDKMA4OaXrcZ3Ho/nbf4LqhthvT+gJcguhaW5SqJi81UI4WWVkC7XC4cj8e1INWo4bmxdijat6r9h/O00ghb4lBNU0MdsNWQkwTHcYlcLhdqhS4E+qEndH5Fd4xxSl2z65kVl6SFFq80YikKWbTgT1nRuYrQYQ+HA851YhJ+vfB4PtPFZTUJlwKhWRHDRosPoVGV65q4yTErSrdCw/bQdcyLIHuVQsmJubDalJRSVHl2o3Bvptjb2ZBzplqvFhFeYgFnSblZrWSc7VZAw9KSEbPu4fvzaWVuGKWrl81YOwRP8J6cqySWen8FLVOqoBOF0pSioFtCD8OoLgJGaLFUjYxzklhBbp4mZvLdKk7Vk8HYoi1GQs1srRkoTVhOdz3bS1mLOKXW9Ywo+hmN+fH8XN57h1plDMl+Kv3LbU7VypowWqeWDkVU3+2z9316FrSYruo18OQ5K1uptdggrU2w9a9LBmxXxPoHPX4cpG0G/kat9dEYE4B/YIz5v/T//uNa699+9vx/A/i0/vwq8N/rnz/wsVLtNBloX6J5nO0P8/a7fUX3+eEKspCeP/YoW/t3rdLLsaErGmA3RM3uIU5FnjSJQ4PvojfLOZGPNsWJW7yta0LXsmip2sqXdi7QhQ7x0tHAPGwbXoyR83khKYXl/v6eh/sH0jSrCIZbE9wi6TqVpiQmQZ0ki6xIYpNTbZNETKKNeAPtUDX9smvQVPU1RhfKHlUDKIoiVYkit4kMT+7fc2S0/Zm0yrNHuPYGvPvX7pM92Ghqjca273HD+BXpev6Zz3/2c+N5sraOGWKKeT4/Mk2TJKgaQG7v3eZggR1/fo1897O0IbG1rhuTQSpSQhkJa5VN6EGy8JcovPvj8biiaOjrVondHdLQGmcxkGvh8XyW59Sqa078+YopKgCk16SImtF+TWfN2nPaaR9gS8rbRt+UFNt4pFI4HEagcnf3lu9+9w2NZpJixtqoKqoB7wMxZWLK9L2nH3oNvAVJSEnWwjge6PqNZpeSqEder1cJ4EOgGklkRGa+rglFUfrbfozaPd8QYem9WlE2vVd7I+79Pd+QsM2jra3L0AXM7p7sCxct0WhJQlwW+h0quZ+3gkLpgV4K1QU9ZBwVQVKstbx69QrnHS/eeck3v/VNvvCF3+X164/y8vYdckqcHx8hz+QcoTbVNpkLKUWCC7J3sNENW9JOFUqdXNRW2NiPRVuHco42iqkEWyubwAviG+Oivk5B75E0tDu/+VlmHaeGHAfvNYhw677UqLUtGdwjmsuyMPQB58TQ1Gmfp4g2bB5zKQrFKabN4LTdw63wJcFp+761asHLFHJ94HJZcHcdx1MgjIaYP2Q4vODVu5/iePgSX/qnv8Wf/cm/ws//yl/h8LFbfvFXf5kPP/gGZbrgnSG6zHy9cJ4ujJ3X65MgN2tvxXZNUpy4Xq4wFkoGUTy1LPOCAWJeJLGMlXle1iKhMY5cDDWKgqNxst5TQfZ4U8kxEZ3h5nDDcDggaMwJWy3LEnm4P/Pi5gXBVs53H3A6jNze3DJ4ePPdK4/3DxxPN/SjoFN9N8o8nWbcDrFFWwQu01lEIeoNZOjCgLeelCL3D4/0QdAFi1mNt2NaRH3ROwzasqAF1pQiH3544fHxnsNx5HQ8cHs6UEqiCx5KIcZFCiWmiRAVYrQYHIfDiLEIpa4skIwmJB7vq6JLlS6wUoZzrUyxkDJc5pn7+weGYeAwHOi8FGFrSUxxIsYZ5wzD2BOc+I3O05WHhwdSlOLf6faWfhzACpLkveexPHL34Vt6HxiGnoYMrAwBY9azc2mJQ7XMc2Sar/g+cHO6oVZwXQdGRKGu1zPUjPcD1RnmWJjmBxFQU1EHqwjK0uxT2t5pxfsypcT1ciEpQohBe6dUuMtv3maPjxfIGWelDxNYr9tZq3YsYsck9FZBqJa4SHKAUOQaHdY7SYyWGJWi7BmP+pOhAAAgAElEQVTHQedZUcr8QlwKzol6Yug6TIoscWGaJ4yxBN9hrSenyjxfyXlZx1SE5KzQi43bsYgstvXVWoe3herEP/I6XYTmmFrigLJmvF572OKs+pRlNM2Jx8vMMk0Ym4Ve2zmC66SnVeOBnKqygBoDQNA3s6rjbr3rlar96NK3ve1lQLMSaChbkWQlVbGiMbXiXUtwtn60ihTqu0GsBCSBA6N0waoxqHWOru+opsPaoAnkoj2HGSd5nfZQa+HbGlUtVaZPi2c1EazomWRYC3FrhLUrLO6ZU0IVtdgi4IRBevesGswbLVCLZYKe29SVhbK+P6zxXVUgpylwt89v93RP02xnmcQviGBMkULgj/Jr+5FJW5UredR/Bv353oxoe/xbwP+sr/vHxpiXxpiP11q/8QM/g6eomSktcXj6MaVsqnx75KUF3fu/b6HVduOePzYE7Ll8p3nyFVcaG0gjI4pJWQmmrQEfDGPX0XjDzqk5cqvS05IDt3tfWRxOBStKzuQ5s5RCzIlSVdYb5Tan1gwrBo97ydB9RU24wSJ8YtbvZqg7+f99ZaBWKPkpjRC7qyo8S4hbj8l+HFvAupfgLkWbU58lXS2JbdXyPQ1yT51s32uPvj2tcj2tgrcAvnGyQWSJWwC2ny9rH9cuwfxBVMx9UrgsC9fLmcvlvAanjRe+f+06j+qWLLT32i/oPeI39B19H+g6T9/1GP0uYkwuFS3nDF3nGcYRMCuNrgW4z39Symt1cJWIbvNkt5ZyTqIS5USsw2C25AsYR0mqxN5gQ4j366N9x1Z9jTESUyTlyPl84cMP32pQHWiUgsYPr7Vyd3fPFIXu0/c9wKoO2XpSGirV5m9DTttB55QitT23BduVGGfx0EJ6DADmZXlSnNhX4yRAkwpgzhGUVrkeVnXbhFvyukcv23xuictzbv0eAW73oVFc2+9kHm/rC2OgSBBvux7fD3gfWBYZn8PxQNd1DOPIu6/e4e///V/n7f0dP/WTP03wnru7N5haWdKihQKl3Wql0WAIPmx78bN1sC9s7GmfkoBuiWlKad135KFiNSh7zEi1uK09QTpVjdP6lb7b1lQbnz2a2cajocd71Lyt8UaBHvoeZ8uaEO/lo0spotwXxZuq5kx5EpCJoE77TrU2ioyud3SvJ5LyzPS4cD1XurFSzIXCCceR1x95zZ99/Z/xtT/+Y/7yX/klFuf57L/4C/zhF/8fvvtHf0KPJ9lKCZY8ZWptQikeEEGIWlR0KDWqUuTx8Z7Hh3u6bgQcKTVquFmRiVoN1Tipos+JrpM+ozkvusdYMpVSFR2mIj2PE7UeqVSmZWE8HFmuM+f7R4Lv6EPP+fzAPF0Zw3tcHgspLgydeG8t04Lzw4rohdBzmSZBAtf538578U5a0kIXxApAhBoqnROBpiaskhZZCqmIxPs4HrE2rD2Q16skRdfrBedFxa9WQVriLEFeLYXpehFZfd9xPN0wjgO1GKb5QsrfxblALR5rOnx3ZOhOdL2nC1cezx8Q0wPzEkmLoeJEVTJb+uFA6EVWP/ieWgwxSUHYWykyeGtY4pXH+3u60M4iKdY+3N0zx0gqhZt6C1aoeLJWBGmWwFgC9xgzblfQ3vqHtFe5SNHZhSBnuxMUoxooxoH1zFECdDlbxBvRBZlvuVZizmAtabcu0DUX44LXYs6So4p8CY2x06I0RpKqNOd1r/DGq6jIRsvekpbEw/1VizCyk4ili9A8Y1xYlollnohLZOgPBB/IqXKepJ/xfHkkBC8FwL6nFE9McJ0jUBjGQD+OdFXo8jEmlnQVQ3tQRfBtL5Zrk564hjDJ/pdIaQJaDBIImsiXKm0TthoxoTbSZ9nO10aFbHtRGwNjDIeDoe9nlmUi5QljpJdc0CBF1kR2UWiZtuCDsG2at24pRfa0WshJ6eL2KSK1nscrpbLQNA6q7v3GGijSL9sKmxi7Ml0E5dMfK2IotYqgWCpZRUoKvh8xdmCJFmMKWFE9l/NB2CTeQk7SEhRTegLsuOClBchaYQUYcKX19ftV/K797Ftg2jkmZ4egbNZKoi1njI4HkkiBJFc1o+ji0zxCPsMKZ0q5lEaRtv017NuF1lhzl0Qa42QskMTthz1+rJ42I5nGbwE/C/x3tdZ/Yoz594H/yhjznwN/B/hPa60z8D7wZ7uXf01/941n7/k3gb8JrE71Ky1udzAaldBtg92q0/sge3vPDeWQJIknr4On9KT2f/sKlXNuNehLKa19XCvlyUgZwGq27ipYUwnWYk2FolV8Kzx9CivVsDyrhlEtCxOC34ky1UqtM2IJ4Lx4ouV5AW2erVplrY1D3BT2QN9LkTFjqVJClQlb9Uq0p4H1T7nOVYjEsCbMbaIbIwhjO1/3FfY2Kff0oT1t9fuhW2gSsX99E4rYJ2BrX5AGH7J4W3C4Q6p2928v4CCXsCV3+2RtDUIr6ku3UUxLKeT9/c/ShD5Pk3iuaJOuyN9uFLFGtbIK8zcee0tM92OyD+y99o10yq/ve0na5HCuFJo4gs5RL43C03RlWeZVYUzoUPv+QIPzIl2cUl4THfFPa9ciwUI2GeOVpmUtfSeJU/CevhNlMLtufpW0IiRQS1n7ztqhUzUJOD8+8u3vfIfrdRIxDL/52y2L0G+MsUzztH53USqbaR1mogx3JYSgKokixgLS6zJN01o0aP0XIXgaummtJt2zVPmrFWPRNjVK2Q7g9mj3NGURH5HvulN+NFsC0+5j219av16jTRu3+Q7u0dDtOTKfJFndggRZCzuUugIofXZXdJimCRc6Xr33Ebq+57333uP8eObLX/59Xr16hXVijxCXhUZRLHHB1LyZWFcRtqlkrTdorwxyvuUSSRmaqXqrpm9rVoop7ZCUxKspsLbCqXq5UVmWSFFfH+mFlES7sFGnW9K1R/JW6vPuQBT7gi34adfQ5lLwFmeTsBqKCk9pZTznTFqimLwbqSSnyu48ssSyKZC1REPmR8Y6wziOFA6cp4WY77l//Cq3r34ezyvSHHD9xEc//pqv/tkf8Pv/9Hf45V/7l3nxk+/z3vsf4Wc/+xmu//zr5GnCegNe9n4Q+mjJhimmXQFmo2k5J6JV5/MFjgZMoFZL0vmcc0GEQHX/VEXIJRd6F3C+00DSSvDnwNRMMJYQHNMSefPBG8L5TNcPOBfAGLq+Fy+xaSJeL5yOAyUufPf+LYfDyO3tLc57zteZaZoZxiMi1uU5jDdQC28/vKPrBS2y1vDy5QsNxGfma2QIx9WG4jAMGCrX81mQYirBy/+9ePGS8XjDOI5YK8mtMZbHRxHzaGiEMXLPoSiKMnGdrnT9wHg4kFJimh5k3FKiAl0XCINjmq588PYNH7yVe916irwfwDiKUs5d6Mnnmel6xXUDwXX0ij6kGMlx4e3lnhiv9H3gdJI+uqHvqFS6lFimifPjefWQvF6uLDmSi859VUTuu4EudNLPZK0qsLJa8pQqFCxrrfp8igpksYYlRrrQqVea9F/FLKjGdU5YU3HBrfO8rceDIq7eO028RNRpmiacE9Tr5ubUdlCgssSFZY5YFfyrVQzJh354os6di1BHY5RCmvQoBv1eMhbtjBMV4FkLPyDiXVeCzzgXuL29XffFZRFWQT9ID6Ig/uIR+vh4pusCh8O40velx048zVDGVfDdyiyJSxRT6ihonvQcZyxO/D5rFkKfJgTBByqGXCSuqyVT40JOiakUcozUYVhFwYwxK9rjrMeeAqUMpDSxxAspL8Q4UwqkMmFtwPueoe8pNqsohlAuY0qCDHebUJuv0ucnNEXWZKQp9WY1EZfYUBW4nVmp+Vlp2M2X2Og1Y1A6JGt8XAHfeTrXSyLnHX3fE/pb5sXx+HhHyZbD4ciL2yPBW+K8MJ1n4jSTFmGfrLoTBtFx8A4bPCWBDX4VaJNNuqltSjTcgAlJqqTPUmLt1o/Y06kSazvapUCv5ui1YvaAkNEPofWy6cca5N62+Lw2xfDWuiPXsIIUFfSSEIbf7jp/yOPHStqqmD79kjHmJfC/GWN+EfjPgG8CHfC3gP8E+C9/nPfT9/xb+jqGcdRYVqlGVYIoawBFa2zr5dkFSpIRlw0Xq+LBXtkO21olCWpNjXLXdaAa+lW34N85i/FN0rQZuW4Zs/ESRlZNYhRfISaIighJT5KoP7qWtddKE/9wvmX2Gy0vdIoQNRqlVj8BDbbESBsMOEfGsFRwWgmpxqgMvCYq1qr8fGqjs1K8jKJu0HrehMKwy3jbPVrRmOYFwrog1ZLBSBWuvbSaRovUYNm06vzGuac2vjmKekgVeO9fZjUgzUV8w+TyrFL3RJyjlLZxmDWwhaI9X00RUIQmGuJojV1pXrVUpQ0+VacTJaiZFJPQVjSITEskzfOajKDIZcMTBAG1eCuJvLGiwllyWiswdXcvmmeULRZXLXOMkmhbSzYVW4WjX9FKjankCtOSMYt8z1oLaZ7gKsl3yhljxDfGWbUJqIKKBS8y28FvPn1NIXUVhzBqGeBVnESv0xnZLAxG5oKtUrxAqtYli9z1EhdpENZq7+Vy5ttvvkOtcDreKLJa8S5QTKZWodV2XeB46MkF4jRzSZF5mrcEsIoqVtCgZY4SRDQUruSM8069y1CJcVQow2CxOGPx1irFRg57755WOJs8fBNCEKR4E9GRggrr2m3X0NDm9m/YKdTqoqxaZKgYuXdFeiGqqmtJv5WXeYmghEZKqTgvqqkV2Rtd0b1DZG+lZ+3Vu3QvXxJOR16/fM1vf+7z5OvEp376fazPpHkBIjlO5GUiLVe8rZjiZO/K0ndS1Ky2rVtjNinlFcXVhHYYBqQfYPO1k8RpS7AkiY0yD4MTUQEj0VtLtKTYoAinsWKE67zKbkuVWjySlNLolD1Qxe9I9t8mstHETZKuaUMqVQsbGoQWoVENSvfyHdjicKVgUsUXI4IvSs+k9SnpOWSrrGFnJJBb5oVaPZ1x4CvLdEeJZ/rxyGWeOBxuCDef4PDiY/zR73+ZP/3CH/NXP/mazgd+9rM/x1c//0d858//QCxtkiOnjkeVS6cuKhQj111zXcda4mZPLqJe2I96IhgZGymG7zzdjBWbhxgxqJdRFjVcU4vuOXJuWGM4DB2Plyvz9cxxHDkdRuzJE6fI3d0j58uFPojAxvn8yPly5XT7gtCPVOuZUibmyGW6x3cDGMM4HIlpZp4/xFgYx0EQIevwXvrbHqcrKZ05jQdyiWAK3jnC0NNVSfytsXShw3iPtZ6UDfNFvN/6vuN4c+JwOmJMZZovvPnwLachaE+ckcKoEzRsnsS2xSlKUJSqHGdLLR7IdJ0YOVvnyaViTUetniUW4gJ1vtJo5j4EnImUNLNcEuMwEjpHjAVsZskL+ZootXK9SoHHB493BlzH8eaF0FhrJS2CAgsl0XAYR26OIxahboYukJem9CfOg9U5TOikk9AIolFKosbKeDpJ4OyCJskipU9eKLonDr0I0KScVjZMLQanCE3XqfDR9cr1fAVTcaHHmqI9OZLMlVqkkF2kf9J7z+lwxCD7iRinR7yTYF4CaTlpsDK/jTGryISsM9k3fNfj6Vb/2zgnputErYv0RBoR+LlOM0uUpLofOkLnGXqhJc6zIEeLUiPB0PcDBilk4nogE0shTVF6tfsD1iYwTuMbYVIFK5IcQucWxeRSEgZBFoOTrDXXJP1cSK/upEVGw9Z31hKEVAxzUiZMWXBG9qKhP9KMsE21eLdZSVkcLtg1MZnneSvAWelDDHbQRF2SjLT22ifppe8kycglUU0mlkophmBFlKekrM8H7QIBI8Uui9C0a4oSR3SOw0lslSReEwXMMI4MB0+OM8vyyMPjmcM4YrH4vmOOiev5LOekFuy9Ve0JU0lxJlMxJawWVdZapfNaRfC26JdqxNrGaO4QeqwPhH6Q9gznV6uvmBPTvBBTIseF4hexCVE0uK5JHLSWCSnimVarQMudVCNtUlXjDGcs4t8uCR16lqyJ4A5k+H6P/0/qkbXWt8aYvwf867XW/0Z/PRtj/gfgP9J/fx345O5ln9Df/fD3hqe9UjvaUPN/KBr47hELeBIGa/LVqrlND7E9V6FOyaLkNxJtP6nartiYVT+XPUqVU/NjVcRIYOKFJmJgcdZhS8GaIkFXVbjYKxVABRqMXkBLUNyuWtAqF2tmXzIlq6eHyuJGpF9oiU9h25aI0aguZvPfakhfU8XRYaFQtJfBPLkG2yZpLYoaSk9U3SOQmihKk+0OPUPRJvaUzO1aW+9U1sqUpj6sdCStyltv14TSWIcpsonbhjqpx5MkgjLxhVaKcuXbd2q9Wug1G63+arJJUZNc7VerkJ3Fa1XA5IzXuVRUzKVVqqQyaAgWnCkYow3TpjAOPV3XMceFaZqpen3ioSa9YX3XcxhPDIcDxkrPQGsUxqqQxQ7lCla/t/psOS/y/MY6um6USn2VIC1YIzz44LBOUCdrpdopfT0G7zqpDhZpnC55wRThmOdc8NZictZKEhDkjqW4cL1exWcHpSnqIXS9Xrl/fCSWhDWOeYp6j1vP5qKBNSw1yr22YT0Eiza/N7qrAUpSRbBUyZoEBR8YhxFj5HBra2aZJvX9slr5VJ9HjFSQy4YkNxpj6IKO60an9dpnKhQR1nlU8lM6b0NPk/rLNQR8Fc0AlWOuGnjLPpdSS+q1J6k6ahHkydpKNWVFzo0JeOvphgPm0BGMp0yF4DpevP4o5njinY/+BGme+JMvfYFj59XbrHKZHzAkTI3UtNAZoz6PW6+CVBtlz5TAY1PCk3mjKHdKOBcIWqFsiW1Lstt4NXpzStIX4moLZjY0eNv71KoCFRPSvgpM1f087ySVxfNStgVJyETiua7FPKnPFen/9B2pmC2hAaF65bzKqVcteiwxYRCaHRWWGNXAda27yd+LIOBVAwK06EE2kArX84ecbm4p50SMRxb3Lq8+9nP889//PH/6u1/gr/+rf5kcBn7ypz7Jxz71U3z1K7+PpdI7EZ0QhTthAOSUBO7Uz0YLb7VYnB0IvSWmWQIXZ6hJ1lqtFQEJtdhV6yoBnpaFonPVOk12dXOspci6LY4hBOI08fDBG3yF0+1LYQKYR3wXuDmdiDFzPgvNMObCB/f3sicFR3AQU8Q58GHEGJHLX5YX3N1/yOEwMo4HPZdEKj2Plru7O5Y4cXt7lPsaLMWCHweWeeEyLRxdT50ytaRdoJypphKqo1GkczbkLEU0UsXbwPF4w/FomZeFh/t7Ssnc3h7peo81CW+9JClVnn8YTpRqeXi8MM0Lh0OgM4ZULa6/wZjKPF8gTlgyhz5Qc2W6fMBycfTDIEIkRcRAahFUa14q7756T0ync6TkiWpk3RhVELXFYHPhOk3E60Q6HuhCR4wzuSiiYgI+dIKylArOi6DU9UqJSRJ1k0nTQq89ZJ0z2GDJSyI4KTQ6mzFVCmFChyt0wWEITNNVEaCGIjlOx1FryTK/lvkq9yJGYozS0zcedK1aaq5crxdm9cpsMVGLC4ZhIJfC5fLIZb6s/+esxQVRznUqwlbWuMLo3i6Ud5OixluBfnhHYpYq9NsUE3SR0+mG25sD8yzXOU+ihrtMor4ofXxN/VLQq1KyxHUgnnBekOvrdCW7IrY9CFpSmtBULqTUCuTyfgWntLxmsyMWDfM0rftirRUTAt3hhOsc3owMncSN0r+mcV0Rq4GYC1MUf9K4JKyza/tE88kspTBPE9VJgbPT1gRbZJ+MKVNNwdUq/aHKGKpUrbNVUiyavHmNBzOpJHKRlp6YMiKeVBXFFvS17zuqqq6nlLAsnMaO8d0Tzr7H+eGeu7d3YltznaRI1nVKTUTObCTeySVhdgboIoJXSUZYbbiAC72y1TzVFFF4t+C8IfQd3YsbxsOBm8MNwXmWizB7pACUmGMilsIyXcjLWVlVgtanuGdPlXWvlTvs1t81QT4F1ra5pHlHAxsaMkcDmH7I48dRj3wNRE3YRuBfA/5ro31qRlbavw18UV/yvwP/oTHmf0EESO7qD+ln00/ZQY8rbraiYO3RuLZtUreeiTZwLaBt1dV9wtroOdv7t9N3S1T2wdfT60GTSAS5oOUQ8vlrz1tVpbiWhFlWyk9Ts2o85ueiFy2p29M2V0oUPLm21kD/5PVmr+LW/m/fZ7UZOu+/4/qaliBisPWpzH17TQu0ggtPr1NfWzQTXPuC1o3uKYVxRTQ0yBXnebPdkt1znXOrH9N6f3eiDvuxqUpH2Pe2PBUg2VQ0jSbZraG51gxGDFiXRZDN4D0xZUobi4pSTjO5PvX7kABRVIZKKco1l36Xvg+M44DPntB5bcj2Ky1SDq0eh6VzlhQnFYXQ5touYBSBkcPRY5AgWyZ2oe87+n5giRFjHX3XUauqIBk5RFJKCvM3JKJRvCoG8eKpVXuNShSPGWehVKaaKLmyzGLkmU0RtM1sRsho0n69Xrm7uxPqm9KIUk6IgqYhxrRaNHhNXIX6FalVzLEXlfNt9LY9xbkVEdp7iK+N/H9TxRTvQ0NNuzVUylqdrFXWcqPdSRJrsU5RsDWZsypGonNQG55Xw/q20kp5ksC13+37OffPb98jNkP0lXdf9L2LcAaKMAdyLVgboGq/Ya0ELz5zy2Pk9M4LXtwcGU4v+MT7P8Xv/YO/wze+81U+9ZnPYs2RtAhNaM2D9Ls1I+99367Z7Wett6zRFNtj35vXxrCUslo0tLFoCpr7/r0VtSybKfb+/UvODMNhfd82NqUULpeLzhtRzSvqfbm372jX1/osY4yMoyADjULWBHPafXgi3jMtK0Ogoflg1j6i/b4p56+eFVZ3XKWdPzzc8e5rkb6f5yv+tueT7/8sf/p7X+B3vvh/89f++K/zic/8Au8OHZ/+xff57X/0kmk+U92sc92IoIhV6nupW/FtVTuT4oWgtJbr9crhMD5LmFsSbXa+XH6155CzqllaaICGpQueUgVhKvnAEqOgYI8PkgClxOFwwDrL3dt7rLUcTyculyvXDz7g9OKk9HJZt8s8Y12/9mD1fc/hcFBxoYhXoY6giri1FqbpIuhv3auC6v3wUvAKviMuEecM3h+5XM5M0xnnmkgH+GA5nY6UdOV8mfC+cDgI3RvjOJxuROjCyNWGrld6olDscqkMQ2EYjxwORzBCmcxZikapZtIyM1+vlDxTssOZyvFw5OXLkTgv4vFWEsZWEY9SA+9lnvn2t76h/dcyr+brhZwWTY4sVLvSvo2xXM5nhmFQGrbsK7lkSEmCQWuEWmjFhmWhkpLRnuRCWmZK1p6juHC9XvDeMQzityatF5ZchJbeKxrRBIVEZbDFNuK5FZMIQYHQKKXPcG6npArQ+HWfHcZtb68ULdbBvExcLheWZQZn1Lahf0Ijr1V7pVSAqsRIsI6+D/TDYe27C52RPj4NB+NiuF4S9/ePPD5cVQxEbFOylzkmpuFydvkg9GHv/Iq8p5QoKREj1K7iVQkTItZsgkirybJpfbNiseGtqFumujEXci3aEiF7VioickMVn8y+CZbszo6UtpYLYTdJkFtKXROoUrY9t/m/lZyJ00RRtkkx0qI0DANdLdJ7yaZ5IPGC9EDa6sCLunRcFowF4ySZdraSqyD43vdrG8DQHxiHG/Fh7EVAZb7O5EVaOeL5QqSSpgWPwVWLrRYylJiZlkipEJzFO+TMSpkSEy5XXKg4H+icx2rvXIwzeVrAnPHBMww9x9OBcewYh57TzYEXH32H4/HAaTzRu54SC3GRGGGaFqGk50KMB1I6apE5M08T1+tVfWJb8oYqr0ihMDctbSOFsAK615g1SS9PkJMtjv9Rjx8Hafs48D8ZaSSywP9aa/0/jDF/VxM6A/wO8O/p8/9PRO7/jxHJ/3/3R39Ey0H1glXMY1USNa06nTFuQ4EaGtUC9vZ7+VOFS3YBwtZcybMAqj55zz3StKJCGhA4a549dxPW2KNIVitPUqzaFPZa8NGCkfZYucy7z26LcS/UAawH7f757fvsk8F9n9nz5z1/7E2k2/P2yd36HUtZA7k1EG1jYjfUsA1re86+l3AfhLcErk3m/fuuV7q7ZBlL2Uysbf157X3Diry1+5w0yK0octnepzZkVoHpmjFGPGys1YpOTkrT1cS8mg1ub5USJJnH6Pw12pNY9XXOKGICN8OBejzgmiqhilz45q+G0GZbQmeMBWsInagqtjEOocMhal3GGWKaJTkycL3Iod73HZhmglxZ4kQpVT1UlHqRhLedU8EYUV6rVXsHtOEaCp0PpFRIqbDMkWm6UkyjCa6w5eoz8/DwwOVyoeuFZy8UXW1cxooXVJIEK4ROkB5jGIYeYzz39w+r0WgrcOwliEujFZiWkLOak8ockURhiQspKtK2FlkkWWsbpwS3svZylv6uRQUnui5s94Ems6yUXJ0TLSmptWpAZZ70YbX1+/zR1kITJFlNplX5FWNW7n2hzUFPLRZrO/GlYuBy+ZBucLx6/S5D53n/Y+9Q85nP/ebvU+vHOJ7eo3SPPHxwJvjAMl0kQFbabwvuRVVM/Hr2jdv7PeB5oakl/O05LUlrIjJtz9roPt+7P+33hZXtYLb73J7XxmqPzEkSbZ68377YtRctkV6CVrzb0NX2XfaPlrC1H+89pSqKXAreu/U969oLrNNLn4ezXC6PPNy95fTy45yniGHh9vZdXr/+GF/9sy/yW5/7LX7m07/IZYp8+rOf4uOf/Cm++MV/ShgTwQWKqUxxEYQTCcSs2fVh14pkjTK/jTFiRTJLgrIVA+SnUYzad96P1fMfqvQtTYpCeG+pVZLPZYkM45GX79zSdwMfvnlDzInjUfqdztNVqH0YSsqcbo+EEFii7CvBO6WDGW6OJ6Zp4u2HbzEYDuNJvJqM5XQ40HnxLVqWmcfHB25ubtS7yuL7QEmJ6zRzd3eHtfDixa2wAXIWU2OrCpPXswZ7Ce8CXRixRtQAweJ9x/39Hd5MA/wAACAASURBVI+PF25ujmpirmjLtGjPrMO6QN8fOI4HUnog58w4jhy6AWMOGF4yXR64v3/Lw8MDy7zIulsWpsuVUpP0DeJwTkSyaoFpnrl/G7UvrGeJM1kpsYCanreeWC8tE+rtZRBxhlylb64aw3yZeLy7YzyMBO+xfYAsSM58faAkvyrx+i6s9z1nYWJUoMa8Ki6WYnCuo+sGrPUs86KS+wvWqvhTqco8kiSzqAJoQ3lyKlSbOB5PdB1q3rwXaShrn3atWdQ7jcSC3opVRdW+5EUp+M45grXQdzhlJRgMfS9U25gSKV5FIdTuPFpd8/aUJG1Z4noerV6tQMyVlDOx9efqfpCKiB/FedHiw7j1+xogJnKMWLv11cYlMi8LNRfIUgBs+18X1LrBWoJ3eLqNip4j8zULVVfXb2tnaGdLO6eMtYKKGrEwWVlSiGint9KK0h0PlJi4ThPTNFMuF3zX0Q3C0BFNkCIoYVTRqiLMJGdU2ddsrQDOOKzJVHMVZPXQMfRHjA2cH2fevHnL9ZI5Hm8YxwM3/YnhaJjniW9/5zt897tvuF4n/WyHM45gg8ZvjqwWBT2eoRvoe1bqelY7E2MMUYux7V7nWkk5Mc0VoVgfefXuSz760Y/z7qv3uL25wVpDWSL4wvCyo5TE5XpmjgspZy5z5TI55kksIA6HkXE6sMyRkiSBTFl849IcSSVtjAwkHmz7c4v/q6lrEvf88YNi9Pb4cdQjvwD8C9/n93/jBzy/Av/Bj3rfpy/a/tISN7MeHqwHfoMfYZ+cbcnPXtFLvnfVybf9mBVx2wancXPN2n8lG8gqzCHvuv7bKO3Ptuql3a6RRq1EPsc5T/AWH7wEqKt4htloYLU8PTDZkK29/OuWpH0vsrZP2raqNuybGvcJ3IbaKSLlN7Pm56jAPrmUYD5t46+JmtEJ2FCKUlozq/yuqfPoBawBUEPoWs/ZGmjtJ65hNw+Moh3qTO+cBt1N3EHGR6hLClvvIDwl/7BmcFZuVKVQ4iweJOzEIYz0LuYqTkNrEaGNx1otqYIIYlSydlPS7LTSczgctFfJEdS0VtSppFm5d53ImavvirPSS2TcU+TQObcqJIH2VuisGwZpTrfOqyR1WQsaoijlgcLlMglPPm8biig9bpt80ns9O23g175GGzrEUF7GuSLB+mVamOaZah3deBDT1ZSFb19EclnUqxTp074iaqZUCRBKMasZt1CwZKyTegBSBWnt+4GxEwSszW3vJZhp6HcXOpzdjJKhai/kFrQ3Gec29xva1faCfZGlrbuNyrt/jcz5lmi2a9qLZrS1135akvk9qLuBWlsgrjNY9x7rA4fxSNePXOcrpURu3r3leHPDzfiST33ip/kn//gf8ubuG/zkJz7JkjKYnrjcE4zIoOeY1CNG+9WMrOFcKpXNdmNNouzTQlcrQsk4P0t47F6Y5Gky1l67H4f981sSXRGKU0Nhy9qH23qbrRq7Z5r5fEyRWuqqpAoSADrr6EJHbcEkZvd95Hr2BSvvA/3AEyQ1hEDaI7S7M4K6fR/JdUT1ri5CK3v74RtOt6+hQtHerp/4xE/wjS/8Hn/4pT/k4YMPGU9H3nv5ip/5hU/zhS//LtYNGNfm+UiMExUpShlN4I3RrQu77pU+BHp6UoqrmuaTbdS0SvyWDJdSmKZp3avW++Ikct/f3WY1UlsQQmWexGLjdDqRi5jeO+c4HA4si9DNbl+IJ1sphen6wDQ5hqET8ZYiiNvDwwPX6yQFoSKU06DIWxNWap5zXdevtKh5nrFUap1ZlkIpB47HA4fDQFE7i5wjy3IhLpHDcMPxeEPfj+uZ433g8fGB8/nC8XDkdHrJ4+NbchbBies0Kc1P1uGyLDjruT2dVEJ+whD07JDC3zAMJGNW4QWA8+NZehOjVOa96+j7UYRuZqnel1pY5k79P7ez2JptT2lqxKKo24qLUuBBz8fHuzu+9eeW4TDQd70YSIfAOAT1kTWkODHPV0rtubm5pRT0LNdenJpZFqEKeu+JSxaqIkaThspSRcmyJSb1eKIUQe8eH8+E4FV5uMd7EewoJdMPA8PQqdiD3N8mKCX+kjdrQbQJKM3TtO5HouK7FXCgCKW8traLynWe1vksLSliVp0jlITEDF4+QxJLsRVo1hhY0XxJaio9M8n7aHw1DIOgZ1XsNELvKRpWuK6n94EUI/OS6DqL63oOoYNSMEnokyKqkoVJ4cS7zLqmDKoCGEX6xwqiyFx1LTSlYeeDIu3tLNz2pPbvhpzFKP2TeRZPQGssN6ej2OzkSFxmob17KSpTK7WIB1xKhRg1Aa9FwBVvCH0QxLsrivI7QficxLg3t7dMl8Td3QNvvvOWcRh4eeq5GVUdu4idkbWW83WiKTjKPuTpfQcxCQMqV2zM0p+vsb+zEqsICioIcKZgvcOpZY8kTp6cE9998x0u1wem+R7zE+/z6t1XhFOPqZXgPCUHnPXcGDmLrnHmvExczleJQ2LiepmYp5mSBEFNSRhIMQg1tdH4WzG51RbXQqjcoCdn548CVtYz6of+7/9Pj4pQl6ouNoMGVpq02V3g8xwh2xzNDU0qswUBDdqV37XcsKmxsb7n/hBr1EMJmJoiWjPrBrCarLWgWjMKNrGC9pklb1VbqlFPKosxIhO/+alpXvJ9ErfVZHENgux62MCWZLXn77/TPqB9HkDtAzJrpfG6ft8xfkpD3CN+VpMKH7aG/YY8bDeWJ/2J650zmkRotbd5VrRAouXa63WvSfpmSmi1r2ulJ7VkXaEw6V+0T6oeTyDoKil4rRVTrRx8WdQSW6W/rOqfLTczGJWK3dADSdSMEVQheCeKi33P0A+Mw8AwDFhF2Pq+p8DqW2Odw1tHsF6kyd0mpb9XL10TZaALXnrJVAofDC50WCOyynG5sqS00ixLkR7Acr0S40KKQvPbEhOppqa8yQ0LGpWZVP2ybZJFKYLOyH0XytQjl8tFCwZOzSudBpdZ1cyEcnM6HFakxDmDDwMpzZzPF5ZZfbY0AHHaFzaMIzlnzuez9lMpCrpDbPfoz5YH7X6n66fVIPaovLUSiKQs/nduZ7y8r2huYeyWZLS1safYPUeXvx9F+Dl6XqtSXmlUY+3hBxGTqAVp0RQKzXQ9cxgP3Lx4je87Pv7xj3JwA5/7jc/jB3jxUaGiXR4ypjrm5SzV06rv5TSIryKbXk0T73lq0dFQrueFIgn0t735OeWwza1pEoXcfTLbgq092tU+o5TCNE+MdsRYS0xZfJhC0L5nuQ3NP7DWyjJLQO990P3Ria+Qs4TQKzIldLcQVKQgRp0r232TPk9PTkL1FMsHD4pqkNPuurd+aYMTigwWYz1ZfY1SiizzhLcDcZqJ9ZFXH3mBd6/4+p9+nS/97hf4pV/5qzxOhp//5Z/jN37zo3z7a9/kgNg/HI5HLpdKTgsG8fiSAERZHaYVHOuKeDw8SPA7qi1IzmIiXasEGG1vafexIat7KrnTeWBXpb0owXLXcZ0WLudHlmkGLF0/cnNzw5sP3lANnI5Hai2c1QtymcVnqtDmV2KehKZ9OBxIeeEwHgjeC+J0/5ZGdQ6abBhQy4q7NYlwiip4Z8g3B6H5Ggn+YxTxFumlVIqXs4zjgeDFPDnvDI2vlwnvAqfTDaI++A6X61s1o/aYmHh4PBNToQsDXTesiZP3jmyrmJarT1jJmVwq0+NZ+phLIZesBtqi/BdNUlVFWSd930kQH5NQrMru7Kd5Nhq830uFq2rtTv3YWekLNLUQpwlSkh7HQSifvQuULDFLrZllvlIOB3zoMUqRt6oeep0cKS3aFmKUwuqxVvau61XWs1DIRfG3UXLbnul9ota4zq+UMmaRnqXr9bq2jnR9wAenRTGhj9XM6sF4uVzIKTGM41qcaftRSpXrlMhJigBd163y9fIcQ66Iz1e1gNwruf9qb+DMKookSF7GemldMMasxtXOe7pW5Bj1aqugfHNUWn/X0/UDXT+sRZSi3namVHqM0i+D9E8tCzEn4iz01toEO6pQXiUpcxgVsmp9VUuM+NDT9z3e6TVq3NeYIVbZNdInK8bYOUYVbamiuho8vba9yHmQKLnZ44APHaFzdEnokylnliwWKbYYfBg5HgbGUWLCaUossZDyVXotXeB0GpguV1K6cHd3z9sPZpYovWjFeHIB2/Va0M8bumJEwMq6UdVQwdQibRzaZy+xjMP3HaWKr5w0GEgBKFdY4kyfPbV2lFr45rf+nPv7t9zevuCdl+9yc7zh5nSLtx3gCa7HGEeqlk5jQGuc9GQOV66XC3GOLLOcDWPfk5P0F4qYXWSaJ7EtajTYRvfACoWybuy89vc9SPL9Hn8hkjbQhCBvwfq+yrcFD3attG9BxUaFgZ1im2nUOU0EDViHblYtyX1aEX76WRuVb01ySqXajY4HrAGi9FKZ9Qc5Ytf3eoqAPaUabajY0+/SrqdVLOXzCg0ZaUldC6D2171PHp9/L3iGnpVCrtt1tmt8/tr2OmvcmpwZNsEGqVr67XtkUSRq1/49Qiu799x/l/33yCqpv11XC7B3PTLaZN/osOu9xDyRM5c73ticdRP60ODLO4/t7Ur5kn4iTah1vljrxEjVSL+XeMx4rBXT3y74FW0JurE3H8CGsPkg98qHQLc7fLzKA7exjQ2JMWYd4/a4v7tTH7QMCI2nXJZ17qWcJDnLssnvqVBZ78uau+o6ylUqi2W73fJ77Xmiillo61GJSQ7o+/t7NUjulAazNWAbIMerfG4qQlmJUs0UpMuRcmSer1Kt9P0aULe5v5+HwzA88eGTaxc5e5H5l4OnJapipi03UL7XVlzp+16pb5mkIj+5FJUO33q2GtLdfteC+1Wifkd33tOk2zzcm8G3n2maaNS7fYJDC8Axq2qutRbjpHo5HI64rud6mSjZMozvcPveRxluAp/+9Ef4/Od+ne/8+Td47/XPkNM7ODNRyxtqvpJTYp4nTTw0oFmLAXUtEDRZ4v163u+Pe0RRbCQ25HLU5LrWzdesBfzD4J8UmYD1/dv4yDyXRKQZGTcJd6MHtuwnEsAKdW/b+9o+0u5X1EDJ+V7nf1nRtea72HXd+t3EOiDsKvis6HrXdSt63fz6JDDKlFTaTiHJoqqU5TST44zvOuoSOb5wOOf5yU98lq9+7Xf5zd/4h/zKr/41qnW894mP8Jm/9PN87SvfZgwG6zOmBrzviMsiyqdVgrHgDKUVr3ScQOZqo+22xEeYCNKbuu+bbkhzG4f1/3QMGwU4K8W4trnvLDHOGGM4Hm4IfQ8G+lEKU8YYHh/PlFJ48eKFmHTHhcPpxBB6KpX7+3tSXGTntjD2PX0IDF3HfZX/749Hbk4nWR/DSB86PvjgA5brxPjuu4L8LQtxuWJqZrqcWaaJm5tboZx7L0bZtnJ/P9H5gLGeghGLh1JIaREa47IwjkdSqSqt7zHW40Lh9ek1Dw9nHh+lv67rPEZVq4e+J3QeTGa6XFa68xIFoUtLpJaJ1qtmrMGr716KUvB63rMrayCtfXzbvqDsHLP1J03TjFUri9XLEfEBO44D3re+6UBQZkIpUYRmlomaxdbm8fGBfsiSuCmVNuZMSsta5OmD0/UkyqwpRYw15BI5n8+M4+HJumnrr9ENo9IFnbdcVOVTxrNbv+c+EYsxskzN803QQjsMyqKQc3KZm8JwJYQD1iSsC2A8BjEsz0n6sUvScVXVXmsbcwbtqZQY7nAYORwH5nkhlUZvk4SuoSdG94p5mrDGMoyjUlF75nlmmhZc3NHiq1UD5SKolZHEyBg5TV0I0k+pxaGsZ7ItmWAqPnRYKyrQxtiVjpqLqF9O14yzZrM2No3ZIGizzK+89mV1LqwFummasHErwkt7hjCk0HsxLZOsBx8IQ0fvLCcr6sZd77m9PXE8jiIiVCrHI2J/UeD8cKYLntM40ntLjgvLfGWeZs7zwuW6cJ4Waq444+mdw5pKTYJ+LnOmLAslR+k3deI16HygGoiT2ESUCqWK8vp4HEUnIDj6UYqXXpNtjGGZwZoXRH/g/t7x8PiWvnsg+G9yOHTc3p64uTlIi0ToGfsjvuspWZhVfd9xGAdKLpKILlGK5bnI2r9ehQUQLF0fqFnptHp/U0pY41cV5ucF3B/2+AuRtEneWZWmJn82OhKaLBWqcF13IhgroPMsIWm/2xC3QpOkRjfAFabUYPx50vacJmiMeWLIKsmiIjVFVCobNa89mqO6tRs1Z6Nd7XvSqlI56lr5bJv4HmFpiEFL2vab3P77b7//3ur+PnD8QeP4dOx49vkiOb2vCKSYno3N+qFr/8/+85zC1WsSUcrqUbIiP7uxz3XzcvPe41sCh1JbMTom7b60w072rlYPX1O5KpuZUdqV0azMWi9y5Lu52JKzFoxI/1FQb4+At1ZRADEAbQpWcv8h+CBogI6jD/5JUNhEWErJpAJpXliWTda4ZFVzLGqUrQt+mq8a1AaqcdRFktvG6C05k3ISGoPRXrzS5r2gcet6MVUDMhklGVuVy1V0sdRmj6A+VjGJMe31uh7MXQgka1bVrHbAiQT3IBtpGEQZNEs/Q84i07xohdIU6RGpVainWWm2rcPRUqlZ5oS3bb5IIaMlc21jlOB9U70C1rUYQtAKbl6T1xij9LCs815Un76neFONJhVO5ZTrE/GNdf3bTfRin9g0AYjnFbVaq6q4qg+XAdo+gZMK8zAoErUQ/MDL1++Q3JX3P/lzEN/hN/7e57Hmyuv3LaFLXO8TdfGULMG+9GwKBbSuRQt0jsgoN6oKbAfI5hm30X6fI/h7RsCT/WK3n+z31FLKqg4KrMWdVDJWleEEvBJDX2MMi1Yte0WhS3qOAm/G8i0JiTHy+LAwDj3jOJBzJcWFkiveddJrU0VyPeeFWiK1siadouSq80eFAuZ5Xj8n50xToZXousH9mXmeOD/cc7wJzClxuHnJeZl4/xMf5yv/7Hf5ype/wje//g1e/WTHeNPz2b/0S/yjv/t54vQhQ/CUlOiHUdRZS5LeVmf5f9t711jbsvQ86/nGZc65LvtyTt26u8rtbjvd7nQcJ7asxBCEoiRKDFgxP6JgFIRJghASEgGBUEx+RPzIDwQigIBIKFdQlASZABYigGWC4xjb8b3bacd2Y7ftbnd3ddU5+7Iu8zIu/PjGmGudU1WNWorrnHTNV6o6e6+9zj5zzTnmmN/lfd9PsrolqhNAYYOURLVp/NzxOCWXOnz56ULo+fNmTtyAHEuVW6fmnQWDgnOm6JkGpqalWa0x1rLdbhmGgf1+zziOXFxc0DUtNzdvqka1UMKnMOleWe4F52yxnU8Yw9xxmaaBKTTl3GqH8/r6eg7oYwoc+z1Df8Ra6LqWnLUjlBOl+yRIzhrkRnXoy3lCBySfuuSbzYbtdls+vxZ9hrLXWpdomparKz93byrdehwn+iFgTOZw0AB+s9myXm8w1rLPe3a7u/Lv1ZECFiOOxgjTFLXwoScXjME5g0gzu0XrT+zZvtXM918IUQtVZWarOp4m4jAyHI/kxhFHIU6OaVLDkBh0fICeCz1Xw3BUTZEYnNdkD4mENBQ9Xe3a6PNR3V0txhRWg6Q5OajU7rZVM5lpGrm8vJwLCWqCM86F2PMicb22VedLo/eUzour+i3HMBznfRTUydH5tc5GKzFeyBNhjBhR5kZKanpmrI7CqLP7nLPE6HQ+4DiSUqBpm9P+korhUojlmX3mX5DRMTchMIaB1WatSXyhtMcYzsymCluAXMrMOs8zxDAnr5qMpXmfM1icVM8BmQuqxmhB2qFze+uaDPF8PzQzg6SZE/aVXscsM81T9+5Q/m4ghok0aYfZlhlo6giRNcnPGW8bvDNs1h3rVYNzSkPvujVivDpRpoyxmYvLC6bxwOFwQ7QyM2/adcv6+gEhC/eHnv2xL+MzlPLcrDrIkf44cDxkehJTDLofocdkncN3WjSKMZCxqrVLE95a1tsV1w8e6PXM4IzVRKvvub37IncH7eyaMmNwtVrj7h1vvHHHarVm3a1oVh1+07JZr7WDjZBN5uJiS06RVePIUdf5objBeq861pqopUn1/uda1DHEIkE5ddTPn7nvhOciactkcjnQ+lA5p7DNPLungoQSbde/MQdfT1Zz35rQ1U5KxZwg8iRFMdeg9SwR019TtVIZqtMiJ61LTtWcoiZX1RhDzv6rx6yVwFrdfPKYTnOoTh04ecfN7pyWpUlOTWaeTObOu3z14XOeRJ5rec47DECxPT1RakADmTnJ5dzBsgyHNCcaZErpSb1aOeecJXVQNt65k6bvr0G5Sknk7LLIfP0rReR8LhuZ05g5OSV1yNkoBKPHqkYdZqY7SplbZq3e2N45nG/xTVcshzXhbIo+TbJSCskZ6yxN0yFii6tk6ahQRhrkOI+yULGz0g6maSpVcd3gQ3nA6lBPDW6csxgHJpXzGnVYSgnF1MmuJp5G+ehKOdbHhVoQa5W7JrtzvhqL1XhJeEXUAtxY9UEahoH+sFcL6ZxpvD441OrZ6Fy6cp/FMGKsJcSEjBNgij5D5oqTdY7OFuv7UvqMMczJq/fKsa80mZoIRtH7Ioaq+TRPJA56zykdofL9TwUUCCWQqi5ZztnysK6vmfn3nPaL+jA0hHBy3zvvZM5rmicLILVzXIPjczravOeUpE2/Lis/q9OnVv8t/dATcuTF65dZbS4xbcf7XnuNn/mZn+BXfukXefjSAwRhDHv2uzvaKBp8BJ2Vpq6aYS6EiA7zKgY6p454LRzU70+On9VQ6aR3q0kynLr49X2VSnh+Pmo3SN0O1/O5EVH9q/eOqkV1pfscy+ycnLNSlowp86JOlsu5PC9Oe0k95wNdcS47v5ZVN1mTsBgiEeZihHOOYTwl8ymjGrN5Dzzd70YMakiUsVYnw0xDz253R9OsSUzsdp5mdcFq0/Bgc83rn32DH/77P8zv/6MvQex4/6sf4mO/9WN84sd+kK5ZlSDasN5ccNjflzlNhhxKkCx1lqC6szpfjBJCKAOPlcIagsoP7JkR19MJdO362KJlsU88g4trKnnuZo9D4LDfM4bi6JvTHKh0bUvXtAx9T5g0eRTg9vYx4zhhjEoEdN/SAN9Z/axt43jw4JLD/sju/p7Ly2ulLk9xNi6aphFCZr/bYUxmu91ibUuYlE2jJhcUGnikbVeQM1PQgE2McNzdMww9vvFsL7as1mouMIwj/XBkdzxgLfRmwBnVZlUDmN1uz5tvPKLxnqsHFxiTlN7ZT+x2O6o5jSYhganMrIpSinnesl6tWW8bphA1Uc6lu2INzhpN2kpnOEwnKqu19sx4KeO8xyBMw6hrz2inYuqPxEkTOeMMdrDzMyyMI0M/EkHNRWx10HVgErv9nmO/w7hM26xo247gPGmUQoMXYhrphwOrVUtKgWN/gMzMbhlGHbhtrGGaxrKXmNJ1X5VnRVLHSYH1ao21uq/U+Y1WRqw9rdlKXez7Hu/9vHcgTtkSontlirEMSD+jcde9x0Em0hetXIuOYOpWDfmos+OGccBYh3MNTZnlKWiiY43KSaxVZkwq+15IE2GaCEGfg+vVisZ77WpOUxmlAyGGWRuINVjj5g75aqXzwqagdG/JmRBVrxtCmEcKUOMyyTpmpMRQ5510kdNzqLKC6nPKYua1pfupJpopxXlthTgRxoExq/Si7Tra1VoTM2vIOXJxseHqcov3Tg18YsbYBp8yx35imCYdyB48U7+HqUeSFuPGKdDYSLe+4PLBixhX9ucUOd7dctjdkeMIF2tiekDMmX4MjKNq8XWG2kScBrx3SqlEo3PjLduLDQ8ePuDi8hIxpsx9FdabSy4vH9A4Ybe74+b2VucFjgNhGtmsVrhuTZoG9kPP4xvIRWPftZ6LzZqL7QbX1QJ1ols51muHHxLDpOMuhn6YO26kRDN4mt4XI52JNmWGYt42juPMEDnPTd4Oz0XSRj5RjJAnqYPwJK2I/JSr4JyUvDUReGtidgoazhf0/Iv0UOZE7TzhmTME0c5FrkPLEFKqfy9rxavM8RB3ckc7/xz1OJ74bJwMDc6r1qcOwcmu/ukq+NMP4Po7K33r/Pw9/aCeu3nGztqzpwPO83OoD+cnE6y5M1g6I3MyZ9Qq9/x4zwNY89S/Vz/P0z+rwmkofPiSgdXu3hxblOBbUazTz9zl9IIWbVM5Jlv0AdZ4vO+UE446UxrJSNZ5KM4qr7ptdJAjxQ5fH5elwlmMCqh03CzEQh+LMTKlWK6fVnKznM5ziInDOFFNMio9iZwJU9FezEG20Tk8ISFR3ZWq1jLESEyhNKkjGZ21pgJdIBvtKDo/nzNdA5FqfKVyKu08SnVWzFrp7Iee+7sbJCWcWKxIsfWv5x/iNBKCatPWXYc41SFZ68mpdC6idiFEMuvNCmOqDbtSZfq+n4P4+qCp7ozG1KBGaZZhivN5q7rWej8CWhCa15QpXZSJKaSSCGqnrmma02wwRDvIJWmL8cl7qyaO9d58+674qctUZ7bVAsy59uu8QCJoRzMnzahzLjuPWBI6pHocJ1brFdcPHxBSw2uvfgzxhh/6f/43vB354Ps/zJA8U7yH3JOnRC4D3nUGx6k4Y4wtneBSHJGz9Vc629WU560d+rcajJx3L05sBnkiEazV9Hr+avV9TmIrnQ9KsqrXo+6ztUij17hSfc/3lVMHsxaP6po472LXdWat5XA4zNerdlDPK/n1uMXYs/cp9T7XomL5L+dICAnEaZciTNpBskI/9Dx8+VXG+3tefvFlPvWPfo5P/uzP8k9/5x9Apms2Fx3f8PGP8okf/3uM00TbdIQxoDrGRMoBK6rdcsaSRYpO59SNzpnZ0n8YejabC7rOk0J6oij6dtcopUTIGSeuvGcuT85/Rw03LG3bqFFDSnSrbqbGxhCYhoH97p7dbseqa1ivVvO4gM1G7b/1egSOhwPeWrrNCu8tKU149gXfbgAAIABJREFUb+maluNxKBQ0h4glpYBzuo/HOJFTZAoTb7wxQLY0zYa2WWPMaYREJpTuFbSrNTGpLnl/vGeMIxfrLe1KizW+bbDGYRtLu7bc3T3m9de/hHOeFx88ZNV2+tywauDgrFKufCOQhWmMhCngy/DpysrQ+0o7IdYZVk3HanuBd22hcpc9aRrUEGKaMCSlieUnZRM5qzlHjRFSVrKm8w5vDRbIYWIaBp275gw2W2JS+l8Y3WzyM/QDYUozVR+nyblvHAlPiD2ZQEzqIOpadWQ0RhPjmCpFTue46QiP6i+gRajt9gKgaCOVqlgku4yjmr1UGq92stxcKNzv94gIXdsi5XrGGE/SA6NmZGIdTgzD0DOMPeTS6UuqWROyFiNjZkoTKU9qjBUjTXGarNo6vW8GQkzYQqnNWSnrJy2hJq9D3+saaNR0REpHEmuV0uycFj9mOr/ao/XjAKD6O9eSinX88XBgQIuMjW903E/SpC5zcqbWBEv39Jx19zZAluKySSoF/6kY9ITZkbnxnuocfJKmTIX9kmgbT9d6QvBMMeKw6jdhlKa/ulDasneGzarDm6xGOvt7Yo4MUyRgQRqcbxmGEZMzgsNIw2q9xvuGwxDYHwbuhlvsYVJTHiM0Vrher9k6uL95RLYovRzDEDKp6IZT0v18OB447Hf0h4MWDAxkEm3nsK523Tp80zL1gb4PmDRhGsfV6opXXniFKQXudzf0wxFnJiwHCDp/9jAZelnrDLsYaRvLpmt44cEl61XDxXaF91ta62lbr8eaM2E14b3jeHSQEl3XMq0mxmHg2PfECGNhbRyPxycSty+H5yNpY4669Y+UTsEKxeK+PEBiSnMQd95Fy/nJtqKpw49r1Xp2aCyBvgFSdSvUjkoN/p+mEuqhlc6bfkdN9Ao5jxpE1GPJnPRn9Xh0QGwNdM6SI1Rflc8+dA30K6Xg9FCtnaJzmqMpre8nz8lbkqAySuE8uZsDWTl14WpF67w7ULuR2p0pgXRxsSLXbtxJB6hdrlPwdd65PM0aOkuoOFX4zan9o//OmaFKXSaJrFPlOae5aodJc50SMGc7J3mGk+sZRcivFLuSmAQVtSqt0WCcduoab/FWH/RxGolTJttUKpsni3y17tffFWIgTpEkToWxMRKD2jGLEQ3AysrPWee7TVmIaJcxxqhj0FAqo7WqpdP0LJcEMIFEwCJo8D0GtaV13pbELRURLHMCm3MkJ+Gk+yw9jVyMM4whowmDDvUFjDrF3d/fceyPeMB4r8njNMyJizUGX+Z/pTgxTpk06XpvfCZntfyvCYFSlzXw1o7I/olu1PmYjNrZknJNKPeIJkBSNr2qiSoBPFYph8VQwTo3rxWdG6ddWV/dXQXapsFax263LzqMJ/epnKDOFzu/Z4wxnELnan2tna1KBdOqZvNEB1tE5geyM6qBTAIYpQhZ3+A7HRXRDzp0/YWrl2maLdsHV3zjt3wD/+Dv/zC/9Auf4/0PXsG3gdREHj26xWalh1G7MqBr3NSqrJk7enZOlMJM3xSROdF5guXA+d6a5yTv3Iyl/ql7SJoLBOfJW93TaiKkgWgsQ+LbmYpY19d8r9ffdbYv6KD20+iUp0cEDOOIdyf9bMqJadRu2jhNpRtbrNVz1fiVa1fMAOpzZu7kSnEZPq//lX2pugJrp3ygazv2fc/+sEMCvPqB1/jFX/wUr3/hi/zqr32Wj12/xmEY+S0f+6188EMf4rP/7y/jjFebeqd62KlXZzJjSyc910JQXUtKlbTWstlsGIpBizGuuPSKlpmeupZKq2wYxrGMNSi7gmhFvibKRpSFEMu1N9ayv9+RSLRdS9M2ZOeYxpFjGRTclEB/v98xxVGDf2cZxzDPgtzv9yCJ7XaNiCb1RgwxBO7u92w2F2w36sLonMVYGEehaR8wHPc8evNNYhRWzaYUdDLGCutuDUTu7h/T90euHjq61ZYQBi42W9arFjGZN9/8EiEkVt2Gtl2r8Q8J6xqurh6wXq9pvVfdvQht1+KtYehHbm4e0/d7mrbDGF/0TRvWqw22VPOHvifGif1+xzBqQWp3v6dt1UAmF3fSMKkpRQiDak8NzBKMupadI6Nfz87StmqtUXMGmDtUKWVMKRR57wsdWGlzq04t4H1bNHJDz6HvadqOzcUG32yw0mCMumMej31Jsjy+MWWGXqHAN5oM9MehFOBKt2x2P4am8WU+nMYBqkNuWK835XmQ53twHAaVTZQOsTUWVzSYXdPpMx6Km98eceU9+mjAWn2AVg18isLhsOf+/hasGnB0rddC7KwXK4mjdWrPj2EYdXarFe1UppgIxdDDWk3o+r4HSVhRt+imbSFnxvGoSZ0vLCGElsxhHOmHnt1+T+M8rW9KV07lQDEl+tiT+h5xTpOB9QY7jqoJG3tS0O66tWpAlDDYVJlcmWgiTgwxBXKIHMOeodCnG1/cNEsRapq065iyznSsa2XVdlxfXWOaRoud5bPvSzFGUqSxBmeFaQwcxl3RxgtZHFujY0GcabCxIw46A3calZ68WW1IxoFRrRlRmSbGCmvnWT98SCRiGkfCcugn+klpzyElVqsL/MNr1FBn4Pb+Vlk6YaTpPBfbNU23ZtVt8b7DmxZnG473dzz+4q8SpkicOlzb0jmDk1YpoCGTQyKNiTAmgtUYWF1YDTlGbh4/oj96+mPDMBy43G5puivarqVtOwRhvVlz2O9L0KqFiGEYOBz3jGNkSokpBPp+KB23QWOuL4PnJGl7smo70/TKQzSTSQJGNPiY31cokznrw9tIpSilUncAKJ0Va9RuvDzsZw1CNqX6oU5Zar93lvxkZuKjKXSpjAa1egx1M1VOufJtteuRcp4fSkYyJOWQi9VKgYiozXZSm+j5XMxflenv8WR4oA/ejApeqjbOQi4Up6TCeCnswZMxSqrNJ2pdRjtrVgNLecraOytNSeYZQNXlLZNRIXMSVF8hpmir1NlRTAn8imgzZd2IyPrv5jnA0epjpUfq4FU7C7Br5e1EgyxrI1cq7Fk3dO6c1mRa14TFFIdRZn2dPvD0oWZLF0+y/szZhqZ1eO+wtuqRUqHv1m6vQVK1V05MKRNi5jAc1SpbhBiSUhww82BctbIun4OSXUodaptIUsYfzNegXCkRlM6fZ3vgahEs5Vo6o7z9ENUtCSmjClIqe3gtLUQkB8g9NVwXAWeFbGDKELFESkeVhCQVrY/TRI6ZrtvSgAZHkskixCkwDkcaA+uuo206xqRDyK3VwHYaAlOvVdXWGWg8MceS7BjGKdAPB2JJUtuuoW1URJxzJidbBPCBULp5egtrlSSFfNLq5bK+it7NWO0S5zL7TMcVGAyCs2W4cDKINYRA6SY8qd+qhjihdGB8HX0w021BR9kUF68ENiltTnnrSsfUurjMCWjMOkBVvPLuidrRicYSRAferjpPjIk4DTS+4/LqRYLteN+Hvx4R4ad+6AeJceDqAy8yWaBPWll2gak/YMhYlMany06TfJCZmq40mxPFWDtGp66b7itnlv5Fqxk1AtMA6myGY+1IWmsJKaJDddVl0YjFu2JaX8Yy1IJQfxzp2hW1Vl8deo0TNptVqSFoV9JZi2u9DuMdetpuBVmtosnlmI0BPInEFM/10tCPIz5TZhTW7UOwDkxWjWpGcxcz73VnyToGY06aZAMYcWSx+u+LYQoDx/0O71vyOHG4f4NV+wB3ueHypSve+OLn+NSP/CRf97XfxIBh8+IFH/kd38xnPv0Zpv0Rb0A6XyrIgssWmyMxT7oHz8WxqqEs4xhEGPtAfxjIrV4n65zqr4ubKll10tbpbKNs1NTHeo8pHRM1dlBDohNySZwnVhtPP+zphw7vL1U/5z1Nt9J93zgO+x3DOLHdbjAZbt58E+u8Gnk4TbKGY0/bNnTdCmccjW3w2xVkTZqPvVbSEw5TnDpNVuv89WbDMI1M6UAaAzlZxtjR+K4UYVZM455+dwvhCDg650EsMU2kMNKPe/xmReuNuv6lQNduSrCduLu95e72MeuuZb1qCdNAJrBZdyiN1dNtthirmp43724pNxQ5CkY8Dy4fkNLE/WHP4dgTYsJbTxgG6rgISGSJqiFKGYk6LysD0QpTDljvVENkO73eooVBI5BCJBTTj6ZRi3/n7OyC2K7OBtWT2W4usN7jXMsqZdz+QD+MDMdI59c0riEEpb4a60oyHWl8w8V6gy2MItU1ee6nHWGMdN0KMky97gkxKV0xpMhuvy9FI42vmknI2c90/RwnUjjStQ3ONVpAsJYJmFKdD5lw1pJyZhh6XLL4bs1qtdUkMWsX+ubmsdIdDVhv2W6vqOM6JBlSgH6cOOZYioqTUj/DEWsavNMEve1arFOHYUOn+0gqTJiYiDmQMow5E0Y1BnFilREyTWAbXLvCekfXavH1mI7EcSJkwbbqEGkb7TaCUvhDHAlBzWdW6xU5NazSmmnstbtX4iLKE13ptXa2nTfUZoLqJ0MM7I8j5FF1Xs7TNg3tesVExHrLerPhYr1Wh8sLHUx9fXlJYxvAkELi9vaWx49u6AUutpc0q2suL96Hk0gY7uh3j5H9FxnvE9mvyf6CmFsmVkzjkRSPOr6jc2WviTRdQwqBu92eHHRwvBhPu251NqnzdESG/kiKE2HqyRZWXcPmsuPq8ooYE0M4ME5HDoc9/f6IXEJ33bLdVldRR16vmIZADg0ENK4XQ0xZtfXO03UXtNuWybVInHAlOkpZyGJIQeh7SHng5uZI5E1Wmwe88tJrXF9d0XQdTadFvTQ5cnLkHNnvHzGMR0KCMSZC1mdnf7wnjj1fDs9N0laTnxMH1xab99rJqp0hfQ30gZ7zkxzQ+qA/db/yHLTO6dcZZU6kuPOJtvL1WXT6N2vwnGEO3LTaWivrzInDKZgpv9famSuuD0fttJhsEVc1K5mUJ3Ke5s9YP4lSUU5akZxP3QGt4ktJOtUSf052q5YNZi1P/ayUY8y141e6XyIqOZ+r3Ul1PTU5gjqbLYKZyiVQYxhrmlJxy/M1mY8XHdxsnW5I6oQYy7GhkS0ZEVucq54cPv62FM1KKyxXlLNAcj6HUrqCqBHFKUErAfzs9GnmNdA6FQJrYhoxTg05QrFvri6VOZZ+SsrElAkp682X1BFqNj4RRypdFAyQtGqdU6YaCFDoeuSE96r9qa5tgA7inIsUZX2ljGtbWt/grJqV5Bi1s2mq66AOWz0F6KIJNRGTVVBsjWAkleQQMpEYE8FoAp1yZhoGxv09MUwl+HUksVivIvRE1vl0RWsTYyaME+I0QUKEZDJpCkxT6XSXB52xkSSJGIWQhSGMIBnn9XoO48A0qVGF1DYtpxmAtnY+Yirz3+Jc8ajakzrPzxotyBhrodgfR8DbMqJApFS0TXHlCqf1P4vgjepTJu26xKSag2IoSxSIhkJDzbgEjajVej/qkOTGazW5FhjEKPVE712HxAgpk8UiVqkWvlGnymnoiVPglZdfYLXeYjcXfO3Xfz2f/MRP88uf+iQvPHxIe7nWsQ2HEWJmiAfstMfm4oqaNMkmnXQ/M0NBTrpgkar9VfexaYpzl3BmOpT7zIgGVPUurfdsLTTVMRjWWS1aoQOCXRk8b532j0VKgkjVjmhnJ4slFRMCsSApa2IrhSI0ew5nrNHuctXezjRQRA0FSsKs11pm3aYxJ5dMLcyVJ4gxs8NmSpmm0eJVdb5LubAtCgVL0CS9TpaTrPrBYehJIdN5z353Q+Mv6WPgfV/zAT7xiV/l0z/7c7z5e77ACx/9ILmxfOybP86P/sD/zeHzv4FfNbofee2MSo762wWSRL0XpBp0neihktURdyrUK+vVdS1Vi1jRvazupdTPa4SxOAPmnLEz5VjKPVc6jVYgR0yOeC/c725V0zOV56P1iBMOxwPDFFit17S+oT/qTLKu68gx4JqG46B0scePblmtJ7bdlmEIRCYMlszEsT8wxonNWodbGzE463HF4OHQ37M/7gBhe3EBtHjpMGLYbq7Zrtfc33+BN17/AleXL9J2W6aoMz+dMVxfXZBSYHd/hx9GEkZNozqv5uEJmrbThKnxrLwjxYB1Lc0qc3u/Y3fosT6qEUOZiWhEaKxjs9pwtenIacQ0HuuPOv9vLJTCSTuMgYBrPaZpccbSGIOJysaZSEQjWnxG9UzOamHQl/1fi2WJmECSpfUe16zIRjgej+XejmozP47s91rsaJoVxioNzbmOHCbub450bZ5H7lhXXCHHQH+8wfuGy8sLmsYSpxFnPeuu45AGwhhUm1oKaRZhympAZZ26Tm63Wy7WG92HYlS3S2MJAkZS6YJHDseBpJWT0t3Se7Dxlq5p2G4v1KIfdTsNCSQb7u/uuL27BQO+dXhR/bkzLcbAMB7pj3uGIXA8RqxrsBaaTgtMOUamqJ3RYRxYrVfa6SyJq2qFdf8cp1ELuKWL2XmLd4IpMWhCh3WPaaI1GSfCdrUucYVAoalPCaZUzW7UBOjYa9HUF2dHnY3XFdMu1XVPIZd9UnciKDFPrro+jelCivRjKaqX502IiaZrubi8pt1uuNxuudpsdVB3B23ruFhvWLcdDocRx8OrK66vH3Jzt+PRzS03r7+JbYQH2w0P1isuu2vCcU/fH5RmKLcE45GmwzcGF7T7P449OfSklOjF4IwWUnLWRokRGKaR3WFPjIm2afDWYmmKrELZA3EU7e6Xa73abrnabFBlgGM4HLiZJozTeH91fY0fEmEfmPqgGruNZ7XtIE2MuwPjfg92RLqB63XL1brBS2aMiZvdwP1ux4Sw3mxoG08yE8fpEeMg3N3ecXFl2F7oQPKufYizW0QyzSrRHx1TyozJIk2LCAyHW4b9HV8Oz0nS9s62l+c0utPXp6DnLb+pdInO8rjZRa7qXp5o3cCc4NSkUUoAJyIkk3QSfPn3qbSQM27z+TGeG4TU96dCTzqnRhLL0ERJJTCKc6BeP0eMJ3eZJ6mQxZIYR86avFVRqj6wywiBKlqt56kmKVmrCmRDFfvnSjKv59mcO8jVLpa+L4YRDQ4yYCCHs/fqZ2E2JgERNbVQJ7+ygcgpaapJ2ynpPI1FOE/a5mtTrGhzPqX055qi6iwpYmanSe+Vx69W3Kfkv35txdL4FmfVgn6aEoRILA9LdVLUwE0t5NU8J8ZMKGYiqVRDM3r+rC1JfaGDZtHIvh5DfsKgxuo64PSAFBEdtlmTtVIZN8nAmeNeTrXvW5J0OTuvJYG3tWOKGgZUzYdImge+CwYvCXCEnHRwbK8dOaW6tEzZMEYYBnXZG3NEvKOxOmDVi4ZYqdx3U5p0RlA2GPGYMjB3Xt9pYgix6DIy3jez3iIVEZO1hhTikx3npB0u1blMs66pFhlqt7HOeIwxqhlNSfRC6cDklDTpzpqEW+f1AZuUeiKlu6GJYpq1bdY57b5k1S7qydekoNL2Zv1cuY8715RCRLHUL90QjKEsqVPV1Bis93TdCu8axv7A8dDjmxUXF1dk4JWXXySOB37kh3+InOD973ufjmRIwv6wZww6LN5x0mEh1aDldE8/vb+ealq1QKVullUDZ23RWJRiA6XDVM//+fy8uo87qzbiOjS4dOzLfpxSLBV2Q85nJjYxIVap0NU1N6WERDXNyWcawdMcOSl//7Qf1EJQjFFnFRZKfNXm1r9f9+/6Z6Wnn+8/FbPxUh1PUPdn0tnIjBNtfxwGMrDebjjc32hHHuH9L7/CzxvLb/zaZ/nsZ36N93/0wwzDyCuvfoCv/9g38MnXvwBWu7HGmUKtjhhJJMmEYlxD1vOazvZNUj7TI6rOLVK6hka04FMMTax1SBG1JoBiJmSNnfdycp7nvNViRiqd2cZ51I8l07QNRlzRcWbeGHTkR3VUq7O5qm29aolWOGfZHQ48fvQIuRS6tiOj+irbrTUoPoTS5fYza7M6MYY0sT/syVnwTUsKqiMd+iNGMo0XfNMhtsE1aqogYcI3hpgGxAiPHj0GDE50Vl9MgSmGUp9QPfD9/Z5+v+Nqs6VrdHD7NAaO/YBYy9p7Nuv13J3OKRNHTZzv7u4Yhh33/ZEshtV6Q7P1mJggBvrxyP1xxzGMhW7uMNbTuGrBP5ElMc+JLaZOjVfqoBHhUNZrdSNU44+Otm3ZbrccD3uOxwPOOQ2AvUewGNuULqGaTvlVhzfaiXGNL0WXk77ueDwSY+Bw3EH2CIkBnYu4WjVMU2AcK52yoWksJkJEtX51DxmngEE1XN55nLFY8VjrVYt1PChjxBRGiVRXRDVc0SacugIO44AkQbIhJ9gfDsSUVTvWtsoCypBjIA4T+35PjBlnO9abFSKqg2pag7hIDrk4QBuGoFrDY68JhhWLFYO3yswxkvAIGEcd+uyJ2KyshmRagqgp1zD0SHneNb7FGNUs56w63jrEWkh4JzjXlgJ8nvXA1pTCkAhN07LyDc4rOyuEk5GXM8p4qDFPymq6hbNItDqTLQd2+zt24ci1iaxah7VbttsN68tO6aOiRewYdEYbCA8fXHP94CEvvXTgzds3+I3XP8ejmy9x/9jzcHvN1foFHmw/ACYzhp5dv2M33BOnhMfqYPDiM2AEnBMaZ5myYYpjje5oGkfXrTjsjxyPe6ZJu4hd09KUOZwpB8Q25BgYdntC7DXmzw6kwbm2uKImQg5k79i2GzCR47jj0RtvEN8IrLcdDx9ccbnZMMQDt/sDU3/g7o2BVgIvPrjkxZdf4YUXHtBuIocyBiZOI8kmxCX64y1hvOfm5kjbBlbtmnX7Ek1zpQYpL214cL1misKQDGMWpinQWkvu1nw5PBdJW9VQAU88ZN8uOZr7K3L6u/XvnX9//vW52Pr85xUpZZKc6G/mLBFQfd3JnezppOxpbdb593pjQTbghNmRMJckLpO0UltsuE/dOtCbM85GFrOGon6mpF0sPUZNjEQ0SJ8TklKlyOhnyHM0URwnOD9uUwKnOmVeHwZxrmjXAMjhTVfOldHuAKY4y+lxU47DW0umJibl2FNJbEWrtnWeEWV4JzCf33o+awB4OrdSHtb5qc/wdPJcE8PzbugpsS5Xf07+YoBpnEg5aKAdJkI+uXaSRSujSRM0LQZURlU1TbGzFmaKaTb3SDVQBu0MGt0AKw1YRLSMWTJnY4x2XHIZd1HPtxGw6H8o/aN+9nocel5NWVMlucnMGptUHoB1PeQ6BwsNBkwW+sOB47HHFOG/L+5TxKrjzASKDTLoCARjMClhko60TFNiKK5/625L022QpMNwjYEpHpGp0GxxxaFPAyRrDMbraIQUIiHlMpdKadD68NGA8bzAo7TnPAdZJwMMnZFULkMZ1eD1XGX0XKfEzFoV7UxVY44QIjlR7LY1qdRxCmVd1XOfMxT6nMtCHCZ1jvMOcaY4XJ0ZeGQVyMfSss9na9d5T9uonfE46KzGV199iXa1oltv+OhHv45PfuLH+Yc//VO8/OAh282WIQuHg5pomCSYyeKMIeRJg5uzveuJ83a2hp/ez87/PNfaVpzr2aqeMMbzwlo+szVW+l4MkWlSYbzeSxlXTGDsEzRtijuiJh4q9lfHUu2mqUGJVpX9W/bjylaYwoSxp+69Uv2qe6Qm1/XeqJ+l2jXXQb7VQKXqMWMxNpBKq9cG5rx/q6m3fv5pGrnf3XPRXWKtpz/2dNaw8o7X3v8BPv/6DZ/6qZ/ho9/029m8vMWsN/zO3/2t/NQP/SA3+3s2zRbnHbltCMOgn93qXmKMm7vw6cyBTHKaK/MhTLjc0rQrUohzESSlUOh/lD3G4mxmnMbZpEVpYOnU6c91XqfS/lftqujgDP2xR2Ti6voBzhqiJNabTSmWZKZRDTSqfq4fBjabDVdX1xqUj4Fpitzf3+nw7LbRjlLWZ0rXdWXu24Q1jv7YM8cDYtWlM8PQqyZOUl1/I7eHPZHI+vIhyXj6SYs+2nU3OsJkinStJWWDb1rdZ1QJStOqC+LxOBKM4Wrb4PwKMY525bkSLTxNYSIMJ1fUXF47DAOeiDOJxnti1sS59Q2ERCSzvbzErTt8f+AwDKSkZGrjO7rWIDGQp4GEdge7pmPlHRfbNW3riCmzOqw4HI86+Ns3T8y2XLUNm+2a/f09tzePyTGw6Tq6bo31Lca1HPvAFDNt22nSNKkRjt4nsei/HCItGU8MkWE4aKwDqv+yOoS7aS3OC6uVp+taQpjoQyJkTdJyTBz2B0BI0RCjdtiUsQPDsed4HPBtVxJuV2IKwVrRolFKxZ5/5HA84o2n9aqHbboV1ntsozPG1GVVnxvHode4UyziLNvNFUpsiRiX52fLYX9gmCbGEDDO0HadFhdNMeISwQk6jkWEVDrdcRwYhj2EQddoswa/BmPwpjAwDkd2cV/O1Upnj+Uy5qhsY7VwZKTKQcrrxWhIDboM1nVlGLhqvHPZ//oxlMJLkQ4YSKLjD7xRGzPrDMZbkheOhzu+NA0QasH1UtdxKp37cZq1siGOxEyhhzc8XH0tr+8/z5s3X+DNmy/SrSzXV5es2w2r9pJ195B18wpTf8fu7os8fvwmMSUur6+4fvCAtnFYY4h9hDSRkmC5II1bHbuUQUjqxBqVDj32O2KciCnh7QWr1UY7kOL1ug1o3Np0xaxtgAzblePh5Qp3sWbXGhoGHt3dsXt8Q39/x3j1gIeX13zNB18iOosJPYeb19nvdoQQ2Dx8ifXlQx688CIhJaahZ4gH7vY7bm5eJ40DXTdxdeVxeWI3CinteeOR8OZdx8svvoRvt5hmi/ct1rZk58lTx5fDc5K0nRbm+X/nwXt5p/5XEg7hPKCvFdJqyPEUbbIEYue2+k//3rlKn2tQrq3v+iDXGORk/12TwaddEM9/ppKiXKhiZw90vaPqJ5oD+Prvx5CKlXmeK3z6GaxuVlVTp20URGw5llOXhawV6Wo+oFWcNAeizJVpKfbOp+S2JkM1kDl/PZeLpt05nf1UdRG2dPxo8vnDAAAL+0lEQVQqIlHTx5IMmkIFeEvSVlr659f/6QR7/l5q0sksqodqZKL0pDnwNWVjz2XIclRaXP035wA6T5DHshoiOjctkCk0Meq1L0FkVroMWQ0LVENDCd5cSb2K0UfpytUOXE3qQOb/G4PSDPP80eaEgJLYn6PqvpRGrO2QqskUU2iXujRmK3/JosPlRQNtKdlszrowNblLjFELDpQH9DQNpEmZFBHLlAxE1XVNITAlfSh4EVwREosRJoqTXJoYZERSo7lmEqzNasmc9UEQU+kiijBOI1G0O0NW6odSdk86xywUSsg41x9O7qFadlEthy/3S1nv84iH032s92+edVlSr4PRfUSTjYQxbtYL5ax6wXq9Kvu1FlakaE6VyZdxjSbzMQbMfDj6mVPSDu3sPFMKNK7QNqdpZOh1QPPF5RXGOV565WXGcc/P/OSPMB7vefjK1+g6CYnDrsda1T6RDTGoM5g4MxcIZg3x3N6jVCXRbiOnrlMt5NRu1XlyU69PNuquhmhXN5FLh1sT71yNc5Jo1Tlrl6xtmjI4vOpYy+Bgpw6tImVWW9kzz11UczZFQ2tK51OprlmrWLNDbIpK+7VPzNIrWlDniPF8TMmTe15NNs3ZeqnmOFU/DZDOKPdqkFCLRfUZFTn2R1ZxTdO29OPEZmtIU+CVF1/ms7/6Op/5xV/i8Rc+z/s/9NvZhcBHfttHeP8HX+OLv/4Zhmmi61Z0XcfYD0xj0E59GVUyFxmBOl9QZ0BqQDYcjgy3d2y2ar6UkzpQ1o4iWdSKu+xv1jrGqYeknQYqeyHrc3ceDaB3yDzGxVghhsA49ByCnnffNGy3W/qDBju2rIsxBMZpQo49TTfMA5Bb15b1knHe6n0GSNKhthOlc1BNnyYtYLrG0rYrDv3A0E90nY5lcYXmHlPPFDLX1y8g4jXhJjGFgZgD/TDRdWuc7xjGwDAc58p8IunolElnCLZNi3UNKVtyEpxruLxoGMPIo5tHOifTT2rAUwprXbemMQFvExvniFWPHjPDOLK/34GBMQfGFHBdh8HgTEO32tA0DVtnuZLMbr9jOPZMKsBlPN7pDCnrMdbjy4iE3f2e29t7EOhWK66vL9V8o2vYbjeMx6Oeg/HIbn+g6Tb4djNXmFMSQtCiA6IuhM6Z4sw4YazBesM0auE5xsSx7xGxeNcUk6hMCMLQq8HUlA3GtYXWr/u16vUhBiGWe12MKaYlwqpdY9tWu/45q406JWFDLeurU6dB2QC28zSdFtekfJ7joPrS4bjHOuHy6ooshnESbu/vydliTaZNhpgmxsOBGCJiVUOocVyRehhl8jTO0lhHioMmUkGNv8J4JI4HchgRAZcF7xqsaeY1LmKwpYAUQiCLlIRXO6fOZojqOKhGSo6ua4gx4rzHezd3//bHA8jIeqM6TJ3zls/2LmX/OGcRr8YrrXesmoa2a3HrFrfuaNdrSJlxP/D4jS/x6EtfRIUm0LarQq2disGW0LZqwIadIB956eUtD1/6OP2Y2Pcjb9zeIWnkcnXDqy9mXnnxik37gKnfcnN7x+PbG45jz93NY66vrsjO4QTwOoB+GHbkDM3VBZeXHe0gxDgxxa40LkqRMBV99DRwN474zuJLIjxNwjAGpmkkZ5VmxJsd+XjPZbOmEXjlwQWr1vN417HbH/nS629w++ZjLh6+SG48Po/YcMCkkXgM3H6uZ7M78ODF97FabbTIZDzr1QoTGyYDOQ2E445RhM32ksurC8Q5xAdu7m5I+YA0e4zfYG3Dpm3p3IovB3m7ztO7DRH5ErAH3njWx7LgucOLLOtiwdtjWRsL3gnL2ljwTljWxoK3w7IuFrwT3u218bU555fe7gfPRdIGICI/kXP+1md9HAueLyzrYsE7YVkbC94Jy9pY8E5Y1saCt8OyLha8E56ntWH+/9+yYMGCBQsWLFiwYMGCBQueFZakbcGCBQsWLFiwYMGCBQueYzxPSdt/+6wPYMFziWVdLHgnLGtjwTthWRsL3gnL2ljwdljWxYJ3wnOzNp4bTduCBQsWLFiwYMGCBQsWLHgrnqdO24IFCxYsWLBgwYIFCxYseApL0rZgwYIFCxYsWLBgwYIFzzGeedImIt8uIr8gIp8WkT/9rI9nwbsLEfkaEfm7IvIpEfmHIvKnyusPReT7ReSXyp8PyusiIv9lWS+fEJFvebafYMFvJkTEishPi8j/Wr7/sIj8WLn+f0tEmvJ6W77/dPn5h57lcS/4zYWIXIvI94rIPxKRnxeRf2rZMxYAiMi/W54lPycif0NEumXfeG9CRP6yiLwuIj939tpXvE+IyHeX9/+SiHz3s/gsC/7x4h3Wxn9SnimfEJH/SUSuz372PWVt/IKI/KGz19/VHOaZJm0iYoH/GvjngI8D/7KIfPxZHtOCdx0B+Pdyzh8Hvg34t8oa+NPAD+ScPwL8QPkedK18pPz3bwB/4d0/5AXvIv4U8PNn3//HwJ/POf8W4DHwJ8vrfxJ4XF7/8+V9C7568V8A/3vO+WPA70DXyLJnvMchIq8C/zbwrTnnbwQs8F0s+8Z7FX8V+PanXvuK9gkReQj8WeB3A78L+LM10VvwTzT+Km9dG98PfGPO+ZuAXwS+B6DEpN8F/Lbyd/6bUlB+13OYZ91p+13Ap3POv5xzHoG/CXznMz6mBe8ics6fzzn/VPn6Hg2+XkXXwV8rb/trwL9Yvv5O4L/Lih8FrkXk/e/yYS94FyAirwH/AvAXy/cC/D7ge8tbnl4Xdb18L/D7y/sXfJVBRK6Afxb4SwA55zHnfMOyZyxQOGAlIg5YA59n2Tfek8g5/z3g0VMvf6X7xB8Cvj/n/Cjn/BgN7J8O9hf8E4a3Wxs55/8z5xzKtz8KvFa+/k7gb+ach5zzrwCfRvOXdz2HedZJ26vAr599/9ny2oL3IAo15ZuBHwNeyTl/vvzoC8Ar5etlzbx38J8D/wGQyvcvADdnm+r5tZ/XRfn5bXn/gq8+fBj4EvBXCnX2L4rIhmXPeM8j5/w54D8Ffg1N1m6Bn2TZNxac8JXuE8v+8d7EnwD+Tvn6uVkbzzppW7AAABHZAv8j8O/knO/Of5Z1LsUym+I9BBH5DuD1nPNPPutjWfDcwQHfAvyFnPM3A3tOFCdg2TPeqyi0te9EE/sPABuWrsiCd8CyTyx4O4jIn0GlO3/9WR/L03jWSdvngK85+/618tqC9xBExKMJ21/POf/t8vIXK4Wp/Pl6eX1ZM+8N/B7gD4vIZ1DKwe9DdUzXhfYET177eV2Un18Bb76bB7zgXcNngc/mnH+sfP+9aBK37BkL/gDwKznnL+WcJ+Bvo3vJsm8sqPhK94ll/3gPQUT+NeA7gD+WT4Osn5u18ayTth8HPlKcnRpU6Pd9z/iYFryLKPqBvwT8fM75Pzv70fcB1aXpu4H/5ez1f7U4PX0bcHtGdVjwVYKc8/fknF/LOX8I3Rf+r5zzHwP+LvBHytueXhd1vfyR8v6lgvpViJzzF4BfF5FvKC/9fuBTLHvGAqVFfpuIrMuzpa6NZd9YUPGV7hP/B/AHReRB6eT+wfLagq8yiMi3o5KMP5xzPpz96PuA7ypusx9GzWr+Ac8gh5FnvT+JyD+Palcs8Jdzzn/umR7QgncVIvLPAD8EfJKTduk/RHVt/wPwQeBXgT+ac35UHsT/FUp5OQB/POf8E+/6gS941yAivxf493PO3yEiX4d23h4CPw38KznnQUQ64L9HNZGPgO/KOf/yszrmBb+5EJHfiRrUNMAvA38cLUIue8Z7HCLyHwH/Ekpv+mngX0d1Jsu+8R6DiPwN4PcCLwJfRF0g/2e+wn1CRP4EGpcA/Lmc8195Nz/Hgn/8eIe18T1Ay6nb/qM553+zvP/PoDq3gMp4/k55/V3NYZ550rZgwYIFCxYsWLBgwYIFC94Zz5oeuWDBggULFixYsGDBggULvgyWpG3BggULFixYsGDBggULnmMsSduCBQsWLFiwYMGCBQsWPMdYkrYFCxYsWLBgwYIFCxYseI6xJG0LFixYsGDBggULFixY8BxjSdoWLFiwYMGCBQsWLFiw4DnGkrQtWLBgwYIFCxYsWLBgwXOM/w8j4AfhhpUfPgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light",
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Let's take a look at the dataset image\n",
+ "import mmcv\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "img = mmcv.imread('kitti_tiny/training/image_2/000073.jpeg')\n",
+ "plt.figure(figsize=(15, 10))\n",
+ "plt.imshow(mmcv.bgr2rgb(img))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "PMZvtSIl71qi"
+ },
+ "source": [
+ "After downloading the data, we need to implement a function to convert the kitti annotation format into the middle format. In this tutorial we choose to convert them in **`load_annotations`** function in a newly implemented **`KittiTinyDataset`**.\n",
+ "\n",
+ "Let's take a loot at the annotation txt file.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "n7rwalnPd6e1",
+ "outputId": "539d4183-cae3-4485-f894-772c334b613f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check the label of a single image\n",
+ "!cat kitti_tiny/training/label_2/000000.txt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QA1pFg-FeO3l"
+ },
+ "source": [
+ "According to the KITTI's documentation, the first column indicates the class of the object, and the 5th to 8th columns indicates the bboxes. We need to read annotations of each image and convert them into middle format MMDetection accept is as below:\n",
+ "\n",
+ "```python\n",
+ "[\n",
+ " {\n",
+ " 'filename': 'a.jpg',\n",
+ " 'width': 1280,\n",
+ " 'height': 720,\n",
+ " 'ann': {\n",
+ " 'bboxes': (n, 4),\n",
+ " 'labels': (n, ),\n",
+ " 'bboxes_ignore': (k, 4), (optional field)\n",
+ " 'labels_ignore': (k, 4) (optional field)\n",
+ " }\n",
+ " },\n",
+ " ...\n",
+ "]\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "id": "GdSaB2ad0EdX"
+ },
+ "outputs": [],
+ "source": [
+ "import copy\n",
+ "import os.path as osp\n",
+ "\n",
+ "import mmcv\n",
+ "import numpy as np\n",
+ "\n",
+ "from mmdet.datasets.builder import DATASETS\n",
+ "from mmdet.datasets.custom import CustomDataset\n",
+ "\n",
+ "@DATASETS.register_module()\n",
+ "class KittiTinyDataset(CustomDataset):\n",
+ "\n",
+ " CLASSES = ('Car', 'Pedestrian', 'Cyclist')\n",
+ "\n",
+ " def load_annotations(self, ann_file):\n",
+ " cat2label = {k: i for i, k in enumerate(self.CLASSES)}\n",
+ " # load image list from file\n",
+ " image_list = mmcv.list_from_file(self.ann_file)\n",
+ " \n",
+ " data_infos = []\n",
+ " # convert annotations to middle format\n",
+ " for image_id in image_list:\n",
+ " filename = f'{self.img_prefix}/{image_id}.jpeg'\n",
+ " image = mmcv.imread(filename)\n",
+ " height, width = image.shape[:2]\n",
+ " \n",
+ " data_info = dict(filename=f'{image_id}.jpeg', width=width, height=height)\n",
+ " \n",
+ " # load annotations\n",
+ " label_prefix = self.img_prefix.replace('image_2', 'label_2')\n",
+ " lines = mmcv.list_from_file(osp.join(label_prefix, f'{image_id}.txt'))\n",
+ " \n",
+ " content = [line.strip().split(' ') for line in lines]\n",
+ " bbox_names = [x[0] for x in content]\n",
+ " bboxes = [[float(info) for info in x[4:8]] for x in content]\n",
+ " \n",
+ " gt_bboxes = []\n",
+ " gt_labels = []\n",
+ " gt_bboxes_ignore = []\n",
+ " gt_labels_ignore = []\n",
+ " \n",
+ " # filter 'DontCare'\n",
+ " for bbox_name, bbox in zip(bbox_names, bboxes):\n",
+ " if bbox_name in cat2label:\n",
+ " gt_labels.append(cat2label[bbox_name])\n",
+ " gt_bboxes.append(bbox)\n",
+ " else:\n",
+ " gt_labels_ignore.append(-1)\n",
+ " gt_bboxes_ignore.append(bbox)\n",
+ "\n",
+ " data_anno = dict(\n",
+ " bboxes=np.array(gt_bboxes, dtype=np.float32).reshape(-1, 4),\n",
+ " labels=np.array(gt_labels, dtype=np.long),\n",
+ " bboxes_ignore=np.array(gt_bboxes_ignore,\n",
+ " dtype=np.float32).reshape(-1, 4),\n",
+ " labels_ignore=np.array(gt_labels_ignore, dtype=np.long))\n",
+ "\n",
+ " data_info.update(ann=data_anno)\n",
+ " data_infos.append(data_info)\n",
+ "\n",
+ " return data_infos"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "PwqJOpBe-bMj"
+ },
+ "source": [
+ "### Modify the config\n",
+ "\n",
+ "In the next step, we need to modify the config for the training.\n",
+ "To accelerate the process, we finetune a detector using a pre-trained detector."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "id": "hamZrlnH-YDD"
+ },
+ "outputs": [],
+ "source": [
+ "from mmcv import Config\n",
+ "cfg = Config.fromfile('./configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HntziLGq-92Z"
+ },
+ "source": [
+ "Given a config that trains a Faster R-CNN on COCO dataset, we need to modify some values to use it for training Faster R-CNN on KITTI dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "pUbwD8uV0PR8",
+ "outputId": "43e76fd7-c74b-4ac8-c8b5-4d2cc94e610b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Config:\n",
+ "model = dict(\n",
+ " type='FasterRCNN',\n",
+ " pretrained='open-mmlab://detectron2/resnet50_caffe',\n",
+ " backbone=dict(\n",
+ " type='ResNet',\n",
+ " depth=50,\n",
+ " num_stages=4,\n",
+ " out_indices=(0, 1, 2, 3),\n",
+ " frozen_stages=1,\n",
+ " norm_cfg=dict(type='BN', requires_grad=False),\n",
+ " norm_eval=True,\n",
+ " style='caffe'),\n",
+ " neck=dict(\n",
+ " type='FPN',\n",
+ " in_channels=[256, 512, 1024, 2048],\n",
+ " out_channels=256,\n",
+ " num_outs=5),\n",
+ " rpn_head=dict(\n",
+ " type='RPNHead',\n",
+ " in_channels=256,\n",
+ " feat_channels=256,\n",
+ " anchor_generator=dict(\n",
+ " type='AnchorGenerator',\n",
+ " scales=[8],\n",
+ " ratios=[0.5, 1.0, 2.0],\n",
+ " strides=[4, 8, 16, 32, 64]),\n",
+ " bbox_coder=dict(\n",
+ " type='DeltaXYWHBBoxCoder',\n",
+ " target_means=[0.0, 0.0, 0.0, 0.0],\n",
+ " target_stds=[1.0, 1.0, 1.0, 1.0]),\n",
+ " loss_cls=dict(\n",
+ " type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),\n",
+ " loss_bbox=dict(type='L1Loss', loss_weight=1.0)),\n",
+ " roi_head=dict(\n",
+ " type='StandardRoIHead',\n",
+ " bbox_roi_extractor=dict(\n",
+ " type='SingleRoIExtractor',\n",
+ " roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),\n",
+ " out_channels=256,\n",
+ " featmap_strides=[4, 8, 16, 32]),\n",
+ " bbox_head=dict(\n",
+ " type='Shared2FCBBoxHead',\n",
+ " in_channels=256,\n",
+ " fc_out_channels=1024,\n",
+ " roi_feat_size=7,\n",
+ " num_classes=3,\n",
+ " bbox_coder=dict(\n",
+ " type='DeltaXYWHBBoxCoder',\n",
+ " target_means=[0.0, 0.0, 0.0, 0.0],\n",
+ " target_stds=[0.1, 0.1, 0.2, 0.2]),\n",
+ " reg_class_agnostic=False,\n",
+ " loss_cls=dict(\n",
+ " type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),\n",
+ " loss_bbox=dict(type='L1Loss', loss_weight=1.0))),\n",
+ " train_cfg=dict(\n",
+ " rpn=dict(\n",
+ " assigner=dict(\n",
+ " type='MaxIoUAssigner',\n",
+ " pos_iou_thr=0.7,\n",
+ " neg_iou_thr=0.3,\n",
+ " min_pos_iou=0.3,\n",
+ " match_low_quality=True,\n",
+ " ignore_iof_thr=-1),\n",
+ " sampler=dict(\n",
+ " type='RandomSampler',\n",
+ " num=256,\n",
+ " pos_fraction=0.5,\n",
+ " neg_pos_ub=-1,\n",
+ " add_gt_as_proposals=False),\n",
+ " allowed_border=-1,\n",
+ " pos_weight=-1,\n",
+ " debug=False),\n",
+ " rpn_proposal=dict(\n",
+ " nms_across_levels=False,\n",
+ " nms_pre=2000,\n",
+ " nms_post=1000,\n",
+ " max_num=1000,\n",
+ " nms_thr=0.7,\n",
+ " min_bbox_size=0),\n",
+ " rcnn=dict(\n",
+ " assigner=dict(\n",
+ " type='MaxIoUAssigner',\n",
+ " pos_iou_thr=0.5,\n",
+ " neg_iou_thr=0.5,\n",
+ " min_pos_iou=0.5,\n",
+ " match_low_quality=False,\n",
+ " ignore_iof_thr=-1),\n",
+ " sampler=dict(\n",
+ " type='RandomSampler',\n",
+ " num=512,\n",
+ " pos_fraction=0.25,\n",
+ " neg_pos_ub=-1,\n",
+ " add_gt_as_proposals=True),\n",
+ " pos_weight=-1,\n",
+ " debug=False)),\n",
+ " test_cfg=dict(\n",
+ " rpn=dict(\n",
+ " nms_across_levels=False,\n",
+ " nms_pre=1000,\n",
+ " nms_post=1000,\n",
+ " max_num=1000,\n",
+ " nms_thr=0.7,\n",
+ " min_bbox_size=0),\n",
+ " rcnn=dict(\n",
+ " score_thr=0.05,\n",
+ " nms=dict(type='nms', iou_threshold=0.5),\n",
+ " max_per_img=100)))\n",
+ "dataset_type = 'KittiTinyDataset'\n",
+ "data_root = 'kitti_tiny/'\n",
+ "img_norm_cfg = dict(\n",
+ " mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)\n",
+ "train_pipeline = [\n",
+ " dict(type='LoadImageFromFile'),\n",
+ " dict(type='LoadAnnotations', with_bbox=True),\n",
+ " dict(\n",
+ " type='Resize',\n",
+ " img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),\n",
+ " (1333, 768), (1333, 800)],\n",
+ " multiscale_mode='value',\n",
+ " keep_ratio=True),\n",
+ " dict(type='RandomFlip', flip_ratio=0.5),\n",
+ " dict(\n",
+ " type='Normalize',\n",
+ " mean=[103.53, 116.28, 123.675],\n",
+ " std=[1.0, 1.0, 1.0],\n",
+ " to_rgb=False),\n",
+ " dict(type='Pad', size_divisor=32),\n",
+ " dict(type='DefaultFormatBundle'),\n",
+ " dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n",
+ "]\n",
+ "test_pipeline = [\n",
+ " dict(type='LoadImageFromFile'),\n",
+ " dict(\n",
+ " type='MultiScaleFlipAug',\n",
+ " img_scale=(1333, 800),\n",
+ " flip=False,\n",
+ " transforms=[\n",
+ " dict(type='Resize', keep_ratio=True),\n",
+ " dict(type='RandomFlip'),\n",
+ " dict(\n",
+ " type='Normalize',\n",
+ " mean=[103.53, 116.28, 123.675],\n",
+ " std=[1.0, 1.0, 1.0],\n",
+ " to_rgb=False),\n",
+ " dict(type='Pad', size_divisor=32),\n",
+ " dict(type='ImageToTensor', keys=['img']),\n",
+ " dict(type='Collect', keys=['img'])\n",
+ " ])\n",
+ "]\n",
+ "data = dict(\n",
+ " samples_per_gpu=2,\n",
+ " workers_per_gpu=2,\n",
+ " train=dict(\n",
+ " type='KittiTinyDataset',\n",
+ " ann_file='train.txt',\n",
+ " img_prefix='training/image_2',\n",
+ " pipeline=[\n",
+ " dict(type='LoadImageFromFile'),\n",
+ " dict(type='LoadAnnotations', with_bbox=True),\n",
+ " dict(\n",
+ " type='Resize',\n",
+ " img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),\n",
+ " (1333, 768), (1333, 800)],\n",
+ " multiscale_mode='value',\n",
+ " keep_ratio=True),\n",
+ " dict(type='RandomFlip', flip_ratio=0.5),\n",
+ " dict(\n",
+ " type='Normalize',\n",
+ " mean=[103.53, 116.28, 123.675],\n",
+ " std=[1.0, 1.0, 1.0],\n",
+ " to_rgb=False),\n",
+ " dict(type='Pad', size_divisor=32),\n",
+ " dict(type='DefaultFormatBundle'),\n",
+ " dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n",
+ " ],\n",
+ " data_root='kitti_tiny/'),\n",
+ " val=dict(\n",
+ " type='KittiTinyDataset',\n",
+ " ann_file='val.txt',\n",
+ " img_prefix='training/image_2',\n",
+ " pipeline=[\n",
+ " dict(type='LoadImageFromFile'),\n",
+ " dict(\n",
+ " type='MultiScaleFlipAug',\n",
+ " img_scale=(1333, 800),\n",
+ " flip=False,\n",
+ " transforms=[\n",
+ " dict(type='Resize', keep_ratio=True),\n",
+ " dict(type='RandomFlip'),\n",
+ " dict(\n",
+ " type='Normalize',\n",
+ " mean=[103.53, 116.28, 123.675],\n",
+ " std=[1.0, 1.0, 1.0],\n",
+ " to_rgb=False),\n",
+ " dict(type='Pad', size_divisor=32),\n",
+ " dict(type='ImageToTensor', keys=['img']),\n",
+ " dict(type='Collect', keys=['img'])\n",
+ " ])\n",
+ " ],\n",
+ " data_root='kitti_tiny/'),\n",
+ " test=dict(\n",
+ " type='KittiTinyDataset',\n",
+ " ann_file='train.txt',\n",
+ " img_prefix='training/image_2',\n",
+ " pipeline=[\n",
+ " dict(type='LoadImageFromFile'),\n",
+ " dict(\n",
+ " type='MultiScaleFlipAug',\n",
+ " img_scale=(1333, 800),\n",
+ " flip=False,\n",
+ " transforms=[\n",
+ " dict(type='Resize', keep_ratio=True),\n",
+ " dict(type='RandomFlip'),\n",
+ " dict(\n",
+ " type='Normalize',\n",
+ " mean=[103.53, 116.28, 123.675],\n",
+ " std=[1.0, 1.0, 1.0],\n",
+ " to_rgb=False),\n",
+ " dict(type='Pad', size_divisor=32),\n",
+ " dict(type='ImageToTensor', keys=['img']),\n",
+ " dict(type='Collect', keys=['img'])\n",
+ " ])\n",
+ " ],\n",
+ " data_root='kitti_tiny/'))\n",
+ "evaluation = dict(interval=12, metric='mAP')\n",
+ "optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001)\n",
+ "optimizer_config = dict(grad_clip=None)\n",
+ "lr_config = dict(\n",
+ " policy='step',\n",
+ " warmup=None,\n",
+ " warmup_iters=500,\n",
+ " warmup_ratio=0.001,\n",
+ " step=[8, 11])\n",
+ "runner = dict(type='EpochBasedRunner', max_epochs=12)\n",
+ "checkpoint_config = dict(interval=12)\n",
+ "log_config = dict(interval=10, hooks=[dict(type='TextLoggerHook')])\n",
+ "custom_hooks = [dict(type='NumClassCheckHook')]\n",
+ "dist_params = dict(backend='nccl')\n",
+ "log_level = 'INFO'\n",
+ "load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'\n",
+ "resume_from = None\n",
+ "workflow = [('train', 1)]\n",
+ "work_dir = './tutorial_exps'\n",
+ "seed = 0\n",
+ "gpu_ids = range(0, 1)\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mmdet.apis import set_random_seed\n",
+ "\n",
+ "# Modify dataset type and path\n",
+ "cfg.dataset_type = 'KittiTinyDataset'\n",
+ "cfg.data_root = 'kitti_tiny/'\n",
+ "\n",
+ "cfg.data.test.type = 'KittiTinyDataset'\n",
+ "cfg.data.test.data_root = 'kitti_tiny/'\n",
+ "cfg.data.test.ann_file = 'train.txt'\n",
+ "cfg.data.test.img_prefix = 'training/image_2'\n",
+ "\n",
+ "cfg.data.train.type = 'KittiTinyDataset'\n",
+ "cfg.data.train.data_root = 'kitti_tiny/'\n",
+ "cfg.data.train.ann_file = 'train.txt'\n",
+ "cfg.data.train.img_prefix = 'training/image_2'\n",
+ "\n",
+ "cfg.data.val.type = 'KittiTinyDataset'\n",
+ "cfg.data.val.data_root = 'kitti_tiny/'\n",
+ "cfg.data.val.ann_file = 'val.txt'\n",
+ "cfg.data.val.img_prefix = 'training/image_2'\n",
+ "\n",
+ "# modify num classes of the model in box head\n",
+ "cfg.model.roi_head.bbox_head.num_classes = 3\n",
+ "# We can still use the pre-trained Mask RCNN model though we do not need to\n",
+ "# use the mask branch\n",
+ "cfg.load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'\n",
+ "\n",
+ "# Set up working dir to save files and logs.\n",
+ "cfg.work_dir = './tutorial_exps'\n",
+ "\n",
+ "# The original learning rate (LR) is set for 8-GPU training.\n",
+ "# We divide it by 8 since we only use one GPU.\n",
+ "cfg.optimizer.lr = 0.02 / 8\n",
+ "cfg.lr_config.warmup = None\n",
+ "cfg.log_config.interval = 10\n",
+ "\n",
+ "# Change the evaluation metric since we use customized dataset.\n",
+ "cfg.evaluation.metric = 'mAP'\n",
+ "# We can set the evaluation interval to reduce the evaluation times\n",
+ "cfg.evaluation.interval = 12\n",
+ "# We can set the checkpoint saving interval to reduce the storage cost\n",
+ "cfg.checkpoint_config.interval = 12\n",
+ "\n",
+ "# Set seed thus the results are more reproducible\n",
+ "cfg.seed = 0\n",
+ "set_random_seed(0, deterministic=False)\n",
+ "cfg.gpu_ids = range(1)\n",
+ "\n",
+ "\n",
+ "# We can initialize the logger for training and have a look\n",
+ "# at the final config used for training\n",
+ "print(f'Config:\\n{cfg.pretty_text}')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "111W_oZV_3wa"
+ },
+ "source": [
+ "### Train a new detector\n",
+ "\n",
+ "Finally, lets initialize the dataset and detector, then train a new detector!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "c3018c8715924d2b83d817cc6c448a2d",
+ "aca1c388eeca4c87b5b6306302630303",
+ "b9b75e2d894e467289cb83070b8bb998",
+ "767c8f4fbc924027885851365ceb6292",
+ "1489fe29d91748cab449718d687f4ee1",
+ "bf1e5d0665a141ac9c2085062ba77801",
+ "171ea927699a474084c49f8874942ae8",
+ "7189ce8a6634410a9e633832e8151070"
+ ]
+ },
+ "id": "7WBWHu010PN3",
+ "outputId": "fac18cba-16a3-491e-b3ae-1ab99d71c325"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/content/mmdetection/mmdet/datasets/custom.py:155: UserWarning: CustomDataset does not support filtering empty gt images.\n",
+ " 'CustomDataset does not support filtering empty gt images.')\n",
+ "2021-02-20 03:04:44,198 - mmdet - INFO - load model from: open-mmlab://detectron2/resnet50_caffe\n",
+ "Downloading: \"https://download.openmmlab.com/pretrain/third_party/resnet50_msra-5891d200.pth\" to /root/.cache/torch/checkpoints/resnet50_msra-5891d200.pth\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c3018c8715924d2b83d817cc6c448a2d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "HBox(children=(FloatProgress(value=0.0, max=94284731.0), HTML(value='')))"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2021-02-20 03:04:57,872 - mmdet - WARNING - The model and loaded state dict do not match exactly\n",
+ "\n",
+ "unexpected key in source state_dict: conv1.bias\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2021-02-20 03:04:58,180 - mmdet - INFO - load checkpoint from checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth\n",
+ "2021-02-20 03:04:58,313 - mmdet - WARNING - The model and loaded state dict do not match exactly\n",
+ "\n",
+ "size mismatch for roi_head.bbox_head.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([4, 1024]).\n",
+ "size mismatch for roi_head.bbox_head.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([4]).\n",
+ "size mismatch for roi_head.bbox_head.fc_reg.weight: copying a param with shape torch.Size([320, 1024]) from checkpoint, the shape in current model is torch.Size([12, 1024]).\n",
+ "size mismatch for roi_head.bbox_head.fc_reg.bias: copying a param with shape torch.Size([320]) from checkpoint, the shape in current model is torch.Size([12]).\n",
+ "unexpected key in source state_dict: roi_head.mask_head.convs.0.conv.weight, roi_head.mask_head.convs.0.conv.bias, roi_head.mask_head.convs.1.conv.weight, roi_head.mask_head.convs.1.conv.bias, roi_head.mask_head.convs.2.conv.weight, roi_head.mask_head.convs.2.conv.bias, roi_head.mask_head.convs.3.conv.weight, roi_head.mask_head.convs.3.conv.bias, roi_head.mask_head.upsample.weight, roi_head.mask_head.upsample.bias, roi_head.mask_head.conv_logits.weight, roi_head.mask_head.conv_logits.bias\n",
+ "\n",
+ "2021-02-20 03:04:58,316 - mmdet - INFO - Start running, host: root@f0e5be20007b, work_dir: /content/mmdetection/tutorial_exps\n",
+ "2021-02-20 03:04:58,317 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs\n",
+ "2021-02-20 03:05:03,791 - mmdet - INFO - Epoch [1][10/25]\tlr: 2.500e-03, eta: 0:02:34, time: 0.531, data_time: 0.222, memory: 2133, loss_rpn_cls: 0.0286, loss_rpn_bbox: 0.0177, loss_cls: 0.5962, acc: 80.5273, loss_bbox: 0.3859, loss: 1.0284\n",
+ "2021-02-20 03:05:06,998 - mmdet - INFO - Epoch [1][20/25]\tlr: 2.500e-03, eta: 0:01:59, time: 0.321, data_time: 0.021, memory: 2133, loss_rpn_cls: 0.0214, loss_rpn_bbox: 0.0122, loss_cls: 0.1736, acc: 94.0332, loss_bbox: 0.3017, loss: 0.5089\n",
+ "2021-02-20 03:05:13,968 - mmdet - INFO - Epoch [2][10/25]\tlr: 2.500e-03, eta: 0:01:44, time: 0.530, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0183, loss_rpn_bbox: 0.0148, loss_cls: 0.1515, acc: 94.8535, loss_bbox: 0.2882, loss: 0.4728\n",
+ "2021-02-20 03:05:17,195 - mmdet - INFO - Epoch [2][20/25]\tlr: 2.500e-03, eta: 0:01:36, time: 0.323, data_time: 0.021, memory: 2133, loss_rpn_cls: 0.0115, loss_rpn_bbox: 0.0129, loss_cls: 0.1297, acc: 95.3516, loss_bbox: 0.1971, loss: 0.3512\n",
+ "2021-02-20 03:05:24,202 - mmdet - INFO - Epoch [3][10/25]\tlr: 2.500e-03, eta: 0:01:29, time: 0.533, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0075, loss_rpn_bbox: 0.0107, loss_cls: 0.0982, acc: 96.3672, loss_bbox: 0.1558, loss: 0.2722\n",
+ "2021-02-20 03:05:27,479 - mmdet - INFO - Epoch [3][20/25]\tlr: 2.500e-03, eta: 0:01:24, time: 0.327, data_time: 0.021, memory: 2133, loss_rpn_cls: 0.0071, loss_rpn_bbox: 0.0145, loss_cls: 0.1456, acc: 94.5801, loss_bbox: 0.2525, loss: 0.4197\n",
+ "2021-02-20 03:05:34,565 - mmdet - INFO - Epoch [4][10/25]\tlr: 2.500e-03, eta: 0:01:18, time: 0.538, data_time: 0.222, memory: 2133, loss_rpn_cls: 0.0082, loss_rpn_bbox: 0.0143, loss_cls: 0.1099, acc: 95.8789, loss_bbox: 0.2154, loss: 0.3477\n",
+ "2021-02-20 03:05:37,889 - mmdet - INFO - Epoch [4][20/25]\tlr: 2.500e-03, eta: 0:01:14, time: 0.332, data_time: 0.021, memory: 2133, loss_rpn_cls: 0.0056, loss_rpn_bbox: 0.0124, loss_cls: 0.1216, acc: 95.4492, loss_bbox: 0.2074, loss: 0.3470\n",
+ "2021-02-20 03:05:45,023 - mmdet - INFO - Epoch [5][10/25]\tlr: 2.500e-03, eta: 0:01:08, time: 0.544, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0034, loss_rpn_bbox: 0.0104, loss_cls: 0.1065, acc: 95.8496, loss_bbox: 0.2072, loss: 0.3275\n",
+ "2021-02-20 03:05:48,367 - mmdet - INFO - Epoch [5][20/25]\tlr: 2.500e-03, eta: 0:01:04, time: 0.334, data_time: 0.021, memory: 2133, loss_rpn_cls: 0.0043, loss_rpn_bbox: 0.0109, loss_cls: 0.0918, acc: 96.7285, loss_bbox: 0.1882, loss: 0.2952\n",
+ "2021-02-20 03:05:55,575 - mmdet - INFO - Epoch [6][10/25]\tlr: 2.500e-03, eta: 0:00:59, time: 0.548, data_time: 0.222, memory: 2133, loss_rpn_cls: 0.0028, loss_rpn_bbox: 0.0085, loss_cls: 0.0843, acc: 97.1582, loss_bbox: 0.1765, loss: 0.2721\n",
+ "2021-02-20 03:05:58,963 - mmdet - INFO - Epoch [6][20/25]\tlr: 2.500e-03, eta: 0:00:55, time: 0.339, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0037, loss_rpn_bbox: 0.0105, loss_cls: 0.0833, acc: 96.8359, loss_bbox: 0.1700, loss: 0.2675\n",
+ "2021-02-20 03:06:06,144 - mmdet - INFO - Epoch [7][10/25]\tlr: 2.500e-03, eta: 0:00:50, time: 0.545, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0030, loss_rpn_bbox: 0.0095, loss_cls: 0.0806, acc: 96.9238, loss_bbox: 0.1642, loss: 0.2573\n",
+ "2021-02-20 03:06:09,550 - mmdet - INFO - Epoch [7][20/25]\tlr: 2.500e-03, eta: 0:00:46, time: 0.340, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0019, loss_rpn_bbox: 0.0115, loss_cls: 0.0867, acc: 96.6602, loss_bbox: 0.1727, loss: 0.2728\n",
+ "2021-02-20 03:06:16,846 - mmdet - INFO - Epoch [8][10/25]\tlr: 2.500e-03, eta: 0:00:41, time: 0.553, data_time: 0.223, memory: 2133, loss_rpn_cls: 0.0021, loss_rpn_bbox: 0.0087, loss_cls: 0.0701, acc: 96.9141, loss_bbox: 0.1364, loss: 0.2174\n",
+ "2021-02-20 03:06:20,318 - mmdet - INFO - Epoch [8][20/25]\tlr: 2.500e-03, eta: 0:00:37, time: 0.347, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0083, loss_cls: 0.0689, acc: 97.3926, loss_bbox: 0.1634, loss: 0.2414\n",
+ "2021-02-20 03:06:27,654 - mmdet - INFO - Epoch [9][10/25]\tlr: 2.500e-04, eta: 0:00:32, time: 0.555, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0034, loss_rpn_bbox: 0.0080, loss_cls: 0.0632, acc: 97.5488, loss_bbox: 0.1285, loss: 0.2031\n",
+ "2021-02-20 03:06:31,136 - mmdet - INFO - Epoch [9][20/25]\tlr: 2.500e-04, eta: 0:00:28, time: 0.348, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0065, loss_cls: 0.0539, acc: 97.9004, loss_bbox: 0.1013, loss: 0.1625\n",
+ "2021-02-20 03:06:38,476 - mmdet - INFO - Epoch [10][10/25]\tlr: 2.500e-04, eta: 0:00:23, time: 0.554, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0026, loss_rpn_bbox: 0.0082, loss_cls: 0.0621, acc: 97.6172, loss_bbox: 0.1304, loss: 0.2033\n",
+ "2021-02-20 03:06:41,997 - mmdet - INFO - Epoch [10][20/25]\tlr: 2.500e-04, eta: 0:00:19, time: 0.352, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0011, loss_rpn_bbox: 0.0059, loss_cls: 0.0596, acc: 97.8223, loss_bbox: 0.1199, loss: 0.1866\n",
+ "2021-02-20 03:06:49,368 - mmdet - INFO - Epoch [11][10/25]\tlr: 2.500e-04, eta: 0:00:14, time: 0.557, data_time: 0.221, memory: 2133, loss_rpn_cls: 0.0036, loss_rpn_bbox: 0.0064, loss_cls: 0.0631, acc: 97.5000, loss_bbox: 0.1242, loss: 0.1973\n",
+ "2021-02-20 03:06:52,881 - mmdet - INFO - Epoch [11][20/25]\tlr: 2.500e-04, eta: 0:00:10, time: 0.351, data_time: 0.022, memory: 2133, loss_rpn_cls: 0.0016, loss_rpn_bbox: 0.0072, loss_cls: 0.0570, acc: 97.9199, loss_bbox: 0.1263, loss: 0.1921\n",
+ "2021-02-20 03:07:00,207 - mmdet - INFO - Epoch [12][10/25]\tlr: 2.500e-05, eta: 0:00:05, time: 0.554, data_time: 0.222, memory: 2134, loss_rpn_cls: 0.0009, loss_rpn_bbox: 0.0063, loss_cls: 0.0606, acc: 97.6953, loss_bbox: 0.1232, loss: 0.1910\n",
+ "2021-02-20 03:07:03,655 - mmdet - INFO - Epoch [12][20/25]\tlr: 2.500e-05, eta: 0:00:01, time: 0.345, data_time: 0.022, memory: 2134, loss_rpn_cls: 0.0010, loss_rpn_bbox: 0.0056, loss_cls: 0.0486, acc: 98.1641, loss_bbox: 0.0882, loss: 0.1433\n",
+ "2021-02-20 03:07:05,260 - mmdet - INFO - Saving checkpoint at 12 epochs\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 25/25, 11.4 task/s, elapsed: 2s, ETA: 0s\n",
+ "---------------iou_thr: 0.5---------------\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2021-02-20 03:07:08,400 - mmdet - INFO - \n",
+ "+------------+-----+------+--------+-------+\n",
+ "| class | gts | dets | recall | ap |\n",
+ "+------------+-----+------+--------+-------+\n",
+ "| Car | 62 | 131 | 0.968 | 0.879 |\n",
+ "| Pedestrian | 13 | 58 | 0.846 | 0.747 |\n",
+ "| Cyclist | 7 | 67 | 0.429 | 0.037 |\n",
+ "+------------+-----+------+--------+-------+\n",
+ "| mAP | | | | 0.555 |\n",
+ "+------------+-----+------+--------+-------+\n",
+ "2021-02-20 03:07:08,403 - mmdet - INFO - Epoch(val) [12][25]\tAP50: 0.5550, mAP: 0.5545\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mmdet.datasets import build_dataset\n",
+ "from mmdet.models import build_detector\n",
+ "from mmdet.apis import train_detector\n",
+ "\n",
+ "\n",
+ "# Build dataset\n",
+ "datasets = [build_dataset(cfg.data.train)]\n",
+ "\n",
+ "# Build the detector\n",
+ "model = build_detector(\n",
+ " cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))\n",
+ "# Add an attribute for visualization convenience\n",
+ "model.CLASSES = datasets[0].CLASSES\n",
+ "\n",
+ "# Create work_dir\n",
+ "mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))\n",
+ "train_detector(model, datasets, cfg, distributed=False, validate=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_vYQF5K2NqqI"
+ },
+ "source": [
+ "### Understand the log\n",
+ "From the log, we can have a basic understanding the training process and know how well the detector is trained.\n",
+ "\n",
+ "Firstly, the ResNet-50 backbone pre-trained on ImageNet is loaded, this is a common practice since training from scratch is more cost. The log shows that all the weights of the ResNet-50 backbone are loaded except the `conv1.bias`, which has been merged into `conv.weights`.\n",
+ "\n",
+ "Second, since the dataset we are using is small, we loaded a Mask R-CNN model and finetune it for detection. Because the detector we actually using is Faster R-CNN, the weights in mask branch, e.g. `roi_head.mask_head`, are `unexpected key in source state_dict` and not loaded.\n",
+ "The original Mask R-CNN is trained on COCO dataset which contains 80 classes but KITTI Tiny dataset only have 3 classes. Therefore, the last FC layer of the pre-trained Mask R-CNN for classification has different weight shape and is not used.\n",
+ "\n",
+ "Third, after training, the detector is evaluated by the default VOC-style evaluation. The results show that the detector achieves 54.1 mAP on the val dataset,\n",
+ " not bad!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MfQ-yspZLuuI"
+ },
+ "source": [
+ "## Test the trained detector\n",
+ "\n",
+ "After finetuning the detector, let's visualize the prediction results!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 578
+ },
+ "id": "_MuZurfGLq0p",
+ "outputId": "b4a77811-d159-4213-d8cb-b73f5b5b6d1c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/content/mmdetection/mmdet/datasets/utils.py:66: UserWarning: \"ImageToTensor\" pipeline is replaced by \"DefaultFormatBundle\" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.\n",
+ " 'data pipeline in your config file.', UserWarning)\n",
+ "/content/mmdetection/mmdet/apis/inference.py:205: UserWarning: \"block\" will be deprecated in v2.9.0,Please use \"wait_time\"\n",
+ " warnings.warn('\"block\" will be deprecated in v2.9.0,'\n",
+ "/content/mmdetection/mmdet/apis/inference.py:207: UserWarning: \"fig_size\" are deprecated and takes no effect.\n",
+ " warnings.warn('\"fig_size\" are deprecated and takes no effect.')\n",
+ "/content/mmdetection/mmdet/core/visualization/image.py:75: UserWarning: \"font_scale\" will be deprecated in v2.9.0,Please use \"font_size\"\n",
+ " warnings.warn('\"font_scale\" will be deprecated in v2.9.0,'\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABOgAAAGVCAYAAABEu85RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9WYxl23nf9/vWWns4U51TQ3dXz913IC8HiSIlxxJFRYLiwIgcWwniwEicAA4gGM5rgCBInvKYZz8FSAwEiR8SI4OBOI4jJYpljRwlUry889BjdXVNZz57WEMe1q7q5hV5yQSi7mW4fkChu845dc7ea6+9hv/3/74jIQQSiUQikUgkEolEIpFIJBKJxEeD+qgPIJFIJBKJRCKRSCQSiUQikfhJJgl0iUQikUgkEolEIpFIJBKJxEdIEugSiUQikUgkEolEIpFIJBKJj5Ak0CUSiUQikUgkEolEIpFIJBIfIUmgSyQSiUQikUgkEolEIpFIJD5CkkCXSCQSiUQikUgkEolEIpFIfIQkgS6RSCQSiUTiJwAR+eci8hsf9XEkEolEIpFIJP4sSaBLJBKJRCKR+AlDRP6OiPzeR30ciUQikUgkEolIEugSiUQikUgkPkaIiPmojyGRSCQSiUQi8RdLEugSiUQikUgkPmJE5H0R+U9E5FvASkS+JCJ/ICJTEfmmiPzKc6/9OyLyrogsROQ9Efnb3eP/uYj8w+ded0dEwgcFPxH5FPBfAr8gIksRmf7FnGUikUgkEolE4vuRIrSJRCKRSCQSHw/+HeCvAR74FvDvA/8M+FeA/0lEXgHWwN8H/lII4Q0RuQrs/L/5kBDCayLy94DfCCF86c/zBBKJRCKRSCQS/99IDrpEIpFIJBKJjwd/P4TwAPj3gH8aQvinIQQfQvgt4GvAr3Wv88BnRaQXQjgIIbz6UR1wIpFIJBKJROLPhyTQJRKJRCKRSHw8eND9exv4t7v01mmXgvol4GoIYQX8LeDvAQci8r91zrpEIpFIJBKJxI8xSaBLJBKJRCKR+HgQun8fAP9dCGHy3M8ghPBfAIQQ/o8Qwr8KXAVeB/6r7u9WQP+599v/IT4rkUgkEolEIvExIAl0iUQikUgkEh8v/iHw10Xkr4qIFpFSRH5FRG6IyBUR+XURGQA1sCSmvAL8CfAvi8gtERkD/+mHfMYhcENE8h/pmSQSiUQikUgkfiiSQJdIJBKJRCLxMaKrQ/frwH8GHBEddf8xcd2mgP8IeAycAr8M/Ifd3/0W8D8Qv2Di68A/+ZCP+W3gVeCJiBz/SE4kkUgkEolEIvFDIyGkDIdEIpFIJBKJRCKRSCQSiUTioyI56BKJRCKRSCQSiUQikUgkEomPkCTQJRKJRCKRSCQSiUQikUgkEh8hSaBLJBKJRCKRSCQSiUQikUgkPkKSQJdIJBKJRCKRSCQSiUQikUh8hCSBLpFIJBKJRCKRSCQSiUQikfgIMR/25Oc//7lQFAWgWK/XLJdLqqrC2QacZ1DkFEYzGfbZmYwYFgUKj3iLKKGRQBCPiCACRiuUAqVUfCwEvPM4F/AuELxgraWpWyobmK49bYDWOpxvOf/GWW1ACRSZJtNCv8wZD/oMyx55ZiiznMIIxrUYJQQRvNJsrOPx8TGn0wVoQ28wQpRBRCAErLW4psY7Bx6MLnHOobWm1yvItcF7j/cepQXbtEBABLRIfB9C90P3Owg+Hrv3hOAgBAgBTyAAPoD3AR/AEeLTCAgYYzCFQSkFAg7L+ffuilI452iqitViTVM1aK3Z3tpmsDXAG0cQT/ABWwU2q5rlcs1mWdM0FhFha2vI9s6EopcTQosNDUqBzjMy08M6jxPBK2FTO6aLObZu0WIoVE613mBEsXNpj+HWgHVbczY7Zblec+v2TbbGY0QMh0+OODg4ZFPVeA+ti+eJB4LDO0fwNnZKiX1EZYa2bXEuxN+la39r8d4DoBQURcFw2KdXFmgtGGPIDRQqcOfGVQa9jNVsymY2pd6syHPF3qU99m9cQ5Sw2KxpG0uZlQiKzXLN2gYeTWsenJ1ytprjFnNe6o35qRfuMrm6w3hvQpYbVPBkVcA6y6NqxuPHh+hVy87kEr3LV5DeAEfABY9SCksghIAuc9q2pbIt3ntaZ1lvNmw2G46Ojnh0/xH2tGJnsMXO7oReL0cpS1FoxpMRW5MRWgvKaEzepyz6DEdbFP0hBEXdOkRptFG0bU2gZVPXrNYrpmdz3n77bTbLmkGvz6A/QEug3iyo1nOqzQJXtQyyLfJej2wnZ2tvQq8/YDGtWBw3lE3Or/38L/ELv/qXuT9c8NVX/5D1O+9TbDxlMUJ0RlWvmc9nrKsWU/RRZY/GgycgmaJpa0JwVOsNm+WG9XLDalahvGKytUVRBIbDku3JhK1BH5xnfnYK3nFlb5tJr0evMOTBkeEZFTlbg4JLe7tcvbFHdrNgWc/59uv3+e3f+xO+8a33GG7t0xvssLezx+1bV8E3rOdnrBYz6nVFXTfUtae2LZevXGI8GWNUhm9bcjQ9Yyi0oldkaCO0rqENjiYENi0sqpZHh6fcf/chvZDzsz//c/z8v/krrJpT6gfvM7GOkTEcHx/ytddeY7pYon1gf3ebT3zyLrev7dHOTjh49z7aj3BS0tsekuXQC5a+AMs1mVGsvKUOgg8Z6B6bKrAWw58ePOTebMasqvFesFWNrS2T8Ta71/ZZupp7Dx5QasNOWfCFuy+xPxyRi2dVLZnZNafTKWFWc/Olz7D1c7/Avdbz2mtvs3j0hHG15PKoJJuUjK5eYbB/k+PTJQdv3ac5OyX3GyaDjMFwRCmeu9sFu4WnCC2LuuXMl7wzbViYEfQGnJ0eszw9ZKgc17fHZAFuX91lUliGPc0aw+Gi4X//na/w1qNjpBxx89ZtPnH3FtpVUM25uz/hpRuX2O4bejqw2TTM1p75vGXSH7N3eZ/X3n+Xe08e4YJF2oareckr128wmWyRjwa8d/yUN95/j2rTsphuOD1b0YQMekNufOIVhpeuUAfP8clTVrNTru2OGfdz5qenVFVLyHu4fMDD0zmnixk6bDCuYdzf5tblfW5s9bh7bZvaLnnn4BF/+J23WbaGrf42O6NtVrMl9x8dsci2aHzgc9fGfOnTdxiNSl57922OZ1O2Ll/i7ic/S9Yf8affeZPXXn8bpQ0//VM/xdagx5tvfpv333uLF25c52/967/Op195hU2WkW/vUvQmhDogTUCUwZcGb0BZjwKmGlZ4tr2m7zUIoIn/JhIfxHvwgYCwmS+Zn54igBFF0zSUgz7jSzuoLAPv8a0F0UiWId1aDiUE362VNATpVk8h4BZTwmpKpgQcoAyYEvoDJM9BFB6wHpyPa4jMKHJjaNc104MTXGvZvTlGRp5WIFCgEDI8OIGQoSRDghBkibjH1CcPcdNj+rZifXLMk5ljle0w2OrRz9ZodUqwxxi/YTTaIhvsQjsEN6LxJYvTA4ws6PX7PHl4yPsPHhI0XLp5k8o61ieH7GiHNJ7hYIfR1g5NtUI2j3HVA2RYovev0U4GjO/coWSH937zm/xf/+R3OJvOyEaKK3cm/OwXP0d/MuI3f/f3eXCyhHILH4ShEm6ORuz2h7jacfTohNlZRa0UG5MxVWNm6hKV6XPrzg3+5t/4VW7vGV776tf59pe/xTuvv8VyM+fuy9f52//Bv8uNF14BswN+C9QQQlyz2gA684BD4YirVg3BgI/r1Yufj4gQwsWa/Xz/oJS6+PnwP4aLxfYH+eA5/Xmf4/na2ALKgani4YSSOCjHfYXIBpwF1QOXgROqxYrvvPZVvv2tr1MUJS+98jN85me/iOl5hAWKBvEav/HMns746p98g6/88Td4970HVIuWUd5ye1/x1//mv8Vnv/g3CLrf7eF+MieC827gP/h4CARnMUqjQjdGdS+2ixVv/Omr/IN/8N/y5ttvMZ/P0T1Df9znszfv8C9dvYtS8PvvfpuTdsOm3lAboellZKIZt4pMNLUWgon7ZaUUWmuyLCPLMoyJ2/eqqi72qeePBSBIwIuglKHISvpFH60yAh6lBMmhlZqiZ7j74h0+/zOf4+7NFyiCQXmFUgZE8ZPq43n+1pfveiDu3yGAPBskAuC8RbQmBHB1TX005eH79/n2G6/x9PQY1VOUox5bezvs7l/CGMOtO7fZG+8iIpigEA/4uLdVutMHyFm2LQdPjjk8POTxvbe5/+ZrvPr1P+Ls4CHToyc0TY0Pik0bWNUBC2xtTajbhkC3d9zZ5ubN27z00qe5duMFvvCFL3L9xl2uX7+Myrp+Lh6hRfAYcuTDZaKPLZ3MEq+dgMjzV8pzcR0DiBPCqub08RFH9x/x4O17vPPwHgebBetgaWpL3TZY659TYMAFiw0e59qodanvHi1CAyIakXgPBekmxG7uaV18r//lv/9vvufg+uEtLx6RToDSglIQgsM5R7AOZzQtsKkaFqs1wToyHdAiaKWocQQJcXBX4L3GGEWmFCIKbTSiPdhAlhEHjxBompaysZispXWOqmmoGkvbxsbAxyZYNRu898wETrOMXl5Q5Dm9Xo9+njHulZR5gSkztMoJOeiigawlBKG1HpG2E+gcKoBRghJNCAEXLC5YvLPkweCV7i6IBUsc5PBxkXneCZ6/rZXqBvHQCUqxLbRWsU07sSYghCA4DzZ4vI/iVd02529D0IogUdwAjyiJ+ycRMp1TFFFU1Eg8dufw3oGBwhQUA02ZlxRZztqsqes2DuoCzWaNUp6yl1NkQ8DjCXjncM7jEYISJMTFt0fAO4I4tBa0EoJrsU2L4pkAu1wuCSEgYliv19+9SMLjfHh2J32/LtiJuyEEfHBY6+LGALr3ihNXCIG2bbEWnHPgBaeE2arC+8B0tmF6PENhGUgPdzqjUQZTFtS2pa5bMl2Tm4LCFAy2hsjsCf1yQCg0TZ6hgmG22bC4/4gnh08Yb08Ybw2Y9MdIv4emxRuNBIv3EIKQGYNRQutdPAcbhWZ1cY2etck5QQnStaEXwboo4Cnv0ZnCdQvO2JDxeocQcN7Rthbp+q/wbIEa8Bd90IgiU5p53WCzvNs4BQqTUWxtkevAvJlhrYWmIVSBpq4RpanrGucCohUowWQZvTyn0Ia1j/eukgadCS54vBKU1lFRd93KniiyF8oQghCyDJ872syhdIMLARscuShEhW4Mim2ijEb5KFxro/DeRqGPwCY4NJbxaEhQAURhtCEzhkwbNus1p9P7ZMWU9XJNXa3YnQwYD0uK7V3qomKzqVltGnRdczI9w+LZHe/QL3uUyqCcI4TYls2mwfqGoISgu91l1+bB+9jLvcK2DttYmqqmdS1BSozS7IwnlP0+/bzH3u6EYjBiuqqg9vTGu2zmEJShFYXzjkwbdJYRckdVb5DMoEXAKwIegkehKLRimGUUpguuqA2nzRln01OsDgwmE25ev8FyOmWzrrj38DG927e4cXmPWbWmbiyCog2Kxgv+uXVIt3bAh9BNOopnuxPfzRkgWoNSOG9j31WaMuvhRDNbQ7VcUecGYwqkmyedC3gUkhm8KILSBG0IVmFdAGVwNjA7PmG13hCamut7YyaloFWG0Rm5ydB4eoVgdMb8+DGrdkq/7LGczVjOlwy2hgz6BYXJUDqjzHsEArkSSmMYbvXYGUxomkc8OVtgcdy//y691Zz+zg51W+MFLMKyapktK0QpMpNhg6duYh8eDgZIq/DB0zQNVSU0TUteFly6dIk8u4evHXmRs7M9oa9zpvMKdB+ynN3dMaPxkMzAerXiyZMn0CvROm7QqiqObQicHJ9yduKZTuc0teXw5JR//Nu/yX/9j/8R92ZTbn/qM/y1f+3f4Oc++3Nsj0YohFri3FNojQMWmyXLqmJYjsDoJMwlPpQ478R1UNO23H/wgEf3H9DWNVmWcfflF3l5UFIO+nFNYHQU6KDb+AWC9djWEkRhCo0y55tBQSSHfAcxGSCQ5fEpo2grhxdLNshQGgRNCBpFXARnRc6g7PHuW6/y3ttTbn3uDtv7lyjLHAkShQ8rgEK0AB6xlvnBMW9+5Ss8feN1LhcDcgyvPXqfo7Dg1gtDXroz4Mb+DqPBiNmjFScHc/Zf3iI0M9aHBxxO4d479zh5fJ+ldTycz0BZPvOp27z84ovM7YpHR085mB6zNxlzdzRi7eaYgaYYTegZjSk8lELrLM3rBzx8/IA//v03uXe/Yd70GKsJ+njEn/zelL6cMXuzJtSKpmgIgwL2xjxZW14/ecBq1jJ/umZ12uARVFmyMRVHzVNkWPDCdoFeP+bJe8d87Y9+k298+Q2OjzeovGTnZsCiozAq8doRuAgqf8iy7WPH+ToI+PEQmgSCAm9Aq7ipk0AUlc+VIh2ftyrQ2jWFGjI/WfLtr32N2ekDfvpTn+LGzVvsXr0NRdcG0oJrWB3NePM7b/Fbv/UvOJnPIc+4du0q7TowzGquX4HBYBh3tYnvy4VwGQDvujWK5fDBfb761a/wla9/GReEq1ev8Jmf+gyf+0s/w+df/iTDec13Xv1TsoOSXgaSZeSZ0JQZKkBRC0Y0Tjxo9V2istYakRg5i+OvAbr9wnMqohiNUnGtnGVxDHXW4XFkmUGQaDbp3jf+vb/Ys/+kz//ndpvv+yTEPY1WnC9iFQrp/tJay9OnT3ly9JSz2Szu50Wxtg1ra7ESKMuSnd09xsMxOii0QKbLuF+i4eT0IQeHj3nvwQFvvH2PN9+6x8HBAWeHh5wePCJzDWG9grbFmBwkQxB6RQFGUVVL9i5t8/In7vLZn/4sn/z0p/jEy5/k9p1PMBrvA6YbxwXrA857lDk3DnnMDwpifIz5YPcNH3w2ENcCLhAaz2o25/Hjxzx6+IAnx4ecLGZUtDTB0XpL61vc+aQncX2sRCH+/H6JWkV8a42E2IbQDaNKodW5gK66x+2HnsOHCnRRPAqAuxABLp5TQuNiyGBdBwKOtq7IjMIojdYaXehuAIsuuuDBe985orhQ+/EQlEYElNaUWnfumdjJ13XFehPFgdZ5rPcEBE9B3VjatqWxHutqVnVLvmko85xFUdPv98mLkrIfkMzQYBDTi+u9Mgcf8LbGu5YQoMwMeRYjBydnM5z30cWWQVYYxHq8t1EE0rprnxDnzPBMUIoXzOHPJVwFEgJKBNGCFnmuTRWBuGZVXnWOq0CvKAnEhYVrW1pvQUAbhc7MxeSgVGzzoONjxkTHXdO2cTJ3ddzcK8N4q89o0IsCQ1WzrjbUmw3L2QbX9igHfbTWBCGKI+chITEoHS42h945GluD8zQB5vM5VdMQVGDTbGjrmpOnR5zKMc55NnXbTR4K6zxV3aLO3Yu+E5G86zpvbCecje3XhWGDjyIc3n/XuXvvo/vRWYKPzsC6MBRGc//RIb0sw9Yr6k1NmRuk9kzXc+atx/QKGmfZrGu0zhiUA4b9IaOtjBrwKIqspBwZRkETlObo9JjFeg4Ktidjbl6+yqVr+5jBgMl4j6adU4dA5iwqeDTxPoiSTRTrXNNitMaHgA2e4Ox3RXpFwCGdWNWJazp05xqFOJQnIyDa4nKPcx7lXBRvRXXCHBfCXBwQunbr+p8i/l+8Jy8Mo+EImQyZD7ZoVp6gFOQebx3Vas1isaHdCGWW0zqL8w4JoLoVu4QoOnpnqeqaum2xPlAicVHQuWRpPQQHEpDAxT3jCVgfaJxlZHpobdBao4wgPvb9DEVRFORFjvIWgkMHDyo6Fa2PrkSaGi0wHAy4ee0aV/ePePDojPVyzbE6Zrk4Y3PlEuraFUaDHkVZokyBzlrUak2zbGO/XmzYGgy5sr3DIC8IzrOpNogEgkQhUIs6D4rgXRSSrfIx4mI9zjps3dA0NRYQZ7m+f4UqBC7vXuaFl19ClPDGa9/k/fceYlc1g2yboqcxTYM2QmgDobYU1iOi0VkR53ELwSvwlkCDb2ukqRjkfbwLmKJAbe9weHrCwwcPGG82vPTiS/QnitqsOJme8ZprCRIIePK8ZLFc0wbBqW5TLcR7Mg7XtD5gXMDagLW+G+divzMmRnkRT+samtbhXIHpGXrk9L0wGPTAlLQI4gNaqThONBUhFDQ+oLIM0RneeVonZEWfvNcnVEs265qnT47Y7RVI0UcFwTcelwXaYOOI6hpuXNljvax5cvCIpmkweca6rullI4JoNlVD27YImlwZxv0+g7KP0QWbzYaNazmYLlifeQaZYI0QRIE2tAjBOTbOorqp1IkiqNifx5MJoS5oly2bqmFtJAYlrGWxWBCIY7VWijLLUT1HWWhcXlAOt9jb3WX30h5FrhiO+myqNaenJ1TVhmF/CESBvK4a3njzLarNijwTqtry5lvv8PDBfTZNxZO24uHZlMnWJV68+gJbN7aYrVeI0WR5TttF95qmodrUODP4QaG7RKJb48T1QX/Q5+r+Pm1VU63X7Ozucu3mDVSmaW2LNgaTFTTritVsQVH2GAyHF274QMC3EoMcXfDRFANs23D89BSMYu/KZSBQVS3rTUM+yDCdYCQqbihDAC9RUwqm5fT0Ed9561scTN/jE5/7NJ945RXyvHMhqQx8C86BDrh6wcH79/ja7/4+p2+9xctXb7J/eZ/F2VOO6wdsb2+R37pBr9yirdfYsyW5M7i33+Po4JDDucOMrlH4Cr9aUVtLngmjUZ/bV3a5urNNTyuqnUtkV/a5tr9Lr6cJWlFe2oNeDr4inB0Szp6SiWN+/JRv/u5rfOdr99nUBT4fsFyvcAdLTu6tuJxlDFEMsx6u7FHs7VGM+jx4cJ/Th1O2epfZ6Y0YDBrqagMijPKSQZkjfYWaPuXVf/F/Mj16izf/+FXaU8+WGTMYT7h19SZ7u1dB55xvV70PeC900wLfbZH7iO1y34PzNeL5/89//+FEuvPIFF0n++DzP7rNa3RAxY/owtAx/uV8VO66YwkBnAQa2/Ktb36Z73zjNa5Oxvzil77I9o3L3bXLwIGIAyz333uTr/7OH/LOG+8x3NrlF37513jxU5/GmD4nh2csT+5jl+/RK4sf2fn9uNFdiu9y0SkRlNIXgkx043hC8FRNTVYW/Mbf/bvceeEuL730IjuXduhNRmADm1ffYt3WrDYbWhXQmUH3SnShCc4jXWZZFp0rKKWjIUQUSsXPjUaMc9NH3EvFQGcbXTshZhdpnUVRr7MRqW6+98GjtOqC3ed/Hz5ut/BHinzwl/Ds/6HLeNPn194HhLhPCcFzenLG05MzTmZzVpsKS0A8tHWLUxv6q4prV2+Qm4K2saAyXPBM51NOj4+ZzU74+je/wv1H93n9rXd56717HD49JThPLpAHx3p5Rl8JpVFYW7GuVwQRdveusXvlMpO9F7n70i1+9me/wOc//3lu3LpJ3htCyAh2g+gBBB335kHIM9WZjcKPrXPuec618+8yQwdQITwzP7YONg2zk7PoTjw65GQ1Z2FrahytBBy+mzuiJnuuhQXVuf47m573nBuco0dP4mYgiCB0e/JOuAshnHs6vi8fegWicyk6uqxrcL6NDolzgYkQnUE2ijVVZch0p/Ar6Pd7KBVdc9F+C94L2oNIwIVukBOD9wHXNiilKLKCosgwtHgLuWhKlbHJhcb6TrSAxvrO9h3wIRCCYANY62mDZdPAsgGVNeSrmrIssd5hg0JroewN0AS8NdhKId6SG0Wmuo23ik6YIB6PQzRkOkPr511LFm87V2E3QMe2090ioBNAROJj5+0q0DZt19DnLpQoh52765QyUV/zLa4TSenOFx/FlW7q7gZpjRZFbjJ6eQ9RqlNw4xRvjKLINEbFYzOyFR0f65rZcsFyuWZ6chqjNHlG2e9ddC5EoYJglCbXJrb/usFbS3Ceqq7Q1QqU0HhHYxvGg2GXkurR59Zv76O4GRzP3DfRFei7NvVd2rB0vVcpgzHmQuA9v+bP/3gfnTuhiwiFEBBdsKlbbOPoZQXlwGAU0TKuM1RvRDCaql6zaAKElsVmRW/lKNaOs7phvlpSEBgrTX+0zaBXcFYvado1bXD41QoePmG1qunt7LKxLTZAriDzAdW2WBtdRKJju2cmQ3RsY5Qi2JbQREfdRT8SwXkfXWgh3uhKxcd98FjbooxcOCVD8HgX30NC3DhZ69FGYYO/SMNW3fwbQiDThjIvKLMcbxtMCJQ6us1kCG0e3Qg+ayFXbFpH2zY0jdCKZdPUbNoGWze4xqJ8wHQ2eyegcgO1YL2l9ZYSFcVSUbSuwTVRoMPFNOxO4Y733bkrlZgW7r1HdQOjVxLFJAWZ0ihlyCVQZIoiy8jyHKUV+EDrLG1t2dra4sU7d0ENOTg8Y7PZUFfQVhumx0fs7W5z9co1trd3yYwQxKBLzXK1YHE2p1nXlJJR7ka3oCCIcng8aA1aowNk2pCbDGMyJBgIGiFanL11bNZLNq6lqisenR7zzsNHZFmfXwnCX/6lX+TT/Z9nuar59te+yZPNIcNRzSBMmGwPojvEtuzkBeOtMZVv8c4SVFwYZEqwHoy3aNfiTqaUxZC8zHFGGAz6eK2xm5rXv/0qt6/fYP/SFaZa8+DxQ5b1mst7O1zZ2cG2gaqFjVPYrs9oAaO68Uo0ge4+8/H+Vupc1JdOVDV4FwMSouOYnxnDZNjn6l7BQg85Xjec+RDngACLdUVjHOt2wqYRilIhWQaqRmc5SmX0yj69/oDJZJutrV36pUarjGrdUAt45ellBuVa9sZbLILi+OgEoxV5WTJfb+L41Qbmyw3D/oayn5ObjL3JmGExwOiM+toVNr5lulngSsVoUFBtlgSTRZHcj8iKHqoc0FqLcvF+y7IMqhhMyEShdXx9tamo2xZ8y/HJSbwHO1eQEOLxKU2rhFyDyRQuWLKiz9Xr15jcu8fR8QnvvPsOL+cDRv0Bw16f5WLDwcEh0+kpVy5t0ytzSlOwuH+A8o7tQY/1w2Pe+YOv8u4Ln+XqaIet0YjAs/HWi0KbjCLvgjA/Ru6YxI+I5/vA91pIisR5xzqyLOPGCy9w49YtQtOCMUi/iBuZbs4WoG0bVtUaHwJlv4cqcvIuuON9oK0bfAhx06gNPlM0xAABGRAECYpikJOXGc51rl0lECw+NDFQJNByRm9iuXZji/XyiLYzZzwAACAASURBVMN7r3L7xpB8axsoIBt05xhAwbo54enBfVbzUyaTnBdfucLu3jbVaI+i8rz08i77t/Yx/QGz+6e0dc3uYMTj9+/x6OAx9CeMt8eUgzU3bhpuDIcc2Qq3WdF3Z4SjR6iVp98qysEWRV6S5y2eCr86ozoxtHVOeyQsH64ZDTzjywM+dXePejrHF2O2rl9DDwzXb0y4e2mMWsw4evSU6aKiv3edYvcKj54cY6Y5V65fpSdjcl9gdxuW6zMWdsGSiplztFphnzzk/dO3MG7GJ4c76OEY6wvKyYTP3rrBYGsr7kJcXEcGwDqPEYW6GCbO5YvnOszHbJP/wZTWHyzQxTXphSTzwdf/GXvNn69YJ90hyLkidG6OMFy0bSDQbDbcf/9dvvH1b1KvWn7qU5/lhds32NrpIcrDcgbDbZwTZqcHvPX21/jqH/xz3nv1DQb9Lf7KX/mrfOFLX4JeH98ExoMxs2Hg6b1jVJy0fzwch39BfC9XVfA+ZhNkBgJoY7hx6ya/kBVcunaN4e44vtA6xDlcYzmenXG2WpGVPZwmurCKAsmE1jddhgJok8e9gjKc5+oJAYJCFLEskCi0ik5i72K5pKgZSee0i1lFSimMzlGdO96FNppPjOlcec9d53TN/8yFDhfuqPOMuRioiAh42wlCwuzolIP7j3hyeMTx2ZTFZgMqZrjV3qGkZbWqOTw8YTqdYxB8G1ifzXjz9Tf5zquvcvT0hLffv0frA1Vrcd6DFrR4Ai2IRWtAtWSl4dJ4xN7lXW7deYGXXv4EV2/e4uVPfprReML27jbFcEiXYxfTMbGItNBlPHZhDERi/wrfOyrx44mcJ7WGbraSGMnzEGpPPV0xP5lxcnzG6XLJ3NVsxNPgQOg0Lw3O473DtQ7ro/kmdNqT6+YKcbHNzg1ugoqptj480zjOM+f0h4ugP1AifSaAuOfqfgmiDcE6QmeNDM7StjHlUXVplqt1dG4VRUbZi6JbyHScYxSI7eyh6nyB1tltRaM1KN9CsBgNRa7RWmic75xFwqpuu+MxUcxw0NgWbwN109KqQBsCYRMQWVL0SkQE52ysVaIU/TKnNIasVyA+I9MBg9CGuNlytqGpLF6iSyvLMvI8p+yVWGsRJ3jReGkIzuG9dO1kUaIRFdNDtXQDKlFkkkC0sXb20jg4qii+auleF6d9ZfIocDrdiS3nUZNu8BXf3XbxscJkFFkOJqbkBu+QEDAKpEuFC8GTDwbkaMq8R79fUo9blpuK1XJN1dScnZzG6E2WIZmJCfGiyAtDnmVkQWObthPDQIzGEVDBU5ZR+BERVF/jCWya6CRprCeUJZuqireLkovlzbnIKcLFgkrraNEWNEppbNNcuM3O/yYKXxoRgzGaPM/Jyx7kJTpAkSkyraKAKoGiZ+gPhzgBWo9TTRRcEdqmxbBhZVuapiHPMnSWkQ+HbO1M2O9n9CYjGmtp1hsWZ0vO7j+Cp0dIljPsj9jdLdFFnAydc9Gl4308Dx0dj+dmaHUeqH2+VkqIbjJHwEvsK6FzmZ0LbEYXCHQp0fG1eNfNJB5nPQGFCw6lvtsBKwFs0+DaFilCdIBJTDkK3fOxDmBG3ssx/RxV1WT5mlYcSiTeWxJN3QYh15q8UBRlSSuCUQW1d1T1nLaNTlejOgEQjxOFJ/ZdjSA6pkFpFFmRwbl71FqsaxDraduGoIj1+6pYy84EhyJQGEWWa0weU+VRmmpRc/TkkNUyMB5PuHt3yGCww9OjI46fHjKfzVnNzphPZ6yXNVevtezuXGEy2aWyJb1ej0wyqvmKtrU4azGDHmVesF7Pcd5Bl2rgvRCI9SmzzKBdhtYZmc7JlEG8o92s2diG1rbgWlarFQ8fvc/JYs3hasknX3mFnesvcGcdeOvb73CyWPOk2nDZ7nBrZxutcxplOFvVtOLwwaMd5DpQZHGhNe6XVJuK0HgKramVotaaYb/EFDnL5ZqzkzMOHx3gqob+1oDt/asEW/Pk5BTXWjIp2NiWVeNpWgc+oCWWOtAm1pHSOusiuwptBKVjhNb7zlEXdbwuBS327+AsogL9PEf1Bsyb+N4iMcW/alqc96zblnUT6NscTAEqQ3RB3XjaxrE9LsmzEqXiRn7QG5JrHcMVzuK8pcg1tt6gcIxGfVZVja9rTFnitAFd4ESoWocJcRLu9XpxDHYN26Me+7tjjmdbqOGE/t6Y9x4fsdlsaFpHMxoz7PXJ8h7WV/igyLQmMxoVotigsrjJWa9rni7XXDkuGY0LjMnROovnHjyCRwNGBwwuuiGDZbGYYwxcvX6Vz3z2U/zR177B4eNHXL9xl+3tbU5nK07PFhid0baW5apiNN7ixbt73HrpFfKm5f3ZlNefHPDwm9/hn+n/kX5W8oVf/CL94RCAloAl0C97FDonNyYJdIkfAolBJ6W6+StAntNFYhEf07PQCgkBZ2M696VLlzA6Q+lOeNNx7aIcGA9eAlpHl5AymvGlCUF5fKcB5T1NLgJiifbhli5VADqXEARGY8/lK4pq1nBFSgZs2Nz7FsW162SjXVyTIXkPLR5WK87efZ3D17/JIFRc2inZ3x/SG+X0lwP2hte5tH2VMgyxTypm7085OziFbUWmM8ZbY443DYeHj8nFsTPJuHzrGrcl4/DBI0ZSwHxFzyl2TMZiWXF0f8Fo4LC+5mxR8fi4JS9vcLUckjUlLmwII83NKzfpfX7E3FrUpMfocp+927tkoxKmjit5w2S6Id8a0Bph2q65WhrGt/fYyscUklHkGrLrnNkZD6ZrHs0C60YwmTDIG27u3eHO/nXElrReGF7eY+czn0Iai/UtTRXIyx5i4vrMB+kCxM/zfLmDj57zvcsH66c9n+76A+vQfZf34vnXSqee/YhcdBdrwvOP1jGbgVjfyraOejPn4fvv8I2v/BGlKfjiF7/IrTsvQj8HqcE1MOxTr1e8/aev8Xt/+Du8/vqXOXn6gFGWc+fGDS7v7yFlFoM1CvJRwbbfRrfX2Ll2/dnZfqD9vtfjPyl88Iy99xdpyAAoyHd3ubu7E93AAqGOGT6mXxI81OKpVSDrldjgsF32iHMBJRpT6lhOSJ1noT0vLqtnabVEZ07MitGIDnhv8MF3AZG2y7ACFbp/lQbiXie68uTiPOLh/9k7+yeO77P+eXZLdlJttx+TAEGbrm5ky2axYj6dc3x6xny1pm49GDA+xHIttWW92nB8dIJ3LtZwPZty8PARb776RiwV4QOVDei8wOiCvBDyzGBtRWi6kjfasDvZ4s6tfV5+8RYvvfQCd168w+3bd9neu0TWG2LyAtFCaFeAIFmByICgNPgGUYooBSm8C527K2az6fzH1EX3/LAt56GWKDnq8+e9JzQeP51z+uQpRwdPOJ2esdisWbqGTbAx+5N4z0XjcnTJOTojUbdHtef79k6bCXI+z4AWj6C5qEt3biyKv3zoaXxo6/vOwNlVsIpFJ/HPRigda8kF73FOcAGcDygC3jqaxpMpR9M6WudpraMocjJn0VpwxkfXV6fehxBQ3gNtdKZJg8JCiLZcozVog0PwQRgMt6jalrqxWBc7ft20NFWsr+YahwgxDcs7XNMgEtNmfQsz1yDjLUy/h5JOWe3SRQXI8gLVOqq6ol1uWK8rtNL0ej0GgwF5nse0VK0xqojtYC3Wxlp5UVB5rseEruZ2NAnFBSpw4WNX58Vf44B7/kUO4WIsEFTMlUV3aXUQBVOnNV75zrkXJQ8j6lmassR05BA8Ljhwlvlsg7MeEHrliMl4i8l4m8VixXQxZzqf4sTjgaZpaUIDxCiMUZoizzDEDln2+4hWVK7BhkCWZ9DYWN9MCYP+gPE4Y1O3zJcL1lUT0wTxcZDTdGmXIPIsVdc5d9Efz+sv+C6tVboI/nkttyjOqYsiqkWWY0RRrzdUdU1/vEVuNLWtIago9AI+SKyzh0YwUUxFsTuYMEdhveXJYha/kIOWUVFwc7LPfLFgaoVVUTPvahEq72G+xngDJmO8s43JMjzRgehcAB+LSkprab3vyrLFxVeMeMXoRazZoy5uaugEOtWlfYrgz2vZuWd97dxGa0MgeLDORvfdhcgev3TDO4+tG9q8IdeduKU1mQFfZPjKo7VQGEOeFVQ+OqAKo8nLgspZmhAFNuUCoXEEF6D0GJPhlUdnGsk02ICzFqdt7LsecqXxEuuUSbdQ0FrjJX5JSax7qbrCm+d3UfflIuLxwccvHLGW1tZoVTJWfYwxF6nRsW6eZbmoWa0cIj0uX96nP9xiZzxhuZiyXs6o1mvu3X/EwZMT9q9cj+6DoaHs5WyNx5gQ+5U6b3d/nm5sCdbjtKMJCmcDEuL9KUFBiNdTd0ImLqCMxwjcvXOXwaV93nrvMe/cf8g/+p//V7b3/pAb+1fYGYzpTfagqjiZHrF5coRvLFeHA2QwwG3W6FwI3pN5GJVCoQ29Xsn2aIRtLUWmUd4wVZ5GBRotKOfJgmaoC+ZnM957+x32795kd3+PIp9Qzxd4By4oVi2s2pjGKsGhnEUF180HMf07+Fh7T7oUX1EB8dIJbuc2boXJFEorbGuxtqKtAuRbnUMgxC+yCR6jNUHrGDFUJZvW07Q1FmFnd5fdS3Nazi68623d4EqhyEtMJmRakNZTNRuyLMf5FlEak2l8DS0eihxvNE4bWgJr31BICT72d1c3hNZhtFBquLqzje8P8BqUa2lWG7xkVKs1a1VQV5bg5VkakvcoQixFoA1exb5abSqmswUY+9zcEAd359ropPUWlQUyrTA61hZ0vmU47POJT7zEfLOhsVEItM7jXYzeF3mB0RmIoij7XN67zM/fuMVW0/LlN19jOZtzOD9j/vAhJw8e0CznDLr0GYwiiKKvNaIM2XMLm0Ti++FczB7Q2nSL/ADWxi+AUPELHPxzznFEYzKFlOqZABHjG9EBpwKq0KgAqFiTMuhAMTJxvS0WH9puwWsRV0O7BldB3gkm9RpcC9qjtCUrl2SrA64WYy5LSfvkLZrmiM32JXx/i8nlK+At9eP7tK/9MVfbJbdvXsKFOdPj+yyqHY6eLjmtDHa2ZDqyqHrNk4cnNOsp6kbOzs4IpUo26wqFsH/lEpf6hrIqadcZ5WobbzXHswOa5QnS36LWJeum4iTUNJs1i+WGRVsw3N2i3oGB9sxO13znzUcMByP2tsfkuUGsoxBPmJ9SPV3Sns0p9QAvhuVsiQ2WLV2wd+Uq/czg2wUER3/YRw8NurLM2oaNL9nJJgx6Q/q6ZX9LMzYGHyz9SxP09REykFhrOGhiCAEyJZhMX+hSz4aIc1vXRb7Px2r8+GCdX/ghxKULhex7baLOBZMPfnXAj0Kwi0H+INB6z3Qx5/jgKcePH3D66D6/+ku/zP71W6BNTDt2G9Axul8dn/DqV/+E//v3/oC33nkNW58xzIpYdzcTiryrn6UkZnQ4D96ilMLVzXm2VuJDeFavLUSXHIDW+ABNvabs96Ew6GBw1vHk/fd44933OJktsMjFfpag4lpaFFmu0ErRWheNHM8LpLEeTNwPGtO54M8NdjFootDdGPqcS04+eDXDRdaN7fatFymuMU3pY3UPfxy4MLQSnXISwAUf62UTCM6xPplxdnTK7GzOYrWh8SFm2Qj47no761gsNpydzHGuZXp8wtHjJ5wdHXN8fIoWQ2+QYUKLx8Uvd6wbQlEgKtArhEvbO1zeG3P7+mVeeekFbt28ys7uhPHWGAl92ioQdIXOBWV6PLPfxmwxCb6rdRdddBJAaRU1hv9ffjHIc/7XEOv+h7MZRwdHPHr/IY8eHXA6PWPlaio862ApVQwuElwsoe5jGSCR8F0lf4DOm9dpbqHrH6r7nA8chpw75/z3mlue8YPl0W7seV5pJ0SVVWuD0prgBOcN3jmEmFLnAuSdk65tHdB0G9qWrNUXQsp52tO5zTYoRd22tK3DKYdR4SL3t8uTuji04G10JQnoTKJwoIRGgXUqFlgVEwcf78myGH1qpZt0vY91zlwUBIO1BGeQPANjKIoehQ3YFlpb07QWa2uqqqGqGra3ty8KcOosj+2UeaRp4/t6S5Q5u6LqXWNqOjcU52pqN7x2bhzVpcZmWUEI/w97b9ok23He+f1yPUttvd+LuwAEQA451kbZ8jjG4RhHOOaNvoJf+J2/pu1whGNGM1ooaSiIK4C7995dVWfNbV7kqeoLEiTHDskaikhEo4HuvrerzsmTmc//+S+JwefUVRdGkgBjzVd8NMTkSSCnawUTSy/zXx9AGU0uYieD0auLywyK6IKUGsYxomQxofKHnJ6dMEbHpmm5vr+jX68zaEiPkQYtJG50GGOoJt8l7z2ehE2aqijZDGu88ywWC46Ojhm9Yxw7bm9vicGByICHQD5sOtN7U0pNss/MSExS7GWgIQR2qbl5c1FEk0MHYsxFbaENUsB92zD2W85WS5bLObfrwHZoKKj2YGhiSlol5mJj8j6bzWZAokmBbdvw9vyc1lYMy3neAIVA1TWHBwfM5kvGpufu/Ib7t29Rt5c8ef6U09NTiqKYjFp3QR/s5WVM0tOdFFpNFOpdEEMkh4foNDEKZaa0Z5AosJMHC7JcHDHtrZPOPbMNw/7/dxLEuqpQOvvg5TNa9qMo9HTt8ZkNJgUqQZqYelJKjC7YdC1t34Hx+K6j2WwYQiApjaxmdPgs/RNiX8DFEPcLnpIKKXKwgUh5g0gwgT0SYzXW6n1iVSRkLyNBZoqWJYWRhC4wuiwHllqhrM4SV6mY1QvmswXxcuD66oYuWFaHp8zncw6WC64u3vI2jAzDSIgD601DiO9ox5Hjx0uOj1cYoZBaYQqLMYaYIk3TorREJ50X7v3KPAHpShL6DODFnW8MOVClUBqspvWeg9UBv/d7h5QHp/z1T37Kz1+94/L6jqcnj/no7BkHp4/orOTm9oqfv3rDtq4pP/mEo8Uhbb/Jz19KWBWxRS6eykJRlxbTe4xWDAKE85RGszqYM7aOy7eXrGYzRjfSdR2v3rzm7OSUjz/8iMJ5Pv/JS3qfcKhsFUjIjGY/EvyI8xbvIsHnEBwxMeZQApkmIH3qyiurMWVJaRUxJBgibhxzYnb0mZERAykmjDZoY/ExMyCbYWTT9QRV8eTZc0ZRUnz+Cj94Dg8Pqaoqz8sALgyMSU21usANA/NFTTCK7qJjjB6MxAsYJWz8QPQBZKRcVCAiVWGQIaGlZHQjaehZVpaeRNM1aD8i3MB8VuGbjnsPw+Ax1qJKgQgREQNGkA12U56r9WKJsvkAtF5vOL+/ZhgcSlVIIDiPHzqid9hKURUWazVFXaK0wnvHajnne9/9Dk0XKauC129ec3N5Rd+0uDEzgKuqYj5bIGRmM5fLikcfnPBdnfj2dxWffue7/Pf/w/dZzizR90hh9s0JJcAmjXrfGOObA/o341cMOaXVxSmcBikZ+4Fus8GUBdVqmXlt3mO1QUhBdBGR8jq+k5YCu4V/2hvIjF2d2fUhZda/kBEtM2NOxB5/f0V/dwWuozQgZcQNLc4PJBUxteCDs4rDP/4O/vMLbC0pTo/pXQuqYXl6CqbJjIfxmsJv+O/+8HsURzVvzn/C53/3GcPFmrvrxM1G0Yo15QenPD1ecDw7QNaW1azGdw2LuuT7v/8HzI+fQt/w8j/9gHcvP0PrEx49/YSzT79D31/R3a/RSRFGT/CCEATNukVHeHx4CIVls94S48g4liBPgYrtNkIdkUXi1d/9lDG0fPeTT3i6+pjhvqVvBno3IHXi6OSAerEA6QmbhO9bhEw46bhrNtxtGqDk6PCA06NjpL8jjNe8ubokJMWzY4tsrxmvCw7PPkWZeV5Tp/O32tV5+7VBvPf5K9/4Jx+78/Avsr7+yySuu48dU+4fkTH3q4bMjEVSbrZ32y3vXrzkpz/6Mb5r+bf/8//C0cEKURbsQpqSSLi24e0XL/ibP/tzfvCXf83Pv3yB0YLj1QGzUnJ6OOP5k0csZhbwiGTJdjYRvVqy8scMPkuZv5E7Poz3SvyHmbBjz01A566pLkgUszrXwH2PnQzivfNsxo5tyOwlJaZwHKWy1NFn7+0UdwDKL0DE77FCtc717Y6wsPdcFCIrGIhZ8WXKvaQvhGwtkyRTEGCYPLzDe4yeb+75f+nYs6GioL1d8+b1a158/oJXL1/SuVwPJ5HruBhz42l0Ee8a3DiiELguMI4epQyr+YK1j/R9z2bYokuDNonZfM6jsxPqsmA5n/H00QmHywWrRU0xWzEGQd8nqkrgXKIfHYUF7bPCRTARPqSd2OcTC33HJsNOhII8T8V/XUv5P8gQk2ptB0Cv7+64ubzh/Pycy6srNl3LYMDJxEjEkP3ZU2SSp7KvzRU5Qf6re8lXW1bKmL0l2UPmQL6wIn3lqf7a8WsBupCyz9tuuYEJVJjAEedGYsz+SkIKUhS4yShRKksKYW9u6ZzD+QHnNFUsiTanfP6iBj4z6gxaSwg9WktKa7Emy15zGmyafLeyr5ZSDxelVBpKjUiB5HIyawiRfhwZnM9BEGX2O5JKUllDYTUpZe8fHxOt88iYZbxlUZOiZBgUQYe9tHJ0gYvLm/2iKJTCao2tSuZVTVmXhOAIcSD5vPBl+S6I9yj2SmmkUBm8dNlLTEqJ1tk83TlHiDlCW6oCl3KXI4caGmKMOOe+lsovRE43lDqR0ogQmbFYFRpbKAqrcWPA+9xJ8c7TjwFQaGPQUSCMYFFXKK0xtmC93tJ1AyE4mk2HEhItJX4YEUrmsIMU6LpAUS1Zr9eEEDg6OsRoSdP0dF2L9yMETxJxih5WD0lF02PkJv82EKQkp4CRsAeJUkr7aPGc/jsiRAZzFAJrBGHokckhk8f1W7RccLioiWlkbBtkVVBYTVkWGWxIguQTzg+EZY2VNaYdeXb2lIO65vWbF/z4xedU8yrLYwUkn1gtV1TlAcZUtMsF9nDF2G64urnm9v6O1WrFydExZVnm+24y8BRjYBhHXPD7Z8B7v7+XSimMtpOPo5jo6RmBSyFiC0tRzjBK76WCEsEwOoTKhrLGZPnb7vq1Tbv/PePoWNYSYy0xZimulYoxeAKRvncUWGazillZUpYlaRPo3UjvHDd3t5zOFhzPl3RlTbdZ0zYtVVFirJ7YtQGdpmRZKZBJ0Hcj6OxPJoVAT0xaJXJqrXcOPcu/T5kCHwJ+HPe+CMPoqAqL11DVFYVRkBzdMICQmOUBiEDfbzg+OeWD3nLfan728pJ37y5YHRxwsFpx8ugxZVVye33F9dUdr9+cc3FzS9CSkR4XHPOyQriAcAErBasqS1zXm2uUFkSZn0UtFTJ6rFEZlIsJoy0CQWEtVmmEkPT9gK0Nfd+TpGGxPOXJ04KXt/dcbRvabuRnn3/JTz/7Gd/6+GM++b3vcfT4jKsXL3n78iXbmx/w5PSEp88+YFbPYRhpR0dtC+43G9qhJwWPjJ6xX1OtFsyMph9HhPOoGDlaLFjfb3j+wROclfTkDqpzjlJpqsWC8e6OIUaqqqC7WxP6hhiGac3VkCQyZkBZkiavwJDtBrynXMyJPuC8p+1a2mQoqwoVoKgVgzUkOnbpYUIKts0WpQwHi5rRO5azgkoKNpuRJArOzs5Ybweuz6/wzmG0pi4UQz+wnNmHIJmUcuq3d0QB9XwGfo0T0PgRlxJaWnzfcXg4h8JQzUsKq9BlZHNxiUJyuFwxXt9yeLQiVXNeffkK0/dUZUAbkD4yOI8ylkprhmFAh0DoepKfIwvN6BwH8xWnx3OOZpJuuGe8fIuUKr8OrVFKMHiHluCCI7iBcegJvsB7ia1K2nFgtVxSVXB92/D29Ssu3r1FqoIYI6vViqIo6bqOGxH5sQ7IDx9xTsOwkBwcnsJRyZ/98C94tr3iex99yvL4CIklixwkqRuIWJQ22XTwm/HN+IXx/rFSqa/KGk1dYapyz77QUiOnM5uASQ4bsxG6nMzud/6jMTF2Pd6NmMISZC5abTFZhUTP0K4J3R3adejkmdUVm9eXfPGTzxDJo4ykHztmBzMef/cJqdTYZYl5eopYGu6b11xdv+PgeMWslEAPYYuhQcwknW9yc3FRszhYES8GlghUrVHBUXOLdh21uGe50ByuBLPjRzRNy/nlG7ptZKFK9FBwYEvsTLPtG754fcvhcoGrntMHh1OCtzcvKWeSR8/OWFrJpoPrbksXK8zsCbPFkkfPFpy/e8H57QtkSpSLmtuxAEoQHyLMh8hqoGrPqVaB2+aCjg2zwxqfHGvgagh0N2sWixX6+GNOjcCzIiR4+e4LHp1Izp5YTLkkmCWvB0cbHM+PH0GxQFBgSgMYdlFXaTcR9ufN92Rx76MY/4RLyPvg3C8Ccr8KoNtb+qSAwOP6lru7aw4Pjynq+h/9Ne9fBxBFJJBrLYMijZ5013JmZjz9k39FOa+YHa4g+CzNSYHkBtrbW/7mL3/A3/zFX/Lyi5fc3t2yWNSsljXHq5pFKagLmM2KbEsBpKlpjwB8AM9U+2RLmK8DOn/Xxm5a/+LMeSCukBnpux+SkkiuS8q6IvnEcHnLj370E97d3uK1wsfc2EiZXpVbZVI9kFD3IRAPtcEOkNNaZxXXe3N5V5+K6XUZbfDe04UOLTRKZFJMJiTk5uSuFjXGTI2T99/x7/iY5vselJ2ANngQ9OvJjHNoWi6vrnj7+pzrq1t8SBRVSd93DCHgYkCFzIiUUmVyRZJstw3bbYsfA2PvJuXc5K1dVBirmc1r5nVFVVrmdcnBcoW1JRFBO3pU02d1j7YosyXGiGkks6FiHmccCIW1kuACKXUonVB2mtFTorog5lCD9PDWf2tnwA6Fm2TgckcqkznpHZ8Yru+4OL/iZ198wfn1FZuuY4wRF6GLDmVNDjAkNy7EjlUaMlbjfVbAZVxHZxfWlD3iU9yRNeIv7TV5Dc1krBjcr30bvyHFVezR4ZR+eVPbg1PZMAw5mbcLodAkemXSTAAAIABJREFUqqKgtpl1klIgJk9KGWDpujEnYkwI/u7v01qjbURHgw8R4QLbMWKVxxpDYUw2oleKNMlplZo83sSuUASSQAuJEIkYsy/b6GXee2Ji8I6ysCxmFYvFgiQFw9AzDMNk6h9QtsQYmQ+XQuyllLvXnL2/wIVIdCODcMhuYGtatFFUlUFpQaEN1mrKidGV286Boe8h5Wvg/I4VNqX1SI1zIz5O7BuV7QZTmCaA/2rqp09ZYb3r8yUhGQc3SZIjRmuUBikTPkZin/9epTI7Mku0wHvH6Fw2ODcSWShMUVIVBmWPmM/n+DG/983NhnFibrhxYAiOdhyyl4WxBOOZV3V+bSnhhwGtNaW1CCJGy/fon2kPOoVJNhvFbjJPrLrpcxSC9z1EMotRYU3+vCt4x7ZBRI8RCW0NWgpECEgBs8qiZxUYQ2p6SqNznPIYMlAXA027ZVZW1AL01CEry5LVco6dFYwuMHhH6/oMiKVJAlrVJAVHhwu6zYaLiwsuLi44n7/j4OCA4+NjTk9PiT5LsI1SjN4xDAN91+XFVVu6OEzeZhGSRoi8GZjJk2/seqLKcnJCRJDl2VkqLTNwGxMh5sUkTZ0yF/ImryZwHJjkotOH2MnaE0Ik8A7f9QxfYS6CtIoheIa2pRCKbz17ikxPeHe75vXlJZSWu/t7htZR2hotM1iljEHHIofOTIupJDeL952GkO/9PjhDStKUAAzgXAY0Y4y4kCi0YjVbcHi4RBnNsN1Q2hqSpizmPHu2oj74kMPHV7x8fcnd/T1fvnjBbGapSsvy6Ahpa4YAd/ctZTVD6p3PYwYNx5Tv0agUShjKsmT0A24cKYzFWssQduy+grGbeiVpKhJSyoB8TMQAm2ZD8AmvZhS24pOPv40sat69esPtxRVCweXlNcOPf8SjJ484Oj5mVdY051e8eHvBKOHDp485XSywIdBP6V9SZXmDiwFBIvoRvEOGQCklui646UbqwhKkwBaGRb1gdbBktZgjRk+UgsaNXN+vOX/7lmZziXAdRnjcGNg2DUaXxJCQCazWOZAkOEKIKGmynFtkJqTWEu89jW/oRwmyIImITz7vC2RpSIwRN3Tc39wyHBaE2qJMgbGJxnu6Ia97Ssv3EpyzRFZrQ2UlSQnCmBmFIUaiiBR1hel6NheX3A4jx4fH+ORZzGsOTk/BSn785Ze8ff2KpSl5fnrG05MTTosKYyr0bEYyJR+dnpJcYt1scJ2jmC1RSSInuZ9RkspajBLYqQGkCok1FmsVVWlAjhhjCKPPxsFK5WS1XXuOTKMfxoG+7RDJI2RuRs2LgtFIts3A2G1Z31wiVMlivuKkPgIJXd9z0W2YxwZrPV+8e83t6Pj8zVvO/6//gygk//J7/5L//X/93/j9oz8h4vL1T6AFMA64fkDOyuyT9834ZvyqIXYdaTHV91N1OllzhJS4urrm+vKK46MjHj86o29G7q5uiN5zcHTEbLnADSPX5xe8e/eOsix49uFzytmckMANHiECxkoKW0IoQUTi3Zbu1Uvi3Q1F42nbNbLUhKHj+n7DEEcOnhxjvSSsW8x2RJdgzYL7N1cMXeDo+Ajdbbl99Y4XL19TxRkfW4VUkkcnZ3x0WvDi3ZYv3t5xslzx/Kjg4KDEViua20sos/zw7nbDz768IomeQ1NyWig+/fQTWuBn94H7sWd5/IxZDe/OX3Kzvac8O6Oa1xQLzaJU+NuWUmvs/AOef/pHHD/9Htv7jvbP/2+WHxyhlonbtObx4Sl1uaQoj7m/9HS3G8rZHPTI1XZD5T0hrTnf3OJmM+arMx6dHXNwcExRz3niCnyaEYLn/u4NVq9ZLAJ2cQiHH1KKkvtkqQ8/BFEiMOyj6abi7X0MLv+//Oo3/iuq7P7f+qQJIRBJcH+34T/9zV/i/cinn37KkyfP0Foj9P8PvkxiOgdl3AZDboodPHqUJdw7dCAqMIqEo9u2/N1f/wV//R/+I+3Nhg+ffsj/+K//DTc317TDlm67IfQN0jdo2WKtzswtmc1iQ9LZj1EqEhqZo+p+5TX6XRm/Dm9+8IKbvvsLrKME2YeObMczdj1d3+dwRWMwKZ/Tdub1erI5ckRCjDmxVTwEnOxsft5XGL1PztjXqSllO5VAroeM3tdQaaoV9+DT14Guvzu391eP96/L/nqkr1yanQpu6Hquri558/acN+fnXN3ecL9tuI8OLwGZsY0dIzLGmO2AQiL6SJhSeyGfB63N/uVCzFBGU1lDaS2FNrnplbIXmksgYqIPgdZ7zNAhW3BxxIyCQQw0Y89m02FNiVIWNakDtR2oqxkQkKpAqirb8oiJsfvbPgfEDoDMn1QCmeWMjOstm/s1N/f33G83bIaONowMKRCSyF7/Moc7pPhACtoxVFN8Dxvb+0NOisZpHdiRZXav5SHUMgdk7sE78TXP3zR+vQfdewhq4mEB2LGc3k/EyJHgYmLJKLQALWQOiTA2e49Mng7Oj4xjj49uD3h57wlpYgyZgDIaMUlSwaNEwEpHYQyV0WiZDRONEmglkSpvNkJMUlISWmZj8yRAC43VKjPk+hE/RogZrNmHCphcdGfmViCkDPYYpfFFmcGC+KDX9zHhfUBMgNYOTHAup7kMg0JrRV3mgIxoHEZngEVKhSmqCZycqMUpG6WH0TO4iELuF3ehBXLyOYsTyLnzeNolg4SU0JMrexSgjMrs+OgJIREkuDHhcTlxJt9YpNQYXVGUInuHhbz7CxlxaaTvWoYQ8QlQisJMoRVI3DDmjk5K6CHf0z7k63F3d4eR+RqO48gwDNi65PDogG3XsN1u90aKcRfsmrJ/WoD9YrZnk8ldKIbYb0pSZql0Wdp8bXcAnYAUHVokFrMCkqUqNNH1CKOYTwlyI5D8SHADfox4l9NQFQo7eqzOQRGXY8MmWkIYWBjLXBaURzMaPJ/fXnPRNbQvP0cJRalnnH1wihaKoqxYrg6oyhqjNePoOH/7jru7e2azGfVsRllXKJmZlELIfZ3unGccx9yBsxKhMgtNJoEiG3OLmKZ476mbIwRojZw07mnyRVBKkXjY4Hfx6llCm9OYo/A4r3Ahy9R9ynMkhsjQdLQxyzWFNLADhWVmUKmQEEJSlYZDoEuB26Yhjp6h74hjQniZU2+qagKO8xqyW56yLBfkJJn03tP1+bRfVWUGnqYDBlJxfXfH0WLOarXEykg/DFzf3GK0ppxX4BPjmOjHQKJgebDgQ7NA2SXnl+d8+XKgHVvabos1Bm1LVkdHuKQZo6OWhn0ox5TmnJLYh3YYZejHlq7vkbbA6JyG68acbuxdZstKmT3rQgIlBXECGo2uSNKw2TR4lQNojo+OCH1PKSXjtufm7pZ3P/kJl3c3fO+jj3l6eMLq5AypJD/+4hXvrq741qNHfLBaclSWzGYVRTWjH0ZklVAq0fsR37cMTY/VhsXJY6wUSGsYUySKyR4AGLuW5AOq0IwpocsKReTu4g2X775EKYlRdWYEWotMEJ0nTEbtUUyNC0QOtJ78SX1MBJEPhm6aO8potNUoq3LwjFDIaOnbHkmk7zoaK7Fzg9CSruloutzoESKhjUBrkQ8UImWJv4Lgcop0bB1FqQgpcnvfcnd3h5RgS0vbt5TKUgHN2ONRNOPIy4tLQtOzXbfIpHh0eMTBwTFJS1xKHM0qmkVN9FvWzSb7i5iSqCRhHLBVMa3xOXRFKwkGtM7PWz2rkUXEliXu/o4xDfkZd+M+ep0psdhojQ+By8s7/MU7pFacnD5iuTpmNat4fHbKze2G65stVuXAI6FlbpK5nrPjU56dfcD5xTXX1+9oupH78xukkLxwf8/P//aHfPzxJ1QfnE4GuAlhNClEovfZo+Sb8c2Ar69Q9+Acu0pl/3V4kITECNtti1aGw+WKdttwdX1FXZQZmA4R17W07RaIaJMZ8X3TE3xeP0PoqRcWW1nQNTQd8X6gvdoQtz3Wadptgqgo1Jx+23D5o2uadyNPP3jG0dl3EMczWCrKzR2Xn/096xdvKU56DJ7u3UC/jnR9w9Gsg9gyDrdUHyw4fKJpyxWPj1ccVomkRrwVbLeRQpfM5k84+/anHH3vAFuuWL/6CePlT4kzhSkWfPu/+RDx6COKmeLuYs3R4w94Wn+H2fIx2yZipeSgKlltGk66QKgWzJ9+GyfmuHf3nP7+n7A8M1y8/Xt+/vf/EV1XnD06ozp5TqVniC9/DrpncWr56AguXv+UbR949OhjTr/7HcThKagCYo8wEWVrlDkiuYR62zO2EZSH6hAxe0JVP6ISFcgFUPDgXfTezf9K8fbbXsk9jJ0XNgikUtnmpigoigqlbfaSQkwkgDRZd/zjaMHk1KCOKRKTztY3OTWO3NAW4HKwwM3FOT/6+7/msx/+FVeXV3z/9/+Yf/tv/xS9XJHaDdv7S7742U+4ePGSsUnYKdVd68yGDEjCVCtmlYYhBpUL9m/GLwHSv/KH4CsAda5jFKREHDzb+y2b+y1NCESpMIUijSMhZSuYQuX74WMgiIBEE6e6WQiRnVKmuSlUbsIDE4g3hQuKhPNj9hMMZIWbndQ38cFHK4n0S7N270H3zch2miE+AJuwlyXuPyMYB8/t1S1v3rzj1as3vLu44n7bMARHFAk5ESF2QWjjOOJHN4VFPiR6Simzck1IkrV4NCUlQilKI6iMoJCZLBKjZPQBGXL9p4JDupbYjAxhS9Xn8+bCH+Tfr0qMKSiKgrKumc1GynLAh0ACrKmZ1QIps00UySJ+yx/9xC6tdhekIhEB0gi+H+nbnndX11xuNtwOPU0IDNNaq8gS1OgTYiJiQQ4ylAi0ChOpKVtE5XsYIU3Bj2LSAaZdiGCarAqyxydC7evY/88AXZoMX/exwmQ5WhJTR2CKc943zcT0M+Tkmkyfzi8oRokxCmMtBRrvLW27JUwm/0qpnO45FebOB5I3UwJqNl1PUhJdZJQDmkRZGLQQGC0ZVGZpKC32iZRC68mzVk4Its1G/UnlJBUye807tweBrNXUpSUJRdOPOB/x1u7RTz8lcu5SKcfgcU4xjnJPPY4h39BxzEDV2A0ImTBSUFjNvJ5RlQWz2RwpFUknVCzwPjGMnr7v8cNAVZYPaCxikhInZCajPnQ+pCCRC7N9apoQmMIS3YgbBmIKqCTQQk8sq0DwY07nDQGSQymNUhZjdgtKpBug70bGvqX3AYTK11qanDakNfP5nKLKbCJ7U3Czuc8g5zCiigojJSE62qFlbiRWK1aLBW4YMrDos4daSJlZtNsj/A4h3qHR+1RXtZf1wgPopLVG7jwbJmBEa4nUFjEh103TYCpDXS0JwdMNI+tJlhmTys9OElilIQVUill26UdGF5EyoVJiaBvK0lCUlvlyTtAKExSuGdn098hLmK3mpBT2VPRZWTGOI+1mS7vZcnl5yXK55PDkmNlqSWFtlgCus29fCAE3AXTOKZyMBCMI3oNP+TUisil/yj52pPzfCrDWklIGTUJQJCHQYQqYUApPRE4JNDKCEDkJNsSAC54xeApAJUEcxwzCiHy9Q0ps+5FuGEjBIH2kb3twI8YUfHD2iHR1xWbT0Gw7nPf0fYdQJrNtlZgsJTO4H99j0e0+a5EPiCnmSZA3STEB45HVfEGMcHt7ixWJ0kqMqmjanvPzC5phxnZwbBtPlxJRK5KoODw+olrMma1mXLx7zds3L7m+vyN4GMdIEFmyKqSZFleBVBptC6q6pizLbOIrsnxYK0WIgTSME1Dvid4z9jmF2ijJODEhs4w6H9yKugZT0beOzXbNoDRD12Gk4PHxMb1tQUB3d83VzQ0/7EbWJ7d86/QRZ88+ZJSCq8t3/OTLl3RHR/iTY55UBWZWU/pAuxmRJHSA1XxGO3pc2xDdgAJGPyISzGcly2pGQNCs7xidow+KIAXaapbzksNZyZ3wNNuGWMLxkaa0JUZnGbMfB1x0CCVACpwL2GTxztM0Pb0xLOtJOumy/LQoNaYy2ctPa+ZllomGaqQuDUpKxqEHOxACBD+SAGMmTw2RyImNkZSytD5GkZsoMRBDZl0LqfCjp9s2pBgpCzs1WUa6ELm6vqEsDEkYysUBd80l59f31OYdwcHxyRGFlLihJ/QtlUg8Pz3irVhz03QE55FK4dyAsJKQPEKB9yMhjJklHAMyGayxoLIfZfCeddPn0A5t0BMtPk5pz2VZIkRgfX/H7f3tXhpR1wsKJTk7WrF58pim+Zzt+pam37A8WLE6OkBIw3y2YFEtmVFyIGcsT05JTuCbDn/d8OMf/B1/9Ad/xPOjFVbPsseUlGA1tqi/kbh+M379SOk93G7XKWZvfCwBpOBgtUR99FFm8StFXdc8e/aMsqgoZzUxeLTWPHr0iJPTU2xhMdqyvd+Ch6Iu6YMn9AFMkVOam5b+9p7QO9IQiGPEmBqERihJSCMqlAy3ihfjPbE+4XghideOvokMtwG2jtdvf84wtnRuoBlzM6oNktBlJuoHi1OenjznVBySnKOgJYQtfRhQZ8/xYkl69geYg48x1THEwMFSEm9BHR2APoDZKTz/lKHfslpoFkfLjL5EQ63qLG0TEd02rDYboipQR5roYf7dx5hFgWjPOQgLvr/6ProsqJbHaFnAzQ3L5yXUBhaCRXqKsCPhvkXrgvF6oIxbmHvQLViPUJm9EYJiMDAkRRwEYDBSIqlIswMQBVOs2cM9F7DzYvuVq8M/g2VDCMFivuCPv//H9MPAYr6AKTwuRUgpB7I9vNl/+DednUHT5NGcrXqic2hD9pd2CdeMvPryJf/u3/+ffPbZX+Hilm//i+/wL37/D9BHJ4gkYLGgUA7zKtcYwSeEyb66afJM8xNTLtvNSGIykDLR4puRx6+d71+lk07MmqlnISUpJsZ2YLve0G4bBu8JEgy5dlEpolJCpkSYIriyt3SYFBhqsnLanXuY1GG7n9V7tXn+/oPPuXyvdtr7YAkeGEbT2NeTE4v/d9p7cLo0aX+dMij3Ps4B7KWt11dXXJ1fcHt3x+AdQudApFVd4kl7IlKc2Fh7u6YQctKnUpRlmW1wUsip50nR+ez7aVTEKNAqZM/ikD3rZCGJXpBGgRcpe0r3UBowStMNEqE0VvVIbSmKitlspF86isrQ9k1e6xYrdGEpZTWxZt3EnP7tHDvVpydiUFMglSCFRLzbcH1+yeXlJVe3N9z2Ddvo6EQgkJ8XPXmiE+NeSeq9J7ldMviDzVYKIStEwySDlVM6PZHgAsjJOiuF98BYpmcw/Nqt4zekuEoiOVkmJ4NOZv4klJhAOMFeVrpvuIu8fZfGYlXGjMR02x+68pGqqvLFnKDa4NMe/BpjpmzGnS9rijghJ5m/JKRI9Cmb+k8AntYaY3WW7imBKwRKSZScoquNRGmLLXRmsUyFUKYpZ9qhRCBFTqotbPb9SikRJ5Aoe75pnA9stw3KZ9molIkQ9MODGCIhZglWdLlYH4NnMBI/BrrCEOJDIIKQOkuDraQQEm3DZJicuychRvLSnV9bTCmrmIWY7lN6oFPLqQszxSUnIVBCYbShKCxKTi4iscK5keA8AM4HYmwzICEyGysQKKxC6gUzssegdw8SXyMVRgkKo1FGUtc1rcu+UkVp0TKnce66PXf3N/TjgB8H9JRwIqQgyin9d7oVOUBh6vLsu5rsfep2X9vLMuPOSyHP9iATEQkif4iYcN5nTzQRsL4mSYV3mc5rbYkURQ4nGQNRQAgDAcORNRirodJApPeO9XpNe32OqCukMXzr7BHfOn7GZtvwwy8/5+X1O6qtzewyYLVcMa9q6rpGkWnoXdex2WwYnWPetdSrZQZZyQuwVJKdOTAx5W5mmFhzYUqRiQkZM8ovUga2lJAgNX7s8nyZghnCNI9DyvMpxIgXMUtZpSQpSFoSlcjSyxhyorGYgDMhkTIbnpISnR+4ur3lQAyoJFjNZ/gwsO07upRTWktlmNkShEGZEltYpFFIJaaDSP773qfoawRGSGxRTszbnI4aYsQNnuhHmrbj9PgIqXJIgU8e5yPD4GnbhpACt82WEUDP0UUFtiJEjUySQilOz84oSk0xM7x48YLPP3/J3d2W2fyQ05MTBH3uLqeIFDJ3n8oSaw2QN9q6qrPZbkoMMSClpLQFhTWsQ4uIEa0VSRgEEh8zuImSdL1n8APe53tWaMUgEkPwEBJGJI5XK+Si5Hqzob1b8+WLlwzrlqePHvHB8+fUyxXdzQ3rruHLtxckLTm0pzgpGVTEGM1hdcCjqqaa3fDm8oqxaRBEgh+RQnNgKx4fHJKM4HJ9w+tuzdV6oA8jm82aMPR8+OiYUnzEF69ecXHXcHNzjYolRVlRWsMgzEOQUEo5DCjWxLDzDBUEskw54Akie/dFwIWQO75RUxmN0pblrGB1YPCpp4+erhuyrFkUWKOwWhDDQApFZk6r7NfjUyKKzMIpdYFWGmsrnpyWXIyB68t3xL6nLkv0GKgKTVVahr7n+u6O7XZAqopydshmSLy+WiNMyaldYo2mLg3BFyyPzlDa0n75hpu2gbJAjy1ORQY35A51DKTgEVFBCDmpdaLOC5GTEbfbhtB5joo5R3U1NSYiupgCZXxACYnVJv/ZEEhuJEWFTHmOWCnwJgPwMThCGLEJ7q7u+WITaM5bPjn9mKe/9z3+7K/+gi/+5jNCOxK3Htd5UsweOAJBFJKk9NQQ+R0+oH8zfuNIMKkoJnhuevYReU1OQuAmX535bE5VFUhJfjbnda4BE6A1Zj7DCJHl+CEgrWZBTXIJWRpMVUNsCesrUrtGiRE9M8wP51AZ2vt76uoAJwVNCMxnc4ya0WwcrQzEgyPC4TExjNRFTfX9iu7mmp/8u/+HL758R08kasny8IDqk48opObLzzpeX/eUseeub7i9uaeUjuVhBUXB0299m8Xxc0T1GGFPQFiIHZyeouobRD2jD0v8KJh3UOgTisfPEAYYbyHcgWnBeBg3jPGKbXeDmZ+xrA7zPrlMDBc/5/aLH2JM5PjZMWgFpmfbXnFz9bcsDzWVUlydXzH4yNHRY1YHxwxv1vjLjvvze4qVRh4HzNMasapBFqiwQg4lw01ibEeMPMKGY/ArhJ/ls8dX8Lldq35X1MuHibAb/4yWDCk1sqhRusgJqfAg8RVT0uHXMUv/AUbGB2KWQaWcAJmMIBlLJCKjZ3N9z9/++x/yV//hz3nz6mcsDgzLxx/w7PmHLA6OGJqWsp5lME9bEArnE93oUXrEeU8gpzZO2aNINApNFtUa+IZB9xvHRK75hS88pDtKkVUfbdvS3m9xYyAJmc+NLiCkQKGQMZBctpuIKmYGU4zv/QI5Ff65Jsz1Tw4jFCKQ0i59M2aXG5HrV6XVvl7KJWVCiB1bNL/Kr5W5fsOmy0AKcY+2CiY2QSLb8TjP+vqWyzcXXF5c0/QdUQmSNdPzm0OS3FRjK5EDCJOGGEeGMVsa7UL7KLIXXIw+hyMFR5psmowGIx/uXYjQDxEo0MmiRokRkUJBpQVGw916jSkMpS3R1qPUQLFumG8bilpRzwrqukRZwyIMRDMAIOQ/g/xmASLlNHk13S+ut7z94gVffP4Fry8vuWka7v3IIBLdVBuXKaGimPznpmeHxOA6xolUtAsvjMll+V/wpJgyPhazZVsSWb0IU1NnWhF2mK9UEH4DL/fXmymI3F1JWb9KRu8fggj0Pkk0m/Dtwp7zVyLeDRRSo7XJrCwjkVpMKGIGr5LItEqhJBiJtZZxdOiQJ6WPAT86kg8En0Megsjy2amVNaWlgpQe7QzGRJRWNCOTsb5ES4+1CWtBIfFJ7dlu+c/KnA45PZAxBaTYAXSg5eR/hsyS2JBZG94rrJOMXhFimjyRfE44DNP6agNhHAneEYNjGLJssmkG2EmGjcHogqIqsbbElha8Y7cYj8HnBSKv2oiYWWe7qN8w6SIzcpwTSePYE5Kf0BVJRNANHpGyX1Jp9SQrVVMYgdoDjKSIG/LDGpg6a0KhlUCpInd1fEaV27bNybsTQy0zIiVVmVNSdwwZnzxN09IN/VdSWNVkgxGT3FO4Y2KSxMW9D9uOBrz72Mlcd9dckKb7pRAKklQIrbKJfcqysZQCUmliAF0UKB+xtkLZGq0qtpuW9bghuYipJcSRTGQVRJ/QpaE6OqCqCsaYiEZyGwLBDQztluQ8RaFZLJcYKQjO0bcdcrOhKkpmdY2dfBmllKy3G9bbLZuuYdY2mDpLrDPQU2GFyqmtavos8odWknEcAYgyIGKamKuZwSq1Rnq1v2Yqmw3meb17bsW0iABpAnbl9HNCCYILOUwFiVIm99JFnI7pEqFkDm9wDhUjIibGYWToR4KSGJ03nRQFylYgbT6YCIFLcb+BRdKUQstkVp/fQ14MJV4InMsBEgiFUjkxebPZcDAvmVUVMjlc37FptvlQqxXBJ5rRkbRiZqGwJTooousYQyCQUEazXB1wfNJyc3vP4ALSSEbvMvg3dRx3jNWYsqxdJgdpxBiJVTpLRUOmUyutMdpkEDwFlBAkbVDGEGRO7pMyBxvctyPOS3RVU1mLmM2g2zKst0QSRklmRUHSklJq+vuW27s1m03D9XbLs2cf8PSjj4nNBtotqqhBW6SG1dkxM2mYFzVWWvrOcXd3T9u1KGOz31wSlEKgnUfbglVVcbVVtENDEoqYIr7riM0dMnq+9ewJ5Wzgyze3xEFhi5Kjx0cU2mC0IqTAGCIpiiwVF5rCamxhCCnS9x19gKQLgowEmSWrPji8GxCxoJCKyhiOVwf0sWO439J1DeOYEEbi3EBMHik12maPO6UEMXqcgxQcgohWFpkk0SWSg7mteHb6mHUcuL6+wYREtTzg+OCQ+82GcH3D6HJB1I05bdL7LcZqytrw+GzFtz58Stv11Ksj0Ja3VzdsRkeMPncjk2OMDhdzUpqYKOa5B5X9IpMMqMk7U8jcuBjGAepq7y+TTYQnw2cBWgmGwdHe7ABSAAAgAElEQVRu1wxdS1ktMUowdB1SJBbLGqE1Q3AMXUs1X3LVdrSbgcYnnhye8of/+n+ievKUnx48I1zd8If/6r/l7KNPkEWNi7mRIYUGlZmqcXcE+LWHhG/G7/IQk1riK+fMlBMIk3xQFRiTzZnTOPXMduxM8SAXysyT/I9KEQqFUCPC3YH0+NRyd/2S2N1zeHRA+eQA5gq33sC4ZtCRVBaYouJbHzxlfTHw+vxnFEczFsdHmMOTXHRubjIx7PaSFD3desPFdouoDXZR4lQkCbhuHVJpbpo7vri8RBvD07MDjh59RH2yYvHhc1isECGBus8yUjyCgN+0dJcbmBvmj57gfEfYOspHp8TtlugC2gqIW5xr6Ls1LmxIxlMYD+0VPlzjxwElAkfPz1C2QMwXJFkQuoEiRJ589G1uzz/j8uYt1AYnC3725hKxbVjGGU/nJ9y8e4NrOuLGU3rJIknsck5VPUYWI017T3u5oShKZvMzKJfTQ/81qMNXbvTXpJq+J+/7bR4Pxv8ZFMlSzwdWUQwhpwz/Y74GmFgPcq9gUmQmRLPZ8OLFC37wV3/L3/3wRzx/dsKf/um/oVxJkrEcHp6h6+Ukp8ohfqawWUUkVVbdSIGPAQt7gE5N/5bCIuVvL4Pmn3TsztQAIhf6MSbWt/ds1w0A2hj8FKoFuzouK1oCEaF35BcgCnJezkRkCflnY8xnnhyk50kpM5QfGDq5Vn0A5+JkVfVV0t/74Nw3EtdfHnvWXJwWtx0413RcXl3x7tVr3r15y/X1NV1wBBIuBXrvUDErkVJiksrmazyOI13XEZzLElWlUFqhRMZOghP4FBAoYnCo5LEyoSV7dCcgp/NqBB8RRGTyWJkJ1YWVSOGwNjCUAqVy+KAuFO3QUdWKulOcnh2D8CQ8EZeDRADEP0Fq9T/YyE9gFFMNFgSpdWyvrjh/+YY3r95yfn/D/dixdQNOkf3nQkSriHIZL5DawOTrmILY4xA77CHFmIN0UiYY7fDzlOJkxSMmlelEqHqvHpDyq7vp143f4Hb6AMr9cpsgb2JKZAArMh3KUppSwQXj2FOqCkGJ0pMcTGdwICTPMDh8jBNJLF9QKSRaW5IUFDrLhYJWBJeZaCnGHC8LE3U4EsmeJS7COIIKEZTAx+4hJVZErA4UxmNUjs4l5AuotEREgzBqYrNNi9mkE86pOBIhsuxKGoFUibko8F7hnMqMpInK6lzAuUgYJjA1JmKVZW/OjbhhxPmBthv2gGcSI1L16K6nrGYUhUELsFMSZ/65HMedUsSnkH2cyHLXkGJmtKVISBN7Y8eOIi8KznkC03tP0AVPDA4BlKWllAZjFEJYpBD4KQGoGUa6vqNzGVA1psRaC0BwHh+zD18g4N0wMdnk5J1WZUmgMYxhnEIKRsJURO+54CJ3mvbzTIKSmWUSwgNT7n0GXU783W1aGVRMaWeommE1qXQGdogUky+bjzFHUJeJfhhpup4kJYWxuBCIQSLVJC8IASEDXuTOY6lKlkXNylpsPaPXEn9/w/nVNf3NhjDAKOFoteT07JTtes27N2/ZrjdEH1guFqwWS+oye5tYN6L7nj442q5Dp8AwDNOcm5iDIWsid55zaTLmV4g9Ai8maWgKMaPCMbOnZMrzWekMLkklsGWBsiYz9MhMSxc8TB2EOM2pXYctpeyhJcXE6Aw5cbOsaharFctlgbtcs91saPuGqCRVtSBJRWUKgk1IY/EoXMxMOI8HEmIKitkzICdPPSawT4jMcHXJYZVGyQwkK20xuqDrRrqmobaKVV0xK3MAyc3tPavjA/oh0DVbkm2gdIwZ8kVpTRSaMIHZymiqWc189ISgafsGZSUxFfk+xMA4jvR9j+U/s/deTbZk55nes1ya7coe06cdDGE4HHIgUTMT0oVCt7rXT+Uf0I0U0oSG5MyAJAA22h1bvrZJs6wuvty7qhtAgw4EMcSKqDh1yuzKnbns+72morJM0fRFQHArW9txHBkGkSeLd1Jg9D2mShhrSVqTQiSljLaG0I8MY6G1jjAO6JJYtS1jSoxDZBczRhXaqqY6cnjT4DcDwQe+ePMa2zjOj455/sGHHFlNIbIJHT702CzBJTZYxnHAlMLRfMbm6hqlFfPZkkZb5s6Rdz1DGEg2YSqNrQX8MlqRwsjlq1e8ffcJT168z+npC7ajZlwXLt5dohpNe9YeGKw5i7+gUerA8lVqSmzUsmgWrUWGWgp6SihWSpigVglIq1SmndXMU6LZ9AQyPitGP0iCuGWqIEMqSdYKJZtZjSHHLBscEtu7e7r1hnbZYKqKu4tLiJk0jpgCJ0cnPH8aicmwvRvY3m3xFpFNrzeYt4W2UZwcH3FyegLGcb8bWR3N2aRMj6IbeiiJZIrMhTmQoodYDr5y4uEo8vO6qlgulpgswSlojXGVMBpSPGycS86Mfc/19TXjOLJcrHj/wxW1s5ATbe1ISuY1Pw6MvqcYzZ2tsDhSpVnqTH92xMnih3xnLBwH+OGP/i3LFx+gbCXkJxxFCTh3YIr8mg3E79u/4rbvHEVChmTelkJFmYK15rOG+ax5+JXJPgs4VJrlNQpoSXKfEBFUHhju33L76hOKy7RLR1Rb6nnCcIcaRggd0a+5izdc3+9QiwVPv/st6hcrnh41VGZBdIXZcoFSmrHr2b55Q/fmZ9jNNX/0w+/w/PiYn/38CwYbePoH73FyPufqumMMirDRJNXjN7c8+egZH3/nhGffewpHR+B6VLmBugc6Ugr0dyPDy7c0Q2J+9i3K2RmqzcTP/hbfVTRnzygk4nZLajusicRNh6pmYgGzWqGi5v6nf0vGoNqaxelTzMlzmD+j2DPILffXF7z98X+muhn57CevoLrlf/4//nea7/2Am7cD2/uK8/oYNwSeLL5NvVgx6kCcGyr7HMpTVDkih0vu7xXvLm5ZPu150lhSrRj1ZMOAgDb6cKQ/PDy++fC2/9l/+Qe8r7OHHqdyFh6zSeTrJYvvm9b7wstv4JqmjzR9ZjLoeLgC7JipTc33/+0fcfrsOc9fnPDD/+mPifGeu7t7bNFyvlYWEGsSZRy2aTC7Cq2lCJwfgzM8ApWcEzn578Dz+423bzpFP1ogH4+Ox/+WUuh3gct3V9zd3FNSQTWOHCIosYoqJaNzwRgBhAedpmcv+/f9ByBzbJ7m2EdfN1YJIaVoUpqUVnuPdxVRWh0YQSgoj+dffhGo+9cUBPL1tj+WZqazVdn79ck8WLqB+5tbPv/kM169e8vl5SXrzYaoFViNzwmfojDmyBOxZq/AC5P9ifgHKq2w2mK1PhCEjFGQFAZHDAGdR5xJWAWFRFIaMOQsZ7QcR2FrZY9XCVWMkIm0w8fMrsuTx52mbi2peHxSJBzn6hRXO5RhulY55+2Zlr+rTYgfkHNCj4l0v+P28oqbtxfc3dzSh5EuBsZSCFozKJGLlwImgyqiJMvk6XkllNIcwudTAjJ7EzijJNDlkA+QMsYJyUE2SYLHTBcHCE72wLX9xfaNAF1VwEwPKe8rR0UqnCJWmthVlCmFREAiraRCWlktFzAhhSlL8IE2GqdqnKsZJo8tSTBJwJ6l5dj2W7RVVNZRNVboijkfJJbeB2H36SyHtGlFjalQciTkRIV45iWdSUFuXlAaTcYqxZgy/SCASOXBVRLskFUBUw6gm9pXsvRkAmgUFnPgK9qSH9hcNhJsJlpLToqcJmBxYnr5esT7GmMHlBIKZs6FMQT6weNDwhmL1dBUFltVBxaaRh+QWxBtc6IQklTWUoZQMjZPA22STBYEwa+ritY5rLWM3Y5hAO8Hdt1ASFHSfoymMoZ21mAzqDqQO0vqevpxxHtJui1ZYr+11iKdpeBKQU/MxJQSzom23hgDSUCNbuiJsT/0s/3WT5V9Aq9Qio2zgk2lB90+7A/86pDWKvddBkmZomcEHJEAiqinwWZls9FFz+gHVlXF3WbL5fU1BU3bBmKQwdVWltAPKFMzO17RVg78llISwUc5xFpPwVEpzaJpJQnWeHbbHbv7+4lxpjhaLJk3LaoUhmFgt95weXHB6viIDDSzOWYKXMgFfJREn5A8KSusgTFUjE5hjcKnxJgy2lSyfVJaKipFwNcSI1oLi1DASi1gJQWdxVx2759SSiGHJIy2rAjBYa0ipAzKkKPo8rMC0JNMNlNbxdw5jtqWduYItaY4g1UVJhXGYaBplzBJokuO4oU3bf6cccIaSo8lyqLl31coqqqiaRpyTozjgE+RympiUfgggGZbW9q6wRgYQwI8s7ZmfnSKL5ouFHyGyAPYq5Wmbhx1NuQ4kLPHGMPQj/RdTzNbMG8W4Hfyxq0il0KI4imZGzel31qCHwkxUDmHMRBTZBgHfI4koxhzJAw9ViWqAilLImzMRarYKaKnxCY/eEpOIjCxjlxZZrXBWvAl03cBHcEUR5sLVWjZ3K/5+Sc/ofrWxzRPz7i4vOCvvvg5YxhpDTxdzPnw9CkzW3E0X3Hiznl9d0vXbXFKc3RyxunRCqUK67Ej5YBNilobnIb722s2t6eQFDcX97y9uuPFDzTvv/8H3OgNb95ccD/ecPrBGXbhsEbCbKTiFxnTyDgUfDAsmhZnLTYHiteMgxQrSmHqjzIXRhKlBNIwsJjNOD86ovOatrPcdYFLfQ86s+023K0Nuq04XTQcNTXa1VR1TQXYIJXFyjjaWcvu3Rve3FxTnSw4Pj1lvN+yGUb8OHJ8NOP86BjvC7XZcRkL/egpxrBT8OX1JbrKfOdb77NaLKUgoGHRVpzNG277kb7bkVUDTU1U0KWCCQkXICcvXorFo7SmmgD641WiRtM2kE2iOIXJWmSswZO1lFhy0QxjIN5tubvbcP5kpKkd56dLFosZ625gOw5oU9MHzzjs0DPNYDSldYTVgs4avnj1luuLz/jo+z9k8XyJamS3YZQwrFNW07y1P3vsN/ETcPfoRKIe7zSAybDl8Td/3/47aF8/nz4cRAXITSlP6gCReYBwfmyZPsuJFBLaGEkFTok8CPNeGcX8aAVGQOkQPMpqaqtht2b79md8/rO/IJF48fEHPP3wBbOjJeuLN9y//oyqDOgYaFYRFwaUcpydnKLdHOYL2ueOsb8hhC0uKuL6jnevX/PzP/9zTkzmR//+TzlenfFsveM63NIuKkLxXNzeUrCs2hOiipwsNyxmmuX5MepoCZUFtYO8JqcbxvEtyghbfbt5g99UzBfAeqR/9Qnd5Ruq2Rnc/Ry9XFA/r8ElxttLQt8xn80Z7jtSNzDuBm5fveHphx/SPn0PliuUqcE6EoaE5fTZ+5z+xzP8u59Twkgf3jBvvkOO55w8PeLJRy8gGugHbB/IyjFcXnC/GWjNkhaZf3Jp6UPNpochaYLVRA1BPbjPfXXEy4Hz795+d1kYsuecvIamc4AxRhK1jfmNz3EFyEqjy/5EWATUrgz1yQnfbY741vf+CN2AHwP1XFF5i22XqLqFmKGRhFayRSuN0wWt8lR4NZRkUFRYZKaX/aQiW4ut3ORJ9y+07Semf0GXqB79m4uQkEwp9NstN/fX3Ha3+DxilBTXtFVED6EknNIoKwCARVQFB+uoAkVP9fEoKg5A5tO957iV8L6cM5Q4+bsL6GCUFD61FpueXCIlIQX8ojFZo7OAe+qQ2Gwf3WN5M+Uw89uvLQwPZ82DLPprz+eg1mHqZ3uy3uPXUVDUnkctarffWitQJvXUZCbIRGAl9APbzYY3b95wfXvDttsxpMikLRZLLK0gJmGMC6JDTmJI1VQVlbXsdjvZWSmFNqI2U0BKRtar4tBZT1ZVlqIKuUQhFqSCrjRZFRSRlAOkkaQzIVtsduSUiD4RY0dR0DQ189KgTE0CqsahdE3l5hjdyHucnn/JcWK6/zbn768Ven4ZWP41kHzfNIoaKLGQBs92u+Xi5ppXNxdc3l+xKYlUWQpJCC97//aiJLARGEIgJPGrFum4nbwgCz6kw55XafNARJBBKvLxYgBZR3JKhCzKQVWyEAm0Jqt/IEA3j16QWDfJ2aoKXwLBZ0IO4pGhFHaKjC0AHmLyhChdOw0Fr2BWhElVKsPMiqdXSomZk8NyjBGmxJSqqjCVo9u1xCx0UGGdSDCANhptHc2sPSDS/RjI48gY/AToJJp5RSme4KdYaqWJYe+pp6hdhe8yY0zUdaRyFjsWrBWAx1ZJQhm0kfugDCoJXRxgGHox5iejAEOhcgpT1aAMY9DEADEk8XuICZMsxjnqNlM1IzFK6muMCaUscQI6wxAo2jB2PTnv0E7TtjWzRUvbNrRuTjd2k+G+w9WNpAHmTFUKxmpyiojOVphKOI2ePO1UThgjIQohG0KKdH1P3CaMNVR1zbLOzNsZxTnQA3Xb0C4XDH3g5u5W5LsSFESjDMvlkgqLHhI5e4ouBw1/jJKAuw9MUJhp0isYq7BYtBOGSfRBwFxbk8d4CBFRSjGOo9CC4RGLzoi3ubM0TSUhBpOPV44KbTVjDGzGLShx8uv8yBeXVxgnwQxjhF3fAwatLWNIqFiIrWPIFq0qnG4JfqQHKqsY+4HUD+BHzJBAa5bLJVlbLq6vCLbn6HhJLBXJyP0ZhoGb2zucc7y5vGKMAetqjk5PmC8WjMGje4/WAVySsAEyI4k+BYovuNTQZAEoFdDWLcla+hBpqox17jCtZWSBGENk8IMAyLkw+pEUErW2qCi+jrW20s8zVK5ljJ6UA8k6cA2ljBSlGEpkuL/hW/4FbLeUp2fEhePlZ1cM2y2rxRl1PcOPQbDWyQezbmoCisGPoCRhZ2+Ga42EyOiJYSXXPKCDxMRXTT2FYCSpSCjL4Efp4zTYtqFQGPvImA1Lq9HzltFEbjYdbogcYZnVFaFkRj8y+I6SRMprlKVtWsi3Qhc3iUo74hApuqKyNbFkBu8J2dGNkbYyKCfhNEVrnNIyb4U1XUoM2nCz3TLThnnybAZPTuCaBWvf4VRm5jSf3d3z+vae0+U5R/Ol3ItVTfEKqx1VFFaUcYVcWSiOytVUww4Ve84XM+a1wji47rdc9JFNN2L6jvV8pI+GF8+eExGvweOzM+LbdxAC/f0d90qxPFqhjCV0PanzzLJDjxuUHfFjxJklZ+ff4vN3L/nLP/9vHL+65E/+8N/x7fkLXl1f8ulnn9IsG+a1Y5ESdRlpksLqDhUN1s3ALUlK0w935Aim1iybBZcYMgYP6LbGOkPII62eke7WVIslC9dgFk/waaCq39INV2Qy99sdLZq+L4wriy8S2oEFYzyx29G0NWEb8cry7q6nLYUXH76HcQsuvnxF1w989NTRd4aFseRVSzCnrN9ec7G+xzdzTheGzzc33H8eeP/Z+2xvdly/vuDu7TtenJ/xx9/+kJ+8eslfv33Dhjnq+ITONmjTcKQEHG90gLjDx5akDJWxnLSOeVVYLRUXmztuh0Rrl8x1Yu40OQXa2YITbdn0kV3X4bOwYGtXePFshQ+Jm9vCq8sNUSVcbelCJGzuaJYnDKriszdv+bM/+zM2F1+yWr/E/o/PcKcFjIecUUpCfw7OI9NirkigtATCFQXKCuifM1qVg/jqsFMqe/fbX9w8/b797rSCWImk6fMDm6hM+QZRDlBWK/rR0/cdtbPM5+2DXEtFYIsyUsCk7NNA5ZRjtREj5zGga4u2hso1FDIJT+ivKOMFz1qF72FpZtT6mM3bHdad8PQ73+eLn/xfXH7xY5ZWsdJzwjrzs//zP3NbPqE5fZ9vf+8PcK7A3VtWqoM4cvvqFX/9//w3dPYQHf/hR/+O1fkpn3/5mvu3r3hvdkLfJ4yqGYeBi9svCU3k/Pkf0tgZ4csL8WedFahH9Eyj7RHZ91RF8eTsBbc3HX/zn36Oa3dUy5qX1285Pr7nD59WpHUi01OdrqiXinqxoERPvb3DrAf6ruf4pKU9n6HiBrpAcbeE9UtS84Rm8SHKzWAO1fsnfPy//m8M/o6xWVDrZ+j2HFiANah2DnWg+BH7/D3OdC3ewE4RKSRbUS3Oce6MIdXskrDm5jzAcV9t+698Fbr75nZw43roXF9vh5cqfP2Y9VtrCvQjGeveaB/k67/pqU1jcFP6ICAPRuACubilFRBcQVNXQiKoFoh9aaEYQ1YKXRQ6WlzRpPGOpgpUbUNTH1GpY1QwVE4IDooMxmCOV1OV5oFN+JU2/d1var+Smfi1n3ksGXt8j0sppBSwVpIlvU8oFFVl2NtzK6Q+PTn8yH3Tj/vQP7z/HK5eff0L05fUV69fPFunEIYiBJa6OFLI3F1f8PriNZvSMdhA8J4SR4I2FCOF8wzsMmRfGFMhZsT72sifHsPekkmjdA1ATAmY7k8oqBhlb12gTGCbsw3W1ISkCDHhjMa5Gm0qVAkszQw1FBZmjokSKkBRkr+1f2YWihJ/vIJGFzuZ6D+6YTpPNRsBslRG1APiWwOqEKYdwx4GMunRayjBM4qCMBUGZTfxm50Dftl0tAci7VSEUuwXw0LZjrx59Zaff/Ypry8uWA8dXc4oV6EqKxZBKaITLOYVyY8MwRPjpBIqkr+ljGI2ax5UdKUQk1hCFCb/z5ywtSbZmpCC2HsZK/evZGIKpDAA0DiDcRWlJHIobL0nhZ7V8ojKWnzwxBzYDYWsEwvdoNeRUhY4e4pRKwwNqlgKBaV/jcDyN972HeyXPSH91R87gL/l0J1MKeALahe4v7nj01ef87PLl7wJa24Z2fgeo2rqAmkIuKJE3psgFAHUxtBNNjNiO6PdpMJLgRgT1kzezyVOStB8YB5qa3B1xRAkPDCXydf0EC4hSqNvYuh+4xNQ4wBGU6Ijq3zwDVNaY7QkFyojw80ZhbKaCNhkSRR2fseQRvpx4H67mQCUhlkjcb/LeYu1GmctdV1NXmOiyw9DxLkKWxRWG6IVoOYghyuKGMPEpDLMrKFpqwPbCgrb/l466+RRl6cFIE2HjFrXFCDkRA6KmBUmgjEiBWyLFrDOCgqqfKTEhHF2AoYqKBk9lTgMkuKhppmrthVGiy+aiYqc7cQUkonddnZ6T8I2izETYiSGQAyZHJJIUhH5SPKJbtPT7zqKKrRtS6llERXj/4KaEjh1MLiJPVWSTA5DypQUyN7iJ+lsKaJ/x2pBkXOmGI2xjk3fESbj+5Bl+U5JfAFzzgw+T1RgjS2ZmJV4T01R3q4WGawfBDiVSSqy2XZst1sBDicpnNYao6ZJf19xeOR3+PVAiJSSpN1GPQF0Ckol9FOlIEfyOBJGj7aaWCKZIhWrEunCKNRia1HaSXUqB3LZb0oUq+WKqm4JyuBzgWJIKbMeBnIKfPTRR9KPQqKyO3ofDgj5cjZjOZvROMeQ0sQwTRI4YA22rTl2Z+LfFxNdPxKTyC2TF2ReYpintFOjUK4iGcV29KTbW2FUKsUiJU6dhDEoreXQk0aIUGxBO0XdNBRV6IdB5A5KS7oTe287ASaFiSvXUVczYujofWC8v+c6dKx3A5SGuqq4fPmalzNDtmsiO5rVgvl8hi0N/c7j/Ui3HQTgqaWvZ6WFKamkOpYRxmIqkzx+v+qrQtM02LqiRJFOG6WxWuGcpmlqmsoRvGe93tJ1HbOmpqkqVCzcbAdyyFyvd+xGT8h5KkBH9mVJkRbstwsCLqgpvUflgtUOZyqUMuIVktOjEBYJYDHGYJQWZmCWpGhX1Zg6EG0WJkKMVDxEoqupryc8qUgRIGa4vLpne99xtFC0i5pEi0LhtMa6CqfdBIrLxL6cL3DJUuuC7zfEOGd+tGJ15tnla06Pz6k1XKwHLu5/zoun53z03nvUywX66poYI8YY2rbBVg5Doa0bFjHR7BLnqwWz1QnPzp9S+aWczquKlzfvuLu74r/85f/Lxx9/h48/fI67dby+est4H6hNS1nMqXSFUoVcMrsxkLQnK0PXR5JyUrUt031XRjzvtCFrjdICADWVI1nDdn3Hy6vMTZ/Z9gPZgMGAMgwhcXm9pnYVTVNhnWHYbpnrBGkk7DLVvOWPfvSn7Gaf8OOf/iW3u3tOz98nFIWPnjT22FSwWsB+4wzHT86IzrDe3eCHkY8/fI5pW252PX03MPiIyoWVtbxYzQjhlNtuw2Y3cn11Q310SomG1lSouqKuJOihD5kxaUrWGDStzcwahfWG1EdKiagYGPseazLboWPwgdXJGbae4YMkia9WK64u3qGy59nTY4ZxoOsuQFlU9DSuxuXELkW+fPWSm80dbC95li/o1z9CpQ44kj79aN3PIUIOaBunHYJBKYtWdpK/Pz5sTYehAr9H4/77afut8f4jxEjfDaSYscaSYuLq8oKrywuapuKD91+wmM/JWZQHdlqHSpG1pViNpMII7KMaS46J3d0dZZdoFw3z4xnFiFWFViP1USGdWzZv75m1DScLh7YF11h2myuM2vDei2e8WBVuP/85rz55Q7dd8PnlFV/uGo4/vmGsEh9/sKB78xknmwUlwu3lS56cnENOXF7e8dd/81OOVxWz+YwrP6KS4unxKS+/uGDTd7z/8YecfPspH/7Jn8LyGfF+TdndEoZRzp5HT6lWDsIdbO9ReYcqmWXdUDuxTjlatqi85eKT/4+dX5MrOD97ytzNsbMjfC5sX31J4zPzRUtzMkc5D92G0oM3hqE4KqNR6hjQhJAZdgN6fsL86VPMYo6yNZkKcfwoVNPejspIoBkOYwpKJxSZrDVJVRTkI09pkOJ1NoEBh2G91zo8Bun4NcP+MQPi78qm2//OP8988qukfOor4JT6tT//T3pNCNDxmJHFV+bcKZrlEbBZlCYfkhfVAWMxWWFMw7yZs1q2pHbEOEfbzKE4yAZTmJxmsjyl/f77F67ra3SVf4Jb8TgE7vDSk7d4jFH2WnlyxzMCzuUEwyA+TlUlxKUJHkMSdvcX+I8Dd77C3/naW98DcfAYvC0HCSlZQ0zEuw23V9esd2u6ODIUjyoFs3elMkyMHTWRz4p4Zj2625IEL+SN/dFAWZMAACAASURBVJ5VlEuzw9molDTdq31gHlSumZRGE5MnicVLzgLkGSZrqhQP1jgKUc9gJ1BK7dlv8QB/7Eey9MsCKk6IHNN39MOnB/BEHbCIIlvhh4LgLzTxfMx808/8Zpt4q05pnkWet7++58vPv+Dnn33Km8sLUSvkSJzujpqslnIq4q2axJ/MTO99P2aTEpuiQ0glE9irlaSCZgn2U2qvKhOujRwhHqyHQMA+oxRWyevnab7SWIyrp98TYsOeQVkUKG05OX3KcnVGU68wukWpSt7zb+OGf2Pbh6X8ivF8mIv2BUBhhuI9Zb3j+vKKd9eXXO/WbIsnVKAwB2k5k/oTZcglyH3OcQqCmOxm9s+JcnBiGqPgSykJoLwPV5PpQLPrhwNupSZs4nFgS/DhF+a+x+0bAbqYEkUVkU2qTI4JUhLTfTS1VWhVcErLYC8KoyBqCejVVDLJBo8fBzo4MKicMyxmc+rGsVgsWLQNzlXi9zBVH+TwK1LZnK3IQ73Hh0CIWeRUk9k2ynwFvCkkrDuapLCCYJaYyCmSEUR0mJh08hpi3F9VFZUVqdb9MFLVFls1IgtEo6yhyg26Vgc5R5k6dJkmFfm/QhswU4y52J9NDzjLA7JWH0wH90Cd9wHvR7yPxDFRJtQ9T6k9IXn8MBKSZ7tb4+oaY9zkO7df7GRSSZPcscQ40WvTBAxMUd1FPUo/RSjwzqGtPJ88TRbbXT/5oomnwehF6jcMQdiE2hJCOICj+07YVPXEZhMwrZvCIcZxnIxNpSUMldGgsyQeaYWa/tb+/uScD1TQAwJdymHBcs4cBshhzCoIKcprlSisgKwIaWTse+bzpQQroND78ISiUdMhXRvDGAKbzYbcVswqR9POcM4S/cDd+n6SPFiRBeTMMHhKUbSLObOlJNfFnOnHkb7vifuElyIAVEqJMXYMQ8c4DqQypeTGKGAO4vM3jF485bSjD55uHCZ2ZWY2m3F2d8fZ2TnPnj3jCKHJF60E8FZaZnH2mwoZh/vndEgSnuaJfX9LyDOqqoq6cbRDxgyR6IW1Op/NqeqaGCNjHCgUrHOYJGzHlKKEP0xUXm0k7loAYVmofJKwk5TSNJ70Hh9lHCUNU1KNMsZocsl4n+h1j9WKpqkx1AQvLI4QPLFuMDkyDDvu11tCLCLByomM+J7lEthXZ/IeGFT7/iOzvTHmYLIbQhAqupavlwlQryuLNuYhVVprqsphnaWoQbzEQkSrTDKKbDWNNihbc5lH+hRobYWuHVfDQNd301zncXNDbRzWaGIGckSVTOUMddPSasXCNsxNIHrPZn2PToXG2YkFWlgdHdMcVezWd7y8uGWzGThbzGlXx/jtBtNUuLaWcVwSThcqIxJVq6CqLMcnKxZlgVae2dIyO6755PPP2d2vefX5Z+A0R8sFvV+xvb6jH0bu1xtmC4d2Mm92YyDjqWdL6mZGKhpbV1iEMT1Ye2Amq1xIqjCESNPOsLYipsTtbsNdUPRpktMlhdeOZDTZaYbgubu7J6WGugKfM85YfCroWc33vv+HxONz3ty+4c3bL2lHT1vV5FwmsF+q4M5WHK1qih6xBe7TFqJnWbdYbdluOozSEm6kDFoblrMF71vL223H6+4Vl/cbPJaNHpnVLTtVyOczfNYMSTMGiFFRlYrGWRb1krbqZNO+DxtKCes0Xd+zG0bOzp5R1zV917HZbjlazIWV3mdWiyUvXmh6H7lZ76hdxeg9u3gP9Qlx8Nz0PTauafOGXTeSMGhdIQCcnoD5hHEGnTOUQIlZJDR6v/VR01oxrWdlP14etX95u7vft79n27On9vvejLDb/TBSrIScqALb9YbdOvPs7EyS3Cf5R8qZUiop5E4Maq0eXrjETLe+p+vuODtbMJsXlN6g4g5URDEQ7j+FfMXzHzzBmjnD7jXp81csP3hB86EDdQRlSf9Tz+c//r/520/f8uIH/4GjD57htzV/9O//hD/+X75LZXve/M0brq9e0vcbxrImV4rNuw2EgD+esXj+Hot+hk8zjt0SP0baSnF2ds5733mf+Yun0J6h7BH2uMUer8AMpO4Gfz1gesSUv11hl1uOZ++oTufYZ8fQak52kXRzQR476maJB8p1IpsI77fUJ0vy6ZbXf/GfuLt7x/kH5zz9+FtsksUtV9RHp9h6jnEzKC2wAKXRZqCeOcxckqyZ1nEzFfUEEBVbh8ppKLJn33NElFJopcSf6kHXPrFGvpHq9q+n/Vbe8tcOyb/6Pw9fe+wbNm2ixFNeis7KWoyrpJBtjCTTaiPFMZBnrn4zb/ebQNDHZwb4Kistpog27iHsIMNmM/L61Vvu7+/5wQ9+gLE1xh6wssOB958KR/1VL6MQy6c9OPcAohb2TPIUE+8urnj99h2bXUdWEFOWUET0ZBn1i39D7od8rpWcIcvk0ZxTmsiNEhiXi0iW80ScKGXPey5oHabnr0UNBijR0FJ0Et8xHSla9meJAbCTnNJRJnk3SGDhtPrLWUrxCD1LQJwYQWLOaDQorQ7S1q863k23SsOU3seeDikvq6e/9Ntpas+c2/cpCnkYeP3uLX/zyc/48uVLdn5giFFsbEqWoEYKOqvp7CZYxN7nUWs9yZSL+MBPnmVfAW3ytAeeFGZKP8I0pkGap7CKnNPBn/5AUpG/dDjXVbadXtdP/u3yE2Zi7z19es5qtaBylVzL9NcfkNXf0ITw92qPyxS/+mIevXsE0cyUvufy6oYvX73my5evuby9ZggSzumcI4xRgO0s+EkuaSKNQCxRMJr9fEKZyFdMrlJi8fV47Al+8WAJl0KaWJMT3pIyqaTJhzCyXq//4QDdV8vq5fBhSkGRqK3DkA7eYUpplAVrKtE7t5YcAzGFwwUBE2CmGHuPtZr7uw1N09A0jRjnT/rstlZgzAGEO6RPAlrFQyfUU0JpjoowTU6ZwvFyRZjM3b33JB+mVDEZJHJz9/TkEWslOre2TioyKtN7TVUF8WZTQnEMITGOUpXQRR6K1gqrFVZr6SCTv1RW+0VTHdhdpchHoxz7EIqcNSkWnFNYW6idIblyAMX2KK2PClUipRj6rieEgDFuSsM1gshPAMw49OQ4ig6egjXCNtsDpM5avPeUYRB2GwqVFDoByVJXjnEC3mAPznnG0Yvn3YFNJD5xMXnB7a0V4Na5qZJecMbSuIpopoTHSZpcikQTFx4t0Mi+MsRwYEw+DobAGPTh2U0ph9Oz20thyVA7YZipUrDKSJKw1YTgqLQVKnfKDGNP7yO5aHRVo61MnCFLQunQZ/rBcDSfMWsqYfxVNW8vLuW9VTXNbE4qihAzsRSsFpqwcRJSMviRGHts5Ygl47db6uYh+EIBOWZSTvhRvLmcEvAwKthutxQSLJZUTqphQwp0Xce627Lb7dhstpSUqWzNcrnENRWd7/FjJKmIT1P/n4CmvXTiMTuxlIwq0p8H76kUtE3DfDljVSlufGLnI2UsPH/+nG9/+9ssnjreXkWu7q+JYaCmxRhL3c6YRYWyQUDuqoJcsBh0pQkpELPoE0op4tuglLAFlaJyDmetmKlmqfrLAUM6yTgMzNqG1WJG8J5ht5366EgcB6gsIfTEqIjRk4t4Bj5uZQK+KfphscQcNnv7PplSFm9NpaFoUkwEAtaKd4QA7NPiq2TzlQqEEMVnzWTKxDKutUOjwUuabV01LBenRNOz3qwJccfFxT3VzHN0fMJqIUxcrRDvAgW1UTTGcDRvWGiPHzbs7u+5GwOb+x4/DPgRKtUwf++I02cL7q4veXd9wWaz4dnxipmrSNYQZZpFG9Api8uRKbK4+IDTmlllaSrDETWuecKs0lxd3vDJp5/zsx9vefbxtzk6OeHkxZx0vebi5pY+95w9WfH07JQxFm7X12DW3A+BaGpO3IwhZ8bg8T5gtCb4SLCKqiR24wBdwWFwruLoyQqrGvzFLbfX16hc2A4duijOzo6ZzeeUnNl0O0lUzIGTWYvOmrtuJN3e0S6WfPjxd/DRUzUzlq7G2prgI8MQ8F7m7NlsTgrQAvN8BqXleL5iVs+JY08uSpKfq4aUMuMw0lSWs8WC06rmzni6fqAbOu5sz7th4IOTluMnR1C1RGp8sjgUFRWNaalUxEyV8qIKprLY2hJLYbPraOc9oOjHkdvbW0iRpmnwfmS33XK0XPLBi/fpxy+kaOIj2Xu0CyxnLUVr1JCowo6iKiQUQrz/SpGAmDEIaL1b3xKHLct5y2J1jNaQsghczGPp02HT9A08/d+338n2eDvsrGE+a6ltRV1ZnDWsFnNWyzm7zZrlcikHv+k3hfeviBNjQCMMgL1EdrPesdltWcwr5scNuADdDfi1+CKmDTZcYWcBKof3nrhZU7kW5SJRFVjfY01D44748L0fktJTjs6/xdPZC77fnvHxj77N4klNvrvFjluuPvspPu6gFLbDPdZZPnr/fd7/7rdYfXjCiUpsb3Z89umX/OSv/gqGLc//4/8AbUHV00m0FkY14wbySDGKkjXaLEFb6LeYoaBPTjAfvY+yI2yu0Bb0+SnkI2ojOq7N55dc/OQVq6sed7LgfnvD66s7So68f3RC+/w9Whwsj8n1jL5T9N2AMR7jNLaZY80crEIpD9nLIV7nSYesHhDWaYgqtS/SZYqaEkofpbr/0/egv8+8sOcrPf7937d/SNvXT3SR2uzB/0sZlJZAIpRhcqX/xd/9yie/4v+/7hp+BUL2+EC6/5nH4NzD9zTOOqxx075MkUsmhHEqaI+HkLivNn1gGOl/JMLzTeBcgWnv/rj4nR9+LyvSGLm8uuLm5o4YEroW6sqeATfGKHvaEgXXy+XA1lJKoXKZFEWPCumPPh/HkVISKUdyjofzkBTEkcKy1giXUqO0RlstEm0lXUBZ8UwLZAni2pvlE4Fqej/xkdxUH/rTgwAxsrd6UmoKxJpu3p5xRBGW134+EiXNBPwpeW4KhHX96x7AP2Wb+tyeKLt/ngogCcPQ9wMXb9/x6Zdf8Obygs3Ykyh0yRNAyCyloKZnZxBgNeYkzEQErNQ8sEUfBx/KZTxIvffzssagVHwIT8qPx4zcJa0VRgtAJ2SbdPi+NZWcy5WoAY2R0JGmqTh/csrp2THzWSNKF/J03/cA3eEu/HbanjGn/g5rwrR0HPgVCVIfWN/c8erdBS9fv+Lt5QWbsSOUTERYiCEJESaXBxVXpkiuG0mwmkkhUtSkwGIfbJgmEkqcQNM8qUAfPeMUD+rIGP2BZDaOIyGEfxxAF5lomtNE73hY6y1GTLjLFIAAKC0VU2U1aEXK4mdmtAQ97Kl+YbroQmEMkX70sN6glQBMzglr5Pz0mNpVzJqKtm2/AsLsUeX9hJVzpCiDMRasoPYJMMrQVi2NayhN/AorS5VCCEE2fzGSwkj0A30WF5SjoxUlFryP2Ep8n2xKDHhhLjXit2KUpKNUxlBchbhHKIpKE+trvwGSyoJSTGoxTSkKictWZFswsWBsBQmCz+QwBXAUQ0oJG0GbjPXityZ0ZchpCkiYuMMKUOXrNYsHMCYlWMznwgZimkxjIuZMGEaG0jNYfQDnqqrCWkBJaq/OhWYmC6ePE+15CqaQRcvI4pILRmvausbZilQySgnza1fUYVKSgcG0sZeBmMtXFyatBWCklAONWzr3QwXioU+AjwkJ1VHM6orlfMG8rSklEWNk2w1sh5HduGHcDSStqbQB6ygU6kmDn3KiG2RgVVYJWFIkcWkYBmIpuLbF1Q02JsauJwyD9OVG+PcZNYHWLTWKzWYzsSgtcyWgoh+nwa+1BJ5k8YbbH3xCCAzBo1yNMYZ6PkNbgy7CQtLGApraOhbtDDuvyaoQx91UZSuH+xRDlJTfkgjJy6IYM7mYKfJbY5N44I3eozrowyA+ilpjakmnmc1mHB3NWPdzrDWEYSSVSOXE58ZYhQ4PR739OLDWCltH6V/YeEiKpKaqahSZzXbH5v5eKMfGMm8bjo5WmFk7xZWLXLudz9Fa0+823N3d0tgFqiRiLHTdlt1ug2sXB/bg19t+Y6Om0l6egP799/bj56GfPWJ3Zglo2UvC9my8ECP9MDBaYaCklEk5klTGTOlwKRVcVXF2Mmc2XxC2V1wNHTe315P8smG5aKmrmnlTk7uIHzuOVysaZ7El4GrHzntKCIzbLb4fqeyCt5e3XN2uefr0nPMnp3xwdMTm9pKXN9c8XS1RvaHabThzR7imIhFwg2ZWOeaNkfsXRnRVU6lEKIGFVbiTJW1O7G6X3HQjt+/esd3tePb0OfPlCr/ruF1v8SpjXIsyLdfrLZdXN1zcbWmPzvjANASluL1d0+02ZGvoZzV1baiKYt333G3vyOWa+7RgfvIhy9PndOUd280rXCx0ux3DeMPpyYrvPXnK8aymzz3r7ZZGF+qqobKO9bDjr/7ivxKahaRna4vRlvliSV23oAyj79luO3YlUKfEqj1CW8egPEo1VNpSVTV1Y3h7eyUylapl8IH7uztmqwULozk2hhPnUEFBzPhxy0W/4c2TBdXxEnM8o1QNIWpSzuLRlzQua1R6KDq4ysFUcd9st4T0mrpuMMB6s8UqhZuKCbuuo2BZzOY8O3/Cu+sb8jzhQuJ2HHF1hXU1Y6/QuiKXipwdOUkRQytAK9b9hpvbG376Vz8mbO75wz/4Dn/ww3/DzNXklIRZrH6J6ESpXzyL//58/TvdSimTL5UwGtrKgrPCjEBRGcPHHzyD8uzwrHMSBoc2hlIUMQn4P4xwf+shF46PakxlOT45ZjZXKJPJ9zfs3vwt/faSWQ1WdeR4gTFbFInKLajO3oPFC9ANuk+M28L25iXhakdWK2pV+OK/fIZdXfPko3Ou/vJn6KsFVmX8F5+wGjtWp0fcEDAfWHSn6bo1d7eXnH//jKPvfsSw3LLpBvF/84Gy6LFHgfqJgyMLDTBuCd0bdvdvGLoepRcc6YrGW/Ab4t0V4fqehQv0BjZffEpjC6vTlYRL1BaqlvnxMe15oU/w9t0dpbY8//afUNmMHyLvPr3n6IP3MaXCVXNqDAlZ8ylTCFhtZDOpNKhqOldZSJpHqhzg4fCyX4P1b5Sf8hic+zUTwS/99u8nj1/XHphi33Cvpm8prajrlna+IEUJJDNVLXP5BC4UyiOyytfA3b/XhX31b/+ya95//svSQh+/r6qqDhchHk6K09Mly+UPSSnjnLCCpiPolKo7/fz+i/8MrUxnElCH/XqmcHe34eLyju1uoCghBZQoVjoSjKgmBYl4Zu/vnVXi15mSn6w8BOjZM+BkHS4Pae85T6msQlc2xrH3jo176xb0ZFNhiXs2FoWxGHwx+KIIxRBw6AkaUAQUCU2ZWG0ainjVJiWvIeJOASgMEsC4J3N5+RGsKhii/GcC84oSrzWh1Mhvmj1r7WAkxj/rVKC+RmcsGuKQuXh3xU9/+rd89vln3G83jDnic2LIiaSLQGLTuX4ftlv26pwJ+XsYWnssAGLw05nDyHqb9+dZDuxmsGidpmeaRZWHQqlEKY8M/NiPqYdBG1MiFyHvKF0oJWGN5mi14MXz5zw9P2exkITz/Vn6YAT428yGAA5rSHl4IHsQ9SttD87tP8+F1AW6+y2v377j1cUFFze3bLqeMSdiyYRJpZL2Sr6J7JOnpNWChItqa0QZeQgzFOwghCChHFnuqZCuHsIs98QiPwykEPE+4v1wIIuFKeh0Hyz6q9o3AnSdH6Xz6AkyyYVGWWqrcSbTqEJOAuIEsaOfkPgASaPI6IlejxXgIJZMlRIxJ9Ik34wHaq7Cx8Tg5Y3vdjuayjJvZ8znc2azGXVdT2w6qG0tMdNKUYoWidmkPS5KjPH3h24A8gOwV0qhdo4QRsbRTEmygohK6iTshp6cI8pY6roWZQGAlsHU7XqUEo88ay3JOlKlyE68zmS2yVJR0PuBJgOvUCY/BWEj6KkS5CqR85IgB3lPMUpARiqZGN0hVCPGjA+B0Ud8DOQsFrJGSfKMc04qSFpNRuCKlBKd77FeTdUOWZxr63CuFlmoTwzBi2xvYrqFFElxmmy0pWkcdTsDYNsNBxmx1poQAqSIV6DyHlSVys2YI+og6f1qOuueRbdnHCrFwz2arnWfYBtj/IVqklyryNSMVaQsJuZlel5ybwQQctrQ2IbKbhkHz071xJyJMZD9xKCzGacUrmqwuki6sBJLF63BWcuYBACKqeCMo24LfnpvqWR8DBhjWK7EdPfk5AStDXVdk1LBWGFk5pwJPh0Yjipl8hix2tK0DabSQo/PmT54HI4QPVor5u2M5WzByfKY85NTTo9POD05IahEIpFNoXjZMCTk0D+EkZSl0iWJopqUFCVNG3+tySVQUiL4LEEIRfrxQYqIVIRCCPR9L/fYWmwRGftuvaXre7ohUhV1MNQEHmTVkw9gSoUcBaQt0+Lkx1H+3rRhiz4ypgE/dISxR52f4ZwVRoeSirBSirZtOVEw5IDVCk1is77l3bt3rE4Cq6MTlFWoRwvQnokrskU9bfHUgUmnjROZeBF/Pm00zlSH96Iw01yUDv3YGE1MkW4cGGpNDpEcIrs84EskOdl0rXdbhnxLu3jCyfEZ1cmc49WCd5eX9EPPzc0N3VpxdHJCVS2Y1RaKYdk2VLqgfKB1FuMsA4b2dodTAVIhhcx2t6P3I0kXXrx4wvHz93CVY7NZ019fM/iBMQVW8xklT9WjUmiqmlhgt93gbaRtHao4QugwKhErw3snK46ODZtY+PLymrvLG16cPuP506d0Ycfl9Ru2247vfVexWh7zxM4YuUDVLdZVlKIwxqIQuX8KkaAKvhR2OrHZ3rFbD/TqGOM+4OTZB2hXy+EyZ5aLI9DC/uq2O1Rb07a1AMU5cb/rWc0rTDXj4tU73nWXpNSRJ887bUSerrUhJfFoXPuBvNtRPbGctC3HJycok7jZ3tP7G7pk2P7/7L1Xk2THmab5uDoiZKqqyipUEaDuJptiZ3p7r8ZsZ//6XoztzbZik2wKiJKpM0Me4WouvhORWQCIoZGgdQ8NbpaARVRmCD/uftzf7xVtR5ElTCeqwKZtKGtHZQy1UYxSQtuC0aSgbzp8s+bi+or60QGT2WOSdmQM0fcQMjZpTNaoofKfkPUjhiQy+23DctMwHU+ZTsa0XS/WDjlSlSUoxXq9pRrPePHBBzRtR99u6VIkti1FMcIpSMqgs8MHRcwOpQt2m+w+BbbtltV2zburC179+pfQtzz94FuMJ/P7Kq6CENKQCicrwTcMur++JkbeAzNA39vTa6QOGIIcEvcykMxgaZEJYfBaBdoeLq82LBYrDmYjjBMPYqc9Om/Be1SOdOsNv/3Hf2F9d87h3HJwoHj0dMLB/BC6mhwz+AZVgCJTlSNyvGV5syQFxbiqmdqex6dHfO/HH2HyHXl5g9bwbFry/NmPUHXN/HxBZbe8+/iM1d2CT14npt95hB7VhNhycnrEs+Y5rz++5W57xyOjUAcHKGtpb664fvspN5e/o2/usMYxHle07YLSKI4mFq0r2vaa9advmD09ZXL4lNys2CxaqsMp5uRAGK65ZxM1fXJUJ095+tMfQ12y+uwTXv37L1ncatYuoVdrJoeaYjxjNHMoZ4WpE/2ASKQBk9ixv4cD1ntGUe+3e8YSwtjN+S80hb/szf+Ev/mmfWn7SpBuX/yWoAlT1RTjCV3j6X2HD0lYn1/VvsZL8WXg3I5BJPv89wfgQ5nn/T/JE85lnLsf3DsVmdFi3/MVpJS/WNtLiQdwM/aBN+/OuLi8pml7tLKQtQQCGkMMGWUMWguIknLc4WvsMJzep71J/edVHXkvr80SjBHF/3vngW6VpnAFTlkMRoCamEHtrJ48SSeCs6R+UFplsPtFI70PzmWNygaykDqMfoidDADgALLtmlVD4Tu3qNQBDRDIRvbMUvEoSbiBv6XeByU+B5h9ne0L4233/DCYdqrAbbPl7OyMV69fc35zhY8BnxLb0NPuvOC0XHOTtUglBeIZPLUffBV1T0p5+DlSigNILk1rUfSws8tSdpAr6wd4xoDpZkl0lde5/14xQgwt1hq0UUNRR1HVBcfHRzx99oSTR0eMyzHyLqKmEJCOP94y9C/Rdh2xG2BqxwB+/zaVGVTWD5hzBNjeLrm6uODVyzecX1ywWG3ooyQb9ynQD2fuPJyBVWZIx4WIeI2Lv3X/QNknvx+TH1hzQeDoASPZMeN2P957UgjkmAa8JuyBu13HSgDOn8ig63YfLgdUBmcMhbPUxjAuK2Z1QU5eGEkq0wNdgiZk+hiwGAGWoiQzahSF0URjcDnTa0H/i0FaloYvG0KQ9MquJcaevous1ttBmikMO2MVs8lcQiacw1qNwZB3NFIUZSmxwXtkU0narGwwZQSKTttRuB2rJu3DGhbrlZgFdp4YEsFnqipIAo7WRL9L95BJ0xs7yDoN2ipspcgqDV5WGmuTHEaHSap12KPkepDyAugcSTpTuYoUIylZci4FHEiC3vbe0/eerutwbU/bG9kUK7P3MDLGDmDV4P2lFVYj1GIyd4vBQ03Je5uixBUFpgJlDSFGWbxzw2q9pWlalNHU9QTn3B4k29E2Y5T+6FpPjh4bE7mUwei0EYZuSgSf9ghyHgCPnPOwvKv93UnMMIdi3oMxvLux76nAexmihDEIqCyBHBEB5mIU3XffKtxgij6dTgVQjIoI3LU9IgaW6dhHD1oLuOgMZVkwritGoxFV6bi+uARj6fqGxXZDl/IQPGEwhaOqKzofMCoxnk3leliZckVVEkMe2FzSjwxhJkZlopZN1c5DpCwlFrtNHX0IZKNpuo4UokSup0xlS0m8zRqrDUnBuBYJTNM3+N4TSbIYD4BmyGAf3PD3m6aY7g1OjaWuSibKsOwhbnuC91gjwHROieDDXgLvQ0Crnm7wiwzRY1U1HPA1kUgMO9NSjTEW5yQ+XmtDUHHwz0tMxzXz8ROOD4/wbcNmS6eF3wAAIABJREFUs8H3LUVh2W4b6romjmuMtvRBNFRVUTCfz2G9wg7jt1mvePf2Na3vRcY+kZy6HcirHsxBo3ZyavEYywgiq0ikKOymsqookIjaGNIwTgw59aTBL0IrRQyBTd/SBYdF4bLCq8w2iidmkS3rZsX19SumVcsHT57y+NGYo8dPKMdTVqtbFpfv2K7uWNzeUZYeV02YTuY4pSidxiRDaYGUmVQV89GYdavYrgJF4SgLRxs73rx7w6ZZcfr4hONHJ6xVplksOLtbsmoaDqcT5rMpKUEbMzFEsFkCXnrNyBhMYdmGgFaRZBW1ThjjGE0m9F3gzbsLLvpzxnWNKjSYik3b8u7yFmNHPH76lPrghCZmZkdHtCEyvZuRY6DMAescVitEya6YjScUuUL1NVufhHE2VMkshoPpAdV8xNRpYtfT3i6whyVlWUCMeJ/YdgFlRhhbEGJH13tGdYFxBRFF0/d4J4zJoigodGbbNtxcXTA6PObw8YxqPGbVbrlbrVl0iqDt4MNaoXUUKZ8WW4ZxUTIyZuiDiu22ZbGM3K3vyG8+Y+4mdHks69tQ9DZZ47TCqEzIgRA7fAwYo4lR5pd1wpjuuo4UI846iApXaKxxbDcdKXjq8YzD+QE31xe0mxWFKnE5EbdbLFJV75Me6t2DMCUKmxYN9XTCdD5ns1pzdX5Os7wjPXqCMSX54W5ZKbLKqJ0P3Tfn6r+qppTC5CyV5IfPDxVro6XAkuJDaY7CaE23bYh9TzEas9muWW9vqEaOg+MSVw7J9jFg+h7TdeiQUdESN4HmassojhidfsDB8++jOKR92bBYrCgOtxxOW8L1K/qbG9pFA9tAacfUByVHx0+Z/+C7FH/zN9DewCf/Sly+w7qEKyqaW09YdHSbFYvlBedXZ7xeFvTTmkenRxwdTTk5eo4d/y2L63ecnS15ts4oStp15JPfvuXXv/w1y5vXPD455Gc/+QlPnn2fmGvC5hYVV+DGHH/7Kd16TahHjJ8e01y+ZXP5BlXNqeoTtm1PUyrKF0/wnUKdnKJO/pbm9o5Xbz5m4Z/wNz/+OePHx6y3V3RxSbvxZLvBFWvIEPyGnCxFWYEyA6WlvE/fU8BwP8/IPUrINhmjxQg+54HlsQtMeu+s8M2E/s/ePg/Mff6xVkpOQwoZI9qJAkMbdFGTtJZESRgUN8ICgx02Mkz2L7Q//eT+8EB6Dz59EZyTf4/3Hm9qwKV3dCXAOTkbaP3+GeHha3z9Le9/cgRldoxygTlyguQTd3dr3r494+bujt5HstISBBcy9gEJXWHEM1Ipmad5yGYY1lQ50A8pt0rm9s7ex9oHFDNlCeFexWSVYmwUhcqoLAoPciLHTEo9IXcYC0WpcX1FGXqq0FPkHpR78D2BbFHJDFIrtb8WIlm1wvAjIuPCotIOPMmQe1R7Bdt30F+CjajxGMbHZH2EwglxYAcTqQfjTv2FEaL8/jjZyVR33uaruyWvX77ik5efcXV7Qx88IWc8mWQErxD5rpwzd8xGHWVNxbD3MNu938NWluUeWHvo4b7DFHK4B+Dl2qf958xZyE8xSjihMXuOnijzxG1fMAEl94CycBwczHj85ITHj0+Y1jVGDR76CoaUEvbM2f/IW8AfUGTkB//+Hll3ACvTpuXu8pa3r99wdnHB5e0d66ahS4lIwoco7DdEeamGIqSE0qQ9QJe1IUQ5k+4wo+SDFDe6lpj8Hldomoa2bUUt1XV7VWahxVJpT0Qa+ncXwuND+sLa97B9JUCXhkUgBzGnzMZQKo0tFKVWVFYSIK3VqMKSraMHtiHS+Ui7XdO3DZumkYCGnEFbMchUmrJwxCSUzF2qY1CShhgt1PUh0QsY0HjPpukHRpoM4Hf6iqqqmE8mTCYT6rqmKJzIApUkze4Sb/bSS6XQiDRzs1lJJzizB9F2gJOPgaSgD5626aTzm47lcklRSDJOXY4e3DwUXg2vow1oKHorNg8DiFgUGWPSgwUh7f31ioH9oxR7NhFu95mHRURLEqy18jOdzmiahu22pWgatq1E/4bQ4ztLWVmUUThdYIzGWQFu9JAKu0py4I1dh08R1/eUlfiHxZzoup6iKpjNZmAMdr3eg3Lee5pO6LnN0D/OFQLQdQLQVUoTFQQr7B5t3pdG7QIk9sBQTnv2USbj4+BxkHc3hUECORwERH4rm48QJCY+JUmmRMl30wrcMAHJYpLqlJZxqzSjsuRgmoWyrNe0KYlXkzbCyspITHJgn3pZjRTaOExZYYsK2p5t29B2PcoYqnokY7Equbm5AWA+n5NS5PZ2vfc+1Oo+cvnzgRghBKxWxJQIfSBEyFaCPwAKo6nHY9bLJXd3d2yXK/pNx7we88Gjp5Sjmno2xhTiyxhCYL3ZSmS7BueKL1RfZaMUSUOClHMSEb/7TFnn/VhUSrFcLvHeMypqxpMx3aJi23RslkvWqpXYcaMx1uIKJyCjUvR9h88DoAcYo8nZYvR9cMhuY5Jhz5jVWeRTqRQG4nYjslVNYDqeUI8qSmvFN7BvsYWmLmpCUNws1mxvb8E4Do9OMHU5BEPsADq9r04pZdCofUqujNVh45UTSmnKskDHDt8HYo4De0FkGLsqiYS6RLoYiFnGUzKWpGVTZnNiVJT4tOD12QWqu2N1s2SzPeHR00PqasTR8SOmpeXuumK5WLBcLSl9pnYlnTW40ZRRWWHo2TYbSJrCWiZ1Ra0Vq6WEjxiTCSFzcXFO223o+sd88OQxtii5fveOu6s7FtuO57ZkXNcEJcEMo8pgnaVPEZs6dOzAdxIClD2ORN+1KCzPjg6Y1mPOz6/41a9+yehozunzp4wfPWFxe8M//eu/8oPOMz95hB7Yh3szW2OplBK/Q2sYF4rRDOaTxxSp4mypeFkcUldjSlfisEyqGmfsAE47aiyp7WiXLXlsKaoaZR1dH9jELTEqrCnYpEwXI2NjIWnapsM7R0JRjsYcuClmvaS5umG5XjCuFeX4kMPDQzrtuL24wyM3bgqL0pGoIzhhWo/GEybjFl06XF1SWwU0XC7ueHceWFcHjKbPSFlsHjS74olITXOOhCjeLMa6PdNvNJ7gnPiGgkjendHklPHB46zFx8hisaAqS0Z1jVGZkbP0fcPN3Ya6KEipx0cttglJ4RQ4MwCOztFnSeA2VpOjx3cNKQaUlj5SWUlA05fuGt7bMn3T/jdte07kcPhQ5j55DKUGhY4i+jCs0YboA7HP2MJSlsXwp5HCRA5mBZPJhOmoIHiP3zY4ozDOcHd2jV+ck9cNz58854P5AaNKMRlVsJb7dshzYi7xG0XjG3JTkkKBc4n1+pa71TlPnn+Lb/+fP0U9e47q18S3r0mfvWIdblmojvFdT96U3N7egQ78X//wX3nz6i0vL28x2fFkfszzR3Nis+H44Jif/+hndHdLDmaPSW1icXbBmzfnbNaZ46Pv8YMf/i1Pv/9TqA7QQeFmx8Tuhnx5RQ6KTEQHRVxuxLe3HLMNlrefXHHVBU6mz/jO935ImUqCrSDNiW1HUAdMHh1x+OInUBQcHTwD1yDsEzGzbrZ3LO46crYcnTymHk1BO9lLx3uZFWpggu/v8dyzkhhAjS87IPzFSbG7w/9/uI7qf/v2/v5tT7MSkGOQreUswsJcVNSVxlrF7OjRFwCQ+8v+l09yfMige/j5HwImsg/c0XmE0WQfnFrjIKGXZel9yaz6GsGd/1Vf7BN1B0bqer3l9nbB7WLFpumIJJK693F1xqLTUKQYCsPyXXc2AfJd9umr6R642Z19BNTZqbMUZL0PDdBazr9GmQHYkWL/PeNN2Fk55SFHRktAQWYouO1+hjmad6D/g2uzozSpDDgBgB/0lkoZYg/LM/LFr9hc/ZrUvKOeWtzTD+DxhzAtMdRAJOGE+JszhsS999hfZo34smv68L6XQ+aTTz7hk08+4eXLl6w2a6ISOWtQoKxFhczOdxAlJCGDgN3xQSDg/Vnr3m8OBKCT894AvA2AtYwJ++CMG/afMCXBZWLcBU0yaLzvQyAgi2rO2P0U3xE9ZrMZBwcHTCcTdsOWLGcb/flO+QsyGP/clj//IAMBfNexWi65vb5jsVqxbho5w+dIUIkQIlFlnNbEnAdQfDiD50BIHpIAdNbVcs1SIkZP221Zr5e0zWawV2r27Lnee3mNXYcbkamDWFWhxfM+7aeVQWfBLf5Q+2qAjh3NU95HpIW9SDBxQojMCZUiFo11VhB9HzGmp1A13mis0fS9Fz10gpATIQaMcQxs4P2HdEbJ4U0LG0hrjTIWkxw5smfD7Xygmran6++4XqwonKGua8bjMWVZMhl863Y/u1SVHd1w50W1W9TggfROaUaTMbQdaaAO7yjFZvCRC10LsGegJS0AXVAWpYVFaJykOgav6NrwYPJprBVQUCtFimpgNoFC/N78QDlGSeC2kuAXnJO/CzEzHo8piorxeEyz9SwWC0AxmY5RKuFDO8gPJf2xKkqqQvrDODuUo+T9Q0z49QbQJD0ECSQJw7CupKrzXlobY6TZClLcDYBT1/X7ipjTZriJGEIIuCQV7DwkwO4BmJz3N4q9l6FSQ7qUGipm6UElaZiP+wXv/rHW4lkhrEAYj8dC6033N+6madh0Hc4arHNgLVVZcnhwSJ8VZ4s7eu+lMqcVfdejyNSFpesDb8/OeXt2RlkUwpCKEW0dla3Zp0Gu10KDjoG27fbswvl8Ts6Z7bZFofCpYd1sBQgj0oVOGJiuYLPa4nQBSuR7TdvgCWxDiy0M2WkqV6Cs4fHpM+g869WWf/znf+XVZ6/58Y9/zE//68+ZPzpgPJlQlRW+76mnI6bTKW/VW6l3pYSyg7efysK4Kkv60AMCru1YqgaGlOGeUVVTlAU5CaNnebfg9vYG+kBZlihVcLvd0nRbrCkHGavHD2uR+K+JpDCT8T4KaF9XtN2GkIT72Hc9RivqqhQfyxSIPjMajTh98gSrM9v1isvLS8iRw9mc6WwCSmGUpY8dbdOSYqR0NXUhMu62bXGlo/UCansfhhAb8fUwxZjgA6ZwAwgii3mMEhzSG7BKfl+CQhwBg7KWsq7w1xt6HzHWcXR0zPzQcv3mLW3bYCYTJpMRxirefXpH1gofIrcXV8Q+cbU459H5nB98/4ccHUw5OHqE1YayrLm8vCKExPn5Oe7kiDSt0Dbj246+79CupnIFRnlS7JkWGmccy2ZLG3tsZWnbhn/5xS+4uHjMRx+84Ec//3tury558/IV//a7lxwdH+OqmmwcIUZW2w0n8yNUbDHJMK5GZN9DXTGuSjY3K+aTOcenz2kjHIynzG5veLdY8Oqz1xzMpnzr+QtC39NsG+L1NeX0gAly04uhHw6OIo/vYmBcVKiYiF1LRlPoEaOiFDp6TFgU+Mh0WqMsjKzl2cEJj5Tixt/ybnGNUY6Do0eQDO1SEqRRmroe03UrVss1yrY8mle0vWfbtLy9XXLdb3nx4QfMT465vrhA0XPweA5KEXJCFQVVWWCUpfENRU6QAnpxx3Q6o5xM6eMFxnd897vfQinD6zPDtrvkpl+zvLuiiyWhb4BMHzwZ8SZ0zhCiRhstRaKuxVhDPR6hlGJxt2BUFhgrFWejNV0fWS+WtH0kK0vIidF0yre/9RGT0Zg2KgIFijOaZktROC6ur3l7ece0OGJSQIwbWr+VcCI7pixrfvbTv+N0VNE1a67P3lDNj6imByiKBxv1P3C4/6b9VbRdpZfhf/c1etkP6iEoSikl+4lhR2msRU57keNZzdFMGKPkjHMWU1lySFhlmU3H6PEzlHuGvzyi+eQ3hG5F3mxZvdqQqy3RPqeYPSH7Mb95/Yrp0YRv/8M/gD/j268/5fLdBdlUtNYwKiKkhrvVOW8//YSlabnMPYdV5tQ9oekz9azm5OSEEBNvru64fnnGEsX2ckRfasrnH/Di5APc0x9Aqcm+xyqoy5Lp5JgXzz/i+MnfoopnkA2UmtD1JBTuxbcJ11vi9RUmNNzd3XB2fcHjZx9QjY5oL5dEVTI5/THb4oTlyhODYnwwI6s1VTmmPpqgbA15DCqQek9CYUsr98AYGU/GjKeHGFuSkTQ60ChryEELUGflIqq9MoDBomJncSIXc3fozwNDOeV98PvX3HZ7uHt2zpfJNAW8yX8gBOCbBl/OEFMP1mXxp4oDw0lhioqTJ88gt1S1o6gP0NV4j8UIkyaRMX/eGq7YszG/6jMaYwYA6g99P4bz5/tUnv03zPchELsz70Ow8i/T3mcUKqP2T+VdYoKCtun4/e8/5uziDF06lE+k6Ek5URSFnAlS3NvF7H2rwr3Bv9aG6KOkd5EIKZGQM3EYwg+n04n0gUIsAKIjK7Gb8klzF0Sp5axDG0ceCsghZUK21IXjps3UWC67wJGrMKpAYXGAHTDemNUunFVwkB7qYYmXKa3vwV4N6AipJd+8o//3f2R99gtU+47UvqPVPeXFK9TjN7gPt1Qv/g8MjsSYLLqUYe35A/r8P/ZK/QFW5p4UuCs+7R+wr2Bs1ivO3l1wdnbGarMVUoixErSoFTkFNqEfroV4k6mBVm6UwSpNsoY2hPvk1oEIINdKnmv7e+kjiPeg1uIZmEPcq9P6vmWXEvoQiN/93b3d0z2Im3Mm60RMPb5vOH16wve/822+/Z0XfPj8BZWrcexAJI1RDwL0/pPs4XJCsAGV0W4YXwOZR6ks0u0kWpDsM7fnl7z99CUf//4TPv3sMy7uLln3LX3w9DmSjUI7K1Y+IeB9J/6Bg5dcyhLIGVIkZkVqPN4HuqZh26xpN2vaZkPoemL09ENoRN7lDAyp2MqIGvDeFkQK29gh4X5gXir4yr7+SoAuDtUNV0jqoIr3iDBImo5RIudSQYG3KF1SGoPRJSELpdANYQNijBnpQsCHQIxikBneWzQSOWVUUhSukM1Fvg8hCCkSevGwS10HiIdWH3q228BytcHaO6y1VKWjtJaqGmSJdUFVDAb7pRlklQ8phjKJjC0wIMb0mYH9VtxXOgYqZeh2oRMMVMfhcRQdc1GVWPsg+GIACp2Tqk/wYK2YhXqf90m1xgxMvwxq0KYrvfPJugcUi8INgF8awhM03o9QSjMdjVE244Mjlr0wMpIklWzaZg82Zq1IWnTzWee9LjtFaLoG1bWkJGwNYPguxRDkUcggHxhfOwPEnDPOGIy1lKOaqqpwRXG/aAyL1T5xdUi6zWpguWkN2mCyGkIw3jdR3HlWxCFuHGSBsgOYZIxBG/msCjA5U5U1VV2TU08XhBL88WefUlQl1WyGKoek0tBzs17TbRu0k9RRCUTT8p10xe6OvG07QpB+kbEhm42s2KcWP336FK01Nzc3rFYrDg+FBbRcLjEpYZ0dAjikWrLZbPC+ZzQdEze9zC3ywLApKDSgMzoPCU0DC01ZkbSutxu6psFYi6lLnr44ZXw4Y73eoo3BGIdvPTHufP8GUcPg5WhUFoq21pS2IMZ+8KHzBB3EK2G4DiklrNGM65rpZMK6runjBt95WfhSGuZzIsRINiKfEH+FjLaO4BwpS1VD5tL92DAPwHXrHIqEKyyahLMGZ2A2mXEwmzGqCm6vb2ibhpwiymhcVVFU5cD4KchK40PE+4gpwO79Gh5SCvRQGdwVAQJ9r/YVqozGD6mdUUWMkc8bogAtwXt2ibCuLPAxsN2siePJMNdkPJba0auIcgXjesJ0PGHpApu2Z921NL4h4Xh8fMCHzx4xKhwnj5/gihGrVcPy9o44+FMmAkKxh6hlbbFDKqvEeieMTpicqMuS0XTCbDZjdbfk17/+LZvFhscnj/jOD3/Mer2m8z2bpiej6UNm07U0sUcnCdYxgDUGExTTUUWIUJaWsc5MqhoezdEFrNotN+stzWZL7Dpm4zGzw0NwFe3AnHUD+NuR9vJ0YzQx9FhlKY0VfzYFFiVBDcbijMUE8Stx2jKyBZOiYF4YdJ5DrYXJ3TaMqxlHh8c82hq2NwvytsXVY6YHh9RAVReMZnMmyVH5RHN2xy9/93ueTecU1tClwN1yiVfgoySldcHjrPh9JmsJJG7alrvWs2oj8+MT6spwdDDBKE0Ic1bbI/RqyZJIs1mC90RtJC1Ki14kG00edtxaW4wpKAbPLq0MZki1szurBISBWlUVqEDImuizrDUHM372s5/QB3j57oKQEp98+inBe968O+NXv/kNj6PjxaMJs8IT+y0bn2hVQVXWxFENdFyev+bVu3e48QF/97O/5+TJs8/Bcg/XZ/Wfuur6Tfvjm2we1fvPvPdwYB8znG8ekh4GNjtEYRpomStd19MGT+U0xmpQFnN6Ats71PoaN3W45yd05w2phPpkDqMncPIjcN9me54wTc9Vc8FsHZiOLEuT6GqNritCqaBrodkwdjX14Qmfnb3kMkTqsmBydCJJ67Hl9atX9DHx4oNn/PZXv6VZNRx+9G3Ob9/ym3/5F06/l3j6/HvEZkkMC26XnvFozAc//Rnf+vaPUNUcKMBa0J6gEm2/pe4Cq/MbNjeXnHjP+dUnxMMp8+M5RTXnO7PHrHMNrmTpA2o8ZmQEcHe6YDaaYsuKHBKqMmAyyk4wZJr1Nbc3t1TlAYfHJyTlBtl5Gny9exSabAoxq88CzeXPz0el9nJXsrDUXeHEDgW+yKT42tr7AMf92vHFN9T6G3Duz21qAGKzVpTVCOuOUbqXw64do9J9v9/vpf+4cIXPe2kNzw6v88Vr98eAZu//zkM2nXr49Huf94t/+/VQP/+Y8MgUA0YP8YnDV+43ifPzS25ubsFoUhAP7y70cq8fosS0VvuADgHH5Q2FIXWfyOqsBCN2Xny+0QpnLNWopm092iqc0diioCiG4MDg8SgoDFoVeBgsdCTEUVUlRhVsUkNVWFJZ4p2lQQgjdmBdirINCZVQ8jhnMMUQwpgR2es+zlX8bLu4pFhcsvqn/0F69Vtce8nUtZA0MUBcrWn0GeWTa4iXkmxNRjEms0u6/YqO/7ra5wZRBmLbsVwsubm54e35GcvVmvV2K2zHbMhGE5MUM3weruXwOX0QmXhC7c9m+9fOkpQqoBN7pdRuDu1krQ+5q3JWvp8Hu3TinHdxdGKpJGmv9++XciKrjDEK4xRaOyaTEYeHh8znh9TVBKMc4jtnh354z1TwP34PN3wksVndYQcCoO3ZpFnISzlEtss1lxfnnF2cc319zc3NDU0QdWAcQD3fS0hETGIxVDsrNlHJ4/ueptuy7TuZazGz2XSkCD50xL4j+E6IHLtwFklXk8+yA8GNlVAOpRgVxbCOqD0ILySPhEqJ4L8Y5PmwfSVAp60Y1ldFjVVSIdQDIoyRJEexFYx439H0Hb2CMOjkS6MhZZyCsjB7X7A+OnwMBJ/l0JpFMtl1nq7vxdgeTWg3YO5THuVrZpECaUPpxvvFzXtPHzQxBjovYFHb5L0JfVmWVFXFuC73QRPj8Ri9I3TvJsDAiMlJUdQjTJaKokHdg3NRAI56Nn7gqebpBsQbLyCjsMsUuu/3k88Yswfrdo936bQ7ILAsC1mAjZalfHcwzoLUovT9ZFYKZQSpNTFjCqHGusoxqiwpCRMxJj9QMVu6phVAbTD2T0MFRKHEa8uI5rrQFX2KwpryEa3EUy/mQB6AS2cNdgBYH7Li3PCdyrKkrsdoYwZG5n1/Gy2sRjFikuQUFEPikMEaLfLBPb39vjq2M5XdVdju+1L6U5uhwj+8pgDNBWRF17b41qMLg88Rv16Tu452AF6tNmDl+mkUxij6IQCjLJ34rPlWPB2UFoDJe6xOQ+oUdF2Hyoqu6Tk8OuKDZ2O892y3W0IWT7qdj1/ne2zhmM5nNF3LZrNhXE8IVktcNBmTEihNoS2mNNRlzXg8YrtewdD/eSiJ+yxA3Wa9ISeFGcZ6LhXWOW7DHXVdywY45T1A+tBDyJBIiEQ5D1Umo42As8ajs6IagIPCOQH/lKYwjlxqCqdom60sqFmiqHUu9oc6tKThWmOHa6zE2yFmJNxKS3XRsGf4qSH9NQeJHa9rSW3JMUiQzAc1Ogs4cXV7Q1pvKKoRW5/oA1AkbDki+CSAaBrCPKTUu6/omiHJNiPx2DqHfVqzUuI70eZAQaIc1jrfdbQPDH0T4t3Uth3r2wXd1LCNniZ69LYFMkvV0uRAaRyH4zl3s0zvI32zYbHYsG0/5fx8SrNe8+zkgGdPH1ONJsRc0DdSees7L/6eSq7zvohApiwNyml0NPRE+lY8Kwpj0UVF33hur2549eoNwSc++ugjRrM5qmtZtXe0XU9ZlFCWpMLh+xaVFBNXMi0Litjj6gmHW0kBriuHrQtcOcFUmtvNhr4P+K5jc3fHtCwojaYLHZeXlyyaLbau6ftW4t/3vioF89mISZUorUJLXJh4+GlDZQsKZ0l9T04Jm6FIMkeMMoyLglyOCYs13WZL9lCMHeOqoi5aus6Qs5XKJYo+BtquI5CZnRxxkHt+9/HvsQkejUckY0hKUZYFdYKcGjbrDWU1xuSIaj3L0GBSxJiSVZtpOs/0oGY6rRkVJVZHfHeCKy2fNZqz5ZLcRDrnaHxi4zv6IaAjhEzXRaJPGC0yl9KVgKFwPVVVURaVsFoVoA22LDBZoZRFV4bNVpjTJycnHB+fUFYV13e3NO2Kxc0li9UdH7/8FD8+5PHsBfW4xKqSbbPG+w6rLL/65S/4+J//B13nqecn/PAnf8+Lj77LyZNT+j7gjKzRD3RRD3ZW37S/vvY59sievc6O6vLgXK5Q2kF2xD6RYhZAziuyl2q1sglSB2kDpgNWpNuXLN7+nr5fcvDoBHXiYH4E1QSSwswy8+cl6rpjvbgjtS2bFFEnE6pHx9hnhzB+Bn1FkQ9xv32J7yxtk0iHjifPnjCtC968fcVyvWHTd9ze3jKqNeu7Bb/4p18ze3HA/HiOb5ak9YJUZ2xdMtcFx6enTI5eoMqatGnJNmNLQ1YBrEeNsrDtyog3T6o6AAAgAElEQVSKHWe/+S2/e/lvTL73nM3pMU0+I1Vz7PwJ1ajGTiY0vRdj9r5he3PN2WcvmT47ZnJ8KkFcoUXbbsBHHY4JzhyAPkJjiKkn6w4JKOrJuUOrAqiB4g9eTQXUdcXzFy84spnj58+pq3KQvsq1/vOJSA9Bk4fjZ0gN5X5fJwcYOXTu/JO/aX9628/PlMjZyj6qHIMqENdldc+OhT1wlMU57AHE9oevg9rHXub9mJHnvwRY+9O+xZ/4K1/z2HkPrLv/nnqvH5SnU0isFmvO3p5zt1iIAtSAtnofbJVgj3RlxJx+VyfWTiIaYpDicNu3JJUpbIEtCqxVsjfOgouVxtCFjm3TkzsonUFbg0ITENZRVGIVk5Pag35Ga6yDuqopK4MZWdrccru9pdOBuhxT6RG5g3Gp6IFyOAuEvMFoJXsVNIWpZRjtBo0K5P6O9u5jqvVnhKuP6e9u2ISe1DcEE0jHW/rjjurxK6rHB+R5pMATcyTnKVB9XTirXJ6vYpvuZOAh0HUdN5dXfPrxx3zy8hXnF1e0XY/v/R6QzpEBoAvkFMDt1F4JH6PY3GQ5kya1I5nEe4bnAGreh3zsSAtyBt/78D9QlO3OIznKYBSSzgOCS7oPmkANsvGBuaeH7ICDwzmPHj3i+OgR43oyJPWa4WfHpFPvY3T/UUvwMJ6kuxTK3CvmlBnKDhnBD5C1a7G85d27d5yfn3N1e8PtekkTO7wWokgfxbu/i534q6eM32yIPtB2W7ELazdsB0lsGIhTe/+4FEGlYXVkKJBr1ODfb12JLiqwDj34wGqtBrsJjc4ZFSPZe7QK5BhxtvzKbvhKgG4HGrmyQA8DBxXRpaMaV0wPJpQ6oRBAbLVtSF1PHzrRzxcORZZK3iCh0wqcEvPSqjJYW4CxxCSeZ13XDQcnceeJeSdLjfiYJRWmkM1fCEH0vs5QlY4QH3p5CQU4I4+3W7kAi4Uc9o3KzKYHWKcpi5qychTWycXPcptKcbDJSplsMmXWuMJghm7zPgygUBYgCvHT23lnLdcrYRGFgPc9IdybQCoMVVXtJ5+1wqSq61p+SkeuSkBSRgbvTQEsdp5gOZO1Hhbz+CAh5N7DQGuNsQqwFIUd5LGWPng2V1eEGAh+mMiDRFfr4ZpZg00KqnvGWoyRvhdK7s7gEtR+EN8DPVrQZa2GhLdEGoA0jNBRv2xO7v6bUyI/oPI+BGn30tiHf6vUe6AliGccSktNJwSygqos8WEEGqazGU3fcbdes1qu2XSBtvf4wReRBNoVAsi0rbCUjARudK0w5+p6DCAH297vgTLvPYUtOTs7w3vP6dOnAJydndHHwIsXLzg+Pma1XnG7uCPGiHOOqq5ZbzZ0fY8uHOIZmyUAIUZsaRiVFQezOVpBk2GzXBF9QEVQzmIxtCGijWYyGnE0m1OMC0ahp/Mtm9WG8WQiXpAx7und9xVUMErT9T3ZC0vROUddG0ZtIGwbaIffeyBT2N9Q9FCFsxZrDCnfV1vVcK1QQ9KREncMNVT0Q3xI+Tb32/rB8yire6bncrnkaDZjPh0DY7rNhr7tmI4njOoRb96d07aB9aqlTaDKjCtb+j6QMgQv4HpOA8BlLNZI4pW1luTFXy6qIXJb3TPurHE4ldAamq7H50zCYE2BUv0Qwx1RbmBVAj4FqZimROp6WtMTyBjtJIX32LLtAo2OhL5hue5YbXq6ZsPZ25rbxYbD2YyikARUvGjelbFUzpKcMK6MDSit8cnjlMYWjjJVuEHC1HcBrROldhxN5uSUOHv3jhgjp8+eUo1HoARkRmm23rNoOrzvOdQaayswitKNcOWI6TiRfELCvgPZQZpXfOv0EQTFarmkUKCiJw8VqOXtFe3NNck6Oh+YTcbMSykm+Bwwu6qwUhJjryIqJyqlcFZYdkkpNJkig46REHv6kFEmUmg4nEy42/Ss75ZsGmg7CfBxxtL1ncy50QRXOHxMROD0+QumLz4gWs3m6hqKAqzDWEdd1qzbHhWiVEdTpCgLnLbQDT5yRU1IPat1SzP4NlZlwaQoORqNSSgWqeO8X+D7wDZ6Vl1i2ba0EXw0xOTwXtG2fm84vQt2scZRFDXOFRSuQJPwnXghtk2DLmpmhwdU44mkBqfM+PFjnqfIty7PaNoNq7tzXr99RX7yksnpt+i7Y8BSakVtLFGXHM2OKK0h+C3L5ZJl2zE5fsRmuyDnQOHsflzv146HO7tvWHR/ZS1/jlIyPJvvExPVIA/ayb2GuhvrVcPNzZLJZMzxyYyysHSrO67fvEL5Ow6PSgrb0ly+pLl+Sdtfk2lR00fweAqFgdwCa8rjkuezj0jbGWnxBpWXHBZH6JlG1zW4OTAGW9MhzOaj8SF9DpTZkacV0+MXHKeG7ZsGh8E4qOcTZuUhy05sMD78wYc8evItVBzBUUU4MEy2CTc5wdQTVFTkpEjZkJIhKo2yFbaqwSTmT5/A5Rv+7Z/PuDk7Z+sCV6fHHMwPKK2nrma4UUuOt4xNjXEONi3ad5RFRVVNcIUF5UEH8pCCWBYF5eMDUHNUciSlyLkYDMk7QmpJoceqDqsVDObrX9oUVJXlw4+eoU6PyKOKoBUhZXTO2D+bwPZljKYvP3Xv2BG7fZ3sJc1/3AHxr6Lt9BGDjFRJASerIRgk7//lS4dIGogJ/6t1/F6K+vC14oMX/VMH0h8et3/S333NTQF7WWeUDkgpcXN9x831LX0nabmRiHaayhYkDN7LOdfHfgjYkfVyJ+XdM1tR1HUtBIAUxcNba9brDVeX19wu7iCJcsNqw+xgzpPHJxwdHzOqS5RJ9LRoA8aI4skYh2S1ZZSKWKeIqWVx9Zpfba75zb/9M2kI4bB6wtOnP+CjDz/i6eGM8dEYxwqfl4gYUhNUSUaTVSlqIyKkNfnuFauXv2D87mPWn/yWm5fnhKZDZRgdTzksK8aHiubiJdXpBEqDqgwWR1QF5OprwHb/0AsIa1jAtogekjS32y1X5xe8evWKTz/5hLcXlzRdT4hpf4YNQZhYKYtvmbWSWi4JnxmyhGYl5NybBobkLigiD4wvxb0Uded/rZSCB/6Dkuo6AG6GIYlXbqpaa7SRM1bft3jfEaJ4E+8snsgJTKIoLeN6xMnJEU+ePOHo6IiyGMM+tfVeSrxfnf8TrLtybk8DJsEAaO/6D9lgeE/Omma14frijHfnb7m8uWLdrOmTJ6RAHwKN79n6hra/D3BIIdIsFqIQ891AspJwtj6J4tMYYcBp8r2cXt3jDD5lUVy6ElPWmLJC6QI1qOmC90PoyU7+rYXBikHrh3kEX96+EqCbzWbCPHJiZOj7Thg1VkMlfiNFXTKpJgBM245N09EOyRTZC1K5A47CAAYII02SZTSKQht0YRgXNXFUDGZ9GVsWIontOrbbLZumpet7Sb4YEG+lDXlAkp2SFNesFCFrVFVIQujuM0RZ6HwUg/r19hxrDWVZUdc1k3pEUVdUzqGMwdgSUhgqHAL09b0cznKKgyZ80BtrCYfQ2u71AcpK4ETbtrStQim/74uUA13fDCNxlxpp2Gw2VNWIorDMJqOB4mxxpaVMDpstWosxs9GC3u5BwT1IFodEErBGmEhKKbS1OAXKGmyMHIOAluuGpmmIfRBgKus9kLhjpgmAIj87VmLOeRjsD5OW5LP4EIjG0PWBTIu2BuMcygoTKu6kmWqXMqNA75LEhsrScN1kXMuk2NFEdz52u8pdfrAAxhhROWOVxQ5+AbuIZVNWlHlEMmCqgrq02Lpi1PYstx2L1ZrVasO26TDKkrWMRe89OUJRFENlRJPDAKqVJTEEtmsxjNRD5cKWBozl7vqGy8tLUkp0fY+yhsvLS8q62o+H3nuM07jKUdSF3AhSwtlCTHAHuaXKMh7KoiD6QGVLetPhjKUww9zxidb3vH7zhsenj5kez7CVxalM17fEoaqyM+BNQ38/DKvYbbqGqyTPJY3dpQshTLWu6zBmTF2UOFfQt0PMdOtx4xG2cMTIcAPaVVxlsU15B+gZnHVY69EDa7SPkuSKEelz3vkw7jcxA1gqqJnMyZggJQprsUXBs1PLsmkJfoHNCjeeMhpNUErTdX7w5wGl3wd3c8zi/+ADOQcUknSr1AD6MsjeHeQgzNSgFLooKEwBrRc2ccxU1ZzpdMp0MuG2LDHTKXWwBCLjyjCKgT5kqqpiNisxXY/OHZtFBm9oup6L6xWrxRJQNI8e8+jRKZVx6GHT5kpHVWpSNAREth4yrAavQ1OU9GlgxyojbOAsfVBqKRRsNit07NG5x+AgdPRdS0BxdnNLFzbM6bGHM0bK0G632FJYDiWGymp0CPShx9jItKo4qBzb2YTDuqIqhGJfG5n7pVa0PhB9YrvZkHyHmYyYlxbfw+3dLWNTUdiCPmf6pIEs7E5jSAayA+2MyJ2HMRlyxOaIUTAbjVCmJLaBu+2GzUaBKSiMosuRNKzhMUaytiQF266nryzFZELyidI5MuIh6duO5m4Jbc/UOvoQiXjMuMCNx6AM2z6zaCPe1gTtCEjCaqktc1dTHlTchS3vrjpu1wLELzaJ6+Waja3FK84YtK6JQdPjh2qqbFkYwORdYrXSeZ8idbdcgmkpJzOqekwxnoqvaAycnj7hb374XfrYcn39lt+8estnrz6lPnnGT751SDxyOG2otaEeHzKtpvw///d/57/9/AWfvXrF//v//RM312e8ef0p3/nBD6jrmazbXzhwv7/R+0+wz/um/dntfebTF675cO/PiBNA3we6tme13hL8EKZiLUXt0FZCwJQCkxOL2xtWZ1ecHjsq7fE2oHRPdXpI8fQQbt4St69h+iH68G/x9jGZEudmJLcmEjBzh54oUE4sQfprmos7zn/7/7NcXDFB80RXsN5w9enHPH1xSjUpmM4qXLTU9VPKYsSzFz/E43h785JVhvbtORefLfnw777PvDglu0PM5BlKzYESMyvF+wZQaoLKGd8t8M2aytWMTz/g+YffY9kvMBNLrRLTIlFNIatbLv/9NTcXkeff+TmTJ98jRcNkUvPDn/4MJiN0WYmXkw5yGIkdKmtwU0jCxhF/MY1STuxacCRkvUj3l+ZLW0oQkuzlVF2Duj9Myr3wa6SwfKFl1MCiSznvkzn3tifc70G/aX9mUwOOpHbsGDk8qp2hGAxslfyF1Xz3b7vXee9lhz2iJCIKW2S3+ss4EjXGX117j0031LeHhMZmHbm5FTubEDydb4kPvIqlXwIxeULoQYuVxS5AL+Yh/nRgVIkSSIrT2lpyVCSViTkRopyfy7JiMp7w+MkTTk9Pmc2nGK1IcctJkQn9Gt/3JA8kJSqzvqX3a1L29H5L7Dt2VbW+j7Stp0kV5eF3+flP/wv//b/8iNMfvYB0i+tvUEclOWZseQrZkpUVKyq/gfUZ/af/yvrX/0T63SesPjtj8eaGfutRGHIumDyJuJNAv7glb24k5bWaktUMnUeg5n+ZSzYcah4O5RQC7bbh/O07Pv30U968ecPtza1Y85AJSsAiYhrYqHIe+Z/svWeTJMl95vlzGREpS7UaiQEIwVtb3t5yze4++H2C3bOjGW2pIAgMBhjV07J0ZWYIl/fCPbOqIYYCONLIpZtVT3dOVVZkeLh6/o/QArSyDMEVr7la1BBSFcVvKiSf/Rmq/F5Ri+plXKRYxp2U9bCVy/NgjCLnSD9soZKMUqoVL7EvltXRtic/CIFSxQYr50QMgW6p6JaW45rcenp6ymKxQgpTQaM9OLdHnxL/fED9j9/kXqEBQEakWG5aLiSoNA64wXF5fsXLV9/w6tULzi9v6fuB3TQQcmQzbrnbbtgMxb5nmqaiInQOFcueOqVQJcgFaDfSkAT3rMaKS7Dvv3pFxhiUblCmQZoGoVqy0uT9PdQV2xA1l7j4oSGUR6REin+AxPWjjz6qvm+FTeGTx/mR3o/sRouRAWgwdk5rDF3XILVmlspBV+fiUzcNI8M04pwnprI8CClKGl31ldNRI5TGSnkAuIwCYSS5aRkaxc5KNtvM6DwuZHTTEDPUkNkCYuRU6Kc5IXSRAL2TkhkTsQKIhamT2G63bDc9N+auSmFnaKtYrRaFWVbOtkQRSSGQq7+YMaZ4UJV8nANbb08kMFYhVUbIBm0kKTXFny5Gci6fP6VybTHkg4db349ICbtNh9ayMusKiGhsRZNJB++y4n1WfulD3w5jDEqKQ7hO4SSqArJYw0IV9uEYMlPwxdcv1ftXwTH1AC1OtcpTZKtdvf70jsx0DzjFEPBG41Mke4dIClOrCWU9u/e5kFKiKuiS034hu++3/fvvN2v3TEHYgzX3fVwrUSHQtBYtJSFlvA8Mk8MEzRQ9vZu463dFbmwtymgW8zpphkB0xQAyxvrangnpIsaWKkUBJjVaWYyx9bWAlGWj2bYtbdsWgHm7LVRYY8gpc3NzQyKzWCyKNJHM5H1h+c06vI9sbycwMNMWKIbJStbCwTCxXi5paoplCIEUy3+FVsQQePHiBY8en3L69JT107MHYRmFvbZ/JtIhdVQS4/4ZFhhjiT4Sg2ccR3ZJMk0jMZTnYhxHnHMH5iBkjLHouaJpM0Nl2P3mRrs8A+m+violUmusLYzd/aSsrCmUf1WAaARItWdoZrquY5omzndbrFC0jWXWdmVs+8h6dYTQDhc0pluwOn1Cs1rQrdfFuFXmsjkSGiFk2WyGSA6JEUH0DoiF9VdljsWDbO+DKPDRHz6D0rZ+d7m3IcQCIHUt3XxOaxvSLKKmTEhFntBIS84jWWnaVoO0iDDi3ISYQOqyMZM6ImRLxpCp1PlcYrq9D0xS4FNkSpFxmNiOVbKdEjhf/QCLBFkrW5KM2444jrRSsjw55uTJCbPOEOKIyBO73YZWG1TTMJLYXV6Rt3fE9ZqjrgBdVitaCaay2VL26OwBRRy34CcWTUPXWWaNIYaJqd8x7Da4lFk9esxsMWPY9dze3jBXivnpMQJbizqeKSsmBORUJZ0lCa18piI1IAkSgShA54iIENxIoxrW8zljGAjjwCgiPjmi84x+hxg9a2d4tHwfaSXPX73k0g28vblioSxJKHJWWN2gcvE9Fd6RUkTbpiSV7yLLxZzl+pQpea6HckAOyjL64t/YasvT4zNEa9mIDecbyNMFt9eXXN1t0G8vcLNjdk7TFcgToxqk8Igskbmmd9Ux7Lyj73u6xhxCj0LwDP1Id3PDWiikNIyD4+6bb1AfPOHpe084v3rLj/70T9iEyE/fvOWXn/2c8x++R/jeU0Q3p0sZaRTeeb77nY9YmRXzVcfbmw1DMhyfrGpQVCjj9D8guP+F2rvgXKZ6m+U9xb8AAVLJMm9bg7KC+WxOZyWtAUImhYTtWk7OzljpieHa8/Wvfszt+a94/1HHB+8/QXQS8fIcv9vQ9yNutaNFsXjUAEe4cWC37UkM5Nyjc2Ix6zAiQOjZXn3N9fULVCdY6hmrxnDtd/z6i19DE3j8aM1jVrx6+QbnPaujI+xihV2v+C9/+gHX58/56V/+LbeXPUfbJ5zIjxDtCqFbcBHiWNjRuczHIoMUGiUNSWRQHn0y4/j73+GH7cTqyZzVuiW6HSJGdtstdy9eIfoZ7vKatNwRmOM7xWyxgq6BVpOZSGlE5h0CVwA5RhBtqVBQpTZClzVVdDTG1K6yfNv4lKKcH/AJvIfGVFb8vt7/xwTofhvkzbVIt0+kLLLW/ZzyH/PKH9xqeFEhMRSCc7EKKx7A5ALYfdudfocI/Q5Qd9+f+0L5u19FJfXvuuX9HwK0JMXMblfUOM6H6jaXiDEQqndt+YoIUYqNu3EotjG6fYdNJWXx016s5sUORkgSEjd6hLbMZys+/kSyXq0KYSUmkIIYBW8vrnHjiJ82xOmSadwxDBN+8lXmmgnREcOID0NRgNWAxbbtUMoQvGF0mfPdc2xMfFeNPL37irl/RWs2rJ4sEadn8Kx4bolcAu3ob+HiOc3rL5lfvEbc9MgBtNe4MeBTxO08cYjkKaK9gnGCqYc0gpgQjIU5jPnW2/9P768Ha9deNaQ1YRi5ePP2kNh6eXlJCpGkdT0DFlCFkKoHc7GVEqKcW3UWyJSrIkhWlUxV4eW9+qsewtNvpxQ/9GbP8V4qXpJa78lBhX1XgLwyZ4bi85oTxhbiy/68VbztIkorZjPLer1iuV7QtjOkMJA1KdXi2QGcK89zrvpFkKh/JbDuAGoKCkEjJ3IKRU34YFqRyjBsrzh/84o3r17z+vwtb88v2e4GbjZ3TH5kO2zZ7Lb0bjrc5+AcwXk6Y4vyZw/AFYlXvQhR/5p4ELH0YHWSaN2A0UilEdKCUCA0JTJEYM19am9KxZswiUwSmiz3ATC/v30rQKd18YyTSISSNGPL0G9xKdD7AT06lHBIAp0x9TMKkBYpYd51B3NyqaCxGnI18deqSj8LQ26fgiIPFbSEhWLMbwzLVjN1mn7R4WMBDTMCFyKjC8WgPdSwgiDxKTGJIj3IuVD2UyoouNLlhpmcidWvzvuIHyf6cUJtBqSCN2/eICU01jCbtaxmHW1naazFWl39MgqafTAwzKnSx3NhYJHLZ1e6sO3EPkqbGqgg6n0ITJMjBE8MnlBlq4XBaOinkWbosVYf+rRtS1hDoxuMMYWJFSaU1JV1EUvl5YDgPmStcVi0pS4eRlmkytQqv9uEwhgKMdbJIh4Yagcg7sE1vgOgybpIV5ZfYWDuk3xr6EdFj5VQ1dAYyKVS4PP9Ar8H6x5+vTOpPWDQ7QdDTokUIkKruulL+OgPHm+3t7dc3lwAspivK4O1DQKNnxwxhCovLd56SghSjCURN1qEFFjbHuSvOUFrLEaqYsypFMfrowMz0hhDloJhHBnHEaEV280W5xzdvCXmXN67zg1739WYEy4GtCj9KKUgu0C/3aJSrumqgjEENnc7bjd3mKaDEAlS883zlzx6/xnJKgKBMU4FiKr3vsRCp9qXtW99KOa2Ih02Zfso8BL2UgMJYiSGSKzeDSEErJQ0sxkog9velmof5Xeo+w4qkd57wPaw+CiU0EhZ2Jmmeqo9dKzOiMP8eXtzgxWSzuritVElfdZqlosFvQOywNqGo5NTHj97HzPvyNbSu4EpjAdA8p2vGAkiIEQB7IIsASFavrsATqkYlmqtUW2LE5JxLPRpa1qMGsk5M6UAVmGQOBfZOocjgVTYLIhKkRuNiZoUBKFp0U2LMBktEl0jmNvMfLminS1Q2pJTJCOIqSRBCRJDCgyREikePFHqIteOxbdSKInWReYgUmQ5m+FiZG41x0dLHp2ekmRiM9yhiQTvyAi65Yrl0nC1ueXt1QVy1xOO1yzXc5bzrjxbwWHdSCsjGEEvPLNG02iJlYJWKeaNpQ+OHAPRTUzO48YBM+uYz1q208jN7RVNDpzNNN6DNwkvIVYjW1WlAJ5IwOOTJ4aSWhhywhOQqfg7OOdBZwSxjB8SKQZ8mPBuJMiGbGxllEqstqTtQO9KGqMLCScj0mjapsUkz7xpOepgvN5gmhmm6ZimHuc8WQi6+RrdTFzf3nB+dctnccu0WPHx0QnP1ku65ZJXO8nT40QKDcTEdvOai9st3lvG3KHtjJwsWjUIWeUMNfV4b4cAMHmHMcUGQmrFfLEk9GMxkbYN8/mS+XJVNgfbDa3RnJ0dse0f8/Tiii/6Ky7O3/DLT3/On//oQ1azJUYVwGHc9sxEYQEbLfnwg2esn3zE0dGK29sbtO7Qs9/vb/Uf7d9++/3wzL0MsbCtxINNLSgj6IzBzs1B6CYRNS3N1/GYkfM5Vj/G7y7ILiOTRkSFHxNNyrgXF/TXN0yLjuvtG/z1xAc/EByvPyZvRloN3fFjsn8N4Q4R7iDdglPovMPMJO3smEdySTNq8rXi55cvOAo9T08eoVym04muXTHLc4xq4GyNOF7R9SPf/87HDB9ONGea2GWc38HuEmO6mt44gJiDmJOzQcpEa3OJIFQ94e41Xm05/vCMo6enoCVmt4PZGbPuiO+8d0K8tYSpQ8QGNZ+RlGHSCW0CCkGsyhWVRmTegg9oOyFaCaoEQEhpq8+URIi2HCz27IgMv0uaDLVjCv2vsufK/r0wo8o+7dtSNv/Qtvd7Lt6ysjJy94/Sv3Nw51+gFfwoH9gmOZd95eGo+ZBB9zsAtn9UE5R0QiClQEwOqIF3aCqP84/waR5e47e1f2lA4SC4I7nA2zdvuby8PJj/t63FATLIPRUOSAcp47MP3i+AXE3QjLlaKyVqGmvER08/eYbBsd3s6McJkkAqzd///FN8SLhpYnKOFENRm+QS/qdsC9Ki5YrGNDRNV8geraWxiuOTObZRWKOKMkpolNTEkBnGgV9/+Uumqyv8qxdsppew/RI169m8sSw++R7CzBFrA3ZeWDLX5/DiC9q332CGnqu7jI4LZlYgZi1TrDL9pmGmW7YuIXYJ7hzMHWLuIA0g74Dil/jH79N7tZUbBl5+84LPP/sVX375JdeXV7hxOlhThZiJOSNiKrJ/BFrKAyM1+BLQppUiiVznznx4UqWUCKVRVQqdxL0UFjiEfUG1bqpnsHKmjUipDmcUyA++NzxgzQmMLmNtDwIrXeSZbWtZLFuOjhcsl0u0NqRU7mhOak+t/Q3Qff+1J8H8K4F0D+aq6lBfrjNRPOTGgfMXr/jlL3/Fz37xKb/6/Eu+eP6Cy5sNd/3Aduhx47bIVkMgiP1eupwhrDaV2VXnsD1BroKtuQKuec+HExJFyU2QUoIoe/Esi+dcFuW1IvkuoZ1JCMixgLXsCySCXElV/9D6+q0A3csXz0EI7GyOaWxJRrQWQ8QKU5JeKvMr1YdKCo1VxbvLp0zKEmFaWl0AnMZYmrYwZTrbsNlsuL6+Zjv01eNu3yEQs4dYUgpzFiTv0VQaqZaYpmV0ga2aGKfMqCJeZYQWiCgIziMPKUWypIQqQVKSLGCcHMJKrOmwMZFCLjHXIRJTBCnwMUd7qrUAACAASURBVOO2O4ZhqOb9TUmC1aKGTOwj7Gs0MtUgnkgOFUcVAiUUqkbwFuAlY7tywCnSWceoJcNUvO1iTBU5h+AcKQe89yWxpQJOQ19CGJqm+MGBoB8DWsPoPGq7RekiYSjGA5U3JSVSyZocVNhIWpfAhpgSyFrl0QIqSLdHgPdyKrkrMcJSadqmwdi2UD9lLqxBIRGypA5Ko4m+sHic98RYky9DqNXfOunlAkjllEpEgdonv97//jJwC6XxIPuq7WE1Aspm00iDkqoARMpAlriQGCZHTAUkjiGgdUYKS9tqGm2YpCrRRVUesDcBdWNfPF6UpDs6IkwjPkRCcPV+qEr1F8znHcYYdruBa3eDHx0SaJqmgKRGs9vuCmCnYBwcQkusbQg+YCvoHVwJArCqSKhTDkQfOX+z4dGTx8xmLU1n8SFweReIbsA7Rz9lhJEsfn3ClAMYibKa4CNhCKQoir9ilRaLBLkuBlIK4jTVypxCaIvWCS09WgjIiqH69QktawVH4XzAD1tczHi13/RDTvu6g6ybxVxYYCmXCSzEQ5z2/dZconKRY7Kfl8mU2BBB03UM2y1j33O0WvL45JS2sbhhZLPZkFVDjAFikTyqajTqg2P0A96N+GkielerG5Ek9rHllaqeZdnUKoG2Bm0aspS4WMaC0iCaBtV2ZBcZphEfPF1jWLYSLTRjgqg0URdfuKG/IytFZ+cstGVuBGPSxBGGNBFiZoqFQYgMaCVQEoTce4hIBAnTGLQ1RQYFyFS8/xqlaK1hN46MLiGlqgE0LV3bYa1GuMQ09JADs3bGejnjeDkjZkfyEpMjXdvgY6YfHCdna07PntK7wNubKy43Gx4/PeP9fIroBNYNNMmxWlnmVkGGDx+fkqMhxcRs1nJ2eoxLGWUsl7d3xOtbrs7PmULgydMnLBZzhtsbvnn5Ek1gNv8IMVsQcjlIaDxGusKgE6JYG9S0JKEEyQi8qamFMZK1wOeR3gc8otoEKFzSpKyI3pewCSm46rc4Yck5YZRB5CLnNkoiZKlkyhRpu5aTZs4mCy5ublkdH3NyfMzt3R1Xl1eIZoUPE3ebO77c7bjKPW8WK8SPfsTx+hMa3SBiYi4jHz05Ar/hpb/GhUScQjloGwXKoLVB5nEfFAUSJBrTGIypaYvV59O0DcvZDLqJxdGa49MTumaO0obZbME0TRir+eCTT/Ai8wMf2KjX/NWPf8XPfvxTfvHxdzhSa2bLI4TNoBKjGwlWg1XcXJ3z8u0NP/np5zTzU773gz/lv/4ff87Z6UkZ11mxry7siwv7y/6to/bvkEw9PHbtf1b8hhTlX/zM/k8lEP27xhTumcGHV2rRCCBTGNjFuWJf+S59GepPNjnT2mKW3F9cka5esVgo5scrvvvxJ6TTjtmZhYUi390hhp65fMRqvWaxlvicWYothBua5aywjd2WeLch5yuyHBjHASNXtLlDJMVtv+HRUUMWI8NwzeXlOUfXa25ue7b9hF2fsHz0HouP/yt852MwHuFGlGjoR8fPf/FXLF+s6Iwmzz5AcIY5O2ZyPSEMzGdzyOVQPMUdMfU0ypPcDf3da0bl6axh3OzoFitYP4ZgYOMJI1y+vSbYxOPtgNQdouuQNcDIhYDVHV17ClGwudxw+eYN8y5w9vQMOav7HZHJqewplZBIoetJQNQBmN/pxUPLZX1GCTC6WiDsh/G9YuGP/wyJ+q8SLPVQh5tTKgUTinXMf0hc/5AmoaYD7xVxReuzn5kfjuf9a3vT+G9p9b2K5U2q1jORcZzY7bZkcgWB5pg/3MjwX6c9xALFb9+pQytaRlKGq+sNz1++5Pzygmkse/Z22WGFRVL847IUhJQIrhBDrm62TMEzjA43TfjBMwwj26FnmEYSgX4YcM6x9y7Pla1rdQG6rG1ZrdY0xj4IGmyQdobq1thuTTtbInVTlClS0RqN0TD0d5imKHTGcSQGh5KCVgh06xDiOUN/g5aWmZScCMVyDNw8f8NgMrMnj6Ez0ChIgXz1Kfnrn5NefQ3bLUeLJV1ecHS0YOjvuLy9IOQbbi6/YGgumHVPif0OtRtgHKDpAVNiYolkCkAnDkBvx545fOikcqg9rDn3XZcPIZDvdOQee0qJzz/9jK+++orPP/+c29sNQivsfM44Fa+y8v7lh4TMIKqtjijzrfeOpCVKKqSAmO/DHahMSCXVAaALqaj89p50PvpD0bWANRIl92dYVSWn6UC22ZOXiOBTKoSQagcQqt1OlpnZrGO+NCzmDUerJcfrI9bLJZ21lORWcUj5fueZF1S22Lss5t+xZfs9+6P8ewpC8rfe5N3vyvcstQyQSgHhAA6WAnWOgTiO3F1ecHN1wV/+5V/y05/8PT//5ae8vbrm9m5H7zw+Jkbn0LLgPlJKjChPFOmBXdIDq62CVZZSYsFz7sE7gYRqsyT3LLuqGsx733shiidsZcJm7gM3MqKurwKpZekBIfDe/a6beGjfCtDl6EBrttOONPX4yeEHx1JrjvWCR4sZ1mRMo8h6n8IUUVGQU+bF1YYowSBRMtEZg5AJE0Hogkp2rcHPLSEOTCGjTTlMRgkO6PsB1+9QCRqhkBmsKOmxC2OZpKLVil1jGGJkIpVIaSAPI9OuJ4y+HGSyYgqJPnmmnJEWfMq4EJASWitptEYHRYiJQUiivg9AGH2gn3pE7uuNviseZG1L285qqqktVH0hkMFXSRbFGy8phNAYKWlUSf+MKZBjQonEfGZYLHXdr0i2m4mcilzRhYCfHP2u+nYpjbUZNSasjWg9gSzm6ZrM68trjheWWaNp2xalCwMl5kQS5eEoc9Teuy6USUOAlNX80kWMKX5IIYTDIhFDYkqermnR2oBQ+FD8sKQ2iJSZfEAbzW5ymLRPCS3XnRDcbXdFFiJFOWyqorlPMZJkQkpNIKBE8QGI0ZMoAAVR4aMDBEorlNGVVVIAHyVASIObPNs8oBuDMpBiZj5fE5Lk1ctzcrSkUEwelGxRsiXGEvAQnCf7AlBGCVmCspL5oqVrGowSGBkIw0RwDpkKOOtDpA+++sdpFos5WhsWXUsw1WtCFnBycJ5F2xFTSXZazVugMNV0lPSjQ4iSlChryiUp01nLYjnj+vqazfaO5XpdaPKNpukszgW0VfgcON9s+J8//jFfv37F0ckJTQ29EDGBFxjVoAXIDFIoJBKZJK1qGMNIznAXEj5EhAURMn6KiGgIwrJxns12yzSMiKyhgkk2Z/opMI7FK2M2K2BtUcKWTV2IEaUkLvhywBOFkSZlYVfqDCrLkqqKrpOowsWMCJ6829G1De18QcyJq9s7ll1L2zTMZjMmkQn9FikSIo/ARJSaIRYgLvgJEQLJB5ybiGR8TmQf0Uhko9GzDgGMMSCDZIiOzSQZvaCxklYaQorc3G3ovS/50waSn9hdbvjw9ClJtdxkyUZlkgqcrlpCP5F8QPsE/UScJoKTJCKymaGaHhHvECIglKZrZwQXCS6U5FIjCOOEsmusbSB4GtvRDyOtVDQk1q2l0YJ+nNhtb2kay3rZ0DSKbT+WnK/kmKYeLY6QYUIQkW7CCiBmjLZMk+PLL76B21tOZ2vEWcPzV8/5+stXvLwd+MHZKe+v5qwXc4yRmJhY5IzLkbMji1QWKQzBjyhtOT0+pbUvmLUjQcB0O/HqmxecHh+zmi8IWvPF2ws2wvG//9l/4qOTR8w2I3644WQhUFoi1LxItQNkDapr2IQSid7phJCOlCdcAhYrghDYaAjXPQlDFhYpA5PbIU6OuSMwjI7RB3CRLmtsLDJklQNCgifzdnPD568umB0/Rq1mjNkTpwmhIo0VmE5jcsAKmM2OUKHhakz8zZcvGduWH7Utj58+QirB1k+smzNW7Hj+8pLRaG4TJJlxongqGiUxpnjRjTkilMBVyGPWNUgy2irON1fo2YxmPSPkQCYzm83oZgva2RHaCFyTMIuGj39guLi74+mrV3y0ltxebvmfP3nJn/xnw1OlUHjmRwbiAtl41scrFIEf/8Vf8/ato10/4/LP7/jw6XscL1uUbEonVN+rYCDIB7lg7+zEEu/8a0/SrRubmCtAJ4rAJYd7Am3KRREgaoreu2f3BxvK33ua+ofag2ur9PI9212KqkZ4uMn8Xe/9bYe5f2NN7M8++z/2H2YvaROlsg310EFGCkUIZT2TRh4AukR5HlJ0pP6Wz37yV3z+1/+dj1eK756sod/y4vzXmEeG9/7kO8zbNX1ccffygiNxy6KzMDOwPQcHcWpJymKXM5Q1xGvJ9WfPuXn5mm3suEktN/0dItzy+PuKx21L3F2jdo43X9/wN/IcaRSnJ0cc/+l/Rjz6CJojsjEktcN+0mJv3iL/+i9Q7g3uZ3/P/P0ZwkA6XUIzw2RDSqbIenEEMZI06Axpu8VKzXJ1xPZuh/PQPDtDHh2RNzv8dmCXHfrxnOX6CWZePGxSMois636kFFwEmiwVi3XLfPZdYtD0N4kuKdTc3DMUU0kOz+oeIJVVyXDg+Rz+qAXW/b8rGKbFA7aClH/YA1yVD+zDo9S9koKcUUajtEYAMSbGYWAaHUop5vM5Sv0bBXf+hdvvryPUgzj3UlZ5AEnl7yh+qPq6vH8pP5jyHv5ArlLJUKxXrq42/OQnf8f19TUffvghP/zhD9FqxrtMnH9O+81n4F94Ri3WckRRCk8AKpcvIgW8CQmMJgBfv3rF6BPL1TE+Oy52F+z6LX4XuO0dr7cbduNEHDx93+PChM+BIZdCcpdK0JgyBrTk6OiEk6VkPp+zXCxom1K4m7czFvMFRhWmjtWWeduhpcH7WvCWCpciHkOfZbGmGhx+HEjTAMFzc7thnDwow24cIAw8Pm75L//bdwjDxHYrsBzz5V3Av3zOB+ef8WfvW+Qy0PkRbr6E5g6W16AS7H6C332JzoEsQR9lzEkHU2DeZ46eWaICsY7Is4RjQxhu8HcL2qmHaVMWHmPITEQCIQcCOwRz5uITYFU8OAHwpYP2z4mqfUVhjpI9VuqyB0ni8NyOV7e8+uYFn//9Z7x++4a7mw2DL2QN1doibw0ei0To4i8tJBBLWmqMkUAiquInp2Qh/RAhUgIkBAIrdXktl0AAJTVamoNaZ3RT8RNM8b4YUc/nCInRTb32QmQQdeymqjSMvhSrrdJYo8lyIBGKNakSKJE5ni85Ozli3jUIURQlua7Xai+9rRVgkRWFJ3jfcmVn5/1d3m8F7ilhHJKNRQKVD8DUwa0tF0CfGBFas/9ID0negoCsJC2Rc7mOJMka+l3k+ddf8uKbL3n14jmf/uJn/OqzT/n6q6+YxoF+6IsfftoXDvZXXOTGOZX1UO1BMlEHcq5rZr3ITCrquBqYmeugV3tglIqd1HtCSqCrGkyWCkgWgIiln1Lxjd8XMwu4ez9jx3+gAPWtAN3xeoUDtqGYoNvUIrRDRkhjINuI0pqm6WgWliTADSN+N+F8xLQNKSbGcSC5iYFEmHVI5mg5Yxc9kIp8dtahYsS2Ddq2YBTbYSRJhTUNmpKiKlNEVsCn77e4HAuLR4DVkqaZIZoGqyTp9pZg1UF7H6JgM43kqQ4gqYphMQlCQlbWmswSLcAaRZAFnY4ykZKsCTdlrMeciC4zugG5nUoSq2kLq81I5p1CyIzKmpyKOXokkqoppDEGYw1y1pFlJMSJyfVMfof3kflsRQwZ7wsV0ipDkzI+ZkKK7LZDmRzUCEoekHhtFa0WyNQSrGZ0AWuLR5qo3yeMKn56EXIEkUSRAUN9kCRxH/+9H8J7E31BDTzw9dQiyTEdBsYezPMuMvmSTGu0RhuDEAprLW07Y9htKaETES+LTM/vwzf2TKkU7ieKvScdElFlvMREEImp/rwq0DQCwbDzDMOE1hLTFGCsmc/IWdK0S4bxrno6SXKqjDxRBqFSijikkhaZi8eTaRpWiwWPTte0jeHu8ookBakxeBfZbEfGfijyXCm5vr5h6nuklEzBo5RmPp/TzWaYpmWxWBFjZJgKK9HHQKkrC1SG5WxeJES5bphTIMREjE31AiyMH0goJejmHcvlgu12xzh5lNU4Hzi/uOT65pbGtAVQNpbGahqhsFIQDcQoSEkWY9OawGf0PoGVsiBET44eYpn0TFckktPYIymgmw+RlDxJCIxpkEqTvAckxrRYoyjOHA5i8Sork7nEhRLuQaUUJ59AFzD/vjRWpJpCaXTbIqTEpYiMhQEHBWBFStTckmVGyISiBF9EWa4vEtFakrxgyoGQPCEXHw9FRkvFFAM5CqySNEajrUboQguXWhJyZgwZHwKOSMxlUc0kYnSs2haFwOcMsxYxb+nThBknZkqz8yVJSGfopGLUGVwm5pIem4lIlbHGFI9Disza+wmREk0xPqqVpsPOBCslndZI09JmiW1a5K7KpULAecfBW9NoGqOLmXOIpOSQKdEpw3oxIzYWJSRu7Ll6+ZrzFNFLi5gvcMOO59d3xO1EePaE97tTyBrlI50AazTL6s3nfcb5QEaijabTBhUiJkOnLaNz9Lue4CJGClTT8fmrt/QhcfXolrP5GUdPjwjTlt1mS4xFYm7aDmkFyhqUBWEhKU8OCW0VOkui1IQh4HP11pCFJRBcz+XFDVKMfPDBe2XtcJEcAjoLsvdkX2SyPgQSkagVQwxcvn3F8uSMrATJB+bW0rQWZMJqwXzWlPnJF9+4802PfPkaWsNHRyuOO4P3t7Qq8Ox0jVUtGz3n+Z3HieJtGKMr7HEBWYvKUErEXIIfUooIbYgpcXV3SxoGlqtT5jODj5GEwJgWpTtQ4LNj9AmhNO+994y7q3P8buJXKfCLX77gy8+e896TP0NpQaM1Oc4gb7HW8vTZGd/75D3C9Jrz2wu++PTnXL7+P8mffAi2rRO0OITaHfCrb2Gh7RnUUurDXg9gs+t5/eoC13u+895jTk+WRZZRipQPfD737/Rwk/NHOMDlUq3PCFAlgP6dz5F/88D5+9C6f/tt/6nyHnncb8Rr86FYHmjdkFKxM9C6rA+DoxYny2HJkNAxcnvxhi9//jd8+ou/pT9pcWfH6OC4Hq6Q0XC79azNAkbFYrlASsf2m2/Qp2vM0YzLL37J3VZy+uxjTnTLeBc5/+wl4/MrrFPcXPX87OKadmH5/odPsKJhvNvy7OQRLq/4u28ueL35hj/5T9/n2Cy560eU96hOg7cIqwl+i1KSDz58n/e6jrP3vw/vfQKrEyKGIJpSNMpAmgj5lhzv6KyEKSG7Oe28RV9fYoFmdVxMlTcDzE6wq44TL0B0oOdg5qCKyqJEqFVz6lT2YkJY0Cv2oVq6EwjZQBQImZDCo6Sn5AdWS4N3OlHUv9579+5PWSJzQMFF9Yb94xDX6nMi94boibEfcd5Vryt7OKvInLHaojp1H0x2eOb+GNfyv1q7B+L2XX24lQ/msnf7Wb77ff+I36CVpu8n3r65QArLJ9/5Pp988h1Wy+UDqfI/lYr8bb/xX6HlggG9I/jbT4Oh+GUP25HLyyuSkNi2Zbvd8s3bl/z0i58WplPQjElxpw2q6Zg3S5bNCc28Qc8sZtHSGsuahrmdoRcL7KyhmxXrIZEh50TwxUpGpMKWDTHihpGr2y1husFPnqGfmAaH8yPbzRVjjmyjYUgSHyPZBZh6cgi03YLBRaSdM/kJIz0yznDDaT3rahwN26i4dYp0PtC4HR98d8VxWBBe36KNhtUl+XaLe/kl7u4CYyTyZAF6hgiRnBQ6rdFBQx6hNTDviBmG2x1B3tE+neDEgjaQHWxvUK1iGK6JcmA2e4+CmIqSmptTRTDSOw/toY4EaKEOTChSIvtEf33DV59/xRdffMGr12+5ubtjdIFIIuYaCKA0Uiv8MNV9R2Ur7z3jUyzn/5yRISOUfEflJeoZmlTYzQcWXi5MrPswvnvVVwnru7dwEhlM3VApUa5L8MDWKZVzpqQw1wtWVmWcRmIbyaOzJaenHeuFpbGFiVivpJyyDgCdKA95Fu/Ou2WBO9zTYnjG76bUif35J1fsOuGnCS0k1rb1PfeG+JnRR2IOzNrCloRY1UCBHDxuM/GTX77hq5cX/OxnP+GXv/w5L775msvL11zfXNEPG5bzBTF5ciXFSCGQooTXWa1xvvrZ12sWuQJloqbP7xm+IhcAsfadrMGaZRLb2ypV1vFhgaz9nR+Ak8SqGpNl3JIrHpEr6U4cJt1/TAjStwJ0JycnbKZi6h1jLOwYpcg+MAwDoy2smGbZopShbYtsNRjHOHncdsO6MTTLY6wu4Fr0xaD7or+gaZoChJCZfMYnCFPCKmi0plEtxkjQ+cAMK2msvhwwTUTFgHQBQijS1DAiRkcQMJeCrCxhZhHK4IXChsBsiricudnuSBmijQTnCS4WAEIJJJKwf+gFtQolSFocQKoQIMZM8L543gGTHpisRSlJX7X9jTZFmkaRm7amwUjNMHlkkmgK3UBIgepaFvMWJSTZQfKxVERqSlBE4F3Ax8Sgh0KXjhHvR6bRM4oCLg1KEvuWrVE0TYNpmkJ97lratkE3mRAi3idSEuQkK9JcQhlSysRQ/ehSeZiFkEiloaaEBQFyn9JBMcWP+5QbMtd3t3SuxTlP2zY0TXNIf9X6Xe19jLFMHhURTDkf/Or2wN8+XKOAerIuWtWrL2YC6f7/CYFtNMEXDz1CxLmRYRzQ2rJYLLi6uiHkhMiCGDPj5JCqAAkppcIEM8WAWeZqnlznl+hLHMBiPqe15TMKccvoy8HZGItWgpAzvvrOSSlL9HYuz8G6LRLYSKYfIjG4ArAqQdKyVFWQNNbQdg05RlL2B58DY3T107tD9YZhckipmM3mWBvZ7gaEKDJpJRUpF788P04MSrCeL8Co4p9ArXrU+aLIXO9l2yWZthh1ktUhCGMcB4ahpEm1tkEmiqm9teDKuPHeHwJFtDFFwhzLNQmZQVpScnWhooKOEFIkxIhJqlQ69hV5SlrR8fFxuSeuAFY2g0Ie5MM+xgKsPAjKEQ9WFGMMcSqgZIw1HIVcUo8rizRUOXHKEGUgOgdGY5Qt1aiSWY+quI8nY7xBCnlI6/Ip4JLHB4/znrFGu++iIxnLo8ePOJufcOMyX7055+tXr+j7W0JyqEq91kqhdPW/SxElIlLXRSJHRA6VrV3GltKl+iSFoW0MISX6ccBNgSGDr36XrSjm3EpXObUPpFj6vjGWUVAYlkaTY+Di/A1yY1g8PqZpG3ISnG8Hdp99zqvtLd//5EO+u14zkgm5yDw0JbFbCwGyVJ+0iCy6hlYvWSwjm2FkGD1hcqQsaVGsuhV+8Lz45hXxFFZPP8DahkU3ozEWYsaLTMhlY6KkwshyzPCpFB2stgRpICdCKOuGluWZj6pYGEz9gBsGtDTsQ0Fy9dcSsvilxpxRWjKbz2hmHW/eXqNmI48fP2ahF8Qa7tMuZyzWa276qfgjosi7nt2w4+tveoLbkZ495f2TYy6vbtj5ia6b8aQ5wiTLm/EK54vFQIz3kmslJTIX642Yy9wdY0YoRcyCu82OIW7IoqFrlgih0aZFmw6BwnvHFAIuJrpG8v57H5G9ZxwUu2HH51/c8ebVWwYXmSHRogE6pIBufsT3/vT7fO+HP+CrL1/x//4/f4eUS5ociEOs/ifioJBSIpRqKBrQv3Hguz+wHYJ/BFXqDlkKNpsNn//6V7x5/obu//pvnB4vibHE3Cv1/4f07jdbqZa6tCEylbEnykZ4nyK956Pcf1Wz5Sx++63+zbcqGz987hIIlLNCq5aQYJgCSgqsUVxcbvjm5Tm6U7z33imnM4PJHi57vvwff8Ff/vf/mxe3X5At7FZH/NoKLm5e4jZbHk8nPLuU+HDHyQenLP7bJ9i14MWP33D+6SuefXRMN3vGLFkUjyE+YXvb8+UXl4SbO47nHZdOsktrlrNjurZl2jmmW8d6/ZjHRxb5+YaL51ecnVzz5GiJPJlI44CZ1812yoiYaTrLez/6HmfrZ4ij78HjT6BrQSZE4VYgUiAOt7z6+sd8/cVPOZpLOr/jeKY5fbRiOn+BSyOtnohDQ2aBFitol2CPQXYgMzk5Mj1SZVIyRMoaIkWANFXvPgmyIWuDmJtazPIgHNAjxARZl8KOmFEkUvse/F29+u5f/uiPagZR0h/2/6wsElWYDEB+kGKnjUE3zf2Pp1TW1/9o/7wm7nc7Dz2af883P7CGuQfh92y68vrhbet/y1xujOHJkyc1IXLOfF4KNiFktP53MQEe2m+VYiRkFN73XF6f491ESvDm7Rs+/+ILkpScnJ3x7Ph9uvUZaX1MM1szkxaSKP7MMhOUgJiwu4ifAn1KXN8FPv3qVdmDOscw9ozjyDSNRc3mXJE0+oR3JSRO1fUoxYQIA3Nbwu763OCERqqicFI+Q8zEzcAYQaWWkDPKSpQu+4YsEyEFWi0hCDZj5s3VhPeS2ceP6e7O2Aye+GLDyd/+mnbsSW82NCjEHMY8YeaK3eAx2TDTLfhF2cRUaeB8sWYzwfhm4Fq/pL2UjKoj6A43RbLz3N5dsH5vyfqHH0Nbg29UpnoPlX/vmVw5o8ioh4Wk+tcsIDrHxeUlz1++5JvXr9nseobgSDXB2MdIniYQAe8novcHYOUepKsS1f3b50wO8Z0xJlVhKKdUrXsqUJPy/fk650TT3AdhxBiJFXxjD9JRzrPFy6yCeDkdAsP2AZEpFdpDzmWvaK2i7RTHZ4qTR5LVkaQxFdhDAe09Q54HpK539i971l78DeshyKLYIeyxUajpwlXmWbxnJW2jC261J1gEDr4nnVUEIjCRmLi6fsV4d4kfdly9fsWLF9f8j7/8nF99/pavvv6C7fYOH0amaUCKzHJerFuo3vn7+wqx5Bzk+1TqgqlVcO4AuN2Tjvbw+x40K68XUtW3FRliJdD8Zsv1vapV4YOLePf79n7Sv6996/9t2xYHiGEsHnOp0CIjJXAhxsQwTISrK7Z+oO1KNaHO6gAAIABJREFUqmiTFEJkWiVQImEJWAzaKBKG8R2DekHIicFH+tERGDBDoGssc4opn9AKqQRKG3RbQR0y/eUVSFXYWeXkQo4VXEgZMUxIUQ4xWQuEMUgs7VxCEix0UztSMnnPtt+xG3oG7/A5Y1yiJGT6CpAVrzQpipeAUpIsM1E39wbzueiKpymx3QWMURil0ZUyOWtb4mJGJzsaaxFKEClG+yEEkGCtKYBdLmCBMXtfCElO4hAIsZi3+GrQP44joy/SyZSL/93dXaihBUMBfhpL25Y0WFvBUZ9iBdYKWzOkfbpt7aNDEbQkbQqpCyiZ9sEBkZwd+TeePEHxuBunCUh4XxJqtdY1FMPfg3HV205wn1aDEPdafva/K1SgqCYa5jJJJTLJJ0Iuh6Yoai0wCSbvSrJkUsS7SJQlaXSzHXEhEGOZnIJIgCMTCX6EEFk0hXEmjSQrwGTG3cDbaUQJkCmhl4rFzGLsjNELdj6ifCim7V1LjJ5pHAHwITCOIyEU8+UswFqLr5RpKKBRAekS/TgR6zoEqXhhOY9zHAC/PahVSiglzUki0UpC6ssgV7qA4aLc+zBOuMmRusImfIcTIfeJqYLkJ1AapQxGKZIoG2tVU6UKmy4gcwGrYqXzWq0LaKXuq0MxRnzwhSqdIy4GlK6U4/ygipTuQdoYAyFrQs7VFeB+o1mKaJkUAimEUmkSAh9LrrlJEpfKmMrx/lnaT75SgUz3h/16LmOfBJxSKoCId0yjw5OJ1mDCktRYrLVlbqkHjSTA50SKHikESkrGfkfGk1Skn3q2Q19QvEYyxMwmeJw2zOZzTj/8gGfdjNnpMbpVjNOWV1eX+KkkhmZRWJLGquJRUXjTeDfhgsJU1o9UFIA3Ri6vLnHZgDZ18RaFkUskpYzrR5LIjPN5MaLNhU2aEtWYNpDChBGwPFqh3n+CyY7zzQ3nr19zdHrGyXxFt5wx3t3xi+fnXPWezfsf8vHZEcuFQqpY0mX9hBIWKzOIzExLLAktwbQNRhkmE9mKns2mZ3vbc3Qy52S14qhbkaXmZrPj7vYOQsL1A8l7eivZRhh9wyo2qFTugQDc5DFYVGuQorDqUiigm1GadrmktQvaRqCkYBp7/BSRQhC8w4riF1NLB2hlsO2M+WpNu3XEVMaLnXUEUUAyv9uSMUilODpasLaC4fqau0vHMO14c37OEQI5Oa6H4kU4W1q0miGGwDQNuKhIuSERDgWiJIpcMGeIBxZ1qfqVQ6zEOc92N3C0ThjbYZuOLCTD6PDJk9qycQ8+Me8aPvrwI77++pLlTHB6pBj6gf76ltXxiqQk3iWSLWCnB558+JR2NeP87WvWs2d89/0nNE0LQpUaa/UclkRECoAqc9c7+5d7TtbDxHFiIsuyqZ23DWcnx9xdXP9/7L1Xky3Zeab3LJdum3LHn7boJhqOGHAkUiExdDHUXEm/Q/9OEbodhRQxFxLJITicIYeEgG60OaaPqVNu+zTL6WKt3FV10CCBAUYUKGbH6TLbVO7MlSu/9X6vYW+4nIvJsSgVubP7X2QTCY7SyuTCLuREPkdyfFGpoZS9TW5VgfGfCCb3C1suakXqvEfinl1NgHbbM1hLCIJnT1/y5uKSO+/e5c5ox7NasP3Zpyw//Rvsm+dsL55xans2Aeo7Nc+en1LawPHDOxweTinbDX3bcnV+yezeh9z94AcMT14TzF2OP/oR26XHt0l/HPodQoONnrOrJXY44GR6Dy0KXry+xBnHsTSUpSYExb0797iwr3jy2VcUAu6fvI98dYH3NZPH70EYEiN92mDjIeL4Mci7YBqCCgThEzgXU9dcKk/lOtT6im65QwpPmE+xvmf56gWvz1/xldI8eu9jHnzrB/j1inDpMM0A1QxrNK2z6LqhKQyRpLhAg8g2BM7tMkjsEE6DmaYDqwLEHtilZFmhECJreihJJf7oBBl/za+/8ZBJC/Fc2wgpqSaTX/50OS64fxVA6Z+3cbueUf/zt5tBazeP/Tf1QnJ5nhumgqKQnJwc3HhNlpjJfyIz4S8FsMXew3m1SV7qXddiO8fi8oqu63j4nfc5vnufk8kJNhYsfGR5dkW/6hh6z2AH1m3LxnbgoOwCw25guevY2g7daBAR75MqyQebmXQDQ2/R2qTgLyFTLUDyQ0seWhqVA6+iVEhVIqVCSTCSZHMTJa4PCKmRApSOICW9dXR9T+s6mrrGS9iGyFIozHrg6fMdn7/4KT95/ZT11RXvNxX/4t17fHS/4tGjAnSgxNKHLQ6PEAW9N0iSDVS0gdVyTfvmkq9O3/Dk7JKtKuiLKVtZEooZUpYUTjDEHf/ij3/I8eEn1PdyTVQJnIxomZhmajxHqUjI5yfensqs42q54PT8jMVmlRQVShCkyOvXFFiXauHkl54sfm83BYWUNwLvvrkGEZnBHHNAC1xfYyN4A+xDAsbHUrLq+Flu/M3xvhsTAWRP3CJmsDD7dwuB0KPntKE0BXVRUxcNSpVASQwmkRBuLfx+2aZIkCeE0R04v1DFmOs7ud/Hm9dISoq2BLdLvqjagE6fwzvHtt2w2m1Z7xY8f/oln336E55/8QXnr17w6ulTXr68pAtzLtc9buhppg1KJ4DSuoEUopF834mGIALeZasuF/CKFN6Qmw/7td/oxx/jDYDu+hyNn+Xm11vbSMeTI9gn9gpGoZJveQy3D60Qv9hYHvfn79v+XoBOKYMxPiVQdn0GEQRaF5RVTdU0EHvatmXRrpOcUykaUWCUpqwUwQWs1xRNgykqpCmRKg1MVZhkxC4NsvKI3Y51t6P3kbDp8NZREhBGI0uFrktMXSZjdAEUCqU1E13RKIOMgtBbfD/A4IhKgxR0MrKLqRvgQoQgkV5wUlc0pqbUJTZ4rpqai+2aRb9jCI56iNhhoG09/ZBYY0ImaZhAErQghiQKGDMqR4DL+ggUhAiDjXSxQxKxrsdFS++6lAxZaoqiQKjMJLPgbEyTaASjJErqtDDzNsswBUamFNkgBWWh0KqkDjKnqyaaZb/zyU/SB5zroevZbnYp+dNo6romytsDZ59eExIKHUaKZx58SoApk9y47bp8XAaE1mhtUDIbRfuAMUnz7nzy2nMBtPaImLsNMjGjRnDz5kUSsvRZ3CjY4mjkH0QGjF1aMERy4IDMKPq4vwlEVUJTVBpt9HUgR98SQto3QvI2k9nXQAqN1JKmqZPZfHQoqbKseINSgmlZJ+DNR0BSFnVaxBcGRWIADkPyilLKUNUKlZlkvR0QThCurqiqKoGOzqbeVwyIkFDDqiqS14GzbLcJJPfe4pQmRJ8ZqIaD+SFFVbJYrhJDqusZvGM2m9G2LX1v6bqAlsWeeq2Evp6ARAZAExf71jFPNXYC2wCSLUw69koJqrpkNm8YetiuN7huoCwkvfPIyRFSJPZrMhJOQJ1QoLUh5naKEOlcj5NnuiGyl/P5OHZIkldAiOkm6rzbV4vJyyb5drkYiN4l+rJQ17RnoUAqZJaxR1z2QczJPiTwI3qfQOrgcUPL0HUM3hGMphSRYdrg+i6FoyiFEGWarG1iKEmhMKbI6u9kLhtViloPSGyyDcGi2NmI3e04sD3NyRHvvHufZmI4PJry1z/9KW/OLlCdT8nAOknYhYIYHRFB13e0+cQoYzL4KHB+4PJqwWrnQJoULFAY5GxCrUtKJWn7gdD3dF3PbtsxKUZAQuQuXWKTGSmYFAZ5eIhwA1HDm+UV68WSfmt5MD/h+N47uN2Gn7085eLKsvz4Az5+Z8bxzKBNgZTp+g7eUmjFybxhuV7SBYePgqqqqY7mOCe4vFiwXq9w3Y5GVUwnM16eXvDZ13/GF69eM5QajcRpgRMRK0hBM0JSiNTMCNLQ9x3GCApZYpRHiI4QBiJJWlBXNQczw6RKXqi7dmDZrhmcxPkBhGTTtZTKEKREGJ06g1JjypqymbDetuyWS+aTGlVUrLctl7tdCgEqNbODklpFtIxcLSLB2UQ4FhpT1FAoJtM50jRot8S6Dmsl1pbEOMtdV7JPZU6XylKCEBMDEKEp6wlyiGw3PavFFucFQum9r6LQmmY6odAe32/ZrHdMmsQkHoZThiwxXlxccfToAWZisN2WzfkrtnbFEFIAjAuO+azmuNZsLl4SvWRy9x3M4WHyzdn3U1Pk/Nv1n3j7//nWo7REJUEAdw4PmP7+93lw8oCjg+Q1WGRiTch2FmOz5rfrU3WjUEPhRI2nzoV2YoFGkRK9R2+v/cui/BWK3d/BLcIo3dizBqPOi4MAIs3Fl+dX/NW//785O19xcDCnmBasBvi//u5Lnv31v+O/fXjAHz04gGLJbvWCibX8wcMPOHn4MX7a0L7Yst2+pL26ZNcETu4d4MSM9ZeWLSsmd454/MEDrDrGqxOqu5rYXzAML5DVGx68X3PaF1w9veJOcZ8mwnK1ppsptqrgwExYtpKL3RVbu2bTXbLtLA8X73J11mH9Dn3UQdwADmEEjpw8Hw3BFxShxAuBAzSp+YwYCP2ak6rk6JOPWJ0/o91uaXc9tDu0VVw9XbDY9DT6MXdOOmJ1TiclV6tTQndAOXlIkEeoOIXQjATFzF0yhLDG2RVRR4zUSSUgBog6Pe4GvOsIoseYbKguBmAKHHA9rn+dr78NcOWaeZAsFfJ7jgBQCDBKfr5pIfRfnCn7/8/t12Ugv33aMh6wP22poZfqxj1jbr9Y/x2fFMUv/pgkfvnTOcdut+PLJ19xdnWZGqd5XmwmNfcfPcZMplxcbHny9RNebns2W4vfOkRMoNqm72h9oBSaWTAQFENMTbndm0uE9Cm1M4RUTwqB8h4TkldyIX2yb/Ee7we8EIl9S6Qsa7wUCD3ByZTQrmLABIU0kco0uOWWPkq8B28kPigGB7vB0uNZ2R2xusu9Dx/xsPp9wtOn7M4WnF5e0ZWKi5XnMGqcnOG1od+1VHGLEANVWVHpGkLFsIW+h87Dernlzek51va8uTxlvV6x9LDVNa1qWHmNFwajDM1JDaKinp9AOUFKcKOSaTwn17jRL57AkFhvi8sFT58854snT7m4vKIPgTYEWufwMSQfTpksbdKi7DYrLr3djfWyEGh/Hd5wUxF2LX0c2VoZgOMGAC7Aun7/1iGErGAb58zc+EwGQslCL46NdIgIrHcJRJRp32UmAhlTUJgaI08o5H2MvIeIxyAmaXh+0zgXI8VtIMUplAyUeEFqyOU7kkRktMMjos11WwKrtEigUlqd7BBcIYod6Y5ZEKXk7PUln37+jC+++po//4u/5uJqxfnZgu16i9t2uNYSOojxiAFLVWpUaXKYYUjWSzKnHvtMTNAZeJMphEoJndacHlDcAuPGNe9eSpwL0ZvnepQfj0fqprw98yHT6+X1uR/lqyNDb39IbyN1t/h4QvwGAB2QTrjRGaxJ7IOiSKDSZJJikAsMyvfJuD+ItCiWEj8MSBVASKKzRF+AlBhjQCaWjVAaWZRU2tDMZlSbLav1Ft+2WcIIQzvQtxa/BFHI5J8mYmKDAah0oAsUUUWCDAQRqA8PQUZ2REK/Y+gTSyv6mK7swSNi2tdKSmZNSSygiFUCBYZA3w5sNpskDXTXVEpPxIfkueV89jYSEq0SjVLrEofMMtFkZClEyItfjw+OzWqRPW5UBig02iQpamESwCRFAgVH3yHvPVoZpEkphILUPdCZZRdjyCBdpJKKEASDTekuPniij3R+gG7AuXCNKL+FJAtElmumz6yUQgpNIDKMvjPKYH3Ah+SZllB+iCGFURSF2XcYbk5gSl37jMQY8c7ic1KsHD3/gicqSXSBnCyQGAt5svMh75NMOIzWksLo1DnIF2uhDUVlKIoUnlA1JWVT43xAmZJd+4YwJKhbCJUCL/AIFIWMHM6nDLsd276jazt2tsW5gaqqiEWFUop+sCwWK4rSEoXMnQaJJ7DeblBCorXcp/SMLDGl1A0WYdgz6Jy1eeLxKFMg9sdKowqNlDXBeYbe4mwCUbUyKXRis6PvOqKPaCGpiiLLh7OvgUymoLrUKJkkJVJnYNl5nLU5VhxUCFmGnMdDTOBcjGlshWAxSlAVaZG/29ZpXDtHUApnB+j6xJrLXazrG1My+vc+Xw8yg4ZK5XjwRC8OIXVEvE+yaKFS+nBi5DliGP3ZNBqBCB6v0o3Rh4DRBcaURJcpzzp5/GgCISoQLvs2qn0nK/nvJWm1VgJdlVRK4voOFQLBO7brFefBcf/e/T2jUGoNUu1ZTvPplNVkTfCOwdmUAKsLLjctW+8oJxPKoxOGNqBckkspIdBGMq0LTg5mfPjBe5iiZHe+xJDSfxAxBakER1QS7x2eLL8PESHCdQpUFGxbSztsMYWmbmqklEyrhrJqMHMYVgucCwnInVQYncBMIWQCPYsk1fbW4VwCXx+cHDGZNZwvViyudjxdtiwPe5qDA6bH99luO/7jp0949Ro+fHzAx+8+Zt5MaIoCby0xBJqq5GhSsxksrU0egfOyQDcVDYa1KRn6LRNVEUKgHTpen77hcr2lOjrEHMwo5xXS6MQiMXn8oEBpNAXRRhQaSbpGtClyeERO2Q6B0AeiVByeHFMVnjdnV/RDDznevm1bbCVJdE9N70JKJxcpRdb5yOXFJZu1pqknye9NOjbtjt6W1M2cqippKkNUgdXlFbooaaYz2m3AxoBSKcinLHcYI1ExpuuMkP9OAiCTz0iOcFcJbA5REoVGFzVKOza7geV6R9sNuOBz06CgqmvUfILTgW4dWC0vaTc7XN/hbIfRknt3jpnPpigpcYPj9OUpP/7T/51Ywfvf/oAj59i2Sy4unvN//vv/jW5VcnTnI773R/89f/gn/4rH7z9GGwFBIUJqosWRvHNzi7BfvI8dyxugXRSCpjJ864MHCTT35ELorbf5rbNs9jliSY3hsiJDZR6SSOnEqUd2XWhde/4Kbldfv+Xd+8fcbnyW1JGGwSaG/OnrC/7iz/+af/tv/4zlsuXh40dUsxr15ed0dEzthleq54ne8OB77/Ov5v8Tp1+94utXb3CLNdob7uk72DowixYRDHc//D3qwwdENUGLltiuaO4d4w7uEwqNmc9SDbnqOVZ3qWdJxq3MjHfv/5DLVclPnj/HlZG1t7xabalNoJcdoXDcf+8uR0fv8N2Pf0TdHFMf3mf+8BEIDyoQdhuGywuG5Q55FJCNAV0gkSgKZASBo12+5vVP/xplN7z73jFHuqXaTFivLOdfP6F9+RLlNB+88x6zyQnPn59SnRxy/N5jotSEoqGezlDmBFlM9gc69cEiIUq8V8QoIPTE2BKcRdKCqUAYgttg3TYz1hvAJAAhquwt948wECN7qRa5+UWM+3vrtYzoBjiXuqsAt9h0/7z9atsvTLOZrfNN7I1vfL24ZpqMjJ5d12G0QWt163S8/XbpfI5/9+YC9D/30/x/ZPvG/b8Gsr3WvDm74Mmz5+x2O8qywAhFqZOJ/2bXooLi9NUZn3/5jDedw0WFHhSlKpI3ekxo/OAdq+2AHwKirGgaQ6ErBD1SGWQmLLiYEBalNKYskqJI5PuTTAqrppkwq0qk2+Gjp6XEqiI1F6Wn9CmUom8tu8HjLPQuqVKEUmkd6gZKpfGuZ34y40ff+Tbfnv2Q1d/9DebJGcv1lv/lx39B2605cwOnyxl3jmccTyPCVCA0rHuoZ4SV4/zlhrOV53Kx4+XrN2xWC5yPzE8Ujx494EBo3ljBkgLvDdQTfIDDR8c0JycpLVMlRv+QcBnMeDq+qRTInj0xwrBc8fLrFzx59pTXZ2/YDRapFYN39D4BdDIXKzLbiYxrUbiuNa7H9ThnwSikHK8buAbpjBklrCPp4TY6du3DexuoGX3gQrxWlY3Yw2jzs//YIqljRAbqjFGYsqAsGqaTE2b1PSpzgBQ1Y1rMrRJlRJJE8n97W5mQ/o64MepT0AQE9oFde+gqEXRcVhP1u1PevPyc89NLri43vDld8vLVOV89e8OzF29Ybz1Xyy277YCMEuUkoffICEZLum6HqlIAS9fv8N4mxY1RN473DWxBmj2xJJ3L6znt5nG+yWq8BlFv/i6dK7GPOrs+/zdrRPbMxyRBTIEa1/fc6+Mm8jm72aKGGL5p4F5vfy9ANzibfb+uJ3qEwDuf6LbeYwpJUzUUqk5JJREmuqIyGhEtg23ZbTtOz87x7ox6OuHk5ISDg8MUH20t3nlMWScKvFIMWjBoSa0bVAgIZ+k7mySgIRJ60qSzWNMWBX29w1YNk6Kikjp5uVU6GcSXklIqGgWoIYECXiG9wO06yMabXoCXKQG0LjRRCspaMZQ9k1KnhBAXMsMshRn0g6cdevouxfqGaxJouhC9SEBgSIy3spBM6oKilCgVKeYTBpdZVW2HiyBkkhRqKTg4nFBolRl0Wc4k8uUiQ1qsRX/N4s0XXshgSPJ7A6kFZXWdHOP2BpVcA3o2a7Czt5gQCucdISZ54GCzeWOMBB+Td5tUKGWIMaB08jcYh2ShFOIGQ0lrvQcDVV7RjFJday3WDkTv9yCW84lZ48OAysBmoTRaFzgRUspLBvR0lgFXozzUyP2FqJTM3nHZnL6pcc6zXu8wRjP0CbC9WTAKIloEqrJgWirK3nC5uqS3MYE8AnbtlmkzTXHXziG0R5oUYOCjpes6orV4IRAqewoKCVJRmhQWEUKSvI7+bCJC55OYSkgJNoGBRVEggEk1YTqd4pxjtVoRnKfd9dj+AqkVXdfjrMsMSUPX9ymVSGRzeevwOKI0qNJQFgVFoVDE7JeWgOco0jiQZIaj9zhH+owi1fxJcpl81rSCg8mU6XTK2mbGrVR0eGJMwKMUcg/Mjk7ySpk0oYVrY1QpJSJACBbnHdZJtHcpITCDeDKDd13XoaoKLUXyYRx6hE981kTwKLE+ZqA/T4xSopUGGQnW443CFMXeCyAEnwRBUlIWkqauUBH6NpnqzuqKpiwhBNarBUPfIk1BPZuiy5K6qkBKppMJWmmEHL2pFN5H2j4xIgvtKGykj5KZKihNgxYKP2wZ2h193zKdTpnPt8Rth8k+jz44VAAyCwwRkDJZAARvE1hjNFVVUtUNWjt8N+B6x+C3GcQThNmUmUpAXPDjukghVYqRT/ctSRRpHBglU/COEkzqgnpSYbSm0iWnrxc8/foZk9URDx8+pmxmXJ29ZrW6YLW5YrXpeffBPd6/f49KSqTwaEDFgHYOZR1hsLRBoFSFbwOlc0yrOh0TBIfHx7wbFb2LtNZy/vIlR/IudSXofUxNiEHhhMqm5ykBKzpB3w04n6SRSmusy93o3FkNNu3PtKqY1jWDk7S9T+yzEFMYSD8kNvZgE1AWBVFIZgdz2vWSxfIK5wWHJ3OqxuAvzvEhpSnXuqAoC4aY0tV0UWI9WB8YQgJwTUxyaaUlOgSkyny5mOSEInfFU/szyQ6QaXwJqZAy+8vomBoFQqZIeRUpqwKlFX3fEaOgLEqKwvD109d8/sWnDNbyne/8kO9//7scHc2RmRWhVMPp6ZZld8Xs6IhPvv2A+u6U6VzQDle8fhN49mKg45D3Pvo+9x/cRyvFjWgvRh7QuN3GrsZCJjVfQggEHzI7Q+UOaAIm91ljGfBL1+vfX9zcalzeeuSGUf4NUO7mI4EEzA09bJagpGA+gVKDyPIFNc6Ft97/ZgH+jwSO/Fa2kQkCqbDIpaIAcKmgD4LNIvD5Z6/46sunbDdLunbD2angHg+5e6CZFxseHdX03YanG8uj/+Z7TN75gGX4G17+9DPs6685ufsOJ+Uh8zvvoIctw1Lz2acrTr4jeP+Pv5Xmqxct4dChH08IDoKwCQyfv48sZzSzcx5UNQcfrzmafki8LKm059mLr9l0O3q348G85t5797jTvIM+PGE+e8Sd2XsEX+KrGqHKZAuhLMvla85ev+IgZpPx0oHwiFijhEkybr/Dbs7YXr6hEhDFEerD95iWE6ZDgf9Txeuf/5yHjx/z3ne/jzw4YbmzFJN7lNPfo2wOQddQzEBXpGslNU1j1rZLNIYpRltEWBKGBV27YnCvmBwU6d4Xd6ACyhwh5ATCHPwRSeLK25fgrzcEfpMtJvmVygtdly0+AMqyvF6UjnrJG8yU/fa7evn8v7H9Q+fnLfAA2C/0k0Rf7Ouem+Dc+LNzjs1mTVmW1HWdanhxHQQEyaP62pt5ZBBdy2X/SchcxfVMLsdf5CZTCIGLy0sWyyU2BJQwmTXjkt2J0piqQpkCpQ1FoZBO4oNN9UH20tZK0ZQljZZ4G/C6oKh0BuhTyF5V1wQR6Z1Fak3TNExnU9bbLUOuK2Q+n7qsMJVE7AKu7Ri8BxlpqopZU1BFT7ADr7sztFEUWuFxCCyD8zjvkCFy4JP6oWkEziw5+fCEB7O78K7Am4b59yd88fw1Yhd4MK05KHtk2QEbWGzg5YZg4OXLDT97seSsEzy/uGLRBo7vSOZ3DXc+fMDHP/gOrSl4rOZw9JCdmiOnc6IRzO42vPvtB4jjSVqfyDGfGAQhJereLCzG+SMAnSd2La9enfL8+QvOzy/pvCdIGIJj5y1OxuRDTtzjHcYkz/ioZWa2JQXXCI2pPBJG8CzdDsU1qBfyuiNLIdNzYwZkbgB63qe1nhwBNpH9eMcmsrxl+3MNKKXXyDg2M9i/r1LJd76ZVBzODpk0NVIrBANRCIRQyXog3p5qE6A5Bn6lf8W+jIsg0j6FDOLJsR8ZBdbDettzvtry5nLJ2XLFsL3iL/+P/5VXT37OyxcvWF2t2K77lHKrNH1woJMyzcckV44yIksPIeKjoWqqrMwAIUucy2tIkm+8GQPK8m7GG6q86ANaqltz2v6j5uek94q3fn/d+I3Xc128cVhEPq8xNY658ZQY495ub79T5CZUJjD9UkD5G7a/F6Dr+54uSwKdT/RLvKfrLGtnWU9KmomhMMW+CBBCZIplSVk2zNQBh8ee5XLJYrkk5MVO2Vt0UbLrVmx2O5QK0CEfAAAgAElEQVRaU2TGjwwDCoc2E7RSiGDBKJoQ0CaxvUJ0RJdihyUCP1g2g2PH2NEOzOZTSlmgCk0jQYsEWIkoEUGgD+ZYm5I+u27LpusYCHgBQsHs4ARZ6sRIKU1u8AW6wWGtp9OW2ih2eqAfBgbvGZyj9xY/QKQmhoQtKymptEIrgYoRXAovEEClDM20JAqNj+BsAs2urpYgI1LqzJRK3leFTl0EP3Yjo993sIQQeUKBEEd0XqWQDZ0ANB8hRI+zHuct/WCT35dLVOlgDEqbZKIfrkMcRhVqFAlwGYYMmiJv3eCVSgt629v9zzcZZGMqzAiIpUnxetyNTDypFMJd00e11mgt82d0dF3yCBBGIj34DAB6ny6UqqqSVFYLkjg2ewaJmJPnDEolBmT6YBKy25CPnuAsB4cz5oczdCkptxVCSay1rFarbAya2FNaa5QxDD5gbc9ut6HQaWIZJ1gpJVVV0TQVJycnbLdrYoxYa7OXUUypwkLmDkgFSmaZao/rB+q6pmmatLsehFgxDAOSZIivRDrGtu+ZzmfYMoF4u90upSmHyLSZonSNLgtMocAnz8Jk4SdSx1tJiIl9Z4NDKI+SLrNDk8xJG7X3KyzKgrLUrLI0UooRCCjwLslxq6oEZRI7ZUwIjkkeMR6jlJBkiUNqBDjl8N7tu+57kC96tJSURUFlNKEfIHiUERiVEhh3g6fve2QvUlhECCghcjgFeG3xWqc5RlwnKaXrNS3MCq0olUbnsIM7B3MOpylN7+XLl6zjClWUHMbIZC4QRqdgBxL9uihrJvWM6CXOgjYNKM3OwatXpziruFvd4d69Adk7cBFjSuazOaurxVvS7yTvRkiM0pm9l/wmlJD4wRKlTwBdWaGLXWLBKU2IgX7wOLdOycfbHeLgAAaHLlKohClMkjJHgfORPgTckJiK07qhPDpgIy27zYrBDclH7uSQupjw/OUb3pyfs10tuX/3AXfu30XFKZvdJT/58mvOzhcEF3h054TjaZP+npJMKpPSllxEBodwLUYoTF3Q1DVOSy69Z7m4ZLFYUpY1J7MDprMJ22FgvVohtWCzrdkJqINJbEoFBskwBHrf0fZJniiUQubmhJaSSVlQSI8bBqQRTOoGJwy78wUheJyI9MPAcr2i6w27XZu6hEjqesJ0dsCiqjBtAsHavqftI3Vdp664HbBCUpUlR8fHuH6gEAW7rkXpAiMTmzySu6U36POjpykkYD8leyW/uRhJ4JzWCO9AKKTW1JVmMp1T1Q1SiTSlKUFvOy7WG2RjOD6YMplOCd7yxeef0nZ3+O53PuL+gxP6fod0E8r5lHW/48WbUz777DOuLq84mhV8/NEJ3/rwu3z0P3+fq3PJX/3lU1wsCMOS2K8Q5RRkBRSA+uZaRLz1TUzF73h9py1JRrMq/cbTBd47hHhb3vqbLwRHWHH8/osnZ/zV337By5evmE0afvj97/DJ7z3iYGr2n+sWOPdPYC16axv1GXEMwhgL2ATgl4Vkt1nw5vUpJyd3+eCDD/n88y949/G7/Os/+dco1fKXf/5v+OzTL9DBsfu9h5xt/h3Pf/Izds9fU/lAU9b0ww6jCyYHd7j/6C6PPvyAeKjZVqdstq+YKEffLxF+RfSXWKco5ATaAmKB0HOYao6Oj2jWFyzeOLZScvTwEdvQU+wk98yEkwPD/ccnqINDWlGwXq+YzHZMZg3d5SWr5wPT+1Ncv2FxccZ2seZkfi8FGZkO7BZsRTAlUVqk32Fiz8l8gut7Li+WHM3uoAqD81DPj/j4B/+Sk4MZzck9OLpHdf89MEeIOIH6kGw0R2J6+BT4g0JInQaXBFFooCIOLb6DvnMs12uibKijJoiA0up6oRYTuyF3Kv4xRk7aRFKTjE0+m9UBSqVG0C9Qsn4ZSPfP229luwnOpbr9tkn52yw7KSV1XVOWBUWhb7zP+Hz21iephvM37FD+CZy/tz6ChOSXPNatznPx6pSzywu2XUsQQOhRA4jgEc6zW20JsqLfZQ9uYTBlgQyaQmqkEqy7HUFFDqcz7lUzohdsbEqdn87uMwyWoiiopxNCCKzbHdoYpvMDELBzAa090/mMsm7215nUEKVk8Ja2DxhlMHXB/GjOXApc37FcrUBr5rph0+3wbkNZJ99tNUhkiMzKgmG34j/++Mcc7w74oOqpdkuqk/t863/4PT7UfwDmCK6W8Onf0r16wmLdYRcrhq+vMK7jZ88veHIZaU3Bpg8cHBn+5R/9Pu++f4AsPLM7NfPJET/47h8ifvTHoObpBFSA7BCiJ4rkd+6jIQCFBIVL4U03z1lGVaKAaHtWyxVnZ2ecvnnDarvBRU/vHZuhSw3XEChMIkFE5wkiAaZaa4aRABOztcgNoOymb/Zo1j6uT7SUNwIf2L8mZrue8Vqz1iblh7heu+8lsgFUNFnSGjOAdt3UGIMM9qBQjAQZkVok/7mypCw0RkuE8CTpagShEzPs1mUqGFNcx8LmOjgiP5wbqWp8Qoy02w27XcvpmyVPnr3ipz//ip/8/As+e/KM9cUbTL+iX17gbcSoEq10JnULAgOt69GFRquIt8kDfrTw6WyHlILeZpJHJmgIkbLIR/B/PMZitCq6cRzftinee/1lZuII9sFta6f9B3+7gBX7R/b7dFN9GEUC7SQyoRw+XB/n/a1N/ELj5Jdt/6DENe1s8jbrh55KSMqqIfqUWldWMgF4NiB1Mo9vfYsSyWOuMBVFpZjKEicK2nZLjIreDqig0DpJuvphoFtfpbCA6BFCso0JKUsJhhqZL4RKGup6kgA6ERObre/x0eNipHc93dBz2i0oSsOsmjIpKwpZUUiVvJiUobMWVVeUTUG3CVSDpCIQvKfte9zQoZRGaIn1SVVtCoNRml72VIWmt5rDgxnOe7ZdT28HVpsd55drjFJYBzF4jEjBM0akz1vXiYXj3EDXDXR5IWy0gUJiCfRRY12PDzGbVvZsdi1FBurKskQKQSQDXy5dOFIkgCUGEuotIjbYdI5kMk7UOkkIFAJtDKaQdO2A8wPeJvZSDMlH6Ca7LGQvpBiu5bHOx7du+JFhGCAmLtNgHc6HW3HVAIPLwJ8brmmpI+OuqOiGHlSSRN8MG/DOpc6JSPJWlUra/XhNoIagGwZCdNAHTKHwhDROAhnEGii0odY5dcpahAxIAj7a5LcWAwJBU5VpsZiljEdHRxTSYLThzekFr16+xNQ1ViS6+TvvvYuwnnab5NHRO+q6pm5qlNFsNhtCSB4RY7pt27YsFgustZiYO5UxIEJKCdpsNrx+/ZrJZJbAvqLk4OAAbxOIHkySbA7DkOS1Eoqi3AdzdF2PypLqcaJSShNDYPCBKEzyrYpgfSRYBz4gtUm+D87hokOZiuglwXuKQiOVomsdUhomkxmF1vgYONt0xOhxbmAYOoqiQirDtmszs4y9sanWGqMUfkjpVEeHB8hsvLn/J1Qy5yZ75nnP0PeoGPIN7pptVJZVSj8Guq5HakPTTHEoQhwYrMVkvzudJdDKJKBKmuT1lcJMJLUpKLUhDENKKU6oIo8e3AMpsT6w63a0XYsqDF4qClNQNRN27ZA80IJCiwKpS2znCUrTTBrOLzYslhvO3lxRzuY0dcNAT2/ttbRRXE/mKUUqYqOjJ1IcTKmqCu0DQki6mKTKUinqasJkEnHSsFgvgMSqbfuek4M50/kBjTygXy/wPtB3PaopElAhwUeJFwohNK63+BBoJg0qOpSSLFdbNt2AnpfU5TvMm4qzN+dsrk5x/YrDk0NUMSdQcLrq+MkXX9MPntknH2FDklLURnOnmbC4WtJtOgpV0W+2IAx37h4T64roOsqFhmBxXaQXoCcNIgxsrrYII9lOJ7SmYNAS10MzqZBCUdeGro8QQCrNdD5Ddh19u8JZS3CC2eGEUquUIBgj2+02Mc7aASHi3p+tro4JPrDbtUip6PuBxdWSdtcnGa02NHXNzifJft8LLi4uiM2U8uQuzWTKw0ePcWeXLFZLdFMxPT6grCuiTIEU7dDjQupwFlWJ0YIwdOma9SExgXViPgqhcDbQdQPGlEymirDp8+/TOVI6slpeoGTB1fKKxas1+pOPOK4MR8czjo9n3Csf8ejRXepG03eB7WaBrATR7JjeUZRfaV5+ccGf/pufcvbJOzQTwe//17/P4f3I589e0tQVD+95wvYlVj3AlDOQJrW5x3ldJF9DshxhbEokQE6Qn3y9Lo+wFyrcrGEEN0C823y8b1oUhl949GbFdp0MPnaxx2cEwIkd9bznviooDVAsGZjjmec0sJu1W6rAxDfsw+/uNh7nsbhPbOD0H7gYOTia8od/9AN2G8v9k4c8vPsB0+mE9WKB3fT80bf/RyafWM5f/5yz7Wv+w0/+E+3iBUfKMYTIxfmSrX3B3UeH+KZj8uhbmA9Kph/c4VgdsPr6c85fPmNeFxR3BqRYo5UAOYAVcBHg6B5iMqG/bHF2QiVrDuuS8vERH310wqODwOlPfszZi+cI7jOtDzm8c587wROspZha5NWa06dn9LzH4YOa7nLH5ZsF5nQNtuP+H/wI5gIxOUSrCMKDjpSV5u7dI2Q9wQFOzZBqijI9qpkzFHN6M2fS3IFiDrFKX0MNQYMu8sD0kJUBImbPPwEIR/ArhvY1tl2iiRwev8PxvW8nINwY0J7o1/TbM7brJwzdpwydpGze4cH7f0AM1V5++OtteXE5Sh5zs0hm+ek+bfCmtpH0/NFPSSq1XyyNSgql1Dens/4zKPerbTcWjON5kZBsD0ZZMYDIYJJg7708DAPAvvFX1/Uv/TNSSmazSX6rsb6+eZpExlUTi26cl28vOn9TGuY/5pZZxPst86ZSN40weC4urji7vKB1PV3fM2umFCotz4NzaGnodwPBOe4dneDrCVIWqD7Qb3fcv3eHq+2CPlruHB5xr57je0cXPdV0TlVOePbsa1yIHM1qfAhstlcMbYtvCtbrNRfnZ5SThnce36Osa87Pt/jgqWZTiCVXS0dZlUznU5wfuLq6IBoF3jKZVLjYsbYtQnis7UAIBtsjZWKFGaPwV0sO7AbxdImdbtn5BUfNimZnEe98Gw6PoeuIoUU2Bt3cwUaNWDYMG0VceOzmik0/ECMc1JKDwnOvkYgSlldvmE6nyEd3EVqAC1BPgB2Ejqg9Ijpk7DAUCKEROGR0eB/RsYIx7GHfNYt4F/niq6f89NOfc75YsLMOS2AIARdiSuFUCk9M60ijiT6w2+4SEaUsM/NNIEWatxLzbWT7JwLMzbCBRD4R2Xta7K2prn3Q0vi5DsNLIYF7u6k4su9gGByjF1oUZB/igELdamgGEbNyzjFaUtVVyeHhLN0vCblxM7K5IqAI2VlubLzJkHy7EWPTON39ExFQEqNkvd7wxac/4elXn/H62TOWF+e8/Po1X3/9ivOLS9Y7y0AKKup9CzExEL1PwCUk6y0hFIoiKXg8iKjI5MMkcZWjYu1GmN++4bSHyPZzUIzsG73jmlLcIH/cZCG+bY/ydojEiHtdy4ozyWYM4hAQpRgVw/t74f79MwQnxa3u8ltsvt8wJMI5l/5IZghZ4VEKCl3QSJOBk3QD9jIlwsQY2XQtfT8QpELnxMph6BJIowpkWaKLCqMESka0iBQy4lVMIQkDtD7w5OwFNihUFFTaMC0KZlVDoStqWdLTp+QZpZG1xMu0sDRxggkDq+0SB7R9R+gclRgotEaZIgE/8xmiNIgi0JQzJnFGbQw6wDAMnF5cEAl71pAI48ENaCn2vjRSaYLQFEbReUOh00Drh5KutdgYEZn+3JiSw9mM+WySL1qP6x27PqXyuBBxNhC9p4dM2ZR7hkVvHX3nkO11iqeUOnmxaZ38AbXBaHVtZJ2/hBySIaIFKfLNWScDd1FkNptOg0dqFrsW5xJLzjnHKLFVUqcFZFEklp3L5uV7cAyIidmYBn4uCIRAiHjrBn6TOTVSfhMImBFzIOokm9VKZ6lXmpiK8Wc5BgyMheTIEoyErJUPMeCDZydFMrV1KaWYqNN5jakDKPYXmcfaHms1VZaWlrEmkHIhCmNoyoamrjG6oppMiVqz7jquVku2mzVFnrjrstr7OCbGZov1bl+sTiYT6rrCmCLRfW2gqtLN1wcHMUlCgMyEG/YAnTEGrQxVWdA0Mwpj2G23ECPOeYaQ9FjNpEJKibUJCG7bHiVXFFokGXWhEzvQZ39BY1BKZxNOgTYQYwIGnLX0XUgdw0zJdtksd7lcQfQM1iMnk0Thz4tz730az1KgzDiuZQZ3w37iG4Hcsiwpy8TC01rvDTljSNcHIdB3HbZtqYuCpihSgmz0KS03gnMpjanvbZI2mgQoGqPhRjT6HjjOvO2IwJhi73MYMxtJhJROVmbgM4RA7LssNUohFX3fsVkNeO9QUlPJEu1lYiO6kFhwUjD0DqJkvdnx+edfgVB8/P1POD6+x+lmTZTd/vNa5zE6MUtFTg8yWTbuvUf6kMFthchppQFBVAns0VlmWZclOgbKqkqJ26WmYMZ0MkEZs78WY0iAkfPJKL3rJThHZSSV0RA8pRY4LQnKMG1KaiWYacnVcsm67/j5l084uXuP9x8/oIqeq/UV/+mnn2GM4t0HdzBVTV0WzKdTCl2wUgv6TUupI9OmotaCoGAiNUeTku5wRgww9APrszW+NohSsmt7vnriUScbJt96n6kpWSy2HE+nSBWSPFup1IH2gs5bBm+pZfb18IHgEovODmkebjubQeCBtd8xKyX37t3l6OiEXdywOV+mec8HlEwJ11rlQBKZWLCFMWhpcM6zWKyQxnA4nyFdZOsDVAppNDYGpA9IZVDKpMIPgR08UWrKsqIkst5sGHpLHRW+rJNvpb7RRQ1pnhylsCF4jNYYqYhRMZvO2PQ7dheXHN6bU1UF00lNMZkynddUTUWUJb1MnWOvBF5A3UzwTvE3P/4pb56f8gf/3feAChd3qEry1Zd/x+nzn/Puex/xB//Vn/DuJ8cUk4oYU7BRCuUYWX8ys7lvlh43PEBuFE6/bL1+ff/4htZm/vabloUx7slK+03mRoGLMAx+n8wrtODh44fM7x7ig8MoxbQoqVRKb7YhmSMbeS22+YX9+J3exFvfpubfPllOpIaW0pJHj+8zm0z43vc+YbOOVDWUheD06ZL2yvJgWhM+fo+/+A9/xqeffk4j59jNa64uL9JY1YGXF09Zbd/w/PUz/u7sS+5/cJ+HszlquWK4esXhccmD2QmT+YpBaLrNFWENtTiktB6tppiJQfUdvYVQRIRao+oO51qM7bg/P2IyOaR48AiMRp6+ANcjJiVMAqtPv+Ly4iXz+ZRXz17y+vkVm2DZbM+w9oLZxzsOPnlAQBNjizt/xeXf/S0Ix/0f/ghz8AjUAYiBbvucs6sFi9ZRHlTMyyN0cwIme+epJOdJQFzq4ououMXJFClJe+g6hs4i0RRVjawOEWICXoITEPvsU1dSVTOqYoKvBJiaEW5OC6J04n5VHCxCWiyOi4qbi4m3wLih73Eu2WuUZckYRjU+bx/ElH//6wYV/PP2i1uyBPCoPJfGEPDWJguP7NXrbKr1+z6pKAAmk1TP/kPn4Jse/6aX/PL3GTnGv5tbJB3TECNRS0T0hCBREaIN7JZLvn7xgqvFksE5bAhYO6CDQBIwWmCHgensmGEy0PcRVyRf5KbWyGlDUSk6C27oCWEDXhCDTf6xFupJyawSnL4548XmnMlszv2DBi/A2jXr85fEoUeXYDeXaN9iwg7hHO2qo11csN1tiIXA2h4tAkhNCJ7oHYvlJZeLNYvW4Qh4t+N4DtYPyBDwMtly1LHivpnywLacDD2XRHabBawvaPor4BDqANMC3RuEmVF96xD57jHtsyvuH7/CfNRxfrbgy8++oAyWI+mZtDva1YYyRg4fgRgi2AhRg4U4tHSvn+CLjsnDbyErkftoKZwQkcCoW0MtQgyR1cWOV0+/5NXp66SAGHqs8wknEGlOKooi1fxZwnoL3JZib78D40PZA9qH/DWp19QeuMlNPiEQURBEuLUuDoQ9wDsCab/cI1Kgtbr1eiFTCMJ4H44x4oLHeoeNPUoHpqFK1ipNlXLyxmlbKMAghCaiCDHiQkQp0CT/apQH+nzbMNih4vTNmp9/8TO+ePpzXr1+yumrZzz96jPOvn6G3W3Aetzg8SGDWkqnfzLJhkWWJogocPk+FPIaS0qTPX1T629s6KaGQ/J0E5lxl45IYp/tG6HitjR/f+TENZFjBORugmNyrJn3j90G7WKWd4WYzA7Hn0e7tz0OLK7roZhfF3Jyb8i1+B7A43YQxa8yN/4DHnQe8iJwHEiQNc6FYjqfUNcaK3tQkaIqiT5ghw47eJ5//RLUiEhmbXehcNHjg2Xa1OCTH5CWiqoukVWBtz21j/h6wqqz9JsdMgc02L5nOQTa9YbZbEYQEUfE4aDQqMKgS0OpoTxo8NahW4/xUEWNJC2keztwevoipdbkYzyvasrZjFIndlo/m9HnixAMwQaGfiBYl9hbSqECKG2IUqCFQAeBJjAMJV322ejaxApUgoQmW48bkvyzKip0qZj4JJt1zuGsp40OsdvSO4tz2ffOJTaV80l62Pe7PBDVPhnXVIamrDCDYlqXSAkqU0KTEWQeFzItMpKPFSnxFJWozUohlSGIFBTRdZHgLdYmLzAvM5VdCMi+SSKMF8O1fJVMy7157YyD+ObFM140NxFuHxN6Pu5vJFPohUTELEN8u2OXL54hS1a11NknVBBILL70NwUxSIxu9murGEGEQPCJBixioN3t2OmIaQrKaYMRJYNzKVwDgXcOKZIMoBl6vJAEIm2nGWwPQVBoTV0lQDiEkD0He6y1DBnAG5xl15cMvacbLKVJgJ8xBX3bMrgUJjEMjrZtkdJR101iXnYJdNZyhhL/D3tv9iXXdZ15/s50p4jIEUACEEiKpAZKpstdtssP3auq33qt/nv7od/6qbuGXmVXWZJdIikSIIkpgZxiutOZ+mHfiExQlFTLdvWqQQcLSCAiM+Ii7r3nnP3tb1CU1qAb2Zhv/SCszsFPn5OAOWEIsjg5S/By7+35JSkxxkARIlpbUkygJTpDKfG7ykpCGEbvGcewT/0VI/tMTuBjoJy6LsK8FBDPaAkzsdqRVSakfvr8b+XRu47vDoh1Ru5bPZ1jNS1wKuTJDyETtSG7vA+WGMYRihrQxAQ+eAbv0aUEMjD58mWiMHuUQtld4SDP54mdO4aAnuSHPgmzoaprKufwMZCU9Ev8tOCNm46bmxX9GDjMUGOo4tQVzKBIqGljXRYFvYlcXV3x9PMvaeqa05+8z5MPPmT51ZeU9Q1VMyendtpViDQoBkkHBkMMCZMy1lis0Vgy2miqumY213Q+okyH0tJsKbTCOotxVoopEq5wZCIhyj3onLAWg1wUDG3HZntFU2kalaitpSlKRh8ZCBjruH8458AaLhvH65sl2Ras11s++/xLTmY1D4/mzA8PiLpk1XtMM2d+dEBTldT1jOQjq6trnDIcLhpmpSFaWKA4qgvS0RylDKtlS+w62utr3LxCGVinNV92HUYpnjx6wPFitvefsM4KuJ/FByTmKTRET4t3jCQfyDrsGcLDMIgkxDiskraeQdNUBU0d0WopYC2KuqxQVgBzkVDrfXKwMQ6jrXRkjeb0+Ihq1hC2W7wRHUHXd8TsJW3VWMYwMIwJpQx1PUNZGIeSNiVILXZK6tpL55WESsToQSWMlU1MTEGsILJmGAaauuHw8Ji+bxlSwjhHXVc0ixnFrIJZSW1nqARDynQdrNeJrg2czhb0ccX1xRtevjxiuVrTzGfMFyd0XebrL57yxa9f0bYN/9vpT7nfHKOMWDvI2G2IEinJRlM2WzLUnT9/58blt/aw/8AifwoukqbR5OEHFE7vZa4RSNGg8ozCaqwCHzKyzdA4U+75Ze+89D/NEf5XMO6wR0QnffvUpPGqKoezR7LeG0VZwGw2NegVPPnkCJA0+v4Cis/ndJvA26fnzPOKSkfK2mONJGY3swqKGU9fbPnNi6/50el93q8LdDI0Dxaog8eoxcfU1QnFYSIPEWtqKI9IegYkTNnSVD3NWYSwZPPsKd/87eeEVyNHsxP69JbXX38LB44ffvyhMLm7DXXhGW++4K//9tfM64cs6gfMqkfcrJ6xfv2cZbzkR4v7HP7sr9CqBDLGOWa2YAg9Kg+QHMnPyCqjE5RWUx0d4Rb3oDgG5hA10bcku0GZkkSBpsbkil0y5O0pUJBLFHOU8liT0EUlXnk5g+7IaiDS4pUwiavqIUYfkscpLEKXd67BOxXsfiP4u77e8YfjOyDMbs82/TOFQJjY5W63JwPy1FxC75oGvPNzfxy/f/yO9sPtY2qXXj9tYFFCPsiQQ2IcepbbDUVZoLXeKzWqqvo9oMAfByBzXBYTfFnCpgC8mEBrYkq8vbjk1fk5214Y7lZLHaVzprDSyCxcgbMlfgjEkFjM5jR1gxoCJnqOTw5QLqC3iVllKUuNVVITGN2hxiUz3VPnlm3X4srM8bGwxdYbz0cPj4ShlTNsLxh7hdOKQovh/unRAu0KhjzVc+2WYT2wigOp72m7geVyy9pnsBqjhNku0vREyANt70lhTqVrzEWPWkJRFGw3nrKKsBnheIBaw9Ecs1qKb9iDx/DwQ5qfj3z41Uvmz16y+PoVx5Xnnk58OJ9B0szXgZk2qMsR/sNn5M+uCeqQaAqW16+4WD/nB588Rp39RIjcKZIrg1aGpAZ0tiI/TUz+sJnNleerz7/i62ef8frNa9ZdzxCTAJ+ZKXDO7P0xcxYqR8zhDkg0gT/plhWV8i0wHqMQOpRSeyXQrY85Uo+mLJ5y3Aav7GWWKUlto28DE3OIxBylbkaDddKITQIUqameUknseEIIKL3zkkwYK3vCYRjo2lZYc2GUhD+fBZyz5f4yt9ohsGGLDyWd1EYAACAASURBVCv6/ppuc0PfLgmd4W/+ny949eKaz37zGV9985Tr5QXD0NMPPX4YUCmjcBhdgCmI2uGzoo+JOEZqN0cn+Ux1BjMdv/icC8N6xxbXWTzfVJJAQyXbLbkdp69Tm/DO5KimfeS0c8s7ynDeN4/ugmI7xpq6A9DdHe+y7BIZUWXt2XE7XUfOe6/N3YrJ3a93H7z73A7gm0ba2Wv9jvF7ATql1E5avX/ROMncgs7CbCkMymqsSZR1JcCFLiAlNm3PTh+tlJPOtBZZyXY7kmPAKGHQKaslMrowFHXDgbPQB8puwDcNNhsJgAiJOASiD2y7gZA8ffCM2aOcoWhKqsWMsi7Fo2tK+yytpTaVgD/jSAyiLQ9BUlzICRsDDQpnhRlorcNPJ8ZZSzYZFTM2sb8ZxxgEwMgJsseQMDqJTxwZ6zIu6MkkX/xz1qs1fdvSNA16Dq5pqMuKqox7ACsohd2UrIee9WrNJrTkJJ5rpSsm1P7WqDLuwh7aRBgCxiiCF2mD1ZJgaadE3sI6jJOCdbdQixh1YicliETpLkwsNQFPRmKYJhiliCmg0pSqeWcCUkq8k1S6s8m/cwPsyrIdlXTnoXd7Y2RCSmgkjCL5qRDlNmEn57wvwN9hPwFJCesrh2mxMbcTYtq3WhQheEgRtZdOpkkSkCmMYRgH2jZjymJiZxravifGyctuArcGH9hutwL0GvGbUkqizOuyonSO0QeRr03BKyklrHWEnIj9yBjSdB6FlZHRHBwcEqqawQ+MowdawhQWoJRi6AdSSgwp0m6W3FxeMGtqqrIka8Xpg3u4tmUYPMY6xjFydbOkze3UPXLEnOnHgRxHrBXvtowipsSQAzlFFBadxccvpETKMkmOfqQfR4YgxvlaG4qyxigwRcG4k7lM5zXGCDGSspKUXnW3IzFFw2vxnhq9gJhlWbAzXU0pySQ/eS+onKnKktJZDDD2A32cUoh0gXYFpqgwZgBE8r1jh8UUp3tHXltP9/Murz0jk2zKmay1bAYmxl3OGaNv/fByFkAspEQ3DJgJMNmF7LgAVYbKGoraorGMMUkIy+DRRrE4WFAkxetvXnBjIubBAcvtmnHyqMiuwERZWHadnJjkM013FyBlsFZRVw0PHx1QHGVMdU7IgWFoyTlhXTX5Lxr01OUaxgGyoi4NxmmqusLawJAiOkt38WZ5w9VVz3HhuH94RFnVOBdph540Djgcs7JAnxyjygIzD7y5WLJZr/CjwThHc3BElzKvl2t0DnilOPSBg6ZB1w3j1KUMJIrKgjWUY6BSiUVtaWYHHM9mHDUlT58/px1GotOYsqH1gaevzzHacXZyHzUtb1VVkVvP9WrJZTuw3mxQVnzqctyxKGWDZ42jcCWJDqM1R/MZR5XhoCnIKdJ3I77rJ9ZdIAVhV2llMQpyCqgk13m3aWmdoZxZgpfk4TjRuFzlGEInJBgfabuegQJtK5RVhKQJAfpuZBl6ln1L3/XEmAjK0222DNbRODuZyidyDEykVkCYfSpB9InryxVmMWdWL1CjQvtEHETy4KyVhDgUuSixaAYfaJoFP/nRJwxvO4brDuMMIUaeP3/DxdsVHx4ecbBY8Omf/inbJx/wN3/9S755/pzNsOTMRfK0MRPmza28Ne261RNI9y4u930Ujd+5Q/ldT8i9/Xufne6l3bozdXRjgrdXK7569opX5zd0vQRDpTBidebkcM4HTx7x/pMHHC5Kfhulu/uud5l1/62OHWiz6xTfXdP1XlUXpn2murN3NlbsHmKEWGjcQUl9YIk2MUb45Ccf8pOP7/H1t5/x+jLz3tljzh5/SDAzLi7WaA99jty7/4BH7/+I6uAhWdUoVQgD24BKhjFrfMoUSuGCgVyB9ty8ecX5F7+iCZaU5ly/vKHyA59f/IbLtCTxv/KjH34Kg6fUnntnNY3bcvP6Od4ZysOGmz5QuMT9yuHqDPoGqGDUbN685vLiDZULcHkJqkPNapQaMSpTOLC1oTgs0TVQaWhKMAo/9qToKcpyT3HI6laSuPvclTIUxQyrAOXFG1ZNu39jQDs0DmsqyA6jj1DpSJpTGUiJrKOUMROD7j8PoJsOQ+0arXnPViCl25TVSflQlqWsi3eZsdPPfJ9J9x/HP37s2PVhkq3aoiCMntXVFSGGvWWDtZa6ru9YA8gIIXyHyfzHcXfsQOZbWGACFxKMbcurV69YbTaSxF44HBqbFTYn1CTrsxMg4L0nxYhGsd22pG1H4xzDOMg9pcCPnja2jP3A2o90Y8B3kaHrKWcz6sUC4xzL5ZqIQlvD6ek9Ru9Zt1u22y3bMAhIZAVi8r2n85ltNgwxE/yASQEXexh7wBB9wuoC6wq00TgnipUcA/cXMyrfU1Q1KfS8efOWlAcOHywEzLtM8HoNxaUk3ZMJwwh9wD3MsFDk9x4xf3zE7H7Dg+OK8KBhtulQzpKHjtxF1n6g/cVnvP6br7m2h4TZfZIr8UNPeWh58uF7oOYQC8koKgzZTnDJ7Skijxk/RF5+8y2ff/45F9dvWG3X+JzIWpFC2gN0Rqn9jJfuzFFZTUBcTph8hwSSkWb+HUaW3fuq39bSMDGp4Hd7oE2y/6xvmXd78C7t6mOF0reN2D27785rxCxAojZaflsJbMk5E0KPViOoERjEDiEbSArvJ76Aztwsr3n98gu++uqXfPXVL3j+9edcvH1BuxwINzXtNrBcrVgPHQkJATTGYKsZRMhZk5MhKiuA1mS/YpQlZkXOO+l9mvamO9BLPnxZmzJ7Xa9Ot94kkuXG3SiHd9pD73R41VS93n5Gd0G423WIPfvtdk266/Wd9y+9A9W+O3aPhBBEoZTS/r2ljjSgNCbfXh+7n7tl1PHOc983fu/sXBQFQ0wTUiiPxSgeb11UrNdrUi6glPOurRF5pXOUxnIwm+0LcGU0GI0PgU3XMgw9VzfLvY8YMaJTpCo0i9mcetaQQkL5gFXQlAV12aCUEjpljKxXK3wwZAR59iERNh3eR4bCQg6YDNqWpMqSrUiKirIkhZHGHQvYGAIpeEyMqJDY9htGH+mdpQ8RM7Ek3GQcWVhNYR1aawYvCZzCdBPQQBWOcZ7YLj1JhYlxJuw0bQ1ZaSn8EUaMtlMKY1bSAgCsyhwtSrRJpM4w5ERInom4iUJT1QUgZpQ7GWpICZJIda4ur1GTL6AycsxlXVGXFbZwHMwX72quvXgnpUkWKf5nEZ2TbBCNEZmfUuQpZS8E8bbYUYFTSlNwQMYU7p3rSed3ZyvF3bQnfQu25SgAXd7p3+M04Sn0hIyr6XHQUzLNjvkEikkSPCXmaCPm6mrqjoD4CRgjwItWFqsNOSmSBmMStTPYNJCyMFyGHBljovcjKosv3rxs5DMfB1IY8Sli65LSaUiG49khs7rBKs1q20rYgcqEqfuSxgEfxROw0FbM4lNi23WM40hfVTRVgbMFyhlSrTCmJIbAOE4+Y3VNoRVD19JtN4Sxw9c1RVmyXC4ZYqQoKmbzA7yPtG3HVm8JOQiLZZKNhijgkm0V2kjRHoKwIeuioCwLfPJktWEMgd4ntBNZbMpK0i6j+DokIMQsdPIYp4Vtkk6GQO8Dw6gxpcEYmdSMsSgncvhMnsCPyI4xl6evRmkcmqgNpXPUZUlVOFIIdEOPH0asVZhy6oFpi9KarPXtYpwkJdhNU+Z+AdwtrtMvZQ3GgS0keCAFT8wZH4Ik5PowJQYrrJHwEW30njWZVU+MHutHFkpxMK9oD2sG5em7gc12w7Ad6EbFQXHEvaMzzs4ec07ml5/9msvlDe1yjelHCrR0cifkUGMJowS9ZGvIScJlfByIVjpyZ6cPOC0OmR8d4krLm7dvCGGkqgpc5VBWZLtpb1yrUcZgskGpEUUQtmUOHM0PWC8WXN/0LDct2WcOTxQha2w9Q9sCExQORS4sM5U5USOzsiCOxzijOZg3KGt4fXHFdnOD9yPHF9ccHy548vCMIoEvawyG5ByucmgTqXJiYYFsWMwK3HzOg8UhB2XFsxcveHZ5Tq8NzWKOWxySbMkwJlrdoa0imJLBj6zbLe0Q6f2InnxOdwxjo7SwRLXFuFI+C6CpSk4OG5pCoWKk26zptgNpDITQo3LCMeBUlnk3j9L5zBk/JLarntx6SZqelyKj1wpjNWH0WJVEWp4ynoQtKppZhVMWpRzb7Zbnb17yfHVDrzKL2YI8c3g/EMMoAHoWvw9J9JY1JGdJIrO2xKmSbnvBZn3J0dk9jmcL8jjihwiTIb3I/DXKWJQqIA7UVcWffvoJquv5xb/7BVdvOnLWtC9X/Pt/8wuODhref+8+f/EXP6VrBzbBY8tTUJnoB8Z+i7WKoqrZgQ1Z2Ylh9a73xjv7rLuglvovB3jtvV3uHIMPmW07sFpuefl8xdWlZxw8fuiwJnL/3gGhM6TR8OEPT4TNsD+knXvd7hV34Qr/rQITd8/R7jzIdQLS/c2Ij6m9aw1zB3DNAwwjtDHRuy3148Sf3Psp9B22GDEnNYebB4StIlxt6cvn3D87I6sly+s1y2rOez/+ZxTzx3z71VvG59csCsWJszSz+9A8xJYZ6+TaZQC/cWw3gTffbImt4qg+ZZUzwW+JauDHf/qET04/oiwqLs+vaZdrbq6/JbHko4/v89WwJnae1XrDqA2np4/55J99wg8+eg90iwrXbJeBty+/JsSeqio5f/6WonvJ8XuPoOrJaWC1ecPbmwsevn+MqhqoDLgSnQ+w6gjvFUoXKIuY7uSRrMP08VlytuQk/y9tKzHqSYNIW20NlBNWN8eqOO19ClBiB5FSJIRBvHO12d9bt41UJkb77sTd/Zpu/7mvCzPRewlemuRh2khQzR7ouVtwqFv1xB/BuX/ceHd+3D0oj8o+W+FHz/nz57x9+5aD+YKHTx5zsDiSc3Tn89+BAd8F7P443h1y6d/eBzkntDJEHzl/ec6LF6/o+1H2xU6CuCTMCVIc6doNtFvcoXj3tkPiernk8nJJnTRPHp2xbQMJi3EzcooMQdGPijEZxmh5OVlpFEVFU9eM28DNzQofE86WdL95Q5iUSzEFxjgSvCemiE5ZbEKypkP8hI3RlDpR46mUZfRSQxVW9jwxKEJIxKgoApjVhtBvOH9b0W7f8PmXv+FxWPFXP3rIveOCmgHSG1j2sGhgNdDdLPEhMDs+xzxpcBp4NAf7gJnxxNwRzz3Zw+qm5/Wm42I1cL694nwAe/qY5p6iSxZbH/KDg8eYwzOgBlVCKcqonMRuKWdhLGcyYzfy6uVrnj39ilevXtHmjj6KVdfUi5/4wSJB9SHsGW928qKLE3ikJqaWZsf2F3/3pNKeibVTRuWUJo+4idGV83Tt7OoQaaKy+94syrcUIU+2Ojpr4hQEIbWwFdWSSpPSbQIJgZgiMSWMFn/xOCaSDlQzmYtns4bFQYMyLeQrsk9s1lecv408/fqaL5++5vJqw1fPntIPazbLtyyXL9mu3tJ3S6LvJEE21PhoRDlnHOAYYkL7hEqBSjtylMBO+TwkPNBaQ9IGT0HWGhVvpaG3TVFhae40sDsWnCJNoReQlN7D43nXYPqtRu5O8rpDaQW/2AU2kN5V5+WJhJNz/gMecGoP0iu+yziW/08kC4HhLoB6F4/gdu3bgbp3v/6jADqza4/uDm73YWUxTby6vCGmBl1DNJkxjjjnqHHossThUVmAu6pocE1NQDo6G2sZhxFlxJ9q8CNDu0WlxHo7MJv1NE2DGoXFM0xmf8o4JKJPYw8XuB2tNCXxD+paQgjokGi0k5OdwfvAkhaiAWVQKGzKNNZRVjOcUmQ/0rcdXQxEMn6M4iuQMilsBaBD44wkj9Z1vfc9s0Gkf8pAQmOrkW1a06uED8hFaDV6CpkwxqCsE68IraQTn/K0yZKL1qpIaTKNg75QKG/wUYIlgocYnWy8tEhwlDETe0ekOkLFnUIdfGBUkX4IdMWItZa+8xPg6CbjcfGzE3nbxJBT4+Q/J5RPuE2FFS+Dcc/AU0rtY77hlhW3A950frebKvTOW4BuD9JlNaXmyM2jzWT6iJoScnaJhtNb7dJcpvsnZXkNY61EwGtF1oEY1aTll2N32kFiL6NMMRMJwgRzhnl1IN6IKtMNA+3oiTlhlMWg8FqkoxJZPxlI5iTdp2SoCse8qaRQdpamqQgxs25brm9uaHuPj4MwrXqRzCSmiSklbvoOX1cURUkIUnwXrkAVJc55unbD8eEBB4sFfbehXS2R8AxNJPLm/BVjyhRlTdd1xKho2y0g4DsKiinppyXQtRu22yXr9ZJ7xyfYZMVnUlsaVVLUFWXdYIsB2lG6BNoIS2IChUMCo6Zrb9fBQGTiAtzCarPFB8/hyYKqFgBNZUnZROVbKavWItu0FjsxJ/XUMcopU9oCq7QAeSlTWodVWjpIRpiNIQQmzHpaFCXtWKx/9AQc3qGdTxNtAqLaebiJZ4f4N0ZhS/oRZ8VfsCgLAclTJEePVpmidCijiWnEhpFGK+a1o6o1uleYqDgIhnQ85+XFmvPzl3xUnfJnP/sTwo/PqL7+Nb/8u1/yNmX8uJZY+STJsH5M6JQIKhFjIk/z8ugH+pgYnCOERGE0x6cn6FKkuChYrW6orNlT5Y3WKGtwpaWsHGVpCbFnGIUFYlSmMoZ7x0dE+4RyXtFdXtJverrzS3TdUN07pT5YcJAsRcq0oadNiUMkZTZFOT+zpuHg+Ii3F5F+o0m2YDkG2usl68EzMwU5QjmfUx4doUuNTp65g5N5jfWeojBi5msKmrOHqJBYdVvWMROtYX56j8XihHFIDESUS0RbE1KgairuHdXoa8XmopvWNS3BINriJwsSpe0kZYgQPaSAweG0EsPalFFZutF9ChibUW5qhGhLXQpwfHwwp9aa1cUl1sJJ46b5GLbdhk27IZWWQpW3/qIhkVUJSu67PEK76bi6uKIjk2PmyFXoopi2CTtbAfktXsCj+OX4SA4K52pIhs1yiy423Js9oCocTpdY7TDaTYwYDYjPpDEli+qYC68Yho5ko/wOiugjv/qPv8TqLZ/+2Yfcf3yfZC2L+/c5OnlMTC3Xl98w9gMHB4cUZTH1FhVKpVsG0B9MmPxDHLg/PL63sJ1G3KXfGruH/goHT57c4+TeKf/8n2dSkLmDDFZn6lLRVAo3dar/+x13qHBqBzxK8bAb2uzOo5fzm0UpEJMnhSjMLm0IOqCN570nh/zJTx/z5uU3xLHEhcQQAh99+BM+OvuYF6+f4erM++8/4OMPHvPv//Xf8sUXT2ke3OeV9/yHL7+gmFX87P37PJ5bZs2Ck8cfMTv7GLM4o71ec/7VS14879hsE93y7xkufs3F4pKfv/8XfPqzR3AW4AfiO0z5mNif8OL/+r/51WdP+fEnZxyfnRE/v+Bm+5zF/Sc8OH7EyT3L0ekZZhzxr78hqyVvv10ydkt++OmPidny6tkF8c1bdPWU+jCRWRPxlFWirAPJ3xCGHkyPcQ8x9gxjqklGNTWF3onNk0JCAVplAd2VNGJTNNhCg6vISaFMJhOAiJYNuswFJsueS09pqrvTqXbm1r8PNPsOq05JxSTqF9lDzGYzmsViYpcIKzbFCEphnLt9dfUuU+CPYN0/zdj5p2pjSDExTufl/v37HB0e0czmYM07378bfzwH/3njtteQ0ZNNw/ZqxcuXr1iuVuIZPXn15hxR2mCNNG1TFtsXHzMxy9f1pmO1bvHZ8ObtDaunS3SpGLQ0r8tR1AxtTpiyYfBR9ngRqXuzIsZMCImc19R1TQielPJUk1WgDNaCU6CiFyJCNhhbUJYW5QcYA6owGK0oVIHPEvY3DIFxzOSo0RiaukJpj9KapEu22bEeFC5UzKlQnYdXb2F5JQCdV7hegg37y0vi14HjtEG7A3h1TTh/S6InFpaLruM6Kt7aOctGSDTHbkZ18gCvC15ebBjKzHsf/Zjm40+gnEGwe5WLUhay2ZO6s89cXF7w7JunvHj1nHW/oVeePopnt0IUMVpLyFHMmTwG8iR3BfbKOAFcpA5VvOtXBreEkjTNbVI3COsNNYU5ZGn+ygWUv3Ndqb2X9F3W3K1MVtbSlG+tfzIaUbtOrP6UsGbXYMxTrasZvefq5orKtHxmt3xj4WYFz1+u+Pr5hi+fXvD06zfcrLYs1yvZP6Ye8oDOHq0SNjvQiqA0QUstp4wRADIJ6cUpQ2ULSSoNkUgkK4gqE1SaJKyWmBRKp6nXmqc6fYJCcyRO99fOuirF23VHsLg9L+7OHfnu/KV2MF7edZQmkFW9mxZ+C9S9K339LoNuh3covdsbvgu6Sa16i1vs3iMyrYNZ9ubqeyC2PwTK3R2/F6AbhoFwlx64R/+MpEOqNCUy5b0ZYgiBPkR09CgV0MmLjlpnXKGxVgCBpIQNZ3dG5+PIsN0Q/IgzltpZUt+jQkBlGNNA5wPRGHRVYcuKoDJOK+rCUlpLMTgKrchjoMiZIia0VniraQms25Yuip+XVZrTZoErSypdUBcOVRgqDHVVMFNw3XuqnPHdgB+GCe3OE+DnCeNAmNJXlBI6s9Ii/7ROMz9saHNgHESalA0krSYDRS2a9yQBC0krlDNoJUBMDhKckY0iF47cVDTaEpJ4Aw59YAxpT9fMgNHCbEsT2qyMJU5a6xij0OFTJg4R7TPL9eU+bMEYszf4retaivVCY63GWUN0doeD7Y2+c0YmCKvxaupLKEXhpMD16Za+q5TCqtuJDW4ZdDtEefecsOWm/oMSw1WlFGa6rsWP7I7h4h2ATvzrBAwsXTW9LqAs2TpilrAL0KgpfMMojdWIeT8ZrUQWfHhwQFFo8S7YrnFZi7+DdRiUpHxO8gKJu0mk4Nk1O8ahZXQWlSU9t2kanCsp65oMVKOkBQ+jlwBeNQUoGIfVinG9YuhGulauWW0NMeZ9OMd6YjumKdlWkntqFIn1ZiMS6Bxo245x9GQk1KBpGuq6niZaQ1VVOANV6dhsl/R9z8XlJaUq0Fj6biThmR0K+0Xu2cDQ9wx9zziOxJik8zQV3ykrjFZ7ADvGICliceRmuWTTbbGlQZsZRosPnPcSSLI3Zt11iHfXS5LH9gvltEHNRgqQoiimnxFPun5X/ORblpzSSkzqs8XkAKh95PbdiVn8HSIR8RsRb0iPdYaYE13XMahMCp7gxWg25CRpzylAjmAiKQWyH7ApkPPIMG5JfkOhNCeHDTYYupipcsHp4ZzTe6fMf/oT6p+9R72Y8Xd//R95OTwlrDakJOEGUQVMHgl7+vu0PCUl50EHcpagG60nL7rFnHre0Pcb3ORXIRvKQvzojIDuewPvFDEaKqsmhmbHdttirOP45AFj0XO5XDEkhR8CYTuiNRwVJbaeU6fAsF3R2IrZvJHPWWmskXnu8PQe667FA9lozlcd2m+YFwW2DGxiog8jReoolOHeoqbMNUFbwgAWRWkdPzg+ZTn2vPIdYVZjZzNs1ZCSNGXIHmpPymLBcHR6j5Qj7c3VHn8wakoTnaTre/kvIkXPUxBE4RzWGPEaVRqfp4JUg8p64kopSudw2tAUDQdlyfriihSTdExTAqvo+45+6EhbTWMXKF3iY2K9aQlKUdQlwxBwSnNwcMBsu+Lm6pK35+dUMVPFe9xbzKeNRpqCKSCnIMEMWaTcORtyAGcqZo0heE3XRg4XM7IuyFmMg2FKWEqKrBRGWU4XD/h8m3j1+iUX29dsU49KmoNyjgoDT3/9OacnNT//nzQHp485++GPsLrE5zWbTcfzb95w//Q9PmoaXFmz8y6702j8LUHob/99Bwz90xeU2lh2gJN0pSEoMaGe1YqqYuqgg9a3fDiELIkSwsR3jlpPZhHC5P7vYyi+R8srAM9e+hMmyc4ktTEGvMy/ZZ0oGjhd/JB5+zP+9befEeh5/N4Txk1gGCI5j6xIaOW4iPD4eMHZD97j+iKw3rQ8657yzeWSIz0jlveIZeTF5pwXLy44yOe8V/4JTVFQ2xvC+gU3bzbEcYPKD0i24fX1b7ghcfbBj1k8+qF4+mSNbzf0lWXx+EOefPqXHJ3UuOoe12+uqKpHPPt2SRo7Xr14w9XFOYdH99B6xZe/+AJTZJ785AG2OeP48THl/JDmGFST6XvN7GjG4UlBUzt8P4iNBRpcpjmI2PIEbI2iIGFIFDtojt0+xJgIeKSjZFB6Rg6W4Gu0smSz+/6ElAfIzyIsVWHI7VgKsPN9lLsp7efA7x+Gvb/ZxAAJ057DOYcriu9ldO0Au7uF0R/Hf4GhFMqa6dRHrLWcnT3EVpU8N3mn7QDSu6DcznT+D6UI/g89FOyAgh12nkLk/Pyc85evSHH6TKcCXcKdEsY4sb2YLIXGHGn9wM12wypkotIMPvPi1QUhekxd0CuxbaqiIgXo0JgQyHEgBk8KAtJZK1JUq0RKWBvDGAKjH8ljwlpNVVjxflUJcGBLlKmo5gvmdcl2dUUIHoMm5jgB9WYKQJM9f06aNkeu9YDTnjh6FqakODjlMPTYGMnDBjSM7SXlKsHbAnRBZWqqesa46klf3KBursjZ4Z/f0K09i/oEbMUmDqyKhu28wNcG7SpKW5FQrJZL3o49w9HHDD//CduH7wOWbBQqgUNRklFZT03JTH+z5fnzb3j27TMu1pcMBIYsBBuNKHASOxAoEbw0klTOxInIkpjqgInRtmNO3pWlAvt98q5uiHlnPaSn60ZxOw3u6hA1TZF3QLiJbBDiuzshhfh5++iBO+q0GPD+ljSTYmYMouLDB9ohcXVzzrPnv6FRif/j1QuKpLhZDVwsR7pg6L1mjBllLMbJdWLyOIGREqaYYyarhCkgJwFcSZo8XRtZSdheN0rzHZSQp4whW6aE00jOHnSEmCfp8FSr73/dfjagyFlP9o9q2mBlbl3b1H79um0gCgaye9UdUJfSFL50ZwnaM9e4BVp34ZTcWQn3LDsQ1qMyt5ast98k18iOLbfDx3Y/nI21YAAAIABJREFUv1/Fb1fb2/n33WbZ7xu/F6Bbd73ottVEj08RchSZaOU4XpQs5iW4TFJBENaUpthgj9di2B4Gz2YIuK5HWaFIDj6KH1qGqiwE8DOaFMbJkDuzmB2T/EgXI5t+4Krbsup6vFJyDEWF04ZZWdAUFUUW3zGnDIUrqBDwITcFZfKkdknqtkQfcGiGrseFyCZBmOSYSSW0Vbiy5KAoiSh627Ilo2KiKh2FscQYuNmsBeybzKXH6dhB0/e9iKezTABGaawxOGNQTKb8O8NHJclWkroq/lU5J0pn0SkLQFeWNKYAI7RYAenE8DLGyBCmJJcpEzlrQxiiXKNKkyfWX4wSwLC7MFPKbH0/JWmCc46qqijLgqODhl0JZZ0sDEopSeIE6ZhbhzYeNU4hEknov0YbASdgLyXbeYztNgXGTp2KNF3sO2BxN5HuWH0kdik7QhMWAG/fYp4mQZkXJyZLFumeRgovpWXDqJVlJ5clySZGGVBGjMJVLtBWYcuCsqpoaoeNAryQtXhNOAfTBD90/eQD5gl+ENAyFYCiDwLa9uOAT5GyqKkXmoiYlQ6+J2mFa2qcEg+zwQdG30PO6BwJXoI8yrIkK82ma4mbNcZoFvMZZV0RskgurdEcnYicUFvH+u1bgheZaQxBGDlMlOwYaJpmmsgyR0eHVNUDxq7l6uqCbrtFJUPbdnRDS9QDx7EhZRjGTIieru8ZhoFxCHif8TExhkjO0I6Ral6TfSIQCDFThMDgM23bst6sGfpjqrIgmUxOQZLgRs8YR4wpCX4kB1lECYFkNEyS60RmHDsKK6CnUUoMVqNc89YZqqwoDQxmx0CYkmK1kcJFiwfXfsKeKIA5xR08jMnip5CJGOOoypKmnpHCgO9a/Oj3BUxSipgVMSrGpAjZMOZETB3ELXlo8Zs1bDucbSispd9umZeOT//Fz/mzD/8c21Ssrm+IFXzw+Annz77hlfqKcehRwaNIaB1xKuHR+KzxWeGUAm0wNmOtwWZFjmLunnfQ0QREOWew06ZFAgbkevAhYyWaWuRLqccqiw+e569e8+tvv6Q5mvH+2WMW9xaY+QE3bcdN37NcLmnRhJMT5idzbKFoqpJCZ3QKVFVNXdXYsuDb9ZLXby+57jqKZs7Z2SOyMfShR2fN+XJL7S44bu4zJ1FYQ1FUHBiDB7o4UGRQWTFWmuNZhdIlYV5zOKtRCrrRE6PHZDAp0/qRDk2ZNCLEtaQU9oEFWoPOEWugLhxNWWLCiLYaWzuKusQ6I8w0AtqCTgLi9saQg0J7UDoS04gfe7bbloOixpgCYxKltbicJ4uBAj2W+KCIGsqioOw76Fuycdi5RVvL0eExs3sH2FlD+vw/cXl1xbDZEA4O2G3ccpJUL4tGRQVROol1VVNVNb7zKAOHp6fcdB3X6w3HhxrvE6OHGPWdDqVsKIxWrFdbdC44O3vCxeqSGC7xW7FBWA0DQ585f3nF8nLLo8VDXnzzgn/77/4tsyKgwog1h/yrf/m/8+Dhe5w8aNilVcrmKKGyAOv7nueuAZSno1Dvbmb+oeO3X0Ht/8xkYpS1wSqB1PIEHJr9MTCtT3dEq/b7YMPd634/1Pj/59gBNbtN8N3/83eP6PuPMIOaqINZErflm3ePS9hHzpMfqC7QWlhcSqXpM5264GnEuIDqNxzrzJ9//AGLsyOOz37IL//fv+c3v/4MkwJNWZGU4e9+8Rl/P3rsoAgavvrmOW9SwFdz2k3g9fMbVuGGt9dfsDE3pFnD//wvV/zVX/wvvPfnH+LHnjdvX5B15s/+8l/x+LTgb/7N/4nVkbPiUzEadzXjpoUQ+eSnj5jZSHd5zv3ZQ84eH3N0v2CzLjGvM4TAuFpTH88pjx/SxkM2268pkiHlBbo8oHk8ozo6BjqUDTA0NG5OZQP4hMPgjo+gPIbgoNTyfYx7CQ2YCWKb/q0yOY/kJMFVWhfosqBwFml4qP09I2BanpgZevIX9kAnHf0gIKrWHm016JKcHWmXHKtGdgItskZlAa/zVOSoabuVokjnm9kMV5aTeTlyoxizZ6Lsrj52V98d1ux3mSh/HP+wsQdCSSjnKAonp3KS0omUgDtnYdc/vQPW/RZCK/ftpGP4B8xeu9n83aL3t1/pDtPlt57Zx05OR56AAbGM383MBeSpsbR/vZ29gN6rb/bvfudtsvrOO+ep/XCLA+z/4kPCOif1go+ETcvN61dcXb4FFCYh8Hr0DKElWs+oKjziETz0A82Joyxq+t5zcblGKcvc1AydxzlN8okheWIY0dnt10liwqaEI2IrR1U1xAlMssbSzGbklDHzOTnMIItveFOWxDTQDwOHx6dk7fC6pF4scMbyKo5c3lwzehiHKPNIkVDOSO1gHEOE0Hu8BldqqCxHTcWZe0RTbJk1GpVbkdtvPHSJHCNeedxRBYVDtyOFTfD5N2DmuPIIWx0wtIqbIdLqGTfZc8nAlR8ZhpYxLBmGkZwSfnbIB3/+KUcffkCnHIFMncUSS2XE/yhLHZd9Znlzw+vXr7m4uqQde4ISZZMgeLLGqwl0TTHghx25YgLnUiJO9a54fYodFVOTP0ZhS+7k4Wm6Tna+5oLRCAEgT+DdDtDLO4bxXaacAnLaM4/vElVSliMJPk2MPj+RAUbC0O8Buj4kqafaNWPo8Hlk8C0hDtgYWURNoQtGn+jGhHKiSNI2Y52jDwPkQMpxwneYQvQsSgXxac8Jo4zU/7qQKT9NzZ+sydN6n2Im4YX4YjVJRZTN4sk8yVjTVJsLqUDITBpFzOzXHiYQU0iJ8c4NuZtTdkU/t02hO0DYHlzbkTjyuw2KXWPxXUbx1MhCi8oDYS/GOM0U+d33y4iaJaoIJmFkM4TOAvsY1HTt7EIpbkG63dSrvnMM3zd+L0Cnq4p+SuzIY8DlLE12AiM9Yxbkd15VGGsYYyDljGncBCgoxr6ja3uGEIhXK8YwJUpOC/Osbjg6mDOrK1T25MlnzTqDKg22ajgwmiok7MpRrJb4uPPXsYz9QFx3DK4laoMmEY0hq4bRLWhRVCh04ThghtXiUFa5CmLG9wM3XUfabAT11RkI8iErTdM0FMZCoQlhSvTRGWU0lan3wI11FqdmdENL348YYzE+MjcFwTj6bsSYxHxeUZiaYRwolKRZagw2awGilBYQxWh0FnYglRzn6D0mCdCXUIyFXOBRiUZ8DJIS2gfPmGRf3QdPihmtDc5qCXmYKLNjSHtUP+VMSiL7WbUdablms9mINGJiOtrCUZYFtpD4Z2EgKHQGm4Q9EEKAiHRmlJJUo4lJtUOYw+QpR3YyoVlhsmml9hJDjcJN0j256NJUwRmU2XnVsWfN7W+0OzcDhmnzu9O/3yLqWqlJmmpIRuFJjNkTFZS2IDrRzs8XDcdFRVFalqvNfgINIRKtxjnx/vAenJ2SE9NAytAO0gHRRlJ+ixBoUyTkRLAwEsiIoauyBq0cegS/HRjanjiOuMkBoetaUpLUWAn5UPTB8/ryLVXhBKDKcL3eMJvNsHXNRx98zHKz4e3FBavNlpw9tqjk3JEhRa4uztkuHScnRxwfHVE6w72TE/LhMf3G01cdN9sLXr7+lrfXhvnsCE0jxxLFrH67FBbguuvpMljXMHjDzTqw6SJDkhCOzcUV221Lt22JMfLVb55yfHzAo7N7HB4dENXIOI6EMJCchuiptMaSMCpBjoy+AxWJ2dONG6wF4yRoxVaOzWZD3/e4FLHW0FjPig5XZ2yhKEqLT4mqqAhZkbQhJjBZUWlLYTKtTiQV0DGjxoCyAR3Bh4Sf0lOP5zPUfEHbricfkkzQmmwcIyVjVqjS0HrPdrgh65aZ0RzQkEioWOJ9LUDZuOLrZ59zcO8D+nYLT3s8I4P2AiWZhCsU2hj6fpQdSlGRmoqLYaSyJVXVELqOGCXEJwYIY2TTSYJTziLHzfMZsVtDjuQ04odM9h3brceaGSFaEiKl11mjsqJLim4YefbinHSuef7yip//9KccHR5yVBS4VjPaTBo63l58w82m4P69U7Q2+Cns5bQpuVeVqJQ4Kyxd5UhZ8fZmy9i+5PEP3mNxcky/3bDuWp6+OKdQnvfvHXB6XDMvKiqjqVKkrhO+9wQTmM2hvhlQxtIsaobNklwndLNg0yW22wEfr+iMZdQV3htSLCA5tBXGc0gC4JZlpjQDuo0wJpHqaRi1IpSWbLQkjRcbxtTTdp4QDSufKWpLlwKzQqFNT+hbxmrG2o+opmZWGUwK+NWSnkhRzpjlku0QuLxYcdBE7pUNj2vLhRcbXWUgqcij+/dYLBrU0PH5OLC8uuRV8Bw1Nc1sLkV9sqRRoZP4a4YgieN9u6UymmKW2YRIbwqOTyx6boiXkHRJ1hUkDTmBDigsWWlJMI4wX5zx+OEnbC/+jnF7Sa8CReUYc+Lrr9/w9FdfcVQe8ZNHj1B/9ilvX33LZ7/6e66u3nDQvM9Pf/6XzA5OMaUFJd5/arfpuQNn7QsnNcl1mZLM/oFjZ9m4397tAb+7bVUJONu9/10z4u/WlPufVL/11Dvf9V8Db2gyFmCIIxmNmTbWZmK8KUT9pgGxrthtdBUxCABnnEhbFYWA/bI9IRlPZkCrAh8dbR/ISVNXlsIpMnFvlJwQpn1MCWMKqkXFg5NDigBsB7oY6UPmg+NTSh0gBzbR8Te/+ju+fPk1VJbsFgxxRk/Plb7g+m8/4yBHynLg7ONj/uTTf8FBccxXf/+3fPDwAacfzDn5vOLZb16QdGBx9h6P/vQvGIuIufdzKBcwbHD9Frd6ReUMH34Am6+f0b68oFqUdNpz43tu4hWLsee9xcfM752hy3s8/TKy5ed88MOfsTj5MSwirkgoHKQFpJHx6i3LZy3UiXKb8Wmgvp/RjabvHL4wLB7dB+Wmrv4o+140SUT8MgdgQE9ydiXzeNK3XIHdxZazhiz7MaU0OXn67jU+vGVWLnj99IKXLz7n45/d5+TJY0g1/x9777Ul2ZWf+f22OyZc+nIoAA2gvWM3RSONyDWUlpbEF5i7eQo9jS50ozeZC0lrDVvDYfc026DRAMpnZaULd8y2utjnRGYVCgCHI1Ik15y1oiKzMiJORJxtv/9n8HtIeQgqYMM1TXcxJFUfodVhZkogbtgDUjJdLJhlDGQAPW7WVCLuevItJfTbAZsb4sBN4Mg/tePNzdO4oRpDvowx/7BS0ZgDVtRQzwd2oX1yZHeJjC6JW99tRpvk6xiYAJdyMZphVNUMRcnbIJeMu/CuQEILfQNufelHvQ13jT/LNwbS24Pm8IZSyHPOiP6Si/8xBcIgl4eEThb6Z4TmBZv1FbLaZ37yPZI4ICZ5i9sbhpsGKQmCXSG/yKZl+exS0EHuJ8PXlfywGU75YV4IdAFa1ztnUSMFodkS1lck1xCTQnpPnTyGhrW/IjpFkxZsgsMJxUxoJkXNqU10W8dczUgYggsoqZFK5KwX1zOfTfC9JQTP++++h/SeRaFQyTOZVOzfOaTzltV6QzmdobRhebUhhMS8mnL96pyqMNy/c8Ly+py0VzM72ePsYkm7XWMmktBBv14jhML6BLrKEmki0TmEyuSQoAp0NUHHREyObhKZvn/Ah03iaL9j5s7BK1gHTL/g1dmGPhrWztOfvuL+h5r5gUZvBeh9sAXtJmJFwarXfPzknF89eUGnSl61HZe2QUwq2uhonQet+YOf/Ig//9Of8u7+nAkZuNUi29zoYQ4jaFIUrF+85OnjR1yeX7FtOqxI2OCQKlGIPHFprdClgZjoui7PZQNRRUJmfqchuBCxI4r4AWiLKYLIlkhSy8GeKwfMpZDbV0g+L6MGaaQSkn64psZkywfnHSF4pJLEgRgzOtWONiVjr5FyCA/0Htc3dE3DZr2m2Wzprc0J2oOnuQuWEN0AIkJIik4ZupD39lEKUvBZzSEENnpEGtOdUgbbhneRpARRkpJHiJz6GsNoUwWIHBoYQ/bwQ4nd50gpkplCARkyLjAGrIwhSDEGbobXkfHNIFHlxu4hjvy5oW8LcVMs3H1LOYF3/F0IkCITrkIQu9cU4/csBCEpdpXglAhpHO9vgNabAsHQ1m6x7hIZWDVG7t4nIYfDoPK4LGQOshwZdeO6KxOFMoYxhhV+2fHVHnRlgUqRIkBPRlij91gCXRD0HnoXKftICipTJGWWFCYpMJMpviiZ1J7CZ4mbtjZ/ECGIwZOIbDYb+u0KozOCb3TeRG8dmKKgLmumU40qM/DnnNvJkjrd0HXdwCLIKKZ1ORraxQ60YVIbykKgRESKhCkNldFZJ11UBOFzmp8AoscGT3AuMySsGy5oHNJxJGU5yab5wSOdw8e0M8k1UhClRoZE0gFEgWs80eao5OQ8Sfjc0FPKKbNJohh9oWJOlEkps4aGFMxSG6TJ0qpCKoQRMJmAzDr4KCAksswuRryAZZN903xvs5eeDXTJY53PNFYfb1DeodEkqSi1IAhJ1/W5YY8MP6sxvUUZhVKK2Wx+I+1MGS2TYvDi27XG3AFvVnHsJu6RHuy5WQzt/OqGRj8mtr6ZxPKmJ8Db/DViiDv565tHFOOCy4EbOq1PQ6pvILiWMvUYFTk4kJRFzXzGoP2HJHrKsiAEg68s3ip8MJnxFQIuQcJjY8R129xWTEFZtUiTk0n39hb4lGidp+0a2t5incv+EmIwKyWihco+WWgkaSdf9Amm0wllPYEY2K7WtF3PrMvegg/u7u8SmczFBcvlir5riN6ji4KqMJAim82a1fKSRykyqWvuHh9x9+Qud+/eQypo7SFXqzM22w3BQ3AeGSMvnj+l0IG6SEzmBusCV5sVLlhaH/FS0vaDZ5qwRBdpmw7bWiAgpKZvOtbLDYKUgbmYTfOVzimzkOWxUlZoo/PsrHIKpikKpvszClOybnIIhySbk/bOMisqSiNRRiCMwJSGejIB63KwiZCU1YTKWqx16GFSTtHnNE0YmAhyYFkZtDRoXaB0ZlTlCUwhYiQGcAMLwqeIjT77JeoEOlIpzdzUWB2IydAGTbSR67Mzfv34Ef/3Jy85fvhd/uAb3+SHP/oO+rCi9x2d7Wlti04JGy06Zt+NxjvqqsYrw7JpCW3HdFaxmFV0rWOr9VDJGVOihnCSEBGD0e2O1zD08RBCjmhvLd46YspjQjIFXYD1esXlcoMHPnz3IYeLKdPSMDNzfK/YbAPOdayWV0zMDKNLlBoWHn1LrQ339hc4qdi8eMV8MqHv4fPPH1PtzXlw7w4H0znu4ozffvaMl69e8fDuCe8+uMP+dIKMFhkDhVYIrXIoiAxMleJkVhOUJghF2665XLU4BFEJXl0v+ezJ55jqCZUumJgsGRdSDN4aCaWgnhgmrsQIjY3ZW7ELjtZZDHlCVQqKSlM5iVBTelPhyKzmIeICkTJLNkmJMEX2gyJhBLi+5/TlK5yeocspVRVzVdi1mNCjU0EIlkDAhYB3HZUSvHNyRGwf8pn3rFZLrq6vOWlahFSEIeFXSo1SJpsHh+yNEmUgSI8oC4qyppiBmkIXPV2fvSMTArwjdGusrpDVFK0TupDUswV37r1Df93wwimuVlf0CVyQPHp6xl//7OdMTcWP/uQn/Nn/+K95/umn/B//2//Ofzj/mL7pePrkKft3Tzi6e2fwXYlDxfINZgNDDebWhk/c+vc/57hda339FV5/rdtEEvGFv379Of7pHgN3TipA5vXUtsN2YVAaBySBV2cvCL7nww++wf7eHiHk+UUrTYo+L5TTMI3uCtcFQmhsCFwsV1xebVG65Phoj4Up0QxeuFEggkChEWoC1RHy4B7dk0e8evGMPVnz4Xc+xLuWeH3FZFpCEDgvmO2fMOstViWCr5lNjqn3DimmBSfTCarZcHb6CaGVnH2+5PMnf0OhGj6dClJXE9p9vvP+R5S+5dnj31LNS+5/+BH1/nuktoemRzgBscvfVb8mdGtYHDG5/w3qQqMXlsePNrRXl3ihqd75kLXao6WhM3Mue43Qd0B2RNERUoGQJSoJjJoxLw+p9wvCDF7+7hek64Y7Dw027jO/N4dUkKuIESF8ll6hhpLcWOk3CNSOBRVvMU5HawYjBzBP5DEmBkffrNhuLhCsmIiCftOyPH/F+qyllg2oI6z3zA+OoBJEPAiHFDIXw+KwZRS3+oYUGaS91RZ2wFEMuL7H+YBQkrKq0Pq2xGjs6HHoc//0ALmvO27LosbbP2jQghjAOTK5RQ52SrvgPXHrgW8+cURvBwJKklmJ+QVXz0RGpEKWSGe3AzXI9MXNZRsf+5WD3m2gbgxXuIUu3n5/w4aV6G8AOjG2+szKBQaWVMCvXnL+/JesNxfs3/0m85OPboHT48Y+An4o2psM0CVQaZDh9V0OcSg0lZQMvNT8sUYCzfC2dQRSLrb4CF4kfO+5PD/j8vIVXbchigLZBfzqFc6e0aYl6u4+1X5FkuTAtOgzQWAcQNNwIzO0YnIk75mUBe+9/wCA1WrD3v4MFTyzFNFCIwsJqSfSI4wnypam22CmBTUFd45PONifo1Ok1ILtOhBlAuFItCTfYNtrXA+ub/I4LiVhBCSSR8gAIgzrhYFR7noqE5jMC47v7PGggUpsENsWtoG49Vwt13x85RCTBVFrlu0VV4/PKC8FDx8eMpnOEWbBJkheXFken13x6emSp1eOl801rRKsfI+wgbWzbF3P/ffe58Of/jHvPXzIUVnnPQ8BM4yTIqWhICFJ65aXz1/w/NkzLpdXdM4SK4MUCrwlBpvzdZwkDpZaOSAAUrqxYEoDA2oXCiAVypTIOFjX+BwymKTI/SNlLzhIg8VI7qw5KLEbmGa5kY5WXimMaZ9ZCSYG1qeAQckyKhBDttLpG1rb024attsN7WZL13X43u7sV4AbmyeZFWRKlLvuv5NcinEPPY4dtzu32pFPxHgTAuJbIKJxHEwxkw2GeeJGfprlxJnLNMh60zgkvbkyuxkRRontrl/fnOqN4ePWXn/AGW7wgZt58vbHe+vaLt0+z5esFkfG2y0wMc+Fw3c0ztRpHMZSBhVlxkVC+iIAd9sP9uuOrwTotMyJhFFHrOhvqkcypwaGlOiGlFVtBraTVMgoEaFjIg0I0EJiijJLH1XWuiulcLbH256u62hsy6SuWMympBjZbC1Od5iqZMYg8YsJjMlSSQTTekKhCoxs8NbuQLvoI52LLK3HO0sXeoKOGJ0ZNEZLgnMoYfAie+oplRF2KaGkHPTdAZLcvW/vPZ3tWZ9f41NObPR+YA2avDFKAy0ypBxyIKVEGzOY5mYpLEKgC7V73fGGHCrZQ2Mry5JgHaIoUHOJLx3JB4wYaao6I/wpElLMCj0ShYAoBGVR0zqP7Tp6N2y8u55e++xlhx+ek+VGubImCENVwBhDYNDeE7G2x9p+B4B5O6D/Q8MUY0P3EEdjSfl6AATcgGtqkES/pu0f2H1CiAwE3e5kQrx2G1/r9v1rP7+xdnrtMSK/rzBQi0epRQg51agjYK8Dzeqa4+NjqskMMURZK2UoqgnEbCIptUGrguBt9n8KAR1z9aOzHq9z6EiIYJ2na3oiibKOKKOphUSbEuUjG2thGJyT9QQh83eY8iCfacUpFx9Jmb3t8/fZ944QAhJFURR89tlnaK0yxXdIYxYJ6rJgsb+XFx/O41P2covB0fjAqXesrlbsLy5ZLOZM9gzT2QxTGKyN+E7hdcC2Pc12y/VqiSjmhBRZLldcb66xMYO8NsTBMFwQfcB2HdE6pIByoul7y8XFFU2zJRHYtk1OYbYeHwPrtqH1HaJQTEVJby2dtSAS15stsjRo2bFerwkhUJiK0hiUElwsVzRNy3K74dnpKalecKfzCFMMoFRAF5qqqthsNyilISWcc8DgEUka1m2JKHMVKvtI5gSoIAVmUiAShD7Q+3wdWtcTvUcUmdHAaOqqNakq8UHh2g6lJXtHB8yXSx6vVrz85d+i1g1HB1Pu7X+QaS5aEmX2l0OKIZE2jxW60KhCDv5ZkV6kLHkOlpg8MVikUih5k7AMafCK0oQERIE2mrIssrw+hLw5Z/BkM4rSlCilB8/EPs9GIWDv3eHB8SH78xnVwR6Lfo+Li3M26xWuhdJo5rMKU5YYwCjNdDqlaG32PnQ9tss+o65vubw4Q5YlcyPo+sSr6xXSGA5OTriz2EeT6LdrGtcjBBRVzfHJCUkopoXObEGl0CnSbyVr67Hbjn614vrVK3xcUVc1e7VhemePvaIGka+1CwEbIz5lVp0cUp7HlYIcgIoxXGNWV0wXx7S65Gq7Ja43eQEmb4oEQiqEVPjgM4FeaXyC5WrNym2ZLg6ZmpweneebiFLkzS3ZIDpET1VVHJ8cI5WgdxY3eF2+LhfL11mIvIAMJIQxJJV9b4Qx1OWEok4I5bDe0/s+y9xTIvQt2+01tqiZ6gKlEsVEMFkYZLVPaO7TN1uu2hWN66mqkhgS/+k3v6N3nt8+e8rieA+7XtP3nj/64z/m7rsf8PHHvybpxB//qz9l/+AQ7132N/laedt/GQT2Lwds+/sfQkjSICUutKH1PZcXV3z26e8xSvDjH32POyeHFEbS9w4tczBQSuCTwbpsyFHqYY2aBCpK3OBDM1soks5rmWqS0yRjBEJm1gsPIBBOAjPE9F3KD1ri0R2UDBwfH3D3myekqzOESHzyyef8/Ge/4sLA+9//U95955t0q579xSEPPvou9dEBd+/UtKtH/OLn/ye/+tUv+O3HT5hOjpnqnqa7RPhjFpM73Nk/5MhdcPnyOfV7J0zjXbjYgFlAWWCVxa0+xVjPpD5i8tE3YP8D0BXYBi098/IIPd/QbDs++dnPORf7lA+/y3/7lz9gXh1CKSFNSWmKxSNpUWmDFD1mViEXC8qjGXe8zyK9oiamCjOZA/oNZCBmaC4NTIM0bnkGmakYpTMMGyOPFAGJHVaWWUokpEeqJieMc0CMM/YPS75jFHsHNqdIzjS6nCDh4miFAAAgAElEQVRkAXiM3IcyZIalmEModyDJTkY7FkuJg7Ji/GPegYXksSEXz03S5Hjat+2w/nkf41rxHyNoIUvwR1Azy5GzJxY5FODrRq68OM+yOSJ+UChlA/rhs4xoX7y5lsPqkrd5T371cauxvPb71zx891Hi0M4jImXw2l6v+OzXH/PZxz8n0vHt8g4nt4h/WVI2nHPYiWexfULgUSJkIDCM5BAFRlCQ6JVCYIijX2MiS4SDy+wsZTBSE4BGWE6bK67CFq8Sdrvl+W8eY6/OEPaMXrdU7h5FmuMaS9/bzO0RHiGzaX4kZBasiBmbVxKXPPNJyfHJEcoURPkS1OC3JcAn8K6l3Xb0weJShM6x3rYc7J2AlAidmOzVqBRJtsdMCnSpWewt8AO5pDCGGPoMxEk/gJEZik34PFiLQKInpR6BY6IChesRyw3+fEXqOkQTIRgSBasQeITks8IQpMCHgBWaj+7e5cMffJ93vv0jnj054ze/e8ynT894dHrJk5fXnK3XrLyjFRJrBE3UKF3QeEnSc771zh/wnZ/+BQfH90fUZTSGyuDZQLdPMXF9dcmjJ094dnrKersdLI0Uydu8Dgr5JuJg268EiSzlTTvuVQ6r3IFYt6yYRvnr6ANHjAiR11l5rkwkkV9nlLIG7wl+xBYUKUS6QZoqVSbcCCmyHHQonDvX0zUtTbuhbTusd7RdSz+GV7Ytwd546N/YOr3Rp9JN7x0ZtyM49ub++c3+/frfXh/jbvbPt/beI+48ssSG59wYa4i37815u9Lgxm/u9plefy9fJRF9E9B7+2NeJ/d88Ww3zxGDh//NeDb46stMaBgVf2I4eRrfxPCzj+HmOx9ef2fPlTJr86uOrwTo3sZc2h0yJ6iMYQDJR2ISOCyhc8QE15vNMDCUr4E9ZvAwM8qgSokIEZ8ihclSLRET9D3SgY+WdXvFVmWaJGTAL0hJq2xmtxRlXswYw3Q+x+gi0347h3M93nWE2Octd4rYNrN4pDB0NmJd3vhWkwn1tGY6qZBGs1o2mYIoFaoqic5hO8v1tsVay6ZtdhTXbJpboQcj8aQkQmlEUVLN5kRU9o03OgM95E3eCM5JKYfBIZtGhpC9AcKQilWWJUZpfG9RQlOXJVLrzHhxg0l/yCmjMWVWnZKaUmZ2XyEEE6WYlhU+RHwkS/OCp7eB3jmcj/gQSMFDjOi6zK8V8/URMWTgcWgTq9Uqb1YZWG9DZxBBgIj4FEBm0E8ouZOkjvdGZYAxDQadOWdieLwQN9HNY7e5NXh8Vccbf1ZG3aqyfRHIG39/M6AipYCPgaXraZuWs/MryqqiqGrKqmKxt2A6n6Ol2lVOpBrYK9GTYqQgS16NdtkORCtCCCzXawgdPgSa5YqiLKmnEwpTUCrJxGi2XYdznjZpgh8+l0/4YImDSb1EMJ1OST6wWm4QRLzPsjDvI8SOQmefBIFAS0lVlCRTsJjN2Z8t2Nvbo2m3bJbXtF32ZhRDtbHZbllebpjNauYHBZNFxWw2Y3++h15MSF7gredgb85iscipVSGy7Vsurxtam2htBiZFEvm7ShmEUElgtML5nOy6WS2z15eBvm/xPuB04Gq9wceQJzglcWHC1lqarsfajkldYc8TSogMNPpA314gEMxnM+pSY4Pj8nrF0/Nf8je//Yz947ssDo+Yz+ccHuxxfLhPSgHnA0kohFD4kHDBEwfpuB+MY10M9MHReot2kGxOyyyGZGYtPKK1+OhxzpFiQEadDWk7S99lL0KpFFIodCnAOxAKWZZoa4iNxXcdKYYcGlNVqLJCKL1bSIcYaFuX2VguL0Jm8wmp0nSu43K95qoNyFhjNldU08mwgcseG1IMHhlCElJEAMqUVGWV2RfaUJkCrSI+I+wYo9FFgdYFQmaWc9/1LK9X4AOb1Yo7J8fsHyy4owvqesbVy0tWqzUkh3hwBy0lwedEX+ct06pi1QWcSezPZ4jasFpe8uLVS9x0wmxeIyuDlZqLbUdxsaJSAkJACUVlJEVdsXcosa6HYJFCUhYSVSrM0T7FquWi7ZgbxaJQbNqAcD1bu+GCjsLPWdQl1aQAlQNhOu9xIQeA9H1PCBVSagpToJVGpNzWldZUZUmQJgPQIdJ7R3QZlBYif+suBKT0hIHGoAtNWVcsLy9oQ0IfzplXOdBGa5Hl1oXeySq01hiTb/P5nPv376O0Zu/gkOlshgsRbTqEcySfWb4+Zm2UqiqiiARlQGlMWSGNJyS3KxbllULeeBMD0fUQLWUF04Vh6gtED/PDOYd3j3ixumR9dUUqK+qiot1seHp6ztlmTVQBv93SrxqSfMUnj5+SpEKbxA//4HscHOyh1ABav8HQGOWlg8DkXyxo9o9zZJZGSJ7eOtptz3bTE3xmJC+vr5lPKkKI/Pa3H9NuN9y7c4d79+7DUPW2QdA5yWyiBn9dKE2RAf00eKMrjVns7SrU+axZReE3lrDxmEmBqhWIAj094egbhhQfINwScBAbrq88r16c8tmz51z1PT/+83/FH/03/wPvnrzP+vSCaEr2v/V9hFYIecXqfMUfLn7COx/c5xf/4bdoW/D+4ZSPHhzz8ccrPv5knUOJfMf73/6AybffpbeG7eUlupS0fUu7fcnV8wvq4NBhw3J7RSoaJodzZscz7rzzPg8ePuS3zx6zXgfmszkP3v0ITo7Q84KTxRySIySDixLkUNZRifJgQSnfh7qEScn0/Tl+veTly3P2Tx4gqgkjKpGX94PPM5nxSBqJAgM74dZGSzAwnnc9ZvRaGh4kJGU9oSxyGjRMOagV+9zH+zNkcUE9O0IWdwZpkkKJKUplTzyRFKDY+QQxJLKHuNuMpLDbJeUihBKUdY0sdIYUlfx6wtU/g+PNcAX4xwPoYgxYmwtZ+Xx5X3fj2/f150+k7OWLQGiJEiOuldk/KeRQMgSgs/olOzy/cfX+Th/1TXDu9c3nFyG78Rwxr4NCQOiCJLNElaRIPrG5WnP24oL1umFvb0JdzEGNsu9br7xDK3KH0QRMWsLmGpoGrpaQAixqxKyCvQUVhiA0IhVEIZFaDzZ3w/uKPgf/RTg7e86jZ4+4uL7k+vqSq+eXrF6eY7ots8G81NiI9BElNaowBCJBZkZNFBGfV+q5D0uycT6gioKkMgqvjQGR7VeikCSfZZ9CSPro8cSsTDAlEUnrPGeXl+ADGqi0IkiF0YbeOaRUVFWNkgWdGBJNBXhGUCmQ8KTkIY1yTo/AUUtBajq66yXr8yuakJhYScKwDobTYLleHNDKPVbCkIKkro45+cMf8+7/9D8Tt5Injzb8P8+u+f2jc86XHddtolUzUqXwydH6DqckQhvq2YRvfe+7/Pd/8We8++H7AxknXxI9jo3jgBgh9Y7L6yvOLs/ZNC0BASYTP3rrB4Aj+7vnvbbO+zWZBoujmyC524GFZC4XDJ76I4nkxg7iphXHlAM+RrLH6+DPaDkQ8cHig8ckSe99xib6LEt1vaVtG9qmoWm2NE2DdXk/H7hRko3klXHPfVvzPsrSU8rKiZQSSsov7JvfJMu8eYxkmfHn1/3Tbn4e779MxTae683XHP9vJHx92fE2VdybAOLtx70JBN4Gxd7299eut7j5LLdf73WP1Ne/qxgzQ06orKD62iHyNph5i6T0VcdXA3TB51u6QZl3HmmJW/eKpPJLiWEi9ynQrrdoJfFlyMb6g0FsUIqyTCjyBayqCi/ZpVNqIVEJpMtpHM57fAqZYm8yiykCry6ukEVJlNAnhwzQJs+srCiVYWoMwhU4pwmxgJTDK3rncTaw3K6zub3PaZYh5YpFCAGMAlOw3TR021X2DfOerm1xPiKFRpvprsFordG6RBcFhdIkDUEJijKhTIEuS1zndhRWFyOiMLsOmKsDtydEwWq1Irqc5IcpMnA1GJqjoJ6UeO9z+rbNlF0bMwMsCbCdg5Qtq1TKbjJGKryU+JioZUXvHZ0MdEpgrccKT0DiUqJ3lpT1aUjIMc4pyzBSygbpuXoAI4VVpLzkTGkIfRh+HxrKUHUdGuqgKR/taCX5YePjv2wh9DYE/G2LpdGnY0Tzx/vhDLkDKDWEMN2g55CTgqQ0BO9Yri1sLUKuUVozuVgync843D/AGJNZmUqiFCihUXpI+PEeOYA7WeqjmBR19vUQgtb22d+g6/CdRUhJIcCUFcEkeiOIA6jVW4vt+wxwCIFWmlIX9C6bQCupKHQ5DIS5n80Xc3zf0vcOQWJWlejCMJ9PmU0qlEgczBcczWb0fct2s6FpNrjekkJgagqEFGw3WzbNJRfGMKn3mE+OKfWM2WTKyckxh0d7bPsVLoZMm4+RTdOyafrMLhU6+z8Ilfu80nkD2FtSCvS2BSJlWRBFAhQxCZreMtmZ/luMK3J7lIqmtyhdUNUKU5RUdd5Q2NoSXKSoDEcnBwQROb3ecnl6zunZcx6dnlPUE8qy4p37d3nv4UNm0xpnO/rOIkSBQONd9rIMgsHnMeET2BDprUPLRCEZJN2CQMSFgIuBmAJSJBj7ZoSYspwgpICPHusDQhRYt2W5XdN2lhg1Kgk0IjOXSXgJbuzXzhK6noDF9g3dRjFXAr+YI0xNUWqiV7B1RBdoNtdIXQOHiJRTWaUQOWlJCSI6MzGkylVYIVFySCo2uVqfx6eYpdKFyT6UqsCUFfVshtCG88srHn+2ZDF/ynsfvMe9+3c5Or5PKWsuXp7SdVuatqU1Gtl7YopUVUWFYz8KCFti8EyKKfXRIZu+4+zlKa3d4+DkCBslv/38Cf/xb39FpTQPH9zjvXcecHywQKFIUiOEQxColMQkT9+1zPQRYj5BFz1KJx6JyHKzRVcVSgvWVx2pXWFUopxo9u7M0OUEmwLrtmX56hRvK6TwHC9mqMkMo3QuRAy+dcEHHDFLWWTC9T3BZpPjRKLzntY5VJkBUQcYKalnU3S5IpL9VGezKYQhJbjNhu3Ziyf7vvqUE7yESMz2ZuiyoCgryqokdP1uUTYu0FIS2JjYOkeMgW1IeBmph4VwkgpUTuIS0Q/MPcmkLpFIFA6lI1UlmEw1aLB7U47u3+Wk2bKMkeVqiwswNxWnl9cs0pxiYvB94PzVBdfrLb0P7B3s8dE3H7I+f4E/3ENVswF3SLv54Na0MPycoZ7/evx9j2HGC4noI+dnFzx98oK9xQGH+wf8+Ic/YlKXbDZbfv/Jp2glOdg7zOm0Iqe3n51tWG0C7iCx3X6ORrGYPmC7TmhTs388w0yyh1KIkEJCyZirwilvABvRo3Rm4eooqJIGUSJkTVy+ZPPJrzl79YxVs8FgmLYVH937Jj/9kz/l3Y+OgRU6bAmhQ9VXXC+v+PSTn/Hs2X/i+sVLXnzyjO58wwfH91jcfZ+9Cpr2JT/7zV/xZLPHD354wp/94AHCGn79m9/x+dNrVKypg2JfJea65vjBN2hsx+knvyHKCz786bep5gf4OqJnksP9E+b6mHvv/5D6pz/merlldb3GmQXF1JCwhFFOFlvsdkt7vgKt2Ns7AgwuRTZ9S6pmzI+O8hg8UtOSYJT3Mfh+fhnxbNdPEpCGwLGUbt0Y0jvTjSIDA1IgKDH1CabaA2UQsRipFSBygBQESH5ciOUE+sHgO4k8pqWhUDSabQsx9FYlKVS5k1GOJKd/ziDd7Y3s+PO4YR/VHv9Qx7g3YmDRrddLtM5FmjQUzr8uZCOJzO4JMUslFYPixgf6pqddbjnYO2A6mWePQ3IC/G5z+yXt8OsP8drda/+dEqOWNEVPv7zk4uIVUikO7tynnC/yPJAynqbRHB/cYVH/gNlezcHBHUhq0K/mlx0L0SO7NBEo4gaxeUz65Jf405d0yysikeJ4n+qD9xD73yRRoZjhCNio0dKQpCEgKIAiZEVB2Kw4f/w5F8+e0a/XNFeXXDx7QhU0IvjsPS18DmhCEGLC+UAUiSgcUXiSiLlMKgQSiU+J6C3VtGQ6n+XilIDZfI4SOYhOBU+3iQQBhdEkJ3HeUpsZRV0QbML7yMvzNc16QyFgMa3zvp0VvXtORGJ7jzEFtgts235gGuXiQF47ADKD6jG7MeUsIGvRKVIYQzWbY5ImNpLrbcvjzQX/128+5ZyKz71mKwrq6YS6V2x+9VvOtOFXv/wNv/vd53z22Uu2DdhQ0llBHOxilJIQLGUZKGRgbzHjL//i+/wvf/kDjqsekQwxDWyz26PJAKYsr6+5uL7merOlC44ksx1V8DmwLoqIJM8/Sulc7E/gncMPrLiR0BSHexJIsrWU1CKHCI5rFD92rMxk7dptBu589u4bEz1HRlVIOVgzq1ccwXlssKyXK1ara9ptfn5wHu9zOqsPdkdakcoMku1b8HdKu7CKXAjOBBilBssWcYMkpDeAsS9ToP1dj3EcfBvR5W2PfZuP51e99n/Oe3jbc28Tyr7sPb353jIT8O1A4+uvMaypUsI7v+uvIgSkvvGq27UBIXktCPQNBeHbPsebx1cCdGJXtnsdWbYh0nWWzmikUNnUVpq82B/ekEkJr9coKVA6J1/GyC4t1A8dSA+MCO8CYNFNy6Su0VoT+g7hI2pYyCgtkbrAkxkuTdMhfQCt6bzDhY5N31E3DVNdMHVQRBAyIHVOdjSlRvqI1B4bJboUmDjoibWi84FNt8QFjyonbJqOpmkyI2a4WFJmSexssf8aGpw9gPKG3YdE4/p8odKQrDVIOl0MOQU0CHzIhpEhgpJph+QqKYlSo4xADh4kPgZiitk7Lr0uEZVSYqTByGLXGLaRAUjzWDILjpGd5x1a51RYYRJKaiqt8FFnL60E674jDBTPkDITxMdA9Ln6djsVRe6AtrzWFAikfIM+K1+ftGOIjLRbNaDY4zPGZM2xo30dUn+7occYQcRd+x2NKW+GuBvgT6ms2Y8jeDdsHJOQGF0RlEHpNNCcwYXI9WrLctNweb2iKEqq0lAWBqM1ZkhCKrSmUDnNNbNfsqGwVpp2oDofHxzS91ni3TmbPQcJpJhBnaqYIJVBJPBFSWeKXaqrUoq+bZFCsFjMmU4ndF2HtZa6rplNalQKrF1PjJ5CGSbzCXU9YTKZUFUVfd8jZaQsNJNqwf5sStvMWF1fs95sMbqmLAyirNh2K65XSy7OVxhxRWlmnByf8OGH7zGb79HHFqU1s/mCeh2QjR3GM0EMCZ8CUmZPpCgi3gtKU6CFGlKIezo3pnTlazOdTjBljdYqM8iEwhQV3kek0jgfMeWE2XyOsw5JDrGw1tO2G1rryKICQVHXzPckNgqatufqes1qvWa1WrG3WKBFlnY7l7+r4PMkGFMOVREq999RDuljojKGGCyd88N41GdJ88CeS94SZSIlhSpKVFEShcB6h3UJlywxOlRRUE6n1KrGO4sWCRkjIZErqAOTT8a4A69D7+j7FqMUpdF07RavBWZWUZsZ2gf61Zbt6hJT6uwNOowtKJ0FUTJPIASDD5Gut8iUAZ00gEFCSqRSlGVFURYopQbZdJYNaGVIumTd9Jy+uuT8es17VxvefecBdxd77O3vs7x2SKEoTEUMLSKMCc6BojRUVUHbWUTylKVGL2Y5SqNQmV06rTk7W/Pi7Dyb7EpDExLvWc/x/pyDWUVVGKLdQMqpsUVKpOCohUbUBaaYc29vQrvqERK6ZoNSsLaRZ88SulS8Y+7To+hD5Gq95tXZKwgVs2lFc7cjzCNiMK9WMrMgpch+UYXWmMkEJQXBRaqqwMWwS3BOQhNFHsOt99m7ROZQnFxpzPOElBCCyyEsKnswWmsz4J/iTppvihxy4ZOnsx2tbbHOEnzIIJ0SLDdrwvNTXAostz3eVOyZmr29CV6I7JMpslw6xYiIAmUMpZBZnt9sabdLQrCYsqSoSmZ7C47vP+Cs6XFDuJGRBkKi6SxBRGZFwU9+8hMevPseZxfnaC347jc/oBSJbrOklJogEkplJu1uLAcYPuPNEvOf8/b+/79jhDeVEBSmoJ5MmM/nLOYLyrJEScFsWiOIuLZFScmDB+8wmUzzRjcKSJFgHc3Wcfr8HN/2TMsNlxcdWk356FsfcvLOSZY2+gYlHbNphRYVOKhKha4reinxEmToIWxAbiAsubq+4PSqoYk1B9/6Jh88eMir33zKVhTMDo4531xS6gYXNqROE5ZPOHv2hH//V/+O3/3qZ7Sv1rAS3J/tMbubaJZX/LtPPuNXz68I08ij9Sn+0ZbiFwfcfbnl8fOXPHt+zlSU/OCdb/CdB99gUhUUdw4w/ZYHry54tbnmenXB1ccds/WS/QcnPJz/OdVGoQ+P2axXtKuG48khE12B61Gyo9aBQN4stSlyaT2VmLAnJljrePToMaevzvjWt79NPTkhplyEGq22JDkR77VQlHHFD4zc0gGGuAFOknjzgbu/5bkrC9hi8mg9pLOqgZMiBrCNkS/iSakjJY0UAaH00BfzoUZJD9lr+OZ0gy/ezUKLsTD6L+W4vaFzzu2YH/+QAJ0QmUW32Ww4PT1lvV5zdHREVVVoXXwtQDems5uyQItIZxvOLs+4uLhEK8P+4gAhNJGxTUDeEvqb1vT3Gn6/5kkjykzA9z1PHn3Op59+ynQ24/v1lGq+yO/dW4TQTCYLju88pG81KI8PkmEiHCFlokhkEW9ueaSAiC2sLuDF58Rnz1GbDSI53KoipTX1TCHmh6RpxDAHWSJHgkKM9E2HaTqS8yxfnrJ59Bh5vaHqLLptEU3LZu1plld4uyROHPfu1SyI2AhNn4Nf8scNOfxICohikLll25nSFEyqGm9D9odDZRC1zwnQq7Wnt54yShobaDoLqacsNVeXK0DiOkffdmiRaBtPcB3b7YZElmpa67O9ShA46ymrKu/ThCDGAWQXWeoqk0ZEg6IYrJw0QRuuPHzWtoiLJS+uzvj81Ut+dbZiZQIvUsUy9JRtJIqeT69PuUqCD++/z8FWcd3VyKXFeUXtBdYHXPKE0GNUQmuB0XDnYM4Pv/sR33r3IUoM1ktCMrKKQwhoqUkkbNvz9PSU0/NXLLcbWmfxStIHT9I5MMd7j5Y5EiV7z2UMwjmHc+6m/yS5q3GMIEwkZQZdzBJU7z3RB+JYwADSAJBJKW4sO0JWovmYPYRb27BZN3TNBu89ITjabUvTbAnOZQJUzLFOI+tMKYVWmQyVxqTXlJl0IwCXg5hGyaV87Z6xmDDgLV9mDzWyCEfw7ja7bnzMm6DWVyorbz0P2KXN3mAnX83e+zJA76swgC9Tx+Vp8otEnjeBw3zJ3z5X5fOO72MEc9MOJBVKv75SHb/fW7e3fe9vex9vO74SoBtfbKQn5sacN9yd9ViX0CLQ6UCSHqHFQNdSCC2oqglKZGZcURQgVTa3d7nCEX1u+AyTnbOBTWrwzlFqTetaBJEUc4JhpQzFIIlNfaA2eeOpkNSmzFWQziPchmAMbRJ4KZAqkhwUQVNUucKXhKSczghRoFMGwEKKdK5j07Y0bcvF9VNMUVKWNcYUlGVJWRQ7M3VvPVrnzhljGuKSIRDok6NNHk/KhpYekk+IMTTldieJgRgHA8nBKypEKMoaI4AoCK7PQRhCkVLAOodbLocXi6BG00K5u051lU00vc8SWq88LmYz4YRAqMx+K5AoXRBDZmCEIeRAVQWOPChaH1DW0vZZ8pd1+G/4ypEZOqMJ4pctXnaVyIFi/SZ9dfzdDwknbw4a4/lG480vSlSHwS4NKXRJ5gryri+Mi5EMMoqUiCJRKIUqNCImrHOZJaMUIpDliinbNXsXsM6zuVhl+bBRaJ1ly1JBoRRaaw4Xe0yqiqqqkcpkFpkp0cFncEwkqtJQGMU01QTn6V2Pcx7rI0rmz5FISBEojaQ0xU4SvdlsKQvNwd6MxWKPtmvp2o7FYs7h4T5GJNarGdvtBimzb6HYlRwjh/v7mTm2bfHBYrSiKguqk2P2ZnPa1jGZVFRzjUsLpssZF+crtqtI33VcXVwDgtlsxqYtkcYgdKb2m6JAa58DLyKkOLa5zBzIRqgRXRk0FX6g1rvgd34PKYmcljsYoXbaEYPDdo4YBTFlMGS7alivN0SXfcOaTcv1+pp6pkELnrx4hcNkHy5tSNKThKBte168OOPq4nLXzrLcQ2F7Sy8jvsiFBSkVUmbfR6k0QqldtHjm8wqUVBlcEwIRY04hHvqOSxmMcd7hQmYaFkpQGIgWGhvYti3ORTQwKQqMzuEgSimU1JnFJhVCFtQiIoJlr55QSknfbHFKEAs5+B5EJAHvWrxroShI3ADiEfBJkLRBKE/vE03bUaoBHSbL8bUyWZJvVC7AKImpKkRKWOeJCMp6xnS+z3rb8fL8ksZ5Li+v+e5777E3LXOilZSYoiDFAG1L1zVY2xGiRsrEpM4gW/ItpRK8895DopHU+wuE1mzbCYuDQxCKLsHjlxdsGsu9430+eu8+h/OaGARCREqtqOsa70W2S5BQlCXv3TlCxQIXBE+fN7nimRLr1Ybf/f5TVm7F/t0H1NN73L13H9GvOZwJZvUEo7I/zdg2pQARE0YrCiHQTlKrmroy2DbR+Z4+hBzSQKK3ltZKbKzRQONcZlHqDFh3rkf4DB4aLYDBo02EnAyGITGAxjHkVGzyAsg7h3N2WHR6nO2xzrLtWprLS7oQsFHhxIpUTrhjFX0ZsCFlya3KsEDfdyjRI4xGJIXrWtaX13Qk6r1JZgerkoP9Ex488FgPL58+53q14WBSIXWkKHL1/cG9u/z0Jz/m6ekL7t054Nvf/IAUe559/nvufkOzd/IuSZjsYS6GEXkcrxki6v/r8V90CARGGpSEe3fucjA/YrPa8vjRI5bLKx7cv8e9O8d0XUdZFENhVHB5sSalxNHJlPneBBkVqRE0ckldaSoREGLC8rzj5YtfI8st073IyeEhoroPfuTE92ixBVkhMWhaEi8Q4hWeK6oPDnjw4ffZdoJSS5rmEjsrOLjzAfN3PiJxjVJXNJB97oSkLiYclgtmvmR9el7+2E4AACAASURBVMWd4j7/3ff/hO/98BscHx3xV//+P/LZLx+zJHK0v8CUBSGWnNz9Ht/76F/jrre0y0sMPW275uLpKdMnMFlogllSvVtz+NH7zO+8z/T4hKQkfXFN+WCOmE2xT15iX7aYj+4RX23oHv2OprwiPABzvIecHLFCsJQKVRwQ4pyL84/55LNf4L0mxT/C2WlOttfZ5VTswLlbQJsERCThyH0i7a7q7m5g2kWX/Y6ULpGmuLn+koHZbSmKEWnTeN8QQkdZDskBJBItMW1w8QrhPaXcBzHLa0vGjY3YMQTE4IuX2BH3CDGDiDcskn/eAN2bG8mvkln9f39kqxXnetpuS0yesioGosPNZvfrDoEkxsRydcHF9TmNbWiaDXU9pZ7OmVYL6sEiaKiQkAaQLh+3zN6+5kxf/Wne8kuCaB3bzYbl1RXeOZrtlsNhHiBlRpCcTanafVq/wvotk5QLpa9j0jHvP0hZFZAibDvi2ZLNixXx6TVVs2WCJ9YburbDhYj54fcRhSaZhEkVdC3hvOHy0QvOn51xeXqOTLDZLFlfXKNWW9LVFe75S2Tb0HWWy25LE1pCgJnw+FKiJwWmqPNqO6Rs1zN4QCvyHJnIXmLRBdptm8P8+hw6lqIkeUHyiqZp6fotZl1gfU/ne1y3JcaG7bZDiQKSQAtDFIF+20PwWCvQRYHQKlvlBJXJIigkJSFkZZsXjjQQKpIISFHlm3QkCoIpuBSSv12uePz0jO2zz7lcPuf8+pzL6warBNcCLjpPKrZ4abn3cJ/5Ox/yb/7t/8rjj5/zs5/9NX/9Nz/n6dNn+GZFTBu6bo0qEtOqIMnI8fEd/vAP/oxvf/SnaHEvsyQpgMwqTikNnm0J33qev3zJ7z/7nNOzV2y6niAlIQp651GDh1wKeS8cQiQltwOlvAsEn6XHYmABv40V1nbbvOa6DdDFmNeVpJ2tE5BDAYLD9j1d12O9wwXPcrNktVxju/YGS2GwiBixNAGv+cGJcU99U4wZx95Mxsl7wCGsdGj9g43krbHptgrtzfHsq8CwN///y1hlXweyvQ3MexuD7MsYeV8GFv7djhzS8vq5htsuOfrt7zM/Vr72d7gZcnbs6aGdydvA6Guf6YtzxxhSksHxL8T2vHZ8rQfdmCiSXzwzWVJ0xJiNtEOA3oacGKccSWW2SDH4GYjB5V8XOf1Qa03fuexFp7KHGikgUw5liN7SdhanPZihCuiH9FWd8kbRKBKRYoiwLXRJUZbEAF3TZJRdKRg2PyE6XHC43tEGR0JhfZad+SDwKcvyfIr0rqNpO/reIpWkrmvquh427xIhxf/L3nv+SJadaX6/464Jl7ZMlmnHbjbJ5QyH5BiOZmYXgrTCSisI0EKA/kl9FvRhdz/sLoYas+Q0OWyaNtXdZbMqbbhrjtOH90ZkVrHY5IAzq12AF0hUVmTEjYh7zz33vM/7GHJM9G03mMmXWCtXiVF524gyyVJVJW30hL6/MpcctMpKiyx26z+X40AtTsQYSMHjYyLbAoPGx8HLyxk0Du87+r4XLfqGeZcF8U+D76szDq0RI0sFLjoqrQh1oup7mr5Hx0w0Gh8SSQvDLmeFzokcAkqJpMtqMV9P7gqsjRL/dzVxDI+bIRxjY6D50gC/NlG8iiJf7x5oPfhjDY9dp+de359+9QLZXGxEVBTTZLJ+6T23Lhyh3x5vY5Sc61FJjomma2k78aJqmo6m60gpo60lK00AjKvQVpG0JsTBIy4ElAKrDW3bUZcVZVFQlAWj8YjpaIw2jqquiQm0UThX4IBUBMpUDN/L0rQ9TedZrxv6riPnJEARhpwNB3tTQAp6YyJWZ4yNGJ23shRrDaPRSLyz0EOMu0xO85MTqrpgOqoI3tD7ltCs0dpQFg6jCpTJBN8RdaSwjtFoTOw97Vo6L1VZUtWVJGoOISpd3w2LdS02HlEWexsD1iStMObzBeMo11bKg3Grtigl7NDgE4vFkhwio/GI5BNdux6AiA4VMqcvXmC0RSVNYQuRfGfN7nSHTrUyH5UVKRtyLzJVV5aU9QjfNgKcrNf4IfxkPNlhNJqQU0+lMn0p/hLaFSil0cqidYFWCh86TM7iI1g4ijJhmh4f4VL3FFY8vbo+sO4CzRCykohUZUHoW0z2aGNx1ZiRKnAESleQYkRlLfJgJfLgUltqV1AUFZ1WZN/gyISuRwuKKPKq1KEVOKMgS+CDGgAeYYpKBzoODCq0IURPH5R41GiDsQZjhBHhY6APAR/8NujCKk1RlKCthI8YiytKQpdZrnvggpFxvHl0QA4dy+WSxhXYLNT9kCIxBmFwZblPjKoCoyzEiNWJorIURSJkj8pC/U8YXKpwruLF5ZL5ak0XAvdv7rFbGcpZjbKWEHqssWgjhWLUUKnEbl1QjqY4FXny9OkQrhM5Pj5mERe8P5nx1W/eYWfnDo92ayrdsjurmU52sKYQyXnI4ivoe7l/GUMMQZLLC0v2VuZwdZXyt+5a1kaR8wxtzTZYqKgqiqIkpUjyHmMksCPnJA2MgTGnjSblRN/3xJyoawm3sHojMUuQo5zHrqFdr9FKvEgDkI2VEIy+JeZMQg9BGAZnDSpHmnWDYo2rpGlABN8GglIYCnS2aAzT6Q53lKUPmcXZJU4bUrPExx5tPKUzGBVxznB+fsZ6/oLUXHB+cQnFiD8odxjvHqFKaZaZgU2xjdDbbr9jz/02W0zCKFHKUBeG7COPHj3kRz/6AD3I2A/3d/nGN74BOROCjKO94b4SNVBmdFYc3D5gurPHztRgCzGZ//zBM04+XzCuYDKbMjvcwzoNPgAObEKZXtjJXc/p45/D8lMObmTc3ojRaIZKI1Q1xmbD+dk5sd6l3t9HKdFZrZdrzi8uqNWIcWG5+847/Evzz3lvx/GB+TGPfnrG8aPnvPH2bVzZcNp69u++zbvvvsu0yvRnD9nbvcnenTvsHr0Fi4blZx/xg+//Wz784G8Y6cgbN/bYnY35wecfc14XvLPM3L4TKKbnrH2PzUu+8813OX/0jEc/e8rs8F2KyRjIjN48pIw9ftyhbEYT6BXUFkprySET+8i9O3e5e++r7O4dsaEQKRUAD9mhKF8+eUqAhqwk/EFf8dQQ8EIWXjEF1qsFTdNji5LxdEZZjZCAhiEgxIgXoY+ewpRoW2JsFjkjkHMkJ2Eqtv0lhAhuTVFXAz4j4NymntkkH6Yoygpt5Ptopa+UD1wHsf7bBOquF3bX157OucHS5tfyG37LTVEUBYeHhxweHkIe/KzyFQvjV3xy+RlUAY8ffMaPf/J3FLXhD777bb767nuEmKmKHRQWiVKAGAClMFbWbr85wPobztOveZpSirKqqKoKBTTLFd1iSTnZAWMhgCod1c4eNWsqdpgeHJGzJXUBXdqtR9mGT2dSIreRtGq5/Pw5Jx8/o/vFZ1SLBTfHjumNKTZGcvWUVFboJkJ1QbfMzI9XfPKzB/zdX/0dn3zyEJ80dVkzcobD6YypHZPO5oSLC4oYCF1LMhCLEu86lrFn0axZd7K+UkqjswQU6JixiKzU5yznUyvWy9U2+b1rPVY7lDIYXZOixfeB1vcEH0hK1m9+3bNcNlTFhDQEwBVDkGLTdBROURQVbd+hqFBcsf43YycmT2ULclDD3yXYTWtZb2oK+gC2qqCccqocx6uO09MF54sV62WH1jWNV6w1RO2wVUlZVRzcv8tXv/Uddu/cZ7p7l93dN1BqQtd9H//kMWSHcRVtv8S4jI89d2++w5/96b/kjXtf3xIJpGxO0iAFaUxmaNuO58+f8+jRIy6XS/occa4koaAHYhKPPy0hPBsG3Oaa3uAir6tLN2NVIeutDUlp05zdYGAKNRB1PF3b0qyXooZaN3RdRx86lm2zVQ0WRYHWGu+7If1VkzYhAlyxtESxJmt1a6vhe0vNaoauyObz2AEDScPr8tC4Va8Ac68D5zYqvM3zrn/PzXf9dXPc9fnx+mO/Su326/b16mu+7G+vmwNfPodD8Mer+1Mby6vtjn4J/Nuciytw8qqrIApHI0StrF/CIOK145xyBiWAO7weLP2tADqlwTlD2yLghLrSqBtXkLMYjJaFABXZarCGqIRsvLmR9CGSlmusCcL0MhpjDTlotA4YU+Gshhjp2rWACCpiSwlcSCHj246z+RnL1VIM51Mm9gmdMroeM3Ui7cwIw8BYgxlVUFqyyvS+Y92u6IIXyVpVopKlW0sqZNO1XC7nxBQoK4cuHW/cvk3XtrRtI0BgUZCiRyUpfEmBZtUTQybESBomAKUUyRgWOdPmOJh3GkplqayT78q1E5lEHosSRkTbSgjFqCiuaJTOEXtPCJHCGMp6xGQ2xaAoKkdRFPR9x+ViTt/3AHS+G5hJg+WrMqQknc6oQFmNKw02K+gDvvfkQb7qfU9ZVfggOTdaGykak6QgjWxBO3gfbQZfYYwsXowMQGfLaxNi4tWJ7tUO4KuTiTVuG6KxAYs33h+bieO6xBhk8SSAT8CqQfcfB5rqECXttEiu4wDQ5RzFJ8eKXE0bhRqNUCbQLxtCFGBu4y2RMyJX9IMEcnN8TYFVdgAIE4umZdl2GC37dkVBMchdjVbMphPxsHMWZy3WWex1INIojFNUlQJGxJgkibdp8H6NMSJ3nV90tF1JYQtJKIoN62WWyTsNN6ocIF+xZWJMFNaiM8Q+kFKQ9LXSDscv47seY61I+qxDjwx9J954dmI52DukaTv6zrNcrpkvFlxcXBDCxnOyk+CMYsOoELm10hKqQs74GHFaUZYVOWd89PR9z3rdUx3VVEVBPS2pykLGgHakHFHKobJmXI4pXAkZClvQti2FLji6d8QiLDhbL7hY9zw/W4AuKF2F92nwehBPHWMsxdjhbIG2VvwFUmKV1jglBWpRlCItqeV9iQqSFqlJzJiYRSKYFaWxpNCjyIzqEevegymICRbLBTkIcIpv0MnTtJGQE9Y5soWuXUvSNYocpINmsib5ANlQ1xVFWaKMgr5HdR0jV6KsolUBvGd5ueTifCVeT9Yx2pOwnpQV63XDuCpp+57UNIx0Bp25ubfDZGSJvsGsOrRVGCyj0Zi6rtnd3+P52QkhBsaT6bYxYW3BqJ5QlCu6kHFFQVWNKYqKFBNVXW3IHjjr0FYCChbrNW1oKK1IQ5tmjTOynKycYVJbikLRpcysNlxUlstlz2K9oijl2C7bhp9+8gXz+Zz33riDLcqtEa8ls17NwTYkHRkVGnewQz3eYTqqmI0rPv7sM47PTqlnI/Z2d1itVuQU+cbXvkF39ozFySOZNzN0fS/nwhicK8jK0XUdqa6G+UcaLdpAUVhsVVKUjqxGpDahlGexWGCtpCyPRiMwYiStjATONM2atimw00SICVUJsJbbhrZv6XyHMWqQvRqsLZiMRuis6NZrGP6dX5xxlAJFYYm2IKiKvlWslwsWizE3Z3uMJjvYsiQET+o9o3FFTIHLxSVTa6hdzeHuEedtS+wyZTFhf3fKyXJFYXtuHBxyfnjAi08/wZKoK0dOHTFqmm7FfHnJxfycv//b70O3pO97jt56j2r3iP17X2VajhlqQiliVIIYSdkMjPDfAXS/zWYGg+0Y5d5YlwU70yk3D2/wxv27vPfu25RlQV2Vm3qenJTk1ljFRdcRjKz7uqrFFIm+cmTb07Rzilsw8RWfPnjMT794yL37j/jWN99kZzKBrKk28uW4Qs1PWT74EH/xnOl8FzXtcXdq6imoixc8fbRksei4fectqukuOc2Jywv8ZUdeeXK9xvsVVVmyd+8AxxvMP/2IFw9W/P1HP+LnJw944723GO/u8+0/+VN+/3v/E8vjJ3z///m/OH58zNPHP6EwF5Q+0MWnpJ2OZbmiDxF9krk47XjxLPJFe0pz8fcc7zwhpDEhWt5/03HafsEHT55i3vgub/3+O6jKQ7+AW2CK25jUSTJiu6A6Pmc37nBj10A3Z6eYMNp7n73pLVRuyTTildVnTFEOeJ2HQZgsRv3ChogMYD4RSybFBlKPNRLmksm06YLPHv6CvcMDqukboKaEBCGPsOYApSyQ0NqRKKRoIKCHRtnzZ4/44IP/l3X3iDt3p3z9/T+hKB1DzCcktV0/brYMEoqRpR4AhdmEtioJl9Avl0H/v26btefGLsA59xvJU19lzb1a1P5TbkoxqCdAADO1BUdB/Yr3HwBcpKaIPjG/XGKU5u7RHfZ3Z2JLYSwJRUgKEpghIlO4GJmEpxxOaCa/VLBv1vS/CYPv131BNxnxlffeoyoKjl+8IKZIzgox/krgBGi2+/sc7NdIIEoJGLQryJLhx7CqHYilomTIz+e4Zz3xixXqPBHbwOPnJ9yMgd3ZmPXnLyAU2Lnj5PGP+cu//hGPn5xxsewkCFBZml6R6w5lE+erJb3boVs3FDljUsDqjLMapYywwck4J0QWH4TdWmorwXkhU7sKHzTR9xRFMZAcNP1ijVJZGM8DUaMP4vFqnWVUGGLyxNjJd8yecWGIvhEihlUQGwyJae1ABTKBujIYK3W81opRKb5vxljqeod6VBFypCwtReWoqpLdg112ZlNsEzkxjvOmZa+Y8HzVcvZ8znoVeHGxpnAFKiYwlhZIznCxWnL/9m3+x3/1r/ju9/4QpTWmUNx99zbfu/hznj9aEJYVi9WK0/NTXFjiQ8c3v/U1/vf/9V/zB7/336GjAbuZczJ28DRVQeaV0PY8e/yEF8+OuVwsiDlTj8Q7OMdAVTh8DEQvxJ6YMjH6l8CkNNRoWtvBViRIuvxwfetBJcdAeiElUgiE3tM2kqjadx2hawne07YtXdMO4XBBQJ+BmWeHyyQFqcs1DAkhVww8aZRcySmFnaUwWqxRNiERA99p++92Dri2D0AsS9TLktVXa+jXqdI2+7wOIF3//VVizPXXXX/t5m/hmsR289yXyTIvv+7Vx6+/5+s+65dtWmsi8SVwbzuPbxiK1/bzKtFnQ+bZhH9cP54JIa7ZopSQiM15TIlBhzyQjIZovpzQWWOUYWPfkge275dtXwrQXf9gVwdd2Bc5D1/ICu3alZZsNUkrAoocPdH3dDGAD2LimTV5SOkEqKoKg8I5hTFycIwthKmnIqZQGJNJVr5zD5ATG3PdorSkztP3HefnZ0Am9H4In8jUaowymqKwuFGJG1W0vqcNiZgN3TrQ9J5V29N5T8gZUxQCDGrofSsFl5ZFbuh6/MaQOyWaZvg9RLz3g75cbjBRa7qqpA2R1HmMUoxtCVVNtgZnFN6AdYoiOmK25IEeqa3BqYIYNeeLBuKKqnRMxxNKZ/Bdz7JtqJOjrgqsK4Xdp7QwpUqFsZb5akmObNmBktYj803MCbRI1kgKZTYpTxanIBtF20iIAVmjtBU/wQ1FMGdKK8m8MrgVzliMle76ZvxsBvr1QX8dlX/dImMrgb02kWwml9dd4JvzcX2cZiIh9mh1Dbnmal9d1+GsFu8nLRJVN3SCY4zkKAsQZczgz6EhZZISOTMZshquA8QDQ20mZaTLjBFwOAzStK7roGuGyTXT9B3OWaqixBVStFdlyXgyoS4LfAhozfbaKEtNVRVMJmNyjjQr6dgs2xVqDUUhQG2oKnxfDoCcw1pZjNptFEnGKohDgqgyRmS+KRACQ1KQAEG2cGjnyTZhYpIukBFJzTAM0IOk1wzUXd/3tG2gcIUcryjAtUGOqR4WfGYIJgBEYaE1BovWkURktWowOVGYAl1bNIpgPZ6OFDN937Iwcw73bnB054jSFHz88ccs50v2D/ZQhRZJfczMZjuUkz0aH7i4WIr3AgpJdNIoJUB5DoPPF5rQSwKv94l1s0LP15A1e9NddnZmtKtznBaj3771rLtA2/eEIJ0tjadwFoyjG7R8k8kEHQenl9RL6m/M+CS+JzEF8aSMXsz6lcUi4RoOjc1y7vSQglkqy6QsGReF3AhCxPoE3lO6ip2DIyb7Byw7z2q1xjnHzBXkEAg+QAwUVhEV+JzoY8KHSJfS0MVLGGvY2dnh7t27XC7nNOtWvM6U3OyzzmhrKMqSIkaUtcQk83tV1RRuI+OSmi9lyFpY1SkEmq7B+IiqDFYPbLSkmY1KRtOSkC0qa1I2FGcrLltP07Us1i17OzPGkwmn8xX9Lx7Qd3d54/ZNCjImthitmE7HaJsJsaDrHdV4zM7OhL29Ga5wTI5nBJMZT2ta3/Ef/v2/5S/1X1OrzLQE8oSyKCnLkvVyhQ9yjlS+dvsc2OIK8ZVSRuYlYxUmSLOkCQ0pl9R1zWwv82LthXmeEt4n0oaRt5mzhjkGPaSPaTN0geU6TCmRYsBqRVVatMr4viN5g84BFXsInoQl64xTWkJxUGIuMOxTEiHFPkEbh3MF2hUUhaUsZrhocdUElwJBJ6ZZSeoacOf2TcxqzuLFM9p+TVY9qy7y+edfUM72ef7iBVop6qqkVIrUdTx59JhPPvuCIzNmPBujTcZkLwnSWg9AwO/Aud9+kznamOFYGsVXvnKfGwf71LVjd3e8PcopQrPuePDpQ9arltt37zBPSx5dPmI2m3L65DlnT1/w/lfeYVRHFosXvHhxzhdfnPDppy9oVoF79/dI7Tnf/c43OTzYhdxBTsyPT3jwwY/57KOPcUSST4xdQD19THVjn8uzwM8+eMSdN7/O/vtvc/74AV98/AOefPaIZtFy7/4h996+Td7rSV0PzYpwecloUvO13/8mi1RxFiMv1pccr57wVnWPBz/5jM9+9iHnlw3FYcHx2XMmhxVvHB4yjhV33rnNjScHrI5PUEHxsw9/wdOzFYzGzB8e85XpTW7ffYdPv3jK/Pgpn5efMzq8w9E77zGezqBrif0ZzfoEVVSMd29D7sixQ4cO3Z+j0wWX50ua08DN+99AJQfMUSZAVCg3gZAGvZMoO8DJ+lrKRzIGjUUTUXQY7ZDk24gyGaMSLq3Z36vZ3SuJaU4bego7pWAymOdrMpsQCJAYohpFIMSGi/NzHn72gJDOuH1rD60qlHaAFakVGyetzephY8GkUErAHbUZbkpB3oRxiUwzvVIE5YyklF8r5P5JRv+1AqxtWxYLkW6Px+Ohgfjl25etTf9Lba++20syrZe2fO0nDaBvQimoXMmd27e5f+eOKItUIqdI71tcMSFp8CEzX0QKm9mZWhROWNnDmLlejP/DpWavfFLFNqFYaY2bTLl95w5lPcJWI1xZSvBWilIrKEUSjQkqZxQbduhWTTaMPyW1TILc9Pj5ivnJGU4ZynpMDi3rDM2qo7hYs7KaRye/4OKvf87PPnnMw6dn9Lngoo9cdgHqCp8lOAObCN7TWEXoexrfEL1nZAxNiARTUjgYGQs+IsR6J1LElNAxoFMk9z05aAhRfI1TgBzIKmK1QicPOWKyA5XxqSUlCbLTOlHogDYaa8BZQ1nWlEU92DBZ8XUtFNZpnLOMZjOxYIqJwjomE6khUYqiMKShJqzqAu0G4NlofN/S95HxbMby0tO2mabNrNaZdQtdsmhrKAvL2ke8MVCUHExn/Mlf/Bl//t//BTduHEDXonKFcZpbN/b4yjv36ZqOp8+OaddzQtS8fe8N/ux73+MP/+iPuXHrgKyVqBSygK8byyR0JveJ85NTHn3xkMePn9C2LR7xdd84JyZESqxywhghGGg92IGE8BLo07btFqzfPBajpCd7PxBduo5muWK1knTVbvD6TuFKHZejBIVpXpkjkqznXga/rl3L+ZebAFfdsivwbqheuf5nrtW9wFYx8dI1OgDpr6rVNu93/fXXr+9fumbzL4dDvI7N9uq/r5svrz/n1RTXV5//uhTZ6/t99fVblqO6YgRe/6zbvw3N3+395zXvsXn+RpK6eZpSA8bxyne8PgOzwXKQc7L97rzMYPx195PfGKDTWpO1Hlh0VyfWGAEWitKBVUSlMFmipYVB4cWHKkZiTmLwPkgO/WqN1lB4R4hCG99wTw2KiSqwBpHPZUunRDJpB/11XUj33/eevpMIYzbdAgPLrkEljw0W4wxRQ58STedpu4bLRSdJdCFhnKWqa2xhKUotkymCfmtn6IbI8w0ibIxhPK63Jy4lSXWRAaLwaM67gE+dpPukTX9UklSNEvmuSleDKYRI5zv6IKw8iyMmuYgjhpg1IWvSAGz4lDEpixyzlYHpXEGhZd9VPSIMdNgQIzFm+uCJPhKTsJlIiZSgD146oQoptrWSAj6I+Eh8Op0U10nYHbL0U9vvJQMP0uBhtQHEXkXKNxfG6+id19l2KEVSVxfYdSBus6/rk+rmvYwxInElo4yM3TSwCKy16CyoeMrSnXTa4IyRMIi0MeSMxGxIWVKM5fHhMhzO3eYi3KDgKr+c5LIN5N5c9ABZSXoQkZOLS6w1lM6JtM0axuMJeyERZ7MhtVVuO84Z3HADHQS61KWlbVtC70HlwQsx0bUrmvWSFKEsa+pyJDehNDAbjcUZI9LHpFE6oXIkD6lTmoQxSujiRJGmGgF/q1FNVcrNT2srixBbUFXC6tJaE2Kk73o0pYDBwySaFdcmTo9WIo8MUaR61hQD00oTU2YxX6FSoixqJhOFKxwhOLrhxmKUIgYBYnPwtH1gMZ/TLFe07ZpqPBaWV4a2awlqRUBhjGU8sqS+Exl3lvj0NKDXamDvjOoxs+kuRVnTz+fMF2tSfEHfdDwuDPeObrA7qVB6SIhOPT5GGCTEANo6sAV9yiht2d3ZxSZFv5qjNFRaAkmShhBkeg9JwkKMVtisJZgAPfg7DgsWLUWO1uKdWGqFD1CkzMgYpmWNK8bcuf8WN+7e4/jigvO2I7U9OcVB6hwpU6SoHZV2DIIrorZgCtEeRrnCp9MJ9+/e5fLyguNnx3SNBFRsfCA3c2JZVSg7pHNpkTzFLCmkEZHC2tJRViN29xyq7Lk8XbJuOnCG6GASA5PxPjYndN9jDdROszcdSYL0ZUOfViyWS1KKxPGE0iiaPvPk+AKjsbKloQAAIABJREFUC44OD6idxZmAzy0mBXZmY2BCxtCJ/oT9vV0a72liTzVylErx+OExvr9gVlc0lULbzP7ejJ2ypigqYc/RSHBMHub9nMh5U8SIj1+KHgska1DEoaupca6gqkSuLoE7ihASDE0BYyTlWVtJ4+58D0rYC1VV0/edpMTmjFGZ0WjErcMD+rbl5PSU1DW080vW8zNK4/B6RC4LSlcyHtWMRzXabNLYFahhfWIMylYUBIx1qGjQusKaTE6G9WoJCaqypI49oXbcO7pF1Td81sxZn1+SVaRPgcfPnnHW/g0HN27yr/+X/5kbtWG9WHD77a9x+N53edQEHj19zlvVPUa1JaUIBLQyKKQRsr1n/Oolyu+2X7HJvWZjRyHBT2QY145xtYtSQ6Muyl3q8nJO3wVSCOItmqHahT0VOfvkCz754AGPPn7IB//3X5FCA6pluT7h7Xfu8afvfZWHXzzn4osX/OQiUZ4kvvXtNxntauy45mIe+OnjyFk65O5bM/TdEvIZLR16VvLkky/48Ef/keX5Z1j1kI8ffMQvPvwZcRHILXw2G/H2P3uXb/3FmN3bipPHDzn79CnrbsLh22/y9t2vUN++yeX5MT/8y//E2ePnpMuPeP7scy7THNcVqMdz6uKSuzffoXpzl+bh56wvLnjz6BZ3pju8f+8mfdA8O1ty+nzFXjkmhY65P+Xz+ac8U57v3Hqfu/YO5hxQPdo3qItn+DZCLsE52pMLLs5OMJMZi5NP+fzvP8XY+9x68zvge9ALYu6FRe0c6GJAK2Q9Jcy5TBruRzFbVEZCGbSTZygBTpRyZN8yq/eZTm+g6tFV1z+JH1NhzeC57K6NjAzZAgaSJ/tE33qq0YS7t7/KZHIbKBlajyi1SYbXVwXIZktsgy5UTqKTlA8st8BrBd92vTaAM78NyPObbtcLtRDCwH52/6TA4D/u9jowTl2dhJf+lLmyCsiAQ6OZTSbs7dbMdndQqZfC0lTC2FcCtvYhcHJ6znik2JkdQPaE6LG22soN4Wp9/g+alTckn+FHb+iXSgA1tKPav8HtyS4ZjS4qhi7VsB5URCTVXquMxaDRW09pAYzzIHEdxnTv6VOHuz1ipO9SntaE547mTKMszFctJzny+brj6bLn89M58+zQbspl13LuW0Th0UApftnz1KOyQeVEkqhCymyYZkvtKtRozA03ogyZHBPGWkrncCpjVcIO17kz4nU8GlcCfmeHs5m6LCQlPmsKO8KWllxIQqR1UBYG6wyFc4Ove4XRBc6VFEUlCiCVUQPxQztN0/YD61FSScuqlDCNlDAmopQAV0pFss7EoZpJuafrL2m7juAzBMNUT1DlLstiBeMGVWbm3YKlinSuINuAq0YcvX2PN998m0pJCKEkICr2bhX88Z+8zbvv7bBcXXJ88hUObh+wszfj7ffeY/fegfhm9hHjNJuMwZy3sxah7Th+8pTHjx9xdvoCTCaGgE/ih6y1FhrCEIjYty2DJbvUN9cCXrTWTEejbS2aY0/fBXrf0qw7uq5jtVrRdd1gIyDKthylRtzMbSoPZIPtNSK4yVC6c32ak9rwSiWV8muYbgz15oa5OoSJyevVdk+Zq51viSy8EuRwDSzbfoZXAKjr/25+f3Vufp3a7dXtyySq1x+/Xre/+tzXS01fft/rpJ3r3+0l7IBBPprCwIwbwNu0CS+SxzaP5y1wusEWkIKVq/OV82AlM9Sx0uz4knlwQ6RQrz++G7ugL9t+jQfdLx8ko4x42uSMVeJFtE0cGQpbjSZamBQVYRj03SA1FCmLUAJXqxU6SnHS9z1Ga4weyNw6EZIfwDYzJKMIoKIHiVHSGlPVZG3po1yQxopxX58idB2h68nrhDKKbBSd9yxWntW648XZkt5H6nrCZFJhSzssNgI5BQG1MmL+mOV8mcINE2KxpbrndDVAYk6kEOlRNPSErDEBVBLZn7GD3jxDaezgZyEDIPiexWLBfL2g7xPjYsJkPGUymaJy5nyxIMZA7Sx1XVJUBTklluuWFHqcc5TOEn1i3azptQRHGOOoXEnMCeMLlOlRIaCURE3HHAfJ3yDPVfKdCyfsihAFRBD2XEHOHoiEuJlwpDg3drjw00Cx11r8wbYAZNgCbK+bBK5PLDlnlNFf+rzN2Hz9xS6Al7WaGDNd36KzFSN/Y4fzFrYXWx4WyNaJiarLmfVaGJEhyaSeEGBUaUTmrAaD5awgXyH5ajgom8SzjIAqm8Wz3HgkIc/HSAhRAkC0YtV41q3nYrEE77FamEiyqHSCCWaRGaeUhuAS+T4xRrquIQShXGstMvTtRwuZQhvGoxF2NMYMCY5iOjxIYdkADoGUBQjLIUg3wLqtHxZk7BBbbq2lsI7SVbLAGG4UXd+xSaUT9qa+ep8sMtochf6rtAYtBWXKEpzS9h7XOfphbMZhYae0yJ6Pbt5gZzqjKkt8ivi2Y2dvxs7OjMl0TEKxt7vDfO25ePiEy8UJbjSiLCY4Z+jKmqhbUu9lvCoBlYyxGAWdDyzWDcYn2j6hixrtapZNx4vjC0LwHO7PGFeOonBkrbFFgc+RpAzoQDIJrxRxGDulMbhB4luXjjZligacs6yDHIes0rZTc90kVo5Z3JpEhyxMuxg8XegJg4fZTlWh3Ii//cUTnpz/mINnZ7hRTdcF+t6Ln2dhyI0nE0E5klYkrfBZPDmD0nK+B7sjrQ3j8ZjZZMpleUH0Mjc7rWXBujHRjXEI1im3Y1KpoXEBZKXRRrqvUXmiUijrUFak9E3Xo/uOGBMpmeG6SFgytbPsTh3K1bh6RF2OODk54+TFC24e7OPqCeu+52y+5PDwBpO6RtlIG5bEdsWocFid6JqePkTAMKpKdqYTKgJeNfjQURspbH3bcNl6cg7UTlOGRFWWuLKQxVNMQyGdSENecByy5DKZnITpYpHF99QanNW07Yr1uiX4IEEjSW76xkoQiElGqPFZ0/ae9XqFIjOpR4yrCqMVq8VCANucmVQl5c0b6JzQOXDy4ozz58+4PH7GzJT0ZUKpktFUkprHdSXSiazE5xQB6bKx4DRWJbS1rNcdfUpkrem6jtPTF1gMkxsHpCSMt92dKfboFouzF1y0c7rQoJLFJ/Drnn00N27c5O604D8/fMjzH/wQ9XDOxxeJt37/j9i5ecCkngzBkhuR0K+oP3+3/YM2NdyfIGO0Eo/bqDZ9JbS+kqmNRjV1BdPxlIP92xy/eM7PP/o558vnfPHJY54+OKG96Fidzym0YTJyGDfh6NabfPsP/oj7RwtWl5pulTl/ccYP/upDQn7Bzv6Md97/5/z5v/g3UFtmex61/ogvPvz3/PDDHzLvPPrCMxtpTp/8nH/3+O+Y9z3ajXjvvbcZp4LPHnzOxz/+CT4bRjducPzoU5rz53z3D/6CP/4f/jf60ZRsFG/X73Hv6IBPvv8Tfvrjzzh58hF92aFPSmy5x3o38vSDj+jaFxx/8SlHN+7w1Xfe563DG+Rmidkb8cWL5/zNf/o7Fv0p+9UON9+csXhcQD1iND2iZEa+8IS4RIVL8uUZi4sF6DH1dIdHP/2Es+UF737niMv5grOTF9y/c5P1s58SciDpNbPbO5idMaQlpA70CHQlYB0GgSSkPeaGhoxBmrnkDD5C8OAUCgeqkvVIO4AatsA3PVlnMNLUyfm6w6MaGCagsqXQhtpZdsYjDnaPUGoEyUBOwh7SDKhKZPjPsO6SuU+Y+RFykH83+qsBRDRK1hXb4vJXMCv+8cf/1XtUVbVt3pZl+V/k/f9xN1k7vgTObbcNwCs/mU3YjqzV6qoghjmqX7KxOlQ4rHISYjfM/yn39D4NoVey9iRlspJ71FWRnvmHzMwvMUuGT2YYCiolzSuUhcoNn8UClq0CWUHaeJIBKSv0xjODBFmJuFWJNxRKUGNVWiZv36V6Yw/OL+HFbUbnpyyOn/DRo8/56PiYky7DeJ/Rzj6+g1UHqxS5iI2oSbRmlMXT2ceOoD2FVhQWnNPQJSauhHoGZWBiCiotrFfyMMeayGw25s7dQ5zbxZgaV9VMpyOKUonSooBRVYnFTVRUtqaYlATTSmqoDrjBhscaSQw1RuaLFEXBpIwhpSCsu+xRxjB1irIyEkIYPFpLgzYljzaK0Ht638lh1qJws0VJWUZSpYnRUxiLzQqbNC5qiqBxOHxs2NndIcaWqAtmNw75Z+9/jfe/+nUmbibrfSskEKUNeq/gjd97k/vlV0TGH1uUlfuRLixK9TIatZF1IaARCyElA5T52TnHz55xeXY+AMWbRM1ITIlNDnb0CR96uuBhUO0l0raxqYCUAsvFgj50NKs1i9Wc1bKh7daEXohFTdNARM5B3g7Hbc2oQb7b5rFhfb5pREgj9NpV/AoL7FVvdblgNtf6Bsi5mjvlylNbJtbmMRjqX3Xtd3759y977Msev06s+U32d70+f3UfvwqAe91+X8fu+zIW36ub1nrr9f+SCs+al1iT+ZXpTADhKyLQ9mMME5nScs7iJlsgD/fmaz8pJcGu4JfP8Zd85uvblwJ0zllSzKhBypSiDJSNVnfjD2aNwijpiGSjQBsx/yYPEp1hRbhBKAd5VlHWiIl5wuch1ZFhkgUu1g3ZKowa2jw+YjSMy8i4yEzqikpJ+owzYmxdFpJ02MdAgyInofBuEhhz1hhEwtguV6SssZUSmaFWhNQToyeFKJLEPMiCjGNcjbDWoK343YUhQMPnKxNKHzy+6+lSpukk6TD6IP4hXgy3PeI5VRWWFNMQ6WMIKdJ2HfPFktWqZa479maJlGRi7ns/eKoJ+8s5hzMazVUYQ0gR3/Wsm4YmyMRoi1KQWq3IaYP+im9UHwOrdUsMefD2UttUUwGYhlS9FGAAY8tSo3Ukdx6lBIm21g5eDAqGDk3a3IM399KhMshqMwepl2/1myfmq07BdVT8OhAXY3z5ArtGN9Vas0FBY04DCCkSXx+FpSFjQqS9Ir+W15dlCaXBxsTKrykKubi9jwMrb/MemwtMDROm3AJkmMtYt8ZszTtTuqLbKkHZsLaQCT2LGXTOit5Hzs8vubxcYLOkRE4mQcITtMjOiiHJdTyaonQmJ/GQk1Rkvz1WJ6eXEoLhZSynPhJtQVk4yEkYeSmTgnS9td74PgloW5QjXGEJOhKJwlYa0ldjFC+5jS/h5qYHMik6Y/HJY50TKWMMqBRQOovBptLi1wDowRsQZFwkFDEr0sDW9SnThkDuEaaNNbi6ImpFUJkudPSrjhgG30ptWLcrclSowrEzm3F0O7FoRcLZ94mm9RitB57lILk1CmMNG9ltnzKLroc20nlPWdVMikKaEGXH87ML2nZNWci4KcoCV49IxqELi3aRqDJ9SkQlQTTNakXMmiIlZlVJh6Z2g/9c04FW4huZr4ohUVQrosp4EmEYZ7IUl4WIionkA6YwlM5S2ZJmHfjpo0+wDx5zdP8uprDS2XUGqxWmLFBhk96l8AlyjPgUaLM0PpUSqWUKUQpFI74aWkn4R0yewhQy7xrDuutQwYMqtuD3piDLWeanrve0nefRk6eczVtUtNT1mHI0Bm9pFg1Pnj2nsnsUbowxmjgkH4coCVaTuhTAqiw5fXFCs1oyJ3LzYI+6Fr/GdYjMRgWuHpNbL14kfUPfB6yraDsvDLSyYHcy43z9nPV6yawuOFu34gFnEvPlgs+/iKi248bBAU0WGbAYbF/xFeTiloKGQfKeQkuMidJaZpMSqxSr5ZL14soqoW07GQdaSQjJ0LGLKdH1kYvTMy7PT5lNJ9w/OmJclzhrISfxOkyB2ajG3rpJoaBUmmXTYoNnYrUAis4xKR2zUUlhrz53iGI6rYxF2QKcEpsCq+jTijYHkoV6MmK8M6Zdroi5o3AQo6F2JWU+4OL2ESfNimdnL+g7SWHXtiIpSd+sXMEvPnzAX//oQ9qdO/j9N+knh7z5ta+yN3LUtczFkLceXP+tldD/tW1KIUnkOYEycs3ma8c1Z/q+A6Wo64rzs0sWFw1GV5yeL/gPf/MLTnzL177+Pjd3bvK3//E/s8Twxq27vPH+u1QjRdyZcZ7v8ta3jzjYcyzmkUdfPGN1+YAnvzjm9OFH7I6+zu7dN/FnPcvjY/zJpzz+4EMe/P0PeXhxwcSMeXvnFn7VMtmt+L3v/SHjeze4sz9j3Hbc+EDzwQ8/4sd/8+9Q04qMYVrtEp0jlFDtlxAbVscPePyz77M6f8w33tllf/wOf/Wjn3Dx2Sm71RFL9ZwPP/gBTTimOpoyqW9w/CyTTi452DHsvVGi90pumSPK9YTbN+/yZr7P/k8Vt27e4s2vfAd76z5xmVl9/gx0ZHxwi926wJqO888+4id/9bc8OTvn4wfHuGLGrYMjdm8YOj4kpSmFuU9sx2A9Pp6STESpWxj9JsZalFVoI+wLQ0INQtfsW+LqkrhesDh7xvrynNn+Lrt3bqNiBm3J5QgitCdzGh/Zv3ko7HA0Zlh+b0QAG7ROkyhtYjox1KWRZJAIW8mHioLkbe9FAqKLzEeBjjAkzcrvVwwuhQUlMt3rEtlh6P2Tby81e5USz89h26Yp/lfPpNuuquT3VyvJ7TaAFQygak6S2KkcOnuePn1I11UcvXUkTKneo0ogF8JOy4FVcwEJej8l9XOMdbjCsdFsbNbcm3v5r9x+3blVw3OU3iz4gIwyhoyEsOWhFtDI8DNKWHSKX74vZDWofJTGZAnLwihyXWP276J2KpkDV3P05Rn1J7/A/cBSFBrz5JTYd5imo+wVSx/o8yWNbfDZ4KKjTwmXIj7LmjADxdBQM3UFuqZ3llXX0LWD4sw6qT1yiysyR/cPGe/sUo9vYN2Isqio65KsWnJqsSZhtYIQST7jVIEdFURX0vQrYuiG8LdMipIAj2+wtqJrPQyNfG0zMfek3GMwgGa9bFmtlqTYM5vNqMsSdBCZc7cmpYi1hQD5KFQM6BAxOeB0xllFCj3BQ04RaxW7dU1vM+vcY1OmtJrv/v63+D//zf/BH3/32zhVEnOgUR5KhaNCOYMezbYElaxGxBzoYj8wjcTnPCmkwU1klI3MfzHSL1ecHD/jxbOnrBaX5BRpuzVdiFIXDzNNTJncSzia1ULK6b0n5IBKWdbXPtCFjvPTC1rf0q3XrLs1oQv45AcbMQ3p1bAFqRU33uNxCCLc1J2GDei2kVIOJJ4Nqyvnlxh018kqgusMK5+hjs7D9ZS5xhS7tjq6Ys0NdTEvA2OvylKvf5bXSSyvv+76c163n9dtr5JlflMA7lfJPV9V2b26j+ufdwMeXt+XzmqLU22el5LMEVvmpOz55fcZgIiBhPjL7z+so/I1MI60adRL0ztruV9upmy9JfgMc5tWxBT4su3XAHSOpDPGBCnkN+b+SslARJB8kQgqSUW2wnDDGELopVOPwipQcZD3DZ+4rsZiUp880QcUicKIjj4qTRk9HgbUO5BVIKXIuhcT04ShMREVA74T77kMlNagnEV1gdJabGmpxxVFXdH0HqUuIVtOijnBCz1V5yxx2D6glLiBjOoJWYmP10an7lOi7Tv6rqMPER88fe9FIjrIRoMP+JDoOmFXqZjRRpGNtDFFdgmrxZKUhMVia4dPXjz6jEFZR9t6np+eMV+t2ZtN2dmdMh2NCL5nPhhV7swm7MwmjMqpgJ3RUxSaXetwXSSSiTFJrHSMQhPXVoCpGMlB0nMBnLHYwmGUDNz1ao7R0JNJIRPD4GEX89bDazPor8CxDeNGbzsJcXOx6ivwFa5JH1+DqCulfklffv2513XmwACwmKuuhEYWK4OHYFVJl3mLeiOyUWM2/QjpEIqPW0XIsPYCEnVdN3iZRVk4YIgpXXmvDBfzS12OfNVpIQ1BEte+p936LOUB5BTPCkjEmOg7SUSOMRFTSwyXLFeeUVUwGtVUpaF3hrJ0lIUTBuuQGpljJKTE/sEuXR9o1wIGZJ2HFNACbTYgWkfKYQiC2HRtBh8HBcoarHGAImWNGcIsjMlsZNl92+F7AQiJCZPF90j0+4bCWaJJpE4NN5I0THxyPqy14oNnJChGiIaySEvaENAC0CE+eVornCupRjVd7GlamTucES/MuqyxhWG+WnFxesqyjezOZuwejDg+OePp8kTYtkoWfonrNwqGVaHCuhpdFpAEKFz3nuOLCwogdg1HhztEqzhbLggXFxhn2dnbZzzblQWGkxS1kDNRaUKIrFcrYjY4p5lNHL0yFNZjnCPmFpUTfQz0UVJBN/eNNKxMI+JpaHQeVErCkiVFtBKOou8DjU+4cszujZL9Gzc4unebVbPk/PyFgKreo1Ig+Y4mR8iONgQqW5BsgSkjXbwg5YKc8uDJ4SEPsvyUxVE6JcaTmul0hitL1PPndEHAT2HVCY08cwXUMSzA103Lk+NjYgd7u/vYUcXOpKIYT2j6nvmqZTIZMa4dxmRU7uS8aU3tNDErZpMa4gzftoyLitl4wmw8lqRUrehVxqHAWqwuMK5EK5FXK62JCvqYGI0qlJmSomdSluhwwfH5JSmLjPry8pInMRC8J05GKC3S46u26gZYUtv1lcoJlcS42KhMaQsxLfYylouiYN2tWa1WVNlS1MVmFhzmMIMx4GPixckZpycnhK7j7u3bHO7tiqcjSlKGy8zudMzO+C0Od3c4ny+4efc2t+7cphsdsNZjxvWM2agS8+9hUYnSaCPJ0GgHxoitgwrowoJTZA0Htw8ZlZZnnz8k6My4LHGlxmqDTYrDW0fcaFpO1z3r9SUky3K5oO9bfn53n/2vvcXh3og37h3x0I8IxrFqez5/+Ii9SWZ8b49Z+bIJ/e8Aut9mk9RPrYYjOQzTrdzn/2PvPX8l284zv99KO1Q6qdPtdHOiKCZJI47GNjyAYcCAAf+b/u6PHmgM2xhpRIqkRV2Sl7y8ucPpPqnSDiv6w9q7TnXfQFnj0dgAF9DoqlO1d+2w1trrfd7nfZ4hYWXKzFoRJBaLObPJDNcL3nz7Lf7Hk0Oe9Gu6/orf/PJLqmPF0fFtbh+fsLJXXDWeqBX/59/9lLqa8Wc/+g7f+9PXmDWKD3/7jEdPzlg9+Zxfffo/IyZ/w2E14bVjxTR9zoe//hXJBv7kjfe4Oms4PdugrOedd9/jB9/9PvrWhPrGHNF23LpoOfzdKY8ePcHahigLrE6cnp9z/vwppu+ZHy7oNw1us+TG4ZQHt+9z6+CA7eUFHz5bsj0/5cpveGgCq60ltonF9JDOzfj8bMVkfpOpmRDrkgfvv8EJx9BUPDtdce/OPd7/3vfRN19D1CUiRPR0RrATNpstNhSUJLrtildfOcKYkp/8w0dMDm/yztvvM71xQHEgIB0j5H02F2dcfv4pixPB4sYckkFEfR0JpKxxk6Ijho5snmJJ9grfXrA++5TnT76gv5ph4gOmd+6AqsiusBGZ1hilEKoZ5lxNGkrHxQCcCamyjp2wHByXvP/ufcpySlWa4fmXTSsyu2kIVhifwXnNoqTIvBTvkSIM5D8PoSf5AKJCVNfutGJvRP9LMtj29YmvSzT//wDO5YoDRljqJXBuDN6vL+U+iy6QYo49IHD2/AmPHl9ydXkDVWqmx7e5/fBdoMenQOMsy9U5TCTWzmiXz0AYDk8mGDN7QZImv+YlVt03tZE7d80kEvCCDt0I/mbNw1yS7WMuqFAyDeCEfBGce+nkk5DZcAiBDoN2XiHQEwkzmUkiZYmYLCgmb/PDOzf47vmGL/7x9/zy7z7g419/jgmCUg5up6VEygK/SrjeE0WPlAZJlrqJwSOkxtQlbZBc2paL/hKxKZmHHMdFlUAFdAnHkxnzo5KiPMaHIVpQ2Z1eiATR4qMbAneIeDrbsdp0dLYBEtNpyawqMWYgZETYbBqatkepnAjXIiffhJIoo0kWlqsVT588wnvLnduOk6MDvHe0bcvy8go/jA/vIz5CUdVM6hrVWVL0WNcjUs/J0QmTOydcuCUubogu0C7POTw+5vUHr/Jvf/iX/Ld/8W+Y1xNiaoni+r5aBIprQFbGfAu1NhQ6O636FHHJImWRJV3G0mopSL3n6vyCZ6enLK+usG1HR8RZm6ukh8o9Yk6MAogk2Niepm3ZbtdYm2VdnM9Ge12XTR2ct7lkdRhDWgyxqsgljDGSy1p3tOOB3SdEZim/tFKR8joe3pfquAa7cr/fB39SehGMyiCeIqVwDWh/TRNCDCaFAz4jruOq3ecvVZyNx7L//uv2O37vZXLMP6f9c7cbpav2j+nlEt2RGf11Za+ErwKMGdS81qvLf/yaYx0r4NII1r14DqOc2bhpeunfuK80HvswgX3ds+ib2rcCdFprkgSl7LVQ494Px5hHmRQCLdVOLywnPzLDS5HQGkxREAaALsaB/RFjngyTRmuHSDHX9QIEOCwmWJ8RSaEjqUgE74gxAyVn6y1JZKHskDIXRrs2i+1LTRUFpVAoCQKJFppSSSa6whaBWVnThA7pswtjoQa2nhB4rVDVlJDyALAx4W1Ha3vW2w1t27LdtjjnaG0/IOlDTXLKNs4qFVlzTmQHHZnyJFWagsIIlsslEY+PAWMLRCEHbbspytT0OtI2ls22IYZAFHAwn6IlCGXo+4bVZg0pcDCbUZgcdAoh0KLEVIqQIsFH2t7S9z0u+AyQBti2LdaH7EBjLUrlQBiVl+xZX8qgjaC3HutT1jZJaSiP2QOlXsgC5I4rpcQPD/LMvMzXNsVMSbbBvzABjANNCokU1/1sbC9PGiGErywQRmanHJhxzjtiYtB1Au8DkQxG5v0IhIjDRJgBu6LUyJidGIuyQKlsOpEBQzlM2mE3uV5rYSREzM4/AZmp5AOQLclMpR2QKUQGPK5PjiRGOWaZy1mVJvpA13uc3bDetGglmVQFVak5nM+YzScczGdMJhVlpRFEbJcdi6uqQiqHFIKqzA/vUmq01EgkadQKFHInSh8HPTakpLMdslIoLVFJZUBCjFpzGXBkAAAgAElEQVR/ipREdjD2cecONN4vuTeZ5vuukCZT/kVKhGBJZAAvswYGZb3BnCBJsDFgRcSLhBcgQiDEQCFBG8Wma1ivl9i2Rcns4jqpKw7mC4qyoOtaLi8uWG4tExtR08R2u8VaS11WSGIuMZcC73tczNo/WmiU1vSuy/OfKZFlQfKRPjIYJ2iSKaCA0Epa60neI+sOOfF4kYZMIHhyCYaQAqMNVVJUWjIroZORQudy7DEb44PHDQ+mJNRgHgNJZjMHL2NetChJUhBE2GV0i8Jksw/nWG0bpJxx78FrvP3eWzw9fUTTbvDdFiVzeUPfbHACnK2yRs2Q3Eha41xAkEuH11dLts0G53zuI4wOWIJ6UnJ0fIPZPIuSn11dZffSlBk8o4u0HMBYQ6IoK2bzBfCcTbMlxMsskXD3FrerikoYlK7Q5YRyMqeWjqpPJJ+ye5syLFcbuhiYVSWzowMOZzNmVUVpcmk7WrO1DueWCLtipiMzM7grBc/hwRGzhWDeORrXIFRNjDNWV4mD2YTGedZtgws92mRQsbcW2whsEkip0SngUy6vCFHk+XYsew0uP3u0RsaIEiknMESm3WsNIWRncTEpM4uwahE2J/wTEiFAycwq2G42fPnFlyTrmBSGxXSSU1IxG0xIVXNweMjJ0RFN12HqKcdHh9jZCUufNejqQmOkJMAgOD+A5jHgQy771XKwY1QSVRtisAQZMLWhmBic7XApkiS5HwpBPTvg5p37nK47bK9wbc/B8QzXXvDzn/2chV3z7tvvcP+tP+Xf/+Ypn7qa5WbD3/79T1me/Z7yx9/lvdcfUJd1XmyOgNIfUbp/ZhuSRkIMAWVmPkmV+1QIWRdY6Sw1EFzIBiGlRkl4cP8AcdxhP/+CX/z+p6yffcidQ0tsLhF2SYqGq/MNi6JlfuuALz76PVen/yunn75Pu/Z89vEXXG2vuMSx3jznwcFt/uq//tf86N07nJ//A8/5iIvf9ZTVAcc373AWN0xCpF0VfPrT33P4YI48OeTjx8/pHm+Yz+7zzv2K6dGC+fEJ5eIAc3TEF599wc27U6pYwrrk/o3XUM7wyScXnD/5iNfuV5w8KPnodElZa+RkwbMzwcP5Q/7qv/ufMHLO5tFj+qtHxK7CxEN++8v/i9Y03Dx4nUe/PuPwzgRzXCOmCYSFUlPdPUGZBSk9hK4BAlNdcOe4oP58xe8+vuDWKzd47Z0bmPkB0tzM2IleE/Uzotygq3sIfQ9Y5BLVPP0PYz8HclpHoIe4RZcdGsfJUUD2jvl0g+JzQnNO//SSJni81MwOD5kf3QIRIN4COSM7uaYBJikRogIcQrfMjzXv13dB1kgTQHRcF8TuMlYDvBcRMmvr5LVfIKWe8eBjv8FuljgXUPUxk+por0e+uF6E/7xA3bjvl3V+dqZh/4Ig4f/zNkblYu/9N7UxJIwvvE64fMd8S9cuefz09zx7+lt0XXL3jXcQRcXi5hsoOUWLhPUbVmvLejXh8vkXOKcIccrN21UOgHdLbbHTO/7KYXztcX1TG3TotIYkGSurRtwug1D5nJTUu6shd/seAnIxmB6Rxw1KoCrNpIRw8SnyfEVqW9JqTeo9SpfocoGaLnhw+wHPF2ecVWtc44jWE1xJCAILGClIISBtoDYlRVIEb1EhIivYhI7TNvA4BLY0TKVig6cnkJRAqIRlS/TQ9w2ps7Q2RwWmgMXBBK0cUfSZSaclRVEjI2w7y8effEHjLEZJbhwvcIdzCp3X4ikmHj06o+89ShdMtpYkI9tujdSJSTVhe7am2TY8e3ZK22w4P72irkts19L3PYfzA/wQr3a9xbvIwfEJr9yZMzUFhZI431BNFO/++XeZPHzIp/9Qcbn8khjW3Jz9gIcPXuXeW3/Cn/3lf8MNM0dEiLLe8X8hV72LKFAvg03bLUpGKEuUgDKVEDKS4UPOGaYQuDg/55OPP+Hzzz9ltbyi7ba0zhIkDBlFgo/ZyLHtiJ3Decf5esnWdjstuRCymWM2dbSMbq1C5MqBlCCEHJdFGTCizLTzFAbCxagFPYIseVyG3UnFkfeWR2xKjKaauxTFOKUOH1+DdS+7Sqed8YN48c/szAb2/pzns+GTHfD0VYbaPtNs/Gx/Pv42JtsfSm6MwNM3Mef+EFD38m+/7Ji9TwYaj2d03d0HvcSAwwh5HVfugDGu8YOsV//tx5Ovz3Deu33Er5znDrQdz5Wvzn5fBxZ+W/tWgE4JATKbGkgpUSLhR/QxBKzt8KEgMdlRhiIJkiPEvZs4Ai9SIFLWQkkp0TQ9yYAScqg5Hzp7CPje56na5XIuU2SWjZNgU9b3KqpZLr0js0d89PTe00dHHwLe5e/20ROExA1aan4A+LIRR67HFyTKsiIlTYg9KXiapsGFhHMe6xzWejpn6V3Wp7Mu0XSerstaYuAYax9Tyj5IhciW0QJQwme9rpRQwpC0xqY8qSgBJQVCa0yZXQcLIqXxtJstm82azfqSy9mM2zdvcHJ8RH24YLO64nK5wfvIfDFDSYl3luiz/XahCoSWVEUuyxUuC9mnmBcuPuaMW/Q2lzp6lzWzYsyuhMWgf6YKTMw0ZB/B+chqtc0dTYrBbWfsgDKzJpUhuXA9AYzurjG8CE691IGVHmyuk4cXsgr5nmWpopw1SOy52ChQOjsYjaW6jc1aaFoFRBRYazGmRE8yeCgEJJn1C2O2NsyagikvFuIAMISRbUjIFNWYywvF0L8FZKZcSqRB1y8hd2whsT8pDqyqPMAZfifinN8xAKWUeDfqw0EQ2aEYoOsdhVFcXi2pq5L5pOZgMePocMFiOh2AHQMoUImiVJiJpjYFEkXoHa7r8VxnXBCCmDJomgF3SUiDdoRSkBz0jmR7mr5j3TmOOclsORHz/VCKJDQgUEmg1cgEkqhk0HVm+sXo6XtB33XZkGGn5ZfLaFPMfab3jioE4gDsBpEIIWuVJSSX6w2ud7kkNmanZS0UmxAJyw1Ns6WzHhs9dr0iND2bTQfBD2YLOcsoMPRW4dsWHzPrpCg0dTHL4tKjRphRKCkppKBUcHZ1Tl0oUvCEQfsy6RKhC6S2xDTaaOfgRmnNfFpzIAxz4ZmUUMqI0Q6tRC47ENmNKsKg4TjcnwEIyUkAhZD53sUYcM5jYtYE1FWJwaCT4+DggM0qEXpHXZYcHB9Rzaasuw3OuawfJyBYi0sB12ywSiAKiescKXiS0Gy7Frlcsmk39K5HpCw/rYSEgSJeTWowhvr8jKLZopWirAym0hQ6O5QlQQZfU0REMMqgTYEuAy4mnl9eUZWaxckN6kLhhMImgXOBvmlptz1bnxBlJGmHLhXzNCX2llor5pXiYG6YFIIULX0PTkWCS7Rry/P2lInasJgdspguiG2PVJrpdEq/aqlkiS8qrtozagmvHB/DBVwsG0xVMJ3NEKZg23acd5bpRKGqrDkanM/9UgDOk5zF2yz9UFWG4CIMrL3smmoR0SGCRYhEUddMDw4ptxax3RB8T/IFLnqs7xFSEoXgYrUiOs+inqBeucV0UuOCz4tVErP5jMVkTmkMnbUI16BDh/TZ7CV4kfVU0QRp8KLM5eTWEnsHxgzjOGBjzGBtsJxfXOC3LdveYkPgarNBacOkkHTWI3XB4dEJt26usVvHOp7TNEtUtGy6xN/98tf8+C9+zHs/+D4frEv+9m//EXu5pQs9T+4suFMp7iwWFLfqrEszSCuwx/66fhB826rlj21saY9lInW+lnlhOujD6pK+awEwuuTp46ecPj3jzq07TOY1H3/4j/zsZ3/Nk0dPMT2kYFmvTzlffUwRK3wn+GRzwbPPBMv1lzjX8Ouf/DVaTLFeQV1QnRySkkZXkcXdKeW9GYezm7z/Fz9ClAbVac67Fq0ED+4/QMaGz37/MevNlGVZ86iFv/yzv+KNP7/BR3/zEzobeO3dd7nz7ptcBc+TiyWkLCx//P534a2bbD8+5eDyI9x2QXRfcO/WEfP5Ib/54Ev+8XHHez/+7/nOv/3XTN98CxIsZgVheUR5XPP87Pd8+fnf0MiGyRu3ULJE64oYQzZOkoYgFRQZ1BB+CmWC2CDCOfHit8R2zcMHr/Pw/XeR1QTkAsRt0C1RPEaaBlMqgpUIX5IL9NZADdQ5STc88zJ5LeBdQ9xeUcQWJQKT2nBw5wB5XNJdPqVpzhCmxHcJX0iYzEjuFFFGUIegFqDMMHQiWZjWARaROpSJ9LanuTxlcqTRs8VOk1hKg5L5uS6FZpT52FUe6MzIJWWt2HVj8T4wMf9lebBjwnCUQtlVAO0Fbd/OABtCrAS7iBr+Cae0H5r9p7L0xkz1N/wMDEH4CF3lkuY4MJaiiLRNSx8lqBof14S+48mXX3J2tebuG8+4c/99pDjm7GxJf/WEKvU8f/ox3oOQc+bzOdP54dAXZS5FTXIIdcb1+decp3jxpdz7Now6WmJg1CViDLkEX0tkAqWBsOM8MJJQdtsPMjxhB9ll5EOoEgpgcsD21OHPnxOenxEvLgnrBpnIpoOdwNqC1nmmxze5SGtsd4kSJbWRRG8pCoUQUMSSCRVBSPqQKGIOnp+uL3m87niuNWohSOWMKArCoOscU89mu6RtGzabQIi5RH86nYKs6dqI1oIQGly7phCSNHHgFZu1w7aWbtvREZAu0K+7rDPXZ8PCzbLBxYApKqplQe86VpsVplAcLObYxjGpag4XJxihsZ2j2aywfTfIVhW5aqisUSqDjzJppNCZ1KA11rUczBJ/9V99l/cO7vH0kz9HpoZFramsYzo9RM5uoiZzpM+VBLJUdM7m0lkEMg3xYRYRBJfLcinLHON5QMndWEtpACdcpN+sefr4ER999CGffvox2+2W1ls2XUtQEowkCknXdWyuNmyXK/p1i/U9W9diY8D1Dh/9EHNlRubIRNx3+hxLTKWQOYEZr2W9cqxyDXjFGAnB5b+pr2rJ5e+EIZYch+qL34k7N2uFEJkwMlYYkbLJoRoGkNibAyJkosM4CQwxgkyjcVn+J19ilb1cCvpyFdv4vX3Tiv1r803lsX+oVHX/N/Zff91396/RCNC9vP34foyV912m94+32JPBggGTihmD2B0DXwU6M8A3yDrEkTU+MHnltT6gkDlOk1Luqr6UFESZY//Bmwuxmx/3wFpxXTX3Te3bS1xFFpEW5JJPDxRSEYSk61pCmqKLLDS6cR1GF6hS505GGpw+IeGHyWCvAwhJZXIGTqSEkQKZMsNIa0mlDL53CDlecIdzkZgEIiZCTFSVIQ7lhi4FiJltoFRmzVnXYYnQdZx3HeL8PDurZDyGLlrURKNKhU2edqgHjl7goiD4juA93nr6PgfCznqCTZkJ6EEkjRblThg8xgGgCTGX4epIHz0iRFZSULYtZrVEKphWNUJAXdfM9RSboFt39M6iSNw+PCbVkTQt2bQlV1dXNJsVZ2TW4Gw2zWDTtGQTAnZjKScV3guaZcONssSLbsgwSKLKAFcuOZP4bcdkUjKb1XjncE2Pt5bgLDZClzTrraO1W0CgTUFRlHkyQiBkGNb/A714ZMgNAq65DDZrqESGQDYE3MC2yiwSg1CZPu+sw0dHChGDRmtBDNeZukHmMGdyU0LrzBaSAqqqpqrKPKBjZhsKoSh0TfT5eJQxzOtpppDHiBTgokeGLKLtfWKzbnFdAdoQoyGEFuchxmFQhvywMVJnd2Ji1hUYhvhQHTmwAU0uTUxpN6HuT0cv18/vTEfGCUXuLRBlHoUxZXZJDBGRoPeOpvVcXG05fXbOfDblcDFnMqsxUlHXC0pt8M5h+x6ZIlVdMl/MYdCU69ot27bBOzuAnJldWBhDsIGoFN56JslyWCielopYDfSw4IGeYiK5aBrWLkKISO/RkEushuuRJEhtUGSdt4QYxsr1Q8LZHqKnNBIbPL2zNG1DaQxaCWzXseo6UoqUZTEIgBZ0PoOZ0Ums0VgbcEFyZS0uRU4OF9y+fY8YBY+fnvLk8VPKssR5TySLeaqqylm2mIFqtWMHyxychexyiFbosiKWhk3TEKPPFvdCs2ksUa0xSlMUxaDdKEBIXAgYkTiQiZPSkFKHrgsK5VG+QYsOLz1SlXgGnTgZUCIRfUAjMarAu5gBMhRGGOqyQFiLrkoa77h0Hc+WLS54NIKZURxNpzTKwrRAXimklxQaDm7fIrVbpkpxY1JSFdDHnr5vwPVgCmRpEKWhbyJ98OMgJLmArBXSGJIZEjBaQYxZxFm4nJUMHdFqqulthJBUpsZoTYqCyXTOxdoCgvlsTlXPKOdzhEq0QmRdtOCYGYOJBZcXV6zlksPbRxzUE0RyKC+YlgXHs4LFPBG7ltVyyVWSVDdOSMz48vkTPvndJzSrlpOjE9554y3efvNNFrMKESPzyQLXS0LqOK5K6FtETNw8OMAQqSrNbL5AlSWXH3/M2brhYuM4RnJ04ybzqkbZDmM0RmnWPoHQWX9U58WuS5KkK7TRlEmgtw2Vhs1my+PzC0Q9oVOapBKaHh0NlVHMJhW6NIStBlOzbT0f/Oq3rJcrXn/jVcr5lCQM0ii8kiShIHgmWqD6DXZ9jtZT6rmmmgSS2JBSTeNh5Q1SV5hCU8aUfVqCJKiColpQ6AsqGWk3PaurBtvD3fuvY5YrLs4vcE7gUchCcWs+J3qPXV5hN89QRAoludisuGwkr8aS1+e3kfUTal2AdTy4c5fbhws2V4nNVnPsNIaIUZnNl/xeUD1ku1OMSCUH3Roxrnv+2F5oY0icdk6Iu6WoyhfLR9CmQpKNhJwNPP78MU8+e4qQkZ//8m85ffKIiT5ByUNC0bIpAp37jG69RvYC2Qaai55Ne0mlNUo5mnTOxrc4U9A+eoSpDjFR8R/+t/+FsnubG7cq7t29y/L0nF/8Hz/B+Mhfffdtvvfj76MqzRe//Dnteo2cHvPqD7/D9374I3SK6HmJvWw4fvNt9J07HLSW+m5gNp+ilEc0l3D+DNNdofSGqpLEdEB/2vP+299BP3ydv//dFTdf+yvuvPUOPUsiHeb2FHXrTayc07UGf/Q6z1e/YVu3HL9+g3JWIcsTQqyxymBlNhOLBCqpwXuwitAHmi5w45X7/A//6l9j7j5AzQqIcxATUENQoDVVOac0c7IZw5ZoL6FPhDgnyIrq8DDTR8QUhEQZS9Jbrk5XJI45vH+HzflHiG7F/MaCsqjZLD2r55bNuqJ91FKcOPTNDQe33sZvFL4TlIsFyaicgPEtpohIaVg+veCjD79Amnu896OHJEqigHKQtwDFKGzDDigJw3vNqFlnpnNO6lfyNsIAZpd4f6F37qLN8bP4VSBs/+N/zgh4KRjeZ198WyCZ28BCS3EXvaWQtZV1UQzBdxqM0/aPc5/JNrZ/Lkj3h08+r5lCXrcpRRqTeygEnkQgSkNvjqmONbJ/yqQUCKm5PD/jKQ3HRzfQs1u4vuKT357y65/+nNX2GdNpwXy+4E//5C1gC0khUgF9QGhDStfmT8oMv52yhE4GGq7VB0eodjQM2YGYYkhqpcFVcUjIjGF5kpJBFBGVRt5QLi0MEZKSe0XAGTSOSaKEQUzuIhd/gljP0O5j4lVAnnX4bsOyafjyasmzPtLrGWe949Q3dEVCy8TUB3QBLnlIBfgJSRQ42ZLCJicA26xlpjWoIst5uG0F/RwtDEZElASNZHW+4snTJUVZI6WmXRWU1YRPVx2TaYW3a7bb58xmhlfvPWQxu5UJBZcbrk6fc3LjGBdaPv7kC5QWGKNJMXJ8dMy2bdhcnaHDnMqYbGjmEyE1GK2ZViWVVri+3V1TESA6RzVdXIMLRExZUs9KpnWR5V9SgY6JO5VlwRmT6T3e+s7bg29MyglGFBkRlYADFQlplA/KlW1CZD5dFhRUg079wI7aJ47FCKFHJAdCkSy0z895+tlnfPnZpzw5e4KNnj541l3DetvQW0vb9jRNh+0csQ8kH3MlicxmOWIHko1VXmHHgBNCsfMcESJX9AzzxE7nPIrdqBbDozUnKsaqqBcBpxfAJLE/12Raya5EYAAEU0xDvKdyzDy4f4bwUlXS3vyVxD64dK1DF/cSBC/ong/H9bJ01NcBX+N34h5gx0vgXtxLfjCMzX29+BEgHPf5Mktvn9G3D7Dty1ftH+u+ocb+MccYv1GrLm8tdoDn9TGoF8A/sbuxL4KGwed+oqXKeu/A6LLrScgUcx/PIR5SiAyaxqzpL40hAnJgvKaxP8gsORFjul7Dfk37VoAueku0geizm2V0fujYWVNtrOUNRIJ3eJcoTCINTo5lWWaUOQ4XfnDD3KG5wwN5ZF6Ngd94uEVdkgjZwCBmt6g0iDElOYoyKpSKqJDRyvGBISNEo4khlx+NnSumiA0Oa20eZCkvtFywSJc7m7eeECy97weXxJzNV+TSSGFAxURhNIWPWGV3GnQu5msVVNwNcJEgyuyK2ceQy3ZtFqxPKVH2jsblDK21lhgDRkjmZkNpclB+MJ+ihWRlDL21nJ2dcXl1xZ07r3B0coxzjqv1FtH2zGczjm/dRrVbZPTXAzembEThBj01ICaPiBIRA1qJrEmjJV2U+D5iU2al5QGSnUN9GM5xyB4IkUvdxG6Q5WljdG0dB+04uEbRxv1BmU0l4nVmgoA2Jk+U+noSzEzO3HW11oSgkCnrwaWUHVGzTIAatAMEWhaYQmXnXWOyQ6nzuIENNPisYrPwHFZFknQsu45V0w6lfmropxlVTwN4Q1KM7qNyXPTt9J2yg9o4dexnQHasu70J4eUFY2F0ZntGhuxSZgVKKTNbarwWIWshLlcbNqsN52fnFGWBLBTT2ZT5ZEpRFGiRWZO271kLwayu8vU0mpmeD+kt8N7Sd9l4IHmPcIYUoJAglCAM5adFUVBoNYhaR7oQaHtH33S4pkXIIju5Ssl0OkVriXcu043l4KoT45Axun6giJT1U5TODsDWOtquo9IKQtatkFIwqWqU1llDKwSarqN1idB5Qox03rPtHW3fE8V5doGWmu22IRFxMU+0QuVsmiwLghBYb3HBIcR4jSUiZUFtUsD3jpXr2E1WUuGCoHOOTbdk3fXM6hodAwZB9BFrXS5lDD0phhykHVVMqprJdEW5tGgdCdITqQlh0PAbCgXyIB6ySrlAGTFkd0IcjHaCp0mRzsfMSJagSBhAkw18wlAOoFNmuJZVgSYxVxnIU4QsMBw8KiWk1lR1TTmpkVud3dLI7mbEROgtTdOwaRuENkiTx6UY9B9jCsiYdqzInAkUqCSpi5JZPaMqG2wIWUdFGUxRUBaC6bxGlyXC96iQKHXFYnZMG5ecLa/Aew5UBuaF93TNkvl0wmI6oSxrVJQ82za01hJSRdQ1elYgJ3M+enTKl8/Oee3hPd5++JBpaXKZnzDUdU3Z9sSoUVpRkKhqzWxS08eIGPqoMYrVekXXO47mU47rKs+PnUUnjU0ys3KHZ1ZICevydfE2g8DzSjMpjimnM1rnObu4YrNZc/PYUMiYM6LRkSTouka4iJYeJSVCGZASL6AnIgYm3aKM2c27b5HRoYNlu2lZ90tO5C3mxQGakoQhYDJJ2TvwAeFTdm9G4WwguLQLNlLS+Oip6gPeOHkFrT5ju9miVUk2rMiar7dvnuDaJVrWxNDwed+x2no+vVjxyvMrRFHz3fff5+btu/zghz9kUhp837BdW/rOU5gCkQLOWoQsUFoTvCf0PcoY1B+wpv9jgzHlPqaOxtB2XAzm9ejwvEo5sJ3N5lR1zW9//RuePTvl9NkpF1eO4BrmiwOauOJsdUHsEzIIFmaC6CJSRO7Mb2Gbns1Fh5mXHCxmrGxHFIqyWPD8bMu/++t/z/nnP+HV125ycXXFky+e0Z6tOVSe88ewOj3i8JW73L57n83FmtNtR1hd8Ku/+2uOZjV3b7+BOnqIOKwRxlFjsp5iOkeoDdFd0F0+Y3l+zidffMCv/uEDXr13n++/8x7dag0WTg4nRDyyNJRSgNQEDJYKmHEwf8C9O+/hyzWLW7do7ASXPNYHtNIEIl4EDDmeiuREX9x2XH1xzmefnDO9UXPz5BhRVqSoSNJkAxShSL4kxAkpCWScgtVsLzd8+ckHXK22HB094P5b7wOaGDQJlRN9HgQVs4P7pCTQk4qpMDTbT3n06Smb9Zq6uMmte39OPX8Nu+xYtZ9D3xG2Pf2qoe8VStfoacAoBSaDb+5ixebZGhrJ9OYxVXVIEhVmdJZAAgox6uamvT6GIIlR+ywDeXmtMmrsjr1tv30dHez//fZ1DI9vev+1LQEhJ/6kVgOjXZFGg41/qfr7b7hc4ykolYXHx9BcUA5gCNkIwEa2tkCJGfNizqwSJKnZNkuunn+JbVfIWmA7zfqy5+p8zbrdEGJJUUiEtAiKvAaRJjNL0nXi2PUdLmbN8oy2ZA04uXf/X9Bnzkd/jXQwghTDOoc9QGFITA/lLdcxA+AHRgtkQE+Q1zlSDPS7coE+fpdZ9RCK1wjtz7h4/ku67RO2m47VOrAJkc70dCESZECpSJUyiUMJQeM9WoCkJEZJoAUcUiW0FhRKY2JAi4gQBYWYYOQElQQi5QLPYANd09Nutjlm0gLrFU1fcnXWUCwLpOgoTGQ+P+bw6JhCTWlXazSR+7dvcP/+KzTNhstzCx5MKbLMnon4kOiEI8UWQsTIkMkPEpyzdF1DSlCWJdP5AmUM1uYY7uTkZHC6HMq+iUynU6ZVhW96fCxJoqQkYuhJwhKVISaV50DFkKgX+b6r8Y/Z0MOLhCRQjkisSDAYzYDMrvcDiQEShbKgeog9eEHsBV9++gW/+uADPv3icy5Wl7TOsulbNk2WeHI+4HpPcAlCjuVy0BVzsl2EHYMpMMZoY/w56iKPfVJeYxF7Q++bZqwcl14P1DHW3gFUUn/jHq61zuB6/hw11+I4Sr6y9ahrtp9kSLv97SU+xHW5574+29edwzeVnn4dK3D/974J7NuBcGN+LGUAACAASURBVC/t64XPXnr/Mqvu6/7+Tcfzdcc9Xof0rc+br5b0Xs9V19uJUVR+YM59ZY9D/nPclSRXa+a4cQAWd0lSMiC7d4zf1L51pZvrtCPeXwMyKeRc7AiyGK0pdEYJEYIUBvdPnbcXZGvjETHOaGwOvIPLQrS7DMggBDpykTy5HCcQBi24fE5yl8HLE/sgccXgwUAacNNkVC7JHWqNldGEELDO4WJAmSIDhiRc8AhrB4DOEaNHKzUsYlO2S9aCImWB1BAF1kdMTJhCYbzOelzJ7/S4dvRLMugRQha5D8ETnGPrs2hlo1qarkUptduu1JLLq8SkLllMFUVdsjgsMVXF5eUlV8slqes5OzsjpJhdJE2edOTggldNatRgDJFLy7LOUHQ+l31qjR2OlRDRQqJF1m5SUVDpChGgcIbRlTWEQPAhA5y7+5Z24NnYQgj5nsf0wsQghEAPHTMMYBwDs3Lf5EEylEUrvRMiGrMeZkDSlVLE/IRACJENOrwftr12nyqMwhRFXkCQiCH36b7vkcMADVLgfaAbkfsYuWxbttZlN1/YacgBOXs6OBUzlGiK4fyElGP+NS9N9heKL42x/fe7a5SGbVNCpGF0xMFYgSGXLckgeSJrxJkCIwoKrSkKjR4YaGm4FyEEisIAYK3FWsvl2fPBGENT1zWz+YRyUpNSjTFDNirGXLIXAsnk0hs1GBM477G9G+YJz2h7LqVEmwIbwfYWKRUHBweURQYHrbWUZbkDfOMe3TgDwJlxWShDDBHnLNb2GJEdKI3MpbJHh4eD0zCIvqfxnk3XodSGMbEfYqBrO/ruGavVGqUMQpg9MDkzXkdLbGM0o1ttEglpsjGGIKGMRIkSb3uapkEpyXQ6B8jMO+dotx3rbQeLyNwYqqJEkPUxYkokJfESQiUR8wJdlehpgTQtmaGZgz7v8viRvJjpz0xEMTjoZhA8s0kH0wPrCTHXhUildjqRUo76U3lhND7oSmOohGCqMmAmZcCnbPqjhMCYIi/YZjOKVZn7fEpIIYkx0HYdLJeY2ZRyNh3GSdZfTCEvmCQgYjaaQTMAj5Kbhyd4WdLayHKzodaGQkoKISi1Qomc5Q3OIkLu67PZFG80F+0FV+sVSVoOxBRVZK5uTFnUN7Oo84InhexqN5YrZ8c3WLcNn3z+OX3X8vDeK5wcLBBlxIoVjkTTrIloai04mJZURpK6Hh16jLfY9RVBlriiI/Udcj6jOJxRqJIu5VIYFwJFDFkuIgiCizlRGkAlSWVKiqJCVzWtdTTrLa7tkDFhhESEfN2M1EwqgdCglWNqDJPJBKU1kTRILljavsNWjtIU+EGfoygq+stLrq4uQSXK2lDrw+H6CGKIpJCdoAWDAxUJpEQXJjMklB/m58xiK8uSo6NjYoh0bcIoSfSe+WLOnfQKKfQszx/RbTpm9RxrWx4/espvfv0hUk94++03ee2Nt/jRj97l6OCQdrNBCktZCCAzKnVhhtmO3JdV1njdCTpL+S1Lmz+2sX0TTDJ+EkIkeZhNZ9y8ecIvftbw+aOndFER6rvcfO1NXn/tNZ58+lP65Ye0SbB2kanS3J4eEO0l7fqS4CJCVnRuxp2D17g5F1jXUR2+xfPLSH/2K4iG1Am+/OiUzz4752h+wvzmnHsP71CpKY9+94yz0yuiC5yefoETP6E+ljx4/02mBwf01hPOP+fe6ydcnDZ8+cEn3Lxjuf8WpD5hipobr0woP5E8ac8x8ZiH2lG3K165X3P7zSnBfUD7xYTJ3ZsgEqqoqClJTnKLGd8/eovTqy/oVhXxzn3KyqFmEika6thQ+iIzSISDfgObHn+5od1oLlaavoJkJOvmORdX5xwc3WNxcB+lNCkeE4LIQWWcU8gjiknFw4e3eFVKklZU8wU7DpEAUMRQEOSM8mgOTiKEpi80n3z4OV8+3nJ0dMzrb3+PyYMfItKUshYcNEe4sgUxRxlBpQKqUggTh4WbB9uhleTk5D7G9aj5Q2ACnUWWGiFMBkjIDKlro4IRahnfy2uW5iAPwriafykw3A+A/z/fhEBqBeTgout7njx6Qj2b8srd2//5f/8PYZliZNZA4kUjBREHXeEoiEGitSEEycXFmuW64enzz3Diind+sEHNoesj221Ps+lpe089UYSYjcCMFqAyOBmdxfuYNaydZdNsKKqC4+MT6kleAwhBRrl26ekM2ok09JM9UGP3RgiEGIrChmy2D+NafgAkhoSDYHR2HfbLGIvkBCCAMIrq5hHSHoE8xl8JTj+54KOLZ1wuI62vaIPFdRblPPM+YEJCBQnJEKMbpHpA+ERIHhcs4JhojTGaspLUJObK442iKhSFzuYWiITCEHwiBE+mHfQgIlFCig0rt6KSFdO6oD6YcXhyzGS+QLgJynTUUziY1xyclHT+AmV6JtOKo5MaJQUHhzWLWDCdC8qqpCprvJtTljWmrOj6hDZVjh20Yj47QBlN3zvCUMWUUsJomdf1ZO143/Vs+i02lUQ5BVPjhcaSQQMhMjFHpZDDrDDGaNlMzkeBjwldCGTS17c6Df1iYIhlH7REEh5BT5/WlMKT0pbzZ5f87f/+If/xP/ySv/v7/8jziwtssGy7ltY2uWdJMeipJkiZsCOlzqxwAiG6DFRxDVS9uJ7efzF+NrzeG4DfBtCNJ/dyeeXXlXTub7MDn8T1d74pcbD7lT122Qv73w18wS5Q3ENTXt73jpU3MOL+UMLi684JrrXdxvP5Cvj28nm89J2Xpa6+jvG83/Yxhn/qcX8lfto7j3+KUdCuS+Q9fnX/e//vziGNv7WP3OXnZ85txOudf8sc/+0Muj3q4DXbKZekSiFwthtYVBO00iSVdat8b0lOYIN94UT2L0q+aHkREgcKqRCRKK7Rxs5m6+QUxU6KLLOUcnmfkplVpcRA7BYRLbLLY5KCECRJDy51eqA0KokJJUWKSJG10PYpm9duLgwMwMwwiClf7BCzjo9PkFKfaY1k59loMrU3M0cGIFPmACMEPZR3Rvq+3zHFIAMo1trdNdZa4wUsV5tc9ukTEzdhOpsymU5BZHZR27ZsNhuaruXk5IRbt25RFBl03KzX1NMKIUBpg5ICFcKu05dFsQNvrLP5QUwgigG8colYTPHxuhxADPeuUJpkEsL76w7Ji4NhR4tllxR7AYRJKQ26fezKO81Qsjh0CpTIlPckRrQ+7iaE0VXqOoORwQprLcSE1p6qqIfBkvC2z/9iyGYZLoOwQmSdKDkEe2LQgnMxsO57bIgZWGAAkIW4Pp8deDJSV8eZlmHBlHbf/adMJNdvMu7PCFylcRGSqddGK6rCDNncgJGSWV1z4+iQ46MDZtMaXRiKSZ0n7qHsOtNxIXqP63uuLs5z6avtWG7WbLuWsjIZsPSJUpcIJUnCEWxPGzxRZd1CKQV939P1HW3vcCHT15WW2VBBGNptR0oZuPPek01aw25eiWkwlwh+B7hmY5I8j6SUwdTo8+JYD46wpVYYqVhfLWm7Jmu4Skm0FpUSk6rC1CUBT9/VNLqn7y3etQjVUxYT6nqSQ3+pSCS888gYCCkO/YEMOgYzpGfFYEJR4l1PCBlIn8/n+XkoJFIZ+s7RNi2264lRIHWFigMIIgSpyO6isZSkSkEpEYVEqnHMKFTMWWoxgGxK5fKPPE/B+ODNmm6ZeVYXJrtRe4dM2eY90+Q94xMg99+xk+WFDRG0UhTGUKicOKm0YVLVFDonKUpjqMuKuijRepyzI8RIiIG43WKWS6aA98MDN+b5PSWBEjovzH3Mrlchh3y3bt6kODih85Inp8/QBAohwDuSTQTlsb1gMrClt82KK9/AjQmHR8d4UyE3lq7tmeiKoqoJCZbrLVJHnJAcz+dUZcVmvWE6qbF2xdXyksPDIwSGs+WKq+WKy9WKV+/fY1aVtC7QJ4EPWdt0Oplw83BGPa2oW8X94wMmZcmX50sa6xFIbIxcxYCSUBtJE8FGcN4TfBzo9DI/sKPYuZR570kyoVLWK53qAqt6hA/ImF2xFYLClAiRCHhUFEwmE+qqHhbYA6C/0/nz+JiZksJo6umE+cyz6huW55eY0nCrXCAJiBSJKbszimxrTFRZ31DpnIBzfU4kaSWp64qu7Xj8+DFd29I0DRdnzzFGs5jP0abMuTghmdUzbsxn3L39gC+fPOfzx+f84ud/z9HNV3jnvYrz81NOn92i71s++OXP+eR3v+Y7777Oj//Nv+Lo6BgRZWawh5iZc0NJgo9x0PH7Y/tDTbz0Or30YRrkQoQUmEpz594d3nn/PUw1o6hO2DhDb2pilc0H3n/3Twml5PHVlubRmrI85NbNt7j75jHrvuPnv/yIs03izBr8l2fcu33I9777A548a/np41/xs7//Db/5paOzHu8KbAEpFQgxZbkKXJz1/PbDJ/TrLWF7AfGS6Z0cRDarGZv1hFL3TN3bNM8t699/xg1TsKk2LJc9k/INDm++xdGD1zk4+UcuneWTs1NeX9S8cmvBsnnOoy8+I+jAu+JHsDhAzBTIErxEmZpb997g6rN/4N/99U+4PPyQ73//Lgt1ExPXHN6YIYuTvF7tHavHzzh7es50csDkxj2OH7yBOJzSmZQZ2tKjpEMqB2h0ccRiMSNUntLk8lVdTNCLOkvQIQatfJHlRof7pEqFFCWiqEEYCJpyIrl174eUi3u88tpD5jfukmxJ6EFXU4r6AYWKoA1lEUH0YLYktuSkZgATEZMScZWyBms6h26DWJTXuMnYX3Z1YOzWOyODaTjya5CO6/F5ze7Y63riDwdG/+Vbfl7GlOiblu224fLiip//4hfcuXuPk5MTinIPfBDX210zYv4TZqn9S/Y1u9mVgw2VQd4H5GB0lg29ABwkRbPpubJXhIsvWV085uzsgvPll8xuKC6u1kxvj34MWXNQ64KYFGcXS67WG27Wx8Qo6NotZ8+XbNZbVqsV62aD9547r9zi8PAwrzmGY8u561FXTHwlGM1r+pT1d8mJfvaIJWlILMKLwvZjtYAqzFAQmNe1ItOXhg6X13ZRCaSGWBi2esGzMOWLRrNqNKBJyePcFnyWA9ExVxdIoSH6rDecUT/64GhFj5RZ9kVoRVko5kISdKRTgkJJEIO2s8zgqBCGyWTB8VFClyB0QJeCFAU6FsxmC+bTmumkoqomhKBQomAyO+DVV1+lMLA4nBOTRarIwfGC6XSCDyEbMWpNc3JMWZaUZUXwAWNKhDJYl+V5nAtoo6mns2yupxxRQKE03nsQOXG4I1oIsq5bAv9/s/deT5Ikd57fx1WIVFXZJVqNagwGwN4Ct7d7t5Jnxru9N/65fCGNZnw4mi2PXCOwUIPB6BbTqnTKEK7uwT2yqnu6Bziu4JJcN6uu6qrMDOXh4f79fYXWOFXQC0WfKQIaCFHSk0grDHJBGTJBAoQSuJBIbSFEEtQfspQz3R/eedZ9SzUeIaLifNFwdf6Ul88f8/lvvuZ/+h//C988SmxuHz3eB5p+ixRQj5NiQUIKqIwkMC64REjJ0sNXbiMx+GJfB/bFyDVAN4DHN5Zy3ADFdn2ba0XYcIO+zkR7nQF282+ve6a9fl/f/Iyb778JML0C0H3rU15tr4OCw/8HBtxb16dCvCJbvbn/bzrW178GPOW7QLw3Hevw99e38/dpN3GKm9t5G5B68z3pj9yofqR/BhxHDN9lvK4UkDvfjb61Uza/jYn3WvtOgM7HxL6SErSRKC3ISdApxUkk7XT0IYcEZFN8mdgmnevTruSFuLMDUyZFCJuiTIuLcAN4ydRTodIAgcwL9+FEBY+IPps3xjQYRk8MFhE9QoT8GSm2PvlcpYWLiyGFH4jkIeXdFiFFqjDFAc0WCCVzkl32VrtBdky68zQNKYxEx7SgcTExCxKwkAerEF9JF4kx+fIVWlFoxbbtUhhATNR0n58vwaVObW2P9wHrww4E2Z/vMZpMKKqay8tzwjLirKXdNiwWV1RlmZISleRyuWJUFtQjMCRJoRKCUVFCWaGkpPOOrm1pZJuYksHT+8C27+galwzEuQZPhJRonUCDJh9XGDqneFUHngZ7satoRZGrHTExlERmcAgZ0UaiVZri+eDxzmH99Q2S+k+ffe3YhQ9opSiKBOo4715B5KNKP/uQvOYGaa71aaAPuUtpcU3Hjy7JRa13WFIq4/XFH6j6CRR86xJxmNgKsfPSGO5XIQZp942Xx2sgD0DINPE1RqFCssAVGTyRSlFXFaMct+69RSPYm005PjpI4SFlScCDKUCKJPPuk+m/FIIiAzJ7synWWTbrNYvlFZvNhs2mSYmU1jGZzKiqEUYa0Imd1Ge5pvcxTQSzNwGDP0DMj948sTJaIghsN2u8S0ElpU6yZGdtZveF64TPvBAPRJqu303IonNE59FlQWUK6tJw1Ta0mzVt1+cQDpBGIWOJIgUQlKZIDN8QieFVD4MQQpKu5P9760AkLgBS7ph9SZYfUqJXLJHZ59JIg5Y6pwQbKmWoa0vb9rje4XCocUrcSkm3icHViEArBNMCVKUwRqFVAh2j0ihZoVWJ0iYxInVychkAusHjUufK8tAXQx6/jDEYI5Eyp1EN7GXy+JJZrQnZTAw3GSIixJSGKzV1ITBqu5stKyUxhUHrtE3vfOJU5Ad417XIpkgS84GthyJ4idAJmHKDTMxFRBTUpkDVJUfzFc16TbQdRkpwAaFdklYqqIxBesVmveLr52e4q4rx0T4P7t1nNFZ0Z0sCDusjvQcRIhWCcVlBVaAEHO7PiPmcnV8uOLu4oGs7RnWNrCqenp6zahoevPcud44OmcwPuHxxQr/ZUpeKUakZFxITDe/emrGfpeOPTi653K4R1RjnJScX5ygpE1gqFNZmj6BSEmM6H4k5DMFFbGcRKOo6UkhFbUo60yMy+zgx4ErKoiREi8chhKQsClRhCFLggkN6KKVJoSdaJWk8aegyRcHx0REuOJ6fPuPF428oRnNir1EhdwoJUgukAS8zizMnnjmfmMnEyHg8QmvB5eUlTdNS1yMmsz2a7SaNTaMxQmiE0Ny9fZdbo5LeeoSsOL1YcXb2kiAkvf0ekZ7T02cIcYvptMIYuDh/yXZxwXwyStwIVSBNkZ+niUI/FHF+V9Hj/+/tJiD3xmdVBh+UAp2fxYfHB/zVv/8LfvLjLbPpFOcqPj9p+fLqBHdLIbb38NMx982Yhz9/yLQTvP8nH/DOH9+mcRuu/stP2TvbIoPh4S9/zsn5C37107/h/OUZ/fKc2fSQtV1hQ0OlI7fnFR/ce5fTk56ff/JrVr1j+XKB3nimccS0nDFqNd3jwNePvmK1CBzujeiOv4eJEyZ2j/4cfv3kEZ99/hUj/ZIfvLfANg63hLP1FUf7R9yqpnx92vLpl1/jlWIpPuHl1Tf8+E//kunhHsHNKGYVog6IvTH93h2enP/vfPXlp9ypf4SbCbzvYdIh+jXxck236lheOVbbMWq6hzKO6feO2X/vLkxrxnHMdDJFyzHESIgugR+mQuuQEt+9Q1QFmAxkFAFkTxBNYq4FQwxrlGkQWiTplzGgFEpMuf3hTziOLbI2EBVBS9RUEWVO2h4SMjNgEUWPCxdYv8GIiAmCfnXO6uVDrLUoGXDrPczkPriKaAYlwjCHS50q5kWI2EkUhy51wxeSYSF+k0l1A5jbFZv+ObZ0oNZ6Tl684MWLl+zvzamqEdPJjLKokEK9Bsxdv+/6OP+hj28Y1dPPIYRkcxISf05LkYHUCCiIkr53vDg55cXzR/Snn9CuzrHWY6NDNoGuTzZEQqW+aYoKHUtiDLy8uODscsH+QaDdbnj69JSnT1+yXK1omgbnLGVRcHT7EKVTcTedkgzI3VwSCIjCM/QHQUAPRFEhcz+V7NKWZAJ6AlwHemTQz0iVCrta5WRiGHKGdwXMAM5HtNBQJsCvdZIuFGxjgfVblPRs2y1GRoqiJChFcs7TyC6i87wviEAberaxRxeOVmqMTMqFsTJgJJuYjs17RxACoSU+BIwquT2fsFffSmF1wlNWGlCEeUlZ1uhSgk6KjeAVQhiKsuDwWNJtVxg15uCgZDY7ohqVxBDoXU+MgaKukHpCURiiVHRui7US4SLalCnsT0BUyQfZWkvvHaYsiCktLV2vG8CFMQZTGXpp6U3Ea0HrI62XSbmTz7ekzBjEkI7p8HiQOoG9okcIj5YeucvaFUQXcV6yaeG3Xzzi2ck5T56/4Oc//zkPv/6K8/NTzk5OqNQI11t8OU7rmNggTYVRCqMNbdsmb++YrrzLc/YBUyhLef0MFAKlcvjFDYDsVUbvqz7hrzOj3s6Ku37N9Wt542u/q30nQHTjNd8F0L2NhfYt5h7XHnVvet+b2k7hlr/exgx80+/etC+vh1G8/vqbx/z6fv/ukJ9X9/smOHlzDXhzG9/++QaQKl675lwXn8JgfZPc9ncegnnQY4fYk8FOBmD4u/vFd0tcnc3BDjdPavL7KpQG79mu1xA7hIjoskAUmig1ZWV2j6gBNVRC4OK1sWJwOVohLxqJibIspSQ6kEWZQJidVFQk8Cs4YvBkgWGS34VEGwykSkBEIJRGxmQi6mLAWZdkeZmJ5YjYGBBR7NJQBhBExOuHixTZJw+FkwEvIypCadTu4eFCMgntvbtGvF16eAqRwCkhNFEkFpAxJr9PIzJwFHwaYMifZWJECI/D0vuY6kRCMBlPMIVif/8WQkjWyyVt2+LPHVVVMZ1OMZMxffQob6EVdNloPmTWm84pNsRhYS6hMAg0RkgKoYm9x4cs6SUBFSJ7/MXMogyp9+ZOnKoiw+DxOjovMrA13Ni6LF7p8DYDNl3f46xFxEG3nVl33n3rBks+dCaBVfGa8ekzO1JkANgHjwuZ2ZjBr23XJtA0Zhg2JrDZu5yOo9L2oxiqctngM1dLZJb7pYmq2HnQCZkIrDqbj75yDjKI9Uq1IKTko1eqCzKiBDuvvkH+q1Riz9VVgTEFImi0Uswm4xySIQg+AYwCgSoMRie2nQw++9ellCzb95RVyWg0YrI3Y7tds91uaZqGtu2BJA2eTMcQDKW3xL5HysSMG8ZPLwRRyDyND3kCnwNfTAJ02rYhBM94PKbM1302m6XrvWM03mCVxkCpTbovnKdtWyqlqAuFGY0Z1yOq4+SzcXl1RdM19M5ClNhGE4Kj3pul/o1I12KYDcYsv/eBUpSYosAnGDpf44B3gbJIoSiJLdzTdRYlG4gR7yKmkEm6SszXSTMeTei6lIjpQkAqjZIaEQQi+/jE6PNkyAEeGT0ypFJjDAIfBZ1nd72VSp5zafIxGEFHlDEIPNYF2tAlqW4MFKOK0jmUcvlh4Hf99OaCIT0cszw7kuXoCWiXubjgY5K4hBBRMntHZmn3AJL7SAJb+57oMwNRJNsY2wei1DgL1noKk5iwiOS3KXSF1iabzaqc/Jvk20aLDNoPLbJYXPDsvEG9rGmvNnx07z0mZYlrLNumZzQeYYrEQqmrklXbomLkYDZhs94wHY8oyorzyyXbpqV1DhnSA3XrApfbjqmDw/099g4CW3Ge/GWCJ/QdJnj2q5JJrbhzdJtxVfHZ4+esbI/vSJJ7qYgRRkWN84Gmtwgp8EXEEUl+bQHrPD6A0ZrSlLS9S8UuRCoaxCSjN1JjlMGKiBceoyNGl6lf5XHTuoYQPfPZXir25IVC13WUzjEd73Nrb5+L8xds1mu2iwXYWfI4jD71Q0UOo0ny7rQaSvtntGbtPbWUyc8yg2R3797lnXfe4cmTJ/lZGanHUyaTPW7tlZShp1lvmY1q3r1/F8cLnNtyefUSlOfJ06/44z/6CX/153/KH/7wAU++/oLl1YL53px6Nmaz2dJsG6qqYjQe73wpvR/Sz/7fwMT5f64JgJiZTeLbcMGO6SJECvUScOt4zvxwH+kE0cImRPz4Pv18wtefO85aTzE/4vt/9h5zatpyy//yi9/i7QK8YP/4mPfvv49fXfK3v/0V65NnFDIwrhNTOHoYjSo+vHeX//Dv/pQfP/iIX/7dr7h6+IyXlxfEbc++qLncBBbrwN16yq1pTSVBlmtC4zn5+oL5rSNkWeOiAO5Qlg1nL5esTn/JdDynKGfY1SkXFyuW+wesLq9wpWHvcE4bOr7++Gtmt+/y44OfEO0qsad1RycumLx3yF/8h3/P3he/5M7+nKPZAVHNELXAXrzk/NFXtLZk7/j73HrvmF56Pv/yNwRxwbuTHyBFDRiMSimQ3jm879DaIShTsUgCsgfWtJsVV2dXrLcdsgrce++QstoD4Ql+RQiLxCD1fZrshyRzRZssQ0xzTBcDdakRpHmeJRA9qKhQSEAjRInRARU68Fui21CUgun9A7aNotmcY/o5VEXuQa9SSjJ/BBimyDL5s+6AvBu0lRvzn5j72fVi+MYL/hm2tm358rPP+dlPf8bJyRl//Z/+mh//5IPEmhcipYzCNUi3A+v+sY5pADyvATpE8vMSIs3rRExF8HZjqWQgdi3OWbbblvPzK+z5imh7pDKosqIo8vMKcWOemRbNQQjWm47nJ6fU4xcsFw2PH7/g7PQiPdOAotBUOvkYD+BcYhfBtRya3CUG4DKzC0UWrEZS8WVYC4hkZSAyI1zkuUuz2bBaLCkKzf58jlIir/nS+67TLtM5ErKnlB76gJAFo1uGWRlYX77k4uI59Z6iF5Yr21AZyayoCWi0qqko8SIS+h4hBB2eje/Z4tExsI4B5R0SgxKaUqnk/es9XejxGEQunimlmOwfIUWFFAlErMqSGBWF2UtkAWURRUTpSEDSdSUxr7+3TUPf9zm11tNZiyk19WhE223xIWJDqoxH79m06fqaQmJMWh8I5/ExpoK9SvYRWuv0uTGFNKb03KxOEjL5cwqNlyV9VPQ2Yi28wjqISSyh8nQhEnLBGBARiyVES+86sB2h7ek2TfLE3Vj+5v/8Bb/67Vd8+vAJL86uuFxvITvg9AAAIABJREFUGU2m3Ln7gNsf/AFnL15iu47Nck2zXkIuhgfnWK27DM5lkETkOW4mOEgZkyVdZrwN893XFV+vQiTDPHnol/G18Yodqw6uJZ47P9dvvzKfqjf7vP2+yqrXAao3b+XV90Aq5r8JOHv9dW9rQwjETcbZsCaVObTrd+370N7EmrsJ0L2NTfgmae0/BKvud7HnhtfsznAe36/pDt9uu5E5A3qvPD8jO+LKMOdC/j0AurZJvmnegbVpwj9M2MejEtF19H2L65P5JUYSc0KLqQz7kwpk1uhmUY+UKpmuK4P3AUG6aZROi84EpgSCDxgBIkAQmihEkr8OqGMYbsi487/zUWZABoRPCTrJd20gQUMyuo04n1OAdjdw+tzk6yWQKAp5I15GpgW2zvvofALlohTEKJE+Lyzd9YWW6vqmCgKUTImlhZa7jm+9p7WWtm3po0uVgJjYdEYqrE8hFkIoNk1PCCva3jGqSw5u7TMeT4jes16vsV2fpaHpIVXVBV0G/5SQ6LwQlxFC9LTWEQVY73HRE4RM3ghSIQsYFxUhJP8s531iU8SQvfQCN2/NNPFKgJUnJtD0tZtrmJzt5IxCEggZBHC7rwGok1HumD6vDIIxZpNFCM7T3zDDJMRdRSgEj5ISbRQyypROGEIybxQC2evkGRgSeAkJLINU39vJqDJyPgzM6TDErnL0ppVPHnKuK4lkgHL3nhsDZn67uHFuhIxZSp6Yajuimsi/EwIZA1qkqmlwlma7ReCpTAFK0q7XSJ3YWUTQZH8JmUCZ0hQYrREyYsqCuq6oxy2r1Qq13hCjoKoq6tKAj5igaVBItUGKxMjzPoG4g+mqEMP5T+CNiOAGKXOMlFoxGo0QIoXIeO/Zbrcsl0uapsE6zyCLLcsqPZhiuj626/F9QQwJBEJISmOY1BVagisKqqpiNt/HVCXb7LEhIFXfuI7GVjGmB7jWiZmZJ4jaJCmijz7JK4ZxNkb6zhK8R5Ikq15GmqbL1yux3MqioK5rts7T9D02BEIQKawERaVKSiEotSH2jih7RGcRnQXrcM7QSmhCYqZKbjrLDOOUyEDfUOCIeA8hOJTWKGMg2uQ7l7uflGnyteuvw5Mm5qpzPs8JYE0p0fgh4OVVZqyUAiN1HkcSgzc2LcoUGQxIE5e29wgPtRYYEemcpwgRR9hNXrUEaSSo3Vpjtw0f+rTQjal4MxpXjMY13ckV63bD+nwBjefB8R1McPhoQBgSZiOQ3qJySEkMYGKgVIrRaEpZjhBScXJ6xmZ9xv7+nNFozIuzSy4vlxzszbi9N0UiKLShqEfUhUTFlGqudYEwJQSH7XueXS5ZuYBXGgtsmx4tNV326lRK4YFC5/tCgNQmgXC6RGpNaBNDmHy9CIAnyZXyA70oCqooEpvRaITStNZysTpHXKUJ+cTUjIUm9B1t31NZi9Seuig5vnXApquotUFbkDEQfE8MPSE6iJ4oJOBzOFCacFdViRDsxtSyLGmaFgBtCkxRslqt6dotm7bDhsB4PGJejpA4TFewtbdYtRuevDzl449/Tj2ZMJ3O+OC9e1jbMZ9OOTq6TW0MpppydbHg448/Y7ne8MMf/pB3338fFVNf/Rdg7vdoNxbIaQzjW6SlYTgYirwIECpLy1RiUyoiBwJcNWN18ADKQDya05xs+ekvP+HZyVOW3Rn7oeUPDm/xJ3/+gPe+/x73+AsO7YJnTx4xHpX49pyTp7+l3b6k2wjOS8mnDx/z+OFTPvvNx6xWq1R86Hsebc9Zd4pifIvlds37reR4XnLwwR5Xi4b/7dNfMzucU0wU+8WM+eyAg3cFZ5tf8/jkjHlpqI8OKNoN3zw9YT6fce+9Me88OOZyueHpowuaLrBeblDlCrXnQG5AWHrZ0IpLitoz1gXN5ZblYsOt945Bb6FeIm/3lMEwuV+iJyPc2SX26pyr00ecTt7lzoMPMJMDhJYgO7w7pXNnydeRA7D72Ux5BZxQTlYcGo153rPYbOgXUGlD1IK+W9JcfcVkXFOoGTEkHyxRzkAlsDyI5MEpNbjYE2OPVjqN6ypJ2REa4iFK7AEtyEswL5GVRs8mmOKAShcwmkNZgda5YPXGLvVKG+bXQwpn6maRgSkVb7Incl/85wzOATjnOT+75JtvnrNYLNP8Xyn25rMEHL1pcb0D6f4x2zVAN0hAh6Jv31uePnzB40dPmJbwowd3iIRskTGQFkqSSa/FFEUeA2JSQan0bNKmoCwlbWd58vQl1peslg1nZwu6bvC9VciQFDbEuGMvwXDtHdcMEUFabkaI18vOmMEVGQM5QhxETwyO0AVWPVxcLGm3a148f8Hzp99w9+4d/ujf/BHzgzlC3fB/3n1ggK5DhAVUKzg7Qaw02ra8M15xf9LStx2x0Cxjy8K3dNpkz/FUaC2kpu8UThXEKOiATYxsMr/OBMB7qpjsPmyf2HrOB2xMlmxOeKIIRBEpRiPG9TFK1yhVYcoaaxUxFKgYMKVnNAWpOzbrDfZyS9dtsf2KTXdFyEFwMXqKsqAsDdOwT9f32OBYLDfowuCBzXbLZLbH3ByggsVIsMFjvcPLRDIIpP33MdlF7bRB+T4NIeAs+DjFxQ3WlvSdx/kOwWQ3Z+ziiiKCoEIInVilCLqtYNs5rtrIxeWSk6ePePrwS54//pLnTx7y4sUzrlYLLtdrlr1l1Xd4U3B47y7vf/+Ig9sHKFFTzCYsL9Y49RwH6LJGWIvrNvRNWgOF0KfxhbBbfwRSsF/02btbpDXKsAYdWE8qpQveuKeGH2+whuO3wbdX1rRv+P31z6+CdMP33yVtff33b9re7942O+LJ62y0oQ3zqLcx7d4kMZXiem0sb35u+vBXajPDGvm7tn9TYfj6cf4ucO73UVG8CQD8vd/3Srd4HXBMvvQotfOdv7FKy8v+wfbhGthLIHHCK+JrqsPX23cCdF2XJWgOrI30ziJDpKgUdVlw7+5t6kLgbU/bbwgCOp/8RfCe1eIygyopUlkJhVAapQqkNskjTKuUypgDEnrXY/sA0RFcn+KiUzRM6ixCooTIcsnsqSYhxpT2swMuPUidZGshJJ8Go0vQIVUbcoUxnbA0sZAy+5GJZJCuVV6EDjiKUMmjTOT44BgQA/tKipRelTOjJQLNNcruA0kSqBNACSDlJKWDtU0aMNJTHx8FhIBSBm8twUWkDMlbyLnEBAsBoxT1qOLg4AilFJcX52y3W8gsRKQgeotBMq5KxuMRk6pO2w+RpmmShNP29H1Kd7VZ4tpZT6kqBopn8j7TyJAGwRAj7Xa7Y9EopbIsMBAzE0rl/w++Y+mY034Bu0Rfl035B637LnbZszPrh8wmGyq3+fh9CFny53c3nRSJhq2lolASVZQJ7OgtrUtSYU8K/hBREmN6UO18G0n9K+TUoVTne2WaugN20zwzscZkHPh1cfcQiDcqKzKDdYN33TD4vA6ix1wV0lImJp1SCWzJfTvdDQEjVAKovWW53LJeXVGWJdPpJHkVakP0ji6zJIohqcmYHQslDECqjGhtmO6VlHXNZNZzebEgSoHtO1zf0CPpXQr38D6FKgiZQPngVQJ2XAqNIHC9jfwg1Dnhs8iBHXVd74DVIWhiqMjEGLE2mdYrmVhbAkHMAR/O9pRaMxuPMUrQtIbOWsbjMfP9fXRdIbZb6k2DkZomtCmoJZD83spULHDWYvvE4NNaMpYjjEoLnrZpcC5glEzb7Pp0H+Tr0ZMAlaoqMIXB3aBdO+9ZrdfMm4am67GdAy/QUVFKQ60KZN+jpKewkcInGbpSGnSJLwxBpApFSnIdOkmSTiJDSq6SMVfPVeqvhSFojXVdmnTL7HcmJTLm7yI9JFIhhB37WookzUzJozGlKu/CffIDamAkakWwaTzqvEdKKOo6SX5DSvSMBAiS1nkKEem8p84Afsj+aLoq0FVB1Ik17clWBDEQg6cqNBUFtktg8XRvSrW+ZLNt8UHSND2rzYZJIUBOiULjo2dUGqKzTAtDax1913MwmSLQnC8bBDAZj+l6S9tayrIGoWjbjkWz5ez0lOWtW9RacLw/4/axAGmQIlDqgsJoVKEYSc+8EhS3b3HZWZ6eL9h2lrKoQUDnLBEoqyKNk6bEaAnRY+oWFyNegA0hs3bljiUW4jW7PPrE8jOloUKmlDat0UqzsQ1nl5f0fcuoHHEwmhPLEXIougRwbY8Ebt86xMY9xGTKuU3hPiE4ordE3yOiQ5KCdxQxhbp0Fq0NRmu0SlYEWiWgvW1bmqbbyaaXm4Z12+EBbTSHhxMKA5ydUy0lhwdTNt2Gk6sF23bNkPartaGe7LNeP+SXn33MePQFs/kB1jlu377N4fFxYro6l5/5N6V0/9Le3L59fq7BkXTfayWHLCdU9oIKuxlmICi4c7fiyMGj5x1RFWjR4bdrRLPm3aMDbh/O6V3LeLvgw3HBPJbEyw1/9OEPWHzxGWfPnqB1xMkGFy+p6g7hNC9ePKVZRypV0iwXCNdzfDBncjTncrOEHqIZUx3sswk9nzx6xGgMnhHLreC4dhjX0XRjivgOgp6yhLsf3OPBD/6Uq0XPF4/OWFxtePL0hA9++CNCXPPxr37Bl18suHP0A85PAy8fP+PgXsl68xg5ljhv+O3/8Tf83d9+hg4F5UxzcqQ5ODqAZg89G3O4/31iNEgtEWGNkluqUrA8v+CzX3zMaP/HHM7ugAt0bcvp5SmX64fUI8/+5D5jHamNwrVPOTv5BZfnDxkV95hWH/HewW2k9LBeI0pNu95y8uQJ8Xifg7kGr8GMibIG10NREkLEejCm2slrJC0Rm1ktFYgyz0qHxM+WaJe07RVKe8TUUB3dhmo/ydy9zRLE+Er/id+uR36rt+1+zquWa+kh10jwK0jxf0O3/idqo9GIH//kJzRNy2Kx5MGDBwnGuKFeemP7JwPpUpJ7ekikedx2ueHzTz/l5z/7O+ZTzQ/f/x8IMXlcN12brBB0gdYGUaTivwsOH3qEiCgZ0ToFRtWTkqZznJxe4HzBZtvTtSHZXAhB7z22tVR1hRtYa/m6RiCGBPpdt4Fl+WoTALloHGPEtRsWlxdcLtZ89vA5v/jlb7g4P6VvWkZlwf7eLBWM5MD+vyltDURrsesF/fYbhH/IuNvAaY/48pw9dc5//+cfcvys4ldPHrFsPDakdVwfBdqDlB4hevAWKTVdhEZENki2pPTStRAQSBZALnkl9zFgkXip8CKFYSTbH4fUBjOdUYznqGKMqab4bWC5stRlyXhu2N+L4Bb0wSOvGmJwnJ6d0GwWRHwOYnP4hWe1XaGM5vbt21ytV7w8OSOIFMzQtC1Hd+7wzv2Wd+5/AMgEzjmPrgqMNkMoLoWU+OzDHmBHPkhXK4KQxCDSfNBFhPeZhwsCTyEkSkTwnmAt682Cp98858svvuHhNyf84tOvuLxacPbyGxYXL+jXC6JtiLEjEOi9Q44rwCZPvZFhfDBFjEq2W08nJNsQkyewKXZKD1RFWUmCswifirkxpv4cYyJ9hOjRDGw6uVurvpH5dRPc4rX57nfMMwZf3Jta7jeBSr8vU+5Nv3sbs+saDGcXlvft97xZWjq0mwy2N73ubfs1rOdf+bwb+wOvgnNvYs8N23/TMf2uY3/b337f134XaPcqmDgc0WvvTy/MeEbqVzHPSQd1XRA3WOO7DxuIRum8+/j3AOikMjifgLngE/uGkICtuq4pCs1kUjIu5yAy+BFJfm4qIkOKeG7bns55+qanaTYEvwGlKYpqJ5EcgDpTJjlNbSQ6y28GTyMpFAFBn423hdQZQAzpoSkknogSKqXK+ZwMqpLhd9/3WMLO9ypGcD4gQ0BLBeS0IDwhSHrfIzI6F6VAKZ/UBcETgqcszQ5cStKwxLYQSiJiSGw77xOWr5KJfJSJeiu1AmkRKhm8ekQymc8ply4KrHW7caPrHUpFKBR971iGNV3bMqpLDm/NOT4+pioLnj9/zmaTYrU72zOZjBjVJT4GNpsNGsG4rjFK4kuDDyHJIEcVqm25WK+xNuyMZ6PPQKZQmTnoEEJTlBrd59RVpa87qhDIAFEkuRwxmfsn/5P0UcPCP70mSWwzGTKBnflGtd6jpUzpZ3kSghQJuMpgXWKm+B1YNjDsnHOYcTpOqfVAFqJ1KZW16Tucj8SYkoLTTXczRVhgnUPIuItJJl5XRd5ayRgG55gORmTTlmupbGI1DcwsQQJHkvR1+NyQcyFSNcpkWVk6rlRdFGRDyhhwztJ2DV3bEYkUFwVlWYIymLKkrkqqqqRQmr7tqMqSoihwWu+ORaoEA4mQHsqmKJnO5gTfoUWH0TXexpz4dkjXneaQDVhutmxcmwzttURqQ99Gur7HaIORGYDL/oA3adMDoKW1BqlwLiVETkYjBILCaHzfs10taduGRosUQhPSwsf2fUr3HE8YiQToLhYL2GzoEdRVzXx/P6UXb1t8SBOVoDxCmyS99SGlUUuVvPqEBSHzpKvFi+sq0yDxFAi6pmUymSClxvYeG+zuNfV4RB8cZ5slLy8vcO4BNQW+CQTlUGGMihG/apiqgok0mKiJURCMoZeKPvgsQ+gYmExATioO1EpTFIIgoLc9hSkIQNd3Cex2HqMlztkkdQiJEWGtw8SIMRplNIoEiqtcGUMk1sPOlzGD5gMjw1pL6HtKoSnqEeOyZO/OEUKllF7XWKLSRCJRpUAdWRZs+x6xXSPLgmJSoeoRTgSkURR1xbZv8SLJQF0MuRDh0GZMkCkUqKoKlCnQZWRSjLE+0NsOM5kSIvS9pSgUXd9TxcT2JkSclDQ+UETYG9Wcr7aUUrM/nbFkw7geM5vNWLhLGreGGDlfrone4gLcvmsZj6ZI4agmU0oFxICOjloG9vb3OS5rtFF88eQ5TbfFK896tUYpTdfvE4Pn6PAWs8kY27esmm1akABCG2Tp6Qn0wedwI5mYjBngFtEnwFQnG4au61Bdep02Bav1hi+/+gq/bPjTn/wR871xYkhkxp4SiqBSyrMc1+hVg3cpLAcCi6tzvO2Y3T4kGmjaDW3TZDltGv+1MWlsiWuIqS8uV2tciOzN59gI602DUwpdSOa3ZkhheX7+ktFIcRAnbLoZF8srXGdRRGzXY3uPiAola05OVnzzzW955713+Iv/7i/58KOPqMfjNE5lae1QkLmeIP9L+29tCWy56SImds/o3f8lbL3g6fOWF1cN5VTx0WzG/qSgONij1mNaBWYWWT495xf/+Wf8+n/9NUfHB9w5mPDi0Sl22/Li+WMur75mvhf4t3/2Ey5frvn0N8/prU8hMmpCIQPHR/c4ujdjvHxJvVyzWG5Znj3EFgohPS+enSH1hLKY8fzR5xxNLHePDgl2xXg24d9++AG2POTKGU5OV3RuD1NK+hY++9VDQjjFXXr+5KN/R1l+n9/8dE2z+pgf/asRx/OOg/v7EAP/Wgruvn+XwozYbp4Rz74irH9EHD8gFrdQo4okI410/YLL1TOW7SXVvObBn3yf/Qc16+YrNhdLXK8wZo93j39CWTcU2iB9i12f8fUnf8snv/wp7xy9xwff+4iLx4rlo4fs3+lYtIHi1keMbo2YTY6ZH9+GaKCeQGOhXcFkDKFHi5R4L2LIfqwRwhVCXJFYbHtAjY+Ozl4S5ArhVnSbE2ZTjRoLRLmCApA9Qt5GUjOwk4b2KksgMkgud7BMDBk0GjpZYmTf4FPc6H1v+GCu3/qGV/2TNikk+/v7/Me//o/EGNMcbDiM30Xg/UcE6a4ZGgPTyWFMiW17Xj59wvNvvqZdXTI5uksIHRFLEB6tFUVdI3yLCwENqEJjKkVjt6ADKM90NkIWFT0doFhuOgILhNDEqPCRHOaVVAhFVeYwK40PyWc2RoGImujy6VK56Oo2FEUKN+ttR1mUQKRre5aLFS+evuCLz77k88++4OnLExbtltlsj3ffucf33v+AB++9yzvvvENZlgwEl0SRSGsAIonREgKr8zNG/oTo1ohlh+wv2bulaJsOoxtEbPGdRTkFWxCVpC4M+J4QGkoCvSlo+8A6WjZC06FpbE8XOtYyclTvMR3PUFJgQkcrJMveEtUosewFCC0JRlDujxgfH/ByueXJyVecXWxx1jCpKvY2grvbguM9iS7S+lUAVV2zWiUbF2stvrdY2yONYjQxXJxfselbYi7aKaWxMQX/VPUIhEjMOyFQRVoHhRhTcGJitlAag7c9WiSyTd/3SYonPJ4ldWWBJiV1b3qqaZK0Bqfx0bBeL/j6y4d8/Kuf8fDhJ5yevuD50xc8eXnB2banD5HYd0TbIZxFMTB6E/uy33Q4JHo8JbgJm1VNGzVN41muNrTWEUyBqcYoXSGKDq80vkuwrBQx2WWF7NGcxyQp9G4NOhBFXmfevx3kGcasb7e0ZpO7++/69Tdek4Ea79+cHntz22/ahwE4GzzV3/begdQSboyar4Bi8dvA29tkpW/6+RXCzI3fDzLXvr8OAn1TG+ZnbwIth/2/2XZklrxN59zubzc/401Mu5v/vz7//pXz9Pr5uZYof/sa3QTXhoKDj9nCTKQgUpGJKFoN9lYJmE+qJg9Ck9ZumSl44zgifueF+Lb2nQBdWVZImdgxLvpsoO9o28SeWgiLDBUyG0crnSb/whSgQAtH3xd0naXrHW3Zsc2yWUQCmqL3WN8TukCvBLrTaCUwMjIySZYnlEaaAmHAqIKiKglSsliu8T4ShYDBay4kMM755L+mZZK++hgIwiR5li5ApIuvsp9SjNmjTSZ2UogeI8sdc+r1Dn6zQw2LW3HDc4wgIDq0EEij8wXJLC0pU2w5ZnezDIuN4cvbQNd24EgVASL4gHWJHhlj8ifqnWe9afLnC+bzeUqsDJk5KBTGlBjAkACRzWaTZIIqez0YQ1VURFMSdEnRd4DEdz22S8ymVJ1IktLO9oRtAreikkQGr7nryOYk0cpeFEOnz0mUIopsQu5fYdjtbr58PYoihQqoONxgKbFnSF2NMU8ehUxSP1LVJ3iPcLCOawolEdogpKT3PgEIzmVvxbQ1MdBQd2XRNAtLaUYBydBH8t7l70NiFfkQZf5h0JlHbk6mbvQhblQLxHUfkm+d0Q0DR9ono5PfyHhUIwDvHUVpaIt2l0rsfKDt1si2YbNODMdSm+TlVNXpe10jlUIbhdIa6bNkO7Nheh+QMVKYZMjqSoOUBQeVxXuJXqQkKBcEvY/YzDLrbaB3g/TS7YC4m/LloihYr9e7e2kIh/BZSh2FoC4rptMxvuvwfUuwyQ/Eh8B20yBJ/asoK5RWuBDwPp0D7xzLJhlqR59A+/SVGLTW2gS2e08S5ObJnU8+lc45oirSfSDYsRdDSOEiMsv8koRWEGNiIw59XRcaWWpWtuGrx4/5dL7HO1XHfS3ofGB1smC/qDBCMRYFlTQYBERBF2FrE/NKi0Q4vTlODPca+OQP6RKjVeS009SDxe7eS/dO6mcegXWerrMYnR8mpI3E1EnzdkBkKwEGAH3Xe/MDUUQKY6hmMw7mc6yPrH1MzFYZkseSivQx0NiedSeJ0iG9o1eKqhrjRKo898HRR4+Xcsesm+3XAKxXG6Ivkj2CSeC8kAYhdXpI5spVzP6mUitUCAjvKWWFFrDaNPSbDSIqJqMJnY9cvniJDzDf2+f28W2KomC7WBCsxQ6en8DZasPHXz5ktVrzwb1jDicli80CoyL7+zN0VRF1QYuiOdxntVrz6MUZIQici3TtFhFTiJGUAe9tAqkzcBZVShsXXhGloI+etk/J2krJ6/FBXssAQohIqRFKkZJ6U8L4crni642lFJoH799juj9nqhJbNGRPzlQwyWCzBiEj3rU8e/6MF+st97//Ph98+IBKa4SApmkY1QIlJevVCqMMUiQfMWUMuigYVTV7e/u01qPLc8p6zHi2RyBgKsOdO0d4GQlCcLA/4d27xzx9fkqzWnN+esblxRXHR/c4OLrPD//wj/GipBqVFGWVwPv8fBgkKv8CzP0DtDiAdK/WiIewzoDAC2ito7Etfb/Ah5YijJkAQqjEPhYGtEaXBUcfHCKUZ7toOTvd0qzh7PlLFqvH1JPA3Xv3+LO//A/UsuZ/Nv+Zp4+X2D4i5QwhAxfLhsav2NpL6tGE2e09Lq42NLZj//AW47tznnx9xtWLC967pbm7t8+P3v+Ae7duExW0UrEIFWEr8F2gNMne4eT0GcurDfsTyd5sn3fv3WM0/R69XfP0yRl7ozX3j+5TdJ7u0UNuj2s++E9/DLpk++XPCGOPmIwR0zmhntHjECKi3IaXzx7y+IuHHN+acP/WR9SVJMZtYmqrhr35AaPpMdY2XLw45+r8BTo45mPFg/vv8O7BEXpyD63fZbY6od2eMBsZpvfuw/h7XJx8zeLpGftGEANcLR7Ru4rZ4RH7d47xSmLGU6QaE70gWocwgeBbbHsKwdH3Z0ShCTrQxgVOrSh0pBorVFSEZYdtrvBmi69ATfbQcpIs4GMgWRfIHSgCiWENLsudIkS5C3BL1cksW4wDc+p6RhQzO3iQaA798Z8bk04OxVG4nhq+qX2bZPGP3AaLFTBaIUhg2WRUMN+reV4GmmbBanOFUFCWJVEIeueplaaua8qpZTx1mMKkxaJI8kldjFAmsmoDTWOpxhBHEqKmtwHpEyOs0ArbbQnxunAjkWkh2/doUxFixHYOpSSqlBTGQJYiai25WlywWa/55tFTfv3r3/D5b79gdbmmrqccHB7yB/fvce/+PX7w4Ye8e/8+ZV1lWV2g63qKsgAREVGl/pZZdCEIRAti4cE5cBqhCxA9jWvYdlvW2w1d4xFWYXSFdJKAI9ATlCMYybrvWVtYe+iQ2ES7wJOCAcdSpXR671lHS2EdtfV0oqdtW1BzhJFEYdk0C/qLyMXVgvXlFX1jaTewuQhsS6i5xXx0gBYRVSjKqiYGg+0lzSap2CSKEDTRK/omcnV1RRAglKKh0soCAAAgAElEQVSsx+iywAcFsaBpbALLSX0zEndrLSmTdYoAopRJhTSsa3PBXqmktmibLZvFJaHrqZXGN57PP3/EJ7/6BZ98+lOuLs/48ssv+fLzT1ivzylMxChNF6BXZdKqhQAhZLVQkgmDQCEJKDQFIlYEr2maiIiBTePYdknCixCg1fVqrQjoAaSyaf4ePEkJAIntERMwklhwrwJV6TDfQrLYtd93QPq2NPP/DmPuTfsyeP0O73ldCvomZtjNL3ljf14HoW4CWG/b5x3zUIhvbf/1gIe/T3vTcQ3g3XdJXF8H+H4fOfLbmIJD8MTN1Nq4k0+m7SS7sVQgZ+hbw3aHz8k+7IljM4xJMo1TO5Duzcf2evtOgC4du0apzIQYkgjxWNuzXjYouyW0W4oyJaOaqkQUaSE9mRiMVOhKU5jIyNSMR4EYBcpotCoy9XpL3zUkrlk6boWHvkmsARvorEOIniAVUWgQino8QWfNf4RMs84XLKahSURQeREac2Whty6BTCFf4JDAr+A8UafZqsqvT/OOrLnOC96hY7rg80JYoeSuhphOviAzvGTyUxo87/AIIXMiKggVEcohpEL1fUqy1ApnA96lsINgHT7YfFEjRE/QEq0lznmWmw1N0zCdjdmf38K5wGJxCUChE4igAZGpv847XJ+ReZkAOmEtfb4JU4ItmKJEBbCwk4Qm8KfDOQsiM6F2RpRD6mXMg6LILK+YF/7XNVchdkpXghgG0HTDpHMvkLpI1ydXIbhx4xmZ5K0hD9mCnCY73OQh0jiHFTJXhAUuJjZoYk/mwT0DcwKxS5sdWqJEi50XXrgxgLzahsoNu36S+scbaMDwynEkcFd+a7AbBsDBwyPGuEs6TWmnGiWT0bQ2JaYwVHWdDOOtwwZP6AQ2h27EEGhy5dNkadxsOqWsKqqqoqjKzGLLII1UbDYdRkZqETDKgKwQymCMYFQWGB2yoazAI9MDcVctT4voGHzqH/kYuq6j6zqKothVSHwETwqUUFnqbq2lJSb2Zwb3gnf4GGj7DrH0FKWhriuE0rjoabuepu/onceFgNEFQhf0KqCUpq5HFGVg06Z9sBubAE8lCU4kirIU4MNOGh+UTtJPcT2GKJUqU8O+Otcltlf2clRKYkqN3XpWXcOXD79mLhTcn3H0zj5eVNgI7bKn1xLXe4SLqCjR0uB1QVAyVaWlREmBluB3NH2yYXDqY9Y7dAZtUlBEBqkBEUKWv/hdFcd5T9O11LVJwLuICSxSyXcjSrEDjsmgfnoA5b5NGttiiEipqMrE2AydvZHoLOitpe8sUTp01NQmUpgEqLXBc3HyAl+OWHeWqBWmLJHGEJTCxZgYcd6hg8GYkigibd9hvcOU1Q6kQ0mCSBNPgUoM25igR2ctUSrGdY1ebrg4OYNygx5N2ZvOWG6aDHZX1FXN4XyP2Hdstw1Xm4YoJZvO8ejFCdumQRlNPbpHNZkiY48RgWlhKOoxbRBs2pb9Ucl6NmFrky/Kuu/YLBcoAiJanOuY789TSnoISNvT2h4XI1EqhFIEkYMeSJOC3TiQr4f3KfDGO08fHc56CIIYJJu24+XLU+Z7E3yM6KLAeYFzDhEdZlgsi5gYpd4Sg6fbrPnm64d0dsN8b4xUFZvVmovLK/b29jAmyYqkEoTe40L20ZOp3zifDK51UeFMxWRvzniqCd5xcHhI5z2L1YZpXXNrOuHi7JLVZs2jh1/zm998glIjRvUet++/z7OTC5zbImWS0b9eafxnto7//2xTAqoycu+wYCQL1uueUgWW0RFKA7JA9B62K4Rq+fCP7vBv/uxHXD5tefzpc6b1mEmx4otPV5wsT5jN3ufwzr9ifXmJcx76FrtRoGYpJbFbsL8XmU0L7hze4533fsjjl+d8/vwJ03fnSGURTxtsE8BVTCd3COYAV9/jyYsn/Ow3P8Oxzw9+9Ff8wftHTMwpG9vw6Fng5fM1vS25dbvmzgd7/OgPP+Kjfz3hk49/Dv1jus2al4sTvvjZ/8Xhrft8/8EP2HjHajTh4J05TPfASPqwxfktkzJi21MWTz5j/eQRH3zvXepS0q1b/CZS7x9Q6gpcj1Tn+L5hvbnk8nxFSYHuNObWhNnBbcRqAVe/ZHygGH84RR7UEMdAYD7fZ2a+hzaO0+fPefb0lNv3PmR+yyD0AmkkQjQQChAl6P/K3nv9SJbld36fY++9YdJWZbmuajvkDGfoZldckguBK2mJfdaD/s59W0iAJEpYAgtyqSG549pOV3d1l08bEdcdp4dzwmR2dQ/NShQEXiC7KyMjbsS9cez39zWCsFoxLhdoOUXS0q6eEfBMDw+oJpI+AWnMdie+hnGKEVNsdQTNEVHMSZREj7Tue4lUNvx5NszgmyyBMgkyUCJFBuVE4LtQq5vLov9X8a2/y3ETkBOwHje3iNz6//L/cZAun1qype9lpnv+XAElI7fu7PNbP3iP6K5IoUUIT11PmEwmWFORtMVoUMYiZAZQlZYYq6iqnP5eEBW0Mhwf30LbhuhEUbzkGyGEQGuL0YpxdFwtrhjcwMROgby/QwSEcNim3J8kcINn1fa8ePGSx48f89FHH/H69Qsuz8/RWvDWg3v80R//N9y/e5f9w9vcuv+Qup5SG13C+/JnS0JuLFvWQOW2nUoQGusawhcCt0poDYvTnq9fPeeXX37JZy9PeXba0XsLvsLoBhkUXRrpaPHS4VCcDZErb1h4RZcoRBBJFBEv4KwfsSmRnGdUnnncJ0mJSnkPM8RIkhKtwPgWu+w57C6Y6RG5b6lvH6BNhVQR20isX7K8GrhYrGiXA4EGmKHUiJQhX7MAkRLKKO7e3c+eN0pSTabYqmJMAW0qDo/2kSJuwYPdEmtMZe9Umm2MWz+xVMgXUSF8g45TxiV8/uFnvP7sFLdyfPLRh3z68c95+vxTfHSMI7ihxxiFlprkDSlkH8cgU/E/ztLotbpKlr2XFoogsx9XHHv65RV+cCy7gXEYEL7ww6REKEFKEWWr/LuWxEETRUKOhUkWfWFfFIKIpLyvzF51UpWiwRt6WNopIrD1/t0FjlJKeV+7ftVOn78JEL0JxNoFot4EcL0JpPq2168Lleu99E0gbu2p/iZw7ub73/wsQhQMBbGprYi09X8n/foU1TcBiW+65l0AELbhG7+O8fhdANfN7+LmdwgU8tHOmvoGQEcqBXJVPnexnFqz5W5OYhn/Kf9Z/0kUXErA9sG/20TxnQBd1xY2jg+lEeYNojGSqjIc7x0wNWA1aJGy4V0MRJeBoIthkUEoMuU5+LyJVMogg2J/f8o4Gmor8bUpCa6ZDq0EhG6FH13ecLuQN/LO048Dw+jh/DzTZwVIU6F1llvaylJbTYzFL0obgpAEFGNM+Dgg/LrTSbIPTq4uyBgQEoI0QEmnFALSGgYqX1RZgwS2kblCUNyiJIKQacQpFkAqt3DJWkiZO5USoKUgGZ1fKbLx5SihmQTcmHCpI47ZQHVN440x4X3EqSzx9VpS+5grW0rSNNkvq9Jr4/ZNJC1SapTMyZQhRcI4EMaRMWYPA1/alhJi41EmoJiDZ79AGyLj6LMcK7EB6kII+JCQG4nc7uZelok0lYKIKonqCinTNwYRXwDU5HO6YV6M5ATSdXVgO+Vkz6bNGkmAlHrz2ULMjL2QcgAHAtIGkBPb/13rN9vH1+BEHjB2Bt10Y8CV60H92weP9aPr6sQ6HXN9zvUAoYsXlVLbeyLlll7sg9v4iimtMdZi6zoDI85h6grnPcH5nLLpPdF5urbDe89yuaSeNEwnU6pJk43ny3mUrehGRxCBQUa0THhT40TKoHrfI9fBISEv3LPPnERqhYygUiS49UCbP/8wDLRtizGGw8NDrq6uuLy8wpWB0lq7SXYN45DFC8U/RZHo+wERIr1SHBzsI7XEh8iq71i2bQbyUvY1PLp1B0KkbzuGrkfbCjvJyZrtakWIkcoYpBCkGHHjkD0yAaMlrfeEmEMhUAZkTidNxI0cN4SACrJ8Rwm8IyAxQiGVQBrB5WrFx7/6FXo5Z5Ye0E01SdT0xpOMousT4xCILm2AsU26KjGnmO00yQw9ZcA4J/gFAln2F0XEpQxwCmFK1dQTYwBNrvwoRUKSBHgiPmXmaVoXGRJlIZP/HUPcTMpi0+fyuWQB9WLIUusMpGamqx8dwQ9I6fEmFUAvX5d3jteLS8R0D6+q7LepDBGB85ExwBACzkUSTZ4zjMZYTWVrep8nCqkUmaybi0cprv1vMhuAmEFMZQxVU5NILJYL0jiiqylKC1LyKCVoKs3B/h5WCtq+hxevuGo7+nHAR8npcsVnz56DgQe39pmZ/D0pm1PslAOFpDE1R7OA6hxGJXQIrNoVvm25DIEwOnTWtROLNcIwjnlML8bN62JAKlJfF3IqMElsLAAykO3p3EDXjfgQUdJQW0VTTWkmM0zdZPZcLN6XsAkESBJc8Axjj9CSW8dHHL14xer1az7867/h4fvf59atW/TDyHK5RKmeumqYTmc45xidx1Y1UkqWyyXLbqAfHM1khmtX9GNCN3vofqDWllvHifPzBVpa/Jg4nV/Qrl7z5PFj/vIv/pLTsxUndx9y/+G7jElwdnbOi1evuPfg3pbFws4i+UZF/J+Pf+DxLUSBNWt22iimteTW7DYpHBMaTatgFTJMMxeaJtnsIyw6wsLz6Vdf8Ff/8T/huyU/+t5tfucH/yN/9fOfct4Lnjx+xVeff8LZ+SURj55kC4xhlWntVTWhmVaMQ2JxdkllDIeHewzDFbdvT/mN99/m5XDFgyOLD/DTD7/k61eCi/YVz0/POTne5/7hAZMmYGKFr064+2ifDz/+iiePX1Lv3WL/5AF7Dx8we/sY1Sx58tELVu0lsW9Z2T2CrEkvT0FpIoI7+7cJdoJzjpXrceMVzcEMFQx39+8weSiYmoigZe/gHtWsyfOetVk2KgKh7RijY35wyP17H1ApyeLzX3L25edIf87dh7eoDmri8pzulSNVj5icNKiJQtlD8EsOH7zFdP8OzfEJYs+CO0UQiaMjBoE2c9AWN5wzLj3N0UPQiWkQJBlRE8DCdL3hihJ6iVRzmJwgJvtEqfG+J4SIWSefy0QuW+cCOyKv8fLmIxFLIU4KwwbZSoU9V9Z8pHVjS1tmz04T/P/ssekbaXO93/x7YQmK796w/v2OLViwa1q//ltKosy1iTh2ED12Znn4vbeo9cDV5Sm2Uvgrz+g92jZU80OsyEV6FxLT6V62pnAjbZ89qU+Oj3j4zkOm8xlIw9fPXnN2fgUiUtcTdGVQxcdL4EFqRCEi5I8W8aPHaIHQeXPqB8/p6QUvnr/myydP+fDDT/jiyRNmsxnTyYTf/u13ePvtB7zz7lvcv3dCNW2QwiCLD3YGCRLJBxIRmTdOrMvs14YwqTCmZmaP6Jd7dC96hPA8PfV8/HzB5y97zseKXta0UeJlAqkJUtJGz0XoWDEwjrDqBW2s6EKdGe1kT1+f9RusYsITkBQGmtFZjRI1WijGJInKoqXEBsc0esywwKSASgOnz17Q7B0SdaLXkA6mVPU+e/v7CDFQK8Okrrl3/wFaCayRUKyfpFLY2uSgP8r+W2VVgdQaaw2+71gDqjmoJQPoErVhUElyYm8s6w1RAIYQEq4PNHaGjomPfvYhn/30V7z8+gVtuyCmDlQm1qRkkFKjk6AbAnHMfsKq1pDIvsmihKmlzKDcgPwyO2OG5PB9S7+6wOueYchp94qyfygMD6EkWSmRAZNEQqaRQqHLIFJaq7cg79JL00zXpzuRN2qbv7HDhstXIHf2iTt7vTcAT286vimb/ObzdwHAm++T1/FbUtBGbVeAq42EdFNQvw7GRee/8djue/46FmFe929BQoEoZKRyjjcAiNdev1aTvYHFdvN615/v28C8N7HjdqW33wbe3WTH7ar11oqz3Z83AazrgEpRlCdaa6TRxCSy3dbO95P3k+Ver0NyxHrtvr2u7wJp18d3AnS5HWbKMilLaqy1NFbRVDVHB3vUKmJEJOGzT5tWRKmIJLp2gJAI3jOOHucCMWTZZZZDFpN6sgeONSoz7lQGHdx0hjIRHSNKarSxhJjoup627Tm/vEQlTwKUzANLGEeCW9EVZlIyBqU9SWbzdSmz1A8kQ+eLtFDlmxqyhNcTUcrlyUEqskvTen1R6J6C7BEUs/Y9pmz8lxPwdKkwCVIYsvSNrVxpvWleL2SEBJVjXklJkaIGApOqzlKKYgAbw5rVpZBaZiAiRSptMNYSk2CxajGmxlYNVmQ5aIpbA9BYGoRQAjupSQWw8jEhokBFUAV4GLrMYIyRsnEs51G6SHFzymSMaafN7Pw7rs1bc3110wnXTygDj0p5kF0PMhuAzofcgZzPbMRSwdxQd9esplLBzCbXaZNcI5XO1hQlSCIlcYMJVAaLzUdO2zUkcYuEl1xxITPLTpQ0oE28d0pQgJT1+TMDrtRW05YhuEYBRQFns3yxAG8iAyKyACPaVmTkfd3JC4KYsseeUrkNyIIOC50j1aU2qCovjEIIG4DOjWNmjvUDSEHbZbbZMDjUcoXSCm0MtqkxtkYKS8DTMaJlADXLLDOVFwnBO8ZhoB9djm7XJTFXyS2QXY4svUy4cWCxWADQTGf0ztMX2XEq4HaIgRBGVGVZrVa4IfchrRVt3zN2HXVlUdYyRk8IiWXbsurazKqMicE7hLZopen7nhRTYR5WWOuwVUXf97n9KZUl6imRQvE5FBIlQ04mQxBjRjRSDCSV/eAynpXbg7WWJAKIkkKdPMYI6toQW8HFquPpeeD56pDZ9JDjeoLSPYHEMnjGkiidXMR3+TtKIWzkxmUwLv2rTHoRIplFWgjTrGcAKSVaZjB7PSmtmbtVVUHtEMoQhcwsqpSrwqRQPn8sEu4SFlHadV4q5/cwWmNkHjuz9NpgrUFpRXKeurJIK5moyKw2zOqKxlj6lKXmlDTeJPM42g8DKSYmCFJjqasGqRPjyiPI39m9B/e5GzSLr18jpUZqRZIFhC8BItFBiB7b7FGbmsWy42K5oo+Bo3snND7x5OUrLi9e4UPk4OCQ+XxCUxsWKlHXirqeYY3i2etTXp2eEWLCicTT83POFmd8OjE8Ojnm4b0TTo4OGZOgHx11M2Vvfsjr8xU6RA7riqmSXIp8fb5dsQqOC60yuKU1SprtIrD07WEcCMkTUfjk8cnnLWBJS5ZaI1UulkivcrHIZTZ4KnNlPZkglGTwIzEpjLV5m6cVSWVQMQPcjigFd05u88Gi5fGXn/H1p58xOrjz9vvcunULyOB612bfx5iyWbixFh0TDB4f8iZVm+x/+fmXz9i3gv3ZlMiA0ZG7tx+geMXyquP+8W0Wlx0vzy/58MOf8+z1OScP3uHHCEbhef76JZ999hkfvPcOs9lsw6KLhZF7s3r5z8eN4xsFp+9+WoG213ygIvsPBCJRClStUUHjlSApsDJ7EUmfU7GNCIjU4Zc9+6cveMsMPD57xk9/esXJn/5LfvDbf8hf/c1P+PBv/5bLF8+JIdGKSOtPsaJnagVzIXB9z5Pnlwx7PX/8+z/m3qMH/OrFr5DNkpOTKeF7U57d72mvXuLCK56+fMbTs4+5XDwnxEtOPqjZNwP91RlhsWA2P+HWO2/Rhjmvzge6seHlE8GsesXJo4r5geDOQ8u0njJpPuD4h3/K56+uOPMrHh7l8Vs3h2D3EdESU6DW+yg/h3TA8d1Dps0z+qufY/cUk4cVwlyR1wSK6D2RxHSyz2/8cB9EhYqWeLXCHxzQDa/pY+Bi9ZIJCe9azi56olU8PPkeKmra1RVhbJnMjpg9ugXa4NwZi6sXYFZMZ5LKWohnMArqRlLJCsFrqDRS1+A9wr0muSXIFokmrQysHCJWMHeQTmEQyFgjxJwk+rLRKMztjTBuDc7lOWMtdUUmkne4VU/Xr9CVpGpqdDXJ65hUNsQ7OFbaaYg3Ial/8uMb4Fy88fjusd6s/tf45G8CA3fPuy7ya1IYGPsWkcbsLzxJ3Hl0xMGVomr2ebXqIWmaZo95JZHJE2JETixIR4iCqp7x3nvv89ZE8879I97/3rvUkylff/UC1/+SxWVLRGJtjdSKEEf8EFA6UNc1s+ksqywAhERXFd45Xn3+jC8ef87nn3/O0+dPeX16ilCS3/rhb/Hf/9v/idEHTk7ucOfkLsZYJJlxLXye251LSBmKRzjZX65YCcUQs4c367XJ+r5pxGSOmt+mH6ecPQ+cL8756uyCLxeBp53lVYw86yJCKqIKGB0QKtDLxCImzkdP5yMpCIYocMkgkBiRR8aochiErC3GVOiY8NJDAdCUC8iQSNLgpSIEYHAoP6DOrojtAuElHxzeY7VYcT6ssPsTZseHRFMRk6cfe0gtkz3B/uEULSDGMYeuCYVSAqk8KIhS4IKnD/0m3GEcFBqDxOQ9iShm9mK7jlsvJ3clelswKxDjgJIDKQjGYWB5ObC69HhnUFZRNxP60DH6UuRlJImIsgKjbF7PI0nCEIXO35IgJ8bjSxBjAZnDSBo7fLcg2YgKIqunZFaxiExoKstcSUqSKD1RaZIySB2QMeY9OooUx7yvJFK4QyRVfK+5Dsas1Wl5fZ3K3u56l9uCQDfBoDcDQ+uZ9dqeeAdIWpMwrn+O6+dakzR2paa7arIYCzj9BoBu/e83f7Y3/757CL5ZAN1ltP06cDL9Hd5v99pvMuaE2Hr8fdt7ra2u1iDcTaBu7WF3E4S7+Zrd812712Xvz5qJunM7UtqGPWzARVH2RwXME9mkDlinuW7oDdvHvy0anV8D0DWTvVIlcZnBJPPmYc0OGoYBZRLabhlXyihUVeVBulybd4lx9EX6KBAxI/dhGIGih5dkMMg5Bhczoi9qfMwbYG0m1NMJWhtms5FhGDm5fQuIKCXQUjCMHYvFgrZdMI4eISUuRtpVSzs6xigyky4KxuDxLickVkpv74TIdFwJxeQvf94oc/gBbLXXUmukj4QYysIiDwzFfIn1YvcmUhpTzMBkiaSW5AUvQqDLeyWlSEZlUKC8PgZZDPVVMavPPmjW1tR1lSs6bY+1sDeZ5BEpJpJPJAVJCFxwhOAI0WdTUZO9nbQ2aCQhgRsjw9CRtEYIhXMFuBwdnoQQgSgFMcoSkEFOHlzfF5mZi2H0m3LFbiPeRDffHDw2e9S1f1lmaImYJYpaZ5+2NSAgStWHApAlKFWidfUgbQC0WPgjsfQN0g5Al7/W/IxS7c1AXZGuirWMlgLIrH0Hy+BQADmxlvqWCOXcQcWG8bfbBvLH+GZlJP9ZsZG4FumoT2XykeC8R47Ze279Ol1ZasA0dd40C4m1OUTFjxlIG/o++7yZnIYoZQvkVNax7wgxV7PUyqCVxVZTdBxJdqBva8Rco+aasQTFCJnZScPo8VXEKE1jLEsNQlyvVqzDIGKM9H2fKcXl+teT1Dh6fGFsxhgZnMsm/eOA1RpEDk6JKVI1Nf0w4GL2BAgxkYTEhUjvHOM4cnp6Tm0MSUjqpmHSTDMwoRRVVZVUrEjwPifLao1OCSVFXhx6CG4khkRKgRQiY5G/phiprEUpidYCYxRSa4SMRa6YAaoUJWGq0U6wioEz5zlNkVnwLMYBH0ZOewhSYeoa0+VrkSHkZKyY/TBjDDsS6926MUhU9gBVBmRCS0lVWWiv+zpImWUp1laI2qONLmnFiSBSZtOmLNP1KbeFFClR9WkTr77uz1upZdx49VS2QglJ7zyTylKbirmGg5nlYD5nNqtQo2MxOtzlitCNYDUp65wzK2z0jJ2AVKOVxZgaCkN2OptxckdyNkhS5zNLNq43iXl+8j778cSU8Ai8FIwp0Y49V/2IaiYc3znm1etTXNsTCSSRGQZ1lU2ipRBo1SDVEXVj6H0EY1i1LWenpzx90XO1vGQ1dHSD42j/EGunTKYNdT2ipaVRiXldo2aaeVVxtVzSDyOBROh7LpYtUmtiTBweHmLrOrfDXm+YbjHHlm36myIzbtfjhlKaqqqpq4au7YvPSwlUiolhGGnbHiE1RoHUMgOaIpEkWR6nMhAzaRoe3r2HDgMvLk5ZdD3Pnj6lme9x584dmqZhGF7Q9x0kqOqKGANudFhrsNLSD0tWXU/bjyxTYtXDg0cP8H3LIr3izu2K1eWKia25c+s2V4uO3kUWi0teL1teLpfUR4ccHByyGnvart36pMS82EkxFjbrPwN033UkuAYkiDevcbdPXld3Nw/kJOUkYg7KEREtsqdbCJ7kEjIahIZki2G3GxFh4M79A77X3cObU3758Sf8z//Lf+DB+++hdcPZ82eoELn/4Bbx9GtefvWEWs54dPdtbqsZp8slXddT1Qfcev8Od3/wiPppTzAdR+8/4tmnF6THH7O6XPLV0yfISvOjD97FNu9wcfWcaT3hwye/5PGnH/Ls2WPe+sEPeST3IWjuHp1wYPbw547XX3zJ3jRwevYRP/vZX7NcrPjBj/5bfu9P/pD+IPDy2a/o5SXGNAhTgaoQQVMlg6r3EHoCKITv6IaXXCwG7p8YkuyJ3fPsP8UMYfYRoiIlh2JECklyAakl8/tvM7t7xNmT/8JXX/2SQ7nH2z/4bWTnuTyN+LrG7k1o7B3GtscHSx33QVhUlWj2jgjCg+1I2kHI7DSRJLFb4C5PMWGGqAHniBdLgmhR88iqW3H22RmqnzFTLXvewYFBSIuZ3CdpRew7lFG5gpj0DkEs5aJ8yj+SUrGKDr/quTy7pO1X2EnFntjPoH0JvUopV4rF7n7lBjh3o0n+0x1i/anW43DaeQyubbjYjtX/VUC6m2+x+1h5OCXo2par83OaOlHXDiFGtOoQM4Oop1gLQmhiEAxDRMZA1TTs7zXcupWYTOacnNziwa0jpsP3mdW52O1Hx7SZUVcNta3xZe829gMxeXQtqesaQQ6mGtxAZSRD2/PFZ1/w9ZdP+OKTT3jx/CQUVQsAACAASURBVBmrdslbjx7yb/+H/4479044ODrk6NYxpqpzoU0YhMiFKqXN5hrNGpAJeS8jZG6Lqex91vsuEJknFfP6B2ORt+9w+If/Ch81T37+M74ennEeJ3Qm0kZNaytcHEky3y+jDTEplLdI7wmuz2QKsjJBASaV91UapxRJC2RlMQIkEmUkUkQskUpmGCym7LOmTENVTzA+EJJkXPUsOs9qdJjJjJOHD6lv3eKry47VYkkiUTWWSnlSDPT9ir5dEf2AEtnjt+tbQnQECd3Y0Q49zXTK8a0TmnqOSCbDAklkK6eU228oa8IQMms5xpi9fcseRIrMFLLWkkIHKQNus2ZGP3UMncOlnqvFOUGDVDYz2oQA7wkjJO/QxmY9WekyBS5Bxny/tFxbUSWkTzCOxL5HSoMRpaC43rkJQZRFB1CcqaISJKlAG0SM6Ji9g4WDKCMxuU2fuQbOrIkjabd/Xz/EBlT5Nd10y+rIr9sB29Zrl5vMtWvv8wYW2/o5aw+6b2Pibc5142+blNXvAP9+7XWR0Np8I2Dh29hmNw9BURh+x/uu94UbT/k3nO8mwLn772EYNufZ/VzrY/f+v4mhZ4y59vvNfXqK6/tc9rJrFl5KyKQxdicEI5aiVZG+ip25bT0vpLRVyglySOk/mEFndAXJIWUAstQOl9ld3vuSJqlKUkhmXQifwyKE3krxKqOZNRKlDMZYUoBxHLm4OENJRQlwzOd1I27s6Fwiao1LefPeDSvawVEZi1YClRJ+HDBKUFnDtDHIRnPQSIbO4hKMUdP7xNWqJy4WjKsB5wa6IctkExKtBLpuqLQpQQ8ZM5VSEnb02/nm7syVZXVxreMktWFghbKIzS9SsNN4QiyUy8255Ma7zBeWfDZ8FxgtiMFB0sT4TYBOqQwUZrCvSL0ShBDRCFLI1TKRBGhBTB7nHc4NMIDUGaAj6Swjk5rgcxiEtbm6kVJCRwkYtJTEmL2htgPBFtXPlOFyO2IW/IrEJjhh937ugl35tmUZXLgJ7KRtkoxIZRkU48Y8nJhleusF3aYjygShgIZCkkRO7I2prCXXTIx11YT1OX7dQLYd5PO1SIRI5TvcVjc2nqvyeqfftpfrMq0E10w9YwltIAZS9MhUNtUikWKWLaaUjdeVUtiqoZo01FWDtpqmtqWdiOz5JrKHXfRZsjiZzPDe048jgxtz0mrxZggx0LYtKjhUe8lyIRjPPGqvI9WGcdlivKTresRySQpFIi7y4k4pwRgyFT+s1dVrMA6xkdju7e3RNE0G71IeO7LENTKOI0ZLbFWhYNMulFYYWyFNZgqZylLNFHYcWLYd0jkmMS+Qks+y8P3DPR4+ehvd1FxcXHBxeclqteLy8pJ+tczSe73jsSZ3wajtZBhjllioKAnBAQo35n5opc2sInKq1KSyKGnRekbqIq9Pn/BfvviCV6szvrisuXdXImJgeV7jxAHT2YxOJAgam2RmXqaQfeR2Vuu5QgNSZnmntgZdwhJSYRTncJ8xV5mTyD6HWqF0CVHQJgOKShZ/zML828gpc3o2cTv57cDZuY2EsPVtSDl5ePPclAVRVmgmRjKrKmZVzX4zwZhAF8DKJT7lSU8jqU2FiQEitG3H5RVMmFLJGVIaXOcZU8RYy97eAX1ckVIkxOzhKWVhCweP0jCEkX4AJ6CaTxjPz3j89VdgLYcnd6imEzz5ecvVgv3ZBGNh6CNWKRSBw7llMr3NKA1OKF6cvmbZLfEpcLrq6H/1mFevznjn4ds8uPcOCMsYBEpW1I3mYFLT1Pm6F02Di+BSYtl29O0Fq64jxsR8vsf+wSEySYyyKCnKWJ6yR6dKyJgpuTEFfBhxXmKCJs/NKnsukrCiojJ1DhAp5+hXS6LrsTYxOZwg6zpbShiNNmUek5K9+Zzm4SMePLhPV8348nLJ89NTnj59mmXJr18zmcyY7+1TVc1G6qrsBKVzYmwIka4fOX74Lrfuvos1ezRqQiUMrl/Snqxwo0fK19w9uY0Tgs+fv+JyscIvTvnk8cccHR0jXS4osPZxWS9K4brs+5+Pbxy7245dHOTbnr3moa+fF4ERwYjMC9GYJdx5POyxcoWqBDo1rETFz58+4cOf/jnD889Jo2Q+u8voLpjcsfzr29/jL/7Tn/HXf/mUnkNev3jGW3cq/vhH73H/vcD0aMlkepcf/8bvMHGGjz76gvqywhrHxRc/wQyf8PzyJW/91u8gQkMXX7I8HvGiYrioUG7B0Z2e995/ny6+hzMzWgevqoDG4e2M1+dL3OVAvfSsXvyKr16d8nwW+dnfuGwav2gZ+5GJ/wVGHHAppyyC5zktU3HJ7bcWzJoVYbB4ZxDSoFQixJGhX9E7CGNFeN1BPEfUCTHXYBsYFSE0eJlQtkPKxOgjLgmm02MQexy9VzE7/j6q3kNO9qnlEmET9cFdovQwMUymEwg1YPL4ryY080BEE3mGDwuUyGqS0LYMixZ/FRgvEk1dARNinKL3TyBE0tVz3OUZfrkijc+wIVB3U7yyLFKLN4fsHz0EDErpAtKlnEZPJKWADwMxeLSSaGWztVMKVNag9AxZZb/ba8e68MPWO+nb2vA/7fGmjXvasG0gMyi2x9Yb7puP/WM+w5sfFuSUx2dPn/L0q0+4fVjhh4bgLpGMaNEwm9WMQyrr+4rp/JCDac3+0SF3357wW//iNnv33sYYhUUx0QYjSlE7eKQovm+xgE0hW8WgEorsgZ3tGSLGGLzzPH78Bf/nn/0ZX3z2KT/6/gf8u3/3b7h7/z71ZMJsbw89mWRWlForqfJ9Sgh8yBCO1ob1OlsgQKktBpryBsuliLTr4ID1Cr5IgSWIvQr9uw85tI69JuDbU86/Hnh6OXIWexYaPAGhRqZW4dSIHRWz0CC9xkTFhVzRywDJI5LGxKwaCgiSzoAcukA5grwO1JJGSWqlMrkjSZywuMk+8mCOODzCX17iFi2LVnBweMDxySH7J3v0jISLDoViolWec88XvHj+lBfPv2J5eUkMA4qccN/1LV2/wpO9mQfvefDoLX70e7/L/TsVE11l4kjxYUOm9XZnu3/5BviTn5uSIFEh5BQlA9G1DP1I23YE7xE2YqoKJSNDkozBIRNoWWGrCo2A2CFTtlKKRGKygEAkWfZx2dJJJUmUKuddORCjQBuR9zopq1iyeo1MNimkiKQ0yURUNBnAjYmQMrAiQ8SLQEh5dkvXBpu1NLIAWeXCN2Il2Cq62L031/vjd4Ne1//2baEKbyJv7AJNbwLm4g1Q6VphY/e13/Xp/g5rqJtA4C7YtyWR/P3Ovwvu3QTVdsHF9fvd/Nvu77spsjfZeBvF3o2f3dcrpa79vrm/a/yh1IZT8denWHHJG5/52n1OWxwiFfbPdnW1xUu+izm3Pr4ToAu+J/jMuNJSZUmdUoiyKRtdYJSZLhqco3cdUQqEzn4k0zonsBmlMdpgTPZHCzHgo6cxBm0Utq6oKg0y4dxIP7To0XOxcBAEyY+0o6MDKq2YNA11ZSE5fEg4Aj0BJTKwpGRGueb7txhR7DnPQTuw6HpWnWPRtrRtz/NnzzHK5M8nNSIGvAPvHUIHZD1F5BVP0b2vNzKZcutcGezWLDiR5Z4xBoiOMaYs19Vq46Xm/U4DKwCMEBTvsrT2s8zIt8zaZylFkcdS9M8mpyLJtfeV2jBcKlOjlcR7R200MZSBEVEAo8K70YrgPM6NRB9xPuaB1dYoWZKKvCeSDfcRCtPYEqUOjI7QD0ghCyst5/JkVk1x4UuRUJJcpYjIIEpoRPbEW9Nzb1JOc5BDym15nZ4uyLRlkdk9KkaMzMBYLJN2SuuybJ6yjTKZ/k2pEBVLFEIqEr7SyXYHzd0KpVjXUMTmb6lU6RCRKNdgINcmOcHaP4xr6Zei9NzdbinWVdfN7kht2lnwoWxMAynm604qv1+I+TqzrC+nFpOWaC0xxqKsziEK04a9eQbBjLUobYpkPQ+szjvsODCOA2Pw1yoRIWT5knQ1bdtzubiELmHnNdI5lgNUV4Z4uoeYKIalw7tUqviebHOf21wsIK2pLIIcDtE0OaBCa433nrrOAJdzI971GGnY25uhpWToWvp2RSBgpQYlaGZTKltRTSYobej6EWWXTGOithW3DvY5Pz9jtep4++13+cM/+iNO7t3j9PyUly+f8/VXT/jss0948uUXhH7EuYAIWWuqgsmsyxAJPuWgnMLA1EIitcxhFUIgR4EPAxMmVJXFKEmIkstuIMmK48ND1BwuL59y2XXMfU0vZnx9viK4gdALJo3ENhYz9gjfQyjgaNh6gggCQsYihwajBVYajFGZr5sC0Y2Z7excllalRFKCZNaBEzkII8rsKakQiFiA8ZT7h48lcCIJNkbgKct6k0wbZpdcFwpISF8W7jEitMhjhdRYmQN0lBAomTBCYCVYpbh35y6jmXLRR65Sj4jZGwUyWLjqHadiiRc1s0lFlAapIDDS+yED8EW+oMnWCELG0vdtnlxFAciTRBiFl4LX55d8eXrF/sEhk6ZmajRaAMHRtx1d22Hn+zTNNMum/ch0b8Jk/4CUPGcvn7HoIuMowAX61RlXC8/5InHn7lv0UXDRdtyeWmotmRhJrQ1W1siqwiP5+tUr2rEitNC3A5enl4CmbQc6F/AJnAsoZJE5Z2lKiIkxZll4Ht8DIXnCGIg+2xQkLRFSZxafmWK15LQ95+LslKpW3Da3aOoamQy10lRKImXxWFQS29TY2iKERS47jMlBEG3bslguEVLSTCaQAkZJ6sqUsRDqZsJsP3F2ek7dTAkJfv7hp+zNptzan9COgf1bt7nqVry+OGM2q7ib9rhanrMaJEkKlhcXpHFkKiRD3zP2PcG5DCivh8l/Zs/9w483rZvXAOi6dlZ+MrgiWV0FFs+WGDEiD1YM9hXDcsWwFFzZA/78w4/5iz/73/CvvsIPhr35XX7jziHvHwhW4wVJBV6cvsSrwL2Hd/k3f/Ij/tUfvMUXX/4NBweHHB2/z2++9wFnL57x0Vefsrpc8PL5C57++1/iQqLZP+JfvOo5/uSM5xfPObt6gU0Ng5bMG8ulP+cXX3xC6/e4/f73ufvuI+6eveT0s8+IXc/5y1dYHYn6ioErDurErTszfvHZh5xeOE5uv8PebMqzrz7jsy+fcP/7f8DJBz/kl588JXVPOGkE738woTq6ha5nIBOXZ0958umv0NQcNjOMbHj++HOOrhpmxwF31mGPA2pqUNYQo8tgRmWQtgIvacfAdDJDzSuaGpANJLD1MXqeSFoQYw9YpKxIviJ6gTQggmWkYXAKaydoIRlXS1zfU5kJZjpjefqc109fIJNg1txn/+gOc3sP584IneDo6A59GvBREc0c9k9ISXD19Wsuh5bp/ARlBkhbVhNxs5AihQHvRkS0WYYoFLqumU3mxb+DDGIlud6b5PYlrzfFN3NYCoiQobxvabs7MPQbKaL/WIBsvakqkyM7Mtf1n68FN2we/Mcf22XnBpeS6wfK4ULg6YtTPvnkMavbM9qrCf3qNUIG6ukh7773iFTVHN0+YLa/x28+usP33nnE7Tu3me1HRHUFasogQKdd2w6wTUVV1SQE4ziShMRIiSpzqpKQ/IhIFab4uQQ30jQNv/vj3+fHv/87vPPwPsd3bqNMthUSSkPKa1ukIrHdIAuxm1q5DVjbfK2p0KZk3pMZoQqIRFlX76zlBVl/P9fUv/cBP7h1yCsil3/xn3ny4ZLkRho1Z9mPCGnAqPzNxlwIm6YaL+CKMZdEY0AUqyApcoqjkYp5M8Foi4wlmE0oBAIZA9o7TAFPxuRpo+OSRJKS1mqupOZiXOLUIcu2Zfz0FSL57J2uJX03UsmaF5ctjz/5gk8//oiri1NIjhRHRt9jjGDwPbbSJCWJBA6O5ojoqK0ijG6jTJI6q7pk8b9NYutj5mNCiYTP2uFc3HOevusxKiCkRukaqRuUrnJDrDxD9NkbWCqEExDzWiIFxehHKl088wrrLcfBSYTIbuxrldrGHy/JTSpuUqEUnROkVJQOhVOnBClEUBIZTW68ZR0rfcyhYSIziXPhNt7wLi9A05ohtdPhhJCUb7oU7L/Jert+fPNv+fmZZHNToroLajnntu18s6bZLZVx7e/r167PcI11JgXERCAWIsu3MNx2AL1vk8Kuf1/vCUVMuc+lQmIqAXlvCrG4fqItWHaTqfYmZtxNj7hdiepNltwuAHfzHl2TA+8cN8//phTYXa86KTRr8fYuuLa2RtoFuCU5aFAKSEKhpGJM3zz/9vNSbLm+/fhOgA46MkLi8UEQHLi+I8lElA22yXHcyuQkSbxhcAMu5ejp5fkZk6bG1A3JO4bREbQiJUn0IQ96KKTUCFUTpSRQEWKNEj13dUAEj4wNMoFzI2PXMw4tY7/EThuG4FmsFrjXnkpbJtMJlckpeOM4MoaYO6pVVFikyUChTHC4v08MkbqqmU4mxGFkjAph8yY02bwRF0oilUZKTdEHEUNJGyWToGXxp4gyEImEFEnSMKYEY+4scl0BSJlZJzPGUszePTEJYtiittokovCI4BEpFr+yIvPMznlooTM7JgEkYjGpl1IQdUJqcpKsWiPtBe1KinpS4WMk+YBGosiyqH5sGd2I0DkF1PuQ9ftSI4Qv6ZEJH8sgn7ZUVaEVSoQcjFsqGUpKjDRobUgpZjkb4hpbLqw3miHgvMsgYCiTnVS5nViLNjmBJ8ZInxxKieIBofB+yGEDbiAlgWnmuBiLByCQPCk4BFBpQ0qS0UeCjwihCvsjkAoLcM3SWA/iIopisJqv2WoLhWG4cQFL2QONFNBK5nQnl70QjFZYY9EliSmEEiQiC+CqFFGITYXL5BVDljgSSSLhfcp+gUriXcQ7T1NVHMwOqK3GKkHwA1ftgquxpQ09y77L1coAWlsmkxnTZpKNLquaia2pgsONPd45Ygp5Aog90RvSeERUMHUwxMB4eQ6hRynN1y8WVO0V9fyA5Ef8oBFxgNiByrLQdfVMeEmgTIBJMFc5kXYyaTBGslyuGIaOmDx784Z20TG2A7qpmU+nTBvLMPTE4GmHFrmSDG7AhhFjKkBidYXwgXEYkbXmzsO7fP31C16dnXF+ueDk7n0O9g45OT6kMXD26ksup4pqfw4RLk4vGYeAUDrTs4O8XrURGXrsnCcW30MZImKMWGdzsErySGFwI3gU52mBjR5jBcPQMfRTvJfs7d3n6dlTXr26IPgl0tagLSjD8y9/zi9/MiH0K0LXE+JIFCNIhbUVlQTtIhqIwWOnDaHvqFTiYDYlxZ7nKhFFYJkiC++AGt+PCCVJSuKdQ0hBlbLPZhgT2WvIMvpV9ryMkUoprJJ5DJICYRUDvrBqE2L0VCEXEpYSsBKXFSlYbQj02VJgFAzLnP5sQ6C2NdgpJngUFsKSmDzBeIJJLMbIZNqwEBAIdA5cyEzLpBOekQTUokIOMLoBYWpEhHE5EE3ETBTTvTmhHzC24t6jd4kXHX/7i0847y+4f3TIdK4Iyx41C9A5uqUjhpb53hSUpW4kEytphOPh4YR49xZfDC1npxck06B1zdnS0z55zosu0kxnpKbCy0TdVMg0Irxjv4Z7j46Z3Trh85fH/Plf/i2LfkRjGfrEs2fntMGh9qaIypJUjSAi0EhRpBsyMxMrU2OURoRIZXIys5QqS8C1zqyaURO6hHADVntW3RVnV47W9zw0NbU6YOIS0SfiaKCa49SA9HmxHny2FpDK4ENk7+CI23fuMp9NkFLQdz1jewkBbLNXTLsFy87hkAgtsI3idXvFYDR3jx9iTaRdXjG/d4/95TnNXDN7EXj5Zc+z7gqo4PwKhoiaToqnTNzZA6dshs26DMN37Id/PXfs/8/HtjjEm9GP7TML/pBAJIQCkkcyIpKEVHP2quPP/ve/5vXLj7l1b+Rq+BUvXj4jihkXoebzVxf0i9eYVYdaCMYXPU8ef8zJ7x1z/3sPUHfPeHfvHpOq4Whe8xu//TaHd++wXLSozrN4EvhyfM7hI8u//NMf8+7K0Y4DQsAXnz/lP//53/Dy//gZD+6e0UwCbz065PDgFq++PuUXXz3jeX/BvXvfw3nBz5/9FXv/1094Xyb+9f07zG69xXj7hHg8chn3+Iuf/BWvQ8fdh7f50ckPIR6wWCn6/pz7d+/SD4af/vJj/tf/+BNOVz135iMf1ImjcZ/DQ009ndKvXnF28ZrPv/iai0vBH/zeHzGvKp5fXXKgI6vTL1kFsPfPCdUvOHrwLvb4HbQ+BjEhyoCpNVrMQGlEshn4GiIYidDbdFQ/LnDdOXZ6nAEvY0hSkpCkMCcOc1IcEMKQVgbXemQ9ZzKbMX94H9GcMnaBYQF6/z5JCdTQMj/ZJ/g5Zm5R4h52fgAVaBW5/5t3uKcbdLVHXLaMiw7bWHxwOD9g6gbV1FgTMUYjRGbyCmXy9WQdyoaJswE/ytp0F3R6kx9dLOu2aq1xfNNR1rybVNX1hu8bXf7vD9Il8lyfvZMzQJOtdyMpeFzXUTUNmJqtpc0OorbTtf7BR8YliCR88TNOLuKWAasU1VTS+ciLs56LRSL2K86eXNF2l0Qr2L8/Zfqoxs+m/MGf/C5GWx7eucXBtEIqiRIJQd4rSbLiRstcWCV4Rgeni3NeXpzi8NTVlBAdzvVUMu+hUvK4doHrW9zQ0jQzHj18yFsPHpJSLPPSzv0XOZxK2Qz8w3VwQJQC+/Zelop2SsWsefu8klWydolan357GFmahqQ6PuD43UfYjz4kaUkVKxaLSBOKjNJrolYIaxAllFBoTWOPGdNIDB5izCCcVkhraJoZE6HBC6KqkLYmqQkRi0FkmewwIHAQF1ycd6yunubgNJmVJEzhtHuNHCQp+hzIioYg0CIRuoDowV0NdOdLfDtgVETgseS9m0q5oB18QFcGowekaBGiRaopStlMuEgJVAYXYyoJqz5gpMFoA8EjAiihCC5gpaJpJM73SD3HjwqXKmQ1YxhavO+yB7AvnsVIRLTIAJD3EDFIosjrgqz8S0AOchBrtQ4QksjjQ0ooEUnCEZIAURELOQaR2ZIxBJIv839pB7EoMSiECyE1iohIMQN56yOWkUflzmWk2kRIpJjbWhIJkiYRchpviYIshlVl2NnaMH3Dt2znJ6ylprnRZpgnZYIH5C6w9skjbQkfong7E68z1m6CXLtqrBS2pJDyjI1tUSYQsbEiEInseR8im0VU6Xp5zEub981IUn4fv6Y+b4ao/IvaATF3r5+0DZlcvyKmsuaMsTBms4PkhqRTgtME2WM/rc9RgMEMkIntcC+23nii7J/zawoAnNZWVAXki9vr2xYEdsahJJEiYyYUC6W4BtVKGM6uIjDGCH4sILNESJMJNSGCzn1t3WYy/lP6QHn+dx3fCdBpmUgyMcpIihl9j+SUTuc9UhvqxrA3raisxnnPqu/oB0eIjonaozE5UCC6keCHzMpBEVM2nRxDpHMe3Y8IWxGFoHeR6D2+XzCRicZOsFrjhaHzDp2yJ4p3Hh89Xe/o/cioIUpDCNnwfHRndH7MyX5SQRJYW2O0omlq1sEwqqChSWtklZN6ooioSm0ojZD3CSkVs8mUE40gokXI7JU0bo3bpcg06CQ3PSaJWOTAOSCDmJltMeV+GMsglSflQJYROJKIJAKiGIRn6bAuJu4gtj0LocBIhTWCMY5UUiFMAbaIJUm3pDOWSpgwpoBOuSqhjeb/Zu9NfiRJ0zO/37fZ4lvskWutXdVV3eyVPeRwRiOOIEgXHfQ/6iRAgC4CBB1EERgOQc2QTfZe3ayqrsyq3DP28M3Mvk2H18wjIiureoCeFgcYGuCZGZ4e7uZm3/q8z4JW+OzJSZOUoPJDww45kSIs1725v8q4WKCtvRp4BuR88IlQupfkObSTFBofWrquY9U0eO/xoRM/v74qGWPqG7wCrfs6pty01N+7SCanIYTD9BvZLEXeLExPhvuMwiYBXFSWqo7Osa+VyD0SqWX/bxlPrnVgfQUY9gw3ISTJRlAGGMlQcNpSAOOdLSb1CGtlAs45ihytsKwWK9rg8VHCBbTtE4dzgpBxWUPyJKNxo5pyVJGNZtU0rNpWvKAwVMWIrdkW07KgtIoY1hQFXEZPo2DdX9/oZUtrzDnWWG4dHDIajRjVNWVZUzqH9y2h85A7SlMRfaJRpSTtFpqx9lJxVA2hWdE1kbhcsW4UrY902ZNth7OZyWRE0wZW65YcRGpNjP1ErWnbluVyTgityFq7Bh88KcliSCOM2K6VjaLSuV9oRGL0rL2mSy3We6xp5C4mQ4zymuPTY8pRxbJZs5yf8nd/9/c8f37E9mzMrcMdjl48xXdLxrWhqhwqWwyaZh3xvfdaSJ4QvPRLlXtQQJh11mYK56idZTyumU0m5BRYXrYs2xalx7RtpL08osyeKidGoxGTsqRQBd1KYfWM6ayiaQO2KKknEwF4/YK//n/+gsKKCbL3nYCXqcOaCaPRSBa/5I3MFA1GG5zWuGG+VYpgIFktHnv9pB2CZ2wMJmWpLPYkAakMV5Rlwpgg7Nq2IzQSed+0DW3oyBoJMUgBnTIm930uSciOz5EUZIEs42wGAiSwqqBUCpMVUqW0WOsobAnBs2pXLNZLxtUhUVm8yqyjp+0iLYmgEllFutQQogZXop2ElBR1wcgYxkATgnigKMVqvcKVFd/53ofsrxIPj5Yszi6I0eBMQa0dlTI4ZTG6IOuC82VDWWqm05qt2Zi6cFw0K8ZGcW9vj5GtODtfcT5vKEaWXEJ7doFZrgjrJVs7E4LKmAzWKCZ1xd3btxjdOuAsdLz//je4cz/x+IuXPH1yTLYFdjIi5ozPuU8QN5KMqGO/WRGQTvdFBKku98btqg9ZQRGyJgZF7oAYpbCC+Dou1ytWywWqHlGkLPchKGKCToufojHQNR2X8zkhRGazGTFFmq7BtZqycKxXc2HtAuM3sQAAIABJREFU2ZIcPMok6Q/1BOtKjNOUY8e7H77Psk28PD9jq64gBsJqwcG9e7x4OMc3l7xxsMN8BQ+eL4mrTL2rqcZjkcoZIwubJMUT2WCkjfdhP91cHa/u5/8rxOj+U77yUAgSfC5vfItVL19UiBm5D4rReMy3vvdtfvWLBb/4+V/w7MmvhCOtVuR6Sgod7WWLzo7depv/7nt/xgdvzTD2iGfLU95454f86Z99n5FZ0p0+443DHbrLNWdnmbMTxcTe4eBwi/034I1dgxnP+PTxEb/8xy/I48js4G3MOtBerli9PMefnHGyfcaTB5/z4vQlZ5eWh5+vmI7u887bb1Npjc0tB1XN3u17lD/6EflwzW8freDTyLqJTO/t8Y2de5T2Fr/+6AuWy4Lvfu8tJrM7mNGnfPTgL+nmK5YxcXrc8MkvPmFmjhjXlmhWXOSOWtfUe3t88o+/oHCXHGzXrNtE5Upuf+dbxJGha45Q1TlUERVrCE5sIJwCWlJYk33A6ApGDlnVeCmEK42taorCQDYo30IK5HIslh05MZ1uiwIjLKnqBrNaEcIEVd2jGkG5/T4ZR/Yakw2+e8lq7iknjmp7D7tzCOYu2Sva9hKcphiPxC5g2WDrMThDu15w9OwJTbNi/84ttuvboAwKKybwWGFE9Q+Fxg4BW6q3/FDCpxkYCqbfIKWUaVpP13qx56gLseNAwKMvt+cByIGraLzfp8d8RR+5/jnQF2RFDZNjQrnh89UVe+s/9znkXnIeApcnl6R1ZDaaklxFmzILHzmZd5yvG1xoGY0L3n7rm7zz3W9T7t1iazLjUM6Qypj+Hsg1tZQYEjZ7YvA9s16Bgcuzc/7vv/wLXpycoTGUKpKJWGdwVqNiwmgl/mH9iWol/r0Zg1iFvrIBVddv01ddL3Xzn5kvX9vN+ubaq1VfsBlerxiCONEjw87tQ7b2dynKkpQ6puWIzmdSkvnFK1EZUMpeTGExKmEimCysrGwUql+nF85RG0dGEuij1aAldZYQZE7sAUSVvYAGSQgB2iSUcYwnpdzfHMXSSFlUhtC1+LajygU2ZyzggKBkr5JSROWA7lUEMUdC6IgqENqG4Bty8mQ8hZN+FjKEJPsdZcSuKEZPUrK3RA3+3kpIilajVEfKHSkHQoaUHdkUch0GYGvAyDPoKCQUTRB1E9KHh6KaUj0QhezLUh5AK0VUGXIiEpGYSQkoyujeokg+Q/UehKI6S+J9rqXonIMWZqYKPXgkdJYrDzBpIMM2NfWb+tSrnrKSBM4eaiLHKKoveuCpt74ZAKhBXTBgBK8GFXydvxjXmvWXCXoSUqjVVYjEq3LT6xLTzXOvvNnwcy+4IiIqC5C+sQlZIF/zW7vmWz30ruvfY+hnXPVv3a9FXw1d8F13g9UGahOmKEWYxCDRffX3lco3Uk+vM8+G514NrXg1qVWrgqt7n6+BoF899lwRGfOmxqv6IpBSVyDq5vpeu9hDcCQbNZ/52tro77LT+h0Muqu3GU4lpUyIiabtxMhXJ8aV0N+NMbiyICqNCgZXFeheWpXbhrBeS4PPss1toiRLhpjJVoAklManSPQtU6dQzmCs79nNCU+PCFtN4QpSDHgUMYh3jy0KbFmidEb5FSEEuiADkFIOYwT40rFD9X5NQwFMuZ762pt7GtvfnQFEy1EkYAOarUSGarUVdDYYYg7SiekrnH3ghIA7vYlglIk/p3DVmYZq4DX6/JcRc64BdPIZajBl60fJwefLOS2JuU5+NkYLyMCwnlGEmDBai9F67lXSWmGLAgekTsnEnSAb2cDRd4IYrzpzjBBzhw6B3BvNK0D3CPbQaHMUn4rCClutqirx+iOSsshpB5aaUgafrjQRXddJKIIVyZwymRIjFYCURaZsNEaXYG1vsD8Ms8N1cyglQQMxSoITm0+4gcTJILzxGpFXDcapQxpv6mnhSvUsyOhBJZw21M4yLR070zH7e3vUdYXKCKChwTjNyekZ5+cXnF+c08WExmEVWK2ARF0UFGWFqwsm22PK6YiQM2cXl5xdJrrlEmss49IyKS2TkaMuDQ7HeFJQdQ1nq4aLdo73ARVlEvJdyzosWV4sKMqC6WgkctOyxBXC8itcQVVkKAxlPSbmkpgtXVzjPYSQRRqnWkKr8b5l1XREnShLTelKMhalvHhOyl2QyawHM7tmTQqetRnugCwaUwxEH7DKkVOibRrxqtAIwypGUo503UVfaemZrWjIUsnPZM4Xx4ynY4KH5aLho49+xcOHD5hNR+ztTIhxxeX8oh/YBdgez6ZUlWKx7qDzIjWMkZhi77HbV4CuUaQ779FrRWEtCpEdkzLrxZycDXQNIa5QBVRlgU0R1bbSzkJEhySLOWuZlAVFUVBYw/z0mNViyapd0wRhi5aVI8XMctXQhI6opFJrAJMihVNQOHzaCHMEsAwRx80Fsx5o2eQ+5Vjah4RJWLSSzUiMIjUoSvE0FG/JfrLUAphoK8zWYcxTKDGS7ytQWg/JYfmqH2Xdy+5l8jPakJUlxkzTtHRNQ2gatM7kDpp1S6sNlApnLcFYFOKdpoxFaSsVKdXLVXSm8YHQtoQMrfc0xyecrUFlkcBreiZvDyAXVcXuQU29vcvF5Sm+W7JcrLFaMT7Y62XihnpUk3EoXRH1ii5B0zSolHAp0jYrVr5ihWZr54BKgTOK8fYhs71DDppINTtgMtnh17/8mL/5939LVAYzGXGRPSrIRhxtpWekRMwKnZXIT1LqvUyHOUKhtEGZjNKDT13Pfh5eh5jS+rajWa0ojBeW8LUFmrJa/EqRIpw1YilRFIVYD6wDFxeXVKVlPp+TYsYWERMtOjkar0Uu71t8aEkpMJ1NWBxd8PT5c8ztfZQtUEXNdO+Ay9MXtD5zuVixXjey8SDSLOe0zURSvMlXUpe+3aZ8Vb395+N1x7CWuCqYXf1jePQryutG+Kqf8ZQi9cl8xipGU8XhnSk5f5uqSPz1ueLT3zzBuC3qXYdRZ7CyUNWksWI9PcMebrPl7mEWBwRdcG//HQ7uGfLZAUe//IjffPJbvlhEXh4pppVmN+1yf7RNXXeswgUnTx/x7LfPMY3m7f1btCcv2C0dmH3OXy4pTcUHB2/g2ktu39vnm+/9iLfu/ZAPPvwjnn/xMT//y/+TRTzhOwfv83aosI1jrzvk7eJNfvHbX/GQz3j337yHKcds1VNGquP0yTHJbfHBv/4+33/4kv/3r37OaDZirSccL1uMW7B9+w7TwwPGSjGa7PH4eM5/+MlPMKbl/X/xr7hz75YwUW7d6i1I9kg6oZiQGYHPsL4Et0YVEYwEmqGmJLWFz1IAjtrSkNGqYqKmQEaXiZxkjO26Jd36cya1FL1YLVDNKeH8mHUYMZ7twfQuKiQgQFHRXaw4fXzJcmk5qA+p67cgT+WhoahqYXFng/IeUwRUYfv2Y9B6iTYlxAn4GlyJpIRYVLbkrAWcQVgaqQ+Ak7lFGP9Xa1hDzolm3bFar/Ah4ooSowsZ13u0JXEl61JXW5Fr7fjqr35W3vz/df+o3+dQ1z44Z7H0CTFwJfz9A1UBsiQkx5RYzuc8evQIlSz5rmUcHEFllrFlrRJvvnmHD956k/2DHbYPd5nu71HNtlFaiS/oesUqBEiBwmjxKM6KsrDk4FnML1nMLzk7PeHxo8d88uBzfvLLj9k7vMvtw9soY3pWo0NrRRdaqvIaW+YVNshQNPq9j695i9f+19AWUiZ0EauExTcajajqGu8D67aRwr8xJKVpEHWNR4ppuTQixkxCwLBKGG9OgSssrix7NYyEW6SiJFqFcrZX/ERICpUtKjk0VvZrWUtAghL7Iptzvz7rPb1Vh1EKnQJWBbRRoFtSWpNpgFaAUCJJQw6xxyMNBodWDqdKClXjdEEEQuxEhaNlDxxzol2v6bpAVdSgI0pF0AllJCQtAVr3YHQejPFTv81U4kWuLSH5q8TTzV42X+uPG4T15i0ans69iH0ANhjeIm/2jKmXmtKXx+nXk/TFSbTgByYaok2bQl5WV+PDFSAzMK/kswaG2zBi5F7+y9VLrp3zlbzx1X/fOOdrAJq6tt6+ATCpK4+0m+d3EyTTvY3S1/m5fd3P5ms84oaPU9CrvoYV1ZA3+hog65WfNymrKd/wpB6+k+x3Nc7JSKmvreMGQE32JDdtruQ1iazFz3y4ztelrdfByVeBuc11UFfnMvx9w/f9K67r8F3zjR9f04aH68RVCx8k2Wza31d/xu8aHr8WoAshbdJeBlAwkokx0LYtl5dz8I7UtbiiL5Fp0eEmpYidpzaWkSlQlcNqeS1J/Ix26j0672m9x6fQLyejRCIrg7aKLicu10uhUHayGU4ZCOJW1ARPl/tNoLOSZllXVM7iW0WtlZhEaiFxZ21o2o4UPWqzeI2yt9eqf/RPD9c1iw9Gz52RQRNFzB0We3WLcq/VRuYqjXR4AXGkCoAFEwS4isYQht9JsqOOiKxMI1599Oj/YFbZS/BvLBhebQBKAVpRuLIHrVy/0b4KddCDhny4sfKbm8+h36STNTF7lIqopIlBjDiVkgSUmBPJSxBAjF5SQ5NU3wtTCMV0CMUIka7rCE7SgQaAblzXlGUpIQVDJ0ehRw4fgyQRtmuaRhJbrDVYa4iFERN9FMlksnM4rUAZiV/vv1umR9P1oJ2HwUxfruM11l8PxElo3WDkKL1Iqysqs1GIL2FPwdU5URSGuqqZjEeMq5Jb2xOc1YzKgvG4ZFyP+tSXTEqBW3vbnJ6ecXQ04nK5BKUwrhC2Z4hU2TKtR8x2phTjkqhg2a3pKk0KFU3lICmcThBbcgBTlYzrkloVsDTEmPFmLRVtK1XtSKbNWdJ5V2vO1g1nSqTQzjnK0lEWmlu7MwpXoG2JMqUEEmDQusa5TGk1VdnRNZq2jUSt8TliHaAzTReIIZI37WuYeHrvgizAyLCO05retLMHFZQAXTlnUpsEjO6l5MPAm7PaDOaqL5kqLMqA94HlcolzI6q6IvpM1zScNmuOXz6hqjQhNlidaV2H0S2FrbCm6hkOGhM0xipyGEDZtAFFQgzkJrLyHUujiV1HWRaolHHWUWrPyDhStqSQmRYFd3Z3ONzdYjquabxnfn7C8ekF81WDto7zk2PqUc3+zi53bh9SFrfoUuBiPufs4pzVcsF6uaLUmp16RD2u0aU8UgysQ0dYtVw2kS5ImM9qtWI+v0RVjug9pIi1vSelGkT6UZK2kiyKQghSle3V4ePRhGp7ytHJCc8eP8Gv1uJVl3MfaKMFXB/A+JT6Slkg5YAYFQsIZ7QATRaFMcio36dLO6MZjyfUFZSlw6iIy4nkW4JvabMiajEEtkYWuzFDSAIadz6yjkLnN1VFl8WIrhqN6U4WPHzyKcdryDFTlzVWW4gJ7z1tJ6nAAceq84ynM3xnuDw/5eTsnJ3tmaRdFyW6A1sYprOSbMesusCy7WhDkCqy1ixix/FyzXSyTbaOLiqynVLWO+zsJw6riu07dxiPa1YXp5yez7loPe2qk7ErSlq2MB4jIUtCo82a0BcgNvR5pdC93ylG9a4ZVwuWGNOGMSU+pravltPLHATYc85gkoEYKArH3Xv3WLWey/kcpWAynrBeLWhWa+qqljAS5dDOoZyDTjxLjNZUhWU6HdMkS11XXJ7Aw88fs7W3hy7HxC5TTHZos+bR0xc0neFg/5DoM81qxcnxSz7//CFPHz/h1p07VKN6M44YfV3Y9M/Hl48BeHvFM2tzqI0HrNbSnmLOcl2VQimL0gUqK1JWuBK2dgra1Q572++wO3vCpFTUZc3y4oiYO/Zmt7CjktFByXoK6t4Wb735PtPqgEyFLhesll/w+Ge/5dO//gfSeMLB/bdYdMdcHr9gfX6LcLbL8fmcRs/ZGx3wr3/wLjbWfPzTn/GTxw+op1u8fe9bHNUrvvnhu2ztW/76bxOHd7Z59+23OD8+woeOe+9+yKOPfsHjhx+zDB2rZ19QXWi22ebP3vpTwmnm019+wlvjj/nhD3e5s7/Pamk5O31Gt+x49Phjnj5/BEpxuYr8/LNnPMqeW4WmvD/j++9+F8qK1bKlffGY7NZc+pa5KrF33yG2a7ouYkczlBkTU4OPFhcizcUpJ08/wugVdZU4efkF2ztTxodvwfRNkh2JSb5ylFgsGZsTxABaE6Ph7PSMx48/4vTolxxMFG/uzSjSktL5XpWR+8VkBUWGuCAszzl5fsLR8Sl3bt+idjOal5e4ymBGI5TRkMX0N+sKyqpnDsijqAtu3ZvKescYoIBkZb3VF2ZAmp3u18ND4rJSsu601m42WrEv9C8WC7z3VFXFZFTjCiuFr5hwRZ9i2LdivWm9wx+b1t6Dy5l8TdKq/7NAdK9sVJP4rZq+6PUHOQa8fCBjpMzy7IKnz59R1hO28y3IiZWH+++8xd37d3j7/h3uH+xTlcIwDlnm1WbVcXl+weX8nOQDzjmmkxEpjDA58+LinGdPn/L55w95/vQpL1484/mz5xyfX1DOdjm8pymqghh6uxLd85tSxEewPePole3r72QP/cEPBbY0slwMiul0wt7uLnVds1pfoAtHSmsCUohIKpF0xmrbp6sDKWF8xCiH1oZCK1zpcGWJc2VfsHeosiQ5DWUpAJ6LGCuMUrJF4TBZYbIRC5Qo/aNbrnFFQWUNpLAptiqVyDahU0CpBlj1AJ3Y5SgCGtm/qSy2R0obrHIQDYuLNUcvThiNJ7ThjKaV9SDaUJRjbFFhnUPbCkUgKyP7JCUKpkwkqyj7oL6Io1KU8WG4uPCV2EPuPYsH366vOvK1P+X3XiPlBEhZ/OD7l98ITqAHfozDWFk3Zetk/9D7eA+7d3m9FPjUK/PidT+x3EvxjTKvBXmGc41xkCp++Tt+1fMb7ObVz+6PDejVA09f5Q/3OnDpOpinhp+5gon0Kz8rubSyVqcfX1XvVf0a4HEDwPWfMXjo6cxVYNw1gK4oXiMh/ZrjJkgXheCkzY3vfAXq3WQsXr8eG0Dv2i1+HUj3upTdG+ezAXhvvo/qr9UV7Du0zauysQzh+Svf/4Z/4FccXx8S0QOBGyNOrYRySe8xlsREcLGKsPSCdpYFrijBOVKCTnX4rAU4SUhoQE6YnKnrmlHhqHqWhu/ljVoLI6NZr/FtS9t6VEqYfs3RpUAIkdXlBV1ORDTGGmLfcVXKJGcxocN0UaRgxpGNQ1kZaEdti9EihVUWsD3VNmWiBp1EUqSTmHPrvrKsTd/JlSLmICmnGNG99rsl07f0LqdeQi4m6fQ3lj7wwTmLjlEYNyFIc8gSny0Ym8MkqWQkdZVVdPMxGE9eA/5zIiVxL0pGJJ8KRBark/hokGVz1XumCX3XirY70ctLDUplTF+NSH3lwhhJpe2CpDeFEOV79g9rbc9MGejMuWdqRFKI+GTEzNJ3GOcoCkdZlpRlIQuAlCArjKsIPrBet5iVpmkaWt+RSfiYCU3EGrXxEej6qpKk3DpUGhgi9AOdlkqT6Tv60F6uFWEH0E6pwYBS9wOq6j2PJcVJTO8h9WnGhXNszUYc7O+ws7PDZFRRZE/qhEWSw1ooxb3XTAwd43oEsxqndthe13gvgRxdEM+5w+mU2XhEOa7IFtaho8NT6YS3mULJdVfJk2NH9KCjpdBCw5+UJW0Z6EpH7gyhE+ZZjhJHXtfVZtoShk4idp5l17Ii0s4vsKZA2XOUGYtf3bhka7tka7pHTh3WlFSVpVl7IQbEDmwk9r4BMUa8D/1A3htrcjW4CuCpNgMvXAF1GjGtl0nEk5JMBrIoKq7o1dqiEAm1CJkNWSe0HeGj7019nUixnVD7206TU0PXBjoV8DGSfUPOCwpXo63D54QPHkg4J2mSOV8N6kOrMdoKuy9B13li66XamgvoWvxyjgkte6MZ79+/y8HeFj54stEQI4WxHJ2ds1g1LC/OuDg95vLkmOXFKVtbW0x3tplOZlSjMcvlnOV8QWjWnM+XJB/wnfhCTuoSbUpihiYn2t7jMYRA13Sk4AX0CQGTslRV7eDzOEyEoWeDSlv0MdH6DmMMW7vbHBxIwMAiCYNUwDFhc+UBAcoiwZD7I3YFKcgi0g7Gql3spRVilJoRzyHlFOPxmKqs2Z86dsc1ZXKsl5G19sSuI3SZdr0itJ7WZ9bK0VhNmTIxaYJSBK3oQiA7i1aWRbNgtW4wuqAuHVatcAYKY/v2ZIg5sViveHK25Hi54u6dWxzszphsbRG7BhmmPbpn/yqVaNsV5Mz21hZliDw7OmI5X2ALw2XTsn72jJOTObNizK3dfb7dWg7djO09RzErKEeWra2C27cmtM2c4/Nz6CLGOmHw9o+UJThD5iEpPmSF+K8gdgXZKJQx4i0ypPoi7TKGhMLgXMl4NGF7toUqxxTOyBgVPSkHlHIoa8E5xoxITcb3UqX1co0xmvFoSrteYQ0URUlSllWbiF0n56hl89E2a1L0OFdysL9P6lqePn5E0gV7h7dpFqeE509ZJ0MxnnF3f49sp5wfneIXnsvzE3790UfcuXuXW3du8/a77/apw73vi/kdIN0/8f7wv5zj1WJeL9UXR3hhKGhDH/eCD4HFvGFx1hC6ROvnRDyl3ebzz075m3//Cz7+xyfMZoYf/fF9uvU+P/vVx8xDx3vvfcC977zLZy8/4999+oB24rg3WXN7cpuL8wsePX9BO3fc+uZ/y879u1RvHPLn/9aw+PXHuFQy4z6tucXi/BHGJL717fexqWb+Yskviv+ILivGezNWTcH27du4SaLaPuDwnXdR2zW/+snfsDKJP/rgh8TpFl3tSPmcdPoxZl4xX7TYuubDb/wJjz854h/+w0/oVpHbb77F0ckF//jJbxl9/pzzdkXbrFBG0WVLk8ecpXNCc8apX7LUmq3bt5iGlu9vK/bemPDg+BKzf5tLClwBOXRwEUmdpVs5TB1p28/47a/+ho9//R9p52u2x7vMpgb9zg66bfDqEacLz3i2Tz3bJmvF7naFSsJUvzyPLIMmuKrHXd9k3lziyxpTjAjVFuWdqfi9TnZQaYn3S86OH0NITHdnTHbuYp3n/PI5nU+Y1QWz1DKaTUgmkVUnfmuqRhjpvYzcFRhX39yU975NwyJqAM5UX+wkQfadVKyNRSkp5F5eXrJaranrEZNxTVFuY434uIlvsQAOV6vc/uP6v1/lheTN//3hO70Qf/KNwuMf7EhSlEldZHF2yfnFGdOioC0U1oHWBe//0YdYq1AEjpsFuotU2mCUxujEarGgXS7IXubPbr3i8viY5WLBZ7/9hMeff8GDzz7j2fOnXF5c0HYtCqgmU97bOySmxLqRtHEUQtpIsq9ofcC6fj661jCkHfzTDsDCtmLYTDGajbh37y6Ht/ZZrs4JbSchA9aJLNJpYlmhbUlOihQSqg1YLE4nrBWJsKsk5EXUQAXWllA6glXkQsKqtFFoZcQaKlkkelS29bpXGKicSSGRcytrsehR3pO9J7QNvpUi6On5E1p/CbpDG0lvjbGT9ZRz5JjIQTpd6DKnLy74DZ/y8MFjIi2rrmWxami7QFGNuH33Pu++903u3rmPNiL3FBMjUTLpDCEHQkp9GKHaWADdNOsXjcYVyHb9fl+tB6+DcNc4LxtU/atITAowSsv81FswbTSPm0/RZBU391gZ8UFXyaKVBG5IeILaAFZXwJNmWELI0xrUwIiTv00PVg7f/frfN87jOmvuGhjzlcy39NWg3+bvDHGjQPlyAuxXgTvXn98AUENfyIitVX+7zPA8Srz4UpbBNQp7zfchDZtU03RFrsg5E0KQ8+u/5nVw7kaQwivX7dXv9JUA2SvA2/V94vXvd/247geYrs0UrwJ0r37ea89hAwYPeACb6/ml31WDVDddtbEvnd3N43eFbPwOiatCaYfSfagBBuMsKQaU0ljnKAtLYSFGqdrLJlkTYqbznnWILFcNhkz2DSl4dEoURlEtl7jeo07pTMxSYbOFwZWlfFmlsNpQGIszjuQDq7ah7TqCNugUiUpvNuvr9RrftKy0YqwyBI92FlN4snboqhJvBNWb8meFMq5PuEls6HMoDLZfqBhCPzZEgGFgyrKpIwngSG+0qrUW77Xet2ojQ1LXOqIS+mnqO4X4tQ03Wu7vdcaWUleyMrnxgx9W2tBolbrZ0du2I2WLUgbnDM6KXr7rGmKMEoseAjGLNNb01c0Q5Dtd6amRc+yRfytO5UI9HRr7sGHkaiCMKUHPcNP6ZiUz50TXRQog6Z5dY4yEcRSy+QoRTH9vbGlZtw2r1YqmacT7LmdS1n3FWJOCeCYqpUWG2kuAVU49G5ENXdYYs7nu1zcwcvny0AT6c9ey2FEa26fnapWxCrLVWOUY1wX721P2tyfMpjVVYfCLFcYklDVApFnPWa9ir+sXeWxlNdXeTu+noPAx4X0keWGfWq2IRAFJSFRW0RgwOaKSmLqKn17G6OH7yUCyNRrJd06e2hradS8n72VybdcK8yhFMeYk90EkIjG+vFyg1ZqsPUktwJZUo4rFqmAyLjA6UVpLXUzAKJQRcNoUBcporI0o1sLEjUM1ROOsSCUBiqLAWN0P/IP8RdI8rZIEaG0UIXQ9OALWGQF1sizdde/NqLVjSIzLRIwDH4NUhJQjR2F9loUj5xGr5Vx87XLEOksbG5bLNW0j/ppZq43MWpvBWwWsE//HwkrIBSH00jxN13Z061bOLXY4pbm1vcXd/fu8ebDFwfaUcWFY9qa+s3GF91POLs6JvsU6R4qBxcU5zXJBzhlX1+weHnD73l1mW1tMp1vErmVxeopvG56+OOb09Jyd7S0mk5rRuKbBkrSMo3VdM6prxvWI0lp6szhiyoTU+3kYJ/JGY9H9IiNl8b2ZL5ZcLOaMd7coXNmzO4SxtakM9ACfdW4jqTfKkJXc+xB6Vp244pJSwscWyoizCmcUvh8gjLEUVgnztCwZq5Iie0JULFctV7WJAAAgAElEQVSKpb2qXqWU6WKkSwLa+5BoZfokZDCFk3TDkAkxUxQlY1dTmHMKBNw3xmJsgXEFriyh6GguAp989oCLyy3u3z6kKgxogw8ZHyOrpoFciNm2Fn8/XZTMZjMul3MW6wVLv0LlxFFzxtSMWa8ynzx8zuT2bQ7e2KUoI+3lKV1zTl1rJpMCQ0SnSPJqwzT/UvVOmQ1bPSFFrxClmi5Kb2GCK2NgSGzLCmscVWWYTmbMZjskO8ZZQwwdqWtZLxfEaBg5KEYjtNWcnLxg2XQYa1mtVoTguXv7Foaas7NTvA/YcsTF5YpONXgqYoTlckHbTGmXc+zEoV3B1vY2ZVnSYrlsAkU5JZdjzGjG4f238NFxuQhM6xLGJRerhpOjI37y47/n9q1bVFXF7bt3X7tYfWXZ8s8HSjaFku/MwDy+MroWf1gfIl0MGCsFj7aF588XfPzxJ/z0737K44cPqOuWg1sTbu2/hW9mVGN4+4M7fP87B/ybf/Uu89MVb7/7Bp8+eYkfj3n6bM06Tam3dujIvDg/Y720BJ0IasR7P/gT3pxsoYsCNS4xaU6caJ7/wy/ploE7P/ohu3e+QXz5hOXxBfgGp2o+/Ob3mY082VYUU0e1t8Xp8gkXXUu1tcfhG2/wwY9WPH92zv/2f/0fnBw95e07W7idMXlWoEczbJgzmm6zV95i/+BtPv7x33Jx/lfcfvOQs7MLsldU9g2axYLLFy84O0ro6oDJdI+kLffffYtvvPcNlI8o3xHTCuKc23s1W/fuo299g6RHaDxunFGuoF20nP3jAx5cfERQpxw9+xX54oiLL86J1rP9zbt8/A+/QLvEW2++R1SWk+PHZFsxmkxJM8eozJTVLutTzzzA4bvvc+vu+zRNQdOesHvHoAgoCrIdociEFFgtznj66AFnZy/5xtvvMTo4QOlAaI8Z2wnTYsTqIhASJFWgrKx8Yw7E3GK1ucYOuLnRu4H5DhsX/Ur30woQW4SwXtF0nQSPeU/hHFVZUdXVRvrkvSeEuEmif5U1p3hN9/6n6O85/87N1+9/iPSLlImLFfOzc5q2pdYQTCZbmBQFl6uGk7NTLuZnhNAwq0u2bIFDszXdYXVxzvnZGfP5nNPjE14eveT5s+c8f/qER4++4PzsnGa9lnFVK6x1VNWIrd1dJpMJaFi1a0llL0phzgUPOWBMJqZMzPmqSeR8NWd9mVr3/9uREZWI0RajFXZkuX33Nvfv3+fl0XPmzQXWWZRRRJPBGUxRoVwpflxtQkeNyQlnwRWa2jmsE8Zc4QpKW2JtQXIOozM9nNFv0mVOTggZAEzPvtEYNdAtFCdHJ7x8/oTTkyNSu0anRGob1s2Kte9YrOYcvzii69ZoPfj9isqIbIVJo2RJ4GPi/PSSxaLBI37QTSf+zDv7h9y7f5+33nqDO4cHTGdjlIKsREGRcyIi/FMpvEZ0T9AYlEa53xOKn/bVACCAWy9B5Or+3ywLcfPJ/hAg6+rfmwd908k3f+fGr2slku+e/SdYk6yN0IasDapfhw4m/voa4GgGtdxm7z14Zpr++14BQF8FIl2XXv4u77nr1wxe49F4441ff62uv9dXfd5wTuZa59M3xnE2Sa8MwNvAgOv92VPOhBQ3BYlXTw3YAHDmlU5+hVvkL53zq+c5PF4F8OAKELvOKrz+Xq/73tef0+bLoO51jOR3gZ5XoFx/77mGeQzPDucvbypLr+H/rtEl/5OltdeOrwXolLpWod50IIlIDrmvWCnVb8p6WVHh0MahkiwQYkzEGGQTY2TCVWkwilcb6U3O6SrBUkkggE+RiKSAGusoixLlCgpX0aXAeJoI5L7jKWIXadZrQtsJ9bQqSFrsUDvvaaMnNy0+Ky5WaxnglJhKog1KJYSuDyiJozYJstYCxigZuGBgpfWbol7GZ4cIYqXIGKwdUkl6tJlhgSODmEEKkAMDgt7PTCv5TGF46Rto7bBhUwrx8lPXe7HaeNAVhZVrk8W/LWcD1kkhUwmAQcpYpdGu19RvgL6BJafQKm6kvoN3oO4j1kdm1DfMhqaT9E9BtDVZpb7Til+BUTBQjI3KuL7SYUtHUUrCqzaarLMw8KyDzgtyrw3almgr4A1G2HShi+QMPsoEY5U4aoWYyF2QKmw/KA/JrzeSdvSXO3T/RYGeAagUViusNThjhbGndD9xJawuGZeO2aRmNqkoVMavLvHLyKgwlIXDuUIYal7CEIxRGGM5Oz2W++VKnC1wtkBZQ+Us2jlqK76FbRdpYyQlCZMwqr+GzuCl8/QLAsRDwYg8vEAxKy16UlMZTRzHXggqG/dV29C0geV6xWLd0HStDMi9X1VdloAiYAlZ42Pg8vKC84uOTEftNIcHB9y5XaKtIRLoYkeVKwHhtCInTYwCAKdED96YzX1wzvWyVvkOQ5qtLOsNTlu0QYJfUiHXzg7MucEgfrinbrMAEp1NRNwUhR2itVTwBYAsyHkEWvqx1hqSoQtq49claUK590QUvwoxHlVopxmPxxRFQfYR3zUSDZ8jZVnitCH5RGUtP/zet/nTH3yICw2L8xeo5KlLTUSTdKYNJeO6oPM1k+msl1dk1suGtm1pQ+Do5QuOz06pRiP2dnfZ295h7+A2Frg4PcG3a9YhsbqYU3YeZSthPlmLsVZk4VoLsJVF7k3saes6E1XuyRB5k8DsU6RLgdW64eLyku3VmjQkYilhOKA1QcoEIrGwBc44OmUlDUvrnuWV8TERwlVBQaqIcu1Nv6YCLWB7TqTgyV7JuG8tceKYG82KTGkvUUaCLDIKT6aLgbbrWAaF1wozqrFZUWlDWY8oqxHrVcKgJdCj9WiSVLSVsCzr6ZR9N6I1JQ8+/YQvHj1B58ytg51N3wLNctlgdMa6kvG4RFmH0oqtrSnaaVbtioCnrCui9/gEJ2dLfvzjX7Am8IP4Idv7jtid03QrXGXY2plS1RV5vZINc74+Hg1pWDc9f2T8C3TBS4I1fZhOP1elDFo7jCuoqjHKJ8pSPOVaJQFAKXtC7LiYX3B51lGZxO3DA7BTGQd7RqV4m1qcc+QYxAsugkZTlxVlMWbhNapr0SozGdeMRwVYwzIEjLVs7+3x8NkJDx4+4f4bd7DjXdxkF7tYEtuENYnRqMSEipAz7Trw6NET/uqv/pqiqvk3f/7nHNw6vIlavnpcX/v8VwvWqZsbG9WDddcQDh8SF5cN82VD55ccvbzgydNjXrw84/MHD3j65BOOn/+a0p6zM/uQab3F/pt7HPz5B5iypO2esdRPOHx7h2K0j6ornl6MCNnwzjf3OahPOP7pz0lhRD1RvPn2Pe7NDtmqF5j0OVwYLp9b1k8ekE8/52T9hAcPn/OI37J39w6l2+Lks3M+/ughl6eXEDPPXs55uD7FFiVbhwXHiwc8fPKAu48+4P57P+Bf/tv/mXW75NHjB/z0x3/L/OSER15zOfe85SKzgxnleEx7OqfxsIyO3DV8+73bvLXzJi8//ZSTi8d0C9gKiUvn8FnDKjLbHnF3e59JNsSjM1YxcLJ6ycOP/56tccE7/+J/RCnLsmsodCadL+leLpjlMeV6wfLZF0R7jlms2c9jFudzNBEOAsenL3l5/JSj3x7xzne/wQd/+h3sdIdqfAudHMpWqHHNbj1n1MFoe5diYjFmTWHGmG4XcgN6Aa7FKBkTuhgYTQ6YTu5yePC2MPjDJbaYSfiDsrhqC5X3UNoQw5pIwFiHVoaoEil7SCIrN8iYMwSGWdOvP1VmI4cdEofysFNRhOBZLC5ZrxtcUTCbTinq+mpt1kvFjFaiZsmJFBLG6s1mR91s3TA0734P9CrL7g/V9Qf2x9durn//T2HovCllmss587MLKXRqWIUO0zY0XeTi/JSzyzMuFmcs1wvOjOawrCmxPO2+4PPPP+fZs2ccHR3x7NkzTk5OOD054+L8nMI5CfwzGldW1FVFVZdMJlMm29tsbW8xGo9RWhOSxICkGAldhzEyJ1xnrPyXcgxDnylkzUMEbTU7uzvcvXubL77YZb46x0RFsAmvIskpTOEw1or/pokom7FZ5rCyMNRFgSkc2RY4W2J6EbVC9rAxSrE2I+ELAU9QWeZZElldjcEKhU4QWs/56QWPHnzB2fERfr0G39GFlnVoyCoROo9KmbKwogoC2WdGWRdoo1FGiwI1Z2IXaGODVw3GGfZvHfDt73yXP/ru9zi4fQ+jLV1KUr7J4qEt4QiarIzIQ3tIR6eEuuKxoQfSRh+a9jok6XUyztcdw29eJ5fAFUDTDzZ9kXGoBct5SnigsP5yb2uSkRTQdP18lLDFZcl0E6DL6oqYcZ1dp1TegJFX5/O6c7z+nV8DPr3meXnxAOLIFbj6rCxXvX/v+Mr7Xf+sV9lkr2PuDWSQHmX7EpB4XSL6qo9bIovl12u+93WADtiERLx6PULwN1h0rwfEvsw0lFshykhIN+6Duaac+DoGnOzV4ArAuDFryB7o6mx7kHloOa/8zrWXXnnOKUhyvwQHkYL5Rkk0gHa/x/G1AF1/STYL9IzeGI6HnMVsP9n+QhiMVZRVhXU1ZUoUXQcqURSWyWhMVThUjiK1UrBeLCW903e0PpFSZE1A65akFKYw+K5Bh4S3LbEscdpibUFlC3xoBPhzDls4VAFLpfHaknPElQWZQoy2Y2C5asUovEvMV2thD6FIUUziyUp8xxSorPsL0OuNe9aUIdNjIT3yLGlOOdPr1XuzeqByhTBVYtxQMWWTJUdSm166aQu6B4N0gtZHhtFcKYXKagPOaS20UqXpqcYyoAqLRa5JXRaywe8aog9EFyhsT93VhhRCn9popCMmiD0oobVGW0WKhqCuNNdaKaLqO74xhOCwXYczWuK2ryHfZeEgZ3TvETgw8sQDyVDXNUVZUlcV2llAZJbIrWAyHkmFv+voIhSFmNNmbXDOcX52SYiRHH3v71eglXgnhhAoC9MzyixKSTUkpcG0OPcDtlzP3K/08nDP1RXCrpRI85zV8lBapM0hMK4rdrenbG+NGVfSvkPX0vmGJhaEYDBN2/fz1DMJNRpNWY/xXcdy1RDCAmsdZVFT1iMKayhdSV2W6MrQzhOr5ZzGB2LKWFswGk1Y604A6BBpfMCnTNIGo6Fbr+jahuwbTPI96WagH2VKW+FHie3tGp8ybfA0bct63dL5Djpou8iqi+QcNjKoFBXRw9lqzfZ2EC9Bq+E0sF4v8dlThojRjtB7QJQ92DeMJyEESWm75rEwDL5KycAXY0QZMWZMKaCUsKuum5EODE+5b7o36LW9n5ZsDFbrtZgbl+UGDFRKMZvNKMu6Bxoi1gbGYzlHHwI+ekkslt4qsfQxYbSccwhBpNlVRV2VqCRpqzl4SmNRfVBEXTju3r5FWp0zP3tECC2usFhnWYUWbTLT2Uj6lZXzq6qSwjiWS0NcLYlJwjEuLy64OLvgoXrI/tYu79y/x+7ODqP6Nl3XcHp+QpfAasc6NDRtxK7XrBZzRpOKdrUidC1Wa5RRKCOTis/i+WNS6mXWiS5mIkrAui7ig4TkyNioCEmYnetWZBQm9z4UQUyP00arLzYBIWW6ELFmAFhlISTkeqk6DwUgsjDuSFFywJShcAbrNToGchSz65QiXYob78rgA50Rz9H1xSV6vaL1HV3b0bYt1tZgCozSdDGRdBKJq3VyjlnRpcTae1xV4VeB1guwnZVcK1dWjMZjula861J2jOuKqDWLtoGcmc4mmFpRVSVn7RmqUXQ+8NvPHnDZXXC+PuI733+b3d2CFDrWvsWnRBMT6y5S1iORePXXQUI8vrwISkCMmZDkAVmSrbMsVGNOoA3WlrhSEtJUHwoUoidGsVZAwWrd8Pz0BBUa8Jm92yX3793j9GLO0xfP2d3dZXd7hxg8vmmZjCZ0nYec2d7eopjt8+jlGe3JOUpLX0g54ZzGGYOxhpw1aEdRT8i6QhVjgi5IpuDw9g6jasHl00dUzlBYg1GJ5XzBL3/+CyaTCffu3WcymVCPR7xqSv7Px7XjRjNRG7wE+g2ZAm20+Ck2mvnJBb/45af87Ge/Yb1O+NazujTosIMlcfTFKS58THrPsuoCJ6s1Dx/9I+dnj9ifVNzbvc93vvXf88cHP+LXT+Z88uQ3/OTH/w5z+SmjyS6n819z9vEt/od/+QHFzoLOnoLdYeLuMjqccdoqTudf8NnJS/zjf2Br/y5/8t/8T9Q791gs12g7Zu/WXT7/3PPi6HNGo5JffvYx56snPL8448npS6gnjPfuMbWBerek8Sd8+rOO44s5j48vmC/XfOvtuzi/Zr5e00VFWY4heeaXS4pbBXfvjnnjjTfgkxU//fg3pCzr2r3dLb73zdusjz/jf/9f/ldsUfDhH3/Iu3/0Fs3ZKRfPFpidt3j54IJffvRb7sxmfHB4iDlb8MVFx69/+jG/+fSX6KJhe+z40+/8gPc/3OfsZcvJ6Rn3773BO+++w5Onx5yfriBrsqtx+2+AmoEqQUeq6Q4lDqUmEtwzsrhiBK2FLpPzktheEkqwxZjt2S57WxNSsFLgUgWyjV2QQ4exFUaVQCWAhhGbg0gnFi5K95thTR7GFvJGPXGFkCUgsvGIRYCl0ES6zuO9bNT29vdxRXFNgsRGDWGtxViDQYogQ0NWwwaToch7jWnRz/v/H3tv9iRJdp35/e7m7rFlZmXtXUtvaACNBkCCYxBBERhyTDJpxmTzqn9PLzKT6UnSg2QjyoZGmIYcggAIgiS2bqDXWnNfIsKXu+nhXI/MrCoA5GBIjjTytuysiszy8HC/fv2e73yLLKPleVM4o/9RAbpxvTgehdQD/wjzj5J1ebfuaFcrYblkSbx3ncOsB46e7XF8fkgXes5XZxyfnbK36oltx9Pn+3z22SOOj485Ozvj9FRCsbQuKoCqZnt7h2Y6oWmazVdVV9imoaprqtoSfML7oVhhSBPIaluCiRzKWCE6cAGk/KewxbEuSol+2dL2azAaawxGKebTGcEksTlRWZj0tiIoJQmnsbCMrMbVFc5VonIowKQPCV3WKRFfXI6EgKJNJqiA156gAwYla6JC/8+lmXzj9m1h8WvLh1HxfP1YlGAxgjMoY0UxoiI5aUIIpCj3oEL8xK0xYIwE9CnAKAnHcFPu3LvHu196l3e+8EWu794qyizLtKrwQc5Pzrok4kpRJMo5CXERiWdCI7XhixJA2S6DH+Mc8OsHgYA9SmpvdfG12X0s+zESXiVAmy5fFwBYDko+Q5bVZCzEhZEVl1USAs5I2igyz3wJAtsAK7y8znrV9ir55Ss/n3oZgBrBRzn+8r9XsOG0fsU5uQSmXQauxrrm8nvF4WWJ6uXvG5LDC8yu8dxa514JMm2udh7PF5u67DIzLee4SbqVz6NfwYaTuvtqAqwq9Z7ZrHtfBcBtJLa/pEFw2QPu8o9fBlflty8uyAtDW139dyNItzkXSm3w5FRYdC8ezS9nCv7y7VcDdDkzDL6cBOkUOOdwOVMlL6CPD6xiLwbftcWniHUSxa3DgCZhSGhrsU5TW0s2ihAzdjaXaHUTcLUYr7a9l8TOHFi3LZXTmKxYn69ZHZ/R2IqmmWKcxadEMoo0eEIvcjinNdZW+BiIxmAnDTkrhrbDTAxT6zA+k6oJLFdk7wGL0xXGOXJQhDigkrAlRkBtRLtl0OgCOolhL0qL4bmSYyUjDMPiGSSTgRKPvZwlzUfpAgoKDdMVs3Lx7MoyoXDV5HC8JmKeWAZCTAw+4P0g85hRnBaG0c7WFsZoKidSPJWlEzOCbwb5fVu6lENKxYtI5MwauV6qrqWgDZ6YUlkkGRSJSeMwZk7bD5K8GD05yeLNKoWzGmKRM9rxu2OxWAi4MampKkfIAqqNkdgxK8SMWIpcRxbgYPBgJGQi+CTgXdsTY8J7OaEVwnIa/cLypiGhC6h6cYNI908mlxDHm128+JS1V24sAWXBOs3E1WSvmNSO2moxcibjKkM938baXQYfQCuij6zblbDnrIEw4L1nNpth6oZ5I++TEgSf6PqA95HT01PxDNSKoESm61MmoFCuYra1Q1Yt3iexjNWObCxDVgx9j8kBZ5PksxcfKessMUSW646mmaBImKxonGXHTUEpuZb9wPJozbodUOsBfKBLIhNUSu6xnCLGVbx2/zW0hs+ePOL8/JTuSIAWrSsUZhMOMD7chQYPQycrObWZqMokOzZ9CkvHFKr0hfGsTLzqUuflQqo8BnuId2MMocxfF3TsXCbS5XJJVTXUdY1SiF9FkZVPqoqKSNu2dN5vHhDiuThI8TGIwfW8mTCfzZk1NVU1I/uBVMIvJpOaupGiqO2XVJWjzz0+ijchBrLOwuSzCrTGaEMIHgXM51Om8yl9jHQh0g495+crludL+mXL0f4+W/MFN27ssnvjOpPZgkym94m26+mGxK4zHB8fs1yd065WmAw5RXzMHHcdM6dJ0bFaLUlxgJzpY5Zk4cpRNTUpJ548ecJnn33Ker2W2VAZBh85z2ve//mHGFehtKRFO1vRDwNdiEwmDuUMKRvQlqpusASszkSjGFYdMQWMlULQ2QprI96viANEBlRytEMnYLmzOG0YZwsfBk7Oe1wFN3YW2MoW35yOWk+kSdEPxBDBZhpXY42lzwUcHruExfx63Q+s2o6u9xhl6PuBvvdijaAt3kcZN5Vj2Q4s1wJo21oKGxN6cpuwxnBjZ852rjl6fEpqBfA9ODjgB395xtn6GbdvL7g2b6RJ5CoGDD2lkFaGyaRCdytW52e0AWazLRazCVrbspDWIgV3DlOCI3LxHkwKMJo+BtbDgLY1M+ewxpExGFcJaNq2LNcrktHi8doGPn30lKXXmMkZi+1r7O7s0rYdOYtM3HvPcrliMpkBirbr6NIJfhjEN7br5D5RFx3Y2jmy0mztbNPbKZHE8+Mz2iHx7OCYupqxtbWFP3S068hi2nC4lHsvhsgHH/ycn/zkx7z5ubdpplORAP+Dslj+X77lq3/c1AAbWY9iNnVYZxmGCNnQdp7TszWhs2zbL3Fn9+vQfUq/9yFPznsef/hjDof3OWfC2+99iZ0bX+TTRz+gmUKz7cg858lHf8G//5M/oj39gDduZ3L4kO7ZM8zqPr36iJ/qY7Y/f523/ot/jt2dQdLcnN/irWc7TKeK7fvv8PFJz8HpEV9797f5xr/+16i4zZ3Xtvj2v/tf+e7jH+DPBhZpm+W65bDPnOZTYhOJlRTXwQBpzVs3p3zt6/8Vh63mR9/5Nv/b//G/sxoUXW/haMVuVfPs+cD3/uYpizs3+crXvkntdtnNT9n+sOVn7z9iMTV88ctv8fnXbvLhn/2c5x89otqdcOPJnHfeus3E1Ryvztjbe85fffBjvvOdv+b+tZtU732eu5Xhp3/7C37x6RHrtuWt1+7xz/7wG3z1W78PrSEcdGR/gJ2ccdp6tvdb7n3+i8wfvoZyc6jvgq4gD5ATylxDYKrC3EkO5dcQ98nDKedPPuK0O+Pam68ze+0G0KCUk9CH6CBDyuKNpe0EVAOqgliaklqjlIUcrzSOZQyJzYkuRbUaR9bolXnFElIA+uX5GucqJtMpVWFCq7EjWvYzNupCCFRlza01FDPkchDje3HxfiCgkBqTp1P5USYrYRS9cBu8tP3dWF9lD6XwghKO9I+BQinN4FsePX7M3v4ezBv6dQs+cLK3x9njPZZHhxyeHHB0fsTJ6TGrgwOGpwecHR/z9OiYPkitJhZEmrppNizq6XQuoXrNRIgO1gjjvnJUkxpnNUPXYkxFUzeSmK6UBCBkaViO1y7GBK4ocfII2v5Tzc8jUJTpfcvENOjGcni4z8H+HilFJs2EaAJaJ4x2TK3UfClrVEyobIhosnWg4+a5qqEwsaQOSUnT9j1LvwZbglV0wqcObCSZgaAGtEpURvQcZE2KCVPV5HZg9+Ydrl2/xe1b9/nh977PJ7/4kHV3Tu9XJB9JMW28GY2pMMpIo2wYmEwnKKNYd2t8LEnIVlHXFQ/efovPffGLfOHzn2exc03WB1EUYzlrohewNoaEMQ6s+NfayqL0SnCHnMgxkGIkx3iJiTWe6QuQ5iVQI8s9ppXUq6OabHydAvJnioyxBLDYJN7wWktllQoIn6I0dY2TdVuQyGthVTkrAGUK6JjIWmq/C4BFbYCUy8e9OWQlByz1SaktCvnlAiS7es9fDRm4INBc7Oti31eBq5fnnk1tdAXAKXPYJbbceCzGGLz3m7rElzqFci5jjJh0sd/xdXhZWvsiOJpzLiqMi2t2+esl8Cnll/Y1Hv/IsL0Moo02U5fP3+XjlDr8Kph1GcAb92XtVQjr10lIX2QZvugBd/k8qLJ2TWRS9FeOLV/uQmRQWRSR2WjEA93I+rvUuuM1evH4fyOATjpkqdDZExBQWbzTjDIFMQ2Y8gHCkFmnJUm3GA0zazApgXMMOVCphG4auSeTeG3FmFHaUNkanSAxAI6YPTvb2zgLNmZi71EhYgpDLeYkKRUleEL8xGTySEPCp4B3GZuMMAYqJ/4apqaysLCWk2VbknqALFRoizBwMsIkGT1wR+M/uQ3lz1qA/7L4FYlY1kaKJsCri4j5VDzdUpZJXqkyqbww1DcofkyMCZWbm/byTULCWVPQd/H8G+XC0QuSbbURSjQNKhWfgRA2nRCtNdobrB3A2IL8CiCitWJY96iYUVGARqeLqeaYkook5I6U0xwFCJFzo6mMljhuH0g5biYFY4TlV9dO2DRZkmGtEomrGKmOfghyfowyQrUuSPhgDcN8gmmNMPeSJ6dIjJqIAqMKMCOpu0obtC4A0SiCGMMJSmiE5urkMn4uYfyJ/5xVAm4En7l5bZvppGJWW6zODN1aHhipItcTtBb/PEXG5YxJCW2kYxxDYN17FltbKG1ZLdfEmKirGu8j+8fHOCPjRzuNrRy2mTBzFVumAe1Yrj3NyYrlqiWGQFSGLkHlAyoFGpsFLGMAACAASURBVBXROZJ1wtiENZbZpAYFdWU5OT3FFy8LFStUCmQrXjaVymwv5sxnmms50WdY9oHjsxVHx2ecr1fUzlBVDdPZBGuhbqwEcHSRkFN5COtLZqFXu1ObyX4zSV3tgpgCtAY1PuiuRni/3Im4MHgFSflMKWyAPVXSlBOJlOD4+ARjHMYUQFZpbGWYTERyPGmmVHVNPQzEkGmHQdI0vWdIGayw+fpVy9nZCZWx4lGYKUl2Wfy0RnWZVqBF+p9VksTQCCGKIW8amQlGkhRj1wOZbAzaKCrjMJXD2ZppM6FbriFk2rbl5OQUtGYrbVFPG7R1uKpiojPWGk5PjqTh0vXUdY1V4HICr8EqgtakAZJgykQczbwmRY1PiSdPnxFi5OBon773WOswShFzZuhazpZL0AL6GGsgJrabBlxNyIGEJSrD4DOVA20dseskvTVLjtpIuBOfuoRRFqMsKsn5VIAyIpc3WlMZS9VYpkZTq8ykqamtlePPkUld0zQTJnWNVZrzemAo/pSVc/TOorWMQR89Q5AERFfVTOYLhraDviNlLWEiPqCVYQiBJ0+foHXNYrHLZDrDx0jbrkk500wmTMOEyURRaZgupuy+uU1oYe/gmJP2jOXeMZ/tfcB8bnnn9Qc8vP86s/kt3HQbXWu6mOiHgfWy5/TkiHa9Jpma5AND19OFxMRalLYEJQVSyomMlm6zNYQY8SWdM6OJWYr6rMXrMyXxsslKgOGQEt0QGUJiUle0nefxpz9jMtti59ouxhjatsWASPKdwxRQL4aAqTLz+ZSd7S2O9qXxYoxh9KTRWliIkuDteLb/nOd7h5yve5S2UiRaw2xaobuKZB0xHDP0MmbXyyWffvwJx4eHXL++izb2PypL5v9rWwIhNRVS/6X1pPw8C4ujrhS3bs35V//dN/nWH3ydg4OW549XzPOMRd7m/R/8kB/9cMX+kw857o4YJltMX7uJbW5w/d59rt++hfPP+dPvfIfDx5/xs5/8jJPnT5kuMgena05OD/jqg1t8/eFDmrOepycHHJglW/c+4e5kDqold0cstmac7J8xnLcstm7QLK7hpgve+tJ9cpqhbc/1B/fZvn2TDz94H2UmaKZYHIvK0Z0c8tcf/zmdb7lzq8KsEsPJmrT23L31Nv7zv8OQHZ9+doiOmne+0HB/EvnZx7f57gcf8X/+u1/Q3HnIV79yH33b4yeWatawWh/z1z/4c9Y/m7O1WrLdbGOcYcs1HD/e4/HHz9A7c96+9wZnh5GPKkN/eMDeJzWrtObg6AzbNNiouHV9i8+9eZdatzCfU914nbxsyMcfcn3nJjtv3KG69hrKNTCZkkxTVkHCctFIOmFC0rh19qDWwCkHH/+Yp5884cGXf4vp9kNUZ8m1gPEUFYawzTUxirLE6AZwF6aeRSuhVQWbeLGR9V8K0BGTo9gSKNl/DIGh6wjRy3rFVMwWBqsF9JGG5wuoHwXsgKtr3c2WL4C6oZd/bq2wFUKU4IMMyjpsPZEgCiMN8c1A/w+cJHIedSnjfsqCvxTHl6VW/yBbBmIUuWLvqesGXdWEruf5p484PTri+NMnnOzv8fT5U/YP9zg7PyGcn6NOV/ghEKxBWU1T17iqwtUVTTOhbgSgm0xmWOc2LJfRi9rWNVXtMEoa2MWhW9RCSH0gz4wo7O2YibGArr+efPSPsylQKZHCALqmX604Pj7i/PyUkCKuqaldxZA8QxKwMQep06osvnWrPKCdRjuLc9JozmSGoSfHnrP1GSlBGwOnsadyC0LoENsU8AwEHYjaC7MLBypjlCPGjB8GTFUJuOUTt197yO9+c4u7r73OJ5/8gkePPqYrgTVx6Evytnit6UozqxuOz45RSjHfnuNSZt2tmc22efOdd3j3y7/FjTv3uLa7S1YQUkBlTc6G7IESvpBLAIMEQprS+BpZR0kCq0hl/njxNI8NTg1JpH6btNACXOXy3wXz6xKYooR1mYsaTI37UuJLGVW+hM8LcERO6I1fvCStah1JRtiByURUNuSgS40u634BXMY6/lVMpqtzj9QN+oXfudhGgOhyTSPfR+BHX3n9RYAolBCGy+955dyqC3DuMuvt8hew+fkYoLUB5HLeSKIvM81eJc+9/JVSkvOmx+CDV9/Um8915ZgvA30vv3YFAPt7NDp+GUPxVduLbLu/TzNlc6zq6vG/JMNNIi2/9ArjmRglwtqIeuiXfZbfKCTCacUwxpfmTE6RMSDBaMX2Ys71a3Map4ixRxtDTIkuCDDQGIPRAVQmDgPr83O6dk0uAyhjZWLPoEIUrl1UKO2wSCHVOMukcVAFYu9JQcAnlRWqErllyDJwQwykMCaFBvb3j1CVxVS1yBy1IateEnoKohnHFNUoyyCDRitHVF5SLSnFdkFJR70xgrEX5F9Q5oBGGXBGJjiTIyKthGwUORsIxTA0JYyxGyZQKhOYTIuX6Zwj3V9vbjBjFcZcArsKgFQuPaRIGDxN7Zg2EyZNjdGa7D1eRaIvaT1ao4MiFjPxqHKhORuM1tSmJmc510SZLEo8BmQBfMSkPJFTIMZAGCSxyxorSZvjuM1Kzp1GfNyM+BnJTRCBXIz4nYyN6AkxbDwCRj25Kai5IrOYzrDKkoKk+sbsJeGoXJcYSnBCkfyOnQ0JMinLzwL4iS/B1RtJl1WJNcIcnVQOzRg3LmBk5SxbixlNZUihJ/kBo+T6ni/PUNaJ7wQZW1VUjaPRmtp7hiEwRIhhoIuRvh04OV9vmFxb21tYqzFOYyqLcYasDDErQjAoo9BVxPlMppdrZ6yAJErTWIulJoaA7wc5dpvl+kdPZTU6ZWF75kAM0qGKMRN9xqop1gjYqpUiG/CpYRgiKWa0Skyqhvl0gqlgPmmoK0vbRXLQhJRR6rJHwgiQXkS1Ky1j4+pWWm+wYYtePDx4CegDfeX18T2DD6hxbFmF0hmtM0RFTBJaMfSBRCjSZ4WrbZF4BqblIWu0w9YKtCGljDUepSQYIMVIGobC+vVYqwXI1lpYXjmxt7/Px599ghmWhBhwtcU1laSwBklRlk6fRlsrKdi5LMNyLl0smYNQirqyGBpUSKiURT6oLWHwtOuWSEK7WmTK2hEGz8HzPfq+Z/C9yMBJdF1HHHpWCpzODO2K6CXYIhtLanZoo+K869g7PGC9XtF2awwyD9V1jcpZxnHfE7MsWKyt5B7wgRg8s6lhezFDuSmRTO8hWgHQQwnYGH2LMiLpTBF0Y8TnLgMRWUSWYk6jIEa0UtRNzcxZFtMJs6bCWYW1itD2EAKNnrLY3iYrx9kAPRI8Mn6JfEvLTKwMdW1ZzKE7XRJ8wNpK/JlipqlrmnrCctWSYsf2tZtMZwvWQ8DkjFEQhpaYEwbLtGq4ttimijXt+cB0VnMedvj04FPaZeb4ZMVP+085PfFM56c8PVyzDpraVbjKUVeZ+WTK1sJzvvacnZyS64Bd7KC2tITqFC7hmLaecyYmSbRORov3qKtIHlKQYB20Ld50jmAUxjlcPcFVA3lQTGc7TCZzTk9+zqod2Lm2K8x1Y0UaZwzb2xL6IGzDjhQDphJgDpVYtWsG3zObKlC2tL8zjdPUtWIymTKZzlHWYqsGjMX7gcVizrXa8NnempvXb7LYzpjK8YUvfpGvf/13uXHjVmEQ/qrVy3/mmwKl82bNOK4wlLqIiaCseFCKyUQToqVuLPfub9G+HXBRcc067t18Da3f4Pt/uc9ET7j25n3srR2G6lOeHBzwhTfe4+7iLd7/q3/Lhz//EcuDj0nnJ+ydJdJUc/3GDK59jqfxBt/7ySc8X55yf+748INf8NMf/S2nfkk9cTxotrD1Ao/m2q3bvP/RPn/27/9HXn/7Ie995R3efOOLvHnvS7x7/2s8/puPmDnF7Z1ttlfXmO0HPvmT7/DzD57Q+8hsWnPy7AlvPXxAdrdgfof6RuIdf4sHW5HV/gmv7RywPf2MVt3krz494cc/fMxi9hOeH7YcD/u01ZJ+WLNwC8LRPofHJ2zNd3jn4ee4fnfB6w/vMaSe1Fo+evSI55/9LxwdnRAPDrFU/PRnS5pKc+fO63z14edxqceEI85+8X0m7XVUvkFdv8Hp6TGn3TNuffU2zb03yGpGSoYQ1nTrR0ybHWy+gaKCrEg6EY0HTolmyXB+wuO//RnDaeTeu99i+8E76MlM5rRcQh5S6RqhJFUyLsTgSE8g11fHTpI1oC4pqjCugS9kPWUQsWGkZEMeMkOniclgTI2paqzJZfyVQXnp2T4Cfygp0qXYUWxc5HKGGAjdmtPDQ44O9wl+wFor4UNeVCxZaSazBdeu32Sxcx1d1cL0AQHzfoMtl1M2fi/d+mI58A+MRJXz4oeBPgXqSUMfPGd7+3z28Sc8f/KUo8dPOT065PBgn7PzY2IYmKCYYrDGYpsG3dTUjQRFNZMJdZGuGmPRxggRQ8lzUFsjHtauorJmY4mjFFCAuDw297WRdX+po1L6u8ka/7E2hdQLk6Yi+cDJ0SEHhwes2pasoGpqQuoFZU6F1ZS1NAZ1TTaZmCPRBPHpjaEovDpW3uP7SGoDKSv6lFgpz2KWGYZOQC6TCHkAAsI+ScToyVEUVBlV1kyO6BN99EznC16/fpP59jbNYs58e4enTz7j2ZPHtD6LzDVrsfeIgc5HTCUKkD5G0Jabr73Gu+99mXe//BWu375PVc1AiQ97TgbtHAona94sii5ZWxeArtQfQpRgU3cJ0JPQOaHSJaBJjXj7Bcssl/9nSWSUdd0l9tyLV2pTh6lLTCul8DGSlcjJLwMdKcq+S4zK1b1tAJYrCRAbWO7lIToSkEq9XX5Fay3BZi+APJebCJeZaK+Su7oR6xiZVOX9RuAvpMhlph2je155wacLi6zRDmhsDoxe3i8CeCPopbUmRbk/x2O1ZgRf5T1CSYkdT+IVoC7lzZryxXP7y5hqLzLQXpWyeuXMb/79Cwy9XwGo/f2Yyy86kr74/eL9R1xnnOjzCOFeZr0VIg+Xz7OSxnOpSjc2EDEn7Dj21MvsyL/L9iufXlJkKoJRxCD4c45CL086YbXGWs2kdOmsEYmQ854cE7PaUaliEB4Gur5nWAfQGmsd3if6mOj7AR8SooPXUhA7jc4VtZlimgnGWEnpS4nK1hhnwWh8jvgghrg5JDARKnAqs24TXfIilXMOXSYp74WbJVNkguJnpJQRNiBZADwMUSeM0mXyUMXHS6FUJsS46SyBdAF8uZ4G+T1TLlzWwjobabMbinxZ5FgM2ZR/h4BRvhRao2+WRhVJqqQk5iASUGesLIiMgJopBHzfsZjPmRdPCU0m+4HgLcEPpBTou066QxiGGBh8TzcM5fgVla7Qudhp6ox2FZW1KGvQ1tD7IMefAikMhL6l7waUMuLRkALOiheXUgpl9ZXJRZUxppQqXkmqeNxldFaYpDbpUGPfwyjE586KfBBgGCq89/StUMFTzqiohR2iIRXthR0XG+WBkMrEt9HOq9EGFUkpSm5zIzojgESllXRvkmfoB0JtSWmCsw22NuRQQZbxtZhXoKykPvZr2ral9x7jJKxAWce6bemHgWHwrJYdfduxs3OdO3duY6ry4DOQdJYHlFL4CD4EQhbQSBlLypJyuu7E30znjum1KcY4XK2om0AOkeQHei9+XDFKJ85pBdaijBUjfAep1tR6ho+ZlW/phhY/BJFuZgkYqaqKyjnqpsI5aBrLpHK0FgHQkeQkrUdvuREQlYeg3chdxofc+F1Jkmhher40L5Uk3ovJv0yo+cIzUBUAh9J9MzbjnAYtyYV9Fxg8JCUhFlknEol+CAzhDKUy9XmFtY6qkgVuBKxxmIl0nFMIJGPAaHKKMs4Z048Tw5Bo10u+d3bIsD7i9k7N9swymRiqFFBaihKtDVpprHHUrqKpJigFpmpIKeJjoPOBbvAMIZJTQJFpnKWyjtlkxnTaYJ0j5ki3WtGGJccnS2w1xTnLMBQQJUUB83MW9towYLWEjnSt/N1pgzKQck+fBaA1WgkIHsSTT6viq6kECJfEZhmXMcgCpOs6Oj9hSDWzpmahBAxgoonZlJChAiSMrdmUSg9IbZoTOZRmSiqLO6XlHMcogJ3WklJt5HnV1IZGWfzQg+9IQ4WpHbWz2Bhpg2eIPZ3vsVmTsgUlqZayqFMYZQSsTlDZmrqaQFKkmASsn0zwXh7mXdex7j1uOkFpGLx4OVoVGBYBN7U4FLky3L3/Bs21OfVPHT/+oGO1OufsrCWHQ+pJpE0W1SzE/zMFjLbsXtsm1Q3PD8/Ye37I8myJ6gKTqmJHb0NtStNBkZJcI+8DMUeGKEbxozGBUKmMsHK0gP2rtqPtB9x2xWSxg0oOV8/Z2r7G9tYO861t7t65izEWayzRDxx5X/yJatp+AMB7zxBW9ENHyonD42P29va4W29TNTORxGvEXy7AzRtbnN+5wS8mU3wlXifDMLA7n7Gwc56fPGY+mzEzFdPZjD/8gz/g97/5TWbbi1JMXbr9///tha2g2sUTTAzKNxnrF89SMstVy/m6Y2/viBQ1b775kO1tw3B6zGp9ymS758a9GbtPtrn9+l2+8nu/jbs+42ePP+YHP/oJ3/uLI1gnzp/9lLA8RfkeGyJVNaXXMw5PAt/+01/wfGegXifOgmce4PF+y+OPP+GgX7N15zpnU88dW/Pgi1/GvvUee+k5n372Y/74j/6IP//zf8Mffuu/5Z/99h/yxXe+xPe//X+z/8ljVp/sgz/iseqolwE9OG4trnN+sOTph09pqgVrn9mebXPvwTZ3txL9rqefPyX23yOkgZ2buyy2b3L+k2f82z/+AT/86G8ZpqesekueLggxoSvYvXub3TsP+NK7X+D+vV2GYcXHjz7B223O+lP2H+3hbCC5wMon1ieeRb3gwcM5b7/9gHt3t3n68+9zdvSI3D1lfWxZnv0Nz06XuBsL0tZ9bjen2BtTDlcnnJx9ymI20Oha5qdcuvpWVABJ9fTtPk8efcj5as2DN7/CtTe/QrYzhqTQFgwJRQ/KAw6MJKZqai51T8sjNIEKkmCpqiKiLUVbLPOz0uMUKb1gL9YbIjDRTJotaYTZsUiTol62l4ukXIbqBaOC4n1Fka1C9p6ha+nblq5dwwg2a01dN6CtNHm4VLxpcwEe/gabfvHfp0wKka7vMcPAZPqb7f9Xb/LM3T844PHzZzw/OODR3nOeHx3w9Pkep8dHpMHjB2kMO2DRTNlqGmZVjXYVg7WYRpLcm6bBVVVhzIkdxeWCUWuNLvYxdV1R10Ykx5RCWikwYs2zyQMp8uKUXyjW/4nn5ItSW+a8oWt5+vgR+/t7+BQwtUXrQAxSAlujISRSUKSoRJFTGF9t6FmHjqFviV3PMAy0MZB9xkZFygoPdDaJ2iIFqUNSKEF+4jnNyEyKGa0iORkBaWIUabmzDEmYotVkwsO33uLmzZvs7t5gNl2w9/wJ52fHtKtzMhlnLe3gaaZzIhGfIzev3+Qrv/PbvPeVr7B74w590AxJkWMmZYW1sqYVKXjaJFJuJJqXQDbZxvs3bc7r5W3E2xSXgfhLTKwYZWmnL1hcyigJ9FMKp8X7N2VhJupLgQIbwGY8HH0B/o2gSSrrxlxIOiJjE9ZYljcEZUDFsdov36XGfrG82IBDZV2a08VrrwJXfhkD6rKUc8NIKwDa5vMh5+cKcy1f+jsQ01Up5ri/F1lwvwy0CllSWYkJZU1RNABJFDw6C0tO59IkQc6zzoqsFeFXAGybY8gjQPsyQPd3kXLm8hB4FYN6fCZcPm+X9/X3YeC94p1R6tXMvBFsE/KE4DhQHpOqNKpSunKXvPj1qu3FY/11LOxfLXFFGEiVNQQ0wScSgRwjMXrWqyXrWmFjhdKJVFXi+5ATSovhtnEOYw2qN4QhEhTUVU0zmWBDwIQgD4q2JwQx17Q6ScHYdeQcCb3HotElSELriEqJZj4hZVWkpRrlFK6pqKzDVIZZmnO2WjKEiKsbtLGsO89q1RGi+AF4Mip7VBpQZoyqTyJBU5psStDBeIIZ+WzlwigjcqIMKUsyY8xgYqYiopFkPaWkX221oTQNZfIqO5W1kgAu2iS00nQ+FVNWvxkUVwZ/CVtw1uGc2dBtQ454pOuhtcbqkr7jDI1t0NOGFANpPqeeOIyt6L3nZHnOumuJWViA7fGKHKOwhEjkmISRobVISMcJzyd0CiKDNUUqqBXB+xKsoS+SOxHwK4YBlR3GOKwzpJwkQTSPUyg0VSX28bGApsjDUCkISfZjjaapHb53EAI+h1LrpzL4C7syCAA7UviNMfh41UATciliiollMX/NRm8WgLp4hJmsqI2AO6en54Suo6401imMyig0VTWTz2fEq3DZCohms0S1932PD4m27ThbnhOD4truNW7evM1sa8FydUYfOrqhlXtBJbRxZGUJHlIyxCDgeYgBhbCRYhJG4dFpy7QyNHVFbeQ9rXYoZbGuoluuiaVzkPXY0RPgOYeIqhJOKaa1IWuLcoasLOs2b2SrWmvpwmmFc4aqqpk0BqOVALgjQLdhfl4AdcaOErWxo6PZ9JkyWJOLLHmjv9lM+lpr8WlTipGCvpm3tAAsTkt3WOkIOmOMdDbW7QC5o21bQoykpEu6liITSrfKE0LEmshQJwYvwFRKo9FpxlkJK7HOSiFSUlwJpduldWHwBeq6YbG1YDbROCPdWGsd0mfQ6Fy6lVmkQVoprIvkFLHZoCuHdhbTe4JSoDMRzaSqWcxmzObCbloPa/rzNd2qpe87fISmkXAMkgT85CzzSsqKpDXJGlnH1BmlbJEXGLLSDMOA1obFbMqseMv4YRBQPaWL0ktL6nNOF/48yhiCcSx95NHzQ4b9Y+7Opty7fQNrJpI27Cxm8KWQk+6wLKx0WRaWTlYy0qXSBoP4fVbW4NAYsoDiaYAwYHONqx13dnfp+4HUDyzDEeedZxU0vWoIKdANPTYq2kHTDwPeB0JI5GjJSWGUlTRV0QISY2LdepH4GkkMzsDp+RlPDw5x0ymz7QWRhKlkTj08PGfOlOvzbZppxc1b21y/f5fD7phPn35G8JG+72hXkRA6cj1B5UiOA6FP0ExZzOdMr9/i+s3IjWuHnO2fcbp3wNH+AahEc23BxgIhXSzuslYM0dMOPQHQ1QSjaprpHOsaukjx3RPzausapvMZKtXMt3aomymTyYTZbEZT17RtR9/1WKXIUVimfpBGhXNiFL7qBqL31FWNtY7Ts3Pykydcv+3Ymc3RBVytNGA0lTMl6Kmirmti6GkahSOyvbXNo8N91uuW1998k4cPX2c6mQiO8JsRY/4z2ATBzEI9BbgCzmXABzE1//kHP+P7P/gh88U2X/rSlxn6NaFP9KeH5NUZ16/d4pv/ze/x3jfeY7I1ZbG7w9mq59HHh3SPe1x9wvXrsNp7zrOnz1momhvXbuPrGX095fzomLO953T2iOu3Dct+SVvDJyeOo+Vb1NMZTz5+xEd7P+Jr797j5j+/S5y+Tv2g4fdmW6Q/9nz3+9/n9OzfcHi6z6zaws0WBDWnj4HaGfq0pM89MU846wbO+xWpDgz5lPX+Z/Sf3mQyvwuzGbaZMbtTk2MmD1s8+d7fcLQ+x12bcXS65vzxCrOVOGgHgjLc27nG7K3X2P2t91jP5vxUSbH/bO85Hzx9wt5Zy360vP7OO/zuN96lmju++90fwoHj9x/+Lm/e2+HOfcWnv/hL/vSv/ox+dcjnH9zl3u23mDWa3a1rzG6/jk1zlh+fssOM6bQnTgy71+5RNdeJXgKPlHFEEkMeWHcntCf71E3N7S89YOv6A7RJZDzZ1IBHqTPIS9ADUANTeSblIhdFAw5UjVDqOpTOKCaQG1S2oExhuhcbmXF9lLM0Zn0kK4srMsoy2DbNTdRYmFx6Tpc6pUxbIn/fPDs0OSdUSqgsPszT2YLJdArJS5PJWVzx0ExoXDWlmc9RznHhZauuvNffd1OXq6/NbZXJMWzM0P+htxgi52fnHBwd8dmjR7z//vs839vj9OyUrKBuaqzVzJo500pUHk0loXnaOWaVyGIr56QhWkA4PUp0ldoIGGTN4ajrmsm0oakstVOiDkipKF8cQWUiAuQ652Sdg7pYQ1NO+T8lSJeBlMl9B8Dp8z0+++hjDg8PSCqjKkuIoCYVKULfR7roGdaevvWETtj9fWrpUsc6dATfi7cZEEvYGwFhqpaiUPpkUk/EEDHZYpIpX6pkqeTigyygUYxBmIvOCkvPe5zV7OzuMJ9OmC/mvPbaHZ48+pQP3v8Zn336IW27koA/V9OFgXo65e03XucLX3qXh2++wWxrl5AtSYliSJaMUrulUh+lHCXoQwnz3yi5eqIniKVJftVvTG2+ZI2eCzB3AZrlAnoVn0hlLwCvwlBSStRKuowblC5/L8Ez4yXMmVwYsmi7GWfp8n23AYbV5Zc2zzilDAmpQ1SZizYf5JW378huk+dkHD+Tuiz5vQBaRnDp5cEnbzIy38bvF6F4Mod67y8+axbrqstyWVdf7QBora8kJ48hCWNdNB7bCOpdNCzke5m5pd6OETdKdFX5GlHW8vsb+6oXQLMrYNkloPMqQMcFGecFkG48F+P5GkG4V73PFdz/FWDfLwPp/q7A3Sv3xwU0rQrzXF1+n3JMIik2Ar6OIHT5sVKiEuIVIOWLTMRftv2aZW7GoESyqUAlj/flBs3Q9x19Z1ilHpUjtq4wTrryWWv6mGnQOAwhK3qlSNpCXWMnDVPnykQW6LoePwzoJLd/Upl133O2WnF8eERtHItmglEyKLsYMOemADcyuJyx1HXFVCmakFDJY2NHCiIDc9aga4NJNT5E1stzBpUwBFQeux1hw9pJSvx1KDeUSoLMm3ICHJpUmHEqK4ayWIgU7Xfw2BxIaBnwymwkspuLR0md0rokio4yWjbdjYuBU1iGuSQTmRGsuLhxlVKSalrorM4Ix9W7eQAAIABJREFUUzBH8WgzxcNJGZjWDfWkpp40wkycOLrBo4yhMo52usR3PV3X0Q69sA+TSDNDTOC0dI+SgLKVUeAsgkDK8TnnsEqOxZZUwhTFxwvAGkNVyThQ3gvltlAQbfEwjAgrLoxIOwqt0gZAtlZjnch8U9KComSRtYoWPCIhAxcTmbUWl2WS0IXZOLK9xhQBkd4KUBdCwA8dKoo3hVMJqxy9D8VH1JOyxQZhf8UYif6MuhjHK51oKiefqxGZQV6ec7Y6Ybk8x1rL9d1rLBbbWGfoh4GAHJtzFQnpVIMY0q5XAjQrHNZWaDLOKZqmoq4sQUX6QRZRIWoGl6m1plIKZydUsxqnagkliSLxTAApiIwhBIbUSsqn8WidqbRhOrUs5pqhi4zq1ZQCJI1VApYOdZFNIP4PY/KXscLwlL9f7kiNAN0Y8CAzvvjCjZPiBUX4YmKXxcf4wBonPgH5HVYZoRjrIJ49eqSCB/qhLw9NQyx+OsqM+9Ro7aB4R3ovoR2xFBAjODmfTrBWEpCtAasVxkiogtaW1dkapzU3Fg0PHjxkdwqhPSERiT5Qm0rK5aTIQbwzs8uoqFB6ZDwltNbC3CxjUSWZj4211NritEIVEF3nJCyyylI7IxT5EMgpYZX4Ro4L8VW7pvMemzO1c0RtwSoi5ToYK2EWg6Rlq5zwgyelhLEGV1Vi/BtFpptCluZMljmxj4mqXKfztkP5gAuR7cWCSeVQzSWQd/x8efOkJ3MhxcRYFFEaGEoaCEEJ5TwVGbROEasSzkp4i6ksvTZ0Q8uQE1oLi9IbaeCgwadA23es2pZZ1xOyRqmKylU0Vc2QNP26Y+g9IvuSY7TOkWNmMpuRXcWzo2POzs+x04Z61mCsg2TQekJG5tWBDqUTW9tTdrYX3Lpxi8rUHMVj2vMOq8TyIYSOppaxYTXMJhPM9g5VF0lBs7BzttyErl2j0ZIAZ+QeUJtFmcJ7z+nyHH1yTJ+NFLY64FzG7CnWaLrBk9GkrOm92DSgKqp6Dggj8vT0lP29PY5OTjk9OWVna4HTxYM1iwR7MpsTTM3ZIJYWzllu3LyBdY4nz5/hqZk+eMC0bsgDGDSNVQKyunLsWuZsYzPZS8pzXdecd0uUUtjaYapxRI3P5Vds/5SF4X9CWyktrrAjQkjy/Oh6urYnxMR62TOpJrx+/wFvPXxIzpm+XaGzollcZ3bzFjNj2H54k3W35uTomJ/88H1++p2/ITw/ZxmfsvfxU9ZnZzgzkQCV2YSIQ6uKh3fe5Atf/Rr/9bcecud2y3d/9AP++Icfkqn4F9/477l57SZ/+1ff5oyBrfmCJ3tHPDv7ET/9wV8yPz+jPRmo1Q4Hzw74k2//X2zPrnN8fo52lqwCAcX++QqePGPoVyStGfKSPq25O83gOhgO4NSTWw3NNvraNiTLJz9/yve+/xesh+fcuzvhcw8+x97eM/ZOj3BBM7k2p9GO1XLF46NDthYN58uW1+2Cb3zrX3L7+T7/w//0P7Pylq/89jf4L7/5O5yrE8yNbW4Or/G2f8Dy2U/4xU+/y2d7n9AaQ33jFne//B5vvfUF9Ow2aXEP1dzGdFPScUClNYuZZXbtNsZtoVSDrhTGRaIe6DnnsH3M8uwp25XjtdfuwrmFPkFjiWh89ljdkVmi1BpBEiQkbHV+StsfUdWG+WybFGuUnmMrjTIdKUdUiashNShdy2hSSRohYRC7G8AUNcXG+w1Zo16gNJT7VF+5XzP5SlmbETmXD5FJUwHCaM5RZJWuntDMJuLzEIcLxn/xmlO6Eq/ppAoDUDEStn+T7WrZjxRbxhYrh3/gLkFGGiH9QCQXBVILvedaPaWaTVATS9XUTOuKxhgqrTBOQ+XQVY21k9IkNmQl66dx/WusLfLEi08p/tCOpmmYTStqnVEx0kfEhbD4vojbUS7gTwEESi2mQMDcqyfwH39TGWUtYdVy8PQZTz97xNnZCYMfaMPAabuijQProWXZrmnXHX7tCW0gdFF8nRnwaiAUB7kqK5QRBYDKEYKsUbOWRtPoVa108c/ODhMdOhp0VFgsZIVB5K1KgzaKRCIkj1ZgGwsp0YdOwNfFjElTMd+asVjM2Nqe8eGHH3J0eIjShsW1m7z1ubd577d+i/sPH6CdJWYlYRfGlZtAmGwpJZLKWFXCAbPYHlxRq6hAzoaUvYBsORYwMaLyRWCCKqDXSzhXQSiUVlTaiTWMSgVYy5tbabSlQov7+4apudmPzAFKG9BlTVxk9uO4HW1fpCEpwRCUda7MIUr+bdSFfHFZFJs3jYRLb7n52Yvg28vg3MjA4kptsiF8ZMST79LrF7VL2tw3F/u8kKaOr73IGrvCyPslgNbmE+S88bPe7ENdBcJ0UedtPNGQJu+4n8seey/KT68cX8pXXrv8eV51XK+Se77qs7wIYF2AdvnKuXsRpPsPZ9WVY9ns6PKfL5GkXvwsXP29Ue2WU5FiX5JCX/5sv04C/KufMCkU5Fskj1lpktGYnHBZk4MnDh6fAil7bPAoa4gograoWrOMA7YXuU30GaUjaegJRJqqwmqNIpLSgM4Ro4VeplDMt2b4JPIuZTTKWoyz5KBxQXO6PiePDqZaMaRAnwK9D0ws2NCSQg9JToSOAW0sDpkTKpWxKhSzSS8AWU7SQUy6oPeGnGJhcRSfpFRubDWCanK6YlYEMh6FJeGA0V+NZEDLQ0u07YrRzy+Xm0bnUecvAKgkJmUuG01eGdwKBOOVItc6YXepXJNjEvmhq6icPJwJEsSgJV+aoW0JcaDt1mQyQxJTYIEjNZW1aCevCMikyBpilnSXs/W5pABGxRAilavpfaAbJNHJKgFtzGg+awQNt9pcJEZtbAIEzDNYYb/F4h2mhK2ncqExp0zSoCPoEsJhUFglNqB6w8660OfLRJFfQvKbppGHRElJevGWzrmwJct+/DAQGdBKUelM6DtqZ3DTSnw7qgZjslBflcLmJMcl0UMiKUqJ0EtqZSayWp4z+I7Xbtzn1q07xFAMaAsZ29UVzbRhoeYCYijFatVx6laEPgAaYxEJSkqEvmetAuv1iqqaEqLCh0DVRzqdaZSmtpraGIbe44MnhixslqqhrmZMJ6X7EiHhWcZI27eEkAm9JQwRPwzUTiTGMYrq3lpNXVdULhFCxlolY16N8gk2gPLF/HkBvl3uUEkCb0Cpi8ltTGdV6iIR5+pkXYCiJA/lVNiPxiayLo/s4sGUongvaKUlcSfnsn/pLplxcgXiIJ8vXXrvEAK+7wW4NBprFJUx1HUlaa5OMZvNcMDNGzvcv/saejjj8OyIZuqojRX2bYzkIMy2FMRDM/sEdpQS5Yv7AFksUcaq1QZrhLGZoyeFRIgenTN1ZakrAYkElFeoEcg00vHVxqF0JCpNKgxJY8EoYQgmY3FNQ44lKSqmUpiIxYDSCl/OhQ6JmOX8a6XQxuFDx5DA6QpdQQprluuO0+UKGoe3TsyHy318seiTKTOmLHIaJWEI5FRYdApjxP/PB08ICqoSfKEyViUsiTT0OBS2aYgGBmMFkFUV2kjKXwzCpFut16xWawZl6Y1l6KN4WBoDpYlkjKFyVgJEJhOUj1R1hZtM2d3dhfMzrLPY2pGyImeLq7eoZ1uo5Om7Net+zRCGzRyUoqKxExY3tnn9jTc5PD/hyfkhTgcUhuAHog/kwXN2uuTw8JAJNTdv3KTvWkyt0VXFxu9FnijEJDKs89USfT4hqIoUFWSPoifQ0yvLcr1m3Xacr9ZUyzW904Qh0vYBYzTOCtP3+PiYw4NDDg4OcVpz88YulbXEFFBB2Mqh3I9ipJ0wzjGdLzhdH3N0dMDutKG6cROYQM5YJD26ripS/H/Ye7Mny67rvPO3hzPcIecaUEAVZkAgKJLiIFPBVrfDUkR3v/SL/1Q/ucN2txRtO2RKLZPiiLlQAGquzMrMO5xz9rD8sPa591YBBClRtPuhT0RVVlbevMMZ9lnrW9+Q6PueRvTe77xjGAaapmF/T/0eN8VZzqSYMc4+Z9L7/2/bzWDGdJrynQjklElDJnaRe5+d8uT0lJOTY/7nH/0FV68eITnzyZ3PeXD3c+rQ8+bLLxNCZjmAmdS4ds66e8AHv/gJX7z3D8hlJq4TUr2Ay3OyecLJjTk3b17ho7tPuThfMDs54MWX9jnxET67S31/zfGy4Sydcfbo76nWR8R77+PPF5zfDjx4/O+5l4S7n32G7xKVP6ZJDdZV9Gcr7tz7guXTHic9vg1kMZyuKx7deUIy50wPZ1BnFnHNdHnB7YvPufrGFaq85uOffswvP3mMO7lKzKe8/4u/pml7/vW//j7Hds6N+hqfvX+f//D//B1/+95t+jBQPwlUg+fN71/hRz/6S5rosQvDUXXC/b+5h78zcLg/43BRwydPmZ0E/vj1V+nvZR5+codmD+r5Vb7x5qvIrz/n7PIR7uYrpBtXMc0+7cE++AoihGkiDZc4meHtCWRtcI3JGNOxjo+5t/qYi/4Bh5M512YvkVY1ObRU1RHIBHwmsGDIT5mZDo+FPIM0QXrDsL5gvV6DOJjuEwew0uColSUvazQrfgnSa2CEgRx6Urcip4j1Rr2v6gmmGN/r/UkZbIqOjf7JPOMf9Wxfpk1jBkKIXFwusXafuiqKC+epmokye6p6ROaLisNvGDjaypQwjJFwP/75PbYRNDA548oQyThb6tc/LECXY2L55JzHDx8zhECWzHwyhelAU1X4vQl2f0I9bWirihrB5ox4QyrKGJMrKlur9c3GWgeMr7DOKRhrDCIjw8fgnWE6bTncn+NyQELUFEN0GKeSZpUxU8CClJP6nhZSB+afYef/npsRkJhZ3bvPx7/6NZ/d/oSzxYrHl5ecDyvOuwVny0uVr8aAZItDwzLEWg0ItAYj2jMJAkntPGJhq9fZY42qEXQYovck58BbT04OExwyWCyeylYlDKsAfKXHy5JBhmKzISSJhNCrvD1p7zOdT3jtzdfZP9hjvrfHx598Qhbh9bfe5o++8S4n117AVBXJCM7ocDyV8DzVIiirzVoQtB5PfcQ4p4NVSq8qkLP6VI+SS0Q2Ki+tm1WmqsSTQh4xSm4wqLprlPeOvzMCt1+1fYmDJrq/R1BpBOGgrCVlHTDlZ8qYK/e4515DlQ7m2dNRRqqHAn/Is6DOl2WWX5ZgPv9/uyDc+H9W3Fc+5/j9l9YQ8yzQNJRk1l2Able99NvYZCKi53B5rKDAuowM0E3GgP7/CFoW3PMZEHHcF7tfN2AizwJuW/DyWSBt/LobZLF7YJ5/zFdNWJ5/T78POPf8c+086XPc0fH/vnwcn3/MuENHLvHvwpT7TdvX3mHGC1M3Uy40q75W1tLOWprZjMYZYurV48tZbAZjPZddR+wGXRiMUqS9E7ocCV0m1I2a0CPEfmwsa+oC3K1ixFpH1TRY60gGTM74uqadz/CTButHg74x6jthciKGROw7rBFSNnTDmrhYkTAkcYQRxS9/jxio1fURazUFUsYCIEkx+9eGUjDErKBIspmYS4qqMeqhYY1GdpsKStPqDYDDSSJZnQLkssCMKVqS7QaNraxVhp8xRNgsjKCDxF3ZwBbJ3S4YIQSVHVeF0m41vdMZkFghjZBEARrNWRS8NYhkbOwV+jOi0kXnqWpNkRy99K7bKwxJ00hX3cBy3bNY9lwulnRdT7ce1GvAuY35p7VW06OmUwVbrdmkx1rvqJzT1y8Lk5QbQxbBFuDOmIC1hpiigo1lMrjJHHP6XCmWaYUxZbHRQ6lMxETja6LXhMzxZJBR0paEyqlM2BlKemsuwJowGHBNhQgk0cTfkEV9mWqv4AmWFAJDCCTRgJWMpp3lFLn/4BFDP9A2E6xXT8XJpMXHiRY80RElcblYsVotSTFgrKPvA4vLFf2gst0qgZAUeJFMzpYQMxeLMypfMW1bZk1D60fWpfq4NdM96NfE1JNjJhBUc18a/MpVyqY0NdMsWJcxxnI5cVqcW4vJgksZL8qSVPlwxJqAL9emxYArp7jZXnXejzcvuwHfJO/cXPIo8R7TirZUYWPU+0sZdtocpKTyXgSiCUxchXVN8W2s8U0JQ8mGfhDOF4/IMWFcDcYiFJ+IIt10RUeXR38LW1hdiMpZrV60GZ0Eio3q6xYCTdXT+ClDyqxmNSElYj9werkk0SBkprN9snEqOcjjNVxCZbTMQYzfFCDOZpz1GC84MeQhQAlb8c4xhIEcIykEBJXT27plNpnSNs2GdZQtdENfpt/qKZOzFnW2pJyShHXfY8g0TYPDEHPG1paq9pui3hnRNE0H2WWisUgG6x3zek47mSgTUhJDTJx2K/YvptQHc0Kw1CFhM9iSHCYoe1rlU5GcDNFmMBBLETFK9RBLiebW92MNMSe6fo2QqEa5sHcESXRDzypZeqvy9hB60tDTRWHlYLmc0YlnQeTpcqBbr6h9TVPr/idFNe1OieQszliW3ZIuwlBA+RwDkmqs93TryNnlipODA46uHTEdarp+zYP7d+nWl0wnLes2QAv7szmv3HqB9HnPnSeDpu/NW/pssUNg3xgmTU1TOyqgbov3pIGQBrrViqHrsNbjvMGKZT474PjwCidXr0I1IcsMY2qODyccHE85X/YczmfQTqnrCfPZnPneCV0zUE0mZBuYzOeYfl0kPJaqaTi5dpXr168gKWnQyHKpRuYJEKGuPBbDYrHCNy9xdOWYR49OefTwLvuzCdWsQUJm3Tu6ISPiSNmRsmC8IduEzcLBrOGyg9lsyjt/9Ab7e3OGfsDV6oO6O93cWVb+R/eF/x/Zdu5pMhbchqqy7O21TKcNe/PZRi6ovqiG+/cf85Of/AMfvPcrXrl2hdViSfj1bc56YXq4x7e/9Q45WY72r/DW66+zOF3y9Dyy6BPRTjhfD/h2j5def5vZi5aPP7ugMTC9esj+6y+T7g/sf/SYP3n5KkdvvMrb332HmYHj4R5//W9/wtndFXbvkC4L8xDYm+5z6+Z1EhM+vvcZZ6vMxUIHXJklq3DJfrvH4ew6635AvOHWqy/z0qu3eP+TX3O5Oufu6V1+/ZFhdfecT392lw9un/F4gIEle/PAu++8zOtvfpvXbtyk+/A++bjnR9/5Pg8fdXz04DHNtOawbXjlxgkvXT/A+AM4Ndz78Yf8/O9+zpyKd//4W7x5/RYf/uRDwmFk/50XmZojptePuPbSlMwhq2Xi6sWU8GjC7Ucr2itwpWoZ7j2kbRZUx0fYA6usteYAmIHMNsPdvr/kzt1P+fz0Iw6vthydXKG2B7jJHth9jJ1oLZcHqsZAVj/iEaQFg68dRwd7HM5PMI3FNg2OBmKF9S04h88WST1GIpIGDewKPavVJf2wpiqsHuNrMEEH+ZJUI4ct9TGbdVpVHztnptk5P3UmBlno+oGLi3OapqLye3pfNw6sR5LowKQyUBVzXlM+167FRd762n3JP+6fchWN108ZIMIoxX3udXkm7/Ufv30JoYCUIk/PzzlfXILRUJ2TK1eojdPepPZUe1N829DUHpMiDAPByEba6E1VvEMVjEsxqKoBrZttcfg3oimXzkLdePb2Zhzu75FWa6KPBNszJPQ5UlSGmHEaOuS2Ej5hPN9sqam2H29LNSj7dvO/eedjj4FNum3NTXb3k7DR1D2z3/Izj5OU6M/O+eV7H/D3P/kp7334EQG4f/aEi2HNQORy6AhkxHnayYRJM8eairhKhPUKkwYk9aQcIAV185QEYvX8sigzMSdMNvgkxU/cILaCZCGAibaEcFQK4qGQWQxJB2veUvuKlBNh6HEYppOWftnRNg3W+GIt4rj24nVm+3Nee+tNjLXMDw7Y2z/Eea+fRbQfsCQqAmKi7lkDpvQ+ZEEShXHvsCI4SVrr5jIkjUsMQylOHYhFbEJMQH0mDNZogmo2RYpoTEll1jUrx6RHU2Vn+v+GYn1kECdqs1GuJ2OkXHNl4GjV6EQkacNcmLh2A/hRLlA9Lql4ro1fMU69LM14No3nXjmN7JYYsMuM28i1ZavY2WWujV9HFdwWpNvW8AZoa+0hnvdi2w26e/ZPfub1QtrKP40xhQhSK9PV+2fAwBEcHF/LWssQAta7wjREPTRLBLcxOwVU+bktoJ0rHoFfBc7tfr/9PHxp0/f95fCKXYBu+5zPsgWNMV+5gP9jZKtfC6T9jo+xKD6xedQIZpaf6b5+5kd6LESxHe/d5vOm54BK+D096MCq5C0KfYg6tRaVSEZAXEPA0voa57XBNV4li42rmON08pMixqnspfYgOZFyIMdACpkgurhhDP0wsO56klgCnq4vC5ax5IkwbZQpkVLC5kxtPHXtN55Uw7ojZJWvVbN9sjWYBMOqY7XuGaJK+GIud3DfgteEPu/1biwpFXCg1gUFZbnFMiUZadzee7xV7D7FgTonaqsswYhjbWusn9LmrDIy0QlXlkQ0Cd/CWiAaiNaRckmtyR6HJaUeh8q2Qk6bKYajSAg20djbxcNai/E64cN4cgneUMPLTDKZuqqp2hZSJsYAXgt37x2ZTMhB2SkusyLRLztiEEKO+KyegSkFZe9UnqNZzcG8YdXPeHJ+CTZhjOZ1eOdomobZfE4zaakajXqv6lrfY2GFKX0ZgpSEHmM2sGlMUS9yq6mLTvT1rVN5q9uh6SYD1liCiH6eIv0zKN23qi1NNeriI94bmsoTQyKETAojJ9HQOE9bF9Ncp0b06q3ksGTqylF5S+Utg2SG5ZLFeo2vPLXzWKuFkYKTjrqpmbUVwzBwsVzgbEMcOg0L8C1ULb11LOLA5eWCy4slXdexWCzo+06vrzKlSiljsDRNRVPXugCkwNNlx77d4/jqDVaLBU+fnvLoyYJ+Pudob65UekkkA9O6YjY5ZH4ghL4nBmVKkRNdEJYpEIZE6NQ7z1aCMyqLCM5Q47ARZlj2nAbF9CmS6TAEvK80MVLUU7FyHuttAaKzMm3GmwtlomV36L8lBl7ZdIJIkYQ79bKra6+A67g0GvXMyIDkgKsc1oZyjTi8n1BPJkRjuVgFqtoxmIzIUBqIEihhq/Ie9blHA/5xEqfs1eKbIYbKe7wDcqKpPZO2wUjGOuj7NathQvKOUNeY+R53L54S40CzGKjbKUGNPhUUbmp8U5FEWPZx42tiAJMstanI3kDOWJ+pvJrrrvtOgz+ipi5LzJgkzOYN0+kEEWE9DGQR9f4rnnF1Sfw15ZjEFMlDaeYRqnHSniFblUnaLFS1xRsHfaCuK3ISVr2mLotq7jFOyDngnYaH2NmULInLELliHN54fDDYQbBJQXpdC40yNHKgMpa16RBntEiMOpU1yYNryTZh6gl9TkTvyU2Na5XZlYdEs9eSjID3dALBOvx0RkZDOWqXsLkjdx39cklqpiyHxKJPKq1PAReUNSr9AGJJzjL4ihjW1ASybbC2oraOibE4scpuFUfGcvf0EavulBuH+zSNY3F5Tr9eMoSOIJFmWnNyPGc+zVR+oG3mJDNjmRoa0f3Ux4Q1ib29Sq0WqgCo/5uIo608T5/04MA5yH0mdVDbCW3V0puE8xnnwVQRZwNHE8ucwGUCIyqRygzkiUNaj6sspnbY7PFtg2k81JYu9Vx0KxZPT8kpIgK2biEKs6bGuZpHvkKwRGu48uIJtsqc3f6cx5Xj2msTvG3IzjDZ28c2R2R/QPIN0a0Rm2kcTN3A1KyI1ZSHDz/jP/z1v2fv6gu0+4dcuXKdG9evc3wwpfHqAWJG2cimct+G/vwhtt3J8C6jd8v4fXbivjvxfn6q/Ad7j8+EQ2xft6osztWFJaK+uYIwP5zxzre+yfWbL3L1aI+2quk6z/wi04clLsKLN15l/y+PWf9gwenpA/7hF3/D+eoRIke8914kpin3Hxxx4423+OY16Idzbn7nNQ7evYZ59Rp/+vZ3SMvE6vwCZw0HV+Z85396hxevGz798FP+9iefcPpgzcnxEd959y3evvU6V6+9zIPFN/g//+Nf8dHZOQsMDx4uqVzN4f6EV1+8xsnxFW69/BqT5ojHjy4I9SP8yYxXr97g6eXAz3/5EXvsc7h/xMc//zUrWVG/fI310xuc3n6ZF+xVnq4eYN94jRdee5fZnXusL86JfmCxF1jtX/JgeI/hoWW6OGbdBm7++Tf5MNzh4zs/5ZWHR3zz+z+kOTkm+opJfYgXhz9ac355xu0773F52iHrigFhOJvR9TWf/foXeFnzx//qz7A3rpNSyzpPac0+tveQDOeXl/zs5x/wxcPPuXbzFrduvc6BOdahim/ANpDASqI2vhjQ6zAzXjzi6Ucf0F9ccHR4CETqgzn26lW67pR+sOxNM8YdorYULWnwdIszKp+BwJPTx7jKceWFFxGrPmw5O02H97UqFkYZ62jIpWc4G8LLV5ydY38kWZjUFS9cvUJd14zkcUFwti6hU4zSCbR1KdN0dv+wIdmVl/gnA/bj+FuHP1oDDCHz6NEZYeho9w5o2w3CuPOLz645X9sCFiaWtXanWRYkZS6fXvL+px9z0a0YYqCZtnByCLXWtbby1LOJSiRFB8QUT+zKevU/E60VdO9EZUmJ2lHkHEHMJjTAGYukhLdwMG+ZtjVhyDxePsWEFpeFblhhbMJ6oaLCmZrKVuSYWC8u8VeOSt3uGH3Axr0z9k0GFBCisLZiD96V6bkyscW6DeNKkgYSKpibixEwaBecKBISCD14T8qZe598wo9//P/yN3/zd3zwwUfc+fQOXdeBhfWwJuSEeKtKHWOxdcOsndNMD3QoWoGdzrFDYOjX5H5FHDpIEWsSVrIy00xWP2GnIYS+z9AJvfescNQBUi+Ymce4Clc3DL2m3tdNswlqs1mBLY/DWl/8giO2Mgy5U1aiV3A45szkYMb8eL+okkSPrQ3Uxmow48jIiwu8KyqU0u8NoVelBoLN6sMeQ2SZ8gYc6/uBy9MlD+99xPUrV+nXlq6HqoV4sSJTxe45AAAgAElEQVRbwTm1+ahKgRolK0mFjBR1h6BBBOQREBkvxlx6ANSSyRRGrDHYnDFJWfQhRWUVCiU5tqSsFmZeCEmVVEYQZ8hW/4izGOOLMsojpHLu5c11bYtHtKpucjlPlaCS8qgG0XNP+y49F2OIGxapc+qfnlMugQ/ao1a+0v6mkENyqUkkqR2LKf5AQ+m5NknKZnuPFlECkIZTFgA0JyQGvT6KH7NeYw5HUYiVHiWXgSlZwOkayxg2AaUH0N8u0NjOoHME1MqS9hVrqJIjSp0zskAZ+7Ht70k5NyQGvB3fI0jKWOXebVmPGyaN/hkJOuO72wXsFcJ5jp0mbNYNvV8UBcEzH2AEPUcw8Nm6bFOziWCs4LFlHuDKe9GeNIrB5KQ2MxZMpQnQgiNnBbRNwWpyLPcm+6xE+LcBhF8L0OWcGYPzFA/SZnBICjIth0AzOGqfNQWHMTNHxRVWMq0D6zy2ctRKdsCII2ZHYCBJxmRfkkRUl0+OpGy4WCxJGZX4kOi7NZfe03idIM2mLeSIhNLUZ8EVAEpaS64bpG5I2RD9iuh6bEykUrhfXF5g8IApcio9GSzqu5dESAQk6YFLUj6jdXirB9oYPWm8MRhXGnwSvTGocNTgjaNBMJKoYINQY4UoiWgULIxidRkxKmkzxuBKw+UcSDKF0WWL2bYefJ1QCrsSQArarjTnjJioXmwps0oBK+BEJ2CVtYUGr4w5C4gz1K0nS80Qg8YZ2pLoVHy8YooY8STRBcOJZ9p61pOaOETqqIh8UzfM5zPm+/tUTa2LZ0mIGSO6DdtFwJQwCWN08RODsiN3LnwpN2pdRERZcE6BM2O9MoMEcBZvDM5kfX5JWsRYofG6QAXv8TZuJFqNa6m9ZVZbprWlbVu8t7S1o2k0YdiQNfjAqS8VQErqkydJlzzJCY9REDclcpHrplSke+UCtlVNM50Ss/DgyUPu3n/I0/MFT0/PGYZA3w8KSDP6sumOcsYyn+8hx4b9vT3qyQwDhOzohkQ7m3Gt8Zoeu+44u7ikbSrmbVMCOYSuTOuMZJUR54gtNx5fbsBWPLXrsa6EUJjMkCN1NkiIuJRoCuDhq5q6jhiBmKxeM6LHVNNXy8K7s0hZO8LgFKnpcwUvWwB69991U5VEY32uEFTyq4IXlf5iVA6XJVMnXc9iEmU15hKIPTLkCkNPh+Gj1+P2OtcbvCnpckKOGVtZ2qphOm1pasfhwZzDw0PqytKv1jw9e8xkb4ZtGqxM8PM9Jl7BxdAPOlPMhmY6JZkBcZYoSW++vtV9JHreSpl8pZTJIai3pNEbog4XDdYp0JdSwpWb09APDDGw7geMtbSTCZWt1DhavIb+xEgMgRyjrt3FTw8UMB9i0iFNisQEjVj2Jw3We9q6IsXE4ExhmCmrUKQkxRohleIjOcdgNPWsRdcMkywkiClpwE0OxGRxLhGHjqXPuEnNMCROn1yySJbF5Zpu0GaCXHxxRKddzhgFxmv1PRxSUE+WcT2uKg72D0iLFZNYs0/DvLJM2oqFgRB61kMkdEvqnGjsFO8806rC1wbjPIOI2jYYUYaw02GOSZqYhRiGIbKyA+t+xdnpmmFxSOxPqBroVgv6oWdIAy5BSD3WBFpvqHxLqg7IzjOQGGI5tyVTVyjg7aP6fkSdhruc8EnbotrUtK4hDxmTdYA2hCV9vMSbBMzxRiBHqpzwOLxtqV1FstAbQ/KGaDQ1PZAJJiHe4NuaQRL3H93n6ZPH3Lh2jWvXruGqlsdPlyxKcjpJ6LvIehWY7QuHh3u0105wOXH+5CH+5Aa2bvG+JktNyhXGNWDV1Nt5Q9UYpjPDOkfuff45//XnH7IIDqmnXLn+In/y3e/y7rtvc+vWdU6OZrTebfxWUwhYrzKvf3KH/jtuuwDcuI0m8lv27/+ITcjFdNqVwt1YKRNh9Tc1xSd0LNBn8wmvv/kGkhPTxiNJTfqzQIqZSeNonWfWnoAcsXc644vVxwz3H5J7mE4mnD5K/Oof7vD5vTXXX7/BO995m6svvcH5xRkPfvEB6fEXHDUNZ+crHjxdcOXaAdePGibzPY6vHPPyK5FFekLbtLx88xbvfu+b+P1j9paJ23dPuf3jH7NenbI8X2DrzLrJ9H3im998l+9+//s8vtuzuv8B8zhXT9iu4uHZBftHt/jem3/C3//4p9TtJ+wd7nFy5QUunxr+7b/5O/7zXuKF1xJ/+i+/z8nxC7z5vW/z8zt3uVw95MofvcrJmy/w8ZOP+fhn9/nhW/87h++8xsPPP+Xz/pSXjmqObl7n4NU3mRy+QA5WvTjrRHKPWacK4/e5ceNFXm9mNFcPOXnxdfrHFzTxE4wdoAuk8w7mV/DuGLLWpqePzvnlTz8k4/jz7/2vHF7dp53VOIEyKtfiyZesZnGllWkgV5iYqGKHhHPSYsHFxYLuMwdXr+FeuI4xntoIzkeo9zD2AN/MmVqPcT0QuOIaxAp+skcMgdCvlB3vWqyrMbZmlJnKmBLNmAP7G+A52QFsnME2GnZmjfpbarmnDLycDWRl12iz7HaeNyqjR+zOK41dyz/t2tOX1ze4ldEaMB5XNQrquOq5z6YsOtlh0/1OK8+zvaM2dCnT9R3n6yV9UpP7qq4QaWmNEGLEe/WLA9BppkOsxRqHFY9NCjZoNZXIOSooB2BF71emwqLsOU1Dh2lbsbfXsjdpuFip3FnyaMsjBRIocj7J+AQ5KsN+C5Fq/R31sGxr/LJn7Li/JJedXVQ/KSrzbLsr9ONJ3vqfld5LwTmD5Eh/8ZS7n3/GnTt3+PzzO/z6F7/iZ796jwfnax49fkq3XFHVBieGRAKjAGFVPM68Uba98w3R+AI6+AJ8GCocgiP1q1K763vR3kqHxyYammxpXE22nl4yU2dpa92vMfcMUfeH2KBniVOJsd/5wKawv0Sihi/mqPs2wzAE9e8Wg6+0f4kxEEJPjENJcQ+kGIhp0OeQRErCMHT03UDfrYjDeD5o/RtCJA2q0HHOkDPEPtA0FS/dvE5bT/jssy949OQuxkHtKhbLBZWvGC9VU46piJBHv+PNnQWkyF83Bxe2tlHk0g+NsWBsAF6tfcezRxGGvAFXylerKJi1EJ0tiJjdeS1Nsk0kVNGn6g/yToiDSPFUT0VVEphNJ89dqs++//HfW2+7EQHRx8W0DXF4dmD3rAfdxrtx56kFJbjsDvzGd/Gbtg0QJbsjkvJVZHOcRlBwVyW5exw3r/Q1C9hIaigdCJjd91ges8OEe+YnsvNY2QJjG2DOFOBR6aC6R0sNs/ke+ZK32zNb6TV3fz4yoXf35dcNSfV+I8V6qxx/0XN7HATl4oefcyaTCBhSdhqiYwsAubMHzM6O/b0AuiS57PqRkmiIORJiYIgd6dGK1E+JQ0tV6QtaP/p/OSZVTeUdta8xopHBoGxXY6wmvBplPBmrVNQkkELQ+Opi/GoxxDQwdGsk6QTNemXnpQj9AIgi9cYamqrC1hVDjDirhpkpq/9CQqnfSvtuSCYUfzND8eBX7x3n6GPGUgCurDfdbHw5gS19jAiaXIpxOOuxJmMkYRCcFGRY2OzHaLXBz0bZZz45KhFiSbA0RpvtjKLSMoIZ42JkVUZsniv6xxN5e2axOclTSohJOq0QSDkxhEiF132P8o6GOJByjxRfCudrrDX4ulLZr2/VgFZAxJNjj7MqjwthAG9o64ZJG1gterITjKghbVs3zKZTqrYhSiakSDuGOIiy+8avuvpmqrregCS7lGNrtvHN47/1jysXUflMRVrsjFFKsX549YgT9UpqvCHViaGKhEFp1JW3TOqag/0J08aWFEw1gK1qp2xtUvHW2y50o4G82XEnVqBQJxfDMDDewIyB6WzC5WpJjonFYsnZxYLbX3zB/YePWfcDfRcR2S4mQom4L8+tku4LhiFyuVgxaVqqylH5msXCcXg4ZzZt2JtXILC6XLBeR7wYaCp6G8hxwAFtU1EbR4qJhGi6phqS6TLhDdZFYk60k8xkMmDXabuIUW6SjBMdKcdIZZTPb865TcrQeCyzok+EoIxJPZ+fXYB3p0sKYLtNGIg+Rh9Xeb2GTc4MIW0GCwyRvgv0QyiN6nhTUEaZTm3sTmKP4JDNWm8wGF8cLyr13NufT5nNJzSV42B/j+OjA6Zty8XTp4Sho2ma0sw4rKuYz/Y5ONwjBE0Ordc9GI+/XBEGnZBWxYh6PHcQBYKceJ3iFeZSxiBGjborLEOIxCEyxEhyBhMCWdYMITDEhPUOFzxJtv59Kamn4NB3GyBY/ccAm8g4hhAJISgzLYFkw8T5jeejphvrgMFmtn50UdnKwVqtx61FnGXImUpEE7iNArPKQoISM7a5AeKshgZ1Pcv1muhqPcOyQvZWCiAbwfQZW2Vc8T6MQ083dPTOE4ZeC8dhoHaW2hmm3nMyaThoK9rZjDY7ljaQqoEFCRnWZIl0/Zp1t6IxfgPsjqbHej/RAKCcRRtJ45Rx2zTkPBBWgdV6RYyHes56lSbXtaZP5zjgHTS1U/Yloo1T1lTUHEtQi98yR+LQk3OirRv2ZnMumiXrdWC9uGRVT8hHQYcTgMkRRJm9TaVFdUqpWMg4LYBlTMwqwRNWtqbESSfms/mcuqk5e3xB1w80kwn1pGWx7Fgul3TBEIKWm5N2znx6SO1a6qrh8Krj/MEpn3/2GVWXOb75il6jkiEmKmPLtF0lAp3LrKtM6IW8DKw/v+T0cWCwUy5OhNsfnvOfXnufP/nhH/Otb73B2y+/wPV5SyUOv9Ef8YfG5zbF5ViID8PAYrGgqiomk8nG+3R87LiW/eE3s1EAbK4ldjmFysTOJoP1WkRaS9vWWIHWliLUgXjIaNjOOmlKseBY2Qo7Pebg6BZH9Zxb+++wPF2x7gL7x1e4dvMmtZ9x/uFjHp5+zN1f/JKqu8f07VuYrMqGcHnCaeehn9A0r/DOt17hxjvCahG4HCxPujXXX4Dp5BZXbv2I/J8+YPnwE6biqd2EF279CW995wfMbryC3Z/zwvQlZrM3MH895b/+w1/z07+/y/TFE95+5y2uXL0J0w85eOMlZoc1N65d5SAd8vD9p9w/f8z925GuDbz18otc3W+5dnyD04un/Or9z3F/9V+wx5YqHxJnh5zh+PmDB5wZw1/84F/w5re/B/WMGC2Vr7VWNgHnKvZPXmX+7ZdpOMGaCuPBuRZ/NOWVb32beP4RZnKAm7wA+QAJ6q92eXrOpx+9T5aOt999m2u3rhZvNtA10JBST4orpEgUraux1ivzpJ5jD64zfy3BcA3joblc0XXCMJ9hrh4r+1SgT0useLxpVKKHwbkWaKj3p4ypUNY6fGUwzuGrpkzdK9ToXdenLTD3289zs6mftmD29rdsaaAzONFkyXGqO7aSxqIJtP/MWykZzebi0cHP3t4eKcZtYu34OTcBV/+4l/nSWiCQY2S1XLJardS6AlWAuLrCx4gYnpG5pbQddiozSBBJuJIIr0NGNmuUcx5j/DPWGhiVZE2mNfv7U/anNeuLAewlQRR0EtcjTsiFMRNjBi/0wRKTR2gxuILKUfzWBIfWFUZfUO+RiLLf7ISRdejKvpaYCTHgaj+SYEBMSa0U1qslDx884L1f/ZJ79+5x985tbt/+hDuffsrTp08JQ6AbMoPUDElVA9ahw62yf7AaLDiSGZzVvtVYlXwi2qM5qywbEfVlkyHpZzRaf1k3hokFHXTmTCYyhDXd8JgwPCIlBcGM6PHo+471emfgHKLWaH1P3/cKxMVECImY1AM3xUzXqVIiRwW2hkEDW3JSEgtof6M+eY5lrLfXpBENkwKMUcar9zXOGYxxOCv4qlESgvW0ewNHE8t6veLu519w9+4XLJcL6rqm9hV17dXnWcZ+Z0y/1NovjeoZ0d6Fkoa5KwbPBaDLxhSZ8DaMUVCiinyJJbW9/vXeKtjCQpVy/merr10uJ5Wlp0SWqMdRIrEoJDYqntK7STkHd/uWTR1kvir4oCACG181syETjD3O8wDdJpDjuQt/g1mVfzxfO4y94/h8z9cVz68nm/eq3+jv7Dxml+H/1dvXL2bP/+7zHnW59FfP+7B9nS+bKWj+rpRYyshHz4kC3Not0aP84pffu2z5fLtH6xkWm36QLSC48/tmc06XXyxrvJb+yh7NJdBPATqVY0vWIdXOOxmf4Jn983sBdLvSs5GiPBqk5zDgbJEfigJJpkx+ohGIgRgS3lq8DyVpc2sQL5KV+WIMznq8N1jjdVH3DdYJE+Opm4bKe1JKrNdLYj9grFA5jyRdrI0o2h1DJEdtTmXoCcZjqo6YoesGhpBJYjEm7FxkTpvMwqTbPZiVGdNY1BQUMUrvL41xH1Kp/02hzOodSZMWM7XVE1TLB6E3pcAAshhqKpxJ1AgkKXTc7aKSjJAo6UgK3G6Owxav/81bjJFgCyDqBeug8g6THZW1zJop3qkc2VoNJ+iHSIyDSk5DpA/awGfrNnR/Y4pnlGuwBoa+x4BK2SYzYoJVrTcgk5Xx50pYhLZNmmJUV7V+tpgIREwqYlS9gjbg3EazvvNpFVjQveFseE5WpL9Xu6qEbuj3DjRpyVgqo5RvB9S+oq0CgwtITNr4Z52yjTRe68zGv03TC80IrwPPypdM8cQyVv26nDHktOODVwqC6WxGc3nBagicn53SpczQd1TeYkyLZPWcGD+XyVsWmTHK5FED9wvOzi6pS0jDZDKhbWu6bsVkUrE3nzNtJjjrWS0uWXY9IoK3Dlcms1Vd67RLMlKKjC72yvbrIjl0WBdYG4jRlumOL6CcAuO2TJnVP6LcbHY4yeN7t79Bdz8uyCklYoxUhcH1TOE+gq1sb1IjWyXnLWhnjSOmTI6JfsiIyaRFh+0jF5cL1l2vS76hUL3H41cYciYXkE7KR9iCUNaqzL+uauq6YtrWtM6SYuDy/CnkwEXlCYOmU7dNtUktDiEQRWnybTthNnPMZ4LzLWKecrnoQBTwUWm3JrBaI3ruVl7PZ1MzlKRfh/rAgdGGjY6QhSEHohuoC4BXe48Yw5AiaRi2oEIWUookKT5+qFl0iqJMQqOA3nglmQLYLJYLvBEqY8moebIGOijrzpZ06xyFaCK2NBXZWvqUcDHhi7F0Gr03xOBEXWhSztiqoaobVknohoF2NuXo4ARxZ/RdBzFgkg5DXBRMn0jSIxLx01a9ysqUsPKexlc6cEkDaeiQSr0+55OK+d6UiW+JU2jXiXs2011kzJDoujXL5aU2E0BdN5B7tpJnHfxsGlOrdgUYDV9Jnd/4K+Yk9F2v/jNlCcllMGENxNgjLpKzL8VqLpIgtOlGz/U0RCQmqonn6vEJlWk4O7uk6xKXlxes10u1AjBSAkMqZXpnHTxlwFlPFhiGyBATKVjEGZzxVF4bORGdqFvnMM5R1ROqpmUymWKs5cGDxzx6fAqupZ0dgbdM2hnONEhwdBeB7BLT5PCugbTm4vQMNztBco3LEXKAwjiuvMcgmjA6BJzUvHLrZd66+V1imDKYCWk6o71xwvHrL/LCaydcuzZhOi0G3EGUulH9YUGw54us8WtKiVA8VOu63qxJ//23AsZtJuU7haJhW7vItnQst1RigmChsXpuphgwPqjkx7uNumw+n/ONP/oWNt7ieLLHRCbkvkNyj51OcPN94mB4cu8RD08dL730KlVsuX33UxZD4q1v/YjX3/0hxkwgBEzroFUfynS+5u6v3+PCD5xcran8AW9+7zv82cc/pPt3H3H6dIV3DX0KnIVzHqwecLxyzGzmMtUcv3wT+8lVzkPFt7/9L3j3nW8wnF3w6tuvM7k557O7H9IPT5kfnDC5dYKpBz58+D7/97/7Gb8+3qdtX+Li4hJnaz788A7LyYJv/8tv8/0//gZXrt7g3t0F63XHbDrn5utvsH/9On2v4Sb1vMZ4XRPENLj6Cq33uNSivgUCyWBnU6Yv34CQMXszENFAHZfo1yvOLx4w3av4o+98g6qtIUdMU2sTECPYRBjW9P2aEJWtMWlmtJM52Rlitng3w5+8BHIMLlJdAZ892TnEq42NS6FINSzZRLKN6i+Vyj3RoA1vUoVC1TbaeFGkiYVhpAmuxZfndwChd4Ht8XugjLML+yALKZfhmLWMKjmz8/emGv5nveR3n1sHrcZ6JtM5OcaSaGqee+zv/gZG9oo1dnOP0iFJZug6zi8u1LYil0ArZ7G5BOPE3eZuWw89vy+tQ4f+xRdLH6cySms8IUViTKQ8FHsRi68MTWtpp5a6zRjXkyWSqBGXyFat1TBCyILLMGRI4sg4XAFoRy9vUPYbJQV09O0QY0k4IhQynaitRQVIxJbuNGVYrzvu3fuCO59+yumTJ5ydnvLg/n0+/PB9Hty7x9OzJ3RdR9d1iGStHX2FFc+kcljJCs5kwZtiYWKEVAb1Y4r4OPQ3ptSdvtLrAKHONTk3QEKi3pcVIHAbCeOQIqvViul0yt5sxtmjx3z83vvc+7Rlve6g1Kvr1Yp+6Fkul2qBUwZJu15im1MCrdOd9ZtryuGw1lBVdVGnVFhXqw+8VR1Jsi1uco0gFQI4a/DW45zFZDa1tvMOX+xLYlSPwRwSSSLr9YoPPnmfxw8fY4xQ1xV9vyanwHQ6Yb3u2PrDFX/2Al4kCdqzUEA7rE56GPvirYRyBEe0AyxM4KxBU3lzbNymhhpliSoNFxSgHwkB43AuMarJNiDMps5UIg07AJWqoXT/KGMv7ZA/7E4C61dvz197KaVnLHuefey2rx1/9/lr+eu23Zrj+frjq97T88DZ77r9NgBp9zHPA3Dw5dVw+16e7eXLD3fAs4KzFAAXdu8JbEC/XJisX/k+RDYg2TOA5vOg3leBc5v9tQUMyV8+js6VoEHyxhZzhAV29sb2Jc0/7hh8vQedtUhOjNh8zBBzVtAoZ/Ua8g5fV9S1egZkFKATMQxR6IcekQ5rDXVdKX1WEjklpVmPlOzCQnBOmWijJ5macqqxpvMOYxpGemjVNmp4L4aUgzasMWiiZSkoUkr0QyRlKay5ihATwxB1ygjKyLO2IOZZVZBAbdQrYbCi9VRhTWQBSbrwJAxRoDLKZHFOEJOxOVMVQ04xRedvSsFcqL4e9SdzKeJz2kyzVIyayUaZuiMQJwWkK2QHPdB2y1janKCiIFIeWWmigGiMmWQctbVYb5nOJmqC7msFJFbCkDR9y1hLFzIjaT2lREo9fSjiBYnUlcUZUQlyyrjG0lY10yYxaVpSFTCiIJXXN1TSsMBWCrDmMvExRnRS5fxGxtnHoZyGBaAZJyJlYXOuMMq+Is3GovRgSRHJCWuyetDZEnjhSooSVsMncsaUpF/nMpbE0C3wxmOdYGyFc5pkO3qnQVlkNxr2Qt6XErPuVaJcOY9UdpPQKznjjCPlSNM0xNLWt3XNtStXmc5WnJ8vSEFI4spCldjA5eOUBaPM02ICG2IkJjXjX/eeEAeayrI+GLh+9Srz6RQElpeXPF0syDkr+6uqEeOKL6MjiZq/UzdlcdlOQ5IIKUFOkSxuM+FwVuUWVaXegiYb+n5bhH7VpGacLo0L5wakYVzInz2u25tZuTFlCENgYNg8xhhDSoGBSB56UowMsZzHqzUJw3rdsVx16GrpNvtRn7hMfjGldBzp9uoF4W3xwNOlj8ppmIhF17r1qme1uFAQtmoIsWcyqbm4WGCJnJ1dEELHultzsL/P4cEhvm6oqgbvKyYTgzWVrr29Fj+7VP7d5noIUdPDTGFFotLRACRjGFLCS6J2hrptsdYRk5RhRSCEoTDlvE7jVYBPSoGYsoImha0hZX3GWkxJ+FqHQO1UmqogTlZ2oTXqlSECYkmpyB6txVuhT4nLrkOaika0SNbTRIsyUoKQiS4RozasCcBZppMZ+yfHXPYB6xyh74jDgHhw2eKzxww6rY5mwHtHnxNdiORBza1Dt6ZfrvS6N/pec1Sz88oaJt7RVgYriTGFeywpRnDdVxUpKI09pYRkTa51FvX9zIZYfF50eu82RVsIgdV6zdnpKZfLQIunt6IMv6T3Rm9RJrYUKb21WtDmsYCPOGsJORH6nv2TA46PrrJeDZyfL7k4X5BTpFuvMCLMmhYbLX3X0XnBzFpMpjAp1CvP2oqM3YCz2aIFe0x6BWSV2saUqaqG4GsWy56L83NW3cCtV2+yd3iV0/MV1nlmk30OZ1dwPiBxycXZIx7fe8DTxYqFvaSTClfPCN0laVgT1ytsk5lUNY0TDpo9jmuhbg740x9+j9fe+QFuuqfp6tYgtce0Hlvr1KQqtVf2CiT+oVlquwX7bhFc1zX7+/ub0KrRIxW2gMR/j00SjMVh6R/LLbRUkGWoMhJ/bKl7vC+qcWAwgreZSmmzUFiyJPAZ2tZx9NJ1jD3BWYONVuV2JpDpoerwpmYilv28z/6r73K89y63P/kFd+7fx9w4Ih3CdOKxUpOHCL4l4XAxcfXNI87Sfd4//TXv/er/4vH7Sxbnj2lTT5MsEgNPLn7F924c8YP/5VsczA55cvece4sHfHr5hPN55MV33uLorbeZXLnCfOr5s8MfsFo+4v4X+5xfXnLnFwseftbx+kvX+T/+8pucDyv+6r/8jP/8t+9xfhmJcc3+tOXPv/t9/re//AuuH7/OUV1zurikfXpGszwnPb5LOH9Ic3wTlXmqwKsyNVEqcqqQPICsyA6Sq8iuIvaRPq1o6kw7cawJXJhPWeUldWo5PDni6OiI6eEEySWQwUQwAWPVH65qSrp1Z8nJItmD1JthQYoRbxpwOio2daO2AjkpSO8SxnSIREK4ZJlX4PeYumO8bbUINdpkk5M+74YcsFv3OO3RN4AevxWv2r0WvqoZFIQoQhQNPdLXdZua2Dz36M335re/9u+y6dszBeQqkirncKOCZcOa+2d4sfLxU8pcXFxwdnpahl7FrqbUUN57Yow7A82tEfvmqUQZbrkkeEr599gLWC190InLWK0AACAASURBVIGq/ixlIYvFmIh1Ee8rmhqMKcwQo/1SsuqbbYz+O1GIBKLovgGMODYTvawpuBR2kVhL8hXBotYTBqwRKitUssaEc2T1hOXpJf/xl19w73TB/XsP+OyzO3x6+zZnZ2dq2xF6DKKJxKgnuGtbkEw/RNbrJbPZsQKgSfePNRbn9XxWJvxoWfL8gRdVU1mn431xuKahNhnjhNhDChmJllyAHO8dMSfOLy+o25br115i+OKMp/d7TuNK5Y7jAFsE5yZcn1/BOot3XoEy55XIYA3YjPcZTN6qzEYAUWwJ7Ciu6KKMySyjdFX/L8spKar3XCrAXx8CcVD1htaAHm+1Tuv7jq5TP2qRRIg9KQTtvwuw572yCdfr5QZERLber2ZMvAWwpgAX29p1PNeNQf0Px0AHu72PjiAMo1S+DP93gaYNMMOIZMqXrgFrbQlMsSSjjbMxpry+oa6bbfCDKG6g9RVApqmrDS6xua52rrXfBHxt+xj7pcfo1/wbrC+eXQM1WXX7ecrJud1Pz4Fzz3/dBeh+E4D3m/7veSDtq7avAwXLA77297+OSSZShv5266E7BkFapeYq1vM7bF/F9Pu6Omzz2cu5+FWP3OzTopoBQV2sigB3c3y3Pe0zSB3wVeqy3e235oTnspP0et8yzARYdmtmXUUXGpyrCjtCF2sBrLPEaAkpqq4+asLryJARSvOJ26CjutDVOGuoakc9DJvUku3JVi5/ydhsSCLkbMjWY2uPdxbnPT4MxJgxLiI4qqrBuIp1F1gul6zXvX6WYmoOFsmiAQPkwuqTDTsoZUfEKZFYwFW1JppayEbZgsZljMl4McQQETLJWjWvNAomeWex2RCT2g56sZA1ObI2huyElEWnrJmSCISCB9ZgnGWkhI/I71ia7FJYjVFGBq4sOmnAJNHgDAweS1015HaC846Uy42mpLplL9hscSHhs5CzApjqgeexUVk4KhtVA8zQDcR+gJzx3quU1OlE1UphIxkLTs+LDZOjnLMjEDH+GYE5Y/RGKgXtHgEcndDptpl2GK/mmSlps5/VzyFJJjnITunpKqEti0COOFH5dFNbpk3FdOJpW0fTeHxl9Xyw26JtK7MdF2G9nHTKozdMfb/qU2fKdDSPx8mYzXkdc6CuPHuTKdYYlsuOtm2JyW7lf4Uptrs556irwjoLWaXgfSxM14FJUxOzSu+unVzhYH8OGM5On3B2XoAk5wleQw9KYDF90ALNekdlGkztML6HlGlCxvkOSWUKN4IxmI20UQNLvPru7Wy7C/Iu/RvYTsbLfhlZKM9vIuobMZvNyjWwlcrCdn0JRSaQUi5geiZFBTKzaCk5HkvtXrfyGkMB6jYvr4WQKcWSs47KG7yz1N7Ttq02MF0qabIqTYgxcnFxySef3kZy5P7dz8hpYDZrOdjb58rVa8z/G3nv9WzJlZ35/bbLzGOuL4uCaTTa9ww9pQmOTDBiFPr/9KI/QG96GIUi9CCNgg8iNWySM7SNbnSj4aqAstcfm5nb6WHtPOfcQhUAspsMRUwGCtcdkydzm7W+9a3vm+6zbju6vkPrSlrKSyCZciXjN4k+YAieED1Jq8J482RvZAVNitZ7upSIRe9wM2C1RhkrQKM12CisZK2lRdhoTYpmA/QPrsPyyQdavRYx2ChahBYl66y1xGLyoI2WDSqUxAFdHPgiWQUB9Mmo+QI7GRGVRlUWWzmss6iQC8tLWqjazpNswE2mjKaaFmnf0lacPCMKX9opjK2oqjGNyQRjWOVE30fW0bOMkdliTddmllF0GY014jhqlYypGISVnUDnKOClc+gcSMnTtSusU3RZFyfmLIBVEKmFIU4cxr9zjrppqKtEqBqskb1NdBprMdZYrdG2JqUa73tyCigG1mYZb1ragYbqb0qZGGTOU+QXFKJ1aY3m+Gifk+NjKOK1fbfGKENtx6ioUSER2o7gAwZhZGhjqJqRsH6CFtMcJQLKShtx6lUGH3r6PgqQpzQ+BHyIGOOo6xF975nPlywWK64vZiyuVhwcNozdlDafs1ws0Upx/84tZv2aZ89fsJydE/oli6vEeKLIo30BNNeB9cWcMNFoB3u3G2wjjsuUfReVSdmXvcuglCUqSRYMqrTw/vMeu2vasA7Vdb0J4L5JFfqf7cibUFB+3FA1IEcpvymtyLFgH7qsdAq8KtpARIwRoLpde66ve1QaczBqcEZhHWA1UWmC0mgLOnUo5ckuQ+o5PLEc7r+Nocf2Mw4uj7mVM9OTA9TE4VXExsTs4pT5sysqV7Nen7GKZ7zwz/nl84/57Fcf8+IXzxktDyBb6nrCijnz2RPm50fMnj1AT+8xHd3iwbv7fPjwI7ow4+TWAaO9hsvFBeHiCccjza2jMZP6TWZdz9RG3pgm3nlwyLu/fZvoLP3oHp9fBPynn9NeXGHQnIwnvHN8j4mbkM7OuXj/feYffciDPcMkrlmeP+H45LaAmDkRo0NnJxq0ukYpB7kn60gs7CEcuMkUk9agLVezGT9//AGm7vnRGz9iMrqN8o7cX6OchkaRkxeQxQBEtDHUzYSqErayopbEEIWKisVVx+X8HDuCen/M3v4YlEXpjFERFVZ0ZzO++OQXfDE/pzq+zd13f4A73qNSexJzDpPIZJlzZd0ZCtsZYZ3cTD/+EcP0NXMkZ/AxFT1bNoyINOgtl/Diq9OcX+8Y0lStpIVFFRazaKDpnUf941/3BrCnlejH9h2Xl5ecXpzTdR1hcEjNW2BATMHil1wkb36fNwWmLYNOhPpzccQ0WpMJpQKWJZ7WsYDAUdhdSUkeorSAcTETtWg6ZwWRSEodKbUoOomdqFDYkt8rSq+rBFRKYgSQPKrrE6Fb081OuXr8Sy4+/4Crxx/z5MUVf/Pwiken11xdXeP7nhjKOZli3KUVTdOAUpu9sapqxpOK8STQtlLY1lp0OAf/VLl2EazdFAfzxoEzbW5Q0tKVgNEYHCLun8hFz884KV4JM1CxXrU8ffqUGBNHh3f53re/gw/CVG9GtWiuplCuvcL3XthlUQqjKQhbOUaJ7VbtEoiyH4cgWnEhFoDNS4imBCCIKWy06GKMqORRsStMsQJkJcSksBgd+M6L3rC2YvRYgDNjLMZW+D5gq7ow7AJKGaraEn2g7/sCsFFeP+1gcMJ1MkVqImZh9YlpXJFXKQlfLo9OBaAb9JRBifECQ9dM3MboO/lhKgDwYDQgXUe+fP8SQKbUDYZTCGHLWJSZRVQF68gRqL9URNiVtCi/3eBQu4y43Tn5ZQad/LxrcPjq48vPfxXo9vLrb15TbX/e/dvuc153bt+k5vB1sc3u9fomsdD2cwElF9mkaDufZTC+Gjq4Xvc5hqn8ulbcr/xcSub0AANL22Iu4HkhQcVS1UwJpSIqxc1aJ52d4SVgrmA2aYgVv/o8vlaDLjIwsJAzMoNEaGEVCBqEKlVrrQRuS1mRAmBLz7uGXHRORFctQ9HqGkCmGCkuNQGtkZZLazBdWypW8oGMHaoM28k3VAwEsHBYnTd6XdY6tHFUVQPaCjC2o4ElIGjeGEWAAEY5eIzKKCUME5+dgImxJPfalAVI2sJkEGkwFp0CFYGMwpPxSpOKVl1GWGzRy6bhkMQ5K43XGZfBZ1mYopIug41o4maEbf5XBtTOICzXZNP2WX5ltEJn0XZIIeDXLZVr6EcjYXKlQO87tM6bc9VaSeKcBYAyRtFYh7OQu5YQOjptxA0JRV/cQMW5VG9YgQPo4qwYgiSgqWoBdIy44GwmcB5AgaKXgWgK5LKIDguzVBVLS6PW4nSktGijKI1vWyojovAkEZNNfU+yGmUVZjAdMJppXUOSMVvVNU3tmDSOqtZFuBhIQTZQJYKizgrlPCtk7JfdKaviFaQg5UBKuoCJWhKmMi5dEfgN3pOiwmiHsqJT54zeTOycZNOx1pSxnkkpUtcN3nv6XlrtiIEUSjgZMyEKQzDmtQQCSQCCphqxt3/E7OKMxWpNzplxU4mGnRXw17iK5XqFFdtHmQclUPRRAhxVKqqbtmREpD/GSIhRxO5RAiRwM5GV599MbIWlGTebZujl592K1W4LQAgBay3OOaq6QivZrGNMBC9Mwr7rhQ2mpC03ZmH3iskKkDVF+1iAkTK2NBmjHBSQVSPP0UqceY0x1MWJuKprJpMJrrK42gg46D0pSnv6cr3m4cPPyTFwfvGcyiq6fkQoxguj5kqS4qwwJuJiLlU7AU+MNbIpRIv3RloYnCmBO2AMPovxxartaPuevjCchdkmLalKDQxFhbYWmzODaUcc7lthSIMUE3JZW3MJ1gcALydhwVrrsMZKcJmlDVMN1a1SZMgUA5Uk7ZY+R6LRVIsxk7aV4FrOqgROqgBPGh/BJIUpLK9sDKapME1FdoZoFD2ZdcosQ2QZApVyYBqoNb3J+CQFlLZfcXp5ycVK2J+NzkUbUAA/SrJpjaEyislohCGh+4Bu16SUZE9Kmq4XFjZREXMgJSkIeDLR601bVoiREJN8BYKPxOJEO5lMuV50GGXQxXEsl3U7pXij0BB6L+31w4KfMtkPjmRKmN7tmsV8wXSyz/HxMSlCU1ly8rSrNcokoCIrTbdaiVOaHjSe4maNNmmgabORJ8gpE0JptbKW7HtZc7SRPdVHrmbXLNaB2coLYGgqJpOavdEIY+Dg6IT9wwPSakVjJRA+DSucDkwaReqWrEJgUWf2D/cx2lIZhy16iNp6MOuymcl8BbYuZ0r0dkL5yxCE/3MBdLsB7rAmDT8PTBfY7sO7z/lnP7axucQrQX5hrCqyA7mwCQAFwUui7ypb2gklPIsogoq43KPR5C7Tnq9xxmCmDYwigY6UNW1vmC8DjQ206zPacMbdu0eoecfFh58yWrfcun8M1lNdvkCfn5FObjN6awqpQfkee9Vz8ad/xuWLL5hPM5+mGU8uT/HrBe/cOeLe/Tc4fVLxUMMXy0ucW/GtvSPWH894+hcfsP+7luWB5dnTGQdG873xhJPZHPX0Meeza66ePqK9f8DtB4fovQl7t06YTCvUt0eMDw4xY4XqFzx4+4gf/6u3mS0vCXGMTmt+8bfv8+kP3+N797/Pw799yvt/9qfY60v+4Pd+j3fvHrM+fUx3fII7uoN2E5QVAJ1sUdmiegWxAZc3DvQ6adAnEBKf/6eP+ZM/+09EE/ijP/59TvSUHM7RdYRYFXaxBj1FxQr6AG5o62rIJqJNLzecjhQMftGzvlqxuJxhJpaJltjG0aB0htjBIjL74BHv/+QveB5X/Ojf/luOmim1rgsxQJKUDWlsWHV0YpBEpxS7hgT/mxyvmwsDw4XyeiFB5yPGK2wEjBpwns0xcFmlpfs3NOdLKJVSka+RRKUUriQ+3maN7Ew4vtkJlAuWcipi+tKy1a7XXF5ecnV1Rd/39CHgQ5ACzS6gkIcYWaRbcvn9ltebCpOT7U3JQ7eALrGyKkmnuK4rk0BLMS3FjAqOHBvxIkHAJa8CQYuhXErC4gpxRUwL4LoUNxuyasRNWCsUCVIPoUOFjhwSse15+OgJnzx6wsPPH/P0yRMeP/yMy9Nn+PWCLkYWIbLo1pBF27y2DuccKWcxvcoWY6S4l1Jm3bZ0IRKSJ8VUcgTQJa/LJXYdZFF2yFebPHTIp9MQl1iN1rbkvgnlvWijm0rytmyIviXGgG47Ls4vWa/XnJ2dsT/9nEymqUdUtaXvI123ou8CIYrZQyYSB4DORzHWinJt2z4IAJ5FU5sCvKcSY8aYJK8TBkDR8i7GBDmhsy+tpLqAj4pBJEkrGI/2iMkztKUrSrseFqUtJyf7zBYL1usl1moqV9jgKmOd6L9twE1hX8h7D4QExZcYiikX/cEcSqoSiRlS0mjTk2OFigFli1mGkkKlKvPly4BZ2tzEG+DVl9aXvEPIELfZWEgmucyBIR4eCCAxRpLRO/pyXwa4JCfZntfrGGsvt6Rvl4EvP1btLKZfXidfBRLefI8hT8Js86uXQbLXgXa7r/uNgKzX/P7l93x1EWHnveUNC3h7E8x7mWm3XfteD9DJnqRe+Tm/ik0opJoB9GKznxSoS9bbIbhkG5MPGI1C8KO0Oy+Gt0tln1Svvn8vH18J0IWcilGEJGuq6DRJQptB35woMYu7q4BdEKNs5LaqyodU5YODcjJxlVEFWc8oHUsCLax6XaLMnIX1EkUJVQC4IgyflQAzoVgjkzNGO6wBq1XRX3OgzKY1KAS/AQ2GmxFiJusomj+qIOgpgU6SKJXqfE6aBIg8k2gTCLMw00s+urH+rc3QQquJWpLWKEglIYv2i9QVRKfNKUPWCZ/F0TbkIBTwlAhZ9NyG9mKlSrvs1yCw5e5graFxBqcCfZek7S9movaE4MhaWgN96BGHo0zvMzkb2aiSQilHbQ1BaZxWTCdTfC/6BTYmPJY+K+qm4UBXhP5CqlSIflHTNNTjUTGpkCQOJYti3mkbHY5+1W/dPhH9EaskGY3GlOpIxJp2w2bbHfDOGKZNzaipSLGnb1eQA5U2jCpH8J3o5jlLbcTIwnsBtYzOrJZzEXzuHdqIQLCr7MYdM8eA1oakDTa74opXwDyyFFcz5JwKQFcCWYSlFlOW+6o1o1FDVTcyXgrQLJ9vB5DUsjlvAKxhTqCK2KtDa03f98SYqKpK2lb7gNaa2WKFeXHKydEh+3tTfN/St2vmq3URBxaWVTaJpnLgrSS/SUHsEfvxoveGLECDCKixAlQ1zYg0DlTWk6LdtADusuWG4MhaewNgT1GMNNq2JYRAZevNRvOqBfX6+pqmadjf38cU4xelkujrOEXoPK0P9H0oFcHSGlMCBlNa3IfWY6UkCTFKtDJ1ud4556KnYjbCzLuUdwUYa2msgGkpRdF5CxnbtbTLJeu2JydPSuBcTVU1KGWZL1YsFmuMc1jXoJVHr9eS3KuMc5amqaiqCqsElNa6oaorFNKWHBOsu56+7Vn3AtDFVECMKPqZNqdNe+Rg/kPJOXwQ56/gRSJAZWFkGaWE/ZallVbpQdND2i1yWatjZhP0mi8FMYUhijhvxSQmJHSes8sr6ukU5yyLVUvb9bis8N7TqUwbA5NqTMYyW7VczlfURw3NdIJtaoJW9Agol3zk2Uzm3qquqWpDUg3LLAyvCFzO13zy8CmPL+aM9/a5e7jPQWNJuiIbi5iw5OIQJgmPc4bpaEwznXDrZAI6c7XsSK1IKmgrm21K4nKZgrAbyaKh1vcBo7fudjFLy1bKGteMQIs2XUrggwTQ8t6y56IV3ke6XnRctSmMyByoqpq+9wK+58h4vIfWmqYeU1nN5WJGSvuMmxHz1YyLsxe0Xeb4eJ+DcY0zYgIUSstt13UoU6FVTWUtWkVZq2JktVyyXq0wzlG5iq5dC1CfRWsQn2jbjrbzNM2E23fuMBmPsVqTQySFyOTgkG9997s8f/GUlsydw0PadsXlrT20PyCvZqT1UrRm98dizKNlf8xDFlWuSYrCDNlIUyhhwA/tVlv47p/veDk4/DqduZcTi5d/95s+FBADrBcty+UCpRTTvQmjaS2JecnV1uuW84sLMnB8fCSdBhoqLRYTGouotSZqp5nWGaU9pk70NnC16uh6zeXZnE9+9YiU5pxf/opm1PLv/rs/RF3N+fu//HO6Lx7z9vE+xnrasOTgnXc4qRvCizNOn15x9tFDqosL2mdPmH3+Mc/Hil+uLll1niPdcL3sMKoiM+XwzT3M/RFZnfHDb93nW/sTTj+85K2TGenQsD5fMc1grxc8+enPuby6pLIV796/z72De0wO9qBWhOC5Wr2gvVrhzRtMmlu4JtAc9bz3gzt89OkRDz/7lNHBGGsmoKecXq/5v/7D/83f/OSvefv+XfamE84vzvni04/5Xr3Hm6OpxKeItmcIlrHbZ6i2xhhY+RZXGyaVI89XnH3wAT//i79i/fkLbt05YXze4RYd67CgjzP2pm/Q96IFtl5ek+Ied946lhsYNaRiHGGkApizmGaNJiPqNx5w6+4JuVIoazFmJAKDUk2E3hBnPf3FktFexf2je+yNj9josg4PhVKwKcB40RRGSUzzjwHn4PWshmFfoRT+xHU9YDzYoDAYhmXw5mjffqHEYL/uIcX70uHBFszRBYz4TUCBu4X1nEX4f7VasV6vxViqFE+2hg43E1e5D3mT00isBSAOnwPYIHGUADWKiFJSBNwwnzRFM0tiVikCGeht0SK05Cw5WtRJANoMSQdyaCGuIK+gdB+AAV3hQ6ZbLJidP+Py2SNOnzzi8sVTri8vefjwEV88ecblrKWPmtk6sOoj1o2xtaV2HQcHB9RVRdf3wtqqKtCa2lVkFOv1mhSydHtYJ/FxjGL6h8SVKUUB3UIgplCIHDVtKUxsrycMYLPSQtpw2mGsFTCn90QgFyJA8AKOptLqLPGZYbFYMLu64rnyGC1M/BgD7bqVIljRVS8YsJgY5Fi+psJ0A60bjHZQHOpFO1ATQ8L3vQjmGynaynAXgykBXTNGyR4vxVbJvbXROOsw1uA7L8w1FMqJMU2IAZ8VIUfWsxkZqGpbCuClfRYp7m6YmoXIozdVMVkTUpEJyUmkEVKS8aOT7NS990JvyYpkDUaJ8YyKAWIkF23l3fE+AC8b8CVvY3rRV0xF+9MwmMdsCvsxoqIwnVKOQhjJO0YCRfJhmGKSu5gvzTngBmg3vMcucKTUzRhku9cLI/DV4NrO+6BurHG7c1+XWHwgebz8Ortkl+1rvxoYe/n77e9EzuebHF8F1L3q/F/HplPD+MmvO6dXX+/dv+0yG7Wymw+Tb77Qto6i1NZ4Yuf3m5hTKdAJxTa+k845mfvKaJTVZC3yYGSNQNDSMTfc1mHsym15PVC4e3wlQDcIVSqtBOEvlXaQwem022wqAwU7DOh9EbTU1mK1IaoszjwxSwJsjTBWlTQ4qiJgqYeLRiT6ILpgubhxWgdG+vQxYloQsxImCar06JdAPQvtVaksguh9oOs8MSvWrYhzrrteFiojnyGU3lVnLdopXAplkUkE3xM1qGyxSjTy0qAxRwYt7Jw+Im44SlwC0YqI0GVjMmCVVCmytKXGkEqrnREHWOGbCEprjLS6lus9DNobN1WVfucsLkJKS4sYSoAcp4W2nFImBAFBFSLEPYATicy4rjF2xNqv8X1LUhqlUkmqE8HL/Y095BBRTjNxjoE9UFWOFDUmwnQ6Jq06qqYmrVsysunEAo5mxCWyrmt8GTfCzDCbAMV7z7hpUFoLiKUUOooYfS7AVCrVsJwEQBGdvSBgqtXUVYXSUNcVdTWiXRmCX4uLYYZRVWONOC06J+LNsmkajFW0fgVaWkv72BfiQSKGiA8igOpshbGWoCzJ+g0dPOdI0tIykDOkmGXsWiteeH0o4KVM2K7zoCz1qKGpG8Z1pGvAR1XaNGPZ7ACtsHUlGyKANkj7G1gn7R8heXyMDH5qXecJ/hrfiW6H1YqDgyPCZEL0rbQ0xVjaFSPtek1EWitr5Rg5mcu1s4y8xroWvGjP9V0nGnTW0Hc9ZOh9JPptNXfYzF5eRIdNNoRA24lD1dC2sSlOv7QQD89TyoiD7XxBjHnjmCiARke7bgkp41wlYKDWxBBJiK6XKi2DIrIr7Z0x9NIO4SpQIsJrlRaThzSIxgroFFOisRa0oi0OqCFFnHOMJ/v0fY9xjslkjMqR4Dum0wlGS+UupiztpcZIRXjdFmFZWwI6MT9x1lLXFU1dU9XC2hOXPpkzpoDE4yzac+iWdd/jQyS0a0LOwugrrS22qgVMyCU4LwBb17V477Fa45wVh7YyvuQcwYcg4r2liJFSZrlakaIEO+QC6EUZqz4ELIhmG0laYbXoM6y6wNPnpxwdHZIyzJcrKjTjZkwXI2sV6XwirntaFel9xMTMJ59/zuMXpyz6jnVOrObXmL7j4uqCzyvHvpWxWB8fcbGY432HMpp5G7hceFZdxtSQtDjTRW3JRphXIpJdYQHnHKu1MEyb0UhA8spQe0VVJfpi0hLTir7XqK7DmiQFkOIwvmVCWkJhaKcEdTNiPNlnb7/DdhFXN6y7ntW6LSxzKQL5lFE+QNvjioYrgDKOrDyZUESNRbS6dpq6ktZ/pVUxxEjkEDl79oLFvCN3R5zsjdibHlBZXc5RyT5Ixhmpo+coXDSVE85s2bt938vnLtqD1tVizKDkmnW+YzG7xp7cQmuHRmNM5uzFY+bzCw5Pjpi3a1q/orKJEFZMphUP3nqP68cPWc0vubi+wq8LAykmgs/EUBHbSmKHbGSv3AAIEtjlf4me1q84/sUYct/wCH7Q2zU0o1pkHURjAbRisV4yn4vj7GQypnYV63WH1jBJIyk+Okc2U0hrdLXk6C3IKvC0fcp//PvPePhkxkFzzKjP1MGDijx8dMrh1HP66DlxOcOcHPLs+VP+5v2f0q4XdN2Stx495X8cH/CD7xvy7DkuX7FK13yyuuQ0RMb79/mdb3+Ppmp48ekpv/zZGUe3vsPk3ojjyZL7zVs8+VTRLfc4ixWrucb+bMm9txreunXC+eya+XLJ9WzNsWn4w9/6fb577ztUa83ikwsWYc7z0yc8+fRDZucvGN26y70ffZ83v33I+MRzdLeichWhd8xXlqAOiPYQtX+XeHKH66ri8+WS//yrj/iue5N674D5vOPs6TlXnz0m6Yo7995mMj4gpp7rsxXL045cedRBx8lknxcvXvDig7/j/Jd/w71bNb//b/4NqAz+Of25o7n3JpU7Jq4Vq8U1Ic8g7hO6zBcfP2G0v+Lw6C2MngjLSWtADGFyKnqp4wqXDclA0oacTCnxKxEbVBXWjdkfHTI9nLI/OUGrWkTdGdjxsiZR8oGSasjvGXRa9W9s7g3TSJXCzqrraPYcdV26LvKWu7flN+wevwFwrqzVxmxZ6KaAHb/xY0gyU2K5XHJ+fi6kiJQ3RcGoCoMr6qGDr8RVu8Va0WKTWyWifztb2QAAIABJREFU/SJlIW2LOUEIXoAabaS4giSawbf4IOeSk4BBTTXCaUdjNOusCOse7cBZLS7iIUOf6FcVue/pVwtcXZPWgeVixS8//AXv//wjHj/5gtn1JWfPHnF9/gV5fUnuZ4TlJSp7lLXU433untzCTG+Rq300msZkrJL4ZLla0XY9IUl3hC77qdNGikWdl+6ULAx02WtF903vMGm0ktZbKXRn0DtOmSmTjTDOtJLcIyrJAVNMRabIoLQlZ4+1VdFoEz3xWIrMmZI754ocKWQHjdUTicljcVcfBnqR6slm+2Mpo5JiFMMsKK20uRBRFLYUrEQeqnSGaCl8Z5WIOor2eak+Gy0upT5nehWggqwMKkPU4p6aBuAth42BheiZR2HUkjfSL1sTBbWRw4qhmF8VkoK05WYBMNDS2RMDqAQhiPEisndX1lLXDU3TEK0jKbOjHbdrAiGxiC5tBRol+UoMJS4ZMPpt/py12TjCCsCyo3FdgJlcAJkB1B7ktbbTVO28f5IcvQDoAs5uOxJyzriicbf7/J3p/lqgKmfJma26+d6vKmrc1O1WXyI06JLfDOc5gPqw7STcuKXu5FlS/Lx5Ti+f4+573GQUlo4CXc5n8BvYATXNJqZMGyLPBsIs52mMEQ26nes+nP83Me7ISXJJNQBvJe4Rr5qiJ48w4mLOkIeuFMjaCNhdzqtEnKQgxnZioJYhJqIKYGIB6QSLSBlsZWWb3TACXwJwv2ab+kqATi5E0Xt4af+TC/2S/sHOABJWibSy+lScXrNgkwmZmzLXpY1TwYYtJY9SOFtjlOjbDK20IMw+Qmm9BLIuukeDGw+FUh26UvETcCjGRMyKru+E/aDLwrsDPOacIYAdqscl8FdDC2WJQbQqYqdZqMhFJUiALS30YZVjQWc1OibsIHQ5DJThhlMqKQoJdUreYZUmqIEtVwKlGyi6LnpwoquwAUoLKDcAleLsGAk5olSAGIghUOtKWpcKsGC0o27GaCvtc84pYtS03pNTwHt5bJeBAOtKtNmUUsKeiJBtIyyWdkXb93TRU2nHVjtPbrCC4riUybpMxLx15rHW4kMoQLDZLCQDg0sHv9G+GlpcbwgubioUWQRorSEaQw4yVgzgjKZyjto5mspgjCsLtwUDt+p90WQrBiQpBgFmUyJ6z9XlFSkGQt8TfcRoy3g8ZTwZYytL9L0AsqXtssuq6MQl+t5jXI01Fdb0RC2ou7g+WsbjhE9OPI1K5dQP2mq+tJr60t9eWh1VLq0KWqOS6IUN5e+UFSom2r5nMV+WIG4frVMJOKTdD60K8A7rviX0nhgDfQZiS6c0fW/ouo7KiD6D94GUE0bbDcNHwFNpExjWkpdp0zedd4WeD2wYamKylL/0+Jdbydq2KwK3HVprafsNAW2szLlhEYzizGpRmExh4Uq7ioAc0tKlgBwDaF20MqVaUtU1TeWwSoImjSaFwHq1ZLmYsVqvaXtxQ3NVzWg0oaoq6sqJsQDStjkeOfb3p0QvenK99/iuwxfAtjKiCyfAZb+pqDvnaJpa2JZVxXyxxFYyZ11dMUKRlOh8RCCmToxD+l7W2bKXpYTou7WtXFeVxUzDR2m3VsJQUmV9zkaMc2JSxFgCRavpgrSsqrIGhgwqiO5cSFtHV60NKilyDOK0nWSDjDGxWnc0414CxCSBY+fFSWxkFX3SxACdysxXLZfxjKu25YvTF8wXK0LowffYmOgUrPqes5zl/K/mzFarImwOSVm8qkhYWp9YdT2r3tOnkWzG1qGMOL8NG/NGxIKBOSH6NxIoSuCjbSUMuDbS+54+D+NGWJvGZLkGMRGTIkSRgKhHY5rxlL5f4pOShNhYYu4JKeMzRAzzbsWLi0uM1ZwcH7O/N5FkIQNaSxHMWmwliYerSvtZ3u5rtXPUtmKVOuaX13z+2Wc8ePMtAd8sOKuAIPffaGzd4LSitgZnbHF8Li3PWTbvjflFL4Bs8EHYgFH0LxeLa0LosPv7UuTwPSvfMUoT2atiEFdxnTk42OPevdvsqcCzh2seP3+GTQZFKeT4SO8T42lN54Vhbofiet7eH1kn2IAK/1LHPxaY+5cC8qzVjMcN0GDrgcUtlyzGSFU5bt0+Fqa00aSArFemNN1l8K0iZIN1FldljF2yCi1/9+Ej/uQvPmG09w73fvwGRyrC/JQnj8/p2opl1Pz0bx/xxu0R+7dOuP2db/FkveDxR0vm14n5Z+dMfvLXzGdz1qtrpuMpozt73PntH/Ljkz9GOQu1o7JTPhw94we//Q4//sP/hg8e/zn/2//xP3P5i+f4S8VVc0XOieV6ydLt8T88eJM70zHP20ecXj3nzDse/Pbv8+5v/QHj0T559gzrFR/+9Bf85K/+X/rFGf3iHDttuPXFz3n+g1v88F+/x9tv/Cu+9953+Ml//DlXsyVnly1Pnl7R9xUXXc8KxUgreq1J1vHdH/yIu2+8y4vrGU9PX3DrwTtoYzAu4/Oc/VsTRrom2Q5OLFfLU07PH+Px3HvvXd68d4AZKXy35uJ0jlnPOLEaXTkSjgO9TzYaOMHP9nnx/AXPFw8ZjY4ZT/Q2yc9ZElqNBNoUowClN8m6GTAto0BbcDXKVaCcSHJgxazo5WFaYqpX8lPVbrL09SDW17W4yloD69ZzcXlNNdYc05CKdECt7abt9tWHRNff5FxefR5ibCv6rxljpbV2aCXVr2Cv/JOOgbKRIrHvmc9mwgor8gi7EiFfkvW5cb6D07yAGClHMazTYK0R53EkBqUUofuuJRNIuSPljr5VxYG9wlrHul3T+5YYLUo56UjSIneQg2iS9d2aJ49W/I2/5tGHPyWs18zPWhZXnhdPrvn08xecLTqCtvgcMUpzNL3F3Xt3+cGDA24f1Jwc7FGNxnRmzMxrLtZwPVtx/uQJKUTWYc1AEI0xo4IEDClmckyi4Z2ixBYD+29gr6jBhOrmXp5TAZVR2w1DQuDSYSCpujKmtFQbkTWyjmwDOfjisBsKOF1an8u9MMrilJNct1TTd0Eh2b5fPTaF2SOt8NLxNRS2xZU+qkzQuuSnkltJjC3MOa21FHCVkRY7PUz40nZXTkCkT0o7aC7ZacmPCjsFme9qA8QXBKLE3q18Hj1owedN151WJbb0gZgU2orZnt4Uli3KWpIqXXpVTd00jGopIBcoki0AP+QQN4EqtQkChnxixzzh5euqSv49YA6vQUhkLm2BlNcdWzDs5mO+6jlDXspXvP/LjL1dYsOrmHevA892waDd8/q6+OP1rLSbj/kSY/A1YOM3aefcvG4Za8Nzy53flGOALUB8A+QqzOvNuJWvw72WYaolZi7zRvSbh9cs5zmAtHl7DiKdkApIE0XGKkJdNaQBGCUVYD7z8mXYMiq3nyHnXLowX398rUnEZsEZkPOX0b9dNFSrIkKMAFmqtDSFWGQbCpik1OYClum2WZB2b44xRijeWgA66a9PCLEjkymuRJRK4YB9KjkBY4q9NpFBXFYrhbUC7g3gnY9hA8JJ4pCFYqwjlc5oJ9KituiIiexoQBknzrZZnFclwZdFNCpFUrlosSmq7MpNURsm3AD4hZQRCK0shcqUhChhKeguEmoMAzOnjB0MMSiVtZcmlda2/MtoK6BjZSw6R5K15F4WRu/FNCOmhK0dMWZhXAURL+1jxPeRGEVfMGTZKLU17O1NqaqKuFzSd5FqMkaNxqirq01clCnjukwKPQQYA6JfNqmh6pB2qhgDMp+1ImrRbBnA3kRhBJUE1WizeW0Zq9uFc6MttgP2WGOonRHdtRRBa5yr0ApCDFKB1hbnKiprIaeSoMu2fri3B0rOu1119F2ArEje04WOENsiKCmfwdgKV48wVoTucxHeVdZhCvMzI/TzqoFx0SEEAY9CTgTvy70pjNCi9xajVK6EyVmQ/ST3a6hE2NK+0HUds9kMlSJNbWjqCu20aGWlROMsjbO4UY1vO1QXYdPmqDDGUlUV2gsdPKSEDxFlLdZVeNWVBfnL7rqqjIHN98PdyoMZzU7QudtK89LriAh/VRzMYnGkkhmUkrBCXa3lNXJCKQEYjBZNQ60Vse/KGiTag9oYaiOtXD56qmoEiB28MxqnMyl09CGIQHZl8dkTvQAy67aj8/1GX3PultSjhr3JhJPjQ8aTPZbzK5aLNdPplOnePilFur7H1R19X0SAU2LVrqWlum42BKGcRWeubeX6ZqBKiZik2hOCgDKutowZi1tr15NzQFsJ8rJSWCuut31fXJIH4D8FUvTElOnVsM9lkrIkbUhJKlZWG6IzZN8TvCZWVtrWQwKtS+FCTBuMtWAdli0DWEURM48xEFJisVhhraVPiT5ELpcLbExELaxOXa/xxvL06oplSpwv15xeX0khAmFYOaUIWtORwXsZD0sBPW2S1lNMzXivxlYNMcFstuB6pFnt14T9BmWkTVoHgyJudE5DCCy8p4mafb0v6/Oge1k1uGqK1pG4uhJjktJOZG2Ncw5rwdkKlXwBObMAwdqhTUWiJSQF2pG1o8+KmBUrn6itAHcX8yXLxYLL2ZK7d24xqmqC74pLdabtOkZ9Jy6yRb8mpiCsvQx1NeLo4IDcQ9cvuDw74/BgH9+vSalHqYgmEENPCGKyYWwiBzHOSFGYk8Peo5SYy2glRkpDMK6VsO9i7Hj4+Se899YdDg/HYozU1MzPOuLlNdPphKZxrPtAJHO9nHNxWVErxfTwiHa9prtaoJIkPiF5UupAZ6JKZKMkuMnb3EMp0WwXSGKIIv6Fkbr/Px0KtBPAX+IbVVqoEOlAFBorIHyhbRorrOj5bMlivqKyIyb1mLoyqE4xO5vx+PJ9Tlcv+Pu/e8xHf/uM7/74iL3xhLrpOV2t+Pz8HGtvc3Jwi9n1NYdN5s3bDY3q+eITx8OkSX7M1azi0WkmffqCZ2ef8cabd/ij//qP+NFv/Q63ju6Q22swiSdftDR3HXe+/V3C3RVPP3qMrioO9/c4u37G88UVra7osbx/+owfnd/l9354zPFJzZ0395iO7vH9P/g9Dt9+E79cs7z2PH/2lI8fPuR0vqC9WvPm5IQ/+PbbfO9bt2j7BeufPeH8+JCrs+fE1BFj4LOPP+F//1//PZPxhC8+e8LEaR4cHzC1Cqci9964y+Rgj8urC/Ynjnfevs94f4LWAZU7jAJzPCYZw2Va8+jqHDM95jvv/ohJ8uQww6cZ4/0p7q0lKi4J8ZK09FTuLnpc4deK1fkCP2+o8gH15D612WNLb+sBD0a0jmMx+dDImuMpibMFk0qJ2GWoNWY6Ru/vQ9WQsiVr8wpuWn7p39cdvybbTEnHSd+LOP4mQY/C4n5puN88zV936hfQIqVciuYiBzCfXWO0Zv/gYEdi5p/+OXcBt8V8zuXlFW3bbnKTmLYdSruPzzkXo5dtEq0LW0wAOoX3xcFeZ5GfUJmQo4BXUQptMYrMRe89apm4vFpwfnFNHS0+r/F5xbpXrELmejXH07PyKxarltUy0K6WRD9D5yUqrUldwISaUQqk+SlYjd57g/1777H34Dsc33uDtx7c5ntvHPNbbx1zq8lUqifOZjx5dsbDx6d0VzPatsclxTpEQhcIXSCHKI6s0tJF7MX8TQpWg9h/JsUCyCnpjEgpk1PcFIElMS5JegGWyKowrYS1Kb+HqJLoqg843iYHHqQVZIyajLDFC7BjACdibMVkgw3oM9y/ja7jK8aqQkkrtzUYLVJKqkg15ZSks6zIxGxfN20YR1oblC86lwWMCC+BvWnn56xFdmn4GnXC5070snY01gqBb8MWHIAHcfItU09LwUCVBwuLq+geKoUzisoZVHGezUpDVVM1jWgMIuxHjCtg4quZZl81n3Z/3gBT8ovhRm7mVN4+eAfjYHOfXga6NvNv8+/L77cLWN18DRhAxq8CCP8pn/NVn/urrsfXAX8vr/GvAwdfx+7LLz3u5X83tTRvntfm9TJbbdFc9EZzFswjb3+f1ZZ5qsvzNuSOgj8YBIw2Sr6KGScbIJqyng6vO+Sjwxqai+SYVgZiKkD45mrIGkTRsEMkBbjx2bb6ejnnr20h/nqArlTjhq83aI0MSLPe0ChVuUBZQUriBKhBnEOHG57k0w8o5iCuP7DEhq0ulirH8GEpgMyApA+0yO0FkMcppVAp4MqiZZUGm1FosjJkJYBf1/pCrxS++NDPnXKm66X6FA1UKlMbwW8toAtWqovLXtayKkUl7MDAAOhZnBKn1toobBJwK8XyfC2soaClVpARxpFACIVBpwOOYhFNQXmL+HqKUSjXG4CudAQhQYUb+veViIHXFYxr0Y9TMbCaryBrQmHGdH0gGYWPkbb3LOeLwr6DXDToBt2BXDYwbQyuaWhyJrtMc7iPGU3YX61ou7CxGt6l/Q621bo4mGJ0oUfHzWQdxpRSW/OApASsaapaGHZeBGqdsRvwbQCApTpVxkSxTFeFCq6UEqBGSWXRWRFBt0ZE1bXWdF2kaztUldGVkwmdQadCLTcGqorKWTGhOFbkKJVd33rW3RofKmL2tK1nsVjThwXaOIxr0MZhmxHt2hMjaCsbXIgRmy3GWpwT1tJ2EdUYI0l/CImq6guzJGx06bz3aG3xxhDaXhYTraiso64qad8sLMDVckmKDkVGa4cN0PUZTYVxBsFUpCWU6CXhV5qYhM6ekYQ8JWEFDuBbzsXppohLD2NFlpN8A6AbFvahUjI8JudcAs1hpdkew/gY9Lpi3OraCcvJ4gqwopS0dlij0VmjkGBLQ7mPos3hfYAUqZwECBFLzNIeYa2hMpoceqLvcMYymYzYm4zEOCFnfPBUFlZtFpOG4Fm0YtqgMrz11pu89eYbPH38iI8/+hXzxYK9vTFVZanqiqquGY3HjChzOMaSlIiGWgj9RkdlMKkIIdC1reiQpSTr5Q6LNMVA34qTtVDNyyZl+tJyXjbHskar4gY2uORmUrnPlmQcOWtiQgC6oCH0xKhI3kAW85CkRG8uJAkerXH0rqaxTkwpCkCvsyZECa7blcc1cmdiTsw7j0mRrJW0wK97snNczsREoEuZuh4LMOx7fEgkkri6aoXWFalyoDQ2JnLfEYNoeKakMFVFVgJqLZcr1u2Irh+JyLORZNYV8IckIsadD7RKM01ZNucSmDvnaEaNAK3OAZZsNU5lUpL1LRfX8RAiXdfT+kCyWph0yoJx4oiaNX1WhKxRtiFqQ5c8KWuSrVj6yPzZC+bLNccH+0xGNbWzwmdRmUQUdrApbGWtCAX4rirLwXQflx19X5PpRWcyJ1LsIHdo5SG1hD6wRmEbi8pRQMDS2pyA2HtyErc50b8DZy2VdeSQSalnuVywuLrksy8ecft4n+OjfSaHh5jLPZZtx95+LW3dbeB6seZXv/gZnzvLvemYd966z4N3v82nP/uA02en+KqiagzNyBJTK+ut0cQs1rmbqjiiZ+uUJBgbmaj/gg8FW705IJf6pdLCdARZBzMUMyJhCcUY8TaiGk/n11x/MeOD93/Kw6e/JI0vqU80s6cvuFcpfv+9B7x3fw8zzdy597vsuVv85X/4Bz771VO+985dKpV4+skjxo3nvXvv8FH1lBkJjeGzTx/xxYuHXHfnzGLi7tunHB4/wJHxeJ4/e86f/+VHfPDhnHvnT3jjB8cc3h7zne//a9anz9ifjvmHX3zIbDnHU/GLTz7iT0dr3rttcEZTTxxqOuLkzgkp9rx4/Ih/+Ms/55cf/DUXi0tC0Jwc3ea/+vGPeGvacP3Fc+btFflwTNefc335nLqBqaqJ7ZonH31EZR39OrAPxMtTzsJzbp0o4uULYjTcPmg4evOQ6X5N1mtQHcQ5Pi7p1g0/++Dv+fvHHzA+vs0f/M5/y2T/ANtek0KFbW5LobE6AGakeI7yLVgPKZHbAJ1hVDsmeydEHTC6kpg6eVA9ymgyLRm3YYQDG0ZKVuV7lcjJU4004we3eK/7Afb2LY7vvyEsaO+pXVXYcq9JJDfslZe//vpHTtIJl4uLaIqZFBOrZUsMmemk2o7x4V8hEuzYr/8aJ1CM5jQlZoqslgsuLs4Z1Q3T6QStC4tud535x6455fEhBHFvPTtlvV5Ly1X5e8pbF9fduGmIcTZMHnWTfWNNJSDtJoEeEsdc4gpxC00pFHKAIwTNchE4z3POzk45vb7gxWnH5XzF+fUFbVixapcs257VMlFZQ+UyWvXksKbSNcfTE751Z4///nf/mKPbJ+Rb78LJtxnd+w7N4T4HU8eRNRyagAtz8uVTrs/OWV5cs768IizW5Lal7zratqVtW9FWTluTh82/XBzjS+vzpp0sI0YoA3PsxrgsCXNph80xblxAh8dLmx4okwsgQAGYBq1pi1KlvZWwMcazWm0KV7YMylwKSJKv78TCm1LSl+eRaFgOj1Ob520OLSCc5N7DGyRyKZRZJQVqHQftd2HUQXGPTIqc9eZ6pVCQN0RbNumIpycpMTHZ7VLKBTSWnHy4urIaaK0xTggBlVEDYgfaEAuW4Kymdk403bPEjArZt1XKknvHjHqJYCTj/+bP8s2r5pW6sRoNTMENGITa/HED3O18fR2A9jLw9iqM7ZVA0/avDHHLoM398vO2H/DVr/tNGG6vetzLj33V83fP+XXx08uA3MsMOQHnXg8+Sqr4ZWbgBsjKCAhdxoQuubv8V143bc0G8/AZCp5UcPRC2kLW8vKaIvGohFkaB1ZcQWBiWWeHkaMKG1cZAfFTiaXSALKJ4rHgLoIFZVWkndSAWr3++LoW3a8E6KRxsmx8myC49OdSziDD7gjVSpJ3lZHefKM3iHiOEFJkoBUPNPvixCxAnc7F/UWYBjmLmP7ugLGbVtbthqURV0ZZwwrNMElL4qCZAbmsEwprNd4oks+im5c1DhHZLxgqfQS0wWVLzra0k8oml1Ui44dRQFAGrQxeKaLS+JLkyUdT1EqTlCRLPoeyaWaSFgOIIrePDC+LyWC0JFy6DLpUQAyVsxgl+BK0KUUmSDuhMlLpiaLBF3QmGNERjhEx+CrXZzQayQaeDW3wJXk3ZGNpkISSKAzBnASe1KXiEGPk4uKCvm/JRomGk6log8elKA6PlcP0felFRxJVLYuuMkAe2ivl7iQlg8EMDrCxTJNyj60SHTQAnQ059cVMQW3GqC7tvSrnjUMVClRxxBT6t2huiKusoXEVkKhdxXTcYLTBOcM4FcdgayEFun6N94GcAtkaYtfTerGV11pTVTVNVdEYS1VrrNkj5sBq0VLZBcu2IyZNNhUozfVswarrUMZQOweU9tko91SXxClloeaa0gabUsRYEWfXRuaYCVp0KqwB0wtgmQaWohgy1HWNMRmL0OClBW7QbLBbQLRUV3Nxn9SluiCsxSEQiqQo442ciUF0MlIUsE5rS4jpBjgH20V0t2o8OLfGslk5J05dwYdSOYPBgWo3QPW+ALpIS3mSngVJcIxCR2nxcsaiScQQUCSstjhnuHV0i6ZuSDmyWCxo2zVVVTGejqnqmrPzM0L0VAoB2K3GjkYc7O1xfHRY2EsFtMg13jcs24r5csWi9fh5J3NIKY6OjnnnnW9Bjjx6+Bnz+TWz2TXGSgtf3RR6/2hEMx5TNyO0kWuTQsR7h/c9MXhyzgXA60swVDHkJdKK7sX9KxUB46G4oXY2wuJkOwT9KRcWlEShDAxp0fgQp7SEtGlqBBjV1qGQNhNpS9cEIIdA73tUDnR9j29bgqsZGYsrIrwhy7gVp0tNSgrtKpIyJK3R2dAzaLZJ+LbqA8uuJyhFVTdYlcl+ABqTyAErYb0aY6jqihQDPiaMiZAUvuupXEVVOSpbCUCbIil0xL5FU6FUhVVGjDNipDYWayvqSti0KpYW1kEbUymMVYxGNaMReKeJq57lUhU9xUTbd+S2Y65XrNY9ZtwUQFITsoBzSTuaySHHd/bQk7uc7Du0v2Z+fUl2DbaZ0LYr5uue3l9wtDfh6GDKZFwzCIWL+LAY3WzNmkBhGNUjGtOgGGGqTDNuxB1VJ1LqaNsZi9WM3hct2GoiYHYSbRelZD0eEiPfe/puXdZeWU9SiETvWa+XaKfw2fP42VM633N0/w733/4Oq/kCrSw5RFx1QKLh2YtrzpYLlscH3L57n/tvvcHbKRMUdH3HenlFjGtqXaOUp02htOzZbUEmKVx2WBx6QKK2orb/5R5J9kDMzYBbGy2tajFhTQllS442mkzI+5ZgO0w7o/30IV989BFX15k73/ou/vKK227OD373iEk64+Ev/4E73/shnprL65bPP/k56xenvDH9AacefvX+T1A6MD3ch+iYjmA6CljVgVJ0beCLX3zBz6afYNaGT5uf89njT/n4i8d8/vGMxVnmZ+//hDe+e8T3f/t3mC8Dzy5a2lXGmBFHRuPsCIXiVx8/5X/6X/49tw/3aNtIni748z/5P/ll89dcP3zOxx+/z9OLzzk6uYXpFROdOBjBB5+f8Z9/+pTxXsKNnqA/e8rj5yv6MCMmDeuWoANV3WD6QI1iYmsaD3p1zdmjT0i3A/vvvkVzUqHiBegRpBZNz+LZc/72//mAf/jlB7h7U+4/eIP7k0B//vd89sFfsV5e8+Cd73Dr1nsoe0TvV/RpSbN/RGiXdFfXaKOZPriLSpbF1Tnz82c00yl2bwL4LUtIR5KxIkuX865M4wa8RmeUTpB6Yl6zDEtc15BCh2sU6EF15xVJqoygGz9tYbLMb2LSKdiw5GLI0uaXS1uTyjfeRt55R87iN3Aaw0tpPSScYIymaWrqyhXw5+UE65sz6QREKoke0Hc9FxcXnJ2dsW5bktFQVRvmcoyprPGleL15DUoNeluYkLZcyT8HY7mcU4n74uazpRy3e5lW+C5xeb7g0/+Pujf7kuQ8z/x+3xYRuVRWVe8bgAYIUgBFSqKkMWVLFxr925aPL0YzYx9bM7K4AyS2Ru+15xYR3+aL94vIrEYThE3eTOIllRMGAAAgAElEQVT0KVRWZkZkxLc+77N89pSvUuSTX/ySL373jKurzHK15WpzQaTHxw6yQespW9+Ss+bGzQPu332Px+9+n48//Cs+fvwuf/mDB9gbx1AtCK4muErsJHJmpnpsv0LlDTltybkHm8hOEU3Gk+mCp/NRklnLXrCP4vHaBV8KUAWkG0ATlYu9S8Gs3mjDuzUoZaPN7j4MzJ6hAG0LAIYp66tMthntklhW+K6Ue7WQUbLsRWWvOCTo5hE9lnXv0DCH8Kg8FtlK7ClD9OM+JicBBkWNgynjuhIZvS0F9SQprhkhi1grRfaYZB1qis1QIhWliQCTKSVC8e3LKRWySCCoOBbirTEY7YSJPRTVlUEx+FQWiyJrsJXFGc20MvJ5SpNQospKaWQZlo4AUcIj8D0q+uL/tTPu3+/HuVQZRiIA6RtD1D57683n9wG6fVskaSXDd0tyfwY10n7b+cbnyb3Z39N8m6RTnn67HPTa6/a+9D7Q9jZm3NsAwTefG0gMw3v3wcE3z3UAjgYJ5pssud8nZd3/vKFd7HwK9U7Srb/JPnwrsw9GDGT3t28pBQ1javmbHvafpU9Lly/qOzWMlTKnkIvNUnm/UhJIOYwP4yXaA3VzzmN66/gdjPiUZyVqu2EPnPc+dwjH/ENeLN/uQYfCDugZSBVLxeIVpwTpTmJQmnwoDLjiB6BkoHDKYR2QNT6nstkfEh2HlEp2bBk5d8gaXdnxBsYY9ioJO5PDoSFdo0ySIHtMbcrkKgyPnDNJ5TGptcD1ULTDA6qtNaAcGVuMJe14DaxSZWIWQEA8vxRKWdC6iAkkDdCrgEqZCqE6K5KYficBYr0emIbDNF8g16jKpKsxuSDCWQkDpcCbZLk/Q8NVY4VjWIUNiZVy/UKIeDJt9kQlGymnHaky44QlMsOMMpqqbphnIIJPInVNSZODl1S+HNi0LV3oQCuagwOig/VqiQqRq/Wabd/ho6QYaWewtRuNNKFIF40eVckF+xTOVkwYZHIcjPSH8wwpEn0x7B8R8p0UUiszTgDSZNRY3RoGAa2VgDjFHF0aXZQNp1YSqKEciYTOsslWUaFyRGeNzYrpfCqJR70n+A4lFwmNIoaAtgI+TpoGZRyzIAzKkBR9VLw+f0IXeuqmQZWFQFbi5SATbJJJtXj0oQ0xJmHN9b1IZY1GBTW+1wA2GfHlcI5QOu4wOFoDOic0CWNNYRlC5RxNM6GqhucU2ioqazBOoZLDB6H41ln8THIn9fmB6h6DMPlClKNqVfwm9wbtnWxd2kAocfFDeuvQh5Uq/gDDuMBucGb8zN1qfBhLxoVWGsTBwnglJiyZpq45mEyZThqODxdMpw0KxbK2LJfSHo+OFhwdH3G8mLDZrAjtFq1hVlXMJg0H0wnzacN2vZE1UpFCJmDbVcxqw9WmZ9tntlEAOGstg0Shmc4KyCFgWwiB9rIjXVxgjKGeNNT1lNnsgKaeMmkaZrMZqQQ5dO0G73uRGZeqpoTilEkyy6asaWpSzPQ2gJLzQ2u0ttLPh4VWkKQtVQxSpfBR0l61QpkaTEXKYsascsZqkNzTIO3JiIdVJEPvCWVUDVHYZ9kHsrY4dPEqNNSzKa4WiV0foowzSjYaSRvpQ0Va4ZTBo/HFM5Nc0ukCmCh3OUZhjFmdcLXBOEmbNcZIqErIhBhwSrM4mDGpEgczTeM0hkSOPcl3ZOVQuhI6fBLvR5szIYo/T865+PwYchameM4Z6xxNbfGVZh0zm40X0CqJR2Qqqa59H6kbhY/CIOtDQk0aJgdH3Do+on64INU3mFQJ7S+5OH0F2rLtPCFDjoE29FyuN1SVZXEwKRsUAdN9aOljR+thmjMZ8c1zVjw2nVG4BrLJ5Owhe7zfcnnxmhcnLwixRt9VVHRcnp9ydb7ETQ/IWWFqi0Gq864wOVUB9FMIpByxRkKIJtMpN+/dxjUTtn3A9YHJ/JDFfIHfREhg6jmTyTGYKZ3fsNkmXp1esbixZHGwYDadcHHxgl9/8hve/eGPeLRY8MWLF6yDZ7o4YDqdMqsmss5QWrjnWf1JCDT/wz/KACgbzrKJKXrggbXhi2G8MRMZk/pE6CN97llXSzb+FB863Lzj3fcecnt5BLXlN09eM51N+cmPP+YqVvzrL3/JZ1++pg/wxb//jOXrzzmwmavTz7h6esnF6Qmbfkv79GsmB473v3eTezOFWp3z6sUZlZuwTA2nn73gdyHw+L3bxAxfPT3l2YtLXOcwmy3PfvGaqxeXRDPDp0S/2eBShc0J5w3T6ZyztuNXX7zgeX3JYX1AtZjwL//8n5mmKepiQ9Ib7Ezmn8bWPH7nBo8/eMhXJ1/xbG2Z6MjV01dcLC/xxqLUgtnBXNgXfosyhmbmWNQV924cUs0iF5fn/Pv/89/5s48U9b2bzNQBpJbU9eT1OZurMz79P37F2afP+eGDh3z4d3/NrQ/eZ3P+mk/+7Z+Z6zPef/99VGp5/dlnvHqxwR0YpvccN6xFpY7tas1sfgO6JeuT57TbNfPpBGMSqGVBs8S3MReht6Yavbt0lnUR5XeArCM5blmdveDXv/53fDXBzW/y+M9uCWi7vxEbp9wBiNt7/hsN70+AiqvdPJ9iIoWEUppJ3eDNjnGv3nYSfwKMUMEoQRySUSezKVXj5BsW6fgf+5BidKLvOy4vL1mv1nuFyTxauogkcl/OuJPMqaxLsENJni/Frb4UsNCBGMHYXIopu42n9z1t19F1W7xvef78OZNpRQyBl0+fc3ayJvqarvf4uEbbSKaTIqz3TKcTHn/4Pv/xn/6Bn/70b3j44AOO5vc5aKY0RqOqStjwKFxhdxiVsXiUiaBSKd5rktH4lFhvN1ytN7L/0iK/zErhc6LzPW3o8VFsV2KhNxQizK6JQukHu3X/PqC7S/5UYzsTc/dAzvra3wRsGPZXA4tOocVEhsToZleel5/yqXLcfSt3wZiuj8Wyqdv/CTEnzPC6ASFQwo43WqA94yRULFP86oIoICKDfFOUCpAIQYgiaUyNpUiDs5gsJUbv6oE0MrTBNFj1aLMDslKU71Y2caP6qVyjwcM9IuGQaEMoa9QcBQxRBRALIUPfk0JAmSzBJTnvea/venzev8nI3k0agB6f2wfp9sGfawDdW8aNHangOvvtbcDYm5+9D/L+PoAuD9X0P/DYcRK/eax9Fu3bzuH68Xbn9OZzb36n/c/bB+W+Kzj3je+tvnnO8vl7oKDagZFvMvNGfGPEtAWsHYixTgshSaVc/Pal1apijxSGcTML5qLLGmgE11KWsWUAmUfrNZFnD4SzQWJbenMBDfV4/kYrlBGfe2PKmKXMCGoMyeeZN675HwPQ5SjcC+kYBUzL8iVSjEWqxGiux35jzmB1MZuMAUbZ5+A4t9MJS/BaHsEWhZy3NoaEhkhBfIcvp8v5lMYwoKalSjBey9IQtC4JHANYkwrFd0e5k0GoDLW6yJfQriD/eqQ7Z5WwCpSS16c8xO9Koh3D99OKkBU6ZZwCErikUFG+a1QiRc0a8TxIcn7DNc5xWGrJP3HGKhTiAtqZMgAOk/W1e7cHVGQ5COQgYGeSuOnkE+tWKmFJGzCK1IOyBmvEAL+M2QVcKN+vdKKqqUY6p3YOXUkqYtKyOfcx4KN4u2kjjDXr7GiUOqYYaZk0UEpi0As4YEpij3mLB9k4uJRmP0wMxpjrAN2AV+rrA6syeoeaZ6Gii69bu5vhkwMtG1Fri218lkWi0wadEUP/WuGNHuVlRmmsrem2LVmJVDuFSC4b/G0XWLd96TMKpQ3WOJTRxYdwB2CmAmjnssFKWQz0vfdo4wqQEmVyHUDIAnwO10RlYVJZrTEDLZYkbUeLhLOuKqqqwjkjvhdKjYxHYxUqWSIalWSClussg2Xf95JiWqq2IURUFHnI4OUhi8uSNpnSCLwO98wWLw3vxV+v73sxpx/8BY0p41AcJ2qtTWnjpcg2gHTsJliVZaC11jCpahazKYvZnNpZSJEUBOiaNjUpNMQsHnwHk4q7xw/o2g3r5SW+b2mc4aBpqK2G3HN4Y743dkAXAoaA32ZaDZWzBGOwlcN7z8nJCcvVCmstrqowcQDFA0PaUcyZzXbLtu05O7/CaEkSrCtLbQ3NpGE2bTg6PMSHEuDhPduuKym/whC1RpOVLNyUMlI8SJmstITulPvBMKbnQq9NSYoZSB+MKpN1RdZO2J+kkuqpsYIIopNCDiHBJJWrRLJJREWP6hIqDAzGIhmuHJWpqF1D0oZ1u2XTdyTNyNywZJwSRqXRBlNVVDFjYqQyFV3ryV1Ei/HnWP3FGaxy5CwJzkbNcSkRu0DvA8eLOTeOj1BpS20jziisAUNExR7oBOzWqhQ3AknJaJyKwfJQaBimH2H5Jaw1JKNK4We3CBLvUrEP6EPApMy29fiUWRzd4sGDW9y7/5Dju3c4dvdo1QHJX2HSnKOjhaSBoXn25Gva1RXGKZppQzWZgDGjf6N2GmMleU2pUplHjeP3jpEd8QUkjsmTsyfFjrZdslpfYpShW8949eI5Z5crpoc9bjpn0tQi+TK6eHM6SIEUJdGclKgrx3TSUE0ch8c3uLU4JvaZV+dLbID7xwuaqYUEfYREBbqmqhd0XeTXn3zJxeUlf//RY949vMHENuh6wicvT/j3y45/+b/+jYvLDf/wtz/lP3z85yxuNjRNVYpuCjR4AgPT4E+wh/4f71E2NQN7Q/bFg8yryKeSME0EbJbQpovTq+JNFdmoF2x5ycn5Gc9+9Yqr55b7swlVCNQ5EVTNf//8Nbm6QQ4TOLmge/WUi1/8KxO/4b2Hj3j/3duEVvPuOw49tXz67Auulic8fnyXv3l4l8nVFat7W5I6xt58h/rOHZb9Cf/5//xf+fWXX3N5ldG5JleG5A3hcsvy/CvqaooyFb73WAPTakatZzgzY2tbVvoCmxr09oCNn6D8jONb92j1C9abc+o60McNvda8alf84ouvePX6BVVa49c9fQRlG5KHbZ+wGOrJEUxmrE0mJPGbnXmPXm54+fwVN062wC2ao9vcU7DdrDh78YrzV19y+uIzDrLlH/7mJ6TFHfx6SbrccnGy4uxsQ3NLk8yETV+zCYbffPmEu+8u+Ms//x5VHenXS/p2S3eVOD/7Ha+fP+Xeo/f5wY//mrjt6FafoZuGyeFNsJaUW3JoqGyNzkZM9Ys/Fkk2NEl5sm5RNlEdNDQ2s1lfkdotKhVB7JiKPCIeu//fRxt+Xxv8I5swCCN6MplijSP0pR0nhe+FYKb2NnjXzuePRenL+jKlRPA9ulibmMF2JBf9K/D/h0mnxmNIUXaz2XJ5eUnbtRKARqbrOgltyknWsiP4MTCIhrVx3t2iwgTJmcL4jgWEESJFSgEfevqu4+JiRbsV/9uu7/C+YzabcHi0oKom1LN71O2W7QZSWBUWyJaQOoxOKKswdebGnQO+/+eP+eFffp+D6S1QUzSV7C1GoCRDkgKayR6VerlXyZBjRZcqYnIoLJWyVAUIikqLKiln+pBoQ6BPmaQUMUfx/1Y7kaWAX8O2MF1vG8PdSlL8VtpIGKC1GGFmMEjztJKC33BN5VzVsCEqd1mJjHzsC0KmGIC6XAxVZO+Qy9p+RBuknZR5eodClDE6J6AfVWxDm8vj/lThbEVdi+1NzKLGiqUQqWIgJUnwRUvwVwi9jF0olEbWNCO4KaojVdJg5TiZGNW47xmB4eJ8nrNngDPY8+Qb8IJU2PcRYRMVQytSjPgUUVkUPuUCiZrGe4wVRucQETA07lzWNfu/j31pH6wqiAJvAmpqp7ZSgizugLw8PJ/Lcb7dJ25oR4Ps9q2A2VtBs12betu+9vrj9w+i19lv18G3a+fAdUDuuz7eBMv+0PNvA+f2z+NNUHH3xh1w9Sb7T0EBzUSaKnLTMt7r4f4Nr9nt94YbqgoYPA6PA+RT9kkDcCbHZJzy9K4Fyd/ycAxZTF0Dast93sdHYgH7x/eP1+W6Lx/f0rbgDwB00XuhApaLlIvXU588KQYOKitePcqQjSFYQQ1jLpa0uRKZTZTJXiNBEmqc4EoVbK/iLZ1GbkJMkLSAK+AQ6Q5jo7fWCXth32jQ7JDxbddSO0mPSVCQUkH8kxou8m5QSewmXVVeA0pYbzGh1M7RQ5uhkwnQlVSUz9aShprL5BKAkPVYLQEB2JJSGJUKIJiJGkiqTPO2sKfYbbCUlk1fqZ6gSpABpgyEwlkJoSRyxiwbZAXGWSqjUcZirMbkJP4JWdNvW9q+RzsLWeNDIgeNcwa8lyoHCrIWJlISWWQKMhGYShYM1jjctGE6mZGrCh88V2eaYMRPL2eZnI3SuAK4tH0vDdsokS1bi0kSepBSQke5XqmwNPcbuqSpikR4SB9VqvjbKQGiDGoMcxk6UNalDaqSmpoyVmvq2hVgSCZ55xzoRlJioXRmiWXPMSCnYzFGvL2CD2x8xNpIPZmIOXxdIrZDxGoBnJ3SqCqhq4qz7boMAgZb+EhpqFoBdd2MDLMY47g4NiXlk1J5UuOghkjFjQDQfZLrKECuKSb4FFBmJ30Udl15fxR5nLYyQSctElJURuUGqxW1VcxshTcildj6yNbHcfLMSaSBfZcJUaQpwjKSWyEVtsxsPqcyhsZa9MEcYzXr7Yau7WWciX3p5wPrcmDN5hGsl2TfvGdiqwpokmispbaS1Nu4ivlsynw6xRqRL0q/EZZjPanx0dO2WwHjYwQik8bgzAy/1ViVmdWueHdFnCmLrSw+jVoZUmUJkxqvLOYqoL2hMg6TM7Hbokk0k4a273BVRY4R77cozUiVzjGTAmxDIGRP3/WsAKuhaeR7TKdTFos5pqpxJT6+7wKd97R9z3bbYkwu3izFcmDwqWHwr6F4pmg5flJSbU/F001UG7K4jx4fC/iqiqWAQthTJCTCNRZvI41zFmssTXaoKqH6iPIRh2E+XbA4PCJpQz2f0gMXmw1t24uBdRmHVU4SbGNF7rxargg+CuZgsxiFy9xd7kNCk5k6w+F8Qpd7ppOaZtZgYqLbtJgucDCfczCbslmuIQZydtK2lClhRAHwYiEQM3VVczybcut4xnw+YbPuML7HpFzKTmWMyrnYASSiFzCw96kAycJwCL6n227RdUXoE9N6wnvvfcD33n/E8f0FbjqltjP6YEHX9FtLtDU3779DVIYQE8+fePAdk9kcVzX0PnC5XKIIZDWlaqoiizdoJcBsTDKyCBFXpG1Wl+VyhqqacHx0zHJ5wfbyhKvXL6nCMXG7xW/WhLrBNrUUeZIXYC96YrSlSKfEsDxF2TSOBQBhbNrGsb24xHeeg7rGTiTtOwKT2YLj4zscHd2mP33JxdkL/Oacz03k7nzC7MZtOL7Ni4sVX12+AnfAh9//AXduvMfcHlFRoaMWhr+FbCEXye/oHsw4/X7LYwCwhpd+s/D1/+XxXeCBP/zp333B/o135qIK0Pot51IKfJUhRUlldK5mcXQDqxTnl694/uRr7PSKrmv59IvP4XTGj77/txwvDjlffclrlfj8q2es2ldULNi+fMb9meaf/u7HdO2KH/74Y378Vx9z+vJzTl79jhcXzwhPzujaM1J3C5MSt2/e5oP7Nzk9iXz+6ooXFxf0dovGopOhUhCrIq9PFhtrDieW4/mc1kOjK7ahFale7qlVw+3jY5LaYLcKE6aEFiKel5xTqYw7OMDVHRfrFU/Pz/jieeaTT39H3mT8OoHq+cG797n96F1+89Upv31yyjaKpURK0IZIcoaN0TxrW5zpiJXDa8fTV5fkf/s19W8/ZbvccPn8hCdf/pz3353zN//4D7A94+WzZ6TpXV68WPP8bMPrkyVNhLs3A4v7t1Azx/0/e8C9h7ewZkbqtzz54hN+9q+fsr00rM6X+M0K3cGdg/ts/AXr+JrpwYzb995jcmOOchGjZuhkUdFCDGWNrSFYiAblEqoBlWXdmlIvSpiyjrje9tR3a9B/4oe1cPN2Q7YPmc0NjYMcDbmShNVRgjssmqCA0mWvUGwvvtvjDVAtFzlojKQYiD6y6T3bzRpjLAeLBc10unv9teO8zVvom6BdLnOXb3uWyyUXV0s27ZZmOsWHRN97lC0FWwXayPdMSoLplBIOVybvQKqkCDHRRwhKwrOi9/h+gw8runbJer2U+bYTHzqVlSSvG009WXDr/vssbt5FmSmTZ2ecPDslPH+G2gTIkZg2EtIgNGjcxFDPKqgyXm1GmWdA1iDWVmKPo3oMElwiu2UjN9k6krKEaAgeSf4MnpQEyPEpluKWF1k+sp72ye8VHnZD/dAWchz2UXp8egDLQGw9nNYoq3ekjTywvzS6qHh0caDPo+rHyLhaMJixa2RkPZ6L7YISkG6YWwboTvA+WXS/yQUdZx8lCfFqBOxkTywoAmA01jmMqzGVgxTRvZd50EdS8KQcaOoK5yxBK/roSTmV1PeqpFgKIKULLKH0To0VYoIcSnDiAFaJn9cg0EWVPXphd+pBVQaFQCD77zHkOZdAwCR6M2MLMlKeDyGQYw+mEqpvfmMefnMcGsgoyBpajP72+9qODckA2hUBbSrfSemhuF8Ualohq5Pf9yglrxi/SYIagmPMToZ+naG2A9T2Aa3rDDf5OXjMC4go55MLeeL6GCP3ZT+pGBjDEPYfbwJmb2PejecVB2RrH9hkxGDiGx5qI5yqBNNJA2A2+FsPhChKGGQB2RjVP7ko6ootQ0oMjOBdv0U25JlRrTVcI6VUUTkKkGbivpS2fMoACkT5PJXknqnShoQrNCiy0h42BftsV6XyOL4MSgWKxFxGOCnYU3AmuYcliHQ8p29rY38AoDPaYJQSMCJlYb/lzDp5KqOo0Sgf2fQdvteAISi5eJU11EpLLHeSQdpojVOW5CPBR6wumy0lE4PSevwyaE00ovZk+OIpYQtyOrAbVFYoZVFa6MAhBhTiLYYqdNpQJhIrm8eATG59lHyrhCVFhQqZqjEYo0lK02+CAFpadP69EhplyBkTssiz0NgsA6/NJW0uBgIKjyZj6VAQFX0CrStEl5XRdLgch1maiCPiJGFVCYAZiPjcE3Bom8QPTcv5WWOl6cZAinKPUogYI5NL0oE+bTHeYdAS+60bAV6K4W5Q4v1kaoepK6wRP7o2dFQl5Sf5AFkzqSxN3RBVoPVF1uQ1qtJcLVco3zE7DpjU4PCoGNApSppRTDTKMLOVUEFzoqoqgkABsomM4mPmnGM2FXle7D1934mUqixC+j7QRy/BGdZgagNWicdOyJCDrM+SwilhLYZe2JVaD0CY+O9EV0nsfO5JOUpHNYZkNNrpYhop473D4iIYhHWQQkQpUz7P0eXMxicqHZloJwBy32EzHDQ1eVLhyZjWo2pNva1pV5kqayY4snN0KpNUJORE2wszJRaTV5N2A4zOmhxjARMNJmlJeS309pR2ibOqTJ4ChlpB+EOk22zIjSPNpuOAKkxUSQ4Tj7GKPni0NkRqUspMSNShR5ks7L16TnN0h9nlOU5FjPLgMrHLtCHS95GcypRYAEWjMg6RzFWTmoPaUdkZSmV8CGz7Dqct3vtx4DWmjMt59zOlvKsQZqHtKwxOK6ZG02hpGoezCUfHR4ToabsNVV0Li62u8TqzXa1Zb9bCWtSKjfeEdU9TayaVo2ocue/pY0CnwKypcXtA6bZtiSSapqIPNc57kqoJKXM0mXNnPufOrSP67oqoM7ppSH0seLuGFMjaiLdadoQ+42xis9nS9R3GWmxV41Pm1fkF/vUJk7oha7DGMptOmUwmONcwU5aqmtL2iUgkdj0+CvAl46wccyAASK5KkYGURYX4pcjzWSGBBikTs8ha+r5DG0POkemkwTrDarUm5sxkWpNyoqqtsEpTSQP1AZ0NTVOha4syjqQNTTNhERNd15Oyx5WCQmi3WK3xviesr6iNQqeED4nttqfvAyTFrJmSorDAYuiYN45bR4ZeNbTRE1BEY+iNJtWWPke5pkqM5HOu2XqDtgpnMyH3bLwv8j8FsUdni8GhI8xyzyGeNiZCF5kvGrZ9lEq/dhgVcApcVZFMRcoWlSbMmsTUJe7ePETXAqwdHd7kvQ++x4MP3sXUkU3sR/ZXtoZUzwhJ4SMsbt3l8fdFRr48fYlxDltVpNjz/MUJXz9pmc0m3Lt7m7t3H6CyJXaeEDzZTqAS/0h0D7nDbz1Ez6QStsPELXh4+yGzXLE8u6KKkftHh9w4XEDdsIqRzfKMlDzKWtnEWCsJeyExn82Bnrb3GKB2Fq1gMp9isBwfzDhfXdFvl2xNoq4q3FSKRhbL8fEB9cyRfntCvz3hF79b8+ToBu8c3ORWfcDq9JxZynzw+Pt89PGPeHTnNjMMRidZ/TtNKmBU9kEkf2avury/0P/Ger9UacctnCz038a++C6PXA53HeK4hiJcP4m3fwLXP+GNE+ctEp3hrXBtk6LKJnFfUDVUfvVwGAOTicEaxckFLDeZL3/3O1588TnLJ5f84O6PmFeRuGm5f/cxN+srvjfZML95h+n8Lk+//orUXvLhO3fZnJ8Q05Zl+5KL9Wt+9ouf8elvf8mrV0/pVi0v3DHPJrfpppnFbM7Lyy2fX5zy8Acf8uDRfcLiJl8vHRfhhPZqST3VNMYBkY1VZJd4+PAB70+P+PVnn3C+OeW9x7f56Hsf8PXT1zx99gTjK2LfUZnExgcu1xfYxnBrMefg5m3Wy3NSk1j5wLMzxVwZbiwsH966yU9//D3M0QPOTjPPzRUHNtLkFnoPdU1rLVpn9LQhpZbt+oocHCm/5rTtqKvE6rWnzod89KN/YnZ0wacvz3jnxgNs8Jx8/iXVkWJhb/LZkw2//PwF6UXLDz66QN2eMD3KVIePsNUjutMv8esly4uv6VYG02XsNnLx2y/4+TKxeDDjwfcOqUKPe/0C9JRwHGnXHVVzn6Y5Iuqe2K3J2hG2NcrfgMkUXRsxk3cKO5tQK54UP7cAACAASURBVEVPJuvEYD0ytrnMtzfZP+Kxz/AY2EoaYQI3E83RtKZSY4kOVGFg6YQs7C05aDG0t7kAQJROKGu/mAJ926KMoqrqUvgfOQ6l2+xt7HOC6MnB8/r5C7786gnvvPMui8WRJMar6o3X739S2TCr3YWTZ2SdJb5HBbRQ4HvPF19+xcuzMzYxyphdCmkEkYFiCuM+Z6KKJAN9CcrJSfZSWhlIirbtueo6NrGnbT3dZUu3uiL4KxQdWgfx6dxmprqmcQ49cahpQ3N0i7y4R7p5HztfSKLy5Altv2LVX5FaTUONSCd7fApkZ6kmU5xtcBgMAUdLxoKxcg1KUjgIg6tU7iF7supJuUdpi3PNODxuu078jX2gbzvCsB5MUlSIPu3AGXbyMV1QM7nHuSwaFag9RrXKKB1RJMgGneMIYicMKcseS0y9C2DmJDQqGU02SsIPrRPrmziMyAJ1pSzEjVCAwFGCO/QjBYPoa18FNZBXhAWYyTmUrxALOKmxVY1zM7KxqKoC41Cpx6DJXSS3HZXRGCPe6UK+k2K7cRVVXeHqWlh1cRdUMUKESkgTKbQMEl72vdVUJKSAcaqQeBIUgDhnJX7zSPiavF4SiUGXQp58R5UTXRfIWkkAnQk4A652BK2KeqHs26Ls3weG38hwG/vtCBmC1ihtUcZCTCT0ACPI7ykXoHgAZcsVuDa9is1QUmm3B9EC2sYUpA9jRnuqGAWITIUkUBCl6+PccH/3rrOcg4Jc1mcqo7UtgLHI6GXtLViBQWGKgk+URalIOoVUoBBg2Jhif1MSj60q6qpi8WW1KanGmYFZyLVWMDDJZJxUavAUT0VJkotnNTtvudLXRp/LEfzUUlQfgMdc4E9lhJSikgT5aWnnKQVMzmJxk/eAweERAhQwbmAwMpC+ysVXWcb83T3N0k6R9ZAoW0z5vXzzkZUo7AThJ6lxXwzC6BZGn/iZhwQxKBnSMgQSWkWUEQJJ1lrC1qCEbSqUSqOC6dse3w7Q2SLriUkq8jmTiWSTJRkxKZSPdNsta+XxGtoUwVgaaziwEjagEHTSWYepajG4NKboiPNYrTBaduBaKzAarymedqpUxGQDbpOVgaAMGFppoZfkRI6ZrCMxG4ypSYgvTiRDElpvjJkQsqQbZotSuZDoBJDpcygJMg2DTCiiCAWZDToXynBJP9QKi+wFbGEtdSi8cgRjIRtyNgQE0TYajApiZJ5FUiaEuUKPTML88jHiM/QJQk5ieBgzQ+/PWTB1pczoRaV1McW3iqgCWEkW3aSIionkZWBKwRd2hSeQIXpMjKjKghJ5nI+dVICMxRSg2BlLPamoTUXbtwL+KEPf9XjfknRCbx3LVUvfbQFNrR0ma0Lv6batgIzOEHLCI1UpdJns9unhWTypxJxUBmAB9gCr6HLG5oSpK0wloO4w2JLA2Urka2rwrxMAOJKJGWptMVrklUYLkJzIAvQGL55qUeLpjQKnoNIKVzvq2mGMEylzgqQtvbGkmPDaFBAtoIJn4hNJZbwOdFk85JI2uKnD9gHrDa4sCoJO0gdIRfqoMcUzRCVKxUvvvFEYPLDSyJhAxdEnURUzSrXHEg0h4LtOJm8jMtEYAtH3o5xYK4g+kbQmJBmoA4YUEy5lXI7EHGTAsxVuuuAgBmEubWp8Smy2nQDaBdwxpRJptMgjayPpxrXROKdRFppgca1B97okRcn5SlrZdQr0IIuNcZDYl36kFM5o5nUl4Q5GYxX07YYuBJJKmErYWwqRdl1t12y2EhLRhEAfA71v6aMiTybMJxNcM4EYsGVRNtCZxdtSJqmqqai9R9uMsTVKJ6a2ZlFVHE9qXjUWbTTZinTfKIU2lhwNsbCFTbIklaks9KbHq0EG7Ag5kXwgJLhcb0g5CRu18zTrVoJFUgY0SVkRUViDM+ZaZTQluQajb2ORHw8PpZQs+qGMsWlcxHhdlrBGwh2UNcLOrSqc1hwcHFBZ2egTPbHvCWUJqI3FOE3Wmba0t8rMmTQTZpMpZI/KgeQ9VUo0ztEnzbbviAh4C1r8E6PGx8i2XUMKMqaqSGU8tY1MJg1ps2XbFWl/Oc8uBi6vLjlwGm0bMDU+V2wCWKIsNLUktcr8J/LPnGtIGhNa1HaNDglTW7RxYAzZOGJWArxGiCVZ2biajEMDlVPMphWubsjKcnTvPR48eER1cMgmrtiWzVkXZOyPypBdgwoRh2K2OGQ2n9MtLyRwyAsY1vtIu/VsWwkIuVoFptUNqmouw6GCLgZs9lQ6YK0wW3WZF2OvUNEydVPcwSELDDFlLtYbttuWLvRsgqdDEXLEuIaqagg+EHwoHqV5ZCQ7a2U+TmWhphXz6QSQ+/T6/DmzxTHz+RGT6YScJfTleD7nwZ0btKue1+enrFeOWRfxJ+c0OvMf/vLHfP/Pf0I9v0HlLBVZZMmxx8eaoCssMmcIIWIfEPu2xz4Po2z2vsO7vv0T3/bMUHEewIFvIIUwVse/+Qk7lORbgLnxCNeBFbX7X3l6MEhHQnbW25avn5xwdbXi9elrfvnlUy42He8/+iEf/dV9Km9Zt6c0E8P8xgHZJXIVuFi+ZN2t2eQWak199ybTw5qf/7f/wief/ZyXX3/Np7/6FdvlayoNPmh+88svef7kJdomQmro4pSbDx8w+eg95rMJ3eSAlVfEPlDpyHZzhveWo+qQbOFss0K/+pptdcLV+oStCdx49zYf/vgxV90abTVGV2hnyN6jc0/G4KPmah3w/ZYtmWl9yLZb0afIxz/5mH/86x9SXzyne/WcX3zylJdPV/TtitpkQhepe01tanLqSZXCLhqgpjYH+OB4ebbm9GzFgcncWbzH3/zk7/nr//hD8uEp3eUr7i/ucPn0KX33a47vNLT1FPXfOi5erfi6/4rV06/o5oHLmeb+u8/5yUeBWzct7zx+B0NmeZI5SAsOmPHy5QWfv3zOeYgc3/uQ3kcur54yuZxx8y8eMZnPUHkDOqNMh6k7lJ1hdQ39hFwfknSEvKGaTHnv8WPc7DaP3n+fqDWBRIUZrWe+0eT+BGDdvnf0dW+eXLxBFFhQVp5SoeyyTQ+qK+BbA1nGYKUhEwtAp0c2fFbw9MlX/PvP/o1bt27y47/8Cw4OFuUsfo8cVSmUzkTfsby6YLW8IsWEtQ5jG6pKgr2u97sdw4IBnMtCHkBBzsL01bkUThXEELm6WHJ6ek7W0BzMwYihvtZWlvsqgoaYxRPVx0QoMs1hYxr6nu22Y3WxZnm1ZtlesfZXGCx1qNExoOOaxIakPFY5bh/c5p3bD3n08AFHd2/TzxpeBDhRUzZVjZtOULWlupjTHM6IFxP6fkOMVo5vVAmJExkqyuJwQqQgopRl59NmAEPKCZ0tKukCflmUrTC2QuEAR0ajjBHWaudHJUnwAV+CzVJKo88xhSQx/jcoZopOBIqH3CAJzrHcpwRZXBtVWcMZY0mqkvcUlQpZQA8QkCgpJZ5sxgn0mkzZwKvyPkYkTul8rYmMa/Us6yHBo+UeDoyuVCTKPgRpzxkgFd9zg6WW72Es4jcu3udai6pNaSehVpX4YMUCwgy+36YEsUVjRAI9BAaUY+vyWqP0OB8N60SthQyAGrDL4QpLe1aqtEtEkSHgqexbFKa4Lgz9nBJSIWvolGIpkwmYohQj/3DQKg6AzLgXgOtMsBEUBzCFcSbXiDy+4PpcyDA770CkcsnKWwrDqqCsKmt0YQbqsk7MY7uioK7DQd42UA5gLGNIohxM7Z2YGoPzhtdeG2cUggilPIKjFMaaxo6g1lDwUFqNAuvh7YI5XF8b7F+X0RqsHGMYa3QZ10bAdpSqpXKuA1jGuPYYbs7AJS1E05Hht5MX5xLOUPy0985nuBAj+EdZ412/OAVcZWwzY7Ey77/k2++LWJUNs1/ZY6odyCevLuzMrDDZENVwjaUPjIcr90Lt7be+i9z42z3oCutGrnIa9brWWibOca9aMFUZf2Doa8U2RtZdS0gRkzOHGWogJ0l9y70ndj2p0BrDgBxbDVGLqb4zGMT7LUeF1VoqaSqhrRZzam2w2tButqU1CRIuVYphs67JSjZMIQmN2BqDMTLTOxMg9uQoyTtGaSqFBDEkYfiIv5xIC1PMklCIgjLh5ARGlwAINSy59yZsI5u8nEu6IZDGKr5UKFQOAnQqyFk2dD4EAeIARcZoCAMQUBbug/+W0mJQKOmnJVTBikfYuvNkL95AEdCxhBioTA4ea61IkMmk3pNCQHeyidVGoX0ngE2WcadLAU1PUzXYumLSOLSVZFUbWjahFdBHa6yVQIOcNMkqEkWCFEWCSR4mgCztzGh0FMQ6BU8b89hxrRGUOw0ToNYoZYtXQRgb/fgPKZZZWyS9ThJQU1Yic5bZswREmNIuxKdp8BnNKLoo1QwVAyqLlNLHVABWjaen2OQTlcK5CtMYtJHrohRYZ5nYQM6edd+z9p2EKth65xc3TFQlXGU0oS3yw2EgTKF4hCHXrqoq8H2pkMRxopLPTYUwIjIz4yT8IcbiP+I7rMl0XaBrDe3GUmsxk89aJh9lFMYkkhaGa07SJ7SSUIlu24/R9jkJJdkZQ2UkoKRyhspmgpbwAavlb42z1FZxeDCjqRRV5ST1SUHUijYmYobNaiuVlpSFai9mY7J4MJrB4C/nXSiFUvIdrAZXALq6qsga1tsNxjkWi0OmB3OMtWy3LevNlrbrhRmbICQBcDebFr0N+NaTQmIxm9IYRyYLyKpKMhJyW6x1oDTOeaxLGNtjtPjBVU6YY03lRBYdI7YUJijGomhhKcsiSCa3wZ9v8OEDjasq0AofSgJvFKbddr0ZJ7WhepjLxCSfaXbBEIVhOQC4Y5VonE9KZQrGBePwfCrBByCTcygL54G1KT9lAai0XE+dIelAytD2LX7bkXVFPVT4VMY6MSX3XU/XrqkQebIxCh8DfbsVQMrUu0RmI0BTU9dYZalcxlY1tqppplOWvcevtiLrMDXGGHzwdKstdjElzSXARduKTKZPpVhjDK6qsb5U8YxFuwpbNdguSIHKArai63vatpfXWEP0PUpD164J3QZTTWWjEDpIuoDsULmKg4ND6mZK7xM+KzAVscxXIXoSaSC/MiZFNw1106BjR2n4aGfR3tB3Hadn5yyXLXdvKm7fuT/u4WLKBRA2aB3HRLfgoyQkorDaYicTptbiQ+Sqa+n6jl5psSIoaZ85RLJOpN5jlMFU4pIaiw2A9x0qFGsGI9Lhqm6YG03UgeXFKZsIITv6UuFO2lBPJty59wCb5/S/jby62nLy8gWvzlYcTycs33mX89dnxNMWoy33bh6xmDvQtrQJCDHh1LAAu7Y12vv9TZBrmL0HaO6Pf4yL4bL0V3sLu915vLn8fBs49/bzuc7Iu/6Xt79ngOzKeajdJokMFxeX/PznP+OLL55wenlFqDM/+bt/5O//4vvcmzr6qxWxS5xfbvnf/9N/4sXrz3nw7i2Sq3CHtzm68y5t63l+tubRYsLi8B6vn51zdZaYVLe49c6C27crzk/WfPHZa066M3y/ok8zuhS5vHqF/83/zTvxCr/NJDpse0WdWpLJVG7K3M3RynOgO+7WGZsvcbojqJqfff6cV2drlqenHN6d0XeK0/MOZ5wwckNH9i3Zdyx78FljJlPuHTXcvt3w8Ud3uHHTctXWfN0aPn15ytnVGR5FYIZJNTEbUmvIOpBCx8XzDdZqtLpJyDUpWUybMFlx49BxYx7Itufm4x+Q/CPS2TnzhwfctguieY3LHTfuJdbnim2XuFXd4Gg6x1xcotUr9KNPmXzwDnl6yN3+Mcduxo2bPyDZOeGLX7G+W1FNN7gDxW9//gUHzT0+vv9DjLsrN7XywIYQLunbjtlshtZTUBMpGmSNSlPwFTYgFg61I2JRuO+0ifhTPsYi3F677Hzgq5dXdKsVx73H9RsOpjA5rIg2EzE4s6CeHqHqgdW2t6FPEnbkvcf3odhjGN6y9bt+LmUXq61mNm24c+cWdVOxWq1AO1zlmM6ab7zr2hiTpRiWcgl4UBT5326f4DvPi+fP+frJV6xXl2QDwQtJJHY7X2GihNz5kOl76FpJn99u17SbNZvNms1qTegClXXUzjPtTmiAqZozb2puHE25++ABdx7c4PjwBkeTWxwd3GTSTNDzGZcKwrPXnF60JBPwJlGZCjub0BzMiAczcr8m5lakXFo85vqY6LwEUWCLg1PW5GDIIl2S76AbNHXxcisba1OhJxXTukXTjt+t7z1977laLbm8usT3Is8cwLlc1oGGAvSOOMduH6DyICeV4qcqfpvDelvmRlmrj4b049yhRhLI8BmU/x+41mpYh8oHjM1p9C7L12eTYX02BDkoAoP0bgfMFfJFHuyNksj2hnMcpKRl3ai1JKlqLbYilatwOVPXFlcL26sLfgRTRq/uoV2xB1aUtfyw59ClCJ32ALD9149FXT2Ac6qEJpbXlGJwjKJs0QqxVHlLf5P9cR7/5VzAqQHk2aE8BYSXOVvmsR17UtbjA5C0+2zYs7aiDA97/VWV45fLwABVqRGoHdpZGZ+0fOBwTQdLrCFlusBQe0f/PY8y3g371jyAsUlwB12UhVoNkNqwWmFMb94dq3yT4VoVApAubEGNBHYM2gClpC2/GcIwLlVMOb8kzFFxDMkFlFTEoQD75jwxtAujyrpnd42HKzKwB6+vVn5Pv9l7Td7/uQfWvW3FpMpefvx9Dwx8sxHK51x/cmhPw1yQy8/h/ULQGN7/xror51EVOgByOwbd9f70+x7fCtCJw9mAcu5O2GpDYw23j465Oamobs9hXtHGwNVmxabtyH3L3WZChXTOrutYb1ravsOHQEhR/M60IvSJPgoVOBtJ4USVkIRyPKfFy6myFox4vDltis1mQYqNGjebylg6rwlZ4YNM1iYbhDGX0DkJYy9GYkhClc8ZZVVhyBh8jqhsMAWVzkkIpB0Kk0tk8DX/vGJSKq1vvDmp3NhU/gkQraR4Q+n0SMKtjhkbJVZeaZF0aCUTeyIJcg8Ys0tw1RRKbRnFRLeexlh2lMJajbKWbKSiIh0TlBUz1oE+H5KkPgUfUSmQcmHWxEybe9q+p6l6nJUkRuMMLosFVU5y3toUsNA4ep/YdD2LFHF1zXQ2RRkjNFBD8d8ro68qqaw+kKJHV7V8p9JZheWTyqSZShJmHOOjMxmllch52en08zCaJVBK6OZjNSwXOcEAiBqFMZZsNPNmQswC1lZaS9XA+zLgKTHwBXxS9DkRsiEpDdaitKZ2lkSkiqJX19pQ1zU5K5yred1dsD/cDNp0GbCH6sT1yXPogwNAlxET+wyonNBJqmypJARTgh5EviiHUwoBUENHUOLvl4uXYyKTSvKXtk68QXLEOIsPAe8TMekRNFAghq9di+9acgiFbahpqppQG1LIZDTO1jSuYlpbGqc5Pjqgdlo2ONbglQJn6ZMA2X3ryUFOePCyVIJUYJQilsj2ofqntQYzgFEUYEtTNTUpZ3xOVE3NZDYllw3pcrlks9nKpt5ajBXWWQwiewjBswwbVKl662kjgSJJUk8rV9idSjEmJyvGcWiga2vAaaGd5ySptyRhJ6g0LJyGayqFicgufVfrIfk246wtSct1YUP2eO9Fjl5iwomZ5L0kG0kMFjs2pRqbkxzTjCBOLmbAQztjGJ9K29OF7Tr8bq0d+2BIsmzdbDZMKoezhtoaJlXFpKlp3AFaazofWbeedRdHw+q23dK1G5xBasGFUd00IncRf7dEn6Q/+xgxxjKZzJk1U27dPILYkVOHUVES9rSBnEUik0Erh1ISfuPbjq3VtLOGEIrxstVjolki08zmJF2j+g0YRRdg0wW2PtFFWHc9ykQq47hz9y43bh2jCTx78juePntOt13Rri/wrsIQiEhfu7q6pAqJVMYJlCQhZ6XoQ2a16lC6Kn1aLAyi71EpYjTUlSvJ1hnnTDFa1uRhM5gSWGGqGi0M+N4HYgJT1xiniFnaxnDvGBmRMhYprTGVxTQNbjLBVRWNNWxCxCdJ/tss17TLFfPZgul0RtRSZMpk+tiTvcXHTChFKW0stbVQwVHoeXl6ztnFVzx9/pIuRHRV04YIIbM4POT48JjTizWby3M2/orLlPjn9Zb8v/1XvJpwdHSDf/i7/4mf/u2PWCwmElSiri/mxv/7xlpoXCaO/9Q4i+/een3h+90fw0JUjccaeRx7f9ln0+2f0z6IqPc+7fc83vzTsGL81gXg7k2D15DWmjt3b1FVFWdXK5jN+eHHP+LOvUOqsKZyFco4Xvaf8HL9lOAUj97/M1Z9z7PTC+4+avjwg4+Y0XP+1a8I3YaH926zvbxiPm2YTj3vf3CbLz57ya8/PcFni8fReunb6/WGGDzdZsX6YsuBDhzOK666nqV13Fg84N78EfM6Q36FS+eslmsMAaXmPHtxxetnZ3xw75j/5ad/zauLln/92eecPT9lEiM3ZxXv3b6Na2pevD5l0wbS9oKT5ZJ2afiX7jk/r2qO5nfpQ80SjXKanBRBV1DXeJXwYUszy9x7dI/F0QGrZc/Ll0uW7YrJNHL/0X3+6sGHvPPoFtPjyJdf/oIvll/hjOHFZ5/y6OGU7/3gXVLeMrFz/uf1x9gVLJdLbr1zn5vzBXodyNsWrl6wPkkcfPgui0ePyEe3cc0Dkm64f7NGXSw4ffkr3Lziwfe+z+LoMc2D90T2phNJdcTUypq7j2SXUX0Pl69Rsx51KKzw7qrnyW++wDw/w83f5fDx/0vbmzVJll1Xet+Z7uAeY0ZkZmXWXCgUBoIg0ECDk0BS6pZZmx5kMr3oQWb6hzKZSQ+SyaQHdosUB2NTBIEGgUKhxqyqHCJj8OEOZ9LDPve6R6KqKJpIhyU8ysPD/Q5n2Hvttdd6iKm/hFn2z/wQ+QopOHvvBUDQRnR9Etxcbfnbv/0Fm6sL3mgsjd9wsrScPzzHHbfcbLc4s+LkHA7P7mPtNG8QEwCrSSny8OHLnJ2d4+qKtl2yP/e/CCjPOUIYsZXh/v17HJ+coE3N548vUEZMtRbL5kswPjWDLpS9TO3F6WrKWXMmBU+3XTNsN5CLMVuU3ENlRxwjYxjphi1dt2W9WbPZrOm2G7puix97chrFTX3oMT7QqJo7S83JySEvn5/z1oOv89rDl7h375Cj84bFUUVVLzB5iaFm2w146zBAe6ERd+9EiBFjLbqusIsFdrHAbBuUryBFjM34BGOIhFTaG9FF91ajdIWaGUsT0lIuWc7gR0Rbe7rqYmgRUxAH+HFgs9mw3W7ncaLMznQulXjgy1a6fSAU2EuUp5hLMRko5cLkiiES1EjE7EC7aVSo3X2VeD3dMkmUDhyBHUQr2e9GVN6BSGQxWhzHcQdyTcesYQKenKuLOYmW2DGLJJC1TmKkAtIZ5cgqkFMl2nI5S85XvnfSH05KMJc5TlBqPpddy+gOoJuOe3qefj8BiS/O4xfBh2le75ecci7OwinIuc771Tz1JI8GlCr3d+oFJyFnML0/zfOqNEgxZ9s5oNQOuJ0RqfIfudz//d11AuP2z2kemxNwWL5h2qn1/J4yjlWJGVL5Od+OB3bP5TprJssNAdAUxcQnMplqmL1YRc+vcitkmBiKE3tLxm3CZNEMNFlWpelZMI1d0TCTRSeOPRYhc2JQwL7pNYlX52uX8wvnN12fRFKGueg4G4LsjZvpf2pai+Pu9qodwJYnZF3t7pFoyU/XGor4slxXhXQJKGHIRkTjrpCyZwLQfNwz0Mat85qvj2KWNJ7IL1O+NxsIa3ZEnzJmXlyb9skO/xhI99UMOhCzAwO59DwTA1lF8Jp+swENDVBZx9IomtSyyQIS3Ts+ojZyEWMMbLuO1XZL3/WMWQTFk1H0IbDabumCtEJBFgfZoS+916og9I5kDFELfbNpFgJ4FYMBrJGLpLScmT4kK7PvKY/oysijslbkHbQAdtkHxtETEWMFU7VoNNYqoTJrRSruNiErnDEkJPGfaJkq7wabVVrYYcKiLkNU+u7zfiyepxuZij1EEA28kIih6DdFScA10i6bskIruX1pbonRhR0jyZqzNbos1JWTagqqCPYj2l1aa7Rz1JWbF9Nh9ATviV6TgiTR0zhNMeB7AY5iitjK0jQtSotra50TISaGMRES+CTMAR8TPkRZKAoIEVMU18aEAGtGUWkBEVOSNrMQBZCbUGgQMdsQ9sC5abMoC7uYEAhAJ4U62Ugz0wIrwVeKmRQs2UbRGkhRGGyjMOIwPTFnamcwiwVNXaGtIYVACoHlckECQlRsg6cfE758v7WW7XaLzQHlRZw9NYWyT8YHoe2nIoJptCFqcUZNajeRdy5duwlttdltgOW7UAqd5XOnpB8jFH+pwpVrrDRaVajaYGhwOnPYNrR1Te0MmmIqQGJ1c0nWStqKa9FTG3wiKyftzFGAJzMFMClj0FTGYBR0JmFVwBU3prqyNFVF2whAt1y21NYIjlLOrcmZphmou5GqqglFWTarycVV1hMBlfKt66Ln4E9WUakSlvZeJW35SmnW6y2XV9fcrG5Yb7Z4H3B1zXKxJKPR/YjWmmW7JAVDGHq2vceZHqcNy7rGaU2OHqUM1lUlBc8MfmTwxb2YBDlK60Oa+LcSmIXRiyFHBoMvzN8SDGUxFgixbHqlKjk9lNY4pFVBaz2P/1SE+XIxVZlEfyXYE/2R6XpIQKNnIf9p75u2WYUq7ri7oGza9HVpOZfg3cwmLqG4+foYqaxF5cSiqjlcLjg6aEnLJW2zEPOI2tCHnpQi49gxDJ3o2tWGysjYMEnamDOZqnK0qSUikjxDyDS1gDR3z+/x5huvUTkYujXPn33O4DuG0ZMTs46MtHFHdFlPxnHkZr3lsq3EyXhRAO8sOj+uXVLVlnEcuFpvxD01BrbdwNW653qEOtao5UBjK9Ay569XW1brDSkODNvnbJThqG6wVpNS4PLyVZQB5QAAIABJREFUObYLtCeHkrwZ2bs2fccnjz7l8dNrTk7ucnp6iDNZmMMFENZToJTivG+kaT0Mwg6xtmK5PBBNQmOJKbLdblmvevKiYVkV7URicVqWKmsu1fMUJXj3SpGMoVq2mLqmSwnf9Wy3A94n0cFUWlr5c4To0SoiTSrSRvzZ549xbkHj5FhsZaito1ksqLcdN9sVIWVcs6Bul4xhhe8HjpcVp4dHvHJ+DnXN+uqGy8trwmZkzA0DNYeHx3z9tTdEozMqss6gKW5xfAGulV98gdvJeVlfZnxrmtX/dIBu/3PKxnT7O2+pmee9r8+337d3XLdO44te+CceZiptXqbM65PTI37ne9/CKFh1iU5rVn3Hu+9+xlsvLVnWDcEnzs7u81//N/8trVlyfvwSzy6f8fXXe15+7U2WywU6XnGWj3iK5vmN500O+enffcwvfvUxnz9+zPYmcLQ45407X2e9ueHi4hqlHK88eIU//u6Peevtt0j9lut7/wl3/YzL0fPXH3zGg4e/xe/96I+5e7fik/f/gr/89/8rN+s1bX2I8zX9qqPKI6987U3+y//s3/LpJvHk6f/C5mYD3TVLV/PNew85e+Mhn4YVv/7wPT781S8xqSd0lg9+OXB6cMr6vCFqzbObNZ13DGMk6AGlPKPyjKZjaCpOTi3doeHRk2uuxxVf+/Ydvv97r/Hdt3+Lb73+Q5ytyHnk848+5Od/+VdcXm/55PkNnz57lbx8mTvO0q8vuFed8m/+6E9Y9U9JyxU3Fx/SHF/T3STe+9sPeTmO6CqwPH2IqjS4jDYtrj3i2L1DtThl6TbE8TGVXaDyDSmuyYMhNfcYR4uzx9THFpUa+ueP6B9fcfDwAfb0PgRhwq6ebugvB978zsgZ9S7p+eoc4v/XY9pfpthz7xfyhGKz8nz26TULq7n7yl0WcUlrFIfLU8yiIWSNVpbaWZGcBCaHIwXCUNeKhT1kcXiEujUf909wL+md/rMYUVTOoE1L1hWLRYOrFxwcLG5PuSl/nH+Wz56T/KLNNb8nZ8Loubm5ZnVzTUoeC3RDz2a9YvSZzSYQfKLvO7bbDZvNim6zIgxbyAGnMk32HC1rXrp7yr2zl7l755iHL51z/94Zp3dOOWqOOG3POWgr6iZiWzEHycqyfj6Sg8UTMaZmaStad4DF45O0TYoEjRFZj9qJda5z0lli5dysqVm0h9S2pUThSOFpgNyA0mSdUGqDIohZmY5gB6AnD9cEc0E01wS1ok8r+rCV62+MdFdNHR5TIVIBeg88e2FsTaLvL443JuAUdrrLko3fYrNlssjYAKrohE+F/P3vm/KKVAwXtBJAStjkE0tPvsNaMdCagcIJtJtyMT3J1xQzOy3dE3VlsbaA2DFCke0xpSvMGina5pwYnCOMQzGuimLqV0gM+9chlNfEgK4wtdIOQNln3MUY98DFFy808/smLbKJiWgKfqBKJ5lCz7lsjgGlJQ/ESOyq561wB54UW/HpphbSAvN13Z97uztTQKU9IC1N79NCqlG5EHrYxwYnDcydvt30KamAfWkCmqavLMFzLgDtdIlyDlRqp3H2mwBdgbEyEtOpOVqfr0WxKZnPY7oyt5xJb53BBCqWvHEyQijfpvLehcpp/t0MsuXp/guwmMKUt6iStzOTSDJSSJ8AuYl8N7fWKpiMCPeX1hlMzbvjnbCMKaadWKkTEGoQTEkMNuU80jQGymdkJQSdXMYeSrop5HNUyWsFVIvlekyX/xawOOVCinKOpUSrCnZkhKQwmYFMY0COQV6bx9reY1oD0h4oau1XQnBfDdApMwEBIhBIaR+NweNTZNis6HRCX2qs3wj9OgZEszkyDBuS1TjncM7S6gZMxlWWmBJ126CdZfSBVd8x+BFlZTEmJfIwkH0gDKPoxYXCDkkySXy/FcdP6fMkKhiT6IYFHLY9JysHyqNUZKgMlRMtoBAiYz+QQ8YqTVU5VDL4MRRhWAGabJVQprTUGYdSdtczrZ20IOWET1HaY8kYZbBKkTQCkGhhcMiCkoQpmJNUbkoaLTzAVFozZTHQQVwJoSygShXRf7k/KU2L5rQyTZNcBorVBjJobXCuwjpBw1KUwV3VDoVonqF1aV8SBlpQBuqGYRjwo1SBtJF+/hRLqyPSDpmtMHB0zuSkSD4RfGAYA1FpsjH0o+fZ5SXjOLJcLqgWjVDhlTABUw4Qdy13SmmRu9xDy7WR34WUMNngrMVPrX/TBNkbv9oIOKsKF1jYd0E06GIgIiLmtauorBbx1yTszjFlae2KidALGynUFVZBFsEl6rpGW4cxmlo5lFW0xlI1C6qm5tmzBH4AP5aKlYyJYfCsBi/X1otGovw+ErMsaRMVO0+rB3tCnKXVPJQWR601pgAz0yKbkXErLkyKhLRkGq2obUVlFY2zGCKtM7jaYW1xHK2LFppB5rkf0bpYoAdPiIG+68QhtNDXUwikKNphoe8ZQ0RHg04yn8CgYsAo0fPTqugxWglIQoqFuVS0aLSWltG8V23Yq5poLeNKhdIikCRoAfn8pBXeD1hlGf0412RCTKy3K54+e8am6xkGjw8ZOwo43y1ahuAZwkhdVcK60uK+uVmPOGWpTU3dVhhrqWqLdVaqocNANwx0fY+PqVR5KfTyuLchAhN7KYNSSTQDy+KdckQlccxOU2A0LfBIFSgrEcqdtUKKYYVS0j6rhgEfhBXjnLh4zS0AZQM2ZhJKva2HML0vFQfeuYJa3jK13MbJ3KYEen3f40dPROQAdFb0aSCOI+vra9q64uj4mLY9IBtLSpnB+7n9SGrvArBYY8lemIYhigahs1bmXISsk+i3oIWZ1S64f/eOJC2149Gjj+j6DSFE0SPThmGM+HHEZAoLMrHerHmiIqMfaZetsEaVJmuLCw4/RjZX1/RXF4TtNXns8SEzREWyC1x0XA6JqMC9a9isr4h+SyxabN1mxeWocCdn1CYx5sTVzQo7ZNb+KQeffIxdHGIPFzxZXfD+e7/iydMVb7xhOGwdpgKVo7AvU6b3A0Np9UUlYjTzHJla440xVFWFMQq0FGRWG8/nj59yaQwqHPLq/eVOPzEXgNWPgICuGst29PicydaSjRVntSxFAWUUTos7ssmZYbtmdAasJqgsx5Yi3TCwXm9IVeZgscBYYR4PvqeuG06ODUfHxzhnxY1ZiYh1jInGWe6fHhN0y6ru2aLxXcQtKlx1wOHiiNPjOzT1QvZmPSXHSkDNXNj4e6nUFwN0e4/9oDf/5q+/9O++8JFf+HEOv7/6vfPnS2BJ3iUs/6Tv/EceE4scJWtV0ziqSvazagGjgk9+8hFPP/yIu83bNKdn9F1g0R7xjXfOMbFGR8tieQI6YS3E6ysuP/l7PvqHP+PJ809o751yeFzzyhvnHBzVfProgqAC/+p3f8APv/cHbK49f/UXf81mveIP/vD3+YM/+hOasyP88094vH6CeeOUI1Px/hi5++p93vjeN2mWI5vxlPPXX+Z6yDz+dMO4HWmd5eXTI+6f32V4vubm2YraWb725muMV09Izy6xSvHd732H7712xM9++f+wufg6Rwd3+MVP3+cv//Q/8vTzNZfPt9QnNQOGVZ8IWRPDyNaPRB0ZdWLVJ7Yff0yOI6bXfP3V1/nPf/xtvvm9I6oUGLqnbHJDJqG3HcvNwOXlNa+89BKvfO3bHC1f5uy4IvER/Qef0x4doQ+OuczXtOcND+6dc/3Rluefb+kvVvzqp0956bUbTo97qpMNeXFCyoqDg1dYtC02XqHPLN2zC64++CWLk4A9uC/u8jcbFgvPsnH019d8+sG7dM+e8eaZwtKAdhgVaZxliKkI8Yu0xj9S4P9neaSU5r1oSlhyEjAkR4UfFVYd8srLd/jWt19Br68I2y3NYoFZLKgXS3SlMW4BSmphxkzsIEgxYWxp9et6nHVYZ6Worncg+G+eqjCSu5srNtseYytOz+5zfvcMZRxV7X5zGbiFX0yJorq99Oxl6SEFPvvsEe/9+lc8evQxmcR6veL66pJ+DFzdbMjJiMZnTOQgRZBlZVk0NccHLffuHPOtr7/Fb3/nHd56/QHHxy11a9FVzdBndG6xvkKlkZBu6McVIY4IWaFm9KJdNw6eawzDtoeQyGFqMRSpgmwMSZe9wDkyIzEFTFaorEk+SQ6npL21chaMKvGsxHZJeRRj4foEVNwS+hv69VM+u3nK0+0Vl8Oa67Hnpu/YdB1xcgaf96tCFplYX9xe9aZ4JRXShAbRjUOKo3Lpd1pZwpKWCHEiLQjj0ZZ5sGOXzV0FZbwYY8lJjAykAymis5gQpujn+CoVMf6cjXxmOWJrbWlXldxGT8XScl6iQZYlNq+qWXQ+Z1P+pvwrxegULLp0lsWcpGhXNOG0MSJNMnWZKTXHbjNErdS8L0wdKROAPv9ea3TpIJsIBl/U/lpmENYosrbi/BpLw+MMwOdbn6t06X7KWTSa9WQmIF1Icm3iHtuK3d2ftP0m9MpIi2hmwsqn/W4fSd8dc54/asrv1bQ0zODZhAzmGTqi5JciwRRTFldgJSNK7YFT8zWenmfK1o59htrryMui/qUnoLCcn1z7LB1oWaQ6f+PaTzlDyqgiMaO1kGNiwVDQhU2Z9wHDciAFpcpR9My1MnsA4V4bqtktZ/uRzT4vMSFmdRYZy3m+0Lt7L5dYU5xAbgN67AAvMU6hMNXEsHMC/aZnWYML7DgDaeUDkwSJSgnBIc0u32o+EVUAXBQlHxGIVMZIlHlXul/i9Eal5nkFOxxiak+epRv279ELP3/R46vhu6TEBTDs2siMMSIbqxTLZUNdO1CxOPBlcRW0NdpZNmkkjhHrheWjM4x+LLbembzdipsSiiaBNY5F01I3jaDvCqIf6Lcdw+BhjNLznGTx7bqBkCNJGbLV+JxJfcc4dvgY6funKFOhjVT0lQZjy2aSIHqBSduqFUFN5yA3ZKuxRhHGgMkTeyHPAYtSAkzFPA1JNc99yiDTWuEQG+msMl4posrEYjoRsrCNxC1ItJfEnEEGlTD3tOjGFRRXGRHflkWdGcXO8xjJsngbqVxEHwuVe1p3dKFoJ5S1aOfQSlxhQJGCtH8aNNo6bOWEZs8gc8YaYcCR9wCkQoHXEyVZPmccomxayoieV9cTfaBbrzk6OuLg5JDjkxOMNmhjiMmTYyKoKDTfBNlUt6o+MacJuUJbI2LgIaCN2THNykKbgNnSWZfloLBACylWzlqLrlJVWZSuyQibzpNRtmEMgRxDYUdKNUqrjLYKH+SYEzL2fMokNN3Qo9ZGWEyTmK1OGCPOScY4vA2orp8XoQnAi8QCEBQ9QyRQmtYPWXZKa2exwFZKFt8cpT1g2tCVYq74TLphuYBfzhqa2mHR1EYLKw9pi6udpa4cTVsxDB032y1ZK1Tv6UMkREm+tTbEGBi6Ld16Tex7MdTIChUDja3odcAyMScTTmes0eI8azTOaJQRQf3sC4BVWkHVpBkybZiFgzq1vRsL0SvGGMnJo7TDWFV0OGwJLPS88Fpn0dbhEpye3KGqB0KMjD7Q+4EQA90wkoHReyyWg0VLbSwpR7p+xKhMW1VUlcU1leiv+MQYRoYxMHppAYw5Y43CaYXVlOAhCNBO0fLKAroYEspkskqFEeohSxEhZQkuBXyU1oycZDMQJziLNVmCbSVgfDay+8a0EcDfgDUC6KGm4Eg2WtlXbrdSy2viZqv17WBqag0xxmC1gGx1Ldpu2+22vF5KDsXwJUURCnbWslwuOTw6QVlLuF5xfXnNZujl02NAK2nFMigpkoxBnLmtwdYFgEyyrvkQ2G47rq6v+fjjR+ScWLaOWIKWm5s12+0WlC6GR5BDKtUzMd7p+kROnjF4mk0jLAEjotXajQz9wPrygvXzp/j1DcQo5iS2YcyR3AXcugfnyATW6yuODlqWbUNWPV2/ZdgkVFJUJtLW4JzGDonhYuRmm3n0+AlHd+8QXWZ18YTUJ/LYEYeeiMKoBMEzDFturi5Zr27EwMMW9lthBJqiKaqKBmTOiVxc2oYYeH61wnc9OVyj0ykHbSNYf0a0KWPAWYWpnIDFIRALaxxkHLZtS1O1JB+5urhkWG/YVBU+ReqDBcuTQ7LTGKs4cEteunvOay+/jNNWGLpOkXQkdSOJzGilDaPbblg7TVUlnFaM40DerEldB0bz8vkZh+0x3ajxuqWPhuODIxbtgYzliV07rahT0LUXKN5+7BW1psiPF956KwnYf3zZ61/0HVPo+hXv/5JffRGcOL//Vn7xQgbwVR+6/w7F3KqkNVIsKTVQZyQ5evvhfV4/PuD8zjHW1SzsUlqJrbCYyYoKLQGzFlmN7cU1YRU4WbxMTgd8+OsP6HzPt7//Ju989yGrVeQb3/h93nzt+4zrmgdf+x38oHnlzYccvnwAZkuIFenNM3zjicpxd/gWDx6+Q32vpuuucQ/u8q//3X/Fvbcf8+x/+3M+uHmPxEB9dofjN19hVdVc+8/Rrmdp4LA+Zu0GnvZrNnSct4cEv6H3I4e1IzQ1r775OotBc31zyefdJYOO9IwkU6OyJfcK31uCMYxY6rbmpTtn/Kvf+Ro/eustTP+Mn/7Pf85Hv3zG2fLbnN57ievuguHiOVxv2aiRb379db7zzjkndzVuXLFaX7DNEd1UpPYYvzqA6pj65HXePIncPfk5T/2n5Kbm9N59XHUkGrxao9xA1p/jEqgw0BwsMCkSb0b0dUDhyH5F3F6CGfBxzbiRvTubA7Q7Aw5I/QZ/+Rn1QeSlw0OqOqAYEZfSf/nHtO/EGOn7HuccVVVJx0qGlA3WHXF0dE67dPTr4gKZFFpVVE2FctIpMLkDqly0oMprwhI1OFMJK0oWSAkO5Sh+88Byxvc9z58/Y7XeorRleXBEtTgkeDESc1V9a57uktSi3VU+ef9bcsr4MdD3PZ8//pS//pu/4e9++vd88OGHqJxYr28Yui1ojQ+RjEFlkUZJmCI/ULE8OeCVN17loG0JzR0+uhx5Pn6K1iM+bfEpM0YLwWG9xeDRZk02G7IZRAajU9hUkYdE0JaV0jxaeQbfMpoKugN01oQS94lwukWbCpMCeE/wkc8fPeav/uwvuXz0GQfG0liHbVtivaDPNcNoS3fBDd4PpNHAMLK6eEwargjDJU8+e8yzx1uur695dvE53o/kqKXRYI8pNeUZUMCGvf+eWU8TyycXvW4lchchSqHeKiTBLqYEOk1dTYXFlUsuMzmXUrS+CgqglOhZK61RWkwPmQroWjExorQSTW4tlK1ZS3jqABInWWlfnQA6Zvgno1XRVi3faYzkPRHpGlOFzSPdlLkAGAW0LECH0iKLpAtzJ+0x4/bbW/dBlXK487lO1/iWhtfea7+pq1XIPDEI8FayzJ00ipEWXZUxSaOdJRlLMhXOVhhlSUKHL/nQdGyJnOW+KSVyLPstx1OfmuSjutyvqQNE/k2qYpCLrn6aSS97KM38XbeAlXJ+U8uumtgG85iT2HuGYPOXl+QowOYkqyJv1rNMBxlyKGYmCgGvJq09Cnnnxc8vMYtSIp+T8iCdF/IqOpf2c3IhCO3Wp6l5OBVgCiWGmqqclxgPFk36EoDo0rI6M09VAecKRS4hxIkXY5np+kzA1/78miXAdBlHc3wz3ZvCblSqtOTu3Tp2gJzSGptl7BjEHFLLtiHO5UZjzNQCK+u1QUnunctzAcBtmdup6J0bY6RjE4oJSRkfpWNyGmL7Y2a63188X7748ZUAXQyBnBXBB4gZp0T7pnaJWikOjo84qB0sDT0DKYgzqastWEU2Bj8OdN4XByGpYBDS7OZotBHAbCz0YAc2KibRx1isq63S6KowPjBklWnbBVkbTF3h2pakFeu+Y71ZM/iIoSkuOZ7ed/RjJ1ocIeFDpttsSUkSXWU0zoits1bC7FkuFpJIV1P7rBFWYXHO8aG43ShVxLeF5aOQBdrlgFEylbTSjCqXJWaa5IqMIWUrEy0JeFaMvwVYSbFoS0WMErBCdK0Uzrl5YdrRcXf/b4yRNpacC9OpmBAg1N5hHHHOYJ0VwKNMWFcAOmkfFoaLuOAK8KAMGCuAZooiNm5KUm6UIgVhdVVNSzckhnEkE8iuQqNwXUdS0C4WNM6g7E5fbqK+al2Al3ktLbbqU/WsrEqz5wa7RWOasLG08KSycOSp+qOYK7YpSdUvRS8bpFXFVMKgtBG3VsnsSeNA8qL/V9dOGEYpMSbZ/JzWjCkJMy5GnHPYJAFxSpHkPc6Zcv01TdPgvaaKTlgrWss9dqIJOA5htshWpbIyUdJDCPPiYRRlEZsYnBpl9QxIqhyJCFAYlYjFpywadpXKNEbTOoNRIkwvVYyAsYiDZRjAVkLDN8j9Ngpta0BcUMe+xyjNyeEhrc34MLLaRsKYGQdDiEoMG5xl0da0jaOyCleJQUdCgC2dxIHVOXuLPTjpFMg6LRp0pqpIYSQYcVmuDDRVTds2tE3NstIcHx6QFYyjx1Y12lY07ZLzu/dYdz0oaXW8vL7ianWD956YEl0/8DxdoZWmOWqwVizjt31g0w00TUNVVYQx4v3AGEZx/S2t2dootJbWZlXYm6m0aytKa7Jz2JyxZTOISVoRYhD2T3phoZ+sv6WdXpFjlCCwbB4xSpA5VVSbup6DOrI4YO+3IswtDOo2i05eE927NAN6Zeyx+wzZfBJt21LXNavVimEY0FoLCyNrnNbUzrBsa+6enXJ+9y6ubuhGjzMaP/asu16CAw3joCB5AcSToq6kWLM4WM6tFn3fM4yRpnXCcOh63v/gA66untMuKpSK3FzfcHl5Rbfd4qqGdqmLQGuGKBo3vjC9jEoMgxG7dAai0mhToytP3w+sLq9ZXa4I3RYD1BW4OjEkT9951HakWR6IhACG5cExBwcN1+s1nQ+EIeAD6DxyclTT1JbKCZh+vf6ATz77lNN7d7j36j0aY9CVI/Vr8ihJYc6JcejY3lxxefGM7XpFZRRGi8tX8r7oyO1kAFIZZzlHYpQ9ZUyw2nQ8+mwNfsXrD18iFiOc6Z8urSbRB5I4nJC8L7II0i6ckeKYURrXOKwx+M5L0KhhDCPBD/gUqDScHbVoRDNyCp5j5airGpUNi1ra09ra0dYZ6x0VhqRhHHtu1muWZ6/y1utvcf/Vdzi59yqXqwFb1bzxtVeoWyuRjIIcA+hcYma1Cxh/A+raLS5fFiLl+bdfBtJ99WMuBE+b1IuH8EUfkfee1O3nF4/kVmB6O0r9Jxyl7JsxBRSSbM6E/Ji4d3KEPj3ETiwMjRgtaY0IvyMBaKmkV4tDXvrm96kWB1w9fsznl5c8e7whmoGuj7z1zbdoF3c5On2b+ugO1ckBb917jXGb8MOW7XjN4jBQn1hOl2/w2eozbjY9b/7gW7x6/jX0ssHWR5wu36Z2NRw/5vynH6J+/h53z8/44Q9+yNe+8S36baZZNhwdWh4/fczLpw84blt+9uufsfqf/ke+//vf5enzp7z73gcMP3mXbkj84fd/yI++/h1++Q/v8n/8X3/G4w/fJzlNHwNNfYixFaGPhGxp7SFnyxPuHjScL49xET754HM2W8WRus+JOuBhe8aps1wFxVgvuX9+yNvf+DaVtYzXF6gY0HXFNdc8vf6Ut15/h1ffPOeTX13w9z9f8bU7LadHd7jrHPr+MZef9lh7xfmrJ2wfP+Yqfkp7es7p0R1gRI1eikbdkicff0L/6SXt+SGLO4ZmcYhKisXZkofVQ8KzSHXyBlBz/fwJ733wAfXRAd/8/vc4ePUuWfdlL7F8VYr5z/GYmDzX19c8efKE5XLJS/dfojJVkeLSGNWiVc04RMa+p3IOe3CIqhegR4hbpC1Q4jOFEUZ/ThhriUFiZOuq0gUkheWvnCFZHGC7bSdmDP3I6dk97i+PBFAxU1r74vV5gdWVpYZCzOSQ2KzXPHn6jI8++pA//Q9/yl/85f/Ns2dPCKHHacXm+goFotUbB7QSJn/WFcXLh9pWpGT5+NEF2tboj2/kWumIMgMhbxljZPSOOBjUkDFpwLgV6BVJrSEGzGiokkV7cQ0fqopwdI578A62PiCsV0KIGIbZEAttMLoi20irIpvxhvf+4V1WT59yWDkW1rJwjmwtG20IekFWh2AM2gSMttjU4rKhIpL8ihxuuHz6nNWlZxhHtkNAKymeVZUTqYuciTndSmxzIY682L45tbKC5BJKa+kmQUzzUEVORtAFSfRTkC6W6MWNHdGnm8ZoLuYHWU2sGDMn7BlE71BLccpkTYrCNLPWzuwb5yzGaLzPUnhUFBZnieWNrPI5R9EbrxzWudnUQWI2jdF2ZvFM+70Ub1NpwSwAR1Kze2dSQnLQRbpkHxzYac+Va7cHfMyMxMnAgp0G3ZcBDhPQEn1AWbleKeViRiUAXeUsRiVSsujKkY0lqorKVVhjJU8uRovx1rHEuWnAWjUfc96ToxCcatIhn+7QBPWUgjSKFH2ZsdPnK2YXWMXcrTR1nswkkAn8nWRmiMLeo3gVa1WcXtmTuviNZaKAaPI9WSGGZFoVc5NEDkJ0EcAzFUSrFMCnvHfv83MB82Y+cGGQKoRthyoElbwzgJvCh93zblxYU+oYORbN/Env27ww76a5JB80abXdWh3V1Okhx7UjXuw1NBci1A4o3YFb0/nl/aPda3GfpY4mtm0x45lMeaaWVvGkLGxNbcr10rv3TZ+5lyvZqSCQPKHkXajiLzAhnOzAuh0GkURiczqPvMd61ZoQwpcMjnL9v+qXC1cLCOVkskcv1t5Ji6jvkAKqbolOiQC1rYTlYITa7BrHuBU7aoPCYYUyGYVFYpSIcGoUB1UzX/T1upf2NCttnDEJE0ClHRiGUcIC0xbjqtKapKiqRJOhip6ldlSVQemKIVj6saLzA10f6IaIHwNdH9HOYeuGlCNZJbQT98/GiWNsMpZkteil6V28LYSUPaFADEoLo01nd9B1AAAgAElEQVSliMsZpURPLlorCY0xeBQxK3xMRcRdQ5JgIWd5LeVMKDd233VnGojTz/taBpk4659ZbVCFXDEtqCEEss6zULzRu8/cTQLZlGKMKONwVU3Mma5oa2UlTp2ic5YxtjiOKjFXUEmmUF031FGz7jeAwpf7CDAMA6ZyhBDkb8sGA8w98tYYktay4OQiNBogBM/oR4YkDlIx7S3KWpdFTwBDYZnI5hynzd2I503MiSFGsmrEeTF4tl1PRtyCkzLoujjEkgSwylA5jdEKn6RdVPayXMZeLQCZK5PbGPI4UEUBa0aj2G47+mFgFTKDD/T9wDZAo2tiW6GrMvGZqn8FLCzVguk6SVvwbuNMeWeUYLRQBq21DINHmRIkaDl3pw1WCWvOqCmRT6BM+S6pZkv7r+HwYMl29MQoDLCYYXGwYLOS+1c5xzD2VCZzdnJKWjq23ZZlK9RolTPPb1ZYA3dODzk4WNJUlraxTLR16ywuK2pjqENEsZVq1CQ0oKblWao8xmjqykKqiYOYXbR1TdvWHB0ecnZ6hCt5u3aOykdW6w0qwfHJKXXTcHp2jnEVkLler/j88Wd8+vgzVjc3pJgZQmS97rDKsKgdxlYolRhDohs8Oa+FmWaVVE+tlcU9BJQOhOgZxp4YA7a46DrnGIKXFtg81QQRNoA22MqiTCXrgVIwasZxnFuZpxbWCQgz1sz6fVDaTZGWhBR3LbD7VcBpvZhA6i+q4uSJ6VeqRDGIrp4AP5rohblqrMEZudBt03BdQDTnHDobnBYH26qqpH0pi0RCCCMxeqyVFsSUBFgOIUjiUK6JYmSxWFDVtejE1RU+JlAR0fMTJoK1hsurK1YbRdM4mmYx68cMw8A4Rgm+cqYymtpqFlWFITH0G/p+4PDkDtVyKcPOGOq6oRtGhpAIaLxyZBRO1wTt8IVR4MeAqTxVU9EuD8nKMoRMROOzBlOxDUgQth1xfc+ySdjCFHN1xdCCGQ84f3Cf7aAwYcBGj06Z7XrFxdMnXF08ZX19hS7rOdbNe4DWhmTy7LptrJ3dlrXWxBAwVYNbHNL554SsSWhpoUG0RWP0ZCWgH4WhGmKkHwbR5HM1dV3TbTq00hwcHFBZhw8eM2q6rqN/OjIS6TZr6uaA2mQBIrKRAlgaySmydJpRGcKi4XBRU5lMZRVVpcCL7id1RXKW3GqcgVdfeZkf/OEfcv7qa6w3Aa0Vx2cLtNUlkQeVs2jaaIN5sSp+67HTmFGlfWZG1KYYcdrY/7+gXLcmz5QOTG056vZnyvawY75/0UfsvW8+dIXIAMzY4g5g/KJC7M68av9zS+Ja5EpQewHudPBlrdU6op2wP4kJVACriMZKG/NMGhFgOqNRdklVvc4ph2Df48r/hAcPX+b+Ky/z9re+ycHJKdoeUjfnKL1EVeDDllX/mGdP3sc+3/Dqqyc4m3j6ySf83d//lJPzE370e69zsBCTClOdYqoWq+HOQ3jptQc01qK7zObRiifmIy6eXPDZ1SOeXX6MaqGve8Zxi7Oa9/7uPS4+fk59fEBHZDOsePOtV/idH32Lt77xDY4e3mPdZ4ZO8/Gzx4QwwsIxmgQNOJdJ+YZuk7ipjnmy2vLWm2/x+o/+DfdfukfaXBGeP+W4XrC+trz62iHUkcWDt7j3Wz/GHN1B6YBOHebBBS/ffZ+PH/+aD67e56h+FZZ3eOO1Nziylrp+g9p1fPz4E3727rvce1hxcfUuq8v30e2S1775fYKzKNOzvXzC5QfXfPLoM553lyQdeXh9lzd5mydPt7j2GHtkOb77JvmwgkXLJnQ820Ryc8758TEnD38bfXJONn0ZeEv+pQG6qeh4cXHBhx9+yIMHD7h/7/48FJ3TYpiWtBTANTPbKGfIQ5C4qcRjMh8UGCvGcKoAK3mn3auN+c19b6/YrRTCPg6Bqq45OTHcqxcsDw7k87QixiAaW18I0u2mbQZS8Dz66DN+8h9/ws//08949OmnPHn+hF+9/z6rzQ1dv0WROFq0vPX1b/D7P/whD48qlnGNGjOZY2Ku2fQRT8a0luwsq97TRUcfHFE7xhzYDtcENli3IAwNjT5m9fSaD379Mz5/9h6YXnKSEDjUjioFKhI+R3rrsdURKgZS36PGgE8duR+Kl4PBGkfUljQmUkjooBg3PZf+gq0GmwIO6XLI2rJY3uH3f/xv+de/+wNcm7BG07oD0hA4rCoWzjBsr/nFz97n3/+ff8fjzy/ZcMSoB3w9MKZhbsU0WphXwhTLEMRMIsRd4XAC80iim7XPFBNTADENEXO0VIzddm6tqMmJszCwCjAjrZyTDI/oVIcYxVSwJOyThpxCUVmLjiXO0qCUKa2iae4CyaRZwzknkaHR5dxSyiidZ0OHmMJ8jEpLbpCiGL8wwRZKY6wVnfQUJD7MUgzc15SbXVz3CrgT61BPQFSe3FT3WHaleDv9/TiOc1vuRHiYc8pc9NZjBm0K4C9xrrNGQDqryTkSsmgLY6VLJHgvbbExEVXeuciW79Gl5RZ2rcxQTNiytPKmcvPkHDVEPUN0Uy6h9FT03q0BAuJkZqWwpIrz86T5J7FWSkmM+gqg6UzRyS5Gi6I/PWm0vQiCyXNMeS/EUKWQX9ailDGomQ0c1Y7xlrNoBVsn0h5mPvwJeM0zoGj2rtVOY67cny8KHL5gBcuqgGdFdCurSd6mrJV5j0VWQLRIxlhH1pLjhMJcnboBk0rEqfOukLdknsfdIUwopNo9T9dAvj/OWtrG2L02cZmPzrnSJbILqKbrIzGOKa7IO/OYNGEKZfynGAmlWJOSuCSIxJIA5VMANutWlrg8K0Pcyc2Vr1fzfZCiOl95D74SoHOlJUrrAhgUtmUCxpzY9B1bX5FGzSYPVHWNstJ+aJxj2/ekkDA42kocHFVWEAU97botidLGZg1aGcbg6f2W3kdskomimVpsZCAIDVQWz5gzvhsI/YAvWnAhJ1T0NFXPZNmhSTQ2Y62jco6mVaw2IyEHXFsLA4+MihWuslijsEqSqKQNQZeBmSNkTY55nlSUttU4UYspYvwEdBaTBIVUXsSlqFQHsoB60gibZnRYmlrTDnFmWrAn55zfTKonhH+68TFp8ijsK13auyZK7AR8jKGHaLG1K2w+PU8elCl6oVrYfIUJllVGBUHztap3iwGUKlRxWS3imFlLkmhTKjoJssE5I6xBozXGCFsP5H7nlKSddpRqkCnnZ62Z2XApKvq4t6lOR5HlOZa2r5gR/UIdiDGX8xTGlU4RuTuI4L6zMzswKSNj85adtIi0Jy9sOuccMSSptinNMPSSx2iLdTJJjREnSmtBWwh+IKZMYxWOAWsDOhY9h3IPKRXe2VFzqk7paYOUjTDEaSErEH7Z2ENKM4tRAovSjiQjRyyy9ypeKSdiAHRgcr4lByqdMbbIi04Lu9KgElpbqkbAlWEY2G42RB0hdig8ldG41hGPUhGej9SLJXfPTjg6OsJZTQoDMXpSnnTpMlYx0/2dcyUoUjIuIkLX1uJqrPJkzJIgRgyZyigaq2nriqbWxCAApTBIpVXZaEVd1xyfnFDVLcoolocHAswi7kTb9QY/ejZdhzUaaGmspnYKZaR66eoa6wQICMkT/Cjaiz6wHQbREyy6hlNAKM5knnH0DJ3HKWhsxrhEdjIGVMoQI9noneV8jLd1QJQSMwgvcy8WHbGUBIQWgBphg+4lI1OwOgW8t9ePF6qqKZWqsZ4DX2lnLwGaleOJBbhLe3+vlMIZS20ddWWKnp/G+5HkR2klzgnnLHVdYTM4rSGJYYYGjHKlUiymMSF4yAJC1ZUBdCmSFLZ1ub45eZRqUFpR2YqYwMckBkDBk7RGVxbT1CyaGmcVIYi2hPeRIWZ07ehHXwC6TMjS1mqsJRrHdutR1qGtQxV28jB6QlRovcWNmuvVhm0/0jZLjK2JQYmhUPIYHzhsNFZnLJ7Ubxg3l4RNje8h6IFnn2WqumKzvuHpk89Z31yTU8AqMTiyurAs9yqHU7A4rct6Qmm0wVQt9dKgR8/y8BhXt9KeAwTv2W63+BAxKVM3C4ZhnMeE1QZrLSFKkkCp8prZxKOCHPApEaOYDGnd061vyONAQmOSAHBZgydgyDiVMVkcww0Ji7T5G11A75w4XLa88tZr/M73fpuHb76KO1jSHBRAzha2eUQYq1qhsEXKYb8WPK2TtxEv+X0q+62W+ETtvS/vvf3W50zzZu/lvHuS/b5oak6Frxf+ZgITBCybVDKlCjglbCJnvGvV0jOyJ/vo1LAzH+YesHcL3Hvx+Pcq2LunvT/IGVSUGEQ50LXo/FrPqBIDGZVHHAmrW3y0+OipjMXYivrknPOl5eBBzdfX79Ac3mNx+jKKlpy1aAMG6McVq+cfs7n5hJvnv8Kqgecck1Pg018/4tkvH/Hg+IyTZok2lRiCJIfVihg3DP0WH0dQiu125Bc//xWbz66olebZ6jFPb55Sn9QoK+7ip/ePuHN4jN9kbj7v6So4PrvDyeEZT6+uqJ58ymsPXuFP/vjHhLXnf/8Pf0a3WbHuB4YhcOhaDpY1yngaHajwnJ5UvP3bb3L39W+gVcPNBz8hLW5YugZay+LOguq4xp1+g+bO28RKJC7IG5qDhtMTi7lvee+jD/irv/0blvEuP37nv8CqQ276jrZRrPuBdz/6GT9/9Etef2h47Txx7/wljs8eopuKfrulGz3L+gBlKp52G4yO3NkccVTfI5pTvKnwHhQHJNfifYLmlPuvf5v7B3epcOj2nBQg6yiF+X/Bx37RSGvNcrnk7OyMo6OjXVKppcicknR9GCsxeLftoHI0dSsAQEKK9qrMhayKhpSeQfZdjrcXP++B3/OPk0mkMrRHxzxoG3IWF2ptnMS+2iCtW18MzgGQMkNIYiYXM2M/sF6tePz4Cf/wi1/w0WePiBqGGPHGkHxkqS3f+u73+e/++/+Be2cNxj+HPkA4IPuKmBTJGlQlsiVjMvSpYaTGNBpV5VK8jlKkHzWbC/jp37zPn5vMex8MeBYkc0jyPY2qMT7gUmRIomtql+fU7RlUC2mxTQMpeGQ/KXpnRvI1nQ3LqiXlkdD3kKRwp63FJA+M3L17jx+88wb/7o9+F3uoEJZRSwoKW/bzOHQ8XLzE9lHm1+4zrtfXbFjzPF+w8jcMXY+f9h4gx0TMqcj97IzSpjgmpUgK4lRutbQGhyIjkxE5jRgj1gigZozkF9KyuIuP58VcBsQcj6ImCZaiGacVxlmayuE00lmUhZUn8fQ03speA3PdWUA9Nf+3dMsIQBBjFGaVykxGCSnr0rYYd90QlA4kJUBJypJH6QIa3NZ9Ywb9brGgpJ98974JoJiYcy/8+7L5PM9phbQRToCqUkwOeJJPgveh5CyZgEIrR4oJlabrtGtxnIpLSn0BuD7fpqkT5Dar8pZh07xRFkmdPQBHsWPdK6RovPuzPF+zW8SWJPrb0z2TDqTymZOWJ18E0En+IkuXMOl0OWs1Mff2ht8Euu0/UkqlMCEtq3tvleONCSkVC6NM51nUQ3LuKC65upy3RhWnX/lmVVqLdS5adTPDENCla1AmQLm1qqylZS5O8jl6AtD0DOQCezlNlg4gNCpNryFyK+xArP21e58td6urZ//92twav9PrKUt3ng87ncj8wlifcme5ntPrcUeUmsBFdvHXfHsKSQZ4Ya7cPo4X2b8vPr5agy5O7h1K2kZ0Lk4xIlD/5OIZVRxIB5qODlvXLJYLbNUIGBeE0m2Nw2hFZQ3aulLxVlRtK2iksZiq6AT4kX5l0c6ig8cq6RfOBXRQqaDYRc9IWc3oA+u+w4892mgq7TAJTOrI3uPHyJgCSSuyrYjZiri2LhdSabIp7BdjoBIGIDkgGgFStYl5ArkCKEmOtNHo0usesrBijJHBCKIlpRSoHMThNStpWcwG8WIUPTzpKBejCz9TQfOMsocYZdEwGpedDItiMjElqEoJlXpybwzBC7yWMylC1OJ8KTbLCpPlNK2yWC2AWcwJ0bPKorOXkIntLHUJgETMc1r0ZFjusHakWoKi956UI1o7ad1UU5Ii7c0xCKtuHoQlqRJGEUUfQu02LUREOGlFbTV+GEtFQxdnSYMyIqI5JT4pZUbvCUz2WYpZJNUIwj34sNOlK4qfKWfqpsHYSgyGUoTsS84YBZDJiTEGjK0gw2q1wvuIaxZoY1GAI2GiULF7q4g5CPvLVFQpY23AxqkqY4DiTpsDkq4JJVkCg+k6TQuV/GxL4qa1iF6qwAzuzQtBlkV/ovEaVYRelVQ0KDJncxCbBIgzSoMxuJSxLqODbAo+CCNpDCMhRqq6ZlmD344yPZxBYeBgAUrR9z26MiyaimVbozVEkwihsHKDRhupeFon1TWrtTgzkotVeXEiShGCx1YilFQZAT9rA401NLaA67N2RyYbRWU0KUvwU1lHZRy1syhnyVpxenrCGAY63zP0vQDIxpCRll1xaDYzIDVRmVNWc0uE2EGIu2Uu4z3mNAPcIUaiL9cvMN9jqyFrUUDUvjgXx6kto4jdl0TDaot2Rph1JdAKOc2mHTlGfBkX0ZTW9Tloke8U4F3WCtSOsj5VKUHJ5r4nN2D2KlPTZB+Hga7riDEydH0Rtt3pGUorgytMLghxxIfIMHgyCussbduQEBp5DoYYtbhPm0ZAiJwZhh58JpYg0igrgGTM5JgJQZhZMY90OtNtLCGMSDtIUbywCoxmUTuOli2HywWLtoLU4H0gastmCAzDiFGGlGX2ubopjs8JW9dYZfGpQxUGYQwerUUf1FiNsQ6lEGOekjgkFIMXwOaoFWby8fExOWRS7NFppLu54JnyXFz2hFxx+PSU0/M75BTpVityEJOVELzsg7WYqEgApCWoyyKSkDNzNRBAW0fVtmjbYEPi4OSEut0BdClFNpsVw/UaQuTo8JhkHFZZiJCUOMX6MZTW50DOSVxcXU2jwObIEDwhJYhwdXHBz3/6U+4sjrl3dpfDwwNs0sTUSyuP0pgcUCmgSOISVv5pI7IKox9pjOXkZMnJS+e4ZQsgLOUi4pz4f2l78x/JsuvO73Pu8t6LiNwqa+ulemOTIilSIilqm7FsYTyA4QUY+K814LEBD6CB5ZmRKEqkuPfeXV1bVuUaEe/d5fiHc19kVrFJG7AcRLG7urIyI967795zvue7tOKxVhvoOUeqVvTN3qivlrp2pliRri3F1gCp6z83D5/flq/d+A6v/He5/gqpiCRsjhwQiYi6uX5tj5D9fCEDuR2eASE2r8cEbkJqG9ZUDyE21poD/A2Qzr1coL/6duff7grC6/fyVS+TpzgDs9XjxVOcMIknYSz1TpTIBldHPIXeTzgpuDQgJdJ1PfH+A/bv3gWNiOtBBmACdwVZiVI5PFqwfnbOw5/9nLqplNfuc/L8Cc/Oznjjtdd47d4DtA5UHVCJBBHy6RnPPv8VP/3VT/nFT3/JqEruHR+vT/j4yWfsVQ/OswWcH7l1/4Cvfftr3Dq+R3/Z8eF/+Yh//NWHXJTE2cbziw/P+ejxf+Httz7hr3/wXVYpketzVBLiIOAIYclAT7nIxC6xNwT67Qnbhz/m7FeR+0NmWL6Dr4lE5snpI050xbsPvku89w4id8B3iEwIp2w444KJva5n/9ZbvM8+3fQR0u2xen8BdWC/3sXVwOvLff766JhaT7l/G6K+IKdiDe0Y6Yd3CQ/exN3r+IN3/5jD54/YPH9Bd74luDeIB/cIvafLa9CIcwOIMuJY7B2z6HvIHuqyAQ7aRqPud66Rf6nXzPI4Pj42j8thsFomz47BpnSzvXbi/OKM9fNnLC6vuOcHimT6qkTfITt7ObkBtv+ONd72SFVTgqhWak6Wto2x3pzzhGEFOzXHbKR+DQZem9bc+Eztc8VgNVboAm+/+4Dj4yO+973v8R//9v/iP/ztf+Qff/kzTk7WSPD0y336/SPuvfk2D772DZaLArqArFCPoA6AonVC3QaJgOupOlC0pyhcbRNPnhsb9er0S9KL55x+ecpv/vlzTr74BXX7iNAl1BeKgGYhTUpOsM7ClQuEdU/dDMgQjQHlRuo4WT1g5mxNHhaQ2FmtkoAqBGfgOSiJieVBx3vffYt3v/Mu+3eP7edWReqSLobmvQ34Jf3xlv7OHfzJGapXeA0MtSdLj6YbA0VVC5CrDViAHWvJyAlWB1nSeUWDb0Cvmn+vXO/Wcz1jaiK/G5SbR1dh9tn8HQuX4P2Ohdd1HcvVkhiEabOljFuuA/y0ESiEOcRgrsnc7LksslM3KWJDWjUftyytYvOhfd7G4PKhsclc8yu2s7A0okSz8do9Z2DgoamXrqWaNEBP6vXv5796E5Dbsfka2+lVoOwmSy84hzRblUpTQbXvP1tr5Gz7q5Ec/I4JJ/MASqz/s+TQGRwy8opzZhe0q/Epu+d595ngOlxO9fqsV7X7UBpItyPDtDoYRWifQaweLcqOgOJozLGazQ/TjPF3TLbZNWRHAPvKXzP54EZVoS0ttV1XhV2Y1/VrBniviROq2piNgM4EG6vFfNunRNu6mvctodVwbS+0Vbn7CSJWvcykoDYLnv8PIyXd7PxlN6sQhCrSaEcwB5jt1mBT9Bkj2uGDI8SOHuzezsQUH34ngDUrzOZ//8p/1pvEphtXUNt99C8TFmqdw2JaT7TzNnbXN6kNBMR7rIV75RnAeu3ftW3M7+/3sxft9fs96Mpsp92u+rx5qBl0F+eNoql2Y0tRNtsJN2Wy6ziMC3PrTokpK7pN5rsUI3hvgQkiuE6J0eF7j48DnVMkRvTyil5aqky5ThUaWirhcrmkXy5QUV6cneGvLhobyhOkZ5g8mjest2szB6/mSzbVynYyKVYuFb/T29uiULEUnCqe2iSAIk1XDqiomVbmspt8lFrJJV9vNCJkWuy77mYYOCA4naNpADMnLC3VNVc1qm+xII2i88ZuMJhWpbR0RtVi768V+855S31pSHnX+WZ2qlCyIekCLpiP3wzWOYzaOR9sohafI7En1UxulE/nxA5fAbTi8deQ8byxtsNFnDP/u1LNFFzF0nDbzxOZWU213QdtwJPa/il2H92NTRFqS3CqO3nnDJIYQm8AnW/afzPbLEyp4FpwRwiWfqTOI+JJtbIeJytEKLhinyFX6JLQxYEQTNbqvRqIINa498MClS2LxQrxgU0u+Kgs9vYopZKmEc2VccyMY2YbIDsQF8i46+TW4q4PFJn9FLDpnrgdEDpvNrsNR2f8vn3WRtU19iY7oFZaYcmNzWZm1KF27ZxvAJkDxOOqI1KJweOjo0igU4dP7ZrmkWlbrCgG+q5nufQkRvI4oTmb3+BqwAfP+fk5BcfQeRZ9pIoSfLVrqhVJjtye85grXYj2dNRryYnD5C2+rb88bhGtFmrhYX81cLi3YG/R0QVI0xYVJYaOEITl0DNlnUfyTE0m6rBCwXlhGDr6PuJE6RYDi24wuaYTqlrKbq6VKWfWm5EQzYtGUaqKhVAMAwMBd5Z2YBfijHnnAzixKagzhtyYRrY5kZ3xbVyOoM6S5mymtNt3Sy62I89TvDbA92q/n4tUo2mbL91EZk5Gnv8p7prNap517sZhZwsjxB7hujiY30NuRXDasa4yijEpZ+msd54QHCHYM+ebtFybGW4Iju2YySmZ1ERtaCMVA8OqJS6r0mjlBcUAFBWHSKQW8/AUSbZva0U14byS0wxYAc6Szfq+Z+gih/tL7hyuiA6io7G9HBI6ChObZEE1Q9/TDwv2VgeM25H1eoMXx2JYcFucMfJKJqWRfrlg//CA2HeW7kfh4GDg0aNHnJ1OTJMVpc5VQr9k7/CQ+6+9juTKtDmnsma56NCaOD97wcVVYRonlovOwE2tdN7MptOYGjOjDUxmYOgGuGqFqkHGVox5fFzggyPWymK1j4+zLrRJtnLm9PQFV+cXnK3OObp9n25YcrDaY8yZq3FkO5oxempgcKeV4AIh9PZcupExZ4KLbK62fPzhhxwvD9m8/S7vvvs2+wcLpKt4F3bFt7ZiqbYCvraawgVPHDpcEEpNVFchztXJzAywQtDqJ5OVWHnod191Azbb7XnX/0naJlhoUB9QWyq0tH3yFVBO3cvfb/6zeWIC2AG/ARJCRBgQ6bFYPAEtBszJBGSkrW002O9VzVdLtqCZmjL4iHMLcNEazWprW1yHZa/PBbi7MWlvU94bb/dmiuDveilCFjFWg5NmTO5I7fsFhEDET2vS2XPW5+fAOYs9T7+4B2UFNSOhUn2FnIEFQkfNawgbXOjxznHy+VN++g8/4lc//w1lHfBpydHhXW7vDbz7tW/x7tf+EB8PUOmouZKen3P24Yd89sGv+MmP/5GPf/2h+c12yvIgICGyX1bcOX7AViviLtgfekqZePziC/amBd2+sn9ryaOTc06ebnn6AhZDgI3yny7PSaef8fDRhVlxnK+pORNRymg2KF9/7z1++L2v49NzbvcX6NljHv3k79HwJWVck8ozHk0T4e1j5PZ9dP8uOa1wVQiyRfJDxu1zMgPaH1LGjsP+Dot3IrUHt5dQzbgE4wYWd+7wh3f3cXJO9Oc8+/RnfPzJB3z67O/JsuS997/F26+/DcFx6/h19l9/izJO6FWC/hDiAnOeWYEMSHHmJ+tAqwPtbMol18mbpUDnf+8y+f/8utmwzeEQrrEP1IFlZgldZ4ytzVXi+bNnvHj0Ca57xro4uuWCg+OB436B68y/dR602g/5rcV9/fObHJEGyJQ84Xy02jN4ROwMLtn81+YgnjyNgBC7/qUfITd/hNpQIwazGVgMCxbdgsOjW6yOj3nt61/j3X/6Ef/+P/wffPTZp2xrpfZL6FZMEvHqcf4IFUdJA6qeLmo7SwvKyPrqhPMXE0++3PLllyc8evyYJyef8PjJLzk7+Yh69Zx8MbI5V7bbRO+zndvbLZst+LqPbh1ShG2trEOk2yYYEyx2gyIAACAASURBVH474aWYF9w0ktNkyaBqIXFz559H26+GYaB3gqstkb0L9Acrvv3D7/PeH36HEjqqZtQFvFjAlm/WD2gkx4HS92y8Yy3V2OYY0KHV/LiQVquKDVrzlMi1UJsFh3mMZ8DY1AYWGh/Ii5hNETRbEPP9dRIaoGdgjWppwHBlNtfc1dFWMBsbDKu5dyGKIdAvBrroKS0BPfgG0szAXGMUmQrBNenktSfVtQWJ9ULiGjhVivWcrbGRJtXd9T04I3K8xKrWXS0njZig2Rb/LK+zD6E75pxZFLHzEHPSztebj88NFt1NJc7Nl/ee4B3B9ajOSdjzGSs7LIEmCUav5aPBe0vHbcPDwqwsauCScUisRphVRaiV9dr6RzNPvsFqq22d1cZOU6Td79ait+dXDf9DmWlj1i/b9zMWmdUeYF7Q6PUe4nZrRV8ehn3FHrHDurA6dQck8jJLzBhy7f1j9985SyGdmWreBZyz3hekWVs1wlFTBdHu5Uv3qn34GZ4sv3Ut5nt2DZbaAMeh6lognVzXSjfkouKaxYfTth/PARXXa6g25ZPEuQeRHVAu4kjlmhk497431+Ds4fZVLDlgx6Cbr+WO/dbqpBjjbv3a95gBuvY8amPz7fwXr63FdHfX5/9jphnODwpe/G6v2P3cG6+brL+vev1egC6X1MyAww5hFbHCsObK3tEeB3v7hMOeHEzCWFqzG3D0IeJajm/RSt5uSdNoHnUCV9NIEajemZ9cZ0X7VBKaMmEqRBF8g3gDxnyJTghBEKl0wdDXtOiYkifVQuwcfViYJDL3VN9BHMlgjJJsSafudMLEjsZQcS5SpTbU3EA4S1W1zTIAtU0/1CkhYp5zAmS1798QZ6ceR48nIJIRKdYLUQlqYQCuSAuGsLNhaql7NKaNL4ZvKjYNtnvepL25MeNqpebckF9HcGK+UMD+om/hQg2V14JXwZf2AwXUOepkKYlVGnDlAhLsXlZubEYG1RtoUvJLi01Fr2WtDdTtuojbbKmaTaIQQtt8PZZSa4lGzMWUmJeQhXQEQp2BBmPJzD5ypRpQMqbENE3GkMuZXA0FnzkP3vnGbKrkYvJJnDd2mzOvpSlXhERwNHp7Y/qJsB4nUsbSdAW8V7rgEGdTLcSxnRKhr3S9p18sCBUWiyXTNLFaDJAmottSywQRsrfNMzdWaM6ZlO297A6+3ciLlyYk1JcpuNqmXi3Os4G57eo7j0g11ga71tKMSxH77w1YN9DFiqFcaovmTgwzrxlvAKv4uaI1ppjaBrJNEy9OX1C2gtM1vk6WOpkmun6Br+C0WLnj7HqKE6q0JFg8EhzZCTVV/JiYGVjq7FCM3tJZgxhw2QXPoov00aN7AyVNDJ2xPMu44SJvcZ0QOm8SxGoA+xA9QcRksbWgtaBZqDlRW2EXggXdODUKd4gBL0ZHN5lni7gPTerhrwsip55QlagRH68sUVPEADFvycmIBRJ4pN1TW9dJjOfpiyDqSaUgztJPXStw0pSoxUC6EMLOfy745nXRPOiK2sFp4IxrnjutMW/3MGcFMR9BV+YV0pKt6jW9/yXJQ1uzufngbcdxd9DkatPSGCPBh/ZPASq5TIwTbZoK1c1wQisOUQRvSZKi1MbQZFdkzGWnAQyqLdAAxwzW7NjOruKdIxWTtVMLEi2ZO3iBUhg3a7plj8OSxCQ4XPTE5OljIC4WrFZLShVYeG7d6khTJqVM33Us+oFazMMm5dFYvDGgAovVkq5zHO3dYy86fj1+yUagj/uIyxwcHHL37j329/eZLtfU5MF3LJZLOwu9yQVLyZATpRbSZmOBZsGZ41docpfa7rOCFVGKSmtsbDNu10ZwPoJ0+DKBj82z88Z0Vszj8+rqipwrXb/HUgK39g8YS2H99CmKkopJWasqSW2Q5MThgiOI0sWBoV9wdHiLw6NbvDi/4OpnP2Mat7z3/tvcunfIZruh+mKTdYydPuXCVMzvJc2TcO8gCFPZMKUrcp2oYuezF0dRsf1DLDiKWqE05pzMgzEbSvxWpz5PlOdTSwqQUEaKjm3vs/3SClC3K+xeBuRu/ppPn4xyibJF6BFWIAtEo92UmoGtAXSSQXMbjEegsxpr+wLyBVCpKSOxw8kBxEUDDhxobMDkLOUzP7jrz+t260N27/f/3asgZGmDSWEngRGAXCE5ZDsQNhvc2SVPvvwpMV7x2pvvEt0CDQn3xiE1DpQy4F1P8D01C1o7XOzYTld89vgJHzw7hzv3eevu27z9rT/m9ePbPP71r9jbBuTzM559cYYcHLM8OGbz7BEXTx9zdnLOw89OIMHCZTRfsiiRfddzR5e8e/dN1kPkyfljTk7P+eTLX3Jx9Zg7+yvuHt1B9z2cOTaXme3VJauVZy8UPi/P2XeJo1tvMHVLXoyfcrE+QdIVmhN0A3feeJ33vvMDzr78lOn5pzx9pjx69oyT7TmPTl9wujmlrgbelSOWn/6SO9NzYn/Afn/M3rjFXzzjYH0FrhCXPdX10AX620tSuWB7dUbXBVxd0TtB+oWd6ShM53RMLPslk9xC3JLLy4kqoe1BExquCL7gXEF8NiDjNDHs74N62Bb8ytMVkDxPDm1NqyskN9q5S4/w/x9K92pD5b3f1UDSgGYLBcsgtfXamc32jM3ZC4pfsjo6pnDI6tYRw6pvTVRv9dO1kxQw7wPt32Xu3Y3NU3Mi5Qmc0jsD3kpVNtstZ6dnVJSjo1sMywV4/1t7yrzfzv8uQmPQadtrFE029Hzzrbus7h3w5jffRQ4O+V/+/f/KRx98xKY6NuqY1BQEqVq9MmXHdAlDJ6TtxGcf/xNffv4rdBq5OBk5eTjy+IsTXjx/SilnTPkR55fPmKZM2kAde1SWZD+yroWzlBknpfcJkhKoFJP/QDgF9xzwlNQbkzYlshaKKMUp1Vnf5iVSS6ROiZQzziurIbK3XLJYDdx/803effuPODp8naqOpMWUEbZr4UO7ZrVaAF/oEbcAWeJ8hXK5q5OncbQmOwRqtVqolGKSPBH62OHFsVWzBDGB1HWXMluDoEpubBnXhqRzGB+lGKDgrCfUam9vN9++nom3isT21tJSW33sCVHAm13KPFieF4efw5iajQftPbn5f3PNheJaME97Bw1EtBBDw31s/RmIY3Xu7MM9M5ZooV6zP5hI85idAbpr9gdgmNQNKPIl8O0mGHcNJL5ii3JjmOudJ/oZXL3+GfZ2TSXjgscL5No4az42Kwf7lWcWrLanasdqv3Gm7QCyBt7UuYdyO+UN2myPmspgBsO8cw18aVdZr+HNWrF+vJhllzgoWRtgbN/H+QY5tnUxj/Pc7ruwe1+/83Wjb2O3h0hDdputE7M6WHdnsa0dkw9TeemegA3nZ/np/PXGAr7xo+cbwjV4JDPtD8sJwBlQPYOC0khM9rVWexkxdUaj232RamQaqdbrzHWTNmlrtQGGQJOsK5m8A7iMSBKgJenOnoLXDEmuAbd53c5r07kGFnpuBr1YySu7tSqOJtsXBAtkqzfuhZ+JLBiAV9QGNdr6cBfi7nLuLmsjfFXqzitRXrnG8+urwO2br98L0CXa7lRLm2zPH9QYOjUXpEAnkaHzhBgppTDphACL5WD+Y97M/POUmEoipUzKxnxJNTPmxDRuSRfWxM9xuL0PxtArFSmFAOQYoBRyMp84m9JakmQd1+YzVTtK35OnitZAZTBGGG1jwNEpeNcRXCaIJ4hRnA2OaMd4iKibk0Xb5ogd5gJIDMxmy9WDD0KtdvAk9SjRfHVcxkvCu2KbsBoAZBsFO6W9cbhMomQmlfaA4rJNyhVD07E91YunaCEnm4rVUmaAHUdF04LVMrIcFgRvjZ2oIsWuKd4YezU1MNIHNJgnHNmRWvooJSG1GrAhTRmsiiu5HVxWtt8Mq7PF2Tz1SsVXdqwebSyfGaWG62sws+vmAIbd4m7NhdCMWNVoqnOiac5592DNBxJtsmDBG9ds0Fk0inMUZyxOdSZNc8E2ISeOZVjiJeC0UsqEaiG1aVYumc35OdtxZFsKwzix2YxUFbZTYRy3HB4cEEumE4hdxC0iGi391zyvGqBZm8xq/ve2j9nE6QZD5pUH+qUpwrypNu8Cp9KY9G3aiE0D7MvcbjOzGvNaPmtyMUv+LVnJtvOTlRZqYnT00phUIdjGOY5b1lqJjPRktGZyMqBE8Yg2sXK1A8Z7Y3GiwQIYvSdWSDU3jzwlOEd1BadCDJ4hRmKwtOXoHQfLBYf7ewQHabttgGQljRO55p3cYhy3bLeJ6AdWq0NWqyXLfmAYBnwXjXlYrSRRNfp6DJ6aG2Z8U+XmDIwuKMNiIEaLurd04YqvFbynxspiuSTGc6AlNbVvVoAxJepmwlcluox4mgehAZ9ULFnYG2CdnY0Mc86UZMlT5j9hYKc6Y/EZk7c02as9M5Yka8BzKdnkoG26f5P6beupNimIUnN+ac3tWHyNDq5t6jQbBnuMrr4LqRGb1I4lkbN5jdWaTbEjgnTL3QRT2gJ3Yj4wlUItmHSzFQG0aRwqpl5R3w7vGajSnU+j1tIkuYALdF1H30VEKuN2TdlmBn+LxWrRgjYcqVbyOEKtLIeeWjIXV1uci9y6NXBwdGxS2HZ+LRdLVouOWjJTnri8umI9jXTDwN5qn6+9fZuVy5w9OedZ2aI+Ir5yfHTE22+/zdIveDEmGxgExXe9gZGxh2DSie1mbRHvNVtxpLSJ5DxRLCDXBYzOxZ1cr2edUwXaddTqWhqgXP/dRu0PIdAterrYE7zn/Pkpl5cbNAZqLixXe8a0cSPTZqLgyArBOYIEnJjUrO8Gbh9HHjx4B03K86cnfPDhJ6zHNe/rexzcOUSdomLSBvGhgW0O8RGVQqqwyYlcJy63a84uz8hPvmA7Tewte27fOibEJQVjvO/On9oaEjeXyDcKoOuqeRe2YMdLbRXPBtUNyoi0BmsHbMkMeF0XmrtNobHvr39WptYzKmvEDRiTLoF0jcE7QtmAbszjKW3RUnFuwPkViEfqBXAFWvAlIcWDbiAuIC6RuADpbdCQzcZCfGfp2hLs+QBmU62Xm6nZs3aHy/zWy934RW2NSDDvI+8qdUyMz7cEIquDY+RR4Fe//g2PP/uc44NbLN+4xdHttwlRKVJBLwhuwHXSwEWI3ZL3v/k9zi6u+OKzz/n+93/Iu++8y2e/+jU/++Bj9lLmNx99yKfnjxlef53v/8Vfsa+RzaTcff0d/vv/6S6/+MU/8Z//9n/jxdkLbt0+4psP3uGt4dvkgyN+/egTnl1cQp6YzjODRKTLnF485/RcqZNj6T0uQKBweZH5Miv1aJ9uWDJO4H3P0A/WcNTExIbHJw95evKUvcUKVveZ8siXL57x4cnnPDy7QF1PWMP6737CdPmU1x7sszo4oqRIfnZKd37O/YMD7r32BgfvfIP9b3wLkUTZnpK2LwjLHl0/58WXn9IPx+y99jZIhJqgTCyXgXffeRd/8Mdot0JkRDoPWnCMOLchly2+C/gwMo2J0xfnxIs1LiuMI8fvvk7fm3yQUQyc6cFckJs/1W8vi3+x1zzwuRmANv83aCWNozVNE+ISy72Ou3fvsD5fMp2cEbxJ9i4vr9iOGwYGVALoYGebzA/8q1J1dvueWHeHj55QPacvnnFxccnl1Yb1mLhz556dQ95T1OEktDpqrknnb/jyP+eB/DRu8dUTw4DEa9bTIi65273Jv/o3/y0Xqmzr/850ccVlrqyL0jewZr2FZ48KZ0+vGC+fcfL4V7x49s/4ekYH5CtHXweG4sinGzbrUzb5lLOrSybXM24ddWsYfomeEnrwB4Qexk1FcgFXUDeDNufU/AJyROSQqgHN2QY/DmoQanBoFsYpma2Kd9y5c8wPv/9d/uKHP+CN11/Du0Ds9/nuH/0p0ZnPdJS4u2bGnFLQgmqilIlaUhtCX9e3cKMhdo4utL2tfU0tudl1mB1T5wOEYINgqtUPzmR/4vxujamyO/tn9vlNPyvvPPnVB6ANGGdgzEmTxM6+zrOfXPP91VLaGnRcM2uua/75xJD5PGmgk8x/oroDjqzuslTIEIoRDqTVds6DU8RNVhM2iaDJHa8Boh1zqbbne37WrmHMXTF2ffZ9NTh3M4Xyq0A6JwacGqd9fg7b0Kv1fm4HrLX6JRdcLuCr2T61IdoMNLHzn2s9UJ3/zFaArRv73DPrcRdSL2K993zwoQbYtgfWGITtd2p7Qs0VCdpAVCPM3AQwDagzKbXUZkO18/G2evYG9PZbr/m9fNVXqCqFwkyimPczY7EaUWX2gX7Zg67J9ZUWLtHG2E52zEipBvjFFq7pEPBmfTT/fmZwmsWN3/Ua5u3ZPlcbomjrcVS1hVy21dTwYm39f0F2xIS5l5/BVdVq9ix1Dk/wBG8QlSnDXmEWvrLuXl2b0rwntd54iOXad3Gun+1Zn/sb2UnL7XsyI9WN2W37B64pH9mZjDEzUC0ul4Z9lF0DOT/XN3v4+az7Xa/fC9DNE4Pa0GdVwUkw7wGxFJ+yTdQx4Zzi1EGpdFkgttTTZSAMA1EhbUdkdLAFxTbiGAJD8wJTFB8Cw2JB1/ds80TJhTwlpGSTVXjoxIzZ1xenXJwmlNqM4E1utLkqiO8RHUA8WQspV1vsvpLVk4rgnPmLeQkG0Ik93DNrExfQ2Zdm3ryVXeHuRaliwFpwQomhNT9CUU/VDhGITERxKObVAiBaGuClu2ZCKoi35erFk1QoWdDGwLPN2jap+QBRVYhqktVQdkwrNFNqAhW8U7wXOnHElqqppVKlpfStN0xaTGjjQF1reLygVIIa8BAQOufovLM0ljZVUBdQ73ceCBkhiUngajX6u1ZjZ6RpCy6SpomcKyVX1Dd2OfODbe+t1mKfpbH95q1x/p/3zTSbG4eCM3DNtYfNtUlObQyxqk0sV5QuRvNd8x4XHS4EG4E0aUPfL/ASUU2QzD+rUtBiYFVwntj3gCMlO6hKKaRkAMnZ2Rk9Nj3yDmOM0TemtTZ/M3bSLlSvp3Tu+jPN28tu87HfoW3a7Jzb6d2lAb86pzbNSxlpQJ20CG/ZbehtLrGbFNa2gUvbWEq1ROFc2AGb1lBPII7FcsnxndssQ2K6PKGOGyiZ1bAk9h1ZHavFQBLPMHRmpNt3pOSMQaotkSgUQqkmjWysKVpB4ghGmQ/eGLROjI2rBrYRPTFY8WYJXJX1dIU64fl0RtpuWBwMHB0dcHBwi2GxJPQLM6xXpQ+BqYutUTBqtkk0LRlIazZwq0AqmSlNTTJtAJ2x9IUoQugyZGW52hJiZ+y4ko39LCYvVhUuLi6RXIi+4INSvElcyREqxCgGZLaDz6To12lcOZsXpjhHpnmw1LqbllatJklLaXd4zoxT5onUXAC27zuHPVC1XWdnfpru5WfsZvO2A9qFXTqeefSZkTUUk1Kp2QCMU2aqSrocyTjbK3E4SXiR3RSyKnZtnWK7SrUJGJYa7iRas6S2fo2NVyl1YsoJkYhIwN5+K+CdI7pAdI6h6+hDA/CBVJUpjYxbC/ygwrjdkOuI+I7VykY3ecqk7QhqE3HBDKlrye2XFRmHy57lG/f44u5Drs4fs7V4LqIPHB4ccu/oLgfLfdZXR1QZ6fYC5+MI8YTqJjbjlhfPnjH00aSpLiJtgjhNEzGaP4e6dtDXudCfQcrGDFCTODjf2NG1sdZ29hTsps6x61iuViz7PQ6We5ydPOTJ5w85uHeH5fExYbFo1g/tHrhoV9ZZkqyrFYfHS0C9o18sWRwu8a5jGjd8+MmnXKRL/uCPvsXe8V3UedQHCo6xKEmFIIEiQIhICNSaDGMKcLG54PNHDwlSuH/nLm+++R6LvbtW3NsGeJ1YN9cxbW9rffiNAgfmhkQpqI5UXVPZIjLh3Bwh1MQMcr2bwiwjnuUb0vxKWkVKAT1DuaKWHkdGJAGL1pSOwBrqJWVzxubyjLRNRDew6I8I3YD4CdwWcqJuR8YxMRVQN9CvDun3jnD9HvgBLQ4tDmJuqFoFjag420NveundBBJeaUDn3qVowTmlF0VTQnNGQqbqxMQlOW0Z/G2WR7eNddHvcRT/nKOhh3HD6sE7HL3xOt1qQGLBhxEkUeszxumKmiqd3MPlY/x5hzsPXH2x5vHwOenpE37xsx/xi09+w+HePd5/Y8n+YU93G/w+HAyvE/M+BMfbR5579yOXT3/Ew4eP+dd/9h3+4M736Kc3+fVm4pNPXnA+nbPYZuRFZuWWUCNpo3zt9i3+4G7kg88+4/HZJesNXJ56vH/A3aNvczklnjz7Dc9fnLKplYCnJ+J9pq6fsZTnfPu99/jiF895+MkLLqZTdHGKu7okXfVMJ5n0xPHo6UMujnv29/cZ15mzZ+fUaeLr7z/g/W+e0z/+gtuf/4ajuz237kckj6xPlRdfPuTZh7/m/oNvshz+G1SXbB4+proL9u5G9g9XuMMFKgNoQK6ugAnZs2cIvySHwEYz2meWtxQ3rYk6IosNEgSkMzbJVYXQgYsUcUzSE8OSV56Yf9HXrpF6pbm/+XvnoOuFbvD4KPRD5M79e6TtfWI/cO/BAy7Wyvn6ku1mCzfgAHQGnlvD/CpIJ3Z21ZpI44jzwrjd8sEHv+EXP/8555cbVge3+a//+jUevPEAEWm2E86a4wZA3ITlX3q22pYRgqXJzo1qniq1d+AhdoG33nmTP/3Xf8Xnj5/xix//lKTOwvZEiRSCV167FXj9YMHF6SGRjrfeeIu33/kBrlvAuGQ66fjlTz6m/M3/ycefKrrekl1iQ2GMQvVKyoksiVwTU81QhT70uOpwZlxMUCUUwRVj7WYdKTUhuZgXplPz8vYOiYFAj4bK7cPb/MWffp//8b/7t/zZn/6AveWSkjIh7tGHA+rU5HPmcWPKnps3wmP7o4542eL9mlq2Bkg3bzQHRB+s3pPr9NF5kh9C2K0p1HwFTd4HFupg4W1mFZJISSx5U6zGCd6ArroLBrCbuGuo5XooIzNAuwuKaA23VmPdY+w96ztmKejLy29e61b/XoMB9vbtHK9adrXXrHSRokhn/aA0VpNzxnR6Vb5Yq7H1lOvabk5a/Spvr1ef9lcHuPbZr6WCr36Pm8oeVUtUf1V6qFgiZpGWYlozuZi/sNOAxGR7LGISyt2Q1gAhsaaz9Tnze7Z7ff0Izl3Pjb5JZ4GtMHPnpbI7B12rhWYc1ZhxusP4Z6BUtD33zsFcj+v1gy83gGUrL37XHtqsPH7Hn+ebn+jGsHG31tqnvglk2725VsuYyqR5ibsGULZ1pgJD1+2Y8UhjmDrZAadVSwPo3G5iUttfrpj0vyJolWuv7RkEpZjKcAZIzfCcmY4qzM9sG7zjmrmwxzlwLti5RnzprLh5ZtyUat9cl/PF9+qo7maYpLS20u5jbMEVc5ja7pSYn29r2nY/z8I0ZAfQzffpldvKDACrawDsV01A+e3n59XX/zNAJ+wKUTBGQmweRrkUxpyR9RqXPTmOzTtIkCEy9o6x90zOWxM0WcphzoVajPYoAp209MRaicCedyyGyOVo5pilpQV13jcDcqB5IG3HLYqyt1oRuoBeXTJenDGtN80E0DbkqSQqxTjVPoJGuhCZQm3m3h7f5IdBzGOhNBNsVAkNWfbNAD20dWbbTUEkEoJH1UIfKI5aA0JbyGDm9rCbgtjltYM+uIJKaUi/a4aUQvKKiloABdABXixFMZdi4GAMxi5yBkxZ8mNiEWF/EVkMPdE5gjgWXWeeGCIMw8Bmu+VyvWadEkkbMCZNcimKtMQgzQlyQUumFku23U5pd0BoiFRn8GNGSeLQbJr4zrm20MRot1RjStbS4qh3EJQ1BzVjptcNoKPuNs2i5uuZdU73dUYprRjoqEJt1HDzwrNDW2rz7KvVvo65cWt+XCHgYzS/gRjwPlBr3iHxHo+EDqRSi4NsUe2dtwYVaX4kLlOq0nU9WjJBFd2ObJIxTiQnk7CpJVPWUpmqpQ+7JhcTb8EotSHxcvMZbiAyGBjiUPOQofmCNJZinn3qMKNbNwPMXAOaxrKyKY2FiZgUMaUJmSbCcqAGT/aByZY6TjA2W9eRF5Uu9uwtltw+PCLIhqcXTxg3W7wqXie0quU1Fpv2mBxO7JlzkIqxOBOTFUnBzPVjH3f+ErRJzuyB6J15TgxdZLXsWQ4dOY3GfPMmgcUHQu9RL1ytt7iwNu+wW7dY7R9hsbrGEpVa6frI0i/o1hZoM4OZ84RNZ++/atfKzVO3diBLK9S17RHRwbLriM6K+bE0+aoPdCHQxUA/RDQJWq5lgwr4anDSOFqqWkrJ5BvOM3uFuOYbiAiltr+fE6UxEmKMxC5SK6QpMzUJypQSWo3Z6Gevn91EuUna54JDPZ4WEkRLa9XKLpbc2/2sWnaFjMe830rO9G4gOAtPWA6R3gspb1mvRzap8Pxyg/pIjJ1N5HI2MN6babLHCmYhmxUGFY95VXgzmGyMOWPvITbLmlJGJ2U7bqjq8T6RpkQeehZDZLHsOVj1HB4c0HlLE9cbIMY4Jc7OLzm+e5+9vX0u140dt0kM/YKh6/HRk9LExYUNIUIQYhdYNfn25cUFm82a4/097t+7w8PHZ0yXl2zzxNV6zeXVmnfe3GfoV4zjIVlHki+cPXvGVYLzbSJrZtpcMcTQ5LZKiDYx3UnByiz7mqvLGb7H9ruSQSteIc5rxtueN5WJVFqYTJP0BN8RYyZ2HS6EJuF23L9/n8P793l08pz1ZkMqivOBEGI7xx2mwTUWvCqUnAnOcf/uHQ6GJaenz3j+YuThF1+QpfL2+99g79Z9pnHNdrzkylWWoSeWiY0kmBK5KtF7fD+w2j9g6jpOnjzls49+w96i5y/+4r/i29/5ISEM7Hzcdh5rtv/tJmxfJUmbv04ztWzI9QrxW7zLiEzAaF+n0nxt5jAG+yVtys/cPOx+VkFYI7qm1pFCBkk4t7T35zL4BDJRQRI8ugAAIABJREFUyxXj5Qs251d00uOWW9xij1o21HxJLhOb9cjVemS9yeA6Do7usH90ybA8JCwOkbDA+c5+fvV236UiwWHmIPa+ZuG77JQADUlo4KLS/HTrhJYNWq+QMhKD4EPhfHrOw+ef8OTJU+6vvsMfvPGX+LCgiGP52tf5xu03yeOGoe/ol0uUiZKf492IkFifv+D05AleIr0TTp+e8vOf/Iwf/f3fcPL4EU8/+IjFIvH0+SecbpTL6gjPE9/87m3e+cOvcfu1Y5bxiNXqNbQkXFyzjO/z2bfeY7z6hHfe/TqH+2/x4snA3Tff4MHZh/z0n/6Zy6stq9IxrA7ZX/WEReEH3/o6faeM2xPcAs4vHY8fjRzeuc83v/dnXD5/wsmXnxIvhCwLHANlVLSOiI5cPn/Eb8YzPvzZp5y+2HDv60ccAI+fXjC4yOuv3eVbb73OxfkJp2en6HbkMC5x4ZDPXzzhZ7/5mOfbE/aGBfJ3/4lv/cl7/NX/8GeM44Zf/uNv+OyXP4bxKVVG7n39myziXdYPP2OdT0n5kLPtCfce7EHqKVPi8uqcuw9ukzYjF+szDu+/Tti7Q6kTuA37tweYIm4rXH75hE9/9At0v2c/7rGaBhaLAVcilxIZV/c5PFo0H1+uB4DX3UFrSt01SCIGwNjIwlo8PzfQOybb/LfbdxMx/+EbYNrcY2mxv7NcCscHnkW0wfiw6Lh99w5useTeO6+RPz/h0ekVV+OVDetRRC2xU3bdltz88fajK6Qx8/TpY7748iGqlWm74e///h/4hx//I2OBd97/Dn+axAJ15neutaXOt2HpV4azzBWmfXY3X0RRXGeD8CQwFWVdHffeeJNv/9Gf8PTRBS4ubIiaC95tGaKw3Pe4Gjg4OOD23W8geZ/VQQdhD8oR6fY+mzTwkw8+g5NHTOkF43jGppyTvZBjJbX3VRyUItRSrNfBALCqSsm2NYVU0SmT8pasDimGEUgRqs7sEaWWxOH+ij/50+/z7/7nf8ef/+AHHOwt7RIMgiOaA0u7C1X8ziN7R3sWh3lzuqawKIiMUDeIlp33csoF53Oz0oBSElDp+47VasXBwQEInJ1dcH5+RkojIZhPegViNJBnN9Rvlhwird7w3gb0mDdWFuGG6Skzb0pak25+0bO/lUmxc86tB5s/tBizbWb3zOf2jQHnTcsae12DZ8YLm4HkYtYfXujUWPQza+8aJBTrLdXQKJUGzM0AXbU+W6Ex7WTXX4jOK1bbWaDM6bCvAuf2ma+ZXa5dG23ghDablFkOYm7BBrLa0FBJtZo3em1hcYB3Iz4vcDWhM1uJpnlyNiC1a6e7a7fTl778eDdSu2ugXrv+M71B7d9sgFxtuNZKqBlUm6+vrZXZg8zYxRbI0Bx+dQaKaYhZA0pbXfCVHKnZT6+tA+defv+1zoAbSLDPMd+D2atvBqTM7qXgq+AITdZpQG+IHSLWc0kjr7SZ5A3gyfbv3cBeLaxOTcYzvyPDq2je8Y2BKq6FlmiruVTwKEWu748DvDfyRBciDqE2xr+b+zvs2qpU61fnkAYipsC6BlpfXoM3wHJpz1Jj42kVUwO2UBC5+Xfcy6nHM/OPmaDQrtHMNJ0/iw2ya/PJN4m2o1WZ8zKcz8WveN0EGE3R9NtBKzdfvz/Fdd40nMcFMWCiJGI2z5nkhUsyear4LOQYjXqZlZojCSVdbgnuzNhG3hh202ZL2mxY9ZE+eHpnLC+H4kslJyjrREwTrmZqVhBPkI7gvJlHuojgiXuOgpBCB7HD7/V0bkCvNiy8oy0fUmk+xSEQ+xXSrdB6wpQno7AGYyLkasbu5qnUDtZG6Qg7uqSQZ6R8h+o3tpaYgbIxljxSBNGApkLGPIqiF3wUWziu4hp1OdSE1kLUYghzqYioWdJUk6Y615JiSrEpG56oSodjcI4QHBmlqLAAet9bqq0z6ZjGDrxHHayODvBrb74R2u0iy0vKpGlibzGgpTR/BfOsSnkyaVyFPBkzJ6uStplN2rAeJ9ZpZJsV8QPTZiIMA6uDwzatAj9E1AtVlFQSXjq63szzkVnCq4iYrMrSGu2QmQG6UkELSHUEAp3vyb4l5ba2w0ehOm20d4eoM2N4MQagtDVesQfSeY+PlhBseGxBZWsPa2CXMIT3dNFZsEC7/zOLqFOTc4OQS6SqMgnQB7xrKUziiUS6OhJCRwqJCxKhpTxGPNF35EYrRmdwROdL1A4SZ9LGebqWC6XMXl4B5xNFR3z1iCxxlBbK4UAi2zQRgmOIAY+Sxw3T1ZY8bvElsTw6sDAXLKnK10KsBacjtUxEH+l9h8vtARsUgm3anQsEMV8Nb/pNciqICsFb0dMNA0xikk1xhBDpfc+QIHSXJiWtmb6LLRkZuuiQnPFeGboF0SleGrNKFFHz7nIEI166Ht8tkW6NeVx4ulVPDYH1dtvWh6NQWuKwEp3lK+dih8iYJlDzA9uWibLoKTlQpi1J2/zEOZwPqJjkT9TR1czg1dKMfGBbGkOuTLhsIEDtDNTPxeO1mEejioVBNINqVdimgmreTSeh+Ti0zX1OWu18MD80aDR1q4PHlJhy3nk+zEMHY5oaMJyrfRbfGIx7oWcIkc24xYnj4OiAXAqbcdsKUStSSirUXI0lPCXwyn6/ZCEDfRfBF4YucDAEKD1TzGyLUuWcy1JRLCXSdw7RTPXFGFNqrCTXZEXSDlfaZ9LmA+hDbNJak7ToZaFcXpFTRdVRciZNhXE7IQd73N7fZ3//kK63Z8J5Gz5UVUqBlJVUYLV3wGE3cH5xyenZBbkU+s6xWvXm/dECInwMDIuBEAMxBrqhp+Ytl9vCahFZ3rpFf7gglC1ddpxdrfnlhx+z3LvNrYNj1uuEeseoytkmoPGA4q84314yVdjWwmW+4my9ZbUcONhfsRx6nNTGkmZnQwGzoXEGyYjLBDXPmUHFwEudyNozqWAurLNfSWS5OKKKIy4GSudh0eHHAWmed6cvThlT4fDoFovDPbzznJ+eMyysKbvabBpwC9uLcz762U8Ynz/hzvExdw4HurDHevI8f/aYX67XPHjvG3Sy5XBZWZ8/5Lz23Fp1iDM/Qq2FLJGLq8pHv/qU3L/g+WdP+OyXH5OuzrkTBt67d5/j116zQqeCdz3ZQzZ+5vUgRwJahZoaC9SZJFDTGtyIMBHciMoVyhVVr5C6sUJUelCzfhAJ5GySfd9YG6Yj97vCTKWiOuIwH8lpe0qRNd2wh5PQBv4VyoQUpZeI8wPnJ2fk52vC/TeoNbO+uGAqW8YpkSZHkJ5pO5HLGdt14iI/ZP/W66zefh930IFsqeLJGg0gpSJ+Qa4ecbGdryOBRNDUisnQmowmgfZCYktKT0jjF5R8znLZoWPm6ekTHn7xOeenifv7X0f6RJGeqh7nlwz9Cl1V0IksI14m0tkp29OnLA9uka4K6WlhuP8Gy6N7bPMF6+4Fn19+yOnJl+TLfY739wm6oNcLXnz+z2xOA6H+IW88+A79WxGmU9wkNmEvlZIqZaM8e5755RdrPtm7YnPl+Vd//IC/XH+Nsw8/Q90bXPWncBz54b/5Ljo94vEXH/PG/a/zrW//NfL5C4arDRs+Z719xDI85i//6juMjz7kxbPHoFsqwuTA+Y7V0X384j5fPD3l4bMNF2fPWVw4/Kpya/8W53kg7Q+Mrw08HxNPri44mISjvQUb9fi9W0y65uGzDat9OFtf8uSncBJ7zp5f8tHPP2HantIPlc+nL/nk6m+4M9zl5Ncfs388sHf+nE8/e8ib977gG9/8Hhp7nj57xudPP+CTxx8wypa3H/wBt/feIvaOp+efslwc8e5bf8zx3n3C4gFHR3vI8cB2c0EZlGl6wWc//ilnKfLW9/4t/f4d8xsOvQFKDXMI3ppuXyuSGzhXJugd6oSJQGpl88A8YFSQct1Y49rwuzXCNxoYa/RmuxuHJ/PWUeVWtwHnya4wVugO9vD7jtJv2fpLzjanTNObDHEBWmy43KTZRZUoDkqT+AVhWk88/uQL/vPf/R2/+PhDEOH147ts15HTC5Bhn5NLz8TSwAPAq0JNFoiDNC/fVxssAw2MQd5kY7VAkTYYhOqMeTGKMDphnSAubrF//ADv94gVFk4QCQabu2I9kHcs/YJ06akaENlHGXAxEPsF6wS5DgQ5YHAXZE1symT2G43FXkrFZUu8FibwiSSQVagS8ASTzE/J1CQakBqMaVc9UpWsUwN5Cl1f+fO//B7f/5Pvsre3ap+53zWeIu6l0IH5Eu1mGQpCj+ghokdoGVoitymjVIRUCyknCwxqksKUTdGyv7fizu1jVqslKWUbEE4jJ6cbAyvEAgy9b2qTWhAt1o/WhB8WCJYEL6VQpJLFBpEGnrgbn8V8iaGpA0TJmqlUttOW9bhBXE8qGRcC0S8sFFCvG/ZaCkWx/tKZx3qFFjYGuYF+LnhTj3hnPuPZBqs4b72jQKGaLYxKA8WEoB7Jjb3nZz89Wnic7HzsDTO/BiDmVayqLRjCBuPGirL3FLU0wMT69eB8A25tEOYRXDZLoM2YWv1aSFp3HnAz20xFGgPNpKQFkJDQmlBJVv/WTJVGIJulo3O6pghQd6FStSQjdaDNj1aZ5lCIGYAp7VFSAecpdWqSTbfD8M37THZ+gDMwb1iSNrWMAT7eNzlptc9TaUBms7ryLaSgNnDNzR5uauo0bXV7dtfyx/keOP5vxt6ry5LsuvP7HRcR16WrLNsWDUMHcMAZLHLN0sy7XvSgj6jn+QB60BIlSjQihyIINkGYRruqLpc+r42I4/SwT8S91SQIXaxCdWdn5o0b5py9//tvoDZKSCOHAKzWWOOKl7oeLWfkKEVVY63BVRUiHT2YTBS586DiijEMD+D+YURJcw3ocp+JKk3LumeMeANnCVmIBdiV4xdFivceHwv5Scv3GV0G+oX8w6j8ko59DKEYFTpCmMIIY5ECzA7vhRKAVauM1lYGO0mV8z0AqmoUNYgNDAXXKn0Psjak4qudYzpQow3BJvL8oCjDaCWPsz4YwpS7ROVhRHsgg87l+VdCHhLAvPw+bd8dHH3r9TtTXOVtUwHDo2jE+4iOmVQbmDjcxGF1xhmHUfLh9XTKUkEfI70P4BTOOEF0o5YJESUNMMuJtiS61BLDltZo6lyQazRZGYL1GBvBWrJ2JKUJygnrK2t8kKlZ1A5Mj9IJZxJOa1Iy4otpHdP5DDc7ZrnZsOo6MQwdNOxFKhZKUxjlaYRUWAJyiVA5DVLjgrbKxVZJWCSahFUSv02ClBVkI9HmORGUpBKqHMhZkGOtMraksmoFOy1eXTlB1Em8Q5KkX5IVIecy8ZHjcVqM0LOBHBUVDmdqkcKWqU7nJe2IHOH2mr7dEtodhoRpGqqqwjmNNRVTqzGVnIOAIhlTJEdIwyuu76Ss6ENi27Wsu5bWB3xU3NxuiUjzsZgtaJoaZTR1U1HVlQRRpEgIvcijNcWEsshycjFFZkD/RbooDjaKnEMJPZAzrsvkKaHknMb9pEBYV3JtjBLja6eFNSkTKCtG8YXyKh4smUwY9fSDzjwNvk4loUWaPZmCSDMnMmeQf09ajOidFi1/zDJPaqKirmo2fWKbeglF0RmrLIGMdsK2kE0uFwqxArQsTEbOfSIX1iTFA7HIKIUPURg2vgw55PhDDNhUiUcGkqQae0/2EZsk4GU2nZCNUIx1Ah17qqDpSXQRll3GYLFZo6IwSbOSez0FxG9FabQyGK2x2tJMpiyOj6jqirbvUCaiY4IsnyllJcEeKWOKv5sAkpGcowA1OlNZQ2U1ldU4W4r9wraM0ZOyI2eHSsKmyyWKPiPATjDgdWF95bLWKlmcjVY4pYvscggIGZiUCWcMViu2m9W4COsi+1XGic+JdqS2Bd8TUk1QShhyGXSK2OyxRpioMSvwYLKhchaTZQI1zHxkGFkSLnPxqcwZ5QMgybvGKCprcVaKeCkS8pjqOiSvJsBqg9W2FDVlSpaTyEutpMc6a3Ha0tQNKUWMsxwdH9P3LSF5Uo6E2IFC2HpWbAJykGcjek/vRU4qTD+wRuTJJipSCjjrMDkSixS9kmEaXiehhieDyWLka5QZ9yJQRKXQVYWyIuPLBSSx1jJNE3zvIfWEICCm0ppJU3O0OOL09IyzB2dMGkuORf7rA74NaCsJ4z5G0IbJdIY2wqiNIYn9QlUTfMDWDTYYlEaYbSpjK8tsPsHqKeeP3mOxmDC5WTE9mXNEou08y9WGF69eEaPm/WcfUk9m2KqmjYk+OR4+fZ/Z8Rm3b1/ht0sJXOlbuq0kpEroiGLe1BhT5CSooROGXAoUIqhUmsqMy8W0VyPDGmXEnkBJ0a6zlRTiqsc2Fckqcu3IznJ9f8/druXq8oqz84c8e/qU5XLDcrlku9vRNBPqusZYQ4iSiJz6jquXL2hvL7l/cMLjZ49opg0PjhcYq7i8X/H8i1+xvl9xunBoD75bskqG8/lDuX9DQhnHy9fXfH35f3C/Ddzd3tOu77Fpx/N/+Wd+c37EH/7xH3H09BmYCkxEK2m6FBnfd/S9p7IVVTWVIpmEih4IYCIoD3GDyneEeI/SW7TtILUQMjk5UrAoPUVXU/nZwq6WDbrcmtqArgAj/qe+Z7m84/5+SVU1nJ6e4VwtLIeQibuedr2m3+5QQewk4m5Nf3dJM1swm8yZqKY0pROsXnB/fQmhpfIdOoLZbWG3lgFJBdkplJlhTS1MU5WxGaKSIZcikmJbhjceul6OuZqhTINSGmczhoSKO9p4R9tFbu6u+eLrr7i+WnN28hHTWtOHJZOqQatK9jsAZQgxEfMam+/wl68IVzdMqUg+41sFoaFqJpw/Mzz74JhJ46keOP7Dhx8xa07wWnO7uuAXv/4Z1xdLlheGiidMm4eozRLyihwyr379OZ/+3V/zy09/ye1ty6+fX/PJjybE+ZQuej4+P+fRZMrFBmYPjpg9dbTTjifvn5Lp8OvM44ffZVclzP01y+T5+jef8uuf/Xf+5OMP+c777/HzxZTd7Ru6GOlj5vGzp3zv937E+ePvELav+PCTinZ7yc3yK0zwOL0gZMtnr9/yYveKuFwx2xm6zT1vr+7Fh2dSk1SiW+2Idzu801x8veLL619hWtBbOHnwPnmq+Pryjk5fUD+b8t4nH9DFDc9fvybGyNXbN3zn+3/M4w8/RjVTfv2Ln/Hmm+e4aWZrZrSbG7b9loefnDKZHbO9vSKvNLmtie6U6XzG/OEjTGzprjzT4wVHk4ecnz6UMLHC3BA1QukLSgOi0QcWb1qG0FHRa0Mo0qZ3FTx5/GlA1Cb5IGqhfK8q4JZ0wAqr4cglGh0ATaRm19XkLJoS20yYLI6w1YycahSVDM01FEpLORDF4MOSM2w2O3756S/5v/78/+b53Q3f/e73+B/+4x9w/mDF12+WLL3CzR5h6mNptsmiNCBLAqTW0kIdfsbSyA2e0kGlEnJXmrnCnPPInw5FmzLL9YbluqNPDmVqnJZBf1KV1LkkSfHMUocGL/WRqacicUb2BGk8DUSNyxV1rok5iMpHi8l9SrlIcxUxtMKUUYZQfKgxTmyMUOiSpKqzwmQJzpKRjgwmsoWm0Tx+fMZ8XpchmmQ878+J2v8lNK3y9eG6iDw/pgk5TsnRFXzgW9wjpSQ5trifJBWJKaB0xjqNc8XLMEZ22wnr9UoMhTIjSKHYM4V0IWI4I+muw6AyH4Bve/nKAIAMeihRnAyMHTVQTQuopbRGWUP2AsYlMc0VkGHw4tZD014Ajm8BZejBI06Nf6zRUNQPZgha0KWuLadUISqMHAuQgDAWlVIYWaAxSktYR0r7Zy9L/SwMoqLmMIXBNxr3q1Hmp5VGpyCrflJjr5VjUY0pCU4ki/IiFrYaWToTSeItyZ6p3B85gZK6BRUlG1HJeR/M9+Xn90oCeZUoBZVQuigLEDWXJKuWkbUaehILOsmzosdLV9arTM5SI8jbHlybA8ZZzuLBF2McpZYDkJUL+JQURCPrjVaaXAZ6gxWRHbwKS3KpLooQYZlmVPQCpI9EDAGmJEhDQKvRH3okYEQZ0mtTPksej30Y5A+kDmNLAJtif1zjlUZsuDgAzoYBJLKOaiVYR7m1C5ClyvEXohIUD/+BkSks6az0O+C3KccgvnQGlLBmVWGiZpChJgXAVMJdy1kVD2XxfEwpEmMQ9lveS2Clh977z+WcUdqOXvairsvjOlMg6uHJkvtIS+Ce1hr0nh35jvmWUuNzON4z3wLh5Pwxro2/7fXvM+hS2ShhlDAlpJkb4nets0wmE6zKJXVR4VzFZDHD+S1tn/B9wpjI1GaqSkywQ63ROZZJV4naVUkklKFj23uUq+UQlaRIxjYQWUtDpi2t92QjtGFjjNDrc5b02eClqa4MygoVOeaMLYXGgDBbawmeIvuS5nxobIeQBkHbpXCggG+DnEaVh1WRRjq/QRp98SyTm0hkYQ6lDIlATALqZUxZqGRBUkRZFBI0xhJUllTHcoONBpdKiQ9GMWzUWhYrZy3JCj3VKIe2VmjVlHOQhGWVkkwqVIryZjnQbXeo4NFNTe1qun5HXUkceh8jCkszqYrfAYCTpEbriAl2YcrCS7x4Vo4QXxEjhYI+5/T0GFtXQjU3mkTEWjtSr9EZjUUVlFmT9ok8w0KkVXlIpfmSRUGNzLICrBd9eB6ntznm4g+hiUqQ7uwKqi7QEjEldBLdfU6JphLGBWXz1HqfnJiQZKkh7nwwrheUXRIdYyibnC7pumVxjEkAarWLAp4CPngUUBewI+YkvnYFHRxo6magxyb9blR6WSbksS0yRS0UX10a8JRVAbMUbfDUuiETxddCg3WOejanUjCxmr7vSTrS6kzIBpOEKeV9oAsBHzLUIlcdFi5X1UTXoTygLQkl/nWZAoSDUgbrKiqSpCIrRVeCYHIo1GoyRguwp/VQxJfEK61lclckZUrr4v8kExdVqMq6+KeZkhY8xHfnUhBpI9CuTTIxNJRUVrU3HDZGixzVaQwVJgemk4ZJXRH6Xoo0iqycATCVDXe73tJ3HTFMCHGICM/FF1HjnCYZBxFMElmOhC2AyqZM2crGnjM6CUtS6n2Rag8lnSqFgS6Fm9aaWLSGKYnnR4ppX1gVNvOwcxgjfoq2dtjKCYU+ZurZFI+sfdpZQg+7viOEwHQ6Hd/PaWFZKicNS/RRJny1JblEnz1tKp4TWvYVWxJ1dRqugzhASBCJHFpRHsh5KJ+TUbYg/jG5gNQ5CxuyqWryfE63u5fCV4uXYDOpRPZLou07KpPFn7NyOGOotGOymFO1nj4G7u7uRp+2lCS9KYbALgTatmU2m5WJfKLrAyF4Uoo0k5pmNkVrw3bXsVytiSkxnU0xLrBabVmtVtxWtxwfnYlJtfd4FPV0xmIGOUbWriIaMdV2WpF6RYie7baltpZJSa0rBh8MPiKSSLef2g4FlgwlNElZuQ457c9vaWB1OVfOOZm0a0NV1XR9x261ZrPZcvpAvEdubm7YtS1H8wV17agrx3QywXedpNt2PVdXF7xJPVdXC9puw/njR5wZzWK+IGnHVy9e8uKbl+zWayZVhTaa7fKOt2/ecqS8SCHdlLZLvH7zmldvb9htttQ2U+ue5198xr8sDKdzTXPSUB2dghqGZxXCe5c9Wc5Q8TtJwjDE9OSwJHYX5HyJqdZYswTVovpA3HVgJhAyu/s1rtE01MIULc2aqgwYAQIyRVaMIfYRlRypd/Rb6Hct0zpQLybgA8l7VA4YFei6Jdvbe9rlCr/d4fs7Hj56iqlrlBHPpBA8ffKs19f0uyXzSUPtJnStxW5uqE41WD0mERrboKIDrVAmkPFAxiqF7wKp3WJMhLhFPPNWoBYYt8BgwU6oJ+dMyWxWV9w9v+Kbn3/JctVRfbAgf7TBnXtUbslRDLIzidX6nudf/grWb3lSR3ZvnlPpzMn7j5ifnVLNJlTTKcpEnDKcmobTnbBsf/zdJ+ijI9bGsftNS6rPWDz4iOMHP6aefAfDGW23Y315iV9fcn/5gnb5hnazodtG3rx4w+OPX7NpL/h//vIrmn7N9cVb1m3kg2dP+f6HTzl7+oxH333Mw+kV13//nEePjskf1Lz86SXOOCqm/NPf/4rz5i+ZTOacnJ9y2d/Rh0DeyYBiu1qxvLnh7HjBn/7pn9CnDb/4+V8TVMvnn1+xW9+y3Xl0qHl28hEPporLb17Q9ltwiX6XicmgzQwfDX2nCKHCpQUP5g/5+Nlj5qeW37z9OfMm8+Mffp/jKqF319SVgskcrY75+c/e8L/9xT/xZ+Y9Hp48psoLnthjPjhveHpywovra66vLzDvzaj9juXLz7hs36DrZ/gm8OhkweOT93E8RD2qeXz0CFudoN0TPBblRMpIltpDco5Lw6YUWpfm21UQMt295+J2RX3aMDsfZKHfrlGGuC5Zut5Rdx1IYZWWIAKjahp3RKVriBU6PaAyBWz25xzPJnzw9IyjkwW1PSIHXYg2Q1HICC6OBSKJvuvZrrdUVc3Z6QPOzx9ydHTCcrUhxUTbBU6dI2stBAXpRkamxiBTe+ejDX/GL5X12SiS1vQaWgUtsAU2KbHa7ri5vubq8oLNZjsEMROzGvf3oeOTYasixUyKSrztBr8pMs5pjErkKL7dqe/AB1RRvaQiP9EqYYwkn2YNxlUkY0muYTpdMHE1vTH4IikcaguNEuZxsUXIWeOMDEpj7MnGYpSVHjFroT59+zyRh9vgnS9JX0IJJJQ6PMXCJtN6BDBQhRVJpi/WHiEF0lDTOUkzVsaU+qwMuGMsAVgJxj5clcF/ATtQBz1zqb0Lm0lehZGUBdDLOaMHmW5OAkgMvtmx9AhlSCpSRI0piisJf8pjirAqvtQUACUUT69U2FWDUf5wPYwW+4kBmB16JFHolZ8pGKPWg6pLSajF8KiNAGABDAqQnEqtbrSCGAUsUgqbi8l2N2VmAAAgAElEQVR/Rj5nAcKGu31gRJkByix+gMU8hZzi6IEWGfjm+/MuO3Qej2O8NlB+z2DP8O10TEotRgGbEKDImNInliGuoshKhzVMnk9d2G8chNuCsB0HaekAHo2y0oEZZswohTyUn2Yl9e7IiCys/UOftDG048Ajdu+Zt5fr5wIyD6ECOR8elz5Iv1bj13Whfb17/LzjHyhsUEbg7h3/T8DqAXsYnofhOEuvmfaPsyq/Z2DwKS3LpFJyj0eGa6PK+VCjlHe8f3IewWylc+mx9+cpx/DOepBC/84xM6wdSQA6bd2eXZjFS/0dgM7Y/e/OGYUuLF+5V4yRz6uz7CcCnhZJctkXVLmvBJ94F6yTflMxhNcNAKes5d9C7f6N178L0JmCBKuh6SyNwIB8xuDJKQiopjI5CYUzGU2OPRMCRnX0KmAVTE2isaCdJTktOv/gibGAGFa86kLv6FoP9QRnK7RzpKzo2o7oe2k0c5LkDa3ERDx7YgiQIhWgnTysPmVSH4nRk0OEPtImg+0zbduVIAMzTiqMKjdwVgRjBWQodPQRoMtRwAGjoCRe6qKzF622LIJZe1LSwvoySvTKxkLBxHTxd9MkoZKmQI6q+DohZuZI0zkkyw6+Q7IgiaeVVbqACQZbOYKOhAMapTJm1P8Pkx8x8lZMphWNc6gciG0vJuch4LUhJU8MIvsSMFSzS56cFV3fQ0CYNq4GpeizAEkZMUesKvH208ZgK0szmzKZTDBuLwPSWhMpgJxmBKxkCdWFAlykxAWwUIeLVT7cHuT/BHDX4/RFESGIf1guQ09rxKdHoYlpr0eXXyQr/EA0TOVLg6IwRykidBakX2VdigpZNI3WmCyNvaz/4nGgy0ab1OCDsU8wi6UQqeqKqqrYdR0x7QE4ATDVuCArlUZfhH/1OlxwCnofYyKqiDMVMWZ631NVlQS3WQE1JnZCpaBWitpkfLsU7w9tCApySPQxlpAET4hKQk2skYmD1ti6pqobNBFT1WXqISw2pfaTPpTCuVqShZSiigHTd4UqX85zLkbM2uCsoXJOhgAF0A3FV632BgqD1RiDUZVMRpR4aNl3QLoh3QmsdVilcWVRt8qOmytKgDGrNNZomrqi0qByoKlrmtrhpg3WyqQqxETnPW3n2XW9SEr7Xnwis4DjqfiECZipsVkTtRHq/XBeKI2PUsLGKQVKzhR5TpF3ljteKwmSsEbtwdthCqVlVTIpl8lyOW8EMUhVRUKqFK5yTCYN1bRGOUlI6ztPdo5sNb3v2fmOru/IOTOdNJw/OJXEVlMAHyjAjmK92tBvetrUybpoM6oWSWr2IuuztXiKRo/gA4XpxficlH8lM6S0jZ4rSstENgnDSpoEYdmlmEoCrYRTaKNxDpyDmHvuV7d07T3LpmYyEVY3xuLR2KbCNTXr+xXfvHxBfXUJaEKQcrKuRLrjvRfzb6uLZ1IixkBVOW7vbjiaTWmXt8TQ88XXX3F1e0MznSFeO6nc14rQtWxRmMpRz2YcTWt637JZ3dG2G3zwmJyprAVV47uSqE5J+x2YIeWhGWQQsTAfSjlbvm2QSgjcLX40A4ArIK7Ocj8ba0lB7h81yikyxjnatuP58xfcLZecnT3gwfkDNusN7W4HZJqmYjqZFJA4EXzg5uYWbRQ+JroYOXv8mLPzx2y2PV9+8TW317c8PjvjyaMn3ClNe38jHmhtB7pHNVMmVUPtKrbxnl2/4+GTE549ecDpyQynA3QrCGJ/kWOPUlOUmRaWgZN1E/E5DN1OknNtIvkVm7vXpHTFfN5j7QZlPNkr0jqias1m1fL6q1fM5hsePzPYpha5WobcdfShows9aIWra1w9ExZIp7BBc1zPQSusrWW/8J7N/R0qBHSUwWTXbsi5BxXISiyi+66l9Tvul3d4XzFpzog5YZxjs92yilsmXUbPFrgHE5Qx+M6jXMK4GTnXCLktoVVEMsw1Ybfl/uU3qO4eq3do7akXMyYP38MuIEVD2tyhUosJmXizg1XPWTVncTxnhiGtN9DuUOzQOZKNRcLCdsTtHZtvXhHWt2wuv+LJ+yco9QPcwqEtkHoIOwiGymuOc83MJR4cGey5Zbdr2aUeVZ+w6ye8uul5+WrFk/cTy+stf/sXf8vq4pe8/3jCbnPL/WpJjoHbqzf8zV/+OW+u17htzymw6tZMz495eP4+P/zhd/n+n/1H6uMJuAv4/I5vXv+SNyc1z1/+I2+/eYPqNMubzE9/9gU//JPf5+jROf3rr9h4T7KGNgSwht/7gx/w+Ml7PHjvKZvrt8wmhovbK37xy7/Ax8yzRx/wRz/4PX7yB9/DrK75u7/+33l7+5LL5SUxwemDx1TuAZfLFqUrPvrBH/LBe98lr3v623ter+7o2g1uGrl88SV3asPm/pLee67uPX2/4O6uxjWJr1/+Nx7MGybxjt31r1BXNfPvK/AZYxxffPkalOHh0RFuDo+++x6tWZGna3LaotQptn6AaUQymZKYh8dSv9gsotWIG/celDTxIWcCmk0Hby9bXr2+51HOnD+YyBo09jsD4DRw5vIeKBi/LCwYYX6A0orpvGJiTgTQQGPrhgePn5ItWFtxfOSYTucSJKEKvWrf7+4Lw7z/95QSfecBxWJxRIqeDz/4gMVijrGWzXrDatNxHnt88kQmDGKawVvqW6jTv3oNTVoqdV7MmvssypiOzCrD0nsuLy94/eol1xdv2W03xBRJWhhI5hDFGupfJXYtOo/jOVnLQ4dKHTltiWFDClty8OicqArrKpXTY4wMCGsnypG6mZCso9cOM5mJT3ISQCkxDEMFIMsaskHkZBFSiETvCW0H0xqI5NChTf07z5F8LvYARD4EwIamec8SEuwmEXMcU01DivjBAkZD8Tth9FM7aMhTkVkOXxdMqtQdAwhmLAYtYXlJvXOgKlMsE+RvCe2TPzlnkg/0KtNvt6gUUCXkIsdYehfxuRsCq3zwMljTeRx2AsXWJ461/ACIkymSTkFFZN8Wr/QxyIJB5VP65CTDZgv4DBSgMiXKMAmpDdT+Ygzeb7ELB4CJQeeMjkJ40LHIRw8v5Pj+AGkkSgwg6aEaXC5zHk33R5xl7F+Ge2Agy5RTPdaAeybaO3XvAFQqqf3I+xC9/fsLCBlKcJcuSqVh4ZD6W8Iax77hAIA7HIQf9lqHx5CVjPAOQyMEE90zQ4X5xt4f8IDtpnPCAor9vfttoDAVoNAO/Y1JI3g43EuHx2bMuwEfIXoGZt3wvuOxgSgLMwfHtQcQD/+Mn2kA34xBaRnu5PwukeQQMOt7/875oJwLwZKG4fzhsxvHz26MkUHrwXGrg3tm+F3De8nvYDzPcl5+Sw/9zrmQ+zdGUXPGlEWaqqU2zgPiPG4JQ5erx5p8eDQVg/dkfve8/ZbX7wDoxFclFw+BIdFi9BIo1MAQPDEHuXmzxkePDzsMvRjU5ox2GZ1qTE5CrbWWvlAeUzaCuZu6mFI3WOPZxYhyU2bTmaTYTT2h98QkpuR1U6F1KqDejq5vySlgjUZXjjZIY+X7TpDTJPK3jV8S1x33257dtsU4SVZLUZKKjFFkbUV+pjXxYLEXM8CMyZAxGEAr8dZSOYofVhLKtG4qdiHhQyBnCCmSsy401IAzGp01TqAFjBIAz1YGE8Xc3aqE1RZXkhTNgDLHiHLCCjJK7xFsrQtDpSyAI7WMYWYwLvg5REzjmDYNRkMwHb5vqZTI3Kh1mUwpXN2QMvSxJ/hYJj+Z3Hui78TnwYj/Whc9fbTlQYgiqxqmQTmKkbxSuKoqU5lEyCIpNQXRDilhy1QgIZ8jF/wzGpFCCvAlhv0KAeCiGI+NIIcq4F8KAZUi8lwJ64s0TCEoAEraL4KUlL6CAYofRWmGBePEFtBJZSlSvBe6s9EabSO6rgooI9TuVJ6bgCFkMc1sKkddVfQ+igdekZzFGLFVLc9fWUCSGoDJ4st3sNAdLj6DrHHwBssZgg/orDHKE7U8EzFFrNVMJ9XonzjUsSkKgy0bUMVbSaLq9QhgZi0sJqWNbKCp+PkZTbaKrQ8yXVeOiBqfp4Haz1B4mTJhKNMzCfOI4z07MM5MYYmlshbJc1DYYTnIc2DKdS/g1gC2Da9xWjKY6iPXZAAKtVIjhdlqAYrJuYQdyD3nrAQ9CNAiUgEUxCSebILbi3R9mOwNtPJh4R8ncVqL18oAwg1rfClapLMpE/Iy/RoAX6ULE88O7ztMmIdN3OKQEAkTrDAUfcTHRCaAthIeUGTEMiFSpBDoY6TtA7bv2PQdfbtDGYjBM59OOT8/ZTGfyb0WIjkFXF1zdLKgmkw56Xq6Tc/t3TX37R3r1QZ8ha9qYuvFCNuAKqAjZSghAzhT0mArkV3mJOsqMpRBC4ik0AIeuapMiEXO2G22bFdLVPLCXDWK2imqymAMxBjYpchue4+zSgBlVxO1ZRcyMUf66Fmtt1I8Z1W8+zR13QjrtxTAoyxB5zJxU9zd3dBUjouXL4ih5+b2hl3f0cxELuv7wKSqCf2Ou9tLZtMFk+kUrTLbyrC+uyX2O5rKoWKQcKUYxScjRAkDMmZkylqtZI8u67+c0D0YnpKsp5EEtiRHF+b0uHaUZ04pWwJErATExCxBEoJ0Yl1FyrDebtlsNsxmc3a7Hcv7OyrnOFrMUSlgtHhMfvDRR6gcefP6JZeX10Rg03UsNztiMsynCxbzI/q2Y71c083mzCYzFtayu37L3eaOmLfYUNN2iW67pe92VDbx4PSYZ88e8ejhCZWDtLsjN5BtBXoHtgftUdoVglsen6UY1oTNjmpRY6oSurTp2ezu0WpNU2tUNOxWiaruaO+2rC7W0Fp2zZp6FnDTGl1DTC2+W+NDj64szmZ0MmhX4Xcd2+UF1lqOFkdYmwm7Nf1qSe46rBLm5rSaEZojkp5wt73l4u2SdmvpQ+Z2ecPN7Q3WHfPkcc3x0QJna7rdSgZtesH6pgN7QX3qaGPGK890PmFyPEOpqvjXKlCR3K2Iq9e0d89ZXnxDu75hvmh47+OPmM1nZclx6LBEtXd0m1vC8oYHk4rT730inp5mwcQa/HZFVR+jTC3sdmAxP+b3/uCHbKZz3vzj37G8u+V4kci7LWrV4Tc9WQXstAY1IbqG6uSc86PIw48f09eK7uevWF5d07aBTbfh7c0L/u7v/pwvfvPXrK7ecvnVZzxetFRPZjx8cM6zDz/hovuSqzbRLhOoOZo7ar3Du46kV1SLwPmzKcdnlTCaZhXqfMrty5dc3azZ3P4a1e84P/mYxj3mV9+85lVc4SaW62VHyppmUrP1kYv1Gn084/TxCRWR1cZz9WrHP376gtcXLd/70R/zpz/5T/zeBx/w3vkZpt9yeu744vWv+Ouf/ncuV1s++sMfcHr2iL/5+0/xEWK94u3mn4nrFXF5z/Lumum84en5I8wuodyci8tbLm92dL5iu+0gZaa7NwIg0nJ2ZDB2x9dBcb/LVNMnTN/7hG3lyLNnnD85IWI4fmKY2xlRGaxRxO6esAmYqsFMJvt9KElomiIAEYvYWugsCexKGSya9VXLP31+zW82PdSOZjplpeAIcAdbsKgNyj6Yh9pIj42NgDOxoHYGFFgnA60hcVErTVVVFNWasNpMaeiyyJQG6VZm3zgWOyXQkHzi7vaWF9+84O3bC0JtOVkccbRYMK1rZtMJMxQSspXG45cxfhl2l77sW9jf+CoVjjDrFeyy4jrCVkFQmfu+5eJ2ycsXz3n94jnLmxu6tqX3vZDb32n2hnpJ+g6rK4wqAWWyoJP6LaFbY7VnMpEBdzVZEIigHdq6UQVijRixR9+DkYCzoA27pEjaEqOwXrQ1e4Ds4NMd4BzkGAl9X1QiCuFYDp6c/75Ia/hlqtTGQ1BT0c0wgLhSQ1ECBQJ9DMKuMUVqpoRRJ99cyBDWiA/tcKi5gCXs5/p7T7wyzhpqJ6ULcy0Xj7Jy8QvHS5d6VABTabpDSMSuJyRN6no0UWo1lcdzN9SwIHI7lfI4hLZGrEVSLOFtMRa8S2rQoQOJRcZH+R6dYvHg0mPv4L0n+gDZj328+PkidXqOxIH8kPd3rzCpGPsW+Rmp0YwSKxiVhe1HOmQW7u+H4R+kXcuj/6CA9Kb0LXJdUwLsMGBktOvJB7/u2/DJAEQONbUa8JFvgUYohSpEjFzqRmUMRrmidtO4WpheA/khpwP/eA0pB2zlxAuxSGy1KdJMo8dAgdIpSJ8b03hP+DEYcqizeKcPcCVVOLHvDwaSgFVGlHUZUdkUObPRg0+6xsc4fn8q0ukY92QT8cgb7u39czD8PfysUvvrP17BLGFv6uBnVD4AIZEUXuk5C5gcYvnsAwAu/dzQ7wzHMPTagh+9C7IJ8UaP4SccnJsBqBtAxgGEHJ/b8pwNoGBI7/bIw/3624CxQw/AQfEkxIFU+jl5ZrSW8+8aVUrKwePkgJFKFHJK8TdEK7IqnnbFeiF+W8b/rdfvWD3VCAyOj3CG4bEReWPx3wKck4vQ+sB2u0VnkYFoY8ipJ6Y1u12PMRVKWQFzQsR7YQeZViSzEVmTkges+KfUykooQlZj2mVTVRgtZGevEk4JCb2qLKaZsEmObduRNoUmaypUTrQ+0XuRCoUQShRwIgc1FgzaSFJTOpi0hDJlGW6DHMUnYqD96nJqVDm+qooEIwVHSJkk4ldhG2rxkDOJcQPUAyEs2yIpliwsqzRWiSZb6MXDcRzekKlczoFGqdDWgjZjumeKwjDMKZBij82ZroVWaSonSZsyIXAYZ1AWvBd6cDOfClWz3WJ9pNJWANuwp6EnbfApEDuPj2FvBopsJD702GAKq04RwrBAUORZjJuRHuCanAo1X87ZwJrTSlE5J8m/zo5a/mGj1ciUJ2cBEHzfkbwnWCNsxxypnQWV8T4LcLvZlAso2+liMpPJoTJYWzwfykJgUcLIHMwTMiNAJLJK8euLJSV0SJBNShGJxKxR2RZ/B40xwiId6NxDkZDHTajo+rWW4ulgKjj8c4wZ7z3Be7z3w6mUDafElMeQyFokhH2IRBKm1+xsS06RXgmDLhpoKjE57nPCp0QMvRRGKRZ2nyaWTQetwRmhGVqL1Zrl/UrSZI2iz0K/jglCFMBg8CvIZfPQVkugRaHtO2uLeapQzVORJujCanNOJNbGWpHG5r2MQcIGCiO3+DLEGIlBjj1m2TwzCauGSU+W4s5o2dhSecjLRiNTrdIXFJmtHRqBKIt3ZQ25Fnmg1a0wzAYj+QHiLdfWGBl+aMM7G84Q3JCHynVcf/f3hhQTadwsjdHlXs0Hm0wai51hejP+7kwxiGVv9JvlPIfk6bwnZ03rO3rf46Nnt1mjYqCZTXBkaq3RTrNNnt572bRUwpjE8cmc+rxGV4nd5Zrd7Y7trmVmFqgsUhxdppdKK1Qqk0mj0S6TK0PGkbMu672wXVECTGZtkOxWRfAChibf49sd/XZFt9tiTSn6U0ZFLewqp4pkSRjPfS/hGVnv8NkQlRN2rJbWiiwr7JBkm1MUH58s/iHWlHToGIpsFELf08ZA2G4k5MBLUtl2swUUlauYzmtqa4l9R5szwe9Yre5xyxsubm/Z9b0w+3Iap4Eg+1jMma73wuq0Fm0LNzrFUrgW9mTeJ2WHGMc0dAGT494qYGgEFfsC0BgChpgUKIt2NQSRlmgjz51SmuVySd+1qJw4fvwYZzVr39P3PU3T8PDsTLwiq4qryzdsNy13918zu75ltfE8efY+JkvQz931HX614XQx46Onj5mcntOtt/is6LY7VpuOzXaF9x21NVxfX/HZZwGVNxgTyCYyaVf0GZStmC9OqespxtWYugbrAEPfeu5uLum2O076BfOpJW89aSOMTOcs1taEXtOvd2yuV9zdrQktqKmlX/WEzmM2K2ytsHXC2oSbVOimxhjIuyVKVTitmNpADC27ux1Nv6VyFbpvae/u2fpEYxv8tid0kHqFZYJJios3d6x3LUkF8fYKgcvLe2JUnBzNUHrC0eKE8/Nn3C/XLC+uOUoNUWluVze0i8zj5pSqqRhnt7mH7g7dXTIzK/SkZ+sTM6tx3tNfXxCXN7hJQ1Vr0Dt0XLOYKE7Pn5CNEYsGvcBUM2xjStlRFAApYYxmcXrGFFCrW/rVc7TesL28ZT59j8rNyfUcqilQ05malWp4Njc0j85ZrW65v74ldSLT69oNl5cb2v/3M8L2nrhTnE5PmD21rO6XfPDhJ+zMQz678by5vGWyeB9jpnz/O5H/8DDx9z//e175npdv3/D5Z79gfjxlNj/hy198zoXvePjJJ1x++Sm22/H4aMr3vvNHnD7+MT/99c/46a//ilffXJOCzEuS36Fsxer+lvvbt8QnR6xWO37xD5/y03/4nPnpB/xP/+P/zLMfPOF+ecH/+Zf/K3/24x/zk5/8hI/P/hN87miPptjZEZ/84Ps8ePiAH/zZT7jZtOhKsd3ektdrzKrl+Wdf0W46nj18j3az5fa+o+tnxF6hOsXMWmLuUf0Nx9Zz/mDO0dmcmBfsukinZkyOzvj4939Emh+R+zt8Vpw8mIHaoEKLUpHgI2Gzpr2P1JNHzKyWQM0QIHRoByCsrlyV4VeMhF6CgiyOft3y6vVrvrKKo8VjurrGK1GMDdEp7+BNQOlW5d7JBQFRAzi3/0Zp6KMMwlUS01iEYYopgEkGpSxixg3gGDY+aaLNiCopwHvP1fUtVze3GGfBGF6/fs2X8xOev3iOLV6uKXty8daVw1cFWtiDVWNLq/ZfUFBUHwNzSNMBywRLn/Gp5/ruli++es7XX3zO229esL3fEDsIoSvBbIoByOCgFhATeyuD0ywAXS6sYGLL40dHNO99zGZzxGa3oY9RnlljQQlBQLzHMjFUAiJkhQ8DcyWDlsGjh4PPKfVXLsMpSoiezprV3T3b5T0z4wCN1g0y3TX8/3oVpvugAiAXgDAPfU65ZVIutZzUoQOLKKZIHzwmDSb0iMTVi3XMmFTKoMIpYIi1aFXY6Glg8Em4lOyNe1ABpeT3FDbhKCcV42WRfIaE1iJfdVqLjRAU4EOJLHX4uSTAnS7sRqPLtRzZQrkwwPY3WUpRHIlSfnf4rPafLRUQU8LSIskiA+jxeklNLao1uR9SiOONqzLoLF6F1gj9IedUwMW9B5361nNweJ7kORwIDyNMfqD+2P89XNucB3seyAMQpOR5SwfvI8DJQbjFQC4Y3/6Qcbm3hRL5s6NCi1pGyV6PKYCgKhY5CZQyGJVJOTAkrKZBLg2FCCJg6LcH8AOcrrXUPWO9njMx5XePjwKEHXy+kSEmD7YoX/ReJjsw94Z/P/zcwqTLMHq9qbEPHF7vSDqLfHToTwYJ9/BZgvfvgGOKd6XF4v+WDv4cfK+inB+R+lZVNQ4IDvvX4e+BBaiUwhoJjpQ6No5AXhw6ofL+toSXjedzYJey75vfBaB599yXnx1JMCPjbt9DZWKxA0qjH/kYRpIDY4rveH4Tgz3RAI5CWXMO1vT8rev3b71+Z4pr+Qd5iwM6q9zQ0lBWlcMoTV0X+U9OkpqKE/8zbfAJwqYn5Q6tKrStSgOR8akY4NMJkq1FNrSYNJi+R202tG1HjmUqkAT86ZuKyiLGmYiBrDagiyQnZU1QhlTMsFECnOnCvEINdM+yYWkxhNdkUgoUqHAUr1ImJkmJrDGUR1GMIYMsKhRdJJB8J8MBpcQ0WykxCC4sKd8FkpZzIGaUSqaEgQJgaEH65UqjsvhkDX57UB5WEC8AJci/LiCRUG7UwcoJlPQZrRR15VBK0fc9pMJQKs2rD5J81cZigOpj8Y1TxWDTUGlZhLMpaSgadFTi6KY11nqE0CETnzFZpejUvfckhJ00AG8qy3RKG4P4umV8CHJ/KLnhB8DFWkuMkcqJOb4rnhO2MIlyinI+bIYgBVJKieB7+t4Ivb9Ujd4HupJOqTQ448g+YLXFOjcCc1rlMn00ZYEbpjXF5NPokSoefSDlKEaqedhiyqKLInhP33f4INP5mBUhBipb4aq6GMLvI9eV2k8hhE7vvwXQFSCqLJZaCWystaGqGpn4BU/MUphYV4DHqhItPlLMZhnpoZ0q7EdV2H/yDGhjMVVN2gjQFjISrmEMgUzIck1NLXJalJUUSGNJaAk5oHgkpGGRFNZmlRVVZUdgyxbASqmhHJBJmDEaYy3OVVS2wmhFzlEAlOzHTXlgRg4A3VBYUoxbM4Pfxp5WPzyvKpQpSC4JbmUqx1Cgai2Fove0fScpQEq+1nsJUJCiUza1VBqSwUdvkJceXtfhec5GU/DIdyaIY9GiJWFoT18f7gv20gjkWRmMbIeNUA+FluCRci6H2PayntnCmFJEamdY1DMaozE5cjyd0KjI3dtvODpaMKsqpq6mmddEv+X67S3T2ZxHDx7z8GTO6fn38f1TzmrH6WTK5csLblcdut2IZKI87yUUSVLRYpSk5qRQKaKSL54cFCanSIYE8I1Fmt9C6FGpx5DkeDUokzEGHAlCT0yyNkwnldzbxecyBk/QGYXFGUMytjAkBQikFOeUQlIrkRbHIAWbPOOKFCLC9xMZa103qGiLnELRVAKszSYN/bZjt1pKE+kss7ig29zT+0CLJoQk0/UifTdK9q+27ZhPG0xdY4rPRk77ayz9hoDTIUYCkWRKUVs8a4aCE/YFG4piyluaoQy2Etn6ru1R2oh8HMV8vsBaw2p5j9WK1XrFerXE9x2TSU2/m3B0fMJ8NmU6nXB+/oCvn3/N1y+e013dEZOj62SAcnZ0ytXbt1xfXhO3O47rmpnT2GZKDIngZUrrnMU6S9t3vL28IoUVRgVyDlxcX6Eqy6bvqCYNH334IWcnp8wXCxYnp0Rj2Gw7bm6WvHl9QU5wMlswrTRxe4dNW44nYE+P0HaOyxrNHS+/+Zqvv35ZCsAaaxqOTqaQA37XgunRLjNdNDij0MqR+46wXaLQzBvNdtVz9/aGrppw9la+ZkcAACAASURBVOARVdbUOeKD7A955+lWO9pNT1NNeHC6YNe+AiJnZwuwx1zftFzfvWXb3dP5E6Z1QzOp6foNvl8T1Qq8F+bvbssmZFZvj1ikluroRICNcI+KS5xe0eglrvEsVENTT7AxsL26YNVvUS6zOJ7QOEXfrnDTmsnZlBASftOjqyzT4xowvdC7dak5VGa3WZPbDcdnJ7z/nY/ZLF+xaTOub1D1MUnVZDPB2RnJzdnpCVe7Lfe3ay7fXvPVixs2qx0memq9JPQt29uOOmWOmveYNXPm04rjoyNuty2/ennBi9sdd32NtufMTh7x4cc13z1b88vPfskUzcVFz1/9zT/T5Cmnkxl/9dN/oZ2espjN+fLTG8J1ReMmLKan/Of/8l/45IcfsPtffsE/XH2FrhtizoSuxSYNb2o2v/oZ+Shyd3XD55/+LbdvOj567wf86Hsfcf605pf+Jb/WK1LdoY8s9fFTninN0fd+H7eQkIzjozPc8Tm/+eozQtTMZg9Zthfc3L1mdXfEcrkm9XeovOXy9g1JJT48eYTZwuRozumHD0G3PDqbs+07blY7Hhw9xS/h8v6eoDV3ly/YfrXmxcvP2PzoI/7zf/2vmK4nrO7pwoY2Z9zkFDN9hHGnEh5DZre85uqLn3NiGo7rB6SHZ+weT8R2JHYQeiyqeOn1uGaLSYl+PSVuIhY7rC5DBzHsYuMgfM84GGqjSIpeSHWmDKB1QpVIBfCgPKRO/iBAlcKArsnJFPZ8DWiycsUegf1RZEW79Szv7slK0TQTVm3L1cUVbxZvuLq+YrfbsF6vOLcJdJReJYsX6MDs2zP//q2XAIcWCe3KStNnuN5FLnYb1ttrXr96wVe/+YKXX33N5u0lu/tALCqjUXL2zu8sKZGoYQ4tk1bvyX3PbnVH3y158uSUjz/8iPv7S55/84rNtmXb9oQ02M56AeNyoq4qCD0hZtmLGQY8BoNY/QxDVEaVSamlYkIl6LuOT3/2T5jQ8ezhI56cP+J73/8DzMxCdr/tBJVLPiBnxQKm9Cs5s697gUP+3rC/Da+YRKXU9uX+SBkfwzvfIwqRolo4sI4xgxw2F4uHmArGW5Q7pZZXyH5J6cekJ5P6VSUgKXLMosBSlto4mkoTQ2n+41B7KfZJjwWcKmCk9wKHxrgf6kWZsJOD+F5nEiHtgQSr9Hhe9lJgPVq9GKupBlUHAhJoVUgfRrxmowoSZJHzwYBXkZQWK6CUiO9iceUalP8dAGUDMK20fM49hqDLkDiN1zQPSPZwK5NHe6fhnhj+Hq7+iEgcgExaDzYjw7cfgOdFko0SNq02ZThe+pnO9yUYoNRMaQBODVrBdFKPPcQh42x4b+fcv5KTwh5kS2qvoIE9hDL+9/J7Q95/phG4yoOv//5zqaK6SQfvJUxLNQJ0qgwlvg2AHZ4bYbYlfHsIwQ/g0nBuk6zFh/jBAKeOz60ZQfsYE4N/pPy3TI6pYACDFLf6V599APcGH71BSuycKwDdHgDNUb9znmJkJCkIQ5ZxjRoGI//WSx3cW3sAkhHQHZiOShUEKB+Y7TGEagy/LQmuogYp+nCjCuAJBw/PgNEVyFn/luMbXr+bfzy+2b/ei3wQgEWXaZNzTowRvUHFSrwLXIXWjhQDMfXEkLDGYWxFbR0oTVIaHwNtL0CM+EZBiIG2j0TfyWcrAJ1KQh1eGU1tNVXtMEYhPisKZXfgOnpbse0iofWk6IXJhHiqpSym+MqnUa5ktMKZYfIRMIhsLiHHGBWAKdTnApKoAayUgIecE1kFtBLfO1t81QKKPhXjz5iJShFKNHVI4geVyjRFOQdJo3yUtLgskjwVc4kcNiXNqPgFKTEmVcZgnME6g4mxoLhCsTTGlBAMU0zoPdOqEk03AjrVTtD+lAI+BPqEmMSmTLvakpQw08ShNdEoix02PmOEbITQPytncK7Qw8vDvmeBiUw65ojKeo9WF9DDapG45cKLDikRQhwXncGDoe/9OCnKZfIlkwtVFsyMsxatHKmqCcGjlWLaVDRNjdHQNDVVJY9B30vyX1M7JvWEFOMYVJB8T9d1BN/ji2ci7BfVmGVjHBhvkYyua7TWOJVwRgw3ZSERvwNdIqkHWSpk2taMU8TDzQj2U8CBKXY4udnr3PfTmeH7RAIt5ziECCbhdKGaa4W1FbaqcArxV9QC8iorJYSKMiHI2mBswuaKKmq0DePnTUCIieV6ze52SaNrUhbPqUhks+vIJrNtO3a7DmMN08YJqBiGAAW1T/FFpoUZAeCrYlxvrCX1pWAejPCNwZmqAFQB3wugElWRII/nhBIoItLQavBuzIzmo2W3GacfA7tPfN4kdS4PBVUfUSqPfiFKSVqwJxeQjPH9cx6mMfsNPBd5pyzqal9gDUtuQdwOluCxANMaMft9B5zLpBgIqcTbuIoYk3gGBk+IobDDyj2W0ii5kJVCNhmjFbWxhJDIvmPeOJ6dP+BsPmNWO05mE6LvuLx4w9mDM+qmxmcJlNh2HW2Y8P4HH/Hh0w+p6ormqGK7u2OSIzNt+Ln6OdvPviT7jiiWYOSkyCHjfcsmt/QkVLaopFDF51SNFHNDVgbxuy6JtjlhiVQaGmepK8u8VrIOVQ22mWLchKQVffD4PolfTN+hjcXVFcmIpD0hYTFmuF+GIUceJDgDC1HOlXYGpcQnESUSB6MMVg+SYwlPUlGYbc4YovdUC4NtKnYx0nYtyUdIDSoFiNJEhZjJxuJ1BmvG+2kIfaE0HSgZZgzroDRRYjkQUpIEz7IGDR5+EpqTRo/EwbNmKM6yKtNzNCGKNFobh3UO7z27tuX4aEHTNDSVI4TA8u4WozJNXRNz4vTBOQ/Pz7i+tGitxuf14vKa2+tblsstjx495vj4lJu3V3S7nlWIvHjxkuNFg1aZajYl9AHjPfWkBjWna8E2BjeZ/n+MvVmzJFeWnfedyd1jvGMOGAtAoQtd1SObrSaNZpJJDzKj+Av0N/UL9CCjiVRTbLGnKgCFxJDznW9MPpxJD/t4xE0UqpoBu4bMvBEe7sePn7P32muvxZAM37+44Lff/lDWXcuTp09x2dHebTk5O2G3a7nfbHjx6oLr23vuVxuImlnd8OhoztTCRAfSVNOoIxo3ZbMduL7e8fLNPa/f3jGbzalvt6SsGXxPVWdy3oEeqGqoSNSuhj7g12v69U704JRoLVYx09/ecd9HlvMjFtYSnJb7bhSnizmxyUzPHtFMpmSdmWwaposK7TQxW3bdPT523K1v6IaG7W7H27eXaKU4ObGErqeuLI+WFfe+5+btM7QOVNMIMcDuCswOxQaTtrTbW7b3O84efcj06SPyENi+vmG1WpG6ijCpiLEnxUA9meBDoO0GjFf0vaLKItMANSRhIOzaHS+//x42W47JBAJH5+fM3/8MFu+x9aBcw9zN6JPGzRacffARw+Ybvnv+mhcvLvj2+R0311tyytQ6MG0MU1dzPp/z6NHnTKcf8NF55OPPjrgLlvRsS68n7LLneDJnkxMX99f0S5EjOZ2eUh0fc3O74e//7tew2fLtqmX++RGvX17w8qs1dTjDuprV+o4vf/OfGeKdaK+FQLZe4qqUYRig3dHfXvHm2Zf89ptnTKzif/2f/xc2XcPN6zecPn3CF3/yR5x/cM7R4kSe0+kpi4/PmdtIVC0xRHZt4ofvnvPDs+/oB8WbH+64/Po1dpfJqcLV73GzukHFNcdHDR9+dMYyWvzFlp//xed8/Df/il27Zrmcs42Zq3XkbPI+u9ct5vmX3Po3vHz+W26eP8fOAq75kM36lpffXvP6u2/ZttdsUos7PUepp0zdZ8yPHjOkgburZ9x8/w88NUf8/PxXnP/Zn8DJDGUVykZsjNguo1Um2QHyLXXrccFRb3sqbzFOkpRDNFOS9gyjEPyobZBzJvie3ndkrTDOoZzDagUE+mFNv7sjxY4ce6LvyICPicEnlKowpmY+P+Ho5DFKN1B6WwpvSorDOdO3PavVitV2y/1qhbaOn330MfPlgrZrub27wVSO45MFk0lVdI3L+RcAg/EyHuzPe6YgwL6lUIrzrY9c3qx5dvWWq8vvePXDt9y+uWB9eUVYrRjWkWwVlVKFufQj7SZk6MYkdF/B84HYtaxurri7ueDR4485f3SEtj2XN9f0IaKCR0WJT0ZyRY6BSNwXBp3WBC2tnT5HIQ7YMSSScUs5PfiRnGS12vAf/6//yK//7r/ywZNz/u2//mvef/yExXRegNI/8BqLQmV8VZkfoyTOAeA5vA5dA+LabksiP0q75JSlWFrmmfAB1KHQO96/McZLqRTt0j6W1krIDQHR8tZ5BAY4nFMuMKxUwwT9LB0zTikqY6XpLUUiUWLEPF6nvEZwwnu/LyLvgQvA55L8x4PGuUdJzrM3kMuY4nwsxgWWpplglcPagDEimi9SJNKeqqyMoTNG2ve0FummAihhSvcYBYcscyAWcountOGOA/Eg/xhrmaaAkeJCqohqHK9SqC6xmxxhlLcpLLpyv2KMJKWkWKwlj9Fa7xl1e+22d0CkMU5mr1UXC5iYUiSqhGTbQTTYigkkBdhSWnhiSh3AHmCv9Qbs75W1dg847efTOIdK/PcwT8ul22z8/d79Vb+rZZdLzr8vKhRESGn9znvHY4wg3XhsH6QF/GGX1WFcBH4e88PDo3gAvvYmCipJ3vSgRfWnclOpXctEeZiTjmjVgcV2OIfxGX6HSVjOJ+pCPviJ5/6hFl8IYQ/ojUSIdwDa37N+7Mf5wb9R5t/Dz4lDci4eBcKMkxbb9A5zYrxUkdopre+/+9X7YsNeC/En3vPw9Yc16IwpLAoR3445IaYHcnStDN57+mFAVZoheKnOF5Q3ZofSjegYZNFGUzqWzUCAEnEZtRLwu47BewH5dKZ2lhQG4tATYyjI9oPNIkFIGpOy6FplQ8yJ6COxa/E2MIRIGHpi3zEKDOasGBIFIHkX8aa0PlVaoVKLRqN0RdLSbidulIaQM85WJDJDYb+lrDFENBabAzp5GWAtzLaxMoQaxV6lnhCVAFtqFDxLcq0jCqyL2EYi4GOk0gmVNCFJWxcobHmwQggEJawSYsJpi02qHDuJBqDV0o6W076VFIRVVdeV3NN2S9aGSdOAUmzaHd4P1KbCagpjRUACbYqtdk4MKdCFQJ88fe8RMw9d6lFCKdZazt06J62gypSJK3oXDy2QR9FWHSUokIoXZALOQdd1B8HQwnMOKVHXNSD6Ds46dKUhS7BQO0NdO2IYyiYl80AVE4JJU1FXDuemaMSSPiVHGCrC4KQSo8H3AW003kd2XUcoIGmMkU3boYcKZx3BZHqy6LcYYXSGrPHKlfawTFM1pQVBFleFRhu3T8Blw86lyiYLWyoL2mFRzXsqsACXcl9DCGIKYZ3EximhlCVn8D7IMScVVV1jVaLKCmMzPnqCyoXxVjZcLQw6Z8WcJaaMsRUZGLwnKYWPEUJPiND7QFIGnxIpBy4uL1EKnjw5Z5hOaCaOmNLeWWvU1hvp2aLJEUn6ILhprMWHgeA9fdfhq4qq0oxOqsY6AReSlrF8EJQ558SYgLGSaDAkohY9SGOE3RpCEAfPlEg674MyCSRlvvV9JwBwYYA9BEpB7okfpN3PWgkm42631zOUIFCc8bRW8jwV6vxBtFa9o1shRy6gcAkErTWokngYI9oredQL5UEQkw+bnLi+HiqZIxVbU4R6UoIYiN5zNGv4+PEZH7/3lKNpw9G0obaa7fYjMokhBEJOuNkUN51RN1MWy2MeHz3i5OQU3cB6c43f3JF2HVNrmDpHbQ1p17FrPSlq8hDxwdMbjyeioiEOgdqMunuR4JNQ5a20X1NWR1dcTU8WExyJRWM4m1UcLyYoV6NsA6Zi0w+0XUfXO9p2h3E12hkR5u49wWe8WHDvq6wqj/dfFUKyFA9SzgIcqmKoFIuzedGukYkwgnLC+NxXJsNA326pjWU6qVBE+hjo2g3J96iU8X0vjAebyCngtTAbjVaEIXF/r2maivlsKkDxMDB0AyDaITEWVqQZnf5UcaUVNrTJh+1fKV3aYSPaSQLQD6kAfzD0QarL5doF21f7hEK0N0coOdO2LVfX11zf3PLRRx/y+MlTKmdpmoaj4xPOL695+eotF1c3vHr5WopYMeJsRYie27t72n6Dqw1Lo8BUJKMIKuNzBuNoQ+Tybkc/BGoLkNBW4yrHdv2auzct88mE+XKOmzasuy1d8BhXsWs7NvcrTE5szo45ndVMTGDbgA4nhKHn9W3Hb5/f8PLyHq8qgnJ0QbHaDWRWnJw0aBVod3c4m5jP5qigiKstYdUSu0S7DkTfM5tOUNGwvd6yCvekRwOL+UIKjmisAqM6MAmGa7A9zdSiWkvnI9O6YrFccrTLvL28oMqW5fExoY/s2p5KW7abnmt1z/nZEYvlhG0fuNvd0J9OIGh2qwvWb5/TOIUaWobVFp0ghZ7N/RuqiQHb4LRBB8fN6w1vui1aZxbLObdv13gS1WTCbAmmkuIPswomc9rNmm51z/36nm59y9JO2K02vHn5NWcnR5x8McPMzlBZ9G0p3QtPnp7xZ3/2K7oLGPyaZ99dcrfSdINj2ljmzQJdaxZVZjFpmE+X6CqzHW4YMHz8+Z/z+d2E//PvvsH4DUGv2bYX3OxaLlfg6p5fffqY2flT/v7X/8SX3z0j7HZssIS3r9hd9AxdwpSeiaTveP76/+afv/mG7+/vSJNTUjSYAEpZOh24jBX/6dkrLvodCzdhtjxnsfyIenHON2++Ql2s+Msv/pLBzbn87i2VViwmRxjnQGt0DthqIIQrju2U9+ePabsdr9a/5ubFP3LqTvm3/9N/4NFnX/D1P/8/PPtv33G+qPjTXzymzpb6T8/44C/+hubJR5zqKYaKI9PwKDtoLcOJ5/EvP+Plxd/x3ddf8ejsKbrZkHXH1etXXD9LfPfsDZt4w1245374in4baTjB1k8IzTHu2JJZExcT/vKPP2b2/jlKDeTYkrKH9Q7/Ysu671nNLWfLOcr16BhZtnfU/QxrIyl7VGm5UihplTcSaxM8OQdZN6zMhxgCWYOrpQ0NZK/L2WL0HJUaMgGtPUrBrDYM3hNzwjUNzXRGxuODmKiNupw5g7ZKJO5QDP3AZrfl9v6OJ0/e49NPP6Udelrfo7XiaDnj/HTBtLb7GFkBKqt9Ufl3RbjGTVraIXNpfUxa0e56nn3zA99fX/DyxdfcXb6mv7sn3t2jNltUrzAECEH2n+oQm+9fI5sGSq4QQSv8esXN9SXOGnbdBh89UUWCkuKMqyuSF0a91rYMtcH7nqay+JjpugFMRlsx4hpCINlGGJOA0uJYmscij/Dt8UPi9maF36zRYWD181vRJ4peWg/+UBKq1VgTLT/lPmlNpV2RQfLowqhBCXgXvIAP1lrq0kaYorTEpjI2+/axByBBLG72SimsNvtuilEPeGyTSyqRVCSPoA3ChtdKk0MoxTqRe0jaEzLleNIarnOm27X7YlmOgQR7QGd/+QVg+R1NLPWgRS5niVOLSV3tHE1VE0PAZfax8iiJU9c1zKbk2Ms560SKYLTfgxepxNzBeykml+8au29GFDEi5OhUWFBWgRvjTaMg6wPgu5+fBUzaI9e6MIxAGFcFlDeS8+5N0BBwLuVUOqskjk1FkkXnjC652t5M5KcevX0+FA9dAmPca4XQUmmNVoZKOdGaG68hFeaU6ELtW82F3Wn2phcyb0XrUIAo4eiSYTRTEXDnXcDoIftuBNaAvRbZw9+llHC6GAiOlfwhFNKCETmwvame5Cxd1x0IHzkTCpNUAKSiza7fPR/54hLPjrk3aq8pqzUPgLQft+e+qw835qpycGmTHkG9n2ztfXD+I/B2AAPH79cHrb6gHnyXKrI+8m8xxT0AvP/hkPOA3N9Rw24EQcfjPRwTIeCMAHhCj8h6PtwjXc5Zl2c0J2G4jo7QWhXy0Th/9s90KuuHQui3v//1BwE6OeDY/sXhQSzIdDf0bHYttVMMXvTh0IohJlofSHhsnaidQ2XRQDMq44g4NJVKaOXRRLQKaOOpUhATCq2wOhN0Iihx5EMLe0wVRlAqoo2xWHNqI7TUWJLRyWTKRINOiTDsSH50rJH2qPXO0w6h3KCi+VReRkEeWnGAM4mkavmtEt0tRRGIzGNdQ9hQuiSMKcGESrSTotBULYX1YsUdUilhN/goVObDpBJKvnUGHRUmObQV5l4u7cAqQc6FfkzpDB/xvSgLi06yaUUtunOkiNFZKNw6M7QCUNnC1PfBk42SRE1pnGswtkaYIg6nwRhHbSzaRPIQcMUlM+dEDqG0WQkjxhUtMoVoMtR1zXQ6xdROtK2GQQZKq71Yq2ADheaqRUevUgaMpioLf8wCVA3DQNu2WCutFDGJ41AOSItyqWAYI6xCCug5btZ7gfdy/1OMZB9og6fXwtyyRR9MIf0BqtCkjVKYWglYVVpFMRpXNeSc2Q2ebihuv8mT4oDJ0voZlbQv+q4j9AM5KmxjsIVxJ526slnuKxb5wOoaKxoPN9afqpJAWTCjBDSVdUVzQWGtw1jZhHQxG9BaCyMScHashGVUMjKPYiYmcXAdejHFCLpsMCnRewG1ZPOy1JUja09UGuOljfju7r4EI5H6gw+YTOsiyGrF4FJplJaWWKVGl6QDezKkiEHmgK2KWysUR0slAUCRPQkxic5eTj8apySs5LHKpiTUVFpjrGgkKmMwRthmeqxeKQPaFlqypnaN6CQohQ6DbIpaYVOUIHdf/5L5HGNk6Ie9ZuN4r2QffFBWVbI56jS2tJRzRaEKSzhR1kgrDrWKhFIC3lij9gzDsbUipzHI1vuNQao9AryaMges0SIenBWKxMQZlk0FQ8vV6+fcpsCsdixmYiwTY2SIRRvi3lE1U2w94VK/4qo+4vT0lGpZUdcwN1BlcZRrjC0VVtlbQggMfS9sP5fxOeJSJvQeVxkmtWPazMQkwVWgNEOIKG2wxjCtK45mDR88OaVWmaOJ5WxqWTQVQ84kXeOzQt2t0VkxrRu6upFAU2V2bU8YEl3s8F3RpVMWraVVPJWgRfaYQ3U+UmjqKpWgSpLNqBVDcXdWWmHrSoxplOyRWit8P6BtwhqhKaQY6Dctq9WKNnhi1mjtCCkyFFakc7aAzLDdwXY7oXEORmMVJQUFrVSZy+K6GGIk6oRKEvyGGLFjK8C+yjpqC0VSYUONwbYkTQatxyBK2vz3Qr8anBP9SK0UPnkSijeXl/z2m2ccLabMF0um0ymLtsVWDcY1uGrC8xcvaXc7tNZM5zN8u6Mftgy7DuMhGI2pJuz6VtiPKRJjYr3ZsdGSz04bJ+07BJpGo1Lmqtuy0j2TeY9tLEElqtmEeVVTGUhxxep+RWxbhuMZc5e5jlt29zd86jPXneLN3Zq71tNUU8xkScTR9tJKr3TE6Z7kI7pW5C6R73vCtkMHQ82ELhq6dseqHxi6lnY9UDlD2Hq6vEMrsNaw2+14+/aClBLz+RLjplyvIqtdZLZo6IfMZtvTtgNDH8kzjTEN9aIhNwrfdoS0ISWDthOMrdG5w9mEMz27m2dcvPwt7f0158tjJqamMgY9mRGGgRgD3eaeaqrRuqayYguw3ezIKVCrVAqhIrRs60TyW6I2cHoELuHSCq03ZLtDuS2zKtOcWWx/TGWbkiwaajsh24QPLV27YnN3he9uWEwdCz0jR0tdnXD26JjlUUMXBokDaGnXV3z/4iVDzkzsK7atxv7DM75607DbrTDaU5sdIa/4+pvf0LzqOZ8t+PjDM7KrCN2W11dXRBQhOtIPb6nClOlkiYod2/aGF69/g9nAD2+vuekmqOYUGx3D0IJ22Frxw/3A7svnuMWCf/8//jWfPv4FTf0JbTxi1UTskeXlxSVf/tM/cGyXVNOpPEsJ0BVa1ZArtMt8+PGf8fj4Azbrt9Sh5VwNrF/fcXoGf/U/fM75csOpe8FkFnj/s084ffQRtnkPd/whuT7B1McwaDk3bRlMpmoyy+kMfdqzfPSYiZ3x4tX/x839b1jdd6xXNfe3mbfrO67WL0hqYDmvmU+lnTwBjXuPPD9n5yriXGHiCrOKtE3i1f0VN795Rfrqjlg38Mljmqnjg8mER9Mjlm6gji2Sxxe+S4bdes3rH16w3Wxo6ooPP3iKcwbTOLRpMFYxMTPRFrZVAVcQUNM1YI8KW6kk+aWoNDGQCNJh7Qyi+CytuqMKWiaLpmYSMKVpJkyXC6rdluVyyenZGdf3t/RhYNfuUIPD6IDOXhg15RpSKiHGg8T7J18574s7KWR2dy2vv3vFm9srrl9f0G/X6K6HYUD5gInSfplDLBpxDpVFH+6AzD2IE0rmMdytefH117x8/kNZz7NoQQPaWrS1OKuJOkKUwmC32xKixxhhlHf9QNt7djERu45kJ2grsex44WoPtJREWwuTXWEwpqKqVNEFNrhKlUH6FygiHOL+QyI/7qnFpRL20hsJaa0l5/2/6X0ckRDxxFRMwATIEcbhu8ygXHTCxa1Ti2urktwtllgzqkQ2I8JY9OgyY0RW2H7sWX85ZYZhQCUvMy8Nok1c4s4R8BD9VrVv6RtfIzCxJ4sohbLmwbUK2KScw04mYhxY5pnkgRFKTmC0dBikPBpjHNqCx/+nnGg7L3nsHpg5AB/JKKJoPhEjZJUJCpJRgAFb9PQePAZ5BHXK06clbSerRCpFZLU/BxmDqETaSSstUjjKSH04Hdrf9+zFdx6vvG/pHM0uHjLAYowyX/JB1kmM+DTWZIxOhEgx4ZUkWI+FhALQGa0ezJkyn8pxtDFY5945H8nJSptufpehJsDZu3nayHLzo3ZiPoBCOSV8ibEeMuvGOVQj4Fl+8P0jOWN/TowAFIzGCQ+dicfxG+PZUUMORkaYdOsIwKV4sPj86M/j3w96dgdg8HfBufF84dAC/JAB+FOgpvqd8oURNAAAIABJREFU9fZdsJHMQUbrR7nw4dgPPl3Wmv0z+GB+HZ7LsTgvLGyl0o8+/+457cFj9L6wwYN8fHzPocWWP/j6gwBdytImOe6FKeXilGNkUdMVVTWhamYYLRbTKSeUFqMGHxKkgdAHdE6IJW4iR0XwmiHvCv1VxM1NYXntW+aCKzpEsSTVglCKu0ehmqZMDknAI+swzmJHxkmGaVMzqRzJN/i2FdF+XaGcQ9mOTdfTdwXYySMSDoqEVaJHp1UiESVBRxWbbAgpkCkut8oW/aIs4BmZmpqcpaWRJJPBqkJfN+IS45NCeRhSJJbKXNZCxR86Xx7euGcHMQKUxb1oBE3HRIoCXAqgIomZk11HNJyUTDWnFAOgi3OqUkp0tLq2aC9oOr8lbXZ7kXFyJtgAxlEphQqJjC2sMEVW0hZljMNZg2l7KaBlcVH1w0DXt+gc6P0gi4ORa9H7Eozaa32JNEABR7QVMFRDDqKZoIylnkwZQgRtZC4UoCNmYQ+aArpYa4UyHNOeMaRLi6OzFqMc2VWofUAnFTRrBKgIgyd6LxpDWpPLGuh9T4i5nKthyKm0QYLTxck2JjRQO0td19KyFsHnAWs1oTC7qrou4FYuOlwJpQ5iqOnhogE/CjgOtGqjNckYcZ5UkEnEAhzUdSWOaEaxb6EojJ6hz3stRoulnhiiBhUMOkoFYayaorK0plrZOGPK+BwYfCBlVVwmhY1ljLgOUVxu/SDsyrFVWchzSp4VDm11UnwrVTolLshDUDgEgNBWmHDtMBCiKq6mMjwxZXzMDIVVOjLEhGEYwekDeywdqi3sAV1bxu8g7jrqv6SUGXykqZ2AFA8qIrnclxhCYSoeGJBDYdM9pKOPr7G19dDmqvax+AjQjeK8+2rgg+CW8v7RMKJwnlGE/fXtPye3TzT/lKIyWoJqK58V52NZD6qqotYK3+64vtkSfMu8caymtXxfGSuMIWxhiNcMIZMjzNyC87NzTp4e8+TpMZOjOY2tmNQ1k9JiLmu4gLshRKnOG00qY19pxbyZcHw0Zzad0LYdOYssQEgSoDlrqZxlMqk4PlowMTCzmXmtqA1kn4uYuN4HalUzoapcmQMJayoywmYMPjIMoq2p1SgLXoI8KHqH7NcQW9YwhSXjGPUlhsHTth3eB6qmppk0sukqjaoyrhE5BWWkIuqMkVZk7xn6fu+6ZxTSIhIjfhhIIRK0aAZt1htUSmWfyjij9sY7trQAVVVNpmZQh/aMtu1olEgDjMLYsoXkfaC+n3sckgcxEZLEIitpNRnnpAQio+6pGH5kMqvNmtXqhvmk4fhowXQ64/TsDFM11NMZu37gh+++Q2nNbLlgsIrtNtL7DV0/EDdrtBnofSCjsM6RE7hqijOabCaErCBGdE7YYIhBEciYSokOiTJUVUXlKobes17v6FovQImq8aFi6z2hjQzdBqo7hmpGlzRdUjhXoZupuP96T4gQYsdiqjmeH1GZzPamI9x5fNdjlEObxPX1iovLK3IOJcsJHC1m7HYDIcg8sday3u64udtRNw3H1RxlpwxR2KUBGG7uuL/d0raR+7uOy8s7Xr644f33fsbjRx/h1Jz5Ys506um2mdXdW25ajzs9JseW3d09freiNom6UkymDdQZghLTg/WO9S6hhh6fMsZMeXy+pEmaod1yPD9mfjQjxIGUA3ndoY3GGQdXl3B/i25bVhdvef3mNX3fsqksjdPEdku9fFJMw8RZUA0e5Vfk7RWr11/z8qv/ylK1NI9OmbuGs+MJTz77nMWjBW+urtFGcz7XrK9f8OzZD1zfXHO+7EnqjBAyu9UtJu7wq1tWry1DHti+veVi5sid559+/R0xKS5fXbNtI1RzVJyzu3GErDARrAoYE1mv7ogejqdHhKHi7brHq4S3BpQjpsAEy6OTp3zy8S/4+Z//ax5//AuIR8x9w+znM3x+zfOLf+Sue8HjTz+nOt2RqzvIMzBigKO9RfVHNNQ0iwXTk0fMT4/55P0nvP76n3H2jv7tf+Ozz894+sv/nRg8zWTJ7PhjMKdkJihbgRV95SxbJQqNi4pcT6mrT3l89hTjW1reZ37e8Gj5S84fLZgef8XJN5avvrwiqcgHHzzivZ99TOwarl56djc3BD8nT3reXHzP97/5O+5vblFPTnijAsPFhg+Y8PMPP+Hok0/Y+p43z5/j1Jp8e0mY7KgnT8E5oh/odz33N/dcXLxlu15zfn6Cm36CrrTIaZRiiLOmUFqqIuFTYg5dYp9RBEw2Wwhe3LxJkGOJHYRZptAPmDxqT3QxxbF8s9sKq0xp2q5lvdvw5vKCq9trmtMp5yeLouElu61OucjnHfb73/s6LJ7kIbG73XL78pK7uythr8aACQlixqSDtphomY0f1yM+tC+YJrK4AaqSLw09oe/E0T5BO3gubm65X99weX3DerUjZkVXYjNrLN12Q7vb4rsd6+2GkBLJVHilUdWEZumonGUYY5Ex7izXJNrIog+V923EI6PlkJL8ywDdYaz22rz6XbfH8RDSihpFAjCPhXP5d2HPlbyvAHiKwmLMjD2aD6ZNhiTdJooCLJWcMY9JeUrC1CjgaBE82Z+yxKzsC58Z0ctWGZzKJY6KRRNb74ujDxlCewOxAtiNP3udLqRFVqcsRbgcSUr0wlFSpI1lTycDxSRtBLQkBpd25FRQ0KRAUZzdC6A0iqNpI4w5Vd6blRQhY5mEIpkvJI9sxhj68BqZQkpZNGKapnISfbnD7N1/yGpLkWDHag2uQk8m0kqaC3g2ArF7MOZdIOch+AGHQvx+/ozFaaUwSAHzoVupHKswLvfmFEA+fGf8ERlivH+jbuAIDI4dTeN5HUwHCnCYx+87sLpCCCX+DTwElnLODDnIXFSqdKKNS0osMkdiDJlz+EmihuQeI/CXGVs0x5fRdg/i/TiXHMHnd2C5w607gFsFjFQPQODxLv13Pv3vjMdIZgghSPdHPpzb+PuH3/+7wB37tfnQMTSyNB+Or8zXh8Duw+t7cLCyiIwjsR+Bcp+lCzCjyxJyAMTHbqmHLEP281X9iwP0BwG6sfc85UiQvWAvjq2Npaotk/mc+eIIrTJD38miYSu0MSLuH7xUaIdIzgGVAsFHYo6ETjZK54rDh9UYYAiDUK6TFsZKqVCIbTR7IdMhiJMkxkmrUtVjq1oARJVRNuFMotGgkpg3SNVE0HphfxkGE8u15iLDKUtybZ10YWgBoMqoyCIJ4saKKlo9EEsgobVAH0PKZLQ44pTAQhYKEYGtC6CHTcWlVwbcI4u/9wIcDjHgc/F50QpV0PvDg4VQsnOhKCsRbCRAMmMViL32ltNCl27qGmuEEq2toe17+t2WhKKqG3RWhEGMDtxojBATobSGJi/VPmIim2L2kcQkIKaE74Qh5ypHZQ0pBPq+xxUQJObi0lR2OV2CoFwq7SmMyL/aL+Ky6ZTW4CgtpbZUWrOSz2VVQLIHQrtKSQCo0siako1vFNR3VnSo3OiylALaKqxTxOBpyXgSzhicEZ0+ozRdEajPKAEyu0GAVmXovSwsKg04DbZywijMGTBMJw2Vc3Jvjd7f01goyg9pvu9sOOV6HpofCFjHAWhCgNFxERuZg8bqUrnxZVMS6rjKQIrkGCXgSoah7+mVok8Z7xM2jquXOlT4SuucYqyCHFpRtdZYFMo4nBX9Pwp4TCpteD6RwqhDVzorky73WIIKce1U4toVMmL8oel9QOuBlBK9EBjLeQnbT2kr7sml6pVSxg8DfhgwtoFSWXxYbRutynMp/2QE7A2FQaiydOgQIrqZMJoGoEoApikutKY4XcmxRED199Pyy03dV5wEJnv3vfu/jRvx4a/7gGME6VAancaNqgRfWjQ0nNHolKmco9JC96+sFb3FcSPLSYw+EKDnaLmkeXSCNZmmMggmp7FVRd1MsHVNiLBpO9abFt9HzpeP+OjDDzn/4IzZwmKGljh4AYCtoWpqrOuJxQU2p4SrapLVEDxWa6azCU/Pzzg+PkIp6HctvZdnzIC0jioFOUIKGKQy7vueLmVMZYRV5HJpzzZoI60SoxuY0YZJU+8D0VSA/qgMqrjSCYNOSxFIjxqJ8nw5Z7BudNdSwuJQir4bIMIqbNhXuUNgCInYe/Ae3w9M6lrWyxTwSYpcWolenDNyfJQiBr23sy95Hyl4dtsN5EhlNKoRvaRkoGkaJrMZVVPjg6VvB4IHpT1KHdgpOWUBR4u7X4oBjd2zP0bQWPQbD8mGJBMWo4W9LkmKImVhuLq6pp5OsHXFsOt5e/mWN29e8fjxEx4/fY8nsznT+ZKr61t+eP4DKmumi7mMpVNsthDalWghhp7BR6x1wjisVDG+EcZD7zNOGWFtm0pYuUaBSXShpW87atWAV3TDwNXVLUM3cLw4pmnmxKTYDjuIC1KXeXXpcScZbINnw64PrHY9oW+xJOLEstm1aDvnvD4ixZ7rm21x8svE0JHYsm53XK1WhL5nUjnmswkRh4+G0CbatsO5CuOmTOdP0cax6Sz3mw3fv9qw84ZTPafdea6u7uh3gW5o8XHAh8xssaOqt1Sm4uT0iGwNu92KYfD0MdJt1qg3nlmTmVRzat2I2ci0xueBbr1jvYm8fL3i9eU9Pll80pyenvH+yRHt/QqVIouUMUrcyYPvGXYtEPEh013fl/aYyLdf/5avvvwtIXlcA4keo+GTT3/F5MNL5se3xNyidMZoT5M9an1Nd/kDm7tL+tdHXF14dsOS23bL6i5zuVox9DvCkzk5R97e3nJ1ecOjs6f80a/+HU/e/xSqL3n1+oKb2zfE1QprHKQZmzahc2K5DhyfLPnwow849eCZEf2CRp1y3DTQXdFuWrRz7GjobcXZ2R9hVcvlxQ90scNMK5Rx9JueTz78gH//v/0H/s1f/SmL5QnKKdRCU8WI7jTrlebk7DG/PPsrjpdzch1RRuQbghaHdUdNt/asb3bMlorF41MW84bpYsL5x++ze/uG9vaKejnn7INfEN2SHGuoTshZHK6zVWQtMgwZ0RPWTtwis7FouyjgRMvZo/eoqk9oZj9jcXrE+aPHfPJhw5Njx2r7mvkHR3zy53/KsTvj1d+/5R//6Ttevr1l9tFjbIo8e3PB9y8u+Pj4KScff8r8PcujPnFyckpSgeuLC77+8mu28wnLPBBNx6OlpV4uUQjwdnx6wmcKNtsNs2mNqTS6NtKqGT0YSe5RFrKVovmoESXQCuImVBKSnEAFhH4P6KpI3xTwA2QdS1GOWfZYYqbbddzerWi7ju1mw7Nvv+Vidc3d+p7l0ZJffP4Zf/zzzziaNqgc0bmUePY6pOxzrHEvHnMHNf5rce/MKeG3Pd3NhrBuMT04Y8hxBHkKeDHq8kER2VflqIfvgiQAXRbA3x0vefLRR5ydnfObV294c3lNl+9Zb294/eKCu/sVKRt8kBzBGkv0A+SARswHlvMFzWKJV5agLUEZNkMP9ZQ9RDcCbop93qOVI+CI0dP7SN8H+kH0buv8h9u3fif8KfGb3o/vIbElS9wYgoeIGIgo6QAgZmEdatmjc0yoWGBDrfcdOfviZ/mcj5Fdu0M7RzI11taFJMJ+v5O7MZ4Dh/texiSXE1dKiADaOCqrqY0w3kiJyjxgKZmDocAhhn6XPaRHHeYRFB4Bo5HBqEfXV8OoxzYCKXmc3w9QlTGORkEquiaxgAbamX0MIHnSQTtsNFjIKh/ysJKf7M+fEbzgcP4lzrKIhMxYds8gOZjWe11Ao0aAThGsBldD7UjOlXMd557kFj9mWY0twPkB4Da2K4NhiANq1MAswOQYj8szJHkHOZcOtcLGLP+WczowGpFcagSPRlDnnbbhH5ElxtceoClzcmx1HsGoH+d54zWOMkVqnGcPfsf+Nw+6797JL3JhxB1Awn3uxgEE3Hdo/c7nyyxXPDi/d8G6fbI0LncPvz0fzu+nmGa/7zWyQYchS3fQWMh/0A67P/4fAunkzQ9+9yOg7PCuw9WWhO0AQirU3tG5XG9Z5dVDxdFxLMpzur9r6nB/xu89nNfvHYL96w8DdOW/pPT+Ac9Kg84SHCgN2qBNJQYEGdHbqRqss9Qp0ncdbc5FRN1isoYUUTES4iBIe91QTadUjSQqqe/xvafd7rAK6kKlheKQlyToit4XAE8Tck/yAd0NmErca1SI9DqiwwDRF40gJVWGwdP3gRjCPqnNubT+lGJdyoKIqkRp8y3+k0qhiDhTEUnCNEwHMn3SmqQdbY4ENEZntBI2iyKhohfLa8BmJYtucf/sM4Qg7CRtLTlrFBGMlkBMjY+bYlQhjDESVSbqeOjhjwmTNeN/RoFGRNZzCuQgi/4oKmqbhqjAxUBEUTUNU1fhh4EMVMWht29bhrbDpCx6cmQRLFXsRTyjj3TDIG21IYCVliNyJPhB/m7E0Vbng1uNVqILMc5bX1xMYxJnR5DPjaKhPgz4mApwJ6wr0AVQiSQjLqQhRVTUjCOnC0Dgh0gMkaHtyIMnaIXXBqJUM0xtsZUhpyjaTjFgnMx9EAaSUZFKO7SrULYS8EZptKvZdQM5Z0z2GBVl82cE2fSePu0HjwsBEwOo4tBTxmL/LO5BtsPrp2jD43sFwJHgq9hMyRNdTEqGriWTsVZJu1eQgD/FsG9ZU0pA50MFRsZ5bOO2ShewXFhytWlo6oZkB1RWVM6hdRRzCa1LnVUqZc5IhSyXdmgp/8vxC2+VVBa6UdxXKNwRYxVOW4YQRNutks0uq1Kpy6qsVVIxNwiDL4bIZrMhVo6JhqqZFgBNmIOJg2GHMIELU7WI2cYk5660FYZrCMSkSFnaaM1DsM5IhfOgE5jQ2ojOX9FT2C/u6t17qcYIq5R7R4B5DGr2Qea+HUKCF51LG2LRi4jxXSv6UcuhKgy7McAdWxr21c+yOznniFnGcXl+xnvvPaKqNDl7UvLM5rMCeFmMdSQM8y5w1Huiz7z/6D0++/mnnL1/xjCsuPrhW3x5/rM12KqiamqqOmP7hA+eECJBR1KIaGuZNTUnyyXHiwV936MzpCAC1jFDNIasIyYrUrDFoS2JALbOoAQ8SimJpmJOBDK+7yCLlqRTGl0Z6lxRDVVpIzUYZdHG8g5AVwoVcqNt2TuEVWd1cXHWAirruqZtarphwJTWVJUhRKm6tm1P3w10VS/6rjnjlVyXtpLQWq2wZW21lQJs0R9xTOpKBPpzJAyekCNDL8mowbHdbri+vsbNbkh2iY+aoDJKiyaltUAB+qXVQlpHowrYPK4VgZQNOmt5WMs6QpaWH22kHXx0d0WbkhBIIUkZjbGayXRCip77m2sury5RxnB89ohmOmGxnGMrC1bhmpqUBrSagi7u7jkRQoIYyESUNTht9gGrVsK0bKxm3lScHc05O13SzC0+D9xv7kQXbbtlwhzvE8PQE5PGe8Xt0JFDRsWIM/J85J1lOtFEm4gJ7lc7+j4UoM3Q9Rbfr2m7HSkmaq2IQ4/JGpMUfggEEqax6MmM7a5DYziaLImmxlNTWUfrI29vtvR+TdsFbDXBOM/N/YY3VythFDSBHLbEtCMTmc0N1WSBsjX1THG7uWS37cCe8ORRhYkDRlui1txc3/H6dc/Z0YyTuWXRZGoXqNwOlRQ773n24oqvf3vF5W1HVI5tt2OxvOTy0TG0axpn2ObA7W7LbDJlVtfEUAKRNHB9ecHdzR05wd3NHc7XzKoZjdP0ccvt+o5/+Odv+Hr7f8CTL8nVkuV0ztJAuH7D3fNvWYTA4uSMdvDsQsd91nSbS1yeErKn7dd8/f0r+t0tV6sbMpZNW/H//sMFJ88HXr+5ZLvZ0W56UAPGVMzMElX1bAcB9E8fn/CzP36Pp48/YFI/os8n2OqcBQM3z/6W7767IU8MF5sZv/lhw6aPJOVwrqZWAYo5jZmCOjpi/uHHPPr8lzRHc1nrwz05eoJOqPmM88d/ybG2EhXqmqQ0g4JuTA4MpCZj5hVu0ZCdBVdjXcV89ojmaM325p6hjbS3E5qTc7BifJAsDCSiTpJAkzBAnbO0lGphTtcMZBVRtaMy52g9kUIYW+rjhsf2V8xPlrTtWzZ6y+nPPuVs+TMms4HO/Gc2//y3PF7UnDbHnD/+gt30Cz7/03/HdD6BsGVz+TX/5av/wmazIeeKatbgTh+jnSEtT7CTRjS+lEFbi62ljXO9W7NuNxz5JZN6Uli3MqdC19NuNoSg0WaCSOwPJDWgjcfYRKVF01cFaWX1W8W2C/RJse48ppnw8UcfUo26mAecR7ReAyilOTk744tHj/mTn/+Cs/Mznt++ZbKY84svPudv/s1fc356tHcvN2MEoyjxPvu2xXdhunFTj2XNhBwyufOoNuD6jPJSYEq5aFAbRdLyZ+lGGZO/XEC6McHPkg+oCFrMZXTlmC4WzBdL0I526JkmxcnZE4Zd5P52zW6zISa5ZpwQFSa1o2kci8WMn33yKUfnj7jdtFzcr7nbdrTbWIrJ5XIOZ1QST4MyFSCs0mFIdINnCLEQEv47MtCHI6bYxzMPk9rxlXPpTFAZnY2QJxKkEAgFfCOLrI/vA3EYxA01Z2LMB5dIDnFUGEYjQGGp5TwSBVRxlD3c3j2z7uEYjCy3st9VtmE6cTgDJgurzxoBj1PphFJKivmMII4aW+2KI20Bg1XR5yMVh93ynGdlDphYRuJEhcxN6UfcE07Exj4zSgkpK6ZvI5NHlTYGZUaeYNrHn9qIaaImFT0tMRMcmYsYIy24BzhjH4saZTFIT4HM5FJuNhmKlI5SCpIuubBU2LOxe5fSlHNhBKv9GB3m4mFuHQrV74J0lDwlF2BuZGKJ5E0Airlgodjuu3lyJsd8KMBWTkgsxpBCYvCevu8IMe4N/eQGjs+nKsws9szEQ0vju3H+Q7bdO++jAH7lqVMlLxyfx5jl56FH8u+Aa+OkevA7mbJCZFFKjMXG9x7aWMfnQ94v2IGM+WgKuP+OQyli5Ebul1s1jv2Pru3h538SqMsFjFOSiyl9ABNHcsLhrQ9MKR6c+8PDPiS3vOMyy49WbFWuSKl9TnZg8MpYjuu/9O9rUhQ2pi7Sirk8O4qRvDK+0gPA8kf36A+8/kUG3XgRSpVecyWPWk65uCdFusFjtSKmUv1IEIO0wPRZ0ydNwKB1aYsqYmmh79BVTaynpMmc2DSEHPF6IKge5RXaOUnkjJHJGYK0P6VIXU0w1qKtEwvxKAJ9VVPjakvwLSpF/G4r1aLSfplCwKdE8KLbo9QoLCpJUsjCyvBJiQvNOD0N0vKoJLnNOjGU7/WxNEdqh8KRlaLDErTB6tIumyImR3TypZkqY0v7jQytQGhDKgtquQf7mlo5zyRrD2hVdPCknTWZAqSU+yZ6SUXfLQNJxEKjSlLBVgLSDWEgDoiQv9KEnBh8j4meHALWOZyu0LKeFpZJYDaZlV75DM5gawfZEDoIeWDSKLZqRyog6Hw6Y7pcoGphjSXeRfJHgVKNAFXgSFmV1kbRdxJgD2IMpFJh8DHJBqmN4DxhXCwOegQifHpgn2mtqSqHQRXqfJbWYw3Je/qhR0WHGUr1KoGKYm6Rgwiit76jHwZSUgIClXuIMmgM02aK0lDphFOJFDwhDLK4aqkQm7EIVZ600c314eI9nrPShS3EYVN4l849tu4eFplxARvZPWKHLcl4P3Q4q3A6MTgxSIhFv0Alj06GwRg8IOavBfQLSRyhShKfk2hkWGulhcxaVFQFDE4CbBcXKnELdtRVLcHVgzbXFMv/08hiKkUCdQhWRgHZPG75WtzenCtCzupBIKsspERUGbdzhHbg7u6OHkhW00ymwgLKGa8Om9N4PxLiaqWygHHd4KmMJjhx+NztOnkmVAKVsUminCF42VgooGIMxJgwRlPXAgBRwDapvo4VXvZBrWIMMkrQWJ5rsS0/iM8efiigCe9UgIC9kOpYRbbG4rQhD30JguRejQ5eWSkx2BhbbrSlWSxZnJ9hnJjVKJ1xlZU2Th9QCdE1XMw4PZtQVxNOj06ZP31MfTrHrz2xtqhYUx/NqWYTqeIqqOqKyUSR+i1DL4LLGk2ltYBnGQgBkxOVNbRA1+5IiKOT0aArS/SO5AeSlaqKMRbjHDEp+uDZRcUQxYxh8LImWavJymKVIakCaatSjVcjPd7I+KNLQCabsTHlz2U/y/nQjkPW0naDoi57mHMVY2Oy1QaTlczPIiEQydJSrjWVq4qjuKK2lqqpi0DyOLdhPpsyaxpiGBg0ootGWWd04sWLF1zf3vPkYsPpez9ncfaUaj4BJYYuE13aaYwua4TFGE0Yq6pJdDlTyiQtwuGiMVrW1JwPQYcS1qguenq6uHDJnK9JOjOdNpCOycDl1SXrtmM6P2LT7og5UlVOEnsN2lmqWFOZmhQT1ia0k+E1WmNdhbWuVK0TtdUsGsfxrObkaMrx0ZTmeMoudmxjB90GnyImDORsinC8YvBRChbtQE6J2WRC0JZ+3TMzUM9FGiHFxG7bMfgeHzRtD5XN5E3H9tuXHM+nTFxNGiJDO8h+URnskNi1A9s2Y2rH7TaS7lY8edyQY8fLVzfsWs+uD8RkWBxNoU+8utpytx3IqmM3XLOYJs6Ol5wdn6FN4vLmgoubG2H1xZquC9i6Q7kFKnSs7ja00bH1is1qzcl8wqPTho+eLmkqy+Z+g49wt458+/Kab1/fcreOhKy529xiLzObbses0jileL3uceYtZ8dHfPjeU6a1o7HCsmiHhA+Jbtez3XQs50d89NHHzI8XfPvyO755ec+3F89ZP98Sz19w9OhDPnryEW7XcfXVr6mGNX/04ROa5ZKNXzPozPXuBnWZmLdHzKdzjucL3l7ecHO/YbY4wtaWt1dbrv7Tl5ws51Qm07YDWRt2u8Ck0hx9+JTarrh/9YL17T0pRz794mf8yZ//K5w5JuY5qlrQv/gt/asrzh8PfPSXXxDqxxz97Rt+++t7Xt6/xITz+WN6AAAgAElEQVSWudX0KdJFmMwbgg68vH7LXbvj0XtnqLwj7i6IeYuu59TuHDc5JaQGPRZ5cyKbWKIeCyYzWRqayRRbVyQDQWm0shg7Q81Pmc0TsUsYapRqIIqkQtCBZEtRqRS07L6mH0GJE7TOAVVpUHUB9yqUMriZghqojjk5O2IRP2XW31Ifz8GdUR1rnn7+S/76VNiUjz/8gn46sL0baOZP8due9eaOt/ct319cU+vMH//8Uz792a9YTI7Feb1O2GoAIiQp6Md+YLvbcn13TT/saBaO2TAhJxg6z249cHdxx+XbO7YbT0iaIXmG1BJUizIDzmUaC5WGKitUNrRtYNNFbrY9q97zxZ/9BUcnS04Xc+xeQU6N3Y/UE8dnn31G8/ic06MTPn78FN1Y1LMvqRqRGml3O3bre/x8gqumwp5LuQiP8v+T9ibPkmTXmd/v3MHdI+K9nLMKVYUqEAMBgiCb7Emytm51L7TRQtroX5X2mhaSzCQaySZBEMRYI3J8UwzufofTi3Pd42Vh6JYpYImsl2+K8Lh+7znf+YaVUSGyCJruPZYmsQW6iYIvSlcdffGGD7RmHhGqE4qH4jCfr4WFcd/gqz2q1GYnY3U8JSHF2OdFHXOGR08/4L/+1/+Mqy9/Qyf/Bz/5yU95e3NjiqU+MMTAZghQM2WcyePIaX/HzZtr9vsDKpEuRMb7UIi8+7eKWU1YjS5k55pNT6tj/r/hcytwttRAv9W8awNPhDZQhWkcjZXuphbKIU2ZUSy8KmdU7H1flCaCEQKk6wxM6SLVm8+3b+DW0pTL+vor6D1grKGVItKGt8ZeFe9wwSHebD6k+X0tK0QbIeEs4WtDLs5Be2bxZJ7uWhRKMTC3VaW11UPkjGuKKYexyKykbFYrqs1mwoAe9Q4XAl6tsnYi+EWS3PoLew3tVRuDY03HhVbjtefrxZ2TM3kXeHLirSdotbQxNS18g+V9btdjEb5WrWgp1IIFdjhoiOk762Khcd2vfeVroRELu805Z6w4Gke1mN2ParJGEUXduWdWNZ93qnn3SVMLLL97STBe6m/nz8mhq9wT1q//XSy6pX66r4L6faCVhc8tP8/6t+USqJ6v49eBnuXamB3L/YRYzu/3CsLJO9+3/O2bKkk4qyju/877/w0YMWK5N9aX8M4H77xGqw/9vecmDYupq1rTgI17vpdfv07Cb/XJKyvw3u/ha//NvWe1gpec19g710Wa6m0hYOgCELf3pr0X901hpIWCtov0W6///Ab+9qfuP/4zHnTmKbY8cZUWwFAKkjP76cRVZx45XTSz0BgDGppH2DAwzYU5O2oNOGozBjcQYlbF54795Ll24LOi4plLb7h7V/GiJPGWuOIsfdQ7O5C8y/gWv+zFCP44IXox34h+g2qBMiOYlLOLAwnHKVWSTnjvSSlTSmrFfwM9xFOleUw5ox374HDemEPB26ZvKK+9KVWNxeO1UF0g+UhyEEhEMrGBaU5sGiIlN4i5GWdWIVSI2ATtlBMzlbkUktomp436bDRimyp9fSEuXkFuITu0xkqrOWI6zDcpOEN/x2mypFyM/ZBrYZ5GUk6E1kBDIjiTqYpm0EIp80ofd87jojXVvTNw1s2FLkaqCMMwsLvY8fDRI7qLLdU1CSNGJy5laQYX2M6TkrHiQi5IMk81baBPbtHdKRdO40RuE6kFyAzBWEpG0ZY1tnsppFTNv8qmPNC5wK7vLOl0npqMqgdRfJOakTPzdDApnbSIbLUDIE3GDiwilCoUd8KCNAtDEDbRmZdhLWbe6ip+M5h/lq9Eb+EDpTW9soCq9x73ac1fp3ovvlOlGPMLWoJZO7BjF+i7gG8StbDZsBkiIrUxcXo2wdhGUZXoPbf7O0bnGSVTqwGltc7cpYm7U6HmCF0DziqUXFp6bMGrb2BGSyMuqaWxGttnOo1orm1SpbTQYXJV8xcr5VzQiAGfS4z38n76xtARsULCL/6ALTnLSQCn9MHR9R2TThwOBzRGtunhCsCcfduMHSXO9pFamnSoVKZ5hlItSVNsjzEPOsG7YAlnLc3Y5A4B5y1lTus5bde1okacnP0V14Pg64esyeW1mux+Ae0Wrui5cD4fgqsZctv/7fXZ5H9NaWI50Oz72tylAbt20IqYTCCECF3PpHCXCjFA6COxCxyqSb8tEVuI6hhcpB8uGB48xF9ecFsL4+GOcTpylxO9gN9uePDsCZcv3+L3E0VPBvI2E2ZRk/94hCjgVSlzotZM5z19NODVt1Aguy40+0aTgIbo6IaIC4GaKhqM7V28Y66FsWTyPOODkGvPMERyMYmpCoTO2MveLZMwY87adL8VzmvZbfHrVnzX9rnCNNn+2HUdIUZkBUpt+rYUEeZ5brYIi9zDNdmMgbYW6BGjN5l2MqZhDIHNZkCLp28JiFoSeZ7QWpnSyPXdnqtD5elt5vk3Jx49e8LFg47HDx/a8KcuBsQGOIIZF6eUqEWa5J11cqlLsnFtne4KzhlARwOVcZamikAqiS54hs3AOJ7Iqdj9OM8c3rzi7dVbxnlisx1wXcAFb011UbwGRAtD7BhcMNuMWgmYvHkqydjAHgbpmNzETT0wnt6ib3ecFMY0U0oPVHL2BB8JoTCNE6nMdN0GkiXa5RgJUbjeX3HSnsf6AClK33WtplLmPDPnzJPn32A7eK7fvIJT5jQ7xv2Jw92RWoTQm4/c4XCg9yY7f/P2ljSeSLpBUF7fjVSF45yoriJ1IqeRk2bGAuNoKa29H7j84Bkff/Rthk2gG7Ycp0/5zZsD0+xwruMwwt1R0bny5Ve3vL7JZB1I85Gb+Jb5uOXJg479PvHq1Vv2p0x1O5J2xIsLfJk4HCYSHSk7PnuT0ZrWtHeP8vzJidsSePpwS+cSURObKHz8J99l2h/4yd//mOu7N/R3Ow6bDT+9yvzNrw68vZoJz07EuGeMd7yub0mHE1d3I75M3Hz2Kf2nv8bRMfc7LobI3bTnen+ie/QBj599xMP+Q+RRz8ZVjm+uePH2LRMR310StXI3QvI945QYdo7hyROCdFzuJ/wMb758zc9+8SX9g2d88Fx58jTiQyLxJcJr/FAJDy549vxjfnT1iP2nf8uVm/C7ytV0y10x65Ch7Hi+fcR7O0WOb7j5/MhmM+PDG/L8krTf0G1/gB8emNS6Rsi2z8YY8GFJfysEVyDU1gx7LJzFE1yAGBBXkN5TUyQliNYXWOCGjewtFV68KVjamVJFzXydDaEqTJPV70OPitUFpd4wTS/ou0dU/wANQt9vIAe0Cv3FEz5+/uc8evacbvMesVxRrr7g5vAGrYFpd0nl+7g7j5uPDJff5r33PqavYiBAnKEc4XiEsGHMI7/++a/5yc9/zo9/9g+8uX7NdtcRo6fMiemYmPaJu7cHDtcjuRgTd6qJuU4knaliQWedg1AVmTOCkEtFup67knj64Yf88T/7gUmKS6ZRmgEbtqoHHzybzYZ8fcXf/fjv+eqXv+ab3/0WcRj4zve+h6+Z43FPmo4GdIrYpNwI2iaff6dEa53a6ld2xtZE2iAROyM79ca8r5DFPL2qw9jTYthdvf9j18cymizo+kRsr5UY6boBXKDikdDzwYef8P1vfptySvS+46c/+zl3hyPROUiFVDPeKVe31xz3d+1sFB48f49+N1BOCelbs+pao9mAq4UpkrOdiz70xM4TYod4/7twxd//WM+RZYh4BlgWAMd+q9V8LIwazJNVc6Y4C3oQtUGS1EZ+CAG8o9Sz35uoyXxtSN9B9GQ8NXaE4CnOrcCaoX5L37D8gYVTVBXrMbAzfC4Zyx0UXK1ItjW89metxiulMOdEwPpn55v8utUXzgleWvhcez3maZep3lj03jU2p7Zz/GsEBAPnsoUztHXiY1hr5oW8IfcUFGa5dx4WC5BqK85ZaiH7pUbGOTPGHG2YCiY7pppagqVSauEJGMEDDCNTsaDHVNRUD5hyQUJjPKquA/q1f+NrMtLfCoJrvbA4I29AK660BYgsRAiWm7StPbcCnQBVzn5z94GkEMIKAJ6X8W+DbEsvtnz/4kH3Dovr3vP9LUXUGlDW+j/nQe71+M5xTt19FyQ9g5rLIPV8Xy1MyaUmXRQ951ZEWk+gZ5JPGwAt9joNilrvCmlWX8s6V1HkngT4v/xxJhys2KQ9+3eA3d/73Qsuxrsg3Ne/xyTsZyajMWRp13H9KqR1X7L+xHYP3OvHzwjv/ednYKM0XEpk+XfFwL1FWfr7r8QfZtAtT1rEzrdG/8zWQVNT5jhO7I8dmz4Quw7BU0tmLIV5zuYBVXJDQR2+LVJj4C2bT0InRUK22GIfrAmunlxnY+l5oXeBiCI1o7kQgwUDLMk1KgakGch0bppMmhSQbkPYbFGEmJTB9/jDZNOWUky+JoHqPVU81XeASU+bAq8huIVYhBAcvjpKEHw1CmrRtjGJMU9UMAPrRq5wYrIl8Uqt44q+gtGYO7A3VZTsvT3XahLV9tY3KV7BubhOkiqc48+9SQ5rNrS/FGN3GHAQ6TcDQ2evq9REyom5ZGK0hs+Xwnw44EoiOhCtzOPJGDVq8tuSss34mszJFUFmk1Clkii1GHNIlakkXrx+xdV4xA89mwcX9JuBbujXTXGZUznX0gcl0HU7M8FUJTjBx2DvcS1Ihrv9nv3+wN3tHafjkZSskFLVJkPLBmZ6O6wEMelbm1qYxEDJYsVTqhmKBT/sxxO991SFTdfR9z2+sxRXLZlNHxjHCXFKtnCsJvm2Q7OUjHOOUjPTrDgNdKGxLXMhUxE9MY+TeRDcO2Bsk1kSZs83/NoYwzp9uf/xu9MQJbQIcBFrDLomsXPerTK+qongHZvNhiF4JGdCrYTguQiWthzoSLni5sKczQsyTQmHASQ4LIEyT4yHE/PphPeRQ545TSOVQJrMj3ApHMQ1cM0ia625V5DVJ8ZbYaRLsbvQ8RtLUiB2ncmA1WxpfLS03qqVNNsBbK810sWeyR9sP8IAXCs06nqweWziJA10MMawBzEPOspMFmHoIqqefojgLOwFIw6b8W51aEt8NfNQIbfQiiXIRJw/+yHC+nfTijeArR2sy+bT2IbSPnfftN+o1xnnZT2hbO9ezpGWglsStXjUeYK3onaVbUozOa1KLhWVQJHA9XHiF599yYu7W7qNyb5xVrzkUtAKXqK9N0UYuoGLywf02wHxyuYisOkg37zl2WZLFzo++OYnfHd2vNwXvvjqlxyOB6h27xfMviBXA7GHPhCCo84Qu8CF35FUuT2eSMX2oVo9tQWQdAouRqjKNE2MqVDjFhXhNJ54c33FaUx4B0PXNRaZN3lnA1K9c+RqB7hvMoulSLYpa6G2Qq62MyFnUAolzw2stuo9xHietEIrdrQBPi1IpBXN1YGv5o0qAvM8cjrsubu7pe97+q4ndiZt7WMgeAcuEIMQvG+edEJOo+3Lrlhyuqvk0543L0f2t46o7/H4csPxOHKaJsY0M+UCc+JwOpHFUXRY9xLQxtrQZqPQvHB8wLnS7ltvzA+tFIVxmklzQrCGJOWCCx273iS6BcftaSRj1g1djPTBM3fGaPTV9q2iSh8ixTmmaeLusEfFEbvOzkotePGcpkyZM6cA2+2WkB3J9/hoAR3TdDKJfGMpKsrN3S3OHVtDohzGTKqeuYzEGcb9ERC2u01jEyjTPDVEO5DVsz9V3l7dWB0xJuZxZpoqRfdUtaCiLjhevn2B08ym89yMvyYGG5CJE1KtSBCOd7fc3t2Rq8P3D+j8DimR06y8fDtycXHgw4/e5+GTj/hg7rjaf8rV7Z4Q4PpmwjslT0devR65OXh835HSzN3+mn7rOCTHy5vCFy8nbvcjcWPjw363Yde8XR2e42lmf1eYGmDcBU+gUK5H/JeveXsTCHoiMPOtj57zre3HiFN2j3ccTnt+/eIz5tuRn706sKcnbh/jZWCogW6GV5+/5Or6hlpn+t6zP52ohwNRPdodODlHmitSO+gec3x1S62VQOTq+ivu3v5mfT9evrkiULnaTxxm29+Tq1wf9mxCoXcdaUx8+dkLPjte85Off8pf/sVf8C/++Z+xCQX2L9k83PH8+XfpLt5jGj3j7ZH5zQv++P0dfPyI//Mf/p7D7ZFtiIR8yweXwl/84Ft8+NF7BE7I/JLp9lcUrtg8/CZ+mJF0g4TNuqc7FUgVUSF4bNApBUKrsdVMu6UV/NZ4F9Q7Smh+9ctZjyDZ7BssmMu1YSzgHRlHFju7a1YcEfVmWZEQOpTT4Y4XX/yci0efMPmO45jod1u2XvBdZPf4Ke7yEXJxwRGPXHRcPt3RP96QnPH1Zu25mm/Zf/Yrnj4o/On3I5KPvPjlZ5zG1wzbzMsXX1CI3I6Z/+v//n/5+3/6KV+9+g3HdKRqxokNYDSDZE8dK2QbnOU6GWOQSmmv3zmxsDW1S4cquWbirkd7z48++Et++MPvcbHpCFogj9bqBEv/pirT3R2f/uJn/NXf/x0qgQ/++V/yyR99yF2Zub1+y/72DVB49PAhQ9+3Jq2NyXxrRCvNxB4rAFrbujSvsNxP9tFqP3OvT1xYyIqd7ZbyWNe6Z+0JG8jiUJxCWZNdBYJHoqe/vODb3/su39lFPv7eezx9/xs8e/iI/3b3gD/9s7/kr//mb/npP/6MN69e8erFVxz2NzakKZ7b/UgW+OS7P+Df/If/wCyR//X/+XtOp9Z8qgGNVhOtba+Vu33EbyOxr3SXHb7vKLLUVvyOx/1/XEaP57TU9cSp66+2S+Adkc6ILGJ9pKmAzNOr89FCa9oeVkU5ZvO8zdlA0hAXG4xA9EK/6VHfWFbNR3VRoFgvca8uQ9ZSzF7Fwtax89vYWYVclOA8wRCO1uNpI4CcAZuGZtjAVYQF3arQamSH6jLIbWyLBaBoYEJwzYakrSGHnW0+eLR6ZrVzuzWfFr4AK7izAFsL0GQy2tbnitUUFFnBP60L0LTULw2oa4OB5d+02cRMzZe+5SSu69woUlgir3PkapL97BJOLfHehx4lvLNaVmuYBUCrS6DV8lUOd9brojUb6NZe01ITL6uwammhjrZHQwPxFiBNzwmq9wHBd1hXy/q8h7Tcl7DeTym9zzTECVoas/De0NO3gSfOpNCLnH5ZecvPcO7c93Hv958BOmf2W18DLb8OmJ2Bq/P9Z31L+21i19U+1PVLZWlclEWc9u7jPs74O1Co+8y2hVF4DrVo334/pfUegLh833323Du/Wt6VuS4fO5r9yvJH3/X61nZPoq3nxEI0VNpAZAXjpGHe5pdq23S1Pr7Zv2kBddruy+W9WW77Rsr6vXukPf4gQBea0XkRkJag6VZ2iRBcBIkGqHU9cdMROkcVpa+OoAZwUB0L/XNBEFVNmrgAafhlwSlaja2iWijFDl9BOZGNyprNmH8zbKAlzdoFpSUwKj56JFSqJlv0IRCzEEeTcRZ1HMaZQ1VGHORqkiJRNHs0eKRCH405hxZLXUIaSaAiFaIqCcGJkqoxBGtDuLsyU9pmpIC6nuwGnBEoKLVHilmTO2x60WtBSAgZ13vupsRQClVhrrlZddgkReYmwROHusIkld7yqvHBMZ1mqgRqiBYghzA7x4SgFZN04iyVNURrJJ3Rl8PQQy0M0aMqnKYRqtL1Hb7rSMy4aJso3hLzKGrJPgXynJm1Mjlln2aur16z/80XjKUwbDdsNzsut7sWTtA2KCrq1AxGvePx7gFdMyJ3IeKiMWIWAOPN2yuurm64vrnm7u4WrZWu64jerzeZmQ6bJ5gapQ3fQBvNZd3ri1b204lczJ9oTomQC0PXmwfddKL3jr6z5jnlbMlXTepVsals10Vwjq5EnHeMo0KtxL6ni8Eo9y5DhTlXPI22qxkv5mOVtDZAcfF4a4eiOMDSLms1ptxyYCw+Z9bwG3Cwbuxq5qdaDXiI3rPZDDa5JhCCx3eRXCpTSTBnugy7IbDpIo9jT66OkjpO04DuA7UemUukH0zOXEQZpOfCDfTDjEc4TCcUIc2JcTTPp4vdBR988CGXDx7Q7bYUBxqCebi5DqZMdBGpQpRgG2Db2UoxNlsQb8BcUVyFqIKvmI9gyTYRdOdkKxO4CEkAcRQR2zMa21Db5qq5QlJqdahEVDIVh4uxhcvYBL5S6YbBTPC7DvGOXLP5OXhw0SPZgUu4GMl2a5BxFDyhG/CxgzxT8gxqRWGpbZreWLJUXVQGpFIQ0VXiDFBcXr3LYmOIqSpFizH0oO2PBXE2iVQtjeIf7o2YrIKqLQjMcl+Eop5SPa/f7rk9TvRDhzplThO5ptWjZanZl8GLd4EQO7rtjmHTM3SOB4PncR94stvxjffe53s/+FPef1652H5m0+SSiLE3iXOqBBU6YNsHnFS63kBFyR6vnq1/yL5aujK1kosCjvk04cdCvstMXcB5GFUIuwfcpsLbN9e8fm1Js13syH0lTYVpSOYBepwhmxebhgAhMDVLhflwNClJtd8VQmdMM4HYd4AFITlRC0ZSb0EGwUEtiHMMMaLRAjkc5vnonCMXS6wathtO00TFmJ/jUbi5nijzCfHCsOm53PRsNgOXfUDUpLriPLuLC8Q7jinhnePyYsfjWvFxQyhH8v4VbuqYR8+X84HPcuL2+pbTnLg5HHh59ZZd2lLFwwhTyYyzpeYFZ955uZhvXxcNkK3qSBnEewbfU9QmvOKDMdXE41j8cHo0tJRk73Be6KiEYbDiOM8MKCebMKFe6QYhieB6R54rUy3cnU6kUun6jQVV9QHxniKFuQF9cbu1faAkNkOg7yIeez3jeOJ0mpmmmbu7PSlVdtsdF7sdNVUO4wmpldN4Qg+ZzXbL0Fe2D7aId8xpApTjMXHSxDgKNzeWTI14UoncjSfmecT7znx7qIhmhugYEW6u93TBs9l0iBPmksFVQgenIlzf3OEkMfQXCJnxWLn+8jWfXx9578sXPHr8kJyVSV3LlirsD5lxPFLmkdPJQrZqUqYixOER8uRD3ugFX315x+EAw+YJpwKv3rxhHE9c9AO7i57q4EDmq7uJXO3szOPE9mLDxXbDNI6k0KFaOJ723O4uePXqhsE7YthxGhPH8UTwD+m7wPZiQ/aefntJ7waYlLQ/MO8P5DozHRMxVqhCcZWLjTXrN29e4WrHnTqm8BaJkVMe2d+9Jc8JReiDZ+gV5yLDZoObJ0Qi0zhz/eo14cLjy8yNFuptZX878flXL7i7O3A8HfjhD77D88tHpEef4LwwjQ/4yd/9I7/8m18wn674o+ePOLgNudtx0kzAEV1iG+Hx5SX76xOf/eJv2coLyv7XzNM1H/1w4PmfZKuuxQYfxkqpOMk21MFbQy5ju4+CDQaWKb4ukxUbLIprCoEGFDh1KB2oNX1+pVgritU1HqxeFoEuIo7VE8qVis9CDJfs65afvDpQ5plvvL9h6DrC4NnsLhndxE1OhK5DtwPD+88Ztz1fXitT8by5rfzmN0duP7vjZ/0r+vhjPv3sH/jVr3/Km5efQjpw3O/BR/anma9evuUwjsy5IL5HicZed0J1xWSbvdi1yxNSYZon85ZtdZB5cHbgHOodVSvznEkps931PHn6lKePn9DXDIe34CM6XFCYKTiieOp8y3z3mnLaw8Ujnv3Rt3jw7AnDT79genvL67df8tFHlwy7HhfMowwH6gXBUvsMMLb62HCYe2ySxpJYrBFUKkmUU82MZJI3sC7XxRcbXIEY7L2UWmyNCM2k35iCQUHU0+UB6gb1G+gc4ckF3/nLH/DkT77P8HDH9mHHw0dbYvA8H7Y8+ehbfPCdP+HPfvU5v/niC/7mr/6av/7rv2I8HZjzNUWU/vKC7fM/4l/+u/+O4jv+6pfXvH5xQ6qs0kutlVwThRmRhPeJ5Gcef/9jnj0a+M6DS/7oh9/Hb3e29qE1tgvT6Mw4ss6+tHukDcvLbPVtMRVOLpnc/IBj3+NrxHsjEi11b/CBrotNheIXNI9KoUwnMmqA+GLfIWoDYIGsrXbBgNFaLCnVlBo2ELZK6qwkw5k/mwZHlUIMgouerJ4oEIMFyYkqPrTnU2kKodxeem2ki9Yf1tz8j0sj4ZhVhDQlkIievdAFAwDEfLrxnflh43HNd1idgQoL2FhQtBZTT4WwsnmC8wYS1HtgCdaz1KpkySa9zUa28D4QYiSLMKfUFFTn75cGcGgL/5Pmm2cEknsst6rGyqsW9FcRiigstZE4q8891Hom2qhwDyS7j1bYfbkEewgGnKLNzN8H1CULglABsUA0V+xr29i8AXU0ON7k0G5dte8COVrVfOKbhNhIOO+yGIMzqe+iVjCmY2NKtn2D5WtDMNCn4SQ110Y0aXdO88qzJVjX3uA+O86IgaZo8843abLYe7Q+/3sg4z1kbWE5gl1zcUpWIxj4pqRcv6YFZJ6ZgPrO/85YjyzLvylFKr7dezTLpaqVotZ8OFmYn+f9fgGTl0DEc8gFv/W4DzYu12MB8ByGlaw6ulrbXn5eQ8v32Y9waO3sdbJHa8JVA4BrdZQEfbcxcwmfyC6RsyB1CaMLZkPhynp9zkCnmNdi+V3I5vnxBwG6RYJDNWmlmQuaJw9uSSAytFB8NOZTJzhvaZnUBgy0xbwg/csF6VQozZjaBlN2c+RaqZqNzu9co+Q31FmVIhVc4HYyCZlrtE+7Nyq+ZiRniiRSTedYdD8hzlMbU2TO5qFXso3CcslMWcnFkztwvbnP2e5S6ESNcdIWjjSdel0U9iKWpgo4igVItJuTxlApOEYV5mJNlWiGPOGpRArOw9A5QvWcquc0V3qtloxaFMKC5gPFmj5p6alTyYwl4cU3iWCheKWIgZxTSVYUlIKX2jbslhgYnW3yzfRTasU3Jk0tkObmmRcM4BIfwAV81+NiwAwXTBbXqTIHIExoFErxHLVwM0/cjSfinNgcJnji2MaeIXb4zjPmkdvTnuv9LfPpiIyzFSstjESbAbCeRpUAACAASURBVKohuSb3miZrtACGoTdaO56sieCbJ4ss1OWyTgXswC0EF4jBfJiqqMlO+mC1dVI23UAQoaSJKSVEAtFBKQnn3GpsLzHgnJLKSJpq8x2DlGZbmrVSygCogV16Nuhk8XjQageqLlMQD1XXBNDSJgsLa6remzycGXTte52BAut2tUxQ9CyztGmiGnsteMaUuN4fKNPMRe95sH3INromA1RmPForg4/0zhhHSmKqE7lmOvH0Eq141kqVgaCOGAu1OoTIe8+e8/HHnzDsNqQ6mxektFQpsaRVR2MrKfh2KKtiAQIpQU70wAabevqq+GpyD3HmpSUuMksm1WI/S8yAtqiZvoNN76q3dV1qafe5TdJUAkVzS9Nd7uEm2dWKeEc39Gy3O0IIpFJIpVq6aEpU13MYC11/woyE7d4viIXuNNYvpba+yiZl5oPmrSAjN7mprIfz8hxEYNTJ1lkt+Ebbr82HzKjvkKtJQ1VLWxtN3uAWRliTLbQ/xtpoIF2LD0+zJUe6w0xKM4fDnroEBsjiebgcGro2l77fMmwGYs3sAjzbbei949ePvuD6ZuSknuPtnpJmY2ctQXxOGMRzsYnsNh1e1HzmmkdkKpWErRv1/v7cDy3GmvRV6Fy0Q7GU5h8EOSXG02RNmzpyAWoheuiiTYJLrkzjRO6skZ5OI5om5ru9SW4xBmbcmXdoDB3bzRYD6BLBKZMX5oy9/tjdKxxYpRFd7Kg14r2B2CLCZugJ3pi3fR/pop09aZrZbTY8enjB5WaDQ4hOVw9VbYMzFyLVBSQ6druBTbumRRPkI14Kqo6704FpzpSquNgx18Lbm2v244muiwwZiFtSKUynkxXZat6bFjluhaeoiR8Fj3PRzldtSc0F64CWIYYLJs5SiFUhgIuO0HdmkVAqoRYL0mgJcq4TNBfmOrOfJ+7GkbFUlnR0ckHEhnxD57nY9vQXF3S7S/JczIOrZtKUmecT0zxyGmdOp8RpLlQxCXitwnjKaM3kecJphRjoNp6ZiXyx1BrSPH6EeW75eX6D+ExSSFmZizBpIGFhWE4rTmqrb86Dl4IVelSxxG8tdKpUemYdKTmR3BERJVaPy4W3pxt+c3vg4YMbNn3POGVctMHQbjNALdzOFddFNheXHIrndHtizo5XdwVe3JGnE1dXb4ghcLm74G5/5LLv+MajR6TrG1KZcDpyrTPXWdAaEE1odngGHlzsuLzY4upEco5pFv7pZ18iWuwskwtcrGw3l3x0MUB1vHlzyzQrh9sTqc7sjxPj6YT105mJhAuVzdNLHj97wu3dDfN0Io8nxuNMFzc8ePiEywePuLz4iJvba67vbrh4eMHlo4dkhbvxwOZwohCIEvC54mdbt0cqNRXGlKiniV/98jOzU8Dx7//9f8OHP/oW0+HAdBq5HK7pOs+t7rnZz7yYeq5H8MMTomQ0XZEPJw5vvyKVI+P1DY8ulXmKhOmSPHoDXny1hPTFQVoUkQbIqDHFK4t9QWScRnK6YjfswPW4NmipWglirWJd6oOm7Fhr9fbzF5YrGEDnqU12bpukZMFrpY4jjInHu6dcbx7z+Y8/Jx336I++jbTU6OqFefGOE+E2Ca8OjlTg5b4yDJ6aR15/9YJ0fcf16x0//snEX//Tj/nlq19x/eorNqVCKnR9T0WI22d88GzL4yePee+953QhkNJoyoZpIk0jWgp5nrm7fsOLLz7l7ds3aErGqmmDp1oKh2kkdJHYRfymR4Ln8uFjPvroYy53l4yHW+T6Bb6POJ85VkVDhOxJ4xtquUX0ROyfIpveFCi5crq+4nD3hlxOVDKZTCAiFGsx1PyK3T0T8BbWeq63WHiQjV0EqBOSr+Rgth2lKlqbvJBAFKWKN6bkoqiQ5ecZ89Kpg+IIJYBGquuoAuHRBc82A09lgx88BLuviioajW38vN/x4Ok3+O4Pf8S3/uiHPPvgE/63//1/4SZBLpkQL0huS7h4RtdtcXEH7M91ZNuT1WEe1r6CK4wus/nwMd/5k+/wbz75Dn/+ve8x7B5TxHOGF5a6+2sfqrKk8C7WJCZtbdfQR3woxL435uJaxxj7uDariyW8QNU1IKSQNVNpgXHtlFpr5lZrlXnGhWD5xy11VWmTSq22P7OEH7RhuVi7XWkegAuAhtkXmVOEebcWNejIrIh0re2Dc/Z6DO9DxIAgbcCFD7ISOSQKnmBhCtlZcBvGHtOcMUmoPaNFwbWwNUUs6EBFDPhp6qtzYIKuzK2VhSbSvKObzBglZaulY9fTiaW0jzmTcrGaUhc1SEvWbedzcJaiWzGlhSUVGzinteIqzTak5by252LPVXHiDTdY10xjjbYezjAg02CdjWDsjzZyEA1iq0b5IksDRx0t/KrtyUvi8tLft+G1uHtSWBoIpMu9b32aE7OlciyMRHuPg/NIA6YWuGpVJTagTlRxjT3piq7XwXq7xuqTBeReXmODEPUMvC2sOfOps2vjxKPSkmrvAYxL33ifgXafaefaYkxl8YqvZzxI2uu+/xOXvW/BthqQLAv+0YA6k92ykktyzisouHzf+iPvMRDvS3nvsxPlbAbQQNYFpHtX1vsOy05h8fKrJbPMw1bF0vp1ghBtpTltSd7gJKw4mNMOjwM348ht9UekOpPXu7RueysADG2NVTP5+wOPPwjQlXYDF22bUpXWexnKSbEl5zCJ0DIZl2g3dknSmm5Do7WdNsvF8uJMGkluF7sBCNUkom7ZGF1Y5Vx2UW3xpmzsA9+aE9GzWhgHRQO+RkrWpsP3C9ZGqcUaNbW0zEVPrzmTyogvhVMtlNmbkX5LS4rirecoheBMAkVDZf3iv4NNRIKYpABawYOQS6O110Ln7VASjGkoTkzKKZ6giuRsxt1uYc4tK9cYNpbWqI0mW0klM80zvnhKTqieEylpoI04aT52yjTP64FSKqScVj8uJzCIZ06Zkg0ABJjmQogCzjczd9Y0qtw29aJi6HE9NbzD45YAjpxJ84lZJnahx22VXb9ht93Rac+smXx9xd3+DjdmyAZe5UpbhwsjLpBbbLwTYRg2+CEQpLP2p2obzJ19xtZGsVRyymx8sEY7eEuHbdNO5+2GHjYd0XmiOEr2aJptouIdXb9l6KJJpOaZuDFW1GEayXkm18o8Wlqjc46UUsNXPFU9qVYzQm03rQF4leqNtapYYU6T3ZVmIn8/ontO6R4497U/iy570dDLfTK2PWKM5DmvBY+qMk4n6pTYxg0hBmK796qaubXdb82rzfhelFrajIy2Wdnr6oP5iAVRclJEIpvNwLDp2QwD6TC33ZI2BmogWytaaFNbK2CNmYpWSiqcVNmFwBw8yXtqtskoXpHJg7fwiDlnyOaP57wHsQlgjJ0BF6Wiar55Wk0KYKp5Y60u6I+BYussCNXSbIPM38+pR7KSspJViS0IYwFS7f6Rs8edyHrELfvemYZuN3tte6IsJ19j8OGtWfPOmAeuHXraplZroYOzPdY78wyvuobwTLg2ZVsAuyY7bgOGUipTznjfipe276Y5keZ8HphgoS20iZe9JPNeCL3tqVJtXXiEOmfevHrNT/7hJ5TQc/XmrQXRILgFlHWOzgmb3vyJoFJqolTzCh1PE7fHkTRPrGas2ATcibDpey6HC7a9SSDLPBO3Oy43jsdZ2SeIw5bge1t+KTNsNvRdtL08RDRM3DZfspoTUjJ9DDzYDGyGgS4OiO/MGmCz5fLyAqRSyoRo4nTquDuMxGDsreW9LdUKZu+8+d0UK+ZiF8k5UbJJb514a0j9Bs2FKZzY9gMXuwu2fc88js0XRi2bu9p7o9h6MAA+mjdsm7jXVW5dbaiAvYc5TxyOB95evUUwhttmt6PbPeD6+pbD6UiaLri4uMDHSBqPiIt4IsErvReoM2U+4SkEV6kU0jyS5mQ3VJMkWSo5iBR73S4a6znGNpxYbjqTO4fgcV6atHRmmmcUsSRk7L5O7TX3nbGtq8Ld3Z5ajFlVjyNTnjjNJ6aSLGlwVlIRcAEXPXNRUpoaAGBy6e3jCz54/zmn6UhV5XQ6cUoTp3G01NuiBAlMUyJnu6bjlElNxm4kAWNdSXv9kuyeDo3xKsWKxTlDKpm5jE1qFYwFrGqKAd8UDbVyGo/c7Y9sh4E+RmuCxTFst3aPvr2hircEzTYsmg53vCwzNy++wkVlLgnvHfOc8FOijz1ddQQX8ZuBwzyhoZJOIzPCxW5DxXzynrz3jCEGbt6+ofjegJvbG6bjie1mS5ojh8OJrd9z8XRDt7lAwonD3Z79MZGKDQDmnBB19ENH8IFK4nhKvH5zzThNhP6BBSoRyX5grJ5nF495+OgREgemqvjQGQM3ZdI4kabJmkAXIIMW85/K1fa/mh3VKfubI5/++gs2ux0ffvNj/uxHP+TJ8+eWfNr33Lz4jF/89S3l5Cjb9wiuo44zMLLrMxdyIF/9EyLP+OhRx/PLHanrCQ8fEb7xCGIg6ZEgRzwdQuRcLS0ncYfywP5dPCmPHA8v2A7P1x7M8ocquIjzbR8B2/+XgnDtPZRFgiT3/tk8lXWVC0kBKYVyd8t0e8X73/2Af/fHH3I43PFgKMCRJB3FBbx01Crc3cFvvpr49efX6A4un2z4xkXl7fHARTfx7JPHfO/j5+weDKT6I+Lmkh/fVOY3b9mGSMwR1cIHz77B86dP+eAbz3j65AF1nrh++4J5HlESSUdyPjHOJygnrv2SiFjIua5yXudsDzB5nK1xSuby8iHf+uTbdL7nq89/zuuf/0eyZtg+4KCCxEhIyv6r13z26lekeuBygJyOoBAHiFv4YPeY999/wib2eHWNDbTYwjSVQrvS7fSx2vAdiK5y5m4YqCUeq1FoYH9ju+A93gMtNXwRgCwPaZWilQrWDZu3rRqrLxpjBg3gTJqXtQXgqVnESAj0m8Cw27C7uGT3+AHFwT/+7Kf85vVLplq5uHxo9bNCF0IbcLc6pDE6XRs0WC0TgYnqAu9/+C3+/M//FR8+fErwrr36P9CAvtvRW1O/1DBLTegEaWFGJq20tbCua9VzgMEyeMRAl8US5r4sUrVBHO17Q1jkh25tsJQGTNUKzoa+Iq49B3u6dTnLF5ni4uXKPaBEMguisXpFL2CDmLTRe2lsm2UQXajN5gfnzeMPA6wW5k9tPvCaCx1nM/yq5jNeSqYUC8goOtFym9DWf83zvNabpaXcAm1wf1bl3Adscs7kWuy9qKWtdAtPExGChOaDLa22XWIthPOOpOs1XkFDZ7WKqjCrWVflUgiLF3ljbi3y0AWgQUwls1jhLsy1+49V5thew/JsFpBQW++4AugsIIquz9lISUutC+e6V9f31TmHhCYZZiFMQHBuJRtkrWhOLHWqrGQnY0cv5KPVI27Rwa89wfnv5YZZAO3leS197nL/1FpZlfewvs/r7fc14Or++70MkasufUddn++9C7z2je/+ZPvcGYg8X7ezjFXPsup7su/FYuY+eLhKWe/9zuXrf+u1/dYTeffzZ+ugs4pzeb721z2upIA2Gwqh7flOcXL27zM7M1ipj06BQtEM1QJWcPZzl/1T0fU9cuH/B0BXa5NmtZufVrgauiwrk8f7QHCBLkRicLhgGvWkRnUtpbSLeX6TwAqm3zJFbBfeO4eXSsCS4JZDuaohs6XCZhjWi2/sIvOm8C0Zp2pHrqUBdGAMNvPQK6VQsx14wceVUpuTbXKa4JgTyXv6vsPtBjT0VB/Imq0Jb3IeQ9mt8XCNLqwqLeHGkP3agiRobDetlUSbA7TNTUXJFOaaGiBj00u8Bx8sSQ9W08ilQKsKJbcEVDcaKFAs5adzDjvyhRgCse8Y+oHYGnvnFm8Tk0iKsIKhVZU0Vea2iasqcx6JJRKGnpozp2IS4zEnkyE416jpldM0kmajbhsbyprwlGamrLyurzh2dxzv9lxeXuI7zymNUMG73mQ/pSVEZfOWETEwWNRo0bUlJ9YKtQilLNel2rSvNf1OFqcCk7rWWknNbDxrhdYgTTVTpDETuw1JIYo3ijxWCLomb+v7nm3ZGjjdmdS7166tR2W32VlyY6Pnam3egCrG1AR87PChrAdZ1XvNXUpLgvoaArHcK+8y52SdMLjmoeHcGSijKeBbmYKNsuwADK3o9AJd8FwMA9UHtn3PeBpxpRBCMAanthCLtoWZb9Z5RioiiG8hCGKyhIBjrpa+qZg01bdjMIawvGp8dq349jhfrVBo+6ZzQgwegtA5Y8t1Yl5wfRfNa49KrsYmqxmKmFT0NCdK9dyNM7kIF5cP2e52rQBqyVnVpCa5FlIpzClxmsb2vpsZt6hCbT4EtrDQJh/V5ZBs9zW1GGDvGzBfyrmAWw50cSz0cmWZL90v7tdyrNHDW7EqYf3aBYgxwKfZCLSJ2/I5jR1zzKScSNkYi5SKporreiR2lODbNLjt6dUo25oyIp6uC82zD0qZ10JsSaAyhqe9Nks2tbVna94Ro+fh5QXPnz4k1MLxeCRNE8fDSBlHorOkyGWKK+KIjiYNpAXcVGuS1PaP435PrkKMlkJGm9Z57xg2A7vdwOKBIyqoj2w2F3y4fUD34Blx2LLdXEJRxsPBfJDyTCoZTQlcoZYTKRfqPNMJPHxwwftPnrBr8p3jmHDzzGY7mDySTM6CVptijlMy5mMbyIDgZQGegiUPt/327CWi67VO2QptxYJIQjAZTxfj2vaUZIFM6hx5MullELt2tnqEGMwaQFxEnadU8KkwzZnTfs/V1RWHw8GCPoJ59NzcXKPuJVPOILCJSukcFM84jXT9Duc6wIzrS63oPBIoBA/VA7WZtC/gMkbmCcETo6O0JPEYwzp8Uz03VIu7jPPRvCrb/br6AKlNiJY9b+GspHnmOJmkPsTBhnF5pJAZk3naIgGVaMO+VKlZ6ULkouvxzuwkqiqhC0SNnOYTaZ8pYhYMNWdO4wkKHPcnjseJKRlot+zftTFPapP7lFaL5JSIsQ1inJmap8ZG0NQEOmpT5qqZnJLZHwTzOqk5QzXmf+ptiGRf7yklc73f40Jk2Mxsdxc8efSAmxe3SBoBcDg+eu8pXT8gVfngw2+yc5Grl6/QlEzOMmzoVGCcqDkTegNL1QvVOa4PRz7/6iXTccSLo6ZCGhPBnygpUarykIEcT1zd3PHqzTV3h4lUhaIGSPW7raUG14zzgaHrSWnkq6/eMKcM4QI2WyBSJLDPjqtjZebElBxxeIB4NY/icWqG8SbvLGlGNBDjANWbp2VSnPR00QCQ8Zj4xc9+xf88/k+8ffUV/+Hf/RsebDeQj7z3jcf863/7X1FOM5+/LfhfnfCidM4CWbyO1NMVT5884/GTx3ggDo/pv/1ddGcKjFk8wowxoWNbnQbSqVqoWJVuZcnF6Li46HGMUF2TgLYz35BcUPNJNvaEsa9WJG7ZCO/9v/2e2uwI/OqZ5qJnEwKhJjbzHX/y9DFp19HnV6iPSHxEaVYwUxKmWanFcf3qyKf/8DnPPnjEk3/5fX703Wf8i/f+Le8Hz6PdBh8D/2r6Nn/zk1+SvvqSX79+y+Pehh9O4PsffMDlbkOYZ/affc7125e8/OozpsMNlIn5eMfpeMc4ndgX5W2Bu2myRk2ElGfb44cB7xypFJxYc7y7vOSTb37C44ePefnyNX/1N/+Rz376V+zvbpk0csoK7UwZfOQ4ZYbLHVoTb796wYuHT3lx9ZLq4dvf/jYfvv8Bu+4Cr7FJ8YLtM2aba/LK1mCdW/yz5MtGV7rWXwZZmWqlNEYVsgrkQMxypqo0cd29xzstkgVrnZt42wsXkv2CRy2/18vXmkAVul3Hx9/9mP/+f/wf+NOf/4JPv/ictzfX7C4f8+zRI+6OJzpnwVteXDvf7TzRxRu4epx6nAzU2dPHhzx88D4xDpiu6D8D0H3t9a1AzAKUafO7LktyeGmeYItUsqwSu7Mnr3mDI2JWH2JBW7S+wYDN5Yo30NUZG1Jd831u11qVdaC6yOxUaaEDZ1CvtrUg0MIErW5EHF49JpUzIMu3Rn153qsXXAM0DKSrNEENKRvZI5UKJaNJqd7jJRJ7C7qrbWC/iBdqraSUmaaJrCMdFg6nqszzTM65bRetkV6WhbsPMJ7Bl/ViVD13E633dytY5lbgbIHBrF6r5++/D9S04fPigawqNjTQiiwsOuds+Lt8zwr4yBlMVb33fn0dxAIbprMCq7+17NbnvP7IVq7YXnofXLoPcK0kowUD6WJ7L5fPL7y9xkbMGa+WILuApQv785013567rQkb0P1e1Gl5ur/zxZ2lpv8lj6/71C2P+/559x/Lv9V7X79uO+tHWO37O57jKjtt99aKCTUyCrCGuixfBwas32f/+Xef1td+B+szOg+2zvArsIZ4nJ/TGfyrApoTSj7vxk4b67UB+s6Sie1ct1BC1YKS0QXzYQGBpeHU57X0+9bl8vjDElcfkVpgSXJD21SkVchiYg1jyXg8jiAB1bLSNu3maBeh2gVbi46lkfRLk3/evJw6gs5EEfPIam9iQZFW5Dlvm05Z0lnaxMh7+5OzbQBnD0shtxtapLKLNn2l1DbJcIS22VILRY01gghxGOhxJDEXjyyeWrGmlvMmIbUgtaWe6TKxKaxdhVp8dm2L2/hNjtwWEarkLLYxO6VUK+JNUmqFfy52sJs/fl0bZQqM2ph8WpGSGe0uxzuhLF5IVUlOSNOE9w6rMZQlLTC0hkfFkcQ2yWUh56bpDj5QaiKnbL5tpYBvXlptoj3PGS0GzgXvGUJk0w94Elntc4fDgel44urqitBHCJayKBLAdQv5ENcYmEsBYx2gvedVK7U4SlFqsUQsQdoUTFvx0qSTDfqQZddWY7P4FiThNJClrCBxmWcSGSeBKGbmPeXZGuc2yUNgHMcm42pLvWS8iwaAejvEz6le7d6RJX3VFqh9jflk1FZIBHFnwFRYJ4Zfp/veB+qcc7h6ngTIvWJPdVln1Z6j9b1oyXRBePbkIWQDxnMemdxy29oXem9JUCHGlkKsK/uvYECNAfilNagOiiVx4ix5sYuBoeuMZaMWkDGVjOJWBbPz54QpcRCcEEKP7zqCVDpgM/Rs+o5t3zUPSE8htyQ05TSbF1eqymkc6bodT58/471n77HZbC2JTW2SaVxA28DNyNkKfwGTvZWMpbEt4IOBcJTcABkDmCyp2gI61gRVpyttvpRCmjNpzgbmnXdblrrDSBDVaNXYHrqYyVtmRSvstRjwr9p80dr3sww4zG+wj5EpRabUgEJs7xlnA4C9WPhCpwYOdaJkzaSS8QF8EEK0wtx5aZZK5uO4NIHS1nIIxoYRD9uH/4m0N/+1JMnu+z6xZeZd3lJbV093z5AciSODlCUKEr3IsA37r7ZhwLBgybBhwSJHpGZEcpbunu7qWt92l8yM5eiHE5H3vpqZFgFn46G6Xr13b97MjIgT3/NdVqzXnmebNV88f8JnT6+wKXJ3e8vDcaLcqw+XtzXGXLICUcYSKtDkrM7/6iEWGKaJbhzrxkOBdyuNWaqybd/8H0phLoUxQycWazWsod9YVpsLnj97yRB64jSS08z93Q0PxxEzT0jUQirHGWJU+dR6zdXFBd57djuVw80p44JnnkeyJFKesEY3X8qEU2C35IQ1ymAuRcixUKo8HqigXNHmUUxg1fcz50ywlqEb6PtBt4Cl0IWOnKNS9EWbPBTtqvdeAa+chWgL1husCXjfaXiGdXRZsIcjDw/3jIc9lIwzhlUfmKfCOI2McY/vOtabFYGEzEeys0ixmFKIEfphZL3eaCdcIJBxCE4SzkiVZle4rTExqNKXarzbOtQNnGtNiZyFOamszDi7sLSLKKDlK5u3FA2FmU0hDx2+H/Arz/4Q2R8nDtMItmCD5TAmppQIndfGQymMc8SKJXSWKEKMiZQzH+5uWL02DOteZWS+dj+zbkBy1g7mPM+M40iMyrpNAnMpZAzYav9QNCxrLpnZGrrsMNZpaE05mW4XKepFmUudW5URYVDD7hYWpXu6TC4TnXckKeyOR3JKTDHhCpSHB667nr6zxDIxpcLzZ094erFmZQxmmrEu8OnTpxjr+Oa7V5SUWXc9uAHfWYZt1EbfsMKK8PBw4Ne/+pr5cOT+/R1linixbPqBrV3hxWPdivXVBr/dcpiFm7sdN3c7NbavNgM+BIbVgPOecTqSS9LUzmKJyRKzZ7V9Cv6K/TFhMmw3GyRc8v5+hzXC9ZOXWJs5Hh44jpOCvU7XTiuF4AMXF1c4A2mO7HcP5JLpVx3FZHbTA+9ev2e/u8OTsfHID3/wnOeXW378R1/wk5/8MWPy/Kv/8y+x/+E1ZT+RbM8Oz9c3M7/89sDF0w3D9hO1Zthcw+YHSPCIc2hrtKMgYCesqDoCqRt9UM81tJHoXcfQPcXKDDJDiphiNWxMwHaDAnS2egcvBX8rKlhW+9rqQNv3bWtS/Y8Ak1XmGu9uMLevme9/xf3dK4affIr/0Y9IOG7GHYfJENMKZGB70bPdrNj97XvG4w23Xzzjz/+Ll3zyiSW/fcNFn9g8ueBZFnZvR14M73nHK0J+4OnmBc+ePePzF453717x5vaOnDLHw5EP9w/M00xJiYe7mYf7UZOqvSEFWzeyWtcYVzd0ztEPPc8vr+iHgZgiq4sNXdfzF//uL3nYP/DXf/lvef/tlzzcPzDPhhjVM8qvAj/+yY/5/Id/RDBr4kHYvd3z9vKG37x6T1hf8+f/4n/gD37wKT6vNPBJWiWl63QplaR+fkhriNba0hQgsjDoiBpwVxKlJLKkulHPlJSJWTRMqtkBLfVbLTLPNpZSpW0KYsjp38+bVVXZ085bDBjP8jNhFfj8Dz/n+vkVP9n9hLv7BzCOl88uODzsICVdw6SqpBuwYiwGD5Io2dENK4Jfs1lds/JbpFRZ9vftns/qnnY+1jYbpRMIo6DByetZQbUTYNDYOG3D3hqhKeUqn2vXH1FECQAAIABJREFU7qRY0OunG/VcG6piThtzU2tzmgy13r9ylu5hrfof5mhPNW8db6owVM80Y4wSArLO86ZKGXPOpBRJKSkj0aJeolWmClRJZgX3csHkrE5CPkBX8HICG6zVBFVTPcty1iR2adJJZ7Fy2l+3ek3OPpMxRjcDZ7dtkbpWSWqpKhNQ8MnZluBulz1ixYux9d414oep99rUZp1UXz1V+9Tk3OZnszzn+orSnu0GIv1eZKN9v8p2rdFkX2toycNtDC+f2ZhlfJ+/6sK8/Og4Meg4a7ibR98/AccnME5r78fHiU2m5JaSq1+9qfuB+pGMOYFUH5/LOevtERHAGGKeWWTFH/3eOej2MZPuY8bgOWj+W1f8DMQ9B/kaE1W95j76Nzldp4/f7/zPtmeShmucvaeIejyev6bh/LOY5TEp9Vk0PP7Mzjy+v/II08w6hxu1mnCm2n8ZW5tCjmzV2stKXY9t/Ywl1SZAdwYQ6/5R5wVbH7vvnyO/F6CzTlMaFQXWTvBJA30avMvPY/VMcntATxeIen4ihQb35TP0fqEZU1FpAZsN3laWj1P2kzOAE1ybbK2qhNXk8zRojLU463WhK23cK/tGF0lBTJUORu1whtBpWiC1UEYBmZgL01zwEcRbjcQOhrlEnYQQrJQK1Knb1AJiopLPhs44DBhXTWWpiYmJVDebBsg4svHENKpHl8CJMK8ptdTXAbC24H0HjRYsLYlIgbt5nnWwRojzTBonvLPEacQ10EUVN7UD5avRe2DKql/X0AJdRAyaupNx6h1mPX0/4LsOnOE4TdqZqfLjzqiP2XrQDWb0mTlMWHGUlMlzZJ5nphQRp31HJfqoCUMxIE50n0M9iQwt8ts6lbp4X7sYTbcvRufpIvWrLBO7xRIqk6Xznm7QsIti1UcQAx2GeTpCLnTBK2DgDXE8kkvh7v6e9Wat4FmMzClqgloWxnFEZGSaJv330iTeCsjOxRD6YTH5V4q6gLGncWB9lTY3xN08esYb0P1bX42hReNa1cmxSDUctgsV3vn6jMZI8I71Zo3NhTQdsX6gCx7nFJQu1hFwdNHS9REzNanB42JSaoGaYiRjyDOkacZ6o55RogT54HVxSqXJPZapRQHoc1mpFJxV2UVnCkEU/HBG8JVFY6wlG0fWeoewGhDj2Y2Jh+NMPww8e/aMJ8+eYVEmlqALoxFbC1GL8/rsEwVypqRESTPWqjdDCQZKYjrukRSZjh5sNboV7XrGAsfxqN3KOreVUqUC6cSow8jiM3fewUG0aWCoxYMB49SbxBRTpR7lBGqYtjDZWjhV6X7tQk4pMc2ZkuPybKSUmEXnHTfNdMNA53p635FNYU6x1i1C6DzDsGa1Gnj69Cldp/JQaz1d19N1AyEEvNdwAOPg+pNrLi56nm/XfHK1YetgvL+j7z3m5o5dmhX0qObM1mrelrcWZ5oMCLrgGPpABPou0Hn1jVQLB00Gb9IMY3QtSDljQ89xf2A/qTdEHGfePRy5O4xcRmFOjs2wVoZejuz2I3MR8AHjgzLWzIRxjlXwXFXvrRwj43HP4XBgyqJeacHW8I1IF86cd0Tq6ye1ZMuZOM+LPMYYS86FvutZrVbEGJmmiVwUxAh9z3a15mKjht+SE7vdgVCDgIxRhkTwnlA3ZH3tPIqgLMPK3ShGGTfGOKyVyuILmp7aBdZDx6pXzz/vDCEmQtfR9R4rGUkT3na6tMWJPBUShmi16I/eICYzDB5vhGC1HlBwWwvOXAoxFpLTlL0mu9M5pK1rZgEdpI4pIxqUkktGJUytyFNgK5fMNOmGf/CWru9V7jpnUi50XdAUcI4Y65VxKMp0Ns7RdytC1zGniTSP6gclmf3xgatnF2yur+i3G97f3fL+9obxOOKN168Q6EIiJx2PXjsMTFlqkJCO5yab0sRvA+OMm+v2urGHrTZqYtQNHCLLtSv55CXprSUltQRY9R3FGKZxqkFJgWIs4/HIm1ffktNI1zv6YNj0jk+2a/bvb4jjzPbqCbfv3mLXG8J2S+4yfbfCTJEy39N3W3xv8T4Qp5GH+zt2N3tWoSO4jixZZbLF4HrD0Hes+4FhtWIqwn4c2R8mrSG8IyEYC8Mq0PeBLFITjqWm346klBk2lzz/5IeY9Sfc7ya8Dbx4+hRv4PWrr+kDXD25ZhrvOR73i+2JNLa+YWkmrboOt3F0YSDnxGqz0gbhnSGK5+mTDfu7Hf/Xv/7X/Ok/+iP+5//pv2d9dUmZO549+ZzLJ6/xneUwH4muJ4UVX9/Av/mL33C3/xn/Ig189sVnXF1eg+8Q8ZTcgw20VPIFPKkNjeZjJSaSpWCN12fADiBwuH/Plz/7GW+/fYPrBp59+gP+4T/+J7hhjUhCcCqvO9vcLLU0Jx8o3QwbbegoT7pBexz2B26+/oongyPf3fDw3S8Zhg88e3lBdoFcYNtdYDtd/6+3Fv/PX/L5Z/8cY4U//uEFT4bM7Xff8vVf/X/8+EcvGbY/4vhwQxy/4eoysbnIbDfCs5c9z56vsP3MId1yP98iOJLL2MuBlVmTc2HsdM4LCMYJSWYuEdbrNV0ISC4471lvFYxrLPU3799xe3PHT3/67/nLn/4V+8Oecdxz2N2Tx4wrHTY7usHSG8fFyy/4s3/533G9esbddzu+ePFHhM2ah3HG9x0/+OwPeHJxDcUt9RitzsmoF7Q9CVrNUu9Ta//6F6OWGPrdBCS9f9UXVihLengqhpwLqQF0bRpsm7uzQyoKcu5DiLWcnZBuVqUlwyac9epN1zahtROyuVizuVjz9Nk1kg0hOGxKGphXWWvtdXUu0uaCtQFrM9kKpRi863DGY2kKAK12f+/Rzr3O9W09bHIwZU2d1UT1l2zds6gU+ATKKZN/RkSIKZNKxHpfiRSVJWfAmLTcU2WXOxK2rkUKFrW6GVFgWxVQ1CaKfr+1+xsAKKLA2zQpI9uKaJhLhpIUZGheeTFG5jkSYw3bctB8jLTirauhdRiEzqhHuLEG8crkFJFqnaNewaaSWGxVzog07EmWGvQcAHHWUexj0HFhRTX0WT/w8qdpIEh7Hs5gz7Yf0emmmvGXxiI1Wsuf3VtVIpdlHW/kmgZEKbhTFoBUj+bF9vGD9NH4QBalmSxn2mpkPRdjzKPfPGecnUCv380sa0djexmkkjbOPg/UxnOTROcF5G3n0gA656qtDlRfufpM8ZjF18bCxwDb72PANSD6ETZy9nUObi9X83eAZKcwiNPPGE5A22+9729BkR+dU/1qZJN2Lc4Zhdpkzstrq72SeQTqLUy+piiDer3aM3Q6l9OYOL929ux8Tj/b9uNSvbbNMmdCaXtoofpxonNGEYpV5d6CJ9e1YAF7C1UJ1fCu/x8AXfMq08mzot3mpC1uvk1GtAhQ7y8tPiW3SaEN4rp1F1mAvWmeTzelUjrPqX+m8fGNPS2O9ZMba2qXufnU2ROCiwIRrsZnNwKfSE2oqYaeKp2qErViMKKAiKv+MEmsTiDGIdZrco1YHMrEaFHixRTU/DdhAOekmnSyyAiL0eU5i/5ZKuAWi0rlSjGVOk2luGuQQBLFulJRNp3BgPV4p0WziAPjlIHRvDFMNZVPpm5066ZHnxsyCmwY5xDqJkVvOJKFXCKGzHi/J5WsMtGzLoO1Fr/f05KSxFjC0BNyRirzYxrn6n+n98OJpXMOM6xIQZi8J02ZYh2lsl1SzqSinmaaIml0INTzpjLjFN1UsAOhGoqe7nHKagzuqrwU0YUg1w6Dq4VyTplJCiQF12xwmgpm68AMoRqq6uR7Ao9M9fgQlYsFRwidMhwNCAnnLc6GZXINIVBEn9kiYJxT75TSWKZtMrbL5trWxRlqd+RsfPyujsbHHZGG3C+LjdSFv0pcnakB5KJLoKbIgsdivVvOJSal2JcKHM9RE9OkPlfGsKTvOO8hBawIg1UN/pw1iEQjqJVh2mYwY1gMrtvCWRn/NG82XbUKFmUlOQymFAUlQiAE9Wuyy8voNckYcI4QtNNXSiGlxDTNLCxfx9Jlo7ISrbV03kOMIMoscs4SrIKBwRqCs8zHA/PxoOC11dCUmAvjPDNG4eZ2x35/ZFgPFTjSgIMmx0ilLj71GbHL5qlahxtBDYt1LrVOgUwxFnLrNFdgv/lg1utmjcOZuqAFQ3BT9dugBvboDiBX0HCaJu24iqYRh+BZrQZEoOs6Xrx4ziefvKTvewyW1WpdWWuBoe/xoTsDlh3GG7ZPL9hernh+seEyWOL9LR/IbI47DiniH+4RowwCqQxB6vqiU74Cj80YXHImxpmcIkaKsretejG1QiflpAnLovLLiMOvt7hhw9vbHa/evudhjNxPmZS9NgFEOcwmdFw+fYYbBhJvsbs9Vgq+3u8+eDqvzQlKrCxKQEp935kiEUzAGZU4WmPBQk7ahJjnmZgixlouLi7ZbrZM08wwDDx/8ZzjceT9u3dM88xms2VzccnFWv0uS45M+8h8HNnHmcvLDV2n9gxd8HincgpjNICmAMXX58Uo8zgvYFGT96jBthqwW2VPd4GhCwz1NRQENLVZR32WiyYHUxgPew7jUY3DvaHkQQGlkpnmiWkc6TZdlWhGckqUDCbYs03YWeEKS7MCW7d7bW4zRkOJCme/oxJgI5njYcSUTNd12E7HXfCe1TBgvGW1WnHRDxQs+/2EiNCFwGa9og+O8aCJ1CFYvBOct1xebdlcXTDVtSyVgvGeec7MKeGNpwsdBp3/bE3+vTsceZjmJU26FcqqbC+IRKzJOodiakKeUlxKMZTcWCUK+KYcyamGgngN2ALB2EImkmKuQF4mGEPXBXa7B3ov/Ok//DFPBstVb3lxsWXsAlJgffkEO2zItmPnj7x6/5bYF1wYmKIlHzVBHRxlTszRkkxhvV1xcX3Bfn/Pzft3PIx39HHPZT/xdHVNWjt2h8j9w0iJib4LZGCeZ8QaUp5ZuQELHA4TUnS9C76nJCgJ0pzZXq/49OULnj55wqrr+Pbrr4ip0HeBlJQpY61KHtfrNYfDSEqiDG9nmNNUAf6B7XYDYtheXpBN0WvtIheXHc5F0nTLu9fv+PIXvyS+/IxN+IS03/P6V9+yf/uWIIJ3K+bScXc0fPXdhORf8fT5M17+8AXYva5TbiCYLamsiOLwLtSaozbhrCoqtGbMCM3XpiA5MR0mfvXXv+Zf/a//O7/4+V8Thp4/+Wf/nJeffcb1D75ATCaJLHK5uuVc/qwr6QnhQSNJmsmHGAt9z/DsOf3lBW9+80v2uxvuPvyGwy8esD/8Avuja8JRuA49fR8Rm8FbLl4mrtbwcDxQpjv+4zcf+MVf/4xf/PTf89kvP+XFf3jBN6++5W+//DW//uoVR3eJ9E94kwPv3twRbg7sdjtujztyTjp/rYXVqqfDkDqLvwoEHwi+p/MrLjaXXF9fk2Lk1avvePf+PXd395RSGKcJAR72e8ZxxDqtT4w1DBc9E4UwdHR5IGTP0Hf4zcDTL17wx//0H/Fy9ZzbZzd8sn7JfZzpNxbjIQRdbyULcbcj5sz6cgNelQxN6tq2rcvGcGFE1NqlBg7oHCoLq7gFPZkK1ioDyVXQ7+Re972HKKtL9zd15qy/JnV+VOBfn4EzEc+yN8FoYx7RhqfvOvXuLIUhhHN8cXnK2n/WqOooZwXWY7W5EaneXiX/vRWuyzuY01pwqhHr5l0c1NCDtv19DBDIUvNaYwk+YJwqUqhKFKn7F+O0+R9CwNRmX13NT5v10oAJJTs0gKQxuPTnGphRFUYpMeZCttokMHVPJbmxyNAapwEUpc4FVd9jF4vKurEvgnUGHzydc9hiydZCVWgoOy9jcqK15E9qBofUtaNU5nn7MlKBNFdJDpwAOhH1bJesVjNGqnWOSPWfPmMZtmsvLZTCnoFw6j3ORwBzA7GknJ5yg6ne2g7beaxr15UTOPI7npXGyj+99olx2WSN7Vk6f42Gl5w9aQvovRAaKkDXmGm/i3HWACapVh6PADpTGaco+Kw3Qsdfq19S8wCsjaWPz7YRHD+eDc4Zc+fntNgpNXDxe4Cy9jq/73vnTMWP36f+zwKmtutlzq5dw3M+foffx6Zrz2072vPYklud1+TdBsj9fY7lvtb3Ud846hpJnZt1DlaE/QRqNrREsWQdJ9kI5zYVWEMygi/Vzsy0+ULnimZZVZETThWuAal+nt9z/GdDIhqCXKrHWxsAlEwz4nTGEWwt8J36pmRT/VWgGuudSVg4PWDtJjQdfjsMBu/UD0Z9zaiDRRckg9AE3zkX9X4RXXVc7ZZMVXICJ8DiBADlGnEu9SKJMiCgMk8CphgtuEPPsNkQhhXiOmLdShvTYWymkGonq1QmjsNLIdXIa6w+AEnUoHsuhVRULqoGzw0M1aI75cycZpVD1ZucSwWDrDIbXY3fBqN0S2fBVrTXGL1uRvNl20Uw9X3EWLCeftUtvlqNSWeNXuNcMnMuFFNFSSlV9L8tgoXQ9WSp4QXTiKm+OqUAGeZJ2SDFWFzWFKJQDVBtgbHE5TmYY9LJrFT5jvXKiKpSggbqLliO1UmvyQRNpfw7awhOEwa9a4anVVZW/bJ807Mbo0ETlf3muwDBkY0gkpFpqhR/Ic6tbDKamouCa7vDHj/PuBo0IRSsswy9+iOmpOftvMMbz5wSpWiIRswK1Bmn3XOajwMGmmy5gVgVCDvvGJoKSvzuo47V0kC6s4mnjmnvPIIGTXQh4J2tIK9h6Hu0C1WIaWKKM0U8xakMQ1CwUWxW8+2aHGTa5FSqh5gx5KVm1YWoAYTLpsKcCty2IXWtahQW0M5ao55wxQBVQpsTIoG2NdFCWN8upoTGqTtNzDQarDHFWcNskMWbsM13zQNBiqivkFN2khVHVWCz6TtWQ69AQgUb9d4LsWTm6cjhGDkej8SYWNWFRwRiVOmBLqLni56cgmDqHJtzAmZKqVsrUV9OxCz3RkQDPEQUaJLcOkmFaU7YCgTnIjrUqcWgsYt/iAbEqE+dFAUMGuin3b3AMAxcXV2yWq3IKeGDZ7PeaFfXQIyRcZpISWXFrgv45BhQNl2msB8P3B92HONMIjeCq87ZlamJmBOT1OoGQIvI6l05jcwV9BBOgQjGKjttnhNp0E5kykJ/ccnV1TXS9exef+AwJ7JxfLjb4ewtmMB66Lncbrm62mJM4e37NzUwAYJzarNgqc2O6i9oqSw+LaCRQkqRmCakgrpSCjaYyorKlR2U8N6z2Wy4vr7m6uqa4/HIarXii88/Z7/fk+LMbn+g7weGfqhpr5lUN54uBJW31paereuuBWL1uotJ5eUuBP05oxvAUwpabQDUAign9dnw3tHY3qFzmoJsDf2gXlkxRUouKDMoKNhW9P47r4XIbr8jzpH9fkcXesbjgbBSMN2HiI1Zr5k7FfuGE/gHOt/nkokpK8uqAQv1/GNOhGZxkcpi3luKBTF0XtlZUn+u7wJiYLte8/T5C6aYyfNbSlTmuzeF4BzSWUos5DRTDAzDJav1wO7wwFffvmJMCso541WWOc/gdRxt1mu2FxfY4Lm937GPEZfUF3Mp+JfPpk2ZEBxGjNpExImuCN6F6l+i0jpVYWViTCod835ZMxQstRzGWOcQw/FwZL1eY7rCIU1crFc8v7jgk03gundshkDsPJuLS1y3wvk1N/dHHj7c8vrVa8QHTL9iv8ukufqdDQH1+O1xQeVXhzixmw6MZSRsHMN2wA6GOMzEMPFwfOD9m1vmJNWb1NJ5fX6tKUzjnhA6ri+3iBh2D3uC6eltxxgzb799xW7uePmDH3ExfIrkxO37d5R5JrnCw13CmJk+dPRPnlCKsN+NPOwOylKWjJhMzCMpewT1Y+z7HlNZLL6DobfM8Y716goj8Mu/+ZLDhwM//uHAut/iUmJlwKZMooDvET8wm4539/d8+/o1b9684W+/+jmHdOTi6hnPXv4Rq+s/xK5/wGp7zRBUwi4SaZIZkUwWBfGLzHgDMU589Ysv+Tf/6v/h737+K+L+yO7+jm++/pJ3b75j8+QpfnVxapSfgdTLpuNs21srgYZ1aP1mDMV7Vp9+xot/8eekD1/Tjzds5QtYD/QXzyl0XHjPSjyuZDAaOlb27/n2737GL776mm++fc0v/+ZLbt8/cPP6hpT+Hb7r2B0PvL+/o9Q5wrzdM/RvoKhk0lnheHhAykQXLH1nudyuMGQOD3ekPNP5juDWOBl4a3vW6zUpJd69+8Dd3T1p2YQWnetq3eSDNogElaq7VYcrATkYYpxBEuwTx3KghAR+wpoDeb6jlMLFk0GtWnzGMHM87Pn6V18yzjN/8Mf/gKvnz3XdNzW0agFGa4Nw2cLUe/NojWeRcFqnTEpE1zicw+E1JKI288rvASbOX0/B/dNz0B4CrRUNJRes84vslDpnNnukqj2q6YQVSEgFW7IGNxlXn8+WrNrUKLk2rzVFO3hD5ytrqqYZqm/59yB0p6768vdl815r1BamBKH6N+c6jvR8WniEbtrr/qDtJ60jSV5AFyVNyGIfYxD1Xg2eJBY6wYWMWKeWEc6Scq7uLm5plOj1O4Fs0Db5lS3XmKrWVG+7Qut02cqga95ztvlv1eCN8+dHaB51j6+NqmRqKGPwpJqVW0RwomChdRomh5Ml9G5R1zQbnOYnA4uVTgM/FHg6oUOPGY200pwGp7a9GVKWpNpihOAUxRaaH6s+q43tHCrgZ60lWIfxATP0uC6QXWP9n9li1X0Q7XzM4+de788pBOIxmHpG4PkY3G2AEo9/Vs/1t8GkdjSgKOcG6J3UAtbapaaxC0uIpQ4gZ1IL+itne1lzks2meFIptQFzfn7nXuTtnjaATkPTapDB2e+1//+YOfcxU65hNefHx++1XP7fAdAJSkQQcwLbzl8D1Geu/fyjINByIjKc2HIKaLW/n5/n6T7qA2uWx7SO/XICTutJ0Bq/upttNfHZuDaiJB8DHs0bmF3BGU+XOnCBuYG82QK+NhBUpSKiXvxS625jT157uqeT6tP5+4/vBejmaarMtur1IhrGUGpikhPRm38Wfb0Yh1fPlcLpIYLqbVYvurfqP/RIw21Oxqa+msg36m7JmnKnIJrHB6cgYs4aXoHC7cYYpBjigtSfHhiVySSyKGtDrC5k2mmR6iGTcVInZ187/2e+H+pNV2OxbaV868jDnxm32pp8qYCSXfySQCV+DZnNxuh704AoBT6nOGnHo2jMtakTvEjTVJ/TPO3ycGoyDljxtSA6K9TQE0o1uENBj47QvD1M7dpIocdVYFBqh0AZEyVDLhEXenyjZlsDVuWouYZt2CS4rsPWhdTXSGExlt73eDczV0aTC2CdV2lzSsSk0l4cywBrjCNLNe+3VAt9AZKyV+jUV89ZXShLjXKu48DZk59hinGRhllv6LqefrsCb8k5kudR/SkKIJqYldKs18cocBFTZJwPuvjWxEFdtIymrKLvl6aZlEbmlMjioJq2z0m9vnxoLEapYHOpY4NTpwo5FR+0xe7x0SbZFszSjFy98/pZrfq5LRTikhFRHyvvPL3TTpnebzDWEfqBletIBeasMm7jlGXX/GBs9fET7yE5DG7pDlhbF4hy6saM00gyUJx6bnjvNSHYe6xtE7ZREk0NiaEuGLYC2VKDLqypZtmUKiGvpLucSXki4dUDCi0KnFO5gIJRy4X7rYX8vLsRgmfoPd4qe0MZM80Hrn4+a1SKmTumrAxeKuNtjno9c5XpSa0oTG3jGFrQA+SUlNpv6jVAC2318jBVCnJa5JaFtc2Dbb6tCWBTzkzjvABf0kAaowzHPqhkIs4z8zwhJpFFu3u5GJxL7PYHPtzcsJknlSFEwzjvGFYDxmihG+NM33f0fcc0QboH0xlWXv0v5xyZc2R32LM7HphiJFGQmlLSDJKt0fazJuQqC3Ucj0vxPY2jwoxW5aHOWpzzWO9o9MsodZsQOmwYyL7j6YuXzK7nYYxMU0Ks4zhPGrrgO1abC3xnud3fqyG4q+wyDH3wbNYDm2HgIIUQHM4nTGrFns5DKSdMFELfq5wUqmRX54XVasXV1RXDMGCMZb/fY6wldB3THBmnuQYMoCDXbkeOkaHzKl12HoKQk1f5fG1U7Pd7lcVWiXFKGeNcDQ8CTDWmLy09qxVE+t7OVSZhXYOdtRTnSNHQ9R3d0CGiXqM2eDCe4zGSUsQYT8pCzBEXDA7DPM3c3z8wjRExM8/LC566Fd4FetvhneE4R0bRItU7jwqNqgzXKtCm6cfa6PPeY53XZ7mIouV1E9SY4s45un5gs94qYEzEBkuZR/pVz9Wza3JJHO7vlR2JkOaRyQg2B6zJXKw0jOPZtaa4TtPIzcM9t3e3HOZIKtr9jGPE49TDtWii3f3uAescMeWqIDN1s1pqk0igBmzhPMb6xZJBN6QBaz2mri9QmOd5sUgoYvTemrR4LoqxGFeLVAM4zxgTcb/TUCNjGI8HZNjy4tkLtuueb159y+FwYGUCb958y9ffvmF3f0+KM2/evyNZh2GFl7Wui52y8oOBgGHAwH5E7ve8HDb88LOXDJ2lxIngLDbBmIUPjUVfNIHTlkRJhWHdc/XkUhtVc659Qk0VfHr9FGs7bsdCnB4Yb18z3V2wWW/45HrD3idiOnJ4eMDajLGZlBP7/UGT5I2GGaWSqoQ0M87Q+xXOdSqnN2rbsns4Mk0afrPuoTee3a7wKt1A/iWfviwMK6EfdHxMcyK4wJRndmPEZuEv/upv+O71HYfxjosnAz/6oz/kh3eBi5cd3RPD5z/aMOXCqg8qc5IZbOHu4YE5Zq4ur1kFr3VOFm4/3PP6u3fEOXO5vSCSmKaRDx/e86PGmqyNW/fIFwJOW+a6Z22gkVS2fAWWkrO4i0uG1Y/h5SWkWzAZug0SnpDsBdIF0mHmyy9/zS++/jVvbt/x9atv+Ouf/0e+efWWu9sdu7ujqi5SIqcJ4zKYjJQJfMcsgWlW4iinAAAgAElEQVTO3Ff2vLcK4pQ4E6zhUPR7D8HjjFBirDL2I7ADcdWnUxGlNo6k1tTehypfrPI+0+R9ok3f4CglMe4n3CT0wcKUeXi44zA+cJ8KX331d6Tt55jtFpGobL6uY5wf+Pqbv+Wv/uNfcZxHZDXxj67+S0I/EIsmAAbfAQaPrqsn8AemwwM53rPdXkAz5RFdI9p+pIiuX3gHSQkE58DHCXg43de25is54vH3l6eg/c7SjD6BuLVE4uS6q+CE86cGa7DaLEM0ObrUh0kanamCEaQJ28OwcvQ9WCIYjb9TUln4rXN7dOiirnWdPRnDt71NrP5wvgtM46h1mbekWRlLTfJWRK9bliqbq49MbsAQBpGotY9IbaglpjirmkUsbm1YrbJ6E9dnSK1TliKRpdF99tX2X8Uo4KqCDw1xMW1vax2N2aWgQ2sMN98xba6UGsCR6+dxTgih05CHGkYmRZAKoIkIPrjF/826WodXzIkGBrVH6QyoszXQTaWD2rQtRQMNJGlIkuS8eH+VUmpDTnBWThZXy97dVAWfrm/BGrbBU3KqzUv1XpR6/TH6mt4o29t3HTZ0SO8pTu2TlgCNxWTf1PtQlnpw+XRn+6EG3llrNQlXmt+9xZbK/qygruEM/KuenWbBLM5AHRqBwGJqwNtiX1TVOc0Hv+0dzNm1a6fYWGWNW9bYzudyzlLn+PPPdw7SteOc5HQOWv3uOeExqNWe79P10me+7R0bS7I9H+evs4C5LQD0/J3rfqQ57j0eJ49tmho7TtU4Cke163C61o/3O6ek2o+AytaQMoZGflh+1zWA1D66OgWzzLF6X062bILggsVbz8r1Ve02EXzPldkQBaKtc0py9GFFMoVUCsF1jDGC18agNY/vkePxefy+4/tDIqj+FZUJp32BXLskCjBJZdjMccbPKLuogl8xnQA6vdintzPGVIbNyUcAeTyBZNEJ2haVXSkfrC2CqERSNPkF3XtixVYZT26Pi8I3FYRIOVX2XKEYoVT5FO7k19Uoj+4s+jrnBDljrK9SIZVzGqkpR5X2qA5qVYVZBJUxiAIWqFl+WP698l1F/dwQdOJNiZIjkvPiQaabj5aQaTByGpy0BY3Hg1BZiJrC6JyCiClpsl7OylgLxoCt/gW1eDJOQCxd74k5YZJ2lRZwQJQRYiqN2nhbQ0q0HzdHTT7JSfClI6ekg9y4ilxrYlIqmqSqjUQLzuJEwz00aamBb4JQEzNFlEYI+j1aUIOyB/V7VoG5+vOZjCu5Ape6CMUIEtMyaZckagYfA0YMc5pxpTJFobJgVHKMKPbd9wPFGDX1zbkyMSqzj8qQrABLrsyLVEQ3VEXohqBy6gpsp5iqkWvtNtTneplM5ERpPp/szjsjwBk1n2WSXbpuLWjAWI1bNwp05cpA8suzVT1rTF1U0KIhZmGOM3Ocly5ErotTtFb9teYZkyN9H86WN6n1YktctAoMot/res+YJ0JQXxMtWOxJ/mGMMv+KLN47jbXljcEH1bgaqx4B2ajfh1S/tmWtNafJMivSrSBbLTRcK1aaN1bRlB5ngjKAajot1BRa48ii8uxcGabBaaiB7wLWa6XYkpAVoFO5tambipxq04O6DbEGHzot9K2yQRf5c/3vVHCovN1aq4BkSsqGEpV55FyYooa2aEe+JcTVorL6YqjUNZLjjKDy2xgL6nNpKcUwzZGunzE20HrlczwAGesyF+uei4sN1lr248QUj9w93BPIlKEjZG2MzDnW9UTHsu08xJPs1hoFn5tnMOasO05NDH00JgRrPc57jFeD9ozKiUmFMs9Y47h68gS3uWSMQqmG7Q41ivUhaPp0EWJWM3HnHS4EOqoHpXc1pbZ2EM3JF4M6Tkr1pFOfN918qcdbx6GGNxhjlFlcdEy52gBKSSVb0xxV7n88Ms8zRoRVf0HfBYJTf8FyuWE87FHvk8w4aqDEMAxI0KkjC5iY1Ai7XbdccO68LDCnhLqi454KBE/jzO44qT/hXH0ZjcV3PcYEQlEpszEekzzTfFQQPAtjZRVba3jY3RNfRe4Pkb6/5MVmRX+5oVsHMjXBHGG33/PgDUlMlVWqzBOBFHO1tNBCqqWnNWNxI+qu5X1gGFZstxfKlHoQMMppKPPEw83E7jBifc+Tiwt27HmYZ9J0YEzQBcOzJxd89oMX/OCT5zx9csXbDx9AhIvLK47vbzgejohYKBC6Hms1oTLnxP5wxFi99spSDjUoLy9gnanNR92MKlhurCzddpGsyEptCumzr8Bpycq6avYCzmt9Y53XddIIzijDMo7KylqvNwybLdlo+ioIQ7/mzZu3/PSvfs6r1x+4P87YfoULli5oIrAPnlVfcC4yHkechYvtmufPnvDi+VNKnHjroHeWF9snXAyB3lm8Mez3R6ahMD2BqRTGNLOfJ6ZZwyBynOlDoB823MZ7xvFIilGtUUTYrAa6leMQIR4+8Pbrv2W/3nLZ93z2/DPef3jLl1+/Y86j+g/GiYf9sTbAtBlZTAafq41BwQeLscI0jdjkiTFy2B+xo973aA3jZPEYJBd+U95yM858+e5bHuJI8R5vAsYK47jjNs+47Yr7fQ2qmA9sdwm6GRMiT3jg0/WRkvbMCUp0fPnlr5nTyGdffMq//9nPeX9zx3/zX/3X/PDTT7TOcD1dPwDaxAoG/ODZbC9Zbbb4YVXn8DaGT4zYx0CdnHAdFFA+McZRuxbnELum99d02ZLHicMObnd33D984Lif+ObLX/EXP/0pf/f1V7y5ueX93QPv3t1o3YvDGkdKE6VErBN6Z+i8w5qeWYTdPNNZ3ciJKCtL/9/gRZsGMkOaCtkYjPS6That7TKxejuph6F6Zjqt8erc75yuwwA5ZXJdX2LKzHOho8McUDagNZgIN+9u+PUvfsm97Xj/3Xe4SwsPW3b3D/juisNhxqcju/EB26tFx83uA9989yXr7QW+XxG6gQ4PuNN6lg0P93tuPrznzTe/JE83/Nk//TPC6oXO8THW5onW0a0mMRV8VABXHt/NCqg1YEz36W3DfvZDyw+y1H5aR7KYzp9euVVljSVzYsCY0hr+DiOnkBv1Tjp5d1mjLGvXQT84bTKbiCYXV7ADx9/3MKZ5y5mlVjQVyBHRoK95ngidU19tq7+jwEhj0SmbO0XdV1gHzR9YioDTxFNbg3ik2g1kkSrHrPW3ANJqbL0+2iTRfdvCdmrXHVU4tJaMsqQEKgCh6ZNnjKcKiCGVbFGksumax7htr6rr3FKTV1lsybjq3evCCYw7NW0rj68W7yKyPFeLXNB7+tA9bvbWhiOcaq+WYmsq0UGl0RUbkJMXn2BU1nsGAA7DQMmRedY9dUlVktua90Z9wH0IiHcYpxLeFmaTS64qLgs0NpldQteca5iCPPrT1POwTcXDGchT76nUPbip9U4bO2c7qd96Pn8fpHIOOp1/tbF69irLnuz8KOW0dy/1iRIpCxhllgngdDwG5h6/HihI2PbAp/M/nev5nvGc3fYxeHcOsJ3//fyzfwzSfXxtPj6H8/NvzLnGhl18/T4C5k4g5elenIP59er+zmskts2Fjz+Ts6f5Scfs2VgAQt9rzUzABkdn+pqRoM3EfujJxjMUS+d69jkRp8jQWyQKxp+vz+fnfnqP7zu+F6DrfFhkSKWBFVJT17zFJkWyNTFmYoqCLSBWC8WWorMM+AqatY6qpgCeJqhcwZBGc8wiKhOVUpP6lCooUs6M1qvEzCoEpsuNdiRSTCj7yqCixMoVNoCp72fqxFjpmgLLhOS9IxX10ik54SXT3CFKUfp2BpLRSc2JRXDViNciVJPnItgzwFB9OQ2hmcdWUXoBrBSsqIdaaECPUQ+gYhxOT31ZYhsa//Fk0LoLDZlWdFpBiJmKcJrmS6HdWDXvp83M+OAo1iISKaZUNN0tDKyCbpSMb0R5LYxdqZtAZynoBtFSpS3WUowlGypQmphyYs51cRR7orfSJiupxWUFhut3S6lufuaU/lRXI4qcEkZTNliflF3hNY00Y3EVWGlGtskWyqiDWQG6WSdvWw1ms0qupKjkskfviXoUKu19uffGELqayIqCe9YbvBgFO61jWK9ZTYnjpIEkRgrWiCYuOUeaR0phmShPg5vfOyE2EPV0yLI4S5WHSz2fmIuyMDrdSOcszGQFF1wAtOOV6ueORT0Uc2OCVI/IXOVXUxHmcaKMM6amBxVgnBLTFKsnUCbWDrNGxNcCyFisTVgrlW1Zp6Ymq6dh2W02aYa8E0YKIVpC53GdQ9wyaam3ZDEK1IiGYaRYnxsRxJTFy6GlUjljT8WziHof1nEUrCa1phTVB9Jqh6XUjmwLvun6DmsnLbhasWYMLqjUz1UPlHPGo+ZJGExxUCwly+IVApVRJNV6YNm4V+ZQlS4456rHHzXYR38+VVBQjBaGYtwyf5SsclPveoLXFO4SE/MUsb5XALXr6LuBEHr6PhA6S9dpkI1I4fLqiuvrS/o+EOOM7wP7rEbmcZ6JFmxRttQ8z6RqiOu9p+97jrOQoiygb8wq9Z/myGajAFoLT3A+IHEm13HYWIFinBbjbczV+TPHSCmQrMe4jn5wpCQE12GKJrUexyNh77FemNOE6zw+dNiS6S34+pzGrDJDTRU0dM7j+55i1YxaE23to0LCWGWb+lqEFGF5VmLKlHLkcJwZhp2O+6QMxpKiyv6lSbk0EdD7jj4MeG+ZppHxMKqvpVXG8zjNFWjMhJgY1huAhXGoz02d85JKukttwpkKjqacwXpsCOzHA/tJGIaefliR8gQmY/A4F1Q6a62OEyeIqMfearVis1phQyGXxP39PaUcOHjHzeDZPr/CX14uBf6HDx+Idx/Iw4rhyXNoXXJqSjJWvT5NM7/X+a2IaDp7HWPWKtPuhy8/4f5uw3evv+EYE/MYOUwjc8xcXHmCgc5ZgtWUz5wTxnp6b7hY91xuV1xdXHBzf08umfVmw+ow87CbFfTHqldqUbmweskKXVAndlcMHTpfSgHjHM5VYK3WHAqINi9DBRUauNKAcyoDUxCMVE/Y2kTQ8Z0XwN0aC0bTy51YBufxXU/pO95PO26+fM/Liwv+4Rc/4mIzs7v/BVEEvxnI1vDZJy/5cfgRb759xe5wxLhEIXE4joSuZ73dYkLiYbxXBoozJGv4zf0DcpOxReuEOM3EKRI6z7rrycZwfzxQMDwcR+Yx8uHDHetNYRxn9vsDpajtwu5wAGO5fvKUYe0pxbDqhDTd06+f8Px6ze6+kMadBjpV+wPnrbJfFOmstiiJbDLFOFKZmMcZKQec6xjjzDzruuRchzE9Ip6YDM4HUu559W7PL97ccGccZhtY2ZXaT8wZsUIqlmO2TBIYU+Dmw55jeODNeI//5Q1/8M2viPNb/vRP/4T9LvPz//A3HI4Tw/CEV9/c8ptX3/Jn/ySRi6bQe7vh08+/4J/9+T/m+gLi8cD64oIf/8mf8vkXf4h1XW0SqrS/tWy0ovxd9UCr5+oDJuqFVTDMWMbi2CfPE7fG9VtKcmQ5cHx4y5tvfsP/8b/9L/zf//b/5SiGZOr8aS2ds5Q8Yb3gu4TpLF2/JbgemQrzw5F8PNJnrbENqhgwYshiKUb9gHCqWFFT/zovGaNzOaIe0TTth1mqQYwyIGNKZFMwJi1hYIpvVOhEHFK8BhjgEWOwGe5f3/G3f/EzfnB1zVoGHg4HHm4PpBHiAb779oardeDZJz9ic/mMw3jUazYbVhLo/ZbODTiUQadWxoJk4f27A1/9+jXv377l+aVVXEGqH7bY6mfkao1u62c61WssjenffbRG/H8mAPDxL3x0tLlzeZeWnim10YTFGK/Nh6LAnM4/TWKpU77DIqYgkshFPVhznrQ5g//ez/HxubV7fAIeFEjSYKHE4XDgeNwTOpXFNeLBqUnNYmWTkpJEvFFmqv67gpR67lpjl5Rp0tITqGIW0HQBM+ruRq9P3ZFIA8YacNE+ztJSPf1+Bbsaw3+p39t9bHWC1aTwBg5ap8zLFjIgAsUo4Nfe8/G+r4Ih9bIrgeMMXNFv1v2tNiGBpanfam0ae8lq80dQkkwL4WukEdsaTB/dUCna3E9Jk+abFYz+SP1TRNdDqrKEUpVwAXGebANZKkC39CDaPdLXUMCzAVqKNjSwrQHJS4O/AXMVNxCjz/MJQFKY8Vwia05djvr2Z+CbnEsnT/u0xaPP2qXx38asxT4C6BYwvoLQudrUNLWRNeeA0gmUWhhu9T6VLB+do6qvTDZ1Efj+Qz56fs7ZdLYCpuevfw7Qnf/eR12D33mcg25d19Earr8Ftv2e8z6994mpuJw356B6vSdniiNDnS8q2NdSj9srNsmpqRNF6FfE46j1lAvV93+mc5HLqw377TXWDWz2ULLlcD8zMdLjyS4zNWbto/MGY8rf51L9Z1JcTWWZ1IX9BIYVlfLVDZJzBust3luMN2qUZ6hSKmpyjhbYjxg/9d9N3SCXZc46Q5/P5B/6cNbJqQI40i5ulXbpGeba4dCBakU9IxztvKrsc5mQzCL70oFe2WlG2USWUuWq6rkgCM6UJaTCiKZ3ZAwOjzMKV3nbo2b0aBEulSKun4guOIyA1jB1cbQQnGqUla5davKlApUiRouWyvRpErhTA0AWsMpVhk4zxwcqc8dU6qUWalmkGleL3ithKfj1spykgI8mBlM9okz7RDrJuSqRMs4tQJyvIFrwvi7+yrCccmLMkTmK+veZWtBQN2CmnpNp+nCWYqFtZOA0wOA0EGxly+UiGlNuNaFXO+wFU7Rz5tBn14eOru8xweFzhynHsw5U7fzaliBjSaJAn7hAM7gvtSBWVazRcI+cl2SegjKmssyI7xbfLqGQXdR7ZFJ9dh9r8MWcuhVSN9Hn3Ynzz+29x8ya2Kmy5SaLVlZKdpp0hQVTdCTlnJiBaK16b/WV3QdI3VQ6Z/Gz4HzRFMHWcTDqodB8IqmbZqGGnzit6MToWLPG4YInGWFKkZgic5zJ1RhdN+INilWKe2OAtfvhnFd5rXPVq8wpk8RpsTmPcwVNgFKweLxxBOdqAQkq722U7lpaiSjNP8tZodIKJqNBOIJ6oXlbjZJryEnK6Frp9Tx11Oh9cS3Uovqp1K5Zk3Uos6nNkzX1VzUDdfCpt4GzEIJU2YSyBorTDdvQ9xBUnjJNszKHa9G5eHhZhzFeU3xrsRasYd0PrIcVMR6ZazHhnKPrOoZhVb8GVquOYRUYhkDOK3ywXF9fsd2uETIpRy6tZzdDyoaezOAsIUNwHiuGOKuXmbUe7zusmWu3vAKRWdMhD+ORK7mkCz3pcCQXQ+h6zFQqO1JDdGIRlbUW5SplasEbFECT0CPdgOkGprlwf78DETbbDZ4VUrIyM4wybX1w6kmZIs5BCAqAzjGqj1wI6k/qOrphxZz13lmrm0FrnRqrG2XJtdTW0HWsV2ttPqXMFCPH48Q4zxQM69UaH3oEiw1CH9TKIcWZw36klETfeby1rNeDetNJwfc9XdBgjHluKYFykqVkBf8RUeC8NAa8bgbabCpYEPVnNaEj+MB4OHIY93R9x+X1tVoidGtCsKf1zZjaldexEUIgErHWst0OhCEgfsvxWMi7e969u+HN/XuGp0+Yc8AIjIcj83wgdSvCrKzFPEX6rlcgN3SshhU2xcqSmMlSCJW1VYx67+0OR7y74/pyy2a95uriinT3ntvbGw7TSL/e4KzV9xsn9XebJ4ITgu8wFB7u77jrA53zHHZ79rs9thP6fuDi6pr9fmI8zJRxhgh99QUUYLXaaHrg7sC8n6rFRpsHmiRLGcJ1x4B3temVNbRKWYWtgK8bRtM8W6z6Mhll8pd4sjMIVSai7HmPAW7vdvzm1RtsGbHxSJoSq35LcJ6Xn/+QTYocJbM/Hvjisxd8+vQpbzaBw3RkyokPD/fsDwasR8zIh/ujNi7FqBVFyqR3Hygx03k1+JeU6EW47Hv6QVlhCcNwjOxn4Thl9q9v6IYjLnSUYunXG7x1zOPMw36vAFhNkl6vtsxz4v7uLbe3r3n7/i3juGPYDHRDz8oNGO8YYySmop6gIsxzVL9YW0iuEKeCZMd6fYFYXYMw2jQTG7B+wHce4wJRBt497PnNh8iBDqwlSMKnQiiGDk/JhSnOxPmWw3zD+mlg+/wJo1nz5c//gt989ZpNf8tP/sFLDneZ27cfiMUj2RPcBZQVyICYgLWCxfPskxf8y//xv+VP/uQfsLt9YNhe8uJHf8jF02fUCCc09VX9Cx+141pfaVl16p9tCakqGI9lMoH7MXH34Z689TgC374+8P43bzC7Wy5XgetLz3Zr2PaXTFl9l7frNatgOBxv2M+3TFJI3uA7SyCQMupfPFX2rgirQee9mBNTGbFea8hUQfhU7RmSFpk0/pWCzsqu1ropgv4UTV6Xi/5dpe6V/V7rtrUNCIa+7+h8z+Y/cfamP5YkWXbfzzZ3f0tsuVRm1tLV3Ww2RwNxRiOREghKICgC/KMF6JsoUaSGwoCcpaeX6amuriWzMjOWt7i7LVcfrpm/F9k1RUCv0B0ZES/8uZubm9177rnnrHte/OiGf/LZ53xy84TPXr4gSMf924mvXn9LjIWLV58w9FsuLy/pvMF7ZTzfPzzQhY7ryxu87yjZUKLGO32n9ABx8PzJDes+EH/6is0ahssLUtR9vesGOM5a4KxxsBLvzyIFKTUyP7uJH7weM0t++HUeG5sPfmMbuGLAVLY8iBZnKjPfmuaA2jIGg8VhsMQ5MZmZw+HIcRzJkrRFrUrM/Fc00B9fEyy5y8ImWmLK2qUR1YCt6zpWqwHv/aPWwKb5XLLuu8apXrjGzrWLxHmcFMSdDPKUzdYKa7on8kGhu51kY0E/Yi6d7aHU42mOr3GDlLK8tciZwL+pWWfLke2JmabH0febpUVSy9626Yrb2qoJuhacAX2q3Z5PHTQLSHXKwad51uPUy1scNV1jP2rsbkUNkBRIqXkIVZalgY9nc02KkEnsdvOCHSQpyv6uhBtQ1rnJmqdNCMVaKB22H7R4v7jMis7PJSdteUGjcJw+vV2nMU3X7VxLrcVA9XZau2i0L+uOsbXFVZ/Px0yu70dVWp7WPn+Rx1mmyAn0bbkzQKl5+QLyPp5tj747ByDb83FO3viQqWZtJSfwh4DaMk4/8P1ynBpbfMigExEkf6BZV06/KzRWa1ly1vNW1/Nx+/D8vv/cTgDlaTw+PNeT0YlQ8+dHAJ09nRv6nMrZfGiAqALluh5YG/BG8D6QxVFy5tlHK/7ov/0j1j/+U4b+iuF2z5tvH3B/+y1f/P4bVsyUEpkWPuQfvs4xm3/o9YMAXUmxHonFXtkabfnCZEVoLRRTddMq+8ZUTbKuOXKc9kv9Wm9ISmc6WdZi6yRdUG+E4LUNSd0x9By8c5ig78+izmaNqqwHUGDBOdfkEclSnTfJCgAVwRkVZy4lV1FPt4AMuWrIWB80oTcFSoRck2Qqii9a+Sz15mZjcegESICVXBmA6qSlOiA6jmJMrYTUh6oi9lXOjZKktrxGGtKgbBd1TrWudTJ/MAeWfF4TALVx15ZRjfdPGiZKvag1SqnmEpW1I0V/7+wJFNXxAayySETRz6oBodVP1ddT7UCxDVhR1zHvXAX/wAevwGd0CpbmypizGgCouqgmN67e0+VREnDG0ZggkqUSPBXMsc5gvYei1tdYFZs3TZi8XUtNnKz39MOK1WaD6z0YwbEBKZRUyCnXzb+CocaQ5owLhU7aGCo4TAX+5lgUPWhOMJVZY2ob83GcGKdJDUFwGBsW1kRJClgvVPC60Jy/mo5g00HItcUxVQEOzZtbtaYtkFTjB7BR6fRZtNriROqoZ6LNrJy62OaibCftPdTZmou2TTpXgT9acnACT1NSxlYxFhMCxnXgVdvLhqBOWlIoeSbGTJozRSxwctzS23NqP2/8SanzO3Qdfd/MZFrbqk7rEhOSQay2o1mnLd+hstiktpOUUnUp2twqba5z0tlDWwCltMqu1/tc9U9KBbeLqPbNXA1nrHkcbOZcmKaJ4/FIzrVFvYbJ3lULL9EqqnM6D9vzYl3AuQ7nPF0n5JgpRauT8xzpnavAuN4M570GcrV9fxm3unYZY+m6ns57nEkE5xk61eESY5jLRLZGWa7zxO6wZ44ju71nGLrKYBX6IfD+/a5WDBPWQuhXzBkslk4SOwsbC/NhVDHtVDC5ilOLWdziNJxWBmPMhSkmimgluQDGOfrVijDLMl9iKcwpM8XMlDNzETpgzonewHq9or+8xq03ZOP57t0d0zwRJfLR06c8e3JDTjPWZqY00t2q9qn3nohev6kg/DiOHA4HHUfndH8InbZBO0/wQuiUiUhtW2lRmrGeLvQMq/VSHAkxImZHPhzqM6bsWiGy2W5Z92rekqtLbEwzc0Q1T+SituzDELxquBiHCyd9FGPUIKHkxFxq4emMvXVaE1har0uuGqXMpJTZ7x54++4NAux3D6xWWy4urtle3GBtp9qhzldCrRCztlnHeUY2RZPjoaPYAALeXmK3A7t0ZI6R3WFkmkZCCGy6C/Zi2e0PjAAxIhuhK0Ntc1WzjHEcyTHW/Ur1B8XAnBIP+73qKY4Hri829H2Hcx0xFazxXF3esFpfsD9MtWAhxDnh+hbEKSM158Sb1695uL8jTZF52uNWW7bbS6bpnlJmciyYnHQ/LQXvrd7/rkMeDozjSJxjZcJVQL0mZ64xRRCc8Vivz3lZohbViGxmU95rO3Uz92gB8lKs8h5T2wCDd9rCOY+Y+x0mJzYBNoPn23LgzS9+oUzNmNis1nz+6ce8/Pk/5snVBXk+sF9bnr96RXIW+e0XuP7AYZw5jhPOD3Rdz5wEh2q9HeORfNTY0HQQTOBi0/HRs2v61YoxZfJhpl9f8nx1zdvdnje39+wfZlbroC3J65U6Zvez6oblyH53x3F/ZOjXeN8hAml2J2sAACAASURBVN9+9w2lylvEeWRYDwyrngyEOwWYyRq/pGRqolCwJRGjSrRghdWmZ+O3CqDnRBRNEE3oidkwjo7pXcfxvYfYwTxh44GhGLZ9x8XliuFJz2c//pznz54j9i0ffbLip3/8v3CI/5hf/s01vfwdP//pJ9g5MT8cON7f02+3DL2Crc5cIrLCWqc6ipIJwfHk+SdcPXtFPE4Y5+kvr5Q9nQzWBS3qFsF/HwJSQTqaoVCdY1q6iBgSAYvLwtvv7vjN3/4W+/FHGLvm3/8/v+BXf/H/8kQe+Jf/4z/iT/7ZT7j6dIVbP+dXv/6av/2bL1iFAZ8jA54khilOjPMRO9/TmxV+9gQyky/ssyGJZXV5yfXHLzkc9qT3b+mDxwGHwx6fDdnq/m5qG+GChxhTY4IaWdQ4v4FzhjNdqBpD0+RyJGHNzJNnH/HZJz/m2bOPuLhY8/HHl/zo82tevNjy8ccXZAJh3fHF26/ZHgsvn254+mTDxcUFRqTKFKwZug3WWDrXKegeM4fbPTElVq+eYjDkCNvVhuvrDSLPIB8wBnI0OLfCur7mC4L1Tp0v67VZlKlWA40/vK+P7vGJOfl9r+9L+cz3fj37/5YEWzAu4Gr7o63FAaDmLC1mqULoUZinQopgjeqLGtq+dwIQ/msvLcLX1k80T0wxUUzV7K3xsPOe0Hf0w1DPiSVPMEXnReGMFVUBkpbPS5EFJDuxfhoj7rEpgBbGG7BiavxfW8VrB8ly7GXQdb4uIEl930kN7gxEr2CS/kyPrx0vZXlntkbNH6wapGVOcdwCRi2dFqebeyK5NMCmjmspxJSw87xoiPmag59PnKaf1hJS6/3iiruQAYw5u6o6f2q+V1JhSjOGyto1NU8ydZ7TsAA1TUpSyMZig+a1thIq2mGtPQPeWi5Yx6uyYOp4nO5dalp95wNfwT0lsdRTlkoEqU/VCYg86et/Hyh+aq08HwMeAVEtplie17M5R1EcgLP3L8y7CuYp16gs9++RsWa7rHPQ7Ay4asf6PoDuw+s4Z+Sd/3thW9Y8M6W05JsLuNmOU5+dUsqiIdgAunO24feNZRuzx8YQ5vH5neVS56Dfh9cAnJip33Pv2o74fatsA8pNlVOz3uJFNNeNhiyZJ08Df/bf/4Sf/E//hovNC4a3b/nbv/4dt/GXHA8FDu+IaaeELmkgXTuHxhBu0+D/J0AnWR39jFOBYGe0JcyggFzwms6P04G7h8J+tFgPuCryXNOthS4pPLpJJVcRzqYpJuZssKsjp280ZgVrnDMqQuwsg/d6jjktbYfWattZYxuVOjBiDMmo9oBUHalk1RQBY/AYnGi7SslKVc95pgOsBKxkJMW6GGgLoCQF9opRAMA0fQOMJp6pYMVgKXgK3licAWdVHyFV6m/KRceGds6g4TlQirK/ENRPrUmLUoWXTUWBFSDTAB+sqM6S1IXR1E3r1BZM3WRqEGScgoalLvRy0jFzNfiR3Ki/uqAaI5gKTipDRBcbqWYONFB2CRgralw/YrPdkudAMgZxkRQFk4GsC7hI1AWMUgE6WcZICtVdSvUYSlb9iVJsHSnTdnxdGivVlbbwUN16jVaIjPXV5EErbMYbyFIXVUsqOq/PTSacV80zV5F7oSBF9QpzKfgkJ62YRkWmtoSmRMGpzmLOxLnUZ0yvPRrh4f5Bq4BtcXH20aKUcv6D3n2ligvGetX0Kbm2fpQKrmrwUGLCekdCVftCcDgX6uIMSGFeAKBcjVFgysJxnDlOI/MMXV8FaZeNjmWTP4wjCQPZMqeMlayti3XDjCmTq8h1G9dcHVrVFemsjaDeh7o61BVKg7lmbpKyttI1R7eUVCy42KS6jkWNQVJMuiqY2lLTqpH1P29tbbFNaLuvB9M2OmqrmkdMJlcnYqrbWGoAbG6smXrPKjjSWgpPTq4sg9cc01SHhBOLpj6HRSzW1hZkawk+EFOhRG3nTkUwweM4o6nzuCiixxOS6DPlnJowSFHtvM1qzXY1UCzMvOX+OLHb7xCEu/s7ck6kqikJcqrgSnNdMlXM35JyZPCOwQhbb3lxueVyvaLMEZepSSLInCFpS541KlXgrK8FIKfOc5X557zHi6PrM1OOCmhXMG+OCtLFLKRaQS+UOlYaXNw/3PL7L3/P3/3dFwTjeHJxwbObK9WXs4aCW1iFPgSi0WM3tct5njmMR5Y2GFddh509CYY3Bp3MVSMJnPcKhg49PgR9dq3HS73Gyl5IRXUeD4eRq+2GLvg6T1UTFaP3K8ZZW1VCoMTMYRwZ55mu6xm6gRA6uqCaS6thYLtZg3HMMS37cIxRGUY5U7I9GUpQXaiK7vXb1cC0WnE8Htjf3fFwe8+7795ycfGEvt8wrNZsthu6IRA6hyXjDayGjqc317x68REEw90+Mx1HnHOs1xuc9DykmXd32i55sd3yfDNwGwuMM9PxyDRHjhyZ58TuYcd+PDJXxi01qS3UhKtKC2RRw4bv3r5nf7+j7wOZwsXFNavtlu3lFYfjTEpS1xSrbBGn61QqmZsnT9iuBr768kvu73dIUW1Va2ay6VQ2Q5o2r6lSGLqu7vZ77Hhk/7BjOh6JqYIJriZhFUAotehmjTJvjASc08RPaIWPk/SHsjN9TRR1r2GpSuszbo06cjvv2I9HxIIPgXlMyKhaXvuYuDvcM8eZddez3u+5XA385MVz1lJIVnj10RNkGPhuP2J8AOsYp8RxSqy96vymOSPZUGborepPrsPAdrXGIIQgXF5e0a/XzHcPZLFc3zzl8tlLVt+95yH+hne3d8RjVuMTm1j1gaubJ3hv2N2/x6eJbT/Qh4G+H8gxMU4jOauJWZomhjjQScBU7iwlaeE4FaapEGwtDNair6nJsvOWzeWGmBMPuwfGeWRKPStBmUH7CTkmfHIE0yMkvAhBhLUb2KzWXDy94qc/+zE/+8ln5PQbPnoJn//shn1+xcCP6Yrl5fNrVq4nT3fE8YHV1lPKDkuqTDivdbwqI2JsByao1K6LaoImnv3hyMPDHmd71quVPtMt9q/5HmfdBS3s1y1GaifIjCkTiMEnYXz3wFe//JJnEugvHK/f7fj9118zlm/ous/4F//8v+OfOcthDpj/7f/il3/1C8b7CcYZJKqGFAOdA1ztNrET3mWMhxlHMg5/teH65XPsrec47Vn1HeTENB+QXHWnagGw5GosgqkOeCf2yrL/14Rc917NH1JKGCkMnbpyX18NPHt+ydPnL3j+6iesLi7pB8erpxs+e7rhZhMYQqQMHZfdGtNF4rs9Eg9M056d94z7ifvbO9Zdz4uPnuOdY7q/R0omTTO/+i9/hXGWq4s/JWy2qi1X8+aSJubjkdX6Av2hA1GH0FIspcRHCb56Sp0AOnMW6Tx+1T33v0JPa1Pi0V/K9xyzxVd1PRNAXMD6oKdt5YNMtiWZHu8HnBUcPc6s8Gz03lMDN/PD53h+NtZp8aGxj/JZy6Weou65UvOY5o7dNKvgtGaeDl0BHbGPQKFcqqHWo/Fo7Y2nHBXTupNOSb7ik3Zh+i0qfnKWP9WfqYlVxVvlBJSJ01gmzfkRmHoeq0FVaanyK7o2VHYXLMBPA8QolSxTSSZStGPrxOozyxhF1VM5AWEN4H50Liq3o/OhdlTVvWkBNusxKi6qfy9VZKo8BiTPj9uyXLWUqvf1FOxrHuJddTuX04FpOfLp7x+/HreHPwKs2tyoYKepee75e+HxA/K94M73/VtO5/bh7z8E0ltRFKSacrVn2dAZo3FrPZ4zvl5/A+jOi69n8+57wLl/6PM//P2HXxtA1z5jYWS2+X+Wa7aW0JPZxNlxfwAYPAfT2vN77vR6Drqd3v/BMeB7QT/TMJGajy5nYJqcklnu1wJin33f2KfGOsR5bImQIpiEDytKAecPXF4I603g6bNrrrrC/Xe3XG8v2PaXSHzgGAI2zsv56v2xrctd8RNzNmjf8/pBgM4b1eMSg2q81AndJnLwDuc0v4w5qm7OnBcL7xQL6uZo66IITWNCz7ih4Y3KfBpwawTfBGetOthYIAR1AzXAqu+Q2hIC4J1Wvr11FRSyNSgzWr02VHZSpqRCGicQcDYoAFTAFAhGE67ZFoK3eKsgG0VNL7ClVvMUdEw1kDBSbYANGDHY7DTZNKpMF0j4kvEC1hQoej6pNLuDOhmtqa5UGVOaht1pAawExbqRnwC1JYBpgEmbnPWe5eo4mStA542BynLUiVk1TeoCSzkl4KYi4aUh29RNS7TKQP2d1GSdqnvV2FUIdePQNjaxqtMVEELKuAyl3kekQjHZKSirkAOa3ijzr7TFXKgafh7wiHhEVOcp5/xowFrHYDMe6FxQI4iqWZNEK0sEgysOFZ+v4J4XnKmMSlu1E1XOrjIh2jgk/VsBmYtu5ksir4uYVu+EYizTnHh42DOXo+ocOmXvSMlM00iqm5wxBtP0Is4AuvPNY/m5lMXtL8asOkg5L/ePevy432O8Oih1fYAOinN0VhUUhQySFyffVDJzEmLS9kRjq3tUq1i0+1JDw9Za2dqKW8yGMRgfSHEkGzUDwCooY4qcAoy2r3JaaKWCztTjiNTA3CqjMFVNIilCFwLFGRK+rgl1vuZCtqoriSknkE5kqZh778mmrVVNl+S8dYCaPOvfWassLy+eLgjFGUTa4nzSq1AmTKDv++VnqieHMkhLWQBesDruDVC3nnCYaousZR6PSAX+fQsgFXNQ0L1W6ksF/RtwSQU+izSgQK+7Dx2b1RokUqzhYrtmLIVxmjkeD6SkzKXdw54Ytc3ToO29OZ1s0bUCnul8YdMb1s4wrTq2KbNGk+V1N3CcBS87BeiytppbsTh0jfdeRfixjnhWCc2NZbFUEGvjlug+lXIh5qzAXhFSjsSoLM3Dfsc8jbX447AWbQetpZw4T6Q4E4Jn8lazJrFLwuhCwIXAPCed+3UOWuvwoVsqnyKoBqoztTXE0/WWrl8RQkcqM94HiiiAMqzWqhXadcSYlvU2l4SrgIwu19rClYqyOPvVgJiZu7t75nFmWK1Ja7DjhMmJ9Wrg8vKKZ0+fEvqB/WFkfzgyVWfQruvoug7rVL9ujgmqQ3IWZUg+ub7kYttzHI8cjkeOx4njceb27RvgPcNqw/Zyy2o9sFp3hM5Bntmsep4/e87nn39OWHfcPiTefveAHHaYPCLxyGhkMT8ahhWr9YpxTFwPa+au5/0UlUUW46JfmEXZio1R5qv5j62uyQXVfTNimGJhikf6Vc/lkxt83zNOid1hYn+ctEjoOkJXsF6IqXAYZ2IqTOPMfrdnPIxMGaYEKQmpeKZJNQQtFhG7FDOETLm9Rygcj7PGOG3daskGlVkBUE23ckoUZwhBCwK5ZFJdV9SVTxOHlhzpulH1eet+TG1nzkkLEA6L7zcEb5mnA1MW4jTji6OYgO88vu+I88TX77/jb35jeHm55uOnl2z6wJvbPbf3E+PoOB4tMQXEOPZTIaYjMRascfRD4GpzzRACJUZspzq102HPt2+/I+xW3B8jhyljtw7jV7gu4rsLCInDPDPd7vA7uLm+YHN9RTf0zPe3jALrYQUuYPuei5snvHj+jHke+cUv/pK7h/fMccKNjjgnbQ82p6Q4zuCCpxg1jrLWEIKv5kyFQqKQyZKY08RhOtJ1npIyMT1Q8gPY94zxQJGsCVNKlHHk7t7yyrxkXr3iL/7mHX/zF/+OP/rHG/5t+OdMvOP/+N//b+5f/zn/7M9+zr/615fMx3vyfMTIljjvcG7GuAPGTRSTVc9LKjOpFtSMMxgnFBxzFO4fjjgT6UNfW+E4bZJncf7S+FVjngQ4EkFGTD5gsiDHSHr7nvRux/z+wOFwy7u3d8xpRMweH3dsc2L70Qvu9jOfXTk+vXGMd5lcHHOyHIun6y5JQYhWNeEmjhQZSWXGpRnnBB9nzDzCeMCVxOAGUoHgLKWuaWItpWn5nlNn2gXKKTkXWrdJBbydtvxfrDc8ubnh6c01T67WPH9yQbe+oISO3XHkGOEyGFgH7MoTDxOrq6f0oSdlQzwkbl/f85f/+RcUK7x/+5r3777j1fNn/A9/8k95dn3FdH9LniasKXTmu2rS9BbjRpxv4HnB+B4/BDBhyX+0O8ArsJ0K3jdgvbZ3GgFqTvMD2Nb3MVC+79UgktNO+egoJ4CiVVhNjRO8dj207pqmMi01GBOxIA6Kx7mB4DZ4t1bApDiayc1jaObDizjdWgwLwWLR7a2yEN8HcLRukaZX3sZEWT/K+DmZE9ZnCsBUAFBO2lANIDqBLR8AL6YFnH94OY3B9giAquMkcmL60PKgR+fZ2uuq1vDZwDSAYenAeAQk6ac02ZV2egostpbBExGjnXZjUn3IsPoQFJEGfLe5oCetbCrrFlBB4812XbIUuMXUjgjRTqolgIeFGXgicLS+GE7ft6JTAx7PxvX8OCK1m+5s6B6VJeQxeLMw/5YxsB98385nSS9oAO+HQN335V1NZ+8R6HU2p/Rop3+fzwXTdAuNxudNY9DWc7SuzZf86P6dH+P8Xp7/bpm6Z3+3gLVnIOqHjq7nYF3DZVpr9ofHOgF4ZwaFRR59/h++9w/HtDHuzs/rMRvx9LOmm/9DrwbAnX/GAqJ+8EzWfyjmcZbnGYRcRihBNW5NJqYd8/yOkie8Lbi+0Dk15zMZjaFT1DXdnualUBZJA0PtDPyBa/hBgC4ETWoToi0DUqheYyDgnWXddzy5vOTiYk0IhkJmLmrFPB5mrPHVmUeZacXUCWAN69WGQlFx+hjJsdT2PPVFshLxDbzLqg3Uh4AxQk4zeTzSMlsRKEbz7Ej19vTqzKcBsiVLYUqZMSXmlNkfJvquZ92vMQFtkyzQ955+6Omt3hAFYARrBWMrep8jnQtKqRYhG+ULNsYWQLHoBDItqNYE0lazCWdP7S6lLoZqYtZAgVNAomtwq4UoktgWaGqALqZujFbvkXXaxlRyVvfanBTksycarYO2M2Kqy66prL9cEpRWpSnqckRRTQpbrZfrIkZbWGkbRakCobk6YVaQNyuAko1hTlETipJPwp1SlyrTNmZbk2d9+CtvB0M5JerG1cpbqJu7sviM0apcGyepsFNBH75SV8tSgJwgOWyKkCpTS+qD6hzeWLAoy8wo7di1BaOCNUWAqoFiMfR9FaoXoQlVQgW+0feGEJYFyxqpiYXes4XtWECsweaTDl0T70y1ktGYZKAad3PUdp6SBePsyWVUqIxHIaYJV9Q5ySZLNAkq8OadAhdIqS6lQsyFlHX+WWcWxpMRPd8oiZgSkgsWwYUeKdoerPdKdcVSTJVFotthqeBLydrjbGiVpTa39OvpubBko8DfnAsyR9Uvs0ZlM0RdP3un1fcmbtlo2bmaROScdH6obW0Fyk727aaajmj7tibO6rgpaNFHe/xLBfhEVINOtVf82eZjFiON1jrvrJoBGJpzLGSjDK1pnhlnNQRQUwitsjaNEedUhw4pDEPHsFqrYHLdTBCW1ugF1rbaOqppu1WjmgqWYwumaowgwm6/Yz+OygwWoWS1C8d2iIdsJ6YSyVGwIhjRoDyXzDhFjDiCE4atx4jgjWXbr9mu1nTWUbLgsQy+0yJBVqduKvsYGkiqybQR0ZbFFIkxM48z8xhBnD6DqPaQreYeUlRPMY+FxB1Yy5QS4nvynLhYr+g+/YQ8J5wR7u9uyWnCe8P97pb3b14Tx2N1nzY1wdfzW282GGO5f3jQFmM0WFSDDn2Oc1HQpFXZtXVEGeHug8AuFzUxUgCvV7fynBWUq4xgZ42C4TUSd06LUDknDNqm7L0nuVzdaGF32JPGSQNs61htNgzDmpb09l3HxXbL0HdYI+rojHA87pnGkZQi682aEALrvmezCmxWgXHdU3Acj5HxOHOcEjEVHh5ueX8bcd6w6g1GCtvNDfd3L3m4f+DJ6hkfPf+I588+xswT0/6O1++/w93f8frNPZKjBqgVaNv2K5IPjLsd8ziBMQTn8bWCb0Og67T91wPBqPQkkkkpMqdEbwP9qtd9xQUygcNuYnc8kpJwHLMClINnmkfSFDHWMcfCN6/fsvYdwoAPhuPuPYckJJtJxTMeM9OsrrlFIMWIqe6rKUasFbyzSHAYozFObkLcyzNf46LCknAOnSd4CwmkqKadda4GcSrJIZJV+0XaPNM4Q7UHj6Q5LXuB855oDRih61ZEq+28pkpuHGXiYt2xfXpNdPD24Z6LwbOKA1988Zrfvj8yFiiSefbsGVjPm7dvifPMxXZQXUXvefbiiuvLa+ZpxiBMxwNTHtkfIvfvXhPFMYtnfHfHLn/FMULXr7m+sTzsdzzs75nGmWHu2R2PzDmyH2eOc2acHvAu8KJf8cmnn/E//8t/we3773j95ivG+UDOmeP+wJwykjNtl3DW0XdDbeFXtnDXe9abFZuLjZpYZS3UKPulMI4HHqCuaxPG3YJ7YMwHoKN0PVMxTCJMx8RgLjiuPuX111/yxbsN17eXPMxb3HpgzBsO04rD6CGsGK4uWa07hqFjve4Y1oZXH2/ZbLTAYrFIbqYjLXnX4l4RXXteOi2i9qFXdk6NrfWiW2pZziANHQ1DwUgEGSHvISVkHGH/Hg57ju8feGBm3u8ZvGHaPfD3v/kNGw//CM9xmoi796zdTCaxvbxhjo6yO7J58gz37Cn0nsPunvfffMvd+B0cb+lR9kG6v+Pum2+4u3tPiTPh8kI7PZzHONVULsaQjT25dxeQyh46uT5CE6MwFrzXdfHq6oJPP/mUH33yKVcXF5QYSccdh4eRcRL25cB9TJjgiPcruuMDhRf89JOXbLfPeLjPjIdMKJZynPn7X/89t8d3vHv/e663K3784pJgJoIfsReCrHT/ffFRD1YY91+we3/A9YEpTgQTePHxf4MdnkOyWJMIPoCBcZopInRDTy4TjY1tbdu/lR/0Dza5LsDJY2DoD19NJKQO5gJ4noqoy1dTO0xq+uC8FhLr4kKpTtgL0CDaxRKzQBfwYaCzHisFkzO4jgUkOT/1R4Cyqcc/nZmzqvWtbai1hVKDZZX18Q7nO223tBr3l0b80E2VGo3r9RftcilOx8waU1uJNc9KFUOxlRVnatxpjZCtHk9ZcY+ZWG0gWl7WkAM5GyOAhXVmlbSgJAFZ/ieiAbk0NagG6hi9HcHVuC6lCiSppIrjVLwxTnWlTzlTO7MWQ7f8pAErprL+Pa0zrYEuxkiNM/VcijnNETUJPOWOC6tVzj+1GTXWQqUxNGEiQXMmzU3rXCh1jKxRyapl6pYF4Pug9nDC+xYgVc4+s3YytTOonVOm5rFFkcraTSZVu/Z0N9un6e7oKM6RjaMYJWiAxUjASqqyIJpjm1zb863UtKACPMsDc7YimzZSy7auc1BYOq7au1U2iiXzV1BRddVLNflTgFnq/dFOm9Pt/0Mg/7wLa3EVbuDl2XuM0W6i9rtWFEQEbx04R5zj45bY+lGn46qGqAJfGg8v0h5nOUrRMAZXxzJnzRmbpm4r/jdm4YnI9fi82523FYuw9gxMrXNvuf42ZerxxbTZc1qPUsoEY8im6sanRIkzqcwklznISCRiyoSPB0wakTKTRaWhXGex7hwIlUpEOrXAP1owPnj9MEDXKcW0iMEZIRejBy8OjxBwrF3gug/crHtCp/TMWVTsfao27N7rDUlFQQfnHKHr2Gy3YDRAPc6ReJyIJeNcoHeWUDK2JOY5MqeIc47VasA5S8mR4/FIjIkS1S3VGkXoUk5MJTM7D87RWxVsP44TKl0Jh5KJ1iC5sBZDIFBE2wNVaN7TDbqK1OdSB1Uy1hSMcQhql+6KoRhBJKmbijSNJ6HJFBgpdSNRgV8Q5pwRfAWgqk6BFJJEcsnkSkNuTkYa3EMx6kjrXGUFioIgpVBbNA0Jix26ypqjbnaK0pMzJGVKMKhukeSZ4qEPtZ2vFNVEoZz1lWdMyQuYl1LG2NpKVoq26VhbARHBlKjvRw0D9nPGRrDB44awLKIlztW11pFKIeWEMw6sgkPFVRANqtlBBTVrGFOM1dVt6RSrLZQi2rqMqwCRBnsSQKwjSYMv9GkMKLhXUm0BrBsftlW4zNJya6D+m2WjVZaLnDZY2zaPVnlom4Yyz5QiXI+TEyYE1IC0YK0m9FVOTue2lLONtFYUqK1VJTNHXRRTLuQEJVskq7iqRVtp1B2tUJxFxGG7QOhDdaWEPlhWviO4CgpYmFMklYLLCS8WPxhSeWB3iNVMQed9lMx+TqQp4p26+SqwoK6sKRbev3vH73/3O8bpyOZiQ1j3BFv1myqW5tCN01mHDZ0GWHUSj2bWthccyVim2pZuMHgcwfq6ACeKc9jgIRuybS1pRp3fxEDJuhW7WvkTdQ6NJZElAxlvqQzaE2OWAjFJDXsb2FsXWkMNeHKtohpt1zSONEfSNCNZkFTIsz7fuWmBGcuUM7tpYhpnTAiImGpGUyX8jcXmiDPa6k8Rri4vWfUdu7s7iuimrc6tsmxo2tpS57vRYkIxLAzGYizFaYCk7aIJGzakY2ZlPc56kt8wyYqyTrhgsNnjsyXvRzpnsZ1l2id8ASvasuk6jwuq1eZ9UF23WcEMh64x1hawbV1R9mLXOVY9XAwdndXz66uu2/HhQIkQrEewCngiuJTxJWNyRKK6veZj5nYccXd3ZBcYMyRx2g47TYz7W213N8LldqVr+/GAjxMdiWwL5KwES6PujtaqKywFJCeyHTGho5RIMYL1hmQE41FNMqfuXFYKjoQpUR26pYno6vqg+HLBmYQ32qYbU9VXQ9dWV1vq56ysQymq1+lsh3EZExymt+RZSM4S8URxFNwikB28GvkAdDcXkCdub9/jXUZS4u2brxmnyLOXP+LVq4+4uugx5cBuPyHBMVxcMUyJw/7I0xDYHSYO08w4TxwOdxz293QU7o8Tf/1f4NvX3/Lik0949vIzbp59xMunT3n64mPWyrZ4dgAAIABJREFU1zfcPNwxPYx8+Vd/zfHugXHosEBOE4jQDx2khDeBEhKzi6SkLqqxaJFw1XWEnHGi+pvZFmZbGEsiHidtuT5mdvGeInCcJtWezVpwdEZISeUFSjFMc+FwKOQQSLHjON0xTkKUQjSZOAt5MnTDoAzdcaITGLoVkBhCwVthl5Lq0Dp1pKQ6XwsGSUK2RTXlRME0yRDnghFTsXOHLaf1XWgBXdU/Et3XFxK4aPyQ81wNnBw+1UDUWEr29MEvzCspEfEJTEc2sIuZu8OR9w/fEGzg27t7vjvs6QbHjz9/xc9++iNIhrevV5ScWa0CxmZSErpuQ99v6Z9dsbnY8OXXX7DbPsG7Db/5ze+42x24vLhiN0XevX0DvmPVB/p+zao3kA+M46wyCNNEHxw31zcghd3dHZlInEeuLzc8f3LFfLhjCIHLzQUiwvE4kcZMjgKiLKWu6xj6nq7z9N4z9B1dF+j7Ad/1gIqUO0FjRBswCfIUF3F5awOd7wlmxg89wXZMWXDDmsuXr/BPP0OevOLTm88JN1d8/DSQn/+c1ZOX/PG//jdMb37C5x9tCRefcyl3fP6Tf8Tl0ytWmy0XVxf0W8966HFYGmFbrJqO0eKvCioMXdDW0JpkauGvQTnSFvkFkjPidCyK4Kw6nZoyQrwjT3ssK57eFNZrIZYMKfKs93z208+xR+HtaPjiwfL+b1/z5euvuH2YePbyBcbPvHzxxwyu4z/9h39Hjrdcui1DL7hg+O27kbHsOeQj5KjasCXy7v079sc91lmOKeH7jlAKkxRknhdG08IoMHp9BWXTGKMyNLoW67WuNiuePH/G1dU1L16+Qpzny9ffko4j4/0dZToiCBOGvXi6yydcXf6M/tNPkesVNx+9IAw3rI6Wj5//iKvtPX/2Z39M3l5zd3jg/f13vHr6nI/WV6zE0vVrcmdIc8HZgeHuiLHCeBjZz/d4Y5mnEfyWIplkLc6BsYneZ9UMFBYGkYITroIEgidrIbMsUtlndcozgXQes1++79UMQfSPVXLoA7n8CmmYWhTyC87rk2GwHU4CxcxMNlEkE7B4I4hJZIlMRSjVEKkPB4L5FmsF5AokoH3PZimG28qMOsmVeGr9GuOFwU8EO6vEhFkhZaxt0+oWnsSqlqkLZBx5zvXqHFKqlEmOSImQ0fliIHUW6RwdBpsEHwUnraPGaCuoabFRBQgzWLdSwEMqWFIpAks7ZiVtNDM74MyoRTuhSpVVEgeTJC2QeqrkAeSYCT4sBWTXedXyrPdKiiBJ76OzjSIjKj8jRWOp0GlL8pyUzlCZh1Xgp673suQf1mqe19h4CzgHVeqokiWsA+s0BipKFQnq1UA2Qs4RjKvaYLbCTkZjYLEU4zFopwq0HFRnp5GC9YpM5db50th/JdUCsoJeTQP/HMpo3TnQOrrsci8VKcoYX2d40yZH4yVLRlIFbkG1qwWMrfBMsRTbcfQX5OD49NWKDpj2Pbdv98x5TzSZYxGcywxEprijeDUmm/KMRTWAW4Gh7but/VvqOrYY+YnmltK6RU6YEirC1Ugmra1ar0sLw1V6DKn7h/5tSXkZ98Y6PBEQKrhYj5dLIyO0EaXOnzr2UjSflyq/hdHiMS03gaa5KFhy0mvMUsHISkAJToEzMYYueKaciN7igyeMgksQLaQKrnFKqdtCeGL7Lfm73r/Kz1x0M52ztShuGyzB4qxrNOYyVW9OiyQqqaNxmnoNJBGKV/kyxkRPQELHuxJYeeGVSXDYYd6/RfZvyWVHtBbpB8RMLISTOkdPNMDTVvcPvX4QoDNttT578EQSphScQBBHKOBihOMBSUIhq8abQF/ASsKhkyiVVB09HUEKIaIC5qLAnyUSjDIuOmdYDwPkzOQdMSl7ZbVeqcA7gg875nkmjpNW2irjI8WI5EgJCrRtw4DF4HyHK+qmmscD5jhjs7qubYctJRZiKbhVjwuBuoZxrl3QnDXVbLDgsQtLqonOU3RTiKhOjqkLYdNHUF0+iKWglJ/KHClaaY8xkyroqFmbQ+ys5hyA2EIxmTnNYCxzLIzHmZRqS7FRI4YQtD3YBzXsCBZF+XNUPb0yYyRXgLPgrGc19HjnKWmmszVplCognvXhNM6pdbYIxldgUU+Mc2TY1EpPqRM+VnDNOxiMo+s8W++IcSbNkSza7qMbnhotZE5VBvWsqLUnowGssjq1wiemuqy21jdjyKIghq1JigIiqn+GM8u5KotQNy6Luuta0flkco2SioKwDRg7r0IsQpyG+vCzIP4iCpaISE2S6/2fY9V5UvCnVUCs1dYPZ0wztFVGTR0LMU00v9GFnYJLpW1uBhGnbDgpdaNwdUMz9fxU+9EFdTR1tdLlQMFx7zC+CpdHi5OCyQ4nhiCO2/s9Ft0ULFW4XALiPSUHRM3xtLUUyB5yjOz3e968fk1KkZefvuKq93gHxVk6r/YqY8lIUXZbKy02XZAY1XnWW8OUNajKdUPRDhIF01LW47heyDiS0U04VjbpEDoFTEsj2ddnvL4vlYyvAZsxUHJmjrEGMBC8JacIVgjB44NWmnMuxHnmMBemeSbFUjUARYG5WkiwRjXkjDVMMakjL5WGbwx4p81v0pJxfRa15fy0cVljudhs6ULg4e6enHWuL5qWnKrJVmsHGhy0Ta4GWkgmijJ5fdezNo45ezrT4WzGuIH1k5esV2u+feP47psv8EnRgb5Tl6NsE9ZlehsgZoo4jOswXpmAqWr9Was8PmQGyRijgRimYLxggyEEQ/AwhBoQejWw8M4pC7FUJ6y6+Xdi6I2ht4bOCt4UvFHnsGOcyJKY8IxJyDawP07cP+zUJTIntkOHPH/CzXbNyipQlkwBIjHPOKsFBaomkmj5lJKFbLV4VETZk9nUIBdRpqlT5NlKdRLPCUTFz5uAdJGWXOt5OwvznNlJImWh74yuTUZZrS0JT7HpGDplQFsDAWxnsaKOvlGEKSW6nBXoKUnbu2uL62boGUNt25dCnKO2bBII/ZaSZ1xJXG43DAbMsMGvwHllFtsQGLLhME/4YLBjYWUy49HwcHvL+9sdv//6Lf32t2yurvjx55/z+aef8OL5UwbX8fLmmh+9eM6v72759u136qa9WiPO4TtPCR2D7UhdIZgjpURlGdWCijeOm+2GdTC8u33NbhoJnWPOlllVfkkxM+52dN2A4GjmY3PK5KhO2hebgX7oKJK5240MwxUxOnYPieMYiQ4IAS/VpMFaxIPzFheFNM9Yk3lyc0HvhPF4q59jlSFgxGjFXqr8wtLGp8WbWAoG1bR0tsVcGjTnCt40blRruV6SnbpOaf2gFm+cV5ZYUsOeNEekN3Sdx5BrHOM4zpHv7h4YfGA+zBx3k7ogGkFcYRgc1zc93o7klPjJqxu2/cB0vKPIhHUDu4PhcDgwx47gAqt+w83Tz7h68jHSX/H733/Nertltd9znGfGGKG61XqZ6Z1ggu4z5MR2veHq6gprDNPhyNAF1kPH+3dv+E9//h857B7IMZLnVE1Z0OTVJt0JpMVcynTAecRqMW1OCRmnWtDVRLg3Ad+ZJWKWrAmmDxdcrBObQyTOmULCdR22XxHxfPX6lv/8y19xub3hmzc7djzl47ljd3zgL774Lcevv8bYH/PzuMbITN+tEGPY7UcEw/F4IM8Rt66JSE1WM1kZ9eexuJy1wi0t0hWgM+fci6VhCopCIVYSMIOdoY8YM2KYsN177OqOQ37LeDS4+Q3dama4XCGrnv1wxS56/vb1Axvb8fJHP2HmltT3moiO7/jqi6/p3v49N9crPn22JRzfEtIdtkxazLTayTLnpCCctcySsb4jW2XplLp/K6NIQEpNtGvhU3RzNmJqsVsZVnOMZIQxJe72O+7e3/LVl1/iilCmCTPPDL3DdJ59CazMAJsLnvz859xcO/qLC4LfsHKOZ5cf8fzS8LOfvYLrF4xTZjdOXHRbyt2R3/ziP/PbL3+N+IkkI6tuzTr3rFYDd3nkzf6WfDeSx5GtvcCtfsTFq08IRrBmppQjkPHeYcVjTNvzbY1tRQ2apBDFkoDuLB8TeMSGEWmdNW2SnL5pMJ5ZUtb6N8a1SGeJV0/8pvpFBFKmzLMapGFIVgGqLhtcbQ3PplC8Yz/PfPP6a15/+2u+e7KnT4bL6z9S9mADt+r8bK229WJqPKonbJwQ/Iy3M8Y4nOnIMmksXq07c2mxjSVlxaeDtUtxxVQSgUGdQl1W7dloC8ULjkzIQqhgxiTteFJd5EtlbSXdU43OuzYvH5t4tK4fZTk1ra52PVJBUUPBenXBzZKIRFwRcokM3Yp4zBqjU0ksCZJNGutUnS9r1DihSnFrztBkKHKqRWBbDW9KU2zRGLHNiAqMmqrnKywHqzE8eANUlt5CFKzgXs7a/VG8FpGERkqwlQFV1xxxS0wt1tTxqoCxaJ6h80/PK0upuqv1v5JbsrcQXKjDruer3RKlbXgtbm78KWmQEerg6VrOo2ClM3YpZhUjlQmn52RLa92FjCOGKz772Y/4X//Vz7j2gd37NV/88hu+/u2v+erNt5iUKGViNe9BjswosaHkUo3kzs6lrtcZwVaduVMbpXk0n5bn17YWTeoYVdKQ0SKUoaj0ErouSgXYtOZna16px2/zo60Q7WfWnow/2j05Z/xZWFqts6kYQr0nzrYI5ATQlSUesZqLtuzKKJbiTO3coagxnrPI0NOvt1xKIiZhJDFKphTHI3VEc2J36hpYixbmrFhRYzNnGhC5PJKPJJjAnCTJKjaA9TrmxqpkmfGKfYSgxToBoWOSwOsjDHnmoYyw22PuHsjjO+b4wLFEJuvIWYFJPa2aJ5+deyk/jND9sItryYtW1iOKZX0QS9Fg/ngo2DLhgpBtJjtt5emiOvXh9Mn3RrDk6gI0MscHvbWVBUNW0WeMY4qBuFpXRkdUsXwRjsXha3R9QDWnZqtBrK1JfDGFaFR7yJZCEoerk1URVYvPASYFD33oGIZBg+2coO8wwRFCQ26b/kKpKGtlzbSFpgIsqn+jAFOqhYTaXVcXAH3pZHUKMkmhKTwY0RbXIoYsBm9BpE6clrjXT9SkTrUuUlRnyGmcdZNqm70zbFYD280K73qC0WTReY/rHUigDw4D6oQrSct2oiyUPEeMVyAoxbiwH601SCp1AQ1Y60glkeJcw0VRZ8Vx0jbLYjHO1yrV6QGzxrLqe9J6za6KNGNUr0mrNbJsfFLptbnOybaGyNlCcgo1NPjoO2VFqkaJwTsVTZdcmJLqbFmjOgbeWkRpZxipLr1Ze8oX7bK6Sddiizr1lUKm1tXqPdLzUtCjucWaukKZmrzr81VZHPWYKhCvbB3qg+xsdZR1VYfPnKj/J/T9hMiXSn0ulXlhWqVGpLIwc8UYmiCvq4uTqDabyboBe1edoczyXtc+I7dzcwtV3jllZvjQA5ngDYNVs5QoGUgKfuXMOI7cPzxwMz8lxlgBRr1vubrGZlGAVgExU1mA+r2pVZpUlKXnKkUeYxagNIuasOQo2m5hIcbE3f2dMmrsFZ1v+hWVlWgtPqg4MqZSuxF1xq2DnVPWdtTOa9XZG5wSuwBlQ80xMU2JlDIpFwXfRNlv3qmDbBcCyTZmseoJUhNrZ7XdVIrRRKxuQs60rywAcTMzcF7BmaWVubVW1/mnDLwaHLXgq5qLtAgoZ3VL64LHWsfh/oDzjjkatt0Vf/xP/gk/+dM/4Re/+zv+/D/8e9796lfEd+8x3YqEfq53qrs5TxO5+GUjL0VbD2NKCgR7p8WZuk4a0+7rWSsFapxiVegR4/V/4iDlgjfVSMgYus7S956hDwxDoPPa4h+sxWUHocOLU11Ip6zlh32hlAoS4gheixqmQBStZC7OyBVYMcZXM5VqMERSAN1Zdd1N2vaqGjJK6bVO3UuzaCudauS18W/JWX12a8nUGMs8J47HB+YYuLke6LpQHctFHfZcIOUTu8p5r8FyzpQS9XlipDAidsb6HhsEM9XiQqGChD3WrqvWZAFzSQiCdz1SEvvdHesu8erlx+xz4c39EecHri468jSxGgbwA/spMW6f0+UdIR/59tu3mDExZ219uL+745s3r/n9737Hf7m84MXzJ2yHnouh49Wrlxz2e7744kvuH27B7ejWa03csz5ztguE1YqVM7h1x2q9Io1HDuORZxcbnr98ju1g/GbkkNREw3iDOG3DKdYwl4hQWy2cV8Bm0pYREwLdak2cj7y9fdB1vHiQPd0QMFbYzzOkgrcD+MrGTobOOmXEUri6WnO58ry5fyBPM4hfAtQFTGv5sNHkJ6kFuf7CqWLSnIU56zooRjcZbVVqwujaxmlr8N72S2sNxjmMUzZBQvXsTE1YtWAl9L7DBCFJZk4GYz1TgV0sTFOs7NrMLIm/+91bdveRq2HDxYsbdvsjr7/9FlPB+7fvJiJbwjrjDjsun11zub3E9Stunn3E/WEkZd0Dur4j5kQSTcRKScoGDgEtsKYFa3ChZ3N5xcVmxdXNNV+/ec3vv/oSZwz3uz3jPGMqoNuJgcOEWNWTnet6IyjzfJ5nuuq63Hltj7bG4K0mxyE4mt7OOE61muEwxWBTwcSZEFa40HE3Hnj35ReYwwHrOko2/Oov/4off/YZn//kYz56+ZQ//4//J8fX3/GkM4y7f8r8cM+3X39FeSMUb9nFxGES5jkuUCst0l7E3d2Jvb+85/yl8fIJymMB8UrRdLBzGcoIeYeUe+L8luP0jof9ka/f/T3389+zS9+RJ4fxBw7zgULis89+zqtPr7h8+jGhN3z161/y9vUbjtMEw8QhTkxp4jAeKeOGktc409MHbfssJJwLGs+Wxj3SdTSmAlNknKOaRZ3pGp3KZTVxkpbQV82hWvQsBeZZ2b+pZFbrAUFdo3vnKV3g/yPtzZ8lua77zs+5S2ZW1Vt7RQMgABIUKZAy5dEscoQdE+EZ/zYe/82aCEuyxmN7FCHSIiWS2Hpf3lpVmXk3/3DuzXogQVIReoiObnS/JSvr5r3nfM93Cbe3bE420DnCPmOhDtBm3Oo+zvU443QIHTKX+2uePv2KcrHlche4uN1xvjnh/rDm6xdf8/e/+jvGtFWf4mJ4cv8JH37nQ97u3vGLz/+e6/07CBPvnT0k9x/wx49/jBOtfXMOxBRQORq1lmv1mSzNeQMff3/rxmI//bs/dP2wQGOm3t9loeiQtdShONSGxUAe2e8umMKOZDPiRG07sqGUwDL0s5YpRN69u+Lt22vevR1Iry/45I/e52j1eFmzhW9/PXdlZgo8NCaXguWmZEzOlSFcaCBGThr61Rh5QlEj9xiRFLE5q6imKOkipajycRS4l3rGtnWVMxXgoDKaQGp99E3ftmWUW9nKicYgaImXlsqrEFHcQOqA3RQkC86KKj2SEKMGAZhiajieoo6Chh6mlFR54L2CcjmRS/2Z0vwOC1Rpf6nSwOb3bUpjSFWwQpr/V8Nz259VQdNEmYtHV+21UvNQlSaWruoMsSxBjO3dFlFgTKxuT0VlmboMtQqVgspBqeylssCIyAJsat9RGriYi6qkKghm2nmKVPxRKphfn6vceq87fYzU56AcPBXbpR0WZX0UKJh+xWc/+Rf8X//h/+DRsGG6OeaXP3vOf/tPf8l/+i//Ga6vuLm+wM4T3nUkU1U2YnG+J83KYFNZagvYVN0cKCAqtJ41L/eARnKxzQ5JtCepxbIstkjV974c5MdSVI2DND/oQ+KpXsvh1S5eiFXF9M0BQCMUKERmF6XQt3+Pu76K7UaK2Grz1UCqurYqqJiMaM+12XB6es65BLa5cDFNpBDJxi3P1rJu5UBSOHgMHuTEi3+eNGblYZ/8Blxan4emMNCh650FQPs0g7HNRsuQsrAfE++utnSv3/DKn/Kdt++4vblmP24Z5z1jicxZ/ZOLOVxX+/2gnvn9LOjfC9ClChZkURCJ1szWNyimpGjnnDASkYQWw97SWbApIRUsMFiskzueT4l52us2n7XIkOrtFXNmwrAfRyaRqkdWCZTZWmwNfJjnefGUylEDFQp6splSvXqKYEULvjllcu8J3tWvVS8WlY7WRW0qECYo6CBlOTwVXWkLksUgvoocUcN5BTsEQbzXyVOqG1qdbCggUmUtJdcGSxeNFCVpmFzqF5bl4WzLrG2yzvm6wSSid5DqAVMU/HFGOO4tp+uOdd/hDXROWHfayHbeqh9aDkz7PTEqeGNw5OKQ6Om6DimoqXhK+F4n5BoAkXF9hxj1KLmdNGGvscKkTl1yUgjSunqnkiZgzfMe4y0lp4Ux1h6aqRpdLycJLBTwtikfPL4OG8/hMK3RzikRgxqtSy6UKHUqpgCgM4J4R5RCEGEGTJfJTqfvC20Xqt8g2PosWNLBzLZuIm3yULKCTUXadEqp4hqpnckxqLypMnJSgRASxupEyjhHNwy4BGLqw1xU/tskkcZIXedQiq0gdvML0DWl5qiVOl2LG4pucMUsvFi9Nykr0BIjuTYrNptlQzSNJpx1i8v1nTiEduT6HikDKC8FoQJGbWNu0+KUM3PUpjbmwjjNzCER60ERUsTUpFpnVW7rRNm4TnRiJKIeYZ139NZVjxFIeLLpNNrddKzWA2PYcXNzTWPCPrh3jjX6HFIquGoMznqs9RSSBt8UXbOlaCqXc3pwqp+GUSAuK/gSojKeUtHXjKlFqIjGdWeVelrnNJBEF25tOtRbqlRgVSolfwlqodz5Vb9OjHqe1alWzBo3Y7FLwV84FCNt8qovppAiOHdgvJacyTGpTIeI7xy7sYBZcX56xJ//L/+SDz/7MYUVX0jP5Re/4tXbt8xJfa+6bgUhkwjk5MkxkSQTjYZJaEhMlQdLTa+yegBKNSF2xtYpp1ZOVdhPotL3bSFKRoyabFtr8J2l7x2rlTJtvM2IVWntSizZe1wUcIlie4wz7MeBqTOYkjhardhsVvR9R4nj0tS3Yl736gaAKChtlFoMolI4YzJQk1uNqBcmFuN6KEIMmtDqTAEsznWUooVsrkw5Bf1qAYYyN1OspumlSgcwOvSyTkMxYktuFgqJHBMlhxqs4Ch5xlRWng4PlDVQMIQkhGTIeGJuL+cIa5RxNe1v6GVmvTnm9N5DwnbE7OD09BwXI/v5gqFbgx1YeUfanMN8A9MN2+2M7SMRix02zBlu9hO7/Y43b99wdfGGPI1sho6j1Zqr61s9U2sRPc+JMQSm/cjORw1PsAKmeg6iRWMisw0TuzRTXAVEw0zJiSQzOer3NF4DblIsGGPx4jVoovNkiYRSGHMiAWOOpHhLDoXjjeHBo/tMJLbPXxPjxNHxMfZoxS7vmXPEdxvWw0CMe3JRD5JiWjMV2y57AF6krq+szaCm5SnjIObMnBMhF0Ju3qYCxSzNRzPblpKJWcAo6476PBUDIQeaEUSxWtxnozIl4wzZqA2EiCObgSQrokR9Jt3AHCdCgrzLfP50x27vuLeBm5uvKGFke3vJHEZ2Y2C7L3z06Y949MFjknH49YZ3t1ve3syEkLGdZ9wF5pTqhFqHGVaEruvoh560rwPWlLi5uSWJYX16ypOPvsODe2ccrwcu3rzm6uINt1fXRBFM12vSWu8p06RFMSrzb7VcjFG9clDvxWFIlC5TvMM7tbqQWjjbajpunE7/U1LmN9PMYAwr74gl0jm4v15xfP+UT+6fsNtP7O5veHTWs7GJJ2cn/Os/+zHxdsuPv/89Bq+MGVutGiRpavX5yYl6kzUEIwvYKofCUKkQv1Wb15L/8G+/gX4oZqD7VSYijIjMjPtrnn71D7y++JLswAyB7322oesGSJa4F8IeVp3jo++cc3JeuPeg49H9f8Gze+dcPn9NsT3ZD1y9fsX27f/M/Q8/YnP/MffOTnl0vGZz9pSrYNjlV1xvEyXVeigqwzynzG67x4eoFjV14N5kV4vx99LQWETp7kujqGW+rpX9dof1npIi52en3Ds9ZdMP7K+vefPiGavjDXQDdky4/og47nnx7DkfPdooAJASkmF7c80//uM/8OXTr9gVx8UY2U2J73/vE/7Pf/Ov2Dw6YvuLwOdfPWeubOQ3T7bYsyMurm75/Mu3XFy8xZaZ6SF8/OaS97dbhiOvwzWjz6kxWieUMFXjzAZaaKNdSW9/AHz7p3zUNQQoUFfvZ+s1KFAiIUxIznjbQQIxPbBlHN8xx1uy8fUKa6r8MjAo5JDxvsO5I4bVA9abJ7z44pI5sAAq//SrrTC1VACgMtWkVMCqZFVy5FjVWjDNCvpbCiVFYpwoYVblSNEaSGl3Rv2vqzVAqSC2hiA2oKYyWgpkUR1nG27/1rXKt/z/nf5F7SpQILPVdSXV6zJqa5CK2sGIpZOeECPOFPp1z8xMjJFcaiBZHdS2AQ2UKo+UO4DrnZ7ot66vrrNGMPnGazh8nYJEDXBrfRV3V4z+m6jtCHUQmWn16eFeLPVrW3l1bSuTzdbPr72wMaq2KqhvvThMBS4Trc8zy7W2e23MnQVWMqlKmtW7va2jurYqYNXAX/UO/panbGkphWHVc//RPZ58+D6P+w3EM+4fP2AwhTFH+Md/4Is4I+MtvuuIVsMYTdH0TKOmcHXNVVUFB6DJO1UupHIHrJEKWxqt/ZsksxEQFKOrcuzq65aLKgibukv1BSy+hHfBubt/ts2n+87H0kdnWayZXPWCa0DZt4VENNnp4fvcwd7lAGA779T2QwyxRGyxdMPA0dERRymQdyM23ixncuv1G+6iJAW5A3DVVVna/qaryzSQThQELlDB76pEaMq5pTaThVBVF2x9jlUr1rCABIzzzNXFFeXrp3wxOc6/fMaL16+53m2Z0kQ0oJXk4T59G0D6hz7+AIOuglP2t79pAYyzGo3tPNZbRAOLyDVp1dqCSfXmeYPvO1znFvPEsh9VwldQ+al15KxgUJwjRJVIUgSpZoykpFJPEU5WG6BQumo0X5kqVpoj3bFSAAAgAElEQVSRZYIU6aJRxoURpOuhd0wlqyS0Kk1iVmaCchGanLDRMw88WymlilIr7VoO0wD9FH3IYt3407JxtYgCWTYxsaaCLVUy1cCdpVAR1FjULFOKOvNAaCbTOsVf9V5BC2OwOJ0QzHs23rCyQm+yJskWoTeGtYWTTa9y3wRdDoTqpaDVnWHYHNN1PRZhiuqd5TuPqwCdiOD7DnGe/TxzPI5MMdSYaHD+Ene7Zxoj1niM65ThEyNjDMxJpWdd13GyXtHZQZlPQYG9kKNOZX7zNGx/J+3fvn3Bh3nWJNRZJdA7o6zEznuGztciw1Rj24hMgWm7pfOu+oYkNJhiQQgB6sNv6PquAivaYNmqU8/U6c3yRmu4hDiHGEdBJ3khJlJSQM45vT/FqjbUuY6jo2Nd+xWBT6UyeuqULKP+ZD4kYsy4ELUZcZkYI9Okxu+LG+syOWBZgwfqfl1d+ZDU04xbFWWURhOkBW4oK1QTPENMmKwpizHMOjk0anLb5LTUr8MaxFsSRYHemIhFve7mmPW5NUrHLuQ6iVNwv4WTGEFZnLWp6jqPd745YGAlI94zp0ARy7Dq6edEDJnduGe723F0tAbTI6b6rpVc0xhBGa7VVLYeWLYWALbY+v5rwEfO2miknJQJa12VDgda4nMDMRUq1YTjxUuwHm5StAS2HFiPYko1X5VGJFjWe0v63I17nDEqj6igtFki0kUleLHOPcuhdjMCOUdIDaAr2gilyLTf0a9XVUYshCC8evmSm9trHjz6Ph99/BnncyJ/8j3+4q//H56+fEYqhq6z5LKvk85CCUl9TOskTKoUNFXmaQvHac9ym3oZDofrwqwsVVZjC9lmNV52BesVoOt6y9A7VoPDESlU8NoKyRliSfQua9BFafJZj7c9R5sV63VP5w1hUjaNNSpDdmLwzmmCGQZjHZ3vmeeaqFVNZ1ogSvM6ibF6nFmnwGeBkjK2E7zv8P2gEjTnyLP6ogGa2I1l6AcG7+k6U0NFEhktZmNKxKzMxBCVlaFqAR2E9J0jTeBKhykdJVrmsTDuA9MYiVHXVUxqlRCyPoO5SmQlgxAhTnQrS7ca2IfEdkqsNsfcu3ePePkWTMKGG24uX0N/gvhO/xx33N5eUYylWx/hB8fRsOHceHb7PddX1+QY2N/CxeUFz58/x2DpugGxPWI7ssB+juzmwJRhc3wMvaPMe+I8s09zZUoK1/sbnr7OkGYymd57xipJEleHdZ3Dxcw0RaY5EufIIMqWFzy7GMjbWrNZi/eeZANiIrmEKg8p+jw5TVTLuXo+lqwNIInLyzfcXs/s9hMFp/KupVjV1Z3QfU5EGcBaYiiwFlFGXSwKrddcHppFQz1QFl8TTfstlXlrq+wkE9JMKlGlMEa9nkKesXh614PJTGEmJkjMdM6SghDwZGtISZBuwA8d+xR49S7x5s1rNl744L0HDMcPuX73lje37yimoz8/48FHH+BXx4yhsN8FchSmmy3ZWoo1mM5hOo9MtfBWaoyeNaY++SJM00S8ueWo6/nO/Yf80Wc/5MP3HxOnkd31JV9/+SV//Zf/kadPnxLqAGWKgSkp86+zVlN9azOesvrZmpiwIdb7lij4bySpWWvxzuG8A3F04rk33ePm8lKHj9X/8JOPPuF/+vN/zQ/+5E958Ph9tvPMu4u3nJ4c8YPvf49H9+7xnX//78gpc9Z1nDqhi0f85LMfYo9WnH/0MdspYvtjjtZHLEtDDvs7tdr7to+l8fld/wALWFCKKj7Ak4rh6nrLs+ev6I4tp4/us3mwousHnHjmrWO6MYRd4PLiS3KeuXfvhEcPv8+94TPypz9Bho592vP62QskJFa//AK7PuL06IwH6w3iBl68e8ebqy3bcVtBuYJYFKQrmZGZlHTwn1Id9S36vVaB63u3ADelLE2eesLqMG+eJrbX11xdXHC6OeK9R4/wYnk57bG9I4owbI443TgkZbZX7/jy8y/50acfYHEaalXZeK+vbvnq1XPe3my53kW61TGn58ewFu5/9Jh7T97jV0+fc3tzC16IQ0d//5wjt+L8/kfYckyet8zzzNvLG66ubzhbrTXExoLzBu9Vmh+r/5OpIMfd3vCfD85BpdzW72ka5lC/twJgMU3sx2t9LlZr9eqSQk63hHBDKmOtgUyV5mt/oHYbUErC+w6xA0WO8f1j/PAW3x+1yeTvv8TWbiy1Tf3ryoCyKBFAmX4Zyfo7SW134jiBgKsAXYpB/cuqJ1XJQnEGW1/DQd4Ya61W96AGoNShXK5rT4vkeg9rX1lyVpuZRekQ9GtUtlJB2GqY3+6BaP1uTME7C7EwjxOd7SlEXFbVQrEZ3/z00NR4jCHWurAV7rUsrXWT9qLWqFLJmQMI9Y3VYA5A3MLm4e6zdgDhcmnPHlXVVq1WjF3OIWOz/n8F7Fp3uzAgaXq7w6Ucfmr73ahXpmZYV3WIqyCmDnHUtkutfJpVT3tPbHvzluvXV9CG0lTQ2yz/NfDxzsqUBuAdas7KrMB1liyJMewIncMZ4eTeis9+9BlBCuVowzxPXI237LcRKaEuYKNqGwzNnqcALaSkBYop46y9rXIAuUS95BdfGjEHdVZ7vaJ9p/ZphhYk1l5LW7NyeKXfeL6WvroBgPXvG1CYpdUWGionFZDF2DuAY1sfFawtqGqNVrsfPuTOM+Oco4jBhIKpgYfqPa2hU+2XkTqMNXrPjBzeN+1d82FPq8SLNuygXrPUXkJVbZXh17AbqwyK0q71N27Vwk7MoMGc+qVzSNxc75ifveTzq8zwxddcPHvJ1X7HXCIBQyyZugl8477f/f0PffxegE4BqsPiadRz9QDTxWG8xXUe13tMp98xe1ubTqXlUlSWVPoeuxo0qY6CNfvlQbVdR+c6Zd1ME2aakdvbBQkHlgYX0QL5wf2HCowgKp+aAjFFnFiMN0SJmqg2ZeZpJhXwp8fMvcfu9oAhTgGssvaUQaRGpgAhl4OOWdRLQLXaevC1e9/ADalgiJIgBJNSLYzU06i5hCi9vU1z6mbbvheN3WSqhNQBQd+FxmmvRUvTl1vqIM7pRMFXbXoIBV8yjoQtNRk3ZvIYNWEtjQjK4MtzVPo9hcbQS0Z/cjHqf0D1Eyg5YRuKXn85a1j1A77r1McoZU6Os2rIy4gYh7M9MUX1DcwJUzK7/Q7vDPfuPcCYgVQKu9tAKcLF7fVSTByorHVTl8OEpy34u58DQgwzqSXFpsQcI0YKsloxOLv4efkqk5OSVaJWsjIJXaExHVLOlaGoHonGGEqcl83NWQudJ4ssPmfWewUam+zNqK+biCeL4XY/MQZNUBSjKaGxsg5dUoakraEfQJ30FULS15OKMrq6mIkx0YXMHALzrECdStQTNfMcHV9VCWiq0d11A7fOakoi6m9nq2+SNbbKtg3Z2DoU1WvLdYNMSUG2UpKyRFNWJkhNmbPWoYEfCk6FUn1NkgJVYjW5UazR8ITG/jOVjWqVMq/YVAO66nN3d5IkshyGiE6U1GciYZzgO0cqaqybUmK3H5URaw3jHNjHyBgi0xw0YbVQJycVHHSV5VVDbtbrFdZaUo7MYSakg4yXkPH7HXZMdXMoy3Ou7MFUDX6bpNNQsh52thY8B7auHibN63D5EPUs2e13+rzmTIspb1/bidf9swjznCvrVwsWbwzkWGW0BgtquN93WCdchYk5zRgzYIzl7bsrfvXrL/njB9/n0+/9kBsxPNxY9jbxV3/zlzz9+jlRHMYZjKs09KzveS41pMC5St5Tf7jWOOc6/MhNnpG0+FLJrCx2AlI9i8WhAJ0pGAvWFZyFzkFnBAukGLBFQcmSUDZmLkDA5oAlYa0w9J5119F7W0MYwBn1YVz3PSKCM0LnOn3Onafre8x+XBpG0QOqKhRV2n048dtIRwsZY53Kkr3HxrrOC1UCQd2DYdU7Bj9gnSETmOJcU8VVTplaAWItYgrWFpwxNWylw2GxZYWXDV7WWBmwBAwBkYiIqfviTCpBS1ojiEvKqOgEqQB5zPDi3SVvbkeG9RFv377CXL1kzS0SZsrtFZ29DzIw3XxJihOmTHTDGX5wjPOeOWeMH3DOcnZ+osX7/TPeDD1f/PrXpAyuGyipMAwbcincbke1R/CG/mRNlzOlRGxReVbfWcYpspu3yC6ychpKNfgeWzLblHCd5fHjxxyfnvPm3SXPnr8i5Ki+dPNU0851f88FTUS2ysN1veizcHPF1X5kmjODXTOOO2IRost4caSYa5r2TFkn1kc966lwFTWxPLfBQ215lOGtZ0deDKKLFtq6oVUWrdqELAl8YpTBWQcVCsVp7aEJadVXJefqgwgiarqdoj77zhRk3anMXmCaRvb7LUZmOrdCpKssYPUpmlKnybW7G0wJrB6e4DYnrDfH+M0D7NGFgm+rNa9uLtmIJ5WObDtyTowpUpylO1qzcSoj8UNHipHdbsd2d0vKEedcHQpr8zDFyM3rN6xOTvnwo4/4ju9578FD5MkT+tWKn/387/n6+YvqylFl3tYR4qz2K0EDxpyt3rKiZ3BMmRB27CgMfU/fd3hn68BVW0Vtdq0mzabCm35NnC7JKWK84+x0ww8++ZAff/wB4jvwa77z6Ih+cLx31rEyI/efnKgMLyXsPGNPNvzRjz5D+h5/fEI0HcX0ytZuPdLSIByasAVQqRX43dK+jWu/rQnLGRJCZw8Ssn615tHj97mdrpjZYYwQ0o4p7HHDmmGtPrNvrnY8++I5pydvuHd+ztnZA4bNBzCcEiVze3vNu+srXl/t+OrFW/x6y3gSuZEb3r55wauXr9htb9XLr9YEJtak9JKJkrRBMsoOLnWfzlWZIU2xQvUarcClEafvJ5WBXQK5QJxnbq6vsPIdnjx6RA6BV8+1TRdnWZ2eYxJcv3zBdn/N6nxgvx3Z3e65vbzh2bOJp8+echsiWMdcMvtxx+bknK53zCYw5xnpPG7YUG4CxYI/PeXkyfsMR4n7z6+Z3kVmPQpIqBJC61EdNlKSDh2NclwKjdmjAEW1wmrkx3/mx28DZPKNP1XL+ZIoJSAkbbznHfN4Qy4TWSYylpI9pdjqmSR1YCsgqiwIwXC7FXbTitXxBwzrM6hDuT/0cRg8tl6rok5Uv96G4t35xIKWtU0xYfSLFZ65I6lsrDWbBSkWV5QPo9WwDtFLBfOgUF2HaqhYk9Ydrm35vYI51hjd32vtIjkfFBNGyRuYTCwFa4X3njzg+5/+gKP+hLcvr3n51Wu+/vw5JMdq6MgyM497UkmsjgaKddompqSvubJ+vtGPlwNoU7ujBfjUSz6Acm0AuqyFep/v+mHVSotCrWXa6xEW+wSobCojC3OpnTVtbWn1XN0lheoleADn2ltqFgzTaOquAEloZD4NyTGLBUqz19J62hyWWM7QrCJKU6HopSxhGcuiu/sk3Lk/C0Cm4NiURuY0glQ2lCgh8/zeCT/68WfsveXtm1f86t1rwrglTVPdk52W1qYCXo0IYbhj5WJqzVBhUDkw0cS66msca7prBZHac2IWZLYCzG2PrH/fALhv4kPf8uzpIvltKXcDqRdtX32PG9Jxl7lZwTmUydcsW6iv0RQdlDYQd1Fc1b6tXUdjsKtiyuFdhylNxnvAWb7R67cTsN2XBnaWUkG6BkR+s29qz7AVU20yzdJTLk9SUeCzZJWmF7TfECfEWNje7JleXfLMBPyvv2L7+oqrUZiKMl9DCtBSdn/jnn8Tq/jdH78XoDPSHvJqWKxjdcWKyMScCKkQkmVOgonoAZwTRizFOD2EsspUOxKzLXTVD2bMVlHGrJus19tCwqNBE7W4EQ1lUNP0ytyylk3X4zuLE0eMMxMTc5iwWExnicYRrcHUMIdkDP1mw9Q5blPGOUcKCmLElEipkER9CwyOOYOTaqJftcltobWGsroYLMtV6tK2RfXlTd+c5QAyCKIylAqwmiKkaqbojBbgyaAG4LnpyA+HbQOg2uGkKLb+LGtYkn5M53BWDzgn1KAITa0rOXF7dbX4WjVtvD5v+tBud7cgO/Vr8ZqEG6Pef+cdMRXYGmU7cXidIUQ1gs7q+9W8/7xVeXLnnG5+syHnmZX3rPuOrl9jXcfWz9zudlzvzMLmgsPD3HiopS524ZsbS7s/zlkoToEICmnW8JDOeQbvWbmO9cpzvBroO4erD7K3Bueg6y2FqOzMqDR1gM7oBjJNU2U5Cd57fKeWvlNUJpk4yxRmyAqc6fcJpKJg8dX1llgsU0wkUYnyNM7spxlrLKfHx0pbdq1pu/NgthUh2vSrBj9V8Eml1s479QCsU8i2reakckpXDFEKyQjiVEbqiiwSaVNTm5tcNlMPitIms9WPsh3u1VMvp0Sug5aMHpoxNV85qV5XOv2OOas9bt0wU/27nLMyINTQSzf3urFLXQJumQaybMKlslxMBe+o8l79vlGZLkAsWX2QopoKz3MgVH9DNcTVPQPRyY01GrQiUsFMrz5kzjmkVO87qYeoRKQ2nLZKc4sxyjgWW4E+qe9JlRXkogVJfX1WDsCdsaaCbIdCjLqXpKJhFMZooy/WQNI1KU5wxtHXAjKmQEoRgwJQoPuASueEkhLWCCdHa7p1x7tnTwk54Wyhs4aI5x9//ZwHH73mg8cf8PT6huOTFf/7v/13bKcb3l5vmcaRrt4jDb6ptUlqYFyprDlDksaga0Whvv4G0Gn+sspdm8yhUfoRDYoRUxCT6yGdsKXgUD9S3YebxCpjkia3mZJxJdLVNO7eCJ0VBfZEBxnkhDWFzumeZQU6Z9W3MOWFxdl3nr73iBOsgaH3+H5AjCHNOlhJdf9yztXpYfP9nDXpqhaVUg4SZoh4t2cY9DmYQqAwIuLBdPpcieD8gPUCWRO2JBpImbgr+isVwjaRpoJdObwd8DboOU0h5kAukSKRlKOuM5kxTkgpkFIPZiCLIxShWEuRxOXFG+Ttr1ivA76MnLodvR+J1nPaPyM4GFanrE7PceszLrczc7Fsp0AKQZ8fa1ivVsSzM573A9M+qAdrViDFFfBGWfpzicxpIsdASSObfuDk6Jj7D87YhT0v3rxg3G+ZQ+DYOR6d32MbZ+LlBcbCwwfnvPfkA2IMvHiW8Fb9PUOV2ZXW6Qh46TTlMydWg+d4Zdlvr4gJnO/xplfVKtXXc5rxslKZIJnvffqEH3z6Hn/zt7/k3fialB0hz7oOS9bhgXYNiFGfHk1xNAvgWxBMSTU4KRPLNy01qEwQU89FW3fjEqOC85JxtbHR16ZAuMoFZvI8YbwC0E6Ebdwxz1o7aYiEPl/6Iw3gmAOUMHOz3fL1s2eY4ui6Y/CO9XrD9X7k5c//O1P8JTENhKBWDpv1isePH3N+7z5hnumGnqNxJMbIq1evKG/Lco7mFNUvCq2xrm9u+NWvP0eAVy9f8t6De3gjvHr5nDdvL3G+W4YWznlWw0r38nlmssJohaHvVUpk1DI/xcC43xPCRN91HG3WbDZrVv2AccpQrVsxaU7c3OyYdlVB4BzZGV6+es5f/8e/4Jc//SkhJex6YCIgJvPR40fcW6/pj47IYhnE8rBf8fDoCMnw4u1bUr/iox/9KY8+/O5vEl3qR4ElgbPdjQry/EY7XlCAh+ZX3CrFor0qtkCZKXmLc4mHjx6Sy8hXL7/g6y+/JsiOo9OBrbuEGabrzHgdefzwHh9++AEnJxZjZ2WRxkRxwrvLC/72737Gz/7hK37+yy94/8N7rH3Pm9cv+fxXP+P5yy+Jqq2uZ1r9r4ha2nBHzlkOvxqLaQEW6mvUo6FaiYhd7oMOA7XvmOcJa4R7985I84z3ljnObPqe00ePKbuR3ctnlJKxGIZuYNqPfP35U371q0u++uoLbsOefuNwQ8+wilhgv9/z+uKC3W7L1XaLdZ6+X7Fngn5gdXrGuhe8H7h+ewV55OTxmnvn9zk5OsUbV8+1SIozIYzENFEksUR5FoOG5VE9iX9PV/1P+vhDwJjWTdY6VqsNhBmxnjwF9heXXLx5RwwThUAmUFKFwWqNk5Y1CiFkfOmYY88urDk7/QDXH1eA7p/wOlprY6jD4TYgNpCNKoiW2qGqMCowY6zXWomCRPXSUrA3LXfAQFWCaAt717g/kRYrFlP/VBpjCbv4Q0MDEQ4XXTgAyt94v+SgksLkJRxiver4wY8+5f/+9/+B7374x1y+vOGv/uKv+a9/87e8fHrNNI/swyWEPVaE3vdMogoBkxymJHIKNQ1cFi/mAtU+KS8qH0MDO7V3sLU3ax5/7aOxlrkDzlX5g6o3RGsiKE19v4QOxKX2BlNKxYgWOg1SItq163uhb1mDK+rPK/VMpPoh13O41cRiD+zZklWWU6QcesCU2i2HCsaW3NRqLISOBthK/f5yp5+++74VkeW1FLIy59KIWLUIocAcwZZI13vee/KE8/N7bDYbLqwnRT3H1N+2dkwiC4C2yICL9ifL2mrIgLRL0XrXFmViiWgvVZqFUdG+Rllzd2HrdlPrTyp/eCf4nR9yuI728W1AXvtovXpu6qB6T+9iUA2ca5ZILVRFREku3qonvK2M0KXx+c1XUZ85WzGBhlU1pOSgwDHLc4C0zytKgKo9VpO1CoAxy47VADoo2EqKMkZ7rJhgezNiXl1g2OFevSPcjGxnT0iZbIwGPZU73+9bwLh/FkAndcEYdJOkMsjQPxFSZI6GaQIkInMmGr04jCH6qt+NhZAjzlnGEOj7Xm9EKcwxVOmOUhytqVrnFDAxIDHUHUDp1SlHNesrHfvrK/LQkZ0nxci82ytAJxaTHdEoG8cGKDkixgOKaIc4E5IyZZJYkq0+e0aZPMZ1RIRiLBhtJqTB8aIbiDLo1F9NFgCECmaCyVlBxwowUKceVPAgoRMXI4lYN80iCq6lYkgS6wJvy25ZRroAF8213iKLSuSkAonOWXIphGnGloxf9cr+sQZDYgqhLm7BWl/XfT2ErEGoJveScVbNx8cwknOhL30NtKimmMbguh6xhhAj4zRxO0emSadyDUd2VvC+Zxg8+8mS8oT3DlIkh4nVsKIMHZr2IsrgK4epujYvLJtAQ/h/c8EbqaEQon/21qqf0zThraV3XlkyxtH7jsHbGjJSjelFZcMUowCV0wPDGsvgPc45pkkBOWsdfd/ruhaYwsw4TyQ0NTRFBScKGmywD4kxZGKGORtkDoxRz8g5JPZTwNnM8d1gkTYRkMP/35W/VJxuAawKRSPMo0p5UontNIScSHFm2geMFVLoMWWD6WqyKUKcBU2zd4QcyVbfi4QhZsd2u9Ofu3jeRUqMhHkiBk3eorMQ9FmZg3qIib3TABllRmlQRmAOgRDmyvq7c9QXZbWWw/LXNVpNYMs3xs56z4yRBVIES0qREGZSBms6xJoaFmHR5Gn1tvHGqlRWdCChrBRlU3mnBWcD7JbAlCRtQFYBJNdY4IucM1c/SWmT1TpJqyMhSk4LQNcmswBiFXxtvi/q/SEKANWp6vLy6z6TKfX16+8agmKhTOSsonvdfyuYiZBTZnt7y9XlBY6sZXkG1/eYWLCS6FcnvHxzy4unz/mjT97Hr9a8vhn57LM/4emLX/Pfv/iaL7/4ipz2rFZryqQSwCxqJzDNgWkOiENlhZU12SS+y4GKaMprVK8mU5Tp34b2UEgxYn3zplFprkn5YCrdCrWsrGgoFaAz+u8pY1MFr2cDQ69+WEbwUgGPokW7TnV1sGFNTbfMkVIU0PTOUozKqgevcupSDJPbA8pylVJwztH3HdYaQjWwnyKk5pkjReXz+gqh7El5Ws5eI23a6jBGz0JXCt56kEJK2tCkkon7PUSY0543L1/y9Xpge/9Mz52iQDUG9ZvUh17DMFJSENd1GGPphw39eoNxg1pZFAVHc9qxtjuOuxkfr1gNe0rZEbLhw/sB4zfc5jWxW2OGDfgBvz7h8nbPfgwMw4oSg8rbc9bU5RBwIZCzYZwmXEGDe0pinPbcbA2SIr1JPL5/zEfvP+GDj97nYn/NnLc8e36NE8PZ8REPzs7I15cM3pKNcPnuLXEOXLx+heSoyYre461lHGf1063FvjWek+MzvBecycRpy35KGNvj/RqXnTIFnK69mDQB2Qpsjjb85M/+jB98+ohffPGGobtijoYco66bWrg29oORouEeRptOtQKwdUCC/rJta9PhQdVKKyBvBN/kVDGSiqZcd05B5daLWWOwnas/P5OnPWMObDZrTtdrfIGreEOJYwWbBRMjlA5SZBwra9HAmzcvubkSTBnw3Sndes39XHh0tEKsY9wG5mCJqTDPamOy2e2xzpFSZIqBkEK1JMm1ttIhbikaRFVKUUXDnPj6q6+5urjg+ddfcXq0IVbbihQmndbHpMnOBTrfYcUqC7sUQojKAs91X60S+3GamcaRaZq1/K+s6JV1WO/1HDSOXYg8f33Bbj8pi7yoHcLz5894+usvtbaUohJ6n4klcG9Yceo7infI0HHqe3748DH/5k//jDwn/uvf/Yz+0RP+7XDKoycfV8PvBk4VBdSWZq6dYdrsQrpT7+hesBh9tfKgHNgvYjKGEeQWuIZ4gWHPpu84Xh0h0XJ5uYUMsbd0eK7fXTNeRd7/4WOOTzecnW+wdgICxlkihe048e5yy/VNBLH88Acf86/+7H/j61+84Or1F7x6nrHOU+gxpijj2DltzJLBWr+8z9o43ZFctaauelG2HbGUw5BO5Wt63jYvrhwjMQYag6Yx1YbNhnsPHhGvb9hvVmBXHK3XUAovnr/g5z/7Gc9fTEzjhPQd0nW8//AB3ceey1eXjLs9t7cz85zY3e4oKTF0jjknMJ6MpfeW3hskTVhJOjzE1n6mXb9CQiqJjLWPOChRlteXtWb650B0S1P4O/5dJZDK1/duhYpELWG34/Xzt7x4+obb230d7qZq9N5qDKHNCowYwhzIxRBzx+3ecu/4HBVq/ubV/I5rqVjJgUFTTdmTQck71n0AACAASURBVI15FOLJpYY8iEUDmHToYGlNuLJzpUDJLcQpwzLYr3ekoINUIxpco9UGtqh9UamgDiLLewKHPoTl/crqI5yaXQlay9SGLNfhsFita/pNz+MP3+NHf/oZHz/+EfsPAw8ffch3PviU/++v/p6f/vTvmC+2rNcb5jKRYgZvsN7TdxZSJEyZUoOpjNUBcawD4pzSwYbH2GrJUWF8ab6W7S2pti3WVnulOkltNCVjMUV9/7RlVSac1kSl4al3wLn2tUILPixZLV7U2LDVdrWOr73jkp4phz72UMdr/bowubIyUHWYbxfgjroXgO4WVFZfqcQTae950d5GdLEhKAGhtL6+PqO6TGqaqkmENDHOt6TVmga7hWnk+vqa7Vbl7CJVKVTAiMU5IaZQQb0Gv1UQWFrerRxAMAQ49LRQg+UqXpERtbzIQi4JY/R8RapV0zLl+M1H7rcBtW8wQet1NVbZXSahqZYZd33nmgR2CZC4w4CDA0j328/44WcuXqPWUqKujaZK6uay+N2p52j16G09wvIc5gZp6vXWgbWu1YNU2Tm1jGpKRipZoVHyWoq03LnOBuySTVUOmsWL3Ro9iWOEcRso6RpHz9XtRJoLU/VxbwB6S0O+C8Qd/B7/8CDm9wJ0ijCaxS+o/YyUVDLZDwPeFbzXxkMkU6oc0xhhcNrwiDeaAlMK5AnmBEYb3q6z0BmmkNXgM476AnKit/XQyvrAOycs+Sc5cnXxBuuUkWWMJcdImGfdcEZLd7JWuVnShyGXzHa75TJFtuOOcRopqWhyZclYU6esbVJiPGI7ktXbJBWhd0ZUPiI6qa5wAxp5LPW+FWyYsDSebruBZTnkTNEUyCRCTIfNwRaYyAy+YyKSrcM7T6pBDVkyxaqxvnO2eqJRQQZNaMs5LYe+SRmbCyGDL7qJOUw1aTdVxthAHz10xbZ0z2oa7S2u6+iAFBLilJk2p4gU9aJbrTfK9vIjQQrb+XZ5uEHNlsUIq95xtFnReaGUkRAj87QnJTg6OsZa9Yprm1fbAHL1R5OqI18e9robtY1FRCfxpUrkVK7mEKcsEEvG2Q5bN+aSk24EFHIK6icWCxadwhpjliASrCVUVpgVluTLlIQQasJejOprZ5W9YK0Br5r7OSaKGMTCerUijbNem3dMEco4a6MmytIz9X3QFCBtIHNpU5n6cFfAmArSWWuwxUKgTipS/ZxESgYjhb7rKDlinVH2DcpWcRZWzitgmiMpzNU7w5NC4Ho/sZ+F65trQKVBKSdyjHTWsh56RkaM6NRnnif2+y3b7UQujgcPH/Pw4SPWx2tW67UWSTEuz50y9pq1uZ4zLZp6nidSznROGbZeTH0fFFAtvat7VF0rITCGCXFr9fBKiXEMbNYdLZHYVjlvRjC5UFKVVUgDjMB3bglUIWe8BUqqpvt6X3NlQVWOIiUXQk0+rvUnUL0VY1iANFohroZwmAb45ILzmiab60TM1EAbqXtIWxshJpwzVdKmU6WU1ZNTBFJCm+FcE9BKriwFlcSnkjDWk3Li6vKS3lmys4i19KuOME9Ym8jJcNSfcXVxxfZ2z5QiL9++4fvfvcenP/gTvvfDX7CbJ/bPZuzOkGUi5sLgVVY2TTPTHFj3A7FOpLq+Z7VeMc2Fkswi3cs5Eybdu61OZyhBpZeSlQnnRaWkaQ7MoRCcSgkNyhzMMWkojDE16aym58VEZywm67NEShDrr0pJV9actGE1nbc0WaKxgvcG60Tl6zmimlv1E3NGPU+bSW2rlpyzdF4LqhBGEk7fV6ONhFDoOo/JQkiCsz0pJFISEK/AsniVzdUUWZGoIIcRxNbUxBRBJtQY3jCHCy4uHXO6xthaRNd0tDkEdruR3X5S8No6bFnXMJ0ejKeIA+uJWUipUNIMYU9nMycr4dyv1Pg9RfY54Vyh+EiJsHeWy9tbdnPGJJUGrFYrjo9PdP+cZ6b9iLWOcZywVpO8U8qaypcCzmTCdMu4S9w7PebTR+/z2Scf84PvfcKTD97jZ7/+BZ9/PRDjOSvjWBXL7fU1cZo4Wq1IYpl2e/a3e9IU6Iwh5oitPUlXJ7ZxjkChcz3e9fjOcHP1jt3lFSlmxA8YO2CAk6MVexOY9zd4Z5HgmKfMycmaB/cfcX5+j/V6zXpYkfeJMSs7w1hT5UoZax2u0wRslT5r4zkHDTVQJpl+nav1S4gJg7KjBbC5MT8yVtTfqOYjcHZ6zvHRKSHM7Le37LdbjIG+70hxJu4nYon4wXP/aEDCSEiBYchMIWiTmAPWGI6ONqy7E+b9nu0WJCe8t6yGFcPqmPVqw+nxGZt7Z8SyIecjYsm8u3rNq1cvefn2LRdXl0zjjjDuyVFDTPbbLTHMddCSlYnuPd45imhts72+JU8Tm84Tdjv2tzcYCkPnSTHgnWVztAaEHBPXtW5wxmGMYw6RMs0q+e88CISYmGOqa6EwzoFVTCQEX4ObsnXMc2E7R0LW5zplIZnCFCK3F1fk7YgYIVrIHWST2KXMm1RIBlJnORJLePCI94c1p+tjXnz5Jas5E/cj1Cb80Du3llotTAqVuaGnGtWRsLadh5a7gMpCayeqTU3BMEN+TUlfQ3pO3L9ie33D5bsd28tbPD0m9Fy/nijHAx9+8oQ+Dryd33Fzc8PnXwSKX/H4yYqTkw/JYvVZKB2UgZw7VqsV3/34IX/+5z/iw4fv88u/+8+8fnrED//FT5jNmp/+/Jfcbnfkon2BLYfrbuyGJq+zmnilDKjamInUGqUawrcGTYoOyxpa0HlPDDP7nYJoMSojuB8GCkIIgfPTMx49ecDqySNePHvOVdjz6tUrbq8VCAwx0onlw48+5n/9yb/k4tlbLm5v8KwIMZLnSJr3lBwxFPa3Ey+ev+bMecbdJZt1IYVAjhPzOBLngPR9lfehDNEcsIJKoBZwWkEGZxWNjzVAqlRgcunvlppPWVNNVPHbHweW5W9/tL8zaAiJ0fMrgbhj4uR4+eKSeWqe3Cx1VUUgyOKgqI2KbQw3LNvJMK4sYlURIL/7An/zciFRLTrqzzQWiqUYqy/bewXRhhXKmYtY4ygxMyftvUwNCcoxktIMRW1BSs4QM+L03DZSiBJIIeOMIadCZ2Cwln1hCYywclDu3AUZqnpO16H+5QEUrZ+XS9HBnVV/MNc71qcDm7MNWYR+c8R3f3jCxp/heMSLV2+5mV4zpYiXDL2lGzz9qqMXS5wn4jzp0NU5pOiATZxDUC9HW+pz0Hl20thjBzDFihAqQ9VZX0Evlt7KVCVNoZDDTDGiBNxSpdA5KhnFOKxBWaHlTv9VIFWGmrdaHxsj9ftr6JoRgxh3eO51Zq/gS53CGgNi9Wu1gsqHpS+29jmWkurwtOEvRcA6jC8UY5Xd6Tw+ReL2mvlKB5TESmQxQiSyIFqi771ilIJzEMOOnOc6LNG6ere9Zhx33N5ek2LQ+p+C7zuiFXLWwVBJURmI1bKCIlUpwQG4uwPe3AW6UkqLr3zFSRdgR22YKuGolMOakFDds2ooVOs8vgWku9tbH+7tN6+lFGi2GnpdBTFp2YdKXfuNodY0INTeIldQvA1RDj50GuA2h6LPbAXgnAVy0dBPGmvNHHCERiowTRIstZfRdZ5iwluHdarOXHzmnVMAGx1UUkG61muUBhjTMIW6GPTqFS8pmUhUSWwxTLcRxpHsHZkVQaq3fkx0dRhaOFiG3b3f7fd/FoOuZN1gGkDHnYLAGKHzns4W+r5nvRp0M04joSgL7HjlGQw406khfIzE3JJJE5v1mr7vMdaynyb2+31N6QSThQHI0S6G9Wqkr1O3mBO77Y44zZRoWfWDmvuLJ4VIlFwnMUa9hTBMFK7CzDxPy00y1f+nlLJIBxs7yThPNp4kumFJNezXSY2emkUOKYmGOkkoBSO6MUijuNbP0ne8PShJN0MjhLox5KKHR5aiNNlSSNZWULBK6XKp0r+ygAgK0Onmp0h8IqSsjSaGUIQpauhBiAkvmRAyRrKm3Modg8xcIEWSVQmdzVDGESO2glcRamrjHCOxQC+Ad5CE/VzDIrKyo6Qo3VNli4KVFUPnkGLw1rDfz+zHEddF4ukZYBd/nbsLewkvKIcNpMlZ725Ai9FlAWfVs8SbKrmzCZPBW4szGmLgnKXvOqTEep0FY+uBZRydc3V2rWy8Zk5sRJlHmhqUGMf94ilgnWMeoyZPJpUnZZSdPsXEblZgIIaZnAyus4TKNF80/PX1G6muGeXwmtv7pVTyWgi1sIe6ceWafrwYfOpdVInvqmez7ul6D2ROjjac9D2WwrrvyfNELpGMskNc38Nk2U4Rkep1lrSAocoJ+66DozWdi7r+O8N+Gpnnykw0huPTUx4/ecLRyYZiiqbGBp1yql+dQUL1DbEKHBtb2bbTRAmB5JTteLxa4bzKmEtOpAjK7knKiiMRUkTSTIiZFCKd7zg/P+f4+FiN/63FGHSSnTOxqL+idw4rmthqTZWbJU0RMw6kRHIY1eC26IxX03kVhEuxAmQok6GlDi0AXa262wHXKnBr1cg2xkTn9fnXQAk1Km1wz3JYAzFp+jKlMhmL+hrmrOmRKRXmOZKV6ro8M7ZNpHJSL09bwYFacMSQSAIpzxQiJUTOjs65ur7lv/z/P6WI5+tnX/P//rfAw8fHfPjd7/Lm4hWvbm+ZpoLphBgnQin46p+nwSKmAobK/lr1K3ZdJE4KNBljkJxroIzKXXWoWPBYNr1O/HMWiJp2OZMJg1/k3Yjg7KCTYKMOoJIiJSnzuxhN2SpJgx3maWbcT2SnDX1KLRUr1zRzVxN6lWEWc6p+MAqUuq6j6wdN9ysa0lKAYpR9XooWp6kCqOp7Rj3AqZ6ECe89tlhS6BCzJoYEWc2idXqvwJy1ykg3LmvxaIRiIsXWYJUukcaRzvf4PhOZCMnS+1Vltgj7KbDdjey2E9vbERHHsOoxrDAipGzZzjNutNh5qEBFondq9j6PkTRDNwz63JWZGEfyODLubglmgmNhniNzyMzzDVMsdIN6Ia6HHieGrutx9lDQUGqDGgIlzZicGJyld8JmcNw7X+Ndpvdw72zD6fHAydGAlBNMgm4unPRr+nzMLgeOTs84Pj7j7ZsLnr94ybSdmIpQoibAl1pEdlalmuthzW67Y3ex5/bmijKN9FaTNkOa6Uth3TmyV06xAor1gMBhXI91vgYzmLo/SJVt6F4jVUraV2aRyv41uTpOM3Gel3uhTbrBFPUXNKJ+oVRmiymFzqmX4tA1H0XhvQeP+O4nf0TnHa9ePOOX//hzpnHL6WqgFEeo/nsuBTonHA/Cfs5IvsWWwOALxnese8fZ8YbOJm5NT2+PGIaOh/c/Yr1+xNV2JPwP9t6kx5LsyvP73dHM3uBTzJFJZmYnk8mxq0lC6EYLakAFrdQNCNJ30b5X+hZa6AtooU1vJDR6VwK7uiRWsZusJJlM5hQRHhE+vcHsjlqca889kqwsEl2AAEEv4RnhHu7P7dkzu/ec//kPY2JzvWd1+oBFt2YKjhgntPMUpbjebtC1Evc7AQenEao0x13XoQhMbTIfYsCGQFIWSsEbQ289TpsGdGh0yeQgCaC+GzhaHaOA/WaHVTJ1dy3oY5omYpQaZ05AHCepT5SWYLJxiowhE1LFFpl0papJQNGWbFogmrZI8dVMuVsye0XCkoqWNS5nRG1SZE0uU6DThu+8/y1evHjNtbbNooEDXiLMgtaktiandQPCoq3qIHBVylCroaAxyjSjdWQY1xpJyaTfMO4/5fWzv6KEz1B1w24zUsuadbfgedixeZXZjDe8stec9fcpU+by1QXPXpxz+uQR7uiYo3tvsZ4rWGUwdFi1oOvX0hznDb0LrNeGRacZrOUbT56S/Ipn56/IObHdjQJOFxk26mIPflby+u8E6uTGiFBtrzuwzhtjo73KUmqrexXeeWqBaZyIITBOgVohxsD5i+dsX5yznvbSbJbC559/jttes70M7HYDMRW2457qBbB9+Ogxf/btH/Li/BXn2y1ffPIFL5+fM25uBFhH8fKLF3z8y19z1ntefPkpOV9TaqRmL+yQrA6yyVniWktCuyrMqyIskVnpq61kf+aSDuelVhoQ92bbOCc5/12P2RNbTuKdRvDQp7cEx5kdVxXKWWrtuLmOlGIppf3mWqk1CSusZEoVhokqWYDrGiXdMGv2QqqErz+8N17ffFxKNVZTpdmFaJTzuE6xSMd0WnP68AHOOHKIlDHhlaZvapm4H7m4eMXlxQVTnLDtflLzOahyD1uroCscD0cYq9hfblApoHOic8JKTtwCWzMwcvfsQiMzaN3UIE04ebDhQGo8Ley/YkA5MN6QlQTDqQL3nzzkvW99hweP3+LVze8IVxu0sXTLBW45YJ3GVsVUC3ulWoK5+LDllER2p6Q38V5Y4dGJIuqu/5aoFHT7VBRKpQ1qZ4Dl4ILPLNuVn5/x2doSScX7XYgxOUuBNlt0WCUWJ50zUIIkpes5RbiBLsqKyi7l9vuUhPjIQbcUbo3ytinf9MHIXyuDcV5qJWVxLfTPe0/nLN5ZfPP4zVUIPCpENufPePHJb3j9PJGQ3jjmsQGsjbmpNaX1gNLLZ3IaUTWhm1y3pMBue812syXFPeJPJwCdsc02KGUJg5l7ANMWsgbKyUDl1kf991lt6tAE6sPdX8G0qIt2jrUW0GoOWZgJK7MtgLqzwXyVrTX3kpXfB/Du3pszcWe2IVLNE27+ea1/Pwl2fq/feN4GNurGkBXLl4LJUvulGElRkUKQ5PT6JvtP6t9yeF0SekIDdEVKWpUAfsoYCZJBLJVsrUKKaucl59r2rVvfT7nEpebKpVBb8KgQWCJFiQUaRlGLoYxgVKK6TIiWPLMZmw+jgJm3oOSbgOgtg/XrHl8L0KWUwShhv0GjjIp80ihFTaWZVlspEhTiB9eKBGudIOPWHRBLcqY2+rDWjqqMeAuU+cIVnfxMU9USnyHeBNZgvCRluvbdMURQ4DvP0PdopUgxMuVEUtD3PWu3QCvFLiamUdNp6HPGt0ADlW9p5ih9uOiUkeMTGqQ+JCNWRJ5alcIq8Rg4fK2IWb7OlcE5NKltjsKQkDeoXWSNMlyp4gvXgDY555qIGGErJTIvVRtjWFaxtqCYWxDwUOhJJ58b+l20FHKhgkqVbKDoCsaKJ0aRJLqu981kORJiEBaIEap23O5lApLrvJ8LvbpkchHAdEwBtHjQTVHo3zFJ3Llqm4o0KmCtZpoEoNrtNtxsNzgXWZ+c4t1we8dwh956izEdFo55KZhBuZwzh7QiBECyRiSKRgnLkjiLQ0X+573DOdNufoNDjk9R8c7Te0/1FVLT12dJUzXa4qxukdEQkngZOefo+p6y2+KbKf40TS1pz7YCbisTxuZ5Nk8rSpvcJVXkXDdTXpkst9fZvAi0VpKQSWMWqnmJkc01t4UV3RL/GlDkrGXRdSyWHd47ckkses/ghEZvbfNEDAWrZ6aXAFdD11EpOGtItbHM2oTSqEpnDX4xYC0tPV2ToiKGStUdXdfju56uX5BKBJWYU1uTqY25lN5Y7+ctRmtN1brJpRXeWlbDwHq9ZOi9TEVLCwWpGqUsnRpIVXO1vSHHzNHpKaenp3jvW7Hfzn2Re8xofUj5NbngGxgXw0QJEaeg0z3Ka9KU0arHaUPSTSLYAjtyrOQYpEhvJrG5TfXnj8OCTWO10WTcLYZcEoSqeFR+ZW2er//SWHG1eR2UUig5Hb5eaiVFCSqptQH6bSXKpa1dTdasrMX1HdZ7Qqnsxxt2qZJDYFEzZ6sFH773DjtTeXl9zrtvP+XRg2O+eHmBWQ/ce/AAZzUVC2ZBtVBqIuuKshbjhR1jmr+YLhVdwCqN1ZZqhB2kGuilsmZKCRcT1SgoYJRlNSxRKrLbB8FHmmeMyK8VoUpja6wHZZpNQaWkid20Y0yRaixRhuqkkFEmsQgZMIRUmVIhVkUolZQyOlVihYQmogjt76kWQluPYlVMsZB1EoN2pSW91jqMUB7Ibf8oWiQLuQqLuWo53mG5pDMG6zpKtWy2e5TS9LonlyL+HKZS445cMipnMUrXElkvRIHKvlQCGqcduwS7l5doc8PRyTGr1VHzAZHrSllLtxjQSva3NE5UBX5hGZOlixqz23C52VGNYzhekYonxI7dXnNJhZSZsmUTFDEkxgSbvoDLoG1LLtRMOcm1uB8pWZiMMQrr3hkprOeyxDrN9npPSYll53FKY6lYo9jurvni+Wfce3SC0dBZyw5FmCZU1py99ZDV6RnbGFgdHXN6csaX62fEKXFztWVT9pSasUr2PW0tMWWMc4Rp4urmmpv9DussnRkEbMOSiwINu/GGMY5gxB7iIP0q4iMVUybETEwI8NkvyXGCEtukWNP3HYvFAq2thNRMkZTkYjLatDU8N8/Q2u4N04yXGzhRM8ZqjlYL1qseq4uAbcs1jx4/5p1vvsfbbz3l2Re/Yxo3vHj2GctFh8ZRBo9zFqUq436DMxW7tChb6Yc1Fzd7YjacHS+oORCnPatFz/HqPsYYjo6O8X7gxesrXt9sxKPQLrBdZrODXRrJOkodoQ1OKdxqSY2OHQWnNUPfEUNku9kJkz4mYa7YiaIzhsrJaslqsaB3vjGmWz2IAOwUqCk15W8+ePOpVreJebUsmjlEGcTk0sA1zRTFS7kfEyEVeowwUYswqnIVNh1WHVhch2Q94yilNm9VWQcK+uCtKSwchdOW4/sP+fDHP2E/Bj46f433Eu5yoEHV24+D7Gk25ldV2KylkmoWdqDyqCqieNWAYNkwC5SJnK64uvwtz7/8K6abX7EeRhZdpTOG9fF9Qj7ld59mXny2Z8rgHHz80SvC7oLnn39Ot1qwfPAQbeQaKURhQlRFjaCKNN6aQo4btBqp4RpqIMfA9vqae+8+4OmTh2Ixkc6ZgjBsYpRaUtt68GoFATOF/SF7IK2yrpQG1kl9I3XuLdOh73uWyyXed8SQuLm+EUautmyubtjFT9i9fs1RnjCd5bgEzo46VJy4uLhgjCdy6nNit7nh0999xt9+9BHf+GePeOvREzi/4D9cbrl5fUGOW5TylGoxY2J/sWE7WCCzPO7pzEC/OmE1LOmMR+XM/vUlr16cE8OIElNUtFYHEKhSG6teWBpF3ZUy/+mPubJoUEBDzO7UD8znbgZspH8oKbPbZ8apUooFHAqRO5Yix1VqIReFzhrbmOMlT8Q8sU+JKQtoLfX6n/YqbjkrUpOlLMnt2nqG1Qq3XPL2O++wWok/sy+GRddzMixxSvHy+Qt++Yv/yD4mQpGEV+Us2jgqwuipSmM6SZw/XR/hbGXbebYXEyqOWL/CWUX4A4P/r9alWsu9VxtIp9EH7+C7xvi1DQdSjW14LKCsUaC9Yn18zMnZQ4bVErUVeVzXe5arpZzDlMlKN7VUO6624JScBfAwjqHrsTmzbSw4mH24ZJGZQxoEt5OeV7XhuPS2mpRbP66EXYySEjZVha2yj6s2BO37FSbPLP5ZEmnonMN5jVLCtO58j7HCFBcFupzIq5tNWzOF1KOswTqHtY5qe2q3QPkF3ndoI4CgdR1dN9B1HcthhfeeRd/T9x298zgvAyxtLCGJbUgeR171nnB1wcX5l2Lj0VhX8+U/1885S9hd0kBJqBKhBGgmP0ZVpnHH5cUrtvvAOG5JKZCLDLazKuSSUFm1nrdKn1cF6AaZu8zEo1vga7Ynkr1LyEPtHp5TJA8fMKs5KLoFKbRAOYScMvcTcg2033MX7OJ2DT0M/P8gSHeb7HoXsAZhMd4l0NwFn0RVdHvDzDZfSjc/7jZAMymSi3hpj2MlTEGStWebIhGsybWr5+erzFBIbedTwjVEdSTMVQtOMA3rBMD11st7lStD72UPago7ax3GmsNrKVlEHLpWVA0UVYhKU4yS2qQ4dOxQe+nvcR3Wa2wBjWlA6u25+uo5/WMeXw/QZdGd5wqlaczFK0mMWVMMVGupKVOiTFdyYxCgKmMqJK2aKFUm8qUIqokCU7UYD9dCTJVQ50mShBroVnDIGyEAmKS3ybEka4jteGwtWAXWNbmmEgq5o6Bti+otEudrjEY3OdKcjHlg1KEOnkjWSSz9PElQWqYlwuSShr60i0aipYEG1mlV8TRDfVS7L+TmqofJ1y26PcvWaPLHUhUpNc1/aR53MyjVjvdw07U/Z9bVfAuXKuCpsh3aywRYGbDO4gwYVcnBkXPCe8discA6R4wRHSaKKvhOmo80xdsGURt5z6Ik/+UiKYwFoIjk2TjLbrdhNiQ9FFNVZGZWy5TEWYWzAmDGOLLbbai9NPbc/dm26d16zt3SQ7V6UyM/y/8o6dZ4fR5oVQ5y3hgi0SpCMAQLqkZyjmidUUU8DkKIUBrlujRWWkjEFMi24r0Vfy9ozAiNVrKROC/s0FIao6bdQ0ZJKuScODR7JMxXBDQPha/cw6LHlwJVKURCS4t017cThdkrUWmJtDZzPHkRWYRMdDSLxYD3ErDivTBzSsqU0vwjShJJSrtmrVEshw5tFL3fMOZ0oKbrdl9qqzF4nJNis7jC0FemUMgtSv6wYWiZ/hvjQIM1wii1Rh+me3NakzWWoeuE0WEtuia8sfTOMnhH5x2aiq2KbMytn5FzZAydHfHGseh7hr4HRB4Q1a3/1iypclrjrRZ2jylYJDSiqEJnDYM3LLxp90yPdR1jjNzs9+yngJriQfY7e3zVIgVVaeDugS2EFCdVBpPCrtItBVtVirCyUVmatPl7qY1pyZ0S+DDFpL3HVsIxaj7Q9g3NdLktFKpNeDOVWCRtLFWIDeDLOUvjSWXdWz585ynlwQn/4T/+nCeP7/HBu0/46d98jF+d8eE3j/n841+y+3zL6+1LNmmSMBwLEWGdKq2w2hBjhlSoMVFDRuVbevlsblLRhJylSHRWwOjSWMIFDAZlFLoo0JWsLAFDUBbtLFU52zdUZgAAIABJREFUKft0KwyTYSKwywGjteSZNo8InWEqct9NWbGPlZArY1YULJ31VNeTjCfqSlSWZDpy0Uxo8QzVjmwQr7Leo6qVJEvr0dqKL55RxFqISmTExji6qknK0K9WLE/vseo6FiGy3Rcup1fkXHBuIYmzg0ebTNgkMAmsFAHGd2RdSVimUhmxVD9AtyDg2I1bcpqY1MhUffPognE/Mu5HFIrFsKTremj3IaZSdfOyrIn95gbcgDo+AQaut5bPc+aCSJoiRRvGaMiTAH/TOmHtSHErqjEoLWFD2s7FkhEHLSOpqbb5PGrthJWQE7XtuZaKLpXVMPDw0UNO1gPL3pOUNBKd7zFqSwh7QsxsQuZH3/0BZ/fvc3WzwWjDN95+j3feeZ9/+2//HT/96V+y248Y51guBtbHJ+ynideXV1xeXpJKwbqOvl/StxTzjMIacCZRyp6QtuSq6HBo7UmpMo4jYdxDXZGrYkyZUmTin0sm5UhnNcZZmfj3HVTFNNtXNEm8TPKlUDdUqZsa21MpYW8zMxasZb1eslw44nSDUjAsPO+99y5/9qOf8OjRA5brnvNXX/Dk6T3efvqQ5dCxvdkIGzQFXl28wg+W9cmC03tHrE9O+Olf/g2/+e1zHjy8x/5mx/Xlhq4f8N5wc73hNx9/Qq3P2EWIGHZT5eXLHTgIWZObTx9VsVgsWfUdNUc2VxcYpXHOipS1hUgd9jAtTVpVms5mOtuxXg4M3jHtkwS+WIO3TljspbDd7kg5sR/HxkqScJYYosjQ6+0aWSsY68W6IqtWpFemkNnvE8NChso5F8bdjpACSUlQjjJgi8I2x9+sMokGtDN7LEnwUkHYtkUbYZxudugpcro+4iwmvNNt2n6LkdytAUCCA4QEJfWIUVIraiwKJ0yJCjXLcFjrCCZA3TJun/O7j3/Gl5/+NU8fGI4Xa3LYsbvacfXqOZ98/im/+mTD5euEdj3JZl69nHAaHjx6wsO3H3H/7ac8evyY5WIlTSMyuI/bkbDbE8NOzOCLSP2vXr9gP+1w3jEMHW+/9ZCLzTWvL16idcE6JPBkTKCrAIyqeQu3QRPcyqBS2yul3mv75dyvtkF613fcf/iAe/fv03U9+2ni+npLmGRguru5YboaSbs9zlnGMfC483zj6WPctOXZp5fspiQDkmIZ48jzL1/wF3/xf+KmxPc+/AGP77/FT37wQ84GRWVEGc0uaZQ/4+1vfpPVwrJ95xGubumMwpgVj979IZ2zvH5+wbOf/4Jff/Qrwn4vvUyOzJSEevibVAOpRAHp+M991Dt/1q9eYAKSVOR+miVqtbKfIlMsVGVReDQW4Y1mOPhiO5QCw4SugVD2TGnDPuwZk7q9nv8UfG5u4A/H1zxmm9em95bFasHx2Qmnp/fofMdRv6LGRKcMVmmmEBjWa1zfo0ZHJYPVjfkws38MxilcXzk6XfDw7IjVN9/h4otLXp5PvAqZGgPaCXmk1lud7qGxnllFjUjCDKgrDuENsw1SQSR4pRZC2JNzs3SBFsAga57RHqjkEqEFVDltSCmSQiSFIDY7cy2ZZL8gC4nDNLKAmj3AalMslArYQw81J9Oq9n7XUoQQY0RVIB6P+rBfWyOVoykVYz3dIH60BbCdnAfdJKemMY2t0qJCIsnnxotqoF1zWjuMtXTrM0ntdI6u8/ihox96fN+h7UDxC0y3wPsebSzGOFwD6Kx1ONtJr64bWaAxlqnijW6SBC8WbRiXKxaLJZ3vCdrKgM5ZDn6Pel5rbxVKMYyQJ8gBJe5jWFPJaWJzfcnVTnrWlCYhGlAEmG6DF6+s9EUHkOtN0Hdmw331+rqrHJOecqb41HaNcSDlaKNQymBMadYnHKzJVENODv3z3Wv4zu+Zr4WvgkmzvPuur9wM0N3tyd8Ih7gD9L2RwNp+Zg78u+1dNTR2PFU8sY0SzCbXlp570MvPoweR+VrfHfy5MVoIMCVTtcINA93qlNN7D8RuZDmw8AtimlAYln1H1w84axi6gb4XAokxYolTciUXAVV1CmQyewqhin+8iZZ8kfny42d8/rsvGJXCFoNRsfWRXgjw7bXP7+8fC87B3xcSMb957ZQ0gs6BcVJyoiRhrIV9liavFvEs05qLmxFjFMZIqmtRWujrrYW8CZv5spSpTJWmuiqFUQWnsmz8tUJRqKxRcUb6hQEyUxCvSqYrUfy8CtTaaKf7is1ykYdSGsMlNX8okTKVIkWOGEweDD8wWibUsn7pQ+R0nWmepg0huGWnCFtJWG2xZMxhciWy1xluBCg1ykVX24QUaUZMNRiTMTmJMTr1YJAu9+QtZVt8/QQwPMgfkIsiV3HsK0p87gxzWAVtMRafNG1EalAaTqStodNDAymFfmprlNS9fpD02xy5vrqiKFoiZya2okMbDdq1BMtZDiJjmLnYMkaxWg6kfIRxwozc7UU+mWYGELcU3HkR+er1efc6vft1jW5eo4U5TKAgHiB1XkiQhSemSAhgbRWmDeJPY5QlpYlpjO09MFAzpQUvbLc3OG/wfsBYWSS1aX6Co4RETHEkxdiAjkKIiSkkKahzbpIPxIi+tHW9gZiScHO7QOZSDp4edxfB2423vNHoaCN+HDNzseQiZrulMMuLrBEgUDdDXYXIntHgOmG+xALVWmkJqkZbxbLvyCEfki2dnu8PJUb9bSPSKDrrGPqelG2TVbZSv94WDLW1N8boJj299c5QtclEtcUaYcvoKt4YlCqSdi1MBWXke1tJj9UWbweOlonNvoivX2sAYpuUqdmTzei2MSiskvu/s4rOWkxvcApWXcfRasGi74hhEvm806AMMWpSEjlsSUEAQyXFim2UbtcSYK01ch3AYZMtmCabmgFb8dmhTTFBaPelNA7cLKOAFi8u8kmrRd5gtGaKiaQzugHotW1ypQoD1nuLxoLRAs4ByjmsMxhnUbFgjBcQYXdNmC45XT1iuVqQUuDJo8c8OL9G9QPvvH2fH//on6GuOi4fvubLF7/h1flvyTcXYqas5H1Xbc1SpVKmyLTbE8YJtJGBT5WU3aQ0AUhaY62nGiOG8FkCJ3KWaycha0NQmlGJvMP3AwVHzhJZjzGUaqhjpGKpzuNthy4iW1XOUXxHspbsOmqX8C3mvdZCPwzQr5m0J6hC9gs04snZDUuG5ZIhV/ZjaBNCjztuide6okl4qxl6YS2lUkkIsDZNic1mS+c8Z6cnLHsBc46ocLIgTIHB9zhjWC8XWKvY7c4oWWSQuWpcv2YMhpQ6xklhFxMq7Fl6je8MixQoJdD1bbIdA+N+y028YbPfYrXGL3sWnSZXyDURS6SoHt9Zhs5idZsMo0EPjHXJZSxcp0iMPd1iQXUZyhrnFVPpGHeJbq2p2lKqyHpVlbXSWo9XyP3ehgxWa7SVoJV9ihRtsa6HGtEkSszs9nseP33Iyb1T9DCwOj7lww+/z+OHG64ut4RQODo+4ejBE97/7nclVatUFosFaQqsjs54/4MPiTFRqPhuYHV0xBgmPvviS15dXJArhCqeYx4NuXC1uWGKW+r0GqMix0vPzTSyfyl+RzHCOBb2+53cw9ayS4VaDZ02JKWJVRijylmKFtad8x6XkwD7oUn2tMEYi66S5l5SkXpFzSnU9XC+XO9YrBf0vQa1Z7lw3H9yj2/94EPe//53MNZwGi75zo9+wLI3vPv+e6yPj7h6fs7m4oJKZbvb4HrN6njg6P4x2hqev9rzu8835KLplgvsODKmREiVUDyhCpB1dHyCXx2zOLqPX5xQjKNq8aHKZSKGEacrg7fEcU/cb9mrmV0w4/HqIG+f1RJKaYIWL0+q+GxGK1JH33WsVytCCIRxZB8CMUZSqXK/0yxVqkjl2yrZBhNzCE9j1ABKGaapcHW9w9ieRdbsQ2Lc3hDijlQDBYeqClMKtkodFitEFCjb2OQyrJSvFRkOIJP4Z7/9lI/+/V+yK7mFeNRWp0rzMSsT5mOVUqmFkalMrQmjxZOzNkaFar+mUlE6gN6D2lHrBTW/wruR+/eOOFo5cihcvox8/PE5N5vXfPTbSz75cmI/GhyKEjOvL7d8+4OHfO87T1ie9PjVwNnRmsEPaNVCs6aRq/OXXJ4/Y3vzkpzEy3maEucXV2zHCb9cYLxhs7nk5uYV2+0lKe6FvZgCOUutro26lfvXmRVKk0EJLF5yC8tQpckIZ0WPDCGPT095+xvfZLVcQsrc3Gy4vt6IV17RpDEQwg5VFHpYtvXi2/zkh9/i5stP+cXPP+d8I9depyHlyn438tFHvyHdXKNK4b/587f48Y/+jO99/x+hEIuKkC1TsByfnWI95PgBVk9oMmSLXTxgM1U+/+Q5v/lPH/Hi82diQ4L0Ttqag38XCqqWPijVSKpztNE/1EMAurtQ3TzsLa32ohEWEpGssgTWVCNMyZrROlNNBjzFdALq5QmlCrlu2YUrttM1UxKSxNeLt37/0boaZhBDrn1RcWgrQRFdZxl6Sz94vHMUElfXl6TdHlUqV68uuLi+ZIxTS7WX4Ajx0lMC8jhLNZWiIsbBw4dn/BcffJeyqfz8Z5/w019+yvnlTtQjX5Uu3Dmb8zFLT9yg1jYAAOnVNApVFDRD/Gm/JYYJ5YQFrYCaIYwQpkROGWpuTLdCChJeErc7xu2OHAI1FqoSv3WTJclewLgiDPIQDgqN2nyR5XjuNFAt5UO1AYdCo53CKPG2q0gS6bAQAEMZJ8QDKyoItJbBbZF+b5axatMCECpUElXlBsSIbVFuNX/XLemHgbOzM7phYLFc0PVe/J69pxs6TNcT0CjXCX6ASGON8aK+a0qJRsFr3q5NnlragN46vHVQFJ3vWS5XHB8fk6YN+/1GCBsH0HXeCxDZJIo4jcRxT5pGagmohkmksGfc3xCmSC0RYxSd03Sq9QNt6DQgqsHDYL6ppWbflqpbD8ethRPI758H6rccN27/TUugVJnvZT0rzQzGCF5R2nmZ33vdkLKvAkR3e+u/j0EHdxVt+vDvd4Gn+XeVO+wB1b4+rz+yfoM2RsIVFwPDMDDEjHdOBsRNbXBXIlrV7fGJDVkjHinFMAx47xnHkQqsT8747p/9mO//8Eccn5zQd5ZFtySXiDcd3iic7bBG4W2Hd4bO9cwkxDkA0wC6iB/wXhdCreRk8dGy+2zDz7q/JuwML3Zb7P4SVbaoKr1nVIW7qcl3z/kfA9R9LUBnjGh5dZk1yLeTBAUtFtdilG7+KwWrGyPGCfpZC1TVJjTCYT0goZvd7kCZ1FY2ZOm5pcjR3h/e4QoCBlW5iHMziVVatOo1F3b7CWuS0BVVpTMQc2Kz3UBR0uAZd7hIRbKZKdm2qes89BGGXQ77OSCaZvIkk0ylxEvNGkpJpNIAlCopZ1VLOlIUgSpzIaVVumU3KUFoa5uI5nZ+jTJUI02MNRWrM87M5ulIeqSezQ2FiiypRbe7gmqeC9qUBmSK1FRcRRUURckKVcSTzmjNVANpGw/TTDEbb+EazTek8x5TNVknco7kJpvLRcxia2mMupSouoiPVRGfnNI8c+QYRVLbDx7bKY5PT1ger3n1+gasJ6Y75seHgdVd5qE8Zv8E2RjfnELMCYsHk9G2WsiUVp7UdR7jmpRQ0QxSRbOeYxRjyVSa7KiItLJNJ6zzbLZjux4NrrN0XnwPlBLpr3aOFIIkyZn5PZMrqu97Nvsb2UgykgqZFbeC+HoAx2dT0EPggL77Ou8siocmZ6bB0+4/WWzmz2dGl3hBzNHpLSlVI/4cGFSWZEJhz0Iq4uOWpkIMk2xCSgaUSrWsrVooKVByYcpZ5EOpmfRXoePnJJuoQqa2c1lGRUz2G4vucA1QDwu8aZNKVSp919F5jzXCcNG6TeJLpiiF73qM8Sjn6P2AM1tSTMSQ6PsOb23zhsgYU9G2sTa8+FjopPBOsegcvdUsvONoMbDsOqG5q4T3Bm2lWHGmAXtKZl1Oa6zmAPrNnkjWmpZoLa9PGwXVNDZi20SbfOHuf7dMu8L//M+/y3/95PTrlu///Mf9t978PP8c/pf/EYB37nz5v73z928A/2r+5AHw4Aw4e/N56gQd0K3g/gq+840/7njOHv+RB54hb974lMZElEPx7R8Mb7YRkkzMEXDU3fm6BiY57rF9aX33922gbuTbFne+/Id219A+5sf+zvdW4PWnv/8zrv1bAq7+wHMCxOdv/t7jv+P77j6nA448cP/OP9zceW0Rpmv47PM3f/ZXn8mf82n08993soEO/e33bp/LB/DJcMr/evIBOUMMmWQyxsyFijSuqCqAeS3CuvMdZDFkrznz7MsXFF05ffKAx++9g14seXr6kA+/92Nq0kxjJhRNLJWHD+7TH9/jqJP3MocIy8I//Rf/gn/84x9Ta2k+IRpjHalkrrdbrm827KbAmBUhFnrl0KXyq9/+mt999hGX579ivQgcPVny2y8+5zd//YKUPUPvObu3pBs6MaI2GmxHKZasEcC5VkwtrJzF9Z7Fesnx8QmL/UTkBfuUJCDGe6zrmWIihB2hAdzad61eqM13EBKZSGSwnrOHp3z7g3f5Jz/6Cd/7J/+Yxf1TSik8eu+bHD1c0ntYHR9jrWVYLhlvHkCpaG/RvUGbhOk0+/3E4vghmQXnF1sUieubPTUrrPUYs8Qtl/hhwC/XKL8m6p6YtABitkAIhHFDTQFdM1c5omumptx8xhIKqfFUG0gZw8F6wFiNc5r9biLEqQEyMqm0zuKHHowkMYaUhPWrFcoaMe7OSeRn0OqUeph15FwxRtibwqpx5KLY7RP9LmJtFsbKtKekkVwnYdMkMLlicm52JMJIVhgMVva/momIJEcT256nePHsJb/8xS+5/9YT3PGRDA9rYhbrzCz/RmVqrIECpJaIKFJwiQwxVOxhuKtMArWHekWeztlvv+Rm8xnoS/pBmv/Nqy1XrydKGlitV5zeM3x5+YI4jhjd0y87ihk5e3jEB997h914yRgmdleXrO0D+lUWkGwKhJsrwv6CGK+IccfmcseLz1/x7PyC19st1/s9X7x4xkXY8vlnnxLCjq6zxByoJUtT5J0AcVpRZqLEXM+gDuykWkrrIWYmx0wZECXAyekpT99+C0rl4vwl2+2e7W5HKUg9XQu2JBQS+nZ0co/333+Pb733Ls/KxOm9e3x2MYo/XJiocYLOsZ8CX56f85vf/ort9XNOHz5iWN+TOrRqKk78g52j6kruetAZXSO6VjKeadxz/uwl2+stNRWMVuQpkmvEOnOo72QFrGRk0J3KPwSD7vZRD9XU/PlcZxZQmdl/G1vBZpSTIW0uSnz0aqbogDIZsI3BKT9ubCHnLZvtOVe7C0JazL/kT34cwIIqIGaMO5SvWKwMI0zB6opqabipZqrK5BIZtzsurs653lwS84Sy4gs3e79apRp5QAImUo3EHFA18d433+L+0RPW7pTnV4GPrj4mloxS9sCo+kMeXgdCRL21qpklDqoK87sgTFFSYNxuidMevRQF1oy9lCgfVmuGrpP1sxTx2QyRHBOmKrwRz+jQyC6U2/CElBL7kKjjSIzxoFJRdwCVg8yxCgtPaS0p83dAWq00xnu6YUHXL0Vy6jza+IPMtNQqgHfrR2c5s6H1H1UIKKlKkSsseSPq+1rBDthuzYPH7whrru+pqpBzIFVRNNRcCSVIL2AALUQP40SFU1Il5Si9TOO+aMSrXhkrhIwqtXbRsc245y5/HlTPCNbMSBOUTlVZlxadw9RCjQFVEphKiRNhv2O/k+GVsNjBmtafdIZSnVh2FEWNLYaiiq3IV73SZ/BrVlqVKh7oSilyyhgjISiJAtaQyWgMMSV6d4vJ3O39pJNo5KZ5iK/mf7tz/dbKXYBuvs5n0svcYx9+/g5jbsZu7vagt/dI80FPc7Bje45GHDGNsKCsI3cOe3TEer1mkULzpBWFk+u6tke08EfV+veZ4Vgy3ncMfc/ZvXusVisury6ZpsDR2Snf/v4P+C///M9Z9wu0AmecBH0a24gC0v8aJf2mmb0YSzs/ql0pLe0320pAoYvDRk1yge1nW379yWu2+iUuBYxyzRvYyv7/lYXwq36DX/f4WoBuRlxvC4eZnSRUd2fEoNFbK40pGuUcphvQnQIVqErovard+GqOyEZhcbJ5WovvBZkviAyktheotGnpZgLchRSFAZfFi2Q22UtBtP3OOAbf4ZzCmIitFSZhH2G0FH3W4+uspRb2zIGe2SajmgppkrCCJnGR/UxopFUpZnP8W7Ha3c9E6ljmSecMMlAbkFEpjSauajncdBrTKJGgdcSoekiplPOuOBA9qyxMjWsmx9Am0FYJI0wbaehpaTlK6QPFNOeIdwZnDJVMjEG81YzBm56axehQXrMArvu8l0VIIxK1Ug6UYqvEUyPlRMiZGCMhJDSqmVrPJYdMVIahR1skKajzaNMx5cr1Jszcb6C2qOK7i9mbi0xp/gd3F5CcE8q0iGY1F8szc1GeKwRhdgrTL1O1xtVKqZGcIpqOlAolihQ1VmFbaS0AUimQknTOhYpSrknrZvakpLyWUg/ETGOaO85MB9caXdp7VEVzf5g2vDGNmynFCnSVRM/D+TyMSW5vXqWoZQ6nmD0e1aH2L0WK/zn6XAHzLqdUMzUtktxkUBIVXzJhGhnHFm5RyoGNKECjotZESXIvzlLwObmI8ubCLri3Imct4TGIfFErATMP9PtSmx+l0NiN1ugWge20oXcebVrB2d77FBMGQ9ZAgjBFSsrYTsxUu86TYjgA3iiFdR1oyxQS26GjTBPeIAbs3rBadBytBrzRlBjwy4G+78HIe76fBJwzCrzVLR1Szk2ZjXRbRZYbZUBpYU7MFgIFOU/SBMi6NXvJldreSyr/+i/+E//66xbv/w88/t1//8//3z6E///xD/h4Z3/B+p0zUkpYq/FO7C9M81uUyXumFuF7VmVIGGJW9FoGPGOYCKVy7623eP+732fwA6tuwWJxAtGgsGTbEUtt0pxMqlVSfauwG9dnZyzXR9QsHruqrUUoxUNEGhlSJWGEPaZE3nN8/wjjA8/9FffPKkdPFlxPF7xYO/ruHsvhPu++/xbvfus9umWSRODOY+ipKlGyFemj0QzHax4/fMiDe2cMyyWvX1/x6voadS1Mi6xkAFgrJKWIyB5g27nSqjavHZGRxhqpxnH68IxvffdbfPsHH3L6+D7JSQbZoj9heeZRNbQGWOPXa7QbqCljhx7lDahAKRN1guH4EY/f/pCUAl9+8TEXm8ByEHlzTBDynhqv0GMk1h1TuSIUx1Qi2mZUnoi7GzqrWXhLmvYsOsfZ0eowNKs5yQCwiu8eTupDpRTWGTo8aoOwinIQ/yYl3nypJQhmIDQP3ClGQhG2OtQDOzPGJDWBEsVArQqU+BnVCtp2aOMRPwGLUhZV9gLW5El8Y4uwYUxROGiyI2EzShWq0UVRlKJqTdHt+03F2Z5aFCkKsCfCiYRMDsrBYkjqOtr6L2h+zluULgcZUq4VqkfrDjBt6Bup9Yq4/4yry4+5uf6UMbxkP71m3I70dcm4iez2kZN79+nXx1yEwPpSs9MV2yfO7g8cHXkevrOgP4lsX16TtiNXLyvH/m36QUOTrx0vOh6eLdikLa+C5uXzC372f/0tn3x+zjYWplq43t0wqcg0bekHYd1MKeNsS7W0sx/VHWBOaUTaK+dBGxnGiRVNG102SV5VwvJZLpccH52w3+8ptfk/hkhOUhd2RqO7ThiQ2mK7Thg6FparJeujY4yHlKJY39RCQa7DrOBme0nOWxnQSDUL2gvrqA1CS1JkbcnKYDB4lSlJc3MVuXp9JY2gFtWKDLCbvYlqki9oqpcsEtfy+43dn/5Qf/Dv9fBnG6rqFtynFeiIdhllJSCs5FmdkuQaK6kBk6Cz1NRWQ847rm5ecHXzipDvcyfJ7U87YjV3SZVaE6omrILOyrXgLUAipZGUREJoTUF5zbhNTGFPiHtKDVQktKVqTa3iC1lKG3arilKFMe65uDwnTjtWneNsveKo72WQkBPa2VtV1d3z93uvawbnbs+3qqCr7GtaK1QsTNstcT8eesH5ja9FiA1aKRZ9R1UJVQSwqrngtGWxsNRFzxgT21SYmjpLtbpXUr4LJQTxj6cNs1tfZIxpFkW6JV82ppOuzdvUNIIMLPqBk9P7DEdnYBzWerR1IiFsvUWp4rdtdZP2l4ypYKzGVJGaigFAFdBMG1JMjCFincf2S4ru2IfCZn/NdnvDzfaalALOGvyiY33/lPXxEavlkdTZNaG0EF0kR0YJcEcDqNo9SWmyUiWBMCCDn5gS0zTinefk5An9QrNPe0IIwlqtbS9Shtw51P1T1sOAqrmd50KOke3mmpvrSzbVMu63TONOrr0iXmRSVxzwPgFvG0lhHkTM/c0M0M3Kvlwrplm51ElsucZmP1OdolCoWdN5zXrwh/tGzSDjneefL8i74Nmbnoq3Etc378F2Vas5mKPJxBt+UBoWYlpIyuG+rYjUt+EVB6KJ+sp1aG1TFPVie7Nc0vc93jdimNaH/dBoI6n1ShFLw4asQVtLyhFrLf1iYH16zOnJKUlV9HbD6uSY9ekpZ6f3cUoGdc3pFBEeg3sjVbeRRRRivwDtDRQ8ByUJtroKjmUB4z2ny1OOj+6zDAm/vcRoL+AoWewf/o5z+8c8vhagyw0MmeWTakYvG8MtxEjMkkCmm2+QVuLxJgmZwk4pbSIuemsDRQA6beXr3sNiMDhvyRUxkE2VMFasEqNrZURTHbJiqhCrYMS2WiqVWEUk15uepR3QVqHMBIiMMKYAVWSoThm8sXhjyVrgLQETMqraA69i6DsBJrRMUXLhwGBSWpOynHxnlGioNc30V6Gx1DSna7VkvaqoLeGDKoxATbvhUGTB/+Xcq+btVhO5pvZnJteMquYOewxqVU12Kwad2tjGTEpSQSoxRPbO0nee3muchjQphs6TIhzVAAAgAElEQVTRdx21ZMZxZJoavaNIuAPNx845J7TZlMTA1Dq086QUoUVpa6tJNTNOoxiBN4Yf1MYcq21m1xDIWVOuFN53LBYZkwv7qczf1aZ0spDVg59Cu4e0plTxUrpl/gnoVRK3iUMI83BG8UtJhBRERu2kKC9VUti0msFURUqJnOoBWMmlUFKUtFdrBCCrzUi6JVsVxBMo18K4E48fSkEFYQkUKimLbMd5i+8cUVeq0U39rER2rOf454xSIvcRWnObtFZJCHvzxm9cqzr/3C05uvWfzMWPpFDKc6Jn0LZJoHWToLYoLmO0BAegECaRyCNDTIfnUI12rTHoaoVBrw2JQqlyHKWIJ1stSRhmRmRQqXkBzQcq17U6TLxqvfVtkH1BroVxmlguh2YqK0yKmIUtGmKU3seIbni/2xFDoFvKIpxiIoSIt2JYar1piYqOIUwshp6Ut3hTcUYxeMvJauDhvWN6q0lhotZC3w9UbSg1c31zAzWjAasNzjvM1HaZA9Iqf81Nuq/aPZLTLatRWAOZedg5y3/azf7GGv03l9u2Sc65TXdw2jqD0a0orQKWzhNhaEVNO+fWGrrO0/cdP/+XP+a/+jd/ya8vbiC1RGmlMN5xcnbGan1EiCIP7b2jUEhZAkhKSKhacJ2RAJjrK9I44mYJ4x2QOMTEGEIzI1aHVDStFf/dX33C48f3xBdNK0LKjCFx/vqSXDTG9hjt2/VSMAaGhWOxEI+zUhylOvHzLJJEXhoImorcK87LWilJZDKR1oDretCelGWNtdZgjT28h6YlOBpriSUTQhY5he/E468qlGm+L6rSWY0z0nTEGFsggUdbT21JZJ3zlBTJIeDcguxPMf0Zw7CiN4ajZcfgCnm6ZLmEriukGsBZTh89xQ8ndMMpXXfMorOsVKarIrVWs3RwDsyxwvYsqRCnSNwFKQorTLtAyoFcIy+ef8xvf/Hv2Vx8ydX1FUV7+tU9pgjX1zd434tfH4rje2eE8ZLd+cecdorrywk33OODD3/A//B//xsA1sfH5FLovGPhDKYmako4191Ob3VFaWE5xQoYi9KVmEb+p++/xz89WcL//n/IR3vs/lD98ge+9qc8dPuYjSm+3T4A+Az4GfxLDDz8Jn+b4X/rj/jg/ac8eXJGiq9xVrMYeny/xqhMWhriynK86vnedz/g2996n6PVis3Nlv040fWO9dEC7QwpiSVG5wyr1QLjnIQqFWEdLoaek6MF64Xj6Kjn3Xee8uTxGe+885Tv/OC7nDx4ILJ10SK0xsW3fV1koBWF6np0b2TAVytaO/bTxMvXN1zvMut7Tzk7XVFU4GYb6LtTUtYMw8DCBa53rxhTYTMFYnYUHAEBn/J+x+7iklXnGO6fUiuM454wOJQWg2vZvzOq7TMaYaQ1596DuqIUSZ+vKEkh1mJgLjIUGdzu93vxAAxRTM+1bunUUqOSMs51DMPi8DxdNxBCwFrf/IVpAK0EZeUcRSFQMwVRIWijcE7RdYaeLOsjsNBgq8j01eCxi4GF63na97w9DDw4O+HBu/+I/uyEuBww3RKUPaTA0oYvIuuciOGa3eYFYbpiMXjW6yVTGLm4uSZVw/HqlPXiqFEAEjW9Jlx/xubVJ0zpJbYbOTp1LHtDvNbslKRd91oYGkfHPY+frjl564TqHG89fcj9E4cyGz754pc4Xbm6vEJPgcdnAVRLsK2pMeAMXWdYHx9h3JqrTcb4NWcPn8rwd7Fg6DuMkjCdnBI5xoOFQwxBEhqbfAgtFh9K39Yxytzx9jpgPsJ8kJpFLHFQwtyUnkUzhcg0Rjrn6DvPMDgyFmU1pUoQxOtXL9FZ9t39tKfkyNB1KKvYGiMBQbVQdcb3Rbz9VA8YJHBAhuetrUMr8aksIooi58rues/25lrS25vszjlD1Z2AxDP40yxGKpFaJijieTX3A82Z8iB4Yw6OO1R37XG3/6swUwK4La8OaxooAXdVufPjCWNFepfnczt//8y8qgKs1yqessYYakzsr6/Zby4peXrzOA5n6LYGuos9qvl/CqqyVFpgW/Ogk2NWUES5sb2+Zj9GUs445HenfeDm8ort5pqapf4ojfGEUdLLFEm8n5UoVhtKSFxfXfP69QUX/UteXVywHfeUlNFW/HmrEHqZ5ay0oQD1jmeXuj3Hd19TlcYZo6CmTNoFyihMYlUt5ATFkuOecXdJHPcio9cGXWC7FRlmb02zFzL4kCj7SVjAM5g9/865Tm7svlJmQME3X0cJYqq14r1vQXcF7RwYyxRF7josF5zef8Dq7KF4ETbmnFYNoKug0KSU8NaJpzalBa0pyImUoqjMahYbJa0JIaKnCec7lqsV0xTZ7Xe8fnXO8/NnXLx+SQgj1ircwvPWe9/g0ZMnPHryFN8PGN3huyrrNVb6FLSEVSojEl2gpkLOhc51xEk8I10noZD7aWJ9tODbH77H2f1jLq5e8fLVOdc318QU0Nqw6gfMagmnR6wXSwF4i0KrTAo7bq5fc/H6nGtlub6+4Gaz4Wa7ZVQJ4xXVWIqRfbwWGUKJHdeseKPV52LTVbUo0VJKUpsWYSXqUsR6qhRpfbNqwW7SCys1g5NahvxtfZxJAfNQZ37M1lEz09Na28C0JjKR2+xw/eoGyOkmX9Zo2QezsH2NoHdCWiKSsuyfQsoSsLZUIaZYozFGoXU9gHreSVCTsQIcq0bacFrjjEbljPEO5SxKgU2yVxgvaci97ukXS9yixy86huWC4aZH5cTZas16WOCVbrWgrIDCAX5jceIO0fBwP9c7a/t8f8/GHIceS4PrlwyrI/zNlai/mli0qHq4H+88bfuzrat/zwDjawG6apwUDK3BLEUMH5U1lBwYY2AXDJ21eDHlwBXIWeMTpGkHJUiBqI0ENWjZvIBD5HotGeP14cauIaHnCy1mUppE/qoVOmdqmMhhAu0oTb5SYhSQxWhCtKhc8F4Tc6GGQszt+HWkKAVjRMWCSpmaC9lmci3YBuD1xjJYi7WNwl4rU2rTXipGFbTKks6jGpygQRhI6sC0IteDz4TRcpFVSjNGtiIZTJL0ao0BLb8rq0wykC1kp8hWiQl4i3LNGvz/Q9ybxtqWpvddv3daaw9nuOdOdeveujVXdXe17U7HsU08BA9J5IAhoAgIiUSioBBZSoJkIgZD5A+ZMEgRAUXIOAiISIyiYCeArcQQdySI7bTdbXfb7eruGrq7qu50zj3TPntYa73Dw4fnXfuccuwO39jSqVP3THuvvdZ63+f5P//BB4q15FRvXlH/M10BLKSqFxdF8y0W77z6n9gCydEETb+VXDSldNDXZlFARbJOoKwJWFvNqosQc8E3oSZmGmUlTVtC5fMNkghBYKMUZ2Mra0u0iIlZWK4GMJecwLadkLoBStKbs7LvkXH6UMMRDDhMlc+OjDO2AA51smpLxolVYC5LTcZS0DMmgw2WEBz7e7u0wWBKYmfaMGk93aZjveqhGf3blBGYjUUyGCPs7MwZU39EdAI29Bu8nTOZTlhddMQKaKs/mIJYQiZJxk2mNCL0XamJUYZilS3hrEVrCmVRaZK12QJ3Y0KOsjsNWfJW4mmcQaKa645NJhX0GkM9UhE2MSFOw2Daat6P9SQx5Ho9GAMUQ+wSuYAzASkZjKt+JZZkDcU3JOeI/UDulTIfETIKnHVDR2H0o0xYEs74ujBWOa4YYi6suo5YhFh0SpbFkKQKEo0WTeqXKCz7HrNc4b3XY5NMzsoaiUmwOSEeco5bE1dEr/EmtJQciUlwQT0dbGNxrQKHjXNMHez4wE4TuHfrgLvP3GBn6olDz2azIYswZEOwBefUj7Pk0XfRbpOKxI7wtF6nk1ZTM6115FLY5A1d3ykgXoHrLFI3PJVnbdOuCypP1D/GJ27u8kOfeIlvvb1PYy2H3cDPPTjmr3/hPZ6se+16tjZMlyES253pyoajbKIt1KcbtBVuTlv+8re8wnfducZQhJ8+3vDX31syDAMimriXh0F9sYLFxMSfvr/P912/xdwZPn204Ed+5R0Ouzi+C/yJ1+/yb710hxuTwOGm58e+8B7/01sPGYNvmO5wIZ511HOD8ZRmwuSgQXCIjF5MtVExQo8QO6AbVHJftECIBZWiuQqKWV/Zi62mPTn0uq4FUQmNgnmuvk1eCy5Q4D8htWCtKbFByNYxVHa44qBqEeGMoTcwlNpV2gYmFkKDGC1QsvNE4xEfyBLIJmihFAcGOpahYWUtbdT9zA+J2TxQrCcby1FZsrdruXXdc2/ScHMy5SB0tLLCpYTxE4r3dAVOjs/o1pE2TNnfv858NkWalrZAWvV0iw7rPDdu3uDJ00ecboRiZ0gTVVruDC4LvUEBaW+1+LRJ91wfVL7gNK/u9OJsW1OcrxeAIeaANVP2plMmsx2cbyjiSFmwkgg+6PrlCtlmsoPkhP/wU5/7eiXL/6+P9XyO+4f/F3/lrymr6WLZs+4SPqi3Duig6YmzvPvOE7z7Bb3/cybFRMqJfhj4/t/3CdbrDSZZYgdnm8Tj0yW5bIgx40zmzo0dvuUTb/D6yy+wt7fD3Rdf4M5z99iZT7m2v0OYTig2VG9RC2VCKQEjLdZp0Vgw2NBiTECqz5ekgYuTh3zhc2/yy5/9DdbDhOs3p1y/PmE2bxDTMOTCnTu3uHFrwuMjx2IjlBND2kyQFBiaQu861mlgMt1lOm3w7VQZYzkjVj2UUs6EoOfYkBT48S2jR483lmIsFKthAsWTs1BSwtLibav2Hf1A7Dpi1yFDJIgQjN2yX0IIhKbF+Q5rVdqbqwG0876mtntCqGCIDKw3hZj6mtbsKNZTrKM3Ak6YzCe8tHOdVyaBIQ20PnB9b5+J9xRbuPnss9y5/zrt5BbXJnNuNJ79puXafBdjG9bFkmfX6WWCxRLTmvXmFGcLk0lgiGuWp4ccvf8Oj9//ClNvuXNwndRteLo8p0wC9+7co5/uqArBJaS/oD99xGp5SG56/L6hPZhzbW/Co8ePWa5WuGu7DNZyfr4k4Hnm4BZ5Z4bZmfDczevk00NODo9YLQwp9sRl5vln7jGkiOQ1xqzo44rHJ6c8fHzM+WKN9zuY5oAoE7JEmsmcZrpPHw3OCJtV5mK1YbXpKNlgjSOngWKUAa9ezIL1CoCaktXfWkT9z4ym81nLpTE+AIYihr4fuFit6IfIph+gCP0QFahF1//Z7kwl0iSG9RHd+Sl2uIVNLaEYHBvwERtaZq6tvo8J6xqKK6zjOfOyg/W7OlAzWpAIGVME6wKOgqSC8RbBUnJPWp8Qhws2xjAEVWo4Z0i2IYkO/wsRGyCYTOpWNLLGxQsaem0HjSWPHghGw90wdfBbB7gFVwfAQK30DAX1y1FlCxSCqDucFVtr71GdZDBFHf4cniwNSRy4QvGFJCggIgYvBsxAsZnBFvqhMDUt5bgj3VyoqX4dBFdiDZYPB0eIHV9nrqwfqzZCdhcxM7x3GFO03i6w7hLnmw3rozMeHS4UyBNlGTkBUiKu13SrJUPXYVLGSlFySBrAuOrV6DDS0piATxmzzuQWHj4+JbinPFyuOE8RjIa/ZWrowKjiqAoyYw3WB7o06HMYMM4huXrtVjubaHXQEocNu63Hdg43CEY6SAlyQUqgT4/o4mOKRPpuYDZv6NYd3XqljLpS6LtCtkE9rlPGisOVGgAn6u1r0cAv0LCCmAc8zRYZEDEIDmcNTWhwxmgt75Vh2Bf165PG0+7OaBpVgQkZawRnqV7y2gtasoZSGGU8KXiDWh4hWHFIVpsl61SZ1gRLcOrl2S0WnB4f88F7X+Xhg/dYLs9BEtYUshMOjx5x/+UX6bqe23fusrN7DRcanCiwlHKpuIKGSwHkmFXuajXQcDAG8Y7swTUW31pKU2iuTdi5vccyLwhLh+8MXSoE3zBtWqRAv+nJfeHoqKe7bZn5JcPqkM3qmNOTR6xsy3p5QT8UYjYaqJkL0SYkeCYpM5mq7Q7i0DydTLCeIUesVyZnplTyjtbjUgM1KyNByUUjOFQsVjRB2YitQJLbkhvGe82OhAssMtpLiQ6AlNkn1SNegSdbSSJpJMJYg7Nq/eSMV29cqDJZozLgKyGbFnT4a4WcqymPGS2UFGwKAawXsqmBnxIJ2Jq8brAOQmNonKERVL3QBDatR0i0knGmY1K9cpvmWXAN+7caXnnpBW7ObnN37yYhD9x97gVef+Y5XCyEYLd9hwL+IxuESlrQT9VpoW4voz876j9vNagzVNhMLBQP/cSTPCSU8duajDEDMW1QCwF9h/UWLNu1EZQg8fWsDL4uQIfzyuSwYwqJ+nqJt+rNhSGK0EvRZsIWUhZS1ERAVz1HDGBdwRmHtRmDq6wNTaEsMbFZbYidxhRTUJChSiVLURmMC019L5XFpJptPfiYBlLRxMIuDlAKwXvSoJKOjJBLxg4ZnKPfbJB+gEE17Doh1UewjokNtFZBQ1/TEzGQrYBR77bQ2C09XU+YgiwIiORq8KjhBKPXnFL4HcVBTqXSuyr7qEpntdlRI2lwkDwElX+Qi06/ndUEWRFSKSOLV/+mqITW4QnGK0CTCzkWSkwMZByZkiKDpcYIC3lImFwUGLNCybFOJS3SKyqeck09jJZWJiolKKn64KghYqrsHyooISOokoWUC8t1x9OTBU1lkFnvSNWsfdN3dH2PoQYDoO4I3lidrNZN2QCxpqDqUEuBLC3evE6LMHjjalCHBVOUFOZstZ7SsIomeBqngHFrAvMwxWUDqd5GImS9bLYLp4gQfCCmiDIEq+deLOQm0VhomgayVeq6vUyqw1mKc2RjlGWVkioI0BlqzkUTlCsgt/Wc41Kqaoyr1+EI16ufhHO2Rl+numHLlmo8+pgVlEm06voaCR7RpEs1gi24Oh1VWXIpkDeDbj6igJFU0MyImmQn64h4hliIXcKarJLyJmCcgtcqi0e/lxN9HBBnyUXXjCLqqxMLYD1iPIVMLILLhQA01oLzdepuiEVYDZFQBOs9xnrE6fl2ImrQWhmYoH6Lmr66g3OeYegBITQBGwKu8dhgKCZjUiK4hmvzOTcP5rx8/y43bu3ReCGtlyxXwnLTIV3GkAhu9AxUFnBK6pVJNWy92li0TUsTGmV6ZTDJELtIzpVDIQqiJtFCqFxh0l2d9Hz3s9f5W7//k/yNNz/gP/mnX+Kwi9yeBv7Iq3f53c9c4+999cmWZr996Kh1/LTdQEQEV1O86mWv4KmBv/btr7OKmU/+5C/wzO4Of+u7P84iCj/+lU5TRp2yLXNJNG3Lv3//gI/MAn/iN55yerHkz714jf/uOz7Gv/aPPkcR+J5nD/jTbzzPH/3U5/inj0745I1d/s7v/118Zdnx/xwutMXwExaD0SKiTrPUV6S+nzleWhMY9f8ABdpyLlt7AmoDUzBIEmw2GO+xLpAI2KQM6SI1IdIaXLGkEmuKFFg7fMgUt1Q29vi+beXohiq3d5SRDWRGnsN4TyugeXVYpam9Y0DIOHV7ihhPdlPEa4Jx8IbWFYLVBDJdpizWHnFt3vDC7WuEV+5w5/4B4s5xoaOJmSSOITQsY+HR1x7z+IOnBL/DnXsv8uwLLzLfuQY9LA7PeP+9D4hWWKwOePfdr/Hw6Tk3bkxpdw1pvVL7BAudVU+1JjiiUW8g7x3JeDwNhojgWHf99tI7W5wiQOM8knYJRhNM+5h0Gtn6uqZHvDE0pqh8E0PTNuMyyfLgFtPZdOshZq7cFeZDV/uHOA2/6au/ieYBfOp33uIP//oxT4bKm6vyBoOhpEi3uiCXgaYJ9MPAernhVr1GvNe9DIBiCD6wM2uZTKeEtiLqkrdguGC21wYTPefrzZpXXnqOzWpFUzz9MrEpE6aPjvnyV99nA7Q+szcLvHD3Jq+/eA9nA7f2bvLcnZcI7VTlGUb3xJIHrHF4M6UOu7WoJqlsxaiPVsW3oVgaZphkWK7W2J0d7ty/ic0f0LZCMo7WB8Lc4WcF20boivqndhYzaNJsFzYIhWsHe+zPJrTeIMnruo7KEJFMKwZjA8JArm+5BndlJtMdjAT1cpEAxRP7gX5TmE5g9ETOcaCkQVm7yheFDKbYup9mfKN7Q6mDoCIqKUqp1g+jysEIm76jbLRuW+eEjosd2Th6QIwOf3euTdjbnzL0a6wpXD8w7MwCTWN56dXbvPbGR2nm9yjFMvEeK47TsyXnZx3LZWS3GCa3zhniOYfHX+Vr73+RUjYcHOwiJXNx9JRHb3+Fx1/9GrYfuNnOaKXQ+0I3M9y+cYM964m5p9jM/qRhPwQG6Vm7gVXTMbs15RtfegWiYdP3rAw0NrGXp0h0NMyxk2vkacP58Yonn3+HlJfs3r/G+cWGGzvXadp9EgZcBtPTl55HJ2d88PiExXJN0zZ8zT9lsUmcnp2yOD9lterJMbFCOD25YLneMKQC1tfzW3CNJ+Vhy9JQIlydylZzbVdrGuvAFDXtliwUowbpqbKwNxv13VqtN5SYNQCq7sNdyrTOABGfBzbLI0yK7E8PWF0s8dkS6Ekm0hWhbTxeIo3R0CoXLMUlPf66eBSrChgtbXRgTxE8CcQyZFivFnSrI4a0ZG1g8I4sUdPdvabLOzFbZqaxCZOX2GEBq1MF6IzDmKZKbpX/4ShQekpEwRGnLEy9ffRqrrsP1CY9oWAKpJqWOA7hRmDP6tqEw4t6aGXjwESK1VpP70PNL8YORJeJLpOjYZpmyGmkrFcYiRUi0lJ7XFtGJuRW0osCpqpsaSqsOEeY6F5rQZwnGaFEYbHoeLpYYI4uVAbvHEaE1nv1eht6St9DjpUgUUMHi6hkHU31cxgaPDZ5ctczBOGDx6dIOOGwG7hQyg/GmOr9nNVvrdbdY29iXN0XkMq00x5nZCdlyThvwBtKl7CmYXPe0y82wAbBkjYDcXD08SHr+JhUOlLKpJhZXlxQRH/PlMIwRBJRmZ0JcEqscHXNE1TJJAgxJ1JJVRovOqMBctYheBEILpINKjUXDePKAtE4khFMULDFZFV72GKxRr3qcikqva2AEFl7+bE2Ah1QSq4WNUYqm7mqrSSThw2rixXHjx7x9P0HXDw9IsYNzqq8erCZ880FxQrz2S57e/vs7V1DRL3jrRcFBo0qGqy1GoSXK5PP+xoEBQRHMgVjCzYYBhsZfKI3kWQSxiSgEKYNBwfXud7scrpYsDo9Y3Uw58HDBUd3VtxqCsuzR3SrY1aLE1ZmSr/ZELNBqmVXwZCnnubGnHvNnAM3ZX3esTpdc3F0wepipYOJMRXQgDFl2zNb8VAcqpSqQXHYmuDtqnxX8QKDqzeXLqCGUVparRaqtFMtArS2Veaurg2mMrfVPsOA9dhSamiqkoZCCLhKJNCmQN9zxRNHC6rx5zUQzKDYjQZe2RpqK/gg2r7ZMRAzojd69er2hhAsrXc0GHxRZr1Mg/pI5sTERZ65d4NXvuE1bt34NoptuH7X8vLzz3HD3IKzDVOTmB3cYL5/B1sMrghiSl17aqFeyTtXq0AxynxTkHtU+xik1lSuStYpCt5FYI0oThUTxIzJGWOrUkxTRbfqtXED2Val/xzJ69dn0NVmUVFZwNraIFX0vDYZYipEaiv6niJDTEy3+nRl2xQcVqQW1bC7d61OzAwpDfRR0UXVuytQNUZWj7I/nGXqHO1kwqbriTlXtFYN/YYYKZ0CdFTfJ982GGtIKWv6Y5A6fdJjU3me20biYtVMtAkNgiY9lrr4uSpbKpW2lZHtxWmq10FKSdlnRbDWE8wlc6kUaoNmiXHABUtoghLesvpnZTJY1cHb7KvEsabD2uotICrBtJg6WFMQRkl8Sqsdk4BMReEliZqRYrAUxfuGnnVfPRHEbrHdlCPWKzU1Z2Hdr3V6LcocwVqGkvBBPQL7OLDu1zoEsxaxDSkXilFqbMESs9D3PYfHJ6y6vurQdQGJRVuvQuFiveZ8sd5K/pRNphvj2JCPoNxIHx2/vv1cjyPXSxNLXbAYuxQFbQXWXU+0BV8Ki+WSFIc6wTPKmst5q6Efr39EGJIasVrnqgG1MgSHOCDLlUYtlyqtTQVTPY8c0GDZdFEnrrHgi8UXQyjKQtVhsgLTIXhKKcRRLluTQEuUy1VFuJRBUs+BjIvA1aWBrfTHqks2FGXHpZQxORGNhq5ooqxSlmNWf4tuSPTdQByi3k85b9lduah0MBcFZVMWlVIX9ZnLObPZDKyXHSGswVoN0ihC10ViUVaHOvx4vJ+QkwJAkdp0+lraiShY0QY1cq0goPPqXRd7aP2EFPV1bgEu9P5zXiXbk+kEZ13dGAKhbWjagHMqe26cZX9nhzs3b3Dz1k1mB1OMiXibcV6LAOMi09mKWVeYzmb0ucemtGXG5Kz/n/OHr9dUMo1pCcHjQzXftRoeE6MODLJUduy49V4J6gH4L779Y/zku0/4C595h7okcbgZ+K9+7Wtg4A++eJs/8/EXeH5nyipl/sF7h/z5T3+ZdVSg4DP/xnfyv7z9iO949oDfcWOP//gz7/CzRxcfeo77Oy2/5841vvP/+AyLPrJMF/z424f84Gu3+fF3MqmCGZKyBqIAv+/mDX7kzcccrdUn6r/58iN+7vd+I7/zxi6fPb7g+fmEL56v+JWn+ly/dHTOm6cXfPz6rgJ0Iqw3HaX6A44SvFxGya6ijqUUXZ/lig12XQeMtYS2pZ3s4IIji05cZYgqfbEZzFAnZTqkqfRYnDXqeSWJsYAxVwC6q5H045rDuFfWYUuqDWXdRPX82NGLdTSv35IYdUpnxvJKcCWDQLQt2bXgG5yFxmS8LfgqSynW473jxAv9fmB6coud82eINy13b80xoMMZH1gvVpj1OXM30A9nPHzwZQYz8MzdF5gzo5eEbT39esnR0aF6rSzPwK65fbCDC14HDqJs7GwcpUpcgnNYcVgTMCVADpAC3l4mZ3invqvBqf9ryhtS7oAB5yIhqH+llIgrnjZrU4NodnEAACAASURBVBGMZTabbqWsjXN8bNbwx57b4xvmDcHCSSx8etHzE49XnKRLMPxy5bv89ziy+K1AuvFRgP1g+XPP7/O7dgNDEf73RxP+67cfMYhhKI5sJ5BXAJyuCgc7E/7sK7f4nptT5s7yK+cdf+39Jce1t/+2vSn/5jNzXp5pmvRXusTfeLDgcxeDppeLAbePbwLX969x8OoB1289z90vvc/Zyc/yZHjC/edu8fFPvsH911+l3d9ndbZmdb4hroRmMgVnyCZRpK/+tcrK1bVDoOS6l1UZ4dXwL+vZPbjJ6x99gztffsDaTLh55wabkwnTqWVIEde2zHYs7axw/brn5rUd9n3hcbesYQ09xHNaenZCy8yCE91zirSkjSV2rQ6wzC4FS3ETsttQrCORSZKYlKC/xxSDV+ZSSRR6Chuy8URZ0ZUVXe402dY1UNN3yZace/phjfORlNWSwtsO0GFjb3q1oaBsfeE09Erle1kKkmOVGylLpoiw3iQePTzh8LHWWn23IYRH7OzMmM+mPHy44atfvSDM9+n6yKSZ0bZTlosVR0dHDF3H3WfvcPjoPqvVGY+fvM+7777JZr1gvtPgHGxWicXxhrjqYd0zjZlrbYu7NuWINU14l30f6OMGguXujevc2b9GXyLHcUEXVtx5fo+ZNOxkz/Ubtzk+OeZ8dU420K8yqyjMzZS4yawfP+bigwt29lr8smW1cJw9esLixPEN33SD51/UerLvOp4+fcrp6QnrTQcG1qtTdo5m9P2G2HeUnHG7c4oIXbciDkMFRgsl18FhKWr1MHpp1WAoDUqiprZ7RM1062I5rrEqPSzINiFcPYwaNsNK9wPrEWNJYljFSEor2jJg3DM0zQTvJ0he0w+ZTdexlgGJkVgCeB02GKpn7azVOq/vKabBBFOHNGh/mVQlIUbouw2LdWR5fs5qeU7Xb4g5E5OqMFJKSA2ry1H7hJwTJmlgwdCt2CwvsGSsdhjbNcuMa1lJ6OZyubpttxq2jtSM4woFzCpsJleHc1d+0gBj+J6Mw8ZSPUENIrUxF10dxWaKE6xRIscwdHRxTTFZGYYVvDSXr/pDr/XymCrAIJAy6qNWB6oKPBooUskfKiI2zlU5npCtVo0iWuPrcYzHrMftxidTCpCueeLIsbBcbnh8dELxc05WhWU3VMFB/UMjeHzl/deAvryV6o2N/1V5qaIOunC4YEg5slp2bNYbtFNOXJwds+kK680JXX9Gyh2TaUMpWRPTK+BmrCMEtZDpO2WiGgfbIp/agxbtU3LRwYTd9p0FG9TTHdTSY4ggtYdz3pGc08BDp8MjUw/a1kTT7a4oY091uX+Y8SyP8ldTgQn9h4YqukqyyKUyB6Hvey4uLjTURQQ3ElRIqpqTxMXFORcXZ4hkQtBBcCmFJhhyUnstW+2lTBGsrfJvMw6Z7TbsVdCgFjtpme/MuXf/LtPGcoTKintruH3jFrsyoe8jZbXk4nzFowfHvHvtA9aN5+jBBxyfPGWxOGdtBzZdp7JUY7fnYba3y/Mv3+d7P/aN3A47nB0teP/th3z519/mYR9rDeT1PqHiEOMFtmX9aL/puFzzTPWxtFZtj6x1SqCySkAZz9N2jTTm6jJRcTzFPLbns35dfYC17xWrdaz6xAXFeup1ZEyVsdZ7TsEQ2f4dqDVwsaRq6aU4Rb0nLFg32maNYTgqk9VgKH3OEIJGIQXPZG8HFwp7fmBmHXfvPcMbH/sor77y7YTJPtP9jv3ZhD05wN4quNJDaEBafVElY2yp6q9CZeroWihX1jaj0wSj0j0FmWvaNWRKtRbYDtYTSAe2s4Q4wQ0zUjdFgkesBdMrIeXKOlvnFLo+bUkbv/Xj6wJ0IwMny+UfvYr4BR+26Szea7yv2IKQScmCa9T3xmtRLoWKpCuDwExmtG2Lw7Jeq3kmCMUrYNXsKJNHp55SJWFWF2fnELshrzfkHHEVDByGgSGneuEUnHO0oUGsAZNwtQm3IbDqIi6Lgn8+VABSUesRcBCjC4lOy6wu7s5rhoF1iEQtOJzFWV9PpkWkU7Tepq222lQvP2tzTaUxyp4zmjYrosCecYK3FolWG55iMdkoszDpBFdsro0elR46Tm4MVAltShnjKysDUamrGDxqcDhrAjlGUlQZqnUWMYZYPdpm0x28c6SUiatEjLmCpLoh9alnurPPpJ2w6VasN2oI6rxDXCDRIYpikLD0WVj1ieVmwdHJoi4U6guRSlLJWLCkLHR9xNAg4j7U/AJbIO7qv3+rR6RUD55SWUQa9BBLxmaVhfYpsew7pt4ybwJdSgyxZzabEnyDRG2arNXVM5Wk76tVz4MQGkxjMU6jzcfrM8eMdx6nhEaVIaNFP9aq/8UmUlLB9HptBTG0Yok4Qk3+tPaqrFVvZofbhmLo8dePIlf267oYbkfTVxcIBaDbtsU3DlPlsbkUyhCxRSjDgJVCsLpRSw14iDGy6Ts23YaULb5chkHknPVcZgWHo4AMmZgSm66nZGG97ri4WIFt2N3bxVih6zoWZ+eshwHjHX2M9OtO5e+MPgumpt5drktWIJiCk0juE8ZC66Z1mqZFb0yFIesalgViLvQpEVKqIJ+rkeS6jXgXFEQQmLUTZtOW+XTKbDbFN0317PPYyVTDKzOEpBvnuHYk0fdAaiEspWylOSVrEm7f92x6lVw1Qe+BLOpFqWyuGgoxfm08pVzKUZ/bmfDK/pz/6Be/tC1KGTdCo6D9xZD5wf/7C7x5suD5nSl/+/d+kv/gEy/xF3757e198kdfv8sf/9Tn+cLZivlkcinlFH3/3ziYcz4k3lttACGlyGefHHPvm+7hho5lKrjek2sqduo7kGeJQ89yuYZS2PN69X10b8Znni74mfef8odeeIZvvrnHLzw65ttuH/Dy3oyfe3iyBeCXF+d1GmsuQTRka1BsjdtKzEfw02BqUWvIGEISjJ0w8VOc92AdRbwyMKTo+55H2dQ2SlAbFdQjtXaFXPV0vExru7L+mFFi7lBG/GgErL/vjH7dSGVVS/UfzKWC++ZyClqEkCNIIRJIpqFYlf1EyTiS+rsYSzJO2WQTSx8nrKeR893CtclN3isD3cU5Hsuzz91jZ9LQ3r7Gi/fukN2E1VDw0xk7E0vjA9PphPZgTtetMRIxnPP4yRd5evqE/bll1jRIUmmZ8QHEKpvBgkEBOoNHkkEGiCkxrC9jaycuEBpNJPe2YE2iDcKkFTA9Q9RC2/sGFw2+CC0Oj2WnuQT6vu1gzo++cYv/9fGSv/qVM45i4YY3/MCtGR+fWv7R000tyC/3iMtG1G7X8/F7FmHE9Pp+oBtUnvujL99kXYQf+NVjrrvCX339gLN0m//hAwU5snNbgG5TPH/+lZt8ZKflj3zmKash8p9+7Ab/+evX+ZO/cQoi7HjHTx2u+eyiY5OFf/n2nB999Tr/9uef8N5qIA4ZE27RmAG/M+f+xz7CR177BJP5u/zqZ77I4nTBGx//Jr7/D/6rvPLyPWzJPPnaY3yeINKCNKhg1JDJBKvhXYzyaqXrKhuo6L1lnVO2e9H3K0yn7N+8zXR3h6PjcxYrlbK7MnAwd/RSsHnJ/s4erz3/Gq/e+whPvrLmFz/1Bd56+zGSepLpaG1ib+KZmIGSlVGIbek2WaWLdgcpc5IISQypnpviBTGJbJq6bzty0SFeMQnjM+IiUTq6vGY9rFgPHSkZvG1xboLBK3OlmoKbocY4i2UtG4ypnsZdV32pRjZ+qY2ODnusBV8EbzxeHAF9TUNfWJxtGLqOpmno+0TOA22b8X7Nl946YTJ7Cxe0CA9+xqSZKPO0O8PQ8eT9Pb74uVbrgwhnp2d06yXCQEwdXfIkmRPshBCF83VkGQwmGg7LGjHCbtPggsFPHRszcHhxTi+RLkSu3Z6ws3+TjOOiT9AENsvE6nzg5HTN2fGKbCdc6z1mZ8rFkwV2FZjtHbBZtpw+FQ4/OOT0UHj2mSW5N9hpIKXM0G+4tjfn9jM3MJWROZkGSp4Sh56SEzeu7ROMIeeei+WKUteKGAuL1ZpNF2msDqD1SlTWiJWsDVWxGFGf4ZI1/bekvF13vfO4tiHHiPeOO888Q+oGHn7wAauLZQVYLeICQ4EhF2aTKXfuPseNO3exkzniLogFNjGxTonc9yQpNFPPxDcYlOVaUrU/GAayjfj2MsfMjNBNUTnk8mLJYj2QhsjQ9aRB2aFjqBal2kyI7vsAVFahNY7YR1YXS/05q82hlVEcVX/RjCDcVcuKEUQaIbHLXu23H0UohKXqHi1Wbf0wdaNVsK76QpoKqNnqhVX9ArMk+tzRpRWDbMgjgw/hw0npv/1DBFL1Lhv35C2oVwsclT0XrCm1Aa5DshESqwCBoPWeDtTN9nWX+reket2KsWz6yNOTUwYJLAenHnTl8l0bgSdM9QeWq4F18iHEcWuEb13tHYUh99iSSUZqb6XXcIkDJ6dPOTw84+jpI9abC4pEJpOW5Wqtiq/KXBILLnioCocsmmhtvKkEpPo6ar8w9nKpFGxlwDnn8a3gQhiXfgU164AzFfVxH49p22dVwO3qIPJD15bIFvj5UPCArUO8nBBT1AcU7YOsvyKvRuoeoM9byghYKeiUsw5NdIjuKgir6qdxKG1sUUa4E8QLtoB1gjOeJHnrizZpZ+zOdyhBmZveWPb39pg//yJ3bt3hPPbkPjGcbMipkGLm4nzJBx88ZtcZjoxw/uSQ9x881mumSaz7DkfA1F4iGw2feeGF+3zv93wHz073OXl0xq/Of53F0RknT450kG2d3j81kGAMWqgU1y3gO9byYxqviN2+xxqoMAZtlS2SbCpIluTyHI1+8NZe8VDjw+fMmnEIbRhDQjEV/KVa3lw9x1eG1OP1P37NA6kkvd9E64uctFe0qATZ2qI2WlJf8+gj7zQEwlohOwjTCbefOeD+3es0ZcmdZ+9x49ot7t6+Qzs/AH+BlaQM32lQlDkL2FAvVYuUpPuKGxGysda3lwMLwImoZ6RKORVIM6OKpzAy/kgQBnDLAbdMNIMn5AklTRisJwYQk0fXvu2jcvC4FLr+9o+vn+LKKN+5lBFST47dmsPXYALrsRak+pQJBVwDocU1Tb3BVW6WDIh1DNQUD+/IqTBEXZRtZRzNp82HFsNUVP/sjcqWsJ4xRluTH9W4W1lmDlM0GcwalYNq82uxXoETaz3G6Qak+2uhjxG7WaGeGHp+vWuUHSgojd2gEd7Viy2ngimZ4I1Kc+vWlE2nBpnjDeVGDzptBU1Qj4OcM0OKxByJkvWJsiN1MGwiscvkISOpgr/GIBmsHycb6oFGUVNXTRcbi01Fw6npeKaALQZrCiSjnjAystJ0A4yictUuJ1ylz2ejPhaX4ao1YbIyyNQjSldLY9U7ptTfs+jGFsUQxZJTJsWI8+ojEXPSaZSrU2qsUvpzqUWBreh+3TwQnYq4MelTWQLGsP1sUJZjMmPfq0VNAlJN6nLAkDPdMBDsRDcuYOgTIRcm04bGgMs6pclZiFmBTuc91jiayRTvPS4ETWhT5FYTQ4PHpqzzA1EfhnGRqwhtnVaO975OgCRlik+MwQ8f3hi5XBAriPMh5mAFy8oWrBttdq+UcEojJKWCzdWLxKrDAa7e017p/9ZUY3+vvn/OZwWWhe3yst1YpDK+KvvAB4fYTMw9KXfkIqy7C45Pn3C+PGVnsYtxnuVmzdHTEzZDj2/1nr9Yd6xWa4xx+Omc1ltsifVIauBGHMjRkk0ip4h3lpaWtvEEGzg+7eh6jaTPYhTMEJXFpKLyGaFKOusK6pyuF1KEyaRl0k5o2kDwGp3NEPUiFQOTKY1xtCVgQkMUYciJWEo1VlUg1prxPFfwrQKdOV8GOKg8v2yHTLnItuhSkPISYJUKWl1rVDb3eKOeL2Y0iWWc0Ag/9/B4K4v+ysWa//7N9/nDr93FmLe35+9//tIDfu34AmMtmxhxdbMt1dR67i0XMbH1lMmZ46VymfzQsdkM9fWNRQD8nw+P+ZMv3eSXH32Jdcr82W9+mVIBChHhuI/8wwfH/MT3foJxmPef/dJbfPF0pQCbCEOn66e5AlzJeICADY0y9Uui5LJN9zOoqXHMMCShjwVfoHUB17SIXGHTpayYRS3xq+mCNirbQlWfdCxC4YqklYqH1rXHYausXgcZWWQbDDTuT4hOtZ1zFAvJZA1PuYSQcAhNbcKSFAZGA/SMl4iTiCQ9hiFDk3ewTJiIZyqJkBNlEBZFWHWFs9MjOmt45ZUXOLixp/H1zQwRD9KSkqE4wYSWcG3OHvu0uWd/J3Jy+i6/8OlDhmHDNARK3WtxykBIucrm63CSYkgpYuixJLy5jHBoQ6JpVIjYOIeVTMkRKSpNyUnwje7vyWZSyIjoPhLdJdPrh16+zs88WvCXfu3x9j55SuGLj09ACn/g2T3+1Cu3eW7WsM6Fn3uy4C9/4SGrpIOdf/x9H+WnHpzzrddnfMP+hB/+/AN++sE5cJ/TswVPu8jdSeBfuPYc3/2pdzjMnr475ifKBf/OR57j737uLXb58OPFcsK/9Mwr/Je/8jbxySkN8Dd/5ZC/8/3fzMfXT/j88YKf/QCkaZFr1zDO8b8dFf743R0+OvO8d67DiBfuvYKkxDKecpEzA4bpbJed6Q5kw+7uAXfvv8juzRukYWC2dtA5ipuSiiMXQ7KQS8SQ8dv3TYFnUKaobtdSBzuXzAdjHDZMmMx3sacrlouO7iKxYxtevvMMJ13Po6MnmLuB1156lY/eucfzsoLXNnRP1wznF2o34JT5n9BMs2nrcSaw6jbE0jPzE0JTkBTxbsARMTgap8BzcJUdEUzdtgwuNHgrmBrg0keIxRLF1LzAQjFZ113ncMUjRddO53S9j0OszWTNUK2DBbV1UOaUtQ6bdDAUTIM3HpdbXGn0WdJA6g3DUNfzSmiSWLC5kLuIrDI+GLyfqCyJNdPWIdLhXYdzjrVTya6TCbFviP2MnGGImWgaxE8J7R7zxpHziiElujVsfEM2QjcUbdK7npNVYd70uNmE2c19bu3O2Dt4hoPbtzn66iOePDji5HCJpIYHHzzl6HAFfs5BmtPsZi6ebmijoZl5ZgSCucWtGxNm0x36jefRgxP2DlpiP3DjxnW++3t+D6+89jKTSaBIxHtL33UsFudcnJ1ryJoUXnjpeU7PFnSdmojHKDx8+ISvfO19Npse40IF03Vo4kqGYqqi43LPG2seVWhUf1fvaz2ZcNYznWmyurNW/bRK0WGH0YGC8YFmtoPxTSXlOU0kjoUhFtJQ1I6nAcTQNg03rh0w4vm+adXcv+6xo7heUweFnDKr9YbVKmJjVd+kap8jdY+wtnpG14HSKFEsYIwn9Ymzk1PWyyXT3RZjlDWGCCIZJOrUV1QUaj9U3ZlLf6XfEpKrxeb2R3Q9MCODYkweLJpoa6oCZGzqtwDdmDpvCjH35NKTjSXKhk1ckNgQtnF7v81jrG1q7Ugd8o4S91IqOGGU/GCr7FSk+j4bleAp+5065NJeQP2kTFW2UJMapRIopJKUDFhHLInFxZpBzuhKw1DPlxTRXtxQa/bLureMljrj0LDuQVeBUj3ECmY4R596Vpuek7Mzct9RxHJ8fMzb77zLgw8eEYcNIgnBsenWxDQgpZrni8GIMgb7vld/x6A2Noh6mFmjYQnGjaQMVbmNPboLAZdkS0QRUe9NER2sZ8A4s7UQGu+1MZxlBOBGgEbBoitBGbD9fyUQVHZh0TCgXHvUEYixzhImDbPdHSbzGav1klgK1ni8s1Wlhtbh06n6dW0DJ/Q6cF5BS2PqYMUKYsd+T9f2Ugu0EBrm8znz+Q6drEhD5P33HtAg7PqWvd19Sr/h6OIxZycnrFdrunVPMXD05CltGng89KyOT3j46JDz5ZrYOoZSmLoWiwYqJgPGWfb2d7nzzDWe3bnOrm95/NUH7M6nNMFXtqfyKM0WbB+BMwGT2ZJtKltrHBJvP9evjSQOlYWb2p/p+klRz/MP4armyrkybovpjCSOrS0VaguWymUSrtTn5OrruHINXCpIFCD2Fa8gVw90qWGbgj630TAXJbCg9XG9dsQaTOvIwTK/ts/HvvEb+N3PHjBhTXNtxt37r7Iz3cV5tVcCEKO/j/iqiLSVnAXgt5YzhvE9rO/Xh4hsetMbRDEXo/eRqltSBecEE4GLHnN+DOfH+O6CIB3GRgYb2UhHcLK9f0YG+Ah4ViT16z7+OQBdHbKWEc29BOiMdQwx0ltL41QS55xQzGjCnzA+MmRLU09SzuoNITUOddkn2tUG4yxd19WYdKlGnDDrvC6stZjCaAMdfMZ7z2bTse57hn7AxIyzti7wOh32RRiy+tcUq2BMYy0MiZirJC9ryiRWPdlyHlh3PYvVBV3uadvAZDLDePUvKqbgXcAGp1K0MhBjRoxGTjuvJuGl9DjbU2SoC7QluAasAnvq02arf1yun4vS4PuBFIXVWWToEv1mUP+BmFT3HxjnOtXbod55v4nhkamLrphqnl+g6CTMW7ud5IEGLgxDv007zMayXq6wfsAaQ9/3yqDL6u0ACn6uNp0ypDZr+r4jBC3KS1CPwlRRaluNfo0POtG3frvAiws6GatSZgG80emhQTdHQbbHIVkoFPqOKplQQ1SlAqvHBPWeK3ZsnnVhkSsf1nmSQB8TrU10Q9IZrrGkAquuRyeVmiI3xLT1b8hZsLbgctFr3ljKOMnCUKqUrVghGUuydjtTVMs4IRtN3kmmEIt6Ccas0keTdVG+GkKxXYRRivpvDc6VLVOLeh2M8d51WVKAOKnPnS/jdNJqs2aULz5OFxVEynVqpxeXrcWxVFbYGBeeM2p2HjPZFmLSzbLb9HRDhwhcrBYs10v6vq9grjLmFsslMSvDVRDWXcL4GbPZHnZaTYNjqsdHjXHPOp0rtgKJCkSXFMnJaEJoNogzZKtNX65FmW8a2tBgKujsvCE06gnXthOm0yluo7T7ro8slitOTk5pArQTT9sG7KTBeIMJei43MbOOib4UTZ+sm8AoAHDWEmyD935LHxfUj2kEDUvOSDEkyepxNrK06n+uArVngzJf78xa3l5025p7PO8A33XngB/6ppd4dX9Ga9VT4WkXYbtSwPvLzUi6q+BgBegqg285JHaDR8plIMuu12c6Xa0Yhrylvo8A5A///G/wI9/yOn//+74Raww/9uZ7fN/d6xxvenIu/JmPPc8P3L/JH/gHn+E3Ti54bW/O3/zeb6Ivwt9+5zEAzhlc9XoYp10jgCkCzlXvi6JTdf0ZszUVT9ZSjGdIBddHjEv4JuhQp1TfOqvXRzHa2pgRlDNgt88pWxBurHBUdvLh99pg9Xe2UmZlfZrx+zquZtRbG6cupbaaRUMFSOqIor5SMJBrc2DIeBmwRESgsXr9mByQBI3dZT7x7M2m3L51l8n1a2zKhk//0s/z7gcPuPfCPW7MJ6TUsz67oCQDKTBET3P9DiGEmiZeQDqu7QReeO42n/u8Z71eMm2mKhF3gTDxOJMu1xZnceI08XfoSWmNeJi2N7bXrKvG5xZD6yc0rmEwLc7OkNwy9J6cPTE5NiXTGalBPZpCCcocfX4W+OHPHnG2uNiObC7RW+HwouFP/ZO3eGvZ8+LOhP/xO1/l33v5Fn/x8+9vB1J/6N4+f+yfvMWvnaxoHXR13Lxcr1ksB75j94DzIfHm4zN25ju8c/yU//bklJ/52iFvna245HdcPv6Vn/40j9c9y6iWDe8u1vyLP/XzHK57Tuv9Ckvk+AxjLa21/Ovvv8dXNpG+alH+0l/5i6SUWHcrsIb5dI5k4enRMcvlkoc/9h4/+ff+Ls0YkLU1MLfbAaAwDjJk+4XLRuryJho92Yy18PQR//j7PwHABPh3x4P6+5/VzxZ4/4uXB/vpL8Knv8i63hXfCnzrDrADcMl2vPzlQT/2XP1+Vz8urw59jIk2Fdh9dnLldY+/q//+RTvjB98TilgwgthCYah7clvXXZXHOqup9CXrsftRPm/AiO5f2rnXtUCsGnJXgMAUR0kVys8AhpQzQ+pr46jrClYDqIwPNNMZu3vXCW6Gtx7JiTSscGbATTQoqFucUwZLjk4LFjw2TAnWYcKM6wc32TGBRX9El1bkkjFmgphMnwdltG0i3g5Mw4DvErvesXc9cHq64av5kPPjC0LY5eX7z7A4j/z65x5yeNpjnGeVzmmnmeViicmRxcYwnzcEm0EGnM0cHv4SX/ryIXfvvYjzDV3f88lv/hjf/l3fzmTWImiowuLklKOjI548ekLOiSKJ6e4uFxcrLhZruk0kJSFnw4MHT1iXvl6jdYgtY1Kgrqcw7ktXgYHKkE6J0sFkljg5PiEOAydPj4mbXs9zKWRxxKLMueAbutWCR4dHPHj4iLu7d1ivO7o+EWNhGDJpiHhn8L3BzOe8+PyLvPHGG+zu7OnraxpMaXTwIqIyv6IyUAWa1NqjHxJm0DVayqWYXoGusSYreD+Gbunw0GQhdgOHTw558ugRe80M36htAIjKpUaA/TclnV7pCi6bwu0bOD7GxaD+v05UrnwvIXnQYIWRPVXraVUyKLg1bsQiCtAhA8YESt4w9OfkvMS4KdDy/+kxLlr1xY5AAZi63/jt8DQL5JJrYa8exhRNwzRStl9HLDnr/WpNvbWqHxtWwYIEpAKbLjKwJpqia0m1c/pnVnhz2WePQtbLQ1D5Zk6ZZCJFBlyrr91albgO2fDBwyd85Z2vAp633n6bN998k6dHZ5ScMEbrWqFgnaUbIoMPOCKSsvp79h1Ddrg4YFLC5YxtPE3TMmkCpKTAlTE4r0CY8656U492HlrrW6cqBFNM9ez1FO/V8xtV9lwdxI/9xxZ8G8EZ+TBIN/YqKVXLJjOqh/TnlD4iTHd2uHH7NutNp33AWeV/OwFf2N1tuXX7Djdu3sT7pvqJWnwd9FprtxLL0UMU3MKYpQAAIABJREFUW6oSV3sp7VeCqp6sZ3e2y429A1576VXmOy2527B48pRHDx9xslmxOD1neXTGet2x2XRkCouzFUcp4VZruvNzFhcdQ4EuJvVc8wo2OathBjEpK1tKD2ywDBgi1qhfc3YoC7LYrbfkhxl0VOBO7+ntHbot1MdrTlleZus9PuIApt47FhGn74/Rv20MjHjz9uYz43031gRF+8DxWrk8ufpp/F4FqaUq2rZMvArQNVUyaxM6tKsBeFTbriLqA5tS3sqE9UMBsUgBb5ju73H/5Zf5HW+8xK6PZG+Zze6BtOpmZuvfllDVNQZ80KC37bHWurbKtLWoH1/PlTVoZMployGVUOvwDESt3weDDI58/Ihy/j5m/QgbVzi3wDcraCKxrHEYzW+40rddgqu/eXH5Zx9fPySiLnzV/nF7knRaAcMQGayld45sdZqj4m+9+dbdgE2FZohKiUabP6kndR0jLNRvSGWOlYpbmScXK8WOlb5p8bYi7/XmH/qelAY1giy9Mnycr4uSNjk5JVIpmDpBCKHFuEBOQ/XMKjpJcyqB6IZI7COZzNlyQdM2TNppDa1Q0Es95JS2mUtUo2ErOBc05Ra9IS4lUrV5MUppLVmfV0QlcWMjj4EYC13XEYeB9fmKNKikEjTZM9S46lKCItEVLNHS9v+l7s2DbUvP8r7fN6y19nCmO/UdepS6Wz1ICDWDkAREuOJghB0IMQ5gAoWTFFSFBGOGimMCMcakSoADCYMdhthFsDCT5QIcWwwGhCwJsNSaWj133759p3PuGfe41vqm/PF+a+19WyMppypeVbfvubvP2Xudtb71fu/7vM/7PDqXmLIIfQp9sgnkgFxQVAOGhckbrzg7LdqaerFg6ZcCXqqID5Aa0bnrXHui97lIVwwqw3QmYtC+aQnRU1UFaAHMyAEcBba0xFCilktS7mZoJUHWpFV8T93P6EQml6JiFtJNWZ9EZ1K+MyKin3QOZqAyXZ8MLsTUsWKEpK+1zpu96JuQ8mgyisWypjIaq20ejVwK6GoEEHPeiytpTNl8RNG6kK2qxY1PrK0FaIyulXXtnIwu56QoegG76hCoQ2QeglC8MbQq4Q3ijEggZXcenZkNqCzr+UlYdT14kDJNHC1OlorMMpSRHQGCfU405NlTKUHwhLqFIqHymPhtI4BaE3zHuIj44Hp9NR8CbQy0bYtrWrRRLH0EYwnOEENJStDUqtediEmCekRG4XyMhOQI3lM7z3DTUOoa39biXuyFvdYqi01JxoQRdpxC0wQI85qUIo2H2hl8Ev2EZCw+irtb3ThaL2zGLr7Z0mDrFr0UkV5bVDTTGUfTOTFFDo8POZmdUFo4tbPJqTM7DMZDXExMli2HsyUni4Zp7Zi3gUUjmn3Bx3z9JJEpjBExeW3EHKcWcKxp2143RJy2pPBOMRHX9o/1yH51VvP8yZyvedUF3nPzRJ6fDr1SilIp/smXvZ6/94HneMdz11mGwH/10F18+2vvzQ+b/CXFhozyB3kIJc5HyUSfOJqxXVruHlVcnizQSvE5pze5Ml0yadzauId0AFNKnNSR73rPE5IkKsXDp8b83c9/kH974xDvA4/ujHnXy7d4+ngOKJ6eLPhXV27x5Xed5R0v7CIW7JW4enc6c2t7R0rQ1o2A5UkcGVEGrQtsOcBUI8pySNQFSltMUcpaianfoxKyP1ujSDpLLatuFFD3+3Q/at1d+75AUWvXnNUOGSIiHycpvkbl6cKQG12yiXrf6erJtadLbHNK1vqalDxOFTgVkN5zLprJ+jcZKPepYek8Lm7RhIbJck61scHZi3fSRsfm5pNcu3aNxe4J6ew5FPDii89zdHjMzsZZNrfPMxgPqQYllQkUWqOWE5Kbsj0cMqxK9o+neWqgoqo2GJoBfrbEtQ0peWxhxSii0Lg6FxpeYdZYFINizKAaIyxjRestKm1R2bOocIvlLAqLt7AEAy46IIpUZk5cO+bo9cWSkBwpM4LXM57fvzGhG715cVrziy/s89fuPYMxBp9nWX/phVt85GAGJGrP6shMlbFVTFyAKIK/3bMCoMtS9oMQKfN51RFO2sCpquDEie7lhYEUqNpaYch41z/CVikuVZZDF2hjYvebvowvfOf7MYXFRWlyxhQZlAMKW4reZW50xhBXxXinjdifP/0enZKYIaQopllaq7x3xNz8kYRcW8vzN3Z56zvfy39ox9VpnfOsFcDdfU3q4pjExLvvuCTFEFlFJl800UiWkbQUyEMp4oSutAZTgQmi1dpNHGhPwuXxK0NhRbA7BVl3xWjA+TvPc+fd97C5sYU1FZOjOct5TXSB6fGU45MJJ7OEUR6jk7j6YenGaCqt2BoO2DQlS6NoEIaejeAyC7IqSiotQvLReWYnM1o82yPPtW3LnvaoqHnwVRfZLHY4PthnMgvsHs4l/h0nrJmKBIeBycJREiA0JER6xHuohpe589ILnDpzhu2dLdCaajREFRrvItP5kr2DE06mDbNGdFS11UQ7wo5KxmqMrVq8CwxHR4SocC5ihOKUGx7dpEuXy8gN6gARlWR/icHTpkAKnkHTsH/rFjduXGd6fMLWxqZo2+V6QmnY2dnh9KkR9eEem1ubVMMhtijF6dVYqqJi0Tb4pqVJooG5tTHm/Lk7OHvmHGU1yJQXARp0Wos4+Rxjkvw9BLBFBd1Ya1pNeJBjPyY3iJTGR49RklcSEqENHN465MqLL7FTDjl15jzlhhUWWUqrAjJl7cS0kntZcQ7VKiCstqpPcghrTr5FmOMptMTQEoPrf5wuJ2HVFI5BPtuQIAW0b1DtHO0WFHGJNWLH8FkfWZReGKx5Iievhc6R0+amllUaaztChDB9Us9QUVkPTLMqyruxy/zHiAadCFkYXFC0tcdrT0hFHr2MAhSkFRjXXdKuGUl+P1Sns5UZuV7Gdcl1YlSJRIkyA5557mXa5vdwi5onn3iKl1+6SlNL/ida6SWifWVE09tKfVI3Yrzighe2bgzYDNBqpbCFpRoMwDuqQUWxLCDrkwmTTudlkcdPy1Jy36KiNBqMxWFx2XChW0vrJIAVc667Drd/zzqIB8LiToi+p7KqB/Uylk05rNg5c5oQFUlbDm4NWC5nYkYxMFy47xJ33HmBS3fezcbGNsaWGFVgTSlMOmTapRP313QAqtxZawcCJCnJxZOHrY1N7rrvEp/3uY9Rlpr5yRHPzhquvHSFk+kx05MZ05NjFvOGoC2ujTS1Y64VZt7SNgEXNUlZXIyowmSttyDa3lrhnadeLiA1JDdjMTthMZ8QXUNH6AqZqNSt08QaS1WEzrKcUfc9a3u8IuMA3RjsChTt9j95FLL5mIKUQs5J5f/Kj3Xjqp1GbSZqdGD52v3t/l6/vykD4x1AF2PsR2ONMTJtmOWaxCSxk2cSplv0idZ3Wt0RyAy4PObqTUAX4uRqqpJqPGBQDghJoSmkrk8JjaUXAehcbU1AK9H1VLHBuyUxLHKci6QgWI6ImaZVbCbkRrqCWOTXaqCB6EUoc5mgLpjfuIabvAzuZVJsQc2w5YKiShjnpQGe6dMpB45eigfRZP10x6cF6ESXI2W9LWkdhCiaSDGCKS22qMTCXucgbZWwXayMyUWlZNzASkDtnG9AtHfqVgpio8DGSOvabMpABlc0IYreQ0yAC8Qobq8KJGBbCK0wv6qqZDQaURpLrBtcKxR6OyixVcVwY0OEx+cLOJlAdpDSRkYyknM0vqFuWw6OjrOLlABvJLIm1Kq7k1Ls6aCCpJABMQOxRCvbBzFJhoXqG/NN6n6+NyFISboOviW6Bu8bUoxYaynLgmE1oEiRoIAkToW6sJjS0rE/QvQEDzqWaGtlEwlRDAFMgbYVpqyI0WNLcWUz0RHKGc30hOV8TuM8SovdfIqZcafEgjlFmf9vXKRpZWOUGsXQOrCtwlpFYQqMaSkLy3BQkXwgBYdvHNYWkswmGa/Jtr59CJLkJ+VCIm/AsRs/k+utNZgI3cy+yskKKY+rIN0/rfLGrw2xKLFJUZUFVmkGhWVnc4PSaFw9J0WNLUqcbzBlgS4q0RcLDRj5vXyqqZdzrLG03mGtiHaGIKOLWmvsoGLROtoogJMCrBWwLcRIGwIeRUNiiXztY6JOgYaAVtL9AXF/7YVoOxbR2tEFZomLkfXEliRBVJok3QYpgNjJZELtS0JoxR47JXTwVEWFMXJ/Qr68xggzRumEzSON3S3rtLm6AB5zZ8iaIcpWqCQi2855AbWDIUbba+sBWG3RSuj7MUCpDTomgmtoFgt08AIaFjqbrkR0UdAETWxj3lQSqZFNKESFC5CMpdIWZSIuRqbzOQdHh8TMoEjeZwadoagsxX5B3dYc3DpETWdMg2c6X2B15GgygeTY2dngzLnTbO/sEJRm3nqu7R2zP1kyWTrmTWA+d7ROBKx9NoyIUdYsSRGCxFLfNKKvFISF61Mi+vxMSRDME8krAELcP+W6fe/7nuQd/8lj7NeOX3jyZfaWLWcHJX/9wUtcX9SURnHiHG2CR05v8d88cnefrK8X9H0XLK2h5chHvjyvefeNQ77vDa/mb73vSU6VFd/+unv5xWeurtZgbjB0QOTdG0OaENmrHQ/sjPjxtzzKrzx7jWdP5iil+NO9I/6L+y/yi89c4/npkge3xrztnnP8s+dvytalEEH2zEZLaQ2wzGY1PohjltIy0mqLinI0ZrSxQTXaIJqKoGwXGehYFeSEpB9rA7RK3aDRqljsgMpetHctIc3PYl/8KFBZBL2ThSB1zlw6J+4ZyEyr55bM/pNNW8vXuckSkifgxSU5F6w6J6EKEUNOJuEIaDzRGqgMC99y7dZNXnW4z5k770YZQ2FKZgczdp+/ys7WFrO45OPPPM+1Gze4/577ee3OWSI19XIf4gRfB/zJPhbHuCw5vX2KvcMZk1kNsaaqthgMhhStR/lapBIIJCW87ca3+ABt7Tk8mPXrJDgNgxLvIvu7h7SLFhU1J8ct3ldoW65YEUqBbwixRllPyqy0jjl6fmh48kjYJ7L/6v7a/kfnt/mu197Jg1sDSiMOaAdtoDCGGOR9rs7rvMd0+0cPwaIVzL1nq5DOeEryM51T8OtOb/A3X3sPX3jHNpXW7C0bfuflfX7yoy9Rh8SDW8Ly2q8dm9mg5Db9XqW5e1Awz89I9yyGEJku5njv2VSJv//YfXzpHTu0KfHrLw34gfedyLrKbFbJKQU+/tpzA772jiGnrPg1PjP3/PTLU55cLElRcgUStG3LV50b8rcfOs9PPrvHP3rulmjw5mNx7i5CjMzrmp3llEF0/Ps4/uhr3sLXvesD3Fw0n/mb/xzHo5uDz/xN3Tl85cP/Xj/7szriMUyOV/8e5793QOiGG5/Fmzi4dAG48Of77L31r68CErO/5dGH4NGH/nzv1R9HUB/Bb/1jFr/1jwEIDz7Ky//x13D92j5KWYLahDKhCk2zWBBNYLRTsQm41nHj5gnKVIRMb1BaGMuZwChNRS17nSKBsZLDdm7eMeQcUFPXS+bzLI0QI9GLZAo5ko6qiu3NMXecO4XeGvLaRx/hnrvvZmNjzGI84tzZM9xx7iyBQH1yjG8aiA2T44KXLr/Es89ucfbUA2xt3SGxwgdUabFrGJhC0dYNN67fYPf4mGK0zUDLlI1WosVlVeyZbUZLwzVGIRHYjLt1Wm/1vObm9RuMleKe+zzn7qqohhvC4oiO5Guc8wz6hjS5d7R2UrDGCuEVL65/Hda+Fh3sGFtidL1J1Wokl2xqIYW5jjDUhhBA1Qt0s2AUPMPk0bElK6p/8mP9fBUonY26bCFsIFTOXSWnsMZQFQXaFEK2KEth+cdAS56WSrlAz5dENLM6aSSpBbRRaIM0522BSLwUuJBwMeJ11iGPQtqQXz2tAMq8stAqaxVlUCrrz5o8PaOTolk4qqE41DqfOJ40fOBDH+ejH3qSZrFgejShmS8x2jAej8VnN4pOewgN2hQC9npP0zp80+BintgJLtcTgdi2GNMwLIQ5Z4uCqqqEPVcIu87YQqZiYtbEUhpjFKNRRTkYEJVh3oqcEqzXC6nP02/Xvl6BNsGvvqdjcomBns5mk1L7qgz6GGsxtqS0Q6rBBpvbpzl38SIHt25wfHyI0bCxM2b73Ck2Tm1x+uy5HqBLyRCj6EWT9KrmYGWI0i3xzpwxZIKH1QZ0IblaG4QFHxJVUbK9ucnUtRweHNG2raxDtLjkRohRSDaogqQsQdqkGCPgnA/CvtVKE0OgrZdEX9MuA8fHB0xODqnrRc/gb73UM0Khy+7jmWLTpQpiyAgqd+m7phMdXhAjnSadxFF9Wzf/9qdv9ayt7tUaoE8H1KU8Kav7z4FVs6G759IoEVLKOjibUupMYjOzXwgURpmeJdg7sIeY3dR935gRxqxB2wJTJVRpCFrjiSgr56SVBSy53MVgCWQyg4aEIaYlhiUpzgn1Me30kNBMMMljoiN5mUgkgQoJJdRcVPAQvDTRXdY+dQuSW4Jz0EZoILmKyUHL4uQY53dpQ6Rpl8QwR1NhU5Tx7jUMrjPP7kHUPMb/qY7PYBKRu7SR3gWlG3uKIJumtdiypCyMsIQ0lGWBrQoZH1IJpQy2MJRFhSlNZgKJYHxSEaUcIYlWl9fizNIGR2EKkliJkjLlOGSR/uAdZVEKyq8tXX6psx5YaQtq59FFidKWohow3t5kON7EpYRPmnIwpAngmq570asJEGOkaVpQGq1dXrgdOr9CrVXuovTgXQ+gaJTyPUCXUqevsBpN1NbkELK6QynRF3gxxCwuK+wLFTWVQtB6ZNPyXQ8obz5yEQR1L424+xVKCw1aa4KyNFGJeUFUEuhUQbIaXSV044ltIIQWnQwx3a7RFbFEQp4plwiQkghRay3dqBAMuJQt0A2DwjIoLLGwWKD1Pm/I+YeTyuCbjJ52BXq/JSYB3roR65QvlNZkA4+UxwGDMNu6M9UKoqXQAwnMEWzSWFtRGYNRisoUaIwkR0HROkdoAy60DDY0LtWQ5PUuqLVtS+08Rd4cGi/0ZJ/ZUsYYdIJ5aPF0AvAi1kruYcTMVlr6QOMjkUDTevmc7ndl1bmy1hIR8BaydkQH2Kmuo/WKQJm14IyyfUDsgI6mbQnTwGKpiSpQGM3AWCpraF1AZ8FTpSxkC/CUsqaLgqIsKH3CGnEVisET9Uo8NCaPKUtQDm0D1UDLCFAImBQZbXShZ7XhhxCoykSMVjYsLY4+BtEpIkW8S7QqYLKpxbzptNGSULLJnc8IxEBUjtIH2iSswaap4fp1Dg8ORavEe0wSZ1ytFaqQmOWbhsoFCiLz2lCYxNIL/f5o0XDjZMZ4dIgdDHBJc2N/wv6xiEPPasdi3lKmSnTGQupBOhfFEAUFtih7Zua6+G4nK9CF8STt3L4jtl7o/9H1I/7K//0BvvtzX8UfftUXURrF3rLl964e8M+eu8H/8P6n+f7Pe4Afe9PDfOhgxjsv7/H190uR90qqdZeErjQT6JOe/+7fPsnb3/gaHv+rX0wbIr/83A1+OjvFAvzoFz/KXRtDvu5dHyABD5/a4O1veYQzg5LD2vFrz1/nf/3wi/3n/MzHrrBRWH7lL76B01XBUev5zct7/OQTL9PpvElMFjjKO3HBk7F8LV3pmBNlYynLIYONLUab21TDEaoo8THT5ckM4Lz+icKU6zT2ulUjWquh7xx3U7Mxg3avPPpGTXfd8r+7okERZY11hU0Ggvpwr5J0uNU686EDjGK2eye7T6sM0mamY5LERqlS9matQBvK4YBqPCKlwMHL17hebnBQT3ny40/x4tXrlLZgzzuuHd5kb3+XejbHH3l2im1ONy2TtmZsKkbRYJZLCmOpTp3izgt38+LVfSaTBYYh42GLMXV/zZxv8MHi2pppPcP7ljbAoomczBrI+/PB8YTaR5q64fjkGLdsCa3nYLLL0k/Y3DiFssjYF1r0EINHx9jXeldnNZfnNV9911n+8PrR2hKW+1Bo+Cdf+iA/9KEr/PILt6hD4lsfucS3vua86LXkWNg5/3b6jt0ossmF4pPTlu3Scu/GgFt5/6uM5g1nt3j7Wx7l5558me9931PsL5bcMSz5ugfv5s0XTvHOF3f7Z2loNBdHMPeh70YXWnP3sGTqAzeWDZaV01pMkcWsIabIP3zjq5mHwFe853nOb27wYw+dZve1d/MLz+0KuBxEKN37gA+Rdx8kfvegZhGgUPCfnRvwIw/u8Lb3TSBFmqbBO8cp5fmGOy/w1Mkys59jHp2To24dj4wLvvXhu3hsq6TMAOTvX93npz76InvLlenHpztqHz/htScPZ1yZLQE4Oyj58S95lC+78yxNiPzSM1f5u3/6DJ/4pMnxra+9h2977b2cHUhh/vj+hO//k6d44lAA4DdfOMXb3/ww92yIXtHlyYIfffwFfuvybv8eOz/3rz/hfQdWf8Jrn+3x0M5nA67J8Udf85b/15/z//fDPPtxdj/vbVy7tSAGzaVL91CWFW1qmZwEmsWCyngqY4kOZnUkUqBMKbpgSlhNQUW8E1F8W1jK0hKDImWDsk4XO2hkDE9rYpC1PRqPGA1HEn+D5CnWagalxiDGB1ujARfuOMuwFE3ZrZ0d7r3rTi7evMbx5JDKGoJv0Ckxm0548qmnOHeu4HMevsDWxllpcvsOBEuEFLBK9ufgPNPplOWyRg+2cNkt2RYlbZDGvDBYU268RWIUFl3K2sYq71XBRSbHJ1xua5xP6MEmF+8aILS8QKznuEa0rzEdLJHzQCkihCiQ6PXX+lUe5PomEsm3KB2yu2ck+RbnakJwKCPML4+MDGpkqqVr4qkEFtWbNVUhMAoBf3jAYneX7Yv3IhX0pz5ur03TbZIuqqurojRgC2sYVhXloKIoBqIpqSQf19GjYkFQihSEedwRCYR9p6UBl8QMBiTua2tRuYHX5Qo+M5t6ZnwGPGLqxgN1HqldvY+cfaKwlo1BxUBr6pho6poGL5p4SXEyqTk8nEDjSK7FJhiVFaUtGRRD2hRpli26ADCEkGibFh1C78bato6gwQyGxBRkpFVb2rbhZBIwXtjbIqNSUhR5aiOP8wlwJqOv2hqG4w2qwYBl64i5WdQxqtYBuXXArqtTYfX3el4ao+QnArgoGd9OmaWcQFNiBwXj0QaFHVCVI1JKnL94B/P5FK0S1ahClZZyOGA02sDaCpE40KRo8C7rinZAkQoSE5TNWviSP2sjuqyFsQKe+cRiOufqS1cZDCyL6TFH+4e0dYtvPUSoygqjLBENWW9cJZ3BuZKEkckdKyYeUYkUiWghJ6KLzKdzDg8OqKqSg4NbnBwf4ZzHZ0dnMXHIbPbu+ubmrM7X2liNMhC8EDTECVcALBBiQXePenZrfv5lOiPkBmPMa1Tiw8rU4fZ7DLJuUvd3rjF9rlE6HKN7D9e22aBNNJU7EL/LpXSnwQ09htAx8GIUEw7vV3WryRNGxggwaazBJTHtbL0nZVNNRQHJ5CRciZxdlwVmohNoKbJ9Is1a0rShANFZ9EkMIJc1OJEjwAWZd3eO1DYk58S1u2lJTU1aLkjLJSookjcsWs08DmgXjtovWPicl7tEWiYKVeByY7ev7jp8J0aR84rxlUHwtuPTAnRG676A6ToH/UgRwuISQ2QRkE9I4PIhoaMUHimFPC4gN7UTpY8pslwuaX1L2zhx+4hIwIly01LK2lJJCTuIDHL5QPARrWMfyLv6qW4dStfEIuBaJ7TOEImNpQyJKonuVTkYkpSMyMUEzjv6Qd4McBRlAcp8wgLuAlJIt4tlrncaUq50ReA1b586Yazq9s/cXVoPdh24l+fAdYFJNhdBokkQEf26NrQieu/AhTafI31xG7ukPxqhlhoJBrPW0/oZJxnAsYWM/gYNjffMm5bGgU9GFmJ2UXUZaU4oUtLCQJKnIa88TYoKFQ2tS6TU0sYGFT1ET2wbDDAeDrBAaaWLkXIhLnoh3RWWbkEIXvRckkZlzYHuT3cfvFbYmOfcs3Bo8C53KLUkMEFEMqMXVpLWSv7OV2o5X+IUMirm2izqG2gSss5D96dzLO3GFmQzSz3DjxxkLKppabWAhzFGQszOVEnGrbWS7ktTO1zIFG0ngr/DsmJQVPjWsYgCDI7HY3mgM1uiEwYNIbDqfKySoY4pp7PBRhdkdXcdY8QHCf7KIKLiWkBUnTShEBvsFLwI2GfA0EV5z/FoKCYwuiDFiGsbtO0Ce2eEEXCxBRJFKayktg1YFSmqgpTEfchqk88vEEKRGSzi3KeNRWsrEEpIhJBYNq0wXlWkc7SSbnrM2iIJYqRIAoibtoXCEJOAYccnx0zI3bQQ0TFApqYHHbP4tGGsSywKF5NYuteJsixwDcx8y8HkmGJQoYuSNmiUGVAME2VqgQGVKuUZipLl1U0jJhLOo40km845nF/TLNPZij6bLYjWQwcU5fu6FotQig8fTPmWP/xoDk7kDUyerV965hr/1zPXJEYqeW5/5PHn84aR+Lxf/eM+MVg9ffK1sDItwXsOGs+3vucp0fzLAa4fR1eK73nfU/3XAO96eZ/f+dX39KLYq1OWL3xK/PAHn+eHH38REY+Vn7XW5M6grHNjyl5XygVhIFgtYyN0gL6yqGJAOdqgHG2iikqMC3rKvmBbKsloPIp+PWdKgIDMSUa9k0qyR5HZi2Z13l187l7pAO+1X10KL7LuTdfByJ09leOlgn7Eu9tfOsp7N76ulMQ+0eAU/axufD+F0Ivd6qTwbaBtWjEPUgZcy1Mf/DBPf/CjXJkccnnvBvVsDqbipnN4nTB2E6Pg5eevoRfv59yr7uKknXHpjnNc2jnDMGhG1QZmtMWFOy6xvfUSs/k+MSi8i9RNTYgeYSw7QvK0bU3tWyn4yoqBHVONt6AVXcHpYkYdGozRjLcHqM2S+WyGGQViURPLBZjcuY0KE1uMBqMNpV3pGf3A41cxdFrvAAAgAElEQVT42Tc/wN7S8X8+c5ObteNsVfANrz7L9UVDqTXHzlPHxGu2hnzzq8+SErc1WvrnK3cfun3FWIO1sOs1796d8gOP3cvf+ch1vNacrgq+6w33884Xd/mhD75AiIEC2Fu2/NiHX6TUiq999Xm+43Pu495NYZH+wbV9vvv9T5NiotKaP/naL+E3XrjJG85u8djZLb7zvU/xL17c7Z/fGBKXhgVfen6bt77rQ5yognbR8HPP7fJtD17kZ5+5TtPU2LIQHVUfcD5yJUBZFBRaCuumddxRGYx3LLxn7lqauuYnvvRhfvRjV/nmBy9ii5LRxgZKa47yNXnTqRE/9frz/NLVCd/zB8J4O7sx5hsfuMgXXTzLv7i8t2KNIM9SiqIhu2IzAl6AOKu1aNHCSpydxM/9hdezCIHX/vIfcaqy/MbbvoCjxvETGch/5fG7V27x68/d4LBxFFrxg298iF//ii/gkXf8IQDPHs/5xt99nJdnomv3lgun+I23fQFvfed7efZ4TgdjrB9dWKpD+sTX1dp3qFfm0fKvKzE/g6orHPL4ilZYWzAcjinKEqXgyrf9z9y6NUOpDY4OWz7wgY8wm885mt5i/+gq8+aY48kBdd2gUPzJmy4B8F++cMS2KpnsH3J8fEK0mmA1U1+zdC2VsQyiAFU+eLyGZJU49SrH6PQm9z/8EDt2xNPv/ygvXL6OG5QskyFSUgRNmTSN8ix0y/ao5IELF7lw4U5SNWJet3ifGAyGbG1tcerMKcYbYx555CEefM2DPPbzPwjAySJxNE8cHkwwo4gdRCbLJfv7S5rZHBUCA6NJruXqzSPmTSCZAqVkBA4r9UbUKY/gFQwGFcEpfN3m6yy6vVpLmIg5Trq2xRWWQhm8E9MZaxSDylKoiKvnzKeKjY0NtkYjxsMKXRaYKjIoCqrCsjEYcO7UDikNGIwKVFmxcfoUo40txlvbkNVkk7XCishFoVaa4D2L+YK2aRHjJ3n+BOxQNG2L81n7tRsvl10CYyxChlKQlNQ+PtHULYfLOa1L2NE2ZVkxHljGcYmvF/hWyyhWt6rT2hrOkglkhoaO4nwq2ieGEIPIjMQjxmPLYDgW0KmpmS/mNE0tjeWcw4a02uNMBx6gxMgtRGg9w0IxTtDuHzC7eZPtC/fQd64+05ExzxAC3ovWsO51zgRUExOmRKGgUIkUvIwbRy9sFa0JRiRP6PbkkMBoTCKDOA0puLxnJakNu1FkI6I6ovEo5yQjaLrPz1Dduaas1ZurxmwGQkxYYym1wSlDoQz10hFUoigLyb+VwacVO3BUjRnYgkExQMfIYt6K+2pR0Lqa5bJBy8ysNHRdS7KKssurVMLkZ2e5XGJDwLUN89kcWyQGw4KyHNGxzbS1oq2Zm/6Nc7gYWbYOFyLGFqIjm0AbjfIrgA46JhVrr6m+xuhAvO77ADGYU6tr572A5bYwDDfGlMWQshhJc21QsbmzLcZfCpK2VMMBVTkUMD6JiV1CZR3wXPspTcg/s5o4Wv1/n2szEngXWMwW3Lh6A/AsJsdM9vY4PDniZDknhURVFDgXerMKucyKFLUYHXTj0VrjY2BoDMYoYvSIOoBnPpmze3MPOxpy69Yhx8cT0ZtO4ljbgU8dsHb7gyJ6ecoIyy3lWtlYi0aYjyozEXVn0JjBbJkz6/CIcFvHvSf/ZLxBqZUszQq7kHpF7qfUmCtgNq2NtSbRxc+gnDYyLVloK3u+gk7tujMz0Ul0DQFSEJmk2I2nI5iTzXqJWishZ4FMVSQkNwcEulpJp/SMvRwNo4KCUv7hDW46oTlSjGxBWZWYoEhBk1rwy5owdySfsEFhvCYuIdaBtPTERYNtHGoZYB7RSbOMnmbuaIeGEBQtlpZE0pYUHak2lKXN4O06hU5q0zzndhuu9MmOT28SobXYe6s8zhZzAaxUT8WtvadsnQS1lEB1lskBq0XLJbyiEBGgL+Gcw+eCNRLlAegADZ9wXoEKaOcyCpvBkez6KfPOGe1nVdQ0TSvjhD6QYsAH0Islc9eysagx5QAfE8u6xfnscNJtOsZQVqX87rZA9bTM7vquWE0dyrxO+V0XDI9RujIms+x6NYQU18YVU9/t6ebD5RppOe+8UGP0pBRyB0eApRBT3jzVWqNqbWwUQwqgbJJOe4rUPoCXBAZkfNJYSzI6MzYSESP6bB23RK+x19LtCYHqOjJ9galofJAxIivdvrZesogBjWVzNGB7NKIsCogr+nSIeXw6daKUkhSIK+OqkFKrT++ptSuKczeKabBarrbJhbmK0oEzqpCCPeWx32z/HBXy++oCY2VEeV6LaYYPHu9iD7B1JxDj7exHoeFbCk0Wh1SkzHSITjpKAtAFlLJy/1ymwaYGAlRoDIYiQrNc0moR0FQKBqORrI0YcU6MBcR4ZeV+5Vx2v+rWUUpiCGE8sbDSVcrPmA8eXSh0VBls9yQn9tSxqtCtgxhyQpPZQFqu78AUmFLjfFyN2OZzi0nuQwiKthWNuxQTzgeaRkDXsiz7UYD8MKBSwqiAVgIqDzo77JwgBWXyugay4UPSK20UGb/OG4VR4D06BQFkjQT+slsvIVCUlWwYEcjgJ9ERY8K5hB8WKKVxnc1oUqIvkzIDNSUmSzFSKYdjhqMt2mCIqWFYaXTQqCisQZRisVyKfki+HtYYuTa58RAzCE5ez7fpyfTlpbotD18/FCu8HEVv1ia/b75Ka4lm515Nfq7IAL+xsi0MqgGDoGlS3ce1jG5JU6H/oNUZdF3nVVKgVshV/jVSbkCo3KnriqzOpa3rYJgcf6NzZDXSnExklqFSdG7eypRgK5KpiLpgxWRWXdsQgQa65HKVnKisP9H9GvLxWcpBKQHt1q9v9ysiDaqEJA4K1bNB0BLr9RrzTk5Z/q3zdRD9GJMB1BwzAEISN1gMKpn+xmoSNoIOMj5CANog0h1VgfLgl47ZfMrulZc5OjrhoF7QakWhC04OZpjBJmfvOs/pM2c4LHfZv3nAR597gdPTY9CeYRs45TXLOhC2A2q4hbYFVTEkxuyCGbMZjw+oGCmskTZcbiwlkwgmgDEs4opxVSdP3To2xmO2tjcxiPvm95wv+Ny77/okq3p427/e+rj8/dKtfb7j3Uu+6aG7+KOvfD2F0hw2Le+9ecS/u7bHj3/4eX7wDffwD77w1Tx9NOPdV2/xtnvv4H7dQAmWxAUbebDwn/CJdymHS549XfA3P3iVH/6cC7z3Lz3CV/zmCTtlwb2bQ777/U8RY+DSoKDSmqvzJSQYaMWG1bz9g8/ywmTBuCj437/0tfytz7mP/+Xx5zkzFE2mv3b/Rf7H9z3JsydzSm3YKbMLGQnfLnn4nBhUvDRdMhgkVNJ8rI3c84Z7GKjIfD6XIs5YAaMjGGN53dkNfuqxi4yzc+v/8cwu+9M5ikjbNnzDfWeZO89vXz3kmx+82LOp10PK973mDL95fcKPPH2TkzyOurts+JknrnCuNPy3j9zJN73mLi6OKxY+8q6r+3z/v3uOuRO2+Af/8y/inz57gy85v81j57b5jnd/jH915RYAr9kes11azg1K/sJdZ/ni33gPE+c5aR0/8eEX+N7H7udnPvpS7xYfUsLl/ezF6fK2+xRT4tJ4wKnKsvSROgS2S8vrz2ySEpyuCjTw8M4GL+effXBnjFaK/WXL3rLFKHhge8z3ff6DvO3eO/jKf/ln/MneCUop/uKdZ/j2193Lo6fGGKV4frLg55+4wscOJyx85Hrt2Nk5LWNzCv7qndv89btOcbayXF06furFAz4yEzkItOZVlza5dHpA0pb5dM7d5+6ljYm6eRWTwwc4mR6zd2uP3b1djqcndKOHh3VL6z2NjyzITP2YqJOi1YU0HgNYZUlaGlHei3GIMprZPPL889cYOMXh3jE+SMEq+VXXlI4o3eUm8nXSiWQ1xWiE9kmmUYoSTEkT4HjWsHc07e/HwaRh/6Th8rUDTprnGe9ssXBLlssFuJZSRUbGEOqak9mSug0kJUCcMomkAirI/i2jrhFjNASJ+6RcevbxXK32txgJTtgi0QsZwCgx0Sk0JN+ymEwIVcl4NGRzY5PUBI5u3eKZZ55md/cmSsFwKNpxGxsjys0txmfPsnPmDsabW6ALCJ3zO/m+Cxjk25bZbMpsNmPROvRwifXZHTOGPCqazz87u62P14PUDB3bO/iEd8Ie3tvdw+snaRrH+dMbXBoFmqNjvBkibiUx50UrHb/emTBIXmVLqTvwjqRL2mXLSy9doW1ucunuO7hwcYBJgWY5ZzKb0ngnWJ5OPVglzT8BETsmf4wJfEDHRJkMg6QpQsA6L2CgXttYP8Mhj4leNU1y6iA5RSQ5l/WIEbmTmLIGctaT6kf/Vw00oc1HSD6/blHRSeMeAQ5S6pqeK8F4lcX0yRJEfYMun2ufWqQMrHbsp64+VAqjoNCGOrb44EVqqaoolCW2EJKQF6yyotPqI8SExhCSIfgkoFpIRJ8d52N+rpXO7q7clr8VhaUsS+JySb1sKHxEq4QbthhT5CaqFnH+ENEGJtMpIUZUUWCrDYpqSFFVonn6Kerb24+V7M76/+/HMTPCJR+90lkTEkyJKUusLbNGuiZEg+ilaXxUFMWYohyIJE4GGX2MvTmLLSxKFyjfQhL2oNTJWbM7pVwTyfnU8yWT6QEnR/uE0NAsptQnJ8wWM46jYBK2CWICWVhUWZHSgJgk9w6JnnHpYwa7TNYrRaFjxDWOerpk9+YhDCpu3LjF/uFEasoQ82VRdBN7qbuBdP+QKZHM7ZdcD2kepiRj2qojBuX3WDdpWAGlcq9Trt1TB0yT+phKlEaByhMl8kdOpaRYadt16yAKSJd8zAO5dMMgEKR5HDOY5oPUczpAimblppxzfNGBzaBfDJBsbr4YrNGE5HLerbth/vwMGjptffLn3451CSvWpAqSJbnTuPmUJi6wxgtekhQqlLhZy3KSSG1kiKH0mrjUhJmiCAPSLKJrhaoVamFQIeKdYzp3zLYcM1vQYGl1pE0JHyRfU1r2h3T7ifVAKhFM8eltID79iKuSRaA7nTalJLBpsa5dtI0AZS5QWI3J2j0CkqQ8oS0shPVF08/zxxUrqQtwfUCOEHKPqTsX3c9ZymvOeym+VR4dzMV32zph8eQlHxNE71g4z8miBm0JucMVQ6TbgZSS0RZrLTEkBiGi1AqlXWfJdWKJr5zTXy9kU5CHWOcAngeUujJ2rQPdgXOCbndOJ8s2yKy+MSSyY2UKsoBt9wDmIexOd6GvJGXEVaPzA7MSOY8IGGeUxitxHksZNFRKYXTRi02KHfDq/CAHIqVuo712763ILopaflejNM45ZnVDVVSMBgNKWwoz0pr+dnZBNMXYJzNtBjbWA8R6h6ajwrO2lkDWnzUaFSEGj3MtUWsKW3ZyUPJZISLj5qLtJLmSdOuiEhdal5KwXmPnxJIfPK0JTkafu/MzxlLYIq8hg3deNAySAE4Wm++vQhkpulMpLMjWObwCrYUVgZbZ+5iT1PVnvKOPR0QA3PmYRyiFJRdzwdaBtaLXQn+OELOGVxB9FKWFXRYSyeRzzsFfuh8RlYKEQ5P12qylLAcs60YYZ0UhI8VI4l8kTWErvJb1FzrtwCh6fYUZYzJbSqY2Iqgo3UBjpUOkhZ8ruiIqa1tk8V+laLzvdQ66zQcltOrCGumyaoMykrAWVsuIdoz4JICtTgqTdA/QpSCOxgmNTwI4tyGiXUDXAasjVosmpiaxbBu0Now3A8kWLCYzFnWNwpK8xigxlClzriJjBdJZWTaN3HcfMgsmO1xnUfMugq2D0imttLLkBXoMquPBKdWBs/SgdgeM9biW6uzG6d+90wyx1vK/ffwai6R67cGYXdM6R6IUYz9S322aPbjePSd0zBKV129OSPpzzpGw22fWGDkgY9QpKRk7gDymovpNvfushCRjShdSoKKzRmdev3ThMd52LSXpkXUpefna+eVYLb9TfwF7gE7Ovovk3UurZKlL4NcGC3rAdHUfM+tIiEf9exqd2a9RCsEQQfejIRETRVg9+hYdFRUarSw/fl/Jm9NluJE/ZEfBzg5Z7Gp1NLvw/C48n/+9aWHzVD5PA5evyJ9XHPd3X5xch5OnPuH/f8LRmW36g/6lHzp5Rr44opPDAuCt//KzMyd4+nh229e/uTa+uH68b/eIf/ChF2577e/8yeqcH/vVd3/Sn3vrO9/LC5OF6Pww4SQpvvHG1T7ejwvDW9/5Xp46muFC5IrzK2CXyHEDv/Dky7e951/+7T/l9KAghMCNRY2PiX/67DV+88reqrDrvzsRQ8NIB6ZOwPy2aSEkjrJz8kgrbi4X1K4RgDoqYa8rxb85OeENL+9ydmPAf3pph5enS9q2ASKXhgXf+bp7+Su/8yExsAmRtm2ZzRb9Or5rY8B945K//8wBVbHSpdu0hruGBYet57lpzX/9xx/nhcmS1+2M+MkveYTvfN29/L0PPJe1quCbX3OJb3jXB/jIwZSzg5IHt2UxvDBZ8MJkwVe96jyT1nFrbVz2w/sT7t0csVkYDhvRvauyfmDHwHvT+R1+5S99PlsZ0PyZj15m4SNNiNw/ls/47b/8RkaFodCaP9094l9f2cNF+Q2fPp7zyKkNZk5Mm5oQeeTUBmczcNo1+ABODUp+4alr/PGNIzZN4usfuMSPffEjvPmd70OlxD2jkqUPRKX48vObfNt9Z/jvP3yVy0vHV1/c4u2PXuAb/+wFdhuP0oajK89JsWQ9KS45M3YEYzFqSDx1ihDO0Pp7mc2nzNoF/M67ANg5fyfN7hF1qml00esqNWhaY4k+iNwGmjYFXAJVGGlSJYdrEns3j9BLD3UrEilZA1snGTuT4icis4wCrEQlgKuyAnSiNdqW6KLCh8h82TJfc1c5mbfcOprx0vU99qeBex94NclCNIUUcjEQVIdDyCQLQVOWFUoHWh/6wjEScb6lbjSp9eIO7z1GSRXQjzAplccNA845KXpDFLAGiN5LUyM/v23T4rMbfHN8wnNPPMEHH3+cy/t7mEFBO5/gmhmTeYmdzhk2ngeOL9G4iK00aNMDDt3+YJLKWqkyttaNnYk6Q6fjlFkuqtsv87gfEvVXiI8iBnHmds6jU2I6nTFrr7BY1OydGjPd0ZSz64xPX8gAHXQ0+27vkj0/gQsoAqYsiCEyPzrBxSWH08jTTz/NfHENR40dVgwSHOwfcDiZiLSa7bvbqxxC6XyqCjB53xWmfWlE11nFhI6x3yc/66OvN1Wfy6xlF6jkwefxzmhFAiibmcn4qjDekg/oEEVXqtuzCXgixioskSITO5wWwEMp0bENKYvOawGKY86FTTa06xppMulgZNJBK7QV/TmdjVus0iRrcc5hVaJFcELnRSOxaVpC3UoDTzRNcHWLi5HQepxKuOhRRWagGSN5QWZwed25aHoZO0akGcbDETvDDaYJTg72ULRURYm1FmsthbFYY2idykw2xOyNRFmI62U3AmztSj9dllNH/uDTvia3MjOwYge2J1Cpe2s6zbSYa5HYAUZaQCWdATCTCoytsEUl1z1muZIUSEpqHmNWtU2MayB16sC5mHNhjUqKer7k1tEuMTX4UOPrGWGxYOkb5lqeycLLwknDioJEDOM+N4wpaxrnuokcN1USw0MdE7HxLCcLdm8e4YqCa9f22ds/ZjpvaJynjZ10iZBsuusgZ67piCMpQsqGMlJ3mlWNr7OmcpYJ6urSTjuOnOenrI0cMgBHvtZS7+bJuLgyeVjHMYxWJHkYMktSGtoqwwGmz5mTGJjERGgdWimCSjjEJ8AkQyzFcEHANJkwMVqA7FziYbQw7o2WyZuOqNChP5H+l6dj0HUpuc5IYY8ZIUZkKhqqYpvN4RmKOMCoBnyBUg6ip/RAk4AWG5U8wyqiiZTegytkxCzazLpraRvPskkczJacjGCRPDXQqg6Ryc+EZkVgUquGEl0tlhsCn+r4tABd6A0RoswI6cxY0ZqoNUvX4r3DNS02X2htOlZZZGNUyevWZAvnDjLLQVdJENT6dgAPEjGJXGrnmrZemAowrgSEUbdTNFMOkNL8SNnR1WREV0viHRw+RFx2DgnRZ5ZPEKAhJ2nd1INeayHFmFa6Quuod1dudg+ZEkesREJlurVoIK11ANVqNLNjVsSUXRwTGFGNF/ttnbA5yMl+EzKCHvvP77toWR+i0ImUKaQt3efkIlitzkcQ3ZRZdfRsKKJQh3UOBioDsErn7oeSArJzkkm5+hcmomKxlN+1dQFXNzjj5Z6aJGOoXfDvzonVvY4gAB2sNu2u9bJ2dPc/hpV2RchUd51NTujYjBFc3vyJEgiiVoJ4d+Bv12FQEVOV6CTAM3qli2GMAJiF99lERNaYVmviqEpTJJPvl873Nfbstq4wQ1sZF1vKaERhK7S2uNSiBpBsHgO1tl87612qjg22DtAFvxrFjXlEXajDsknHKKyXjsYckzwrhEjotnslvRFjNFbJvddROt7aGshaj03rV89uXl/WWqpBKZqTRtG0Ptudiyut0hrR5s2ARkyIY213/2W8vW1aYnLiiKkUwmbNAB3ZETpvbCF27EQFPneXgiN4B0YTjKH2Dk8CpfHOM59FCALwCZtL4XK3W2nDYtHK9Q4egkNFh1WR0mgKozBawE+tNfWyJmFYNg21a0lYmlY0GUfjEaPtTQaDAcpqBrMZMUXqeS3AoxJ3ZtEr7IAy22s3q/6/XRND9XpGr/q1P2VYWUajEVVpRT/LyPvhxUG4jTHrbiZclJFoqw0DW4l+TooYpJszGA3Z3N7gY6MN3nTpIYILHB4ekZLExrpe4lwrOnrIXpCUGJy4EITNA2gMlZYRj8IorElAoPWO2nuaEFj4hFeKajRiZ+cUw0GBW85x9SInaIam9YTgiMGjVaTQ2X06P0siPJxkQ8+jkUmpjLl1AF0PmeULmgHQHNeF9SbXWCkj4zESFCV+pxUAmdIq6V9vKHWxv/v+bk+i++QVMkcH9umc+AvzVF43SlgvCUP0eSQprliTnRGOJub7JlIDKSX+9u+/n/9Qj3Xg7f+L4+bf+HK+8Nfe3Y8/fjaH7pPBDiaXqQGQMeteW/0Vx2ZhuTCqqHJjReWfi7mYA3hpupB/K9b2cLmPPngmtWOzsDJdkBkUG9vCJpw6L6zuKLq9KklC3wHGbQvLZsHPT+Z85Ks+j2eOZzxzMuPH3vgAP/HEFW4sWlmx/X60EqXuHHInyVKaVXp4vrKcuMBu7fm960fZFEbxwaM5P//UNb7h/gu8Y6Oi1IpCK/75Czf56IGwq84OSyYZZNdKdPnG1nDceCbOs1Na7hiWXBzJCPOrtkYc3TohIo2xh0+N2V86NkvDwgfe8CvvJqXEdz92Px87mOJjpNSKzdLy1NGMh97xB5Dgq199ntef2erBPRDdu6UPNDHiYmKnKvifvuBBvuXffIQ/+Oo3rQoU4FefvyGPakpc2B7yD5+4wt945G4+9/Qm73p5n0d2RtxdwJ/tT3jrI3fwzy/v8b6XdtFK8bO3Dvn6S9u8dbPip6/tA5qf+ke/QdKewALPjJi8GNyoMaQxZbXJaLzJcFRSjgremM/5C9/4RaSjOVdevMxzL73I8dERbV3TxkCdAkVMVFGRdKJJkTYFTFIoVWB1BcnjG4dqA6UuUMYL49IayYsShAw4qdSxcaTYM4UlakvrvRS/iCtg7Vpm8wXOrR6CqDVmUDLa3kRbSzkeYgeWlDzKO6xvKWNA+ZqyshTWkFyiyGMObc5DZM+NtLVjGZKAiGH1OR0puWNriy5SxHsn+6fQs6FrMmfnibppOTo+YXf3FvfdsySEyO6tAyazJT6JidViWeObhjo4CIlSWY7nNY2PjKssxN03xMgxwTObT5lMTmiaWljVKTtXKpXz27VWWN4zulwuqdUO1bHzfAi4VgwhvI+0swWtu8HxXqTeVpw1M+4en6abGqLbo9bikAqROJNxVaVGeDfnpWef4+i45mBpeObpZwgcUY4NwRjGKA4uX2b34IA2yjQNKUh8kaeXDKUIOU8Jk0gp0XrNck9itBDjK87mMxxrwGJXA6Z+f5eYYo3CqoSJnVySSMJ0zciYZCpE3E2RmOil6ZtAnEFTotSK0oiTZK3FhDBlvT55n5w/A8qanAuv1adKGr5Kr8CJ7gqlKKYfAUUKDp08VaFJhSEajfeO5XKJr5eY4KXhTcIkEaMPIeJbh8NTB4+JCp0sutCUVswRjAm4vN5LBOjoKtTCWDbHY3TTsjXepG0mlNpSaENhLMPBkI3xBq21MvKcPIXVlEZjB0OCUrTe04ZA/ISbdPvRATqf6jar/KCopPuaK/WuoUrGp2OnwRZyzicoTU8OiQXamLxf0YNY/w9rbx5sW37V931+w977nHPvffPr8b3ulrrVg8ZukLAFWIjBcQwuJzHYgbiIHYtUigAxZkicYAbbqSRExMYBO3ERQQBjI5dNogJjLMwkMYRuCSGp1ep5eN1vHu67955p79+UP9b67XNfS9WpcmV33X7d7717zzl7/37rt9Z3fdf3K2CROrhmMaYSt1gxAKkO5UMfFaTS18WQYma9WDGEOf2wEvH/vmfIgaFRIkYdZrEJ4w0pq9a1fjLRS0flrXTCLCWZLChALyOQ164c0HvHpSt77O4tWa4TQ8oE3a+0KDhX9euNjtKaMa4ZV/EBjSH6vGtzuj6LUU/Omoq76We2fLFkZWQ46g88TC6qezCpQ2sxeWQMGwXmsGryV4xMoBVE31In0rKeKbloLpUtllxtV0QjVMkOwpGQPe6s0QhTc11ZS7lUmL1B3oHRNWzHpyI7eTNCKiOgaxgukpavkNe7DHFOCQdYGzGpF3255QozBHIolD5ilmvMqieuB1gFbBLJr3Vcsxh6bqTIvl1zM3v2c2Cel6yKJ1oPXuJANlX6o9xCQMhFWM2pPr03CJNvCNDFlLlrt28AACAASURBVMRZ3KI+cQLaJQVQjBG2zJAjIUiRIs/NYG1mOptijcXZRhhDCuiUcTHqcrCHmBb12DOKj5Y8buLxc+jiYUQkN5sG48ZCP5RBOnVZWGIJ2UAC2BQG7VCH0JOSzJt3XYfXufX1EMcC+ot1El5/bcA5GXnIJVC19zZvfqzUhLmlri/GySeX0d1CTmCZkYJQ5I0teG9H15WUo1iFHwK1NmFaNlGOaxVrlDuSbBVDlefXNs14INqRdi+byQJDHCTJcRo06md2Ushab3QUxctzyLL4ShKgISq6X8ZtKWh+SnLvvVKQjcnabRSgxBmDAy1U6yM3X3DvK7gJiKmB3bxHZyypCMPS2WrUcSu41TQeTA36FehFD2dhtxjjsb4aelgZCXZe9d+KsHqcw4CssRhVPzHSWKeuUR4jyueYETjTJYwhGUOWFrWwU43o8tkC3lma1kvhFoMGZR0VPzTeKweS/mwtBouuO2MrsLVheuachU1nK7gt772kxFKTlRj18G7EsYySxF0RS7Ye06zoQ6SbbhFCgATr9Yr1Yk5YLzFmV0fYEyFF6QrrvV73c3I94JMcRJIRGC0CLAl18E2bEeYNSCXAeSFBiVAy1hYxojCiizlk0bXLzhAwrMJA8eLSm1MR9kMo6sSlAJ0moNZ5AehLQegGEU9m2ljspKVpZVR61rY0TUPOhZgGZs4wcR2hWGKMLPseFzzFSJfVeotVUfIQAk3bMZlMKBnikFTrUWJhHkO4rnF0/MNuqN1NIxp9hwuAlAvWiHi1tVYOUyOMMW+oDb8RoBpHXSkMw8CNGze4du2G7EXrSap35pxlGHpSjDgve1doGCIE27hGxsidx7lGtCZywZCElYGTCt0YjPUMw5JmOmP7yFHarhMgLie8NcJ4KNDnQAwrUuxFdcJUn7uqPao6pdbincVZKFbiL0rKrM2TmkNo1vgFcbs2CowDcsaZQ4k3lRknQaIo1lK7YSlvAL26SqVoKvpStYLSeFzQ2OTk01SdHedwqrESrCSF2RQdoZUKwiigIk5XVoRsD2loXfVTSo70fSDEjSlR7dJWnY/Ge6wVPaIYIrU1671nNptydHtG1wpjZ7nqeeJrHuH9H/00r83XY2G8ONjn/4/rsKHAo6eO8P2P3c+fuP04rRODgl8/d5Uf//RLXF79uzuA9rGMr/PFDAr+9uPPcnnZs4w1zoFovzr+80fO8IGH7+b0RJhWT9444Pt//6nRoODOWcePfcVbeefJI5zdmfI9v/s5fvrpVylFXuu2aXtLpzSXcst5NGYFBYaY+PS1PY62njPTllfn8nwfOnqCcwcr9tTNtiK/RUe06x5OOZFCxCtYdu9Wx7M393nfHcd5x/Ft/uY776MAR1rHoye3ef+dR/nGjz0DbBxyj5bA/EAAttZaWmu4sJQ/e9+dJ/i+d97LA0emtNo8u9EPnFsMrJNo7FxbSdPWGkOnzxAEcFulzP4QRxZcKoVXDlZMlVFfgNtnHReX/ViQnZo2vLi3ZJU2LNhfeuEiH/mG9/CZ6/tcWKw1F810zhJy4SMvXeY/e/ge/urDZ/kZZTUe7xpZQ1rsffDL38qHnjrHM7tzvf9alHyR9fPQsRknJ40+c/kbD263fPz8IA3CmFks1ppHyNn8wM6U/bU0gn/pD57FmERijWsCOUe8bwiDxdstDMKeb1pLO3V84GEBSy++9ip3dke44/QpulnHerVib2+Pl29c4fzBdcxyIAcBp9RfiWJklNI1LXHImCK5V7GivWMKeNOMzMJihJFgS8JmccizViYCYrFEBORyxko+XMSNNYbDI+KJo8d3uM+c4frNBX1Y0OwcIQ4DrS+0ztIWaJlwZHtK6y2xiEYwJJEcSUUkNpLEq2gS3shZVSUxko4H1TiM1hQiEyHx1vrKWhNH6CqvsZfmnLtwkQf355zsTrFz7CR33/Mm4sEul65fZR0y1nppuPoO205x3QTjG9C8qP4CsudiCuzt3WR39wbL1YLgGkIYhKGVZMw1ZpFHGfkd2hAqbCaKRrkUOUqEQBB6ZEzNMJ8v2VvvkW8OxFng5Jk3k1PeKDHJI9J6Q0bN+t09Ll+/SplPCGnB008+xfmLN1iyw4XLF3Htguac5aAf2DaGg1fOce3GDVKR+7ZpBtW3JjVEApIxVK9cAwzWUDqPmUzIjafWaG90FT0TTc1VFQArKFkhZ5y3YyzzRqoNFccQwmed3FBwzKQsTCbVooOiqXXBloynSB6ktZ1oGZpxHWXVo00ZKH4UvK/6XZhDtZDZ5NQmCztuWMPKBuJ6TohrcI6m6QimEPuBGHswhaZ1+CxeoA6dUiNDjjJGmWQv5iR6hbFIY7KkRC24HFanOSArO49caJuWremMHJZY/cc7j/MdzkluamxSyDVJftq2JONZxkzbTQ595luj4WFiirCCDte3m8sWaZhKhiOvZBB9VHOorq78l9rgt5rbGyugSAVCa21TUQIn7loYo4w68jghlXKgD4mcm41emzkEFGq8ziFCyriiZBQKxaIGmYUh9qToR4kpq7HIaKPYWplwqLpsTrlMJmTCKnDlyj4r33DtxorFMhKSISHEDawmkQZKqtMtWn0XJzBTzro25bXFgVdAq9pIGicU5cZxS6Jx65PTr1u1Ag8/S5D3Lw0/NbxggyGgMbiSeJwRpuOYE7PZw1bzEecsvljVriwq+6KogKm3YJPXGv3/kmV03qqEV06JQCIj8lsymaj59ggUSHEjTzoDK0q6Selfo6zOYZfXoN+FYR9jA4SVOLYG/VpHzLqH5QBDhGFQ3ZaGUAy7ccWVMHA1wTUKN03HnMKKnkBDth14qadDkXrm8L0dJXwOPY03ut4QoMsqYJiyEbF8rGgqKEjnrGUTuxOp6I02DpzVgCIbIgWlsioiKwlSxumo1ThSqa9dDMooSaP7aSm1eaEsJR3DOyz6LAhy3ewa5IckumgZjBNHllSEbhvVkCLGQE6SUGYjgF4/BLDuCwC6uhhvYf2ZTffHWgfOUKIBqrOJbgyLUlDlUCrJ3PrQisMW6WQ2riG6rI6t4tTqjBp3jCi6Pqu8OeCNMXJApSjJjXdkBS3EQl3HwxqngJxTSqnBG4u3QtFfW6RIdzL+UDQIOmf09zbIsDFiShFjIhbR/TPOQ3E4jxxGzmF8h7WGRpF4U4OLBm2sHUXlnRaV43rUAC1nuiYheXMyVIhiBKFKphSLrQlQZTHUrZGqe+YGnMzoesuRdYyH3p/YP9tcsDFjFKCrlOJcZMw0hEBULR7bKP3fiyNS1jl7cb3R8bYCMQktmOKwdo0phpAGZqZj6lsBQzjEVJSHvGHJ5cqsE5D0MO181O3LammNah4CrmlklIUEScxShhDIQ2S9XrNerfDe0jZOmVbC1IupEIohG3FHPn37HQJKmsxytWZvd5ccet3XupdUR8xNWoxxhLiWEVWlcdeTRmK6MiqtVco9uoeU2Ows3hmaVsZqvYIa3hWsLXgrul7OtKK1Y2ARI2UNxVmatiNnWM+XmjAXqNpfBT0xlDmqgIi1ntbC9qzjxJEtjmxNmU1atmcTWu/p+15G0TTkrZMFv6K/ucDqyNRytSbmyHK1Ggt0a8W1yPuoenwIg+twYmTqiPNm3LteXdeNXTOJr6LdmKOeKzkzpEy2hlycKmsbZcuKQHKJgZISxlt802CsNmKQkVfpmglLLUUxDWnbduz4oaYnxjay500hmYRrGmE0kGgaeY+xwJAy6xgpxjLb2mJre1vArVLY3tqiYUK/WsqoTEnk2EPqcc6rLpswXK0TFydjwSvDWM4HraI0HmwOwtdnkTVOyP95TTzqWisKiFVAbWOKoXiIZpbSPFLNzHoWqT7MuKZGkK4GbPnVIk2OrFWbM3LeZCvZTvLyc1MtYpDxrVJqtzgTnAhk1yuVxCPbLd/+pW/m3aeO0FrDlfXAvz1/nZ/43Mtc7wWM89bRtO0oKZBC1jguGlUYAYMteayzXI33BU60nr/1nnfxVXedZB0zv/Dcef7OJ17Q7uWtd7tTkdRoZdTzQ+9/O3/hzXfwZ//VE/w/l/eow8Bff+9t/MzXPsq/eP4Cf/U3/pjP7x7greVbHzrDV9x5gl89JyOtyW3GLzGbvGF8yvovb0R7Vd68wziPMfBTX/Mu5iHytg9/nONdw7/8M48xD5Gf/OzLNFoMAgxY7rjjDp5xM/78v3qcG31g6j3f96438Ut/9j284xd/B2dg6i2fuLrHzzx9nn/0vrdRm4VTbzit4FzXdjy0I1MF1jp804xwbr2sd9BHXpmv+e0L1/nhL32A/+r3nubEpOU73nqW//PZ8xssDqjMOYzhrzx0F//m1WucXy052Xp+4LE3sU6ZT1zZhVJ49//1B3p/pOD/qfc9whPXFvzj5y4J05jqkNvz752e8tGXRLetMt2HAo1z/Oz738bf/aMX+YXnLrIIkQ88fDff+bZ76HMtXmE/RAXO5Xurjlxd/k/eOOBY13DP9pRn1cDhnSePcO5gxSsHK050DRfZgLHX14FVOjwwLmG6tZb7j864vOxJWZ53vaUpy3t/QMdrnRaDN/uIM/AN997GfUemfNfHP0samyCb9ziuJiOMyZ/66nfyD598hZcPlpzZErbfjjbPfv216/zIu+/nX7x0maduzPnWh+7mzNaEV+a9mI2FgN+G2GdMadjePiks5yJ6NieOH8caWCwOGPo1cRWA0wD88e//LufshOl0ys7J45w+dYo7Tx5lemIKFwp52WNuLFitVxRfaFqPszrOZuVsMllys5C1uYpR6Zra2Jbc15WCNQ0GD8UKi9dUFr4wcVrrmTQtnRcTqXrNF3sUCrOtht2DwHx1gzZabt68xsQaorNsGcO2s0w6hykBUiANAliYJOOipogWp6lC+odiG7XZUPKoCaV1oOr6ZExmFPyPCWI2xCxs9hALr124zIuvvIq9vaWdbnPH2XtZ7W5zZX+fUFQrOoEogxmydRQjsJC4nTLuW3GVhRRlwqLrWnzb0bYtPgsbNqgDZ8oql6DgkBQojMdC/aNR57RASgWMI6bCuh/oF0ua1QGTVc/+/j4hBgETDrH0xmZzTiz39jn/0svcfDWQyppXXnyJS1cPSNNTLOcLkr1JaRK7iyVHGk+4eo1F32Obo9gscX/TJtc9rEV5NpasUi0SBDu2Tp3kxN13MDl2VHKN/88S9NCluXaV3pBaUhliRqHBkjBZmDf1/PZq5BcQbbKskzRO/zFG5HuCEca5I+OKAtjW4IulFCfTIaVgs76elVFyWyc9FKAzxoyMJ+scJWjdpc3TnDNDjIS1sLSKs6Q4IbiGIRRiDjQmiVRQyeQshn/eezyZkgNZp5caJwZpMj4opJVSBET21o1TTwapp0MfGPoeZy3b29ukYYH3Fm89zjpc09K0XqZNTFJwMslkhW8ovsVlQzebUBQQqrnorXrr+shqYnCoPt78HiN7tWK1h6cMNoFWfq3a4/XnWStAmHOVPJFHgFQYdhVokp9VRzhTKqQ8kDN03ZbgERmyFd2ykjMpRHFtDRFbBNCttZKlTldIvpVLJOVALjIqL7rwOlGIMswKkkMX1W0PkX4ZuHZ1j3U7Ye9gzbovFDxYJ+urgeKSMDtrru3AOEfJDnEjHbTmlc8dcx2pZYN71PrUVP1GNqO9h7Iwg46sYw49xy+CrI5/X9d1rZGRGroYHYs1hsY5GV/OClKPhag8cN8qqSVVwR75M6cAntHiNMVIjlGY0lkb0Ehe7HStpBiJOZJtQ40rzrzu/ZeCjOQreUlQRWzTsX30OH7bwtDCugMTICwgKhjXD7AawHswHnyi2ImwmJNhETM3iuFKSlzNhmu5cDMm1si4MjoCnG0mkghZ1mzVWK9OteOKL+Wwz8UXvd7YxdWZmp9QddI2nV8p+DcAmxROTllobSetvGzE7KAcAtqMLqqcRM9JWB4VGZeKS7TrdIRSv0oRFz+hrgPFCOChNGZrvb6XRrXDZQUkU3BFC27npRivBQ7gvABNXeOZdB2mZPoQNdnbmFvIySldm9cHrPFoNEYdSDwmt7IkNTmVoG/GRDGrQHxOwjqrZ7ataDg6j22MJDCmHlpyvyt1t2SQaX451uqIqwFlMIomU8qbcTBrrOpKSaKbjSQb2Pp96qhojRTsqRCU4WKzrI2Ya4CUYCXuNpkcCzEbUm5JOYvBggqcYnoaJz2VGAJ6MzeBdxxnlfs12kNX0O3QjLytFNtD9x4YdQ2NtXpIHKLolw0YU8dGMcr6NEI3jjEIEBHiyJCTwtTdEtjy+PlvZabJSxTWpbqDOgXoRIsta+DI2UhQT7ImrGt0bYtIaldavScKpBYBVpNqb6RclDWnmnNlM9RX36MEAzm8Yowi2KmU9qSabY0VvZ7WWXKIokeQC91kopoASkPOss9SzoRUWPYrtrWT5JyldY6dnW1s6SEEyAXnGkKM7C+XZGOZbm1RMMznK9brhQA4RYoGV5NMPWAE+5GOvSKPIvzceDpv2Zq1zFrP1qShbQzWJJzJNB4a3+GaGSE7QinsrZZcP9hnyBnrRVjbZ0iN8LGNkVGGqMFWGJMSJ0gRkxKdg6NbU04ePcKxnW2OH91mayoFdxh6+l6YuDEllsmwu8r4phcTFmBvf5/5csHB/IAYko6P69rUBMFZJ8VHOrSuQfemGZsZ9SpZtCUGEimiwrmScDiqno+VJLHqh2Y53G2Gxhjp0sVAiQafEs47kmo55Fj1ZzKtl9HuIUVyMHr+ibS1tYiocM7EPBBLwfhIscICpenwTthaQy6sg4x3dd2MxrWE1DObbnP3XbcxaR1XL19i7+Yuy+Vq7LBZI7IGNht8xTJzoajWqaFgShqB3spL2Bzhh+AQQey1syGQklHdi3qul9qhHL+9/oH89MrkzMZq8QCKSI7i0yOaVyrgx8gWqGOtFtUNQABba4w0pgxEa0hZ3KRlYEC0Fm1J2CIjP9lLV7peX376CP/7lz3Ah567yN/8xItcWqw51Tr+8lvu4L23HeNXXr2KAU6Q6IalfJNDCyokJsclXF+SEGBjqrHkVBqIRcCc/+U9b+HyquexD3+M413DL/6ZL8VQ+OfPX8QgumGLkLixHogVBM2BP3/fbZyaCMDWUOhMZg20zvKjX/4IH3npEt/58Sc51jac2Z7w7M0FP/YpEcz7lgfv4m+8683cvTVhlTK/+dp1vvcPn2UZpdL91De+VwwK7jjOY6d2+J4/eJY/uCgaeA8dmQh7wjm++u6TfMm//H0WqdDFxD9//gJ/7ZF7+JWXr3BlJSw6EJbi0SPbXEtl1EWbh8Tl9cAds47HTh1hFROpFD78/EWurmSk/FjrecfxGcuYuTlEjms+NO5pY6FsbGDqOecqsGwK3/6xz/Fj732Ez/6lL6dPhV944SL/4HPnxvzog3/iYc5uTfhP/u2TFAyPntrhex+9l53GM4+RT13b5y/9+qe5sQ4YW7iwWAGGXKQZ06fM/hC4slhTDaoA/vvPX+EfPnY31991L//bJ5fs9oHjXcN333cHryzUIbePrGLioaMzvu2RMxhjePP2hM4JuFlNL+pIcAU86/XKwYrfeu0aP/SeB/n+33+Ktxzd4vsfu59ffeUyd2114/fVa0iZv/bIWX7t3BUuLnpOdA1//V1vZp0yn7xyE2cMX3vmFN5e58W9JdYavuUtd/HY6aP8D3/0nKw9a9jtpdA61TX86Jc/wn/8a5+ksAEhX/eyANwx7fjH738nv3dxlw8/d56Hj21xdTVwtJU1UUzhwy9d4rZZwz/6yoc5MWn51+eu8rGLu+zHhLUZaxKNvYlrDDl6mgKd9ZiSOHXXMf7UV34pp08f4dKl85x7+RVefnmjY7jdOlwIzPcWXNu9zOXzE7a3t+k7y/HtKTsnjuOPDVy7cZ2rqz0iAio0Vhq1rhQ8oqVacDTtRNgjRZqORfMugxOTJRqMbSSfjKKD3DiPtcIiK1m0hdvGSfNEr9VilyFCsR2nTmxz7PRJto5ts9q/RB56+l4E8Le3tqQpkcXsLQxB8kxQhhRg66hTGf+pbEr5YzvmCZXhVEE6MwJeVhoXxpGCmC4YDBcuXuPzz7xAv5t55cWX2V/2Kt3jsE2nDdIoLAxbVU9FdqCYTU0kdZFh3Ud2D+Zc39sn5QFrHV3OMoQ1Fs21KL5Vb5LKPqmInCJ0BUcplpIsIQWWfaDPgWxlGiX0iWHVE0PC56wN8xpcBCxKuTCfLzh/7jwv718Gn9i9ep1+ANOIJEgIkeVixVCAriOvBkIC27gRmJXekX7isUhBv2QCpDiHnW6xc8cdnDx7hq2Tx9WN+wv30+ZtmhFsqfWNrZp2RkZQZfpFRxZjJkYZ+XMK5DVto1IqDtdEaT7QE1MCHN56MJnSCONPdPU2o6mbRqie21TgQPP68c2aEVCqMhfCks9jvmzNhhFPrkzJwhDWrEMgupaMk3wrRWGPGggp0FiPdY3oTSMGTNbLzzKlAiNyztd5AKmPJZew1lBSYVivWS4WTJ2ncY5p2wkppBTRY9SazmkTupQkTVnEWTZiVV+6xTf+Fj0yuQ1mXLqbXyqAtqmH6r0Twww45C1KRgzRJMetWdrrwSJZb43K8hhkpHVsmEoCBRXYQhvUJY5nqfdWDGeyvn6pBB7V8VM8Av2zEX8YwcMiICFlbMKi9X3VQ86qG13zRZRdnILoDO7tLchTWKyDaFlD9YAQowfvEGML1Ri00lzI2Sk8aDfrLiNAGHmsOTf322K06NdZi0NElY1O5a1oBeN63mi51z0htY+v9fghAFNY5hEomNzIrzWn1fdUMYw+CS4hBtJWtHIRwoqzHlOs4AUh0A8D67YhKAjurWdApHTI1RAmkSz4MQB9YYDZCAY4it+imMIQO0rfYcoEF6eQerByj0syxKFgeocbGmzIMBTKMkKasViumA+B3Wi4uHJc7BuupcyVnFgViykNxltsdpgkgLdywuUZH8r7NmzpDePwja43NonIKuSnm01wsKJdqiIUDWuEPaEv62yD9y1t29E0TgOOdO8MCec2QbFpN5pdYkVrZUkaj7FyYFm8FOb6gRwaJIzB20aop1kWn7MiyO6sMIOiEXtgny1to8BMMeJ+pl0t4wrGNmASnfdMJi3eOrqcWGfRbRpZEcVKMZgVJa/z95okjOQIq0CJ99Lls0rNNbqx9ABYp4DowFQaZBmZhFBIKYwMLvlzfS62HiRlBOg2G0sBvxzpvBN0PiYJkiWPc+FwCMUtUiQ6K1pnvgJKCFtGmHMiSBpClGekVNqs72kkQY1bxJHSmpj0/qmuw8p7Wi+d4xFIK4e2VRFmmXOWlAcJjLl2TTWI6yL3rhlp8PX+jN0tEfMaQcxqaGFVi80ZM3anpPiXFGwMPjlDLljf4EXQQlgsh54DutGMc6qjgrLTZF+kfk1OlqbZIpeIM4mmMazFqow8GHyyTBKS7E4M2TvIDaU0+KbFuhaMOCQWI2BiSdKhK6WaV0iiqL0pqoac4AUy656MuLJVSrhFOhIGmLZTYenlVmjEw4DDMGkatrqJdPhKoJTEeuhZDYn5KhCxtF2HdZ5SBEw+uj3jyEQK77AOON+yCgNu3zNkmG5tkbI40ckbVH28OoabzYb2bTOulWcUQhD6fhHHyK2uofWG2cSzPWuYtI7GFryD1lsa3+CbGatQ6HMmE1msHCWAt57sCjQd2WQxinANxlkBpawkihllPYaBEgZaI0VVaz0T13B0tsNk0mDJBCejwGL+sKJfJRllNYyNhnU/sFyuGHpxBSbL+H2OumdL0XF/jZlVwBV0VNptnE71in0vSUQ20u3MAmQOOhoiwrFe9m8ySpuXhEOmqiUhLU6SwCEESlRDCJcpNinTOItWo/WEJCPkTdNhjMPgcK4hO6+JpCQho/CsEQCiMZ5VMSxCJkbD9nTGVrONjR5vLGfuvZ+3vuvt7M73CLMTxFfPsX8wgN0DK2xm40VbT9tFUjAJMiasVY3X4laM/K3D8giaTBhNxmv3xxrROrJqKW+MJRinBZoZAe5RbqEgoxAjYK8feixkpBBQBJrqelcOnSeJLJ1rg34GHQc2bsP2SgWTRfRazuJCyYaYjBiQGA/EW5gsP/LOe/nl8zf44FPnCUE0Iq8NkR9/8hy5JP6j+27nr7/jPs7OJixj4t+8eoUfefzZEZR64pv+FP/sufN8xZ0nePTUEb7n957iIy9dAuDF/QWvztfcsz3l3bcd49Ff/B2urgZurAM/8emX+O5H38QPP/5sbaBK7lAYtWSPdw0/9O4H+Q9+9Qk+/c1fpWxKeT6PnTrC2e0p3/nMk+QCN/rAyUnLsa7hkrqJ7vaRD/zmp/ns9TlvOjrjF//0Y3zv28/yw48/R020v/Utd/ItH/0Un7l+wAPHtpgoOPT8vCcX+Lq7xCH1/FKAp9s7y8ev7PPffemEkDJ3b014eX+liSJjV/7LbjvGz3/dY+wo+PS/fuYlnri6T6dZ1jrLyZ0LXFj1fO7mckx8L68GuoloyH3zR/+IZxYChG+AW/khkvyL9MJugA987PNSUOo6c66pEZ7/9okXAYNV1+Xve/wFeOKFseQxRllIIE1MGMdOTIFv/Ohn6m/gG09dQX94c80HPn2Zb7vnCL/1H76X1ll2+8BvX7jBz79wif/m8ef4wS95Mx/8k2/hU9cO+KUXL/NXHryLvZC4sUiEXLg5yFrqkxg4HPkibmXf9luf4Sfe9zY++Rffxzol/smzr/E/fvJ5thpxef37X/lW7tme8kOPP0MBvuT0Uf7rx+7nSOuZh8Tzewu+6V8/waXlQGMNp6YtP/u1j3L7rGNImZcOVvzwHz7Nb752HfUJ4vp6IJfCW0/ucOes45f/nCi91Yj6z/70o/z006/xt58QUO+e7Skf+fp38ysvX+EHH39G/5Zh4ix3GcPvXb45fu9Pfu4cP/m5c0ChMfDEX/gK/sGTrxCHIDqx6xW+rF0+OAAAIABJREFUmYBLhLxgezbl7jNnePjh+3nP+97DnXee4mB/l+eefR5+53dhcQ2AyfY2po90TChhYDUMrG7u0dtC6hxmltn2E3ZOncbGHZbDwDAMTGzDluug7wmLhZxzjbCcxe1SittSJ0SMxJSEIRmHbTvRZrUiSRCzIRQr+mQlQe4pcTE+z6nNbM+mpNJi/Yzt6YzZpGV/q2WZljSmoUkd5EaaSXgSjpAsjfFYF4CAMb0M5TmPc8JQLEbeR1IQqwJ0JiUFSeTMqlIvGcnDTevl7OoTwzqJVuoAVy7f4NLL13nlmZcp1nPszjtonIqiJzE9IBdMDJQhUAYDreTzxhRckQZNHzM3DnqurTP7STRF6SO+H7C+EdAGCQopRCEKZKnQK/hVVAJC8jtpyMZSSNlTUsMQE+vY09sIU0/THGU6gIseF4zqGYlpmC2NgjqGnA2LdeDy1RtcvHqF4jLDEMm+pTWJVCIxGYZBcssBQymNnKs5SrOL2kLyCIdNNbdywKSAi4mUoJiOwbYsimOeC+sYmJBHNuAG0JR825hDRTT1uDT4xmNNI9qsOKzxmvtbkhGNp2wssQhTqPUttFMm0wnEQsiOPhuSTQwZaFtcY0UXyiSSLwyuZa3gXbai2VysTISZlBVAELjGemEIpZIVFNSYnUSGqCRpdJKK5HJJagCMJSQIeHqtI4UQkYWZqJqKxcv4ePINAU8kYZTJ5zAj+Jxzoc/S8O+zJVmrTNOCL4UUkzb/DIv9ueS86yX9wZKmVfmfJKxYAeVlD1uVBDE40dtGGrgNlolvMDmTav/QVDCngkNqWFCrvrEJY3SyWJn9TtZiGemjjpKMTHmkLM0brSet5l4Oi7ctjgaymgEUZbSyYVKHKDIg4vwsr1PzL+tlbYUUKVkN5bzV6byiIIr8IPVCltiCUXBdTEBstvI5jRF9PItMUiXJN41KN2VEWiFaISqlkFivI6Sl5PIeSom4Vl7H+SJGicGJ1lwSXEXYcok61qrlpE7Y1MawHfvFzjkBwZxTaZ4idbkxMkY75qwVZ9iceBt8YdyhiimUES+ggpelQn+oVJjouFoj4LRVcHvUi8dQ+kRureJHhZw9xnTgPca32DKB2DAMiUUI7JVMwJCyEbzFtUTjJDZaxYiKx9Jist+8bbTmMAZ0BBYMxhlKbkgHkK71tHlQVExybJKlrAysoCwLeR4x8wwHhTJPxAjX93ourpdcT4kr68DlIXAjJXYtrF2myQXjGiEuhYQPmXXOONcK21hLgbFfX5RxVwr5dY3L119vPOIaJSAYJ6o/UvzUL8ZxHKvbRjJxQxHJJtpph2vUg8Op244X/bcQgxy+FB2ZjSKMyCEGWVEHD7MxOHBVJwiETlo8JRtAHFcLmaQCi0EdWF0W3SJbJEgUAc0JIZOMuptQhUETE9+Ct4SS6HOR5FY3RkF0DIQBJvpytSgmb9hUpRSwdZRWg7NE0JHCPQzDWPAZs9mEOYuTqTXC4tkYD5jx4ABh4EkXB9WhUYApQ06BbtLJ+6UW/lLMVkvjrIV61uBjrcO6RovugnOF0K9F58KL22eMYm9urSYXutmrs1gumVLn4IuMxDVeXDlzzlgq2ydqV0xMMao7jTCLHK5xpNyLlorO548rXD9/zGoSkOTXGpO0ySndYOGEa0cNJk1DN+lovRMGkbLJXCmUmCgpYrwXfShj6XyDc44QB3E9suC80GetF0vobjJhOhGXoX5Y0fe90Nwnkkh4f4Q+RJzPNDsNN8pKkqFVQ7OCHRKNh/XEEFpPjp4hWrAeTEMujpjFFh0gpEyIScYtNmfieI9K0SRK12tG6z9nwKpbUBIWjkkw8XakvadoiGHAO8fRnR3uOHmSfliwWO4R0gCuUFxmGSJt1wmIWKn2Rdh23oM3hpYG37a4YFnFHpsS3bQhRcNk0tA1jbChsDRemHi5IGPVjSWkgXbSkHOm7w0pyHryzrAza2kby6T1TFtP1zmm3tE1jq71eCc6OjmtMRj5M2uJFrqmJTswEUIJmIQk542l1HEGI9bjKTlSEjMRX8DlojIHWZmHDaVESSZ9gZIgWGLuycjIhdFmQBVU9a7BWU9OgRRFX6TvewEh84Yxqt67Atg5AafM6zQmZARDxkxyUpahdURTtcuQRDtpMjwCAhmcIRYxxzEjm89ikHVNjjgryUzOEHSvFzfFTbbIbiLJu3HgtLBDACdvDSX1GAdDyQwx4K1lNURWIdHalq3pNrNmRhgyJ267ky/5k+/nbe9+O3/84otcTQ53c0EyrxFpyLYdQaucJXEQXR+JyilnccDVoFQZiFllEmrcLMrCdFbc5ihGhH1Vn89qA0CSRUtxql85iHFRZSkn7ZwLm/EQMD72xCpIV41aysiWLFYL45zlM1CVfTSOW2GOYpyAczGKVo0VwCsVMTAqNFBaXAnjGNKZ7Qn3bnX8rU+9pJqS0jqx1ojEA4aDEPmO33+Kpy/f5N6dKT/7dY/xXe98E3/nE8/L+wP+8oNn+Nbf/DRP7S2YOAteGG/ZegKWB08cYW8IvHwgY5DeGj59XVw4txvPQUi88+QOn99dMGhx463h733lW/npz5/jwnLDvKlp+506NnhxuTFyWMXEdGT2wW+fv0avHesX9xb89Odf5Zvfchfw3Lgvfvbp83xGDQomzvCaaqflAlf6yNHGMw+iT3qkMezHwtAnXS/SiDnSeq73g5ytJYP1PH7lJg/9099i2jZ88wN3cnE5sBmFOZSY6jk+ArJ6VXdQEPa25sPj5wdwvqVpyuY3CuPPLOP/b4DhEXk+BNobBeFylhwhRQGs7Xgub+bqckRzg83IcC6F5wf4gRf2eOGpJwFovee+7QnkzIdfvMQ/ef4itsCxRoqSX335khQJ1vLejzzO2ekmtXxt0fPmnem4TjAiceGs4bs//jnu2Jpw7mDFbi/GGFXn73t+9yk6JyOsBvjOjz3J5m6LVuHTu3OMEb3Rn3/6NX7u6dc4v1iTS+H+o1tcX4tLrNMmSa9x4fHLN/mSD3+cVDIzNfX45W/4Mr7jY5/j4xdvAPCWozP+769/N//02Qt88I9fwFtLzIXOWc5ud9zoA1eiwJo73nLnrOP5/SUnu5YfeOzNHAyRDz9/UR0+oUQHXs6YaAdOnz3O1/65r+HsPWdw04br6xW0HaFrWR5qrU+OHmNYrSip0KQJJiWJX8Oag+WSKwc3uO48060tutmU6daM2RZsW8ckZdbtHgfApG0xtlG3VAF25Zlp09gi46TOYZqWZjIVA53iyAhAl5wjWUeK0A89cViN77MjsD09Rt87bu4d8PyrrzHZduzvX8GUwM7xM7R2mzDAus/gOhKeUDyOFmwm5YFETy5eAAjrRV9TdX5lfHFzRrrKaEtFdZylGsrGEnQkskmS5xAEQOn8jOW858XnXuTcy+fouinvOnWMibPYIqOozjlMFghxmM9Z7a84vnVyBJhsjhjjiH3m2u6Sg+hI7Q6tGySeu0aJC3oiZJEQsIgLrNFzyxQxqTMmk0hY5KgeQiYmi8mdsIJcJjaZdmvG8eNHOX0wY2ZmtFleQ+yvVLs5yR7LxbAIgd35kuWiJ9pMtBZsoZSBIQ0MIeMGqT2iN2A6EcZPEafTHgUHtNJPpWizNmBzj4kJQgHXsgqGS3tzXr16nRs3T3Hs9rupNY8ikXXCTgpuBPzbpPQG3zjJP4zDaW6RS6aYBnwH7QSFccmlMA+Z1ka2J4ZiLQvX0LdTnWaJ2NmUZuKxXnIT4wyhnTDYBtd02DZT0oCxDtt4TI5IDiSnsrF61pYs9a51mCwa4KSMTWhyLbVpqiZZbUMolmX0ot+oumElJUgRWxRYcZ5oPMG15CzSEqVYiFHyySz6cDFmYomU4qV2QGRFGmPJSAPR6XtYL1eE+QIbBtKqp6HFzKT2siZjfdZJp4AxXskLRqZ3ZJNRQoKc8N4TozSAQYkYJaNUmZGUIo/VjLVXzllyUy9a5SVKXWJU641iyRlp1GvRlsky/Ya40nvTUrJFsfcNcGrE3VPqYJGukjrUaU9UgSgFf1OOqKi7jDrnzJCigOCa78WcBcDV87DOolsMYtKlQEuRz+hKxoasky1WcnXrKDGRCzRNMwLL6z5gvE5nxEznnTDSLHjnyVEatSYptqKGgnUyRDSgay4pn8MhrsIYg29EJ9hYaWqkrD/cCnPNaAP7ULKgeYJKBFRpFw7lFZVRf1hWqUilP064AWIiswH5DIINCUSUIDsBrk0W9+7swbQU58lYbGzI0RNtZhUHbuZEyJkQMyVB9BWgE5NBnJH4UFqsUOkYg4vuMoHxrGJEBZOgW2T6q2vo52TXE+ycYla4vCIv5pgYYTUw7C6wBwF/EBjmgTmOq4slr63nXMuJGzFzPQRu5syi86xzookR6z0mF9oIk2RYpwLeMZSIqBlabZwK0FP0fuXDbJ8vcr0hQMchdE9omWbcTOMD0ptTgaBcIsMgoo3OCbJtcSLYbxyudRjjgELfCwAjAF1SKmqCInTNFKu1gMxsO+vHsVKLBK2SowCC6n6Kfn8xmeKF2eOydCPqok6lEMmElBlKFIS9iC6Jd4bWOIy3LHImVvDr0Dij0ZniktSlozACeCNEalTzzSILtAiYV7ULTCm0baNAWR6JFxZkbK3ocXsIkZZPvUn6BaDTjZU3IwDiJgohpcqgh5KVOVJUy86Qc5RQb9woLptzhFGQPOOdIPPGSFeh6dqxdhhCFIakd1LYRNEyKLV2SDVOFBrfiPacl2c4mMLQ1+5QBQuVBVQqEy1SrAAipbIBTD3v1dp+FHrSW4+ykZDie2MuIKYYs9mUrdlUGG8psTXp2J5OcEDqB3IYsMbSeUfbSAc050wIEnCdU+1DZPSj7Rq2t7bY2pqBgcViznx+QD8MpDwhJEPMMjaxM/PsnD6CSXOuz+fEtTjhttbQuELxBtM4hmKlgVJHVo2j5CTrHTVMGPWhJKeuLsDlkKhJBXJlrx4a9atsnaKCyqZI4WQ9yRhWqsN1ZGeH207fRohLrl7LzJcHwrhqYNknQo44fZ5Vb86jgJsF14oeS+kDXb8iJ3ECtdbQdi1pyBCla2SQ7rXV92eKsC5NNtpNzKAmEN5ZvLdM2paulefUenGFa7xoNzaNJ0ah/ntj5O80DYFM4zyBTNu0Av7miEVHMZ2sx5BTlaKTMeXssDq+KOshEmLER9E4iTkRcyTkwBAGQgqiRxgjvhG9tgq+NU3DbDZjve4xxqgD7yHn3SyjHAnpiPmmIXuvo5RwmBidbFMjJIki96Zt8SRS7lVfUEcBFDgYR4Zykk5d7Ugai3cN3ndqRmPxXpzZXCxgW4prwHW00x2McSQdT7ba0cs2QgZjhfWQidIAiYWM3BPnHFvTLaZbM2hEB+muN9/LA+94KyfO3skDOzP2+hVXX3iWfgjkXPC+EWDc6J62FtRxl6wAKOouVcxI7S+oPo8x2pjI4orsGkmATNTEQ+6NtUZAjZwU3c/EkNSgRZnDRYFko/tO46r8twKDuSgLPFHUEU0ev7L3ihshPZR1O8oFkMmpEIOMgNmqw1M2+9pbL/cdK0w6PaurC+eFxZowDJQi4+cj7ojhNy7ujg2Wlw9WfOjzr/Itb7mLn3v6NWbe0VjDL798mSvLNQ41cBgTCTn/txvHvrKkalpwYy1A2I4CdDU7qNe/f89pHji6xd//4xd56NjW5ufptdcL2HHnbMIzNxfj9zfWMnUylvnVd53ku971Jh48ui3Oc9Zwsw+88+Q2IQv4em6+4vB1SwpUMsuY2Kki5nodbQU8m4fE1Dsm3kIviWfbSROiXgch8aGnz/Pct7yPZ3bnvLQnBgNjE+wLXlQuSYJ1lFUbEvUzGgw//tQFlvkQeDe+f3MrmPc6gO7wPT78spWlYpIk9+O0Qi7KdJUzwR0C50BAf4yCxHrNQ+KlxcBtE899E2E1x1KYp8J+KlzuE3dMHHfhWefCQSy3fO8rCuTef3TGduMIubAfIvt95PxizV1bHWe3hdG5N0SOdZ6Js9LgPPQBGyufYVCgzSA6dAa4tOq5fdrx4LEtYWCuB66sNgDd6WnL3/vKt/FNv/ZJ5iHRpx5n4Pik5fk9GfW+1g/sDZEzWx0/+O4HuHtrwre//R7+y7ffM97z//mPnucXn7/I5WWP7zpMKew0Hf/H+97G2e0JQy78xvnrfONHP8Wqmp8UIBkxP3BAiQypp5023H3mbkwp9GHJ/v4er7z6KleuXYVOXu+e++5htVgyPzjgYO8AQsAay9TNmEy3mC9XLFZL9ucH5Pk+vhWB+Ol0irWWI9vbhFhYrgOrPtEv1+M6SlEaNNZbcsoYMm0zo2mkYWd9QymePKi0Ro7i3ukn5KYlmnZ8Nge715j4HYzZol8PXDh/mSEt6SaF48e2GMdEiZjG4TpLtHIGDSXjC2TjKNZTsnyhzcacxCxq06zVAtoKvUeayno+Gjm4cyn0oeeI3ZGcXboaLOYLwpDY3dtlf3HAtoG+X2IRlom1MoXReMfWbELoVyz29zF3aC6uDZUUC/s397hy+SrXb+4R+hX4hPcWMoQcqCNflRlrq4RC0trCMDb4q+EXRY7smESXL8YItuAbx4nTJ7j/TW/inhu7bDXbOFuhpAR4PU9kY+SSmfc9++s189UKWkvyhhQShIFYxN291cmiygKKQCmJnNN4ZshkQ40rh76KjrFbS8wwX67ZvbnHcrk8FFEOR6jX/94Gct/0GuqIqypJabFZAWTrBLhNSA2yzpGyXovkjTM0swkUCHHATFrovApaGYqzwiD1jbDx6wiyriNbmT+5jFI0t7zlIsBwxRRvGbu2Fryj8ZZJ29FOpqxWmZIMpUTNaRWP1H8Z5zCuEekljOZj8ueWIgwxIzkJtuYHRXVi861NeoR4EVNk6AdM7NmeTmgmDU3TqNmCaPTlmpcUg/cixZSRvMYZqfdySpim2Zw3uhbK+Nwkz6nXrSy7auymJna6X8camuqRrqOwJSv4V9EEaaiGqHm4aiHLiLmOxpYs46+VeEKdDquooRFmrU5DSYLKoXxPmLZG40kpAgqVpPJFpZAMmJhHA8TxsyL1cI55ZNVt7opqkakEUUGNEYyklKUIsa3qxnmdIGqcHyftSjHjPRFZIzXTMaIVbZ0hZavGOW6zBMrmfRgdex5zzsPkocPL+tDv3WJaVcoYr2558nUNK65QUMkwTJUbHE0bDCIjFXMkFTWWs5ZcEkPsKf2gpkyFWCLLOBBTT4xhxEvka5DmTRbnYzsC+/Wz1HzTUR2ZDbqd1hm3u4LXrhN3L+HjHn2+Ts5zPD1xtZA4EwvrRY9dZtpVYbGKXLeeS8Oaq3HNdQo3Y+ZmiMytoXeWQddhoweqd57OeZzWI6PBiU7dmMrE0j32xSLj4euNATo1F8hGN291HbHI2GYS5oISn+VBp0JKMAyFfr2vRaHQhK11UmRZYbrJfqmi9VnJefpBSiYF1RYqZhz9soe0wEqqB5voq6HfTzEUWzS5yJgkjphOFfkyCOLtHX2KUuSZIgdQgip6KsZ4dizsJKYayFYcdqibWxNtjee2HrzKWirFUB1RjDLuRNvKYErCKsAnC0x+iC1yX6nAnKmADaP4o2OT8NfRVihYD41vaLyVxMBoVyGnESRrvSclTcyNUXKajs+ZWjxGJq0IYgqFWtg5opGUCUMQof62BSsz/UOU2XSsZX9vxboHZx2TrsN7T9OoyG4WjbdiFfBEAQEVys8I66VYNaQwFlvsCNTlujdVC0B0KRAGlDL5nKnuspmYEo33+qWsucYym3XsbM3wQGwsabB45+iahrZxyCiujOQJQGfHTWcNtF3DZCLOa4ZCnjSUPBWAKGX6YFjGBhcTJ48c4+zZszR5n3ThEnsHS7wDWgMNNI3Qz0KWJCqkxDAEff0ggJhq2jXNBnIzVZ9Qs7OiY7+3bP9DTI+6WEUbRUefbF0rlsY5KgLhvMPYlrZraWML3mGTZTqLLIflWLTUg1U0Fj3OqsOo81iXBFhXFiPW4LwnD8IYi+rMZxpl6cjppuC7JCQVTCy6BzcFqhmNFipLcxgGGUdMhjAEkrqcSocJ+dzKrnTOyV6u5gsGHbevRbD8vuj0mPH9JU2EQpK9GXIkxCBMyxSl+DWHEhJTmcBWtRP9aHwzgkbej6PYBZQebcA5inPjAWgOAXR4PzqpZWMx1kPT4WwhhwRRNURKkXiktT4GmrZlNutoGi9aNMs1KSUcBd+0NG1L17UUaxhCEje/IgnldGuGdQ1JhbpLUaZxUG0RI/EpJQSALSKGbGJk2jYcObpNtz1lsAG2OnZuP4rb8SxK5NSpozz44H089duWFAZMSbrujWj8hSiJoCZClNHqg8pFq2PfsPmqoxkyMl/zTRnBDamATcKcUMRJCrVEyQFKEDDc2E2hQh3V0eilZ1TVtCklQo4yBiEB/FCjxo6uYgIE11FvKbakGB2gZHkNU3SsQMcJnGWjxZqpGmLVhfP2ScPn6rbXk6V2Od93xzG+9x33jS6czhj2hkCfMueXPSEXPnP9gFQKU2dvAVvqdTAkjjQVtJIXOdJJOjEPtbCr8Qh2Os+PvvcRvvPjT/Lk7oJO99LxbgMOvXSw5JWDJd/0wJ389oXroqFlDCFnVimz5S0//bWP8kN/+Aw/98x5Omf5G++6j7/4wF189sacmXc4Y8afDYWDkDit78sauG3S8PzegiOt5+zWhL31wGl1Mz13sMIbQ2OtrIcx1sioy0PHtgHY3znGtJvQOcfb7jxFqy93Lje0bYuzTps2W/TDAEiB/r6v+Tp+4ZSAef/F+m7RqUWZjcbwnLV8xf2SR2062hyKGRvt1VqYpDoqVb7wGVnrWMznvPLSi1y7cpGJM3TOsJzvE4Ze2M1dx/bxE2yfOMn1T/6u3jbZHO6w1mUpLEPktSLx8/XXXirsrarVglyVrYaBvRD5n/7oeZ64ssfekMa6fOJg0UeuKZBWr/ObyUmeUodVEKbc4XNMnFv1/xPMw2FgYHOtU+bcfM03/don5fMAg+Z0z+8tWGc49qGPju/3tWXPf/qbnwE+MwIet1zl1l8vLHu+6pefkDPXKKhaC3r9T3G4F/ZaiXDx/AU+8YdPcPLocc6eOcNsMqOxjrc9/Ailj/DZJwA4c+ZOJt2Eoe85/+prXLxwib2be4TQ002mHDu2w5Gj26z6NQeLBfPlkqsHByyd5/adI3S+5fiJE0yGxMFc9MbyehgN2zJFtb5Eu27aNXhjyGFgMp2SS8uwGkRHWAsy005x3QzTzsZb4n3DdDrDtEc4yYSbi575asnR41OcGzhYrPHFMmktkZ51WlBsEAYQWmTaVoT3s57ZxW2AjRrTy2a9i2mDuFRS5GeIVpWTeK85b9W/TjFy/fo1nBPtpDNnz9A2ov2FkTzL1lFaEhDJOZLSAEjTsOSELZkcM+vlgn69kMb+dMLMBJy3NI2n9GvRucoCONQzqEq1CHChLJZD+sFSz8hkjyuRnBSgs45Tx4/xlvvfxN3HjrHYXYLyM6rIkGFz1qQcmQ8rFqFnGQcxpTGOkCI+BXUGFVM3MYUqWijnMS/LKZGNTFuUDMXpWaQQineOaJTilDLzgwN2ryWW80Mb+N/lUhJIVvdbVHu1mIQxDufltbtJyxAi1gqw4bwAfGS5M8bIeZ+KNFEpwuySl6iyOsp4thu98Y08QNG1Z5RNWiUyKltaCu5sJBYZZ2m6jsnWFrN+xTwMmKLN0FtCl9ZcWHzbMJ1MsBgB9I3k8EI6KSJNUwpVu0uAZCFERG0CGyPEl9G0T+zsaWZT/NTh2laBkYJJOu6o+rveG532Es1GAT9k6qieOUXPhCrvMYKqdR9Whsn/y96bx2qWp3d9n99yznnf995bt5au7qrqnqV7pscrtrExYwYTJmMbs0gBE1tiSSQURYSQRAomfyAlKAISAfGCAkJIKIpBwTaxokSJDF7AwHgwMhl7PGtv9DLdXXvVrbu9yznnt+WP5/md962edpvFKBLyad2pmlt3ed+z/H7P832+y1RnvNslFY8+IeuZqY4R4Ej6/zo0qp718pt0H8FOVk31dWyHSHWQY6b62CAMMhnFGSgq08ySDOqKpdIYbEEAWrY6CIsh1GuwswlM94cwIyaAT+o67TcjQGJt1kr8kT7B6l5l9T6wrZtAfNnn5R+cN6IOLGCSqCwk2TpiipE1JoofaMlFvc70nBp9rzD1iNP9vgPE1d/7zqP2CyDvpRKQispaa+1cCvJ6VcdetCavh6hUk369yLul30zkEmU/JCqKJuSunINcbyv4hwzaPSkFQhgIYSQ7+VnbhIUd1HXn/dos/2RigfVI++gce/cIMxzThoeUeIYpPYw92RgisOkjacy43nA6RB40LQ9z5ITAqTGcx8wqJYJxJCsKGwkzpKK+Ez4Qc6JojkPZuRJm5xzVe/xXO97bg65pYEJx9eExUCbZjl4lo3836AYmC0COIlG11qrXhSGGujAhwJA2V3pP6X0uTZ5Xw0UQmiJWwTflvKaoyYfG7LAXiqChIGOoJBJJQb8V2FN/LpG1SrPXNgJaWYoyZUQWW7DEEoUZVuT95Cy+btOiPgF0RYER9ME125sHvafQ/s5CHkf5ZNEJt144FULJ+8Y8hq2UUtltW0S7LvYCxBUaB13rmM8a9ZQzsrmljHcidZjNGrquE2+UJKy36sMlRULCmci8azHWEhTpFhBHTHTTGPCdJFYZZ4k5qTdaAeuIY9RG3THrZIrTNE4YSKODtoG20+ZWGCEUo9PFiG8MxYhRZTGSyJQxmCLArskGHHjrcI0V/xAjUreYExYvm1KMbIYNOUa8E5aF90YYGA4oQYEP2eC9KzgnjbG1wkpqvJWNvWRN23HkFChEwrAm5zBNM+edp2s9ORs2A4wD2DFwcbHPjStXWcWG24+OaWyPN5A9JC9MERQkCjkRl0s2681UbDVtw97+gsY30pzF8TK2AAAgAElEQVQpCLcLzj3+wVcswAUEJAaVPNdGoihYIF6EGGF8bfqenHoBJ30DoaYloWlGQnXHiD+HMx5vhHkp1oNZJ+/yEWKeng3rRDpa4jtea9myzd51qy+yKZSiUhFjNZjFkIMk8ALkbBiGQGkk0EQJTNT6omiz6dw2cEVSUDOVIr5DSJzWKnlIhdYestzvIQbGGCRFzBTxUlEPOIz+ODTJNElKrhSWVoFQL6+BWjCCdxlvg86ExBtyKgj06Mw4+U+SEtZ4lYbotNFYEtoUVimAgkoH+/tcunyRbt5yfnZOP4z0Qy9NA2D8nJkXoM74TBmTyvoV8rIGm7dTS0nV0g+rwEaSabQFbIy0wP58xv7+HDcz9Hnk4pVL2Aue3vTsmURrPY3LxHFDDIM8cwhjNuQoTZRvBGgthWLUv1DLq4JRcNRWTYbcS1bsGIqR6bN8ztG0OoTR4spqMIx4G0UsSbzfqIXybnqUzGANUJzuGXWCnKIUG6aS0XWvs0aT1cQYuE6AnYZN5JjUt0r3EgoSDlGfCTEun4JtcsIUuedrCufvf/9VPnnriApMa2lJY+Fv/c6v5y/8yhv8+Itfpk+Z/+abPsQf/sjT3NkBSUIu3NsEnLMcNp4nFOT64F5DiA0vHJ9z2DV84GDOonGcDZHvfOYJbq/66b3urjrffPUCT8w7/ubHv+Gxf/mb//438L+88BZ/7tOvsImZv/yZV/nh3/513F8P/O2XbtI6S+sM3/+Nz3FrtaGxlk1M9DnzzVcP+J7nrk9g4CqIKLxx2w3z1mrkxkJYPs/udXzx0ZLbq55fuHPMn/3Nz/GnfvFl5m3Df/m17+fvv3mPzlnWIU2eeTlnVqs1/+H1C3zmqOVBP3K5a/gvPnSFIRd+5cE5+/VOGHrGMMq1DwETAyYXEvkxsEtPydRST81O3vqtPob/TEM9BZazLGLWVolRmf5t9zAIK7lrG0zJ9H3AtGJwbZoW13jarsMZRxwCn/yejwHwQ1/3ffze3/0Jvv7DN/j2a5Ik+uL5QNvNuHr1KvsHBztDh+0avYMFA/DC539F/tLOKAX+ygu3wHq6WTN94VftNby6jqwq48a886fVhmL797pPfPJ7PsY3/PgnefMdjMl3O2beTl6H/0rHu33DzucmWXPZ/Qf9UychdSBia/qckX1ldbbii5/7AiVFvvqrvoobN65z49pTPP/sh/CpTADdpYsXeP755yFnZm3D8vyMo4cPJPE1DBwcHLJ3cMDBhQMuXDjk+PSE46NHDMs1x/mcC3v7GOuxxnJ4eIifzXl0fMZyvaYQyCHqcDfjG0vnLa2FpmT2G0/xHf2QMaUFu0/MDc4kUugpuZvOxRM3PsT+5ct03T5PPrnP9RvvZxMt5+sT7tx5ldXZEu8hlZE+rujDEqwa+5ukdp2eUjw5ObFLIEIRKxdrnQJx75BdFZiaimz1/CrwBRqqpcw4Y+j7nr09z40b13nqqRv0mzWtbzg5UaBAjZecg4O9ORcP95l1HdXPSS5xJo0956eP6FdLchKz9zGv8Y2nxJGSotYMKBgnIM6WiaP3zQT0OIoRhmHS73FFrktlVF1YzHnqiStctp60uSfNgqke3VV5IK8/x8j5sGYgCdPDiD1LSkWAByNNZMpbC46ci6TNZiFfkDIYGQBJ71cwVhhJlUkjhYUlhJGz0zOOmjXL01MI8ddMKfxVjyLMlJSD9ptJ90AxjRc/byd2rcrYB1FDlKJMuJIJISjDPjLGgGss86ZVQ/96+qVWqB9WwReTKjBV+zupdSYTCwXCxPqiEErGG3BdQ7uY0W3m2OU5NidyErmlqEPctDaUUvBNw97evvQ5KeO8I5dESnHywLVG7t3J0kgtNiStU5lGGLIVYCQqmDgioVk5q1IlZmyxcp/kTEqBbBusl/rdgoKNSS1EZN+ZwviKeWwtZjp/5jGW1uOf069B9yyzXcOdq0GLaslgpJ6KJeJskOA8xG8YBeVy3pW5Mw1Eq+xV6miNdtGQGKwQjey0XpTt2pG3gFaVYBt9hoy1k0RgknHWYX0FwyrQqyBhLsp8LIVNFnWSd6Jqq2QcW+uLpIqdkFVJI6CNBIMVkaPr2c5GlRlZ06HDVn3TOFnfvfbnxUi9b9i+9npd3iu59Z2HNXYbAAEqzWeqqWt9LUtweWzXziaTjIbh2YJYjNf+TLxQvZfwzkJWLEYCb5w3FJsV1JP7PaUgTDyjYPeECefpt5rpY7dLKlASbgi4tQBybhwhjpQ84sPIYA1rYNkPrEIhD4XjPvEoZ2HO2cy5sywzrHIm48jWYhpPsU48DXXwXhGfuuYLIF1xKjsN7Kpf6nsd7wnQFWv14WdyI5D1oTBJNaz4ifjd4sSVCWgxRrz4vJcHMenDJFQ/ZZ+iD/AEDklB6suWK2Jqw8m2hjONTNucc8JqiVHApiyFmNXVxuiE2tPIdM46sjGshl6YOhbms5auacSPKaq5OWIKOyjAkJN4Nbmik2uTMbjJCBsFIaaCzFjZ2PQ9WwXbaqpTlSpOFw+pdh0GaxETf4M2vVZrO0tRg1RrBTQqqs3PORGi+Jk1DjqlWzdWzqvxGe9hb94yn3UcHOwTg0jyZIrqNMlPNmlvGtpWppJR/RVqQ5myI3vZ8G0DxSS8+prFJA1O62C0whTxzghzrXFict56GgNN0+GclwmuToiKNuJNK8ClLIIakV0nqHUJNpLK57yyDNXfLqYkZr9e2A/OwdivldllmHUNM+8kDTIFEgVnhH3oHVibmc9aGl/lcEXSXRWkbNqWoV/vLNJZmIJNS+M9xnhSKPimcG5GNpuemXEsjMdhROpnrMScm0KyhdYUmVwjnl39sp8kDsYULlw4YDGfKyhs5R4sRdv+uizoR2Xd7C4B+k8iEy5MRvZ1DdsBxYwxeO8JKRHHEayjnXUECkUbYTN9f93glG5tZNGNWRbtnLeraZ0lWyeebS46iis7DDZD0vAZh1N5XtkBnHbYc0BMiWEMeC8m0iUGDJrQa2SRL9PaUZdveTm5Ah7WgRXAs06S0YZ6l66P0pazNSLpKFmkmzkRk4BziTwl9zrvZLJl0ZQ6+d3DOLJcr4gxKfPPbTfhrLIzZ5k1BmsCpgR8cTSmUWnndo3uci9+IhlhayUHoVCyUxBANwV9ZiTdWC5bTEm87/LI+WrJEAIFMdUdlueEksE3zGwLKrfPReLQxzDiihbzutFU35eii3Qq4q0hUzgBEGddy95sRtNYhrRhfvGAD3z1B2gPG842RzzFVVarE27ffIPTRw9ENqTT+1TyZFwt4ISA9cY1UwJyvb6SkpkncNXqxB0vptPGyj7T6hCjlEIIYUqnyqZQorAXDFnZmTVJql6ALbgCNV1XB1C5MpCsMr1lL2y9p+s65nPxrZT7W1OZozYSY5n2zTwBjEUHNRX8S9gWTRN7/PjzX3ibv/Gtz3Fv/UF+5JXbPBwST8xa/tCHrnFnM04pnH3KfN2lA77vw9cfk288tlxoU3lzLeDdzfXIwlnOQuKf3Driz//Wr+Kvfv4Nnr40449+5Gn+5pfe5GSM7/hJhpceLfm+n/klXlI2lDeGL/zhj/OXP/Mqf+eVWwAc94EvHJ3zvT/zy/yJr/sAn/yDH6Ozlrvrnp966wE/+spN/srnXuO/+y3P85c+9jV89sEZP/v2A37vB56klMJeI3vVJCtEiqSbK/G7e/VswzImrpuWP/GpL/IXP/rVfPYPfhtDKvz4a3f4Hz/9CmB47sKC/+obPsiT847v/Qef5fj4hOefvcgf//g3sNc4VinzpbOeP/7pN3iw6dlXCt2bf+R3TL/3hz76PD/00ef5nz77Bj/wuS+DMXRtB8j7byogL1XvtAxbs4XtpmJ6akLqvSB/irfc9r0+nkoIQ07kGMSmwhiGYcAVj0UDmkZoZ/JczLs5INe4a1qOjo55dGXLjqqNVkppkqlb50RUuAPSvfdhtmwEbfIejMIw+sqjvONvX/k1f+mXX+VUGaO/1hFzeZef8K92TE+72X5mAr9Nmdaa3e/YbYysa0VJgjBz4xg5fviIF7/wAqcPH3H50iUuHh5wsLfH8uyMj+lP6fsND+7d5f79+7z04ovcvn2bk9MTxmHEOscwjpjNhrbtmDUdVy9fZdHO6Zcr5rZhf7Hg/HzJ0aMTinXMFvs8feM6m6Hn6OER682aEJWdYBwlRZzJHC5mPHv9GqPxrIeHrGIm5IYwFkwTKEnu43p0+5fYv3jIM9euc+2JJ8l2xjo3vPH2bayNHDX36Jxn6I8F5CER00BjrTAtlAUne43sc4ZMZbJPXlKoh6gxMvCrC1X9oxid1cuemxQoa5pGgW3LfD7j0qWLXLiwL0OOGLGWyXZGWjxZt0mRMGwoMeIaeRBiv+H4/j0e3L3NZnlGYEaJIzkvadqGcb3CZ7FEMK5KKBXkqUO/3QGprUNBCe2Yah0ra4JToOBwMWNvNsPPA03XSg+ibKgtSUFq+Jgix2dn9CkSjHLLjTT+MUcFd0TKWgeoJVWQDhmsabFgdZnJ6LDJmO0gRgGjGDL9as2yM/SrNYwBZv/yT9buLLkoQFdKVn/EslOuCiBlSiSOUtM446Gg0jgBc1PRgWI0xBwZ40BTvDBbQAENT3JFPV91/96+ramJNrpOk7eAiVH1j1EGTfUZL9ZiG49rpd/cMq0sxjZaHytYgtQqTdcwazpSSszP5mz6jfZ7OzVvQWusNHkyyplTr2NgLJGYAkMIhHEgno/Mcsu8JFwSr+emcXgFNvKYiVisL5jGUDykGoJiJTRtF9CptXcNvTJs17evuKqmAt6o/3jFDuT/Sw9dwc8d/EBBuJQirhEmbGWdytdu97wY0/T5XaWK0F3E99aoTDOr2qrWUBgwzovKL0MyypAtVY2GpP7a7TWUb7I7H6LmQoGzyrSbFII6OMtZFFdZW7NsBOAOUSxcKiAeowJ1Wa5DMRIAQ/HCzsLqIFzOlahwqkWQDn3VlzCXKuPdnpfda/XO67Z7/kRKXJl92+dhkiabPG2GdXBNFs5xBWQzEEuisZ6a0iRy1YRFAjK8l34kpage3KLgMUatNh577Wifq69/p/DdVYtZxVr0/0g0uCuEEiEFXAgQgwwQKJSYGKxUZkcpcpwLPYUTEstoeVgKR76wxLHJsFaFnilFTQVk3c25qF+l2hp4T0hB5Nk7MvrqTS6KvPeeYLwnQJdKZb6UaUDljHg6YQyNKXQGOmvxJiuQ5HDe43QasJVkCDtLAhFEqztW2rk+cE4XM5HKZlwRmuku9VhuSzkJ8705vtEGtxTGMDIOo1zokgW1LgVfhBXU+BnOO6UlGh6enrIeB1LJzGYtnW8kJMAJiyKXRgq7FAn6i9tGEkCjetJ450QSiHh4iJ+cvubWTpRdTJHJhalm4UUfANGRS4GnQI+xWIv4pCEPeDWKtkZoyOJr4RnDSErScIaQ2Aw9JpcJpGtsobMCCjpjaRvDXtcwn3lmNpGbwsw5ErIZVtACJwtqjr1Ic3OmKcJaEz868DNNhyxhMsO3KUCM5GQ1KdXq9TY4iy6YjtQ2BApdK35hZDtJfYz1uKK2DHpUSnNNpTN6X8lpKZgsflNZGTYSPuHANDiE8eLVv6xV4HI+azEmSxoPhcbLfemtw5rCfNao9LOeb4hR5EptKwlbGLMNAVE6cJ3EiHkmurAaTEqYMZLiSIwBb8UoeyxiUEqRhieTGVMSj7IooIBzypgzwp8pWhDknJRRoSCdThzq5ml0SX0MqNNnKJaMp+ywAKTYERaowftmJ+XN0jSOuRE5ymyTOF/FSe6ZUiImiCViS5BUKyPeFsbK8+ec3O/GVjAeXc11o6uTMKpvg0oGqQVBZQsKnd8qcJpyISaReWAsjfO0sxljyFg1ti4loaJxKlBXC/k6JZWSXAYSdcOZJuDybTLTL5lAYYhJGDIpog4aFCOebbGUybfTarqSBE/IJl1fc0GYA7mamilQ6Z0THzcF+DMSOOLK1hNCrqMTra41UCTdK+BF4qHJnpU+X9+rbPKO9WZDzJLOu+k3lGzZP9jHGs+6H1kPAbsZoUm0XUczaynWMY6ykRI1kEab7qRFl5w6q15+URKvstxre13D/qyFHBjThutPPMNzH34/zf6CYXPG2dk9Xn75JT71sz/NvbffJI4bqoxUNm+m6WVB7iPrvQxekAFQrveV3Dg4q6m+3mmTtG0G2k5kvJmMHUbGENSIPELS6XVx0/06jiNpHMVSAUtlK+wWhbleGStMN2kWhTnqfMN8PufgYJ+DgwO8t6QUGYaesdd1wXmapiXEtPWIokgjmwvDGFn3I5UxbuozpMc/O1rxfZ98gT/5/DV+7vd+C601POgDP3fnhP/jzSP+2898mT/7zc/ygx/9MJ8/Oufn3n7Id73/6lcWAFpsnIc07b0hF1Yhcdg4/rOf/wI/+G1fzf/z+76VMWV+7JVb/PUvfHm6P7//m57joPF870//MrHAvfXA7dWANeK7CSLJXQa5T4eceeNsw9P7wqQLuXB/PfBoEOC4tYaf/PJ9fuTFm9xe9RhjuLHo+Dsv3+Ibn7gAwLf/n/+Mh/2WCdhaTZQDOmd4ZtFyMkbu9oE/9k++oPWbYciFmTFcnbXkUvhT//QFCoWSYRhGvv8XX+E5BeLu2YbZbCZ1UdlKLZ74Wz8nLE2jvln6i40OtRbz+fZ1tc3UuECtbaTYLaVOXHXRmYpA5J6vfQLIAGDn+3Iu6qGTNI084qzUGBK2M5BTJIYR5xtcO8N3A+18C6oO6w2f/8znWd+/M7HqPvHph3z02z/OJ77r9/Ds88+zf+kCi/0ZbSuWEd7Woh8p1Au4P/l7AHjrr/4UYSycnAwcPzhheXZKjpHFrOHCwT57iz2+8Qf/EAA/+x/9NY6OjhjDyNHJA9748svcfftVjm+9xTOXnuIP/Hu/i29/5n3cf+EFvvbtn+TPfMuH+RPmN/Hal1/itI80i4u0JWM3K5Elemnw6lq+hdPl+Pmvlc/8ts8HeZZgajhKVC8nY9jb26PtWnKsdicqV80CZpmcJPQnjJQUFJBvyMUSUlLZJto0CROnpEQcIqvTJbfGm9y/dYeivsB78wUcyGt8+cWX+PxnP8fbb73No6Nj8T8dE/PFggsHF2majpxhveyxNujvMphiCSExjJHNMHK+WhFTYR4S+/sHzNqWa09eZQwD6/WS9XpJIdM6x2LW8eyzz/Lx3/k7eXS2od/8Cv3qDiWdkmPGdHuY9gDXXpzum4WNPHV4gQ8+c4PLVw4Zs0C+TXeNcbOihIESB0zxzGadysEtXdfQ+EYSJEtR1obsX85b9hd7zLqOnBOb1Yr1aq3+mgXrJLFvum47H1W9M9XPMLGBNpsNDx484OzsHINhPuuAwmIxY7PZgIUYR+7fv8vNg4ZbN9/i/c+8n9nBjDQmlsdH3L35NsuzU6kn2zk5Oeb6vHsLqJIjF7GXqOz1eheWArX7LVOVhuxtE0BnME5A9LbzXD08ZNF12KanaRtKCZiaBI6cs7EfGYeBBw8fcP/owdTjhJSwWaSiOSWpD3JVGSUxuE9iXZS1+XYTg0txxFpTGrGAcOqhVYx4BZtSGVoViXzvowrxpjXNbK+RkA/kHDjvcb4R4A0JiKskh1ykPylFABsQKWGMiVjAWLdlq2iNJSQJsUaJNitYVtfRsgWE6nBMLh1bthBbAMYw2ZHkLCROASfyZH0G8jqcEaslT0FcKqryKNB1M/b297l46RJjHAljJEUZ/BdvKUp8oIhtUNO2U91eShFAp95byhY93awJLpOcpSte1C/ZCYiYM/2qp19uyMZiuznBe4YC8xCY7y2Ydc3jABiVFadkCiqYqh/vGLbUa5kVWC9Zfcq098/6JztscPGURPfQKryuMVjsTEp2JYJyP9YwyTqcRTEEUUjp9a2vzUiqtS3aU5WiFkmlak52+gW95gpOswNQZorKmIUhJ6mdlSll5LUXM91+k10X4s9vFYAuRn6jsRabCs5koupTDF6BRqlh29bTtl6VQyJLnvq9ev6UkRt3ZMlbQG7LeNyyR+vnap+VtbZH16gyPZ+6POB0yGiKyLJNkQ7WIGtCLnliDQtLF1lF1N4F7VBzKYwhMIyRptoC1EGLMhzr42h27oWi6+Vj8HDZ6XUdlMZC49g4OZ8dInXPJQKZZc6cGHhA4Y4pPHKwLo7zprCJmeOcOc6wsZaAYaiWR0V6v5Iz3joFRdUqwKgNTc0Gzaj09fGjPhe/2vHeKa76AJUscbDWiCdMq0XoXuuYW0lP9Eb84pwztJ2Y55eE+DHlol5WctomBtIYiTESUmVFuEm2UZL4J3krTY3zKmMyRVHpwt6FfZpWNveChE6s+42ko6bErNXoWxyN9TTNDOs9xTuSNYQcMOvCECONswKIGaeMrIaQLT4XUgwMTgCn+ayjbZoJYRevN5Fn1qLcGYv1ViWaqGQQbXjy9KdXg31nFIVW42arzKrOWwkHqCmQdZquD5Z1HqdSROs9qRUPEUm6tHSNo7WG1jqcMzTeMGs9e/OOWecxJNrOCyXfFDW1FymA9TNSCAzDQMqKAnsj10Wv4d7egpCiSvsK2Ti8LXhTGIyhaw0xGwVoRc4lQLqh8Y6SHN7L+485EseIUWN8Y5IwFdW7T4ytdavURsU6IyESuhEaBehKihqgUVF9WUa90+mRMyJZKwmLSlkVTRN5XgWtZCIXQpBiQAGIOrWwRh6fkIJIKUshjImmaTEYXHGEJB5KuWQIkTKM5BwEYHQW46SZqSBEbbMTEkTQFKv3g0z3claPL7bTzyqNqoXO7occO8uXYSoyUowqw1SEH0RilbIa0xaR+hlDPw7YBEbNjkvRjaY2ZujGVqnxJtGofFnGwJLEUzeziZlGZYdKeEGl68Puxi9sqdqsljphtx7IMuFyXn5HhoQlGU8y6puWDWMuhCQTDiH06bQakcB4jAZeyMS9mpObomCQFQA5GQilMKREnyQdNeckUy0n05ExFzYhMoQoDDOMblaaNqpATQ0dDTESo9CjrRUzX+scsV6wOnlLRTw1dsCY7BcCAhqJpS3GEF0LRVh9njx5XW0LHIP1lqIBDikFDXxp8E1D28zIePp1z5gtIRtmrmWxmNN1idVqSYiBoR/kWufy2PXDiCQ9lURC1iRToDGGva5j0Tas44B3cOP6k7zv6aeIpvDg/l1+6cuv84uf+gW+8M9/mfhoBTnSepHopVSnzsJgzug94Nzkr0LKWqhWjxMJEWmaZnqGi1GZug6OsHKvFwO+8dA0mJLI3qkHHvhWfIr8OFJWa1Lfo7judI2MrclmCsTmhFHJVU2GxjkyllSMpHsFFKAbGIcRKHgn0/SFNRPw33rHrGkgFU7PlpRyxlif1VKbUnQftbxwvuE//YUXVdqlJurGYIzjx167x//2yh3ysKS1lmcvLPjvP/0vpu//xp/41E4VYNj3lqsqS/zQfsfdtQChD/vIf/wPP8vXXNrn7nrgZIx4Y5g5+b4f/uzrvHKyIhdJTnPGSNgDwsr7wN/+h3zwwoLdmv48RF463oJFrTV0Co5GZWumUpg5y5V5y4XG8/LJkj5lZs7y3OECZ+CeynU7Z3lG02Hft9fx4vGKB0PQQaA8gO87mNFq8bQKibeXm22jAxpGBBWIE3/LPE2uHztK9cjZaQW0OHY7bCNJ1a0A6xZAqP4cMrPYTr3RBkL6A6N9ppu86qamNiVhvurEXhjMUb3DxFcohSD7hXqcxpTV1F3oLm+//gbHx8e8frjP79LX+9yHvolv/a0f5yNf85s4fOKQdq8lGtgA65AI48BqvebsfMVqtaEfA9+h3/vG7Tt0roGUuXAAlw8OaY14BeYwcPzgzem8fOYf/zR3bt/l7PyU5eaMTTxnHJfYMvLc9Ws8f/Vp7r39gBfeuM3X6unMi4v4+WUIZ/RRmrquANaj8UL1VtYCf/eqKZhr/E4zLn+mUshZ9sdiJFFd9jDx2qsgikgxpYZLZPmv+g0XSVz3pqomEEuUIgENw3rAI8FkzVzarJIzoR/hQKTZb7z+FkPfc3p2TgiZFKHtFly+dJXF3j6z2ZxxDByfnHG+Wcl9ECIpjNiSOTo+YbVaEULE+5a+71mvN7Rto6z8jllrmc8aYhyZdQ178zlPPfkkTz/9NLPulCuLBYdNIfke3+0x2ztgcfAEi4Mr05n0cc1wcsLx/fty37kZxTo2yyXD5hzSQNdAaRwH8z0uH15mZhrmswXONsQQGfqBoQ/EEshF0pydb2k7R06FsS9gIrkIc1L8EMWXTJrmrQpguuyqUokxTs/IyckJt27dwhjDpUuXuHHtGrkkmtax3iSclfTQTb/hzr27vPbqq1y/ep3u4Ix+teH84QNuvnWTo9Oe3B2QgiGOPaYRgDUVYSKu1yv6cSDEWDVIikLVAs1MS3cp2gNoIyplirDonLXszxdcvXTIYjYj+zVt21JykNqxiFJkWJ5x5/Zd7t67z5tv3ebh8SOG0JNywsRCTl6AppQhSwKjzUXknPpBqmDU1ivLyAvc/lnQulNTHbVttsbQOCeqHbOzsP9LHLs1a5VuFiMghjON1ttOWH5I3V8wxJhINWVUCQQFS87yJAuYKKwx771amqiaQ4kP8nZlnTVKkLAG9SHX61P/nBA3MzHXjDUCMin4PubIEEZCilNSuzcW550kWGswmzOWISbOVyu6bsbB3j6Hly/Rh571csNmvZHQoBqOYi3OFJq2ZT6fy+C066QGxuBdg4kZ3zTEHCnBURpH8U4UJggzyWrtkMbIZrNhExKl7RitYRUj++PI3sE+Fy8cUIPLKiHisetl7dQPlerlrudqAtuNYTKQns6lMKliDNgUNZxDroukvEo/NsYgQJDa0ExAe36nVLMCTbJHm2LVv0xel4q0tx/WkJ3U5LbIjR4zJCN+gs5aKOIDbkoiVtB2t7myVur4auulY/qkQKUwpQrYrP2D3dvLJNwAACAASURBVPGjc5PlSgWYZJBf8ClRsnj+F2c0bEZqy6xA36z1zGaetm0leK8SHvQZtcaSrZCCbHE6LKzs2m1tIX8XwOzx84gME+qz4czOAwB1KJLrtar9UgY0vAxVucQkgHqTChmHMR6MI2d5P8Z4QFiDw5AoQYA8gyOMIylmUpKfk5LAfzUIQvh0dkLB5S3ZOs/URbSItYG1DA6yN+Qsfto5JU6s4ZjCfWO4ZwxH1rLxnlWEMRVOC5wWGLEUC9FIv2FM7R0L1nqyE4/AmLNc91zZfqK+EbsAuYeMvtjd5+ndjvcOiUgV39yishEmRsBBt2C/adlrHU4T83xjmM3EVD5GYVDkICy5yqZru5bZbMbeDDZ9zzCOWGtpmg5jJY48pUAeEr6xtH6Ga6yCYElR2cyl/QXtrKVpWlLO9K2kDva9IQ4jrTN4b3DG4Y1Tg3iZSCXvEUKFpOQ5KyxM5z2ddQJE4Bhiwg0W1zpccczmM7z3U+PTWHk4DIachVlmjZtkvc4bvG0mg+BcqodG9UkAlHtRb3JrigJ3UmCnIgVwjEllsbLQOucYkzDfPFkSRBrLiEy0W29pjJ081LrGsJi1LGYNs64hp5HFvGM+n2NMph8kPcU6R9M0jGNgZQzDIBsJBk2SNLRtw8FiwWYcdFpWxD/AOIwrFGNxLuKcNMPeO2U4yev3zpBslRFYOQelUErUyWLCdR2UNE3TTFY2lnGTJLUgDFYJJ3BYK2wd42TqIosVeGuFzWPl79ZADAHbqAQw66bvnLBtnBBl69RDaMgIUKQmxPt7B+SS6dcbxj4wjiNkMXH1zgn4EXXBNsi1yAabCiYJ86Ioo5CSyDGBjUoDFlYkWScSdlvUx5hkfzDVa0s/puVAvXFQ4KyCYXUChEoDqzynlOnrbVGWrBfpn7HyPjabHucNzaybWpi6ITqr8fNWJ991elrK5IVQpycyqapJgRZnPbii5q9bs3+D0IBDFFl5phCSgEHWSyDCGCJt02B8RzaepMzSWDKrfhQ/ANuIAWiOFCNS+JAKzjZqVApFARM1YpyeRRRYw3qME++VbCwRAfw2SbyljPVKYCrEIunJY07gGuaLfXzT0vcDIQgQFoKY+jon4KNMATPON5r4KucnKgBVUsLkHSttuwXonJsJwISycgykYqaiqiK+Mqlx099FXisS+aige86FzaZnHDKbkCnGY1wLrlUWpaPrHOPoWa/PWS6X0/c631CMIeWCsQ5fWoorGKfnMmUa75m3Ld5AiYH9/QXPXHuSJw8vsBkHvvj6G3zmF/9f3njxFcLJEjOqBwZlCtZRt1NSyti2Vd9MpwChMJKKlYGQLbIO1qK8KOOsdm9GwdhhB3R3ToYZBkcpjsbOJkaj8w3FNWxC1vANlI3n8F1L183oZnPWqxXnp6eYnFWmrVI4K0DvkAplM7DsB13z05T4a60VP9TGCbu49Xhr6Zyn8w0WSKmw7gfCepiaTvOOZqgWWfX5N1ZNyWNShqichjFnhpS52HllytXv337N+xYdDzRh9Y11YDlGLk8BEXIU5Pkdy+OvI6rsYxUT1kjWYE3gdNYypjz5vb3bESbZyHZdOx0Cm5RFqjsGev15fcqcDJFF40EBurOQeOFkzV/6zGv88sNzzkZtBvQkjLnw8skKYy3duzWURX1fZMeV5yRlYVrWZ2wyWqrDim1xKFCxNBNj34OS6MI4svvF2o/IHFwl8jWMaZvOvgXZLWqNQ5mGNkmf6xxlQIXeV8M4yNBBKHsTo7myTa2xpLAFRW+++SZHJ2fc29uDD8rnvuk7fx9f/W0f5dL7nsA3AiD268D5+YbV2SlffuNVXv7SC9y7fYezk1M2/YbvUIXsP/3pH+X9Tz/NjatPceXCJUqIbPqRt+7e55UXX+HWzdt8m/7uX/rFTzGOkb7fUFKPNYFYRq4/+RRfde06e2Hglbt3eXW5AiVv5cUe+zeeZWyOWJ+eQhpIzMHkSd5I3l6b6puze8QoDdl2z5SBQFaeQx+ygEbKmqx8BZSphoJ5ORuy2guI2brUm6V6UyJrVwYohjQmBjOywhD6gZrYvEwZrj4FwP0HxxhjSMkRY6LvxTds0yesE353CJkwFDbLgRDEl6gksQkJIRB0UFQ9go0xlBx5FEbms3Zi8qYUGTYblmdn3Hz9NX7+Z36K49Mlb719lyGMdPMDZk2LC+eE08CJ3fr/HZ+s2Wxe4+jkAb7t8LND7OwCN2/e5o3XXyWMG568cglbEjPbce3yNcylp6AU1usVp6cnpNgTxg0h9JQSicGy2WRWqxPC2JNTJIwjxhnm8wU5iwWI9y1R/aS978BIreyMxzlPURVNzoWzs3OGYeD09JT5fCaD5jDq+xfmaU3rHsfE6ekZd+7c4bOf/zynq8T5yRn0G5bnS8bcwPyQ5PcpceBiV8AUInfl3ux7hjAwxsoG2vHhQuq2tINMyWuW/XyIgaZEWf+MYTGbsd91uKahGJFRiod1ADxpjNy7dZN//ulPc/TwhIdHZ6xWK1KMIsEDUcI4K3swloTIV23SUKks/V4KCZNlIF/VHZhtbWfQ16nAf9YhsZg6GF3f3rv7nFg9KOglxeikQqJIA+9NQyli7ZOyIUbpvlOJWOsZYwFlzuVYg9yEsphz0sWSba08QfBMbDnDzh6tr6+CFmb6/2a6ZuLjLA13imnrq2aEZb9er8WSwxRVSMnPmqxckAF94zwpF85XG7w/lbCwWcvBxUMwTi2b5NX6psF5T8qRokGJvhFlmtgEuSlArwJRzXzObG+PvYN9Omco48i4XhJCkpqibZUkY9iEQATGFNishaWakrDn6yBoUojVEvkdIBkKegpoaUUKqD2jVSVcMUh/7ewkC66ARQX0CtL3moldLud7ImXqwL7urXUTrddHl2b1TLSUJOEnyUCyhmQhe0tWQCPlTBIxKcmINNYaI/dYFsulVJiIBgLuire+ScqUROypDDpITIlYKgsWsslSR4Omq4Kvyc6qHDTWSjXhnISDNII7CEAHqci907WetnUavNjI60VsdTBMgKotVrza2RkC7vx9F6h7jAmpz2N2Tuxhpv1LlUqIn9/ENlfQXsI2UBmvxRtPsWCJGNeS1cLAmhZDo7eMvL8UDCkZsedBn/lkKdkSo4BzIRZK8cQkeE1lJtbpm61AY71PArAeIWSMa+iNkYRsY+mV6X8SC0c58RA4LobjbNgk2ETp81bW0lvDgKqpjPTIlSVc6nu26l1tLIkgfZtRIFHXC7nW20GE3enl3u14T4DOGaFOOo9ECZeMiSK1KznTWcuibdjvGmyJlJLwHmaNyBZ7U7BZzNTHmCip4L1l3jR0TSOpn2pw2lhL56WJCpVYaiU43JlKAJfNz4I0JDlSklHUOpLCQI49OfTEcdBi12GsF9STURa22FKaZkr7tKYow0saoblvSIC1nlAKWHDe4a3Ht36iJRcKIQdQNH8y8TYWF2FWPAZPsuIHEYMyBfUhzTr1pkjCbWU2iYRVmH6y8GRSGPkzH3k/v+XK4Xte0H+1Qw1+oxbntpHgBpAb3Hdw2L3rd06Hb2Cx/95f8+/soU/mwUI+3ut4Wq/b+Zf5BMD1Z+D6v+WX9298JMgPYR/Yf+Lxf7q6946vrUJQz6TNqZ/vHFy4/G/zhe68BtjyEKfdHPZauPxOGd8B/+bHO2UcDjrtwi+987mY/Tr9zu3x2d/9kV/Xn/fehxq5X/PAVf341zkSglQU+Ed/Tz6A3w6CdXz9B/81f+6gH78+xz/vG/7c6grFWEIupJQJGWIxwtAswpo8PLzEB559litPXMX7htdff50xvUEeNriSdrxHpZhIxjDEMoFqJRc1mnYifR4jQ4z048i89XTeEc3IaMRjJISwDSMqlQWwLb62BVb1x2Qa/mQNeKlTW4Bbq4FnD+bEReFhH4hFvDAvzcTiwRjxLfqBz73BJiYuKTj3br4zv9oxpsxyjNxYdLy17PHG8OS85ahXJkx97Tvf01pL5wzLmGmt4QP7c/7zr/8A//U//RLGef7Ah67zR56/wR/6B5/l9bMNHzlc8He/65v4sX9xhx/83BsAzC9cwhjDX3v9BNsdcHlhsBXmdZYxShpz13U8XR5PEgX40nnkxtPP0RL45CeeBeA/efWUCxcOOD495+a9B/zct38YgN/8j16X6bFz2qStyCmxv7fPjRs3WJ4vJ4Cu32ymJFYz0ebqAEoDj4oYve82SY9NvYsA1ynGCaitFgXiiZL1ey1t24mcK4hnbVBm/rwIwDEVtsDp8SOWqw3nO+6GF597nrWf8dbRGbZkvMmcPDrh1ptvcvO1l/nsp3+Rlz//eVYnJ+RhJKYAf/CbAfjJv/U3ePZ9T/ORD32IG09d5+TohKP7R5ycnHP37gNWmwjfcg2AzbBittinnTeE08B4esK88Xz4qQ/w3BNPsrx3m/vnp4SrT0J4GYDQNDRXnuGqOyS6+wyrFZsQGMIam4bJEB5t5kQWVwNYRj2fLcK1r0lzEhBlvUjMrEpYJCjNCmdOnzFnkXtKGy2XBcDztjLf5c6ezO6nD2E6WwxxFLuEtvFgzGNSsZRqCI409W3XknPh0fGSzSaDOSPnQhgCYcykWAgxMY49aRmIaaQUUXvUxNKi1hgWHVTaRgeT4um8Wq549aWXufnyy6xjIs4P6M0em7Lh7Lxns7xPYzNHl7cMuvniMqdnt3lw/y1OHj7Cz/ew832OT5Ysz5Zyl69PaVzD+mSJyx5yZrU+4/T0iNVqSb9Z0/crURlYQ6EhJksYe5ETO4O4yySMTewt5szmexQ8j07OZbifA5nI3uJA7nvXYZDmKaXC8fHJpBYBsYqR8yxWAxJOEHE0lAIhJpbrnjdv3uLVN+5w9uiEGZkwBLKdMdoZqdmnsYUrc1mKzzYjTdNycW8PrFOgWGqkGiZmdV02u0zcAtVvqR8HOpXGWmuZt53YC1m5l61vpCPOibBacefWPV548QVeeulFSrGcnvXEMQgYkDPONhIkZQ2+oBJ3kVM768kxYXF444kli52EIjGmIKxzIyFYxZRKVJFGXq0tKl7T9/1XrKXvdtRxbP3GokNoOQwlW0pxjKGQkgGV+lnXEMYBjHrKTo0wmOKkuUf6yTpIm36XsRMYV1ks1ohyBxO2Sges2CEqkGj1OlBUAllEHRUr3RHZy/u+x6nH1KwVb/Oht5N/dbXEScZAY0kpcx42DOPAEAJXLl9mfnABp8Pafr0hpl4Y2E2DGZMoGIYBNwqoP5vLEDJHiDlNyibnxQLFOo9xhjH3nJ2dk4eRw719Lu4dMJvNwGZivyFbQ+vMFEBRz61zSpTK5rF9/yv83+yWMFCMYQg9YLayTgXoxDrITYQT6zRR1apvmkEJPXXAoUy4XP3crLLtzOTzJlY/ygAjT0ChaxpSQALpvCM7g6wQBRpPIco9YwrZFlIsRMSGw+jAORUBPZ33ZJcoRbCFHSWtWhppLVYq6LyVkKKvyTovVkZq75UnthWTtLqoXLkk4WRXBYTDKk+vrhPVv1sIKk0j/XvOWRR2VsJ2doG43eOd13KqIerz6Ay2a/C+pUq+nQ4PJ1RSny2DYEZ1/RJ2XEsNFm1nHmsbCh7rWpzpaLzD2pYSAzkZxF+/kVo4GYxpMMUTQyIMiX6QUKEhRvZaYce7UjvxCXaXwRlIe7YcsWPGG0+fxLIlmMIqF0o2nGTDwz5zhGHlPZtoWI+FITtWMRI6T2wsA4UUZM9ocsakiCvK9FWUroYOEpMOPyUUU4BMWdNEMSa4z69lA/CeAJ2WjRUYFyCpZJzqgW3OuCxecY4tsmhRfW4YZbOMwo5qvEoagZwCcRyxpdBakc7W1CNn5EFIeq4l4tzhvcYPGwl6oGSGfs2IlQFFTpgcccC8cRAitoikoDYzhUwMhVyEQeK9oxRofaOpemLsDkYMznf+yzar6bzQN8cw7hTY2+ZCXbOmYjmjcuEsF7f6OdQHYjIgnWY7E8VDfpfSaf/0z3/pPS/mvwtH9bz5jeM3jt84fuP4//P46CwQTiIpj6RS8F59w4rBekmCc03LUzee4Zu/9aM8/fT7ODk95eh0yd6jU4bzE0ijyoTqlHjLFm2c10kxZKn2hYlTMjlFYfDEyKCmzR7ZIcYxstmMGOeF2TxKAVvXzh987qPcv/M2N996jdPjR8SYMaZl0yfW65Gcxa/v4OFbALy0DMxmHT/8rR/ho08eTp51//j2I37ktbv8rg88xR//8FPse8cnPniNz5z2/L6r+3z3p17lwa23+Ynv/hb+h8+8xk+8euex8/fJ7/kY3/C/f4q3lz2dLQw58xd/29fw8RtXGHPmR1+5zV/45VdxVlIj//Jv+xqe3pvxfT/zGYyxfMf7r/JDH/tqLnUNj/rAj796hz/9Cy8AAlD9tS/e5LBt+b+++5u5PGs4GSL/95fv8z9/8S2VvsFssYdSP/Al0zqDSeIz6JuGtkX2cWshfiVAV3Imhoi320Lqf/2wDluePITntwOzX/nEc7/GHbWc/rYLukmfqBLxUkTOpH6wNaUNY3Aqy66+nElZczk/HhJU1Ig5Z/E9nM1mXLx0Cessy7MzNps1QRMCE8LUcTuF+rBZS7OWoSKKb37xi5y+fVOYMzZDGemXj7hz63W++NlP8+qLXyJs1tiUJeRqpxe4/9JNzl67ze0v/AuuPfkUKST69UAqhlU/knbK0BQjTddysLcgmJ6z5T0u7h3w4atP0mZ46+5tbp+vCNc+ACf6Tc0ept1nP7UssiEejixLZDOsSONGADplvxsQLzj1bYVXALj65FPiyVUSxmZldwi72DkBBcTIW8+r3FXiuYUW2jmIh1wR2Z+3YptS/brkNhSWWk4y0HbW0LaOWSfBXfNZh7OWECL1DV66+CQFYW7GVO+JTIyJzWakhjDFkMRupfHCPLdemGgKQrlGLAwa7xSzz1gDbdMwX8zoumayrbDe048R37Ys9hYMOJbLE5anZwxj5Hx5xpWLF3ny8rXp2i1s4sHZuUhHHRzMG5and3HFcWHRcvTgPm89vMOwCYQ+M/SBcewZxyUhraVJLyLJtl4BFQNjCMLc8MLmv3zlEteuPcV8MePw8CKpGG7evMv5Zg3Wst4M+GbGfDHHWKfM77mADYg/X86Fruuo6e1t2zGqr50QvhOODt91zPc7js9WhGg5PRcfvzQMrM6XZDtw0j9ilRyuRE4PHLNZRzCei4cXcRf2qUb7JYv3kSkynHFIimoF1KtMTgBCDQzKGUzCFWmKXRH2Nlk8xrIR/7jbL77O3/v7P8tLt94kGINv5ty5c8TZ+cijRydAJuYRazLzRcPlG9e5fv0aVy5fxvuWBw8e8uYbNzk7OSUlkfsNNZAtV/GeAlsow0nTNMW3V+5NSWj0Al5PQNuvciiLcHcqI429MoKTtP0hSMqldS0XDi5imwbXeJbrNet+kGtsa3MfsGZrHeRaj2u9yAzJYnHTNFhfez0Br2xl3SmIn6rn9Y50UHo59VIrW2N+Zy1kTW/M8hUxBEzOLBZzDNA4Twgj1hii2gpQ4jRoiTGwzpFIwXctVy5f4eDiJaxxrM6XGHfOEEbGGBnHkWAcNolHrfFlWo92WYs5Z8ZNwHpHGAYokbDZ0J+f4VLCW8vBfEENzfLeE42RRGB9L/rmQYeM1rm68in4ucvOKlugToGqyhisAE5lSRYdIE2Ibqn/I2oe1IM15SSBa/pzqjVEtUo3O0pqwZKz2iFJkFYhi5m5FUANbynOCFMwJ6wHo4oJ8X2V7ylRGJfWi5rOaM9vquLJVqafmfpzjPzOTKH4oix4lbMiCiPvPW03o2sk1GQcBrnfkgZbGrVq0fPLLkvNIIMVCskKr6YCahIEkSdQsJ57jMMWGTAJHlRDd+rpLtTQSmerUWbagkreYrzHtH5S/DlrcVRfxy04XZUmk1y5WAXVDcUmmtbTdnOc7wDxhnW2xdsOZ0dMlbAXKEVor9ZYQoJhCKzWa1arNUMaKTmSTSegainYEndm1HoOkoUAZQjkcaQfRk7GkU2KDK6wdmJjcGY8xyZzjmVdHGMxhFKIpjBgiEZ8zIUZaCfw2qTEzDm87vF1GZPZmn3sWbT6zNS1o97ukw3Kr3K8t8RVN0gRGVWkV24W+fVmovBaJHKuZPEyC2kUn4icdIESo1OZDEdBInMS7zfbUhPNjLM0XSe6arONEbbW0s06ulmHb8SrLoTAerMipcysbfF+xqz1hDFiycT1RqfRkpiWiyEbR8AQnGWk0LYNpcjiZNl6vqQqrTHi/GisoPnOC6swZ0MMOpNRz6Oa86Dak3c5+aWC67K4qxeC0QdTvLb04czigVJAvZa2kqLXlpstjFe5xjp9L7qRSKiBavp3r6e+vFo07k5AXvre38F3/NSnubXaSDBE3bCQBc+wnRBUlkadmkw3Xn1hxhJiIqSsi4CZAj/QTbh+ccV/KfBHf+nLuuhnupnHGJGWxhihGJWqiSywMhCckyAH64TSPo4DQwwUmaPgvLBO+n7NbNZycGEf7wyH+wcM/ZrQj3hnmXedSOKsxXtZrKwuwDklfQ0F7zzOWTrfkXNU2WkQMNhWg9PCYn9B7DpeOl5yfPsB33n9g3zdh5/l1XLCvRw5Os/cuvOQ5fkJCwcXKURjuFMsD9cji9Jw0MzxbYtI/WX6WYu4giy49RkZongKDf1ICJHV2YoYJYHy4GCPg/09utYKEJ6DBH1QuHzxkHnTkkPEW8fefJ+nn3madv8AnOHhwzssV6fkEliu1iyHyOn5wHI10jRzDvcv8sSlC1xcNOy5zMwHWm/ZDBk3mzMWODo742zoxbg0w7AZRearXpNCgZd7JxWVYxkj/o3WCXspinVr283oupmEdTQN3hlyElaR0wIgRZFlJOPIVrzjYq6edxLG4YoMBqxxOtkzJCNFc8xJ1zp1OdAp3+T5hNLp9d6vHpHGVglvoe3mSl03pJg0JTRjraNtOjCOGMQIuPqmpCjADM4yWkO3mONywuXIxUUHw4bUr/iRD4lf1A+Uq/J+1e8tYRhTYj303Dt6wM07dzl6dApFfJSGIUzPjkS4y38ipXA41zGfH9AuDmgvXKGZzenaBm8yaVixPH3E+fEj+vWSPKV0i//fGBNDSFjXMtubszhc0IcVrbHcePIqlw8OiGGAktk72OOjH/2t/P4/8B9w//49fuLv/l0+90u/wub0nLgZiSkRraN4L0WRFgNVZhJTBtfg2wWLwytcuvoU84PLJJxISDGEMUgjnHd9vqpXl0pDazGq62YdlHzygwKmhBAIUe7H1GSsa2jbjr2uY763z3yxx9PPvJ8Lh5fwTYvzDW07o+lmjMut8fdUFO0YOeftykeVcohnmEobc6SPEZuT+FwUkaimqNI7t7MO++3+0IeB9bAh5YLzLTGNDMPAMES1xajUh+2+8Lmjc/7Y/8fdm8damub3XZ9neZez3KWquqq6unqZ6e6Z7vEsDrbjeIlnrAgcBQFKhKII4iAQUoQQIoCEhAJCKCCEFMlCRCARC0MCSAHFIpGRjIUZL4rBnnHG24xnenqrrq79buee5d2ejT9+z/ue257x2ErC+kql6r731rnnvMvz/H7f33f5pa/mNV7Ki0IrysLyt++f8D+fNRhrp8CYn3qwoSgq3jhe8uM//xt80xVUi0PZb/JUF2A2P2AWKz5RC0v7X/nV90jqHiF4ZkZz8/iYtut5uVb81Nc/5L3GcbRcYouaX9tZfviLH0oIiJKC7fUjYe4+mN0F4K89gr/26Nl0HlNKLG99jLHY//P/7k9S2ZK4WTPbnfCpGzXF7oRH770D5Yzi+Drv3L/Hu/ff5b999VunmW/87D1U3qt+5WTLD9/8h2eL/5a74oOUp+WjzcXYHMbc+EwJ3YmcHmwyayblwj5M94DUK/JH5XpQKY0tSg4OD7Gl2BbojaUc+skAets0KNUyMmK3m0uCDxjXMwJ097/0izypZxRliS00nWvoug2r1TM+/OBtLjdn4hVpNUkbSl1Mn/fAXCP0PZtnjrLfUlclRhUoILYdg9+zXl3bEPqWwSR2uwtS6njh2pIDIu+//x7vPnzMdv4canY4AXTWHhCjsAVmVYVaWLR22E6RhkrOVQbodF77U27iRoDuuedu4sNA8AMQJheBGEQSLoy0AdBUZUk9JjAH8YgM3hGd/Psx6MEo2V+kPsny6GxtIlWxFPfCsrMSKOETQ3A0bTOxLY0VW5UEOfRhAOfABGxRSwBIiFL3KpEXGmNQpkIValr7TJZtpcxYGgObfIxsdw27VhpwkxuOjS24dnhEMSR2u4am32HrEkWV/ZyX7No4JXU2F08oosIPiVRplDWo3tFu1kRvOXnyiO36gt2mw7AQ354kTLiYclKhstTzQ8o6sW12xCmRVZ4GpRR3X3qJL/zoj3D37gvUsxlf+vLf5933PyCmIAzGwmBLS9/3lNWcGBWLxSFaKdpdR12vSClxfHxEXdcYYyUcLIcQiA9tRJmSW7df4lOfeJnu/Cld5zDFHJUsu82WwQeiFi9U5wO7Zo31iePjQ6qDa8xmNdrI3h/DkIEFkZ6rFKbaX6VRfSBrVkwis3Xe0RHQOmCDIviYveMg+EjT9xTBUXjP6skpv/mlr/C1J+9z44UXWB7eoOl7Ltcbds0u2yzIua7KBVVZcnx0yPO3bhEjnJ+es1qtePz4VM63sfTastUGryxGzzCzCkyB0tIDhgxOjwmX4r052i2Ix913OkZA6WqfNGEHmbwQpFnAGEs1m1PNZtiqQhmNXa9Jq0sJrUKYT1oL47UoCiwGW2psZUElfHLCQC2LfQp1ZseOvY4AI0zN82gnJOBGXqdzHZGuMOfyYp2xAUWRyR4SMCdyvF5D9CKjjFEklzH3HiEmvAvEXUO52VDUNYdLxXy5RGktYRdNIz/vLcoUVFVFVZToQnrXFCI55H4a5PRdi9aKdhdxQ08KA2noKZUwjt6FyAAAIABJREFUNJu+I4aEj0osZLQMJggCkqYwMqpGsE3OUchfH324p1OQ9vtw/Ahha/x6yOmcEefc9JpKZRuhEPHJC+tTAVbtPddzLT2d6pGyqZjqFsiSw5ggBmE6Tkw16SmUNdiyorSJwUvYVNLiy2ysBaPRnYDpKdOU9lZBTDY8Exg2gZAhg2VSQ8rnMlkWmy0RRtAmIbZMxkzWVQKUMjHwYoyyb1z5zBJG9lEgdHxfY4CF1ppoyWD61T8Cfn6Ld18GwpTe3/9yKwdQWuTIRZGl2rKHqKgnr11SVpFrjTIWZcSDTiVDcvI5MYmiNBS2QitLmu4hwx6n3XuNC+huZGYdE24YaJqWXbOl6RvwA2EmtWDAYRF7g5StigT4tzAEaDa07ZaNa1kFzyZ6tni2Qe6VbYR1TGxT4jImdj4y+CQMS2tIRkBKo2WGTgjSZ1rx27RXhqYjTCf3/l4iP53xEUxGQOs/QOH6BwB0+YKP9kwyKdnD1UI1zpM5JZREFwe8G/DRUc1EH60z7TXzVkl5cyq0nRbJmM1Ry6JgsVhQz2ZorSWZdRhQSlPPKhbzOVUtC+x6vSJFTz/0zKqK+WyG8xV91wvtG6FcmmwgG9F4NAWKXom5sQA+uYHKD4UP4iNFYWVzQIzZJUjCoJWRjbYohK6bgSBi9nTReYKcIz0FdR8nNEz/RijV0hRoJQl9IY7xzOJdhkJ8yq7G8SrFd18/4F//7Mf4ozePKLXmpBv4hUfn/Bdf+4AnjRS802J5ZTo+3iy53b166+SXlgc2qchf+vQrfOHOdV4/nPPrJ5f8S7/8VcZE0o+8/pUhyJ9+5Rb/2ne9zM265K3LHX/5S9/kty82jLfuZ48X/Eff9wneOFrwrB34id+5x9+59/Qjv3/0Fxi9lYTWHHMQovjzGHNlsbuCVO/NLsf3lPYLkpKJAsqQkFrH+5y+UxZoU0ISObYLgYP5QoDp/CCrcTE2spiFJP4JWoMtxLw2MYKjOiOhY6KfTFa0VhwXC6qDOYPdoldr0mVmUVp5TozSVIWlCJaitFR1CUTR3+e2XimdAQYY/aY0SWLfUfK30kwyunERJ3sZ6Zy0NZ7zzHxNMeKHgbZp0bOFSGe8+KDEBIN3DL3DeYcPAaVClm97vFe4FDEENNA7R4rQusB219B5hy5KYlQMzkkjL7nUGVjbp3KJzADQBmtL8Y9E0oJdEup5DI7OSxiId4OEXuQmVe4Vm0F5SEaRlJnSt1JIIvPQmiJ7TqIUDvG+Czn9cEySVUqRXMhN75iaKmAfiMxeZXmbAPwRHbMnX4iyGSVQ2ubn3iDei7IRaT1OJo2k2i0XDGVJdXjIjcMDjuYVB4Vi/ewJyrUQ7gHw5378x7PsHrRR2FlNRLFar/jq736VX/3yl/nN3/wqpycXNK0kFYqcAGlcM006oYhJ1kpjK8pyjtZWJI7Ok3TCD07kFm6g0AKSqSS+mwmyrEsandJYdPBUQF0W2MLiVKT1A94PeB155513+Pmf+3nWl5c8uveQ0Ee0KjCFJuAlGKgwYoB7taiIiUjA52HQ0Pf0bYcuGpKyBHQ+p1K1xP2umN/pXgaotcoSNrUHOa4uiUHuU2HhBLSxzOqSw2vXufvSSxwcHFHPlzTbLc2uYfB+GmSo3BBrdVWGKlYNipinoXGaAIvsLQ/AlOwpo7dv1AKqCRDM5EMUMoPBmo8CdO3QMwRJkjRaEVO3D2NQ3ybcQF1ZRTNwE2ImBuXzqYzN7yFJAJTf+5ZNxer+RMvXFRmAGr8la6cKAgz4lDJLIf+M1jKQMJkvmJGmePX6Q56+/571XX7jVCgpYHO+olGR1K5otw/x124yqzsen77LyaqjOLzFg5MT7j/8AF595feeFYiDrH3AX/ryPUqrOTw6Yn5wgClnRF3w05k492fulxiTgZB8HnVuFkcmgTGjb8wYEgFj8tw42JFbYL82j+EmAi7vP6dIj7IZdhxP/37wFpPC+4h2nlRVVLMZdV2zPDzEB4cbHE3TiO/ksGcP7nYb8bA1+/PanryHq2fYspbhgevZ7C45OXtGt9lSKENpKw4PrlGVM9pm/3rL6y+yOjthCA4XDEXUtG0j9ZF3DO1u+lnfnDFsFf0ucnn6kKVykBzvfPPrfPD4nF055/k3X2Rh99YbNSUmBawKpCKirIPYkFJ/JchB1gI1qRIQoIHxtpM9BSXPpTx3Ae8Ght6xa1rariPGSF3XRL+kLCW8JoZA9APRu6wCyXtSSnQx5mHoyMSJE4MuZr+zPAOU+0MrghO2ALdeBODi4pJ6PgMU/eDohi77VSpm9UwM4Z2jUJbgnexdRlhiZVXtn+0o7LQQgoRU5SGumLV7fPR5CC2hQlVZgipwzrHdbSnqgqP5Au8CyXm6zTmPdmt4Uz7axWXPrnO0Thh+w8PH7NYXrC+2WLPg9NkJfbvCu8jh4XwattaLij5k/yFrqWcls7mmWF3QtU5qsqERyTGB9bbh/oOHRBQvvfQS1288x2yxYHh2RsKizH6P1bogBtDKUhaWWT1nNluglOLo6BqQWF9ueFo+Y1yIVb4/ZvMlL73yKi+98nF2sxm7bcPl7hHPnpywPjmnKgqUjSyWh1ArTroN22aDsYqe7LPc7Ygh0vhI0OKprMdmX2UvozzUU3l/SilNsvVkVfbQTbjBT6FAvhu43G451GCM5nh5zO3nnufpsOb4+jWu3Xieuy8tOTm55Oz8gmFoM/PVYa3i/OyM1eqc3zK/xWJ+wK5pafoeXQhz0vUDnXK0WuNVQZFD5kwlAQojqGaMeDCquE/0jHFkoP0BDLpvc4zPgchPx17RYq2mKKyEyfmB4BJ91wlTOPvgjVJJWxgJ0EgBZVJmwCZSiLk/yD2MGgkI4y8f19vRSe9b+4mPvFfIG2T29syEhcoULGZzCq0I0QGR6MCr/X4lYVWaQJBaPA8jh5S43O6ISrHebjiaLWQolyQIsJwpFhpiUVIvl5iylCRSpSRZPgf6CjhoJT0ySliWqSqgIBYW5T0BxbppSF5q+9YHgrUMKWJ1IfLKECaADsZaRsqxEILUIdP+O7LqRmLJpD2DXNMnrXOPGzHesU8OzQmYMQhAHPK1sCIJ9jmIjbS/x8TmY+85N9Z2U7mnQPlEMjGTh6RfKoylqirp29tAdCPTzlCVhqANyvUk10vtGLNHXdx7zY0++PJ79vfQXkitkOAOYV4rlUDr7CHa4ZUAk9aI/N1nb9CRmSf9jwyKhK0p3rEjSHf1z+hpOWIFElYiXwtxXx9N1id8tL6AkViyl8xOll1JsIuiyMO9LLUljAza/Fq5uBwTaydwNvfKSmdCkpFrFXO4nHMRHxzeO0zwhOjlvEpDAdmTPnrP4DravqHpthhafDrOkvselM/3pBPpuRIf0pQcwa1ZdZeswo619qxsZKUSay/9eqMSWwVNiqxjYpfr0phAFVI7hMyMNUhvX2qFsjozaFXGgEaUlGldCSGOjgRynvcLDWgtg6nvcHxngM6aKze/LEZJC4yoRuqnteiioCgUJliSV/ROpDm2sFnWKtPUkFNb5UFXFNZmFpTJBajIMZaLBbP5nN4Ne9N4lc2+rc0MJjP9rRVT4iwhJ3k6Jyy/KO1ZymCZ3LTCqAlhRLz3DcUIDKQQUYYs6QWrFYXSkmCrDRiDKcaHkRwlPF6W8avTksFepS1HkKdkr8FX2ZBeRjCyaGfDQRIos9/sfuTOdf7rH/0sP/WNB/x7X3qLx83A7XnFP/+JF/iB29f4O+8/mW4Q2G+mIxyn4COLqlWK/avvb7D7247/7Gv3+eO3j3n1YCavkkFDYCosyHTw733ukP/ge17nX/2Vr/FrJ5f8hddf4G/86Of4kZ/5VXYhcVAY/sYXPstPvvWAP/u//Sbf/9wRf/1HPsP9bcdXTtf5XepMrFP53kh4Hz+yMAuQr3/PwvNRkG7UwU/fz+dVpgTymDifQFmKsqCuaqpKpu3BOWLylHVNjEIpT0HuIaUSPgibxSc5ozovpn6QKam1klIce8UQIkPfEWPA5y7qqJqzODrmg8YRC6E0xxDEHzEj8lbrzMiT6ZuAViKT/lY/gf3Ub7KCS8hkUGVz/ZEKnQtBmTDIxCp4TzIWawxWG0pbiOGsUoTo6fqepmmJePphEEaRD3njEYaiJAkZYf10HS4luqjwybHtB5q2xWlFaYvxDUzXb9+45pCHqAUYSuIK5AYnE8Yg6Tita4ltmzcuNcVdxyDMhb0prZhDR1KeggiwlnKijgoRq2Qd0VoTM4POJZFsaJL4CBkx/fZ5iGBsgSmK/PmlgEQJu9YmAX9j8Kg+YLJrqsr+EMZYAY0iCBhXURQl5IlSWVbcufMCt155BXXjFrGuuHPrOs8fzzDOc+8bX6O7OIWv3QPgjc9+Fm0Vw9Cx267xGmEcVZpPvvlJfAxYW/KNb7zDvXsPSU2H0oZhcPI85NtFKP4GbQq0tgJuRkkSjkEkLq7r6Lue4ByFSlhGRptsTOK5JNPJypbErqEuNctZjbEaR2BQkd4PNKuW1fmKr3/1GxTK4AeHwsr01Bi0rQRPt5l6LwuArNEhm7T7mAsaJoA65ARLqRlywZcfDpWQZ8EHUpQmMikFJgqNXxZGRi9RgFJGg/hcAKkUKLViWZcczucs5zO0NUQ30DtPPzja3ZahbcTvh71/6gi+jUUsGbBXuXD32dh9XFtlHbPZ10KSvUlaWAJFKT5YEiTMFSyFzjuGEBiGiAoiZ03JoTB54JEm5ud0pP0+sd+9QBcVZT1H25KQEv0w0Le9+F35wDW1X2NHMG0sUn/idx9x6YLId/MRIQe6CUN8CJExiRHkecfafG9KYReDmyQg4+GHfmoI0+gnpqbRkTyPSnHx6D4xdCwqR8EKZWcYM9DEcx6vTkntjsYFovn2zWQYGpxS2WxZSrT1rqUJcHS95uDaIbAG4ODoGKtAZ+miSEf2he9VVvtHwbl9GvZ4Mfb7c7rSuMtXxoZmBPbGMzsOkSafOl0QoqLve1IGo+vZnOWRk3R479lutzS7HX2/Z7EdHy0pjKJUe5BtdfEIZUu0KYUNYAxNu2N1eopveyyW2sy4e+slrl17jpPT1fRvD154kZaEdh1mVhHxdGEQz+DkIO5/dxzWuEbLGtFs0Nbw3oOH9Jf3eLRpKe++gjt7wnNq74Gq1pcsSgvG42cRjSNud+AdtliQkgYXMwMxJ5SnIEPWfPpWl+f0/Q7nOsjBYX7o6XY7SVsdBmHqxMjGWFZliTVGyvIQYJK2gr4yFBv9kfIXpjWIaQ3YX1ulZGCUUqQf3PT5np2eUdWVPH99jwsu1/dSQ1dlBSlilGboe8LgIUUJ8CpsHhQg62KQ9XFkU2gT9kwIbdC2wJYlEuZWY8o5O7dlpzQzM+OyUzSXa5TvodowJAvcAuC3vv4BF7tzts0l1io2l2f4ruXmjeeZLw7ksynPjdvXefGFF9k2jvVmw9GNQ3RxSNNGLi4CQ4gsigW371xns1rT9w1po4hhICTHg4dPWa3XXLt2zKc//Wlee+11Xnr5Y5xdbBl8oqoXXL9+i8PlNbrW0/cDTdPRqsR22zAMsmdrZej7jrOzC9arFYvFDG3EE0zktorz1Zb3P3jEK88dU1WHXPzGN3l2domJCRMTOsFiNkfrkra5RHUDPkbWZ2dcnJ+zsHn4VtTMDq/jKaf1amKfJUhXBl0pg77Oe5x0syRgt92xPjtj8/gJJw8e8uj0GS/ETxD6Htc5DpcHXLt+nXqxwBYFs/mC4xuWcj6n2a3ZrC9omxaiZggO3zv6fmA274Rle/2YcnnI5XpL04jsP8SESQarS3RmsycNUWX2ee5ZRoDABU/bd3If+sAVWsF3PMYnQWwc9VRXaCXqpUSgGxouVhdZHQO7rss1YaSwpQxHAVTEewm88ylQhAKtEQDaKKrKEnzM3q9XUtCvkk+mvWRaZZhCIq70SAqFzpZP5PvBak1ZFNSFYXBx37MQx9J32re0kbCeEdCJRHbDQL+65FLBSUoyQE554K8MvfeEmKDtKJUFq9G6mIaC1lgZLieFRVEZy/xgwXxZY4xmu7lgu7rAh8iu70k+EKOi8x6KUkISynGtujooGpex/Zo2gjnj16UXyXUOacIi9ktg/l6+b5wXRYcycdrXTN43x5o8JmSQl+XhsJd26qw80FliqnLtJqy7BDFgYmY4GSPMxjGoIQrbMmVGqjKBZBUpJKLz+N6hSqlVYn7PoxyUDKJN8tPpPtEonXJ/Kj8j7iVq+vzOueztq/YhHc7lNVjus5HxF4LLtUOR72+TQwYixoyecdKXJp3BX5BaEjIbd/9nX6eNt7r6aM1wFfxjTxgpslrJaBk2EoW9T5JMAmGaJ9SYgDDeH0ZqOKWSDL9UlNCZLJGV20E8WV0YcK6n9wFci3MDfejxdSWWaL6j73d0/YZa74jJk/BExqCiQOd2VNpiCgWxAzxbt+a8u+DCbVirga1NbIxhh8X1kd5qdoWhidDGQEfEQw69iHgfGXTEKxn7am0wyoLSEkgZUxZNjudM6llRbYrqi7E2ngbwOvfXV6vabz2+I0D3V169xvcf1N/xBf6vOQYYJ7o2/yEBPbQ9tFd+dFHLn/EorwQd/EHHrUPg9j+KN/x/y/GF98Tj56/+sTf44oNT/odvPmShNa8v5fP/zLvy/b/4xl3+/Bsvcmde0YXIrzw+5z//nXtT2t3f+rHv4Wc/eMY/dvOIN64t+atfeYcvPjwD4IYCl30X/vcHpwD8sesHlEpxx37n7fZffP0F/t6jM94/33LLGH7u/af8y598kX/htTv83P0T/tTLt3Ax8bPvPeGFwvLgcsevPD7jL75xl/9kJxf1v/vel/4Rn7V/kONqMEYBiwL4aCjCN9qW//78XCYOU6iJR6kkQE0hZp59biSLopg8hXRQpN7JtMNqSf4JSRKzrIUgLLbSVOTtYZJHpFysyTOvp40qhJjjqOMV08qxcWYqQmQBT6gYJ2ZQyDJkYyylLajKirqSIl0mQBEfPNpAVVegS0JyDL7H2oKqFHCzLLSwNbyADdpUkNI0fQpomRQhEmUx98xMo8wwUVphkELFGkvb+8lrZHCekEbJQQZllbAGE3mKCZP/iBgMZ/aENTkdcdQuJZLzMhHJxY1XYv4b0SQdUSFkYCSDbtnM3xiLLkqRnCgFygpTpqyoqpn4ZHiPKx2llaZca4M1oxeRmONqrSmqmvlsjlKWwlpuP/8Cn/vcZ3n1029QPH+bJ+sNy7rkxsIQdw3N2UMeXT6Z7sNf/7VfpLIKUyjWmw0ueg6ORM62WW+xVvPxj79CWVaEpPng3od0vZvuhZSSAD26oLA1s3pJVc0w1uLSCOnn850loUz/jRRMIYGOGGVQppACUSli74RNpyQh0CNTZK8VQ++wXtFc7pjZklFR7GJElxVDkGsjPCqyAbCMOEZp3ugDo7Mk3VqDRljPSWlpRvNalrL8hphBEUavjAyeBS+FeUrSuI+H77PSOQGGoAY6pWg2M7aXF8TgqWcLFgdHEBztbsNusya6XoY7KntUyZsQaX/2sRLWDnItYiAFSX6Sn9UkZQA9DZXIgChamCcxg1w+ROwVI4Oma2najrZzKKcJPtL3Y1R9xHmHMWbyrPvuL74l13G0HUgCuB4sbvInfuxP8fl/8h/Hl4mvvfU7vP31r3P24Alh2xO94X96VQDF7393DqagVJY6KBZlyS+WiTtHDcdDxy99XECYH3x7SR09fntJInL7+ZvcOKj464ey//yJ3274wS98gfnxTYI+ppzd5tHjUx4+eIgPkb+7/EUA/uTJD03MSud6WQdGxoVW1GVBpRTd6TPu3r3Dqx9/npuzgTvPWXan9wna0hEZQgtFgal/n70tRsbHICEg/dC0+LYnlUvqo32xa2wpuYhBgBprxf+K31MEj0XyKO+5Gv4wHlflK+PfwMTAm5oSrg7buPI6Kku3hJkbYpAiUitKBJxKKTJbLgjO5eZUQLU33vwkRkGhA2OxtWrEsqQsQ/bm0bTtjl3TkEjUdU1VlhRWc7BYUBQVcAJAp3rsQcmtoxsc1SXNxTltv8HHHo1lXu6Dc5Qu8FHRDzA4y0WbuDw9x/WBvgbbPGXzza9w/OAxfEb+zere15gfXsfPImnuWWhQXqGjkmYJ8fgh+wOpJAEZMfipAr5YnbBr1gx9QwgOUhAZaT43AvjLeukG6Ju89ihpMFQUUE+M9dk3odrujb/z0AnGdSxm+f1eqi5G/HpiZwDsuoZm6CQVMLhsVp6bzBQ5Ojjg+rVj2l0jVhReGjEXIgQzAdcqJUbSoELYW3iyz55hvlxI6nhZ5mEbPF3tBPBPGhMTzXrNbrViZhSlLjg83nsw7pqey03Lg8dP8T6vfzFgdUNZHHPz1m3K7UBVFdhaEZue1faMnb+kmpcYe4ytj2i3HeeXnrt3bvHczUPOz54So6Jt1lhdcrCsOTpa8MLdOzz//F2KcsbLr3ycdkicnq0o6wU3rt/i6OA6KWiePnlG0zYELzKpoXfYQtgs8/mCxXzBs6dP6PuOg8MlSskgcbvrePvdD2ibltfufh/bfsPZaoOyJbPC0O22FCYPSGzB8vCQYiZp637XEd3ArtmSgrDn+gDBzuiipkCjiloG85nNLSYXEsgzDmN9MhLeoBVd1/Po/odUm57H752yTq3IgFvFg/sP6NsepRTb3Y6z85YhPKJ3wj6KwdF3W2JoOVjOqE2BxpCcYogiLy7qkqrUVCFBMWNeltD3hGTQ1MRC47TUSONNJMPlPNRSiWEY2G57mqaR++rbr6rfeqQ9mCMqmlzD6piZMELu2DVr2qHP1g0e72P2+BPntBA8zvWStN33RKAYSpSBkCLWilWSz2BFHAGjmLkQ6UrtzFh3yPMi2qI98WL/dWnmMwFXggWSXMvSaDzCqra5DvQ+0g+DSPvYD2uSls8eQpKQhxTonKc0ksYpHmiWIXicNgwqsdQGRumgljTXZGDQ4vU+AlJ1WXHt+JiitPjQsV6t8MELKJiiqImCpEInPdZFe9BmHNlN7zXtmd17cEduiv1+JKPfCcC6cm5VBru8d5MX3dQHmGxFkH2/9gOM7N9+Zb+TYUNWKrDfX1MSZYJJUKhRzWSxSkOIhH7AhV4Yxc4Te0dKAZ+8pB53PcEN0rflD6eyZ6EyI3Epn5NxbQcJ41DiXyasf52pMtlDjyTeiplo4XIa/HjfxfG+JLMss6pCIUMDcipqjIZRveS8ByPWIqgrSscQPgLQjb/nWwkeVwes+2MkDqmYAcsEUWe1Rr72Oom9QvQRnyI6RUYpb1QSuJR0Enm9N/hgidGhsfl8gjYpD5rl2VWDI3Y7um5HH3tJbQ49g2tpmjXb5pKq2OJDi9KeRJdJET39sKGoZ6QQaFcbmieXPH3yAc9WT1jtVmz6HTsGeg1OK7oEA9lnTieCUgQpf8XKzDnpIUMkqnGFVlO9nLywmlVW60wM3CvPzDg8Rqk9oPv7XIffe3xHgO7f/vmvfMd//P+H4/9roQQvLmteXM74id987/f9mZ0P/Idf/iYfbFpeWNT8xz/wJn/hjRf5yd+9P/3MP/Wx2/zlX/0Gb1/uKP8gIfQf8njtcMH/cv/ZR7729uWO148W/BwnvHY05+3V9iPf/+Zqx4+9/A+aBvn/3PHmbEZViwcdKWbfFpmOGmMpipKmEx8RQ6IuC8H63QBtYEOkaxuS9/lhzy5EYxqV9yRVEEcTYWJOyEFStPKmEGOaDKNH8+iQDXbHBVkk1+NUUomEZzQpV9L0TcyOFBm8ox8GdNfiVBBj7CTee6U2+OiJSQyVQwj0fU/TdthksFGCWUxOjjIabBGwg8NF8WGLSRG8F+PfJB6WNvt1JCIuOIaQsPUcZSzlYoFD0wzrzOQT3zNJX0tclSGkDDx6pVExZSAjs4PilcloAt+PvoFOPEGixLDLGFcJuKJy+pTRjDJ5FRLJBbyPUmAlkRDUVSQkLYzhFAl9IKtis1G/oqpqqmqGNQVhcPikcAFm9YJrN57j46++xiffeJNXPn6HC9/zuDmh6xQnq8D6yUPuf/O3efjuW9Pn/dt/66dYzko++cnXODw4oKxLiiVcX97GO8u7mwuazYbbN2/yqTcCza7l4aPHwkxKVySTFmw2EVdaEsciwpSRNO+0l00ojQseOzLwciGhjJboc1L2fosk52l3O4auoVVB/AB9wHc9M10ImJEibdOBLWQT1J6QEjp4Ci8AnLBP8rUer1VIQKRzjrYfoOhJBHwClMYFMdQdWeDRh6kAEkK1FPTB5Smu3EH5eZOt8fz0FB+yRbaxuRm7pGlbVhcrynpGvVgwWyzpekfXDTx9dkLX7jBhwCSfmRIA+2YsxpAbAmH0xWwgzljkokSumzTEgApeGl4ANBEnZtSIkT26nO6J3XbLxcUF280O7Qx9L8/zaLLedd3kiQXQ7LoJ/FRKLM4SltnRgnunO87/17/Hk4vHPDt9QBxaah850JXI8/JRFQUuZvAZ6F1ExyQ+j2FfhKTBQN9RB0VvLIPX6Cvv3bdwdrIh6AWLxZKDReKahUs8TddKojTQnTzOrISUWcV5Ehs9VVUyOzrk2sEBH3vpFb7/B76HT3ziZQ4qqOj43a9Eyvo69aIhoumdyzPTbz0KYyD6fI/LM+xiYoiR3rl9swpYa7FyV4mXqRE7BWP3Vh9jsTz6GAF5bc73XtpLZMafCCHgtNw7xpoM/I3NjCZFu29a8j+KSUykFYp6Vu8B6nyegheQvq5qkTUaDU4Aur9566N7NMAvf/7Vb3N2bgHf7usfDQv5hTcBjvP/BXjlCPj2afS//IU3vu3Xv/Vopv96du8r6NnzdAtFcbPkxeNbXFMzYZkaRTIyBPLZnkShMcbh3f7alZUmRWEI9H3A9QOlUdTlDNd3ouYY/XSRhmJksQm4ErNslGmAkRAf23GYMF6XkX4ySt1MZv7ElDIYMzKPVgzjAAAgAElEQVRM5HBXwkuUEjuIlEbLDM3N55/jc5/9DO+/+z6bzaXIXIOnrue0Lntwju8tN10gTYgMnWBezbh27QbzxRLnPbuuZ9s4Lnc96IRWEWN6wtBSzwquHd3gaHHE0cF1RmA3hIEQEr1LtH1gXpccHx5z69YLvPbaJ5gtEr/91R2PHj8gJsPlpmXXbwl9ohxmLBYzbt9+jmoBze6S5eKY5DpigGvHN6irkpg8N28eU88sVbWg6z3vv3+fGBN1WXP92g1i1Ow2DSpYSlPRbLecX5xjrcYNPW4YiEHTth0vv/wSBwdLtruNADsxYQuDLSo65yCnLVf1jJOTc4qyIpQO1++ISpJ9+2FA2xJrDaUuMRruHBxxsJgT2oaLs3NOzjfsNhu6uGNIhnlMlHOx2Ui5hhxDIuSY3CdxIVCpkhAiH374iLN3H7B62lDfPODk2Rn0F7z19tust8I4lf1aE5xjvd7Sti1KRarKUM9qirLAh0A3dAzBoZIlKnEgisjzkqwoDrQXp2KFyYOKxKinV1qTtJ9CABWyx7ZNT9sPk6VCHoHta6/p1k75UzIpwyIQk8/KjoDXPrPARUsVo8f5gZgEeJRAiz3w4AY3PWvOe1Aa5T0qJnwGIqML8hxPLLk0MX7GujrFLNPMAT06yaBsWjHyz3gnfmk6W8tI7ZPrcZUwRkBxoxRVId5xCi3syMGLjyGQH07IcI68JS2sRSVSuRSkrkbtmdmiIJAhTMpri9bZG8sa5rMZOklC8Uhkl3ChKLJaJRJqxvCDzBIak66vAgly6XMKfGZAOeem7wtxKubTM2rfRGYZQxDr1My4Gz/tOJjX2WoqJlFMqeBQIYAxYvGk9kP80SNvHG6MDGGV+6KY9uGLRa5fQ8rXxQW8D8KgDBHvHcIuH2sxqccKpbBliU+BFDOwohQYNQWljHdPTOI/PYUBadBKZMlFUZBimGwORoYf+f/HYbN8rhwyMTE72TMCCQQFCS9MTRXxHkljTwGNlWG2kmAKVF7fM2HjKmnj6nEVIPrI9zMjLMUo/m9XngmbQ1VIoJLG57CSmNLkMy82WSpLbhPKRHxdUFWaWZhTUktNbEbsKqGiJwSxTwreMYRBJOAEVPL4vme7a7jcrilnl7RuQ2ECKezoVWRot+x2GwwLhiHx8N593v+d91i9+4T26UM2zSWrfscmOhoPXfT4ITC4QB/EEs2TU6p1BtR8BuqTrFajRN2HAC7l+3AfzjEyiRUj207n0JN9H5piGk3q/uEAuvF4u/VMSURZQkSMOfVUpE2TceZYaDItNfl6q/3f+QO88+c+z+d/5td4uOv2KP00rc5SNbWfJk83EldQ+Px791RPYRaNQQgj+p7X7CsnWxbwP/1b76C0YlHPxIQ7yATcOT81eV03MPQ9VVVxcHBAYayAIc4RFahM8/Rh9EOQo6xKitJitJUi2zvxa8jvYUxNUfmmzkZWWGXQpUZbTVSyiHSdMBCOMzvwKxdb3tn102spxRQS8c67T0HJQ/9uN/BfffMh/+zHb3O/F1POAPyP7z3hl8428u/GuFzgJCSepTH2WiiyWxID8PgKRVYpoVKP4SExRSqredD3PHAS0OB85FHT44H3Ok/Umme954M+NzzA+01PaQz3WqGt/3NfuU9wwhZbzGfSxEbxOxo3h/FekEZHEP2iLCgKMZ52XuQoPskpNVau4zB0VHXFcnkgEiQSi9mMWVVCFK1YaS2zqqIoNW23IyGGkFoJ+BBC5N85kom/QTbHNKZbaZ2nMGIMPDiHUZoyeFxyhCLRmQRKpGKqaSm6AYLDp4Q3YjKvXMCickMuEjnZdHJgxnivBXDR45xn6OVv55ycqyBeNyl7XewnfUpGdclkMLEApNAMpCznafCnzyjaGUEF2raVTdNCjJqu8zRNT987SD1Ns8USib1lVmrmZZHTj8TLpggBYw3Gpyy7NYSk2fYNLoi3RGE0MXgGP9APDpcSx/Wcg8WcWVGjyi2d9wwhECLCzCrK3CCNja8jqZgboURdCIinjJgAp7yBoxB5i+oIPt+LKu4XT7mioKOwswphWym1L4ZiSpSVIaQcRFKW1POa2byiKHMS39BDjAxuoMum7A4DZQ3K0IfI5fklpW25+ZxG24Lja0csl3O6zZr1s3vYs8eUy1r89s4fcPnkA2KznqRZHz57iiVS1RU/9H3fy/Vrh1SloTSJF24ccn9Rsn7WEz3cPj7iuz7xOn3b8fDpU5kWkhlCOhJ0xOFJwUGEuhAWZVUUlEWNy6boysgUrDAa7wYSipASXd+TbKSoFb0bCBrC4ODCMxDpCXsvsRAJJqBDwmnxolAx0AfPsGvBaKwisw5HcHm/dvqkIBWkqOibgDMdVW/zRFjYQyF7Wozs0b1viawhCWG0SpjE6C+YJdAcAnDR9FOKpjYh71Ge1gWenV2IIa6VaaBzHqWMsE0V4HtU9B9pjPfT5rT3ChvtGXIRKICiAOEh6dy8eVTyMr/LHjkxyX4pwRWzaX+8vLxkt9vQ9TtC4xg6R0gKYwppaFwkXpFUzusjMf+3hq5r8H7AFjOitTx49hR//pTV9hRtPPPS0rmAUg7Xe0a2cWXKaZ1UOuG9F5PuVFJEgE7WTFUQMERlaP1AGQac3TOoXNI8fHjK6Wrg7guaW8d3qAuFxuHdHjjqdqfS2AbxaSm0QqVIYeDFmy/x5idf5tWPv8JnPvsp3vjUKxzMy7z+RS5u3+H1l16jax0XbcPFek3T7WWWV4/lYsHQt3gvkl4JgpKBhtEJlfZSxEJHCq1Bi7WHtgXKSCBMWZUi8bvKnpRafpJwx/F7CLg3AuVd19O1UQYaSj5jUVhsNjtX0/OxZ4DEBL0L+JhDXFLEO5f9VDWR4kqYlKUsK95JR7zuL7/tefh/6/HLp1uR0xYNQ22om5plE1gub1LUlfgFa4sppWGNSaGSorAVvmshY18zrSmrktootijakKg1zK2mjVK7xeim4C4FEJEhQWZr6L3PfLaTkCZQjtHjkn0BOtWoceQcMLJ2rgJ0IUZKbVAx5kCkIGFGWiSShzdu8MbnPkcXEu++dx/jFFaJLErK6r2k1VhhbabgpyFBXVQcHR9xdHRMUZRsNg2u3dF3A7YoJEwoBLquQSfHwcEh1587prYzdt3eP/DZ6VO2/cBiMUdZRQoDRzeO+cx3v8HzN2/w7OlD1hc71mcNrjtj5zzF8ogbxzdIyUjKdL8iBQ2ho9SR4+MFmxOLT4GqKEAXDEPg7OyMd995jxQjhbXM53OWB4dcu34TbSy7rmM7nNM3HSdPn3K5XlPXJc47XL+lTwlrEsZoXnvtVZ6dPuPho4f0IeJwaO8Z+h2lH1C762zPTrEpMi8NbXQ0XcesnqGrCjsrsIUiZcBXa7hx44gXbj9PHDxP6yVKPeFis6Ff74hDIBhFJDIMHYEMjkRhcqUoEqiApovS6BvnaTeJDzcbTNthKDCnPW/9zls0u4H3Tx7Q6cBivmBIiqJU1KZCDT3b0Od+I2FTwKZIZUuMqnKtKEMDE32+vzMbGek9AqCUJSWpfSaAQitCkv3VRmkmyyFRWEPXidqBrC9Jatx3BSwmujy0EsVC0KBMIlUBXQwUSaO8QRUW7xPBixdqjAqZZQUGP2SfbiXBSTFKAJaW1M2yMPgQp6AWnYKoImIGYLTCqNGYPz/HSqEzE0725wy0q7HJEpQu5dTtlBBJZBJ5XyDRese62dIZmBVabJZCnOxqKmuYlRYVJdRtGseoEXzLOKhS+CTvYaybYopEPVpMWUxZYWwJWdZKELahhK3K3ylDpCEGVBjDCBWFKSffvKQSuhQfvEQiFZo+yf0w/oyY+zNZOSklfc5ot6Ans63J9Z+EhHeQhO2vY8yMM5EAapv9Io1FeYgYUtREH6X+RmoKrXRONpbXiijGAANlpAaX4C8Z2qrRK90aXMpgb4gMETxavKCDQSVhuhujQMtAVxswZf6dWSoakFDQqNX02iYklN/LbqW/yKBmCrl3C1PIxXhdGUHRKIxpUPJckCB6xkR2DZg88Awmg6gZzFDIwM0nSGbstQw6CTt3yF7YYl07hkRkpde4B5HVIrmHGr3vyHubIMMCQodhVHGJJUm2iGRigI4swCvXS2mNI5JUEiGLr2lnNYsgfW1Qck7RUMRIGjyplPejqhLV15AcoNGDhy6y3gQudo5Z2bBqT5n7AL6Rvr/b0mzWpKElhsjp7pzHqxV9ivSLivVBzUVfsm6j7OmST4hHMSiNUxlzUyqTYBRRm70FWpL7oE9MIHMZIyHJ9YkJgolELUM0lZ+fqMch7B7UTSl+i23Ltzv+UAAdwHdfW/JvfOYV/ujNQyqtedb2fPHhGf/l1x9w3ruMq8mbTvlmVKg9Ksa4vumPNCrjoZTmxqzir3zPq/zQrSP6kPjpe0/5ia/enwrQlD9YyidoZg3/1qdf5k/evc7SWr58esm//xvv8qQbiMD33zjgb37+s+yuxH2/tdrxZ3/ht6eJZfABqzSqihnzFF5CSoGkK/EFE2ME8QINSRByFCGNZtDsP1PcA4h5t4UUUGSzwCwjkilPnnwgr6sTWT5nMCQxmc2P1SiTWmVvkjvzmncu91PkK2MpfuTONf7Nz36M14/mlEbkfmfd8JFr8WAMkojjhqymlxHN/f48k/9OV39PysyZCbiFrQssrd2jySlxWFo+2EpztnWBlxbV/maIkcPCsnF+OmeJyOSqqO1kljlu9gK4jo7Y8t8hgo1GCgANKtNQyal32hhMAhXFX0DFMT0lkNKAQuUQgkhKkgaqKUleigiltchBU9pL0IAwBAHClSIFMdlHifl5cGKserhcMHQDm+RRM8tQi4mx0ZqDpDlC0ypN0BFvCkLSRO8plWJeFCxnYsy92W1pti1N1+F8lBATLcDwCMo557PPQJRpVcwb4biwR5GDGmVRVhO9RNL7EBh8QBUF2shmvesaSgZcnmZqU5BSIcVUsuJv5HtSkYEGJVLJoAxOmRzAMRBUpOt7+mEgxYQ1JdaWRA3Oy4KnjQAc7dDTDJ4uaNDQR7A+omLHru3wMVLWdQb5FFbnaPSo6GPERxiTkIP3UBQUpfi8aWNkghbHgsKiUqLrEqEPUqAYNQF0UtSJX0lVSsq0NGECOoqPlxYj2KKkmM2YHx4xP1hiq5KEpts5whBp2x1eGWIMmLomFSVOG4KGbb+jjhqfklxTFRl8w+reY07v/X3SsCIeHRCNITRr2ssTlPeQSUf1c89zefKU9x485ge/z3J8dIOhCAzBUerE5958jRtH1/nSr3+Ndht4+e7LXG4H+qhYtVt0YahmNfVsTlUvqaols+qQqpxzsDwSgLkqmc1npBRp2h3eD1mOkLJ3VWCz2/Dhh/fZ7gT0d5tWJDFBTeetAjEyTknMyYPoSoK2qKoQpay2lGOTmwJBKQGYtc3gqCbzVTCmJGHxpqBNJcFns2U0JumpJPFhTC8VaevYRCcgGgtVlfNc9n5hoydacXhDTnUGn3JXIYVMniqHlEg+p0ghMhoB20aBbh485YCEMTFr9B9Lae+pMkpGlDKEIJ9D/Ds8CQfJo5XBKAEnNRprFNeOl4A0y5vLS4Lv0Qx0bkPfDxhTkYgYLIvlAQcH16Z17Ad+8POgFf3Q8eTJI9abS2xZY+ZL6kUJGmKoibFHh4jzEVtqvLnCfOuCAFj5OVEJnIuZGrG3nAhBMVDg0XTRY1zDeVtPSZCpsKzXO+JFS7cVye/l5SVPnj1logAAp+cfiMF6TrgttaK2lps3b/LDf+S7+MLn/zgH15bceP4aB4sClaU5u9UZu/NTlmXJcVERdg0+Jtbh25dKVVkQg6d3ElADiWpWMlvMWc5LrNoz7yxepsu2oCgttqjQhaUsJJXeGp0BVqmTjFYURmOzVDdkPx6rNWVZAYqubdnEAF7uBRTUhWF5MKcoS7SR5Dk9poSO01zApcjgg4RPOY/rI65PEOR5ijHhfUBFTWkq/u5zf4SAkkTPZkfwjv9UScrpP/N24PLijC4//97n8IyYcD5w/fpNPvfd38PtO3c5OTnn2bMTfvplkcf+0283DF3HdrNhvbqka5sxP0vk/2i++me+F4B/4v94xGK55NnJCeerlQAI46UxSRhCtkbbUuTrWmHKmqpwVNEzPN3y+HyHPzrj+s3nWNy4TrU8ZHZ4hC4W9EOk2TW4ocVf8XlrVheQU0DTEAhDZOc6OtcTosNnU/A4Pvsxy1mDNLDCvFHCwFZ7Oawi7OlB33JkWC6MNSFAmkDA6UiaAgPeY3wiBYctxU/VpcBqt6ENkRvPv0A5P6BdD/LzUWFtJQBd9gxDJeLkBZRtFkqRB243W2KAvnMM7UDyEVOKnBZjicFRaElNb3eXDKrFD5GR1jqEgaJUEAxFUWPtjHqmefTkPd5568s8ffSU89M1tT3kYH7A0XzOwe0XWB7f4oN7T2guHuGevo8OUCbD+UPPtVfuUNDx+PFThpgo5zNCimy3G/q+Eb9HYD6fkVygNhX1bAne0TYtYeiI/QYdGlzbglaUNtH2PdvtivsfvM/tO7d45WMf4/xyxXq7IaXItmmxwTE3cKIdp3ef5+adFxiaDW27EyZQUVLMZ8wXMxRJgL3sp1loUUHsmh5lCq5fv05ZFOgYOV+todsStaJLGlsv0KWk0idt8c5Ja5+ElVsYhQqedtsTh5YbizlvfOpNdt2Wt7/xPk9Oz1ltWopyTtErdrselQzz+RzrHGboSUQKUyDZpsJ08yGglRGGU0IkZzED/TkgJaXR6l/YMjrJmqswpOQyCO0pvGZmNUsqDkqFDwKEpGgISkkiokoYIlagNqZ6XoEDko44uyHpLSZBSYU3SpguXgCrGDVgsUVB0mIVUhSWpt1JXaE1xEhVl/iQGHoHRaRUFdEkYhgwMVIoJQCKkgFJTMLR00qkoTpBqQxei1/5mHic0RYBSRQUpiSqQdYOZfAJXN/TuxabIgur5XeNTDEtJAerEhqPjmL5ktL4mnsWWyISjHgoj7JKh3imay3Agk/SWSYUtiiJscWFnhA72nZDQmEKCZsbfU6NthDlmZa9RwaZxayiPjyAqqBczrHzSqxcnIcIyopSRJCI3MvrEbzLftAZhNJ5jwtK5IE2hxmlfL2F9Z+BnDxwlP8vmXzcNKBy/5KZcynGbIUjITBKMfVBQ5ZxaiNMQwUiye4dRhoNoi2JtsLoEq16CmtQOu5rtyTAUUpizVOWlmDEHifJzSKewFpj0QJMaw0mB5cFD1FC8rRWxOCy1cSonsh9bhKihZ3Ua/t0Vp0BQJ0UJmmx3iny7w4RFVLGA5KEhxXiDaujRntyzSg+dkYX8swaiGqsSzOXK422SSPzS/rjFIKAziph7IhpyPXeKy/EM5AoYJTWKvO2pDq3eXvzeUilPCSbAziVosrKpqDkc5Uh4fpAqiOqLDH1Eu0T2reyS3YB1SY2a7jYRo4OW862T2nCQOEGoraEoWGzWbErLKowOKs4vnuXcKw4PzplVT+gU9BcXNL0HQOagZ5gLEHpzNVLU1inj4lkCmS4Jp8tpIRTCW9VZrKL6ipqhTcJbwTWMSlBDLgsI08gOITSE8NTav3vbALwhwLoPv/8Mf/NFz7zf3L3ZrGWZed9328Nezjn3LFuVVd1V1VXD+yBZFOyJmqkbERBbFiyZeshsAIldgDFNmAkQBLEcmQhD4kUIIYdwAmQwY6iIDCiyHLiBJHhyDJlirZkhaQ4s9ns6uru6qqu8Y5n2sOa8vCtvc8tmrRoPwU5wO2h6t5zzzl77bW+7//9B/7mG3f5mU99jQerlqcqy59+5Trff3mPv3/nKA8W1IgWkwG6NKJCGwZBoaUhffKR+GsffYmVD/zQr32KvaLgl/7ga5y5wC++eS+Dc8N0WBb6f/ThZ/ng3owf/80vsuwd/+l3vMjf/IEP8qO/8TnBZ1LCx8Qf+Lu/Leyj8TdtTPVTTGgrLA2rQIRdmmA2poAhCas76o3fV/RxfA7ypjSy9HKh9YTmm8zOGCZJAw0XsiH4SJjNBuaKUomcLBlDzDfG3WXLO/M1P37jEp+8d5SBqs2j0Ir/8Q99hJ//vbf41Xcf0oXIn3n5Kv/Oq9dHUBKytC1msItzrLQ8hRLkSd7ceKUSGxRYDQw2KTIViTdOl7y2t7WBCpXitf1t/u874mX3+umSP3ztYHwugNf2t/jqyXJcK8OkQQ6kwfgzh11HRtPNqGKO604CDiUxEtV58kT2ZxO9/nBNzvkAIbRz7z3rJmIUGDLSHwPOtWjED80oARliNoQcP2trx6IdBqPSYdiWsJWwqaZ1JSagCprg82s0hNZhQsRaS4pRINxcZFRFwWRSM5tNMUXNqlmzWq45OjshBPl8QgZHB5PO4f6Q2Wyey+mRbCWR6SGNBuab2PTh3lVoK4e2NhUKkd8qrXFpoL7LddXajH1HUYr/yrQsCK5jseokmSd2RISN2nYdBoO1kWGPL4qS0lqSMvTe4YIEcPiY8MHTPjqkXiyFJp7XWl3Xck/kNLOxsRn/O9+sKGxRoK2VpittWIhyFEcBSotCDPbzz5h8vxqjqSoJrhAzcLDImowh4FIg+shsZ0K9tY0uS6ZbE/Yv7mPLknXTEXogeIy1GKtJPuKiJzYNih7fScExgFW+73C+x7uO0K+J3QKr1ngXOZt33HrzHd577212Jnujz+bzr77COyqxOD3m9r177F3Y5coLV5nszTBWUV06IO1dZPveCfe+dh+YceXah7CzqzSuo5pVbO9tM5vNsFVFWdZMpttM6hnGFpRVKYd9LowS4J0kkwXvKKzBu46z02Nu3HiRd9+5xe133sYVjmjIUmGDHuNz5b7TSgYeSZHZpwLEDelT4tUgTSQpg3RoUEaGJspgbU1SAniX1UR8r7QZi2itpchNiew9JXeGyAoiWotEOiVyiFBmlySAuwDsXLqSG1s1SgfIa0mrQY6yaa4HphyQU1pD3uvyQTECfWRvwzwAIY17YIoyda5S9qAjkJQH5YEsu04GjYEoPjc7OxMGgC75Hh0l3GirnlJSEBPs7+9x8eApDi5d5tr152D9BgDf+dFv593b7/H+vftUW1ts2xIXIvsHF3jmxrOQAodHhuX8lKZZUdspk8k265Vn8ChrWym+0EruK6Mhuiy32QB5TlnMZIutasa27imrwKrpIOOFy+aM9XKFSppmdcSj+zcJMfDSKy/xgVdegSPxX+z6owzQRfqYCNYyKbc5uLTDyx98ngsXt3lw+IBHp/e5ePECO9tbuK7hjc/9Hp/77X/C4uyE09MTlosF7bqh6zYywvOP5Wo5WgegNEUpLPq9/X1mW7PR/BmyjEhlVpSSiXxhc4mVh4EhidzFGmkuUozCws9nX5F9MpVK9L2n7SQgRymDsTK9N0XBkAatjc0AXU54O+9RSsSWUUywncdpTa8cofO5ABemfEgJ1ztMGSiqGpTi6OiIs9NTeE5e/vHhMSmJV5nCUlo1et2UUaRnd99/j8OTY07PFrRNA8/KWX92eCRDoFYYy2LQLkC0D5umBWC9XpELM6wGn1PuBQnPZxDZl0olirJmZ2eLyWQL1/WcrVbMTxb4xYKmmbO7nrP31NMclDOqYkYfAouTYx7fv8f69HBMIL3/3jtorSjrCS5B0/akvsH4HlQiqETUItlJA2Ng8BdKG2+5iBqHnpsC8RuDv4MMRt5e2vw75b1iWFde4UOiCJoYxLNIWy0gC4r379/ly1/5Es89+xz7B/ssD09QPjKdziiVfG9VFqAi69WC5eqMlH3nhMgRmc/POD2Zi29rDp5J2gCRtulI0VEWUNQFXdvRNx0KQ2lrBoCuLC0xe6nFBFZDs15x+/Ypi5NDFkdn6GDZ2ttj58IBz7/yKh/6yHdy684D3rx5W+q+VvynJ9MtVqdH3I5rjk+OhfkmNxmT2Yy9qmY5P2W9OKVzHWEp7Oam7VGmEHN+5zAp0DVrUSwYTVlX1FVBTIm273nv9m3q6YSnr15ja2uLo5MTuQ7Bs7e7wyR5QucIzlPXE/b39lg1HfVsi6KssmxNEbwTqae1pARt0/OgP+T+/SMUwtZKKAkz0Jq27yQddWtXGPdlRdIqM7nzgDNErBOj8uQD67Zh1a7Ymmxx/bkXwSj+1t/5FW7fu0dEc/nyVUzrmJ+tmJYTbDXFqZKVF3Bh287Qpdg0pKjwQJsE/NEYYh+JUeGSwqNxEdAWKCCV8hUiSrvc10WKQuM7OcumVUlVeNCeaCFoTURS1UOGnHSS3s8mqbtSInueSbPrwppVe0zjFkTlWbdrnI30Xq6fD2LlUtYls8k2BxcPuHhwkePjY46Ojzl6/JjOd2yZGhccuqxFVmoMWkWUKrG2GAdx2hiUFTVKUmkMExwIJ+R+ZNiCIucksFFCHsTDOBKT+NhGJME5+kBsWyxJjPaLgqKUVHVJ7sys/aF+iMLUT7l/GaSmKQ1J0AJuRTb+cCFEYQl6USQMIJDULIw95vCPYXsZJJoqSWqziVDVNVevX+Py9asUswnGWCZ2Qq9agk/ZCsHKe81gmbU5xTUN/UccQaYBaAT5WbJP2/AiBh/mIVk3JrJP5iCZTQyMRemLRK2g87nhnENpRYwq/16NMRJMADIMFlJNRGOzr10+M02BUhprLWSftIhCRRmOJmVQUfpBPwCTRuf1oDFKvKkLbYk2idRTi7f3EMITECKPrJ8McmcgzBgjdi5pQ44ZZLwDFmBQ6CjKH2UEyNKyCPPQRaEGya02Ob1U+tXh+YqyJAVNCHrjaYeEMqQkPTwM8teMr+QaYjyKUmb7a53fT66FIdsIJVIKiAf48PdKhiGmJMZIEUT1pI2oXFT+En+6zFoNaZTkJgS809aidUJHRewC7dozX3SczeeY0LPuOmzX0ZkC3645OTtGVwWmLljMHUFNcUbjSktfWvqypDOKdfC0fUeIKQd8plFuHPJXQo3rT4hCIqtPKaaO2gAAACAASURBVLPXFZhYifotRQIqe5jnei4NnnMCqsv/589tGNSf847+Ro9vCaD7z7/nJf7uuw/5+c+/PRZTj5qev/6l21it+fHnLvPnP3SN61s1ax/4+L1jfuELt2iF0sJv/dj38qtvP+D7L+/xkf1tfu4zN/m1O4/zpicX+Oq04gcv7/Ejf+/TLHrPvHP891+9w1/40LP8ja/eAQZwaTNd/CPXDvjLn7nJ45UkOv6XX3yb3/7j3893Xtji049OR3nBwOhSKXP8NijaCJxpZTKrSv5cW1BR0I0BmMh1GSHIRR13cgYq9KbgGgC6QSNPUiSf8qYlG+1ocj7+PNlQOKCzb88ATg1NH8DPfvpNfukPfYTHTc8vvXmXh+uei3XBT37gGd5fdZRacdZ7Wh94eXfGv/XyVcZ3dg7Bl0NqeN7NTT18X6ElPbDQcsNV2Rwy5IYyMWykwh772+885Bc/9ho/8O5DPn00599+9TqV0fz9O49JKfHrdw752W9/nj/76jV+8Y07fM/Fff7I9Uv81D/64hPrTeXPVBn53DTCmPMpU7xjJA7SPCAlhUsJQkTHvHnHBIVFIZsX+fpERI6XQsJWItENMVEUBWVpRWrpPb3r2ZnNRKqklPgVRDGK3LzOfJMlkaSo4SZPg+mnkPiUkYZq2XYcHh8DhoDm8fExi9UK7yXBFZVpslEmMU3XYhYLUGvOzs5o2gbnHCEqUgg5yj6NoOu4lhmYOTHvL3H0PvLeoc3ASE2byUkSqZ1HPCOUhxQEYPMRXISYNC5pSfaEMTUraU1V15Rlwdr3NF0v5q9ativnxS8sKehDgOAhhy1EwDmH88I+2d7awXYti/VSCvYMuBmtKXKKcwqJPvQjWKyUJP6OzU3MziZa5rQ+s2c2k+JM+dYaZWXiNBwuA9CqtFDdQUxdFTK1VNkzzPcebSxlUTCtapKRNGSb2Za+60jeQYgYlZiUljA0tdGPk6eqsFRGEiL7rqFZLmjXK2IKVLMZk0lFoxW+cdx/fMTRYklVb/ybrt54nsXZnNtnC9589y7KlvjZhFmS5KH7R6cs5oF2ss30SoE1+1zYrrj4dIEyGlsaysqgC0GWnXes247HR8dQaHb39+hdz+NHj/FOwKa2bSFIanFdFPi+xaK4eGGP567coDlaoBz0REKWqBMFeC4LK7T9OPj35bVrDNoKQDfYKagkbNBB2j14r6AtWlu0FUmI0Yai1BTZN0ch6V8+JjAFhS3ymhdZSoyJED1aaLMbgA6dfeE2e9Fkd3fE1kbgbQCCh5sujd8i5wyb4dRgVhzTUKpugDidp2mkNP6/1OmB5AJFZuDF6Il40GJGqxKQ2XPReZROlMXmKN/f2WKmE8uwwBYGs22wleUDL73Iqx/+INu728IP/LwAdF/86me4c/cBy1WPLadEXZBITKZTDva2ibEnuhnFwH0zBcYURG8YALqnrz1PUW+hbD0ycbXuSbGj6zzwvqzX519me2vK7nbFpAaV1rz/3k3gHQAqk6gK+YSqMgIBay0/+NHX+O7v/Sj88icAuPvHXuIbP47gN/9r+E248A3+9vvyFxPgmkWQwX3g2jd8ts//0Q9/k98zPDbAnsg9BlelQEw93kV84bFaM/jAGS3pm+JXtpG75po2J4JpnBeZqnMeH/IMISRc8vSppXRxTLYfGHQjz10ICbLSYk7rzr6kPgSiC8REblYMTddwtlqgi1L2dq0pbMkgTU5RJNLaGJIxoKSMjVEMzV1oOTy6jzotWDct0QdAALrlYnnuPJIpfEgbCxM/ykBlqNp7L2dtgpFlI+8qywBlKh9SRKke3/X0aU3yIt9LCgoF+J7V6SHOO1bLNbqasVi1PHz4iOPHD2kXp/CqhFItTo9EplUIoKCNZW82ZXeyR9u1nK2WkETOMvhPZY3P5vrnujKRxlpVn/+Gb/I47/2z+e9zfxbFysJmIEPrQX7lCSTmZ6e89967XH/mGk89dZHDO/dIjSNFjzGKSVWyu7ODtnCcPMv5KV3TYqylLGsUIaduQl3NqKoJlZYk5bZvSZ0jhA4fNV2M9ERiBK0s9bk8rXa1lrtARQliDtDMO6w11PUeaZaIbQPaQWl55vp1bly7xhe+/Dpdd8a0NEyZEtrITGn2draIFmHHK0VR1Vy88jQvvvQSFw8u8OD+XT79u7/D4vSErm0J8yXzVUfMjGsL4Do04hkU+4SLkaqeUFYV2hb0veOtm7ewRcnuzi7T6pDlasnu9g6XnrrCljHsbG+zagInJ0tuPPsCexeeop7MWDctbddijKSoh66D6Olax+PDBU3b8+DhMVobqsJgNbTrNes+4CKYIjGrp9SzLWw1lZo2QdeLF57remLrqTLY27Ut/brl3uNjbr59B0rL7UfH3D06Y1JNKGYNITb0rQNbYX1kpWuWZiogBCXGgzKKqijElzHI/h0jaCdAVR+yLYo2pOCkiUx58IUwaiDmgW+kLEvqYoIuDat+TVosOVycce/ohLZakMxkZFkJ2Ch74HQiicHS6IJJkUoZYuhZdStW/ZKWFT5EmqZEW0PXr4UtZxS71YSnnrrCd33X93D58hV+6xOf5OP/8OMU1uKj1NOT2UwIGIUhRZGJm6pGGZv9hgXgGM7wpJL0fEoUMCkNd/AGbB9CAQY11LB3j+wnaymEQoVWYnXSth2q66nrmrK0+BDz4EUzUJSkTx10aMPQRo892iipHV6Lyh5rWosNUAiomCjLisl0KoOW4xPxcct9j/iUDX2rqAtsUQjrPwlRYWs2ZedgH2tL2vk6D5BDBmw2+1JMETvWRGSyx6YXYazPdR5mZthj4H6c60WH505Jejvy9qrzSxXmOfL7tEYHUacpjJwHcfDQFfBskAXLJVaY3Jvny7vZsPNnkYbXq0Xuqq2AUSl4kkYA01zHSdBO7vWVDNOUShgs2kaIQsRhZBVuesYEWdGkRj+9DTln6MkzBoEkqCaVMEaGQ0Y0y/Ia8/oagqZ07unP/z5jZKg9rN2UiRYpKWIUea+AghmPUNmqYbjGmbgwBFKd9xvMH9n4UW4+VmHfDczy4bF5VRvvwUGpQhL/c++9/Hn2UcVkLmmIuK5nvVizPD3jtCzRTU3RtpiupTUFoW04OTtFl5ZiVrNeB5qzFt/C2ckpZ/M5q/WK1jlcjATEw2/wEBwEp7ld2ZzAiuzPOQB5kSgE0E0AYorEmJNpz/2cVllYnIHPgYw1fHDxXO3zjR6/L0B3bavmhe0Jf+lTbz6xeOR3yoEy7x3//u98lbfmK65vT/gbH3uNv/Dqdf7ql94Z3+WfevEKf+6TX+b10yWVEblXfhZIiVd2psx7z7uL9djsfPl4wfWtmqnRLJ0f3/i4SIYfz6ymYRG9tr/NZx6Ll4rVin/8Y9+H1YqvnCz5a1++zesnq7zJRqwy4zRBkGKhoxqj8cpk6ZOYaQrAQ07z2LRbmtHzb9zG5fNJI+KeUhg3jGFDUJkWmjLdkSQEkMGw8zyqneLmQv6TByf8xK9/ln/vI8/x8R/7XgqteNz0fPz9I/7Xt+7zl/6fN/m573yRv/J9r/KF4zn/57uP+NdfuLJZNec+x/M3HmT9uJbN6Be++yV+4sZT4/d/+Sd+gLurln/1H3yOlODPf/A6f+zZS/zYb3yeBHzmaM5/8tmb/ML3vMxTdckbZyt+6hNfYOGFNXDmPH/mk1/mP/uuD/AfvHaDh03Pz376TT57OB8/PJnMqEyZ3RyNww3khxskT1Rkx7UkrYWmqhQBAdK0MgNpJ0uFh81JGv6QcrFhBGSyRSVBBUkRnc8ThgycxifBMBhMaGWzCiGK2XyKwg5VWujO1hFyIuNy3dKHY4JHjMZDlKQ1JelLkrgHvfOs1g3zkzPxDAzQ9T19bshU0rgYKDMzZZTT5HtCZ1ZkyL59ZKAghIA24JWGKIalIQ6hEoE+RXC9AAIxYJSkA8U8UU0YohKqfFFYMRuOkXUrElSAzsskQVcVoAnS7uTDw4CyMkVQIs0S0FAavcl0RllVtG0r7zt68Q7Rm7WpMotyBEWGw0xpCltIilZWFsakcLnRE+AjH9oRMEIT8DGJrFgJ02tgFiqViMmRiNh8fQpj5WApKuoKqumEnd1d6tlM2IdFCc6L15NzVNZQoCUV1UxBMwZ6xKAwFAQn0pO6sDSrOTe/9lXOTh4Su1NsOCOlluOuZe0jpwuYbD9DF6aQTe3vvr+gdVNMeYmjueYrNx+zVO9iZhV9ijw6PsWYKVW1Tz3dJSGUbaMTzkva53zeEkMPIdKs1jy6/5j3Hz7AzCquPn8DpRX37t1jvWrwLtA2DSqC73qMAtc11KbguWevs7ezzU5R0tcTFinSa5E4iNTaoAu5OCkEKYwz0KzzhDBKDw7kSWoSsOIcUSkXz4EUnUxzSfg+koJDB3l/HkWPxdQTYRyVNu8Xcv+b7Ge5IfY9CbgND11Ps+/YZudUKQ9ozhcfw3k0AnT5qXIhqoeNSG3+bniuYf8P2ctTKlErst68V4GSpKjhDFYJra0EtxDY2dkea50P3HgW36y5F++xPFox29rihRef44MfeYVLT1/i8PSI1994fXztn/rsP6Wsd9BmStc1OK/Y2t5htjXFajg9PeXs+DHNao5rWybTbbxPFHqTnv7yq9/G9oUrqHKGH/3zlvTdkvW6hfd+B4APfdsPsjWZUBcQ3ILQnnFanjIAdE8fXGF7OoEY6NsVZWGp6oq96QS32vhd/X/t8cVQyrodNpsU0ckTXMD37lwBLmyCQdYq+3Zu8vQwT80gcjL4qAm5AYl5iJJUj2k6irIUoM8assv1WCBqhfgrDX5AKUGQwdRgsB18AB0whaV3nSSyKo2tKqbTmkk5AeRsvnjhKYJvSckRfEfv1zlYRZLawBMDGBUwygmbJD9iiCNTwhqbmR7jB4ItNh1BWU8oyhIXEsp0IumRIo9hoj2wK0yC2PfMD48BaVZLY9meVGxvTZlMKrFYmJ9wenLCqgvMly3L5RLftyjfAwLQyY4BXbPGR9jd2+fZZ57muavXuXfvHs07t3B9y9A+j2yHuNkHntg68s0/Avff4PEE0P/PeRjbkZwnKi3Al9YknbDKokpLUIaTwznLecuz1z7A7dfvcnTyiD71mDJCcKS+R+nEer1ApURVljLACoE+KrwLlGXNwcWLXLx4mbqqabuWx48eYFWkaSMxerq2l+uuxaajbTe+kCfHxxSFYlIbrCrQSuNbT9KKajJDVY5Oe5IV25eT0xM+8bu/zbt332anVsSVx68c26rk+YOnePq5q7x1eJ8mRNbOM601ypaUkwnT7W12230uXLyEApbzebYdMBhTMJluU2rN6uQQrcCaKMmYzuNjK0wmY1EJ1qsljx8+4oUXX6R9uuHWrVsU2tL3nuriBXYvPkXUJUfHC4qi4qWXrnL16jUePHzI4eEhkFivV/RNx9nxMScnK2IINJ2jD4rYe1brlpQ80Tt8BF1UKFviEmxVNdt7e1ijKcsC33f03ZpmuWK7FI8tayym3mJWTAgkPvu1tzhbL3l4NMdUM/aeeYZqZ5f58Rl9jLTRQ9+wcp5kpabxSK1nlabvJYKiLgwhBAoDZSmJ3zgvA25lQDlpMLVCJZvPNy+gUdKEYNDB0PSe0Hl837HQDV996z6//pv/lP3LHVV9QKHB4DDREWNHURsuXjrgwx/+EFtbM6lHHdgOrCtIoQQqJrPIOq7pfUuKiojPQ3UZPjsXWK0aPvyhjzA/XfP6V27SNi1t2+Kio/WB0lrqYoI1E6yOVNMtkrWEKIDt8P5SrjuSkhojIDYxIYMw58H2gcgQczK0Hu9lJZYgVYlOEe0j68WSvg8E79E+oK2IfIVFJEwblVlDg4IWtelztc5mHRkEG83/fciWNpmFlbciW5Xs7e5Q1zWdi/TBj8MjkL5I5UmktVZULCnRtQ3v37nD2jXsX36KC/sHTKupZFflAYv3Pm9v8trCmDo/7HRDz4pIJXNPIwCXFFJ6AEUZbJLiCHAqJSy2mMSWpMjSYquF6R28kyY5xhF4i8jwXRiNWR6KIipNoQzJJowX5uaQQouS1xijkAiiiqDTyPzTygoTTSmihmRMluMalBJpotbiQZ0iJK3QZGYY5H4iwdeNaIbrNABb5xlzX5+kKgqoYQ0IQKdTQhkB6ExOcx8swPR4Nqrx9wzBe9JDZbwhIffvwIKTC8gIrg5r8OvOr5SHT6ivGypxjnl3DqdQSCK19PVqlHUO5JUBnB4DT3L/75ycV13XgZXeUFmFazu65Zrl6YIzU6DXE0zbopo1K20IXcfJ2QnKaorZhLaNrOfC8F2cnnEyP2PZNFl2Kv6HsReySRrCnDI2kzQyiMufgCjMdB5MjqtcgLkB4BssMEhEpcdBZ1J5lpdrfTVMYmGzHr/J4/cF6IZQggdN/0QhIhdMvj5x73hccO8u1vytm+/zJ5+/Qvri2wzY8K/cesDrOcGz9WGzGHLRNSs0C+eJaVPMrTK6uF1alj6MhdGwYP/R/WP+3Aev87mjOY2P/IcfeZ6YEtuF0GDfXqz54//gs9xaNkwLw0+/fI3/+Ydf40d/4/M8WEskucjXBgPfYWeURtxojfdJGsucnkMGF8TLQ1ZzHK7YuSlLAuLgHKx1jk6X5msIXhZdehplpSkJrVVQ/HzDkmShPIFEK750suSnf+tL43VgWAwp8ctv3eOXb93L4JsASH/9K7dHSPFj/9enxo3/GxeQsqL+4mdu8jO/d4uhYWAAgfII5L994w7/zRt3Njdugv/99kP+t3ce5AU7MEeGiRB86WTJn/iHn89N6QAqZbYJYi6uclahjz6/v6wNz02MUkbSbVSOuzYGBhlwPjiVkiSrUcKbBiqwzgavEeeFEi4MqR6SsHDktcG6lenrkMBjz3lQAcKa00J7TpmZ4GMcX6cpSpS2lLVlprQwGBAA0YWAsQWmiJgQxZgycQ4sBuezR04yaKOZFDU6S0IHD6zzevYR6A1+nIZ4lzb+tiN6n6FlJdLFzvVAoiyz0Wx+X9YWKCO0XJ3vi6QLMUe1JU3nWK/XzOcLrLE006kkFqGpqpIUReZG1KhCoZImKo0Xywe6dUOfwzR8FMPT3jmck5SlEDzRyz0vsvZNYZCSpIGSzk2pkhQhQ1R7SIEUFEFl0CPBsBpVvn7aGPHY0SI/sbbIU6qINRGrI4WxlFbkuIWxWGOwxjKZziiqElNkGa0ReaaPke3JBK1Kghdz4HpSYQpD38k0NQQgGFzn0WgKY0jecfe929x//118v6TSER89qxgpp1v0fptqegEJzzwC4Gtfe0x0EWMvo6sZXhU8PrWEUydFfdijrKY4B6fzE9Z9R+da1t0SkiOFntC3JOexUZNcZHG8oDk6JlaGg52KCwcHXN6e0BQG7yLdtEIrhesc0Xt8X9GtGx49vEfs96mriul0wqJpSEphi2w8HCNdFNNmZTPFXSHS9WyCK5LxTB/X4tllzIbpG6Ng6kLTRwqtKN6RIfToINPiPipcMaNUE2proShEtqBlLyAKi1PUpvIiYhpGLueKpKJ+ArBLkPfjjXREZdTt/M+l8+fBcEAM9yGMFZoiH9I+A7s5oKcos1QhRkyUAn0gMCTpDBCg1TCtFJcuHYCoP7m0vwOzisW9Y1aHc2Z1xcWDfRbzOW/ffpt7jx9w+/078OqzgKT3FnUlDVnU7O5sc+PGDW48e42JNTxs1pweH7JenEGUoATvDQEPl/PnZGqU3SKaKT5q1r6h6RU+GDBb4+dSVPs4H+mbhtRHYhfo1xpyTsT2ZItyYK568SwyFu7cus3J0Rk/nJ/nJx9eAmVxXoDK9boV76yup1m3KBVJqqXtTom+xWpQwaFDwGpZSNYYdvf3mGxtYSc1v3Ljny2H/vTjbZGsaJUNqYfwJNk/bZawCjNuKDrTeOakGOl7D8i+ZLOXTQybAeWwV8sakvXsI6AKki5kReahWYzgY8CTBPxLoIYhUoiEGHK6nTBQVfRyVibE00blwKAErhemmiksSYnnZkgR51pAY9LGO3BaT1mvHa7vcU72fe87hrLIGtAmQfIYJUbJm5shNzF52aaYJ/hZDlUUm99jywplDaYosUUhMrC4CTVRQ7iGks86xSjMpZTwSuTVRZ3otCKFlqAjq7Zn0fQsG0fTi0/iTl1Smdm519hnNryHlCgNXDzY58XnnqdvW956+xbB+ewHtWmIxs3hfCE1/LEabtZ/mcemcLfFmhgdMWmUsSQlFhQHexeYXbyEqWbcvnOf17/0Nj/yQz/CB1/+bj538hnWy0OUb+j9im61zI1oDr0y2f84M0NMUVBUNWVdsb27w872Ln27Bt9R6MTciMecpH4rMAVEk03u8ytOGUj2Aa88hS4pdU1oREKNBV1oQnCsHx/xzhtfY62hWZ9hXYPvPF0XsJMZO5Oa6HrmyxXzdcu6czjd0Nx+j6PTU2bTGhUlQTSRJWgJqd1tibYFxhrKyRSVAoUtsGVBStC2nSgRMnCslWF+esbRo0MIkbooiT6wXrecrVvsfM2ernBhzWK5ADQ3nr3BUxcPUDFyenaGa514KGGpJ7tSV4UlhRbpu+tavIskZdGlQdsyX0uF84GmbdBa0ffi+6a1hIT5dYfWsLIWmzS79YxgFPfnS45OTyiqbeykYufSZS5fvsLFC2tOD4/oOjnny8KK4gKPIVIVhqqAJiceXtjfxXc90Vk0W6iUML4l+YgvJEQgDh6G2uaaOomfcyxJPtF7aOYrrA6o0KPwLG8+ZBl/k+nuTSbVFrWK2NijkoD7FHDl6tP8KfuTfOTVb2Or3ickqIOm1jXWTMGscGGZPRMTRVVycPGArW2HtjXT6YyzszO++IUvcePZF9ne2eXVVz9E07TECO/cucv7h49EwWJrtImQPC5C24vEtOu6HJJVytkq9HTIoWFSawyd0wDOk783WzplQCrkXsPagslkggb6dYcuKnRZQbCYssQWFUF7fMghMkkKYg0wSD5HoCaDGcMriEEYZjncynsJuEomjb1WWdXsXbhAioFHx6fEpsnsr1z/Kj1soBL0EcU6wxpF1zY8uPc+664hOs/lS0+Lj5myIwgzKIeMMbjeo5TKZ99m9BhjyJJBfe59CINLj+SaDWCmNVhlMFhS0KSQC8MkftAKqYUEEJQe0eQwAlKSPWkAVLIvnsm9mk7IIDQESEHkqUaCnmJm1oxBYnmgKkMnRaENWiXiIMtU8v9aZcmsMpBtGNJg1hblnkGJ3PYc5pZ7+m82snlyaPP1wN4IwmVlmzlHdRtr0PO/bOyq47imzxlWCavx/JBIDeCcDMBSitiiAqXElmYAE5VcGzWcb0mjUx4Qqo1sd5Q6J9DD6HEA8nJprNQmkVjmmvJZRu/x3uNdBwVYq4Upv+5Yna04U5pUtZh1i18tqNBE5zg5PZFaZlKybgIq1ISgaVZrml4cHJNWJC2kDFUYdBS7HVHCZZwjZVJLrttRApDGmCXomqz2GfqRJ68XKUGWsSY9XI3z11cNF/abrgX4FgC6IZTgyqTkzdPlEy9DzBsVH3tmn3/3tRu8sD15IpTgPL3z3rplkBhJszK8QHmelY9sF2ZcJUprdjI4uHB+w0Y79/5//vPv8DPf9hz/x7/2HWgU/8PX7vIjz1zguHOkBEed47gXltNZG/mrX3yXP/zMAT98eY+//c7DvNlmgCXp7HM0oKWgsCidfQEYvAHUeLEGiSdJEHSZKg3vS8tGYYywu5KwZ5Q1AtBlhFVEPAk/bAyZneGzHE/KfTWCVpvHZgP/5g+1WQfnvnOcdQx+NeceQ9IhamBq5EIxDtcNaYqHV5BR2gE8HVDo8Ue+/uXm/xy2tH/mL/PzDP4ow1YlZ4owBQbqs7WFIOHnvpLSclCGiElSLMrrjAM9MU8REvgozb9SuJCITYcxYI3B5JRNC1ijUcqSjH3ifjLlNINdkIIHlESDg7D1kib2Aa0s6ILgvUxxkICR3ntJl/USXhDR2ELSSafTKVVZZKC4BK3wMX++WrwJfTZFjVEmWyFvatFLA5hiNtlPETTYQlNWdmRpaCXf16eA0ZraVEwmdWYRBrSSTT2isAODThckFzApZP8GRdt1nJzN6ZzDGE1tC2JhshksOB/xPubQjhz3nhRd3wtrKLOH/KrJn6zsEzozQAb2yLA2hpCHFGSzEww8g+hajMdtaZlNRMapjZa/V9Jga2VH7xBj7SjdKoqKMgdCpOgBD8FJ0pMxWG0ym85QWEtZVZtpiNZEJXIvSVosiVHjEGnStK6whUFFj29lPcYIKoofREySvpVCIBnZl7oQ8rS9xgUQhamiLDa6opPjBdO6Zmtnn62dXSZ1SR8Tq3ZF8CuCc7j+Ec5FmtbRdj3Oe3zyoCKm0CPoa0pLsV0xO7hE9fyzEAJPX7vKlWeuUpalgAVaQhq0MYQgCbV93zM/O2Mxn1OXIidNh4c0Dx6yXK7o+17k01GaFas1ZS3XBoReLywgJQwflZO1UspNsxqZsEpQ/8wazQBt9mtReU2j5QzqSNKA5uAIf247C0mNyUqy0WjGlHLGjYeEJY270PAlYN4YKjFMQNWwReb9cQgEGp5s3Dty0ZKn9gHx0IwoARGNFQBT0Dv0+NrSuf1QJG6WxPbODpefujgCdCYFtrenXH3mEv2qofcNN2+9xaJZc7YUc/L1cKsBIUhS3v7BDts7O5T1hLJSHJ8eEdqew6Nj+q4nRDFkT96jkiSSDo+26YnzFcEmvCpYdg1Nv0LRYvXm7Hr0+C6p70j9mlp7dFjStWcjQOf8guA9hUpAR9cFUI7777/LBbdhc7/68guEpFg1PYvFivlcPOX63rPOAJ22AR8aUnAYZHBB8FgFpbUi59QWj2asor7uURQlwYexPVOZYa4QUE7OQQXIHjNIULQaCmiNSjKQ1HpgSg+ncV5vQ2JCyhNZNmxvWScmn4diC2CGJsmYsQaTY1jAU7SAx1op8pdjygAAIABJREFU2UnDcEynEcBLMUqDFwI65AEXInF3UabaOhaDvZjsVyHQu5a+b/FegolUBGNzonuUn/fhHEMOUOShV4oj42Pw7kLlhjE/Di5eZN1KGJIamOUqG1mfK2xTTGii+C8e7LG7s02zXHN0eESzWtC3a0mFNIl119N2AZc0VVGxvb3FwYV9CrM5zE1mGVVViUmSlht9j0oRnZTUEXG4ZpLsJ55FKfvwbG7tJx7nC69/gcf5p1G6R2svDCKVCAH29vb4no9+lA986NtwyfLrv/EJTCq5euUGV/+V5zC+4M2vfoamuY9zIuOxhQzcQsoyZwBtqSdTtrZ28RGaruXho0esmxZ8R/AdRsvwLnnxD43KEjGkZNiabu7tS09dxuqe0kasTmg7Qdkd3CrBqkMnTxkM+MhEBaqTFcW0ojtb8ejhfQq7RZ80R92C99enhP6M+4eHhKgoKwnLcj7w+PEhp0ZR5zTM0AdRCcZEUjLUcmHFWoGJDms0s7pmd2+PuprQu57lcslyuWK5WAgw1nS889Zb2KJgWlUSoOIij49PWbWOB48PmVY1fd9y585tHj28z/Xr17DG8uD99zk8OsK7wKXLTzOZTGj7nnffvc3Dx4cjwK6N+KVqm8+kJCmpq9WSddcK0OA7+q7BpEBSina9oM/3TN8HzrZ3UYVFWTnni9k2tq7En7H3FEXJZFrnPUdTVBNOTjuadYsmUZaiSNIm4XHoviO2a9Yu0C+XEmijZQjZYCCJGT8DWQCR8BEMeEl11yqiioi2nuA6vGtZtWvi/TuU8wYVDbbrscFjdKDzLV1yXLh7hxdf+SBXn77OrJoRu5YYT7F1g5qu6LsFrWuw04KyrpnOZihtaVpH0/as1w33HzxCq5KzsyXXr99guVxx9ep1PvTh13j37j2+8MYb9K6jWS84OXzI2fFjrElsb00oS8P2tqg2yqrMQFC+s5NAS+qJu1Gd+880fqk8QBzOZ5VtNxSK1q1wEZIu0SrkcBuRjIqvVRzP9sHDWnAXeSUhe8rBMNxTGdiSmrEsClEbZaKBVVCUFZPZTAZpWUprE9kqJGb7lzysUUrC3EKgmFTYqqAnEPqWrm0IPojq4Unch/OsqfNEEKWGWiWfOZHxfIqZ9Tb4REv9MKT7Mlo5pSQMNJl/5ImsFoBOZbBkGDIJ+CMhHDEayF5oaPE9DsFjBloU5KGaobSW3lpikET5JLqrsTeMRGwCdMJrxPM6Y6nnWWijj3cmpOSWiSHTcJMPtFlJudUfPsjxId5rG5Viyq9X/XMOkJGRNlQi6hyDDnCuIwUJn4pJPm95bmEuGmPkHB5/l84sNhnkFFaGCANJZWTp5QN+YIQprYjGbHz384JVVs52GzZkFvkUFOL5fA5UPAcAKyWJ466LaDQGjY4Qe0+3bFiSiLbBND3dfE6Jgeg5O1sRk0KVLYtVRwySbutDEM+5DCJGJduYKSSIMvnMgs39JjGQNIIJKTLQLMO5YTibBrLLsLxUBuvSZiaPUhn4k28Y1DijjFl/Pa7z5OP3BejuLlveXqz5Ezee4pP3j88tKEG1C6357z72Yf7KF97l77zzgDZGfurFp/npV689UXiFxMaLLbMkhveQgNdPV+yUBde2JtxrxNfl1b0Zd5Yt805SPlWCmH26VUosI/zlz7w1bmAv7Uz5ue94kd99eMITctxhw2CYMox/LIyFwWTxnFZbjIiFghnVeDQRcj8e8gJj2Egim02bQbaiGNIHYwKfZIqtszdWynKYiM7NnTRqKhve+ShJYRFNOoeWD0jscB0yFP0NMLtxV8rXS36f2vwU524X/quvvMdZ349X12z2tbwJjR3oCMidh/g0ZCnw8KufpG+OdNHNDjW+hWGTKIoCowtsYbGlzZ5dwgyQAMiNVxPakLTk7g5JijEmYbGFiAqelOW1Pnqcd1IcRQE6eueY2op6Mh2NW0P0qNxshRgk/VNbPArnGRl5AH0yOO/onSckYbTEJMETznu0idlcXzx3uraX40iRf0ZetwvSmCXn8nUUQ9lJXeXNSjbJkDQuBEIQBsfgu3aeZh4zuDoYCYhcVa6SsUaK9HzAD/cegLKGsq6pp1ORl3pJ55SCLB+jqhDZMHI9bFFgiwoXxFtOdU42VR9pghx4PjhhBg3BI3lxKFQugoXCrI0Z1442wqqoCkuKnhgGb4RNo6r1cB0FPKuqSgyYjaEsSsrKUm9XAsiNB4usF0ny1FRljS2yaXBunq0txPPH93Ttmq5Z0/e9+JxZm81hB0ZLbi4zcy8k8WjTeYOOzuM7hy60eJ8g/5bkpIhG/IFSQjybtMLaAmvkE9K2ILoObS29ixSlxWiRFo9rsF2xuz3FFobGt7jWcTI/Zb46w8VO/JfmLVZVzKpdiJZSz9jf2aaoK6rtKfV2hZ4V2O2a2YVtqq0JhVJcLKfslDWTyQxTlnilCVoRtBbj5ySmqX3wI9uzrApiCKxOTrn/5k3e/erXuHXzJienpyIhzuwo8V6Qf4+wU2Jk/xhlcphI3Jx6KZHG/V/Yx8OweZB9Kp3EVDY/YcqVUhy+XyGFQk6uSrnoHX53jLk0Hrfb8x5Ym+ccvoZzMCk1TiRiPMeKyjvfxmtus/fqpEffjeBl/9AZUEZl1qhC9v6YiEGYzAMQabM/6IX9HS4ebHwJu/Waq5cusPXBF/HB88bXbnH/nUNcUOhygikn+LCpuCeTffb297h4cIALPY8evMfZ2QKjajQFKifHKlNADPgQKQv5TIdHu17ThGOcXpPshHmzJKQl1vS4c0De8vQ9kmuhb+hVR6F6lJpv1rObU1pJIHWxFSDNWvqwwPnJ+H0prdC2wPkzHj16n6OjeyyXa5wL2Z8r0DuPUpEYxHrAKoXRVq67lveT0PQu4HHAOUOt4aHEk2ZYpZmvmyX4eUg3vqi8LoKM3ZSRybMdwkjGYZnsHzFtAh0GsE7AOT1KrgamnTF6NF4ePH3EH5exaDYK4jlJjJWVzzBAG+6JmI3Wh/TvECMu70lKiy1ISgiomR+//MIaiY6+mL++9cfn/uir3/L3/uoLGpjlr3/Rxx7wzL/Ez8HBU5dz0xwIIVIVJafHJ7xz6xaHjx+LrD978Y5JuYMfXgboVB7anm+nFE8yKL71x+aHQggZ7BXZlk+BCxcv8kMf+xjXnnuJd967z9UrT7Oa9ywXcz72vd/H3szy98yao8cVIayo6wnTrSld1/Lg8SOOTo7pfaCaznj+xRd56eUPcjZf8YUvfonD40NOz87QybFVWepJRVFXLJqGRdtJmFMSVqktN/eMKkz2Z5awlC4FQkzUsymVLXiq3OKCOWBiFNtbe5iiZtl1aLPgTBWsXUevLd4Y3uvmmFjQxMhsaxtlSnRRCNtsvca1DcYaJlq8X6MWVUVSOQk1JProsCpSVRVJaZq2IyWpLabTGSmB7x19L+og1zlSiMxmM0ISdlWhLU3XsVotWWhFacX25uabX+XRo/sYrVmt1qBkCCSMLE3b9azbjr7rgUjyjpQiRWGpJjWmKHEIyz/4juidNL3Rk4L4ByatqEsNvSNFaJLjpFvQnnosBl2XmNmEK3u7pKbnzpu38MlRaJgYK4FavkP5FhN6Ocm6hFeBAtjf2mF/f58QdlmvWrreU9dTJtMtWhdp1wHNFJMM4CAby48AXUxYLcmhyni2dgtirOjalq631LtTXvn2P8DDu494ePMdmtM5ZaGFRVnWeDul2NolGsODe3e49+ZN7r/3HifdXeLOEhM9VTehrKeAYr3uUVosQrwTkNn1jhA9X/ziF7h16xa2LDk8OQID5WSL61efZbFacnSoOH78mOViTfAt7XpFXRmskkFdXQ0eZeKTp9NGxpjUMEjMDXkaerBITIPMX86FDDcJeJ+yX3lEEiFTQjlh8YS+p3M+p9qfu+vzWQDnmU0bgCQqAaqSlj1eKy0hXMbkAXCgbXsePjqka1qWyxUueBmw5notZGWSLSyTqqTvoOtaYvAEr4gqEJyj77px7zrP/ElIz+Gc1AVP7llpZNgllUkmKqvGhv4kkgHFHCwRAzH4DHwIi1/89yCFIPLTJJE8Oss6RXTgSUnqJZtVLyHkejGfe9Hn2iXbpNgBPB2snYbzVLQawphiA7KEIFJnlUS6mDKwMzRP54HZmJDgk1xjDh7qKZ/PaXhizgE0eb0kEKVekqGySuK3p9LXMfDyc0hgYdx8pt94vogLMvQfpLyDncY46MrN/ACyqTwwVzGOdcrQb+k8+Bafc/mFwQ8Mys31Tedq3Sf4SueCEYwRexajw2izNZBNrM1rmYqUPLayVHXNpCixKFLnaVNL1B00Pe18Ra2EQNH3jPdo10ofDiLF7nsnpA6t0dbI8DKKj+agXBD4ZuiNBSSUhaiIYYB5hGGosjHihvGqhk90/GzjwKY87z2nhteYxvf+zR7fUkjEz376Lf6nP/gaj9ueX3zjDg/XHZcmJf/GS1d52PSUWnPae9qY+MDOlH/zJSmSYnoSM5LArvNpigJ2h5i4vWj4x/eP+Y+//QX+4qfeZL8u+LOvXOV/eetelvPlZ0mbxX1tVtOFyOOm54Wdmv/ie1/mV99+wNuLFqUU3/fUHvfXLe+tOiZW8dOvXOdiXfLJBzmpKSUy/o7PscJyWSAknfXFAh7YqkIpQfYDSKOfkXSXBoZPXtCCOGEKk4GjKFp1ZTbTcSMG33J3ZIP0JL89KA1RWB65DiSi+a0/+QMA/MRn3hVQZhg9kFlDRYH3PX0n7JjZ9gSUJMNZbdAZPJgUlklVS9GuNUW+CR8Fz49+/0XKqqCcTEja0LkO73xOXlQkLwWN9x6jJPU2epF+aC1sEOccjY8ctZ7Ge6wSb41SGeqqQMVEs1qikkiErKky0CSHgNFGmIdJZME+SGhC8FHSUvLmKGa2ubFGft5nTytCpFACdg4mmABlWWRQpxCT2MH8M69XP0qOE77tKazG6IKEFAWRAJemADw4XeBcR++FBaW1JamE7wPO99R1IITMVEPhg0eOGTUy5pQ1KBPBx3EjRCmwBVVdZmBSbmqjjEBmKY1pfecpyiNwdW5HH5gT57X/wyGbosi07ZCOZESqGZIUFZv7NicZK/n8+168XEKMGFtQFLL+Q5K0wC4GdKYT+yjgw5AwNADnKm+MYhCuKAtNXQlgVpQlVVUyqSoUYtZrjMKaIhv6DhMj8Xsw1lKVArRZawWgqy3oQNJxZGqQAVGRVwlPT0BrkdQmH/DOC7vECejU9kEYCEbkkEkjgGGIeSIlwEpSA5182KAj3uVUrcEUL0FZFGxNpzgXCS5ijQCLsrWJJxTB42JHMlAVBUVZ0ffCoAgh0WXaN0BhhMm0WM458Y6UEqtmRet7eqPQ9QS1v810tsvFC0+zt33Awe5FLhwcsLe7TVVXTLdrJlslpowUtUZbiK6jdIrQ9DRtx/zkmNNmTbIFUWuOFgvWrsvTI0VRFmxvb2NCjdaa3VlF8czT7ChDqTRvvvkmZ4s5MZlxQDMkNim1AeZUkkGM+HowTl7TUBWroQnOOuksKxyo/wlJAHYhkHS1mQDF4XeoUR4n0y1ywSNrUqUMueRzU42mFENhJUWTRo/zh6TOeYuOqPdQCOWxax69DsWRAilMYyQF8b8yWouhNYkYfJbbyBkVEyODW9KzE8ZqtmYFly7ts7MzHe/5s7MzVqsLoIwYulsDRQHa0LpE3zTYcvP9Vy5doywN67MVh8ePWCxPZdBgJfFvNq2Z1FN6Ba5ZiTVA6lF6AxR3qzP6pqeNBcnWLJuGGB06OpG5Z4Zcc3pI6pfY1KNtoChgVm6K/ODFDSz6gDElk50pRVmC1RydHUPGId+8+TqmKDk9m3P/3gMW8wXeyf1b2DJ7rHmmsy1m2/vE4GlWK4Lrc0K4BI14L96F5TeJuxfLBQFzI4nkA0pFkbomNgzKlM/CKN9DSnjl5JrmiX/Mu4PSm8JXtoXckLFJEwNIMRf4UUP0BL1hJwwhP4PMVgYGeY1lfxWd2ebk+8NmdYN4kYptgvEG5z0pKAwWKT0ife/QAb7UWz5S+m/42fz/5fGpZWB3/5IU3CkSY6BQhq7teOvmW5zNF7jeoSq7OWPH4S/5bMnNoVJgB0+d3DyloQaRc3lgCZx/fL2/8xNdWZjJHmc0dTXhwoUZu7sHtE3L1954nU995rPcuf0O7drxid/6NSq74umLF3jhA8+wu+0wKrKzu810a4uT0xN8DJydzVn5jlppZrMtrlx5mgsHgbZz3Ln7PsvlEhUs29s11mj6EGmJ6BhJfSQlGag1biNxbXyPiT2T6f/L3pvEXJam+V2/dzrn3Hu/MeaIjByqMrOqsqpc1XPZYrIljIwFwivEwhJCYonECoHEAgnJEkgsYAMCiSUIg1i4ZSFwd6vdNobqbne7XUO6KueMyMwY8otvutM5551YPO977o1yNVRLLFhwSqUv8osb9577nnd4nv/z//+fhtOTA2bz2xwfv8HczZhFzy2nOYwelTyqNWyGgbhUHJ6esOjXbJbXzJzDtQ1jDCQvGZG1Igu0rqGzCR0iWz+iQiQPIltvsiYgBXE3W5CNIQSPIuCsxgcvMlKlaZz4lCrg5PiI9VqKcK4pnr4hYLVhSJ5x3JKIGCUF1l7BzdNjjFZcXZzR9wPHJ6ccHR8TYqbvN1wsr1mvN1xdXZBTkIg/y6nljKJrLO18BtYRsnRNHcYgrP0Y0NHTWsVB55gbg0IKCbYP9CEz+hU+Jg4bx71bt1m4ltXVJcuLC+aNoZs1JDWwHnoChtF7lJJYKQZYLYU+PV8cMD+4wWx2gOtmKG1J2TD6xPOzc9Jwzqyx3L99C6UyF+fnbFZrUFo6UifZ32KEnCwpNMxmDV3bsdle03QnPPzqd8jqC86+WNHmhuPDjsvNBebA8NZ3vsE73/0WV9trfvT3v8//+Tu/x8WLC85XS5bRs9wEbLbEdcDHQIwR6xqapqG1DW2jGQfPdhjIOTOMa7bjmnffPefTRx9y4+Y9XHdDLAbyiEowbztWY4/vBxrVsL5eo1G0diYFS21otGZEE6UUw87aqCz5KeYuRZWUiuVOYcUr9nySJV8MKRKjJwYEREhRVC5lqetSuJ/iDIECCuNGQABrFSlpISIU0CsFUZcZY9DGobJitd5wdf6Ci/PzYpuR8d1IiC0qCrBotBZGvNEC5KpCEshpV/yzhTWkduCLFKR33T/397W6j5VNsXyn0vkTCltrJ2uNMU62DKbYCiUd0FnOYlXGoXrw7hoLQAUwJ0sSVT0E617KTj6rqshFTQ3yBEdItcIlUtkav+eMSsX+qTQ2Kvy+4k9vil1SucOcdzmX1qhcJcR5wjsmL8F6dpRxsE5k9z9bw6lgFmGXt+WMeBnXESjvmyvQUuICY16OZYRtL0SPKsjc5YP5pdeRd0BZbS6oTFWx5AlsrI+5Pg/5u5fPsRrV1NhcFzC0vibXeD7z0vNSSuZKToamE2ugtmnEcz0kYu8JUQgRaTvge08k4owlpqLE8YqcpIGKYAaxNPYU7IZsUBaS99KdN5fGOJNeVe7eaifPNkvXa5WF0ZdFN10KM5KI1CZyumAlqczPSr6StWWopK6fJTj9vOsXAuj+3tML/tr/9o/4d//ca/zdf/V7NFrxfDvy25+d8T999JT/8A/f49//7hv8jV97ix+cL/lbnz7nX//KvZ2hfpYNK0yI7y6NFTBA/vzv/IN3+U++93W+/699jzFl/uaHT/kv331ElXr8jV9/m4eLjn/z7/6QTObtoxn/8a+9zc3WcT54/uePn/Ff/OgTAQZz5uvHc/7T3/gap61jEyI/vljx13/3B3y26qdJhZLkZ9MPsqXoYjypNaWfTGke4KaJl6iyElW6acpk01qkkVoLy8g6SQBS9OSs0LYpCa0WxlCllpZxzqmChiJDGL1kqjnXTUqukAXUq/evjSZpCaJSVmRjJiAGxAw6ETFoWutKkiebdMpZGhXIgIiZbFLE0RNdZhsCw9CTcxIgh8zox/K7KGa7SgmTrB8Ipd12SIqEwfsAymCtIaIYh7FQqw1+HPCjJ+ehfLMq1u5LC2q571gWr/if5J3pP2paPMK0kyRIiAZSlTC2Hg+FeZcFKTdNg7HCdrsarnbUXFWSchT9ZlsqV3sU772d9Gy5LlRzgby0FtBU9n3Ltg9yaCvxLxI9v5FDJecid7D0fU9Kia7rWCwW06EXc2TwI74YUfoQ96pGBu/9DrygVEHKJpFzSdT2KLQx5ZLcF8PYKtlBACsfEoOPaFR5rSQrPmZClHnS+0DvI6OPDIMvHjbSIaoyCrS2tN2cxdEB3nv6TaHKKzFBj0EMc41VzJylbTsa19C2wmZcLBZ0846uaaZNHZikvN5LsKYryFIfilIyx2ImDp6UetDiiUcxcZW9V0CeMfXoIheuCm6Kp0WImaiQDrulmUj2EZ2jHCBKYUIsf59KwiuHZdZgjBWjc23luRuhUjdtR9ctCD6yXm7JWYv/j3Plc3uSMRjTkLTBugaDonWxSEoDm83l9EwdmrAdiDYwxsB6s2Hettw4vUNz+w6H9+5x5+5dTk5ucLg44mhxyKydYxSo2DOst/TbS8LW0y/P2a4uiX5DGLeEIVOl/733DCnRLA7QznF+fc3F9RUxZwFEG8ul0rgSAIVxhAD3bt/jO998B5UCP373n7Dpt2hrhX0XgviIaIUpgpJpDH0gZAkiY2noUJmQArRKdVNncE5Jp1Yt9PwQIzHpyXS/dgIW6UMpgdbqVaZI/gRUKUWx6cph3wRZftZamRzAUmncP2ZrbVKrDMRSJZdgsO5FUpCQda2hSK+l9l4P85R26zhE8T2xWjOMAgwba7hz+wYP7t/G7RntL1cb3vvgY1abkc+efslqCCQrLBJrLSTDfH60u+GYub5YslxeEnxPpzuyMUQ7R5uW+dEBp0cztkvHSmuxDhgTbWOpnSmuzp+QzJz1mEmmIURNDgYVFa3NE0C3UJFsPAbPwcyikieo3egZvcAYR9MonMt4PH7MxGHg6voajk8A+OM/+qMSR1CeoXQH1DESg3ioOe2YOcvp4YHIVL1niOJBk2IUD7YgTams3YGN+5cQkgtrsmwRWSPNasreWyU2ZEm05MTZBbKqBGk1IE5R5mKVNFV2nipGzhMrOksJImfwsb7n3gwryYNKReZUjMOVUkRrGVVNpOSqAF01YgapAqdcgePCVi+FB63hv9q0hMsdmzPESD/0bPseP3rpuOqrhlYhX02C8r//z0pn3H/u7z2WDoNKmgtpY4gpSdGtBDa//y+8AcBf+dGSYRhYrlb0qw2hH/ExEnICIyzwRhucUrQoHty6w1/9y3+Zv/C97/HDH/2Q3/xf/jbvf/QhUSkWJ8cEpVlvN4QQC+u7YXFwyOAD3XzOrdt3GL3n4nLJrJPmEvOZVOrHsMb3ntF7jDX4KBIo1zSTzDmVOD1S5cq7Z5/L86rSMlOKjjWxeqmLX2VZ1KRpj53amNvEcUBZw/0Hr/Ptb32T69U1f+fv/DabYcv55QuulkvWyxXnLz7m889+xL1bd9Ax018vid4LK71pCClyeX3NZrsl+MB6veKjjz5CG8eNm7d57bVXOb1xypOnT+nXS9K44cX5GedX14wZbDdncXxIxuKaGcY4aifjr779Ng/uHPJrv/JN3nr9NRb2FD0ccvX8jCeP3+Pxe+/x9POnDH5Drweuxw19ymy1Y5U0dnGAs6l0QjdcLzeMY8Q1FmscBOk2G7ZbdAjoHAjRY5RI1ltnMc2MbrEgGct27AmxSvXCxOwZh4HgPUYbTo+PmXUtOUaMVjSukXWBEvmsM2SC+OEmYcFdLxPHh4fMZw3Oao6OFhwczrC2JWJYrjcM/bYwsaIUt005NZJn7NdyPrQzlHWQMoYszVKUYvSJ1hgOOsdBK0WbUSnaoAhD4uDwEGYz7t24zWund3j25AnLceSwbThxjjQMjGEkty2jabGmJSTP6EfaphGFw7ZniI789JJukXj42k0evPIG2rRcrbak+R3M6RmrcMHb33gDRcNPfvIhn49fFDWEJw9bEtLd1ekj+lVm0cy4desuw8El62x476ePOTq4zbd/6Xu8ev8GhwvN7/+j/x09h3/xX/qLfP3tt3j+2WO+PDvnpx884vGjZ9DM2SixTunUgCGJwsEarBfVhTVjOcsjYexJJIy1kBPGGlLqOTt7QohX5KQ5OZpzenLETCe+CAP9+gqvMhf+jGG7JvrM8ekpWYk00sAESqUic5O1vgMR0LKGPWmKCyuAVRsyxFLwLxE6KUXGGNEycnLPMHXgnAKJ0mBgAlMUgJG8JpXCpo27fDpnIVIg7LLr1Zrl9VI6vObIegW2MaTcklJEacV2u2XRNmLZ4hxGFZJKilTTkBgCEprWPYzJJ945R06VsV1UVgWcq2OkprMq0zgnqpIksUsFOOW1qjCSCis5l7rHBE6V3LvEgnIu17h/d3+wA41C8AUU2zHRVJUl11wp756lFGNzRZYkbqxFFZUn0FQXD7+Us/w7rSayizYalQQ7qMy6CbDKYnlVRwkQJn0U24l9sEs4+NJ1tz5jVZqc1a7vTGdInM4OrTWuceR1nhhbVVpaYwcZp924T5YTe8BmHctQ9kXDPsPNljQpT2dYrAz8vBfnqPpcFSZLLlo/I4TImANNUqSYJzVUGYDpzASReaeiivPbAWJEhZYUPGnw4DMxBgaVMNqQQxaWbZD78kny5hALqzJmUqTcc/lcXQBlbXA6lRxZWLRGmUJYESWn1loaS6o0qdi0VmQsiljUVrJ2ps5t5TlmQe2nZ1Kxrz/t+oUAOoB/fL7k3/q9H03ookgNZZL/d+8/4b//4MlLic1//sNPppzmL/yt7+9uslQKpoVL8VoBzobAv/333qUWE6Y3KI/uP/iD94AdRvLbn73gtz57sXvNz3zX//rdR/w37z6Sf7EHXEyLA8UYSnhcNsCKbGbYnZpfAAAgAElEQVSlRJ8sj6SgpeIzZXLpjGKdaPkjkKNUqVRG56JpLxUUaSZgdtiO7GbS/npKxvbYN1mhsma5GST12wvKAULxyxGzYvAZCJlcjC3RQukNiUkWo0uC4WMiD2UyqxI0VIAHBSaLDMho0ZRP4yrSZJUTOSpBlrOjdQ2Nc3g/AAYTpeuTUZrtJkAWIDJFYRlR5MTaGGKQSr108Uxl/BQ5KUIOhQ2WRAOvdQEjxRwULQ0O0HbynquHw4TwR9HRK+SQkuRamg94Pwq4llKhfO/L2EqIZhsyEJUq8krNvmxbtS06Szc5kUiasskKWKVCbSuu0NZgtN2ZjJfUvm5wKSXpWNi2Iusyhu3Yi/RIlU6rSRWmYJw6sO43h9jvoqMQ4GGa6fVZqyoRBVQmhLEAf6kAnpoQE8MoYzOOgfW2Z9sP4iWXMkOUnxSgKyUwjRPTfxSzxQH37t/nzv17rDcbLs8v6DcbSdCKN0eKka7rsFbTNJ0wQK3FNk48QRpHa5sJCKmUenlOqfh35N2yyBRGG6AiWmcUI5q9BEibCdSDwiTRiGdaXVOl6hWiGMPmYo4bsyJ5YagYa0R+CxMLU5dnqwzlULTonNHa4NoZrhE2oFICYFoS7Uya0GSkGxQo8SqxtnQ0dUSM0LKDsEg3G89yNU5MIpcbDA6FoW1aFgcnvPX6V3jj7Tc5enCXo7s3OTqaMw7Cgru++JRPX1xwcXbOdrlheb1ks92WoCiSCcw6x2Ixp3EdbTtjfnDA6Sv3uHd4xOX1kourSw5ObnHvlddZzGccLeY4rcijdK5tjGG72bIdPOcXl2hjeOdrX2PY9nz6+BHr7VYYpEno7QZdAijpnpUR2WxWlSUqwHpMEihppcU6IOty0BmRBebi66lEwtw4R2ttYf/WgDEL5T+Gnb9EkUTsgrg92nkOlJZOJWkuP5V0mUXtLKQVapKyqhxLMBjl0C6RYM6xdC4OE+hoTGkblCPEUkHUWuQJpbAgBshB9tgU0QQ6a7h945B5azl/8Xy65X5MXF+fs9wErtaJrDu0MyidcE3H3LUYswPXnj77nBQiGsO8PaKxDp8zGyVslJu37nDrdMGlhXHYQhBWStu0gBRXfH+JZ81q3WObGa6Z09ljbt64xeuv3oaz3wHgr/yl77BePeOzRx9gVULjuLzaGeL95jcyNeF/+dKIhFGun/zVX/45r/l/um78mf9FDEGkKlOFXeZLTdRqMJmjImslnZ6twxUPVVUq1vUYl2TASJBdKt0xS5RR96mUJCFVKUmiVLbxGpuInAq0dmgtxa/JFy8V2XiJc7QVea3WWiT6FRRMUnyJKYpULARq9+7K+kop0ljDweKAmHNh4ihO7SkpwXbbs1xv2Ky39NuBFKEzThjwe8Hg3//nX/2Fx/t//fYhgub+GWS0qx/A7/yA7wJ//Vdvwa/+2SS4It39eZLaOt9u/xnf7//lK2pCkF0mREXWFte0XHz+mCfPPme9XZYmVSObcWS7vuCzxx/gskXH0syn2HWoIp/HiEph9J6nT5/QDyOnN25y+/YdlNZcnl/gxx5nhKngowfjuH37NncfvoZrZpzeuMPh4Qk8+tsAvPW1r/Pg3jG//Ku/zttfeZ3hMvKTP/yYJ48e8eTxx3zwwftcX27wfsvGX7FWgZXRqO6IMTmSzvjU45RBj4nVak2M4GyLBlL0+KEnDiMqBjRR9mcFVgnIbp3FkBm2W9abJQmxLZHCi7BMBWyTOb7ZrHHWkVKgcQ1d24j/qbFEEjRGzqGUiCEQC0t92xcQzlj6YcsszJnPD+jmC2bzGd6PxGHL9cVlKVyOZZ8IDFtPP45ks0K5lixBA85aWg1tARudNXSdI6SAVYr2oMOedJxkw+LgiJODY9ZnV5icuH98ikmRuN2w3q4hBJSxdK1BWUMfPdFHVIpYrXHa4oeR87Nz+idnnL1Y8vS5nOuLoxNu373P62+/ymr4ks02cHURIBxh8prRX6J0pFtk4jiy3YxYDlg0c+6c3OBXvvsqyp4TnGN+86s8fPg2r9+9y92bJ1xfPuf1V29wcDLnl/7cdzgycxa3X+f6nV/l0VuPWL/wPL9cMmQBtjZhEC9iLY2/rNZoqzFCWhELlRRwrS0kcYNrW5xzhKCJa48zHaTAZnVNGLY4rfBaMw49zlnWq0SMZ2y2A0pb+hBF6dS0MJXjag5ZAKj6a50nsCSX2FGsMkqxXzZlFMXb2opPmsoFBMvlfEg7sIqaE1cgaSJbMOXeCVClsWBldeUsxIsYRXWilGbYbmVfV4l205CKdDuW2GIMAVc+cfpae0XxUHytyZKnaF3AHOQzY67nltyjYF5ljPKOFSVxUp7Am1qs16bEZuW7pSQecjEUHzjHRGSpiir5HD3Z3NT8VO/bziCsQsr9pJRLsXdnVgETLED1l1V7xZEqa5Wiy04lMf1/71JlPqoKWBYMQQgkJS/VqnhhK7I2ezkbpahTcIa0Y95JLKAkRjRSxs6hPPfy97VIOd3LNBZZYuOiVIGE0sLgd9qRlS1jLmOa0g4Yk7fbyVt3meQOMJwkz3kXoORcdQJ7V967M1UtOopneIl7ppdO+IyAiD56yJrog3iNGtDlPIphJA5B7IFiAdOMeDZXm6kxeAHoil97ZUjWrrKToqvem5ZYz2Ll+URd1nuerNBKylHiuCL91ZqExpQOv4pcZMDFA39aI7vv+XITlZ9//UIA3TT+eS8VqWB/3SzKg9hhSeqlf8vuV+wQuApWF6R3Qpr3P3z/DzvE/OXX/XwUMu+vorz7XfkUMjBWOtbkHTfl7wTC9NoaJRd4gEzG6Tx9hla1y6s0eRCfwTTJnxKC+meKR1FKIquraHGuiZ/cp0EJjTnvQM16RSXVfl1Q/FpxSEpNC0pr2Hqh5huld0ySaiRNYQpWtFxRtPkCGJTeWIIGG3HCI+VysAjAk1LCZIfpgGzQWYCCrEU2mfwSkGCncTMarXCmdNdJmbbtZFNUIpMwxhVqqwB01ho59KbExBRWWO2ElwT4NMWfpXYRqxtwlM3fKEPOmhRKxal4LVgr3X53G3nFn2XxtE1XNnyw1kq1a2+VNV03za3qEVGTJ5UzWYfpsQnDatcFsB6ONWCMUZo85OiLBIudF1VK5WAy02GYkUqWfOc0BZzVb/wlGjFyyKUsiH2t7suYKZFTJwG8QhCJ8qYfGYaRvh9YbTYMoycjgEhSAmiZKhUzhqbthGUQgrDEZgusbXAu0s0WONvSFF89ZywqZ2GNFW1+zCJ5jWSRZ8bAlkGo1SAgdqzVFNn+QjkgpipZ+d4og9EZaW0Rp0KCLmCu1qb4BQnTrZrc5rIGUBTJewHOqhw/CovNWkvTNMVXQzZ5a20xNKe8lzCdlDbMFjPamSX4rQT4SRGTwrZzMJkQineUVqCsBH3GkmmJXqGTVKyHIXG99lwvK+MUGtOgscwWh7zy1df56ltv8dWHr9F1jmg8z598wsd/9AmXL56zvrpkeXXJ6nrDMAS62Qm2O8S1M+z8iO7GKfZgRnu44PTmDY4Xi9KspOHo+EgA1c+fcf7eeyw3PW+/9Q5vvv4ap/OGFphraDUQik+ngn/y3vs8e/YlbeN46803QGXe//BDhrHH6EK9RypqCukoqop8NIZMHX4JfCV4dI0VKXRb/AXLM6wGxSolVNKYZoazxaS/atiV7L8xeDTVAFbONU1tVb93nuTCfpsKFfIzl7VWPewm0KQEdBKdBgGL6ylS13qQoMJYgzN6qjwLIysVqE8OdwkoDIoIMZOjR4eRrlWcLFpODzty3HLx4svpln3SrPvE5XVgM2i6eYuxlhS3jHEkKE+/6gFpujD6NTlqnO4gWXRq0SiCH1FmYLvdcm0T19dLlus1JsOsaenHfvpMazzr5RWdNrz68B6L+RG3Tu9z/84rfPubX4H/UV731/6V3+DRpz/h94aPiT5x88Ytnj/TvPvZU76p/78opYxyUqoqYxEAlr2qM8XuQiNobwyeFHyR1Mi7vGRFkGX/bKzBWIuuXnTl0kYapKiU0KUyPc2NvUjZmIbGlcKGdThbih+Fba5LQiiF/l3nOqWV2A+EIN0ex5FhGBj9gAqgVPVWKieiRvZsrYW1agztrMN1M0zT0TQ9a7cleClS5pQJ48jvX3m+d/zzmYn///WLXb/z+RXjuMY1lhgD73/wU/phxSsPH+DHkeXVNSkH2raldQ3OjCWeYJLyG9fIHlTkdxmm868yOlerJZvthsePHxWmeuTO7Vu89dZXMM6wHnpsO+POnZvcv3sbrVsODg93CTjw5IsnPP70PVbLc379V7/LkTvl3fd/yrt//A8Zls+43q4YteNyO7DpN8RFw5KMX/WStNpAcoG5ES+mkDLWWEIM9P1GzvcUmbeOuWuZN4a50wXMcviY2cZMMpqucfjcSjFbNVP34r7fMg6BGIX9773GOUm6YvSMY4+1M06OD2k6xxgHYhb/on7IDDGwHQb6YSDExHy+wLg1ylh8yizCiHUNx4dzwu0bjOsNyXspGllR3QQlTeF8TsRxAO2E1TpANAZLJHuNzSOhl6TdGMfsxNIcz2hNSxMVw/WSy+sLbswPeHh0ymZ1zZPtFtNIAWbMic6JHEs3mkW7wGjN6D0OQ0gKNIz9yPL8S9arFQHD4uiEh298hYev3+PO/VOefPaM1dWC1tyjazLbvieqS7LeSoyrE406orOOw87y5sNbnN7uePudt3nl9V/DuiMWzQwdM6tbjndev8fBwSEtFtZw+WxFeL5ikTSvHJ/g0Hy5uuaq7wlK1XqYqJVSIEaFz0loZyS001ijpBiLwpqMMRnvJf7WKjL2ntXVmjBu0CpJcwh3yGKxYL3d0g+By8tLUQ+haWdzjKv5ya7TZEEoKES5KWnYhyQmmE2WXGFmOpyTwq74gkp37X6zEauLUoSHUojRBoq3nMmWxhoaV84fo4sRfid+XUbsGiamnSoFJV2ke8nje9islvRjL7Y5STyNK2BBDVmQglGMEo/rAkJUppxS+zmmIalIlbXuAxD1+jm/KmPzMslHU3zqcyJGUdlklbHOknMkpeKNVqwoJruAXKWu8mm6en3BZHkCu/N395T2QLopchNQJbGjc0luXGK0PZBDPiJNuEB5CwFvlOQnqXA1xNva4pyjKUz92tTPD+N0z7raOukyx5CCripnt5JNasrrXrJFULsxqeMjzZmEKBSiFOC1ET9bYwymNBepZClV5gtaS5fmvYen9M8AWeXv0jRny/NQxU+vjHWdiqoUo3dzqMiVi3d7eUhUb0JTzhXBN4Sc4bxHRTApS8M578XDPIjXqSFjohS0gxfSyeg9IccJ7NwpGdQ09ytjvQKr+/NlN1fqMJd5WFGdSRK7P612MaJC9tis1PTvEkhMV8f8T1sk/KIA3b6+sq5kwcOne1I1L6EixkxI88vfMxekFf6zH3zC9bgLyneAWpmA02fVN3v5bV6+p3/6P/OUU/0splslCBRdcmXVMHX2U0oRqrxJVbpoBeTk3WJtqJBqcpemDmkxFqlImYyJgpgWWY6QMXaShlgR1+KXlop2Xwzny8IpVx/K5I+pbFBlMle2UJHAJ+/F+lIVGeAeiIMSk3KpJkLWGWOdAG85FiBEAjxbqcs5o8lSxdLgx5Gu93RdU7xrkISkbGS9T8QgTAFj3IS+CxAUMcbRthrnmkITtbJZYYgkjC074R5AV/+clZrMk7XZeZsJaFWnaTWcF+q7Hz1+9BilcU5MdGsVoFJsZE7I4dRYi66sPSsdZCfZNuBcaSpSDmhV+bJ7C77+XaoLMqedR8U0oRNiDhylC2yK1K6SqTLlZHKKsbz5U9Z0XXZqjzFHkWJnkTp7Lf4V9YqJUnHIbLcj4ygVtk2/5Xq9ZRyFuaW0Filq26BNQwXp23aObRucbURakBPWOoxxbNYDIWUaNwMHrXW4xmCUBCnaGJGRpyRS959pHjN4LyypgpprZVDWYst/V4PfSR5Uh0FppF9vFicRJeu6NpnQ5bAz1ZCfPT8nZzFa7NEHnxiLHK0CwDGUTcXoab9SSoOV7pu12iSzWCjtImUpcvjCAJPgYwY2o8oa0VYS55Q9SWmSasBonE0krQnDmo3fsPLr6fmFsOVgccDrX33At37tW5zevMn66pKPPnjMp48+4vmXTzk/e8YwbAuAaVC6ATNjPr/Lva+8zfG9V7BHh3Q3jrBHHXruODheYKyibZoy94VJeto95EELn374ET/67H3sgaNd3BcJktBVZS0bmddvv/kaxydHXP3RBa4xPHh4n1W/4tFnX+CjdNhOQbrfKtS0lqd5W55NVagabdCmpWlnNG2HNlIY2UkWRG4tjXfKvhT9BHzJViaH6+4QLvtbkWtPrV5BGnrsBXn7PyefGVX9VqbIDZSAcYo0VTND8AQvZshGaxrryvyjNAyqAUOSwMUoUgoT+JNLQmeS53h2xP1bRxzNLP3qksuLs+mezy7W9BsBdMMIA8IWDjmgyFIkUDvvKNNqctDEkFj3W7xKZG3wcWAclsRxyVkD/eaasd/QtS1GGxq3Cx9W6wtmXcs3v/UOX//G17lz9z45Nnzx2VM+/fTd6XXWBGaNhuhJo2fWzLh5epu/+WLLp4+/4HotHTybtpXnFBPGaLbbLS/OvuQP/+JrAPzyb70v3qdFmkwSZmJKYQo4xDKCKblKKRKiVNbbrqNpGvp+JMTIrVs3+T/Ke/8bnxj+hzdiWdtMHipUsJgSAeTamVUMio2SFwiQH6cAbKrM1mBIyb/33uODL8WWn6k6I8tJ5wzF2kHOMyhaoImtUTFhpTSmyJiVqvYhIp+JlC6qqXrX1nUq+6CxBpttmdsRUkYbSY62/YhzDUpbQkqE7YiLiqbtWCwOUbohZc1mvcEPcsYOQ8+/9+OepMrcK7YEtfg1sZjKOfKjf/mXAPjub/1Ixm4UD7IcJTbyGqKS4ptJCZugi3DkWm7MDzk8PMA2Dc+vznl6+YLYOOzsgGwagveEccutGye88sp9VusNz8/OmR/d4N7DN7h1+x53795jfX3Nn/zhH/Dss0ecLub8+V//Db7yla/w43d/zG/93u8SVObw5ITTG6fcuHEDP4w8/+IJ52cvGPpe5C4KxnJeGi0yFzP5Ju3O5loYnbyJlOLlpIBpL1FWE/NISIG2azAO+n7D2dkZZI0zM1TWJA8qNTjTSQMnrSBGkinSLyMMAIq3kI/ig2WtAACucVwX+evB4pBbN0+5d/cukPjgww/p+4HHH3/E08+fMIyJlAzb3vMf/XlhH37/H3yfGLc8fvQJz58+4407r3H9xSVnF8+4vnjG1dWKRMc6B/quJViLPTqmaQ6wZkYMGw7nN3jl5k22F2s+XA1sg2cIA1klnLFYq1g0M+6eHnH/1ikP7tzgYD7DKMPzFxc8fvYlV9sRFTNRJza9ND4RqZ+YgYstSZpUBNZpyIpxGBj7nhB6Dg8WdJ0BL82iLq+WXF0vxQtWslwpQDYzUtZcXa95cXmNMYaulWLksB0JPhBGT84B12hhd1ktjceUEQBRW/phJIyiUvDBM+ZI6OEaj9HgupZTZXDdAckmNltPZxv+3Ne/wfFsgeo9H3/Sk7Kim4ufwLi5RhvN4AeiHzg6PKDrWry3jINmve3RNqOzJRuLcqrwPbY8/fSnfPb4XebHc4ax4daNb9N1t2RfiYGQBkLYYrOwR/IYcTnTYRivllyH5xx/85vcbg9Az2QPS55OJ04OO9K4ZvnFM67Prvjgxz/hd3/7d/mTP/kB635A2Ya58gSTGK2R4mWGQlGa4us8NeKTwsjYe0KS4kLTdvQDjKMFB04rjAVnG2Zdw/HRAYeHcw4ODliu1lyttqy2A+vNyGYIYhUUS56bd8d6XZeq7OPVM1QV0CTDLl/JEllapbCt42DesZi1xZ4soUlcGy1ATRAlUaZKJRu0sTjXAIrGapxTaJUn/2psR9M1OFcL9xply+dq8dqejp0kYGDcSn7TOEszm02dwHMp6kQlfnk+SDFalaJ2FeNMQFfKe7H3DqB5GdSovlw7npCq/5tylCn1kiJ7KnBZGW+thVSQUrELKlYmYjMuuV61QKlWQ6n4DmQlAFdGlBeq5oravNxdVU1/ks/Omgql5JJDKk1hSO5ybKrvdGndqgpASBbGXW0mYYyhaRq6rsNZscpSxTfRNU6A2Zz3xkMGxJR4ONWmdDLA0zlS2Vs1BtF771FZlrnEzTlJfpRipSjFQj7ZAWbGaEDL+OWSc+4BsrIC63mVy5uX/LxgFFNH2MKM1EZeb7Io0PbvuaTo05yq4FyMeww3Y0hZGglWS5zaDC4Xb3HBVii5pEarNBUpvRf2aCXupIItUe2u6nzdI67knKGwDqtFVK6WT8U30pR4XPAeGddMIUsVOW4M8SWEbV+S/XNgrZ97/d8CdLUpwV/4u++VCpRsWpXx5mNAmYwxurQuls1aUyq9uSxNJUlWTcJzFv+w39wq7r3xGq9oM7V8zilLF9NcdehpAq1qkpwLqqqN2SU1xJcqGVlJG3jxTY7T6yhMB1Um3xhlsqoCRlUEfALopkEtyefeIAfvJTjOhUFVwJkc0xSg58LsqEBaLGw3tJLmA2VjF/AmgxZKa0C6huxAyl3SuB4E1BREOO/vMUiOKtXvFJn8cCjlEQEOijQMVRZuASiyRWVpaJBUYkSaJaggm5TV4mFjskLFRMwaOyZ0GqV6UAJ9SCQf0Vnotd5n+m3A5MroE+kQKUkCNFU9BBTUete1iPKzykenDQiplBqjpRuM2UfnRW5U54tRWg6obc9Wia9c2za0jZvmBLpUPXJGpdpcIOG0whpQOhOyL2C1mAmrvEtyFQXIrug5RpgSSe38CMqpk1VtVpDLPBoJwZOjFzAhGJKWDSnGODXP3a3rXZOVekl1Yzd3J1YYBbSIGe+rKW1lfkmJx2nFMHpCXJJSZhxHeu/pRzHOtG5G13XM5wtmsw5j3TS288WBdD7N4NoG55ysI+sA6a7kTElMkzROkMS1sEQp8hEkmbXWFImJQ5pN1aYrakq0J8CumKNTNvlQ/SDLPK9gOEhlp+hZJ6NTkaxrauVG1oQDI2bgOY7kmKVaqTXKWFRhnviYsMbKYV/k10o7lBVPO+kLkMlaE5WT9awbMHVeZ7ANJPEhMdairSbkAClIo7SYMc5ikyLrSN5kRkZG1QPC3pwdKB6+cZvXv3qHoDb8w3/8Ex6//xFXT89YXq5KQgabQbHpPcpa5kcndLNb5MPXmd//JnfffBN90MBMoWaZ3ERSC1FnRu1pCw6dcuZw3vDKVx8SrOe9H/6AH3/8Q5ou8vX7D2lKt8rG7Tzimtby4MFt3l5+lc+fP+H5+ZccHB1w595tvnxxLkyEAlprbUAbCXrr3qSqjDqXAMyAcijdYOwMLYtTnmnZ2aufi4TAEHLYHaxaF7BWGLjkyv+Ws0n/zIkZ8rhX5Nn7STUnrqFcWdi7qpCw9EqXwZjEPzCEINXLpinBh8i307R+ZU2GEpD6MBCzp9UOkzM5eVqduHnYcetoRmcyV8srri53AF0fwWfxRJw1ikwkh4ixZd1ZTat33Rd99c8x0tRFvMwy5EiOW67XA0pHkaO3jqa1E5hcr+PTQ7729lv8yq98F+s0J8eWq+uBs4vPuF7u9qqrqysuLq7xg2J9Hfj0oy+Zz095eO9tlkvF1fUjbDXtjT3kgRgy3q/x4yUgIFqMqwLyyLk/dfpOtaSpccZhlS77QBZj3yxd2UMOqKSLpYMuDTnKM/cDNTSqp83UwbDMgQIhS2CnpWmIVqqwnoURK927KPYGEuBOFf+cSTlOjUvqvNqB/ko8U/aKo8I0EBBOGU3IiuwjMSt8TGg1TiC3NZqUIyH6KcaggHsTSJSloUoNjFONTVCF5YewlYsRurYZdIMiiam9DnRtJ8yAtmEYejbbke24JYSRmDyZIAW/LACxnGMlkaGw/eJu7HOUuCAXCfyUHas8SchKqUvYfE5x984dHtx/wPVmxRfnX9L7Ee0MtjAoYgxYozg8mHEwa1gtrwhjjyYz71q0VlxfXrG+vsYqzfF8waJryDGwWq9ZbjfS3U9rtsOW/unAxcUFpEy/3ohHXW3SFSU2M1rTzbrS9VMzFpbizgh7l6DKlMov/VmOuETGl050csbYpiEyslxfMY4Dx0cnzNoZ3ke22x6jFK5t6eYzmsaS80g/bOlLQli7oKM8aENQgdF7vB+YzQS8iNFz88YRt26ccHx0xHazpjGG1WrJl198xjgkctaEoDG2Bd4EYNgMzOcN2/XAn/zxD/mo+YBD3XJx8YLr1ZIhePzYszUaTg8xswV3X3mdu6++Tjtf8PzRR/gvn8EqkjcDVoEIUxRScZPYyoee5SrRGk9nI2GYo43l8vqCy6tzrrYjQ8xs/cjoR1KOxUZAQLgUvSgnrMT7WpU9UTmSF4BntV4S/Ba/XYsdwuAxCax24BowjoTi/GqD1r2AVmFEK+hc6QYfYVuUCApPhzS7MdpimhbbdGTTkDHo1uO3W/I4EnoFKeIaw3FrCH6gWcw5ODhGB7i4eEFKmQc373DUzmiUYTAJ3c4wbsYQA55EaFoObtzktJG45fTokPlMbFn67YZHjx/x4vyCrrVkHRnjBqstXWvxKXKxXnExLjHuhHXzjMurS55++QWb4QJlxXvSZoVTFpUjB53lztEhfrllOL/Ev0jw+oysG1Aj2lmaWcPm+gXbZ085++RjPnv/Ix598piLFx+RuUY7RcoBnSKdUbTzGUE2TkmIsxRacqwdU4UR7/uRfpTnHWNkfqDIqqFpLX7cEHJiPnMczBccHs64cXrC0fEhxhpM1zE7zvQ+crXccnZ5zXbrCYLKTCDC/nqt+ZgU0/YNtOqpIcCVRjzojVG0TsgOKXo5QzRFCik5j7UC1jZNQ9PMsK7FuRalFM6ANWLRkzIikTQNyTTyHuX8sEYakhljSwwsHuhDUaoAACAASURBVIjKSlOgmALeD+QcsUbTukaaHsZMIBGVNHubFDa1kVUZh+k4zFX1tStwT6dlLuctteu8hEYa+b52Ij3YKa9Ruvw9Wvy9qlWQroqziNLStR4ttjoVoEtxr3Ba2OhC4sil4C2WSxixGqqNIuo+u7t1JTYn0zMs1iY1p8xJcAY0SmcwkEIB51SN3+oQvTwe1dZkP0etzRwSAeKuYDxhNwXIQu/igzoD9R4xZQd4/Zz3KHLSXMaRAlAJYMV0DkuObVEUsElLHKWtLQz9AhWVeCcjRJsp72Z3ju8shcA5yaVMEluPn20qsl+PEpZbnIrxiYyx0pG7kpvQRdlXYucQQxHDVi92XVRPTHFNRuZvLLGDfLPaqEnVaVaeerGbeWmNl/GK1V6qzI9cezaXdYxBq1CUFHlqOJehKJd3OcPu+7+cx//s9Qsx6FIUw+ucJAlOWYFRhAI66ZywZBIWqxFz7DrKqAkOF0euyiaSxFgrTdKBVAwwVRmMaZKJ0kdo2lmM8+vmoKMMooxXkherim9WfzldPIvKAstZpEJ55w9WH4LSVapUAthS3QYBioFJklcnVIXudQHpVMpCuczC4lDalEBrV20BoZAmXemquw22PnsIkC0TQLEnVfYFtU5VElu9k6AgdOWFpiHnilQLkigAXqEto4TZo0puqXa01qQgGchR5Ly27qBKizdHCpjZgqwhkAgpoqJ0YM2l+rTQhpwjfkwoRlTyNFbTOieU7DhSu7tUAE5kOFao1VZ099bsUXzLs8+50K+LZLYWqRWloqaLn1oS48oYI34cUVqYirZ48qS9ca//lw1GDDqdSuiyWaniHVGvGIYy7mUOxV0XSKVq9UJJBSDnKdeSQ0MWu7HF5DPL4ZtTIoSRnCO9H/HBU7sApZqIxpcr7XVTrrTxlzfpUjlJFAZDGacq6S6tfaWbqi/jm1HKMDs4wLiWru3oZh1d2+KaBlsOhgTMZiID9t5jjZ3AOgHoJWHVShIlVYB2Zy22sG9CCiWx9tO9CoMxYN1MWHNZT4dkWYSlo6WeAJxMAfIBZcFgiEEmcrF3K/Rr6UhLyuKDUJ55yuLTSNbkQqdHW6SxbUYVD8HgMjpK9UlwdjMZfmIcyjbStCVJYJYyJGXls7WVCqeRClRWVrpBa4uyDViBzw0tyhrmpsXahoMAYb3iIGXuKGgPD4BHAHz729/l3sP7bPqeP/mHf8iHH3+Ev1pjx4RFs16tWa+XbPqe1WbLGBUnN9c8eL3l8uyMF8/OuH3/VY5ODsAYoYOHQEieg/kMnTNtkmR3TB4FHNqWN195lUM0P/3hD3j3hz/gRBma2zfFBF5Ly3tjLaGs0wcPH9B0lmdnz3DdjNObJ2z8iL9KjHFAmH2GoKTAkRD5dS6B0k7abYgRhjGhbRI/UImjmViUue5pqfgHFTBEtmphUhbQjBxR0yyQ47RWAQF8HHaFn72fFEBRwfR7mfdpd35lYVhVr0gfRW6gC6Dni2Q6FYBuKlRkOdVSTfqygNydtrTzjsNWc/NozmHn0MkzbFZcnJ9PnX190mSjsFbYCqjMEDzJiLwqJVUCa7n6IWAMNNZgdSaFkdAPkBIueVQa0EazmHd08xnauakAUK9vfvsbvPLgPpvhmv5yxXpzgU8ad+A5OZ7DJ+WFNnN+ccHlxTXLy57nT9bcugX3H75GTprtZoObCTiiUkBn8UrTMaH3ihKb5WaXE6m6b1Rr6yJ3rrJxLdVQOZclLkk+o6ym6cSvqJ0103tLpW135ZxE6VzCbpSaQF6F+Gn6mIi16l0KCLHs+0ZlqsdlSjvWu0K/JPuoU2s/a5GOY3ufXeIjVYLDoGReye8lUVRaFcZQIOUApWAq974H0LFf6NmBZvJnI01iImjdTGBh20lX6Tj0bPuREBNaK7p5Q2bOMG5Yr0d87EsyI4BHSMISEaaABMHijbOvzqDEhAiQgezTsSRbMQemESrJVdfN+NrXvs4v/9Iv8ZMP3ucnn3w4NUNyWVj6RoFOiXGzYnlp2C6vxHg+BVLwtNZhlGbRzbl5fEK8viT0I48ePeLJ2RmfPXvCGDxaO2Ft5swwjnJ/exKfWApEzjoWBwfcuHHKydEhOWeurq44Oztju93+U0F5Tf5fPtOLZBppzOXalpgz/ei5ul5x5+aM+/ceYLVlMV/Qb3uur5eMPqCtZT5rWRwtUEbiD+894zgSvMf7kWGriOMwFfaM0TSNYzbrODk54p133uH05AYXZ2c0xvLK3Xt82vf0fY9L0LVzsjO4Zjbd84Nbd3CtZgxbXpxd8iJ/yenJEd1hB2pB0hvmR443Hr7GYOcstxGj5qyvpYnUsPVcXfS8WD8j9Nf4HNCNoZ0vsEqTvHjJ5Rw4e/Gczz+94kcp0DmDsQ1DTHhl6A5OaBaHWGcICYbtyNDHwryRZFoIBXaStyplaGYdzlqky6XC91sYR6xSdMaROyv2Mk6ks0PpQolSYlfgHE5TQJiAjxLrS3IoZIDsI1p5rLJoS/EEFPa8m2misqSUaRScHC145fiI9foaO285ObrBtt/y4stzQgy02fBu/0/omg7tHFfXK16s1pxdXaHmM+48vMeDb3yHh6++wsnRIYeLGaFfE4cecmT+3k/4g+9/n5ASfd+z3Axo1+AOF1jnaMYOHx03ju9w89YJq2Fgtkpsxsg4KIJv2G5HFkajwhXjELm6iHzhFY1Z89nHnzO79Snd0RGqSeiZZrO+5Iv3f4p/ccEBmpMbd+ij4a1sWTz8KpfrgednF/inLwh+pDueS4HNC8ARfRJLEIoHLFr8apF4OwYIYyYnQ9u1NLM5y9WSlCJuZpkddjSzhqwSY/AoEj5nsjVi5xMyzegJypFR8nd7/98vplABnpcS7hKnZ2GNaV0AOgU5RrbbNf1mTQ4BrRVD3xNiIJRmPrbpxHpHK6zddTNNWWTnKqeJFpd1YeokaeqTUaCN7K8lj0Ip+V5dg+s62hzRG83oR/pxoHNt6a4qIYHSxQ5JF8VQPVOUmqSRAEQBiaSGsq9Qy9N/pwKoSrgkhav9/Fry/Z2KQcAmVWIr+eYpF/CrWhvlRMqF8CJZBbUbq6hg9vJylQgIPhGzpvqjUWLJelVWnyAIahfjldNGlY6dOdcGSlVuqyjeKSUPL5LXCl5K1XNijlegThp15ZfAteoXvt+gIUJRr9X8vQBchomBNt3/PjmlzJn62spO09ogXmoUQHEf8isgwDTj5Ge1Ztp52snvp/i2qtdS2t1nOQ93sc0OZ5Gfe3zK6b4rTiHFnzqfJG+uc2SPfVf+nY+RkGJpQApZ1yK7/PsdICjy4BpEpeleynwrcZuRAUMpidvleK9AXs2zy9iUONAowRNSsQTTSpR9RtVmIWV61ACufu/pLv/06xcC6Gr3+Al3y7JgxKhdEpKQRAfsSqcwUsLqXOerDDZMbCCt6gKuDLIsQBNMv1NWTCjJtZV10Q2XRYaSKkou712yH1n0KuNDobYW/5YqExWkuxpOMg38/iUbcQl8K92zgI1KVcCgTMjC+qsAnWyalVYLUxdKtVs4WanJgw52+VJGldvcsaB26Fu9ucIYKW2wK/hWvepUaWYQg5jX5xr8F+lWgZAIU7AszzJUKU35PKMsxpRkRCH+AKUbWo5gLSgj9ytgaMJYWbQ6G7YxEsdEoxXaZCSdtRjjsApc21E3OGstrnE0jXQVkkNIDgTX2CLbKVLNUvV31uwNTfXpKai1VoS6nxRAL6coIJo2WFPMOsk7+mvOu67CMdIYpLJUQLmseUnuHf0gB9ceC4ucC0NLuk2luEvUpNikCqJfNs09QDUlkT2F0RMUrL1nyJLcmcIWTWU9TKBg3q2jODEPdmMxzSlUwcvLBpElec1RfBi1EeDMNdL0w7gW3AzjhJZtnRXKsq6Hv0HUzNLhtmlE8lF94mwjvn8xQVbFFNYYnDUiIzVGqMBaFoYqnXil+CEHpEoCqhl2nnkVTp2YtlNSybRWRMbaoIybAoO6unI5vLMSNqtUMQXYz0YTtCVhIEaZ80ZhbGHrFQCnVR3GOIZxByqKAameaOUhZtF7l0pVUhplHUY5GmtljmWDThKgK+NQRkultHWYbg6zYzQNdj3Sp0tu2Dk377+GcQn+0X8LwDfe+Q5nl+f88N0P+Mnnn9CPAwtlGTYDq8szzs+/ZLu+KiB3Wesrg7+YE8hcPZ5xfeuY4wNDDo4xeaKBTIBFYNFZXGNxjeHQWXKWUOawnXPy8E382TWP3n+fn7z7Hgff+haL2zeJWmFLg5lMxucg8jSjeHF1yTxEDg4OuXnjJinDGC4YR09OgRRSscFwRXJvUaZ030WVhjuWmGD0xaNL58KyTmWul+eJNJqYDv5UqohK7/w3ClAySTV4eav1YdzNu3IWlONWALpynlWALqUdQCddshNCCirMTiWs2jDWclUWP4q8A95rUBMYyUkAHh0js7bhzvEhp3PL6UHHvNHkccvm+orN9RJuCsiUYmDetNy9fcibr95jHD2PvnjK1WYgjJEYFWnv6I9JC0ifPCmPxDSS8ogOiUZp5jNHM2toFzOUNeL9mHMB2WVv7BZz+nHg8vqce/duc+fBXbqDOa9//RWC38Dvy2dtxy2rzYb1ZuDqaoWm4eLykuv1lg8/eI+ryxcc6QOc09icIShUVDgaWrsDA8KAPHO9Y1BOBYlSCAhpBIRBkHIm5ERSqQRfkUSm7VoWBwu6tpve2+xJd4XQWK0TdkG1qUxYmNgdqQRudR/KKpF0KnIJNe35U6yRq7Rk11RhOsO07As1zqk5w76cypQkJ9SguAR+JDkjlUqYPRw113VQCnoiDyr/jXSuryCxWAvUeb1rjhRCKVRpC9mz7Xus1bRNsS+wkPCk7KU4Y6xMER8mlmOVf6WSuDizNxejsOyMUsJORs5NrTImG0hMNhudsywODrh19w5feestnl9eYJqGtuvwRpJLmxNGZZRKxCAAlSZjNGzWK8I4cvP0lO265/LqijCOpNET+i1fPH7MaBTrsZfC9BDRSawxNKUYm3OxesrE6AWgc64ks1IE1FoztE1hhhYmxF5Ctd9Brya3k+4hKKxt0Mox+oGmbdHKsV5t0cg+2zhhSDWtQdmMtoajGwfcuHMHbVsWBwcYpVleX3H25XNenH1J33uqF3LXNcy6Fms0XdcCmaPDQ/rtlkcfP+Ltt9/mm++8w9XFBedeJP8GUVU0e5tlGkfWg2fTb9j6DfbA4O4ec++V11i/2HD25Alvv/Eq/8yf/0v8+Mef8vt//GMuNue8eHYGDKyXKwwG51r6Ub7H7Xt3+Mqbb6Kz4vNPH7G+uqazHckAecRET86RMXrGmFDO0s5mzI+OQCnaviOlRL/dUtmlxrQ0ztK1LW3TYK1lGHq8lzhabBCkEYEyhnEMrNY9G5+x3QGtW+Bcg240R610mk8pEMYNyf9f1L1Xk23ZdaX3LbfNMZl5fXmYKhRIgg00TYvR6uhmR4cU+gF615N+kvQrFIrQox6kphhqSkEGHUgAhYIrh8J1eW+a4/bey+lhrrXPyQLYDT5qAxl5K/PkOdssM+eYY4w5CPiSEQZn2xTAGFCKqUgHdQSXNa6vvs9FaYPCx0zjJIbxPnPYeabNwGECnCViiT5xc7tHR4PVGymSxkRsLHq9wC4WdBcP8G7JF693PLvec3G+Zn9zxXjY8ejhfVJ3xuLhW9zc3jB6iI1Ctx3BNqQEY3QYLtjdgjKvaNctb779ENsZrq62hNET8g4TB7TZsR8u+fLpDRurWTWO//M//gX/+NlzHrz/dcy9JbSGm9evef7J55xFy9vnD1noll9tLM+nno1z+DNF8kvyvsOMGyJ7oKxlRorrzhSlA1II1dNEUhpjGlCj5Bemw7mWEKaSPziaviXrTMjS8V6HiZxKh0alSnOpao4isUYt4Av56FSqyQlgIs0Fcigsv1Qa8ORcCk2lUKCNFOTKGm+1gLqZjA8iK/VxLMV0hRt9WXtBUTvFikWFdo5sG0y7xBmDtgIoBozEC0qVn2tU9hgSXWvpTINSmdtdIvjAMI60TVPmRfH4zmIvIsCI7Bu6gCgVqDkWLO/mIvJdYjUyxWeMuRFETFIkyxFUOPqTljKsEAdqXq0yISRpCmKkIZLkOF5yBl02MSiYgLyT7NMlTygAT4iBHAQIPQUEK5RQfQ5BHVVpBUfQJTCc5Yslx5bOzLmw7qr5VT2bPFsYCEh/qq7KM3ZQPQqzOfoW1fwtpiQKHPGgEiILpkiLT/GTEk9UcK6OS128A4XJRE2XKhB67BorsXEsCrZY5J1ZIfZGsXozA7rKeO96AVbQ7sgQ16VolYptVi4uf4LWVBGxKjGcKkQORZzfVymEEZsiudh2aF09m48MuZBiWV9LsUurStc84gZK4ggh8WfJXXU9C2YVpKLm4zWmklfock5iqaWKPVI+AoZalyZzFZM4zSLKY6+EU44Aay6eiv/U8dsx6EDAnCxeJsespCQ/MZdgL4i/jZaqH6r6gtVhWyijiKREzW+Vyaow8+YgBUyuAJQkMNWUW5arTIUIcqG65hjl/IosTZuWnKMkfTmUCVHZVprgQ7l5J3A5RySe+VoFNMhRzltop3rmXQiYUMHIJA8CYc4I0qqPwbOMMvmqTSTU8Xe6oLppPodcQd75UCpSqZMVvVcFeJGETzwKYrClRXiV1zBXHhTgUwYVSzIhLKJ5wueMVQGrNY2tgErEDyPTNEhbeqMFoEPaMSeV0NaincJpCUaEzWLQWeOUImZTGEqZvumBQM5imG6dxbqSPOtCXdbl+k8WFF2Sa1cbLlRAV6sjrVQpMdSMMj5zRBb1WXKt8akwK7I0J4hZFvcpRogRm6X6MbtQ6cK6qc8hy/iLmZkCK5TuDCrgp8Kgo4JCFIm0MCq9D2gt1W3pEDoxTlIVC0WKlYxCaydkylJxKjnjvODLwii+KqQwL9xwYrpppCKmqhFpUtjSlMNahy7gXN/3tG2Ltg0+W7RxOCPehGVfQyuL0XXpMBirZ5lmiMJIatuGEELZpAq8pg1ZSVVbWIVpBlyMciKFrWNYaYTDaGbgOZ0CbOSTeSXk+LrpauVQqiG7jqTMPE8USiqZCHMqhiABTKkWojWp+M8pHUlxkG5h9XMEjsRoLYBX48r6UVqX185EWU4nK2lL75yibS3GNBgrMt6YFDkJHTslRdbCIDNW0/Qttu0xrhUPsQmGYHHdBef3F6zPOvg7ufsHBn7w44/4/NMv8OOBGD1Xh1uuX7zg9vVzwnRA50g0WrrUdQtcSgxXl5wvVgwvP+XlzwwLdYtetmz9Dq8CVkUWZz3rsyW6P6M5u8f64QOSaxhKcOlz5Nsffos4BL745HMenl1yf30fGmi1JmsxuPVxwvYtq4cPGbLi1S+e8o23Gh5c3KO51zCME08PzwQUzbJP9EXmoUyLsQKyZiXmsDkZSRGTEulZDmVdFK+UXBjUMUxoE1GmjLUknadjzHgVUKUDm/inijWDUmluVgRi5jtXf6n7UwmgVBXZlMAyH4E8RZZAMidyVJA0BieMS8QbRVtQOpHwmByJUZoLVPZXVMJI7pXhwrU8Xi14sGpYdxnLHiYlXnObPXEIVOn9+2+c88bDe3zrG2/x7Q+/yedfPOX17Wsub24YhoTHkvRxR8kJoo8QPCqXRjUpYZShbRq6vsU6hy7sxRSj7H/qyCbebg/0/Rr0Ctc9ZLl+k7YXOd7Vq+Pr/uqvfsgXv3jGbh/ZHSaMzuz2z3j16hVfPvsSZWExGlrbE0MkTX5+to07stx0YabUtQCOPoDqBIBKuTCyVcaWtUDY2pbFYkHXL+i6BU1zfG+R8NcxVcHVuobV/byuv+X5azVXYeturY/GvPNaPccAuRQsBdU9+vlw8vuUShxwMv7q2k/hp5X9S6Fm42eQpj+6jsVcPXCZFd1SnFLlHsq9UjmXAlRlOUgQGpOAmlopeSbBS0FNWxIRP0xk70XVgKF1nVQjtQAibatpm8BwGBjGgzRDylKgyEm6Wtej3mtJJjS1MZTVCnIkFc+w1lg6ZdF9zy5FXu423PiBUPfjWGMyadqhc0JbR79ckbRj41+xm0ba5YLHbz7hh//4Q37y0485XF+R/IDKHh8juRQpu9YxhgmnYNW1NK7BjxP74KVQKo9xBv/8dOD2OpOmA9ZohnFEEela2c/kmZrClhH56pzDIc9C/HMl/tG2YZFX0hBHKTabLSlGHj96xMNHj0AptvsDPmeUdTx6620evfUuY7I0TYcFsrtmP1j2u4Q/iBG37hyLhWO57HDOsFwuOTu/R8qWn//853z680948PARH3zrAx698RZXmwLMxFE8jInAGwBcvX4m8Y1WkCCOmf1m4nYzYLoF3/zW7/Foveby+Ws+/+yX3Fy9Znn/Huu+ZbvZMm1vadsFqtPoxnF+f80f/tEf8v4HH3DYjuw3B3a3gzAVujOaZWQaNgKn5IwOiaxbfDb4IHYrxrZSrNOhJJcCvFknQGDbtjhniT4wHvZMh73Ip5oGgyZMnmEM7KdIyMKQMNaiG4dTmqaxxBSY/ESYDoRhh0qB1XLBcnWPwwSXKTAMvqwZAtjHlLBGS7HSNhKD5AzZk3XGqsw0DTzb3HB7s2E3Jppt4uzRE9YP3y/S6YBqFTGOxPHAkzcf8wfvvktEERK4pmPcvObp8+eEEHjyxhtM08Sz50/5QbFOWSyXqMYT1cQhjGynPbspYF0LaYEPsBt3bOPIOq6xfU/bP2Cd1gy7iX28Zdpdiw1IDKi9Zmgarg6GT/7+GWeXigcvRmJjGcJIDpl0GGlHcPEVxMxmd+B2GME12L5n8gti+4CsLNvtjiSBNI0x2NIh0ZW4NRSrEYxjigltBpS1tM0Cow1+OBQyCOzjjvGgWa2k427fLTkMU1HUiLXJZITQkfxEQqGbTpRQs/nFKQxDATqqjU1CFXWRn0Ra7ccRnTOm0UXul3FNQ+sazs7OyDlxfX0Dt1vSYSSExGGIxDCgrTR8MUaLiiQlyYd0QjUK0/X0KtO3LTpPKGVpjIIU0TnSmER2ijgF0nQgjI6m62isptGGmD0hRbEeKhYNSmtRTdW9ImuRExcLiDzLJKMU31OStQtTNyZEESZWR1Zrco7UbuYFuiJGhQmR5APZR5Qv3S6LnHOWqhZ4RCsBQVMM1E6tcr4UD7fa0ELsg1KKczFVYUTmqUpsLhph2VuqSmPGHQqoVqW1xVfZpoRLCHipFMFokrEorLCxhYlQ4pE0X6lKEa3Baosz0iRRUBAhpjhrsFqRrUi7yZkY1cy6CoV4Y8rGL+cmP6tEhsqcT7o0ptBazipJFCMhigZdcldFAcbK+c4sqgzFT69695EUOQUB5BTMHUq1nhWPdd+WPzDkwuY8Jcenso9FAjl7TE44I9cdi02NSqoERUfANYc4h1Ao8cyVqVBIU1lD0sUqRHIEkZImks4oI9eWJBBC6UoUKtJypWdPflXisdlKIx99Fk1VJaQiK/41CK4EiyXHT9WSg6P8u2DGVDmm0oXc8585fjsGXVaEJN3sBOSqfmsFCRVTLTGkjbmKyfFHWLpcfCrJsdyw2fZFVaR5frn4dPnKcJPnJgBhuXlkkqpdViuAVjzuYiKiUKqyHRSVApxznE3yaxOII/3yKHUSRkMQzbq2BfdVhKTQSReDe1WSdzk3AeZkscgacNXv6mhkLpdTPq9Qi6mPMGtSQYEjGWMidTM4Vd3kkpDmWAddBfjEdybGSAxg1EKuuyChWekKoQtMakvTgyygQ61kxyjVZj/uhT5tHbaXLqwZ6aSUcqIpnd3QmsZ1cu5awAY0ZGMwnUyaqbDLbFQMY0RZhZ8izqjiOVZkf1m6aymlpUqvpOpCOKGrlqpJrElMYUhWyqpC5KQ5KZLP0rI7FSZLhCklzORptZEkJ0vH3Kwk4Y8I2OazQmdTvA4KC+/0OajmpNoh711ZMDklJi+Mnjtst/Ks5TWUjSSjMQw+Q6ieQUnAIVM8GWI6gpW5BAQxlQ1T5lUFvWTM1EXheML1ngpjTLNcremXS7p2QXH0LMmrgFRaObRtpCJZFnSDxmlbqO4ihVLGzCCvbRTGOvF3MaNsOul4PujSRdUgkjXFnLTWBU+mkpJusfOcrGDkPCXmgOD4w3mVJaXEAY9XMh9Tirgirza6PCdUoctrVLakJBWnnMWMV5VqS9bih+QquJ8zKXpMraeWOS5rbXFIUgllFbrRuEaJwa/WZAVjiISEMMGyMGBiiKAFyNYpYfYDndsQDontDcRouL9eS2exE737D37+9/z8s59CUriceX35kuvrazbX15jsBbiNiRSVGFb7EcKW6RC4WK1w6cCluqGLT3n89gPOe8MUD6RpR7xMXCW4ePQOD7/9HdZnCtyazjmG6LFGcXax5u133+PLLy/56BdfsFye8+1vvlUeS8IoWQ+0stjVOeuHb3D5iysuP3nO6h3Hw0fnbO7f59nrp4TDAWtsqWSn4pIv1S9tZI1rjCFlWwLAIoEoVbechSFLlq5mKidseVY+eGRjEtNlozXikSDBmixPieL+eZzjIZVhe7J+J9lrauBQYWXKdwGyEzkfJFhOBp2c7Bu5rlAZHTOYAKp4vKlI1pOwLpMG6+iannu65Um/EC+h8ZrduMVvA3pY05gGhoCJxzHxJ995jzcfnvHWu2/y3vvvcLvfCLMpSVdhlQ2nHpZh8jgtsi+DFT81rWgbSWCNFYAnTLHEoIqYPIYjqHVztUOrPdebPZ9/ueH7//AZKU3s97ccdrf8d+V1f/5nf48lsx9hP3l2t6857HccdjuCP+CwxGHCK03wAuDJ/mDp+qNvXtc7ORdKFVaVdUWd7IU0hYEtsvPqReespWlb+r6nKZJ96xyFh4+zDRWgq7YYp3KUygqolfjapCkrLZ3UkTjAaAHJUk6lyCBBbarBNRLnhCTcW6OLROJOsiBrippbGTKDwKnEDnU9TDFRtdM9ZgAAIABJREFU+1rlgsbJdl8LdLmwU0+r5ydAbT6VvJY4TwnbuHrD1Mp2GEeMtTTaMubAcJCGWX23wj3s2O62bHY7cs50TY9dWPp2ZL/fMY6DfFaMxBBnUBGgbXqRfCcpwWKsgFIodBLJutHSeTOj2ObEj3/5BTfJc3l5yUBmDBFjFU6bWSY7es92P/B6u5fu3Lah7Tveff+bvPnuO/zjD3/IzW5D8AOGKOu3k73XZMWidbTO0LQN675j0S+YmhFb9tsYq+2GrBM+BKbDhuvhVrohGlPG3Krc88Kc1sLuEQ9TjXOtNOTIMI1b/LABEqOXJl62EU+q9WrN40eP+Jff+x7f+c7v8/T5C/7yb/6OL19cMvnIeLnjdbpmM2oO+5FeGxZWw2Bx9pyLdcKeLbl33mBs5jDumXyk7Xp+9/e+x2dfPOUnP/uU7fUVn3zyKY/ffJt7j98gfvIp+2EU6V4OYgEwj5iDlLCypTWO1vYsQk+XF7z/4e/yzoMn/OP/81f83//X/86kFP1Zx6IzhHHL9vqaRsOyU4Q40riGexf3MUbz6SefcnW54cWLa4ZR4clM44EwJRq3EKkfmWQyMTl2Q2YMA8YZMuKlG5Iw8a2xGCuSrVT2+rbpcGvNTkkyKkyKTAC2EYasCNbJOGxbbNvQL3q0VgyHPYfdhvGwATxORbRNrJcNjx/fYzvAfr8jhoGUw1yfRyVWJtOkgd5KwS+GSGgh2pYYAtvtFeN+T9+f8fjxY2x7wereG7zzta+zvlgR046+j1y//iXb62e88+23+P3f/TZd27Hsz1jblv2LSz7+0Uc8e3lJiiN0LaFf8NNPPyMohfeJYQqECNY09J0Vry6lsW0DOCafycqwHxPrvuONNx/hfeb5s0ucW5HOHuJyojWKlXWc9Qus0ozB0z96wPn9t0WKdnWF1Ra9gDHvCcCi6zm/H+h9YAqekBNNTHSriTBeEZ8e2Lz2+MNAtEhMM4001rJaLEpMoDG2wVokhnINbb8AMsZKXJwtaGtQVuNcj3W9yLOTw08BVewudYioIH7ZjWkIyhBPSA5SQDlK5erP8knjkZQC4xAwRdFC2fNTTIyjx/vIatVycf8BOcFmO5LzgDFqZt4lrOSzMYi0vvSOQ2WmPBC9p9UBFVoaFYgx0NhGiibTRA57VDrgTCZoKfgrP6CswebCICrx0xSCNFzL4gWfkdDLlkIWM/hWDEe0gD1KiTXOqfVMlcnprEAFdMqkWHx8jYCZYvcgr50OI3GYiNZLLmu1uFWVfcZoK2zrUGP8LOzuLExsozQpSxMwoxXOOXyMTFGa22nbYI0wB6NTWO1kLy1pkipFoESkSmBrowfIpXCvcEnRJIXFgrJ4bfHKSI6UI7kyAykNmQogRE6y7uiMUaLYIJWCAhlnGpSVCHKaEgGPIsueqBSxwBdaIYSecpuLTlXIGqH83GiCUSQjAN3oJ5Iq+YjR6GKXUPNIqUyXIp4SH06dq+9gUURaIcwYUy0wyjzh2HW2glpKWWHrlf0tl3ghJ0jCVcKrSMwemwKNhoMFbyRXzwkB8E0iGJGwa2VKXwM1f07tYyCFrgK3VbWjVoUQFkkEshYrjVjwB8kj6nkf5zC1MFrGWNL1OovaUwm5I2YlBcQkRflqWVKLrYK1CBknqlzy12MMBupoWZky+r/Q5P63Y9AVEOEOOkENUAXBnRk7MWO0mL5bN3PM5tefUjLniT2jcnffXxnNcUQeAQ75tyLpQsHNJQhOleIpfx9C7RBbUHwldHKtLKiE1k4WhYJpy/JT3keBNo5KG03ZlPfWgCFVc0wxBgPE/FKVBc6nY0cTGQcJXaRUOhc6bDoJtssPUixSqXo+Fd49ZXX4Kq+VRE8pJTRro1HKCfUShTNOJk31b7Mid81aqga6ACunnUpSki4qObWM+0yaRmJMjNOIchbbWKDFTx7XOJSx0sHRWrIxkqTUKr6OUlHOCRNl48tZjEinlBi8dGdpkIpFlVymHAuDKqNTmn2cZoZBSSLmpOvOuDlq1nMyTKV7XAyRyUd8yGgt1OkGqVSkVAxSs0i1pxDIIbFPY2EVlPerIFA5DvuJ2r5ZuuWlsnhkci4m30Dltd7xh8sZY46zU0ZQbYggIKz4JRbTzCAbYrYlEa1U8xMWB/VbZqZsC3NOKvVohXOWxWJF1y9YrdfYpkWX7nwxMVPdUVI91NpiZ6+tI50bEo1pyljKswdYymKOH2NGq2KqmiARISmiziIhNSKhTgjLsX7PSuZNUgqfmOd7Kt5RR7+9Ok5lXVIYmd9KY7KW4FNbvBLJX45RQAfn0GRiCoRxkqRZzGCKXL6A7iqj8oRWCVs2KFcM/01JXJ1tZo8EpQVEUMWDMZCK9LLKV8SHRpgs8m/XdKX4kYQ9rATs1IWB3GmIE4zjktX6AYt1wz29LACCHF8++6UYwUfN7esrNtdXHPY70GBtIx3cUqYprL1x9BD37Nlzvl6iGGjsyPY1vPtmzzeevI1PjqdfXDO9vuZwGCF4HjxYcnZm6JrHWLMiB0XbLFBp4u3Ha/74X36Lj3/wMR99/BHrZcPbbzxm0Tfk5DHaoZSiX5+Tm4ZoPLeHl3z59MDD/JDl+YL33niLl188YxomdOM4DANTvEapBqWObAfrtPikZS8bqFLzPcsIJV+S+AltZL0OsacxCzIKH0a0Mqz6NSGIp2pWAVQQMLsaFpajUXpmOamyTxkl8iWZqrXiW5jcRQaRiKA8mjh/KTyUcWq0FvkAEhj5yeOsYdGdE/yEbSy6a3DGcJ4U6nDL7X5A2wPaDfQt+FZzdrYQD7W2rzsNDx89oHMJHyZuthsO0wTVViGKTe7coRxwRtE6S2stNsv+JN2rRXIlNbXC1FJVApkZhwEQ0Ox/Hv8anp4sw1t+4/E/6Z/IP+4D9xVwVr7+eceP/vs//mf/zX/+OCn3KnXnN7oAgBWkA07kKyfreonxVEnwqw1N9USs9hhq9rCpQZ2gbUKuKUqB8r9CDJ53nhpU1i2vEvZmH5cSZGYlIHLOzM9Mk8klZjp2UK3XWopbNUY93oySVJ3GWce4zzUNdrEkb7P4k3Udy/MVbdthbcN+HPEhMIwHSAnnOpzrEFArEEO4U0Rqu6VYUSBhVUjH0MeW5j0VEItkXt3ecPMPf8/6F0uUUozBsz47m59LCgmjDVOGm9ut2Dk0LVEZnrzxkHsPHjJ6j7aWew/uMTaGsN8ybEQOa3VTTLJN8fER5cM0jsLANpKMGHuUKccg9gg+CrNKa41FPGChFlKrL2ZAm4ixRa778CH37j/EaM3V5a/45Wc3HA4HDmMgoumXa9brM773ve/xp3/6pzhjeHl5ySeffsqXX/6KT5++wPVrglqwz3sOoWO7GbhYNpzdP6NfK5Lx0EHf3OONx/fQOvPs+TO2+wOtW6NNx2azZxwnnDW8evWKj378Y2Em9T03263EwTpJU49y5BSEdUhkte5Zrs7ougW/87UP+NN/9W/40Q9/xKdPnzKpLPeLKCCfH2mtJlrLlEYmP6Bz5sXz5zx9+UyYsJNiOkTClMgxkuKE1gllFK74vzV9Q0qOGAwxFuYQE94HabikDc42tI08T3LksB8l6io2JlqJf2pGGl3Z1uJMEhaUtri2LX7WEpdZa7g4X8O6xaiI0YkURowx7Pcb9gcpQK9WS4bxwDSNKDJd23C2FLXCcrnAGIefPNNkmKaJ7TTi48S9J/f47nf/gPfe/RZGL+jac+7df0hUie3umsDA/vYlEcsXT19xc/M3LBdL3nz0JhdtD7sdL16+4tnzSwKK5b37oC0Kw+3NDZvtgcVqwaptOO8d69WC5XJB17XodsEhGmLWDCESkqZfWVbnoHTD2dlDcshYZeldy8I19NaxcC0qZaaYadcXuG5BTom3Hr4LOUujjpRoW4ljQpgIMTAFafIwBZEtR/+QGDYEH5jGS0Y/QQgwBZQDbyeMNoyHCddFbNvhlOSrOkecc4TcSC6lIRerEtf2uLYThYIHiDOz2CpD4xx2ClK0j+UXZf3OpVBMroXfAhopVQrfShrNpkiIEYPkrJOfQEmHXqUpzEnDfj8UuwVJ7I3VdLahbTthhwXprO3HogAzSYA/m1Em4VohN7TtCo3D+xGVRxY99LTYEUYtBQpnLK1z5Mmjs9gEhBBJKKISSwCHxLhWSz4rhRKQ6rPIO2tHcIVCGXXCKtfk0hjvWJQXhZYqxaxEUWqlRA7Fy7mYoNc9DKVQOhVVF8ViyZTCWJ4N98XWR3JIydEhxCTFEiixuDD+Q07S0GEGj8ST1rTi06YwkpfkWrQtpB9Vsr5KXkTO8bQYp+o1oKiroaT+Rwnk8YvjGELiz3nfKESQgujO+z5KeuTU5C4XMCkX0LdCM7VgmSpZKCEdTCkqRpWLYinP5yI3swBuZZ+vrNCMNHSsstLTIrVVwvz2/qQJFcdYQn4mBUeogNoRHNQ5yjpesQ+E/GFUUUUiz/f4mdXeSmTescjbZxn2yfiRe6xmcFDyOWas5HieJ3HUHO6cYFIlFpq93Wt8X0FihMwUUiSWZiGxyNsTFau6m0/U/5ojnq9gXl89fssmEUcpaDUhvAO2le+hDLqcBOiKJ4vXbzpmD5f5XE/AvHLydTAf/7t8VwoVVZFtSHtoVZomiHF7AV++8veibhVktgJyZfWdUdk64I21pELHrR55Ak1IcGULs45CgVSF9pl1xCRR5+fMnNjMi1q5hzHmObiuMj5pDV2Q4cJom7XR5Wi7izIYixyvAHTSocYUcCbTWFk8jZHEXxk70y+rnFX8xOTao/fCsgnSZlyrBZM1DLsdBy+t7ld9jzUdUSnGGDHKoCxY53BtJ5+h1by4KYTmq7xHm4kUJqYU5LlNntZkojK0BpyxBaQrLDNdksIk7NwanFOShVY1x8WJKo1JxBAkgM+a4AWcCzEwTV5MlI1BT4G0PRCRBT3kOAN0PsrioUOam3/kOihPhvI4+Zl1MPvAVV/Dk3Ffk5v6VXX6lZFX59WvzYGUqN1pktal14oBI2zI42ultXSe/SFKM4giBY4p03Ud5+dnXFxcsFiscK4tG37R1KcCQGtdOhEqEp6cAymo2X9Bqj+yQXjtRNpenrXQm5nZpykFSbZyBfnLfSkSd6rUNWZp/jJv6rIoT96XDT2TU5BzqFKCnAhBDPZJoFSR6iqpuIWUyEok7zl4UpIKmzVC0Y4xoqFITBM+CkiWlVRja4ODrFSRtCpckccIswRyzPji+aeMpXGNAJ7KECm+nCWIq2tLKVXJNRornodlvKOq75TILcWE3KL1fd772rd5+51HhT1yXLZfv37NFAJxUgzTyGK5ZLFe0bYN437LCz8ypEGo7ykXsMuhleIwjPiwICbY7Q9cvrpite4Zw54vvnjB/vKWs65n4CXx4++jWs+7fWJpn3DWnhNUYOv39L3h8e+8RRN3/M1ff8Tf/O2Pyd9d8K33zjAoTAPeKJzrMAvH1A4kf0vavya8vOFB+03evniM3RpevHjFLkW8ioRxB2kHuSXYSJ7AthFtAilLgcCYFpOXGNUBCmM86BFjS9dIWixrGt3hmpGQd4zDRBoHGrOmNZrMDpHaa3I2d+bgwtnCjpGfzQwtDakUHE52MGojIBmpBq2Q6qnxqDyVwF5B9RIxLeRiyO8VvWtpbYOzCmsjrfH03tPbjFWJdtFy9mDN2VnH1956lycP3mb8/k/5/k8/oYJlP//iKQ0j6ZPPMT/6OZ//8iVffPmC/X5iGKXCG046Z7aNpXVWWLKSJ1A7aAtQkmbJiLC1ZTwPw56/uNH8m/P/Qhnw/0fH90dzJ15JRd5JWaOrf1BKaW5s9FX/WmCe7wld/Ovqb2QNmJsCJFkHSZWDyRwjSLGwWlgwx+055+M2VAE4jj4/9XTy3VDw+JnzddVwUc2/r6dY3yFzd2+aPfLKvUgp4Zyj67q5U12MkdVqRbdYst3vud1sOBz2kHPxjZWGCrnYQaR0BIsXyxV1o82IVDeGNINjwnyK+GmcO8ttN7fc3ATatqVppJN4LcpV38eUMiGMJMB2CdP17Hd7Pv7xx4yDZ71e893vfo+nn37KZz/7eGZYh5RRZf6nGEElQgJbmrsMw1RsHWTOSFxX4gfEP04pRYiZcVsbmxT/5qzQ2mKswzWNgD/G0HQOMpgi/bm6vmUMiX65xjUtf/hHf8R/+9/8BxTwF//pP/H33/8+r65uULZlveixfc8bjx9x/8n7XN0kLnnJ+UrzzpsXnPcw7SyHG4dKifOLJzx48JD7D77G7XbLGCaG/cg07FgvW9KUGcc9T3/1S5689S5PHr7BcPCMwwGtEsEfO9kb25DJaNOwPl+zvn/O+aN7vP3oES8/+gl/9ed/zueXv2IYRpYYOufY58AwHMqioziEAT8N2JQJaSosRotTLV3fMOSJw3iQeICEDyJJb5qG1fIcrTr2+8Dt5sAwTMRU7FiUwhpJ1MRwX2KK5AM5BYxC5GbWkaL484lPr/hNUubcOEqjjJTE4uXexQXrdY9VLSkOkH0pHka22z2bg8wZax02yn4hTSqcsIK7XrzSfGQYROKodWlw0Go+/PDrfPCNN3l4r2PcHRg2r/jy+Y/Y7QcGH9hOI5c314whsL2a+OnhV4Dm8cNnOJV59sUnjDthRzZ9z1vvZVzbcQiB3f6AtZb1sqfXCk1iQeJ+a1kvO2g1m+TJ1nK93XG73XHYvWIcvyQrgzWOrulAGUKyDJMma82YIU6RKWjGXy3EtiWDm9nHMgtiShwOB0Y/SjdGJUwvYzXr9ZrVsuXBG28yTiPTFPCHHXkSm5moYAoRTWC332L9xCIFkpbxoqNFOZFgx8Kq8ZP4wdnQCUtN6SI0PK67WR+VDsI4j6X/YGb2p8p1gReli6zLqrDPCiQnC4HE+jky+oGQxItMGpMoIOL9UIqNYvXjnOPsrGe9OpMYeFyw3+/JfkPGE9IeHwcW64433nrIoyfvsjsYdG7IURH8wP2Llq+/+wHvPDhnESxf/OwzfvDRR7y6vkYzlm6olmQ0efJiBRCTfE9lR8hZQNIYiDkI+EgplGfJl45glTCHlNJzbpAp9kHIfS4+IpJf69IpNgPaSkfaGm9kCBw7yeoC3mk0maMsUyVhmEuXTlXWVCEy+CTAn5AYZD2OJX/QqnpU6zuFL7nomueVYmuxoPqqp7cw9E82e6VOt1mqHY6AEcWf7CSeqntzzhRlhwBMcp5HNtb83gWwqrYU1ddOzbYIleFvZj80TvbsPA9a+fGx0UL93a8f6jRGOTmfahNWX3PHA+8rRwXY6u9rE8jZ1qEUBO+qE8wcY3IC0NXYQ77k/QWgqz8rXrAFCJ7B3tOoShX7qzkuyvNadOd5Hm97GSCVEFXy+yyz/KtXfTo+6rVGTuKqO2/+2x2/JYPuRPLzG0A6Tk9WlWtWtWJ4DPBOu2+or4Bz9cLqZ8h9KQ83i66cVENG0TSrmIunlyrVa+lSQjH5VEbYALPq767F5yznON6vY8AqCXPpSIpMIApyXkEhMTwWHzapDmQZNUraA1MCNlUfcq7yG3ng1h0N91VZMETSVdhARbJjijlnPc7vPymAnyqGiGURKM0VhHYZ6FxVLpZJq6WCEbOwxepCU8B+nHF4A2pMwv7qWrJSjH5k8uIf4VJLayyma5lG8UuKSiS/WQsIWLu0aVsqJylSdc+xPEsxdoyEDMkosjHzfayTIelcTL0l1eFkwaAg9BXATQXh9jEQJvGPiUm6vKSQCmPKi0m0MTLRhlE2Eo6a9oig+qSEiqIwtVrYZwpVPFfqvDiOx1luVSkPJ7lOHT+ni1kF9u4sfCfPWKpDRRCbVanklGtNmRyP58FX3v80CXNNw6rruX//Phf37tF2nVxHGIkpoaM9duI5mXuZzGEcCIW5llIS4LR6DZTNMKTSAKPMv1yebYhRNusKSv6GhXz2IqrT83QWqurnVKsk1QmwVjAKvJ4SJKHCR9cIkyqKrBF8kdjWdUjjVQH0U5oZcCEkplJJ1NZhmg7VdGjjRK5NSbyKn6BCADrnGuHezjJjYURIhZHCri0JHpzMfZGeTYd98UEsY0cBWZeSgQR+OTkat6CxlrPVkrP1isXyCIhstxtyarGu5eLinOW6QxtL01gOhy1KRV4+vyROEZ/FbFkZqRLfbG6xTtH1DV3f8KsvX7DbbdE2MR48Bx/ReuT+8oxHjx6wMND6PW3Ykv0BjWOtDdouSSjef/sxX372lI9/+gmP7z/kzdU3eXK/R6MJGRZLy1tff8xPfrhgmDaoKcD2BnP5jDeevMd7D+6jpsynNzekGFBEdBLT+BAzhzBhRi3VVQJN02Ktp3FAI/IlqzJOW2zTEpQC25F8Rwwyjxvd0WDIUQBvkSCKJ6UElJrTYdoqZB2af5gr+sKpREBmp/jSxcoK9RaVNUYHrAkY59G6sIizImcLyZOSZaUN1sCF0zx8dB8QBuG9dcc6aNa6YbFsufdoydc+fBvXavCJs/V92tWS4WQ9+MeffYYKOw7DQMya7T4wTsICl+1CPqsenbMS3BT2tMDDYntQd8PaGa36rOaUCNPA//jX16RsaLsVKMswRXIW2Z7WihRHcgz8+D/cB+D3/49f4TTkFIh+EgmwzHLpvOkcZ2dndF2DJpKjrNlN07BcrflffncNwP/wWcLH4jeidVnDqhelPI8qPagPtHaC06pWio8dweAk4DxZjeZAkrsFlNNK7NHoX88xi3y2/J1gcPk0E5w3hlzAuVJyLz52uuw10oFV/doKeRd0O/53XZtlL6zBL+R5Xb/7d19936++51Hae/o3NQasQJvWmuVyiXOO6+trdrsdTdNwcXHBcn3GcrViv9/hvRf5dq5eQsLGiydjd7FYnQCBksQHHeZOeKefX/+uaRpplKAUwzDMVX1rHVZLV8wY8/wcq1/sbrfji8+/gKxpXUMcBq6upGFN23VklTkEjx9GvPfEJGy8pnU0WfaRcQqM0ygy1lKkrWBd1zR0bUPOiWny+Gmai7LCSJGYUhsB7PaHA6+vXhNTJHjP7fUlkw8sV2tczKzW5/zRH/8x//bf/juuXl/xZ3/2H3n+7CkxCMB0c3uNz5qVsUQ/wLTFxEint+Rp4NmvnvIrf4sfbsne45Rju79i9eKcHBWL9UpAsPEGpUZWq4bp4BnHwDTKPbg4v8ftZseL589prKE9UQGs1hfEmLFNw3K1xBrFsNvyj9//W5795BMud1uMyRx2NxA1qWlhr0q3VkcMwqazUr/Ax4nV+kxkwQH8KI0Cut6So2Icd0SfiFZYNn2/pG2WwIHN9iCAbBIrBmP0LD/0XtI05yz3HzwAItYYzlYruq5jPOzZHw74mBn3gxTwatE3CPtYGnzBOAyM4xmayGF/SwpjkVslMg1DcPhQVCBxAiUSuhAGUspsN3v6vsN7z+3thhgTfb+gcYaFVbjdgU//9m/50XBgs9ux2+252dyijePi/kOUabDtgt4tpGv9qNntPc/9lrOl4fbmmuj3hAQBz253Q4fsW13XslyuaBuRpF+9ukTlxLJvcdYQdUJ1Btd37MeJw+TRzhEC+JgwxjENg0jRUmbhWi4WS/E3CwkfNS9eDwxjQKHo2obVes1quSTGyNXtNbe3tyK/NBrbGJQ1uK7l3r17PHhwn7P1ObrpcIuVkBAmR3AOF6XzePQilw/TyB6x+2m6jjQahhQYksIserBGmraFwBg8PklTvNF7kWkmTUqecfL4EpcK6zjNNkSzEmZexDXVvquyqFQBlGoDoCNQkErjnmILozPej8Q4onXCNoBKOKfoe0e/cISQ2G48w+HA5AeUnkhxwFnNtz54i3/97/492tzn7//hU7Y3YnFgcuLBvQv+5E++x5/+yX/FhbnHT/7uR5j/9X/j//3rvyJFxHs6ewgRW1hmOSaICZWKAUNMpBCEoZYDxQVNdqMssmGqf5f44ZARdQlIHpVzlMJwiZ8lBS/3JSEsNFPA0AJYxZhmJlxS4Mr5ETLZJIySWOW4zxd8rOTlqcSKShlsybOr56PKuWBmBbxTao5r0pyvHXNQkNhepWORnUqGqWDzXDir+2mppimR8h5Z7XdzPvnYo6VEzsxAk2xzBYzT9VzUb9ipyz0teEoF6LQ2sxBkBgtP4pVZhfQVnKjuuSmdkkiOwNgMlFVW3gloWY9TUK++Z0riWXwaNxxfd4yh5F6dKOU47vfH+5NOcl11557NMUOUuZQzQhabVV/HJywx0Wlx/S72MP9UH/GaU4BVBhJ3rqc2UZEvyedjnkf+V2K1er9+w0M9Of7ZAB0g7LVcwKjTD6saZVWACjFsmk+pctVkaeOfCBjlrOVS9GxOGYvGuBb+q0S8gn0SGBU0P9cA3BSAgPJpugTugninzDz45f9mBtK0Em+q2bftdALKGRBCxFpB5HPOIqlN0mLXOoc1dp6Icn/0nQe6WKwwTpIZVRaqrIXFU/10yMLgkfuzA6BdiZwjJmaAjpIgxJwJwUswYdT8ubl0NomkQvuULnypsqJ0Nc8GksgUEmAaR9O1TJNUigfvC/PD0PQiLM9GDCljkvuuEKNmYWUVQNfUKoiwpVSWKkfKkexBylQBp2QpijmRdNHgn8DbdyZPPpDI6FxosqkAf16kFgklLKgIOQapxMeISrk0e5CK6jxOS4VCK7mf0mFHY41DFyNodSLpOGJVx00ZlWfkPpX27+SjROguiHaXQVcXwVOvK9QxSZrFpSmTiEf9+0kV4XQ+NW1D2/SsVitWqxU5JTY3N0zTRC6mqvX9oCyANRHSmSkGaXFfF+jq3VASPpIq/kp1/ssYjsWLUvwr7ia2p0cs9O7Tr/m1OdMYJ3c3A1WAqmV8aAWmzq8ERieMFu+gpDJRebQK5DSRKUC6PnZHUjERcwBtcEbM8JVtCpuhRZcutrm0qtel+jKvWlnmi7AFYwEKDIkTvybEO4kCWFeadE5i8K4SWAplvSaqnEpgAAAgAElEQVTXlTGZM1YLQOiMZb1ccr5es1z0nBDomMLIsluxaFYsl45+2UoirMG6NfcfPWIYPZvrDTFmlLYoq2m6jsMhst0fuL7e0PUtymR2hx3n5yseP37AatnR2sz7H37AO2+/wfbqJTfmGV3XMm237HYHguk4e/geqrvg4XrNd3/vQ168fM0nn/wDb3Sae803aBYO2xnefLDmX/3Rd/nxD/6Bn7zeEMYBneD26oqltrz58B3eeXKf1zFze3WNipmmSEMTe+IEoNFaOnr57YTSe5zdYZtrYUdqS9/1tMs1arEmZkP0O3TOkCzJa5gyTkdUupWxUYHyfBf0BoiHTQHGCwiXhEmTU5rnIwVoqA1ZUkoQLC6sMLFF6YRxCdcHbOPRVmBeZx1+DPgYWK/OOT8745vvf40/+IN/QdNlLq++wOKZXm7ps6VdtHTnDV977x1c7/j4hz9meHnJYZxQ5ih7/uLymjxs8CGwWJzR9ucEPON2IqVI6/SdwMDqVFglqTCnwZS1Ud/Z9ur8FJbydDhw2GxImMJ61gxj9TMSH8rgxyJvEYBuGvZkI55LIqmoAFKZJ6Ura/2s4/am7pyzrhKcDNW/a+56ylzrInO38q1rnJA5qeQyB5tfrQjX14P6tQCzrlWzhFQfXyfSVV3sI9IcK6UCxNUCg55ZAUoYDFBsBDjef3VXhTCvt+Uz5+ubQTWkqFXOaw6kS9Su9cl7nQSQd39W84y713t6VJCsAmVd17FYLNjtdhwOB7RrME1L0wq7db/fMwyDxGbWSYElhvLMaoxkBKiJws6qjLwQgoBksZh/5+Nc67uWtnGEENjv94zjiNaatgXVyB6ntS5FPPGk0Smz3x74xc9+weXL16SY8Ls9h9treqNpTHEtNqb4yhhpOqCNWKMgliJt12NdI+NAK0zt7EyV32uM0thmQc9JIqJ1iT9FdjdNE5MPvLy85GZzSwyBNA10jeWNt95Cu5Z+seL8/Jwf/PAH/PTHH/H61SXTOPDs2VN8iLhuQdcuaaxh2N3w9Isfs7ndsrl9BWmLsSNKDViTZe6EzJfPfoE1HWTLarni7OIMSGy3N3h/QGXpBKzI3F7foE1H1yykqZNtsSfmyMY4lAHrGg7DSFaKs77jxfOnfHn1nIiwbjtAE9ncvqZfrwhGpGphGGhS5uz+Bbk1+Oh59PARjet4dfmacdyjFKzXPWHyHPbXUlQNgRTTXAyMMeLDRAwea8FW/6Qsa7dzwrhrGmmSlVG4xtEtl/Rdjw+Bw/Ut28PAdn9g8oFQ1vuUBERQJS/wfmKzuSWGiWnYoZV0DaaMh4RhmjwgXX6VFlmsUpI3hBBnUD9GKRamlGlcx0Vj6bYTu5srLrfXDCoSrMIzkbNn729o1YJeOfzultuNZ/Ca/T4Sh8y97oJ1q9mHCaUzy37BvbOebtmz2/aklFmuzlDGMoQ92xEUmqAMOYYCCmW6hRcigWtpdA/REyZpCjNtvMTfk8f0gF4RU2IcDsQM2o+oaZSiaXJEGxizsOaG7QajEsaKt6PrDFiDdpA5sN3dsNnu2O8P2K7jbL2iIeL3G8J+Qw4j1il09W4ra1EOgXG/45AyqVuKauRsTRsmRj/S9D1o6eRtjCUbyeUO08R2u2M/HCR+NZZcO6dmAaaqwqmWcZQSllcqMb6sw+LnhkqkPJX1Npf4XtbzaRrYbGGz3RJTwDnpVNo2jqbTZDyHw8g4DPhRClnKSLOLrjV8+K2v8e//3X/Nl08Hfv6zlxxuB2F7KoUxibN1ywcffJ287/nwg8zX3vs+P/joYzb7AzkbKRwqS0pBus3mXOZQydGzABgCmMiWfCTjpDkGL1kMKiUwmayqjP+Et1WL/yQ5x+JRHpHuqj5GXAxlvywsO/K878ZU7QDKhphVrYui0SVTLYWXnOf8FgzWKPFoyyKNDykQciEVkKn2XdWeiMIg5ORZ1s1QyDjCjDLWziy88sLyWi2seSrz/cj+qnvq3T1WH+9rlms2hdiTa/wyl0mBuTGZHDFL7DZzkE7jhIxIkClSzzuHgGPVT5cSx/xTbDg4xkjH9z/GVf9UrBCCMEPJGTPnqUffeFGtlNw4QdIJnXXBkNRxzvDr8Uctah7PRawv5OoqqURxglaii3XWaQHy9BpOY6EsAJNIuAuoe3zeVQZ8jAEz3L3+3wDOzSDdHD/+2oO5c/x2AF2RZn5V5pNj0ZefBMUCKsktEBlpPLJnToJZ6bRRB38Z3Or4HrlU8VPWhfHCMYfNhSGHJAXyr4KI13fNR6BOYFFhwpTlRD6/mpErI4twsc4Uphxzm2NVF46KgJcbraxBO6FsiidFWSq0OlYKVGUAnQb3srk3bYtx0j0TLQ0iEhkKzdOaCmPeRV6TDoBCOemsklUSyZXKYsaqAkFFbCr3sAAMJKGgFyXw0VutVANnUMpoXDIFFNU0pbvnOBwIwTOgpDW3ttLJZwrynLTFGSsyFq2OEufimSaDUth9uSxjRAUxwBiIIeIU6JSJOeDJxOrBR5oBsPo9BLlulQtbEi1SyShAXS7NDmQ+aJLO85BPSRFTECrqzHw4XW9r1UcaR+TyRicYGD4ezWIlIavzo7S1rsyAfOIXByeL9V2Y+tcTIcXJFJFrKGM7lkSjdixKSRbuyhJRStO6luAT2+2Ww+FQgGShbqccsLaRzpG+AomywWml0FbkASGFufGFPjkfsjBt5h8p2a1VBqsgG43WidlE6QTYrpfsywKmtZrnfwXTMxmVNEf6qzSkQSlMwcw1Ud7WIJ2UpIe2zLUcwGhiUoQadCR57ikb8UtMklS4bkXb91jXifxZW+mIRAELyqJawZj5DHNZwK1DqUxOamanghQxTJXJcNxEUgElzLHx1fz8ZXzIx4TgIRuUjbTO0rctrXM4e/yjtnU4I8GCKQEliN+Otg0PHj5gGifpRqo0Kip5pkSWyyXeT9xutqxWPV0n8jBrOrp+QX+/5b13HrJaLvnLv/wrPv/Jx/zO+9/gXwdP01i2+x2vrg/sNp4n7/0OzXrBu08u+M7vvMkPv/8DPvvk73jYZx698YjeXfB4cc4ffPgv+LvvfI8Xv3rFjX9KDIlpDLx+8ZqVXrG6/5gnD9a82rxmt9kzxAEYyfgybCxGL9C6lSYwKaNUpHai0rpl2V/QnT3k7K0lqYHd9iXj/hYTHXhIwx6jJoySzoopWWIWsFWqg8CTJQBPP/tFmX9HQCamKM0jjlCJjPLixaK1xmSL1QlrepyLNL2iXTqa3mBbsSJYLc7xk6IxSx4/epP33nuP3//93+PDD9+n6xWTf83nP/+In+9+TJccPkc+//wLgvF8/YOv0fdLxoNCKSN+qeV8Xl5vsHFCG8u6O+Ps3iMmf8XkD5ARH8UTkEanSKwNZpQVNvdchVXzuqLq+I3CfvPjAT8eMLYhjntiEh8RMuQQCKE8sVO6Xoklgp+w1e+yzCmtNdbWBjRlaislMvMC6tUjpkguXZNzhtowoa5Fx4DrFNg7rkECXMU5QPpN87A+73+6ynkXNPw1gE9V0LECbXWxzHNHLyG262KqLUmGmvdNASI5uZYZzORU/nE8//o6Y/Qcs51e/q8VQu4EvvnkW/F8yQExRK5/A7VxRl2rU4rsdommaWhbaZy03++Zrq7oV2spQJZ1NKZUvNuEzZlClCZQhRHhCwveT57gpzsB/QwGZgnaTWV+5yMLzzl3B7RMKdE0rXSgTQHh3gro6oxl9J6XLy8xaFqjaZqWzhlymEp84OgXzTwupdmUsLm11nTdQvykSsymtfgbjaMk11HQahb9gsWil+ZixTNJ6aMP8OFw4Prmhv1hz/6wx1lD5yxd1+Fcy+rsgvXFBZ98+inPnz2jdYbVome3uSGMgzTscOJ19sZbb+LajteXl8T9NYy3WCsMJ9u0SN06EYJHoeiaHmMaUki8ePGS7WYvDUeGkc6VrT0nrq+umYI0mnK2BbQk9eVImWKxovHB03nDva4nLWD8xttcXb6i229RxjCqQLNs0EXlMcaJGCasbVj0HSwbYs6sztbkIHJDazWLtqXvO8IwcHtjyMnPz3maRqZJ4h0/HlAkAedUmq02bONo24a+71BKsdlu0VrL/mgs+8KifP7yJbv9QWACK1LUrusIMcvYnoIU+khst5M0X8qJxkl8bY2h6xaYZk1iR4pRmlPUpDtnkbK2LdY6cs40TYNSAWMsbbtguTqnX50DC4JuGOIW22WwK6aYGaPC4Ehesd97rm5uiRnxcNO3hKR58OQx6WXi/2PvvXYty7IzvW+aZbY5JmxGZUaayKzsKpalp6RWC92CwBYECA30hd5CV3oMvYOeQFLrTs0bQSTQVJNNsousKlZmpYvIzPBx3HbLTKeLMefa+0QWqRJEAQLUKxF5/DZrujH+8f//8F2PbWbMj06YLY+xr66AHTZbOHgvIKLNHa/LGoSEd4G6mTFfWqLz6AS1krN3WTcYFJ4kwDaJvtuxvrgg5fVYN5bROfy4ZXuxY5tN1Kum4ubpiRiya00yYGtN1dYoq3Gu4+XLK2b1jDs3T3nj1g1arVhdvOT8RWDYeup6QTPL69t7+r7Hh0DX92xc4ORElCO3790jqkQ/9mitmNUNlbG084ZB9XSuB9/hhhHfj/iowARMVRFTzI17NKJmUXn/lvNemuIZ0JbivVbqfcEnlBHAxo0OlRmUsGa9XkshI9sQWWtompq2qUgJ/NhD9FiridqC8lgN81nFyfEJR8slbrgkRo8xmeMWI+v1iq8fP2a9WrGIDSFqjG0xtiXEnmEccKOnrmt8n5vLURrzSLCcKD5zKYtLhRSQzdIl/lYZOIoZlsoNEVCi+EGXIlkuTFNk49JkMsRA8CPRO1G8KJOVSgaTgSWygkdFSGR/umQgAzwkSNn3MuXnMiSRJKfC+JcAIcYgYH62jTDG4DPYKrZVGaOQG0BKwm6Woosw9HX2OLt27h/4lUmkWHp87oG1EPcevlqpKa7Sxgq+EQqJ4DC+ECh0yq2mGEJRmj2WeCOGRNRZuZPPPiksZ8+S18/4jCuYkoQcgF3lx4nrKoPXi5Kwj5WKR90h047p5eqpGLqPrbL3fZDPhSe0V2klDiTl5S8K7pT2BVym39mDhzHHKDEW9WR+rRoSGfMhUdh6KV0fzxL7pCTzouSdpVq9j/NyHHqAi5WfCzgoHql/n8T17wNE4dcE6FIKeTJcB+leZ8AUXlyRrIgmOEzI6zfZMofSiTQBWuXroLI8JJXQO09skwPTLEtM0zxMe7APLYFsQp7HqAzsZBnMhI2ULWgPHEwSW20xxgoAp7MnQfZLSaok2ToDkZkNE/PynAZLTYNZuIQJmSMhBJQVI24JYOWnWmswCWUiqHA96AcC2UtFV/L+M3CTkoB0UUuGH8v7jdKFROlEyuaGKJ0TqIRReup2BuIFZ5QmxAEfPZW1MGtRKTB0vSRXWlO39RQ4JxzaVNSVPJ7SUoUrLcrFsF0JmJgqORBy15sUpLohJWXQUUDNPoy4UpE5ACqn+ZErJVppCJmhpxKEJMy5BOgSFClhZ8jOm2m8ea5lhD2lmKVsh3MclI+A+8ZCc750j/zmIhPAt4z2/vGKlPX1TW5id6jC1DAyjmqfQKZcwZscbTPgPP1t1r1XOfHt+5F+HPHjiDGauq4mD5DiDUgMEyirszwaBPBUJZHIUl49HSCCpMUQJ+CQ7Dkhy1p87WSelXWVrq2thHQ1ksOTCXud7oXSGSJVIrElTfmtLhtqjBNrobTDBqQTamWJxhJ0hVcOORBEqqytxRjpTmuqiqqeYesKpaQzpM/S6ZBN/MsYyRc5KCBhckc4Yy1RIdVv73LLdVBe1lsBDKQXJlT5fozjSExBjnSlppKDyiw7QWOl0UplxeC3riqqPVmKqrYiwxkVi0WN1vK9qqpABW42N+j7jvPzc/zg8cGx60Yqo6mX4vc09D2bzZbjkyMWiwXjGHn+7AV33rCsd4YnX37Jz//mFyxMRd0sefH8ghhHXIzoZoHJ1eVuc0kyiR9++CZqfMnDv/2Ejz8ZmC3+gOXNExZY7s9v8x/91u+zuljx1/HP2T55ydgHuiHw/OlLTDXj9knDW3daHl6N9NsdIe6Isc9jUOHxkCq0rvLe6IhKPFHqeompj2m05Z0373Pv/ft0/VN+9pM/49Offk532WGSQ8cthk7211gTYiV7p4q5y/f3AXj15OvpTFIlIE1J5l4OtqQqrCUZqSp0VWNNoGnW3DhR3HnjJjffOOHoxox2UVPPaqq6Zbk4YewCx4tTFrNj3nzzbR48eJ+rqysu1wM3jzWbqzXDbkApxdnVFZ989YhffvkFHz5/wbtvvY3rFZvVJidTcpy7URgeSVesdwGlOxnzqs1NTjSVPQDo8hwzWmeGZZULFjmQ0RJ06lzM8TESvMtsUA9Bo40UjbSRJixTE5tY2trLZY0UnkpDhZgBJK0U1trJR0wh1ewQgzBClaZp9uxlEpTu5ftTNdfd836YEFZN2bYnUEmVYHf6i4NA8zCIzHu7BqPNN87hAhBd7yS+byahdT7MctCv8+tV5Qzy2YfNZNnTQcyplCIYJQ2XDhh0JZjcB5XXPdwOY6jSyVWVvVNdb3KxP1MPbmu5QdfuW8zPp/LfhmuSU4CQJavCTLI4b+lHT7frmC8EiFhm75+u68TnNkYiamIVAvzR92fAjP//XTVw8vf83AOvpJ/Kmwe/98GbwJuv/e6lfLgBsMz//u9cN3+N37nzje/EIAwZafKhGPueR599Bq2lqzW2styZL3nx6iW98lSLmdhBBI/yo/i71gaXAsp5Ru958fwVRhm89yyXwg5MyWOsom0rtpthWnPjODIMHdvtTsCy2qKKv1eW4Wldo7Wa5q/K9i+D87jLK5RSbLZb+tGLgsRqmrpiMZ8zm8+z1FUYdSlLM1OUDrtak5tNRI6OT3njjfv4aBmcxBLtTFh7Xbfl/PyczXaH84FhdOJXFKUr5ma7JSVNdJZhmFOlGcujuxybBbUWiWM3eM6uRgbfsN0mvGpI2uLjFjPriWrHxTbh9bfYxoaNC6ROsR0VtapRppYxGgbcODB2a3ToaeoZ89oSjaE2lsvVhm3nGMceH3u0MdhaGIgqBVTyWGNAO6w2aHpS2JLClso2nByd8tb9t9ntdnz28HM2mzW20syWC45OlphGzPZdCngCla2YN+Ld5IaRRicakxAugoD5IfjsbaZIWmNUzfJoQV03rNdrzs8vGPsRFxKVqWiqlnk7Q1lN27YA6BSIo88FkYhVitbWHLUzgg9sB2lcoYwwyolC4EjKCEhXiiTKgE5SIIsQQ8JFkUNLfGxBCZA9jALoau0JoRNgzRqmJn1J/qelawGoRN1a6sbiBkPfe6yuaKuW7drx+ScP+fyzR6yuzomxhZBIKbDZDHz15VMeffmcb9+7w7ob2A1SsKuaGdthpB8c82YmTOYgssGYkpARkngrez9C9BB9Bk58Jjkk8QXPZ+VkI5FKx9pCrwkYbbLdg0heU7akIYEKHkvCqoDJ1kHCnhIMQSubx0cyHYPCktApe+LmokzMlgYq5x3kSNqkiB+DSH9jIuVz0hhD09bMw3wCYj0aHTTJZyJCUKhoCNpTGP1yVmXP8hDEP07tU5xMu8gHs87wwoG8NwloiNFTQxGUZAURlX33Sp6kmBhclNwjXT+yVWH4l4N6f36XPVHyrfIK5Ew/bPrA9Nr2wJJ44WVg9SDmOcxXD/OtEou8zqArnxujcqOlQo7JubnSOe/MACAaVCFElfxP8lGt9+9JnrPIgxWvS1Ul75T75uWmyvtGSbeNpHNcZNgXcg8LteW+CUPRpDJWZQhEgaei4vC6RrAJEhNi7bWfv369rk59/fo1AbrrIXAZzMPv59ANSl6ZRDpEChMIqg7+aaWmF1cmoAy6TKKYkdcJlyOj8nlSozQhpgn4TTEDgBxMkonauGezcXAT4wR0cIAgZ+ROKWzdUNU1dVMj3m4en6UVKcXchS8J6ISwEpIyMEmmrgM3k/Y7S2ZH70hGYaooXftUoYpqlE24OKKK59nh2OZOKClrwUOm7OYRIClBtAt6LPTrLJ80ewBUI75NlZbuNSnKxqqNFQ+Q0aO0SCGVNWAqgh5JPuCHkWqxQCfNmJksOE8anVSSTBJZYNmvymJXUjWAihQ8KRgSjhRl87V58zLWkLx0aiwNGIBpDMmbJQgoqSIEFSaQIyJVC7Fqz8CYDIJslDEDwhmBT2X6Thva/qaXr8vc2o+n/K8sZg42siL3LsnW6/Thgtz/qqv8zOgMvOYW1GRzdvLmrbWZgEZjDHVd5+5ksjmsrjYYY5jN59S1hZSmREoq/R6Vjd9NBtRSnt/4RNI6T7UsHZ+YoCZLNSqUThiV2UchId2RRbYVpzWwn9dFyhGjx+ZOQRwEO6WjklYK5yJ7cwi5p6XCJHR0AWWK50LxtZRdwOB1hTMal2qMNdiqxTY1TTujqhuMrrKBbe7gmgprRI5XpSSoUEplRmx+vcjrmM2XNG1NVdUEpIvhruvAjbIf6YA+2GIUapK2QZK29qW6Q64YKWFiBp+y/18QQCWbCofoqNSekbTb7dier2jMnKa+JWyRzLwd+p4YPJv1iqHfkaJDKWEVGC3d5bSuITNT+q6na1v6fmB8uuKrRxv+3Z+uSMFz99YdvvubP+Lmvbt8/vgpr169op3N+P3/+D/h/oN30a3l7PIMtOHO6Q1+48E7nH/1kKcvv+Duk7ssj06Z3XqDo9ry4w++Dcnhtlf8zWoFvcOPkfVmw8tXz7mz/BbvvnFKf7bg2bBm6MEnQ4oJaxQxDcQ4oFQNUaGSdKyu65bjo1Nu3bzB4nTOe+/c5J/+4T9BMfLg3l3+Tf2/8bO//Eu61RUqDphyxuhANALiB6Vy8UWuo1bQUJ3nn1aFNTqd1nKeZelGVVnq2lBr+O67p/zm9/8R733wPnfvv83y5k3qtsXWNXUjcsBus6Xf7Pj8k8/YvnjMK6357PNHuDhydJz46uEj4pjQxnB20eFijRt6fvHxF1y+WLNbD3z28Dmr8yt4cAuQDltEh/eJ1XrLZj2gQuR4vkSnKEyVA79Lk0F1pY00MFGFoZ7nIwLoT7FnEqmYyFwURE8MTpLzkHLHaQm+YhLQulxj3xMzW2AqRiBSQmstVfYSK3uV73u6rqMOMUslyyapc8GgSDQQZsN01ueiV15r+yglB/Aqs8xy8F3Mll+/yrhOwexB3HPNU1epqeCjyqGnkWRD7cMWo9IejNfyWFYrrNZ79mGOrzyBoGD/qg4KfQdnjj44S/Zy17ztlJgHNfmjCaM/5tf7zcAx5cLMYRA//Syla/fi9Y/e+8wsmxFiz67bAbLXLOYzqsqgUGy3G0KCqhLp6F/uPL8z/zsOxP9w/X/++t+fbeh2O6ISWxJbVSRrYNihR8ugwcREoxTtosFj2boBmywqJayPmLahOj1i1EA3MPaOjoGmaWjbltmsZex3dNsNBE/MpvrWCIvWjY5xcHjvsFYYt+M4SKKXE1MQZvo4CjvTVmLDMWSfQVTupoiw640RMG+32+G8l2YD3k3xTEzCVrdVhbUa70ZS8Byf3OBbb97n/HLHyckARI5PjmiahtXqgq7rWK/XeO+pqorlckldNyglnTWHYeCVO2fYgU6eoybSWoeJPa01WFWT/AydaoyL1DYyq7IVx0wxxMBVf4WqblG3JxybOU0zw5gGa1tCSHTdwHy+QGvFfNaSgsNYTd1YtLbY1uB1Im22eD8yjBFtrVgaRJMb0Qmzq7IBxYBSDbOZIriK5fyY9x+8z3sP3uf5i2c8/voRKzcQlSW5ET/2aKuwtTT3qrSmbVqaumE39EQ3cOtkDinhhzVnLzYE1zP2nYBHWguJA1DVjPb4hDFZ0rrDqY4ArC7XPH/yjHEcMXVFUlHO8BTEgy1pVACViRWLpiVGKUZ348AYBhQaXUmzEI+aGoppJZJ3ZaU5hC8dNYOcj8EnKlsJ6JASWlWSZyVNjBqwzNo5xmhCEAn/OAZ22w6AFD0np0cYVbNZ7XBDICQYdobPPn5MSv+W5xcrNusdSi9RwWI1eAevXm74m59+Qn9mefTplzx5+ZKgNaZpUFWFriqSVpjaogaXyS7Z+kdL7Dm6kX67IfkwnR3S3MRglcl5R86lkhZ5aASlBBxTmXmoknS1TzGACuJ1l5B1T0AFh0nSETtFh6QRCaVlXqRs+aBjOUsVOobsYwo6+pz/CjCmlEIFAWH8mH2uAyITVgqdJdVzFngMkRGfNCYYKIBONDREdm4rIHDuIB5izJ1jCw4g+98EkpHBNaXlZvBN2WhMmUGvwIcDaXbxo8vnfIwJXR/S9dSUbxYY0hgrRVGT1X9IHEsB9SbQLk0xyFQ8fO0q+El5npJ3vw7S6RJ7FQDwoIB3DZzThXSS8YjsXby33LhuD1IYimJjIwCdiCnkPotOJdtRpb0yUe55juWTYEgFz5lII3lciq2E3Cc93a1U7m0enzJiKYk/YSwxXY61IonDYRX1tXrt/WR7Ec0Ug8ko7hGFmP4BALp9x68coMbrTLrJA+baz7N+/WAyFJSefHOL6SYZJIkqZYAuA2RWl3cu1fpU6I8CwTufGXzFg61wT1Wuquu9VKYAc9M9VYdLav916cRK/tzaiqqqMJWVw5rEOA70Y08YpEogUrdU3kbh9eaJIjKWGAuwCQUV9s6BVlS1o1Y12ug82YXqGUIAEwW4OASG8mYpABMI2yDj5AUQAaLPE1zl6qZSVFqouhM4amTSB++lkqR19g4LtNl0fUyR5OR5Z1WFS4ngRvrtlspUVBiGbKLrEtgY0LaG2uSKKtnLzJMIGJ2w1uauaFJBIyJ/qxSVrbE1NATwA8M4TlIKLZogQbdD2oOOMJUCCkCUuQrTnEuxgDfiW5FCELCrKDGRZL8k6P41hmhi79cG0piAgw2sLLvi5ef9OM2BshAPmTvK44UAACAASURBVHO/KsGZxjgJoyWzuCEvepR4D4aY0FrWhHQDq2mahhgjm/UV6/VGklitSSoKGByCJNYKdBTJaGH6Be+FqRb3Uu0UsvFoBsO9C8QU0AZMZUQmlzK0VHwhiqw8g4AFoDRZggni9+F9YmqxjkKo/3vgSYKkwiCxWKtyB8DcWj24POjSeCSmNB2uMQZcSgzGMGqLbmrq+Yzl4oj5YkE9m2NsLR34Ytq/hsxxMzHmLnxBHEeVyqAyUutSGl0ZdDvHzFqqpsWkxBgNaYwia9ARKbamiTmT9+nJ3laZ7MqYEsFnX0AllTpCgCRVzLo2NHWmiANNvafQXV6ec/m8w6Sa6Dre+NYdZrMZMUW22zXPnj7hxfMX9JstyQfqqmY+n6NVxBok4A6QYpAkZRip6xqjaro1jGPk9GSOsYYXly94/OIpX3z+JW+99R7ffvM96uUJqjWMwzm71QtSqmBw3Fjc4Dvf+S5//Cd/wp/+H3+CHyI/+MHvsbx7h/vHRxz/9m8ybM4Yrs54/NNP2HbnaAyvzl9iWsO9+/f44J17hHHD2VliHGpCiDSVJSlHSg6tRkLQqDSnrZe8cfc+i/kcYxMqrVnOR2b1yC//9iHfunmf/+Zf/tfo8Tk//8kLTLAob2Vx6RFlIgkjycMBALqcNVPXqnJJF19Zw8V82GiTZcZG2ImM/LPf+x7/8l/8c27dexvd3gBzBMri8l5sKlDHA1999gsef/QTut3Ixbfe5Wo9sNptqY8t6+2aGTOa5Zwbd9/mze/+BvObDZ9++jOeP/qKZ4+e8fjpOUMfAQHoTBQPuXo2Z350g922J44hg2myr+gD2EdrabJglJH29aWSmYBUvC5lv9CpSEsSwTuqLOkLfhSZXW1p6ib7Z8KhD6VM+5h9nMi+HnuPlrZtsFbM1KMbGbot3WbN6BwLba/vj1G8JqV5kD4AT1U+h7N3ltoHciUILPtr8TeZQLq0/71yVVUle9xrxRXZo2SPK91cQ4jTcxmjcmAm618A/4TRisporNXUthEWXpLipFEWhSL4bFURPSF7fB4Gyod+ed8IBqfvMx2K02uffJIk4DWZbfCNTmk5UIm5iHXIuitxQ1VV03MePm/5uTGG+bwlAsOwo+8sR8sFR4ulSD+A0Y2T/cl/v25gtQcatVKQfJY/vS4jSdP54pzj4vyMoe+k8+NyiTGGYRg4v7ik6waOFnNOjo9pmgofPC/PLrhYbdF1y9HpbU5ObhJjxHU7+s2KcbsiOscYPaZtOTo9YTabobWm73vW6zXOOWEFLpfM5/NpLIo8e7vdcvbqjODkvFgs5ty9e/ea3FvpbGmSry7LWwFhSmuN9yPdricbOnDz5u3cQCVhUkBFT7ddc35xQT96jk5vc3TzFoOL7FYXqGEnzXGaJT4qtv0osZoO+Dgwup6Tk2N+9IMfo1PFRz/7nO3aUZuWrnvBMD5DmYSplyg7wweNUhVH8yWNNWzXl7i+IyVptNB7x+g9PgaMajBWY/sBvKf3gZ3OYX9K1NZQtTVHdUudFDffe5tb33mA6wfi+Rbfe9bdwPnlOXVl6HYd3W5FCg7X92hguVii0LjBE3yP92ECxFFFipfXN+DcIEqYDK6NWebrvTBjlNbChjOW6KVJS4pSfOv7nr2+Lc/3nMwZrZgvlixmM5SCmzdvAZrzs3MAmrZFa03X7RjHUYBFa/FZlmmMIZO78vlsGPqRfrwkxcCmL2qTAC5QY2hNw8nCsly0bIc1TRpZnM5wjclS1JblbMmsOqbre5Q2aBStFaZ3Xdfigactp3fu0BwtGIce3Ujn4dTvsG3LwijW6xUoWBzN0QZ8P+S9MzAOA/OqQSkBYE5Pj1jOZ5we3eL+/bdYr9c8e/aMFAPzdkZU0jBhHDpsJXYPylqsNlhlxdokAM4Bwm6zWmLToeuIUeTCpUh8dHTCnXv3mC+OCPoMfb7C6x2RxOpqw273kOdPnmBy1zzxllbUSlMrg04aqyzaWJQ2+CQ2DkRHCg5rLPNZw2xxhIuKdTfiY6SyTfZy00Tn6IIn9pllaCw6kYkdoqSobEsioo0SILKp5P1r6Hed+P4NnrPxEmLEWMWuX9PWc+lzRovF0m1GHn3xgt3g6GJAVy1aKdrqCGNqvE989dUl/+pf/RHvv/UJq4sVr169YgS2/cCYEradiQ+ytUQnOVBEvL8rY1FGmgO+ev5cJKxK5P9N09DUDZWtBagzMlesshhrqax8lCJbBK+IudBdvHp9EDWSNprkO1y/hVkrBb3osi+jQaVIVWWbphiz2tUJEyqBicJkkwy22P5kqapWRG0IUZh43gcBhUPAeY+LAYyRQr6XrvapeD/l3MNWFYv6iECknc1ommbCGKwVldJAEvXZVLTdq5qUtmUj2ud4lONLPL1jYPJSnc7y/H59CDSU8yLHSlmqTwaItbFoe1hAJFuCSRdzXRvxX6acT8W3NvuKZ697nZlsUYH1URo3Ri/57oH3XFENaPYxR4mnDnNlle+RMgpUiQ/yWOWYyRhD9MXuqcRU5KYcAuxZa3EuiKd+CKQkwLA87TdBximGiZlhpwvmo7LKMLfuynlpOADwBDAL4uuXx1Ibk8FpRWlGxhRLkrHMHEuyV4oWafDgR5LVE26xBwdL0fjvL0r+mgBdZpFMCG152BLk6qxfz4FkyAFyDhRlbNW1To77R5OvJuQ2B9mycMK+KUTK1eNUME9yMKREvlkeSeV2w+X15oWTSjn54Ou6qoXtlytmB8DrVJ2O2Thc6+ynYDPzxEr1dxx7xn4g+IBBXVsoh6bRKinEGl4GtmxG0RtpZe09hVIqd1LLZhuzqf1hkhgF3CoEwZwJCDqekWap2GQ9Pjng1VoqbCnLZkOZjCPBjcJ4NOJxJUbhGST0HkNC1xZLw5AiQwyM3Q5VNWht0SHgo7D5XPJinOwNIQehsRB5M6sgKjBlQCcgDcaY5LHGxGKxRA+5u2KIE3tJpKxkc9BS8d9vgCFmKWhmKsaUik66dPuGJB2HxGMgJyB5jhSwrbBFVQZe97N/vy6k615B1su9ljlWVTVK7wHp4pOzTzb2Xjn7hHGfKE58rYP5Pd0ywPtAO5+xWMyzpHXHer1mt93inGc2m6GUykadKTMSc31FKawSoHJygs96eqUVVluMbQghSeU45A0qb+jiyVwMS+O0iSslQJo5AOdUDopSXksic2um6kvZO8rtTZnZqvT+cAKVW1zL+3Yhij8VKvtLyBwpjOGoFVSaumlo2wXL4xOWR0fUTUtSRvYVLYdXLJtU3thUqZBkU1iZG/JaQspUbCwBg0tafJRCoHeB0Ud8tn2ojUWb/f0ujKNyZNgiXYsBEMPelMGQvbdBQZZT3hpT3kfKkAnVfrvpsDoym1lhxMXA46+/5PmzJ/S7AZJIDWeVYbmoUTHRViofgGLmOgwdblwIE9PUJF9T6xMq27DaOD59+CXz5Zy777zJj373t3j//Q9Y3lwS3JaURq7OXvHpL7/kxtGbfPDhd7l7+y2a2ZIvHz/kyy9/ye3ljLfMhxzfvkXSnt/53oe8+vr7/PGzrxguHN1uh3E1r56dcTw74daN27z79sh28wnddoNSGu8ctgqMY08KEWvnVCbRWMP3v/sdAD7//GMWC83poubJw4/5m7/4K378vR/x+7/zHf7mg7f55V//O7quQ4VKzJ/1QFKepCwxZe/BfO02m6nyVTxPcrluWrcqJZqm5ehoKQUOpZjXFe+8eZuj20foRQuqJgSLMhZbKzF+DgFjPDFt2XbP6fuRza7hatNzvtqRdhofI95aKu35wW//Ad/9ze+xGs948vwJz5//hMdfP+HqqsepfTfFOIwcHy949733mB/f4MWLMy5fnaFjZntoTUp7VpvKe55UTAOJ4lMaM/sk7X8e9s1oppqg2gc8WiuOjxYcHZ1QV1X2hhqn57LW7Od12etCEOIeCe9GxqFnHAa67Zqh70FB7Xxu7CNXXTcSXBph/pVCgtT8cjMovOzRJheytDAe9mAcU7ArjGQJyl5nlB3GPt+Qv3K4n0vifii7lWNIgDmjwWYvPWs1daUnxrgU28STRemIigaTDZTL/YVc3S0B6IF3nyngY8avUMJALGeO4JbCjIw52JXXrrLctFhJlLNKzuu9tGSa8lP8UsYbCpM7TEujFGQSCjMIQ2SzWbNcLvN5pem6ntG5/Dr3jSxK8CpnaDXJRPaV/LwnIvvWYfOtw+BfZ3mwyKkPmIwUXyVywiAJaLQSN0q4mqY919rcREhr8W3L46GVorKWtmmuJSYxRvpJKp2LzloKzlVl8+tlAqeZznc5D5XS1JXFKnBDItbit6i0pm2yjD7lpk0hUlUVlbWsN1tevXrJbnQoY3HbDWnopJOsRvxqcZjcJCaMgUpbGjtj6L2YqIeBXX9FrzSknqppqNuGul3io2azHSAF2rZi2Ta4fo2KsqZsbWlo6dzI6AMhRkYn3SC1j+hKo+bit8w4oEJg1rTcuX2HDz/4kP/sv/xD3vnBd/GDw11tqZTl4ZdP+B//p/+FLz7/GO863CCdWVVOkmKMVFY8u/quP/CWznmL1uKzW/YsLfGkrURtoDP7ThvxRkxq33hFK1kxIYis/xCgPmRZJ6QxRmVrbty4xZ07t/DO8+XXjzm/uMB5n58L3DjgnHjCkteJyPhHtBFCAAiLPqlAH3Z53WfGKxpTN0BFUBXWzjg6ucPN9h43dEdzFGmWiVQ5TGpo4k3mzSmb3ZbBe2azhm6zxo8jp6c3SNrIz8bI/PgWjQKTu1BtX75EjYZKzZjNa9w44gbDbN6wXCxJIdBtNvhRsahaatvgR4u3lnl7zMnJHdCWh48+5cnTZ+JrO5+z7beEGKirRs6eKPmRRpoXSFM3yWGG7QqXAs5W6MqidKKyhqpq0Kbi+PiE3/nd3+PNt95lHB1Pn70QduYYUVeX9KsVPniiH4m7wnyRwquKicZUmCTeqVpbktGgs6WRSejaiH+bkvzPqBz3xYQxNSRRmSSl0Msl88oShhHX7RiHQRJ8BFhybhTliNUs5gLQidF8xI+Rvh+lEy+iBEJFLq7OaOqB2M/wTrrPD97jGND1CrusqI3BGE9SAW0M3sPqamC3esmzJ+eMfc8wDPgYJKdWCUxurlH2IXKeicSEygopZuh3VLrCVC3EKB2tdwMlJldKznONprLi7zj5gCK+kUlngo8WGaoy4u2mjGFczOiNZWcNbVhIfpGkYC+NG5R4DScxSyqMSXJTLje6HJJFAVZTnIoeIdt8aGVhCPjNwGazZtvtGMYRpT1jcLjgCTGD8SFCgIQnYVC1zuoJK0VMbfP5ojOolffufA8MxTO3knwcNXUBlrMr5+rlDMnEoskyohS9ktCQvC+xfz6tooCoKipUOvBlzSSCyta5gYUUjJOOqLjvil5kmXuALsssc/xWsJqCo1xDaQ7OWH0QJ6WUQO8LhvtiXX4sLb7c5sDSrDyONNmsBGzUBkUs9Q8KYCav77D4KMQtlfNspYpU9TpISCHrKAVJo/TB1xzGbvuvS1SrUFIAzhYIqgBDOb6UcSvC2IMrB5WHseFh8XICIgsu85pC4fXr15S4HnpeZYBsymlFw79HipmAJpWDYJV/ed8FpNAe97dEgtASMsnjexcmhdt+cu8f39o6/738b6pmK7P3oNGyQNRrH1GgK9k8U5ABSrmLWsrJusmBvVRwhQ4psg8BvyqrCV6Jd0YGeowxJC/gUQghB6qyoKPPh1EOFEPwKD0SnCU6i1YNHEwyY2aQk3UBHHsATGogeUk28v0W+WYeF6XRKWBswOQAu4yLMCISKncijBFUSqLjj4GkRnxm5vkw4r1IWq1OKKvwUeFSJI6DMMySHLSCQnn84NBhJNY1tm2mDTOplDcNta9uIqBNCclDSqLdDiNGRY5Pl8wymKbQkywh5Oq5yV1IDzHoafxgMjUn7X9LQaZhZzCYmOeeyt0cBWyKKTJ1bSqmn+lwuwIyg0JPG4KaNqlpueTva32dYVAkUd9caweMvOnJJGlI2bNHKYNRihs3TlHGEKNns9mw2awZhh5QtG27N7XOm7hKxTOuPKzMC587sGhAW5OrYDUhSPIWIkQU1jZoK515fT4wZX5KOlyC2lQwJZVAR6G/l0BMqeyVp3HOZx+rA3ZkeYFKGjxMybGW+yHjL9UyjJbGD8hhIB3QotDwK0vVttSLBcvlCYtlBucS9MNAN4wZICgsPnlqm5MkmTfiC3FQYsEXY+CkicoSoiKOApKNo1T/ZB8RwHxK7UsSlueGzFPZU1BKDoKkCclPHQsT5iDZNVSVyQyM/YyXxDPhxoGrK09Tw2a1wo+Oi7MXuK5j2A7MZxXvvPUm86Zl7AdMbdFKKlq1ITtFBkIYSVG8YBazE3a7NetVwLaaW/fu8Nu//0M+/M77/KPvfEjTNIzDwOr8gvX5mk9+8Tk//8nHfPggcefGt/jwvfe5ceMNPhp/wbMXD3nYJHZXj3n3hz+kvnWDarjkjSPDB+/eZPvqK85iIPQB10dePl7x/snbvHXvbc5eXdJtd9kvx6GSIYwClmmj8K5neadmuaxomhnPnra4buSjv/4b1Ec/Z7k44t23ltjkMPlvu22HTn1ZyKTccS2R5Qn5csN4PRA5AGNilORYK7U3JA4BW1Xcvn1TgsbNFSxuQWMI+TBTGtSsguRI2qHagNc7enaswjmdivgqcHG1ptIzkm4J4xVX645N7/jy8TM++vhzvvr6KevLK/yowO5f80d/+Bv5swF4BveB+8ff3Gzy9b9+75t+Uv+w12L67KN/8YN/kEf8H94KcABU/791pcOzQx3s7wc/33/voKvqQSHEaDV578lHlWXmSRre5C5hKU4kYPm7si+p6yy3/evafyy/B3mPzDIic5gIFC8draRCnqezQjr4KqWFFZ4fI6Y42WUcvt9Dplh5/yEExjFlsC8Rg6Zpa9p2xq7rWG82rC4vSN5xdHxM29TCUhgtwzAwJjnbdaY9xuxVZBRTAW06F2PgcA+s65rgxonJeLhelRIVga00VW1QLttoIMezNZrKWtmWg2W0Srx6NQIaKEVtDW1dCUA3WqwW4xGtkGYOTT3dD5C4rjIGoyHo4pMqfmZVbTFGxqGwcFMudBMjfnDS0dQYAXAzoIiS91lZK68/SQHVB7EyGEcBfTo30rmANjVhHMANBCKpTpKgVAJoOZ8Y8SxmS46Xp1yerbg8v2CzucDYEVuJZ63RDd0wMuw6UJWcUySGcUdtAm0rLAifO3XO5nNmiwU+Jtw4MmzXpBCpksLYGj1rBVBPiuB37NZbLucLbr37Nr/1u7/He/ffFhAtx0cnNz7jX//rP6bbjXgvclVrDoA1DMZYgk/SvENJ4TylIF1TkfhGGB1lbudiA2ZKjKVImL244r7YwBSv/6pIU66T01Pu3LqFNZZ+GFmttwz9wNmrM+lS6R0+OBK5sJSiyPlreT0hBUY/ErpAVTUC5lYVyUA0YAzU6JwZaQFFqFFmSf3G29z89ofcv38PQ0cYXrFsHMt5olIVs/omIWievXjJi7MzfIoMww6jJEb0KNIwsu579FxzfOOUt95+m1u3b/Poky/4/Ocfs1ttUMmSYkffBYyupPPw0NNvNSq22KNTajPDDyNOt9jZKc7VPPrqCV8/e8ZudJwcH2GsJhrF6AZCSNgk7EWrE6axYjsSFcmBRgAQP470fsSmmqZtqSpLM2tZHp3y3vsfcHLjNs/Pzrk4v6BuZrzz4AHd4Hn19Akra1Ex4DNxQDzWNAFFTI7gRkgqW5yMok6yVsBAFNv1Fud6YlJ0gyOqmt5HgjIYW0sOGhMqeEwMWC1ei9FbTPA0TSuNQCpN8CN9t2MYpNO0cwMpJZqmRilNU7eoJN7EwziSnEdXgdENqNCgTYOPCh966BPb7cCsBtvUBB1wPlBbKVh5r1nvNnTdJeDFAqeqhW2FytJKSGoSROKdwzlHSy3sLh+wtmIxn7FYHGFtTQwJ7zzB7wFj5z3eO9woRVbyepFicpyAaGUzuJMZRcpqYgzMFxt22y3tfJm9k/McVwaUWG5IBqimQjdB1nDXddOqDFlqGfN+6ZNiCAmjahgC46Znd7litbrEOUfVUGgYuagmuVVkT6QILhB18WWLU6FSmkqEDM7lszG/Di1eFgJAmb36rQBFh2eUtVa6Tjt/jYkeQqAOgUI8qUwuIkVFCF4YgnDtb7Q2ucmdznGHwU8QUokXmEgAEiccAnQH+EtmAh5e14pghbCQ2X9FOXDY1R0iVWbjvh4zlWKHMbW87qzs09Pzy1iGIJZISpeu7VlhOe3B+9dZwEXBl0r34b09SymAyXvJuRd7D6IJyMtg5QTKqYm7scdRDoCAa8zB8t/BvfpVUeqviiV/1fVrAXS2UFYnAE4+l4FQhxk/15DIgmpOEEwJnOQ3YkzX3tw+nd2jvPv4syylvX630AytEvpgCUKnxzrMkEtifPBRbngqFlj7m14WlAaImdmiUSpIJ7mk8F4TNbRNjVX7ihsJaeMcc+coYOoAY8ldyASIIopMKLiR4HMnMAPKmJwwa2EyVdlcMl86CdKc/AGzoSQSGTDSKpDiSCRm0FLl6pHI99LUbSgzj3KjhhDyhM7vPwQvAXGWmIboQEfqxjCsd3gP1qQMGgVC9Hg3EmKPsfMMvmQJmLJYVcDdnB3EDMpl9ob3Ms46Ri4vL5k1NfMMNm22G/q+lyWYZVrF1LSgnhOCr0o/3zy+8TpmJpW7DM4JypmD/73HgNxs2dAE6L2+mIyaptX0L2kxYUfDGEqlaV85OPQtOjT3Lj8//NwaPVU+yj9tRYKhrGU+X9ANIrnZ7XZ7cConVIVBUZo5mEy73Xsd7hMhrRW6qqgrQ2VrUCZ3xJKxtcZiK4u2dgLltc7gdQhS9czda+Ugi6Iwz1LcfYKYJrryMIzTfZZqyp5CrfI9I1efCmZSKiyTbD6DljGo/LygtKWqGmpbMW9aFrMZlRWjaTd6BufEX1EVY/YDCWredxSKMSFsODVt4TJlS6fFRDZiR1q55w6DOknyptO+pEDK+5fas2H2W1OWRBuI3mc/rD2gaSpD3VTUTUXV2IMDCnwGOa3R4AOri0sBbZzDdRv8MHL75Jh3336TO7duMmtbKmNIMfL0yVP8OGBtzWJWSzfp5PG+p7aaxfGCwQ10Q8dytuDu3ff4/vd+i/e+fRfFyPnZS549fsbDT76iX3keffYVbjfwrTs3ef/Bt2hniju3T5gftby8fMXn48jTLz4F6/j27/6Ymb/k3kLz+z/8LsPlio/SM1696DHJcHl5xvMXc964f4cHD95jGLc8ffqYNEhr9lk9l7mJxoeBe986xZiB5eKI+2++xWcPv+Dy2Rnz05r/4p/8DrdPFX/xb/+UJ49e0Ngj5rNAQqqmOtncUCdl8HS/DttZy+Rfmm/7HpCH2WyGzQb/VWaMaWM4PT1h3hjU7gp/8Qx1ZKgWbxB0k0+xiDFieDxsOy5fXfDi5QVXFx4XG6JqMnDhiNpw+8ZbrDY7/vwv/j1/9bM/4+c//wUXFxeoGJi1C1Q1499c9PzjGwc+bf/h+n90/fUoslqxcP67K52HIBmUQA9J3OAgjizxizACXACvPTZLq1IUU+OQzY+NFiayADjXY6Vrnnil65kqIFYkhpCVD+UF7APJsiuVwLoAeBIQC/gVS1yRE9rDgPLvAiqvv66IUkm8T2nx3rHdbtlttxhjODo+Zp5lTQphOwXPXmqTROrLgfRn/373izHGmNmDRVYjDXJKcVQp9t0R2xZnHFVVCoUCkFZW2BAEsTHJoQTGsGc9ZhmRNVoKsjKKaCWMcC0U8RxPGAHRCrsij43RajLFlqMg5dphInqPG0d2uy3j6DBa0daWRVPhhh5lK3TTkGLIcjd57TFGVqsV4yBebZ7AGCIuOIiayi4JGEavMBZqK56pMQRMUhzNb3G6vM2L5694/vQVKM98WaF1buKVDKOX7vVVI0VoPw5cXr5k2BmO5zO08hiTsFbRtg31bEEIiu1mg9tsicrgKoWyBoPJ+ZTM7xAj5+sVH3/1iC8ePuL9u2+iK02owcdEPySCgxgURIWxhspqimdybZs8P4XFrI0wG5wbZR1pDaH4g1aEGAUs836Kf0qSmRdJTm6txDc+THlBUTKUPFChqOqK2WxGSnC1WtHtdjx//lK8x7RmvpgRN9LoJiY/nRNN04CCcRioKsswjIxuJOQ4u501wt6qpMOqDwqixo/FTiAxW9Qo7ZgtDNv+ivXVKzarV2xWz7lxOueH3/sR9uiEJ0+ec74Z2AWNbRpMDbbZcHZ5TlIaoxLKDcR+x9ze5DvvvcNv/ujHfHr7DTbPL3g6BJyT2G4YdqIYUiNj34EPtKbCaiuKxtETq0T08OrsnCfnz+lDwM5bNkOP3460s5pmvqDrtoQoRABMxcLW1FXN4EJuSkBm2AZmsznvvP+At++/QzeMPPrqMU+eP2M7jPztR59wdnaB95EP3v82d+7cZrmYcWk0J0dHBD8yuAECVBqUqSXn8A5cbmKUi74+SXNCbRXGWo5aC1oanwxdj1cBhwbLBKalEEjeobxDB0caR8I4ELyXXCIF6mjxfmC729DttqTo0aZ0nd6fDVNUmHORpBIuOmqTaGyFUhHrNVRF1qjQugJlcS4yGI+NFSlL4pNGAN+6kqK9NoyDI/a92NposNoQtMEHR/Se6KRpVAwRKqhnLcuTY+qqJYWE9zHvwWLz472fwL2+63DOobQA5XKeZK/0KKzuWPJWBYMLLJY7ut7RzrZyDiIN3ZSxJGWF/KJkPapkgJxvJAG2ZEPRRJWQBDqSkOJ6P0p857YD28s13dWa9eoK4oiydV7LBxmcRkgZMcf6KXHodVa83iUuKEerxOrS162o8aywbLP9RgHMCnmosL7ruiaEQOXClHdOOXmSogHkMwYl3ovOEYkoI7jCvnmn688oIAAAIABJREFUKANLOLIHAsveludXxmSu+9ApigXGIUlEPO6ud3ItCrNy/h7GAoUkJYChmprVadRkgxZjFBWUC6JQmjg0JYeXz8t7T0iME7OEGUKef0Ig8QUsVnuLjAkcC3t1liAghkn5lfY/Kyo4YPJbnCC8PNa5hLMf+/K3+T0XYO7w+Q0GchH2GlCZ580/CINuPp9fGwyRt5XAtIgF5EoZyBCDv4DWCYWh+L3IY+QXmuSfutahYw8EAtMjp0RuxoB0uck3XBoK2H1iXw7djHIWdDzftWtfT4st/+zazVUyaFLljmglCVVli2GkSPRCbQl1yBXrTE/VEVdVDG6UQQ1SVS4gW34b0lg2SUc8P47STTWZ/LxyMCdlpYJ8MCPC2AFREm1EylNwUp1pxEZnEEUFrBVjzKQMwWemUV4U3gn7Ryehu6q8YWtrQItPRwyecewZ+h7nR6Ly2EZTOYNSgRAHrLHZ0DHLUV0kDFkyqTTaWGySwLi8lVg8w1IUFlfW3ccY0SHw4uWWO6fHnJ6espg1xOAIQWSa2igJZrIfkpo2wjwzShBfTBhTmgAYBZNZv0aSAJF5xuv/VNntVNG/XktKjC4022x0nlN7o2SRjy5ln6QCOF9P5A4H9TpQLb9rjcEnYRZKolFhmpqqatFVxdXVFd3QMwwOrbV01lJKunKNQ04AUvY/2uviy3OEKAenNpqqFg87YXqKQezgPQoJbJWRqlDxV9S5GUXKG1uRFIs8VMbU5jGIMYlps5XnLgwx59zBe89dl0udWInh8SGjVKjUoKMYq4PKh75s0LJ5C4Au1SSLrZrMBkwCzHmRmddVIwF8TmhLIpXKnJmKK8KwUyl7XeVx1iTIlSyjxNHLxIQNQpOX26UpeRtlzuV9RUFOxAV8NEYI4FEJxZ8kHSyNZjLPt1bkUfFAnuiGHj8MGdBPDN1OusophY6Jo6bmx9/7Dh9+8ICh23Hv7l0ePHiPV69esrk6Y7XuaWpYHs1omhkRhVERbSIu9agaatVS1TP8oDl/vkKljsvLJ7x8/phHX3zJF798go0tfkgs2pbFQlEtA8QzPnhwm4ffecBP//KnPNudc3vWkIY1tRl46+ac/uWMxXCL8we/weXGcrn+CjcM6Crx7MUzmqMZ9966Rzde0Q1XrC4T/S5St3NmuiJET4wrtHagRvphw3KxYF4vOJ0dcXpcs718yp9/9bf82Z/+gs9++RjvDNbOiWoHBAgtJlUoFRAvxP26rHN1e1qurwER2hhCSqQgzE7nHINzPHuqefTJJ7w998xOzjHHZ5w8+AHNyR1K3qgY8d2WV1+/YPV0y/plR3e2YjdaxgSpHgjRcf9OTdtYHj/5in//8c/46POf0W3PMApms4ZZMyfqhv/u40u8Vty7e4d/+p/+AW/cOeHTTz7mlx99ynrdkaIhBOk+ba3hj350BMB//pPnEhQCYNFaTIeTjoS09wCzSpLrfrdjdbWSZCxLE40VNvfoHMpoFvM51lgIUvD46X/1PQA++J9/IvctI54pSKOa5XzGnds3GLod66tLun5gcJGQg1xrKk5Oj/mrfy7swP92fUplLDY3nDBWpKIJiCGKnIfMwFf7qm0IkeD31Vn5XsqvyWSfzLxvZSbtIWB7/boOUBWg/3B7TxFSEHPioKIwgTWk3A1Pa0WwEaUFJPY50CcpNJ7SA+51b5PDvXyyVshfa7X3l7uWUExKiMPXHKdET9jS/prcBnXd226/X1/3vjsstEx70zhKLGMqTo+PqK1hu9sxdB1N0zCfz2jqSsq30dMz7J8DdT1oPgxutSalcO117RMK6RgrCgub91adm7fIc8k5lDf4JF1upfMvedyFnWmMdPCsjJHzRqVclMtFzJiNz/N5EWPMBtpy/43OBSWgxBRKKAyTl/KeCSkFnugDMct2o1ZEq6SZFjKuIteUNZM0kzearSoWszlx0xN6hzGNNATQDSE4dsNIHRV1NaOxS2wDOjhasySNmjAmtJLzxbvA6HtZdxUo00hzD6Vlv02elEacSwSXWMxrrJ1jqwbbtKQMArh+lO0VcBlMjLuBFAOj88K8iZFgNB9/+hl/+4uP+MPf+8cisY6Kvo+8eNGx3Yy4UcBQkng3pyR+qlqLR5FS4nlYN5YQHJ2OoKQbodJGkm4lQGzd6KljtPeerutEYaAUZNlYVCF7AGd52eE+kkNCW1lOTk+pm4azi0vWqxXzdk7b1lhTYaymH3oBn6MXQNgaYSZanYE3h600Ccs4Sjwyjj2owLKZcXq64PyiZ7V1DIPBj1rUE8eGRWtwu2d88fGGxdGC3TgwJnjrvQ/54Lu/Ac2Sv/z0EZ9/9pCmEiaUTZrgRpKt0VYadLR1hfU1tXKEixc8/+VP+dpE1mdXaHqUHqkqiUW887hxR9KayoK1ikVtSbHH9R0xeKyaQ+y5urrkYrNidrxAGcXVxYrddsMNe8rJrMHSZL9NT5WSSEitJQ4u770aFxJ33rjHgwfv8/0f/5g337zPFw8f8dlXX/P0+XMeP3uOVobaNrRNy4tnj3HdhtXViqvzl1RKEYNnN/b0vkcZRd2IBFMZRWWkOV+KZPWOzMkhOkyM3JyfkNEmsMIotcaCrTG2JiVFdMLMc66n73eEvoMQsFpW/+AC/RDFQsQNKA3L5Zz5vGXWNChgu94y9mPOyxKVMUQLnduhtOZkWbNoF+zWHWOIRFOAY4XRDcrM8FHyuxgdIXnQgaqRgnxdG6q8lymQ91nODYWYWSRQLkijv2SBSD+OuCjnaNIKpQ1VJcCD2CUkdFVR1Q3WO2nUNA7Y2jCfzamqWgpGMeBDwEeHDwW4FIbVbHHM8ugGTdsQM5vRWnnMZCppIKXFv1pFxBvNy3l2ZKsCiWW/AlGYhCR5gXOR5OHKXXIVHLvdjq7r0DrSpOzfhiHEUE79fFsl7hCV5574I43qBJCx1jIanYv1ak/ySFDskUqnUTm6EknHCQtQSqELAy3lonzxic3nSDn/Su6kkMJFZiLk5hDXQbUYU1YwvQYKUTACLc1MMyiHUgc+9+ra4xmz91Y+LJIVe40CPB6e00VFYAtTMkt9s1yAQwJGiR0mL1tdCF1qnx7ntzs15oBrAJ3EcSX20Pu0vbzhksyVM1/g4j3AqtjbPE03CpQRYpnAVPt7ec3e4OC+lwLpXilaxuBXSOXy9X+Bz/16AF3bNgAT84UsJVOTmXYe1BwcSrtckRYosmZYSYCDYkLfU54c001C54QYJHgtTRPym8mJvDFWGD8m68GtzVXo/aCLwDVeA+T+ro/7G3lQoVbSsMAWieq0QP5Pyt7r2ZLsOvP7bZeZx1xbpquqGx4gCBIkRU6QQ3I4Mw8ywxjpVQ/69/SoF4UiZEdUaCRCHEoihg4E2d1Ad6NtuVvXHJNmOz2svfOc2wQUmIOobnTVrXvPydy591rf+kwqYAnFkFOTTGlSlMidcoSQEnfbO/pxZPRSABgtpprWloeZsrCyPLBGqVJINti2RbULARmsLcv5JQDnZ058ZPw0o7fVtNIUzbTRic4sQMWCgov56TAMjKOY47eukQJvVBAE5bXa0LoG0zTophVwRivGqWdzc8Pt7TW7/YYcApeLc8Z9zzRNRETuZXUmqAI6ejF4NdpidUIngyoBIxFKKmhl9glgFHKRsOaAjZFpnPDTRNO2OGPpmlZ+XowFaGMudpVSYA4aeHIsRucViKmr9QDYlq4birz10OyoI4JvvgeQzmumNG9GHb6uzljnDbgGKdQJzJHE9R/hdV961Y0bxPewaVpM41DaElPi+vqarGoohSPnJBMFMbKYGVgVvZdnLh/AaAVGO5pGJrrWOmIMDN7TDyW9yhrxJCmD71imYTLVKLH3KZJzQGWFqVdXqflqVABOgNNcpidBgNty6M0eUuV+xQKaifwLKuU5ZQHL5UdkQg7EECWpOOoy9pBDselWuG6Nsi3eB6YYiFnYKkobobglWSfV+D4TixmtSJM0NY67NFYF2FVZk4Oknrny3EUtPnkpR2xWWHWQRmcQbw0kLl4pBChAGgDtytAhK5keR7m+yoqpv9KKpIpHWD7a8JUAedX3MyUvZ1GR/z578piL1Yrd7S1WS+hBDhPbu2viNGBUprGarrUsFg0ZTYiJ0fcoZ3ArTRoC/XDHT37yLru7VzQucHP1nLubK/bbDftNz+n6hKdPnvKrv/oVnn3lAmUGsp94+8kZ3/31b/CjH/81d1dbHq4eEXrP5rM3XD57yrOTt9B3r/nm06d8crvhqt/w+mfPIWu2ww2v37ziweNTHjx4wuNHN0zjJ+y21wzjjrbpiDFgrePmekOMcH19ze31QN/f8vrFiJ9a/qcP/obN9pabm8jLF1fstiOY+kiLGa7KEmqkVbp3aO774QCwk6nkxTr99EH8QxWSXBh8IIQt7++v+d+G12x/9jHnT5+wfPKM39COt7+dsF0HSoJ23jz/lPffe5fXr664utqiTWA3acYYMd3INO2I28D16y13ET65foVXPSoHTk5WnNqGGDS74mHTXZzz9W99iwePHzHsrvni4w/55MOfEIJiuTqnaVfknMvkue4zpRCpLMKcqLRyVQH4Mjypfo8HoL/AD+loyug9d5sNVhcJ+tF69d4fztmcZDBEJviRYb8nTD05elRhn2dl0MZhnDsApcCrV1diMm+tGNGXZ9AU1nwGPImkmeuCWuSlUlBXSXwtQFT1nqrgV1KlYD98zvuShPvFbC0OD3WEmQd9upwJ5FTLoPK1xXuOwtAq7LGcMqRAToHjw+fYz+S4EJzf0dE+X1lwFEDheMKb0uEsOgRdKFIyc5NRDbGPi84vA3XHP/f4jBPvQQFjFosF3WKJNSekGNnu9txeXxNjYLVa0jQNNSF88sUntdRD6mjwWu+LMATlZ5mZRXD/mtz7RX3PZfCWD//O5f/rI0lWTgLUt61lvRIQUc9uBLkARZGUNCSx6Kj3tl5slY9/jpwxh5+vCrAHNczKqLrKDkMjjXgX6iKvdFaYPCnJ9w5JErpTTqy7Dtu26N7jGo1pFqANMQX6aQ8pgmpBNXTtCe26YewGhn7Py5dS07l2IuUoQ9gyfFMZzk8vOL84o1s0aJUZ+g1vXn3OtLulWxguz09pXcswBcYpMKXEMAS8j4QsLPQQMyl7QpYh61T84WzjiBGmu54f/+hd/uRP/5zFesXy8pTdLvD+ux9wc71h7MV71OrEFEXq2rULYfkUw3RnpXYWH1H5OaP3YsGh5eov2o7FcsF6tcI1DbvtVtZO9WRE1lZKHrKRXqaCqKmwmrS6l+xsrTBtQ4x03UICIhJstxtub2/JRNbrFU3jZtuYcewlYVbrOXBF1rAEdvkJVGw5sSsGNbKPe5KyrE9PObs858HDC84vlnRdZt/f4ZvM8mTFd776Hf7wj/5TQnb8yf/6b/np++9zsl7xve9/n0XX8vlnn/L+3/+Y3fYOp6UVNiiW3QKjFJvrO/78B3/Oj//q78BaxqywNtG04EeP1Z6kPI21LNuWRhmWTUOeelLIOK3RyhNCTz9uSSoTdfF6XjTY1IhcddyL5NgAWWOcxjipa4dhJMaEazsia9752nd4/M47vLnb8dFnf8G7773Hh598AsZgKeylOLG53XHz+gXPy36y3+5Yd8t5GCLNtgx5jROATpcwJJUUxipiVKgYyl4ivpnWtRglvskCzlhiGQ4bI2EVqkrzS/3nrKJ1lrZ1YjwfkoRXaUPTNJyerFivFiy7Bd6P+HGkN5BDZTALiIUytF3Lw8cPuDx7xMsXL9kMgTGM+KhRwTGFTKMtSregjdTiNtEoLc98FKsjq0s4hjFk1xCLp28cR9LkMTljc0aFRM4SYBhtJildfkkdr7UEaeVytqecMNrirKZVCTVJP9osVqLGyeW5yhlUsTwq3ZVpHOcXF1xePqZbLgSgUmBNg2s7aBqUseLtljO5+D1XRZdrXCHkHMChpBBfuRDRGNLkccmwv71j7zZzn2ydk2TfkCCWcEaVSqKvnIlBxbmeqN5whyFSGYqRUVkUXSnrOt/7udjD4fws53b5utpzHM4v+cOYvPRApT6YPTCT7Hvz9+VQd8wAkjq6JqWPnI/sUg9UT3FdfNUqE02wDlXW930GO1lk+Yefl+/VFvVlzP36QOsSBnP0KxxfF+qwqrDn7oGOqch7xW+P6s9b/25SM5vruCTS5jCgrH9YlZjHX/vz5Kb1HgjmVHxtC8Bdwbg5gbfUWvW/Y1Ew1Nrj+PsrVbwfj2qmX/T6pQC6Q4pXvv+mVKXqz7fhPmqb49FFl4IxpkKPVcwJIuLzRVk0zFOEeVMtf2aUkoa4gFG2Eb8GKS5L012Aj1Q2OWb0s76/8s04uiG5LCClZuqpRmHJWFfkDVbjnMK50ixn8R8IwZAiGG1obQsJpsEzjEMxdZeGzxrHoutonfgMxBCLBFG0451zrJcLVusVy9WSdrEkd2KC7YyVRFsJhOKtx2uRP/UCiq0WHd1CJkjWFhocESOxmlhrMc4SYpIJwjgQkmxKw2AYJ0fx75dI7QzoxGLZ4poGYzRNYcspk+iWDTkGmqbhzesrrq6uqKw24wx4UEpSc7ByiFoUzFp1Wf1aG8SQXFzekikELa1lKpbFd+769pblckXXNqyWK4zW7Mfh3gY4w265siJKmleF2b70IOT5a6v0sOjp56K9sjzu/Q2OjOHIpblUukzh6oOfUzErVodFzT9+GOtDfvx8KA6b+BSFASEArMM1Emqy7/fshl6mF/bAYqjmw1rl4oWYCjNA32+stND3G9OWjVIKxClEpmkUY1JdAiEKMFSEwNTjtWBgJJJM1WMsfkel2SuFk0YXr0RFDGUDC5LIZJ39EiPkyNcgi7GyQViO9frkFGZ5OEqS1qIPoOxMHzdGWLWuW0LTEZRjzNKw5+L/E2MWrwgqyxBhJaDnn2WUEh9NkgAGwmFHJGqZbDRWNXROk7UlWiVMgZiwSt77vCTqmpKVIP5LWiZmzlicdTJl1GaWHCSdyr0vIRtFim7MAfCo/kY+BBK5eDhlvJ+4WC9569ED4jTx8voNjx8/YNjv+OiDG168fIEfB5Zdy8X5OWcX4tNnmpZ9P3B1c80YBkxjMY0njAP77cjn/Y5GNaQR4riky4bzy3MePz3jW9/+Cl//1luM/oaXHw+cPbjEnZ/w9NkJj56tud7dset3fPDep9x+seO7v/F9nj15gj7X/ORnn3J2onnnaw8I/ZbNyw0pZd7cvObjjxc8ffaMZ29/h7vtxL6fGMcd+3Fkmjxn6wdcX+/57NPXrJZr7jbXxLzl1csv2G4sr15v8QF8DozThkgihQajl+VueDK+NNn32crjdACU6p5QGZB1ellTy5TSGOdAKYZp4G9+9Clf/ORz1g/PefTtr3KF4bv7O54+e0KzsFy/eMFH773Pv/+bv+LVzRtuNnvQI2O26MaSdnc4A37c8/nmI+6CQi8bHlye4uySZfQ0ATYb8ZmKZJarNY+fPqUfJz7+6U/44Cc/4erlc4xdopRFaUfm4LsIVQAhz4LKucjGZfEqIwAxJQSADK5pOTWOu9s7YhykJgiF0YQM6AQXymWPPUj5Ywz3ADqZSItUPviJnDLOSvqZpiHZFqUtbduwWBzku9M0kaI0GNrIs3QIB9CgFUFlOUuqbDIVOeh8f/Nhn1dVSiq2HVX+/uX66XgPV6WuOEhgxMftUOCW9K9S6GWVIJffozDQ5mAKK0CkNsIiSNJcGBqUOparHIN0wtxH1SL1YPQtHq0Fb50HVvX9i7wTimwkV/85jWsc1bO2HlK5Ng3yww//ns8TPe/b4kGXZouPFAN+Gor/nmXRNfgwMY4D223C6MxyuaZrG0IM82eQQUg1WE8Hm4na/CQp4E1pkGIQGaFM1GvRXJhtMRKCZ5qsfE35M7mu5ZdRs1RWbCBg0S04Wa9pW7GNSDEWoLWAbwWcs1qVwIc685N7I6EZAgDXFENVAbpcALokrJSCGxQvy4wuRum6yGPQ4KyEboTy2aukTGrhRpr/tqM76VC2YTvcMY0bku6l4W30AYQ2YF2kv3nJm+uXxOxLQh04Y3DKMUWNbRrOz8959uwpF5fnLDrH9u6K91PPy2GDazQnp0sa2zK9uWMY9kxBiyTVKHCWPEVUlHsRFXjEXKCGZPh+Yv/FFT/4t/8nf/v+eyyaJd948lWcXnJ3F9j3vchISVibyRQpXpBaz7kOo8XLKfiAEXWpKDNCEFaN1qAM1jUsl2tW6xVaawmhyaISMVpjdOlHChAray8fjSWRVNzGiaVBDMTgaZsGZx3jNKK0pl0s2PU7cs6sVivOLs4wWnN3d80w7PEhoo3l9PQEpWBzt6UmNMYkg5DYJ7Yvd6hBs1QLVsslD5885dHbj1GLzC7c8aq/I+HJd4H/6Nd/h3/2h79Pnib+5N/8CT/8ix+yWDj+5R/8Nn/wB/+E7WaDSQPv/33g6vULGutoXQurFY1rcE3LYnXBfrfHTxOnqzO+8fZjUg5cv3nDm6uXDKcdftwTp0mG7wm6xjKGCddYWuOIYWS3mej7HaZrZPioBYxxyeGngX5UnLanErSiGpqmRWvFMA7s9zvQmtOzc772+GucXF7ws0+f89HPPuT65g2bzQalFOfn5+gsu+zt1Rtu3lyhc2ayFqc1bdMwhgnTOExjcaYhG3BtQ+OcPL8ZaoCcxtKgIDtUiMQQGMeJjAbbom1GWznTVNnvhPVabIpSKCCP9BPKKAEIUibpVMCCDAS8H+iHjMqRaZrY9zuGcZA+KGYmPxFCxCwsbbvg8sEZjy7PGcZbujeQvUIXOxphxpfzxmjQGeMktCUFkdgKiy2I/YvRmLYlWUvQhmm/J3mPayyLpqV1jQAkKqOKnY6ypvjcapSxkAWMdF0nZ3DpRWzXMI4jSimsayEVfZE6+F9rI/slGrS1mGaJdi2uXaGNLWeyAWvRTScAXVGR5ZgwZVBYSQZqVqJI7Z9l+o3xgdY6sovsVj1t2x35lBaAz1misuQSdJSTeLRWwKomc+bK8oqBlFwhhRRgZ0Y5Snt4JPv7R8Sfo2EhFLucikeU/x0DdHWAmJIpX58EO0iRrPJ8VqLUDHrpMlgTJZEuxIA6hOVwlpc9uIJxlcwhnnCH4VZ9T/fqoPJvIzRxARDVEYAIRS1XFXQVoyn9YSENVeWjHJyCW5CLrLSwLA8Mu0rggAIvlveqZgynfCqq7Pf4fUsNVHbxfPggGVVm0oe/V0OvjK6f5nAvy/ErSpgvX5d89I3haGUc9frUn5Wp4UW/6PVLhkQcFuMxHbHcBooWrEjSqpdTIofiwUYg5sIuSeIhlGAubKgMO9TxdROWVVm8It3MRWaasSbTdVWymsqDkeUwVgUQilLsRFUL0sKwKY15pbSLP5lIeJzVNM5J2pwSHy1rxdy56xzL1UIMP7Mc2oNX+NFDSmgVSiJTz9DvyWGC5GmMYtl2rJdLGiMsC09mSGCdPBDOKhqrWDSO065jddLh2RPyJDRwf7iR/XDDOIwM+x3OWlJYktOaFLOYPGtBusYwYAx0XcfC2Ao8F7Azo1tDwmKcQitLztD3A/t9j+8HpjQdAV7CzMo50zUNxnQ46xgWe3ZtSyjSJmNEe6/JDNOEjkmmEOHg0VflNtZ10rSUSS1ZiuQYs0Sfx8w4eTbBM+TMY3vGulvQGPGZ2UwD3o/oLM1FSpLImQGfRAIcUzH9TYcH9ICexyKRqg+esC45mjIc/qNIG44euJgTaFO8DyrTRAC6LCMdZheyyr46DDfIuSZ1SpcQswAw8iwZQgRrG0zbYpwjxMzgR7b7Pf0wsFotoSbBUQ/Ao4lBBRZKIykqzQJeOfFOqd5D0+SLca34pDSNpELmkho6Bymo+kQeJhLibC6fQ5WutjZxlY6UOWrg5mTBejjU65HnJ75usvX71UYrhyDsMoTxk2sjpiBrBdaiXAPWCYXfJ2ISHxOlhbEnaupQ9ptyv3JlL5QNe26wi/lsbRJj3WQTRAOVfVW98ZSS58BqMZGdv2+aWZVGS9pT2zhyzlgjBX9MGu+EEaSDRiWNMYrOZFYGXMo0SqH0QeI6RoNOCldS0DSaaISt0S4a+n5HCp4cI9vNludfvCKnzHbTs+xOuHh4yZNnz7h4eMn67ASsYbPfMjERru/otCXZzK4fGPqewERrlhg0i26N94pu7Xj85Bkn55fc3Gy5ud1y+fCC5fkKEzVvXaz4nV/7Lj++9Ww/2/D585c8//SKTz99wb/4l/+cs0fnfPjhR7zZXHN5cgpf+Sof7D8hpJF9P/L5qysu33qbB299hWf9SLaON29eEfxE2u4JGF5f3zL+6Ed88+vfwFm4fHDK7U3P3aZn8ophjNxubkBn8WBKVc6oqSwaWXX1rsur67p7hVW9fzU5M+cMZaqWi19W07ZlKNKyCZ5+B5tPrrj5N3/Kv/vLv+Gdr7/Nw0cPePHpZ7z6/AWfffwCszjnzJ6TsqEJGW0VSrc0TpGDY9ktaW2D6hqG2OP3A7vgCcowpQhas1i0nK5XOOt48fwV7777U148f8M4JRqV6McB0/TYpkMdmdrPAI+s/MKCVWW/kK/TiLeqVpqzszOctYzTxDD2MpAo0khdgDJyFo+bWkiXl1VIMldM5emTgjohUmHrHK5xtFmRTEPSDWiRhTXukFSrjJllgArkjKeeL7LhSKCOGE7Ln5bnvGxdRgmIRZHG1nMp5doA1CK17lCHvZuyvc+74by35/lXyoE68BWGlmAWMWtMBp1jGVRqdFKYrFGmFH8porPIK8wssal+LbX+slhXzp2cj7zohOGjChvs+F3JN5CmyQfPOE0lHVuaSkrBnos3LGXfOy7q6/dLxavTzENSNQ+6HJowJZE65gJsdR2LxqBWHVsio+/ZbzPOaEkLtZpgNcmnw3Uuz6aCwi6GHAKEIknygeQDKURyPLxXyCWItQCXsTC3Q0kGpFzTOhyWeRNfAAAgAElEQVTiwORGiTTWug7XdhhXjK5TReDU0fkqFi9aWZTRpXDPJMzsY1QbrRpEIGdyHTqVNXvkraq1eK0pXZ8NWYvC3pPUgIRItENSuHaBaVoymq5raZdLstb4UDzLtCo1k51ZQUO/xU87Nrs7fJhQKs5BZ1prfEiYmFm1DTpHht2WOxUJy5YYPItuQbtYshs9/RTJJKYQGYaeccpyDZWwklSApqQf+uALU7QAjVrz4OKClWtJrePu9pov7j7lxU8/wtkV2q7IBE7Om5KKmWhtyzQlfIK2OWF5ci4G/MOONHo6pYX5rhLWaoxrBbwvTMtxGskbGcrtdjumaRI7GITdXoNKcs5MKZCUmu1AjDY0xnLSOU5WJ+UsgV2YcNZIKqSGp197hlm19H0vPozaMIaRYd8zeY/tOparFcv1mmnXo+KOFCR8K6eIUZD8yN3ta0y3oDldsFxf8Nbjt1ksOl7tPuX57gUv97doFfm97/0a//x3/iknvuMHf/ZX/P2P3mPRLfnNX/0m3//2twi7PZ9++BFhCjx5/IjN3WsUltPVAx4+uGTRKC7PT3nrwSNUVvhpwnYtD589Zj8NfPzRh3zsDOOwJ4wju7sNY79HhVSsRBY0rsEoI5+xHxi8pz07oWscOQdQgZhGQpzIqhFwJCqarmWxOiGh2Pd7QhxYr044Pz/l9PSSjz/9nL/727/i6vVzzs/XnCyXxJDwu57GLWmXSxrnMWqHIkoCeBgF1NUNnVDHDqV/pjC7KamsUodnJQELVoHSmagjMRuy0oQYUH7EaoVVoAlz1rsfxRcsBwH/Y0hEBUF5VGsPoH4q3mIkvJd6ot/3TMPI7e2GYehpbCM1uVaAxU8QvWIc5ayVFFjLujlhdXaG6VZk3RJiFti7sMwVCpIGn8lTJGWY0oRydWwkYJ5phMWorMJ2DYvVim7ZIcZJmdi083BFhmpyksYy6IpBkmFR0GoZphlbWUOKppGhmoS7SXLucRq7s42EjmiLUhZjHVnVfVSAMtEY6hIWpIR1WfqaGIIw+HIWuaotZ3mUEDfK+7VWlEdytorSZPKGruAXiTQDmTknsfEik+0x6CKYhVge6FIjVQqImX3PlcqgYqk3ao1ZgLhyzkraK4XZXKG5I0JIhqQqWFZ/T96HqgO6AlSS83x2qOqHqo/BKYVCmJXSiuTaxhR2dh0qloGztmhVGPgc8MY5CVuVgRSgnZN9s0hkY0xghYWvjEHnJPJoJam6FrmeQWsSooSUoYghZE1M4uGtqOVHKgnvSYKAYkZrW8gceh5g5VyDPSjD4QK2+aKEUmIzck91oMowOWdyDvL8z+Cg1D4ohYpZxt/luucESQvBQykt67UuyYJpKV2Gb/cQ23IbK3GHmQj6C1+/FEAXyxuLuaZ6HTNy6k2jFLRyoVJMcyRZzHluf1AGZSSFsgJJUiAfTfVzKnI6GXEalYsXnABz1kScFflkVkrSP9HEZMiYcuEVLnlUidOWyFz5ecrIBdVKS0EX5GYo4+jcgvNuSbdaQKsI2ZOmCZ0jqwZOF0JJn2JkO+xQ0TMNO/b7gTBGks8zXVXjMXlCo+hMpM2BPE6kSYIX0uRpFx2JyLjfsk2RPI4wDJi45vKhYTduuNnseLPZQDEA/+KLj1FK4Yxj2O/Yqz3DfqJtAykZIgYai1s32NaQcFjdiLeU9bSd+JJZq1ksGpQxuKYjK8Nmt0Nd37Lf3NER8cOeMEz4EJCEE0NUiaQUYxowynCyOmG32xFDnAs93bbkfsBnIEQwmUXbsmgdMWdGP6EcVbpfDk05wLTsomhlQWcG7YnTQHOrsCGxWq9oL84Yd5n+bkQX/79pmsjaEI2mHz2jisLa9Ek28nigzaJA5UTXNSyXSxpnSqNdphmFGXHMnqleTPWljCYrkTNzxDI7fIGl7snyvER56JlbuMK0A20sKWWmKB5pzrZkZWiWa9rlkhAmNptb9vstaMX6ZFEYHhWck2m7LWWDAAo1BKE87CVFaZ5aQEnfm/DeSzpQYYFAnhNb5UMVaVhli2SRYhACOYoJqCtFcCpSeOsErM2Fml33gXqNjk1MU0olXl1+GWXL3iEMidpkpVBkJoi5cCxFftYKyUkrDaPS4jc3jWAL6FkmnwIgxsM+Vqu2XKj3qsjyy+aqgRoGMbO2U8SPPXsycRwhJ8ZxlANGS/ETvReJmy4swBhQOWOVLQ2Tlgm/CrIXaQVKpEtT8oTSnK4tPFhYugxL1xD17XxPp9RAyLRZk3PLMGZyq1ierLl8/ABSpB92dE2H1obgRQ6rkmG1FONfYyyubcAqXl6/YJgGtsMGFSN6UhAMccikoGhOlhLYstnwaiMFce4ueXG942Y3YrTi61//Ot84f4oHGiIntuN3f/U3uXnvih99eMM2Tgz7gQ+++IT24Snf/JVv8/pmw8cffMb5W9DaJcvujMEPaKfp1qd4FO3JGd/83m/QnF6yeP4FL58/RzV78UwJgdFP/OSn/8Cqa1mfLOnHnn4Y8cWUeLE6QdgjwkiVKXCG7EA5qmnu0SPDarXi+HU8Dc11PZVXZdJprXGHB5+kM32yvHyx5+Yu8vKzHa5xRO8JPhL8CegFGCm4GicT56gs+1Ak12FHGnfEHWWvEb+33C0IchdYtg3nqyXZeza3G169umOcAN0yBUjDiGkHThcdyhx/KAGmKriTS7qJygqdDCEmkdCngLKGR2+9hVaKl69eyf5GEnP9LI2Iy7l4uqiZvTZfIyXAk8wkqnRcdoTJB4zpZGqvRUqDcbPNw72kzCRguFFaWLHGyj5TrAlylhupcymiy3RKFVaVzF7Kvp4r849Sj9Tk9Lo/HeqcsgjkOpHmw6v6nx7LJFPxk1Ny2JQBikKVbC1U9T5TaO0LOFS+TwGKNcWPU5tDwIBSM9u6NirH7w0gBEnttkqSRrUxJQX7IPBIGayrM0slE21bTKEz4ANpmshRGqGQYknslmshyXYRE+zsUyqsvuIt5idhTGZNUDCRJaBBRZyOhOwZe89N9KxOz2i7JYtlS+4zwYtSIwWPpkgKy/dMIVDDjkJKGBSNtTRFKijG0TJMFMarLp6K4quoXYOyzeyVKmw32e+1tqSsyUkRMaTinyuLF7RxVPdarSwJxeQTFtC2keYcwHZk7UCJbDRluSc1hU4sNPL8OYRRXj16yympNVlrYganxPC6acr4O2f2w8QYoDtZYZoFPnh86PF3HussLoP2GkbINpFtYIg9+90W7yemcUQRadtT4jTRmpZl10nIV04kZ3E6EfoNex0hLPGDIwbPNAaUbtjstvzss1c4Y5j6kf1mh/ceYxy6aUhZgPHFQs6faTuSU6JxllXXcX5+wdnpGY1zDH6i9xPrszV+nPB+X4ITBkg7YpwIHtpO0y4XpNSxPn/CydkF2+1r8FIPBB9lgO8MTbvCtcsCJshQru97trsdyQemcUBnOF2fYJDggBoUMoSJkCKmdaQgtePSORZWc+oMZ51YQgzRc3d9hWo6sYY5WfD2977D+euH3L0UZtfdeE3wA3EYhal2ekq3WtP3I/vdSAoKqxtCmjBK0WhQaSQbTegMzcUZq9NTjF3w8rOX/Ozl+4wLRXvxkN/4lW/zX/3xf8ZbXPA//Nf/I//v3/+Uzdry3e99kz/+j/8V68bwg//rz/mH935Cu1rx+MlbtCvDolvx9NE3OF0v0WnLN7/6lKVruXl5hR9HPnt1xQcffsDV7S0vnr/g+vUbpmmQAUfUoJe4hSX6iOlaEoohBMas6QNkZbFa2GxN12FtkHMsjkBi9J62OeH07AHr9Smb7R3b3R3d0vL4ySnLteO9d9/n888+Z3d7y9my4cSBy5N4pqWMw+H3CVKL1mv6/R1GW0yjGGOS1HvnisoAIW0kNavNbWNRWeOrlVIqCZhotM0oLD544jSV3iRhSAJYkRn7gTh5rNLYXMEnSaMMU2Tc9cIZQWG1JZEIPpDiyGgCKUpQiA8ZZRqytmSjS9aBgDD93vPBT3/Gy+cvidPEMATWpyseP3pGcpZt74mDlwGQsegsKb9h9GThiBBjZD8E9mlHKH6L1lrQMCSPagzKCUtONxJIpqwlakPbNHRNMyvbxAUj4UxLCqmAMxqVxdJCZ1vO+vL7ZWBkkqYmpMpAXkFkrvuzApSk6JJBxVy85ygcINmfhbUlvUlGAs9AEpxTwRtiKQCUtvgYcc0SYzvEV9MVWxKpUyhgvrCaBb3NZHyMJKWJOQj7MCUao1k2jsGKV3TOCKho5P1qorAsdSr8BFGDzX1HghpiMdccGVRhzlQ2/1x3VOuF0nOpLMEiKoE4k8rgP8dICHLeJtGIiLopBKkVspKfkQ59p7xCUR5YuR/ZlGFQLFYgUhNl9Fw72KOaLiqFs05skECIKWUqKV53mhQjPkMkoEoarscQlcEpeRCDEsfdkCImJqn9tBW7E6XJWRMjBE9hzR+UUHX4JSSbolHKyIAsZIxVJYyq5AFE6f1EAVPqtTokKwBrRghhthJEyuugdBMWIAX4iykKIGkqSFp68CjyZ5QqoLvc9FnAcly7/ZzXLwXQzckiX/I9mSeV6j6lsD7EuiCZh5UI1KZclUkVFEmNNP+yNVIulNAmrRF2WaPBOUVrDdaJb0c18CtW+LJxU1k5AsgZXaadRrrlVN6Sr6BAueERGKfA3XZHP43ozoqp5TBCDvTbgWGzxzqLz4m7YS8eG0GMp1PIpJDIJQJaK5FwqBxJfmAsiHesxtpKvBMSCuOsTCr7DcoHdNrT6CUhDyifcPnQnDRWZK8G8DrROnh0ueLy8jEJy91u4G4YabuGZBRhnNhNIzZN2BxZdw3r1YLTs1O0s5hFQ7KWzRRQm5Z00nA+nrHyI+PNDVevr7m+vZPUzVKYojWNa1ientJ1C2II3N7dklIoaZDCgNRKfMy6ruPi9ITlsiPnTD8NbIY9IUuSYa44UIZcjLTHEIgkdDFi3aUepzW2tSw6y0nbkbqJ2/6O292dDCOcYyKzH8cyia9hErkAjLXhkSlGglnCYCraXenY9Wli7rXv9WnVnQgoATlHCz0rYYkU+m0um2T1MBBQzshmmYRtoqzDtR0pZXzKXJyeQtbsdnumacAHj3F2DlyoDB4J3iuNp5J1r3Vhcc1sV2ZwrgJ0vvj9/LznurJJ7iEQ5WCWRB1hyJIEcFKlEVLomUVWDVWP95GUyrU9/v2jm38v7UYJ01aXKYPSBq1r3DnFey6TEU8MZR3aNWjboq1M5XSdKOajiUiSXUKXxjwf/e/Lr4PcK817XV0VfhqJwTP2ZgZscpa1m3yUkAgtTTup+sdlYsgSf16aQ5QmGtl/Yj6AwMaI5Ka1ilZLk+a0Iqbx6B0aYc5EaQJVue+LheXy4pywu6P3A41NLDto7AQ6YbUUIW0z0dgRp0dyTNxdv+L69pabN3fo0KIaS9u0nJ9cytXRmX7Y0fuRKQceXJyzvrhkN0Zu73asFgtevrol/O27qJ8O/Npv/grvvLPCD5nGLQkobvYbpnEEl/n7D9/j+faGq9sN+83A85c/YbG+5OzhE2wH3fqEy4ePOLs4Z7k+xVjLYn3Kg0dvsVp/yIsvPmd3/YYcPDYnspdJc0xB1oBpcPoAtB+u7f17ds+a4ehl7f0j8ufJFY7/bH7OlFSLkjJd1vmUmcLEfuvlHDx6JmKMcg6WZyHrzJQDMYtshuN9o+xhyhhihslLcdB1LY01DLsdb67esN+P+AApKZRlniCGFLjnsFneoNaVOyhpazkK2K2NEfsEIwOHGAK7cSCmIJKSqErhXU3whfo/GwkfbSKmTF4rW68ys2Raq8Q2o0ggVEly+3kAnbFG5DH2IJO/D1ZVGahIFcQHDmEPqMN7usePq3+3SpTU/ff+5ddBslD2yvr+6/3O4iGqqxelEumcTGizJC9rKTJ9mGT/LhNhpYTVRTxITOuaU+YA5IGaJ9riD1TDG0BnuSsxmHkoWa89qvplzmjl/WdAyQDKGksmluGF+Dzn8vNmK4liKaC0nlnK5CzyxtiWiixjjHj6to2ldYbFomO77xnGkaHfc3J6yoPTM4YpcHtzR9/viV4TfRAQrZ5zcvFnG4nVconWimaxwDk3f875TFKloSvTbooE+vg4r8xYVeSQUogDtRpVAtwe3/sq3xFQ06JKyIhxGjtOwthA3fsetfE67CFlfVhJvJMU9uneXqLKgEspac68D8IuQBfWjxipJz9JemmM6EkTQiKMkdZ1LBbi9Tf6iWEcykBOjOy1cnTLjseX55ydnUIKRB/Z9AM3u5F+tyX4Ee9HFssFkEuSrGXyGT/thF2Y4iw9nqaBNI3odkHbdsJay1n2i6xZL1e88847XFxccH19zes3r+n7AaUVbdOyXnYkDHebvZyzU0/0E0YZaDoJODDCftqPe/ppIirB14dpRKWBmDPLkyUYS6TUOVGYcn6cmIaBRdNiG816vaB1mqnfE4Ze5E3FLsY2hs5oiInWOTrXkKaJN69foWzDfppwXUNqGx5/7W1+/be+z+PLB/RY7r76Na5fvxaPsX5PYzQPHz6CtsGHyO31LYQqjRdm/ewJaR3YlpAN56sVXee4e/Oc69dfEIeR9dlb/O7v/Wv+9X/yx+QXn/Pf/Lf/Mz/92094cfeGsF7x9e99jSdvP+WHf/Zn/PAv/4Kr62t8VvxG91s8efYVvvLO25ydnPLis0949fwTXj//lP5uy6vPPmO3veX59Q0v954xHvae6ANx8nRNy3q5JJhM5xqRZvpA1ha3XJGNRcfA5eUFzdLRdpoQHI3LbDYLMsVT2TUoZZh8YBgn2WOsYRx7dl98zicffcaw7+mM5qSzrBsNORMVoDVWaUYPfkooZemWa4z2xLCXNZckkAwjgJ7MXwqSk0Q5IueLI5GJSZczuBwAJRQhJU0KgWG3Q6dAu17TNQ2b1xu891grgSVOlYksIlUdhxFjD6QW2ZNM+XNwriGESGYiZ2n2NbI/SWCJZ+gH4jTR77c0yhSlTaYfRpKPjJOXkEIDKVlUcqSYCT4x9QNh6mXPiJGUZNAi/YFh8iNKK/HPTZHNbssYxd92uVqjjNjUaCUqp5iRLjvLW6zgjdjLCOBRj+LZIkcKD6kPSm2Us9TuoZAeSuyaDLgBY5zYSzlX6qJSqylKf69LHyFneogJ8ZJWUNlNRmGUI9hUQhAKA4+Dr6r3kwxtjEaFUn/HjMFircHrJNu+ymVf9MTgi2fxwTcyI30JcnRKb6YKgKRzea4P9Wcow722kUAjlQ7SSfFg42j/rxY8FIsCMNmIuqn2aTD3ZSnHsnxLgEM9ywo4KBTEyjiTvxPI6BQgZwnxiLlkDmR0yrM6snw4qNgNojDSx0qJ0v9JYJLUcaCwNmPbgGsc2jqy1mQkPAdlCnvVFkcCQ0Rjs5WhVXYYUwILlUEIboegKKUqi78GZyHsRDQpCrmmrjdKGZGOBtOyfmv/flQp1RoyFyVeVuUylro96fIean8qlmYVkC2OFkWJlosyq9aCHIZ/v+D1yzHo4uFm/iNNLwUJL0Xq3PDInZSHAXW/4FCyAI2qN1mkCTVZUyYYQg3V2tFaQ+MsjVU4q0sggobjyTcU7w5hNSkyydj5a7Ip3hJlcpkLeq51Mba38jANSeGHAENE7ScpjmPAAmmMhGFC2QmfE9pZUmXhlURRaxRt02Aa8PT0047Ye0n5SxMGVeSzCkIim0zTtKxPTli1HdMwYpWibVv8pDBuyWphcS5RTei+8fQdutbSGEWOA4uu48HDR5yePcAnuN02bPYT2yhXx8aI8R4dPCZ6FirRGnCNod8Fdm88ezJbMtsU8EbRtZr97RamCaOhtQbdlntpHArLNE0szk5Yr5b4aSjGt54UIkoJ+yQXv7CspNFr205AK2fwZKYcmaLIFpMSSXLSELSsTqMsa5+IcWLIEzcj2MGgrGLhHMl1vMk3XO826KjQ1jIkMSfWuTTQcwJr3bRU8TSI8gCVw1oVVgO56u6LMCodqK3HiFX1367/PLAt5Pdiqk1CPaQOmnN5oIWuCwLIqRixTYdtG3IWLzKZsG7wweOcZrlosdagqkdAjpBlXQtdVxo1o6UpixVQUgePpvrs1hTVL6f03Xu+8wF4qNOeWJOHgvhJVXrz8Z7wZbCjNnOzDE4fpjA567JJHl1HdXgPwngUNkQ2mhC1+DdmkcgpLQ2Sti22W9AtVjTtAlsSutTx95n3Jw6f6f/ndWAJV0n84RoppeUz+cLoMDKpAblGNXlJlyFClfNWJDXnA+gnQGuavZPEI0kYiY2zNM7QNIauVUzDUaOYfGEA5fkQUErsQja3G9ZGc7peQvbc3b4geUfTanLytF2LUj0paMJo0KljuLvl9tVrNnejAFu5QVlHt2jRxuD9SEgwhcDp2QVP336bBxcXbG5vubm74vXrK168fIVrDaePVii74vNPe26vN7z3wcd8cfWatmlxjWGaRvavvmATPFNK2HaJGSPWnNC6U775na/yK7/+Pb7yta/QDyOfPX/BdrdDmzVNY7EaWqP4PEXG/UYkg06TvcjtRGqvS8FnqF6Nddp2vD5/EUD380C4X/S1x2smkQkxSRACCHM7VzBawAWRBEqzkHIBvsumkoFAJBZwZJbgqvIPLeBD9fyy1pJT4u72lhATX3z+Of1+J0VMliIzVQPbENH2/vv9x2v+kNJZz2RrLRlhiu522zlRK9YhQBl0pPJGq6H0fTmtSEHqJHKWTWhJNU5l6m1tIxNOYwX0ONq7KPfzuCA7vh+zHFMdClCx1Ci+mrVIqm/pGJwSumupK+qeejyQ5N59/0U1Uf3OGmYfUFUGgzUdFgS6ydWWAAHuqnxIoeYQpLoPa11AO8U9YDLHii8e7TNJ2OjHoFuui+jov1UpqI0Ps9m5AmwGm/PMiM4pzX6+CjUn2anS7GmtaXImuTTv8Varct011qrZu0spxThN3G623G22DJP4x1lreXhyRtt23N3cMvQ7xmEkel+24SzWKVG86qy1rE9PaFdLbCOBVqHYGYgMp4LAB5Bh9pYt2OR8Ha0pyXPSXH/5ubg3qyrPiLWWtmlQhVlnjEZbR9u0xdNNzSuJIqmttwCkuTswd5Wc5VnNDZLSYrkyjhPT5FmtVGHqTvNatOU+aC3SolAYhiFII75crVguV2Rg9NMMzunyHEzTBFozThN935Oix0+ebT+y7z1jOd+6vqcrPpAhTAzDgJ+Eda/LLE+jZr+hqITRGhHWsgSlaU5PT1mv14QQePnyJS9evODm5qaArSucFtYTOZP9WFQnUpMZCwaDzpZsFN0q0zSZ/ZAZw4Qf9+g4YrU8Q2nbk4yhWy9JWnO32WKyMNFP16ecnZzQdo7T8xOsyWyub9jdXhOGkaA0XdNhYmY9QfAD+7s9wU4415LLQONu7FHdggfvPOXbv/lrGGP4+O/e4+3LRzx7+xnv/v2PGccdNC3LkxXL9Qm3Nzfc3N4y7vriLSgSQJ0zrXO4rgG7Iuk1q3aJHixTvCUNgWG44eGDR/zRv/zP+b0//C9Qd46//n8+5Yd/+QG7/Q59afmt3/9Vfuuf/hrvf/Ih//u/+wGfvf6c0/NTwjDys08+RdsTWnfDRx/9mB/9zV/yxc9es7/ZsN9sMASM8uxTxNslUZtiByCDBmctqhF5pLWO5XpF5xpyTDhrWXYLFBBS5PT8TJinNpLSxOVwzn6/K6x2y24vSouYMiEkclaMPvDi5RWb6y39XU+jFKtlw0lrcARC9MV+IRGmgXGUoZG1hrZb0zaZ4Bt2/Y5+nAjTJKSMnHHOHtWe6vBUl81ZgA2N0Q5lDQtTrGfChB9HYRLHKDZA48R+v8d7T9MkmqaVQYTWpSYr0rwo55HsgZYq/8w5z55hx/3xPGwyAsjrLGBE8IHFsqFpGowx7Hd7xpyJGJSRkAZdvFS99wzDQL/fk4rSRICuIISFGFExkHOUUASlCdqTk+wf0Xv6fmRxcUrTdiWUryhOUiqDL5HUGqPKPirPXA0H0FrqAbFQiKX3qiWPhiR9IroQbRCJt81JPGWdsLkjuVqTFTZYkQwfvaqEsbZwcg6KF66QBmqvIesglrA67RPa5cJQd8WuKApgY2RYo43ssVpDLmw6Gfrlgo2I4igXPagw68RrX+6rkQKnvLkZJ0ECOHIZTpYWUb6mHDipgF+yZoBcYvryoRU51C6HqkbOOSs9UlQzMaqe9/PQ+Jh8Vc61cBR8EGPEJkMRJs6WEOqeBEPsFiqgVQfJ8ksGl/U81mUPmYkjhvlcNsaUULD5NBSgr9Q0xx57FZNyzs3n9HGNGGMUrCcqqldvRIBACsgrliBKbL/Qpf80hxqpAMeH8/5on8iCH9l6HbT4wLZRY+2E0RFjsijMyv1KiTl4SzqTGoD4i1+/FEAXQphvZiogQ72pcttq83BUuKJmnXNlzIkhspoLYsoipd5QDiJBRcAWBppzjqaENRgrax2dZ8ptnWAf/i6lMHJkdMFnygMry+gwOS4XC6VmKVtIJdHFS0SwRZoFrUyZpBSGdGmUcgGCrNYs2wXn61OWJy3BDGz6W7bXtwx3OyzQNYvS6Gj6cSQZRdutuLg4Y9G27Ld7nDY8enTJ2flKZA/WMYYAXxSA7u1HLDvLybLBmUjbOpquJavI4CNtZ3iQTwlmiTUdrYEWMMGTxp7kJ3KUg25/t2N3d8vOTwyqSIEU+Ax619NkxXrR4bSiH4Owf1KSUIDWzfLj5bJltVqQUkAbmYIqZZnGidAPTFNgGD3LKBPdRitWCmwKmOhLaEYSOerkGUOSJMOsWWTZxO60Z8ye290deZx4fHrOSduyXq2wdw4/eCY/iv9c22KUEcAqVTpxaRTUgS2idaEfHxChQ1F/xAo9Tl+d1/jPAbVmMEsJswkEqadMzDKHKUr2Cecaia+PgZwUVovflDaOm6tb+qEneI+xirZrWHRtaWYD0ziVdrgAXmUD1koa0ZgP70V9JzUAACAASURBVNkYKQ7EJyDOMqBjCdfhvZcGItdGggIaVKAyzzLTQ/Op7l2nQwEkDXyMX04ouv86/OxSrGjKCVQOq/peytelJKAXyhYpnMU2HV23pFusaLulsJ/UfYPTn3cff/GrHopHp2G9GOWay9cICMIxwyMlMDI5qhR+tEbnPAPEAuZpqiemSLrKVChFlNKQRBbmnKFpNF2r2I0H0/0QJgH6ykZfZdQ5O3Z9hK6hMS05Rvow4nXirJEkOxrHmDKvNztux5c0ixNut57bbWLbRxo9YoynaT06WBqjcW3HIkWmMLFcrri92/L69RV+GIoXH+z2I3pSpMbxw3//LjfXG3a7Pa9evObq9RVPnzxhebLEuYZd3zPd7Tg9fcTjp2ecPbA8efpNvv6t7/Ld73+Xb3/v2zx4dM4nn7xgt9+z329RJNrG8PjRA6If6Lc3PN8L48aQcVVXnA8Aa/UCq+tQlUJcrlme//vL66L6JcqiuQ/m1P/+0oqRL81g8mHoVAvMChDnnOdAogrYzUbEtWhSRW46A0OHwgekQQGDdRZrNNM48urlC/SbK25vbsk5leHAfYCcI4Aa4Ae/8/SXeBaOXwFYwHe+/h/49+D9//L3/4P/zs973UsVgxl0vf811UvyyIetXsD6OFcgEQRELaDpATI5gH5f/v5fHkp8+WXK0ETWy8F/VMKRigdfKmBWKSxT8Xo9rLtDcIEqIF9MUkSbXAcjuWJX999fTsJ4qIBl+bwcfY5asKMPa7nChVapmQl6z9qhfI8KDAk7Ist+pygBOBLs0XUNjbVYbahynXq/jLGcn1/QLVa8urri9vaWmDIPHj7ENR2r9QqRg2r8ZOd9OIWIHyexVijnucsZY8XHMPsJE2Tvr8OkewxEVetMYfapslZUPgQW5eqTJFs9RzDbfOXm1PcCtuXCoBBgWNhaM9BbGCZKHVLgZE0crvlczxbwr67pbrFgHCd2ux0nJ2c0bVdAztJgcWjSjlUsWmmarmG9WtF2C0IM2KGkpauEsw5yZBhGxhTROrPdbPBeGHZTyGTTMXoJW5u8vIdUBoMV8G+ckwTMEAkxYbWm7VpaZxnKWs1Kc35xweNHj1BK8fr1a16+fEmMkX6/ZxwnjDE01jEOVliTMeKHkTRM2KyxrqWxuch9DSl7vL8l64kxDKQcC1upEVl2SkTjCClz5pacrlscklTfOoczivX5Oatlx9lqKZ7RiwmbElM3osKAVsJeubxY0xZ/tRAjU0xsh4FsNMvTE+x6xbe+8Q2+/ewr/PhH/8B7f/cev/vb/4S3nz7h4vKc26tXdK5jdXrKvu+5e3PNsNlhtfQQEUnDbLVm0XaYtmFSBp8SC+NQSdHvd2QSF8+e8P3f/iP+2b/4V/T7W/6X/+6/582nn6LdBrPc8dbbX+O7b3+Lj9/9mP/7//hT3ty+4Ve+/31Oz9fsdzuuXm8x2nJzc8tf/vWf89FPf4rNJ+SscYuO5cIy9FvyMOBzJCUYw0RjLQ8fPuSdZ884XZ9glaFrWxpjUSkTvIecieXMSiqz3e8IYSLkkZQmQvQSZhYVZMvkFT7sIFt8FO+vMHjGcc9us6XVlk4p2pRR44hPoiTJqkEZiGhyshhd2CkaMJrGNGSVCUn2i5AkBEQ1roAXWphW2kjZlhMxi+zNOIsxjYQjKIWOkVRsMaKXwKztdk+cRvG19J46GKEMdbTKxXe0JLsGeb7mfb7sSRUIubc3He3PzgggkaMX8HOxxLaWMYhvXVAK03Z0KydDElMYQ/8fc+/6Y0l2Xfn9zisi7isz65HV3dXd1exii80WRY0owWOJ0GNsaMYjS9bYmDHgLwYM/xX+cwwbsA2MDWM8kGB7bHD0GhkjitRIosgmWyT7WVVdlZWv+4iI8/KHfU7cm9VNmR99gezKzsz7iIgTZ++99tprpSTGYSXPcLUxn2zRgpf3NcZN5jrGGKwRear11TWX19ccZdGMPDm5hXOt7Evl+TFqhMytqdIOKF2YSLXhFGWHrVwJUdSUPdUYdCEbxCz7tDbSjE9lwkRPkz11E5Y1MjXajRg56BLHK6mg1ioiS0TJsaWFkApzMqsRnzKmzRhnCiuuNLwyxDFCIw12W0kFKNFIK+Fw37Qr4KiyMouXxQhPm+LSXu7zUl2SsiISMUWnVMgGdcxXQdYonUg+U/WrJWTJGZxkOZQ6+KoMdiFo5Awx7vWqZY2ZaZ3+pLyFg9e98f+1GXhQ9+oKMB6Qs8qJIRGJpT7NWuSjsi/5zQuNciE4lKmBmoHUc8ueSV7jc411lZkKTOz9G3EwRtEgD/JpDIakEjlkQtUh1xmVNElFUqrMtpLn5DThAPIeBvE82GspVp+HanSoD0y2arM0T5nAIXu+kjR+8uOnAuj6vi8nfa89V6mdUtgznRT5UJWlM8Goe+SwFuIoQpDFU5W/6vYmF8jTWLDO09gW6xLGCjqXCn1URBYLyFdGbPSkMVM7FQXhzPVkqCmhFNqoKp0OuXl1AQYyCoxhGsFJGe8DKWm00ygnIr5N19B0Hc5anLYsmhlHiwXdwjGagfbaQAjEYcAmWC7n0s1Uis1uWwS+FSl7xhFi8sxbx2LZcnSrQ1sZu2iCgkdyKLePW+aNYuHA6oyxIymODIXNo5TFmhlOGQwKpw2tMzSLBrJmt8n024BTjmOzZLFoUcrgjJWRiSRo/8bvyFoxDJ7ziwsuLq7Z7Qb6weODbMY5iA30rZMjxKEsstluCcELlbXo2uSUGEOg9x7jGrDiEJaSJidNaiRRTjET+xEbIpura3S5CVXjaI1izIHdOBC3A3faOfPZjHvHJ+zCwPnVFdfXa0zMzNqGGApeUgoyqakFFVcUXQRVqNIpT3Ph0tFIoMzeJYfP37Tq47CAmzZMxJ2WXLR/cu1cqBK4BTCQzrvFuI7GtaSUGPotm/U1qETbNsznLV3XYKwmRk+Onhh9GZExKFtES3OW+0+pognIBM7JeIkUFjEWx6l8CI69cOPXwFgBxUKhlnZALiBT6VrkPdN2XyxQgkQiFoHtGhxiTBNAOJ27ck6kQ1Yw9ixdOJCfx1S/xHEVLd1DtMPYBudmuGaGtTI68Xdtf4d71uc9pgLsM0BsBlJhtpRonYsAcKgs4fJ3h40AdXAuZRmU8yH6QqMf8aOfxF+VAU2mdRZnQRdn5uT7/UcpboHiSZLQCtrGsJjPaVbH7AJs/YgzC8Cx3Q3sFNx2MxyWMQSU0sTrntXxgp4F27hj5wNRR2YpEsn4GDDJ0M5aFnrBGHpmizlGKUnMlazDGLPoUh4dszw+4tnZOR9//IScDZsBguoY9QydWgavCEpDcqzsjHu3T3nttbf46s/9Ig/e/CK3X7pNO7MkJV3Z2axl3rWonAgx0a1mqFdOGbeXbK/Peby+lHNnDSpGUKY0lNIE6BwCyDcMVWBKLA8fKYbPrJnDr89bPZWhefielWV2A+g4/E+uIEtl0uUpUZS1I8CHMYWRpMTNXOiZWcYa/CBaORm8HwUItlbcDHMF6OT+1Vrzby57vn7cfebz///98a3t/vua5H0ek06YCMXGocaRes3UHgzJWYo7EojZy75ZcOOuP4gD9VHf+/P2EQVSpNUmZPl7ZTRK2akZJGOp8oxckut00ODYJ3u1uZFKQSRj7eQ90KbKepoS9pqIf04j6fDnIr+T9vsSMGYpkgRgOgDwynOCNpjCwn6RzWitFZ0z78Thsui9qAoE5gxKY6yMdS4XSwYfBCAKkeOTE2xlTCqRhogx7IuU0vXGyEhaKmrLUosJo88UVhlqD63d+G8WNgZJ3Bhz1Vit92qJdTLdI9dRxsvLO+VEip7gQyky5dpEhJUm8VBNxyCM0j2DTmezH8HNRZeo5KF1HMtow3w2Y7fdCSNmt2M+X9C2LdX1fGJAlJGfqQmFpmkcXdfRtA02Gnw3Y2M3RY+NqWAzZVw8lWxaGyuNTNuitMHHIDmML029EuMEZJbRt5QyOYoObEgZFZJImFjLrOt4/Y0H3L9/n/d//GOePXvGMAzMuxmr5YrWDfR9zzgMYhSmtRicFEMQrVpsVhiE8aOUJoQdz84+BGMZ+obGtmiliT7i1By3bFnePeJLP/MWX337HQiR733vu7z/8UecX19wfn3J8/UVy6ZhqQ1pt2XsN2QtTB4fPYvFkqPTO7z08A1evfcyt7slOSV+/PHHvPveDzi7uKRrO+7ee5mHr7zGYoTN0+dcbK/58Owx9+7f4+VXXuHRD38kRarWnJ2d4beDCNRnGatDQ9NZllr0v3YKdrEnktiOLYv5Ccp2dMuOl157B7d6wJ99+zu8971/zXe//SccuYbFseXV01u88fAB46ORb3zjj7nyn/KLf/9rfP1Xfo152/Ctb/0/fPTRn3Jx8ZgHr7/D6Z37/O27H7BZrzEaug6SbaCZ09oZw7Al5cRs0fHS6T3eePCA09t3IGX67ZZdv+Wy7xmHUcb/vIyUxoM8MUZfwJtIiJ7Re2LSGNOwWN4ihAzK4mNgt9vg00iOnjQGkh+JJMYhkk2A7KXoV4GkxYAuW2lo65xJaSQGhW008/kCsmK36+kHLzlVRti3Jb+sDJaMEt3GpkU7K7l/Bl/YqKY0W1MIhJgYR0/wMhGVc22AFd3LopNWdSYFMIsoJY3qm/fsPg8+lN2om1l12ZQp0b1QfQhRTPi6bjIsSCmRCmNJG41zBqNmZGIBKhIpKpySfWofsxSQbrCTog+MOXB1cUE3m+G9x7m27GEUhKrmViV2lamPGh5zzsRcQKEy/hqLFEvVac5KRiRjFDDHmMKk0qrowJa9zOgppuWaa+eETftJhJzFmC2VcVrJzyU+W1NiQRZpnGEYGcNI2o1gIrbR0/i6SopxiIQ4oBqFMeA0pFkn+7YWx1o1be2lfjOKrCLaRNCGqASQVVriVO2NVaafRvRNBURNJQbnKQZQNP9Lm48yZ1SCtYA+lTR1s0Y1EksSN3LOitMIY/sF6lbeTzMZYxDSnJk0hLXeG2nxOf9WUG3KjerESCxyRDUmdXsSh4DVB/l1yWOoNWqSegdVnl/qy3qf1Jqxfo49w3/PlFfGoJIWMy0DVlmyziQv+3vOiqgi+MyYPTlkUKIxaYxBBT816xxiZqatJSlx0a2atPvzXNjvYS8fopTcLpUYqxSo4oRRz8VPevxUAN04jOW7elElwVIH4yKqZnXTtRJ6O8VBbWoboqaFLbRZeb3JSascgCYz75xYNztTnJU0GSPOV9ObIUh7SbYE4c5TAusnFF5BqjTQLCh4RWFjKu8tG52MIimSjoSUBLxBdFEtpWvUNiyPlswWM5ZHS+Zdi0Hc2WxWYIQ+LAucQiuWi9I0DbqIMW/GnqEf6fsd2UaUygL2NZbl0YykJJjosKeUtlZjciSOnpRGIIHOeGXlc6ZASltWXYtKnpQjW6sYWot2miH07OKOrm2hUVjlaJSm1ZZGORbNDNu1bHVi53uen1+wWxvmjaW1ljCXALHdDVxvtlzt1hjnSH4kxcDQb0kojmwrCXgngW0Mkev1htEHlFXoxuIR9lHWWgpPA8lqEezNEY9iNNAoRaMMKmW8Cvjo2Y0Dza5nseh45c4pQSt20WN6j0WxH4BWExhSu2fiwqimcRe5ufbdE3KGFwr2z+0qvADy7IvFqiNRgOFSC+Vc1piWTTfFLMmZ7WjKaMD6estmvUZp6NqW+XxO2zm0hhA9IYihg9FMo5VaVR1IqMyhepdMFPq6ib3AIqsFLIebfPlZOtiIU9w//5CeX6vYz5wfDsbfKBuyNlMhMXo/MRlvshsKSF8YakrVBCjhvYAzEoJlhE7bFt10uGZG087QVsSbs+IzwWkfSHT5/id9HWyenwHopIgXIfz96xYooARxPV13lJ5eI+csYFqKWIq+UBbdBz+O+DCSyr6oc8IoaBuHMZCQkfs07qZPopUikETHUoM1ltXMced4hWsb2m6BtYZ+t+Xi/IzdumfY7Li+lJGQpnHcuXPKfL7g9tFdjFpz8eyS2FgZT3PCIs5Icj30Imq8W2+5ODvjeLWgbVrRKNNaxqVSpm0aclY8v7zmcrNDq5YhOoJecr5WLGho25bFasFyPucLX3ybd975Wd758ld4/bXXcE1D1Pt7eLma88pLd/HjlmfPPNutGPesFnNeefklLp4/Y311weZ6LQVP3o9iVHBGl3u7rtN0wOqs+8NnGHQvBNA9+K6Y2HJTEV6XSyn0TVkXZRyvCJKJtINWU3JV46MqC1WZIoFbnKqUQsanNSLxYIxogeVMCB4fPAlxRNPG4MuIitbCcorJoKr7cNHLAPhvfngxAVCpJPAK6JqGrp2TUHgvHehMYhxHQvCo0k3OKbC+vmKz3hQwQ5jntekhe52wEr7/n/0SAD/7L/+d3OsHiZQxBuscTSNrom0arHNyjyr9GfBHF/bpZxoiLwB1dVTEGLO/T0sSOCWYcKALKjtmPmhYHLIs6+Pz2HSfeXwmcZXXquNVWlcDjcN4AgpbAKXKtBPTgzr6Lp+PiSFQGcmpHFidSMg5F120wgZL9bMUQPcG05mJZSfnST5jSrG42d04lGmhp5xFhxTJb4TBLX9kjCEm6ZY7YyaGt7EGZyVvbDvRJws5oYzh6OiIs+fnPH9+xvV6zWK+kNcJER8C4zDcZErmjE4SY0IIYj5SfmWMpZvNiUeebjbDWDN9Zqlc9sBtKozynG5KDFRH35z3rI/9tar7AFIwIcZnMVPYz2XtTAB7EQtXltoYYAJcD5reB9cmZxmz6mYd8/mccbxku91ydOSxxYndOXcjh7m5h8n5EG07KThmRadvt9sBWcxy2pZZ17I6XgogEh3OOjIW5TpGH9nutoyjsNxc40CBH0eGvp8Y+SpT3BIVvjTggoI7x3d4+PAhd+/e5dNPn/DJJ59M464heLpuRts0xGLsUd2wlcqigaWEtZ8C+Crm7hIQGIcrkjKEcUb2I3H0NMx5+OZD3vnqz/Gzv/RlXn3wGrOm470ffJ/uk485DS9x9949tptrPn38MXkc2A490cv6MiX1aLDYoFifXfH9/vucn1/y977yVd58803mp3eZnxzzox9/yMXFFW/df8C9o1u894P3+PjjjyAnnl88Z73bcP/V+5y98QUuNtf4rBh3QwEdZfwqx4xxllnTMdMNMWf6sWczBhHMTzNsuMODB6/x1V/6Ctkt+OY33+WH7/05V8+/jaNn3c9ZHN/nrZ//GnZ2j2/++Q95dHXBr/z61/jt3/0dlvNb/ODdd/nOX3+Xx48/Znd1xVtvvsIXXvsSPzj6MR9ff0RTag6lFOM2kbViPl9gG8O9u/d48PprHC2P2K7XnJ89Z319xeX5ZdHiTeW+kvojZ9njrdI4Z2k6h9LgfaTvR0IAdGSzi+SssU2L0mLspbShbRusdth+S0ekNYbGWoxpi3SLI2jHEB20c5JpGIJnGHtCGlFeRnG7WSdN8ChOoykmhn4QZpOR/Csbg7UNrmtxTUtWqrD5ooz+2wZDxqeED0kMeHQx1iuuxLUOkP1JgHlTdLgkVzzUeGbat4dhmPbhG2wirXFKYZuWlCN9Ev240Y+inZWygE7WYo1BIeZsIQcMRnK7tiXZSMqBMIz4OIhemNJFXkpy3aZpBMzThuA9YZQReKWl0RBiBfOZjkfXWi3KXKeacm2Z/Jgy6RpXSu5VoLOyB2Z8CPgYy7SPaHpWGYWcBXBUZTy0uplPLLkDgLFmirmw+1JOqFyO0wjAqtmz6MiiHT/GgZBHlE3M2pbUzTHZEIbI0O/ABozNqByYtS356MAA4SAHqc7otepSxdxOwMOikK8kBiYNuYz1OidjqDolgs6oQmaQCaUDhvZUq+liQJUI9d/ipCv63vu1WIHffTOOkhvsMZjDZqS0W3QBDKsRQgHn9pjxzUeeQtxU95Y0C7K4rh7GzbrWa0732ceLNff++xoXD5uy07MOcrjDPLC+ojAADUZBRu/dbuXOEa37CClHqpuwswZjTckLFDZlmkSRcZG1no3gOdZajBYDzX1zdH8sWu8bwzXey7+fcwoOHj+dSUSsCWntzIm2nFE3k+QK4AmFExHkRU9aDfu/KwW+qvbDaQL8jNE4LQtj3s4kuXYOtCUpS8zS2cj5QB8nRxQRTULsr2UDEK0XuVmlmanE9nYCeXXR/EmCcFIdGwUA8FGOoXWOedvQOkvTOhbLOd1qRjtrsa3GNp6UAykGvI+omIlK06tMyKCU6OmF5ElZBDBFi00TtSInjbKGeTtDK4VzDaP3eBIhjcQIJu8XY4qaIQQZeUkyphCBqAxRO0F5U6bxIzYnxhwZVMI3mtRo+uTZDTsePX3M5not3TztuLM84u7qFvnomJmKnG2v2PRbzp9fsL2+pjGW7miJyoZ+GJl3LeTE+eUF424kJZh1DWHs2HqP0mCcwznLuOsZdzu873FNg2kMzbwjkEkqoa1olqic8eNIP4qludKawcjacl40BpW2pFaxDZ54fclta7i7WrHGsw0DSW/JY8JqszcRyWLSoFGTLpmqtj/1q9BaDYrwQofhJ20qhyyMur5zAYiNNpAUcU/Nk5xZl4H+LJuEbRqca4lRkpfdbkdKiZPVUsaXW4dWEPyI90MBtkWrRN6zCGbGmtzroidwALbFSKhduxjl6A67DyUxBqTjU8G8vAerUpRi5lC34BDEq8ev9rv/jY3T2uKyV44hJKFu2wLO7llJSpK9LIyLuqH5EBlLBzNmJWLy1tG0M9x8STdf0nQLjG6KHoSM4shHqYypCZKoV/Dzv2oCcAOck9+VPXZfaGXR3pno6dREQU0W4womIXdTtOqsk6IpxshIIiQBXit7Qwp2hWusOPCqiFYBnfddJ00WMVz2gvmdMywbxbzLLBbCoLwaYcgCACRpRLMdd+RZpj12nLRzbrUtYX3BQvcsb3XErLBWkVOAJGMam3HHsNsxbDcCGA8jhMTx0ZK7d++w2264OHvOdruh7QpIqg27MTGb32F5smL0itnqlPuvvsqDB69xevcWv/SLP8fDhw9YzTu0ioAnZwdKYcncPTnCqgd0rWHWaj59+inrq2uUhtWq4+6dE54dLdmu14yjF/ZNLfZK06XegzlLsXc4Tjp1414AXvKBD7r8DYJxcHPs/TARurEnKMqoe96PUFbzFMV+dGECeOs6K8lkAT3E5Vi6zaRELAlxSnH//JL0x+BJwQtDSEmcjgdJloyo7IGOeg5sYcMaa8k5ich8CFRtqxQDsRQk3XyOxjC6htCKg1wFCswkGyCFw+GeeXR8fGMvnQA6u9eZ2++z+sbf1HN9mHx93r5Tv48pkpFCxlQ246FObrnedb/bA681+a9J1ItJ4/69X9z/p58XVWZJXM000n4INsq5FpDuZsJZP58UOraY/QBTJztRpxgOjG4OPkfOoLUAdFV/qO5pubgDTucKDsApmSwwSmGsQyUj66WILMv13eu45bJXFkgRVQFtJSCZyCqwjxMhiblPSux2g4jEa4VtHFnV181cX1/R9z3z+YLGSaPPpEwaxwlQzUnEygVk3d+r2hisa1gdHdG2MtJmS6ysoD1QRoEKE2Iy5xGQuv68AnW10bwfM9/f8yllrJXjVUV6Qda0mc5F3Vv2LEf5RdW8knVuUdrI8HMBXVVpHHddhzFrNpsN1+trZvPl/v1LMfbiKC8IIGqcmZgxMk4tjPoKhnutmXUtzjUMIaCtYbFaYlyHsjPGMWCdYxiGUsxbdrstYz+UgllAfKW1jK3pyvVQLBczXr7/Erdvn/DkyWPe/d738OPIbNbS73YMY19AfYXVpYGSIsrKyFOMSqqUUJh5PhOSx2RIOmBbYUtuhgE8nJ6c8rNf/AV+9d//R/z8L3yVu68f8Tc//hH/9lvf5kfv/4ih33Fy6xav3LpDqzXv//gWnz59zG7cgYrEYQd9T5MyRluabk5WcHZ5wXf+4q/41ne+w+lLp7zz5ls8ePV1Hrz5BqvHZ9w/vsPl0zO+/Z2/5qPHjzDGca4MZ0+fceeNL/Dgiw8Z3nuP7dUFDZaoNKSAUkUPLJWxNKMZhkDvEyFobHY0+jYPX/v3+Ae/8uu89farfOsv/ozn7/2A4fFHdDlg3RxlX+buy1+DxRf43qNH/Gj7mF/4+lf4rX/yHzOGkd///X/Jd//qu/zlt/6Si2ePGI471pfPuXfrizx45SHry+eMfgN5jrUdrlEMY4+1mnt37/La/VdYtC2XZ8948vgxV+eXjMNA8AHrDE4rxlGA9IkFnhLzViYa5vMFKBnPZwgYA8Y1aNOwWByxPDoRBmdKorGmIa6vUBdndIjrs1bizosxZOuIpiXqFm9aAoad92y2ms0uMQ47/DiWxqFCte0k8zCEAds4GtOiEIaXc26aMIlZ8kYBGoordBRHTKWUAF/akKNnCF6abkaX51f9YNm/lZEJD1viLGkvY6GUgEnGiN50jSs1Htq2oela/DiSfWAYKvMrkBToxpUaokgNlDHC2uBOZELVeTNG7s2yd6VYgEaS1NjZFaH84vCqNdlqojnUi65khEOmej7YzyQiVLm1mGTyQcw3hC2ujMi8iDleKmQbJHe1EmtCDGWCplhH5ErkEVX7+v7GFEPJAk3kKGP3KVY3Vk1W+YZ3n9aapmnouhlZGVzWjHFHSAM5V6dtCD4QfCCnET9Kk2lY7Iqx3p4FSbmuMYyEOCASTxllZC9uOploqiOcRkQ0ZW1oJRrFpV7MKtdePkknMSKYmnVy3uRDHmi45ReMAF/QYbOuNB1rtE7SoEoHhkf766ZqiTqRG/YElPJvwXn21782oUpEUwd5VtzXUnLNbuZLVYOunsup4V0bWuWFP5sfMT3/EJSbALn62qow21SRuEpRJna04ECy9DTiqksBWCVPjhlMFidiisyGMhqrRXNXzk8gqUzbuskkRu6fMuqaSu5Qm3sllycj7HCYrtVPevxUAF19VI2eKpx3+OITwnpY/8pe6gAAIABJREFUrB+OaVTOQelg5rx3WlF5f6KtFUF0a7UkZsaAMUQsuYotFkcNY83BG5dFUF5fZrXTQdGVQe+RTHn/Um0VNkQsiUZOmaxEoLftHMfLOSerFfNZh2sts1lHs2gJ2RNzYvRb+iCimyYLFTIbh08adEPjZjjX4L0IR2olHZsEdChSlBu4bTqM0qQQOXt2zpOrZ2DB2ZbVYnVwIZagRkkMlQSTGCJj0kTtwDQYldjurmh1JJmyGEdBgnMKqJBZdStSH4kqklCMMXE99owXEXV1znbcMfiRoR9pm4ajoyNWRyeQFJvdjvVmR9c1vPzyKcY5UJqL6ys+/PAjPnz0KQFEO0sbovd4IPiENpHGdOJ6QpLk2xkB57wXOjiKo8WcpERDMPpEGzMqZpTr0K3o5PlxYDEMzI5W3FoeMXjPLmu2VxtIetIroFxpAU4KkFbHY9J+GckfGtnSVBWOLIw3bW4EoxvsshKAYkpl/l+J7k7ZdHRhSqVQRki0RYN07tqWTGaz2bLdbjHGsFwumM1ajJXo431gGHtiHMu9t2dfVG0pcWpKUlArjTGOMo9TCu44jZUrpWnbpmjRxZJUFAyxjL6mIgIPFKHwNP1Mlc0PmICAepwgGzyF3oySc1epyTEKwC9GCrZ0Nyr/t+41B0EllzHZmET/EEXWFq0d2rSYdkbXLenmC1zToZQlpKrFVrpYmXpwL25Yn/ulcik+pzNw+P1+RxNgtATHstfIiGLA0sjaJWNKADFaFRde6c5opadAswdJ85Roaa1wjcE60ftwFuxBcFU5Yqw4VBkn1jomBbTvWSwtcfuUi6stu23ARs3COXAGZ1v6fiDFyLDeMMws1xaunj0h9Wtun94hZIuPGdIISVwKVZJGSNc6wjjSbzeAjNpbo7i6umK7XnPSOBplcO0C13pCyhzdPuXOndfwXnPn3n3efvsdfvmXv8b9V+5ytHICzKkMBBQKoy2xOJsZlTk9WbGafYFZo7BEPp3Eeme8cu+U0D9kGAaenz2fLlnd4w+D9yFAcxj0P48Re8igu9mM4jPfvwjUVM2wrA7XTdk3DrTt9uDKwdhJlnVeMgGqfIOq2jZaFW1CR1Mc6FBiaR8L600V4FgBOlcx3HJfx4Sy5sa5mET/URNQLPdf6UrHQIwiodCVrrsfRxQivl2BJ1vuc5K5ce4Blsvl5wJ0h2MLh13dCl4c/u7F6/R5gN2N62FuXruaJE2AyYsAHExJ3YvA2+FrH66pw7UwgXsloa2gzqF+inx+AYsksdsDdXU/CEVD6PB8KVW4AmVdVp1N1B683H8+I06fNZGtuVgxfZh07rIAdhJ7U2liSdzVRkMZlUmkqdjRxkzNnsqOyC9oEVdQrh6X0UYaGTkTk2cYPSpKQR5E9Z2mcdy6dYvNdstu1zMMA9bImKZzjtE5AQZCNQmS83qoNyrnSrTbmsZBTtzQqpFVKQwfY7Dl/AYCVQ+wjrRSYmEu+pp7lvf+vE3NJMHeC8S3f6cpqJX3lbW3XzNVFL4y3SZWI6qYx6SpqLy+3nBxcSk5SlkrfhwxVk/mD4drVoS19+C2KQYO9Z6r61jG4qMUJtZiG4drWlAC8qYUhQnVtGitGMdhAjxkzK2szwOAzjUdd07vcnp6ytnZGe+++y5XV1fMZzNSSlgnTL3oq7HYHizOKZGNxudEMhR2pobc4qMn+B7MiHWW5CM6J165d59f/+Xf5B/92u/w1htf4cNPH/Hf/nf/E+8/+YDnFxcYZ1jO52zXWz4ZRmZNg21lhLexjuVixbhrWMdEDhHTdtA0DH2PUZZX777CVRw4e/yUb55f8emnTzm9dcqyW7BLgXd/+EM++fQxM9fQ4NDDyJNPPublO3ew845+HNlermlNQ2hbYtDE2JNzxuUMKbNNkT5mwNFZw3K15LXXXuLr/8HX+cJbb/EXf/1N/tUf/J/87ft/hWZN6xpUXvDg/hd56wvvsL7YcPXkA37xK3f5J7/zy7x094Q//MYf8Qff+D94/70PUEFz1B2h48jffvd7vPT3H/Dlt97k/PmPef/DNaFXWONQeSDnyPHymFdfepnbqyMuz8959OFHnJ89x48jGpg1LYsCvm02G8Yy8h68ZxjHYpYUS1M10w+BlBWz+YKjoxMevPEFFssVTTtjHD19P5CB3XbL7vpKmL1JxmJJXu41A7iW5ALRerzxZC2ukN2sxVgYGocfR8ZegJfKdpoc0zOTVrMuY4iZogGK5PORzDAIO0nFhDWaxjU4a/F6xPcSR+oIrC5NN1QS3EKJ/ps5ACdSlLHtlCqQJ3tXU5rXtQa21mKcKc2HwuRNYtCU5E2xWdhv9d4Wh1SZMko5TkYu1azMWItJQkoR0DGQY8SYouFWjqPrZhLrFTLpVBylao5SUybZuz7L2K2IjdRQst+lkrtUwCXmIolTMAVTp47KetEZcd0+yE9QSB2m9jIBU5uoADw1h6qkn5QSBsmLEntQZLVaYZuMcpEhbBnDTnTVMRDAMxYDJ01MgxxDAZ0nLd9y2DFGgk/C3gwj6ITScrzBj5DzBJxZ6eQIM9MYkvfFmKqcxyTaxZQcQhuDQWONsFFzKqPKKRRw8nA0+mb+NOUiUzzYN4deJJW8mD4dgmgpletw8PvKlKs5VI1ZNf5UszNV06CDPPswbuxfT918XeQ+SNHL69f8p1z4+m8sOrRaf7a5mqBoDu/fN5EgQpWBEgKH5IQhZULtL0ZQquZIEbLIyWh1uMTV/n0zB+erHF+pIxVFDq6iyQUFrUZff9fjpwLo6gXQyk6LAZiSnvrhbgreFVvumpDkNJ28CsjFlGhbcaWMJdFzjWM2n9E1FmeloA0pi308BkxTbtZCD8yl25GlcyPjBpIYRq0xZQQgpyA9PStJorhAIjCpEiZCDuIg2rSO1mqazjJfdByvjljOZjgrlr/aWlICn2TjTOW4rRLByhTFkcm6GVFZUJasHDmN9H1gvd4JcGQ0MQr4sN32hCEw7zqSD1yfbenJzFZLjm6taLvF/syaYxQjZGEIZBIYSaCMbQgYQuhR3UjKO1mIZdGrmGmSwyqLQrO4vYDblSorm/YQRlAZP/TkJEFgNpuxWq3oWofKiqa1OK3pR4uyDd18RjaWW/0R1ihCSnzw6Dlt6+hsg8kZm2F9dU3KknCuTm6hrWa2XDBbzPDDwPn5c3zblpl+EbFfZ0/c9ui4Q8UBq4Uyfz3syDpzud2i12uWJ0vun9zh05DwowefpVgtOgUVWK5i0FTtAtivTVQpqE1xnt0Xf6m2F8oj106S0UAk1sBrFRZhcKQQUVrGUbI2jGFHztC4ltlsRkyZYRzZ7LYMw4AxhsViwXzeYbQAyzJCIqOtqVik15/nnCdwLpQk1xQGgWsa0Hu6c32+c47FYsHJyQkXFxdcXl4CeUrYZfPM4vZ4UJBUbR7RdDA3qMa1cwKF3RFlHMDY4shYmQpQkiI7iYVma8sElmzqRikBFHK1ss6M3jP4KNo2usHaFoxDuwbjWlzbYWxDZQ+iNTkGec8CmO2ZaQWwhxug3F4YvI57la5f7SZNvQBR6lGpjC8W7RFbi5MDgE9E3xEdNaXAaELK5AhxJ+BWipTOXC3GdSk8JaA3bYNpLdYprMnoVCUHIAVP0zj89YgxCdtYZkaxNJrTkyXzZcvV1Zpnz67QqkWbls16YLsduHt3xbOzMz7+5Mf0/hZXly2X18/pxx3Xl4aj26doa6TwCxGnG1rnMEqAQZU0/U5GNJ6fP+fR40dYa7h3epduvuDo+C5X3mEvAp3RdLMFpy/d482HX+bVVx/w1s+8zav3V8waKRCd1igVZN0ZQ84Rg4gOZyIpBAgDNkcanWhMYowBmxNvvvE6v/D3vorWin/7Z9/k8vwSLaIDUNZ/jWUvAivT/fw5YEx93t/1ONSaO0x62q6RhtALwF3928P3/ex716RIvVDil6RM6UIbylOXUCH3bC5jsznt84Eqyq/KMXU1sSoFgdZa1ncppKRbWphrZd9TIAml0SxmHV3XsdtsMRpm89mkQVnvAaMsWpkbn746eMqY7IGWCGUEpLBMK+hTz9WLiech26ACX4fXUGuNyTJOn5Ok5hMzLzOJsqsCRukDYOzgTN888S9cu9pcOAQ46+8FtE9Tc6EmbzV/qvuhTnszgLoH130YxYH7XJ7+rn5CcwCG8AI4VzWRYt5f5+qilguTM5sqKK3FBdHYabxeoeijB3IZN97fM6routX31EoYGT5WNsg+L1RGCxOsBNmkiitsQrrVMeNHL4wpK4xCYzVd15IzjINnt9uhlGI+n09jncMw7N1IC0Pu8PhjimVNSXOorglhygjDU3TnIlqB00qccHMSOYEkr2O0sE5SjpMhki5Fp8TDfZNJro8po/S1AK/yE4UhoNXE8DjMKxQ1j9iv91r8WFuBMUNKcHV9jbGOpmlp23YqdmphUF83JilKMwmjNU3TFsM1RwqR7WZLLrmYNorUiyGRsYZdPzCEjLV1JF5A+MpIXC6XxBg5Pz9nGEa6rhUQcTYj50zf7+i6jtlsxna94cnjx+x2O5xzBO+JBObdrDTDMiLYr6c8Q2XwMeJzRrVW4mWEzi4Iuyu09eKyGA2bzYbXXrvP7/zjf8zv/uZ/wRdf+zJ/+eff43/933+PP/qbPwYTMRGsUuTjY26f3uEqjnz49BHZj6Rdz5FznC5PuIqZTT7nKgy0zrK0lqANF5stq9mcY+Vo57cYGs0wBp4+eUr7cMFjv+Hx+gKTFS5rtJeJmkcffMDp6R1WqxMwGptlTmdEgTOEJGPGc9eSlWYTIx5D03TMmpaf+7l3+K3f+Ye89fOv8M1v/wn/w7/473n88Y9Ibo3OkSE2nMyP0K1hff6ITz75IWr9Pv/pP/vP+eW37/ONP/p3/MH/9Q0++eAHWKVozILlbMlyZtld7Th/9jEPH77Bhx+e8uzpM4yak4Mh+IFFZ5m3LfjIxdMznn76KeuLS/IYcGg619C6hkYbMpnWSq1VGbvSlE5cXF2yGwZiFsmE27dv8/rrr3N0fMLx8TF9P/DkySOur9cMg4zz+8HD7opmt8b4LSoltBbiRcyZpHZE29AD0TYk48AYnGuwzsq+ZoQ5XllrGall2q4DpQkhoQYxX3Bln4hFOqgfR8YgovFaGxpXRknLfq7q/q8NVktNuOcAsS/O7WFuXFhKCIt49L7Eg+pybSdAPQbPdtvL2O4wEEdfwP1cGHvibu6sI2fwPkCUaQp7IEUVYyCEfeNEo8p4pOQMso84mrYpzZgCqikDulzDtN+r6n67j2MC7qQcZSS4MOKUnHZhyGlLIalzWEAJy6nEqqKlrLQ5eM0DPU3FBAZWIE7At31+VPdKVYCXnAobEUsqkzS1Djo6WnJ0MqOdazwDKQeRJoiKOEZC72V0O+0Yxh0QxaDDujL942m7Bts6gi8SElpL3THVFIk47ohhBCRGBVN0sbUp+sCqgLG2yHhVILLkNdQmqsTsaiyWy0htSmk65iqFIUSKcu1KDJf4t29sKvZ5i9Z6Ms+amni51p0KrRPG1BylvoYconW14VimLIpOIlUGpU6gaIXS+wbX1FRjxBr5/GRpCGak/jSNA2UKwlEAS61vfBFeACVLrlqlbSRf2csoZQ7Axpw5nDYj66pKRQKpNfN+YirFhE9jicuQdS7TUKbo/WVyqjqyanrPwzU/NWf5yc3fw8dPBdDZ0h3QpWtXK+3DizmhguWiZ7IkQCX5FWZhuZXKyasLShfx1LZpWB4dcffWHZarlhR3xDCw2Q7kKPpmWiHgg9Z4P8pGTEYnQTedMlijydZiZiuhQifwfiCJbjhWOzIRMb0I5aRGcR5rHLNuzqzRLGe2CLMrKbiTiDiHBMpDSAptHUa3pOTxcSSMEae0sP5iLqNICtDEmBl6sa9WWrojvrhoee+xWRGNAGBWO1SC1eqUV155naPjIzj7SwB2KaJTZIw9ndPYVqOzIhTKZVaGbCI+QlTiZqrKMRAjKciNZKqjGAZjMk47Yg4CNOVE5xqiD5PAox/H4oqTSaGMvSSPjpkYFDlbINA4w2IunayUA123YNl1XCspBChuRrdv3Wa2mLM8OaLpHP12h7WGYbMtVPeOnQ/ge7YpE9xISJG8HVAbyDNHIBOGHfHinNealldunWDQDD5wcX6N1plkmMZ6Us40psFYU5yVClCnVRHyLKyXlAhllPSQofFiYV2Lumk86KBICNFPwSyWkWtlZKM2ztJ0My6ur7i4usSHwGzWsVwupStWqutcR7SzaB/IBi0bjDi/FjcZJaPRxkiwtdaRNVPhUJP4tm05PT3l5ZdfZhxHhmGYrOIPgXetNdnUezwXRlPRz1P7gCiJj4jXGyvhUpg2EmyrVo6AfDL6UIvZapFdmRu2MMGq1lzNM2KSLmZIZXBGG9CWplvQdEuaboa2jqyMJB5lSxT8Ne87Lkx1pRxA6bQcdt4m9gvsRxOnJkSaNIxyGYuHMspcXm/S21NKKPcl4RHdKGGwpigjEaRUgqaZinGllKy9kLCukT3XGBkb0AmyF7e58jCl0xRN2Usx3Du5zcPX7/PzX/tZko48ff6cl14ZcK5jvRv4+NET8mUkE3Becx09Hz77GHtusM7QtR27CLOYCCkw7HYoFE5rnLXkGBn6nvV6Td/vuHPnlEzm8ZMnvPnwIb/xH/4md196lSfryKgfsRtbtLV86We+zC987Wv8zNvvcO/0FLB0DoyWPkkZagTVFqv6LMlBuRbPnj/jgw9+xPOzpwQ/spq1XIeR5mjOO1/+Ci+98irf+c7f8M1v/jmj9yQ/oFIN3PsFIOu3sFP+P2LktjAEP++RYjro7pWivbyRQqENe7DlhceLDKzP/k3pQh907PK0bCsLKaNDBC0aq9baAjaZKb5OTL3yOloVweSiQ1M/rbA361qvSY4vBY8jZIQxudsxa1tOjo6w1nLhnIAaSku3vYxuiB6Kmrq89eHc5zHlprKGMiwu+46ql2yf1N1gwtVc42AfPjyvFZBPh39fmgmafYIkueFBElV+uHd0y9N1unH9D/b+z2P21eeIgoLozEjnXU33uVLICGKJO6KRW8ev80GHWkYmjbFS5CkpFE1hgde1sT+vUmRZa/YgWmG85Sl5LSBOrM2lOJ2BqplUndMoDZnKHpgMiEpM2I+hlCmH4uonQFk1Vkj7Aq5IDkhxliDmMuKYC5BmiVES3hgT282WGBPz+aycAy+M9JyJPlDBOKP3TMOcKCPaBegqgKbRIqmQYiSHgB8GcqrO5qOYURDRWqY0rC0FXtEGilGKUYeMTpsCyCWxzBUWWV33qpwOtddb1JU9V0Bqyj0dQigNQVmPWika53CNw9mGpmnL7azo+54QArPZjF2/o44GOucYx5E9K6UC2bJ3G01pissYuzK2nNMynicfjDEEog9YI+yQOoonrHdzA2x2TnKOtm3RRosjpHMsVkuW8znnz5/z/NkZ0XuJ+Snhvec6BFTOOOtYzOZ0XYciMwyDmGykhHINxhnSWFhYCZQ1WBfI2TD0kTu3XuE/+oe/xX/1X/7XnM4f8M1/81f88//xX/CjJz/m1mLJs6tP2W3FfCIhkiqmcYxDz7BdM3OWZtahnWMoRma73YAPiuXyNs1sQdSGZxcX2AzKKrxVdKblza98kZN79/ibd7/P08dPOJ4v8GnLtpdGrB92bLYb7r36GndOX2L39Jqx3+Ez6MZi1YzOCgiSsqKZrVDJctSc8OU3v8Q//d1/yltfeYff/8P/mz/60z/k6uox2W+xSaGSwnWGIZzz8ZPvse4/5uL8jNmi4b33roj6e/zrf/UnfPyjH6NCZt402KRpraE1HTorzp5+xOuv3eFLb73N+x98yvW1J4VRHJxLzB93O8Zdz/X5BXHwNIVx2DZNYQGJy2/rhM2VwoB1jlUrLu0hZEI/4lzLndunvPHwTV669xIpBZ4+/ZTLy0surq7o+0Hu+SgNKJcjfugxwYsWbxkz99HTB49XgUHBmHd4pVDW0TgBodtGmG7L1ZIwenZbqSmWRytWqxW7fuDZ2XP6YaBDmEpNMSaoEjJNY9HKIa6swmBSGQH8VGHhWYcm45xDHEYDSSVSyQf1QRO7NrKTidRxuPpZu7adGlvDMDD0O3ZDz2bY0TQN89kMrTWhHxmqa6wW1izWoQqYRi6jklRQqxhlRfHTTCVnrSBNZdRS2UeKvdC+MijrCoOuRvOIGEHIsfggIGON1dMkQMyEWHIUkZ6WPc+UGJEhV/Y3ScxDxhGbVdE+LnV8bVZkRD5A5ylXkRorls/KJCFjVZXJkWacVjKx4qzkt1rvmzjGNmgNyrSSh2JQUUEoRJvUE8JAiB7jFE3TkhGWcbuYc/tuaSL1gXZsCjN9kHHXMKDTUEBZaWoHH4vBnSognMFX4KwcQ23IWOeIGHKEMcOo5QIOXvACr0TDL/hIDPsJRGsdINM9poDnUpsImQkgZqkdVYm5yth9XaQOmm8Hzc99TjNBQCUHkhxuAvsyJMrEVQgSAFHShIn7Ee8YI+6gf1vzN6nH9ky7Csz9XQ31F3835WPmBUYh+5FdyUh0mbIt4+21SasQvbqcJsAtljxOomQiq0SDKYzGmq8X80ltSn0gpK1ac0gVXHOg6sPwOV3g8vipALqmMGBePDmaouEmUDlkNX0ICsghIq8CBB0ME5FBxKCtUOiNFVHf1eqYk9u3WR3NcM6TsmcYA7u+Zzd6QmHmhBiYdSeCkBuFKSfUWUPXOFQ7p2cFrgM03g94H0kiLQ9kGidASIwiiui0o2kszrV0NrPSgdCv2W160VCLkayTuMgaSFrTqEaYEikS/I6Ue2JSaGUZx4RyomUx62ZEJ3T2fhhQRuOaZmLfHSKtxghYaazDGUP0I8EP09l7vn7Gdn3G6a0ZGEvbmNJZKjPrumje9SJ4mLQtIwhyN7iqFRgjKkZ0zhiVcWTIkexHxhgIWhFcnDQBKs1U50y20gFUOpOVxmpFImGNYjnvODk5gvc/YrO55ni54GS1wmQRy9TaiiCrlW5XSonr6zXb9Zq+7wswouj7gd0wMgw9vveMCkJjaEYBTppmBkS2uw3h+pp77YrZ6phVN2c+W7DrPcoEcj8Ss1DXc5aeslOqOANVJp38K/F3L9Z8KOL9k1gwn2VeFPCqjFhHJfpwGWjaFte16Kbh/PpKQA4/oo2h7WQtSTckMYZiEV1GyyBLAq/r/aWIVM0MpMNnxIEqZSbR5brR1QJBOtw9V1dXbDabib1VP3e9101hm6SYJtH6w3G9VIGseuwHnYGUEqawFaRTAiHs9eqkg9IUx68w/cwYsRwfvceWEbyQIqEUa8oYtGmwrqVpZ7SdGEMY15KUKs45eQK7KCBdRu5xpi5eOkA+quxnoo4bygHKOqt9JdGS2zcjKpuxjk9UEFTiW2VRZHJhueRCXU8xS1JQAmoV6G2SxQeL95owJrSSQO0aMcuRrqQnDHsbS5UzwQughwqQHDNjaLPi0YefcO03XKwvZczWOXyOdLctX/7im3z06DE7syWPmcuzLTo23F6eohfH+JQ5u9yisowKO2snCngqVWeIGdfOmC+PMI3lNEYWJ7fY+Ii66vn0zKPNCV96+x7379/l7S9/kbfeeoNbJycoIlpJbDDFnIWMCPvqTtaPyqJ2mhO7fsuTRx/x/t9+nziOvPTyPXJrUdFjm5aT4xWuJHTDOIj4csh8RmqDffB+0QDi8x4x+J/4uwoGCQhcwvwh+HQAHB2+94175uD7w3uQ0oW80YCryQvSUZWlqCBSDEs0aAul2M9xr6dlyphCBVWE7W72wM0BwIXkJwXwg7HfsVmvWV9fEUZP5xy3jo4Yhl7AOQRWM1oMIVCQipiK4WaCZKZ7rrCTilBv7cbvv2R95el3N8dDP3O+XjiXKYmjcbnR5FrkPXv/8LnT6T24RlopEXJ+IXn6DPhWgawXwVaFNABJVLMK2U5kv6G0EZTW5KDQxdVLFSe36vZX2RdKRbzXaO1rengjUT6EF6vWndLSzHCFXaZgapDUhLeyuSpwp8uemVVpaqWarckEhRzHCxqG0wfYj3oAZLW/flkpUskPqxuxroZBORWdYAHJbNkbGycaeH0vjaQUd1jr6GYzaV6Upk3MATF9kHsmVYfB0uSqjpK1a79cLIi3RnLKHB+tmHWtHEcZV81JGpQxCWCXcyt+USWWFKIEdRzWOitubkqDkvM+NCPOigZuKl8UeYMsIijitGhsGZ3K2KK7hmIau5a1KOu+aRpu3bpFznB2fkHf94VRd0VMcxaLOU0jRaLoG0oxeui4GMMeZPWhsisyi8WcxXKxzz+iL8ZpBl9ysrZtysiwRMqqZ2VK4esaS4gRHwXYX8znOGtYX10y9MK0VYW5CjKxUWPsMEqTfGJgIcB2P4y4bMghEnzG2BZjCpskG46P7vIbv/Gr/Ce//c+4c+c+f/aHf8n/8j//b/T9hlvLOSoNpH5gM2xQ1tJfe9a7NXPboHLCj4NoM+fEqBJnF8/ZjSOMiWG7Yd1eYdqGhCJYQ+9H0npgZhztXYtbLji/vOTsg48Jz69JszlZKdy8ow893g+sry9pu44vPHyT4dk1jz75BDubk22kH7c4ZWmtQduOaOeczG/zq1/7NX77H/wWpyev8Zd/+l2+9cd/xdOPP2G4fIbaDsxZ4Vzi9h2NmiV2+Zon23NWL73Ew7e/zp+/a/nnv/d7bJ6/x+76KV3b0nUzjE5YE2SKKAQePf6Ql5+ccuvWq9w6OWG3e0RUiVk3x1iFQeO3Pevra4btDpUQxpW1uML+so3sC2P0094n+a8Y62WrMcqxWB1x7+X73L5zj5jh7Plznn76iKur88LmlPWmsgXraJymOz4G36OTaDuJmU1PjBBIKC0yC1HJ+CmAH8WNMTUZNSuhWSlClImj5WrJYnkEyvD06VOGfkSZHa5pWa1WHBlN1pKb9P1e8O8fAAAgAElEQVQoLqxZcgmVM9GIHM8Yo+jlGSXgsgbtBMwXzccM2SBi+6KvnsukkuyWitY1tI2wT3PO+LFnHHpxNA4jxhQn5pnok/uEyLykNDke6yZiS9w+rEKU0rTNjJS86NIe5CK6yO+4SXfWlWcVBq41hbFlUOqAIVRqDaD8LJXYUgG80syuIGCV5MiSyFTfvRItqaYPwprNZaQ5TzUHpH3DA25ODZS/l1hT8sfyhwotAF3KaF2c0ss1EFBKxkSVSmUqTmGNLs7aCm0FJfDBknIjwCuxjKMWDd6mY7G8zTiM9Lsg5igpEsPI6LekcUfor8lRJF5SSgQfGUYvQHSJlzGLvmHdU00GjAFrpWnkZRJLIziLj0Xn0VYBE6a8reZuqjQYUzGJrNMNsoj3kNBELFFFBqJenJID7BuiVc5MT+CZNB/3TVbJ0SqTrlzT8nJT6nMAjr2YS01TAge6dIe/P8zzDh8v5teHNWya7ogKzNUv9cJz9PTZqq4vpBJntPgEIPdslb0QsO5m7qWVRuUqw1Z1jfVUE0qmLGs/oyR5+sn43E8H0B2K40tSVz9gunHDHp4go4vWSylgKqWyFrcAzrppM7fO0XTi5LMZevxlYjYTQXVtO5arOQtVUU5hdVktwJ4tDAZTusyzrkW1C/rcMSYlbIothNTL/HHZlCpo4VpD45riHidjvI2KpP4ClQvK2xhytihjoGnkNbqObj5jNu+kizB64jigizPn5TiirIEh0DWOc6XYrjfEGBj8QDdrydlgXUKVSx1TwGIxKtO1jsZEot+wud4XiuebpwzDBW7oUG1H0yyZdxa0JWYYfCAM0GSFjpq6V0WVyMairAgdJu2lWxIDjZZr5pRBWQXRTl0KXYplq4UCqoseSy6LvS7nmAKKTNtoVsuO07u3uLjuGfotQ9MxDDuGYSCnkXF9zcV6zdGdE1ZHx2Qttu39ds1QGIUoMaMYvSfWm805zNxhAdvMpHDJibzt2a23bM+vMUctpye3GH3gerNlHKTbLh2KYu2dhH2gi6OLuN3JOYqpbhR1Tn0fdA4Xe4aJSq9UnEZDtVagNdoVIKB0pm3bYpsGtGEInifPnqKNZracM2tbmrYllO5TToFx6AvrL5Zul3zOqoUnm6GMtqYIUYFOoleXc8ZY6aLEJBpzpnTn1+tr+t2Oq+trOc/koqFRnS2jaCEoM4mLgyQs6H1hWplwijJqVdgQh4LmE5vhYAOW/bFu7KrsDQcdlFyZMQUsDVlGotT/S9l7NkmWpfd9v+Ouy6yq9j3Ts+N2Zmd34QjHBShBEQwBIhWK0CfQJ9Q7MSgxQEoAAwyQcJIWEESsVoN146dNuXT33uP04jnnZnbP7MYqIyamu7oqK68753n+z99otHFY22KaFtcOuK7HNo0Ak1lRRYHKgCrFfy67w8LKqbtFvYhf86oS1YUxWBZXuQ9EpiAFxulCXw9LmsPK5jBFUqZSApUKMKUW9kHbtsvEMoTIPHmiKVPdtsO1bTHNhpwDfjymuOaYFjaFsT06gfKJ7YsrvN+wTwfm5LGdw7qWYT1w77VHPHnzG/Rri7aw3W/Y7A4Er5h9YCyyjxQSfetom1ZAHWXwERIG0w48/sYF/bBCGcPq/IwPfuO3APjxZ08JH19y7+F3ePud9/jme2/y5tuPePRozao1aD0zTyPO9WjVAA0qa1JCQCmALOuRRrzP5v2WMO4xOeGcprOKzXaLzoEwJT78wT+wnwIf/+ynkCLWKFJ6BeDitOA4ghS/6GV/kYmrqmmkxw24PhPaCCvq6/bG5e+v3H5L2ZRZmmrpdxQVaTyCeSzBCgKii2yaJLL+6AtbqbI9S3lRE1O1KuB79aM5aRqql6LWijDP3NzcsN1sxOtKadLs2V5fC/N7mkRqU45ZFYBOKbX4350ec9sIazZTJBecrANaLXiaPFsvLbcvAWuVafXq4HDx7yrX9+hkWX4+nRSChf20nNcKiqCKPItl7T69hrzy91fXueX91HEs+XIpV45Za9mHy/WsbOUjeCjdRv1osq4WMGtZY80ytMllnZbzpEgpEFJcgNMq5a2gTz1msQA5gm7CrJRpciiFtn7luTnam9SO4HhcqQDBwnauPi1Ua2CxjigstowjRo9PnspGxIvUxZoG00rgT00ZnsYRAOssbdPKPazFt1caNjmZOQkDWxhdcfHha1zDxdkZXWnm+0586kJpYJy11ET0Cug1TVOSicWyQBLblpYRZx1NN6DLcCwD0yRJq5LEJw0hxTtSq9O1oDYMr95jAsPGGJZnNKWjf1JWmsvLK66urpnnCbWX56lew5TSIp+OMRIQ0/N58vhZfJFsAfFAoY3FOocPkZACq2FgtV5z2B+4vpoYD2NhGcYFZBDWnpNkXufElzAGsoJ26GnaRpJ3Q6RrWlBivq60QTtF8IFqUiQJ0eHkHGiSUhIKljVGJdAJa8qwKMwobbl//3X+yz/4Q957/9f5q7/+e/7Nv/nf+Pizj3n84D5+N3L54inTfiveqSrjgyfkA3O5nioDM4QUAPH40tqSUBzGA7vtjrjZM4+ebDVjiozzyN3X7/PkyRP03vPZj36MHSMX/Yrb3Q7lDM0woA+eGCdury7Z3t7wzpNvcvXkGZ89fYpresawJxlNMErkoU3Lw4ev85u/8c/4o//iD3nt0R3+3b/+n/i3f/pv2ZlAYiYZj+odOa5474M3efubDT979iNefPoFzXrFH/23/5z/7l/+D/zZH/+AH//t/8Htsy+wOqJsT5oAMxF1xicBWhvjeH51jXF3uP/wHl9efsTmdoPVK2y0BJ+IeMbDiPceg16GP2H2oBRnF+eS+HmYOUwTWYEPgYOf8CS0dQz9GfcfPuL83n28D7x48YwvvviE3fZKgs+CRyuDsx2tk/UlpsRsJUiPIH0HMTHPiTlCUBmsAFbKKfqhp3Et895LDRUCMYtnuGsbpmni5uaGth24f/8Bjx8/FrD7+pLt7S2ucVzcOefs4hztZA087EZSLFYXBeNIPmBRstcGWQ/arsc4g3GWmCUBVZhNqgwd5XmP2VO9zEDRtuKzLhZDXoJTxlFsPpSmG1oaJwQZozSqaQhkxsnjfUS3ZcdSegECjvsYNM5B1iRX+rnSw8hWIZWs1CvVQwyRJyJ7RtKyL6UEKUlNVZ2scpWlL3to3T0Rn3WdQTtRvNR9LYGKMgwXnydFjQqvgxtyLoxuReNKf1EXhgrm1XWiDPiEHFD3viKzzAmdLUlJAm7O8owL26uuu8ch7UKECGCwIgfOWYZLCULO4i/nRK3UOYVzmqbvWa0rBz8JIBdGchxhFiuqGEXRME6eafKEIPvt4XDAJ/F/9cGTogSRhBAJeSIlwzwHop+pPEfxLhPAsWnEykhUSoaYQ+lBdfFwi5A0WUnNUMGhWqPl9ApIVs7hwk6PSYZKOS8+cpU1l1IElV4iYdRhr9g21B7QkJQmEl7q8VIqCqPySikVYPyk51K1/q3XmJN64+vbt6ryVIpFrflS7Qgsfs9SoC4y2NNzEVMWpZMSgFLnMqpMwoKTmWrFxcoHy8djWfzoy8JRYUGFkq+UGvEXtSD/v0Ii6gfPuRqhV0PaIk46SdvIxT8LIyaZ8nAW9L58zzCs5P/rFXfv3+POnTu4tsPHgA+JL55vpRAnlUaXgvYrkXuoCCV1RhdfFK0NxgWUnbjdHxhDYBon5nkixywAXt8XOr00I1FrgtEcijzHaE1DZK32dCrROMfQ9zjb4NoeMwyYpiEVqaIrZretkmM1KRNJPCQxJ890e8DojD/smKY9YfYSM65kym+MNFgxBaZpT1Zl8nkI3Ls3cO9OTzbHRmR9d+Dx6ozzleXOece9izVD15JzZn+YubndMfsJvxtps4VGEU3Ga8OcJC0yGZk0RwJKBVogakVnBBTNyZJnYSJpSkx0TXMswIc1Sq4F4hNI8fyyVtP3LXcuztls91xfX5FGT5oi42HCz5H9NOL6Hp+iTLCsJs6eeZbNKcWIT57go3jCWkuwlqA8cwz4EGhDIBtFYxtUC/vZ8+LykrW7z+P797i83bA57JmTxyehlRslTVHIsYwIEiSFUhFbGGNydEoAKiR56iUD9+Wl0UX+LaaQvoQolAVGy4ZpEE8403UkYLs/cLvdEnOiaVqGsxV9I0ERUqzIJGYuhXRGFgqR5VF08WqZeKQs8K5MF4vOnigFeCv6/lhMwIWCHYQh6Sd0AYlqkRCzsAhkw1cLuAVljURYe3AE4LQSFqQv0lbgOK0yLwN08kbS3MRUDUCLbwRH/x0B0BMxZGISoENrWxqJBmsbmq7HNa14z2nxM5KNIaFSWTqTLMb1pZY1rIBrpamrhvpLu6TqlJEFLFGpNPjp6MVHbSopv6yukykv9Gqla2KjKdO86sXA4jkFwmyyShrXyl601mIaiy4+FYpMjie+aDEVj0VJimyt4/75BQ/WLbYNDHjcsObuw/uc3b+H7lumnLh+9pw8B3QWhvT5as1u6xl3ezo38PjhY8bxIACssyVBF5xSGNOCsyRrsKsLtDXobqA5v0/KmZVuefDwDb71wfd448k7PHx0zmoAY0Z0nnA50bQacoQcZP9IVqLpl03zxJAe6NqGJ48eYdPM9dULtjdXPHv2jHH2jJPnZnPgervn6vJSfGacw6fEMWShXMoToOGle/LnvIzSP/fflsK0FCTLM4EqRWmpI+ptf3L/kY/eGPUTnMosKzCzvMECGB9fGo3OUjzpkhQuUztN3w2oHJjH/SJHpIDhVfpWPSBrsy0F8tFndjzsOez27DYbwjwLGy4ndpsNn33ymRx/zPR9w9D14qGlNRnxknVGACEBd4T1ee/eXWqp8qpR8CtnV9iaaUHs5By9Umydfq1ek69MWmtDUkCkDMWTNZekzNPfWr4jF6Pwk/et/z8dVn4do65OpWvTVH7wCEYeLYIEnEung58KvCkZMJQFaTmuUixW435h/7M0Z/IZ5H2UojBlqiS1SmvzAljVQn4Bx3IuibNG6sckhXiVPtXjrI3Z4hG0+AOVQxF35KVehJNBVzmmau6cckRnTSrJfsUcWDw3nStrvxFm7DgxzTPDMIhUs+8lcU/7hQ1Y68uoIiEHGS4ksXfo2o7cCGtF5QLIaY1WgdykhW2YUqJ1DWdnZ6xWK3RpXKqtSo6JXGpPqcuPxtj55F6p95E0jYmk8mI0nVIsUiM5HzEFKeYLy6ECc/XZn+eJnOX5GoaBEMRvCAWzn9huty/tdRSgZJwnghImxjxKErwu95GzDbaxNK5ZpLvGGYazNV3XcX11xTyPTNOBFAO7rdTkElrRMfQdMWXZ57U8U8Ya+qFDK8Vuu4GUC0Cn8Ig9QygSWlMN8WvoSJFhp+hJyuCsQ0cB6iBimFE4kbY+uMtv/+7v8d63foWPPrnif/njP+Ojzz/n3usP+PCnH3J9+4zb8YqYPL125DkWFYxiNgIAOWc56wZWTcfKNCjbMuXMlBOzUoQMY5F4eiJT9nT37/Lk1z7gjbfeYv/JU/ynzxnalnTWcshR5JeHfekpM9vbWz776Ue8++R91g8eENuGGAKjD+AsU870bcOjR6/zu9/7A/7wn//3aG/4V//6X/Hnf/Y/8vzqC4YHb7CbtkyNIijNsFrz9j/5Lg/OJj56+hmkM+7feZ2L1YrrT/4z1x/+e1aHn3DmPDE7wiGxmXY07YhaxbIIaZRXPL28IqmOB4/vcvF84Gp7Sdbg2paQpd4Y55lx9lgQ8AhJ69ZG47oO2zqSUswxMoUZHyOBhGkdrm0Z1mv61VqA5asbnj9/wW6/Y7vdYC3kFPBhxiqD61doNIfZswsjkLDaSnKv98wJIlosabQGq7FNw2o1MPRrRjOxY0dIXqyDWicgRtey3ez49LNPCTHx4MEDLi7usB8nDuPI5uaW560jpij3rzU4o8EoGfiF0uCXgcA8z7KrqQpwW5JK6Fwb8qLQWdxaihd0CdJwzi2M13mamcaR6VDsZrQwE40xtF1L37ZoNEFpQhagjBRL3ScKqQqgFL42WgnA4rTGalNAx7iAL3X/MsVCBcraVfYAdAHJtaUmgsvSdtzAVPGYPcoRKay7oqUroQ6ZIgkuHYrU2xUkKgyyWAPXivVLFpm1IYvvcdl7ytYCShFKuN2y6uWigqmuZUnJEDf6AtKVdTgFYtTFiqeoczISDpDFoqGSIXJWxHLefJQwyFRkuvOc0NphjBP/MhTohLENCos7E2k0WUnQXxCZayoep/PsxdInzgTv8X5afPJCzviQmGdPmCdRrqVILN6mFPsKa83Sw0XCSzWIJN1GclQkVQZFGdBylr5CoCjs+BCjDPe8YC3WFnZjLuBVKCFW+BLg1CD2RMffa40pISSlXqEmx5dKp8pjOdYVtW4ypniJF8xLlT1W9tlSP6uXa+bTvfh4f1Yg8Pg9ipPvyeIbq3L9/SV5tZI7EqK8Wn5WLaqPCjrX48jp+EzU75VXfbgohecRXfzF3ccvCdAtzBdY6PhfVxS/WhzrinjKm0C5IbpiVjsMA65tuH//Po+fvM69+w9Q1nIYJ8Z5xvYrSY0jY8goQjH1TeJ5pTIhS1RzTJFUUk5SmKSIzIkmefFp6zusFYNzrS3GUlB7udApzeUiZhrd0rnEw4uO3kLbdnRdT+MGTNNC24O17AotFZVQyovQPosHV0gJrxL7/Z799pb9fsM0CUAXfcCpSAhj2WQQv7Y5EEPGlyY9zRN5vEevLc3Zejmv33jzXYaVY905jM7M08TV8x3bzY7d9sB+PxP3M3rnGZqJbrXG9gNaKxpjcdairGJOsUgvMgZh9/gcCIV3GbVDK1ssZUTKXB9wIYlpmlrg5iT+dWSUs/RdyzB0dF3D5eaK2zmwbleshp7JeJKC/TjirxPjOKEbS/YB72eRZilNtxpoGkOrHbZtmRVs0p4dEyF4+iRSVasVOsImzPhbj25a+tWAK6CtgFhF8rQARqVILD8vbE+9GJdrY46Ncz6ms7zMmDq510ujUxu4mCVhV5Uph207YobD7sBmu2V/OHBxcRdbkprmMJFyJvhJKPvFrNuWTUIkQbUxLNO4lMpkqz7oMgmw1qG1AwLDMLBer5nnmevra7bb7UuG+fU9l2QiSvKb0iSvFrZDLgvicZES8E0bA1m/ZFRtjEE7MbHVhY1xGijxEp2ZI9An7JDj5MXPZSNLMlG31tE0PW3bYduOtuvQrkVpVaywRR6rSOQIRpdp4SsAzatN/kvyvpPrWqdN+XQhTkc/P6PtMo0RYOTI6rHa0DgnLDBdWcR1raw+fHLufZAQBj/5xY8vl+usbSM+GUVGpDTUiG5A/CptU9LCDKu+57233uHX331AamYm7enPz7l48ADV9tyMMz/74hk/+ehjvnix5+rWoOxrnD8A3J7r6w1er9D9HXIQM/0YpRAhQ2+UpIYay8F7/M2OYb0mNoqnN1te/8abfO93fo933/2AOxevMbQNzmTIB4izyC10KYYKw0blTI5evPZQJfErAmYJ4VDGcOf8jDzfZXdzyWdPv+T2+pL9YWJzmNgdZvZjFBawNgvjRPNVlly9B75Omv7q6wi+fvW1AB5fBxiV+73G1VNAi1oA55xLsEOdur0MFB2nfRUyThx30+N3Ll5lSX5XSpnWdVzcOceqxOXlUza3t9JokRegHu8Lp+sIVmt9TIbMKbG93XLY74Rxk04+X5ZUYpEhK5x1OGOFLV6YXJ1raJwY7GtjqADd+ZmkuGpzktBGrb6Pz5KkSmZ8LB5uJ8/o6XP76rN7+lpkMifgZC3ayJysQWXqz8sAfmXc1QN/VVr7UlOijk3K8WvHq1WnustJLGtpXRvrCr6AsrlIhkpDkjPL+lvlrbnIhmLMZZpdC79MIBXpvF6O9VhWvnKM9V5brgfoUihrdSyka/Gbs3jMgEirMwUsrrLZslegZWiUcrEVqQVqlnUFAtqwrHf1fNS9L6uAMpa23l9aLb6p9Z6t6a5aqSKZTDgjwTpRReY0C2CXobEizQveE4oHo7NSCFZjcmfdAp6l4s8Xgj9Kqcr5qSxQEOZFmkZSFuadMgbvZ1IWhtiSglyY7PUeeOn+TeV9UqQyt2WKn5Z7JRV2fMrSBDeN4+LiAmMN1zdX7HZbIIs03UjgRs7CsCbBPM2EKYjpfEmnc02DK/uHQtMPArbs9nu++PILLp8/I8wea534AoY6hGsWZY3SGV+GaSFFKIycEALzOAloWoZOqgISxSdvtVot9433Xpjn1gqztUiFVBApXraZxmZc50Dd4f33f4X/5l/8Sx4+fsKf/Mlf8uOPn9IOHS/211zurtiOtxgLDQ6rNPMcyGEiG0tWMuxarXruXFwsyoN5Fv+5mDKmbdjOEzEJC0zHzIOzu7z9/jf59rvfIo8Tz54+FWbnfgep4c6dO9zudlxdXdEPDdY4Ugw8//xLLl9c0p2fc/HwPvsvRkKMMiBwmtfeeYfv/fYf8E++8zs4Gv7m//w7/t3/+qccNs/oO0WTRzqjuE0Os3Z893tv8vjtNV/+4DMuv7ghhZlvvPMW7//K7zDfbHn+8ceMVy8Yip/sOO0IeZZn0yo8AtAeNjPZWnRrufP4He4/fo0X11v8pGl7hzaIl3XOBQwxZR+SuqaCeArQTUPWit00kbWiXw+c372gbaV38imy2W7Z3t6yPxwWxpQ1FH/BmZRa8Rkv9aUyHa5zDLZDhcT+ZiNejzlgnCZpsVJpWmESNdYRXcJoR4iS9DyHkgTd98xT4HAYef78uexH53c4X69BJfaHA9eXV3jvOTtfLWtLTTYXEuwRfK97pjEO0zTYxoEWL3DIZBXJWotqi0Tw8uyEGKQP7kQ5EULgcDiIEqKsbU3xaG4K8LgeVuSQOMSROURccoAl62PIhDrdQJSw6oL3wkYuDCel1Mvy+cKuVkUZI4r4Mjw0RphwVgL7JGRK1pfquSVMbdmL6hZcMaBaB0Es1hKJrGUtNigBucgSZDHNhN5jrJMBkXYF9DliCrkALXUIecpYr9ur7FEyatdZF1/QUjstvqhBUoEPHnXjUS6hrfTcTlucasrwLImXAZLwGYtyMHsvDEo0PmZMVmSjinixKmsApfEpSVCItqjij+86ykBVhmcClpaaIQmwnaOw330UKfM8Hkgh4KeR/XgQsoU+1rIxnhAFlv0FyKHsK6V/V0fVTwVQ674Wcyr7UPxKTXD8j5e+7oP4ir7aGy8MPsA6Ryp1vTG57CXlflJxCa/6+letWI6/91VbkZfukVfq8MWharlPas9BCbMpPWL1hT35jRqRH6uoFpCu1i/IVSZnGZLVITelDjLGYrPs6bnWtpTbo5ZCma+ct1dfvxRAV8G5nIsJ5SluqdSSLHI8SaXoIKNSaSuyTDbbxrEaBvpezAEymf1+5OmzF2z2hyVaOWmwjcNaRd81nA09fWuwJKxOWKcZ93tJekrFF04ZAgofImn26DCTSsJK0xTTyRiIYU+eReLSty1Dv8LaQaQ6rWPVr+lXmrsXCqUCWonxorEdaMuMJmQgm8IUlAsQpontbsvu+obdfuJqHNkfJvx+JBwmdvs9k5+IPpB1Zj/uMM6WFL1MViVOW2k0DTllDrcjty+2XNhhuR7+0PD0escn857oI+PthudPX3BzuSXNCaM7jIPVhcKFPX2caMYdnW1pTUvX9rSNozEywda2QRthIyYlE9toFEqEpMgCJUVmDh5LlgACL7HFVllyivjiXRczzLNnGDru3rlgf31LGGdMv178jzSFSZkVrWu5uHOOMZLINR3Eq69tOzJgVNkgJ898mLn1s0xEfKSLmQ5N0hBNImvxTNm/uKWzMuVt23ZJNoTKslIlXS7jE5LgRibbYmh9AnSreo+/8lwoVYrqKICes7KZhxiJcQalcQj7KQG32w2XVzekrJak1jp5H30QJk4U+XbK4t+EFY8bCWCQiaw2emHtYWQTETP0RMySQm+1mFGLz09aGptanNfntTYJUD3gapMuT7h5aeGUBrMmC+riH1gn78vkxFpMTbbLNbUvLP5Hp43x180QloFAOi6q2lratqftV3TDCtcNAqKWKWGUkdrL040CbtTN5FTS+NWN52sa/ByPYEo++meIR9bR7F5rScvKWc5h37R0XcPd83MxGk3S5M3RE6MHaqqjNNYiPZrxk5f/B5F7KWNxTYtrJNREGQ0qvQIaybFqBQZN1/Y8fu113nz7TZqHa26TB9tjuzM2c2KcJ/T6AeevvcHe3dA+SChrSTlzs73l5uYacqJZdZzdf8R6aHDGsNlsuLm+kSITKSrd0BNRmNU5T975Ju+89x7f+s53efvttyVcQGt0SqQ0oZkxOZF8YJxm0hxpzYBbNZBlYmh6h1KZmCaMteRkOGx2XL14zub2mnG3Ybu55OkXn3NzdYWfZOooNP5UIu2lEBSpNi/fX3UUV/apXwagS7/g3+udpsuUWBWAXBWdpoIFXMnLn+sXpGAsWuqyrx7fdwFDjpf4CNAtw7AKEomfnIA9mWHoefz4NTSew37DdrMRoKUUBBWgz6pOuIs/ixLj/HGamMaRcb8jegHndCnmJMBImgc/z2IGHQLjOKKtkXupPufJLN4miKIQP4/C0kumTFmlQTCFAaAqAJQV4xyZfSKcGAufFmYhhAXQ/sV+gsfhYYbirSa+ZEtzczpM5Oi3s9w6Fbw6KaYqUP9qcbl8T+0Y6nurE6CuXNuUChyzNBxpqZ9UvRFOUL18vF3KIOaYSvZqDZai2CUcj6H+VhbW7mlhe5qwRqElLE2WKkzIXM+FvFc1Vc7leKvNQS38UQIwGsQyQVfAMNXzJ01TtaEUaYhI6HJQJKNo2x5rDR0tab1CH7Qkn+92VDZXTXGNIchzmIsna/EsI0r9mUrQj1aqgEClTq3G5M4UU2+5rw+7HZS9zRpJtBbmQRkm1DWkrOcZhUo1gKbeL69UDst1SGhdBmzFJzWnJAMYldh1jqEAACAASURBVMlZL8+rVoXRGSMpF7Z32W/awmYTcLh41Wphw6YE0yTP6SKb63oqo2MJrtASNnIYD0ybG243NxwOB4wSsNIWCwysKSCt7GmuaVAaovdlmJYw1pBzWoBUtxiQK4L3TONISklSXoe+rAsi8TIlVKptWkiKaTOSY6J1rqTmJYauoV/d44MPvsu3vv0en3z+JX//Dz/m7O4jgr/kZz/5mNxqXHCs2pbk56IwMFC8hAxi67FqOrTSXN9elec+4OeJHBNN27ObPT4GVm3LWjtev/+A9x+8zmpM/P3//UM+/vJT7NDw/PISJsXrQ8/5akXygZCmMrxWjJstn37yCU++9QGvv/UmT58/pWlb+mHNN959k//qv/5DfuOD32Tz6Z4//vP/mb/7+w+5uh7Jc0ec9/RN5G5/xjYPrB463nzPcXn1Q37yD/+I8pmLe5qzByvU8Bqf/fSnjPGM1fo1rucRZz3e7YlhxoeWuAsYP2Mbh2s7dvMt3aR5etlztn7EvXt7Pv/8E8awpTMr8T3LoEtysNUSsJaAqfg2phDYTeITjja0fUu/XnF2ccHQrwhBC1sIFkVTioGmaSELWOuKdDylQETsEtzQ0a9WDK7D70fS5kBQCmtbbGfZ7G+xrmHoC6BmG4KNNNYQswGThdGlJR266Xsm75nmmdvbDU3TMQw9rrPo62u2u01hjI/YxnF+fkbbdTjjyLEMTeClveh0IKutwmYJP7A2oZOBmAkpkDmI2iVlnLV0bSeWJvPMPM+ylxTlSVsH0NaSUhQPTh8JURLurSt7+RExKYOTk0FwUXi8VPPWsrq2raXOqMMrlCqe3LInoTVKWSQow5CVkCeog8PMkT2dXw5zyjmLwkMpcllDM+LvB7JW+FlCBGIfljVb6gFdesUyTFuS0KvvndhNmVpraZY9Z1ltk6jTjNayttuj2in4mckn9lMmG48yCmcsvWtpTItVThQdJW0164iPE4mI8RbrZKBsbUdIscghS6KvpoT3ZZKPJGUwWuTDuXyf0XJOg6p4CULUcRZnzbF0MEiN671YC0wj2/2Owzjic0Q18kzWGshay3q9xl9MYh0xbonRlkDOQCQtvWJlfKMKWFSkxrEAjFIXHq+lSFc51glGQ5A6bJ5njLHLvZayXF8NGBMLriPEH62OXsM1uVhr9VKxXAfHpoQZCej5VSBrKdFOhqGyHReFgDWlJ6jfeEylUBw908mx1Iby4VWmeI6/sn3XujzJDq4LKSvnEoC4fLBSV1HeSAr4goWdfnbNV+qDk9cvBdCFUoCUMnApOqp8bWl4SsEjCot6hMdi1Vih67Z9i+s7IDP5mavb5zy7fiYli8pY0+BaS9M1WKNYDS37sxVnXUNrFb2T6aF1jpQlSl4piyqTVBTMJMakGGPGTxMuTAwFlGoahdWWw3ZLahSKDmta8bFKVhgjXnPrFXPOZO/JBKyWCVKKIntcn61pO4meJ0d2ac/19ppnzz/l8mrDLjnmoCBGVEgErUha48moMLM77GmTQ9GVRj6QUiChCVrkk/t55Ormmuzccj2++Ogzbjc33NxeiTfLHPGHiRQynWkZuh63dnh3YMwTm+0e4h6VwGJZtyuGbuDuvQu0UbhGYxwoZ8lGFzN9hckWlUSK6OeZMI54f8CQsVZBTigtXlnBBza7Qwk2SBx8JMcgpuA54v1Iyl402TnIVCNFpv2OnBPGKoauR6NYdT22bRgnQad9CHgvU6bdfs8UhWUXyYScCWSsNqiuxTUtyTgOwdP2Lau2Y+56dJAJVo6xgEzqeD8jcqKkQEUE8FICfmmjUTiIwryokw4QhlYMkZw0WlussWSliIgUBW3BWEJWjLsD1zcyOVyvz7l7544whcjFGFmVmHKZFivrxMS5Ns/FG0ep2lAroW+rjNGVYpsJwcszkBTDqmUcRzabDbvdjsPhQE1jq55EKVXGh1rYgzHJPWVKE6JN3egrxqGWhNicSxpzYXXViZxQw1NphjM5hWWhkkZjPiF8yHmtPkcxSehBVkKIV8Zgmxbb9rT9QNuvMG0nlO3S4KVi1F+ZEApBJHKqLBhZHU8b8eqH9xWQpjTSophKy89J8QFKlWWzUM2VEtlgTBGnDX3Xc3624uG9O1ijyDFyGEfG6cDsJ2bvZbobI/PsmecJP4svhU/iqZgQtmtvG9bG0ikxsZ2Tl2Tj+lFzJkWPVVAcnJn6gctuzeQdz6dE1NAE8LSE7pzufMUbbxhewxCVLsyriE8TIUiioUkzKxW5e9bTNw1Xl1f844cf8uGHH/L88opgFclYXnvjG3z313+VX/v1X+ftt99hvV4XsApU8oRxhx+3ECZ0nGGeSLNHhURsJlaIx2BIiYaOrCIhzWhnmfcjT798zk9++hGfffEFh3EsHn0jfsrkKB5WWkMMM/v9AT/PwuxtHHP0VB7scep6BFOUEvlK3dBfGp/V7zEnG+gyjTu5V4qRci1kql9GUrVgzMJuKz+03Hvl2uUC1iTqHltsZJUqU71SsHwFtKkebQsMLfKHmLDOMgwD07ghxECIQTwxiwm90iIhqJ4kpjQYOcm0drfZMO53hBCWf9fGytqdErP3XN/coIqkdho9IWSUNWgn0sgYI6OpCVYKzuWZubzelCbElGJcUmWttQvIUh4twkkS3M8DU0/BsVcZsAsYW8CB+j055QJcFS8alZfGa3mvk/vg9JZYPkN++d8XZrHoTcssQ9av+rtfgtqULmBMAYhqTZWl0ckUO4Mkd8dLhW1lCJzITOMJQ3n5nFmO7xTMrZ+/JgrW9biet8ourwBmLoFJWr3yDJS/1ONd9hP11dTzKo/Ny/U47gMqlWuT5TlJSZGCHHNkJhlKmEKDdZq1HbDOcLvZcDgI63ytxEvOlEFDCJHkZxkCOlnHBcTPAjrGhK6ypZgWM3SMwTY9w+ocZRuatiMWBkMGsrXEINYY1W4iJZGXW+cwKLFVKgxRChi5sGRzbSBKI4L4jopBhbAMNbqsF0l8g2NkmmestqWxVsteXM+v1pa+W6FQ7A97pmkkh1zKD/G9zTmjfBSQVClM07LZbLg97Ila0eaOEAOH8YAymrOzO7z26AnZR25vbhiniRgV1ji0Kw1VeX4keViaMauhMRpLLmnuCW0aYTimIB6n84Q1VlJftTDJtdZoK4ycthXfLT8G9nEnw5YpEfOEMoFgdnSrM9Z3B7SL/Ke/+Ct+/JMfcv/eHV68eEqKMynOuMaCyswpioex0Zi2QSMMB/EHovjx3tK4hr5rCHJisUbRtbqEugkI7FqHMYrPP/uMD3/8j4wE7gz3SUbhZ89uv+Xi/Jx7d8+5vHyOWCkbZh/44svPee29d3ntyUN+9GHHMDzgu999n9/9vX/Kd3/lVxkv9/xff/Pn/OV/+N95frnFNJrJIIES3QDNwEXT0ZjAR//PR2w/fca0zTJULwmJu89f8MPv/4DPnl2zixC1QbtMgwOdidHipxkfAi5GpsOEn/YQJ8IYef/93+D1x0847Dbs9nvmOTDPwka31tG0LdYYpv1ePKX3njOE4X673TD6meFszfrsXJ5H79E9GKopf0bpSEwBPwfp4YqvrTKA6ZiilgA7p+mahvVqoDMtYfIkrXHdwHoYaDvL9nBgvVrz8MFDHt6/T2MbxuHA0DRsDjtuDjtsKwnIKddnXewdxmnPOO1ZrTu6Rq69nxyH6cD1bitqrZTJ6wT9AJhS/ylRFhRWbPSeOE1gNY3VaOvIShFyxJoeYpEczgGVMkaJpNxay+FwKPWz1Ki2bSUUoutwrSPkyG43svF7yBljBJBxxpBCkvCALMMUVfetOsAzFlP31AJkxdMeXleLglcGSbJDkBF1TM5HH21UXo4751JXI4CSLZ7dR+/d02qnbJspk0JavKz9PEnNQMBocFaYe1J/y9qWc1UiSL9yuv8abQqQoso2qxf7BnIhMyhEpmnMsg+G2ZPmWXzjmUHJ8z7aFqcdFvHus67BtQ6M9MExeVEOWWFOrlbnMihRhaXYOJyGhKx9atnHJdBIJanbghKvOdtImEj0AkhJELhaQM+a+m6bRsDIrsMOHcMUCATQRgZ1ZeBmnWV951zAshiYpgMxeCFn+Il59kKkCZ4co7C84XiOF4C3BnzlYukjIS2VkKRMSUOPkUyRtqay5+dMngMjEaMUTSsWRIFAow1+9sx+wiiF1oP4a9tExkPKmFxsCbOosaj2XkogtVpjKwogfVJXiMS4svITURkSbpHXUoZ3SmnxFqw+OrkE+VG0KlkBkUab8hUj+Fap0+VhE3zAOOnHlVZFOUOpbyRboFqmSLV16oqsFoD5571+OYmrRhJpEOZIbcDr78m5ZiBK4ZfLhdVRC/ABmEbT9wPDekXTd2Ays58JePGlUBRfi56m6bBWsy4L56rvaa3GkjApo+dIDplDnogp4skka8kuEI3QTscMB7tiXHUkNzKnGa8yLnj0NItfWkjs5sTNZgbTEKPGe4XSDuUsozkQTfHB8gmdNYPtGFxLqzRvPLzP/Ttn3L3T49pMnPfgRxQzSXmsOyOZhuhnpnnPPmTmrPAZwhwwLorHRplsRO9JIZCsJRDxOXM43DBfA0d8jo6IW3ccbhPPbp6zvd3QNIY7qzW9g9YllGrIpmX0hhjFTy2S2c4RrxN55YhTYgrCqkpl4ZG0SIVOgUHLObdGoVQkhhEfDlK4dJIsSQZ8wvuI10YMXbWmc4Z+BfM4sxo6afobRdMYhlWLnjwhTMz7iWkf2BmFbw8SCBESyjgOowhpUhR/s+A9SWV6Y9DOMTQOpxWt0QJwKgHZtjozk2hjpM+GYBzZWuayyajStockUhrxWNBHrwVUAdr2ZG3IqSFmi1aGlOflOojUOmNsg2s6UJY5BWxjcMMapR0pKW62I7c3N8w+sF5fiMwrQ/KBmuyZoySaGSUMFWWkiRawkMKoKuy2nIsBbQmloPgcACol/DTigZhkIQw+lIma+Cb4kNAJGqtlUc2lqYuy8Kgsnmlh9suEHS0U/2NzIdN9HwIhHVNgQ86oLJMkRW30ErrsqClKIlH0HufsAo6kJIt+ziJp9CGBbosfowPbopoW3XYo10rYSWlqs6r08rrwRVQW0IkozYxSUKmRmiK1jRynSCcvXRpXmd7oxUhVqeJNUdk0pRjQCpwtTRDy51U3EKYDzkm8u2oMzvSE6Njv99xsZg6HA/vDiA9B1lQrBvopRrJSGGVps+ZcOQZl6PuO7bRnF44fWAHWJBpTwLq25aOY0NEwnD+hf/CA9dkF2jrxbVFWZMEFOJ59QOlM0whTdp5HtIJ15zjXik5B3zTklHjy7nt47Rh/9ENW6zX3Hj3kN3/7t/nWtz/gzvkF664n+Jnt9pazviPlmcPNJfvNNSYHnMowz6R5kvTobiRNG3a7vRRCm47NbsccApnEftxys9/y7OqGrZ9pzu4x9Cs2tzt2z5+SpgM6ziID8EV6HKOkWFqDs1IQkBC2SGF2CvgjG2ltXr2XKapI7o7n1zY1wONkI62MysKWW+wdqGBzKbZONutar+YCuAEC4hUwmDLBrNJXCX/PyySRfJR/17FCLlM/bXQBsTIxR2GXTyNXl5dM84i2UjwYZzFWE5ME8Kjy3BgldhHTPHG4uWHa7lBkYdQh0IFPIkUxSrzhbrd78V1tuwIoiZwkISyAyUd0OFoi1FJjt/eAX1jAtdiqvmdS5OTS2Nul8BRJuDnKKAuz6FXQ7nTKmlHEcl4XOY+uht2SIEqmeM68LLMQqaYY4it9DFeo/1YLWaO03BvpyICq94HA7LqOSov0szAM6lpUrgNQJrCSiF4HMVQJaBYJigSfvPxZ64DgJZlHzst9WVeKyo4+leiG4k23+MQUv9XjOZR1U2S1x6+r8hzo+rNa3reSQqH6pBYbAIrROKkUyCdFtSCCcpqykbU8S0Xp08xuyrjcCHDTtHR9Q0w9MSemeWazExC37we0c2JIHQUE0DFJemgZyKWyRghjXu6DHEvYS9Kszu7xhhuY/QTJo8ve5pwTkCwJkJZi8VJSBmsbnG3xORGJAtrbslfHjDVagNeYMZhjs5PqsFBS1622tK7FKkvwM9nkZUCpGvmeTEmlTQGtDI1rSSZJ4FqG/e6AxmC0w9qOO/cf8fqTN3DO8fzZM148ey7pr1qj2pYUArf7PXqc6Ieeb7z1Dt98731ef+01bp5f8f2//j46ddU9vqgBIgmRS6UcBWQtCSAORacVLZqQE7cHX8BuGR4mwDUN1prigyQ1nnEatEGhGYYOayxhiqA1prX4OBGVxjQ9Y040NoCF7//tf+bDH/4dd87g5sVHPPvkZ0z7jQwtTeZAZh8jvpxz68S7VqGW4JE5eLQSu5bONvi0FxVCjigDZ73l4nyg7wcefuM1zHnPD37w92y8sIZ3ux1d36I1HKYd7qDou56Lizs8e3ZFVpaQ4er6OdcvvuT9b3+L8L3fom0dv/c7v8Xrjx/z6U8/4j/+6X/gb//irzEBHg6ZF9OWnQnk/g63puXdd9/nSXeHj3/8//LJ332OzoYp7dFNpskOd8g8/f73+bt//yfsQiT0DQRfbHjEo8ooDWVdswHGcUc6QDqM5DHzfPUJjx69zuOHr/OPH/6YpKR5d7ZBq0zf9zTOEv3MZudpW8t+t5FBVoqS8L1aM/Q9h3HkcLMFL32O1YaUPMnvRcLadIQAjTvHrlqmeSJphTcGHz2DazjrB57cf4BCs7u+AWB1dsZ6dUaMAa0aunbN0K1pXUvjLCp55lahJundtDNkZYFYVAiZmGb2s2ezt5zfXdHbjr5tUBdncJuZDjLsu/zyGfiIRuPaHuXcMsT2YcYoRRwP3Mwjcd9zcXFBu+rlnAeR5iilaaxDZ0UqKehnw4qcE9NhFC/YnIg54WxLe7am66XuaLVlniamNAtAbyzZSDCicYo8jfJnFGUSQtKICsta+vU5FCVIqN7FSi0SVgo7OpfhpUUV/EGBMrLnAHMIDEbq4smPAjbkhDFWWLtZCQCGFkZ/YZ9pU+WeZhn8pAQ1AVuINqBUICcv7ynbKSFE2q4r6dhFiqtq6qvs61ZpcijrhHISbOBDGSqBNUhwTSren1kUWWjLYR5Rqigu8kzMAZ92WG1xyPOSjQQqyp59HAhWm4mx20lISCu2XdFZfElRx0jXE2JEKwEvjVIk5FhPa43TwV9MAaUtVKCz7O2h1JQxK7ERqEBSFtBJwlsiWMXq7hmgWEWpdb33EjwRgnj8e0+MM5vbWyiDqhQ8IU7E2eP1TDKRo2dfLCnjpvSkwiZtuqGEaSHXCGFLztPMPI+kONO0BmUNWcOQevb9gaHd4TSE1BWCxUxUJWAzakzMeB+ZkFAOay1W22JJJrU2SknQVLn163VKClTx0lPZyejVxuIVfSRVZKuKDlhBCU1DK1KQgWeOCZMlVGSRq9fip9gn+ejpbFMk9kLKaTqPcYY0CRFJL76IkBc3ylIjLWzUr3/9cgw6Mb1AKVPor1LQliHrackmG3fO6JyloAkRozN907IaBoa+px1abGMYJ4PSnYQyNA1N29I5SSQx1mAU0jxoMDlBLEWx1cVPLpNp6J2DxhKUYR9mJj8yT4FQfMRUNuTomOPMNEXSFIjzxLofMMoSrEEljfewn2YSkr4a8oRyRhoF5TBOAAKtpZG+3RyI88TNtQI1E9Oeg7/lZr9hN87s445nV885bLbi4RYCYRxRMdI3Jd0mwjzF4sMESlmMFVPTXLwfZn9gGnfL9HrVGLLWvPbwPs7BTe+EkRQ9282Gm3kiophdz1im8bYcgzJWAilIjOPMFDxhmpijNDtKF3+sHBmMYtU4zs8H1mc9rjG0w5ph6Fmf9WJwSiL5yDh7pjkwj0HYTzGxWnWstweafoUahfre9B1dv8Zoy6effgZK44M0mtM0s9nu2O/3xKxRqhXzVWtRRtG0bYnDtmgtMx5yZE4eYol0dg7vGmxjmKaJMIpcoXMNq6HHOUlaS7mwM2IkxuLBlmrTY+ShzDB7kZxKgmnzUgM4+4m+bXG6oYh4cI1Mz30KxJi5vdmx3W4BGAYxXiYjUpk6DUpxQdhVAY+MlujzVJrRmBLZe9mk6hN3wlKosrVFsmIUkw9F/sbSmH2Fgn7yPnDCEIEyfdKLoXrdYMVH4mgoWnX0yhZqujmyOJQSOLQeR/Vb0nUSc/K70+JjtyxfJGXRxmGalqbtsK4tBvyKU7Na+X11ulaAjBOvzAVUW1gieWm8q8l/PfaakJh1ZZzUBluay1hA1QWAVEoSWstnHw8Hds5ACyoa8XzUGlfkyjElmmnmMM1lwiY7nEjc87EpTpJYdzasOB9WONcQZ8V8IltbDeeoJMmv62HAtGte7CPvnT/irQ9+jdX9u3SNJGvGvASRyf2bIcRG1tRCFIuxQwGdzrgMNktatjWWt958i9///X/Ge9/+Fnfv3+Pug/vce3iftpcGzs8j036P3+7Y7bYYJub9DfN+Sw4eokcFj1WZvnGMhw3j/iDDH2XQtmN/GHn2/JKQAiGPbA57dgHWZ/cZ7jxgCorISNOeEbMizYqcD0XSmkkolLZY26IaSnKuorOOrMTJVK6FFIAxC3BtWos2ClSSIqeuBEWq/arPxem9tHxdbujCmBFQ7SWZ5CnlCgpj9oT1VP6rz/uS+lieE11/voDaC0ClLCiRwVOA+JgivjDnbNMsTCb59XL/d20rrKcQ8NPMPE4ig8scp9jLseZlwh58YL87MAyKppHSo96SqnhsqCzBQa+S3nwsaxBS41ScJuXiX1XOb0oJHY/y0VP5ff2eJZCmFtCvXJ9Xv7YEGhTwqwZ5LNfnZA04ZZqd/nt9fd37nq6nFXTNrxRfp7/jVcnGq/cVxVbh6z7Xq1L9+ufTz3V6b74E3p38+yng+fPO3avH/HWfe5HD5hOZRwnJqNLrRJLhSHlGlj1IyZCoTu4zZRCiE8oIu3r2YxkBU+RqhqHvQCl2uz3BR5Q2dP0gsqAkYUiGKCE7WgtDOXhyyjjjAE0oNh3kjDECu7pWUh91DuQwopBGVGUp3iWdW9b0jJIGLNVwI3t8hmNNAFbLf0pL6JZZ2LVSpFtlcFqaEKtNsR05+hwKQwFERia1uLDUX35mqvxYKbF62dxuefgo8vqTN3jt9Sfc3txwdXnFOI5sNxs+/fRTDvs9fd/zne98h9///d/njTfe4LNPPuNHP/gR29stYfKoJEz2nJWEQpR+JqYyENFl0JcyKkUku66AiaUJKU/U4k8kCbC1Vijgb/GJkjVQwgzavsMpx8EfSFqh25bzO+eM056//uu/4PLyS9bdis31M8K8p7EKZw2msdzuN2StaGxL03UM/Yq+7wnec3t7y83mlkbLHp1yWkAM72f63HG2XnN+54Ku7XnnnXf41V/7Df7TX/0lP/jxj4k5C3kgC6hOzOwOO2E13dO07YquGzgcJpQr9/G45f6dNR/8iz8i+Imf/Ogf+Zs//4989rOfcfvsBc4mSaw1iV7DzhjM0PD4rbf4rX/6e3zy8Zf88PbAmnPG+ZqkFWMYadUZ5+2KMzI2TEw+MqtIwmMUWNtgbbk+RKIX/2bTSYOsUEzjgeur5wzdQN/2PHr0Gre3t2TrML3CWU3XdigVcY2j76uHmngmayXM9dbZUptL/bK93TD0LbrrJfRNZ9bDwH43kTU8fPg6b771LqOf+Pzp59xub+TzNY57d+5w9/yMeU7Cgmocrm2IObM/jDjXkmJmvz2gcsIZmOc92+trbrd7YjIw+zKbzaQkEnCxGYHxsGe3vaW5MHRtI6xuJddyc3NNOszsr2+xysBF2XdTwvtJfBGZZbCnRLr7wj/ndtcyrAe6biBEATlSCOwPO2KINE1hos+TpBcnL0Mkp2n7lmHV0w2iJlJJ0RhH29ZQH1PSNUsAhG2wulhEKEMuYUGxMJ/tEr6ShZFfrBRqurYAbCXAQSuck/BEUXOEo8dnBT9SkcUXCf6xapElLtf5fc6FDS4AiCpghMJIjVVGja4RkM45K+GExYNWFjHZn4WCcPQGr8oXWU3KPl4IAUoJC1n6/uJnmvNx+Fk/ahksxTCDoQzgxBbIZEg5kEMWwgxHWeervZI/jNgiy69BDUutYjQY6QeNkfqscU6wizLUWvbPLGPXlFXZ52QwGCNgjKj7ymfOSmFMIpGJXgZIOQRhCStRNjbGomxh3VnQrqEtns+y7SRSDtzd78mIdVX0M8HPhHmUYUpKzPO4DNFSqfN8FDZgSgWDLoCpSkJiCiHh54z3ElTi/UzyxwHlfPCyZtBJgFEIJBWEmZiL57AXUNGnAE56fuss9mQgqHTxii8NjCgYClCnZK800RZgLZah69F+LedMKsSW4zMle7JWSuSxixUTy9BThmp1wKiBQirxM7qSWGotpZKcX1jAVlQVlC83Iz/v9UumuB49UmTie0xuoTwU0k5nUiyTVqWIQVhBXdNwfnbG2dkZtrXYwg56/OgBdrlpTSleymRTKw6HvfhLxZkcAxrFuutomxVN37M+X4uRpWvQbUPWljF6duPEOHn2BwGFVNaoiKSEHjzTQbyLtrstPpfQsKSEBtkqrNV01tDmjlXX052taFYrmrbHuIboI2GemTY3+DkSt3vG/S2z3xPzRAgju6i4ma7Z7j0GODs7Q6fMNmfCYRLATwvYoJUVELdMKFLWpFA8UwowE+cZWrkajdZElbh7cY5rNXcuVsToydPMYbshHPaEBM/3I8oUCUzwhDgSY2brnxVwSqjGzliavmUYBrq+FQ8xFNNui3GWth9Yn/9/jL3Jk2TZld73u9MbfIiInCqrMDXQhET2gm0000aSyaS1zPifSovWTjJtKJN2YoskmmqhgUY1CoUqFCqHGNz9DXfU4tz33DMyEg0vK8vMCHd/0x3O+c53vu+G/X7DZtuz3+/Y7TeCkkePnzwYj9IzMFNmTyiROWqialCmBzMTi8NnIwLisIikQAAAIABJREFUbcf++jlTKJzu7hkeTiIbHVMVhhYXHFN13bRZBrEsXmUN/CpoVBfiUBSTmgR08VEENoPHGI2z4t5WtGhotV1Tra8jeRaX31IKuoJzKUuCqrVoDbimw9gzi2B7c0NjHCq1xIhU0520WYY5MhyOHA8nvPdst1v67hwkkc9JERSxzlbC1NFar2YWlDPItEzkZaNYNJAuE7PlfuRSVhH4y7anyyT1g8oNfPQ9C3tlvccXuebCELo8vq2tuMJOuWBbXACJS1J9qYG0tGnFdDZgKLXCZ40V1kTb07U9zjWgJPk35jKJVCyLMMgtVmppE1zAE/m/rPWM+vdPr4/nz1LZH+dPkWPVDdRaKmqpOtDlCCVSdg0hmHpfDK4Rs4eUqurHspYWqZTltKyfVdPMGrpdz+7Zns31nqwtMRUmf25x7TfXpJAI05GuvWa3ecm2e8HPfvyX/ODmBudMFTs9A3TL9fYKihFyRAwXiX6Wa1FaJAe8SmQlYrifv3zF55+94osffkHbNISSCMkzzRMPt3cc3t+RZ0+jwdlEjidSkLbZEjzEQGsNjVYVcHU0nSVE8DETUmGYPcYZtrtrplhI00iYA+PxxDBF4jjhlLSXJy+ankInN2jlpKXKtiJannxtu26kdTotrmWaghWn11zQVsAEIYo/DVg/Bkc+OV7W3y+B159+3+NjrK2Ieml3Pbe9LmcmwJkUQliDFdk9UxI5gBACxhpssszVEdpai2vcec7FQPCBFEV7KaW0MsGwFg1n8FrLOJU5HNbzzLmgKwCogEq7ePJeXYJQK7D/CPy8/NnlOrW8//G/4dJoZqnS/ylNOtbPXJ7jJ4G2Tzyrx8H65edE04tVd/Py2pZzfWrtfQqMe+r1eK2+fJ2LMOWD733q/ZeFmuXYl8/ok/p6T5zPp+6NLqzOa2eB1w8+XD8EYtS0uAUmUhbjACleRoKWIlUpBWssQhKS1snj8QCl0HZddaHViIgza1uLc40kw9Q11hkR66/WgEZrWa+NxqpCCQvjTZGC7F1pqcRnYWF57ykotLOSTK3J3OWV1vt68dmUZP8wOq9A5jqGltbP2g4uxlPnZOFJkPTRGCylcHv7nr/99/83v/6HX/Ly1StePH/Os5sbbn7yY5TW/ObZDX/3i19ATqQw8//+3S/4v/6Pf8cfvv0Dx9sDIklcCwUGUBdzY9V/MtV0rZB8IIvzGNZK4T2mRIy5at8unTIdfd9i7FnHb4kNBJzz5JLZbLe0XYtPMw/DgTl6jHNstxtCmPinL/+JGDy5bTid7pEdrsYZCSjQOmlx7DYb9vsrttvtKso/ngYi0DWNxMhR1r9YRMDKuJ6b6xtev/qcXb/lP/4/v+CXf/8rlG3pGkfXbwgxE0ZP8gVTdZtT0RjX8NnnrzkcTzx78ZxXr19xc33NuzdvGU8nfvvlb/jP/+k/8fvffoXKic46XEH0WK1osBmTscrwL372M376kx/z9VffcLi/E+fGRoNryHlmu9mw3+/QHoQVFEAVeV9l22hlxOk+BUqKKAVt08kcU8LAubu7o223bHfP6fuew/EoxmPKiulMZaD1fY/WhdPpJGMtZ8mbuq6aKggIMByPjPOIttd0fS/FMW0xWjGcZilikbi63vDMXeHTiVQmytEzjwPffvsN83AiJDidTlzt9tzc3DAMAjC/evmStnW0jUNy0rRKmmityD6hVCIbhbFiDGONJiqZu8FPHB7u6NuOvu+xxrDbbIRpFSPD+zvm+wOHlIRIYo10PFWnTe9nural6zuUUQzTyMPpgYHAjdI4syHFzHg6ri7L2jSElBimUXTBslictU3DZtOx3fV0fS9sx0TVX6ss5iyMLB8SWksL7nl9z+KcWep+mFVtK1YVRKoMaWohvAiz0VgpVijMGlMrrTBF4xq3uiwv+6EQCGTZzrmAShfrUq23FEBlFo1WWa6qRrRaYD1pYVzMMJTWooOWRJtTV5O/DwpwFyDJB/tOqX8/70CUShZKWRhMj/dyrVUtCuazdERBOonK2QApw6rb/fi1XN9qmHMRj6AF5FG1ICFFiWb9u1IK5xyXBbFFwztZW1mpquoQFkQQVIDvkiqLv0r8pJQkVwVM44RRSCVuqHpdqoKm9e5oRKarlAQpkpJo3aW8gZqHydhCmNw5EWIixIhPEn+N81zZd5VEEmt+Xg2TFkA1RGFdh5BI8ewgX4qstalIgTbFTE4Qg3TNpeLJOZGVIk6X3QPyd9c0EncaMZWxTtZNyXE0nW7RtQVbKSpIXdlspUJnRYh0WmUUqX6fsFStbN31btVxqyWOURX0t0pYmjFGdNYC7pIopHPyWKQzRpVCrjGQWifMR8Nqff1ZAJ3WUq1TLLoly+xgfdhCPV0Wx5pQ5ETjHNf7Pc+urun6hkiCnMQ8IgWSTmt754LAa6R1SFxuwNo9Viua1tK3Yu3eNg27q6s6FyXQUtpyYyxZegLZdG0NhDLjNHM4nHg4HDgdJ2Y/84V9weRnhmlk9p4pTJgkG83Gal7qns5Kq1GYRkY/MuXAcZgYhoHj/T06F9LsCeORHEMNSizFNrRNx8v+ht2mY9P1hOEEITGVg7QlWhF/t9U5LBZdxeQT8xwq1TdhmkaS2wrQ5RjwyaNaJ0FCs5e2nZyI8xUqeIrSfOEjWBFuHOeA98K0OTycuD88MI0e6xzb7ZYXL5/x4sULNtttrYrVhV3bym5saJsGrZ3o8z143r9/zzR7hmEQ0UofmIIXOm2IvHt/xzCM3L0/4ueMtYomVPRYF2LWpMq0iKnUCSZuTG3TsmgYqrqgp2o2EKOAIH3bCaiFEuvzEJmDWJWDqq3DEtS61lUHpbQiFJdJhTYaW0Q7ymLBWkwpZAy2eYZpdijT0G8tiEoJP/zpz5iOI+ODr4GqpajEPHvmcebw8IBCNvyu62TDzYvTp5JrvtiAZL6ek8Lga3sCS4XnQqwzZzEbqRvWAnhd/t400pZLNSMQQfXFsU5Leydq3TyXOb28PkrcFpBgBdXSmtQum5StVfYPnPkuzukyAV8TOqVqBUOej1IKo52wCJw4KPf9hrbtMbYhFdF1Kwt+WFRNbj5McO2aKJ95DCvIyYcOnet9ryDIshh/ADR+lDCfQVM5pmyaMUXGecLagg9nfStlxJFXdIXCWVNIcT73KlCqlMG1Df1uS7ffYrqWpDU+ZcbpDNDt9y9QWaHzBqM2WLPlL37yX/LjLz7nprcUJQLPoj8JaalyIiBPLhB8Zho8wQeUQjbgYcDpTKOAJJodp8M9p9OBZ8+foV+9JKtCCjOdM7SuYZgn5rv3mAK6MZQUIM9YxFFS244UNCVG5mmS26dNZbZJi+Vpmtld3fDZ56+5utqQvvwN3737ksPpPeZuJBehblhVUMmTgycFX1vzaqslmqy0VPe0QWlDKDCHREZVXUBQpiERSSVjMJJgFrPg/ufp8Ah8ePx67MR0BkPKn9p7PwCnl899eJxSn9XF+K74hjhsiuZVLgVSXKuA8zxyPEDwc9WPE0DDaCOtGNaRcuJ0OhEqw1guRBJxtKoGA6nqbiy/zuvYXNesCniLRs2y5kq1/p9jYS3XfcmMWxOAi4D3EjS6dG1dzuHyOGdwSn203jwO0C/P51MA3FMA1uPrefyZ9d7I4PngHlz+/pJ9/PiYZxbeGRB56vXUZ5dzFb2eDwGbp1hwTz2n8ui4j8f343v30b0+V0PkGItW3ROg5mXCpPRiGqJWc5AF8KLUVvW8tIaI4/jN9TXHYWQ4DTykzBWKtmuxbUspmpwiIaVa7KkurVEYd0YbiSeUgGJVbVyeE4msNbqybc6FsgWgWlxnI0SNKlmSSiNmCCUvc2C5RzUJWhK/IpIWqu7BS8Bf1mdGbSG2FXBUoteVCzmHek8umfEC5uXaZi2mbKLLNxyPfHl/x29Koe86nt88Y7/f471HKxiGkb/7xS8EmLCGxjZ0bSPtpSEQol/1rBdBdqMtrhGwJSHyFDGIDmYuBessXdcxVO1beV6OpjWVmWOkjbyev7UieaEQjbDZe/xU9WW17K/WGvbbDdc30uI4jSeMsjzc3RHDjDEQ5olUMj7M8oyVxihFSVkcfCvrZNGNCjGwMS2lSBsWdQxuNjueXT1jv7/BNR13x4Ff/upLjoeJNGV0gTHOdE1D122hhRhmnHXs+j2vXrxiu9ujrWGz3WCM5v7dO7781T/QtS1v3vyR77/7jtPhgW2/4XA40FlL3zS4rsUEhVOZv/qX/5J/89f/moe7W77+3W/xfuLuYWJ/3dC1jmJbdtstWhem8YgxhcbKWGpsg7MaYTcq0qr1W4uEWthS1K6IaZp59/5W5GWW+OSD9TehdcE5i1IdxwrgacrFOBX2Vtu2tJst11xLDjL52qaWiVGeZSmF3//uS8bxiLZa9LYVAgaqxO3795ASm37LzfUN19fPuLq64nQacE4klLQBnZMYT8SZECSfy1laIBcXT6MKrpJDFGrtqhjHkXEcxJQgKxrn2G562O1oppnDwz3j/T3OCWvQdh3kJJ0S00ihYBqDNQ2xOuQaDVErGg0lZ8ZxZB6FMGGsJkbPPI8y/hEN7r6T7+87yX+01rTGScdTBUBSyoSUMCbjnAB1sRZUM6KLvTgmY6SNXKkKfJdCKSIfInGBgJVN28k6GBIhiK5Z0zRoY6UosC7ZF+2FF//W6gyYKJZ1bNlzWMEQ0UPVVYu0xjblDPZnhPmsYxRg0Og137g4iQ/2jnUfKrXFUy3tlxI3CWahzm2q635dja9qN2AprK34EscI608b81Gx8fGeu/xucfL8oMBnRLdNq0UerMplaBmDTS2WrvlTdcu2lY1njcM4S2Mc2tW2VpbzRGSOKBKrUTsvgYi0vYp8bdU2VRU4YwGoROICCqqk1aTCyrvrnmyEMJRzLfLnKlUh8ahoaQuInFIUPenakZHShPcHQhyZfSTmSNO3tG1bQXxD07SkCNa1Ql4Ikq9k5N6lMJMJhCy6sbruu9RLs7YR4xIMygnLW9s6BorGa4fBoHWpbcdnqRQQxqbSCqM0Si3trsj7FWyaVgBKQbnkzqlC0QKIozLG1DkhNELOxbkaHyw7ujoDyKIqtcQQn379WQCdtW4NBuSiljGrK5NJFkkJOmQuWWPoOkvfdey3G7rGSWVSFWzb0PaOooTOrRBB+qW637oG2zRo42jbln7Ty8LoxA0q5VqJrAt8KUUMCTI4pXDW4ZQlno4YI5XI3abQb1uef6bJZS+IbYqcTiMP9w3H48DpZPBzRGHYKs3LYrEUBj8zholbP3A3T9yPI6dpYB5nOtvQ6gZdAbltt2G33WHajtg6gXJSJnmhgfddhylF7LSzJFQREYv2XmiSpRQUGWezVDYL+HmEnSASOUVJoGZP1uXMLlNKzATqgqCcAF4oJSLeSvQD/Rw5Ho8YI7bgTdtytb9it9tSgOPxyOE489337/CpEL2IgIuQr6tjoOBDEJ2JcWT0U23DyCuD63A6UbLCj1NtBZzxXgaJM5bZT0xzwDUdnZGKQUqixRBjwGm7LkQLKdoohTKKYgyNq6BULKKFFqO0aVVGjVZK3N/aFpB2i5AiTsvi55dATWts2+JaoRGLXgA0bkvCYdw1xfRo1/LZD54DvwHg6uUrfPyefEoY06BRHI4jd/f3TPOAKoVt38nxtQSJxjlAWimWY5tFs0BVl7mqAxRiWNtBFgAuxkjwAqYs9tbkj4GA80YkAVYIiZSWBKrqDVUdroUdu1Sh6jew6A+sCeoTie6l85/oWekKFEglhQuA7jEzZWWuIFKaqf5ptEFbi7Zitd62XWVbNShjyHnRnFuqGpdJ/HLu5TI/rP8+BxcFhEX1xKZ7ThjrQr8muotWXwUlq3W9WYOUjK5t0kXD6D1eydwOC8tLLRRtmYsZeR5VaFAEYmvbo3EO13fYtgUrUuJzCJzmsw7izbOXdE3LfhMY7hXWdPyLv/w5222/XqmWiSPjJ2fm6o7pY5FK7jByf//ANI3kLO574/GATYkWBSkxDSdu375hHE785Cc/4vPnN9jOEKPH7Lf0rmGrFJPV2AKNRtwTnRVg3jmsUoRp5nA4Mp5O3N7d0zabypyDh+PE3cOJH/74J7x6/QWbTUf69Zfcvr9jDoXNJmCNxRmDsZreQtZwStXEJoWqZ9TQbTZoLVR/axwpZbqYoWp7pCzvm0OgKIVtHJll7TqDsqa2lP9zwMyTAF6BwsefW16XDK5L1tL6nsrqoSB7BblWRsVRTXRk0ipCrbLsjSlGvJ+JMbC6tGqNc9Lq5+eZYRiYhpEYAixgVz2uVpqiZawkqO14am09sc7hugbjpM1PrmGZVaxY/6cYW0/9/aNbVy4Zxh+DOZfV/IV9c/mzx2vUU2DfU6yyp9aBy+Nf/vxT4N3lWvTUMS4LFo+/7zGY+Pg4n7pvj8ff+RzyR/fkqc9fgobS8vTx9z3+9yXA/PT4L2uRxuhzkvUhKLe40JYVtCInFjFlbewqmZCrNmEp0LYWa03dZxSbVrSH5tlzODyg1J7NRhw6I5oYIzEk0JXBtenWc6eyOmT/rU6pSRgmJUZKZdDli70QgzAXYhCtuyJdJTEtDIBALnK8cjEfFuaeuG6LhuESU5sFPNBSsJF7ldcYADKiw10ZMCmve7epLG1jzFp4SimitZXCa9+zaA5SzZuG0wFrLK9ePOfYON6+e0cIkU23l3hbiybb8bg4KVN1bCWuMEaANgUkLffMq0BIwpRQWoy5Qo2zmsbRtmL2sYy1UFuprLVror8+Z0plB2ua1rLb71EatrsNOUfevvkjfh6xxvHm+zekNEOJxDCx3faEmEglk6JoUM2zZ5pmpnGiKIT5WKT9zVVWnlaKeXIYZ9htd+ikyRH6/Q0P/i2nOWBsw9Zt0QVMsbLn24btbsem77juN7x+9pyr6yuSyZymgV/9+h8YjkdSjJyOR372F3/Bq2cvuP3+DRpFigEfPV3XkIzi3emBUwjsX3/OT3/0Yw63d/ztf/jP/OOvfik5lNGMxxPJOVQneot3t+/JfzxBDjgLPsVqOiJ6XWQqw6zO7yLaYvM8UxS0raYg8cDsM7koul72UcXiuCgMkZTkc9M0ce4G0LUtzmNdS9f3bJ9dsb/a8/bte27f3WKdI8yR43GoRYxMijMpDCjdoHIgpUjMYuhxtduy3+24vn5G2/YoY6W91BlevnzOcDySU2QeJ07DET8OlBLRiFMqWkuMVSqIEVM1ahCQuaRcOx+i3JtUiCqjlaZ1Bts3mNhxezox3N/y3ii662tiltZVyEx+wt8HMdlzCtu3NLstbttTZig5VcAi0bbSLRWCxwcva4QqWNfQdQ1t10i7pxW9srZtKmlV14IxwjiKmZQL4zhzGkemyVOqDqSsNaKN3HUtFDEkizFXbWtz0ZIp5nY5Q0kF5QrWyO+ykpZ+2X+qnmxdo1XtADLGURCwe8khlAJlFGoR4F9W91JWkH+JjYRsQf2/LH+hlJoj1E9nxLRg3TvTmYX1wX6mRI+1VPaQZE3pDHZVALlcMOdKkfwyZZH30GVhC+qaD/5pBvqfimlKKZAKqRQS8Qx2P/r8JcHBWGFvKa1F+7RxtLbBtg5nLGiFVVJMEOMU0FliYYNC5wDBE6wF5LutblDOgKrtoci6Gpf4AJm/GinAVEoBKVLNIqStWHAlYQcW6t59QXhRZaFWFiiBeXrA+4HRz8QsZjL9psfaBlDMIYjUizW0XYcvkRzy6kYua1UQALAgsh9Zr3G1D1GkgdAoD8rWdmclG69PCz1C5rRxGmtrflmLqMYYTNNIgQtdjQUjEUgaxBRKs1TRqpygdLgoMYhobJUyqsxxU5nvsRau17KbqnIx1OL2xVh46vVnAXTivLkkwvDBNz5xAK01zjp607LpO5w1lJyw2rK7ueb62TX9tqFpnYB7SqG0OK00TUPTiOjuXNF8ZUQIPiIBSTYKjGHM1WVuEWqmUk5DIuhCaBqZ2jkKq6x4Sp7JMYhwZFGk00A+TaTTRDh5xiGRIgQU8XTium8w+w19Y7lpt+je0vSW7dzQNB2dbbBYYWRExAFGW5JSaKuYxxPzOGG1pu9btk3DSSseQmCaJpK1ZJNqi5EnZaEpL735JQlgGHxiWW5K0Wjj8NmTFeTq+rUIe1MrFFYbVIpSCavU6tY4+t2GbddgbUMqiVKkncOPJyY/c/f+lvvjid9/8wdGn5hOE8dxIkUFtSUvpiJtBlEqnXOcyTnWxbpWSmr1wkcRSB6GwJg9KQapampZfK1eWkPFdtrWxbm1ZgWIcl0oszKUIqxAa2xlzQX8OOEnL73zUZo7MaI5hRLhyFSQPvmUVuOFohTKiqmBTAeZjAUEwEwaRYN1W65fvuTn/+rn8DsB6G5PJw7TREThtGL2kcPxwOl0JOfEfn9D1/YYa9ZqujWSVATvV6H0NXlUVNe8vL7/8v8lqQteXHlcNRVIIXwA/iyLfUjCgiwXyeC5evAJUOFyalPW9ranWCjL8eC8MS0isHI+HzJe1u+orTF1+Vi17EqRio2pYv7GWKxrcW0nC7oSRymlTb2P5yS4WhB9sDY9Tuofvx5v7h+BAFo0EVb77+We1Q17/Xx9ZuqCLZNLZo4COZYirLQkfdDC5HAymyUQkbbokgtJJaGiIxVQ2/aYpkVpRQKOoxdX5vqyrmG7u2Lbgi2Rly9f8cMfPqvPpSBOGHLePmcOw8D94cgwzgxTwHsvRYrDgXEQR7F5npmHkTKOmJRQKTEPA7fv3jCdThQ/8pc//oKrmz0+TMTjget9T6czn93s0DGTk0eZjHZO9IDq+BWPahFGp8gGfXt/YpgTh+PE/eFEv7/h9uGEMobjaeDh/gEKdNZgu5aN62gaBdaRZk1JEe9HfEigha2gm4YSE9uuF/0opXFNT8yF0zhKuKcNw+zRxtC0LakklFaEGIHpo3GxDK6VjVSrbXWynF+1gibj8gx4V6SP5UOLsP46P1iqxef5JWPh0ffXz5eP/r2cowAzuRTR7LhoUZnnmePhyDCc6luXYy+xs1oLG7kC/0vguJx707Q0fYdtXK0QCyN4uTcL8+upefcUyPU4qH0M5j9mFz8G3JbPXAL/j1tIP3yO52f4pwD6x39//B2XcgGXv19+ni8e/2X7LZzZu3+SGffB+X18D2FhDcsao9SHFf1PrXufYgL8ucDfB+f4xHmvz2UZ65VpqS6+I5fK4tBqvU/yc4m/oOCsJChQ1qJVzud9RH4XmaYZhWK72QIwzZ7D4QAl03cNRourok/C8gfoemGNiLP5WZ9RGPpSANUU9KUxhloq6Mu1q9o2H0VrVOvK2BINNLtKRMhnVkMNqk5rFnBAWP0fzo2UEjpLu45z0sVgTIEiRUzvK1MtXRQT9NkEJGVJxtvG0bUWZzRJFbqmo+tachQNrJQyPke2fQ/Pn/Fwf884DuSY2G42FGvIRFKJUm/L56LDEufL+iGgvtYzwU94H4l5YhhOVadO2HRd3wB51Ti6bKFOWRh4OQvAp7Xl2bN9FQAXpoNtjHSolMT93XtZd3JiON7TWEvOHmtht22JqXAaAnOU4mSGtVAmQKbER5vthv3NDVd7GT9hHgnBs+33NGbD559/QWMcX/3jl9y+eYdSiu1ut4IBm92Gl5+94vMvXnO926GyOP++f7jlfrhnGAf+8de/JofIzdUVjdVs2pYffP45b/7wLePpIAY8zoLVDNEzRc9Pf/5f8F//9/8D4xT53/+3/5Wvvv6O8XjCpETftcyz5/7+Dj1lDtc7/viH7wh/uCeEGZwlxYk5Fayy5KyqJtgZtEcpQvDM3stWoCytdricUTlTsW+sk/i46xytcYQwMR5PPDw84L3HOVf3MmqBz6ON4+r6hr/+r/6NaDn9/a84HQeMdkxZWKR915JUxD7b8/nrl3R9R9to3r1/T0qRrnH0bYufR+7voOvnypihJsxLZ4hnnia894CScdY0ZBT3DyfR7NILg3dpY9ckDDEE2ZazFKtdY6XQH2Z0mmmswWw3JAV3w8C7t9/jxhPtdoM1jt1mI26QFAJ5NWcoVuNToASkoB48SmWsEx0372cxhsgR66TrqmuFVUoRtq3WBj9PIs1TnWitEyABFDFn3r+/k7+HRMyS9+SUBPhKnqg1uubWi274wlzMubDZbETmZ5wBcE46VVIqDNNE27XVnOEsUZPrvbqMXXItJFzy65Y1b2k1rYHoupeVIm2Ncq5JjB0uvrNUd9qs5ed5/dwSulSX1hrbiBlKlY9QglWWJCYdein6L7pvSUyItFLSVbLGTdRijVxLysJMeyo+eLzHXhad1n1w+c4KMlJTFZ3r9eRCUQKc55RISqO0aFOjlQBuTmO1Q1tdgTkxG8KI+aOqf6LBoFFWM2lbtfplH7K2wUTRKqaabaDFlTsrwVVAOh8oIu0E0uUnUliihbOU0lbz04v9USJIMT4SVpnBbffExtDGTkg2WmMaS2MbtNa1kGPYX11TsiLNiXn0zKOHMjGPmhQGQlikgySfTUnGeylilJiq8Y0YHVYh5FJoqoHG0k2wdK9pe86rjTHYpqNte7SWduJUDTXiNNXCmri8a2NEs1ADpmCdolHi4Ckpl8T+WgtILbK5NQe/uFNqGXFL4PaJ15+tQXeuCCO2zggpow7V+i4qSGRorKV1lr5pcdbSWMezZ9f86Kc/4vVnL3G9bLRpaXldqoBVpLMUjes3+BgZ51n6kSkUrYSZUdtwFsFhMuSYKTES8oTXhntrGFOmzAN6GtHzCNNAnk7kaSaFxOkwcvcw8nD0HObI4BUJS6fgL7YNrbO86LfcPN/xatuQG03UAkLEmKU9d4xC4azCiOMYmMcj2ipy8nSN4dn1Ddu+ZzgcGQ4PlJKY/Yyiw2m1VlqVBm2lwtG2ThDkKJTw5XU8DQQNc45gq2OhUzRGQA1tpS2jbzQlBnFYTZEcE2M4rYwjpSZizqJ9VUTXLSTshYfFAAAgAElEQVSp9pRcuL55RpcKYzuR3j/w8DASfTUHSIpS5JnkbEjJCMUYoX5qDfM8C5ASkgAdlsqOElCOLDoYtrqwQqa1EvS1XSMja2mNpAo5lkyoxg1hEpHVaZgJk+gKinMLtfohtOlQg12nxFVOaUG6m8ZVXWMtZhdJKNYpR3IuGDQ+FBzQ7Ts++/yH/OSnP4ffyXP4x6++wqRCS4+fJw53Bx4ehPJ/td+JlkUFVZVdqouT9KqjasVcgLlUchW6Fyq7Qtp3NKrqIlTdvXwGxlIUcdmFWn2ZyC5gnlQJPm6lDSFIO8uFztzjlyD+a/mfJcVav7uex7LQLElyXgXD8/rz5byUqu3IBYo2H2z6y+ZqjENrR9P2tP2Gtt1grJMqVIgoQ3U8zR9slrJBVHC2btaXS99jZs1yTsufl0BiLsvakqt7HuvnFh0DEemum0OpwNMKfuYP2FPKWqwWDZBMYfaBtpHkVNeWQUUh61xp6QpjGpp+R7vdgNYE4P5w5N3t3fq994cHNk4qP7t9z+vXzzBWMY4BFQI+HkVrZ545nAZu7x+4ezgy+8DD/YlhmhjHWVowpqU9PZBjwp9OxHEk+4BKkXk4kfzIzb7j/fff0beGlGZO/oRNPVd9x2bbUebAOIykHLBFnMHi7DmdTkyTB6XZX+2xTc/b23uOp5Hbh4HT6DmOnl9/+VvGEHn+7Ipvv/0DOQbZV8rMF68+4/NXL5jnieA9OU+8vdUoXcikqg+l6yYpzB1jFLvtjucvP+PhODLNM011C3fzTKagrSEXSSJTycB3df2pjJPLQGwZy0sb4yOgRy3UzXIxcChr8LoGqLUKvDBgtT6DJKkCw9KGQdXukg+X+nuVL9qQqOeRKxsgyfdZ51YA3E8zOY+cjkdKOWvxLWCQRhIZ0fzUtEpE8BcGzzJ/rHU0TSuAgK1ix5fgGWqNCD5VH7ych0vCfDk/l7Xkcs1aXkuc8Cnm1uVadDm3L9vxl4LHY8DpU8H3U5XxpwoXZ12++mz4mBF3edzLa/tg/cm5PvJFY+jjazw7gF0kF3y4jj2+d4+1QR+f9+PzeioB+RTA9/hVaku0MLakyLrUUajFH/LlvJK1cWFb6CzMAAEzVb2XwrSYJk/Ocp6Nc+Rc0LVDQQHzNHEfAnknxkwyZhpKCfgYOQ0DTdOQKcQsjCDZeyO5AmamtrxaI4VjWmn/nIOA+kprtrs9TdOsTDC96AzV9jGgtnSxzhGZznI9MZcqVbHgmWqNdQoLq85UYK+glDCSjck1iUjrHro8x6XFVZFRJbPbbNjv9kzTgJ8D5ETXSuvjPE20bru6+oWuJUYpAN7dTUQf8JUNKPpRkmTLHDLkmoBoLY7L1jrGPDHPM7q28i6MHVvlVtZ2aC3xz2JwlXNajW+UEhAz5SzMbgJTGNm7LU1jaYwm5MRu2zMcRW/TVfbh/mpbAVKF95l5DsLMdxYQmZGsRPqk7TueP3/GzfMb2qaRzg23aBZZXr58zcvPXvIf//1/4Otf/SO7tkO1Drvref7ZSz7/7DUvr294vtmR5pnv/vAHfvP1b/n6j98w+oGXr55ztd+y221ELyonwhy4e/+WlzfX7DdbNl3PcThRFAzeo4zmsx/+iP/x3/5b/pv/9r/jf/6f/oY/fvMtaZ7pG0fwgeAnmrbhOBWGYeR4PHE4HAjHh+qGWchxFoaMtpRiUMqyFofqfPVzBGpLJFIkVFrAb1PO688ZFLdo3QBFmHfLGlhbJlUV9tdas9lueP7sGd+/fcs8z1AU3kdSFIOivuuYy4lWW673Pa9/8JoffPGSr373O775/beQAuMgmleUB7rNjuvrazH5SIF5GvHe4/1MmCcoha5r6VqHouC9sMNF263HNZZ5nmu7c8TnQpTZhvcTKfZ02y0xyZhrUqC1Ao7smj25s9weT5yGAyElNrsd/WZLt+lR2nAKMx7RdSMX/OxJUyROM97P9b4YQpiZg1+BflNdQJtGTOhC8LImKUvIHmcCIQSaZqZte1zT07Rt3YebCoZUcIvq/DzPhOgZjiOlJPq+o2lfcHNzw36/XZmOTdOILMZmxs8RV00aZx8lnHZ2jQGWwsGyX4M+A3YVnNXrHiq6dNoocq45AVXJq1Bl82WdW4hzUiXRlKLJWZ3X/azEyVVLXLcYBFCdXa21snc8Yn6XIj9bbPW0rsDUEguscgICGgoTdOGOybnkEtf46jFI9xTb/aO4YZ1xrAVdjQItenHWGioOLnFlvR+i5y+GJKRCxFNUZtHKVyJQTGtbMGCVBQMGgzJgtcNYAdWda2hci45OACitUVpivGgiVC1ApRRafbjHbztbQbBcZUwKpWghTikx7FRQwXnWuFcpYYCaYqA0yEnJc8vU9+WMMuJBcHW1p21aFIbsM2GOKCJhviOGgXnyIg8RpfPRe8lV5lmKTHNKhBREx7wkYikVUFR13zQrmJdzplQzIDFU1JhYyFmKzyXDNAf8PDEKxQelpMNPaV3bxiGrSNc5+l0vUmBOnNRT7eaLWRzdKap2idWxVmN7ypkh+qnXnwXQLcHDUuVcA7Slcl8KpaQ1ybBWTrZtG/quYbPtuXq254vPX/OTH/6Q5y+uxSGRRKlgTtM0NM5Ji2YRfVdtO2nvTIk5R3wMjMEzzxNzEP20HCPeC4MqTZ7sA8TEZBXf58IxBvzpBMOEmifU5InDQBpnwjAR5sg4BWKCpC3GdWw3HdumxfWa1HXMaFQs2Fjoe0u7EUvlkgp+Dvg2kVNBmY5YDMd54jgcOQ63bLaOrum4vrqixMjx7j3eD+TihdmnC66pToFa+re1AbQiiiCGVDDPrsx8//6IV5FQEAviRrRANs4J1VJpTAlEP0EK0hYZM5MXSroPgtYPg7SextoWJW1CVRPPOqZSKNqIRtXk8SGSIyjdorUVLSylAKFb5wCxJKk864JVmkYZcqWEOkU1YMiolOVcnTAFtZHKEoBxGmfq4NWGlFhZZaTKNoyReZgEUPDpYnEW9ockplKhKSFiG3HP6fteKu9KBCxjqZXCnGp7i9yrkgtRS8W6FEW32fLqs9e0/W59Dn98847r7Q5lW8bTwN39HTkGrm56rq+vhBETodTEO1UqvrQTtOh6jeSyCk8vYCTIQi7VvaVuIWxTZy1aKaIPFxWti+R+0VarbGNZYCp8XjfZEALN0rp+MdE/AhrOu0tdnM//r+2tSpgEa2KalwX+49a99TwoH6wpuQblS+BvjFCeXSNOvrnUCntN/43OZyjuMnu9OGVdkx25RFXb/fT6hhgjlAW4qx+u1y4uQBcin3KDzgtiXesWMdSc1UfvK0p0eUTjoF5/TKKDk6I4DJUFnJG2pyUx1kpjrKPdbGg62YwjcBgG7g4P65He37/FNxaL4ap/SdEzX/3ua3b3bzge3jAcb7l7eBDHugcB54ZpJqMYTiPzLIGZD57oa4IU61aiJFAt80xrLbZkjC6kOBPCRJgHcokolZmmjCUK42LyDKcjSkecbQlz5DSceLg/knPh5vlLNrs9p+k9b9/f8/b9He/uDkwx40Phu7fveXd3h7MwD0dKTmhV2PaWn//sR/zwB5/x/R//yOF4JOY97+52fH93C6M4Qo1zZJ4TJQTCIFoqRilUeUEKoh3aes/ms89wGuYQCdETc8LV4s9Tr8fAxGMwZxnn63sWkI6PwZ/Lz63zbQGw14lBTRQfBYGc2Qp1ZMv8rBXFGD2QaVoJ4GMMqxPkIkPQdl0FhVnBN1MF+nV1yVrkDASUq8LGWqqJWlenNFhO8oPzlP1MrcWg5fUYMLp8LcDZU6ytp9hyl/dteV3ew8dsssv7/vh9T7HgngLRnmLeXbL5HgP9SwviPwdmPT5PVUGd5a2X1//4vjz+2fLnUwzhx+d3edxPMeieAkE/dfw/9R0rOFfBqhU0PV/kmrQKSJVr5TyvewKIkVSMsof1fc9msyVG0YRqnMMoTZg9w2mgYn1sNhvapsVaQwhSLAgh0HXdReIpxbmUUt13ZfyaWmVfzA2MsVxdX6OMpXENhcLd/QM+eHQSR/aFIVYRyno9SVhbFEhqmTYXN68WFezZZClfOJHLz9KaRGpjaPS5pXVlhxRJAoSpXPDzhK8SM7aXroR5nqSNqMg+qBVcX+3ZdB3jNHF4eOB0GjiNx9V9T1cnwWVc5yIyJxQwSnR+UkriIB0CjbV0fQeI7m1BDDvWucHZ6EoWsKVIb6V1rmhZxyvwIM8kM08Td7e3TOPMq5eveQgzfp4wJFqn6PttbUeuLVgpU1RtLa4uuwsw3HUd19c3ONcwzTPTOGCNpusacoqcDg/8w/s7vn/zHT/48RfkDDcvX/Di9WtsI+zB77/7ll+/e8f97R3TcGJOHpIAhsM4MI0nUog4rUne47Th97/7mvF44ng8cTqeSCrXeFTulW07tDF89eU/8Yevf09rDJMS4z2jwM8TXb+lsY45alLIBB+JQVrDVJUO0hQxOynCTl3AuKz1mng71+DaBmMd2jiJPYxBFXk+yihCKJQSaapjr9ZnprJz4qzqXNUtq46uD/f3/M3/8jc8nE6YYrjaPaPRLSofGMKRaRpoG8u792/45S8fuL39npubG0oMNFZip4f7w1q8GQfpzlkA3XmeySmSYkCpQtM09J04y05DNWVA49yOm5sr+n7DNI6UlJimgRCCGGcU8F50s5cJmYkkVQgktFO0zZbn1ztK3xFvb8V0aTiJcZk2GOuY/Sz6cAUaZXBo/OyZxlHiPQNK1TmSohTgTDUQcOf2S4nBIKpIoxwpZIbK5DHG4ZpW7rW1lKJWTcWl2EedLzEEhtOB2Q/oe03Knu2mZ7fr2fStEEDqnNv0fTWSErMsY5zowmnpPLLWrGDW5VofY9WdRxh5Si8FFlnQlr1vaSWVBWpZ70WqYylGLKxOlMQWMWcZx0/sP4/jpaoQIwBlzRVzKpVVKIVGVQuhi/agElQRVQEXVdcIVUSLcAnA1pj8omj1VCHrMmZY98yn9s4VP5GXXtbsel0LZcKAuLKWQiHVTp36fSqjs2KaBgF1L87xzAyD0yFVE44W27QoU+e4s2gj4J0yUoTSxtTut/OmNKmTgKhLfkrV0MPJPhRrkFobSaVFthbGtaKzHdYrQooUpUjE2moe8RRy8qSmkRyqFKzWYiRqpRDlzJYcp5WEInIumVC17o/DREjSfThWqZs5BHyKlBjJw7Te31JJSDlnYqkFObR0fEXQIUlFsCgx/omJEn1NB2xdF8ralo5KhE6k2vp2Q9N0qALBX5yvXoa6Wp/xOd46T4VPvf5sBt2HmaqE5grRX8pZkOrGWra7Hbvtlm3Xcd1INeP6eserz15xc3OF9xPffPPAHGfaTtB/5wxd364OQAZdmYETumnR1uK0QXcG3ThKzkyz5+3bt8zjxHQa8MOIjhlnLJ210Bh2nWWaHnj/9h337+4YThNhDPghknyAkGTBare01tI5y3bbsel70S8wllFbwjTRkOi9YRgMVgtsdvv2PdM0kwu4bkez21Nci24abGd5vX/J/mpL3/b4aeL9m7e0jWGz6QjziMoIy07VSoEuUuAj43MiTAFQ5BARPqy4RLx9OFWX1EQ2pTp+ZkxBxB5TRudIiTNGS6V1nGahgYfAVLU4xmESh60sLmICYAgw0rQ9unVEFCUrctaVNafJQYLQEELdzwS1lkBN46yq1eNEazSmEbaCIUsvfWcgFdpWRG5dIy2gqZwFOXOOpArepFpZnb2033kvCHXJizCnVGNVko3k1atXvH79mrvDPe9u33E8nfAxCLXY2lU7bF2Qa9JZyMwpkLTg7uM80/dbitJcXT/jJ3/xMw4X4Ih1DZTCcThyOg6gFPvra/qNZQ6B1tb2nFi1rSi0natBrszxFY67AGpKTc4l0P4QYBORVaH366Zhnuc1YAEugnVd9SCLCIcWqVAvtgjWuFVbcgHJVL5M1OpGq1i12lJl/Bi1MGrO7LulhVGqE2uBgIXtd/laNuNCrZ4tjj/aoI24SmlrKUoJABuPFK2xbUfTbcTV6BHIsQDcssGWGjRQN1+1Hnlx1pHNXYJhsXeXNSxVNq+uhh6ltuoumZ6mQAX5FuHr8zVWt6iCJDAxyLVWhpE4cUqVWVUXUqXUeq7WiiD3Apq4tqHpejE9QHCjEALDeFoX/tNwz3zwUtTYR/7+//tb3p++YbvfEA4PxGFimiaGcWScRybvJagqVZcwJnFgiqm60srYywpio5lzRKXIpKDVms9ePufFi2t2217EmVF0fU/fOUqOFAXdriHnlmkOaG24fX/LMAwUNLvdns8+/wF39w989fXvefPuPfeHI+PsCUlJgmIth+NR9ElLwBAgRfbbllcv9jS2sNu1PBxu2Wxbdtdb0YXQhcYZXAgoJ/VaqzNWF1qraK3iZrflxc2O0Qf2m46usYyzrvbxHq0i83TW+JNk/WOQ4ilgR9atM0Ppkr/5UeDGmb26BHYL3X4ZU/LVZU1Ql58XqvN4KdWUpUibXC5YqwnBA4Xd1Yama5mjR1lDSVH2V31m5XxktKDUqvu0gOXLcXOpsstKSJ5rcKoQ9gRnZ1ZhwutVSmC9J3UtWdi9i5vZEmgv69djMO2SHXx5zx7/brl/l4yi5d5eMngWE6RPAYZPAVuXrSuPf/5U0L4w6ICVGbTc98trvGx/vQz0cwVZHrPvlmNe6tg9df6X37V85nGS8ZjdfHlt63p+cZ6PwcrLP5fPrN+jJGv64PyLaNmUy0SgLEj0RcGmAndqMTSqz0yOpzFG9nCpoKfqkCcJp8fTd52A9eMkUgnWok1b731T2V+JcRzQlTGEsuRsJfhf1smL57eAilAdW5UiZKmc9puWLrer6PaizRxrG6Wu8yDGiNVKWP3r3BAAcmGqIVxgVM41xqpjz+nVbdu5hhQTZS0wqWqk1OK9uNajijjiliwsZGMoF/fRaEVIAWMgxwQ5Y42ibx3sNhitmbxnnmcREDeaEBPGWmYfCPkoheosrO8QAn6aKTnTuJZea1ydcynF+pxECzPnJG3ORgzoFn3rheWita2AXcBaRcozfTHCOImR4XjEaLtqScXkOZ4mUmtBR/quE0dvLU6yIee1GFfgg9Y1ay3jOPDmzRtiCPR9i1JXvLp5TqcMf3h4S7N3bLsr+m6DM6Jv/f6bO968fctpGrkfj0xhwmpFbwwmSYdRmEaG8cR+s2OaJ8IojqtjSPzm9jcC4BuN7VumORJKoQEeTif+3b/7P3FF8+Vv/on7w0C/v8JYzf3hgTx7Hh4SXkX6zZaC4v7hiB5EC1prI4Z1ubDb9vg58XCcUNriXAMaQshSsO4amq7F2AawULS0iypNJmF0xzyNhDCjstzbqbaUWmvZbDZ89vlrnGu4fzgwjlI4/+P3fySZhHENr5694vVnP0Rnyxv9PWH2+PFIDgVKZJ5Hvv76xFdfFaztcLaVVrMQCH4WoNwKIOf9jBS8xdRAqSwi7xQmpO11PB2ZpwnX9igyfdez6Xu0UnRdz2J0pJQmhoTqdAWFhU3fdA1pEr3xm5tr+usrstbExhG14vb9A+MwcjQPOGNpmpY4zNJeXECnQtGWME4cjw9QEm3bk4u0xFMlTWrQXwkZBZtl308pElIQx0ikdV4BPmROgwAAsZTagigMIaXFENE6SwNM00DOGVuLG9Mw8u033zKOJ66vr+m6ju12S0TYcGpJRXJGo+i7lmyUgERK9nbravEg11StSBtkqfQpbVQ1iZHjphRRxuKMtA7GIPkcmpUJl6LITRnXoI2AvEoZYhSN+lJK1TxDYvQkWoEgMVQu5VzMKhcEBSW5q7aWWKS7QqlznGJtzVNgSUpYQMVlP7ssGF6ayi373qLX+rh4u+yBucYZf6pA97gIdo4zJJ8+u+5+CPAkqNqk55/FD+KnjDWFaV7abcWQTRnJr7SxGOtE19k5rBVzJvm3aJpGW00uaj65rJmqxo7Wulo8qf/p5f5qSIYphrW1PqZEIq4FnxKFxRzjwtxspChWaixAxkeRMdOuqUV2eXYmRlzKdFdqfW6h5OpwHERbOgfyMEJMpBgIMazsu2mW9asotXYEZmUIsbJQlQZjydHXQnsmZRl7mVz3w8I4RprOEWdPmDwKSDGv+86Y5/WZGyV6mNTxViir4cWnXn8mQMda8VrGsaIKAipBArWGxlk2m47NtmfTNLTW0XXixjLPI2++/443bwuxBFIKi6Qaxiisk8qZ1gqVaouPdri2x3Ut2jmUs4SSGE4Dh+HIN998K4KfWrNtWm72V1zvr3h+c0236Yg68nq/5YvNntsXR06j5zQHxkkqfK1rMZXuaFOkNZqrztFaQ1aGmZY5K47zSDzckeYRkseWiM2Zh9s7NCI2bvoNdr/H7ra011e0m5ZN6wh+xBpDnD3D8cRc9S3EpWogZY+vTkCpitqK/pRjnosM2LgE0sLe+u3vviWQOU4j2UiwCxWgSwmdEzpn9tsOY1gZUwuqG1IiRJiTDAHtrPSoV20DZR1FWcY5VAaEqiizFjZbnlG5JkMFCQSLVCKMsTSNwVlNYxXOikhjSgmN2Nm3VlrymsZhrGgkyGrvakvDxOQ9KLMGUzFIa2sIER8CKaa1+hu8/F2jaZ3YpW/2O6KCKUZipe2HJLT3y2Rlqc1mRDA/JKHB6tVtCLqNMOJQcHvRXni12zEeDpzuJojQdx3Npse0YEjVdrmKny6hvjozuQpgSh3rNeFesHAFWFXP7yJZWp7lsllctreuDBNB4wTRqYmSvtgkngIW6pohfxbRR5CFslbkylJlOifui+7jCpLJ6GH5atc0HySB5eK9l9eUS6nitVJJtNahjeV4PBLSCW0sbb9l60QzMafFGe+iPazSvqWtSu63MYqq9LYmfmfA48MkVQC6ytKsAgvL+1W+qApWfnZZn+flnXt0Lxddhyw24kXJXJBWEIcSqiGliChqyEXWhhjRNtXE0a6ErlgKk5+Z/QTdsi5nioocT0ce7g788e33bH+7pet7bFTghZ0p6+ySJPrqMigbZJ1klCSGA5RCUhA6S3YKqzStszx/fs1f/auf89f/+q/42U9/hE8eaROIhDBxfbVj0zTMxyM+B2Yf8e9uOZ0GrHVcXV3Rb3bc3x/4xy+/4vfffMe7uwOn0RNiIRVFyIUoMhaknGmdwalC9jMlB7rO8uLVc5rOcZpH/Pt7bNOy3V/RDIEpDDglrGQMbLoNm37D9dUOpxVRw83VjufG8XD7jjl4+s2W1jUcfGCeZllbFgT0UXvrMt4XkP386M/z+4Mq8+MS2cWvdQXa119VQEMCRglkP2Yv1TYMtSh+ZFY35co4KjnTNJbtbotrGx4ODxU4qQCg1lhj1yBQa2FVqFqs+Ai0+9Srriur66XSFdBeAJqL6/rgYx+2zHwMTH5sivAYGNJaf1CMWBKIy4D5spX1U2vfn2KlPW7zfLxeXAKMl+va+UQ/BrQu3/cYhLx8n4wFSXpKWZpgPgQJF2bCeVyo9ZkuN/9PXd9T9+DxeSysjsevy3v8+JrWZ5irJMMFc1kvwJ06s8OWsaJVbYMtwgATYPx8PeeW3gsW43I8FMqqtdWk9D0UGKepgniRbdiw2W0qqJ1JlSWRamuWSIXUsa80Sce1DX0B6KhnkBeSuhEnWGMMytbPVb0bhaz1wkCoOks5oYzDOmHBpxgF9NZSdDKVvXr5DMQ0IV3cg49ZmXJeF3tZBQgvmbOX7z6PH70WRS+fn3OOzUZMrQqsLbwgrWLGmaoBiBgeKU3fdeSNtMvmlBjnkX2zF+04p+Xa1eIib9BIi6vUvs4FyCWJLkhS07UtxrbksrQ5RXzKOCfn3bUd280WP4+EGBgnmbuts+JY7agmbREdDdrZegyJm2IU07Tj4cB2u+Xzzz/nxz/6Aa9fvKRRGmUL3757wzDN/OGbtzw8HPDDVLV/C0VLnGtMg9HgkL12/v8Ze7MmSbIkO++7iy3uHktWVdcyXeiZBghQSIEI8QIRvvCFf5+EcBMCGM4i3TPd1UtVZsbmi5ndRfmges0tIrMGbSUlGYuHubnZXVSPHj2naCH57u6OseuZRegPKgA/X6a1eOe7nlrUyK3bjfjY8/6nD5wej/hUmc9KVEAUeBvGnjwtXKaZ3MPoOvr+QN+NVK86sikpQBi94FEwuAuaIEpz1O1HdmPUemNoRmRRC/KCSq44ZYw4j7X+ujWXcM5pi2XUvKEWsVhXi7oxePa3Kk9yd3vPF+++Ygg7bXvLmefnQEpHLpdKzouORefB3CVTMj3IWqxgBPOkEhXtUNartjGOw0Dur0XnuOkQaWuZapwPpksbCVHIaeEyTZymswKVIbDf3SDDiNwecCGwBG1FlRgoZuI1DAPn4wlfoYs9s2kHTpczl+6obcO5MM8T3piupWrLrogokymqS7NUR1oyUiZbD3XtvCwvSp5w1kJsJlcqlYICgs5AsrbnrnM7sN/vcTQJKdWgfXk5ruN+MdbcGu/gVbsNW4sjqtEdO2uDbEypaydKYyU1wKoVrnHK4lNNfIsz8cZm1UddihBpOrfK6mrxBKKsSNf2IA+h7wglrHJA2BxyzimQJMo4KxbnD8NA5wIFa/sWkJo1PyoFecP4E5xptuv1qhGPvNrH3xa3Pnds98ef+x28lhja5kQ6Zls+9anB3vo3+oef7MENoEtVuxSlYg63AfyCI1Cd4jkhKDgXveqzRaeyWd7Dfq9uws5bsdVh0gQdLjqGQc3ovPcKBNveqUzAQBcGA0EFkWKFkWuM0A+DjlczOAnmNlotHy5SzTRPSTTOGVfJK3RVctK8zzejjY4+DsSxQi28+/qXSFGTiWxmKalk8py0JTZnlpxJc2ZOmZwS85LwS6HESHICJVOK7VsxGlpQEckqWbWo1FRwCm4uARDNsdY0Yn1+rHEEzil55l8Isf8igK61HnrZbObrwNCNvwuB3Thws99xsxsZY6CmZG9RmZdJdfr2i4UAACAASURBVNokaS+1EyqturttOQGKBRou4GOnIqNBEc1MZZ4z0zxZ9dARvSN6FVpvbYNehH3xvLv9in/33V8TxpHFO17mCw+nE8fLmWlOUDPL5cJ0PJJOF+o8c1kW5iQcl5lUoOQFyTOSZnxZ6IswAN9+9Q3jMBKHnkVgDo4aPCXPXM6ZdPHUoi2YaZ5Zppnz8cjjxwdenl9gReSvmmENPKhEzhfVbqG+npQfPj6xuArRo10KpoFVBVcLvhSCCI+PL4YR1GuVwQIyERgP99qa561lqSiQVpIjieXqWLIqDidF2Rfe4wVitPYn5/FBxWSHXrXzui7Qd+o25Z3Tdt4qBB9UK89pJRWuAtCCAhTFnCUVOPPkWkjJkPFlZk6ZUpSa72LHENTpKKXM6XLm93/8A4+nF7ph5OV8ZE6JLuqGlEqlM0BLHVagGm1+TjNzThSB3nsKmSVNHDzc3h7ou0harsHBfDkznU/UAje7Azc3d8TOk+VCkUQHpp2wThugaVHJdbNri6oJhmKOMdXa0cpmbKjD3FVUdbtJtOBanGo81GzJL6/Hz9vE+5oQbxKxhhnWK6iliQEryIi83qycJVYBNeXwTsVGV+DQQEm1986U2lgj6twaYk/oegiBIigYlYS+GxlvPLHvrFWmgQ2N/QfONcChAWpcb3pbHLfVMvvedmy7/yZie6Vy4BpeZ6/XJ1evyY5wpeBbItn4Tt4F5dRJXs+FARkEWeeliOqGFQo5LVC1jWXoIofdSIx+XdOXRbXXGG2DKplaFnNWK5wuL8wPF/yxow93SPYsixZEQnSo8XFRo5yc1PU6BLrgicZm7mLEdwF3O7K7u+H+9o6v7+/5d7/+Nf/hP/xP/Lv/7t9wc7vnx/d/JuWF4+WImtAI5yOcXo4MwTPsD5Q0c3Pfk3Lh/eMLlz++5/3HR374w595eHrmNGXmVMgCuTqKaJIWo+o5OKfB5TjuGIZBA/Xdnruu53sCx/RbxP+kLUE+aKvWzYFx3HE5z+zGA4fdgS50LNOFNCfGLrI/3JCWmfmSqPMFvLDvAn0YOJ+OtJ21qUS8PRw6dj6Fz65zah0vWwBkM1dpgdjaxgbF1c2cUk1PWYMyZ1eka2XwXh3NzRFaQc1C9I6+j9y/u7fxdw0GgwEqfgParyZLxpxb9eC86hKta0ULyO1SVu25DTjUkoPr9X7m3m2SpvVebQLPt2APfKqd1o4tkLjV4vocGPY5oGl9Fm+Ot3p424D8c9p325+tn+Nnzr09z9vPv70H+u/nGHBtTKqzXgPlFGzdngOuI+7zn/ftfXmbdLwF7z6/b/Dq/myfmwsGHDljxIEFt+sdQrD2Q932lE3vsUi8ATft9a8uTvegUimSlW3YeTrv8GOv+m0x8Pz8zOVy1hgpenb7UbdYrq3iVSquQvDK9gi9o/hgDvZa9ffO4UxXzllhSUwYvpWvvTMNL++N1dPK2qx7jBib3odgpl71kzHQnnAphWVZ7OceR1R2GcV0UjfANpuWL1NJ37bIljdA9crkrPXKnjGQsO97qgjTnCilkk91BdG8D3TdwO3tLYfDQWMMW08Q4XI+8/79ey6XC2kcNEnue322YgxDS9iuY8WAOacmGphDoOrkOoZdpErP6fTCNE+Uoolb9IHD4cDt3R0vz3A+J/Jl0hRqDBzGgX7o1b08JXIpdDFYgUPbM0VENU1zZrfTYmwMgcsys/vyHfv7AzfPj1wensjHIzUv1M4xA8u8MBCIWYhVcyHXBWqnQOBQI7/48iuiD7zgCaJFjGUpDOOO3W5P1w9MaYGUePeLrwhDr/fvdCHkQh9VIL6kGYmq3d3tBqbkKK6ypMKShIqnH3b0/cBCIQSPN11uijb6VdEEVfDEsTfmqO4xytSyZDzr2G5rgnMK1jrnmOZZNeVsHFWT+gEzvsuFYOY1edFYqZiuY+ejEiN8MLdElTgaBnUw9a4HicyLmCuvUGrGVaeAj2lqV3c1PMsp0YVA3wUEzS36YYcPAXGYtlvAuaAxkJktOD8jkpEGDOJWEEL1RhSYigYSnaaFy5LphoHbe48shYefPjAdLyQ/656ImrgtbgJv3U8idH2PXzxVqrm3Ct7BPCe6rqdWZXu1eqn3KjvRH/Y03SyN94VcEyULuWj+oq2LXFlmmGaba4UmBTZyzuR8XotYKWVi6GwxbXu9NxQmIE4oXohDt8ZfwVqgdfneuIOve2RewVsRA/VMr7OdP1jOj2udLt6eTUcIHbgO57V1cKtxjWjBA68dY26zf+KscOeuruC1VpPMaiZ8BlyGK3tSu11WfM7KP7b+WOx+xVN+Pj75uaJXc7nf/mx7vO0YePt1lfLJ+29fUwzs/dz59RkYuaYK4irNhVsJAa3gkshtv3JcWftOOB1VusC1bojWDRQiLsBhf2smn17N4EJQuQMD6IZuT5P5EGzPNP1u1HBVXZZdIMRC33Xadm6xnA/OCA0eT7CihtdOJm9ECyPyCJqjeX8dU4t1JGm+OBA7R0eBnbVCi5CKUFNmSomyFJasBkyOynR6oCzatVeKGBidSGkm51k1L8edmd7puPGtyCTO7vvnY2BnSMBnQuT1+MsAOmlMj5a124Co1dxXI8PQs98N7HcDXRcsCV8opVN3vOrAmT4C4GJESqLlwkirCqrgt4ICUFJimWdrzXMQPEUcUVTHqx1pnnlKicvxxI99zxB6DuONCmkOPf1uYNwP9LuOb3Yjv7y5YdjvCDGSa+Xx+Ykf3z/w4f0HPn58IB3PTJcz8zSTl5mAMMaO/Thy23XsYuR23LPfjcQ+cl4SL3lmonKcZqZ51krfvLCcJ/0MKZHmhemsVd3Y2lSKBuJVNPWqtVIkMScVzKSaa4sdL+ezMlykrAkdUgi1EsQRqgp0xq7DVQUtCIpCxxC1/QGtuqSiDlc5q+lFqso5Csi19cCCaeectvd6pd7WmojBMYSOfoyMQ8/Y93R9T4yO2/s9rcUyZ0Wna9E+chFlykhldUIrtbDMM8fLxPkyM6VEtUFezO1nKcUCZrhMakLRdyOdVZ6XWlheXni5nBHn1Z47BLwfddMCdYvJhWKrc3VCMur8tExU8dAJsXrIF+asgqslzau4JMDDh/d4EcbxZm3PFlcpmP5LUMDAps/qiNoW5dhdGWZb5kcDweZFKz1FGuRznXvee9JGpPft5N8Cvg0IXOezAZRd160AggIGm01iza9fJ3CvEsgNQKc/ZJ3Da9//piIk9rnWSpZYpdUFQt/peLUqXCoZEY+PgWE/cnNzYLcbVC+xCpgWioKIHqhrEue8KK26MRd1110Zb9pqqgtPW9RBRfLFgEXfnFvtcwa799p25qi0Vi0F6OQNFuHt8/qqOhLr/bP74hozywDCWvQitVoMnbXC39yOxK7t0JWcZhs/cR3Ly6xFAM+Ic560ZFIWUj0TuxuG3Q197xn6wG7s2A0dQxDuD3t2Q2TfRw7jwM04cLvb8+7mlvGw48vvv2V/d2Df73i3P/BX33zDF998AzXz+OE9JSVejk+8nF/w3rMsE1IKu27g3bffsutHjs/P5FJ4eP7Ab377Oz58fOTh4ZEiUF1EvLbHl2LPwml7fIwBhyOnM7kW7m/37PcHbcstELodLs48PE/8+f0zp7M6PA2hZ78bGfuR5ZyYpoU0F6o8QRM1xnO4TFrprZXT8YV5Ohm7TN2s4f76vHh9vAVR3h4rcPF2fmyObVC1BTdeAUttTDf0xYLodTWoUChIzVa5bMA/DL0mxudpurZzWiDlmuGMD2v12dnvWvAaQliTlnV9UZHET4Caz92bK6j3+ddt21K3rLB2Lz63rn3uHG2ta/dyC3Jsq9GfsLverGmfA6LeAlDbZ9nOf01GXrfBtjVu+6zfnq8dn/09Wrlv7Thr8cV+/1m9G16Dfldw69PAfnts781bI51XLdtv2Htvwby3bDpnIO4aPDeAV17fz+uVKmiG0wC8gcufAJdisN72c5nzWvGquRNDxDtdQ0opcFaH1vPphFAZx+EVu7JW0fbUKoSgbAAfnTrCO3OIs8/YWIBO6ir/kEsyzLSqhpd3qiXcrrOxPKRSclJzrhAIOEoVnDdtvVJUmsISIWnJVPIEHz9hXGzxV+eu80kLWVe2u9vOW0NCnfMKaoggIZKL6knpS1Q4OHYqh3K6XPQ9vF/d6Lq+Z7fbaXxl7++dw3vh5aXjcjmxpJmuj8S4zQuS3i/aWuHxLhooESxtsUJyUDmI6D1V1FW95MSyFBzaBuddoIuDuk/WTKmJUiun85mSPV1UlkYrhgURY/Rc292LFTO7riOnxA+//z2Xy4Uvv3ynzHIcw9Dz1Vdf8u1+R3aOp+MLaVnocPhclaVXM5VKlkoy7WcnsN/toQrzZUFq5XB7yzCM3N7fMwyjGag47r/8klLBVc/l+ZnL05MCXDmRqFADsarTfQfU6DinieeXM8f+wBd4XIgsaUZIeNNFLKKMRWeFp9h1DMNIzknHVNCxKa0N0Dm8R6+rVjSN9ub4qaYcV4bx1aislLLul7VWcsrE2Ovcrgp+BBcJXmPPpi/ZD5H9/kDf7YhhT6mBy+XMw8cfkbN2jahrq5Ba2yBRW+moxNgzjCPDOGrxP6hEiIhosQ/rLHGtjdq6c0rFh0g/7ukHbX1NtSA5I14Lg/ubG6Y58XJ85HyeGLuBIY5M9czYj+RppuSs3R9e2V1JKq56qnUONaB9BenblhoCMQyMw55x3BNwawsgoG3viOlUK8iesjLlcxVCjGZa6Qx8Ue1F3fvUlMNbAUCkrGteydWYruvqvYJzLQcXJyxop5vI2FIP2xfaOqFjoDGtRdR8olob6zgOn8QAIkrOqUULNZWmG1eRoCBcDFc5Cto4Q0wn3VaIDcO9okWT7XvpZ1UdOu1SckSTmAheZ8M15dH4W4EpbyCRIOUaAX4uD3pbWNu+7lXst8Zw9u1mjvzs+Zyj5ETbQ67vcT3/6zilFera/HUgiVy96u+FSAg9zgdyLjjr0PDOCixW/HUraUFbRsUpSae6iuDNJM9rrDypgRvOK24QwsqkCz7Sxf21IyNcWds+BFyE6XRRlpzz9P3IMIx0UXVdc63sdiMiKr2lAx3TB9S76L1f5V6026+uYKtzmue3Uru3fVXcVe+v1mr6e5FuHGFtsXW2TX5NSYvONyvWlTST00ItMykthOjou0GZfFXwou64XeyYzDhzHQKWe67/2lj+ueMvAujcitGYxtI6Eit917MfRvb7gf1+sA1fab2uZFKZybnHdbJqPYkTJGcV0m1BGEqTX83qWgBXtAUgep003ikN1pkAq+7jQpbCJBXvz8o4iXuyy5Ts8XkhSOG2c3xxu+Ord7fc3Yzc3N3ixh437tntdnz/y19z/+2vuH8+8vzwxOM//RPnp0eOxyNOUCvs2DMEZYFNqZAuC8vziZfTiZf5zDkvPFyOPB/PXI4n1XdK2YI/pS03B8/b/Y4qzU3OUWzS5SykWvCho+RqwMD1eUynF4o3kDNcWWzRDCI6p9VBF3plKeoUpxVHmn7Q6TKpQYI4nItUg+ZwQYNbl4FswIYQPeoWGz3Bw7vbd3QxsOsHxt2gjr1BdT/EV1wfmNOkgOTlohv7rCCdE2+buS6iKSVS0Q1+WmaWOTGZ+Gmtrf9b1NShqEOeD55SYU4LSzLGmVStMPvAsmRccMZAslYTUbCviqc6DSaqa+w6FcsvVStBY+gRAtN84ocffgfR8+P7318fRE4M48hh3Gu7bh/ohp4SPGWZkMkAaNcqxs3ZUydU2QQ1yopry44GILWkV0nQlZnxuiLeft4Uc9qUb848Danfbhgi5nq0XeBNH6hdhY+B0gTsUIegVzpM9tpgHAEX7HeY7bmva5JWqzahKvDgNeiOmjjErrfqrG2oJemz63aM3cDt7Q2Hw4Gu7ynzjGrr0FI4u16r8DuzjhAxwKKBLHpvmuyHSDUGRSs8yJoUOnFYjy+tig9ifU1it8MYAG0pfLVg1oZpg2yaB8wghXJ95oggWatkqsdX1mrwfhe5OfRakUFBvZKzPic7lqWQF4Ha4d1ICDvirsPt99TdV3z5V3/Dr//mV3z77Vfc3e24P4zc3Y7cDIH7w8jgK50TeicM3rHvO26GkX7suf/yHTioKTO4QDfu8DVzfPjI448/Mk9n5vMFila5j8vC7eGGr77+htiP/OHPP/FPv/knTucL799/4MeffmKeM8fzhdgNDLsdedMWE9ZKq5rWOAe1OJx4qgSWJCxJkBq4XCp/+/f/xP/+f/4X/vN//UdSylALkUAsnnJZSHPi4fjM6Xi2tphrFbeLHdM8kdNigV8m5ZlSbc79j/+Ljqpa1sD01SN+A+p87vdUVn3BdnwOTHkL/rSfOScGGIe1fcViEQAtMFCRoiwFH7xWskuhlMTlfOblfFpbghq44LTXGecae86tjLkG1OFMn7OB2f76r+rd+CuID+u1tfOKJUPrvXhzbz4H8m2BqvV63wCCIq/ND2rVRGP7+rfv+fbrFphtz/lzr9k+m+31bQHA7Xu+Aq/kui68DeDb5/jc0fa8LctxC+S2f1uw+/a8V8DwUzD17T3+3Hu/vRefAylboal9jlUyQq57U9un2lgIVln2m3u7HhVwWlxBMDbYWh+5Dvp2XXK9PkP8zOSpqJaOMd26GLi/vSF2gePpyGU6k2qicss4jnoPY4evyl6eU9Yi5qAxUPCR4F+DoYKshk6uvbfNQSlVwaSStTgl+lrV0FXXeYIWXSmqCVuqFkOztaJWa2n2vv0fVu3CGAzEct4S3O3z2iRANodDjMS+V71ctDh1TRobaw3wkdBxZfVagig4ur6jOVY7p0lILgoYzCkzOBCn4FmIgXE38uWX76hSOJ3PLIsaxvV9VO1Apw/wOgc0ZlC9y2aNpUU+J0JKE2VRTa6aq7YF5cwiM9N5UnFu56wd7g6xzodlWpiWpO1QrrEf9XnonqJggpplCDVnTs8vfOgCOS0cn5757f/3dxwON+xub8F7ivfUJZOWjJsKv7h7Rz929ONA33cMUSUp6pI4ny+8f3zEx8B33/2SeZ75ww9/YlkWBltXK47dzS3fffcdu8MN4PjTn3/EF4evDqSqLEsX6cYeP/TIImBsmIqwZEHOCz/JI+I0LzqWE/3g6MXcNLHnJ1owDyHocy3Q9R3iHEtKZDNccGir2bbdutaqhn3LvK57TUOwrTPBgPEQVR8wpcR+p4ZxzkJMZwCIwytTpQH3Fs11/cj97p56n0nzWbWkquWL0ph9jR1U6Ds1bxnHcW27Zl0zrV1XrvPDeXUmreJM9F4ZdKpDW3ABunGgH0Zub+5JJXN8uTBPWXNQH7XF+DLjnDoZ16It8C5a14irqERJsCJ1ZkkF52wsigLzIUTtFpkWbagqBkIJiBeWsihg5XUehxCJvcN3QjRmlO9U+B8fQAr4gLhKFUdOFed0f4xR29KHQckEiHu1rGpMbDJHTVpA8Spzk7Y1vr4GrLb7Xs6qJ7gsC0WUxamulxXnrH2xViqFasYoYABmSgRZCBJwLYaGdZxpTqT5cLRiRduDmoyL86xrH2B5t44z/b2tjaLvKc5yiFfbYfvgrQX1U7f3z8UL23uyzpntGT8TD30OmNvuuX3f8/bYxgFXYPTT+MR77YILBrj60Glrt9cxHMqG9W85hXmyUiXr2u8j1Uw2vJO1I8wZYJemjJrN6DmcU6xG96mID7OuB2Ern2KxSYBaxPLWQN8P7Pd7um7UGMEJJV1s7+tWRvqqUxqiaqfSUi1nIaqzNU/lD7zFIdWMIWrJKzAsteKjU1ypdbtVFOSm4EIgxoE4qvZ+mhdK6qGq9qXUbB2mHkegirlYgzljbx8cLRk13XtnsmI/f/zFGnTt8P5KC8U7xrHn5mbPbtcTOxXaT0vicj4i84KQCNGzj0JFKce11DW1rua2gg0DnVuGdqJMpCby61xHq6A6Uacc7zwSBBFvtrbgoz38NOOdLmi9eqJwms4sP5758F6X+UrFjSP3X3/N17/6nsPdPTUUvMvqojMEbvt3+KHDuahaBaeJl/NMmmcupwunp2dezmpEMOfEadE22eiiBeq6Ubism0rXa8ByuSxXAMoGS6EBUhUfTUqsqktWO5xXPYksBS+e4ALROwav9vOdaJKVxFOzVvOuE9valYOjFEW+Y+hN7DHgW0XFuzWZ64JXRs8YGIegulDBcdgNxODpY0cfOwYfLVjVQHdOwvPxiYfHZy7HE2meyako+OEC02XC+0iRBtCJVks2wEgFavWkqotAsc22Iiag2bRsKlIbC61A1mBRgi4uyTaAKloVdN4hRbXWamtxRLViFhPPL36mj4X6/MDf/d1/5bf//FueXz7Af9Rpsx96DuPI3WHPze07xptbXAcv8xMvedbrKWJ40YYxYJiXVprqlelxJefZwr0FzF4Dc1Vet0d9LvFaF2o+Dya8EvSG13pZbzYMBYHjq6pVq1J4ebPREEyPULUNimnoKPtRwSgFY3STDX3PKkLa2l6817aH3YHdYU/ovLLWvAV4wZMMkNXPZv9bEErVgMDL6w3tNXPDvU4i7SgNXSsG9hmqJ1ZVagljlbIBCK/3rdm3r3hnewbmGqWOyXlN6lw1IBMQUSflEBy7fc/NYVCgsVacV+BFNqBtzhD9jn7fMcZ7dvt3fPHdV9z98ju+/df/nm/+5t/yq1/9ki/f3TL0jsPouN1HDp0n1JkgM71kOgqdCNEpe9YBu17bcWoRoquQZ9VuOB9xNZOmCYoyRpaq2o53d/eE2PO7H/7IP//mn/nhhz+wLInTeeI8F2p1+NjjgmpcLilTqwp1hxjNuTGbALrQdx4kMF0Wnp/PnM+Z+VL4/Z/f87/9p/+X//R//Gf+4R9/h3Oe293A13e33HWj0u19x/n8yJ9+UjOfFXCyxwtNpLVoa31NiGiC346U0icA3ecCrc8dztjHP8da2rKtPhdgtcmvhijXFrM2pq6v0MohVdfAVCqXy4kPHz9wNMHuBs557+lCoGkpqrNhoOn/bOe76n5osCu+gXPaIvJqnbbrkXbtrCHu29mxHp+yrbbv+xp0egsSbTU3V32tN8+k/d3be7w9tiBd+5vt1/8tJt8WmNuCZu3raoDG9pm+fc6N0dCOa7EEBazca2fbt/dre/xL43H73p/bI97+bnv+LZj21sji7X17dX9FVMNtcz7nG/i2uX5hZaiJvvhaaNp8pO263YA5XQtt/ONsXW3MdV23h6HXzouayVnd387nM6BdGDEE01EL5KpC1ikpiN/32iqbaySXTLa20XY96gSpc2FlsbbPI6YDV9W1MZekBi4l6Fw14fcqQuiMLbIWX6Thjpp0bFvP3XYc/Mz9N8C86U5qQm5s+s1YtXfi6tx5bafD5ro3rWGxtUJEYybnnIGhUa+jZqoUYnDc3d+QysLL8cXutTJCD4c94zDAqIlnLRoby7pP83rNlLoWplJWYCj6iHeqQ1yrtgrH2Ckw4h3iO8SD8x3vDu8AlXkQ55S5aGDcel+tlbHkwvv3PzFPZ+5u1ewunSdOxzNzqYS+53S+cDmdkVwJ3nM+nlaThXE3cHs4cDOO9D7QxV6TNKeC4TF23NzekHIm2PXWAofbO379r/8tX3zxpRoqvVy43d/icyVI5jIdyVjBRrS4p/cDTnmhOPAFHl+OdNWx1InFZ/aHHZ0IfdeRs2eWzJKEVB01BPo8cnt3C9GrrrMZsHmvGDKwtryCFsBLVqfYbWGizQXnnAFY3uZiIRU1djBM1nzwFCBJqTBdJlwojEHjnHlOpOWZy7kgtRB9YDeOSK0cz2dKzcYEV/Cy63oON3tub2/o+27VRUa4mrw4p3O3aGwloGBF1+NTRp1VhVQqowsMQ89hr1rWeam8//EjD09PxBjZ7XeULFyWk3UElTUO1jhedWFbRGoZDKVUShZiBKLOoVwKIXQsc+KlnEEupr1prprR46LXuWEAorLbVGIIj86FEMHH6/pqY04c65qiChYdXezpYqdgQq3ahdL2JNOcdl6UPYZKAgTfWPWtVfHNerMWS/RTp5TUQKTvyFLxNlaalpuOE0ezrHNOWYMpZyqJihq9CJ5+6F+tX8WcTN/u1eueul6OqH57ZS2mCKwxkD4vlVwSX6hu+6na+cx9+jMiYW/3/k+W3zdxyCvwbfO6uNHeff3e+kGiGQ1+Ev+0v9vcg/Yorj9rxVQjHeCp4kxSZaPDbtrbToxM4B1eguWqDohKEMBd1wN7ZhV1drWeIpVOxOIEn1lS3hRabUPD9h6n7NzqlPwxdz1pmui63lyEYT56Yufpu5EQA9FFGw+9dqxVsVHkjexl3Aq7D94HbYx1mltVwwf0Wag0mxMFkLG9W68/USWz1Ape23VLztYmnnBS8RT6LprWuQeJlOyBop2Bpa5AYW3jUmSVggBeGTx+7viLADqRYvpM3jZ8u+HAbhzY7QZi1MtYllldA89H0mUmBMfhcNDJIAYytMTeaUtgG4CqE6DiuR7QU6qjUwzx+qEN5OisAgiVpEiNavJQCVK5idpS29g7k/NMrSIvwtAFdVo8XUj5SDr+xL6LnF+eeHp84TRVqu+Ihz2hC0xl5uPTE49PL+Sl8vTwwOnlzOXlSM3Fkj2n1F4/krKy4SyjwmUbuCVrW54SaEi1XHXGMHTZO9WJqhW4VoQBBnN4FO91MnmvOnzOEQFfVY+CosBloFVDhILSfYMLhGhGBUEFXZ0LSNBNNsagwGbnGceB/b7jsI8MvWeI4F1ljBrsKSW2UFJmWRLLtHBOCx/nIx9fnnl5PlGzVp+U9OGhFiZDv3OpK0DngrVdUuh9RFBXUBFH4246Gx/TZdbJ469tWS46qKYS5lqLSCFn1moL6yZjmmhoYOfWhdsCi+BJSZjTA7P1oJ9OT/Af/y0Ah35HHyJD33E47OiGnpflheNJLeT71tsqlmQXQ/KLboDr9djPlV7blm952MMHugAAIABJREFU9cx1/W6mFrpId0ErlThzE3KtrVadlKRV1FvS8DYZlmvbUiPKOJubeIxpUNdK0jWZY02U2vO4rhVyBQtEq4j6e61+KUPArYmG4hDKmMqlWiVM6LvIOI70g7ZHTNNkoqbaCjLP2hbdwFmdYXrfWuIWqzcmrl3XG5Bu3cplu60ZYFuFoPEKrYL2CswTqG0CO1Zgrt2PCteqndvoOgC1ZtMXFOIKxLxOmmMM3BxGbg6DmjuQtY5loqntCL4nuo7d7sDd4Vu++PI7vvnVX/H1X/+K//4//M989Ve/4t39LUPniD7Tx0IvCblcOL58pGMhDoHdfuBm3GlgnhZyXqiXk46LUpmnhTSpS9/pfOZyOuOdcNjvmEpBkq4TKRX+8R9/w29/8xt++vEjT08vypAtlctlJmWtNoUsOB90fQpehYARo5AnnR8Vqg94cYhEliQ8PJ3459//if/nv/wd/9f//bf89rd/5s8/PkAVLvsdo3h+cXvLfjzQ90IVdR4sVQMIHQMNMEAr1lkr9DEa+LRhvZX6GiTfHm8TlO2/Ols9WyOV7bEFdD53KABxbS9qY1/HmV/HaQN22x7TrmlJmZeXF6aUdD/tOsSMdUKIWmyvsgJuLejamkQ0wXatol/3GtX2UQYKtV4BFyxBEDbaK58Hkj4HWL26d29Aqbe/3wLuW0fat0DcNlDegkqlFAUlYnhVPH/7ui1g9fbczSBiZUHXpunSkkR5VUj53D14+7P2t7VeU41tUWS7fr8F+94CbD/3Pj/32d6+dvv9WxC5Xdfb+9u+buBu4dp2UkVMb/Xa3rRidG0+YEkoLV6+ttFtQSkdV6ZFY61vUislQ/KOKmo4pm3rqpe73+8Q1Ggn58zpdKLWyjgMqrvpI94LUgvLos6CY5NeqJYApCtzQZ+TzeGq9ysEZ2Lnnv1uz2G/R4DDOHL/7p6bmxtqyizThZy3yZvGY6q3o0lEtXigmZE0Y5d1P7P/3Hp/rkZSYveFBpzYGGrsESwx0LBZNAFzbmUw6xqoiYeI6oy5AN5pi6vuUeaO65V2UKWwpEwujuAcu92Ou7s7Tqczp9PJADHH4Ub1fB2OJIWmk6daW7pfO1FXS1cyvhlIGBvEdx0hJJIlTMFHYjcw50KRRAyRXX9L9JEvb9/x/HTkcpmuALp9cuc0NvbAbhg47PeqEf3wgJTC8M3X/OK7b3l8eCLnQp0zZVJmtgBJKpenJ/yLW5kZzml8HruosX1K7G8OzLMWY6cl0Q0DY4jsxj3TtDDNM5fLRAwvPD8+0cWO7//qe+Z3d5yPN5wuLxynC7NUZhFq0LY/cU2HWVv3ZJ4hRKIfkKJSGFkK9E5fT9XcresYdjt1cO17Usmas51O5CQMw04dcoFaippDiF/bWKvtoVsZlTaWWi5XcmKeJrKklfXkg6cfR4Y5oy6dibws9CMKhncDU62czxce5jM5LYxdoR+iuo3WisxqouCjjombmxvu7+857A9WEFDQxXGNv+a08PzywjQrYeNymUnFQCOvG2joIrvDnpu7G7o+4oJjWRIf/vSB08sRV4RxN9LHnmmZqVkLsDkX2z+dGjY1cM5rR0tjK0YX8JjcTtcjAr4WZfESCMbg0fZ4m+sRlrpQKSw5Qy74VIzNqnv1/jDQYmtdY2091a3Z4n/NjfrY0cWo7fuAF49fcwrNg4yUj/NQxa3rTFtzN7vINT5oK4WxfWOMVMkKmFoc0VrtWzxUpBEwdJ3R02sO6r0yl3G6ljYwyDu35iFSVENPWsHEGRgTIuJBiu4x3vtrfgXEEBn7njKOmkex4J1KhWjNMoCEzTr7Ol7Z7oXbPfRtHLP+TbjukdeC1KfFwuvRCrDQuKLtOq578PXV1z1X//deY2ktrBgFQfp1bdUOMtb13qOdey1PxUFwDu2kU4kHZ6AzXo1n9LqusYi3zirBgGPR8zVpqtriSeoGoNMxVKvuYNV5NYWZFnw0xlxwqznN0KmeoTeAro9a8MDp3zoCxekYEgxrNvAwrEx0vf8+YOy+xj4slJTA6ft6a+OtoiSfut5b1WaNQXEjzMFdiSCBQsN31Pxkm9YpbNcef0MyxOQTfv74ywC6CiqIXZTV5h3BV7W277yaBXgh5UIuidPlzHyeNQioSnsOPtqoswnpFQipjflkDWZK4dLJEVxQneCakdQQyIp3kS44c/KshvheEeBQPbFCdBqEVOchBvCB6j3JaMRpzkQcvnqOx5nz8xG/zCyXI5dzYvfuaxTTnznPleOS+Pj4wnmacT4yJ2EulYxTsKxWo8tDjKJtSRY0Ree1qmdJVqlaPRHJOKzfvQWdphNXJaHMwsB2cWzJUAydaRkIUiDXSi4VSqaiDDoVXXfEaIsEns6j5g2+BYCFzidi0KRjHDqGfqDfDWr8MPSMQ6TrmzaXAofPL5M6Qi6qgbXMuilfzhOXtHCpiePlTE6qC7MbOrw3SngWogvKnpSs9s9aeFvBSke2xawNG1nvn3fQHfYWKKioY2kLsgHB3qnGS8DatRpgZ0w7DbJ1IgWBzgc6Hwlu1skpTsEUd0Gy0hl7o4sD7IeRKkKeZy7HF55fnnk8PnCaT8TgcBLUEatqi27bNKolc7XpKVTbBOtmAjtAOgN9/Pr0denU4EQTAU2uW9tQ+5w+uJUpqNuxVk10cbTvq1a9dKMVXNCFKYhX44wlU0Tbbxyslas1GROlwle/qVyJVqeRSnEFZ2B+KXUNqJ14JGKgv4lmtw0EoQ9RgQIESmY+n1DJTl1Y1d3XKmlsNzuBJrJvAJ2XxjQStBpvr3fGcGj4OY0W3xKFigQFez9hr+gkZHWrWvvyX2M5sgleqzGDde9qQDGIj/pE2xinw/kBFwbGw45u3yNRW8a9aBO6bGjRFU8NkeHmK77+/tf88vtf892/+p4vv/uG5Tzx/NOPxDQTbkbGnVfQOJ9Zzk+MLrPrPIcQ2XXaxlRLJp8vHM8vuF5L6SVlTi9H5vMEooBO3KtzXnGOx+ORTuBwuOH9h/f87d//Az/9+SfSUpiWzDzPugnjtJ05dBZwRQOD3QoyN+acNwp4zZniKnE44PuB47Rw/Off81/+9u/4+3/4Bx4ePujmKsKyeE7TxPE8EfvBAHAFfBU/VcdTGsBRRTfvGLWyaIlx2W6a69B6E1A1UIMWj3wKJunzrmxmx+aUbS6569K+eYtWjdZnXLUsCFpIQBPYT9xLvDEYDMQrFlx1Fhjnpr2BMzeuTWvrmqxYIGrPxTln7bVNYsLjLJlwUkzgtxUC/HqfnHN2yW4N4l/fvlZNtvvQknRryZJ6rba3/a7dIo3D/Lp+NqAATDQZNq+/Po/m/ObFUUvGx4irm2sTWZ+ltLOsC6/euXUN8O0Z+03w3P62ASFNq0cBC8frFOeTe0KDRDB2+GtAbvtK77UIo2uQXucniQCvq/ufAy7fAnvbr9v31yTNvX694yrK3fYEZ+MLBdqCQ/WHRaCyCjOXXPD27K4JokOVxTROWTMVNjFAu0vOxpVNAycgTnWZJGV8qXR9pI9hZRz3fa/74RQ4nk7kJTGLwxWHGy1OjR05OXVaNFZwjPo+sh2vKHOrd2gxQcq6/4YQ6WLP3d0tCyp0fjgc+MWXX3AYd1xOJ3LKlJztWbf2TkcMKmivTvJaXIshMvS9JRTO9u2WgMvrhK62LlW9KUUFjg3w1FhI53a4rkPblrUm3o6spk9tz/R1cx6nLJ8YlUHgxOHR5Ng5ZZcdbvZ8K9/w408/8fT0xPl8JkZN5kruV6aVtggWLa7LOsM1LkiVPpr7IAEXDHTw2lr0cjxxuL3HB786DI7jjt1hR0D1WU+nI6fjCxXVzVPNvFbIWEjLTAieu7s7vPc8Pz3y9PKiYFvfk+cZyVpEZF7owbplMuNuRz90eOdY0qIEhTzjsrprdrGn73uen595fHwkl0roetWfu7vnfDrzxx/+wPPDM0PfM19m9rsd4zDgqbz78ktu6x1LSUxVTc7ynJiez5wvM4tzzFUZ4FIzsRs0Jnh+4eVlonjB+apZaddxGPbsbu7YHW4IXcfL+ch5OnN+OTFdZi2y9APeCUXUhAoGnHXwKG6r+4FIpbmKiohJHmieWIo6sV6WmdNx4ng6c76cGYYzcz5zWY6cL0dlxYRA5we87wmhEHo1uSsCp+lC19/Q9T39MJBrMYBO96JhUN2qEDrTAFRNO2mMGgfLknh4eECA4CIpZy6XowGOma7v2e8VTL473DDnmfPLkXla+Pjwnt3uwP52ryBASqYDnJV1WCtd0OuhqlSG0gMCXey4ufkW6ChlIZWkcyNqvJ2Lal46X8FVfIx41yHOk50Wl/HXvc97RxcDsesI8WrWIKKmX2IJlHCVEOh3IwEz9+s7NWxw15b5t+u+haWsTDrTq3UtjqpFsxHD8VtBBVrIUJTtFCK73WHDaNQiRrX4XLUisyI+tre0Tq0QPbFTkE47axT0qE7loRCnrLiyKUjRXh9NpgbrOgkWGil4F7uoAHkeEBxZPF4CSbLFIZ7GmGsyFW2fbJI5ury2CGGzt665xXX/DLZHfW7nb+QRXGvbvMpStL/ITQZn839jlm8Zec4rENV1PV3fqdttCDgbBzkX5nkmLSrZ4u255WqxVzFoUH+hjwWH81EZYLbJiDoQ6n6PbDSMwbeOQRqAr3u+NHc+1xIk7bRs5CoH1lZamKXiFvAhKYO0VkJ0zDHaPDCn2ag6llg3lXdqyuNjUK09r+akuebVndYZqcwHT+iuTLxSCilb55JP+jnE6RjNovqF9cq21v1DiwEtHqgCtahRpXbdqGO5azow0rJQ22sblhE+jY23x1/W4loVJQyuElylD5VhHDgc9urY2evCcEmJ5+OZ4+lMnRIhZUoSJDskO4rTZChGhwtqKx4rVMNJQtC+6Vqyuhr6XtvnxCEkxAC+VDNLutB0xa5Vb0VosyQSjmJOVMVVQhBiFAhG9a/gY1DdswwpibqtLpk0eXIOpN+9Z06VjLbrSYgsuagbbck8Pj4aYmpgi1E3fYAsGUolOCEEY820Gd2caVxpcasGnL49jua8Eug61dco6UqFjF0Pzlt7QAvKrouJRwduETFhSGeauNnEGxVgHXoVCR6GjrGLDF1kHAeGsafvenaHe5ZcSTmR0sR5SixL4jJNzMvMdJnUojhlA1/qasFeazEdKYd3HSV7zlXp5I2inlIxyqhW5qRuAnG5Bp46g9dfrInPVSyyjfPGy7dER6oGs0FFMEMDAYrgY9TNwZxSqcLYRcLNDUPnScYYGvd7kMB0/kjOid1ut77n0O1YloXL8aTi0061ZnzJVOe4SKAUc9qs+j4OoCpwUEsxsLvl1zpAQqtEBV0QBa7ub3YfvHNIUTK9942ZqA5PYAt2CEgpJAMfGoW9Fq2BrIE8zuaeMhZLMiv4TWKYs1DIa99+a013bNpvLKlMSzHqbkW8XPGJsmnNzW0TssXdt8Qm4GuiLpVzquB7msswrtNAsSG51nbnQ8CFxopUhoZQoUCwCopD9QKk6sLpPcryw/QdXQPoLOPzGmblmpFSbXPWrEjbBDur3CgQIa4BmFUr/7XSh2gJtD4jcZVUsmoH+tbu3gOOnEQrmt1I7Pb0wy2H+3fMrvIwTwRXeZqfKPNM9c15C3a3N9zefMXX3/01X/3yr7n5+htk2HO8LNy5GXd5wg3QDZmAkJ7POJkZfOFm9OxiYPCONE3MpyM5J6Zp5jJfKMfE8XJkvkxWYFMmRd8PHO7ueffuC46nE4Lnq198xRdf/IKn5zPPp4njNJOWRMna6lc0m7SWHwg+rOuXsyJCY0hU0fEXnFLPfdfhO083jtx+8SW/++EHfveH3/Px40+k5Uh0WujJqfL88shPjyNu6Hk+HlkuR7xkgqhYawy61uacrQ2ugRjXzXOrC9G2zytOJ+2LlXHbEuDt6xTAK9aW8ralbwt4bM65gizGi7Fk2VnUfIX5VJfVe2uVk6J6RKJgQYwahLvqiNWrDosTdraXNLdoZcOoPpEzHR68FZucU61Xp0BJY7wrC9oq+LVV4d3K6mytDBVlxLdKJSS7P96afpSpBGLt7s7WFAU0W+BZbN1rCUW7x947K1zpPM7zst5jD1qZ9MFYmmKvrxZnBMZ+1HNVsSJhXQF/Z2tREWXkt8dWVoaP4KpTZ+RghcphtwbcjbkRcIxR2VQ4R2k6L2+0SVrgT9V7ot0BgcrVQIV1vBgDobR1u3sF4r1OuNjERlcm1du236Zjk7M6QTfGFgZIrWpAG7CygTr1mqV9AtY1fakQlE1U7ftmYoDFLs5fWzcbeKzMLdVJ1bc0huYKEioLY70s06URgSwCubCURKppNTKgFGLwjP2AE8fpdOZyntREpgiHww1dNwARYUGoCojUqoldP+BjYFlmZQbUvLLQq6ssc6KIQ4oj+Miu3/NXv+hVdsU5lmkmXRZlt3tl9mmSE8g2x7rY0/lO2fRAzVXd2HFrp0JjHcTOGHw4QgwKPkUFTJwPONd0j4syrwnrGGputLWW1Wm31EWZQQY2OvG44oh47X4pKp7vvFcNt5LJpqnnqIhkTeSdkLJKA3Rd4LAfmS4npmnicj7Tdx1StDOk67Roi2iB229aurOFLHPW4l4pyt6t4hCfcbFwmiamtLA77DjNZ7rhwN27d8TgOT4+8+HPf6akhc47xAcFyqUV94CayWlRt0fv2e12VBGOL888PD5ytx8ZQsDVQlomfM4M4nCSwWUCaWWtBAd9iOv8q1Xousj9F3eIqFPs89OL5i658rQkzqcz4Dg/P3Jzc8t+d+Djh8zT4yPTdOH+3T1dH9kf9rz74h3v3t3T3UfOhxOn45kiwuly4fFx4kLiLND3AzeHd5yOL+QYeLiAuMQ4jLy7+4IvvvqKeZ756aefOB6PnC8XnHfcjDubx0JeJpUQiR1FwIeId5FSFsQkdGpRA4acMy/Ho+5RXudvqZUQO/p6Q0qOh6cnht2fmPKZ6TRxnB/AF4KL3N7cMQ43ViytqtncFTofiGGkoAyxpp1VSiGKalaVXLmcZ2pxFkNqbiRtnQJC7LRIKELXCXOaSWliWWbSMtP3qvnrSuHh4SMPjw/MlwveO/a3A13n6ZqOdRFybHL6Bd97E7kHFwSXE1C4GW/5xTd/zf/w7/9Xfnr/wo9/+h2PTz9R8hmRhJMFJ8IyXxDUiTV0HRIduEAcRsaho+sKIYgy34xF23mVh0HgdJqNGCP6jHzUfYrMYbdjeLejpIllOjMtM5fpwmUYuN0rg9K5QkuySqlrQT6ioHOVDCXT7EWkVjX4cIHLZbGChDLlcinkLPT9XvMa56FCsLW+6T67oHFzA5uC5UDBmM6VTCkLfd9pDtkY5ECWtpdpC3ApZdU9VJJGVhZyNXZgUU20YdixG5Ux6oKnOG2XDf2Ar4FY0loI1ZyrEpxDigdnzORN8XGrb9328K25xzVWw+In+1LaPqZrbogt57cWUPy612kTnOb9zvZbV18X0JIUBahiJPYd+/2e3WFPHAeC92oEUSvTZaE8vTDniwJxNjdSTupyGztwOvdKKwzaOokVZcWeYStCau6HdUn5tcAjgIuezqvElkUkr/J1RNu8VxfyVevyGr9INlboIqRlYVNfXI+t/m0IAR9NNilEBci80FpqQ/Dqymztsdp1EQ1cVfCvndNZoduhpkIV7caprWiNFihS0ngpYDFJtZiodc8BiFdpDANvxWsvnHNubXH+ueMvAug0MFcOS3DQdx37caDvPF3UoZhzYVoWplkdLxDY93tiY86BunsEzTQaS6pUTR5C8MROBWRVEwxOp7MxS4xtV80tqCi4MM+LIbX12r5m71VEHWzwDm/tcrudWkV720RP04V5XrhMM9M0m3PktfViPqmob64tGQssuZCNgVU3yZULGrSsrAY0UXrd+mFuKFXbBWJwm1l8PVdzyGnBlCYm18GdtbRl1S2slaNTRx/X2jorsQ8WlKv7agy9is8PPV3viE7Y7Xpu9iO7caAL4CjWals5n564zNoKcrpcmGcF4lIqLCXrYKzmKlS0BTRbYE4tRKcIfhFNtBUYkXUybfVs8sYuut2L0ibvZkF6W93/F4+WOFt/vVRF8is6FZu4eGNhBBujfR+oe1Er8zlzOV/wUhg6x9hfk6vpPDEvCznNBqIJKc/kXBXcKU4ZdGJVbAt+nKWotep8WkE6e+bRqRPaeVpYldgbc8Zp6xBeQQYpjm4LELVErgpLyeuYa59a2VuOpnWmi1cg1apBh2iyUqxSiQuEUnBOGXNFVFeviKxgC+Z0Z0U1DWJqM+xoLbTKKARz5PE6R1ZWXtZ2Fpea6Gdg2A/UItS0aJ1FirmKOSpCMM0RF2zD8w3g1Raf4Dqjy5tBt4i13zm0S8SqwsYoAGULVdcq+QIx0PW2+OMU7CiV6j191+FCXI1X9G+ht+25x61thKHT6yxGf9DqpdeELPR4AsuUkSR8cf8V3//qe7rxHX/88Zk//viBXC88PvyJ3/7mB/A7QIX/v/9Xv6LrbxgOB7IULvOZYT+yd5Hp/EBXAnOYubDHD9C7whCFzglDGJCaOR9nddy2VrScK/MycZkv5gYHBGW+znXhfDryeJn4ze9/YEmJm9t7vv/V33D7xVd0445lyTy/nA1w0LW6tWq9nsfXZL6uLMrGnoVSFgiOEHoONwe++MVX+KHjw+Mjf/zznzieXsh50TXQiRojXC68HE/s9ifmZabkRd3CpVzxBRxhs06/AsneHK80Fz+z7vw316C/4Ghr9r986O/9ui+As5aa7bVYs5q2uDRjIpFXQczqpowGyD42ANyt8hNtzq4i7s6jOhtu/b6J4OpLWzVVXl/xFpikBT+bTyXXNo1ai52r/X1jK+m53t731tourQbQKtjtdV6QDfCDBdbe9FVLNqMW1z4TNHkJHKsMQXtGbZ9g817b9tZXDDa7BrG2/ca+aozRLZjW/vWwkiEbwKatI7y6BtbfXxltb1lw7fVN4+5zentvW3m3jMX1PrZraOt0u8dvrmf7OdrXwdZUt+4MLay3BKeNNVsn7Y7ZeV+3Bn/KDuRVW/GnLEPBGVDEJOzG/dqSXEq1ToFRK+RFhfj7PquJQUtYazOw0RimQ5ndGvxrgC61xXeOGHuCgd3admUsUN+q7/p3ncXvDRB1OBB/Zb+J09jJXWOjlJK2YzsdJE1777q3XsfUyj50bNp7XrcjtylSrWqs6izaiKPE9mpa01GTc0voFJrQR2nLSBuw9hz0f2VdaPFrHEct5hyPTNOFjx8fuL25Y7fbsyyJcVSwpQHcDdzS8W/tZt7jGrNZzL0yBJaUmJeFcacmAdOycDmfqSKcnp+p2ToXRKAk1W1uLCLvoZr+cWPeBq9AZ9+R5swlLcQ4srPzO+s5m5aFqSTiOEIftZ2xmBmc3likCEM/Mo47FgOINPdJzLN+vuBb+57mA8PQ0feRmvfghMs8cZ4qT89PfPjwXkkRY4+aJmQzOvHs+kgdIjkLNSUbf545wzB0um6FjpfzmcuycD6feX5+ZlmWleE59MM63nIpa4E/56yFM2CeZ44vRxyVvu+5XC70fY+PJnngUdA1OKJE6HUven5+JpXM+4cBKZXz5UjsIze7W8ZhxKEtpSlpsc15LZ7G2K0FnLGtZ6VavhN0jNkzVBfySB/CahbhnFO30qqSKNj80XqUrsnLMvPx43vm+bIaD6irZKTvO0vIdZ5G7+m6qE7RMTLPF3Sn8gp2OYGSycvM+XTi8emZIpHdzT1CIbgbQshM5weeHj+Q8wTe0ceRw93I4eYLnO8RF+kiHHYKECmhXlS+RyqkxQCuihc18BOqxsiGDTjnmKYzy3JhupxYlgVv637gOtdaq6qIshad92raFhxV1KUypcQw7NbCv3OBrouov4qsa3ErHDlz0FbGG1aMUb2+sNlvuhgVfLSOrtaA7lYgzuO5Mv0UwNos86gEVvCRghID/n/O3rW5kSTHFjzwR0SQopRZj35Y35kxm/3//2F/xNqa7djsvdN3Zrq6uiqfEsl4uTv2AwB3J6XsLtsoy0qlRAWD/oADBwcHErvI2eOdSGYFEo3jOAYM04RjPqIggpHgiseeqXYgZpZybHYF8MIIvT/7zAiyfRZAz452/pj/02yunX/t89/q291/zSBIYr9+ZjW6/SuHYcB4EIklH4PocBoYxAImuRBxeDgihhHbJpVuy7oqPsMgzvU5QVKwIZyXlnw11nz9+O1Tdo+trzV/sv88ilryzctbdRg6v+m1T9zihf5qSVGZe9q2+vtEAAWZPxtv72JtOuEUuBV/TdesxmbOBeH55VbGWpySWEjwpawEIOekM7WdW0WTd4XT6+e181I/UvkHfv9vAuiCF2NG7BECtBPMqN0xZWGv64Z5Xmoraacsl5KL0vkzwqg6Z2RdQlh8fhZh9m1ecb0uOJ+lnGq7LgDEaREDICLzJYv4Z85FjVErL+kXuXdSVuqdxziNGKcJwzAqBVqM0batQhXftkqflpp5wr5IN5qUuWZvkjodgJIzqQErtojE6ZHXcZ0VCYJcRy925MGO0cqZbp3NygjonCsAktUAqnivOUWi3S2b0ntxBEJwGIaIaRgxThGHccJhjJLZnCbEEDAOAY7kkJsvF1yvM5Z9xa+fP0uzh2VvYum66aW5gjh40olRRMyLAiEoLCKgpQU4NyVLJF23DJi7DxgAybhXJ75z0O3PTSnaG5cFoIAFJFb+offRjiuZpVS6MQxGUCQp1V1nvFxfINm3iEUNAAD88vGDsv9a8FFKUhtDyIVQsgVTAvI6w3CpwJYrQ9gZ8lsFmzrV25rBdngSEEwHSi0ocwDgULQoiHWpOfmAzVk0hoyJzKvR9i5Wx5yVLcKspSLeggAIdV71MaQ+X95NVQVgbeOZoWV2jACPbc+iIVaDXguQvaxT3AZ9rb21A8gj+xG5ONX2QGX0MAnFPSWIACqMUeOpr2BNAAAgAElEQVS0UlW6cxUaAR8RtbzdOlEFb0ZYn8sF1YqQDkdQRyEGIDhhwoUY4OErGCDORQS0TMBp9sZFX58zuqbZOQxR6PveI4TW/QwMjGEAJ+DL568oe8Eff/9H/OFPf0I4HHFZBqQkGornS8DDwx/wz//CwNf/CwDwz//0L2CW/GbZr5gvjMPI4KmIPWCHtDJmd0XIHuPDiGkccIiEUlaABWDe9lUyhERIOWPdVzBL9tl5j/EwIYYRy7Li55//hr/85b/w5Vn05X783R/xu9/9AcwOH375Bcu86LojWGaw38MGxolOSgM5ct9VCsI8dcqA8iHgcDhgWzf89Nef8Msvv2BeRFfIOw+oTtKadpyvF0wvL8iQMpt7gMKe5T6478GOakMMaPn/AcTdAgYNVHnrZ28BHeavfAsEub93/3UPdErg4itIZyXFrIdHLXWhBtD1YKqByRK4i60z8Kg6QkZAFYtgD4u+VBfoX9cF32xlzR7tnBCQQ5zTDoiA3q4ertBy+M4RBrrycg0YbOzUT8isjaoMLIMwCkGW7LgdW2Oa3QNk5iC+CXBBk43ajIhcB4a+OW9QsWbxZwqxJB2+Mff3TmwV4FZA7a31B+DVuXkPuNn6IdiZ1fw8e23Pwrv/zObkil9/O179s/af6S2mX78v33re+3v0X8tUM1LaRWzexxpUC7NPylucC7hcLto44gLmUkEBR0DOUsZWdjnDfVSNJC+ls+KPSrnOMHg5I7LuE+/gvAR9jrTznNNGNQqaSTfvIuW/OUkTIG5ly7dBoc4HqCajDMjST18/dylQhV3qxqztRbMrlbmopamlEHKGVhVIcGb6PeajNCC8KAsdsK6sRX0dGGgMjxhGPD1GBB/xKTMulytKfkFKjGk6QMpVdQ3ktp6Cj5AOkARWMLN2L9TE2/lywdcvXzCMv8fhcMCyLHh5fkHKCfs843Q8Im0r1rRL0wAWH9C5Nq45ZWRNJg7DIA2GfEAKARgD8jgguYjAwmwNPsAXxlASdmYUJ+Pl2cFHZZ5kBjzh/bt3OD084uueQUyIPghob+X22nmbFGAprOzo4BAHKcfctoJtW3C5nPHy8iwltQr65pwruBlChGlLpdT2rLCMPFJKeH5+lpKufUfOue4JZtaOtrLHQ4yYhgGJHEpJyFnWQIwCjHHmmuwYRiEHbPsGJq6SA7vLWJ5X+CBnbdp3XK8ZJWUkjRPBytxNGbtWmnQRu/jGmVX+xSGGsUat4neJ3VnXFSlL1UeMoe7hcZjqejV2Zp90Ew1FXxvHWGwrTT0kKVVKFjaPA8jrfcdR/JFtqWetuK0S4xZmzMsFf/7f/47Tux8RPGMYgTFGPBwfME8F23bGsl6UzV4weI/DFOHjiKLnai5bbdwC5pbA0TimlLvzQwkmpr9ZiiTyt23Dtm2IrrGEGivdEhJSDcYMpD0JGIhW4XRray02fW37zf6H4MAQXcbClhRoNsgAnxu/zAXVNGvVZO16bect8es8Nf095mpDGdrQiriOyTgMoHIA0yAAZN7hs+wlxalASRKAhYPe69avqhq4pfkn91qxYIb3dPP6um7r+fmt5Kwm9JwmXB1qyTOjJUpijGKPlIm17ztSyVV3+Hg6IW07UFZkH+CiNjIqBTll0ZSrPi7BzhAiB8cKIHIHork2B8zSZbiU0n3/9oy4Txp2hxWAW4Cq3qH7nr/zt27Gt7vuAVQ778qWwGj+DhkOo01VpukIS2rZ93uADmxNDQMQfAfQKfahUizBSQlu2Qv2JA3nrKdArc1R/xP9Or0HOO+u39zFNTiP6ANiJDVeAZKAEmDnuixYVmGbMTkpBZh37FtC2hLSvmPIpCV6ivY71AzkmnZcvs749eMnfP38jGXZpMMKAMcmuClCnPI3ITovLXoLREMI5o7rH3KAdrUrvGBPBc4tUvbK0lUnqX6Z6OFJpqQUApcEsJRpFoYE38VU+NpmtHbUsh5aMAAAKQOtc54uAC+OBWlmmzjXQ8Pqz2swVQ3d7TRJJhiwJS0LVzqUSLviCSESpsMRk9FeVddC6tIBZgE6t13awa/zguv1iuv5gnmesaUNL4uUbRIrMKTZiMzikGybicaKY+bgYdlUMV5WitUOg2hij52D37fLbpsLN+Dct5z033JVpoMyNu137X0Nmbf3MEfw+eszLpcLUkp1DuZ5rve9nGfZ/Cz6iYQ+YGABfPoAlduBKslGQiIBg8RxzO21xAhxAmv2yPScGA2sdV5KWUxrrgfpiB22LG3gTc8LtmZ0XLeSq2Yd4HRsqB54rMbJSjiiIMCSHSc5MGoI4OTzkBehUCaHXBzYBZDqCxIsgCQ5NGWwZMkocGc6Ec5HKQ8WURt4Lx2onA/qtBXJ1AYF/ALpGtMsqwsYDo8gN8DKhb1X57oCFVqa4gNciNKgRB0w74DBF0QnTEHJkokhD3ooUgU0vMxF8FJmELw63oBzASE4tZ1iM4lYy60TSsrw5LHNKx4+fsY4jPinP/0PPD59hwTJjHmfEXzC5fIrDocnvHz9APyfAtD94fe/F10ULSv2boMvV1CW+aJC2OcLluQx8AhMJ1CZkAuQ9g0xOISBhI2gpekOjGGMmI6PGA8HDMOEAmC5zni+XPH5+QV/+9uvWDfpirzvPwEgPJ7+F/7y00+4ni/CAAkKsljnWyh2Xx0WBQNyubEjegzL9+Cw7huu84zz9Yrn64yffvoZ12UROjt0bTPg1P7uJeO6LnCBvinSf3/1TmJvW/4RmHF/71cOyRvv/Y+epb+/c7fOxz0Q9y0wMZWMrF3wzN7eO0cGvlRbbAAY2f2kDK3ZYK4JGLGXaH9gt6f2Ns6+7p+x1DcwIMnWiCXHLJNJJKWtBjIakAYLUgwcAunPUQG4QiTMWEsOgCpoZ8Cl9150bjWoESZsYxeRcwjU9Hx6EKkH7PrvvZpbItEbIQ3enDi7pZsrky3ICs5piwRNYPTzcQvG3YNa9+//lkN7D5L197l/PasOWr8e69lzxyy9/5vsTOLb8bl/zVvXW2f+/b6ywCzG+KbD3nnBYEbrLFhLW8Q/jDGCAVzOZyyLdDw+HI44nU4IMWDfHXzXgAF7hgseMaqmcVFWfCAEF0VzhwV44cBI2GvToRakNVZC1cy9CUAAYdjfrrfqvwCwRjFsYHVlGLTghNEqMcSfdBr4qtZUHV/1URRErN/KkLIk10D46kaAq26kNaiA+gNOgWZm1H3pHHA4HPDdd9/DuYCXlxd8+vQJp9OjsrBGDDHK+V8bTwh4A9IunKl1D40x4uF4RCkFl8sFD5cLhnHAtm24zlf4EDCOI8ZxklL6JEwIbw1xunUle8CWi5xH0gHYI0wHYIjSGbYwCjyyJv5RnAImDO+kQ6eJpLPqIb97eq+gsJwj0yT6XKuW5Pd7ad9FLw8AtnUXcJlFjiOEgFwkbtq2TXwI7zHPs5ZvkoriC+Bk0jGAAG8ppbrXmRnDMCj7TvbZtm21oqSdCVCQr2ArK6KXSiQwY76eJTExDKKFbHYtFZTY1u6+SRWIAJ8RPko3Ug6yDq2SygDX6CKYBaxLKSEUkcKRJIg1OHL1DPJREng5y97IXLBtsh8kiToKcElU11V/xhvQNgyhAm/jOIIISGnXLs3QjuwZWZPdh8OIUk6Y5wv2fZNy75QgOtnCdC0lAbTg/fsBx8OI5887cpoRojQlOR4PuM5RupfmhHk9I84DQtkqUFBUQxIs4JzIA0nSlxnIeYEl3NkAKVKWrysgGpD2iNWL1t+g++Z0OtX5l0vLyq2KAdJltfBez7lqWzjXxGkfg/ZxnXV8LYWVQaw2xQHUaTsbgCwNBRiRZY69NS0sEJkcNP/C9qmt3dvmRLcyCyblU3JrRmN+D3QPe3iQH+Q+qhlOzvxWqTJisw3GmFe5Hq7npqEP+n87k4hV1o1g3ZDBfXLpdTMs+ZTiWGU7+4H2HgxY5BVjRMkZ8+UiXaGZEWJQ7eGApx9+h2VZkPeCOV91jzOGOCA8EOZlkfctUA1DK1kVSajELJrh+hTmT99fb/o+3dX/7C2f9Vv/tkYO9375b7mXfa8nglRDD5Hf2vf8CqCzElcPFtkpEoKW9x7k5dzPEILBlpLEpl7sLhVLdChARwBbzN1GQx8Oos/3d67fBtAxY/AOh+MoDQTGQctRCfuesOw7lm2tVGImXzcnd46I1AB7wLF0cowel3nD+brg5Tzj66cLvny9YFsKmAbsRSS2PeRAZNXIIUj5RFFxfWPh6Weuz8zaNYQZ2gFWN5hutGXd6sazDVCKNFuA6n1YiWDNEmsphjgKMnxivEsF2IJmR1lrtwXXaDor1QEGSwDhQ2UA1Fpq5wQQwau4CiaSuO8b4jAIm1F/JwQ5RMcpYAiMEEj1Cxh5X7HOO9Z1w7buWK6zlKtuCduyYlsFSJWMYgINMuYEDaLyVjXcclZgqhpCcV7QfT7vSEtCGmsQOnbMXPXqmjNxu8l6xkKb1teB6revW9ZOKhl7VxaTSq4IdoxyiKeUcJmlS+XLyxlJ20RbSe7WMeiYBYCpJWWMepABDs53gbxFsdWJVq9Vq1EkiAs1IGPyyG5A0ZXByoxEF2ibYSFQZWZCgV3A4Tg+1HG/yVJRA01FYFP1aNT4egXjvbajDs7DBQG5RM8PwkyFlG16cgKQ6f6Uvz3gjwAF0bSyz63PABsnM4ok5QkxRIRxQIwRMU6Ak45EsoZFWNr26DhGye6TAIrGkBNNIAHpMksDlhtKjAyo6Hh4B6jQcXFRmXYewTtEVxCDBsOlKKNQ2857LT3XuSzMtdRVPDrVAfJSapF1X0D1KrlkFU+XdXU971hKwMPpO7iHd7hyRMGEdVGhdeyYL0DmA+LwVD/Kj99/h7KLTkgpGwgF0+TwEHccwo7BMUYf8HCY8HTyOB6AEKTkM0bCOMrn2HYpaXHe4ThNCOMRx4f3OJzeoTDhr3/9K/7f//gz/uM//oxffvmAy/WiUgYO25pxvfxPeBckk70lAezVZveZTQPnBJCXyRBHRtYUF9WrKwU5JRVUzpjnBZ8+f8HlOuPXXz+AIcHOum6VxerIazdYYM8JUbNkPcPnW7bjW07AW6/twYL77PH9a771PveveRtAedv2AXb+tITAPXBhpUoUZM+yagNxX+7WjU0Fv9DDaQ0waI8lESiRCGI3e6IsNEf19YKLsQQqepWSYLoflpQxNondh0uB68SjK+OsPkhr5AJAykdZ7ZGOB6ljV0xlT01w7cmhtqhAxLqtwUEF9DrAyzTaLJiQuWnAZj9/N/OkY2ysRQMZe0BMfAoFf1SEH0S1NFGkUW6Bsz4Df5PN7/ZXKU23z56tZ6XZvy1J9VYZbOu+d6tZ16+1tz53vT/RTWOh+7V7v27vz6b797rfU/bM9+NP3VnrapOijOv1inEcEeOgvyPPcTiM4FJwPl+qVlUIHsfjEUMc4LwkU9Zdur96UAX6YpQOjJIkEGFpBqkGHKAUerRybEWCua0h78VvaiCCsls538yNlbcxoBUdyn6psWHvF+hWUb1VK3P1zkC4tqaKJi1Z/TiZAznbSjcvNclngIG+V+1UXZOLem/tZGfagESEh4dHhDDC+4jnZ0mAOucwxBHH4xHTNFXfkGAlusJAD8HX/ceQBOWednw9v+Dl5RlP7p3aHcJhGDCNIzgVbMm68jJiFJ2+xnoS1hwTqj2Sqg7RTl1SBkUpm3TRq/aklEvmUhDGEcSM6Jz4QQqYUimajA+4nK84n68oRfThQhDdWRn7pD4LpOFa2tTWiMzIvtfef3XNy16QfxvoDEgXxJLFPzXmeAi+VqlYXGF2QUo01wogyuulpPXL168I8xV+mBDHAUPwEhexsIK899iWFTOkLDTEiK3qTzNc3MAFiHrvdV3hY8DgBjgijMOIMADRe9FUg+j9oiiDqzgwGwtww7JsACQpG6I2luECJNUMVf1s2RMtASgll4DJKfniqp0LIeB0Oum6G6qtjzFqTLKLDl6QJLPtXSKHaZrgnMO6LpjnK5b5in2XZofOsXTSDIx37wf87vcnPBwPyPtXfPjlinV9RtlWGRPnkZCR045lvkiJ9T4gDqMwI7OAJ1QawFBtuOpmFQVuCznNeytAxgFEEdNh0vM6Y9RKBNF+dLqfJPlmRBIiaehVqCAXL52CSWNXK7FVXS9LNPW222yr/Mzu7+CDVOJUP4P5Vkc9y9/Be3BpGuuAJaSa7bezwzllOWd5X6tMyTmjbAKYihB5OyP6syInrlU3At5rbEaMkiGATP+8pUlaWGKt1K7kHQhEgPPC5COV0vGQe/fnGt2AF/0ZpoA3NQylnYGssaZ8b1m0ctGSMUEAOqSMy+kRDNHDjc5jK4uC3dqcxUv8iowKaJptNyISa3lUw1i46vFJgqvxwO591h7Qe8vHvf/evT/V++5v+SDfrqJrCSoLsolQwTp7D8MdGrkmtfdF0S6rQt5yTkgY5DzYScAiflZUfyBIAzJdIwKYugp8ir8NNGFr8UD/3vWbALrBEaZxxOn4gHGKwgQJAmbsuUib8GUTHTLtFLnnhIcwaNcLAY3evXvEeBpR3I55W1EIeLle8fnLV3z6+IzLece6ZjgSA3VdpL6/gIRTKPsG2ZEYrEq5fx1IERcJGkq3MUl6hCU2BzZIsM+NVUUuIDjAwSMnYflBBSm5SFbfsjO9g+5cQCBBfINTwGQ4ooU7pJnzhKzZlpZtaJkHu69z1OTscKvfFELAOAYcjxMOx1GyIeNYM0TOG2MvI6cVad9webli26Sd+rpu2LeML5+/qgaLGklN1thhJl36UtPwYDMSXj9zyxqI18gWv/VRHoDmWPRf923b5X53Qc+3AfnfdnmqN2FuzLjcMymoZdZSEif+69eveHl5kc423AKP+xJcr9RiUhCC0A4IKVNQ427zqocfF2GCWlZF2C0NuHJadlkghsBBgDkDwKx7XfRDLZUJUVqouzCouCUke9gBdKwPaeN8mA6wTo62Qu3f4mwWzckR4IUpwJAOP4UY0QfRUiQHqKwcOyAQAW5A5ghGuOl+l21SFWCnCqoIqOWdCnkOAeuaVITW1ewTF0YhabKw7dqIAkAtowRakBtkf5uzRuoosJM5IB8AkmYPpQA7S6rPWHwPDxOmKWIYpPU6ZwJzQSIWJoVm9opaXCZoYw0I89QRyIk2H0qBY0jrcxZ2XdFSonVLWFZgmJ7gD++wcETaGDFK1z0mj7QBS2LADYihNSr5/um9NEGgDJQN4A3OF0yRpJmP9zgdJ/zw3RPePZ0wRAeHBCKHd0+P8N5j3VesmzzvdJjw7t13GE7vkIvH5brgb3/7Ff/2b/+Gf//3f8evv35A2uX3067M47IhaSBh7Grkgm1P4tR3l9gXCzoFjb5n7sjPcs2IByJkZnz5+oxPXz7jy8tXCaJjQMoFOUmjhMIMp4DPvicN8vv3bgyTto/p5tlk6dwCbffAwFugzLeub2X+vnXP2/s3YOytTOE9aNF/v5SCTQWWRYuxMbiDskgsMSWfsdN2qeCdu3sWqiUx4pxrBlmdFSlDag5V67WhWYf2pHeAjNknVHtNKsJ7k/20sSm3trhmzcHtbYiUcSQZbGMHiv8odq4wo2hyKDNrMknOfty/Z3dZkHuf9LBxfzWf3sbxFrCCgaK2xpSFbAxfhiUZ5T72mV+V0nTP1Y9Hv55636J/7m8BbBUo6wKuGnygNW/oLwN5oABphxy9er97R/vt9S/gkUmOdNnXu8/e9rKVY8qaFCkTR9JFvDnjGtiyaByFEPDwcAQAnM/CZHp5eUHJGaeHkySG4iCadJnBRRqcCSAd4IcogVrKWmGBytS3/9pn0/G/CzbNN6gMPyKpCqE219VH+ObVMeYEHVT9OgEbnCsQgo2wl/qAp5bj6DxLcG3JRuha7ZMLag808S6v1bCOWIISFvaKJWZzTiBIIwYZ8wdcr1dcztJAYlkWhND0vYYYMQ5SUglnotw7lnXFqoyvy/WKZV0wDgMeHx/x7ulJgDlA/aKWGO7XtO1T7z2GQfyofZcEdAhSBoeSRCZh3zFnRiKHyE6rDsSW5pREUZglQecZoMy1mmDfNjw/P2NdFgwxVm00QBhaOfdsUbNrUuZpSYUKwhsoBa6+5zBEnE6PiHHA9TLj+fksrC8nIFJKuwbydj7IfFs5a5XbUdsQY0ThgryuorGUdrwb3iOEEVlLJUtKlSFo5ZNEmpjVrszi28lYZXTM0bp+S917xKKXmlLCzhmsBARPAXnLul53BTdQjxNmIOVUGygcjwcMoygA56ysfZZmCuu6Vp0qS16EEPDu3TtM0ySMWL1qXOYcvINWPgTkvSBllY3QBO2PP/6AeT5ivp6xrFdNQEEkUYYBuczYt2eUUSRTvGNsSwIYGIYJ27Zj0+qHbd0Q4gLngBgdJPmZpFmLjR8aAA8ixDDJOZZZmms4SFmkSlHIXjrh9CClfI61NJlLlWa4scUK+pgN88ELCUDtltU32F5KvEPYdz04p2XKOYFcBrOApvJ7av9V182ptq3FnUaAsYRYH/faOu7tpl2l3CbOWiKrSd9YNVvdb6TMVALgAuqnYwZcQSnCHCsSuIvudXGAdwhFqvr2ddXfImQoYKd2gAvBhwgDM+XWzU9gZvVz3vIPPYrOUwEL3kEMKKvdsIF937U761ZtQik75nxGXjf8Vy44PhwxRCmDJ2akfatswhBEWxr1+ZqdAIyEpOOsvlMFuxpiV8+4e3+7P8vfOrt8B4D+Vr+6v09tHNb5FfYcBjKSPXB3vfL1K0Zauv1gGs4Zuei+y60apdTPtSs5RCQubLAKRI6Ju+Hj+zH4ByHEbwLoTocjHh4eME0TgoqdC416w7qumOcV27ZLtkLLSUqGdiiRw3s6HvDD73+Hdz+csPOGr5cXXOYZpRS8vJzx9XxB2h0YQTbGLp1TCxXptAcB11CNhOg09M7aDXjCkpkGa/c11hIoykiWZWbWDoMqTNtNGLGUuHIRFN5pyp3BEuSEgBhHMQIG2BnowgDDaUagZbjFKJRGtVU4tddoEj9eSwrkpwghihOh1+9+/A6TdtEVNp12LXEkh+h6xXXfMZ+fsW0LlnnGvCx6EOzY96K6KV4zF3ZnCQqyss1cLjBLYHvYeckYey+6DYymi9AcOJmXog7Hvu91XO+z/XbdI+jA2xv1Vab871xUBY8IGYCv8676gWh6RyllzOuKdZdy1sfHR1h3w6p74kWfos7D7/+oJbvCfBONjkEzbl0gpIGxMdwsUCMi0alxoYpqNtDOIwxRnD7XlX3ZAURA8FEMkDr2IWippgV0eytxAyxDXNC0cJp96IM3C4LJygNZ42YNmIECRwVQLce9CJtGNAOLMszECWQE9TQFY2cTs3aiBSTpfV9Lzi3TS97BBxlb70SA2KjwgUgp/qrjxxrIKjKsZh5OO1BJVZ3cL4RBOl6SQ2ECKAAugElsj48Dhuko7DLvMLiIAC+aNtuuTox0oyrq7JCXTpUCzvvKwMm6c0oB8p7hQRiclHoQecznK9a0Y9kJbjzh6YcfMDw+YrYmIJkwqn+y7htS1s5S3bL//v0jIhUESuC8oKQrnEsYAmPwwBg8nh6P+OG7E8bokbYVoILpeEAYI/IuXVtTyghhEE0GF7CvG/7zpw/4r7/8gj//x//Gf//0E67ns5Rm+yDBmBNR7JJauSqr3iZzQUrSAfE1kAQFTm+R/HsgvJbZOAGDXl6e8fnzZ8zzrPqK0r3Qhyh2PBXsOYNSQsgJIQdlZ5lj1J5R8JHbMj21GjfPeusg3oIIf08D8x/ZJnvNt5wR+ZmBmLdgzLecnnuAzjnVXgwRLkSxL/o9aED4ymlFB+h4YZaadSdqpStEhGLlIDf36EFF6NnWALrGok5wTpq4CEOVkWs2UfW5SrM/BKostz650jtoxVrX388BN4hEhkilACRMgDUXM/sqvoDci3CbXDI7CTTGTb9GbudIAGHLW5Wuk5cJlKfS6QQCVVSbWfXruhKIt0DJ+yYW/Tz2ya+3rgpYUQuu+mQZuFTgvY5pnUl9DvNZ9HtZS5iJFVRzdDNG/fP289hfvb6PrBMHRisPFhtfKkjUtpCuZ4I2NRCQq+TGCkj7joXl7HTOa6UoIwaP08MRjqBMugWcxWY7AEFL+TgKYyKngpJ3hCCMDwP9pJxOgJnMGRQgs0q349yXeEnZGqvHlAEq9TwzUMqYTnFQiYfCmuT1ol9nWXvtSs/eK0CmyQ5jLLOwZSygvtnzkGRTLectdLefLMBWINCxENCthJx1bkja1wi7vn1+5xg5SadF76V752E6IoZBdKfXtVZThBCwbSuez6X6x7Z+tm3DlkRDjZzDEAO2dcHLy1d89913mKZHXK+zAB563lupVGGuCVpb57JnGME7BC9d30PwOCAjQcYTKUuTCUgpc4zC5l/2XWwFOwgbQDqRD8OIOESs24br5YLgAg4PB7FRRBjHEdu2KkiXZK2QQyDRvJKyzoKBfC1LY1AFO2Q8ZbxDcJimEQCp7EwXE4GFjUzit9mJu6eElEkAqsOAwgk+kTDJnDD7XIjYVPtbGtJJ0LquC/KeYL6W2YxxGqvkESqAw/DkEHxACKJHbIzNQkDKGZ5Rwb+tZMCTlEGyEztCqtet9tkapgGo7HAiYctKzFm0cZiHp7FKaBjwYDY8hIBhGN6s7jEmHfIOT2oFnO2fZnNOpxOmw4TT40FKXTlLybuXgzBxweXyFY4ynAOenp6QD9p0ozA+ffoELr/i68sXbOuOYdwxHSYE5zAEj/gwQJSfbxPpTkGtLRVl7ZYKLticZE4YR2X6BrU7aiMoJwVojE2KGxCjrp9CN3sFd5ppraQUCqg1W8JoZbE1wVMI3nOdi9zZegNxnfNwFKR66NW5duujNPtlsXaCuWU+KLBp8bVrv2dgk7BPVZOWi3S7JmnaB/IC3jHkHgbC63ZyJExVTwC8YgRFXiPVNkW6R6uGnRILFwgAACAASURBVOyTuzM6v/YV5eeaADTpLsfa+Vr9C31tUqAdhUWPm1n0HFMGMePzh49YlwWHcZJY43KtVWBEBAzGJr/1L+3rrDa9gnMkZ4LBUKUoyaZLkolvKHsu+tasxd7nrevet34NuPGr178F+vVjC41N5ZnsFbclxf04t/ijonfSxwAMr2xe0ywuTCBlFIOlYSZnh1zlWQjFRU1Uqf/bHsuGCrdP//r6TQDdw4M0FvDBqLVAKozrsmBeV9GeSwlMHsEFcaZIXIw9C4siDhHv3r3D9z+8x7xdsJWMT1++YJ43XFepg45hADhi3520r/WyyKHIL5EioaQumhkPPYhuEF1F5B23YM8OJ9KFVrLUCBsi6knKcoXhAYxDhOiLiaaeo0HQ8zhJq3gWJpMzN0Z13WxxpjUhFdusInTuvTjjvtILep0XaCc86eQZlTo5TcKUs+sPf/g9xlG0stZtxjzPKvoqDLnL5YLlOqOkhLxJV91cSu06IsaSEKKVAWXNmGqwQwzyXFePZTQMbEORDV47JVXWg5plm4/cQi677jdUv/HuWXaVgXb3+rey7W9dxqfqjYNpXvSBi5WDMXNlek7ThLyLI5rVMI7jEcdjYy/967/+qzpqvstIqGAnkUWo8v6q0wFlH0qbE1dFZU38EwpeOQfpIKPBhhhGYXiZcco5yRosRZqXlAKXkxyqpSCSQw6SfSlUkLeMjKxttQmkmo6UAQRCpAAEQdKKZkhlfwlAIltfgDt2GcEHFM7Ie8K8zSL8S4whBIQ4AjwAzj43AGjZt45DzjI+TA6ZpRN0zkVZEJIdtuyuBTNEBAQPilGA9ZpZZuOxacYvY3AMx9oVjDw8ExyTiO7CYd0zyAX4MCHEEcMQMR4OOD6cMB4mIASACtJ6xfV6xXydpeu0hu6krEjTCyFjvpLYmvF4hDDNMrZtBxcSrZ1xgqOAPWXkQqAw4OHxEe9/+B3iFLBnYIgAZcI4AB6MtBWgAKMLiGNbg+9ODwiU4bGCk5TPBucxDoT3jw+YYsTxYcLjwwM4JyzIGGPAw/v3WK5XXC5XXOcVBcAUPfad8Xz5jK/nGf/3//O/8NPPv+LDh0+4Xme1o74mK6wswVFAnKIeXMC6bViWBcWAEBabY3vC2HNEnSNoh6M5CsxSWq22OZeC7XLF16/P2PYkDogC2TFqsJ92pZdLNzHrknifvHnreovJ84+u3pH4rb/XO5b9M70FtvWMh/t7fOv5+8tp6ZE3TSe6K6+gW1bVPUBXWat8z8ACAJMukNfcOsxc/9x/LpMKaCWVHXMPzTmqpTdaGoruPv2z9OBYGyD5QyqHYUkzmMahAnavmHA6DnZGmM5kX/7ZA1lvJZhePQg1cC7r2JMylFlBFUcCCsCZ3oGWHVJ7purDcAsw30pM9s7n/Zq432sGlvUMmn7+mQusU/xbY25z2zvLN4lG87a6tdUD8N9KxtnPrCz0/vP06/fe8W8JQD2viiRg+3LefduASJimCO+t5E2YMofDpE15RO7jcjmDiHAkwAURn085YU+7AhcFHGP153wQ9lvad234ceuFFwVke006vrGLBibIn32XztQCGATkMsB5L0weEsanBLqtIUDKGQGqMtHJixgYLg/Szw9gyQpjrhIJIEHd/NneJMFd1e9VQLnudZsLgqMgncuTnNsxRIATlnWRUuEgZbSmkWylkPMyK3hcQB0gYM2WjsejMGKcllZuG758+YLPv35A9B7f//gjxiEir5voKW8bUsrqy+XGkFKJD2Op2veEXeXBJnHDwn5HLuCk85R3MBUM0QnI7oWtEyhgGgY8Hh7gncPleq1+5cPpQbvFyjh5T0jJC1BXxHew9QhIkyZHje0nyX1NfKVcmejSAMLskaybZVmRS0KMrTqnB8dtLa7rqmXfLdYAgG3fBcAOQQL6XESbjRtICgg4nfYdeRiE/aS+NBGBQoRzASUllJxlT4jKJ0YvpAMPXUcM+JzASTvqEgDy8OzVf7NzyGwPAILuu96mCHNPmod5pC1VUM05B3JtDTBzfVYDlqzKxrSyc2YkTtAaEBjhxM42Kc8epPNusdJPAYUKF8z7hm2e8ZxUyzvbPQKGIeDHH36PeV7wfL5gXzdsS0I5ZjgGoouI46ggTWcrC4OzPI/3KqWTIGQWKsickdj0KkO1z8wSkzGXmpgz4L5qT1b77bScNXf7XjpLS9lwAzLNnxN77er569QPNltWsqu20JrKcdf4Rc57bcLjFJStmrW34JwlBQA0n5tbCaqseX2m+jydIWaoDIuWkmuDHlLZgwAzcqrZqdZSoAP1SwCJE7o9ZfvKmLAl7XCabLMmfURWUIlbJrraYaLOb0GbewGnISw6oK6/m4Sclar7IHuxFMyXK1bVqlyWFdYIycDZ3q8j18aYi8nTdGXVBtKpm2fVdIY6Odd8AWe+gW5Yi2/1wLi53vJhANSE5puXnrN17O0Z73zFWx+ksx826DUpaskn1c0FBGwnhSQJyuSW/df7PoY3WTJJ7IuDZOi47l6bS0sZ/6Ow4TcBdOM4wCiqMUZsKeF8ueDl5Yy1CosGgEK3uMQQ7mpcwzAA5PDl+QX//dN/4j//8t/4+W8/49cPX7DMG6SRlSLppvNU2wt3JYA6EDmnCtYB0Cx7c85EnFgGxEpois6MGaRSdjUUAiZaZw/yAT44BF+kLW+ImpkJSlEUx8L0FUpqKLZkMJSZl4EYIlyMGqRKVBs8VW0IEdB0emCLEyaCub4TMB10cckc5Jzx/DwLILfOuFwumOcr1nWtYq95z0DWwEQPlaLMNqjw5abCuawIOfNec2zitDil95qDIJlIuouJ6maQmwmAQ+os3wV9dt079/a9urld06HpWXd2rz5I6O/fv0faci25M+aclfMamAYAmRNc8HgYh/p66WxFaHQlQds1PyV7YZzEoQWEmcKirUhMrXOpjoyUA0o5hIlNppK1JNLDuGmyzgXILdsiGjddUCvdY9QJN102cspc0CDCykd9QEk7MpzSowFRZfISpBYCU5EMYVGR+MQAy+EGOCTOyFtCRoYnB/KQLI2CzgWMeVnw8fMnXM8XuOjw/vEJp5PX9uZUHXkuRcpTi6sZPxGlRQ1aSTPyPhACMVD22so6BisFArhsCASInqXqYqjRVdI8yAIv1Q0QBoa6WeTgtUHLcRrw+PSEh4dHmVPnwJyxXC6YtwXrssp4k4jG75blH0aQrqEtaYmlMTJzwRxVh448AA/nB6HFlwJhFgY8vHuHx3fv4McBCQ4lAWEgwAMxFIyR4QkY3kdQOmLyAwY0sH6IhLxtIFdwPIwYhwHTSJhGjykGPB4njONYy6+eniYB1plwnXfsmTAcHsEgvJyv+Ov//G/85a8/49PXMz5+OWNeNmz7jqzli1yka7MBKD6KY75nE4aWDF5hUm0wnZ8OfLc9LQA/I5f9DTaaAG3BDxiGCdN4wOcvX/HTT3+FaMtkUGG1R1Ze1fQ7912crRbs8419sEPYnJO+5OlN0OeN697e2PfqJzAG2I2z0P7+R6ChPMe3AZf+GfrPGKMEP4fjCXEY1LGzMmw5B3vm3Fs2VM4qVnFcd/P9YgmnjnVg5UqNKZU02YTOyb59Zvs4jgiasgbQss3SxAF6Zt+CM/cstpv7GvCre96Cb+crWiYhVnevmsDrzh+npUL92jXWmZXi9WfT/ZnVAkigDyJ70FUa0qiAf3U0xVYXtg6hDRyz6z7YtrG5BzFtzizwtM9r55+t/X79t/XZxuZ+T/T37wG3vmRFGINtn/XPue9NfPxeOqIH+e7B437u3wIo730KCcrD7fiQyLPM87WCE33DqHGMiOEJ67Lh/CLMrm1/wtP79wBRZQiFEKX5BBKCUwBVNFVEqNsTEgvTyNa0JB/abrCkYdT1ZH+GYQBzwcPDEcfjETFGXK8XfPr8CcM44vHpnYq8q6C199iisALN5ko34AwfHGIM9bUASbK2Amo2duIvVzF9OFAhRGVZ7NuKUnbxO4ao3TKD6LFlWe9tvkRzyjuH4tv6k+97TS7qHGmnQ+cJPjiM01BtTIyi5XfjJwI1kU06H1ykQ+nl5RnH44Tj4Qh3OuF6meH9UjuVWndoQBhX0zTAEgOmBSdabgnRAYELOO8Y9OxmV5BJmBkUA2YN7EvRKomRMB0HhOhxOV9wuZxr9ct8nZVFpnprgATKMcCKPZgZKSeQB4YRGOJBGu3lDOaEbVuVQd5YMNfrFdfrImdvttLF1gTtnm3c28x5nrEsSy31Nbv7eDphzxlb2qU6CgyCdI/1nhBj0wiz/VyTYWA5dyAARNr2uuDNzlb7IYGRaEB7Jw2eXmZJ9E4HlWUh8ZW5ICLUeC0MEpfmnAFHtbJJ7BXgXKyNo4RcsEmiVG21aWCbfw3csYrJgYKWJFsnS4tDq6+h40pFNdgTyDoalwKnXZ2LMjRJtR29C9rZGTgeHvF4WnCdn7FtGZeXBWM8YBoYQ1D7bMARSfXMzkXLq2UP+OBhFQJZCSZmc4w1VHJW8MKJXA23MlKb+2XbRUsrUF1H5tf19lvWbsCu2o5E8m+GxCfMQHcUiH8QI0RaoMkN+SAJex+0iRrp+4Lho0NKRcEPK9+X+bSkYQiNERWj6ZaaxrFo1deklkdl6ObMSGVH4V2aYXRUEksmMzvklJqG2N3nB16XWN6fZcwMHwM8EXwpKpNFlRQC34DFGjOSdMzOWUqFiwqc13MxOJjOpZwTjJWBdVlQkvpPThJRe95EP1ztX40jS0LKXuWyRlk/gDKB5VBgKlql1cArQ5QsVgURvAuCKGhiiUiYZxRC7fwNos7n6nAb6sDjat97P7dB0/0ZUH/qb0k8FUhlOWT7pJI8etF5IV3DHlU+QME5HxxccYBWf9izlVIAtXEEdVkV8KtNv/RcAinoD65NwuzJqf7vH1+/CaDzwRxoyUau+4Z1WztGlqCQFog7FoQ5+AAQcL5e8Oc//yc+PX/Elhf89OFn/PrhF1znFfO2S4MlFdotusEcCCgZrDXulT0HAKWA9CDR2dABVEFeBfkcOzB8Zd60hLcsEPJa5keE6KWFrnPCanJUcIhOP7aUS+QCpNLe73w+Q7J8qkcC0emSaWNMY4TzQTrFgcElidigVKvj3eMJ5El0wqLDGCaMxxHHw0EacejhsG0brtczAPn3X/7yX1jXFc8vX5HSrm3KU13YUp4AeJ5kw9n3NfOjKFrtjmPZkGqkalDUgijFmYGacW2eHSsiXlsmM2rZ0FtB5b1D/a3rLQe8/30zTr1R7JFy70WLilm6VgV1fsdhxNPTE5Zl0d+JGlyJk2VjmPaCGEcM2oRD3hsArjoSQjOXP33pDkFERg2AU9HVIiwKoqxln8ZYVKOh40pBNNI4i4agJw8fPPaUpBRk2QASujwOjDGO0s2SJLPkScSVS9rVMnkxElqGISC6BGhMTrP8DFJdCCpS4JV5l5IXRyCWMlTKekiSw7onSMcthnMBYRgRoofThhvjIE0cvOoHsRcAk7mgKFxMnBGcNHmwrJjzAd4TwM1ZErFogJAkaM4Fu805a0maLroCDdLHQZtAaNcdLWl1NMCHiO/efY/pcMTxKIxJp6XO67qgpITr+StSEmaaRxNt9zlLFnPZkJTdI4E0QFF0N4X+LGC/cwHwA4ILGAPBD6J9dzg94fD4iOk4yUENYT04YgQAebsAxDgcA8bJYXQHjJTBW+skPI4emR0OMeD9+wO+e3/E6SFiGiLS9SLBv/egCLBzYOeR1xWX5wuWpWDPjG1f8Hy54ueff8VffvorPnz6hGXbwRR1vhz6g41hwIv8yVYSlbmVWik435wCAybEQPSsVTsYbzc5SeBCpIGmlExfLhfMykpgzuIAFFf3rzUcCN5rOZVlM/ty1VudrWZX3gbd+qsHQH4bwHb7O/293wLH+tfXspC7e90zmFpQ4mppzjiO2lE4agMhFa0nPaOrxum9M2SGW4L5W4adzfktKCTPeMsoYzYWrpXAte9DQQDme+Dx9lnA5SYI1AHo7nM3HjDnTll33TTKOgNQ2redAgl17DVAJmYdGzkvv5UQ6hNKt5/PvrYkVXMa6e49LfuqKTHzeQW8qumEdt9vnZ1vA1xtTfW6PN8Clu9/ZglR2+jee8QhYhoF9AcRrFwt54y0J2z7hn3bb7qlmw2we7/V/Omtf9vZ0evCGFuirkm0sbVEgJV1goqc6WRMXvUVLHGrgVLRQFRAZwn6ChgleAwxYN8TrpcLAGA8HOBCuAEc9m1Hwo5p1K7bzqHkjC3vQEYFL+T1Lcvfg6JSbidVJgCwLN8BYJxOR/zwww/w3uPjx4/49PkjJEDVdV7XrqsMOedMJ60FEzJERW2cf7UGbreXsinYWDV4tZdKKYAlBZVt1/RxSZ9R5WV6kCh4FbwnBcVCC/5gYIqxdloZc/++tscZsu6C93h8fBRG2LLiy6fPcN87nE5PcCQdU5dlRWHrgGuWrrfhYq+g98xph6ci/kkpiC6D8q7+JMDE8AgYo4MfJmQGMjPGKWJ6mECFsO2bABdeO78H0/Hiqq1bbZ4CvCAg5ogQPdKuzHmQ5lcChsGAlb5xjQTG8jrVfdOmAMVkd6jNf7/f+zm1rq/Gpqq6eqGtq2ESZs6u0imm7ZgUcHcd6L5vO/Zl0/kUMkOkQeRJICD5wzRJpc8ugEJaN+SUACfgXi2aqlE6NMeSkRJjTyuOBwGxhcggoJnshYDjQ8T1MquvgZqsX9e1dnYex7GSICzB4kgqU1pZ6VvVPFrpo1rc5Ahe35/BgPPY91XLOBO4OHgEYSUpcy3ngmGY8Hg6AShYtxnrsuN8vogWssaArgLSzU+Ryh3ZgxK7mY8gXxK7mzluwIE2emPWRiGtyy8gAFtwAx4eHlC4YDoccDweQSQEB1s7xj7sgfMOIlF/2+JEPVOcNGzyetAxl5oEq3a7ZBTK4kMDd2fHW2ce1/VBd2Ba1sQxSmrxKQz2uUdNbK2pn0oFpdxKytxfb59bjd3uYqs8ZOYbgI5IWNy2j1u8KzMqMjIEFIdCd2xyHS8h3rfGL6z+btmTaG2Db+7f+2iAaiX2msQVPyNkrnwzHSaN/fVzMhoDsNkT9attjWgjsX5s+nG7f55XSUa0r+99IANe73+/vyQ5cguYyjh058kdxlB9xToXRuq69c/lJepf2eexdW2fxalsiY5JD2ze3+ut6zcBdOSgE12wagbnfD5jW5NSQ7MACirDoI8u2kEoOC8ztr/9FX/5lbDuVzzPL7guM/Ytg51XPZCIkkkRYFkZOW0A7+IouG4yxDIiKygC/Vsyh6UGjo6iaE7UgMzXQ5Acicg9EaCOjdfFKlltAuetTp6UTEmDAfuI0oJbRZ3JgCtIm3kAKUs7dPIRQ/SIYUQcBkzjpKL+HuQVHAyE6Aa46KSDpnNYrpcalJ7PZ+D/+B8AgF/+9jes6yoLQjNLr5xv78CpCfdapQWzZHPkCzOmpf1dJ1Ad+krp1rXw5qJqoRGYkfV92qZuDtY/WpD9db950b23Ze2+FXRY4Jr2jHE64I9//CMeH0/1Z44Cjg8PN79b0W897Aoy4jjhcHzAMERYeYEBdKzt7HstIjnYrVTTtYMAhFbnDgF4yA7XhoKaFhE5h0iEbd2Ry4YwRGx7wnydsW/SvTftks0uTlvPq9YZVMS47ElZbAHsGB4e7Bqaz0Vo8Q5ORWWtrEWcfYZkEZ2WBUj3XqHxOm+Bn2ReHx4eMU1HxCgZmTF6OCY5bBm13EywOi3xgJaEwsFHK2UFmES8uCTR5xH9PsHaGFIKCwP2nOiaQAMKWQ8eDIfkI3ZjUKhDE4YJ0/EB0+GAx8dH1SARrbLrquXi6wbkDWU5w5UdXrvnEhMKGK5kOJMfyHJYEovmZmSHoFpTpQhQLyxSed5xjJhOD3BxwvhwQhgGYdFraURwJA69yzgE4HQAHg/ANDhMwSNwxn5pnYSHSBgPT/j+3Qk//vCE6TSC3A6kHZfPnzGFiDEMAJGUIi9XvJzlz3Ve8XK+4OPnL/jl4yd8/PgZX59fpBzIBbiopQuFUDJVJ6gUoBSxK6Lpw0i5qHPQysite1+xsWI7aFuTGFn3r8EF570wWZQVkvZdGQlXrMsCr9m5kopS/qXbcNk1KA2k3bWk1EVM4q2T3coOUIEILnTb8PcOsOhtTA96vGWj3vq7v8d9ieT9H9bmRT2Y2ANm9gxVWL4D6EKMSFnWnmkk1ue0z6fAmVOw4qZ00imAheYAWSBtc9gC6JZhFPDB9P5Ikw5NJLoBXFKaJM6Q6ZBZlrxLAhUGa4e01mzhFigzMI4ViLUzisihWIDAFv6jJtMkkZcFaKpYVCuztiYwr4Kc7v37uesd4AoeqbMnjhn1vtnNmJoIsSMVW6fX7/UWmPstkPh+jfVA7z0D7f736toiCRCkIoFBkORPDA7jIB0QHx4eAKCWYp7PZ1yvV6zbjj0X7MmSuHzzDG/5BL0TDgiwJExvkQ5hZsBLd0TpQhdeMexaQkDLqkquP8uMWvolfmHBjgLOASGHytikIAAHIQB8wDwvWNYV54uArcfTqTLVKvumiG+Y0iYSDI6ki7QzHSYLKHTddwGTdwTRThJw8OnphONxApFUrxAJS8xE7UsRMHfbVmHQeyggJ4G8o9eBuXOWoJb15rpurm1udH5IABSQgE5KTkYzBZIcAWd41dtyTptBaUdz68RNQJ07Yfx7lOIlEIeVJNq6Niar0zVzC/LWDq6l2aGg1TGnY4Anh8+fP2O5zvhCn+HIYxiPev5rkulm7wlQM8QIKEPJUZA6Ewe4zMjLjBgChlGaR5WUkfIuFQlc4Ei08hADHt894f3TOwTn8OXXz/j48QM4i4QNF+sALeNK3qkOJdXPDiIJ6IgQ3QTvGd5lhMRipwCUIuxKYe0Ja0uagJgPGsS3VGkPjyYh0DOfjQE8jmM9i1NK2i0VlclTIM8qzLwd0yg+HjEwjROu5zNSzsjcWMW5FCzzjH3b4YuWEeeMfd0xTANClCZS87YI8yZlUC5IBmKTVFhYLGjJvcJSsidVfspQDgFJAd3agTVn7Clh8ITD4QFf92csy9JiAm0UYZ9btKNjHZeiDgsX9R1g+6ZbO/3XFX+i2igM6jsThDxR0g4KIonitVJL2HeEw2EC8xNyydi2Feuy4EpCMBnHUe3tID4+WZCtJfwG6tTNroA50c1aJ6JKFqCbZ5e4noiERYdWIUIgHA4HTJOwjM2Gmb0tmW+Sb+1+gEU1Akro+avncG36Q4SkoHi12yygOHNWNmKrHuobVLWEjUpsuHZu2OcFS8KdtZyt5AQuGUDzu3IW+R8hq9hZzZpEAJh93XtvXSJ/dA/aNHva+26llCpZ0X8G4DVTXMyndVe+ZZkxM4rlH1nY2o4nEICVhdDDXMCpICHVhpn2nM45uCisRR8DXFRtdKt00CZ6NpbcryVzYNSv6gEyIlLboykUumXUf8tPfut7ddxs99352f249f9+/bWst/a7Ni+38/Y68ckKkcjm1qeqRBj7vV39i37/MTf9fcP1uydv/zbf9O9cvwmgKyi1U8yWM66L0KLXTaiiJamFKhlwUuJJBDwvX6XEbfHAs9wnKaGUWcr8pItL0G6iRpeV+3FOqheTtVuyIeWS5S51c8DOPbg6SHogMWrJiw+CFIcQQF6EVRkQgT/dnIbiJwCcdjHUzCgZtbUw6yIfYlSHmlSgUQJyr8HB4zSBnLQyhncYgkMcRhymES4EHMZJqNkg7GVH2TZclwX7krDnjOv1ok04FtV8EIDONOe8D7Cww3TlmJP8XaSpATxJSSGVuihkuXkUbYBRx1CXoDgymmG0LKOuo34h15Ic2QXVELet8Ha2vr/+LiOAXwfIN+uyy6zcX0QiQPv+/Xv807/8M/70pz8hxqDlwDNAhMNxvHEA2VnZjgBPx8OAGIUtYFRYovXmGS1r338G+0jSAcfV/AM7mQtYqbEdmAXaAUjGUnSYs3ZcjEhFNLdKKRjjiGk8iCCvdjLOChKl0gGFzoltIIfiUjW4zFAEmbCnFazrF87JuvVeGLPkMMaIxJAgqx4mYsRLYe1u5RCCOEbiAKluHIp0OCoM5zK8j6Ix2c1VYSDkAnaNVWEHntNOUHI2iACr2E0RpiZIQw6nnYsA1wRtyYNdwGUHCkmjCQFaDxJUnp5wmCYAUiawXK9Y5hnrcsW+beCc4Dhh4oxAUKH2XNm9YAkcg2ZbTccyhiBlDKydppmkxDVEuGHEcJgwnh5wfPeEOB2ELkcAYYcjYPAkQNzgMATC+8OEQ9wxBCBQwegJkQj50BrG/Pj993g8HfH+3RFxCgAl8D4jbQtc8CBt6FAy47pseH6+4vPXZ3x5PuPjx0/48OkLfv3wCefrLDo2rOBmNiZlqVnIxuZpZWmm+bHnLGV5UJUZUtPSORX9fpe5NseHKyBhh3r0DjFIZ2LvHJbLFS/Pz0AuOIwj4jBhTxlzWbBnKb+ueoXVuWrv9ZZ21ls2pwcPANQy+H5/96+//95bX78Fvt1fvYPW/vSZ8zY29loD5G5Zbnp/3c9MrnYFbQCd2Brbc0J+ueugzcpEZZa0oEMNpA1gvR+r+jVB175T5ke35y3YKnwzJ4BkG72xaEH6/FRlEuTzhuoE3ZR50i3AY2NQOSosPoMW7kkpDfQMUeehOlZ6Dzvv+zns5/4+OXT/vXZ167+bAwGQrV2ROoFOSiuKZquZbvdPv5Z7QPBVBphvtd7u17x9z5JLr89ZASCou6cxXnPOWJYF5/O5aldZAGIlY9Pk4VMBeAMX1N/9llN+D9JZQjhnKcd5K1ln9+t11gTQl/GRro3bzXhYJ0dL7vWl9fd2wpPD4HxlEey5YF1nEDlMh4MEN44Q4wEoBXvacLmeQSTSJsM4ytmjDQVatl78q74c1J6rHx9j+izLUj//OI4gcthqd9YEp3uZLZiopeWyxshxLVOv6witQVZfDKcoowAAIABJREFU4nw7PQaUu5ux6UN8acoh2rIFsr8ra4Wlq7YFq8y5MnBC8FDyuQTEgPjQZCIi3MowzG8BNAHfGNFxiOpjOGns5QifP3/B5XLBuiW8e/8DlmV5017V/UMyHv2eAUuZ/rYuiDQJO2qICFywQUBjJmWPM+Pp4YQff/wdKAOfPnzEpw+fsG8bxhjBnKTrb1abqA0MQL6eqTJhEH1gAog8QiCM8SBNDtgA3YSUNuQca6winUAFqMtZKmFYg9B+r1fgXWMg0Vt+V/fz9XqtbE+vGdEt7RjcIA2YUhK77B0QPB4ejng4HPDlyxe8XGfZi5VxRgqkyr4qpWBbVwz7gGEcK4i3ni9wAAYvTO8QAsZhwF5SHRanDaFLB9rYe5Duq6xN73JmLMsCFwL8NOA6X3E+nzHPs4Bdg5znva0opSULzZ5kTby/dfWAmPz+LUHE9Ks4i1VPuwCpOTLcQZiTIQSVwCE4FwEasW4T5nmURn7bhsuZMYwB02GU2PYusZI1hmCSxHcmSFEOEQgeji2B1j13KYBzNQll+xqAlugWDDHCD2Nt4DDPM7wLOBwedA2RsJCrr9Dict2ltm01hlQ9LpAdxm3fE6EH6a2ay+7lnCX7bs+/era53ka0M1DsmTReYc6Q0epiPRvDkoUoQVLZxOLE6vjoef13KHQ3a6Szr3L/LBV42df3A+Pm+fc91T3a+3BBS5bFroskUSotDqvMyar3aJIgOpdlbfgHNwaYcw5+EH1vO7ubth0JC4KoJnxaYyYb5VL9KaDp0PcAa/+MIUQ9y1HntYK43IEFdn82f675ZDa2hnVUrFBfY5nXGx9I/2/6p29JZfRrqTH7AHsoARz1XGRCW9/tPb2WnBtIR91ntXFisHF+5DVWhelun/mt67cBdNqlInPBmoQWvKei9eE2OmKMqIgjL359wcYA79osgBShJsiBXhlcooXmoTpU0ndbx4FqkNc7+13OQA/4W0SaGaL/wa5uCkYR4VzVsopD1FbiIrq6qSaBZVCmONQOltUgUwAFFZJ1OskEkEqiBwdE70VLYxQAYRyE0RC8MJ0sIMi7aFvt245lm7FcV1yXC9Z5w553ZEAFbtPNRNphsq17CxCsjBDoDIqwE8QuMoyvJeNj99PQgAtIy4x1l4AgLCozbr3xMbBPB8Xerv3F1kL7NbBW5+0uAPrWdZ9x528YB2auWhoxDthDwe/+8Hv84Q9/UA2XK5ZlBXltJ1/EoUxaSunh6++HMGAYTjCtg1wIQNOzAaDlf1SzBXYaSs8HyUpwoVZmpwZPxlYCZxAJyt6Vs0Ed0G3LcORVi0HYcMfTJJ3iHCHtCUwkzDYSfJwZyJ4R1ZFiRxBFBwHEqnF38nvkAHZOOw0SHAOJldBP4qTu+9pKVHzogqfW2twCAAGNpYlMGCJKEo2JYZowjZM4Wmr09n2veobi2LWD3jkH0Wcukn0uGYUVnNASBpCwHrPqTeacJUfgCOwBPxzhhgnT4YjT4yNOpxMO06SAHmO5LljnM+brC/Z1AeUkoqDIQNlhQr9V20OPp0JiVqB7OahjGpyAlKwgI8PDxQPG4xPiwyPi6YTh8RH+OAExgLwHcUFAwcETjgPwMDocI3CIDscBcm9kBCqYXMAQPSh4WJHrP//TPyEOQdrZ5wU5L2DHCNOIp+kIzBtevj7j5XzFsmz48nzGz3/7BX/95Vd8/fqCy3XBsm6iU+g90p6wbqLVEmMUhn1prCJxQlHHI2uJmLDRhHnB5MEQ9hoqWNYAHsBAbD30DNdR53gcRwwxYAoe0zChcMHnL1/w/PVZEyPamc+F2kWW9G7Bi5yAlSj2YJYFCnZJt2Xd3x0L9h6guwcX7e/77OA96NfT+e+dhPvX3r9G7NttKVr/+wbO3d+vOZ8F3g+AMkyc6zTO0MANA4beei5JqPYAoQnIK6RUnxf6b0k+kGpeCstESpHsMuaRyU5UMAitFJZIwW1F6Cs4Sa6Cdr1mTP1M9U56lQamV4dQlx0r69LslbqOCuLJ1xagvAVCfitj++q1+l79e9izZJZA2lHLzNrrigp50917fOucvP9+f07237P1bxpAPah4Wy4iIARBWBL2M2PazPNc90wPGtf14zxIG4b1AdH9Wn1rDNtg2bq43TcGTtr5YzpKtleNDROjSCXc7+2cc9Wf6j97D845PRPhMjIPgAeWdcd1WbHtX5BLxunxEcM41E6ATAUprdjTJiAKZxymR0k0xFBBuJwS2HFnm0hZ9/acUtJopqoCCQpOkXM4DkNlPLV93QNz4vH1pY9i/2z99YH1/XppIKLW6MjYeClPI0IV9rezGv8fe2+3Y0uSrAl9Zu4eEWutzNy7frp7mDkwPxJIA1yAQNzzDkg8BDc8BI/FC3CBENKRgOk53X1O/1RX166qvXfm+okIdzcuzMzDY2VWnxICNBcTqqzMnblWrAgPd3Ozzz77jIM2WRMCcQVzBaRoV0R04GjR5g9MpvXD2oxhW73OzkXXwZjBIsqSIW7josDTptPEzDieDkoyYuD55YYPHz5gzbqutVTTS82qAckTDtMEqdu1qbi7NjYQZtxEkEoGQChM4GFEBJCGAzgwHt5/hXdffgkC4U/ffIMfvvuASBFfvvsCLhS/VgfCI1C9lFAboelUt3VZDbwlQmTSJvOBgLo17yBKINLyYRTCMDooHbAsG9AEbFp/fQmdz8N5nnG5XNp6dAZZmwtVmVpqRL1DZmkMxhQD3r/7AqUU1apdFAyPKWGaJoxpwHrRZhMrBMu64DbPGKYRUiqWdcV6vWp3+xAxJtN/DgEg5S2llFS3Oa9YqwEExvysIihzNnmSiHnOqMSYjg8aexHjT3/8Fh8/flRCQwwoJTY2VmPcZWX/atygMUV2TXGPLeExp/3f1kqVrNIqnU1TX5/AwliXjNtFq87ScEMpGcej6V7GgFo0EZ8S4+HxgFofEZhwvaim+I8//IjDcWxl4g7Q+/4bA5t/r35qtf201qIgMut60YpdZbV600K3LV5mfrlcAA54evcOj0/vcFtmfPuXP+O2zFgXLcVNaURes7IzTeNQDGjZ23AvlTYU3tAJsS6nRSoqVB/TQTqvIiHSta4u/r4s8vU+t4Gj28bhB21xWfsVtbXnLEFQx4DS7KJDNCDc7Uu7zxZ4mX/76G6vExFkCMBud9URZreHtSCkuLuv6s6yACTa6M+zjN79VkSa91PNBwzJGKzm711BmNcFyfwlkGvkEoZR53kcgtoWNr+dAQaDYwIqIUiAuwQNEMWesHN/3D8vwBCHhqH0a6nd6vYM/HV3bs7mY/pz2UCwdi7/ub33ta/0ll+0e55wf0/nbJNgUDF+OA5tW1/zhXdAohPMAFAVgKv9W20yfFQqLPvw08fPAuhKrVhrwbIK5nXBsnbCzFCtGvNF2w0AaqizZKu7VkaRAGpQqtN0bZM1nI9JqdR5WRFjasFWBUH7Foh2RSEAVYNlFqBC2woXEfsOxDhADF3TRbA5L6gVz+cXc1jJnHG9Xw7BusZ2wqDWqIKZlWUUAmJQECQGMuacIEXGNI5KA2dpgr8pKevFN8acCz7++BHLsuB6m/V366rXYeUSxBFLyRCpCki0iaTfUxp2QY4uInOqoM0PtumLzZh0GQES9vDIwDnoJBNYdsKdpp0Js+t4HQCofbPvwN44Yr9A7oOOtxz39pm0ZQI3vYINbPTg/ng84vHxEcfjCUM6IKUBP/74YzMww6AaYas1NwF0TvlmPQyDMubCCDIAQLPteiv3Oks/FXh7d8NtK0QLNuHzqhvLSFpap1pqagHmebEshzYpERFwZEC0y3GIo+ZKxYRWE28BX3QmpBhgYsL9pv5GIuCo+ghMOlelaglnEZ0reb61EnY2Efhobew167i24L4Z72qbdSXwmFBkUTDFsnIiBWVdjSlntHsAAitFYtkBBvq8rRTXGllomTqjkjagryBkARS3JkRK4DDg4ekdxtMjTo+POB6PiFEzo5eXZ6zLFfP1jHy7IK8XcC1IgRCpQrCi1IxSGauVE4mzVjyLCUGuZoZN/LdaJykmBocECgeMD1/i9MUXGB8fwccTeJyQY0CVgimqeOxIjFMiPA7AKQpOseCYCAMLAlSENQXBEFWXilgaQHf7H/973F6tltfHo339AsB//I+9mICuDwXekF/5f/loFgWarNnWZvvxHYD/8p8C+Kf/X1/M7vi3/91/8//r5/27e2zBsh73k0J3dvyVchBAxbEFr4Gv3Zlsn6qVgLrfI3z/rh7Et9fTtjGiAyor2u81CWFab0ItWabMb/1qDnkHGvcOp9v6Pin0FkAnIs22tevs7rFiA6uCNYggu0Y/T++ztPfVPXvxLWCuL7PtG3ncB+hvPYNtbzZtNghcs8yzzX3JkZd43o9HFYCDavDmXBsg6yBYrxt7fx3qR0iTD+m7UvX7bAsAunI1vw4F7ajt2f56L8O7b/DRP8d2fq0dwThaJ+QwY80Z19uC6/Wi+j1RSye1w2hE4AOWhTDfVIsvhAUjT0hxaz6jPvLGgCSglT7p5++Zsy0hGVWbDKSlYSKA9h9Qlkr/KDV4MTaaBYP6ySY7UApaIr2VBHfPvlbroPwagG7BUUsqaqknQgALgyMwWNJXs4bGsl5nLKt1H4Uxd3nT8d3m3/a1jcF+frQAOOcGKuV1RYgRjw8PGIYBw/iMb7/7iFwqAoAgzrzqrBmzap1KAGcNrgozChEkMkrQqqHzqgBd4AieEkYOGE8n0DAipIjrdcH3H37AD99+AFfgeDpgCBGCrIL+xrRDLShSUbLaolDiFphanEPECKEgm7QDW/Ky1tICZq/YZWMpB47G1vQO6ZqMul7PDZD2tQKgsUhfXl5ao5QeAC910w1UUK4iLwuen59RS0EA4fPnz5hvC56fX1SLqtbGwoopadIyKimhSEGu2sl1XVfzcXWN11xwWzPKmhWMjkETMAQFhVmrNBpbnKixnInUfl+vV8QU8eXXX+EXv/gFnp+f8Yff/wHf/eU7ZdQxN1Zc77e7jp7bJx8bAEhphOS602qVbp/R+bfa81AAG7aexCoo5uuK2+WG8+UMvgqW5YbbbUBMWp4bmHE4HDFNI06nAczvVMOYBC8vFbfrBbks8HLm0+mkov6czCclgKrDAfr5Iii5AjWjhohauzVrz5Sh62ee5xafamwbcZgmMDPmWbsj35YFKY5t3zHNq2abNsDG12xvh4AWW5KWr8P24Z3dt70OpP7txtbdJ2ju95nSV9F1xwayVAUI4Pu3aYGJaEUebxCcx3j2L5Xjqapn/1MHd+SULdLubFW364sBeNt+qZqnfdKpuwMluIi0TuAsaKxJ9xeiN5C0Eu9g55GsdsYBboEmMEJkDGNCjJroZ0tSS7Uu3X4tzKCi+JGIqAxSv0e2e7rbG3owlbXEuPel+u8Ato7PP+GH4O78/d/6vfH+vH6M49jec7/H7/f+fVwvNp+9hBpcNbFir9v8OjK/cgMIHXB076+P9fu9p//5p46fBdCtOWPJK663jOt8w7pUywihiXjCfoaoEDyoYl0WFCu5JApNc0GgkyFG7QpEwsh50ZJLAdAoqUlfC2dwbCjztl9TC54ZtgAb0JbaQvSloh0wBVTJGj7Agn512GOMlg1kIGsXHhiowlCmGkV1fIcYkJIKCUcmpEAK0A0DUlK9qVIycl5xOX/C9TJbx6ULlmXFbOy4shogZw/WjZ3qTDjToFvoVbs/1eoTTefx1mpdmVGq6F/72WSHZWAaOKe/o4rmDAs5Sm/0WHBndvScfWef/gPE+JwbWNv9bRfQ2OR5I07z58bOb0ev5WKhfM4Y0oDDYcIwKrB2PBxxOp0wTQdM4xGXy9al6nA8IMSIatlqZmXShSGqQzdoNkn1WipKXlSot9OsqFIU6UAfsFkWFPocmQMIjCKCUj2rHFup2RbEuO6J3aF/F91sYxyMLUKIg87ltRSgVDWgHADRjGK07GML0EhLuLxNNBA6uS0to6KonbM4RGj7dM24Z1EnfZ1XEAFD3OjQ/fVLKYgcNOiuur4CTKQ4VftMVkCQozIqKlBkRREViFZQL+vGU5VyTiBwqOAUTQtCg90QGBSDOWVk2jL6xeTM1QHHwwOm4xGnxyeMhyPGaQKBcLk84/LygtvtBSWvKMsVyAuiLIhcMQjApWppe60oMiBDSz45RISUgMDGGstmV3RusoGEINWyHMdHjI+/xPD4pYJzhwmSEiQFIBIEGRQ1S34YIh5HwrsIHKngFAjHCCRmMI1KYghqCX0niP/5f4X8t//r64Xz749/f/w7evxvN27+lrL/tAxExNmGG4wlQuZbmzPaAWPu3IttMKXbh3rQZsfCg0ky2OZBgDEkrHTMfQz3E6AegzucbvPumWa9k/gKNDI77DIIDYRxMM6BoAYmOqtxf963gCz/uQ9c/HU9iNe/Z8dw64Lx/t/b9Uvrev2WY6wC5Rr4Vwu0Hfwisi50FdrRucqra3cGn3/+vUwEAKtc6NCb7RX+3wYcduBj7cA6ZZLqvrsa2NGXhisjqdre590HrRsk6f4VpWrXTmu2MlxvuM4zzudnCIrqNB0mS8pFxJogg3a7XpZFkyoY23kDc9Mkc3BMWXPW3c+6LTq46sykNKQWUKrvWAAPnOCNeKibYxtreF1XwPxwwFg1rSOiANaIjUhQK8OXSi3aSXgLivUJeFWFMwi2+SH6uSGCUFuykRlgHhECIxdvmqGyNttzNykkq1qoLWnuzUGcxesAlFbVhBAguWCtAEtF5Ih0OACIWDPh8/MZ19sVVAuCJKs2USNApJ0enRkYCKghIoeIKglLZiy3G1YrHxumI+IwogggPCBnwQ+fPupnvLyAiuA0nRAoYL7NoJgBrhiGgArT0zL/tVabH0SA+ZAVLoQvLRgMQbB1EyRtqIWNQV2NlcQckJIBskXnPocHLMuyaSV2608ZmDdt+FeKCsVXfR9ZLCVkDbCga+q8Pqv/QQHrmgErw5umCQLgtsxYFu38PsQBAycFHCGIFsPkNZsskIGB0FLdVazzN7TD5loKcq1aiVGV3UikrB9vYMJs1SUhYDwccDo9IK8Z3333AX/6059wPp9RqwIVqqO8dQl3IE5EWgOPUoqVdAYMxwEORziM4/ixAy97kIBQoGAsVy19cz3eWpQ5W2TFda4g0gTC4+MjOFTEBMQQMSTC6TQCeEJMAZ8+/YhSK87ns+oNzgsOhyOGcVKAhSNW0SS9cGoogM5xvZ/IWn7eyvW6PUbnV8DhcAARYckZL+czLh8+4Lvvv8fnl8/W4CS2e/U9tQH7kAZG7Gx4i037pLs9N9GKtlcJErGGPRa3aMKfG8awLyntZJb65wObw1a+L3VrpqBM4NDKi/1ZViMMCWrTyQY8xn3N1t/dpx1s9+zXUQCrvPJD/D+4Ruo8zy3R1e/N2uyPgZybCnwhm4k+38jkBSxBGewZlVyw3GbwupgGqoACI4aAZOWt0Sp4tGELoxSTEbJxhWE5XcpymzsGCBIRXP+/7dmg3esU0N2P2StQr8XR2z7ScBuquzG+94nun8E9SHcP4u3u4c3XbIQn/RV1s1txoA1hIxsjqyoik2BwoNn3RqLuLdu/37q2++NnAXS3sipV93bD7TajZEWVtSskGqDkDRpIbPO2rjbwzJ39pBsAQ3JGZQPN1hkiFSkyYtS2z8U3FLsObyolUFBtiKMBDAGBQ2vrrkY+YJ0XtIx71bbLIqLNKEgwjgd7AJux9YEnaIcTBf3Yus+YYH1UpDqmiCFFjENEjJoRDESgGCBM+PHzZ8zzjPP5gvP5Bbfr0oE9+rlCDBoiRg5NTyHnCqyztkc2an0fFPh4lLplgwA1ysFKvzgQ1vXaxtx/kPp6spO9QDzraX8zEwWdtACaqbDARzbnql0Z7f7VGe4OlNMpDWcIeJbevT8244ayGQyt87aNhrTL2uGk3ZvevXvSLk7WhTcELS+9mC7Gl19+idPphFIKnl+eUWrBOIwQKEg0DiPGaWoCseuaUfKKKgOKBBW4rQV1zVhr6e5PwWEy5hkqoUhFVK4w1rU0Z4wtw13t3otlqL1+Ha2rYgWKOlzT8YA5r8rEiEHHaVXAdhxH9WYNZXbwr1TVCFDtGae8k8nO2ZXYRllFWocZYHMCFQjSMrUQE6ZxQBwHBGg3VCpVvzPrmiSBaKd5bULBhEBRS585gTkixBExJpTCCKxNZSioVSgIEFH9AtV9quAKTEkDIsWNAxADNAsXUMEoCAouhgGRE0IYMB1PeHp4h+PpiCEGxMgACq63M84ff8TzyyegLoiRELCCYkEQnaW6oSqAKRwBHkAIyuQIETGNurF7wwwLUAQBVRLAVlo1nTCd3uPxF/8B0vEdaEgorK9nVMSgVPNjrDgkwfuJ8cVEeIqECcAxEMZArgVsA+ueIQMUcPgf/idzaBa8XD9irRcMo2ActQR5frngh28+4A+/+z1+85vf4dvvvsP1uqBUwZorLrcZueg8hHjJMCOXTZA9iAIkYuBFKRW5OIMJyFWfVxVXntNV4c7vEJLFGQKwgMk7iZq9EVH7OU0Y0oCUImKKyhRhxqfvv8fHHz7gcr3i48dPWC9XxJRQUHGeZ3z8/BkhRAw8YF0KLvOCNWdEqB7gcDyowkGzM+asMCOGLUgls3uq+aFB7P/y3/5LAMB//T//m6bD4Zsr0+sNvm36tneANpY4LNghcCcS3OEO1NvJbR9yAKHLcsAdCKJNoLl32Np9EkCsCS7fR902Bi93K3XntAdVKLc9WvdsskBqy0ib/TaRbmbSJk9BRee3hgCaSCNCF0iafhQ8y96ch8b68GFVgE33BWYVGgfQ6RppCqg59j6G3XbjAYEHJP6JDfSXzfXuc0ZuEkU0qNle0zN69o7VW3+7z9qic/VUB0/nlQN4Kkpuz6kbr25i7Oaa2h495w5Es7l3r9G6d4Td5r+exyJkNtwSg2R6fLXjCOiFerTRtAK10kFUM1XUbvefuzEftrLT/Rhtz6EQTE9LH5CI34MYGLb5Kb7mCGhaDy4K7k1U3BcMzEhpUBaBSaq0xBYsiCQL5EIEQOBcEELBNB0wHm744ccf8fzygvO5IA0BRCNEqtpUAGEYgVxUdH/RPd+ZShwCalV5i03DdgOJszOWarEOqaqDt6wrLterdlMna0gF1rVKaH6l2hlAmY+s58oFUgFmAZMmyrx5EWAyLSYho+W1qluam0yBtPI0DzAqxJodqG+h+lsCkJiupYBqNf+OkZL6zKVELMsG0vn9N9aMrb1axRLU3BakusFePicQGXS/ASOxltcXAaRoJ++vvniPUlYs8wW1rJAUFHg12xrjgJASnNuodmU1m6/7UBFrqhAHDNNBwd7bgvl6w+eXM56fX7RDaYiIzAqM1IpKCnDGQd8fScE0JRgoS61cZ1vXVqEjW8CqiV40TUHqE7ocm63yTspqswkVCoIKBNPhpM2r0gCBMWFIUNaCJS8Yhgm5WhfVddU5ElRLmI3dk/MCQgCkYM1GzAhqd95/8QXGUSVhbvOM/MOPuJZrYz9VrmafNDZiAaTkVhJdYHMqKGunsFZUzUvGvC64rhnTNBoYpCAkk7GwDcxmYjw9POKr919guVzx+29/h2+++TPmy1U7wtrccaCZQK2S6Xw+g1mfz+mkTLrPz2cFM0JSySWdaRonmg9vgS5iSsoedJtsWXBPNMcYMIwRQ05Yc0EpK9Z1QRXtmno6PVgnXOtcXNXXPD2ckMYBtSopZr7NuJ4v2qQkFwxr1qaGcUABWcf2sFV4ARBo+Xjv5zsDMVjH5ePxiFqKkUGA8/mMzy8v+Pz8jM/PzwhTwvF0xHQc0fT2bJ8uRfdyyLbnt32d1PYrMzFAE+m29gBw1TLWplnWMXgBtOSb2zYCWbUQGYin8VDgweL3rfOziO/nVeNdEY19GGY3PeFnACqqNoqQAoLq9hWYVM4de+4Oa9oAy24PBZyeYkx/B7tkY8ORjRmskRdAqKx7Z4UgIKMw4xA8cWLxYXMlxDwxbeCmY8RazRNHSBiBMCt4y6IN0qKWr0ZrUhlMx6j5ZR5/k0CQtXOshPaZTvQAxPRCN39LK5S3BI65/BpT+/rxPUQaz0xtne1l1PmzYsCvU4ZJtrJe/5DG6Hx1uH+jMjtNbscul9yHZ+227sAqGyDncHw1f4XM14XtS+5r+DVogzGNidp4AIBJhOn+us0RtvGh7l5+6vh5AN1txvlyxXJdVIwTLkboND5jFxn84AvKmUB6VLvBzWllZjWapViZNaEWIMM7qKkhaFo8wSnqqq01xmSdNy0AEMFSKuoqEMlY5qwbLgcweRChmzu7a0tklGI1WK63EpgQISBRQCSkoBoJgzOJgMGyxQBQyop5XbHcVNQ354zr5dZKJHNe0YSxk9LRQ4xWMRQMILDMlgWL63LbApbSPUgC1pIhUB0bD0Zgk8+F3akvW+2jQTscJNP3SV9JYgbFgzcH5syZrrpIQckma+3OXdvkNW9uNwfUATJDsOsA5MwIAMIwOApUNAtTC4DA4EHBojEGfP31L3F6eMDD6YTAjHWeseYVVRgDAqYpKbsxaqetnLM651E1O6bjQa+DGJIrSsmo0C6ha64QykrNX1cd7y7Lr1fszDnAwwQBI1cNVLXtqO4W1cyUd1gLxt4TY3xWAlA8u2ogyHqzrLtqAVAFDtNoRkOQQsAQojr0WTsqa6aEga51dimlCZ6rUTXrIOq0w4GKWsCiTU4CA+PjA0DGmgNvmmO1KFMwkjp3tSANCSElnXuimc41A4EnHKcjEk/IS8WyZJSs4zBf59a8pBIBMYIQ9UYFkLpiXas2WpmOWtJLEQXBKP4RHAcM4xHH4wnH4wPSOCEFXZ9SM54/f8T58hnLfEHJM1BvKHlu1OoUAhAiRCKWVVBKgIjS/QdzeKI5xVUyJGvJ/RiTdaBiEA8gHpGGIw6nJzw8PWGZpiFzAAAgAElEQVQ6vUcOE6oAQXRsQygYiTCSIKHii3HEu0PCu4lwTIQDAyORGmWxjTsARBWoyoBwzQKpwLxWSBRcyhkcZ3BKmJcbzp8X/MPf/QE//Pk7/OHv/x6fP72g1qi2aVnBFJBnBZA1wGLUIihl1s7YNs/XqnICImKNQiwwAFtWXe1oyRVryarracLpypxWkAWiZdtk5QUOEHsXOddYGocR4zjier3iLx8+4McPf0GpBVkKXs7P+JsvvsJ/8q/+JRYS/N0f/wHP5x8RAoGxApIRD4Q8A2XOeByPylSMBj66bYGyckNglYZoa1JMc23vcI2WWQa27G2vd9UDM/1BsASP6i+obTN2Qq3q5LemFuboiIl1OIjHxj5QO3y3kZM7sWj7qptpTybBcqLuxLjjU2EsobQxbkXEQJjNwQ0m3L2VWJm1IzTWrYgg1wzXjPWosXWIBDURdzZJCLHM/r67lt+LOTqoxopSMfZg+pNiJfB2Gc3GuW1zMJEoWMdtauwRL8sEA2VdG8PNYwr92UpgCI3Zhrvn6w0G/OjBpz7Dv4NViRpYrT4JKbsIBtaxdnTvD2/M0pJO/gyBlgxl4lbuqz6S+i7OTtmBieSJJIMKDYQScZZ4sc+y5kYECIqtdbLEpF6HNoZR6QcOyqBe1gIuJu9gCTep2/j0WXLXL2qav9gYDg3AA0xCRBkPDtgU8XtQhp7Ymo5xfz8KuCfkqgLbOu6smqVrQa5ijHmY/6ifkWvGki8YhxGH8QAiXctpgGl6Fbx/ekRg4OV8xvPnz1jXFcfTCcOoGrHrmlFZECNhmS+Y5ytKOeDh4REUkzEMBcQBMbAymW4XEKsNrVKxloIUgulPafBJHBB9DxBYckVlL5pweK2QIkiDdWf3Ki9iY6lnW+PSnoUmAH3WKm8ihohICYNJMdRSEEftLsuBVf5CCjhEpBQgCNCOgz3Yyy0hIA7YcwAhtjl3vl2Q82oyI0MDX90WeqDuQWS1LqXeRETjKwYFvd91XbAsuSWaqBbEANNOrShFwYUqwPl6Q6mCZM0JhqgJwQT1oQSCaXxsa3JeMi6XF+1WfL7itsxaueH7mPncq/vWlJDNp9x8bX1NSAMeh9HYkNVAioIlr+DKSHFEiqkFu0zU9DSDda9flkWJCoMSIarpkG2agwVDmRSQW2dNykC0wgdHzLcZuRas84LL9aJrPSg4CAuotTSYW6VRFa2+mE4P+OLrr1U+hCM+f/6My8sFhDM8GVVqhXC16IHAtYDWFWEgDENSPa5BbX2Wqp2fS0GJBA4jyMB+Ei3j9ZhGhHSOs/r3dVnxlz/+Ceuy4tOnT7icz8imoelgfckrUEYtoa3KXlLTueLl+YyH0yPSOCDngstZQcaHw4TAwAYEsO2xFnibvcq5Amb7A4J1nM2YDhHj9ITjw4jnl0/49OkTSiHEMOFwOOB0fAemiJI1BiCyuJSVpPL1179sDXm8iUfOLwi3GSFFPDw8ASkhkiW5a4VI1qodAg4xgUivK6UEtj0+RsaQIkpe8PKi8/l6W9QO5QIOjNPDEQ/vHzEdDxinAWEw5p0BGQLtNCtWsqYVQUZiMZJEJq0wAhKkAmutgOurUgRRBmRjVPs+JtAEsJNCtLO5AlxKaohafun+kgRUychrbXF2iAEFWg3DHZCW7bMagYiqzSll3aPZUYACq93wvdrmgeUJmqfY2MUdYEWkHjJpNwBI0ZCQiUFRf8dBcY3ofmBjUFdIKSjBqqSqA0Jq88VcsZusIGhHVkD9ucIj6HBCIm0UMh6VvZ3LorZ7OKi9lmJsXWwy8ir8rXZiCJhnZfVqiWyfbPUmKpvUCcfQgKha1EZX33dJEZfaYQ6AShfpD9sYi7gPqRVGVSpQYGCng5UGsL2CTJ2EJSbroMQTS+duvn0V7egr0mwTIJCam99GCBCXaOIAsCAX1U/0WML+szeQVoq1ORyQhTQZ1lBOY4iab57SX4fgfhZAd5lnzOuiD02ksYGkqIMrRqP0MgPYQ2DpEFFR0Gx7AM2eNUe7Lz3wTAA3R9NL8aykAayilkVvWgzdVA0vHbRh1E6NzBpMMLszpkBdztWo9yomHEJCjGyBCUDlZtoOmmHR5gGxLVLveLQsatiuV+tuO89Y1wIWzXBWAMyDnTtswpAcVXi+1o2hkk0fprrunGcX9jXS94cHij7OjR7cDg9c9u/bZ9hfn1O/m7YdYLOx+9km25s0YOl/ELfsDkG3jm/MmumtnqG3zxpYW3tnIYAjhumEhy/f4/2XX+JwOuG2rKAYsWQBY7UAO5pANeFg3Y+8pFVBYQs4LZsJc8rV2Gjd/rquWHMFhWoNCDa9u/5QFJwAUs1CsHZOJQvwYlRQq2UmeN9JMqa0gdUGyCQESLTXRweL1fCxQvXNAPj4xsBb+SpvIpwKrFnwYRujZy+kigJPzOaABBUlNsA6qEgGYM+G+vmAbb7t2UNmsEQ31qAKavreqiCN1j2p3RjTqABoyahQVp0y8gICVbAEpJERYgKlEZUDSqUGzE3HJ8RhxDAeMR0mDMOk4FCtyEvG/PwRt/MnXK/PIBSEWBGpgoIGv+u6oJaImHQtCkdltFIwEAIgWBdBH3dodyUd38EAwgfE8YRhOmE8PGA4nsDjCcUYSZFVEHtIwHEiHEfCEAq+ekh4HBnHREgERPF8nTIYfX2JDon9foXUiFKBkIAVGXFgTOOEdbnht7/+e/z9r7/BH3/3J8y3C87PL8hFg9XbbcE8ZxBlAwpYtbhasCZwYWRDExpY09jRRQNiL9kLxEBSULWUgrws0E5Y2thjSAlpUv1NtZeClCYcj8cGdPXl09frFR8+fMBfvv22aVkWqPM6Dgm/+OILYIz44eUHHI8jctYxC1FBnwzBNCSkYQCNEcWEhhuW1WWRS1b2iDOK3Afvs3I9+6svGewBh96Gbowu7+YNA5UUPNGNmzrGmOtUSjPAW8mZsmEcgPPrt4QfPDHWrKz97MwpdADYW3vGKx0y20Nh59/2g/69m9TB1vAhN0dMm8WooycIZhJ07tRduUd3dABS28hBzQnqgYf92+T1+Lf5W5VIhT3brZU4iZijb4EvNvabanYZoBz2DLD+Gfe6Xa+AxjeO+3nj57q/nzbSpmN6z3LTse+ArLtx6K+vZ6jt5yle/V6B67CBegJ4y4wqarsdfFHwLLZrqlT1+fr8vmtOcD92b13T/c/69NEEM9iTCcbcFdtz7aLQugNAy1GlbM6+33Otzt4sVgpYd81W9DXVEqsVy1qVjZs0eVvN6R9SwOPDCSDBy+WCjx9n3JYFj09fYJhGFGjgNU4jAMF8W3A+n7EsK6bpgGHQRNu6rsqyUTE5LIv6j5ooYORivnQwKQ1r0sKsukHraokQ7IExZUYDgYI2QFtWAKwaah1gqqVrsCDGF78y1ZgipARtbtbPWXsmtVYseYE3bfKOi15qK7VASm5C5v5cHWQrNp9CiHCwfmPNeadX1z0suzXX+1Qb+9EBbAWTRSqWywV5uSo4QwZCEkGIsawZ3/7lA8ZhQAykjYmGEURWEhdUgzgXwZq1qUheVbJmXdXmxRgMAKooVFT+JlpSNagd1PElgPv1EAxEiNqN19hduWgTFl9fgZMZhwpCRST110LQc03TpECnEDhGxDihQjAvq+nzJWXPjYK0DliWBfM8Y7Ekw+F00nk4rggptZimVvXTBg4oVQkB1Wwxh4A0HTAcJk2ap4jDdAQHxnJTLe3b9apl1YH3ceBaDKRIGIeIh9MBt2VBESBNIzgkzMYUXZYF83mGFE2Sewk6ESMFRo0RZc1Yy4JP84yPIijWxEZEFMgOapM0ttvmsTeDI+j8ut1u+ObPf0aICcuyICXTS68rdDd2kPlO0qC4Bufr+a16bwwOwHQYIHhoiQmPJ0NI5m9ws08+1wFgGAZjWqtffr3puCzzjDrPkMqIhxGHY0SMmhBV2QYFdq7rrLUmHDBEZVbn+dY0KNdVG2TM82yJ9YhhSDgcThgPAyh6bEwt5mj7smygc3u+1WsplAWs+tcKjgi294sZ5Gqxj8bDXSd50WRmiAFNA1U2/VhLpUFEIw1mQoxs9qfAqUNwWyXKZstSmj1x5q7ejViIqvOlfRYZQCabD+L7H3R37uJki2+ghINKsKaXCmoHHysRs88mIyF3Po64lAawdQjW/bT5M7LXAPZmhVUYlUhj4JTwdDphPI6IIWDJs66/qAk8hxRcPov8fqDLBiDQODbtcsd2/Nj5PMSWTOkkF0AImul8td/7V19mvj+vrzqVz5CgYHDukjTaZCftfVvrOaCzjV/3YPCYxp66fh5a4hGVGo5VzXdQUHobI9iTUL6EafxC2t6iZ/ZyT012Vdreq9usVam9gSv0x88C6BRwWrVbDbAJNBtS7RrNu3HoALt+Q+03ap/sXoPdf2k22C5PFLwpVVCbCLVTPvWBeIFV63xGQMnaJVI3FWcuBQRzvA9DALEJrCZGDMmyxBGRK5gGQDZjua4rbrdb0zI4n88NoJvnuXVc3UoNtNzUSyz8q41PXhpYUgxEKtY9ikRa/Xg/fn/t2GUgPLLG3UJ649/3R3tWjN154EFkCyTcqcPdz/6EFODwv1fqlwVAMWAtOg4hDBiHCZEZeSlYlwyOhJQGTMcDpuMR0+MTpscTjqcHxGECBSthrrl15RtSxBAiYiDclgUw8NMZBWylASKCZcnWEWo7ioF1pQhQV91gfmLs+7nsm2xz9AmblgiwM0o9g/SnAhY9h60Pz9pYFoLIWB7VAyt1/sg2BREFNDwIbcCgZdhQyEpg+3InqAPrxp3IRM6pgXMiTthFY0HB7p0RWqZoC6orAlWQVIisxr4zxgSp5oY2myhYpQAsCl6Dde0Mo5XuRghFVNH7SIcJ4/ERD4/vEOJgHZITVPdS12ieb7g8f8RyecG6XjEkQqTBwFkFvhOTlcgq/T7BnUk1rwPDtIKy7bt6v0QBwhFxPCBNDxhP73A4PiFNJ8RhQkwG3KEgJCDFihQFUwp4PA54OhFOI/AwARMDAzRDvtv2xdciFJcLFUQrANV9UTKEIETCmCJulzP++Ns/4v/633+Nv/zxe9zON1zmM3JZzSERUADSGCBVYdM1Kwv3HnDQOaabnJezqj6XOgpiga0K7VsJMKljWJ1lhq1Lqtslb8Li3dLcSR6sI+HHjx/x4cMHPD8/I68rxpRa5mktGZ9fzrjMC969f8T7L7/C+y++wscfP4KKzptigc00qSYlDRGVfaPd1gGbo9mSWrQ5c74f+dEH77B10M7TOZQNbGtjWBzJ3p03hNAAumZHxNgdfGc/yVffHqAhQguGAbGgHe2GHFyhsHd67u1YH+T2dqndo+uR3u8j5O/TcfI9zzskbu/R/YIEja3mR2uK4Ffd/kftd77FvOU/+Gc4CPUWgAYLvkopG1tRpM3RDazdOtz2DQ8gAIs0Vtbr8+/H8h5o6m36/vntgah+zHYgJOk67EGJ+/e/9fn9OP01ELH3F+7ncnfm3ev7+X9/T75u/Hye+PproGSfsLq/tyrSwOn7z3UG9L2G3lv+0ltj5ffjvlzPUtz0qbQDu4wDGAkhbp00h2FAGhIQCGspuM3PeH55QRXCqT5hmiakGHU/GUdIBa7XG67Xm/oWoK07q/nRCtJVzPOt7cMQNg09Z2hadGGlkDFGZYMVn7NWIcKCWldcrhnLsgDQYD+G1Pbc3gdRoNcYB0wAWBtImU6Rl5724yciKGtGpgDmjBBgLERlCUOkBZ/3wGs/zwcTOnfAsgn20wZG+98dPHJg2pOnO20q9OuB7D9q9lS6Oa2dHIFFMq4gXKPq0QWGas6CrbTO5mAAxjjgeDoYsDq2z/LvITBSCiY3A3jDk52/ZfdHRECMCLafxxqRQ7ZnE1RH25h1EJXR8ZLXbU36VqO2LYvO31IKQmeT79f5dr0bKcIbSizLgrKsjWUiojGK6MJs+nXfffcdLucLHk8PrRIppYRlnrEW1xMLbR2jVNRcW+yYUsJtmUHEOB1POD09oYpgnheUXDBfZtyuV7x8fsblcrZke1YJFcD8RSCvq4JMOTdmfkwRMXmXXGrPG3nbs8T2j1IKXp6fwVZdEwIjrxklAp4kEXEbLU3KQdlp6gv3c7vNy5pVesm60zvg7KSP+zXRz+3+GKcRISrgf7vdcJtnLEXLdNm6+MYY1GYAqi9eKz59/AQpi3YxDgRv/layMoHbnsO0Nck7aAI1HpL6iLJdm7K31AcmoDHYXR5A/VVXqNS/V/YyT97ZDi1jrM0V8yQmiBqAJ6gWg9t4+/uBBsRVVID93E5E0Neo5JU038sJGruEgFX36bPwizE/Cxsk1T+T9tPdPuuseFgMqPjIPqmwO08/Hm/FgPbp/WxQ02ExocDiJb93tM7ZiYHTccLxNCENCfMcMV9vqDUDVSuBvJhK/TFNJAup3E0FYRwGBf26Tts6f+/3Wp//rvsHZS7a+L9178B+//dxtEdv993FuPqO1rSmH6vtvPY602xwhmD7u5XY1nY2/SwnuBAHqyLZn9/PwbThGATPDwq0JaMzvQVaD1m1H4NV2qHtPwYE4x/HdX4WQNcegrjzb8K2hpY2fuT9+3A/sTZtBd/wtfQlNA0t1X7QTWxdncFR2qbvWRSBYBym9kkBaOf1RSmIWn9ttdlDiAgpIoUIigFTGoBASBRAKWIIpk1h4tHL7YpqAJyDcPM8N5DOS13caXCHR4O6gJL3Tn3vaFcIalZQgs0qUK1gyf6oUcp+c/2pZ/NTv+Of+Z7ewej/rg6FLbbOjLp/0YKw/mn3H0ldsAEPvWAAiR6BtZyygrVEhgEKCcNhwPvHJxymA6aHBxxOR/A4qU5FESznM2JK5ngxKGjGLFkmJQbC5XkBByCEQXUZONi4V6zu9JBmYFyfoJVMR6OaY79A7x3//ZeXAus3FVBFM+I+Zj4X1Kl8DeL5OTTLujmowQSS4YbDuxASNqDMmKeVgMv1qsCdz0kzrkI6X2MIDbjGduW6IQsgRdmYcmdICPtg7D6wEj8BFahmXDbAczN6lYBcKnJW2nAFI4aIwIOBPqalwIxqzSZCiIjjhMenL3B6eEQaBmXdSUWeL1iNyXq5XrAuM7AukJqRWCnkOscJqAqePxxP6mAQkM2pgJXxMQFcKxhKxxfodUoAOA0IwxHD8Qnp8Ijh9ITh8IA4HNWhjjqfEgNDqhgHJZkdJsLDAXj3AG0CQUoQ9+Y6+lxtkK2DMhVAxEoIeQbqDGJB5AhUwjxnfPftB/zm17/B7379d/j+mz9jvd4gRZMZVSputxlrLpatDdYB0DZYdLap04cQkSaaXz0BIwRgcz5FGFSzzWvNRpJrBEEdnD4x4R2SPSAbhkEdYyux+P777/Hx40eICE6nEyBWUk2MZSn481++w29+81v8h4FwOJzw5Zdf4eV8wXqZt9LxEDEejghR51GmAjFGRhOGt/1jF9xj2596gK5/jf++Z3rfz313wBt4hnvwxF+/M43t87c11MFXbemZG0v7/cCDBzVi7tlohvkt0Kb/7iwav+6+jNc/Vww8u7/mDeDTUra9w3EHilR1tt1OqvNrrB97HmTZVifzEHGTXXhta/eBfg9utdcwN40bv6fmBGM/hvegUYCWMtQOWOydyHt9t36M+1LNHiB7PW5boNwDFs3Zb9Jbex/AX/8WQOW/68GL+4PaHr7f8/dBfx/U9x3k90CggylvAY/VSlj9evr10p+nZ6buxpHQwHW/Lr+GngV2H+Q0UJboVRDcv+b+d/fXsL1WbWE0+6LMVRV0GccJ7969A4jx+XxRUXqoYLdrcKaUEEwjdTZdZG0OwBhSMoazWBA/NZbN1vRhP7e8NNiBAQCoUpTZlRdl/VSva9UE+6dPn8F0RkqDdbG1sidjGzU2LrmsgSW2PdA2v2TLK7itjDYPsq01tQUEatqt/Tjf2yB//q4R2M87ZZSVLrjWZ9437XrLpvn8Cszg4wmXyw0hZM/lt88YhgHH40HZUkX3iciaEGWS1uEwWkKJraxR97VkwR+jlNU6Fa9wGQCXy0mB702hgVyAQHUGqwhcYJtBSDFu4J35pCZoZ2CFN4HQ2CPEiMgBtQrmfEMFIYZgEjybvXIQOKWNddLbqmzss1KKEg4uV9wuZ3BK4CGp3ETOKCJYlwV5XQEQPn/6jB+HEeMwAkUrUIgU3EVnv9TYA1K1geDlBbhdb3i5nMEcrYNrQhwSpmlCDBF5XHEdR9PsqliWudkCZ0KlmNrvPLDOxvgbpkH9etnYTzFFpGnE6XTC+eUCAFY6mtuY5lysRG4LkZVBix3E6zGQfn+9FxQpLQzy+donK/pEh99Df3gHWl8Dk2llD+OIpWS8PF8VeE/q2ykuUiDQyoh1XbHeLsjrCpJqVTIaczJvScM4JJvnVgIMYJm1soUyGmjLpKQT9208cuj3Vv2N/r1ULWNXVTwtRSXqo55tbNzn1FW17U8iHSlnP8DNZ90Aep1j6lOQgXz3sdvukw00qdtFEVn1xj7J1tusFu/3QFWfdLXva8lA2T/7exv3lh+hr2dsEGGfEHOAEeBiNrDtexllXSBl1bLusqJWlQ4Kak6AXFFRdHsQA4vYdArV8wFgVSam4eYznkhBqRAS3M45AcAlWpTxyYAEqEjAllS59y16u99iw/YaQV9Eu/k3ARTNZ+i0ZQ0RBkEQxIkB22eJPdM+zvV5rMtOE1ztVGgOWD/lTJfUztv7TyKAZKviNLIMxTae+hxDN0H+OjgH/D8A6IB9JnVDnvXBeEYHsBjdxU+74McDgp6d0G/ixRDYbCVIMMFqJrKyV24fILQt5sCEFO38QcsuKACR1QANMSEOESlo98rT4QixunbzBrHkFcs6Y11nfPr4A3LWDORq7cHvdVOAfemijwWgFH1fWH0HITVeClhwYq1xJkEQR2iByoR5Nlr+G0GAP4e/dvTXdA++vYUO7543RHXgxMmbysDq728Pzt0f6vT1m5bj/LDzLXnFMExIcUSuFctcQEg4nZ7w+PCIX3z1pbWDTqpnYZY9mKirl8jqfCKwigUowwfKpFGKttLVa1GR21qkLTDVf7IdwwE5Y1luLbzfHqfXAXqXZXu1Prg5016m4t3K7rWYdL1VsINSVmISxAJd24t22YaihqZvS5/LHTABm4dEkKLaMQpk2xjAsrxW1iqkHq2L6/pYhMDWPWgTqocOPbwcFigqJMoVZOwqgShLiJzWrUaQw6DOfIwIMYENSKpBy5U5JAyjNoA4HhSsTWnQDoJFGXPL7aY6g8uMuq6gUoC6IgYgBRMEh6huXFW2LCNAqjKCq9ZDtW5PkVQYPLKWjlSCAoVpRDo8Yjy9x3h8RJyO4PEESZPqRQTNvlMAUig4DoSHY8I4BhwOAY8HwhA6YM4cWCnZmIZkm96q2RxL8RAb4BkzpK4QCXj5dMNvf/sN/u2/+Qd88/s/Yzk/I9aCUj/hOl+w8oBCCcJVqd5UseaCtWj5vJcjtcytlE201zdLoNueNWAuUsxubuUYvnGTs8AEyDXjkI549+5dCwo8k+xd1T5+/Ihvv/0Wl8sFItJKvXyduX6Us/g+ff6M048/4vDFEw6nE2JKmOtNyyNiREJozBRN1qCBEe0L+2CR+7+96Si9BqTfsq1v2gfHqi3YqgbGqrOgOhRePtEcdzKVTtlscRtUc9b6AOv+evVCsdubezCmv4efZk7hlXPSzIR9joMvfRmwl7pqUwxlz7FdedP4o44FjDvGE21ueIP6fuL5+HX3gFkP3BBFOEvglXPcjZXI5rO0cQ0BXgPbP++3xvB+b71nmvUOaO+Q93OwnzcbwLgBdP299UDq/dzrn7Of6/68ev/bnN72kWrsri3wJAvk+vvflRPefdb9s/S5cQ/O9dfbX/9bh7/GHXxfjw7W3N9b82349Zzpr8+fT38/fq2qMen+aEGujIRon6ti6VJ0/h+mA2oFsgDn8w3LPOPl+RlUDjiOSbXcgga2IUQs86JaSeUGmaD6rR3bnpnM38wopRoIurFA/L7VP66IMWEcE9alGAATkfOKGBOeng746qtf4N3TOxAxci4t0eyldrqGfUy17CqwloutZVWGXvUyMWkbVwgJ03Ro/k5tkgFiuj1bIqOfN/fPq3+mrQtw0b3In7kzJv059WvL9UDvzwkBKkfEmGyf9bVOBlZFPDyccDweraRLMMaIGIP+mxnLuiANeg4HAkR0/ySCsR8jQtAS7xb0WTILruMKbCyNlui2ip7Ob6TOJleCyvAQmRtQIab9VExqYhiHNqbMhMQEsqYQrTHKG/bxfs16JZCfO8WEmVWble1+1qKfnYt3INb7qDnjkjPWZQaJCq8XceAKVsalvmIkhpSK2/WKy+WiWou5IKSECuDzi+kwWjIv31bkNeN2u2BZZmWC7cB5q46CMvZX7aOKecmoIljzYutGfYKDdXo9PpwQQ8T5fGkabwo+atfkGCPGcTJAyoF5gP1hdvZqG2Ox+d/trZR2dsfnaOjj2Df+fr9GfE77Z4agZISHh4A0TYjRtDfLimzEgAjB48MD1kjIywpmIAW158lKV339cFTNOKKgzX6qNlCgyAACStlkTTbAlXbgPfWgg6GS61osftQ9N5A2vNF9FSDyyhvaQB4BmGPTnPekAdHrMbnfX9kSiRS1AmierSKtbBVq2pDD9xIloWhsZgy0BiBuDbbafm/Pqvj3u66yzUEyP1PD/O0c/TP0edP7YP28UjKF+UitHFXhRDatZGryBmp/12XB7DJbJeP5I1DzCeV4hIhgnWeUvJjPCwgURPcGUHoNDAZQhFDWFRXUEu9AJ2XCwJCCkiyqx9RkchQRIDGAbmNp+1j4/TpbtB/LbXz0M7NrH9v1MauGH9k8bQAd9i6r3sudT2ESGLAYnFi1+HJRggIJTCubQZEa467NeWMvB7vOBvbB/SXPi2lp68aBdCxkzya/K+B7dfwsgH8nNwMAACAASURBVK45Rq32e5tgCtxJu8j+ZrzmnIzFo3T5+Mox8qOnBtcKxDD6qDbHnpmbtg+6TmPeiWeI0QwOYZVZmzsMEw6HEdN0QhoCUhystDUhlwXLvOI2X3C7LrhcnvH8fNF/X67mnJTdQnzTmaY7CrQUMLk4+eZ4EaEtDgoByTrPAvq+BtARYaEtQOiPV4HU3fFznN5//DymKdMmuKPATjf2gBXYLQKBLYLa/QKwyMvOQQAFMAvmpWDNM8bDA37xq/d4eHrCYTyqxkaKWtfOquWl4JkiAczaXp2sIYFi9kqZrmvRLr+HIwRQDZFaIEW1a0JgRLYsovbUtrmrIrsgk7+X7Zm/FSC+NX5ts4CYw7sP5u6N8FsAtTNwxIx7tVJX08jcLfAtGNqAMrJ5c5imrqzCHSV3Uk0HoUCzxQwQuUajgomBg3V+teeH3oEgm89q0GtVnTO9T3WYOagOH0exMYYB4a5TJBBKBh6RGvJqnfM4IaQD0jhimkxQ9+FBu++KCvzO1xvysmCebwrMlRVcC8YgADNuszYASFF1dLyzIaCMuvmmXf4KCYS0RC8mFRsPzEDJEAngMCjrdhxBwxHD4xcYTo9I4wPCMCDEwcTZVbZvGBhTEBwD8HQMePcu4XhgjEmZdExAyYIULZ8iBZK1FDWTALUi5xUcCMMYwJFhVDp9bvOMy3XGr//PP+L/+Nvf4btvn1FzRazAMn/G7fxHDBMj1wesuYI5YZwSlllLIsSeXS4akLu2qHbiU3C4mONQAdOrU0dhYwFbkNJKPRQcDuTJmAAKIw7H466k1YMG15r79OkTbrdbC7p6AII5olbguiygEPGrr7/C17/8JxBiXK43naMxwXUSY0jINs/IwYHA4LqVTDQT1a07daQ7oPnOZvYO96t11637/nDHnpnbJus6Ib52pAPafA0zt2b36vDL5vTTG7t5D3K4rZHuPn/q+u6dRP28zXmstdqYbHwB8oG1Ywv6qO3nYg4uE4Hq5rMSrEGB6BmdJw+7RWpOjfoXRKTsEuzBqS0Q2CdIfO/dzKGXo2+gkDvD4c6pV9/qHjSSZkfvx6s94zcAuM1+S5vz+8+ynzsbfv/dkynaFbPs/v5Tz/P+WfbB3itATPbz5q1z+FyCgwl319hr3/VHz9pjDhiG1N5zP079nncfoPozvb+uvhzVqxj6+dHPCe4+8/5zepDObY6/xs+vwJAzgsxvsA7cyrKMjY2eYsTD8YTACdd5xsvzC2peMHz5BSBAMC3MlJIlRdYmi/L+i/dWKundHD2ggyWEV4jUnQ31MSVS1t0w6D7JzBjHAfM8IwTB+/cn/OpXv8IvfvFLxBhxOV/x7V/+gu8//IB5njFOI6I1eQjRbJZYUgHWtbt6iZqh/p2N9PkNX/sggLwcVl499/vg2p8jETWw0JlcVSpiDY3V5a/rgcp7Dcb+0OSIsmycBcmWMWjgYVCgTruvAkO0Ltewsj+K9jn7a+ivQxvf7OdZrRWoFTWX3d8AaJUGwmZfaNNB7sFnEmiVRCDE5sOFbXxqRYzRJIiy3cukjUVEy4W1cgK7MlYRaWPKNvfXdUUuuT0XbeAwIthkWHMBrdp5diQvMy/WEE99BPUjtnt2gLy63auA98Qu66rNzQD18avgdr2iXG/GZENj4ihDWxPv3rRIh40Ro8aIqvkcAErbPibKVFUwNbf54ntLjBExJKSU8Pj4iJTUl5jnGUSE0+kA5KUlm1rCy2LQ3jY1DeuumZ/uQX3FwQbA+hzq7Y4veiezOOOxilijGJfPABKgQNqBQd7NVQwYFi1TjCQ4Pj5CjspAjEGrlbyiQH190uYqoolQYQaF2KKpIvskHNHWqBHowCn4VtkGyfbxjQWtAJ0x7l2Uardm9+tE53u29WNgsenJw+Mzitq8rRJEMsheB4OGFARhrU5rGISWuqodLc0fFmusQY7SwaMe9KiPfdsDqb5u+jkBoBFJ+vvqtX/v48H7n4sBZ/clna1xiWys0ZKV5TjfzphvK9ay4LZecbu+4HI8ghmQrNqBIQQkY2QWIgSCyj1tbjAg3kTJr7Fse7I129zvp44iBvXjSM/h4+J7Re9Pz/Pc3u8+ZIxxWy/SY0J738v3lns/ZzcP79ykDVz2x0kKEJuX61xF77PQExbsHbs9jVwzeTMPCkAzEMFQnj3fX0azX/cJ9vvjZwF0r51DRy3NkfAHeJ8NB8wVd6qmMQgsG9dnP/W8/n59bwi+LnSZBCJwICRWoz2Og4FdAu92OQTNDCCwlpwl1YlI1jkV0Ilca8H5/APm+YbL5Yrb7Yp5XnC9XnC93qwEwXV+7h1e7CaVA28+NgrQAZUKCMEAkK2kNwZ2mAqRyJzxom3ga0EgBRTyQK1JwT1A+NaDvTcY9wDovVH5KQf99TP3YKWf4F6e2b9uy0JslE57fmSArZppAIzp8IC1AikOeHr3Jb7+6pc4PT2Bqmaxbuulga7eScVL8XLNSEHr+/OibKMQGUNIIFsWVQhrVcZchVjJRfIQUC+FyS7ZmJsiVoH7OvN+f/RlMu0++9HgbeH7mO4CiDv2RR80AJszs4Eim17SluUXy7LYM/OSVbHMcnet27NlNdZF01W6CRDAmxNFVTspq0BreLPbjDP/dD148LwxDGLS94UYUEx3pBobtohAjC4fLGsnpKLJ4zghjROmpyekYUIaBgwpASFgLRXz9YLL+QXrbVYqd14hVcHaBtSKIEVdm2oOtMxBrBSEamjNKpi0vVKMBI5szSEINSQUiQANQDpgODxhOL3DcHxCmA7gOIBjQAwBkYEUCYfEOEwBxwF4dwh4PDJOB8IwGGi0zR51JmCbkKg+31or8rJgWS+gsODEB0w0QEoG8gyRFZfzDT/++IJvf/89Pv9wA60jynzB9fI98voNDodP+Of/6p/hh+s7/PYPN5wvF6Q0YL5lXOdFO+jOK7bSD+iatQYjpaizxpZBFJEWFBYo21A3J72PyAbEsna7HVLCOI0YDo8I5kCv69oCAS9n/fz5MwA0jU5nKqt9CwrQmBB6BfD1L3+Fv/mb/wjP6wU/Xl9U48YDLdIiinVRIW9KExw8UnC7otTyhv5YtyZ9/+lLFTpnog/m33IM+nWva1C3e9cw866CQqRi7UQaxImx5GwN9CCPA1x6H3v2w2bfN9Dc5xag96HA895x7O0PsDVOuE8iqBmpnXO633O29/u+7WLx+/2jgZ/93tNdLeHOvrZgFCgiXSLAg5ouY87qVzShYysLEUELanyssukTsQVqzX4bgOjjo2xS0+jkPXOuv/ctMPPL3s8FDxIhfaZ1u+e3vvtY9//vbbePeb93/JyjB169C1w/f3V+7xk3ygClnd6bz//70t23WJjU7Yc/BZL1vsr93HQfs3/vfebdx/3+c4gcWN7A2fvxui8B7ucK+36BzVedbzcwBOOYMAwJIUZQsY6oIHBMSMMEOp+R189YbgvOL2cMKVljiAHMSUEHC3SXZcH55QWlrBjHYXf/KSUb2y2oc0CyjbGBR8ui6+P0oMnNZVW90nEIeD5fcLn9oY3P9XoFRQJVwm25aRApEbHGBjg1mRYRbTzFGsjrObTaspaNRZu65mnFKxVQm/RA79/0c8lLkPvn2MAzlX9vpbj9mr1/9rvn7vPKll810EJBFjKuQ9VYIllpJYC8LljXigwNRsmaOwlvSVcOsESeVin0HaL79VRrVf+qqJ+Vi7Ihq3WKbMCFrz3Qxq4mrQCptr8xmfQOEcga2vk8dSabS5L4/rkB7frapnlme1E2tpyvZ3+fshgDhAICjRiSBsvLsoBnKx22ph6q36fNPkquDTCvUFabPlt79pZocIqUJ65yrU1jGQAO0wQOAeuqlUsBWnJcK93BQQAg1qxDWY0hBozJmmZ4U7ig3W21AV/G5XJRTcaPP4KIcJiOqldnZcWnh0NrvNGstflILWnQ2c7dfNPZ38AKEWkdQ5v9tmdTROON+9gX/qkGLAFb9dn9OqkE7f5qum3ByAshCioiAipCzYhhVF3uqHFBLkuzKwDAxr6jUjTZGbW5W65l6+tHRpAgav6WrvXNfurl2z1UJZqklBCKANV8A9riExEFC9nJHrwl1RwgImgyWNl7gNfYa2lrRWXrxOmfTRs2UUWTRBBB7KRWopF4QLp2BMpWRUv+qS+o4VQA1dr8YO+Q3DODiZQ1dr+XCWS7X3Rx3S4W2/sdfgTN6FisqjZBG2rYC7yU3pMg9jxJCqhq9ZDUFeutAlWxhRC4tfgqHCAhYojKWGaybry7EJYQUoD39uqrI/3aPVGw2fTQ1ok+X22481O4g+9xvc3a+RXY8I+cM3KXsNS5aPe/8700xhQ1/q98jt1epC/xkQRI/10AeMMW1E4+JdzLl7y2Su3uHPAkT1Zg/4VNVuSnjp8F0DXjINg9wLYBNAf+9aXqQLrP7YvtLSovADjYZUwFMfIUE0JMSCFiGAJGyyS6rlTsMmIhBM1uMCGMyaioFefzGfM843JRnZDVdOUWF0TttHdEBIEJa9ZFsM8gbIvwfrLtwEnpIFUPAjzY83sWzbgwCDkvqHnFOE2YpgkgRr1lzKU2lPmvHffg3E/9/Wf/rf2uP2/3OsVM8WpStFr5Coh1EWXTSVPVTBAFcIgYDw/4+ukd3r37Emk4oFTBy8sZTBExMabjA7zkogU79tkE1WRbS4XkjBorYjpgnCICMYpUFEpADshcEIAGMixLwbzOqoVl4JIWi+h9Vrt9CqZXdbeo/bh3Cu8zQCLSBIY3poUHvtI5tFutPLCtt8BaguoOHYuy2lJMiJ65hs51f14VLk9pgVZ/7SLYaPhsoNtmfAKZMLyda1kyKAiSMZGClb2KMVw9Ww7RTY6EIe5Wx4Q0BHDSc2ZjhgqCwQes7LMwaMaOtC40jgMejw8YjwfEx0dw9JKXjHxbUNYZy+2C6/mMsswgKdrpB8qwRRWUmlFqRRpHoyR7UKvggYiKd6ZhApFAgpaAEldzxqt2C+IJpSYIItJw0mYQD+8RpiMQIiio1uEQCWMUTLHiODCejsBpYnz1yJhGtU8eLASyLGLS7lAkFU6NlFoVVMgZZZmBsGKdAcoF621GXq5gKrjNV1zPM/JSwBIhRXD9fAHRin/xL/4J/vW//mf4z/6L/xR/++uC8/I7/MPvv7X5BktqRFxvM0oulp3bnmUfoAtIaevWBcjnrTugtdS2PplZ9XuCChmfHh5APCAOAwDC5XLB8/MzzuczXv5v4t5tSZIkuQ48qmZ+iYjMquruGZDC/QF8A2U/H8KXFSGwJLhYEQgIgAsQmMZMd1VmZUS4u5npPqiqmblnVLMJGSFjpjqrIiPcze2il6OqR79+xevrawXmdp3j7KXKGABrx9qUCmIYMJ9OeCsbtpSwrhsIZA1CQjN+LUIstt8dADo6iWQ/K4F3ERTaGwi9IX40pvpMlqPzycxKhn0wxIpb+P5eNfJb4OuRM3ssTepBi/71LX30rWDDceyPdNrx+j045mBJX7rgOlxQ6hwf7/VL47Bfvgv/HF+9E3occynaidUvuctU6J6hOR7tusXA3EAtC8tfPRDloEEPOLjsdnC1BVfe648+K7P/TJXHUXk5ezDqWyDZo7U7Xnf/fgNr+++3tWjfz1bG/qhc8Tiu3mmBYAdgHsf0rfcfnbX+HPT390Y0/Wfr8zBrM+xfsJ08I89fu6AmtaADINhSAt1VzwxDRAwMsNIxxKzZdsxaQpVOG+53lXnn08nKUGcMw4gYNBMkxojb7YbX11fc73d8/PSMy+UMzxgiIgyjdtZcl0az0vY8Q2QzJ6nxfYK0hK0UJdtfF82OYg4q/zt7tt9zOSvpus6x2+3U7e892JZSRtoyhtFpNWKdQxHtyl74PaDWr29PF9NzgOlnUbPdnLbAs9gcqJym6Z0cqLYqE5hzA58tSFs6O82bFJHpYLbDYbEV6xyMOvb+Z1+e5S+fW1X2AAmhpAxaCdqBvZVDOvir89bLd4IYNx0XA+sOcq7PIDmdTpik0ego9Ys1Okj53dicy8yBaAfo/N+ewVKyljyLSJ0nl/ul6HrN82z7U5tG3G63Sj0zDIPdX6CN/oo5zAp8hBhR1rVmCI0h4PuPn/Dhu0/IRXB9/Yrr2xsAVB5wlUPvM0+GYcTT05PdMyEntQHf3t4AqCNfs7whSGZzLPe1zgUAfPj0HT5+/GhZkRkjE3KRSoNxfD3Sz34PzZwND/d/r0OPOvEI2j2yPzShQINjxcvnjGSMSJuAHSjADRAuFotVqpplWRQE6HjkSxGUvGHLqSYrODijzxpr10vvxNz7L+4HkQAhRmQqcIq31ngK9fsBLasqBA3WZyngUjAZFYqQBzH39+hpl5yDXqQFQ4s9b6lzuV87peRpNliVHSLa4IeoPllvc1Ubz85lML+p78p5VDvHs3sMnPZ7Qp+wyYNqR/kY3z2HBXWYrDS9+RkK3BUdo3/Hbc1Sainxe1uRFMwOmmzjPMKgAi5RbeWqb7nuDZXHACS/yxw76mintPnWawgDinFfbltCshL/djascVNnC+nZM/oeyapIusBO/8eTxNQu97OoFXcEARWzCYpmVLPsewm4fD3qBjIOcdtUupoHX8L9qV96/asy6IgJVFPHNUqk3enaBleQSxFEzzCjOkgdc+gI6puhp1GtGCMgGTESRuNT0D/AwJqOH0hTsccY7JDogm3bhvt6x/3rimVbq+LwkgIH5KoxaYpZRCCVJw676J6/jpu4V9B7h8P+I7phBC2d2Y88Q7AsN0zDiG1dMA0B/+e///f40z/9U/z13/4d/sP/9edYvrzAu9D565fS+g8L12GE752unTHb/b6uYXe89DuNrBOgarhIjS71LlVAgXWjgh5cBYcYz08f8fH7H/D9d78BxQhGQLbMpxD1wBYRMzIT1qSp+mMYq5G2bRtWS8kfBm3ZvjMQYYCQHeBSNIopEO1iyQOkEDK152GL4IhdYxpijTjU63Zr7MahG5U9l9QQo3Hd2XcCWWMZqnwC67LtDEruUowrzwtHjGacRsvm1Pnk6hzWA4Xe4AaI3PA2UHwnC8iiQQHeQp3tj693GENtQFEAFXoiTq2CXBTIHscRgSZNn6aCOMw4TWcMo2DZ7ljWBNiZlaz8BJFGgKMqR9bmLfN8xuXpGU+XC8Z5xhYCMgQ56Xrf395wv31FWu8oKYFy0rJS9qgeAErwlGIitizKgpQ3BDjfo0UM2Usl1KFIqUDj5wDCiPtGoDhjvnzA6eMnnJ8/IY4TMghpu2Mmzex7mghPM+MyEJ5GwscL4XJinCeAWQyQr0tUT5BIBkPHXqIgifLAqKEcwZHx+uUNVK6gnPD19QsYCU/PJ3z69IyPn57x+pLw5effY01XPJ8ZT08jvv/hjDhFcCwQ1kgrRHBbV+QEjCMpr1sRGBuern9Wk0DniZAg8AYAuvd9f6vnFDlo5q85ZNN0weVyUaXLAXEc1dC+vuHLly94eXnB7XbTszVNdZ9VTp1OtsYYESjiy+urZjMz4+eXL/jdjz/iVlZ8+fwZn6+vNbsnhIBQMphJybHtvBYpdc6rg9KBHDlnoBSNlHbZSf56FPUEWrr+twAi1S8qfytIQeqU+GeSAR+tpNUz0tVJIjiZc6gbpzcOnMevB0HUwRr1WtQMpN4wOAJrj4APMgM+BELOqHN8NHL667X7WOBsCDX6eAQLKyDga22lbv4s7uCxdJn63T120etujfpsQHRNe2KX4dODqzr/zXCs4FhXRnd0oL71/A+zHLpn7/fIt97v10mk1PLzPsPMZf9Rf7/X4e21A7po302+ncHmXPT7oUgzbvv18X8f738E/frx+xl8BG76vNQsQVId1Wco9XPclxz6NXzNAEBKxrald4bxca59LvoOonofLfEMkbUEEgX3bUUWbYwzy0nLw+BlgRFxnKy5gJZJ3t40GKGZPoJPH7/DMMxgjljX9iy3m4J5KW14erpgHAeIqM0yTSOmcdKqgvsd25bQywPPQvAzo8+SQGBM44d2rsgD3q00ycEZlb8AQe0BTXRnhMGCc3W/aJZ8KTr/wzBhGgcINJBcSjKZrKW2ORfloRKpe+ZYOfPeB+AKQvR2uAN1fg112rbd2rosCyGgZOAudwWEQsSW1jpP2bIXct6U7gYB4RQ0SJMzIBFbXq3T5N4J7s+BlizvOabsYUBCCOBKERGHCCre5KPJGj0XXUMTJoxhNEBc7ZhsnVNdBogocD8P0yE44gCFcgemuAfyezncA0vHtWDWs7eudyidBeN8PtfzvG3KabYsW23+9PR0xrqmynG4bhuydZQlaZnQyXSug4FqH0fM84zz5Yynp2eEoCXjb6+vSOuGL68vyDlV2e0yUDNYCog0E/LDx6daVrhtGz58+KDZr8u28/9SWTtgRucjpYSXlxcQES6XC0Ig3NcNMTKGgd7pkKM94Ocv54xcNkCAYZh2eu24Do/8t+qfiSg3nP5j719CS1R5iEjQ7s5qvyogwMzGkwUICdacICkr1zkT2LJhPVtw2zaAjerD8B9m796Jw36HnTtGCEOnN0sF8t3n0o6hyj0XQgCyBV9lg6eDCQAxrmci47tLBTFmbH72AJRcKiecz7UYJYBbQN5s0jsf52JUE3BQMu50Rc6b+orVxkDFGh3AYmKMkdtzFlEO5k7eOFinZcGlgok94Obnq1Y+dfZQD9a28yiWMEiWkNIDc6qXGcpXyih2xgBCaeCYaPaqFAJBy1XdXi9FILnUOXF9oEEeLY2XUjSzEn5+WwYkcu4ASS3lLMpYB5jnzIEBeg8y++tbwbEqa0FmN7Nykbu9goZh6DX1ZxbVZ8uyoKRUk24oDAgBO4Btl41tnKcK1OkYvexXqNR0U6+obGfV7Zutjlt9UQ0QacKwB+U1uKe+oCfnbPil168C6CrJfE8I3228Wq7KD4w0GDjfKwG/LhOItUQMRIisJW7jOCJGxnyKemA6I19bJmunTu1SJFi3uxLvZuNxWlbc1w0v1xty9tbtHtVo11qWpXtKGx+hCu7GJ9AMCKL+CfagXP1rF7UnUK0f9wNrWC2WZcWWMyJnzPOMeRjx8+fP+Ju/+Tv88+9+VCDxgQNYR/zgvT/ei1G7EXzjNiFop1pNMdeySaZggCQwzmcsyx3rWjDOjE/ffcLH737Ax4/fYZovGj01cM6JZ1WwqWGyrnfEqNG+ELR0Kedco1+D1dEPIRjPlUW7rSX9uqy1RFgfiSxTyNaTHcB01LsJW1VkAST7KGm/3mqk9KUa3fdjQNqUR6tfv6Mx9cip8p/jPO4ABS6i5Xd2/ipoWyMusIyPplw88lUBuMM9/X51jEQgBIAtOkJAElFATLLOoWgmXQgqNDkMABMykjZeAKEIG8eIpcxzRBFrNy0BEgaAI2IccTpdcDqdcDqdMEwjYgjGFRiwrQvevr5aSesNJW+awi25csV5hb+IIAsAIWSQAol25gmkqoN0b4joGeSofCKa2VeQxaYzjOD4jPH8PS7PnzCcTyjESFIwzhM+jGeMAZhCwWUUfHcZ8NvnCR/PjDkQmIvKN4/8+Qp1IGkghmehaoBBy/AzJyAz8prBYvORrtoIY/uKlK/qCHJGzlfk8oYwCpJs+Id/+BfkkvC737/gb/95wO9//zOubzc18rMq/JQ0u7VGIX1f94YJSc2u09JQA+jIArUEpLzifD7j4/MzpmmElxGFMGA6nZEL8GKg2pcvX+Ck5O5EevbEEcAB1Kh0gZpKwdevr/jdP/8zZggwMbak5NGb8VCyldkqv6RmLWomaXsdm0FYmAH9ovj7dY26LDn/+T7S2F77iBh9U3YCzbjQaL0DTEUB3RC15PawRv1c9XO3z8Tay5lHxlFvCDan7EibIDYH+y54RFQdkT1wYrMpRjDdleP381JlEDXdqKTwNq8WKKnWshupvwBA+Xt7GaoBBZ+LHZh6WMPj/vP3IPu90cvPfv/6vtiNsb+u6f26v/pr+T3erdN7AGPv1LdAzQ6oPgCpx7npAYb9nO7n2TO5cmnj6sGIR2Pb68psgaI9YOevYwbhu0wUKY/XBNjN9fFnex7WJkiyB1T7ZzmC7N6kIMSoHQXFAUiVhSUXrCXhq2hm4XQ6AdAsG5Wvet1xHHA5X4Ccsa7KEXa7LpjGBSGMFdhJKeF0OoOZlUs1Zdzvi43FADfRgJg32AlBg52+H5uT0kBqpRzouOpY99kR7A0d+OU8bZvxg9G2aYDl7VqbSng2mpZ3DtVhIyPfDp29Ex1cQDsb/f293OxRNmjNEKP2bL0c6TPIKqDRgT7MRq2j3r+dJQ+N+33QnClpoAQEVoUjKJK0eVLZ8x9qAoEDF+9lk98/kgUpOlmuMglI3bntu6q35/cMT93LLof7Z1UevdAybOz5Ag+IUTCCsK0b1o5iogexswW5gXZPuIMdVK/qkd/LEc9oVDoTC1ATEAcNtpzPZ2TrIH+73bCuCyRn5OIZK5pVFa3TLEBY1hWfX16AEHA+XxA54MPzs2aPpg3LouT3Xlata+Ljt0qrEDBYV9N5nsEUDSTWktllWXC93XBblMbodr13++gYgFGQvxQvh3cHuwF7rfzfbee9Lu2DbnAQBp1uoX0AyGWN7v1uT2kGia6unwEACNqBOEMDwexdf+FZY0WrNqKXlwJUrCzaAoSe0MCigI0ycGtWmJSsBnHlxDbQT1wG9zLbK1QU5CDen/dSAFi3Z2IBBYIU3smFXLTDKFCQhRHcvgDtz3wpSKVgjMNOLjj4n1JCygVb1jkfTdZ5xrX61itARTMQe67tur77FMR+3V2WPvo9N26u+nr0Wd8nj4J1O50psL1g627+HKSnaWh2gQc31MnZ23y+r338KSUNkFqSkzf+0EaL/ZgFXrbdrofDq+iYQDZUa0737nPt1Qf4+rmpgbzNskPR6GqIjHKhWw8xPS3kgaNBA1q4WUJPrnuDWWlnxjiY/Ghr5uCfPCXRrwAAIABJREFUZABSwCza+CZpMECfrRgdTmnnmoY2BpitQJaYJWIAu8sQnRsi2nWpf/T61SWuml3U3hN0WQTSNsdOwIgpNArmCLOmCULRxcj6/sABPEQMQTNpxqjE8fM4ALXkSKDet5KTMwNv16/IZcP9esP1dsNqRkTeEtaUkSWY4eTZGQTfByoQeoPAapDFJlAMDMF+4/Tz+Qi0ccfA3xckeFqqyeNakhdCQBHvxgWs6w1/8X//JYj+H7xdrxifP+yMr/716L0//qsrbQZ26w8A2+oC3sdjmR5az4r7siHGGefLCU8fPmg3sU/fYYgjtlSq0yKdIS5UWjo5aRvrYB1btnXVQ1ZIy51DxDAGjJaBISTYSgJyQYbyTpROYZJlbCqhqCCMXv/ePtP+EJBzBXTrNR44GJ4B4vX3fi+mBIRGjN9nDQCP17B3UnpDyiM3akgevicqmOo56dZPz2JX/sHKaULogEtbXIEaXFraoyBdLtYkpQisNrVyCoQwWKdRdajZOp0RRwgRtpwhpPyBQhFCQTMJeUAcZoRhxDjOuFwuOJ2VC0R5uTJSSVjuyjX39eULbtc3SN4UHAKsvbWT2zq/iYOXhAKuoDyJAseeUEN2jS1tYAooCChUkApQEE0unXG+/IDp6Qecnp60DMaaacxjxGVinAfCeWB8Okd8/2HE9xfGOWr3LF2oAoKgGITohcwuLrRkWABhMAs4RkjRlG5kwf1aEDlijAEL3wEkpHTDst5RaMayfUGiV9B4ByeVeX/4ecXL18/4+3+84ef7BT99IdzXBAiBWTlh1jUD0kqufc+UOn8eIWStvk0FJSc9j8xGJs748PyEYdBuWxQipumEwVLc1yXhxz/8AZ+/fLEMkq06Tt4xrjfMjg4aQFiWm2XcZYzTgPP5hGmasFJGKUnBWuiaDIEQRAF6qrPd4Pfe6auGFDFqK12dgOak+ak4nNFHRpS//+49Mq/PWiI098lumXVDcrCyACEIsskjc9ag8tENxtZx9FHZDODNZURIS31FdoBNP8/9+8f50c96pouO2sH+GId33EvukGonNuObDBXxrePss82cm88B4Ao+FY1kagOonlqiBxDNKdo9v5W5+ycsi+B/mG0GqtmTzaHqjb/35Qn9tXz9H4GeJKjZD+Syh3QvRAM3vISU2cqtQbVzcg/CuR2zl9vvjX9/r1/rI4B7BBPbMvXX0kwLb2bS2zv9nukB4/53xWysh3Pue4D3zcKO4+w/7+8fr/Nobeq8dGM+fq9/lh74BIBlXc1Ys0ZJNjeeFVJMl6eUEMcJIEbK1liLtDT5crkgMuP19RXX6w2vry/IuWBdN5xOp+qEhMAoRZ2FXLRkVRvnDJhmJYlXwGuo2bGegaXjzbszCmhWRIzRgsyeGd8IxWG2gAffQ3Gen6L6tLRsxzhExHHQ82pnvNnOPtl2jjS812+outYAauZbL4P6dez/LrLnXu73c5/p6ufbQV637dm4jo9Au487BDaOXEWhmAgsZI2lBgTRDPEttdJiCEN5pSM4vE9I6B1JBlVeU6df0CIxtZFjKVi31XyUguzlqMWrQAg5JcRomfhEEJdT3oDAHHcyZx3SHF6fixAIsZB9FoDkun5t/mEhTM1+gug1p9Ncz4hn+wdmeMmqz0sujcMZvn5gvF1vGE8z1nVB2RJy3oxe6K62sDUQhBDStuH19RUctWvucLlocwwRTOOIyAGLla3RoDZWlbksAEm1sdgpiYqCx94UwG31METc7wtKlprR69dKyfjvAln2EMGb5B1BGw3Miwl682c6h0nY/L4u2EKHvdzb4gK38c10oHbIVJ/t91tBQPbWpzD5GZSzr4LipFyu7tei+gldNqX7rDXoFiy4FmsGLXc6ET7aTi8AvS5q43TARySDSqtS0PJxrutvZi+ARrMjxrXm3G+eHVfthTjUu6kt0esSPc8+rgqkdmPVfW+KuVppHfjTrfUOECpi4GW7vq6H23f6fqB959Z+7Y72g7+3C1rtfL3OxrTL6ZkrDfyH1CzK45q0tWo2wJpXhBLAYnMLrZwrkpXmI7wvQZX95fcv32M2Ez3GctTPbQ0eJyBphWa/3/Usa+ANphM1kzhL01etBBYYnkettjNw3kE6GF3TOJ/erUMuBZKtPDoX5LyBKSEXbUYCKnbcrXyfih0nS0Ahy/AzmgST0FUF6fxJ9ZV/6fWrALo697vDuX9f/3L4RSngyJiGAcMcMYYJCMDAAxCA0zCDIiHyoD9J2xoGBAgLluVqGXNBt00x3ot0RykFLy+fLX15xbatSCnXjSoFlfwS3rCgdhdlABkhDPZ+MJPYulFmOxwU8EuvbxnG3czsf2f/0Wia4lgxjKboMkIMuN1XlFTAU8R9XdB3Bfrf8+o55fa/cUGu0USLsJiAJWaM84jvvv8B33//A+b5pM+KgPuSsWxruxCRcoBF1qYZpEBqtA4ybgjnpMJ3GmbNsiSPZmr0Nqei7ZKlGW9MHehmUQIpKjTDOBgAd3Cwzejxf3/LYdfMvtClvnecAgSM42RNG3R8aii0UlgHjfeOXZcynTVjqbiBLabYwLuzKLLL0aqrRiGAwFVgHUnmWymJC41OOYHBgVDMaSxWIqORCyMwZSUQzaVAOKgyZM2WAxu4QwBRgEJVA+IQMc5PmE5nnOYzeBgRo57/XAQJCr5ISXj5/Bn39Ya0XEElabMVxW1BYsTEsPsXAaTNIZhRtoxCCoQFM+CYrGORCEqwiWICJAIUEOOA+XzCMD/j9N1vQOMZwzBgHCOmccAYgIEKoiz47nzCd08nfPfEeJ4JIwGUVwUBazyDELQXpUodAvo0aTaFSKwddD0qvSAgL4JAgpIXpPUOSIKUDW9vG/LbFb/7/e9wW6+QsOFebsjbBpYZy9szfvzDFVchlHgB06BgJOve37aMIQZ41B7uVHf7SU1F6rg7PDqtBOnDEPH8/KzyrAgIA2IYIQBeXl/x008/4cd/+Zdanj/Paui7g9YD1b1jX8+CdUdKKUFyxvl0wr/9N/8G/+5Pfoufrp/x5f6i544ITEX5SGXTzrtpg+QJ6ACnIzhHgIHVZhybD/4tu6OXDz7GY4MA/9k7mEeh2etKFSvtHDvlgwMGoVro7WTvHcEjf00HAB0MonfzezAEHwE5blocX2UX9Gpj7D8p0HNZGMbl4lcTuLbVmJuVwkDUYLfub+WBFdjLvH78/dz3zxK6bIX+M0y0+2xPhF2vyaxBjw64OTojvRPcv1fnF+o45sN3+5+PDNPdZMp+3Y8Gbc+d69lznu3zrevv5qID2Pbgh8CK3XcORv+zB9iO93FnSLrf9UDYI7Ds/dygchZ96zuP9nm9VlFOz+P57/dNn8Hgr1K0tLQAII6gDGTWznlEnmVVqsF/OgvGedaS/wr0CsABp9Op8ufcb3crY1XKhvP5XHm6ci7gEBAHtVmXZVEyd9KGOYE9CKhZVCFIdTxUhOuahRgwjB4o7Z1SggIMXta+tzUAzz5JlVeKqGWLqY3jAXkB5daspVh2AJDt7Cq5fCa28vjwcH/4c/r1+7JrraZoNspxjd05a5lU+1J/d1bJonLaBbIvxVcus3meMI2jBnqIwUJWnTFoTgoVxLQixrFlW1hGGzNhHGdkaxRC5EEPmG7NO/+tVIdVQLDSYYmAzbcG7PVCRUTLbbuzrEkSmuQwcESx8lFtHOZ6tDubpFQWzIx5nncyw3VwT53TB6h1kpQHU/0WrSiJrJzCbjOrLtVsL89W3lJCyhlrSkqTMQ24lGI+XMa2LLhev+J+u+N2vQJMmlFYBGXbcFvuuG8rxm20ctg+Exgg3mdTqW2t9/d94M048uZ7ou2jYRwxk4Jr49Boc7T0tXXfJtIs1hA8CO/756gTVdf7Hu35ylOH5x1lVF1TNNnoPyvgHDWzp/KHkeswlzMGYmWlM9FgtO6TQgxd3owsGTkVsGgn4zFE7ei6k5emqzTjAhIsGGtVD2xgAllTJj+n+1cP/IkCsAYYKcWPA3Quh6V+qwcZiQMiD0DZ+0vvwJTUMpzdd/FrRA6IUEAvr5vteb1WjAEhjljXBei+ewTo1A5tpoi/39ZqH4DaZT0CRqOzBza/Za/UjFhunayjn0930vzCdU91vpv7b1wVlX3VMnils2PqJcUa1HV2js3HbpfTPpjf7n/EhHxv679K2SekHM9An/TyzkZFwDBMj+9p5dFx0Exmz7T27O+clIZiGDVbfZ7nndxLJls9Y76f4tiNQ7Ig5Q15SwilNYBhAQSWlVepavYluk6f5RJjB9LXOTlWrexfvwqgO2Y3CPRA1Lp6dwrQTb4IAgFzDDjPI06XE8Y4GvHxCI6aSKuGOwMs5qwW7cyYLY1w01bZKa1YVyMiXVaktNXJ1i5yAFH3OAxsyR0/z5jQLCct3/S0d1PgcA41rpv3uCl+6d+PXu++U3/qomwpI84jkDPSlhCgGYQhCuI04vV2x046/E/c+4/z+uXN0wwSBWNKUeU0T2eM8wm//T/+LZ4+fMI0nTTFfNmUrJIDYpywrIsaSsyIw4AQDH2xSG8gqlHlUhQwjWFQwNeyTojIeN6sS6MR2nPQjq4uML00g4hQvKuKofsMi2wSYHAYAOVboENabw/WaVe2rqTC0v0BOxNgLbWsn4/wspY9KT7VP2pEGtmpM6tqIX0zoEyBvAdvLWPOnBsQTJCY8OawF4jFRIfY89duZ6ZUgvI8IhCoaNfRAuVWAZOm1wPY1BtXbiMKAEcQsw47MIqwRo1pwnS+4Pz0AafzE+b5pMZoKcglGci+IpcNkhNu11dISQgooGDp90UN6WCREzVmgFSacmIeNMrLmrvGROCB65wk60Qah6jluSGCEBB4wDifcXn+gOnyjDCdITFqIwgGzkFwmhjnMWJixr/7fsbHc8BlACJpY3cnByXVGhXjsNGZrNtn4gKhZqJzjBhYO5cNIGC74e3rG67Xn5DLgpQTfv78gi9fb/jDTy94u234utxwT4tyQZYZeYl4u4+4y4bhoh2qtFwgaMmqlUBBLBIopuSrsatjEXOSAml25DAoT8w8j8YFBIzThGk6gSnger3h558/4+efv+Dt7StEAC+z6oE5ZuUS8uj7I/BDpGAY9VylJYEESEmJ0tO6QVJCZAIogo0jh4pl+sUCtqyXykHRAycdIAMDUirgdDA4HprjvUF2AH/2spmMn9PgTv88BzvPzcGFAW4xksmItRKUtw6lQDNCG3eWZzCTsUKT/U7t9DYmB1LcIa6OsLQsoqMBRdT2BLNn5xVsm5fnWpZKaTPlXaLRydU6DiIl7icgpc34tBSc5Oid1gE2Z9NBgN4QPI73UaBMM1Da3/tMv4Z92Z4T1FLbup5VWVO1NnuAqZ+j/rXbD/ZerzMejd/3Tn9NgVTguN+TPch0BLt6J+/R/eq+ZbO96iP6Xt6PX0SQtqyAy2FvH4Gxfhz+dyYGxX1X4l2ZMVqTBn8ej3C7XQE84uZ5dNber4f4OLqsTaAvC2pz0wOcgILLm2UlSxEFCZgQAyuHE8XaJXjbVoAZwzBpyShpANiBGw1O6LlYF62Y0C7aC3IudrZYwUDyUhhGyQm32w3jMIJGRgjt+frMMx3DglK0tGcYtPFO2gpCGLrSHgIQzBRwmZBAiBqQ44BhIDCpzVxKxu1+x31ZsKwJW8o7moC6fmQWNInhR1zdu1K7wVOVPf1eOZaJ+1ppB3o5No5+dwb79/t9puXIjMUykl3+Etrf2RophKinQTs2ktE5oPomMY4mz1wmFXhjr1IE26b7QAGcaKWoBTlL5R2GwLq2w9bCQBxmBCmI2falAYsQtXeEMyBq4wBkdoJnhA3goDRAOryo3exJ6YOYWStV6j0b92ivj4/2bdUPEKSSFKgDW7f6oPIyq2U7T5PKJ6htmLJ2npWs+nkogqBRPBunoJxmTKcJ9/sd4Uu0Ut9Ss9VKKbjfbmABQlFy+5wSVJm2LGkiIERLDOjOuxgYQWWvN/zZBmhmYCkK8PQA9Zb3MnX0bEg+crD62TcORHYw3Kk21NeUrXHPPQJpjlnrrpN7+oj+lUUq9QUAFGHkkq00FNqYBGR7MZjhKRVo4lK6M+w2aQfMEOk5Biv/p8kNBxKOKu8YBHJbstqRiuSqzc6WZe/+huloLVfNlZO3jor6+1pWbNUDZmMIduMi5z5zv57IAvi5ckG6/eSNY5peMgY1krqHGI5nwG+wW686NnRe3ME2fKS3/Pe93HNwrj1vSyrqCz3aWLrgC1lZLav/BdYmdNLNj1bIUAUVBfqAAqll/CICBLY9oiX+JJ7YBNSupdTOFIDKq94GZ7pWvm3jAO+bNO1sMBHdw7BmdUAFwfxay7YaoK7zuaatUREQw6kAtAKKILS3AVLH8VukaPIO3H7RAGPOG/KWKwemYlSaESoUAMmW7dc6P+u5BrasmbeOKZB7gb6v8cuvXw3Q9S+3Wev7TG5Hou2igvP5hMv5jKfnC86nE0KMyhllhlBrCZ4hqSAjVSPNN8tqhH/LslgXKxWixTZfzjqpmi20j/b6JMEOHRDQ0HjAS4n6Z1JnmSBkhhmwO4z9vx9tuN081Qu3eetfbpSxaJfLJXkJS0a5rwhDqCm0/Rr8rwHoqPvTv9o4dK4VTAhhwDSe8PT0jE+fPuH8/AHThw8ABaSsHYfYM81EwSclpxSEqJEqLRloXARp88iscl7EOCoYBi0L8uYBzYhTB5tJAaFAXBXZOxBATPah4wIKriwDAkS7tKF95wgiHJ0EBSQsAsmtlLZ3SlwQ94amv7+PJsAcs8afVMgjHvozxrEbC6pCc7AnY99MhI2vxO+TtlIjtDolHUBCDup5t8aojWGIQEUNBTauOGRoZh1H5c4KDCEGh9HuN0IoIAwTLk8fcX56xjhpiU+SUks8lnXFutywbQuQF+UWQwGkIJXUZUMQQtD0+5S11j+IqJIKESGOCCHiNA/KvxEsOwnZSsoV6NGy16DPFiaMwwnz6Rmn0ydM8wUlEHgImMeAKTLmoeDDHPDDB82a+3gyPjYR44VwgA4qO6jqMTtHbA5CJxZM8br+FTMcwmRcbcsN99sVRa4IQTDEASUFvF2BXGbc1g3XJVmqP+H2kpDuM0An5PwFshYrvTJbKavz1SK1esZEvBOujlV/CiIxYmTEacA0T5jnWcnQY0QctOwpbRlfv77gp5++4PPnF6yLZhHO86QlLdtaM+ace6kRkz8GOQDBcrtjud+QS0Ikxv16w8vnn/F2f0VOGzSRk4zLFCArKWYCYmBs4dEZNeJdaV1IcTC4+pdzTBzPfAOn+jG3v/cyY3c9opqR0BvlvXxwI1WNx9236zUc+ASaAd3KZNp+87k8AkJ95lNvFLaIeANq9/dvTrCXulpFVPeMMMNKzKFCU35134s6p8ZTxRb19WiuOv5hF/Q7yuHjHB+BqtCRej/SmfU6Xpbbr7MYqNhd/5fu2b+avDd+S9lnSvRjfLQ/3Vmq98t7IMmvdSwv7cGto47xaxM1YfPeWVTd585bzhlb16WsN6T3GSzYXcf/TqTuUv/M7ng+arJyPEN9DP8dgPnAHutfKs+6UjdqdlQP0B3XrIF5rqvVpkBJEANKCisA5dxfORek2w3rljDPGrXX86VAr0bprTMqbljXDW9vb1iWBfOsFA/TZKU6RbO0pmlCzox1u3fnnaB0zWrX+jorEJi1gkQSRAyED4xSAnIqEOT6vePZllIq/64CTKINtEpGWbvudxAAfUMPrT4oosALsWbwsYidWkYOamj12Vn9mWwA47br/jkMA4gJuaRf3CPOAdbbUO5cl0poDmh6kdqSIqXKlXVbsK4jGIQYIpCBZV0QSLm3QlBbTq/dmpARmY+y4+SqqL7ZYQFAUUCcSAPBRfdTCBrE9OYcIs2y1v2ZISkhbUDJCQW+PpZAQAATWTMhXVPNc1BnWmlIGNM0VDDO58rPb99UzWWuyxF1ZtWmEdIqhBIiCmtWYOmaXBRR7l/Pti+iQRlmViBMCtK2IaUNRQqGIeISlXf46ekJ93XBfdGuoTmb3I1adzCEUG0okU5u5oxinYaPANw4jihQ22ZArBmhTc/q3ISgVToOvJVSkPpsPQBcM+P28tZt/Zr1WdsUlA5cy2AeHsrIPvOzB+n8M1UOxX0Glc9vHYfNy14+um2j/MFsJaqRoGdTspU6FVD2IJVUYC+S2g4ZgnvKkEGpUUrRqhWdK/3ezgYq0sBvDnb/FbqzPYtWNNhhjRYKBJK1lDv5vEmxzOvSyEEI3fM1P4s6H17ELRTnTRaslu0/WLboaNmRRQrKtqk9Lpr9JCUjO1bQ6cad39fZf0SE6DQdnW5+hAvQ4Xvf+l39nojBOgY297ag7xOgZiSCNKtbMQUy55btfDhIjE6O26yZPVoBUwICrDQbpEkR4tcwX8G+0e/nCj25mfcrMIp+Xo86QeV2MJuGGupAaPsIqHab6tc9v2ocB3DZ212g/bmdqDX/SAbQ9ePIKaHkAXnILZiUNwPRk1aDZAKKBhfE/ECB+yaD7nF5Px9E1NbvG69f18W14uw2sfbANSJpSr9XxIGB56cnPJ1OeDJ+KbEJhR3E0eqFPSUxl6JR9XXDmjPuN+UcW9OmPG3imW7BQB4XVlT5JnJxLgFg4BGCXOuGGwGipenbgikGJICQkXGSlu/JVhf3aEQD+031yHCsjojNoX+2YZiM+31VwTHN7V6i6fDZaM6PZMnHspr/ta+WgQCoohvGGU+XZ3x4/oQPHz7hcnlCnGa8bRlbXiDQLlohdiUSRDidTgCyRp9YI2Mi2hlGPE2dCJGVnzCGaMgz7TrLSbGAAVl5AQyICFJBVo0WbHYgHMW2QxLMAKM+utuXhujrEUDXgA7jbeiFNPXlVHuerdq9CnuF7PcppYCDHfgOxIGIdjPKWaOn7sZQU2RVyPG+Ax5x2Dks3r1VjNjaDT+tz9fsViFWXW4OJ5kCiATloFNLGKCg6xPUEclSjKh4RpxOGIYJ4+mM0/kDwjgqR51lKSzLHcvtivtyRd7u1ghiw0zaqTVn7QI2hDa3Ii0zVglwAxBGxHFGnCYMYcBpjhgCI0YgDgxGRs6rdfNakFJGASOECcNwxjR/wHx6xjRrJ7Awafeu0xjxNEd8OA/4dAn49ER4sqw5C6yrgRaoCmI3Ft7h2xD7v6+bra80tUkkEBYQLcB4hYSvyPkFaROsi+B6i1iuE5Y7m4Gn/AgJGZkjEg+2JhPuy1eUrLydRaiW2+VcDOhtRp1AqpIlIkzjgBAipmnAOE+YJs2c48j14V5eXvGHnz/jy5dXLHd1Djkq8XPKWZ2LUnZK0TlejuDE8bWs2nVNQWJ3qDasVq4AoRp1jEG5TCOpMVNtiAeXLxbV9XGxy+/DOfylc+/vHz/3re+pw2PZ59KBc4friQjAuqdR3NBHczTr+lggp1jHX5tfdRqldtflQDXIcwRE+oyhHrhwh8TH7U5QI7ndNyNwmbN3ntvcu9xCldeN07PvauscRm6g9tHtXuf1oOZDmex7mXoeTx1Qv7J1nRlQ/ryOa5Qtu7+7z+47j65zeCnR8mMD3B3CXLJRObA6DbkFPf3VA0p7J7GBzF6mVcHJQ+lanRsxzuDybQehraGeox4A8fH0Y5DDHO3W0G7T67sjMH8MVPXv9yeqt8Oas/0YnAPQSnXkPcfcMWrv46pZmUDt6BaYAQrVKRVRHrHAuqNyLthyBm3aLEsECEZG7lkaMRJOp9ki6W+4Xu9YljtyTirbaK78g1SpDgRF1MFft9V0CyFGejfn46hd6tZtQckZP/zmN5jnC37+6StKEaS0apYqa2dzoGXAqo3BFqwK5rTq/oxDQMlaChRDRPAyV8DsulAz5ur2EaBAGwyEEGtAsV/jBvLH6vj0pZzBAu6eZd1/r98v/d8f/6mLbB5tcyjdNitFACkK6FmmUYgM8uxggQZb3YZH0M7x7M8T25koZMFLVpvUHfcQqhMMoJa+gdSW1aok+xNYuTAI2iAqbwpGMaNkQpKyk+Ni1gSRcw3CmhtkELv88HMKk+c6C94Vt5f/LpcEajcpAYFmzpGtt/GM1OYTnvlHpN3QtYKBzZaEdnO8C0pOoBAwWDD8zBdM9wWnddPnUjcPgZXEfRQgb9ZltAPjREQJy8I+Q3oYBgzjoPbQZt3ZSatNmtzS/SkiiGHoZNVergZmSNoD+TtdwppYoPPnnKypkzfarMPlqJrnVIO4Oq4Dr6h/7iBzxWQRy34OcrLS6OKOgsqtAM0QLdYoJ7AG7lksC41Jg98oyCnZbaXKIBFrDif7AE8/DyJUfaYKckmuwY3K6w49V/4dc6+0iUTRzL9e5xcpIGhQPlDUyhzsX1TH2e/tpg+ycWlqh9uMKNYp2QA6TeLwBliauKMq8b2er+eW9Oz3cixYkxuItPUyU40O1ElHHXsMPLwDmGIEVU+hO7QwOWY+HlWfnBoXuWElZEEVsX/ntsVApIkWxfwNwM36HoBjs5ocfNL9f1C53VWxe07PFPumjbTbU+0RRfS5s/tTnjnnVUm8X5ucue2Dwz7ZzW0NUuv8eYOmLASyuW+AmgBkVAQclSNcBDCe8Oy4Vd6wLSuQSHlESQNeFBgTRWTRRne6tnVktqZ/BIAukJZEFG/dq2Yn4uDGYqmGXIxGZhu0VfU0TxhmbT2fUsJmTkUxQ1055Cw7zsA55fbI2oGnV+5OCm9OXxwm3YDGLcXEoCGagNUOkJqWrqnHtsIKwLUd0jaKqHNDwM6ArRvmF5zJX3r5FnNjETAHeBpwvV4hYkSlOWnKdVDl9sj4bAP6FTfuHMBH16lCzT4LdwIrstCdmHe10oTT+Yw4jDhfnvHxwyd8eP6IaT6jCPD1egXiCLG2y0TF2mRnxEEJ3wMBuXir4cbPkY2EWMl4GYFinTstmSAwD5jGaIoJgCsEEWwpqdLxzlji5R0WkyAAhSGFK/AkaMTc2t0og8bMzdNPAAAgAElEQVTJMnP0eb3kps7AwbF24ZWzgn8ibog158kziTTa58K+i0obYCMiZvgqIBaI1NgAULgYb4ejQPo8CFLLX4kIcRjNiTfi+b7MTIwjiDSzDMn2AbNmEgZrce08cta5lSjUTEOOkxn3alC1jAKdA4ozMD1hPJ0r59w0T8gA1rQa78cVt+sr3t5esS03iCQEKhiYkLYVlNXgYYusg4yrzvjnBAo8UpwQxhnTfME0nzAMI0iSgb/Kp8chgiQic4DEAbQpABnDjOn0hPP8jGm+aKkSC84nwcAbTiPh+8uE334f8OmkHUJFm1YjMkCBQIhWjp2VU48ZXdzn/bklA+5dIUGJSQUWUeWCvC7Iyx1f3xb84fMVry8LPn/e8M//9BU/f1mwZAADIfCM+/0F6z1pRm5gXO93SNToTimWHQAy8AbYtmTFAKWNx8biIPM0DBjHEdM0YZwnjJNmRBbRcoTf/dM/4evrG95ud6ybNp5QR0RT23NJtYw8dw5YMXnnAFWVU52sEhHM04xxHHC9X5GK4LYuOM8jVmjEnsBKtB8iKGg2H6AOaBLlFD3KOzcE3SB3h01zK8x76WRdXwLan3kiqoCSjxsmS/3vVbe0Ja/ntX9250lCJx8CMTI0CuzZZXpfwC2Ulo3UATdqstTrkGeB2I0fARV73dbLS+w+4yn+nuXiJf2trJsso8QMPH/eTsfWRiRw/pb98XCjN3BAyWJcIp2xXM+L26jUtjBbpoMbp3bA2lLount3Oy0TI6CQ6ilqmWlami9t7bp1V12w1wP7MR72mKASyvf7W3wfsEWsCxlHpe3cagzLYY1QdUkppXImMTOy8fB6d0kfH3vmjWUn1H3m59D0pDa2USNYSu70917X+V46no0dSAfNMOqzpo4Ai++tHsSvBrXsATq/rrodvUNxmHtA5RygJTwiVt7kWQ7BzkRH09JtLh0X1WCyzoc2B9DsCiuDzUA25weiAPO6rqqrULQckKBczABO04QxjojGhXu9XrFuC97eNFNsPp0wTSNCUA4iAWMYT5ZdVgBJYI4WWEN1OEQyxjGq7Vsyhhjx2x9+g+fnT7i+/TesywrnXAtB9UEpRbnLAltJpzZV8Ey9ItCmAqJ8O3W7e/c8qD2hWfnK8wQx3W/jilF1L/Ie+HfnBvBSvJaRqXskYdt0WUsHRumRKpWb1+VQvwfZbCliNoJ4ak6RB+hNPAeOuMxnnMYJEM1O16BPxDBOYObajKMHb3vgpM++ck5AAAglQKv1XafAaGDcWUxmyxjAYDVyHhhAUb0wjgEpuSxiCGVgc24nbdhTbVz7PoHMbzJ/hoJ19TWfApoJVUpSQI2AxglmHKNWcphKApdiAC4DHNXOMxu1FAFHGDBHna4yMCBtOp/MCELIeVN/0gBob2Ki8isComMchxHzMIJywbosCG9Xlc9GtOYgOoRQJO1kEJkfQ0DN2I+sNgjMAXfZNZjTXYqVGFSwhbUc10AQppbtQo4QiI9fQRBtaOcZjTqWtCkARUIKWruOARsNz6jlhakgSXJDBIG0Oc1uz5lOC3AbhbDKBoAhwcqvSeeEoX5SoABGgqSMDB3LwITRZG0Wzwrqe3ZKtdd44MrjvQeZtLFZlb2drrMHtuYSxvMuDtQA4uAWMYQThAiBooJx8Kxry9QUxmByRo9Fn83WgioOqpKmGGtjDJjtVIpVM0EpcjgiBm30UgiQkiBJ/TAma4ZSzwJVmiTNA3Slg6oXqbf1TD/5fHhH3Yf+utsvZid5cNV/x2yAVGm55EKdzWQ0ItUJ6/Q9sLc36xDMn/Ox1nuKArlU/2e7mhko7iOjmnV9UhOsJNoDUtTZ0FL/gwonEDXswYFcHbNnOHtWcQZ4rBepKQwCUEepkmRDSZ4laPZtLsjLhjVrIkAk82vtSjBuwuV+NVuRzf+35IUMSCngMHTj9GCvZqCWohU7jmGt6x15S13GMSEZOMe5YMsJkosxknuFTOtC/ej1qwC6IYxYZK2gFRGBA7BmVUZqVAdM44T5NGKeZwzDgMvTEziQ5oEla/Odk3HKKb+GZ1NU4WnRm1wKEjZVSm6US+4EsaDkrXI8qDHoKDfMYNAoBtsBIsoWvTdtadepG75uZhW61BkNvwRw9a/eSA20/2xvbAPAIhnBCH19Lima8SmNHJNdyfu1PMoOvLt///pWC99mCJV9dD3rz2BcZSJiZcgEiooiJ1P4FAaMpyf85k9+i0/f/wAiwpY1TZljAI0B23ZXvrnACIPOBwfNwCHSNU9Zu1iJuLETzdGOQCbrdGdZc4pLIYPAgXDfkmXPGBdaaig1hwEpqXEJA5ZiHOr6aE27GhIQUoCL9QAH1qgKEVXjNYTg3kCdx54Mdu+AJKQ1IYRonV+gwoyo1sqXkjQuWXkHOvDWeG7GcOieZwq2iKiSiwEZSo7LYM1SNAXlzr6urT47W1bFlpOCXJaFN04DZNTn4hCMP04jMyllgDQyGQYFzLMoN4LESQHAXJCJjQxZMI4TLtMFp6cfMM0XjOOEGFXpFRLktCKvN7y9fcHt9ob79RVpWxCoaEmRCMqWlMDXy3gFWMX1YADiABJGHCeM0wVxnJRPzkpWSwHO4wnbesXL9YosK+IUMYwDOAzIYUIRQowjTucPOJ/OiEGNqxAFH04BZ77h05nxw6cLPn6IOA9kUUjN2KTdblCDP3Dcv7k7eIIKzAFW7uIRnwIKhHxbQOOIlAv+6R9+wv/7V/8Ff/mX/wn//b//I96+XrEoKodpPCOOI8qiSomEERCwLquWRQXdh4wBxApoptW7cmqmqtsCQ5dJRaS8MpfLBeM0YBjVaXNnlxi4vt7xux9/xE8//ay8IQ6EEZCyk5YLgKxOvjTeEIEGWFJqvFY5l9ru/XQ6QUSUa/R6w7ZsyGtGGQk/fv6COM8Yz09ItxsiAuL8hMARmt1510HGiI3VWYRkZSPZyXGVKV5emYsSxQWOlrnUFnBLBSGGmv1bZYfJDzfaBU1HeBSaO3mD7vdVb1TF5giTvpeSGZ0FahTY87kMyG6w2TMokTMph1tRmRHHaLwYgpzEQHoNXPWAiabqb3VMDh704y7Gf6RlQX22VurW1ufNs5Fp1y26J3EnNj4j58EruWZgbEUbozDTnvPIQZvSdSwTBR04sDkUScu8SANyIglls4CIgwqwLJGcANYyNjcgyZwxiHJMJcsybYaZrx3qevhrr2r1s8Huq56TgQtoBSLetKjYBSiw0Sr0IF+o5T4igrwVICiIwJ4xqc3GwRRqY6wWjdff5a70Cu4geXlO0TI8Jw0vYo5kx1X3CETr13VX7uXGt/HHVAcYDdRznengRv+Z6ghaILUH8fyYkAUbwL0z1UoXU3GH08+NATymozwDX3VjgKCV9vmYIGo75srhppnaIkpor/u5YJpGkDDSuqCIcuJMowapGQBZlpqIjmaeRpSnCwDB9XrF9X7DVgoQBsRxtCwsA7+F1OmUjHXLyGVBLoJxGIwjR8NU67KCRJvlTMOA1y8veHu54n57M/0ASBaAGAwdT7EUagJpaaSggvAQdQ6HAgzClrlTkAzIFiq4lxVvyw2XeVJAKQbkkrFtgmEYAY7VifW9EgIZOOp2jf4JQWVHShvuywZYme4wjEoWb+tbDNAhmOPq88qtQ6fKtaIOeggarFHDDllKt38y8pqwYcM8DNq5D4AwY8sGTKIByf3efW/zNX5P3asZZTOdvhVwdo5DD5SppBg7ILDSPjDV7JtMwLplzVSDWAln7OS3llyVUrRBSbQu9IE185xCJwtaxRGIQTyYzWg2sZ/jyIg0IuYMGFisnIYJOW3YuGCwTu5Vdgn0vnY/LdfWzKVSNhCAOURIiObLqDPMpNVhTBmBu27VW6rZMyFqBn8YBqUyItKgnHG4Rp6qvirISFmz7c6nEwK02YCwzi9MnhQRI3g3QE60nHYahn2Vxhg1812k+wM4xYQGkMTkjIX5zCeJHBEoYRStekklaRDWOc7IM9ms6oxC8/+KZvl5p1tnsfKZM3cC8zQDy4YtrVo2yqxJDykjJEFAArHa64EAgj5rdiAN5scwVXkp5k9E060E1FJH3eesejZEeOJfldv22eJ6PZh/ZXuPTN5IEuXwJIIwg4o2iZxC0HUlDYxE7zRX1DdxWS9WmpjFspUMfE/FzCh49/GitEhScL8nXN/u2LZswRYFYSMryCxFz51KSG0at4Wk5yNwbaLWq3mXB4Pp4h7oFAPmizi/mezkhn+/mptsWIbbXWgAcymKXZAhz2puid2PjKYD9RzGEJC2Ddm6FIO9FNt1olY5kRTNoiu6pwJQ+YJZWgZlA2cHwIKrIt5MyPa/AaP6PPY9NJ4/6crHPeITo2dFK3emNiJSn8ADOUINHPYEFBaAWAO4nmgjqtTU3jHgN5eiwVa3Z1xmmV2QVqpdir1DdRwYEgWQASJsFSqO7ahtKNSaunEICDFinGYFBk3fZgbelhURBZwFVDJKMq7F0hoLfdNfxK8E6J7OF6BoswbnTNDJnSwTqHXK8IyLEAIyrOvq/V6BOM+W8645VSAfwC6pO9j+3QEV9TOH2urjyzvriOw7ibR71aP0jZ//49ej+x5Bs6OD9v67x044j69z/N4vgXO/5vfDMPgFazkHYPX7vSEdAgSMZdMMneenZzx9+IjnD59wenrWbjhp07IPq/vLpeB0mhCMzFOdGs0Qkpwg7Ia5Rkr01tz+OPTujQssaoOKzlM16nJxB8JTb5szSUVzAEQ0muXPl3PBHE7++IZ/NqeL2fhViqP6UgGG9hnPwKMmINoqKQ8HsSlk28P+sEwYzFipGTQwAWkCaSsqQP35izuJpEo8k6cuCxKAkkU7A0c10LTCQAFVH2spBZFGEGVwHAwAYBU6Nm9gVUbq8JlAjBGgaEpBFWBOauw5h9sQlJtsnmdM8xPGy0fE8azlDCxgKSh5RVoXLWu935DWGyRtYGTli2MzdYgRhmhNDURBQQGIzcjliHk8geOkcihECCmQVEpBEMHbNSNywDjPAM1qvFUnjxHiiGE8YRwnDHFAZAIHwTwFPJ8j/uTpCR9n4OkUcIqa3F6N9m6dD6eu+7sbbf2rfd5J/QFB2VYFWOYR6XrFn//Fn+Mv//N/wd/+/d/jH/7xH/H29lYdgRCSAhnb3ZRKVKVkYDIoQThDtoxiII2Sgdv8GkijIK6maIcwYp4ncy5HDNMAQUaMM05PZ6SU8PLlK15eXvDy+hVf396QLKNaTHYIGiCgRp4aTX2UE2iyPOdsHXLHKos8GvX29obtrpFlEmAcBlw+fsL88SNCIJyfPmIYI0QKtiKYJu0yRmAIM4plyh4jvxWgQw/Y6YoW+02/ohwaiOCf78GFPiPqmCWra9x+fkseH7OTamYRPCLZTPMKOPSfkwbGNwey7bTeKKxgFe2fnwg7kmIADcDpGtr0Jfx95Lp3amD7QF0PHYjAS3zb89aMSngmN4GsNDfnBFAw/rWuJNb4Y3JpAG/NyuJmNJVaRqkyTYEe1SGRNGjhjnQFVpmNw6kBbscAXa97H4FNbR1draly0eeGruPBKBMY6FuoRrcNywc6u2efwbAfkwME/ed8/Y570f7ROe6a4bALBollqu8y7Noe77PnfP39fc+yJOZ387YrIz3YMbQbU1uTR2fJn6vvXLsHUS2LPA7tmbGfR79Pypox3wOENkVg6zBZ91GnqwHVNff7qp8lRilZqyJKRpkmDIEbgCgKkAUGxjHgcjkDBHx5fcV9WRBvN4B1zEMcMYxagVBsfG4TlyxYygJmwhiV9mOIVkFQMrZlxb/87kcUENYkxtMsFWSq+0CgnRtLsczWlg3MRCgpY7nesS2b8UvZudVDaQHWhHVls7EnAzEFUggpq/Pb9pXAKS779W08XgIWQhCVz+x2ibQ12cmxLtDg10zJSwwFJZNmimXLYiK7DimBPhVSYLMIkLICqRxAMSAMBlpkDfz3mZ++v45nqz8HgNpKxKSVR51sJ3PcmRmn0wkxKtBxu92wLIt+30u4WMCDNo56fw/l10VXdldEsLlMExhwIHUO9bt77koFZZofVgECt3mteR457ymzymYrn/R79Xr+eC2NbHI9OjoexjgpIFZyRsnZOnyrvIYIlMOt7HWZ8QICZHZ6CxyEEDUQD80uLOteL9ZrAMadHerer/uLDFCqZ/bbPp3z+Ol7Pq9a5QFkKwfWCpMorRR6/7OVvnmRjodxhmDNUkyX8UEWFi/dzZad6eWJolXSE2sDsmD2gJeKenZVLWt2HWxJCjAQveSsgFtxsLDUMaK4bIQ2rhCxJB5TfgVG0gyDF335xWhhvCrIKKoMwGHrrMXICDxXW62fsyx9sEea/2W+WCG0QB4BA0eEqIA0k5ebZwgyQFqWCzKuz6JgHQy8EtrrhbpP0CoSjnvD98d28Pn7vdPbZUf8w1/3bVUdyFoBxHAOwFz3n+85XUvLIi5iDfXMFjCjo8YViQBqQY1qz/rY4DbA+wZNzRalatP08q2fK+p+1+sBL6PdtoZ9ELW5EQuk6DEoVcaUzt92OoKq16Vp5spdCABF6cKokFafdeMrpMEpMrBSAndwDEMwgEipK7xhmuMO6gtbti1zzWYuRYMOGQIJURPUiumRSnVlcrL8ETLovvvuO5zP5wqu+Z67XC62yWJbYGqHaV3v1eG63+87cK430tqGZXhpTd3XBwPv+Pfj6xEIdtz4RwP3X/vqv9/f49H1/zX32gGWv+K5/mevGYKh81Ka02DOhEA5pIgCogmu8zTjdH7C99//Bh+/+x7jdIIwWecUjU4pyKJKdgjBEG/PUlQqVRGB5eDXMTFR1+UHAGsKdez2ValOtAtFPcHOKdgLSxGx0ke2zj8A0EURoeCEGjWhcjM0R1OBsGLOnRBXB7O+3GDp5qwY5wa6PR1MyCWPgljUn42fpV6OWuZiFoF2JZZqzFVj1OpnC7m6laoPswgCkUUam5Olc0IuV5REv2hGDUjXqICsxFbPZJg0Kw5Oxgs3JLRro5Y8BI1wjifM4wnTOGKez5jmM8I4gizFPeeMbVuxLnfcr2+43b5iWzfkpCsawoAhWPMHOP9QQBFYGYiDc1rKGsYR03iqvDliZcoewikETXvmgIEHCCeUVJAlIwbCNEVM04whDJgHxsDAEAXzacD3H8/4zUfGnzwBZ+eaI1daR3Cuf4N2P2BzpS/fmx1oV51UQrBy8OXtK/7ub/4r/uzP/gz/9W/+Dj/+/l/w8+fPtVuYiBgvnAZBTqcT5vkMz1RyA0blbDNsORi4WM+/ZheHwBhDxGwNIKZpwjgNGEcllxZi3G8rrtcrfv/7P+D3v/8Dbvc7AAJFzQaAHeUiDRTS/W6djg6yqwc0gmVSecBmXVfcbjfcbjfktSn9EALOZy0ByzlhmiZcns748uUzcio4nbiW2FTnn/agVx2HGafNaKBqHDwaa29Q90aVP+cj2f4tAKJ/9YbP8R4hBCut+LaMr98TAPk9WLRzaroxt5ICB0B0Uo7P1esxd4KOANG3wBM1PpRHVAPgajwTmiw7zqmfjFy57oxPr+v0WZ3Tgh3QCKhhWp19d6zRQKRH46yOx+Fafi69NBTYc6X5v781LyLuYpnApQauOWdvtT9FI9V1jsgz/vb765ildnyOHpg7rt0eHHgPhPXXrD/L/gz1n+sdVDfwXe4cQdx+7h7dz8fs7x0B4f7n8XvfOmeuw9+fvcMzmuDqeX79mtqMyA1z1y2on3G5VYpnEEaktCEXbYwzxoAhDHrH6uTrNSfTm8SMLWe8fn3Dy8tnrOuKp+dnxMtQg4GPnte564bKbWY3sX2rcw5sKdWdpuWhjePNAzUkAmSrLnFbStSJGucJa9bsBuUu1IwDzW6LyEXldkkbuIh2y/P5LqVyngIeQG3r73umrq0AEC0l9j2c0nvn+BGQCzSAyIOqEO3+KVkBxepfcKMNINub27aBcoaEgIARFKy0u8jD/d/v6R44a/IXgDVY2Laldfs0W8ud2vYMe92lYImWRfoZawCb7GTPUf/476SIUpNU+fFeVuvcC1Lay0KXXxzb+/1zO0DSUzL069NnaBOpAUWkpfylO3vaUT5q5pfRVeietOcQzeBTiMGyv4m7c2BcexS6sn6TuVC9E/x5XQdYcDL4ekjzReD7TA2CCgwcZY2/xnHcrUcfuCj1HnY2ScFn/RyZzPYkvt6XBDyoxaRccFL1jOsA49zqGhxJ/xw2EzpfVkUGK+FFqxrLWSkRev3kwUHAqgtw0AH+fMjNHiaAqJhuAZyEoMI03VwXMxTrJ4hqSW1OqdLrkCU3uAL2+c0512YerSu0ypje5nEdoNmJEaM1n4nWPCoX5QCkIDUgQFadoPZL6XM2dtd9n9Xd7KmjbOr1dq/XQvAmCL9sI/afD9ToK/T8+5j0XEi0io8qLzpbzam9XMZgv59dbjNz3TtyGNPRfurlT//MbZ4ONhU1Hx3QjOlmD2plT7vXvukPmaOxG4PZd7l9yTa+rmMPgPpZ7p+lDySUUkClDzRbuL4MQAgg7QgIoi4ILsWasERNHBHvRl+wmb70/QQoArK36X4Zw/lVAN35fMY8z13nvS6abR0Y3cHydGh9P2nThy1hXe/YtgLvMqVCwroc2U/fdC18VP/z0Ak6vo4GZv/+IwX/v/v1awC2XmH/ce9HbePXDd82Z7FSVpBm6FyeP+DTx+/x9OEjTpcnjOOIdctaFmDGnRp9QDRus7jjMQIc7BNkZBGkbTPU250SN3AAyVqq0TsUzk0HNIcR2J25+u+cc+2w0ztPRF462jkNRZXUrvQFGrEQqK534KpnaiilQJjARbQsATB+E6rcAy749birIgwcwBbZl5o92qIYOiaAQnt+bc7gUQ6dj5RahzAH1QQKOBaLqIRO+Zbi4KSBa0XLV4NFjtFF15NxnHAwPhqP6ZFm0zFFxHFG4AnDoGCZAnQnTNOMOI4Aa+Zbygl527De71jWO7Z1Q0qCIYxa0lUyiBQ4IxIlJpSM1TL0CpQ/gGPEMM4Y57OWO1CAgOyZ9aeYoiIAPEaIZFy3BbmsIEoYpwHn04zT6YTLfDbui4AxCs6nCd99POM3PxC+vwAnVgHpORMH1YmeTNU2V2ci+OrXE2Dfcvmmey9tmxLlM+Htyyv+4j/+R/zVX/0V/vqv/xp/99/+P/z00894eXnZZRuHoFmKHz98xKfvPgFCWlLkIxNBWpPey8oUmKNF0Uo934EZ8zzh6aTy3Q2XGBU0AzNeXl7w889f8Pr6ahF+LcUfxkEBXZFqYHrTiRq4MuPvCEK5Ip/nGcyMbdtwu91wt0xrJwbPudQ4WM7qRN1vd+Sipe1DjKqTUkuh1+c3Y47e2Vdt6ToAgyrQ/T4i2hvc7fNd1hbeGzBHAOrRZ/zn0fDfgYDEVT734+3XGYCVTmD3fjUeZX8fve9+OtxJ8+/2JVu9QXocQw96lQeGvFZwN1Cod2C9WU0preSyjd9LQ3Ur9YBTqQ4GNQPOR0/dOvmzALvSlEf78JHdIObQO4rm92168//n7U2bJElyK8EHPcw8zqzMPjg8ZEmZPWT+/3+Ymd0vKxwu2WQ3m81ik80+qvKMy91MVbEfAKjCzD2qihzuWklUZLjboaYHFHh4ALYVWPdggQAiykIx45SsZa7fiaRolooTM1qIDFTZMm/ODF8/D5ye4BXn/T18K4KxWvoeMcaxqqfX+s0/3wPsfnySJs327bg0Z7aAsXPCuTHZK/t+DdkY+rDU/XmtbdmsNi6+r2Q+7MN49utTZAqbJ0IPInQAT6YrS65BrfYp8lrCfI2JawkOAgEREfN8wFdvJCTt4+cvaO1ZwjpTRm0ihwOhA/ZBPUVWAfT5+QXzlCE5UBnscpMhAKHI3GrMPVR3FHdhrMvi/laB2VhyGZYGasBSVinUVitCknJssn5Y81NJYYRSyljjRBo6Nfq2G0G7/aDnT6xbFiP16Itx/qW54Y1iY9AFzddrut2+mjRraNx8uEYkMVYtP2atBW0R1lMkYQF78Gz/443VXpyFDJg5X4PMGoXApsdqGondfhEodH3Uz/tLvy8B2I1Hf4x1dr4XGZtjP++BAaZ5eTLSBeg9MOSQ3cfkQtJiKazrQ5jCozCA9ZsuIAQoK61J9FWkUeXb5KiN4QYMa22Tn0zCPbkD0VZ4D40tbRa6x5XH5wEqpxnCNqpDTux1gz2b0frOz0uok9SkrjjJzUlPyDT18EfWnJ3CmgUIVUG41gsrUbR0F2In+fYFIjG09Ceofur376CggthRbs/a6Q8GsYUYBVx1uYrHyQNgE+AnAJE7BiPyTk9xM0a1UO16Y7tWTX1SJLEzR4Aq0BYEjloMYbDkBGPdg1rU5zeR2kwESSXBwowliy6KEYEj2FVN2GY8dfuo65vX9hq/h3n9oqJu8lT6NRRCcEULLhxEXSe3yACvP7CTuQbehjAiIUKIqJJbQ+SM3tOUYnNMpCRFGMk5AWxpWHTa/v0vva/XY8/fBZo+5HUcg4h6TkeTVVNMm/6086yIUOnEB5Nf1B2fRFKleSOv3fywPtzogRt5y91RGrihQHI7Imiu9yjMO4DUHyAh+0yk2EcUUg5ttL5NF8zzsNsuHT8IoBuTIMISOxMRHh+f+yDbTymlG0ylFDQuaBUqhKSBpMmMauFe0QZAz8swNpR/Gyh3SdHeK3b77///OvzkvWSsvXa8Bjr+W5+9/VsEvAhpDz24PC0NyNMB8+EK93d3uHvzFrc3d8jzAUSE02nFsq6SqDcSUpwkIXmyCk0BU1S6MFj3DMmL0RohtIZV6fxiIwR09ZUIHAfTo5kfhuRc7ZlOy5YFTaCoFHL1Hta69qS5RARLQEvqQbIcQH18evSKbCzC2JONipqYTpUboFEzpQmoF0S6ywZJAYjq+SqlG3jykCh/BE2IC/RcCoS4MVoDASFmrabqNl5rL7MAW3GEK3a2AgjiNJb4/Qd07wYAACAASURBVI5SsFJ6QwKFgBwygiYYT0aRhhg1EQGlqgfJ2GkhSj65fAWKEwLJv+fpCjkfMOUDpjQjRs2PQwuaesWsUpsIzRnxOiFHCckRISe93VrByivAUt23MSEm9R7lLOGsOQMxCwgJBYigfY8A08BSjlgWYfCCKq6vM+7urnF7e4NDnnA1Z0wh4ZAirg8zvro94Ks3AffXoiNYwLVfPWLXKCTAHqQjBd/QjbDNfuqE9MaMVwbj6XjEP/zqV/iv//2/4+c//1v886//Bb/97e/w8PCI5+dnkasaapBzVkbyinWVKtX39/eYpkkVdTWaGql7VuYXQlBvj2zoV/MB8yyhrdM0IcdRZfXp6QnPLyd8+15Yc6tm7R5s6SjKYVeyhq5rbykyb6tI7+VYKQXPz88S0qrAnN80JadiQCkrnh4eMaWIlBPmeUJZFpTTIiEtLLntAHSD2x9bJ8dQDk2uGPDy2rHfR86NycvG/V5+72X/uWz2QEjoRRek/dvrxz3lbw+iNRsQ0NkzDWjYXn/eTlO6fBjh3jDeK6QbgNFuvusbBvq9rT2eaWVsam4MiuLQANALj3DvJ2PbDNCqFh1DrXooOW92wKFT9qzfzsdGZK0AfQbO+X6y/WkUyrIKt2YsMYtBGlhZ3Ko1Mhu7Dn2/C5BcvcSDrQvYdrQ3RLZzpY/37jNvtPsxA+AYGdTzD+3DpA3kPO+bodz6deC/q7WCoAxtd/g5up//r4He/tivUc9I8O9rwMM5O3LLSAQ0jG3nSLBndTZWf/4IR/N9JfK5SP6uJMz302lBq5KLNucJKUs+UDZDXcGJlBJub2/RGuPp5YiHhy9oreL6+hqYJ8yzXNtaFTaYsUtQcVyWHvKdUkQkQikVL6dnKeUWU2eldhYUERKEbb+UFZm2wKmFJzeSFAOIASFn5MOEOE9AAFopYG44zDNu5wOqFloAS5GuYynKThnhl5dkhx9HX8VV2kIImn/O7x9+nhgAZOM/mCNqfA88ZzNmVdlHIUoxCZNMtUlVy1ZWgIIU9Qhx8xy/R10CHPu7kZj8pQ6QrNaqIOB4FxmS0f4xL7fP8f3n73cJNGBmcGSsp9Lf2fQv35927iigMn6IApZa4Q/Ro7eOL4IAYkX1PM9KORwO8jzSZxr7RL/vlcRZQBpzhrCSPqZ56ueFrisP+SBVgNFBTus/lkztWk1ZgFYpTChpTiRt1mgHlC1MBvIwAKgN49b5d8kbv4908A6nLjMs/7luiUMuNe5seUoagpwYtQUpiAigcRnjyg0S0jj6LwQ+A+hEn66a1kQAOwI6IHaefmW7zipY5MBu3QWnG/iqphSgTnJI+KFWGN1q0LomNTSaQoSEMI58xcLcbhIVYxWOEfr4iDtx6EMbHavvy+bklEc2MNYq+b8M9DbZK2GP6szT94iQfK6NuOcg3PfT/tl+DpjDQVLikACwpaKpQ0nsutbnXb+vsw72OpZ8P+ZNjLEXR/DXbCwX5p4nEgCCK/gg43y+pw5d2YOx4/57gOvS5/u91CJ29vu6D68dIN/4PoSgOfel3f3erHLd5FlvnwBk0HeLcHOEzGky3nG/B3l9mSDzFIpdcZH5xVYcRbA6SaHQGLVGCdHXEGPpPXWSjx7UXzqe5T8gxNXCFkqpLg+dxA8b42FZlsGwkxgOrOulhxs7TuKoAyysNUI84KOqx95j4Q/7/tLk8udcUvT+owC6H6pEftf5/962fB+wd/kc9QY79V+ErKzf2lpnPMSccf/mK9y//RHevXmDOM1oVcqqm/0bY8Q0JwUGVEGhJmT0ICCVeMoqagWsBHlVQdk9rvALfLAjmhpXZuCZt8r+XbxBFAJAsSt6lapU19wJky58AmHKIz+N5Iuz/ghCkSX0NpAqGBsGnX4h4JX87iw3Cpr/ogEcwMGgPAKzJOhMcZIFaE5XBeACRHEAJUlu6b6DbehgyZPihHhiZ4gSg0i86JXFGxtUgacwct9Fo3vXJglbAdngWWLoY4hSiSkkpHzAfHWDPF8hphmlEPJ0hav5BlO6QoxZEu1zQOUi4Nh6QllPApoCCJQQJ0kinyIBqJJzglmqg64FzCsYBSkQcpB2h5glWX6QUAhoyCsDYFWESQWwKBQVayM0YqQ5Yz4c8PbNNd7c3+AwCZvs7pBxezjg/uqAu9uA+xvCIWnajC7c0SFsA5A14/ZubYmR11R9IN0c9xtcQ4Cx6BhSUGVZT/j53/8C/+Ov/wq/+OUv8I//+Cv85l9+i8fH5x6qap5gDzI8fPmCVltXNMzbRiRFPbicNOeBtJmCrNWrK8m7d3N91XOa2Bu0WvH09ISPnz/jw4fPOB5PqAoKEsUeiuCZztznnf+3gK6NS6fxW745M3aenp566gMDcO2nlAL08ByR9cKwu8HhIEmhnx6fwI1xdbgCmPtzmjLpYhDW6Rn7SzdXz/TpfeCAHFkK4ezftu94hXwoz44u7/v2lX3pNe8kIIod6Pyc8+Nc2dgDK5f2Qg/8edjY5lOt56BPdaG0co+tUm/nhxABHuFI6ErTAONG2IesHQtXIFKWMaw/zHE0rg0u908gl5/TKV5EUTyeOjetvdZGMRDCcFF1hZI0d9QWXN4bwN5g98yz3jcbKH43Yq6/+juTL4jFqoRuwblL+sLeOPRz0I+N16nsLmaIswMDgtvDfNJqEGEw2G3eqANLTuiGg8iS1gtP2T32oT7bKrLnAL5/50vfb42AARpeun5vRFg7aqvDgQi4flCj2XLPsc5S9ZqPOaH3Ykbs78hopWBZVoQgSFHSHEg2t8AAVsnxdH19jflwBXr/AZ8+fdK+EXaeMZpJ92fLmRVjQjwELKcTTqcTppxxe33Vq51zFQNYwBo1pFnDkrWo24/evetjUGoVtgAFzT2leUTfB8Rvfo91LVghIVQpBMzzjPu7e9zf3IDXBVwb1tOCh8dHPB9fcCqrAix9+sCiNEw+7pmeNh9J14KB73vZ2sfOgXqbHwpq+1J/b2LqYCy3gNaAda1oJJUxuxRiC3luKI20QqZPf7ING9+AbzrPBBhk1Q/P0wV406aUFa1hw0aVfQqgONja+3ns57ZfDwQBrDiw5iaza8/XmbGnibZrU973PPKoj+NumZKCvFZV19pYLWl+V6JURri1VnXeicOFu5C2vuggHsleQVy1MBT1dbjfIw2siclVYQRQKyH0oi8K+LUmznnmzm4xNlX2NoKTp14X2B8bWyZI1WS/v9p2CBDW9dT34LO9OkB1eMmryyx6peVlZGaJvrDzWXcclS1ms3D/8Fx/6H9vdAd0Z30kAUNKKVKMpE7gIHqujeP+Hl0m7vUNNw1ApIWkaFSJDU5X0AuMOSfzmvr40G7cu1zo++9wvlRuQOFOFCitoTQtIpMTQBomzWJjSaoUWwtGsXsdyPIyae94sBDcfSGlH2K/y31FjpidbD3Y93uG6Dk0ChF5+RSgDFlrr/5nc2WA8ef6o8jotHnX146+77vziEaKAj///ftb/3h5NHRSEnCOh0zot6Jt/7O7b38iSz5DIxHYvPJzxr/vWTNZQufRBNcANxRmYcWGAKpSsBIAChZIRWwBrYlixxQaCZAnPgPRVSM0Kq+xpjy5fPwggG5ZJH/Cuq5aTrZ0cKXWirI2rGuVzW7jnb4YYOQ6RpBeCzEanmpbxq8DdD8EBNsrt/66vQHz7z0ubZTbze/1a/aK5Hed+32f/ZDDNjT/0xUm9cyGlHF1dYX5cMC7n/wUN7f3mKZZwhVQAASkLKj3lK3ySUQIUu6cwD2kqJYmVUscStzAWIuAucb4iSELEBRGBUEiRaKd8dGlc68yo4tTNzdhWqTh2cQwNhokrACAU+QsdDN0cC4EoT+DpOxyqJIPQ+isNkf1PjGrF07aBAXqLBOnVXFsCAKQYISSSIEskvv2cYGyAqXKIYUoOe2cwgOISSShIfoda83VEM4YCwZeSULfpGXIRfllIqnKWhtWrbxkTLU4RZQGTIcZ03QQgExDTEOaQRQxp4z5cIXrw52AeEwgJpS1Yi0rXo5HLOuLVlvWcQwMICGGYeAMr2pDSgVAAmJF4AAOwizslYgIEs6qxjW8ka3OQ66ilNS6Ik0BN9f3uL+dcXcz4/oqYY4BiQjv7m/w9mbGmxvC9STESALDiLsB6P82k1uT8sFC8oe8GjMc/dMwvu6nqfyBGAEBhF//87/gv/1f/yf+7m/+Gr/6+mv89nd/wMfPn1AWDXFwCiGzzON1kQ3/6ekJ03TAzc0drq5uYMliLd8OgRByRM4DnLs+XGGapk3uqGVZ8PDwGc8vz3h8fMTDwxOen06gEJGznGte/05D13lLkLVYYUwi8YgCw4CycBcLgau14uHhAcuybAwvXzQIBBRuSBYi2BgpRhzmGafTCc8Pj0gx4v7uDutaepg9E0vI+QWDHED3ZI+9wCuzryj77vD39ff3yro36C4p9pf2JO99HUrKOOcSQCT3tZCVoSBa2JDJ9/2+GMIwjuX6kRfWzhGFS9PW2Ix28sWUQfk8iUGK4RWtpaHqmJhSjt1q8X+TGsnmcSRdL7VZYQJnAMMbu9zBxE04SS8QNJRTOUJff71viLTynBmroQOKlwxjG28bgz2bwu4ppF7ZF6jvY/K/tgu/VFeZAgSiXIfdmO9DBvdtG31ynl+uM1usF2yuEPq6w+47e0+7hwAY6gRpYsQbINeN4qCsRi6opW4ca77ttt7PDFOcr7s969G/l53v2U2XdD//DLt/1fxkZvT451qEgRihUVEJ6yPuawgYufhMjsQYEHNGXcXxudaKGVpFOQpYIIAzcLi6GtWgWwW44rQsOB5fxHDUNkVLjq/9bM8VkLFhWVe8nCJu0g0OVzdIYGFAMUt13zZC3hskguCrt28xz3PX5S0C4XQ8oawFIUTct4L7N2/w+eUJLUjereurA37y45/g3Vdf4WqasDwHtFKQ1GmGGECnF7BWGux7kgEgjgE3xtFATIJVCbR1vZ8fNvctxNmMX2P6AgCvep1Mzj5/QWL4IxrAA/mMNJdaiFLQiiE6CHOvAOqfb46M/Vw0MAwkDL0e4u7W774gj81FC0klkoraQa03xY/sZIzcRaSAjAGPLMZjQNcJfX+ZfuLXpLNd+9iYfhVckRW/X3rLhjW3hQdI96Bl31vpnD1ZaxX9MEq1YNNtQ4goVdhiHaBpAAdGooAQLYfUkD22b9lYXZKP1icGJpoc2sg59zNYeeeydf+53UvsGkBdFa5/7b46epY7TT8jl6NLtHqpLElZGOXougSdPbfVOipUMqGhYoqyp0jlyfFOVjBJWoQ+/7GTu9RBUZ0/Nrf3/QR/uL+0ooSqczL/SOcz6d8QBidZG1gAdA4GvhjpYNiw1p1S5EkLyVWtyo4BPPu+1nqDNgp9nVrrvaNp7AENDWMO7w/voLPx8PuQvbUHmv287CHxu4N9ow0NNzuCPeYQ3L/HmuryhWV99hJDfo+1nKBm7yiIHcyuIupFovza8Id3Suz1YS9v7Jz9uVacyTu9u2zQQhdQXWjTP/v+t/HSfjInVmu95Mwww3a60+adTFckkavruqouKngUcxVbniTMWgBUk2kBgRKIBNhjAFX1cNa1hSApIsSJBFAcc/LS8YMAuuPxCEAaezyecDotnfFgBqMXWufg197AMfG+N5S2Cih9R8PHvbYT4jUF7z8S6PLv55/52v1fAxMv3c9/dsk4vHT/77vH+Nzag7O+NfR3Phxw9+YNbm7v8dXbH4GZcVxX1FKQ04yrazHuAYBgBnXRBWITWD31Wllob7ha/o0QEhKlM/bPSOYbtw3VTWlUcNIqgz2HjITwJWjcedPwWSsVrishRAF9Xo4v2HQvCbhGRJpTTpJyAkHANAqIVnUWUOWFZRPiBvScKSJ0pcokq4LBvY9t06ncEFkYe60LDTUOSenXEGCPMeQ0B2Ev9Y2gWSha6CAniDQEV8GgIAl4Y5C8bZK8XSpENmW3IUbEecZhPiDFjNPCmA/XmOdZyoVR0N8RpTGur6/EEJgnRJaE0XVtWOoJx+UFpS5dwR6U/9ABzbIuIDREYyjo/QMiUrMkrQlIEawhDkxGcYdWxSmiCJMUvjCiYWsSwnN1SPjq/gb3tzMOmXCVg/xMCT95k/HVDeEQlDXXAAIjaSJQIG6M9E7L7wDd2NxGeSRjPxnDjGXearLbriSBsdSC5XjE3//ql/gff/VX+Idf/Bxff/01vnz8pIphAlC78mibQEzDq2jMspOyKMZGB1Xycwfmrg4H5ElCdohIWBcKkp+WBd++/xafPkmi8tqAlCfEmMFMyuQz5S72d/dK+1CIBjOLQkAEdUPmeDzi4eEBj4+PGxaFKbZmCImCNbxjBjRJtd2Ih5cjTscj7u7vcHd9iy+PD5vr9iCON5CYqXtg9zJ6L2/9niQigtz7bRUS74n0BsH3Ha8BQJeO/fPMsPP75lByXHj/5h42N8y7WzQ/7OgrMZKsOvCWpQIM9oq141J4T1nrBjjb94+9+x70Gg1FZ81t9YKtcVebullckRBR2iSE5FL/egVtc41n9rjz9oDPdp6fA8GiLlPv641iDAELu860v5YB1v3EWAV+fr62x+8NS/9uvr/s897fhM27+589KOZ1nj2o50EXA+38dXsAzp65nxv+3S69157pZuNl7+XX3Gvrz7cjRJd30x0yPnCG4TmIaM8YRQ0KyiqgWooJCA1cRqRJSgVR93Nu0ldXV1dYa8XpdMLNzQ1SSvjm/Xs8PDxsAMx5ntU5GsFchXlVoYV9ZizHI9a14PHxEYerg6SCcHOQIY5YyxfNreH6cIUQAm5ubno44qpRMq01TNOMn/zRH4FzxI//9D/JrhYJh2nCu/s3uLm5RWDGqT31sby5uUGeJ6TnhIenBzdOUEbmub1gcyqE2OeUz59mBu5wKoxr/Dywvmq1oRUB+YRBYmuCbEARKCKnLE45jMiKEEZ4tzHQvLzbg0CvzrM+58/nogGKzKzsyC3YIp9JVWDvdNmv771ssOtNV9iTJPayVmw7YWnmnLeMmhA64LGVP+hgWAgBjSQk1a9Da0uvBG5hntZ2XcfTNMmez5IT1yqGtgbEKAycrVOIQc1YeKm/R9Q1nHPWHI4NMcSe8mAvw62t0zSdOQY9YNeLYDgZZXuujZ1vm5ejTZ0zIypoy24GBsC+BwdbkwIrMc46V0mS1I8ZBBDheFw3RfIaIOGTTAjUhCGmielrZ4Ox6lODbUw2X8jyuwGRJVyUyYpdiH4NEiDV7AjS4nNQ8JvVoddhLzG+AGpdHyGg7zsSqSS2Y2sFaOKIqK2CWu1TeOwR6PfxURPmbOlMUAiDEYEQERF9xdIQQA1YWwGooRlQyGZXjLnQLhCFbC7tizbt9yoP7AsLjrosMiCXIP233+NZQU0pHqgRXtjOT8LI+SljKnnXurOitJ5ug0jIJAHiZiK37/e91UBEexfsKn+7d92vq0uf+SIIhkF4OVHKtmjCVm/Wdl/odxOqe2gYNM7z372mV1/S9/vzGViWkwBpJGCiGeEhDHBQ3kUcS7DoKLXx6lrB+k7Wr905ouO+ZyP74wcBdF++fNH8ciPpqNBJLzPEbBNk3gJD+yN0Ads/cV4ln/flcgdf2hQvKdObln3Hd5fu9V0Glh9Mf7/vM7S8l/e7DABvlOyfC5wro/vnG8sxxrx5rvxbgKWmbJhpOuD6+hr3b7/CmzdvcH11CwawVplw0+EaszHCTIEANO/EKlhaq6htBbNuqizJ6XOe0ZrlKpQJm9KEQAmS0yojBJ8PThcEqcfMHAjqjZQ+AFjzEgRbEFqcIqaMEIDl5SRKkgoxRMfQCwHXN3fqtXRegBCkRHdraKyKXLBKfgZ5S3vW0sTLqeG4gaQyqyxc7puelVpvylKTPU7yaqnLQtB2E5RgRKhikCR3RK2tb0YpJcxTQilFKsXNk/S3boRWWGHl2kEvigEISYA6EpCrsICVOWplo5gQlOkUwoR8dQVGRGFovsiAFKX66dWUcXNzByKgtIJaJX/YWhacyglrPaKhIk0JRBlomiAYQKIgleAoAFz7ZiBtBxAyELT6lm42VkF3hLmJYZtSQqsLUgDmTGhlxcvTE8AVf/xnf4LbuwNub2ZczxFzYtxeZby9u8abm4ybTJhoMOUkR0cFkWYetASgBBBr/h9LfkBQTUT/ZvPESY5N+VGQTnb9nnzYNvxECf/3z/4Gf/mXf4nf/e53+M1vfoPjSUJKA4DGW2N6kDflWUSymZZS8P79exAR3r17h3k+oLWC+TAjJkZKwnad5xnzNINZmAc5Zzw9PeH9hw/49PkTjsej9q0lpRUWZTdUu/yBKIAhaCGgkRycWpO+DBGnckJMoSdCPR6PPazVy7xRFGJ4KkspyrqMWE4LWiJcHX6MKWW8PD7h5ekZMQS8e/sOd3e3+Pj5U1emTcZFt9698QOMMGCTi7aBWtl6O0yJ8uEJ3mAzI8QcDP4wJcxSRIwcgdBiHyMkwPrPVzinyPCVrGwb6ACYOcn0eV7JFw+dQskOxAjKrgB48257gETupazqHdPDK1Nwz/b9br9D2I6BB7Ss/+09/D1F2W59LxDlJ4xxyrkbVSKfWa8ToC6lCQ0FTCNH096w997r/WemIO493H689u/rDS1hMA5DotaKtRYBrGOUEH81zpZl6fsMIIp40j3Tqhx649zmon9/37++jy+12YNurbUexmrKps1bGw//bD+GOee+r3cFlKjfR6rOjbYZQyjGKNU+iXA8HjcKu+9Dvy592w0Q8+GxNo+283HITnnGeJfj8dj7NuVxL7++WMR2l0fj3QWkYpb9PKeM7uhiWbNSwE1YYzFLHq3jaQXTC+b5gCnPAA0GGDfZc2IMOBwO+NHbt0gh4OHpCQ8PDyil4P7NPUI8gILoAB1cMKdMSqit4bQWNJwwIyDNGWyODgcU2L7x8eNHTNPUC/b4OdeaFJEo3HB3d4+bN28kZQI35BAwhYiyLIgMzNOEU2OclpOExmXJq7eUE2otqFVtKhJQIycBBpdl0fk7clxKxI4By6PNfn7bOPm17QFjIkLgAOKGOWec6ipgF5IAC6BeXToHOW8tK2pdxUmYorKXInKeURVA3e8Hxtjz60JkLIHRUGrtFbY3QFpd+74pcmbc086tVfL8GRBkcsBkhl/7fo0OWdV6miGvW/uqsLYOWit9LfY8fjEOQIV24FIbDMKzd3d7SClFAXC19WzL0HNOp5M8097DZEgRvXzYG1PfC4lIZCaGjiRyqKA1KZAiDsqAnEKP/NrLeMub7tu7fxcvW21fMhvYy0m73sYlxoAaCGstiJH6+L0mT23sTV6t64qlFIB5VDUHaUVagkXyzPMMBmFthMKSPIVbA4Lpoyo/tX1QAoCEPnrHnoAOpUc8yZitZe1pQpLm7BYwTZLdc5P3gxav4FIlasf6hy0FQuuhrEH91k0BLE4BtRWcTgvy8YhDTEgpI6WMtla0JnO5VupzILg9QfaiiGlKkkKGDVhjpGlGDAEpJLScNSch6TrIKEU9+uZsFmQeXIfsGcULhy62rzTux7PrW2q/9nt0JpeSPaKwlqXQ37Btu65KLE4eABYubwBPa2ovO5kihauCyonY34cAYQaz2E+11M4mTCSFKkzm22HrZFm3jH37t/3tC0TtMQuT39tD5uTQQajbMWMdmXvT5uyA2oaMkTEpZe2sOLs9acFGRGGfojm563RAQGxu72DuUJU+MERC7jZ9wVpE7sQYu/5jItdsdyF3tG4jNnVScw2AVazW830I/aXjBwF0z8/P3athiqshwQbEvXZ8F8Dl9PtL3+6Mwsv5EP6/PPZtH6hwOPt+3749ALe/x6X77o+9wXfp8AvHt8k29VYrTuXU7yd5wizW35heB9y9uce7d+/w5v6tTDy9B5MoTzknJJfjTdD7psyaIkY5t20lHKc4WZ7CpmyarAI4pqShqTbeUkSiEUBVGWDGeHF5b9D/JlBIiMTgEB0zgTBNsxp4wrxqrlpbn8UUYLIhhCQJIFnCW8GugpQzeMyhIsJplLP2XkuRnXJ/eEFKAiwSSMJFNbmtCKoqYaYhiUcwkrItGCkSAuUuOLsSRUkBPrJuQRd6aRLfsIVXUQIlCxcNyKShSFbaXgsAhBgRaEKM9yBIGACChMnEKeFwmJEmyWNT24raCkpZJMfDuqCUBaWuAsAr25HVK0cMcCAtCcEYiT8Bowkaq4OJXAUc7vPDQpzlLhWZAuYIUFtwennElBg/+dFbvLnLuL+b8farW7y5O+B6Djhkws0EHEg9hOpR0hkog8tF5mHRsOQYBWeDAIosuzlQi6HJAElobLMd0byGFuaqni8EoTYvbcU//NM/4md/+zP84he/wD/9+tf48OED1tMJAYScJgWOR2ie+EMG09IrCcuy9hygss4nEDGurg64v7/DYT6gsSh+phB+8803eHx8xNPL80aBJeEToLIxEMZGKT/SU3UdzL6ed6mZokI4zAcgcFeQX15eRAboNd7o9Yml7WetKw5zwuHqgAjGelrw+dMngEURZjTM0yTK11pQ1yJe5ymeKc8mE4mGw2jIzf3f22t827y8vWQg+utGwvIti2kPcu3fuxtJ2H5n154ZRCoj7X5d4WCcXe/etoOEKQ3wcWt4KEvZEt522UL63dYZZfMSwJDNtj5cO2zO+nAua7vvDyIL7bK2i9QGEaDJyGutIitcX/a2NB74Oc77Yj8ucp32ESn7W9eu6Lo8FHk9JD+e9JOBux1IAGAVH4hsFY/rbS3Ay3SgJ6r3880bj17/2CvOewaLN/624zT6wLfJrpM9Up9l0fxeEeemoaxxjMxujndjZ9d+D8YbaO2v9UwVDxhN07RJRG9ghX9/OwZY7duEfp4ZVZ3VsFsjemY3CEffVHCvfrhnD/Dm2tZkHXR5XQqOR3G2ral0g32whqPq1A2HwwGNGaU1PD+LfH58eECtBVeHrZMQIAAAIABJREFUK6Sr8/lWK4HTYJLVWoEihbtSSuLcIidnFUB5//49vnz5Mvrf1mFjlFWS6pfAaN04b5KDLiZkJkRmkI5TbZLbiZcjmIwllbvByMzdyBxAreWcGyy3AdBt2St+DgEjh6Gfd7b2W9WwPy1EZUCDhFlGAAHLuoJyFoaQOiOM8dOoAJouw9aEMLRynz8e4Nmsr2a6BDSnlZ9DjFb3RSbikNvuCEEZzK0JmCUPAkFCNJOFoO32FFnvAcxl0y9dD9ExyFokrLURqtdB8lKQ57F/dXArSjL0Dlwxn7WdiLZMWnO697DF85QQDAE1cs6glGXNNCl6Is7DwcoLQe5dFwuRYyzLgmVZUMoqIBSp/uzWO4DNfr530uzZQt65ZddccsTZ5/M8976NkZBpgDl7Bqb0qcmwprqTtM2KgkF1ymD6/Y7sYmMgBRnVcZEyWIkEy3ISpm4IgGZItnv4+dqhIzL5q2kqmjjKOGmKCXZgUZDUFr5vSPVfAY+oV8U1koSF9MrjpM+aA3O8jtDXhkNN9rrS4XAYe5f+z4ogMule2hrWtnM6aY7KeZq0gIkWqqgAr1IUoGqu784F3Oln4qCuZ/uGrRUBnreM9P2cee1vceIBQBil59ThF+NYe7UUBBp2KBDQqrDockhY0QAa42v9ZOaJb9tGfuE8v+Jr2MUlXMZ//n24zWv4BwGdmGGbN7NGVikzljTlg+kfZC/o2+fSKYkqOk5onlxApNWFZY5a/9hh8tJ009E/Y49A18fGfXqHq93o5+/3pTn7gTnohpCXjjNAxRYbqSK0gx9tau02j/HS/zaQbW/U/NDzv+s4Uyr/Jw5vbNjf33fPVyfnTtl+7Zp9n/hF0UMB2TYp8eLAlCGQVGl98w5v376VSpAq8FqpIAKybiRJ81nZZgAIBb3nLQF3QiWFESJaqxhiy2LJ7jOm6YD5cNA2qSIBVTIg4YpBlVqo0OlWFiQgQd7XwDbS0EjzeosBAc0JYzlIFEgXFltQ+i0lSM0EUiEnDDR5SuiCbzNO6qiPMW+MiXEP3WyIFOAMYmlSk6qCVjo+SghvU+9GU0Ygh6DVPUXJY+1Y6kBbBCOoNyh0odC6LCABguKMRqKoxBhBSZTLnGbxECuAFiwHpBphISQQEogmCLuRgBgQc0TMEemQkJIoFqU1nMoRZT2iFQ3HxCK4VFB4yeSU/oiQkhAumavDQGNmhNpQSJgwNaC/H0Mo65ECUgCIGyISqJ0QuILXFyQ+4UdvvsL//hd/gikTDlcZX91l3N8EXM2ETCL0IqAVlnoWBwhjqAAsnssYkn5ZYUUPeF1Ql+Us9w2lDAlJi0AQj6F0goB4RAC3IrKTCY+PD/i7v/sZfvazv8Y//Oof8Iff/x7PTy/SjLWCy0nn/jmDBzuFpZSG02nBy4vkB2UGUoq4nhPmNAm9n2QtrG3F46NUhv3m2/c4qccXcICFjlPTamHMO4N/PB0g2RyrebqaVlkLASCRFcfjsYNz/lkeoLsEJMnkkF+1STjOwxdCDLIZTlPG7c0tAMbL8SiAD4BJw6Q86ODfz95xVMDbJq6/5Bjx33VDBVtQaa+c2M8ZwL87vOLnr9kXozUlYK8kykMHU6grGw0DldjdiOHDWbfK8abdCF1BsgIBpuigV2ij0UBm1CJJdSlaAShZaB1sNzlsRrYDkLrxTQRjj/hxJCKgbNkH+uL6cjZfxegxSU4Gv3dDyLydF4ekd2lQxwJ3T67+Z8/loJVXhf0BEFBHMY2mYLZdE9w7GkCZUhprJwTEEFCcJ9obLdYHw7A/B+j8OPo51t9rN89AW7ZIv46ExV7NSUAApSipK6roB8KqsDnl9BFWBjS2688Obyzt1z+59pixaixV4Dz0cTu1PQgsBmEHEkCbe/vrPft0v1ataJnM4waJpJL5Jcnrdb6Cz9oiKXRGyExbG7itqKVJaOo0DVYWEWoRZyaFgKurA1q7BzNrpetnlCJ5SfOUETN3I5lrRWsBMU0I0fKZVd3f5ZyYJI9rHw99z2VZ8PDy0oFPMJCTsFhgjhoCKnEPjUIkUKkohRHBI69OIK0aK7JAwg0Hy0yShgsIY+wrmQMW+urtBHTZ3PvT6Z9+/vj5ZXOmlYpahDkHsDJhkoyT5f8NATEm5BiAGNBY2PqSfFZ100bdODPQyeahgas2h+x9UhZdu++RTo5JKhIfUh/UUevyh0KkqunYEsFUpJCbyX53bmDuaVI293AyYm9wS1uMPbpNM+ENSAOffPt8mgwKwsjyurBf66xsph5GibGPTdMk37cmTEvLpapO5mm+hjD6zSkdhz7o1mpr3CO8apU+bRBgdtMe5s44tbl0ab+2vXVZls13HowzGWGyzNgwXY6iSQE0EJhL16NM6xRyQAQg62ij25EANNXJ1SGTxnk2RmVdBaDTSJgGYUaVtSIG6qHKMh4sOblb0Tlqt3PARRP2uiW3H/tHtzBkzM8YpNYysVsokm3/IP8EFllKUdetk/+taeEOZQ1uZbLYRKYXD9miSisZQChzvzbZi1Ea2rKClPkZQD2PKqKtE7UfzXZhBqWIymXbtt188OtsD3bRXolzh7d5LjFwZf8bfYM+P8Y8bQi7Z/pIiQHL2aV9DBg9Hyi7+/f3tDFCcPNuOw/3+u45TmEy2dss2/f2f2++56CXlA0413/3PUzmdXTX2vt1fWRvUmz29m3/ef0MzEKAUQAuBEIKCSCgteL2LjbVF4yGUXRL8j7KGJAGUhWABxvc5N1rxw8C6PadzxgLR8945UrzqBuQN+wFosu2w/65/U5ucP5ngbSLLfXv98rEudSWfVsvXftdyuRrhttmkV+Y/MAW4d5vynb/EKRUuGd7iYYVMM9XePPuLX78o5/i9vYWDMLx5QgrmgDa5aWBJOW052alaw6jjRVwY3lGkxC4ntMqTZgP15ima6SUIZVDAQEyNNEjm8Oe1KNmIJnzzpm45wZuAlpxG+uQVSmulUEWaoqmYJlJ74Di6ccGpIkLRgyMlIfngey54xgbMfVEwNIAgGChraEDN8mqtRJ1X1afC1DAMBibQpQ4bqK8EglIJmMcNW2pADik78MNqNb1iIhpRtAQ0Zwz4jRLDrI8qfdHha3OC2M/EiJCkKqdIYiXO+YISlFIl0G8eqf1iHVdemUkIlEoQ5gUHIhooE4xBjvjnkgS3vYNaSh3XEWxiTmogWxecUKIAsCkwKhLxRyBeqx4efiETAU/eXOLP//Tn+DPfvwGb+4zciJMGciBkYm1LM0A50b8v32gYHD3NjWgVpTjEceXJ7w8P+Ll5QXracGUk+Z4m5GmGTnPSHmSdZGk4ixqBaas/SzMvKUW/Mu//hq//Pu/x9dff40PHz5IjsecESF5VyThbQbRdt0PQ3ab/0Lyg46KqDknHA4H5CxevpeXF6y14vHxER8/fsTnzw9Yqxm6RsEPkDyPTdlz6GDdXv7b/JcQV/GyBorq3ROQ8uXpCcd1VPc2GWU5kPaJmf0hRk4GAzgeT+C6IoeAOk+IISHnjB/96B1ur6/x8PiEp8dH2fCItEoi98TGe4DOnjfClUQeXpKx3vNu7fKGyL7N3pABth74/R7hwwEu3R9n+8L5vqMX9VM3ygcNxsLmO5XlA+Djbpyb8RdjRIrCbvGsad+flxTSzffc0C4AP6Y4+nGOYVsNlbSd+31fgDUCo3YlnFQZtT3C1ofXSy7t73u2xN4Iiy7sxNha+3Pt/AH2jnFvVYCNS4yLbsg70ElA56mDAJfaZ9cb+3E/p/z9zdDcAwkURsgZM3eAzuZDZ5WQhgG6yr02P6w9XmEX4NP2HymCFHGZ5bYPJ/Pv8Bog6dm/Nia2Pv3cfM0rvQcBe1uYsUfDSfM41WYOBTFt2IQivJG+Z+AN5+HeqLdrWmvd+PdyXBhnU5/XgYLqBqEz6RgSCtta6ywqy7VofVObsMeYGWUtAAOzsr+sTQaMD+AoYl1WVBcWKexQZcEE0nonhBwltyhxRaKARDKvOIhRQVrpXEDy8X6l6BrnEQotBqfpriNUVfSJ8/B639f+7+Dfh4ESxBFoRYFkj9P9i4WxmPMsTssYwJXQWgBCA4LqnyHDch/bM32IozEqTD4amCxMlwgEQmtl4zAKgTSZOLk94DxZPIMVbKJe1GkPnhmjrLPVePSfB3yGfXC+F4oc3RqqImeB0nizZntfd5VO5pGF4u33ptakSrKldtlX5e0gba1SiI417xsDRA2gVY3joGGPwhottWBdg/alRDhsmDCmV2gV6UQCwEaQRMyw5GQr6yryD+KI6EXB9Letl0t9YH261zFMHhVhJyAEaIiuAB6ARaNVXQ8WxsnqDJAicSEk8LIACpRt91mV81XB5xhBKvcaN90jWUFlaL9VAb64odTWAToAvdDeSDVkckor3hJJ35AhPeKA9oxLP3daq6jckENSoES4YK2JnYhWla1EmiTfgDefhkmdoju7S2wFaIVc5+DFdl9nACEmoNSeXqgDiyQARC0ruK56P0ZoWnnecpKmgFJp40z2xx4I3x/eEXXp2OtU/f4dgwroociVe5oCC3HezonQ5aofk0FCZjVzSB2G6GH2rY1CC5u+3u3xl76/pAPKv73+8hrGsf1bzhR7FoAwQeGBxb0j3+w0i/7BhpjUSt3cv1cBdg++pM/K5xKWzW7cg5mHCGBIzkMLye3PsOeD0FoFqbPHnOKbfey7SrjiBwJ0/iAinJedGA3cfMpeofXnmgL9fc/aGkLfBYz9Rxx7Jff7EkBenpS4eI219ZIReEnJvnSv1469AdivrWrEx7FpBApIU0TKE3760/+E2zf3uL97g5AS1qWKMCBl33EDVwnpk4SllidFy5+nCTHLBiPvz5JIXxlspVYcTyuWpSDGjDxd43C4RgwJRRObhiaFA9ANSTWWKfSqqzGaIg0IGKjx/FGFfxPjgMiBDWSCnEEhdvCBQFpRRasiKcNiQDc9nkeUXhUNsvC2Yxxpy6LZ9D8RKss9WcG6GDVcEughAr2qkFXrMkMpqlHAVXLhgYCguVogm8uyVlDIks8vJMnpp8szEiEdrhF0o5mmScYrRsCUKfUcIVibdLOJAQERsyqv8zQjTTJGlc1Yl5xKay1Cwdey94GUCVJF6awsYaFdTLu+WpelM08EpNO1lQjggDgnpA7QNaAJYJeDGAicgEMkPB4/oxwf8PbNLf6Pv/gz/MWf/TFuDxlfXRFCkBEkagioHZgTfUCeoyOgXnMdc2rgWlCORzw9POLLl094evyC0/MTltMJ67p2xXjKB8yzFE+Z9HfOGdc3B0h48jUoZHBdsZaGf/3d7/E3f/NX+OUvf4F//e2/4MvDJ7RWMKWMKWc0SpLzZt0mUN3LB28YmwG7KLvPjIcpR9Ta8PDlCZ8+fcKXL19wKisASbI87hlghCspFqZznjxrSJmy1ogmSh43NaaSMitrw2lZ8fT0hKWWM7nak5S/Itf6HAljbMS4E0Vlnid8dXePP/7pH6G1hm++/QZPT09q7KoXFEOBPgPCXH8ag8HvVa8pYfs22rmX9gd/njfM/Xd7b6x/99bEsPVKL7Bt17jX5f2FMK7dACHKeB7P2wJQ431EFnowZT+W3lC5ZLBYq/0ubQZyNzRLkfA5A2SAnq+mkSk11leaQ49GLkEzLF4bv317/dh4BdSPkSisDXwB67FzbF4YgGmf9WfQUBT98/w4+f6y577WTt823/f79x0AxytKsesPYSsOcMiDXiBjIxqzaYBSQdNdFP8cHWzbn23+Xepv/5lngvr384nYW2t4eXnpTCY/ry/17yVjSmTaeQibMC7GPXofaO4judd4QaIBrNqLj+VJ/ScoY8gnCvfsK5PVNzc38v7EyFPqRbiWdUXjiPu7G8lFGwhfvjyIE7UxltOKm5ubTW5LyxOFUBEgoYhlXVHXFai1hxACQC0VdS0gBqaU0UJEYKBi5Mxai4BVjYBKkHDWXklWQbEgbJ/SquYYBsKkoW9VGdVkzGOR48tSUFat8ExJDR8FA5m177fhY36cbY7ucyWO1B8BVA20GXKOIQyqyCNqQICwilaKGlRQSgahVvQIA89kszlgufsuMTLXdYV5Aff2gZf9XjqezWm0/k42f7yjYF9FcXMPnDulvGHv+9TvIRbCCyLNQe3yYqmsQ3V7184htR8neQ9hd/UcYGE4fqwvU4zgZCx9AYdPi+RDq3Wkz9j+oI+3ML5V1weDS5PIAQgAR+roTjrPkBKQZ3FMNxZdtkhho6rznmJETNsomr0zwOsXdo7MlYJseVNDkoq+CGhcQABqA9alDiYXzMGujOUAeTaGvRBB3dYR24eRUsY8izO4kjLDtAZszgk5Q/pWiL7ii1B5ZzkgoYytqMxZKwS2rA1CvDDbf0xXpqbECO5kepGbChD2eSiywqqmM7Hojqjouex2WoJdV0rpBVz6fFJwjhia29KAnXEYSzLnSZL0KzAlzEy3RhqDm6atoQZGhMRiWVG6rYNxv+d+r83v1vtrx2aduDkE3jL8TZfwMnG0LfS92u+hSp+B9bCBXNBPylq6TPkufdz/+zXdxNpjuirzYNCNa3ZgqwfoOrzm35k3JwrZxn1fWweATefo3+10A9NpLh1dn4LTtWTjUHtInAYmXeQaUlDTdHf7n4HcAgyDgEBtOz/U3r9UgMQfPwigGx7J7ULYjuc5uGRG3sXN48IEv3RcMnr+o4/9vf+9z7oE0u0VjM0C1MNP+o0h5T7bn+//7Y0L/6yemLVvJEDMCdfXt7i5vcW7n/wYhIilFFG8KCLnCaU1tFqEwRVkMpkQkHRcPrG4sKxa95YyGlfUwjielp64NeeEFDMoJlQmrEvpGxa0olAI6uUhQZmkAiDphhXAxGhNwZag4YSjJ/T/cr+gi4vIFr6BDCR5BrRLg7Z/GAhDUA6lHGp40Ea+eJZDDHET6x5iQpMqDPp3ROiVas07YIMlVPA+jlGNoAgAuYuExva+FpbECElAoTzNSGkCgoa9BkJI4gmyPCMx5B5jXxmYpgjS/HPsjF3SqkE5SnGBaQqIWVhzvIqC27hCkrEnAQyjhKoBAJeCiqbhNFAv5i7EEMCcpM8SBVAS5cMKQjUIg85yOIkUFmZjIiCHhvn+AJxesGbC27tr/Oc//2P8l//tT/Dj+wnUxJgIrQpIxw0Sm8zoHPaep5T6viBrtqC1go/vP+Lp8QEPnz/j6eELlpdn1FKE+dcaahXAO6dJwLlJqqTO85UYSvUO09WM1MQL3+oJHz5/xi9/+Qv8/G9/ht/99jd4+PQZ6/EkIWMAqDFiiJhSBmHF2lw1qQ3QRN1oBgZIYEwoA1eeX17w8eMnfPr4CU9PUmmPYhTPYpcVYohKOIUqYQhbYM4Ure5cES82NxYwWSt8tdZwWk54fn6GgS2lbkupe0bd/vCfCRNwwjzPaOp5X04nULvB7e0tUkr49g/f4P2332JZ1r4mAVV4vVIHL0eHMmHvb0bca8d+/9orXKaseyaVyd9LwIy/b1cwXzlvnHN5P9gDcP09CN37Z+0TGSbj2ENM40hA7uea5Fe6XHjAAyS+nT4nmVSKdsCXtqXVtlEe/FwgkhB2CcsBwAKe2pzvbVBjgVUr9ePhgb5zQ3QLuHZFNoyE00PnaF2fe00n8H22KfBBpPLQK9tbb7NdY6BTv58ZwW7u7gHePUi3fx9rc9+fXFJtn+gcUAYZjX6xvmy+OqADb/eG6oaNh2Fw2Pd7A/YSqLZ/tv3bGEKWe86cTTZv/L09EG79awa8DsKmPVu25k6vAulnMobbd1MDH7b2Lk4NlQFxwz61d7L3AXxxCzHITK9YF3Gk5Dzhpo9d64V27J6Hw6E7hVprnXkHc2yaXMLI2WbaUjK9pYljzapoyrwU9nxIUUJcdY+QDVqdtcHmlQDapRTUAMRKmLLM6wDrR+sTcYqcsEjxKapgHozelJI4+qDVwrEFo/0csr7z4DIRIWQCigPBSAxVm8+CpQ7j0QMKgjpo4a5apHgUbZkpNl+t2FIHNBXAK7WgnIQllFLYhMZ6QH+wYLdMwTEfqJ/r57rPb2rt8PJAgFPJK2z9JW3ns3uZguWv76B52LbZ8uENu/lcvvr5D0D1/KEf2nf2btsCS+qcUqA/BAlRNJlVSpE0JzEipYhS1jG+JrelQWjcMKd5qOwmDwGwzpVNXjgKQJDUNvZOEv2zzQ/oZZSXo57RHIKw4BIZIF8Bx+ZhNeyJCAFR7Cw3NxsXgDQihSxMXVmrmvqGmBFjAohQeCSeH2qt6QxjbxW7iXRfHvK8bWSjhAkbe44Da8ohjUrod9RxFARCc/4REMQ1gCAyAywArTh7m97D5rRVaeVNFJLotlWqkGLLmo4cO1glIYjnIF2A7muax09iqET18T9cGyqqgHStgpo4n6KmLaApofIIZ9zb2TaWHhTzn+cdY9TPf/ucdHyHXjPAZ78vyXlbOWHAtEE5DSNsPcYkDDIaIB1B9X3agonfh3lcemff/nPMYnvdue577kz24KEdtc83FvvQ61Fy48095Pd49h4rYdr2/V5P8VVnDea2uYZGaFK+eACBm/eS3N3kVoixcn0fy/4b3fp8/fhBAJ0hi73/etjVa2ikCRFt9s6Lsw9teO3Yhyp45dbu9X3t/q7j0vN9J+4X23dd9+89XpvAtnl91+E9a71PYN5H9E3LqKvTNOH25hZv3rzB7d3dUGILi8dIGVVNjR4KkkgfUZJdBhI02bZ0o/M3GklqiRhra1hKxVoaOESkmJCmCRyoe8JqY8QUe1lnBM0Rpw1nbVugBERNIixbFyxsVOLUqRtiRCRsOWXO2SZoPywVCvqmEvT5SRPqihCGGvYRXLdGuN+k5e/c0acYNaRRLALElIAEzRGgOTRSklLypkwYvTWa99fltLOiEyH0hLlN87RIcqQEpAkxT0j5CjFPmn8id+WMUXsug9j7UJU10KjcGoSVZ0q0vCeQ4ooUGSFWAduabGYVBY2A6eogCltpWr5bwcfUULlJMQhuXX7EaBuczNOsOfRiACiGoSCpIGUaIYgEEs9fawhoiFxxMyW8f/qEtp7wRz99h//1z/8XvL1NSATECBDLJi8sxCpzh8ccgOYX0IUC5obleMTTyxecliN+99t/xcvTA16ennB6OQK1QPiWAhSKd49Qo4QFlaVivqpAI/AU8PwcMM0EcAW3FcvpiD/87rf45a/+Hv/0T1/jw7fv8fz8BGZJ6ho0dxU1zXeQIriRM+BsLmPzt4kj8/CfjiuO0wkfPn7E88MXvP/wHi/HI1LOUiwCkv9tEKEF7LOwVllLAtpJRS4FAzTPR5dTzFplWHInHY8vokgvK5bTCSGN+WyAjwfq9nL80ibPtp7Uc7YsCx6fnvDw5QvKuuDDhw94eHmW929tk/eq1doZq95IsZL0A1iQPtgDyHbdpVDC7d6wERNn5+xl9Ebhckq/KQwmn/ZGqRlSZ0DczrjaKzBn+yAb8DoUwZFni/q/m+ba2h/7519S8IbuwSOEZVhKALYGDQEKzDlGK+1mu/UX0fCs9lcyAAk93QHtQBc/53pYx0Y5u2Akf8dWvzeI/bwWNod4tS18hFvr+9U+ubTPyVVVrtjDPdDm+8GDBV5/8Ab2a7rKD9GdJOn/NnRw/7Ofw2P+AeAtYLh/Bw/Yma5z7ojYFrbx3v79O+yV4H1fWS44b2B3htWOJMvqiBj38aDnMK4vPdvGzYo8WL6zVhuqVp8E0AsOlFrQuCCGiLIQoIzoCgHPAVkr11fXAMu+/fT0hFJKL+AGABQCKgNAlfDVIKFQAgIQ6lpwwhG1FKQoxbkoC5hXuQFN9t4YAsq6gmvD7d0sIbQxonCTUFYAUGZ0DlGjLQDiKIE8xu5hYQAFwPW76FBWHOJ0LDAGOLMVyIoI0eYGYEw6v35tT9nIO78GsJVPXRa5dW0OVZP9ISW0RiPElcWBaylGTP8zQMnmonfKjLUiyem74S2PB0jYviGfz8X9DJR1LCBS4y1wZmDfJdB9zNnQYT9r254pLkCsrFdbe9bemFJPC2PPBtAZSf4eTMLY8iCGMC3RARwGeti1AWkbu7A2VHPeMSCO4gzmEX7fAaYdIcRCY1tTHY/kuU1Zo1uQcrzjsiwjv51j5whoNfQIk097MG7PGLdrJfQ8gYvKPz6XWWR2g+uDWitKLaDatGJyP7mPtzHsGjNCzFjLAC8bERDVqdBDaVX2wvQ7c8aMebTWIhV/da1J5eVV1n5ggMTREFtTe0zAJMstCEDTimhxqRiQELGs1dTrPj+ABlLIjIWvK2Prx8mcvxQNuhnzpDXAoqtyVl11q2ux6njruoJLFfaku8c4FwhMkr9R7RKJCDMZXsUmCaPKsrXR7zV+TtkhsiKKQ//C2APojpOuRLrfEpIr88B0ueDWFYOFQcY2PQghGnitRVQcBtShmy6OHCN+59wah0tLhAu65IXjMhDZscfRIAw9YVvMaXu97cUVQ7anvS6tlwRrI6MXKPmu9qWU+toxEM7Liv7UOPROY6gCuo6YNRWVJzEwmCX1j+ntQ5+grpt+X3/+G3LQ4WyT40tvD0C87uf32HfORsGRL/0FmjsC6Ciy6qy21CymvF9/dnzfZPKden7+xggbLqPRduuHfrfXFd+9kXbW0u8ZqEvXeQVcxohEoGhi6lWFcwgBecq4vr7B3Zu3uL69xXR1LZtTmnpeh6Us6rEOiCmgBQKzJB0zw0iKU4nBUUFoYXjbrSNqZdS1iVxPSQsTJFAAKktZZATxclKkzhhDk6pN0h+AZBAlTbxPEtWkC8UyXLJuEBQsV90wNEWKC9iGEJHJgV7qPTJqt+VYMTBJPhM4xvo37gA6CbHVBZ2y5GBRDB0pY0pJk21a2GpEDEkTtDawo86HNAA80kTLKR8Q0yyGGwXUxpKwOyZJBp2yFHqIub//eI6Elwgvl9FUYc8xCsAUCKShxQiaGNkULACZGDkBITI7sXndAAAgAElEQVQoyHgXZlCqQvMNhBgzuFS00MBVvEUhRN16K2LOAtQZiJmlshUCq6cnGBkQIVJXFG14S83IAGaIR6yQOMSoiA7dKuPjhxNePlX8xU9+jPn+Cu9XoDxV3B0YcQFCqaj1GcvyjPV0BLdVIhviBGozYpgRI1C44vRyxKcvn/Dp8x/w9PQFtZywLCcsxwW1rghWRVg0np4cPsWGmkQexhgFsAsJp5dHlLsEric0Lnh6esQ333yDf/3Nb/Dttx/w8f0HPD8+I4eMKR9AkUFs3lNJ+uzlQ9Pkvl2ehDD8NTzCXI+nI9JLwMOnj6htAYMxHQ6SJ0bBzpwz1lK0srHt2MaWE6NVQnOabkBbZg4goGJKAmSv6xHPzy+otUAFtnhhnfzyik03uLB9R8gslL4E0MqKhRmRgDlPYGI8Pr/gd99+gyllfPr8GXmWEK+2rrDgOq80eSXapKwpJHLeMGAGRV+XeIwKnItSVFtVdp7m5rL1rgqhbFNhY9DvAb+xSZ/3yZDn22T/8nvXT/2+Tguzz5lUcfZhl+58VvYLKQjcwaWgRgNQ0LrB43cna9eeiWagoDgqpH8aGZPNy9HY36sz1wAJoQcDjVHqqqFF37EvkvXXZgfuwN4eQLHftm/6Cn5EtGERimLY9N6Mnuh/d68N6EdSJCJQcMmFR7hmnw8YuV/2QKEdIcbhyHHPuQSO2qt3D7Iq8TFKJb8BjNe+rgcgC2glg81nzAOQ931l6Q36WMbBoDqbjjsjpr+/GUZBHTpdSd/mujMDsJQioZmah0uM8aZOjCy6mdPFunLNUMfUACdMSfbPGf2qSnRDZ1rVpk6iDpZq8nLizlJQa2mMHZk8FsfQBlDVvDZJdSJAqrsiBWRlq1EIyCkhE8mezyL1U864vY29zx8eHnA8HsHMfd+nIOxuqYQZRvXSJGt0KSuq7iKlVZyW06hKSkCYM0JLaC+MZS14enlG5lnWogNeDFyRKs9ixIQQkCiDuKG0irI2FFSkGKSS4rKAGYhJ8uallICZsCySI7E29Kq3MUpUQYwS9gcX9eABIw9OM/NmDpkZZSwIYeDL2EiRKEZZF2FnBzH0yZzUfX4nrOswxmJMCGFbWKCHs7p1mVJGghSZsraVImC6AbMAcDqd+qIZBpz9FquWQkAycNABBAbOm0wLQRxvtUiBkFoY0xzgQ1A3TojWsJ4WcFS9zBLtM8BklaQF8Im6TiXKIXRd2arYNkDTuITB4AxOHmk/oYke2ceoMQJaDzU0hp7IBQbQEANhThHXc8acJ1RUrE1CUXOUENCiOdwqGjgwMglxYC0nmSc0Kh4PUNTMafnpwL+dQ1Lso7KCh82lDmABny0HoWcYd7AjEgqPKr9drrofANpfOj61AiuhRX1eKWJPY+gEon8DVSAIcKtYlhcspUphPAPoGoMjwBwESGPuRTPADcRVQnoxAHIjE0gBvYZSVqABgRJqW1E5IyCANcUEo8FQkLFfyF4YUwKKT6cROnCGVhW4FSCWNBw/AiCtlN2oYcrTRk/SkeqDFgN3QknrleyVoBAJx9OC0AwcqRALSoCXGBhTSrr2qpAJmoAtMpyM2hZZhkwgNBBHpy5zB+m9HPJ7dIA6KAmAzzdGQ/OtLGNzKS95rZIKJgDqpCYEDTNqClqxjqvtpxtdFpKeYOi+Y5MmADlExBA1j+hwrg1VxMujLQN2g49wh0bc+f5aj19Y/5idD93/z/EWA8A87nSxD0nnHrvveKxvt3lsbuGBSQHoZLxYZVXV9TucyYptkTIcnRNVfg850PuMAVXm9OVoYFrfc/wwBt0ukd3oKN79bd8boCYIZmlVFqQpQsEno7RnbJMUBhLgpr+4f4BOOFBXn/vzAPQFO8oLXz4al63CS2MaMVt88PYOm0l4dr9tf0RXnXJ7j21upH0IiB3ZGRD+kPwAhFLtHUfDxxuLkK6aR+1qusLh9g7T1bUwsqIk2qioaFUEc4roYFkNjJcqileCVMOJGmoaYwIT4TAdsNYVS11BUMS6MtrS0EpDClnCp3JGSgSKLBVTY0RKUt66tYZjlVLgIsk0cwoRKJEsvFaRQkLMYjjKZtm0UqR65sCgPcvAWGNapCHGSfuuoqECoYFDQ6Vi4kAZeFET/GseGhJvYtQE3vis43h1hUwEpqjgHEQpYYEG8zRjjlJsobUGhIQYEyJFFGbkeepJyCukKuV0sAIODdeHt0jTlXh2iVBqk7WdM/I8Ya2an0Rp1FYMIhl4uYrCeSTGggVzCshRgmYPKYIX2aqWRKhEQANSAyYCpgCkKB74SgDHjBwCVp4slysSAG4Z7cho6omcp4jKDadlweF6EgCRIjgCaSLQJPvUygWHm4BF133MpKBcBTcBQ2Nh3BPw1QpwYTwlYCHg9Mh4/gx8+OYFP//b3+MdEh5/eoX/9v884gGP+PL4HsfPnxA+PwPPT3h6+j0+fvoDnh8fUOsLUnxGICCWO3x19yP86R9/hdubjLdX73BzdcC6fEGeGI/HJ5zqAq6am8BkvMq3SEFCbhuLrIgVdFoR4oqYGIfpBsfnJyASSoj49a//GV9//Wt8/PiApy/PWF4KDvEKrVSsbRFlgYAWGp6Wl17FiiJ1b1BToW/K2lIWxJAkJDZErKXheDyh1oIYGaCK7ikNEUyhe9uHYVMUOAG4SB5KCsKKE/1cNvDOuoIBdBnL6YSnp2e8vDz3xN4SMh5RioYx1CZKHgckSj2c49JBe3mLJmuECEsVI6hRwJfjETdXhHxzjbWsQCMcrq4RQgKxgIeEgNZIKsw6ucskuRSbVfRKamzUBVx4A9xYoQQLaTZlIxB19oGi/X0T71XkVK4ChLKqqUhiiFlozjzPAojpta01lLUpu5WwKKPAsyY6GMajEIAUdhnnlFKErdAEXJI8nkG9wz7sUSuyN3SKP5N451OM4CBe6Kpsact3tTV00EGo0sa9RaFkcGmoOM+3twkXozFOzNxD6gy4G2kBWmcIm5ystSKG2NkmZixLJey0BUjaqNzXvczKvLB8PHsPsv34CpNRWddg6rlM5TIZ36rJu40xkl0S99baJofZ3sgffass82Rgbes6h8/PhiBrMsSRrF2KxqwS0gatyKcseGuXOFkSooWRlUX+jsJs5shSZEkNCLFLDVhHDzMDJNy9FWl/AMOqhQ5ATN6HApDzhGnKOk9rlyl2voXigYCQIiZjKnEDcRAgCsL6KK0hRDNw1bhQHaE17kwoQLYtm2MC9DGWUjqby+fYbFUMNhChKSOsg4AMUFNl3Axyzb9LJH3MHVgT3cwzrwAJ+xvpJhjraRV97ibg+mpGiAFFGYwmX2y9zfPc58myLFiWBZ8/f8a6rri6uhJwzsyxJCD8uq6ih9taXZduYDIiZmNwsiTWTnQAyorTckI5VeSWO8vTDHICsKxLl0c5T5iT5E89Ho9YyooVALM4OWIKo1KsjgETIyTCFLOyxRvWugJhQgwRCILMyXwTJ6SBqCoaBNBpTYDRaIowYQXhyIQaksj6JvvQRIyJG2IrQF3Rmjg/ZfzVqUOS9qOU1nNy+XyEHpARWbBdl7auhaktII5VMw/hhHkWx+softZUxrik8gTN4aqFSjQxOWlBJ3Kyo6g3PscJKTCOp1Nnh3nQPanDnHT/ur256UQHD6SVUsCVMc+TzGNldAHogJ8HBddScKoKZsQgtosCBDHoXsDCzOJiji2x8xAlB2FrFahlpEagCHAT4KYsmFpDqycUBqarWZO4VXU4CGh4qiec1iNymgGuyLOwkteydPAkaMgxSFLtiE2qGZgVNRjrnSXdQkTvl1IKyrKgrgTU1vvBhAM3cUi3EJDnuff1ouxZ0v21aHiv5UuDti9Nk4wVM9qyAlropJ5WrFWiKQzkra0gJcLVLNVGS2gIUaRYqw1rlfxz+f8l7j2bLUmSM70nRGaec66oW6KreroxmBmMwAJYEsByyS/k/6Dxj3JJM36ikWsGMy5Ag9jBYAYjWlSXriuOyswQ/OARkZF5z+0ZKGOWlV11MjOkh/vr7q/rBLI6RwyDZKEk7AAvWRLW6KJrRaUwTUMIDqUiIQpnJkbTpmJ2ghrmtZ/uS45zqY/hwKhCNxK1zp4zAlKARwIctIAhzhGGAaugNYZIgxt7rG2Tg0DOLqXAWgFPtRK6neADo/MQdaqEbktWTlQBj8PFHseItp6mNfhRyxzmIIxUsCJokgsjp1onKDJ44WSPk62PzdF/0j4fJ70oBJcc1IGoNcpW6a7JCaRsK0wEQXTfnIlG2utuPCIlBUWX0tqgYyQXHUBbejeitTgcgh/l70YRCDhCJvYBYkmXLvh3jMRU7Zq4wqQgiQwghQlYYHJ+mKJz1mBzSNzz0v66GELC/aOAurUOaG2KEMYXu6K+NFUGTPrdzOFtdDofYtHPsxNJkaqKhyAp5oBV0xks5+CY5Oak84ckB6JSTDzMc0d7TA4Bk/dBARArTlAURCPgbtBF94pEQqo43a2ae32ur39ykYh/0pX6c8qTXT7yO6CIy6v2PvxLrhrMWbZDKQGl/rnPg/vGJtRI6wMGatWWxlgUpCikh/sbY1okcsJMYJ3XGN2wOT/j0eMnXF1d0XQtPkb6fsQ0dt7OCuhWKEzbCrgVVFLU1RSroWBwIy7K9g9iUeFTBcrgpQplQZgTgOqTnyAw4kNKmY0Z3kv/lIYUbh61KKhi7qS3J6BBlMvkgSkpkkoEbQwYm4WBKRXGhHvBirGSw7dLnI8mYEW465ambVOAqwB3TWPRdtrIq80jtNGpuqqdgcTEiE3pKEoZIvJe03TCwxeiKM82eTo02FbTrla0Vqfqp5a2XdOuVxhrU00DVaqpjqMnKPEmRTxWQ9uC1WJAhAbGCG0bWa9b1g00gPGeJnjalQELY6twGsIIaozoEYwLbNZGgEGlGLUiWtiY5Gj18nkL2HNFDB1KB0R/1wTfYqOnbQ1dq4gaRh9wcUCpgLJgrWNwwr9mgqbRRlIltHCn3DqH3wcOHwf6fc+HGLgZHDfvtnx8d8Mvf/UFP/vLv+Gqj/z0P7d8Ez5wp3cY5bB+YOMCa61ojUPrSGNbmiYS7I7gA62G17cHXn7xdwyHO55ePOYPPv89nj0+48mzK4bgcSqDUgodJVI0BlGYbBLqrbGgNMZ4RuMYvMM6AdZCCOz3B7bDyJs3b3n1+g2vX77mzZt3DMdRwL/srVOeqCIuSCJxFvIKMfB8DKgwAdJF2QmSSqUS95xWSqIztLQ7G8A+hBJpV3vf556wfNhO0U0ZZKjJ3KVf+8K5kw9hSVfy5CjqWmzNPaHT75byb2rLnHA6pvb5GPAhchxdAoaEyFjFqqJjOqRFHJ4+Y+q+L7/Pl3PSl9zn7BnM0ZI16JLBiJxON4u2XfSvTidYjkl91RESdduW0T+1wQRi/HonxlydZpzT83JqTYwZUMoAVCxgTg77z1Efue25Kmh+5ynPMVA4aTy+9KWuNPjQWShzIQAxzA3eKeoxLIDCXEhCDPmYDqkMHkzzcn+t5/+zFA8VSzRPVm+T7Vbu9d5BTCBXTv9KiqpzXqqYVjylD+kb9TjWc57/LVM68/iVqJQT6yu/0yRHXLJBJ0M4G+0pyhwqBTT1USfKgTzGxsyrpk48Wrqsm+kB01gL8X+KtkDGbRxjeU4SZHN5oZAowASok1NIEkgo53yO6NLJYIolfV1Zg4niXMjjUae31eu1NjAWg5nakWSeDwQnKXN5zsueizFFA4m8ESrbVBRKMRkO1RpY7gPvfYmoyuCNqlKLYeIXqmXG9fU1h8OhgAebzZoQA02wNF1L0xiarkspnBkIEvDQx8h2v+PQH1mv16zXa2zX4I3Gq4hNzqis040JaBSeuHkF3QxgGG1YtS3WNoyD57DvidGXAhhKRZwb6fs+rf2U5YA4Enwygp13aCVnmtj44rw1WvTDEAL98Zicw0GYP6I4+tACmIYYk4M2V/wUp5fVSpyVRuPdwH6USCtxmOTKxx6lGqTy5JSCXa/1nCKd11G9B5XOjjQKn7JNRRIyUJl/zjpokVVp/6sEOKt0tozeowhFZZVUZlP4B3Oku0T2i/NBFSMy0UAk2VHzk0YmeS2AvAAIOb185pBJekdubwbP08lIzCljyJxZKw5EoxKsmKqpyoDGFMWV4jqVAHqolNqGx0aNiZFGiTwQfmMtjji8BFRpqco6+ASgoQijw1VODQHKLVErXJSU3JDMJZXlQYxFFkGUTIlKphaQL8mEcRxn50ZJL7Sy9/t+KAUxAhV4oKQQAanYAWl9z2Rw5lDEoI0makPQAgoGN7IfB47HniF4epd4oTGo4HHR452nW60Lx6SLnjiOqDBKcpLRBZxTqGSjmeQ4yKCKjEcAbK4gqio7EFKmW3J0uaQHJoobyP2VsR1CAoMTuBd9qnYehTrGaIUp+F+OUoJISNmCAlaFKAUiQnKueR8LaK+iLtl3xSaTsGYh6Alid7j+QEz2ZwbTmRVCi+KQrICjDEDNgalpjcQiF5SMyXAUxw2N6Kgpyyt/cEjAUQ6sicURDqCnllTvKvo8kcE7xuAxFoyyEjWmhb/cGJWycPLBPNeDZYmHSg5kHaqm+siBVWauz8bKYV/rZ4vMD2Oaqt3zLISl/lpf9fmmK1kztWvSASdnc8WhnPqjEyCYI5az3lLau7CBxPEt2Usmr/VF+07p6rUuMX0Vrrms31Dtmty/7Cx+6PpXAegeMrqWLz4Fzi3vO/Wcfw0w7ne9vs1Y+l3BxIee8dD99XjN0lZ5qO/T3wWcyYdKrSDIpmrbjrPNOefnF6zXG9CKsR8Yx5GuKrIgcqzyJMSIaYykVCbvd4wCo2WiymHsBSBKwtcHj3NDitxIwJjKgcvCeUCIqaqsLgpxSH9VKpW4zqkvGbBJQlaqoYLSEoLdGEkXTWE+EjVjBFAMUVIZZTytwIJRouOMtZhGi6ep1IsXYxXVYFSDNg1+DGlc8gY16b9cJnFsWWtRNX9c2vCNyikR4o01psE0ElXmI6w2G4kKtIZUIgbTNqwaizKkqEONbUGZmA4Z8fJGDat1lBRUJRGpq9bSNcIN7RPw4xWEtUIZGI4DLYHLdsXawLCLeKU4GDhGSSWRVEJoMcQw0FpNbHQB6FQn6QTDKHPWNtAlue0RjjZUxOAxvacLisaoNG8Dyo9YIm1U6KPDH4/0+z3jbsfhdsvu5o793Y6tH3lrBm5vb3Ffvmf77pY3Q8/HwXFzveXmesvt3Y7D2/c8uXzKM/uM51eaT7/7hO998imPN5oXz8/pWoWOLTpaNA1YwxAO7MfAyzeOt++2fPlNzy/e/SPfvPsN3L5kfP4Zdvw+brPCN1bSzaJizEaenwA6hSLamEBfS1QjyoxoE3nz9gPWRlTb8nF34OXLb/j66294/+4j/bHHeSd4c1J4QiaszYpc+SdV8kyCi32YDjgRAelQUin9TCXlS8mehHmU7r3DvhjKcyU0K981eAGUarGHw+EeQFA/K4Mk/5Sr7lf2Si3lZiarrivBLiOSYgbmTsjcGej3AEhUv+shEG2eJjtPAZZ7TgOQs5B6JuVrCRig5qBbPbZLQC5fuR3Z8BdbSgy9EBze5/SsDFy48vmQFO2sXMb0npp/bAlyfRvIuPxdBuhy23Kfl4ZtfX8Gl2oQsn5fVniF1HoiHPc+5cRVa/gU0DdfrzVYHas2ztdEGYcw/3naW6Lo1mfF8vn1Psx/W47ZEsRbfnZpINT9yNGhRmcSbZJVlAyCnNatbJrnCVD3yWDKoEZeG8v1PsmGKQW2boOc25T5i1EMLYn88veiFadMAAFS8vd5DdZAUF5Pyz2T5zan99bgfK3IZ1qPmoC/3lvyZgFZrBGvlMs5FWpKhy4p4MloCkqh8tpBjFcf7oPMNUiY+1ZHd4YQJA22MUWOhSARiFrrRE0iqYkhenxwHI9HRjcwjD1nZ2es1+uUTdKVyDeJlI1pa8icjIOnDyPeRWJQCURLlSftPHIoR392qSiFRPrqUoWygNE5olXHAi6pmHgmjYxRHremadI6FSDX+1SR3Ek0VDZsrUnR10SIkoKZo7YzOCtRkzLvud05tVsAurSmjFSs7FYdmeOugGMhp7rFxMFa849NYPvSaVKvwRrUqYuZ5HNqcmzle+IsyjI7UwKhAHQzWeImA3XVrWjyeq5A6OzALsBZjMQUoSaFNKezWzHJ2Nl+qDnjqnVenw0q7bfaWZVTVbP+oSLF6a7VlCKNViUjJqqkC+XMmCiUHlppQu3QIgNpSX7GBGjkr2VO5oB4vmpub3Gex7kncYKe7tEgALPf1cB/joIuIHoqEFOfQTnVXtqY5riSpfl/KcbhpG0KSW21JgFeXhwtIcjYBe8hJEqbkFNAJUXVG8DYUpwhhCi84UoVMChE4asjeILKkFTEmrZUqnQuwuAIqieYiLLCQZztP9kT2U6UTJnMC6xTFDDOpXToB8ARlezEqEpARb2GiVHsH59A7Jj3nSYDICH4tGciMUdGImfd/ZT4sjvS3s5fSXr4xEtY9nYKgMjzL89wkOSe9CvJG20pFXeLbhBLBFYupJefP31O2qFzRHBYgERMvJSk55LSjZNLbhpT7utmZf2mPTY5b6u1rihyXRVVOp+39/XR/PeHdOXcx3ovLfXnJWC3lKf3ZFF15tefr2XrKb1lCQ4u9a/y+xPyY6mvPwjeRRbvySrp9Pl/c4Cu7tDy9+mbWaPvGzHq5HNOPbN+xkNK/awNv6Xtp943V9Lnyt3J/j3w3PrrctHla7moltfgxgqA+5b3LJDZtPSxtmHVbVitzrGqYRwiAYfzkRgVbgSUeC6ynSeCScJ84zBK6GlQwmUSDdEqRAMSQalVFI6PkLxm3qEjtDaBU6UQQeIf0BlV1ig1hbyaJECNzvwVSSGrhiWqZBSnA9CoFI1BTF7dtorQUNg2YqxCYwnRErykdDVNi21bfOgFANEJQIwGpRq0bpNnMqcGVSH9dQRduy4es8YmoA2K8M08K1qZFLLfoBOY52Pk/PwS3UkFUGVS/6ymW0lxAdulQ86H5F1MHoMUCeHDkMZL0hNXTaRN5MN+GOnaBq8i0SoGNWL8gTPdcNl46B2rTQsaVhoOwDAAHloPrY6SotyAU4r9CE6LwGg1dB0ce1BO1oqsGk3IQdHRYjBst7dsr68Z9jvC8Yjbb+m3d4TDjrdfvsQdDhxvb7n7cM32wzX73Y5hP7DnyJvmlsNwYP2xh0NgbzVD0+I8OBcxRvHIOn747AX//Y+f8ul3H/PdT694ZhXa71ifHyVfd4j4Qy8gZrfCbBpG2/Lffu8R7/YjX7655K+ewy9+/nNuPnzg1197vO04f/EJzdmm8BwVxT0rhX6eoh5CwIVOvGCqwY+e9aZB+cjH61vevv/A23fv+Hh7KxV+U0Sq0RaipDOFBGppLUahSiejhKZLGLuvDjP59OShlMM/e9kmg/bUobJUCuv/tfJeH3DjOHI4HDgejwW8qpWeGsApDnf1sBxdHuSnDvclkBFjLMZibSzX0SW1wpDF+PJAXcrlkn5WgV46e4ErJaBu51zRm6KFJDJi3sdTht2ME+iEElW3r/b8FeOoGs8anHOJCF6riUrh1DjW78zRIMXAS46QDHjVhp8t0Tinz+5sLC4Vn/ycJbBb93fqY+ZCnI/Dcmy01iXSI7cjK5ua+Rwt1+tSN5kBbdksiPN3yh6LiQNSDC7nxIlVr5XM0zTth/l4LN9bGyyyNu4rnqeU2Poqc5KA/ckbLm32IVcbdol7zKY+Q6rMUxX2iQuAOxaDMvdh5lBctEnmruYOun9N61/yrbKXPcaJ+F2n6HpiTBwxsRjyeX3nFDwtYTIY0v1VWzM4kuXEXFbNFffUA+lfkiE5kjSTmed0apNSbosxkGVhjMTghbYhTpGo94DJat8si2UYo7GNTalwvjiIpHqfYtV1fPL0Cau24f2HD2zvtux32wKKdcmZkSNg8/qZ0vHlb7kvNzc3NE3DqutoU19rOZPlbo6gbRrhv83ZCrV8jlHoDtbrlay/XOXVi2Hfdd1UxTOlriosxmSwbWQYfNJ36ugIAcdzGnnm9KnPYQWMo0tAmM8FW8nRjEUeAG1KQxzHsVQYJzvG9HKeprmaRc6UaO+8PwXkcIviAjkSJf8vlVGjn61P6UhkDFLJV9d7rdpKzjmckUjeDFjmzSfcg1oq7zpf1leew6Jf5L1b7cuyNxZnpqzriY4oxhxZb8s6kXWbQGefPuc9vXPoao+YlAUTFOJYT2MtfGnzMV8a6T6BhzrNdZbRWQ9omoag/FSZPk8+8f7eSzZWDPdllFKnbdJTBn4GJjNVAkaXtHG5F0LQSUeozsmyBhYgAeJo9aNjdCMqRrrG0rUNQSt01JxfXqKPAzEecG4UzstgBBTTijD2RKtQrcE2DehANMLBaLTGe8QmC6BiSmlM+iZaYWIgOscwesLoMc7T+kC30lKQK7pEQSGpfDpHByqxBfBBKsCmZSmFBieZa+ozL50XPla8wCbjf7VNLRke8n2BzxAZo4h1MTgjIJ9RhsZo2lSx3lpL0BbnDimLarKylYpJpESEt65eD3lsBLyanem5JQns9D5gosi9vLRiosSICSBvuhX5eMzV1PMGj0roIIgBEyTS0qTIUaI829iGzKOuk5DTIIEwqejPVCsg6zJzvaEGiKc9Nz/fC6qQ9RGm4jTT/pgeLWt4Hhgwe166Z6lL5HfUe+7UVd+f76v3df272p5ZtmGpU9X3QE5+Pq1/5vbVbZy1O62hGtS814fT3SvXvwig+zaQank9BNLVz6kHZmlM/TNbyLfdvhzc5d9ORWCcWgS/7VlLYZ6v7MVdGkuz50zY27xtCwVfvqEcckopGtuyXp+xWZ/RNC3OS/pciEq4wUL+fDowyiEtbBfCwRKTpS2gRHASjaWQdISoxGPhgyc4h0qRRca2qMaiTYs2FqMVITlbModG5vHRWQFRtpF6u4UAACAASURBVCjdkqZiU9RYtS5AiiRUVZckNDqTJEuuvjINtvGoJtGPRovyGoWAhhLJYYXfS1sBDXWDio0UDtCGoAeMmgwlbTS5qhpAZxtRoK1O3mzhWBCSUSFhlyiEDNBJ9J4ytpQBz6H1whEG1qaotBWYtQB0MfONaIPWCFeggk3iPomkwEQkhVWpmDjljmBgBGwMXHVrLmlYodi7vaR72BVWgY2RrYV+dAy9xwVF2zWsGkWnAk0DLkZGF9kHOOwiF21k3MP1x8jN+yMf3r/j44eP3NxdcxwOvH3/mrvba/a3N4zHPb7vGbZ3uP2OMPa445FVIsMOSWnsuo6z9QV0AbU648ml59l5g+kjW6UZjGGIMLqeMDquVOBH3/sBf/S97/PZJxsulMO8fstx9567G0VcdzR+Q+gDjRnpHrW0V2vsqqFZf+Bxp+EzRc93cM2Wv/vpV3z11Z6br17zw9UZl2jWXVYoaqN5Itb30RHR+KjxURGVRER25y3DGNnd3fD1y1e8fv2Bjx9uuL2+Y3u3QyMVhCVFPVcaTIs8bfwYZL9leSQHcSwVxkBS+moj0SewPIPoNRBXH041UHJKftWfzQZc5jxapmZl5bREbqlMtDs/3JbnwFLeL8EsmAyhJQBUH6zZ4CmfK1+5Z2QsFZAiatVcCcnfZ+VaVUDR1E7K1/p7qoN5Kf+X50Ddl7oddVsmAPA+r+kpcCy3IyZC/amP8t97N1NirK2jvSalMkfaLdtet2t5bpX15n2Sf1OKbamWtRj/h8YmNUfOp+odeS1nDrRUc0+85KkydB1xdUr/yGvmIbBQPpvHrWpXKsKUgYHlvnnIkFte9To6dd9yfOufH1pT5fNqAkRrBVoeJVxeSpmS2iyVKjXTq6Y0rzxPOX09K8XLinb3gFBlZu1WagKB671U3pUOM3mGGECxVEszAoYqSRXUyQiMMSZjREC6iE+5vCKvM3/jch5qQK5eE8s1Ep3HMUXR5vWagY4cqTkz+s0Ufaq0EgM1Tp78pfFQgyb188dxIOLZbNasuxXaKMaQUqu1pM5qFTk7W9M1lsZqPljDbrdlOO5x40C/3rDqVqzX65K+mQEMpRReJ+L7qHDBEXzARccxRNw40iYi/KZpaNu2yPi8UMZxlAgNM1UOzO0PPmJLRIn0ZxwcEv4jn2+NFePUSzVXUoqVVpquWxHwhCBj40Y/rZsosm0cBQwJWosMiBKNhtI4nw2zydEViaJTauEW7MdRAF8tnH+5yEIICgg0rUWpyVFbr4/87GmPSoRjXtNZTsznNJR9kwG5kAoeDEMu0pb2FdNzYzqHJridojeGEBj8MOP2k/shJLkrKkY2mtOuUqTxTnp/2ne1JRnvgdYTmJfXbgbzT+2n1tpUtEI4UT1VQQslAFBOCY3A6CQtNb+HGDEqzlMWs0yu5iJWgFd9Oe8zZDHTEzIljfcT95WAdDMhINGGJ2REntMcAZPnM+sLIOMtPGQF+hHAV02OP+HqBeWm8cv7SGNRSBtd36fqy3KPD5HRjTSJsiAk/dAoRYw+FXJQybE8MowqxVWIE0MnugIfJL3VZEckBmWlCJ3SiuhGGVsn0Xij90QM2oySCeURQE97tJIAiOwT0sTEEenLOrNaE2NKi0Y41URnTXZTVImPLaJVQDUpGKQAXKJX5fPEmAKhpDN5AshIfS3F1JIOIeu8csLlPaYm/rSiw6U1yHxbCPiixVKerYnMKZ64caXIR5QIRiV4hNLSx7z/VdL3c9Sh/C4V7dFpdaqUvRYznYRGR4k+rv+uCFJAzxjhvVVqVpsi90Mx12l8mKJYcx9Qqkqdn+4X56NgF865+smz9yglsuYkVrG4HtKXpmjicHL/1eBbfX8+54B7vKd1BOypdpzSFZfPz+2r+7+0DSZ5JJQND8mRb8O4/k1TXKfNcAJ4qn6uO/YvA+ROXL8Focyfmb33gXtOtW3Z75mSzfxQqO85NRbL31kzJ2HM1zIVo4L+0+5TSaEQ5aprRTHzRWAJgaRIhqxMi3jWRXGW+4XENZHwAgpJJQJJ3RNDTlL+MlmrMUbST42R6DkjBJpaKajKsZvMO6eSEFUCLk2rx6Gx6T7xiGeZqSvlwig9eTtCJvkVZV0HBcqK5y7PS4wE5yS6TktqrNYNSjVAC9GiUViVxL6SSEGrFdZM83DWCmAmAIm0HRBBryOq5qjRiV/BCl+eB4yR9OHox1LZalDgBkPvFDqAahVtS3q+pKGOvXgYb4e0+d1IGI9oIl2T+F9UhPHA+eUZq1bTj54+9HwYHFex4fnFJYcQSTU3OXrwhyPu6DEjGDRnjWH/ascXHz/y+sM1bz/c8P7DLdfXdxzuer75zUsO2wP94YgfPMMwMo4Dg3N4PMM4Ah5rDF1jsEGUrYvNJY8/veCz73zK559/hxcvntO0LWMMiUfEM/g7YrOlcQf45pZ3v3nDm+2Oo1b0wXHc7bh59RXdumHTGmwYiPsAeqQNPavViubykubiEUptiP0RFW+hc8R45LB7DxbUyrLpHnF5Bc+/85g3d45vPnzkm+stl+9vZHDOpoPCWEWu3Dc7eBCy7+MoKQA+ePbba3wYePvhI1+8esXrN+84HEYhs03QstgUGdBIB41O6Ux5J2TF94SxPweuKnAkSgXBWkblw6xWLpfypz74sqI/DAN939P3fbkn8/TUqVkZqJsABFNE0qmDORsfGYycrkkuzRWz00BRDc7Nny+PUov78vOKIVUin+6DdstrCZ6dquJVp+Cdeta3yf+HwJylJxLmEXV1RcOs5McFoHKqb3WflVKlSm2MQmLtvS8pbzW4UQM/Zc2l0Vx6lfO9xbhfjM2yv0uFLgNF+Wv9txrwq8cg79caSF6OZZ6/U2dzAcs5sfaSMZPXex25mSPMvPcowNrpb/VYnVoX9RoNQbhwgs/KXW67GBSZ1ydHGepUZTGPl1aTMa51XuMSvW6NQTUid9zokFoKEsGSozskAkjk8SkFO49xNtIh3tsDEVJkVEE5k14x7fdpL+TIxCynEoiqdJly0YfmgG4muCcZHQnFTUWn7ivaNWCb982pOZB2BeE5qiJHJXU24t20lqn2RtknyTimWosxxpLauJzv+v0ZxPRu5LjfpeyFVBAkF05JbruIgJPWGh5dXtK1DdfXHR8+fGC3P9API33Xl33SdV0Z86aRolf5bzmyBAR4O+yP9CrSNJZutaJLVXS1mqKvM/AyIMZc13UJ0GvRrWh4ck7I+ui6lohEcOZxkDOERC6fI/Na2sai1muOvURsj6PsBaNt4VcbxzG1OTlR0rwVAMTk6D7JOsiGvEQgWqKKhSpBK0nvjQ0M/cg4piqW6Yyo5UteS97XaapU1X7FiDYpq0NkgsM5kRkZzJG1YfB+ikwscl1LQYN6n4SyV9KeSHK+pKFX8swHjx/9rDCKrtYYCABd90f0eFX6UYNu02aar9VYxqKSFTFFn2g92YBK3QMGRpcisKIhAC7OOaIElJJ5RU1nHSmFXes5Kb2Mc8BrDyHSNqtC3J/bKPLf35vLIqaY61RzmTDJkXzO1uNZ6BsgceW6RBFE2V81iLBarYp+laPAVbLLAlL0QArlrFAhkphLcKmf12/fMDiH80GylWxDDAEXJOtGCg1IoTijIq01tLYhdg2NNozOCUcjEkQQQComI+faen0m/NfawrFncCPDsZc13Pc8evR4ipQ3JeY8qVRB7Jsg1YBzdfdMS6F8EJ7mBGTJ2AkAGxPILin6M9T03hk01x8zVUPiAY5G0vpVKOdy5tDNeztGJ5/PYZs6A3RTIbgClC/U2FzFV/brFDWfIwCNTSmuuShmpBRbCTFOJBhZD8trTcJMCHEkx/JDpm4hyf50rsWcBSf6QGMVqmlZNS23ai/rOZ2vE6qd7OgH9JB8Fce7y7Z9amycAK/5/omzZ8yqxVfPzHsp339KP6+fs9Tb7+uIcxwm96vOiFj28RS2sryW2FVtd2Q97bRdke6vonLn74llfL7t+jdNcQ2zjXX/nuV9y4E8NbD5+t3AvGyAPfTXhVKVn02cbfn8mWUflp73ZfimRt1bePXizArKcqHkz7oquqV+1/2+J9Oo1uRRKYrA0fcHXNCp2mi6N6ScdaKQZMZpPIgqCSt5pk5KoYBnkaiS1ymVplZRiGu1lgVn60otVQW+LOBSmn+JH1UgXnDlk9dPPqCCkpTQJoF0Ob1wHIlegxIiVmWlcmMYQ+I3sBibjFNDStPISocQeAe88LsYI40JjshADAPBy+dWXUThhLZHa4iWGCaF3h8+ErRUa3I6KcxpDkNUGLMG2wASWYVSaGNBG3wAZTQhjRXa4ELABS/exO6C1z3E7oL1ekXTKoi5AtOAJWCUZ91ZNm1DZ8BqxbqDro00KvDINJi2IQwK7SO73ZHf/MMvWO0G/sMf/zFPv/uMFqG58EpxFzTueKTfjoR+JGw/8ov/+tf8xV/+F372q1/y9uaGu+GIC8K5JkTzoni0qxWrVcvm3GBWllW35tPH3wMHbhwERPSerrE8f/GMT7/zgj//7/6M7//4Bzx/dsmg4Ju7G169e8vrD++5vlHsd4H+JnBz7Pny5oab0bG5usKrhsPdDS9ePOMPn17y/c+ecbbWGD3QrKRIgvYN40EMGGM90Sia8xU8NmgTsaPHrd5w+WRDp85pPh5preLZ0xc8fd5x6G/5eLOltSqRMIsibJxGKVGmcxSCNuIBpHf0bhSjXSlCv2W1ajgMA/vDQH/0HHuprNi2HVJeKZaDVimDTpwzZA98jElhyRtFCDDmB1RIgB5EpKqZMSZFlMxT92u5u/R414dflk/OOfpUEa42LDMwl0GXpYdLgIsJADvlpMmAdi1ps3Iq32fQQxS3XBFVQAmDtU2pSmdtUwofaC3e4xz4S47Incn5mATQlG6i0ufqM2N5PtVXLbOzsbWU1fW9Dx3kc1Czioaq3pGfmY3E+2DopDQUADZIBI44IvK7EphlMxiThLHK2EaS6Zjyu2WaVm5zNjbq6uskpTS3qwZtliDqtylGcs+EsUwfvZ9SnQFInfhcMrgmBTLuc5bVIM3y3J0BLZUhPAFfQtidf1dHoKZPksGCvO6X+sXyekh/EtskK9Y53TLtaXQFfilQwgMWcnCTuf/ObGSUKpBKS423VK00R9DFIAaSTo6nafwUStl78yZzOyfAH8exgHT5XknTS8bn0smYtQ+VgBWdxjDLJZJhksGuEFK0vSAv0UhBIzGCJrA4ZynMx2Cu6Oe1uVyjoqvEUu0uRDH683US9FZTJb4cuZTfV6+XbKA3TTPz9GfQ2FpLsJqxP9If98TgxOnUNKnSXgZcQ4kuskZxfrbBGo3RCnuz5XAYcS6w3e7xPtJ1Q5GZq1VgtVol2WoKgCBARgQlBY8G7zmOjq7tWCcALstTo1Uxfp2PxH4kBGhbhbbCn5dJ8E2RkWoqVpSATq2F3sQNThx7EWyzxuiGpgkQFEaNlUNoSDIoZy9MhiIYUBqtHVN1XzFzMwW8J6ZoEZOKPglQHYMSLuPGoLVEX2XnU11NW6kJlJL9GVJEZ20Ygp0ZmHPZl/uyjDIpawSF8gUNkzWU13xtyCogp00SiyPbhyBOzxwlp6Qae92SzKmYDX0Vp/cplSOyJhlZgK44gdZZz8/9zECEjgmw8gGbAIrMqRWqfR1iyuwhgZJqmksBPYQOpzw7Ha8ZAC8FHhLIUYIBNNimwTNxbAlX6eRUXHLMlfu1yH/C5ASs5yx/vkvp0XlsSsRPFBlt0bgg1a2lyI5EvGU9w/uRGH2ynfI5l8+ngA/Q2hYtTUGTnJHGgjHc7XYSeRlBWyOFYHJ/VX6XjP+6a2mtmXgOk91hjUEri0cRxkA/HEuBxBAv0Eqq2a86eW8uoOJcoGt2AhqpFBGaeClV4m6MXgI3FBoVkuNFi/GXx8o5h3ZOgL4QRO/TmYbgvoOtvqa9kM7kMNlgCgiJozIqiMFP6zt/IpnNAn4HSBHaKq8lmY5qfaTvE3+7Nskp5yOEMP1eQ4yaJgNF1XtIRQzn50E6lwpkJzLFk4JSSodJRRUVKgRCcGK7pj2jk95j1BRJW/rBhIio0p+cITLfv/V5lYHTWsfJsq/rukqOhQlKzOOn5g6w5Tm4TK2tMZ9atzoFyp26Z/m5Oip1+bvls061M+/7Wm+obaUlXnUPD1PzZ+bP5Rz+b1vb8K8A0J0Cln6XF9eGSv2c3xWgO9WOZRtIB9ZD7/6tbeP+M09N/tL4KgYT89/XizEv8G/ryynv/wMtvveTAGYK7wa2u2u01jRtg+06TCPEqDEMqX2pPLUKomCogIoKPybFPUfeJUmR5aEoNTmiLpQ+EwU0kLEQQZ1LaUcVUEETVUSFSDQRgibogImpqlIqJa4RJVGrZHiHXA0LohEDw8QGqxLXmpOKX1I91uLDSNQaqxTKppLLOILzOD8yRI9pNK1NBP9B453CewEF2sYTfF8OXmvn0Ra//oe/Tn1MRjrZyA1EDFF1BNMSgsJ5SR+JWhOiRF/s+4GQqj3aphPev6ikWmx3wfMf/Tn2wmJDpB011gQaG9m0HavWcHW+4smV5fljOF9JequOE7gcZVo4HOHZRceLy473v3zLV7/8W346WP7IdmyeXbLewEpHcAPv3rzh9T9+zfH1W/7yP/0n3nz1a7bDnqvnn/AnP/wR7XrFcezpxx6rLatVx6PLSx49vmJ9LhVnzy7POD9/xHgMvHn9gdcvX3J3c0NwkbN1x/OrDc+fnNMqR+i33Gzh7fV7fvXNV7y5fs/dcU/fD6y7Riq2tQ3NxYbnqzOuXnzC7d1Hdq9+w2Ot+I7VPLWeTdxzvjY8enGB9pZxe+DwdoffOkYL8Qwuz89pP/8Ezq/YxMd8+ctf8IkJrPRjwnbL+OHAJlzy/PyC/dnIcb9lt7Kcbc6LsebTVsvAlVJK+FOMZnSe3X7P8TgQvOPZozMuH33KxeOnONvw/u7Ase/Z7490TUujbaqOLCZ3UIC2oGKppCUetzp15lvkUPo58wa5XFKLSZbmw3F5qC3ljFKK/X4/i5qr5dg8+uF+YYlTINVpkO60LJ4Mmvk9tazNqVfZsKwVEjFowgnpP3/vqcP3oXGujfesuCyfOTNaeFi5WI7F8t3ytY7mmj/nIdChnt/gJ1CvJqLPbazTB/I76nc1VipQ5ciOrLAsI0nqr3Xfa6NmeUbWa2SpMC0/U/d1SjmeIpPqsa/nZRkhV0eH5jVfp2Q/pACWtRzn628ZGZfQ4JlCmM+OU3NU/3xyfhc6xak1dkpvyt9rrYkhG8RCDp7BfGNile4xB5l88GJgGyHvD2FI705FCap1lAFCrbVUvKs8y65EbyZQXc/nKPcjj5noGhM4BmJU5fFaktDXkYv1upi1K8nVekzynlheyzWgmK+Z/G7RBab5reesHpdQvXOZSl1HMdf9yv3UWihKNJHjcc/hcCj31UVblgaVUorVasWzZ89Yby74eLPjbrvjeDyyS8Z813Ws1+vZWOT+DEOea+i6DhsswyDRPcSIUROwaI2hsVIdL0ezOec4pvkZzZiyG+R5xdgjZWCoHImXZJS2jMPk+Ikxoq1mbddsVusih47HI4fDgRilymKW/TFW3KRaIcGXon+GIAatj/L+nFYqHHjCoeZ64Ve1xtI2LV3XAYZe9aVN0xzVhtvpUyZHzcVoytzUKVYhBPq+T/uDe2sYJOIyr80SfaUVJTXQZ7BneqdkY0gElzoRofHQORcrmZR/V6/bAs6FMAu+0Fr41mbnrzyp/L2cOSYB2E5SP00jgJLLThZj5qCg0jTagkmUMUoikKL3ROdmQ69TxXJrLE3bEsdYIvRkDyqsnTt2ctXk6cxSaY+lfKEwBVHMxuoBe7XsKaUki0Yp4WmuzoE6kmu73ZZ7a8A+A9mDCxhjhQduGAjRF7BTaY1tGobRMY49eAdDn6gpBKCMeLRV2Lbh7OyMx48uWK1WaJUAlqBTsTvL6CNhf8API8djj3Oe7XbLarVis9nQti3rxhbHrY+Bm5sb6a8x2FYiaMs5gPAcWmPQVtZzCBGCR2nhJg9eClyE0U26B9V57r34RCTMW9JAEXwjKkTHybqvUhOYls7i4Ee0CqAzTRATR6GzRCes2TKNSdeIiU5GxVQkpVpjibYIPfEtZvAXKGBl/p9ToKPOGWJzwHdc8ArX90eVHU3Z3TStM4VCGyMpxzFFDaOSkyHpTd6VSNgyKjGn/Kdoxlo+KE6uaaFfyo4j4VD1TvbAXNednA2TM3Q+Hsu9k8+beg/W1yndsdal6mc+dH8+37K8rLmzl7pnfSmlJj7ZhR5at+PbrrnjqHp2SYU+jQHl63cC6B7qwKkGP/TZb3tObuS3PW957++UhvRbBrBW1OvJPnX/qQXStu3sffXCEzT5tEGV2/9tRiyAMrpEjs37t/zsQrFUwtEyugPOH4h7uUkbg2kbTDOF12eFwRiNUfJ9ayzKNsQMy+ko/GcqInwAifFHweCGpFxDfzxiIpj2DGskDccYzThKCLfwxsEYoWkbeucFsIs6FY9gqlilIsY7dJVSGoP0y1qLtobRefHKpvzPEFLFtGyUKM0YEe4502GVxccAweMZGYe9HF5G2hmDgZi8oCFgbSCEoRyuqGRYfSbt+eKXfwMoxtS387Nz+lGUx/XmnKjW3B1H2mbFatXR930qIKDZ7fbEVN7b2AbbdLRNi+06VNtidneMv4x42+E1bJVHRYfFsWqgaxTDowuGyzOO52doFdhvb7m7uWboe4Zo6bnk9hBAWz7/wfd48vlz/uTH/46fbD7l7de/kTLsnfhsPr79wNdff8Wrr77hF//17/nZX/4tv/7ZL3n2+IrPf/CH/P73v8f3f/wDuq7j7dvXfHz7FuMVz66u+PT5Cz779FPatkMbzdWTJwSr+Ntf/QO7/Zbj0BMUrFcrrDYMuwNdUBze3vDRwSs38MVXX/DVq6+43W3RjWVzccawiozHI3o88p1PnvAf/8f/iT/9D3/G//tf/oL/4+Uv+f7xwI8svOj3PG4VTfKexUcN9sxwaS3qeGRneoarFv/0nHjRoq6eQnvJd9QfovuPxL3iRfeEV/4D4x6+e7bhsLnlV9cHBnfGcRwYwoAKkbZtJH07Og77nnHw+BiwXcdqteHy8RM+P7/k8vyM4A4EN/Ly9Tv+8csv+dWvf8N2t0ul2yV1tEFIX32qbmXbxI3ifIk8WF61LNJaY3L1ZeRA8MGz3+9lvcbJmK4jiOrUwAy8ACX6Jf8va5+pemrNOVe3qVbslwUMlp851ZfaIWFSClP+vhRjOQHK1Ydg3dYQKBxoy+itJeCxbH++nMtk+lPUWm7TMmJ6mXL60LxlA78GqWqjLcYo4K+Znp9TKbJCk8vG5z7P1kN+d1LGasMpG+JZWcltmYy9yYh0oxix9Xwu+7sENeoooCVYlhXWOt0OJJ2uPoumudGztZuN75qMfAlW1e/JUSz5eXXU3LLdy4i6OfBn7oF9s3O+ADETqTVkT/kENC4jMZZrrzbwYhTjPMR4b23Uaz7vx2U0ljwjxduFOBV+UHU0ZU69EpAsJg+/Sfxmwm00X5vOzQ0K6U9gGFxpWw2GqWTsSr+m8ToFlsYUYaGULs+tdaR6zPJaq9dD3h95v9hGivvUa7AGF5d7Xik1A6KV1sXYyX+vZUD+WVcyJvcp72ldATm1oVCPUZYFeR5lrXs8XiryJVnY932JWjg/P8daS9/3s/aUfao1xnas1hdc3O24vr7m9vaWPhng0Xn5v5IU9mxUF14/RBfDGNbrNc45DocD768/sjocePzoEefn5/KZSJHLubr3/nAgoUSs12tWqy6Nv09zTAGaGiM8rC542lWHaRqOxyO3t7c8evxIOK2UKnvQWkvbtgV0zKBABvC898lhJv1w45jAjBaFYnRyZgvDhKw5oX6xAuL5SB8GGB3JTVzJpQUgY0ROyVqSiBZf0tJN4mudQF2tJ6Nda816vcZ7V1Jl62eDpNjlaLN8HgcbMXrKwhF50JS15ZwTh7BSdO0KN06csS7t8Xx2ZvmilPAIRjetb61SNOHCsK7B98LBVtkTAiBIJcmmawjOlWwg8vli5d0+eMlOINAPA74fZzaTjuB0KiuX5NAwDBBEb/VS0h7PZHw773DOpOg3k6KL5o62fH7mvZXB5XGUYh05Vds0TZEzGQyuHQw5xTrL9ULjkIIY5CSYzpu8fmu6h7JmlaRYl0hZ03Cx7giAHx1N04qu6OVc1tbSrde0q1XplzYqZQ9IFN9606E1tLZhtW5Zt12xWyWq1dKuOqxpGUNkdbcr1DyHXsZkeziyPRxZrTq6VAzPWsuq6YiNLWPXHyTaN/ej6zqM0sKf6BPXoLb4DKSPDmUMbdvKevAenQpr9GPPOPYYY/GAVRpjGvCRGLzwzDaW6CQS1qhQONSjHLoSdBLA+UHeozWrpqVr2rQGLcYofADnYPSyf6MXoMkBqyYXuEmAX5goBmRPqCIHZnIh74UUsTn6qepq0TtO6IlxJl+y815STGOMNEgGlrHCuY6n6Eajd6ybFpNYITJv6HHbQ5DMIh+nNF0BI0VHjloxOMch2Wo6AZpSyEUqgGf5qrWB5HTIuluWV/VZZ4xhGNwkTyodqnZ21fJleZYti5HVZ3+tb9S6dH0er9fr2f3LqLzacVKf35NTdg7EL3X+Wt85BdrL+ZCDDapxT2NVR/aduv5VOOgeuh4C2JYenG9DQP8l1297Xu15qttVfl6g4UulfgnM3UNZq7/XX+v3/S7XQ5+aFMf0OibBYIxGm9SfIBvfh0Ac5PAS4vlFhEoQD4NNQF2kk8OqaTBGIcx1XiK9rGZzfsZhHFBRYZXFasum3bCyLf044oYdTiX+qn0C8qqNud+L92im4KZUUU2kYSx8laLAJ+Fnc0n3LCqZbdIYFT4qQtQ03QalGoZ+xLmItQIGej/QdlIJValI2zQ0phGjUK1TaQAAIABJREFUHikIcRyPGCuKyhgr/orP1gBcv33Jei1VeA5Dz/X7b8SzFEa0acFs2B98Sr8z7I8HQvAYY+mHzJ0iJ3mMkUg2gg0aze72IIq2CqjoiMFhlKPTgbZR6DCmCkkjbugZhyMxeaxozjmaZ+zGFWeXj3jy2Xf44//hT3n6v/zPfGYarDaM7oCPj1DOs71+y8d3X/Pqm1/z1a/+npe/+QVXjy/493/+Zzx6esX51SP+3b//E66urvjbv/4bxmHEeEC3fPy4ZRxeizEaYbV5wz4c+OnXP2c3bFmvOlrd0fcDhsjoHe/evef9m7es245+OHL94R3H4UCnNU3QtGaka9bcDkfiGFg1ZzxanbHGQN+j77Z8Yi2/bzo+b1esGk9sNOr8DPXJmSyaM8BHzuwOs1Y0zz9FPfs90I/BfcTYx9y8fsuHL17y9mXDsIPd7cBtv8NuNHYlHqp+HDhrNigDx77n/d0b7u7uUEqx2qx59vQTPvn0O1xcXoEWr+dh6InO4UbH9tCz3+859gNj8hSKh06nr6CNTclxIryNNTDG2YEd8y5Xc8+2yE5yklj5mo3yfPAsAYr6cAI59OoiEKdAi/p3p2TZUqbL94seqOVhNQe1BFTRyVCfA3NyQOpJ5p06V8h908VTdd/4mV8xpnFT87/ndy6vbJhPD507jU7J9qUTaAkS5K+FT0ghxWWqSJcaiKojG5bgRTaSpjOqmpMohk0saUqWzBUygVkx8RlNHCGlH+mBy3FcrpdTCk8NSNbfZ+WpBgnr83m5DmtlaxnZmMe5VtrqZyzns4x3BW7WwGA9l8s9NCloaffWypwy9+6vr1Ntzv0pwE2tjzzQjmwMZULnXLkye/blc1OE33I+l22ST4luEHPUg7Tg3v5e/q/HW9bgpJzGGCuZpBbKuRLQpJqn9JBidNWO3OU85Csr2tZaUGpGEP3QnqzHozaytdaLlKjpntq4AJG1OWKVOBmJKsydKTUImwGO5fNkPU60IfUayFUid7udGOy560m3cj45LbWRRGjn2Ww2mAS07Xa7EoG23+/pupaLi0vOzjbkAljWWtbrFabRjH6KlM4AXPCeu7s7jsejgAm2YZ1AhQyeOecEcFWypw+HgxicCmyjC6iRI8Cms09SAbuuY3QDd3e3tK0YmkbPyf6ttfRDz/F44HA4FIPONjL3fT8Uh0FUgX7sk9NYQKfRSTqtUxJpolKqmkS1Cx2Jtkh19UrXnqLpfKleO62fKSI3JnB8AucEdM5/z7JB6ylltr6Ugq5dl6qpcbEOlFKcnZ2ldWNKVFbTNKzWK5QV/ufGt4nLMhLcBEbFGGlSu8p+1nG2TueceumM0ArNFMWZI+iW51+ISBRQAvCyKIgpEyfTUOgYEyH+gsc1xKLb39uDMkIir2PE6yoSJu0/FYVuIUc71TpMLadKVc8Q8H4se2wYhrJ/jTFlzOZccdNcZHC0yBMjxVF8rInk546KHBVZuOti5HA4pP1i6NZn2KaRqMCs/0QpvtE0DZvNpnDFEoWWoGkspmkwBkY3gpJiDUYb7MzZGtA6ELRhtRKHxsWjS2zbcP7ogqH3bHd7ttsd+91eoupUP4FbjeXq8hytpmICw3hkfzgU/fjR+QV2psN1yXnSoY3h0A8S+eUD3jnG4xGiZEzbtoUgJT6MNlM+hY8E5QvAqPWU6qqiOMpEzUl6AIEYPB4jEXUa2taiWDEcd2Vdi64T8CnNFe5nSYDI9Vj0cDvT4eq5zSD1KcdgPmezel8+U+21SEgUUUpkZ5zOHuVVsQyyfJG+zyvBKwKnruxQiBEIgRCmdtYAfcaV6jNZdMjpHfUZNjlyq1T9SlfI8jhf9Z6vz8Z8Xx3hlvWi2u7J767P8frveWyX2E3991PYzRIUrPWepb55ChOafpZJPqmHp5+/7fo3BeikAfeVuof+9tAA/rOvZAA/9KwpDbNoObM2ZPTzVNvqNtYL+9sWwbId9SIoTT71nt+CW6pkVBqUCENthDdLGykGYUVBiQgHgoTbRqmYoyLRC1cdHoLzhFSNpx8GjLE06aCJ0RNUgEaD1Xz95hWqsTw6v2TVrlGuxw+e0G0kXF47fN9z3O/ZbQ/SNx8YRzeb95zSoROSL5x3AaUDJk6GXdmEelLuQgi44mmvDMKocdGi90eMaYgBxlEqghmtaBoFAY79Hd6PGKNotMW5mKJGoDXC1ZQVzOwt4I//GwC++OLnGCNcbEMvQGT2sh36Adtd0A+TwXk8Hsn8EzEEUR5QiQNFicdHVh4Rw0BDVClyMQxyuMSRRkesiXTWSJpxSj8pBo8L+OMOT4OjJ3jH9fYjz/7gU7RVNNpg24jdKNAD+90H3r/7Na9e/YIvf/1zvvni5xxu3vD5D3+MCjc8ffycP/2Pf8SPfvI5r16/5mb/jkPYs73d07Vr2nbDKgZcBGzD48sLdLPh7MUz3F1kvVljUBy2O6yHY4Rvrt/TWcsTLWBsBMLgiArOuo6r9Tk+Gtq4wsSR63d3/MX//f/ws7/7e/7h7/6Kt795yeMf/JDndkPbbFDagbFw9gm8eE7sVrDtUM0KzB1+vMHbjnU8Q7kODg03Xx64exN48/Wer76JvLrt+PJm5Iv9LQfgdhxwxyN2t+PYHxn7IyoEHl1e8JOffMpmsyYqjVZiEOx2O6mclQ/7AKPzHIaew7FPUSbpYE9VmGKJihEF1kXhzYgp7UWRKitGssdAiNN1tSeEeCKlZEEmeQzeJ/6WKZ2vjjqqgZGaa65WSpZK7UMA3ekrKweVE6GSZcuDb546qTCmweh2Fi1XH44x5rSX6qFRy1ionI6wTLuhgKPSF9Lnk4LHxIEjH57SeZRm5jBAhWIoKFRJ4ZMx86jCcTcHB/P/pdcuf53aOwfyct9nsrAai+V5YnVKUfUT6KmVLkV9Qki8YkZcIqIEV+mcqdrhvSspkhO4ktZIzCkiQPB0KSpnmUZaG+fZSMk/Z4VL5OjkQJLXJl4e78o41IBtHbEnYzAHj+qxgXlEVR3hNgEHiszRMukqp1JSJyC91nFUBZov90zdjqXyO1NWq/2XrxrsnCn8FbiUeRvn0zYphZL+nRTZoNNazX9DFjvLsbu/3pb6zEyf00qcXVX0nA8+nfV1NbVaB5yv5fJimIEUJbotxikyQediAImbVk2g/9IAqD3f+XOndK8YMv9ukq9KlQraZTwTHUHpe+avOnHV78wGRo5CyvJA9kXApHHS2oKejC8fIofjwDD6Eg1krZUxiRHnI1ZJyp+xkaZtWG86zi827Pcbbm9vubu7Y7/fsz/sUvTSoThB1us1ttFEZXHeyZmjdYlUy2dFPw6M40jTNDjvBEQzhqhShG8kRWI73DAQ0tw3raULzcSFFaVKoMxvirRoGgKB/faO4dBjraHtGnRjQQW0gaY1XNpzARyPPYf+CD1kbtGhr6IskntZay1R6tYwuIG7bUBHSWWySktVxpC4vkzA0BQ5NYtcDWNyxubUNcq8Flktqx5jJifPUtZk+cFEFz+TAW0zAWFThJjHOV/WQ35fCMI7ptL4GSNFAHSkgK9RG0w2cmMEn0j1F2vaagNBuObqvV5kXjrr2raVzldnX+lHCgrQSrjsROIEpERWOqOaBqlsmoq4xcnwHvww7ZlK3SgyPZ1p+SyKSV5N55Bk+xTOLgToWMou2XdgjCJGPePQdL0rwG8tM7JOUoNzS2BAZVkQ6iibdA6n9dC2E4dXmd/y/p7jIPuq0TlbQOZVRUBb1mdSZOJ43HM8HvGDQ/ckh00uaiOaWPCeEV+deZG21YS+J8RI27U0tmN9vmF1tiaEyPnhktvbW26vbzgcJPrWe4/ve1Tf8/L2BrSsg6brMMay7jasVhFU5Nj3sp97g1JHtBbHwqpb06w6fBQQwhiN648c9zuxs6whErCpmmnynAp4TgSfCqlpl3gKYwrukOqwsq4jBCm0lCAnRi/yaBzHUjU5RgXKILQPpHemdTLWem6UFewjPsn7rsvrkaKDZ2ddiBGz4GCrr+wEq68CKsUAqeAF0aNcSMEjAh6GYMErsZfzWRqFGocIQU2ZLzPe1CigYWllEC7XXAjDh0AxNx5odw3Q1TbBHLyaczXWIF0ddb58bu7/Eoxbfr4GyE5d9V6MMc7k7VxHexgfeuiq9YjflqKaMabJSTl/3wNlGsr1bw7Qfdt1CphaKq7/oitOXrlva8PSACptMfMJjHEu3GvBXE94QYX9fPSX4GT9/YMAIA9vlKntuhj9xfjP3rlktWtjUiqlQdlGgDpEsBllidGjgiJGD4lAehgNISDcBirSNAbbaaLVODxBK95+/MD13ZZV41iZjk5Lqt/mrOPueE0fRg6HW7Z3N2L0Rc04egzztKlYIl0SiBAda6vQlWepbDo9RTl474vnXTEp2R4FumN/HFHKsFmfY4yVQ2Y80rQaYz3eDzh/FGXDNmjd4Jykkyg8jVEQI2PwNMbSrVdl/L333FzfJYVUlNfLq8dsNhvutnu2+54QB8ZhTFw6oVSS9c4RXJo/gQWkWEcixo80WANRC9gScVhG4QPUEaUDu+O+GN62sWjTCOGuExC0NYF1a9BEgop88uIZumu4+fABu244f3LBUR148+4bXr/6km++/oIvf/NLdrcfubq84OknL/h46Pnjx4/5/k9+wtuba/7qp3/D+7sP9Ay0Fy2fffqCT559Srfa8P5my74fuXpxwWbTsTkPfHin+Pyzz/j00xd8ePeeb754ybvXbxn6A1cXl3RnG8LQE4js9jvG4xF3OAIwWs02cba9f/+B169fo1Rgd/sNT847njzacLFp0QZidHgMplnB5pK4eoQ6/w4xroAdm3gnayRq2PfE6wOH65bW/j5OveIXL3/Brz5o7vQZx7YjNg164zgeB968fcN63fH82VO+8+I5nzy5YrPq2O0Osla1cDSgSBx1uQojHMeR3W7PNvO5xVAKs8cYUX6UfWiVGBFBQtWj0lhyhGWSP0IuQiYYneTHZDzX8itGCgC4lBn50Mre4lxFrI4cqlNZ64M4P+eUPJp/1fd+X39fp1tmL+BkUEPbrpDklukwzgdtVpZrDxxU0VRRJYfE/YP522TvEsyr+1yDg/U763blZxYDiIfPuPlczQE6Y0zS8Jceucmwr1OK6v6cAnyW0Tu1wVm3ve5XZJ6KeWquf9sZXY8ZzImLHzo3l9d8XdfjNPV5OT61MVnPcZ1msWxj3ac6DWN6FkzpbJOyGVOxpfzMeixzNGc9F8sxXI5TnUYZoYpgm+4pqWVKSTqk38/OSFHaJ9BNAiySgRGlmIQAcHncNaWiAYk7JtVLye02Rt+b92ncpt8XwIsJ+AvBz0DMWgGXdmdkcLpiFCNvmkdKlIAxFu/F0CpRr8nA9yGgvEspTFMqcL0GZus8zp2rRWYkw1YM7QpIT7I97/t6my/X1zKCswar85X3ck49y2OitS6GoEpVemVuPN55+nGEIIb1arUu1ZZDDITBkQnPczubpimpsavVit1uJ2mvfc8uUS+cnZ0Ro3B3SQVUydm21kqWQRUlNw5Dqei42+3Y7/flc13bYW0jXGCAj06MS6Vw3hMOYlg3TSMOJzQS7SlzY7VFKUPXrdjvdxyOB2xvWG3WtO1ktmgtaUzaGA6HI30/FXBqGotzI8PYgwLTGoIKAvyMklJrosGHgFUqrW9JE7QYMKpwwNWX1qpEM536e95DMsf390y9NiZZUd2Z94eqgb5JtqlkFIYQUtpzwDayCJep75JuqUp1SEiAlFICwFW0EjlqDSAw0QosAfMaoMuRqnWRiCLjYmR04+QIJOLilOqX16ToSlKARakEwoQo0UfFSTDJmUmOToUIcxtLn5PtNwyD0PPk/ZtAj7l8Dzg3AZEZjI4x4vWkA41jrjDcFNCuPpvu2YapmItepOrX520BfaOAMhmgk+rKXmgmhpHBCydcjAJ+Zx66TH0RY5RozqAL2JjnL4OTQsFgaNtJLo6jZ3Ajx6FH7zXNKqX2aimAtl53NM1TLs4SEL6VfT4kbuJxlDb3h6PIsRS1aRuLNQ26TQBVEHqEnAK/0yIrTNfRtC1t16G18GdqN4JWuHHAJkAy2JD0RUlblSXmGcdUmGMBDHnvS1EfRZCsIqUZhiN9v2e7veWw39Jai1KJE1OHdJbodO6Aaea6lcxjqjodQsURmc66E7qk6AwP60lznSDp80AuJkGaQa2yLz4BgTE5NSSeT/ZVlEOr1q9VOhfr9xXQW1HAtvoSG7TcQa3H1s+oATTZA3k/hnJPXu/5/KvBs1oPWzoi52M4P6+zjnGKZmWpAy+ftXRslDFafBbAn9BJTumX+W/LrzkJZGrLvOjEA/hiuf5/BejgtKH3r3XlhfvQlQUsLJTqfKAS7g367PknFsHSOPpdrlNjMNsSD3QhH3yaCZST/8Jd4UOVAmukUo+1LbZtMVYTEaWkMS3W6lSFNKSUWM2hD7TdmqtHF3z++Wf86Md/wHe/9xnt2Zrej6wvz/lf//f/jf/r//zP3Hy8xZq2eO6apuHR6pyb3XuC27HdfiS4iMEQXIriUbb0L5K5JLL3y3NUChVDdUjncU0Ag7VALJxzUakyViEq7MoLYa5XaKd4tL7iydkV/XHPdnfDfrenWxmaRvhRLs4f8eTJM4wy3N1tefn1r9FWKjU9PTvjydVTzi8vyvh/+tn3efPmHaN3nJ9fslqvefLkCY8fPwUUL1+/5Hg88OHjO67fvyfgsaYRX27wQqCctC+VuMiIKZJRDTh3lD4l/6+KIypGnPJ4HWmNlUpN3tOPjn7o0VqAunbdMR6O2CAcFk+efM4PfvIjrg9brl+/4offf05sG775+A1fffkFr9+85dWrt7x6+RqzDzx9/nv49gmrJ0/x6xf85T98zc/+8ae8ff01jYXjOPC9zz7js88e8+zqjOA9Nx8+8P/x9mZPkiRJet/PzPyIiLyzqrq6Z3qOnR3sriywCwgeeInwkSL8h/nAdz6QQiEBEQgWw93F7MxOH3VXHnH4YQcf1NTd3DNrCBCHt2RnZWaEh7kdenz6qWp394GP/j0PONpkaB462rOBkXve/8MfePPdD8QYubi4oK12nA49dx8/8PHDHUPnwcN+f+IUf8Rdbfi8f+D4eGIcBmpXEeKJPt7j3ZGzW4e7SND0DPZEsBUbC8Y4erZEXjCmLS5sOatusbGHYU/6+COPb99yffErqnaDff83PNQ/sG89fbuljwafDMFVvPrqmlcvb7k623F1ccb1+Q5i4OHxXtJ8XUXlci0aK06pzykxfT9wOJ643+952B84DidG31NlB7jB5fUX9qd1Uk/OJxjHQSJb2nqkcJTVDpiBnlmOyJdGwQTUW0eQVBFqpLbs0KpyUOuurJlz5bWOgC3HoIDG+nfzVwnQ6c+z85LlG27tt0/v0c977vOtsdJVUGhii7GuDek/dq2fe32f58CX2XCZS/SuQTldh/XzQJHyuWpy8RygsAD0ir/FzC7SG8hbxViUGmSl3jMTCLQAL1dzsQYY14bQ04jo0xSAdRS0NHDUYZvWxSSMSRgrKZEmpFyftGQKRmFp5L3tKnkWiWw+Bd1K56hMM9KrNDjl2RYzMN3TmESIGQSZXqThNDPpKGWprdew/FnXT0HxielqlR2oTKpy3POYxPCd2YNP6tpki1+MRRmjMSXIqfWhFKSToJCA3Hxxj5cGbznX+nuX5aG8J2FjLmGxMthlz6pjklFBnW4rjm6iIAJkPCAaCOQ6PUbYQ8mYibljYkQZkM9H+ZeOffmMlXPUTsAmswAKJBqyjpyvz000iq8/BftLA19T69ZySOfU+5jt2DQx86JghPgQSTHR+45hjGy2YaqtZXO2hJyveV8I+NAII62pMQYeHh44HDx93wGJEDxVrr+1aTe4ukJlB8ZSV9n5boXdF0PA57TJEKTmWoiJupbxWGdpNxthIFsZj/cjox8Zj0epeWWkKH4KJteUctRVRWOlIzzA6HuOj48MtaNq5rpfukdFZiZGH/BBQF+pcylppG3bgoUhjlhrqOo6s/cSwTh83veynxI262erdZNIhDhO61ZVDmmA9pwOmp3kMlBV1g5dyvN5P811BEVHaKMNtfGFETjf0wePT3PARefBALXq2JxCOOmzrBt0PMiTC6iBSrpZXs/yME1MNT2/IkyeCzblTqm5lEIEYgqiV4wRJlS0mZU1QJx5hCX7RlJizUJ2q0yTb19yxB0hzlkKpcwyU+MIPb+ablwGECqay2YClYZhmPRIyXzV4KKujU5g1OdIcyYXSOmDkvlvst9iUsKaCmdrmnpOCSQlxsFzSh1jTlEOCvjk7tlN09Kalpg8IYzTHEp3UXltMORmDQbj8h42ljiILhuCJ/aRcRxke6REszmjbbfszrds2ppNU9Fuavwgwdyx6zl0J/p+lK7BY4AxMPpAVYW5tqUzGBdx42xXhhDoD3ts73BHR0xB0tk3G1n3EOgxVFVDXfm8t3O9VPX50ryO1grhRNY6A65egv3JW0ZgGDtimpsEMJlISXRfkpOgV1UXIJeeWyQIlFKS59X3k9l4xf61dSO1022ZrjkDzRCzDp71ct4VIj8skAy1AvalTWNgiAmTA10heGLIJaJSmkB0kMCWana99AyVz1fKsgmkWxmCxjCxtWHZhMwHn0FuCRLCEpA2K91pi/s8B7JpIH79pbJ1LouzrJFZyo+SdFC+bg3slZeOSf2i9fVc9kL5vi/dMyU/2eLy2qc+VHn9VwXo/kMAq/9QUOv/z7VejFJZ6vfyS8jYy81bLuxz9MpJaVG6Z0/HUG6O/1iQ8onjxLxR5DC4ScEYHMmanKtfiQJwUtPAx4A1FZpG4TIYoOmwTWO4vLzml7/8Bf/iX/wV/91//9/wZ3/xCyIwAB8e73nz/j0PDwf+8LvvePhwzzAETv3I+cWWr756gfnc8fYHS4w90YvTGv2cQqBPEFXhGE0pQYzzaEjiK2CNEwNc8iGkw5wB41QRGpJJVK6ico5q03B5cS4pvMHy4quX/OpXv8IZ+OHH7/nHf/z3VG4+INfXt7z+6hu22wuGoaNpKo6nvRSlNS3J1rhqC4gC3Jxdc3FtOHY9PsHDfuQ0fqb3Ndc3V/z057+kaS1v3/7I//Obf8fD/WciAUPC2sjEDkBox1o7wZiEM5HG1WiqkTFaDyRmVpE44BaI1hKiJUQIxgijy9Wc7TZUpqZuzvj1n/6aV1//hB/evudsf6I9v+JxGPnd92/58fu3fP504NPHA4eHwGt3ze3513hfcXXzNQ+PHd//63/L/f0H+v5E6PcY3/Px7TuG+3v+zo8EHzieOqqmYde0OBupo+N4PPLb3/wN7z5+5LsffwRnuby9xVQG6wSofDg+cBoOpDRSObC1odnWHMeex8Mjx8cjDAHjasbhgcPhjnMGBnpO4ZEq1ITK4JoWU23AnLFlR58CmJE2OswpwuFE+vw9/vCetqqof/Yv2H868v39b/jUwRAj3f6B7hAxNHz76jW//tNf8otvvyWOPfefPvKwf6DOxvfl1aUYyKNEBscwiENoaxIwDD3H05Hj8cip73J6lwCxYoyJ8W+yAVU7R7NpsL1j8HupEULEuBUZPjuJaxkyK4ulM6hySb9rNHgYhkUjCA1YKKNO771mOi0d85UsKhShdqcr31eyldbvL5/F5fb11iwbMugzKOtk7RTofcWJiMRkMAVTYa3kn2NPraPd5f1LxsGa8bV+n9LXn1sjNVTKcavxP//M4m9lakBZrHpt4ExrH9bjVKNgjiKWe2S9T6QT4lNgVa+ybo6OfTGXUQquP7dP1p8ZY1wYeik7kCUwvdbD8z3SBOiW80B6qtPL9V0zH9Wwmw0uM91/OWYFSJcG5lIzR+mmx8xcXO8tvfTvZQqV3k4dybL+YHm/cn3X0WCJLuu4I1oDbG2oys8uO2Umg3QKzpVdSp+mjsyfm5783hizWIMJtCvWVMFGNVpl/HnpjQQtJnAs/xdDIOS97zNA4DLznAxipQwIVIVjXxrV03iKeS2BvBgTSTMoJpB7KQPnPZkmh1YZ/SaKtlbGXzk3eg/dr1rcX18zySVrsm+tEITJNWkdmECVn6nvew6nE2MIU4mNuq5pq7nL6rwvEsrS32631HXNxcUFj4+PPDw8cDweeXh4kNplTUPXdDSblt1uN+/NBFQzoG7qmpiL6SvjSmt4qeyu64q2qoWRh80dVhNdCNIp0crzhZgL/zMy9IbeGLa562w6BR4eHvBhoNk07HY7NpsNfvTEmNhsNpxfXAPCDDqdOk6HTqym6DMDXfa0dfL852dnpAQOi4uG8TTQnzpiEIDcNRUu68UYA37RNMcugvzr9VWQqJx/Xdsy1VXOVKn7MtAGjH0HeY8qKGCMpa7nPTWOnr4fJqe1qoX9ZIvPL8sH2NzBcZYR2b4oAnHTszzjo6Q4g3QxCiuyBAOms5LlRcxHezri2rVW9ZVBskdQ5nmGMJydAAIFC7XBjcoJzNL/mT7CWmyyAkChZ7S0h+QeugblmdZznGIC10yMU2W4ypyPU4d71cf6ZYzoTa29Z5MGetZ7wy5sqxlYmO0Sl783daKua8Yx4GNgHMSGe3i4l7O1aac9IY1YPCkatvVmahoRQmAMPcNgcEM/PZe1lqqpqQu7ZBwHhjFyPA1sdyObRho6pSBNanabLQbD4fERV1V0jdTl8zEy+BEfJdB0OBzk/LuKOsulhR2X2YV+9HTHI/uHe6ruBAaathVCiasZXAdIV3JZJ5m7umplnio9N2p3GjCBceylg7kPEBJ+EID9/PycdlMTxnEiTKQ0oMwvDaxpOY05UCbRcZdltnPLNM+YWKynAtea3bb29UvgVsZcYgOZSY2kALs0A3QpJYIhl8YxBD2PSQ5LjBKkothn6kSUeo6kMvEZ3CWlLJfLMSmw+dT+WMpB2e/abbq0CWb7anmVds3arl/bbuXry5/EFi9gAAAgAElEQVRLVnJ5n/Ln8jP+uF35FLhc+wnrYOh63KTw5G9qL/yHXP9FAbonAnv1t/VmXTuT67//R3/+M1Hd9WLo5z3rrJil0bR+htJYXV/TYdGxrIy65xzUL93rGURu+nwRGPNnqDHvqpqqanLsFWGRGAHi9Ks26viK0ZTI0R1XkYxlsz1jt9sRQuDD+4/827/5DT+8+5HH0yM/fnzP73/4jvv9I66uuXlxS/fYEeLI+fk5Nze3XFwaDl2N1OyNGKNdyQykSIq5wGM00s3VmLlIrbXSgjr/fYqmY4hJIoTR5+ilMbnoOdhKunU1uw2hCkQGfEj4MXHo9uxPe64uL3nx6hWPhwf2uR6LdEkzdCfD5cXAbrfh7PyWUzdyf3/PaXjghzcf2e3O4We/BsA1F1zebOk/fOTjx4/sT6JE3n04cXmz46//+Z/z829/zs3LG/anA8O/7xn6E+Rx2yxUrbEC1lhwSVgGCSnQPJ1zk9kYSap4pKT1RiqMq8WITI6YDD5ZwhgZTj1h6Pnmm0u++ckv8N7x9t17/vLsGmN3vP34jt/943s+/nDHu7d73r/Zw7jj9vJn3Oxesbm55aquqIeBcxL1Zsun0wP7w0jlDHc/fOIxGeIYOdudc3X7ip/+9Od8+8tfQvK8+cNvCPbE4XQk1AMvv73BNjXBWPq652ABAoPrGOyJcTzBOLCta1Jzwd2p4/R4xAwJO0RM6DFh5HKz5dvbF4x+ZH/qaLaW6mxHxQYODu6By56m+Y6mD3Cf4KEj3X3CH99y4h1H03L6u3f833/3jv/1//gNf/sP37FrLC93N/z6/Cuub77h+te/IJ5V7A97uuMBkme721IBfujZ7x+oa6nb0TY1FRKx7YZI10tjiP3pyGEVfa0y0JomZSMGb1VbNmdbTGXYH49iIMJsHJisVPN5tzmqZialrlG8mJ3pWYGqki67tCpLbpJXWWlrgOFJWgtLMGANXpWfJa97Cuo9J4ef+521c3rvH7ueKNriXjaZRQ0+/f06LXTtYK1lsD7nGgx7To7r351zOe3n6TOs9c5aTy7ADDsbzfr5ZaRe1+054AeYZL4xypQj7xebjdI1UKkAX3jCAFqPvRzveq5SSpP+LfdWWcep1InrfSh/B0zMgYuE1kFdGMBQ7DUFe4RxF8MSdCufofxdyZ5a2iUC0pXOlf5ez+F6H6lzkFJOI03LFI/SjigNwvW+kjla2irryPB6Tcp1lGeaQUaDno15nOJkm8lR1tdq5sHaDluuzfy7tXOrr7OmcNJX7ys7q4awlDNJkMFp77My8Nf7ac0Onj4fgxaI1/kv16J8HpUJChBrSCSEMHVOjClJvcYCCJXxzaCimirTmAuQvbxKmVF2dl3YnwXAq++Z2J5JeH3OQvDZQYwwDp7gxcmsc4aBLcAT0QnCFHKuom1rsXXOtux2Gz5//sx+v2cYR05dR9f11L10TN1ut9KRtZWO83qWm6ahLWpyTTrGe4acKjvGkTGOmfWAsOnqio2TjrUpozjWGAKj1KSLWrdQZIB+Vuy91NsKYbKR2mbD5dUVt7evuLy8pK5bHu4f+L+GfyUpskMncrN2bNoNV9eXvH79ml/+8pdYBOAN3cjn95/4+P493eEEJjM3C1lR6oJFYx1jMLovEVkVo2EcDVUloIQwrsoU17nhQLlO0+elZUpYiBmQBrHhlV3CzLYaxxE3CPveWUtwVc6MEWDbGIOtCiBmGJaAvQ/T2KJbdklcONqrTtAliL2QZxpIEOdCGn3kM6TnslZQK48xeimBY5xjjGHSI+U51/RfQpwAhgmEykCxhLHNk/TbmOLkN5f6RMatjCaxuTVtex2MW8vfmQkcc8F+m9lt9VQ5YM5GSFlfJbwPxdmcmyRFBaJCUK4kxkittyqCQWoFH/Yn3Gjp/MBmU7PdbqiamsY1Um8sNlikjluMkTH7XFm5cuhO+fnjpEcn/W8Tfox03ZFx6DAYamNzKr3DYri5eSH1KP1IjIlh9OxPR47dKZcfMPgQ8X5gDJG2FqBO92Rb1cKQToGqdqTg6Y7ybH2zoWm2Mp84QpBAHECKlhgidQYOrVU9C9bpXgmEOApYGYLU4k1mYuE756ZyBTYlYsFmUiA4BD2fs77ThhQKGE+s9ySNScpzoh19lzaWmfcahS3FhIfnTxMbTVYq2/1p3sMxIB1yC3vGVlJLUzpKl0FTuet0NlOucxeFw7U+40LRKQaTdM+rzFsGA/W9c5BQbYd5X5ev12fWtPEvnS3tgC32i9gxZXCgfO/SDpUshhIEfw54W99D77POsFmDkKWdsb4WPkHWtzr384coGPtfkUH3JUBtPTHryfjS+9S+NPpv/eUUyNO4IpNjVl52YUjJK0vHahgGHRXPDcFMH/68Q1LWgVk/mwjXwig1s+G7npPyWUTZrMfxdGTT+7KC1s8ROrF8aQQ2irdONh0W8zNt7jzZxkh0wNqKQGQYBj6//0h32PP9m++xteXDp/f8+PYNh67j/PaK8+sbhsETvJ/qRuy7PZfpPKfeZCEpBLr8CNqBKSsuLe6e0yCME0aYdIIir28er7XyKVlYGpPTYAxsNi1nVxecX5xxHPbcPz5weOwwVIz9wP3nz3z14iUvXr3k+vqW/X7P/tjhh4HTvufx/sDLmxOvX7+m2VVU25bN2TnGdQxD4PHhcZq/ly9fkozhNI58+PyJuq6IyXLqjwwfjrx9c8Wf//mf8Pr1a7756jXvfvie4XQQQykbyVJ3LOIR4e6jGKspJSq3yazrIMBcQqI9uU6frRpiBO97EiPGNmAqjJV7XV5dEI+BP/vJ1/zLP/snbLY73qWKF19/C5Xl48dPvPvwhk8fP/D27Xvuf7jHDhs2ly/g/JyrV7ckM1C7hgj8+OkDw6ljt9lxfHxkY2ouzi+4PLvg1avXXN3ccn55iYmGT5/vuLt75O7xQO9Htmc7rrZbodnXFT/75S8wBh4+39EdD0TrsNuGaBMPp47PP3ZE19AfE9ZDHXOkwkMaB/qDFEId60RqHTa3XOfzgeTu4HIgsOfx/o7jj0fSKXHW1IR04Lfvfs+/+f2P/G//+n/hx0fHg//I+dUlf/arb/nV6295vXnN9uyW7/tHHk8dMXrqymFdk+c/UTcNxlgqV5EwDCFKR7gxcOoHTv3A4XjkcDhwOBzoT1LAt6qcnDYf8FG6bmUtjbGGpm3xKVI5wxgSxkSmLm8K7CWhtZP3f3mmS7mgHYNdjvppl9ZxGKTujnNEa6dOh2V3srJrGcZMUenS0FgDdIKh2+lL0ICc6mkUaFSlNMss7aqnlzh+FTFCSJJOMEYxVMXxcLmxQUa1QYx+yKwvAbyfONLT57mpfsUacFr/u2StlXK5rKX2nLKfqPmY7HwWRl6WtyYDeDYHUQwIu8CKvihTftUBE4Uv99GWDprOqvtgMiZQQEYNPzEKtS6SGBmRsknPEpQy07AlkDI7g+u9pt8VmCMto5UTaKJr4ixR91cx12UjE2McmIRBCs8L+Dbrx6g1i3K3X/nbXIONlIrXLEHlcp5kn0e0eLemAC+Bz9mGAH2unEbMDPy4qZuhwSc/Gckl4209XyWLotxbMaapMYKC6yXbVe9RGsDK4gA5Z9blzpExZvkh8xfjcj8KHqBFqfMe1QDBmgGWBGBZ2nW6JspOTJkVL+yEmOuvinOy7NYrRrQqeh3LvNAmMTEHrJXgXDKWaAVI0/2rAVGf09qGKA0VMBBz0fA5hS7hx5EQw9xhcHGmZaLGPK9Sa5DcfGG24eSMFzLGzoyJEDVVObtY0zqbJ+sNOZ3GiB3js82me82qU5cRdj0nWg9OP18DL6Y30rExg1ulHCnPga5DXdfc3Nyw3W65v7/n7u6e46lj8AKGSSH6jq7rhLnWSM3d7XYr81+cqbppZM/YmiozZIKPBD/iqkBdS/pq3dRstnWuo5brhoWETeKM142jrRv8ODJ4j6tbrm4atuOWh8dH+r4nHXuqqsZZz+PDIyEzCi8vLtm2Lf/yr/8Zr1/ccPd4j48j9abh/OKc69trvnr9FZvtjspUOGM42hMP7jP9MPB4OADQbNtnzrbK48AMbGSfS9cpn4Xoh2kNy/Ore77rOowpA1tQ6pXJOo9JUllzylVVJaqUMLbC2Yq2dfjRM/q5Q6uzFtcaceJzwwejAEcB2FHs35g9QpuBreccXPURgAmEURCqBOrBUFWznlUbwrlKnTYIklJsrRWgICYSgWASzqgPJs3jUmbH2qyXbIqEbI+FEDEe0tgTxp7R1wRyfdBFQxr5jIjomKqqETCVfLZEbmqNwb4fcykaw+jH6fxZwFY153XD4D3Re3xmA/uYqLK354s5nurjMdsVJYNP5620OWKUMj1xlEYHdmoWYWk3NT+9+JbR9wx9T/CB/f7AxLyKsK13kpJeN+JXTbJd0jHHsZe6gEWwzmUbytkK21TTXk4pYV2b3zfifWS7NVJX2TmqxtJuWpptw9koxI6hF6C/P3UEHxhSJPmIKpne9BMTtt22NM2GYeiELToGen/CuxqDy9keJqfDJ0JInA6HYr9FzJSijPhB1iMdULPNqnXKc0kIJYnE6EkpYE3COEeNwdjEZrObzrPaNMZkdmS2PaZzEQXWmjeapCZr8z+bQXOKtTYZqBFQLOumfJa0uYvLgQu1qwgxV71N0/kzgHFQ2ZrKWILxArLZlE1kBYrm8589/iU4l21Cop3OdPmeyS4rAk+LAJxV21dt60QIY1FCp8oybtZ5qt90XubL5OZBwhQ00zj8NBbNOiv9CbV1zUomKXuwfJZSpk3QUprtqqqqiMbksgdy7mPx3hIDKsHXeSwGkPINcx1CBVufzy4pr/8kgK4U7ouJ4GkkpXyd/ruMmq+dKCCjM/oOnZQZngrKRMo1LNYPa8xT0PAJhRt1GJdRYKm0yGQkrp0SeFrrZf06Vy8jo/KcTAf9i9cEXJvFd70qq2yIHFkT0Y3LSiyQSNFjKnH+k0bTDVRVgzOeMA6TM+iocFVDMobOd8RBCt97amyA/ZDAJIbaSNKvD5CdqN3NhrbdMfSBnWnwY4dPnnq3IVmDj4nDqRNGTOsIY5SIIpKqEdSZS2LES1v2BCGnYuSSNJHEQBKen5EDm8ZBOtVmWnWzqTm/OqNqDPcPn9k/PJJCoImIMzgcMabCjCMMnsuba17dvuLDu3cc+xO780ts6hkOn3Hmiq9e/4TLlzuG/sjnj285a89om3nN9/cf2Z6fcXlRsdkZjscHDAid2zm+++3f8X+6yF/+07/kot3iEqRxZNe0dKcjmgQtwtcCNrMEkUhJlUEHFOhI5OTgzHcE6yoaU5GSgLFJi3GbRPD3nLdb/vrbF/zP//Kv+dckTn3PMcGbhwO//Ye/4fDwPR8fv+Pt2+/YDYnbF1+zeX3L/QXc3FjqxvKpf2B//8BIhLrBGri+eUkKnq9/8lMuL87x3tONj4R9z939Z96+fcO7H98SvMfHkaYdePlqw+3LF9y8uOH24iV1U7NzZ5hQUbkz3r15w/3DSD86nKmxY00Yoes9rTPgpA/YZdPwYtsS6sDe9pynEy42+O7I+PY9491I2F6yj4n3n+94+HRPzDX6Pn5+w/u7t+z9yO2LC37+T77m5U//W85fXlE1DSnBoUt86k4EZ9immmQtOVw1gaWQSDYx5HPtQ2IYR7q+p+tGfAgMwXP/8MD+8RETE1UymDHkWnXgjOWrV69pNw3393eM0TOMHdbCxcU5jw8nAb7HnLpklW0QScaSfJhqzHjvSXkfjF7kQltLh7C+6yfWnMonl9NcUohEP7OzjDHiWGYgRp0OFAgsFHOKadq/1lqcWVL5kwFjazn7pAyyaDqPGDfOWYyrwAjjKJHZFFk2WQA7gz6YREBYLaI4I866qX6fcZqeYAneg5FC5xrxV2dCdlKaUghVdq/lfLvZzXrFREyc62rIuotxC0w1MYzOlc3qw6YpOBMRwCEm6ZQnNZM8WKhyYAWTGONI8L0Y48ZmUD9KqkMeTgiRylnqzQZbiRwcvWfUaC4mp9okQgaLNGXRJicWYBJnxUcvewKZG2nwnTBksBVhcCjQMTn5hVMqtUsFdK6qhhiCdEesa9qmIeQgEVmSSfO07JyEGbRptI5WBqYhYxVZRsYorzEmd1e0tYDNUYqSa5oUidzJUtlR0kzHmDnqHXKwRD5HCqHJM4ocVraiAmTls+sZiDGBk8/yYyRGj8l1o1JKi0LyJVhYssDUHhKnUcE3YZCXqcTlPWQPzAwbvYdGpa1zhAxSpqjOVyVnxaph7XNAqHDC83si4kzXBaDt/TxO/S9vGgyGpmqnZ/Xe55pWaZIHmrIpKbXCiLBWGhlJoEAM9rZpBMSNMQN2c21BGeec+h58kG6AlaOpGppKHNvBjzNjBLHzQt6nzjicy3sEgxWvFUPEGJ/n1ZCSnHdX1VPjFmPtYk4mUMwYAXusk71jJHAEYqummKgrabIQfZjT9J3IV+uqfB4FPAFDnbvzZVR1KlptdW8aCeronjYpgXacjJHD4YgxaZGCt5Z1ZTfl8/Nz2rbl/PyC/eHI3f0jx+OJ0+mEHzqiT4Qxcqo6mqYhhETfj1Ph/AnMqlp2tQBto/eMo7BiUjB45Nz4cWA4DVSVo20aselCxHtHCF6e0gBO6hb7cch7yXJ1dSNAZp73lBL9ODDcjRyPR+7uPrGrG+pkOG8Mm+sLXG3Z7rZsz3a0mxZOJ+7u7kkJTqeeTx/veP/+A/v9Xvalc8ROAyU5KOIcrnJYJwCWADIBi7DCkgmMIeCMBJ6cs7mDrQTapCZfncEO2LRbAUAQYCrluqPWImyc7JfE5AkRMK5IpSzSu2LCGUvdbgVYGgb6oacfehKZEWqFXRPLMg3JiX8Q5rpcGgQHGMaBfGQFCDBmEfgq07NLpr7WtQ0T6JMByAQmxDnN1Uogfsi11iwGVzcqLKmcw/cjpxAZggRrHMJ8Mrm2l0+BFEZsitjoMckzMmKJ1JXMtdYdCzEs6u3ObFlxpEkQk2FMUhIgeBgQPeYLf1TqHAY2bSu1+5BGfCbb793gCSnQts1CXqtcnEDUgqG41hGi97KsTXmPeLXhMms8GhpX0eyqLPtzE4bDkbHvadye3W7DxfkV27MNTV3lbKGBIXjqpqEy1QQ2DMPAmDw4m5muRubcVbjKkZJhf+rzsXT0wWeGYsSnAQzUG8vmbCeNfE5Sl67rOk7HE6fuhB9G1MkNPvB4v+e4P1G3Un5J2LKVNE4zls53RUBH0821ocY4ATUa/NHAYyJQ2UhZB9ZN+lfWXMgjcdIzTV3TOIdr6rkBR5w7eZeZC5MtnXVBuY6amdbUouPEJkkwNa5QjNrMLLkMbmFlXFLeyZCkW2W2FUcBU6cjOTdvkvEEoom4WmTFbruh73r67kTKwayEDKWqcg3OnJmj+3JDQ1s7qrqGMINVczCwRxsydt2Q9+wMssv85GwcP6JMQWMMxJCbVM3zXtf11HVdySmznLESqA9+mnf5wDTZYnkaMzlpDvDFCH6MUsbLkcejeA5AonLNEotJCVRemcw0R2ybWOyFylpM1v/iG5W3KM5zUOE5f5+JCvx/Xv9ZGXTrCPEaUVxfXwKppvc/89oShNN89tJgLj+vjEwruLdGkZ8bgyK/Eox/PnXoj41//Rx/7FrfYwFiZtXxBMmGecMjC14+v0aqnTMTbi5DiZmyG5CaHW0+BJHT6ZBbt+c6Fs4Roud46ulP0uo7mRpqx8XlJbeX11zsdmxur+nOW3of2VQNgxVnxJtAP0gtkH4MDGPAGXLTA4GXhuxI6fiEnUGu/ZfEaMbgE1O6sXQ1kzc4a+m6jhiEHr3ZbEgESSs8HIjDSBqlDkBtK5qqprYOZ8XAub6+5jT0XFzdMAzaoclR14b9wx3dcEOyiXZTUzlLGHt22/NpHX747jtefP0VIY7UtWWzqTEpkkLAdx1jarn78ImPb96RiDRVw6beYK2hbTay/5AIiiWnGU/PpwwKyN0jRNGYcj8mCCMJr95u3jGiHLrkcWng2599w6vbM6o37/jmcsdmZ/nxww98fP+ej+8/8eb9Z+72J3b1Na8ub7i+vWL7+pqzmwtiGhlJuHZD3Y104wntPP7i9gWHoePt795gSfz6n/yKr15cc//4ju/+8FuO90cq68Sb8AP31jCcDuw/v+f+4zu++uorun4gdCeqZGjqhrpu6DtPGEfS0LGzDnfWYF3C93vG4UiF56zacXl5ztWLM25fXdPszhhOifdv3/GP7/89bx4D//b7T3z/+cD9w2cgcHFxzutvXvOLX/yav/j2G158/YrdxSVuu+OUEneHI58eDpz6PafkaQAXVRmLk0gSkCUlMTKJwnbo/cgwjvR97ojqxSjp+54wjAKwKA09AVi2G6mtc3ZxRkiRu/tPDMNA0zRsNhu601CwvJZyyGEIi4DCDCao4dkPvUTOi8gtsJCPGtUvZdXMpKJgr+b6F8yGuAaEXP7b1Kgmv75XhzGzDKwxi5QzMYrs5GhYm1Pu1EmQg6AaV5hxhZyb5KQaZ4YibTgS0sx20atkG5UORRmcKedizbIrDWl9X+mc6u9jjBkslLpFkOuIOCd6JQSJwsoE5rlW9pwgeHUuzq61gZx1U3pIDEHS+mMiGDs5UdZaqgwQ2rxiEm1e1xGcYk9oOgRoSkQeq5Vi1uUzleleWm9Hf1/Okzjj0hk85N0bQpD9NBX9z1HQvM/UkXOLQFtRQ8xI0WvR25bKafTaEPLvUwRNC6zrZtr/sk/mdJByzGLorSOgc12oL13lXpn3DvP7dH2Lv5f7Z5GyyJfthdIpmNfPTA5ymY6hXzFJDZoUDJGYSyi4zCyE4DVNt6gXSQJlPJkoIFZOz3vOpls49M/Oidb2WY5NNlSapzcx3UvnaMhpeorLa2oPkNm58r4Y5ppVJJNrFGUj2BoRY85MQHNlnDyXyfIoZSZ7yilQRKyJUvvOOXzQEiGSGUCClJ3rNWgKy7IA2Oy0K5iaXx+8Z8xF1rVbZIxRGDiUMvfpnJYAr75vWvOCyWCtZRw9p9Nxcl5Ur2idOh3vFOgtwN62bbC2om42HI8n7u/vczOJA30vrBeAw+FAXdfTPdVZdS7gXI2xtTQPs5UwKYOAsL2X2k91ZljF4AVArxx17dhuW2JMHE9jBq8Qtpgzi3FrEXoFwvtcWiLFQGMsO1fh+55+GIgII6JualztMsuvymwwS99LGYrtdktVyX19iBlAZ7n/csDFapDeytgTDlfHzJZxmGAJLky1swSAENa9ngvnJFABAiTJOggDxpmCiZ1mMoHI6xlUW9j/1rJphTF16juUzWKMIdjMcM+HT2oii6+h81iyfVWGrckTzwWzdF2m58rMvcScyqmBg7K2aYwRr40kjJnOs83piCFIKp76QVMSDpKNUSeDcYmqEuC8ahyucZAsx8MR0SEzG13Ph3NOmihMz6RfAs4B4rf4OD3bHEARpnU/zGCbAjgCFNSkCF03kFZ1qJ6T+8tsrzloeDqd5HfOUhey9jk7SEF25yrqSho5+FH29P7wwLE7TH93ldZ7Ddn/Kmqn2wpXy7k9nE6kKPtW7RzZEE7As6GHDDGrn2JGAR4rW7NtdtSuYdtuuDg7z+ChdILt+x5jjQRYsuxxrtjTVUXdnkmpikwyCaMANTHNAKcI5ZR3MTmAaee9UpxdLYMRo86jmdY8JfAh4ILU+bPJLZoyLDLOVvt/LZfJ7wspkCZFV+iGpMER0QMhRoxNBLUjNfiZASoJmIfp9zGo3R4W+wUyMBWDkFKQOtYSSM1BYqO4h8mZKHn8VnxuExMpA68aoJqfW+3JvA5R/zbbP/OeLPX+stSEdEc2BP88/jHPuRJi8jqTn8PO/5azhzAm1WfIBoLNxuU8LrXRltdzWI4AhpkBa/PusjM5Ru0g4RMs368g+pxBojY2+blmX+GPXf9ZALovAV0KPswDXv77S+97cp/CuFsv4Prv+vNaeegk6eFZjn39upwKZEC90C+N84+NvzRknxvzcwbe+r4qPJcPI3DNvImL2nNWmCTkrlgA1lQzCBTlYIqycTSumYybECNtu5MaHk3LQ9fltKpIva2pm5bkDJvLMy5fXLPFUVvL0SWooK4tyc00fVs5YcdkZh/GYJMYCGXU35o5PWVKw00zxb9CakkISJeFMIbaOPokgGDTbNjtzrGV49R1hAjWNcJmiGCqhqrdUbVbYjIcu4HHw4n98ZQjYA4fLbfn11yendOPR96+eY9tHcMoqH83jtzebKZl6HK7bh8C3fGIHzLjBSAbbo+HA2/evadta0JM+AhjkJQjq8ZPIhv/2SlMTOwVk38Gm8HNUthnx22q31Jlh8BhaBjNGWZ3ydmf/ilv+0cefvgHfnZ5QZ0eePf+H7l//8jjh8DHd5H9qeXF9QuuX97wzbbhcrdl155z35+wYaR2LbEOpCqB91TO8vnzPUN3YLdr+Gf/9M/5i7/8M/b7Ox6P91QN/MnPX+IiHLuDNNt4PNA9Bk73G4bDNZ/e/A4fpONaCIlqHDmrI6YFzMiZO7GtHJiK0UeO8YhNI62BOkldin7wvH//iTj+yIe7R37/w3t+9/Yz3+0D7vWf85M//xV//eoVr17ecnNzyc3NJbc3V5xfXuCjRD/6lBgfDxIdiYnWOWzbELoRWJ9PWQ+JiolTM4yerus5HTtOJ6nbM4ye7nCiO0kjBknhMZRR7yobPJcX51gDj4/3DMNAu9nQ5vbz2sa+lAsqO0onrXSCyTKj7/onwIleyrRZpvEVilGd4HxuS4BuAqO0xp1ZFcHNXwoOFTdfOBRruWZWf58c4sIZ1udWeffE8S+u8nUKcqgh+JxzoWBdOR/6maW8LuV5CYrqvGqAxxibaykJG8Y5pucycb6HpvzOazffO8acSpUS1uUIa1ymwYAYTDFJSmTMoKar5hICJYirhuZz0fsv6avy/fre9dqV8yXrFgAAACAASURBVJVSEoDOWgjC6tZoo8lM4fk9uWB6vq9TI67QEaWRXEZeYe44vL7U6RgGKaDukstzFRbrr4+5ZlKWAFRpBK9BqfVcTeN9FsBb6vwSuFuDMDGmSf+XzqW+p4zclw6iAJWREMPUyd3loJsyq5TdZrUulFjwAjtkZhZmZvaVYyvZfyVgWz5fjKLJpeOongfV6Rlw1zkymuaVU1VjFEA5+Nx5VtPEl3sByjRnHWdeRzOPFQtOqlpNOlftvqrKwYjsdBgSVWWo64qQnLA+V/KiXK/1Wk4pL1ZYiioP5XeiO8JaxsRcUyiqzZnHr07Fylb8knO+HqMxlqZpp/MyjoGUetG1VZj2VNn9U8+DrEUC62iaVhownJ/z+Pg4BZ6GYeBwOEgNurYVnVXX079jBGzKe89irMu2XcAkSb3uxgEGqUesgZymrmmblrpuhOUR0xQMkOZBcWL7DENcnANrcyfo6KgA52ph8kb5DB8Dvo/ETlKWmqahyoFBW1dsM5tIHcoaYd6WAIYxTAHj+dDP/5x0E3ZK3dX9MY4DME5sls1mI6+tFKDToJHYeg630O0zQEQGNGbdUzKzdF3btl2kmAnYlybQwJjCnS3O7iTzqmVwYK03y/O/7oSMkblTnVuy9I2ba9Um0pQyuLhvTFQZ2BUxUNo4aodpzd0lyyemKOmDGvQvxlk+x/IcZbZxcZZUxyzmpLBfuq5bzFlp11hrJ+bXGszR72t9u/7SJg6lvi19p7Ueck4Ylm3bEn1g7LsJuO77kb4fsbX8XfaOgqUWW1lsxbTHnHNcNU22P0xmks5ZYcZIl2kJhgjRQ+R8mtJQj8ejdKVtGtqtfO3OtxwOB2HVnU506mfaRCaLIQypiPe5OQT+yRpjhO24xBNWOtQPi5/N+tyytJ/LWqQahH4OV1CZWtphSz0o+3KSGYp3y46cADolYoQQpESPE3kpTLCc9l0A7MZKbWVhd881+eTZZrmQoiFjaJM9qr5z8egTliDzMDMTY5TAiTJ1zRQkzPZX0DPhpnk3xiB4mgZBy708s6t1n8YYMc2yi6tk2+i4kRIVBQNN5jlNYFyMfnqYLHJIaQYSRX+W4nlp286frb9bBuq9Z/KB1BfU0h8hZdKA7g1TnOm85jYHU2KQgIqCmIrNuKJJ5XPXfxJA9xzAtjBI8zM9J9xLp+dZ4xamKM+XAK7pc1bGyfQZypZLPPn7M/7cEyPa2KXjtP78Lzl662d5znkEFgrrue9PnqP4OaXMXMkRMTVSKusmNDcM46QIKRxV/bsfxoWT1lY1V1dX3NzcUNUN+7dvqdtWIpdtS+sahhS4Pz4wek/92HN2c8XpJ5cMOTVlphBbaV7galzViNGZpAtPMJEYAi4DhylpLS0jjJskVGVrdAek6f9Ccp8FTZ1Tatp2y3ZzxubiDOoD3keGbsBVdca9HJvtGTe3L6m3G059zw9v3vH2/Tv2h44xSk2uq5tbvrp9yftPb3g4HPAPnuF4wuZ0tDp3cgI4Pz8nhMD+sCeM4gTG4CXdwDkMjsFH7u8esQ6OxxNeaobifaRxlRjfxhQiiGm1K+Yo+iRkJkEx110SC1DSkazJrBYajNny8z/7K9zXX/Ovfv/3DI8f+MW3N7z7+A+8ff8HHj48cHrvOd0ZLGdcv/yKl1+94OXZhtuzc0x7zhgc3gZc46g3BuMD0Y40lYVoMGmgbWpi8nz//e/5/R9+y49vv+fy+gzrJdZgjKOqtrkmhGXTbthuLyXKQ8KlSEhB0nXritjWeCyjH+mGI5/3PcdTYBzAnxLvHxIP/YF9+JFz12PHA37saHcbXn37LX/5P/2P/A8/+yXNqz/h8tW3vHr1kt22xSRxwIie4EeGoacfPOFxjw8PjMcO33fYEGmsw9tIspEQlX0rV8yU9a4T46cbRk6nnq6Tr76XAtmn7jTX15nWLp/hJDWQ1MDb7XY0TcOpO02Kos5GUlmXa+2orQEWBd7UgVGnRWVQyRxaAxU6LnWcbabbq4OpAN0k04w+1lP5CJn5Y2aQg7SsqVXK8LWRCkyOyBpU03+vmz2sx+CMnRgO5ZzpzyXosTDKinuURoW+TtdAXyuO1zjNp9aI0SXXKKDO+cpMyttCnQk1prRAeJoUPjmwoulxJegYsuMFSK0e1SFp+eylQ6fjf8o0z8bJ6J/VzXqfEhh7VteV+yRNv0JBh3Jdyr+5LGsT5PpCSwaojnm93vpMOv6+73OHR2HOpBjxQdIXy3mYm6rMTpbc2y6eq3x+/ezngGa9NCViudZPA4ml86rPoI6r1rArHUS9vmT3mKxPUnz+b/pb2Y+S0js3myH/W9JBU3bsS9tEz4qOW3+3BuhMZhWtAwBaT2dKM05z4xOd06cg+VMbTtdI7ytsvTxPYm5MYJ0+dMzApZAKhDmpRnmMZIcol5tgyTD7EltQ16tsrmPzHvW5C2CKUkwnIfNbNobQy5q5lpcwj8zic9f7Q8dQ7ifdj7omdV1PabiqG3T/a9OFUvaVz5VIkxNf1zWXl5e8fPmS/X7P3d0d+/1+0m+qb5qmmWqaVk2QVPcUiEbYOrJGAecMzm2wFjmTfiSMAzEE+jQSAtQ+UtfPN/Jo2xZj4HDcP3GSN5uN6E5jYRxxVUWzDVP5FN23Ps7Ag2tqsacqKSMRgrAZq2oG/6Z5tlJGYbEfs2O6kEeTzJvtB9lPyojL+ixFaXYAwnixwlgCcoqZWZwNlfs6LxMoVfxMpqE1TU0IZtqfKut1X9Z1LbusOF9P/I/iTOvf9TUK/Om1BrLqeu58OhfTj6SRaa0wLAC6Sa6EhKnl7JRNJawR2YiRsguJSIjCvg8hEryksjln2W5bRADMzXOmgCmShr48PyVbWBrOzeu2lEnl2ZxA8+K1iUBVSeBh/WwKpDaFP6FjeO677r81W32tl0r9JHLmnDqMNE1LN/YMw4gPnsPhSCKx3Z3hakflpPSBCkuxOzyuromxZLjNulLHZG2R2qi2CwGbIilJ2QfvPW3uxnxxccH5+TkxRj5//szhcOB0Os3nYQKJRk5Dn59vyXxXm0kZZPOnl2cAbJoDinJ2nvrjpT1UlpsIIUxlP0r9Vupr/fd6rSYwkVU94GzPaXDbudwMzeTnJuUUdIMxMZc/0HIl8oz6WTNbucr7VvWUIzmDc4kYutkOLP/LNmXMqcBl4HO5xwqGWj4fztVQqe+hc61IYa5jW+iusnxGCYQKFuHmUiNmCX5L3decGowDM2dwGObzoICo+Bhqb0ogWGsE6/iXtteXfZdS3ic9Z/n3fmUTpNW9y3tULshn2yjZdTmgoGw6Vy3P//r6T2bQPQso6b9L8HP1+vW1NoKBBb30OYWxvu/S2Jf0IkC6gC5fvTK0hOGQklndYzYAy/uuP/dL13Nz88feuwYyy9TWxXgzQ0IvZ6SdeGVsTt2wWUzmmg65YLtGj/Uacm0M2XSClle5tlUXThiT2O5abILaOHamZmMb3tHx4f4j5w8j1IY0tuKEGqRt9TgQg0RsA1IrKpLrOmRKbPC+2Njz48g6qrMyiuDKz6IMsojJVdgEkExIsdeb61tefvOa5vNnPt09cDrcUzdtLsQZ2Oy2fP3NN9i64d2njzzuj+wPJ3wEWzVYV7PZnXF5fc1pPDF2jzx+/iCdseqWFKQArF5nZ2c8HA903TGnBRu6w4Fh7GlocZWhtjV9P9J1Rw6HU66XpXUTl8a+7rQpASFElDogwqRICQZ8GPPEZRZN8lkgGRI1VdPwF3/1z3k82/F3v/93/NXFGVdt4n//23/Dj2/esn93x+n9ifAY2Z7tOLu54PzmjJeX17y+uOVtFxiPPeNpIIwjY+/x/cA49ASXuLrYUtVbuv7A3/79b7i63mFdYnfWsH/sSGxwrsXsztmeiVAe/MhxGOj2jmGI9IPndOp52B85Hju6bmDoB3rfc+KRwSQ632KqS85vvmL79QW22fJ4vuNvN/Czlzv+5NsXvH51xc2rG25/8oqXr19zcXXFpnW0tsKaxDD2xNHjjKGuGoyTOlbBHIkPiTCM0uQkp14lpIbkmAIhSlpOiEEK8g7Cins8HnJ0cmToB7wPuXudGGB9PxC8JyaleE+tw0hJoq8PDw88Pl5xfn7G2dkF1grTxY8h1ysap3O6dg7XslGZBWoAlqCeXrPx8zzAUd57/d/6moxOsmP/5BVLuT7VH0szA2iaj+J+atzUrpnZdKtgyHNgRalsRXnzRPmXxmxpMKyd3PUzlvNXGsfla8uxpNxlCyOFshVg8N4vnILl2qRscMp8lqm4VZYXIQSprUeRdprNUqn9VmHr3OEvpLlOa+HAroGVcm7KZ4hR6vOUhn+51/TruTlYr70CuyKb1mbBU91vTHbIo9TVKw270iEt97f+rWRsGGMmZg/kDn4pTQ04xNCeg2WLbp5p6fyuz1zpjJb2xzRfxkxd1tZrvX7e9Z6yVozLCaBdrdW8z57fv+JM2ZxirvsrELQcrTFY41AGSmA2OHGy38ipR2XdMmWIaRH1Nfimc2GtNqqyT+emkCbCdklTw5CSFav7IG+RZ/eXteVZYp7LqHaS3EQdk1yfgCnolwqANZOCQ4q5g/zz51THPdmpBYBWnitgahQ21W7MD6UApwKZZGAUa6f6nzFGqWVWyK0vASXrS8cyjsNCZq2DOsq6GoZhapahr6lcRdNWU8DHWsN227LZNFxdXXA4HPj06dP0Wd57TqcDfX9if6hoNzvOzs6xVY1zFUmbW5lE5Ry1SdSuyowRqXkUgkcb2Yxj4HC4m1hBAmrW1HXFZrNhu93SthtC8PjMElPGrPeeyjqpFVg7KltRVW7qfOq959R37Pd7/NBjvc9sojrv3aVrZIzJAIacK7XWjBFWS2TJ4krZzm3bNu927aIeFgDd4XCQmnaV1GOd93m+3zgDDnqu1BEv62jq2VGmob7H53qaxrhcq0rBBY8y8BSgW/tgpb7QudU9VDLGS/lX7jMdYym7p3EXzyDGw1NdmtBSCfm1sXD0SZgkLHFh/aaJjFDKUIdDSgDNtUd13OvxZWGx0IV+7J/4nmUwZZ6vPIkg7GW1v9plAyydy9I+e8731Tnt+36x/9eX3kN1n45x1s0OVzU42+DahnrwHPsjYz/iw0g/eGzwWCM1y511uErKTFgHjKPUKIwRY2Oufw7Jzoy+2bbIzLEilbOpN4xjtof9iBkdphLAv7KWK3ODrStM5aZz63vPGDzej3g/Yt2K3b4AqSTVuKrtEzmcomHbbPLeVwbXGqiZ11UvY8y0Rk0u8VCeqfU+/1IAMSVhh5ukGi8VAJ3cb2IvK0sX3d8KlArLXeRWmAD+Eqif7PAMlkm5CiFsLMeNlAmZUlxlvZQko/fSe8/s/EhIY5YRmemeiSDez/V1rVVfvpQhaofHSd6UgfXSXpPXz6BnCGFqmJaiFErRVH+m6V6TpPJcG43KaYGVJdCdV32xluXaTnYuJmcTmClIUJFJAwjhYAr+scJ7UsCYGmul3h/MbFzdH1+ynfX6L5riujaqSuGz/v6cgFoz3/4Y0FVO6jRJRg+0vvC5cZSLYhYv1M323Bi+ZBiVlxpr5TOu7/GlS8b/nDPzPGgo7LU5iiMKe8mY0MOgYwOmCJi+53g8Mo4jQ/D0KWLqioB03PMW6t2G1tb4quf2xS3nl1eM2zN8CJyQzrjp1OFPPcPOkbBUdYutGkzQAriVHCKlwLI28sWxcElYmI5ENNPyidOYELALQ4hQuYarqxd8/fW3jMZR17/Has0EkVwYIykNrpU6LP3nuwn8UCWoh+bs7IIHf6L3I92plwpxpmIoCn7vtlsOxyND19P1R2nrHkYqA9u2YXd+TttsCcHTHU+E0UsEBzPVvwGmiEaYGKPS8NvEOFGjyS/XH6VOjbD0sLm4bRBDR2tH/eTVK169fMnv3r/l+/cf+PXFhh/f/sDv/vD3fH44MTyc8PdHNh6utjuqjWNwEZ8g+sTjp/f03Z5wOBKDx/qO2gxYO+KIDKce70/045GmsVJAPwUOh498/vxA7S6Ioc71JgZCiByOB/b7I9HA6diDFdYfGFwlqTQXN5ec1xWbr35Ne3vL9uwV28ufcHn9U87PXnB9ds2rq0t+8dWGV5eW8w2YlIjG0+wq6p0hWeghV/aLuLqlriscEsnwAwxjRzd6qRnXD9gETeXwMTNLCJl1IIV3h3GkH7rc1a6j66XunEZklarufcRHcY7GovgxxkgXrSxvBu/Z7/d8+vhZor2bjcgVItYmmrah6oZJ4X9RTjAbBVogPsY4WR+lfFRlWDp5pWGzcKTtUi4/kXdmdrSNMQtBNbnABYgwpc0yO7UmyzhWsrAEA+aPs/llZvq+HE4Jwkk6lbKIShBHXzNMxbuXKUzPyfvS+YIlU0BlR8l2HEdPsnPdOWtMjvLLzAj7dTWfpa7SOUUKZTvrMCkJYyAt0xtDilPXWmF9L9k2pX4ujZ8yCriuozet0TNBshKs0jqw67lKKcm+T2mx5yFpj5VJ1kpjDDOl7uZKBhLEcA5X7IVyfAvG0hcMHWUJWStdNedIetnsQ6K+z4Fu2gCkPBvlPJbOkT7P5IyuotJ6n3It1vttsdeKz9VnLEGxaf4Kh7J0rm1ylOWLtQ5hCZDJ+TOTflx8WSnqXjrbJVvgOblUjkPSVJfOrIC+TIpsqq+3kklqv033K5q8mPxdmX7zvitBOqnPKHoy5feZ3HgmB8BSKR9AgigKXEn31aqqpnUo90EJOpTrp+dNWYJJ97K1UxdXAanyflVcgPn8mpRyfVGJuMdiTnSO1GZ5DjTXtXoKIiwZCimlqXmQsuraVnSwnGu7+JwSkD8/P+f8/JzLy8sMzJ14fHycWHWn04nj8cjxeKBqJOVV2WjO2mmhjJmZKxiRN9L9Nk0Ojz6bBsYkhU9qYglw4ahTNZ3JKdUTsHn9ojFEK4xqcZgsu8rRbjYM40B3Guh7D0hgrG0FEFk43jrgwsbWtTR2eRYEHPPSTAIzMWlFrwJIV9eu66hjTZXT0xJBgoFBmoq43BRC71mOR++3PpPTXijOUAncxRiJlZ90QCoMy1J+mS/I1HK/l/t/qatFpmh5Af2dc9LQqSrmL+khKT6/yvshejkDKjsmQDJ76FWqJAiQLY6Y2Sli/kS6scMaR1WlCXwuga7TsZvOcpoAiFnP9H0/jau0E9aBiVL/rO2Ete5wzk2ps13XPWXhFfNV1nUsZdDad1yACgudI6VxrAHjaurWcV5VhI08gzJge+9hlMDVxmxoakfTVjRVxeh7SDlDx0oWVIyzPC/1qQImOr4Q0sLe6Pt+sl/KOatqeU6fA0LC+PUkwiQjljbjfA4ksDDr+XkOoHUbKMB0ZXrN67GyWfTfOR0xjHOXzlL2y1jslP6+BFyUiRkJClhmgzjFrKREMUngI6f/21xtIcY011z3vZBfFuN+et6UGUoyGYSUEzXNs1GGXbGH9B7F/E6ZeLlW4bxtlS0XZY1tgrRk9hurLOdESjUpuVy6QOz1cv7m97HYB+u1cNqFXv3faUAKwJVgG6RU+ghfJiHoPOi6LVmDsyx1rpoCV4u6rWtwr/R91D5AAO3KgrO1AM2mwtgkpDGjQfwv16H7z9okYn2tgTj9t/78x9DDlCT14kv3LK81u2J63fQr/bstTNOMa+Tz8tzi6DjK7+X4/hjApq8pjfb1VT7/WogXD1KwD+RymYqskaU1uDkjWQV7JUbS6CHE3E0tM1iSpB06J2BXdzzRcSIYeBxO2XE2uJAYkqNuG4aNdIJhd45PHtsNNAYGJ5uOYSD2AymeYauGtt3SNBtCP2aBXpGcBROz82awpZI3NheslNpLhiTKeir8aXPm3exYhJA47I883O8By4sXLyAGYhgZDj1E6PsTd/ef2Z6dU1monKGuDDEk6aBjEqfDnv3DA7aCuqlp2i39yZOGgKuXIEXTtlxdXfF4fKT/cCJFKfrcVhVnuzN22w3eew7HR/x4pLISCfC9n6INefGRXIZsrVtDSjYDcLYQQXk5UlY4OTqIsdJuPsrf2mrHttnxp99+zfD4gd///Tvq85YPfuAPf/tbPj8+sL87cLrriA+P3NaOn7w4p9kk7v2eHx7uOfWB+/1bfDxgx4EwDMQwYMMI0UPyjN3A/vGBx/0drkq8/8Hw8HDH4bin3Wy4PxwIiUlxtG2LqRwX1y27sws225dcnl9xdf2Cs/MLzi+uubm+4fLiimq75eqbn9BcvcRUF/SxJdkNKRkqCxct+L2R+kI2UbtE01g2W5DmxYkmz5KoSI2+WIgjMSU22x3j6LGuwmp0fRwZ+4798YT3ia4b2R8OnE5HxnFgGAY67Y6WEuMo0b4YY643lrtheWkYobUdKzOneQLYJA1PhmHg7u6Ouq45O99SO0c/BKytaRqo636SE4szzuzgl4ZL6cinsDQUSyWk8mv9Vcom84zBKOfPTOzmxd/MDLYZYya27BRxL4yBhTMxiav5Xikl/CjR9fn1sp6l8l4GK4yMTo1sY8DOMngdvdPPWjOSyqsEf9a6axqndmNcOUgmQXYzMZnhTHbY1LyQh8oOcz7kUyQys4Mnx0xBIWYjP6WEiXOKq6yx1Mx0xk21AUvDCOZ0Md0HpaE1PR8KMiyDX6WzX+rJ9VfJ3poN6+VrrJWoPSYRopyjkASQiVk3qVNVAhA6x+VeXjOFgpFTLwWTpZuYOjw6pwmmbrLyRpONr2WqxnP2xRrwWDvP5bWeQ3WsS1BKn2n+PDOBQyVAUxq46nTCDKDNBuJshIs9FfA+Lfb8tO5W0mSMnedAnftyjksG1tppKS9rhcUf09KRNdme0a6y5dl6Mr92diDm7IakSlAY9dmWkfHM8qDAHJh+Ydb3tyQrLFO19bXDdoziVNnlsJ7IjnJt10CFztMEpBkzp6NrKq5Zyh6X3++MlZpMK5mie2wNDD5nOwrwvnkCKJQ2bXmGNO1O97I6m8pAret6OoNhlPIoF2dnpJQ4227ZbTbsNhupL9X3uav5EcaerquoshOtzk6TWmxV5WfOa+KkC24ltAlSXaaS+WmPj+M4yUkNMFRVRdPIZ8h7EsELAzcEjzEJVzmqHDSpqorriyv6YaCpuxycDmjTNTkPsxMewuwrABMYWDfShTBl+02WK5BIeD8g6Uw2NyfTQvuzLpo6bQc/sfX1fDXV3HyjrDGnZ6eUZ/p9ZmfZnEI3yxw9fzQSfFBwNowzYGfyPv1/SXuTJluy5Dzs8zNExL358g1V3UABhqYIEZAog8QGKZhJC5m0kTbaST9BO/1dLcQ2mgk0qrvZXVVvyOkOEWdwLdz9xInI+6pLxDXLl/ky7xBxBj/un3/+uQdgWqHGON6v/ZWFvE0INVvdJWfWs0PG1sawsoDQfeJHT3JJetnnkWhZs4rX22sAyNlXWJKjbZwIyKIwbewiu27bk3aGrnZ11Yzbx4D7sw/YBvh7OynX/FrCaa8b2L9vf0YDayPE/m/75GpvFza2h+XsYyIpr7dEgOnNQXxQ5IyKpPcgsVTKMqfZX1FKAuCVcc1IS1GAzrW53Jrv2u5/6ZuDOAfOwjTq/bAKkQ4ykG/VUawoed6MWwNJOO+Yo+51spAdPKLG+NzeswfnXvksJOCa02Y01/Pc1mkpWRmwnY/NATnXbjxMzsQAO3R7oO7GSXTfZJtJg8Ci61Sqy+Q1ovO3TVbXmlErtf3NFaidko6ElGv3bpOQ6tchEWml7etzZAUCV7/bW7Khw1VaotP3+6N9ihJy1kTa3s9xYS3d79d5P0Y716DdIyBAsVyvXlGxDN0aa6yAJl59NwkONS9yTYaHOI84HloTpBijxuad/xq2Wszt/FS2pIcmqZvOtGvjIZ+5Xt+tx/8vgO5rYNXXgKqbTtfua/9+/c3XUrA3bv3Pe8PYfwYzAztBSGr/7D8L6FHp9T3W399ygL52D18bg/3i+9q4tYWsXy3YbK9Tp+7mq9GcUa7bjGubP7dqGTjnELqyBst40RAwxgG5FvhKCJ6QU8FyOsGniOP9G/zw+SOm6wH3VHF3dwdPTgSBmUC5asvVCPIjQB6lLigpY64MVFYnDACX1X8mgghOAtpzWToAUtEsmdPsicecZ8k8ksfpdMJvf/dbnFPC9PYNvv3wC1xPTzg/JxBLm/SyzHh6+ALnHKZpwod3b5CylDkwM3wpOL884+nhI45v3+Ddu3dYakGAx/n5hJC3TA3HwDffvofzQIgO+XrF4J04BIVRS8Lp+QUvTw+otWIcI3IWFswwShdXhmb6W28YNWjMgDbAaOUU8lcAKmSHrCVUhFwLShXdMBcjxqniw7uIhx9+j9NxwN//3T8AbsF/+PQjSi44fXrApx+ecXq84s///Jf48OEe/i7iUi/44fyMh+czvv/0OyS+Ii0LzpcXXC4XzHlGTgkpz7jOV0xjQKkF83KFC8pQDN8ge4dv//o73L894u7uDm/fvcOHD9/i7s0bHO/u8eHDtwhxwNs37/D2/QfEMIK1055z0g2thgnVDXi5AuWSUIsHKIILcKqE48AIEUIjp4whBBzJRkjWl2MFMuHhUMBlQVoKUCqeX57w8PAZHz99xuPjs95fwnm+4nQ64zpL+e35fMb1etVDOmFOGUvKMIZByWspWq2rg7gsUhpcc0H1UJCuwjOhYA1wT6czpukZcQhyIJeCEDyC21LNvwbo93aoty19qVQPzu2fv///HlBrf7MgFjsbvvsd1MEW/ZWO4dO9X+/k7q+7d/b3nVt7e9azAm6Ni4ixb4PmPrjaO8u9k7a/JmDLvutBkT5o2p4fFaUwwBnwATEGmG7klqnVIEr9PHO+RaQ+5yIsAga41qaLsmp4SdKFNONkQB0zC/Nu5/j0Ge99cqv/2Tl3M8BqrKfd+bsHajaOubGENYvbv5YcgVg6+Mm8MAgORcEN0/20vbUHRvp57a/dzjQrz3JOAK1pmkQ78nrdzPceDCG4V2u0WHUnCQAAIABJREFUBzb7ALkPUjcBX1du21/XyjjY+iz7AK0fw75EbH///d7o97w0kLK9s762n8MtO0Hch1IsYbRdIxbQ2rj1WnR94GhBNu1KoQBZ5QJIKNBCW7C3fddrr2zZcd7co3O+ARey1kML/GsVQTk5S6zssIJJQU+s7BRpqNGNt4GyFcjYBsR9ibVdx625sGtIWqFg80ckrAl0gbw1d0EX+AlADmESdXOw34c9G878uX4P2trvkzl9coGZWwBi9mSeZykRDfL7y+WClFLrAGt+orFvrDGEidPf3d1hXhZc5hlPz0+4Jnnu5VpaYkEAtYjnpxcpd9VAMgQpYY0xSmmv90C3Znu2akoZKc1tH8YYMIyxCZs7F0CjQ8GMpIw0LtCyOKmW+PL4IOvSEcZpQozCMA1hgPcOpeYGguzBmFYeidUmNnvHIkVAVTpoA2p7xgOGQfxheY+MJS+4XC+4zrM2kQC8pzb3/bnTz7P9fy3fW8EyW9up1Ffrw/ag9zJfKSXMl6v4Kx3IX1lY/Pv10o+Bjc1NWwa0hj89sOScg1PR+HEcxVcqebPG7b3uhoOMKWizN+S+O79C2cKa6kZlwLMI7qNu9fJ6OzMMQ7NfwtraVhFYYmh/5vTjfisObfPBebP3bS+bPvC+m2tvS2WNp9d2ceNjvAbt7HkFa1nwniFkD7v+3qe5zjMu1wvAFTHKeS3dhx24OkloQNl0bOdLf30GypAmJ23utj6YVBeEV/MqZ1UB4FBL6taahrZE4CpfIcT2vjkzmpiBxpN9pTopALAHksyvWO26sFwdSZxof7d5sec655BSamPa+5I2jzGIT9/YFXphdsbYd5ufbJpuThhgRBIvgumVHSglN4BO5lJkuvpHz8CsxbAOtVPkkGsGWmJ3y1KVvW1rymtMbmCb3JLgEp3PXZLej4xV8Csov8dKzHfuH33Dl1ozHK/sYcZrsFuGVBhpMm5VQc8CUEUIrzGW3r5IE53V5hFRY8x57xHH4+Z8I+daQydmho/b/WtfuVagVkxhAHdSBJY46c/hn3r8bICud0Tse+9k3nLMQVuDYj/b45bT0d/orQBufxh87UG0FndsA1DWoKN3qtRlo+2Akf6lN2xmbH4KXHs1Djf+divA7gNFQDILbvceAJBTaswG26y20H0VXTav5UFSdqfGB8DqiUoXSefFmclZdCmICGGIICa8ORyByqhLRrpcUQAMccBEAXyasYDx9PkT/vlf/Qp//1/9K/z7+9/h6fERfE2Yny9w9xdcS8JhOiKEiHN6QYgRgw/SWctEEwtgYvTN4awZBI9KujGhwCR5EEvg6L1rKGWtFS8vJ1T3A97kBcc3E759/wFvBoeLHsKD96C6gGrCNBxxnEZ8ePcWnsToHrzDFAacT894eH7A+MtvwMx4+/Yt7qYDaMmtzTcA/OY3v8G7X7zH8XjEu3fvkMYByBk5LUjzGc+fP6OWguiFslzzIpoywaGmRUsQZO1xN+85MxgL4CpU2m8l13nR3YhBdACGacQ0HVs5lQsexynizTDiD9//I45v/wK/+u7vMP/4Cf/342/x6fkB88ePyKcLnk4vmAFcqOL7p0d8+cfv8ThfEc9H1BTwh5cTSnAgzTIwCDHet/KWwzjicDzi7l7+f3d3h/u393j/7hvcvYn49oPDeGCMo+rFDAd4H5tzCkjXnjMryMgVJVdhzlZGTB7MDoUJCFEGgITyXlGQeEGhEeNxwNtpxIHEoHkAEQ6e5WetcIKIhnrkDFwvCU8Pz/j842d8+vSAL4/POJ3PeH55xul0wjwnvDyfsCy5daxLWl7Ipm+EqiWH62Fjzr50zZLSAOnmVhtgRWAEH5GrtFevOeP8ckIIDoejsOiWZQH5gGkaMQxDAxNMVFgCqFVHC9hqw4jDmVtZ1S27tLfpe6dP9GlWFpWYDdoESman2h6FHtokpdbOdU4Ltjbva481uFizwvYevaPb281bQJ3X0oDG+riR8LFAaw862aMPenp7259RvdNkrwnBq34KITYNJrQD2oCO7cGtTpaVOLguIKwV0QeEGEHdegshYBwmkCeUWrGow0hECD7sGOOvWX59oGUBQRtniBNn66w/a7baPSvgaFnsnHNjRTsvnRlLrbjOV1xTAjlxjsTpVwc3qC6nBknDMABEzQk258mcZLunft7s82VOHazs3K7d9pHds5TVrAFvH+AepiOYpQypD4ptfznnWlBra/YWGNevm1rXJi4bRsBNBoZrCbr+Hu3a7Xovl8tmP/TvVbmuXcawDZLtPe17Kayi2sIEtu7wtk4MFCKdE7tv++qDF5ZIqjmjVYFmIml+E6IHUW5gVS2rkLPk7Vh0ZxRkq7WzSfr5dg19wLp+BVQYm1QDQiJ46u0ko1bZQzHEnW+JliDd+2rreMk8D8MgiakbwHXQsq2kjLNuMwLOIeuYmT1IKWEaRwTnsOTcusHfAgV6far9+u2BlFqNCWGMvbWcL0YrDTW7tL2Heb62cXl+flKW2nq/zPKc/jOHIWIYBxzv73D/9g2u12vX+VU0Vc/PL2AGpunQxnCaDoihYAkeIWaM0cM7ao3HLIFhpVqyFiZ937OcS5c1iA0xYpgOABGm41GSXtYtNRekLGekjVkMEWOcMI4TQoggMEpZGgh5PB7XNa7TOM9z+7mxLCBVA8FHHMcBz88vOJ3Outapzb/ZSx8m9X+heqWM1nnVOby8vLS1t7fFy7Js7Exv651zmOLQNMBSymDO8M4hBmv0I/rbVh4oZcQL5uUi5xUf25zbZ/QyGbYnexvWzmgWX8Ds1a2ya2FCugb89vpsFvw7J+XyFWs3X0nUKPu+AsX0xpnaGBtYIWO11ZszQM67npkterH9+q95eWWXRYeNwLyewTGqr2r3yOs5YjZD5iBt9nEfWzq3Sk205Fu3n+28an5XZ8v3Z3plZWG5QRJ4HYDXP/bnyTZZWcD1ipoLluUKAPBuEBvCVXU1TaBoK/lBUe1bSXqfqx8h2IV87uFweBX79+vjMN3rmliwzAnXS1I/Sde8g2qSrwlgPUCMcoOVZNMgifZ/YzJbs5z2EmPa6f0YSGNzaGf45XJpCY5+/J1z8GGAleiScyJVoPfnrZlf6c4LdOeymQnyqKxdzdm0c9dkgO2FUqzUODYfACCUkhvglKswH80lrFzhfC/DsWIKPRjYn/8E0xrUNdKSyeZb7tn2t7WjbS2XvAPum6yOKVMxWjkzC1lFnucVIFXZknZOd3FNNQmv7Zrq45xlWTZ7oQfIY4yoWEuypcoQonvv18S39x5MaI2YbB2nXPDl+REota2b3m81f/GnHv/JJa42cbeCpPa9ayG7Dwbt533w2P++p4jdAvh+3oN3/6dXv18NBG2ew7vn7D//1rXsA7X9vfUL5BbYuAmgckYlFsbEV96nBYiaaa45Y+EEAhDjIOLhkIOsz1RANzbQIfYsc+YbUJThGaBS4SDU8hgC7iiiEnAOjHEI+O7dt/jP/vwv8DRfQWNEfjqDU0YtDtGPuL//gHdvPyCdF9SSRIupVgRvzSzknx5gYHWghUmmz1IKsWJacKzNIliM37JcUZ6BS00Ynh0OAaCyIAQHTx6cCZ8/f8L3P/4IJuBwL51EU0moOSPVisdcQEvGzAXu5QHZOQR4hAJ4Bmpey5h+/8c/4MvzE+IUUWpCTQngCqoVZZnBSXTNKnXBk7FfbI27dZPHGBGHAXHw8AFwQ0UcgGm8wzRNmI5HHA4HDJrJfv/+A4gki3O6nPH09KTBGmOgIyIf8e6bd3hLhPnTR3x6/B6fHz5h/uNnPH3/hC+XAn98j5c4Ynk+4Wm5gAPhm2PEFN/hb//2v8D47j3ef3iPt+/f4/7dW9zfv8Pdm3scj3f45S+/RYweYZA4wjsgBGAYgCHKonOaNKoFWBZgnoHLrKyjipZha0wdCEjhQbikrCRYEailwAgOiI4RqeL9mwnvp4jjAAxgRJbOtw6iW0gVIKa2j7lUXF7O+PzpE56fH/C73/8WHz9/wqfPn/H08ojz+YqXywsu5yuSatOVZQ2os3YKg2bonAalANTpAIhWweycOvFTqE5glcCTABwOR80iSiY5+KgU+oKUq7AD+TYAdSvA7u1JldPtJ23VLZu0ty1yKJPJeLTPbkAVNAtIt95rdbr27/01O7r92wqgCaNpncveiWhj7Fy7FrGJHq5jEfeASH/u9N/359HXzih7P98d1NvD1pzw9axkm39eu7CuQLVTx1OdnB3LbHPN3CVxagWKBH6WLe/HwpiN9tw+025je8tBNoDTrr0voTHnom8yZE6+PSeEgKIAisulJRAaqOlXdltVGFHsuug1ttHmNfvfM0VsDfagSA8gieNaYBpycv9bhkK/zi0LbK9fz27asBz242fjtWcp2TXZ5+0DLAPq9s/vx5i7n3vgrQ+Ef4qJR2uOtO0f01m1+e7P3P3892xFGy8DJu06DCC46b/sAtvVAa7KlFaWSc6it9WBT6UoOAena3TbLMYAzNqtecbKRGOu0j0UvJbZaoCxfwjDbq8hJn/pbdOeJWnf93q++7/Z9VXalrBZ8L5fS6w+j71+Hzz349wHUDZPe6ZM75P2rxUAbt68135kbNz7tWlrw4CVPXvHrjuAMWnnxpxE8mG+zng5n/Dy8oLrdcbpdAIAFYgv0sDJSQneGDzGOCCGlalqwZs1B2H1DXNer9321bIUXOaMEAPGcQBBGzYQt6SA7e2cRTuWWPzT4Bf5HJJxMKZPs4e6HxrDhivmeWn7oQdaDgdhzS1LQk4CqEdlZFyvVw3+B8TokbMAZNcrMJcZ83zBMEwt8WDrp9+3+8ScrQNmAHW7PuQ9gJxWloy+AICVTgeApCrAAKUN8HZj7fbAfPvqSA/cref1+pSYofFL/xm23s7Xi5AEKiNpEwG7D+c84CVOo1pRtTwzZ2lQVwlINcHBb/b3xu7zvoS/C4mZBYjqr7ULym39G2Bj825rcF4WYJEyvl7fun+v/mzp59HOjVXf+HWi1eZrvVxuv/OkpcAQQgNT3TzvlU/RPZrnRoQ4TighIWduJZTMEJvNDGm+0QNfjFITyqz/I0L1q+32zs5waXxgDMF+LcnPwrJkLU+uVeI80eS0pIOWMUPOB++lkYuUsMt+MQBG1i2r7XhdibKxfwrQCdC3PStt3dvevp1o1fVFpN2JIV3Fa23JR/V4sHZeNWDOa2ME8QNLZngH+GGbIDL2+MZ3AzbnAMoau5gv089Vf982Drbu1n3mYeeAvKb3Y2VP2dquJlFSVDeQpCx2Kz2xKwdHnwB0Ekd6a+wijQ/3j9WXri1516/jfj0taUHfRdbGuvdZ+jPZxkJseUKtZ/gYcZwmDNOEaZowjkKacDE0+7g5m9s1eFyvC9J1xvl8weVyxrIklTCwBiAerzGq9fFP0qDbO5S9g27B2y2Hpnf6+r/Zz+0QaiU/W02A/efbcza/7wzG+rANyO1PvWO5vmf3M712cG49bgWct5wvYBvg3rqX/ncimL39W8+qc84BXkoBmrOmn5euV0Hi6xYIcs6BtONf4QpXRB/FE4GqBxMhMOP6MsMzELKyOgYPDxVf9wQcxAh6eHBiXHPB4/WKer5gmA7ILyfgbsQQDzge32KaXnA9v4CQAaIVce4CvM3GKWiZIClwlY4sHlK6yORE9B8OlYFUK64loV5fQK7gbvSgWuDYyYGVCddlwZILCjHqp09SkjuIDgqnhJoyKFcUByzLBewIgQJGCojw+6nA5XLBZbmIACQzHDE8CHEcEA9Ruoh5D++FReN8ANihkkMcBhW/ZBn/4DCOg4A1ccIw3cP5sTl7BM2cFI90AX73MIsPwR6pjKj1WzGKwSGEAdPxHtl7PH3/RySeMZcvOH15xPzlBK4Rf/Prv8ev/ut/wF//zd/i+OENpg8O33x7jz+7v8eb41vQ8AY0TZgOhGEUnQEJZ2RXXa6a5VBwqiSgXIDLM/BSGLXZVtvvAtTl7FGrR2mU604o2DuMgUCRwNWBda0QFQRiTA6YYsXgKw6hYCAgsMl+O3hAQWXJQnFmlHnB5fyCp6cn/Pjxe/zhj3/E54dP+PTpE55OT3g+veDlcsL1KmW7swIPedHytNxR30m2EwMoS0Zl0UkzlTvJ2pQmaF2rdOlzmsnjKtlMR4S3b99iHAfNiok9SCmhZkapFchZtaE64LoDIszG7B2O5pCrI7C3cb2d2n9tfq8sGiIB4UzzqX0W/Yn3ovV6m/2m1zZXgmu8+l0IQR3ozh62FUUAOxVbJZ0Dcfbdhgm9Ht4GMPTXfMtB3T/2Y2OPPSOtt+m1qnYmA7V02UeGSA9wVWandomC6J6QOocVr3IynRO8joc4h6p/yJKFhV5TLbUxHvug3AKh/h56sNN+zxAd2D7gt3vdl9fdCvDtf1U2hQJOyt6IYWVL6LySHdskZTP9Pe7no2cZ9PNhgGOtVcxJXDWYxCFymjhkZGNU0hq8Sfc6PUv1uswx78GPfiyBbenoNtCgzTVb1tTuvQ8WX61D1ix3B9D0/lHvX+zHB2DdB1JuwmoPvBM7aTtJknVWDm46buu+cNgCiLeYkxuAvFsDpYhtfF2Kvm2wUItINhgTgZkxL7NYVILIbKgNzGpTx3HEEKOqYJjTr3a5il6ZIykR5Q5sM3CYSFh7tTKqghHWHU9KeNSO2V5o+/q1/tOtLDgRiX8JEn1b71XMHgJGAK1qwDr4gVl8MLURXBkFZWNnesDT1mW/D/p9fAtYaMyTDjDZA9+bPaei5hZ0cKmokEYuGUnAdPXdYoyIQQLWDEJhAbY8eSAMOExHlGMSyYs397heZ1wuV9Gsu15xen6G1/LWYRjAJYiOahcE27qxNVWVwe5aefMKgpRKSIskAokJNVfpUOktyeAQgkMIplNlX4wlZTgwhkECqFISiHqNqtjWuA8eXIXllbMw5b0PGIcAqvL/WglEV+R0FsafsiZjjOJPZ1tbst+naYJ3HpfTBcwFKe1BUHlPmSdphSXrs3RzHpS9L8H0Cj5V1FxRc4H1bWq7k2SMyAmj9Dq/ZqpaosHWo7FD+iSKjU3uNGJbYA4GSpcELMWQ0O1eYiu1X89MJrRu8DIexuhxzR9p63eHxb/ybzQR1MemZsvsAnppoR5csEfTgaU1vrJxKSwsVyOq3Epk7OPG/ny1pL0BdX0Z5p759soP1DFy5OAdgd2WVQuT/nBbALfZLPkrvHa/JTAKWSO0/r1WwFSqtla2YikJLgwSW7H4xYVys1t2hu/HotkhYhAFtY1yLU6Tl0LdYq38EttPZCxEj2HQ0tvurJLPWOeyn9e9f0NOgP81t/ManDVNzpRSAwK3ZyVUfkc1RcnD5JsctFu8zkux0k4uUopqawIMY8ytQJL55W4FcFsZrfnbFcwraLiu0Q6H4e3a6wG6NTFkcTkAdii1O2tZr7ADwIT9qn6V90CxsvptErglXV2/v3o2KQHwKMq6B7sWTwCrRI0xXlc/aGX+EwEDTag178ZhZeB5Hxqg2O8hAymJPGrOuJxE5uisMg7TNCEoa7Ilj7Tk3uK9GCO++fAtLqeTlIaX0r4vc8KSrvAu4p/cJGIPhP2pgMYmK+268P3Uc2/9ji0w3Ad5P+vxtZtel7592wexdkj3j1sB2k+NQ78Y7f+3DFG71+6rvYcGcA6SibCHbBjVpVLBWx+C1Lt3ny2UdmWgiLePxgDX+TGL1UbFEeI8w0dZuJ4Cgg6lL5rZQUVyHjQN4Frx8dMn/Nvf/Dv8ux//XzzOZ7zxDiEOOJ0uwnkpBcFJyZAngqtSTpsuVwhBuTuc2vqSskBW0c0KOfAAIEAc2VDROtfCEQpBvpxsdueAkliAIZZxmo4Rd3GAixGnZYGPAT5ItzpOGY4rBufhgscchZVClRHYI5JD6DJsv/qrv8K1ZDBVdU49HAv4MsWAki7wBHgXABdAJOLAsuiEcsbKEChgkAOq98gUUDniy8ckJWaREINMlQQ0Mq/39/fSXp4I0QNhkM5LMQa46IDImOcL0tMJhRNe0gt++MMX3PMb/Je//tf4X/+P/xP/7F//S3z4pQjxeg+gyJgF9dpSAVJinK9Aqlg7nLI4R3JgC/DG+j0twJIrchVNBOq2GzpHWO02AKf7kOEqkCuAytrdcYBDgvfKnAtADA6jZ4x+wBgdJhAGAgZGY39yrriezjg/P+Pz50/48ccf8eMnAeU+f/mEp9MzzlfR1LsuCszNC5Y8IxdWvRo16kpGs/GHUuibGLPfapiVkrV0prb9SxBngQEEHxGjx+F4h3FYNTRWvRH5f04FYdh2CO2dQXPQbj02YNbOKbyVLNiDCUSr87q3uRtHlrB5zR60Qvcecmuv7SB219WcVBeaLd4Hmvbo7ezefpoTYM7nfvzsdTYO/Xj049M/p39tnzHt30vvWj+bQaRsJ2fis1vZhOZQuHWNWSKA9O+txr2773a/XMHox1vtdC7ioHdgWu9k2vXvWWkG4OWUV3Cx+7zegesDsp5h0gNetpbsXuFXJhnLxQqjhdCYVc1h5K2Uxp4l2u+Bfp0YMI7NmlydMOaVHeL9CtBtP7uAcAM469aWjcF+LRhA3mfdW+DWjZ+J2xPRBmhhblzRVwHEHrDv73tdA6I/52/sXbSx2M4Nd0CWOMXrzz1rrr/vfh76a2j3QrSW/sPshIEJ3d6jbUmw9wFcNQGClcHXrzdmtLmWz0cXtAbIUrNytLq5PgFwCkqu7RyT9/At6+90nHqWy54l0YOPt3xZ2b8r26FgBaKbvTUmhc7NJkjZ2aoeDLWSMQvSAOzGh1vn7P2a6VmpfTlTP0fMFWWn29XWto7F9Xpt4zCOY1sb0PusSbXF9D1iEFDq7ngU3yEXPDw94fHxUUrJWQLwlBLKklB9Qo4BMa0MtmEYcDhIaawBQxZsOdfZYfaSQFSmx3xdQFThlVFnMxQ0oWn6oBJwp5Z8qxqszbPo3fkQEMLQ1p7XEkcJmGW8ci7wjjB4UtZEBVAwjBHkCEsSjVrvvTZJYEDL4bz3iIPHMAQcxgNOpxNOp1Nj7KxNMNbzrbc76zksJd4lM5jr2nSFpdJGkiNZ1mg7n9cA3tZTiyFqvXmG9mu/b5jEzK1JwAZkllds7f+NsM7mWnzeipANLFKlMbLLdWAF6uCcJDW9aBw6Ir23bbfZtsbrVsMN6AFqAQCccxvmnoEyZrMNSLPxZxZdx6Blk8agu+Xj9GNtP/dj22uImbREXwZ86xxmln3FzAhDALqky5rQkvtre7Uy1ihwdT6SyinJc40txyBs2dz6JjCtMplWabzXn302jmZ79jaZgKY77FyBd31CIoherQwgoHZCABipTFgZmld473AYx35FtXV3y6dd7wMN2Cv5No7Qn3PmLwUfAJLfWYI+F2kI6EjK9UM3V7aW5CN1bVBVMFrmYdV4o25+sBnL3idodpyD7CstASVaX7+JITqWuPmer3CIdv4DXfNcmQKQnuPrmWWNMuz9+vPSHs0e4DUmIteI5q8RhdbFfX2/HrBcr3Hd27K+heFt5/s+0dw3qZLzrn845zDGcfXZ5oQ8Jyzzgvl6RTDijPeI3sOZdl0MCE6aqozTgKhkqOPdJImo06QM8qD7+OuY1n8Sg+5rAVLPiPsaePWnfr/ZOBoL29/3weWtg+LWa7e/xPoHq5XELS297QLtH/uA7ObnY0V594Flj2i/MnL6cBDU3bk1n9H+ZkGMTrwPQRZFiHAx6KEiGkKS2StIVYTxS3df8zw3Bhcs+FJRh6VKmUCgiqR/87mA54JEAYsjnLzoE/xfP17wm//nH/GP6QkPT49w7oDn+QKOb8BXoXQCwPF4xPEwCgevJuC+wHtq1GSwQ26UcsKyANoeRlh0LCWPgQSYi1X1dQTP0w5PEHacAypLxteTRyDJ5HJlFCawc7gjKT8V5lMBlQoq2v2TGIejZrwLI8AhUkCgda0cjkfwMqOCMao4MbjAVcAPAXHQbFolZIZk7BlgErAuOGXQBa+ljr5teOcivrl/h+CPGOKomi/iBHBV/YdqGmMVrKDndVlwni+oKCghIXCBeznj9PyM//j8gvP5gL/5l/8t/rv/+X/Hd3/9t0D0+P6BkTNwdAKypTpjmAbMZyAtFfOyINcCeBJA0wcweTw+PiLnKiwmeAQEAA41A0tl0DCAvR0CmtBk238SUJFjnX8Bh+EY1TOyI3gviVWHAE+MEBjROwyOEIHWuah4KRmeGTidGaenJ5yfH/D44/d4/vyAHz99xMePH/Hw9CiMx/mKOSU8Pz8j14xcMuY0K6iWNNCrqKb/oU4+6UKrHWgkf5esloXU4kQVPVxN2VZ2tXOMECKmccAYIoILMGr4eoDIfiylImA9fHq20N4O9o8GXNA+6Pp61nb/N+dcSxC0IN3sngJt8tWB685YdnrwYme7vvL57b26+7Fx3Ys23zrM+8fGIfCu0y/Cq/foS9bsWr52Pm2ud3+drxx/tfM2l7vX23xaKZb9v+lR7tZXj6DUujaLaJ8LywwbsFTBWdiTX8vam3O4YczdcMx6RkD/tWd89eWWDfhrY9pdLxHIbYGGymYfrDQX4Cod6KgDuPoykt4h7XV5+msvnT8izDUBS3tASZ/d7mcPfNmY9+PX+zp9mXNf/llKQSVCpG0Zbn/9xgTq/95flzPEFnh1zfs5sdf3v6+VNTnQ37fYXHK+CWGzrlXnrDRcA7pSmnZRf3378dhfi/1O7ktYrqUai8cDTFKC1kB+0ZAphXG5zDDwrKKAnYjBG8hiXWtTSrheRCdrBQ2EDWXNBqDaSwRe7SuEUW+Brphmr3vHpMAU0Ia+nlZH3uahZwv1dqhnt6Dbu7Iv9Yv0tGAdby8VCoR98w4pd+r3ag+AGRNz0dK/PYjGCl54t4JwtVbkkhW0MZF1fb8i9kfuF3oGbX3YW0llY4WazpztieADHHk9MPR0JP2uR2IMHh/e3eP+7tAOY617AAAgAElEQVRAsKeXFzw8POB0uYrv1spbAR9W4XYDb2Tu7Xqc7nNZfxZg5ZyRirAmUSo4F9HErFdZL4NoNREUNHBOtVTtvS34d3C5IPnS5t6YETafYKDkihkJ7Bg5J9QqQO0wRMQhIqouXCkZPgQMQ0QII4C1m6sjh8Ph2ICYy+XSgBmbzx4k78E6qdZgpJx0rnVulTEn9Yo6ZrLgxNRsSkTWkngDpey7rYvD4dDsWH8dbWywrpsGwK+roYEEG3GI7lxrJYSuImTRvHTeSxaXt6QNtnXf2Up7J2DrL7Rzuvdfuudun4fG1JHrWzXBANEeND1VAxXknCMM49j2sF1DDybs73n/sNLZW+zrHjDt/R77nHaOrJCoss+smygrgCYs4u5igMoaK7IwgJ1IhjAD7AD262fKOk5ABbhkde9XEMWjIjip0iL1bVBzm/XVvWH1BUQOgMgjuS0AaawuAVK7Em2QgvFWagnkvCaoeuCm9wGNcbo/v6DMt5IsQf/ab+jPPbM3UunkwFVsQC4yDp6UOOKk3Jp8aaArwCLn4CDnMhHIWXdWSbTWKme2Xbv5QgIM93Zbx4NlrKkw0jwjBIl5mGtb89A10AN0+/2x9Wlf+30AN4BU5kkwi8rq59jevOFbOudQy1o5Z3/u/VJjpfV+mVz4qhcnrzcgfuer5nVfW7mu+UYCyJk+MVDKqtcv603mh4xFbr6N7g8uFUvKqGDMWIF4HyOmQSqjiovwPuLt23u8e/cWKSWJQS8XLMuCh4eHn4w5/kklrreClT7I2Wu32O97gOrnvr99xv6xf5/VWAvl86c+YgO0dY6U/W0lmt6+np97zbRbpPv77++rHWSQMk7FdzfX4tVxt+y7t1bKweuXZBu9G4SxA8bI203CBBzKcb0mvB7fnIUdVLgiLwkuCcB3KhmXWvHw5QLvHH5/PaOWgo9jRSXRgPvy/II3hzuUaxLQIzOij3AkYAvYoYSC6AhBBUVrBUgBusKiQwYKUgJCDKcI90DAQIQpOKFq5yzOPAHVMYoDMhjkRuTq4JiUzkvagEHAzVyzHBGO4P0IHxm+MlzOqJzU6AIxBkw+IroAz+tB/fb+LYaSwARFzTWjxuJIBu8ADxB5VG2EQC6A/AQfBsQ4QJh04nQ4J+XKMuUegJROoBISJ1y1K+gyL8gpSaYfokFVakZR/ZKcZ+S64OH8GZ4AerniemZMb3+Fv//1f49/+B//F/zVf/MPGN4EnM+Mp0sBCiFVh5IZL+4KP2Rg8eBE0syAGZUz2OWGsTG4dVMSMEDGGArLXC4XMK0MAvly8NJaFTnPKkJPiNHDBwVr9bAKUfSoBhBGIilv9TL/kQBKwJKBRzDKXDCfnnB6+IyHTz/g5eETTg+fcT494/HhCU/Pz80oXpNkty7Xiwiw1toYb2DSLj2sOJkBJlZqWRtAZ4bdThZmKXUtxYSk1yB/tQ9egHdjUqJjb6EDHapDRlEGhnt1WFrQsbc1/fc9GNbbKHuP3lncAzneUQP5+r/BkYre7j7HrUBbZW1wgy3otbd5X7OpzKahtX7uHsz42qOBTsArB/zWzxvHZvfeexDvlj0HOrvdvY+wd0TLRM50YWUS7efTmEwdK4L1dXKhAhSpk4CyZ46t924OBGMLHt0anx6A69eEPSRgpeaE27llouFWdrMfP3vvWgpyrSAvsgjSFIcksNLAg5lbh1rLktaqzVN0DfV+RQ+Q7AG6faLLmpWsDuAWWLLXyd/XUonmIDJtALpbAHHPDNuwArECKGs5Xtc5fdccYjN/9v7eyi23ZU32vH0W3n4va4JAXGEitITXALSNM4haiSuzgHoWtDusrJz9GPfO+t4XJNImJcpc6TWqqq4N50TDyTsPAhrYVLTkFY5bV+8eqO/3r61fGYOVJcJc4ZRpb53XDEAxoEqu1e7NyUBhDfisvP6WflO//279ra1BA1G0lIwtc0zr2jKQ1Ji0UFth9m8fFPbB/Z5B0K9HsnkEXl1Xf339ZzQmXvAg1M287h89+66BYMpKDSFgCAOiEwDQed9yVQ1YIAFfg/MIg0fV5hPGTDifzsjLWtaXUtLO6hecTqcGjAACoJg/7JwTcBAVS5rF5/TasRdSgmUJAOaKuS6Y0wIiB++kEU8cBgTv4anA+aHrcit2zGQsoGPMylS2Mt8QIogYKAuGYQSRU7+gKBjuMU1TK08Tv00CTwPSKjNOpxOcc3jz5g0A4Pn5GeezNMQYx7H9vrcBbR1WhqMIClL6KgGRsnpVpJ6cAcnc/r76Ea0Ssu1p+zK7b4B535ynNaxzHmH0m9fqzmoazM1mYnuuGqBu+7q39WuH0NVPYJb3LNm6+4rvNFBsCeJ9nEhkSbSeQR/aemYuqHmXROvGwtaxNRGz0jfnHJaUMF8XhBAbYLwH6XofrLev9nnMUiJrIv92/+YL2TynlFrn5T7xAwCFtz7Xxo6QEBhgPk2z/YQKBSS8jXmA+THmE9uYOuewLBW1in6jgSB6t5sx3yfT+oRDP/f6P1SsQPj6vBXACTHg69VywOVi5a9amu5o4xeZRu0G1BGoV1ZqWeel/7JHX9nSz4+tbZOWMmCy6ToWZS8HaWQGIiUokGoyqm5bIWTKW7+B1mYq4g9/5XyqwDipTVUZnVLWU4HMv8QWJ7l1xrV7Jsh1YX2OJR1tb/YsVNd8otdzs/er5XO2WtrBvfb3V58ZsIZB2DGyNnsJ1JKO9gxGf1ZrzLqzD6JbvzYEgvrVpOBcodLuf+m0Ysk7XFun8oBpmnB3d4dpnDCMI6ZDwFvFXj58c/+TsczPK3Htfm545M7Z6wOXvbNm37/mJPxUELm5ju69+tftD4B20X8aT9OHBAPg1bn52jX2933rfm/93DML++92ENwKGIlIRe7N4O3GgVeRaKNVkjonDBIQoaq4si6avt57M0yWmXCujRkzYxgmsA9YUFGXhHGuCExYHHDijEAZUxxwn4SCehgYp8sZ9HhFqR6n80URcDPCHo4qiEu7nwJZ7CjSYcZq8Zk82EWQD4AXZ9Gxlos5IHjtplSlnXIFi86CAyTj6QE/oaaKmuTDPDwoeIQQ4adBAEDn4Lx0eJP8KcHXCocM+BnOVQwUMLoBgxOGGPAMAPizP/sOhRjFsXTclcluuj3XdAE5B+9HVDjVVAtwYYQLESkxMgvIlXNB4bQGYqhI6YJaEqwzDWlHwpISSsqYL2cwi+NV8oK8nJFL0ixWRhg8PHlEf8D77/4Z/sXf/E/4N//D/4bvfv2f4yl4vPz2hLJ8AXnGGO5wXQ6Y2eHlMGK+VEzFIVQPuAA4qDir6KQwSYk0qxfnoNo0QPv65nAAeQ2Aidb9yMKOiKOX8t2BECPBB4LzyuTwjBBJdISYESowFCBkwFdI+UwBLhk4nZ7w/PlHPD/+gNPzJ5yfPuJ8esDL4xMulzMu1yuu84y0iFNtDpX5pFUdZ64CqnhyYF528LzaLjK2ku4zlObF1lrk8KzWBIMV6NPMEyRrk3PGQoSnpydM04g4BLjO4aulczheOZWrTdnb0n1gSO1ab4A4X7E5/e8cuQZy2PuT/t8cvP75plHX7BttGXS3gngbUztlJMOL9np79IyBNQjvAULoqluDi1y24NEeHLS91uv53TrX+uf/Kdbe+loDfqRMV+ZV7J73YdONr9db6wE674NmnrlFS1xrf5sAafleQXNChD2t5W14ff7YdW6C+d2ZZwHIHmDdP6e/d3s0EE1LHA18bCNTubHbzHn16pAKeKLOlb6/MQ1vnfP7//dj6I1d3lgmr8EOe1gA0OspORU3pv4eOnH5LTi0/XzvvTh0/BpI3+/jHgDsg0BZ4687D+/f47a/Aqwd15SdpZlmm4cGQtp181b712mGcw8ONYZqdw123wbwCNDEG8f/FtDZACdsbZEF7PYVgt9oMTnnlLXiO/BSHHwpMUpwBEwxguBkfYG1w72NS0UpUn7E3GXwoRqROmZFNWzsPtdg/rWe23ZsOtYQrQGaFGx0ZdWmQadAVmtExWu3YAv4+iDX9sNeQ67tXc0P3GJ+mKZiv5Z6myxrmF4FwEQMcUzRQHfWEh2G+GLMItJfUsGChOBMo4cAWtlS3it70NZOFWD2eJgwDhHp7bvWgXRZltYNNqWllZBZB2PvXQtEreNipAEoEtSGqFrD3oO86E8CknwVUp1eA2dUgswFOzBnkS5xpluka9NlIIk+ra2LFViy4FbmVsArpx1sNanhWDvXTrhcL1hmBaZREWLANA0IPmDWphMhhNZFlpmbH9P0iWmbJGlrEFaGHfW6ZF1Epx1hLd/c/M4esACWlDdrw8CfPp6z0ksDkWy9Vq7qS61rta0vXhMtkoR6bcfW1wkoQO4GOE0MMruOLXuV2DX2Wr83bHyAFvJ19i2sNrgSlpLbvrG9v7FbRC15ZWw3O0dKLsLk7e4HwKvzoLf7/Vlif7Mx2/s89pq+2Uf/PrVWsCPRAQOEWWj3Q5oFr53Pro0CxfZV3fcRArj05xWDICQR8mgAbS4GbPW2WxllTe5lBVYBSOwHqyAw0LQq5LI2A7DkCZH+Hrb29p+3K3WEJKvkbJI9WUppgFV/fjXQRv10uQi3AUDs/fdruk9iNr+qB8IZEvfoGTEnac5zOI72xtoQUeyOnN1eqod8hPfrWWqVmHIdxnBewaoV2AYchs36dxrHQZ4JskMCq/0y8G/tzs5gzuoL+eZr31qL1ZiltPrM9hyTttg8LAkF0zuW+7Czsyir27mtfWA1GvIr7u59CyCbNIzmu2GalZ48vFuZ5hLPBAydZjGYReeWpZop6/wVSJMUp/iLNUypyrngnJGXhBwjck0tmWJffdLce4efAqp+HoPOFgbauOsk7J7XAlj5Q0l5w/xifQ5vXmJIuwbwzIrs8vqazb83Ls8Cw81zqXVgwtrHtLuOP/VeHWK7XuEm0m3G3gaCdr8351ad331g0LNBeseuHxuwgliboFGcb0GjAuC0CUGI+vr1i81IqgaS0YwruOkoeDUGvumpSATo/AAK0kIYPmIysMUBTAWTdxhixJ0b4WJA5ITlj3/AKT0iFcJdCBgxIEQp2YT3IC3HrHAYB4LtWcloVrhaRUeCPA5+BHxsmQjmAgJj9A5D8OBlBpcCDCIe6qMDB4GKMhNSHXGoJMWXIcBRQAWJXkVQ0WZznEsGUgKViiF6RE9wgVF5hitZW10P6Ls8nV+eUZ1DVrHSUqvUnusBkVBBHiDMWErFMifMScpL4KTpQ2E5OHJJSCUJUFSKMPh4BkO7A7KtJympqFmMljlMzjmEw4gxHDEOA8IwwAePYTziu7/8F/jLv/w7/OL9r3H/3a9wZofTM+PeMZAYcXSYc8bjl0dkeKT3Ey41oQBS7usAIjFQjApQVe07cdgluFLWAhUpqXEEKi/wAKILiCFijF4ZcqLX4oOwtEKAdK11UCdMRVBtJ1cGpQJKFflaROclM16eX3B+ecbnjz/i4w+/x9PDj0jLE8p8wZLOuF4vuC4L5jk156bWipSTHpRiyEvKrSTVkQQkVWnthVm09czxaHsLTdxb9mZpwGrJa6fIytKtwlcWAIuLNCmpBfNyxfF4wP39HWKM2r3tKo66guUWuPY2p3cOzKBZlticHTFjBKk7WJ2QW2y5rz0kAFM/Re1h5QrP1Nqr23sYcMe9rSJabe3uYyogDokehM1Rap8MAe3t/kjWhjFxWumVA8Cq39ZWjCKvLLa/d9psHOTt+5KgfffOdbzJPv9GANGzofcgFYXXvxOAbutQbpxEDeIZJKXulnGurEEUgQsJq8dpeWJlFUKv8MEjtCBdx2m9mc38t2CyA3t7MM+uN3pJwDj49lw7OywY2XfxIyJpQARCMGceUKF8bgwKUjZRk21wDnC1JY0qcwPMLBlle6AHJex6+4ed18ac61mAPWDB6sRZc4CcDbgVBrX3cv3c6S9JIx7f9rqtFbsGA01KXgWKAWyuNXgP7wNSFwS24FPvu5TawMAWhJFkhPt7fgU6MhQQAVAYxhq3REET3A8ibkqVQQr+Nn/G9oF+XwFlp/Gdg5Uv2lrry02dq3CuNMDYIgvCWva7LDNq0MYeLIkfpv5etPTUGVNjATPj7u4O5FzTQJMkkATk3MC6ghmMWKUboKxvKCgh4Kv3DgRh6DVLVxlMRZKAIaCmdf76ILBnS/QMx96O5JoB0bkXljZXARR0reyTAyBqOsEGfvRg/vYz7ZqxuY62LhgwBqOBp32io08QvwIJ1N55ryLtyv6zlAsRtbLL7XjIPPTMhlQWXJfSGn557+BjhK+EXHPb0y2dwwAqIwaPN3d3LWjsQbp5meXrMqPUjJxWDVfvPcZhxDRMGIKUzroSMHIH0rkq5wYF2ecAsjJ+cy6o5YIEhkNGDJb0kORuiBHBB3gX4Y8SlRW1L6UUnC9nACLdcZxGVE2UMwMhOIDiZs8a2Cw2ycBZWZ9v396JFmhlHKYB0/gtDocDnh4fcTqfcT6fmy6dlWURoTHcc5JutCEK0MClylw6LX4v3bnDVUERPX/ZAm+NB5QBOQxrEsGqEuxepmlq4K81xDL7wZ0NIabGwG9N77ozGoCWOdqZpSxn9SkKl6at7qyTK6OBeFGTYKJtumVorZ+xJhx6EK5JiWiSrNZtF1XxOwgKU7WgvpSC83wFoDqCUToS9z5cD4LUWjfn2R4oJyIMw9SufS3LX9k6K5juWhlur4E2jBPYiUZtz240PcJs/o9dH0HZvsp4V/1yR+u1i72R5F0tcsaQdwh+UF+uAx2ZGijVj3EPaPeJwgaOqhfnAMCv5/zqx9lcbJnxZoe893IesFQF5bK0hJfYwgzmtesuEaES4IiRuYr2EZRdqL5lK/HVmF58ELPfbsUMOt8CLFraAuzLWmixQa1Ij0kaDJrcxRBFE5MA50lBX2PgW/muAtMa20vcpJ9fGeSlrBjVocwFRSYVjgIciQRTVTAnkMb3ei7ZOZFqga8FA9S/NL/HmTPPbV8bA97mFo0xupZoi5uhWAQxGunEG5AGBZeqVLQ5wAWHeU7Nr+rPXhlzGXcdZhgb3v5mGJXMhVw3syUExbeovDJIrdLL9lAtBcMwQrodugYsWyWIxOmSiBbwWU5IW5ulJJAjpLRgXhaE8wnTdEAYo56rFYfDET8Rgv1MBp0xr1gy3/3BYii1LXJUYaPdJJ3uHL4ehFsDSpl+ZyAdUXtZ90HbzbwDr9p7umA/oYV+MsotkDRk13XsMjMewXUlKx2g57rP742NCY72hsjGxZgom0DOFjIMtOgCcRCYGHPRoKKfxRAwHA7wYYQPESFMcD6CEATQY4C1G5TTEkopMxImnQPBe4c4Tq8ODplX6GYeAPYYHMEpw0nuqSKiqGCnQ1HMIgL4cHeH8vaMl89PcKcXpArVGRNDImO2lkpRJwJKaogcBEiM3qMioaZ5s+ZSBkpycFgDzForWOnoBQwqhDEyIjzgJXOUIEFjYbSDCQAcKsAVoUpDiGstuCChuhcUFjoysUOgQcb4L38JAPjjf/w9GAGVPZbKonkHyfQvOYF9wcxLW4JyMEtZhA+E4LxQ6Gtp4FXIBVQrnCcACS54MDm4EHA4vAE5j8IeIU7wcQCFCX4Y4HxAddIldhhH+HiEG97h+PYX+OaXf4Hjh+9Axw/4Up+AL0dQIDzUBEcTKFUtvQOIMnA54RgHBA9wV2YZIUw/QkH0ArA55xC0LJWIETwQo8MYHQIqPEmQFgIwxtpEd8kxDqOHsrrlUNcMSM6MkhjllDFfrpgvV5RlRr5ecD2dsFxPqCXj+eEB59MzXp4ecDmfkOYL0nzGfL1gnmeknDZ6HbZPBeDsWAVc4IgloJtTc1BJD9Wmz6pJgJahqgCaQyuHZloWXM5ndTzk8JKktAYsas9SlY7BDAZ5wjSNzUktOSPPMyh4HEmurxbpmOdASLkAleDNPlkEKC9XEJT0I9csstkiNUWdQRUqeS9knGtBAbUsUW+bnGxkAVPUdpBzWtIJsGqMsdk7TUJqEksPbC/BggbB5OVJRcuPZEQZ5AOCiGUpsKNAEJkDWeHIg5yHDxZgipMYQwCzOaYFlrRoCSDWAJ1655U1qyWPMQ6otWoQUjGp5s6yLHBBQNSigEdW+xFCwDBOqLkgLdZ5MGAcY3PMlmVWxsFarrxo92DnHMIQUaokUrz3oEgoKWPRxg/DOCJrOZkE4QLEOmin7cooyZxxy24WMAngE4eISlVL0tD036o68iVnSfgYCKiON3nVscppLeHQyM3uzez5MAwrUJG3ZRpjHMCltsDSAgpba9YhzUE6cc45Y8lZnaYBxroqOSN1LJOkwckwjqhc1K6pGG/RZgUSlcp21M66JRUU7ZQ4hKGJ1TsvmiKiqZLhVPIgDkGBnAoXtGzGBZRcVBBe/AofIpwPykYV0MjYBFwYlQs8QZgcpDICgH62IDWS0GKQdn4rlcG5b3KxJoWcM1BXdNoqQaQUYICsJRhEW6hCmKbeewzWMTBnELREVZ1RdXwkycciPs9UYc2qABYWvzq4ihxLcFYKgvc4TAJCpJywLFkDOenmbQ09fPRwQYWnFUAkErHuZVlQCyN4D8eEQA40DDq3BS7YGq4ynkytDMi5oCwtBus8OwqoLNlxW3MAkHNSrVpJvg0q9m5niQGRFuz2wbJ9OSd6rQwr7wXiGBFYuxkW6T4vGsHiO8zXGUst2iFuBBeGL0MLQsSv2Ja3A4QQx3Z9s4IlEqTq2uGKaZpwOByQUsL5fIaxXowRn9XPrFz1vBBovRSPXJQNjmq9QpudPByPOt+8aiWRQxxGOHLComWo3yk2vYJROIEK4Nghm0aVsi88STd2OELVteligHeE+zd3qj1XcZkveHx4wg8/fI+np0eUIsFgTkDNCSUXnN2CGAeEHHBeRCcoRtGBC1E7QSepwLASVx+8nKU1AWWRruqcdQ8VDZSBWqQEELRyDIl4TTpzwbJckZ3517Leh2EEOYdcGJflIqW6fkTOGddlRikiLg9mFJZqEU9egciC4AjffniPDx/e43y+YEmyn5xTexqCzFBljFPQILjCMRBUPJ2ogmuSQNHJOnLssWQgKysn+AgH14J2bsyplWkZQsT79xPmecb5fEJKs4DnRCg1I7gIMrDHoSXdZC9qh2rtpuuATt+3wDnCMEhMwxC/xXmAAsHFTpPMi572MARER8hJxnC5FAxhktDNiQ3pEyg9ON78wrpKJ4AI12VpMRuR4DbUurysIABYzkFi7YhdKnJdMDnanH09AGC2pAfMzZ9STFzBFRJgpmmCrl0nB23mZ0wq5wyEXOCIMV8v6Jm8rQKBK7LpgIJgnD5jZHoilJwQhnEtly2i30lkpa5obEogbgAUYacBQ1gZvZeL+OW1FAHDc8bxeFz9R2MGZ21coon8NiZFqgKGOOg1FLXreS0zhUgaOc1y5EX8luAigvMoLM9d0iJn+tXkGIYGvJM3ILigLld4R/AuQljWBgQ49SUdSk1SCqll5GS68YoJEBc0dMN8G9UTXMEj0UDjOYMzo/oA7xnTdFB2puiMNkDVe2kQqaCs+MZih5kUjPMEFwfEocCHC5gvYp+Z4BV/BLGUuZO8R1XtQQNq51wQXUT0HkR2zabtKjbGWTUbVvDR9oW1eKyWaVdmpsgBWTzUgSvaDLFCNNZDcKoNt3bwXkF2+5LX7OUWqrLX1mSR+fsrw7TtZTBKXTsl25m+FOlYDnJwcYBzquNfKjIzoiMFUA1SXucz5wwKosPJAJZcML+cQGeo1iBwtwjr/GuPn8mgoxX5ciQM9x3s1/6vzzXO2u23u61L9Oo5f+KyNhO7e+8+mw281qmzoOynrqPoIty/f19GsM/G99dgxrh/7/4zbr1u/6hAC3Tb83QhhnGQ7lM+glTTSjSuJMOTaxKxSoJk0UlotJUg3UadlbRSAxENsPQ+aHCwTn/uEOugarMCKhDYEQJ7DCFimEZMxxHp6aylgxpyEJrOEDT70I9Ltfdj0gyPbGgTd7TadyInnVN9QGFJB0jH3y77zgDmqgGGB5NHJblOVs2XlHMT0fbM8EbtrgwgAT4hU5LyMRZ2leRaBaD7/PkB5AZh0VUHkAP5gMJitKXbrK4Z74HIyEFKaoN23XXMcGAMwWvgYaVIAAUgRq8VlNIZFy4CFBEPb1Aq4OKIMN7BDxNcHOCHCePhCBeP8OMHxONbHN+8Qzi8QQ6AowuoJrgcUJ0HnJR0eldByCBXEZ1HCBnw4sxJNtAjBAK5AUMgjGNEKaKDF4OUqoZACNrifAjA5CZ4BeCiN4aczE2tjMnL2FcGlgRcLgvOLy94eT7hep4xP8yYzzOu5zOWdMZ8OeN8esT1/IySFyxXYckt1wtKSqq5tFK0FxUz7gE6gFHzWoq0Adj7vUxSQisMsi1Iz7wyaVrWm9bsa2NTlKJH+GpzAKDWDCYgTiOGw4QwRmGq5rJhoXAtIhhtrBSse6UvZ9k/BAB3Ck5osEXbJMDG7ryycmhBeVUAvB8ru5ee2bF/z03yZGf7ZK9KObt07S0yd/v38F4ZVRoWsmqzaSAXo9fEhNiTUqyDHAAFzWTGqRsHJx2Hq4r3qli+lQJqgVs3NgoqEiGXgvP53Gz/MA7wPjTnoJXBAY251me5+7OpZ1L1f29rpFTJ2FpQIIMqAJauT+edlAXo+gjOI2pzoKWUxrTq58gePaur17hpjosjjNMBDGBepKSs6DXGsJYBlVLETnRH8Zod37LGNywdK+O78bBr6FlDBiZE1fYwwWy7hnmemxMXQhBGNLGyLg3U2JfACORtAdE6H4AI6AurXFjOupacsBdTksCtlfupbZEx1LIvHUen57Fr5y9rAloceD2E1jFTx1WChdclxmZn+r24H2NLgFVlBJk/VUuRpIDOQ1b2nr1PVkBNxK4BEc2X0v02TmCAFJRmbapTbbdYeY4sWoF8RUJCmhGva1+ul1RbUUBNtkABknXMTAMAACAASURBVACpaXWWzd6ARZtpnmfdo5YP1xI8H1oswG47dsI6I103K/ux10v2ftWpu16vm2B+P+a3xl2ep+U+Tu6FAS1R35aXc/eedg2pJJRKArXTmiS2M8ASLrZeDSg0m2NsDEdqY22u9Vzs11DPwNwmlgVUEckRApNviQ0iqF+Djm0kJeR276VUVKrNHnt4Se5XbfTS2YVSiviTDAQn/hGTA5UKUEZrnqTMPi6SNBvjgF98+40Cd2+wKFPhdDrhfDnj5XSBCwE+DK28aJomsalgLEkBYLORbt1r0Xt4D1ROAFR7rkJtichhVGU155xRmBGixzgOGGLQM64iKKAjbO28NvXQUvlpOragsLbAUBIQAQwqGUGBF6flZRFefFGSxM+yLLhcJcFhoD0FATfsjHUKJEKDVVNNyOrgMwT4B1lTHg9UVjA3SEJfy70EXJPPGcexfaYA2Wj/51JbAoqZgaKsuI4RZbuzD+orlATBwHy9il2AMFGsQQUz664qoKoJSW2EM/iA4zggpW0pvtmRUqT7cK31VbnunqVTNQkLXfekOmYmrbbaRGFICrDhYE2ZN9fbMWz7/d77T/1nkyMs19zFZOiIGqvNEH9EkyTewznGUA/IESirAsvNx3pG6DngJTkIAI5FM9wZCJS6ElzWBeRo9YvlotXir3Qbu98mx6T2NIRw8xxbx9UqDlb7a2fACngDVvq6vlx8PFtXBq5aN0HnGFEBt8sya2Ijg67SNGccR4Q4SMI5iNUDAd4DYBuvqh1eTVt0ZfHZaJhtb9Ui+tifF/3akGZKksBxTrpCb6Ssur1SSmlzVcGajLE5qpKs5aDzL3Ni549oTwqWAK5CLqFi7JymMzyEEa5KZUExVqzNlyMQS4zdsJBivoDG70K9hDVlILLzRsYolbUTLYlDrs2xZE4DBSUdrNqFt3AfO6/7MbbGQoZfSGJxPTsBS1Z0GESL8fSzqoJp3iFSBGKBKwXZFbgqFoh0CxCt7HK2hoL2GZJyNddDJdVEU/SnHj8LoHN6K+1Q3XcWtR/txm1Edo8emLsFRr1+wU//+Wvg1hoIbzfN1z6zN+IrOoumxdJ/Th9M9Wy5/Wf3B8JPXf+fWnS37s82dyt9AWnHRQCo8CT1gsENNwNpfUespT3yvQ9gHIUWSFuVnDUwFaq5mSA9WKoswBAGHKc7+HvGlStQRPur1CRrojuMMnf6DpZlA2B6B8QWSPlmiBv6TnUtPeu+mygnAFDR2nNUKQkjD3YG/jnkLI6AZWuZhL1HDmCKAuSRazoLwfnGEgKA47tvpKmDE7o+k2TN4R1cHXDwAV4ptS4EsPfI4kGDwgB2lukIMJFq78Mqml1fME2DABUghChsDPIR0+EOlZW5ESdhTTgtZfYiinz/i3vEacIwRQwDIURhOcRByhBSSpId0pLhEIQ1F72Accej0JFtrYXg4D1hiMAwQIN66aqrOO8GVB8hGRTitU+ysI2AlCoSAcuy4PxywfPzM758ecTj5y94+PKI8+mC6/OMNC/I8xWlJqQ043o9oSwXcZKz/K6o6KrFYmvJnZSSruVHdohopr5pU60lqW0fOtKuu1u2re7cm/vWHJ32XpVBWEvx+r3snMPhcMDhcFAtpf+PtHftkSVJssOOuXtEPqpu337uzO4OdpfSigIJiP9Av1+fBAICJFAEQXKw3O2Zft1XVWZG+MP0wczcLSLz9vRCOai51VmZ8fBwNzc7duwYYc3bcjiwgRW1O6/j++SuYYy5Bxs+B47sXwS6s5+mX8bOCO+TEebg+kSEdzIfJUX2YN7+Ov13pBRpHLvbqhCA1nqHT7Shg+MdVtPaCBS1CYuUKBjY0Msmom1ZrA75AI9MCFzO7sq/QhAdtVqlMY9L2lSdT8lKchyzDMDmWfjAwGcAmbkD2eAqGlrmGNn4hKi6HaN80jdM8Jo9+5IYCxw8+8r+JsdSrSEFbXwZimW7h0NE3Tn2znjb3bdnCRizycbMA5T232ADvLZlyHatfj5bgHE6ndSxFdY1N+7OLtEAWYxVxW04yNsSRRGgphBQSlYgQpJDrYkkQrcJTQCFgIBpEkbgsiigie0aMB/JnpuALgpqKADdbI7E+3my/92vuzsgWMEsE3Qnot68Zpo1ANEgy4IwuLUo11mFNcTC2pBKAwlI+nxreu3WGU3BtqBBJJMAm9C5G4jAHSTV520aRSFYQlsrMWpvKCFzDwqO1H5fKUZ9jg2taXBp7GeXnN0HgD7A9YC5X6N+/I11Zv+9Z4z6z7ZWpUMdJDiTYRH7wowODNVagdYkgRcjWqvIizBCBVwcCaXOtNGEi2hFUd/PoAllKcakzTzxIIFfQ4+CY5sHjauynHZ2Se1DUNkRiUSNmS1ARdNAk5kR02Bbd2DCn1PLo1utaBRQQ+xJrYknhMDu2QSEKJF507V9PJ6RpkO3a5enC15eXnC5XERSZM24ZAHG1nUdZW2BcDgeMc9zBw5AUlZWUpKkYpUAi5uWc3MCQRjf0o3awM4s49EigCSQktoRwFjZythrI6iV8n3WRA8BphkN2ZOmKQrbRZ8JN9XwCsLANHYna4Mps+uBGYjC4PX2xwBuUjDndDqhMWNZM/LthtaqzsOCkrOAX1S1mZc1tpGOuIAxqBqAGTEK22dZV5RWhOFvjcN4VC+IbvTWF2CW5LrMIUeCUAYmELAqiwhNZU8CepUTxYBWKq7rivrmGWiM2+WKkhoISweEPBAPDD04vx5svYgdGJ+XmN5AHp9wZQ3kDcUR31HKe+sGPKjOlnkGn/9XrkFtZdCScI0BpAGUdv6EaVgB4rMMXXLhvwpobvqKHsCw8+19A/u+xXSlrohB1bl3saRJxIxrBsxJlSqIhlvJUtat57P5KuMmCRCzQXaMAVy6zsjY2m9vw/Zj13b7bn+uoWFcJYEogWjt80Dmp9jSuUqVUyDLPrWNjQdUM9PKa8hsogcXdc4/8G/NHqqzDgPowSMOhu4NVsLu7abddylFfArnf0V7rix7c2eaEnVgzvts3CRpyMxCGAmj0YhgAcL0JhLG/aZzsJP3YLVPFj8Yq4xZGutRZ+/q5wF0pHukwjsuwQxwMLmMkTy2vdh8B58YG+uWYOz+kXy/9538/NnHTuK7VAQwUl/vypS1tWSGWucA+rNRDEwTNNAYmUljCD1P3a3J/eu3lbjunEOys/3adz7z/ucAq88BXeZgPQLj9oP7a0DcIwDMf/aRk0Kguwfr/9sHoY/OvWGRPLiOR9f0cPLsjms6Z+K/VUFmXbccBoNqky5w7hr347W/3vuxMX5ZvyAhirJqqFQt0WsBrF1PiQjHaUY4nfB0TOCat6CFG0cvvMys5Q82YRshYpKOtQ6F65pxn7lscXJkM5mTCnAiqNETlh4U+Atk7AY1Yhr7B4amZma03nVTu1oGAvAOAPDN3/6dPOMgmUgiRkjWarthboQktEEgJLQQUCkIM0aZdiFOQIgohdVRmxCDlCgcz3+N0/OpGyARnNUNKEY8n06Y5nkjQCnO5ow0JYRDAk0RU5oxHWbM0xnTfMSkOiGBnhEi4TgRDjNhPgCz6sGlANSVQVBtthSEBaGEphCAvAKhQTTkSIkgbkpPHcCVvSYvwOXyisvLK27LBa8fP+H19RUf33/Cu3fv8PHjC15eXnC9XFByRb5JM4zWCkyfoOYFzEUyEjq3mjLkxIFlVCfEbBu2BU2sm6CQVHwQug3Q0cxYYzDo+toZAZ5/2bm8JhV4azdsXaUkAN3xeJQyhVY3QCARgeLYFAD0wOzhnAd0M5BfmKWDUiC6W/9jUxm2ZXNcklJa2aD6QTdBmj/3I7F8v2nuATudFff6S+6zVmKyPYZmUps5MtbKfZuJ7KCOdcR6kGjpzwwVBh8HLfVpPMbCviMMi6BMKu7BUCkFsSWn37k9+ud3ws87nLVWYW01lYtggPVZ2vyV8k91hpTttAcZ7Ll50MHOYUL7FrSQBaYG5gTCsiySmHNsNjveWutmXu0BSMmOlx7A+me7GVOiTWmRvS9PwgWVbpz2e5fNQd8tVZI6hMYFQ0NFbOy4H9uH2l0mPzzQFzNQvLkx9s9NSkUTfGMJGZ9R0tWs3Nrtf4GkEUi3VRDORuGC6kTbN2ND93P0IRvKzYvOdgJtrt+0w6S8vEnpOTVQ0uuCYx8box7uGZCBpZKhtnOwIY86ZsFd0+Ye7HoNmTN/1zm83qZaObZnoJQ6pAz6fNnNt72dwe46Hs0rr1H0yPZ6m+j3BDlUkwCJxea3oPdK0JJnqQQoxvzUBEItVaQ/UkQpuWsw7hOttjYedZr2XcT3z98fwwP4fv/iPh4SUMnfRS+XZWj73uTnpiVBhEUqDHCQAG49wRSGThQAtFKQq5XHjsY09jPYTK2z76KW9i3LsmHkHA4HnM9nPD094Xq9YVkLlmXB7XYTpsxVNOxs/G7XG9IsAbAFwSkl1BhQiDDHoBIcI1nMIJhGXEqS6GaVGci56l4OEFccpoAQR9A6pQPmMLSPrfzZs+jkOTBSAL44HqBKrCjcOjNIWGgCFsWUcI4TTqdTZ+hJN2RJTBvrakcmRYwRX375JUqteL1cUWtDqQJ+5lbATapUhAGYxQ+zOaarWACWLbNJqqyEjdIbibn52dxc9Aw2KDOXQtiw9vWEAszB2XwQoHY1Ol/p+fkJ3373LUL4gNfXW6+iWNe1M4OMMd61bGnMueEL+hJO3UOjJtKSxA4M1TZVf7LHWyzMqYMD9L3cigfE/Lod12HnDzD9TYJVdMkzAaBllcAQ7w/onS/Ikpzb+NX/mMalaeGZL1dKATSJFNgSL7b2LQkXui8s14/xLxtLkzsoub/PGCOenp4689PvSWKXQjcaHmDsYNPOF9jG6EpasaJ8ruDKynRr5hpp0mUWdiJM0w5YlwVYqlb+kMoFiH0ym5ei2QKdt7p/WYzg73fvA9nvPu6w19Z34A56rzkD5LrQur3NvzpGg5G0Nfto42z7tiSct/veiM+lCmiO1JudND1nzlmSanr6/uwQ3fNjVK7b61JmnJWFpnQAo2riQbTppYQWaKgoa+3Ji33C91H8Nfbg0P214Wbcj/Em3hLHZjMPN8fH+GyX/SH77GDE278sJ9XPyT7a3HNn5t6F/HOv3wzQ3V2opwbuGBgsV7wxyv71yLm03/1g2XkeBcN+cX7u7597kPYdv9D9Z73D+7kF4K/Vn2O/uB4BbvuJ8ugcALSryzCK+3uT0gASMfLATmvKqLcsrAt+PAbTNMmmp4L8Yl8U8abaJx0YWnJCQCDR2AlQPcIGogqqQ4A6UsKUDqJhh4rEbTOmre7GltpmrJgZxAFTSAgsNPPWijpCNCa8NWRQenl1QQNRVF0fEgaNljOhZ7EHg4YCFMy0QFw3BSjYx6Y3oOlvBejmp687K6SybeBRWG5EaLmgUZJjEyGGJOWgSVhwUdluBrbGKM0U5jShxgPK6QtMz19qCQbwdD5Kd68QMUXg6ekJ0xQxTxGngwB10yRlxjFWPL2JoNTEGJoDo3gLAShVGMghCTA3JWDSvwUAOGiDDYz3SAGrBiDNfXqAIdqHuQBlBUoGfvj5XXdKbrcLXl9e8OnTe3x8/wGX6wvW6w3LcsXl5YLL5YrlsrhyVGBdrTxAmlO0llHyCmbJarTW0Lh0wMYYMo2b6hCa9sAOYGcB6Hq5TxsBerclBJlvDqAba3V7TBPcNYfHjhUDaamDA00gWXFzEkWHUSw3YWzeIQRhO04Tci6bLNidnSC37sn+G0hOgLgyAyqiSrssFlEABysxd8GXBWDuHN62eYAHwAbk8FnjR8Hw5vp392H32iAb5nBudB3qptiKlusn9HIJb9OTslTsGWzEhKOscKO8Wzcl26T7s1KNKxuDEAJKrV2QHAC46jx02nWAlLgZZ97uyQcB+2foX9ykMK5nUwGwzb/GCpzId3qwS4SsjFFSvTDQEP616zAHY1Zw39hu9r6VU6w5I2uG9s5pVC04uc/agTxv58027p1QOw8w2K7GqLP3RdNtBOZ79qfNazu2BRkmkC0OaUSpVl6BDs7JEi44HIw9iO7E+flnbBcLpMjKq8k6UwckZUyIsLzopMUQ1ZkfAUojUilKzQC7MaBA0oEcAEK/EAko3Hj69eGdRL/W+vxiRm1Vyh2npHZJNQD1ea/LKppyUZJ5tTZwkZqoVhuQCNOU3PFFKB5kbDXTZgSEQRW0PDT28SslK1hhNmgbIA4fcvg7pGFVawwO9uzJreFtub5IQkx9zW/n29b27IHmfQOPzqQCNnID+zVq71kAv0nuyCfGfZEBV6aBy5DehsJ8Kq3IjhrEPwkQ3cWkZfMGBICFlWOshREUYeh/uig5EBCmabNu9z6pDxg386cxmMe6J+GE9WPX3mn83u+1IQghIKRDf98SDtSkfNmUBAQgH2znFKWrudkF/32KAY2A1MTWH44ior8p35UD4XA64vl57jahd4F1Zb6lVlxfL7i8vGKapp40SymhhICq4EiMjBQnoDSAMgDpaih7H2GOE5rqenFWti0YEp/anqjVDSlK6W2MmOeEnEUfs5Yq2q9VS9yYRYoGWyA1pISkDeEM0DfGM6BVCZcLrtebVEm0BlIbZOWagJSX/fP3/yIAwJJxuy2AHr9VRi1FqyNGMGvgmq2xtRTRZU1JAL4mup2JVGIjMPKakfMKhjQc8pq2HgDfv7inKgBisUExiCRLC8K0XW6LAFE0YU4J4XjE1998g7/5m7/F0/kLfP/9D2h1q/FqwvW2z/k1YDah+3Dq/wyvT2e9ARNqB6syCqO+XyzGOEwbew2MEuDWWk+UeeZaX4cAQJqkKw1SI7ytUDAQKgb17WHNBMQ3iiH0kuLuC7rnZ8eyvdr7TyAgYup+S86izVlyBVSPbZ5n9OhR9zuYC0UBU4z9GdrY9nJaIhyPx+Hv9UR662N0OJzuYuxHbMQ+ZmyNsUZMK/NWE+AQIoW4tqItJw8OMFtWa0WpypBrrAxAbc5X5XMxiu8eg2k0CoMccLGs2w/2ttfG1NvNPrf8fIRWLjpyi2eDCrsRwlhsTUB88+UQhaRCvHm2fT8DMEpz0f08m5elZKQQ0Kgpk83ibk3AUoVJhMDmkyXDIfGTRY4EmyKqhRhEI49BYJZSUGZSFqHhDltWqwfV9niBH+P9WMrzMv287Rh7Ri0zi4SJO5/Jbtm8BhEoRSSS75Wybp4xsCWBhKa7pvp1QX+364i7mGH/+k0A3fYCsPndFnJ/Av5mN8eQv9+ZYRtw/7m+sn7L1T1+7Z2qR/fwue90A7ATAd4HKfv3Hh3nDtzcOUf7SXYHdLrPuqP07MR+8uqnZQJqlta0iDbn+RXgs7uYtQKuAx/YAkaWzDCASiROc2lokioW1luaNShUxFz1n5BGNqR1fQf/Grp/CUIlba2hNJ2qmqWFCohSCAjSs6Znd8UABKxQloiKXEbEcd/KVkOEZL2iMOGkdEEW5rIaMBJF/wOQe8M/AwC++d1f45AOCCn1DVo2OwUGQhCRcd38UkrDAYwRdV2603E+HHE6HHHQTC7NT2hffof05dc9e30+EZ6eCYcEHGYgRQXYoKWk5OI7LbMIQbJ+ksX18xA4jwQVmHWPYu4FfmcMXmbVH25AzhXrUnC9Lsi54HbNuLxc8Pp6xevLBS+vr1iuN7y+vgCtoLWKnFesyxXX6yuulwuW26WX7jQVl+bKvSStcMOySMkFS4tKPc4C5oaYnIlQgM47AsIw4n79PoiyIHCszy2zU+wRgyh1cG4LquwyXhileAbQATLna4eNN6tMMs7RmA2WydqW8VlDjb4uu+1xR+oGE7oezCaNLtHjPiVg3duthzYgKrC1f99t4n5cx7zaBt/3thG9xHwPUm2O0UibdGw3Y3FKRQtjMK1ES2hswqyAzQyGit52sHaMzbiHtgtGtwGrHXNkLqXs0zfVYA2eO5jF2JRS753Q/T3ZuSw4EMBfNCv63/VZSqWAlLhZ6VHXknEdT60DrL9GO9++vNTfo9xX2FyTfc9sq4HLzIwm6ed+HPv84TD38/h9zo6z0Vvc7YOefe730f3f/XUTCQtwXVccj0eABti2Xa/Ur9EHRTIfPAghATMFkiSLNmyw83NtWEqR/QjjXBL4zV0TS5w7XWs82AP9fkgcw6AgqxXiVKqCudNgGfr5smeR+bEFC6NPGq0EhKYBvj5f67w4AB0pPZ00Ux67Mz8CeqKtvdnv3d4W7AE4CdrEyW1uvMVPcQipvmR+NNRSkeawTQK0HYMxBJwOB5y0gcvlchFNwsb9s/vkho2TXePehtUq3cL3Gfs9SPooODD7KzIBpsiEUQJXxxgRRM9X9BBFqw8hIoWIOSWwAo97ps8d4/MBgC3dUrc2wCeQvE3yz28EMmKDQU3BEjuOjRc7G+yTIA5ktoZK+t93gaKOQQxB9JP03hqkjNmPP7PoPtl1JtXw9c07AEmSRtX0BRNOpxOen5974G96mgY6fPr0CR8/fcLlcungVgyi5Rx1jQnD7iABMcVeKSENaSZMaZbzEUEYTkAIDG5ZmcSmvySNzEgTtaZdKlWfIhEzz5JMjlSRiGE1LNQdvG31iehdDnvg10YHmKV0pB8rKKvq48eP3QeRL0WABExLRKBJmMgpiUh80ePZmE/ThMM8I82zAiBbv2OeEq6XC14/vXS5CIpB5/x2PQUaAIwBj2yxDCKm3s16rOPZAD69ptAa3v3yDn/+859xu666F6a+dxtIZyCRMen265tIUCZjzKNbZcC0rAQsjX292/MY/phvUiPn6M9bn5GBhfa6Y4sDkFJxiPPUnATThqkdYN4ai3CyfFzZYo+qFWzf7OCb2gkbkxgirOpk79f163sQZ4/3uINW+2dtY2G22RLWtrZvtxuWZQHROhLZ7toNcO0No2gkIkcyi8EFmljQfUypvKRgi/mXmgHp9yB+3oRWlj5WktSyeVPBfOhJwZHI2ZJNUrgfd/+vlwJ55A8/AiDtd2ka4Rhq4NGYjST+9/6Vt+99LzdyAekRGvXGRbUyjnPqx7HzWpIvaPK7VWkq1lrrwK3/7Fg5VqmmzT9Ym8Lt/WEMTCmFLUT1iIkJbFlv5rfUik0yQPY6P1+35Ci5BvS/hxC63yISXK0nK+y4khgf12eMyn5PhiGBupY0O8BwVDU8fv0mgC6SGTCMCe1eG3DtMy/u398FhA+OReqw2abvFz2Au4n+a6+9QfHfeeT4+wDKf2dvgPbv7x+0/bsfK/96xKJ4eJ/wBazOEaIGRkWtGVIjr45okAArhfSrzBsDqqSTpjJrLICPEaUBAHeAz7q+sTdk+2PSeL8GcebkJZkv75y1Ctx3MLHSrQZwgQ8CxBlXLakgQqDBAlGIUeFAct8xoEWWDrIUMBEhISEi9LGc0kEclUhAFECtaVcDJrhM2yRZetJv//R/AQD+8Ic/YJ6OmMKE1nwJSUKjADrOoBS7HkxKAU+nM86nA6YQ8d2332C9SIOD5/MJp+MBocl443RE/eYZb35POJ0ZpajF0r0kCW4KtbGYSH4SBmAnxX3Sic8cs+5k6GNpLMBba0BWY5vLirYW/PDpBVwq1iVr0JNRc8V6K7jdFtxuK/KqLd2XosCdOMClZnx6+QWtZYClI09rDaWuKOuC2gpul6usAXUoCAIA1mrsjJs0BSCWGlqu4CoObuBRUihMo4bCpv0mNxZ1EwZG9s6CAr95EXhju5pm+mPkDUA01vUWVDCZNMsOdhagc4o8oNDncl8H1k1rVxZPj7NFm8BXjibzIBobaAvGbgO4e3sWtGvfo8/v7aAPau2eP2cPQ0i7DdUH+Dtn2F+TrVAi9au2zDriKBqU5lSAEIJo4RiLQjLjoesAPg6ytwE7WUDtBq+IUKUwilic/UOakTRg9gDWppy4W0nc7QF+jPxYm6M35shgx5kDyrovGmMQaps7Ow+4O69/LvsstReN91n8dV2EUYXtnPNjM4C7gGkK3dn2e6h/bt4JtXEzJ2dfososjCvTVIK7J/uO7HUS2NXW0HKWUsoYwZBSQYYvlZJubd6Z9+eDPTnVU2ta8hkoCOMpkoC9XHu3PmFSVsyzyAukmGT+BkJsOp4GRMkDUMbufUlysHsC94YcIT62GzYW+7k11giL7qk2YeAgmV/TSzUtM3O0ffl0f76tSemhscP7WjbQS9hAnbFhz61KOodCEFYpS+AgbWyNWbgFW4loMKEhtowpohVhUNdqgBJkG+xBGJDzIlKw4aTAgyR1AllmfmtDPRvR1patPWNsjVK0rRadXa+tE2PAdFtugLGOqXUyba3qBifgPViCRQFFtVEBAc26gOqxAt3rZm32Huff+eDUSqBszRmIL2t76Gr6sfDHBAyW3ZYVAdAkpyRYrfxuq9csDcDQGEsuXVMx7dZ4U3ZgVP+tQH0E6+TNrFUNhn4IK6uo3asuIdaDpSCJiznOSGlCvgnDPmiZ1pyEJecDztPphKenp14GayV3ax2NfpI2pxFQzTShBFDIJWGeD51tKmsYwnRu6EGhaSLVJgltQkMzYEw7xQSSKoppmpGCSIyAx74g7J6CUq5qC+OmbLI3UgGQUsQJVkLF7gdIWqr5xRdfIOfSgbCcay9bleqMCVOUeIAoIrWgusUCNFG0rs4Nh8MR0UAWZgQS/aw0RxyOM67XqzAY14xmyVPLD7TWE8Oi3QZtrmLzU2NQyWeI5nAUYAeBdL8qWPOKP//pe2EGMWGez0hx6qDTPM9bBqDrAO6ToyEM2QECoIuyD6Wt9dAkrkEc/g0RIZlgN7xNlJdPWvkSN7NBgMXAMH7E8M/IXFphg0ln0a1tAKt0D2337D3Q5r/jwQLzBQBgyWufT2YbfdLL65vKeYadHD533fgx/l+fePC+kOzvsY9p3yNdLOuTC35PN2AIBvRggKYdxFQbTOMtP4jS/KCDoU5/0/lRpayQyi7v/z6WPPClzJ7ws2Es7l77v2/AhfeFfwAAIABJREFU0GDrNW+eLSD+TzLdtjLexybZrTFDCGBUjSvv95WoFQKBw+baOvDVlKQDAcntc97XCxjxplyrVveRygOo29EZ2sAdlcueqU9s7jEbP48MGJZ7uT+W/nYPQLfBKJX9RxrZsPoslhQHl0H2cYD8SKqzNgRz81tuDBFB9vkHz3z/+m1dXDEmiweV9id4tPD9Zx+BbY/Os389Aq38+5+70ftA9vE176/fHvgU02cXzzACW8O3P+avvfz1/aUgbvM3O2dtymrKaKkhBGGORJ0ojQuIJzdO26NYQGXn885eUPYKKI6FEQZgqEzfzmJqfSMzBJzAmNCYTBMWkaJkJvUcaTqgaymwgUj6Qw2NFw1SlYKt+j4IQY8v4Jl0sSXovo6YJqSJwFQAbtppBkgsvLLADv3WDrSIATWSdukTmDCmI0IQwVVxKEd5CQCc5gnzHBGIpZSHM1oRx7WB0aowkdYqXf8Awu14xOvhhEQRP/zzH/HLzz9juVzF4QuS/S9rBo4T/v5/+7f4n/7d/4K/+zf/gOfnhPkgwU0gYIL82IgRAO2W3QFdgRuAdWXkXLAsGctasN4W5FJQckEuGSVn1Co/pRbksqKuFbdPC2quuF0XvL6+oqwZrVnXRNkY8lqRb4tor/Qgp6LWFdNMaJxR89pbWOe8oOQVtVYcknRmLFrKakCdGDkznrnvrVwrcrUNSWpkGOKQMA8olyHBUdMOQ4BnbTYNGD0L4x5Ub9xAmsVt3HZ2YseC6pvClo1kHY8CbQG6vnmDNtfGGE6H/9yWAbd9iR0ideJs80cP2Gxtm/Owt2cGmHkXpv8tBmnQyduyinHeraPhs1Uytp+hb+8cMq+T6f+1jkr++GbfTBQ+51VKLKNoAO3BnD0IMI6Pfn1bGxvgm0TM8wwKAcu6dMfejumF1/05/H0+upbtM9nqZHVbHUSTitSxNcYZMyNgtJs3UGXjoACb6/Ln9XPUO9r7a1nXLCwTd70+U+27MEqQne6u065hDxDCXZ/vymrsDysf3u99fm748k4AXWzaBwK11b4WbJ5boGbgpDm42yBje76xf4ruU+tdhE3HaJTYEgiramAGLaFizbyiWQORhqpBi1yn6FAlErC1KUOGK3e5hUf+gQcZ7+dPQEKUpjwK/nfntqmzm4JKP2AAc4wOkjRn22x+y/xQ2+vmtH8WfRyJuq5sXxvmJGBcb593aGBjopM0f6iIyKrDthGudnN3XcUGGAi1LIsyV4ZA/mAOUP/Xrt+Ey/04Ji3Z82vDz+k9YOf/PmyO6Na2UgTgJ/Gn9An2plaDYaM2vsmek0tBJGxs2v6ck5Mx2LDINPtfat6wVPy1W4Ds55S/r8aMUvfPSctzmrP7IXQdUFnfw7cKXHvDB3t2pZT+jOYkgFR0vqfYMFIgewAA/rkJM2qU0BvIUlrtLKnz6QkHBWRut1vfQ7y+ZIwRX335Jb766qsO2Ly8vOD19RW36xXLckNtBbVl1CWDbzIeUzp0eQB7DqZhJ4DjaG5g8ylGJ0cQPAtZQDzxmxi1rii5YpoCDhONzrcG0Kn0gLy3tc0292ytKMGs+yyWgErRBaIyY/TZ3BTwY0xRWGsEC7aFYUIx4BCkKcfr9YLXywUURM9u5tNI/AQG14rTWZIXJzJgo6AVSTalIMhWc/aLRsiLkqtUfzi/qLWm+miMTMA0yxo4KFgXUwLAmKaDAMLYjovtUQbI+71kxD9WYmgM4tGxEYQO3g29RgMFBoAvftkWUNjYO+YOFndmZ/fZ5DzWCTlGaxKx1Q+d4qTH3cbDAVK9E6Je/W7ftc8x84ad3Nd+a7p/jn3b+zuEAp9k3RNB5D6FlGAkDfvuuq59D993kTUdSWmcFlBK2yQTiaivuxijsuy2chd2rqAVUR18AoG57sCb7fM2OyqJwdJtpCW0pin2sfb7r13Pxs9v43l7+7o/n7287bVx9RqNdpwYIyatTvDz2OaPJTVTkERF2NvWzY8k0BpqdwGIpPQ36rNJKWk31TDYZOYHt+0eHrGd7yYPY4kymWeDwUe/UuLJPDQ5/ZjY2vHxzf4zMheq7lcjwUbkx3wb9dzBNr1J14gh3dXpvdgaoXFP9rxV9qMzoJmHHqjzlX7t9ZsBOh/o7IONR0ywh06jm6j73/fOsTdom+Bj5zTb74+O5z/3KFixz+9Bxw0deBe2/qXr3Dutv/YAPBX80TgBwoJiJuR166TJwpQ28ikyQq3gkJGz0YUb5umEWlaRQY9x48y1Jv2QuSnjKEAcomYLAwiT1K8b1BPYnGzSzlLqlDZZcFNMgzFGAhExA5ikhGNKBwHUNAh48/QM04VqXFFWcQ6mOeJ4PoPpjLUuoJhwPB7BTYXLgwjsg0TXhRtpSZiM/RQDjnPSrk9SJhmqGOjcBOUnBniecMurAARzwi0X5FZB04TWJiw3QgwniEhuQckL1nwBTvIM/uP/+X8gxIYUANFHW1DzgtYKUohouYAa47ZKJ1tKE2oD1tzAlPDp5Salo41QMiGXhkaE0/EJT88n/OP3f8Ly0wccLg3rt18DIWA+icHNdcV1vep8YQQDUqzbEAGhFLSSUUsR5tua8Xq94fXTC16vF3WSBOi93aS8o7FmaNeK22vVttmu9K5WcKkC/pohLL5UTTbAxg23taFwRsvi4FpgBzAoAksR0EO8PjHGEpwHzPMENAFYW2toaAgk3XRkkyjOoQjdo2HWZiMMRGwp332NMW+dDxPA9fYGEuADYoq34IwApQaS+AB0k33RQIV4m0ElDbpyyT1wi8o0WRbpPnk4HHA6nrDmdQAW7josMNnaIujfdCNT+rUHKAhbjS0AynpFD8at0xDFbfZur8fkM8G2GW/trzAp/DWmlBCSsbTEoSDmzbHMJlaWDoLGuii5ouSKGLRzIwtLj+CDU9n41rVod9Yt+0X2Crn+UqyxTdzc3yZIBWO9XUE0OpCZ9ondt+9k21pDyQV1NxZ+HG0e2TOwcYsx4nA4yFjaenLzJrB0aPSOGrOAOBvHO4Re8muOvx3f5qd3Ju3ePRsSNgd6sDECpKjHspKUmrdaUWNuDEDanF4br3me7+aMjYmVjfjS4L0vsd9nYxxMEgMCch4C/LZmaqj9HMAQZwcUUElqJ6yzZGs9KRG11EvGbwR5YELNBR9vH7CuWRh3acJ8kMAy5yIAGcZ4JB0/AEAFKjQIZ+4C8jbX7FmbQ+5BRbsv29vNUY9RyvDALBpnek7relhLAUIApSQBi7Ml3Bhcmjjt0fTeRgm/jLeJ9N/u5hKRjGUDUNtoUmApCSJ0ZuYWOKf+vthe2nSP7MCceNl9Pk7TBDDj06dP/TMxRmFVF7nmeR4BjS87k3tYOlhiwaDNv/6MsPXnRte/2lk4BtC01lBLwVIrUoSWusvdWcOBLvceDKRtKCUDxvZt4nNUeHDTxm/LSjU7GkLA8Xjs86LkjMoy/w0QS0l8qXVdO/vP2yNf8taYkXSN7/dPY6LmtYATIXUNJwlopLETIUTRaIshaNmodtZthNAIrTDWmjf3ZJlf8QeK2t2gzMo900ZKY5d1wXVZOlDOzHh9fUWOuYN3HegIpn3kgnoXOJ3PZ8zzjPXpjGUVlv+yLFiWpQODRIxSr1izzNO4RkzrhHk+SsKBBLi/XJfeuCLGiHggRNMmoeE7JNWVa6q1BgZKbShlQc0rrldhzNk8PhxOXQPU5rRdv73HzIgUhYVLwnoca6Mg5xWJ5flwG+zz4+GIkgvWdcEv+YJpSpjSrMxk9ZEQui1/8+YNljXjw4cPmK9XzMcjWpN9M0RgrgF6aJzPZ6SU8PHjR7x8egGa2LY56fp0e0lMcr7KVZjAbbDRWmtIU+pAyDRNqC2rz5XAAKbDhAAtw3OglP3rQU1jTdr7vWsmpJS0KVgMgjAlIfaNorF6gvp0PmkXJBbo3W8HKOR9JgC9SUnOGdfrVd9nFBTESAjhgDRNQAWWJYN13IgNHDC9GjGulVmEoKu+5eY6EXV7Z3Nln0iz+0YT/zwwY1Y21XiJLyxAlAIzGKBVCIRKAwQz22p2xPbPvV01uySfG76O7X0+WdMBQxqA1tZWs5kTLaFWwMuSbFFLVLOunyhJlcM8gTltkqxyzPG7nVt8m6Yl34duwwRcGmWRkjhtWpqs86AZS/ueuMTMncHoE4/mF3QtP0iV4+lw7M+4VlkXS1l0X2kIQVi1gGsGRJBkQhxMs5wzbjdtnhMlqVOjjiOF3pxN9t4ZSomQa7aYSnV/U5o3iTq5ZgHXiSClWza22tRtrJUG02jzwJtPAHt7v5/Dtt/ZS8ZwHKPWoUkn5wCMqdqaVGSAeAMu2rX43+1P8u+oxiJuSDr5OqDbDMu6l1559PptAB3f8yt8MAV1mOR3xRZ5sOVozGpNoFKf+JvLEy+mv/k5EM7O7wOp+0u+p/LuX4+Awb/02l/T/j077l8a+N/yCoBSLNXw6qsH1nI20blipdM7RzmvtU+GlFRwuJezScbOgqhSMkRLhzWJq13XwoPMEgcpHQ0TqoJ8IAJVRmhNrldazGKaZ8zxAKChlFe8vCzIS0YpFT81Vic4IibR9GmtICZC/JCAQ8KSswbqw3kGB6TDLNT8JuVtYrS4d42aEsDtCnABqpYqVUYgBldGK1IqseQiZUuBsNSGzA1MAa0GEL8BeIKBSqXe0DgD/7vQ0v/T//0fwbyCeQWxsvWoSEUmizBvJEItDYWBQDMKA7kCjSa8/eo7xJDAaUY4HxHirM8vIDDjh//+3/BPc8JTa3h++wU4CpDIzHhZb5jm2Tm12zkfueHl0zsp+zJwqTasqzgAy7LgdDyLUCcz1rx0B6ixzI3l0jCyXwaASslFL7vgilayftf0OpRRSVHmZq0QKrh+hlmPoWLkmqRshfumw9zANYNZwEAL/MQF0HwY0c4O6JprrYOE7Nb3WK87a+bsTf8BI2c70/bvtpH1DA5GZtiDWCCoHsjWdpmj8eHDB6SYMB+mfkwDo1JK0uyiSic8AQimOydBnr+WqbqyZ+q/OGdlZ5IG7X6s7Y1NpCClg86x9KCkXcPnXvtEhh/DzXgSbTZXeV82yz3AZcc1MIKZEVVH464UDNhcq7yMhTHYINYxrc//1mBbowW/HQx7sF/sM7dg3qxL78wNkHc8v32CCFBNJrDoaCmjL9Gg+G/GtjEq6v11uGdmv3tA1XTI7B68ePOaVwmwaYBkdj/JgjwX1HVQwGXCbR6aE3U4HLpTnnPuwGZnVewA5/3Y+vW+L3WwcfVzxe9Zfsz9HNyMP43xIiKkyiIWrRpS20DHlbn7zHNUlniMqlsyHFLZo1u/LwNVZO1OChwAlbf3bOfxQYi3afa+nxu1NVTb25RBXhsDkbuuVgcAmdHpqjqf+oCoLfYlrL6Mbjxrc3ztOca+/jCO5pxTFyRbAAfns1Vnu3a+p60xsRGkScQxHjJ20o3ZABC/Juxa/Rzz2XgfDD1yzH2wYM/DAno7vyXJpCsl9Ww6SJjdpbrybw1CLFvfA0uQdHmXi+/dg1luvGv3MdA7OVe7L/d5z+qw4He/Zmyt+CRFwAik9/62T0r54KiPj5ZWt9q0DNLON0puiaj7JgA2wbqM7+f1efyznLTRktmiLhPAQEAUn7QHSLUHgd2m7Wy6gQtpCjgcZwDC1M45q2aSMZ5uWBaZ82tmXG9SxpripKXjE+b5hHk+4nA4dEApX1cUljH44ou3FjDpNbL6XMJUFR3Ee51Os4vGJvLNUTrbrlQsqqFVNahOScCnmEagL4CBJW8ILUq1SG3W0KCBEHCYhO3YmLGuss5Pp7NcE664XC54fX3F+XzGmzdv8PzmDYikYUbOGfM044u3X2CaJrx9+xbvfnmHH//8YweZp2lCiEEE2NWsrkW6x5bYEFVjd5omcGEtg5dxyTljyTcp5T8EnOoZc62IHDb2edjce5vg/b/b7QYiwhwm3X1lPlEQP8p8s9Z1rkxTypjFZg/z5rmZvbB9x++5fd/p9pW1Iqf2xG1E3MxZn6SWeSsML/OtmVk6zu72cJ+Q83usT4iZH+5fm1CfrExV7a1LxtmxUtpqXHb7sPvZMM/6XJc1aUz1w+GAdV07UO5Lbn2Jsp1j2JRxzbIHM+BKUaWxkehNQ+MMk8lg3Nt9byvMDpYyGvfY2LbWMM/bJgT7Y+3n4SPMwjMT/WfH/ZHKQnkdXAWAl8cSDP77vYsrACnNHNdo3ddtHwDQ431JggqoPRjQTlPPykEx9vr9vspQllxr4EZA2LLUWrtv5un3Gz9f/DoKYUsgGOXjw08IToKrj4kbem5S6WDludvxVc3jNeu4aWlrZ5UCYELLqzQ0ZCOCAJWGzr6wOT+PFf1GgE7+rzuF9rbdVKBuMEaAK+97erHe5Z0Tbq/mnF1m7roWNjh+cZgTYb8/AssegWT7jfjRcR8tkkfHe/Q5G4NfC1x/7fo2x1K6qDm29vKOFQBhwLSxqGpVMA6rNIkICWU1TSgIiy2MyVH1fWnVzQCk7holg2kLzslYCZCX0tQzaiBCJRFNDSBwaIihKOgkhvXdL5/w7t07rFcVqG5ADAQKuhG0CkNrGgOXyqh2LezL8IJqMZno47YrYFPdqSksSFTRakXRhRTVWe6OKgIqJNNDQbprUYxgjqjlA2rRhRkJIYimEfC3AID1+h5EorVBJJpnh5iQYkIMQKsF5/NZxaulPJco4Xj+AofTGZdrRmUCU5Ry3zhjqQ2fPn7Ey8cPwJpx/fmEH/9I+Ph0BocIniJyY7zcrkLBjckFqxiBlPS4h5SuWvmolsJoCdYH+oig/ktVQWbpDmkZFmFzdHiYWJ+PjkMtaFzUCdFAz7JqILQ6oSr1X8qtBZjjJkAsmNE7EbA8/s5MaBlKZoEBZjDj1xlvDa230jaheu4/3Aqam7f70tSx5qseb/xI9n69Y+DJGoNuypZ1Cx08NqDBAwjjewZi6PoFYXoS4CKlCC61OyNEhIqR6ZGNR5ioNufNBsZom9FAHsnwOAfQeXPj7efngDD7nG2G5giZE+YdojvbRaTPy5hlVoonjFcAvYOW7zLm7XDdgXQe8LL7b62BWLtHxvH94Sx7rTmX3QpQ8JXR6hYQ9K/CrZfB+0QFMESOuW4FfjcsHve+Bwu9s7EPvPrfAel4WPV5x50zoa8uus+i2kNEXaPkEUDXHSjnlPtx1xGS5flgzzMQYPN9PAAq3T0ZG8mz+h4FDJtxUefNOmQbUMMMEPS+WNhgEtOSsD6VMUJBmNLGgvLBhgVCBioxHPPU2DkpAupMVS7dkZV71FIsHvcdEHBIkwRJULBEgSizqYFEV84YKwJQQUEDdSZLwZozpjghxXRnQ8wJNT/Arx3TWOoBXUy9S3UtVRryOGaYl2ywuSias1oOnMR+WxAm60m6UQIVRJaF1qSKs7E6CGKvQhgSBNpxrj9/9RcZQKOxgwS24hADhmj8rnuH7PX7IEeux+ZiLyV2IJyfqzb//J5g2jvM96DxHtSy330AFGIUx7zkXuIJkvsx/LO1hrVkJAwpFUsJ9XWsc4dZgVtbC6xFd83mhHpOteruiw4G2zV75oG/b1uXfkxilIYHa1k725zCJGCOdh2XuZB0DUpJW5cyrdKttjEjstxDqbU3yIghIIWAauwk3tkitX9SZq+seOz2bZ0SKSVECKixapKsNgOltYMyN4RWEeoA5Ww/s/N1CRciUEpIFDFrd8wTFJSvGeu64Hq9QjSfCaVElFW1Z2vBkjNuLAnZ85OMUYyEnFfUVkQ+IwbUmvH+vXRCJAXJKCSEMEkzigDM8xGgCYFM8y2itqYSBHy3v7ACDIc5geZDt+GlqG8C0ZSsRebANE1gYiQAKSatPrHOuBnvP/6CdV2wvHxCWhecT0+dxQcA63rDNM04zhPePJ2llBiM5XZFLgvmYxL/qomtXNdb34Pnecbbt2/x8vKCZVnBWe5XQGlJBocpatfQNtYDQSpduOJwkCR1RETiBE4BaZ4xHeQH60hMmo9mc2gfC+4Deu7+LABlsk4hdYDOErItRiAqS67aHlE3dr/b1h1rxu97Nv+FXa6gcjCGrHTaPSTbB6nbWDuerB21Nc0qQAz0Hc2qbK74e7+P8Wwcijd9m33djml6lP59+90nPT3AYdfhfSV7Rh1gh/hktk79y1jOHjjal5vKPdS+X1m4gTCaIF2vV8QYEDvQu3bfg0xc2u4dRlDwc8YY1oTRLb6h5IbaMqJj/D4C9x69BngFUIpjX2Tumu99vmhVjD/2Zr+qW19/s+8JiqTzSNaJzR8P1MId2ydwKASwzo8KqcTrWrYwv1ArPCSA1Pil34TM0aplx65Zmw7EncwNMP7bzuHnsp9fMdrfHuM08vlt52Tf5AKs8aiTvIlBu7wrcGj62Brt9OtmBqgp1qJ6mIJXAERN7Lwm8P7/A3Sw8w7Uc//yk8MChuDe+9wA+ePuX37w98GRD6b3TsevnevRa79w9sf4td/3hu63nO/RsR4Bh75ryOaY6tD29xpLiaodUw3iFCZpfNCM/STZtBgTUgowoI1I6NRSyqJgR5DyAyYCHIvCX0eKFvjId/zCBhUgLMiF8EoR1+uCDz9/wKdPL2AVyI4UUbkhKw2XW1HkG6gUsLSIMJ2kVE9fVt5SS0VMc28+0Jp2vgIhBUIiMWaHOCFMM+qcdPNLCCE5DaWIXBsqA9PhJLX9Ye5lTCVnMEEz5Hb/QtP+D//h34vB1CA9BYh+wjRLd6dIuCyvqJUxhYgU5422wnq7oZYsTRhaRVCaP5UVIb8At4rLh494/+PPmD69oAWgxYQCwtJE2BfRniMA08GwNQNGq1mANs2mwQCo1jCFaHa5M6Ua10HNnpwujnxK2pUrg07cj+oAujY+ywmlFlQOoitkFksBOitRJTWKMo/RdRtabagx6jmgQJPdmuiENQUvKhGYshhAF+Uxq0Zjd+rVVtS2W7v3Ja7CPuAeYO/Xpg/MgmbvfRkfEaHjAX4DgFxXKQ3n4wmn0wnn00kcPm0QYsESuc0qBClbJNAmY7nZ/IO7R+ZNiSp0DB/ZG2gA6F8WxNq5/XFCCBsg8XP2rrV7m+rHvX/fXedmXzChS33ZfmDvpDRJ0NTZSXDaMAoqkAT1FsQCAAUrH1S6fNs6ghsbp46hlEbtNVaUAceD4r+xgRh7354dtg/oAWwE58X5G+CVfd+DeN4e788pwcyW9egBOrsn7ygbaAWIPSDtLNr3I8fQWHmUW0EDBf99K2GtVUouPWPOSnl9OYu9bw53rbUH7X098SjNqLXicDhsfIuu7+TmmjlN8rkBuNi5etCEsSZGkkCYEEGPLaLcDuRz83obgBCKsRcoIgZC4dKz7SlGtDpYg9EFTTbGFiR87uXXkg8q7d58N8fOsdj5Y/t52Y9JkpDqpbzBwLkBfnmWwAC+nE4ZKkCmnaRThFmTM62Dtvt1AqCXVZvsgTybcd8A9UCgj3t3jrcPxwcafq7tA2a/Fu13CfK25fH+933Zsd0DEQ0/pRb1obThgTWdiNIJurNAopYesQBBtTWAAqjez4E9sN24DdajBgu2YxOGLffzxfvW+2Bnsy/2Oe/LsuTYBibUUlDL0M7yx5ByQw2iGR2s9EAoQwoubO6azel270Gi3r864BJ2zNrGfeIwC0BItfbP2T5vjc38nj4CfJm8ZFqB0RI+wsCYZ5OKGQDQ7bbidltQMuN6vWFdC15ePoACECNhPsw4nk8AEq7Xq55zQkoTpumElACOAlDPs9q0eaxvA4ZyKeCdyLntzfNkXWen7vuUUrCUBWtZOyNwWRax3UoTSWHq5bYhEE7nMzgAfKVNqaiNz/V67WvwdDrg+ekJrRa8vFzw8voJ8zphmqXLbc4ZHz9+RIyvMIbZV199hRACXl5eux1pJMADKKCsAtBSFD3WELeAzrIumOYZHEYYXblhVV9spsNmbe8BOL8nGtPb5lmrookp+4FJLmgCEFvgSXyKMHwM/aUnQpzd6/f5AEAfchIS/x3mkwDPyna3dWY+jXS5FHjA7H4MQQAEDiBilDbkaezZ7bXN9qCM/UzT+Jy/frPnsocLM8n8czue+FK+KmZUFpj92ndn7cmxaFpvch7zq30pPzN3Np3X7/PJQCKfwMIAtdmzGUlFnCTpXIoiebUgTHPf89j51uPBiYyTPLdx/+CAUIP+99ZW+WP0/ZewsXPjHDQ+53wZ+9eeo/9Ot+sYjTj2ZCYDlYQpGMQAB5N/CX1+2TPx88XL9YQwmKAyK2PfFwMRuGrlAQaxSBiLYj9KC/0aGzftE+XWq4sV9j60Hwt/7+ZnhRCcb2LfG+DzdpzNB/EHFx/AdPDsPmstvYPyNB+388GOyUBg1kQmIRFQdKPzjTOZB6vv0etfBdDZyf+i4+hu2N7bg3QjaB7O2cZJcxum/+zdudxk3w/UHlD6S8DZ/njgAUbuj/3ovc9d57/m5b/fmmmW7CYlG8U0GaegB0jyBoO4oXEBOOgk10y2Zrqhi3C4cZKJDhHC3FMNGRAQKKG552HX08Iob7KJ3/8eGJlfEVRUd7kVXNcVCAkpiAHNiwhIztMJ5/MZh1nKXacpIswHcDqAKfVAmkgaTQASRB0mFT2GZP+sDJaZEbiB2oKn4wFPT08ISTqnlJaRNau/FikbzLmgMeHp9Kyb/4znNwccDg3X6ydcblcQBczHM47HI4A/AQD+57//e3z48BHvfnkProzT+S2++eprHNIB15rx54/v8d/+xzu8++VnnA4HfPPV1/jq7Rdo64If/vQ9Prx7D+aKUmXzPZ/PePv2LVIKOALIBbhegE8fC+ISUMColMExgEPE2kw/iQydFZagaho0LGiwxhW6KTWAxCMD0ixZ6SZspQoLDmSNT7ox2ZyxUlMpV62IQcowahVwtbeDB6NxAPiIxgZUSYbdA3StCshn1x+7xCi0ucXaN7gQgJHQsuBb/6upaL0G3wTJ8luFzNYRatoZ0K1TvSSLAAAgAElEQVR1p1/Ybcku0vNrvdbhbIyNmXvA3UEX3WzIfd8HSMfjUXRkiFByQSlZukCqE25i8Ra4xCC6Nl2/4bOvexvqbmXzvq1dv37t1XhbeiH3PsTYx5g+3g88I23/72Yv0KBpf70yMwRgk+tTx4JH9lY2+azBnMuy8WCBjGNal7Ktw8xN9DfIAjWk/lkP2Im2IQONpQOhy+gZi6yPn3vefl/wgJh3jh+NYVDaPNPQSPJjuC9LMSdmPJdxHdvnMtiXHrDzx621YE4qsr27Zuz265pHearPiHen2Oml2Jj6jO4joJdZyns8yGgvDwzZNVlg44E8IkIMIzO/Zwi1Jra3Pz8CmC2YkSy46GEeIFpXxsyV7pOdpQgCNRZw2Fh2rEkOivfrDiOACSHAOvoI6EF9zE1433/X7tv+22upGYPXsxFKkS6WIGBO0pDDhJnXdR090v3Y63+XWrAUTbqwOa+EVmX+y/OOKCpxkFLo41ibdGO3TpdgA0MIbTf3bbya+pZk4wegOM0WOz9ZtgYBtRYJSDU6GsEHIQQIyBxCt8327G2t+OswUMgDdB7I2vuHNt/3x+0BhpZTdqFr82FiRAyTSIjovQ7imXTOBVi7WbYuM2LnoxhGowMSNknRZgp9vbKJ7W8ZMX4umQ33tseX6bZq9oVhJUNRk3qyN2hpWAAQdZ/uLN8g3eEpIBfpYhsAgHRed+BR/APBAIWpPDr7CRORYtxco5VPq6uLUkSnTJ7BhJRmxFhQct7YBG4i9D80VwHTFRvHVqADjMgRVZOLRCxM9UQgmnA6RczzUQBWAKSabDVXLIsAdGuuyEV09KQjfUWMhFIz1rIoiJBgJd9CMynKMJHmWJeFcTzMHeROMSJNA0iprYjfzqbNVkSvmityLkg0DRsD+Xw1FuOUlJUIoDK4iuzBuqjfFQnT+YA4zXiez4OpjxFsP53Pqm+YBbCMCdM8AU9HhFCx1hWoAUwZzMpcjBFhMuAw4Pj0hJAmtV/CpkxhAiWgRMYhHnGcjkgUgMpI00fESZld2kiHdfxCDEjzhOP5hPPTE7ACeckb/dPBqBaAp9s9BwbYy4P7sldZyliY1Ta/ujZsit1O2XzarzFvS/w+6PetDuRF6TwejzI+LXu5Fzu+ASuDxRoCIaiwP6nWrt2Pl+swPTefILPrAYApJQC2dxJak6Ywdr21NC2Fl3JG85sDRWlWGO6TAXtAbm9Xvf9wu60P/+4BUAONvI0ferRbhhWzJP+bJr/nFESKAhUUCHOakEKUpjCtIaieIasNANkYDT1EIaeYnVEfiERHlamp9Iz6JSzvF3bJdeiuton1x7zxMUkDeidjIm2yYvNLf/r9EoGgxJkI1WSWawcGoYbBaDT0tYcMSe2NMkOKm7ncz4dhMy0W7fgTSaKOGyPXoZO5B1DNtgYO0tSqNpg+vlV97YE2u8c9K3zrH9l82cY6HgC0hGv/O7uOvQE4zjNaU71h1M29MzPqmndzeszNhtExnYh6w66mew+FUQ7+ude/mkHnAboRjDggC2My7r/76PdHAZxfzJ8Dxvwg719+8e+d/kfH2v87HsL2M78FfHt0b3/ps4/GgNxnHt7jg5iYwnDExBCZoPx2EkpJqXSL6gGcnpNagDDqIE4vAS203SQEJMdlGgB+GulnIklpgc7GUqV7Sy4FawNua1FDEzE/HfHN129xPIrgZJoIh/MRmBI+vb7icrlhngPePD93UC7fFlwuF6HWv3mDL56fQUSig/HpBXkpmKcDvjg/4cuvv0Y8JHz49BE//fAz3n/4gMKMZa04nZ5AFPB0fNbNAuAq7KbzqYHrBa+fbni5LXjmhjdPp05JePf+Z/zxj3/EH//rPyEA+Lf/+L/iq7dfoBTCpw8f8Z/+3/8HP394L4LtRPjTn/+E108f8Xw8gSjgtq54++YNvvzqr3E6n/D8/IzpeMDr6wt++fE9yo1RCLiVjJgIa6uikRcJYUrd6Ri9FxgRLA5qAkpb1KSzAmCAbeYAcL19UtYcwJaRb5axBJbFSjFtbTggq7XeCVXKY7lryQGSxWTkDlJJpoCF7msgcd9UBKBr5HTRGkMwRTu3TlVSsLBVWAOgsT6CBm/ogLVnDphBtpLEHqB1vsF4dWzDBX1jLQpDy5oGWLmap+Zvr2v7ijFKV7PTSTN22vUM5IANwrou4pS1UTLrRc4fgRr7+xjLcjDIfLBnkYqBBmJ4jLLNPXtm57bz2Nj2DPLuWsZpt+/7DbYDf2TXt/tpW1DTHqxgwFvtlL0DZ0C7gEvKDG0BrVWppaYRYNueZZ301Arr9QrgsNlr6mBxEVHXxvH32SwY3DmV+znhs9b+vc2Y+eeFcd3WrdC/18/NWp7C27Hx82bPivbgFjNQSgUj34Gn5O6llIKy5h5s+HmaUuzzx88DA+t8sODXjv3NNKi2gN92rtmc9ONo9z9NE2IYpaC+fMbGp9TsQNMBAopdbNqkyRwBfb9WcXHNKe2O9f3aq63179mcLepb9PlgZfmWpSdrLkN39sQ7q+bk+mv2LLEAwhSiNNgJAVNK0lwFQGm+IYjzO8y5VI2logCYdemVhioCqPTnChKBdhIgDWiaNNHS4N18j3pOO5+BmWwAuAYyVnJoY8/QZwsSoK/bHvcxwY/7sT3r4dH82c9bs2syn8Z7e//Q5p79t3XxDEF0edYi2l0pmRahlNLbnDaRfXLgOtsm2J+FMMIpDJ0+6HjBrjFG0Zn19xejdoxDZyDYMf2a92vIs3dsbYhem6wLYb8KuNZ4gAjX61XBQPEruO8jDOpJYGNceJaOsSlsDZnVVV4+y5qIO/vkbfYIypwtjnFjVwLEXjGzgn+DbceEDmyafWgsoGBKCSnOwoxml8CphBgJKU44zCd0DUedozgSnp4aapES31qB6+2C2+2KNV9RyorSMq63V7xeGFOa9d4SpnTANF+R0lFGIhCmg2h5RhfThLCdvzEGpJC0S2/pPkLOBYEF4JA2W4xaMyoYcRKmnfkgSeUmkCWozEvGWjNeX14FUAumtSTjN9mcmGfMs5TGin3N4AqkSHh+PqO2Iy430acLIeB08tICorEXY8TxeMR0OGBdpXHW4XDC+Ysz/vHrNwABKSQslyv+Gf+EH3/8EcsiDcaOx1nkSEpFhTDOvvr2G/zdP/w9vv3qO9w+3nD9+IoPHz50tp9PChnTe+/jhRAQAwno5+agrPnWO8vuZT4MpLDfszYf2CfT9v6Kfd7mcWsNpRZwGxpsMUaR9ra1YIl5911mBSGjdAquTZJYh8Nhc42DzbRtGDXuwSb0Nk7da3uVXDd7qt/LSwHitPVd9sfzdtX7kvZ3Gx8/3z0YZ76xdX61v9nfr1dpjnM4MGKQ/SulhKAVX62sPa6JPTnGqDWIRnmpG9/ZxsCecWul277+3DXmDcQIU+zBuk8s2r16xqa3b2Nv3Mt7CKBOOl+ti62d3XvgEg5stVUHe9Edz/+PgaaNppZlwWFK/Xp9Ilh8OLm1sX9KYqVXQFTxtVtrWK2zM4bflFK6r5LwPhSN+5ax3pYEPxozr61oU641dvNqGxO2tj0OGYDHDagiXdXXKQ3NS1bg8Hq9bq5HZMSG/9W4IlJACyJfAeZOPPhcfOhfvwmgM7FYhnugPNozMwQkaD2+M4q//HXEv37wqQ/+PrDb/7dfxN6Ifg6c84HMo2NAJ2J3Rl1gYP9K4I7uSPvz/6XXvwak2x/Xfz7EgKAiYP6YtrjZkGI1tLgbDxatklpV+0ayX2iDZt2vcxxckW+AoSL7zBsjqVcnGSQKW6Og5WLcAsLhDFBEY6CUBesK3K4QPQoKmNMkgXM9I4QvwRxxuX5CCECYEg6HCbflitv1gq+//gq/++47zPOMj+/e493rK77/l3/Gl2++wPkwIcVnAVpqRr6+4nq5ANMJrwE4nE+Y6YBPLy/4/k8/4N3HD0iHGRwiWoiY44TTkXHLK979/A5lKeBa8Dd//Q2Wa8TrJ+DDyw1ET/j2m7Fk/usf/wv+/C/f4/3HH3CaD1jLO6zlHSoFXG7vwNdf8LdfPuMPf/gDmBn/+T//F/zwy88oX3+N+XjGF19+i6+//St8+e23eHrzjNPzG2BKuP30C/KnhsvHX8Drz1ivN8Q2AxHIXNFWBt/EkYxEADdxxJs4ttwiSgm4FimDjerQRV2HOpu7Y8tMoElBGBXMj0iomq0bT9hRgJtCbRxQq9Ks/bwHIA0ebPMWMVJhSGjGT2cZV81qIQApQZgRLCLfUNCfgVArANEUlMy3ZvbJMTfgAtoQ+obowTUweqmVAXQW1PXrJ7pbTsOh2K7FxqUDdJs14hwR+6zYTXGMj6cTwNw76s3KqDEnZLktveuV3N9WP+QOpGN7uMOhsKslWbLyDLVbUoO/X/k0GboJiJ4kbbPJfhw8OLQPfOVythto/y6GzSOiHojvnROiOtgnsPsyLcHBfomahbyzu2Y3P2OC+/miAvNspQSAbY3eNtvvVnLfavX69JvPPTqPMZ18mcsjwGCMH48gEzTEq8JWWw4Ye1hrqufEnTRxFwz483kA1kq0a629M2wp2o3RnA4FBQhjPvtj9kC3NeTMm+dkgYddp5XImjPtHfcYY8/E+gBmH9T413B+rYzCdN3GceT6qpSxYLuv+eBK5pV1L63IuYHACsZG9MYR7hnafBeheKA0Y0Io2wJWkri9fgrKXjbnzUqLMcZ07/P48fTPwe5D2APC0OlaZKzMApbkHbw/ZfNXnWSzmVbWZYAViXhjt7JEGtQ0e+4M02tCk+QFjeULdnPljp2Gjk/p/kC9lASA7BFNgI/Q529UxhjcGI1Qxd7zukR2MR6UewySb+fcI//PbP4+OLXjQp8nqfYRWAA2YwE3ZmFTGMDln68GPSEIexr9eqAAlj6FQKKdG0iTqmLfQQBcedm4r6399uV+G79ajeJ4/so2cRqoHRBWu9xsfyQAIfTnacwr7+eKDl0ERb1nA9YCoVU77hhrA9aMIdjHmAZge8eo0O2FQkBopgtJPaESlGXNDsQ3vxpcEWGdg5M0M6oNtWRwBKaZpKKjA8IBkbQrqoY9RMBzfULOK9Z8Q843LOsNt3yT91ZhvNnvYclIcYXtdcenud9naw2nQ1bwftjRVho4NQVQRV8LLIBwtxEsgudrziitImnXTWFQJUyxiL2r6M0FQIQ4TajMyCVL5+cmZY+YZxABr6+LlNOmhBSAvGbpWk1AmOIIVIswUICraBGSUi4RkJhRgyQ9SymYj0d8+e3X+Kvff4e/+4c/iD3hgMvrBcc443a5givwenlV2FGmHAJhOsx4fn7Gl19/jb/63e9w+v0R6+WGDx8+4Oeff8Yvv/yC19fXzmzZA1d+ryIioElFCju2aSkVga3k2UoMq8ZO2z3HEhQ6nHd7tt8/PXg4rgnolU+NO1g+5mrTvVoBvcLIJYCnGXGaQBQ6Y9qu3wNhvhJib7t8wsuSdhtNYAqIh7TZv0ejNPX7y3af3tuivU31dsmvZ8+Q93/f4wDmO9ixjOm2LIv4OlrCPbqF2l4DoJk9U//akoRdJ4wxNrM2vt+hMe34XgT4AZr62tt79/uJ+ff2Mj/LJFUUgNjYTothum/h/Oa9V+Sfpx3XGlowoA0f0H1YWUsjmWnSDUAY5dpQu8JNGH0uYdDamC/EUsknFXvCSJM9r6I2ApcmhBBbcyGobytAlxFPttiNxSrbWM2qEfw+HoLHe2zfuo9X/I+Aq4KbMIBW5PlTZ8Zp0g/CFAy0rcZqrUqpMMsFqAofwFr+3vcjgIOVqH/+9RsZdBYo7wIP/X/p8iNlzCCMgF4Hp08r3n6ZEMaENwsGF+iYtpD+Lg4MutO/uRYbZDwOeAxAUDdQ3zO3ebd47JJgQAPfHe/Rax9cjYD+MVD3q3+Dxq0OrbdXMyfDykxgBpU2nzH6L9wYMKAAR+0MoKGdQD2IJ6DrtFnm2iaofLQCCB2sHdctQRlxQqsZHGRyMkdUJoQ0Y0pvcDye0VrB9XpBwRkFJ9SWcVlXHCbJ1pe84vZyQX5ZMH99xPmLZxBVvP6Pn/Cnf/nveP/uF8QY8e0q3ZTmCAQU0YOIkh29LgXXtSI9JdRpxvT0Bt8dnvDdN9/i29//TrQMqmhvLHnFTz/9hJ9//gnHOeLp6YBlXZHXFW2tiHVCoqd+r+8/vCJMCX/1u6/wNB9xOhywLDfUtuCyvAfFgnlqePN0wBwTfnn7jMgFxzmgoeByvWH98Ud8//5HICa8/er3+Pa779B4RZgCODKWtoAz4TgxUooCWqj2SCliBA2kQ2tAYywsa4vjBMQEozk3hog0szHawtgAtVtNqRUMEu2cYs9WHA5SYKsDB8EYh2ayvDfNIGpgVICtIQSrUYPtBBCg0FghmmUEkEsDc+x2R7JcFa3moQMQlS4dpWzBlpGw+gQAqG10ygKG9sJ+vboLV0M6/o0iHjSQQgWxmpVDVQHoWFkyASTAuHP2/PliTJ1tsS4LrtcbmBsShZ4BvF6vyFo6ZhtQTBG0yjo39soWqAh6j+hBa98V4DOTEUTASEjxQ3uVvA4PsLkXcww8yBW1JNOupVR1Ltz3dCD6c5KhlAAraAAadBdrbFonBOYKIgOCt6BPSBGhDfCrO3C8uvPbPQBA7B1vpcTASgIl+PVDyn0XMCdHgjIOhKJT+I6VomBBVeduz1TzmcDPJpPcfmgvn8kEoPPS9BLFEaq1omnHOYP2LKiXbOB4jrVWhEhIqgG4rlU1XRhpntTejGdsmmS2v2f1buNhhont5pJlaQdCLlK2DR3BQGMcogc5d+PAahsmFd6WQEmdRut6B/TyVbaAeOOEBQ1uxIm1Tsf2VAErgXZBmQE7LHuWdfk1J3qaEqY02AbyHJWNo82HJAoTwKK1og1I1H8w5lCThhJEyk0mIECys0QjOCJYoF21dHbYXXsuvqxV2CBALQoaWekOGSgurDaQJMCIRZdrEzTZ96pppkWdQ6RsQNPb8uXvMt7AkKKY0oSQYmd2G0OOSEttrBuignqsZoFAvSxVbHV0c9gav7SuC+hZX4JLCxPRHnXrWNFWiNzWnnfoPbtB5odzj82B17nndw4LtHy5igFSpRQFEwU8aW6tG6CHIB1LyQA6HgBW1GYo5FhjnRHqGiv4RCnpcwSFrsG6Z6fY/e4DYv93m0OBgkqLhL56GqTRQYoTouosSsJPuo6S2UDKUu6mrD4bO3u+ax2dz0kmoDwrlrVCmnx5zNSW79g+tXLe2P8BWsukJxpyExb0n89ne4hqrwTAjuo31bXq3JHrLUXKJTNWTKtoOVvJVkr2XEVjtjFjOkRMc/z/2vuWHkmOJL3PzD0is7KquprdzR1iyF3tjGZWO4AEAQIEnQSddNZB1/1p+ic66B/opMdhICyGMzsckkOyu+uRmeEP08HM3D2ymtyBpF0eFEY0ux7ZmREe5uZmn5l9hmm+wr7OqHIAdLIHSq04Hk94fHzC/f2DVvsk0XbYqp0JD48Vp5vHprvp6gr73dx0f5omrRg6JhABkZUnz7MbuSa10UGrhoShLY/cdTCnhHRONnEejY+OQ8Dt7a1HS7qPS09qSi3IRVDKCWfXObelIJQCpOUMcMDV9Y1Wt2TBckoIM3qCpqi/o6AZYb6acXtzjVevXoGjVo9dzXu8uH2FwDMqIu7uXuP9+/e4f7iHkCCVBalmXN9e4c1Hr/Hy5g4vr2/wYn8Les34ycdv8OXdHeZ5xpdffon7+/tn3QgYdEM3gJ2frCC5DgQqDYSBtS8WS3Zr7OnxJAz5oebreqzUK7jXcZh/vuNATN1e9Yq3dRK3gW9WpZuXbOvP2HFAiDqQSJP3FiMwYY6zDkES3cs168CaapxhU4jgKTQgq5+tPU5m1v0/JoZGXk4AKClrS76fdRj9n9EfUZtQq56PSrNDK59uBDeZGdOkFXHAmruViJpuhXBt1WAJy5KwSO52kgiHwwFREXbkmiHJKvIDQBwQQ7QjzADHNpl9PDMjgGz+BoxaR+8tnTMoWpcFFCNp1CX2mjKcJqP/zWYj+vnqe8y2d9WWyTGx4ivriebxXgleQefDyxx47AkGQbXP0hjGzzS3m3HoMiCjUoJ0YLYNwCPzowkQYURMoDbUUW+gFj3D2jqKD7LsXML5vKBTHlzwtYmgZmlnxqWPrf5JB5ndp3ashOy59/ZkQFhQq7XpVmqJMQK1vaZFA3rf87zvfkMpkLouSJBcURjgKsrlSWhno1fnynBLl/InAXQFUKJbC5xYVGnc8PDorggZnEcWtKMFicrHwv50ETiqcajKUaEPoNXMaIXHkA3toTU3R9YVeQQH1Flz5VMwospzhVTFcOSZAdI76QME0F7v7zt+/aGy3fHvS2Dv0kHqrTXrCoT2HqGTjo4ingG8+Hcl5b5WgZHKUE3kQTjM8JCOhlbkmjp3SAuqdZ2dEdhWUhWb9eDqhvn5JDipGqhxnCE5Ih1PqOUE0A5VAp4WgURgiRG7/S3OYYKUe2Q6IyDh7bsFKd2DU8Wnd5/h0zd/Cdpd493THyB8wt3djLfHA67vXmOabyF5wnxFuLu7xVILeJ5wul8AmpAo4EkijjyjhmvcCuGj8BI38QUIESHoxL6nfMRJTjil9/j2W6Ag4eWLa+zngjoBMc3g5cp7RfGLX/5z5OUej9/9FuXpBFkYEVc4fLTD+/QeNQrOteDd/VvcHW5Qyxnp/B7T6xnTbof3jxG5JGB+xBwn/OF3D/j6t3+LP//pLfYEPBHweKqoSIhhh3y2/RHMSBtXjXPpW74d0Fdp+XYpKE2JlO+FTP9z9smqQM5DNQi0qq24Q1Ec2F7rtneukOmGb5dSkk5thX+WByX6PtkGWYyZNNelVJK2kFn2t6SEc0qtEq+PpReclwXTPDUuN3cOAGsFPeY1aGhXUC/3JgjO60bkVaGEEPR6S146AEmu50C2bHReEpa0IC3GB0NsVaIKWizD2oagnDxv375vWT1iQuAJwoRz1ilxp3RGSVn5Gmdt1UvpDEFBCIycF4QpAhB1EJodMB7AFU+ek7UbMFOBXCumqCT7Ph3PpduU8YgHHDfyB5tTxjzP2O324NDJ0iECDurYJhJEscqjwVZF+9xK6K35dkhqZlgQQ4CO8tV1r1X5goJxhbSqq2Es/MinQoGRqwIDPTjPkKLTNDUYAwJbooPQq4u8gq7W1q4W/HywMypnm0QqESVr9nyeZgCEpSSFCkTJvNNybtNqG7Bt6Ezj6hMoAGL/BYadW3q+TWFCJXVE85IxTzbtz9oVQVCOpGptBrVoxpiVS0njeTYOwYBcEkpRUnNm1loEJoQw43B1g5QWtf/GTzLvdiAITqejttFExpILlnQCc8Q0zYi7CalULNWqZ63KdZ5mMBHSskAqYTfvwFDOoCnq0J4lmxMM4/wpBZNxBpVSkFMGESv4E5RDrhZteVSAEDbRN2A/78EUsNRlyDT7OQzEoM6lcs3puTnHyQaxBFRJOKeltYcykYFDmlmfpp0Nv8iYpoAQVB+XkpFPamSrWNsqWWWV2bq4m7VyiJQDa1kWnTIZjb8J1l5ciwbVpGCFITfwbHQqC4gI026CVOC8JBCxgQumA8P0QwxBktRe7eXVYvoL9YVIqk4ktP2prYbm6bFgjuu2qFrUxyIbWKC1zlaZZc56CACxAKLTZIkmEGk1otgky1wW1JwxTRG7aQeSoO2CRblsArQFCdAzm6Nx4ElFiAG7oG0zS0oQASLPEJDqZO7VyCGwVuSlPpjF+WGECakWLEUHGzj4GacIKQU5JcDbZtrJamBH6a3DMU4ICB+oqrNqs5LBVLGbtEoxpQQpRYdccQBMNzlGhBgBJj1yvUKBuQf3ZrdKzijnRe0qQW0QCYINySqi09nnaUZk1k4DuK/ro27MR2R9xill5KWA1Vg3WyPsgFtFFvMBYkSQiJITkrWPx1mnmKJ0oNCOKIjxApdSQJUxkyau3D+otWKatQWzWMUy0ZhM0cBaJ1ZWMGuFR6saS4Ka+5mmtpa19Sqr3uaigHmIEfsptoFZRMDuarZAcNFKsnRGSgtqLTgHnaBOAObJp7ErYKFDxSJSPhuXpgbIE8/mn+h+vrmacdjd4NXLN1hsaMPT0xOOxyPO5zPOywnn02PbZ8vpCbtpxjzPmCbjlKTevrbUjHIuyFbxxsS4urpS3SU9B6d5AmgYsMLB2k2TDoaDDbBZlE7FedtinICIDlKLIISEbFVzI8Ct18ZIApABOWGy6ttaUWrGspwxz9HOUcE8CR4envC739zj/Xfv8OUfv8E//eu/wouXryAvZkwh4HD7EX751/8Cn336MzwdH3B8fFLwn7Qde7ebcHXYY3/YYQbj9HiPh4cHPD4ccTpp8v/mcMDD+/d4vH/CvN8hBFnRMGjST8/pVKu2jGfrWBLlC9SiBWAxm+9rOQerdq0VIgSOuxY7EbT6zsGmaYogGJ+n/0es+C20ejQv2SoPDcAinWBba7Hn2WOxyAzmCbUAuQD5aQHkESEy5hB1yIY+OJS8oFTlfS4oQNFyC2aN8Qn9fCBmhKj80A6EFfvTijisOwYMTLsJseq02+PxpB0yBkpz1NZhJkUIOoCuZ2FOVjBAEWBW/j2PDZaEnO3Mm4L6MKmAA4MsfvWBFeAJwcDrCgaFgHlvCXAbuEEgnNMJmXQfM6sN8ORHKcojOjrAYnanlF4xOMVeGRmIEKJ+zlITMgSyAAE6RHBuQG+FNmUr8MMGlkoV5JRRFh3cSFETXyxsPtekMVYW1FQsdstW1WZVidRB4MiTAoWpGJ9rBLMVWVTtQhKbwOqT5PVeI8T4BgkVKBlpOaGKcyzaeeGVe8zmWw46UjSpFkIEhQmRd6hWpZhrBlDt/LqwzwigatXtsahPUQQQS0IZYAaC0RUByynjbP4RMyPMinGUnNYJKnV+FEQ1p6dTd+hebkDzFGzCrCURxROSniyDnYOEYEUwqGMSj9zZM8MAACAASURBVHRAZSnKw4oCH4Ip0ERIyvn/HqCTi++bL+dA1vAzeCBrAUb7F+YAkANvGAh5YRlWc569vlAPal69O559BwOQLq9y/HUHFjrg1fB8qGmq6MtB9nNqTv3q/WR8vx4cXgJsq2seMyQXP/vQ6wA0cnB36powtZ+v32N9LQYC66EIgHEpQy96dSyUOqoiQNeeSx6u56DkuD666XPPynEBkypptU2YkJBIcMoVpwLsJkYojPPxEafHI4gz/uzuJ/jszWf46PYNHqcFhSuqnHA+P+DN6zfY7Q9Ykhpmph3CPCHOAVwmvLjbI057XN/cIFxfQZYnnHNB/voJ9Fjx69/8Fi9e3eEnr1/j9cevNUDaTZgmwjQpWHRKJ0w4gmqFJCAvBFzpff7ir/4aT/ff4Cs84I9Pv8fx4YS8ANf7K9y9+Rh33x3x/rtHfPGHr/B0e8LxeISI4LDf4e71S3zy2WeQiRGv30Ek4X/9j2/x1edf4nR/xmG/h1QHLNToOTxAogcoqmc8xj3pqqDTm4QK2NnnHBCA66r9cPjbAXV3KrJnOBrArf+vdSAjhwFuUGe9kA6CmIbSep1OZ4FWqasW06YzA7eX1IpgzksyUK4CSrzq4DgBQJ8m+kwXB7vwod+PlUyjbvu+nqI6lGUotR+dUH/tyHkBaOAyZsJWFzRIb3ntXCaeidLfC3ggm+xr5u0G7piPra6hZdHYbMBlhZde99BiB+otP8NrazGduLA1pkY9q58zMHCCAEBlAkjb7isAEkEENW4kQDP0ZMNoPLPka8Sm1BoM1naN9tHrSokPPVciQKzdc7h+zXBWLZLyZ43xHjsQDWg1kvanKRReitpl3UO6H1Vf1Jaq7hoJurH5Muv7s1fCVGqAy+q8aBXj7rB69tRb0oz3w9oMS6mgqoChGOIn1P9NjEEBPANaHYhWXhxtza41Aaggiggcdco07TDPewMRktIjMCGQVe1NWs1ZAYQC5a+0oEXchhjozKKVQ6Roo95fLihgCLOtlfE1mcNfxafVKXk+m8KJT9q1trTi2WrSAMGTE4QAiHLIpCUr+M7DXhTjzLTXRzbwGgzYMGqpnRTffZqWnbV7EBn2llX6kNtBEePhNN2K6pgTzAmvWcGEWlvqo1VUkXNlBdP2ZtQdZ+tOZNBn3AJsq3IjD4CIrN2ROmhoIGirTDCH18EPJsIUggIozUfwFntpl3O5f3xi2covZOg+YQWKIMa3Zw4yUQRxAFNARQGKrrH6foSSNFDyysjmoUOQLDGie4vMlqjvAYY5+aP/6PtK95ImhXur9VhN5hOHvbXFp/215/UBH689JfJ2NTH/ldsr/GxxvQjUKwS7bTc9FigPZ64oyO05MmlLqwBtSAFMd0pSn4shoEBqgv3T7TW16P4KHGyIRz8HV+1jVUF9bQtlBClgFlRTFAKpjhNa1RUB4MAQREykNoMFuueHdjXQMPDEwIXxjPG/Uz4DPujAgurAAYEYWTJSWvT+TBdLKdrWGrTqr7YWQ6Mn8EpaAwa0jUpBdKnVbJJzKBbkpDzNbPu/T6301kLj7fV7sXuIMWDeTdhNwSbAKnhHCPBBM1IEHANi0IEm1wcgV6UZWNJZE4DLGafTCQ8PD3h6OiItC/Ky4OlJ7c5ut1MwLO4UwLmg27i6ulLwH7JqRfNJggpMdb7Fam1hxMoz9fDw0Cr1FKRTkGCKE0DAuSyoYMR53/TGifMrw7o9FIzWdtcAscFhAtXTQFpdAgBVMh7uH3B//4hv3j/g8y++wMtXr/D61Rvc3d7iZneN3TRrr0AlrVSs2fxg9S1ryUjnBU8MLOcjnh4e8fh4tGEqyq94uLoBhPFwfGrXrMC92fiifkqYJtU7qz7r+15J32tWTr8qVqVWMmYOmIwOQHlcrXqTYMmFbtNXsWSLnC1ZaWEfU2h6S4PdFhRtZLK9yMTgEFFYE+ytZTYLsgBUcvMNmo9HfdCfV916ZZH/Gf3iMdHgdm7cs62ay/zWq3lvfoFNmwasynYYakPdRgdSP8Wr/nIllFAV1DPgW0QTwedFB5bBpjUT9anQtdbWnumf0+yK+UpEpMUEIJTSfd9eva1dWM2+S1/Tar6Mc9mtRXszdfm0Up0BRCYdumDrUYRwKllbIqnzrxGRNeoISIoNwGHkrHaWiXXqtZ1ZGg+aVgY9n4VJMyDobdHMjJL7RFzVNOsjbcLW5qkSSbn0iKgNNWqvM6BQEWUDFFdgmyc1xXxlP9uDnRfFfFxpusOudxdnNnsHk/1I97+dp4I2YKr50+aHaZzcfWoX1wNvse08/X72CHzoIIfQinLE8SkwOPZKQz8fmm9Qu+/HYbIKeG9Z1kE9ejZ9P24F/B9McXWwyIMkAK2d4PJwHfXW9EEX0RanBbnmVg2fou/h2a7nkJwaMjccH7hOV8DRoYQHEM3JG67t2Wv7g/IA6cOfsVbI0ZiNa/EhuXRIxq/HirtLgK793MYiu5G4vB74bUGwXsPvUwppz6m9bHjPy+rA77tHf6YVBULceunG1znfSJBe7j1fz+A645tvv8LbP36Jn376Me7u7vDmzRvwFHA8HpFzwjzPOBz2oP0tUhKczieUesBut8c+RqRaMO0X1IcMihHzRKAgCEHAQVBpwXE54uVP3uDF649w/eIGPBHKklBrxhwZV1c7yDTh8XiCPL0D14DDXFDQDbYOYUiYdjsIM/IiOGXBVSZQ2OPjjz/FYX/G6f4RD/dnPDyesdtf488++RSf/PSf4FzuIBMQDhNOTw+Q8kcF8eo1Xr58hW/efgvJBZUINccOvLBXSsnAb2BPeNR1b40iA0XEzjIDXXxOA4BWSVcdsCNoBSdg088qVnpjmTXAW2b9jzoytRQ8nXspuDtBpRQLbgegt0oDnxrwIoLJAyJ/HZFlyl2HOqj0IQBO0AGmvw9UvvydV2Z51Z47vf5ndExGx2WUS7sxAgSq897uN1QQptTI/6VWYCDwdaBQ27ae2w7/XrvUCWH4+ffZmsvr/T579Sx4ol4BfNkq5cHUeMZ6Vdj4/s435IGr6hHMgXEbb28wXIOYXep68fw5FiOnrZDWpuEOpYi2ULiUIq2F6ZKLCrB2DyJ4JZmfgMxsAWbV11glAkSdogIjGGZurSlAr9D2xWn3gbUjUUux69LJViVrtVOMNrjCWll9Sb1KvDm+8JYRak6RtyEww4YFOaBZEdjAKlIwTVuNuTlQ3v4yrrM6IGzgn653hfJe6j1xAyhh7+MX7HY/W7VLh3UcAep7sbdk9J+1CrAhEdBAtFqN2zE1Z7uv+PM2Y99PveXSgLaBn6uBNuREwl6R3gF2twvFMu3wgIhI+Ug8+K/aSmFXrf9W6sCnr+umlXvmTDfnt9uqsSJTwTFNyhApf6Tbgn6USwPnRh9D19qm2w0Bip8HqzN/eCZeDRIu1kBELMgq5k3LyiZUW1u9VaUnYCEFc/QJQVAaLx/YbR7gMVYtFblmrVyyaXMKQBIgtk4t0dr9s869qkMc2lRq0hY2oBOz56Qt2FKUt9DPAtcJJ8d2gBaD7+a2YpRLH6gBiw2c6+usgPmkn09QR5tJefxYK/5Szm2QQmAGxWi8fwrWl1LNj4ZRVBioVPTadOhWaa1G2RNx1Xhhi9j6SbOrYkTxIAOzQN1PZLZWdqCCGgjt5+fYDuc6NO6rcZ0EgpoGvmQDMWBqVKtWGFJgC/yL8psxIcSAOUadqlk8CNOJsKN/rVNUfcCEgqkj8CzDPtb9Bq2aI7tmH7gmgpJSs8UxB6S84OQ0HFPGbrc3IC0gThEhik2ThHWmECioPQ2RUecZst+1YTDzvEPOw5TpnHF/f2/VeicF/nM/g+d5Rt5BO2myJXYtwOx+lU6cJDBIgnL+ERCmgClMoENvEVuWhNNJp542PlL4RNDeeu/Xy5EwS0AqCW1WjJ/ntaDkhHenBxAB+6sdbg7XuLq6wUcvM0olUJxwzBnL8Qnffv0V7r/5RtupyQbNVG3PhShIB6q2T7xKmnC1m5GWhPM5GRjQz4oQY2tNr1UrcOedDXsJnuyRFrwS+zlivFLQ6cHevqmdHxW5AnEKCCHinLKB237/Aq/+dBsrRhvgfpKflRXapaD7w+A7s6NU9ZkpMKmxsidjyD6DuQIU23nR6R8A5k76r7bRk0GDP0e+D7uP26suuZ2Jl/7Ss/gQOjBQRNvg9X1ys7P6ftFQBfOZiyaoK4K17foEXtW3nDOWdNaEoifIvL24VpS8YLFg36/Xbk7t42W8js4nOnbifCjmHd9vBP/GdWDWCkixNuUIBegCB2PLUcBLYgAiA/Y68aR41bOryAIWtvWoWIp2O0TqFDcO7AIOjFpXoz2fOczIXLHbnRHjEbTYOcoRFandh29Px1a8ul6neHu/asdPFDDWdllt+7WnTX2QjepaACFAnLaACGpnXZ+GuIDJClHcV1C7GNwAux9R3f9ZJ9b8Hpx3l30PXzwf/9p9SKeR8CIAVZWemOl7yDtaYEmNIcEP0jZW06fWygq16WyxTrXzAoJne+dS/iSAbjw4R6djBOIuwTl9rS9aU5/mCI5OstDY/qncVWjkwGtw6kOL/H036SCdLlgH53rQ1yPI9jMBxs9bBQw/IJfB7YcC3cvrHIGFy9e7Uujf6wENPkWmfSatP9N/bjUa7VB049LOnA+swRAPYwToRrmsPPqQqHHREl62+j3N8IVmNKdpQpgiSCKYxFqMJqBWG3+uVQgVFUyK9NdaQVUwccDh5oD7e4IM5fVLesK7t2/xcDpikoBYZtAxgEJCqSfsrybcfPwGr69f4tWff4rd7TVmJhRk5KNOZ7q9vcbHH3+MEq7xh69+j+/evsWed3j1Mtl1qORyhFDC4fqAq5sXONMN5t0BYbrBzdU1rq9/guVY8fvf/A6/f/c54u4Gf/Hzz/Dppz9D5Yin+yfsrnfYEWOOEYfdFW5vb3C12yOnDJGCUhcgF6QU21qzZzk1Su/Bb3OUCYCVZxMBXJuxoOZwdkJRsSmqHngpcFcBmhRkLbXtH2+hrFKs5Fk0aylN2xo3m0/Nct1vh/bQeg3AqizXIIyXvo/fV8C4iwQhRuUaGpyMS9207f9cN+06xhatUbfdQTmflqZXY8WcG+oR+BqBnee24Pnne9DSOZxIqwWTctxctr+PAKe35UutqEQg6jwU7lAB/kjXQP8IkPi1uNqMYCiAxj/VMrGtWoiaI6NBW23fd9sj/Rou1rgF2l4FOQT+/Wv7+fPH1677Q/a2g76e/OmH9Q++/nuenTvMIeiwG5GyMpt+rVrZFRsoF2I0TgqjexicCHfOL+7ocpFsAptfj1Z0NKYppga0W7QKn4ZMVmmWU0E6Z4gQpmnWNurmOCtopJWEyu1GBupJLTjXM6zXxuJ1tckWNoMzNV4srwAqVVuGhdXhr9XhOuNX86DEWvYC2RAXsYpERbP0+gIMOOj8JrWK8jy1PXpRHTr4Cl6tA41dbD8ZYTG6c0ZkgTGo+SWAZ3PVVOXSEw3jXh+ddP+7OfYAuFgLUHvWA0Dp+kMECtyHBljig90Grg7ktd6064+82rsdoBXAqm2rWJXQoONtz7KR31dAS6YMkBXjx5G1vRBLwFyCLf7ZjSOpWoZcgACB8+kSCwIIWciGVTjAWPUcE2+ZZW1fIrTn0v034yEKk1XARSWfzqkBOuprf6jLQcm/ibhVFlyurSaJTI8ACzDXFSQeoOr3z6cIj9bPfdnLI2cMEkefrpaqgwgma7nyyMheX0y3xrOMQ0Rgs6FVkGpGSWcwu+5qW1ijdSFfd9czOzvJQWsFb5gDENb35qCM+6mXvmLXsbV+OKjp56cDoZe22a/Pf++7wCvbPLhhXk907eebPp/9bo+SslYBAiDuU6PdDvfPXtv+NV9T+2mzAyF0gORSL4h6kkDf64wYHjFNOwXqph2IlO7C1xKEVnmkHSiCaj7C7e0t7u5eqp5bm9jpdMK3334LEa2KOeelgcdxijjlhNO79whTxDRF47ElRLM/RE6Kr2AcMyNwtEo31YZUSwtAR3/J18nBrbbnDBicpogYog5XWNCmNUaOamcDoZSAKgG5nCFSrF1wj/1+j1oJhQhxr/QdUs44nQskC6iiVQ1lo59QHSvIYtcjBYSKKSh1QZx2ttfXVb63t7faSnw+r3y/GBS4LxCAjaKjoldIg6y7IUIgneuYKwLWAI77EF5QgUt9hdtVS2KCTBeggzlMb9W+KFelVxs1jjARaHyUAFhyloP57WvOO0AGAMX9167j/rps1cW+vxzkc3/Vn7WL24f2OULaEux6bfZ4XGc0s5Ga/ulF2P6OESUXpHw2oLsP73Guu2znIBtIpwBetWEk1M5DZm4JNxcfrtj47mVo7R183A/Zp9FOXJ4N+l7KL0ZEiNayzBZ3ifHvB5D5S0YfIWIDhdyXCUo8wNoxUZNXT6rtmybjkW/ImfpsbEMJxs4ZP69ijKYH60GRoN451Z5P8DPAoK42Zdwqy43aQytTy6AHumaqH5r4qIXaz/UZeofkmvu0nZ2yxobYk2AWc/rniEibDO+pVR/ERHDihrGI5Lk/pZ0E3X90P0csYSlmz3N13yKa3hrFmnSchqB+nUAsQeaD5xRIDhQxM6MKN47m75M/CaD7w9/82z/lZZv8I8nf/sd//WNfwv8DOQ5fXyjpL38O4Of2TQXwX9cv//iF/gGAj32zfQ2Ur/XLNwBgY+ORAXyrXx4A/MIPlCcAvwaW4X1nAL/6CMBH9oMz8NlrAK/t+wLgv7WXxz3w8HjC+XzC/eMJj28Fh7sn4KM97t7c4cXtS/zut1/g9199h8el4C//4uf45a/+GfY3B/zm87/Dbz7/BsIFGV/i6eke332RcZhucHd3hzixtiWIZeVSH6fdAkSy7dumLhgwJ6T3LQXEAq49kKrWtgIRJQWCGyP9mQe+AkFJZ21hqcUQfyP1LBVZtBIu2/dVCgiiAXp1bgpq4A+A1uLVxKuYLgymVwTIhfEiMXDPshz7eYc5ThZorA2vGujnANxlRmz8+rJCLqcFY1XDeDBfgnsrR2sVwDz/fL9Mz9wAjFrH8eS1BXyeqXYSUn3cvApMxutbL++6gqMFqvrNsF508WDQ7pFAQ8ttNSdKuTrGn/n7jwGnxgH07PmCrJ2igb6XAJ3jdq4w/RAl6sByex6qsBfPwJxIch3sazROfXXnxp3OS5FcUJmQRYwHUYNDHvTAs27exi3ClrmzigygV4Gs1snWZ5UoMVCwbY1eFcdaUtW69gjUsBOvkBXbf8K9ygsXe6NdA5PtETZnyZ16Gx5DFaDSOGZT1WEv0abeotY2BbH6/hHYexJaWYBX+aK3LpIFv8wM1GItC1axRVahQdoih1FHdFEsOLcKGDbHso6BhII98zzZWitXiT5vdV6bI95Tjvp/ZkQKCNMMQcV5OffptrQG47u+rQEqBVgJnpAs1YM6apVTIs7lREBdA4ReDTDqynhf4326zRgDBL8fAWxqWjWwkht/resNNSDLkS9zVI2e4pljO/ysgfRDe19bA7F2W0jbg8POsgx8VGzZnqfyEQI+qZmDg/iuQRZAQHQwjbJ5a7VJEWt5M+CG0HRQdc3tgwOpun6n06kDTejtUVOMmMIl8XQA2bnrAWFfc+cB6nyFblfG34828lJv2u+rqPMuBJA/M+Nuq9JoH7x6UicDk4GKphPWRgYQavUKrUn5wOxMOZ0UdFfWFG6PnwO0akFUZyqMX69qZYEYsBM4eiwFsQDOn7LvOb8/5zIbp+d6sHipux6kjcTwfR/rvgkhIMSoALrpX7Sq7L5XyDKaGN4XBqrJal/7eaDXY/+EHPzuwWcH5593lcBtCwSQstofOWWcTgseH48IcU2uXwkIgXUQjbWSUtRAz4FMrzRUACLjcLjCixe3SCnheFQKldNxsaqwgnOteDidgdMCJrQKpDkwpqg8jDEUnVYZCqZpBgJB2KYkeyswK7BMQRr9iJ/TFZ0uog/6qiAp4CmiMlBqArKBJIExzxOYdmAuiNMLHI9PWJaz7uGckSshLRXJeNYEyhHIFrezaAJIKTxqAxsFAFezzaKtlA/vH3B9fY3rg+7VEAghTKAA8BRxt3uFnBNOi/rxy3Luz0Rqaz9k0apwEk9GqW7xNGmCqWjL+Ngx2Pk/0aYZqz1UX5YudNNNLiyx4ok/JlKf21urSXnOmAPIJpYD2k5cjO8wWhLMCRR8uma5AKjcjjGP4EpFKUnbYg3oW59B/u+LcSmuz90RgJvCbECXnQ1WFe6DEpgYpRb1r2qFeDLNp3i5TTAfQwESp3ew5EXjCasGAKtBVNdRrz0g6HCv2MHTEAJKMhsRdN3Z7wX+WMj497sd75XT3f8VkVYR3uIzUZoeIsIEQhT366T9px1BA4t/NQAa1AIm8so71nOvltr0sNoUpOrJVPs3zAqya8eSIC/FOOr1+nLOylE5DbZ10ImejLGEods7pxGx7sY2gM+nlMIpEhww7jGmAnSdyoyZLIZ93n3k+pRrRYherefSgTQH3vyn6o9a7GP+iwJoptf1YlJx7OeL2Hnn1y+1g3wO0LUGLvb7dL0ICtiTF1Z1317XUteGSQHryAwgarLkB+QHAbr//Ltv8O8/e/1DL9lkk/8v5X/O1/j62y/wd5//LerDEd988x0eHw6I377F+YpR93tIOOMPX/0R37x7xJu7N/jsZz/D/uYa5yKIuz3uH97i6fgO98fPUUrCFX2MTz/7Cf78Lz7B8fgIDl9AkCBFkLNn+rlXNK0CKpUeRFUQEhjF2gjRON66g9Ur5opQz8g7EapYlr7W1gLjmYUiFZGVN6gDcj3zUUUdwiqDwz2AL27I+qmgX3h7q2ciPih2SB4Oh1YiX4ZpQA18kg+3p/t9OBfDZeavOzF9nca1HZ358f3GtjERsVZE/3wFYRqeJL1VgMi4bYxDSgG5itkddbIqNgeYgjmbHLQdZqhcW60ReSk2rz7Lr6YdVMMUpDHjFqgTwvq9+2tCCNaKa05EW4shiLGKKD+sWgDP6vS09jX4IecH2wjQrdfYLhhxNb3xOQAl0OmDDbwZnp3qXX/9WPHg37uMrVcdgOj3ozxVwSoii3GnBd0v1nLj9zKChMwKyhJoCFit9U/UwWDqAZwGNx7Yw5yQasOQ/Bn534SSBYyAebLRMcYxRHBAcQAsDSQOMSKGCUBELYJzOsInxQW/XurVWdn2CjFaxaLXscHAJvY18z1ijlPOGWHS4EOrEzv4X0UB6slAFQc3HbxwnhnYhEt9vlbFKz04j0YkrWBcDyxUhwferyrG8+LOtwYUgopsBOCjDWjPndbg9aiD6oix2Ud9ONoM+LyV2oEEb9VD2x9klRF9D1aroGgAhQXso43RYDkjjPfoNtU2WYPwDAzSbaWTmEMI1roo4CqrSmXAqvFKb2nTqXvr1ieC8u0oTUFBRbZnpOtcRTXFHWqRXl0lYA3qBdCEk+9Naq8d125Zku4HSy4pByHZUJRe6ThWQsXoAVZpFcsx2lRYaxcL4DYhtNRie/MiA8/azq92m1afVSuMJ8jXuj/H1TMdAobWpmVt7YIMJg0utUpOKUP8rB7ttZ81Xp0tAOI06bqJtph18NeqV4tzRXOz4x2boc69VgqUQ1L1omTtdKFpPOPWfshokn2/uH64To5fj//WvlrZZCZr7yWditiqHy2uEqZWPVEgWEoGnp7QXtDW2ANtagBDe57ktlL9hw4e9iqPXonSkxluC/x9dQ8CYBuSMytZey0K7qR0Ru8q0bFDOnGw00WEELCbeueEt1f7GhFRGxax31/h5cuPULJW7Z1OZzyljOtUcFyUy05KQi5Fk72omFg7NwiCGJRbjoy0kCiAp4irm2tQZPNDYL6WtEqkGJX+QULUwRRFh/scc0Y5VYSdVppwZUiuoAxIDgiBEIPawykyAu8hIBDp+bMsBcfzCcflwXxZG74lBjpUr9bbwR4KRBgEQZCIWCNq1YEjVzsb3LQk1ArsdgCFqT2zECMOUX3J83nC+XxqfiBNpOeQAYIKdhtNAQkIsele93XMAYa1eHsvU+OdRQOCvHrbgfQOhOlt7fd70wev4tYJ1lUqkk3oVrJQ/Uyu1q1EArAOUBDf07b3xkqn8Vxo9lwEAqPUER4AmnWHyeW+aYmZtpHRkmH+x0x4ayFuE1/L2pdxQMjt6n6/R4gBWmm5tNeEEFb7wn+uoJz5QujnIw3g4Ghrmo8MBwQNa7VYaLTRY4JhfI9nfmJxCiqzo4D6RSItsRqYjW+Qml9H3Ku+stkn5QvVwWclV0geEpFAGyQi1k1Dsbfyj9cXrDJUuxIwmkYdkKTOlAKBDugGb2GPdt3uwwScjUKELanpmWX93KJnMwAR4xsWdF3j9RBMjdmex1QoUOoLB11bLKmf5QO4iAxEN2XTalT7PPugNjH84ln53qpl/Tx5fC9ir2lp/04r8XV4k1jxAtDjA46mQ+0ss6o846/+UBfXKD8I0P3Nf/nv66DPLqxlAex3wTcfLjfw2OJKgNKE65CIcYEYgFWbiBQItDy2wksqLzikLowD6sX38CDauK5aKadvxvHBtOcNiPfhM1o2eUB3P7gWeO60jU7T5b8bfzZmB1dOn29wM/puWH/9H/7Vs/vc5MeRXy2P+E94BD65A3AH/OIT+00B8DVw/Fqr/j4C8O9e2u9+DXw1vMm/vIJOnPgEK5EvgT2Af/PpP+QtbLLJJn+P7OcdvG1ARIyzqNtzrRQKSCkjJZsAxayARQA0g2tnlzvGNoVNy/25Zf6EqGXpBAVTANha1ef9DA4TUso6oRKEImiZOcAmk9rRKiIAK1k5RMG1Wr2CS6B2yjJ/rNcRQzAS4wmFoBM1JTdHuBZ1GmPQiVcYgkXAz3IFjx2wJzYeNOm+gVdVOj8gKaSilcLWMhVjhE+ZGh3Rlr0mau0N2kpQlKvNjtFSEjgIYMMNRvCEfdIeeia52kRzm7jv3QAABHpJREFUTaUrqHdedIqiAADpv+Ogk3KDTTGl7G2QpQ2w0emkUKdWyDuPVwkHTbD4NN+eEVYH1EFlXSt3+YooENqy6qS8Nsp7WA1MUZBNqrRqRJijyYFbNVQtvWW9WnVQYG3TZiLk2is3RzBPr2QNeruMIHSVCp0ePaEUBfTErkfQHeQKBWO9YliBoYgYqLXItsDWKg2YGQGMakC2JnV0DQNHOB+i1ILISkJP6JUdWoESLThEr75yonx4S4r5jqITX0vunHilAjESwqRgfJVsoIG7tpY4IL82wEYX6vr7/gBWCbMwBsoBujYWzITA4Bh1YFUDBTsVgoNdPmjF+fRgQSmRVryxTfbTqnetQNQR8AIaMv5aScd9sIhUCx51gJADgczBhl204t5VNcYYKPo+9hghryoB12DlCNCRIgytCjKygdOQxh8o1u7m+iUiOC9JgWzilZ3yaXyq38pxNHkbofZk6/01ot51Aqz57zQktezhM7NSBmCw8S0odb5x1dEl5wZaiFSkkrVK6KRtlfVwaGCgrlsn9fchBCFY+yoHyETY7Xa4OtziBoQTGO8fjzg9PSKdn7AcH3B6ekJKZxQIStIWv0gRU8zQVjSr0IkB37x7h/mww+Fwg8PVHvM04epqbmdMOp91aI948FkNsNZKc+VEg/GfZhxzwvkExADME+Eae0wTgQlIraIx43yuWNIJgRSkjhwxzzZhuygATxTAYWr2GUR90J3bo3oFFsHptOB4XHBaEooA86yx3+lsrZWtXdlAH6/gzRU1VEiLlDWuLKUgoyrnI6vmO4cogTAHtS9LWUDSOSYHa2lgBqmPwGwcpYa1WUwbbSIo1T7EQapAcrX7iBA7hwMzwjw13cpLRtzP4OCtmmgT0dvZ2faEAyf9HBcCcpJWADCCWV0H1yCQ/77/zmL32oc+jZ/j53mwFsnkFXnUz0u1gZrwL0KQmqxDpmo1JAKCSAP4tL1XAcYqQE3a+gygrQOMPqM9i1oMaPVr1ySbvmfvsAH0vPeEw8hXN4r7JZCi9tXoYtyusdszItRgWIdBJmST1IGCJARBgdigiMABPAVUWBJGPHFn5xtEK1OtDJoJeqZDtHqZF6WcIEaNAYLc7JrjIX79FWqfa+x8dzo/QME5HT6xptBxXdI+3WiDEYc1sa9rVaCZQv/dKA1bCtG2c9clpUTqA4dEOs0OWAsLHBAvWacwywf0dPWs7OzJtke9c4mE23Xr817rPCvSvnqffgK6j9PPQzIgvVqpLXsJ4/cIfeiCN9lkk0022WSTTTbZZJNNNtlkk0022WSTfxz54fq6TTbZZJNNNtlkk0022WSTTTbZZJNNNtnkH1Q2gG6TTTbZZJNNNtlkk0022WSTTTbZZJNNfkTZALpNNtlkk0022WSTTTbZZJNNNtlkk002+RFlA+g22WSTTTbZZJNNNtlkk0022WSTTTbZ5EeUDaDbZJNNNtlkk0022WSTTTbZZJNNNtlkkx9RNoBuk0022WSTTTbZZJNNNtlkk0022WSTTX5E+d/mOmLlpAK5PAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light",
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "img = mmcv.imread('kitti_tiny/training/image_2/000068.jpeg')\n",
+ "\n",
+ "model.cfg = cfg\n",
+ "result = inference_detector(model, img)\n",
+ "show_result_pyplot(model, img, result)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "cgSKHJobQpt6"
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "collapsed_sections": [],
+ "name": "MMDet Tutorial.ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "1489fe29d91748cab449718d687f4ee1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": "initial"
+ }
+ },
+ "171ea927699a474084c49f8874942ae8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7189ce8a6634410a9e633832e8151070": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "767c8f4fbc924027885851365ceb6292": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7189ce8a6634410a9e633832e8151070",
+ "placeholder": "",
+ "style": "IPY_MODEL_171ea927699a474084c49f8874942ae8",
+ "value": " 89.9M/89.9M [00:11<00:00, 8.22MB/s]"
+ }
+ },
+ "aca1c388eeca4c87b5b6306302630303": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b9b75e2d894e467289cb83070b8bb998": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "100%",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf1e5d0665a141ac9c2085062ba77801",
+ "max": 94284731,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1489fe29d91748cab449718d687f4ee1",
+ "value": 94284731
+ }
+ },
+ "bf1e5d0665a141ac9c2085062ba77801": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c3018c8715924d2b83d817cc6c448a2d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b9b75e2d894e467289cb83070b8bb998",
+ "IPY_MODEL_767c8f4fbc924027885851365ceb6292"
+ ],
+ "layout": "IPY_MODEL_aca1c388eeca4c87b5b6306302630303"
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/demo/create_result_gif.py b/demo/create_result_gif.py
new file mode 100644
index 00000000..6646c6b3
--- /dev/null
+++ b/demo/create_result_gif.py
@@ -0,0 +1,162 @@
+import argparse
+import os
+import os.path as osp
+
+import matplotlib.patches as mpatches
+import matplotlib.pyplot as plt
+import mmcv
+import numpy as np
+
+try:
+ import imageio
+except ImportError:
+ imageio = None
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='Create GIF for demo')
+ parser.add_argument(
+ 'image_dir',
+ help='directory where result '
+ 'images save path generated by ‘analyze_results.py’')
+ parser.add_argument(
+ '--out',
+ type=str,
+ default='result.gif',
+ help='gif path where will be saved')
+ args = parser.parse_args()
+ return args
+
+
+def _generate_batch_data(sampler, batch_size):
+ batch = []
+ for idx in sampler:
+ batch.append(idx)
+ if len(batch) == batch_size:
+ yield batch
+ batch = []
+ if len(batch) > 0:
+ yield batch
+
+
+def create_gif(frames, gif_name, duration=2):
+ """Create gif through imageio.
+
+ Args:
+ frames (list[ndarray]): Image frames
+ gif_name (str): Saved gif name
+ duration (int): Display interval (s),
+ Default: 2
+ """
+ if imageio is None:
+ raise RuntimeError('imageio is not installed,'
+ 'Please use “pip install imageio” to install')
+ imageio.mimsave(gif_name, frames, 'GIF', duration=duration)
+
+
+def create_frame_by_matplotlib(image_dir,
+ nrows=1,
+ fig_size=(300, 300),
+ font_size=15):
+ """Create gif frame image through matplotlib.
+
+ Args:
+ image_dir (str): Root directory of result images
+ nrows (int): Number of rows displayed, Default: 1
+ fig_size (tuple): Figure size of the pyplot figure.
+ Default: (300, 300)
+ font_size (int): Font size of texts. Default: 15
+
+ Returns:
+ list[ndarray]: image frames
+ """
+
+ result_dir_names = os.listdir(image_dir)
+ assert len(result_dir_names) == 2
+ # Longer length has higher priority
+ result_dir_names.reverse()
+
+ images_list = []
+ for dir_names in result_dir_names:
+ images_list.append(mmcv.scandir(osp.join(image_dir, dir_names)))
+
+ frames = []
+ for paths in _generate_batch_data(zip(*images_list), nrows):
+
+ fig, axes = plt.subplots(nrows=nrows, ncols=2)
+ fig.suptitle('Good/bad case selected according '
+ 'to the COCO mAP of the single image')
+
+ det_patch = mpatches.Patch(color='salmon', label='prediction')
+ gt_patch = mpatches.Patch(color='royalblue', label='ground truth')
+ # bbox_to_anchor may need to be finetuned
+ plt.legend(
+ handles=[det_patch, gt_patch],
+ bbox_to_anchor=(1, -0.18),
+ loc='lower right',
+ borderaxespad=0.)
+
+ if nrows == 1:
+ axes = [axes]
+
+ dpi = fig.get_dpi()
+ # set fig size and margin
+ fig.set_size_inches(
+ (fig_size[0] * 2 + fig_size[0] // 20) / dpi,
+ (fig_size[1] * nrows + fig_size[1] // 3) / dpi,
+ )
+
+ fig.tight_layout()
+ # set subplot margin
+ plt.subplots_adjust(
+ hspace=.05,
+ wspace=0.05,
+ left=0.02,
+ right=0.98,
+ bottom=0.02,
+ top=0.98)
+
+ for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)):
+ image_path_left = osp.join(
+ osp.join(image_dir, result_dir_names[0], path_tuple[0]))
+ image_path_right = osp.join(
+ osp.join(image_dir, result_dir_names[1], path_tuple[1]))
+ image_left = mmcv.imread(image_path_left)
+ image_left = mmcv.rgb2bgr(image_left)
+ image_right = mmcv.imread(image_path_right)
+ image_right = mmcv.rgb2bgr(image_right)
+
+ if i == 0:
+ ax_tuple[0].set_title(
+ result_dir_names[0], fontdict={'size': font_size})
+ ax_tuple[1].set_title(
+ result_dir_names[1], fontdict={'size': font_size})
+ ax_tuple[0].imshow(
+ image_left, extent=(0, *fig_size, 0), interpolation='bilinear')
+ ax_tuple[0].axis('off')
+ ax_tuple[1].imshow(
+ image_right,
+ extent=(0, *fig_size, 0),
+ interpolation='bilinear')
+ ax_tuple[1].axis('off')
+
+ canvas = fig.canvas
+ s, (width, height) = canvas.print_to_buffer()
+ buffer = np.frombuffer(s, dtype='uint8')
+ img_rgba = buffer.reshape(height, width, 4)
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
+ img = rgb.astype('uint8')
+
+ frames.append(img)
+
+ return frames
+
+
+def main():
+ args = parse_args()
+ frames = create_frame_by_matplotlib(args.image_dir)
+ create_gif(frames, args.out)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/demo/demo.mp4 b/demo/demo.mp4
new file mode 100644
index 00000000..6c06d15d
Binary files /dev/null and b/demo/demo.mp4 differ
diff --git a/demo/demo1.jpg b/demo/demo1.jpg
deleted file mode 100644
index 599532b6..00000000
Binary files a/demo/demo1.jpg and /dev/null differ
diff --git a/demo/image_demo.py b/demo/image_demo.py
index 5fbf93d3..95de4fd4 100644
--- a/demo/image_demo.py
+++ b/demo/image_demo.py
@@ -1,9 +1,11 @@
+import asyncio
from argparse import ArgumentParser
-from mmdet.apis import inference_detector, init_detector, show_result_pyplot
+from mmdet.apis import (async_inference_detector, inference_detector,
+ init_detector, show_result_pyplot)
-def main():
+def parse_args():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
@@ -12,8 +14,15 @@ def main():
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='bbox score threshold')
+ parser.add_argument(
+ '--async-test',
+ action='store_true',
+ help='whether to set async options for async inference.')
args = parser.parse_args()
+ return args
+
+def main(args):
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
# test a single image
@@ -22,5 +31,19 @@ def main():
show_result_pyplot(model, args.img, result, score_thr=args.score_thr)
+async def async_main(args):
+ # build the model from a config file and a checkpoint file
+ model = init_detector(args.config, args.checkpoint, device=args.device)
+ # test a single image
+ tasks = asyncio.create_task(async_inference_detector(model, args.img))
+ result = await asyncio.gather(tasks)
+ # show the results
+ show_result_pyplot(model, args.img, result[0], score_thr=args.score_thr)
+
+
if __name__ == '__main__':
- main()
+ args = parse_args()
+ if args.async_test:
+ asyncio.run(async_main(args))
+ else:
+ main(args)
diff --git a/demo/inference_demo.ipynb b/demo/inference_demo.ipynb
new file mode 100644
index 00000000..d18dced2
--- /dev/null
+++ b/demo/inference_demo.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from mmdet.apis import init_detector, inference_detector, show_result_pyplot\n",
+ "import mmcv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "config_file = '../configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'\n",
+ "# download the checkpoint from model zoo and put it in `checkpoints/`\n",
+ "# url: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth\n",
+ "checkpoint_file = '../checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# build the model from a config file and a checkpoint file\n",
+ "model = init_detector(config_file, checkpoint_file, device='cuda:0')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# test a single image\n",
+ "img = 'demo.jpg'\n",
+ "result = inference_detector(model, img)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJCCAYAAAAsrj1sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ebDm2Vnf9znLb3v3u9/el9lbM5JmJCQ0Am2IEMQiIZAlsIKBgAOxcVwJJadSMSR2AYVZiqQwwQJkjA2xkI0AKQqgXRqNds1IGs3SPb33vd13v+/628/JH+e8b48pK0tFU5DU++2/3tu/5ZznPOc5z/4T1lrmmGOOOeaYY4455phjjjnm+H8H+dc9gDnmmGOOOeaYY4455phjjv8/YG5czTHHHHPMMcccc8wxxxxzfAMwN67mmGOOOeaYY4455phjjjm+AZgbV3PMMcccc8wxxxxzzDHHHN8AzI2rOeaYY4455phjjjnmmGOObwDmxtUcc8wxxxxzzDHHHHPMMcc3AM+bcSWE+E+FEM8IIZ4VQvy3z9d75phjjjnmmGOOOeaYY445/iZAPB/fuRJCKOA88O3ADeDzwA9aa5/8hr9sjjnmmGOOOeaYY4455pjjbwCer8jVy4BnrbWXrLUF8G+BNz5P75pjjjnmmGOOOeaYY4455vhrh36ennsMuP6c3zeAl3+9i6UWVsfK/RACrAUkUvqomhVYW2G5HWWrjbtMCOEuMRYpBNZaEP5RCLTWVHWNmP4RMHD7l7UYDHEcYfLSjyfASkttamwl/N8sUoL076tLixAGg0Sa6UQEKrAEOsbaGoAsKzHGovXtcVor0VGAqSo3ntpgqUmakuHAzVFIi1ZqNmZrDFKF6FBRF7Wfn6KiwAKmqqdXIoXCWuN/gVLWzddMySmQMqAoKk/y29dOKSMAiyVQAaZw/6NVRFEVKD29D4ywYEGpqZ3u7qwKZmOQGqwBqfyzhV9JIRDCTpcBEFSFna2VkBZjQfpHK+WulzKc0beuPQ8IifHzc0tkn7PIAoHFIsHT3Eo3bonA+HEKI2h2uhRl7telpKorPx5/DRpsRV0JhFV+7AYpoaqsH6d2c7SGqnL36UATSEtlFXXp+VhUji6ep4wAkAhhkHo6ace71ogZIUwJmAq0e78KBVJKbAVVUTi6GDub/vT5SOtoY8WM5lLYGe3xay6koK7tc3YMz9mXbn5BaKiNBePHKdxv+Zw1NRakkpTjKe0kCAUYpkPSQUgQSBBuPdNx6V4jZkwxW0MpJVU15T0xe8ZsMgKkFdRTTlaghEAKSTXdHwIQFuvHLYRASjDGzPgujhsYYxhPJnQ6bQCyLMVaN3eAqqowxiKEmPG+wNGgrmra3QUAimqCEiWFYymqyq2BxBIF7lk6DMjynFa7R+35ZTAauv1Vm+eMU2KmTO7Xysm823sNIfgPyWKRSoJ9LjktFoFSgqp0dFlcXCKKI25ubgIQhSFSQlEajN9rWscEEYhaUJZOVna6S6RpH2Ny/3qNkBopxYzPRqMRSkqMlw0AUgqsNY6vASHdDnWsY6dTwVgnz4LQ8XpdFUCA8rKxqgzW1n5Gz5m5sJjaEkYhAKayuH+Of4IIZOC21OjAvS+OYuJE0T8c+/dLLAZrb/OatU6WxXFEEAYAjMcjoiig9vu/ri1gsAh3sWMONzoh3cZwREBgkdN9bS1KuTU2/hrjBJx/hN/vCIy0GE/fZqNBWWZUZcnC8iIA+zt7nl8VdV3P6CmEnMk7wK2L5+PbnCGwgDXT+4Qfw+39KABjLEHgaFCWFVprrDW33yclUkpqv2en6yylmPHxlLbGWHqL7dmzqsrO5P70rbY2lOXtMYVhgA4l4GXHpELoAC1vj7OuDdSzow8pIZCSLM+5DYlbqtmbiKKEPMtma2OtxZja/RZ2dp/St4+ZsjBOBklxe8zWIKwgSsRsHYusBuRsb7tnundMbxRSuLWq/flI7UWiQPgxKamoTeWOuil/MpXnU7nsnmutQevpeWWx1q/5VA5rCViq6dnkhkQQCoqpvmECpDKOz/2+na3lVOcSCoTw8uj22S6wGANB5PlMQJk53WR6jTHGybMp7Yz1e9DOzpQ4icizyu0L/LyFkzWW23ztzlFmQk8IL19m45zKUvtctvZjf+7Z5/h+SnOB1zGfA2stUgrW1tbY3tkGoK6Me+dsr7l101rP9poxNVVZIxXowO+HWlHVEiFv32eM+avbz/GqELOzfTYm/3sqR6Z7Gdxer6oKKeVs32ZZipTK7ROg0Wigg4DRcIhSUyoIJ4dne8EANXEcz/hzMsmQSro1k1NZ4nhfitvyzViLVAolprLSOH3U3qZxVRmaPTUTnWUKUU84HddOzwGDMTU6groOPU0USrq1BaitpcwztITaP0yHAcJairSe2RdSun1Vm6nurfyeun2m1KZGKgXclnlSCCaDbNdau8J/BM+XcfV/CSHE3wX+LoCKFMsvXgIgbiRYISkygTUDAKQJWV5u0B9vkKZOKJaZocodAcEfesIiA4GsPXGLGh0G9OIFTOkEvAwUtSqwtVNC8zpFyBZVnvHN978QgMFTm1yr9wkWIt78n7wZgNU72hzuPc4Xv/g1ALafbKKbEjEZkd90h3G73aA8CVcup7zwxXcB0IwqPv5n17nvoY4bZ6BIzS4qSqnTBgBh1OTWRsbCmQx71QuNwyZBb4SoY/+cmqyEuJOz2Hb3Xbk8QsQJ9939IEtBC4Cd3WcxVrOwGgHw+FeuE7dTpM3QnjHztGZcFRTVbQGsI0leeAUY0MKQm5C6b2HbjanIx6hOxJHT7jlxUpFXDawsUXUCwP7OgGPHFgiaQzauOKbPUkGjUWEaTiFrdmJCk1EoSaAdXYrxIXkI1AG1P4vzrCRJ4J67He/u3hpx8vhRDg4zBgN30cSCJKGRtBlPRm7sQUAQhKRpCoCSFkRFUIfcunAFgChJKLZzJKBCT4dOG7XeRU684tgLOb26RF7V7OxuOZ463MMETZqZJB27+zY3xmgEC0ccb6quwY4C0j0o/GFiZM79Z89ykO4z2Bu6OcsOjQ7YwP0OlCXfCxgNILeOP+NGRG9lAdkuEKrh6bKHSmNEs+merTWdVsKtnU2GO44uihqBQsgagVuHRssSJgVF6nijHGka7RFFCUnurpFBziSw6KhJuuf4WsuQMiigdPdldc6xlZCd/YTx9QkAp18UEK0UTAaGuOnESpZXLB7tcu1z3mkxtsSJhVoy9IejLQBrCWPhl+AYo9EuQpZo5Xi/rjQW94y6ds9WSrlDza0ctSnRQqKNwYipAW2IE0WYdNjdc7IEabnj9EmuXnFGRKPRIs9TQi3ZuuX450fe/iOsrKzxy7/2S3Rajj/jSBEEIZNJBkCvt0qWlwwGAxaX3DoUQ0sUjKhEQthad+Nsb5OnY/o33f7I6RPUPXqdPivdrluHvMs4z7jz3EkeeuilAPzev/pD8qyeKaFJkqCUYjQazQ5SQ01a5EgMjdg9P01zlBI0EycPiqqkMhPuecECV84fuHVJWzS6MVVV0Gs6ubu7e50Tp+7lllcO3vbGt/KJRz7N5vgQ4RWpPB/SSiIefOBuLl67BsDa4p3kY0FROXpOsjE72wWLa8t0245fkibEzYhssMGVS45+aVYTyYTCut81KS3VQTZqJhPHU0ncpqz3wQacPnUPAEKNaMXrXL55HoD77n0hZSH5zKc/TK/X9TxSUWQVUpWYyh2ErVaLnf4tjp91PKUjRWOxyyg75MZj/lCvQx56+D4uPXsRgM2rhzQbCms0eeHGFGhDXgk6nXh2yEaNgrUjPUYDx6MH+xPCSDhlXzhZGYYhkYqojSD180Majqwv0x85OSWEQCCprJk5EfJJSlEUtJpNZNPR88SRdZ782nVs5p6z2FtmlNZk5S1yzxsLa+vk+RiEIUudLLGmItQGHfj55pZOr8fhQZ8plAqJGgmj0QAh3Py0dAqlkm7v1aaimcRYe9vZEVsNVlGWJSq4rZomSULhHT5aa7I8JQgU0qseQmmQispUnL73tFurToNLVy4TxW7vDYYT7jh7huWFmCe++mVP4yFBKDh5+jg6cHTf2R0gdIt20/H++nHFzrWcnY09Su8AacYLHD9qeeyL51HCGXOmKpFCeaMYwjBmealDf7TFqbvcOCcDw/XLGVprsG4d2r2QO+9LKDju+OX8JuMqQxYaYXY8AToMxkPqskR7pXNxuUGeGfKJ+x0EiqqqCKMGp06fBGBj8zJ1pWaOzHTijNfxZEDg5WKcRExGNUJlVJU/L+IWQlhq4/aVQYFpUnFIq+XkVKvVYuPmDmVpaLabnocFUSzYvOp44eTxJrf6gC5Y8E6EwX7NWqfJeDAmr9x9ZTWmGXVnBrUOS+raYuqAJHH35bUh1AnGFkRNN85BOmbt7iW0cOO8+WyBLROkqpDe4IrjmEF/TGXtjC79wR5KhZSV431TW5QKsNJQ5NLTMyEILdTMxhXHoXOIedaM45Asy6iqijIr/bqHs+sbDXfWGmMoy5I49nJDhwgLURTN+NramigOyIuMVsfJYVsJ8iJFaXeulmVJkjRJi5yV1ZXZfel4RLer6C66gW1er0C0KZWTw3lZIghpN5aIA8d3O1vbFGnhHEzeIFCBpqoqlF8rKSWhdwROxzmZTGg0I4QQ5N650GonzjHrT9I0TWm0Qk4uLTOZDP2zJb1ej80Nx9PZpKLTOkpZlkQtJ7t0EJGXFUhNrbzcMAGBUGS1l3eioInE1IpIOvqWMqWQCbXt02m4/Zjujnn1d72U/i23LltPXubs9/R4aqMgzo4CcOI+xTObn0beOjpzGrabR6l0SZm79y0f6XJw6VmuXRmyftydDf3xiGasGe0GtNrecalyhgOLX3riKKCwNY04np217V6DsmqRlbssdHzQIxBc/HB2la+D5ystcAM48Zzfx/3fZrDWvtNa+1Jr7UtVMG9aOMccc8wxxxxzzDHHHHP8fxvPV+Tq88BdQogzOKPqbcAPfb2LbV3T8hZ+XlZkVYWoJFo6UzIJDbvbNzCypC59rFAKZCgoMvc7jkPqusTFTp21GSTOW5FlKUHkrP4oisAIJpWzihdFl7wxpibk/FPPAHDfq4+itiwXH9nhqU8+AcDWlZdw4XHYnziLW1Axyfb54b9zB+9+p7MbT72ky1PPXidIFqhqZ9Hfupghcuj0nPege1TT7y9Sxdtc/ILzViysFCwsR+xfG7K26Dwf25MRtYkopfPsKNFGhoZmYtndcR6FdqfFeDzi0Q98iv/uv/7HAHzPO36C97//Q2xu7wHwbHIVU2kXehaOxpHOwRrC2C3/YFJQldJlTE3TdqxBUmEaNUunnddGZDULqx3q0Hkwqgq6vZIsK9E+JSasAnY2hhy5I+TsvW7Ohxsttq5UNE/5kG6dUWaKcEEwrJ03XagQoSrksCT3HoRWQ9NsaDauufedOnGO4bhg6yAlSJwnopX0oLSIytBuOG9abgryMkd7D6o0FUrGlNQsn3MesFazx60vXUIMxngyMLAD1HZJy9NpODzkC1s7nDzR4OiR0wD0W8uMd/YYxgWhcV6+E6dyIiVYPrkKwMbBPqU0FBQ0dlx62N4o5cbumOGw4MQdznMl1yvG4xQrfVhbSLotQbljOL5wDIDdpzbJbw6QRtFedd6mvWyCLtp0F70nOUvZvblFcykiHfl0yTQiCQVJWzMaOzpMRpAkgsWO4/0xBika2CSnGHrvcpGgl0pqm8+8fGVZUNkIq9z7tYg5HOSoQKFwvCHLmCDcQ8cxmU+rVFJg0oJOpwfAwf4IW5SAQcfOu1XZEinimdcqzyxlmRNGepbmaYyhqkvCMPwrqS2GyqesJXFMmqYIaen5ZwfSUkjF3kGfzKcFRlpz9crmLD3MmIKqzmk0Oxw55tbvo5/4JEpqrIAgdDwlpGU8HlPkPqKQ5xw5coxms83mzctuvknMa1/73fz5R/4SU7pIzt6FPktLC5w65tbq0jWJtSmliNmfuL0+GWbcc99JXv/67+WZpy/7tRqjZDRLfyvriuFwiJaKyod2szzjO7/vjWxc3ODJp5xHP0kiqsqQFT5aKA3tdsLm9QF4z7lUJVUmqE3GRDsv39/6wb/Dxz72pwTKPfstP/4jvOBlL+Yd/+hneOVLXwnAT//DH+ZtP/T36CYnOXXMLc4XvvIIL7zvIdIdN869/i16R2JW13qMRi5aaDNBu30nw8Y2cduNK0pC9ic5a8suytBrLnH5ygaD/Zx2wz1LCosgIjc15y9fAODUiVXS4T6ray5a8MqHv5N3/vZvsbDSosgdD5vKgFBEUYvUOsfdweiQKIkY7Tt5WvQVIgwZVRM67mhglGsuX7rBsePLAGxe20HqkKrKsdJdlJsaUxeUZT1LLS1qwdVr2zTCth93QF0ZrJEI74UPA8E469NtdglCd4bsbO0yHhWzNKE8z1k7cpQrV67N/qakJIkjpBRM9h09zx+MOba4xMh76rf2rtCNGiw3Okx8BCMb9jG2pCjKWYrx6TOnUcrOIjSXLl6lqCqCUD83042qygnj6Hb0rChpxs1ZNEQRsL83JgiZpT23Wz3C2HnEk6aP0hYZaTYh8Ge7UgqtApIkoS6mqcMltjZopfjyF54G4Fte8wqkKMknbi7ttubCs09xM2ojcOsQa5fqWeYVUjqeWjjbQfYDbt645WgwarC/e8Dy+irLi24fX/vyNofRMXTQYnDg6BkoQTNZReB+HznSIopTBrklSdxc+gd94jhGyALl91FZDnn8c33ysY+0rhYUZUnTKkzs5ldVkraShI0l8sxngKQZZal5wf33u/W88FWSVkiW1+zsHTpahUNGQ4WW/pxrN+h2YoaDFgf77txZ7q2wL24xnuQ0fbZAXRsmY0MceblMRhCOCE2PYuTouT08RNaSVhKjp9HXSNHtNAkfcGmlbF7nZNjm7F0P8alPfBaAZqNJL+5xeukeFk+vAfD4419hc+P6TC6PhxWdTpta3E6Jp7bktsCSw8jtkThsoZWgyvw46wwRZ0gbotU0lRdarQ5VlREF/vmDMYEKCX0Ux+iSoigIRAvPdkhREwc9Ujua8bAxLppjfXiiLGsfVTYuGgnkWYEOFI1G6zn3GZKkOUuJGwwGtBpNJpPJ7JokDkknObUpZxGvST3xz3V8sLy0SJpm2KrmcG8XcBnC1kjG/RbDQ7c2RVlRiwNaHac3dBebDAZDxoMREzFNV3apbFIyk+nT6JTx6dqrq6vkeU4+Sen1XARYKUFtKpRWRD6bRWsXNa1qd18ch1gMN29u0e26uWSTnGc2bxCIFT8mS15uk6aawPOZQKAKiwktwnraVYZKC+Q0pVM1qVJLHqZor9dmQBPQZpncB9CTtuDepXP88ec/CsCr//4pdrYLfu4n/3sef/SrALzvU/+Og1IS1BU6cvpFs9oh60cUfZdlVDRyel3B+KQh8/Rd6TQ4OOyjdYCZpZ9rsqIi8nIyTyvChQShDLX1WTiThHi55vgRxeSGe9Z+6fbm18Pz0i3QDVi8Afh1QAHvstb+/Ne7NkiEXTnnFilotckKQ6hiAukWqaYCWWOLbJZ7mxUlRWWpa5/qllcksaY21bR8AxtppIVQaIKmW4A6q9m9voMIbuf+tpWguR5xuOMMovRQ0mkFsFghfI73A2dDyCMCeQSA1vEuhwfPEEaCaxfdOEdhTJmPyCvLXScc4auNmK2d63SOuZ2fNCT9zYJ+VCJqrwQGNUePLzA8MGxvOA7TLUFV1Agf1QvDhFCFxDpjYcGl8ly4uEmjmdARS7ziW14DwI/+6Jv4Z7/4Th772scBWD0WMZmMCaykzhxTNENJHgTsTdzcBkNX56JDjfC5qcq6PNSJCAh96k44julvl5zwqRJWV3SPRqSlpfbKnNYV2zehMg1E5A6dSICoQO64Db10r8LGJWUmqPx9FVCVIApIEncQoiqyrGB93YWCX/Gy7+DPP/QBCiFodZ3AKEuLqSdEoUZYx0OTLCduBEzLwOpCYkRGTUHsFYu+FDRExHhzGzF2xsBC2GZQlciJu3HtaMSNDA4GfRaabuynXvwgVhgO+rt0/cEUmhH7o236A0ffwHRIGpooHiAyx59pVnM4qmmohPaaO8BGiWGytUNz6lhQkiRMaIoFMm+cT4ICO56QXhNUOOGqVhLKUUXgaVBlOUW2i4wVderT7SYR0hq6a5pJ5lOxJpZWAt2We99kXIINsLpGeSfF8FCxeDrhYDKk9Jl0QkItmgSBG1NRG3QFYauN3XFjOn5XTBpPqMtFtHT0lLagoiYK3TiXmksUw5j+zT67l919dVQTRRHNplu7qqrp9/uEQWNasoOxBXlR0G61WFtzh/rly5cIgmCWDmOMIYoixpMhJ3veIKprChkxBsZjTzsp6XYW6HS055+a/f19zp07R+kexc2NQ5Jmi/5wl4WOS+8LI4mpJdeu+iwAkRHHDVqtJfYP3GE5TgccWVrj1t5NYm/gSdXAqgIt3F442As5ubZGEdQ0O+6w2tvYpdGQjMZjdrxTpNfpEEaQZtP0HotEII1lbc3JoIvXr9JeXkaVgtHYOSmUsmh9O40tSSJMHdBprZGXTnHLy0OoA3QoEMorq9ECdTWgLJ38WVn/Jn7799/NYZGzcd01eS32M/7BT/wQb/uBN/LRTzj5omOBqQUL3vCfTFLSTGNsztG1uwE4snY3GVucf/aL3HHHi9yctyy7N66wvOwM2tLUFGWf17/+9Tzy0U8DsLVxgzDREAkK71TLBhVJpAm88rHSvYOb288QhBOMP9TrTBJGmvEQhD8MdBRj6hZB6FI/GzqhkDWmUZNETgapKmdrM+clL3Vj/MrjFzB5gNUjjHH8mVUZQa0JggAdxp73KtbWl7h1yyn1ioA8TxGyIvdOvHN33Mt3/8Cb+Wf/5Od5+DWvAuCrjz1GbSvC2CkxRVHSbLbZ3dkniaa1TCWBFkwmE77lW18HwBt+8E38zi/+OksnnIE5YkKxs8+zX7vE2p2nAPjbb34r7373e3jNa17FV776ecd7/UOkCFhacnx36dKzqFBTZBmpNxCCICCvK6wQM6VTq5A4kKSj0l+jeOvb3sKfvPcDHBw4x5eQFVpHCBTS1xcb62qU4sidfePxGCEUKytLHHgjIq9Sms0mRVVx7PgZN59sQG8p4saGo+eJ02c4ODjgcCclTvwaFyCqNlGrprfgnq97AZIa7XX6pe69FNUuK6sJG9fd+648vUdWDtCBmdHh+tUbNMIuw5Hbx6997bfx6COPEsaaSer21eryOoiag/4OAU4G3XPvOZ65+Cn89Cjyis6yJB41iRO3jyaB4vqzEUdWI7b2/B6VXYQMsN6RMZlMZsrytDxNiQqBJo4W/BpUBKFAi2RW73j9+h6dZsTREw0Oh+7Z/UPQukUU1X4NKqRwtdJTQ3E0GqFVQI24bVw1I4oiJUz9NYe7PPDil/PjP/2T/MFv/lM3v8ObiO4x4vAIewc3ALh58ybdhXgmXwcDQ4WitgUq8E5DW9JbbqOjjN1bU6OlCYGr4wKoswMqm9Ns9AhVMuN9ISvSbEDp93+32yCgZjD0aeIG4qamKApCvTjjV8uAsrpd2zetdZrqu1pr6romy7JZbZ8Q4jmpod4hIAO01s4pDygtSNOUKAhnzy6ynKLMUEr5uhznKIniAOPrFqVUZGnha3TVbG0qk2NrQTtxcjBqBNzavknSnqZ1D0miDloJxuPRbJwYgzFmVpekVIC1lrjR8nQpfV1iSFH41OuiBOHq17ScOikFZVUTeSbWKiaOIu6//xyf+MTHAHjwoft58CV38/4/fQSA173u9ewd3ODSpUtsbrrWCqOBgbpExgrhz9EwbjE2EyJ/kJdpQbga0YgEB1c9fY8YYiOIAoHF6Rf/9Jd+i1u3LvNrv/HPAfjP/4s38ZlHn+F7fvRv8dgjfwLAxx99hCIPWO3dz9KdLknuSOtJtjavsvmMWysbpeSThHFZYXadPh5E+yStiMpYKulkXlqWmCrGWHeGBVKhWi1sntFadM9+3Stfy/s/+YccX9WU130/heVTXP3IE1+01rpc/r+C563mylr7AeAD/7culoAXUFZL6txQYzF+48lAQaBItKX2leEr3TbDfkqj5YTPwsoq569eQIoavEI7yitOHzvK+soal67eBJzyFijhqpkBLQr6haXagNorRK3VEiNzGnVEETvufdnD5+isWi5fdYfJ+/5yk9XY0FER7cQt5qRwRcRVBZORU/BOn+myuX195uU4ehyOd+CZS7Ad+/qYLGA4GBH3lln2xf951ifQEuvzV9PKIJRCyzYPvsh5kvPqS+wcbHLyheusnnEM/Nv/8s945tIF4rZXqPMUrEQHimriiw9tzTizHAy8IYUikM4JUvtM0cpIkqBiUmaznFYlBY2mJox8zqm2NBqwdz5zufOAbEuEMZCn6Gqao18TxRKx6Hbd5kVYXmijkwnCewuKzLii8NqwsObmUtWa6jDn5FmnRKRZRShDVJljDnxd1JJmmA45HI1pN9x1jbiBlpLSF2kaFUFtqQPtty9EgSYSFdV6TGjbng5tFvb3OfCu7IMAFgwU7RZF6Mb+9Mee5AWveDmnlle5tOtqM4KJpa4MoVfu9i4NGBZt7lhfwnaG/oWwcKZgcm2AzE47PosDwiXP+LhmDEHYpK4tjYZT3MbjCUIL0nJA7GusbNCku1CRecHd6ayjOopb2ztI43O+tcVKSVpmxG3P172AMp9Q+MLfWgmUsoR5gmy5+bWaBWmeITI9KzYuqhoRpFhvgDVaDYzKyO2Iri/ltKHzA4XJAOkPdi00ogDjI3wZJdVCwNIJxdE7Hc2/+ugITMrujlNstNYsdtfZ2RsSTqNbdUUUJYyGE/b3nwKg2+6QZdPVBB2G5HlJGLbY9x7vXqvBcFySlhVJPKWzYTRJsUZ52nW4/74HSCcTvvS4MyKSqMtkcwMVWirvYb/zzjspcjFTUMp6TF4eUPcLul3nuGk1muwPd9BWUE3z/+OCPM0pfH3H0fUmkSg4fuIsjz3t5jIejBiPIoLYcvyUc5zUmcTYjJVV93trext8Q4OpIiMR5KMROsxnTTWk1FR1Thj6xhulQAjBYKT+gzYAACAASURBVLQD1tcWxC1qmaNkTJo7OTHq38CagEbPPefa5qP80A/+CA+86AeImy4K9+iH/xypK1700hfTWXV0+MN//R46nRb73psexzFVGpDlmtwbsNeuXSKJDevte/jUB92eWV5eoSosz553Ean7X/wSkmab9ZXjKB/JneQFOoyps3wWAep2u0hrGXhFOB8PaTRjhGlQZPtuhWtFVYGlQPua1TLrYwJDmXvvb2YIooTJXjarayk7LUZpxpVr7tndJc3mpTGdlqTytGtIS1EX5HlB4JswWVOxubmJF4GYOgUMSdQgiR09s6zk0U99DhUmaM+L3/Fd38O7//iPWPVRByEqjDEEQTBr3BDHMWWZkyQJ5y84Bbrz4StcvLjL+etX3H2F4IWv+Cbe8Qs/xu/+z/8CgNe++e3sVxGhMuTCRTWvbmyirWQyU9JKjFEuSvtcJ2ttqUyN9mck0hLIiFP3uaj/hfNXePb8DYpyRNPLpMkkw9V7S+pp0axwjROmdSxSapRSTCYZLe8VDwvNOBsS6IRJ6nhoPBnT6jRYO+L2zJUrV+i0F1FJTWvBG7nDkr2tQ1A9+t4J264yFtZjWv1pAf0eo0QTVAWlcDK9tdRBD53CnE5u14vced9ZXvHNPwbApz/zMYblkG6QoIUbZ6AT8iJlsXOKonI6yI2tC3RWAl70IjfOz358wNpRS3mzYM07DTYnE5ZWU/a2odNzcqKqNLWtGPqaFiFjJpOcRkMSeKevKWJ0EFHWzigsco3KQno9Q6Pl+O5bX30U6hGTScDejlurJJGU1QjjMwoQCq0FlYHh0NG3rmvCMERaQeX3/zhLqeuayjoe664fY2c05Md/8qc403W0O72+yNMbmxw93eOV3/xaAN7/gXfTbS2Qed0iaRQYq8kqPaujtXLMeK8gigNCHyXO84xEWfLCjSmI2lQ2xJTGOdMBbMGrX/VKnnjiK6ytOQfr1SsbtCJNq+nWIEqabN7cJgpDrN+jxlqE1CRJOIsAF0VBlmUzwyYIAqLI1R+VPtOiqlytYxjEtJrOIWiMYTgc3o5SNSKMMYxGo5kBJpTEZFCWGa2WM260DhHIWQSxqiqSJMAYFx0CaDabZOWILB0SeY9Ao5mytApp5sa0trKItYpBfzwzqgOlfLMJiZ2FnA1VVaPltO6sQV3XvmGQPxsCjTAWqQSJd+gMh0OEUMT+9+LCKlEU8czTFzE+Ml+lq2SjBZZXnIHy0Y+/n+2tQ+JEM+1k0mi06JdDAmFBuf0+LgZIHTDK3HMaS21OPSi58Ik+ouf2zMkHuix0BWv357zu3NvdfcN9skXNn7z39937PvMZys5HeOyJT/DBjzjHW9Jd4E3f9noOb1nWj7oz8oMfeYTBYczaWfe+K5+XINo8eP+9PNN/3FFJtChGJWVZoBpeTmRQmhLtMyaStqtbzGpBpJ2s/uoTj9KOQhqyzcu+3cnBd37gEf7P8NfW0OK5sBaqwnsBJiMQAa2OZOKVpHzSp9lso2qofPSlshWYmsobW1EQsNBsMpxkGF/UF5eW3Z0DxqOK0ne8CUJNa7ExE2J5IAjSmvFujk2nlXFQV5BbjXfC8dv/8gk6HbjrZY4Jz92fsH89oxgWxMe9wnU1QJsSaQJ2B86iv+/sffzET30LI/MFAL70xc9y15mI/f4CA1/I3GgYrInIR33OHnUpKZeeMdx5T4OvbvkQpwmJEsmkqvj3/7uzWVdWlkjagmeufpnHP/M5R5dJk26vnBUzRgFUVlNWKdPmg6UUDMZmFhkQwrXAsjVYzxI1grJIaAdjRtecREzrjKWTgtJ3BuvELURukTKg8i6Ug32D1BCbGOXTyLJckGY1bR/KV1KwcXXIsQcDlN/A6aWcat1gWzWHW96D0FAoAjZuOBqYlSZKpQwO9ykmzshttM6w2F1jsrNJmjnFqRmFCJP4DkgQhhItQqq6IM3dGkcjSSgEdbMDu05o7W7tEYs+xbrjn/5hxMn2MqIq0L5zjrIp5x/5JA9978O0G+66Ub9kPKgIS0e75UaT4WhEliZMdtyzM9Fg9YVgdcm1bZf6tdZoYVSPdOJo12p2iLoVygomu97Y2M659OVbLKwsER93Al/oDvVuQbPllMl6nHNwMKHdbTIaOW+MDRWmLsgnElFNjakxQSRnHv44UdgqQtURk8o3A2lp0p0SW2ikdusldYkUEuu9evtbE9ZX2qTlCDwNrDbUNSRScXjJRx4Tw/LJCYHfRKLISRJDLgJ2tsZ+bTRpPpwdZoiassw5dnyFwdBds9I9zf7eDkFgCPyaGmOI45jMR3aKovSpG5JB6g/nwCCCkFgF2Gmah7CUpmToO2Vub15l8eWrDAcZ3aZvMFErFhaWGI73GY+dAnTt2jX6hxOi0PNBVBIFkq1b+xhflJ3EHRrdHqO9XappgXcNiY5JS3fNQntAdzHiC194hLT0zWpail67SZqWlH5cvd4Kt7YOWWk4Ja3d7LCzs4cQiknhFCCtNaI21JWeHfTWWmwVUhbTzo4KKDG2Ipt2zsoFi50O1ze2eNmrXw/A9/3A27hx6QKXzz8GwOe/dIGtGx+mXd3i7/3UfwPAF/68T7fVorN4gquf+BIA42FNFJUsNV8MQD+9xOk7emxcLdg9uATAq177MnY3JZeuf5G3v/X7Adg9fIqwey+Hhy48et+pc/Qnh/z8P/llfu3XfxmAz33ms/zRH/0RC4sdtPfyp+khg31o+ewla1NG/QwlIQqco60kJUszGo0Wae3WL9EhWils7puyjA6QjQrb0eTWGxEDQ0zE3i23h87e02XQrrFUMw+0JUDKAisEppp2SFSuwUrl1lgq1/2ukbRJfaricDTh5s0NSlPyyCPuUH7Ri15CEHRmxnIYxs6jbspZ18877jhDu93mqae+xn2+sc9yZ8Q9952ke9z9bmG558FXM9oW7N1y587bvv8tHD2ywKWL58n7jgbdbg9TZ4xGbq8HOsZWhVc0ffMYYygrw/rRtVk2QiNJAMuli+7ZdV3y8U/+BWHQQng3dZwIqhrqsiBKfHMc5SIHg8FgRqckSTCmQoXeU05INaoINNzactGQqJFw5fIG3/rac56HN9neTjl9do3r11yh/2J7icnwFmme8uDLXXrd3oXHQCZcuuLG2VwYEB8/xdYTE/qpM1I2bu6w3DrC7u4t7jnnvNLppGLr5oA/fe8HAXjpy+9gc+sZbH3ItWcda2g14a571tnYOGCU+45wmWVRt/nUX7r5VbLBxuVFEnvIYtvN7/Bgl+V1QVkolHTGVWp22T8c0es6pVCFgsWFDuNRMVubJC6oakM87XYpSpI44PBgwPpRp5iKMKOetAgCNUvZTJodWmFAlLizaGd7wCR1HUXDWaTVkKcT4jjGem+9UorFhQVGXr86unaS8eQ6y3pAs+EiiuvnXsYTH/pLGkmbr15yKZy7wxKinMJ3aJsUOe2OpppUVLl33gYdqAW2VMTeaZhNJtSZnXV2tACmIowS2t5gPzzMeeSRTxFFIYeHbv22tm6SNmNOn3S80VlMqCnYuL6L8ftYhTXW1BSTyX/Q7VFrPftdliVpmromELOueLC+vk4UJvT7zuibNsUSfpz9ft81d1EK/B51c9TEQTLrYgzTrqFe7wxCAp0Qx/HMwGu32wyGXbLRBpF3sMhgmyipUdKXOIwNxpZILB1vuFlryfPcdzW8fR5KCRPf1GtpdYVBf8RoPOChhx4C3Bl2sLuD1ppwmrllFSpU7PedLpFlGZPJCGtrjqy7CO2t/iN89l0foO0bonS6iWswZZNZt9eqHhPrBtoOqbTTYZXeww5q7njAZX+87M0h7/uDZ1k5tcCRM+6s3SvavOCbQh75+JM8uOIaim/2/5TxeI3f3XBpgZ/58O+wdGKNj3/yfbztTW8C4MUv+Fbe875P8Jaf/AHe97/8awAuPLnPyprg5lW3r3ptTR7s8uUvfo7ER1FrUdI/6HN0fYVh6rJErJFYIVFe3zl+6k4uPfFVpAyZFNc9v0haLeh1NO1p1kQvZIPndh39DzHvJDHHHHPMMcccc8wxxxxzzPENwPNWc/X/BFFL2c7ZqSUtafYWqMUYYZy1eeZoj/H+hIOtMX2f0rC4mpDmBmudh8hUFiVyrM1IvZVqygojJUoFtHzBPEBR5Uy7xeqGJU8zcmtQPrRd5ZYIhWmGKO+RycwQm8FCx3leTq6f5aEH7uHxTz1F2nEejP7uPgfFIWXlipoBeslJfv1X/jl/+RfOCv/QJ/8FSVKjLDz5Rffs1lpO0g1oqYAHjjhvwdUn98kTw6jpvBxZOSAb1gilke3pR3NCRBlCIyWaOFeuNduYytJuu/nWtnCRiqpG+MhDiWI/NVRimndbIo37ZtS0iYFQAi0aqGpM/4Kj5933LiEXDqm9ta4DCTqgFCWjgU9ZGuUEKnAFksZHzxoVgRKMtt3DdWzQOYTLS5S1j5ikOamAxcUGOvJ1NMKyv1/zwnMv9fQtMYy5+Ox1Ml8XJaOM1WNtGr0GxrfIVapNqBVp5jy2R9fXSMcwKvZ52ns1F0QHPdile7JHesN5Hg+zmrUjCf0DX0tVGMJlRZYl7F103spT93dYuU+xswuNwHmORRxw8dpFrI+OLugakeYIGUFwO4e7Vim2NhSBr78jR5Ztth937+uuajhbQFZT+3bNRbcmvRSihiHLLz8LwGBjj4MbKafPuftuPDnG2pzOGc0wdfSUuO89jG4K3v7Wtzh2MXv8bx/6IEtrPp+7HEEJET1s09Eqt4I8lYwGBdLI2djztCD2vJgONFG5QJbsc3zdebeTXoO8tug64tJH3RjqQPHA6zsUbRdpSZREyAJjE559n+MzFcUU5R6xbnueqikLSXexy/pR51mOkxUCWfKVLz9Gmk7bwwtf0Ot47KB/iNYBtq4RvlYEJWn4iE6aOs9uu91GK6jK6XdFakKt0IEk9S34y1JR2cp9YsCnqBV5ytEjJ2dtrJUuePiVL+eRT36arV2XchybgEklKct61kZehhnjrJp5TF/1qi6HgzHZYIUL5x1PiVAijAVbI4Ube5IsMU63OXPKrXn/YESYNHjJw6+YFY8fWVnml3/xF4iby0T+OylCWurqOd9iEQVFUbCyfIStvouGhlRoG1HUKTZy3sjF3hn+7R+8i3vvOA3AXWfWka2EULYY5T7KP57QbpQcDodE0Yq/TzMcZfz+v3kvAO9+z+/xR+/5PU6dWp+lfu0dDNjZmxCLgl/6BedlPMwv8a7ffM8sFePosVPIMmM82uZvv/0fuLVaSPiRt7+FlaUWuzuOp97+n/0QYaPNu//wXwEQ6AY6qMnLPs3IpQWfOLPOxStfIYwDsr5vy7u0zrjISH1TgaXWAoeHh8iqz+me2w9lCHsj2JumS4cSIS2ili4ECUzSEm3dGjdbbo3DICLPa8LIy9cqpSoiej3N/p7fj0EDaknUikn9GaZDRRKHs2jz0tLSrPX6tEA9yzJ+9mf/B971rnfx8MPf7Oby4hdw+Ow+577JfTrkynbF937X9/Jj33o3K/e59auGBUU+5mBvD+F5ajweE8aaspqm6YWEoXQpYrNvzFSMs5SVpUUGB86b3W21ORikGJ92FeiYqqqoze0W1RZJUaaEOiT3Yy/LklarhbW3G3YYUxHF4e327CqgrmvXpt2nZy2tLrJ25AgNX+fa7bX40Ec+yYmzx9B+P+7d2sXUNZNRzYMvc3QQIoW4weEzLtwUhore2RUuPzFiuO8yHawRBN2YfJLx3d/lPrPywb/4BIeHm6hg2s48Rqsm3/mGN/D00y5C+7WvPEUctUmzAaEvFWi2e4yGKQWOz9/w6m/j1vAmm9eeoPbt78uoRMoEYywT5yinKMc0Gz2M/2QMMqeqMhrJAvgCelul5OUhoT8rdGAJgojRMJ9loEzGNZImrXaDYd83j7E1K6sLxL4N+uWrV0ka/htA0+Y4ZYm1lnazM/tWWl1Ds9Gl8pHkw3pIEESsxjFJ18mIUSEJyoB+1meU+UZUNkYoZryhZAiiRlDRbPT8+wrKssKi0Xoqj4fUVUHo5Y8QitKM3Xc162kqbeE+YRAFrmgbuPvuu/hHP/PzfOozfw7Ar/zKr7O2vM4oPZilACICoiQhe07TCaXc/Kd87tIBS+q6nt0XBAGNpEVZlrPPQTjay9k1ri7Ope52/ac0Dvb2Pb+Fs8jjtL5rel9tXC350tLyrLlaURQUWcbu7jWOHXFpj4YJR08sc2vT0ffWzT2EtEgVzXS6NE2xxqV3Tuu+XG1VMcvkOHbyBIPBgOHodvQuDALKMqeVNBiOb+tw7jtP008aWRQCpeUsClcWEssE4fk8iZssLrX4vje+md/4jd9w85UGZSuUhoFPiddaY8qKltdp1+9u0W5lvOLVmvf8qvuUxwtf+d384E/fy2/9j/+ebMl/QqV7CbVzDyfWfFv8U7vceLxm+8aQsy/8PgCWuh0+9NFHef13vpG/+HduDI1eh06Ys3XdRRsj00S0axo6Y9D3OvpBRBx1maQHyMjzRhTRTzOOHHfjvP/+B/jYn32IU/fcw+u++0EAvvyFrzA62Ob6+X2SwEXmwtWC6589/Lo1V38jjKugIWzLRZ6JGy1M2EDGBl379KLhHtVOybCERnP6TZIUITQSX4ciXBcsnZSMlC9irGtEKKmwBMYxdLPVpRQK7TewKIdsbmWcOrGEjp3iVmaCncMRqqrxn9ehtbiIUinrPnVo5cwibXsvzeVDzt9wHUw2vtpnT0tUmaEqb+BZxQtfcYRG0xUa5+mEa9cf53Q75PJTjnkOxBgi6C4rjoy9EXjhkMEpyfqiUxgoLb32ES5tbzJqeoVhdY0bl7dJxYDxvmOUbjsklGqWxrK8mqDKJQ4PLhL4GrbBoGSiNanPbY4bEKuQycjM6pSC0FCagCQo0QcurLu63iYNLxBG7gAYDgRiocLminzovyNWxlRVhgmYfTeg1RS0IkhT33lFlIQiQY8lBz49THUVa3cJlDZkXhhs3ahYaHVpBS5l7IlPb/Kil6yzu79BlbvQrOqNaXUrDIbB2G1+qRZYWV2g4cP9i41VtO5ya+8p9vz3qiwBi+2AK9s3aEY+RH04piEDmtPDZH8XddglWogplU/r6h7FLHWRk4vs3nIHdrjSoWkTdnZdKkGhalaFayZQ1tOuOBoRZYQKKHx63y3BqIbxwBeT1zGt4xHqaMbY51f3AsXwsmR0GFB6BTq9OWD9eIfuccdjT39+h5N3Bgy0RUlfWzSuyCJBcTDhR7//7wNwz93n+Nlf/S85epcP5ecCWTbZuzmk2faG/pJi91DQHxYsNh2N00NLnIxIfW1DYBXRsEEVyVnx+OLpBN3qs3dZM9z3Q9ga88BLl2jeNRXkIVZkLJ42pE84Z8CH/nif1SOKYd8JRElFI16gIqeyU+NulVPHF9i4cQ2m6Vm2ZjQazDoR1lZwOOiz3GuTm+nhnIEpUTpE+pSYbquNLDOMnn5HKCOJIv/dj+mHaSVh4gtcvcG+u3eTE8dP0fBdKl3+fsDDDz/Mv/lf3+We3W0jRZO9dI+GH7sKJIOiJvDpaFpkNFaXWet1eOa8q/EKGi1MHUJZE4Y+bbWpGQ1zzpxwgvH8M5dZXF8nk4KfeYdL03vyy4/xB7/zu7zkm+/n2ad9ow2rCUJBljtjuSxL6gpOHD/D7jV/TbfFAy9/Bd/+6tfw3j/4LXfdWGGDU/zqO/8nAP7hT34v16/v0ZZN9sau5uqOe86xu3kDHQbkB+7wN1EAOqDXc9+hsmJCt5fTTNZ56sJXADh7TlEOUi5dtjx4/xvcEDqGXq9Ft+Vk0nv/+AP83C/8HOvLPf7kz1x+/Ft/+Dv4uX/8Dp5+/GmqwvHHg9/0Kj78yY/zjv/qJwD4zd/4HRaXWxRFcbtOMa9YPy3o/h/svXm0ZVd93/k583Dnd99cVa9GleaS0IgkBNiAIQaMIbHdNm2MnRXHsRO3s5KF0467nXbsdBK3223a8zxjaAO2mCWBDAghUKkkVamkkmquevN7d75nHnb/sfe9JdZKZ61eqzuLP+r8o1VPdzh37332/g3foZ1y4VUlmDP0ufPYbTx3XPoUVhyTpMx58PU3ce7ZZwE4eMshDt90J05T7lOPP/F1+p01htvO1HtHCJkMoGvTgNJxHEzDI1cQxCSNsLQGmhVRUV5NO4MheZiyfGAvKF+dTBOUiZgaXE6CmYnvEUC3O+DAocO0Wm0WDt0EwFvf/zAnTzxJ05WCIS88/yqto7O88qkvTyGqFVdjd6tHZ2cHXZPfNzvT5tLlHRYX5bOXi4ThIKZSqUzhRUEcyUAtDmgofqFj6HSjfGpqn6YpjmOTptk1488io+JXybOMbKIymCS4rj/lc4ThmDxPsR0LFISrLBI0LAxTkBdyX1ret8jhG/fy9SfluWpoOrV5G8NqMBp31T2ZxMOcMOtRV6IzTs0jFzk1pcbomTBKOlw4v8Fi/YC8d7NLEuaYepODeyW07Nz5Z1hZabFvnxyX86/u0NsNqMzv5cGHJOTwpRdf4Mr5y9iOQOQqSREjbLNBpaVEEvIlUquD62QkQp5rUViQ922oFIw7ch40HDzXJknUnqdJuFiaDWi05L0HvRDLrDEcyjOl4tepVptsbmzTUmbLujWk08s4dGSJeCQ/q7M9knC/Ugb5huUyGpQYVj71NvJ9F9d1CYIRtuL/BaHczw7sOSzXnT4gudJlf3OOWHGEdKfKj/zwD3D86Sf52hOyWGx7OlFWMFZCSnkhk3bHsimF8pnUBIOxgV0p8BRdoSwsLO/aOqfIGY4ibNskVx6kvu+jaRrzc4skiRy7o0ePsrETEqh1sHr1LO3WDP3uAE2pS7u+h657xEk45SmZpklZltMEs1qtUhQFQRBM/6ZpGromxWpeq+CpG0wFLZIkUuOofwvksCgKTN2YFhuyLCNN46koTK3RJAoz8lJcE8LIM2ZmXFzDQ21vlCIiSrqkqfxsz25QEqCb15Q5dUN6Wr2Wm51lGXmeTxWSDUXBiNN0mji5tuSLVVyP/kgm0Z7nous6seJ4xXGKY3tYhjaFRJZagW4UOIYShbDBNDziIEO3FOQXl3Q8xmhYU2Exu5HTPGxiavK+g1GANTfDe971o7zroMxHPvvEcWpv2GXzwlfpKzXLhTmXfbOvo3tFwoT/6uMvs2dpljQdkgSyEFb2YoJGxLzlc+6kFL7RFk2E0HAzOZ+9qwmmbtGa1bBa8rdsr0KrsYc0D+kncg3lQicrChYXpVBUFBbE3R6tpXm5iQCtukXcX2O0E9NcVGqoSYXL39j59k6uKjVdtG+Xi2Gk+TSrFnaREyr+TxgNMPoJuiuwlRRrMtIwiKnNyIEMRwZ5WZBnAqVPgKiWOFqDbDQgVRVur+LjiCqW6o7srAYEQUS97lMgD6ajN9/E1StrxOGIRk2RFscujUWDjlLz8lyT9c2Shb1NVpbkIXfl6il2BxFOQ0NXHDJLd7jn7mMMlZJcPxwTjS6wtHeO9S25sVw638F2DJqLBVV1nxUBWVYSqUN9b3SAva0mAwqe2b4EgDvv4JYlhZuzsyYfDs/IqJvGtHKWliaGVyHejTF78vvyRkno6ui+3Iwqlo4mBMPYZjSWn1OxNTQbdMNAKJ6SX5a0mib+ggo07ILx0CMlJB4rXs3YIsxSbEMjU1KXRgG24yFKRSC2LeYWllm9ugOlUhS0aswshWS5SWdVdevKEL3WoKI6ZaM1jdatdVgLsScGhW5OmhsIUZKorkaW2+iOy113ynlpOC6jjsaePS1Kpbj31PHjVNtLWI7NUFU19Rz0MGY7UwdjrtF2qxCPSVUnslpZwLZMuuUunjpAyzJHN2yCkeI7YSGKkhlLw1Ck9yCMwdIwbA1DBfHZSGe0LQj78gCoWnViL6Dl2XiqajOeiUiuuCSnQXPkxjK3p4Z9NGC0Iedz91zE3E0F4zjDUW7loZbhaGB5HlpHCTy09pDVL2NNnqskRaQWD93xEKkalxMvPYNmVkiKgIo6VNPBAdJwRE/IDk3ds/Bim6vrBaZaG7c9UCda2GHr7+dwlHz52tYl5hfnuf+75EHxpUc73HjHIjfcbnH2tLz3E5+6QrvdmB5wwTgCIZQq6LWuX16E0npAdSKaTRvb9vGU9K3u5pw/18Wx/alrfVFIPH0cx2hKxEPTDNm1Ut/nmeAZDp5nsau4IbbXpN6o0N0ZkuYTFT5HBg7aRKQloyhykuSaCpdp2PhuRcrrq6pMSY4QxVTwpSwMZmfaZFlGr7+p3lcjyzJsL6emyESj8RBDN6cHcZ4YoOWUIsKxZTCZxDmFts3+/XewuS4PItPUCKMxnhLZiZIMITQ0zUBkcuxc1ydE5y1v/e/4pZ//KQC6O+vMtBf4s9//IgBXNi7zyKc/zC23H8NRGPPtrXPcfvAOLl89Q3c8SU4zkjSk1pTrdWXPnYyCVaIkp9+XnbJKw8Wdz/mx9/48e/ZIc/WP/dHfUJ2v8colKerxoX/5s9x4481sayO+/OcfAeDQbQ/glAk/9oH3s7xXjsva+jY/9+E/hQ2ZJH3644/w8sZFmq5Brn5fqs1hlznWTEx/R+7pD953L37bYr51QL7vI58gDTWO3XcbL70o7Tbmlg7zw//0J9jsyHX+yMf/EEcP6e3oROk1JakkydA0MbUKcD2LildhoPbXogwxLUEUCWbbEv8/jLoYeoxfWZwGoqYYYphNPKU9MOgPsR0LQ7cRupr3XBBFY0zTwq7JAt3e/TeRlcF039LiIWm4Q5oIBkOZ4N1+260sLNV4/NHn2H9QVmT/0Q8+yB//wSdptmSV/OgtLZ7++1fQXtNRiJOxFAPKMpotmRhatizITQLOIAhAqQlOSfaWhWEYJEkyDZgdx0HTmf5blPJvuq4TKQUzU7PQBKRFjO1e4wRZtjFVeowCm3rdp9QyxmqPbc82cawma2vnpvvNTXccXyubKgAAIABJREFUYm1jFdeWQeBse4Znnv4Gi+1FZpXk/9rqBgKLKE0oJhMo74Q775S8wQceuJ0TJ45z/uwZBqEcl7m5Nvffcyuf+8wjKAAIUaDTajRoLcnnY/XiZebnNHKRUSh1SaGVoCWIQieNJl2bCNPwpiI0Ii+Zn19meU+bXcW13VjfRtNlog0yoa3VaiwuLtLryRgkSSOqtoPtNNnYlO+r1goqlRELbZXUb2asXkmIyvya+qNtUZY5SZJdQ7gUBUcOHSHKFYIoCFnvd6gDtRm5Xhptn7e9+V2UluD3/refl/NQr9MNYaDOzH3Le1jfWaXUPFAxULXWwjAMdne3p9+XK67fROzEMAwW55pc3eySKBVjo5phCQ87CanMyU75lY1dNGIqKnkwTZOkKNizbw9xoKTmt/oURoqhlegKilNikxQlFPI5dnUTbJMYaCj+n2VZNJtNsiybdoAGwx5CFFPDcFkwcCnLcvoa1/WJ4xjXdphT95nlJd3e7pQLOzc3h66ZdAf9Kc/U8zzyJGV+rj0trAThgDRNlK2QlI+XAiTeNNlxHZ80TRHaNVXDopDdyNd25ooypxCCalWOuRCC8TiUz2k5sVUxZFNQmREXZUpZChzXn+5vugWYFkIJsPiVOmUZMOxkqDoDtqkxtzzP7M2zWKqjf2VznWq7T65iShODy5c1jrTv5m3fL7lTB4769K7+NqfPBtx8kywe9TcL3v4PPsgn/uLDAPz57z/L4t1Njt14Hx94h0Th1OY8/vNv/AI721d55ZTqVM0YGFpBU5M8ZVNk1OYjklKTysiAVmr4rkealQxjZdlke4z7A4Ti1eUUWJ5Ns97CdOW5MzMfcPEbVzCqDQql5FyWJaOz2X97tcD/N1eBhqXkt+cMj2SUM4xdZtQG4ZopgRVjmtIzBUAjIU9N+h2105k5hlcSRTZaTy64VqWgt5Fy8OgSV3fkhhSPh9iuTqaqeY22Rlm6jIMQtbfz8guvYjsSqjPuKyWpwYBR4mI3FVE1iGnXdXLR5cxVedDva1v4dUEqDDpb8sFLDJ2XL1/AR27ucbGL63ukSUAayPu0LZPWbEGR1YhzOXGXz+jM7bOozcmFuT28yOb6Ama1ZK4tV/SoHBNaNfQ8oaLgNXZhoosYS/2WZm2Osxf7eHZCZqhA1M+IgpK6J9/jOx62ZzPa6lKXt0ld1CithEzPEUrip+LqRNGY5arcQGKjQxCEZIFGnioREVtDKyWZUyhIpWUaCC3CUypHYVzQ7XfJi5CKSpJcPyDJSkbDgsG2UnKbt8n1IaWCF9b9jJbfZFXEuLbcjKp2Hb2ik8Yj3JoMIoYBWJ7B2gXZet57+wP4CxYPPPwwz5+UwdyBFdjZusx4J6LuywCoH6/TDQJW9ssKRp6WxGOdstpgqNoxej5GCINsVOCpxHvl4D5sy+PsafnZgzDBrVQwPYcimjih+/RGI+ICbFt1DFsmCzM+AwUX6a7GeFQZ9GCoquAztQpmM6F1h8vlK3JTbrUzrMKhr1r7WRIhUptKraRQ6j3lsCBKDGbcGfAUidfaoVpzSFVCZGQ6w7WCE1GH5YOuWgs+l8463HZflayUN6a722ycn8FTErnjMMKIGnh6TKxPxCpqiC3B7s6AubY85GYaMN5NOPGofLazjssLj/e4+JzJ3IJ8tms1D9u20VTCaZrSz8p1rGuqeLqGZzUIR2KqWDQaxuSZQacvA8wkzXF9hyxNQUwqihqFroGwyFQ1tNVqcPONN/HlJ78KgE2NuEhw3MpUlhw9YXc3wLIFdWWeEgYZvl+dKmfmmUEqUnzPxVCKnqWICNMuGCZxOOnWCSzLpciU5HAak+VjDMPFUgFCxXeJIkGS5lP4AppOSUmiglAEaMKiUq2TKW+4ghxDa3D54rkpKbsoBUIU0yq1oWmkRYFtm2Tq9+UIGPbRw03qB2XHSdt/EE/Y/NyvSxnyc898hVMvfowzL5xn76IM6nd7mzy9O6TXzVhYkvPn2CFJnHFw3+3yc4TOwf13EicJpyIp4nPrrTfx+KNfZeVf3Y+pSP1v/95/SHOlzf4vfQmALZHyyG/8Oa970xt574/9MwAe++TjvOkfvJn3ff+b+OxnZNJXdeHVr32J//13fhuA73jH6/nv3/MThKKHZcjNq1oWDEQffVSl2lJB9eY6N7T38+CbpNLq+tolLp2/xDDc5j3vltLoZbNJe7bKo1+Q0uWd1QHHjh1hFJ3EHFXU/EVYto4QBpqyATEM6e9Ua0vSfZ4DeQvb7XPDMRnY+Czy9IkT5CJkoa26r7ZDESTs7sqEwbYcDEOjLPKpsqNjeti1CsE4hpHcz0597SLzK/M88LDsqpx7ZQdXm+PKpc6UhL6xfRWh7efGW2bY3Zadx1dObvLP/9kPcuH8JQCee+YCRVFiGClqq6ZRbzEej4nTQBaEgHlvmbxYn1bAC6VoKL3m1N+KAiFkVX4SxBdFgYFxzZOoLPF9nyAI0JUSYZ4nFFmO69UJA/l9llNS96rs7gzUGJTEyRjdTqZiGf1+n4NHDCojh2gkx3Nru8v87AKoqv9LJ1/AcS1qc03Wd+QYpHmBroGuC0wF2Y7inAOHZhmF0q/yNz/8PI1mFbdiMbcg1+t9d7+Nj3/srxCUzMzI8+Kuuw4y6F2BXO4RzZZPmNsIYtJAnuOzMw1GUcGor5Gqs92xHMJxxuy83Mt0R8L4t7cG9HpyDQVBgOPaU9VPqcqos7W1MxUtGI1G7GIQxxvMtGWCN+zGiEgj78vzanlhnspBOHlZTD2RyrIkLwWGZV7rTpSC8xcv0FGqnw3HY2AkaHYVSyX666++THcrQrcFodpLRJqyPYyxPLkfXL06wDIrCN3Gq0x8LTOEKKhWq9Rq8jna2QkJw3CqNhkEASPXIEj6oDwzm9oMG90u/9PPvI9nvvQUABcuZlTrLpkqloXjEt0QbK3vkGYTcYwM1/AwDcE4VAXlYkQhQDMm/oopepRgGTop1zpXo9EIwzAYB8PpGtZ1pkmgacqu0WvX+UThM80z1tflOmu1ZyiKYgov7PV6JEmCYRj4ylgzy9Op8uBEQTBJEizL/JaO26QgOPH/gomKaIalinaT5Gyy71erVSzDYTAYvEb0KQUkxNFUTQqEDjrThEEzwDR18iKZJhuUFmQRuZqXKBfsuWGW/bfPsP+IVM4bDS+yEesIzyccyUJfpRqQjSOidbk2j95+A3fvr2EvBGSjTwNghW8kGi+yz+zz9AmpHOv2DjPzA0fJIllE1Gowv7DE/Q++hUOvkxBgMYootwziIkHV/jA9S3b3NKXQnAvGAw2vAXWlmByHgjgZI4RDWxUNSi2jzPukqjOoUaXdamDb+6nNybELh+vEoeDwLbNcOKV+X81kCm37L1zXBS2uX9ev69f16/p1/bp+Xb+uX9ev69f16/+D69uic5XnJYnyxnAyGGz3aS3VMT2ZNWaFICpstL7AV8m768BgJKhVFNZX6Oi5hUbK/JyqAvR0rDQnHcNMTXYjymKHKOhjubJi4vgGjqeh6frUSVrTQdNSKhVz2rkymh66liLGChdfgcQtYFjnD379DwF4/Buf4PzFF/E8j2e60lskKHNqtTFlINv2umEQFjWcTDBUuGHLsMnznCwPMRVfzK7n5MIl3pH/fvM/dnnpRMyZlwboynzYSGyizgA7ypkUImbmfbqXSkSuukZRn7yMiFKT2+9V3hu9MXaeTSuv/U4KZoBre9MW7mirxLJtjGaKPSPHpaSg4lZ55vPKm8Kdpb7Sw7QzcpXBJ5HAdqHuacSKdzbYSphdBF2JAWhpxqA/xrRA2bngWSW9js6ob6EUR0mjBMurYioeyny7SdyPMSsauzsKMiI20Qxoz1SnxrDDrS2soo6mIAGa5RDFI7745ZOsd2R1stNZY+/cUQ7t3cfp87Iqtr66TcU1sUxZhTM1mzQZYuoWy+09AOwONymrBntqFQrlMr7b7xP111hSlUg3DhiONbpDcNSC1UoD03dxLUFZyI5MGEWU+YBaQ1Y+9UpE/0WHZq1Od6hMdjc0nNmMqJqx/04l2JFr2KJHMpTvm2nUoCjonzfIlLdIe7bFbjGiDMIpXl0rdKIdwfytygw4sSBp0O9vcOWrsmJabVQZb/e4dLrB8oqsurtujYX5Kp2xkmYvEqKNGMtJCHK5Fi+f3yRJS2xHw3Xk+8ZjDd0Y0uvK77N0DRubtBdwbl1+n+kYEATkSgykUqnQbrdxPXvqwSSKgizLKAUo3ja12izj8ZhMVZsqlQpZqlOU/SnHA2FOifcTCE63t4VuHeHYMQkZDYYpFc/huedeotqQ9z2KRliGQx5niMrks2yEkJAMgGHaR9MFeZ6gq2fW0Bqk+Y6CAcq3maZJHGRU1OdU/ZyDh/bxwvNnpveU5iNpfg7TjkVZxtIWQRHONaOkVpWQP6E6ubJjlkgj8bpcs71eZwpbk59TUqIRBiMMU7WzPQ3HrnHl4hqFEhHoJTmRlxOHcgwOPvgAH/zH/5oHbjtK6cq5+dDP/yIvPPci9XqFwVDuXb7VgCLBteTve/a551lc3svqxkVqij8yHpcc3HMjv/LL/5EPfOgXADj16qukTxnc/z2y8pmmIwr7LL0rFh/+e9lV1Eiwjs/y7u//WT7zMdm5cpZdPvt3H+emh94EwIHb5vnBH/8+/o//+NvM7JHfl8cDbNNDLw085S92/swq99//bkLZ9OP4157httsf5kf+hx/lq8flZ6eDnCurGxw5KCuaTz0WEY0Fvlcn6E268DolGWlsYzty3rNYoyxz7nuj5Mc+9ffrNGoeQitIlbmz5ddot5oEYUpjXvH4tnq4bhNXkfrTNMUyNdIkpVqTrxmPxqRpjOP4fMe7pADD2UvfJEo1vvzVV+X3ZxpzbYOoTKi5ynNxlLG+vYNlQmtOjnFrdoHjJ65w9ZLsSL9yfhXD9PF9l8FQdkN+8id/hC88+nlGw+pUjjouAoTQpqIwlmWTJKmCR03WuUGW5VK45zVVfrgGC5xU6SddLgBTN3F8hzSLlW8OrKwcIAoTXGfCUYopS4syrOPV5PMwHIYcPHQrpnWVk8/LivdoHHHr0Zt4/puSQxeNI26561aipKCnOCZVp04ehxiGRaa4GRUfZlvz9Hry9zZnBUWcksTmlPh//Lknqc3FZJEgyWVl3HR0FuZv4YnHpaF2a26eWITS+sOqqHkvMWONuZk2i4ow/9JLJ9EMCcEC0HWLC+cvkRXjawIWauxSZc0wHErjX13XcVSXwzAMZmf2o5mC9Q3Jp/Rdm1j4lAqvdbWjMRplFKJEV8axSZZiGIYUZVCc1TiKGI1GLC4oGW1d4KY1bjyynxMvKP8/XefVzima9TqzSoAh6Ee889138bkvSHuYMnNxfJ80jclCFZRYUrAkCEYMBvJ58H0fy7IIw2tCQ0GUUySChq/QQTsj9h8+iutZBN1t9boFqnaM8uZmfk/BvqbLxmpArLpSwnLZ3RmRuDPoyHWNsDHJMUu1pqwquSnQswLBNcPl3c5gyvWSc4P67zXBFyEEWZZNoeygT3lXE/hgv98lz7MpbG806FOtVsnLayIUhga6EieadJek0FLOxD+qVBwt1/GnnCvbtqfiHJP36bpOkkb4qhOY5znBOJKm4KqbZZqSk1SWJb7CIotSwzAFo5Fci7ZVQzNi6a+Zq46znmBpNl5T/raj97oMUoOhXeLMSthcfWmW888dZ84LWGnJtRsVPs8fd2gpBNpdd303b324xf/5Z7/KW94mPa3CsYmxcICzL75AbEs49up6zsXRRWarch3snbdpVDTOnH2aTk+OwerqiwSNV9B2S2oNxY+LW9QqCe2GnPNs7LCz7mFaAZ5CSBnWGEN3yXN72p0UpUGztp/dvlxjS3vamEWLsBCUQhkw52Pe+t3fSb8YUmYyhiz/n5tWcrz/6//7v81lGTYV1dYsopgblvYSmxGRavManotrjxBOMfVFqJga3bWCrvJgasxl1Nsmlldn87LiTlgFghJEimsrkQvtILZ7jiSZgEUTDKtESw1MS7Vi7ZIk1smFTm12koDEFOhYKkgqixRzoJGMQv5QkcKb7b1ku7O8/XvexOCS2hStsxx7qMk3H5MT3moN2TqbcO6sjTMrH7zxKCULwapqNGbkot93MOLSGR2jobDw1gLjwZjF6jyDsSKTpzGWMCg0A0uROYNxjG74DFVwLpKMpIRRknN+TS6Kfk9jYc8KhikX3O7mLvF4TL3hkgXKdC/OyIZV5vwWRV8JLrQTwqGJmcuAJdjuMhjoLB/22TonN5/mbEZ7vmC0lWOrRb/3qEE8LgjH8jWupxMOLbAyXF8dvEJj0C+xDG3q2eE3PLIopVReKpubVSqzDpo7wFab2DDSEbnG9vYYWwV4WVFSJDm28i3IypSXL12l7naYa8nDZHXQ4/EXP8fr7n0r3/WdH5B/Ww1Z2z7LSBnVkiekieDu++8inSSPnQg3qiFmBGPlp6TrNnuXD0CpDBhdl1xklHpJrhIpx66SZymiLMiFOlRtE92GUFkbO7aD4fQIxmMUGoThesJcrYKwQrJU/nFsjtBEA7+mDBETgzhJOOAErG7LjdRu6XjVnGBtSKqI4kmnJBvBnpskrKW72icJU4q4pNFS3imlQaNeYbRhcLkv116tLuj1rtCYk8+Q6ziEoiDNMzR1wNiGT5LmeLWCWG1IcQm6DY4u50HTCpIopRQZCwvyHsZxiCgFXmVielkShCOuXO1gWYpM2mqx01lDFw3CSAkUlB0838Ka8NdSnSwPqVRa0wOu0+miayaO400PuWZrDxfOX+GNb5QmmAtzc/S6Y2qtNi++JLk3Ng00UlyjiaZU/8Kgh6AgUtF5VkjOgG5eM3KMwgjdMiV5WsFWdFOj0fbY2pDFlfe//728853v5Yd+6AO02zIZH4+GWJaJZRlTb7YkFWiYaLr8va7rUpRSpc5Q41kWAsPKGQx65LlcU7VaBdPUp7h+0zRxLYvaTIPutryHMtfQqz6nzz7DR35T7l0/9e9+mk8/dpZIqdvd94b7+Bc/99MYpcUrJ2Wh6PzZK1QaGmWZYangOE1j4ijnxHPPqLVisL15hf37DhDEMog3RRvL7nDPER+xIUUKzpx/mfNPfoXHPi/X/s/94i9z276jDII+8VgGy0dXjrBcc/jqk89z6EapmnipvwppyhcekSIiN2/czF23HeW22w5wefOS/D6rjluW3HDD7bzw7NMAHL55P9V5nxMnL6j7tsnTAedePMv2qgqqmwaeb3N1TR6ywnS4tHqWas0D5Gt0vYKuVcitHpom95KSiAfevMy+fbJ4NezukIQdDCcjUXvE6+7ey/JyTKOxxOmz0ueusxZhuxqeL9f5ocP7iZMBm+vbJKmcP8d1mGm36XYHfOJvJJSmXhXYmCwqyOOR227mscefIMkz8kCJwLgFUbxJVLqs7JciBS+8fJ6Tzx7HrSu10pk2ZTwkTsopl3BxcZkHH3iYq2s7vPCCnPcrq1ep+d63QLjq9TpRFE2J/kIIWq0WWZZNhRomimwTZUDXdaeJlq5grDomvlfBciIM5U+5tr5OkmR47sSrscJoGKIZ1lQBtlr3ePTRxzl4aC+WrXyDvAanTr3I5q6ECh+9+SCjYMjO9gBX8WrytEDXpRLaxCNzeeko/V6EqcZgtrnA5vYF8tzl0I1y7CqNhEEU4TsaopDjfvlywrB3kdkD8t/zrXmGg11EvkDpS3hYp9/HtapUPY0dxdfWNI3DN7mMepPAOwd9hKX5CMX7Fjos7dlDGsuzN0kSBCWGYdFqKaGhKCKIdvG8a3OTZjFxmRMrsapgu4umaTiOd02h0bLI8wJLaFP/qLKUZsrdnhzfhdk2uii5cvEyuvJzu/nOO7nl9pv5m098kmRNPg+ZqHLPPW/DUgWmT33i8xSlDkY53buyIqcUuRTCUuIGkwR7ksRImJ1NxawTqjnWPKi5Ph/+8GemPOHmjIU7DpnbL6HK99z7MP1uj05wnIfvkZDmLz/2FT704z/Os6e+zie/Kp9l0zWwjDqhiilLEVHXHUJSMgXdL0vJj82yZHpeTEQwXiteYRgGQohp4msYFmVZXlMrVCu70WjgK8GQTqdDHMcURTEthI3HY7IipVL1psVFXdcJg2tCGKWmUxQCs2LjONf4d51Oh0qlMk3UXNfFsixKlShOYIWe502TqzRN1bhrZIniunsecVLChKcsUkSmgTCn9+B7Fr3emAffK9V7R1mHeLuJVdF57jkZK9m2S91xaTgh88r39bFHrlJvtTl6tyw6XbryNb783B4++H0/xTdOyURqOLrM0vIKoppiKVXaPQduYtmpU1c+fr1BifbyNl/721c4cKMsKFX2h2gVi/m2xtkvp2puAgw9Q1NFvTiNyXIHhEWhYiBTr6CbOZqeoyhkhOMcs3RBid7dcsuDzLXbfPmpp4kjeWZa1gzzB1Zw07UpErAwI/5r17dFcrV3717uu+NWAD7/xc8RFgmVRg1NRZi60wRtSBqBUIplR4657N2v8+XPKfxxoOHVDCp1A2ssF6FbLTFNi+21MUfvlsFjWhRo4R6SoSSTj0canmMSDBPqSjp4ac8yaVISxOsYClvs1Ax2LvURSq7ZqZukZYxVhxdOykrZHcfWGYY5wghxbRk8jrLzrK1q2PNygR+42WK2Al//YkZpTMxOodHQqM3YBIVc9FrssOegxiWldvXZ39rCtBPae+qY2TXjuIicimNTKOLrOI4Agam6P0WRo4+qmHrI9qbqzBUFg16f1pwck/ZChSjokWUxrXkVrFY0hr2ENK9QNRQJNbBYu5pgKilfYQoodTZeBk2JVVimSRLLB36kFIzqbRfdzqkonlSRlczM6JQ6WEq+eDyStRqNHFN1oLrDiH2z14zqzne7LNg6sws1gkRu7l7h4VUNfNdDZHJDXGzvpRv0qarDeXdzg4MzDZYPtXnxFRnYzMzOYdspl15+nD8+LwO+jEwKhKgk23JN9Dxj89wmB249IseOsyTJFtvbDsKSiVO7bpGmEdW6nHNNzzk0YxKPB1y+rA65aEgpCjTNnXYVtYmqpTIMxEhYvMEhH/nsbMggvtLwSXMd0xF4E6nndIZO0UFTHSK7aKLVTPZYfWaRY3ByR9CYtwjiDJQaouvnlHnCuZOKj5NXsWyNpT1VglB2It5w/3tY37jE009/fcrDKPoW42GJacj7rNXroMcUWjaVUC81h+X9Dda2VwmU1HQpCvTSJVOdFk0vMV2PNM4JM9WCQscwTdCucTf6/R71em3afUnTGE04GFYwDYDGowRNq+H78p7CMMT3amiYU8WmpaV5GYAEEZ4i7G9ubpKlMZ965DNyrSzNce7sZW697aiU/EVKTQfjEUEIpiOfR92UleaJspumGZSljmna08PLchKyvCRNSxIVkMzMzMuAUgUVr57d5Opv/pFMzDR5n8uLs3S6Oxg6U5VPy6iS5SFCKR/OtQ+wtbWFaRRTKWbDMAnDWCqNqcBpezviyJEj1Gpyzre2trBtl9tvv50nvvi4vPeyROQCx67x27/+JwBcuOJy47EVPvzL/xaAG1/3Pdz/xjchhKCzJg80XYeKPUcYjxglcjzf+tbXMRrkBEqw57777+TFV57kldNdMOXfTr/4ON3dkINHbmH4TWmg66RbPH/qm3zPO94MQPPgPhadB/jkx3+Nri5PvQMPfjfNmxdIv/lp3vF9PwjAr//nX6bddHn5a/JQ/65b38zxpy5y+I7buXxWFo/stiAvTAZhl5lluV6qjTF/86d/ya4KcG234PSZc9z1wBZvf1jew7lzqzz2+S9w5pxMsh/4zvu5545j/MFv/h6NllxnZVEjTgbkqUOhyXW+Z+88b374B6Zy0XfeM+A73/Jmfu93/pREHdhff+qz7Dt4AK9qs35R7kFuy8UqDQr1fDz40HcwGO7y+BceI4wmimIaIkgpS5OFqvxbKSxuuPVmVruXAOgKjTvf+GbarYLBphy7cy9fpenldHYzjj8l5cR1J6PZaoFK/KOwjy40HFefdkOPf/M0nX6PE899g5Eq4pkKWXH33TJ4ffbZZ69x+tRinCRalmVNq+lZlmGa5rdwsHRdV/9WXJEyIUnH5AWEqnt2x1234bou33hKnqvC9dA0ge0PGQ7knuBV5bjruk6zKfcgIytZ39rkge+QHLo4H9G9eAk9K7En92DoZHmKYVxLaoPxLktLe9id8LLjHNds0x92KBIZE5x5cRXPW8D19Kn9SxLFWBWDpRWZgGXjkmE3odU+T3NWJkD7Du/npRcvI4wuW6oQnBeSExlFqntneuRCkJflVMRDNwws22A4Uh2NPMNxXKI45PJl2aVaWJgDLaPX7bI4L5EV3W6XPIunHBzPtClLKdYw2SPKUiY1tm1PO0dCCGzb5t577wVgc/0iV9c7HD6yzN5ZGVRnjs/ZM6eYm1nCimX8FBi7/OJ/+BCGJvcDv15Fzwsszadw5fc5pUMYhmiaRrMpCxJ5VuJ53lTttdvt4rsVsqxHqoQGZmb2sbNxEbuSMFSJjNgc8MAPvI+f/qeyIBoPdnjko4/iGg5hLAPhfbcs0bE8dq5ssKzioI3UYlyGVCwVg5Qao3CEr9kU9jW+k+/7OI4z7b5OpNon613TDCKVjE2KeEII8jzHcRyqCnZTliVhGFIqnpLv+9i2jW3bbKsiV1GU5IXkb00SrqIoyLJiyu2VSZtBGIbTe9J1k0qlgmVd4yXnuRQsGfRlXGTbNqamkyfpNDGU969h2w4GYnoPllVnOJQFifseOMawX3Dl0hq6NeGQeriVBv6sXPdp/ybqnk4cjlmelzHP7qCDay0Qj1/mrEKl3PqGFe481mRLca70usZK+xiZ2eTuWXmudhuvYz16maH2ErWGfN3hg2CLKp2XZIwwupJQjsYYcYrIzst5v1ihOmdx9LtmuPD3W+q3xYT9lM1cp/GcAAAgAElEQVSJUvZcg6uX+vihh6msZvLMokhS0Gw0NQYagtGgg+7J79/azNl3xMc2Bmyvqj2w2mK7mzA3O0MxEWbzLa5zrq5f16/r1/Xr+nX9un5dv65f16/r1/Xr/+fr20KK3XJ18dCbpVlXUb/C5Z0hDf8AWSozYNuokgy6bI+GJKGsujWrLosrOeORwhEnNv1uxsxijK2qvZ0tnaVDOf0OFEJWHg/evkKZ+xQK+3vqzAUcZRLXnpNVh9nZFc6+ep77Xn+Yi2dllaFRbdAbdlm9IqtbjTkdyy9JNwW+KTPet7//TZw4/hxkizx8j5Qc3k0/SyeNqO9VFdRqlfVnA04+3Z+ggdFLF1uLmdljoJo97Fw2cewE1RjALHUczaC0coRQ7eGopNRLwjFoCk5U8UrSwKJU8AvLEgQ7oOkWNSWhXgQloxgqSnVQ1zPqFRPfM6W3DxI6WKQVyu4BmrNSpcqydS6fFQgh58UybLIsxRQ2tlJx2n+HzcDqkncthDJbdBoFRlJFUx4sg65JxZcVIWHIKsNgUJCG4Fcsgljeu6YJ9jUbRGP5vs1uhm+67L+1ztUzstLiLDj4NRfHrNDbkdWQUrcohYGpcMuH9izgzs5w5eWIumoSrdzksLrb4fSpK5iqElG1BWYJm0oKNil0nHFJ2suYVZCfvBKQlAE1z0czFE4ZHc2w0BVWvOLX8V0P3U4Zj5Tp5c4mZZFRKmggQNV1iIIYeyLTXY2xTZ0i0ibFZeKioNAcDMPGLCe8pJwYg5Ymf0znbMDFzYSHV6CmeCCPXXFZnHMZ7AyvmUfGJo5jIVRNpSgzKn4N09JZUJXP++95iC984TFKhmxvKunuakZRZtQr8jUVx+b8pfM0FmbRFa9O03MKI6W7M0Ivr8nrlgjyYiIh62E7FkKMMHRZETZ0izhOp5CK15o+TuRoG40GaBlhkJFG8hm9+bYWa+sXCYbyAanWLJb3LLC2ukmaqe/zdNI0ATR0tRYs2ySJRpTGBOJYoRQJOzs5hw9LvkEYhgRDDSH0qYphe26Gq6tXsMwJ30FW6GdmZqaVwa2NTRqtJnEcTjtxlmnj+z6Rgvf0ukOqnsvS8gz9gVzXS4v72NnpMBx28SuyGhqMcwQxhuoap2nKwYMH+dEP/gT//pekDHJejigLSyoBKhhIURTYnnsNZ2/YEsISx/gKVpIYDroAz84o1OcHwZCas5eKK+97OBgQRim6GXBw/8MAHDpi8fxzT5JGGXEg7/POex/CMEtOv/QcAHPzTZzqOq3aMU6fkhC8vEgoLROGLmUi98+5Iyt88F9+hLSUSqtbJ4+zct8+vvbRJ+huyb35ardk380HWd9+lXe++x8C8JmP/QbhTo+GL2FBf/TRv+Sjj32O5dkqv/W//EcAhFaQGzl5CKgK/tIhk6W5Fbauysru7OI8r7vrNj76scepNCX/7kd/6L08+czjnDoj4XAzM/u475a38PG//hUqiuuD5VAUA0zDo1BV6f1776JRbyEUFOvUqRf5xX//b/nm84/xqUceBeDAQZdTL/TZv3KMmXk5VydOvEi7Ok+OHMulhUXOvHIS36leg0Z7DUbhQMqNq85YkWZomgFK8VbXHAZDk/d9/3s4f0UqNB5a2c+P/5Of5EP/5qdYvSrHPByCZaYk0USGuU2hDaRMf6nUOg2H8XiAW7V53V1SjfDlM6cJg2QKASwzyTsxzWv8qiiKqFQqitchx6Ver9PrdV5TcZfeQLKjpfYNTVCKAtt1ac8r2eO5GU49/9w1Ppcw0C3Z+c5VJynJAypVj8M3rkw//9KLmwQi5M7775PrZ/UCyXBMPs7QmfiUSRXOPCvwfbmX7F1pI0qDy5elwbyh5/jOEnEWcODYhDtl0NkoGHRsfAV3x+ihpT6ZUgLt7G4zP9fk5ptszp1WcDRjntaRy1y8krP7qnyf4xpQejie6k6mOZQOWTHGU75oWR5iWcZ0X/R9n0F3hKZp0z1SWk3orOzdN+1AFUXBMAywHGXJEYbS02o0nnYQNU3DMWUXJY7lGWYYBo7jsH9FctM3e7usvbrG2975Vo7sl/yq3/+tP6PR8Jhr7OWWex8AoFlP+fhff5qR8i3zm02MdEAyihCKq9msN0mSRHpGqb2yyIWELCt+bJ7npNGQCI2mK+MprRS4dociL6i3JbTs4NxhXv+27+en/4WU8n70c1/hvtffyq/8h3/H3/2F9N5qzteY3TdLOR6xncj7urp9GZGWVFVH37IKgnFMmJcYYtLRK7FtmyzLyDI5xrYtrQMm8DvTtKcWBJN1rus61Wp1ahwMUsmxyHJ8ZRXi+z5RFNFutxkqyw/X9+h0VDxZk/M+GAym0EOQXCxd17FdZzp/nucRh9G3dNR836UoCpIsVetA+l5pmvYtkEYMGetqE289Bd2dmBJ4bgNdL2k0PEaKWtLfiXj9uxtECgm0sudBfAf2LNzATTfKmOArX/8aZZmztvp1qsuy0yncgIeO3kw+lpzPm+++k3LQ4a8+9Sy/8OP/IwCff/RX+cKFP+bQTXPoStE3yStYLYszn5Id/qef0Jk/rBPt1phTqpimu4FNQaC55DtyX1q/1Kcx67J0RI7d9vaYYNfHrxjMrci9UhQheQKa7rGxKX+fZ7ao+rOYqusoqg5O0yBbD9jalJ6LWmuW19/zLuZnB3zkNyQ8e/aWFhtf2/72lmI3LMHZHQldmKs08RsLxEkOQi7C7Z1tPN+jVhN4ngrCIsHGZj6FLqHHuFVBlklPA4DbbttLb9DHdMfYthzIrc7LGGKBYFse4IvzMOgITKvEUDCPtUtnyEaCE09cIFcQh15jh1arga2+PwsyrBysGYOFfXIyH/n9J5jdnzEMOtx3z08D8JXj83SzP0MbyaG+cG6b4ZpHrW2SdCYbZ4IobcIww1E/aGV/wua2Rj5Uhmz1iFLoWKUgUuIfIrEwCx3bNrBM5QlkOoyLGNOWnzMeFdRqJkWuMTOjeEpWwnCzoOrLRVmr+0TxkDAVCHUI1Vot5maWSMMKnU25uW5c7VL1xVRUICsN6pW9pOmIVHHY/BmHoDSJdjNm51W7vSzIw4zWvPy9/W5KqQsMzWc4UIseHcMyyVKNREnpzjU0uuMxhgqQZmZrBDsaQZKiKdllv2axtbNLq20ySuX85QLKwsMsJ/DJnFdPnqfeqHDXQxLaorsmwm0SJyWF4ghsXt3Gchzayv+rjAviMsMwS7qZPCydxMa3m2RZgKupBME2wSwoFaSTscVgJ8CZ9wh2FMSwqFGUJbavkQs5f3EmEI5PplrLIvAR7hDwSFPluVAmZEaCrSd4ijdQUKAVJWdekRNxy4FjjLIdXt3ps2dFwSWtgiyLqdXquGpOx0IQpgl+RUIxDNMhSgZ4Yo61dQk1+a3ffZYbb1lg0NUQhvz8JHbIUpM4lDwC33NoL89RZuWUAxkkQwbjIZ5ZoVC4b9OS5oK6SlBEUZBGYBo+sSLnur704ZgcSpZl0e/3KcuSYmIog45fcckzkzSSc5yMm1TcylQcRBQzbG50CMN4Ah9ne2uAZVnUajUy5dJY9Q00RydKZVLR3UnxfJ/Zls2G4hEsLy/Q63QwDA1beRo0m7OcP39harYqD+GENzz0emZm5Hj+zu/8MWWZU6tWpxK5m+sbvPVNDzEYyv3m0uWziNJE06+R1q9cuYRhmezdu8JgJOE29YZHOHZJczkHuiVlfn/hf/4ldGsi1y65Mq896EtNBrqTAzXNYqrVKqXIKQpv+lm6llAWDkLteY1qHdfrECh/vOqihyeqBKOI5b1yPu994J/gHz7IYGeHM09JEZjnTj2BY9Q4epM8ZC2zyup6ymxTx/SVJ1HlBihyPvCffoq/+92/kOOyvcEv/vOHOHTf6wF479veySOf/QbRaJerl87JOTZixHMXcNw6f/dbfw7A7IE9FOmIvjIx/tPPfpVGy+LCyU2GyoSyNqOjCwetDNi7X4oI3P3wLcy2buNvVv8agLtuuJ3TJ6/QW98k6MsxeM/7/oiTJ79JpHyEOqngT4//Gvfd0yZVnj3nLvZxnApxmpIrQYRxepXB1pUpv1JzQ/7X//RraNaIkawBcZEMx7RwbI2XX7kEQD6CY2+8ma98RUIlL8ZdKr5OGPRZWJRwmyiMMMyccdjB9xQE1whJUxPfkK/53d/9Vf7Vv/4ZHvnYx9h7QCad3tF9/OgH/w1FqdEbKPji0jyd7QxdV9AlfYciF5SFjq1Mtg0rpd50scwKVy5IuA25wcrKPq5elclHluX4jkuep2RKkaherxMEgZR5Nq+FFYZhTBP/iXS7YRhoCt6vaw5JlLHvwBy+Mm8//szzVKsVTFV4Gw9iLArIbZb2KsuWhQXOvLyGicVIwQkHowF7Di9z+ayEDgly0ijF0i3U40iU5LiWg0bB3Jwcv4q7yMbWOVDc1zxzmdtvsd03sJVnVrcTomlQaxZkiYI0ah4b61cwlUWFrlksr9g8d2IdT3nt7Aw3iC2b1z+8xJM7St47MylLnSKXsYXjSF6Iq80g1Nlw6MgtnHn59GvgYgKhafiuT66KThIKJkUNtrdVMmfZCMekNS/3JDPKKPIRc/YMQzVOhmFM5cPH43A6V0EQ8NJpCZEfJy5vv/8mTh0/ySvf+DoAdx2dY88ND/DkFz6DVn2LHJd+yL233ciOErg5cX6desPGtAWFEt4a9EfkuRI7mRjhqoRlInBRqzXQtBquVaCZMmEIBzFBVFBxG1OT+dOjs3yHGfInfyKLFj/wI+/gL//ykzzy2NPo83L/HiY2P/ODP8lH//ZP4KKENLf9BmtRD2tCadAcSiPBI6cU14RXhBDSFHwqxlIihMbCgkw6w3FAXkp464SXNVnXURRNIbGOZTO/tDBNnoRwEKLg3IXzU1/EvCywLIPhcEiaTsSbJMdrwr0tyxzDsnEcZ1rcME2TWI+pNxoEIwXBL0tmZmbo9uV49nohvqfgja/htfm2Q5Qm18y/swxBga3EjqJxgeXE7Oz2iVWc94b3zvPw+xw+8idyjl/c3eZ7vvdt3HXXIZ4/+ykANoZP0NZXuOWGB2jvk3vQiRMvceOBd+Er8bi5uX189tlPMSd0Hnvl8wBc7P8t+w85XDrVoame/8a+FFHZZW6f/L12DG1ajIqc3jnJ1bIWPGYXdAanRwyzSfFGQvRbs/KZWVuVNi7LS0sMlaiW7fcwrBAQFJkcl9EoJQl3MBVVoVFbIhjbJDvbRD35mpl5DZH1+dIXn6KqdBCqXhWQz91/6fq26Fy5viFuf7ccyME4Ix7W8St1Bh15Mpl6RpSn6IWOpzokWZxjusWUqGZgYJk5RuEyVopb9x65le9+5w/zF3/7CFe35QGWIdjdFTSVekjdsaVbuBkSKBO6ZrOCY+V0VwtErCqft1S5sjUiitRCjRzm9uZ0tkvqShGu2ahyYPEurErEXXdIQ7S//r+e4vSpc/zkT/wjAHaS07x8/hT1ZgUxkgGJa1h85RsvsnJji7wrN7vb79F5y/sP8LPvldyCxT0eST1BkJMNZFBf2CEi00mFQNGU0HWdcQiZCnBdNPJOFUMPMWrKRLCeEw8KXEc+YLOLPnolJAxK1NvIM41G4xZmlw9PfZleOfUYDcsmGMqx21oLiIYCTYDjyTcee4dBZDs4YUliyAU9GvhU7JCm4nhdOjvCEoZMbCbVH9MgjQrKdGpzwXK1xeZ4SKOmFCHHBhVXw1h02Dw/eaDArpbMzy1xSQUDaZFimi62Ukz6oe/9Xu65cx9r3QEnX5Gb3SOf/QrLSy2qNYO5ZUmcLK2YzbVtdJXsXL2wSp7omLqFmPgwOdCY04hCm+1tuT5rVRu3CjVbBi2jVxOiQcHiHXsYKhNaTRdouomGM+UEWSbkRYzBJGGPKEVGaQeMBmo+C4v/m703i7YtK+s8f2utufrdnn3a27cRcW/0DW3QKxAhKIIimE0laKZWppWpmUqlDkmrrExGgVQpjaKomZoKiIhaoKCCBEFAQLREd+PG7Ztz7unP7pvVr1UPc+51wpHDt3zg4a4XRlzO3nuu2X7z+/5N4WTkmmB/Q35ukAY47CrZhDuziMkCFzeuUVfKjm6U4tdNJoM+VVNmhHt5nzAVRGO1SXsptDPMukBjajCZYfspRTJLXxlw5UWGlpsYyu+kMduk1pzHweDyBZldChmTRDpkObqtKle6Q8EEW6mhGUZBFMiKJergzYr4H/Ay6vUmvV6HOJZEX4DBYIDnV3HcAC1Tbu89gbASfBn7kCQuOzsxrqeXnk8gnec9zwN18V1aqjCatJmE8oOeW6G9M0EjLblMluPQmmsSRHlJ+O73O5iWUXqNZLG8/GnFrqLU4RPzXL24QtCzOLRPZlqX9mpcungB25JjIITF5k4fr1LjVa98MwDffeZRRpMRtWqLTkdWibM8xrZtcrW/BVFIGE4whF5i/YUQ5IkU1yizqKVHyjTrlJek7MxU2djIkUGucDAVvzDXBUG4a85p2oKkiNEQBIpPlSQRttdkdmEfhiEvEsP2KrazezluNfci7Iyt3kXyQgUfucAudF71xh/jzz4jhSgO7N3H/T/0BpY35IX9rz7zN3iAXjehkGN18uQdjPOM8U7MOJcLIg1CrNilF8pD9s57X8ett9zJmacf48wpeSkLkwG6ZRIFAXe89FXy947MMNrIuenEYTmeucW3v/N1xu3VkshsurP0VreIE5loMMwKQggWFiz6I4lgmJs/yerqKknWozUn9+FOe4iR78dyZFD4oz/y43z+Lz7FtYtdvvi3nwPgtz/6B3zz0a/SbMyjKcPudifENeoYan8djwNqVZ9XvPy1/PWX/kL+3uwSi3vmOHP+Apoi+mfUqMzKgBzALKrstFexPFduKoARDjCExzgYoCwkaTYPYJsGaSGDpEsXtjC0Cq4nGI12hQ1arSbjyYhE8Vxq1Vluu+sEDz/8sJw/lkWeZKRpulsVTzIsy0LXRcmVzJS/2pTrI4UVZMCXKAEWOT/BrzXJ1f4yHPfZs7RAoLzietsDjhybZ/lKh3As23T0hn3UmgbdbYMrV2UA/eo33MuVSxe4dlUmKJr1muS+hBEVxac2hc1o2Md3bF7zGsnNWl9f5/Tz5zEUnzPJRsw0ZxkXEW5dXs6DZMBM3cGzdLZVwDzuauShRqzL8Zyb8RkOOmSpQaT4v/e+6nWcfv55hsMVciVIhJbj2FWybLdiousGhZ6UlY652SUuXbpEszENFDdwHAe92K3uC9MgznOErmOqpGyWJTiuxWg8VWh18W0P4Wt0OnLchW4Sx4ncR5Ss6XT9RspstdaoYhQpO4MB3/9KWdmNEp1wewvXneWR5+UF1q41ecmNN+Mq7721do+r3R5xrhGkMvB3DJdcmRhPK0CWZRHHu4iFRqNBWoTokaAbKknPwkA3MjTdI1FKlb/4K78G8TU+8MH/DsDP//v/k0//8X8mGq1RbSh/SjRMo0kUtWmpC7pIOrjNBmOlHnpts0+3N8L0LIp011PKsqzSx0r2i0aa7opVeI7LaDSiWq+VY9Xtdonj+B+qDFLgOA7d7q46IkgD56m/YbffxxI6QRDsVsZ0gyzLdoVfdB3Hc8HQScJdcSPbtktfOYAkipmZmZGoCaRYRl6kUiBDeW3ZKu5I8qxUs6RIKHKDfFq9KwIs02c0HHP3y+Ul6Wc/fJxPfuIiF07JOdXYv8TRG26n0ezy2HNSJfL+17yTlx+/i1iv88SzUkTIaDu88yd+gjkl3PSpD3+CSbXOy964wFe/+lEANpZH+HeMKUYxq48p/ljS5J73+Jz5G7nOus+d5Mbb5/nspx+kNT/1w2wR9npEgU6qKvieHRJONF77Q3LNrq5E6MEchmbx7OlnAYlwmWlVsWwwhYwv1le36WwHUjYUOH73S7C9iI0nn6a7I3+vftTCEw69yYCq2mMP3tTikc9d+t6uXOUUGCp7oBU5mqMRMSBUGa+onzPTMDFEQp4oV2zPIIw9NHXIo1uME5mR1YSccE+dOsflM79OGLmknpxYoyQmG+ZoaiPfGkZUKxFZbKDrchIkRY4hIg7e5NO+Jjf4cDBksQaxmpOba+DqDgf2hBDILNXVUxvcuM/nn7/3X5BUZFbM+PI5Du5fZRQqxZ2jP4pj+1zeeIpTT8jJ88Fffz8z+/+GB7/xDUwhf2Cg5XjWPl7zLjmhH//KNaoGZDbkFWX8NwGBjaGlxKqMLYQMkMX0zpzriNYYW7cosmlWxSRIM4QSSLj0TMy+g7PM7u3Q7imooEjZWDvD5ukdjIrcuCdWgraUMKcMRBs1hysXQtrLCfsOy+Bx1IErZ4bYsceJe1Vp20pJCoNAKeIYJqRhgaHpJFOXbCPDNX3iyMTzlemdITOWhSrtZxpMCoNGWqM+K/tgMM6pNqp0Rz0CdWCbho5rgqsqNCvtNq9YuI+vfenvedkd8kK7x4Yr584h6innzqty98EFck2jUZHwsPmZhI2NDXRhEausdJ7nZMksWhCy2JB/hxYgcgfbVcHr4YTlsxrjqIetNrE4G0gipJYRqE0y1XKKPEJTRflcG0NqU9EEwpXzZTROyRMNU2gEyl1+oVYl1VOMXM7Xbm0L0RuyEGZsbirVr4UKvmOysdZnJJSEsvComAUzTTmew5HGyNQp4hihJkwRWQRjKIp2GcTnuUFGhtIVoUgcRp0O+0/cTK4uhhcvvYBfdxkOx6WlQZ5FOI6PoWBPQhNExVgqVZnynWtOnSzL6JcZuD6e5zMzM8tQ3TAXFxdJJil5bBMkKvvqFhjUyePpvA9xbA1LWGTIwyRLbIQpScbt7amRoiBPXfbskdXYfjeltafL9pqOphQ3250eM60F2puXUXxhfN9jNBohVKTqOAVhFFCtzTLTlJu5NxNzV/0ubjt5O5/9rKyQVMeHSUOP/YfkF509n7Dv4F6Wl9s89G2Zfc3SAvSC5dVTLC7I+TmZhAxHw1JkI8kTbrn9VtbW1uirA9vQBZpe4Fh2eRgHUawuU3KMdV1gGAVZnIAinaeFwLJiYMhYZe8sq2BxYZZUZVCDvkacBwijil2xVB8UGHGP3kYbzZIHkWtVmIST8oLZDa7g6DGWrZMpY/FqrYVedXnnD97Hd/9WZixvufP1aNY8X/qMtLG4+87jpEJw5sIy+1Xm87Vvej3XVjb4zH//U2aX5P6ii4R+OMZSBugXT59n34GTvP0n3sv5ZyU08b/+7m9Rc6Vs9hSCs71pMbd0kGdPXQHgwW89QG4WuCZ4Qq7HSb9Dc9ahOadU//pjRj2TdjsHdaneXF8mG4UUuklnS87hAycqrCy32RnI+fNXX/kyzcU6leoMv/g+CVXstFfJ05j2Tr+sdJhmztx8jbk52U/nr6ywszXmZ37pFzl+QLbhQx/5BGPdoVWvsqlEUrJsQhxqJAr+GgTrCCEYDUZUq3JcxmnAQnOeVAsJI7kvbu6scuONN7J8eVpJhvp8QZEZZCoRVW/46EZBliW7YjHBgO8+/gxCk+0k09B1gWmapUql41hoOmRqHsL0MuVi24oIH8eEkxDdAF2bGsyC5/oMuz1MJSNfMask44y6ypyMzITLl9aoVhrMzk5Noa/h1m4gYMCb3/EWAHphm7e+8238wW/KKmdRZBREmKZDoCxGEj2kVmvieR47HXlZ7XaHFKREyuTX96tstzvMH1igXpH7aRg7mIag0+3RUebGVb9JmMT4yDYFQ41ez8XzEjRVXXr8Gw/RmDXYP3+Ec2fPqXGvojsOlVmVAPUyLpyeYODjq4Dv8plL6HrOsCvXo19xKDIHTS/YozL63Z2MYhyQZ4U0Swd0YdKcXWQ4kvNcEwX9oI+d26XMu+Pa2MreYjeIl0G9UVfCH0FEQoZdq/HU8zJOObFQ5eDNRzj75BluuUWux81NjQcfe4TjxyUN4vhNN7Dy6DcoEgvXUfFUEiGESVZk2KraM5Uy372cJ6RJzmTSo9mU3x1GEZPJhKWlGfK6XGvPP/kQX3vgIY4dlGfvf/vk+/FrPsPCZ6ujEgQZuE5As1adOlswsTWOhxO+qiCysTuLbht4WspY7ZVpkaGT4HpmCTXVNIN+b1RWdpIkwXEs0iRgrCrlRS5tCWaas4zUJdB2HDRNY3ZRzo2NjTX0Aua8GjUFAQwmCUUx4djRw4yH8sza2dnhxZqDeZ4Th5GMkVVfaUVOHAZUfJ++qkrbts3O9maZpDR0nTyDOEnQ1eeidLfPp5DmNMlAC8qzz9BtktDDr2e89R0SXvtbv/ooz31rk7v/iVTYXX9ug3j/s3ztiWcRyDn13Ne3uO8lN/HUc08RqxjyyLEjHGgt8MR3JFR5y1vl1tsWuLL9Jwy6cj12VuY4cM+IdmRz9/2yX65da/PUZ8YQyovwd5/8Ls+f8mi4LokcYnrhMgiHQk9K8TjdcRCiz2UFv93eHuPZBsPeeDchabl0egWW47KkqrsH9lcZ9l4gUcqu4eom+r6YItAQ2nQ8LTbXuxhZgdgvx7SxtwVc4h97rgtaXH+uP9ef68/15/pz/bn+XH+uP9ef68//hOd7AhYoHK04+VolF92AwcDDtAxWrl4DYNLWWVrKce0muSL1BuEQYfpl5qUgxnEK6eFSKLNVLaS7BsEIFP0GYdVpLWk4vvzc+tqELMmpuhY1VYJPCTCMMaIAS6XrM2wMO0ZB7xlNTEYDweGbCzwl4TjXPInIXZ56/DEybxGAO27aR9URDEKZ+bj1hgM88uh51tIHOPUNmQE7eVuLl7/qZi5feIHtjsxwX13NCdOCm2+TDe+twbgfgjBIFOfKdX3iKCMpQgwlpWs6GVkqyswLeY4pDFpNj+FAZRUNi8G4j45sk2MKNi7AoaM6i8fl37T7IbYOO20NW/la9Vdz4mGGqUQ2Wsd9mgdSzFHBdx+U75KHNSwRkRcWN3y//LfCd0iGKWOVGSCRt/o8l9l3gDRL0fIKk0lEoyXbPhnkFKnAc0Y5rZsAACAASURBVKaGihF2xcPybCIFOYijGQwzZxIMyVL5d5alYwqBnikJ+SxAt5e4dm2Nd95/LwB7Z3x+4zf/hNmDBbqqYkYDm0gvUHBnDh5cIJiEdDphye3LizGuZ6BjghK0qLgWmmaUxrGerROMIraHBVVbZqBzUgo9I8uKkqdQZAFCpFjKp8UwU/I8Jc13zYeFgGRiUURz5KpqMyq6eHoVf0pQrvfANanZBctPyuzreLNCowqTOAGVmSvyGNcxmW/JrN/6Rp9OV3IJDGOa8TIVkTwv4YvS02MK44FG02d7a4Rt2+xTQh8vnD6P65m4rlvyfabyu6byG0vTlCiKqFQqJQxlPBpxx513s7MjYVeDwYCZmRk0TSvx+FmWYZkGm9tbmLZcj3sWjjEZDUkTOccqtRadXgfD0MjVmnWdOuPJDgW73lBZNsLSPUJVDW3M6lRmeqxe1SmyaZ8LBsMhlqgyo+Rn+4MtTp68mbMvXJGdoKpzhu6U8rvuTJ033Psazp39DmdPS9jaT/2rn8S3HT7+8Y/Iv2kK+r0Ow57BbXecBOD8+fOMRuD5VinFLP35dgnLtVqNm07cyOnTp8tqjK5JEnoYhmV/poqoPJV01zQN0zJwHIckmMrKa0xGBZ5rkaoNbb65n5/+1+/hv/zf/wWAn/25n+P5577N408/VpqWd9cH5JaL8JzSDqIwY0yL0szZcjyiMMcwYzIFjfrYR/4rX/nbv+Ut/+w93P1SmeF++Atf5L3v/Umac/J77jr+Mi50TzMZZYwHci767gJRPGYSrSGE3DvuuvMerl5ZYzKUEKckMXGbLf7lT72PZx6RXluPPP4XuJ4g7EKRyfkRCx9L+PT6EjImErj9xE1o1Zgr5yQ0MS50bAdmF+RZFAY5wVgDLaOreFhpYrD/QIUwDogiWdnxZwOGgzHBlL6SOCzMHaLX3WLYl+30PVdCMU2DVFULJ+OYg4eW+MCHZHXr//nNX+WZR87y7n/287znXZKw/9P/5l1sbW0Qxxl6KaZilPLPIHmKWZaRRjFHjkrY42137eELf/4w9dpMyad6zRtexqnnn+L0UxL2ONdapNqwuHL5GpraIxYXZ+l0OuSZwHGnEtVj4jgtq6jT/UAICQOU/yYNVCVXUp09SPjXgQOS0H727FksZa8yndfSRkDCCwt9V9RG18FSvleGYRCFch9Y3Cvf5Y57buCJJy5gWwuEkRK+atR5z4/9PL/x4f+kfruHjgeFQFfVyTxDcVoErYaskPQHPTqdnTLr7/s+o9GEWqteSl3bnk1WpPi+h6+q11vrO8RBijBkdru1mKNbKauXXLRMCUzVMqq1I9x+90n+8s8+L7/L8TlydD9bO3JuOHaV7a0+abEDiXy/dBIzO99EU1DejY0OhuGSZAFHjsn9O88TrLzG5Ssr1Gr1su/SNC4z9ZNJiOtIMYXpPlWpSn+knZ3dd47CmFarRaq4vsOoSxqbVG2fQwryrzfrzC4dxPE1Tj8nq3CXV9apNSoESmis6gocD4ZjELaMp8Kgr2TOnZKLOvW4mhr4uq7LzlYbx9utwk/Hy7IsWq25fzBvpt9Tr/pcW19D0wrSqY2FaTLo9TEE3LzvRtl/vXPcUanwdF+eY+vjnDwNqfk+mYKRR0GAaRqcOHGCK1euAFJsJE9zaTwG1GoNTNOg3++XJrTCsEA3yDOo1GU1pDU7h2kKwkCex9vbm5BJE+3puappGkuLs1KyXcH7onBCgV6+59SY2DBFybnKkpQwDBGGwWgk52el4uO6dlkl7vX7xEkImoahApo0n/LdDAp1ThjKAHkqkqZrgjQfUGk49LtqzUQ2+4/NcnVL7p03HfU5er+OMWriCjnG73zr+6juK3jo63/N3Jzktb/yla/k6qMDPvxb/xqAN/5vTa4+32f/cYevfUSe7Rc2LF79Xpf5hW1SVbPbM9vkQz+5TKrEsoSRYwuHerVBpyupHwURpm0SJ1r5zqNxD8cxabbkuh72h6RpjhA6gdqcZ2ZmKDARlkOhhMzCQZ9wkhIGat/SdI6/ZC+bp7YJIyWqdUwwHoZYmoFdkd/v1H2uPnj5H4UFfk9crgxbK+rSI5LRROPIDQsUxoQd5dkh9AJSqDZdRj3ZIboA2xJM16FeODiuPHAypXhn2ZAHPr1tjbtvl/jqH/rRO7jp9kX+31+TWNFnLj5MOA4JJymWEoFwqzqGBo6pUVWXsGSUo5mUwg0pGoOhydw+QZTLoHff0k3UPcG3v/UcB5t3A/Bj73kNDz6wwlJLGTCGE06dep7N8XlGW3Lgbn/pDJV6hScfWMNUgX7h5RiuAakiGiYBSaZhYGAoCFe1XpDmKWRmCUNwXQ1d2HRV2dV0DGotjTBMsG05Key8ycbORZSwDLYO+niO4U6C7snFeuxWi0AfYwkLU1fl7xkYrzbZ+KZqo1UwLnIWDhksKDLi6ac7GCJnEsMr3i4n/aQYELUpCYR5nqPnggxJ2ATIMgfXdoniCYbC0EYTMAqHnuKheRWotnwsz2WsoC5ZXJXlciMp8c7CMUjilCxUEIR0gp2NMOo+47Fs0xte+Voee/SrrCxv0ZqXB1Mseoi0iq1EDDqdbZrNBkGYl74hmhGTpwWGbhHEsl17WlVEEVAowYncyDCsgDjxGXVU0CmqZLlBXiSk2UjNz3+IdzcsA1OE6FpOqDxQXN8hz1OiicNQQQcIDSJRYCq4XbMeYrZSXA/MniyRP/21ETMtgabrTELlyyAENd9jMil1KomzFK0Qpa+GNN21MS2jbJfvVel0ekwCeZhUaxZRIA+A8h1ynTgJEcLAsuQhMByOsEz7RUpL0oNq79699Psy6F1ZXmHvvr1UKjU1f11qtRqXLl1iPJbrP0kSfuAt93H7bXfyu7//e7Kduk63PSh5YJqRUWCi63GpfGZbHkk2QtcpxQeCSUSrtUAUyt+3/YK8iOi1c/TpBdMwCaMx+os8TWbn6rz+dd/PV77ygHxfJAcqiSV0BODk7TcT9uHCpWfYv18Gue/44R/HMgQf/LVfBWBp3xLD4abEuatLoBCCar2gPwggm1FtAEPsBqmu6xIrta3oRRfdkh9gTEEIhVRkS3cPZ993mZ+fZXskOYLRIGahOcfm1g6G5atxd8jjhEh5Gx078Sru+6E3sb7xbQbbSqihcHjs1N8Th0bpZVdzKuR5iq5gnnFkIhwNtyoPcQDPOMmHPvHbLBxaICpkYLhQHfHMt7/Fn/3J7wJwaN9+/uCzf8mkv1mac+p6hSzLWNrT4iV3SeGLC+fOcWX5FI4K9NM4A9sjjiqkyhWy1gDDMoknY4QmA0rfsGgHPY4dlxfaSt3j5C0vxy5snr36RQCeevgF9u5v0GkrblNiUa0bZPqEii8TaNdWNslTl1ozL9sZjAxcp7EbiNsmo0mXpaV5YjV/pA+YRqHtwntuPnkHp555gZe+SsLanjn9TbZWLrP/+DF+5F3vlm164mGKbo9Ty1cYtJXKmCOVwabraqpSlkYxN954QvZB3efRR56gVvXZry43rie4ePk0idpGHOHTHw2xX6QuadoGRa6TZ6Jsp2nn7N1zgA3Fj4vikCiMMU2bJJJ9sLCwwHg8JgjGuwaoeY6wdiFWEq6qKY7RlCO0yxuZGuEGcYAQRikO0KjPkeUJFDo3nbxZzQ14/PEnJXyxohKgRpObj76J9Y3HAOgPz2HQlHyS8kwpWNozSzCJsMX0fIjpdrvMzsq1NxgMyHPJvQxUcFxoIEydpaUlXFueD+vX1onClGN3SyhmwYDVqzHDba+Eejeac+x0R0T0cHJTzQ+ffQeaXLp0Rc7hyMa0NFqLKevLKnG6J2a2dhChvDAb9ZzOqk40NBgPJS/TNh064xDLsso9SKo46uXYgeT06JpRCjBMg3n5OdV3WcbCwkJJX2j3+lS1kDtm6nBAejxazf088Fd/xzt/7J+SFTLI/f++8NfY7i431LU9kjhE2A6RCl6LWJNCJ/quct14PMayd7m20wuvpmnlOsqLgjAMueuue0hjOX6nT5+mNdukWZdjtbW+QaFrUnVyqgg5VbAMR9x+TKpQt8cbaJ1N+ooJM0LgCMF4EqAb8nOzs7Osr2/KfsqnSoBSkGWqGuu6PpZllZB1kKp/juORpQVuRc5hy3S5trryIqEmeZ4mqn+n71zkkhflOHJsxmoPm45LHKXkSA+y6TryXY8oikiTpBS+kBevguaMvIT2ej3SPCEIAix7l6M7Go0xzV1eZJFKRcpdjlmB7eiEcYKpyz3PqYMR5iV08fir9vDD/+4uBmdtagdknHviFp8nn/g09pKOsS25b9dOH+A7D3yLG++U+9bia0Kafk6ycpg//l2pyLpxpY0WCe559wz3/qD83PDskD/86A4NxZMcDDvksVTZDEZTsSwf9DGmUcFy1NqOIoTtUFF0kCRJ6XY7VKoWuuLe2bZNFBdYjsdkJMew7nvsbHTLpJeGQWufz2AtJFFndG2vyXjSx/MNUOdapxvAKt/jnKtco7upDL1MwcbqDvMLLSYDOdFmWgJhC7IiQHn6kqU6RaHheirT0g2xRIs0HSNqKpizUlaumPzU//rPue9+qW4zGMBTTy9zTqmOaPoIYdgYIiFRSjJJRwYoRgOG6S7R0LcFwpwaMKb4Zkr3SoXFw0pRzJ1w7/fdQK21xKmvngfgS3/5NK3FfRzeLyf9KE84d/kiZtjAdWSQ+/yTI9KkQ63wKVIld2t0yIVBNJEbTSYMNM1AJ0ZRIOSOr0uJ2pHKEnc7Mboe4ppy0ZmGTjqJ0VOLrQ2ZKTt5fC+BfYxrfUkAd5sCw9tm/wGbwVW5EK89ktC6eYF8oU9fqSPl16qMV3XsmmxjGHZoGTV2zo4YKmUw32sQBn1aXoOVx+Xf7bsZUi0qjTFtNyXPDTQjwlTvEg8S+v0Y2xTEmcIWazkUKSo5iuV6hHEKpuTTgDzwfK+OJhIGSrFoPJ4wGIxI4+nlw6ZwfIZpQq4I/M+ffoa3vvHN/NbH/oj2puzj6uICtt6jUC7u9YpDGI1JswLUxk2R41o+WZ7iK1EUUx8yX5HfDzDIQrKwjkUd25pyiRJMMyUvEixbBnxhkGNYRinpnqUFWu5ikVOx1GaX5ox6CZ7rM694GMPhkEECyURlzvQmdX2G0WANoyWzuDe93OPsY2MczyVTwgJZAJ0oxnGmClSRlE7OivIQcF1bCkgUbmn4mOc5jUaDKFYVE3xsd4RmFKSJbKfnWeiRIw8YpYYURymmaf6DA3xubo7t7W02t+Th7Fdder0eq6vSAPYVr7iXKIrwfb9sU6/b5vSpSxzYdwODvjLZNkIc1ymlhIt8QhpLVSWhAovhqINhGJjCo9eVbb/1thv55ff/Cr/0/l8EwKlcI81CxsMWlhLi6PfGVOo5ceAwvyTbXq34fO5zf4HnKgUNLacoDCpepTyYzjx7ijhKOXikhaXa4Dgez596mukkftnLXsLCwl4++du/w6HDUvRibnaJy1fO4PsGwVgevnPz8wwGg7JK5ToOSZKQZdl0JjKZBLgVjyzPEaq0mqZZqXg17fM4jrl2bQ1fVSL6fZ2X3n8XZ889z7nTMmDWRCxlf9WCnJsx+Ku/+AN6nT5vfOPbALhybRU9NjlxyEb48pL0zGPbGFaEqTZm13MYDHKEnbFPBfU/8vZ38MkP/Sof+tTn+eZ3JC9KCzUuf+dhnnxACqI8Xn2BwWaEELvjV627jIYT1te2edY4C0A4nuBZLabmjUKExFGCpreZmZGVak03KESMZmjESnI/DTX0POOn/82/BGBx73F++M33c8vNe3jTW2Q7v/toQrcfMlSy1nkaM5rYHDpWJVbBpOODbetYdoE2lOto3+H9XLj4AgZq78577NtzmOGow86Gqqx6VUzTpNvv8La3vR2Aj3/8o7z0JXfz93/3RwCYjk2zVmfQ7mNZ8rtf8uo30Tt3gdid5cnvfEPO9aKQ80CtD8uyyPOcarXOmTNn5HeZNq3ZBuNxn2vX1tTnMhb3LPDKV8jMcnt7jdWNdcYDg211gY6TEQePz7G5uUW3rS65RoXNze1S8CEOYyxTEEVBmdEfDAYyeEx2k1yO45CmaakWKIROUUyNTOWZ+WKxi55SOjt58gTrWxslET+Y9IjTgrnZJR5/XCrXJUmE65o0KnVcxafeGYRcvfoocSwVvNJEQxMxwtTKBN3+vUcJwx7j4YjKvORdDgcDXNsp2+k4DlGU4DkOmRLQSdMUMo1wHBEpa5AszdHRuHRK7rk6FZLQQBQJoFSGNydU7BkqusVEfX8ajrl4OsL35QUhtrdJIov2tRxLVe/stsOVC1eZX5R78KQb0R+YpJnGvW+WXJiN9TbV7ZQrV5bxPHkWTaXup5dl23Ypcij0XfSBEBLZMv3f6b9tb28jlAqvERdU602upQJzR16SmvqIt//gW7j39XfxxKMPyT7IwfVrktOJNAdOEp1ci8k1leQ2KqrCPtm1iDB15mfnyr1zbW0Vv1plcXGx3PNM01TcoYSLF6WAhmEY8hI/luNZrdblvEvTUrk2SxLSLMZxTJbX5bmSkIJmkU4F0HQNLZPGv4lSbdze3paJimw3ARLHUlioVF9NE8bBhCgMy3mXpjm2bdMZd/Cqsv/63R20PKOqqoWO71GpVMjihF5Pvp+UWbdJ4rC8xFuWPC9DdQnLil0EybQNo9EI0zRxHOtFiJKCggzfl3ug4/msrFyViBrF/onCGCGkUmSpcGlI1UYxFTYqEpLYwzWrpfBNMHaxKhB05W/duu8Ofuntv09v/TJ//PhvAPD3jz3IY5+O+alPnOTD/8efA7C5MotuJXiX5Ty/+5/OEa0U/PnvXGQwlkiARt1jplXh8nN9Jl15udKDCtV0h0iZQrtihoSIJB2UIldZmpHlkKYDsrFKUlomSZAxVuJVrbk5ef4lQ7xpHxZyrkdRVCYbhLCkNQBTjnnO9rUdslTHVlYB8QjyyCXVCypNdT45AUP+8ed74nIFBZquAlWRMhkVrMe9Esu3tZXiuCm6thuoxUHGWGQ0msotPRsj0oJGYw+dkbzYZImJN5Px2DNf4+vflNLBQRhx9Mb9rHUkNMKvFOhGCPouRC3LZDZhNM5YXJqqg8UEYVbKPLu2iyUiNgc58UAu6gvPbdLtw/z8LI15GQj32ylHjgoOHZeZ7L/98kO8cPECxXCAUMklf0HgzhjY2YTty4ogXIHJOAPVL+E4xbV1ihDm5qWPQGXO4ezqRYQjiOQ6QNN1TN2lyOViCYOCQRcaMxmqoMDlzatQVNCm8rRBimkZGE5K5ZD8t7HQWXu2zdLdFs29Mhtz6aEx2baPq4i4rj9Df7CFZeekihCdxm1sQ2BmfXbOyYPBdAzqNwgYTRVpDDTdAj0ijVUAn4X4FbCtlIlShMozDV3ozCzKMcjznDgziRLIkJtPoUibeRIQKkn1PE/R0hR/6suSxVCY+FlBpPx5eukmZ1eW2XO8QXtVHo4zaZdEK5gejJ6nE2UFw7GOLpSoRh6SZgGaoeN5su22HbK6nKG5iuQ/C712RDgeUJ/z1ZzKiOIJwswolBqaadnk5LtVo9zEcHbINYiUbDZFSK1h0l8ds3Nejmlzn8Xe+l6aR2R/Xt7q0Vo4wUsPvo5HHvuq/C5jh2qtQZyM0FWl0xAaeS4lSwGiJIN4WgGeKpaNKIoUw9AYDGS/bG8PqNeqCAXv63Q67D1QpeVU2dxQLu5ZjDAcNHZVqSp+jSzLSjjKzs4O29vbspqiyPJpKgUYplnrK1cuMZnIbGy9rgjRUZXl5VV+7/c/SaHGhgwcOybXVFVOq1MYI+IoJFXE+9tuv5P1tTZbG30OH5YiCb/zex/jAx/4AKNcElHn9mREQ4HujJiMlArQ0Qr1GYPnn+piqkXaaa9h24JElXt1Q8oiC1FQqCBiacEnmAh8p87zSjjh77/yNRqzFve8TCa3ctHn0SeuYfmC2+64DYAbjt3OUx97nNl5G00FV4PBRHq/qKBlfWOLerVGEI53DwVbkGVShWt68II8hKeqhuNRv/z/ElXdEqbOV/7um9huzN5D8oL3s//2F3n/r/w8fRVI3XH3S/gP9/4sa53L/M4fyuD/9HdPccOxg5w5t8xMQx4rH/vND/PpP/kjvv1tGfQ26hWE2aWzZXD8kBTn+PQfPohwh3zit3+ZP/vkXwJw4+xBVq4+S6cnq2lGrmN5GnpukigY4mgwRBc6hp6xuiklomueQ5YJCXcF6n4FS4/J9YzZWfkumjAJix2ubI6wKyqrScpb3vouHnn2lPy9Z1/gs3/+STA3+ehH/xSAeNTEdWJuu11m6qMQTj17gZ1NE9OWFeGq51GfG7K9MeHkLfL3Lp27huvr2Aovvbwy5Aff+hb8WsIXvyDfl9RgMplgezbf/KZ8l//4vo/Q7Y1o1OXnokAjK1LiMODyKQm7+oX/6z/z/n/3kzz+yFexlSBBEAQl7Atkxlaq8CUl7O4lr7iVOAk49UyP+qxctzfedJid9jqHj0iYiKFViNOMYNQuhSkMw2R9rYsparRmlABKkrM4v8i5c2fU/BEsLCxSFAVrqxuqDVLxzLFtUhWwh2Go2jl10dExLUEQRRRK1UxCGnOEMLGVN1MYhuxd3ENDyZD3ejtMwpDBoFe+t6GDZQiSOCKJ5fozipQgGKEpKxZTdxDApDehohI+9arPhSvLHNh3oPSGMgx5IQkncu5nRU6jMaNEF6bWCxJat7m5We6VvqsuLkMVuBkh1XqFKJswRUYu7m2QpwG9bQ2vpmIcU0J5B2N5YbeFge2m7DtMWYWb8W9lOMh54glpUWOGLnE8IU1NnnhIJiRuudvmhTM96X2VTKvcGXmRMaXTh0GErgt0fRdirKkqVrPZYmZGBr5ra2tsbm5SEUoVzzWYZBYbwwy9Lcf9J156F08/f54LV1ZKyFaeFRRpQqKQJIbQMMxEXjx1ZR2gZQwGAyqVXTU9YeoMx6OyyuR5HnmasbpyDUcFKkmS4LseLzx/ukzYUcgKkG4oW5n+CE3TqDXqpZy5sCyCfkBe5GSZvMjkQkfYAlFMBTRiNNMgV0kakMqAtm1RZEUp+FCt1PE8r7zwRVGIEIIjR4+Wl54kSUoYYRStqPdx8Cs2XbW/7a8fZjgcohd66aFVrdbI8wRdK0hTheopEiWTr2gepQLnbtWPXEEqVfURZMxaFAWDofJucl1aLZnITNPpO+rYyscrVqgbx6nIqqMSlHM9izwzmEx244ZKkZC1NQ4dkfvdf/rAL7G5bfDI8lkeOyUVRE99asw4aXHxwQlXz6lq9v4hm1fHLO6Xytn7mvv439/7VwzjglZNxrAYDnndwhvZrDwnk0CTLKLIBoixOv/zHYpCQwiLuFAqmKaFXpgE4bhU/SM3iKKwRM6Mh3263S6Li3NlRRBLYzgOOHDwICNVfVxb3UTXTTIFibVMgZ7ZGE5BtT5FW6VopsOoP8JUZ6seV6B0q/0fn+uCFtef68/15/pz/bn+XH+uP9ef68/15/rzP+H5nuFc+eoim6fSkDWKijLDbtqpvFlrccmxclzJwdE1eUvVyCCD1sw8Waiw8NkQp54QxSnK8J43v+ktPP3sBo8+/SQAMzOSYByHKbrKGueZgWVmVGsFjqPKSxMTTcsQljKFtWQ5dWfdRKiMW3NhTG9bSl0Ot+R3vfW+f8HdrzzEiRskFOO50+u8/4PvwxBdtFgJaFgDDAdaFY1YcW2sGiwvg96X33PyngZJrHHp7JiFBZkxOXLTfi5d2qQ/2Maclq2jHDS9zPTYrkeSZeRFxOJeCU0sAsHVjWWCkXy3hZZOHmXghugqs1SxPPpnPaJgTOOEbFNjSRAFMZNtmYnsnCkwLJ8glH5GAIYIMGgQZW1MQ1Z24iLhxOsj+kM5LoZeoBuSV7K9NoUAmrRaLlHQI1d4ZwwdYXhkCiYYJzo5AsPQ0MSUAyXQCg9DTwlDmUXQdEjiUSliYFoGBgbR1oAdhWm3qi55LqjPW1RbSjgh0DA0qzTYi7OAwtAZBZTO7pNggBCCNNcZjZQYQCOi6ggKJdcq3BBSm61NB9OaSpz6MuNshwhbTkbXd0hjm2BclHO4Uk8JgjGFgnnppnSqJ25w6ZT8vZNLHka6TmNpXvXBhLS+wOE7X0HneZm5evALX0N3M7QiK/HVEoGhYxq7EJIojqEoygxYmiZkeUS9Xi0NJovcYNAPqKo+0IwhWZbTnKmUvIgi8/DcKkmSMRrLapZpmji2rOaBzEhLyE1UZv2yPGFzs01NwSkknn2oqi9y3A8eOIxpC9bXrmGqTHJ30KbW9Mr1P+rHBOEQz62U/IqFpUUm44Qw7vDj7/5fAHjHD/80P/Ijb8NelFmyhfkm435IraJjIKsT99xzkm984xscO/Q6vvu49MfodDdJkoxCVa51zYDcwPMt9u6XGdpRe8LaRsCrX30vt94iqx8f+c3f4ZY77+Ezn/oaAB/8tX/Pp/7ov9HcC8eOSBjE+nJIpz1GL3R0JW2rWTF6bpSwnZm5edrtNr7v0u2qymDVIwxD8myXt6cVBZVKBdOeVhm7ux42ijfomQaTfswP/+jbuLwm+Rv3v+XHMLH4/J/+ISAl6r/1rYf55oPf5td/4+cAuPnkCb7+jVOM4w2EqkbcfNO9/OS/eje/8B/eJ38jHlCt14iimMlEjt/3vfkVvOal3wduTGcgs+duMuRPfv8P8ZbkPDj1zADXtSkMvYS6FEgPFt+bwXVUNZuALNYZK9nsulMjzTLCVOP4IVmRedVr78O0K3z8Y7+MpeCLetLjnnvfxOteLeWEjxw7ytrqkJ1rF/mbB/5Mtj3dprszwlVVKsf2uHz1BWZmHfJctrNeXeTypXPouiBRkNSDh5bwPIcXTisuTC3D0ueJAsHP/FvJnVpdvsqff/7LzCw4LO6Va+3ypU2SwEMTau80fKJIipNUdTk3jPoc7Y3TzM8aDHfpGQLDQwAAIABJREFUGmiaRqygQ7quI4TA0Hb9dEZhyPyCzdzcLBfPS2hUntU5edPN3HqbFFuaBGusLrdZWdkqZaW73QGa5jDb2kuvJ+fZaNyVHlbqKEySiIrvcvjQUU6dkpVA13XJ8oQ83eVQmcozSCjBHl2XlaskSYgVUXwqzvFiIQzX9XEch2pVrqt2u8t4FIBI8StKDAALUp0kDne9frIRruOXVRVDJGhAngmaM/JzvUGfw4cPk2UFG2uSGiD5ay/yNtIgyST0cgqvbbVa9Pt90iIpeUKTcYiuG+gKapZrIEyb6kyF2T3y7Ot0egw6AZ7l4Cs4fbPlMLfg8szTsiI07Mfs279Iv7/G+gXZB4tLe9m7b4HnnpP7jykqoAegJeSKh+04JkkUSYiT8k4qigK0YpfTluZS+CoOy6qf51XIczmHjqgq5ng85MyZMyXiRTNN9DxHKzRayrbCTVLOXF2lUTmEYSk7CKFBYbGzIyuYjq28ovIMTQlmGUZRSoBP4W+aPm2jOuvzAsM0icOonAeNRkNKjO/s7Hp7CUH6ItiejoFm6FiOXXJ0bUuQxjFCmCXHyfRsNNPEVdDd4XiMbuRkeVz6asKuRYBQiCEJYbVKvyohJAR3YWmxjLEGgwFBEJBlyVTniEkwQryoulzoBtEkwnX80pDYdT22t9YlZ1WVOaI4AAo0df7nRUG1Wse27bJ6NhqM2b9/P1E4YTQaqHZCXqSE0S737tjxIywvL+/yKU2jnOuagktruoMwLHT13/OtRXZ2dgjDEcJUQlu6xSAbsn+fFCO6/1X38bkv/zVh1Ccbyt+fO3gIK03AhNWehPPVnJRxoPPad8jK1aWnTnPlBZ25I3u44YSMXa6tDFk5c5U8TknVmVKrGGSGz0SJuxX6BArQNBtDxS7CsEiLCYZhlfENeUEUReiKhzYzM1NCqG1PjtV4tEMYJMzOzjOtqEdBjIHNRHHK8iwiSTJSHYQl90VLOKRZQTSJUVRNNMMj6Yy/twUtnKpRLJxURMNJzHgImiplg8S5WrYk5Jb6/FlGs0XppWLpGrbmYhQmqXL4zo0hbsVA0woEyrNj1GJrZ51EQXmMDExTJ0u1Mgip+iZFnlCrWhhKZShOC2lYrC4fBSleBaJAsH5FHmhHbw4wjQQj2c/tJ+VEvPH4q9jZcXnhilSyag91Hvra53GboOy4iAFsD9uaYDJVJywwhY/WlRtNrTrH/kP76URt4kz2Vb+7hSMigoFgiCxxCsNCFxHjgfzymRmXPQtznH1unT2Lsqw7X9O4OrpKV5EDKy5kkYXpxmihDHK753OCHGZ8l9FYBXjHQmZuCtFVXxbX5jn78AqVWk4cKQyvHlMIi6Aw8NXeokUWrRv6VA4p7L3mk4QJvR2TQvWnaZpoYkSeJ2SpUiLTwLJqZNPf00zCcIRe6FhKPKIQAWlkYYi8hBhomsYk3No1KKzPkUQZRjAkUQcvtobQ+ox3nFKswjQTcqETKm6YMEFYGgi7DBBM0yAKC2wrZDxRF3stwHELFEWAmfoMcRATZC5pJC98mYLaCbOg3lRE6ngoISJTlZrCQhgZhpaX6n1ZVqfQQywbVi/Jd25EPideM8sV5evxo0du44m//BzjvRpJRQYkl17QaPf60kW82D0w4jguybNBOMa2LfJMKwUQHMckyyNc12Gk+H4HDxzDFA7nz0i4bWNGQGHQG+xCzvLURtMLLMssy/JJkjAc7HpMRFHE4uIicRyX/AbdkCTTrU25IUtCtpA4ehVkLy0toekpliEIx3JsJmEb3TBIFUl8pmmjo2H5Ab2e7M9uJyeOYO/BFj/+rvcA8Hdf+habnWeZWZRzqtcbcvTIPCtXtkpOmWu3eM0b7ubcC9uceVbCh6s1F6/ic3XlqprnElZVZAa6obgFpskkivn4x3+DHQWX/IX/+PO89gfu59ZbfgCAh5/6IIYZs3yhQ2tGEoYHOxHtjRTHsRgM1DoWJrVaTV2I5SG7uHcPm1vrBCM5p+o1D1M32N7qlaTlKTl5GiimuTTA1DQNU10M0yKm0HSq7kzpG3T18gZHDt9Neyi5DVG/Q6otMduw2DunoDQIXH+Gi+fPgKWgs9V9vP61byAYy3Y/9ti3WF27jO/O0enKdt5598swLJ8zT5/jhttkkumumxo88/RnuTSWvz8JNCoD2I42UMsRYTjohcH8/CLTg/DihUvcceettFUfbFxdwXGb5GgkSjkyDmwOH70HLb/AtQ0ZQLsVk9FWzOveLDlXN7/8DuYOFHzrO98mVUIR337gC9x2+0m2rsl3u3xxhZk5kzAuSBK5HvceqDEOxyzOLXLsmLxAf+mLf4fveyU/x/MNxuMIdI1koi4DRca7/8lbefKZR1hZk328uNggHAhWVgdqrApm6jWwdMbbkpNgVywM0yIYakSp8leq1lhYWODCeQltdWyTLEtxLFEGaVnuESdDXMshzhV/I9U5sP8Y9933MvXfAYPxMufPtHnyMdWmPQu85a1v4NFHH+XqFZmACCYZaLtqgVJERXJNphcgKTiQQ1EQqISLEALP3xXLMMz/8SJlW5LrlCRJycOybVuqtKk5/MYfuIWvf+UMumbhVeQZ3e/3SWKwHQHqLNcLiyQGoeCTBQlZGlP1a4QKBlUIOLD3AP1+v+TtJEkE2m6bavUmnd6QrMjKpJMcVwfbdfFVIsgwTOIkJ00kx6u9uc1gy8avuDRmZUzQ66VMwi1cV6PaPCrn3t0GO70NtjZULBNH7CxHvPb7Xkkcy33j7NnzVCsNOltyzINxTJaC41HylMnl+p9MQnR2xaKEEJJcInuFNJH8vGlCq1KpYRgmo+FEBfPyieOQQl0uLAH1WpVeFGCrWCIQGZlZoIcxrrrkFplBHJrce68UjlhdX+HK5XVczyi/V0Oqmo5GI3kZU+3UNK3sc8syKZDQt+m+f/jwYUajEYPBoJxDcRxToJeXGE3TMAyDJIt31W3zjDSN0XWTfMoz8xw81yee+lC5Du1hH5HmFGrRlEbsul76cfV7Q2zb3hV3MW31e2l54YvjGEOT891UcUIURaQvupwneUGRKrimSh5rmkGt5qHrepmkRMt3xxCZkKxUqzKZo6CfcRhRr9fxHJdJIPfBTmeHoshxPbkeB4MBcwuLpGlaXj6GwyFFkUk/MxV86povIYKaUnustPC9BoP+Dkk65TfrVHQDRUWnM5xgexa2IRDqXULLpO5AlAtyoS4kScHEcTGrsk/G5wZklYzbbt/H8ZtuAeBLX3yecfsqC/tNRkP5XU2zSabprG/J/cfzHfIcwijFVHuEX3fxKhY73Q7xQKng6qaMH4xdzqemFQRRWO4taRoidJvxcFze6zUdbKtSxiS1ikscx0wSgyIeqvlpEecJRi7QVPLW8B2i7fB7W9CiKAomwVSe2iZLoTAilBIrrmlKGecANFUJyIFgbOI7SoHHCBjv5GQTQSCTRkRDjRtPQKMlWNmUk7DdD/CqKfOuzE5ixLTbAZomD0CAMI0QGvQGIbW6IrmRkGJgKElgUo1oYlGpZti67Oy52iKLxyokyzV+6ZffD8DPvPtPuf3VDl1dyso/+vgTtFomYy2jUDLInm6SZhNEqJeGb5meEIQhjTllNGhu89CXNmgszTN7QElWtvYyCiOyRoY5UYFFHJBHOq7itMTxhE5vhSM3WrTXrwBw2daoNCsYipuS9gbUavP0kgzTVQpN+2zecc+r2ep1+OaXJZ+ifzahUa8S1JSK43yP5jFB+6pWVmjiOMdzNCwdUmVyqZspjb0zjPpTZ3vw7CrLL0Qck7QTNDMlShOKXMdUUWBWWGSaQAmaEYZ9DEtHaDZFNq326AhTYm0dRx56uq5DZuApHo9mWgTJCF/XKBQGezKRF3hqEUEgN1cjNylCHZiSfAtyDbIYApWl9isCz7NxMh3Nlht+FOcM+gaGqQ7UrQG2sCnEqJwvGhlRlOK4VZRiLH7FJUvSUlmqsCekGcQZVF25KW+e75GPGvh6hKv6MzIGnHsugVl5AJxfL9hzuMFwYS+P7siNpjLfZ3MTzKpFvzetJAl83yVNd8mzRa6jUZQ498lkRL3hYZh6GdxkWSI5CKm8bEVBk3rTxokqJLHaQrSAOJay3HG8K6mcJEmZ4ZOqSB7NZutFmUBdkXPl+pQmjQ5xHKOpA25nZ4f/n703i9L0ru87P8++vWvtVV3dXb1raa1IQsJiEavBBLBjbGyPjZ3geJbEk0wmvhh8Ep+JPU5sbM+E4yV2AozB2BNjYMAGzCIhIYGQkBAt9aLe1GvtVW+9y7Mv/7n4/9+nWudM7nLBRT83HDVVbz3vf/0t36Xd8alEiaGqod1gke1wmTSRa9GdmcL3+0SZIN5pqc8e8WPvfZh2Yz//4f/6YwDuufcI01ZAoqRZbX3A5tUm6bCkOy3NgA8eXSAZdnjqqcf55X8kxQe2NxPe+IYf4w//5D8AcH3lNBghlunQ6cp5tx2PvNdjeTXiP/+Z/Hu33HEnqejzF1/+Z/Lvv9ahv+pQaTqXL8uE0rUs3IbBsDdg/z5Z5et2m5w6fYJKtcoKUbFgGpJfKOSaGg6HaKLEcRo1Z0bTqRXZAFxbJ84ybMuiVJ3VhmdhVAZptkk/lXNqtyxOnnmKpiJpt6ddBuureF2XoSLLXz8n2DfvMDU3zYWLUmBicr7Jyuom3ZYaA8vFNqYRAlpNOX8nX3qGUtPwLIMXnpRy1M9922PvARvfUpydfIqNOKIqm1QiUZ9l4FgmrmegCrRYVoDfDOhFY1GBgrLcQnM02oHc/6GdcW31UfTUrDvcRebSWmjx2Nc+DsATjzW5/d7jvO7eu/jKdyUfd24vtFoNlgv5xwyrZGHhAFevr5Io1b/V6yFLR/ezZ98UG5uJGnOXJI3qwl+ealB5OAFolvy9wU7IV/72W4yiENuVAVDUL8nSEU1fcQTSjPnpLtZ0wMktuT9s0WUnGlDY0ggepCXFxsbGDcGk6sbbZl0k8VyZrKdJiWWMgznBpctnWdgjE/1vfOOLIGySSLB33xIAH/zgB9nurfPiifM1D1LXSiqtxFCcSzSDqtRwHZdxKzdotOgPehw7crgOmF988aU6WJR/X/KZpMKZStiLDE2T6nbjYpgQGoZuYakK9LcePUMYDnFcIJbnTbPRIU4i+sMRQiW+nY7B0qFZLl2VHUTygE6nzZEjeznxokxEoyxiZXlV8pTGBrqaIM8zHMWZnZqaYnO7j9fcDbh832NhcYGt3natvopeEI5i7nmjFETZn+jMdwK+8v9cZLAhP9sPCjqB5B72RzIJO/Fczsz8BAsL8vtOzjh8N3yFa5cuk6XyPBsNTO68e57b7pbvtHYFXjnXR4iQXNlI5AXkjDDNXXU7mQSIWvRGiFLZRghGqiBRFIDQlZy+KuJVuZTSV0G2VmoMoghPh6GruFqGjZNVmIFDkcm1EDRNHnrwNYxUcWUwGGC78h3S8b1q5ghKaR6t4hvTssizjCga30U2WVlxaGk/O1uyY/ry2bPomkaz1aqL2rbjkKZ5nQgJSvkdDY1C8ac0pZgqNDFeZpRlSZ6kUl0Z0LKYXFS4poMShFNJjRIGqruonipY7Y7naBTjum69/9I0xbQsBCW5EngSlZQ7r5VPLRNBha5Tc6zzPEYIj6qq6uRxdnaWra2tes9UVUWaJEpUS42nZrK11SN2o3qvuUrZcpxsuZ5NmsZqX40N5aEoZGezSBVnjhGGYaGWOXEyAJFT3FDcKIVGbGtkY5PtZgeRZ4xyDUNJuptRSjhhEw01Fuckjy81R+gClvbJO+bMdkan2aYvhvzglccA6AZDysinn4GuGiVbyRaxqeMpcY68TLEdMEsT3ZX7w/AidoaTBK02nuKnJWECGHXiLYSgEjnTUxNsbSkrjaIEw8A0DQz1g5bjMRqMmJyWyC7dKInSAlEW2KpIIPJKdiJDA0OJ2qXZrprv/99zk3N187n53HxuPjefm8/N5+Zz87n53HxuPv8Nnh8KWKAVGMJbUlny0CERKQ3HJNWVSaJmABWFDoG2i28WuoljjOVFDRzh0r9YUClYoNn1GSQFP/JIk0jhcbc3pVyso7wqFmY7bA1KNnvbKJQAGiVN38Rz9Lp6VhoGVVog1GeXFbiGS5UmtCzpvdFoTvLed76O9//yB3j8Caka87U/fYIP/PoDfPhXfweAExeeZWbKYXuYI5RHT5UZ2EFJoeu0lDqZCHO0pobnyfl58LX386X/dBLTzHjTu2SGfemVmGDqEKbucE21UAejFdK4qA31HM8kTaDR0JiTBTQ21nI2Vxzm9yjfK8chSgbotJhekBXTjWVBebWF4dosr0hVI78RMRoKbnuN7Ay4k4JBHpFfb3DlZcUV0zXKKoYqwDJlpcP1TBI7puop9UArIBVbtCdtJvbKeYlSqdBYZhqWalmXukOlGwjGEE4P09RJSotclxU9Q+RYzQ6D4RYt1blydIuclExJ6+sIisEKQjMplR9YmlXkqSnV7I1xWUqHssBUXZwsFwgtoxEEFEqJ0NEtgkAQbVpotvJFcAV5VWAoRUHLblChE4Yhjq34TmZMNMyZac+xdEiO+5XVUzT8BuG2gka0YvKRxajKseQQow9mic/bUEUUCr5gxQOwK/bvl542Bw7N4Jsuj11fpvBlNX10eQV7aJMl6zRcOe6m4XBteZVAyYlrusA0Cio0NAXFNL2Akh6+4TIYdwcyA0GGVkkYm2FldNo6lumzoSBVQlRkRYF2Q9dE00osw66x90lccPjIQXQdzp+XleRut0uvt4WnOnVZllEUFa1Gk97OllovBr6nYWsGmZLgf+Tdb+frj34BIYtimLrBKEtodzuUCj4xOZfimJNsr5usb8j94VotKm2HfUty7vYdddlYNShCC8eUlfpGo8Ew7TE3dydvfkRaODz5ree4vnyJbz8pu7hB4IEwMeyoNkk27ZRGq8m1a0NSBT9917t/lI3tZS5dOQXAvfcf5Otf+D7NZoBh7ErUg06eVPgK1hG4ARs9qZIEEIVDHrzvdWxtb3D+olSSa/g+SZLhB06tEieqFE3b7ToOhgnNRpdCG6AKgQRBk53+ECoNTUmGilwnHhU1pNO0MwJ3D4PoIscOPQTAj//Eu/jcZ7+EZRk89dR3AfD9DnE0ot2Rc3z48D6uLy+TpFFdPdd1nbIsKUsNS527k1MdlteusLgg+QfXr62SJyW6sDEttWeESZyWfOT3/oDTp6RtRFVFfOxP/5j5vbJbsN1bJ89LJrsNNE3ZVpSCojARuoGj5qY/yvG8EnL5M/ff91a2spBjt7+ON75ZKkn+zSd+mye+1qM9IdfPzMwM6+sjHnjgQa5fkx22l19+GU2zcFxqv8EorihFhG6MTX41igImm02qXK6pX/jFf8gf/N5HcT2D2TnJebp8fY2sKpmbUR0iHbJUvnutZGcKqqpEVPputb7KyfJc8gsBhI5tp7ieQaKM2h3HIRwVLO5fYM9eCQd/9BtPoAm49+67AVhd7hEnIf/q136VYSzhrt/6+gqapvHUd75Epy0PIU0TRGGO7YyhymWtQDY+82zbxXI8fv3D/4o//qM/kWv93nt5/PHHaw+7CxcuYBkmVVWRj7sMQuBYNmg6mYKyHTx0hKsXrzBU3bs3PnIfo2HC899/iakpyaHLi4SqKui2J2g25edfvXKd1z9yS60M9s2vXuB3f+/f8qUvfYlHvymlw+fnZkjKnDga0nCUkmsieSjK85aFfXtZXUnpzHkMBhJWGg9N2cXAJVcG9mWeYluVVPUFDtw3S2si5sm/WaHtys9OqhLNLLGLBkpMkmyYUxgG7/zZNwPwypXv0Ql0+r2Mc6fleXr41gDHSWmo8+A7X9/Bc3Uoqflxml6QFdDyJiiVimkU97FdC23MOUBQ5SZ5WWCZu6q7VUV9RoDk6kk/J8URNgyyLKNil7+VpTm258pOjpr/yYkper0hkTKz7XQ6CFFKDya1H4RW1Z837ob6vs/G5lr994UQFMJgad++WvWvt7VNo9GgP+jVXMI0TYnTuIbgGobiGypO1/gpigIqboAd2jSbzdpDK89zKvFqzzWopHdbluAqRFSz1aW/E9fw0EG0w8KeaQa9HeJIzYMwsRydIAjYUmu2KnMEu/LppmmCEIgSctUxNQwDUyFEak/JICBN012Ioqbk8rVqVylT0yiyhLzI8LyxWmCJY3tECg2V5TlpKvmBLaW6mSRRbeGw2yUWr/pfTdPwPI+q2DUpT9NUciNVh6/dbtfG9ePOrhAC2wgwjKI+9zXbxGwIFo7K/x71ZCd5mBb4HRWnRBtY0T7WruUksezserrO4AZpfdPRSJMKLdbZd0RRI+ZK+iuL7BBS9GTXNIl3sE2n5mFXIiPLBYZp12bcnmWzvd1H13Qsa2xXIqHKhYKQTs1MESdDwmGKqTC4VVHhOParrSU0nSIsf7g5V5qjCW/PmCkuqAQ4pomh/JWSNKW0dNxWWbf8CsMHs8LT5CQVKVi2y0QTts7KYPz175nh1rs7/NlHXmZiQk5KY6akN9TJlLeBn1kEk1AgyNRiiocaemGAEDjqoveDSbRgRJaqiz+vKLUM07fJBzJ4fdu9P89tDx1l1N/kG09II0NHVBx//e185q8+Ld8zuIIIXUahRkNB8FbOCsw2GAEEmQw+9i10sOdTRiO5MVa/O2Rlc5ulxSbv/xXJ5/rmU2fYfLZgcfYA4phUBFlZPk+YL9ffBWFSigzHgkBpCzhGl+WrKZMTMsh2nDZZOSAphkzMyrHrdHOWrwg2z4IZK7JsqVOWFrpKMA/c7aC1YypTp/eiXITL5wucZoBlDqhS+e65VpHEId1JOZ96aSGqFsH8Ju6kwsIDVeaRpjm6Mk4shQysdU3hZcsQaFHhUSl2taVBqmXkVYmn4DWu04JSo4rkZnUrjUnP4dK1FRRiDc2BMJFoCkVvoswBoaEpvwOhF5RlReA5FGpDtVsGnp+zdZVaWjfOCywnwFTmw6CTFTF5VdBpy0Q4Gm5jiZLD+4+yckUG+lYjIzIGxJV8gYnAIstiRpEBikzattpsngjxTI9BpbJ/o8LKbaYXJRnZDgzuarh89exz2LaEu26sbtNsuYQ7Azz1Xq7TZnuwjK9iMsv0aDZshhsWWVNeCh1bB3yGA51KJS5RsYPXaJKGYzNgHceuEJVVczzifESeGgh0KnVBW4aLruvSxBN5cE9OTEu+hNp/plWBMGveWas1QRRFWJaGP16vHoz6GpY9rIOIVmOeVsfi5VNyjjVDmmfHUcmsEkmI4xxBghf4FKn6MD0mzxMWD8ugpb8RcvlsheMVvP2d7wbgd373o5w7e4nf/j/+Jc8+9z0Amo0W0zNLdKYkZOXMS9cokhaWN8RxFM69n9KZCjhy7BY2FR9uNBogKpPLl6WogB+YmLrklfX7csxd18X3G4z64S6sRAh+9L3vJHBlQvtXn/wEH/rQ/8ojb36Yn/vp9wEwvdAljof4nkGNNUXHtbtouoLpliPanTn2LM5x7owMZvrDHSkvPNwZq5xICEO163fmeBVVCRour3lQBuf3HH8nm5ub2E5Q+w2F2SWqEgJLWk3s9GJuv2uKH/zg+8SxCgbMgiKTQXWsJNTn52fZs3eR737naQDa7S6iKMnLPrapijeewfZOSJr43P/AHQAEXsBjj36FZkcZziYjLKOFZZQcOiwD7+XlZYQICBoz7JmVe+SZ577EkWP7mD4sL2K9WuL6xQGnT17m6G3HAJhbWuXF5/ocOSL/22ukHD92H6ONWT77+U8C0G0HJOWAoKmjPChJk4pSG+HasmgSpz1EaVPikOVynT/8up/jO9/9PJPT0N+Ua0juj4p2W87x9PQk589fZDRM6U7I72K7Er7W3xnWQjSzc1MyGVVFBFODVqsljUbHpux5Rl4WGJZT8z7SLJQy1spyxNRMbMvjR95wO2Ei18YXP/MCnc40FSF7F2UCWxQRV6+s1rYnRZETjgps2yZojL1hYDgsufvOH+H06ZMANBo+WR7TaCofqs1VoniIrlNDIw008ixDAEMV3Bw+fBStqLjwskyo733NcYoi5/zFC7XkuO/7MqjWtTrwzrKMhcUmlS7lr8kXuHZ5SK+/QrOjDHRHOhMNkyRnF0aml+xsp7z9XdIQ9b/70CP81m99jIML9zIzL9/Jd+bY2N7g3NlLZJHcI9cur9DwLIS6QAbVDve99m4unFhl/aocz2bXZxCN8MxdE1jTdXBdG2HJ+/dXP/xLnD7xHJ/6o69w/I1LAHzwp36GU2e/ytf+9pL8LqKgSBPCMMbU5Pdd3DvL+fPnCexuLdxQlKmEu+u7cLE804njcNd/MMsobxCFAGpD4Wik5OjLHNezMaxdUR1Nk+eD5M3J39M1A1Gyyy0q0ppPNTbeNS1ZXLGVDDjIpOPG5E4mEIZaS6pAoIxzhRAY1vj/q4ijpH73sfFwWZav+j5lWeJ7Xg23832foihqblOelRiWqZImxeONMgK/ia7rtcejpguiaMRoqAqNVYzjBBRFwVjh3HKkIEUYJuiqWGXoEsKYV+M9ahKHEZ7n1QlXURSkmUzcxuM3Ht8xXDOOpBelaZq175uoKixLp9Xw67EqigqhGXXcJ4SgKEvKUtSWJkKUr+I7yznVXsXxStOchYUFNE1jc1PC1nUM6T2puIZTU1M1zG485qPRCN+zMDWPYSzXvm7Msv92i+2+LEZEIwNDK9l3uINoyyLC+sWM+dnD9AdbvPK8LGB1prsYXo9RLs8Wt2wwTIYcO+5z5NAbALj13gM8/fizfOfpJ8hj+V7tlk2WpOTROPaVayJPdgW0WpPSHmY4HNW+fWmagmbU49LpdJiY6PDKK5drc25DN0HIRHzM1UTXIBI/3MmV6WmisTD2YjGhgizP+JX3SIWvex46zj/9tV/DaWrkKjo2mxWYLmUkB6TZMKE0mZ/X6KjPWlvPmZ1tcv1G2knSAAAgAElEQVR0j1jGMeiGheXl6Ib8vdGmx95jguEwIENeenoZkGcRhqiwFfGryHImZyy2NxS2OSjQA5O0MFhQhO8geYh/8fP/AwfvOczH/+gvAbhw5gXmX9vmrz4vMaYHDveIBhU7kYYYyI23dc7BbJqEZoirYO0zHQP0Dm+6T1a3PvTL7+Mv/vrjfPV7X+fWg7LSmqVD0qrDxgsFhS6DDacZs7UtOxsASbVDVYEpNAylRJZkKYZZ4bAEwPyeOQbDlDgfstmTQeDh23WsyYyd520uP6M6UK6H5kb4ylityNvsvTPFXuihKSO3008YaGULoad4ymMmcNusrfWpVOWloXkEDZP24XWGmfIMEBVZGoNOLWSiY6ALSQYFwKooyzZF6WCpqj9Bich8yjyhMOSGLSsLx9RpOapLteVQbPRIhcBWFfZUrxgmsqJmKA6LKHUwqBUpNXIajQDNiEkiOZ779jYYjkbohYWujJqTLMW2bAxFpB4OI7JcgGnWh6ZejSjDEhHNMO3LRPjw0RYvb3wLoUzpijBHw8UQJQXjKsokay/mJNfaaG25PtNC4Fkl/WKs2HaA19gWnz37MrbdUXMTMRqVeJbBqC/XWVkW7NkXsLOtMPTYBI2CnR2DmQlVGSxHoHvMLx7m1MsySNLzElsU2J4MApN0iKFneHabqUlZhR+FO1xfXseyDCrlhq7homFgO6obWxUMhynt9iR5NnZar0iSpL7ALUuKbhRlRrcrg+w4GaJrHre85jCnnn4BgLfdfRzTznnsBXkBhKVFma5iaiZveofsJJ8+eYmd7YSjtxzltQ+8EYDjdxzjDz76v9eXg14sgMjZ2F7h1jtlUD0/d5jnvn2WoLMCyqulE+xhu7dJUSlDOWBuT8C1K1vcd/ebAJidP8rH//zPcBwLX3GXDBN812eo/EeKLCYrJBnaVpvddV3Fh9Dqy6osBN1p+W4Aa8vL3HH8Xg4fuJ0vfkkG+oEbYDkFeaLhq8KCblTkmV53f4RW0WrtZXp2htOnpPKYpkuem67rBCow3draoL/dw1cBWJpHGFqbpWMVb3yrFG74/KevML8wje2DqasusRsy2PI4e1aqxgUNG9+ZIYw3sH25kaKhSxwlNJpB3U12HI881yWxGLj9+G30+1tcvHCVZkPdBVnM3n2HuP2uwzz+mExyt7Y3aPoeg4EMdub3NSlim/nZg3zgAz8LwO///kcQ2oAsj9FVNW56wiWNDXrK7uQfvv9dnHzpS5w/HRMpFb577nMoMovZvTKxef6ZVUphMj3vs7amuvf2LEHTo9dfrSu7opRCCuNnYjYlHDgkIxCV4rnkOV6jjWYbUkAB8HWXjt/h3DUpJtFoOriu/yoRmLk906yvr6NhEfbluPzP/8sH+eQnP45nyb3e6/XoTjSI47DmXJWZXAu64RApvqjra0x0p+ltq85LlaELHc+HqWlljo3B+ZdXMUydBaUSp+tw5fIKnQm5xhbm5jn50jkMw6TRlO8ZhjFV4ZDmSV0VHyt7jYNoz/Nk0O7aFIqrEQ1HiKqi1e6SqGi10e4w2Zrg9Evy/NGA7mSLMBrUVXhds4jjWIowKIU722kwP9+l0VZedKLL8vVt+v0dUPf9RHeGrNQZ9TdxFOc4SRJm900xvSjv0Idedx/9XkZj1uHYASn+Mb+nxZ9+7A/xnClc1fF6+lsvkmU7FD15Pw6jmE5niTRbwVWdjqCpoxkd1tZ79TiMegPcwEWoqvjDD7+B7z3/ONgxd90rz66Nyy4Xzp+qu9uWaWB7EbZbMtiSfz9oOFAkDLZTbNVBHA5HmLZZnz9JOqLMpQ/eeE2V5W6SdGOSkuc5+5cW6v9+6aUzNJsehbpnqlLUKoPjDtc4ERif374vjaMty6k9+sadkhsN0DVNe5WRqxRZ0OsOGkAaJxiWTJ5uFJso8rLee9ITynlVB2os4CPKqvZYHI1G6Lpef9+iKNAM81XdLNs2GamO8cIeqWZnWRbxKGV5WXLmG4FNnAg67WnaU/KzNtZGiEKjLCscV/5+FGbohlkXk3yvgec4zM3Msroqi6tpnlHmErEzFpQYf1ehiGCapql5u+Hdsxy0iixLaLWUcbqmMxyGCPU5uq5LoYx0V92yKDKp3mmaOCquNQyzFt+Qj06r1cI07ZqjNzZSHs9BGIZMK37S+N+G/QG+35CIDk3OTZ6bGMGIWCmDNltd5vaGzC76JIXkN4/iiDPf7zM9N4EoZXJ1+VRIpZdYY9TGdsL9b9tPmC2zeU3u/5m9k7z07CWaro6j4iff99jpb+LYins7yiXXLivQhFJDTjIm59qkcfIqA/Msq3CU0JcQGq5r0+8PayEMz/WJ4lAJ9+yu4Wr0X+9c/ZAIWoDXUG3eSpIH/UBjfVNmRG99wy9yaO+nOLN2goYKVrVcoJPg+DLgK8uQThCydg6uSI9Gjr4W1i7n5FXBxLz8vfW1HDKBU8tMJuiGYDhM0FCdliKh25Gymwdkk4hw5OHPxUwfkT/z0lMD7rntOC9duYSjgsAJ7yx/8tgnmP/2Q0xPykn56V//7/nYf/6/a4U2UTWovCEi1ckDJTl6S0q0IdBzg0wRsK9uCtr2Dne8Ri7C768PmTm2j+Nb+0lDeYHGW5CLkql7m8x15Pdr+Iv8/Vefpa+CFssH24BwG3RFes90aHcsTFtu8tMnt/GaOrpt02rJJeF6Q1xHI/Iz9HHno20T5YJS7MprX3gelqJZbnlQHmwri2tcORFhWrswhJw+gWeyMZRz3A5yKA3Wr1tMH1KmqRsCs/Kp7IixNqqhOaBVaApeWImAUtPQHQtXtV/KUmOoJbiBizGUYzcKeww9GAyVbGeyg+VpVIbJSHVR0kwexpom3b7l3zPI8gzbUpCOOEeIkk7LxdBltSLNoSx9IK+7WbZlk+cliRJXEIVM2izboFTBThiWiMTCqEZcXpcLdHnZwfE95lVnLpkI2dgo6XgVhmqCbYpNmgcbJP0dhKJIWgxI+xrNeRlcXSsTRGLi7t3HaCjfYXa6S3RimcHIBKGU5PSU5asxqIPG9VMMfZbSHKJVcv0sLs4TJwN6qz0UqoOZiWNcu3wCFATXtm1cx6C/PWRSdeYoKwLHROgVhaqslmWBpsuDCyBNI1odD8eh7uiVhc7hQ11Onn5OvWOBZcNUe5YslfMSeDP0dlY5Nn+AA2+/DYDnX3iCpaVDiOI0AHoK733fT3Dm4gucOikLBAeWbmXQjfjesy8yPy3VrFav/4Asj+i05LkxsdhjFDpcf9aRUsfAiR88yuQem4sXQvbtlcHGW9/6MCd/8AJCkxiHmX0dvv7Yl8nznLtvkwHY4888gchTDE8nV/CzqjLYCiM01Z2MwwxhVvi+X19MSSQlnWH3sjItnXgQMlJSt82mzcsnX+LCmdO0xsWNosSwfJIi2YU4iBFLB+e4ek3ubU143HnH/Tz19DfQleR3kuWMoorJiVnWNuSFdt+995MnKd/+9pMA7Nmzj6xcZ9DT+dvPSBji3kPT6FUXx7Z5/DHZmQ8CgyIb0e4qeJgH+5e6nDy1SRIquf0yx/U1wmSIo9RpDMMgjEJabZnMXb58gcFwh1bHpchVBiRsHKfkpRcu1BDRIHDJioI77pbCH/uXAuZmDvOWN71PyevCO975Bj7zN59iYsIjVmfeKNcptR5pIsf52988z9ve/R409wlOnZCdjme+O2Rx/yKlKxPopVsm8d1pnnj8aeZmZBFBlAn9fk4aa0zNjVVbdyhyi/F1OtguSCMDQ08oUgWztARFXDLXneGVyxIyPhJbpCW4dbGqJBaxJF2r55ULl7Acm2ajwcSS3JDPPXsG12pQVLI7urS0jygOMawYx5Hr+tqVFSzbJUsTPHVnWobGxsYWsarsuq6NYWYMdnS0Sp4tzW7C5NQEg/6Qq0oZsywFttdCN5QQR6rTnZhEE/oNFWwH0zTxGk1MYzdpCcO4hvxqWoll66Rlgq/WQeW65FlGv9+jVMT7siyx0Gk0fTXmslo+utzfDebCHeI4YXZ2hlDtkTgZcP78kGYg72PLjvB8C0O3MQxHvaeGmY7QSg2h5P3jvMBzbSkMAbx0puTI8Qd49MSjnLsmizkNbYMXn36BrWuarFgDjm9h2y2SRL7T5ESHjY0VJuY0qbAI7Fwd4rqCpEy57x6JyzcqnWef2cFXMORHP/819h7Yz4HbJ3jsiy+omU+YmOxiWHL9hgOoKBFCB0O2TN/4+l9Aq0I+/5kvkqkE03UdhAamI8ey5QSEYYKpuzd0ikTdsaglzVUwPjcr33Fqaopz5y6Qp0WdAAldQsV0U8dTCWaSJDiOg61U8ooyI81yTGHS6ciEfau3jYaGZmik8djIWONGI2xdl7DXnZ2d+u9pulErHTYURHU4HEJJ3VEYQ9NM09y19yhLkiTBc/xXCUNUVVULaHgKnhjHMQ1P3qOGO2IQZnQnJ9BseQatrQ8xyi6ugsR69jxl2Werv8z6uhKKcHRajS4afSkYgYTLxllOuyMLNZ1Wl16vJyFqqtNpigrLkEmtZe2+e1EWdbIqk0cL23Z3lXmrijhOpEnyGE7o+QyGcY0kEUJIZUVRUZa7DRRd0zANo05Ox8+4i2NYJmEYI0RU/z1d16XE+Q0Qx8FggKHtJnxlWVIWgjgOMQ25bxttm61tl7yUf2u1N2DPQoP1azmXL8ti1aAa4DsWeZlS5Aq1teQxtWRy9lmJSqlKMDslR2fupUikgfZG7yx7D/ts70S4LRkLdrpdGt2gNgeOwgTbtCnTAsXAYXrvrFI73YViappGEHjEqsrmeC5xnMomz1jFEdmdNU29XnsSNvtfF7W4KWhx87n53HxuPjefm8/N5+Zz87n53HxuPv8Nnh8KWKDhauLggzLb7a1H6DZ0mwEzqjJ/aPYdnH75eU6vnEUomV5yjSwr8ZoKR1fqLC06ZMOMA523AfDOn76f3/+j38awEtyxP8ZQwpWyVFZxuy0Hy0vZ6VtEsfK0SsGxNfYf8okGMpueaHskTsr9b5C/973P2gxXp1h6jcOZi5cAeMPDh3j54klWz3f56Q/8BAD/8ZNf5ugBQXNBtlh9u825K5fYWtXIlflguCNwK4ElDEpV/dSsFBHZtKflz8zvv4VQX2VrOalll+9e8pgrfLbdjOXLsnr31re+j4XFQ/zm7/0+AF5bQ7djRn0BCsOKbpNlIfMKCpKnJlubI7xWhu/ITpnhbHHw+CR75jy+8yVZQTj7dEHQyrB1WUWaX5giLyJWVgYszMvqwZ1vcNgeTPDdr16mTBUpW2vQaiXgye8WaLCzqZP4Iw7eLTP/lbMVjmPSmClwke/VH0WklNhK1KOo2ui6h+EEjGmTJiF5pZFlCa6Co2jZEN3IyMfmw6Uk/opdZVYMUyNLBXkO5rh/K0xKIdBUS77MQdcLgoaBUBWKcAim7qER1x/mejoN36kNEqsK8kKn2eqyvjaWANUwcAi8Et9TviFDyLZNGsrsuHvUxZ0bsH4lx+/Il6oaJYOXpxHXCoIpVYXvZ0wfMNhQBf7Uq5ienCLtu6S6kl1PSppam2tXV9GUVUAWaXzk936LL3/tUwC8eOIsljbH2qCPOyXXeba5wcG9k4hUoI09NCKdXhRLFRek14coU3ynzWggu8szcw2isJCQDVUBzvIEzw1oNOR8NhoBlcjYWO8xNyM5OpXISNIRQ1V9BomBnpiYqH11qqqi1xvQdQOaip9ypfcKYd/m9a+Vn3350kWOHflJNtIr9Hty3V27vEl3oqTVarF8WXaSev1lbrl9vu6+6s3r9Hs2oz7cd79c+4//3VUWFycw3ZREzWlvK+Ujv/NRPvXJvwHg/KUfEIUpgddgMJSdjjBM6U60qERJoPx/4ljCpAY9OS+33no7o9GA69dXag5EnKWUZY7fCGqOQFVV6IBZy1/ndBtzVGVKksixskwXrTIQZrULUSNjemqe3o6s3nlBlz17DvHS6W/j2GPZfINHHnkzL544yfnzkteyf98+br/lGI9989F6Tfu+Q56ZaKoGt93vEY8qJuedGjp79DaDNIGuLz18rl0ZsL29TZ6neP64Ai3HIM+gUnzGPC+xbRPL2sW9D4cj2p0JkuG4ghiRpQIvcEDtkTjKsK0G7/4HPwrA6sp5pieOsLTvOCdOqi5DS+dzn/sU7WAX0tQMPEzDZ2G/PLseedPbefvbf5R//Iv/EpRP2eR0mxdOnKo5n1QBb3nbw1y+dI3rV1bU0IXsDHPyJMf1VSVXB02ryGuvv4rupMPOICUtdyWy8zRGS3yO3yp5YLrt8MLJ52g05ZrOs4g8zzAMs4bW6bqGpukITO64S3LfpqbbfP/pi2ysKTsBL8EwK5qNDtMz8s5M4pDr19alf2DtzWjW4iIASSbYu9gmDOO6y7h/qUuaVKysrGCq9ZKlOXazi6tgbLYt+SPRaFR3BtI0ZaI7xdraGrffLqFtQghOnX6phqj5vkuWpxSiwFfm4nmeKxGbojZOB2nTNIYz5bncw6PRCE2VoB3HAK3CtlzpPwksLDZYWd5k1FNdVDdH0wxE6TIxpSDbgwiva5IOBSO1bztTM7z2zXdwZV3CEB0xzVSrwxNPvsCRIxK68oZH7uav/vKvQZikyvbEKMA3JyjVOs/DHo7dYmNnE9eW51JguORiSHNmksNvlJw8t5ly9ukt1hQ33LI1tKJiZ2OIbo3h2X38QMLB5GCmZImGbum43tg6ZJFKbGHiEIXyrI7jCNO2UR64OJaU364K64Yug6hhdOPuUZ6naJpGovCteZJjmOA57qvgU4YhPasmuhJ5sLGxISXdFUTedS21xkQtOuH6LlEUKY7crn9TUdzQFRO7fM8xLNAwJN8rLcoboKYGvuPWd60UJ3MwTbvm48s1Ks1+x+fiYDDgrrvu4M67pc/eJ//8UzRbLWn7oXwtM7GJbng4nsfCXtnZCgc5a1djgkDFBJVGhc7M3Dyf/ztJ/fh3v/WHfOrP/xO+G5ArawvQKSrqvb24uJdLF19had9e4lj+TBgNoZJctDEEL4pH0udRxSDS69Mmy7Ja3KQoCrIswbT0sUK9hPcleT0Puq4TRRHVDeOqKx14CY/c5X3ZtoOr9uMoiutxL2uoYPUqqwSQ0MQx3228NlzPJo4rEuXt2Wq1KIqCyUm5VopcIwgCjt3t8r0LEr1TJB65Jtju9dg/JTmed91zlJdePFV3K7vTDs3OfvbNLfLt730BgJ1+TBGP2HPc44oEUdDbLJmeaVMoKPagH2NpPlkSEzTk/q9KKYCSZ0l918ZxgmXu8t4cz6coMsIwflVnTtd51fmpaQbJZvTDzrnSxcGH5Xt07DanXu5z5EiDD/+R3Ahf/swz2PpeonWbEyelythddx3B97f51J/KS8+xIRyYvOV9c1hKvOLRr+zQnegTGDpxqIiMpYumZ4R95TFVWiweNRgMBZubiizfsdjayLjtrgZN5XPV22kwHGXkymjUFS69axm97Yy9t8kL7d43zBGNrvPtUzscOyjhRNtXdnC1mESRVycbLsuX19iKSqotOXFvfcdrOXt5jTMvX2Ciqw5TvaIooKkgI5NHJ9CqSeZmSkoF64jSERvbIfPaMSZ8OX7nzkZEUYOBJqE8ZmeLEputjQxvbIhoVRgUJHINsndxgapyWV65SLujJI0qiPWSt739YZb2yt+7/PwOp545xcKs3ASLi7fx+S9+gVhkFBtywU0tNHjop27BcZf4+09/U35WKEiKHF8p2Q37Ma2Oz/67KzbWFUxvs8303gGjrKQKVUDplhQWoJK5ihLHmcb1vfrOGcUxjukw2LpKx5Hv2buYoZcpUwcVNKMsKEuLsjAoMmU4CcSJQGhgqSA+iiscW5CrgMzUZKKUxaBEzihyecDrlQUKwqkZOd1JC1Nd/GlUkqRgO63638qypMoyyrzEVFybys5xNZv+5V1Rln33dujO64hCqqgJLWPl3EU2zti0ZxQkZlRxy1v3sbYsE5vRSsbU3DxFEvLKQMK8bps7zMHp/Xzp777BAw9KKN0tx27n2088x8we+d7DcI21ZYuWGTOxX67PC2c19h3J6a+6uMoMcGUlRGglWaouOB0avkWV67Vp4p7FKbY2++zs9PEUr204SEjigre8RSru+X6DEz84zfz8Hs6ckRydza01fN+vzUgH/RDXdeWhpo2NsNsMhhE7g4R775IKiWW0xcWLl7AVpv7QLUs889Q5jt35Bmxb7o9nnn4S3xe4VkAay+/SbAuKzKfVloFOnm9TlTlHj+1na0fCw57/3iX2Ti/gWAk/+8GfA+Bzf/f3TM7ewunT8iTvra5CDrpt4ilInEuDUShVoiZnpLBIvz/EcQ22tuW83H/fg6xeX2V1dbXmU9i2TZJn0oxSJRtVVSEZCnLOy6Lg3nvuwtBtRqE88ywxyaAfsb19rRaw0HWdIjNoKe+t/qhHlpm02o3aCyfPSzRdx3GcmuDdagZsbazTbCoFtVKgaxaCpIaDDPoxi/uXQB/hd+ThsblSEccpc9MSLrm+2mc4XKHd8eogKWiYFLlOnkFZKHVCTWM46jGOiLqdCcKR5GAYSiVWFAZJOkJoAntcQ8tNdDOl25H8uDjaZNDvkeUVc/tkIPO6H3ktO+sRTz72HSbm5F0QbqTccs8S//TDvwHAA/f/KD948uv8zPs/wL//6L8DYG+3xS/83D9nblFBiTSN61czXC9AaMrbz3HQRIMjd2TESiFt5bJHnsHUrJzPW+70ePlMn7VLFkIF/qZTUBo57//ZX+Shhx4A4I6jh/nlX/hllrdk4o3IEaIiz6s6kRmEA8XJcJjsyjW7f/8BLpx/no4SCMoSja2NFN9v0FYiRYt7umysDbh0+QK+p7g2hQZagaU4kOEo48jRQ0zOViRDOU6DXsXVq1cxDKsOTA0LStwaNmtoci51wFMJ5ubmNmWh4wZ2vWYbvk8cx3UA5jqePE+zQokTybPUshw8z2NH+fH5vi9NPBWB3zRNiryU0FdtzNkz0A0J/dGV/9fSgXnSYp3rryixKr+JEALL0lk6IOFuL544w57ZObZ2emQKwhW0mhw8doRH3iH5zSfOvMDBQ4f55lOf591v+ScAXLt4lk9+7BNMzbZxG4orvTnife/9INeuypjk+999FoRBuzOF7SpOaQXD4Q6tyQVGA7mG4iLDNXUatrzXsiJHc2TCMxzKM12rbMIwQkMufN81SROB5RSIUvFHxDboBpbuYalgOUkj8lxjalYGtKPBDlUhFepuTFDGMLnxv+V5LpMtVQDVhQrGK408HwsE6JimLXk8NyidtlotUqWmq+kCISosy5bqu0BWyH19IxQtTVPKsqw5UXEc1wH8OCatKukTpZm7ohqWbSPyov6ZcbJn2y5VMfbazCS01NoVXArDkKO3HGN7e7teY2EYEobhq3hYQpNG14rCRhAEiELsFk5LnaTs03If4Cd//J8DcG7503zj618gcKZJk231XhboOrr6oGajzaDfJ4sjlg7I+Gk0GpFEIZ6/KzozGAwk9FK9UxxLT60bFf4MXQdEnViCLBxnaUFZjdWzJXdZuyEZGHPsLNvEVDD0JEnodLp1ctXv9ymFFBUZn9+WZSh1QDkmlmlgGvareG6u62JZFmkmoekAeQZZGnFgSRaTLFdjcz1hEPboLgVqSRlsbvQwvJTXveZBAGy9S1RuMTEr98f1K+tMtebYXHuZNWUYrFkeDd1lyHX0ntwPw0HFYDCg1ZXxR6XppDFMTE2yfEV63/muFDZpNBqIcrcwJO9e+TnSxDwhy4p6bUjOYE673azXXlkKBsuDH+7kyvI1MXO7XCTH72pw8NY2//HfX+TH3i+J1O/9+QkuXR1xkH/C57741wB89/EXePCeB/jffvMnAVi+vsLFs+t8+nOfZTWRJHcvcPHsimgd2pNyoVy6KJic1rntVjlxz3xzh/n9E+w5MM1jX5fGmHsOOkSjitFIML+ozPJsnWBiipHi9Wxd3qLb8bCasL4lJ/w9/+AhEm2ZE9+4QqHEFGKnYP1Fh8VjcpyvryVkfZibdGmpYOenfvp/Ymi1+T//8DdwFPbVdaHd8Yl68mem9hwkjbeYP1RwZUXJpZ9McG1oHpvGTOVhesutc2xsrPLUk1L6udl10URO2NNwHXVouSUGoPYXk1NNAucOhuEm/d5YfW2H7mSL1esh97/mfgCWFhf59B9/hkBTpGK9Ii5zhOiiKTEQs3Lx5iY59JoZzj0j37PciRFBj0JJ1uKUzB1yMP0hyzIHxNM8pvcJtocJWSRfbGLGJSxj8mqMibYIPGlgN5YrshtdVoZbFP2YBYWrjTZ6lG0b0VAKSklFIaAqrRvUikAgD21tfFEUOromapJ2nuekCZSZxdhYmFIq61QiQ1eBsJS9F/i+MtT0bERZEUY5pTK4tEyYm5M8m2vLyvi20SbwbdKRXD/Vts4wTlnYr7PvkAzO9yw8wMbagBe//zSjTTkujl7QK8FT6j2alxGHOgszTXBk0BKdnea9P3U//+Wzf4nnyrVhWwGvvHyBRlseIvN7DUoKejspt+yVIimhYbC9s0PXa7ByWV4oR+YcmnrJD1blwe25Fo5b0dsYsaQOzryIuXJ5mUIUGMqsNklSSXxVl8Lq6roki3oacwsymTp+y0N8/etfq1WPms02CAPbdrnzTukw/dRTTzE31yAMY1TRj0ZrmoNHZjhzQhKNFxYbXLp2ilHaYnZSFjZKsU6ejhhsl3WFVho9ZliWXAcLM9MYTPOLv/Qz/O7vfxSA7qRNVRT8lz//e85cugTAh/7Hf0Qw3SPw5bz8zr/+U06efpKPf+yzbPUlv6npNigLncGoT7Mr56bbmZHBqj7mvbTobV2m0fBr8QFJQPcZhmHNtzFti7y8QTJXi9FwmJ1u4alMf3VlmyrXcG2POFZO8o4JwsZ25e9t9bfQdQ+oMPRdjLkQAtd16wA2CAKqIqsvDn0kX0oAACAASURBVMsyqEoHQ7cQSpG1Egmi9Km0HMOUnx+nEa7tkSRKyUpoWEYD33UJlf2F67o0WjpxlNUdL0M3KW+4wDV0krzAtg3uuO04AM8/9xzvfs+70HWTZ78nk3Hoc/1yn1J1m/TKouF7RFnO+39edrMOHp7ls59+jO21bYpSXvRaUtCctekeULrA5SR6P+bNjxzkkpw+NobbnDjxPaZUgenSK+f5t7/xbzhz6grnL8quRre7xP/7hb9m/6EGQaBEkfo61y7F3P/QvQAMspOIdA+97ZDN61tqXQcUbsX7f+mfsW9RFhve9bYjvP/HXs/a6pYagwIpnb0rg7zvwF6EELzyyhWaDaUqONPl0ME5Tp+WZ3yWmAyHIQUxR44uyXnAwsBk5fr1OvBOs5hKmcUCFFVFWWgcv2MvjUAmZT947qKUss91vGAsNpCTljpo8jwwdTCNAEODNN9R6xOqwiJMK+Zm5HmTJgOKIqNUSAsBeF5AGMY1+kIIjU6nQ7fbZX1NFjfGfIhxUJhmCb4X1GsJQDc0BgP5t8fB/+KeJXKxyrCvFlkRUFYpt981w2BHFdp6IZERkw8EvtoPri/Yd+i1zB+QncHL15/h1InrtNtt9u2RHfaXz7xA0LBJioJciXG0ZkDLl5hwZdJbJiGHD82z00/5/gtSgEWrpLhCXpYY1Vh0pkBYRl3wsQEcD911aaiuaaVJpVFPfe/ADegPNshjA0sJJ01O+Vy5dhXfbxAq6UrTNCgKfbcjRIVnByRZXBdSLMuqOxPj4FGMjewVN1TXoRk0KMqs7lw5jk1eFjSbTRbVuJw/fx7bdOqizMbGGkWZYVlWreLYVwmDcQPXR9O0mmcF8vzJsow4jm+QRqcei/GarapKSmAXu8INtm3T8INaPXPMqTGMXV5XkiQ0WgErK7IwZds2ZSnFOIJAFWDCVCXjVp0YarqQiaNQnCvPI8n66EZQC2FYlsWtR49x7txFHEeOVRwVYEnTd4CFhQU2NzbI4qQWg+j3+7RbDQzDqJEbpilVVcey57quE8ex7ECzy7mqyoJDhw7Uc3r9+gq6Ls1xAcqyohLiVby6LMskt87Q6kKbEIJ2u4OtOF9FUTAcDl+1/0pRSTVJlSqM147nebuICSEwTZe8TKjUe+rCRBcurkrY0QuanSbb/XUMX3UngyYdT+PI3TY7O/IOOfdcxD/+Fx/iC3/3NQDOvniOW28/iGfnuErQ5sryCquvjDh22372LEg+bJrmnPz+y/Q25LnguS5lXmBbPqkS1ciqBFM3EEKr79Y4jDEs44ZOeV5zEMdVfCGk/USz5WOotrAQgp1rP+TJld3QxNEH5cGzspny4d98HV/+/DLXX5SB/i/9m2nOr4yY94/SW5VByzc/9xjH9t3OR/5QVh0dDrC9do1LV1b5lX/9IQAakybhsCINM/YeUhLDgU23YaJnctCe+dqI9ozOzrCgKOXg7jtic/mVkKo00FR3Ik/BwMJrqIy/FOSlxd59Za3+NL+ny733P8zXPnaa0pBB39G3R5x8HvbMyIuxtyk4dWrAOx8MmF9Q/iPfGTDKUyb1HuEVBS0Jcpxmi2xbJopJU3DPnQHzkwmvyGFBaLCzrnM9zjGVLLCmg9+0GCgVxSSDNJP/XvvqZALbNms/l9n9GqbpEw7m2dmSHx4OSkQvo9UySJRnz8LBu2i1Njn/pIxGshFEZYhdmXgdpU6Y+9iaR7cN6335WYIJfLOgUFUVey5k5pBBf6XFpRcUYb9R0Jp10byENJbz0OnoRFnG2IBEM2ew3JRi0EeP1AaemkbLLcJwlUy1o3U9o91xGQ5VgpuUVCUIoTPWKyorgWGYWJpAKLnUIgV0HU9VenUzJxppUjhgHOSWAr2yMayMcR3OdqU3z1jgYmaqSZ5mJElGVcpLJ8tHaAY0J9o46iAbrcXkmc7krCTil3ZEtDIkXCkIZuRBM3Nri+b0Qfpr2+xcUsHEMKMxcYAtBcmLkiGihKxj0lQH6Vv23ckrayMuXj2JrWAkcVTRcHVyFXB2J2dIs4J8GJGoYGeqo7OzA37Lq5XOdBr4Xodr12X3ZWpyBiFSTMPDUsIwjishk1eurmIp/y/b0aQynZLWtkyfskoYRWvYKtE/cvh2zp07R6shA9rRKCSJCyYmpuuO16c/9RfsXZwkyWF1Wa6pZuBy+NAx5vcuAfDlr32OhfkOG9sxppDJuG3nWJZNI5igtyPXbFVVZEVJNJTf9x3veZjryxu8cvEat94i5b5/4n2/wNmLFzD9HT7xiY/JdxcakxOCbdVt/vGf+FWW1y/xzHe+gBbLPRt0S+6+83Wsbmxy+bIUA+htD3FcjVglH5PtCZIo5847j3Pu/Bn1nQc02y1Go4jyhgtMXowq0NAqdDxsw6XZVsT/IkPXMvLi/2PvTYM0u+7zvt+95+7v3uvM9EzPCmCwg+ACgAB3ihRFkdpoW7GiJXGpUk6l9MGy7ERVkmlJlbIlJyU7UpSSI1lLpJAhJVmkuAkgwR0bCQwIDIBZe7bu6f3d737PzYdz7u0el/zNSfHDnE+Dxn3vctb/8vyfx6i1hEajAaW0SbXjJg1FnjF3ULDymjaOHYeg4TGZjLj/fuXIXL58GVsY9QEzmQ7IUxshjH3QD4FkhMybeJ66zm36bG1t4XqadcxUGk+yUEY4qCiu4xaYApJYrZE8LxGmi6Fh0IPBANuxOLB4kLW19fp573rne+iPdzj7moL8nTx6ivX1K8wvqszVA/fez9b2RZ588lu8+QnN7HZoBpG3+dAH3sov/+q/BKDMIgzT5qH3KCfi9Vdv8n/8q7/hzJlv8y8+/r8AsHTSob/u09PyEKN+zLue+Air65fY0kGnorBJi02G21atv1dKQ0WQdaa3NSNIIh8zziiNar+xyGXJsWPLXLmkAlG97l1sT59DaDIJ11GQFQpqoogDB3vYnsvWZh9PsygePniMNIrZ2VVz2hQSpE8YGXUmeeHwDBs3b2AZHotzCu5qW5KrV69SyorgJoPSwXPmcNyonotzswdJY5vBRN0/8LuEYVhHyaXMcRyLIk9J9Nnnuq4qzPcOkWn6+fF4i7mZJuOROpyyLKEowRI2wtozFCkV3byzj+Agy/PakZIS4mTKzMwMUx2ImptbYGdnhzSLOHZMnaMYkmE/JkrUvpiEJa3mHO/+wDGefvJlABreMoPxFWRm7s1r2ySVBZbe9w8dahNNJ0xzmwfvVUQ4K1fOMRitU5gJptbtm+nZBJ7P2mX1vb7TwXdNdrcmNfphPOlz7MSdpNmYwbbW7et6xNEUO9fU9iQkWYZn+tiVDInlUhQ5joZYN7wGhUyxTINQw7WbjR7TMEbmJYbO9gqrJE2V8wkqAFoWJmmekaXqmsrx8jyvzhxXhAV1sEOz7Um5xyhYSgPH8xFC0Gwqx2l9fRPbcrGtSgMtU9IbstxjJ5QqO2dZtxIg7DfgVaZeYgtxC9GAlIq0oWKJTNOUPMn2kWEosoVm0Ljlb4qBdu+6RktlQ6sxn06VLIEBNVEURkGz0SIKQ6pgapoXGKW3B60TEt9vMBnHNUlZo2EgC4Hr+oxHO/p3OaUwiTVSBkqEYYKUmDXlvKTTbNGd6bK5uVmPTZZlTCM1z5vNpqKQT1MCt4Idm0ThlF6vU+/XW1s7+F6TvNCEIaZQAbvx+JbMnOM4GCa3OLkyl7VWYxXYKCn2CFB0Nq+CJVYO8H62SeWASxA5stS0/FmGRVnfx/F8/KaPLCPGuRqHO+8yOLzcYjCQNBw1p65cGxKmFrnQ1OzWcfp5Trdjc/yQckzXt0esb73BiWN3E441GYeIuPz6KuPdCo4qyIopRU6NVEmzMVmW4btB7YwryN/+DF+B0Ppiru/V32fbiqRsOlV7ZbPRZLQ2+c86V7cJLW632+12u91ut9vtdrvdbrfb7Xa73f4LtO+LzJXXNsqlh3W2wMyZDHx+5h+fIkpVxGvxuM9wGtLwSuJEc9rbA9Jpg4b8MAA7r7R44h33M3G6/MZv/lMAovIy4a6NKCV3PqiiDDMnPDKzz5Uv6UzL1KLZyXnjVfB0Cv7g8Qgsyc6qRXdWefiDCaShh3S1+KkB2cSgtyTwdF0WRotOI8AwDK6/qigj77mvzWZfMh6oiNB7f3aBb/67DQxPYPoqEpDEMd2FEZNRC2Os/N3BRknUGHH0kKY9FzGPf2iBRz9wByMtuPr5T1wj2UlYCBa5qfWptrZHJNJkmqj3nsZVFLnch5N2SUSCm6q+bB3M8Xwbb8Ojea/WCNixmG6XjC/fwKoKHhYanH74BMeWVfR3tC3J45uceeY88Za6d257ODQpsgl2W/1usDmh1bCYndXRtJ6Jf9Dn6jMpIlfQoWFe0Gm26S6GtZp2aMFy4wgrmr6159sk6S7luMBrKIrTsLuImPQZFkOiQYVXV5Hb/lDrQm2DbVtK26ISETYBaVGW7BPetMizfE8zyDQJw0jpbskKZ6sF5RDYGgIgS4M8lywsah2vRkmZQjgtSHSmzCxUQSdGSSNQmZX5hQ6jyRqDvo7elQ3S3Rw7L9GJB2bmfGbuiBibGdNIzWGfFs70IOu7Ktq1MOPQ3w05eMdBMl039NgDB3j+5VUuXpnw+NveD8DGdp+VS9/iQFNFslvzOds3xuxOcu56VI374EpB48iYXrfL9TPqJbxek3wYsr6uOq/T9ZmGI8JJgSV83Z8S1zOUKrzWhsLISLMJy8sKYx5HksFwwnQ6xdKRa2GW+I0Aw1R9OR6ltDs+4/GQf/gPfg6AJ//2m7S68xT5gPvuU1Dhz3z2SyzOz5FroXHLSYhjlc0J9Lzrrw9w2w5JnpFOdI1l12NnbcRjTzym+qDt8dWvfZler0UUqneIpx5u4NOdD7EKfa9dFY2Weh7EkQRy/MDB1FCMPNN7qTBpVFS/unC7KgU2TRMhTQyjRJZ6Xs+rKO9o1yKMdV2LEMicWqC0MAskJSUJWk2A2U6T+x4MePnlEcvLWhNsCrvbI0xNh52lJmmeU+QmmArGUqQGp++6nzhN8RrqugsXzuNYDo2Gjk6OQvJiimHmdXQ08DsYpk1cpHRm1XW7GxtIyV7GLS8B45YosW3bOJaNbSV1LYPMBEls1Lo3URwiAVdYlGUFjXRpt2a5fuMas/Mq8njkyBE2NtcoUtW/SwcXOHniMGdffxVH1+2tb24R+E06rS6b1xScsDAk4STmTW9WtTdF6XH81A/w6U/+Ia5U4zC3tMD7P/ABPvUpBT3vdg9z+cJ5ZhZbVJ3e7ro6cpxSBaWTOEUIQawLpBfm59nZ6SOlg6HhVrYpMEwVzZ2fV9DSyWRCXsp9op4BWDnCyCkyTQqTTBFWQVF4zPe0llAvZ/NmmwOLag/0XcFkFJOXgs686oONtZvEcUKr0azHr9frsdvfIgnVPIiTEMtUUK2KIt+1PU6cOsWliyt1HeTWznatawQKujSdjgmCgKTKUk0igqaDKff0cHKdOagyUP3+nmh21apoelmWtUBwJTBbRbxNy8Mg1fo/FVxLKiIiYXLkiNINPP/6ORpBj0LDBB03I08d7n/TMpcuqL0yLydkmSSJ4IM/qn732vfWOX6HyaXX1Pdubm7iuW3ufNMc21uqr3Y3SxYWAkajQa0T6HqKZGJGCz7H4ZgoTPG9NsOROnuWDi8QNFtsbQ7Z1RTRVm6qd7SreqcCUWYYhqWQGkCn2VQ6bTr8nSUOCwsLDAZrCK2REUc52Kou05TVPpxgWwJXQ4d3+7s4roNRSjwtdl6aBWES4nvtmib/5vpNup0ZhF6Rk0mIEDZlWeJ7mja/zOtMyJ5mVoFlWXXNVTW+VeYdlH6ksHIkRZ2pFsJGllk9V0pp6uxBtgeFLkuUvtNe9tyyBbIw9oSxkwTbtmv6bVB6R1mWYWIhK9hh06eQsiYxSNO0pjnfL+DbaLRUFn0fDHG/PtZkEtaCyxVc0vddhDBI9pEk2JaHsH3SRI+5aVBKj6xIwcr0vS18z8G17BpiaFBSFBlWpa+a55iWg8k+aCQGWVaomitrn4SHUdZZsQqGuZ+YIggCtXfFYf09tm0Tx/Fe1q9Uot6msUdWoXTL7BquKYTA8zxdh6XPw1hpku3PZuV5fgtRied5SvzbtAlaah6ExS5uA3qzPRL9nhvbE9q9WX7wfaoc5aVnr/HCCy9w7GSba1dUf7ZmXaI04cTxN/HI244B8JWnnma22+Psywo1MjvXZDqd0p3vsLmh7Mx0ahDHU2xLIPVeUmQK4VLtLYUmzbOEU0shpLGB4yqYYDWnHFcwuZl8f8MC3ZZR3vGE2gyiKObgEZu3v/sQXS3SNs2nOH6X5uwE21YQqjA26LgeZ/5avf9X/p9V/sXHf4Gvfe1JPvv0lwBYPj3D9niXJPUpdNFboz2htWSwcUFDl0RG4FtYjkmSqc6dTBOErdKzhjambBx2Iwn6IAw8ixybVlPSnFUTMzHVwhhGBsmuuteDd8Hf/+F7+ff/RkGAPvorHme/1eL5P7rCrIYq2vMWhWEwXBVMVnWxap7w4z+/QKLH59zrNzh18i5WLiaYvlqINy6nlLHJoUPwlveqQv+/+vS3SSSYFcxV+ITTGNsqa1ztaDNGBEYtNBo70MFkegHmT2rNlaBFMd1EhjY9XTidmBm2t8ghrf0zLWIiN+ShZcmZb6rD68qLIXPdHhv9Hf7eT/0YAC+98DrXzp9HIxw4fHqOKQM2zxT02jpNLw1aLWg350kddQjLRo7cNGgeUeQOV8/exG/D/JyBdFR6eGo6NGXAZLpDy1RwibgYYkgfr6U2urUtSV6AaVp1OtyxfQoZKSdLwx6zPK1xzQDTqcS2TCXCrAvUDLPAMNRGVim0C8vGss3a2ZpfEJhIkolHVGg178zGFAayTNEoRGxbMDMT1AdTMTLJRi6DbIqjU/CtckxpuMydmsEUyoHeHQuuvxEwnarnLS4vsHTkOEErxjfV+B22mqxmr7N6sctBnRJ/6stfxrAlp09rXbYjBi99PWXumMPxk8q5unimJGhGHDpsMNpSh2OWqiLQ0UBvKo7DZDrAdS3iWPVxHKd0uy06PYfhSDl4yBbCaDKZKOhnWZZ0urOUZclorOATZW6TyZHSNEMVwTabTTyvyWNvfwiAV145S29mkTfOvcwf/5FiOnz269/mS1/8PGsbaq7MHehy6cpVEClHjmgyiWtDdocxs4sLDEcKXlvaOYdmjvODP/gjAPzRn/wenm8hy6jG3icxuJ7CaZv6vYSdMommda1Iu+MTTjPy3KkPpnQaI4QgyTP2syjtP3CKogBZYBkBnq+u6c5ClkrCsUeaaBZMLyKKLWwtBo4ZkSYGZeHh+moOu82YLDWRkYXUYsO+H2BbBo2G6oP1mztYnkGWOEwyNQ4NU+AIC4RDf6qMQL9l4AqTQjNnJYWB6wqKMsPWLG62cIkjiesESG2EGXZOlhXIco+cI4p0jdZ+XZ3SoOE7tNoa259mjEcxgdYkyrKCvEiIJglV/Xy76xJnygjcY64qObB4FEM7pjuDPv3hgKWjx0CLwlqm4ObVq/i2RRirvbJ0chzbp6nZtGY7C7x2fo3FIz3+5jOKgeqzn/9zXnn5IudXvgbA9k2XOBmTF2BpQ7jd6mAYMXGcEU3ViwZBmzAMa2MrzyRFcavhVqQZslRQqCrYMIkmjMfj2oA2hUuSZ9imqMWPi6LAQAACSztqfqtJIW26aoiZbApKcix/iGGpwNe1K9cJAg/btGuGtoqdsnK2ptMpWTYG9oIBeSaZTEJmZmZr1r+nnvwKM7OVyLA2pISCHRVagL3bbRNnKddX1lg8sFBfN51OaxhakiS4rkue79XaWZaldXyc2jAcj8eKgc6q6o8DTFPDdyq4myEU6YoJeVGJ3DfJixDb0Hpc0RiZWdx5z0FuXNfw+myIYZhQdPjIj75DjfPgPNubU977DkVe8+//4LdZPtVmHAfcdbdyxl9/7TxF6RCHgu6sGofegT6bNxPkhjoPESPyvGA0SOr132w2GQ6n2LYB+t3zZIoB5JWuV17S8jpMwgFBW+3fqlarVAE54K677mA6jVhbW8PRLI5hGFIUBrZt4GrIWKPpsba2Vu9JfqPJeBRhGYrEBnSAx7FJkmQfk5wKahh1LY7W8nJ9ut1uPV/CMGRp6SA3Kh09w0AI4xayiqqmq2pZkmOYOaYJwtJQyFxSllkNS6ygobZj1Xul6wSkaY7nOXuEGYbYB/9TzxLCQGqYoeoXJcLt6No0UEQRmHu2ruM4jMfjusap+tYsy25xHis47J7G1F7tUq+nSj2CwCMMJ6o2UNeZJcMpUznGNj3dnyZxNsUQFlKzGDeRhFXwdZ+GlbkPtieEjcTAFma9PpT4skdeSqTeLC1LBSTiOK3/u1o/1fdZlmILrWrSqn6ogj4Ajq0gnmmyp7VVQeaqcfF9H9u26ff7t5Bl5LKg0biV8bZibayuWVpaYjSa1DW63dkuCMl4PKzJeIRrkeY5O1oX1bUMsiTEZEQ4UPOyN9PiyLEWTe8EZUPbJcJifW2Tc6++UY/L7HxA0PS4unpDT0YTYXpQeKQaJlsUCRglRV6dV4q0w/Otek6lSY4sU5rNOUyr0kotmKxNv79FhA1DUQgDuJbFaCfjpa9Lfvin1KbliDEJCa8867G+pgoSrz0/QU4C2svqEzqdHm9/6C4WT7b43vkvA5BbI7ozJpvn5siGqnMXTzlcupHg6xqBKITtbcndb5JkUx212SnJQ4nvCtA01sOKHlhP2MjMsfIcswgYpup3bS9gmIxwioRGSxsb7SbHH53jN7+i6gFefP4KL317jHOkQ95RE2ySpIiJTboT0+2pe/3Tf/M23vKeO/n1X/oiAFevO8jmOeaWG6yeVe9w8rDH7nCDD//Um/nK1y6p5zUFgdVkrHGhRZESNGziOCXRkcH3/dD9nDlzgx3NNufMCzyr4J4PC5Kx9oD8hLMveyTRlI7G8fteA1mUxDpyZ8mQ2abJM98IOXVaRQGbcszlc6uQe3z908pIyUyTzmFqkTi7MSJfh8CTWIZ2bOKE7sGjrK2u09HshJYhsWzJjdeUsR5vpxw52CAaS5JAfZ8ZeJS+JM5Tmo4WlBYZflow3NLOeVJiCROMHFlTlwq8hiCJCgr9R9+HLDFqYbhuzyJLJVEo62ihLAuyvKTT6pHZupjbzMhimyxVG/IkyGh3DIRTICJNctG1GGtnSJPSUBY2o0FBuzLqZ1P8JZfJNYPCUEbhyPLIRi473x3wpreqws3jh6dYhcWF7+l6wCxjc2OLze9dVSxFwCf/1z/n3Oomv/Pdf8d3z6viamFYBF2DQmcGr64mNGY8JoOQ57+k+7PlMTvfZPVqn0QqhyuQY7zGDFGs1l5eWEiZI6VJp6uusaYZ/eGQoN3jwJJy5mTWZv3GBEOTtDiORRJHKqtR7rFiWqWNY6s5JUqbpfnjtLqtGmc/CYdMRpJcwk/95M8D8M63vIUbl64gdbHsPfc/zrnzZwkaDm+cUYbUT/zIhzl0tM0f/MGfcWBOWaKFHSELyZee/Gs1Lg2f4W5G0DJYPKQMzIvnNrFtlziacvKUmtfb25vYVlYboUmcYqDoWw8eUDUfrmVw8fJlHHPPuCiKAseySHWaw3GUiGSWxaAPy/XVkk6nTdDKyAu13yRRQW7EJFO14Td9D8uI6c3Z3Lipgghex2f55CxbK1MCLao9PzvH9dXzDIbawTUykqQgjiZ0tOHmd2wMBMnIpOurIIVRRGRprg4eIGgWTCcRy4eP1Qf91sYmhlUySfu4nq3HS4lb7gnHJvVh6mlWzDxVEerxNK2jg822TavtE+p9Ki+g1W5w370PEmka0zfOXSVLPIwyrymG06SgKCc89FaVeVy9cY1zr73Gxup1Tp9WASaAGzKm013gQ+9VdXsrF1d44ZkztHUGbDtZp3VAZZiP9xTJxda6yV9++ht8+q9+B4D/8Ke/xZOfGzI7s0iYqf5cvb4LZDQbbSb6TEiTKUWhmP5AEQUFjQBKUTtcspQ0fB/Lsri5oQQ0pZR4gV8zkdliyvLxBXY3+0xH2tgxfeIkQrgSVxtuORPCtOAHdEb6bz/zLFmSY8uCjS0lUHz40BKDwYAwi2rnppA5CwtzNYmJ59tEcYllGUqcFS0mKyRhOOa5554F1LhkWVaPq++rWo5c00gDpDmEYUy316oN4fF4VNdiVa3KFiSJ6peKuS6KItyK6t219TU6NWgUFIWJ6/q1hIrt+iRxgu3s1XRImdNoNBjsqG+5/8ETvHF2jZ3tEbmGAgihjHfDCfna00q4fDQMsW3B75//ffV9TZvxEAxSvvQpJaqNMFhYsihywc6algrZtRCmR67F4wuZUOQgTB/bVu80mQ7xfMU+ZqFJJnJBnnlYQTUOPqZZcHR5metritVsfr5LFOb4fpXBhLXVTVrtBhNNFGM5BY5sMhwNOKod9jc//Bh/8qd/hKNrIpuNLsIpmPYLhKXHz2uSZQVBYFLmleErmIaDOrhYCdemac729nY9Vp7nsLu7W4+xyjoaNSGRYvwrtQOoyQBkjmnatzDeVXOhItKwLRWkKstcCSWjWCUNqjWknY/CRHiizqrmecru7i6maeLrjGhFER6G4V59WeCTpmn93yDrDGkl4l2t1f2OYbOpCCcq5ydJFAW57/u1szEYDGi1GnS7XfoDLcuRp+QiqJks0yJHWD5GIUk1jmGAjZWHgIGpa5crZ8+0KkISgzKT5EVWB9DUeJW1IwzUTmElXyJ07dr+Pq+cqv0skRWzYvV9YRYqCvUi3efkures/4rwQtUhVYgzE8cS7G+GUWqB5D1nuCLnKHS9YTiVZHGKic9gVROEuCbCNXFS1ZdRqBibm90mUteifejDH+PkfR2++PkXWbms6nF7nRkunLuCG1QSEoLxULK5uU2n19bPy3GsLkmcYWhSJGEm2I4iNANFEFRiEEZ7QRLTtMhCmBDi0W9s/AAAIABJREFUaimdvNiby39Xu11zdbvdbrfb7Xa73W632+12u91ut9vt9l+gfV/AAr22UZ56rKIcLvFcgYFDVwv/fegfHmK7P8GkzR/9798D4L/+b+f4wu9bvPJNxSjy4MMn+Ow3/prf/J1/y8ULCjq0NTbpX7S48p2CoydUFHXprRPeuJLSKHR62ooI7AaWXXD9utYbkmDaCl/puNpzzSWTFBxd7+DPF8zNtMm2BY3DCnM9mYwJ2lBkOYZUsKdwtwsJPPIxdc2sXOQTv/cS7UUJsypCIkIP+gZSFCwqhlPc5gxnr41pt1R2xLFLjt7pMHcoZ2dNXfTgyY/xmU98hjK/jjOrmZXKiDR1WLuhhUYdMOyCPIMsUb70R3/0fi7eXGf1OyoysNsveeCBRR59zyJjUzNZeYKvfDFmY1NiFArnGjRdYsti0VO03W0LZk4eYelEh/OvKqriC9+4wmRnQpoblDpaWBrw/h8+xOvXVfbQMlxunrdwyxiZq6hGRITnNkinJgdPaRHIXkK86XDjqs7+WCmnHkoZR5B1VX+Whapxi20DT7PUjdMtGtOI1Ze1NsaRjCQs8RsgdKbMIKPRAkGL7ZsVjbWJsF1iHR31mwZ5BpNRiSH3GHAMUyJEgNdQ0bq8SPFcj0IjI+IoZnEhwG+EhBOdwfQEaQ5FAoaOahZpm/ngFCJXczj2hjRMmyS12NJZt1arRXe2y42rV7ByNaYn3qwo3fs6gholHjc31glmHPJC9d2bjj7AS8+8yGZ/g9mOuld7wcdvG0yG6nslbXxLkscG8USN1cRNsROP3qzHzW0tA+CWZEmP8URhmS3LVvPKEEynFabdppAhrt2to+C21SYKEwLNsGkLk2azw/b2FqbQGhrCxyxh4aDqk5s3xliixdzcMidPq3m2evMGb7z2PZqdLi1bZR7MYgXLt1nRNNqBN89Mo894N6R5SMFIn3jHRxiEfb78hb+kUarI1eKR+zGw2R2rfSTLp3z0I/+AxcV5fu3jvwXA/PxBhDPm/e/7MZ7+ymcB2NgYYhhGnU0bDmK8wCXPYw7ozNWb3vIAzz33HMPhkCypIuWirgsAkHmBIZR4Z01jmwtabYfunCSJtdh5PyHL9jJgvmPT7lpglrTaCqbjNWf4r37yF/nqk5/gs5/5GwCWjxzD9kpGY5VpKXKLLDexbJNMC43+yM/+COs7Gzz/1At0hIoA96c75GaB76so7sLsHFevXmdmpsudd6vMzuUrK4opqbTqKN900ldZhqyqI5B4nofnuXUkOI0TLMchnmY1m1237RI0XDJNkZtnShPsbW9/giRW3/zKqy9x8tQyN67tEEZqH2y32/R3xxSWhsMIgWc7WOUe05kpDAyjwA8cTpx4AoCd3Ztsbb6Oo5W/A79JXAyIswDLUPvpnfd3CDyHTMMnVy5cYWN9l/mDXdZuqn3xzrvvYu3qdUzTrLMvaXprTUIFhwGluwIqwm/bNlIW9bjbrkMcx3UdmjBdTt93inAy5PqVm3puFNiOIE8Fjmau6s0HTIaSKBrqORXh2j5JmtPpqQzt/Xef5sbaKleuXKmjr51OhwceeIgzLynmPMMQyDIhDCf1O3luJTps1vDldrtNnmVsbas+aLVaxHGC7TiEWhvBEAI/cPFsqxZENQyh4UR7kev/dD34vq/gbVm+j41QUpSyhjGWZUkcFbi2U8NypZTYDgQNp2bvKsocUwZgqrX33/0PH+ZP//Ap+jsJtq8ZYTNJt3mYML2BqbO08wtd+v0RcaZZwNodHn3sTQRGynV9Zo1HPteurpLJiIVFVbM6nIzJUpMim+j3FJhGVVtXsbYpGYgkLrC0/l6n06bZcrmyovbJQwd77GxvEA5t3v3eNwOwsRFx48Y1Gj0tYr6d0el0KM0xm+t7elWWKPC9NuNRXPdxqxfWdsvGusq+jAdDlg4f0PPMUfBCV5AmFTzTQRYppq7xdF0XIexbxipJEi1PkuJqpjzDMMjztGZ/FEKQZ6oOq86YZhJhGZRlTo0UNlTWaE9LyVb/zyjqLLglmvi+y3C0tScwnArmF1r1GbOftr9af5WmVlmojFV1//F4XO+ns7Oztb5Rptdxpa+4PyNTliWu69Z1gsPxiCxTY9rt7jEYRpFiH5S6XrTd7bF+7QZlXnEEuNiNgp0wIbA0dDCKcXyTopA1Y6FpK1SIaRr6+1SGyraEgrOChneadV0VUMP2qnVcFKp8oRJ+rsZqP0QPNKOfZdUQwjzPSZKcRuDQ6Sj7Ioxi4jhmf55G6T7tZfiklHhugOvtyd1UtVymsUdxLoTAsjxcnZGVUpLGEWJfXZuysUzsthpj8hne8Z438+KLL3J1VZ1rJ07ewXC6ztbWlEPHFWLp2PJxrq1cZ3tdIQNEqcfeMXG1bEYSFySRIMsydMJSiQMLiLUtE09dDDPFLB1KQyNO7ADHNYjilHa7qTtBsnNl+P1dc+W3zPLEI2ryGiLFFApKkyRqgn/wR++ifWCHtX7E3/6flXaKQ7LrYGnhwdLrcPCOu3HKPvY9CnPZX3P5zl9IPMvFaauJcPrRgusbMURqIzfcgrl5GO4UJJosYzTNsRyhNGd0itoRBqVTYmjxYek2lPq0nXLkAWVcZekC08kAezahdNThOLrU5PDBkFPvVBDHr/7f13GMNqEE6Wlq7XXoZC0iCf68MuyjqYXRTgjUvCEvLA7fCb0FUcNRtq8JitBlZyOlOgmFBVlWUmQVPtfA9lUqOIrV8jh2pInVbtGt0qfjlPmF47zvXR/kwq6uUZArXHv9Vb79uS0O3Knrm9xVGmmTC8+pa574oceYWAlmJFnsqO/zvYInP/VFylwwMNX32QhahsnMUU3Jbdrs3NgksAzGU/WepusziSaYhU27gvfbHkk8INRix8ePdTh1X861lYypp+4lzCZ5NKa5dLgmCCgpCK/dZLqrISSLBq7RAKNkqutB2j1FTZ+FDuORVqAvXPCmNXxCSrBsh93ttO5PpIGwSvLSxNQCwZYQOI6JoRdiYDegyJmdDzCEet7GVobrZxSpVZMNuN4sbnyc3Wuv6Dkcsrg0Q+n2kaWaU3nucPyOO3GCBV549QvqPaMdDi4UuD0t7vyGy/oqHHtgkZ1VbayOd3nwRMKlaxPySJMbSJuTx5scPaLG/dU3BiTjWTbG25y4SxsymFw+s40fQOkoIz4ITHZu9hFFoOdYTpqm9LqL7GoCjd6MUrvf2NjA1LUvSawOtZlZBaWbm1vg4PxJnn/+u3R76nm72zvYzoBmUzvUYpZmN2Rno8uRE6oP4jTklTMv0WhalFO1T/zYR9/F2cuXuKB1hLLhkDefcFjbSjh2t9I7Wu/f5Mrm6wRGB5Gqb37osQdZWVmpCTTuvPNO/vWv/wd+/Td+lT/8498F4B/9/E+zvXuVrzz1Aj/w3g8C8K53v51f+7Vfq+lbszxClgLLbJAXaoy9hqcojcs9DH2e51hC1AcHQClMkAmUumg5y7AdWDzQxddrcnNjyHRX4jbV/nxkeY4ss1m5epVHH1WFvvfc/S7+t9/+M/zGLo6j+iUMQ5pNr6bbd6wWaW4hrIJIQ1Rn59pkacj2xiaOpuC1HEGch3zwB9+j5tTlFd7y8Nv41Cf+ivvvU3TU7Zk2Tz/9ZTrdNmPtoGOpb8t0ZME0TTzPwzQN4lALb0pJIQ1MQS3c6Dk2vZkGpSaTiKMcSpfBZEyeqWsazYA77jrCK2eu1lAMx/awrQCpa9OkkVCIDCnTPUMNS9F6y5KpNjpN4RF0BJGGZ87NNkiTkGRq1vIaTrBAlmVMJupwnul0abRBmPP0dzU1s4yZDHY4fvw4q6uqBrLf72Pbe3UZe8X88haHSxmQ+/5GieM4JHpPKlGF8iUJ7ZZaa44wSeOMonBJtRHf7jQQtoupabtNKyVJUk6fPs3lFQULnGsvcO3aNQVV0lToChbl0e0oB2wwGtLtKMO7cgayNK4hRZaGJinIVaMmpJASOr3uLQZtd1bRSZdFUo+f0jKyaoO6ot+uRFFhr+jdFlZtrFmWRVHu77scAwdkSVFUEG4b4Y5oNj203BWygP5Oyr33HwPg/jf3+PIXX2U0kDhaV6eUJoHvMNNd5vF3nQbgq199jvF4xHCoaewPtjl58iS7azkI1ee25TMa79Ifr9/yPWkaU2otQ4wEwyyxbYtSG8dxVCBMG1Pk9BZVIOPUyXvo7xQM+ipYFYYDNq8X/LN/9o+Z0YV0v/zLv8HRY0s0e2qd7WwnZHnC/GLAyiW1dx1eOsbuYJXxeKBEewELH9fPqBQcdrfA8SWmaeF7TT1fdzCFQZoU3H23kjS4fuMKcZjUzpWClClphqq2qN/v18Z41YQwyPK0HquqpsfA3FsPmYlhFNiOguYDmjDBqudKURRaT8ki08RArWYPy4bJtF8HagwcTHPPKXMcp6aR3+8QAbhuo/637/uUZVFLHARBUEMHhXZaKuO/mv/VvfbXkFmOImhRTsge1Bv2dLcAoknEEx/+CO/+8Y+oOfbJv8AxC7aMkO9+/TkA3vfY+3j261+tbRJQ4urKEdX2nKEItGRZYOv1WMGIy3JPx6uC39bacPuc4urdKoKL6rfV+5rmXl1WmmY0WwG2bdd9bmlB8dr50VDC/d9bOXEK2qnrlPbVTaqxU0QYSZLV31eSU5YFaZxx+LCC4PcHI/LCILbUwj5x9GG8oGCnf423P6HqsFcuX6PR9FhfDVnXZCazvRmSaFA7V44tKDKHvIg4elwToIUR21uxqqPTR/LOdsjiYrfurxtXt7EtkyI3kFpwx7V9hFXc4lRajsl4Lf0+r7kySyxHb+65RKYOphTEai/nt//H1/jYzx3iv/nVR1l95nkAvv2nW3R9A19BjenvhLz8hedZvtPgjpM6QnNozD1vh1e+meNoTOuo3yALS1paQX2U5Iz7DYSZY1k62lQCUhEWePpQDxEwNXH1fSZMaTkmUVZy9rw60AIv5PB8ADLHksfUvZorhInF019QRqjrtIlCSWGCEykHwbLGFKWD4U5IdcRp5mhCo+ERaxqu8XpCkFks9RzMo9qobkuuvDbFn5jIWBtzRYEjINYTYPFAl/EoJpUZrUB9y2g65rA1x9q2zuadENzzjrt54/olVlfVZr58aoF73nQ3g/MpF67r4tWgwJoO8UM14Z7+iy/x9z72IW6WF/jbT3wdgLnlozitBoOb63S1wZynktjKmO7ogvqmj2VCktskqWYUM2Nc16fIYlxHL848JRp7WNrZmcQhr51x6fWaCK0xM+73ySOHmeN5LcoqRZ+dHYO2UAvKLQYMtsdg2BzUfVeaMTtbBXGU1gxGBmNsg5rJrsghTco6ggtK58IUkiIpcTSjTylT0tTG1Jt0YkwwSrj4Rs4Db1FjPLsgKcmRSU6U6hs6mwhrwvyC8iZLDjK30CFPZpik6uA9ePI0Z1+9QLR5g9ZBdTiG4ZB42MbqaQx9J+GIfYTXz65QDnR9HAXNB5r4nmDlijIQZns+vjCIdlWfJ2FJUvYpS7hwRY1pQ8zQ6MQUec6JY8rAW1sdYUUtzEALt5oGC/OHyGVRR0Mdu8XuzpgTx+9gXYskl3LKqZN38tM//bMAfOrTf8YLLz5Fd7bD9pYWc7RtTMtnOlX3jsqUtJzSbC9z5PBJAF586RkKaSILURfn7wxzrq7u1iKKp062mVtIefWGYC65oObG9kVOLZ7k7Our/MIv/Pfqec2A577zHI6uodvYWuHNj5xmMBhx5JgybO49/Th//R/7mLbkiXcpR+3Rxx/lkce/xuc/+zkAgq6LUUBBWjvLcRxjGMog2R9R9Dxv34FYYhQOhUxrnRSBgTBdrl8ZM39AGWCWFRA0J5y4Q2VVDGGxcu4Kza7LCy+qWpGnvvgCnTlJ0JjF0No7rZ7Fww8/zKWLKuJ+9epVHNdEypLSUsGG6W6kisdbLn6gHN+e32ZntMtb3/sBAJbvG3LulVcIixy7rSPJvsXi4YOYmHiu+t3OQBkrnmYUTbKUOI6VM6H7wDRNDFMgy6xm64zTjEF/xPyiWh+gsleOC4ePqDmVpRZnXjqH53QwdTaiKCQYk1qYNitSTNvEdV1sqmgo7O5O8X0Pq6NFvMucaBRT2TGRn+PYFhgWqS4wH22tYZRN3vKE+raXnhly5XLBzOIE01AG5tb2TWa7C7zxxvk64h00lbNQZVUs28SyBFl6aw1CVeuwv9A8TzNsW7OxGhlC+OS5yuwBjIcT8hxMe4JvqvVvIjDKgvtOK6e3Pxpw9co6M50TrOoxvnTxGo12k53BsDYCTVPtbYPxtn5PiyhSNVnVntcIAmVwCqM2kooiY3d3l6UlRe4wHI6ZTqe02+06intzbVVlEGROFeI2TZcwjOsMRp7nBEFwC6FFJU76nxbMx3FILiuSBMUi5wd7hC9JknBsuYvtSEZ9LcJeuHgBtWDo89+6hut0kGzX4riO4yALwWC4zac+oYivojDlyPIJklwx/E5GFt/65rMYhiDNNCGRUeA7Aabh1ve3bUGaChxR6TllCDMgjFNKU613N3CJoohjRzvMz6n9bGsLppMpk5GuWzLm+PNP/yoffP8P8lM/+XMAdHrKKNxa14ytnodtu0yGBS2tdzadruG1IuzAYawZZ6NwimG62Hp/O3nyMKtrK8RxWGeb3cCnLCVJmtJsqvF75JG38vRXvkngVQLwKVIWJEnC1tZW3ee2bdciq6BQDBV7XjXHaqdY2y7CVgEC17Nr8fEkSbCEqDPZZBlpkpLnJpRaB6pMieOcUkJZ8fqIAiH2GeyGUaMAqj221erg+z6eF9ROg6r9cWm3K3KOsc6wezVZle/7JElSkxCp71FOYpVVTdOUwW5f3d/ZYxnMi1wRP1ROmWXzrS8/x1e/qWr27PGQucVl/OOzZPrMunbxBlEekRUZQmd3DKMkTwpsp3JyFdGWsO2a/KOqFTOMsu7rsixv0WqCvf2GfTmn6reVc5MkGZ1Oq94jXNep+6Ai2kmzBCEEjq7nkmWBlHuBFXVfQwtYZ7c4XlIW9fOFMHA9G8+1mUyruky9TtyAaRhXg4xhlPRsFVy9fO5lilLy0Z/4CHfdoZyr3eG3mTuc8tK57xFN1Jx1DAOIkVUtlGWSxBLLdri2MqrfKY0lQkiEnmeWMBkNI0qpkgaWpRgB3UCA1gR0HOXgIh2O36WSDdvbu4w1V8Tf1b4/Mldtozz+qPq3GxjEwxazMzk3XlOHXBamdGcTfuhjj3Bt5yIA0SDne5/v42rxvNxxiQ2Pnc0+j79XGUne3SMOzczzl/+2z6xO5bdmD7IxusqMjmQduHvK6mWTtZWUUhMbmI4EsyQvBKZ2uHILXMejmGjoYGFguw2CLKfUpBdZG3q+y2CjYLKpFsfDp45z4FiDl19SpAKu26BoxGROm2SioziiJC8CpukGvRk1Hp22jxBRLWI2mUQcvdPi1H1NhtvaMFwfcO4Vg5IC7QOSyZw0MWsV6WZbsLuREI4lBw5puta5mGhFsqQV6TcGHvMnA+6/9yjjdRUt+PJXz3L0dMHS4TkufEl98/lnbtJe8JCGJh8pm2xMxzzxwSM0tNVy5lvrmM0G0yzCLNV7usIhysd0O1qZfDpi6YCNGRSsvKEWqG9nRIVyrJeOafrpOGX1ZkS7qTbExnzMlYsxc52A+bvVobC7vgnCone4yXhV9efiaYdLz6bkG2rhHjy1QKPhcuHidY7dreZULEcMxybC8ok0o1i7C7brMtEQuSI3yFIo5N6mZVvqAIli6j72A4O8SOssJ0AjcCmKveiFaEbIzKLlW5jakOmnIccXm+RX1DhcWr/C4fkjhGEMvtoMZk/YbG14DDf65EP1no0DHr3WnWyOFUxn7kBJfzvCsm0mO+qax+97B3ccn+UTn/k0mWb0s4TLzGzGw3erQMvzZ19i6chxblxKuK7FDzsdG1dEhKOM43dqWEfqMl5JkS01N3e3JJ4vKMuc8VDDeaVJo+lgmS0GQ2W8YRQEfoNSVnN4wu/87m+x29/in//Sr6jvm/MQpk+aqu9NYsnMTBthNfB05uz9H3iM3/vdP+Od77mPqytX9PMcNrd2MPRBe/hAk7YTcPbKVU7codP2YcRdd7+Tbzz3bQ4vKQp3zAUcq89ZzSjUmw04eGCJV155hUZTE4tEyklodxrYrhbLvLnL/HwPqdnRJtMEIUqKMkboomWkKq53hFWzmgkhmE6nNaxE0dcW2FZQEwu0u8pgmQwls3MqIHDs+BLnz52lEaiMcIEkinfJCZmdUw7YE4++l6889RyT6aiOAActCdLFd9UeGMUjkiRBWMYebEaYeI0mgzDkoYfUYXX06BEWjxzh2e+pLOrRkwdYv3KF737zGR59iyKP+M4LZzCFy2Q8ZKajnKLNjZvY9l5EFB2xD4KgzlLleU6SpVjmXgYvz3Mss6TRrGQPDCxTEKdpDRVutQNm5k0uvRGTodMTmAizS6oPwqYfEMcp0WiPde+OOw9z/O4jHDo2z5mvqe+ZmVti4aTP4hHVv5/75NPsXtvBsX2GU/XDd777LqQ02Zo8A8BHP/CLXFg5x6c++Td1FsdveCRRiuNYe8ZHmpMmkqoLgiBgMpngOHt0xhV0SQhROxau61IUBQuaPn04GTEeKbbDNz2soriT8Yid7ZhCZjWsO8tTet0mYaijzdkU3+vieRaNZsVOVlCWKppcQRO9oMloNKI68j3Po5ApZrlXzL8wN0+/32cyHREE6l5FkSsB8rZ6zzhKaLfbCiaWV1F3hY6QZb6PXluoLI+OktuOYt+qjDfQxrFQf5e1M8UtxAeYQkeac/KsgqOm/MzPfpgwWefyecVUe/7cTUzTrKG7G+sDDCGxbFEzgQnLxDItMEMsWw1YOC1odXxaDQUnXl0bgJHi2ia2pRl2RyM83yWOJzUZj227RPGkZo31/BZRGlE6OQeW1B6U5hF3nL6D8WTE8uzDAFy/NmZ17Sxo+OuJo6f5J7/0r7hy7VX+5a/9IgBN18eyjZqg4MjyQfr9XZIsqwkmirzEaRgEDQNfy8iY0mVnK2Yy0oyGvS7bO2uUZUFDQ0KEEEwmEwz2nJuG59Lv9/fuozNQVWaxGhMlbC7q8ZEyR1hmHSgqioIoSqDco0s3TZMkypVDogmIRqORfr7qu0bLJEklg90US6g9t5BTMEoMrBpa6rqKJVLo/XU0GmEY6lmRlmxpNBp0uzOYlkUS7UlbWJZVZ19d16XRaLCzs8PSQb3HFhn9fv8WEpYsUyRGFVV65Vg6jlPvecIy6ixY1SzhIMsEW2i2WcuhP9im3Wxz34NqHnz1608zt9RmsDNCoI140yJJ4vq8KA21Nt3G3n4qpaTMpdpDrQpyV9wSuFFwzVw7SXvZc5V52cs+mqZ5K8RPmFimofeqSrpHrdn993Ysu4b4QgXFTGvnu5oLruvXe0scpzQaAa7t1OyyWVZQFKXOlKm95ODSITZ3Nuvgapjs4je6vOPdb+Vb31bJlZXrFzh97yHW10eMhnqMDQPDLJGaYC7P1PvksqgddkOWlEaG5Yg6e5ckGUbp1YzFtm1TmhFS7gWBlpaOcPDQHK++co63vO0eAC5fusrll9Zuiwjfbrfb7Xa73W632+12u91ut9vtdrv9f9m+LzJXQccs73qHxnPKnJnZNqP1gqvfU55lyzZZPtzle69e44HHVGRl9n6P4Y0lzn1ZFaZ7HmSeINxqcOC0xk7fbXDtu5CMIJhTv+sPTbAdCp1nvv/xmENLJk9/Zoc01vUHQZ8ktnGaWZ3NyqcOs75k6ZiKpg8nCdOtkMFqTrulIl72XEn72AZd4fHCV5U3/fbHP8zf/0e/xG//yv8EwJVLr9I5NsXr2eSZitBkuyWtjo01O8aIVMF+LodsGVMONzREzZYYrk1hFHVk1yAhG7sgkypgjGnY5Jkg0XoHhiFxDIsyswjHWhxtxsakpKMJIBJ7Ccc02R5f5vhxBf04duJxvvvMGe54pGDGUcQCT/9f32Hnxoj2vHrvKJRYoSTJDQ7epyItW2dH3Hdvl0y2+O7LilbWaTmIsqDTVGGqcdxi6cAM/XCXWKeFRZIjvQzL8JikVWasxGtZJLrGbPm+LrvbFpP+Jo6GExUiISlyDncPc/05BaVzlh2SvkujHOvv69G2Y3Z2JamOji7d6RPlE7CsutC4NEySqaTUFNlRVGBbFkm2Jz7cCFziOCHP9rTEgsCjKCWFVO9doqJallPg6vmTliYG0GlAe15Hdl2LYhRga+2GbDRmENt0Wg4acUQ5U3L4lCTut4lSlfmbWch58aVLCC1wO5nGENv0Zm22Bwp//BPv+1GG1xJevPA52h0tEDwtOXg0RmQ6ChjYHOgdYjId8PyLGre8EBMYPv3tkkxrLCVZymKrRV5UVNMFk3FCw58jy1W0znE8Bv2Isixp6uj5eJQzPz+L46rvvXBundN3PMZwtM1gck6Nu2Eh7AhhqKiqaUV4bovxKMXSMKi5RZvt7V2Fx9e1PVFYYAsLCp0RyrfJpKBlm0wz1Xm/8s//CX/9uae5sXaN/rbKzJlmQLdtEukak/neCYbDPgsHPYZDFdWME0kj6DCZ9vfEFh1BmuxpmxVlriiIi5K80HBioaJ5eZqS51WhuIq6V9E7z/MwDVvpp2i65CSG3qzNiTtmWLmo3kGYC6zvXKgjycPBhIcePM3rb6zw0AMqk7S4NMNnPvMZLMOsa5Isp6DXPgoa6razu0ESFwgRYtmqP2M5xTFcXKPFYz/wLjVWXkIhDd7zsIIFrqyc4y/+7I95/xOPEE3UGv3aN57FcjyyLKOkogWuori61k8WNJtNFdmWezCWNE0oir2MRFEoEU9DZ9wPHpojl1MoTfq7Csa6dOgYj7z9Xv78T56k2dOQ2zgny/fkcU6cXqbZc7GEpNT1cPFEcv3aJo+87XEeeY+iZ//Os8+ys5vw9neqGrrrV8/y3Fe/SDRjLGPGAAAgAElEQVRKOXnXSf1OEW+8vsZb36pIMBbmD/PsC88zd3iHnU01xls3TaIwpNXxsTVEPAxDKC32jtISx1V6NnsF5ipanGVZTSM92+2xtra2l6URBr4fMByOOXZE4d2Xl5d55ZWXwSjINRRaJioqbgk1N07ffZKXXjyD44DvqHWUSSUe6jhOnVUwDAPbseoMUTVmCrqn1lEaJzQaDcaTvtLzA4QwiSLqWiMpJUVRkOdZDfMKPBfDLDEtQ+tyqbqO6TTC0bBHy7KI4lBn/XS9b5pqaKRNs6nPlSjSmSxN0+2qOWc7Oeh7D3YKfuZnf5xWL+XaioLAPvXUd5npLmIKtdZm5+cxDIOLFy9S6LooRdMdk8TQbKi+ajQdnQHRWRsrYhplWIaNITRNvuWp886J64h3njrIMmZZ6zBubcXc/8gM7fmMMy9p2LPXotkO2N0U9LTu0ubgBo7Z4F2PvB2Az/7Nlwhay9x17z20WurM+sJ/fJKZmXZdF2KLLkIYhPHmPuiXQLgqy1HVJWdpwXSSc/zYHWoMrJjLl67iCIegpZ6fJiW27eP5JsOBel6WFVi2xNU1mPtreKo5vF/DaE+HycCyRQ0zq2jThbkHjc7yELP0sERAq636eDweK+IGS/Xv0eOzDEcRKxcHtDRSJZdTpMyxzBaGUe3DBbbt7u03OrtWzTdQGcXuzAzT6bTOurUaDTY3N2spjeFwWBNVVBmh6XSKECrTs5/gwff9mlxld2enFpGta7s8G8uyGI1G9f3JCiYyYj5QdsrqdExpmCw1F1g+rerczr38Msv39Xj97AUcnbmycSjyPY0pz2+QZClO4O8J9oYRlmnWUEnY09+qrmm323WW7RahXyFuyUo1m0potybZ8VyyLMUoSw3pA9OyMcpyX5YswxaKsKSC5avsmCIXqfoqDEMtwFxB6xym0/AWYWHT0FlrLUYNcOLkSVZvrjHWpQILCwvMHpgjLm5yc13rMvoug1GkiYS0SLFvYUq3JjtBCrAmUFo1jF1mOUWZUUqLUuOKcjmllEpAHZR9M81yDi0eBQ3vHQ8VF0RRFMzOKYj48ROHeeqT3/rPZq7Exz/+8b/r7/+/tv/5X3/8471jJaVR4hAw3o65+DL40kJIgyKW+ItdgqDEiDLysGT3cso0tHBnBN6Mz+5GRMNsEzPGyByyafn/svfmsZYl933fp+rs565v7dd79/TMcDhDzpDDVZZEShRDybJsC5FkxwkcW84CwwgMBEEC+z8lCBBHSBDkDwOJ7RiKbMQ2lESWLcuWQkmkJIrLkLOQs/T09L6912+969mrKn9UnXO7ZSX5IwnAP/oAA8x7fd+951bVqfot34UXPp2yP9/nzlsNF3YuEpKS+3NOliVNuaSuC259s2L/AVx5fsxgOGBtPaVWC2TQkBceIjQYCb0BzK+FzPYlxw80mztj9j7I8EXIvK7I65LnLr7C5/6NS1y7usf8oI/vJdx477v86j/4hyjVsJhPSccNVVWThAJfZngUHB7Dz/27P02YSPaPphjPEKdbRCphMq3Jch+lEpZHOfLQRyc1Wtk2cJwo0KB9wIMw1IS+j2hqAs/g4dEogR9VyAj8BHwEoVRMC01ea6piQj/o8aN/6tPMqof4iULNJ9AMeHR3l8MPjnl064Av/fSf4M7tB4TTDL+qMU3DUvj0A8Nk1rCYNAhP8Wd/6ku88cYexycZxng8eyrk2e2Se8eSqjEMB2MuXTxLphcUszkCjdYema6RtUfSDwgD564uDDIIkIHP0cOCOIDxRcnUVCivQVbQ60nr8yIion5E/qjA9xqUL1FSgqoI0oR+kuMZQRxA6Id4I0iEIBcCjaRuDGHsUWcaow2jMRRFjEHhS4EU1gOrFiCRCGH/s611Y4ULpAe6xvPdzyZGiIC+V1OlHptJQzyIrZqS52FqQTPx0UqQrkvyzKf2oRdZoz7vaEIURIj1Pol3mjhK8GOPk70Ja+ubpGnKuJ8Qeg2LwhB4fQI/Ze/GB1y+uOSF557h4ckI4a0RliXRAD64GnJ05NPzPPytY8plztZWn+3tkNHQI443KXVJlSuEBql6LLIl554/Rzrqoz2fvFSYWrlDT7KsDUWjkNpCvLQ2RLE14q7KhrKo8TwNck7dTGlq5UjPBmPA90EIhdGCutZgDM9cOcd4rcdkOqE/TMnmSzaG66RhYg/AQLB1ZpvBOGUxn7K1DX5qiIKQJPE5Poy59v5N6nrJD/3gj3Pp0vPEaY/NU+vsH93HCI2QkrqpmE0XHB8VLOY1kpSjo2OSXkrTSOfkHjJb5uRlSVnXaGP5jRoNQoKQ3aEhPQ+Eh/R8jDJoZdjeOkUv7bOcL9jYGrBYThgMYoJA8MyVs2ituHP3BN/vAT7rWyMkPrH0iPyA2XzBRz/1WY6nx9CU5PmMb/3Ba8RJiDY1nvDACEI/YXIyZbFYsFjOqSuNH4DAkIQJvpSIRlAUBVs7Z2hUw3w24+qbbzE9LFlmFXfu3GX66IgvfumTZM2M+3sHLOsCL1BUuUCTEYURvu9jkBga6qZGG03gRwRBiueFeD5Iz0P6GlULp15lEAI8YXjhQ89zMjm25PpK0UvHCK8mjARxYiE833ntfZKeR11rVKMRwqM39FGVTVIPD3aZznK8sM/pS9vEgx5rG2vceu8eN9+9StQf8/D+Ia/85A+xJuAPfuOb3H7vOl6wwYPr7zPY7LG5sU0QhHzxT32eghvsnF2jN1bcv3/M9RtXOXxUsrl+mcAb8bGPf4TJ/IjJ8RKtbTC7PhqQZxkXzjzDaDAm8GImkyOk5zsOinCBig08qqqhaRRZnhFEIY2uMMIgpFXc8sCOBR7Xr71P0tN4IqFpSptUCmtELvBdMWPEeG3A7t4+URRg0ESxYD6bEgTSGpwWOWWzoFEFWb6kKDO0VsRRQhC0cB9YLBekSYwnfeqmBgRaQ5FX+L6HEPb7GN2AXMGK6kY5FUvPmkpr6ymVJImdb0+yWMyJogghZActK8uM9a1TJIM+jVlgpEIIRb83oCyWCDRChiA0RiUWli0kYWC92sJY8f7Ve5ycLDg5KdBGM5/nZLn1VCvLhul04YpjliebV4o4jhASjNB4vk9Z2T3bmsR7LtjTHayxaRo0FUpZXoqUHkJ4pHFM3BuBCJgXR7zw4ivcuz9DBgFhlDJe97l/8wRVV6iqpCwzZsdL1kcDPrh6l9u37xP7PhvrKQ8evo0Ijlks98kWFfN5TZKMgID58gilc5pG43kBQng0taBWkmIJaMsli6MBUZji+QKlG/b39jEYfOnTS/v40kdgyLMlcRrT66UkaYznCZRqaFSN0g21alhmSwTGfVfR8bMWiwVCWo8qT3pUVU1dNTS1Ddq1Vk4JUNM0irryiOKIyx/qkY6npMOCw6MTtG44tXWZNBmT5xm7uxOi2McPrNea53nUlcLzbCHA+jxZWFtdK5pGWaU9A8ZopBQIYeFoZV4zOTlmNBziufN5NptSVSVlWaC1Igh8fD9ASIGQAmOsl9pwOKZxe02WZdR1RaMqyrIgSVIWyxnSJZXSEw76vSCKwk5xsNQ1RhuiXg/jeaRBhK8NtaqZHO1zfLBHGEXk0xpVtx5U8NJHX6RSpYXOSgFCgzZURU2ZV9RFTS/pgRFo03TfOUpijBAEIsD3AqTw0MoghUA1CqMNGJsM2+9rn/eqKpFSEIYefuDhewKMnTfPc6bDdYPv2/fT2hCFEb1+nyzPu/EPwgCtDMPhiKIoLTeWVtBGO4GclYnxyjvMAMZCA+ME4Xmc2jmNauDC+TW2t0bc+OAuYSwRniFza9LzQ0bDPnXesJyW1IVC1wIMNjbGqj8LE4KRZMuSqrRwQCl9yyPzfYSAutB40hYIrWm7QErDNKvwVERdQtrroYo5x9mck/2Ck6MFgb/B0YOHu7/wC7/wd/64vOb7onMVrwnz0hccubsMePC+pprlqMY+zIqC7VGfeOhz4vDGw/V1pnnOK6/arsq1t/ZYTBRGaCb7Fh/7qZ86he8P+OqvXufUKdsR6p9b53BW0ZQOKy5qdJ0SBAnnL7dy5vscHO7T78f0hjYLn9xb0tyPKVx3YvvFEE9X6FJTe12bge2NbWbzOxzcs5WV8Tjk5CDriL9+mrG/K1i7rOiP7Ofd+KDgwjOXwaspja3CvfTSi2Rzn72btwEIhwkyOSGKFLmDplc5NJViOOxRGft9JvshaWBQrjKfJiMrY6zjTp61IkdKSd+ZUm72UyYHUyq9w5mXLSehf/YBwV7F7Rt9qkNbeVg/H3EyC1m8bu+xF0y5J31UWXTVnGwi+bEf+zF2J+9y5+YD9/49xv2U7121XY6f/vM/zd7de0ybt7l13VYiZDmgaDKEsfhke+82iD4+tnO+Nh5RVQXJaUWeOCnRuWZ7Y0h2GGAcHy6QNVnuYVyVczZdMBqn9Ho9TM+uDZ0sKRuByCF2hs/KaHwjOJg5x++wR1PniMhgHI5X1hKtJJVousp10yiSVHRjEATSmfeBcRWpk6piFCeIxnDhov3deKem0D43f90JeOiQ2dGc4Sjiyjkb8JzdWfLNNwwbHxrw4VdtpbNu1smOjnnXyd/3Rmusb/ncu3ePB3ctv2KQ5nzukz/FG699QLplKzn/6Wf/Au/8zq9z8DnLP3rty99ErDXEwuP8FXsPt98vOTlUxD2/6yDkpVX6ee4j9u8O9ifUTcb6cMDi0Jls709Q1MSDCOXk4Msqo9eLOpPGujCcPn2Wk8k+y8wpj5mawLfdQIDNzU2qqmR9fZ2Dg9ZEsCYIDZfOP0e/Z8f84YMDHh1OiVMn36wUfjQF6eF0TYjjkLX1MXdvLvn5n//3AHjje7/HW298gHLO9j/+pS8xnR3y7POXeeNN2wUva3j+xZf49utvELgO1HK55Hg66Sp1lsS9UklqL0vWX2HhpVmJWoANTLZPrVmHeycGcfbsWQ4PjqmUxvdaOWprRlpm9jXnnznH+uk1rjx7kV//X61qZJ1LpB/S6CVrTmWsLCsWi0XHd6jrCtNYrH2DM4r2rExt4McdHj/wJU1T8+wzH7XzcCHm+GjO++/dJYyc3LY/Z7I/RHiyU8GsCo8gEJ3BZa+fUBY1Unq4YjZV2SA97ToR7bMVEgVBJ3Ywn8+RUjIYrVS/louKqrSdDO1aXHWluXjxIkNn0/HeW9cxjWI0PMV43XZ2//TPfIa9g6t8+V99E+VvA/DhF87xyY9+hMGWrYon9SY333+XX/29f8irVz5t77PZ4q13vkyc2M/ffzDj8nMXCEOfxdx+v0F/xHR2wtHREcbx75rCJ+1rNk/b6ujuvZKqzhgOx12FPc8zPM8jTXsd8V5rzXA46KwftNZo5ZHEmihybXEtyIsl49EWmeOGGqNpakNVOouKXg+lK3RTd92lfj+lrutODhmgUrYj9OEP227e8fExh4eHbKxvWZ4njhOoYDQadNXsqqrwvOAJRbHa/VvbdQuCACFXpsDt1e/3O0GEVujFGNNxIIpyyc7WObJs0fGbfT9kMbfBD0CjcsLIZz6tSHptJ2JEtvDY3I7Y27Xng/CsUuXKENnv7uVxOeo2uGvX3h81W63rGiEsj6Zx3VAbIAo2NjbIC7vHCmktTpZuTzh1Zp2NzTMM12Ju37cc682Ns0yPApazmljaffCFj55nfW2Tf/IPfwWAC5fWCcSQ3b373fNYFCC8susCpsk6ftDgB6LjFoGmrhVxGFFXTmGzN+DKlSu8/vrrAIzXR+zt7eH7frcnFEVBUyuCJOx+175f21UFODg4IJBBNy6+77v1tOIN2nGV3Vm4zJZcvHgBKTyuX7cCIWkfaDYZjgUf+2GLkPjGl0NefOFFDg6tWNbDBwf4Ydsxs2O+XOZoZVxCvuLgWfGYlcqg5VM9znCRLrl/UvXPGPWEvH8QRNYiwXXrjo+PqcqS8+fPdvNwcHBAWeakLlYKggBtmo7HCLbA0O/3OtVCgKqpn+Smue8BVhCmHbuqKhiNRgSuuzwaD9jbe0jVKQjKjjfV8j59z6oXaqM6npKUPnHao8lXlhgtLOBxZc5GW9uIdl0bYzrxjPbnVjGxFSRp1U/b94njmDAMqaqq62R6nodwn/G4gM3jnXrP85jP5wSB3533rWCIFH5LzWRtbYMk7nHkzn8vCFCyZrgRUat2j5A0qmJyMqOqnKCMahgMexRF1r2353mdcTHYjl5RZNTNSvEQI9CNWfENhaHOCmSconwnUiRS8GowEiHs/l2c+NSz/Cnn6un19Hp6Pb2eXk+vp9fT6+n19Hp6Pb3+/7y+PzpXI2HOWO88JB59E3LvOzGNcKojXs360CNOPGqHA13mDaYWjDecJGgwZm/3mFAqCqeUs3Nli6pW7N0+sbAZQAWS0c4WqTOXmy4FeXGMEAGnt12GTc7pC5JHD5coZfGVex8c0k+nPPMRm5XfPWzQxrC1LjB1W92OMKFic7vHzAmmzacLwkDje/bz/AgWU8l4w2fiPLoqDdp4BLFHf91lyqEAYagdfLSY9UEqhucqPOEy7gCkBk96xE5l8Nbbhn4iCB1fRhUeMlBMDiFNXeXDr5G+ocqdb1Fa8Vf+kyt88yuP+N43bCXk5Mgj3JE8v5Fy756993PPbHJlJPj6r70HWEWqedlwoDQDXHeiyfDWFP0hTO7ZakEv6dPogo11q8rzoVde5fr3vs2iuEc0sNWCW9/LOX02JOwJdu85ec7Qp9frsXCA8igy5EvD8DzUfbc26oCkGTC7J/FcRWE89mhUwXJpx1KV24hgyeBMgdezY7eoYRDDen/Eowe2mhYPISsEJ5lzlxNLYu2xLBStWnKvJ6gyQ2P8rrIrPfB9QVuVj2IPpSxEKnMd0lQl5GFOGAkitxYvPruNX2S89ltt9UmTGJ+TWc5nPm9fs78/5vTlTWIlUa76El/8EGpRc+Pqm24NZzzz3PM8uHcd5argy1Ix2xX8+BdeZRDZas93f+UbfPHSJe4+dwmA3/zy1zhzuccyL+j1bGdl85ShyOc8uOWDbLH9FuoQrrtKb2Mlh8MkZv++rTx+6qUf5OhwxpvXvk3f4ZsbVRLHK58bo2zldzY/QnoryVjVGMJwhfUfDofcu3cP1bQV04gwEmysrfP85VcA+Na3f5+f+Mk/xXe/Z7lbV6+9RhoPKOoC1dj7DAKPXt9na+MZDvbts1Y2j4ijAeMNuxbPnTuL0Zo/+RM/ydX37br+pV/6e5y7cJYgCHj00NosLPPc+u+0vDO58hhpK2BtF6ssqycqpp7n4WDh1HVNGAWMRiPypZurPLPqa0VF4Tpqa2trLLMJfacW6oc9LjxzhaPjPT547xoAo36PwVrMxtq5TgXr+PiEslx1K4QxZMsc3w/5kz/4OQDCnuArf/gaRVMQ9hwPI695/tln6TmVwUW2ZL7cI4wM165ZLuNobcD0WGBkSRC5/aURhGFE7FQV54spEvtMVGUryWt5PkmSdKpbLacmjl2nrmmoa8WZs2sdH0A3hmVWIkTAdGqf0dH6iHyp0f6qq6Irw3hjnTPnbZfq2Rcv0eslgGQ+sdyX0TDl6G7KF3/yJwH42Z/9c3z1t/4p//nf+stklR2DvRs5f/t/+C/5+//TLwPw4G7OpYtXOJ4/4Np7H7jVGuD5If2RrdLbG/V4+dXzhKndb9773pHtQlVBx1sQslXQE91ab6WuXcHUwvx0gNFZp0QYB0PSXkwU+MzdeimqnKa2XS6wHYWqzvE9QRikbnxtt1Rr3fH9kl7M4dE+L7xg/Z2qsuHh7n3iKO06slrbztHjnKeqqhgOh53hbFmW5HnZmZQCxEnkzE9lx31RSj3hEfS4bLRx46HrCmEkvufRHzjeSRgzX5TM3fj6BEjPEPgpzzxnESjHx8fcv7XE0BBFdhziNHK2B2X3OVlmn4X2Ph83Wn1cEt/3/Se+r+d5GO13FjFCgBEhZVEj3L44WguJE0GZ2/eZTGY0TYAfC15+1fKwbr8/R5LwzMUXuPfQ7i/93mleeOUyl563n/fLf+efMz+qEc2IwdD+7vyVNd59+y6ecIqNusHzhIXdtfui17PG7VHczXFZ1IRh2HULiqKgqEqyLO/gn60cdxBH3bwLYfepfn/YzV1ZloRhSOitFP6MUU8q5XmBg3zZuR0M+8znc4q87LpLaS/CUBIEPrmzcRmPNvB8yfHR1M25pCEn8MPO56rKa3wHLW1cB1hK273ueG9Na+C96tDYDo98Yu23HctWSbLdi6zBs+PHBpL5fE4vSbvvY4xhPB53sZpSCr9DpjjfwI0NsmxJlmUr6Xdl97vH15QUnlM1XHWu0zS1Z4T7vOl0ijGmU+psjO6MmjvLhsaq+fX6adc5wghnM+B8GOuVRPiK56pQpnFGz6tu1uP+V+3rW7hvOwatSmT7761RelU13Xcxbo9vr6qyvNr2d60/WJ5nT9yTlPaZbNWXvSDs/LcAwlTQaEWj6cyHPc9CNhtV0bSWF8Ipsgbt3KlOhbD9vKhnzdyXixxU24mz6q4ufMPzQFQRQapoPHfOHWvG50bUhaJuFcrzgvqI728T4XQgzYe+6OS3vZo0BDUf88437YLWi5jNU5J+LyUrbauwaQx1tjICKxy51pcKVbbu05Km0VYW0wkLlJVGBJILVyycMBitU1RHzOdzHFKJXt/jr/31v8A/+l9+CyXsgTZKU7L6FrWy2U6jI2QSMhAGWdtD4GRqCOOAstBEzhF+0A85eNAjGdgEIelZ/CckVM6byvg5fqKpq5DYwZ6iXkM0rGmbi9OHGl1GsFFy2nnTzKslftCj0Hp1OOYRVVZwaseOZzZvCGMQyqN93rRQeEicKip5I1GxZBQP+LCTsX7n3YaHByVxMOHUGQu32d2b8OlP/TibjW2Jf/Of/j63Sh8tGsSxa0d74A8HVAtN4nygCGZMJ5qf+7f+PADfeetNJo/ukKaSC5csuXN9tMXXv/Z1eiO4d9eOVezHBInqiMZBkFNkIcHGjNE5e8hmdYM88ZncnXWHpdKSOKnY3HSHwiQhvDhEpjGJ2bN/5y8J3eY/dc7cfhiiq5K584oSvkGakL/6H/47/PN/aaFYe8cHhFHNyYMQ4zwOlILAD/ADF3j7ikEvRZiUj79gYVbT6+/z9sEBIjJItzaK/QB/MaARduHJWBMuJHUYMHQeYdm04LmPnEPQ51FsP299Y5vjwxN8d3AEfs31mws2himf/bSVcP5n/+Jd0l7IC+uXOXPKBp1yKPn9f/UbbDq5b29tnTu33sYzPsuJHavxesj5SyHZPCRfOl+0xQzpacLAHtjDaESeL9g8u8Hdh1YG+fLFFzjcf8jN2zeI3LxL6RP4ofW+wfGqUE9IyErpUVUrw0NjIPB7LBbLxyA9krX1HlUpmJ7Ytffiiy8ShGFn5FqUS3wvYr6cdRC8g4Nj/tLP/xyvvPxx/t7f+ScAvPvOO1x+5govf8ZWc+oq4w9/75tMDuYMxnadCa+gzJb0R4PuHsqyfIKIG4ZhJ6v9R6Vu67rpNvNWyrgj5wcBwmgkAiFk97uysn8TusMjiiImkwnSKdU8++yHOJnMePDwDmMnqayqmrPntpnMSo5PrHFimoaEXkiW2bWxmOckSUTdlHzsh79gv8sy4/a175J6MdqZ6p45d5aN7Yv89u98BYDTp8+wvr7O/uHNlWeX8anKBjzVibfUdY1Wq8Cml9hgoaqLx7xwfFRj7Gs7kYsWirKCmp05s8MXv/Aj/O7v/JYdgxiWy5Iy9yjrVlJZgEmQ0hk3x+scT4/xQkPuiimvvPoJPvnJT3Kwd0Q8snvztDhinJxnZ2wFez7xI/8mv/3lv8+D9/8xX3vDPo9f/PSf5Rf/6/+ev/E3/2MAbt5+h4P9Y/YPjzl9xj4zZ85us5gp3nv/bSIHf6mais989uPcu2cTuePjQ07tbHL35qMuoPWD1vtnBVGra3tmtbAkbRoQJWEkSXy7vwkdUZQLdNOQDtqkrGG+XFBXrVlqQhhYHh3Gfl6SRARBQFGsfKaqpiQvlmxvWR+xoqjIi7kNppzPjudZCJZAdtLSeZ6TDvodrGkxndnAsJeQ53Z8R+OehR3VdOIDbWDbrv3HYUUOlURZ5uhacWpng1M7NrEvqoq7dx+Sufkc9cfMFxMunL8I0t5TknrcvzMjSRIyZ4iZpikYaQMlbODfNK389MqguPUEevyZbGFS9u+8zuwYV+CNkgGDMcT9OQ/u23uYHXqM1gVl5uSooyGLRcFoNOj2oP29OX/yJz7H/bt7vP7GWwDsXBzw3PMf6wLTd773Fr62HEPp9o0LV/rsPpgRx4lbKxVVYfmfYyeJX9c1cRI+8f2apmGxWBC7jL2qKrsPB16357bz2kJt2zmyAgWroDwMYtJe3O3N0+OTLolpE9TRaESe591ct3L7UkpSdw9/4gdfwR++wfe+03D9vRYSF/DhVwas79j9/A//j5owDfC9iNnMzp9WgtALrZCR85Crqspa4jxmhmvnS3XzKYTXwVg7C5Ug6Oa+vXzfFkhV44RbfJvEqLpBaTvvcZQ+YXot0OR5jh8GbG3ZuOjgYL870zpBifHoCdhca8VgBVVW8FPp+4S+z3Jh5yRNErI8x3cwS+n7GKlBreDnSmmEXkms2/G0HEDhTG/zPOsk49u5UcYmOovFovOLtO+3WvutCXBd192+8UdNmrW2MvBRlDzxHrpRzk9sZebsB7J7Fuq6cly8upurdg6iKKZ2/p9RYo2G17ft+5+/tMYHt+4yOVnFwyDRjfWfMqItXNl7axNVrRvG4yGLbI5pTZ79CKUqzl84zcy5jxfLguWywXf7VhQlVLnkmeeGGHdGX9m5wG/8y9c4/azP8dzuec9deoG3v3b1+9tEGGkwrsLnS4+8VvTP5Fz+iPWmuvH1Qzw9oqwUgVMe8YWi8Qq0Mwccpyl5WaEag+8mVwqD1iV4DcpNZhh4NFjfBQDTtypBm5sjstB5aGT3+V5x2QsAACAASURBVPVf/wq9YcKpizaQ2T+4y/K4QRfOK0IapsczZOqzldrulhHHVEvD7l3Ncy/Y91ob+fQiRVP13XsviL2ISkSIyE5uU/oUU22J9TPXnUh9TgeS8SV7oK2PZlBp9Cjg4Jar/kYx81nB4YGiqe3rtrYkvi8ocrephAlgvbjaA365jKioCNrF5CtU4/PO7y147ddsEPPjf/FzDNcPeXj3HktXGbg0ushXf+krbF62B79Z38bcfchofQvtgq1FLqnLOVHgr9Rl1IiLZ4eOnAuH966zc27I7RsnZDPL30qGD1nkFf3BGga7AZ/aWeNk9gjhAimlAwwFa8M+1dK+d2/QcLKY00sleeFUjYZ9FpOCY1wwIhZETZ/saEixaz/PjD3mM8mZyxG91H5eokJ047M1st9l6mnysOAPv3YV0Tg1O/GQfgIz2dC4hD2JY5AGIdo1FlLkDdIs2dmylTKz+zLp/jWa+QGzfft5o7UeVb1EZHbzEXnN5z+eMNMpJ8fuoEhyspNdtL/D++/YRObsGcGVj25z/wPbNbr3YJ9Ka7ztMd997yYAg3GKj+atN79B9dKnAPhzP/NFfuV//xecTm2y9fD2FFknyECAsIfA0VFBEPQZjkSH2T5zts9sXmKUPSyV9PBin8ODA7Qr97x+7S20KTl9YYPJkT0cy8ySSFvzQSEFRhlX+Ww7HzVxtPLGAEmRz4mjsDtMynLJwwdHhKEHgZ3jG3euMznKusNsa2uDZT1FyqDjj+zsbLH38ISdzZLdPdt9+bf/8hd48/VrfPN3v+LW6z5SSja2E/DtvFRNiZf4lMqw7gKZIAgoy7I7FFo/Ha01+/t2XlbVb9Mpx7XcjRVnwCVoniRwJi/WtNWjKCq2tu2z5Ychi0WG5wy1b9y4ZgM+HxYLe59pNODWzYdICQPXgVK6otJFVy08f+4Ct2/dZDQYcP11ywMpioZ+P+ZgOuu6GEE/YVmXPPfSJQAO9w+YLmsGwx0ePLRryg9AK0kkU4R2hz8+QdyQxM74U9dkyxLfjxDu+SiWBcLzEEISBKvD0XJbWkU6wf7+Pv/gl/9x18E43evj+6B8j8Cp4C2WJ9TVglM7Ntmp6gWR7+GbHgR2X7zx7jUOd08Io4hXPm2Ndj0mPPfxMxzdtYH47/z2/0wlDwn7pzg9tM/fxsYmL3/04/ih427GSzyZMuz3u85nGAzYeQbOlOvsPbSBYRQHjIfnuVPan+tyj9nJzFWuV5wdWxH2uqDI8n58checB0HExtaA/UcHiMSpefUU1BnTRUkQt2OnEIKOB9I0DUXRuAq3K9yUGcPhDnmeM52ddJ8XBAG7uzYJ7PeHxHFMkVdIlwQqpWhqWwDRrQJt4Dshjqr7WVfW5y3ttQFXDaIhDHudyW4b9DeP8bOCwAa90nlFNbVi7dQ6C1UQOk5ZFAQYWbPp9s4qr3jmyinKoqBye/xymaGUYrlcIlygWBTFE91lretOqazr5Lpn8fGCh9YaIS2XBVYBn9ERxrNzun+w5OhwSH9ckzjUi+p7FEuNdGu4LhRCGGuyPLHvHccV9+9f5/1rV4lTO6ChhK/99tfoJXYNX37mNFev3qdWms0dG0s8eqAx2mc5dwRrk9IfxCi1KkR5viAvqq5LCeAHAaPxeJWgaN0lu4/zpJqmIniiA2U9i0KnaNgqW2oFeeO4mk4Rrg3Q7TrLQRjWN+x9TyYTosh2MRdL25V653u36I1C3nvziP6wDcglD+5OuXvHFWA962e1XObUuR3P06dPEQQRh4f7+L6bm9TvOED2vgOHGFglNnWt/rVuS+u/9EcThDRNu73y0aNHnDp1iqPDfU6ftmqds9mU6cmEjQ2b+Fv1wDXyPGd3156/SZJYfpFaFQ3nc2tS3O77RVFYo/NgxV1sv0eRZV2y06oTZqUznddWuMzzBbpTRbTiRHlWrBKuukF4sluLYWjVHuu67ooiWZGTLXOMhrJu95ygS4bb9/Z9n0bV1jQXbMJvDPVjXUBPSoos7/6uRW08nszVdY3vr7p37ecJ12Gya8rrVClb5VGjNFEUsLlhC8VVVdBUHmmSEjluWlVVFHlpuWmPeUpKDdrtP0YaqrIkjqKuk9fvR9S15P6dh8QuOQyDAaJXUznUz2gcs1Q19x7eJ/YtwuWv/rWf4O0P7rA33SN18QzNY158f8z1fZFceWFCVbVysTP6Y4+b34Dy0FZjB6OQ+WTJ6BS2NQI0lUTKpstaERphJIEnO8lopRvCMKBuDMbpVmqh8KUiX1iieLj9AvPlhIEfEjhoVCJj7t59iB+WvHfVbq7jccxwMybXrj2chyTxBnDMg72pe++Eqqg4+6xhtGO/z3ShCOMMsEFaHBpUI1hOJwxHzrS0DDCUnJxosqUjQCvN9e9qXnCZ+kc+sUHlHWNSD+3G4Gi3ZOdMRBQo7t52UpqB5OWXL/LWG7cB6PUaNLVdYK5KnUaaIBE0DoK0KH36I3j+UxVv/qYdzwdvXeejP/IxDvcOOHTEwpkoGDyXEQzsPb744VPs/6OI2XFBz8EZfBmRyIgiaxBuDZbLGiFrvv3aa3YMAiirAiGTDs50MPMYj30CP2ZjwwZSjapRlYef2vuuCp+kJ6AWPLjtOiYfGhD5IxpZUFWuYlnM8SLNycSZZyYh2c095vUhI9eSF2XKfFkRxgWjizZpWB7M6YuUkwNntnoxYLSe8e533+C5Z2yHTW6u27a+zHH5JIWqiHor6GBdawIvpqpyHp44o9hTZ9l4+AbHCjbaqu1RyXgMuUsYPnxaMJ8qDsIhu9i1/+Ez6xR7NdIzjHtO1vXqTcJgbqXIgWKp6a/FeKGCwMm1b+U891xA/dEBX/tn1kj19371A37gIwOmmV0boTdhfT1hXiSUsQ0ot7fOcOpsxP7eCS2n9ks/9SJf/8oeylWW4oGPaDY4v7XD4YlNVg8WU+aFplyUaOUqR0ITepLQEWbtAWIoygVtDz5JJJ4U5LldP0kYEKch82xOzyXjQkZE4QA/bshd0WAxzxmMA5rKPS9lhjaKJI4Qzgzw4sXL/MHXfp9vfv3tLgAzKuH+7YIf+AELL7x28012dx8RxQHp0FXcy4TlzMMXAcfHTnDFwSTaw6w9vH0/oGphRoFECq+DoICFE/m+j+8OIaUUCo0QhiRdQX6UUqS9mGMHPwkjn/5Qcva83dw/uHaXelFZlUl3wDS6JEkMhlUVXjX2/xMXiNf1kiDwbNDinvc0jairipdfepYit+vztT98h3//P/hLLHMLZ3rv6i0uPL/kta/tdkbmQirqwlA3GapxwbFS1Kpi4OBERQH9/pjFdNGJObz6iZd5/9pdmqZZVbgDD6Xs4QoQhoGtYKYpde3gkllJmsTUVU3uiNpBkABlFzwu8wI/9Cn1MVs7du0f7R9jZI4XCIQzivWN4a23rlMd2XE6fS7h1Jkt3vhqxuzEBkm/9msP2Nj2rCE4gEmpa8H6ZkDftGdKzsbaFd5964jQdWjDCL7y1d/kpRet4Evc32b37gleGKyquNiqruCPmKuWOYGzxKirAq0jXn755W5fHK759OZbhEGD5zl0AJJEig5iBRLP952Es73PKA6pm/IJE1HPs6I7rcBM29Xp94fdvEwmE9Ik7RIr+7qGPC+Zz+0510tiwlDi+YIkdLDSuqCpNFo33bxrTScH335fY8wTktG9fspw3GOwvtMF7LPFlFdefoHd+zYJzBcKQchyedIZdpeVQXqCui5Johae2waWq58f7xjAk2bO7Ty00Kg2mMwy+5zNi/0u+U/jlCiJyZceixM7xoNhjPIOyebu50GMbHyr8urgRIOx5tbta6Q9gXRiNVWlGPSG7GyfdQOskTJj81TCpz9jrRGuvvk6hwcKz18lh2W5tIUq181uChvEW2EEJ40eBlRVRfiYbLbtnqsn4Jm9Xso8Wz4W+Frl2zbAbZwceFUXKLfHWoizg1e5sVtmiyeUBB830G5FvPb395lfL4l78jHjXcVsatXbAISJmU3neEjW1sbuPm2xSkr5WKfKdAbtwGMIiMdhp4Ig8FHqye5Omqbd/p3neWem3CWdQvJod4/ReNBZaRT5kjCSGCekoLSmzHKXtK6gdUEQYMSqKxjHcSeMAjYBawUdHu+m9Xo9hBCdQEZZlyT+qtujlKLRCqVqhFkZYS+zqVVGdM0FK87h05T2NXlWEEZ2LVZu39fKODjlqsjV3vvjYidaa4SxhdB2vVjoYNPdk+8HeL4gchYOj3dP2/GM4xghzWNjEnXGxo93t9rCYmsZEccxZVnST21Ce+3G2wjTQ6m6gyYLKdBG4YWStpsVSI9a1SuJ/CCgWGZsbG90tiDLmS2AeEJ23dBuL3CvmU1zNrdPcZw1JJENgv7mf/aLJF5B0tf4xsby1crz/I+9ngpaPL2eXk+vp9fT6+n19Hp6Pb2eXk+vp9f/B9f3RecqDPpsn7adgePsmyQYwlzhunSEQ8GyMpR5Rdiyf2WIJ2qUajtES+IwQuiaVtNReAJda4zyoDXeDRp6vQjd2Iz06N59+oMBvpFo7O+ioE+xkAx6a6yt24psnWWU2Qmndmy16WB/l0bOODo2xL7N2E/2S86cDhjEm1z9jq3yXbwU4msfEVsoTyDB92A8khTOKVY1Jb1Bj6YucD6KFDPJbKYo3rWVlsOdBaMXI9YHfeqhw8Lfr8jmBf2tlH4riX1YcOfW7U68QumKIASlSxxCBRXVqBwCz+bW/Z5PXQh6o4SNS65zdeMWb79+m5d+6GM8d8FCle7dvwVRzb25ve/lzUPOfHzAnT88IS8cObjWNE1F0utRm1aoYUFR9ti/acUHRkmMqgcovcfFFyz3rbc+5P1vX+NhtdeRTh/tHdHvDRG0eO4G3Wj2d+f0I/sab94jm83YOb3RzXsQBFRm2Ukl95KYyPMJs6oj8PeimsDXVNOQ4oEztDzxWaYN3sh2Cy5fPs/dw2+xti15/11bRU0GA3qnKrY3BhweudY9vpW2Dd3S9EB6Gt+XbG9bCN7+/ZLycMEyDnCFOZI8IDOSviO4f+ce7GwGXLv3AYEz/n33OOD4pGBtTXZEyqQvmD6acO6yrdR7MTSlYnE0Rbk13O/F3L69RA8betsODhqs04gDmpbAm2yy86xg8e4ET9oK1HRxyPJ6jO+H1Maqsnzr6/fRRhC6xSkaj43BgKbK8F0leTQMCQYNN24uMawqpFrQ4fiFqJFYT6PESah7XsTJybR7n9kiJ+6lhGFM7sRA6kox7GnKykNI1yH1BiRJxs4zdj+4cVXSH8TM50dddfL27duoRtMfNV1V+7e//FX8SHP1xrsAFGXFcHia2WxG6CS4dakIRUSaeBwUq++ygi5aztXh4RFREjMeuwk1jcWUVys4ClpTlyX6MXiKQlIrxWTyeFfMdnMaV52cz+f0ej3uP3zkfs4YxSmBr8md/K4RAVXVYFhxmAaDEVVRcnRgO2AH+pjBYMCHPvQsj3Yt3/Av/qW/yGhjg0V22IlOvPfu3+bVlz/BP/2V/82uu3e/TTo6S5k3HYE/CAKq3Ep1txXspB9jVMjBvq28ejIkkBVVWbPuOtA726fY3ZvR6yVcv37dfWdBVdUdcdxzVX0hFK5AyvSkIU19grhEadf5aySeJ6gXFkI26CWE8Ygsm/GRF54B4Hfu7ZEGMS+9vMmBg8Cl45CTe/e4cNpCTa5df0T2+j2auSZMXcW1VBgjO/5R3VQ0SpNnIR979TOANWB941vvMD05YrTWCjA09HoeFbabjrdgtJHy6OGUrVMW+tU0NXlWui6i3b9tVyfAFcWRnuHk5IQvfulHeff9bwDwyisf4cY7BbduvM7mlnt7IVBKdIIBUgjL7dCGCxcuARbCeXBwQJYvuypx0zQkvZQ8azsRmqaxXk6t/HUSJ7bqrlUnae55ElWVpE58JM9zoliwWDS0Heh+f0BT12hVPfZ5+gmY0OOyyMp9XjYvWE5y1scbNE4fpF5omsJajYDtTkxOrChL5sSNjLHwvjgOu7W4vb3NbLoA0xrcruCY7WWMIY2tqbd2EEprtBx3r5nNZuRFxgvPP8fcGWjvPXpAnAji2LSNIxazDM9LiGMH/VQeUjghjdyO3drmGnFvThhIlkv73A76Gs9POcns2iyPj4ijPhcvB9y7aUWK7t65y/b2GZaFMz8PBNlSoVVIXbXzIhgMBpaH5DoPxgi8cCXaYZT9/r4freCEnvX6iaKIxaKVrbZw7XaPK4qCyA8wjXjCUFdryzlq114YRCjdcHxkO611XRPHMWnaX3V2dMPaxpDFYtbtw54XkkQxlYOnCaNIQmsNsZKHt15J/X6/m/cwCKiaqrunVlxBKd114YxRGOM/YQugdWvqvhL1mEwmFhab5d06GI0GLBYLjpx9wGBovQFb+X3PC22HBAjcPmHQNNoiGUZDexZUdenEGlb9C8stirrOilKKfJkTJRHjsY1n5tmSSlVPvEbgUVWaJLWft7W1wXI2xRjZ8RIfF1Bq57i9Hofl2WdmxVkry5ow9Lr91/c1VeE63u17CIXnSYRoBWAahLA2Cx31o1LMF9MnnqW6rvGF7ODLFj2m0dpQutg3jhMnZR91a280GjGdTllm9gwbDteZLSdoUSC8FvGSUBQLGrPqWFZNgx96HXyyrmsabaXvW6Zd4Nt7bRrBeM3GtUVRUOiCJG0FOzTKV8zmS0axjd++8MNn8GTFb/7u2/TPOyPt/we9iu+L5KosSrY2LfZf3cqYXrvKcC1lvrTBXVmW+DKhmIR4qYMc+TmybqhrB9MJoFAlsTMxBQjDPst6RugZmqoluUmaxlA5EYPy+IgiWRIchexcshyvrFjihYp8OSIO7eaWjCE7iblx38KgYteeH28Myab2wdveMjRFzKMTwSixGOSj3Ypzzy4YuGAyTD0mxx6eKDG1U9PrG04Oc+oi4cx55xchStYGKfMjO5HTPcPhQ8PWSCMuOMhPYg1TQw1b2/YBOn7k1F7ccvIjMMJHCENd2UUfJktMArVrXAoKS+ZTMNi2f3e4HzAMG+58931eeuknAMjPxeSLu4zXWkfzIfffnJCYCKNa2FOFNh4KTUjrDVGTVwt2ztmH5/ZVzdnz54mkInEBSjyU1FXJxrmUQNpTNkkBb4Lvko+tMw1HDzSXn9vg4NCOy+Rgl6Q34MbNR4Qd/GVO2t/oIA5BWKGkjxdnnLgEzMtjdFNRNA0/8KLlJN24focme8TZz9igMFcjZouEcLhOHdpDaHF/CWaHhl0Cd6gXTYUgpnQqVYOBBK3Jl5IHtx0/TqW8fbJkuLHJpLHQq9oYhIaJO5jEIMEkPV554UXe/cCus+PjAp1pjvN7eOHQrf0UT0r2Hs3d2A2Jdch074BG2bWoBgPieo2bt+/x7Dn7fV771m1+6IuvYObWf+TNG4dUeUK28AkctMbIjKJRqEyw5jafh3dLxqNB56VyZVuQNvtM5pKsset1UmtOsilKZx3MqaklUqza7YYa5RR8HKScPK9QSnYQ0vHaNicnS0BQ1i15PWQ5zZChT5vfFJlhMCoRrV9OXlMrTeCnjNfti/rDhigZcv/uIX/mT/8MAM9/6BL/zS/+d0S+gyX1UuoqwvMC5ksnOhMPyfOc2WROHLTkcRvAtIeScibe/X6fzAVNdVOsAhTHKbH+JCs+gFENBuN8slyUpqyHSK1VF9hjJGUO0sFmkjgh9EPKfIZwBxpCYhQkvSHGEZmbxpKGBTZZ1Uqxvr7Bzs4Wn/q89XM6mCw4f+Ei/9V/8bcoHPf07LmL3Lp3SOFgdEJprr21oKkbGmMPwmIhMV5JHPS7BBrjkS1zUgfhBE1TlYzXBqSxLRD881/7MkHkvq9aCYSkvdUYVKUd30ZVHWytqhoW84z+SHZJoNFWsGOpWnU0TVgfIZuaN75u1dg+/6M/ws2DqxThmG2nAHt0+JDqxHCnstw7E8VkJwW6gl5q1/msahwJ2gZIh4fHhL5VKnznHesp99GPvMrJ4ZzxOKIqHXw49Fkf73Djqk1ef/jzr/K9t24i/UUX5LTGqk2jnvCG0lp3XB8ZCGYnNe9+d58XPmYFV/b3Ztx/eMCzL/Whsn+Xpil3795/wn9IyNBxr+xaPL2+QdM0LJdLjIO79XrWY6sVd/L9ECkD8rxkbcMmgdPplHm2RCnVQemrUuPHXsedHI/t/BtjOoWvxbxAiAApTaeG5vsrTo9dm0237v3YPg+j0YjZ5ITD++A5OO8g7nO0f0CL+DdkKBXSVEuCyK3zKsD3UvI8Z9C382XVAbOu0OA5P6DHA01jjPXyMgYpW4GNXgddghUMajo7onQFHt/3mU9rBsMUXAFLCsBUHYQMGSGksbBIbb/LB+8d8+kf3mI+n7N40CbjYz76iWepsHv8V3+jYGu8Tjn3eHTPngX9ZJsiyzHa+SQuSqI0oNf3SSPH/5U+u7sP2N7eZuIg8HVdYdRKoS1oY6EkZeCUeSeTifWVC/wu8K1r68tk3YrAi5MumWqTHc/zmE0n1kxatl5GrVDISgygaRrKokJ6re+jR62mFsrlxkppjad7RLF7/guB1oIoSla+lmtrFgYdeJTubJ/PZ4TxKkFpBYU8T/5ranaj0aBbC5PJhMlk0s3zeDxmZ2eHft8au7drY3190xYF3f4i0dRN2Z31CGG9paTs3tsgCX2v85UDkJ7oYLBg97umaej1ek9yrhqNF3g0riAwHPaZzWZdDOvhU5Y1UTjo7qnIa6QMWMyLrhClGk0Y+OD25SS1BQSlmu4e2rmMoqjjRYZhjO/FGLcnRGEPVbfCIHbMozhwCdXjiZs1bW6hvPNZzs/87J/htde+zcOHjosW96jqovu+o9GQPG9hgSulzlatsFW4XCwWCOFx5ODaUgxBaDTLTtHPCM2Zc2OqSrG/b++hN+qBNh1dYjKZgIC6WRVYillGEPr4YcDEQa+DMER6sms+eL7H4jhjYzCics/6Zz/7WW7v3kCr18gWDrJpXDHt/+L6f6UWKIS4DcyxM9oYYz4phFgH/glwCbgN/DljzMn/3fvI2DfP/4BNrrJ5QFzfYj6fk1R2M6h1Ta0ailp21UJtCgQeZdlWjYTjQEg84TDenmaRVSihyQ/tBvEzf2HEX/mPXmLiVI6CRjJc3+Jv/PX3+M537WCdfm4TPzJIBnihrWDUZoKUmspVsgWaqgIvkORz+3lrm4LpboRfliTGblrpek5ydoGX29dsPBvQ6y+5e1uwOHEBl4CwF9KUA770Y1Yu+df/xdcYnT9E1Q7TqkriQOFteTSOd+KJhAfvhnz+T8fcuWE3pO98S3HxfEzo5GnrYEkcQzmHOzfsw3LuvKusN64TIStEaGhkxdARqW+8FjC7rxBG87EfsUHZzkfOc3ww5dEDKwXdTw35BLL9jJM9R+6WPiaEyqiO9B5EPrUwBG6DzOY5pk5sFcuzCUmLUfa8il7kkj6vwmONqml5KFb95tLzKY8e2DG4f7MgiDRVIUhim3xECdR1ydbmOTtOvs/D3Q94/qNX+MAZG0+nc849s43SHsZJ6UZNwdF8zprrTh4dHBOkkqPDBZE7KEo/Zn3Lp9w9Iu7ZTaPpGfLCw3fV9bRXI0KgCRhFNmg5vf1xvvHGVzh/6flOVfDh7gOyecXpbVuSNqOGcn/KYHSO/Zm9z+WjOevDU6yfGvPgjh13Lwo5d+osjcPjT08eoksNZcLCKWcRbCLyY3Qa8gmX7Kx9+DN8+nOv8D/+3f8WgIMHms21AcZfkGf2+1189hSHd2eYZgCJq7SOA6r+EOnZZ2Zcb5IX0Du/Se0qqw+v30LonGwZk/quClcs0B40rkpFo/CR4MtWBRVfNGAkxnXlTB3h+5rtcconNu1B+K07KcteSYDPYmp/t7HVp6oTjOtcB8mcRk2YH0cMx/ZZP9grqaqKc+d3uHL5JQDuPbjL3Xu3GazZe+r1tphPJVl53PEGjFlitI9uyk4h0eLzZ48FyxojBefPn+fQGZtny5I4tgFWmbWE5AaB1wl/aK2RgS12tMabOHJ1EASdcpUMQppaMBzaPbColwgCoiDpVKpuXn8PIUp60XZnMNvohigKcE1pVNFw5cIznBwesTuxybg2Po0p6I1CamfmOBoNAJ9dZ0sg05JRP6VqMsZrdp9YTKGujE2etSOme4r6Mel5mzAoLl+82CllPXr0iKq0SUVRF914BoHfJWlKOdVFE2HagC1QGBRnTp+jaux9ZfmcugwYDmxAPZ3O/0/23ivYs+S+7/v0yeEfb74TdnZ2ZxbAYrEBWC5ILkFQBIOkkkmJFmmbEosuWRRt07TLssuhVI4PLpdl602ssiyrig+iaPBBJESKASIIgFgARNq82DT53pkb//nkc7r90H3OnZFouiySLrk8/bTz3/s//xP6dP/CN5BmAizFD/zQdwEwOT3h5W++xebaBv662UOyAktZHN410s+uYDiK8ByLuKfn3nRyQraMuHhJk9m3trf5/Bd+l8G6S5aZ516FBH2B41idPLNUFh/6wNNaSRHIkiV5tsSyK5ZGWcqxfZpG843aIEWqCiHAMvuV3/PJ50suXHia7/rzTwBwsnwPu/SJ++eouj1ryJe/+NvUjSnciBFZXiGoEKbY4QcRlpAISlJjqun7AVV9FiwnqxW2E5DnZ1LFtm0zHA5pmoaDgxPzPdvwINqkycIzJsdtUFbXmID6jHuhE6kz4Yj7OYuO4dppKW8jf2w6pEVV4DoBnquf3SpZdkqdbaezaZqOF9aR+mv9W+o+TousmwdkuvO8wPEswwdpK/qSrKhRUj8Hz9VJ26OXdpkt9TM+PVnQ7/epyzMSv5QSWfv4/lniv1rNePLDV5nPDIJg0Gcyvcd0espHP6Hn52gU8Na3X2V+rNfvKrWo6imeG3U8pTJrtDBVpeOP0Nsl7mneZ2mKXHf2bmBbNp/4xCe5dk0XzGazGYGnBSUAo6asWCarrqOgJJRNHuqG1AAAIABJREFU/YAxrFbYs/GdlheWdwWkTm2yLLuOWNu58n0Xqc7U3/r9PkWh192NjTUzzxYUpaSpJcIkYZZl5kJnVKvfKT0PDaKm1yNNF8im7BKZqmiM2qQprpjkIfL8LqguyxIsaOozIZNVmhh577b7s0kcx9iWy3xpFISX2sTdD0pqk2CUWYHlnCUIjuOzTDLD0TNFCs8lCLSdQbvmtR2d9l1reYaBfyYM08q8H58cdX/fGg+3z8WyICsLY+VxJjphWRZ1XbO5sdV9bzKZPNDxahUg24TScXQXWaMb9LtcFEXXadTDIi8KELIzKI76Ea4SZxLynoW7zAi2xswW+rO/9P0/Sryl+Ee/9BmUERKzXIVt5dhGbwBRmN8LUUb9ta4ljS20cmWlry8ORghXEYb6ONPlinAEVW2DKfRFcc100tAbxOSGCz4ejJlPFyzMPieE0B3RMOyUCJXVitnUnWmx77tYzv1qjA2VKonCIaXhsOV5Stx3cFzVvVtSSpY35Z+OFLtJrp5XyuCH9Gf/EzBRSv2PQoj/Ahgrpf7zP+o4vY1I/dm/ql3jb79bk+Y1yd4eeaoD9lxC4IfkC0nPyNF6fkNRZlTlmQO2SbS7BbjKHGoahFcxvas/+1/+9w1+5Kci9u+aRV4lnL/wFP/Jz9zjV39VL6RblyyiqEdTeTTCGE1xjGtph2uAurHxnJz5FIQhB65tuGSJQ3Lk4puAsn8uJ97y8MyilNqSjeGYUu7wkQ/rTfxzn/s8btzgOg7VQlelJkcR4dYxuxcNdNCSVIlEuDWjoV7sJong1d8uePQJh8GGhsQcL/bJ5wm75wzZeiDw7BoPi9e/oT87f6FhOHaYG3iKOwCrCpCp6CTkU+Xy/u8peoWH1deb+HN/4ROkVUPPJG6vffsl1i8pTl8NKabGAyUpkI5DGHtY6N8rqhQ7cBmM9Eu2mC2pshTV0Pl/rZYZkamQrK3pTUCKFbYt6EWta3zAcjmnqAqk8abxXR/Hq8mzitIkCJtbI3Z3d/naH2jp2+3tTUprxTx1cY3+fBRBrWyUEPR9A20LLNK84sYtnaBcvXiV2pW8/c57nL+iu00iiFjObuOUFpmBR4YjB8IUE9/iBoLhGLKDkBdf/AQAt26seO/GWyihCwMAdSXxPadTc/KDADuokFZNletrtpqcQWgzWhuTmLl4fLDAloJyYspWWzHkBbZ0wZA0sWOSdMJA9egb0umP/bWf5dbLX+H3v/WSnq/rA4QrEcLHaowcvDrH/vKARmZgFCjdYU3WVPRiTTAtlzmlbeH2AwIjbFAcHxA7ayyWU1ZG7Sl0XYqm7jZkz9GV+rKuiYz6h+2NKas5tmOCbhkja0XUE/yZD+l78Oo7SxYOpKscYQKg/kixXGVsGnUtxILlqcNy4eD5piIdemxtbVGVisVSH39v7w6PX7nEx1+8DMD/8cufZ2Mrwo8aDvf0eQaBh0WFLfqdjHxZlqyvjzvoQgvFKepKe2agoVGOYzOfzzFLELbQZOx2Ia9kg+cGWDbYJuGqmxIhBHHU74jpZVnSqDNy9+l0gu8H/Mxf/1l+5dOfBmB6eoDrCZrCpTawF9dzdAJjOkRrwxGe7TGK+8yMQsn1m7dY2xrh+Q6N2eSKXFGVNbYRV7n4yFW8oOHw8LjzRClKLWTRi9aZLTRc0RLuA54vLRHeRnSdDtu2sYRLkiddRbb1fWrFTkDfJ9nYIHWAYjsK2/KJooi4b+ZZkZGngjayTtICsCibkief1HtIli+5ffs2w96Yixd1oWSZLlmlS2YLfeydnW1UU3Fx6wJH967pe97ULJdn0vq2B5UsqWqBLYwIBDVCSISluqqtH/RoyjNJ7jD0CXybPKsfqLDHvfDMl8Z81uv1KHP9XivbJXRdprOEP/9XfxiA8497XH/7gOPJlLHxEqsWLu+89g6Dof73dLbAcjwWsxlPfuApfQ+KlMnpEUJUmOUFJQXNfUoVsmlAuFiW1QVORVEzHg+I47iDrerERnTwuzTNcRxYW1vrlDmrqjlTE7wPCqUlzU0X1Uhje57XqZo1tWI4HBP3fN6/rruKzzzzQZaLlONjUyhSgkbWJqjUH7WQq1YBUc897Wt0P/Srqc4SgvYz1w9AlJ3HWt1oEYjA7A1JskQpQeD0O2hkTYlju/TjkMyoQsraRuB087zIS+I45sVPPM/Xv6b3nlWaEUdDprMjLKftoAnqKsVz9F7vuj6WrWFt4zVT8CTn+CBjY1ffp9mJQ5aWeL5gtWhFIQRh6LJcJmdqgY5nRH70+z8Y9jQEUqkHuohZWTwQxLuuq5Oo5uw+VVVligHmne3+XnYqjFVVEMVhNzfaRL3X63UCKLZlURY1cTzQgTsQxSFKKVam+CCEjefbWJYkWRkJ/sE2VVWgVHLmKSlC/MDuFKFnS/0sQidgYDof0/mEqq5xrDPxj/tVIgHW1jY6IYfSwORbb6+8mDOIdWK4XC6p1aS7byh9n7K87O5n3B/oLl+juv3Bso3vVKtS7Xmd2myrDCil7KTJ28DeskXXeWvPCc5U/PQ9b2Xiwwdk3bU4hr4vWZZoyXjnzI9TwyTrB3zKhAVFVnXrcFXrjqFlWcznJiZAYHuq65xVDgx7fepE8uILLwKwv5hx7bW3wUkRprEQ+DZVXlBLU9wJe1pm3g6xTAwEFnmj949WHAdlEcQOM5PcBa7Ecwq2Ho25fajnVCUtfHySA1DGrsBzGqII5gv9N00JrqM94FrLJtkY2oZFV/AMQ+0HWJvWVRRFLOYJjmN14imO41A1RmreFKuDwGN6Lfu/TK7+NAQtfhT4RfPfvwj8xT+F33g4Ho6H4+F4OB6Oh+PheDgejofj4fhXavxxOVcK+B2hcQ7/q1Lq7wHbSql75v8fANt/2BeFEH8D+BsAXmwRxDrPOz28ydalq3iyz/EdXZVYK0KWtcawLua6wjYcG9yngVRUTYnn6CpQ3bRl4wZb1XhWjCd0hWTD+RTWPKHnvgdAtBZiOSlHs7v4xu8k8NbxrAIVlJjuPoFbo5YVrunauLGFKyEpXBpp3LQzC0/1YVyQ3TKtyUCQlzmF0cSvg4i941N2Hg9Z5MZtOnSRqoAGLNMEFI3HWjzAdgzBlBI3FFi5z/yaPtbaVcVf/smneeWfHTKpNaRxtNlQGEEFgLhvU1WCMlkjHOqMfrIPWxckroGQ2LWN7VhUUUpiKldbWz1uMuHi1Uv8/N/8eQD+h7/z33Dz+jHf/ckfBOCDT36cu4tvYHk582Xb0g2BijwtaM26+yPFbK64c1dDyEQNlx89R+A63Lqup8rmRkyaLHAs0RmEulafoqiIhrort7e3x9pWQChdFjMDZ7AkQlXYVkm/r5/DyfERtpKMB4bkWyfYAx+Vwsamrm6l6QrfHRD3A+7cuKm/V9usbY3a4h2rJmVnewc/8Jnu6fvbOD5rG30cz+H0QF9PNOzh2Vso11Q0OWV65JAdwTPPaCjIYvYtyjcbyirtJPgF0ItcsrQl3aYs9hukkFRMzPMLeezcNm+/e4OLV/S5R1FEOilxYgPlSV1yJdg+F5HM9HyZThIiNyRLSxLTRf30L/19LpR7fNxUt5twm4P3vsDdYszSdCeq4gbrj+9iWUOGtBA1h9NZQnlXH+fKBy4xawpmywWh4QjVhGSJRaACrHVT1ZytiP2A1Hho2ZaDchSe62C3xWR1jMBBGUhA0JfIUnA6S/i1r+vOQH+th6gExm5Dn3sN29t9JidGhMYLiMKYyfSI//Jv/vcAvPzyy3zlK1/h/IUdTqZ6nm3v9jmZHvHr/0TDbcbjAVIlIH1cX59nltb0oog0S7qKnlIN0+m0w4V3pp1FycgIsIRBxNHpsZbgNbCpMPApiqL7e9lAIbUpo+e0HiE2AmEc7fX1+X5ImuccHOgOURzHpEnOL/zCL4A6807KsgKJ20HNGiSbm9usjEHiyemUzc1N3r5xjR/6oR8C4IkPPcLXvvUqaVK0FiEMhzFHR8d4BlqzWq1YHswpyxzPdD49p0/RlKTZguFAdwyn0xlhGJIkxqPI93Xnojmr0DZ1Q1JmCOtMft5xLM37MNyN0AtZLhMNG/Fbj6CQurSZzWZ4fusvGGLbVQfJCf0IZVWIAlLTOVosEuI4pKoKhFGZcRwHVZTEptIr0xV5UVGOFbbhhi0O7hrel6lM9hzcRrGYW0gDi+j3A8N5utkhJFzbYvv8Jjffv6mfJ1q6XNF0sMcgckEUOK7qeBJRFFFX0BvojnCaLlHkWI7kxtt6H5gc29y9c8TmbkS/p9ez/eND/Eh1JP0gFORlSRj0mM/1Gu/4FmWVE4ZexwPBsqgrydqahiqnq4Tc2HP0jFjNYGAxn8/J8xQ3aEUSFEKq+6BRFlUlWSxW3Xy1bZs41jC+tjvXdgpaEQPtc+aglOw8F5umYrVacDrJ+NSnvsecw4Df+9wXO5l+lKCqpfHNOfPV0XC/hqpqPY/8zosJdNe4NJ2ytrOTpimIUnfrzLWX1RzHdphO9HMv8oooDlmVOc8bs/FXXnmFra2QslC4lu6GHh3vE8UC29Lr+fbWLqv0mHevv8mRgQpHcYASKefOnePk8I6+HhkTh+td9xahqEooakWS6PjG92rqpqIN0bIswbYDyipB0XLKo85vr4XurVYpQRB0nKssSyjKAsd1u8/a9ajthIDhXCG6TuRwOHyAM6Tv75mPWgsRFRbG49JA4iMto53lSwIjEGQL7X/ke363fh4dH+O4dudbVOQlVeFSVinf/wMvmmuZ88rLb2KLAYFZgxANXuR00uVC2LiWhjSmpvvadtIlDUK1XYZWCl2vU8fHh0RRj/X1dVbLaXfuWT5DqQbH1e+D4zioRlI3Z8duDd9twxtaLBZ63TPQStD2Gq7rdt3c+XxOGOpuXSsBblkWa2trzGaz7h11hUsj7+MJKtnJ0bdG142B9mo+ob7H6+ubJElClurr293dNdDeA7a29Pt+eHhPP8Omoqz0fRkMeyiZdAiNKA7Icu3R1wpoiEpRC5CeuSdFzWomCV2PP3hVd2gbShy7oG7sjj8t8bB8Sb3Sz1ilgqYWBIFFYxloclljOT5OWWCbDlu8tsZJMSXs63vQH2ihkdFYsH9bP4d0EeCtV1x+7lHSyap7pnku2Nw88yQ7OZ7TNCCs2MzXFFAIYeG1Rs225mS5nTVDie85D3A1ARxLEg+irjuY5hV/1PjjJlffo5TaF0JsAZ8VQrx9//9USinR7vr/3DCJ2N8DGO+uqcLTC9Zz37/JwWFNU4RUQgcItsxB2Ni2Q1Xeh9WWeXc827ZASKqqoTA8At/1wHYoatVygfn0r70MFyysnvGmeg+ufLAhSwZ4ob5Zy9WEStkot8QZ6yAsX8WMCZidGKjCMCK2+ww2cvIWKliE1M0KPI9oaBIuN0dVdO3bRiaEwsZb9Xjr7VvmZkjiDYmsLYRJMi98uKaw5ngGHlb5Na7tUVYV0pCIb92pOXBusf6UxdQEN8L6MJcfV9y4oSd9mPV5/5UVi70pO7v6e8nS5Wi/YusRHbDkxYSjOw7D9Q0GY93CLesJux/Z4GMf/gC/+ulfB2BxInEFfO13vwjA8596jqYYMYx97hT6WkrhapibU6AMqR7hE0XQM7CWxTTh4O6c8WDEaGjMQIs5YRhhNy6nh6a1bikGY4t7B7f195ZzpJDYVoQ0cLRKVUi3xrLoSJJBEJKWFUHP8C3qAmHbRD3JzZv6WFJGxL2c0+kEpQxEza3Ii4LaCDAcLWdESR8ha2xjqFulFatTl6rM8IMzPHeTLwkMiXm8scGFKxsMn7nMYm44F45DU+esjcYd0bfIU6rG6V7qctWw4wc8/fHvJh/o5/flz97h9g2Hi4+eIzJt61mWc+Gyz9vX9PuxHfgkOdjVGD/Wn0VyimNBGkf4htd25+1D/srP/Dg//GM/AMDP/dR/xkc/VLO2OOablZ4Lu7u77L+2T2+8jtjW53V6NyEIFdNYn/ebd69z4dJjLA5zatfwMEbrpCdTNv0x0nCzaqQOcNuAtqqxXJuirvHbpUcKHMAxcyVLJZGyWQ8U/mhHz89VCraGwbTO9bYVUOR5pyiarSQf/sgavaHHb//27wJw7do1Dg9PdVAWGk+3ZQ6WS1mY97FWeKEgqaEX63etFhGOC55jU9atv5I2ET5TULPNBm91Xli9XkngeSag1N9LkoQwjMnLs3mgaolQredIq2gGWklJX09dF9j3mQ8LYdPv9WhUjYXx+qtryrIiCM428fXxmDLPaYMdx3M5OjmmKBqmc8MfmU6MCIeNMte3uTXi0qPnOT3V/z46OiKMXPq9MTODYbedkqaGQX+Nc+c072s6XZDnOdvb2931rq2t6Y3t8Mjclx5KaEGTNgl77PGLLJZLVgZSKX1JkZd4novjtGIZFgqJZcsuKBoMhgir7iDgtmPjBQENDdeMEuEn/8yLKNXwxc9/lTu3dEBrC8nG1iZ39vU5TRZL6qLklW+9zOVH9LU4rk7gWw+vdFHgxw7j4aATO2kKQUrKYDDq5kKWZcxOJ/T6BrZXlJqkXbtdNaCpFVWp4T8tH7ZpSiQNhQma4l5IvkyIPJt3vvUGAH4guHh+g3Q/Z4GGJruWJIpKWj2UqilxhKIRDSenuoigBEShjxA2cayTR6kE02xOZoR3pNTzuIV/gQ6q4zjuCPjt/HQch9Sofrq2jevYoGzsVjoP1QXt7Zzt9/uURUWanSXerutquJJZA0ejEdPplKtPPMGGkUP8zd/8TVBOJxTRKFBomFXLU2z5V7YRjAFYLhL8+6BYaZp2fnRt8JokOb50CQK7g6iNxxvMZgvW1vX7v7E55r333idfObz+Le0RaNFw+9qU/nDEpcd08JbUCzzfYXGy6M6pETV7t0/pG+i+Y0Wslhm9nsRvvecKiWU5XcBu24o0LfT89/U5KBmgrBV3bpv1x+5RVRkIu0swLZNkKXUGURXC1gG8gY61xY6qKbtg0bZt+lFMWuS0+Z1lC4oy72CXRZGZZ6k6I+yqEh0HS6rCPHWJ650Foe37HffCThClqirqRiEsp1OAfeGFF3jjzde78w5Cj0uP9Xj9tRVNrQs3TWMRRGOqrMEycGWpMuo6PIPRKS1goKRkOtMx3XDch1rDSAPD26nqkjQ9g4dqbmjNnTu3sM3+6Po7yMbFsiWWYzYWe4XrVFSpKWgpiVKa79QK37huRVnWNKrhfgjldDrtBEP6/T6O43TX2w4hxAMKglK2yWH7rAR1XWBZZzwuzY9zzTM+gw3med7Be6fTKYPBiNFoDc9A8EejNdJ0xWg0QJg5tFjOkFbFxpqe09PJAiFc8lR1fqpVmSIsj57h3lJP6G/5LGZTFuY2+QQIp6bMbKLA7H1ZhqBmbUevW0l9xKVHBxxdF0gD019zAuqmwQ4EraJEOp0SWlCv9HNJCSn8hr3bS6ShmjgypVrC9dX7nNvWxU3Lbigri/nUUAwcQa8XkzsFheGd2rYAy5gnt3zfWs/xMm3zCYGeXh6FSaAsF+LYJ69ylNKfRVGfhAef5wPP9o/DuXrgQEL8t8AK+Bng+5RS94QQu8DnlVIf+KO+29tYV1c/+VFAb1THt5bk2SkjzyxaxRK3Ccgq1amMrW/5OF5BlpgFq5QoSlB2y+LEUhJLBNRqycywwv7iT2zwn/7PFlmhk59VJhmtR/y7f3nOyUIfazh02Xt/zvqORJrFvFAJ48UGzz33EQC+fXCLNJ3iuDNagkWz7OH2N3jrvUMujfSL7u+4rBYFTovTjGxCCdVsi2yl7/08nbDzWIwTJjR5K1niI0KJbYj+IrbwbQg8j733TBIoJEEAs9MSIwREo0Y0RdIptDkuJEc19YkN9X1ynZ7DY8/qSfnY05JvvwTXXp/y7Iv6RRheXRH0Nnmi/h5+4x/+KgCXnrrC6zf2Oyx16ISQ2ljDeac+c2F3m+UyZZEsUUIfv5EZrkdHGK6LkkG8wWw26zDmiAarAUvogBwgzwSuK8jz1qXexvUsmqa6T1bWBZERRl6nKDZfFPj3E5Ytm0Z4SMWZ6bQryIs5NAGi1hW9nUs+tqi5fd1gjYVLL14nqabUyrycTUhT23hejmUSAttzCQeKnsHsnxwt+eT3/gibgyeQnu483Ll5zEtf/XXCYNRt6mHfJy8qgljfg3Sy5NzGFiuv4Onv0wv3+18/ZjjqcbRo2FjXycb07tv0RiGT2/r3z21usnd8CxoHYZQMPvAdFkd7FpMbc3KzYfpuydXLT3HrLb0BPhPu8eRzBYvE45980/DchoLNccX43Ee4fV0Tfbd7NnvJKZkhxlaFxm37IiAzSkvC6yHlisdHl9k/MkWDWlJJRdPt2JI0z3F9DxNbIYWHVWWI1tzRtXHqhhc/epHXr+mkJZ2uEE5NVSrWNvRE7wXbzJf7BKFRC8wLHCvmeLLAM4IaH33+Q8i64RvffIXYVMGSVcFwOKK/pv99cHDKcDDEImY21dcbBzvkxQolC4JIz43FYmGq30ZByfdZLBadvC7AsD9glSZU93EbLHSluE2gi6oi9nR113bOjoX5u3Y91pVo2c1p4bh4nkPTnBnxBkFIkmQM+1EX1Oxu7zCbzTtxjtl8jue7pHneGRlHYZ+0SLFF3W3YYeDy2ONP8LWva8U9x8toGkGWll3RQghdJS/Lsqtwaxl59cA1tHyNtpquifMCaIhigzSoc10ZN8W/LKt4/PLj7N/bx7Zbc06J7SgcV7Fa6jVgd2cHNyg6XkZd11S1Q1lquef2WVki0IFLaBKLutAdP1MAaWRBVeQ0heTjL2ixk/2DO5yczHBsXWgYDEOE7dDvDTg+1UnaZJpTyULzqoyqYZ7noKxOXlwHoC6rZNYl0GEQU9eNSYhb3omH7/tkZs13REngDyiytOt0Oo7Hh5/d4Nuv3mOeGqEmIYlChbBahbEhdV3rrow643OMRiPSVUbTWlIM+symC2wzh7MsY3NrjTRNHyDil6UOxNvOVdNoPpXnthLLNU1ZEYYxtanC+4HXcVba5MZ1vM58u50bCEUQBIyGxrg9zRkOh6YbqAtfmtRvI03Hq1YSpSQWZxYASjXY93G79O+FmtNpuBpN03QGwWf30wHLpt+PGQ71cz4+nXJ6MuX7f0B3zrZ3NvjsZz/Lv/nTP86v/KPfAuDwzjGjwYDVatZxylw7oBd7lMZNfjW32L0UM51Ou/sZ+EMcZ06a0BH0PTeiyOuug+FY2p7i3PnznXXHH3z9ZYJIdPMVHDzPoqk0x1B/z6VROU2j7jOKPuNCgV5HVqsFURx2nauyLKmNRH1zH4dUc+H0utgmplEUdetNVdVYlk4GRoYX3YpXeEbRt660SIbr2V1Cu765yXQ6xbIcXdxC8/WuXLnCtZu6IHJ6ekoUuFT3cZmxtehMUWa4RmjDUjarbMnAFMKEspBNpbuh3pnlQFXVKKG6a26VD+83k1bG5Lrf18lcWSXYlkdZ1kSGx5NkJ2xux8yO9fxJiiWe5zEajbpEqWkaqkqrZ7ZrnhB2x6kCjTzI89zI4OtnpdcN0Z2bfl4Brut2IhS6OBLjOFb3WXsd93Mby7I2aoSh+RtAWYRh3CWiSbLEdgRNU/GBD2v0ShT6vPHGq908qEq9VrfJGsBg0yZZ1Qxj/cw3d3xOvJL6nkROTBLoRKzqOb0wwLH18yvzhLoaEpm9tn/eorAX7L8iCC39N+N+TFFXVFWBa4QwXBHihDYYRd/SscjtKWubF5jc04F8UyY0hd5HR+uGD1tBllcdms1xHPxAEMaCutH37mi/MkUD6PfCbi4kad49u6Ko8AIby1bdvatriTTFjF7f2DpZNafvln/ynCshRCyE6Lf/DfwQ8AbwGeCnzZ/9NPBr/7K/8XA8HA/Hw/FwPBwPx8PxcDwcD8fD8f+V8ceBBW4D/9hUpRzgl5RSvyWE+DrwaSHEvwPcAn7i/+5AVZaytWbU9OYNSb5gtB0QmcrV8b0lRVNQ1yClwSCnOaPQwbLO+AfCYHtbyAiVUZPy/c4f63NfOOHfnj9OluvOQOzdRVVrpMkJtvFX2rujeOr5jzJdvMny1MjIhhLlVjz/g7oi9PYvVZzOCvprJVWiM+Cnrz7Kwe2GgYwQQnc/mrzA921WpqppNTWeiNk6P2Tvpu5qVLOIO9csLl52CY1Md7508e2CwvBqlicNF3d75EXD4lBn6kd7cz7ywhab50tWBmu7qmY00kdhWt2BTX/N4eTAJTAeIR6Q5RbvfVV3Bvx6nXKSMvAjXvuCPqedPZeN4YKJ/WVmtq4yXnDX+NR3rvHF39MGl0fTDK9fs26HlIa/tVrAcp5RFi7K1tWQMOgxcvuUrV9OvcCxKsKgoa50F6ztakVRg2cq11UJVS1Qlj6ObUmi3oCqsjg9Np5EUUB/ELNcpigDlxoMtiibAmWqI8L2qfMFrh+gDKQya2o2Ni+RnCa45h7fu3uI43n0xvp6++shy5OcAI/USHK6wibouVSNgzLqa8lyQZ44PPqdj+pjy4zf+dxvsTP4Mj/zH/xHAFy/dhc3UKR5wvaW7g6WZFSKTqVm3Hc4uDelsAu+8I/1ffnYC49jqQmLNybM9jSsa7S7wcGNjF5fc75+/NmEX/6NhIPwCYJeC6FcZ7I4oXEaht7YPJslNw+uE182nd1eyEtvKt68mTIyHaDZYc1BFbBq7jBa15WqZLEAGTM2qliTLAEjqzyKtQn0vDjl6ec/wTuvv4JrOseVrfA9p6vilpT0Yu3H44cGQiUKsBS1qSyvuS4btuLicsVM6M8moctcWkj7jK9ydHzK+mbQ+as0UmHZLps7Gzjo9/H4aMJoNNJVQ2Pq6bqeNjVemkq27WHLmJ2dC8yMv8pyNWVtbUSS5CwWep6NRmusVisiwxlqJYeVUt315a6WL87zsyqY43kMvIBVZsw60ZK2wjnrsOdl69VyVtXUKlLFfTLTGTUOwnbvq1gqzRPIkk6G+M448unyAAAgAElEQVSdPeI45uMf16a3X3rppa6CH7XdrOUU29HKoJ7xtTo9ybhz+w/YvaTXRcuKubu34PErj9Lv6/v52is38LwAqQqGhie0WJ7gul4HR2k7Ba7rPuAJpqWDK1r6TxhqSWLb3IMgsNnc2mIym5AbCEe/H2vp9bIhMhXok9MjhqOg66aVZU5ZSgb9NdJk0d27um746Mee7eDSb73+GpfPnefgzqmZLwWubyNswf7RXndOrpNimuIcHR0RR2vMJjMU+vr6cURWCpqqIZf6M21KWXcdmktGhj4apLiuPu+De1NUbaEage/rOZRnJb14RCX0+pZlqfYDwu2gWHE05Pv+7J/j7sFnqE/02pylDZYV0u8brlayIu5pA9YyN7AkV0ta9/oDTk/1Na+WukN1vwFrmqa602ZsHdouRV3XSNPyDuOIIq+6yrll2cSDIRvjNe7d05YRi/kSz3cfkO6WjX432u6B53mUle50ZLn+vV6vh5Rw584+jmO4GRLK8gyd0Bh/LOcBSfUcZeZZez1N3RiolD7v8XjE+fO7vPPOOw9wh4RtkSRZB+uKQos0FnzxC18BNG+7KFPu3bM4d0Gv1Ye3D5gvE5559iNgL818ybh765iTe/pZjTbXwK65cPkSi7mGZy4nkrKwCDwL2ZrqioRa1p0pK5aD4wiS1ZJX9vUa5No2gTemMs7KSkrKQiCcrLM4aaiJov4DHRloPZX0by2XunOt+Ub6vP0wBMPjUeZ7roFPtsiOKNZdQMsW9I08fJGX3ZrXQk3zvMC2nc5CQimBF4ZIWeKZTl2aF6R5SRha9EzHcraY8/71a/T7utuclyV1auE4NRcu689WaUKa5Iz6m6SZ8aKy67M1HEDpLgR2hdVC95uKKOpTNfV9xu+68+lYLRRbUdQFnhdQN/q+lIUAVVE1c0LjvyVrl+W8JOyZrrHbo9fvM51Ou86O5vR59Pt9jo6OzPGtbt6DhkuWRfXAGu+67pkKonUmsz4YDFgbjc1xNCTa9/3u91rjb8dxundNqawzeAbd/dU2Bw0rY7jeviuz6YLXvqU7hqPxgEfOXWX/rkab2JTUTetBqN8/f2jzoadtMmOjkdMjW83ZuOJjHel7Pr9WMnIc6ryhaP1F+x75aoUXa8RNtlhyclKysfUIl5/UEOCj2R7NskCcCgoDSfe3fZxtl9mpQQupimbqsL9/0iluCi/Qculj/z74soWsFdLEfY4rcdyAqqrJjH1R1AtBah5ont1nLC0FeWrsWfoxUpTYtnNmQo1gOByzWs1JzV7un/mO/6HjXzq5UkpdB575Qz4/BT71/+RYcc/jkScfBeD4xhz/e3wGj8Xc/rrmOzU3DxF9myYvO3yvbv02SBOwC6GhBGVVgFm0bGVjuzl1bWEZed+hE3GuJ3h37yYAOy/A5LRkfir51F/QXlveWknS5HjXX+DwPc19ufpsTJ0X/No/1RhsKWIuXnZIFj2Uo1/8u4dz/q2f+BHeenWKFeuJeOvWS9w43SOOzMtZw/V3Gu7mh+DoSb9cFmxe7nN0JNg1ppfSm2I5Md5KT9SRmzLZm9FYHhcf17/n9n1u7824/FRDb2R8WPKAXs/CwNwJ/CGDSJG+l+Aaw9W0rrF8iWdEDG6+OkOJPo2zwjVk8uR6QLa24sM7HpHB6P/YX/oJXn7jyzx25VkADr76FYRyyVYlVa3/5vTExrHAthTY5kVXDX2/pmj9UZsGoXL6fRc/0IvtfKJIVwmOsKjq1rDPQaoVrmvkRmvFxsYGR8f32D7XGs6VCMsB4VAY+KDvAbKkMYRvT3hsre9Q1Euk0/pcrLFaauhSnuskMwq2qJRO/gDOn1/D9yzm92bYyuAu64pSFdSl5PmnNJzo0qVLXLv3Bleu6ETjOz7xAq++/A7F4YC3vn1dP3fXYm1jE0uG7N8z8LNeSOja5Ab6lSsbO1wy8kZsPKo3/lu330VUfaiLTl57NZsQEWOoIeT7ehFOqnuMI7OQZSvWNgfUj9jMbxpj4aYhiPoUrr4v7zoZwa7Fpc3z3HzHGOJZHs0qA9vjaJGb51VSr05ZmcRCuDaVUkxWCY7BJG9tD9l7+xbVMicwYg6D7Q0ObtxiaDbntO+jKolYSa1qAgz8CCuCk7ne4KpVTrjeY6XmCK2Gy8HtgkjECCtlOjO8Dyvg4F7ezfNzl30q5sCQRaoLG6s05ubNPQZDH7c2kNSmxHIcPGGETfKCZZ2Ql292iYxSJWk+RSpBVZmChOdpwYpDPVeWixVxHOP7Z9ATWVfky1z7p3RkWEGe513Qats2tut0EKr2M200LM+EMuoSzwsQovV80ka0TSU7DL1qGhzHQlqamwQQhCHzRcJXvvo1AP7W3/qv+Ae/+A9YvPUmdUvoEjVKWQh8losWfuIwHPU6aM1qkuM5is3xFidTndQ3KifPE+raRikjNtLXctUtt6ATT4COcxEEPgipYbrGXDlZ6SDNN7DrLM155513NCem5aY0K8IwJF2Wncm17cDkpODceT2nAl8gm4KmyhCNWWAaQV0VvPzNbxKY5GYYhNy5c5tnntOG4cNhn9/9nc+xMR7SayFARUqjwDVEFMuGND/GdV2S1IhHBAWXL13krbfe7sj5UtT0h30aIwCzt7enfX42Rygz787vPsbJ4YmR/DX+eLVgMj2hJb54Dlh2jGW7nWhBmi346pff4/B4jlXqYw1iB9sKOsljKVc6sbMcHOMR2B8MODo6od8f0BvqYHUymzAY9zUXGZhP5liWxWqxPEtkmgZhWwRBhHUfhCqO4y6IaRqpLTHSpEtabNvG9wKK8gxi2Epd3++94zgtUVyf58bGFrdu3SKO406Wuw3gZWt+bOZW05z5Kdm2luOWUp75+NhBdx2gA9o47lPXshOmkVJqqKtn8d5718zxR1CHhL5+xus7IU3j8U9/+R/im0Dx8UfWuH1vighsKgNXOioFP/rX/gpHt++ZY3sMhj6//+Xfw1ie4QUentMjX0n6fX38VTohCHxKs18J5RGGI5J02SWYwrI1/N3A4bzApa4s8nLK5rYOTIukxHEjpJSEkf47IQTLe/vta4btOWRlieM7NIZjUjclZVUSOiFStYFpbQxdTUDt+1RV9UAy7noOCm16fXig19gwDBkOh5zO9L9VXQOSuqk68+rlqsAxsvi5gRO3BYaDA70X1hqjB43dFWA8T0tkJ/m8Ey3peTG5XNGurgroj2PcQHTS/Y5tUcuKIAg7PqyFot/vdyIiZZEjVYPnW0QGOqzkhKbyuHjxKqM1wxd3pxTlihvv6lgm9HosZssu3tRz0WU4HDGbzej3NdRUKUFq/LAA+r0B8XbMfD7/F+B9rW8V6HdkcnqMMFc4HA7xPEcbmneQw8aYgctuX2lHK9zSNFq6vaoLaiOhnuUJjz92laZpOtPpk6M5dTG7z5BcwyLn05zRWK9vJ/cyDvdqNi7rmGT3g0MqNSNHEo9NTODcJQgH5HZGbuJMrx+yfbFmfqQLBrFf8ui5C8zLhuvXtDyDrHMEmhuK33L0Cpp5RmMS6Mk8B+HjuDmNaaZsrjkM10OyRDKdGDEQt0fl0AmNlFVKepwSBSFVYbxoN0MmJxOKvOlsB1ojalNfIlkleJGFkpzZ5DgOtpA4lgTD+7KlC5yZj//z448raPEnMhQO197WFbC6sHB3H+HwJGWV6k3PEg1e01Ded7plWWNbPkHYdjkksoFGNp0Ske0I6trBsnQgC7CYFyxnDd/7/YYsT8X+bYvVQvG139M38uf/u5/k07/z93n19W/zhCGvZpMcd73gcKIXscXpiu998XlmxzP2j74FwDK/zee/9iqPn3uG2je/d/waru1gm05Scttj1JQUtkNllHceecLn3JUer3wj7QK1NJ9QphZPfad+8V/5dknVuMxmWev9y/YTDjtKUdQZrR1XPvfpj61ukQ7igDoVFMyRhoNUOS62qjSmG0CEVEWJVUtCMzEbu8JqamazGZalJ9Df/dt/hwtXPsC1ff1irG+HpJOC0rYRwmDDnYxnnnuE2++DE+jFbm2Y8PxH1vn6u/rf81ObSnlYTcbcBG5CRaAaVC3ABBYCB6kcjBUPvu+zymYorM7MGUeZTd8y/h6QLFf0h25XYaizgpOiYDSOSRJ9D0YXLNwCjk5nhJFRyulJFmmJY8QOrr12C6caEPd9Vkrf4NhzEI3AtWuefErzBIXr8+zWRX7/C18C4KPf+QQHey7X3/s6p6aa3uu7TCcJvZ7TcV+aQiGaFFHrez7eHDE5TCG2mZiFpTgK6PmCOD6PK1p+4RR6knyiX/IvbQ2YnrcJFgskGrN/tF9iJTOSXo+rT+pFsYpPKKyE6bEOYs5VI4KtPrvrl7i3rzeh6qBmtL3GfDHDyvXCafdsrF6PftCpLaAIUP2AJtZV8cNZQuT5+FjMTPXs6PacngW2qYYOt8Ys5ysGXkhqArBGZrhOyNq63pRO7055ZTJnvw5ITTAXihFKafPV1psG5SAbh41tfY6PP1mSZSPe+Ibk49+teZG3b+7juT62I8hWdvc9JWtmM50c2F6OUi79QUxpkmpkwHLm4XgpvUgn1afHp1R1zfPPPwdovkqWZezf3euCZQuJF3ra08pUSJtKk5wDE9A2qM6Vvt3QABM0qo5H0ppEDkdt9bNBSihy2TnJSyVNUePMeLNWkstXHuNXfuVXAPjMZz7Dy998hfH6sAssrNKjqRtWC2gq4xs2FEhKTg5NglnlPHLxMq+//m0qU6SIY58sT6jKM8f7oii6TR8wClkFlmV31XMppUnoFFK1yphKB3KGk+T7PrP5FIsQhX7uw2EPQcjp4THCadW6JLIOOT7Ua8louEYcWhRFiaz0exQHMa69NJwHEzxWJeuDiNN93aXyrXNcurTFvXunJKVOPlzPoixkx41xvAw3KKnKGtkYvsHmNnf39xkN+1213nG0KbRozXN9B8uGxTxFodeNZ575CKfH93Bs0ZncBpZOsqOBnvsyy5CiJssWDIx5dZInfOmffYUnroa885Y+1tZuwGq5YmYS4w9/5FEc2+P1N64T9vTzm8+nXWW85WF+7PnniGOfvb275hnUTE806b5V+ptOp3hBiOd5JOY9bpRkY2ODxhQaDg+PtPJZfUbgL0vt+7O2ttaZaldVhbLPTH5t28b1nAfMhN9559tEUfRAMuU4Ooi/v5ovZf1Ad7DtjlZl2RmECk93SO/3ufriF79IGIbU5m8sy8L3tOjDtklSHMdiMslow6HjuzPCyKO3YyHN5jNbgRfEvP3OG2xe0Bvw7Rtz/re3Pselq/reLVcTlumcrfMCYZIy26soVhV5taA+0e9yf9gnWeVd99V1fKS08Hybwpi7nts9z6XLm9w1Cq3HpwdUdUZduiznBsmBx/bOOkEQdElEXqSMRiMmE70u+4GLH9iGr2l4NZUxOxfizDMpDJDVmeBD29Fsu5vAfV1JRV3quR+vj8izs2fgeT5FkeCFDrlRqXWEjx/YFEWGa2Izx3HI04ymafl5NnlTsbU76lQiy9yhyFIkKaLt8ucK29ECFnoeOCT5kgu7u/TX9HM42j9BVpbmtbZFLtkgkCiDhgo8v+PiWbV+t30rIhMZs/kxN27q57BzfoePvfAC8/mbABzcNJ3vpqE36Jtzyjk9nbK+vs7hoe4uh0HEE0880XWykkR3nxzH+Rf8qtp7C3oddGy743MdnxxSVTVSWV3hqi3e3c/pMhdJYwrTnq8FLx4wq0eyt38bIQRReMbNWyxmnYLo4b0jgsBD2LC3pxNfJxQMw032XtPXktcNg76DKtMuuVu7MmL/bsmVpxXH+hYwnc7xg41OhXfnsUscHxSU1SnSQFCefeZF5tMly+MjMst0EGUDCC49pr0o33lzD2FpwZCybL32YhzHJl2lRKGOb5aLBM8LOgXUqpL0ejFKSnoDfb1B4GA5sHtuk7rQc+H09BSpJK7Zs3sDn7qygRJE60lqsZiVyEacNXjKM271Hzb+xAQt/jgj3hipP/fv/WsAvPW1faQL2WRObVxZxfwQS8xIcp08gK5ObJ9zUWbzzHOHui5RVoUn9EuWNRVWXSNkRe3pJGU6z/jZ/9DnP/6vz+lj+zkvf3XMz/30IZkJNB597DKf/OHLvL//NWyhF+Aqm3DrtVtI0xlYnJyys9knjLawau2OPqlPUckaJB7X3zSVHR8eveyQmi7RfClw6gypJIGR1hXumLVdnyTz8AI9WQdjm71bt3nqu/XG721UXHtjyew0ojBJw6AHDAZkRc7ALLjC71P6CYERtMgLh8P9BvtUdBVSGokSHk5LDjbVcb90qE1r1B33+cEf+CR3Xv4NHFPZ/drtCFnMMfs+TaI3qUbm1KZdu7YeM/Jc3nt3yZMv6Ht19YlNvvn5V0kKo/Ti6O/VVUVmoHUKsC1fK0q16kNWTVkrWg/IIAiwLCjzJYKWXF08sOnCmYN5W8XJ8xxcQRT1OuGNNC+xXQc3DDoFo+3dXSaTiVFbA6H0olfXdVcRtSyLSxcusneyj2egjE8+/RzffOk1Ll3RL/nB/ASRpFzYGjNy9Dm4W0/y1sEriGXNwARAp8uKOqkI24qNqklKi8HukGSqYYGXL18lCBzuvbvPnakOWnY3N8mrlP6oTcSXbOwI9t53qLPWYNDi0e+6wvvfutZ1LKOxT7poWJzoRfLq05ssZMWIISf39ObcpJIqk0i8TpWqKBMC18Xx9LFnUjB0IoIYJnM9F1XtEsbg1ZK5mUPrcYgoi04mvFCKZZZjo+iFpqfuVjS1IA6NAeR0qp+3grCFDlYVdQWOV2Ebxcl0JRGly+NP62Ty0o7H5auP8At/97N4vpnX0sa1PPIiwTGbsxIQRlZnXq3IUZR88FmL998wCkpTQdzzAIdSmtaYEhRpxQvfoU2hpXK5s3eTO3evdVXjJi+wXA3BUS2d1SiytVDJNElwXBdFSWUkv9fW1mlkyunpoiNqF/mSqoaRgai2Kmx1RSdt3QafpUyxWoiRcJGNze6ONii/desOjl3j+jWqVX+qCwLXIV1VPPusJjbv7d3l9HTSCWGIQDLs7zCf3+tgSMukJIwc6kp2ATuipixkt5YAyMbI5puPHMdB1nSJDuguXFu1ba+vrhs8XzAw0vaykvT7fabTeVd0ao0t2/e913eJejZV2dAYJdk8U9i2IXwbZENWpNhWyPqGvr71bcX81GMymXQE5dFoxI1rp50EsRKSSqXI2tWCGMB4sM3xdMmL3/0RXvmGDriqZoljj9g+p6E8+3cmWobcLrsiV1loiJIbnEF50iSnrhtc0Zpe29iOoqkFddHCQRWVKPjodzzFrXfeBcD1Bww3NrhzTydJvu8znZywNR5TmT2zqBVW4yKkizIwa+lJprMZnkkiQjtgkawIQpeB6S5rJT8fsDpRhEbm2LZLXZsigqnmtgUA0EaxlmXRH5wZlCZJRl2ddUOwVEfEb5O53Jix+r7fBZSWpQ2lI1NIkaKiyCtTVW/FXCJsYegAtB1Zsx+1tgeSbu1plV3TPKGuJGGw1r0z0+QQFMS+PqcwVhR5TiVtctOZH/RHNI0iyZZ4pig5HMUI26Iy0NOd7R5vvzNFWRG75w1EPaooMsHhpCKg7TzAcp7y9LOPA3pOH95b4vteB+G6euVDLBc1H3tec+W/8NLvcnJ6RBRb9Aemc5W60ARcvjLm1nXdhZtMJviBh2gh8S6oOsRyKizRdid9sBIs7O5+DnrblPUSWd0frPOAoa2Wv7d0MaluSf0VjTyb57br6fltlzRGzTlPapAxtpt3qrtpWmF7ujugvyhxxMg8RqO+XFZUlY2wGuqmMM9hjKwEi6WhNLgWluOhsOkbkY26TEjnNl4fCnM/RQM2eq3QvyGRjYXlCEQ7p7yLLPMj6tqhMtY9YbjOBz+8w+OPak22W++/zbfffp+qjKilTgZkU7K5fpGiKqlNJ/Cxi1d5+903cdx2fVPkWYHrup0xbV2XWOj1oH2PhqOA1TLHN/vjcqFtA37yp/4Nblx/C4Df+c2vEvdCbCvA8/VaWTS6e9oUZ8+q7V7dX2woy1LHRwY5UlUuluVgh/p6L13eYnYkdWJbmCJJLXBFjmcsK/rjHYI1h+iC170LanaX5bRBVT5Jowvm4UhQTBV2K2sfxNx+75jxZsD4nImnmpBiActFwdysXX6ksMqAXqjX0zt3boGscW1HG0OjLQcsy0JK1cWv4/GQopp3oh5VCatVRhRFCNNt2rywxunkkMuPPMFkoqGQRV6xWiQ0VSseU1LmAsv2sBwj2ONFVI3EdiS1kbGXqqA4av5fNRF+OB6Oh+PheDgejofj4Xg4Ho6H4+H4/934V6Jz1d8aqY2ndGVgfpQy2rax3IjFvuZchRTIbB/ZOCSLtqJXMl53u0prnlXkuSaUex0+36dIa3zbITdV4slswXd8bMgv/qZpv4Qxf/Aln3//p28wNl4ts3nDD/7wd2LZp7z0hdcAeOyDL7D38pfZWdNEECFs9idz7hR3CTxdcRmFKbZfMXQCCtOluXe3ZBxKPKXbzEniUJQKwZn/yHyWM94I8CKP+UpXykbbitEWZInxbrjUkB7FyEBwZ994QywtpANiXRHm+jkOBttkdk6p9PdsG+qTdZbvrajb7o4NddV0HiWWLUE5WJVN1Wr9u4qf++v/Oi998Uukx/pYN6ce47VeVxl459ZNhj2fuC9YmRZpmf+f7L1ZrCfZfd/3OVWn9v96t957unt6mjPDITlDihQ3kRK1y7YcWQKsKE+xYQl2bCOwDQSRHMV5SPLgGEESZAGcBLEUB7EDMpIg0VooihyS4jYznH3rmd7vvvzX2qvOycM5/7rDwPaTH/jQBfRDN27/b/3P+lu+iybxJVXl0UrbVcxK3nf5UVzLpbh//z5KNTiO0+HzwQFtKisrA2TP64NTUlTKfrcBjtuymBSEkXn3dGnEA96LDQcjp7mSh/Y8j1YLijrvujHJIAFHUNS6k9hUrbBdDtu2LwwZu21bXMtFEUpRVxWR9MksEb0fj0mlRgrLq9EpQXiG4fyYz10043ln/BO88u6rBI4g823Vtj1h4AzQFs6kZocEUcJhNiWxhtYXNy/z2mu3EU5JPLA/V7cUpcuTHzZwoqs3tvjON7aZHqY4lmwdB32U59FWEVVm1kvs9vnQhx/hkz9pKqZf/JNnOT4+ZO9+hbRtBp1p5iclaxvrhNaUeb5IybOG2JplVijGW4rB1ojtt41EtSRAjjZwqpKlrUB5riAMJIFdd9PDSQd7Wxn9LSrjfeSuOi9Niy9dUHXH41lkOfMMelIQ2Er0SVniJ5KwNvt40U64dH3EbK+mrCwctHFQygEMbBTAkyFNW3YVRd/3QXt87ic+wbN/9iIAWT5jbcPnYC/Dc031TPoZStfkqfl/1x59hOPjCYfHx/TsOEVej8l8Rq+XdDh342PiUVvvvaatQPs4jiIvT6E0fqANSdsaoAe+s6LY2e9S2U6B6iTAw9Any5Y0tYvG4s4jSZHXOBZA7nmCtm3RrUNrDcnRPo4OoVVIu9f8QNLv99nbNWfuYDQgXaQE0iOzYiBhkBBHEXm+pFWWB6mMYafvrrqcRQd5XHE8hK2Qv5cP47qrqrn9nLomSfpcvXq5gzgdHR2xubnJyckJ5+zZ7Ps+N2/e7PhO47UYzze8m9KSlrUyBHvpOd3vzNKKsloShWbPxH3JxvgcVb1kPre2GXHF/rbCt53zPM9xZYLrgxAGMipFTFFqfDcGu/8nxzV/5+/+PfYO3gLgd3/3D0h6DiA73omUZu6EcNHv8cJpVd15jSld4/sSpQRNuTKKDTg+mfELv/yzLOZmbr76pec4s+V358Zs0oKsGY3XsRQd0qpAFdBUp/C6BoV2FHLVwShrRmsjZtNlBznqD2LW14ccHBx0XUXH1Wglu64/2nQwPF9y5YrpkL755pt4nsdomHRnetuae64zFXZNRyoMw++DRrmu930dErMuVDd3SjVW2j/sfOA8z0M1hhO06krVVUvb6vd0xQorJV5TWQiWEII4MTYuo3UzLoupIE9lx+1NswUbm0MaL2NpTdmrQlDmxuS7nxgIlSNdEA0Bdk2dWfD4jWd45fk3qCxP+XiS0hsIFpOsi0vAeCRdvGhiiXdvvYPQIcLRHbyuqlocp0cwtl2VQUNRehTLlrWR+X6HuxM8xsYrbGa6mI4w9h6OXHlFOiR9A7WfT0/3YxBoytxYBph/bKBVHcdk5Q+mtejmIc9zpJSEYUiRWcho29Lv9ztBrbZt6fVialWztjay8wf7+3tIxwgKgUGpSD/shLdcL0S4KQKfo0Nz3jhaGuEGL+q6qL1+SJMvqFt7F+kaLXKogRXPLXaoUTiNz4XzbvcO87RBWV6kROPXgmYOdWiRHb0+XgyT2YyVR0Tg9fD7mp0D8/0+9aGnGa9t8LWvv4DrmnsmXzacPbtFPHBQtit86+07eL7ohLoCv0eWT3ji/ZfYt/5/y6Vk0DP7ZbX2srmDFvmp7UFT8vQHP4Hnh8jA7NGv/NlXiXsug/4aQtv7L5tSlYK2OfVcE0J01hiruVmJYLgWxZTlDWVR8+kf+4idh4rbbx/gkJBltnNVgdIu0llZ4kjGVz3OPzlmZo23US21KCiWDZtnjAiMdCOOt+91xuatCgj9mqPbLVltxvPK9XUe+5Dk23/+ALcyZ3xZzKgWLX7PjMFonHB0uGctPlbdc4nSDUJ29lj4vkTgddwp6bW0jSTPMx65Zm0X9g2qqSiyroPY1pILlzbY37Owx1zjyoI4ijvvuzu39/H8CK1bhtZ/U+mao3d2/42dqx8IzlWbNWxsrtqgO7iLIbNsSt+6ch/M5px3A5Z1RWAJu7UD0g2obeAtHGW8khzZtboDHBCatJrCKods4dxlxSA2/29BSZ4revGZlXgXjsz50z96lnPnIhBmYcwnX6d/rs9n/6ohRH/1i3u0h+q/rSkAACAASURBVDtcDLbwEzObH7v6Ee5mb7C3uM+0NAenco1BqpY2YYgcXO0yT5cIy51ynRpd99i9M2GZm58L3LOsjeHyDavC5ftM9xbUhWLznPmPeZXhiIBZVnLuvBmrH/2Ji/zeF+7iWpjeYCiZnRxT5jH+wIpVlBWhcHEtTMcTAtVqFmVFaxfmlQtbvPTKt7h985DP/txfBOAXHnucw6MdPv97XwNAi4RWLVEqpljYgLYVqMojikJc35ItlSSvPSZH293PjAYGm7+aFn8FJ+AUi7zCfV++ZtX1qoq7d45wBQThiuRsDhFXmj+wggXStdp9P6TKM6TndupyAMvlEsf1upZxXdc4OJ1wRBTE1uFdoy0/znVcQj9k3pZdu1u0S+pyyZXLJmk5e/YCz97cpsWBzcfM+qmnzOcNmwNYHhreR57XEC8JhAngHR2QtRmJn3TwjDv332RtzeNolrO0gf3axhCnaji05pXLzCGKexyIHUSzUmgqSISk9E+Qlm947vGAwdUzfO0FgxvfmxxQTDTj8xLHwki9ps/m2T7v3ryFszTvEIcuF86GlK1J0hY7OWPncQZews3aQGKTMGS6e5/RcNh5+yzrGm8QcWghjnEQIBUgXQ5sQNu0PgqBtIRz3/HxVYNDS5UZeIFEEvoSz3UprGtw5MfUbcvP/LgRFfm9L73A/ZtTQk/iWuhAqwWuI+E9gVsQ+njqNKn3vQR0wDe++hYI82+OA3u7c6IY1jfMRT85dPBcj3Bszp/JZJeyFAx6IcpCZCpd4WhMkGSTKSE07Yo0iE30G41wNL48Vf1L05zQC0k7/yjPmkWa9WpiUQeoOh8fKSFOQuqyIs/MOyxOKsZrA1aM77JoSOIBi+WUniVrlnVNXc+Je1E3LkXasDbepGcJ2ek0Q1PRCp8oMsGc7zssixzXc9H1yqhME/kerT1LfOl2gXLon3rheL77fbBAoYSFGbl2XIzwwcnJhMPDIzt2gv39A5RSHE8MHLBpGrQQZHYdlAc5g17MeDzGc836LIoKV4IUbpfkulITSDpfpsW8JUvvUhQZFy8aaKlwFZ4siayRa1EuadoFunUR1m+oqgUb5wVFukRapcUtf51oUPP7/8x4Inl+Q1k0CEKkXCWhRvGurlTHMwnDgDCQVO4KOiQQSHzPg44fUxGEgm994zlILBwvWWd0fsjEjlM71bSVw+H+MZtbAzt2ID3DR13ZrknXI08rZGwLlLol6UnieI3tbUOUUEqxs7MDQnUw0sCJyYv0FMKFgd45rma5NGfQmbPrnJycUNfVe4pc6vtU+lY8Edc95VwZn6QUx5FdodSsE6dbm1oLwjC2kCbRfXZVVTjiVK1Ta00UR2T53K6VFjJFq00x0byDR1FpYjngYNsEeHle4zg1RVvYd4LZQnPm0nnGQ7vfj2Yc7J4QBx69nlnH0lMsFwXT1pynou7x1s17NEJTtOYdNi76tDpjHITMj827x5HLeDxm1xYyXMdAKbVqbDHIJOO1ainzFVdTgOsQBiEnJ5YDJSH0Nct8imdFGXByRmOPxlIclC4Zn0nYvpMRWPhyUzYIHeHJZVdcqaoKrXwcG0CfFkM0lU34gsDDcyWqqXGt0bfvmXhrBbt2BXieSySNHyQYY/rJyR6u41HkK2EfjdtqxpvmbsqzEl1HBFFzyhFqApSe06qigx0uFxlhFNJYxZDYA5yATIMMrZCZWxOIinDdZTK3MHlP4Tt+J6jjBZJCt3zkZy6RXDBJ4OHdI956+Z7xerPrpcorHCdkPDLj+51v3ySIX8ILQvrDUw+9K1eu8O7tWxxZrlu/F6LFKQeqqiqqUnByVHDxwhUA3r19j+OjE1wn4smPmLjyu899gyLLcS00cjRc4+6dm9zb3qE/XHH0EpqqZXJcIO0+6o0j5vN9PJswOI7xxTJ80NN/6xIuC8+U0kcmCS+/8JpdPyV16RD4ZUe5aduWUrf07fj6+KQnmr1bx0irQK3CCV7kstiFk2Nzt/fiIaEz5dI5A2O9e09w6dyYG9czXnz+jvmsYINx8gTp/PPE0nKe24KnPvg0d+4b5eOT/SmqkTTtqY+bEkZFNA5DKgs/bUpNEAhKezfkOfSSmDDUTE9Ku4YdyrIhDDWNbbjIHhye7NLfsHDCo4IqDygnVSeuFPg98jwniCR5Yd7Tcf/tnKsfiOTKDRyuXTHktahq0GGGm2bM79kAhSF5e4J0BcoGuZ7ngiMoa8sRksIcSIXuEgu0QvoSxx3RFubiDXzBN56dcrxrLtTB+YbF0sENVKduNeqdoddvkeExly4bbtYwHPK97+7wR39kcO+vv3TAIHDZWtvizruG+PeLv/EPePab3+R3/ug/Z2AxrNXSpVYtia1MKEdxsmjxhcOqDNe0NetbZ3jyyU/z3Ivmgr7/zgFCh5y5bsfIj/CSGec2PHZ3bUIZrCO8OVvjgMImZdsHOzx+/SyLfbMAXv9uSRInxKO2q04Gro8HCNu5Eq6DaARRENHUZmHGy5zpIuJHrq5z9x0j2HH9/Z/l4qPnyOafN+MUh9R1jzzLcTAHjStKZNBQNYsuQAhDnzfeeonIkiiFEOjWkOJXCn9SNmR5hUZ3FdIw9kiXFbOJqWRrrenFMZoS6ZrDNkkcqqrAD/zuEGmahjAMO46A1prhIGQyXRDHJpHRtUsg+2RFhrCkxdDzaFo6YQy1qp6qlpX3cFPXSCEYJD0ae/jkbcUgXKO23cLj3GWrv0YUt1z85F8H4Hv/6g9IJ3ts9a+yFpu1cVS4jIIBi3pFHJekiwUXNh8hbcwhrQqf/d2M9//IFaZ7Jtk4mKY89vg6mxfMxn/5+W2aJsT3NjuFRM93aGvF5mbCSlCoF0ie/84fc7hvxmXzbMBg5OF4Da5jAu/BWsTJ5JDL4VkWe2b/zfcnLNsQb2QNip8asnNnjzfvl4zP2PEsHNb6ISkF0hJFXelwtH+MZw/EEgiShJoGvbqMaQnjU4KyU3uITCGU6Axmo2RI33GZpieIsVXKywOcasGdA/PZV66scW+3gdp7j2hCRatL3EDgvcfQtioaHNtpmc9SHDdjPs0YWUNrzwsYj/pcuuZzZBWoPL/BEaGR6wVmywW9aAOlK9LMXgqAlAKh2i5xchyHumoJglPDQum2aLFygQfQRMmANM25dPkiAMvlnLIsKcv3JmYBjnBp29MAyHF9lDKGtwBPffBJbt++S9PYDrQuGA+3yBYZc5vwDYYJo7jHfDo75cM0mltvv9uJObRC4vsSRwoaG9A6ugHHQTkSb8UlUBmNsCQ5TPKaZRkIl/Y9HJ3SmgY7KxkzpdBtS6NW/DGjlLi3l32fkIEQ4DinwXjTtARBiLJIgMAforTPndvbDMdmjj0poHFoakVlu0JBGCNaTWXPJOk31KUDOiCzwg1xsI7mXnd5DscBQSRZpprZoS1srAsCz+N4UeHY5OqpD17gm8//Hq6tLPeCiGxZ0dQKpU7VbdEOSpkgFaAoMjzldp0y1/HQWpDnpeneYiTJpfQ52D/Gt8WcttZQnqU3MEnvfHrEX/6pv8pkep/vfPtZwFoHZClRLLvkitbBdSXaJneNblgsFniei/WApa01nozpD0ImtiiSpQ1rZ9bIUvP9qrzsyPQPHpzK2A/6I9LlvDPnLYoFWotOYAqUEf4QorMm0G3bFcNWDgOrothpx6SkLGtcV7xHujogDH3c95gU13UBtB1PsaoqI9rQaELLG5Z+yPHxMVIKtJVbNdwgySDZsmtlThi7zCcFleWwpssSgU8cJ+SWU6qUMVuWrUnGj29V7NZv4kiHNRuMu2VNU2uSccjJvjn31zc2mC+m75G2dxACqkrhe5b7Vi0IfUFrVc50FRD0GlpqMmuoLRwfn4Jef52Z5X1FwxoRZEZuHVhMC3Z3a7Rwuf64Kfhmyym335wTSI/aCgR4XohWors/jL1JSr+fsNrbTVWbmEG3JMlKHbRE6La7Mz0v4Nq1G7xz6zYH900xdfveDutbPm0jOjRJmpX0I8lsbu65Xt/D9WuqTFCvBPBUSZz0jOGyvVOUrshmJZ4tgNSO6fLIpiawCZ/WmqyEOCwQlVXvcyqyNOPieYOYIJGsn9vikb98npuvmiBeJCfoyiHPwLNCRnEiaasUbblMo7NGxrvf84ltsWOt/xjPPf8yabokHq7sNRS6cbtCiu9Jer2Y+azm3l1j1O5FMEo2SLM5f/7Nr9jv1/Czf+FnODgy7/STn/sL/NZv/TZ+IKnrVWe+grZBiKaTpC8qE6sIfWpNFIZGbXHFQfR9n7qujWKn3Wu15auvkvqmMsXkqi5wrYCW6zj0EsnixMTQPd9FzH0O9wt6I1NAC+NzhGcKNscOJSZOScJ1ju77lNr8nUHDsZ6jJxVXbph1fnx0wOf/xV22zg+o7PmymA1IxR79kVnny7RACRfHBccqevqeBgR5VhDYIp52BGmWESUmrZGuKdiXtaIszLwkcUuRZwyGPZQt/Eivpio8VGXW5uZ6wsHBgpqKwwOzPl3hInBoaugPzdp3pGZmBYv+dc8PRHJVVw0vvWoW3Eg2NJ5HNtXUCxPYqNZj6fUYOylWCAQpJXmancouVi2eJ2nd1rSLALRAI6mr5lRSORbMZ0Neft0E7H/x/BmKqeT+7QdcfcZ0SNLlAj8fEMWXmZZ3APjWH9xma6y5+V2rwpN7pFnB/eyEG2cMKfz3vvHf8+U/fZu18XW0bwimo/hxqpMT8sxUBh0nIAkFjuiR2cBpMIh55eVXKB6VfOxjpoLxxd9/lp37iku3LXxqXvLDP7/JPE85eGBVBq+OOD726Hs1mc3e//ALOSOO+MTHzUG6N5jy5vMNF6/6nQwqbYsT+ZSrPrqjEI6gLSoiexF/6OJVNp55P9/+wucp+6ay8+U//EM+8xOf44c+ZjpZ0+qYV7/5VcKej7LJ3Xh9SF6nLCY5SbSSWU/Z2FqjWJqFqLUycKZWMbKXUFnmKGWIzUlvBZ9wGG/ITi66rlt6fY8iF3hWjrqqGqqqQXpOF5Q5joPA6S7ruq5BK4LAp7KVs6woGa+vsTXeYDazioVKEwYBhQ34mqZGYRSohA3u8iLjRz/9Kc5urfMHX/qK+T5BhGoLHuzbQG4BQ18zGF7BiWy1x5dsbp3laJKSWs8czwuoygm6MQlKUU45u9ljLT5PNjcJ+8/8zIf55rO3uPDImLObZhyW31nQpB5+cwkAqeaoVjLuj5nMDEkzDBJKR+EJrwtyb39vwWh8js2+9UQ7nJsuiG7wrXUAznlUM2RZH7N+xbzXaCsg8B3u3DPBVnHHIRgERL6gSa0Kl9uSFw5ansJ50JpWeyirqlajOZie4IcByib2/XCI0zTMF2YOAs8jDlzasiHqmwnM6wWHaYsctcQ2uMrdCr/pU2lbkRIJzKFMUhwLWTtz7ixF0TBfLrsKetPOqSqNa+EpAgelc4ZrnlUIAtVmRJGmLOHW22bMw8ihqReo1grMyBAvaEAobtwwqpFNXXHz3be/D5KqlCIITo9Zz/PQykAAV2phrW47L6qlrbovsgVx6CPtWBZ5RZ5nBH7UXYR5bnxTylbx9//23wNg+8EhL3znTUZjSyJ2ao4Pd4hDlw9eNwWs8do56ha+8tWv8eQHrwBGjWw2X3YiMNM8RRQNcuAh7O/TbYtoGzwZ4mL2kY5CBKUpWWMUWkfrEY4IODk2+73RLaoV+K6kWhXDPI/hsN/9vr3DAzxfAqqDKjVNQxzHNI1iPrfVQsdBCAd35ctUFxRFYcfVkpY3zrKzvQcoXCsoU1UNDgNUayEqjRnzNC07AQvfXRIGCVlq9nHP7ZEul6yflQwGZv2ki5ayKVEqIbYZyf2du0T9lMHYdkfFGqpeUsuCND0l4mfpAlcqpJ33ulFoJbuilysDXDd4j4+ZEWIoK4Xv+5wbmUCxoeRwf4/3P30NgJ/+uZ9ie3vCuRvneZ9j3FFuf/t1kn7MdDnHtXL0VZUjpdftTy2UUcDSdYcWcBwHzwuYTE5lz+OeZjabUOUr8QrZdR3fizZIUyOhvkKOmKTJ7X5fURrxoaIoOo83kzQbVceV+AQo6rrt3snzgi4pW/nMSSnJsowwCMitH0Oa1jzxxOUOwbC/v2vEMVRDZQVJaGEw3GBtbcDx0QP7+YKmcjvo2WgTkoHmZH+Oa9d1GLZURUleNF33o6grgsBD2W5Pf9ynqBVV63CSmbV/aTRGVQm7hws2N8zZ0bQ5eZ51iWIQBGRpgee7XWFRWOjSxqaFtvtwPFkSRD7D9ZU4ToMioFaKzbNmjneOpoxD0XXhh6MtA6MPWl570XQ6q6LExadxFUKvIKlQlyGuPIWQmUKL7lQGZSBoqtz4ldlkyveNKt3Kp/Dao1eZToxq2/lLBj7V1jWLxQzPF53vW3/okOdlJ4wT9hoCD44WGmU7Co5sSJct0u11fqa61cjwVKI+LVJ0myE98G0SnxcOo8EZCnLm2qwNlbckwZDtXft31ZC9Oeflb7zBZ37FxFwbW0tCv6YFMtsZq9IS36sQjollNs+uI92aYhGwfceKHbW3cb2KXi+hXHmDCJDCQYiVT5LxJ2u07ooPWZkymR2RxAmtvcd+9FM/x6//+q/z7Nf/3KyxfMaD7X3Wx2u0FkJZlTXCMcWNVln4eeugG9Wt15W9xyqZAnOe+r7pkq6UqsEUp1fFP0eEIBqEaCnsHDu6RtQugRWYcH2F0CWb6xHLwvq5Tjx2Fg7DJMSx5+JMT5kfFVy4ZuLH3pokkDGakFsvm/g7GsPFS4LxaJOlZ6Gl8xmDZMC16yb29ZKS6VFN28iuuZJlCld4REFMWZl4yg8EfuB3xY/zl0bMZhPqSnH+goEc3nlnBzRMSd9jodLg6JDGegQGIuDiJcnt2/eIQquEqxRu49AoTdOuikzfL4P//38eClo8fB4+D5+Hz8Pn4fPwefg8fB4+D5+Hz7+D5weic+X4OZuP3AFA70tUvYVbxeTWRbTfGyDbQ3S77KpgTaupa8OxApC+oG0KhPBwrLCAdo1vidaq49Uo7VE2C/7lPzdZ6y/9hEbVmv7GOeKeyczzKufO9gM2swG9i6Y78MkfO8syX7KwVdwz8RYiuIvXVvhHJpv+9nPvcvZGarDVlvw/efAOy23JuSvmuy7nJX1/zIIaV1uBgspha91j+/73mC8NDPHio+s8uHXC9l3zM31q+qOUduyxec2SZW/X1FVOupD0rfnwxfwMr37tJT79U6ZK/Zm/MiKd7zA7XBJ00tamgrgSF3CFQLkuBA5LK43+3MEdbtwaUmhBuTBdlPl8yv/yxjfZ3DDQpWq+Q28Y01Ru1w7/1Gd/lD/70jdwRUVhK52OCMkXy66yVFUVwoHI9zrCdxBYbLmqO9JrUWa4yuv+7vsCx1EkPYfUwiAGgx5RZNzLVzK2Bkp06neilEbj4ziaylY5hv2YxeSYKkpo61Xb3BB1VQdVckC4KKFxLNTM9yVvv/02h/sDBufMHB++mzHquSjbRtfLiv1iSVGFNK5Zi7Nqn7JuuPbkI9x6x5LchWDz0Zj7L5iKYuC6OMEYL9LIiVmvc3fGuacC9u+mXHvGcLpuZIq8zDi2xrs/+tMf463X95lPCtbGpkKjOMSRQybVMTIw3UFPFuweZkR9A3/ZvOBzvHOIN/QIrFVBU2VsriVsji7z6ouG4NkfxVx//4jK7quTe1PQgsBRrPBErVsROQ3CibCNMlRREXtBB+kqytzA5rSDsJwy7WXoVjDsWYGZWtAISaNjXMf822w2Z+PqI4i9d+hboY8wKrl23efbqeEtbExu8R/88i9ya77kj37/i2Y8z8Xk6Yyq1NQWcnD+bMzFC33euWnGvNcLqSpF3dQkiZUAbgTH+wVRXHDtMbP28hwWM0Vt+R11I/B8wWKR8/SHPgbAh5/5AP/ov/hNtFakqRUW6UVoWlorJey4gqY1VccVET8MQw4PFwSBS2WJvjIwHZ8VOT8MA6aTBU1bsxKB6MxYlc//8Vv/EoCdB3fYOhcRWg7b3i5UyuHGjcd48pypJE+XOev9AZ/9xMe5vWM6nfMsR/Yiji0X7nIyZC1Z4yA7ZFk13e87e3GD2zvHnBlZwmg7Je65pJbbUJUt/TChyDS6tSa3usRbCWfYTkfTVAgRd+aujqOREsqy7bhZw1GP+WxhjGitOIbSpmKplT33PWMFcfmRa5wcG9iKdAaE4YKinBF6K/l5QV0oQluhbRoYrdWMNwsK64HmBjluac4Ps16XOL5g937NaGSqr65/wNaZxzizlXTvfnfvOaJowKBnkA+vvrDNIAnwIknEyrR8k8GjV3nz7ZcoSmsC74W0zamkvqalaQqkdCjtOWwEUQKWWc6R9cx7/KlLHM1SZpVZP6+8c5eDvQcEcth5UTWOwpEuP/Thj/LyS6+asfdcKyJkTXelpFINaJd+38zV+x6/wgvPv4RqIgIrhS6cin6cMG/Me4NA4Ngu1QrC55OlOUnikuennfmVMMJq/Uh5yok2P+OZCntVsWJTuY6DE5zWfVXTghAkg7jzagMjwtI0VdeVHg2HLOYFR8cHq/9pzZUFycoo1nFJ+i233n2XX/ylXwDg8PCQr37lz4nsuTU5lBweTvFF0HUCsuWSOBoYSNXK0rFyyfIGJze/P69ntPg4NQTBKbe3quYkwsUPzM/N51N065zyzoqaOO4jhCZfccOcgFJVVCtoVuCiQ1gUDY9dNx1L10958+UjymYOtmHiKJDtRif80TQuTW041drysHxPcPZ8j7WNhNdfMvu/mAniOEDronsnP5CUTQ3tiisp8f3QdkMsPFsoyrpkzXbl7t+/yzPPfJReGXPr9k3zTjS4jo8AMoue0Y42XQAL/R47A4o0pCpTlFj5eEF/1EOgyKxghic8isbFt1D+zbHLZFqRplBaZQOpfBLfY3tngkU5MxwNKCtJs+LJ6BIvdfGaHu9+xXRR5JUtFtkhy6xgbc10l5750NMEPR+GFvrdVBzszjjY3Ue39mzRS0KpEMpFWIio4zVI6eA4Kz/A3NhTUJOmZn88cvUxHn+8x/deeIfK3odrm2v8i//nd/nn/+f/bcZAQhyHtHpJFFqoYtTn+Hhi6Q9WIEQqijLH5dS+5L1IHsCKu1TWZ24VGzkkid9BVD0Zdf5YwopMaQWO8kmtuJoQA2JvyO7+Np/73NNm/Rzf5eZBQDUvV968RDEM3IB824zT4f0c3y+o25rFgZm/j37wR/C8lL2DN2nsftCq5t7bGccT893SuU9Vaaqi6bypwEXR0OgF2nYHqwZ6vYQLV8xen89PUErTNJrd3V37ThFh6FPrOa2yBsCVg+sWlIX5+/H+hEffd4VxMupQBcJReL5LnVcU2cyOHf/W5wciufJ8vzswdnXCvZ2Wg/l9Qgv9cIOAZZuwXvoIuzmaosYVQQcBjEKHLDdqgauLWPsK168R+RDP4t0qVdCPBV/+A7NZX39XUumC/KSknZvF2080bTyiTjXTA3OhRGe3kJwhseZ5x5MdPvq5D/Hhjz5GfmAU037/T77LdE8TCIfV9XH2CcGduaa0CyWSAUfZBC/odSIbVdEQRi1Jz2exMBP39Aee4NM//gnefvA9AN746jFP37/McQqbG1aR5qUjRvFl4nHA/gODbw7DY5Ik5NkvGpjVsmw5E8e4Ww3HBxa2Fjk42kOs5MiampaKsmpZs+TutQ9cpZcFbF25hNuzJPCb22z2NIfaLNR1PSXQLu3oEh//sZ8z36VuKNMaKVpcacZT+hJXpCzmJsDc2FgnjnvsHex3eGBjsOdSlG0HjXBdhzyFIFzhln2WaYXnK1zLuVoul/i+b4OQUzNTx3E6eIirFIoGT7q4zkqtCHwX8sWcyKo2hp4kDAfM5tZg1nHJ6wo/DDqIYasMWV86LcVKnYwS2YvY7Jng9Xh3G60VY29MIMxnV9OabHnEvTsOvhUDuPjIGRqv5emfNcnq6y/fZlFPOLue85T1Kbq3PWe2vI8+3oR37AX2bkEykGgMRPVGeJWabQ6mt4g88zOO1szSGunBCqXX1C2onFCadvvhTsHaVo/jVHWEh6TXcvudXZZHkpF1X+8NKr779Tv8yk/9hwBc+xsh/+3/8D+ijivGa+Yy2dlPcVqNXJNoCxFdLEo8XAIbUEvHBccEZSuuT+EIJJLYYtxnkykzVaBVi2cPtqVo+aFkgHrfGiMbmGVTxezwhKElwVdrl3nz3Zu8cvOEvv2sydG79IYeRdWS5uacmE4bmqomCFcwwYymAUfENI312fBG9ENJWx8x6K/OBEA15NKq8lV9hAoo5j6/8zv/KwC//du6M25dBWVt05gCglhdOcomGKL7GWiIQp/pfMG5M+ZSL+uafNl0kNXhcEDSi1jMUzyb0Pq+bxXRNEVpMPp+kJKmNWVhxtzxNGEoyMopz901Y/erf/PXqJqSy1ce4df/4W+a8dzdI0J2RtUf+8gnODfa4LjN+PCnTPL4T/6rf0yDQ+PkHBzbJNCLSaIYz0KMqzonW6aUZctgZIpjcRKys32IUhrPXUEhochTMqtk6brGly4IIhYLK9SyXOJKh7qp8H0bZLoeZVki9GoMPJpWsLe3B1Z04s233iIMYTCMu6BBuj6tzDuomSDGDwRNq3GtqmlZL8iziHiwMuLscef2MVfft8nWGTOeL3/X47Fr19k7eoP7r5kzd/O84INPfZof/rCBS//Pi/+GWzdv4Su/SwLv3r1Nr58QhxGLpYWo6QYhZFfMUapGSg/HoYNLlmVJXdeEkUc2NWN+sDtlvHWeu7cNrE3cbRhEPfpDyWho9vbWj32aapaxc2+PM2OjbleUKZPFvOPVKQWOqimqijY1a+ONN940CqmNQ20hnLpQlGLeQYeaRplxVNBPVsJCLXEUYsyurSqdEN/nO+VKSRAERtHXngnGc8eoD66CQCkNVLK10Yt0XeIkQbU1No4yCZXlfa0+v9Al9azqILlNaXCAcAAAIABJREFUUxFEIW2ju0DIsQINcc/lwbYR43lwfxdHthQ2uIrCAf2eQmndGZSmy4JWZVR5iygsjDSMcUSBtoWpq09LSqacbCt0bc/qnZQkTjizHrO0NAdXSFw/pLGZRdkUOAIaVXXwc9d1CSOfkyMrvLP06I9H7B4ecnJkYU+XeygOiROXycTsmSiKmE+z7q7tD3wEDq4Cx7FnV+DjBorN8wkDs4Ro8oS2zpDOCm6vadRKTCSxa7EmXeYEgU/Trvz/WgIv6OBaAsWL3/sOZV10ME8/EEjPKPq2NuhxcJCBYKVdEQZ9prMZShfd3S79gKbWZGmGPTaIewqvcvCtKIv2FV4Z0OTgWE6pH3nc2X1AHEdgIemHu1PCcAi2wCtkjETikLN306h8DniKK1evc+bsRndOvfbaG5RKcuaG+X6zk2Nuv+iQ9DX5e7i2SbxB4xwx2ljtW5f5JKNdQRwdxY3HL+J5HvfumeR/PNrg6o0b/I2/9Xf5B3//NwC4fG2LP/7inzJfmJjSdyWe9NncOEeamvV5dLxPU5vi3MamuS+m07nhzHFqxL1cGph3Bzt2XcIw7Ey5AdpGGFi1PV/bpiYIItq2NIIwgOv0cKVPZAvMTXVCuN7jv/z1f8zuA0N/+cPP71JWglaXrJ81Z9D0eImuCpRrYlqUT7X0kGHN+oY5k96+eYtBqAiCDXKrsKl0QbosmFqRtCiWZGmFL91OF2Ew6COclqpIufaYKWqVuWS6OOzO88FoDdXkCBRttYKtS/K8pFWawdDMVZ7VuEIT+OZ8+/CnPsqzX/sKySDEsWvRxAktnhOhrSiSQAIZ/6bnByK50k3EvuUWTaeKYvseXgOVu6rwwdjrQ2XMNwFDAq5DGusCXjcl0gNVB7TVCmOqCYUPoqJWq6y4IfQ99nbMYP9P//SA80+cpUnfYfdNUwUv/IB+dIYkcVHeqnpeU+X7nElMAB0PYffBIf/1n9zj2nWr3pO53H92xtqjJZc+Zrkhkw0uX6iJLEdoZ/+A/iBC1UXHA0t6CV4UcbBfdsonz/7xi3z0s0dcfdxg6Ec/fp5nf+c2TrbOaNO8+2jo4Ls+g/4ZXvqmJWUGR/jA/K7Z+Eo67IgUv98SWrxzqyoaWgK56uZplGqJXMnVDZNcbSRDXnzlPq0TEuRmA7u9iPRkm8OlFRXxPR65tsYbkynPf+85AObLDKUUSZjQt4H3Ij2hXZgACmAxmzGZzKiqBqv8ipSSNF1ak0nzb9nSOGqXlrSZpQVr6yPSLEM4pvqjmsAGUM57SO8NjtPSWLPVJIkZbvaoiprlibkUiqxE1RCFIa5jNuzJ9IA4HHXKeXXTEIShqfqtEuGqZtQfc+OJ67z7rMFFB32XZaFxSiOH68mAS1vriErhi5V8uoeUCcuTgroyc1O+rnn/Mwn+I+Zy/uTFH+P4jbtMSpfpifnOPWfOBx69wZ7nc/vbZozf/4mrTNN7HNjE/7tfP0Arj/MbWzx411zg48GAfq8ichyqxgToznATyYhsaQ67p268jzuHN/Gq9PQQWY5ompZnfniLj3/yGQC+8IUvcf7cZX753zfiHK8+d4+dd/47PvbD64xttX5SCAZhSLbcxjYQCaSH0KILcHu9BOGajvJKyEAtC4TUzJYmUWypiaKQSmlaG3wkccBL995iKQsii33/SHKeUN7l7n3zfX1cJt5tor5Lv2/W56ULPWbznMlEE9vuXdU2tMrpBGAGgwEXLgt2t+cksdkfURjiuhOmJy5UlhNYLVksa8YbNknLKja3xjx+/UM8/8K3zP9LXOIo4OSk6GTUhfDQ2qFtVhLLDYFnldDsmprPFvj+kCCgUzqL4h6l0J2aXlmWCCUYjvpUlg+QZUsje95qsHyxQCYopSirlWy2RKGYpTs8sPv2f/vtf8anP/XjfOf5N4lsYPh3/tZ/xJ99+U946y0TaHzjzdf4mR/5cX7kp/4Sji1MffSHf5iXX32R9WFIbYM+7QjSdEESmCC0KQVlNUW6EcuZWcNNJXjqA08ynU65d8fskdGoT5IkHB2beW8aRZ6XFolgFbCSPlVdWsGa0y6flKdKcuAQhQPyNKPft8UVR5GXOW6uCaxAgNYOriy6M0FYHlgoz5PWJtgZyCFz3aIac+kuq4aLV8Zcu/o+NGavbZw/ZPf4JmHgdrLVJ/suX/vym9x528xLGPQR+GgFsS34KE/R70ccHR6ysb6SHM7xPI/UylpL4ZKXGUEQIThNJhUtdVng2c+an6TEXsP5dbNe07Jhkfm44xSRWEXYoubauctsv3Wfo3sGeTBY8xnEEfNsZX/hgwrwfafr/pS5Q5x4fPozH+CVV0zHazapEI6mtRwhpSAKQsoyJ8tt8TGKULpBKX0q/f4e83WAVplOkpSy4xvZycEVUNjuRGeoarkpbVUb8/iq/r7OFcLIra8QCq0ucGVgu7vGhNxwshty+55toxnKs1y5Du/eMjzvpo4ZbwQUVh3VcQRt4XEwzYgiGxgSsFjmeK5EW55SXS1wHIlIrBn48AzzsmVfVAyGZq6euLFJPnE5mNyiaVbFFIOoWWWKQRCQZYZHsyoiKNEQRg7S3nOOrqingsAV1FYt9J23FgjZMp3kXbdVNTVozeaWLT54EcvlnMAJuHh5y66Xiixt+NM/eMDaeNPOaU7baFp1KpvfNIokSbrktSxaPDckzxrGayuJcxeBSxRYUQGVIoRCel53dskA0mUOQhFbsQHHdWlFSTIw33fvYAdfrrF1ASZHK7XHIWWVI9yG2ha15xO4eL1htm/X1MIlkCFtr0Rp20lqXca9hDITyNB2vEXMIl8irNWFblw8vwSvhdaM1d7xbaTuc3J4ggX5GLXOQFPvmfNtMlvwxIcHXHlkyJd+3yjsvf8DV3jtpV3qyuHK0wZ5tLa5gUvE088YPv5jNy7zrW8+x6sv3+IjH7kAQNiHr33tXV54YY/NLdNc+PJXniUrD0hiazG0zPFwuXd3l+HQxFO9OMH1HJRq2Nuz5sGNi4NHu+LQqcZwq+q6E3wpiqLjXKWpFadI1lF1BTYpS5KEJOmzvX3vPWiiBSJIcJZh99lZ4eMFF/mn//s/MmtjluJ5mmEyZm6l5usyIXAiIq+xa0Phepoq94isCl+ZHrHYF8waD9c2DVxcnPfcfU1Rsz4YcTSZ0rMddikdZrMFTakQrAysFW0t2d0x+6rfN6rAjVXnBUjnCj+WnN28zMZZ81lZWnDr1h2uXLINnv13QCnObI7Zs4qs47UeeVGhaof5wtxrkf9vT58ecq4ePg+fh8/D5+Hz8Hn4PHwePg+fh8/D59/B8wPRuXKlSzCwcJiDJfHGJlEv4+jYVKXXxxsUtKiyR1KbqkaqfbRfoGublZceUSCN8pGtipM3FI5C61PpSUdI6tbF9U3153d+a8JP//UQEUuayLxD35MokZEVLsIk68TumNH5dYrUZMlr/YCj/Qesa0GxZ6sjk5B4WHF4r+kwyQ9uLvi1v/lzLBemK3bn3iHJWFNMNW1loANeT/Lxz17l//3tN+hbuXLlNTSTBcvcZM7N2ojNxOPea/e5/bLlG/UjdP8e4f0Jo56VRp0rynaBZz0JpBBIL6AuG7SwEq46JnQVlbAyz0rhVS6VlBzNDVck/cPvkC1L9PVHOHzV4LL/2m/8Gm+/+Q53f/cLZnjX17ld+zTjEa/f+w4Ajz56gbODMctJw3Kluuf18LYEwdT+PtES4pCxXHmmslhW+J7A1eBYHLEQLucvnOt8fXZ2HuBIgXQCXFs1FoFGtab6tzKKxFVoIbB0LpoSTtKaqA27ql+ja5wAtKaDNESBREiBdK26VraEbILn9ShtN/T65phf/aVneHU/5PG1R8zw+VNefXuPrTOmujUvMu7fL7l+sYezMhyKQ4qTlM/9pccZXfkAACU19+7UnHzDjMtk9zsIV+KIEdpiyqfekqyVbK0/ighN5fH17024fPEaiZVrLw7e4dKVEZNpghta2dN+yZMfErz7fIS2g5ylc2SsiAZmbd7dnhDEHpUXUVsT6kVxjCsljefyZ183lbn182sc7e/x137zPwbg6PbrrK057E3mvLVtYVZtH9/dQIQF64+YCtu7t+4Q94P38Cc0+TRnOBwT+bZK3Q85Opp22HEvDJgcLtk8t87GmulS3blzh4UzYFx5KLuRX1QLnh72CK0xZl9ArTxG0SbDgTk3Ej/h3qHC8Vo8W80OfJ+2PF6hQxAy5uK197Gz+0027bzv5B5ek+C2c64/YbpuJ/sF2bbi3IaZOzF/wNbGE/yn/9k/5Nd+9ZcAOD6eMJ3kDHpnKKsVP8V0Z11hYcFRiC89EIo8X0ETHdJJznA8MJVnoFhUBL2EeFW9qxRNKmkaD99yEJPxABxB25bMF2a9fOZTP8RituCV114BwI1cmiqkaVPCwJyV9999ka/SsHXxfXzgQ4ab6Q8lR/tLIoPkoyymvHx3n4Pf/Qof/4lPmnW91uPGY0+w/843OLpg918G0pXEtrNUB3Ok1ycvWsYb1jz6qOLg8B6T45bAdhCLssT1HB551Jy5O/cXZGlLGBmPM4AzZzc4nuxQnTidLH/jLAlln4nlXLpuzGIxQ4iaqYUTbq2fxSEm9IYIdyWV6+DhoGprzllqFhPoDxVnzpvuqyiX0B7SlBZWpmuKRcxLz93B653Yj/FR5SHpcoPArkWlc2bH9zneNeX0oJcTxAEuAXlxygN13TUjJ275d4vlkkF/i9b6xwkh8GWIalTnMeN6Pk3Z4roBKwzVIkuRs3sMnFUnwuXchZjDox3C2lZ2ey0vv/ImzrDH+ScMxLiscsZnxzA147TzzjHjXkja+rS2cyWqkib3CXyHH/q44Xh+69kXyNIAZTsvruOiRWPgOhbiWOQVYRjSqrLrooDhfqzMwFWZU5SlgXJWK9lscye3bdspeDZ5RhzHeLYjVRYZTmv4WSu0h5Q+i8WC4XCtg/MZE/qW0HLF+sMB82VKUTUIS5RyXM3B4oAnf+gDpJnpXB3vNISOQtqzWrc1s8WMUTLuJOodR4KuaFVlvBDNWyB9Sd/arHz7z+6hvJYPfrzHvbfNunvrrTmSHnUd4FouUV56SF0iXfP3ReMSxiMS36O1d/S8OCKf+3iR+V0bWzF50eK0sLdrur/JIOLsuR7HRzM8K+e/dWbMg7szcisdXrWmu6UzyZG1Z0kLxealmPGG4mjPvGcSFfiyT92uLBw82nZJo0pyC38fryW0TcaltStUdkPu7eyS+D51a41/3Za6lmipWWTmHc6vRfi9hJNJij1icdwa6oDxwCCBNvohr7xxi6apWR8YyNiyWBCdkezdl7ie7ZRn0DR9vJ49O5dDsmpKMHA6r63j3YxrV66zfX+PmYUdJ4OEjf6I+ezYrjuFUzu0OqHft3sNgVZTHmwX6BWkxtGgXHzP3ClPfeQiV28M+fOvv8wnPvNBAN735BaP3niMK9cuIy2cd35i/Afvbpu470+/9ByvvfZt2hZiG+MF3oBlOqFqBY4dGCFTHjl/GWnX2NmzZynqJQExVWnmr640ng7JshRhPR0dx0GJBt855ZhunBkBLnMLGZWeYLnM8HwILX0AlSKdGmz3p6oakoGi1w87mXfVuvTjAam1v1B1QJUe8Z/87V/pbCXW18YM+hssFjPyhZkrT5ZUbUVxZH1DwwTtuAzjDVrPfPa5jYjpSc38oMVbLFeLg7bpE/asRY4e4fVb4qVHZff6Is0YJCMuPL5BZffRwYMpG2sDjmznrFxodCtIegF1Y86SRy6ew3Hm3Lm3R9A3d99jTz3NnZsP2Lby936oWN/qcTjZobDw+qhUxInP3nbKI9Y4fTY/IjfL6V/7/EAkV+Dyva+Yg2779oTrH3yMu9vHjKyXis5cRpfXqOsFJxPLLUoC0mWFshF000AwSMjStMP6tkojXeN71cnbCpemVZ23yHJR8/bLLqP1s7hW6tIJHHTpI/wAbScljhzKBTSFNTbduECchPh9zY3ABAhfffVbVNLnMz92lT//V4bM+bm/cpXHf/Ic/9c/MfjuoNXoqUCICN83i+LkqOT+zjEX3tfn7qtmYYS+5vi4x9Dii+4evMT6SNPrDXjic6Z9+fJ3HpAEEUkAR/vmcFOVkWdewUqUNmaLOAJn5QOllsjWNQarGInzIIoomgWqMkHEmYFDPL7C2pPX+OS/9/MAXH/iGZ7741ewCpZ47YSjCUx0ygefeRyAi5fO8q2vv8NsUXD2ktnAW+tnmU9bVGze8fj4mEfOb1He7dNk5vCJeg2+69GmktySudfXzhFFwXt8RRzm0yltC8ISG5O+z3gckWVZN6coiXQ9hF7BPBoGcszJ4UlnIuy0PjgtDS2hNSjM8pLWmbFm/WMG6+uoXCICuH9o1t2TH/0Mmzc+wHmn4EXX8OGQLlE/Ym3NcKcWDw7QegcPh7K0UqWHKT//izdow5gHh+YQuf3aASc3px0OfbyW8P+x92bBll3nfd9vz9OZ7zz0gG6gATRGAiTACYRoDhIpUbRkjbbkOIoHVexyFOtBTipVTvySSqXiTI6dYlUSO7EdURNJSZRMigABkiAxNIBGo9Ho+XbfvvO5Zz573nvtPKx1T1MpOU+uCh96VaEK99a5p/de47e+7z8UZUEcb1Oksg/aS21Ky2Wi93nuE3LcD8ZdLr6zwVNPy819MLhNpEeIIGT59BFcQ3C4EzA/3+TqJYmLXnmgyWBUYqiEgeUNsW0oYw+7rnxnDJs0jenuTGfk405rjnikU/S+BcDqUptJZBJGOfetK8PeUNDvb5AYITWFqegs14iSmPVFKRRz4vQprm/tUKZDencUFt2IqdV8vNqRXHRGZ6HDZDLhCKrgBR3MMCSsLHShYDJmnfeGGmlLvu9aa5V8O2b++KMc7EkvuvfevQOdEr1ICVqKzF3XuHrVYLEj18dcFfHut85jTRLyM/JmYelT6oaLs1jHDQfqGeDYmsGgd0n2kyi5dvEcP/WFz+OpINuv+yRRzHg8RLeUBK8mOVZH+890PKGqXOI4plFTsKdc0Ok4FKIgy2Wf+75LWuW4Sia8LArcukcynRAqWFctaGFZBs1aQPdA7ku39zZwqYPy9VhbalFqFYOw4rOf+zAAX/6d7/HQA6ugp9Q7kpB87e0rJNkALPlMNg2uv/0W4bzLN//odwForSzy3BOLdEVOfKCCAb3EMmyKSI7nOI45+8j97O32aMpcA+PelP5hQiVMDGWmXgmX7sGI0VCRpivpW5KmGb5KcoVhyHiYYxk17EDOBdeqkyYCWyU7xqM9nnjyKW7evEmi4K+mUeLYFh9/7ln6O3IuXL1yHb2qEAqikpSCrBJUoxSnktCo0izwanWK9IhgGZHlEjKrKyjmwsIDdJbmuHjxIssKzrt5Xcf3CoSSgi+ykiCoMR5PZ5AqyzY4ODhE13QOu/I5n3j8Kba3DjGP5KlrLqPRECEE2swOrMAwDHTNIFEXC8vQmU5i5hUP7P5jdU6eWeV739lkbkXxqXILsx3TOxyTaPJ3zcVFCiFYnpf923Fb3Lh9GdcJEIqcH2Yapu0QTiICBW1bWj3G9cu7oAI5w5CeM55rUShBC9f3sG2bySSDmTRFRZELckvdjNGxTQshKhwFI4tjKa4kFGQQJDSpXq8zHCo4s64DGnmez4j4ZZlTVSW1modlH8G6Cyo9wnCVqIcW0hsO8Fx3JpxkOxZz7Xmuvb/LJ5//AgDff+W77G+HuAraGiV9WvMBrh0wHMnzKY4yGo0WUSz+HGSzFBmlgpUtLtY46I/YuhbTVLLVk3xMkRRATqqk3nUsNCtDU5BJERtE5ZhKs3GUdUeV1ShFQqW8dwQLTMJ9RKVhK05ZlWeMhtIg+0h8YOdORJoIPF9BM2ONsvCw7JyJSkhYXl3Kb3s6tqvktg2IoxCBglQ1LIrYIInyGWc2TXPCUYUuEipTwiU78x5hMqQUSmyhBm37GNt3tvEMlUzNGxx0+zgNfSaAMjc/z8H+IfsHMt5ZXriPv/ubv8B7F1/k2iUJY617Noap0ZzPySP5zksrHTY3xzOrCUNPyISOpdk4nrqAlSW3tjYwNQddzUVHGJQFlNoRvNggrzI0LSRPZTJwcfk4lpXxt/72pymVXcrG7VvEE8iVB9Dps/exfvIEH//4z5Go5Nj5829xc2OLt9/+M8ZjOWcPt6dQaaBk+k0DOp2mFGGzlPCOGeNpNu2GTqREbvIYur1DKqVQkuY2vj9PkUek0RGXMSeKQgnxq448zwqqopol9aMo4lOf+izr6+t86Z//M/ldsYFpVCA0HO+uQXeRGNKRGtCMir29XdqNFkeq8q4ruZNH0uWmaWKaJq7rzjizAHuHm5R5MvOZrTSLqgJLXcCyIscyTXKjYvm4TGgZrQOC1UPuyxdn1BYzN3GsKcOxivFqE+zQoDnnEKrLThGF5OWQ8dgmUQnJUhfc3NmdCbWV/RDPdnEbbfya7LupkTDtRSRZyd6u4lzeuIJmeOhHbg2moMxj0kSfcRCnw5Jm06HWzCkV5wrx/w38+5G4XIWjCdMbklnZqtfobdxkqW3P3LvbrTZzS3XS9sPEhzLIHfcGIFwMhXsURUkaxVLYQKlwZZmQwgZGxVGgpgNVUWHZKhjol2xdL5lbbuAoAz2tkXNwW8d0gxk5/iAa4ERjUiEP1IHfww8qitDk9evyYqi7EXW34uSHHmfuQYm93fdf4UtffQHfVDcSG4RnoUVT6oqHlU5LhIBf+7XP84//wb8EpEqM7VbceF1uPvef7XDhu7eot+qc+sgDACwcX2Nhxee3//n30RSJWOQCQ7uLoUdTpGHu8oY0TUPXzBnJV9N00izBDnxiZax4qx+x9tgC62tnOacqGP/6X/0r6nnEceU/1M0DnHZJSzfYvyMvTv2tKR45UTFBC+WmZfgGRjkkU+ZytVbOYNAlywqeeFR6TNzZvcY0nTKtYoxMLqB+v0+vvzPD1C4vzSGqmO7BGEOVFOuBj2lpJFHI8orkMmxudSmENsugBr5LGY5xPEGmiPcaFWYl8B2TQo27UfepUVIqAmhvP8Wod2gvwpmTMkt8J9vjxctXmITQPCbnRj4q0dKMC+/Iy9bKsQeYTmxEPqWfyh3q0ceXeOYnWnztD97k3AuyEji/6DK3ECBcuRn5jsnOVp+gaVBWcp7ZnonhVQyjhE8/IqsmC6Me129scH1DbkaGZaMbJSsnNDxLXhDCUY397QlFsoUXyHEYDmIKYRBO1MXGdxj0+wiYVa6Wl5fJRJckjVHFFsxaylpjnuvvyzHe282Ym+8wGB9Sa8sL9NXdXaIs4tjJBZqL8nOaY6JNj3PnUFXYbtxCSyPiAip1qItCYDrejMxaFBm2rREEHsq7ligtKU0dUWR4iUpI3OzTWVnHriTxd2mpzYZh86FnnuVP/kT+bjxNafvw1BNLnH9fVhW6w4zl+jxznuqD6QQvSPjsx07x+xdUBaEMGLtTOmQEiVy3u1XOdGzSdmW26wu/9Em+9H/8M5yGB6niOzkBQQC9/oiaL9e2aZkYmo5t3z30DCvBsEoi5RHi2k2KMobKwrFkgJekJYXj4NgyEB7lQ8b9Lg891ObwUGXv+hOSuMQPbGp1+ZzRuMaZR0+SxrIPPvTks9z3cJPNrQknH5LKpz/5mYAPf/CjvPHmq2xsyLV95bW3qaw6nhIaGQ/HGFbG6vppQqWQOBr1uX27JCr8GU/hw89+lLfeeodIJRECv8Hm5i0MU+PmTZkx9esWUWRSVuks5y+qEss+IgWD42ryImIa9HoycDvz0Ap6pbNxvccHPiITF55n8cq373BaZQ+XV+b4jd/4Tf7O3/n7FGoOjacTDg8i9g+GhAppMC0cdKOcmdd6luRgalbFXl+iA5qtgCSBVHGg7n/wBBU5O7vdWbbZ0lPeeOkyTz97iiVVvdu8fomPPv807751Xc6x7oTllTmm0/HMqLKqKuI4xHWcmYJYEATMzZVUulxDjq3TPdzD991ZEFrkBa5TI8sFlaoq2I7OeBgTqUxvc17n/NvnZsq5AFFpECcJk3GfdlvOqdacxmQSkVWqyuiVrJ5a5ODmFBTXxjAqDEtH0yv66hLo+zUsy0LRmyWnlRzjKEuDFLSYTsfo+t1EZpYWUpxC+cFYtuSpmZo0YgWwLUm4X11dnfG3QCYh7CNOsBAUeYGu6zNyfp7nrKwsoxuC+UW55+12bxLUAnRN7suH3YhWc456vc7hQCUtfR9NS8mzkltX5DsPe4J602QyVZc5IyCaZiT6eObLNjffIssT6g2bcKq4hIXAsjwO9uXcrzUN6l4Nq6hRZSp4zQqyOMO0DVQxkoqE5pKPdrTWximaWdFaM2bCfJ1mTjTNSUP5i/3Nm5RlSa3RxlKG4ZVeIOIKy9HJhRLjcQKyPEQUR+gPgWGEDCPzrq+PllOWMB3ms0u14ZlYbnFEA2U8ijAsF8s0KJRHmKYLmh0D0zkAldwsY5dGyyHK5LpaXL+PyYGFaVVkE3mG9bUerlUnS8bMLclz9MSxh8mLt2bCCrvdLV76TsnyagOvJtdfOC6ZTgqabZfEk98fpgmuX4KqAlq2AGFBaRFN5X6zsOZSqxts3prSrMuzTxQ5UZYg1KFSaCmlXlF3mmTq4rS5c40szhDVPCdPPwjAg49+jCgZEyXyDHvxpcsk0/dJ0x79AxmL6ljEccHjz60xp5Sci3GFYegzBWFN05RAT8XquuyX7c0QwzAYj4oZ53nlmE+/O0UoJdAoiRlN+lAJ6UGF5K57vkUlDLKj6hJSlTlXUr2GBd95+Xs4lsZkLOdG4AaUVYRleZQKVWQaFn7gzapUpcgIgoBut4f1Q+u7293HVma9nhcwmUxwXZd6vanm8JCyMND0BkJxJktybNvFVPO80qWQRhjtc/u6Ssq0C+JMo1PPZiIlehWQiwmuutikVYUlEoSmEx/ZcQpIQoM+Ic22HNN3xywXAAAgAElEQVRaq4Wtw3go++DBsyvMLcb84OUd6orDNj7c56f/2udYaDs4dcXtNTy+8vV/y7V3ZT898/gK/UmX6xdKmnPyu0bdmLNnn+LCu4JDlchstlsMubtn/b/bj8Tlqqpg/cz9ABx2b2FnHh/++JPkdZn9yYuC7eu3ac438BsyyzjuDTANh/Jo4QsDDJ1CRLhK9cOwTMpCSDf2o5sFupKZlD+Zps10kpNbOU4gD7mHH5uyeWMP2+6iqWBVHxgIzUfFqXzw46C5Jov+Ge7sywl27itQNFxeeWmDY0phL1hdYHP7JtOunCieayPiMYlWZ79UBqWBxd61lGtP5jz7U8/J98nG1O9bYE9JJb+3f8jKU6dod3Ju78pF/Su/8Gu88cZlmq1LRD0lqkGJqMTsUDeUCpOmV1SqCqYbuhQVyI5IxRW6Dpppo3fk5nf98DY3Lr/F5YMdglJVdjSdtp0z15Rj8N6dgnljQppZFAqemYU5ZRHRbDaYKNLkOB1z6oF1Truy8nJ7+yq7kwGLp1vER8KdpUXaS2nUDXQlYz+dTglqDir5y3DYx3YMLMOeyZL2BxNMQ0fTHMpSVVEqg7wQLC4vqp8zjDlBMM1oq6x0aXns9fuYhiBREApXs3EXakxV6Xm1YWOv1jkY7VJsy6VyJw259M4NKs3nV/+6VAez7YJRqZG+LQ/wcLBJkSfk9TZ6LN+lc3aVa1shH3nqo2wr4ru9VNG9PcBXl53tUYQTtLCsBgi5mWd5RZzlrN1n8Orr7wDwxssXcQIToyV3Gi8QNOpt8lGd4VgZU1o5pUio19YwNHnZmeQJ9cCdXaT29vbQDZu5ts6BciI/NFOELojzPo8+Iasa2zs3MYpllk9JGOTejeuE413W19Z47XWZ/dFKm4X6AofXcrRcQj0eeLDB+7duYA/lGp3upjSXDcKdCX5HbnZOw2LUSxEKuug4HmmaIpCCzwDNTocqizDxWDsjx/3U8mNcvnODcigD43e+s8Hcmcf43ksvceuqvOR6TY+gstg4SElU4GlEGg8+XLI9UqTwyObMsse7sYkvZDb0MNzFzyrG0zYHa/Jzu2MdqBgVkkD8/sZNnnzmEfrRbbJQjvFoGFIUUKvZCAWbqSoLx7eJwqNNWKcQGq5Tx9DlZ4oiVibCd001a80GYS7I1MWmElKC/crlHg21T+VFytLKIkkREo9lQHJrcJki6fK3/94XAdi8ETIZm9jM8/57Ek505vQ6755/n1Mnn2A8kUmt7/zhLdrHTzEdykx9GIU889wqmeFy4oysSl+5fImdQcJ0EvPg6bOyr3p76O4WNRW49Q8TvKAiSeHkiYdVvxwyGU+xbIFWyb2yMnKyJMUx5T6ZxC6Oq+M6FnpLjvvbb1xnccXi1BmL/W05zvMLa5RVxPOf/VkAfuZnvsBv/dZ/zOe/+Dy/++UvA5DGAs81Saclt2/L/XOaHdBqLHHipMyY7m3uUPdaxKKP2zzCfk1Js5SV9ZMABLUmUZQQh4csrygSurNA09xh+1KPy2/JMa2KnGLSwkDCmcLpPrdu3SLwHWo1KdS0vLzMm2++hW0b6EqxdOPWNQ72+zNBBtczWVhYYDodz8R5dE2XpH5NI1AV4TRNcV2b3R05nkvrHRruAiIN71agBj30sqDdbvDAEzIZd9DdRVQ6+1vyMuAHNRaXTpN39ukd3gQk5M8wNAy7xFGKjKaQKn+pCkLLsgRdUFHeFZMopemwEGIGA9R1qSoYRXKetzs+lmWQ5zmVCnKFUg78YXn2Isv/nOiFoR3JWadU2t19YjydgpYjkOvB9S1cz5nBBPM8ptnyiZMxTVUlLkro7eQ0Wi7fe/VrADRbPoddg2PrMgYxgwNGw4LB4WSWhJ1MQgzdJI6SWZBZloI0HtNUqpiGlTHfqVMWOqOhRIAYhjQAzhKNStnBNNsBSaYziuVnGs0A22/gtGNKldx0S594pDE3L2Og6XSCofsEbpPuodyDhMilAWoomF+QEM7DwU3m5psEdXmmRROH0Uhg2IJKQcbqNZ9pdEgJCF0JJ7UXicKUdKLU5pwE08pJk5yqlO/bnCtxvIJkrLMupzq3NkMmSYVQ8+DO1g6eW6DbDrq6EFWFhmEVNAKf/qGce3fufIfWok4QyH0jj0p6ox7oLtcvy+/+1KeeZWtrk63dq9R82Q+jiYnjBJj6kUm6IC53KdKCLFXBf91ke5jheBCp6pIWxCx2NPo76lJoeFRpRTjNcS0FPzPruIHB1avf5/2rUqzqT/8UQMdQCVBb5OgaOIHG0qpS5qXioBtjai79LflccZjhN0zy9MgQWaPZ8jh2cp6sksmjOInwHFkAKVPZfwd7EwwsQpVEWJy3MfQ2o8FgZkhcFAlVAUWu3VXwLEspsKOS7JZpcbC3g2nqBIGCOec5mqkzTWJ05Dm6uFCnyCNclWyMEmmq63kOlThSuDVn6xykrDzw5wyKdV3HsUpEaZApY2PLqaREvFqPtmMwt1Bj805IzZLnTNM+zu61PRK3IFCqzeOsR17quAo6WMQwv1xDd21KFcPGXcHS8WMcv0+wdSArnd2DbRDeDMHUXpjnsL/HIx84OVMQvHoponP/Wb74iY/xH/0nUqBrtDvGzFzcFfndF37Q4zf/25/jj7/yXd59U54fc8cavPTyeWnObcjnjI5Eo/4d7Z6gxb12r91r99q9dq/da/favXav3Wv32r+Hpt2t6Pz/12zfrx786FMA7O9tYRkNPv3Tz/L2RVmhOehukQwSCjGic+SZEw5IQ41S8auicUhnMUC3daKxvCnrhkmel/i+P5PuzQuBEMyIseE4x+7YGE6HSGnhf/LHNZ78sTYvfCVmZ0N+V6uxxMZWj9MPyu/5zGc+xUOdJV6/c4PausyqlHdifuf3/pAnnniWTz//LACjdIuv/5s3CXfl7RprQhy5VFaJNivhahzu5+h2xaM/JrO93pLF5QsX6d2Sf1aYGh/64CmS3JyZtNq2SxSm6NOKg6vXZv0pKGf4da2qMC195jkCoBmS53FUIjc0naLMCBZbjBQMQtcsKmGRjaaIeVXZ8T3cOxmuwjsPM4d6ULDXH3B8XVY1bMNmb3efUitIFYdt5cQ60yhkqaEkiPtjovgWReVQKq7Gcq3Jzq0pqRVzSnEZdrbGzM8tkyZHvkkTSpEgBDRUtrnCIo0TRFkyUdyseicgaNfpKY8gz/NYO7XAZH8Xbah8b5aXCLOYYBqTK4hKEUPmVxSKO9EJHIwFh2ksmG7JbFPp2BiFhtmysWoy+3P2sWd48/tv8qEnZFmzGpW89PV3eeqpD/LBn/20nMPXttjqXuHYEy69a3IuXPz+AbGh4+lHWOqA8XiAYSfYlszCZYnJc5/+IBt3rtLdkxmjWpAynZi4Dfmcfl2nFBnJxGOuIbNp7bbDlduXqTk+hZowpZ6TZhVFrMq2JWSlyfrJ5gzKE4c6w+EQx48xdaVukGvolEwjWd2aa3n4XsBwnOGa8p1PnwzY2dqne6jhz8ts/QNPnODCuTdnksrJMKdIQ8yWzmhPjVXbIhoLJuO7Xhy+X2MS9eksyHWFZjLNCvwc+qXMeK0dfwq/PaStNHnLSyFpcIKyvsqt6zLr6C2beFOH6nidg7Hsg3Z/QnvOoZeo9Z+UmFQ88vhHePJ+mf39+te+yqg6xCh8siPvFLtB4FWcXJNz+KCXUVSC0eEmxx6RGe+blzawbR8hMgoF4TIsC89zyFSFfTIq0DUHTbNoKThDXkQUqc/8sk+g+H43b97EdZZYmJcVkxvXLyGqlOWldQ4PD9XfpTz+2NOsrbb46h98U47NnM985wSnH5DV5fmFDgsLHtubIUsr8neuZ5ImETs7fb778nlAwmuiwT6iJuHMpxYXePyZVfLsOF/9mqwImVrOT37+i7z1zutUyotumo/wAkEYymxhFEV05ir6hwlzLQmhrLSYrc09XM+bidMELRuRe2SpXFdVVdGszZEWPSjUuFcVayd0RJUzHh1x9Bx6h1Mmajw/+YkfZ2//DknSJ1LGzQ+cPoWuC9489xYrCkJVa9SxvBorxyTc59yFVzBMjf5BSl3Jl9fndQ73SoJAjrFuZYgqp9VZ4JGz0hJjOjEoh9/ncNRj44ZcM89/5jk2bl/j0nuy+uMHOlmqY+g5poKDBkFAHIdU1V1fprIsqaoKPziC23iMBkOZjVZ7c5pn5HmO7RhQKqiw7ZLmEWP1vrVakyeefgrDLpkoo+HJJESvBA8/epqx4vFlmU6gW1iKdxalE4YHNpYN3QMpu354J0SnxdPPLWIogQdLuLz73gb9wZFwhIZhCjzXmhmwF6LEtC3yNPshmXWdQr0jgK5BvV7DskwyJWgRRymaptFqtQiVOafnuVBVJPFd4+08zykLMfMkjJOMoipYXVuazamq0iiKbOZlZtoOlumTJnflqEtKRJFBaWC5meqXjCwxqNXkOPzY51d46c+ukowDTFvRCXRpcO+6Fsn0yObAwzRN/LqCa2mCIk9JonQm115WAtCphMm6Ek7Z2dvBaS3jNJSNzHRImunU18yZyX28b9DvFjP5/VbbYzKakucCxzwyd82wdIOsAMdTUui6zrH7WggFV9q8fUA6bfLg2TZ3bsq90q8ZiColyQSraxJu2x8OMGyT4a58JtPIcbyCNNZJFd+p0dbRzQlJDDUl4lEULlEeoylkgF41SJKMdsckUjBLkfi4tRRsQaGqL16thm7pTKYK51W2qJyEwHco1J4w2PM4fd86W1u76EroYzIqWFmzaTQk1PXqlVusrcyhlzqbt+TZYDhyspmadUQl4hd+43kOrr3HW38qq4WhqUGeY2r2DCrsWA38wKLM05kAmufYFLmOps7oNDUwtYS8MtAc5e03FXidFj/5y8+zvi73zxd++xVefe01agqWWIiQRtPFDyzGYyVMkQQUZYyoyhn/PU4KPM+lreBo02FGlfmUZYUfKEGbyRRds1k/fowb128BcOLECfzA4p23pZVGrR5QUVAJ7qK2zIqihAcffRhbCXbcvH4Dy7gL5R2PJlS6hqnpRMoM3HNdhBC47l2DYsMwEELMKs6+71ORkSYCxz6yD4mx7RbJkWm5VdJsz5FbKTVle1IWCdsbfZ5+8nGuqZLlNCzxajZTxflGq/iFn/lZPv9Ln+P73/sKAN/4/ZfpTksefewBmh0J57t+IyNnSjmWa2H76h6UFk7dZuUBeabsb+3x2Z/7eYL8kMvvyTjsx7/wAP/jf/lVjn1MxrDZQZeg/TCWtzeDCmZphBcIglZGZ0GWbbu7Ffvv996squqD/AXtRwIWqOtQxRJS5RRQVj3OvfIGRabwwJME39TJhUek3K3bGBgGCBUnGoZOngk0MsSRkZpuq1Lq0X/KOFE3FA8L3CBj2reYW7UIjssg8OIbgqxYxXXvML+sNPSjMb/8Hx4j1g7VP1ixV6zz6qu/T6BU//7q3/1Fnhsecu4Hl7mmoHuVN+Ujz38EcXAGgG/+0R/TaEM1DbGVya4oSlY6JoarEYZyg6hZNZZaDc48IQPcvSjj0rvbmJZOQymrPXT/GrfTW/R23dmBLR3p77pya1WFhkFVlTOooFYamLpx91AyNWzfYzgIyfKjz+RkIsMNOqwvy/dL8pBulSL2ZJDdbC7R24sxTUgGcpHt9vf4wFMPsbO3S3+oeG1bI1rzLuPxLQA6/iIf/9hzfONbb2J5RwbBbYJ6hG+XTKZH3iIacRwzHh8pg0nMflWVhIpIaVoOQkivrkZbLVgtJy0jPCUGkJUpV9+8iTDhqQ9IqNvQEuTbm6wurNFXl7CpiLC0FNeXQWiqaXRvD0lLQa2tcMNJDNYcSTcj7MrD6uLg3zLXaqM1ZN/d2Uv5hb/3GY4vPUg6lGMV6wfU2hYX39jjySclXHG4U/L+5R1oybEbjCpc38a0bAyFN9YoeO/yRVaOuxiO/P543GBhvWLtuAwCr1/dJYymuJZJpgQfLl/ZImi1WTtmcv2y3MwN12QyiAgU16+qNKgKDvdiTp6Wh9WwO6ZRD5hONTqK+G64LhQVn/3YX5L9kiW89c5lThxrMlKKnnnssrr0FH4tZbcn+T5XX77EAw8tcXtHQs+ay3V273hUg4hCKQ9NxxGu06TVUZ490wRBReC3OdiR88xxPBxbI9JznERunL0b1+haEV1bcm/OPJxjjwp6kz65Mue1pwanl0p2egMydTBMbQhFRa54J+gl4UhgJGMainCeCJemvUKYHlCpQ7VpV0zDnCtXFXej6aObEXMNl/G+3BPqjQ5pmmPZOqaCZ+VZCW6B4vjiuS5FHmOa1uywdLwFTh/7JOfe+S6lEtCpeyeotQ7od5U/VlzQ7DQZjabECmahaXD+7Yucfz2ZmTDHuUZ3EHHjG68B8InnPsbKsSZ2Z59cARXSoU6SpZRmxKAroWUPPflBGmbAT/zSfwDAv/7f/1euffkmo1HIww/JQ6e3f8Dl9y+QZQmdeRk0pPsFRWIy6MuDyrLBdZo0GwaWLfeE/nCP5ZU6o4FgcVW+38lTZ7hxdZcolHN6bs6lLGIM3UXocm0PBznR+zaLK9YMnjUd5ZhGwbFjcm5evvoDhv2U06cf4OPPfQqA48dPACW/+jf/Osm+nHuj0ODBs4/x3/2TL8l+iiLW1wPCkQVKZKNICgzDIlSXFr9uIjQ48+BpXnj5jwAYjxKW20s8//wXcNuSr5blDlhjzjwq11Vvx+bhM0tcfO8aviP7aX5ukZXVBc6ff4ulJRlkHx4eksRTHOVt5DoGVaOBEFCofdg2LWzbQlQZmqEuZSJBN3PaLbUWumMOtrt86nPP89YF6YVXa1eMDkOmQ0G3K9f/nZ0eT37gLEurMqC+fu4ceh6CY/P0xz4GwItf+y75FJq1DqG6qOnK+LuaQc0N5TuVzVRb87yk0uQefXQWVVpFVVQoNBqGpiNEia7bKNSj5P/qOqXIZ1DINE0RQmDMIIeSC2Q5Froyhl9eW+XW5m12dg9mimWmIWH+kfKwMzOBoadkIpv5bTmOTZFlVFVEqLwEDT0gqFcMB3L9f/sbG2SpiVczmR6pUmIhhImtYJPyBSuaLZc4D9W4FMRjCc/SLXUBKjPSpMD1Snb3JYQ6jis0L2LOkUHavhLuSIcBoRLMykqL5oKJoggTTyIcG3zXJi+P/BwrRBmj6zXSTM7ZxbVlJtPDWUKtVnOoipK9rS6TiUrONT3AxNVdgpo82zf39lhbquOq5+51++i2xVzTonco328SmtTqLl4zJlGqm0VpE7SgjFUsU6booiQalziKp5gWGllZ4Or2zN8IBGVhyf0RSOMxukgYH9ZoN5X5eH3Czs4GohSk2VHyzSaJfDRd7oGWY7C/n2NqCZZS07SsgFwk5ElGZ17O9bfe2ic+iJiM5Zg3j3t0dwvICxxlhF0xJcoFJs4s9tT1DN1wSFQyKTeE5LFgIFRSlsri5Jk2N/qXsBoyefP0xx/htQuvkSmTWd0WJFlCpUEWy75zvBItqZEVI1ROm/lFj+EkpsJX71JKATbHJs2OeHUOZ848jmlJ/yuAtbVj3Lh56a7ZumZSkmMqBU6AUstIC/jwRz7C/q6kGPQOPQ73Qlyl4gomKyvL3LlzZyZkUpYVJ06cZEfBkE3TxLZtxuPxzOy8LEuyBCzLmInHWHadIjeoNZVpmBnTGwx47vlPsXcg+alXrx1w/2Onub6zS4qMAYK5EcuLPk5DzoONq33Onb/JYfw6n/qsFGV6+mNT3jh/ke1en5NPyP30wbpDq1XjYEs+5/FTMdFhi8VjDV584V017Zq8f+5dnvi4wQOPyXNNC9b5zK98nBd/8BYArmmx8/4b6LqOa8tnP/FQQJpN2brRoK282Sa9uybSf1H7kbhceb5HoRb1MB0Th2Pi1GBOBXfhpOD0mWNs7u5iKo6dlgvSYkQqlISzaZAmgnbLQVMXKV3T0QuouKu+BFAJbZbJsm0XczrFNBszhZ0o03j//BYr6x4f+LAMtM+/u8XhtZzlRyVv6Otf+Ra3b/zfOIbJL/6aDNi//c0LvP69DShDtFxeENy+g/fYJt1MvotVVPiGS2xXs6xfVCUE9VX+5q//Cr/7Z38KQK+/h2csMa/w/+++9Da+YTAeRaShfPbHPzDPE/Pr/NmFl2cHUykE/FCVSlf/X2k6hZr0hjDQ9HJm1muaJpVm4pj2LAg0LQtRJGRmweDa0STSscwA11bfbUSYVkWKTXciA0zL1rhw8T0M3cJRWds0jtjbOOTYCRnA52XJzjDHXWjNeATjvQmNIOH+BZuNWFY+psMeSTqdHWaaXiCniUGlKpFaBWgFrvdDqjEV6JVOXZnujcZjnFYTvTK4syOfc5yOEVVKtLSKUCa3ppOTlDFRKYP6idDRNZv5xjzTQpnVCoEmdNI04vhZOTYVBetLbVyFwc0HE0qRs5d2abTkBejcH95kfHiDzlKDH/SOnrMgWHbwlemtUa843NVZXNQJlYpirblIZUekpY1myP7TrZDhaIS1Iw9Go6qRJV3mWhqDvvy7yqioBW1q7gJ5IgVXhJ7hWXPYhjyodDPHxsE0K6KhfCbXqXD8MaNRzGhwZFpa8Fv/4L/CVZLq//S//1/IRML8wiKPnJUV2m/96csszZtMkxHZSH5XbcWhSAt8QwYRjqURNPaxqjYoE8j7HzrL3t4eY1UVWz02x852H0N3CBR3g0pnkmZotkdDHdiZpZGmYxxH/t2dOylpbPDoA3Nk6m5eI6WBixbAbVWpMpY1dBGCqt659grByQHhjTf5/YsyWI4NF9NZRdd3WW3JDV8vatSdnP2+fPD1zjHSMiV3SqaHKpHh6ei2TZlNcVQQqBU6rqbNhIUyUWIbBqbpEis5pqy02drdRNf1mUKjaer0D3SmyhrBCQA9JoqLWbY5jEaMBhMCv0apNriMMWVeYjlyfXz72y9yc+MMD39gibQp5/nZk6dJS5Ot/ja//vcl7vy1Vy5xoOl87Xd/G4D+YECrXcOwMoYq05ohaLY8tvc22D2Ul0xfc7nv4QYDpXheVQZ3bg4xdMhq8uBfXTrD1uY2uiEQpdznL13YZWW9fqQuzp2NMUEtwXJMSsXx+OW/+lc4/85Fbt2+gam4WY7tY5oW+0pEYGGlg7BCdnrXuPUnUslx2k/56b/y10iEzld++/cA6I5GnDz1AZ5U+/d9JwMuXXgXw9yi1OR+UzKhopgpNGZpSq8XsrVxwE999i8D8JWv/g65PuZrf/wNTKX26nrvcnztPqpIcg2r8gqbt27TbvlYKtjZ3tokSUd0Om1GIzlBw8kY09IolFLENC9wXRfbc+mpDjUsiziOsW0bUcnxK0pdqr9yZCbvc+3K+8wvtumPZL8sLS3QPLYIjoMZyGdYv9+ntphy7p2XAKj7TVaXl+kOp1y+IRMirfV5RlsTXNNE0UUYh+GfQz4IIdCEQENg2ncVBLMsw3e92efyXApKaT+kHhjHCbUgoFKmnq5jkSQJ42GG7R5dpkqEELPvidMM2zbRTYNMWSoYlpTXdhxrlj03zIrJdArqvCj1ELfu0KnXmU6PjHAL3CDB0B1slaxybJsknTA3L4O58biP57tESiEQIIszyrLEsjWKSO4lOjZlXmCqMCrLpQl2WebEKmnguAae64EoMQyFAPFsynjMhdfkGvrJn/0JdnZ2uHjhGvW2vKS4mk6rPUem1ku3P6AWaFAUCFXlJ0vJNB3Nms4unUFryNX3Q+qKl2mbDRrtLuHYmMl9p5nOaBLiOoJuTyYfiqwkGmczSXfLlwI0RZXTmpPrcXBYYtnzWKZBqckKUBoKKXGnLjt56iJsndWHIxp1GTtdOTciSsCtmWiafIbhIKTSEiw1f9ymQ56ZVEbCdJKr+RmAlVGkuuTUA5owmYz6LCzLpNrh6IA8i8nCkrqv5Em1ENcxcWoWuTJl370y4bkff5z/+j/7WwD8w9/8hxw7eZzHHtF595Xrap7VEWjEaYKhVP7StJKiRIqWqZUFeqaRW4JxppIPpUfKgDwO+f7r/wKAnbe7aJozU87T9IrRKGNuUZApK4aaE1CUDmtrTfZ3Zf/V2x6279Hryf6db5mM4hyRJ6ytSiTAz//8r7K7u8+LL79AqKpuF997h8lYVjblPzjF810Q4m6iXbPRqpg3Xn2NIJDPsL29j2d2MM2jz1Tcvn0bDQOhqmmuY7K1tfXnzL2liqk2U+au12v0iyGVZlAdWQ5kYwy9ycKanAenzixw6b1rfOuP/4RHHpWcXaPSydOMaTjk4UfkZSdJK4b9IadWpQCT16oYJud5+YVrdIdSIfmJB1s0tAr3RJ1z31e8qPbDZMWEsFJK2a0mNza2iXoZj39CXsDMPKW/N8G1nub003K/Pvf6JU6t3I/YfUXOzSKi0WlTaQlLyzJub8/Z3LiiU2tqJArN4ntNItRa/Avaj8TlKgwjwpHasCqB43bIopSta7cAKEuLne0Kodnoql6rCRP0CnHkTVGU5EUlZbhVybrMSxV9351gui4zYaWS5ak0HV+3CCcFdXXhqhwgjdnZtmhcU670xoBEXyTclTAd3TjHcw+e4Z2dLi+fl5C88O0hZmeHoSgJhzIwPDs/x0OPPc528iIApusSJV203CI1ZbagyiOqUpA3TQZ9uYpbsU5t2eHMCQmX/PrwZVbnNDS3TXcqs8Qv/9l5zp55EL3QOTLuqajQNciVCo+umwghD8GjS4olKpIsxVaZibwA33IQRkpzTW7uSw8tc/sHB6T9A6ZKNk4vcjBcIrXogsqmMnO0sMRTErKaXhJFCZapkRZHMq+CoNkgVL4X07xP/8IEo9IxlUxw1NqiN7XJuhmVdqROVFEUBZW6QOvoNNou3YM+R0kjs7BAVGj6D20iho2pB0yVr1YcTtEdgyqBRD3DWnuOUqu4dOs2tlKzsi2NJb9NqCTczcog1aAx7zJQm59mmuhpRlmVTJR0TRiGjHtDAu8HLtQAACAASURBVEduIj/9+U/y8INn+NK//DbPf0RuBh/6yIM49bP84OU3GORKotYuWGp5oDbubBJRr2XEY5vltXnVBxlry4+xvb3L9h1VAWq3MUSLg20ZvPpBTt2ukYYRNV/5Xmgeuj3g0uUhlarkxqGGzghNEeonw4rGvI7fcciUulWzeYybN2+xsriKpzIZK60cPd3l//q9rwMwnu7TbJvcvHqLO1fkM9T0mKa/TWC5bERyHBodjZ3JhEwJNww265w8doLeTg9PHbzbt6dopqOk10GzctqdGpNhNMvox2FMUNlMwwGJylLXnDqd+gK6UgFqhDliXVB3HD59v+w74XQxln02b1XU1IaYZTbFWMdSfTBlijmxwF2gUp+Zb80x36i4M/GJVAZ4Ot5jodGirfp3tH2LWHj0vSZaTQbLWuhR83xs3UFXUKya67O20mFPSfmXScbDj56lLGpcVd5wC0urTOIDSmJG6jJlGRqW6/D4Bx4F4NKVi5SiRNdMBn2VDdVl9b4wc9QZh4h1FpZaxApK2+jAYLRNeLhKGcpnv2lPmJvXGfcOOfbYMwCcXB9QX4j45h9fAKAdCKJpzOraCaZK8fLE8WV8dwmnuE0Zyj3IWcoY9DJCBZXyHIEXCNKJNoMTbW/dxrBK4pFBrlTpRJVxe2PCr/zq5wD4nf/zJSbTjCTWEJqsXC0trzG302Vj8zaOkp8OpyMCb4VT98sL0e3NG7QbdbKsQFfZ5lbT45UX/4Dx/jMUiRybU2tr1IMeB+rScnzlNB/+S8/ywjf3GQ3kBV0YTRAaqQqebU+jUbPodfe4ekntLamHnms41oh2Rz7T6vEm2zf2GCihgXq9ju1FJGlIqoKdoOYSJyM8z2NZwTP3dndpBy6ZqrQ4jkFR5BRFjq4rGHueyeQXBhpHmUWBobnkCkJm2wX1msMbr7/OE8/KoMWuNZjGQ0bbm5gq2GnOW8RZyKmHJIrCoCIeRUzGCY4Sj0qDMXNrNqtLHUZDGfyPogjLsmYBWFlUEnpXlVgKvmyZDkVZkuflDCLmOBpRJH2tQKJLqqqE6m5yE+RlzbbNWYJQ0ysqYZCrM9r3AnRbAwSLi2rf2N6i1emQlwWZkkZOEoGm6bOkjOXYVFpFiYPtKT+8jouZthn2Qzqdo2fXeP+9IYtLCvFimuQZBIGHrdSIW/UW/f6QJI7uwut1QZyMEEpICWFAKShEimPLPSivepw5dT+etcDbb8vgzfQ0qkLQUgqfw2HGxsYuDddmOpRr7dNf/AQXL+wwGsr5Wg9chCjQK3MmNS9tDTJqjRp5IefCZORRq6cMD5TYkV3h+QG2WxGreVZvWaSF9HqaKoW9mu8QxV3I5Rh77gK2XaBpo1kF47A3pLJGMtGnrBB8NyEvwa0pGwIMdGFTMseVm/K8Mp0AX6uhkXOolGNtpZCaKyGsTrtNEkWUhYmvPKx8TzDqeqRxF3UfYW7eZWFlEa8u197TH11naanG7vWM11+UQXatWRKHLq3lDq4p576d16g4xT/93/4FAFncozP/MKeO3cdrlYSjCSfEch3iMKFd78z6OAxTXDWHNV0mnU0DfAXTzcICF4e5zgl0da5Z4++ycX04UwYd9iv8oE29NZwlb4bdKV6joL3soLROmIZ9wshjflHOnzIf4/gZaQgnT8qz4OrlbYSeMxwOWVyVc8iyCqrKw1YIkGk4wrMD0nSCUAkJy/TxrIx3zr0DSi3QMH2EXrC8Ktf/+Oo+lmVJtJOKG7Iso6qqWZUqDEOJNqsqIpWYLooC3c4pUoeFeXlpeebsCb71zVe5pgS8oiyk2Wnxl3/xGd54TZ59Z04dZzw5JDssqQt5YbaNHFyBAuHQnuuQDEfUFjJuKHXbOWuJ0+0616cx7T05OczqJv10TFopdeT+iGxYsjWNWLtPvt8HP7DC3/gbv8yl869y4aKEca+uaIymN1i+TyYkpqkgGlckRcz0ttwD+9NlPvfFL3Lu3IvsK3qGsP/dFyu4J2hxr91r99q9dq/da/favXav3Wv32r3276X9SFSuqCqGI2WCK0yqPMOgQneODMNS9rd6NFr1mYFmaSc0awWacpsXtk+VZFSFhWmoqhQGrm2SFwWFUFLMGghidO7C6PJaiRj36F2VN/PWyhxrD50krjJuXZXZl/aCw6X3fsD6GUn8PbH+AM0lH7ZH7P9A4jmNxSbFsIkuQhwljtHuLPD6pS2GSmwhaBVMRha5yKkr13G9dKmMmBe+8U1GIwnh+uATn2R3sMVX/0jCBOudGt1RhlYILIVNFcaUc2++Qt32QWVINQSWYUpZTqDSNAzTIEnSu5j2UlBaFpqSWLeNnKwJaWbjqGzBe+duY/kaeujjZbp6hgZlVTDsKylRo6IyBaZlzErGQggs00NUdz0zNN1ClAbTUN70W20Px/fY252SprJ/O50VckJWzj6M1pfZAkqb7uCQUqUwnFJHFzpzixa9vSMZTIHt+WRlTqQ8kGp1nTjukSgpYW9xHt008J0Ghi6focxy8oELkxGmf5RZDRj/UBUlDSMMw+LWezdm7+ItBEyTEfWFFtlUQSGKkjweYilZ1Obc4/yj/+bfcGJ9AV3xJG7u7vDw8v1obR9PyMx8MRKMpzruvOy7sVay2GphNAR5oqqMesLtW3uYlCx2ZLb+8E7M40+f4fx7EiNs1TX8+YA0jjAq+QxJlBJHGkGrwVSNV1BPqMwlRqNKffeIqqoYDqaEI/kukVcw36pTCXMmJNKpNXn1++/SrinT6cUVPvLRJ3ntjdfZUxLuaytL4FjcujbAmJPzpT+esLC+wJUbMkP0zNOr+NkJbg1CPCWSEvVvkWbVjOCapylpmZOkYCmosFNzcetNJgcpmfLeyEcmSadEG0gY5LGgxiS3eeuty9QaR9ypOu6BxfWDGP/I1y4ZEuR1ZsnmPCMvC25lOc89Knmpu7FJ2b+C6wruV9CEV4fX0G2HtiWzlW19wo5uIIIGWl+R+h2XST7m9NIxarGEn8aTmNsbB5QKQoZjEUc2mTNGV7mtWsdjMtxHeDrLx+T3G4059q4fsK5ENnY2NzmYHoKjM1XVGC+TQjWGEMzXZGZuoEfU/BWCupzD125co643ePW1N/jCz0rrgBPrJ7l4/h1EMMcL33kBgMc/ej9LlU9TmTlffmeXOweHbG1u0wgUD8MMeef1TZ778OOccmWW8cq7rzOcaKzU5WfWg4q9zKfRgVRVhLFNKDO8usdEiRTMNxt0BwPevSArYP/pf/HrzHvH+PKXf5uN2xLe9z//T/8DvtfCtVzyQol/CIvCSGdGw89++EnOv/19fPsEi0of+s7mTQaDAfedPsV//o//EQDNAOaX1nnpBy8D8Pr7N5gMNlk/dh+6LXkuvf4BlmuC8ggSqYlpuBQi5fa2zG6HWUQ2rHDsRSpHVhny8RLPPrjEu4Ykk9/udalrKywdL7lzS3lvxQXz8/NAxfamhJaaNswv3MeDpyQH882L77K/Neahs+szHl93mmG7gizVpQEoYDsmRZFgWke7UoXn24wPI4pEjkOt1eS9S29x6tgSeaoQEgKKOGBjR54xnfrjxOMRd/b2WLeOuG82O0MDv9VCL2QWPhptkGc6IldnqJFTVSaismYVqKyI0YAiB11BOCthYRouZXkkkqBghVox83iqtISyEuimgVBwnjw3yMps5ssUtOuE0xTHNSiO4GGWRaVJOerAk2iLIs6xLAvXU5X5yQg0jyIR0hgHyNMBrtUg18coWhsH+2P8ukM4VedxZVGUMVGeEKmdP3Tl9xq6STQNVa9r5IUU6gAQCJI8Q5QWWSHHTzNsNm/v8IlnHkYoAlWW5fh+TerCA69880XswGFhaZ5c8T7fe3WT/mDK8VMLak7vUG/4JPkulopvHN/D8hz29izqvtqrl8fEiU6grErchk5vK+b+RzQ6C3IctjcNbNvGc20sxb8djEfMLddpLsuf9y7B7nBEvWby/7D35sGapXd93+fs27u/d+2+vfd0z/T0rBqtM0hIQhgJBAIkIMIhpooEqhJTlbjKLlf8R+y4qNixQxwSL5jEgHGZIijYQkYSEpJGI2n2RT0zvd9e7n7f++7L2Z9z8sfz3LeZIFOVKv+hP/r5a+btc895znOe9ff7LoNbKjOYVnnfhy/w9ksvYFVkdmDS1TEtn5Hir7mmT6EntBd9uiP5/TzHIQpzDroJrltT/WWEjoOjTG93N/YpTFhadjh6TL7z9Tc3yCOXWmWZmSVhckHbwi4tLr18B4Cf/RsfwWrk3Li2haP4XCIx0EXOaBKydFS28dqxOle++UfMQrlfdJou+3cv84o9wlcQyuF4gKN7BFV/Di3VNA3b0vCVd1poaeTmhDIDx1GWA0sp3YnFqn6EK9ckr871mkRhwlJT7l0GhU7enhLlOkunZdsde9TCESXf+A9DVo4qyGYMVlllZ0PugXRhUwlWKbQRb7z5KiD9P0uR4djmPJvU749JipKTK/I+aayk17VyzkUTZUmYpTzy7ofobqj1aRaSphFX31SWKqaG5TiIJEVTe2RNk/6Dh33TxEfXMyotl/aCnBO2r4aEacli2yBRtiBZbNBuu3MEg2dY3HyrR/fWDZbOSwjnxbMP0O+f4uKTVZxM1r125AxaXadzV8E1NzaYiJDStdAUJ/HN7YIHTz+EP+swlCh5XM9Cz5u0l5XlwbLOYstDaBaFWn81y+PZFz5H72BnnpWemgvkSZPHnpIosTjf5sqbHRxzmYcekuvc1Tf3+O3f+B0WVn2qdSXBH3j0OdQH+Ivl+0It0HDssqFUVkCX5LjpdJ6OLooco4Aoj4nVIaJVM1hopEzURlEULkkY0aibYB16w5gUQmcWxqA6ioTCFaTK28hyTKahgAxQxp/YNqdOnKa9tkBRHqbbxzx8NuHIBdnYnv+DfPULz9HbuYlryMl2Y3sP3a2hG8Xc7NBJdI4/5fHE+z8IwEu/9yrD7i6lZZCpQ4MmDAzTYT8N+dDHPiSroLvs7W9x6RWZBrV0F9e2KEmpVRUnqR9TZDGmkXNPcl863RsKg20Y8uCT5/kcWlOImEyHQPlJxWnE8oVzpLmGr0joek0jjQXpFPaUCk/FdeQhSsEE87yAQhCn8fzeh8/WtEPmmyQotxbaGEocIIpSZmFKsjNh6SGZQm5Ul9jbu4muGTSUj0BiGPS39zh7VPaNWMsZhF3Wltv09gaq7gW6DUlizxdVzRQYtkdVcfa64zGukWHqVULFvWkuVNg9uMPZ06e4dVUe8GaDnFIvsBX8xbIsDF1yHnLlhG4HFs12hTjLWVuR9eqMe7hxypM/oHy1zDbbL+xiOD7v+cGfBeDffu63ONi9hW/4FGpxzJIUXbNZUunoE2uL3LqScOzsAnmijIy7e0SpQdBI6R2oNHSoSVK8LheKwSim1jJxazMO9pQ6WVUn7PmUxJS52gQmBk7FYzZW5pzZDL9mgF4QxfIaz1ogjEY8/OgZKoHsZzev3KBZq1NvykWhdzAjTQxKe4tqXfazt18uWGxVWVqwuXNHfhvLrZKlcOKkbKef/PQn+fef/yJ37u6DIQ+YR47A/s4MV23gl1crbNzdJ0tM8vLQKNIgNzICtwmOXBTsvMI0NYkiOdk+ttzCDGxuvLFDNVC+bF1BEZhY7UW6MyU6URg0Wk321ebHSDXqdsB2knK8IQ9SH66YPHf1bfbjjGMrsg1sCx5oW3xHqWl59oz9SCfTF/AVFyYBiumER069l1ouDw3bWzdYPfM+rl2WqnyFnlFdWEYUfUxdqWdqNZ564kGefelFjp9QYgf7Y3r9HVaX5DXdXocsDHEdk+lM+YZ4LuGsROgCW/FFm3aNZx5/ii8/J4UNQqOPHpWYusVsKvvdz3/2F1g6uUh/f8BICcN0t2/w/As3+ciPyQXm7dd3sOs2o407nDsl59PN7Yyl6kmmWU7j/bKtrLtX6d2JCQtZpxOtJTbGGtXTFYQij/umzt3Le5x4aIl4JvvGzasZP/ijH+BTn/4MAJq9gOe4TLd2+Uf/y/8AwHA4pN6oEiXTucm0rkOWaiiqAWsnWjhONucxAQQVm9moghDl3Gh7LDJ2D6Z8/ctfAWA6WWe4NebGm5e4dPtlAFzXpcxcslz2KUqDLNXBnFA/5G8OU+oNm0EvZ6Et55dT51qs3zwgV8IG08EMHZvF5QChgjnHT5/mtRdvYOlizpUybYNSq/MDn5B8rmzQ4T/83/8P7/nQx+gPJQcqzId0N7u4vouulCHSNEc3DISCwxmG8o4ybAmNB576wHvp9Xd54smzTIZyvHc6txgNZziBvCaOC8azEM+r46u5s9UyuHVtxGc/80G+9IVvyj48GCLGydzfRtd1hCgxTX0unKBrJiUCkWtzT5my1BVnRb2vUeL7PtWaT5ootc7ZjLIssWyDODk0Ei8xXW0OY7f9KogK09GYWkt+h1ojYDDs0agt0+1KArtBCVrJaCoDC+12kzwrmYwjbFe2QbNVQRQJpdDnIhciFYjEmKsMinyGrpnYjjkP8KRpLOGCeUKu9iBFLmHrhwp4RubiV3SE6fCrf+vnALj29ov8yR9+lzgGv632M6VBlljEKqB14vgS42jEdBrTqsgAwWB2gGF5uIFS16xJblmtVmN3U877IgHNyRGiZO2khLEdO63z4p9lNBfkfLCwpLF+bczyskeh1u3WSs61yyPsskmtIa/rDvq0j1SZKWU3T2tx926E64XUDHmwqC0t0litsX/rJn6gzM0nW0RT7x5ktSiJkpAkdlk5Ifur347Jxy02b+5Rr/mq7TxKI2WmhCpMV9CorbK6LKjWZD17nYyNq/sYpUtQl/ev1FNuXxlxKEj5gR95D9u719l7G6p1pSiYZhRJyVMfFAih+pAVcO1yQqQ8144cWcFyCkxLMFYaZZVam+l0CGZKV4nAWFoNITI8NWZszWIymuFUPSbKTDqwXKI8YprltNScYJYjqqsex87Ittu8MsEZG6SWSTdSfPx2k+lGn+nQwVZQT79uMOynVCpyD6QbKYZZomkGlsqFuIbNZDSloCQ6NBHOS8pCB8XrW15eZDgcU4gEx5Z1iGOdhdUmFx4/yda6DIpeubyJqaU4KhgvzIxYZDhGSRIdQj91klxQqGCgrQcYnkamxzz1tOSwdjZGbN3YwvdrLLTVoWWcEwqdxaOSStPvbjPdGyF0l5UTcq9U8QU7O3ucWnsfk4FcM1fP2OjVMxz0n5PvWzUIZyVGHmAbSmkxqZFqNfTGlLQj5yWzZnB0wZ8rO47DCM+s4HkeUSoh27pVwTJ9Wu2SWMFkR8OEyYHPuUdUgHJyk4XqKS69OKR3INtp2JsQRSmnzgeMVfB9PKySdSff32qBmqZjKhd5oyzR85xBkZCpE0OZaUSajo8+VwKzTJ/ZNCRV2YkyLzA1kzCMqDaVgkkpEGpTfJhBKIoUy/IwVHRNiBJLt8i1nDSXA902TC6/foXKVoXzj8tNxJEzLS5cvMB3r94B4Nsv/xNW60ep1y2mA6WKkxU4WYTl5ZShnCCaSxYnjq/x9S/IjJcexxS+TtJPMJTqiKmZkOssNRpcuy4jpAYWSZSysixJfmZpYloloiwYdOSGyCkKNKNglmWYKqJflhILe8g/EllOrqQz54u64ZPlIaUKuTm2R29/SBgLVpflfZaX2+wPBkSxwPLlb0mUIvIUO1BRxyzHpJhztwBykaLpFnmeY6jFS9M0xqMBtnF4+CkJfIMEGPXV4XVwnYofMBmFnH7/IwDceuN1WrrJww9KrPGdzha37+zgEEnOHeA4At3UMDSXWBHDzaKg1DK2tyXPRXMsTM+k3hSkioelOS4nzq+xfnMTI5fv55cCYdgIFVFMsgzL0Sh1jaVFucmtL1bZ2rmLngoKTU6Svi3wgxqVo7JOnnOKz/zEr/CNr77IwaGKmuES+FUatSaaOohm+YxoNJlHMLf3e+gtk0uXX8JT33PtdJPJ9oDRCHShTD3tjE7vBk9/QB7Eb61PGc82abZP4lhycRz2p9RrfbKJT4Zyfz9eIZ6lRKacMPyKi1YUiMwEZcAYZQmCjI3tLVptudkJlg2EFlMo2XW7njHY67LcWCSM5ESzcsLm6BGbcJjPJVsNK6PfGXJkUYaW2g0fKxDUVxIONlX2Tl8h1iYUytC6040pdReBhu3JBUYzIooURDSCUtVTE+hagq3JTcX2zKLoJNQ0i+O2rHfoQeY0GekFtbasu5ebbI/HoIjibm7RtRKCEm5trst2aZjYZpUnLy4w68iIXrNtcXlapdOXk3tjsY2IY3Rji9KUC4VHQBnoDCddHJQITN2F+gLLy5Lncm3rEkulQLds6kvSduFgOOGFF76DmHWZdWU7HK2uEvYzxjuy/6RWycKxBdByqrFsl93BGN/W0QPBhcdk8GbU6/LmziZhLHcMjqhgujmJLrDVeH/j8ku8Z/mHCCeRPFwD7/vgaVbqLt/8lgzmlGEHK7FxcptsJCPJNWPI8RNH+Oqzr2G9LdvzM3/9h3n95bcIB3JclSkMv7qOn9jYx5TR9+0Op548QqkVOFO5efzUT53iocfeyxvfkM/75re/wOrRNY6sneVv/52/A8Cv/Mp/g+v7ZKmOoR8asLqMBzELyly13+uhaw4f+ejHefU1KcEPCVke8su//MvEAxkBfum161x56xXOnJKZwD1rjR/5yWf43//Xv8+Ker9rtzapBv6co+A4OoZVkgubsTKdLguD8STFr5oMlYralWyH7rhkRfEdfEfnYKzRuzFmUSllrTYirMIhaDksr8mA0vrbG6w2C176hjSzfeSRD/GZX/wlNvsdSsVpOXnsLI5ZZW9jB9M8zHyklOj3OLNqfs/ybJ5FufTGJR596iF6E4MbN+XB/uKFBWbTlEhlXpLUpup4MvusBCamaRW3brPX3aZUPJ58KucvodZMTdOkqIXG/ICiaw6iiNHQEYrva5pSlfdQPawoSiqVgLIs0A41sjGU0q9AV1ytRtsnSWeYKrKsaSVJlFOtNonUfJOKKa1Wi0IUREoyGqAsBXUlQjGdJIovkqMfbh6zEtfziCY5I2XZ4toWZSmwFD9n9UiLQX+Ehjm/d57n0iRZFPesLYQUj2qo79CPE0qzimvlvPBVOQc98v4f56M/dY4//N3fJ1AR/LyIiMPwkCbNxt1dhKaj2Sm94SEnyaHIdDz38F26FAVS7EsdEHzfp7Lg41gZP/ZpqfZ46eV1dO8yin5ISUCaW1iuxX5HfvfBNMFzXcLJiKI8tCqw6HdCCpVdTPOESt3l7MM+YUe2UyQiLKvNqF/iOEpmPQ0wrBlmGahvnmI5JiMBkRIROXXqFKNim7UTLpt35PfzXI1cjPENeRjRc418EjExHJZqcj5t10p23Cl6IjjYOlDfYRW/NiLw5ZryxktXMYoZQcWj21dG7ZrN0ZWAgy2NcCr70I98/CNceunziEOBkP0ILxDY/hSUUNQk3KYgp+4vYCzJcbu708N1PboHst5HFitUqg7jZDBXhMyyjMDy0IsU4zDwZXm0tWXSbfn/Txx/kP7GHgeTEr+rBGxGU3RMAj/G9pTcfdVFpAl+RaGKHIsk61GWPsZhIiRLochA1+cBCM/xcXWLoeqvk8lMcvQMC0sJi+mWQ1KkDMJ1SiWzfeaiR9jNKSdKTTeZUHE88iyl4spvM4771FqVudhZkWQYhoteVOmp79nya0wqAdMoIVb7qTCdMhvrDHsywKWbYyp2jTRPGGzJb9V8YIH3PPkAz379OUzk86qtFqZzlaZa/5PUpNmakgxsPEMe1CZJBKZGahRUbDnfbG6XrDYtyvxQv6HBwnKFwbCLb9bV+wmicU697uGoIPqRxTUm7oSgKus06i+yceM2t9d71BpynXnvh06TipTXX7xNpvZKtXpOXx3Mv1e5z7m6X+6X++V+uV/ul/vlfrlf7pf75X75T1C+LzJXZVmAgn1ojSpxrlFqOro6KluVgHQYodsOK8syyliEU4zCpTxM0Rc5egmmY2OoiEKBQBc6jmMrZR3Icwlh0PVDjpBJWSQYho6lYHImNo2KgRA5r78qM0mrnTVuXOrhKYnjDz/zKC98+xa7G7fmEeEEQb1pY4s6xoKMWCw9aLN/ENNSyZ1BPEZ3wXIqMvoAMtqnyajbaCAjQvV6g0k0ol05lJqvUxYaUdhDU3VPkxRR5hSHRiLIrJVhGBhKmjkTKaZpzGF7AFppEARVpgN5Um+0KqR5TDxJOChkhDaMEobDCUG1Sb0iT/29aQff9+ey9pmWU2olvleZe5uASZqm6LqOqbJnsySh4TWoKF+fNNdIUvls1zk0O3bpH0wRRcLXvvCn7+gff8CfzP/72HGLMB1SqOiIVQo6WxlrZz00pXSUJgUin1GoqOrxBxaYzPYocCGX7XDtKzd46rPnuHDxOPGOvNfezQPGWZ9YRaTlN5XfcUeZMs4eaGOYNo0THgOVkhd5TpgPeP6PlQRp+DV+//98jicefjfnz0v5VJlBjAkqNoOhvFehZ+gmTBU8xNWaGOWAT73nXVzZlBmTab5Hw1xgsCuoHWY6A484T/jOSxLOZJgLGI7O3p7AVBnaquMwm2XUnQD7UIloKkgmCc26zMaWxpTh3gzLMTAs+S55keI6LuNhQolMpduOYNQ32HWUOqHVpNRHrN8ZzXkRR4/rdLod+pt1Gk2ZTer0d3n6449hBjKqud0ZUGoRg/E2j7/vJADrNzs0ax5GKfv5/naHdqsK5hiUEW8pKlQCnWSgkytoW2bpNHyHTMlIlU5AzXZJdQ1dRfhPntXJaj4vXZ0QqqifuyR5gYarMnyZi186GIsWTQVnuLMPZxZXCGiSh9cBuP5dnai4w9KSfJfpKMLyDBzjBEIpJlXthF5ZMCOlcCQUcv16B7O+T3tZ9jurB8NqQhCcYLsreQS93dcxjAzHNhgrjzet5dE6/yAHW/L55BmdgzFeEGBo+2ra2AAAIABJREFUCp5lJmjCYmHtyFxSef2Nu2gi59Of+BgAl95+lc2piZvmJJ5sq2FvSNEfsLpYcvbdEvaYtwS9u4LH36XUrpK7bOxcI2uaHFV2ELOD77C/8yqNRoo5UuNhWJIaAT/yo08AcPnqJhtv7hHPZoR9+U0fPn+Gb335VU4dX57Pw5evbvPsK/8CW43/Dzz4BOu7Y5ZWVxir6O/TH3yay5ffotKoc3AgI9d+YTAcCz772Z8E4MbNy3z729/hu69fJ1FeNOODkP/jN36Ln/ix/4LasnzeD6w0sKsZl5XZ+pmzD/Gv/vmvc/vaLidPyQziZ/6zXyIISv6nX/sHss21UkJMcgtdP7S20JklIWVZkKqM86PnnsLeuE2uZPQXl3w6/QH1uo+t4K67vYSgbVNvVDELmbmKkuv04xxTJV5uXbvJ0pGjdGd7PPKYbM/v3nid2nKNg/1dhIKtFUWOZbtzDoRlWYiiwDJ18kJ55nW75EnGdLLP9q7M3tmOhuMEFIoPXKlY5Dl4FYtKQ0auk9ii1CzSqcWZ4zKDMOi/RZw2MRU8rNFy2NvtoesWuYImRhFUaiZJLuZQurIs0FSbySJAkybKhYIvWoZJGCXkhcD1Dv+uRDcNctW+eo7MgBHPrxGlIE6mjIeDOWQzFwmaVnLsmBx7o+GEyXRAveGSqsx496CL0ZMTYqRUIRPLpNk0OXZ8RV3TZzKdYeoFhbL8cG0HkefkqeAwgaDrOtV6E0s+nsWmSa93wKm1E+yMJFf6yu9obN+JqVSh35Nr+3t/qEnVX+P5r11T/Qyai3VsL2VfmdVrhsAxPEZ9CaMNE5nt0zTm8vcYgiRLsEyX3//dF2TfEDG+3+LoCcVp7bm85wOnWb9xmWBBzadphcG+wDQ8IuWdJDKTpYUGE2Xzsjc4YHGtyqDnk0zVvdIRVifGr6YYSCSHY2cs1ddIlCx5GEVUKwazaDz3aspGHkfaj6AvJbiORAf0e0NW2uc4viLvs9A8xmjW5djZZWbKrPrV164xDQWu0DDUVjXTU37+b/4wWzdlu7SrR/jW1y4z6Vk8ck5ms9wgZW8z5ea1IbYl6/DvPvcNLEujvSTXpoODHvFAZ8FxSBUUkkKqTe5u7ksPSMBzTUDQUJD4SW7QCko8fKJMwV8tnVQHp2qghcroN3TYClPOH5X/P9uaMCxjnEqVXA0H3XOwyhzTqM+5i7NhjmX6dBXn0rXraIZDqWfU3UOaTInjOGimhuPKbxNHCaPJFO3QyzDXKDWBZjrz7GtCRKXisHBshSOLEkkxinfY1ja4fSD7Qb1S49RDZ9kf7rBxWe5Bjh1vEUeCaKoUBjWdWRSimQ5rxx5U7WRw0J8xmUzodtRe3tDwAp2aypLlZZVhNMUzHPJMfr+33hxwsFejWW+jK737eJqyVC3Z3ZHjxbOXcUWTUk9AcfQsU2NtMeXOtRy/Leeli4+ukIoYQ5mDO9UQw24zDqFSVTZAYYdJH3Zyi6VlmZXKtBLX0dleN1UfDtnby1leXmY0lGPmuT+7QXuhgl/RMGryfeLkLz8+fV8crihL0kx28LITMeoMydFpL8qB4AQ6RsMm7AjMQ/hCOCUoY1xTTjSzJEEzXUrdIFHCBoapYVkWRZHd833SDTRNmx8GsjzH0CFOc0wlja4VJZopKITA0OWHS/ozckfQV7hzDBecOk+8/yL9fWUYvJMznk2oOjGPPSU77/bgNlEccqwuJ5EDdAwtZ5TMpBAFQKkjtJiVo8epKBL47s4BetWi3VYdrphw5/Y+i/4SkYIvmo5BGhnoMIde6LqOppfzReEQulGU+bwNHDsnL7S5qbBfDxB5wmxW4Kn0NIVOEiU4+oyxEm4oNIjzEk1h4z3Xp9ANsiyaE2OzLENkOY7nziEj1SAgiSIsdcCrV5cQhceI2ZwrsdBe5uHHF7n03I15t6gtVFiu1vjsz0je0t/9B7/O5kbG0RMaUw4XdTW5xCGa8vGwTZ+UFKFIzGE0xBR1SG12v7s+v/+tq/uYjk2opK2nO/cOVQBW05V8AMcm2pfp79GNHscePc2gn2MqovaZR5q8+dJtPv6p9wPw5nfv0nl9A+N8nyKXHL08L2gsNtnrb1Mo0nk0m3D85EnqDdnP97fuYAU6RZHT8iR8avdgTLViYDQTskTJkNd0iqyGLc+87O5sU/PruH6BrQISpVsQdz3CaESG8t/Kc1w9wPLkpOVXXLauCFbPCylpD5TCxXEEWZIx2DmUxPXw7BzrEFqb5KQ5OHqNNFOO97OCNAnIgW5f8kUeuGhy5smEcCShWLf3tqnXDZq1Out35HfvTSY0a20cU/apj33io3zrm69h2lW8inKNn2SYpY6/7NJUggs7/SFVX8OQczR5mhG0XO7uWWiB7GfdfpdZWaf0TWoVha8exNSaLnkpJ9vAisiRZP24IzfwlBbmaJ1EtNFOy2+zOnaJ0wGbyr8ms2yMoiAtR6BI2mFWgnDJ3Iy3OlIWeK1mYfevsl7IOtlFi0FcBaeEibzGtw2c0iJ3QoQyCLbEjM29ETMlke/gUJoWBRp2oHZzswnOgkkax3SUsbdrwKmzi6w9IOtpume4+yfrCGuKoea3JM849nCFxbWYqbJLiO6M2XvrK/RGKqDlnUVnif2tO5w4K/uG//BPkR0MePqpgCKQbXXtxm00rcmXvirfpbGi8dRPXOSNG9ucXZSH+N6NAxaNgvWNIR89I9vqKzdvopklDzTl+NiNE9549XVef/3l+aL3n//VX+L2zXUMDRbVpmg42ieouTz3/JflvbsDLj65wtbtMcsq8OZ5Ds9/6wr/7Dd+lE9+7GcAOHZ0AaeasLsrxSRGBxFuaHLhwgW0hhzHW1sbvPrSm/iq/wiREIcGtlOQKvsEXTOxXYEpKpSK29tuHWe/OyBU3JswGXJhJeDNzclcjGeWjEEriKIZWSrrcPxkQDjLyZVZ7nj0Flp4h0ef/gilUJYRy0cZ73c5ev4ot96QBO8g8Ck1sBW0LgoTKZ+slfO/a1RsvvvCmxw7ucqFM8oXLUk4GE9xFQeqyHNyzUK3TEy1mUyzjPHsgP2OwVEFjXrw0Qtcfusu46Ec/ydOrdLvd0miDF1xPCzLYjqZYts2QvlkaFqJ49hzvpwfmDiOxXiczA3eJ90popBGw57imXgVmyQpiVL5d8msRGPGbBbiB7IfnH/4MW7fvUIUT0hTdVArHZIsZkuZ6DXqLdAs9jt9WkoMqFJpEY2HGIZGQ3lKxeEUIUr297qqT01x7CqFSOcOXUkcUxZAqclgMBJiOBwO0ZT1RKMZkKY5d25tsbws1/tnnnmCZ8WzRFGNMx+T4+jTv/gLGPkRXnjpf5RtPogY9EPOX1iGRPa94aSDrofzQGar4pOJFN3IOPSFzVOH1aMV9vdnRCO5dpmeTiF0wp5cP0qz5OrlSyRJwhNPyCDi689PyQvJN89iBRnTNYajLpUFOT5PVs5gVqYMeyNGXTXn5RpaEeNjce2ynOOXV8+iNQ1SNY/MZiV5HhMEAWfOPgzAaNqnGGUsLVR55KEH5HXTFLJV1k7Ig7AQgnrlCIPhlL2+FGo6ej5gd99h0uvzgY9Ibs9ev8tLf9ZlciDHVbXt8cAHL5JpA2pK7OTNr+5xsDHGsiwcP1b9GtaW1wjVQcpxdWah4GBHpy67Bqalk8UJgV9nOJDtaVs6eRlRVyIGO4MeZZ7j2D6G6gdlqZPmoNsulYYSJJrGxNOMoi8DFIFzgnh8nScvXGA0kDLke6MdCl1gBz4jJYlvWRqiSDm0eHTtgjzXMbAQKpHg+C7DgxG2oc+hiWmeUVlssKCMd7e3Ori+jWGYjEZD9S4mFjadzRkbN6WJ8MFOj2bTJFB8wHg44871LUJ3zEPn5fx98vFHSaMpz375W/Ld0Ck0h1Z1kb4KRAf1DH1pRqUYMNuT/dwybLIsndND0iShErgYmkYey98Cu8p0MkMzHFxll9DraHidNsvLsg9Hk5TAd3G8jN39jvpNo5wVGFObIw/INhjEKXlYnUv5T/sT2t4SU2uD7U25UTh37mE2xBa1RoDhyb3L5t0Op049QH8g+7TIM/yGy2AvwtDlPmW57bBzd4Bb81l7QK5PcV+uuf+x8n1xuNItE6tQPKlU0F5ZoLXocuYx6XY9ClOuvb6O3YRMKe4sHztK015kd11ulqsVhzAu0XVjHk3TNEseprgXbSoLKHWBqRY0wwS9MEiEQKiBV1loMM5S8qTEcZQDfSHQspBcTSI3bm2jFwIzX+ax938CgIvRFLMo2B/doN+TC4MRnWWhNuW6EoXw222mvW1sp0RX5jSFyMGAbrdLrrD2CBsDk4X6SQB+/Gc+zOf+4PN864uvs9iQu+okn2AZ0gGlUPIRpmFKfLhSOTIMA92QOP3Ddy7JEMJEaJZ6NwdK8D2dOFbkwNykXmkQuA6jsYxSp3mGaZpzTkKSCqxqFZKSUnmS1Ks1hkKaEjoKVH4oqjEeymtE1ueIMpY7zKhZjmA47L+jX9i1gH6SsL679Y7fHeGi9gLEpICgzHRKdZiK8gjDdIk3ZJtv8r2LnruMJiOOrMi6THnn4cpxbdA0bMck+nO/b1669Y7rehxw4cMPI5bkAD7+yAohEW6zxm/+2v8sL/q1712H29wB7rzjt+kDGzQr6iDqLRImKe0jC2yvS/6NFqfsvjSZX3/ifcvcfWEfcWGGp9zmq7UafiUhGQeUpbzW9SAcGvzge+S4evONTdAtDOqUhpyATVuDXCeelDxxUUalCpFTCIPOUBLHZ9EY09KZTcY4vtyg7N+xqAQOjh3jCynK4Am49PId6styDNUDl/E4ZNQtyA9NL02HPEyZjZUfyFLMcttn0J9QMeQGpbYQM5rt0ly1SBVHr1FZZDDYxFXXREnINJxxdtWjqw5cFOcIszHBCZ98og6PtT5JmjPuqfssFxhhDKWFpvD/RRZhLJ5ATxJeeVVOro+er7HfWGSaKj8u06FFSZrMGKu+X6l5pOMULS2JVCTSX2ziktCfyL6lNR3S3oQiKllSJqa7RYprefRTn7NLkmP5yQ8d55svX+fbl9Xf6S6ak4Oeo2ty0fEcm7Cc0aj4/LWffjcAd4e3Ea6NZcu5rN/dJ9ZGtEwfQ2WOy2jCG6/d5amgRawi1be/ssve9pRpU24i+r11psMBH/uBH+Dlb0nvq2OPvQu/6ZLZNXpdOSYnWUpqjTB1OUfcfjNA0wtabQ+hNoa3RyMWTp6jMt1nM5GL+IMXz2AMdd79pKz3qNjgve87j+dEdHtyc/zHf/R7HFteZf3Ozbkkm1naeL7HdCqfN572eeuNKY2mw7FjMgP18ouX2Nu/wmvf/VOEOvz/0i9+iu8+/yp+XW52drtvsbPfZZimLCzK7759dYOrb69z9ozc8PUmA9A8hNAoFDFeNzXKzABTQyj/qM/94edwdR1dmeBGScqHHn+YZ856tOpyLLx97Rt09hPGcUpbRVrPnXo33/r6d7Cq8ls12ivUgwDd9Ni4LrPEsyJmsXaGp957kWdNmQ158fnnWWw3iZTojWFqZHmCaZr4alc2SyMMNNYvb3PxfTIjs7TcptaocKB4hINpiiZCMpEymsk+bAUG1ZYgWDAIlcn97n5Cc0Gbe0w6niCo6mQp84h7LiRnSopTqHUliylI5/5YnueR5xLVkKgAneM4ZHnM0soqpqOyUgi8wKVSV8I0Vkr3YBdN0zh7WvJxl9sn2dndRKfPyqIcD3GYkI3juW/ZZDJEMwWeb1GojF5exBi6yWyaYJtyQ9tq15hOQmLF56IooZBB2EIFYTV08jxDlAWFWnwWlpfY3d9nUZlQj/YmuJbNYm2RW29LnkmRrXHhA8fY2brKrbfk2Nq6ofPKC88xGch7N1oCUUZsbm7SqBzO3wGzUCDUfiCKQqp1HddjfuCKpoLZNOHISZ+da3KeuPDEOXoHEVs35RjymiaTUYrjFbzwp/JetqvRbFZJs6lUggNEXKMSFAz35c2DVpciE7i2Q3Dy0CQ5Ym/dJtcMbF+2QW1RMAz71Gpyw9kbdpn1bBaXHNZvyMzc2gMrwIBbe3fJVNb0wfOPUJQDXnxbBqZ9V6O/E1JzdBrH5Pd0/RrPPN1gd7TD+Q89LvvC8y9TD0ISxYEqwpBo0MKsVfnal6Rq83A9wazZ5HFOM5CHHcc10awCTch2Wl6tgRFzZ33KZKA8QrWc06ePMuqFjJUYT7UeYNjeXHhjcdFCS6sYtoau9kpGWhAnBUlkoBuKg7RSJc9zsi055+64W7gzgVfo8wB21i+o+BUG4wGKEkgqBIZuQynHkGmXpGmBoQt0U46H0biP41gUWY6mtvDhNOFv/e2/wfaWDHL95j/9LexKm+moj62yPVma4wibW6+NmSgjaqcwCYSFqNqqzW26Wx2SCOJIBcI+9x1MbYJVykqankBzTSbJAE2JXqWOIBuXHL1QxX9Aeu3FnYTXX3mNUikBl1ZJOEkoSpPWgkpkCAPXaSMKSFTQyTYqtOsNjpySY+Ht1w7Y2dkhaGg0FxQCxc/YX7dorVSJFfoBXyMTGYce25V2iWYPOX/mKTY6UiV2v9/hzCNV1m9uECnV7VyPuXrjFseOy3n/7sablEMfco2jSozL9VPax6r0+0Nc5W9VNeqMv99NhEtR4i7JDnD+kVMEjSpJoTPqyYpffekaRgGrJ9YY9uSi41UbaERzBSXD0HAqLoaIQW3csqzEMHJ0XacoDk12C4oix1bmh7lISVKBbpSI7J7EqaP7iO4YU00+XmWRaXhA4MoP0q7VyJOUg/0pr7wuF6t2tUB3C1x7lVZD1qs7yLh7e5/26iFxE4RwSPSCREVDHcvBxMRAny+YCA0j13nhJRnFWb95F60o0fV7whsUDoaWYxkJcXaYmdMwTQNTHWyKosAwtHsZKUAvTHq79zrFXeSAbJ5axXCUUp4B03FGrhfM9u4dOkKVMQJonQyIZxM8050LaGxevneU0Vflb9Pd8Tu+t7NmsXlHbtSbLTnIwkk8j4wGxw9hD/sYgcvXX5JE9eNHm2xsD9A0DV1F9GueQR9BKXQcJYUuxJTxzsH8eZUzVabrE4yjLmL73ntPJxNsU2fafeeh6rBYjkmh5fRv/+URCoDLX38b8UlJKr728rN88Ece4wu/9Tl+6r/8rwD4sy98kTDaJVMHzL+s9G4MyJUcre/Y7N7sAffq8P+t7UyR7X3fp1DfZzIdYVsOZkXDVUTxaGrTWNEJp7LNB7uCSiNlZ7NLrSH7R7PlYZg5/kKdulKuOnl6FcdpoKks7r/+N7+JZhQ0GgWJSo2LuMlgtkM1aFFbUMIlhs6DZ97Nc89LyMqxtSXGo5gsN3BUP5tMMvwA3Jqs0xtvvUZ7MSAvLLa25Tc8dd4gHxpcfX2Kq6BteTnCKAwE8hrNNjC0I5w63aK4ppTjHCgnLdJkBLG87mAroVE1qClRlul2n4ZTAU/D9lSDCp1h5HP29CM8cPAF+Zt2AJHByceVdPH1lGnfYTbTOb6m5HAnUwzXx9RKNBXg2Sl0uoVOrqJy9SMVFiKX8f4OAxX1dxttBuMpo9ziek8uzkbrEWorHisDWandzgFFWCLElMlMZjDyosQ0Kgx6CV++LuegVdfgkw+eYqMr67n27vdwYfRNrnz3bSp1lQmY2qzf3aa+ZnDmhIxOmrW7tE5U6WyqnVt/wM//wo/zkY//EFf/exktXKhVyZDGo9OxkjR2faJBga7JhTAfpViOTjjxeWUq62TUW3RmY/TWAnlDtnutbvFLP/ur/OvP/S4A12+9yrue/DFE1mM6k88TaYHnR9TbApRM93QGUdJnOpPPK0UN204QqcG3n1ORVT3nS1/8En/9v/45Bj15r3/3xT8iOFKnMZbfoVL1qWg+ywsL7Fw+3Di5HPvYu0Acmrv2sD2dNHVQywciB9NwiPIQW8F0agWsNhY5flZmiD76iZ/D9Oo0g4CXX5bQ3Y98/ON8/vOfp92ucrAtx/If/dGXOHp0gVW1+TgYaXjNNkZg02jI7OTFs4+yeesO0Szmx3/yrwKwtbnPsLc3l1guy5K80CjLco7IcGyfUIzw6iavvXQHgJNnPBaPGgxnso81Gg2sUKPWXmA8VGarVYf9fkwhagyUGI9mhDz68BNsK9Py/f0DJdOcUhZqrtZydP2e8TvIQ4AGcxSF7ZiUFFKAQwmU5FmKrrnopkOuhDAKNKIoxfMUfC+eIUSJ45hcUnLU2/sbiHKqkCiyHXTDlsJOyny8Wg/IsoxGrT631xBZga7Z2JZGpaaEqJIETTPRlWlqqafkahN+qCCoaTqFVlLqJpWqnKvqzRqdwQGdVFkjWDq6Dr1wHyuQe5Cd299m6zaYVRtPzeG//U//GYNuSDVQUvNWg8EsxQsgK+W90tJAlBpCZWOarRajUR/HruMrw96tYRfDNSmKlP0dNb80CvTSm0PBLMcn8B0GvQShAsOtVg1RFMwmzFXwDHdMUdjMRnJcx5mLF9g4jkagDrmGlWD5E0zdp1Dtc9CxOHPuKBVl6nvzhkWznTMa9glUoK+zsUuSmggz5eGnZPCoulYnSvqcXpBrStU3iMiZDj1ELLMvN67uY0YRlcUqX/z95wFYq50hDVNOHVciScsuByKivRpyTgVFXr97G00U1BdcDP9QBEawsrJCpyP74vWr6xw75bO8WmE2Ooy8GwxHU7y24H0XTgIwHscMpyNWjsqDRhJqbN0csdxaRjMVWijOSPIEE51QQf6blkdrzQdl09EaBzy69AEOugMSpZTZXDxCmUyoVHxSZc9SajalsLFt+d2HkymLSy2SdEoSqm9q6RR5iW6ZaCrg4fsOt66v850X5RyIYRCGEUKUxCqbvbTcZuFIwOD6EN9X71NO2O12eOziXwHg4rvWePu5F3jzyjW6ql8/84mLbFy9xvZNJbEe5VRqFvFoxv41hZioB6TlSW6NDnj3u6XoRLtVsLl1i8lEBm414XHkSIPF09DZlQGl3t0ZhuHTGyS0VVZ6Oi3Y2bqB1jgr631smSypkyR3GXQO928WjZaNIOKgL79fsKrj1SKSWPa71E55e/M1Lp7/GE8/LdEzN25pvPr8AZrVI5wpY/qxQbWic+u62ktoHq2KSTjS5nvSXBdEacH58w+wfVcGBKJeHVSW/HuV+4IW98v9cr/cL/fL/XK/3C/3y/1yv9wv/wnK90XmyvUMnv6w9FdZ3+lx49JtrJlg68YdAOI4o9pYYHb3DraCv90Zb3NqrU29JiP8w0kHYQncIqNQWZs0LyiEkiVXhHlNEwiRzyVrDd1G0yIKMnSFmZ+FMbVTxykSgTaREQXfgrzWoIjuQd0yt4KnTQn78mRupDa1lVVmg7t0t1Q0u9OhuSjQFbBsGgpyt8AOXXRlepcLgV7YkBQ0WzKSM5tmmLqOqbIAu5u7kGZU6z4z5aFlAbauI3AwFGfFsg0cx5/D7QaDHlDguDazmYo27cj3bB+XkYJZPiXeSRlPBnOPktXlNitHqtx4eZOlR2XKPxmkmKVFb0u+b//OjOqROlkxN9l6RznMWDWOtRhu3oP8WVY+T3vn8aG+Z0CrqdEj5JnHn5HvHHXp7U9xM3nNfiyjJOub4Txb4JYyQ2BbBtOJimoYhw5bsij7GRwcwj+fxtUFhm0Tpd87tRsmU5Ld9Hv+2/cq1557EYDAzfnmb0ufIUcFdtNs9heyViuPH8WIwZ0pXgY5ZZKx34lIFZ53NCswF30822ayLdu9udZgoL4BQKpgaYPhDF9lVnWjQHMStl/5i5GVLSRfpX18AcoKvp0hFOdxMhQsLy0wmUy5ckVmNC9dWsd0bLZvKnGFf/i93r7H2oPL2MUquzMJiTn51Fn+7f/2pT/33Ht1VhRiasfqlIk5l4KuVeoM91N03cBW0sjp1COoVkmiHnZFfndDaASmj6aycqk2xvZsXn2zxxNKoOBW5zKD7h5+XmGsIuy1JY081DBd5QMXuMwqFmEvplmX98otl9Fkm+duHeAEsm3joY31UBtLcRTqPmRFQo5DXMq/M0uLcBwx1ROaS7LPxlnJxLI4d/IkAHef76NbGrrbYDdW+MW4pLRsTNciVx4d//j/+ipaPEJRzMj1EK9ZI8l0TMWvjMIIc5whGgaDgRz/UzPk+l4d05B8h698/SV++MOLDDsBvaGM3us2TDZ2qX3kLPvbEt7nPvgQjaUh77mozJbzMZdHE3566Swf+aEPy/bsddDSnJZTY0/Jz8e6IO6PYUG2r43LYNih6iSsuDLC350OEXGGwGaqMo/17DxVbY+GLft+LQu58a0/YFev4FXkeJxOBOMkB2M297Wp1pZJxJBcwcpKQgLbZ9gfcfashIj2OkMee3iVC+cew5jKPre9c4VR4NMNZXRyY6uLQZum18JYlBm28dii6q7xyityHK8sL7LfHVES4bjKgD3JgQhLM9DVvJSWgj5jkrsys7P3O3/I3/x7f5/17auce0xCa3/vt/8Nz3zwo6ydW+GlV6Q0+r/4az/L5373X/LiNyX/YeU4/PRf+RQ7syE3rsg6reHz2LueorV6nAUlMf4zn/kFfv0f/V1Wj8jMspYmFFpKHCUUSjDEKQtc0yKOHBrKYLa3fZX9DYsL75J9I9JicEE4MFay5Mu+TWBWSKYZnX3Zdk7N4U/++Fs8/KjMOkyGOmkivalyBfM0jAQ0ARhzFAOaRiHKOffWtm1yMUPTtDn/N45jbD8gz1Ny5DedzMb4QZ3hWI6PYW9As9kgjoY88KDk6PVHXUaDIVph0usoEQhbo9Ko4ym/ymrNZTKekaYZywuyv3a7W5SmiePlpKnse0oThyJTmwLNIiejKJlDIXXT4uTxk8yikDiT/fPO9iambeEouL1bg+lY4Os2toLgikpCFJXSFF5ld5/54AO8/MoL5BO5tiS5gWkVdPcSKr5sz/qKRSFSSldB8IsZ9abNcDgiV2nU4yerREKQTU3csYuFAAAgAElEQVQeelLCs9bfukaemTRXlBdlmDKe5VTrHl5VPm/QGxFUdCoVn1yTi6PjmhgaVHyFgPEsJpOYScchmso6BPUAr1qQTSwMXc7D03HG1bd35jL6rZbB8nKdzdtDMrWmZLlGEnpEcU53QQnhjF+nuXiODMlza68t8J1/v0vz3CJbb8t1Ru8KgraG5y6xvCIzLZpzQBhpdDuyb16+lpDnNmf7q4z2FUzPBM0JCIIaT/+g3B9efmOL/f197tyWiBnLdDnY0am1LCYj9XdWSTZLWfRbjFPlYbWs4Swd4c4t2cfOPVKhGY8YjXuIVCFtbAfD9yiSAi+VY3Rzr8vuqMap0xIWfNRvsuNN2Jp0qNblpB6OBmDqeF6TseLajqdyPyx0OVdbro/Qp9TabXJHXiNmMcIQhFFCobDXge/x7Nf+jNFIjpnldgshBGGWU6q9b6Vd4fiDNbZH28w2FKes0cTJHFKFfDp2/n0cXD2gvPQ2mqL2Hjn1QR575P38k7/36wCcOr/GbJyAVtA9kHNeOU5ZOPcE9OsQyXkp84a0Th0nvCLbN50kFHnCe5/6MVxlMfDP/+G/5OCgz6/+t/8dvsLk/IN//K9IxqtUFTKgWXVIp1WuXtunuyPHXms1RzNS6pWAbCbH2tbNfVrVlKAq5xvDaVA6Ll978evoU7mHdSo2y0smw6GLrzZnJSu865EHuXFDZke7nZy+roEToyXy7/ykwvHjBlt7O0SJfN50vov53uX74nAlNI3nvy3xspPuhOmsT93z4RAf22qQiJCVxSNzyIFbagxGE6yZItRmJlmUMjNtilh5BHgTylIjyzQstYhrpYGhu2S5bBgt1cgoJC5VwQLHnV20ioXjWcxGSj2n0wUtZ1mJD6STMZYfQKERKKK/oaVMt7oEfhM3kM978MIZ9vo72I48NB09PuLuW3toARxaxFumQVGWCKGRjJQHwiyhVnUpEwVL9G1Kx4SixFNEZiEEOQWGIdA0RZi3PEaD4VzFTddNkjQlzRJ6e/cOHZW2jagrCInlEpMiujH+SeXQvhNy7CHFo/IlZr9wMmazGccuykVi860dJjv/cYfq+opKzxbvBLL1bt+DCRaafEajEZCrCe3Ln//6O65fOKE4Ub17h6CNrXceiPZ2723ca0tyVmgelwvOQJH9w+131jVeT4jVgv69Svn/M7HbPib7hp1ozNjnk5/+acwTsi6JUuNrPtBkcENOgOV0zMmjayyN5cJRtnKSesIX2SCa3ftW+UFIsigImnLSym3Bny/j67J9Gw2DMJT/trzU4trXNtQzlQdabGPo0Lsr27+30aW2ukzBDJQwTGTlHMQ7NOurjHtyjPiez+3r1+fPWzq+xMLSGlE85PZb9/hnWumju1PMPdmvv/hbEqLwsc+8F4Dn/+Qt6icrbL9978BnGy6WF+PqcrLVNZdx2kHzC2aHIk7dhPayTtA2MRRcIold9vvDuUHpyRPHmM4SihS+8+Y35PuWGrpjoGkJS2pBS7SIQRYilFKYZXroqYlnCCx14I+jCbFt0evE+J4yhbR0Wl2dOx3Zl6J+RsOuUfVsZqEMHFSsClYVJuGU/5e9N42z47zrfL+1V5399Om91WpJrd22LNmyHcdL9oTsK5CQEO6QgUxgYBiWywzDnZkLM8AEmM+9A4FAJoEMJEBIJiH5JGTDdmLHi2zZsiRrl3pT791nP6f2qvviec6RFMmGF7zI/Xz0vJFOneo6VU89y3/7/X4awrFIgiaVcpnmmjBQ9ty5h9ZCncXqKrbEA7huDTsZxDACkKXCrzh4G75ZJ5LVraPdZTpuk4tLm/jSgK7kcjR9F1uHbXkxVk9ttPjSkUvs3CLG2z0HR7nl5SOUsxpf+vxpAGYuzNDsRBRyI+w6JMoCTx87xaR1mM/8+acAuO1t9zGVi9mstygPiD5wFleotVUY8LBkuXS32Sa0NQjEujG6RSdezfHWt+1k/qQwZJa/G7Lj9hHOn15iaVHMt/2DoOoT3L1XjI1t40W+8u2nyag+nivew7CTkMQh9cgkL8sJs9kcbuyzTeLjBscyrK+e5a5XHOCVd4sAXW2twcc/+3ecePo4eyUoe8voFGXTxZbUblZ6kWxsU8m67NgqNML82nkePnqB+6TO3t989mECW2FsKMKRv7fQAM20Mc02msSeOpqB3w5QZADNCuc58b0nGNy/i6U5MT+efvQR6rUab37Pj1KU9adrK12++w/Pky+L6xQzFQ4/8Gb+9JO/x5At5uz44ADOSAbVzHLivCgH9SO47/7X8PgRgSMYGCiQdF0yptPXr2l1PGzbxrTiviOja6L0bu6cJFuZmmLJa+CYG+TzwvkI/QA1aXPyhYtIqBTJZpuuG7MuS3J6ovRC20pqC+pGnyCJnny8ooOa9Emo0kQhDFSSJASJgTIMAz3VUKKEdkusz9t3TOF2I5Y2pGC4AYHnMjg4hW2LvaighIRhSqfRpeOK+yo7NnHcQpWsvyvLbfIFB1VTWavKcls9g65Bp5n2bkHoVyUJiSQoUNEBnTRJ+vqR3ZbHwuwciR6QyCBsJpND1xw6snRQ02yKhQjCGFcGQBNNxczrFMs5GnPCsTg/s849D76OE8eE9qWiKJRMFV3dxC6LPVNxfXQUNF38frORoNgOqhKQy4v9otPV6TQ3GNqxg9qmuLaimlhmglsT9xhGEZajoBgunYbol1IxR5RU8boRiip+z4stkjSk7UrSqyRBT0xiPcGTTqDXAkXRyWYN4p7Au63SabsMD4v30nVD2k2bONWxTLGmp46Hmmljdk3KGWGsFioJC6vz5KQj/MgXT6BhMPfkMiMTYo6OHhAjqbGmoEm8kW3ZKKECtsTsFSw2VpvMnl1AM8W97zxQxk8Cwo7PwmWxBq2seXRryxQKoj8brTppqNNZbYEcw37HpLi1TAq88B3hNAzvtGmHVcpyPV85W6O0v4x1LqBxRmpaTeZR4haabRLIsVBULJqtJjNnxSDrjMVkojWmJoYxN0Sfd5cCjLIJahNV2odOElAs5GlLkhTF8jAzCoHTxpZ7WOeSj+pqQIIinSuDLputEDURfdD0NqgUSwSKhaX0rmXx6EMXuOPwy7APyvVs7ghtu8LgsLCxwk6HF44cQ1VUEln6/dj//jqHXnMLiiybHRvbw4x7hlD1sC1p+wYGca0BUYIuS+5rHZP8wDbueVAwJqf47D5wAN3KUi4JG3bL7mHWZ2J+6P538Sv/7sMA6HrKa1/xKtRJSTCzmDI1eDulskKqfFn0uTlKYnRxfZWixG8ZSQEv6OJG4nO4HKEbPoOFAZzhHmGXT9PVGB8aYWZGOqLDPieOPochhiu5go3nutx26246vrAru5HO0K4RZpdX0CJhV6rp/w8ILeIwQUnEjQ6UDWxtjGa9TaKIwbTZ8dm5fzdTO7cxMyMiel69hduqkUrqYkdJCBJQo6SfuAgDFdvRUJS4T8VKGmOaaj/SEqkhpCmKkhLJwaPrKqnrEmkJqsRvpTHEQcpCU1g7E9MjJJFCPlvElExrtqFD6LEyt8CgFEVOTZXBgck+EYfXdNEUVWS+ZMJHVVUM3aDtBTQlne/wyASbGzWyPdqYJCWJIpIkhaTHUpP22YyQxk4UhQKTJOvQc7kSa2trRFclcwYHbJzRLB0Zzfe9iOJ0gcbFJo4tNtk02aS9kjCwrcD52dMv+f7e8N77SSUj3Tf/+qn+8aldImpz/FFBOlKQdcthHGE5Weoz6308U5UXH6gbc6LPSxMD1BerL3perzXXxEZam//HsVIv1Ww7Q/ASgMXvb5snBL4ju1VsDmrW5i9+//fFl/KfnmMFsHqhxSpX+vYDb7sb8/L1z3fPj+/ldGmZTCIWm1rLvuHv+zUdJyvGQc+xAuisi8VGVzVU/dosY0Qdw9BRezA3w0AhpON1yOTFRthYvzZ7l8latFsurU6dHQeE8Xrp+AK1TY9cNqYiF+oNWY981+2inttOS6x3llm8qk45TVMMfZCmZOHLltvsuGWUuZnLFGTaJuvA/NIimcwIyLpzTYsZHi/SbkkWNyOgPDhEbWaWwBOzYmi0zMj4EHtumeLpZ78HQLeRkjVUAkkFnc0YJIkCYR63LbPS2KhqSi6bJU3EBjo1tZOGt8r0bWJ+qGnE0oUaq5cNcnJRjjM2GjH5TEIsw+FxHLCxXKMtCQOGX76LQwfGKS5bHHlGzIuJiTHcVsDE2E5+4RcERu+F507wmnvfz9MvPAdAc+15MpmYP/qrb+LK7Hnb88kVilRrHQ7tFVmbHz80yvLZhKFCT0U05Mh3OlQmClT2i/l3x2vfzvETx3jkkW9w7qzIrNT8kPGkw9ZlgZlUTz9Kbdsr0bUcq5JCuqHHqPmIjU2FQEbPK0OjmMoqmxeEcTfvBYxOjnL0+AqFgsBA7HlFRBB1KWQqlAdl1FY1qLqL5EfFJr+hj7P/0Ms5fvkM1YvC+H/FgX1cWp0j1iyam2LcDmZLhKuX+dCvfgiAlcs1/t8/P827fvJtfPozfwvAlkqBA7sqLC5cYN+UeL6FRp3lqEZLGh85Zwd2qc3zpy/hnRXje2AIAtunKtfXO+7bik+MGutYvliDcoMDNBY81roGqTT4VEPDUBQa66Kf3vzun2LvKw+iJgXOnxHR0KmijdaqYxSLOEUxry4tnOOnf+rH+dIX/gqA1aU1/v6hL2NNDOJURKCm2k7QG5sMjGXwNoShmBnM8vp3v5UnnxFBKMX30BSFVE8JfOkgqIJ1VFGUPumEoiioqtrHH50/c4bCWBnHKRJKA8z1uuQyeVaW18jKjFPkB2iqTigj9X4QEqdAHPevnaZpX1w4kQ5ekgiG2nJRvOMgCAR2LlUJwkDep0Ki+HihRi4vgkc/+t6f5GN/9Afk8mKdC0OFII5ItYjFJTE2NqoLmIZNSkSxLPZyw1Qx7SyhvLbrtQjDkCQWxAwASaTR7VRl9gxAZNR6BBsApiXILBQjJuiKa2mGTraQx087ffkHP4hI9JTQlV6aoVGrNkjjkBFJsuEnEVESQqBiyEj88oUFKsWt9EyS2G/TwcLXdGxNzFFzUCXxPNodsYfpeRXbibDiLJtyPnZaCoOVcSzLYGND7D0kDoqagtITGs7j+zFOxqcpKyQURSGTV3BySt8xDbwIP4gwZdWP77sYhkGaKj1zA8uy8X2PTqfTi8XJyiCdqlRTLRbLVGsu2UIWLxTH9LCMJglgjjwlguhTuyd51Tu3cfoF8XxTOwt0620mt45gZaUTn2oQZ9k+naUl6dlXF5fwqiajkuKvazcg69OswQEp76HkXU49Mwd0OSuWTyYGd7OZnMGSmcFOxyB0fQJN6+nJY1fyxEmNnJpnelpc//JqneEdFW65R7zP+YVFUtekU00YnhB7gdttECUxSreFKYMivu/jZHVSGXBZnD+Lrpsszl3Akvh31czQatUoF4t96vdctkIuX+zjuaJExe9CxSoyINmzqx5cPr2JnskQyiBhEKdoVtjHLZKYBG1IIth1SMg63PXGN9FqNyD1SOQ6kR/JoVsldOkwbK6uceiNe7h4TmVzXoyhQw+aPPLZvwPJonry9OOorYCiXUCVrH+7X3aQ8vYSB/c9SCwHdhi3gZRYcs9b2TydqImuGGjSPi0XC6zGM/yrj7yfFcmn8Kb3/AhpvsTFs8K5u33ffej2CkE1Yd8BUdV04dxFRoq7abRWGBoSG/BzR5sMjufRZcBgbGILSgqd7gJry8LuKowEaGbI7KLNvfe+BoCtOzS+9e2HCQLh4LbCgO3Tu0iViKwtjiXBCs8/U+fQwe2cPir2uuX5vvV9w/YD4VyZpo6hCuOgsd6h29nE77bJGmIjbjRaXD59HktTmTkponeKqjJc0WlpPZ2rlCTWIAlQZGQp9A10PcFywPclcFPVSIlIkx5IUydr6LTbXRK1F7lS8BttKuNFar2VxQ8pFPKYcnIuXu4yNqFSKmfo1axokUOaNJkYH0XTZCYg8YkTnVgSDShJgXbLw7Tos/fFcYwfBFhOnm0yAtRqe2yZHGdjRSyaSRSRxomonpIbmqZpoCRS20qyxngupiRiANisLqGoCXKfFNdSY+xcQiizHH4MdsYg2KrjIjbe3TumWa8usXKuxvitY7LvMuhqysyxK9mKA3ftZdHo0pHlk1e3S6fWr/lcKkuGGEXByeSos37d37xU623kV7etu7YxL8tH/9lbkt7wcH7rAFHi416+MRFGZ1704d99+jP86Ic/AsCXv/kF3Jm1l/y50ssKXPxy67rjT/3FGXY9UOL8o70j1zp8pdEi9ZUGzTWDPu2QTFlPTI9T3C3e89JyDV0bwtgmFunabJXSYBY/8PC6om9tLUAzwVCLdBrCiMgVHa4WIs9YBeaW5ijmx6jXrnxjaApe12V8ZGv/WHlkjN9a/Y0XfeZifhDfC1Hl/bqNmD3TWzGzEYPDMvPY8CjrLo01g7oEr/peA40h1Fgs+HOXasRxndsPT3JJGsvNqMaI4/CdR4/SrosJcODAHcwuPElVOml+awjPb2GZOoYlN/UkQFGyjExkWF4V82hmcQUna+KuyhIkp405kmN3eQp/UwBcO0EbVbNptAKm9gun0+gUWby0zCte9koALs5cYvueAwwUdzI0JDYTt9nlh173Rp5+7nF0xPz/7d/5IN5miDMijC2v5vL0k+eJPINSXryrjaqPrrsM5DI8+6yYf/sm7uSuO5usyM2k3ryMuzJPbV5hZUPMN7WrMzI8RmbEIJElTjtGy6yfucjEvWJsnFrqYOZnCdwGFUdqw+RbrK7OsXNsF8ceFaVsxp4hdkyNs3FaZDbNyKa9HlFV2gx2xOaYKReJWh00zWV1RTzzhGlSMk0aHRFM2D8+idPRaV1e5X0/IzS6PvO5r9GtdVGUlMCTDuXGGULf5+gxwUTmWD5jqsXpb/4Vo5L2fPXcGV77vvcxODpEMxakDKtqwEx3gVCTTq6TsrnYJcgOsiFZqmoXqwQlF60hDKRCeZyxyX088vA3aXfF+vqa1x1iPjjPysUOiiINct0gjduUC2Ij/vRffIrS9BYS20CTLFy/+Ju/i6akXKot0ayL+7wwO8PE3kMMT24T43XhNH/3Pz/GWz74Af7hYVFO+9r738bkzq0sdmvs3nsYgPmFWbZM7+WXfun/BuB3/uuvMzI8QJQExFIbKklEhklRFIzePpMkaKRo5hU9qerCOjlzEicvDBItNiFNCAOPuiwjt3SDRFFpS0M8DiMhH5LIPYgeaUV6rTOXapQHCuim5A5PUrrdjiDgkMEN09ZQDaFpqchSs//8n36bYsnGlBo+immjJwmlgQKqrCZodiGXhdAz+lpGnh8BBrEsFbctAxKdIAxIJWFAECjYto3ruv377HY8kiQhV5Q02rpwBG1Lo1oTz5zNmCimik4G0xDnmYaD2w3J9HR8gpAg8AQ7rmQCtm0bxynSbrepSCMw8lxOnniEye0ioh9aJg23RSlfIZTVG3mnjGHbjGwT683FU10aTQWdCF0SmTi2TRi6NKoRBUkI1G54aEbUk9Ck3W5TqhTQjZChYad/LJPL4nYTBjIiENjphuhBTBzJfcAw6XY8NM3sa2YGgY9haMRxTCzLQXUjJkw9bJmlWlmusX3HOJGySUnOh9W5BopSxMm7VEypNxrX+O43YNtu4bSQBpBqnD62zIHDgnZdUWBudpaBu7cxMCTHp56yGiQsVyVB0WKNnJNFU11OPiNsw8ZmG93MgKUyIB3avBMzNDHJ8yfEumEoNmbOoDBosyqN5JHdAQVnjFRNKd0q+qp5pMnauZjp3WJsvuzWWznx5BnWljewJKnGwZdNERgpmyeqzMngr6rqorJIEsxkTJM0jfG6Ll4oxmKsgGFkadbCPqMmlkerWe/lftmxa5qZhXN0fdg78HJxbKDJ5pnPE4dpn0U1jiKUQCEjExJtJSbRIWsaNKqzADz26BfJlIaxrTyDFUE6kWgjpLpKIjM0RatCvnIb47eUuO1e0eclvcDWfZs0ZTXNxuIiza7Pjl3bePUbRMn4J//0z9hdfz2HbynQjhblO82RKgFza8KhHh7czuTYTlqB3n/e4YEpqsNVmu0NjIJ4V/tvvYOxraNoF8XYXN04z+mZh5je+iCHD4kqg3zxSc6ePENtVWffHhFAKxZXUdIshZz4O9tWabXqlMsVVpfEe2k0DBobMDg5xal5QRb38BMRt+47TGNGBKSj9gpzZ2ew7QTbEvvvrn2HyedfYHm1zmZLrrFGCV7Chr1JaHGz3Ww32812s91sN9vNdrPdbDfbzfbP0H4gMleB77O5JKKH3c0maRJRzpbpdkTUJpMxaXfanDryLLYuoiFpHGHnE4YnhQd+7vwMhmaRRCHoUj8qUfC8iFzRxDBkVkrRQUlJZXbLtm2CIMDUdGJZKhj7AVHXo91oEhs9YHrE2IjG+Dbx++2kQ6dZo22XyRZlPWeSkHUKqJpGEPbqzkNSJUTTexkwG8uwMKyErkzTq5qCoqp0Oi06ntTVUAyiICQJRAgqiWKUJAUlvSaDo0jw8MbyjcF1o2MFEq33vCISWRgucv7IxjXndYCDr7+DVJEAcyfLs4+IlP3SyeX+eSP7x675u+NPn2FgarAfUby67dsjyoKepsmbf/gevnryqevOubpt2TvG5TPLL36CjALlRvJ90PT88uyLnl7cIsvaLtde9JzK9mF0GZlbvbRyzXeBe2MyiziOcewM7nWk6Ne2933oJ/BSGe2Vdd33vOkBnvraozc8/w9/7dvwaze+1vlH6zf+Ati+fTvPcQwz06VYEhG2pd53+2zGJsW43peW+cLHz1zzt0snRERnx+Ft4j6DFvlshZWlFqEcn93mtbi0U8deAKDD+WuO11bFrz57VTSntrrMB3/qXwKQG85y9rlz/MPX/r7//aWTpwAY2y7Gles6PPbYY2zfM87zL8wCML7bpZzJ4jcV4q7IVA2UKjRqHsWyeHf1qsqB224lh8HEsFhLLl1ImDm+QohPInX0Tp8+TaFUxtJEVM736pSKJZKkQSjLewkHiE0Pz9VIZblQYPrYdh4i8dld18gXVMyBJTqyzKrAAFGsYOoWq0tizHW9DoZqcfqEwFfce+89vPsdH+APPv4pbrtNEAvcfXgvUdfmffs/QLUh7v3kC0voOYczpwThxOHbb6E8GVBbb3DHFoEJ8rqXaTdqxKUulS2iFPObjzzD3p2jjE5I8fN2RHFAIb97mDFP6I/MLq6ysrGOtaoTSir9F84tkHcyDN5/NwDtx2ZQV1bJ2GV0U4y9ktZkpeugJwlDwyJS7Ucax5+exZLrZNa0abc1soMDVBfFfIqbw2QLQ5R3u7Ql7fnUlkH8OEOciPu04xwDoyrveM8oXkOWxrbWeP2ddzJczjM4LrJnk5VBvvjQoxw5JsbxR3/jlxi280zf/SDLK6Jk7OKx75DYKR08Qlesi4u1ZeLI584D4vlmLhxnZXWVgZFJxisi0rl9epqHvvcdChKrOT7qcO6FZaorc+iBeL7WnMPi+hoGPpYENmdyOdqxQZpKUiE15Zt//Tnuuf8VWDmp1bSlTCkzwI7SJF//xlfEtRYXmGvU0UsiWxmcO01pzKHRUhkdFVHxnbdvZX49IDU1OqHYD7vdLhcvnidVxVw4ePguzp44SjZTwJQaU6kaEgQBSZL06dlB7BdKTwQ3jrFVjdlzS4xOi/FDqrK+tI6paARSK9ELElRdo9sRz6dqihTTTVH7e1GvgkLrR+uz2SymYdPtiki9Y9koitCL6mW84jgmVVMS32fHtKBerlQqnL94nKB3ncwocRhT3fDYJc/ZuSNgeWmTOE4IpV6NqkR4bkgs0za6rqKkHo6hkvQwQppKGISkcYIia6HTVKFUGiArMy2tThNF00kVneJAbz+GbuBiZ0uYslRI0yGjuShS3ywIAsYzwwRRSCJhAH7g021WKeXytFJZ0uzAeCbH2qIowdUzBVQ9wavWKJREpNzSNmm2NinmREVP3PYpD0CjltJoiPfnZBWyWYNOp4Pvy/JFPSaXyxLLzKCVTURGXqmwUROVE46TZW0tIImyIIEF2WwBM+f2M4q+75PJORia1SeK0lBQEoU4iDGktEQYhhDpeK7scyOmVLFZWU1ZXxPjZeuWHNVOnfGJ3bSqTdnnKXFg0elI3GKmgNvpoJtZVhbEetNqVxndMsTc2RYL88JeGSyXsLSQuJcZtGIGBzXOXagTB5KC39JRzYBEc1jbEDbM7Qfv4tf/86/y/h8WlSRzK2coD0dYdoacFK9ePF/HLTUxhxUunhZj9paD25h5Yo5HvyD2vNad23A3VSwHsMS92+UcmD4DE8PUNkS/NNsdEgUMWd6nmQbtbkdovfXmX+CSJgpBnJDICqyw41KPfSJJwd+qXyaTc5i8fQ+KxKuZeobSYIWl5Tl0SxKXaAGG6hCaco62BGmYPpxnTa7f8fwarxt4Ha/cdw/fWxZ7d2PtEjun70UbE9euNRbpXp7Fp4Y5LsrmcvoE7/+3L2fumChx/rvPfZF/8cs/wcNffYhdd4ts2o/h89DnnuaFF15g/31CR7Ndj7DMHDtzgmDKUEqceeF5suUSuoQO3P2mN3L3Aw/w8d/9XSZzwl5cnq9R2jqG2xEVUiuri2ipwdzlo4SpyC4FbkiktxmaGmZ+QWQsO+EsGf123EBiG48/Q6lUwA3KjE6KOdvtlFGsRYK1c8SpGIs5cxeFcgErFNUmyUxMfiwg8qCYF3bJhbNtivlJtEhDlxAmS6tyYwtRtB8I50pJFXZsFxvcBVqgj9LqekSIAWb4KpVMFq3o0O2KwaOEMcVijrgHKi7kROlIcoWJSFGELkkcqlfYnrwYTbmSlvQ8DzVWUJMrQryKoqFKvQ5LKnMbWY12N+KsnHQTkwOkroWuRkSReHGoLioOXddDk5uchgoJJL6sd45iMpZKkMZks+KZw9AnTv6jIGQAACAASURBVGN0TaNQEhu7bWe5cOEsthT6Je7JAqdXnk9NURWN6uqVMrGRLTkgYfWyMCpEVaNCx7viCMye2mDPy6dRLWEABkGbi98LOPbNZ3nN+0VKvr1xY6KK1VPXOz/FkSFS+R42uFL6ZkrcAMBX//Ypdt4tjMkwCsjm85z6zrPXXKdUGWTyTdM88bXHrjk+uk1sMCvLwvBsr15fOnej1q+Qe4kWJrFQlpYtO5ynIzFbtu3gfZ8DVdpeQbV1qhevZ+Eb2iNqsNfPij7ImAZeIp2BzBAr1Jk/d61DMnLLCKsvXH+t/e/YDcCpL10hkpi8X7B1EXssPHHlb9q+uMfyUKkvxIlk5nv62XX8h+QYksQLB18lrn3s4SvXvvTMrHiGqSxzx68cv/pavVYYsWiu+kwf3M7FYzP94/c+8Co21ufYvmMbAN/82kMA/K9P/M/rnu/7W8uTLFVmB3e+wSmujL/eiMvtKGDqwinaXPdIUo9V6Q/nCwMoakg6MMTB20S5zdHHP3Hd72hbx6huQBKJ6zQWV2hmXQYGCn18pZVzwfKYPbrY/7vyrjLVC20GpPGjawqKnqW64dGp92q126DGGKaCHUqgcaKhFmxCqcv2zOPHOfH4r1MeydNsiQF6+vgl1pZcHnvsYd76w28F4CtffJg9d97OxkWxmWTyk3zyE3/DXYcPcv+rhZNkPhqxY/8b+OyffpaBgnjvh24b5J4D9zMzI0oxxgpbeefb38HHvvInXJZ4vrX1JbREx8oXyEh2sExRY7gyRNkWa5JpNvA3irixRqiLdSJvhRiodKOITFGct7ixRppAwZSbl51i5FTq9Q10Rwradjq0/Q6mCV1X3Ge1UUWxO0RyfoWphmmGaIZKZUSsgf/Xz/w8lZEcKTqbDVleM5phYnqJrzwlHJRTF2bYecetxK0aZUl6cf+bP4jbCvD9VZCiwaNpyLPPLXLupHinQWRyxz33EcYJ1MSzaDrsmpqi3hbzd3Y1TysKqZRUsop47/lKjS1T23j5cBFPbv7feniNzJBBaou5bishbqPBD73rXVSb0kFpQ6MVks8rDI0JZ+DAHe/Ea3oYisAkhfu2sRJYNN0q+24Xa2VsZun4i0TVgMsbYrDvv/NBSpUM3/7yV8UYS1UsR8WP4v4+13Y9uY+pV4RwFQVNUfpl5aqqopFgGQ4rs2KcqYqKSYYkidDk/huQoKQQyJJDS1EJoxglUYRwo7x2KnF4veBfkiS4rkutJowYRWIToyjC0IRRmIL4OyXFkuy5Z8+fIZsz8bpibEShTy6bo9V2cV1xT7Y5SbfTxnRSgkicZygGihZj9Wrgk4Q0CVEUi1SWsQWRh6KpxGlED4icyxZJ0HAlfsU0cjhZjYQYR+oBhaFPmCqkit7Hb6txjKJG9MBbmq0RBAGaqaFJpyUOEkxdJeh2yIwKA7a63qTiDDNYEjbBZreJoRQIY5+mZJTdv2saW89z9pRYi0fHbXQNimWLUDppbgdcSbBiGVIjTHVwnAqaIWyCjc01TGuYYnkb2aLYj7utLkHQxQ1TgYMD4riD5YQEV5XCq2kEyZWwaRAKDJ2u68T94LFBnLgoSc/ZSrk8t4luWZTKYpwHcZfNNZ2Mk1Asin6ZPV9nbFrDlU7h8Ngwp6sdtm4dZ2VBCmg3U2obG/h+h9KQJHNo19FzU7iSoTlRbdZaPlu2jTCyVThJsRqwcH4Fw6tTHhQG84f/za9T7zbYf7tYWyrD2zl+4jyev4mbSMxeZBMHkDXKVKU+XtAwsXIZMtIJrLldLMdm97ZxhgfEmDp57BIbzRaOmbJ36oDo426XuaW5PgtgkkQYlk4aJejSMCnaRWI8BC5J9rlqksYBqi6ZFl2fxfWIvOlRGhHOeHbLGGO33MXMwgyWFNBNNQ03DuihsX1dRzFhMGiTi8TRvdseJJ0v4gxmuG9QBOguDRZYD1MKkuCtkMmS230vk3kTU3oOa50V/Pki1rDoyw/8zM+SHxzjh987xaokCZs88Ep+Ztd+Nlo2bTmGEz9BSQ10hCOVpAYjWwZIIwNNMmd2g5SsY/OTP/sLFCS/wGprmeWNb3PirMBJT287xK7dUyyunObUySMADJb2sWVyJ+ubl0EmRZSkQhoOkpVY8X27x4n8HIraxpWY55KdJTOcx2+tMbpVPE+UDLJ8aZZMToz9YmWQdjtA0yzqtZ7957G5qmNZXTyJsUz/EcnSHwjnSs+YtDQxMfLFLbTrddSwSyqjP7mxUfR8BsVUsPLiwQqqSRDWaEp6YV1R8YKANElA61HBhiQJtJoR+WIvUuaiKkZvf0FRRA120O702YJQFOIkhjAkb4gNsx2ZRGraz3IsLayRMSuMDAyjyckZxgqpEhEbcZ9NR4lUVMXBtGRts7dOpCcoiYLnyYUtDNFMBRSYGBWZuEsX50jjmLgnx44QKOxFCHut51hVhiXxhck136+tNhkYNMiXLd7yUwIM+LlP/ANnH794w3fR8oUhlStMvuQ7u7rNHDnN1rt3XXf8e195/JrPkdzMqvUGqm5cd74fhsTN6526ldkXF2orDxaobTRv+F197sUzVv17SsI+4w5cwRAA1Oc3rju/PrOJM5K74bUaG7JuedsgjdkNkjRFk0J8m+vCsF2+cG127EaOFYC+em1M5MAHtmFM9ShHr8WCTezKcB6odwPC+rW4tEIljzYonm8FcQ9+9OIUoutzYjHZe+AQFcmwudxsc+nc5f45Q+OjNJnjnnvu4Z2/8WoAfu8/fpInHn2YQ3fdBuq1Wczf/F9/DEDtUpVvfeHznDjx3HW/q0pjpDkvNrXK9CRWRgRSliRRSPtSk9teJ6JbM+cvk7UdOtKxTDWP8/PPMu5d5tQT8vd/Gx54xd0sLndxpfO/PH/2ut/+xV/61/zJH3+a8rDEBFpN5p+9llhEtVSGKnlcGcVt+zVi38NRchzaJ7IMi4sN7KLJpUuXKGWlaHiqkqoxaOL5xgeGGRrYwkZrtZeI5dzpKhpinTl1Qhj/pr7JN/7+L5neJzbro89p7BwbIzs0xqte/ZOir1Y/zuJql7e//U42QmHob5l6Fwfveyfr8hUvLzf4g49/FzdbYPtuYSiyuYiXQpxzGBgSv2vpOnYmg6cIg2Gg6NAhSxx6IOUSghAwFCJNYWNRjNuiFqKi0FwXc80pldFtDSMyyBjC4dq9bS+PnfwuA0aRMUmpXK8GWEkHNZRZTs0ll4RE4QDVtsTjFGBppUZO1YkkJs/vTjI1UuGDb3glAFuzEK22acYdNmUkMoxaDI2OcGnpIuWCpODVs9h5i/mVWQBGxoZZ3kg4f+EIZUVgBM2gw9SB/ahtkQGr1iKxHtpDpFJwNpfXGJwcYHJigJc/KAyUmvddTp45hpURxmsSpswtzPFnH/0THnjPO5EXg3yZRkfh3j2CIXGx3sbXfdqxeLbbX/tjtI4/yulHH6VUFBHhRsvDUR2ePPc4XWkgnJ5b5dChvdgSYF7ZOsb0rW/mq1/+FkkiZToMA1KVKIr6rKdpCkEY96enYRhEsY+Shji6eMdKKhyDRDNwvaushyQlkRIAimmgqilcvQypCiRXiC0AXNdFVVUcR4wp3/dRVRVVVQmk/IVh2ThOFlSF2TkReNL0BDVVycngY4xPFGv4QZesJLmoN2sEcQdbc3qFKuiqRRy2+4RPoRdhGimh76LKcQ0pvh+SxPTlSjL5nNyLpTRKFKOqGqqpgpRZyOWKBHGEnwS4rljTC4UCfjftswdamoGh2yiKQrcr3mnghQwWSjTWN2nOyaCbYrLpVzGlM+7oeVquj25b/eDxegsUw6IgC0VGxzKcfLpF2LXJSHzV8HiZjfkq41vG6Ur8X6B5xHFIR2YLNUMDdKqNNST0joHBQVrNNZqNJUxHvPfQV3G7IaFkdrQMHRDEHj0HLAoTsrmceL+S3jsIW+g6mKY06xONVtNnaMSi5QrbbH1ZpViukNJkY0n0sZPNsLnRpeOLPiCqY2dNWq0WWSm3oashK0sdtm6dxPXFXhz7Dh1lk47XE4UOMCOH6qpCJNlerWxMt2ty/y2vpyH3vI/8/Id53atexlNPnJTXzrJ77z6szAxnz8tAe72Nl+aIQo8hRfRxc2EFP2jilCV5TRAS6SEXz3aIJiTObMMnSTTMXEShLII5tdpZElLMjLQNlZTI9wUDpSptjFglSTXSNMWUuMQwDLAtBRCfE1JKeZ3l86eZXRP75t7b7kTtRCghZCTesOm3hKyQTBDoesRYweE2Jct4IoLTxoxDcedejj1zmsG82J+MrSrZXSU8ib9Hh9hQyAUFOr4YQ3/+m/+eN33wRylPCBtvx+g06wtNdEcjlTwFnY0UX89jGA5xIMZ+MVPCDdzeoxD7IcXcsLCvPcm4qaukgDk8QiDJVGwj4Jlnv83wpHCEZ5eOs1YtknMS8lZvX+2QxhZppJIdEOPFsA0anWVavrBtVSPCc2N27xlDl7jIxuYasxtnqBQLKF1ZNWG2SPwmZ2eE85rTfOIkxFcjMiXxrrpNh2wuIpcZRBYMoJgvHb2/ibm62W62m+1mu9lutpvtZrvZbrab7Wb7Z2g/EJmr0Iu4fF5EQg0U2p02KAaTe0X2pDhaZn6tSh4DQ0YCGusNLAWQ5TdZxyLohqSpLko9gDSNIdXw3JCspHU2TEVkhGLJaKRBo91AVXX0VPqaukqapnTbbRS3F2HL4Plt9uwSUWrbmSShBR2fREazTcq0/BpBHKLJSLUSK0SpTyQpK7tul9qmQybXwNBlrTgaYdxBw6S2KaJitc06pmJA2kuxybIpVSWVlPE93NHgmIVuqP3zImKGx0REY225S6cdcvCWA6xKprPx23ew9PwVxr+rW74o6mWPP3OW215/C51uk0uPLfS/n757DxePXIn+D+8dpOO6rEeL11xnfM9ODFs889zzgm48kvix4cogGVkydHU7f+QM2w7tYtehW8Xn507e8B6vbi+WtZrYPsbizEvgt2RzHAe8K2WBzav0spyhHO769SyIaqpcdywzUWRkQETlZ86L/vqzj3+y/31uaJgbSy3fuFUK5jWfj//l7Iue+8jfCOY2K+OgS2xhDyWlW22uqghl+51TrHeuPNOO+0ZxNwKWz16bqXHbmwxMirDpaje+5rsgFhGbs2cu8dk/OXLNd889fYJXv/lKOehPfuTHGPtp8T7XTn+Lg3fs5QTXZ640SVnba6aW9DNWV7cLJ0SGRFHyaLbGoKRhrtWaZI0MZskmXb/ywGdnanjJJnpW9MjQvgEUEtZOi/f8kV/5dzi57aQY6LZkBjy6TnZHjs6lK/3k+wqF8RKjO0S06zUHX83f/++/oTDosFQX8+q9P/ZuTpw+w8zcIk2J1bJtE2JIYxH93bd/mp/9xZ+jE3XxJLV1GvpEocLb+A6/8d//vex/l3/J4/yf//HfAPDh932I3qz7HF8Q/3ktlIaGeO977uWOcantM9tkbXmD2QVx748eeYJOaLFl1OLrn/3m9/XmLNN3iXdjOyErzctsHhNzZufrphjMq2gp/Pf/9pnr3sPV7eU/dBdJRkSSvXZEd61FZcsEYSDm5iPPfY+BYpG9W3cx0xBRxUplCtfLkRoiE5noIjPWTGLGi1JI3XNRs1nCFDS5Vp65tIKV38vOW0QE85JSZutUCa29wLnnhTjvlonbOFc/jp2J2XDFvmJa44wPTdBcl9IdbovIDxjJaH366VyaZe7MMRqu1JiyC4wqPqt4/NsP/TgASxfXOXXhMQ5u15mdERHh+x7YxZOPH0OXTGgmGQYqKQ8//HkaOdEv73jF28ln82A5LM4LjMD5hQW2T0xiykzy6bPPsDg/z+GD+2i3RUbva188wUhOw6vXyE2ISO5UZZDnn3wYPSdCqKmpsNbw2bFnO7MXRP9qmobb9QnDuC/iq+umYHqTWdwwjFENkziK0WRJn6qptLsdweAr/y7xfZKrsL5JAoaqEV9VIZGmKakiklk9jJemKwShx8CAZJtcXcMwDMFgKLEifugxXBoFTaEpZVVsJ4vvepiydFBFJU4M4tjoY0yCsEMhnyFrZWnLpSNIPKIgQVFlmXwckWiC3S6SlSRRFBFECo7joPYYdrtdMplMfz/tdHxU2yKMYsE4CERBgh/5aAb9iprQd1FSFUUytrkdj5yTIVUUdFnxEidQ73Yx8jksWRqsqQmp4ePLiglHyRCGm0RK1M/MzS3Mouohd9wr8HilcpN2Lc/z3w2IYvF83VaHIAioVetYUlvINKDWbODKDFh5IE+j2SZKAwyJ+27WAkw9JZvPgSJZjBWTJNFIJIrEzmTJGAadVhdTsktmHBvf90WWRfaxpRmQZtCkzqZhdhkasVGUlE5VjjstTxqlNFc85NCj46Xsv2s7Vkas1UqsYFkxG0s+g2WZsYzraHrM5uYmnba0sfSUMOgQy7yApeRway5D27NYGXHO5uIamUKOmfoLVOvSdglslKTG5obY5wzbZW1jnuHhPFvGZQXRRMpG1cfvukxURJZGMztcXo9JZUmsW23TSVtkcltYlrpvlRGdXEGhODDIyReeAaBVjfGShFSODdu2SFOFVI1Joh51f0LqB5iWRRSJdSIhJYnAlHp8hgpB0kLNeJgdcezUI98la2sMDebwpS5iFAfC1lTl+zNUapHL816ANbFNjIVml+NnHqNZNDCrYi3RB0pY2gCaLOtMgwSyBmlYQ9OuVLiURycoWlI4uhthWQaeFqOpwubJxU26WGi4WHId7MYbKLZJ2kuKaSqBB7qhocjqslhPhGREqEHQk3XI8vIH38jqmihVbmw8z8TwHSTqDFXJtNput+m0bZqbCStLonS2VHbw/CaGFKr33BQUn/pmm2JBzKP52nl2b9tPba1KBpFl1LDYtmuITlNULOSUAq22SWo0CaVGa2XIwW3UiLwQ2cUYwY3ZpHvtB8K5SqOUQka8uDhKGavswPXaKLI21a9FjOUGCLs+7UgYDcWBMtHaOq2OHOD5LH4akiqgpD1HREHVNNJUvcK1b1m43RC1V52qRei2jo5OGEpq8ihE0VWcVGd9XkzOtDzE0PgQm5uyDNEM2H3rDvZvKTM9IhaRxfXzlMx9RGi0ZXlbEvjEaYuuVH/P5vfz6T9+iG4Ygio2CrfbxcnoJEnCvKSDTKMUyzaIeo4iCWkKcRwJHQugB0ZVVVWUQwKKlqIqqSjbAEoDGnUv5imO/5PexT988sn+/9e5vqxuc3WF0g5h2NQvNVg7c33p3NiuLUSxj+teazBfljT6L9Vmnzv/j57zT2n/FMcKYPPci5ccqqpKfqxEa/lazFEPk3V1G8rnmTmzcN3xXmuvvzQN+/e3Zu6fhiu7um2eXLzu2PIz1zqfftBh48wV/a9L31v5/j9h2+2TKKpK4IvxdeHUte9k4bhwzI9+5wg7Dwj8z4Xjp/rfP/TV7/T//6k//iyf4rPiwyF473s/cMN7t3piUdTZeWgHF85doiJBtpvLV8bh1klJQ77qk89k2dwQhs6ObWN0u228apc9khxjiUUiZZ3hyTwr62IsJm4H27xS1vnQw9+AWAe1RaMhAzU7cjiORYcrzpUVNdm81CAYEAvy2I8cYPrgJuvV87zrLe8CID+c4cTnv0IaxSQSF+G5HYhNBofEPX3n6FFuO3KG/bfdT60j5k7WLhBLbY78kMDayJ/hw+/7UP8e7nvjKzAUi0e+dsVJqq+v83G+3P/83373Pr7zxFN898nePNbxuz7TxSI9hOPBB/exst7EyuhcPHrjAMaFb81xgTme5G38/K+9H4Bu3eW5Cy2OfvNb15z7+Nef7v9/8q6dZDINwoZHcasocY7ZxDJMzq/OM78i3mVJXSO1MqgyUJR0m2TzBawoxJWyGWE7oav5aJpGWWJfZy4/idl8gk5dnHPwHfej58aoZPZw+2GxqT577jEyxjTr7U0KI8KwjyKP2aU1Do2L4NiW0hDPnznO9Nhh5j2xBpQSh3Ix4dArBbVvK21w6NZfpFRwGdkqQNn/5ek/5+f+j/dx+dmH6ayKjfdld23jR997kM98STqOA12CKINmKVTPirky8sGdzF6Y59zp5ymXJK7Nb9Jo1blwSYDl236LjXqbvHaIW24R+Mqp7dtYmFlncmKM558ShpsylbBz/2EuL4l5ubK+Sqvlk3M8snIedeotFEVB13V0/UqgRlCl90rkI1JFw7HsvsPlBwFGxiQFQqm5aCg6fnpFjDjyAxTDII7jvkMCvcBf2N+fFEXF94N+iZyiqcQ9bSx5D7pp0mzVGBwdIahLXJ2TJ/BT4qh3joHlmFhh0CemUHUbzw0x0jZKrxw0DFFV44poMTGhL3Ss2l2xnqaxSSaf7fcNSHKFOMKTAZFiqSAcxETD83vGXJNsPkPLC9BlSXvghYKyXOJq8k6GOApQNa2PcU5IcbIOhm5guOL6oWqgkUWXpXyqGVJKiiRxiCphAGkcMTo2gCGlUR7/WsTSpRZOPoMqy5GiUME2SzRbDej0dC6FAHJG0lFvrHXI5oqYToIfyD0ljFAdBy+I0Ywe8YVOJm/3A7CGIfBjvu/34rqYhoaCgee5QrsLyOeLBIFHknbkmEpZXgjx/bAvD+MUYhq1JuVsCVUVfbV9t832XTkWZsXv+bU2bT8i9NU+ZENVdfIlB0N3cNuSfj6nkNQDBjJiDVdthbVqxNDQJLsPCWzP+fnTrM7HbERrHLxVBItfefvbuXhpgWw2K7sgwLEydDox0YawlsenLUpRhOK6FPLi2OJai21btpFEYi48tn6aSmUELekyuV38XlbzaHku88eaNKVT2255DI9XcGX5YrvdxVQdTDtzRVNNg1xOo9lsUiyKQI3vesSJR5RI3Ldh4+h5/NDrl7tmBk3C1KQR+RhyvBhaBtSEVO1hGU3CMMKoBHy9KvTw9kw+wJC6g/GaxuNrIhB1x9CrCZWUWHoMjlJACyxaXOTh714hnto2fStuTZaHGj5pqvIHv/yz3Kj90kcFDCBVC2ihjibBSSkhiWMSpBF6v1Q5RVMsoY8ngWe66XHu3JN89qMCs/3un7uL5eVl8hXodiU9/ECWr3zise//6WvaobdM0Knr1KnjS7266dt2M2jqTAyPs7gsHO2F1Q0c1WbaEVjtSSvmKf80lpPBT4UT2m54uN0YVYeuJH1Buz5BcHX7gXCuIOlPViVjE+sJpp2hKbVovGoNy7RxVzfwZVSso9qUzA5FyVpjhSkZsoS4RD1NKUVD00SNdbslOqRccdANn8iXgsFRgmFaeF4gyA0QavNhEEOS9uFbUejSXL1MpSKyaSEdvHad1Y2tfPBHfh6AXVMG37vYohmEbG4KIyJjh8SuguqLjVBv1fjS4FGal1ukuni+OEmFqnwakMpFSkEnihJSOXmSOEXTVVAi0j7xhnQQ07CvERIlsYB3SB2vNHWAKl/51i/z1tf9Xr/HP/7Jf8GCNFqLeZ3jJ0/zl594gcpWsXHcc7CM17EZGB7h8391xXh6z9v28+gTwgE0pnOsX1pEGygSyzp0uvDuH9lG1Ezw5UT/M4TR/8v/5S2i79pNoiTkYx994iVHxQd/+j503cDRxaT72P946cl0dRsey7O2fL2DUtklDXYp5pufqODIyNzazCpOqYgrMxHZjIUX+Ndd4/vb4cPbeebMzHXHf+Zn/zV/9LE//Cffs17IMX3rEGcfn6GxfG1UZPTOLCtHb8xOaG/N4c23KU8OUlu43tm9ui2duPb76ek9XLx4LQ5p9vkFbtl/mG9IA33Pvh2cPX19pnP0wFaGRsWmcIFT3P3g3Rz57pHrzru6/fVf/+UNj3vBlWygJuf06A6hgbJ5lZN/9mnhDN72ilsZHqmg2sJhD6IOxWKekmkyc1lEoIp7NWwrTz4/xeKs5E+sQ9XdpLxLGKGxE3LPrbdhKS1m6+KcNI1JvGv7es+2u7nrDXfxB//PnwHwex/9D4xqeRI9iyatj+ePXuYD7/wxnnj0sxx9XkTTxnYcJvJqnDt2FIBf/s3/yvSerdSrtT7TZ7sbocr1ryV1wzQq1/VRZ1nl2LHvzz7Brlvv4bxk4vzVX/ktxrbdw8tfLTA7SRzRXFwk6F4hvVndDNEYYu7oMbbcIpxj322xfmmBQYkf2zh9BWP3P35LZK4+8vNv6TtWUw8IUpS5R8/xE//qlXz6448AsPD0BX7nkz/O00+d4uKCcOI9z6YVeIwPg7EuDGFD1chn1qlKspRydpBacJEMeWpSX8moTFKZyOOduIwisROOqpItl0hNqUPjB6jra8wtnWVqSjgk4/YWnj95hnIlz/IF4TiljsK4ZuJKw/sCUN5zB3FznTFbRDXfdP9uqo0N3vqB/yAePFmgtlLHyar84e//qXgHisHe219L3tbYPSTG7PfO1ZitNRnJywx4kkFLY+y8wsVTYl342z/+FOPjA6zMnKRqiXuPFejWZkhk4K2+do6COsDsySNYbdEvXUWnsXkZp2SSNYRhutmIKI3uoN4Sn5u1JdarLgwPUqmIObN6eYVcJoOd6rQlY2kQBzhphkQaNpqiopDQ9Tp9zIeu60RBhKrqqGoPSxyjq6rUshL7aiI1rq6QR0mHJlH7BA9pIsTse6K+Gdum0+mQJCmGzBaqZkoY6axsroItdS2DDqmSYMt7So0IN0xISLEdKXLb6hK5LfzE7M8jU7UIAw9k1khVDFItptntEMlseybvYOUsNDUhcMW+YmgmupGQ6RnexKRahMIV/HIul0HTdew0pu1KPJOmYRgqJUc4Mq4fgqrgtTu0WmKcl8tlDEUl1RXiUDpXUYJqWfi+BP5HKUoaE6uQSJyLo2dYn2tx6um2vM4Iw1tU2o0WpiUcC78b43k1oakk2eWyeYc4TUgVsYaatgNKiuu6DEiR5jiIabc7uK7L4IjYDxUVms0WTkZmMJQmuUoOP4npygyU0oU06UCiYmi2fGYf2zHxG5KkoWCyY/84cV1PdAAAIABJREFU+UGNel30wZGvX+L2B3YxdYtG4Il3OjpWwYuqTE5JId5iB5SIc6fX6LhiDfTCkMDNQDb8/9h77yi7yrLv/7Pb2fv0M3Omp016QhIgNEGCdKkqKAq2BxWx8egjIKLSFEVFwYYVRAEpgqhUAekQSiCQkJCQNklmkkxvp++z6++P+55zZiD6vu9azx/+1sq1FovJPrve+97XfZXv9b2YKUgiKY6pRDMhyLolXymSzZh0b9tDNCq+o86ZrVT691AaC1A98cxvbhsgO1Nn8QLhbI3kRnGqJQq5IqYi1jDNGyISZkHPoqVlts5uoFTOMdAngqOLO2cQ+CqaFiffJ+y3zMyZ2KPd5Ebz6IYYv6a4RcJwUSTRjzbm4DoO1WgAMqBUroQYehQjGWO0PGGLJYhqaTxZi+ZUyqi46FoCVda1eXaVeMym7JbwJVOm4msEeOiyIMjzK7Q1JyhNr5KQdhjmANrITHrVHKEqAsHjuzfS0TaDMdkfK1BsLAUSfpIjDzsSgG28TnlcMGgCGIHO9Zd8AYCvXyfIqoIgAFXjuq+dx/VfF4yMl15/M+DhM6EjNDTfQ1FCFNnkGs8QmV6tymBeMMCqVaXmWAEkYx3srnbhj3sskjr+z79+jKNOP4iykceQdV9KGMfxyzXmymiDSec8hWrBJJcTNkGpmCM+bxHNnUVyG8Qat2LJqShWhU3PifBjtilGsj/NprBENinGJTqsozSYtLYkGZX2RVXyKPwr+Y9wrsIwxJ1oRug6tKUbqVTtWoRZMXRKlTJuzADJYqdFdaz5c6kUxQc82rUdxQY9G4NQTDDXK0i4XFArwPS9gDAw0SVlZRCoEDhomoIq05dBEIgonBLUSBgaYyZhTGdwXH4EqSy267Ju2yp+8fs/APDza76BPzzOHXe+gJ8UL7h1Rguaa9HQcgAAC+Y3Y2afQB/YTTwuPF83EuJ6FfzAIR4XEdpS0cfzvFqTuDBQUUMFXTcE3JG64h/s9ZjWLovrtADfCWvshLlxsbD96q5BOLE+5v2V/ak6AnoSRnUWH3QQ8C2OWSGMsjPffzB33LeSWCw+5V39/oZ3OkQ+U0kofnnN3p2g6y5/aK/b/5XcduML/0/7T5bBvgKds0WhetGo4JRcwZYVmwrp8ydBRAGYRLTh2z6qniIzLUlURl+q1SrzD+rkkEOy/OoHTwKwevU7HatPnH8kaluZYz50FgDP/PXe/+M9e/kim2W2ZNuLUzNKe3Os5h0rPu7qjDS7KOJFzCm/ZzqaGO/9987WzI6QvVKbGHXHNOY5mA1xqmNT76F/XQ/99NT+rb+NyOL/RWbPFuO+Btj8Yjedy+bgSQN6b1LOu2wfGyYeFfANw9D54PvfSyypUuwX89r1xxkpOdz227+yZJ7ICK3uW8eCg2fSvEAsqHHaeOn1NWzfNJWi/u2UHx2z5vPkX57kgg99GIAbfnUTE3nCNQiH8vj3v5+Pf/kaZr9rEc13iWzdrbfeNeU8R685iROXHzJl263/fIGqL76hCYO2Wh2Zss8XLvgijxefm7Jt/0OOYN3ql7BSU5tKL1+xFFUWYDtlgyNOO5FVTz1c+70tkyVfEGO0e4PIOM4+bDFDSJgssN+xi9n4tIDzXnCpmMOOVs/kafl6NqRpcceU66/bPkzPkEdeLnId8+JUdrrs7i5hu8KpjZkZ1GKIJmEtdthPhDhqAiqj4jgz3cyarbtYqEBEFWuBpyTIVzV0Xxynk+Ll11/ETEVoU4UhVcFg1sJZvPVmFy3TxHseGixy0ofPYNtmEbHt3dhFdt6BGPE2nH7hVK/cGqBEVDZd+ysAGlua2N27nq3ruynKgJYW2Hz7yh8TbUhz2BJh8Q3lx8k0LKSkCkcuHjPRS2PYnkq8Uej4la8+yVHvOwWzvZmkJHgYccqMd/eTTgsDd+6Sgxh9aw8HHrOCgi2cK0uB2UsPo3vrDjpmCsOiVBjllaeexJNrmGJlmNaSRFNVchLyO3P+HLq39eBEA3RNEicQw/GLKDJYhWeiqoL0ovZeNa2Wjao7TvXGwCB0ZhAIYqWJT14cI2jfJ2fKwtBHkQFC4YwYhCEYE3A7qri+QzaZZFxGl1FCdFMnkNcPHA9F0WhqzLJpg8jyDe7uJRoxCEJvwlbFdR2i0VQNgeJUy7iBj25EaWsTWQYvLKMqOkZExZLMqoXxAmogECQAmmpiWAq6odRo5SuVqihD0FQs6QSGoUK16lGVML1QVTAMk4ip02w1y+NKRBULQ9NJS6r3XL6IpgQkJPy1Wq5QtavoEb1GEjI0MoZlRbES0i7SPaxkknRTgmEZoMg2pgjcNEODI0hODVRVxYpYlEoSZhaAbkbxXY3hARGg0BQdTdOIaHXIVqFQoLm5CTMmns22yxTGbBRfR1ElpNK3URQTx/UJZTlGpiGkkoOEJBU4/KSF6FaO7ZsHaW6WQYuPLKBxWoqqUkbXBOrFKVTZtq5Ia4f4d9UziFmCMdKMSOKdsoNphWSbY2jSse/b3U8y1lZz5l3HRtMU4gmVpibhqO3ZOUj/boWm2VmeWy+CUQfNN1l44ArGR0Vz7vkL5rK7bye2o5NMi3uo5BpIpAL6B4bYvUcS2MQ0KhWPWTNENnv7jl6iUZVkk4Fuivmyo6uPUrWfRCZKQdLkt6c7UA2fsbLQ654WEE010dY5g4FdItAeBnmK5SK6rpGSc8Hxq5hRHUOSncSbJRFa7xCuIr5TX/OIxRIoBYdQEjU4ioum+SiheO+mYZEfUTASFtGMhD06IxTtbgq2wXCnPJfXheWMYllChyuhTanqYFgZGpLyPQCCKU3MxVCrr/PORCJDU9DCqQFhFB8IUGWWWlFD8d5Co6YTAjXAilqomk3vNrG+3feL16acZuO2LmbNaSaV9nHH59RPn1QoDpQxTUlg4zpkWwzKjpjnAS0oGkQzGplmoauj+jxmdc6kd3g36bSY/D27tnPA8kNpbRXvpVTIU7WSmAM2vny+slYm4pmMjgwxf4EgmcJQeLq3bv+8XfYRWuyTfbJP9sk+2Sf7ZJ/sk32yT/bJ/4L8Z2SuFJWkLFies3A+w/lxCsOj5EZFlqi5rZVsSzuNmRRDgyKV5zg6Y6MlUo0iWhldGsMdHGdkZzfx9ETEO4aCQsR08T1ZcxHE0DQN2xZRv0gkIjNVGrokoRAF1Dqh79Uic+Vxh865s4hJ+E5pzGXXjj48Qm56WfTT8YoFbvzZDzn6iFZeWyciFo+ve4WRoS0MbhGR8WJ/ltyenURMBWQ01A88NE1BM0CRYTjf99A0Aybw46rYfzLVrRibKEP9Ffb07b0v1YqTjmLlY8/z6KNT6yS+/d8X7nX/v94p6mX+yrN85O+nc9vN78w2fegL5wPwwnOr+e2Pf8L7TzuSV9YLD/7wZfO49blBqmqVqEwFJhSbM49YtNfr/W/KKYcLiuNH1q2CMlRkGDAeJEHJ44UBg1umEjeU+8eJyz5aAKpWJ7fQozq6HSVwCpiWnBtBmjNO+SjtMx2u/J44rjjg8JMb7uUPd94AQENsAYsvyfDMc6sY7RPjYuf2YKWncdanP8GyeQJaetVlP+D0kxawa1jMxTde6+ZnPz+Lr/7PvTx8/zfE/akmH37fd/b6vEvmCTKCF1aJDEOgTKVvHw99DjzhVLItAur15J030rp4DoevWA7A/Tf9le/88ma++tgDfOCkH9eOu/b6Cxk+uo/bXz4HgOVb9379r1/xfrq3ief79CfO4vkV63mRl/e67/9J1jxT7601Z9k8Al/F+deM8ehelKpvoygSMhhG+NtfHmLx/ivY/+AjAMgmY8xLZ3n40Q2sXl2HK85fvIKUIaJy+bE82zeJnlD/81VBHtE3NMg9d0zNON17yx+55lc/5bILxHfz/dvvIhgbZe2q1dx7u4AKPvnAAzzJA7AArh69FYDzvr2Qm7/97dp53p61Ajj3vUfW/h4piHk2AZuakK1buijYIgv5kc/+t7jPrIAnrH/xDd51pGj4uOqFJzlmxbtZtVY8UyRIsWNrD907Bug8WDTQHSuO4IYiEzTnIBGF2/76OpoWdlCWUcamVhFJ/fVdf2Ij94khrtb1zvY36rVazz6xic47DwZg56rX2LS+m7iZosES31/fljKVok/SjFEpiYyZYrsY0U7MuMhkKVoRw0pCqJCSFNwN2QzOzp2YySZGpf72LAet5ODrIos6Xuln5pws67evpiQhr6O9fRy6/HSajmjmza5nxPNEM2x/5SVmtIro9vO9LzIQVGkLYyyc3QnAow/dz2fP+wAvdokWEk+8NohZNolrZQqS2nph57tondfAUG+Rvz0qMutOwiaTyaDKTF0sEqcURjGUAF3qk5H8CM89/jCf/e8v8cKLoon4nGmdlJIlZsoaQS9XIdU5B7VhOpos3yw544wFDhR0Dln+XgAKI2/S3/0AVU/okRnzMzQnDHZu6iaQWamxHp8DDtmfru7thOMSgqNCqFqokliBKEhuhhoJxduzVBMyuRHxREYrDEOCYGq0OgiYBB9UCEOldqwRi8n6K0U0nwWMiIoXKAzuGUK3xJzUVA3XExTxICCk8YRFbmSYQk42/rSiVMs2YegTsSSk0YBioYIbCj2oRxQSyTbSmRiBIpRJueCgqQqqpuJLaFI0E8X1yli6yL44TkCxWEIxdEETD5gxUS+mAo6EiiuKSirdQHWinktRKJeLghxL1nOl02kqtk2ghGRkVtg0TfK5IhEJs0pms4yOjmLbNrokEck2xtCUOCVJ8pEfqeI6HkYCkCUAu/q309rchJWM4vviPVSKFRRFIWaKjGmhUCQ3OoamqfiSSCGZTlGxbXw/ICdryH3fZ9AZrrV+0RWLMPRRMYhJIgPX9/EDj+NOP5BCWeTtX3liN4v3n8b8Q8RczIW9NFopUlmLtpniHvr2DPLSS30sXrKQqicm9o6dJbRykq3rhT0XxhpJmAGWmcSuiPeXSiUoOaOMj48z0CN7pflxSsoQmmw+bkZ1FHzKZZth2fSwUiniOA4DXTnR+B0Y6Otn7dpNjIyKLLW/NYBAJ6qEjIyJbZ5rYlVLaFGbXtnLQiEgEWkiJ1tGDA0UsawI6YZIzYYsVIbQVIuqUyKdzcqxCgk9F90Q31IsGqE4bqOi4MjMqhGJktR0HNfGkc3pYzETx3OIJcW3sPnFyXXcYp+O6c0i+xNEavWNYQhDfZOJp2zApuVAC+Li+yj4MVIRk6ffeHLSfiMc9sMYv/ja+UyWL//ol4TlSbaQatR1gPwuL/7xb2slKpqhEzg+X/vxb7juki/Ke5K2qjKhD1QgRNHqMGLHHmRkvJ9t29bz5O0iY7X/+6Ose6Ber+94w5QrGr3do6Sj9XrpvpGdbH1qKsID4D2fFFD3fD6PXamQTmexbQnBt3eTTc6iJbuU1pSoow18Hb9ardWUNTUbDPUMk1YsNEMSZtkllEBDDXXe6BKlCIb6/4OaK8UPal2rN63fyHj/EFo0wrS5nYBg88HSGCmOYzPRJyGB6Rap5IRyyDY3U/BLvOvdB/Da68KwMAydMFQFQ+BE/psAVQ0IfIkjRicMPAKFWqGvSkDgu4RKWGssWnHzjI2PoEvYXjIdJ6anmNHRyonvlkw92Pz9hcdJlWfyzAOiiDBxoIXppzAd8eE3JTwUwwXJmgIQVmTHelXDlU31xCIVomiTWALDQOLVJ9ifdJQQ2mfEsT0JpUkmUQtVIrL/QWmJ2HfJgoWc8dOLAZh/0LE89c8ups8X6XBFqTKUr+L4AU5OrLbJ1oBc5xBXXXss37n04tq7OurkMxkNhFEXK4c8+JfH+cCpx7Bzh6zRWAbP/PMedI1aY7yZs9r5Y24N5pg47mMfPaN2vj8/Korxjzv5NCq2ythYMAG9x6VAnAp5yfDTl3M45eDl3PPIc0QkxGLruhe45Itf4bRzzqPxOPHMyzyb9bxBRBUn0swxDDeC71SYPl8YMq7vU6166FqEGjYCasWXABElghdxKBOiR4XSHN69kW9yKXuTz3zsy1M3LAA+K/68E1Hvdu8fb2cyQPChx+pOxeNPPoRysAncy+Zu8Wle9JXvcNYFJ7D61RfZ+cpUb2PNi7JuLJJkmHFiijWl5XEsYZEvdRMdrSvJgbe2s+xXXwfgfv7KPSu7OHjRcUDdubIrs+irbGf54cKp+t1fvo09VOR/viSe4e5Hv8XZJ3+fH333Af7+5PcA2Lx7D51LO6fc36OP3sT23p1s3CHue1tXnuNXdODF8nzzUz/f6xgCbF//fyY+UYwAK5KgWJKEL76LFQ159rHbWfmMCAjofhrVdIhG6/VLR3zw4xgxD78oFqqH7xPwvbsfuhT1BDFfPnz63u9tcLD+rh668w46kyb33v1X5r5HOExdz61m+QlLWPPEBq782LkALD7mqCnn+MCZJ3P/3x+dsu2a667isq+JsR7reUZsDKbW+s1oylCelmCQAba/KY537Po+hUIdmvr1L5zH6R8SvbCaGnT2bNuAPboHNS6gH/vNmMMYo6T3O4CNGwXT5PQD5rB783ZAGBoTS5ZhxjDiotBX1QX86ZOf+wJ/uvG3tevNX9TMxo11EpPXH9iIOSNJWjpOI+MusYyOF4Zoshj/oUcf5pM/XUEge+Eoms140aUto2E5gowmHFtAVktjGcOkJPQjVYVQ0clVhMGwYOZyiDgYuspgTuhYvS3F0PgQnudw2H4fAiBqaPj2Lrq3i3cYS0TYM7aNlhkLSKaFju1oSRIWPXr6hb5pX7gIM1+l1NdDMhABCkeLsOLIsxgvDjEwIOow7rnvdjpnJJizQNahbeoi2dhAqTJaM2jjmoo/Oswjd9/D0uUiCFQZqZDIpihKJtk5c2ezbfM6wtwo6YwwIuxCkbhhMP3wpXS0Ct01mimyfOw4ogmhIyJWE23T5tCQeo31zwsDZcGCKrPnLWLmjDn8429/A8DUVMyIgaMJw0VVIwSBOoWUwvdDFAVUtR7EmzCSJu+n67rooSV9qyAIBOxa02pQesMQ/bB8WQBuGBFAOG8TjKuhC/ghhmERkb3ebLtKJhUnn5cGNSq50RGUIKxBKsMJ58wwao6a42qoRrVGfhKGcbzQRonoqLIHkmZoKAS4vlOzOeJWgljcqjH1Br5GY2OGku2TywunOh6Po6gh0biBGav3tykV80Sl8+F4Hm1tbTiOR7kgjlMCBV3VGOofoCIXtkQqjWFYWLJBcUSL4Dpj5PNVIhExVo2NFoXxcUI5dnE9xvjOIVKdaayoeJZMLIrv++RyOaKRCeZhhUqxVLMRUokkuVwB3/Uw5X1OvKuJfQACL0ANNEIJPUNxsCIK1aqL708YxwZoKvEGA1eWKxx5Uidz588jj4DENloZBva4NHWYrN3whrxemkxzlKcefpO2iRqvIIriezi+GCe1YFCo6CRSOnZZQGI13SKRaGZ8ZJyGjNThPji2hyIJGDw7gq5bNDYojIwKvaEYMGuewuAunbjs41V0+ij784k2iTGPNusM9w1jxCIossF0JJ7DiqVpaEszXhAaMLAVikN5YoYcXxWam9sIPEA6eJlmm3I+SjSRoip7wxWscTxbJybfsWW4+FbA9PYWBgZF/bIf2mhegB7RalBazxVlClvW152qmYsXsvyYo7j/N6K+yXcKqLEGbMWsNcIeHRyntVlBMcR5FD+gb8BlcK1N9HSht6tajGokxWHvnskrL9bhbL/4xiV86fs/A+DX3/qqGJ8Q1KDuHriKW/MWlKAOFw7kRs9VMDSjRn4C8KOLP8+l199c1xEhgELo+URk4K3qVFi7ZjWxWB1K3Jw4Eniifu2CwZtr+mhJNxFrqNdfb/3nCDMPb0eVzJWaatG1so9+6YhHLAclVBmzS8Ri4nqplCCdcaplVNlc2YyYuHaewqDQI1Z7EzNb+xnIUaudnNEaJ2IZDPVHicTF3DO9qWUYb5f/COcqUJW6MoropDvbKQ+N4cqC3eZpzaQbGxgZyxHWCrMDYgmTUlEsXuN7hrBLLqedfQ79srFu/+A2EnEFp2oSiYhJ7zgOeqig65IK0tNQFcHUNxGv0zSlxp40kV1CCRno6qOhXbykZGsC2/bwKiYnHPsBALbt2M0LL68kGM8zrV1+jG4jcb1M+34yKpdSmD1tAate34o6KdMQhiEEChNITU2TzRYlS42qihpOVdUY7pvKwjdVJswiMZ47EYWBG555hg08U9/t6H9zin8jjz3wR3zphAa+TiqiUfHLnP0+ccJzgMs/dRa+b+AmJGVt2aFoOzTud/w7zveqJMd45PHv8sLz69FjMzngUFEfozRO55pzj2PDm4Lp8B9re+FgeG7tALsGhQL+xKdPZf3I2fztkL/REBNRqjO/fAwf5EMUZC1FYnojmhYS+vUiZj8M0FDQFZWqUydJ90ON1nZJWqKDrVewEjp2dai2zy0rN/Pu+RleeUU4lA9uynP3JcfWfn+mv5cOM82Chjgnv09kfx598M8A3PX3h/jomafX9r3i+kf47sWniOfb5DFSKsEKuOgr36vt0z+2h2XvWsBO1k4dvKh4lpg1DdhFYyLF0KSfG0yD/qFdtLfPnXLY0/dK9+4COGBahk8ffwr33icM9rPOOJmrLv/qlP0//+Fvc+ON9ftxh4SR950rP0tXWkb9Ag/bnUogcvLJIhr2X5/4iLjdeBM7tgxx9z13wKemPsqMGTIau0vM97lzOxkeEu84l6+zNba0y8aC+a0oRNBl0XtTcxbN1UllE8RkAa8dlkEtYhd6a8d7uRGWnPhhxvvq7I1PPPdXXtr6D664sE6df9VN5/Od82+aco8//85v6DxQOCgvrn2IiRbZXc+tru2TMeIsPGoJm58XtSGV4lRM9jB1dsof3iCc8dbpJX53yxV8/lPf5V37C52QG5kakTv38+/CV5ZxAlfw7avE4EVi8F4uB+Dya8Uc+hiiXujI48TcaGrwScbm0JRZzu8fEE7reWd9lDd2DPC1j3+pdv7PfuhM3IuieJI04dprfwKAio/nCiOiWJIU3r7GbbeLzN5/feKjJEc7+MQKUZd1I4Kw5KQDD0aV0fvR0Ty6ouJ4Id22GPc8YKV0jFA4iNmkglpQGFFyFCT72vSGFEZ/nqKSJqUInac4DpUwSVVSv/flxxnoH+LAg95FLC6Mqwf+dgv7L9MZGdxNVRpXg66GYvjEZohvYb6RwNyxheGRcYpLxPNN328Gm3cNMTQgMmCpxtnMndbKhoFedoyJb33JYYezdecg3UNv0tEs5kJprBuvModTz/4oANd86ypi+V6seMMEKR46Pq6usmPTJtSq0PFzjziMwb5Bjl8qsodmUzOxngRbu3eQaBBGaFM6iWrovLL1TTLbxfP1F7fhOz5aQYxdyS4yWPVYcehSNrwgdMS2PTZowxx+7Aoa/1tk2O/69R8gH6LKGhPRFTpA07Ra5mPC8J6cvRK1VeqUWqw6LfuE4R3WsjU1KnZNQ1WVWqbLcRx5Lb/GlBviEYYeZiSCH8p6sVkzaMzG2fyWcISjRoxyKcC1q7Vm4ygquq5TrlTR5TtuaGkmEi3VMgOlYg4rauC6VXSZlYpaMVEvpqlYkvhCNyP4oYMhCQPKRYfRkTFUU68hGcLQp+pUCKjUnjliWKLpr/RRylUbzwczEqGhSeipwngOVdNRQoV8UTyfH0IQKhSKYp5nG5qwolFijkPJFvN8vKBC6OFIYz3TnmIcCF2VqGzTUcr7ROMGc6bNYmhQOgOBh6breNLhHCvbWLE4SmjU2HvNiIFpRQgmZR4Dz4dQrTeh1Qy8aoDvRia4I3D8Cp0LZhJN+OzcLtbaTBu81bOdjjYxlru7ypQDBzOqkW0WbKFjIzbTZmZZtnQ2rz+zQ45xkWoI7R2dAFSKBVzHo1RwaMxINuJinmi0lagZoVAWAY+IZmLEY0RkYLqQt6lWXHQjAY4kfAh9Uo06qWabiqx5Uv1OFE+jIo1lzVKJZy3Gx/I0ZkVQ1vGijA6GpJuNWvPo0Etgl22iabEuWZZFX38PthPDV8S2RDKN45VIGo01R8JsK+KVoTQs9imVLGJGI4EbUJQ8AZ4X4DoBDQ1ZkK0QPNemf1sdXbPg4AOZsWAOZrSltm1g0CY6owKah2rVTXhFDVFlBkw1UnTMNOjtKbN4goStENLUmCWS6YRJtdIXfe8GNE3MlzPO+wr33fwLfEunNKl3jBpS++Yn/q8GYa0hchAIwhltL3XXk4+rNaCWjdOz6Vm899hz+e5Xz+Pyn/1anOtAiycnOVcpfTp2sJmqV2D9JEbkxUe2UNVVGtKiFjWZitBFH1ueFbp6+fGdJMxpOE6AmxPfR65SRrW7UIditczx3IWLiBkGrU1i3nVtGaHsOLiNKRqilnx+h9HRUdQwS1VWZIfev2+u8x/hXKlhSCwpJng5X8DJlSlXK4zIu/MNGC/kKY2WaZ4mCyLdkGLewZXKxzQ0ym6J11/fSEenUBBbtoo+FZoWoknaxGq1hO9p9V4fvuiOPbGAgMgSaZpGqPh4rswceR5m6FMeFMZBgIoVi7KrZw8PPyqyVPOWp+nevZ1ZTRbZ2SI6mauWUMYH6ckLw2a0P2Bn9zpi0VhtQVPQhMJWVALJalSplLEso+YEqppwuCYKAQGap0VkpEDFkK/SKcVYvHwe85YeKO7TKXHLjbfS2KQxa6lwgEb7FLLjVdqSQklr87LomQXs3r2TT31ZRHq7urp49tHHiVYTrFz1t9o1e/odknIxc5wiRksTimHx1oA061vh6x87n0w2xtJzPwbA0NAQMxJNdPdI6oSr6u/+mBMFtK1NreJsX8VbO5/m/juFkTu7bRlXvPkUV1wtjMAXVosxbJ9eIpkRH+zKJ15lVfMMVpx4GIPPCcMinxFKPTVNGChaJcAzVLnYSwPAFYaFqiioSJrXdIxQ1whkhF4JY1gk0d0x9HpCi95NXbym78cJ7xaEGS+suYVTPv99HvnigLUoAAAgAElEQVTdt8QztdUL/CecqvW7drBsxuwpjhVQc6wAfnrBGexNCobCyhvWvmO7LslqNu8WhnxTaxub2VD73dMgE29my5apx77wdF1xnX+GuOZZZ5wMwLayw7xJUaQJ+dznLufe5wRRid4pAgVXXf37vd7v22XGAuEsb+rpJtvWwUjvO1kcJ5yqAw45iDdWv86u/gHee+L7AHiIewDo6JhNQbKonXLy8bi+zRtrBSHDji2bOGrFCgZzA/TnhXGczigEtkoYq0dozXLInbfdQOBKeMHV8NyOFg59zxWAmHcLDzyIv7S8AZOQEu8+6UBefGwtO9cKR+34j5/K0O4+1q/rIRyrO0JPPzKVLbG/fypUc83munO1sUtE4caLWXp37oJPwfq3JGwuaJhy3Euv7cIPbDga3lgnFphogwVHww+v/yKDianXiSAmx1B/AXNWnL/d/yaahEb0Df6TlSuL8HH45a2fAqDYlqeo+mzeJAzAW/7+TT515g8474Mf4cz7RI+nUl4YZ4O5MSKZejb0xpv/yM2/F7S8N8ptJ570Lvplj7jp0zqpBoOM9ZXwE8Lw/R6/46k3xtAlQ1tkrIQ/7vCjG3426SnurP11xdXCuVfb59Lk+chacgwtwq49uzl4xZFMywro8Zwlh6CnQh77zRM8xt7l8t9+g1RGpbuvl8q4mC+vvrmZdf+sF1Nvo/sdx5tXpugb7yLilykO7gQgFU3T3DyXprQomr7sG9/g7vvuoqdrF/GkXMSiGpHAwgtdNm8VwaKy5nDSGWfXWPFyw6Mk4g2omk/MEuvcQP8ulEqVbEsTTzwpxkM1monFA9EbBshXi+RcF7/gMXuJGIOG0OHoE4/nphtuZ8mBIrP6ma9fygN//B179ggnrbEpTaXs4nneFFigQEmENSdCUJX7U5yrCSdsgoFhwvkKQ7/W43ECNjjx71whj2lEcBwHX7LZBYFDoPjE4wbtMnCiGxq7e3vINIh/j/aNoIQCTYLU1b7nU6k6xDMxko1irge49PWVWLBI9qKMj1EpaWhqneBB1+IomsnYeI5ss9AB5ZJLuVJEZ6JXVBzHLpGIaxhSyebzgnggYhg1avmqH2BoCbSIGJdsMkWpVGJweAArL6PafkAkEqGxsYmq7PuGGhKLWLiuGN9iaRTDMGlqa8SSTJm5QgVF8WuZiIorFiAvUOnbI3RQVI/iFFR2bu3mX0mkMYqKghGJ1ByucqGIYZmkGzKU5PUURcH1HHyJXHGoB7Qmlr7M7Cw7tvShawaxBuG0FMoBVdvl/p++E541IYedOZs9O/PstMewHRkY9kzcssbubpmd1Gwcu0AsmqahQdhq2bRBfmycaEypZevGB6p4blhjxVNVSMQtqraHK6EyVhJKxTKJRhtXZo79kkaIjuRNo1q0Gdsdw6lqNSIzI+rgKUU2byzQNl3opUp1GEVJoSPWdM/ro6EhTWPWYmhEjGdAiGk1kojPwI0K/a6oKZINGrojnQ8tilMJyOVtDMnyrAY2hhkjcEIKJTGn4skEMMohEiqutMUwG1IkQo1zrv4uAH++8goixNDDIZxArJttHSb9A5PRDvUWLGZVkKnNnTMdMz6PaNAE1MmRynq11nN1+vw5fOWH11FVXCaDDJ2qzwR19sT3bPsO+iREmO9BoEx1rjy/Osm5UoWtG1ZQJjLPmsX3L/4cF15zA7ZEaRnqVKelqXUmmdQ0XCVkVBXPdcAprxDNJhgbizMiEVEaMzn93Pfy0K2CxGTNkzuBnVPOdfgJR5JKNpEvuKBNQPANfnD5lbxdFr/bpOyINcxV4sRjM1i98m2tS96JoK7JPkKLfbJP9sk+2Sf7ZJ/sk32yT/bJPvlfkP+MzJWuYY+LSIlbrWLoJqbjUd4lskRqySHTnMUvlhnbJTx8L9DJ58fIZgShhV0p0NTYQK6YZ+4SER0plC22b9SIJcv4MoKgKBq6bmHI5nnlchnX80WmSvqaIlNeL9oFUDULlBBXNoXz8xpuEKdMhEceFxH9I/y5WOk8/cPgyahiKhsn8Ks0ZEUEas2LQwwPjBKJa4RID10JqFarUzIrhmHgBy5GjdY2mEJrCxCJ6OiaSuArDA2J+1q6aCnf+eUtbBuRjQbtYW7hVr7+qxvp2igi3kM923lj/Xp6i6JGwelyUJR+0jGH7337egBiegpPyTPYPbUx7UDXVgbSIkpe8Rq57Ipfc/UVX6G/V0ZKWuG8X32NnW9tIykjspn2GdjRCtNjUymbAZIp2Vx15Wt8/JLrmLdkFqM7RDZC9zQeeOR5Vq0TfZiWyBqxdWu2kzZEZH/6PJWXX36StLeIFpmp6tm4Fj5ADV5khi56mEZRJqW0FR3XK0uISz21bQQhqi8b8+kqQahSIYrjTmQ/RpmjbaNrfYk9W8T1LjjnVB585nUW/FgQWrz13BAHHTefH174SU47W5APVK7J8D8/+Sk/v2jvRCIAF/36d6TUDMXSBq67+Ora9jdu3bjX/bc/Xa9Najt4Pi+89uSU3wfe6CE5t53mFhEpG8qoMB6wN7nuSZHduqn7JfjM3u/vrPes+Jf3/u/kmivrqcq/vu23aCrD4sXzSSXE3NjSvxMAp1SpZawmpLd3B2ajiGZHM8uY09HJQ/d9vvZ7dloH5375G/z0j3cDMLSzm/LwWuKJOqVsp6oThjEC2cyyG9i+7gn+dPObtWDe5rWv83Z58bGp2b/1m7Zw+iFp1j07wtWXiAztlT++k85jl3DK3CZ+83tRg/SJE/fj99QbWr//wFn8WdY1hY74tnZs6qYlK76DXXtE5LNvz1Ta+29d/DO+fa2AnYW++P7yspeertgUx+pQ4Usv+zilqIQu6A5jYza9uyscdKAo4B3Y2c/cDtkItSL2yw2q2LZNRFKcD05CM/79tj8BcOKHz5bHVNnd/SKTZfd4Hcpy7S8vpOD3YTUI3TlSfRMzVEmmTCqJekR8bqNC0pQ9ntC58LvXivu/SDROji87mvZyP+df8HW+e6WAP37s7KMwqxlIyfocP0fZ6+WO228kkRTwl/bWBv54ragJO+erIv1YHO2HtMlDNwhI7Pe+8EM+eekHyCxop8EQlNHr/nkHh526BFtmbOZ3NDOn9Vhe2vgIDRkBy3krWMfM1lnoaBx+rEACPP2PlfR07WLZQlFfd9KJxzMyOsTNW2/Gk5BjRddwyy6uEtLYIvTYWNcOHrzrL1xyvYByDr/5KqueeZIPnnQCOySUdbw8wMHNLfhxlbNOPAmAO+65h9M+9Dma2kSEf+2Grbyw5nWmtSZRZCh1V/coz7+8FiXqMdAvajzmL96P875yFTf/VGQBewf7iUbFOE6sc5qmoak6flBP1auyx9XkGqyJZsAT6EFN01CUEFVTBBETEz1PFbQadbOgag/DsFYUH4lEcH2HGTPmouhiW7Hgs3S/Zbz2sqjZqZZdQlx0VSfwJvSXgmlFiMQjuDLSHSiQbU8zAfBPp5rJj/cyUgpq9UUOOQLFIpFITHBF4bo+hfE8MUtkK/xqhYipUylVGauI79DzQjKNacJwEvzRA8fxSMQT8jwuiXSCZMoikJnAseERKnaZuKETk8QbASqu5+HKbFSo6pTLZTRNI5EQ59INlfyIN8F+jS+fu1qtoErEi2Wp9G4VusVqFMeFClgxk5zsMeeMVvDTPgpRElFZgB+ENDU1USgV8RzZuFXXqY7Ua3qjzRkCH9BcqkOSPGbHCKnOJDu37aBjuqgvnLV4jGfu6af1QKG/QqoQqhx74lLuvu4ZALZv2I0Vi1EsKiTkGDi2Rzxl09stximacolaEaqOw/iYsGUSqTSmruN7dSimZoKmgymzhb6jUal6hHjoqnjHlpbEo8jQHgVd1mrqMQXf0km0iG+9scMl39cATiMV2UfRMpuwohqVikoxL3RzMmlhKhoEsp7T1KlUfcbyY8QTYl1NN2gMDDhs3txNtl02U85XqRQNTF9cL0gMMm1GI0v2W8Qb60R2vKlJwws1qraLKslVPNkLrSpJPSLEcGyf4vgYriqyqJ+48EL+WboR1dLRZKPt/t4iLW0mqmzPgGNgGC67dsHMxceJezAN8opGRJ9KLqZqcVQtLt+fi2UCoUGg1DNIyUwDqiR3UHRxzUxHB0o40dvPxwhUNKXuUnz/9/dCtq43CHXCUIGIwwRv2KWfEiUDP73sbfXqk+TBP4n1/ORPLUctivt8/ZEch50+g6aGGIEiEEQRrZHB4altcVa8bznNLTP5+833AzBj9gIiZpr2BhNDQhp/eOk3ueSSi7A3CX1jhzluemg1b73YzYEHizHXowaOl2PpwW28+drUNjn/Sv4jnKswCDBls65ADYmrEULLRFL4kxsbI1fIYeKTl86Gqacx3CrFsmSIUQKy2SgRxcNBOGXHvM9ly5shhm6iyAJa31eo2gHxhPg44wmLSqWCpmuoysQ+oq/G5CJeJ7TxMVAk3EbxQnRVRYtEkDW2bHy9j4P2z9KTG6DbEfCsWS3NxJqjbNkklMjqF18lkTWxy45oCoww6kVDRoVqdQKvrhIq1K6vqGKfyXlIyzLRVJVK2UH3xSJZCD0+ds75VCTTSyptwknwjbPP+zdvQBjp/zqxXxc/8GhNCCPmhVdepyVb5oFnn+LUowVb2D1PraToWaSmz6vVFnRt3kUQ81jQ/s7GqA/ceRsAPTuHuOfOvxBrydDZJNheFi1vIu9ZjO4SH8yFX/k8F/AJfnfhpxmXTe96ChXOOamRMmJhAZj9gThXciHvPf5UAB67/x8kG0U/F72WCjbxA1uOvXiBhm7iYqNojQCU/H50oxEjsHDder+oxad+ltT2Pk49QtRvfA0EecWEXAITrV4fvls0EX6YX8JF/35sf/Klz//b37OHiUBCkzIN1fcY6BULa/usGaTaMyj7OTgSsjKyc4iGeUkC22XPbqGojznsaJZ/aQFao4DNXPe9K7j11juwG9ro2bMGgI6GFs4494sM7N7JTfc9CMC3zjuXow/OkEl3AhCNaeR8qI7nUOVHaqSiuK7BfY90M2e26D3VZ/cws2kGpiWgC1073uDBP97OgYfNZu0r4p3GEwb5fJElC8UA3nbbbXSQ4t57niAi+9Bc8o3z8KoejqcyLBnzNm95ih07I0xfIKBYqWiUYHaRz559Og+0CCjmbT+7j8cG1zGtJcuRh4oFxWhXOOE9Z3LYSWLBOY2Duf3675CeNbs2zvHZrTTGYuzasIOGWeL8yTaDHsnKCKBHI/zhd2KRfHhNvVOYUlZZ011n7tw0MrUHlZmaBLaQ5CmGHuLI/kRjo+JbHBwVc/Lr3xN9tX50+V9qxACXf6teG3btdZ8ljCg0Ztpr2zLZFN+86DcAXPXd84hazejWALZkVmyOt5KRjWUv+oJwYK+4+lNkUiGt80R/Hi1ad4I+8pmPA5CXvbhWPvxXPnrr12u/f/nbH8VqrRf3enYRz6uSNMW5AnUEbXQ2o+VB9GhdfzXEwloB/4499R5aCWlY7FrfzYIlU+sFm/UOXGyKjhjHvj1b+PJnvsBzz66ie0B4hG9JQpT3febDjOXEu1k0ey6Pr3yW879wJgA3/fbvuH6W0S095GfWHYnGdITyoFh0N49meWX0LZojGl0bBTPgoYsOon84ZM7sxfQMiTFsmtVC+5wkAwWxFvX0xakGY/gRn4ghe9FVKriKTyJm4sq6mjBqMtS9g19fcQ0Ai49eRGJeG+udEUZ2CQNzTtsclFTAo48+wDe/9Gmx39KLqFRbWS8ZIX2GKFQr5DzYtEOsO4ZbpWfNECW/WnOcHr73LhYvO4Qb/ijghZ89+71UvLAGg4c6vC8IVBSlHoixLKvmoFSrVVzXZXJ5RR0KWK9dnswqCBCNWpQKRUBFlbB8PTQol0I0J8khhwgo+5pX3+TlZ1dhFyQ8W7UIvQDf9zB12cMy8HECB91U8KRzFaKTySYZGxFzt72pAyUw0RStdu8hAdFUHNsuUbHFnDONCDOmt1MqSkZhLcQPHIp5wRwIEIsmcO0AImDKpvNVAkxLZXRUXC+ViZPLjxONGWQk3LVUilDMFfE8l0pJnN8wowSAJuvOLDNGzIRKpVKrM03HE4R2yNy5IuiUy5fIAe1tGXq3Cftm+uxpDEjHwJdGbgi1XlUTkkwk2G/hopqjXxzPUciVqJSLaJKYwpPOS7xNYs01F8evYqgKsTZBTFPuHxeBHV+he4f4rna8KpyJbLMYk1w5xKtQc6wA5szp5M1Xd9KYacAwhPHvhJDLOSxeKta00fFRAj+OZgYgmUBV3aBsFwkVj2hM1sOVCsQTMTxJaGMY4IdlwiCCGRHO4/h4kYiZJBOFki1g1joaSqXE7i0SdpkLKJdHSCVamTZbOEBvrSsQT/qYUQ/DlM6bH8M0LdyybPgcVlACi1hMJ5QQtdERA80qkduTQ5P3OW8RjA+W6JONapfOPQC3Osza11/C8cSYj4zq+H6FMFBRAjk/pbPb171BjoHJaCLDNt2icaJ2Kpcj1AMULWB4Vz2oFigOrvSPY/EIJU/0mdo1INbaTW/uIdmgENgK1DnKWP3Agwz2CN2ZjmZRFNCsCEpEfv9fhsfvuhdPfvBVHzgPrj73LFZ84LO186gRQzi40tR85umX0LTJukWDUCfQdQxVPOeHXvoeqq7hqwGeDOyFrs2DN11XO2/nEYs49MhmdoxsoDJWX+deeehNTvrIewhUMT/NSIJn//Z07fczPnM2A5H1OFqdBOMvN/2Rj3z5S1imiWXW16JUrJGyN1HPCcv3m86ajbuxJKuwTgI/WWFg7P8e7Pcf4VyBguKIBVXDJ9EQF5SiMoujWyYRINTitQaIHi5BqBORqjwaeviVquj4XhQfXqLZYf4Sgx0bIdkozq/aaUI/hxeIj4CgIlJVoUEow0RmxMS27SlFvaZq4TgOiiomgFvRsCoGI4N7mD9bRIQjYYKh3ToL5r0LRbIRDg0NU8679PRINr1QoxoW8H21ZtSrCmiGIq4pFwrdCHFdydICxA0LxfVRjDpT0VjeQ60qFEsF9j9U0CxrbXMJdivMbJe0krMamH3Wf9H91h7OOV8YlKvX7yB0y6hy4jiqTmFogML2rZgyol9VVEbHNDSnwsyZQsGvfnklr61fQ5Nku7FLVU485mh+dtu9WLJLfW68zPjoCIP9vSgy+1dxXUbHy3RNOFfvq7/5l58XTYlnzJjF/PlxSiWb4ZygKn7+6QiVskf22PcAcPc/XoJTYTA+g/4+sQht6i5y41P/IHA9ihWxWHohcBMEhijk9rQyoZpE1SI1ylMzEqJIIpMJumQv8AkIIBBjFwYNRAOo4mBGJ7px5/j1HU9BmATB+M3rQ2XmJ3V8OV8efmkrth3hvJPn8b8pI68Ix2KEqY2BR6lnDaYtmFH7Wy9lGOqrsw49w9M8w9NTjj333I+/80KCg4OlUj3c8ZWt9K99iNGi+Pa0CvgBoCRrvn553EVRHILy66xZJ7I8mbYW3hzehiO/bVMyxbUfsIK1CIXvhiqhFfCn2wRb4Z8mWAs/Ur+dhZcuxNEjVMp9LFwmmgg2N00nN9hDIIuKGxKNSCIq3n+sfADJMfIa40xU0hxz9CksmDWfnb3inZ/4/c/x+F03kuuuR7xKOwZqrItj3ZJ2df+pRn7vyno2cdUTq2p/71i1nsmxs5UPTG2Efetv6zVZ974gshPpSohhilYN2QYRhevqF5HTlnS9C/x3L/szb5eIYqAqPl/6zE8BuPbHn+HSS35T/92MY5RD7v3T4/z0198E4Ivn/+Ad50k0aChukpGiMNxiXl3P3POHO96x/wXn/qj296z0fnzti1fU/n3Z127iOz/4JBdd+Mspx1x82UdplY1+AXqGA2bKerjeXjGHf331z2hqE/PlwacfIty5mR/uvJxvfFdkW3KFMaJmHF8R+nTZsg9CYh4FdSWvviEy3BPplIa2GWwcFO/v1bc2cfpRx7FnoJ5F/PN1f2DBUW0Mj9fTdPmKz4tPrpH/EkQlu4DlZ4ga2t7CAKpmc8aiTzIu6291L0Ei2giaWFO2bdiOXVJYfsAR7FgvMPqFCsQiIWHFZ0RG3VsdFas5yo7Nogayf8cbLDr+cGJKnHFP3OfmrteYObOTBdNV3pIkLIVhg8MPb6N7s8h4WU1RXM9k1/YeWlqFjjXKeTJGwO7eUWxJEf9fZ5+FZXSwfr0IEpz2X5/kDz+7iYZYAi+ccCx8QgSFeiij0LoRYuh1xl1VFf8FQYiu1+cJiAzWxPc+wSgYSMNRn1jv1BBV0omrWoSq4zFz1gLKeXH+bVs3Uy0qtQyR61bAMAiqMDIu9Hfge2Q7o0TdRvKacPobEwmqbhRPEXNpNDdMJGmhB4JVDiDWUiWmKsQiyVqWOAiKNKQTKFLvVys+ppklkXCpusKALuwcpu7+C2lbNAdDc2icJow7t+qJGsA1OyflqoXoHT4TVRhBVaVaLWEPieuNS/3dMK+Var9Yfwdl0Xx1mVhDF06bz24GqAyNcPhyUcNaKYt7i7U2oZmyhrwUYIVpzvy4qNn5+x13QzzGujUbyEr0DLaGH1EJDANfkoZNm9PMVooE0tlSPI+UmqLq5PGUekCosKuKkozQNlcEIPsosf+pLQQTgWmngKYYHHRqA5vXieOG2gsocZW8X6ZJFzZHygwZd1zGRsXz+V6KgjvE9GmdNE8Xc2pk0CXZHqeQy+PKktL+TTYLDmio1b1lMgaVcoxA9ZGJQGLRJKqq0tAR4g2J80diLkHZwZaEFoqXwvcCwmgFxRHvb1pnifx4hHQiSqCJCxYqNmayiuaJ+3Yp4fpV/DBbW3sa2xP4gYHmR8mPifP3bfPQtSTpNuHolvJVPDdgxcmHsWq1WI2SsSZ8TUMLAmwZbAikMz/cIwkf5sco+yMogYJpift8/fFVtLZEBXsjk+qsfLWGfPL8Uq1OfJ7M1j289jaa2loEeckkmdcRBVlrl0iOE9pgBzahUw+YrX7hPlobxQJbqVRJxePkSyVef/RPco8AFJ+yHWBKx/QZ/1bQ8gTeBF2gy8SfpiKexVccUdOnuBDIzGqkAJO4pBobBhjoqRKNW0ybLZ5vA3DOhYewYSRHRRdrZcKc3PQYeraPkqtYuMEwh37wRABe/dvjqEGCta+sxpFsf4se+yBXvHA5exNFcv/YSp7YQJxGo4Ht9O5137fLvpqrfbJP9sk+2Sf7ZJ/sk32yT/bJPvlfkP+MzFWIwPcCC/Zfxu7hIaLTmvGGRUTKHh0hGbEw4kmKMpJkJFMoioouIybFsUESkQiu6xKJSspTx2L+AQrbN1aJWMKPdCsV/KqJU5WwuaSF77kEgTdRZiWoWsOQ0QGbVKPESbseuhqpRUXLFZsWtZVFB+xPWTaYPOLdBzPcu511L6+l7MkISUSnIdPJ7l4BujNw8Cs6QejguuJcE2yFE1h2qNPdxmU0NPB8Qs3AUOoQlojiU9EMErEs8w4WdL5FL8aGtzZiGwKW0Lt1mGqhxNDYKF394j7f2uMR2FE6posHbkibGEYDRxx7FKcecygA44M237ziSvyCy9EfFVGw1azkkq9OpekG4DR4nNv+L1/2VDn4CNHQdsOm9bQlZ2AmQjISemmXKyzbfzZrV4lo/09+dCMMwM9+fgcl2WF2WiZB6Iwy0NtFR5OIrOzqFVHt3V0CNpMKTELPn9LXw/O8Wo8URfYyi1lRKp5NwAQrFlRdBXQdZdK450d3kYrV4V7HHfxxjnvfoZz+CZEi37h1gJRdhJPrz7n8tJN47/6HceoHzqGYEHOqrb2JjRv7+eRRIvPZ2HkKF158Bm+8tonnXxTRcz3l0zxtGmvv/zNL3i9qPMa2dHP0EUeQHBBzbPOadcSTHfxjyypMq95kb/Z+IUNAYq6AZ7VaBkoYZ/dbIvJihyVSkTa0TAczJG3u3X/9Jb/45TWsfvEVXn1d1mFd/xPOOGYhpqzP8DyPUAkIwzpls6qahIqCqlskUyIC1djWjmXFGB4eluMrjk811bMXSmGUrr46g969Tz7GCUcexmWX/oJf/VzUam3etBmrMcXsmcvwJRxsa67K0hPPYuzvIqvSOSfClsLUpn63/OozXPvLh8iPKOwZFNd45tlHeIZH6judBJHmZpyhIYyoCFO5lXc25B5c10XrnHb8qshpDe/Jv2OffyezTxCw2R1P1NnoKusEtKYCHHLiYnYxTKkoIsItkmq8NS4in3fecgFGQ5ryeJlzz60z6l14cT1LBWCQ5A9/uoLGrIA5RuYnOfVMAS288Ev1jNW5F/83qUw7N1xxGQCXfvlm9iZ/fvBuHnlMtHPoHejl8b88+I59vnbhFe/YdtU3/8QHLhC65P5fvQrAeG6Iql4f2/n7ZUknZe1kVYyn2ezhSzjK/vs1c/IRB/Gdm35SO+aWB/7JaR8+mtkLRQazd/sIz6++nt27evj/2HvvMDmv8v7789TpO9v7qnfLlmyruFvuDWwwtoGAKSYxMRBIfhAgBBISEgKJk2CKAQOmGWww7rZc5CLLtmSrWc3q0va+s7PTZ576++OcmdFKwuZK3j/e93p1rmuv3Z155pnznHKfu3zv7/23HxW4/TcPPcFvOcrLz/6BM+eKiOPR3h5Q5hKJTgc/dzVGSR4TfNn46C4+9s8i6XDvG1tZsfxi7v7X73G0T3iWz5hTS9gPkslkGcqK+UsXB8jYnexZJ/K5PnjTlRzotelcsoT3XS3YOL9z979h2w6+ZhIeF30INipMOQoR6RGmWGD32mdJzV1EzTzhbQ5g4w1M0ByYR1Syy206/DqhYC1aTOzrgOailiYYGthPdkzca0aNyfmr20kWfXb3CHn487ufwGxp4PRZ4nPnX3kei+YvYW/3AaKSAVYpWChBDVfR0MtMgL6Lomh43vSzSdOUCuRHURQ8z8Oy7AqUXdf1Sq4MgI+Qwa7rgKxNY7sWNXU6T629j0JBeOFDoQCGrmFJEesoQQz+0RgAACAASURBVHTHwVWinHORgA8H3VFaF7Sw/62jJA6JvZKOmjiRHF1NYs7TiVF0U6do6+SVHgBGXoell3YxOT6KX462eArDI1Po8ngI6CFsp4CVL1Iar8Kugi0BVBXyw6Kf+eI4mUyOdFLI3HAwwmTfMG0LO4nXin07lUkxsneM3FAWs1XCCZ00M2fNJnapmIcdLwr0RvLwKLWNEto2Ic43Xbr6O+qEzDxr8VJaZH7myJCIuNbEIhRLAvpU0m1KXpZ16x+v9Hvq4ABtHTOZnBKRz7pIA6FokEIxTTAs9IS29kUcoo+YJynOiwZ22MVRFLSyYiRbuMbFzVQZZevDtaz/w8Fp1wwBkSbJEjnu09nayGRyglRCROl0LUgp7+DIfmuagZXXCPgddLWJ9bNv96u0tjaieAVymeo82K6FL2uiTYyX0NUwRshDM8uU/3lUVeXAHodoROwjVYtiO0U0mWvv6x6uX0IJREh7srCwpqGbYUpuhgmpKwXVZjTdwimJOfetIIrikkvn8GUR2cSIhaqXsAs+umQCtPMmOcsiGJQIpuEktbV17N3zFvWN4rVQWCWbKuBhU1snoi6ZTJ7GhVEmDojvTxyqolRGEOukc2YHnpqp1iSTbWLMBaZHpQDu/LqQ8Xwd6s5byN6N0xltf/u7h1i1REByFTdC0XZAM9GPY8ILBMSYB8MRLMsiTY58aXo9RoCmOqFLuEoBX4ngSwbs0dHqs4Q7xNipqo6Vt9HVRhwZhcuMTT9/t69NcsaVJtmEQikn1s+lH1zIA/dv5WRt6fmzADh4ZAPZkRKqHqSuRqz9+vbZJFYcZGDXHiYT4iy3nCxrFi/i4jMF0ujA4CD7uifY2ddPICP3dlhHC+sk0sUTv/CPtHc0rhRFuRd4FzDm+/5S+Vo98DtgFoLr8Bbf95OK0LTuAq4F8sDHfN8/MTv8uOa4LlMS79zfP4hqBihmcxWaUNU0sBQP27EIyORRYZC5TGWEYHWKJdR6A0dxCUolsFDyKBQdNEOhILGsZlDHLVnYbpnK00DTPEqWW0nOVagqjbohjTLfx/URGD4gEArS29vPhz7yF5y3Zg0AK85bSYNmULAnKNoCf//G1i18+Yv/iivBsJpiEwp6YBmV79A0QcUu8O4yTO4Kkg3LkYmN0RiRqElqrIofJe/i2S43/fkXKQWEYqhjccv1s3ENmYxYAt0vkcllKcrCqStm1ZFMJmlvEkI6Eq5B72xm0+s7WPsPAo9/4coF/PO3v044rBKWOGL4NY/c/yCBmIT7YVMo2Oi+NE4RBCET4ylyWYtMRsxfMGwSrQkxcLQHgB/dcx//8I0v8M9fu5OWplkAvLphOw01BexSgbQvA6pujp4eheFeoRjf+v6r+D77Gex5tUwFQqJbp66tiVQqxehhAa0qZiVVbVjWQEOnRo6n61QTeH3fR0HDka8ZhkGmYOFK2I5uaiiqheVYtDYKgTFGP3NbGmif3VKZhtVtBbyJ7Xz3X0Qh2PPOuYJJfzoRyFf/8rO0nrGAvBNGQazhzTtTbH3iNZB1Zi+9ZhYvvLSL3t5eLn+3yDtramqhp2+CHUC8Vmx+rX0OBx2X+aYQ0jEfvIJUTqPCMG1fNp9BWcNkni7WRnO0Hj1QS6JBjF6RHME5IZyREdpnimte3vEKc5deRVaJsEXW1Trn2tmgBvEk+YGveCgIR0BZ4CqKRqHkYpphSlIhcAo22VKeQt6q/C/mpyqQg+EQUE2c/cFDb/DAg1spjk4H4fzZua3MmBumb1jsqz29vZymn4XVLPLHXnxxF6YilFbFENCogc+PEIrH2LfvCG/XrHGByz+ZUXVsGz16PNjn5O3LX70cs+wtMhTe2D/Ks9KouvmGFeRyGUq2Tna22H9v/OJ5jPIBNCX2TGebqN2RkYpNZ207r+1Jclp7kN8/8AVAQHCMeAt9B0O0dYjP5WZY6NZcNr8gwImNM+fzxo5uVi+v5pTd9sXPU9AHGBg/NK3fs5Yv5bL3CNKEzngj//Q3f4dl2WSLYm3lrCIXXH8Vrz7+LH/2WYHtHbWHGZssMiYJLUafFXtv0eVzOGKJv5deuZA9zx2gt2+MZXOWV75v3d5h7vgLcZ9OS+yJcy6+DlMVisam/SPsODhBV/tCdjFQ+VyiNExhh9ijBX0QVbepq6lFbxLKarBPjGvvtj5O/5DYt0tXdDKS2UNNpOp8AJjTOp9Ne6rG/bnXXkTpLKFw6sEw27YK+GdquzjG6v9sFVogTG//a/TvEesqMTZOIzkymoRLF/dTyo3BVJiuC6WxXNtAKRJgMlvg9AbRh729KUIhB0vWvVGNGHo0zEDfIYqHBHTvvAuWo7TpLF92EfM6RdmKF194hqef+W8ausTaT1g1xCMBrr3obD70Z58FYPeOp6nRszy691Hef7Mg9bhoZgcjB3byh81CudK1izEbFNjvEggJ5T1PGs3xCGouJYnFUjUDy7IquVNAha69mlelCmIg30WRdOn4qsxbFv8qvo+mqZRKLqYmjA/X0lFNG5QiYZkrpPkmjmVX5LKne+gm6G6Qc1euEfN06TAPP7KNG65aztjZYv9u2NjN4KSKUyMMukxahYBNbVMN0biAtqcZYmoigeeUCIeF7AoHajEVk4F+YaxYloVhKhUiB4DmmbNIWxlCIZW8rCaY7skQjEVQdUmpXhBns++WyOXF/g+GdOrmxkkeSTGnZRYAuXSGVYvOZNYsAQHeIZXmufPm0j8l1mJdSy3J0SnCshZXPiX0HBO1YqAETens8koVvUhTHdSARtQUsKssQq9atLCVwTGZ4+WbdDbXkgAmxsQzanKsx0bEM8SbA2TzRRQlihmablxpXpTcWBUatf4PB1n+LmHE1Mbr6d41Qu/uSXISktd1ToxgMEC4EKEgc5dczyYc08mXpH4TDBE0G0lZOdauFXJ2cjxEOBYmFImDWs4BHSObc6oJ1pqHh0Pf4ZNDtaxmMTet0TC+p+BKYio9rOCrYJiNRIJC3uzfvY+mRo9DmwaOuUNmGsQzUl+HqmkoPjiWNLg8n0TPyTPWWzrFHKfSo8yZcyHYBqWUkAmGb2DGIDtpkR6QBWx1FTXq0jC7DCoL4xUCYGYpZsU1JSNDJGySczxau2RqR7GIonsVPSwUiJJLF1h5wXtYtGwhAL//7W+gXWfpBWuwHNHf01esIdNzkLR8Stcq4SklirZFjTndPCjvR01RcTyPutpaklNTHN8GRkQqQmtrPb6noftCnsbiDk5AoTCWpCQxnIFACHyL5LEMSidpg/sg0T9CaIaQgS2rVnPjp64m6lr86sfTHYx7XuuZ9r/nFElQNoommP/19zN/xWnc/Q//WrkmvmAOvdKRougKliuuX79RQM0vOmsRZoNGrvinMBOI9qdErn4BfB+mhSa+DLzg+/63FEX5svz/S8A1wHz5sxr4ofz9tk0zdOK1YsGlx9PoKOSTWQxpyOjhAPhCOTYkW15AD5LNZojKwn+KYVAbiaPj4co8pZLt0d4VYf7yHAdEaRHqa1RKloYvjRjH9VE0FVV1KYeuRGE9iY+W+FTNcVBUF18y0mQmxMb6Jn8/7Vn+8vtPEPEdrFEhDN9c/wKjhycIyvoujh8k55UImib93WVlLs/JW9XrN3ueTjGdRtGqbtaRSdGHH/GNaZ+66o6/B1mR3nR1QoEAGEEUpJKLQeeCRjxbCOdsUcez8jQ3N7NkoVDgm+NNHBiNEWs2iftVLGtNVysFSwjkmBqmIRTCD/p4shioaSgsNQwMPVAtMKm6uNgYWo3s733889dEwuJXvyRZYr4Eb/L27XWZLzQxkiESE/fy/TQ9u47gpjMsWCo23lmrb+WrfJrXXxH5LhE9hiHx+5ZbzhtQK/0rRwt13aSuNkBe1kRRfAXVMDFVncRY1evywsMPoNRGhMsBOOeWC+nsamGyR4zL6auaiXYs5d5j+r7gsovZeyTNtt0J+vqE0fLSfQ/QWF8d2yNumLSTQWtsZut+0YdZVheH+8RanJyURRJNCzcT5KAhDKLoNXGaJnPAPhRXPFM9JoW86E9YEos898Z0jxXAJedcglOa4vzzhVK9c1+Ohx/5BaO7qrWwvvUXgrzguz+4S4658EBrmsfnPjM9knnJ09fw0rqnp712+W1CufPlXvJ8hTXXXAfAfm87kKbhLFGLYyD0AgsuqMWsSfCP3/woAP/0lV/yN//9IczsLrCEQjk4OkTY3c+BN4VHauasIAsawvwK+I+/FoZEc1ua8ezJDabf3yUKWt/yuRdO+v7/pn3rX57/o+89+Nix3rZqTbIrL5rJJvZw1Wkin2LX7vUAzAiKw7lLLfJ0z06CXatoC4kxaOicR19ujJ/+7rtsff4pAF58+XV+9MijXLRS7IX8+CArl88C4Pv3iZyttXt+ypDfw3AuzYLLxX4/+PxhbLWbHTtE9OVguJH3ffyDfOTnH4b3nfgcw0lxqA6N9xE0wsxErM2ymZJITeFNivlevjrOos9dDHMLrFsnGJn4P7Bu4y/oqhdreE6XNP4Mh6RkMY2YcW69+WZmbmnlKarzVKKGqaRQBpRAmrERj+bOWu596JsAeFmbi25ezoYHd/Dkbzb90bkAqO+op7FfeN3nXriAXHgAt188yxntK3lx8Ahd111B/1PrAHjst5u59vqz2NLTw4rTRTTylX29jExOEgvLp5+w6R9SUNzNdG8VMkvRINxqYviwuEMoojX+GDtHAxjSu61aFrY5hRprIB6QBEjbdrB9b5Rnn/gbElJhT+STKJF6ZhmCwXB3Yh94YVztNB55+HUAplpCBLNpDLuOWl/I+Z3jPvMv/XO+uEYIrjvv/ncSYxmaamJYJblPDB8UX+ZTSdSG4+H609kDj2UOLP8+lhgDqDgMK05L1cfHRVUVHFecF7qm4lk+mhbBd8WFJbeI5xYxA2JcDEMUdW1d0MVkXij/e7YViPo6F61eyJgr8zeMAE8+mSHjCKeBE9SJB2dTShdQ3Gq/YrpLfSCIa8moUHsnz62t1v0BKEllTJHiecIbwtAj5HMFampFdDA9lUT3EEQXgKGb1HfUMTJ4cifMl74h5KeLwu63ejj/mkvlO4Kh98jhqhOoXLVuu2TKnXGJMA4100D1ZF20tJizdD5HXUA4lK6+9ip6RwZoahLG8iOIYt8fePf7+MxXRc5lNFLHVC7JrPY2TNn3UF2YYEOIYkIomKmxsgNs6oRcs3QizZnnnwPAm2zivI+0kddFJCJTyBEKh7nhti4eu1fs9VCtT/fhfnACsi4nhCIBXFwam2RSi+7hjWRJDByhWJJEI14AO1kirFiMHa32wtcK6LrYC3XxGvZtFYbVzAUiYlksOCiKxUjfMNkxYYhGLpiPhoKsG4vq6QR0MI0SiiujfqlheuXchdvF+MUjwrl8ZKdQ/nOTSWqbWgThS3mEhoS86ljQVXGOl3Iw1j/A6ID4XGtXF6WcRcDwKZWEftocjqMSQYulOTwgnuFEPERW/sDFV4m8+sN791MoFUEDVzLHKqoNvo8pw68KJpqSIxCCnKyhVSxaoLlYTo70lNR5COAUqs7OkuOiaA6Kp2C7Jy/i5NoWKkwzrDo7OvBxMVWF7n5Z7Hxkkva2Dly5xjQVPCUCJFGlPLEKGpY1va6mEo4wq2MO3Yd2V15L9AvZaslcuN1bXkTxFLr7j3LaecIRqaKze+OJjtT581dhSOTa3t2vc/fXv3XCNY89trby97suXIapTieFMSMhClMZLjzvCnrknnqn9o7Gle/7GxRFmXXcyzcAa+TfvwTWI4yrG4Bf+ULivq4oSq2iKG2+77+9y9f30SQdtutB0SoRi8cq1diz+QyK56MbPpqsZJ3P50mmpqhtEEaZ4qokxkY5Y8kMgmExmfksJIZLdM6BvsOSZtU1UVWfovTKFQoeuq5XPHGiO17FM1J+raj4BIImmWMKtdXFTCzLIVInBN/YyAA/+sy7QTVRdXH/WI1KJBKhIIsda6pDJBjCOq66c+fMWvL5PJPj04uBlttUcgwjUMPEcHX7zV+xgAUrLuepH9097dpUuhdDhvdTXg5dD2LbNpomPXFKPVOpEq40wAJGHM8W9KZT0gOdyak0NrsM7vQJB+XB9AFIKTUEZJFZp1DEd6ewCqooOw9Yui4xnvmK8VKm8XV9YTA83vcSwYDGlZdedNJnfaf22rMnJvaDEPQA5ZLH118nqMN3bj/KZDZHMBisHP6O4xAwQ9jY2LKgnW3bhAImZplZyvUIhmoYG+7jYx/7CAA/5sd87YtXY40lKZf89Uoxwu2Lede7BMQx7MK3frYejrE7PvjxO0lPgO2MUXCEoAjH8xSVqtE2fGA/qhrEc0KoqlgH2za/TjgsvJLjKXGYxmoCeH6JiaT4bN9QiFZTHFKJhPCqvv+GGxmb7OMIPWzsqUI2zj/vSj5y+w0AfPJjn+ZI9wgFo44dvxQGUSI9ydSBDcxcdS29m4XAWbnmGrasf5rPfvpzAHzv7u9W9sVd3xeQrc99RlAhHm9YATgyWdeQe9z3FdY//dS0axLbxUEcXXEWU6XlxMxGmjuq7JKnLxAQwR9+Uxygd3xFCtEbxa8PfHABnvSs1Um672yyhdyUWKv33bMGgA/fvh6AN1uEIv653+e565ZL+NyPH+auT954Qt/XXHU5AL0Tedpnd/HaHwQt7Mxr1jD21mE+9Z5b6TkkCC0eevrFyuc2/Fzc65G16/nvByeJLBZwJiWZoBQG+2iCMz8hojbOvhF+N9kLX4fnnn4SAFtCTjoWCyM0EIKx7B465l5JQ1SMo60rzG3voLUmSiYr1siCRWdwyerdvPSKiKK865qLcTJTEIN1mwQdbYIEjuOxpGUGXkkcvO7qWaS9MUZGpLwr9vPKjm089MRaXnldEMy8dXA/4LHuwccYl5BUIxDDDJtESmUngfjelsYYB/uFwpBMWxzpO4RRG4V81dhtj3UyIEkF1IDof8Sow5NRqrrmGAcT3fx+7ZMVBqp5K5fg1wXxZfTALMUIxXz0hlrsKfEsBatA0Iqw+JK5HJawmlhYZenCdlolM9jvv/sCN3/ycvarQzTNFtGt9d/bwKobZjCvTkTA0ulJsi/3wLwqqQjAig6DQMccXtkrolq1eom3dm7no+eLOcv1PUPP0CgzZ8/CtIViFIooxGMew2MKvpSLf/auONprOTbLxP+a1hqUlEIxmUMNS3IlPUYu5fDh9/4N7TI5fu7iDl5+fT9FCYOuCRpk+kf4w8N34Uoo/YyzV9O2oIFox1zGTDFW+7a/wf3PPcWKxcKA/9od/4cf/tddrDvSR11MjH/QtiiZCkXfwZQyXfUUFFU7Rp6XSSnUaaRP4v1qGreq6uD7eJJ2vXytoF8Xe1XVC7iWim0F8P1yUdYihhnBtoQcLqYKxBpNwovmMFkQY3VZq09brJPBkQJxqQjH4kVSpcM0mGJczGKa2Y0hhscszEi1n6vPWI5fcihJRt0HHhPOkJlnCdkSC4QY6x9nbGAUXx63Zp2Bpouke0+W1dWjGrbmETTFvKSmpshJwoRwvVgLtm2zZP5Cdm7fw8evF3t5wZxFWE6Y335HEJKUPRLRujiuJ/QLTTfJJqpnvSqJQ9KpLNGQdCxKeaqpKgV5NmzfuBtH0RkfqsKXbrjpszzivMhpFwkHRinpMNmTw7Fz6FLHCqpNXH3FlUS+KqP4vkV9Q4Sje46w8QnxWna8RFPHDMb1MXq7q2VARvtiNLVJiGU+Rayjkf6Jqn7z5jPDhDqCxKNK5VzTFBXFCTA5JBE9mkYwrmM4NcxuPl3MeykNfpRZC3UsRXzfYfLMXVDH2JCEZ09UIwm+JteUqYI7nU7ADCjk8hlcyUhXKPjomo7iFMEJy76La+s7W7Ec8fliTsW1Pc68RMBL3nzpFVAsgsEaUqnqmmqfNwPdMEhLh3cg6NHcOYMxaVypqkooGiMQcInXSdIJx0H1HYpe1fBfsqqByZxLSRq3hgmBeJD+vUmWLRcw6307d6OZGr4r2AABdE2rQHMBPCysko/nmaiSlToQClIqehimjm6IvnuFPIVUobLuAnoNpaJg3nOc6RC4oFyDjuvjONP1VNe2URUXJTgdmu8pJQzpJCkVQVPEIKuS5EaNatS0tjN8DElXOBRnODFKIC6cR6WUcKCetmA+AUncUnQL7D0kKdFHhTPMCCqcPn8huw8dmNaHQ4eqTuVlC2ez88B0uvbj25Ov7DzhtedfeZPLli3m1z/90wwr+J8TWrQcYzCNAGWMVAeCXKncBuRrJzRFUW5XFGWroihbffdEnOipdqqdaqfaqXaqnWqn2ql2qp1qp9r/l9r/mtDC931fURT/na884XP3APcAaMGAn0oLb3MwEiYSi2LnCpWEU1tVMfDIa34Fzuc6DoGAQU5CuAwjQCwWxVVdypX3DEOh/6jL2as1Tl8tLPMtz1sYAfAUWcyuZKEqGih+hdBCeNjKifrid9QM4VjTH9PGIxiLM5GaXlSsuSOM71ThEnZRwZD1OVTDwXJKHJPnS+fM2sq1tQ1yShSPqQmP+k5JXxtwcY/zFgQJnRC1AohjkSsID40WyFPIB6kxa3Bl+Nc3JrCKDmZE9KlUnMBQHZy8Sd4RXrhg7SjP/GqA5Fgf4bD0RnwbfvKL+1hztvAsLelqxtI1dNekvARUFFzfRtGUSnQjEAriWC6qvMZ3C1gFj2eeewLLFvOHlmFqyqK7Z4iphPD2HjncQ1fXTG64XkDWAjo4hSlUZZCwIbwVuqYykZ7CcVVUSXYQVgukUy7zviAiVx+9/V8YGE0Qi8axZBKo7Vm4vocRMKtRRM/FcS3MgIhyKq5PoZCjLl7Ly+urRVOvveb2aeP9ja989oQ54Djejz2/+/oJlxyPVg77GmqpgI5VoS+1jDyuJEeJy0KGVg+MFScIywhbJBLn8IQkaFGE193A5eprV/LAMWV7/+0H95B/v8EtNwgP6if5NFtfXsuMFTdilAsnSwz8QPfRyuciNVHuf/CXfPBmAdMrFEooin9CwjrAhZdfghYSa2j9EyLypUnniSJzwJ78wfe58joRtXlt/TpyuaqHrHfrdm76xvvY9uowcb3+hDErR6y+8x9f4a//9puV132jgeyk8HB94h+Fl/PeH7TREA4xCfipyWn3+eULYh3MNlS4Be765I18+aZ/EO9NxRjX4jjP3s76Z4VX+5xPfItoXEWkmkIxGsPSmll85kUsOV3kxz1ENXL1b/eL/L+6lrOA56mVybqDI1VP65s/E+QQF1y0moHJYR567UWeWS5eO2vRIp7kZabywms8b+4qgkaQUE0ThswDxSvxg7t+jdUSo/uorMEVCZDKaqx78UEAju7czKafPwcb4a0e4cHzrRINHbXs2HWEsCq8/KGgRlOwjgkZ+Ui8JX63tHVgWTInCAtH1tMxVSE7VtXO5JH9m6ltmI5FLykmLTNENCTuGnSGZrFntIdLVoh6Y4cYpaNzLq4h5mXLYfH5WbM6+c5TYl6f3fosP3/8x+hUvaFjI4M4JKlrnSXuc7CHxliAiV2HSMmchIYGg22PCUhwtEOsxYZ4lPHMJJN7qxAUJxzGmRqmeEy9k82P9bHgEzKnxoryF7cEWXegt0K++9H3r6R5kc3hnn0MDoixa55lMKtWZ0LuvdY5BvHWPGopTVoSdaheiNZAjCF/AjUja5qFIlx7AYzLPu3vtYjWqtTVB0imZY5NjUbAyDOeOcSQLPJaO9KM6il0zRHfVziQx1GTKKkCSPr0xJEeEr3DxJd0cetNgtCkkHTxS7vYsvlRAJpaIjz10no+fttH+Y0sFB2vieN7JXSt6gXXNANV8as1FxWRkyzku6TurhS396ZFs3zfP6bOTRkJouI65XvJc0OzcWWkDD9OKpmplE+54Op5JAp5+keKLJorojbXvPsGdhx5A6cQZnabWB9PvdpPfdMigp4Yp85YOys7OtnlpFEiIg9vF32UEha+oTGUmQ7HL+cEX3LFlcxdtJTHqCIkAp6Cqeg4vkJJIiRNI4LtKpRkNAS5N05btpBedUA+HwT0KpESQEO9TUgpoErK+jKIuCFsMJmTsHXXRwuHcPPi3tlyXz0PX45TRuabF4ZShOvleKYT6IqH52Uq35dIrEOfH6RFll4Z2jFJU7yOsK7SskDoHq2zDe7+1mOVz1z5mdUcPLifybEi77lNMDPdx2OMD4pIzCRVmR3w6ihJAohCMQCRNPufn54DVRgsEp0RRpdU7I7l4noWqaHpsO1Yrcvw3t5pr7W992zyiar8LuZ1PFeW26mJMM4oLXPbCdcLmZSYyAM2s89oo3uXiAEEog6UVML14nl1I0x74wxKdh5FnjNtc+YxzGFc1ycSEXOmqUU8O0xjtJpjPTWWpG5RI5ZbHeNCwUbxncq45/MGKpHK+0O9vVzwkVUkJ3KokrCrlHcIhWMoavUMtYoGmZzCxRcLyOjiBQv5z28KIqLvfltGOr8NsxbUkc2W0KSu67oKju0zlSwHKsR8PM39vP9zosi9WZPjyObpUZsHJTR9+QIR1dyyfQt/rB2VxFNz2loIIkm5JHJsODEmr0qw7CKB5Nq5YYiRoWpEqq4hhpUXsiESledIOE7X/DaGgVCTWBua4uKrUPLF2uhcMI+Bg4chaJMpSfIxNQ6MsPr0RRRk+aKAEcFzqsQnS+bOZO+RXhbOm1OJ8uJV5f+5EtbtejYBA17Zsavy3sL2Zg4MjVX+v/jspUSCQc4+ezXbtlVLr7xd+58aV6NluJ+iKG1AuReDQNcx13XK1962eZ5XUbz8ko3tW0x1T99gLjDjsnkY0r5ID0xQtC1q4+KAGz/aSy+DHPupj39dY8lZKormMneJGNSnf1U2UMSENLUFGOwtcGxrbjdxZe5K2UCwfAvDqOIwY/UaBDQKXolAUAyj1+BRSngUpiwMQwh8Dwc9YOOWk4FtWWhNrRpKqqrS1z1d+Su3SVkAjNRLFwAAIABJREFUtr0zhqpPZ2bZvXUn7/vwR3jovulMfc/+5vdcfZswAFw/R7QmRq6QIxIVkBgTj5xdwpf4Vc0L4bkqeS9PncwB2rfrIN5UgquuXsTIkNioWwClOM6G54UCmDujjZrGZiJmiFBAPG84FEfTogRidVhyTgv5DIbuoZTrGCh5dKMOT7HRFKGAKTTR3uQzs305ji+ZkowYze1RhoYltryQhkA9tdF55GQlc9MNY9bkyGcmCEpZ5pkWsYYAB/rFmOatfKX+Q6XYou+TzWaJx+OYpoQ5Og6up6Ephvw/i6KZBA2dsUmh/N1z95eJaJBNjPHJr4isqvd85us89/gLNHdK0ovkGCvmNHP28jr++19FsuXVt74Xzcnz0svbmLPoLDEujo6laASk0WwYPq4WoKiMoEulVynUYehSYKel06A0xoWzm9i2TwjKaGeclroGtiPqfgC88NKLbNpTCzfDv35TYP0HSmNMJNv593tFfsGCn9zMwf0PEnCGSYwJJTAScLjs3dfwwngV3rf+8QdZz4OV/zVNwXFcbNvmi5//0rS157ouqjkdQ60GJIytWD1E8pLVyDRNchT5wlcFScOd/3InjjVFNFAiFqnl+HbH3wlmuj0u3PPwY9x+o4A4Ws4czNo6oIq5vu3Tr8Cnxd+3/u2uafeJ5YXy07WwqmC9XhSHh5kexSnUEDv3m2Q2fUW89+IoNYYFkrhu9MEnUJuu5NCeHOdetoDj24sTIqerOXYa8DyD+4Rkuuqvvk1ofA+PPvDryrWvbniDW6+9jttv+TuC7WKdHu3dy8+872LNF4fJrx+9n4ODh9n25os0Nso8rMbZNDY3kHozQ3OHZIRsauBJX6FdMtAtWtRC81JZf+kpMTazzulg5OAos9ui9HSLfIPBbUlq2mppmFcmfBB7bu+BPahaGTMfIJUR11tS6fvD7l14PtTK/L/yUTB6oJcmSSIwu24xWbcPz5rEY4687mXCcy1SslbUyy+/yeprz+aNtdvo00Re2rzTa4iHJ3j4xzu56VNCQdjXtZ18oIQv4XaGmqFn6zBdZ3aiS5mazVcVv3BcjOehLeOcc+OZvP5wNbPzza37UbIJWue0Vl4775pl7DPFkVVT187BYCM5u4gAaEDaShBzMoRSSRqkUqbE5rBl73bGZEHthn6HXEph0eJWJiV8Mh5sxbMsrCzMWi4dhFaefF7njr8SfXztlSEOHA3S70WJzBKycuToCJGwianoBGvE92ULDmmrxNMvij4FwwFOu3YV7152PoYtXDYTmQTZiR7WPvcm//g94YA779yzaJ57JoFm8bnnXtrNg5cf4n0f+Dj3/UasR88sYDo6paJCOctKMVR8z0PVyg7HKpnFiSQXLpXid1L+B4NCHvQcLruTqpCxeKNONBohlUpTKggDwXF88DwyEvL0LMJxMO/GGRQmBVToG//2KhlUfvKf/1G5F/8EF277AK88WTWKNrCNL3zsL8l5VTWkvamNZ7e9wpHJKpHJyksuYKJlSL7fjhGfXjOnqb2J7kPdxOMxkPI6ny6hhwL4elkvEHvCxUCVBW2jwRiWPd0pu2nrEa679Br8yjiIfVnSDDK2uEedoeN5VR2hrlFApGPxOhSZGtHW1sGcuQWOHhlhxRniTAkHagkaOvc/+QwAN119CTMvifPMK9uYkEWvT5s3gxdf28aCz67CcsQ+33D4mWl9TIyM0RwLMnTQ5b5vV42uhRd20btzlGK62re9G95AlbqrGm/DmRzGqDWxp2S9s7iBk7IZ75ukqU2oh6rm43ke7TL/cGhQrMnMVJr2VrHOh0bE+Z2dzBM2ygCoI/QdsamrFfJmUs5hvK6WVEZc73o68do42VSV/OvVx7Zy9QdvZtUaUfzQMOMYeIxMHaowVy5e1cEwh6mJNlG0xGcd18B1i4QDVUMJoFBUiTeJ1zJkSCaTBFvqMGWNp1waAuHpsLqa+jCHD/WSywtdorWlGd1XyBeq+WQBq4sv/8OXuGiNmM+L58ypvHfZu64H4IUnHwdfxdQDFOVndUNnasyhsVkahQENw6xl4MgIv7vrt9P6cd6HFxD2RQrD878RzsIdB4UuseqM5WyWdSovkHnQr26fDpM7OjzKzFZZIF6e47NntNPdJ/bPzg0nJxdJJjI0z51FkSTxVlnfsMdGOyTOgMK4kJUFmXl2+mUCprv7BeEsfWtXzwn3nMj6HOk+OWHV3iPizD1w+OhJ39+0e9tJXwemGVYAxVKKgB4jkTqRHfGPtf+pcfU48FHgW/L3Y8e8/hlFUR5AEFmk3jHfCsEi5EtKx1yugJUUC3vF1aLw10Q+Q8+G17ELRfISV5/P5dA0jfGjYgDbliwipJmcc26M394jvJY//7rLHf9mcmS3W8mBOuvCANtfqQ7Q+HCJ1s4gIwPVjVD1ykHFM+d7aMdSX3oKgYBGwSqiOpI8wqmjRIJMJk+8QXhRRCFFF00r09MCil1lVAL6uiepb5LJwzLRb2piekTA8Wxy9on5WMcbVuX24uNPyT6VsHwDOwhIb0/ACKEEdAwpERtjMeK1DfgRg+GkWMjDuw+x5pJzaF+6jK7TxHVb2EzP7t10dAqM+8ioRSbdQ1AL4ZcL7wJoNbR2LKWxTWwO31OwVfCVsiDQcL00qAqqIg8mN49SDGNoNuVlqeqTDPRNosmq7mYgiucXGM6mQSsXqkyiO5BKF3Fkcrxd0mjQ43iSNnsqm0HTNAqFUqUwpaIolBx7GuNdoVCQ+QCSxETT8dFxHL+isA2PDrN84SwC8ZmVsX70+1+H7wvazHLbIH/K7ZlfP1L5ew/PnXTO3qmN7H628vex2Nspqvj3eJ2Y44LfQLAkniMljdWNL7/IWxv7aGoQB3W0xeCMc64m5xRBJq+ffe5iHv3tH7ju+g/z1OP3AXDZ5e/m1ts/xMduEcV5FdVD1yU72HFNVXU0uWeuve2TrL33xxUiCxyxpi+77Q5eeGo6w8+d/1KtyO6kxskWinSPnyg0rYI4hPVgkO/d+SOavyyiRpmOATxVeATfe4PwUgd9lU37gvQcOsLtHxR09/fcLxS1q1aKa7bkqvP42i6xPs85p5NlM2fjZApU0ly7/5tzb/4Czo3CWnvh4R/gjT/Ht//IXCopqeTuEUVkjcUid2t/WzvzF7YBv6b23FkATG3qYcLNo3OYVskSuHdokL7SGjY/JfIIDw2uZbCQ5jcP/4aCKryBpzfMo7a9g1Syn5KMVIcjcc5ZuYx7fiDGPGMVufG9d/DS1VvY+ow4THpeF4rmsfxMDWfUU6BAKB3n2Hb7h05SZBrYs6GabDzjrAbeeGI682D6iMXc98rcFy/CoVEHRWvk4GCV7GPt/TvIeUIhalJjfOCaJbzBNv7rLx/m+DbYLXOsgq2kRg8QmiEM7+Q+MWfR2iBF6dUseCWQZaDH9la9y8caVgsuaSA51kNdWweeTDA/8/LFbHz+WEWiSjgSnCOUwsjqEFbUxm+aRUqyyaV79tKdzaAdEuuvdUYASx1nqjQDIyiUR9uZJKi2MiMQpEE642xjJuP9R0WOCLBqVT3XrdF46lWbl3aIw709GiFZVMAslXV6VN+mKaxz4KDwMisKhGNtTLUtZOUKQTSwalYAPzPIh264hC3bxRoadVO0zj6DRFIoRm9kd/DxT3+G81fOJdYojBYjX8BVQTd1DBlVcmx3Wk7ysdHqY6NZruuiKH6VwEJR0HWDwd4q615DiwG+QWJM5l6gUyqVUBWTgCwo7SSz/OrBn3P//eIMUyJR1v76Fxx++BWWf0qcKUNDRQ50d9O6JMTI3qpz9JUnH+DaK0Vkfu1z4vPjyUk0r6ocD+eHMUI2M9qFAXWAAgtPW8Ltn7gDgMHeHoaGhrjjP7/LDz8vUAlHpCMrSXU9RRuCOLqB601Pa9i/c8+0/yeZjmwBSBdGeWXTdCLlkb6qqpQ87vqU3N/ZYh5P2mSqAa0NbRxlhGfXn5yWOh3ReHW4B9/U6ZojnDIv/kHIgfqOeWxcJwhXcvnpOeDb/nBiXsq8KzroWhLDIks303WR8hB4knXOnrJoahWOGq/OQJllMtEzSrhe5tHlPQKhhhNo3mctPg0vLm42a8kMevbu4OBgkYb26hh3tLVjSuM1XtPKm2yiVPRx5b2iNbVkMylcNzDt3nqwmdSUMGzcYpK6GpepUoqSNMImErKUy6E9NM0U+10xhTE9ONY/7V6a6aMHjtHR8kWCi4OkpAM0EvXwj8u6sbwEruvT2SkIiRRXI2NlcKk6I5tmNPLq1j6+dttNldf+6cf38o+fvI3BoaqDsOdQgs6ZDRiSqbLMbqca4n/bMXC1PFd+9GM898tfVMf3imYmFJjRNp3G/ezFQqcrupNcfdUynnl2J8XU9LmZ2y5k2ZGhEUoS7VM2+suFw9+pzVyuMwZkdGFA1XSpHN0icsLrZ4i93dge5eDrO9n9gjj/F6xs5+CWkxtsR7oPnPT1P6nVimdWsPGn3p4p+I09/UA/nYtO+5Nv/6dQsd+PIK9oVBRlAPhHhFH1e0VRPgH0ArfIy9ciaNgPIyjwPv6ndEJRFDTp3cpLppGmpYuYqBWLvgw6HN64i/q5Inzpuxbx5kbyUgzlPIe2xjYUkvyFyH3nJ/8kGMoaWhWKebHQQ/HpQiRSA0pco6ktwLisX+H7Ppok+bes8vUK+jHE/7oRwLF9XFuvhHUdvzpBFSiEBo7rVWCAqqoKEaAeR2+qaKCWmByZblSVm225tNS1cJTRk75/fLMmhAJ1siVfNiPLR9Ifq9jzHI8j7OVqW3LaXBbMF96Ud737WiZGxzBUH08angXbwnVdEpPjRILiGQ09SsmyUU2Z9FoCUzNwvCLokt4bE1VT8JwSmhwbz9aJREHTxMFo2TYKMXS1hCLrXPi2jqe5BIONmGWHqacylvfYsb8HgEyihGJaaFoY1y0buQqK5+L7LqqEOOmqhuKAros5V3UTfJOSZ1dYKbu7xzFUhXwmzZdeFTC5ji6Do0eL/OwXwseQ8TRmd4W46dbbeGGzEBxOOkfQr0Vz36KpQUJSHYWgDr4kGnHsWjKZLNF4kE2vC0GaShp4KCxZPpOBEeFIaOw8kxVLz2fvtlcBWLo4Qk1Ex/NNDpYkq1HGZUIeyP/+94IlqkxsOXiMMXZ8e1RyNpYNK4BobQjdrTokXNfG9xXwjBM+r/getqRZrTc0bvn05/EDYo/aktjihXt/yOXXC5Gxc+sGxoemKx8lHRzSqOlWjm+GKvrxzMPPoqHTqIsDfPueXSw/W9B8P/KYkCEdMxsIhoTCe//66cJzYUSM+d3f/y78PbRc8GmineIAv+GWVbiFFDqRinF159pHMD9Sg+6Lw/m6Z99FfsrlvNkBHv2xiOp992f3ADBr+S2kg5LEIxylAERdoawkNn+RiW5B5KJGy8/Xw9PPvsTNd1zNmwNCqW6uqWPHzsfY+7IwPuZfdh5K8nUCMY1aRXhxP/Wpm9i09wkyjk9zhzDKHB8627toaBB75nDvJP0jA/hFmHGmiCTlixnMSIjEiEVEOhY01SESrmdSQp9nLJlLYzDE33/ta6zb+DIAhw4MEAgY1DQ2sXGzcBYYoSh+jcvcq4S3uVTM0l5bx44393G0VkQH93EEP11A8XVSgXJZB1BtlYCMViw4+wzGSo3c8vGrWbRIGAhvbN3C3kN7GZ7oYbBRrOv21jZKJZftOwXsMj43Trw2TLQzTCorWT5LBtrsZjzXISDZXSd6Rmmc34IREeOS9gucef4ZPHfvyZVSgPjsGHXhJjLZSSKtYlySepz7dgdIJhxqGsW9xo8cZUFjC/tePSqfV7QhqkyFq66aTf/RMZoCNbzcL8bqdz99+YTv/Nu/XMA550d5eKuY9+RomrqGGIYexJMS23cU/KJJXIbqHc3GslP86Ic/5KeuiFLrZiO2kueTt3+A81eJRPiLW2dTckO0tYkz9HZzJUNHE6Ry/XzpVbFnR/MmuuFgKD6OLeZG010UVHzKMEGtwrBahgC6ThkOGMD1ZQmOYB2jg1W4aENzGF3XKRarxlZyokjTzBiZiQw33ChYDB/jITZsHScp0QnxdJSPf+qL/PzufycozwK3sYSXnOTSFWv47TF162763HsZsYQifNF5Z7Nh4zZSURM3WYUnRbIW7TX1ZIPCkXCAUQoTaV58SsxH3klhFR1SB/vh89W5+dy37+RX99xJbY1cU4FJiqpCUJIDhJtipMbFGmw6UzhzCmMpoqpCZ0cTW1/fUbmXS4ALVqwA4NWtYg3WtdSTmZJpDopGoVh1+GYK4u8iHoqkyPbwMLwAq85aiaeIucnlU+iAK+dlLD6MkdOZHEwzZYiz1pylUhOPs6FhI5OScbBYsJh5UQfNDcJo6VrQQKaQZ913dzH7QqFAx4MBJg5MMqs5wtzbhDH+/L0HuPaTHaCKsXxjXYmAZzJ0dB/jI8fzDIItWTBbu4LkR3SSw9OV/FkLDWxbyIi+8RHql9bQ0OhQE6lqKb4eplNGt2wJA0uWkjRKFsd8agrHLhI8Do6ZLwwTCAm5PJEeYGxsilDEJxARfYrXmkTePZu3nuhmvHe6MbX1uDOzpsFGkYbiyg/PYst9PXTve3uihLFkgrHhCZpbZR1Py6ZolYgaVcKcxOQYHKg6eFbNXMWGGY/CJyEpo/wzu2L09mdEnS5pwJm6QUOLx9hoWV8Vc/0cv6jc67RrWkmPZBh2LXKJ6eyYdXPFWTQ+VSDdNcXcKxvYemQ62uPIMed0ICrOjQMHTh4VOrY1LxF7dmxvji0PiXEMSvbOcJNbKbIx2SeMqeMxXH/MsPrftqDUaaKxeiZ4e+Oq3BQ1+s4XyfansAV+8I+8ddlJrvWpAHFOtVPtVDvVTrVT7VQ71U61U+1UO9X+/9P+14QW/080RddwjomgRlpa8WscSmnhlVBVFaWpHn98kmJOeMGDRoBSycGQocr00GG2c5jjKxbH4yax+gLjA8I7cdoyhdeO/W5FoVAoEI0GaemsFEHAtWUYRNKVq7oPxyXqep6H79oihwpwjgtxl6/Tdb0SySp/TkGltVPi6gfyjI8VTvjstPtYGk2tAd7ZTyDaez8qcq6MgIluRFB0A2QIOWIIqFs0JKzwUjHLjp1bKOZTnLtaeI3j8Toee3Qty5afRf+Q8BwsXrKUZVevJCMTsp9ef4T6+noIKKjSo1gTa0TVbdrmLakQcBRtUEKxSrJ1TW0I1ylSY6h40vPilhBUnkqJkieu0zSVQMCgJDOII0Efz/bRTRvXLZNQxDBMSKXHMXTRB58SHe1dtMwU4fdAncJd3/oBnufhyCJ7hibmzHXdCrTFNINYTglXYuR1zyUaCaMoAfrHRPi5qf1WrrvxJnr7BvFlVoJTTLDgjHoue7eAo0w5UzSHw/z6gVdZuVjAC1Ys7SKXnWJe+xrwxVznixaGAhK9h6/n8WwdwzB473XCd7F310EMQ+PM5UvJZcX3bdq2jZrQBMvedz4ArZ21ZFMFgkaAc1aeAUChMEU6keTv2VtZE5/78/dTKJVIJoWXxvV8Hl67nmuuOhtLrvcXXhRe1HMvWE5Rek5rlvjYx3hRBTGJXolEHduKXoEYwovpmi5OcYpcv/BNaZHmynVOSawpXTG5+ppreebpap2JA1u7SaZz/HzdLwGYPbeL7iPCk7hrp5iHdMpmcrSPcy8SpCUeXWRT0z2liYk0HR3Cm5kZnu79+s53RJLw2W0qbwCjr/6AfNe5APziXgU17GKWPLhVXP+jH9yH6Trsfaaaf3DmVR9n6PQ61q3fN+3eGUVHU8R46TkRYbl4jcCvt7sGv39qJzkgXap6bVdedAabR7eTD4oIVMIapbb+DD7zfREN+8aPtmEYaZzMPlJZ4el84Nle0hON6KrGT+75GQCheAOeaVErI1mb1q3lFq6jUjeg2ksA3g5B3ge8j/fDe9/mopNE0gckNMiSdOnVZlOkKudG91a9w+t4nnWV1P5nOL71cWDa73IrUSBFij5Ojj7PHPP3xKHpfR2RnzEkaVBzrIZwxODQVvF6qjtD5PQQ0WaDplohk946eoBcRqexsZ2JhBi9GXPms/GhVyv3bVnWScG2UMkztVesyc3PdrPg0mZohH391b6uun4uH7pQ1vjSpvjcj2Qk7SvVfkaUAgMTPmZM9DNSA04+gFcST6crAVTFpr6pgYAiokKWm8JxVO7+/q+4W55LkXA9jqawZJmIZK0+dwXts09j1eoVzFgq0Ai9A29SH66nUCrhlPOgNRPdcypy0vf940gtQNUUfE9ABgMhWT8xK5798usEicl2vxvXFbWuYvXiPMxMutglFVPTGeqv5jn89NtfPH4qxT2nJIQrO4mXrmWof3pey0TvMHZB+L5r6xs584pLGa31cUpVz/SUbjOUsEkkqxnaQ0ObOdoj7j3adzwoT7S7vvQF+NKJkL3icb8Bxt+syoQsMHJc6vnGTSfWX0uOVn32DtNl62sbxfp6feM7VYP809oESSaOe5LsMTnrW6jCfJuaBXwym7YpqlPU1nYx2S3W3qIrZuDMb0KVsPmVZ2o88+A+rnr/6UQ0IafSgxNs2jlCbipNMCL20fhUDiPqUjouL0mNKpQrv9SpLq1GO8l0kpJahfgl7SP0p2TZhbSkEHddHEkCQwGwfXLuMfL1iquwawdJpcRZZGVtDF+nuTZORhJ9paxRLL/E7KsaUCXNulJQsR0T1xO60sC+/YQaWoicFyCtiO+bTBU4/foOkn1ZJnvE8zXMjNDe5fDGk+LcqVkaZ6oDouEAGVkoHl8loGmVGq8g+m1kq4DtCbVAsihmxVPl8/g+M+c14WgFrMoZ4pEYtWlvElG/gg9tsxvRg6ex6xWRTuAbLlpNM5HCFO5xkMWxsEQepYvoSYcjzyVY9j5JTPGQ1P8WiX28b/9+enuELF1xg4jQpsaSHNp0Ivx18fK5BNuEPnDaB5t56X4p20tCVyumfBrntDJx9MTP/k/aowe7eY8k5yi38y5ZU0nD2fzmdmwpQ2oaRGrA2DGlat6pJRN/ej//X2Fc4Xrox8iSSCRCQ2szA7IKuK9AfXsTDRcuYiIuDuTMWAIzoGDLUGV8UTv2mM/qlTH02h4A1v3O4vWXSsTiBrmkGNzJIQ/uqILlDEOnWLIJBNwK45HjOBh6GLAJRYQBpKpUlE0QSrnr+hiGUYFIhIJBijjUNYUwZBK/54kE3zK0sVxsUVVUBgaEgGhoMlE1i/ERaJMHve9pjAxVFZHll3ex/uHpeQ1v17SQYAbTVRXf1nBzSqXCdrqk4GHSJ2/v+g6tjRE8xWD3W4LxLJe16ZoVp2+gaoru2naIF57+GVGZ3GkVbZHLZPuYpgxtaxqeq5JO5QjL4piaaeArKmFDFlJ2VVTdRNN9PFsYfO1tMwmEIgTDAfyArBuSToDiEgkJbGzA8PEdg2AwXMl/UzUIB+tQDAdNGky6rqJpR0knxKCfdc5SFixYwKHDRyvkFa7rouumOOzLuQT4WK5TqeuleFGK+TTRSD16SHxuqmizrydN36RfuVc8NI+C61GW5Wq0FTVcS157k9kzhYBafckNlJwSqh0hlZXECWoY3/KImqLf0WCIZDKFbni0SEa4My6NoqoqyWSSNkOM+6p3f4RCAQpFaUzoNqpioBsRdEncYRg60UCYDwz/F3PbhIFx109/d8I6mSgkCD5q40uDNoYY602vViEsb7KfXx9DaPH5v/4qAP9x150c37asf4PLbxTBbheNx3/yY85cJQz2WKRat2q0KOv4BILsOTJduL2yYTpcKn+M02LJQlEcd+MLgrEnHBXrbv/uw5y+4Fw2U2U7KuZsjhwH57j3e1/mtr/6Fofemg6LAMj0C4VnDycqPoefeuiE19589ucCRHncMNiTR1nYIgT3VFrAkR69R+QRfeGLX6Iu3s8E0K4Jha8PmDvvDC6/6GLWviGgGPXxmVx/7hVceo7Ik/jFP/8XTfURli1YU1l3g70JHv/Di8w4s4N8RsjK8dEBlq9czQVniYTlTazlrFWXE22OM6dB7LUN2zdQ19aKGXNJyfo4mhrFUy0Kshh4VLNI94X4uy9+m737hcI/fGQAQwsyOJ4iKOXiZddeypmzTmOmJHMJ1cewPQPLUJjMCUiYroJpeLiWQV2jYN2aHQnwN3feycEtYn40r8jpS1cxWspSKMh6SAENV81j5zU0TfQrHHDRVYOYXK9GKMieAzsxNAe/KOTpxOgEo4kRBkZ7MWTNqskDg5x+xRImc0KxiSouB177v+y9d7QlZZX//alcJ9/cfUN33w50bmiiBMlZUQTMCRM4ZtRxHCOKYRydURwVw4hZRAUZEBGUnGly5xxvjidXrnr/eJ5zbl8anHl/76z1c72r91ou6XNP1al68t77u79fcdBSFbEfFNKtFEdn4GMAY6OTZLpaOXaOYEgtBpvIew6j+/dQLUvGq5ViM2/rl0XeRg0DhTBUyK8SY768aZLqmMGQXiWsz2y7e/YP8ocnxLxOmTXOfW0/hmNzx5+EU371O5ZgvSli3Z4Ku58SfbV1b0DS6pDLiDmkOyZqkhATUZbvYmomtqVhdSn4ks3ONmJcp8SmJ8UBZ/1Td2Ok+znllFVNOJGZsggSH1U3sOS6WHNcFHUmsBhFEZqmzarDUhSFGLGHNj6T/BcUp8UhVNMhjmKSBGJV7AUdeQ2zNaYUhZxxtoDLPslDXPP1T7JdOhtteY3RwSK//dGN6Jq4rrMbbEXFzs6GlWFZeO1ivZvQy9QrY7S1+wz4M+vAFneaUr2CkZqBY5m9WVZ3iTE9yjTzjl9CSybDhvsFRGv+y5YyXa8zv7uPsf3iDBLbMVlbJ0Gs344XoKFhqypVSTSQymXAgxYtw4anRS3WgqWLKdfqdM4Va8T2p5+hd+Fi7EyaQDoWZmLhelUGtm2d9XpHn3QavTJwMr+3B2tuB6EXC5g2kM5mKFUdyjLSpJwVAAAgAElEQVQQFwQBbr1MSk0IGhUHBqTMHLpaZ948sc88+OCdlKujDMta0ZRu4dYSxtYXmZoU4y6VyjC3ZRnrHx1gwUrhEBTyCq2ZVoxI9NWvfibqFJeu7aS6RzgkC09pJdOX4laex5csdmuPXYkSO4RiOecuhPj1ts3bMFJizgR+iKLWUA2TsQMzYZL2bp1Yks7oGTHex3ePc+IrXgbAngND9PZk6cy2c58M8FhZG8eNmJKBxZTVhpGPKHsOFSmoGwYKI0+L9+g9RdR0agWNrCkg1A1TFI3RXQ6ahGfufU6KCB/VQ26ueM6uhRlqlZk5M2duG3EY0dk6F8evyL5x8GMdOzVTc1XoO4bl55/DM4hauLpW5syXv4EdPN8UQI78CFNRiFGabJtjw2L+1qUWla1FTE/VOPbEDhrgPmdAwatPE/g+1crssNqezQLS2LOwj6dvFvC8qjO7RMVqOVQy6albRRBh1RmLD/kbwJx5vWTS4kxRrScsW3sW2567F1+yUldGJynuns2bvOiEBexet++QewF0LBfXTWwVa9oZl36E+//w7ebfX+hYATx63/0veq9Inp+yrb209OYY2Lj1Rb8H0N27Gt0McIz4EFHtl7K/C+cqjuMmxTpApquVklelo0tMstD1iP2QUrWI21C3ntPL4NYZZ0NNLNpbNI5c00PUJgbHX4ElK00UJWavxCxnZtdrY6dMEiLqNZ9MRiwGqmIRSrpTQ+KpwzBuRu4AKtMeuVZLHtJFMzZJMJRYOlUAMYbRkOoDElH4G4YzA3Vy3EeeOdBNSQwhIyWLjxQL/tHv6GDB1e38/IuPN697w2dOwDDhV1fPiKQBvP+bFxItls+vWKiKgqGpzeyZbtiC0MEVA9SyDFTAdx1yeXGY03UNx3HRdR1fiuym0kKEt16XxciyObTIIpC1TJVaCcOw6e9dM4PH93M4VRNVEREDN9CI0InigLnt4kCy/vmtPPLoEwxPTrKsW7Tn6qOWks67VGoiWp0QoEQmxIpkpRJU+YqhU6nWm/0QxyEJEYlkfHz+2VZqTpUg8DCMBhNgSCqVolQqkZF1GKqqoqo6vvSSBENzTBB4pFMSU/7U/Wzdux6vVAZEH+mJAkrYpF6ddBwKmsWy45fxwAPCCbj9938lm2+hNj2J58oapNBA90PQxdis+xqVooNt2ySyWq5rbgHXrZPEOrmsWKT0gkPGbKUyLeULTBUlgSDWiOWJJlfIoSgJQRBzriFqGeIwIvQNgmCmXuLi8D0kkQ0y03ISr0JVLHQlTaNyet6CNCedvJxiQyDRsghCDy8p8a///hUAPvnxzzTH391/mBHae+2b34q5WPxe1ZkJTmx54NB6kxfal74s7v25XTP3/vF1IkNz4svOpjAvT1kRm+XcJV10zesH4NNfFJR+C3vmc+21n6Wjr4sH7hLO1Ls+dKg6+/+2lfc9fpCLN9v+7ev/Cl8X/73/PrF+fe1b32Tpq/rJZ0yG5J73srUrsclx3+0i6uhPP89mTD50xqeYHhfj+rg1Cgs6Le54ajNHrhHOVDY3h3sfuY8tW2Yi54k6Sm/PURyxWszt54efxWWcseGARBERYdMIMXWDVsnQeNYJZ7D6bSfTf8RqTr9A0OZXy5Ps3z/Arh3DVKbF4WZi606+fNM6WvoEu9Wc/gWEaowTpCm0iMPj9z/64kXAmx/fh2mKsWFnW3hmw2P8+aZfHvK9177lH1AkTWxoWZRKLtfd+NNZ3/nEl77BNz73iVmfveNTn+a+P/8OEDj+ieEKiS/arpidWX8VGWEPohKLF7QyOU+MU++AQ2drK8PTAc+tFxuvQx09qeJ6dWJdRImHxkSwpN4QZHbraJpC3spTc2YOMUMbB5l3/FzS1gwRTCE7h1qjnsYPKU9EXP6Gs7kD8XulwkIKHVNMrq/whktFoGbcr/PYRpsnn5Biy+0xWipP7BdRZBG/H8bEQUKsBMizP7XAwzKy5OS/PSXCqu/h4dv2oclsk2JBKEXfY0mgVEilcQKvub810BeaFC5tfAZCzLThVIWKWD98r3FIE06AaWpUpBhwKm9SK0csXr2Ab8j5DjBaH6SnRxIieB65VtFGN/3s0ADRwVYPJyl0iP6MQpdFi1ZSnnaY0y2y5tsYJ/IClh3Ry+DYTIbggd/Mri8J4ykGR2eCm7lsmv1PbGdTs0JE2MECBD0nLGJoncCWLDxRjPlUqo1cewsL5vSxAeFcdc5dyIJMDkvuO9t5hpVrRDZRkwFJ35umWncZYPaBb8UJJ6GpYtztGBlmassAYRjjy708TnxMU0dv1BGToKsRjmagyD1F1yxUQ6Ne89i5Q2SlFi44id/f8BMsSZKYbtWYOCDebuf90uE4IWRoe5GWtE48Ie71xM37mD6vThLP1NEBPL9hAnyxP+0cgjnLxP7ZlhFOWVgKSGyHofHZ1y05Ym4zuJJOtTM1XiOizonniPb5HX/Fr/mkNNGfvjvIghM72ff4OBOemIfti0OUKMV9Nz9D7/FiDIV9JeJEpVwUYzLXa7LjrzspHJ+hvVMc2OOpmeNwJGu63bqDX55kdONMVlE3NfJdOkEwm8o/MR3sWJxnBg9MMvL0TLbUqU+wuG8uk6UqimQ1zWa7cNwqU9Mz2ZDS4Hbuv34jSHWXkZ37+I3cMEZ2i+vmz0+xe8cYvfPSaNqMAwdQHD64PV02nDyzz+55Zoz+o9sZ3jr7uQEqG8U6te0gtl137wsIOZh93dmXnco9NwuB+TCanYEEWNk3n9H2MRbMF33vRXXcQLSjL5fFomQQbV/WzuQ2Md6OWn4Mu3lx58r3ZjNzHuxYvePNi7j1Vpfp2myUyvGnHo8l+/Phh2YQBr1tYgwVK9NYUeuL/l7D3v/B8/n1L2+lWDwUrfNS9n8qInzYDtthO2yH7bAdtsN22A7bYTtsh+0g+7vIXClKQqFFRGOqwJ7Hn6LvlLXEEqZXd32K49NEI+N0S9xnJpWedQ9VtWmZk8LVBmk7CMLauygmxqe1U0SzrFRl1nWBH5HNFHAcj5QtvqNpGuNSFM3zhbeuSLrMfJt4zvKU28yUNP5/erxGS6eJpqvQYFZSVTRVZWCvYLvp68+TJCocRMUOYNs24DZ/58BekXz8h0+eB8BkOaRdnx2l6OpoR9dSwOzMlR3EhJLSXdNVSHTiMCRwRbggjkOiSDAeAlSqIZohWAyLsvZL0QwSz5ulZaLqGr4fNjNghmFgGAax5+DJbI+d0SmWIQ672LVXRB+q1SKJoqLIeifN0NF16GrPs32rgITd9OvfgxZipOCJQdFWO/dNc8VVZ5DtbfS1im4YRGEo3xtUHTy/TCFsJyUpjqMoQE104kj0XUf7PJ56fLxZ/wZCCDcIPGzbPkgsU0NXgEjWbqU8Ik/DVDVcRzz7+eedzPxlKpVysQkHSUIVy9SJJaSqEru0mS08tbHMol5xr4UvTzM5VSRjZokDEckpFFrIqhDItjP0BCuVolypNalOexb0UK6XcYKwGaUyDItEjTAMEcnWTYsoSlBiFS8Qbfext8+O7P9/tV/99195Ubvphv/TK+Fzn/3MS/7t8SfuOeSzLRIA8dWrP9b87NrkF/R19vKWX4qoXy0uocYxqir6pS1nYega9ajChKy5iHSder3I+OABDAm9Ghkfw6mHHBgS0TU/CZgeHOaSMxZx3PIjANB6e7j55sf4wj9d3hT17W+fy2/u+AtWTvT5G191CmGlzt0bhvina/4dgAXfcyhXH6QjewTegJgzW2OT9v6lDE+ICP9r330lv7nzBoLgWVJyfSuPxPTOa2XyL6OkCyICeOcf/8Ta4/pY1COy/rcDl7/zZH7xX39ALwjYTLatA910CYbGMSXbYhg4+E6KeR2C2j6dPRq7sw9Hz7Jxt4DWVOsVRqaz+HNXkbQIPM/ytTH1pbuaOnCT1U1Eno8S5bnhi+c0++G8N3yE5557hrFtItJ5+YevYtpy8UI5H2tT3H3TLznzwrfgSjiKqmk8cs+vuOnXP+CsCz4k+qsti5cMcM4b3w7A3TcKKYpvfO4TvPsjQrn7+m9fC8Dw5iFecYGgNP4+XyP2IgxLamGNz8B8Ek9EXc1UK31LW9gooYEeDsPbJuhYNZ+JKdEvmpKntb2FlJUmkax3ntT8MuS6aCltRLFLxQ3Jt4t+r0kwied5eFKLatGJS+jo7uDAgIi4p/M1/DjFP3/ke3Qs6Qdg2WfOZ+jAjei1EC8t9sOjju3D6GyjvSDrCNYNMjbokLbVpnZSJqOhxQqKZhAb4nthGJD4QRNCphoqYcogbWkkisx8RBD5CqoKDaUFHwXDMGb2gYPggA2LogBVVdF1jSCQtNAydLv+aVFjNn9RlnLJJfQjspbY5yYGHNI5i1dddDbf4ifN+/mhS31Q1k7levjxvwrh48uuFJDjbTvvwcp28PRtMzWlAFqokRTFu3iRy0AwTq0ek0nPsFTm7ISxfUU6ukWa5pQ35nnkxtnQ5Lkd7Tx71w4WnSBq0Tate472VV14XoCZEtdNbdhHx4p5KKbc1w6S9wt9sTcMTIxDPM4Td/yx+beNu3cRhBEc1IZ/ve1GaO3AkJItYU3l5aee2Pz7OZdcSc2tscndRmubmLNT0wfwiiGLlq6gWJNnAy2NkiRoqmSkjUJiA9J+gqE1WGqnSWKLtvZWQimBk0TtXHrp67n9FsECqhcUzj/3DP4s4WkAg+vE3iJmuqzXWgDV3oCWtgYkSHz+4A2zM4ENW3+nWBfXAytPW8DmB2dnKB747W7e+gnx3lOTJTIpC9vMMzW1t/kdM86gyFojO04RSyjsznv28kKLJStd5Gu0tUBWIoN2PiRgolbVIklLWK5t0dCzG3nkxVmZs7kOkkzAjq3DBLOTbgw9Oc0LK/JSC8S9u4/pwa15VOsesnqBUm0fGSONkZ7JmgwPboTgb9ff79/v0L+kjVAJCOO/nUnZ9+jsTOveZydf4puH2uDm2RmgzY/PrhtsZK0Atj10qJzt5oH9fPRT3+DUU0Qd+PDUCB94u2BYjrzZmS7tINr8W35xCy9lhixbOJRTEH52w4szEjz50IvjSJYfKeZ2ys6RTefY8SLlAA373Kf+HT4Fre1LXvI7LzTlhYvk/w1L5exk5UliU9+ybTfOvhenRWxduBjbliQQg3tJypUX/d6L2Ts/Ixatn37lUKrz1g4T0zSJmgWQCokCkyMOXVILIwxDwjBsitEWJw5NrYIQRbRtu4mF1TWt6VgBzF/UgqIouPUao8N/WxvgsvcupSrz9J4bY+s2d1736H/7ru/42gVN+JumRChRgG2kIRIbjGoKLHajDixOInQtIgwDdElfqmFQT3yBrZffU1WdOIyabSD+W8UNJ9ClxlA2Z7F3R5mH/1iipakBG6MoGposZo1CsRHkcxm2bxKQP6cakLIsNFMllinjmlPlyo+fRGSKxSaMDIIoxNB0Ak/GBXRXQBwd0HXRf7qu0pE/gppUtU/na9z80w1MjE+RtsTGJDStdEqlUrOGxbZt9ESjLItzFduHSMdQDcrT4rO3vPtEFq2JKJbTJPL30loHvlduUrh7CvTke1j3VIp8i3iGFStDKl6EqWpN2lo3dFAjH9MUB2EjdDBMQfERuLJuQbWJgxjPrzYPhr7XQqA4BNKZCxUf9BDTSCN9ar5w5c/44g8vRdOzRJFob9etC/iibLokSdBUG8WsNevxUpaBrtm4btDsJ9O0cV2XdE7qQsQGn7n8e4cOvMN22P5f2OpXvpYUIkiio/DYn37ByhMvQJdQbEW1UTV49t5bOOECIRataQYtLS3s2iXgK9sfF4e/k859M4GEPamGzro7buR1H/gII9tEkOyhu3+DlU2jS/hbKq0zsU84jR0rpcZTAIkZ48kD5/ROsb/0re2jt00Q0+zau4fFC7uZmKgxWRQHsChUqAzO1A1ku9rQzQBX0Zr00AMbRE3DwuP7KTmiZieMbNauXc7AFrE/uP40Q5snWHFaD4O7xGe5uJ2TTijgu1VWHCnWWMPO8Y4PXM9tN/1Y/Fu1qXkFfv79bzJVkkFBR8V1fYIIoli8s2Wp2GYKXWpWBLFDoCookYImqU0MXSUOUwSRjybPO34QYWmz47BC02oGnh1FEbZtYxoagaRQb0DmJ8cOhQw1LNVi8N4Pvp65HW3881XfecnvvZgtPX0J2x84VFbihIvEAai1I0N5QkWJTEJVHMbW/WkHZ759DaPbKlg5MfaevXvLIfdo2BLpXO1ct5v5xy2hWi0ytXWmLm/RKUuoTIl7W9lOBp58ad0ds11siNn2dmIFVKn7V69VcEcmXvI6gHnHnUF3TydzOjppbRNngo7OHPff/gB2voNcm9hDnFoFNYwwJXlUrClgQODpRJoMAqRy1OsutmaQkhDVKKmRK7RxYL/QwGrv8lix7Ai+9clfgRR8Pf7ENVS8AUaGyqRahNMwPTJNOrbpyopx3junF0eZZmI8pFvW+o4Go9SKCvP6eli6SkSGRkb2s+6+QXoWij1lquKg1lUMVDp6xTNNlnzmzLUJSiGj+8U+emDbOOe94ehmjfDw6BCJETHlOhgp0Z+2FlEwNXbsGKEom/WUUy7CDQeo1feKNtBNtm8ukk7lsFKiH1J2AVULmKqO0iLb060FBNWYlCL27MpYFS9KeM8/XEabhOlXq3Wu//nP0WyFMBFrUEtrGlPJMFUWZ4Jlx2RxB9OoXhY3Fu/ix1OY2KRzc1n3sFjHTDuDf5BUwcrjFhFlLba9gDSpf0kbgRvhSjH1ydGIOd1mc6/XdQg1m4kDJVafJ+DgBSNDUK8yusdl394ZsqEVr16AMinGRnEoZmjPBJ/92GUMyDH5sxsEtHDuClFXGyc+Y1vHOf7V3YRVWVLREjD0fBE30pjee6jj07Cla1azfcNGuuaKe42NHOqU/W9be0cn01I7N4kVkuR/Bu2758H7Ofu0M2Z91tUzn7GhgxQiFZ5OkuS4F7v+7yJzpWp6E83Z27+I+lqH0kSROGrQqKk4dYd6fpppuXlYKRNtUS/tWTFZK7Uai+dkOOWMKaZiESmbGjbItnjM7TXxpO7MK98FJAbzZU3SDd8KMSyIk4B0RkzOMIibJBWJzLZEoY+hm02xtFROEQ6DpmEYDfKKGEWVmZ4klo+usmBxoZkdiZNYZFAMha5usVkmSoCqhoSeyty5/QC876PvQj0zoeQ2sioe5ZLH0d85q8kaE/keSVIjiAJcmZVStYSpqSl8T6rFxy6a5qDrZXRFTAQtAdM20PRGXZlGpGskidZkVfFiDwsbgpnMSqwlaIZOFDcyWTpeFJIy5uG6DWbAKplcigOD25kqC4fWdQKy2RZqJVkIHBkQJcT4LFgsGP2mS2XiMCJ2I1RZv2WmNVIFi5qMhGq6gq7oxHFMuiHgl+RQ1BBVd7DMguwzj1o0TCgPaXZeQ9d1giAilgHMOI6bTIGNvg7DEN3UMEzZ5kYeJygTx2rzwDA6MckKazl+PEk+LfrPc1w0CzRZc6UmBk61ndYug3FZDDw0FqFZKnXfR1Hkim9E6EmE54qxqSgKQamOpllYMjMXRhXiGCwzTVU6XJZZxDQMEldserZuEasVwqguiiak6XobCTGJ9Liy+RyaNpOJdOoRcZwQ1rLNz2quKg9KeRKpneK4EYliUyqLqJ4ge4Grrr0IEikiqoa0d7SStTswpO6bafcxuKvK+qfEnC0nVe7++a+5+rtfw8iLjamjbSWarTLXEO+b9hTI5BkJA9xYRnHjhCiOee7eO/jR14Rm10ev+hAfv/pz7BwWC/nw0BROfYB3vepVfPYawQT45c9/imuv/S6mHTM0KKJavb29pO1OXBnht/SE9mwbm4dGeeB+EQV3a3VeflQfmpUQSBpTL04w1AwFS7T58Pg0I9Vp7r3rId54/gXi3ov7KXkVDuw7QEM9zrIiSnUPXQYMht1pYtcnrRpYmUYARMeJbWr49C5aBsB1/3INt/z693z+YwJ837P2RDrnzWdupofRYbFazltZQQ9cWgtzmRwUm6yajVHCmDgU/fnd//ghZ1/2OkJ9kLqMclbLB4i8iMBp4cwzRT1VOt3G8NAYS5cKJ+LEi97Mlh1j5LoL7N0l2rg4Ok6k6USxguGJZw+iqshay3sHqoqnGdz+iVdxxus+CMD+Dc9y5Scu574H13PXz7/bHJ95coSyNrVngc0xZ57NM48fyhQI0JYXQZGUpaEpaZRodkF2GFVIpRpkQHDs6a/FWJZm0VHifR4C3nzle/jZ938GgGLMRIcTp7FOGIxPhhj27JC0YUbs2i3GT5BUOTCe4NRDYhnA8gOHloWdFKXQcXVs5nAxwOxi7cpUCSst6jIyaYugqlGT2mmjm8V1dcWnu19kpaNKlQefGSDTlsGRh8BWYzF/vXcL37pO1A9c+b4Psm10G139q7DGxAH+Y+9+I5HusHXnDiZGxPts3v40z28Yo1YXi6BmhmRthTC2iBPx2dR0hRdySBbaU4ThDGKh+S7TsyPsDjXau+xmbXIcR01HdZYp0OCocYoB1/JrXn/FK3jjFUKk/Mb/vJHXvPsCapItWFdz/Pm3t3Pmpa9GkYiQbVvuZ9Kb4KRXHMljd4gsydGvmMPg7iIHZG2vH4g66YKdIzq4OL8OrfMjHvm9OLCe/Jq1PPpfMwQ+AJe942i2DIwzXJoJ9EZJPMuxAtj9yE4WSobW3vmLqCyHMPLQdClEr4NXConcBEWyywYVh4iEOGicLUKstjY812XVapERXnXa2aQsm/vvFtmB9q52Vh+1lHw+SyC16IIEWrqyVGoOVmMsagZeGONI9orATQgTDzWOiOriOtOooOgRVU3Fl+RUppph796dWF39ANz5k19wJ6JemBExt588iIu5eBA3okudKXmC23oQK+J2Zus+HWCAF4aGp15EX+jgq14sF/GX374UY+JLaxU9wu0sOaMfbNEvZk5j6QktjOyKUEzRLkNDQ+i6wZyeeYwNizlpaiatdhYjEO1bjlLkMi2cdNqlPPyYqKGzs3MJ0Ai8Klk5t9UgRaIkdIlpzOTkGFa8mM5WG7Umzkqa14ceV3DKMyyZBztWAJufevFszN6dhzowhwbrxdzb+Jf9h3z3YNty26H1TV/+5qEETiNbZjtCT9724gytB9vr3vwuapbUFitZZI5qYTsbOeYVVwDgX+lx74/+hbPe/UnGp8R8N1WFTEuC6ov1/P5f/htvff9H+dV13/pvf+/FbHLihay1/zM72LF638c/wm033Y4ThS99wQvs7yJzpRynJLy0luNhewk7/qI3kQQKesqiRTLXTE4P0bcgDYaIqs7tLpDJ5ERmQpUilJpKHDOLHj4MQ2zTbi7cJDqJ5qBpWjOroaoqcRw3HcUkScRB3LSIZFbMsDy8eobv/8tTtHc2CqBV4tgmiuXho1jG0DQ0XSGVEVG4mhOgEmNoIbE8uIWqzwc/dQ5uLBmwLLHJe46PLgvhDU0lCGJIVExbOhaqIgquJUV+JpviR1+9i9CPSKfFIS1wPXzfFeQXcg7YdpqEgFAe6tPpLE61hK1lmSyJhWXZ2qVc/NYzKE0W0WXxcRg56FqCEgmnwzdC9j6bJckrTO0VC8vyFTGt3TW0KEMko1sYGkYSEySSnVCDhDrESjM7qCQRupZGQScIxQE6UlQRYZbQEzUxyWR1As8hkcK+13zkOj773fei6TGyLh3LzKAQYkg4aBRFxNSoezFpKe4aJxFhkJBN53D9RsbQE9ALSSajm1mu+cB/8qnvvQ2kAxbHAbpaIHE7mRgX95oYHcCzPY5afjIA81Yso0YKqxZS0URb6WENw4Sp3WJLndi0Ey3dhrZiNa4hIp/esMNZHROs33IXp5wuGMVOOO1s9gyON4lUWlMmuC5rj1zJus0ienzCymV4BIxN+qiK+L1qdZooCbAkRMZOGTz07DO86Y3vo9MVMIh7HrubvjVHU/MC0qa4v4FOoIDbKPI3DHY++wRrjzmNX/xWQNPe+trLqEcGupYQquLwkQ5ThEmdki+crdCfpOhPMz48wOiA2MAdd4Dx4hTF/R7X/1hEMOcvOps1F54ONdEujz9wF8Uxl4LtsGmXaPO3XHESa5eniMMali76NNTyeJUyfd1iV3/bm7/E2z5zEffdsw5Vjo26G7J65ckcfczJbN4kSDXaujo56axT6D9CQAcX5VR2TlTYNFxjTB6uymMjRHGWejyJqcmDYqSSifRmcMXIxXS3wNffcxmpbkE/f/4rz+Whp/ZSKxVx9wi69RXnvJ05nW3kUqKd+uct5ztfvIqTXvF6OtqFQ5Qt+Bimyi+++W1e+65/FO8XlqhWPGqS1eyxe4XI+fJTzyZlNor4U6BlGBgbZeUqwWJ1z6+v4zVv/RTpgjgQ3PCTX4GE+nYcIdiESuUJ9FhBzYnxW9tdpWVRgdauVhocFElgUynXMWydiQlxiDeNkMALCBwJC0xrJKikCiYVKQ/gDNbJ9LUQxyGFgiD6UOxpbNumWhfPMf78CG1LW/FR6JZF9p0tHagGVPyIrMzMnf7y03nsuYD9WwST3UnHH8e9jzzLks65jFbFge/Eo8+iXHdpb+1ixSIhV1LoGOf5DSNs3SqgQrt2Pcn+vXXsjEp1esb5SOUMTAtKE6LfCy0FYsVvQqrDMKQy7dDamWsGnVRVpTz10hmq/79Yx8ouFFdSzccJzt4BLvnAewG4786/EiQRmc42ZEUDlcERFD/GDQMUyeSmRoLKXi5dGIZBRrPI5/O094h5a5idtLdleOppAfm/9NJLUTSF4ZGpJnW4aoARFXnysQ2sWiYE1MuVIrqlo8rMVdo2sUwNVVewLbX5e9lUBttMkc2K/bClNUMQeuzaKc4N1//H10kd0YqzY5r+U0UgLKynqFbLeIHO3DlSjNsdIpdu5ZhVIng/p2Mpc3sX09PXTVgV+2o6p1MwC2hGnqIqHInJooZSc7Alm1/asv8+65IAACAASURBVCkGFo4XUi1J0pmpfRRLHqmWAqEMKF9/9T/z5qv+kTgW99mxbRMVfzdO2WVS+hC6FRObKfpXZahMijm679E6x168kM07xHoaeGnWru7AjGM2PCJlM7IJrlrDtC1yWbEG2GZArZwwPiT2Cy3wyFidLF2zlFJdzA9Vq7Nr81PkCxl6+0XWVFcSTKuI3iqy31u2lFjddxZzsu1s3Noo47AIEkjZOimZxXz0GeHAXnaxkHVZuCjN9P5xKiZs3SiYGKsORIlLElq4kbj/2IBHd1eaUPZxUFEoSkHqT3/58wBMTUaMDw+TZAr84foZR+Xqr3yfUUf0ww++/HkuuvwfKE2btHSJsfHHH38VgLe9830A1Ov7ufm3f+L1734FsTwr3fTT2/m/YRe+8T10WyJIsmvnFnbsamFoZLZDetkHP4kvHbUN+9ZjRwVaOvK0pMUau3L1AvzIJa2IwFTZq1MZGGaiGLFgoZjr+7ZvZN0D6zFSMLZ/hvTjb2WuDhNaHLbDdtgO22E7bIftsB22w3bYDtv/gv1dwAIBHpUF4HEqIZcqoEUZNKn140QB1bpLrVwBSX85POqyd9cgg1IcdHhkH3f88Jtc8oEufEdENf70E7js/QbdCwJG9ouo7chgQL4FFosSL27+kUkcxGikUBrNoTt4dYPx4QqLlojoebVaR1E0XE9SpaOi66bMeoiogwIoqgpKgCkjCKpiigJiifOMY4hCCReQkAlNjSExcV2Fcy8WsIDO+TEtnVl+9xMRraCm8v7PreHBe0a5/ZfiM3X8SeKMQ1ILuOd5kSZetaKXJSuOQFVERqiIgxME6KFGIOFuZpiQBBDJzI4QhATPc5uQP0XRUEONuhNhmsLD9/0ITVEIQ4nPNwwgJggNolAWMetQr9ZQjCJtbSJqHIY+4xPDIKnR05kMfb29TEyME0riBlOLCYKAWNVJpJaJGljUqxGq5LMoF2ug6ySqiuqLvqonAZqqoigKdQlDNGwBJUsSEY1JggXUaz7pdBrfF88ZBj6KomAYVjPqDipJZKNLqlTfLWGZLcRKhXRBQAB3bJzEnSij2g6+zOSouoPvGCSJiBQZmoqvQuJksFJSaFiJCYKIWjCC2YAvhhFV30dVZAaKgJiIJAnQJNTU9300rY4S600dr4SYmjMj6hlFAUVfwTRtkoOErr3QJXICDF1EbTyvTBiG+DIjpeoKYeRjWCmmXTF+VFUlRsdLZuAJmmqTBBlMKUJNQ3qgHmCYonMyLavww0782GbeahH1O/K8k2m1FlHTBVzDTqeYZxXIzk0oDzbEH7OYLd20nSiyHCsLaXRUnt2+ly9d/QMAvvGV99G16GjepL8SXUJr6vWIlb1dtLaK3w+k+HJEjLpiJht/y22bOPOsXrRQtKfZoqBFOapyLFZLZTY9cCdvO38xRx4vFIMzPSt5+tkhUmmDRMKJg7BKSrHxfYkrtS0Cu4tb7runGb2745k9uJHIJBoycuwTomgq+bSYj4oyH13pws6voPdoWRMYxVhKFs3WmNcv9MQevu8epp+6ncVHi6DYBSecxV/uvoWORUupxQKeuW/XAEe/7HgmRqfpyojoct1zqabq7Nw2U+i/ddNuPv2Bf+Lpx0TEbe/EBHMX9/Onm2/kotcJwodzX30JR+TmkGkR0crHdg7yu5sHOOKoNKHTqBFQibUicaDhOVLGIUlQqbK4R6wRhXyW8R0iy/vey4Ry8RFL+uhDJd3u8nUpFDxRLtI3r52yhEZ954uCjGLjtmHmtEktqmwWLSXWgr37xDvHUYVYiZtrUsOmiyENcI2uaHS1xCzsyDG6ZwZk9MiGDVx4qojwX3LhxdyCgL44MnOUtnIYZky9NoPJT6dT7NtRJl+Q0Fq7jdHRUQxDR2tkHqwM00Mz9b/JnBSmpVJ3dOK4wXJQx6tUxHpTEXPNmXDRbJc5bSKzNI4kNgpnxHKV2KBSD6hNlemVxa/+KoOXv3wNd0yKdu7o6WPewv1kjBpGWawRxbFBxiYPcM8fBzEM8QzHHXMK49NjLF0ufm/pBa/k0fs28uyGmXoORQMlGxAGM/DiUrFEvs0mlhB51WjA/sJmvSpJROfcLOMjMyow+S6NxFeaWZSSrFu9+PJ3Mi6zoUPTu9m77lGWvfwYkqr43vbn1rH05DOIG/uqm2HHM3/mDVdeQUeHgF0p+Q4mymVG9o1z/69n6j/f8pnPNskylEBhujKFnngM7RdZvvtueYQzL13JfX/YzLKzRJYhZek89+cX6EmdfyxuOM2We2ai4ItfvphaVCYyZBGDRDze8r0fiv/obGPBwn6cwKckNbpsLyEwNdL5FJEc6yii9rax91mmQVtPNyeedg61mvhOPq/z5B33sHq1EGn1Yo+BbXtJLJu4UU/lGWhKjoA6I1NivMzp7KDQWsC0JeRft+UeolGvNfY5m9FSSBSVCUORPQ+CgAXzFlBPZvqvPdXFANNM7hf9FlDDNhNMTcetidnWOWcF5176IdYcdz4AJgopPUWixnTNEc/pRSGPP7CB53cfgLrYnzy7RjrbysVnXSra1lC5+Y8/4r4HnyCRZEPpjEa1EpDNtpFqnZmTU7WAqCzKQU488WKmD9zP/fc9TPsisSZkdI3JakJ1rIYRNog26owP+/TNFdkJN9RxxhVKyRRqWswZM6WiJy0kBGRl/dbUlI9tZHn7O4SS+l2/uZUwb3LqaSfz4ENCAzS22pnf0YGrxEwPCQjW3LkrCXWbXXItTNwUuXSGQFFIEnFv04ipFCeZ372MWnU2F8CGTRtEH/SfQiltML/b4PnnxdhQFI0kzBIlHmMDM7DbSAND6tHF+gx8rdgj0B57lEHS3SvIxbPRatbyLibvmcnGnPmGs9j51GOM7Z+dezlQEmOsc+4K4E/87vo7OPnUk5p/v/DVF/Hn22YyWCe97m1UpwdwsxLV4Fp0tS/j/l9/n5Pf9wUAVvS3cP0nr+Lff/4byMr1zUtT9cb4yjuv5L+zP9/44xd8cihc8ubv/uvfvMeLA9Fn21e//z2ef2IAJ/6fqlz9HTlXk46ovfHHYTgYoTVXZ3hKpocrIRu2bGPHjkFGdgtsdOgXyWoBmbQ4XOVlgaUdR/QubbxWyJy+hEKrgeeIyWnY0N2bpSEFtuZEny1P2Nh6jlpdHAKTMEGRdSMNaJSmaXj+QRCylI3vh/i+j2VJjRAlQVUEKrwpaKtZ+L5PEDScqxhDT+E6HoaEHDluTG/fQoK4xrGnCxE0L3aYmjQoT4n7pG2P4XGLlceczu0I5+pl5x/JwuVtmGhE14uiw558L4WWPDt3i/S+lssS+BEGPlYgHARf84gUhQb5YBgG6PJQbkiKKAWFKEywVZ1AOpSGqpHEMVYi4SFehGEY1F232QYpXcE3IPGrDA7JjanBxqc22PwiBgYHUZhh71MUpVn/FCfSUcPG1HSCRk2UE6NbMaahojbw6oZOFMcEoYOhiYNvgg+Rj62LA+3k0CSgEoZxww/GttPUajU01cCX+jTplGB5bGgw2CmDOA4JQqWpLVKvTLN31xSrTpjPtHQoEzRUk6aulkoKS7NJ5QwGJ8RkN40spmkThDFRrMkxlaCrCpYcB36gY2oWcZygyQJy1UxQUUhUpdnGkV8jUYwme2CiaU34pqLM1EXEcYKqaDSYS0QXJ1hSpNmyLOI4RlehEop7q6oOUQ01DJs1AZ5SI9EVIl1sTF5JQKsyhR40U2z+ua4lpFvbCBSTMJBwUM+hqI6RlXCt+arKwq48uVyaeIFou7FAQQ3K5GU94H2P7qalN8dHr/gQkxPid3738Hlsv3EAXYnREYdY20zI2CnS8t4dLQWUpMzyZf0E07Iu4hxoSce0ZQuEss3j0KJWc9EM0Ve+neF1H/4sug3FmhgH6/YOgq+STJcIqmIwlH2TwJ8i9MW9p9waKDZKvUzeEmvJ4Og6IkUn8hMC6XhrKYswDPClA6/pJqm0D0kKxRbvbCWQy6cxCypzO8U6+KarPk9GLRAa4vDTbmV4/XsvZ9OezTz+ZzHXn3joEZgu4E3PZ6IkxsJ4+QA9q1sZGJ5xrhYvP4W+zgv54f5rAGiZb7PukVv52Ce/wvK1rwBgWV+a2Az4lSzuf/TeAdKFDF7aZ8qTrHhqzPT0OP2ZPCtXCuheqDq0tS9mYYeYa7vX7+DaG34Jn4drv/tF8UwkmEC9Wubr/If4bN1tbHjZa8i+ADsRRxHTctwNjYwTyXqoDc8KqKdumbh+TO5gajbAH4vIZMTNsvkabWmdxfP70WLhdG4Ern7Pa/na98VB+JWXXMzylw+x9eHHsCTcLkIjDlTqw2LN7102F03TKJgJijz8FCcGicoBuflZHLk3VJzZcDjFV0lC0FMB1eGZOhDFUFBNcGU9rGkY6GrM2PRMTYBhKkSxi55IsXMn4KiVXRQnEy49752ACDbedfd9TfhUpVZDwaBehygQY2rt0UfTN+8iqk6ZkWlxCEzZJp2FiylKwjBFr/H+Dy/jCr7Ml74mavuGP7Kdn/7wHnRDJVcQz1Ap+QiQi2QZTFSyLTal4t9mNdMVnSAOiZXZB8dHnnqMWkmMqUJ7H92nHEvnghYObJ2pDZmsFElJPb6uXrEWdvb28fxmweqnmVO09lhExuwalbrqUCiINWF03wTFkofi6SyYd27j16Vj1UNSl8EwvZ0XWt2JSZkza+nqc47FMjoJtQNMlUWfHnPsSeTfMoc//1rWEY5Psb9LJVfINSHjPj6hH5DL5wlVSfRBQrlWJp0R+3HZ8Th97bHkCwViTbzP5P4BpooeKzvFeWBksoKStzF0nXJJCsYGKscd0c+ezm5sGYxryxeoFCtUZW1IrVrH92MUNSQlyVxGR0cBFSUCVe77mqYytmc3Lb2dzXc+ftEaBtiGJuGuft5G831KpSlWveYNAFx48ZcoVzS2bJHMclqIW3Jwaj5TssYrjmo45TqRYYIt4NFqaFHfN8hXvvMzAFqCOvrUNpb2riBqOI8pB6vfYGxgik4ZPLr4qs+SmmOQzog19+4HNnHaea/mVdlW/nKXYJB12lWSkg+mRlidCTZ26FmmpM5SZcRF6VTRUwEdS0Q/HNhdRVHrqGh4B2SduQddfYvobe8HIAgiLC3N3Y8+hCdFaPVQx8inWLVsIaeeJ9jw3D01Ht+wDqNLOHfDZYPaVJFU2qdrjgjYh14NXe1hcryI8wLqwe07xVxY+OoMOUNjaCQA6ZTt2jHE4qVzCJ3Z9T9JohK4ou1Suk5DC+rhO0Rt5qIlXaxY3Iutz65N27pxIyODM6yCrXP66V08ycN/urv52ed+9m22LxVr8PNPjvIPV3+HH3zxQwTezNwek6QRS088E4BogUumq5XuLhE4TaVXcutXX8cln/02q48SQthLV6W5Hvj45W/iw/8u5pGmJ/QvnM0G/oZ/vpaFPQG1CbHGf+eajwPwtmu+xd5xMR8662XC2l5uu1EwFL/x7W/ixl/8hnd8+j2k5PlmTs9CvnDVP/K2qz7H6eeIWmnH0ak5NBMittlOygLVVLn8nH4AeucuxKsHKOn/eRnV341ztelZQZfY2ppi6aJOgmyee24UePp7b/0LqahI38I+Tl8lJr/dtRBFt5oUpI06IDVXo6NvZtBt2xBSaDGb9JeKAqNDNfoWilc/8XSLvRsDqtOlJrGBaVokCcxf2EaQyA1E0chkLIJwJrMThsKpiKUgsGqoJEmEYehEzYLSusyQiAeIoogoDtAt8HwxKFYdeSTLlh6HkhohcsRCH/sq//Wre3jfVYLOeOOze9nzbIKuzBRI33/XNtrbXke6xee1bxcD5bqrb2XtuW9g9UqxGFVKkLHyjNWG8Vx5IInKaApoMmOCGqESo85IHUMIiqELsoYm9bpJHIEbNTJXNl4YY2k6imSWC1zQVR3TtlAlRWqiaOiqQRjNUJ4HQYBlmygy/BsEPiQJqqqiyPqYJNaJY9AlgL2jrZWAkCDysE1ZlB3FlEsutlXANhvMRzaWUWDBPLGw/eAPd9HW1kYUBVQrFfkMwrHwA7cphBmGIXZKJYqkY6wbhKGPpprN8WWnVR68+zlWHr+g6TAnqg6qjqGL9627HlGgC0cuEZPacSKSYgU/9Jt1SplUiihIiCWtrKL6qLpJEilo0kkyFJ0wDKk7VUIpFKmiCIIOOe4sy8J3feI4RlVmTqt+oAAKgWQ/1A1VRMYlT8zERJVcLo8bu1hSdFKNdOJYJ9ZUEk3W1gU1TC0kLIr7tJj9AOTaz6XrCLH5q1qK4cEpPH8aW0agujvzdBc6mV8QTlnONpl2YP8U1KQQ9ch0wqkLW7jhdrFwV7N5lhp1wrm9XHjF+wHYOTyJn9Ih0MAX7VINIoZrw5gyQrDC7sRwyzz2wCR33SmjWedAa2fAv/zbnZx1uig6P/n4XlKmzdPbxAbzyNPrGR6fwNI1NjwjghbF6RrFyUnqpSFKNSnwHNTwq1Us2S9JGFAuDjN/fg9f+KYg0LjuX77O/sFhCplCk+7aiTx0TWkybgaqSuSJSLIv+0FNdNq72rjywx9g43axqX7p1mtoS2eoyVqq+fOX0zNvPstXLORVbxU1Hudfcgk3/PCbPLvuCa74qMDo5+e18JcnNjN2YIZKeOfm/Xz45g/S0ivG68i2Gpdf9iGOPe4cokhsiDs2jXHnM4Ns2SVO3u89YwHbpwYoD09gS3bhtozJGcevpNCZQpUZYCufp8PKMTogDldf/tp/0NbZyilXvI/f/+f3AehsrCvZ5iNxzBnvZMvkAcKDPgOo7X2UFzAcA+BNif3BA6666otce+3Vs/4+Pfow1/z4BgBSSh4vqeErASRyjeMHjMewWBLobNu2nnNPPZetPMbU4IuzzroVB9M2OPbk5dx/nyiiDyX7l0qIIfeLqDabtMGbrvFCGofMnDwhDq7rY9nCEU008KMENZlxUiaHprBSFppM1zsxnPOak5ks7gFLOGH7No5SrzlYtpifU9MTTE5OM7/DBEksUCsMMKDuIUwpaNKJD9UMQ/EujG6xRiS4bA/FmlVqEZ28avViOu98nrHdE2Sz4jCnFGKxTjfOFYlCtejS0pZp7g2KkqAA42Mzbem7HrpmYkrZlEpDGL2nG7NX3Kw6XqQ4VmJn6HDcy0WgZh870OOYRTJr09HWxTPcy/79++npaJe/lyUKY3rmzKx3p13+NowFBtOTYmy2dnaRaauzY/Munnh+djH+tnsPppk+lHZ724PPsvb0Zc1/b7z7aezuObR1zWXVSaeItjr+SB5+8L5Z1x2zfDnT09OMyyi/Zpl05lqIAF86U0YelqxcjmbIDP+xLyPf1kmxXGqyWW56bhO983vZv09kXqvlkLHBCcb27eHCV4rD69LVnZTGBomcOkMjMnPVJpjRTEPuoUaErifoptE8A7X15MimCijYpOQ+augK2bRBIS/G5oPAsfOO4BagVhRrZX/7AkZLMa/7xNdZukwQ4WzavoFY98nIMeaWfapOlXrogyQ+KuDjWS6JauPKujyv5rJ6UTfnHi0WgKcefgh96RLiwCUMGvuoQ7maEFQjSnKdilMqlWJAviAyVytXZLj3ljs57pQzWSGZ6x/6y5+pxh74bVT8GYHeaujhB1I+x1WplVxSTgtKVczjXAiGbeEHGnL5JjBCOvpaeG6nCOqX3CK5okLSZTHHFG21fdN6jFaVWjHhoSdEI/d2pMm0LCSHYJu0zCk0zSb2TYaHxHjLzWnFj4s4TsSaYwTKZzNbuO6nH+H97xTiuHfddiiT5cJF3SRa1Ay2NuzgrPHBtv6mL4j/B0746S/49DvfPuvvv7j6atae/qbmv+PIxzBtli0VLKobgNFxiwsuuQiAc47az3/dKvbrJ9c90bzuaZnJWyKdq84lfewbK1GX9U5/+errADj31KNpl5nB/Qd28Jmf/SdfeccV/MfHP/iizw9w0jH9mOl2JrNiffnM937HVz7wen75+Y8e8t13flqIka84aw3HfPti9uVrUJSET5Y4i5x27mnkJBqptcMknXMxDDE2bDNLxZliZGLGcfSo4zoBmez/3Lk6XHN12A7bYTtsh+2wHbbDdtgO22E7bP8L9neTufrEm4W36wE/+ONG/vUz16BqItp01vnH0LP4FKYnfQYHRCRnfP0o9UqAKrWFQglds9Bx6zOwwLk9aSbHXVrbhfdsmDHVSogqManFcsiceQW8mk8iMzu6ruO4HpGvkTSzOSGmaRFKKJimCRib73rNrFQcgaLGJInaZNgTdVwxocz2JEmCgkUYqpRlEsqvB2zfuJc4cXjiHhE5zqRs2vQU658VMKSh/QGRU6Y0MZO+3bZxil/+/CaWH7WGdEZEoIJI567/2szCfgHbqeIQR1NouER1Ea1bsqINRdcwVAmVUlWRhVFnMoCCkT2hpTWH7zaePURRVWxbQlZIsA0dLTbx/VB+J8JQDeIoEZTriNqsJOYgit4YXdeJo4QGu6+iKKBI7SUJFazUagS+S0rqsvj1Gn7ooxgJkUwFRFGIpSlEoU+xKkPsikE61cr2XSJqtXvvJJ1tOeq1GqZkVYzjEMPQmvT5AFEcEISgSgHGes0lnVXxorBZt1BoSTNyYJQN6/bwslOEoPWWHZtpbZlLJKFglqqTsmwC10OV4V4dhZxukegadRnpjuoRhqo14ZJBDFEYE0UJSeQ02ypJElQlISXhfJEboiUQx1IPKBT/MxuhSWkpPyJJElpTEg7q+1CPpGA1JEpI4ngkqkclENFJ08ph6wUir4aqRPK6OrqVJWeKSG4uJ7LHa45bxZbdIiJUq05jp1wW9mdZIOt2utu7yYU6zxwQA71u+RBEKDkHtyKzW2qen/5pgL2jUsh1fJT1TzmsPe/NjA2L6+y4QDrwCOISoYS/ZGyLdtumIKf6ZaetYsn8HhTN49JLBeTgCG5jeCzA1Qb5zx+LyOOaxZ9GtcfZsFFkIsZHd9ORTXPzL37Gkw8LomBdy+JFVbJ5nUjWlyiRhxGrqCkB6VCyaSw00oU0NZl51DIxqFU65vVSnBbwF8My0UhwJeTQzmdImW0Ylk+tJvrYKfuMT+1m19YNHP+yE0TfpX20rIol4VMP3nQd+a4UN1ViDENohJz0mlfw2nd9hEs+WGfXdhFB3LdhE1NbyvR2i4ziJkY4fe3xXPThY5mcEM9ppkxCu53RXYNovuj3kbEhFtoac/rE+uP5rZy2bBH9/UtxJc78wXWb2TngMzE0xKo1Iqtgxhrrn9zAD78nIq2lkf2cvOY0nn3ieVp6jwWgPevTlUuzYGkfN94g6pyOXtrLyUctJZWXGkyffxVqCmrVCrohIsJWOkUURVRqVYp1KcLrRuyojHPhZR8RY8r10JKYBT1t3LDrJvh/2HvPMMuus873t/PeJ5/KqburszoqZ8mSbGzZlkZOOIENxianGbiAn+eOmXmGMTBgDHewjT0WBgQGGRsLZwkrWJKVszqqU1V15XRy2Hnv+2GtOiXZwHyZex9/6PVFqtMn7L32Wu96w//9/4FzC8sUc2WymslyS2Lgfhbu+txfk5OivlHQ4JKGpMKX9kxxAiwl37MHqZWgGgqa4RPJ6q8zkMVzE2p4qLJqajkZ7EHBmgqiiqPpCn6Q9KQ7QiJ0QyXnOASSFlyJQ8LQxyiI/ZjdYlIojdGoL9JwxXWPjm5nfcnDjXRanRkAtuzaxovPv8KuXWIdtForlAsWI+M5zp0QNsj1OyRdlzCwyUvZg3q9g6LVeieaqhhEkoG00xDrdVVvsHvnANWpDqpkhBSVdKUHia+tN+V9bupcKSokP8A8bFgWSrzJNtsbmk5oCZsUDmkUMhkatXXyI5vwvDe84XpOnxfnlS2z3N/4whf42d/8qHiDk6XmrpLTBnqfSZoJV+6/nG99434A8vkikRbimHmuue1KALb9bJbZExGXXr2P/XvEWph75Rif+5+v7d246Ird+PZroafe0gr5qw6guuL173zxPrRk895+9Tc/TmvXOi+89Dy5rYIRst6s4zcbDAz3Eyjic8Mjg5T6ipw8Kfpcoq7KfH0Vw1SYmhLsnZ3Aw2m26VbEOpifO8P4UIFrrhklK/tAjz51DN1QGR7ZgpMVcLdOWKc4YKFIWZBYSVE0HTXWCGS/uoKA8nfaLSKJngn9Dq12Hb0pNTn/EM48L2zkm35BwFHTmso1193E+JZrePaYgPxv3TJIs9uh7cmzImpj5Ww0tQ9VE+vBSwJY7RAnVbZtEWv2wPY8Y4MOLz8lqOZriyHDQwW2TW5laUnAwRuVDuNby3SdDqoUmc0PluimbXaURAU6U76I/Ttm+fqXvse+ay8F4O3vGiHoVgnaFR68X9hFnwbrU16v79wuaahKFtUO8XxxnYXxLLWVDqaeoVySmpV+yuLpKQb6xZmXsbKoSULiBdQQz+od799NNWlR0Hzu+tI/AnDLba+nVFKpLUn4ax4WpmsUCoUeY3FB6aPhBLjtDl6vHw4qlRaf+FNBVZ4d0FlZq9DvHOSvvvB3ALi2SxzpBJHHyMQGykdF0yFRhC3xWy1qVZ///qUH6ZO/d+aVY/h9Eb/8yc8wtyj7NQfHqJ45znJms+I8/cgCuhIxPrIZHpS9iNPPij47NwjZcdkE7/9PHyOfFdWtz//+r/PbH/8TPvGx32JZ6tpNn3meUn4r2YywMTd86PcplfP8s/cEqYTpZxwNzVJ5/x99Hl3aErXZIqqu8Pef+2Tv9z/9ub+jdm4aSxUVy4tvuAp+Bd71sT9ksiAYNncNDTJ75ClePicQKOdPPsTiKwvomRH0WOz1g9cKH+baKy+n7W+gS1JWqxXOHBNnYXVtmm5a49z8FNwofv/B759AzyQoiUXfmPAvDCvDCv+2Rt6PTHD1xSfFQr37L77Bw1/6B9724es4eIloxHvp7CL33vcisV4nI5vqzZxO1jbpNjegZ8IJ0pX0NcbcynbZ0Wew0eevmRF2RkHatgAKWQAAIABJREFUFHTVRlEDCQkUxs/12iipgW4kSOQXSZLQbDYxpYPreV2SRFCqbvQNCf0qFV3TCCUeX1ESIEXTJcGFqpPEGlHU5ed+RVBUf+Orp9i7z+SSK8ZZXhMLuFws0nFdHv6OMA4TW/s4eXy154gDHDjgEKVVTj77CJrUMtpzkckLzzyAuiLKn1reoNWtcPs73gAZcRD5kdAgSeRiTkhRtRQFrad9lSQJaqoTuz6pbELSNANFVYmlhpeWpiRRSGwZsHEQqwGKbpGqGrHUQNJQ0DShHwb09KWAHrROSSUZSJKSSoIATTExVBtbBkRRkGKZGXRLR5OU8XVvnYFSFt0AVW68VPPoK/bz93cKKFFSa+E7ltAlkzpecZwCKq7rbgYbaYrvquiG1CjRLBQUkqRLmG6IQkOx3MfX/+5R+jLC4F9x+QEW5hZ6mj1BqhP5MVpGJ43EOsjpAwxlcuiKSiANfJQExIpPFEv9EUVQNaOKdQSQxhFJIoNeaX8TXVDSO7KZPA5jSmZRBGHqZjG6lCkQ+CGqhEalqoGuq2z4QLYpoAW6ViZONzR7GnhehShUMSRsZdvAFXidAfZIyupDN97Ab/FzPPZ8vSdsPDyiMzk8xkjRZDIvGua7aYfpWkBYlIFGx2Sw3+H0eZsxmdw4u9RkZrmCLgUuvQZkcyqttSoZCamMaaOkKo6TQSIhKWRzOPhccXg3ADt3jqEkEUqcsn3ycG8OXjlxnisOXU2f7FPMFGJOTAUszQrHLQk1lhbXee7FIwyOioPCjQK0tESYJqSeuM6R7btIwghTBsudbgu/0SHdDmst8V2FfD+HrxrizCunQPaL0AXStKeF16jWMMY90lSj0xZzlwQGxDHHnn+Syy4V137NlVdx/2PPcsttwgYOTA6wa9cwaE2mn58B4MG7Ps0DX/wct77zfdzx9g+I3xsZ5uAH38jBq8X3fJfreef7fhFDt9l+hXieOjFL7SbdZoyZk4Krl1xFnw5GWSY2am1WFtb55B98mjkpxBt0VjCtGju3HWTmqOh9mV9Yp1FfY0OSsLX6Cl/mteQAdeAc8CSbEJIvfP7j/H85Vv+V12ZOPvKavzeuMvY2HZuIH4QItlhgsyfKfRVoUd4yXan54/XUGv/1EQDdHwIMgssmnKfD6df82xyn+B/8K8K0vwg/qPbzzKv+/zM/oDH0vxuf/ejXAfizv/0Ihw8YPPytVyjIXtDWSki53yJNX9s7paoQy+BCSTV6Da1ydL2ArOH0ArCN0arWGRyW0K92StQMueHaq9iz7Xr5jr9m2+RuphfF2XD9gUPcfu+3+Ym33EZHynR0whrrrS5f/Zvf5ap3fQiAmalZvv61b2+KGIcBj33lb7jpPR/h3AkhNjwy0I8y6XLu6AlIRQJiYte1wGuDq2YaY7i117y298r9FMsJYSyc/507yhSMHOd5EoA7776T0dIQRs6ESKyjwb4sY5cdYm21Tm1BfM6vNlms1Em6Yl4e+Pq9TGybRElDXNn3nehtjr/4MmM7BazsxptvZKA0TKCqtH2x3vrHLBJMosBjWIr4ri5XIOngd2SQpK+TJDHeuo/lSIkBr4vrdsjkHCwJpXe9jtBOHMj37vdsKO5hek6s61w4ROvxWb795D/QJ6/rlKnQaa+Sk1oFtUoXxbdIgwSnLH7PGciwffJKrtzpMLxVXOdaxeXUk89z5qSYu3o7Ze6fz/JU6tFsiz126NLL6JvYQUTMRltjbalGFCa8eFZoZsbZJltLW3jLj7+ZhkxI5tRxnHKWO974Jia3fwKAP+P/oWgbtCMpfrwWUsy0aHcibAnT7dQjhseKBC7suXgPAMeOn+HWW3+SQlms1yeefpyt2y7CSItcdos4D3ceMDFWbUYKGQ7tF2tv6vwqt9+0l/GsuKaGV8fzXLzKCmwkoi0Pxy/iqx2+9bXv9ub9d3/rr/jh8WUQKHkOXXwRsRoTRn7vvE9RiaIAXbZi5PIONXy+9Xefxk7FnLuhQdtboZOk7BwVwsKHtpSwC3keu/ep3i/9wxf+guJomUsvvb732hNHZgjbIoCPfRc1VMgWLGatTd23c/Ninci3Ydg2lahFty6use41WF5pEUQ+xbzw1bIDo1APGKwmWBLqWRybZGLLXmAzuMq5OW7+yLt7BEFqV3xnfj6gHgr5iRm7wPL4bv7XPaLXt69bpW46fPuf7+X8EWFXP/Jff50v8secPF/n7KzQ93riiWn2XbaVp58WJCKpYmEqGn68iVlPaKKQkNBCkYGhIuWH/q3xIxNc/cqHBU5ym7nGH37+I5yY8vjsXd8BQAkWKU6MoFk6bYl5p+thEpL4Uu9I9umgKhRLGzftMfUKjEyEtKri35cXA3bs13p9WU3fxe1aONYArmR7i+KETMYhTttsEKsosUYmY+NKlixd01ARwrqv7qfSdYUoCnssSoqi4nptdNmrEQYpzUaH6246wL4DgrLwq3cvsbTs8Y79u9lpCIPf6gSYzig3v10AiaePNVhp3Ecma3EcYfR/5qNXEQTDhNE6bizmJZdxaBpPMDYoNv4Vt++nUqvjtqEjWbEMTQdF6WFMfc+DRCEJw54TqCk6sRaRxBGy7QMv9FCx6Mp+C9vQcRydpt8WJBKAgoeeqFiO0esbiuMYVdusihmGgaqqZDIZPE9isCMXFQUlhSQRxlXTVFqtFonEhUexAkaKoSe9/qpceYJ2x0MNNSor4tlUqssUc03mFsU8FfrzeG2PNE0xcrLKmAhtLNt0SKJNp8DQbQKvtbGUSGMNVdWINpie0hhdt1EtlS/+veCZadRvY3ysxMROYRxWqi1cJcDUdUJZ/UktjXbkkvghupzQkJAg9pGkUbL/LEHTwZBOfCjFWXXD7AXxSZCSagobcXaUxPiJL1gf080m7FbUQbdMQhl4J6Skmt7LQFv5LEkS0Wl3SEJxGPtugpMrsm33ONU1sYa/fc+LXHr4Iso3C2aghx49Ae+ALXnIbxBKFDKUcgXaLY3vzwrrqigdDEcnbok5L5QC7n94jnxhgGxZfO6pmTWCpIUrHYY4TdHjFDP1CWRDbmwqpJFB4vlIYida7ZCOWeapc7KiwWmuuXiMnGJw/Lh0LC+Bptvike89zI4xkbnSdJOTx2eotITDrFkmK6vzpMS0u+Jg9JOIRAGFFE260HrZQSnncaQeWDg1jzq3QjaxUUPxWt0LyBXLlCZGqEp2uzRNUXWN4qBYG1vLBSrtOdxuitsWz0W3TYyMyeLKEvOr4nPlkUkmJmdpNMRa3HHJ9TTaHntHiuz6gNT6ek/I97/xXf7lq3/Jc8+Kqtv7P/xzXLT3dZTKO3vrwHRsfNXh+VkxV/V2F6+lgK9wflkkIJotn7jVxlDF7wW1Do5e41Ax4Za3iWxfal6E53nc+/A0bU8QZhhqQKR65AaLvd+75dYPMH3qOGtV0VswPLKfjtEhCQ3WTj8KQGnXLdi61mPqvOn2N7BlYAI7XSMTCQdzJNtHtpQj3z/Iln5RCei3NRwcrBHhEGFn8NwW5148QVn2byZ+m+efeglbt1AVceC/95Of4O7/+LvohtTecYqEisLbf++3eFQ21butiDRuU5TMjn7QxvMTCqUBMjmxXnO5HKoZiETNRl+d28H1uiytivtdrVU4v7DA+aUFzsyLDP+xqVkuumIPTjHLY4+IsOj973sDq4sLRJL5VMtonDq1xK/+p/dSHJIHeKJRq3aIUFA2dAmDiJGhIp/9zL0AXHz5QW5900V846tHePC+5wH4zV//IEPjKYEvyH4ANNVCVdWeQxZFEVockyomP/MLItj9jZ/6gpjX/wEbXUl9Y45MxL22MlVZ+/eZs/xmSnZAo7b22oB17plneddnBYPX2RdPcOllVzO2dydrK5u9Zw/+y1NkNZGkOTvb5qmv3Advgbs/88NB+eU7RFJkd0Gnb2SIcllUGX7vd0Q/xhtv2AuuPMR0kx0T0Ox2mZ4TjuEf/dpHfug7bzhwBQ899GDv77e878Pc++xfASd+6L0DO8Q5XhjNkLNUlusVJAcMy611Ks2I9epyz6muu3UGB4YZHBbJTi9I6HSrNOvrlEsiuInChGK+nwNSP0rPllhYauGSksiepKTt0uzW8H2f0Bdz7GTEmaZrkixH02h1fNrdVfxI2Knh0Qn6B3cxtzDbO5OHR7fSbnZYfxUyZqYj7Pjsk8JGKBio+GT6FNTzIjWRKwwyki+QtUUyN7O7n1xBQde76DIpmjcGWOo+zJGns2RPiveZacDY9n4Gi6K6/ak/+Atufuu1FEojmFLYOE2LvHJ8ilRJBBkVUMqbaJqCJv0rSyuxsD7Py2ebFGU/jUMd1/d4/v4zXLR108WtpU0SeV71GQZJGNJqKYQyiMzn8wwM9rE4t8LzT4v7s+0SLz7zHDPnxT62SjkazVUayyvc8ZOiB6nVXkVLNLSswtYt4rx+4PllTsxsZXhA2MXE15me+h6qqmJlxP6rrCyj6ybxDxC+/Px/+yjzx0UwsLBc40233c51+yZ5xx2C2VVX86RUpT8g9Q2jGEWxeoWFyM8CdYqOTUcSUIVRwsRIifGtu+nEAhVy30NPUDKWGCiIa6gA73jrdWCFTM1uikbvtBfwArHfSzv6OH36NEHD4oprxPp8HFh5Ra4JaZvDVpuCWiCXF9dYHChhaZDPZdEl8UY3TClP6hycnOD0ObH26nMLTE114Jc252T/zjHc+WXmj4oiTGNdhT+G2eMP877bxXNo5sYZndjD+Snhy5wya3zuE39DX7DIre8XlcA//MJj8Mvwnaef49xp4R++7uYdTJ2Zp5gTPvPAUMT6uSp9r2JbymsQ+wFOXieSPtlG9e3fGj8ywdUNu4TBuO5tb+R/3f09FqfWGNkmWdQKFv5yEz3joEgB1jSjUe/41BrigRQMKb6nhDQbm9nB/ZfoWLZCPi8W3ZZdoBgRcSCCLcPo0qiC6wa9A7TTCQhCD1VTUCVERFV0VHUTGqHrBqmWkqQKzbbYnNlsljCOMC2zV2533S6WbaFIxjbP89i7Zz83vOlN/Pmfi2yFM7ROoOl8+lN3sWOvgPOl6PQPZxgcFgfMPXc+wTXXb8E0MhxHNL3XqjrPHz1NueDQ3y9JGGKdO955Lf/z/xIHw75LRnAck7YWYJYku01qEMUewQY+xE7QVAtHM0nkQRyGIZqTQ4li4o17tjW8KKBYFpsn8tq4QRMnm0fTHDkvWZSoQDZj96pEgR9i6Dqkm4KTSZKgqiq2bMpMwhDihDiOMXVhXP2oSazW6B8XjlUU6jS6AWvrXWrLYgN1quepLFfxOzotibNU0gyKGpDKMke2aGB6osoYBB15nQKuqbzKsKVpShx5WPbGpomwLRPXjUgVmaHVwTBVClmV0BcH4T3feBTdCPmxtwgB1v7xPpxsAS+K6MYiaGj6TWK9i6mrhFGnN8cAiqyYqnQhSUj8hB69v6JIwg2PVNKsKmkgRDs7klwFAfnbCL42RrMjDPCGwbVNC0txaFZbci1G6KpOf98oE5Oi/r197176B8Zw1BHqFeF8vPHW2zBshXZdzMvhPcIITQxbvfR96ppUZzokdChLFkPNyKBoBpmSeMZmWuU910wy39C4674Zce1GHSsJ6fa0q7ukXZsoVUkN8T1xJ5GZOo1wI3vuuWiqD9LgPzgbce70Atddu5sXj4oMFJeA7ujMHZ3mnW8VlZ0ggpmZV+jI7PZAXmdx5hX0ICBn5+TvRShmShp6yNwNS8+dItV0kpyE0qYxKSkaSk+GIEw8mmGbTDlLc1FCWTs+saqzsCAyrY6xDSvOs762zBYJg1ptVjCzDrXlNaZnxOFx8NKrGC9tIZCBuNeqMTA4xCutEHtVSgV0K1x8x1vYe+AA9/zFXQD8+X/5Lxy55fvcdOt7xIX/Nnzlm2dJkjaEwubVgha+10RRk57chWGq5IdszK5wUNrxEqYOS8ZennhBXNPqyhK11VXSbgtfFWu3HXoMKRphukmNfmx2Ha1QxsyKZ+Vj0fItsq+CUCWpSkKMaYqg89FvPcKBosFFQ30MHRDVyFYQ4XUSVqcXWMuLg3D/xfsIaOGfE65//+AoqeFS2rKlJ4RNGHP7la9nYHsfuMJBfC+f4M0/97NUKmLvtVotAkPaOoQ98/SuEMhdE3YkiVJUTaMZ+ayemxH36/u4SUyaKsQSLaFoAgpoSJHYQm6YoR3bOHiVhmNJyG9Xo9xvcezUcQYjyXz25v/A1PwMa2viOtbaDXLlvcyd9ynkhMPeqc6zpTRGrHio0jGs11K29PWTlSiK0fJWrLCAioki9162ZOB1fQLXQJdohCDyUTWIIokMMFRcVDR1k+b6c5/9b1h5hd/9vz9FvSaTG3qXBKNHeJQvmq9hd934LkUR4u2NithbxZEcURJTGJTIgCimXBhm/w2v5/m6qFhkCwbPPn2Cta8dY+uosCu8DwoDKtGy2Mef/uO/5v0/8R72/MJPoWtiDiYmDtJWIhpBl9QWc5zrK1Dr+CxL4djbfvKjRFrM99MlPElMgxHTqKzTWm1z+RWHAPip//ifqdaadCVs7qG7v8CVB6/CNor8LXcC8MijD9E3cRC/28CSdiIIu8Rxm64q14sbsRpEpFok9htQKjrUVs4wMDTGrn0H5foosry01qvQeL5HmsZkC1kaTWGb+wvjDPfvYWZKZNeX1p/GUlRSJSKWCd4kCCj3l4h8KBXEPkJ1WV1eY3hU+APtbhfV0Ni17+IeQkI1dJbWm7i+hWluOOc5xiYmGRkVVY5HWcSRFZ2P/hfBMlruM7EHHUrkKTjCThSyRdqJh5qRznKjTdtVCWIVV57HjdU6Z14KUIwsO7aKZzw4Mk4rCZh9UTDS3fHT72Bw+0HmpxdRZBWs3Q3RSwW67WWmzwoY267t+4lpk8bibPLP+FRq8/iGQlcKt2vVDn3lccZ2j3Pk6U0qfVOzaMtAykz7CWKPkj2IF0tphFbIiRfWULWYXEHcz3BfjleOP0DkigA+a4ISeegFh3xeMqYqJRwjwEBn/04xny8cP8bUK49yUsIlTfKMDw+wOr9ILM99Qx8mU0x6SZON0apbfOTXfhOAYnaAi7aOMSbZWAFKpRLNTgvP84jjDTRQiqropLpMHkvkxJZ9k3Qk463fSiloNkeePE9BPuetQyaDhYPs6Bdr+hQvs7LWYaDfeRUZEMy1U1zpT60tJHS7BcZHSlQbm9X6jmwfmRwWVc2B/QZx5LMi6eJb3SU0Lc/ikkd9dQaAd7/7Wi7fu535l5/jbZcIP+9PPvsk695rIblWZo25s1UWlgVM1hkVsND3vP2NHLpCJBv33LyXgpVDkXbqzju/Qb9e48r3f5B/ekysg/Kg+N7VtQbbtoskTBB6zE432LVb2OVtkxNcv3eU+fnNinvUbqGSJ1FaJPL7E+XfF02/QGhxYVwYF8aFcWFcGBfGhXFhXBgXxoXxf2D86FSu7hCZ8+986yHyeBw4XGBRZhnjpkJESDNwsTagQpU+tCjLT39AUBB//+GjLAJJIaD+Kqj0zGnI5dVNMdcWrK1qbN8ntY0yBqXiMNWldSxZNtdUkzCIIDVJZB9NGArY1Qb1bByHaJpBmsQ9CGC328V2dDqdDrmMbCiNY6IowrI2sgAqUQQtd4Kf+YXfEd8dLOF1l0jSOtXquvyuDkG9ylMnRUl3eAAW1xbJD0z07u3BR56j5gbUKxovHZeQsVaLXHmcLYdElure7zyHWsqQZjpYkchuDfQZZHIOqazKKapOs90kmy/0KnOmaaE0AyxDoyWhSfV2F9V0SBIxwWrksX/3JGvVKrrUmMpmdVI/pLJeIyN7mdTUJPYSkFMQRRFJklCv17Hk3EVRhKGo2IYJksAimy/TbVjMHBWZnqXzVRZn16hVW71+HM2KsR0DR1Upl8X9BUlKoiukicjUx9SwTR1FUYhj2YRuObIhO+1h9AXxhkGKrCipCXEEAwPjdAORhYviDoZuEXsaiRXJZ2OBqvLM4wKSky06vO6md5G4HoOy1Lw4tcpafZpsNtej6dZ1hYypocZyTekdNM0giRWQ2WVd10mUhCQNellpTdNI0/RVz8pE1zQUJXxN9apST4mjFgVJOeq6AZWVZUYHBd76msuu4/CBy1BL20W/G9DtQq2TsBytYTriuqx0iKBtkSls9DWK//aVt5JIPThDCUFJSJJCTyPODxOs1CaVvXaOPUI9bvNPj57jsr1ibayuWswteYSq2NdBGKOooMQJhoSHJpGOpiQomCgyyR7HDqnms1oTFQxTzbNyZJqjK0tkvU0dj7QVs3N0gAP7RTbt7Pws683mhqY3WmozO7OCoup0EmETYickScA0Mjim7EsMPIxII6hLrR9bJVJD9FxKIkkL1DjFsiza1Spj/aIq1dJaLNeqZGS/w/TJ0+QGiuiqSbPalWtKQY2BBJYXZgDYt/8ghUyG52bF3yMTBzj1SoVWUmEgIyoWF+3aReKnZLbs4OEHHgLg45/8ff7py//I+rLsE/ptGMytENWqHJ0WsLX5Shs7SfGCDstSs8dsu/j1ddZkBdG0ErTIJOzcQ+qI67TMIjlDByWLI/txxvLD2P06L79c6c25F9TQGg6mLfbjelLFwcKMNuFhhlLHbsf4joTgsoaRDPC3jz2EdVQ0vSdKgp2qxF2vR2VvOn1EoYuayCw1JraqkXomsYTgZssmI2PbmNg2wY4tojpx1/CXeWr5mzTXRSVgrtMWtNe3wnc/K0Ro3UYN3SnQkOiI2VaDttWlFimEqsxiahla3QaKYiCPBjzPI1Uj2lJsGcNkYssk3a5HKkWvDb2P/n6LbWMj7N4ryBWmzlWIuhpfuPPvxe/rKgPlPr4yNcXFl4h+3F/60B2Uy1ncqIYVyOpgpkrOMFDk/s/YGkN9/RTzNm0J5SrmChRLCVEXlEQSEiUKQRAQy8zru3/6Y/zg+MVfkhT3HwBD/lzJydP1A1RZmVOk/UpTpaerpyiicqW+qi8rDkVlfMNuBXFMGIZkM3lMQ+yPMPZJ0g7jow753GYW/MoD1/JcTfTIlSZKFCb3M794Bj0UFzV3bJGOt4yhxKwuis+12j4j2/JEEiKnJDq1ZpvQ07BlxWtwvIylqxTGSgyNiz155lyTif4SYbBpO+3yENdeVe5VrvLFEdzuAsV+h2ZLoCbsfA7HLNN2RZVKCTzskoWm2myZED2P9XqTETtDeWyYUGptnpg+S2W1+ioq7YQo9HBMi9F+gVTRzJS1+TlsiaYp6TF9fWXiOKEjqxOBoZAkEXEasrYuzifD7mBZReoVWU1TEjTFpjp3voeYUHVIFNDQma9Kbc/YRVUT9h+6ojcHg8VxzgJ/85CAqE3kbTKphWLlSX3xOUW36O8rkHUkpX+7RnWlwY6tWxjeKs6d+fOzvOeWN9FcPc4ffVGQjQTJOFfvy9GZF1CylVWbldUAI9CZqYgqg6eYBKGCHtWx5Pk0fepZktTvnZmqlZIzFRzNIivPtcJoG4wsndAnk9/U7YorHSwpOr8e1bB1DS1eFdqO8jmESYtcLkvbFfczPVshUxijo4r79aIEQhPDNrjrLwV5hZGB/lKOddfgXf/hDQC89VKFB559iq2TYg6STkTU7VLsL+FKyFCSdolaBiavFUT/sRvfwkVXCRvxwH1PcfqlGS47tA3ES5yeeomMYxFHom9cPECVOA1JZXuILvvWRycOceSkmOOtW4fQOzO8fORh+qrCjwwbK2iJw+HDF/V+f3rlRY4f9ZiqCIh638QujqbPYtjiOqPOcUYmxzkxVePkPfeID90JyLPynj8VNuTDH/1j5qe/zyP3fBsAKz/GgdveR6tS4xd/Wti3bCnP8aNTFPwmT78gzqeXZ1uUh4ZeMyenzjVYmq+SyL4s3RPX8uaJK0j3i/64PjPPK8dn+M4TAsb6rYeO8+Mfeg/3PXIOiZIl3WibCHT27BJr4cmHpjmwa4BbbhKV5bHRAaZPLhC8isZ/27YdtN1vosYOiiKqfJrxv9H5+3f/9f/HUa0Io3zlDa9nvVqhU+1gSgFNP/RQooAoa1IqSBXunIOmQGlMrLid+/s5wv0YkYOibRpp1UhQtYg4EgapUo+p1VK2SEZBzbLwYg0l1lGkOK5djAk9C9IQRZIybGhfbeDVdV0XTnIU9QIwTdPYaNJqdYQhU9INGJy4nogUL4n43vcexLKE4z08MgFajlLfdiYkfnxgyMHrNjgg8bKryQJrZ44yP3O0d2/dtsvW/BB1r4bhSGPq51hr1hneIoy04q/jNdrooUVki2taXYoxDJtEwgvarS6eGkEb6g1xf8VcQpRCX3+WWBI8mB643agXTHYIWZpaQosdHFmS91MD4jyjoyqW3GxREmC0I8yseAaNQKHsmKRxnigS160PZlDSEA8Vc0Nwtd/hmcdfJqkK58AcKJCz8xRLGTISpqfGEa5t4MZNcllxDTvHdrE8v44ne2g03USzLWxdRdPFNbUbIW4YEyYO/RJR0WmDrmUgEYdnNUwhdIlSj0A6FlqSkMYBZFT0jV4mTQdChoZkb5iewwtVjNBnwyusVJpUVpu4ZqcnSKwabRZ9pWfcw9Ank3XwfRfDkKLMdoYwjMll7B4pC0YHNS0RytJ/krSJQg0NBd3Y1Co7c3oWXdVwGyJg78sN8OGf+jnecvs7AUjtHPVOm6DrkspelGI2QxYbwxlCkaQTBjoJkGz0j0mDvm3EJpX4/zSx6AYRuqGgSRZDT3VRVIVsLHV2gjpPPlPhx27eR7Am4Lwz55t4UdpznvNKhB/rhCmE0hBGaYKRpERJiCv7PpLUJ/X83v7sGl3qUYfc0Yi9ezb1P1Y7DfZN7qS/KEr+Dzx+H82ui9RoptOu47dqKLbSc1bjJEWPIVGC3r5NDZ0gSdDl79mxRpDoaE6hB+/sL5UZzvZTMzNM1cWB1nabZC2jJ9gdZrK0Ww3Gd25Dl05npqXS7Lo4pQznwSeeAAAgAElEQVRnj4vG++uvd/EVjx+7TiSd9l5+mJnFJfqsPPMdYRcndh4gckMWjpzhSZkAUQ68iUtvc5l6/qHeHLx48lH2jO7HqwhbktM91pdXGDIdDl4nbNDP/sRv8OVP/T6fu18Qf3gdjYxjUh4rkQQCAqRqwkHXNQOvJR3KQZt6tUvY2TyIMq5LHFdRJUykrIQQZfHjTTIIvb2Om4ZU1sWB+oFrbucXf+vnuetb3+DRR4Xo5cjYMAE66wtt+svCScn0Wyyfn8PvCMqKMFIhN0xg6rQbIqCMwi6VxisceeYkwde+Jt6nh2yLfK4ricDNyfQxsFP8v2Jv9KLmeMZdpybXvbY1R+xMEntVshtQZb/Gob4dxEULJyf6KdLEZ9/Fh1mXDu6Ljz9G6ClkBvpprwsyinymQb2dsnz0FA/dL64pbwxx8WVX8+F3fgiAerjEPz70dbZtHefyA8JR3DZRYH7hLCoOcSxF5zstkswM1ZrUiltc4v7H10m1gLe+SQSTp84dwbHzGIaF00vsRdiOxat5KT7/hY9jNOv8zG/8CQCf/Zsvs7q6yn/9nV9FU2UvsaZgm0YPApiSyMRUIhpT5YjjGF4lvGugkqQxcSheMxGsieeX6sgWS0qm0IQs7SoxX9nUonrksePUZTAyseVS/ukf7uJ1113H2ZOiD6S6WsEyLJIoIpF22NYMGmfUHswqiELK5SJrnSW6sk9itpZgajZj2y5i6pQ8M/FZret4raXe7z/wpS8zu9oFISlHszZDVhG6hP0FmbSL8mixL2HcYFo2nTBhx4EtVJbFur760PXs2DVKuWDQ7Yj5Wzn2LAt6jftfFFBhz0kZHxxGUxPOLAn2sSwldu3ezbmz4m8vSlhYWUFVdSJplBIvQkkSdN0gSMWZFTQTVLXeO3csS8ewfYa39ZME4txZW11FSxWa7QqqPA9N2yF0PWr1zTkolYXNtOaPAJDZOcT0whzTx+cpZqUBVX1ss4hTEBC52FB589vezJbxCXTJRhykVe598CGWps+jVyUB0tgylfkUVRVwt9is0FwRUDdbJo+ySkTJMSiXx1lYEGvDNgzS1N5McqsxnueTem3CiriXI3OL9GcGuOGKi/DcTWhX4ETIdifM1ERJU1LNIiNZdhueB2pC2HEJZRLWyKvESUIie66NyMJXWmQMh527JBFGq41lhBS6HXKJgLZtPWRySdgmI/s3G7WIkyePk8vliOV68YIaenaImr855wCf+fPP8cUvi8TCe95+M2+74xJmZzeJI7LZrCD+SuNNWK6uEkcamiquM9YsoMO9X/46rhSBPpc8yfrSNLu3D7C0JPqSdUOhWltl/vwmOcPc2SVMw2JC9i6mSkqimj1YsF5w8DsNml2fg5eKoOwYR6m1xXN7z6/9NgArTZ/FzjCXv/Pnxf0Wt9AMUyKzy/ePie+qNRdYXavTrtZpLYn9MNLfR3Vl7jVzst7qYJVsHJnM2ejV/d7yGmfvFsHbiFFGG0t58gnRf3zo0NW89PQcutmlTyaYzj+3AB8BRVc4/ZLwQcqGwo1XHMAyRdD06HeeQ1F9vFfB2L/9L48xMFLEKWg06jJJGPyASOMPjB+Z4OqsFKFcmF2jWWvTCbqsr4pFt2NyErtcoLrYJA3EIVddjWi6Le57WDTgZqU/5UZdxjaLO1z/BpV2BbquMDbbDwOpTtAVD8dttzlw8BbWzjyDqsnmdSMlTUFRNTQJ/Qx8QWu9ITgrMOdKr4ogXtRIkhAF0KRhiaKIOIoJZHVEVwz6+wYpDw0QSOrubnsBTbU5MbXEqRfEIjcthWIhQ6YkNmfZPkx52yF2rD/Ms9wNwMfqBrNzLpQg8UQwNe93OTiWI5EUzqvhML6hUSm4XJMV75mp1ljGpzkmArlt+iDZs4v4N/dTKUv6dNdDyVhoqUlJKleXMhkqGnQkzTS+SqnPYHVdxTdENSuPzrDqkNXG6NqyX6Qa45ctFCk0uLi8TOvUIqqj4hUnAVBVhX2OTinbx7Ilrn2t1WbE7CMnWbim/QDNV+lUV1jtbDAWlqmFAduTPlZkxWuxUyPKhqS6pCBPIW8auKGLLw1EakHUSmkUaxSluqlmWdSVOobsQRi1NNzAZpWEUiiraYpNUwHdjEgTYUzUqE2sljEMWQ2NYxRLodMROGgAXTPpHzLRFYNUChmGsU4mJ5rrAQpZjVy2xOparVdV9MIOmhrjpimexG9r7ZCM3ez18ZEqqIqKokX44SbzWeJ3QC1ywxU3APAHv/f7FAv5nvhwlHTp77NQ+3KwAR+2EhIlJg4UDFmd8JI2muqgxxvU/cLo9CmgZjaw0SHEGn7s48kqZkktsNiM8ENxnUem15k7t04aeTz4gqAhthyTiIBEBsudMCXyurhhF0eyV6ihTZzGRGmAJoOb1FOJUx0kLbFfa1LEIS1FJLnNTODU6TPcfv2lJPKZTs1UUJIURVbf2i2PTsdDVUxi2XBumDYksSSokSQJaSrmmI1qb4qiimx9oyGyms72UZxt4/Tnc9RkBboyu0Di2HRkX6adzRClNrWmjy4dhInRbWT8gLMnz+D6ImipNRvksxmWz4ogbWZphW1bJrFLBRxpA89+/2lcTScKFc7LKn9leZ1rPvghto6LoOnr3MlX/uRTvO+Xf5XL3ioSUZFmMHVkimtuvJqzUkD32NEzHD0yg5WW5JrqkLouK+s1IukJK4pPEkYYhkUsK0dzp56iVCqiRJtZvDBeIUXrMa1qhk2S+KivcsQ7RpNw0eWjHxKU6h/4pfdSHdzLluY4t1wkspojSoBtZqmnYMmejnzOQk9jzpwWwdzO/ixbyhovnTzNzHERyKx5Xeam1mgma+gjklXUVUjSLBOTwvmptjpEXTFnvnRWn/RahIMl+gbEe3J9fXS7Vc4cPc3+KwX1fLGwg04XciOjtBrCOc/qMZWZtV6y6vDYKKePzlPXIoZGhfNR61Rw+k32TFyCL6tLx557nocfu49jx4Vdfvc73sttB97Kvxx7jJdfEX21F51eZ9/uSSrra5iamHNVy1JwhjHlGbN7+w6GR1V2bfXRLxV01G2vTZx4JJFHHEsKbkXFbwWbchtAs7HExPAlvb/PLMzz1tfdDNCzgxYF2kGrVxW3bUHsFEURurnZl6FpGqq22WmQKqDqOki22SBM6cubfOjmS7nn+0IaoaloaBmVxbmpXu8pwNatOlNfkTTatmC1s42AQCIIkrQjbKQeofVE4FMUDJQNwXfbRlE0SqU+PE/MQRAEmJbF6TPHyC4J52pyzza0xODwIRGY3s+XyJczpJVNxsWBco7OcoOLrnkDB/eL9fGXX/hbLtq7q0fl77o++4ZKVKfXuPZNrwfgY5/4BN/+1ktYSoPxrEgIjGQUqmunURMRMAwPHaLaWqezdB5NqmrXjArL8+fYs0dU3Nv1GqEXkqYKurVBlgV2oYRhaAyOiTWUyzlMbBnbfCaqjesmRFGHM6dEBaobBGiqQRAlWFJiJCElURVa9c1+9e89JERh610ZuJ3usj5/nqzfwpOoDSMtYjkRtTXxPK+95XZMxeaZZ18ikPIz08ePsXLuDFocsm2XcNjnFo+zslijlBUJjq3bRnD9LsND472Avdvt0mq2CXzREw7geyHEek/CJYhMbCvDtp1ZXjohiGLazTW82grTI2Uuu3azIuN2DUzZw9rttkkJMTSXlgycVNtB1VIK2Tyzs8L3zJh5FCVCk/1qmqHhdSFrF+krib6ljCUIwHZP7qJRE0HB0vIshhbQaszIazIZHZwkxacp0RZJbJBkAgazg5x5FcNq6/xTnHxaVPiU2hwvPn45B/eZcJm857BL1i7guj6bDJ0pKSnEm0E1wCsvfpdcRvh5+YJNzrZYX13BMoWdv/qaw5w4cZpOd/O5q0aGUFF7foKqRLhBiCnPQl1VaDRcsvkRDl0uqj3HOEqzIdbz5Kiwq/NzNd5yjc3X734OgLONV7AyeTTN5dTzwlarSYeMUSMOa0xMiLUQRU2yBf9VHK2gKyYJEMXivBofGuMk8PLcM5ycF8nGQxffyMj4ddz0biEdoKgFpl98kXIQcMkVoiJ7zfYm3wbeuH+YRFb3Sn0GXitgcVH0Fo+M2yzNVLnzk38JvyZ+f3lhleGxflyvji59SNP598OnH5ng6sgTggqyW63gt1oEaYj0o6is+vQ745RyefDElJecLEMjGa7cJ9hmsk6BO3mAqH4FZ44fkd8acOKliPY6WFL5vBBGJImCFCJnfb1EGNpYto3rC4eokDfRTY0g8jd1PJTNipX4exOitZE9UJQUVTEEnbasYMVhhG5ovcy8YTnousHaSpsN1mxdT1A0DzsXoWpi8SRorLfW0BfFxl/IOpRXiyTlLb05a66bbHNyKO0JXpZNvOOqTp+VYzgQXz43W2fbSI6r6mWmpH7EqBZyzWQJNxEH49yZMwQrPrsKQwQtX86TyZn1CK3Q5mAqMliLS+eZ3VukVBPvObjcpO4qKCULe0g49c58QrqsYzhd9smmyTNRSt94Fm1YbL5bmyUWulka+/KoiyIAGrZqdJ/WWJ1f56IbxbM6ODBOdO8pvGEJxRrI0E663DQzQt0Rr82yws52wE67nz+Va2Mw8bnJLhNIooHjwymH+wySoxHzEh76VBJx9WQeuwH/rEg2OyPlXaUMR1fEe55gmXFN44PqDo4aEiqkJ1hRkwk9T1U2inYy2+gPWviOOBi7agHNT8hqJvVUOFyqruG6LjkrRyBL96ZZwskadCRrXDuO6bSqBEHQW1+GmsEAAi+gZIqgIVQDSHQM2fhrWwaW6RAnLpM7xbN6mXlGR/roz2/nY78rtGGMjEIzCnDkgWqlGZIQVjwwNxqwbY0QB8tMehluW3VIE4NIHmiRn4AFs6ttjA366Qwcm+qwZXI7cUM4JY/c/R2WVuCXfkOovy+u1Nk6VmC5XmX/XuEM1NpdurM+piQWUQkYGBxg6+QOjpwWWdv59YjQqGB5GrGMHUMlJVRjVEnqYaY6Hb/DWD5Pzt3MOBUsnbf+2A2cnxMB0MziPKESoMn93PWa1Lotyn1FArnXwzjAMQU0WCKgUFJNVNCkQ6uoBmmS0jcwgCcrNKqRI9YyKFoGS9K05pQ8hpUjQGS7I9dHNTXcptvLvs64c4xvmSCXydKqCedxefY8ew4dZu7ctLwPi3MnnuHl5SojewR738rsNIdvvI6vPXYvnioC6IWZ42RHIs7Nb0LwCjtGWTn3PHmpd1K2LH7jve/jy4/dT6UmDtmvfO97PPvKFJEt1k/qQKtRoa9QRitIpkUlIU0VfC8ikxVOkpKoNBp1olfRbUehgm2bm+Q/QGJr5FQLydKL1nD47G9/lBs/KIg37ltTefzxZ8nmSgyURYAQF/OUy1nKcQ1XatGkrsXRpfPsGhYH8fved5Bz1Tp2NMHO3TcD8LrhDDfvn+Ds88/QqIh1/fXv/gsf2Hsls98XkBEtqfa0s+ZlhWRRd3nrrbey3hZr+sTpRcpaAT3tR3JHcPHFF/Poo0+wd8cEzaY4RNTUo+0mNBoycZMrUA5HqJ49gRdKaLuSoukaHb/J0IiY46tffwMnTh6lKVnr/uLuz/LO22/nva9/C5//6j8AYJQ1dp/fwqEdO0gkXLnbXccZGcSXG3TNq6G3LVqNDqkqNoiu+VJLUEXTZIY1VfHjzaotQMHMoSql3t8//rbbOPPCMbiRnlxJgoBMbwRlG0lGy7J6jnCSJBiGQeRv7r04jomSAFtW5k1Tx9BMFuYWOTG1QTlu0m2cJ1lbIGuKebn29T/OWn6VoRHBeLlYWcBSDUzd2Kwkqxp+GAldREnKgpoydepltkj2vrbns7AszryNvaYoCh03giTC7Yjz4rGHjxN1VFbnLxbf898hPzCEMrWZPdfNfrbvHOaaN72No89+C4B8PguxTkNWzkZGS6zN+ARBzJ6dQq/uP//qn2EaDVRDOOQAZ068zMunlrGHhF5O0GwSV9bpy5V7c+4pEXGSsFIV1xiqKTsPHmBoYHgTPSNtk+eJBBFAZaXF0vQZGpJMIlF9oriD142wZEUoXyzRqNXp6xtA6dEhJzTSFimb+9ixIzygel6Qj6yGYBoOTqkfXd1ggB2mf3SUK/YJaJaW6ePo2ROoSkRXknOEXo1cNiJv5FBiMVfrKw1sK6IiiQ1UJWZ4YpDZ+Tna7bZcL4I4pd1u9+5ZVVV0VaErK1JR6hP4JsdesJCFY/btP8zMiVNMT81jFzarC7u35yjmZZUxM4KmWhScBFMmRW1rGNOMGB52aLREhr7plXj8yQW8WGpM+p5gO9ZCRkYFtFUhQxKLCqxuiHW9ffswjjPZe89nPvWPzE2vsWXrcA+BomsW7WaHsaERXjMKJYZkS8WLL3+Zh757F4cuPdyjYvddFU3roJshoTzrVNVG01JCeWAFEoqfzyi0myKo9z2LQrEfP07pl+yu+YEChQGb+tRm1XigVERRNFKJnU/9FCOnYJjSBkcGlfkVtl3Uz/BQdvO6QxHkbGhYDg06hPEcXVe0S2iujZk6hJGGKVEbtqWjRlDIl/EDsV7W1xe5eM9VzLxqSvoKLmHLpm6JcyecF8ITxdw2bvxpUV5O+vqZf+Fp7IJ4dvYOm6HLr8ettTg5K22XJKQyB6/pkZRVwyaxHhFKI68NlZn65qPEzWrv99O0wdxsgKEoqBIi7sWvDv9+eFwgtLgwLowL48K4MC6MC+PCuDAujAvjwvg/MH5kKlcjEsN79R3vEBhvI4dpiKxDlKYkYUgzVogjKVTW7tJJE1Ylnam/IqLmI88Po+qyfspT+KvvInRPsjwnca4n8wSsY8nelCgssL46jW3FaBJn67YSlFRBV1Vcie00dQ1VVXvaUIKoIn6NbsgGQUK6iX4BRLVrQybJiyLOTZ8n0tZA2RA7NLHsQSzH7FUjVN0kjFxsSSpgNEPaC8vMDGxCJ2bDLkt6E299lUcqAkayb5vJx58JOSyrI97WHLftKvPtE6vUZW/n5ZkcLx5ZoOKKORu6ycGZ7OfsPUdoSqrSxkDItYP9ZIIij6yIbEzLrmOuq7iSOvgpXeNMbHPZcot0WsAXXppaoXs4ZWTc4rFnBXTnZGqy4/gJ3tEnLuDuE9No1yV06xFbj4gs1fmpJm0l5EGvwdvOiUzqxN+fpTU2TOky2dswPcPBdoZvPXWerf0ia3zN7hJm2OHEqscNRfG+d0xs495nVkX/FPCTToHGos/XTi5zxzWCtvPns/Ocbpu47jATGZGJmBzMMLjeZIskRLns4kl2NSrsiPrZL5XrH7SXeP3YGAPVmCMXi76Ite4i73JHaDtijX1zsUVN8dB1HUtC6LaN5hkb2oLnxnRllrHjVug2VUxdZkwcC9dtU+zL0e1KsgM/IJvNYloaqsy0lDMlWk2PWFKsB0pKu+Vi6A5HXtjEb6+vBezcsoO1FZFJOj09hwdkJWTgwPZxCjmd6TNr7NgnYGRtH1oLq+TLGQzZW7e6WiEIY7KDYj/+4zeX4KfgS987ysS40GVrr63x+GOPYg/0cdgV8Az/5Xt598fvZnhSVDAPrtmcWqkSznUZlNCWF188QVtXyGREpm7X9jHa7QoPfPNpzs+I9TN2xWXYTQc9l8OXosVp2ED3PJJY3EvTj0h1lVfOnafgbDbDvvmm61Bsm+enRRUsDtsUVBVXwicMVfSqderNXlUq8QO6figgv7JU9v+y957hkiVnnecvThyX/npTvqqrutp3q9UttdRqqWUaBEhCAqQBNBoQ5nnwgwAxD8sAO2gHJ7QweAa0rFYIJ4sQQsi32rtq313e3Kq6dX36PDZO7IeIzKzq1gLLMx/0oeJL1c2bN/OcExFvvOb//v9pnuP7IUU6fOZG9yeULtri34498QSL3RZhOeDCOUOcUGmErEZbhFarTZYleaqolWojUc/VtQssW1j0UI33wtkldl1/gOqkmZfpUpUrrr2KzmATbXsgg8oB5iZnuf3qa6hWzVoP9u4k655jbt7sheeAg699I9GZszQsxvmDH/5Tdt1yK4P1M/zd//glu/YOkrklHJt9DIsa2yfm6LZ7dHrmNUfmVq5A0Fyz1To/YG5ujtQ2afcBJVw8vzwiKVGFwtMlmvkY1/8H7/4h7vyut/Kx08beHDvWZ+fkDK7ISa2xTDfXuGL/bl5xxXYSC1vpZZIDzywxt81khN1Ucea5I8x6kFp4wL2fvw8nv4ubb72L579kes9uvOU29k3M8amnTc9O49qDxCesfbKQ7YUrr+HRR5cILCHLrnIJHUWUnCrK6smsx9CNHe69535mZkzlIY5jtHQIK1a3KA+Z3b+T5kafzTVjO3funaFZNAmrNaYmzLUvRz3m9hyEwNL0n23x8Y99jDvvuJP3vPunAPjwZ/6SY08/Tu+1d3LshIHS7Di4nc2kj0V+M3Akp/sr5JkLvtUIzHJUJJDCHZPciBzXc+j2xj3Jx3pwcHFM8xwlAxJL7OJau5RTEATByCZlWYbjOJRKpREMOcvUSJh9OKQDQjukw/4VUjr9Hh976NgYXt87R948hfRjupkpPTzw1cNs37mPqW3mvHBbJfq9DK0lesiKREiuCtJcoy2hjLQw6RGxiCPxLNW4YzPlWZKCG+MIxdaGOXuCMKRwC5576snRtR8+fYyVzrjPZf3CJmtpD/7+yzzxqJE5qQQeK6fXUDPme1dXQq6+cTcHrrySr91vNMhCX7N2LqPZd2gvmwpCPzmL59aJrf5EFK8T1spEmYdft72vmaIXDUZQZRfJ6rlltlbXyez9xv0B3b7ZY56tzElXgdS4rtnrviyhxDSlRkJuK51RPwYcVJohR5pnKY5kZIe7QK0KTeCNbzLIg6AsWFtbYz0SxLZKu75xmlanx/PP2Z5LR+P4CqVyhionQq/g5zmOX3DyjLEle3dfy4037uUf/8Fomfb660xkkyilqVasNlRRUBQF0pEjORGkIE5dhIXDSa9MOaxwYeMce/YZVM83f8sbeGKqyqHHnmW9O17rv/eHv4oeSs2IMr5XpSRcsJWINJGUAp80Stl7YA8AX7v/Pj7y4feybcFU5gZFTLfT4SUv+XZ+8keM5tozTx+hGswy0fDIrdRLnMUEfh3PVlW1+nsq1ZzuoDlCQy0sTnPi9Almtl1auZqbDFhrmzPl2utuQe+NafXGGnOT0x79fkwyKPCt/IQqMrJMI4ZV3Ny8f9vibs6mpgKTFRn9fp9uP+KGxf32Gnbx/PPP4/pj29yN80sEwnOlUJkD9mepE7qJwg+mKFfGZ23WMvvpD95nnkvhZEgEnq1uZ7pKXK4T1CfAQpX77ZgiUbR0RKlRse9zOL++dMkzeeL+I2hf0u+atb/tzluBJ7jmbe9g6RkD7/XTgh233kGnZ/od3U4btMvMfInA2qmBhR5HrePIYRVcVckLjZsYWxGttVg/v4zv5yPJ+CzrUi41UFkfZauvejCek683vmGCqwfvM5pPD/L5f+Wd//JY2VxFx+OG9n27Xs2xk5p+z0zA+QsTaHcCNYRr5C54MdJL8K2hUbmDA2Qqo2SNsyo0eZ6P+gaGLIBCXKT1IT0KrVG6wB0GXNIxi3MI8/JLZIVgsLFKpi3DjxeQD7bo6ALpmwUWBvN4QR2nZIzBpCijpgP8sDy6t+Zt83i755jd5vD+7W8DYGZ+D1sXNnFcw9KwsG2Gw+tHUc8dRfrGEQ68kOjkaa6umO8q723QWy8Y7Osy7Rvjd9X2BoN+i7V1n9AGCHsbNYIdszz/tMFup1s5103mlALJIdsDMXnHfva8fgdLK33Oa0uksLnFS16zi888aTbfU3qJ1902h1R1np42TujxjT5rFxR7v2mR/AbjjH/mmccozc4wt898/4nNEhce2yKdjAhuN47+Uw8+yoaY4fxGmzu2G6jQ//b8Ke5pJdy21xjpzx1aI0lStO7woSdNo+gtcw1+7cnD3ObWuX7GfNbjR8osZwM8y/50p7eHVjfhPYPTXBGZ+fzeq7cTnxjw+LrgqhtMQHm7mKL78Gme3TAG4WXfcSf6zbfzxXseY+mocR4np3Pa3TUGgyaTVWNMp2cnSROBttjfLI2pBhWyxBlpTBQyJdYxnlcCORSrzvD8AmwfmHRCSiWFKgZUSrXR+iiU5NobDtJsGgevneR0dJ++xQyXsoLp+TK6rnngcYP5lgPBfDUhXnKpTQ9JYCJilXHuqHEKW4kx1utpn7P3GVHYuhvzmtt3MV/zCOvfbeb9nT/BTdcsoKzA9K23XMmtheRcawO3b9b+a189TXMQsrZu1t0jjz/A2ZPnuWKqznWzxnlt0aa8f4H77/saqZ2HwJsg1YrCisSWfUmAg5dHTJd2jZ7Bf/jut7KR5Bx7zvQEiM6AraqksIQMlcDnzte+krXz5+h1h06lS5on5HlOYlmjHMclTVMK68AZGJQk7nXxLBZ98/ApeudXKFwHrAObxzFIiGNzWDq+R+B5xIMeWW6c+sAvkSeKIs8J7Z5srm3hZoKpCbOGzywt8eTqKrJcZddu01PhixKf++zn2XHtHCUL8d1956uplgY4ibmmr/KnvPWb7+SJrzzAsXXDwnXDHXfydx//c247cDv/5weMmv3v/vGHOHFY4lfNIbswO8HG5ipZGlGpWJ0iBEL6OI5PHJvnV2QFrY11pqamRs98ZqJGMojp22fsug7BRI2gOWYUfMOv/mf+5B+eYDU3e3ZyStKPWshKmekpc+p9y3U7ufbANAJJwxJKNIRi4Q2v5qTtx/37ex+kXKpz42sOgGVxK3kp89Me68unefB+I/T9vS97Hc/e/cjILsftNiVLLCMtlHbX7D7q10wTb5r9UlYB/WiDI0fOjAg1WpvLFI5iY2ONwDPX1B/EaFHg9+39epAlOY1ylTXr2PSimJk9u9B4HD9jIDhaZ4Rhmd37DcwznWgzdeQoX737C6ycM/fyI2//ET72mT/h0IN3I5bj5M4AACAASURBVG1wfPJ5WD19hsz2DZ89dZiZ/TlJ5uJklhk0b+HKgCxTRjQeA3cVDoiLAqDOluDpJ0/Cd5qf19a2eO2drzH31TNnT5+IuYXGCFpXFAVaa+v8mr8zTKyKtBjDyig0rivJs6G+khFSJ+5TshnIrc55UAX95pjspFFfoN2O0GXLShtYUgGpaPfM3PT7iemH1B6FhS8JG1A4lk1P5QWFKMhVRtcmO77euOGVr+Dxxx9HXtQTuLo+IEvH97J3+yRPP36c040voXrmrLOdx+zZa/pOemnC1z7zMU7f8DpcC8tqDbbop23cfAoPcz+t9dPUJ6bxLINh4VbJVMTC/AID26uZKYUjJKkNrsIwpNfvGH3IYc+HdJmYrpHnyUUsxgW6kGQjAq2IXLWQKkCOmGQLHKXYs38/8zPGpu/cs5O/+uuPQDGGeQlpbI+z+FoA5nfWOP/lj/Dc/V8d92ops0Zqtdros9NuQRwptLX79fk5QNPpb1CumMTp/oPXUCrV2bvPQD+PPH8UpVPiuDe6Z8cZa6cNWygcx0ELhzyzWl+OpNNtUWjFzr3mPD6xtE59ag+6OIInx3O6Y/42Nm2iOHc9FBlpkiKGJFBuSOJ69L2IZ88a+334VIuFHbuo1WywGlzBVbfdTmXhAD/5C6bf/+iRUyydPsO7/9O3cb0lonHSFq1mZ3T2bmw2qdUrdAddsJDKTr9DgSJW4z5pgNnqNIefMeu1vTEgp2CqOiaKyTMPKVMDC8yG9ydxpYsaMuVKy7B8foXMEspkaR8ZKgKt6ayYZN6OyZexY7rB4/c+NPr8c0eOYNqthmQZgkyDss+8UZtAqIwsjekPxkLimW3LuOWlJlkjZQUhNKH1WUsTJU4cXeP0qeeRlpjiwM5tvPzVL2FmMeSzf298iaPPNZnYsY2Lw6uf/YW301zfpN82z+rO7/gBvsInmHRBXWXs9/7JCr2sT2bDmqju4wjNIO2SW3K1idTM4+K8Q9nqDSbxOl3VQ/XMfqyFEikU+qK14yhBFHWM/qV9LWTcb/r1xjdMcCXrJkM7OTmN60gKOY4KhRAMspwgU1hdWpRSJFqhM9vki0DjEjttcjnuN5DBJq7rM+iZ3dkdnCUs1ShsZadUbhhjnAlyu8izXBA6IWFYJoqM0S9X6sRxPMq4ub6HkEYMd/ia40gcQKXjpuGh0KJr8ZxT89sISnOEu/s0t4x53twaUKBZ3NYgtzTAUbzJjh0TFMo4/pks8AqfrD9+LsuLe5lNZ8g6cxzq2KDv2Ba+P8vqGRO9Hzv2EGePPkXU7hIumF407Xk4RTaigtWxwhcB1bk62A2kH/XIKJifXSAW1pE6HeEf7tGwh4LwGkSORKkJfJvpyUuKI/e1cMUM173CGLuSdNkqSszdYa79O8rQjmLm/JCZXcbBuf71MQkRKtGUtMlYXvWTd7C1vEGwZhbxVdfXOHBjF6k0c5bJqHZ9h+3tJjeVCmTfLue0y3eEir1TBnu7dKbLIFmm4QcsLlhSj7Uu77z9IJ4W1BrmtcHqKqz1eelB8/3rvR4PHj7N5MKrmZgw13kybvFMM8bbnvLIkqnQrC21EIC2CvHbF0q0v/JJ7rjyam4pm4C22VmlHe9hcuaVnD5j1sb5rWPUaiVyG1y5aQmtNZ4XjBjogsAjz3OiKEFah0SGAaWSRNjNIJ0yg0FMozFLfzCmIX/Vza/hh/7j9/P4oyZwOruxTml7DddmtToFVCpTRL0tpm1TtvAzZNBgfkLRsY7M9NwMqpjisdOnAeh1jHP4momccLfJFu6+ei9OGJKIOpurZg0tLPog5Ei0VBQ5ObAwPYs3YZzxXEoO5gW/89u/b9bYQPGBX3sfjekJcsuycebo43z/9/0XXnXna7jx5aYqXa2VaS+dY3vDBOKv/aY3MHCgrCXDlOn7eA9h1SdqxczXzD7SV+8m02UKafaZylP2XH0VJccls0kSF0GmC1SWIKyDoJShvs9zy9RVFCRpSrfXNk37wM/+9I/Sbbc4t3GBraZ1kgYx0WBA1DF7qJUMyOKMLO4T9SzbIyCRKJWOKPEv9DpcOLc8qqI4cczTn/sc0gnx3/AGAI4++yTveu9PIoQk6Zn3DZpdyo0rKJyxnRhM1jnf2aK7Yubziut30H2+zXH9LKcic/D90I/9Rz76oQ9x4oQJWk4ePU+SdgnLVRj6Hp6LygvifotyxcpPoHFlgCrGB02RB8zMznHbK/cAUKmUEUXMf/vvP8cVXAvAe/+Pj7Nw4GXU5ZAeuszi7E5mt5eYnrKC5NMCcHEVo5Oq3++gNShrl/Mk5sjJDiut7qiXMO77lOImzRNHuelK4+zcfsuN/PKvvB9ZtxTgqz3kjCVHsoLyn3v4Gf7vX/8Lii3jePzzhz7K9MwMQc2l1TfroN/KKIV12qubo2qa42oct0TZZl7jfIskiqgvTqMumETU6kZMjKIxUx+xoTWbCQuTNRZnTLCsDrromw/S+Mr9PPWsYW38i79e4Tu++x3ce++XiTxzXmzE5wj8WSLrQK12VuisxlQmXIRl2KyEdYSTmr3gGttVkiEFGmeYsgU+8ZlPct3uO0Y/f/yvH+LYKz34ES4ZGoUz8u/MmWaqVbbp/SJh+NHfaEGe5/g2IZFpiRYar3WEpm3gzLMeu/bs5hhNXv16I6vyUHIP5Yog6VgpBjRCShxXkNvgzQt8/MChSH0KW5HR1mHTFwV8Qgi6q+PAambXfvIioXVu3E/1yld/K3v3X83H/vL/Gr1Wb1RoXRiv6X1XXsvTPMJm+yQ/899/A4AvfvbTPPXwIU5nz1zyrJaOHKIyZMJyNI6v8XSXVnPcw5E4AbG18TWvQX/QZq5eYdWKovc2ImQQjvyIfhIjHI0XeqS2x7NQCifJULkYVUOgoNAJvu/aOZB4so52shEBkoozPM/j/OoKBw6aCka728H3fZqdMfKh2TLP6NnHP2nvK2D56MMUg3Wcig3iY40MHTa6xt/YtmMvvnYpZdGoKhb1c8hB6QzfMldq6ZHmkpkZU/k4Kk6QRDFSjoW3pZSGJMUxDv5wONLDFcZfDGsea6sX6KbFiGBgfscUG+ebzE77vOQ6E7wdAs6d3WBjzbjs2gtIVUq1BO2uWTeNusupM2f4m7+5B2V7rHbtrTO/czfNjgmMs2bKiY2jHHvyKOtN42fWJ30KlZJGKzRXLEIqUnhBxqoluFjcvotut0u3F+PZHshuN8V36zjZRdpBwKc+80leOLYu+v/R506+6PcvHja4Wr6UibCPOQOe4isAvIevwE9f+pc/+FPvQEqBNae4eYmg5tFtGfvzx7/3V6B9Ot0+Z5fHeytJTUD68KPH/w3XZ8ZhVjmM8aP41fHrT/HPl7zvv/3X91/y8wf5SwC+6aU7+PeMqNel2TZ7LRlEFCIlGiIBVMLK+grCGRcyUC7lwCUhJ7fCzeMw6+uPyz1Xl8flcXlcHpfH5XF5XB6Xx+VxeVwe/wvGN0zlKrCUzv1BC5VrCuSIWcbRKZmT0ss0jk2faa1xtRzhybUjUGpAL+jRCGbsp66QpxopNI5jsgOVQFMOY3xhsnnCj0iUouyViGxJtVQq4zshuXIIxbhELaVE2QyRg9EZ0JpRj1WWJUjPxZPuKOPkSpMFH16nlB4qF3gTszQ8iymvDiiEZnOjBbaHxPVg+ewGltWauhdSmZ5m/ew4K/Dlv3uCXGboLCa0FK5KxNRKPluZyVhMlaq4eHRFgm7G9hnMEoQ+XQt/K2cuvXJBtBoT2OxWnrfQTkBzdQU8k6WK+xu4JQ8vMtc4UAOEFzJVzWnHJk7v9CN2T88SOZIt22+g3JygGEMXRKGJ8pgpr0EnMM9zfnKOQZQQbXVxrFZKpRyglMKiX/AcgQghT30alr2rEvj0ijJ+1aFs14Y3MU27eYHHpMm0TNQnEUxybKNJduG0mWPpURWTROWcwarJZm2f2EVlZ8KDHfucagvsuG4n9YkalQlzf+e8gnK7YGahgRyYydn1+pjYnaBuq36DKcnE8iZX77+O6stNpnxmZobF+e187SsPc/6syZC+7VteRbuzSVgy2bxceOgiI0kiHFuV8p0AB8nc/AxbVhNove8yPRuS2v64XMUEYdmIYFqV3X/kQV73ulcDuWG1AtqbPTYGGSqyIpgy4MkzK9SKEguTtvrqpZxZclhcFIC5v2hjwD/+w9coTpvn9OPv/WZ+B7j+dXcRpWa9rLdTkq2IUPQoLJ04+TyH4z41bfa25waoQlFNHHqW3j9JoaodvvdnfhiAD/3V3/LgM+fwqgW79lvBwPJOghC+/0d+mEVbKQtFQU3KkZBrAUxamblhbxqAJ30SlbL9pabipTeWkSsJLasR5rvSMJPGySirKnNwHI1kLBoupcTBGfeKSGMP4jgaVYB9t8B3HLQn8TwLxYhiHASOrXhtDPrIfICXa1oWxhZlKSpJKRxB3/aLiDhDKk3T/rxt1yQve9nLSLMtNiyt9K1770KfbxMph8lwCP1ocvreFfIhY+Ib4RM//34GrTU8C0c51G9x1fQCCzMBLZutO3roOD/x4++hFpq9PTU5z7kLp3nwgUd485u/HYDHDj3EqaMnGXQznn/W9KdsZm3a7R7L50+Mnnk/6iF8h9nthrL6meef4i1vuotaMjN6z1S9xqB7itOPGTjK2vJ5egPTX1i3mmTXXHkFr/2W2zmwOMmuBZPhbroh/UGfIxfM/JUnJrhmp6S/mrG8Znpa8qRDuXIF937pcd7zA+8y93zvQ6ytn+eKBVPJ6tQ94opZu4NNW9nxuvzij/0BB/dZ+uutjM2142x1B5w9a/Zap5+TSMOIla9bGGmtRL+/xW4rLjmzuIP11cMsbcZgq/CealJSmposjdAXc3MzNDdy+l2Tlw58F1GX7Lnr1aN19uhzR/nkZ+9m355d9Czl8GtuuJ7nDz+Ba/vc1EZCu9mCuUlyKxQ7KPkkaZ9KJSSKbBU1BSkDen3bh/IzcPPuA1zojWmgl9ce4NE/+OcXVa583ycdimVfBJ8b7g9dGLihYLz3cl2ghR5ROKtcUQkDQgHKMknmXonvedc7eeQHbubauwzL35ml42ycP89sw9jOxFFIxwec0X53HJdCFaDdkU6gGhLfiTF0f1hJW7AMgo4Pmyvj6j7A7//GL/G9P/5j1CYM8qBLi9OnT9PtjatbaWFs2Pf9wh+hrBBtqVIFNOVZc52q3yYZ5DieS1+beXAdQT7wiOIm4ZT5/HirhVSaYghRlRnX3PoSWq2EGUtHvW/3Pu6//wGCkrHdEk2eZmRphmNz4tL1QEMYOCPZDN/3KbSgUrFMlq5LEHp0k4Rts6bas768xpHjJ9h18Eq07fs8f+oU0zOzbK5Z2nU2Cb2QDrD5tGnVOD+Q5E7OxNQucteshWolIAgCtm/bA0CtvoAWBUkRE1lsolh6nIo3ycpaRiYsjHCyTiWoWCFccEjQKeicEbW+VgVKaHDFSIDZ931y3RutsqXTA3y/RNxr0rf2tN2apNXa4srrruKO1xlI4wf5Qx57/llUbsWPCckSh2ZrjViZuXV1Qqaa4LUoV60O03rE8plVAlup70drqDzFcaExZV4rT+Tksc+ZUyvkXeM7tNoS6aX0BxYJVISoPCHwS/T7xpZMTDTodgd4qswPv+v7ADhxYRnhuzzzqKnmDDoJsYrxKx5795kqTX/QRquMJIlHWmJ5rigKEMKcRanK2Vq5tCL2bx2//1t/8i+/wRRueZLP8OTX+fVNL7kNAAeF44QId6gDJ3CEYmJmesRSGfVbZp8WwagnsFxzUcLBt7p+//CPX+C73vbN5HKWG29+BQDrmy4v+aY7mJwoc0Vg7lOG23n0SI/ZspmDtCGQsoYcZMwumOciVZNDD5+hPjnDrqvNa/1MkfYzepH9/kbLVHqLcWWqUA7KSRCOQhTWgHtjyZevN75hgqukZ3owhHRwZIGf5aOHXUgfXwe4QUExbDp3CjxVENtGR4lHRQb0dEoSt0af6zhQJAptncDO5gWSjh7puURkKKHwpgSeLeUneUZeaIrCRbpjnLn0XBzLD18UOUIIpHQY4mbiPEcWGt/3yVIzwUppKBgdAEmU0I+3CMuNEQWuG/iUQgWFw6kTBkYyUauyvtnhztvNYtoxOU8r6bGlxxjXvdtCJsNryUvNEda90ZgkXh0wiYFLlSqwfGqZuQmHHTcbg7ttooTQIa1V8zed3EMNBmSpJk7NgqnWp4jjLVAlhNWrcP0cXRJI29w9ISYYxJsUeoEgMO9ZFCGRKPC1pmHFxxynRt0VBLb5ca29REVO4biCOft8m5vLOLpMfbpG1fZ4tNsRWZxQrRmnMEoVZd2gGvToJMZBKMIqRQSbWz06gZl3dcoHrZBWV2tFnUTkbRDTWDQDa5nDoNticWEHExb9cfj0WQgcGtIqy+uc5moH7WuK0KyfchogsoQBmtRCL/zUNH2WLPSzUH26GWTFx0cU/rPTVbbNHWRjucntd1kHPYypMIe2mkE6V/h+Hd+fILXrWosCRcHJlVVczzwXz2vR3NpAaHPIC2qkvYxSySNLx1CWTJQYKId9+42Te6dOiQuo2oO/7Ho8dmaTq/dVSId6TqnD/p0JnjsNwhyg6+e2+LZbp7n9l98MwFLbzOvXjsZIC2N18xqOF+NVPFYOGfKItLvOseYWYsvqOd2wB0FIP+1hNf3QDog0oFo3z/KlN7+SB+/+Eo35G+hhHKKFuQn+6G8/T7O5iWvPC4WkcHJCSw9b8j1UoihLaUWdARc+9bl7UF6Z+/7m0wAsr2xx1Zuvo2T3/1p7i1QqfO2QWjhhBZdEK3zpoK2JzPMC3/VG81lYIVWhCyKrb+TWp3CyDFyBN5RucCRCCHILARJhCNKhJBycsk2uSKhIl0wX1GyAFxQCx4Epm+zQgy71oIHAZW9onasUEtXD0Q7COi1ZJtk7HdLMx9Dopw59lReOEy96Bf7s67zG98Dv84fm/3d9vTe8eGytHWcL+DMOjV57gM/yC7xn9PPv/dL3/Kuf8xUYfvOlowrM/xsu5K3w1/wP8//XYgVhz7/obbsc24cR+myceJh7rF5OUA1prZ+g0VCcuWBsS7fngScIc8HRo6bHwGvU0MQsnTVByp59e5iZ2kaz/RCBMoFNZ63H7PRe3vLWt9NrmyRJkRckWcLxJUNU4fp1Kr5mvbkM20wSYXqpy5kjh2mvrbJ7r4FwLR9e5Rd/9sf59Q/8PwB80523I8UK3Z5D2zqhk9VpdCGJBimUzHp5/wf+4kX3/s//9JlLfnZ6Azxv80XvcxyH9ZXeJa9NzdRGScMszSmKAvdiLTPblD+46G+cRp9eZR95ZvqWrrn2On71vT8PwD/Z9/zwyk/xZ3/0R/RPXQq34ydvG33fysnDvHBs22/sRcnqKw76BVvLJhnp2X6sPM+pVCr0uJRGOVWSxW2mx7NL60Wf/08f/Z8APPzAZ1iYMufY8tJhJAKs5qLySkCXhl9CWTIQlQ2olhR6coZ2c0yQIRUMObkd7XHo7q/xitvfwgN3f/qS761sM3aqWq1y9uhhbrnj1fjWqfO8EmE1pN3qjgLfPM+p1+s4lngrTVMGUUy9XqVpeyBzDTiCoFYhtwGeV6ng+iG9ztHRd69tmXXQtP2i89PbmJmvkrdTYtsXFasubiAZDAyUdmP1OeJBRqEEWOHmVqeP5ywj3ADf9v9cuLBOVDtHt2+eSTmYYse2MnmeU1ioablcZmJigkajPuq58nxJya+SWOKIR594lMPPnsfJp+k3zRzv2lfj7NL9vPLmm3jiEQs5ezs899yzODZ5HfVbFEWOpoxvA0XhuSRBitxeZ3nLipR32/jTDnlmRdPDAaHwQGoKa+PTIieOfXItmZg1voNb6lKvbufkKfN358+fotXu0O5sUK+bOS2HZdbUGRav3MWuK8za2530CKTgW95ooN/NZkQ3XaHuz/OFL33KPs9VQrdE4UIx7NcSyvZBmnnxnRLbd9bZv+cApdAkKQuRk+YpjqtHvZLSLVCpJE1sH5/vorVCumU8z/oSbo7rBaNAbnF2gaDkkzoeWWECWk830D6Efkr4HSYIlEFhCguWtyCQMRV3nsIdtZ0hkbi5RjgFxahXUuA7eiTi+w98gRvf9D0c3LebL3/G7I9Wuocjx45QCq/D32f8oL/6mz/jxHOHWbFFg15/nbozQbOT8+u/8l8BqO0Muer6XfzZB/6Bh4+ZOS7PxpQzj8Ceq+WSYn1jgO9aXQRABgkqCRAKfJs4jfJxn+jXG98wwdUoA6ahyBxSfIQ7ZOEzzkzhjC/XVRKNxMJzUUoRa/BxyS7CQnqBT1Zk6NSspgAIdZnEmny/EBSFQjpVcmEJJkQFjUue5tj9Q0FuWP8sk5WU0vbF6JFuQV4UlAIX4WiiIcuP6+KGksQKVm6tnsDzAo6veATTZtE1JqYpuVcQVgpmajZb12kSeD6PPGaM3SPuY/S6MZ47xoEqXWNlcIq04zBpD5TWoMNGc4ueFVsUfofGfMFLX3YFV19jMrJR3zChhcFue92KPE9xPTnCbhcqo159GSsra4jCahKUAqKoP9KhEEISDRooXZDnZiIcx6XINEEQmoMHCHyfjfUt2rZXZy6okSZmI1eqlr0lk+RFahioNi12ertDtTpLp28zExLcwCVNaujCGKhSWJDnBY6YZNAzzyZLC4KgRGvTan0UgmQwjVKKatU06bp+wKYv8ANJz1oaEXiEQY14iHPvDlAyZtvsPMIG+qFfQuIQoUYq4Z1Ok1AWhDYA63Vi/Cxix9wc8TDIjiOOPneKSs3B0UYDpbUVM4jWqVZN0OtqgYozcl1QtQ3CBYIozXG9At9W+aYmt9HuNNHDTE9ZkiYms+xXx03YazE8dDLBt1WiK6/czZFDS3z8i0YsrzI9TW2q4KGPPsYrX3UDAC991U10o5TM8dlqWVaqvTuZu/qlfPIhY0gvtM7B22Bt6QSRZatSuoCiwEcRPnkPAOdmX05VzpFOmmdw/NAzzEyW2TlVpt4wgWJaKAZOhLCVT5m43HzDjTT7HcS6ca6WTwWcqFTxS3D0lCGmqVUWqTfKNFvGQDq6gV922UravPIKg7NnJ3zwE3fz/bdcTfmhD5t19swp7nlwF9W7TJ/JFS9/ORsbmwRZgWvtSw8XdAYiQ1rctdbK7n9LTOE4ONqwkMWxzZS113BdF51rCivAmCQJfhhQssLGSincwhk1a2NneagJNdLVEthsPaPnq5SiXK6O+lyGOjCOCMa9L65LnFygVDLf9xt//resra/Qbm6RDEzAtW//AQQeWjiUwqEOjEMURaO/S23f6FC/CCDL8xGRwZC9K6j6TC8ssDBlkjnf/dpbuf/Jo2ycPcHv/8EHALg5nuEm7TJ188188+/8DAD3/9oH0Ylgw9rFvB0jCPHDFD1jIqddb7mJVrfF8sNHcG2fiVSQ5indgan2dFOTUKr7AtW32jdb6xROn6sWb0HsMWQDv/1bP4dcXWKiauyGXGzgDhSlQcGgYbUFdUhcVuiqFUgtQW9iEVGqULb7MXJBeh4qLRMNn0G9Si4Uyp4Nnc46FXeKPTftIolNJeLUmWU2W2d46L77mdtj7K7bqBBOz3DHHvOeZivjVHOLHQt72HuLmftveuub+cT7f5dWnNLYa57L8uPPc/vL/hP7dxnH8e3vfi+62SZJ+0TW2YoHKb4jyPNsVCV656Ef5KabX8XF4x3f+Tb+7uPjHo8zZ09zYenFoffZ0xts32kqiq7rcubUClsbXSYsGZAjBQoHLtI7q0+VQeYjsc7eZkyvrZi8IuZs01znK1/5rVz/86/lT37rF0d/d2GjQ6U2R7B9XDVeXzqNE5ZZOWnOw9nFvaxfGIv8AiSWUCSygt2OGJMAtDaMEx+GIXE04IWjECFHnxnn4bdt30+zt0XUHne7OI7PYf0Fnh/6F9JBeh657XPL20288hSxm6Dz8XNIFWT9cWAFkOoU1+7vPDLX+8B9n+aGW0wytd/vcuHCKs2WsXfDGsS582tIS2zkSEmRKpIkGSV4wKBqcsuAGXou9VqFlc1lUluxLHkVJspTPPXg03Q3zGs3XbWfc+3n0O5YFF4WOQoIbTJ1x7ZpojTDq5eR0txfRVVwEKNrqleq5DpHOOOqoedMsLy8wrmz53EjW6lKOiSizMASDLzmzW/CcRN83yf0hiLJNrGNw7CDRemC1JX4ZbOP3/mul/Lnf/KnHDtyhmceN31EZ089zRUHr2TXtQfZ2hrP3+KeK0aMl3OlHWjHIBNc258qKEAIVh/7Iq71D91SmVRHJLYsWjguCrPMc+v8h9IF2SGXgtndRrQ4X2/SmGnQesIkmJwcZubmGUQZSc867VMQBJNUGtNEqUUeqCpxrkakJZXpOmU9z8ziBLUHrE9QFBQ6RxSCYigGq0aiqQDoIqMXa+76rncxaUXRzZoo0Dg4w+qgfTbjs8gxjNdWyw4gVVZEvhhXhIuiAK0v6vWDQkvAGaG2lFJ4F32XSkOagz6FHle3h0MgR99XFIXRz7uocrR17DzPb5V46w8YFtXW0hLHH3uYs6ce4Dc/aHS0LqyfJ6ePY/2iYKDpZgWdnuZLXzOizAff8Eai1XN88dN/zEpsUWmYc03bKmqlXmNqoY4bjOMNUQQIR6G1GAX//rgJ9euOb5jgauhcOI4cQfCGAZd9B8VFD9vRxugOD37HcRDaLBJpI8slNtBamQyz/aisUEiVoywTSmFZAJMspVw3RiRPBRrTRDlmB9RE0RgCJIRZfI4jiSKz+FzXtVTFesTQpAsNzvj+tDbZpVQlpFvGAEatAVLXCGfKNBZMxnK5F+E7BdpWD7LUo1bzkK5iqKW9e7/LFddOcn65hepY+uI8Ytv+EsIqkUt/nsZUle07t7G1YZxjVfhIKWl2jEGuVqtIGZps1IjtKaDVTxB+eXzPToGQih3bLQxCFyilibMeoRW9YN4p3gAAIABJREFUk45H6AfmWVkq7zxJmb9ygroVI82ylDSNSXND3gBQaIEjC7zAIx5YWF6lghDQts2kfugZB7NUH62FQbdrmmAvYlGUQpAkySjo1VqTxsnIaABkSUKjto9uu0PZ0pn2ej36W6akDqDyMkVRoDQ4YiiEGdJut8l6GuEMmeMmQbtkluY1iWdJBw61eokkHZOkCLmTpbMnufdBA4WaWSzxlre9cUR5utnvIaRDvV7nzJrJ7JbLJXSg8eo+fSuK3B70cYIMzzWOTeRpRJghNaT5ONvS75/gzDOQZ6aC97gOON9cRjVMMFcgSTpVtJvyFx/+BACrnRpnVzqUfY84NSutVK2QJx36m+aalDXJa8eeoWzFnLMiwdEO3VShM7POFlRKd9CjF5n5W9wxy53fcjudCwOesxCnWjDJxERGtWwOjpyYufkqHhrPCjDHHePkb/ZX6OfmXo4eXeGx58+hR4G/DyjSnuTuZevIfC/cdHAP93zkD5GOabzd/4oSIl7i2b82WcD7n3qKW9/xdrqdHoVdi4mIKQqFK7IRxNAwhTqjDKrWGm0b+IdrKu+kyEASlgLcwLx2/Mwx5hcXEFhZiTghlZeaXWNHnFEDPkAhADUWLc+yzAQ2UW9k886fXKe5sck1N15/UaVTkCvFoGcMXrvpEicRoCnXzDpf31hB4+B5Pi1nXKXI8xy3a76vFPomsHIDinQMxRZC4jiCkpWICPKY3tJpDj1rAnZeC//4+XuYv/oA//uffgSAwd9+jHO//leod7xx9F3r8z6N0x2q8yYo62XLqGSTOCmz8YQR+o22e5w59BylExsEDRvkpjn9QhPY7uOSKuikh2mXysSZZZJ0NFOyzJFSi5Of/XMAJpIzTPvQs1Cl7vqAStkndXO8yASUQaBw4oR+3wZ82qHquCi1gbS2bNKXpEWO9Dy2TZhrV8ublOsVcltldL0AZ2uAkiUKe3689MAt+JUSuSMQF2wFaD0mSi7Qqpt5KbsuB11B1Iw4dMYkFiq+Ytap8NzJI3SWDEzt+muu5Zd/5ue40RL2PPypr+CWfWpTE8zMmCx1bX6a5to601PTWOovbrjpZbxw9F7gArz1Hf+BQuT8Ib91yesHrtpBYSHqQwd1uCZgCJt3GKXEMWdknmU4llCjNlOiuxEhhGB60WabP/qnHLz2lku+a2pqhiB0RmLH/TUTfPzZ+3+HwAq1d5wOLxxR27wvtkykSo1t4RBJQgG5Vep963f/KACf+ps/ZvfePZd81mZnA/GCfvWiSClV6qP9V6pWWD23hLKEzbNzs6aqyrgyYPwEyQvlRrUojBMDFPbM3XngGs72zRzP1qq4OiO0sL2ZmRnOnT3HVLlAWJ9Aa01fpVSnQiYnDNy1Wq9dwihYb1SpVCp0+hmrSwbWfeiRR5Gqz0R9igNXGH9jq7tFM+qwb5cJ/I/zHMrCj4dwu4d54EXP/P/vGGDm5quXcMHBUe7993+oJWSIWBn9u8Iz3McnLnnbieNLI38jy7bwrc+CJeiSjsYLXLRTQdlzpdfrkEU9hsHdOKk+DkgKLXBdn14/YsvirAf9lA3dYmPD2FeVZfQHfcKST9kyQrc7TSYnp3Ecd+RDqgKkFKMkW7fXJ45TClngaJvA1sLuuwJlq4OuFAgEyi4835VoBL1Oj9SK3cYDs/eEM0x7W+ZPuESkefT6aBG/OIiQ4uLkoD0b3NTumTGVw5Dd0XyO8al96Y3sxuhvLzr7tB4WVca2SZY9Dj/7BKtbxnbuvuGl3PBtb+FNCwtklrk2ThKypEfcNkgEHaVsrl2g3UvodmyC59RhHl55kru+8+VMTptkVd7NiKI+UWKeZaQynnzuNHF8URLGERRZARSXsKb+S+MyocXlcXlcHpfH5XF5XB6Xx+VxeVwel8f/gvENU7mq1002fRjQaq1HDWVKWVE6V44iXqUKtC5G0CgAbWnR08647OhK8zdKjT8LyShrRAGe59n+KROR9pMEzzWReZJYoV9lGnmH0aqpggiEcEZVmzwrMPGqGvVYxXFMIB3KZZOtENpBOxInSUgTWyXyFKeOP8seuY+5PdcDsLbVRjSXcfxhliowmWQ9FntzVInpyRqlYI5qaairJYmz/piyXivSNKPd2cK1GZpaLTCZePv9RdZF4qHyxIgsgoHnpSlpmo2qfHmRoXWBshSW7V6XLMsIVIgj1OjvdBERhj6tgclSNRoNVJ6y0jIles9z0CjiOCZNTJbBCypWnBL6halY5PkFwjC8aM4zXNfF82LyISGB7VFJ03GTcrkcEieDURZGSkHhlkwWxWZxg1KFzSQmqFSYmLe9L50u4awyzSxAoVNypfG9Gto2MYYlnzSrUvICoiix9yMJgmA0n1JK8jRFF2JUvet0OoRhSJouUtg+JV1I2oMuKjP3UCnXSNOUtJ8wXTVZcUeaNStSTWihF+5ElSL3wK4FpSKE0BQ6Q2TjLFOoJiiVXZQt689ISRr16GhboUlz8qRDPZhAatP3kSVnkE6XohB4NoM02MiJu20ym8r1R9XcFhsbJttjKoWCmfkZPFuFOji1iy8cP499BHgln6QZ8Ys//XM89YyBHtVmq3i+g8Bk3KWr0EnM7MQ8dVvVaCxcxcxkFb+SsrhgsvU7dm1Hhg6nT5pMbyXURImmvM1j+dS418fvHOfkqQeZmDPXHnYiqtscpubNRbWOnuDYvQ+y/eUvIVq34BvXI/WBNENYjTetNYUaZ/aUUkjhoG3VCSBOBvhumebmBso2ldXrVQa9Lu2myf7OTM+h3NzYIzW2XYXikmyeWUceyRC64ECepoSlMqvnTSayXA6ZWGywee4IfslUAlzfw5UehaW/T6JilKUUFp7V73VwXY9MjiEcw6p7ZCEPaalmRNFzjS3kEgQGfhj6Ab6dVFWq4niK0uT4KEnyTZae2OTk0wa2dvvrXkPnkSc58Uu/CT9u3vPsRz5P2m6yZStutU5CeftuSjMu84umpyW67xjTRcbktip9a9OTqYAwjanVDEStvdYmvGKeW97307RXTHXywtFnePa3/4ld0S7WHrzPPMtBxoV2xC5l5mFyepbz1T24IeS2R7ezBkEpQFoB5mBmAs+RRn/O0qevnT7NwoH9xFlBNNQuizJWV9exyW7ibp+sn+AkKcpSIud5TJxHBGEJbeEkleoE9cYUmdWTCmJFMSXIKlVunDKViGP3fpHFzgbfs+8GZm8zZ4PvBqSbA4qOsSNPffkRvFziVitkU2YdzDVCenkGoaY6bCq9Cf7kj3+TH/nR/zKaq89+/KOXrLlPf+ILDArFCwpXZi1YGoEL58dQq/amydTXJktIKWltRhf9bvj/8WsAS8efB2nO+29765285OUv48t8ZPT7ztYmW+fP8cLxjne/my+U/xGAydkazlUVjh8eV0B2757meZr0u60X/a1wrMRJElFtlOlhCEWG43d+/scvfT8ZKnsx1XKuC6629OW1Wo1VlrjtVXcCoA+M3z8ibxKC++7+Eq95/Tdz95fG9NLzszOsrAzRCVUSwHWgUTW2c7PVI0oF0jU/77/2pZzjHPW5faNKgnYEDXKKYqhIBO3YIcs1ma2GrfQ75PkWU5UGbtnYWCco0Y8GdKOYf/q06WERvsfr7nodfmjWyv7vvgnfk3z6wx/m27/3nQAM+rY3WI9puoUGodXIdhXCwBU9zxs/A0eTpil5ZuD6YBBKWhcjO6IFaOfSCsYlFX3rTwkhyJU3omZ3dEGeZZTCCsKWOgUO7V6XsOQx0TD3vHL+wrhSBXhemWRYgbJyG2SKLM0JpEPJollEWRg9RWuqsyJHKQfXdZHS+HR+ycMRLoNBypkls26zFNoiZWrKrLGzp06gCkWaJpQsskqrgkGcsrm5SWIhacqSn40lDRzyPEeR07PaiVprS66WjZBV0hHESYayZ4rr+Ajt0u12qQpznSo1SItCCBxnSE7jIJzx3s6tn+y6Ll4wJMu4FFUxctJ5QfUJgWaMDhpq3+mLYICO45Cl47NOOOZe9EVrSGsDO7x4+51YOUtKQrkwc/zo3ad59sEKE7PbUPZeVOEYeQJ7D0IVHLx6EaZcdMVcQ3nQZs/CDVQbr6JrAS4D4VKmP66cqTZPPPtiUo8hCm44M/9y3eobKLga9jINg6qLIVxDnH/guqMmUNxx+XL4r9baONDF2MH03IA8K0bwoVK5SuCWKLQV8PQc8lyR58UINwwZaZqi9Rjy43m+EUm0MC8TkDkMBoMRZAxMMDfUxIGh06JGpeRce0T9mJpXQlQtUUPUIxAeK8dPUJ0xuki79u3l9ENLCGF1IUSGEC5BMBb589wyvpxjs7+BnxujlWQpnjeBHoqdonApCDx3BJPobKUIIfADcxCncYKjHIrcwxfG2AVUUO0uE8Ek2H4qjYMflkb3UnZnmJibpJ/2yeymFkIQeD79fp/JKRO0ZEmEEAGO3cC+rAACJ4gJXIsNL3lkysxByQrT+V6I1mJk6OJ4QJZl+NLHGSqRS7M5nbI7mpsoTdjW2D7aLFmWIIQ02kT22n0R4nk+3W6Xk1uWoU24eOUcrcwzztMKOlcUnkNuIXJRkRAGVTZ1j8KyDDnSJcuSkVheoQYkWQvf90lsqblcqtFaz9HaHZXbPSkoigRt12J33QSng3iAb5s7s8zg6SdqE7QtHCcrNFIKotT2ihQplXA7UZTR61uY1w9AtxMTViI+8jfmUJ+Y3E6a5mxuftF8Th4R1l0Gm33mFwzU8+mnn6SfCgLh4tqDrz5ZJXFaaNsMPOwja3U32dq0zEe1KfYd2E8/7/PskwbisfHcEa78iZ9i9ZQJpKLZjHvu+RqIDV7/xj3m2TlV5hbnqITGiWiuLbG+ukZGH6wmx9qRp1lPQmTN45C0z9gt87o3fCvVqjm8NtfOU/ID9GZGPx6zJJ29+0vsiaGzYg+0Sk55zQdt7mEh06wfeorwlquIXQuTJSNPBUIrcuXZtSHsAWKXnYUEOo6DUJal0nNwpKBcrZEmY6ip60ka1uktPFBxysWmWavCJnfgYp0gV2hyG9wFnk8nihGFoF4x89DtbrI5GDA12SAcQimyHJ1HI0YxMM6GUgphyWMqjsB1HNIhVAoQyhyEhd1Dihzf93Fdn9SKHWdRh0IZVqUhbj4WkqrykeHYBlalz8CJSSwL3iP3HIJ9U4hPHxu9p/zUgzwf93jYfvatt15Pp3eUk4eaXIhMX02jVCZJJVpD2TZFb5uZZd6doCXNXO0OGuyvX8vHf/l3wUIxw6THqdYpbl+8nY6FQiZLF9g+uYdVuzZOqSadeAKpMso22aAnazR7XcSWtfGDAaFXoj3ojeB93eYWJ86fJS9gomb6PkLXIwxDMmvfvLqPU5b47jTaPs8ii6mjidJo5CimUrISdUxDBjBZC+npnN6Zs/RPmP5UtyKIwwnEQHH2s2ZfCddldnaec9aZDKemqVVqFHmKZ+e0v5GRyYygMQnZwui5SznNxeMDv/I+3Gmf//xTJuA6c+IRqrUyLxxaa04eMwy023fOkKYp66svhuZNztZorncveW1qrjr6/9aaFe+ummf+5KEnRgxnw/GpvzTEG6FNGOzYPcfxw6fxpMub3mRIdVInJh/0OH4RvOz55w15xdu/7wcB+OiHPjj63Vve8TYA/v7TnyS1dvN//t77XnT9wxF3v36zejbocYiHLnntwXu/+v/5OcNxcWAFcPbUeC+0Mddz6shzL/4+++9X+XvzXV/+3L/6Xf+eoYEv8Xdf/5eBsc216uQosJMW6iUdcC+CiBXCBEpCCMNWBDhCEBYF0vFGOoHSJr0z2xvmSol8AVxsdG163BIihMAT6ag/ptAOvlsjTQSOGCe+SrJGqRRQZEP/rWR8OPt3nuuBdtCOGPkl6ALHL7Ftag+Tu8yekbrE2uoF1ldMQmvz9HGKTCEKTWrbAHr9FgiPQE5RtSLwAycj6fXZ3DR/NzM/w+mlMziOpGv7TIPAJMwRAsf6sw5y5O8O7106HirLiC0U2kDRDVTetcQlRW6Yq0Pbe+9KSZoW9Ho9/HBMduK7LoUoUKMWGzV6rhc/7zTJGJ5RQ9je8GwaBlomMHvRdI2G0Fzixw8FoREuxRD3mBv4odaagrFmnkZQ9sZ2YU712Ug91q02bNn1yboh3fwCOrSEcllMHPdQ6XCOqyzuWGRtq4dr13AoJylJD9VJue+fvwrAqbhJIMQoB+QU5yiKHPn/svem8ZZddZ33d621pzPdc4e6NaRSlUpIQgKEBCJq0EZAkQcfEBukfWycQUFsp6dFaR+7G7XVdkCwfQQZnUEEQSZxaAxjEplECGROKjXdqrp17z33THtcaz0v1tp7n5sE2k8/vuBFrbzIPafO2eecvdde6z/8hgUTYfdYIaxt+M1KfmXg31dNcrVIALWw52LW+OGyKvdUNR466u6TFLXBZW1kqBeg4Iqy1Au/XCBFgK50c+MpFVIZx7MRqq0yWGtb6XfrJkEUJg25WwjRdF9qZZUoCCmqjAMHHKnwm572HE6dOs3tn7+DE6ecGVx/2MNMNaYq2LjfKa09/sYb2Oz1KHxAW9qJT47aoKzUU+Igpt/roH31JU4SJ+DgBTyMDog7CaWusF4SW9uKOIqbRDWMAsCijSXwJanJLCfqrjLNc7TvZkkVUkxGDHo+UDRw/PgJKlEQRS6ImUwmJEmHyXhGL1kg8QdBo8a4qwu0kVirKUq3YBTljDBy0vqy5o8YhbCiJetjm2PVz2FcYmyMQflgQ4qAWW/OBa92NJ/POXz0cjYvnG/PnzIEsSTLpqioJVJG3W5L1g8jlgddzp3dJfGa+MVEkgSaUm42Xc3l4SE2z43pdOsuWs7SsE+lt5G5q9CmQcZguUdRTZzWN2AihdGyUX+K44g0zRkO9ze/r9OLGCy5e2Fp1S02XZUQxiVB7JOfpSFB2COb22bTexM381MveT733Xec37rDEX1vvusuZLSPrp/7wijiuIdQE85/0c3X2z74t8ggpMh36a24qt9PvPwVbIzGjVLn7jkXNM+3R1x22OGWpbZsHL+T1UsOs3bj0wFYW+kxOrfRBOeDbkw/1ox2ZiytuOrvvquvZu3YZeyO3bXakpLeldcTqJKwlhPvj+hfkXDJoWuZZe4evee+E5w8/iBx4BP2ICSvCqL4APG8vUceOL5JaNdQWz5M2b7AaRvQ6fprPOxR2gw9Ose6N1fVZYkJQqQKCHwX1VqBkAtV1cAZpEpks07FtsBkKVHcpdbe6a70KI2m8ny5LJ0Qh12UChC+ulxpg9alr/r6ayMseoFzNU1nYAxF4XgBAPu6K8AKQtsFrHzVJGvuOF5URgmKhoOiqKoCYW2j5KQrTYATUAGIhGG6c4Fut9tW6nRBrCzGaKzfCJe0RRMzKRaEVM6cJCUm9pXNaXYvhw5cSn7powBnjntWT4mQXLd6FQBP+IZv4fgD9/BvfvB6zmx49b6lkG4Jp794Hxu+aLB513GuPrxOVQvFnDrHXe95L0pU7NiaK6kJbriG6DueyeePu87V0Qe+wFae8ylq0ZKQ4MHjxMWEqXKdKh27LresPE8yz6iCkFwLlldcoaiXdCjHKT0ZUHmT25kQjMoLBD5gsNISRIpdUzXGxoEVBNIhJCqvDjrXBbM0bc5vFkSgEqhK8sidz1kQIjsriFHGzHMLyAommxv0vEy3zEq0gM6+1YYfa6IVVi49gIp2qUSbgMjdvfvmf/zF/8xDx3TycMGHe+48xWVXuI7ivMgWCpFuTHZSlvf1H5ZYQZtQLY7Zrgs6Z2xyitsf9u9AIzxxL8cB+LM3PaKe5cPGYlJVj7e/6Y/+Re/9cuPZz/tO3v+ud/Ktz/2O5p786798JwD/5/Od+bFSiihMEELwjj99OwDP//cv8Ea4kj//o7c2x/uBH/7hBvkAYKzr7tTdnjiMeduftOqO3//SH6XUFTIQWJ/oSwmqClBh0FClhRCEYZuk1ImOEoHjeeE4xcIIZxlTd0yERovWiBljUEI6rqefi6YyCGGRMqCqhXe0/wzlA2hbS+LbBhxUmcJ1eoSi6bFpDdbSjUL/+yuweVMkr39LvX7Vqs1KKUwpm6Si8t2EIBRN8TiMnT1JpDoUXlgsDBVJEjV7O1R0QpfI5D4uUsrFHw8+eBdfvPsL7lyNC0w6I6qL3AGORyjb+DSOJEZbjM6pZXDDAKb5vClEz23FkcOXsr2z2zR+lAUVxXS7XeY+lpBKNYU8d5osViiSRDbBvhQGo0uklE2SpLUhinuNiqIQEhk4RE3S9UiVzGKswVKymBcYAaKZU0HTLWyVsYs9SRK4rqmBplBsrSV4CDerlgkRsk2yrbVYCmSduCjpzK2tRdr6OwgqYwlkW+AYdBUf+7uPMPKc6+5qSNxdZnT+FMZbUiRxDxWFZL5Rc/2NX8PhS5aY5lPSzH239fWSjTM7xHGPyht298ScfhSifeE2KxN6/YLZZO+65QoGrdDHXk2Ih4+vmuSqzpXqibV4MQ2AsUi16P5uHzHBMsaQZ+2iVQtj1JUPa4Qj1vkTU+QVSsWA3ZMkSSmc07upCbuCQadPqVuCu/PRCJpj5VlGFMdusix4bWitG5GE/fv3c+/xE1x/09dy6YOuiviZT38SZI9SFZjcbU4qm2KF6w4AdDqRv5kXoUSKc+c22RnNkaHx33OGihRjD43o97vsnJtiKal80DDorLIzutAkB8YYyrIkDNrfYkpDEveZ51mjINbvLRGHCfNtL0u8O3bVJ5PS73vVqKKimhtiA33/vnkxZ6W7xMCr4s3nc6rKMFzeV6u1EoQCIUuyfEKl6/as5cCBQ404SFnmzcZRb3DduM9kMnFVHP9cTbi+5ipf1TEVVhdcc/RYq2AUhuBl85VfqLXW5FWPyrrgrtS7CKHR+0L2rTribycasL6+Thx0iDzZOIl7BEHUJESBipr2vOpEzTmuq3X1vA3DCKniJvGXws2Vxc1RisB5o+l2YaNKkapDmfs5bHK0zgmjNjgH+Pit97CyfpQfe/nLAXj3X7yB6YVNpiN3rN35LpvbZymyDspverom7krNs5/7fH8eBFFnwPKau8Y33HAdf8ar+JZv+5YG5jEcLNPpdfnMP/0Tcp+D84nLjiA2Sjq+Q3vbrR/jzL2nGA5WsctTPxe7HF7bz6YX8NidJcxLy2VHk4asW62uES2tIIIllHaSvzddewnXP/axfOLTjmT94MYuhZLsG2Rs3NdWhdOTJ9jqBQyMm/urZYAREu2TtBkFoyVBGVpCUVfAwKqAMDdUYX2/uWSnvsauCtcWdAACq8nnczqRxdQFgiBEEBL7YLTXWWE2niBt4NYJPNzAVghsU0gSCBAC68VOBoMeo9EIKaMGpltWLrCwxt0r9fcS1jRVXOW7VlpKZFMY8r/ByiYg0caCVM06lZSWXtTFlhrt1xwlDJKAOI6a+6hCIHXGkmyrjCIZsUwXlbvPG0vNNBjtEfKI1w4gzpyl45YEhrpiaabIk8t47BNd1VgEBTpZ5sobK056r50P3HEPRw4cY1W44Hz7wRMUVjHuCtZ8B+TM7iZ65zTb997Jdzza6ce/Nn0/5+Jxc68dySQr+w+QTQMq/5tjGVHZnJB6LbVUOiOwgnLs5dNNj35cEgvhFDKBUlg6/QjjhRIqYyiE5pIgovBJNSJEF8YpDfp1dyVSdMOCdOq7W/OI0p5FdRRTXKW1SOfEwZQw6BF5wY6QCBsJdoUPyCLLviuOcO70BvEFX6WWG+yeP811T7ieVW/FAPCil7+o+ftNr30Tk96YXpnwIy9+GYvjGc94Fn//9x/c89yD95/nK41H2o8Hy12CsK0spyO9598vv+oQWVmxcbyVfLjsUYcRVhDiE9N4iTvu+BwAj77aqbEtr/Spsimf+edWMv0F3/0c3vG29/Fd3+O6W0qGvPWP94oa/NAPfS9BonjDa/+wee7l//nl/OYv/2bz+Of+y3/m13/pl/nZ//rKFv76RMP7eSdP/sZvbGgAf41Lrp7+rO9o3ht4hMQ7cMnV137D05ok4c9pk6vHet89cAUUp/qpGvQFSvI2/oDf+v3Xu3P7BEGeuUJPXUCTUlJJ9iQkyhd4686HCFy3IEQ2IgnaCkA4VEWDOHHxT9CoNluCMKSqqgbGinAFpcqaxmrCVro2F3SPmyBdEjTfEw8Pa4tAUjq4W+uTptFCgFAPE1cQtHOrDvxVUFtkVCyKTdS/paxyet0hx+93ipLr+4YMlweNsqsrXmmssEh8sThPiTsJO9USw5G7/8qBJR0LhD9PMne/S+uqWTfAIKwmkIKDnmKgjUFPdxrYnsGyublJmhWsrrvXFOOU7lLCcHlAteOPH6hmPgDoyqCxDJcSl8nirrdUIUJoalaMlK7gLBu1RyiqCgtY2j1MSotQgsp7cgop3XyqE6mqxAqv/ljva8qLSyzYLNTxuZStoJxZjFHci/y5FnveU+qCwAuumcqhQaRQmDYdI5AQdNsO+oZZ5vkv+27+5184ZdOd2S7DKGQezNnwMPkoVuRlRp76AkUw4O7HP8hcj4i9Wu/5zS7h0gGiYcGpM58H4P67TxN2OqQ+JnjUZUc5fMV+7l9IrpRSlJVT0I3DvYWlLzcuClpcHBfHxXFxXBwXx8VxcVwcF8fFcXH8K4yvms7VIr+qHnsqYUo87HVfrnu1eIxKZxRFTll6ozgMSkoK38VRQUBVFkjVdkPKokCbAl3JJkt1fKucbA/nylVy6m9Q++B0kpDUQ+mSqIMp5uSe/GyE4Et33sF8OuM5z34WABvnNzl1agsVKeYzhyk9fs99XHrsCg5f5ompm+eZzaaEcZs1Hzp4hAP7h0RRRVTWGv0JSknyJf/7ZIxcC0iSpKm4WRVQFlVTlYuiBIwljmPK3FU0jDFM8zG701HTCdoejelHq6xf4iqhx45eTr/fRwhB11cZhFJgJWEY7yH/Y0TrERQIhFAIJLkXgQimy3pgAAAgAElEQVSkQiqDQC/4+0iy2XzhGjv4X2Vp4C+jnSlXHOvthQpKV4WrSa/GGIQMCMMYW3eUGpy4bDqWSimwKbGHOGqryPMSGYhGoCDLZkgFRaYoJ35uGIM2Y4QXmCirEf1+F1uF5P56JkmCKQuEUCQeijUv5+hq3BhcatFWEetz5ScNQshmfubVjDjqNV0GGViiYMh0PkMEngexDz776U/z7ne8kh94qatW/8lffgJRjqkuuErPaLzD5+45w7ndEfnccVHCToIgYLY7RngjzAs7IwZLPQSOY1Ibqt5z3yazqefepJqyzJmMNrnwoOOL3PDkGZceuYJi7DlmYoV9j4bq1jP0uw5OmNFjNs0Z+q7GsbUALTp0g4A8cfNOBXOOHbwKaw2f/2fHS1hd7vF3//Ax1lacwEXYDQitZjLZZenylmNyww88j/HuNnbLsVe3pYS0xPhqXloZrlpbIZYBm75rLLWkOyuYS0059yaJYYiUsrn/pJQYHGymsrUAimKezzG7htX9DlI5nxUYa6ib7lFokKLylVpfrcRgpasw2rq87HpXTQc0nWusqRAYdFV3z8Baz9dawMPrBXEMIyxIJ7xR5H6+KLdWGasbWIdSrloa1pVWM6UoCgJfSQVXJT5x4jhbF3Yb7kScdFjpJxy84srmnE9OjCAe4YvEKBvTD9bIjx0BnJfQ+Ow5srRi7RI3D5Zyw+DQCt2rvo5sw8Glb3j0pezmM/r7D3Hre1zHcjmDqFcSXXBz88TuGNMxCAtV6s7LSFme+X/9OzZu+wzv+d3XAXAolFwRhtzn7+MqzpmON9BCEPsOu5gUFFlB5aFKorvC0uqQQ4cOcf6kE8sophNQBi0EWvg13WhKC6XvCAaRJJEh6XyOqu9tDKobU5RZA7OyIXTCkMTzwuaVIlGCyFpM6dbTWBrKMKc0IaGHrYTWYmdzBp6LOjYlh578BHZusVhvjHnp5VcibMnxk+cYD12l/O/f+Tc84ztbOfwXv+zFPHT8jze/hZ940Q89rGsFsP+Qq+af33g49A8euXM1GT0cYrg4/p///qu8+Pk/uOe5B+87zZv/8s940fNf+LDX33W361T98bveRref8J382+bfVtZvAN6H6js/x8dddw3wLv70fe/le57z7QC85S1/8rBjHr36MXseH77c8Z5/4xdfye+8+S0A/OSLfgiApeGw3Wf8MEXLF69swc/9h1Yc4+d+bG9HsB4vf+mPNn//6u85q+watQDwih9+CUBjPi5FgAo67v62dTcEpC3AOksY8EgdGbSdLKUojSYQAY1XlHYd7143WJCTloRSkQl3vYy2KCH27KsSgdaWMAy9eJcbwohGzAVZI490I2WvanUt5fjt4H0CFwTCnHhOfV73dkjqz66HNhmmcL+lo5YdHC/IsKYW3JDEdKgK3fzmKOogTUji4YWV1U6+XAhszQOLusRxh1jEUPpOmZEoE9a0SLTNqaoSYyuC2nNUGfKsYjqekoReCCMwFPN5I2iV5TkKFwONvQ9boA1CKJaXVihr5IFynaTaDFhHrnsVx3ETEygPHTSIJi4WVpNnOUHQxk7CGHrdLv2uQ5yU0nmwGiQy3surNAu+A87zSaO9aJgVAoTZc39b41/nsZ9WalgQl6uv6eI1rK9sP+kR+s5VZjOqSqOUaLxEnQuJYT5rY6BsMyF69FFuetZzAbj/3gfIphO2zp9muN/FJbpw3UiVuOM8ePfN/Pov/J3/wl7MREiQA8JwjvHcy0HSpQo0VnrEW3WIXpI0ndd2OOSYrbuK/wsp9q+a5KoeD9W/hxYqWP9dj4fp7DfqMgtkcWsIpEuqwEHEZBhgPUjZIrwaTWsGrLW/2KjGy8hWLuCthQbqF8dxzMyb6ta+W1mRE/jXZXlOp9NtTP4+8rGPcu21j+XU7Z9H+0Dt2q/7Wk4++AEiKRqN/wujETruoH1S6CCIkkYGEPiGm57Jk77+Ss6fz4hVDW0r0da03lTUmOai9f2w1rWLm0BOekKkJfRKNliN87SxGA8/sQKytGA8nvrPgtOnzyKImM2dalsUOd6QlJKuv6kHgwHWWpKkxjaHKBmyM9pivw9Cx2kKRqBUjA3c8U1pSJKkgTNGUYRQUBnbeBBEPUFJRl6YZqHudDogLbO5953KcwTON6tOpIwx5HnOcDhk7q9Np9NBVyXVxN10YRgSJxHzvGz4XFHcZ3t7RCeBpWWH/03nBVpLhHf0DkNFmuYIMUd4PPf25jZxEoKU3Hmf450cO3YMVMCkcL9FqoQ4dkqOnZ5bDALhOT2mJbn2u6tUek7ir3FlDYVOEYFCm3bRfO6/ewZP/oZr+J1XOa+fN775DehwhbjrYHthvEoQG/pByXLP4bM2R2fpD7okcs658y6grRCMLmySjV1SdX68Cz8Ov/9bv9zMs8I49bxDy+v82m87N/TtnSm337nJvv0ueJ1Ndjh3z30cvvGJPO7RLqA5sLLG0oEhR486uI80htko5cJ2zmZtUCgUmaoo85D9h53J5oWtL7JyZEjmzTnDsENV9rGTlP6h9eYcXPm0Z5HvnkJPvf+ImFEWE4Q/dmklpAV6MmWt3gwSF5yYwDAQLnmbTKac29xsYDtZXnpIYNhAYpeWFZcc3s/m5hZnTrhzt75+wMFPtLvG0/GUIHKqe9ZDjgNVY9v3BqcqqL01IAxj5nMDxiL8RtzAPZyMoX8O52PiD2Uq7VS0hGhXDu3WQYxZIOUKiiJvfIq0FhRFwWCwxi23OejlP3/uDsrCYCpFu3VkCBmTJM7Ikd+Fu04VHHvsddx70sEzRTanf6CPfeqzgfe7c3XkIEemIdkFfx1OjlkaCE5+7ANs3OXUHr/4ycvoxEvc8PhjbJ50KlyXHzvKFauXc8dx95020i0uUV3mMmQl8hyv2Yxy/Ri7eYWs3Jy9LFpmlJeNylmsFMJUBBaMVzUtlmKiSBKH7h666ponsHlhl3kqWX/UYwG4cOoEo427CftRy/EQkmI8Q/miCZlGmpJ5YFEejlqWGlW5dbEm8RsbOL6DqXklFZUJmJGQRG4NtCbDmC6yLKk6s/ry0emqRpDkYNjnC+/6AJHqcvjxVwOwu7XLZ0enOZWOyB905+otH34bP//Bn+JX3/waAJ6sBE/6wVfwtd/2dbzweQ7a9hM+ifil33g1b3ztrwDOQBhoinEHL1nBLnBhwe0Nla5Y2beE9PybrXMTltdWCEL3uq3RmB/4/pfxB69/bfO+2U7Ea974p4iy4Cdf5j77N1/3Jkai5NW/9wZ3rToDPvvFzxKvR1x3uTOFvuvu02xub8G3Nofi9i848/LI79kf/YePw4/Brbf9E79z4U/ddahyslnGL/zUj/HfXu8gd5lpaQQAJi34zdf/IcZmZLWSnB9lqZtiw6te/yY0Fu8h7GIPY3nNm/5g77mxDu77f7/UJbOvet2bsbY12bXK/W2VWEh2/DH9nJIe/qeAGksvhMAWgjhoTcStsUgVon18UxqLFBGlBOmfCwBrK6qiQNbcJS9oI+s1SbpiS1UuqLh5/pYuNLVZtBNgoKFPOKi0dTGYTxAQEdoaJJLAF2+KKkfSQvl0pVvwmt0blDv+D83fWgQQ+uSDkTPFJcYYXxQJJJXJ6cZh4z0ZSKema3wAL63E4GLGsjYRlmCVxYaWtHLrdZFq8vmIQLffLYgUtrLNXiADQb+/hC5hntUCVoZItUlukiTYsqDbS7wnI+zubpHktY5AvWDXCUtNX1CoOgb160QUd8i8b2fNXSrzkigKmv2iruYp2RbjhRUooRwMsIa3qzqObtX7oigkjvsLHrJQVaZNsmXrQVs/p7XGaMlDmyN2QQAC48530gsbqkmeZq5BIUQjlJVlc4oy4/DBYXOsMyfuYPI3JzBePGr90BL7Lz3KE274ejY2XUGpzCZYk1L6azCfaQqTsr27we7IxXS2mlFNKyZjRf+wWyuL0ZTddOpELQAtxhRFwUJ6gdXG5xYL5/MRikmL46souWpvqNqYc9Gsy3ELNLUQYo3OXDQ9c1Vb02TcALawlFXaTMw4lGS6aFX4jHBu1zpGyDo4jj02t81SozCkrNpuT1bkKBm6TpXv2hRF0XQZmoqM1JRYlK/K7J7f4inP/ga+9mk3sbvtfsUlKwWf7N/MZDLDDFyQG2CZ7I5qUUT6cY+kv8L5zY3mt1155SGO37eBQFHToutYae6DyTAM9ygp+pO8h7cUxyGVzj1utiUoygCqqpWVB8GgO2B54DoDQSD9RtpuCFk+JwgC5vN5IxCSpinj8RjjpaCr0tDp9PjMZ2/jCTc47Pna2pqr/JVzIlWr8Ammk1ZifeuC44klScJw6G68cZphjDveeOy6DA888AD71g8gg5Z4aHTB8eMtQbIoCiaTCZ1Ot10kEVSm2mMSmCQdpAiYePUoFUQURcFwudPOhTwlioKGF9VJuuR56QwLfaVsPB4RRwFJ0mU0csHcyQdPESdhEyQppeh0OhhDM6fiuEMQRM782i+UttAYT+QFdy/M56m7Z2rlyqvg0x/7HGEkeeH3vQBwvJ1f+7Vf4yN/73gISdJjOkkZLMFb/shV+P/4T97Bh959F9/5/Bdy+yedKtbZM/dw2SWX8or/5Kqtu7tjXsEX+e5nX4+xXn0xjNnZnpPEQ/7qPbcA8L43v4MX/Pj3Md/vEsW11UMElxRIFGc23P0w7OUsF4Kj665aHAWa6FIDWpB5QYvSGiSKKlaUj3bX/cTW5XzqE7eyM3IBfCn7RKEk0AUfv9lzrn4a/vY9t2GKLTqhLxBUM+ewLuuqHERRiBGgZM1JSjGloSw15846MYD77ruPyWSCXqjYysC7tfvrMBwssba2zk3feCNR323Op07fx4H9R8EL0wRBQFU5DLuoq5MLLvd1hdYaS2Hc7wYo8pyqLLDCNh2vmmdopGjWKVc1Ns06ibBgCi/B64MPo8FolGwDZIWX260/r0gZDIbcdus/8clbXbcgTPrEiUSYEkEtEd+lFBEsmFf/86f+npOn7uewT3JLs8X7//Y4h7oWft695tDPvYIrDq5z9z/dBsBkrNmdVpz/yAew3rT4/J0bjPOSz763oOc/b2Vtnbs//nHG51x39Nr1Y4xkwWqpmW25hOTrnvRvmN/+Kar7LjBYconvhpBcKCD3QUcw12AhVQIVujmlUomaFAjl7sdTd9/DPbvbnNRTOl5EZH3YY0V2sbnF+PWzEBohW+UzEQXMhXHCxP7ahhEIW2GFbKr8hoCq1Ki6y2gkVmqUnFLW+5wRSGFApeS+M5fIgFmZNfNgInIGcQeTCfKR+w43b93HzAryvA12Zkz5VV7TPL5FW27h13ik8V9+9qfhZ/c+d+rBrUd87Vcao62dPY//gNfuefyTL354d+rlP/rwjtq/ZNxy84cB+MPX/o89z//er/zXR3z9L7zkJY/4/E+97KWP+PyrXv8mRLg3oPrZH3kxr3q9K15Z7VgjD02sgIZPAm7NQSh0E4h6fjetYlo9GseY0u3hWtAUYIWUyMhSmQoRLHZ2KoQPukOp0Lpy4gl116aqkFIRiKDZ72MlyauyIe0aLPIhojhCKV8UMk1xSgSCSpsmAhAIrPV7bq0giIs96o4ZOG7Y4vkRvviztzuyEKwvnHYXxrh7TymvuIckXOBOBypx3CXfsRAqJAwFuqoLvEFj3lwLMVSiwiBJGHDd1dcDkOZzZju7ZJk75+NzJ5iM50ThgJ4XiijKEqFihC6Y+6Lvai8hr1Iivx1XRclkNHES6rue72Qs/cESUQfwBeww7rlEtRYfM4DICIoQXXeXtAGtEUq0/r4KdFE2iRhSoUVAHHZZHbp1fxa6jphmp1HnnUy3QWWUXrhpZ2eH/euHScL9HD/pkpZ+r46H3TlYXl71+1jlRUrwwiCafm+JTuQSp/F4irVV8x1FIFAyxBRTLuxu+etQK+0q1nyxWuuAydQy3NcmV7d+/J38a49tHm7ZAPAA9/IA9+59UliMrdz96NXIA/GV06eLnKuL4+K4OC6Oi+PiuDgujovj4rg4Lo5/hfHV07ny+HUhLUJKrDFNC9fYuiVnG8iBUz4RTeWl7mUFQYAvKFL6x84vyf17VVUEcULp4WHSc2+UUiSJV/1LC8IwpCx0I3FqjSYIwr1te+GgaE1L3lqsLVCqQ1F6DyJbEkVLzWuue/w1fOYzn+XYYx/P/LSrcgz3ByyvH2YyuoD0nYD1fYfZSXcp574lXKRkYs4Tn3Adf4uDHA36XVzVKyQIaziPxupWOa8oCqQMXdu27qYpiVJB06E5ceoka6vrlFnRcCmMMUxmY4bDQdMRAkmRV4286e7uDt1eQlloSi+3PZvNGkPoyOOPd3Z2yPOc5eXEv2bOcHmZR11xNV/8opOerxXyjDGN4pBSiqqqWgUlHAyz1+uhNpy6XJnlDTStxhtHvT6TdE7lL16SJJR5sQfKolTM8lrPwboWdEmTTtt1lFL68yc5cOlBfz6dAk9V2AYWtNxdcjLuvpM1nc4xWGZp2Rj4BkGHMi1IJ7vUZbjSlsyn06brUFUQymwP38q1zCVZlrVKh4GgKEvyojXnFEJgtIOtAPBCuOXWj1EUWeNJ1O8n3HTTTXz+8076OM80q2tD0mzE97zwpwG44Qk3MtwX8da/fCPzkT9+EPKkp1/LyQ2nmLblq9GD5UMNZFNbw8r+FeKoy913ums6743ZPHM/vXXXhZuVF4gGMbN5wdaGqwzde1+FiD7PrJYl1jm9ToBQEXHsKldSwFK3w3D/EqFw3Ylwbjl37iTW37Pm1Gl2bMbKoMvPvuKHAbiZN3PDjVdw/12au+9wXK3J7g5SgjS1abkmzbepdEHqpZ+DQBIGAWmaMtpycLROp0McdQh7tf+YM7QuioLAe64VRcWDDz7I/cfv5f941lMBOHTJpYzHo8b/BAOB7GIW7kcpW1hzXV02xlCJqlXlKwxSOUWlRpRJSEDgjNRr7L1A0Hq+NPMDEKaFGAeBpPRyvu4SK2Z529ntxRFbm9v8462fpttx1yGIQgpdEgRRw/+x5GijKBsl15nrTJ6+n+XQzf2jouTG/hZ3q1a17vQHP0znmmvp+Gu8drTP+nKfa57+JCJvXkkg6C8N2BrtNucqnc6wuuIxc69Ad/IMk3NnMQ+eZu2c+/6HH3U5w8uP0bs84M6v+VoAPvbhj7B1x+2s+e5dVaRUoSSKghYqPJ0Q6pjtvvstH9v6EsiIOFScTt28u3+2xeXdVS4LOyTe7sJKp3JWdw8EjjflIFq+em/dupsVOXiodllZQiKU53gaq6mqooX2AEIokBHWBsgaklrlJJ2I3MOJS0qWtMQKyWdOO4+weSgRfs8brri5p4KA7VEOZetv9kjj1a97E9vnN3nfX/yuO5ZS3P35k1/xPSv7lrDWMtp6ZD4WQNiBMn348z/+87/ikCe+G/L//vorH/H9z/y3L+BFP/T9ANx888287rdf9RW/0yONJz/jOVx7zeN58+/+Cq9+vZNsFzKm0rOGv/IzP/wjX/b9D4XtAfzHl7hO22++7g17KAz1+JmX/vBDHjsO7G+/oZZab/elYEHtDVjwhRINoqeBE1rr0RLCqbmx0Llu7n8JWIfQabqhCmM934iawy5cJd62SCBjaR6Dg69K6+KltlPuvpda6DhprbGVRcnWRBhapT+oFZnbY9fomkV/LAeP87SNxYah1a1qqzYEwqngae3uj8B3dKvKEvmOcxTIPcdwyr2eRyRqzlxEEls6UUw69mqyc81s21BYx1NOM9/5U3O071TPU0s5SRFWkng4vyTk/MaFxhZotHue3GqSMML6NT4vBP14SBwM6CV+X4u7jktb1bFaSBAl9CWNnYcxbl/Q2OY7KBzvrUbrSBERBZIHj9/O1tTFb5PJFFNIKl2wuX2uuSbdbktbAcjzW6iqip7fs4RwcVgd39QxUSeKF+4Hw4XRhF5vwKDn0AK6zOn1OtTIptqqiMAuwBUFaZpjaeOuLMtIOr1GFfc73/1UVnp9pqNdpM8TVocJtjCku5qJ37eL0jCezQk9V7woKsqsYD7LmHujdhkr8pmjBo123DnfGeVoRKPG+PRvfgbLa/s4dfI0Fy44SHQmM8KOQxnVa7qQi5Py4eOrJrmaXNj5X7/of2MURbHHPNZaxyVoUjRrsTiztTT1mMtSIFGYqmoI7FpXSNqWfxiGDyO2WmuJwpiizIk8Ya+onERk6uXhjx8/xVOf8+288y//nOK0u1m+5+e+hw+9d+QmgyfeP7AzRfUsK/td8JHEffr9Zb7n+17I3+IMCd/93vexNBhSFKbeF5oFrIEjGENROWnWejGLosiLcbjF6PzmObrdxGOl3YEc18klDHUS4RbSoBX+0BmV1oRx1JynwZKTl5/P59QOc2v7BgixRI2HGS6vURQVo9GYffv2N9+zPqdFnfhKSRRFTXJljEtmi7xgNqt5UTHzLCVL8z343yzLGulQIQRR6JKeRaKvEIIoisgyd/yiLFELmNrNzU36/S5BEDSy9UEQuKTNVk1QFsq9i4/WGpQL2uYeTtjv9wgC2eCL69/j5MZrGdao4bxI2mKAkk44oebDGVv7qdXwEMcHtEY01wZga/Okg4TUVgGppMznPPfZjtR+yy23cu7cJlHYpyYOfPofP0GcSExlufzwYQCe+a1P4ZrHHuTkGXcODl7iIHxJr9+aOVtJGA0Y7cz43p9wAdB1d38YsSM5uHKVnxuGYj6jGJbME5ccV7MOkRlQprVZdkQ211R5xe7suJtnYYdzGznH788R3lbTdBP6nSXWpOPsZUODrGacLyy33e4lo58MD5wynDqnCXtunvWjHlJCzUyrqoIwtZSVJPFBtRLOpHk8OddcU7x4xWLiXXuulV6C25KTdEMg5EN/5/yVrrn2UVx62YGFuWGJAmcBUEPGKuPmY15VZFULTcYG1BzvshKooIOxMVK0wUqlNUq1PDvxCH8Z4+ec3zxEJDyxvOUElLmF3DZE6u7yGh/98KeBoPHsK8uCThKBChpYiSGlK+Lm/rjANhJDGErO77i17OCBISer/aQmab7Tl/7iHVxQBXkNCzJ9SiKi5Q7BsueBxEAUs9Q96B8AKqISluWhO9bScECSVwz7+zGH3HO37+4y+8gn2bxwgdMPujm0OR0hAlCez5GqirCT0E9i0l0PCxYSOejwqYmbm72D+1CFJi0LDnTdupYVJffNt0nkGlf6pFOGEhF3GiimtBKhHdy8hYVpKmFQJm8kjkMCkjCi8JCcSCm6QmLRDfxUa+24v0Jg+/592lLNMuKo709JiJ1ptkXFfbE3ZbdrPOUZX8P7eC9HLnP38QP3niYJ+gx9wPm0Y0OOHJ5Sysfzmv/p+Eq/9trXsn99HydPfoneAXeNq3NzjhxbbQJ9gXJQ5Uq3QZnn4yytJk2xS+uSsrR0O+7eHgczfvLnf4GrH3Mto7Hb7ytrCC4LKPOsgbS/5e1v5zOf/Wf+/kMfcXNqc4f9+1Z41kufyakNJyySdAKe+bzn0esuM/GB08FDK/zJ617Ltz7vuwDoJD2MMSSdiMjjs+zllk/c4o67suzWhNNnThB3kmaf+a3ff70PICNe8R8cdPA3XvtGv3213ktSwqvf+JYW2rYAzVsU3nrV69/k9+SHiHKJvfFDfb0BfvsNb8aYCiNbwJ2t/7PtZwRBZ48UO9BIv9dDSonynk7gkuz2+6k9r2vep539jFgwCHavd0lRDVd2e+BeHnwUqD20jkp7A3ZpH5ZQNbYkSqJttSeRMqaOY/Ymq4GKCMN2D3UJJw2kMQicUEcca4q5C6A78RGENA3sWpcVQeBk3wtTJ5QpUnYYdCImu66oNhqfY7IzofBQ5Y61DLtdyrJskrlOYOjGCfnUoHyN8PzoDJPpTsNFs6agG0I2326LweWUnemUaZZRo3d3xzuk83Hzmtl4ghYZwWwLY2r6gBfiykus3wu0cTL6VeHmuYhSRGA4e+4eOjMv5lZ1iYKYpKPYt+yKi/1+n+HyoBEtc5YAAcawUOQ1Xjbf3cfz+ZwwDF1SNm0NkZcGXWphFIClAwehMSQGoyWD1SFRVDT7RWUs8fo+jBWkaeafc0XiuU8KOyhm4wlhLDG4xGlrJjh6yRUMDyou9WlMWozJTc6jrnKCNnGY0AkDlnsxeerpJWIIGoKwZGvLNSlm05LxbooxkZ+Ly3zxrvOsDvuu4g1MpruMRiMEGrxVUPCVba6+epKrZMkpfiwqANa37OLCUQc3i75G4IITJ0ShyOfuIj3tW55O9PQII+RCgO6Uc+rqr7EGq50bc5K4TL1MNdY6vk2rJBc0XkXgJlOapo3xHDhuUVlogkggPS4zkonLdv1rBv0lVteWue8fT/HTP+MqWIePXsH5sxNueto38bgnuI3w6MFDXHn5ETJPhJciRsmkIeYBHDqw3xkPSkHlL6U1Am0MpiZSdrooY9C69fGqqsqfP3ezHDp4tLmRap5UVThSZTrTaN1imY0pyXNfZQlDNs9tkudpcw601k3gX28mjX+Y57QFQdR0YhY3IYcFl01ikee5Myz071/EbNfHloFLLLpJp5kbtRlj/dqyLIlC5XhydWATxMznczqdDrkXDQmCACVpvDAmkzFCrLguZpOcu01DETbzUxuFFILc463DMETaCiEqOn0X8DlFOUllDVXZJo/dbrep7GldUlUuyayVHTHanxPRBOjGelXKjic7h66DUpYlcdD6Db397Xs9Xv6lo9b3egDHXfp97nnE1/23V/73L3OEX3L/e+b/1sf/q46PvPf3ECpFqtpUW6LCLpI6iQmRYYCQgiRu/VXSWcY8nRIrb4RtDN1ud8FLxQdLShLEvoNhBsynu4Qq8Fp/8KUv3sP6/iG5d24eDNeQ2nepwpo3ECBUSNKPqN2HjTGIqEvs71GjNXlR0Ok4U2KASAU+OGh/b8th8E8Y2wQ2wtTyXa4DrUTrq6XzjI7sNFk/VoMAACAASURBVGqBKh6yvZsSRUnjjxMHEXEcU2jD2U2XgASqhCBkecGTJDcZSnSZ+0BjI1kiUJLBwjoerayhpCGoFfdUh56WSKOZeR89EUE6mTLP76brK8CVzcnJ2fC+WrnVGKkw2rjqI2ADRSAVwlpibxAedazr1nnuVtgN0WXOfJSjU/cd4m6HT+tdinW3Fy2lhv2ry6i1HmfvOeVPsCROOpwtp6x5E+9qN2VuKwJ/HUKpsFIgjEXUiAohvVIXpAtKtY4nGTbXTlp3ry/OM22dp2Ipa35M5BTa6q5jpRFxyObuNuGyuw6Hl4asH3BKjLd/7u52gjCj7lv9ObWPy8eaf/1PL/Pqdi/g/8fY2xmb0FbFf4tf/Jcd4rv2PtwGfopP/Ive+nfvevu/6HU/8F3P2fP4lb/tVPvScuL3j3a+umDQNOgKaGOVh3ZjFhMIcLTHhyY7e/594Rj1/ZsXhVPvrBVYMK4jvSCSIKWk1BlgUbWAQSCxloZPBKCkRFfFwvuCZn2oxb/qjphsUCO1+ii+M17HXhZrRcOnkoFokpnm8zzipBbckZFCWsfFkrI9p9a21klCCJTnR7Xfs+VjLZ6/Qrcm1rXaaaXbFKzU2glrFLIJmCstMVUJ1icfSmJFRVFphHX3TKSW0FlEEnXoJHU8tYYsYmZ1MpmPKMvCiTzouoAd0kuWuJCdpfBzfzZPWVpdYzp28VrS7bC763xQJ74wvL6+TpEe58/f+mqUL1IGQUCWjhvlxF43IQg1JquatawsLWWWu26jPw8SS1lWhLXSqQChLXEo6PfcsftJjzjsUumUqHTJVTrNmVQlVeV+33QyQypBUWQseb5qWsyZTVM6XmEwSbqYSmBlQuDjTp3DIEzIsqxV2csF/X6P0q/xeV5SzHJ0kaBNvdcK0lmFlJZu7Io5WlsKCmxSi7QIhsM+YSTZ2XXnrhP22Dh9BiFyJjt+PVUWLSrOPui6ckk8ZN9wjU4cMPBx2Obu/Sz1V1heSlhb88JequLAesDysivU3v75+zl0JGB534Buz61daTrEmAFBEDXcbKVCjj9wH19ufNUkVw15UkqseUgLeXFBq6v1yrWma+iD1U4+0lqoPOwhEC6wns/nC27KrqVcJ1cWQxwqiqIim9emugHpPEPKcE8L3hiDUO1j11bXTYcGQAUWXQUEQa3opREyIc09Sfr0A8wnOd/x3O/i277PLe5v+sN3k89SnvT113P0qKumnToz5txHT1LYmf9OhizL6PXaIOaWWz7nYQACIVvFIyHaKlVdZRBCUNQQA1tDChbhjNYnDq30PKLY06avk7JwQZ4+SRKCsO2UlWVJknS82kpd4ZO+lV53hTLyPG+c68EFuWmROoWyrktyjTe9qxcepGi6bq0Rr2I+nyOVaqppQeCk52sSsVKKssjoL7UVmjhJ6PS6rr3dQAUVYRg3Xc5LjlzeVNc6nV5zDoQQIG0j6x7HsZN5bxJF19GwAkStLonx5oCqFaawbnFZ3CxroZFut27JCy8BHrUbsDa+E1m3K4VXISubStmb3/o2rBcpqYU2irwiK4smWZ1MdwnD0EnEerfyIpthtSGdZWycdaIB0+nYw1/r8yn4mw9+lKc9/UnN/ZCXBd3OEtujMYcecHP9eZc9kTvEhNGjHaQyixKKKmVSpQQzt/RMyxnKlIy33XeaFxXT2Q7lXGKll5CNM5aXV+l1ulxy6DIArrz6KqJBxZFjXgCmSOlWCV84Ybj9C04dbXPjTvIDFxC6A40EsEu6p94wUAmFziuEUJT+NcPhGpujXZTpIn2FNIqiPYFTnudU1gVbtfKRQbM07DKfpg0sJ4oSjt9/juWR2wDSbJve/n2sLK81ldayqDDCUOmsmbNx1CEIdJP8ZLkThVnfv596VGXu5ke8N8B7aDAipAvuEx+8GCwyiPz9hb+mEbM0p+d/i84kaakRkajzPaI4pigqhNQ89jHH3HmYp5zZ2uLCbos8CLs9RBVgMt/lNx3mOxNyv3kCdJcUeRVSaR/8lDMm8zmVCmi2pVQQRPvIyNj166cVEWHcJSnceVpSobMkEDTiP4U0lMoShYqZX4eVNRTatIbd1kF3jBRNkWlsLCdDTeIDsG/65qdx9KpLef9fvZsnPuXrAfjHj3+SOJVMAk3mT/Fq1EFJTeCz0ADIKBFEqFqeWLuquRW2+aJREu9Zh6UXFXEdet1eKyURoSLRPgBDUgjRSvIbmESSbV3QtW7d2Ng+zQMPPMDi+IEX/3ve+c53Ufnr8i1XX8elVqIueRS/97cuIfml33kN+5ZWuP9LX+Bdf/VGAPbvP8LGxtmm2hxFDgqutW6g17Wabd3NBdcVjqIuUrl7ezbNef4LXsw3PuUpbG5tu+sSSobDIbNpztv+9B0A3HnnnbzkR3+I1X1uvnzkwzcjhKTXHRIon1TnOUIJhssD0tTtkUXuqAK1BUenE7O9vd3sV1B3NeBdf/xmvv7pTmrwmkdfzx++7jfBdwaSpAsY1z32o9/vNsnWIhhICIF5BHW7pmPh99XFsbjf1o9rk91mL1BuTwwbAQ2FNXVXpxYREMSx71zV9Ajtkqm6u22MwVa2EbYCGoEq91ntdw+Uan7L4r4kmv2pLVjWBtouDmpL+C5GcGep2a8qi5XSi42158hB29r31YqIi+floWtZ/Xmmql9TqzQaYq+saIyBQGCVZmfqCjVxr0teGILArYFKSObpCBlKlIf8IRXWzOh0oRPXtioFnU6IDdz6FpQxunIQNounOUwrdJVxYF+P+dQJjunJJmZ6jsArO3bCkqOPu4zKlA10L+52MEWBEXlj3qxNwaVrQ1aXPFx6eYXR7iYbm5uceCD1516CFCgCCk8NiCKJUhJra2j7gHResX/9MI+93u2Ru6MJs2mFLGRD3UjTnPl8zuqq+7xez0FUlWzVAstiiehARBy7vWF3d0ySJAhjG4XGKApJ05T+SreBwKfpBKwl9AJlKol8kb8k8Il3WaSEoUIa3Sj6SikRWUZfus9TsiTMMyIz4MrVowAs9SJ6iWDY65IWdfesQ5mVhDUtqMyZzCb0+yFdX9xcX+qzszWlY2O0N28PwhhbVWxfcAU0GUy56tKYwWCdC5tuDZqOJ1xyySVUedl08LO04F1foX59UdDi4rg4Lo6L4+K4OC6Oi+PiuDgujovjX2F81XSuqryFXZVlCQ+p9gBIqZs+shNAaGFigVTEkSJJQsLAZc79gcNRx3HrA6F9y7hut2ttfEVONjLEWLnA92khDipsW/J1Z0YI0UAOBYaqMgShoqhqgmpAUZYNhnZjY5P3vOc9fMtTbuK2zzqzzL/5s49ybL3D5MwJPnL759yHdQzdoIMRcXOcLMuYpW0VJyt2iMOINJ3vlYhegNtVRqMr50VRVx6FDBoMOjjJc4HBaE0Q+/MrBFkG/f6gEUnoN7Lu9bn0FTEBYQ0LTFMqq+j0l5vjB4Ezr6uLa6GK0FoTx3FT5bQC1qWrCAVxW1mTMtgjyV9XU5rrHnRdpcrYh1UoFztCCL3QvaT5zBpKCl4+1uw9j1o7iGVd7QvD2F37QOzhXNXfr3lv6KASNRTLwcjc3KtJrqb2rvJVwCBwleuyMkzn7th5VXlYVytAkgQSjd5T0avP1+JvyYpyD2zVGgkiQXr42/rSOlJKYqWoG2xlmXsZXcnjPblaBpHjfHmzD11Z/oaP8r0/9soFqVzNYHnAbbfdwvQP3gpAfOYLXBatEz3VeVgdn06RMqA7jDHLrnJ9aXCIcLBEf+C7jkwYdhOqck6VO8z1eOs8Z07tcuHcCTbud3C0dHya6x/1WHZrg+LDB/ncqSm3fuiPyWYjf11KdJU6iITvJJXaY/R9hVYXJQ5UoQnqLrXOmae7WJEhvUy3DAIshvGshsQqlgZ9sixj13dtOlGfMIlRgXXYbJyJ+dnz5xpoHTYgPTFmdOYEVrRy26UxYNv7NitytAia+RNFEbvjHY4nieuW42CBWI2S8R5+4UOhSVI6fxldeUgMqpn7TXdZuS53XZ0/cGA/cSchnezQ77hu+Xw+Z2lpiasffayBUF5x7Eo+/anPcXbT8atO8ABr/XXObm0iPKekOrfJtddfxf1n2u5WYUOKQEPX3wtxh8Fql6MHjnLinuPuexaWKkvpyWGzDtvCkM0z0qiGAGuwCiMsY0/4VsYQiIAUDR7ukltnvhqJmj9WYQKJ0ZplvzbfOx2TDAZcuuq6g2dPneZx11/L/fc+wNB3DJ/x1G/ir973QXQYkk29qafsIIKgblZQWSfTqykQ/t4zSiKCgFJXTZUaA0qD8tV0rS3G3+sqqC1HXIfIVBXSv8/iLDM6/n3dsMMDxZgLOucZN34NAHfedRfdQdt5Abjuhifxgb/+MKPU3XvDlWW03aUYtnucNK6ifubMKUIPQw5CCD30GDyhXgmMEY1RLNaBMgPZrqGdToc0dZV/cMIfRVEQJTE1+Pjokav50D98jPe+5/085tpHA3Dj1zya4XICXojniU+8kfl8zsaZc2SlNxYPFYP+ElpX5D52CJUkywpW+84CwGiD0RKjoOvn2XQ2aYj6T77p6wB473v+GoCDBy/x18EZzNaiVwBRFCDY24lq0BN7xCQe3m1pLTP03scLx3noc1VVNXLX9bDCYrQlCOo5XFLkuUNzLMDyF/nVtfk5UjTdLWt9V0rQ7OVSCDBgdAtZl3X36SG/RVhL6LtERVFgtXHeSdAgX/bCJT3VQ8pmf6q7dfXepLodjM4Qol27pH993c0Ft8cOep2Gcy2VZDDokRczxmM3r3d3d4jjmAtbWxw54M9xdQLK3cYnyVrLak8yne0Shy5WUUlBKDS66rPccR0LVQYE4ZjZjuuOzGyONYpOOGSeeauQKkXrCmENt3ziUwD01JRxOqZbW6p0Y86cP0Wv16Xy+/3s7EnWOkOWVruNANGRQ8c4sG9A5XngZVqxMtiHVIZPVQ7eq+IEW0ypKkPsZc8tOUZD6L1EhdToqiCfG6a77tibZyp6vT4Cy7lTruO1srJErCTpxK0B3UGfMOigK0kUedPyYUU2n1N42sPaypLvMlacPef24yXVYzgc+mvlvnuoFLrSdGuTdqEIg4QozNG6Ftm6lF4nduuI5/sKbYnjmAPrHT/rLCdPnqHXW8U7vbl4WmiWl7po71O3trKP6e6Y3HO3Bks9yqrCqgC8T2lZ5mQHXPes41FgAklRFeyMnDz8jdd9HVFoydOCa6+41s2pnRFxolAICq+fMBgMgTfy5cZXTXJ1+LCH9wSOR7AYeHe7XaIoIgjbhCtJEhCmWSi7ifMdiqKIsnQ3+Nq+deZZhlJqQXFOo1TYJBqhh5yZyjSLtDES4V2yY4+rL8sK4WEP9ag5WPWNH4YhFklazunHDtJkNCDm5Ll737XXPIEXvfjFfOofv8Af/anz/JhcuJfv+P7HsW+pR+xxrlaUZFlJjQoQKAa9PtPpgqJX0KcsM9ZXVtHSq9RI6RzUa1EIn2QsJh5R0mL8AQ8tAKxsIDLWClRQYUVI7f7uNg4adTRrnDN8UZXtIum9vxZhCLUxbq1aF4YhRruFuYZU1eprldGND0y9AD8SRr0eWpcN365+ndaaCprvnVcVgUyYLygLutcDSCoPMTBFtYdfJRaEA0zdCi5ShJKYtFVkqoShJn263xdjswpdtSat7lg+oNd5c66EdApvAKWuhQda57AgUA3srxa0EFiEUQ0c1SkfWRAtfLbUmk4cuY22VifUpSPQ+3th5nlvO0ZivUqlCiRKKPKsJJAtrBJEY2XkTyubZ840x1JKcebBMxzdf4zPfPMzAPjIyfsZX9jhQ3/2Wv+9IwQhBsvQW97PIihmIcobwMpYIMwKve4Kg1W3Juw/8igec+QxPOPbn8/vvPqXATh2y82s3Xk726k3mA5WOHnoEsbzESsDtyZ0AigLSLNR62VmIxQR2vNcjIdtZFnWzKvR/8femwfblt31fZ+11p7PcM+d3tiv+/UsqVsTGiwJpMgWGFAkEFhgynagQhGcpJxKJcZJ2RUnirHjcgi2C9sVh5iAHUohCilPsikQIIGMQIbW1Jp67tf9xvvucO4Z9rzWyh9r7X3Ofe91yxAnRVJvVXX1O/vus88e1l5r/X6/7zCdUVWur6wH6NPplIsXHSzh4sWL5IsZW1tbXLvmoCBf/eqXabUlSeIefqpkgDWSIu/GjYbBKECKFdG3rtsTsEt8T4mCxAd/oIgZSoMw1WrxKgVNXaPksu+LzkNHINbgzBa3uO/yL0EQYJrWQ699n2oFsW2pK983pop6sSRSUf9eKSW4cOE8e9dvEPkkzAP3P8rXv/pl3vnN7wZccNWWBWmsWPrrE8OEaLRNWz7fX9/ufa9hXu7R+InxqLHcuFHw/PUnMV4kwSwWRFYgAoXt4NjCoFND4CFycRhQNg2yatnygZSwiiaKaTAEPsllI4UloOyUAaUlFoJISgrPBd1LBZtZ2kOJDg9u8q7Zuzh//4O8yfvxTeKMOE2pmyWVXwwcBg1aCYRfMNQ0JAi0CjGdGBCSti3RZs3gvTVIYbFefdVgsT44th1P1VqUkARhRu2PtbRgwgDp96ltzbSuQCruv/ciAB/+nu/ld77wWdbbl774RUZpxE3PMZ1Xmkdf9+8wjVdJoQCDCBRVbZh5mPxG2Xj/Pa/YWJQOmmVWxu1SBFjjxyZ/rKZxBqnd9R5Mj9FWEIYhuzsukPnUJz/Nx/73X+TRRx/lzBkHH17OZzz5xSd5/RvfAMCF8/dQtw2f//znuXi/E9M5OjrC6MRB4P2rJUNJliUs5i6IjyJn2GqtJfKKjDIv2dwc8b1/5kcotl0/e8cfeT3P8gSTseNgXLl6ySUk1uZMaxxg1xrRj9fd29qu+dR1I/cJKKAwtwVbnapf19b9OgFUMKBtNOvgIikdb7AzH4/jEGG7+cxz+9YEp7pnUNctiGolgORpFy7p6PYLlEv+pdHqmjvoeUeT6uZYay3Cmysr6QSTumds7Qou3wlhJakC73XVrbccx5remypJErSOTohqdcGqGxu7c7DE0hD7MR4Mpq1IpCLZdpyZ3a1NrNXcf++ELHGBthNeOYXRftxvLcpq5Fj28+jlvZcYDkdE45pB7IK3IIWHTm1R3ed+L19YXrz0DFZPMX6tdGMxI00HvOahB+mo0rW2PP7gQ/1a4u1veTu/9Vu/xendU31iezwes7m1i6VFio47JVCyZrlc+vuSEQ0ibhwq2rozTm5RQYQk7JUOi6ImCkcYL46jW+2g5UpwfOjmp3I5Y3uScDQ7ZnPc0RyWCKvYmjh+ZuQLEaPNAVXlFfYkjHY3e85327ZsbW1RNwWnT2/6bTXWKMK19bDEIoXrs4AXR7OoYKvvi03TYGTAZLxB7PuCaTWRCogGXeEk4f77N9CmpvEdYTGvCIKAZVGhPOwwLxryuiHNvBCPiShKJ5RzeOR4WLluOHPmPCoKe5VBJTPKsibwY8QLLz6HljE7O7u8/JxTSZ0eHjIYpqRp3PPh5+IO0qdr7Q9NcPXCc1f/X/utlhU/aX1YfJZXl6j9/bTp2m+st8/yST7LJ+H7gTUl2Z/hyu/7N97zwQ+tJjgfkeR5fkKRrm4boigiXFMLatr6hIR8NwmatcVdx+VSKnQVDzp8edO5+GEtNNpCGNJ0GfdGY430hsFuv7LwQhL+HJdlRSAkUirmC19NCxR5XTmeku1ItQqtRT9Id0HEekZPSoEx+kRFTUkX2HUZIiEUeV0SxzGVX6xK5RQh14MypRRN2ayEIzolIit7Yrq1TmLZromGhFK643VBaNsgZOAy1L2UraE1biKSfrARGKfk1hF3cUbV62IcQrgMbNuusnydmEvtr6Vd+04nluGCRO25WG5bEIQUXuzDfY4xbUsctAg6wQCDtS3ZIOwnNCkFrS5Rg1UmCUAri0o7F3eJbipqW/LgIy7b84tf+m2OKsvO2C2kovGSsizRZdIv/sdtQHBaou1q8YE9RJuc6VWXFbv6/G/xO1WE/EXZG7U+WBXMb77IoHXfG4oFRDPOXxhjfXZbaMkg2SCQI+zQvx/FlGI5pak7uV7jq5dhb7vQ1BpB6GS4/UBaFAUXLlzgPe95j+vD+Zxf/8QnQMAHP/h+3+80TzzxNTY3E5RfpJRlg7TQtG6yjEKYzTv+lq8kSafIac3J6mrbligfUC+KmZPHjcZ9oF8UBWEQULdqlZAQfvHWBVtox/eREPr3o8hdwskgeiNTEUXkRdVXwOz0BroqScKI3E/0O6e2yYsZeZ7z9re5YMpgmdUFz11eEXun7TEDIurac4Q2T3Pt0iWSrW3A7ffZg+eQrSSLOz5lQBpucF5J5MhXSE+7fq2NIO6I/bpEipYvP/sUALMk4PWPPUZ7aY/Zy24OCYMAU9aEUYBPVFPXNZuDDbyYFjqJiMsGqTSXWqckpa0hFoqq9Fnx8ZBnrl3hzY+/mcC/H19/9hnuPX+arz/7dbTPfN5UmjRKUU3H3VJUrUELQ+0DmTRKKasGGYUYHygWusEYS9CugiukG2+6ZpoWqS2BlDS+QqJihao0W35BlliFKhpOjbf4+L90VZh/8Uuf4PFveoT1VpQ1k8kWInD36frNK3ztkzPqfqEKUTIgljBvZ8jSE9EbSZTEfV8py8aPa6vFv1KCtmkQUva8tqoqybJhLxDUtm78PHv2LH//7/0SAJ/57G/yLe9+O6HnyQLUZcOp3V0af++WywVVU3Phwj0UueuLg8HAGdarqK+QWhtjzMoaoapnZNkQFYS97PJksktTCoaDgM1NV5WebLhF+fTYcW+cUm6LXqsaGWOcaqMFbmNTrPOIwp7H6DauZKi7MX0lkrWq8rReeS7yyVzDgqLMGfln07QF1hqElMy9NUqSJATKiZ8Edi1o0RrjA7BkkLA7HqP0Zi/zbq0lDGJCtRpzlXJIDN0ZmzdtLwzVJzc9OkRKifDrmy5IWxePwtiVIBOgfdJDr50XgI3okzu60ShWSVz3D41AEMqQ2PPfRKQo6nxlKyMEQsRIGVD4tUSapg5JY0Nmvmoj1ZCyOqaLxGfTQyDnxeefYexVOIMoYrpXg5S89qIL4rcnKfWsIPVqyNuTDQ4P70dK2Nhw/ScMU9IoxbSayXDge4S3wmm7NZbm4e//PobDYT/GHxwdMS0rlstjMh8QBFJhbMFw0yUWK60Js5DmxorrMxxlLIs5ILB+zZYkGVVlUN6aJJAxy1nO9vYGb3+bGweuX7lOFg140+MPMPcIDGsE2XDAwMunL/LczStxxMyjQgbDhLYxzGZ+DosT5ospcZyw4RMSh4eHKFUxyOI+0D9z6ix1kZ/g3guhqIqco6Mjf+9CwkBQzI/A3+NASVAhBwc+8I5bjK5pq5q8cnP75vYWB/tTRBGThG6camqNUEGvCGvqJSq0pEHCqc0dAFQcMV/mhIns+bCHh4ccz+acveCSO4tqwShu2b96pX9HNwZDEIKj/WOMdsm3blx7pfaHIrg6dfUMf+K/+PcALyrglflOlt8NjYlPKN6tkyaNMV4eU3N803Wc17/5QfLldS49/SyXr7mS8TNPvYQul2ifrQyFdCRO0XLv/a5Dl3lFXYCKa1oPpZGyGzw7CIAjtCml1tTeNG0DYbQig0ZBTFnmRH6xVZSao4MSpGU0doN6OtykrAxKpT2JNkkypxY09uTHKCWOUx8ouUHyfwp/kTh21bpODS0OQuI47AOEQLlKVpqmDLy6XKAsUZj0VaPheEKSZFhr+4zJYrFw5W6z8pjSXghj3fsCQJg1bw9XeKFt6hPZO9PqtYDBqaxZITGd07tZy4p1CzzrMmddZsJt8wFN2FUeDFhQa54D6/C4bp8oDJxXmZIntq/L1ltrsVL0amzd9XQSuOD+LSyePOorXrhKX2dFbrHgq3xGrCZoKSVrAlRYQIhglQI1BoUAbTC3eCgIsfJCscIJSHT3yYV+xk1c/vIa3bjt1vSoDq1bT1T2mUVbO4K9kPS1MuEy/+tVFGMsSsbYNQEUALEGYxNCEgUpTdVyxqutffh7v49P/MrHeeEZ52kVNwNGwy3EELSXM21ky97eYQ+fCILIT8LzPpgcDAZsjhSLfEno+/Dun/kBnjk4ovAVooODA27cuEZ2kBD5gKQsS4aZQOsW7QPMvCgoS0vTrkjaVos+qAWfbAgEUkLj4WhxJHnNax/ii1/6PADv+2PfxrkL91EUBRtjlx3d3Nnl0uWbHB0dszF0k2VlnIRyt4ioG00QBQhh+0BRKnceMlK0axLcRiuM9Pe8NaRhhil0P6GqKHRKnWGKaboEhEAFK1Ef3VXXW03FGnzJyyN38GvbVoRtTdLBfXSNNmAIaX1FZmt3i/e97718+tOfoRVu8fTEE5/nbW95Ozs7bvJ6lucIdIBM0145a3rzGlv33MOP/NAP8sP8awB+79JXXdayl201yDAGXfRKi8qLF8RhRFv6LKo1CKDO3Ng1EWOKl64Stw1i4rZFVhDJgECusuCy0ewXJePQQ1TyhkYGGKOohVsQ1W3FaHOL/+g/+XMAPPPcsxwcHFFbzUc/+r8B8KEPfS97w6uEOiDwEvjaNNS6IvFjfEpA2CgaW5LtuMVHLSzxOCIMAmKfEDg7mBBoi1xbgHfJsk7WPUtGbq4zLVq4+1lKQWQCoqVXeBWKQkAbhNS5G683RpLHHnwdv8w/p2tntk/zW9c+ReD7ShuFDB5/kNc8+lr+T/6VewxWoRtJuZgRDN31LKsZO/EpGn8vo9CpF2ptEaLyfcrlzqQKaFtPsg8VbV0RKrdwCwg5nl7naP8an/nspwB44xvfyNbWDtPptJd1L6qc02fP9M9uvlyyv3+De++5wPPPXXLHlhGl0GjTMBh4CFdgaBqJ6mxQaomxAaGyVJULoIXdpCk1QaKQWeuP5b7/uc84/78//h3v4uh4H7lWuRqmFmsbrCjpNUq0cGga4SFcPhgUUvY2snXGWQAAIABJREFUJ9Y6VdeyLDGdMqb0vkR+HtVtQxAH5PmCxlfi20ZjjGSed8GBRtvWQYi9p2ShQdcrJIE7liUIErQPYtI6Ye+4xVaCsV9vjLJNxoMxTbtK0AlCpAxRPomwvb1NoBRlmffHTtN05cHm71ldN4RSEXiITSm8oEIY9wks4SG8NKuw1KJRdj3QdMkmKVlb4zmofKurXpnPWkukEu+B5aCms/kcIdq+QtLakv39fZblAdNDt4g3usVUhtQvlkeZYHMS8br7ztF4OPH+4U1AU1cN26kb08fhhPGF8+xsOSuGRdNS6JgoklS+yl9pgUoT9o/2uDx1v6etcirFfr1R1zXpeMjxpWf7NV6WZZTFnDiOKI0LmMscv17rAuGIpiy4sZhhhIex6RSh50gFnVi6EAIjDNJXt4JBQGNy4jQhCN33snSbzfE2QQBbXj3PIb2aftwwtWZ/fx+VRNQeqjJblCAL5gt3n8YbO9R1Tjtr+7mv0DUXtrcZDYckHqpomhYpLNu+ong0XVA2NUEYcfHhB919qQzzWenGvc5+ptHURYNK3b2bz3Ni5dQmw9it0S9dOSIapIxGQyKPBGranPnNErvl5qIohWWr+cJzz3H6vEvw3ty7QVNV0LaMvSdZNojZGQwpajdGDDdiDDHz42Pw69+N8SZ12xJvZRxMHQSesEs237ndFbS42+62u+1uu9vutrvtbrvb7ra77W77t9D+UFSujg5mfPQfugyb1QZjW0xT9wRQB/tqMRQnPCb8H/EbOl3O3nByNPxeHn3oPF9fzPnc7/4OAIFMiZTE+MxSIyVWhBhtyL0/ViBDgkh4SW2X6WjbBmsNXTJLCEEcRc50s688WLIspW7KvspQtg6OZnxlIIoi3vvedxAmYQ/dkWEAQpEOkj77EoQSKUF6TLVSCqUc/0l1/CalUIF0/kzRoD8HIVeVGyklCosQpnf41lrR6oLSZ60OjqbgnddP+HEoV4Vabesywb6ytDKp6DPg4hXkUzsfjZNt3W3e3CZbeytxeH37rduAXjTA2DVPH3iF376dWNzdr1t/67bfuUVKd7369WrnDfTZmbWzWNufvkKGuf13u6aUcnt1xcKVaQlmrTTWca2+0XmJW/brPt7qL3en59BX79YIxzeuubL5eHyKH/j+f5986bJ5y+Wcf/JP/hmXL1/j7NmzgMvSnT17lhs3bvijlt4/Luxx/FEUUVROprzLan784x8nkIrME3jDMERbw7WrLzHyPEznVzVHCNGX8I2wPZkbvM+d0bRtfeKdMWVNGCfUnhz7yGse4fmnnuGFSy8B8NCDj/SckM2zLlP21Fe+xPmzp1l42I4794SmaSh9RnqQZbR1ebLP2BBtNI0RfVVYiBAh8l7sxIqWol4QhQnCn2deLkEYima+IoFbia50D2eQVqK1r9D5jLcQglZo1186fHwYYFXA3GffQwKkNBjb9AR6bMCLL1zh8cfexNNPu2rkbDbloUcf4oEHHuivWSqDtjUXH7oHgPf/u+/nkYdfjwhWmb4oShhmWU8+DpUTTNg9fw9bHsLx5JNfIcuGFMucd77rne45PPQQRVFweOyyh9evXuK5554jX2qs758qgqrWQNi/R0mkOHNqi6MrLwAQINiIBpwZ7XLs4W9hpFkscn7tVz/jrm0+Jx1ItrbGqMBnhENNbnO0rTnrzzMxglhB7SFrWoAIwKqEvQNHkhZSYkPJrM6ZeJllk8SUQtM2fhwSrmratjVt69AXZnHTSR5rRVt4r51MY0RN7LtPmA6oY4mxNYmv2r7nj37HbS6XuWkIR0P++7/0d1xfTFJG4wFHyxW8xQYGhGY23cd6PmJbzinjjLk3RM+yAdPpsYNRN7764kV/jDErw+zWcWorn00/tXuG1zzyKJ/73Od49JGH/LZtNjcn7N+8xtJnoDcnY7Y2x/07u7d3Gaud59NDj9wHwDPPPEOaDCmrhtHYZaAD5biGN244eF8UBkQhCFomG25MmB7tszEasFxOKRauGpF67aXPP+Ge+/vefw+H86+SDbZW965+mjzPWebTXkRgONxAA8ul96KUfi5Wqq9iuRYxPT48wc1O4qx/Z9u2pcgbGl332+IImtr2/KoojJEqdmOUrxrPF4eEKmIwSPuxq8gbQDHIOs8gjbEtw41xL18+mx9SlwuWy0W/xlIy9FO4t4y54T3t6pbACzBNJluUZY0UAdr3jZ3tsxwfLDEeibC1teP5eU3vwaR16yDqQvUcpCh2FfE0cVWVtmmAljJfwd/DQNC2DZhoZZyuLNbq3oakNS1xpFy1J3PzxXS6z/7N62ThAUPVcR5r0s2MxB/77KldxykzMWnqjnXvudNYCYPRkNl84Z+N4dzZcxz49/jy9RtY25AXbc//SbKU6y8+haZFe155iyIKQqYL1zfG4zE3Dq84f9TGc0rzJYFN0dr0MD2pBiyrkqm3Fzg8WnDhvm2KZdlzoNSWRNTSVTDlSgAljWOs55S1tSRJJxwelxS+Uj5vao739whCi/XzzCDNqKqC0h+7qgqkFOT5ksZDRJWwbG2eJU79teklVXXExniXw5t77n7u3sP+fM6sNAxTD7kvC8fpzh3nq2kK4jgljRRf/upXANiYbBFnKVKFbJ654J7f4TGDLOs1FubTGUYqJ4LhI5brLz9PpsdURjDyVb66lexevJf9fYdS27t6k8ZabCB45rKbr47zY7a3JkyP96kDDxWsUpp6ZbO0WMwIlCFNBxjr3uPp1WMMiqZdUHr5e8kKTn2n9ociuGqagtmxw+LHcYwSAQjbK9CFoUKpmCTcOMGPCYIA1EpZJgzdSzbzJc7TF85yPM+RQcw73vMtAKTpCGlXgcEgCWlb1/mvXHE4/qe++jWiIAYhCTqjT2HQRve8Ie05PuvGwh3vRQjBuIMFVQ1VU/XEzabRvO9972O8c6afPDpEWS9MABivhBiJleKTU/m5VVnILXp7A81uwXsHqEnXDCv8K3Di7+vQPa0bF1yx4li5wOZkAHCrGfArNb1G4LXWwevWg5l1taX1dqeg4ASUrwue5No9MPbEtdwalN8xOLvlt0+oDd5hn1v/37X15yNvuR3mtp+19FGSlNwWe8EJKCGsFKHWf++Ogc+rBGiv1NbP79Z7rG4JwkzTrvbpzsEYoqSbxI/9BOsWAxfvv5d3vfOIX/iFX+CF59wit2kaTp8+zSMPPQzAiy++iEwFi8WCtnaLrSUOuRhFEXnh+DBKKYpWk3sf1DiOibOUQRxT+/eq0a33j1kJhHQDaMehc4GqxkqxxpMqiaMIjOgn+iAIeOaZ53j4UYdfT9MBX/ryV8iypFdD+/zvPcFb3vI2nn12JdxQ1zXO2sjtEwYxTdEglSTyqph17RJJQaiwfnK21r11hg76KUFKGqN7g08jnHhK0HLCxDuN4h42WxclURS7dzxbcRo62HVnxi2MQBhB2E8JDopt7CrozPOc/+MXfpGHHn24N5jM0k2ydMK/+Pgvu6/9JBxPa77l3W/lP/3zPwbA3v4Rh0c3e0NtAN1UJNmEfNb5q1V8z3d/N4fzBVeuOP6psQIhA6xU/Kkfcobrm5ublHWFt8tBKcXR4T6XX3qBwL//aRzTVCXZIME07tyzYcrG7iZXrzkvkzAM+Nmf/hk+9/QLhBsOahLrgFBpPvEr/wSAnVOneP/738/zL77Ahz/8A4CDqN64euz8y666OUtoTRTGlF60yMROlGlWLXjDG98IwMWHH6RsG4aboxWJPwqc8p7nCMVxShA5jksSek8w68SJVNgy9gvR0sLp8/fwD/7ePwDgN3/9k04NKy/Jth0x/f57L/LRj34U1ny+n/js57hwz0UeeNCpd37ta1/jqKgxa7iyYlEwt3Pm0wqh3e8ZAhaLOZveC0eKiOvXr7skRG8c5ji7Qaj6RWAUhGht+3nur/3Vv8F0PmN7d6eHAI7HY/I8p1jOePhhNwacPXuWulyg/Jg2mYy5fnmPJAx7BcPTO9scThfotupJ/Wnq+F1F7pIbZ86cYz4/4tTOJp0aj2kahCiIAsG1qy5R0nE0j2cuYH/u6ecYbBiWi4P+vsymNwmCiDhQnNpxQddskdNqw8hz75bLOcJCsVz2AaZQIfv7B2xtbSH8u11VFcLqPjE8Hg6ZTqckgzGx91cKI+mUFT30KE1G6KZB64o0c/vsbLgAYSXWBeNt59EZ+qRwbTRWSPJiD+sH93JZM61rRoNhP6IHgcAYi/VAs2WxwJAiUBznDi61KKbOQNbgDHmBg8OrpFHMMnfj8rwcEAYpgUqJoy7J1TDINkjiEaEXczC68aqZ7twXyylJmLAxjvvraRtFrBIINH1C1wTYoO7XNwHOwzNQIXXuzmky2uJtb95xys3eBN7YglYXNJUPEIRhsZjRaE1QdbSOluX8iDSZUviJJVIBL199uYfWJ+kEXVukVIR+YrZVwyTJKKt8JTKFYHtzi9ZDVo/nM+7Z2kXFST+eXrt2DZlYrKmw3mOtqCpa2xLGHSQ+oKqOqMp2xbm2LUjnqyjpYKNQ1yvRkmE6pGxa9g9ucPW6F4ZQlsVxTpKlVJ4HZ5RhvpizseHOszQlBIJIJBReBdcow6Jc9vBJITWDjXtojSAYuGd19eh5bAxmGVNf84lMY9gcn2bo+6uQhrK2XD26ROo5XpcPr1Lv5WgEl/YdF1QQUDdVZ+dGKEPqsqKqil4BdfP8FrPjHKuXXD9039O15dL0Jm3HuZYNKhJIEZIv3HMfhDFSSy6ce5DZ1PVZQ0UQBgSd/9jWJihHMUo8pLKuG9oG4mzEhnLzRRS48fCV2h+K4Gp7Z5vv+f7vBiCKYgIVoVTYd6bV4laeCKbWyZZCCIRy25feHGznzGm+9Nu/y4X7HuW9r3Mke2deG/bkzjiyLBY5u7u7fOY33bG+8MQXyLZSkFEvEKAbkDI8Qc671fhPCEcKNa1mPvekaJ/NW6mjVFStpmwKyqbrrBJlXZDXZa61dovV3GeSuky3EPLEIvdOAcDJAMH4BbM4USVynJq2378LkE4Y+KngRPVjdQ53Dn5erQkh+qqMRPRiELdWj+5UObpThelO13pimzgZ/KwHgLe2LgCynKyc6TscvwtkmqY50ffWvyeEU1iyxtC+WmC4Jp8N9Mpw3+h+KlaVQn+A22IyI+jlxm9tt57LOn9MndzRHcs/knVZeTiZDFh/LzrSchBKjG1Rnjh9ONsniBLKosX4bFqaxCznc776Zcd3KApn+O1knLtsmjdDrhsaz/9pgGGa9bylomhpTIPQq6CzKAoGwyEgex6d46A5XhtA2TROAl+tFooaS9u0JHFG7VUUWwn3PHCRh1/7OsBNjPecO09bl1x+0QWKs9miVy9t/AJhOEjdIO2zqtq2SBEzny3cZAwMhgPSNKYqmxNqpLDGaQuUH28E2pPfbaud+IGSVHU3obXYQlP5Y4dRRDOrfXG5L0kilSJQUZ/AstYiEX1Q1no+xCgb9MqqSRgRZxlvetM38fLLjvuSDRN++zO/R5Ks4c9ly8UHHqUs3LUcTG8yTicsj1cVkjDIyIuG2Jtlz+dz/vknPkGqFIXnfW6NMg6nB3zgu76boedYPf3006gwAC9igIiJ04T7HnyAOPXBmw1pW4MULUJ1z7ll1loGO+cBePDCfbzjXS/wwlM/w8jPKXmdcTQt2dpxxObHHn8j2WiH3/iNj3F45O7B448/zuHhPj/2F/5LYv9i/MTf+tvkyyVhx9krl9C0bD/wAO/9k3/SbWs0SoYUi4LYq7Xm+YI4WAmbFOUCs7AEKuPIV2iHI6dmOop22Z+6Z6pNQxYvee+73w7A9Utf5OH77+XmzQPSxC2Sblz5PG990zme5av9PX/4QsQf/4738fzTrkJTLGaEgWW8sd3vc3ZDQzsln++T+QC6bgx1rXs13Xw5P6EG27VuXOwM1+uqoW4aPvCB7wIcR/Dg4IAsyxj4ZxXHIcZEnD69S+YXYZubzuy9EwxIwwGjcUpVz9HG7bO9vct8cUQQKRYzP9ciODzcJ/bE+KYpiJOAMFIMfAC0tZlhbEOeFwhf2ZseH/Z9BCAJLrA1Wfake4DRcAJIBoPTffVlPNgEBa03uD59+ix1XTMcGjrGhTWwcWFCUVRIb4q6OTlDXZf9/FHXNRvjLbQVKB/oFgtDEEX9u3e0f0wURSRJ5MxZAd0EJImrrvQ8Jb0gTVOWCxcQKeU4WmEUkXt1NGtaxqMBxjR9orSqnTpq7rmN6SBGG2dc3qnb1a2mKZ0lSOITBHVjkOEQFXrkgoXpbJ8gCPqxLI4HXNtzvN3UC10Y4+aF2o/fxhjGo22iRcLxsbfgmB0zmWySxMP+nsdJiNXZSpRJRQxHE7QR/bay0FhbU5uqNxYPohBjNWHsOJC6tWzt7Lrxsu7U7CTyVEOeL7ATnyixGq0bjA/mpNIsl3OSKFrxxYSTsh9NRP+8WlMzrwzHh24sC8MIa2OqvO7vS0jIfHlIFAdYvxazrWSYZr0hcr7QPHL6Pr4WXO/H5rIs3PQvA0o/7keBIJABuhviRYBpDJENeOwBZ3Hw7Ne/yOk0xrSS7c6c/uCI+zcnlEuPrAgHCCXJ85zdbYc8qNEIIdE+SWqs438bVROnfowoJ0TxMXWpEBteyKxaoJtjKv+MrW6ZjEYkyZilR4nFcczGxpC2bamqZd8XBAbT+D4mlmRZxHg07IFqs4MjpJSUi30mY4eCMcrStjNKX3HLojESiW4blK++itQSxxltIxh7IZskDVFKsLfnkitSBtAqmsb0EvlRMAJtGI/Tfj2jm1Wy8E7tG3KuhBD/ixBiTwjx5bVtHxFCXBFCfMH/9/61v/1FIcSzQoinhBDf/o2Of7fdbXfb3Xa33W132912t91td9vd9v+H9m9Sufo54O8C/+iW7X/LWvs/rG8QQrwO+AHgMeAc8KtCiEesPWEEcVtL0yGvee23dMfAYk7Az1yGzGAJ7wDr8pjTNc7O1sSrAKkIU7ZkowmhV5yzUmCQeMgwy7bBWEmR16jQYyhlgAwcT6EzO1v3eOhaJwu+/tlaixWQpV05sSWQwcqDyVrqunbZmHZdTtRibYvy5XwhLdaykkqWwknBCtFXFGDFiRJ2BXvTZt0cVKLoqiFrUKgT18FtsEApJa02GGn76lVXRXolGNwrtf6Ya5/vBK1br/Ct389bj3NrZaf/vKYodKeK151gekII1vOv69wiB690VaHuGNrzxNaztneqJOnuHNbP85ZzF6b7fV/pEV2JiNvaN6pm3Vo9U51sI6/8fGynaKh1X/l6Vb7YLX/rKre3fq/zXBLCKWJ1ePxmrrnv/gf40f/wh9i74SA5n/7k71JVFZubjviwt9dgraUoltieT6kJhMRajVqTPa7KfOWvglO4PLW9wwc+8AEATp06xU/8xE84yN0tJpudolEShn0GW6+9Q1GaUJmW2g9d4+1N3vmeb+nVNJ/8wpPs7e0hsVy411VDtrZ2qOv2REX98OgArOV45rPgArZ3NnjsjRf7TOvNvX1efvlKr3oGDkao7QpyrLV2ZtXCYDo/tShy/ly2YTD23h6t4IFHHuH8PS7r+MQTT/DY6x/nm77pm7j0/Av+9w546aWXaI3m+nUnd2+wJFm25lvmIELrFdrp8T5vfuOjDFLFhfMuWzifzzl7ftJXGZ51N5Kf56f5eX76tj7UteOjm7dty6nJT3x2Gc9/yj/mn/KPX/FYf+D2bcDPwE0O+01LVlCwX+cyv86/gJ+EJ72a3pP8K/hZ+Ot8ZHWcv+r+t86yAdjneT7Cf/Zv/7xvbR+Bp9k/sek3+PJtu33sFz/Fx/jUqx7q1GbLSy/tIVUNyl+RFdR508PKjOkMqG0vO954v8FABCw9z6Rt4X3f9u288c1vAeCll15iNBr5Sq5XdoycLcGZM2f6vueqHg5RAhAnEcNhxtHhIdtbTp0sDAJe85pHuXTpEoe+SjPDZZ3TgZvrp7Mjzpw9zSKv+spHEKUIGSID0fMgq8pdVzZwcJ+vfu0F3nvh1AmpZeX5TkXe9BWLNFOUyxrtq+BNXSCkPWGFEscxTd2wWBSMx26Mq8qW+Tyn9siVMHQUhzBO+6pGUdSIqmY0iPt7Mp/PWSx0rzZnW0VdtSeU1hzMctnbl1Sl7mXkO86VFAFSBFT1yp+y1TVZFmN9taAxAqVSYqXIPFQR4RSZx5MYdKe6J7G66XlE8/kSqQxVU9J5J9blnDgaIIWDvIFDiVy+fI3h0Pt6WktZF9RVy8xzVkfjAVWrOJhe68egsnSV3/4ZpCnmmnD8NF+ZH4xHbq4QLYF0zzRJMtI0RreeD1iL3lcp8tWX+bICo8myjEB6SXyboII1ZIdVjDbvddLvdaeUafu5I+mWg8rQ1hWeHYKQjvdelEsiv64Nk5KgLNBtiRduZrC9SdM0FJ6DFUio6oCrV47oVlBZNuBoUQOm7wtGN46i4p9nUzZgQFrF4XV3LKUjtjc2OZ6WKK+WjW3RdU0Sd8qYAhUq4tGAbtm+EY4pyyXCWz/MFiXDgUQEMR210MqAgxsB2XAHYxb+WTUoVhYOKgiYTedoUTutAhwcfblwfbiDjAaBoaxyku7ahGGZz1FhTF113qkZQgoabbjh4YST0SZFXTIYuerkIN2krktEW/YVL6Mt9bJBUxL7Nfpyf0lRFL1q62icsqwWBGHUKwNOJltYJbm2t9fHJaH6vwkLtNb+phDi4jfaz7fvBn7BWlsBLwghngXeDvz2q31JG8PSk8ScKa9dwXe6Ew0CrC5W2+zJBaAEEMbfcP/iRc6XyQqD8rh20YAIZAfTRhGjJARRTJZ6TLmUIFrqciUw0C2YTC/Tbfp9uwHRGFcWz9KVt0cQOGf3TrYzkNLBnFTUu4WvfI3sWjAVIIUg8d4m3eJ5fVG/euFF70Dt+EereyuEwAqw+mSgcrvAg7zt2Er+mwVSbqJdBUm3BjfSP6tatyf2ubVJi5NnFycX7Le29e2BkGBtXw4/ca4d56gLCm/9+x04U+ueHev79cGntUghMYITQhCvBB/sg65X+31/nmYtcODWIGcdfnoHcY5bITruK3cOlO4UEL3Sd1/pc7dtPRDtuW/WBzK2wFKvDKaDgKIouPe+h3nXu94FwOy44dd+7dd68qzzXOuMI917dfbcOY72D0CKFZfBQ3C7ffKi4LE3vJ6//F9/pOfsTCYTvvU7v53P/vZnen5DkkSc2tnlOS/pbK0lVgEaS2fsZX0CZDAYoTxMZjld8IXffYJnnnPE2IcefYStU7u8/g2P9QFXFg1ZzPPeFgLgh3/4h9k5vdMnRMqy5N57H+DixYs97HEwGPDf/OWP8OxTT5P6AT9fOLuITv5eCEGoHIm583w6Ol5w/vx5/tJ/+xf78UW3lq3dUz006zv/xIeJIufb89jrHP8njmMnIb+xwU/91E8B8Mlf/1UkKyEc0wYk4ZiAlNaPeVUJO9v3cOXyDT796d8CYDQa8+73vKO/ljAeEIcJf+Mn/novmNPqgFY4ft5/9Z87mfO//w9+nunBPn/37/xtAK5eedmNr4QYL397+swpvu07vpOj6RzpYdxBFGJMS7vwAbspmUxG7B/sIToeRghRFHDj+nXe9w7nS/biS8+h6yVveasTIRGmYbacUtAgvKDFmVOnybJhL8AwGg9YLo85f88ZEi+ccuXyZbaGWxSmBu9hc7xcMhyM2Ry5RdqymhEHFqRlPJr456eoGnMiYM7LJcsyJ/XmleONFK0b6kpQ5d7HT0EQSWcz4q0T4zgkL5f9c5EokiilbnRv4RsnAabV/Okf+ghd+5m/9xe8v9lqkVbpHGuC3nKjmrS8ePkKrRFIz/dtyiVNo9dks1fzVh+0BA4uZo3h3D0X3fWMtzBWslh6ifVyyZlTu1RV0Y91nQCGECuz4bKsCcPVAtp5NCqwAcJbEwgpCGRClo5oxp0w0wylYuQacbQqa6SMmM3dOQQqIorHLItZDzvKvUz7+QuOUP/CpZd4d3OOjTW4ZFsZbABV3vTwxdnh1M3jHuKMMQSBpFisuC+mce9uGmf9ghlhyRfzXrxqWSy8gTy9zUpd14xGI+YzD5vTkjQMaVqN8CT7OI1oyhIlA5SHlt68sUc6SJF0Y26IFAFC1GRpx9+WNFVLEg57c+WiKmnrkM75szOJDoOExdz7R2UxwoTMjkrCyI83dcVgkJIk3cJ4RBw5kYZuzpjlR+RLw3iUcXTszXHTiGyUUbWrdZ8Uktoe45GtqEhQtgu0XGC6eUa5/5TycMZmipSSmprKBzvzfc1wmCHskLJwiZPBMEIfVmgfSCtCJJClY1rVJQ1a0jCgulqxMXKQMdM6sY8eCh9ltI2hqhrOnHHy3lp7fk6S9F5UsRwSGNvz1Q0SKwKG6cZq/o0sm8MYhEZ7S4OqgiRTDCbuOMu8Jt7Y4MbeDOkFQuq6xtSW1poegh8FCWES9lYa2hqCsKExAaNNZ3zfasHSVNg4I/EJCDVomM0WhL4Pu1Rzi2mr3mJoKVvyfMHmpktsnD1zjqODPdJgxHgQ+D58nUFUE+oFZeOe8e5gjLGS2gfe2Iq6qbFNCz64K5YtYTRisrEDQcfju0GSpZQ+cjMIWh0zK6oeonq0f4OiaAjChHnhEoRNFVE3iu1td5518SKtzkniqE/wZllGnIQURUHiI9owDNGm7RMSx7bENIY0CTjydhc3p9cIgpiyXK4Zp/8/53P154QQPwj8HvDnrbVHwHngd9b2uey3vWqT0k2IAFiLChVSRP1itG1brJF9lO52O6nY5o8ECKzH2dcYGl2TjBLovG/qxmHzbRc5S5q2RNikf4HatkWJCCODnmDuojnDOrtFeZ5G5wmktXaeM2Z94a6oqxoVrI5d5UviSPRqKHGsPJdC094iQtAFc0IIhLEIVoFMd4MkAr8euC1o0muLM9lfX806n6M//toi2xhzW5XHWuuCilsqQuuu6uACEH9/KYWrAAAgAElEQVTH3LGEAAuhXAWAwgcxt1emBKLjx/AKgcEtnCEhBMEdjiXkyYX/+jm/Uru1crXiqZ2sir1SVW39nLrjrf/9VStxovPdWr/g9X/6zKMVdwymbmt+sdkd4tZqrxBdoPuNjyUEfea63yZtr9rUFe+kAm08B0IIAhH1E45GEAQReVnxwssuAHrnu97Fpz71qd5zzfnnOHXQLijb29tjYzQhjIMe057nObpdI/kawwc/+EGu7d/k2Ku2tQI+9OHv40Mf/j4688g4cJ5v1664bNeP/diPMZ0eIaViPHZZToUgDELaqu5V9+bTY47mBxweusl6erDDm97yVv7lx3+pV5L6wLd+O9PplLYxPTH9Pe/9Y6gwYOaz8CoMKPKaL37la/25b4xG/Ad/9kf4az/+V7h5wykrpUnkzLS9EIawzthzMBhR+EBq+/Q5/vJf+e/IRkPKm64SNBqPOD7KuX7VVcoGgwGzo0Ostdz0uH6sJQpCbh5N+dM/6PwFP/TdH2Q0zPipn3LBzpee/BpCKIpygfQJnnx5zLPPPMXW9pAwrPzvtVRFzleefBKAe+8b8eD9D6EQvbBIbeZYE/f8OIDPfvaXkKLlW7/9cXeeyeMEgeLgxh4q8Fn4yYjj4yfZykLOnXXTyI29Fzl1docwdsHjYtGyuytYLhS7u6fcc2+cEImQuwy8ktTZe+8nwCCCblFYk2ykRJunGBl3j4/LFiEbfOKTpjkiHimu7F0lCb0iXZywN52RDMDbpLAZJSijoOnQAjFSaZo25OBwxSlBKLRpsLpLzAmUjVhWXhmwUZR57YJEH+yEYUh+XNMYTRK5Oey4UmijejQGumVZLhFGkMUuOC/yuk9EdG2wMWGxWPSCKMfzY1pVE6gBlecNUQqeeeF5kIraB50SiVKGyidAw8BXcYqyF+ewQlIWOX/0W7+NsV+YvvDiFRZ53fNOARcQGttznpuqJgpClJBrJsIVMlD9u94nMgPFYuHu1alTp1guCna3T1F5L6YkyimqmiTI/OeUoqhQUiLofOZKhEzJl9O+ihGGHarEj1OlYDQ4xf7e51Y3r62p64bJcIulF3gQpmBjlPXfm06PCLOMU9vDfq1SVZWv8Fdk6YqjMQ6DVfC4MfZB6kr8Y7S5iTGCqvT8nNQld9s2JvECOuONjMU8p9FunQEwTEdYaXu1QtP4qr1MqD0/B9OSRgll3fbVCSFb8mJJGHTqxJrFYk4URWT+HZLGGRQLYzBN5+NlmE5nRJ74PxgMWSwWiFBT+0W2NhatXdWmM3hu25aABOG5MFEQUZslG6NzvY+XtY1fi417NIRKGpQY9lwqTU3TNJzaPNvfTysFYaQwTcnWhrtXi+WRU2n0Jr/H0ymT8QaL4yWqdfvEAZiqYZQlVLlTvD2eLymqsk8iNGFA6D28vvTM7wFw7syuV92rqDyXyMaCJExovMjN4cGCsmgYDiYMfeJrYzRm0Ryws7NF4TmySbqNDEKkf7dNG1JdO+TG3lHvBVnXrkq1zpFVYUTdNGhf2UkHCVBRFJANXHA1W1iixBI1Ca1fGxjVsDkIaH0iLFSWxXJOlqwUIbUoCYKG2leunr58g3yxT11eJ4ldJJwkGbujTXZ3zvaJvsVigZQB0cip8pVlwQNveJCrVy7TGX9HWUitNVWpib2H1fapjEgpirYTV2mo6hYVC4Sfw5atItkaYKyCyB3/5s0blK3l4NApD4/SIUEyRgjIJm6cms1mlKVga+K89QBqXDI39++aFBGtXbr+5BP92rpAPAhXXPZQvXr49AcNrv5H4Mdxq7QfB34S+OHfzwGEED8K/CjAZHOb0MuL0pdgbV86lNISBYZ6zdzVrRNlv9BeX6iG3mwtVhFNXqKMJLCuY0zSDcrWEvmOYgJQQYQKRJ/t7ciKUiR0PymD1kl8+5e6rRtftTL9wBaoyE1KddUvkFtvTtqXEsOQw8NDr7jjgx3Zyc2b3hwPXKlesDIyXMHy/Dmtwfm64A3bnlz4r1VO+ntl3T3tzvtOTQrJuihE9/uBECsJdrpgQ/fKTt229Weyvu3Wf68Hf65CtIIvrl/z6rdur+hwSwB2G7zQRbu3BUSvJJCxHkh1wdZtFgDf4N99sCo6c16BNXcWBFnHAd6pqtRJTHe/oPyxXy04Xt//1utbr9i9UhVx/TyFECcqtN32IFiDu3q4nZMjdhn8tjEIBFHUDVoWMERRQlG4CfTChQt88Lu+i4997GMA7O7uUuQ5jdXU7arSOZ0dUzZlP5mAE1johGP++Hd+B29885t4+oVLpH4SMtZy4+AAKWWfKOiUMTc33Dl+5K/9OMVswY1rV/hf/+HPu/srJUpKsE4+G2Dv6IA3vOF1HOw76dksy7jy/PMc39jnjIcqDQYDvvSlL1HXNQ88/JB/BpLnXniJNHO/5x2D2Tp1uhfVEAjiOORv/uTf4R/93M8C8Ku/8glUZHsIoLASQcB0WqB8tvlP/eCP8uLlI67ceLqH10hx5FRTfWb36HiBlMYFwmJV9TsqZoSh4tqem4hCJbiQnuXxt77Z3duNA06f2WWxmDPxGfwwyIiTgNFGwLd+4DtdHxA7LJZHPP4WJ64wHuwQxyn7s9+h8oajW1tnMNVVjqbH/bN77WNDtNXE0abvS5K6KHn0tffSwQoaXSODiCjK+uruufsmIJq+6n/6XIKua7Jss4dit9YQBBFNa5mWL7rz2txENLJXX9wZ7aItLEwDhTvP/Pg6w8EGykvsjuIBra44PY477R9AocWMykhk5RaiaSwJIo1k5vtlgGksWdLQQXmKpkGbBiUkmRfxqEsHy6oqL4RRLYhChzKYzt29OnVqF6UEsYE4c1Uwqyyz5ZyJXyg2lWJZgoxVb7w5qFaCMF2bLeZEUbAiZFs3lgyyhKWvCI1GI/b3D2k1hD6g1E1FEKxMr9vGrKnkevjrwTFve9vbSJMBv/GbDkK5Md5hON5iPnOL7OEo5ejoiI2NDYqle283Njcd5DVS/cJbCEFVlH0WvkVgbcHGxoDSK8IZHZANnIDAZMMF1fv7N4lUgPWLsiiNyPMSLWqGHp8VJ5Yin5FlI5bH7nrKpRtTrF9vlDkcHl5hkKykltM4I1SCJE77+y5UjW6doTvA7v0PMBpuOGicTyTWQe2r8YI48qqQoU/k+ve/rmuEECi1NvdIATboPxfl3FWbB1v9+FstWpYzzWAw7OXgq7am1suVQIJ2lcGq1n0grLVmNjtGhUkfzIWJs0JouqSztEgM8+N5319UIMBYiqJAG3esLEuIooC6cUHvYm+KDAOCVlL7+6J1TRBEzKZ7fXWybVsEqodCL5YFVVsxF8fotkMLhRgDUdT06IDhYAMlDvtAUSmBsJKDpkJ0iqxhyOyoptZNb88SBJLFYsFw0CUcBHvHRwgd9VYTaRZTVYVX3fNiakmCqTVB7CuK0zmlbVAqJLLue9evXidOArIsI/e2BuVecUJoBBmwyJccFwf9WiIQEhmkfOWpryN8JScJh66y6/fZnJzi2o3naRuzssTAIj1dIQw6GfKWKIpIow4m3xAklqee+3pvTSBsQL6YoWSEtl5oQwXUVeGEkQARBAxGE1A4RUsgYZtRJnshpfFoF90CokF4IZOqELRYruUG/6gI5ARdVxTHPikTxlz5/AvEKA6nLkm5fXqEClryRUHmg6udyQRky8hXzicTgZAODdJ6KO/k9D0siyV5vQDj5qdTZyccHC+4uOUtVcKW5aJGiTGNF6vJBltoU7F/7RoTjzQQQiBVgM38+6hrGty4VHvLprbVKKEI19Bctnn1pPQfyETYWnvDWqutS3n/zzjoH8AV4MLarvf4bXc6xk9ba99qrX3rwC8M7ra77W672+62u+1uu9vutrvtbrvb/r/a/kCVKyHEWWvtNf/xe6Bnz/4z4KNCiL+JE7R4GPjX3+h41lqWvrTfQbHWSeFKBVjhpINVh2X2sLU+m84q217VLiu2NT4LQUIcZR4KB63QSGsxdERxg/Xl+C5LFIQjkDlluQBf8VIqcpKcnjdkhUEFijCMqbx3gjEG3eZYo1A9DNtgrUB1FQxaDvb3kbgsfnfu4DJDq+KDRLGCEThIQOsT32v3QEnPeerlIu5Qjejwzx5WJgM6EY31Z+D+30HyLILb5XaNMZhmBXVTSiGQfYHMPQPpBUBWFaeOS9e1tm17TG933liFEE7+tLtm7Eku2HqlBFwhwKJ9ActXWqTF2Lb3eRLWYIX02PNbqzv6xLG1bnsIyXrFbCUQ4ouArKRmgyCgbW+XZhdCoPvqqwDZwQnXoIJKrvhVpiNz67WCo6saNUb3+xlhQNHLhKJXz8L0PkkrX6r1/rJezwqV4/m1axXQ7jha6z5TZkzrTHa9D1QHVbXSov39k0GAvMVoOI7csxO95LzEWkPbVgyGLuN27eCQD3zPhzg4dNm13/jVX3dwwiAg8jCoqs4RYpM4LFC+kiuEYLmc8p53vxeA//jP/iAvvniZOIqwa/1aKcm6fYEUgjBJWHjoQroxYnNnk8fe/EZ++Vd/A4Ab119G0WB1SOTxyvPjBU8/9SJ/5Jv/iPs8P+bGjWu85g0P8453vAOA3/n0Z1ksp2gs7/pmx/UpKqjrgLx0Y1LT1FQIqrzqDXTL/JgiX3C8P+09gu65eJG6vNlDo8JgiJSQphbpB5df+LmfYDTOOH1uROj9cBAB586dI/X8ChV4ARsjCPz3JlspStbMj0vOnna8gcEwYrp/iXe8xUG63vaO70K3AcN00kvG54uFg5oJw76HXkRJzs7WKaxw6cqqnBOEMcfzOYmHqM1nV6jLGWm2qgQsFnMntz/3UCUbMEg3qCpL7g00pY2YbA7RhSZQbiy0tsDaiDj2HLai4fyZi9RNyXLpK0dJhjWSKEvZ2nCy6svccTNE6449L2YEMiRVimTbZUwf3nyIum5QPgPeGs1oOCFJEmbej2tzcxtltp2QiMf/z+dzrh0c9rCdSEOelwyyEXHiUQ2hpJjPiOOE0nNDiqpgI9nA+AJTGEZsjAekUczuxD2H0cYEMFy+/jKzuXtHlMyIZMhy4frUaDSg1S1ogap9NcsWyOBkRXowSNEtNLW7lioHGVhy9vHTIxFnmc9qpLTowO/XOj/iOPIE8MIZestAsX/ooDWPPf4G7r34CJ/4xC/x4INO+vna1eskgcV4mBcm5Pj4mNOnTzP3fb9tW8qyJImzvooiUH2FA6A42CeMA+qyII1dP6+qgjiICaVCJt38MGA4bFjOvAiEVaRhRZm3JLEXnSg1oZaoOGbhSWyDoa/IFa56MFvs8fWvzPjmd17szyENA4p8wcZg0g+h08MCrW1vvyBtyLPPPEOSplQeDjbIhlStg/wVi67i3zBfznrj1izLyP8v9t4k1r4kz+/6RMSZh3vvG///f2ZWVmV1dbfb3UUP7kaYhbHALJCwkFnBFmEww8o7Vl71BiFZmB2WNxaoJQsQEkhgJttYbYPb2O7uclcPNWXlf3z/N9zpzHEiWEScuO9lFjayG6mRMjb/fDffu/fcOHEifsN3aI/UZRU60LNO0POB0XsLDXpCipimuw/EfyUNUZGw6/ZYD7OamBi1IV88pqKIPC9IlA1nnYgNmB1C2HCG9YeONM0YlX+OW0lRKeSUOb4bYOYOo10HIvb7fNuM3N/tQ7e5KAqmVoOxePoY2sDESFlWAcI5zxNREvH23WcAVFVNhGIYR5JigSE37PcDWVaSeE5Xp7eM/YDyuMB5kCRxQSw0feeef2M043RATycBtK7rOByP1PXi1RYzDZo4TtGzl58vYrruQJrUxNJ3J4mYdM+i92BMTFEUCAnSN6VSkTFry8NDF/aAs+uCvh947yHjSkGcxcRxHGIspRRCJghlQfquiW2Iyzqcx5NoGGfluo/9Ikef0bQdUZQg/SRfbi6ZppnJrylrEso0ZpoO/K2/4zwI+/GBPN0QJ4o08Z3cNKXv+9ABK4uCOEpJ0zSsDSULoligohNyJVIJVscI75clcHoCKMPF9dr/nsXKU+w0jgOxUsyj4OJjZzpvrUXPI1ltaFu3Nl7uR7p+ZPLoBK01WZbQt2OI49vmO+wP91xcnDMNrgsmmRHShnO1bRwd5+HhN+kHt1c+e/4VBDNZljD6OFapmLnv2Zy5c6CQKWWaOGEVfz+3uwO90cxjzLZ1c3x2cRKg+lHjH5tcCSF+BfjjwKUQ4iXw54A/LoT4Odw28wPg3/UT9Q+FEH8F+C0ckOI/sP8YpUCAsir4pX/WwVG6rqPve2cG6GENXdfR9a0z3+NkhKmU8gEiHi5kwDozRnAH6jBuyYsoYGbHYSbJFPPsdalEgjUzQqlAMJ3nyZk7SoHxrfvFdDMKZsAGqWLsfCKBT7NTNZuMwfqHZZ6t24w85KFtW7r+i0Q4J6JhgvKQtRopoi/A0R6LWiyvPVavOwW3y7/Oc+NpTvGUD/Q0ETt9jpDmxKnxr9nPBdDzPJ+gb5wSEYtTLQyvz3Pg7AhpQbgkTATxCkAsSaA5vTcyzK+7Zgd7lOqpqqBLIAlzIATh2oWIWDhmXzDffSJKYZ8k9Uti5z5v+Z0Ftjoj1eK1Y0HoR0mEAl8kkOSP5hNnGB04c14Vc/k7tfhnKRKfyGjtvm+iknBdeu7ceveYB6MMWk+oKHnEkxMsGoCLT5UxLnBZvvHs3y8W8glZ/THXDFwyniRJKBgs0NX/6N//M/y+jX/96Y/DF35hUXHbPXn1f/fqZ8u//1TjT57+80dRVV9x4L/hu194/Vs/QpntL/IX/H/9hS/8v3+y0fzIV9/T8D0+r7z3679Pn/n/3fjxT/4Q49RzCPC353TtgFSGeu322Crf0HYH5tmSxAuUTZEkWeAW2RqnLJWlKOVgc3Gc0LVemWx2h6rQhiyTDMb9Xb0qEXIkUekJ0mQVSZphlyKJkTw0B3bvXgbu3XZoA3m9e/DeYlYzK8PRk/Pn7uA4X23LMHrhjalzarOJZXt/WsMP+t7xBoBp7HnY7RBCcX3heATNwwPjNFGuzilx8Jf3t28xOg5Qt+32lrJcM3SCSXt/Mzsye3jcMuQ4c7m+YNI+UI23kK/ByvC8N+2Ww/6OoqgZjp5zJSJkpOmD6JTjPk7TxC94k+SPPv46f/Wv/g9Y68QEAEY9UlRlUAEc+omz9Tl2PhV89OgEb/Q8BvW8RXBlSbCqVY3WI0VRBK8tbSRVXqHn03lhzcxmcx58p6y1JEnCNGp2OzfnVVXRHHaUSR2En8z4NAz6hV/4Ov/Jf/zn+am/9OfCa6OeQUXcP+xIvE/ZoT+yWm3Qxpudt4I0XYO1ZD6p7vojs4Y4KkF4nhIzm/UKK1wwNwwddXnNMAy8eeuAPtdXzxHKEi3CFEowm4mkSAJEbt91FPmGSAlaX+BNIkWc5QGqKOeJ/dij0iTMkx56jJi4v7/n7MzBcl2MPjN6IZU0XiGmmUgojFl4Us74fBw0s//ORZm714LKaAyxU0w8+mAZGVHXNQ+7lmqRxRMxwzQifNFkfxxhdLx67Z+Z/XGkaWZ2D9sQv7VdwzDO4Vwty4Jpeknf96w3LjF9/vyaadgwzS2bzaLolrHZXAdfrbquT+JVfiGcrWu22y1tM5DEPsmdLIUoMYvf4ThT1IU3eHb3ZrVaeSioDOuzH0YsNhQRAaq6RikVYJbGGGSkaFpN6ikpds64v+2o68ULr+ftq5Y4kRy9IMr5xQv2exDSBB6msBPzNIT3rjbOI+14HHj50hmnl+uOh91nCLJHcZf13MzFl83x3q21obC3WV0gRYqS7nksigKpDJg5wCeNgSIpHeTXF4/m2UFIK6/CWVUrQBKnMtxPt64046hPP88Wa2Mmb6w86ZnjXYfWc+BqqvSKTXLpfCp9sUEq0NNAXLu47HKtyPKYqw+/GgqEU9MxTT1JmnH/4OYzjl1ip30yF8cKHSuUKEIR4dkmZdADt/c7XhRuTc3tPzq1+X+jFvhv/oiX/9I/4vd/Gfjlf9z7Ph5t0/Lb3/pdwN24PM9ZFRuuz13VMY6dWouxY7gpx66l7/uQ7U59R9eNTOOI8DdcJTHHw8zNuwc+ufJGY7pFSad6AyCimWFwvKFFicRYjZSSOI/RnqQ8jQ5jrv3nCxwxPcuygG9WsfTJxakiNM+zVz46JQz7/f6Jwt4i0vB5TpAUArFwqbwOlFNSfMpZcupyS9fk6dwK+bkXOHUePj9cx2W5JsM8T0/U85a8RJ5yHc9JenTN4fNO3bPwPZecQuC7WIbHSaBEYrFBLVAId+g/TvAW0YtgbiyXz3mMcF2k/E+ft7xf2ETsIn//lLdkHxnvCgkqOiXz7vu535umGeVJp1LiuUanx2kROTl1f5ZE9tTRkzJyXTf/N9bMxLnrrmnfIY2i5bpPXcUsSQN3CDxHKEmecKyEEMQ2hUcY4ZkZKR8pCxqLsKBt/0gYQgee2bLW48iJEcxywcIrfvnP/2cuwPTcqVglrgqlNTI+caWmST8h1ndd54oWj+YDG3PY+ipulvF7v/ttfu3//FUeHpwM6tD3TLrh4w8/CQWXu7uOn/+Fb/K97zmloA++8oJnH5b88Hde8uy5C0zj2EmXl2VOXi6CGY77cueFKbI8JkudYflm4w6Bw/7OB0CXvN8uwc45eZ4Gkv9v/Pq3KYqKPI+pai/rnkc8e3bN2Xkd5IT7vnVY+PTU9avrmvXq/JGQyUzbtsgoDRwyy8zF+Vc5NI7jdTg4OeNh2rNIHK9X12wfOrAj67U3xzROcXHpuCmluL9/4PrimuO08/N5pKwKpIixs1tb63XNMAwki2XF6FSRZiPJUhdoRLFT57vfbll5krIiZne4QeAO3izNqeqcrh3Z+O6Ligz7XePUF4OwwMgqr8mDsIFm6HuEsCE4f7g/sK5zRttTebnkIosZhil0MKQUHJs9Yz+EZEMIxaQ0sZTB/DNfOblrG/vzw3dv0gzw50V/30BGOGOGwck+l3Ea+KlinrFa0+12J3notqUsc6wnhRdJQhonNKPh6PlGcSJIVML2fheEU6LImXWOPiFKkgwzzyRJwmdvXUCUZClpXnK86yhTd51n5xfsdls6X40VMnXBnLB0o1tTW/1Anj+trI5S8PZwQ+kNrQcRY7qOdf0CfxsYDh2HfU+1UiSJr54zI0VGlLrv60QxFD/3s38kJJ1/46/9rwxdwyc/9lMLlYisLNg3R84uL8IarqsXWD2HzqoxxpkvixN/M0mSJxYA0+TO42ma0L7r3x+PVFWFnXWIAaIIHu73LDSDN2/ecHZeszmrgujMEPcQzUyjovBKZz/4nitO/Jl/708B8Cv/xX/NH/5DP8mLy/Mwd3mi0Hp2icXk9uFNVSCwDKMXqxETUiR0XRM6lljHq0tTsLP7vCzLgrWLm6dF1CFlVbt7tj/usEaxnI9KJeh5QI9j4LAVxYrEFx+VT0Sb7oiUkvoxt0kIhJ2J/MEdV2uSSFHLLKiTTtPkLDEun7k1RcR2v3My8f5e3W970jhCWImUp7PPzoYyP/FXbDQzTYrMc0PXVUzb9iT5aR+UKqbtDZNPpPIqZ5h6mm5k7zk6wzhh9EjTdEHtLZIZxVkSEmNJxsXFBVa0TL4Tocc1Wk/Mk+DudjmLFPdzGwymu649FRSN+y7v494rU0oG6VUNs4TmcAxJ2TwrPv30DVF8KgwjLHmekyQJekGzoFBxxCef/Fi4D/M80/f9o32jox80s65489LtzeNwIM8Ltl4I5+bmgSRKGceGs7MLP+cR6/WZay74zpWeDMLK0NV8uN8jiNmsz/n+9z8F4Op6zTg1ZKlC+/JhVZVoo7G4vauuS1br0henl4RPk2dpaEgoNSKs5wr6kCdNIpSaudm9xfgYahgmsIJ960Bu6S53hZnRkGW+y58kHvkkgopp1w3kZYEH/aAHQxTFCBEFPt6gHU8xjiN6H0skMsaqHOXjJaME3aSY5xxt3J4bF5oqjZn0SK7cB4zjSHmuaBfO5b7l074jjeIgoFHkCSqK2B5UiPeTR/zvHzX+adQCfx+HQHtZ24eHLe/f34bkBE4y6FmWhkAtKwuKonQSjjhyu/CeTP3kApu/8Td/lbouKas8VPSG8cCh2SK8XLQ/G5yTu1f4cd4bA8YYtF4yfJdkBJWjyZEaH3v9DMPgg+wkZOJKuUN9+fw8z9HzyKSH4E3lAj6edIAApnlAxSc1tEVYYenkPBZaWMZjmBuAfaRceBonEY7lfb6oyud8hZ7KlC//noQOrH2aFC6QuB/dTQufePrck5TdCVYXPu+LML5Iqi8KU3xBMv6pUIe7psfQyaeQv8fX/kVI5UlZ7/GIk9N8WGuxGBCntrkSFskJ8hdFS+fsKc1RoDCLBLgQGAuz1uH+LBC9x4exNTMCFdQfZz273zPzI1+kCWlnhDnpW85mBqWCWtny7SwSn8thjMUY6+B0ATo7e2GNBRIrEZFlmHrikDRoJ8gnLfiAfRg1SZLS7P1hOXRe9nQKczx1ljdvvh8qod/61m9ijSHPE37u55xc+93dDVob/ti/8E3axgVC7bHn+qLkX/kTDta2WpfYeSL+l386dP3u3r+hKDMOhwOJDxAurs7puobLy18CnHpQ1zWsNpdYT9Ku6ozdbksar5kmB19I4oz9/sBm7TbpP/Ev/VEsE0LF3G+dMl8a1dR1xeG443ztuihLAhqpRZks5uW7V2yP44nszOy89zpNVXkfn1jxcLdH+APg8vwZdk4o8hzj+3pS5JxtVsy6YeXhLrv9A+tVFQQgrBFUaU6sIkrrDsvNpiSJJF0zkvsOkNkPnBUVdqlSxy6gFsgg0y1MxLPN15HzPXG8PMMx6bk82ViomXHqKS6uQhW173uuL8/o24HM3xurBXroQ/EiTWOSCLK0YpzcXrmuU6yd6NuBxHsujfpIEuchCTVmZnNWMY6ah4cleZzIi5QoEgw++Z+ZkCKl693Z4OwyJtJIIKVXqbMTibeiVKsAACAASURBVLJ0HlaCEowYjs2RNFlke1NUJIiSJOxv1x9cM/ZD8ERMchc8G2ZktHTcDNOsma1m9DC5thvpuo4k878zGVb1GV3f8tGHTqTh2DYcjg+kecXkn+Q3t+9o2geur93vSJu5PTeaEGYhW2+I48/7sBiQA7cPPnFTzzEWvv/D3+GDj926+zt/9x+ijSuQ6NGT4+eIUQ8sPjfPrj/i6uoZ796947PPXOAWRW6vPjt/xrjAieKYtzfv+OhjR8PWWlOWOcPYeVj8SWDGwcYX+enDE9RGmbtO1jibIBgQRRHH45EokuwOLhB+9vyCw74LiIIicz5weZ6FfbFvHfyt7e7Rg3seisqLpXzoEoS/9r/8Kv/Ov/1vsclPm/55kdJ1Gm1BRkuxyxBFEb11a8NBrDrKdRnimXp9SdsdKcuE7c4l9O1+S5FmYT/f7/cOkmRtIN4zzZxt1hz83xg94FCelovNWViLmVJPilerImcYBq6v3f28v793ipNtG+CLTdNitOH68jrsQXWx4ubmhsF3kqMoYpUmWIYANf/w4pK7h5dOBMLHSk278+eWWxtJkmDMhO77oCS3vTcMvSDPK7yytRMvsXGgS8xjTJYUlGnMB9fuvdu2pRs78jwNRc+26UmzU/FqnmesFDRHEWK5cdwyTGNYk8vQegxy23HquttSSpLSPY/7bkYOEUJYtO/6dn1DnpWYBXWjJbGX4l/eK0kSDu3A9vW7MMdWC+Is5YevnXi2lNIVDfqBySfnrhAJ24eBaTyt2eY4sCBp07RgHDQqMSydx1evP3Ww+Tjj4cGfPWlGXdfoya2pSAmmcSLNBNKLTry7ecnmLMfYLggsSRn7gqf7u7upQc+Rl5V3388ayTHpECwCJTNdN6F7HWCQlpnRvuVwODD55z/Lk3DugYuL5nlGd3MQppJSMluLQIV7rA2s12tynziuViuETJFA5IuGdnBKkkNvsX5f6qcerGT00FMVeVTXrIKa5cDMsR98YuZjFwEgXXUGKNYlaT1hZsL5OHY9VljOn10hF+XxH4FAezz+iQQtvhxfji/Hl+PL8eX4cnw5vhxfji/Hl+PL8XT8wehcCZBeOlhFDif5GLIVfIXmE+ltt9sz6FMFPFGKOI6JlOL83FWXV1XFNB348MPn/PQvOiL6ftugzYReHMWPPYfDga7fc/CYVufrMoCViNBNWrpM7qeTxLoKVbE4dp0spRRx8hhOdjLUc+IHmnnWJ3EGz8eRUoXPEUI5R+JFBMI4bs5jIQwpncS7q858roP1pBvz+e5R9CN+d5EPf9z1+X/ycgpANqQUSKInXarQufq8oEIQ1JDhd5bOVeBqWRu8fZbX5COBCWvnJwITy9p4IvsuvtiRiiJPbrWna18ghgvkYPn86JF/QTCM+5xYhdYqdHbMPCOJWZyMrb+uGdB2gaz4ObKnztg8OcxygPcp4btEioVmtsBjokg6SfnH8+C7DFEUOTGU+eQ7pXzX7zGMVFrhAJXqVDUSQmGYg7RtFEWOQiYtkTpVaLIsgzn3P7ckScpsJqaFhyENcRwxjj3Kd7jyVGJMy+WFq/QVxSVds+N47AMsKM0tLz6qsb76+/O/+M+xXq/p2wYlF4GZr5ElZxy6T0mUgwo7cr1FGFedH8Yj1kSIJGL0nIvivKIoCmwSkWTu8/ZtxzBp5reuAzbNB7AR27sHjl50oj6WzFoQpz3N0RH2lY05P3tG5zkJjS/B5mWK7t1+M5qW5jgQRZJ371wFOM9H+n4kz1ylMMuUMxRtx1DlnM2IEJKqPGfyHW+JIIpGJ4sLYCOa1rI5u2LSbp+aNcR5DkYy9a7UWeWFMzH2EDUpJR9/9CFxHNM1mV8/hq7rePH8o8BF2VxecWgaisJ7fc0lWk8UZRTujZkVfTdzsVkzG3cN3bEjjRLUsvZnS52co7Vhf3jnv3NF30Ce1XRH12Xom4712YqbOwd7zKsUMOipp/QQTolhmmaiSDAt0KvIMI0N0nM1hmHg00/vuDh/FqCtUZlQlAkWTRQvfJwCay119dWwzm/Gz9jtG/LCzd35+Rm73T7Aby8uLlzFOUrJvSz31dUzfuc736KoKlIPwbHAyBy6o8exR88jZ5sLPPeZqipomo5qXZP5imzXHqnXRTCl1dpxgjdnZwyj9wiyhqvnz7h/2AcTYRUbLi6vOXpOVBTPpEnB/X1DknlT7YMmj71KxTLsxIfPfoJj682OjwYtRpSeWK1cp+M3v/UKFQu0NewOvoO4SljXV2SR60ToSfHt3/ouu8NbMi/9HkcJWiecn13zu991EP+yqBmG/lTh1drBevUQ9muh5Aln4Dvqu92OIq+ecEyzLEfqOeyVh8OBsiyfwKyGoaXrOrQ5ndl9P7E/bIMYQBRb4njFp5/+Bt3BzcNP/zNuzf/ed37b/9mKX/ylb/L2/UnoWAjBZnWGtHEQncmylOOxIwvwS0Ne5KR5FrzhxnFEpIJERZytfPBgLGM/MXmOWV0m9M2BalWTeSTAurykHxryxHN9tCZNCyySZnBrw+gDs8np9ek+xyqiSjIGf+8yGTM1A1UWMXjBl/7gOIGxNSHmmWdLHEVYT5fI4gyjHRWjLBaBAkX17AP6VhD5NVx95UOMgb47iTvd3r2hfvYRB38N7x/uSZSlLtJHUM+JssxpvS+UEILD/oC2OnTT2ranXp0xzobbWwcRz7OEhzeviLyPYNs3xEkGRgQ+vI2cIWyep+Hvuq4jSbPAI+qGCSkj8jznuHd7YFmsaXoHN52XMyRKUbMEj3SaRMs4OZ5S1x/9+nS0lfWmfmSE3REnZmFrODpArIkFSC/JX0YFkpLN5iQ1n0UVwzCGmNL5T0mQJlz71fPK24VEYf5c5xeKzO2dq03FrBXDpMP+0jQHolQQiQu0FyBy2gV56OLM1tB1LU1zDPdBRBZrBbud969Ek6bK3bPBrSlhIkgimq4n9p3UfdNizPH03vNEJBXG9IxeUl3JOHStl46XlJKH46fkiXs+4/cOtj+0Q/DCK4rCxV1SEntfO6wEq4JQTJrGDl2mJcPgvcxkxDRriqJiQTjpvg+xO4BVCuutS7qDu84kyZitpekG1OhRRf+/gAVa+4Tgdgqcn3ogPcZhJ2lEmuUBmuWgU5pu6Lj1ONs4ylhVV/zgB5/xykNGsqQkSVM2a7chlnXFhx9+SF1/g7F3wdxf+s//U+g6kiQLMMCuc+pWSzKw8LOkJCxC7b0GHH/rBB90kK7lOp06EsIEbyo7W4Ry/iMLDFFY84Qv5RK5p5wgjCWSCqEeC0N80bNomb/H3KnHaoFf5Cwtf5cEDtnj+/J5UYhIflFV8DG8Lvwdj35eksYA1TtBEIPIxGNOmv/3sQLh4/HkZ5fdIJdE0cL8SM1v+f15nnlMP1s2tIWcC4+ERqZTAuZe0wFbbDEhYXxyLcaixAKD4kQcX76zmJFCBrETrUfSOOPpvZiIVYTAhPRZShWS9DDXxnj/K8+T0BN1VnkIkr8uOSOFDj8rYZnnyW1UuQ/K2oNzKx+nsEmWZYKUhnZ0wcbVJmfUA8PQUVYnrlbbHKmKIhC316sztNYY4xWohjdYOVJvAOGex5nJBcGROxQSkcA8Yu3A4BOEYXTGsPv9QF06SMz7my1WDeT+QNXy1nmU9DMXF+53hr6laR8oiopxXIojmnFowCtxVnUFSNp+4tm1gxhud3dkWeb4IPlCLG652b1kXZ2H+yltzPv9m7BuutGp6U1mIloEGMxIVp58YPrDkbrKvfeMPwQySd8cGKQ8kf/Hhro6I/GKb303kkQJRveUPojv2gFMz9RD6jHsUhoGPQRvqiItuH3v4CqJ5ylVdU7ZDxwOLaXnXKhI8OzqinsvtrApa45Ny3HbhMDi4mzDdnfL4bZjVbv3N8NMJHPssPAkWnrTs1qvifxzPDUTt/st3/j614NfDOOAlYraO/aqWNI0B4oiCby6aZRICZvNWeCs6rkhT0/GrXJSFNGaKEnAcy6SJGEce/q+I/N8OKEUQzdgfWKakCA9tG/B+t/tt5ydn9F5w2cXaPRM80SKm6fvf/oDiihBTaf9qmtb0jjm8HDv57fGTk54Yklem85x7842FwGrLyWMfUvqg/O6WrHd7RFCBOhgkiTcvX7LYd8EnkJVZ8hIMc5eSW4yHJsdUaxoe3/2FSu66XOCFvkF/+Wv/BqxD+6+9o2cCEsUX/PmpVt3b968payuqasVlRduSFTEoAfevHHPvyssxpyfXbEU9Q7tkbOrFdr7IAFU63P0NHB/6/hOH734ACEEg54CVwvj9uVxPMFkx3EkivoAxXTFnfzJHmusZrd/IE1TUm/Oa/uePM8ZPC1ARJLYpEihWK+9ufLQ8mu/9nd59vySekniPdTob//qPwDg449+nGKtEF78BGCUMV0/gTEhWBzHCaNSUrWoBUuaY48RksPR8UymaUTrmTSvOfeCC23fkiQ5aebuu1KKpmmQMmG9conM7e0t0zhz9cxBP+0MbTMwTCPnK7cH3d2/Q6YRVp/g4MMwoYo48LJW64pROrGITeH+7qNnX6HvnTHu4uUVxwllvUZ7L6Mkzpj0wDS0pD7IHbqeKN4wloKsWAqgzsspelREXH3lE6Io4mLt7tU3Pvkq4zjRD9Oj4q3zLTrz+89qtaKZZrTug0nyoTm6hMJYVuXiU5SwKr4WPFBHLdHGcOwf0L7Ac3fXMaWacdZ8/OzDcA/TNOXde1fMEUKw3++J04Ti4ifc2ugGxDwibETu1QldzBEFBdHcJznKCtIFum8keV6ioiQUeBJKhJQIr/aYpInzEet7Cu8+vt/uSOKRLFesvJLqMLREcsb6PUmoiYurnOMuRnmRtDiOQ6G1rs7C9zkcGoQ3/mXOaJqOPKuwXtFvtdqg55bm+J7BX9c0O5Pp3ovzLOfSbAyFfz6GTmONCjFslW8Yhs4pNdtFDdkg7UCeWLSXP83iGCljWl9hWpWVK3qrIhSYljFjiTydQMWOX9n7/WDWFjEP5GUSitW3uztWqwpjZ5rGFfGKvHJcer+/EaWMswAbcfSqtFUWI4Ti2OzC3rzQji4v3LPWtg66GamEyUO94zhGRgmTFUSxu1fJfFK//VHjD0RyZS2h0rMIKDgey1OOTFGccNlO3GEKQg5SOhUjlShyj4ncH3vGaaCuclbP3KbVHI+MeuTuzk3267evnGJKqgLONc9z4qhHCEnXLllw4kz4fNC03+9Jk5y2bcPG5oQpHE9L+tekF1xYAn0lBMZvhktnYNJene1RMiXxxq3+YVlU3JzC3inBWIL9L3CvPpfYPB5KPuVZPU6EFkW/8PeP+Uw+cLfyaSJm7RzyhVMX6SQo8UUBDeH4P1aGh3NRf0QYjF46OcrxgeZHSYR/z6BE+Dm+FIC0CilOComugxPxRNtDgLEKqx7LdruO6WMVRSEt1sqQ2FhvchxHJyl2ZoGSURChWFQHrbCY+WTcGEXK8aP8u2WxcoRjHyimkUXKGa1PFZp5tkzTgWHoyH0Q0fUtZ+sNqU/KDocdUSQp84ws81WjfYtkB7p3yj647rAzl/U/C8NoR6Y+CQFDRE8SA7FkUaiLRcph15BXvkOrJoQ0mLkj8wHQMHak6Yy1DaPvCu8ODre8YMwdzlnxsN2G4sRswGhLdb4on91DkRFFirp2Xaq7ux2RrMmSOfAir64vGKYH4mVByDVRdeELAT4Qj1OGwfNQ/G3OVEqcRx5nDfvDSJxI6rpm5w8YISOUUrQ7zfMzdw2qjrGcxA4aPTDOA8QC6feEyLiCxbqqORxcgLfxAdUcuwuI44RZJKzXVbjOvttTXJwxz4I0d3O8UQI7T0EmuCxclbxpDtx7snNVbkhiSZbA8eACe6UExkC2cR2vpj2Qpgk3798Qe/y77s6IVUxBQuQnIpng+HDHygdSQlryPOHq6pxD4/lO1rI5u2ReT0xeOKHOL92zu3CL4gQlY7KzjPno+bBFzvrZTNNtQ4e0WOVEaUSmvLx301CvzrFMLPqy5xcX3O/uibISsXBfJzh2A5Gfz+sPPnCEdyCrfedof3AdSwFz5+ZzvcnIVAbCcymalvNqg547pHBruBA90WTJ/VkUzZYsyTBRglpM4NOEThvuHx5CNzSO3V6wnGF915GkqeNeepGUOI7J8pIoikNX0diZqqqR3ixzt9tR1xV3dw8nxdtji7Ez67oMMt2CmP3D/Ymja71SrhEM/l7pxJAt8vx+rGr4u3/vv2Ptu3d//E/8q/z2b/1t4uScw9FV+N/efEq9fsH2/gHrORbdQTvZZx/cqdgQK8kw6CBsoLVls9kgIhG4KBjDuqo4ePPo7Ks/xps377i4WAeDcCklYtTAyfh9SaIWqw4lnRrd8XAyRdZa8/BwR5xkYV7yPKM9NiG5s0awfWh48cEzbm6d8E3XTRhjuH62offd5zdvXwPwwx+4wO3FV2sOzQPjdFJ1vDu2TNPAMExE/sw4HHaoqKBvb/x1psRRRjlkQfp5HDrHJzk8MM1uL5lnyzAdqetFLXAgz3PapuPB88eUUhgSXt64feR4PHJ1foEREXvfrXj2/GsusYmiUAQehoFhGCj8upulpThfMeqU3q/hQ9NitSvatb5Dk4mEu7c3zF7p7dnVC7p+5/g1t+67xJGLjbAR9++8xLiMSdMU4bmTgx7JspxuHAP39dAdeLjf8eLFR+GMPhx25GV24tkNDWkSk8an7tYqr7BZgdaaynNf4jhl1BN14ZKmYWzohwPl5qs0rUMZxGcKyCmrLJzRRVEwTQM/841P3NK0mvvtljRNUR4BEqcJd3cPjKPm6O+DiGLiKOXoCy6TkeSba9q25ar0gidSMWsXN2iPPMjEQJqkSM+926xyICeOz+k6915X65S2bTkeOir/XpkUGKsZBy9yUuQk9FysizBXfd+665YuCXbzEvP88oJp3vv7knH9TDL0M6OPp7quY9KKqi7A80qjWVKVFaNXcTTGBGPn5V5VuWGc+tA5s6YnS3IMltksMvYRkVWhCeKuKUFrTeELaOOgYbbMUpOmi7WGUyWUQgaRMj3MxDLBH/VYq706ssYsBtMyZegtxoAefPFeDxh74qa3osVaS5YlxLm7L0etKfOKYTKU50vhe0IpRVK6/e7sakO/PTAMQ0jij+09m/qKm9sHtO/uyvzznNan40vO1Zfjy/Hl+HJ8Ob4cX44vx5fjy/Hl+HL8Pow/EJ0rKQVxsnRMdIB/BRiXsBgzYx6ZwCohkdYE2XVrZ4wSCGOQwhspjgek9Mas2vNTZE2aSoSvGidZijGaJFUMcumwOAWjKLJB8UrrCSFOlRalHFzssVR5HKc+0xVPfIPmefa4MFfpGYaBh4c7Um/0N1uLFBEqjgIEL4pjlIyJxdIBW8yCT+2XRUHOmFO2/vnxed7ack3utQUqdZJEXzpXizrh56F0j9UIT2a5Tz9vwdCeYISnzoX718mrL5yn5e8c5E8hgumtRQpLlJ04WLMvawepad8yE/bUuVr8rE5QQdcZ1JN+Aj+N49hXSZd77MxyH6svjaOT/FwqREIIxnFknk7QQRUrskKdpGC1q8ROU896lYX5zPOUrmkQvgKcF6mX5fd8gMSvOwXZ0qXqWmKp0eZA7ytQq/qSrt8GCMdxf+Di4oz9YaD1lfqb928p64ymaQIUI45SkthV4gDSKGHoBmQx8u7WVbwCrCHOiPzvHY6uMxBP3h9ncJ5zMhYBs7+oIXZ9s4juUBQFXdtTe95Q1zm7hLPNVbg3bd9Q1xn3W8eBuji7pGk6bu9uubx2v5OWhiieyXIF0QI/qek12HiRcK/pGo1lDl4jKo6QWUwa5cGPQ48T9ToLnjpRvKOqNozDzPW1NwzctjzcvncKW76TdJZdMRtBP7mK5vlFydAZ+nbgwsug7+KZNHYGtqsXvqplNF07sFii1eWGWVh2uy1LO03PPcZoptGSLDA9ZRm7kdqvn35oUZElzzKEr3jn2ZrZDChhAwwRDHW9DuqPeVYTR5IXL14Eha26rrHWYdUXmG2SC5qbW6zfk0Yzs+80r9/ecTg4Raq8rOi7kSyPGCdXzc6lMzdeoGaX5x+i5563hzuGwc3d/dvfI7Ypw9iS5J6LMjmT3ZX3QOmnntFK8qxkd3zw12CQkeTt3RsWyyZDh54MfevW3bubO7JixTAMVMXSRZnouo48Lxk9jOTVd16RJTFV5dbiqizZHR7Ikoy09Lzd5ILtwwNiWcCJYhaGadKhczXZGZlEXD6/9nwISJIYrTUvnj/367xx8M5cAK4KfLaxyCj1vodu7yqKjGHsGb0C3uVmhbGa4sUzBm9y/eGza7bbO7a7W2YPrej7B9arDffeTuDiMkdrQ9dOfP2TjwBo2onx1Ohxrx23/Ok/8yf5s//hXwTgz6o/zc9/849h5AP/x99yZq5TF6POetq5I1/gL6sY1Ij1ktV9ozHAMO3DfjHPhovzr7HbPQS+8WwmkiQl9hzWpulwSrUxTePWT1mWjFaTpymokxrZPM/hDG36Hcnmio8//phPP3XqhGkaY4wCSeBhG5Trdnk0y+asJs9WxFEcrlMKyx/+6Z/k3dtbssy9/3Im7H134id+7CNkokN3BmB33HFot1gjEN49Ni8zbm7eUnoo3zhPmMgwz0Pgw6IK6qpERZb98OCvIaI8W3O/c3uelJKx75zMulfBrPI1m/MLhtZ3WueJ/bD3svXurW93D8jZdQsWpMOxbTDC0Pael4Xj3Lx6c8Q3l7i6WGPnkSxOglVIc3igKle01iN6bt5RroQ3A/fxlNSMXUMURWQeMjYNlmHSHJtFtS5FRSnjqNl7vmqdF3z04kMiFYd7Ko1EGEvf+Hs3aeJIYQ3cb90cqEiQFxFmngJVYGhnkrXkoXHrNSLGGuV8IDN3H6q0YjYt8xQz+DN52HbOT8l3Yw2WyMRYTYB+zd1MqRKqKuPDK8dBHEan6HnlYdaTWYWu8vs7b+eR5ggh/Dpc1PoM2lgu/H6T5AWbzYbd7oE6WygjA5uyRlwr9KTCWowTzeBVI/vBulNiNsQ+DqrzFZMeiWOF8UquWIPWM0XhrtsyMYxbhsGE83Cc9yAytg8jyiNH8ixlHE+wUsdPF8yzPj3H2kngX527Oej7DmOdj1ki3HdJoxJlYEYH9IwQgiTJgjqxEs42oBtEiN8kAqFdfFRUPh6eF5XCR6bFUUTbdQFqjoCpHzFYEo880H2PiE4xqx6djYMZWhc7ALqb2fcHymLN4PlUcRQxjTPf+fYPADhbnVOuE4QVRJF7rj54fs4wDHz87EWIkQ+HH+09uYw/EMmVIBhUAyrAv5Q8LbhIJVghg8q2UgqjTl4/CIG0EKkI5SdSejJgnBdhc13kxYWHcMTCYm1EJGNs5GFdNnJwsBkij7WdhYf0zMsNl+jJJVfLwjTGYI34nOmtccmH594gIqyc+Plv/hFefOwW65s3O7Se2B8fGPpFjvZI17RMenHJlkFEIxwUUpJGjjwr7YlQqj0O2v2SwM5e7pbF7+ipAMQyh3GsmPzDGqcSYxVGa6R8lKSYOMBYjBmIkwlj65B0RcrJmCZxjvbQoUiOWHqULMI1LYISdl5gfQozGZSIGD1nR0qFwaIX6dJxRglHdI885GCcZ2YzIqVi9thihWW2bRBNiKKEqWuoswg8ljqOY7p+i7VuA3AXMaISSazcAfPwcEdRpcRxyuFw62fAUOYJ3XBH6je7vm/p+pMR3zAOXJ6dM0SD5/eANjPjJJEiRnjT0K6LuLt7GQJTvXe+aXFU8GrvDqtD84aqXCNUHlrwohlp2zbctzRNGfWO2Vi6xr12fnFFnAiKLGfyQZk7ABqk5wi8374jiiS1vSb1GOg0U0xac2z23mfFwbqkkjT9splIVAR1VdO27trzImUcZqqiBuvnXcxcnNUB/59mCVVVMowTuTdJbBr3jF1feJhHbzhfVWzqVSg0KFKOg+OsLLLA+/0NZVmHpKlpGupqzfHYcHXlsNPTNDFNI7MeghytsBOvX73h2QsXhG6qK7quY54bJhbX+py6VkTRNa9fugArTzPGqWNV+sA4EuT5BTbRlPXiRrohzSraboeSLmh4937kK19b0fgkVIuR++0tz58/x1gP4ZpSitx5kBwbF5Ck8TlTdvQiNxBFKcO4xdgkmDh/9vaHqKQnz8+DuIIxhveH2zAvWV6ipeTTz17x0UfuO7/a3tG2DXleUBYuMTy+u0cIMD7ANLNFmyNRFPHuxvFHvvGNT0gSi9EzuQ/m+v4IOiXzkMPP3v2QobeuqLXQanTKQXdkeYTyh9VZvQKTsw8+hYY4NUxW0PlCmG47tAZrp1DwECJGxi3rS092VhuyrOLNmzfceljn9bMzVGTZHo4n/qQqWF1chkLKYTKoes1kct4f3d/N+oGu61it3HvfH3qkFAzDEOA+cRw7+JGNgyCJGifquuZ7r91aOT8/Zz921HkR+GoWi7WG/X5H4pOWVy9vubo659aLn0TZHhVB1/ZI4UnovWG7u6MsFM2wmNAqEIrV2vuIyQoSwWWdMngYi8Yg86dSwXoSfOPHf5yv/6QLwP7yX/4f+VP/xr/IxfU53/nB33fXfnGBmRuGY0/reRnYCNTsSOs4GK+KXAFx9ImGkBlnl+f84OUPgz0DVhFHGbM/w477Oy4uLri/eRe8qKZ+II5jBjkjfaCGlQz9FGCWiSp48/o9//1/+z9x5YNeIxz8erNZIX2CMOoV2jREvjB1ez8iLdw8fJerK3fW5iJl+/AWBEGopV98zbTbt8pzweub97z1JqMAN/sdBsHLly+5vPa+XTe3ZFnG7r07G/qhpVqVvL25RSpfwIpT4jgmTiI+unSB9vbhDvv+PohXxLGi7zuXoF647/fmbotOVYg3Xt/ecH/MuL5+HtZ0s29Ik5oohhUL79sltMYsRYyJJDHYaU/vOeXrjz7AzrnjAHnu8+rqgpvb9wE6XJ2VgIGon81q5wAAIABJREFUQ6Zufrdbxzu3Fu627jtnWU5Z1Ei59ksl4a7rqcuKysPLXt3e0L7u+eCDTTBlLVfnHI/vQmG2XNWMY0OWO18ycEnzOEz0/RjOaCs0/XFm9knTvrknTXOa5sBq7eXFsRTFirYbufDcej2MlNk6QNukVAzTzG63Y/IJV16W9ENHnifBNHhztmK1WrH1MG9Fiooj4sSy8Zy8IjkniiRdcTJz79qBaY5Icre/dUNH04LmgThxz61RDWM3YYwNfpFSRIydDebq1bpCzxPdQdF7GPDVtTv3ongOcMVx2hOphId3TpQljWKSJKUqYlarBR6cM+qRaS1PfngPDUVVuGYB0DYWZsE4TejOW5OsY5qmofEiRsZAEmWsswTtxVTSWGBGQfzYUscqurYj8TFXFCmytCJLUs7P3bPQD95PcbYhru373gnD+QNEzxPCQp7k1F5cZZom9DR4URQP4RSCtjsGGLKeRlIpuTi7IPXnVVQrlMxcE8RTpswckaWKsW78dcYIYrTRiCU+nTUK4RoFPj6t1ycfvB81/kAkVwhJ4lVODIu63hxuuIgcB0LMJz4MaCIlgua8Uo6cPE1T6AxEqWSaR6c+tZRtrEU94i2pyBkWKqmQYbNLkSphGubAlVo4PYvykRCCOI3o+57RexTEcRy4UctwHTAVKpFxpGjblr/+1/8mf/Sf/wUA2k6wOV/z8UefIFiCCEuSRsFrYBgGjzN/oPWKW8YYDocDwzCelOuwIE8a/lEUEcUpyp46R7E3ZFwWc5aqQBhfSO9mdgqMmvbkr4R0RsKet+ASvhRBh5CLd4PAGIG2GtRSsVAIVoGEPnWjT6ymUzcrUkgZcej2rPw1RF49bwn8s3VBNwwYTBADuD5PGccJSx/MjderM/a7HiEXxa339H2HSFWYl6E3zLIhSRWt39jyvESbiaZ119kOHYO2VHXKoffKZ2lFe7REUnA8eO5SJOibXZjDPC/ZH9+DmWlalyRN00xRVGzWl3R+DRkjOb84CxuUHiPGYUSaiVXuDvBNdU7TNKyqS6xdKsItebY+3RffLZymCenVu9I0Zb9riOI0qDZVVUWWFuHAruuKJIpph5564z7v/v6GNE25uj4LKo3uMDdcXDuDyd22xYg9u/0xGMVa22HnhLJOOLSOw7A7aM5WHwWFPaVS8mLD7u6WxHeXVxvLPAusD0LTPEKlKYqMZuEtneWcyZyiqrh577gTm6Lg8uIyVJ23egs9fPX6RajiKiUxVnN+vgkV7zhWfP0rz4N/TF2dY9ZH7m9TVpsF5H1Oc+y5ON9gtfvOZxcJ9/db8nLhMm2pioTJRMyeV2foGKcWKyR3917UY1Mzzyld5/lrSpBmZ7x8fRc4LLOZkPIOPffhOapKw/vb12zW7vO7xmDlHsExJMuRKojjmLuHHwYu2qwN4zSEjnuWJSiZ0fea737/NwBv0joamu6WTz/7TTef6yvmWXB75yrC5SrHMhDJmo+/5oQ+3r7/IQhNmlT0O/f9Ls4+5tDuuNm+9nMuWNWXDP3I3Lj7fn72jFVywe3d28Cjnc2Mno6BI2CNJDIJb2++H7p1729vESImL0vwSVma1ChVcPQH6mZdc2hHzq+es9ST9s2Bs7M1eblhNG691KucZux9xxBAgBAcm0PwCLu7fY/WI+r9omRniSLJOHRM3kR0s9k4Y9NW8n677LGCu/t3gYeWRhl5XnJ+dhkQGb/xG7/O8+cf8vFXvsZv/8bfAeDNm3d88OJjWu2uaRrhww8+YZ4nJu2uW8+DN7BPqWMflJmRT3mP9vKBcRxT1RtW9TkvX7m/6zvNh195evj/X7/+W1w/2/Bzf+RnAPgrv/Jf8T//b3+VX/zFX+Anf+KnAfjX/uTPIqQTl1i4aNM0sW9u6T3/+Pb2nua4ZdR94MBOM3z3936H5jiGAHZqJ7p9G/b4YZhoup5xHCk8X62qKsqyROuRonbB6uFwcHv5YgCdOzWzb//utzm7dMWAb/7MN7m5fReEngASNdIcdl4JDJQz3iMRCb1XVhwHQTvODP0UTJKXiEL4eGPfHfn+p0fe3yxrBb77vdeu8ysFO+/b17aO+/LYgP3VqzsmM6Pk6OduS6IkKhJ873vOXyySMdM0B2W5KHLfOUkSzO+650hiSD/9LMQ7WmsilZC/2dJ7ZdA4ShH2FVWVIexJVfDy/FnYb8bJnc3nmxfBk+i3X71391edYoL29Wuc8pP7Lut1zz/49b/H1dUVl94zS+uRZJw5Ho/0njcUxzFDPzL57sTUawTOpyj2B/IwH9nvBt7tKqTvRnzzp38GlSZ0XuxIKLisn/Gwuw8JXpoo5tlQFwKlFhVVhYlS8nzj70HpO/WGzu8JcazQ84iKDMIXfePEIQQ2Zy7ZstZSWcHFeXVSkowiRKRouhOPfjaWw9SEhG8c3Lz1w0SRr/w1bCmjkmp9GdZsstIM0w6M453W5/Bwt+X64mMi5ZWqDzWTcqbyyzlmmZ0SsPSiTGPrxKM2YzAf3+/3qDghzRSlF1iKkwuOh5ZLn+QmcUzb9F5p2N3Ttu/YnF9w7FrK3l3Dxov69OOyv+VEUcTDXYPwxdzrLCOqCurKvfeh7Zz4B4o0W/n1UnPsBw7bY7hOp4hd0zZezADJpDtmoWhu3/nXDEVR0XYTnS9En51dIBIR7ovwioLzPDPuT4lUlWfoYaDwjYuyLNFJzgc/9bNu7oaB4/GIVCfxLykShmFCJgZtFjPgEmsF0eCTQJWDNF6Mzl2lQBHHkYubl5zjc36qnx9/IJIrIQxx6hV3rACcpOLSCVB4M0M5BBMxcFoGS8tR69l3kSJiDxWzo0biKo+JD9CliDDWBiXCeWqcaIRI0NNJwjVJEqw5tVSFEF757CS2sEDGFnUbrTXGGwsuNzNJEoahJyi2efW9rmmD/ObN2wNv377GCB26QpEURLEMKmBFmbGuV1xfXlN8vJA7T5Lak68y9sPA4XAIwcd+v2caRrp+CIeeMI4AvSQjQgkPkXsqOS5l5BbIIn43W+Dk5j2PIFWGNRah3fxGSmHkhLEjelpgHb7q67uAdV1SlRnrTcnh6Frr/XRkpqO+gGl2FeA0Ety9e8v1c2dC2TQvEcpSlRm7t66a/nbrgr1hGGh8d2nT1mBVuHdRJHn95jX5YaYq1/6+Z6RZxO3dfTBAPewHEDpUyeqyous6DtuJqzNHAh+GgVVZ0By3JL5zZaxGoii8eIHWM0bPxEnKurrw6yVmGCa6rqXy7e/DwUH7lmSgbXqquqAocu5vd/4eK+pVwrF5S5W7QHvsnJT20onY7XYYaSnLmrZzScN+u0NGit1uG4Qw8jyH+aQ4uVpVvHr1ijhPiXzVuC7PyJIU+SgZb9uezWbF5LsvZaxo+5KzUrDyUKw829BkHZvqgqvSHShppnj1+nv8xCcbP+cxRnd85TxD+AT96voabBqKA0IaHh7uqKo10le3D4ctm+srkIL24Ob8k08+oW1btBdSuD7/Km9evyKPKnrfibi+vqbpeoYmYlN96O+N4eLsApm54GD7cOSHn72kqA2jl2bWc0vTHOhsjkzce/3wsx2zbXl945K0Ij6j6w1JCvvGPSCb9Tnvbt6w3mwYB7+GVopXL9+HTt2uuaXTt2H/AUfKNmaiKGpWPnm7231GkisOw3fdNVnBcARrMlJPztVTTzc4GX7j4Tyj7pn0xP7o3r+caqpacHv3OnxeVa0ws+LZs2fhHj/stkgpKOpHKk5WImXEqzfuuTo7P2O3v6Eb9kReiOIw7TBxTIwLBtI05uHQUpY52u/Nt7uGPOlJ09o9Y0Ccag6HAxp3gEcqJ441SVyfJHnTmKIoeHf7hvdbr/IlM+JE0Pv9rRkG9vu9gwX6uev6Ay9vBMdDeypqJYZx1Ezz0sWNiFTONO/C83e2uWDQPdZ3WuZhZpqcKEuwJbjdYe3MOAiMh589e3ZNbwzSnzEjgofbO37wgx+Erv/V1RVSSj794ffZbNx+s1rVfP97L1HlIu5i+da3v4WKI5LoZOBtrWW3O1DGwXGdobesvWpckiS07WviXAUzbq0V33n593k8vvPpG/5v9t40drckr+/7VNXZz7P+l7t139vdM0PPMI09GJxFOC/yAsuWoiQCycJRQiIQwYwxM0wgtrCRTTIZEbZgljGDY0RMUBIcBydBEUogxMYJCbYFwzKM6Zmhu+/+X5/t7HVOVV5UPee5lwHnDS8m0i2pX9x////Pc86pOlW/5bs8fFocBEOOTolj+Gf/9Df4lf/7lwFnep3EGcZqotAr6uYp08mS5ZG77sVixvHxnCzLDsp5vSaOUwJ5gKgZBFEUueQYBxN2XfaWzZVbU0qFTqyiqMaiT9tquq6ja936KaKCNE15/xuv85u/+Un/PI/RQ4+VgsFXl7MoJ45OCfdnvSppuxptJcYXQFvdY5EkWYbdq+DuDbd9YLwtNl6Y4/COrjbX/l4PMPLj42PX/dH7GEESxzGZCh15H8a1ZAdDuLdZsQOJDBk8tLXoGrI0pSm2Y8eZVFFW9VjMtdaSxCn90FCVe2SHxErFphYjzDkJEx48vRrnQMiBtqt4850HIwIkCBLCIHWQqX08I5zJrWEvMOXipk1nePPhIz8vDlrnCjb7TkfDdD4bC4tKKZSQPNmsR3uINFO89NIrmChns3Fn+z/+9U9y8/TGKEyjNppPFg8pq82YDNw8uUMUKrq2IIm8Ququp+t6jo/duVrXNdG6J45jtD/vl8uMutEENh1tRwCWiznnHkp7dnbGNMtRKiCfuvm8fPSE2XRKHCXsfBEmT1JOsskIqZaBBmtYLo7HJHdxtMQYGHo5Or3IoiHCUpXuHK9Nw3y+pNptqD08NE4mZBNF3a6Jo72A1UCeZww+6NK6o9c1s/yEhYfXh0qy25UkCTQ+tkqSKXGU48Vz6TvNfDpB64Nd0SRPmc2XlGU5qtca62Dr4K1CvHz5q3dvEPpig272sYibg5PjBVJFCBESx4cYtCp3xK+8a9xf+r5zqJ+tO2uzLCPLY5p6GKF/fVdjjLNYmnl4rTFOwXB9tbffEKggoO01crSRUTRdg1IC6Z/d6uoajGV17eYuTVPSJKPvDb1P6k+P5wRhzGZ7RenNhqtdCSrA+H2gbhpsWIKxhMG+Y6pp644gkEifX5wcT/gXjReCFi/Gi/FivBgvxovxYrwYL8aL8WK8GH8E4wuic4UVvpuCd+m1OLvcgwT3MAwMSiDsodq0r9yAg8j1g2vlpb4zEAQRre7Isgna7mVrjasm+oqi6SJHmFPpSFYXBB7zKTH1vpIjvXiF+5iua0fhhP3YC0A8K5rQe5nHfYU4CB0kUUhDlrsK22I5ASXp+obQCycMWmPsQYDh+rri0aNH7E2B9yOJEoQQzPK9HG1KnKXcOHJdjnt3XhnFGNQentGtaZqGonDVi81mQ9N07HYlVb1nQQsPNwsJfRtUKtcdPHCuAiSSztZoL3Yw0DOwIo1j5lMHJzi+e8yNWzlR4KoHu3LH537vd7n/YMtq7WAsWu+QQrNYTlmcvApAsV2x2T7is52rdh0vlvQWujVMM1cXeHp+QRtds92uqL0JbJzeY+jlyImIYsu9u3dp9Ype+ypnGlMVBWkUM/EiAjYOkUKNbV9jnGyntZbaVwvjOKIuC2bZYpQKjuOQ7XZL7eEiYRAzzedorSm2HvLTN6RpyND1DI37/EhNGPR2rFIn6ZTttuX66pzp1FWN0yRnvbrAgc5cpezlW7fR3UCxc/OXqMTBUbUh9K902ewIgojbJ7dZrVylTPWCy4s1Jyeus2Q7CAbBPMgIfNd2Pj2m2JbEcUzvZXo/8Pr7iaKI0leguq5nmrQEKiL0laTN1TXHR7cIlcX6DmWeHDF9z9FYTU/ChMG0nJ895OVbrhNYd65TXfkqrh40ab5AqpTEQ4WbVrDdFjStZrN27+j1VeE6V75DvFhIrJFs6s3ISdg9KJnNFjx8+ojGQz+NkPzuW59jW7lqbBAEFEVFlp1y/+LX3HVGCwZTU1XFyCVMUvdu72G7UZrQ9AUynNB5f46HT95ByJ63H11wvHRdxav1FUZozi9d56hpSsLYSebvRSfCIPX8xhjdunuuqjWBCBy8Fgd7nk6O6VpBp8/Ha+8Hy64oCb1/lECBEGSZe9ezPMEMguXR7bGi+Df+8n/DX//uP4fWA/2+4xxogtDSNd5sMcuRynWXEm+A7CwjMmZH2Thf1+sL5vNjzq/uu79LJwxdzNWq4OTUVSLXm0uyNCSOJoSpF8wYSrTUKM9N6QfY7S5IwozY1/zW6y322iKUGUVZLp48IknDA++k0WzXO5qmpW3e8nOlEIFGqYDzpx4aPLRIGYyGmlXVYK1gskix1r235xdur953AZqmQhhLnERjpVUJidYhaZpSVq6i+/TyyvOD3O9kSeA6AFkKviO86xXFdsPZ2Rknx074Io0T1CSl9FVyYzWzaYLWPamXnh56C1Zz8913CL3tQZan6K4aeRlKWWanC4qdpvE8iaarD6Q3P1QmqOqa2dRd5+S4pS8kR8dThPSwUtNiBosx4XjPV9cbnp49RL61h/fVCKGQIhy7OMYYkiQhjSfjvhsnieuWe9GUOI7JJlNOTk44WXq41DTleHmD4yMznmuvv66cp6T/Qd81KKX44tffy0c/+lG3frqO9773i9mVBY3nwwlTsVptKMs9aiSgLDeU2x3BnlcLGNVBHxB46Kzx92l8V9NYy2arUc+UnnXvxDiMMSPHq155+JivistAoVuN1tuxc2Rxnc8wCQ92LCoEG4xrOs2ndF3HyY3F2KnarUvyfM7c8zqKokIYgW0EoRcW6TuDDRt0Lwj8tXZVQ1O3o1CECiVSGQQK4ecqiTO6rqdpalIvPjCZhJih2/s4EwQR08mcYbAjkqNtpBNlqiu0l8TOJinWDgR7aw3dI7ylSpB4CLAI+J03P43RAXFy4It/7v4ZQeSenW4lTd8ShGYUjPjnb505wSpb0vk5tjomzi3T6V78YKAsnSXInqM7neYI27O6OFh+pKnzFpR+zru6IYoioiAkiP3f5RMKA7q94q5HhVRdR10WZPvv6zrAUlX1iLZYXZfsdgVRmBH4iUhzgRIzVObmM5THzpxYt+hm6edBIQPJxcXFKMsfRclzwmXzKMdYS0M8xmFaa6aTkNky8zYMsN2uUYFEepuAgZY8naKHgiTex2uG6+uHzJdLpHb3U5Qrsixj6qHRQ18zdIY4TNDeUqXPMvquQ3iee5bmDBoCAiJvxaDb1nlhCcts6TpsRjtZ9pNXjsbrjuOERWrQXhAsihcEUniTbHedUljatuHd92677+97x703jH6VFoGK9ubE7rOak9x74XqYru7ZbDbOBiNxnc6y2rAt1kzyhMDDT+/cvIGx/ej9FQYJvZiDsPSNp1BMUtrGiXzkE/c+rK/8Af6HjC+I5MqxrPb4Z+Ohc4ekRUmBwBIrOZqnOetHOyrnSCFQQhBH4dhqLpsdhgErDLFvafbGGQGOHkyhZTADSg3EXnFLSEeqC8NkVEypKxdo7BX29lhWBw10n5WmqVM1NGZsbfe9fk65rus6hsF91mhC2bVjcDT4TWuw5jn+llQBWXaEtQcVpf3/11qz3rpgZ7Vx+vx7fyxr9op+gtQHNtPpnCgKRrPVOy+feFx7MH5f27YU5TV1rbm6cslNVzcOP+uxuGFsOLt4wBBdMPdQsCBSPHj7t/myL/2XmaXe40e/zc/+D7/Al73x5QA0Xcum2rLZbTk59SZ4OuVkPiWydm+vRC4y3vW+L6X03jhl2xCrEKWC0cvk9vJV9LBlnqZjEtn3PTIRFIV3pN8YovCI4+Vt+r1AiFLkseL2zTt85s3fA+DGzYy6btmuvcrRZEkUS3RfoK0LZHSrKLY1TbVzfhGA7hR1VY7+ELrrMUNLkhz8R+J4TlU1pBN18BLrOybxBOmFOBI5kORHRKFitXLk2OlsRjxNQdhRgeo3/9k/4QMf+BPMM2+8GzpVwEDG1D6C/mPvfYN33n6A6gU3F6f+fia8due1Mak2tue1e3eZpslokihlwCu37nJ5eYmaHTbJAVgunFDEk6f3mUwiBgO7rVf9ymY8fvIOiI7Z0iX2D88v0bpF+Xeo1878++rqjPtP3dw4EnE1PpOqqskmCVW9HTkCxkASuIBrT67eVFuur69HWNLT80fcuHEDo+UIQy3LgqvNlqapRiEMlIMdjAaQTLh7awEmxDSehxk16K5lOg05u3RBymx+A2MMc08OljJAGHj0+D4nR/fcvLNFEdJrS12755JkU9bbB0z9s0zTIwZTUjcVYuQfNaiwp2quRngvYkvTaaYzb9bbhxhbI5SAfk8YTujakjg5CPbUdcN0MRshwGXdEoiQ2XQxksDd/eQU5YrO/yzL3KE+8ep9q+2OobfkkzkDHnLYDSBDVtc7VLDnmVrW60vyifc70wVNf02rO373My7Zmea3ePjwEkvPyYkn7D99SJIuubh08N6joyMG09D1Bz+3sugJZEQQCKeShoN1V1XBznO+7r99xsnpgqYrkfsEgYC+0SgZkU69oIRxJGblvZ/CxNLpmrrsR4+u7Xrl15Pn7AYhg+mJjKTYueeplPO021UlnQ8QdFkzmcwOqnO7jkhJrDKjeEXVbambAiEETy9dIpokCW1XIL35qQojrncOJnN+7d5/y8ByfsT1o+sRthKoBKMNSerV+3SFtYbZfELh/ZWMhGiEEbqxKyp0HWOMm888n7Ha1CQppIkLgLblNWVV8hX/6ldy4Q1Xy+Ka2TTjU5/+bcDB4aIkpSm7Mbma5hMGo2l1SbVfe42FNeN5BQeF2T3/tqmdx1MQRGNQrZRiPltifVI2y3Imk4zpLOX2TZeYfvLXfo3Hj59ydHTCF733PQDMj27xRV88GcVPiqLg/OKCi4srzr3oRFkVxCohi2cjN3vPT4rCvVljR1NX454IEEYJm82GKEpIfdK6Xl+RpumYhDpIvYMGjklnP5AkCUNvx3OsbTfk2ZTOV1fiOHUFvM1mDM5lZCDoCHyBaRKE47PTvkA4dIY4yp0fjy+ctIMmFIzJXZxGbg9WMXnmzqeibmiHjuPFfBQW0G3JfHaM9QHVo0dP6HRHmuZYv877tqE2mqLYUnmPsDh2vlT7fTgMQ6Q1aN0eRGgkxLGgs9DqA1crjqeYvfpvKrGNBdGN4jF6aAmCACUbjF8v0/mcrt9weXUQG9Gtpo/r8f178rQiCCWT6ZzBF8esFWyK3YEaISxxFLkkvvbmw9saK1YkScLveCikYWC+mI3qlqpuuXnz1IkW7RX2hogsy2i7s7Hoo0VKUayJI7efvnT7hK49Y5JMUV46duglgRVEUTqqGvb9lvl8ytoLWl1cXDCd5djI8PSJi8OMMdw8fZXtthqhnu7VaQgDt9+cHr9KP3REoSLwBVARWqaT2xhjCE3l5yYiiXMmkRcbiyPSowmRTEbBJdtVCCUxPiavm45omqLCaCzwRJOYE3kDrB6fi25a74Hqiw/K0A8tXXOYKxFm6EEydAO154H1fefi0cm+UNQRxzHNbkej90XumOvLC5eweepMHMc+Bve8tzwlm2ZIDnSX+XHOohw8dcervcYJXVvRD16EJpqyqUvm03xU6xz6lpdOb9G2DVHsPisa/n/AuQI7YlWVCpzc6TPGttJKpIBOMxIGgyDw5rA+YFCgjUEKwdyT49nVbM9XpEFC6z9rEBIVBRReEGEiHE7W6B5f+HCO58IbFvvyVRRFNE09bhgH9cHDtTdN45Ovw7UHQUjT1M+QXi1JElOVNcZXvNtmQEmBlYLGcwSUNK4y5QOwMAyputap/vnF27W97y45BUJw8tN5mmB8deugZHh42mW35vy64q0Hjs+hvMS9EILcd3HyPGc6P2KxzLl9213D0dERm/U5v/br/7u7d7Pj5ddC8v6O767A7eMjXv8TX0ZdtDz53D8F4ANf+iV86au38RQldkXJ+dNH7JqK7cZhoO/dvIlNM3e/fiK2ZcFVtaXs3EaQpDl1vWU+ndF6crWIBF3XIGUwmg83bcNsnnD33rsAOHu6Zpo72Wnt8fmLxSmDrlldVGSRS/BMFyJMxe2bLgBM4gnGGFYrzdHUcXa224I7N25RtpcUW6/oM5kQhiG9n7s0SbheX3J6eoz1gfDDx48JVMLp8Ymvgro1lwY5pe94SdlyvDwmzxKOvDBFGgZMTo6dAaCvqA8v3aKrCjLv6j5JI7JIcevWHVb+eXZdx707t0nTdExEJ5OJS7DNobK73lwTJTFPHjuCaZRmaAybZjeuddsK9GDYbT8DQJaHXD4JQDbsvGz20AsWRzFVYVkXrhtp0SR5OHZ/jQlptOT0zk0ePHTcpbK6dNeVuHspS0scJtT1iq5zCZjuLDbNWe22zL3suWFgMp2O7//8+ISL1ZrjI0OS7PmNkr5v+I+/7W/x7PjY9/w76NCtqVZrql3EZBpy++UvAqDWVxwtFpRFz41b/v0P5uh2S1W557Sc36GuKhYLS+llgQkGlMp492vvhsCthevrK1p9hah9UYYJvTa01UFQptGaTAb0fUMUufdYN5o4vEnfel6fEQShoW1qPvpXf+65+/nO7/5q1n7ep4uc9eZ8VAEUwkkerzZPWcwOpoddI0iSBdutm6vj5R3+ow/+CH/Q+Nbv+rMApElGFi84v3QcGHdhA1EgSScuQDm/KJnkS/6r7/25P/Cz/sy/9zrgDrBi147Fqvv33+G3fvHyD/ybf+XffPfYXa7rgsVygvJJ9nF0jNY11gikf566GwijgLbvRiNcITJ0X9PpQ5I0mYbUZc/EV42zvPem8J5H1FWAoO3tKC9sraUdtohBHALDOGJXXI3/zqIUM0SEQtL7gAErmaZL2rYl8e92XVcoG+MdD2gb6FpLnASc3rzhn3nEk8cXLKYnYwe4LFqqqqHw/Mo0C9Fa83ufe8CsKcqfAAAgAElEQVTEV6ClhG3zvFpguWsYOk3tub4WZ6Q+m03Q/Z57VzCbLZjOl/z2p37df5Zhs9kh8MUrrZDCdTcuLtz7cOvWDay1PHrzjKlHUTgTTjMG+hhLljkz1DB2c3WyjAgiRT/o58SqiupiTFrWl4ET9tAtR0eHjtdn3/znlE3JL//j/83NqTzmpZduj4T6KPKm6qI/dB6tpN40bNqLUX11L85wde7u5eim49jsTXABdoXjx/Z1O66pMBTU9Y7OHASRTDdQVdtxLVhrGVZOvGKviKz7lqZajWfzphvGfTrN3GJIkhlNV3N5fek/OwUMYRgekDHWUrU1IJCe/zedT6iqhk3hFSi7gDxPSeKY2gsnIS157pKyneento2mqFZjd6TrneJwEB3sZ3ZliwoEy+UJx3P3/hdFgVKKpnXPsLeWQAwoAkzrC8pNTRCHZFlE00h/fzHWMPLltrtLJtGS1fYg7x+FIQYNoh/PMBUUKBGM53/XdU5B2f8HIGJFmkXUtSYM99yw0p3R/b4daWibBmuCUcq/a3uCKGboD2rKUsFqtRm7YoNVPN49ZDYNRxsYqwemWpJPI/Y+JHpX0JsSXbp18PC8om1r6spgfPU4jY/QHc8lon2nOT4+pvVJhLWW/mpNW1yOXf7pdMqDR2dYNL320u+hoa5a5l7g4rd/83OAQciDnVCe5zTeDHjuhaiCUFBVa1Jv6pskMcJcIMShsJ8kEXmWjv/O0wzZAaYhS7zAU6lRtgAC2sC9D1keMbQt291BMGS7W6HCjMxz3y+3pZNnL5tx3rMs4+l6B8WBWzidptggo99zGXVHEEdoMzD4eS+1pq/rsVuZxwHt0GHNgVtYbxvmi2MGzFg0bHVH1ztjZLdWWqbTmO3mijjI/Dow2KFBBXbs6KX5Mf+i8QWRXCkh2YtFCmCgQ0kLwsue0yMEHMfDQVrXuk3xsAASEA52p2u3sfzJL58ymX05XfcQG7oN39qQpobIy3Sb2h0wURhR+aqK7gzZNKHTA3ZwE9D3wpEm9UGVJ45jlArGa3Ju5eEorgHugHEv9d6R3qm6NdVuhCEkgUC3JXEeIb0sdygD132yB08qawYCKVFje9jQtU48YUy4dAvY56qF1joFwf11Dn3D8fEpfe+mXxiLxHlYicF1bS6ePODyYsfb9z/F48efBeDoaMHx0RF57hbc8dENVk8qntYtp17F6eJa09YlYRhz+qpLSH730X0my1OuVy5YvlqtMcNA37WEPlle7a7J0ogkCKn85tPJzst/e2ETMzCbTbj0FVWA3WqH1jVJ6mBTALoP6PspZ97dfrW95vz8nOkkZjpxh/Ojh+dcXzplvH3HSSnF46dPmc32kpwBx0c3KHY1V16W9+TkiKvVNclEIfYqNdmCpmwIPel2db0iCELeeecB77rn4G9CFNw4jTH9Fcq4tfje196g7SraibvOahOTKkUWxrz6khPxWK2vEUBdFpzcdBvifDFlPp8f4H4yYBgE5xePx6A3zBIePX5KWe1oag+T25XIIHom8XdKkp975z4nXuK4rmvuP34bsFyt3CYyWyyBwMFpgPVOM5kuqRtIFy6QqZsdHRHT4xmmdYG+7kLoEhLfLZCxoai3PLr/cOwkD+qa8801YeX+3TQdw+aCOI5JfMKlh4KyviRNU84vXZext5bF/IjGewSFYUwURRTlZiSiW+ve2R/7xEdGcZNv/fCPkkZL0j0MYhjAxmxWO2T4JgBZcuyk2buezAtRXK9+DxBMPESurNYYSrq2RviOqTWKOIG37n9qtAFYbd8hn0gQXiGq2DhobWiwfn+LooBQTTDhwdZBklPVKyIPWanrGqtyjIj5lu/41wD4ke/+PwGIY0uSuvkr65auNRjjqpyvvPIKbaVpasHV6vDe6N4iVcS9u+8F4MPf+P0AfPwnPwLAtjhj6FK+89t+grb2CqlG0dTX6K7An9dcX1/TNgbtS+fbYsMv/f1/yFf++fePEO6hlxRVyT/5+bf5X3/aPeM//ec/wG59CCb/n198hz/1b72XIGMMNLbrll/9n9/kV3/uc3z5n3WFkiicsNkYKg8BDlQMOLGK2cR9VqdrZNthrR3FDaIwJEujEYrlvOoEWpcj4RoMSoXsEeRaa7IsYxj0AQnAQBjkBKFg7TvcMlKuy+p/JwwjbC8gMqMUXV2XzsYilhivoprNU5QKqdfu+9MoII8D513oCxLr7ZZpNEHXDVXv9om+t0ym6Qij6bqGMAwZesXQeeW8LEHuszY/kiilGxri2O3VdXGJNYpdoSn987RW8MYb/xIPHz9g48WGlsslV9dPR78jcO/NdndN672+Ot0wGNBtTy3b557fGJzvSsq6IY5jygt3Ru+7PJPZdFz7+3N2D5E/Ok1IUqequs+/ri6vWZzkLEVG5bvEUu84e/yUdz7nq/nK+bLN5tmYNJydryAN3XPyojrhXlnTe7AJaUjijDQ7iLso4eDfwzCMypEoydD3oyJk33dESYIYJMYc1Dq7rqfvexofCAsVghj2oBuCJKK3FpSi9cgK07ggcd9JGgan0ucCUE8xCAKEEujuIMK0rpwwSOjVGMMw5Hqz5WrVjEJKzhuzRwjBrlr7ebcMTTdCgKMkJQsCR+737/Hy5JQocnY0+yLlZLFAYrlxy6EV2rZm6LtRvRbAtj1hZGnqjunMrb1dsUYIO9p9pEmIEgG3Tl6m8MluHMduzq1l7uG8bdXSC03kRcSSafp5hXYpBAQS2wl2XvjmaH5EU9UHAY/QvWfbqjyIiMgBKWE6n1Js3LsWIpFI9F7hNzHEcUzdOtgxgO0rqusdwc5SVp6aEEYk8YzQd491J4nUhHxhSUKnvjqbzRCJE28ZCwtWUlU14T7Z6g1aD0TB7VEEydCy2j1iV1yTJ8txLURhTlF67zRlvFy5HruKunBKnQ4ue+XXR8zq6ox+6gsijYsPBGYUZTG9ROt2fIfiOHYNDylHr00JBGHmLHX288BAGIakXj696zrSLAEZjsWqtm1omobJxMVgAFxd0bQVSTQf16aUVwQh5BP3d3me0ltLOj/lxKvLFnVF13UjtHa9uuD4ZMlmUyD9Gj6+tcAisPTI8ICWmS8mrNd7NM0xVvZMZvmoWJjEIb0YqNuKzsftkdpnLX/weCFo8WK8GC/Gi/FivBgvxovxYrwYL8aL8UcwviA6V4IK3f4q4DpCXeewoqMXrzBICXUvxhZnlmX0pqBtPU7TOL3+MApovYxlHifceU9O07+D9u3oWEbEStD5SnY1uKrHJLlJf+26E4PZYK1BWDV6fWSZHPlU4Loc++7QHtIE+zZ1MMq6Syk9z8fzuYSrplfVCin2fhWGxw8esDieoKQXtOgbsiwdJUCLouDWrVt0Xc/uwlVH5vM5YRggpSIWrpu03Tnz3DjbZ9WGpmmcsaCv9phBkUaC3nfXFrMlwlh0VzOZuu/XTU2cbXjj1bsjnlt4OEHuPZisNyqUifcGAOgFYaCQEsrKQ3AiR0B/2cML/3jsCOEqlM9wvDRN40RCYl9psdYiMSN+XXe9kzsWYsTjy2FDFE4ZBjv6RRkvob8XAxhMRdsqokTT+Irw0AW89urrCNWMhOSLiwtefe19NM0BT35+eUUzbFGh+53VdocMJVG0JPS+SJeXl8zyxVgBk1LSthXb7Rbp5/21V99Ps6u4sTwaTe+K7SPqRrNcuueZnEQ8ePQmd8K7PD3zkJHtFcvjU/L5CVXtuxjliu2mGDkX28pBKW7cvsWbv/tZ/zxbwtyy2+wQHr5QaokQ4cjrcxdrPS7cy67qwQvI6NHbIwpDyrIiUL6T1F/SNIp+aDhOHQeiKyJQDbvNNcGePxiU9H1HP+w7HwMqUui6AY/DzoIlTbUl8X8ThJYoDFjMbrG6cvMZkBEnW4SE2XQPd3MSzHvj0aEHFcWIoKaq3DsTBAH1bv18ZRAH+6Pcm3wu6W3F4jikqd39GbGl3fVEKuNq5XhD0rzEydExF5fOq2Y5v0vdDsRpPPJxsmTJkyePWCwW1IV7nnm2IIuWbH13ZJbPKPUZoTxsvb02GCz5NKHzojrT+Yzt7ozY8ySzfEbVXGLpPL7+MIZe0fq/C5MQy8DZU1eRDoOctqqp6gLdHZ7BtnjKSXKTJDlABX/ob387We5IxOuuJfZ8oR/7nn8IwF/4yJ9DSsfzmPvOX9t2TCcBTy7cc/mlv/9p94xLM8J0AjkhiZ+HqO02BUGg+OV/8Ob4M6UUpkpY+y7xndsvA2/6+3JrNs0ExvQkfr+TUpLEkjgJqT0PJIxDjBBgFUruBTNq+t6OnJbBCIwW5Hk6djoHM8DAaOgZRBHrtTOvtsMeBq6Q8YRNfTl6PHX9ADZC+0pvIztMPxA1iiz1cuZqRl85pEWvDuaxKtAjz04QoJTzdNHNHiosaboOKSKUF1MJ4pS6ahj8+TMMA4tljlrEI8yq2hWjGMJ+ZGHMLAvptfv+O3fusL18SJZOuHXXe0MFOYvFgvXuPu9+n+tGJGHOvXtz6sJ932//1md4z3vew2vvukNRel5rYzBDwBtf8q5REKTve6bTfOTsHp8eY6xDULx813UihXD/1n17gFkmmjRXY6W81gWtMeR5ht5Dr6eOozVfTjDW7Qm9UASBoddeeKNUPHnylJPT6bjnvnJjxtBv6VuJ9Hwc3Rmesh4hqruiQJDQ1Id9cugDimqHMebAJQpcV3aUIZeSyku+Ky96sV6VHoqtwKMMAxVg6Q4ejygCGdBbRjElK6EZujHGqPsWPWhCeejQtGVJEAjsYJGVR88ohYSR57reOXGNgZJib9itNWEQYa0YO4FJnNE0HXXt5qpuG7IsQ4iDuavuHcxz6O0zXOKYYdCjVcJ0mqO7DmuHEUWRpIqqKRHBgO495yqywOBlwMGIAmJDrS2V56bJOCef58ThfDyTpdbY2owwPWN6qqpjGAaMjyWM6DGmQ8mMxPNxur5HBRGhj3ka3YAUKBWOgiYiEBhh2HU7jEcMWOn5//5+MyEZOg02prj2MvmqIwglmJQ0ce97JELqXc+q90JN3ZajowVtV2AH9wwsD+kqB1dMooMvKfw+S5wgpCq7MZZIMkEYTXj5pflhrbctVdkRyD2PL2a7dfBt4cP8qmzcOzT0DH7im0YzXdwYocpl0TKZJgymGeO7JEtIRcrGi3NhB3rTMegDXLquawLbEwZifG+rqqPbaZJ65e9XIXYR0jbPoWeUjLnebJhMZuO1az2g+71HqOv85nlGUXlkVxy5rn91yRNPj9i/F1XjSftYNiXMZ5MRFry9XFHuDJPJhFbvDaVDdmXFbueROpOWUDXM51P2fkXX2y1RlCBVjPFCZvr/I336gkiujBlIY5+MxIJgucASUvrNIE1ClrOMsolYe4W0fDFHRTHKu7h3bclgOqIwJfMbnLCGWEkmgaTyUIWqWiOFxecZHMUJdWcR+hzthQX0UNP0EVGgqAtPpJwFWCsOfBk7YIxlGOyI/6/rmiyd+Un2LVyzF6bYBzYO7ti3W/LIQZy2+owPvH4E6pqdT/BEUBKrGdmR+z49EcymCiEl69jDrvqnzNMTkmBK4AHdk6jC2Cs6T9yc5EtmUYQMzJhsxNJgWsFk4SByN++csCu3VJ1i8C/U7PYt5CCIM4XxxL1WD2BrrNjDElt6U9KsB6Q5JI+6q4iigM4H1YPtESom87AE1RouL3ZeRfHAKQuDmK7XGG/4GKYRJlCjGIEQir7WLinzyZXpJmy2jli9JzamWYzYq2IAWk+YpBFJkmDn7sXo287x6HQ3qj+99FIIenhO7dGiEYGg6/b+MT1IgdY7tn6zSaMNZ2ePUYGbu8k8Y7vTvPLKaxRrL/4RdcRxwCA6rCe0lnXDdJLx4IELSJfLl7h9892cPzknSvyhA0R1xXQ6Z33tNpuy2mFCRewT/6KqaIqa9bak9JCKSteYesvR0Z1RYSeJM/QwUA3u2UjV0w81dWW5OPftfeXKAFEYju+WbjskUGm37rJswma3IgyPGDxstRnWLIMFXf+EpvOKc1GOUgOZFzvQrTsEv+Q9b/D0qeM36GHDqy/fpvDY/9n0LnXdUO06qnLln12AChICOaA81Em3EcNQc3rqnd6bigcPf4/FPHOwEEDXtfOHCeSB9wFkMXzkwz/Fs+OHP/F1aL9vDM3AYj5js1kxSx1ZPskzPvj1P8TvHz/wo3+B3Kt+fttf+vj48499/9cC8J3f/rOf9zc/8uNfz27TMZseVJTaoSVWiu/4lr/3eb8P8H0//C1oAbXekD4DzwJXFPj49/2j5372bd/51QBsr9ekWcA0ewmTHtb15VnPxeVb/NTf+rvjzz75G58mSR0Ps2vXnD8V8KHDZ77z1lOCUFIUBVni1nrPBU27ZTF99bnvz8OYfcJubEmu7vCnvzrhF372UwBEck7VrJ77m1l2g9X6gsDD5p48fYev+Df+GL/yv/wWkXLBf7GrCcNghGw1taapB/qe8b1ta4MKI6xtCdODeayygffqg6Zdk6QBu0LTeSGT06ObNE2L2SuTWUmsAnTT4n9Els5Zr94iDLKRPG5sR1FejsFB1/VIpYiilI03wjbGKXBZIyjqPSTOFZn2SW+SaqRJwSpSn5S53y/J0pSp9yDTesD2agxw08WMpi3otcQY7wkpetYj3NGNq12BlND5QNWYHpknVKJE+Gd37+R9PHqy4WJ7zmzuPqsyGtu3JMfu3/ObEy7Oapa3IhYefnb+uEZLw+27c6R0xSIRKNbra145dvyx5XLOdlsQBNEI3QkCibUhdavGIp7jvBnCfVA/WIzo6bVkfuSeeVsErLc74rTBBj5paBwEauP33Dd/Y83r77/LbCKofOCURBnRSUrVSJT3N2oe+OLIzD3Pq3VNoCSB3CvnwqOzS3qjUUoQeVjQMAwEUh14L4EdYaf7xAkUumuQktEXrROD42544R0ZhARKIKREe5glg0TIAWsP8H6MS7KeNRZWKkWq4FCAHLwg2HA4M5t2QIpk9I9TMqI3Aq0Pn9X1hYdl+utXIbuyfi656ocNBuvu24vAjEb2nsd7vpZOUdEcBLQGGxIGHXboR3U7jPNki3wSGAQpQRKTJGrkV06mKcY4X83a8wulDOltReg92ASSXncYzCh6IUWAsBHWBJTlXsmxQckE0++DegEaVGpHXruQirYbEIIRcqvbjiAIR9ilkU5AzBrAKx+G0sHm2mI3Glhr0SLDgNyb7A59i+5r0mRC64sPQWTI0zlFUdIOeyVlt5b3ipvG9EglEEKi/TPutgFpPKUqNcJz7buuIQgiev8Muq5hfuOEYrPFeP5WEIa8ff8dlsslaeSuM4yg3JU0lfLfX3BxcU2UxmPiNGjIJzELr/DZ9z3l9Y47t28yGDcvKiiQdspg+jGmS9OQOFbPeKBJlBIIkYyG5DJURIFEENB53l6x2xBGETsvSBZHCdksZVNds09ZYuWUGXtT0DRekVm3SCnJvMF03/dsd5qz8ydj0jtYp1NwvbkY1y44Xug+PrWqpreatx485PjEc1gT2NVnLGZ3ET6h3cMt/7DxBZFcSaXIvPSssobeuiqQ8sHyJI1oNjtq07KYukXfFtdU64rbPrhalzWTJCVkGDtXfd8TBQFt35P4QDHK5myuV0xj/9CCGCs7oiwdq2JmCEljSd2sMaNYhXW8p70UvBAEgQLMMyaCgrouncSnr24NxslRjjhU6aTYK6uJPUfg5HRJFGaU7Zbbt1218HJ9hogiQi9Hn8aKWe6M0jKPFQ2yDBUb+mHFrYV7+c/O18yzlGbflZpIOt2i9RbpP0sFOXmuaWtHln3z07/DfHLKan0xVpsuLwxlozk5vY2POZkvjinLYdxAAhURqzlB0iC9I700IWlyCyXMWNltG0vTFigvDmLMwHyR03Uddq8SaWokPVFgCTO3IZVdhS7b8cUIrKv4GaPRPnFL45Q0lu6w8FWxcr0mi6PxwBkG7aT8nyGOSgWb7cqR4P15plsJwhzU/KxXWuwhjPeVXXe4iCHjpZv3/Bx3vP4uge59QmSchH4oFStPLN5urrDKcr2pqCsvwpAtqKuBPHXBx9XlxUhY3pveTRdz1ptrdsVBYnx+tOTJ+RM+98gl58vFgjSOmC5i5qdenawp6dYZQy2J/HMIY81skjL1XIYgCOj0jmbQ3LvnpWfLBq0H8umEsnAbYF03BEE4dq5UENMpS55nVBv3zI+mJwjTcTy5S+8rQov5EavVGtH5l6gfWOQZbVUS+a7GNHqZ4+kS1bu1mKiQUm+YJAk33nXPf3/N8fFdgpDRQNOisXZB0TiMeRpZbp/eYDHPx2qoUi4AvV5fUbeHxOIjH/4ZvvcHvsF9X6750Df9XT70TT/Jd//Q17j1WvfcP7uPlJbEq6h98Ot/iI9+79eOh24UBXzrBz9B2/Sk3hbgJ376r7DdlHzkm3+Uv/bt/zUA3/M3v46+7TnyCoof/Mbvx/Qhea5IM7c5l1dXpKngwx/86fEaP/Z9X0eSxXzbN38CgDjtKGrDKy+/htqrmvnx8e/7R3znx74KgHwq+I4P/Sw/8J+5pO6jf/OrkKqnqwO69tA9SvJmFEjYj139Dg8fuq74yekcPTwfnFftU/pyIE3saJMxn+Zkcc5gnk+U4nDCbuuS+NkiQ1rNz/93nxr/v7QNaZA89zfFVY1Uanwf9LDl//gff8s9o40vDOWKstiiO185jzJ027JZXY/qkoO2jvgcGPD8Rt1VEMbUO2+2miqG2pKEU6LMi49cXTjJ6r15drkhjARhFJH5QLGqKuJgihIZ2icpKggJpKHYHgo6aRY6dTkv3GAH43hevVMpA7cPVlWB8Sqguu9I4wwl1civsAxM5iGmL3nyxIsUqIy27TDCBR/dZYMgRPfPWIMYwWSSPfd829ZxEvbSzEGoiMMQa5wAAUASHDGITzKZGGz/TBelbUbRi5PTnHc+fc31Zcx86dZwXYJMQta7zWiuqrX2al7usy8ur8myCdbWI4G+9cq6cZQjvQpfFAS0bTueF4GY0ekdgYzGDm0QJ+Sp43Pt1dBsFGKs5Z233Ry/8WV/nNmipG7XRLE7Q7a7FdPQGcjXXmZ530UfJeODmKE1GHFIbOJYkcoQlB05rJiIQSiU2isB907komrGwEsphZTSKw+6uYnDiKapnuHM9fR0MHCo6KsYjCLam+fWNRjhzgf/7kVhQN/3CDGMaASlHOclCPdJj+PGtN1BVKvrNcb0xEmI8OvF2oHedvTdIb7J8sR3zvxaNAaB607tESBKSeI4HJPlLElJ05TVakW8F+dIY6I4JY2iUfzL9pI0i0e0SVWVBFHPdJKz27k5brraB8AD82OPIEonWDlnt9uLUEBEQlU11K03SVYBUkQIsaXTPoE1A4JmjAlEb8EItBUHBI4MRmXnrjvYMWDEKHKTJAlN0zHJp8Q++eh9l08JyWrl1fOiCGt7ur06YuQ6lG2jibwCZCAzolhSVRVbL44VqsCvCzPOQxiGSGkIQx8XFQ1VvcLaA7e/GzqU0ePe1dYNYVAwny/H7mfTVpyentJ1LUa666q7fdfVX1OgXJJtnf0JQBJbqhaU7/pHYUyaz1itSnIfw4bBMcXOxVnGc08dusuM5sNd79VWhTODB9htWtoIrO1GURalBIG1o20GyknGd1130CDIBabrSWNJ6REDRbljlk9G3lnbtkwnTpBlNN4OlDMy7w7xgBKSpi2pm0PXL4oCzs43DJ5Xn8aOU/bgwcUz5+/zZ97vHy84Vy/Gi/FivBgvxovxYrwYL8aL8WK8GH8E4wujc2UF0bCvYhqCUFHrHl+IoKsbp7DTWlpx4DypMGDt/QdaK7xaUsfUYzBVGFO0La02BKG71SBOqIctj85dK3GSzZkezYgjSezhBdPsCGxFFKbwTFfeWuvNIhm9o6IoGjtXYegyYiHtKBm/ryQ820I0xtBtCoonzuNFloYolgjTgZcdv50fMShBt/L4YwyRLrkTJeQT1627XK/YXJ3R6IYzX+Xb1AWt7Yl8FfCts7dhMKgoHCtX5eaMSKUceznOXtYkix5Ra6bH7rMfPHjA6ckpMnpKv/Vyom8/QAaa3ZWHh0xvcX39cJQsB5hMI4ZpztW6Y7l8FYAomSODCOWrcGkQuvZtMh35Dl3XgZBIGKtbsYwIIrB77x8k0gpilWK7vcRqR5JkzvfFezXEIqHTDcpDNGZZjggdj2gv6SqlM0Tcfz84tadhGMZKizUD2AGpxGioC703hIzoeu99oQTXq43vZEIaJaRRjLWW0yOnmDifHDOZJkgpR06HUsp9rsePd7alKkqM7kcVniyLnfHd5prWV5mCTYPpQXq4Zh6klJuCSrWUngMRhDFZPiVdxCPnIQ0XWC2ofbu9rlqOj25xPIswe1PBbU1RFjx8eDmqZw12cCbCvksVJ9A2JYt5Rtnvv2/KarXm+HjJbOrW0NXVNdPp/MAbqBuMCNDGknu55EkesN6d03lPjbaqGWyHikLa/fONLRfnjwlUTj5193x5vkaFlsG3lmfzmFl+i+12y8RLQZdlQdnWZEmK4aD89Ykf/waUhyo2dcIP/uC/z0c+8lN8x4d/BoDv/cF/l1maE4SSb/2LfweAH/rEB9mJDUXpoJG38tcA+Kvf/hP8+E/+ZXfttWE2cap9/8XHv9Hdc++MjEuvygXw4W/+cX7443+JnZfgj6OcD3/wbwPwX3q1viodEM/4FH3oP/xxPvaDX8PV1Qapnjcv/O4f+hpOX3Wdx7fe+txz/2+Rv+IgF+Eluju4j7/vi+9QlvVzv/sl7/+iEWIh7AlHRxd8w4fu8Xd++JcA+OL3L4nikFl2G+GVDvPkiNVmjX+1eeO73sd//l1/j1fv3hslh4UQNL1+7ruObqQUW/hTf/oDAPxfv/AbpFNNHGXOgBew1aH2l3ozzmGQBCJAWM+LDCVpmBGGB/hSEjkYjaGnb/c+gQddwigAACAASURBVBm6q0hTb845OcLYnmHoRlXM6eTIKYH5PSJQAkRPIENqr0q53RRkacTV+owTD3ebZAm7Ys3gW/zLowXb3SVxGo1mwGVfYq1lMplg/Z6TZROSNMR4n6uiuUIJ12Gq9V5CXhB2il6D8hw4rQdUFIycIRVmBEHCZr0jy71XlAiQv690euPmkTt7fAe87waiyJmF3rv7KgBVVfDOW/d53xv3RshPVWqWyyV1vZeenhBGA+t1x7tfdx3Zpw8/Q9EYkmw6ws+iJHacYH/2KiUoyxprIPReZiqQo/pe57sYTVt7xICHcA41aWDACkrv47WczUi6gEaXGA9Ra7s1bTUhidw19axpjaXtB8LEd6WGhLY0qEATe2hp59+zvcT6MGiM7QnlofOXRimdcf53ez8sgULKyPOHnAWAU60LCP09CyHoe0P3jNpa2/bPKa1FsUOzGCsYfHcQJdFtN0K6h97xRHa73VjR77oGGQqGYSCK9+pyPXESUFXNeI3D0BLH4dhFcZ1CBQzUHkae5Ynvyri/i6KIvu8IwpDYQ6plXRPHMcYYJt4/LopC5ospm81q/H4RDIhgQIZ7yGFN14OUYkTGxNOEMIgxjXt283zGer3m6dUFWXLo7KogYrOuxu7S1XWDtcPILWybDimljx88JymX7HYbwgDyqfeeNDWhTMdOTxBKyk1NkoZj18Z1WgfXTfO8mjhNsIMZ/67paoyVjgu/9WsjDjA2IJBi7OTkeQJItts9YsnxylUgxq5Y3ayZ5jPCJObeYuHX3kBVHFSwlVK0TUcQw+BhgVhJlDooqPImvpFNnQm83nP+AiSSqinHDmkYO0Xdtu8c5wxPxwjDca/I85RuMLRtO/La6m6HUiGh9YboRY2SIcYY1qWHhyJAWpQ4eJ51vaU3EtMfTMTDMGa3vR6vKc1zdDdgrSXYmwJbTS/6kU+mmworDIKI1KOmemPou56y0FiPglnMlxRFwT6ki+OEbVWSRjFl6TqD2XSC6QwM/SEerit2u90I/bTCmRpPZlM++1nHJUbWJGGOUgHawxynz6PzP298QSRXvem58nyOuna692Ec0ewPgUEzn0/prKTd+pZjXBOElq03+crznE27RoYZV1fesyeQhKFiMAOVN2ULgggbDSzn7qUz7YanF9eYy4ai9Ca785DNtmGwPdIvsF5LhGB0wLbGMAwQhvLggTDocVN9NmgXQowys05WUlIU5WEDrDvqqufk1oTaY1HLXcPZ+ozUJ3PL5ZxaWQgs68p72hxP6Zs10+mc3Eua9kIyDYIR8pNlARKBICLyyUelQsqyRnvI2iKPsV1BJCyXT5z/0CsvLREypdh13LnhMPSb9QrbW1JvWNXrC+7eyTGNRfuD8eLyEWdPDCc3X2FXOEjPIs4oqoHtY/c8bty4SbGrSNOcrnULdTZb+sNJEU48PCScQz8ZDaabrkSqgaFXo7xnZBp6bTwk0wdFoQRpafxhsrlakYQ5KBfcAGyKDX3fk4QH88owVIRpiPYQMoPA2ghhD7KyhoHNriVL9YF0qkKmk+VoUNh1hiCQBCoese9R4JIqR7zde4/1IIORbJ0EMcfTE4wBj0ykxxJPLDK+Zj5395yKHm2sw+vgPMx01SClRq2db1GSKrquZ1WswOOrHzzacOPmCfhDj7jh6eo+289cMZ3t/XEC4jRH6AF8sliXBcUwsLzl5OEvr9+hqRSnMifO3NovqoEgjnlyfsb7vReN1tr7xbhNeb44omk62raladwavnk0Yxg0M2/Ou15fc7o8oio7dOc3zcUJRXsFyRqPVKQX1wz9nH5wAeD1SqO7HU03cOTl4YWC5XTqRGaeiTSVTgi9fOsgC47nr/LsmE1u0umGD/3Fgz/Wh7/px/hDhxem6W1N9/sSlpPTOWdnTwmD5yFananAWyHsD6Pv+YH/gBXe0y0JkcrysR90UMW/9pGfoW168jynqK6e+6w8n49GqEJ1/I3v+bf5T/7K/wTA08dPSVJBkolR9hhg6CRJcPf5z8lijmZfAoCUmpPjOd1w8J76k1/6r2NMRbGrUT7wPDmdM9tGY9Fps3PE9h/5/v/28x7TX//+r+U/9XDJ97znPWzXPWfn98f///P//a993t985Vd9Bb/4D36FLHFJa9WUGPX/svfmsbYs+13fp4YeV69pD2fvM935+t3nhyfkZ7CxmcEgMAlBTjCOjTCOEmScCJIgAv6LJAIhlBCH4AgRnBghGRzMYIQwtsEYYfOwMcbDG+9w7j3jntZeU89dXfmjqnufC8/kH6S8SKf+O2ev1auH6qrf8B0K6N18aUpJ27YkScb62iWGaTr4HAXE2Y14hLXzkUew3j4iUAFhOGXh9BCQQqMDhfbBgBbKk/8lajhOqICC2eJw5BZYUaMCycGRK1b1tiObTplkMTvPEQ59UCqlBDmYY3asd9dozzsJIheE100/Sr9rrT1EWBJ4EQ8rK4QyRN7ioCgqmq5mfpChlS9S2uckw/243qzAauyQlMmIMEqxMkcJJ0xzXTwhW7T883/2ae7cc2vCvZcO2G9S9ls377JZQzKXrK62dN4rqjauoJimkxH2VNWlE6LyXIpABFhlCKKIsnHzta86x0fq+7FAp8OAPM9HaKTOYsBSVzmhh9IW1Z6j6TH52QrrYYdKC9arlsWB29ujdEddOX+9MPXQ/drQFhZaSZq4tSsfYEza/77pEQkjTcDd4wKLQUc3IVPbVkzigN56n6tJ6DjYgaauBo6ucZB0Y+laD1s1zli4HKB0E42UPRDhc2ra5srBCT0HSkqX+LqCoBd3UBDoyImAeWiUkNZDKgfT7ZA4CjG2RI08sJ6+B4Ml8IlTGKd0z4l1FHnlOMqIcQ47zowiL3YIf169banO9jc+VMoVMfu+G8XHXELf0xlGTvDV9Qrb65vEut1hjKA3lkCF432q6/pDwhtKaur6Bv42XE8YBW4/BZ49u0ZrTVVFFIWH188jWtMPORNKW6aLKX1XUXvPU4EiTWOEjMZjNU1F2XWDNSRKOUGdyWw6nmcYapbzCdPpBK2GJOya7SYn9XzcqiqQ0u1JA+QvCBXWOinwyPMnm6ah683ouWqMwQpoSkFTbv1ckCht/fvh4xLj9hEjbuJh07QYC3sfU2opOL+8IMsyhPWcsg5621N4CHigBs9Txwt09xxM11JVNw2DpnNCHLWP3wIdIazBYEY6SNsaVKBBDUIjLVXbECaaunK/Z3pNHMdM4nSMg6TsabuStvUJfBRipWV9ndN7VZjO1EgJFjmKlGz2OxTiuUS4xpie1uRkvuC7L66dKEvbjQleHMfEkxuIet9b0mnEZn8N/j7NZwn5usGyZ7Zw8XCvPmzS/m+OL4jkqsfybOU25ZPTW5yfnyNKp+QEkJdbqnaHDlNKn3DFMmIWJOOCYeoa1VfU+wLtF83eGq59cDfEVmVeMUlT9t5ZWukUoRRRHLP1ZMLtpiKbHVCUW3rPfdHCumOIm4pCYzsQN/jmruswxuFg5XNqYNba57x3nGLVrmiwfnM8fvmQIjc83a+IPR9GKM3ByYIsGAiyirJqKMuGyPtM7doNr731GrcOb/HOuy7DTmdTduWeNHbfmy8PKPOCroXa37vZYkqUBqN5XllWrK9WZJnmzp1b/qRDqvaa0FY8ftcF7NNsQZTE9P7tieIJl9cr4kRw667bnLOjI4pyR5IKbO/JxxtQfc0SV3XsLlbcXh5i+xLtlUXOH72PtYI4jtkVXt1m31MWlsNDN5nfee+zvPLGKwgidsLdp0k2B6mo65Zk8KsKFLaXxIlLKjIdELQtZV1QeR+KLIoIp1OKoqD1m3/fWWTQj5yEum5puw6tM1Q4qPcELGcJjWluBBCMQVhLEnkndO+5YWmxg1pZ1yJk7z7rV2olBJGE+dKdd9F1dKL0G5P348l3TLOERdgRDP5RagqKDwl9pPMpbdVwetv5FgVxRCDdQjksWuuDFVoK5uK+f36OB9A02xtic+sCuaquRw7Z/OQe+/2eiUcRn7z8Zbz33nucP/gc08wFYMXlFdncMJF6NJROE03TVGxWLihzZoBTdNST+I337ML5V63Wu/Fenp0/Yr6YcXDggtVNfonpdoR6Rj5sFP0dgthwcuJ8xM4v36UNSo4P75LnwyKtqCvLbl/w1he5+wLQy25UBoqikP2m4C//H3+Mb/+Df9Z9r4dp/JzvBvA9f/mPEyeavRfZmM4OKfcVUrecnLhK+X5rubp2ycLgc3VxtuNw+dLY8RpGEGbUPigr/ca22p6N3Z6pnZKKWyNB/rv/0ndSpiWHh3OE/HDnar9tR6Gd5exVLDfcqqNbMUqmRFHA6vps/P8iN0TJ7kPHwWha69bFptthTcif+KN/e/zzO2+/zcFhhhUbtpfu/uz2a549uWZ+4Nayusn5lm//dWz3Z2jt3r+yrNEy4E/9wF8dj3X+8IJ9vmYxc+/6b/jtL2OtJVnEmNZX5ruOH/07PwlA5QseYaRAB0Re4KI3EiEldVtxcOTWiap063LVlBjPzQxUhg5atns3F63VtKqnKJ4ynZz4Z1JTNVtmXjShaSwHkzl935N4/59Hj54QxIKmqxA+sOlMg041Ze05UVqCaCnrjvC5tURJR6geOoiWFh0qrB3I6yXGdgQxRD5I2+9ykjQmDBJaX7xRuicINLU3swyiwHFmumZUqa2bEvlv8K3bvqU3djTZNFaitCbSMaVfc6/zD7h1J0XpiIcP3JzdriTHJyHTqTeAnXQcnEw4P9uw2XhDYhGiicir/Sj0g7SjxyI4s05jDEVVYXyxKkkiMM4ct+9vPN2CQNGZYU0qiAPX9b8eOJ7ZhFC7zljs4wRhTsgmOYvDQSgCurZECjmK8wRBg4hm1Pseux0M0G88Kd2BJGmkiaKbAmkYSaxVYBljCZ2E7Pd7ktQLb7QtXed8kOJkWPc7sK64OnjtxVHm+ODxoGTpWOJKSpTnUwvpOrTDHqNUMIpjDYW+pukoq72PN9w5xUE87gsAvXFCVsZ2RH5/KsvSiVKoeEST7LaV80uTg4F2OyZ6o6qhtHSdoetuVJO32xwpb4Qt2tYQBBalFGfPtuN5dC3ku57IdxDDMKZt+tHLLEtTus7QtgZ8JzdJQ2y/cfx2n8gURUEgu+c6O054qW8h8pzgaebQREZ2SDkkai1K2DHpjeMUawBhhulJbwymtwgrxuRKotAyGJO7MBIIIbC2HZUIlVLkec7F5TMWvrAXBSFN3Y8+fnWzJ4gVVVkxvJiyF3RdiVKayivmNFXjijb+pKqq8t0+PSqmgut+BsGN2Ne+KNA6HrnoeeFMeZ/vJJVtx2Q6Iwj1KEQlpCuCDB3LyWTijNLremwsBJGk7zWVLzYsl3NM797loTDUdQYxaB3Ug/kv2K4fjZyrqsH0LVGgKWu3bkQk1Jua3XY/xjxB6HzYjEcwaB2wWl0yXx5zdXXu72fBwcEBRVUz9XFmFAdUVUnT3nTKVBggtaIY/HGVpKorIh2MSoD7oiQKk3Ge7/M9QWvRoab18LmyLMnmhzT1hr1Hyy30h9VY/83xBZFcaaU4veUkgJUKOVieeLKe+3t0a0JR5UhbMb3tN96iRwUS4zsmUTKlaiYcLEO2uau0YHomU41pDLGHZ0QBmLYbCbwqiOh1Tpg1RBO3aJXtOfNoTrvb0fnsOY4DhLS07UDkdA7WbXNDKoQB0naTPbtF6MbUVwhLEAaItsfU/jPGmQArGaH9Ay/2e4JYs839hio0UZBwaz5H+epZXuU8evyUq6sdUw+zCFTAblMzOXBGdU3Vs92UzLOM0nilw0KQhRm98dC6ckcWR0zTmLMnbkNdzE9BpcigJ01cAN13gkgbLEPLPGFmOsptxWblq70yY54ckufXbDcPAMimKfN4Qhv46nNRcLXOfdLr3e5TR87dltfcm7pEbZ2vmKeGrnDV8zuLjqBZIQi49obEK9nStZbZ7IDVU78CSs12lzM/cL83zRZsu5A0jkdYwtnVygXvStN7CGecprS7a7a1l+Q3LfP5EinkuDH2WBAdXeuIs+4ZW189T/y/jVfJ6TB+0ezbGqQlDsMx8RbWLZ5VNaj3GYQMsJ0ZA4vJZE4vNEGSji9/1HfkxQ45ONJLQ2tqgkjTNO7Fb4seJWbUdc7Uq+AcLDPapoPBsttqtA4IpscfMr221rAMJI1PrsIwQN0RtB4CoLTla176Us7OPyD3C83t+x9DKYEUIa2Hu6yuL5kvNGnqjrPbbeit9gGBu75lEhKEPYkajEb3HB8umUxS4nFDzUnUnMtnT5jNh7nxjKN0weOHnwYg3yq0TjH501F5EEIm0wNOb73Ge+8/YxgiClh4KEixt6ig4dv/sxslwEni4JjPj3cf/BL37r6K9qTif/GJn+VweUQ2mfPu2z8HQKBmvPTyqX+27nNp4iArwyY/jN3+muNj3xHeuPt1/6U3qQrfBW87bN8wSVwXsCqhqS2r1Zq2/TDeq6fk/j0HU+xMgWlvumTbbU4Y7UmzkzExBMimB2x3Zx86zja/JI1dcWU2PRk302G89NqBm6PikNhv9Jvdltc/ejrCHt986Yv5A7/HGRL/sf/xtwNOjtol4TedqVfeOERFUOTu/fjev+g65t/+x34t16vCf++m8/LSa+5+np9dodSE3g7QvZCyrOlMOZLXVeDfPVsBPoDlHNM5qAi4YkfbOKgV0t2XwkOUGg9hTLOMoijQUrL3ENXpNKWoAkRvR9WvJJ25wHqAw0UBdV1ihaEblEetoO5q1yUXg9iBJZ0EDKXeosqxNmS5OGa1cmve8a0jdrsN293ViJCI45S67Vj6osx6vcYYF0R1ZrC/ECPKYhhlXZJNDrGDUIORoA2xPuV6536vF2suLjq0jnnjTTen3nv7irOLd3nzDV+x7RKSSYjSHatLHySlPasnOwwWPGw1CBRdz5jwtY0hTJwAyVCUadoKIdQIf3NDUnc3CUKsp+S7Eik1R0sXJ0QyIoqmLJcHFH5fi+w93noz5PUvds/hnXc/y27rkzYPYy3yAITi+qJkmbn3aLBz6Dsvhx04uNkAJQQnblQUhYdReXhfU2L6ls21O9c0TVFasb7ejZCjyWRCb3BBtT+Hpi08lM9X4Ttn6Fs3e5Rf87qmQwRq7DYPtqy7Xc7UQ92iMB1l/IfAtO8NCMZ4Aysx1qC1vjH1tZYgiDAdiAF2aCyhDrmh4UuqsnOWKb4Q1rY1newxraH1iAwp9YeUWLV2glC2t8hBCThUiN7SdwZfx6Tcb+l7xj1zfb0nCqeESoOfn/vtmjSJyPMc46Ecs8mCpr4RwhBCYRqLluHg4c16nbvA26xHjoFtoKir0V6kyStM1xLFwShxLuixncHSj8VwrTWxDsY53FQOGin6nt3GFWqKomK5mFEUOcV+MOOWSKFHuxRQSKnRQjIoMpqudO9sa7i+dmtQGqUgBK1PmpquQxuDFQbDjVCEUK4LpvyaECYSgUQE6fiMrVAIJdgPyJg4RgSSXVmM8yNOIqSWKA8r7aVyCa6MnNgXUBZ7rG2Rvru23RcI2XvxNo8gqHv6tiMIgrG7K4TAYkYFQyfuosiLZkTv7PaFg++tN6OI18nJMUpJjO+wP724GiF+k7nbB2Sl6KUknU0xfg6XXUWUJgSD6EUPZZMTyQgdDMIbC5J0QRonY4K+3++RVgx+7ywPj2iqnLavR8E1JRPW6zVRfGMf1NT/7s7VC0GLF+PFeDFejBfjxXgxXowX48V4MV6Mfw/jC6Jz1ZqGTe2gRGcPr0iilEU2Ycgl66ZgMk1ZbVbsfZsuSWfsrq8GDiMX+wt0kNEVPZobrKiwIANJJTyJsKuJo4jA47TzXFDWDbEtUdpl4baXVI0hjKdjxbnv90RhMFY0pFSEQei9rryvFgFS2hEWBg4q4DCsPssVFiEsZdvwzItq3Dm9TV232D6k9r34MA3pBcS9lyGXEtH3TuTBG/auy5wszkjiCOOrd5vNNWkm2eceikXguWKMxNv1fkff77EegCxSg06nbCqB8JLDm/aarnCSxvOJqxbUecmzh/VIxF1v3+Xg4IAsMGweD3Cic4JEksZLbh++DsBuv6GoFfv9tb93Dv7VBx1qICPXro1tq4LPeFL+qy/fQ9BhvFTx8WRBXrZU9Z5X3nBQnqbcUxY1aRpwdemO//6Dh7z08mtcPnbHOWs7JlmGmCTEnmvXXJ5zce4gFgvPEerDkEIqNhv3XNbrFbP5AXfvvIHp3TywVqD7gFBYBxMBbG8JtKLxHS/o2W4KpospkYddzGZz6qah6603lQYdxiTT8EZkQwvXXo/0DZ9LCtq2QiFGSIMMI8IkHbH3aIntBatNxXzmWtVFURECgYrZewhc3/dOnnkwYDQdvQVZt6OpYBIEBGFE0zSjMbWpHAxEeBhrayouzrZM4ntMkqG7IJFMkKqj9VywbPoaUt28H9C7ij7d2PGSpsNaM8o1B5srOlOz61qerp/6e95za3ZIr4/IveBL3Uo+eHJG5SVWwzClLiUHhz1FM+DQe2eemdfsdjcQuN1lz8OVe8aTWcBidpfnx2fe2XJ0pPnTf+Y7+O/+uPOuEjbml37xU+x9p2W36Th7uuVvfv9P8Lv+w68DIIqf8u57n4Vvg0/+0mcARsniszPfJfK+UVdPBb0/z8rj1v/wH/xf+a4/9U0AbNY7Tu+e8O5nHdz3e777B/nO/+YbKKv92D0fxgdvFzx7+El3r6hZHCzHv603OelEIGVOFB2N/1/XlsPjI/6H/+nbAPiuP/pX+O//+D/gf/srfxiA9z94xsbLHf+BP/JxAD49ueT87JIw0nzfX/hxAL71O34zRfmAqce0/8KnnsDvge/8rv+EC88N02rO3lf5/tP/6msBeEc+5OqipG1u6nu/41u+nH/95Am+qcHMGxV//Le+xIPoib+fzocujIYuau8l92Pa9sbMVcsQ03akiVu79vs9YSTYXnsIsAnIsjn5djdWzxFOhrn3aIVqD4Gast9vR5+7JIno2h1CB0jp9pRdvkIpRZa5Cv7JyZzVumCeHJKlrtuz3e7ZbM5IkoTCmx0fH85JMzt69iXpPbbXmouznNNbTqAky1KUqjFGkBde6KO3aOWk3sH5AVVVTZpE41q52+3GTskwogiiUI6w7jCKCcSSvtFceshoetgQVBNCvojV2kFc3/ySjrc/nfPuZ9wzvPtGQhi3ZJOA1ZWX2z+cYdmyvt6PpuHGhh+ST07TjCLP6W03znkHsTJeQtydZ1VVRGk0ctqkVSST1IkL+fZEGk+YzOastmfUXmxkX11i2ND6TlRe5OS5Q0gk3ixb9DGNyZHCoKybs6EXshr844K4Z1eUUN90ZNrGEEWO+G99lx1jSeKURg78I4mwgjBKxs7A1WrtO0UBeCPqvGkIQj36m0kxweKQElIMvk+uK+T/OcI+kyQeeUoOMtx7yesbZEzdVaNZtturJaINRuiw0pK+ax0SxXdWpHD8KR0MDuUBehI6PjPDOYXsN1um0ynGDobEjvsiniviO5sajRlEmZKYLujojUNiuOuxbDZXdJ7vFKkA0Rcgo7Fb19WCwrREYUzu4fxVtUeL2cgfb9sGYzr69saYFirW66f0yj7nIRegdUjt3z0he5SN6CuBlQO/McSanq5raP37LqKISMejT2mgIgKhMHRjp2OapGihWc4O6H3Xu24qhA3Jr937kaQRpnceWoM3lZQNdW3QQpH67l+P66oPEM4oCam7EinUKESjlHI8vt5JsANe6r8du7DWWpI0om3b0VC6qAsa39kWfs0p6oIwihCeX32xvqTvLLPZ7MbcXCrqukYPpttdQxhq6r5D+rsQT0Ns56TsVeghjf58K985GyCnSonRMFxrSdnVVH0zdkD3deHiZ79OWRkQyoReGC48r3Y6nbMraoypmXg0gkLQ1CWNt1iI4xhjarbbfPQNLHoH66zrG2uC3W5LEAQj31AJSRjGTjhpMvjoGnrb0vfRjRT78HL+MkPcTMj/78ZLryzsf/0nfyMAvQiIo9QFnH5z6GxDS4dtuxuDsLpBCcXUm7T1tqHtK6RWVKU38DWd83aSciTZOVduNarbZOmc/a5mcZhy8dgtLP/7X/iHzBYRUhmKyiuW9dKRyb0am+ksSjki941aYOAhQHLkYQ1+HaOjuG0Iw4DVec23ffNvAOB3fP2Xsl2XpMkhUnmDQmqCJCNqBnx8Td7ukWFE4Fux52eXRJEgizXrtU/wZEeYyFEsQ4qISTTHmh4P42e3uSKbJuz33phPBARCUuYFqV9c811Fuphh+wrNsMkodNCCh0XkdcPBcUZfKK58IDxfTCmL1kEvPfwlVCFpotl6mFEcx0RRwmqz5vYtlyQVRYExLW3TYHwL93g5o8zXbDyc6fb9e3RG0TY911fuJetomGVziqIi8yqRcRwyn895eubwuVhJ0EGg1Ziwb69XTCYTpw7mg1VjLFXdjIF+ZyrOLq6YpAcY465ltjig6zqebZqRa9M2PWEcjcIYA2dAhwHT+X1/7BYhLLbvbjDsvUVLNS40SiiEcOqYQ+IrtYMTYMVoGmpsQV21I4/A9hodRAhpaQYfGGVRYULX6BGv3po90NP7TV6qHqEqWjMZN+OmqhHSEkXRqJCodei4EuXgxTFDyBat49FTKog6pNRYa0aib9NUWMF43kKFzkw1CkaRkt5GRFE0bp4Kx9Nw3nDu8Ukp6ds9rbHj5x4+PGN1lXN17ZKPqrpyfjFtwmbtIE4vv3KKVi1JJEm80fef+Z//Hr/c+H2/zyVJTVdR1g1ta/iHf/8Xf9nPA3zTt34tJz4Q/vN/7vs/72d+9zf+Kv7WD3zi3/r/b/wm93thEFPXLf/3X//xX/7c/sDXUpRbsJK//dd/7t/6+zf//t8EwF/7v37s837/N/22L2e2cBvM3/r+f8pv/91fQW/kyL9p2pwf/juf/1q/+uvfAtxeV1c9OSzUCAAAIABJREFUQQj/4h9+dvz7l/662zcqXDrgZ37kwec9ztd9w5tcX7k5NZ8vSeKM7c692//iRz/1eb/zlb/xdaRihCZJKSirFqmGIlcAVjrfIl+kCIOEKA6cHouH14ZhiBQB6912PI7jwt6o5yWTBCnV6BnUtk6MII6CsRgQRs7IXamAyosyxEkAShH5opcLjBrm09noDVfXNVmqQPTs1i4wzWaaIKoptu65HJ9ErNdboigeeZJF2blAQ2ref+QSzJNbt52R8AAnLK85OEoJg3j00AsDyIsNP/r9N8/iP/6OX0VdaqxXWqyqGLN7jfX2DBm65OqlLyo4ezBlf70gmLoCQRgbJmnIT/2we9dkkvCxL7/Do7ev2Fy79+rO6yEffCrn5Y8tmS88J3h/Td83Y9ACgHCc47LwsC6JD8QNPn6l6zqSaTzumdIIUAYdCCahhwV1Ia/c/Wp+5l/+c77yK78KAKtCfuKn/hrbdTI+8+NTBVazXw/PoSSbGprrgsor0C2OS37+J8948yscfzOetKAtlphf/PH3APjY191BSM8NYyiqBXRe1Mpdi2W3c95mzxeUwHOtlYfr2tbTHjw1QUa0piMIxWgabIwTFxjmYpyE9LalKPaj51JvLEoFXrXwuXhD23F9lVLSdR2BnIAYzGRdsIxVPiiHsnLJuByO3btjY2+uRSlF17QOliZvoF8857cUBIq2rglDPSY7fWccRNUqppkrNrRtS2+r0Sg6iefs9+vRPNfdA4OQlqqqhtfYKeTpcBQ7kcLtoRjGYFnQOX5Y34yxYBAoqqoZ17u2awhVhtZ65A1JKTFt4wrR/nrmiynCSq7OXaEoTWdY25IX+5Gjd3hwi2fPzj/0vKfTqVMGHZRPTUkUJSgZjVyfvFizrwpAMvEiPNt94UVvPDy87xBaUOQ1UeiNk3uBpUYGknx/ozyMMjT+eqXyJtOBHBsQUrr/k1I+p6gXUhT7G4+3KKKt3T0YxH8UMUJaisKtnSpQpOmEtr0R9XK8czly1dwPQtt27poBIbSLDTykEGA2T+k7VzAb4oS6rdz19MNziR0NR9YjxyyJp3Rdj9IG4cWVuqakrgonXgYIa8A2aAl2UGTNS46ODgi0HhPmMi8+tEYJIahKw3SREnnuZF26mAokTTcYkr/O93/fD/5La+1X8nnGF0TnqsfSBl5dp60o8rUj4/mzq8sdSksSPaX0SZHUChnChd8s68oySWcslinad3GKokHJFGMKFl5prW81UhlCT6R+//wppydzpjF81qvi5P0Fh9ExeV2jlFcUiSxNW42VARVKqqoijiVSDguiU+2ZTCajE/gQSI8crE4jhMbIGu07Qoe3U3oDOuh5eu6lUFNLt78kG/gyRyfcSV5mtyvY7LxcchRhQkETh2RTd81V7fC/88xVr8/Pz5HhiiSeYwYeT5twkB1x4CvDCJe0Pnj/barW3YPl/UOqeg9YDo7d5x4/uiRQkvncTfrD7JjrqxrihtBjYSsrebo946s+/hWcPXU8F03EZm8Qvgs4WWTMpinQU3kRkeOjGeeXT1kczyjywUCz4vjOKSfqTfes3n+HJA05XCyxnVdHa3oC1SMjS9G6AEFlB3TxnNuvuY7EvtzS5YqqKfDFUILsGBlNWeflqDZ1evuIZ2cXlO1QyUq4d3pEU5VcPnadVdvHVHkFl++zLt8GIM1SNhc9qb/n1+s18+Uxt2/f44P3HM/kzu2XETJGajVWhHprQWeYzlebVEfXN8TLGOW5InXe0zYlccwo4RqmkiycUOzd3Or6GlqBUC1Yz2IXhmJXoWRK6xcyqRuUvukW7vcFYagQRtL4qlScRFgL5XY7blatcaaYU28B4LqyAdZ2zOZedc8Yh0UXgtIn7ZGe02PovcRx27YEYUpV1wwvdxqBpBuTuzCMXSKqFZmXHDZti9RTmqbkNHI8uldefR1j9aiYeHn1jDhxBszPK1fV5Q4p4Jbv5vzKv/rrsJiRKL7LL0G0PHt6QXXiu0znT0m0JUmm/L5vcklL3ay5e/clqmKo+G2RUrLdlry/c0Hvt3zbr8d2TupRi8EQMaCLOr7597qOjZQSKy2amM4LTwS0SNXzrb//V488DK2W1MVmNFY11pKXmjRN+dZv/Q3+nrecnB5xcnLM5hV3z//QH/mttJ1Bi0P/ezUml2yXF7TPmaImQURRrlG+Wp9mc772t32Eqd9MtIixQY+OeqqZ7w6qDIShMjW/81vcOeyuHmKzG+J221i+7ne+hUUzBBqtaYiCFK0U84Xyx+ro2mti/+79lv/oqymrHhltCGvPaelrTBohG0vs58euqUhTOYpeBLrDdJJb8xMq34Go6oJ5EtN3Ea3y6wQdWlheves4O11X8fTsimxyyHXv3u0ut8igIvSbc162TKYBfd8yiYfEKaEsWury5nO601T7BrQ367QlRjRcPs7pvGyvChVRpDFNx3zm5vB6VdG0O3rrnt3Pf/qaw+MDpvGSZj3weDRn6zOCdErvRXyeXV6jA4i1ex+laHn/sxt2u/fHQPjOdInUQxfCjYvPXXF2/nBoJPErv+z3clXWVHlNlrnCyX51h/31AfH8fZbeliPf7ZHdki//ave9f/aPn9LnKYvDC84eu/OcJYeooELWGu2Fi5TsUXJC5a0n0iTBtAVROKPs3e/1xoLQhFqNsuBaQWg1re/sGiRJIDBVjPEIlDQ5JU40J6cH/Ppf+/UA/MAP/Q3CMOCtt1ywdXF2zdmDgN5Kkrnnx80hmwdsbEd34Yuw3WAa74M0vaWlIVbP2acoCwiE7bFD1YeWui7p+ht7ljAKEb0k8AG0jhQGQxSFY7LRttB1AuXX174rfIKSYjzvK9CSrq1HBExV9TRNRZQkYzE3jELi2BVmhGd4pNME01fjPAiDiChKqetyVEcTQqCFQArt9jKcwI6UEtPfqJ2apmcyidh6HlEYaiYHKZv9lnQQlOl7lA6pao+O8Mq9XWNHHpiSlrpsCSJNa7xwkW2o6gLwCWfVg7AuyWNA+bhOspAC6eOoJEkxnaXwqqxaK7SCdJaO6/4knXJ1dc0ki9HpzR6WpIyG01IJoMWiiQaxKiLiZEJRbm6SvnCKEpK7X+Y47KuzSyaT1IsnuPl6//593nvnc2itmM8GNeKWotwwm7p1WKkAROsK8PXAvQvRUcZqtaKq3BrbSEnTGU5uO+5rbfYI2XHrYEbgO0Kb3RolI7JpyHbnhWHSJVKXNP6c2i5kvdmgZDcaUSvdu2oG8VjcMB10XThaBwXaEgYhUThju3Hvre1rFwt44YimKlguAkzbUfr4TYoJOq2QBKPKYNd1TOJstC7I8w06nNHSE/sCepxBVVqU1KMgxjxdst1dYf05md4iwhYpQ1q//4aB8WbeEhn4TnlbEyca4RUT2wbiJKano6m8Lc9yipEdu/01SezWt2R+C9N3I49XSKdqqJrpKITRdT1hOChI+r39/4VU9QXRubr38sz+0e9yC+TB8jbvf/A5VFCO0A9sQKBmSCnxSucuSOkitl49CFuRThRRqPHG0qTJEms7jOk5OnKTtdzVJPEMfGAjesPyIKOpr/n5X3QH/1+++3tZzkOqfiwg0PQVgY6w3SC7bmiahjS9gWd1XYcgHNu2/gcQgrGV3/c96SRme9bwu36b69b9oT/0cR699xgjGibZoFzlJp01LnnsjSabLDm7eEY6cRPz6NYxptfUFWiv/CXtgs72NF5Jap9fgegIZczy0G3ObW4dUXsgKK43vPXWW2z3ORfnnkh9fMx0oumNHCu7UkFZ7YkDD5U0ysmNW0b53SfPzsnzHcuD+U2b1UasLtfoyAdbvZMbjYMM4YmqQSi43l+TzSao0WdKU7cNUexm8dXVBUfHB+T7GuvhL7ePj5BBSNPVvP/4ofuegJNbd6g9/C7f7lh3W78RDTC2nrwq0UGA1O73wjDl+uIp0m+MQeDkk6dJROyD3M1qQ6wSpnHAzCe+GElb9xjf6TmcTyjzkkk8RXkJ7svLFYiAZDol8OTRfVFRVQ1LD0tMprdpbUNR9ESDbH51xXZ7zsHBnbFrGwaCtjGjL4QkG4P9Xg6boyQMJgQivfFYE06e2WtzMJ8tfavbMmxoUjoJUyEUxgeG+/0ea+0YKLat2yScOuaNf5GUEiEhm/jfsxFN297Ak2zAar3HGON8QoCrq2vKshwDjSiK0VqTxsno2RMHIZNZgtKWboBd1A1Xl5sbrybRobWgrBXGk63ruubP/dk/zYvxYrwYL8b/n8aX/uY7DsZWubWsbRy0MEki9gOCINBYY7FWjLBAFUiqqhyLuoOIwGABM/xf27aEYTwmfLZ3VIbBwkXrkN6AsDcEfhVITF/T98aLXzgoljFm3Ott3zNJp1RVMyJJqqpy8v/yZv2WUpHGNwptVVUxmUwdJHRQNawrpJTUVTsmhlGUEKhy/D3T9mBgvyvGbsx2U/Dyq69jWI/+WO6aK6wvek2ygO16TZpOyT2ipqk7rDFkWepEHQBrnBjZdOqSJiNd18xiWC5dwa6tG7R2BYIRoVQ1aC0Z7DEDnTCdRWx3m3HPnM5ClrcWnJ+fc3rqkrcwSNFaj/YFIjBk08RBFX0siA2ZTid0pqSqfCLRVqAMyotVdaZEqJ6u69hvXYHp7p2X2eU56/UVge+yCwKePb0Y4cTGGF8o6yhKF1MWRUVThmMcMZ/O2BdXtGZNmbvvJUmCZEJvK7KpO/Z+V3D//n2WC/esnp09YrupWO9aTm57mC4SqQSryxwp3PcODmLKMscOsustCEKOjo5GJeC8WIMsaWtN6WGATd2hNCM6KY4maBX7ueUVWbWLPaS0QwPR2w5MxmMb03EwmWOtIvAQ4Ko0aO0UQ2OPUMqSl/ihH/gHv2zn6oWgxYvxYrwYL8aL8WK8GC/Gi/FivBgvxr+H8QUBCxTo0bj1yZO3iSNNlt0euz3WGuJYUO0FRXnDb1rOJtw+dh2pps25vrwmUXOW97wIhErIizVdVxH5lt78dsJqdYlU7jiny4/w+MlDvvRX3ONTn3Rdm/1+z8nRkjLv6Qb5S62QCloPrbPSopSgbWue7/4NsqqDUWNveo/vH/wdXEWooebZysFRglmKmk45Os7Ybb3oRHXN+48+i5SuYqJkyEkQ8/LHPsqnPue4EeePPsNsvqTv4WTpuh+b7Z4gUCjvH5WFhxRFwcUqp/AY04M0JpgorHGp+8n9l/jg7BHTbMnpyw53XpQb8p3z7VC+2rNYzJhl2ehw2/eCJMjQhKMnUTw5IJnEFHWJ9RWa7XZFkEE69RAAldJbTY++cXbXIYvTu3zu3V8g8fjjg+Vt9vU1Ky/zHCUzWmFZnE653rgqzoPLB/TCiYi0HlM+nc754Ok7o9v90eKYhU0QpufysYNwZVnG/aNTtkWF53iyW10yiXqymcc2C8Vqfc0235F7XLYJW1Ta83AnWHr8dt9Kpx7r29hlU9ALSaMn2MbDXzKBlJZGVez3uZ8rPXEcsN05LkNePKbpWupScn7uMNyzucDSYvInYxcsiuYEUUyYuvOcL15GaIFQIWLAuRtFXnTk+2djl6huKqIkHUUWmqah7goCPRmrhZvtFRdXF/RGsLpy3zs4OKJtu7GD2bYt8/mc2Wx6I0vaVOx3O9q2pfHGvqbVSAX9IA8tE7rWjhVXACvd+6N8S7ppGoerF3KsHkoEWOXw54McdZoghR67jEL2dF1FKIOxwtZ5SM0f/o7vGPmFfe+gJkP3MIqVfz8hjmbjZ6IoQinB1BO+J1nK6voZe+8N57y5nlLXBdnEVTCTYEZRrNGiGk2SQy0JVcR+5wUR4jn37gWcPbsi9pC8q9WWr/qqr+Inf/JHOTp0Fb26smx3FfOFg5CdX2yRWtGJlthD8JRS5FXNJE64feTOPW9bVvtzkgESpiUiDgis5dkT96593//5T/nGb/pqTo6PR3+TWZZR7ra0Hpo1O14wWyx4793Ho+BDnIRonfHe+w+x2lU1911PGk5JPfRke53TtAVhrAn8/Wy7jkh1VHU3wjhRmjzfMcnc9/b7HUIIpsslnbef2Jc7ZDTFNj22d+dp0QShoPc+KVl6yH5foGTMfO4hlFyDcDypaeb2hzjWFEUx8lV2uw3T6ZK8KEfj97rrMG2Ab1Jj2oLBVmOAZ2WTBRJBENxI+XZd5bsCHkqUBGx2lwizJJt6/qHnQiopx+55lqT0RlL5e3frcEZX1tRlPQoU1UVOuSmZhCl3jp3M/9HpksXymEnmuH6n917i8PQ+q+s9e8+B1NLyQ3/3B/ne7/1LDOPv//BP0XYdJ7cX/rlc8sM/9CN84hOfGAUCPnhwwfTwgkkWIfFzsb3EWDNWyZNU868+ccXB8ojc20gc3ZqwXq/pbMxHPub2ot3+it4wQkYdd8zS1D3SQ1TDMMIK3/V+roshCBhqv3EYYPqKLJuyWbn19Mt/xW9hObtFls1GT7nv++t/lldevcuzp27dePa44Pg2tM2a8yfuWb310deJF2t21xWP3nGfWy4Uv/iv3ufVjzrp+eVtC6SU9YpP/TMHbX/ra05G89/WS0aHoYP6DbwoNx/T8Z0CsEJQ1zVC3aBu8rz01jDP87IVcRzzC//4XTdfipbaNjfQOmFp64ooEGjhrrfcOw5RGOmRg+S4zgrj19cwCqm8OMOAphnWwKa5EREo6xrTdkjvs2U6i2k7mqYb11NrJWEU0osO4bkvXefg4IEXRDCtpalLpGA0wu77HoTzQRqese0VXXvDRU+SCU3dsVnvkP5Yk8kE0wkm2WTsukmlSCZ6fObWdCRJxLK9gcBm2X1koNltbiE8X3y/31PnhtNT9w7FieLwdMkkmXHlbV2u11dcXqzYNw3Kc8qstsgwZOfv4Wp9RRg5/8YPnjieeRzcQD57M/i3JWgt2GzcviNQHB3P/TN39+DRdUX16QcIAQ8euXm9XB4QhCFX3oohTWM6GpRV43tblSVxUtC0e+LIxYcHhzP2mzXKz814MqEuLQrNYu7WwItnJWG0IE1iIg/dC4OMttXjfdntV+T5jjRNefDACdq8+sobSGXJ9+4+LRYZm41gMXtzjAmapiNQPWVZEioXl8h2z+aiZLdya8Sd01c5WYCIei4u3HuVTZZ0XYedB9y54/jpV6tHhHFA6Xmn16s989kp+/xq7FjeXhyTZrC+3jE4hkipmEwmIwyxrmuaSrDdCprO7X2nB1OCLiPUC/AoHzXv6Huws4X/Xsl237JYpgjlrnm29Py2foLxXeLnRbI+3/iCSK6wlpnnq0gp2W1zMCHaq3E0poY+5ngxG1t5dV1SNzmPHrvJm00PeetLPk7b7bl45siHeb7jYHnMZlePwdX89mscHces1y5gP9+cc3Z9QWEPOF+7gCiaZTR02DDCDF4/MnBKUoNBnwChFd1z/hxSKhrTIgON+BDRj+fa9IFLyHTIzr+I103PWQ513JPng0fInFc++hVceCLlPt/yrz/3czw4f8DSO0Q/evyEaV2QTSPKhx4uVTmI3cQ7Tj98/Gm6PidUR+SND8C6nKYqqT32N00ymrYg2F6OaoXTWUrXCoToR++Np9sVZZmzXHgPoN4iSUl0yiJ3xy7Kkl5IZ+Lr4YNVnSMjxezQLQQXlyVNV5JMFVPv1XJ1eU00kUxnC6Q2/hlfMV+kXJ67l+zq6Y5En/Bzn3yXxEPG7tw9ZDaPnbHbxE2OOIw4nE/ZeGWZuspJpkvqcsurb7gXWArLLJuSTRc8eeYWspOjU6Kopy4Gzo7iKD1guZhxvXFzQ0Zu8z+9e5e1ny9939GYdiTdX+wbFvMTmrDn3Ydus3z11Vc5f3ZOEiZI6167+SyjrHNU5KGmXURrNWEGx9IFNqdHd9A41/snnvdViSvSxQlF7V78d3/pn7C+7jg4PuL9By55dGR9S5olpJ67tFgsaE1LL939vVg/45Of/HmSZDomDUEQE8UZSgakM3cOq92V83bxIOM4DinaPdtnVyP+P4oiBM7UMIw9edwCwqJG1TLLfDmlqXOsX9yFSjzB1h0nyzKvHNaPMMSuaYmiBK3lCH+x1hGubwIGw2QyQSocFBFovBfKtt4yPZj6zzk/jqZ0f9uvN8xmM+Iwo9hu/LEN21VLHGXkiX9vryKHJfeO7cLOULajys+ZJt7/x2qSSUzf1SwzN8+Wi4zWdMQDH2AyYZpECLXB+uewbd7nwdOn3Lr38gilmSYHFOXTkWe3ODjCEnK1PuPw2D3Pxw9XRGbCNIoIPF480ZI3Xr3Dzq+BJ/dfYdfsuH94yL1jt3l8H/+UL3nrhKPDGeeXbk6d3Dqk2yUon9gUleUwS7n3ZW+ivBhIZRqKRrFaS1TsiikfWSa8++DRyIHIZilZdpd8X9D6c8/imN22RlhLNnNBfBhHpBM1Kt4FPpg5mEzJfRFomh1Q1wGL4yW73G3GYRhyeXnJdO7VQs0lYaoJwwqZeChNn9J3gYNnt24N2pQNMggIPcdrPr9Nsa8JdQReCdR0jtg8eNMFOkXIjiReIHCfiRNFsc/pbYXtB3+cGIGkM26dquqaNJnS1yUb74UDGq0zeh2iEvceres9q9WawAdmD36+QoqO115/hUniAqJXXvkIH3vry3ntpa9Apu45HN865Hv+0l/kb//l7wHgv/2T38WD9S8hVYD23ky3JhnX2/d5fpTtJZebKx4/cdfysbde4fjoHsvlu/wX//l3AvDTP/Oj/MzP/jjvvPsZbh27ZxXH0HYC27l5J4XgIx+9zduffYISbt2fTyeEseWzn7qmzr0SYCfJkgjt98JNviYMY+jFSLJfr7fO41HrMelM0wzT9wR64MeAkAFNW47B5PHRbZqq5vTkNj/yY3/XX2HBO597iuhfAuDu/QChd67w5426P/Vz7/HFX3EHSUkUDF6U/v54WNCJWGJExXI2BZ753zvwkLWI3K+VSjnIfOyLbGEYgjDEkRzXRR0GpPGEIAhGXo3OQmwvxqRFC0kUhjeqlcBidogxLb0dvKkMUqcoGYzeaQqNMV6NVQymuk7AY9gfoScOXaFwiEHc8bxBrOdBd8oQBeFY5KrrGh0lZIkaubd1U6JQBFrdiHMELiZqm4EjOKPx/Ksh8AZBHKcIYWn856qyoezK5/xANUVRkSQTav+Z3bZEKElVt2OhXSnFM9mMnFaQLuFtLGbwqxJbTNcjZEc78ul6LIZNNey1OYdHM3bbx84bDDB9TWsMtB1p6mGPGnohaPxelEaK+XyKtRlXV94Y3kLbtIRhiPbBf2cDyjInmc78OQk2ReHOy8Pd6qZEK2eOvTlzx3p6fk1rujExDYKAKApQMuHt9879ORmkcMqGU895TuKM6/UzFpnb59quo22cce9sepNghrHzLQsGAavaEgYxn/xFlygK1dB1LbaXaO2+d3b+kK7fEfikfjavKLYd9a0FUXQjuHJ86xaB1OM8v3vf8lM/9U9YTF0RqGkVoi9pqy114ROgouLiYkWYKDb7X/BTNkKHavRzm6SnGLtHqprrtUtodvkEvQpRgUUJt2dmkwhrFQNTYT6PqaOO5cGU1vh9Ry45vFWhA3j2xM2pg+VdEPXIx++aI+JMomXGZu3W7zfeeIPPfuZfjhBJANFN+XeNL4jkSigxJiNhuODwcEk6uTFE3O/3NE3L5DCj9OTY690FrdmOaogXj59wtX2GFQrlCfTWWmrTgWjHxe6Tn/s0YXBj8rutKtLDjLcfPqDzJHsZRBjbYzpFErmApGn2hKF+zlDPQB8gxc0t7FqnxGKtHTcPpRQIMTrSu78pkkDw7KELbB49vGC7v8DYaMzMt1tDqF9i7rs9tn/K4rU5TbunqFwWvlxkIFpWF+d0XogijhOiHtbeSDWbTVFqwX5rCJIBm1ojrcL47xR9w2J+QFntMV4J5fzZhsXhLbbb1ag2lyZLZCi43q/8PWjRasJyfsrqzPGd+t4wm82RCHZbl7SU1YaDZcZTd7nsdjt2+ZbuWUleuOAqDudE4ctM04Sd/79koYn0hNfuu+p9EMImv+b0dELpyxWPHjzm9p0jptMJ50/d4vPppx9wcDgh9QlmVfZ04opybzhaeLNqoTFFRVsXvHLqkoiz80tEEzP1/LFnZ4/JZhPqsiDyCo0qjolS2K02dJW7f0kacrpcemlcqKqC8/NHiEnOR994BXCiZXdPb4OSrLfu+TWqolA3G0yYpjx5ckaUwEsvuwVpV/Rs13tMX3HduWTqWL7EOw/OsdJd32pzxid++mcRQtwYYtoKSNnnG46OvAS3DehaQerlcIMg4PDwENPpkTNnbU9dF7SdZZ+v/bNJ6BrjBU6cKpPWmkk6ZeoNptvW0DQtaTJH4N7RW7ePUYGg8fNstXLnH6fJiKHvjXaVXjmYdYc0VUXTdB9S8FHK0ttm3HQA+rYbjxPHU66urgiiGO2DskEkQ6GwgyRvFNGLgMZX4ZdH9+n7jqItiLJBvGZB0zSue7t286wsDKavSb3c9iStaduaJA3ZbN3ENsYwX2QcLDLS9OZ+pmlKEruF+NHDpzytFZNZyGAmGU1fZ7W7ZjY7xvj15SrPuXX6JlLX43GSKOFOd4JS7h1dLCdMJye8/+AZ92+5ZOfOvS/i7PwJu8qrd3UBn/rsY8xBj/CG3X/iv/xNTG6nQMabd1xiqOuSw9t32XqV0Xq3petqDpYzrJ9T0fwuV/srFr/6I8hBln/fcThLqWsv9NFsePmV1/nMpx6yXj/x9yrm6DADqUb54jSb8O5713zJF78BwGazcWuSEbzxxhcB8Pjx5+ibHQioa/fOnNx6nTTRBH7j3xctZVljjCG/9onFrduUdkOgG9ZeYjyMDaJJWV26wHg6yZikS+pmQ+c7rQhLVeZkPkDZ7q5Ruqeu61Gspqt6wliy3eTje7tYJpRljfWB6vUq5+BwgY0j/PSkKSuK+pJm59YcAGsMb7z+UT720kcAuHf/yzi5e5t/9BP/hFD+AvTAAAAgAElEQVS75/k7/oNvYFtd82S3pfNV8K0p+Jt/72+gfbf5V3zxR3n4+BHWSEzn3tmqFDy7fIfnR9fDfHFENyimtTU/8o9/kB/70Z/ga77mNwPw8Y9/Pb/m13wDb7/7k/z0z/4jAN7+3AMuz8+Zei6FRHF4K+T993tKTwMp9oZ7ry74pZ87J1IuoFxkCb1pbpQkZ5peSKYiwPReoTF2ycH/w96bxeqapfddv/XO0zfuee9z9hn6VHfX0LN7djodTwkYO4SYdBLbErnhikQxmIgghdwgJISEkAi5QEAcLgBFAgd5IhgUG2OcHuweXHOdU3WmPe9vfOdpvVys9b27DU4kkC/64qybqtr1Te+an+f5D0Vd4WoVWtt0SPKERovOtJWkbWuC0Kcq1Aza393jydNHXF1d8fob3wZgujXmz/ypf5NvffefAnAd/yGyUJzU1z6uftPy6gmnH5R88au3uTr/LgB5rM6XPFHjMh0/IM2vMcwbKfa2gtAbI+mYatXNpqkIAkX4B5V0UzzUtg+cqqJECIOqLHFsLdDTNdi2c1O18ZRtQJosb8aqVdLihlbcrRtlRNy2ab8vDocOphmRFzHjkZov63WC73t95appK/1bjO8zGpaYlqktYnTySAgc2+6DCEfYeF5AWzdYOqnmhEOyLFFc7e4m8O1aE9/Tth1NC7gYhnFTwesqbNvtLUhAGQubptnLvEsJw6Had237BuWTZDFZnvbICse1qdtwI3mB4zhkRYlpCiodgNW1qgQq2rn+7b4NtFxdqTuJYQjqVtDUHaG7ES7pKPMcyzSI11o8yuswDAgDdc6ldUPdKbGOwUTfDUuJ4dQq+c5GxdBE4FKXeq1VHablafVGrZSJibpaSVxzY/nTYAsHIW7QCSr4L2l0oB0EPk3TYdkWiU4ILBcrgtAlz3XlERBWCXbOKlbfN4xGLFbXCMvE1rz2tm3J6+qm0mkHdB00MsdxteiFlLS1wcVa7aWjpMW1bN5/8rZKTgF+YHB+GeN5HsORSoAIkfLyJ14l9LQdxUoFy0d7+xSZRsosM9zQpKgTLFeNVRLXCAuKQp8xVYntSqqsQuc1sNyaulJWMjtT1S/zRaz61NBqof6Q9XpFGIaUWhwnrSuObu9SVmtsTz3ffJXQNoJIB6GWU1OVNq1Rsr+vklznZ5fs7R5jmQ6J3idW85tkxR/XXnCuXrQX7UV70V60F+1Fe9FetBftRXvR/gTaD0Tlqm0bnl2+B6jIuW0sZNXhazhT02aUVcI8nmPZKjMQhj5N4tKUGw5Uyyz+ANmVONoLI3DHZOtnKkOi+UVCWJSVT6erW3mbkqQzyrrj7FwrpgmJJSwcQ9AWGxigRdvccKdkayBagRA3ajpdJxDaP6XT3IKu69gIfYLyjxDCYBAazK5UyfHk6Rmj7Yy2FqQ68yisknUKy3jjnwCB7dPIlvFEw5Ck5of4U+p6ofvPxTRtZKNe01GTpQsMw0UrcmOFNVlRcHCooDWr1YrT6znDSdRXe5xaUCQZkTui1pkW2aRa7nRjomZhAGfX7/YZDMt0WSxLDASOrgR6jk+yzCm1ul1dpfiux2y+5vBQYX2NziWNU3a2h0hdDVysZsSrGXtbCgvvetAhmEz3yE4VHtgPwbI7iixmqqWDw2HIcBQxm6sKm6hzqmZFNBiR6Mx8U3TYlkHoO2QaSyzrjK17R1S6IrW1GyKlZL26YjJW1Z9svkRKELbFcKyy2aPBkOnkgPmVqrjt7x/RdQFVVdHoeWDZHrITWK6Dr9Xs8iJmOB6z0DwCo0txfUlZNZxoj666rrGtCD8aEoUbb6g5VZUwHqt5vsgLfuTHf0gp5+jK7nIRU5Q1HZN+fuZZSzAd9Ko4q1Wqs0OSSht/+oHN1dUVtuUSRerzLy5jhsMh44EaqyRJyPIa0ZZYGqecJgVIwXgQ0jSbz2+QsqXS/BHLUPCYvEh7f46OWkMKVVsvEwzDwDQVlwVU9k4IgeeGDIdm/zdD3HgbdV3H4eEtXNPAsG+kkQFu7x18X4bWoJU1w4nKtAohMIVF00Rs1mia5AwGI4bD8Q2kIi45OXveK1d6nkdVmRzs79zAeWQOUmB0AldbODiWUDDdQM39l259mM6ReL6FZWgZdH+LIPCwtDeJmosN6/WSttMQBBzyogIkQmeSD3YFVVUwGK65PlH75wdnzxGWyeiWVqAMBvzpo88Tz865vlB99cnPvMYHT57QFga7t1XVJJ3HrPOWgz211trpjLZuSNI1ta4SDw2HdZHgOg3xtYJnDKIJW7tjBr7KnG9tD4mThsEDH2+kKlBxXNKZDabl9aaeXSe4dzgl0NyJq6tLDAOm+wdklRrj8QBcsyHNMj72qrJjaBpYrJ4SBDpD3L2CMDokBk8+UJnV8dQhy10Gg12ePld/M+xLilRwrH3nhFmAtEBss9Scx8Od26RZS5qq9X9wdMzt2/c4eX7K5UxlvI8O71CkhTJ5NTdnQYfn20S68nn3/jaPPzhjMTvvx7MqGu7d/giv/dBXCT21b3zhh77C7YOXWGgecVG3nFw85j/+T/8eP/Hjfw6An/yZf5XVrMAJPcaGWmt5kpEsz/ja1/6a6pO2Jk2V7PuGm5ZcPes9fTYtzypMt0VqBTVMn6zo+PBHP86DV1Sl/OGT98jSNWEw4ce++m8AsJ79GvfvlpxeqErYO+88JPAjwtCj1hCgJFZQpTCAeKn2M9e2SdKkX4dh6NJUJbKrcF21/gaujxQQtFWPQqnrCnvo9Dw3xzGxbIM8qbhzS0H+Do/2efzBO1ycnZGu1Vz8b//r/4nd7dd47+/+NgD3X3nA22+9y2hIX+35zOc+xK/88nf56Mc+y/0Haj97/Zvqe8pc9ct6XtCQ0pDddJ5sWK1nDAdjlgtVqXZcl7ope/SKY/tcX52yv7fX/3bTVj5sSZLQuRsuliRNbrx1TNNWvkx11X9dWytPrQ3sWRgd0SDQ/n/6s00T01BVWKTuYz+gbbse9mVZAyzLoutED73e8P481+3pEhYGXSux9B7o+h55mtJ1Xe8VJYQgiHyKoqCs9fofDKiaira92XObWiornQ0SyJDaLFp8nyx4R12XPbqgk6bi6zgWpqYT2LaJYYaA3z9zniWIzumroelihet5tHWDq7lavj9Q5rlWi6crakpeu8W3bwyRy1WCaXjEGr7oui6iszDFDceyKTuE6Ej0mZZlNfE67/1M1fuU6mErJY6rPTLrQvtKaVqJ6+F6Fuv1ulfh9XwXUyh+2wbqJMRG2VFXcS2f5XKN43YEnoYTForDVjUSQ0Oag9CmriSlRom4fkjbZICJ76lKUl03ICSuG/SaAMiGosr6qmpWZTiOR9XkfRXTcyd0Xcl4MtTzriUrCqUQqO90WVVTi4Rn58+xNTfcxKdpS4ZDdQ+bL67xXYs7d26zWMz0a0KapqLt6KGmwmlIlilNuVECrvDLkLKEpV7rt46H5OU1htzl5FTfmY0KKSWOrSrLyVpSNxUGdT/voijn8cOneK6Pqb+vTmJMq2NxsdJzw6LtBnTEXHknqptaEyFNHDtke1vt3/v76o79z2s/EMGVMAShhr8ZhoWQBk0jqQt16Z1MR9SlieWOeiOzNKsJorCX9syqCtfawjIDVms1cEUjoWtZxUsCf+PHU9PUAtO64TYZZquCj0INkmWpkrZhqUULMBxvkWUJjcYDm51FJ0wMYfalYMtSJsgb6CAo0YIO0RO5m1oqQqlt90HEN775kJ/52Zc4e3YjjiFkS1o+wTVuHLfj9RLD8ChstRmkcYLsKgyzxbI07GG5oq4L9nbUZaQqOra3jkiSNWjjTZMRNQlnz1U/+a7H1mTAer2m0tCBpmlp6oQsl71vQZZLHMeh7B2wA9JkqWBe9rB/3vUypm4ygo1ogOtSFgWOqw6rwBxTNgkPHjxAthsJ9w8wjY7LSxtL8yL2do5xrBnb+xqOYhjMrlPyMmFnRy2W2XXK7PKaeJ3feLwc3uIsWZLmurTvuHgccX1xzkhDW4bjAMdycEyPUEO2dia3qcuUzbKI3CGrOObo4D7Xmr9VScULGoT0sIciiZlXFmmhYazFmgaBP5pQVBoCVBbUjSIo1xqS5nke85Oz3ngvt0wcS5kdbrw3ptMR63VFWS1JKrVJVd0O773/CE9zN9rSx46XXFxcMBwOdb9UNG1GGHo9iT8aR6TxFWiombBzPM9mGS97L5qmirBFyO7WPgstuOI5LXRLnj59DMD29ja+b9C2SxoNVTStluFgSts97423RRdguRa25hZFkYVtCRzXxtAbW57n5HlJ6KtAw7Ud6rplOp0qnhf0ghwbHy01FxM8z+1lX7tW4rqOEgTRsKtYXxwenz7vbQeaSsE3bD3GtqNMKmVr9eRu2xckcYxjRxT5Jkli4Lo+ldbWTdM5dA6OmSEMTUYOd9nZ3WJ3a6xMM4G0SCnrglIHWzgukTugqdZY+tC7OE9x3Jy27fqD0MBgEoU4loKjNB2k/oqyznooTVW32I5gOjxmZ0vDgso1jYyIQu1ltpSEnWDr/kcZDfQzuyavvvIqlxdvMdeHVdyWLK5moD3Qms5hFLkYgYutL4VXy4dMxiG27bId6SDTt0GYrHXm5o3XH2K7IXVRUsRq3LenE1JZ05UFu1OV0PE9j6oqeH6i5tTt6ZC2rTk7e59gpGBat7YjdoIhed3Q9CalLuvMYlEoLoxthISRDzS4gfZACgLKfAfHCBlp2KrrbxO6e1S1mhuOY0I3IcnXnF1qeWYnYhK5nFyosQu8AWlSkWUFu1sqWL08m3F8POHW0UdZLtW8PDjcYblcEvhq7KJgxM74Frenu9y+rQyYt7fuc3K+4O//l/8VP/UXlGGUs3XE77z+HTx9aTq+dZeH73yHTkp+5mt/Wb3GH1M3z/AMi/GuCga+9a3fwAk7PvTgZQCWywxvEFIVJb6tDv6Ls9/ncsMJ0a2jJUtiBloI5/zyjPfeec7nPvtlJmOdOMkqhiOX9Vzw6KEKOr/9vd9gb+82f/6n/ioAL3/4OY8ev4vz7JSTZ78PKBjy+YnH4dFeD//thInvOZgaVloWNejr+8bsdHZ5RiOlErnRvidFmeHbfs/1yZOKaBDw/OmcH/vKXwCgrVroBG+99RY/8xf/CgCf/+xX+Ot/46/z7Mkj/SwNLtvYOAip5ZMHFV/88of5xu8+5GOfug/AOlZGwU2rg5vO4fjehKvZxrYDhNFgCklerJXsNQqm7thGv3eahsHO9rbi4nVG/zchhIZKqWfe2d3i/PxU8c+Apmjx/QgzMoEzPT8dQOK6mzXr0TTq7rD57CpvCaNaeelpyJ3n2nSd7M8mPxhQlhXb063eUDvLMqLA5fpqxkSfF3Ec4zgOo5GaP6vVCjsKFJ944/XTSeqqwHEsXE/tQXWtxCtufJIcLMPE89zeJLkoJCAVtFufdaK+SVSrJvF9l7ouGWrZ86IsEaJDIAj0nBUtOI7Rn7Wua+LYAssPqHXS0jDAcwN8z6FuNl5JQNcidBBhmSaBIyjLmkYbzJoIJTIjG7JCG5I7Ho7j9tBI0wtp2wbpuP38zNICx3PBlEjNF22aCtc3MPR/t11DUbWYFv2zVFVB3dRUZc1Ae452wqRpKvR2R16khKEPXd0LfRgSDT31sHVSu5UrXNdDe5ZT5DmOF5GnGULv6Z3oGA7GtHSs1zccYDoLQ0uOW0joKgxsfC1I1LQVnmdRVzpw7DpkJ0gSaNHiVW2NVQ1pGwtT+74m6QLTtEjON9QPlzgW/OEbz6k0xYBujmUIDGH2HC+sUhuLZ3qMXeazWEnia8j2/HJOZ1WYVg5iQxUwANkXYJ6fPWcYRso0W8MCk1iZYpvWiixTCbO6khgi7PdvYWbU7QVRuI3ZB72CQWhAV3Gm6Sda4+yf234ggqu2Ae3fi0mNY1s0TUOgsw6rearMReuCSB+Wi9U1z2ZPabSLc9s5rJIFpr0g0INk2xWW8BEI5qnaILbGx1hW12dsKrdmvbrm2jSYL3VgYzgIDKLBkKtMHVDHtz/E5eUZK82XaatWO6SblJsLNJ1SHenEjbt8p4LHG+Km8o4AGI7Uhv/uG6fUzQFlfcVooPwO6naIJKHVz9eZBVbQEa+vqVZq8h7sH7NcXTEc2GQajOq4irCYl2rirNc5y6VL3Uo6oSb5eHCXpjWwdYSPYRGnCY7r9eRewxFg+BTlishRk84zh5gYOBqr2rYNVVyzOxxCtzlAC0bTLerK7XH1qzRjPN6iLtXvTqsZA3fK++8ucLR5pbA9trcOieOYJFEXJ9HtIyVcX6nsQZJklHmF6FrGQ3UIVHnBMJry4JMf4eLssZpDZsVwGPUGpUW5pKo67t05Igwmehwa0mxF2Sb42qW+qgrOr04ZaCNA2/eZhvukWUWl2SJu5GJ4kgZB22dkBzx9/oRCV7y80MHyAtK5cl8HMOyO4SigrBoMfYkvO4EZ+QSahD4c7HB1FeNjYekLV9NYuK7JydljCs2Hk8z58Ce83iPMkAOypGX/zhRXV20Fe7zx+jc4Pj5gPlMX6OlkmzffvGRbZ6BWS0Ee5+ztbNNqoZYgtEmTNW17AVopZzIYMplMsI/VxXgwGDBbzPs5DfDs6TlBqFSqTH0hQLZczc6pGy00cPGMNKuIoqAPZNrGosir/sAJgzFt0/H8edJ//sZTKwzDXlBGypaqTHqVrOPjY46PD2nLklwHQOfnaswO97f6QzbLcsqypNGqeF3lAhZYDYazEcdQKlbCKCjLGxXDqhZ9JrKjoiprzooa21LfN3euOJ35uJYisYMSuamrrp8HddVSyoZGrqjzjdv8CMtqsRwLobdk17MQpkmtv28QhAzCiL3tPUaRmhvjsYOUFU2ZInSmc29wQNcMyFtVsdkaB7S1Q2embN/VCm2WTye3uXXvM31VyjZKmlczYq1ql5cZoefRlS2l9tUJ7IZOCrIs4WqhLrB+NsT3ptTaFHb34Dam1eJ4HZahgqTvfu/bHG3tc3x8jKkvYYIGacPOR1SAYNmOUs88O6Fz9SWpXGOlLluDCOlozHyc47cDho7q31VyxcAMkMLmyFFzKFsKXBqq+l32dZXIsUNEXfHKyyrYOT+NefjBOYMwxdc+c51n8ujxO/g6KbRcXLJ88hbhIGStzRN3drb54P2HvPLKK8znilN2dXnKdLjLzh1V9dsbf5hXvvAZlklGmqj+zdohv/ab/4hf/fVf5t/6hb8BQFOV3Lt7m6xT67NrC9L1E37ur/4w944V1j9Zzjja2abJoNTJokfvv8GXvvwxDg9UtUlYAkNK7IDeoDiN10wn28AN8iHyfVIpiUJVAXvznXdAlnzko/d7ZdWuAwOP3T2HWiteHt3yGEZHXGn10CQR3Dq6x93jV/jkx/4UAG+9+S1mi1OKTGCbY/08kKWSsQ6WJ1OfwWDE9dUFueYNe54PGNRt1V/iHcOjriWlrkrndcN6EZMuJZ/7rDLj/s3f/E2SNMa2XH7x3/7bAPzSP/iH/M+/+g956cMqaKoTg6xaYhtT0ACU7a1bPPjoU/7wO085eaYSZqPRkIQ50UCtodn1mgevbDMe3wRXg2iMZZYkecaOVm0ESZ5n2DoRphQNR4qLbG04M4KyLAhsFyk2Kq0Zh/s7fRU3oVCJSo0oAAhCQdsavY+nKGyCIMK2TPT0ZGs6Jk6WFHneJ48mkzF1k2M76mwqyxQDmzJPet657yrvH0NIOi3mYBqCssrIU7W3uLZFmsWal6vWUF6pS28jWwzNuWrsBtezb/itpkmWpZRl2asjjkYjyipFdg3mhgNlR1gSFSkAmBIhwQrc/u7U0dI2Da7jE2shA6TAGFiYG29RWWP7NlmWMtTndtd1lFVBXnU38xpJUXc49s2VVwhJNPJotCptmlTYtk8Y+b3f1zAcKU9Qd4OYALAwRNd7UQUDF8NWCKYNF9wPLdq27o3GTdOlbUsMS/ZJw7KpcR0H1wnQw0AjW/zgxhC5kwIMC8NoKVItHhEKpLRo6o5Oai+qPCVwWzItFCGsFGEpnmKpzzrHjOg6i65L8HUy3DVtXMvu54YpPDphEo4cVmu1/m3Loy4tOq2cLQwD15OUVUzTaiN1y6cpKwI36rUSLLPGdXwKLSIipUBgY1oNjqOSgYZoMDGp6xyxUe8zPGTb0GnudrIEy64JQxNzk4ApwLfGSsm01Txof0rVxAjj5i7TmWDZ8sbAu6hwPAPDMHAatU/t7U2om5RSK5YbwsfutC8Wak3awqEjIEu7fr6M/sV6Fj8YwVWaF3zruw8BZQ7aSAM/sJlMVfBhOa2SPc9synIDAzJZLbMejuY4BrKW6rJWbVRcSsbDkKKoekL5+0/eoTMkVbvByNnIOsNji/W1Wui+XWEZNvFq3VfUHr33JmVZs6PNiLOs6GXYh4ObzUdmKUKK3sjUtl26rusnrxAGpm0hhKTTsINVYnBxFuFPatJKO5hjkecNhqUOdVO6dHVNONzl4lQdmO8/fsTB/m2SzCDTMCvPF6RpzoY7ejVbMIjG5GVFoM1dL5evU7XX3L+jvM+arObd917ncP8jrHWFZu/IwDIcLMfuFXdkm1IWyz6wyTMQJrRtR6ZlM1tR4Qob24nwdbZeGNcUNchOE06bgs6NsSYOa33IyrJlEa853L8PvurzyigZDCJMNgo/DbcPFOTC0QH01nQXz7HJVhXbQwUZ8aKO2eKa6fhIva+7Q1HNCFyX5UoFna5pMPAUcTW+Vr+ha2FrNOJaK0kGqUljV3g2+HpzdUyoipr19ZJQq+klMiMIBxzduQuowD8MQ2RbE2+krYdT4jgmS2v84AZGkueSVJPC22aubAnaJZdX2nQam7pu6cwGDDXuFkMuL9NeuMG2BJ1RE7DNKlXP53sNn/viV5gtnhE1aqPwA4NbR9vKgA9Vad25nTEeDih1Rv/g4AApx1xeXnP8kg4QLBvT8BDaoNC1bLa9LaaTIXmm1szO9h5lvSRLa+KVrsy5EeGgw9QH/ac+8RneevM95vM5y0Wq5wJUzYq80omUeKNQ5iE1ydZ1Q7qupWxcTKEO0GSdcOt4mzhVffKdN57w9ju3iAY2Zb5JuOh+bUt29QU6cxxmsyXO2O+/JysLyqrF05krx3EwaKBrKDTcRnaCus57UnhRttiOxf7utM86GrQkSYJtWgixgeVYNE1Blqt1HMcxnbCxHROd+KSoVliNhSMdLEdnOlsBlUkU6cqcrJTiVJJwvdAy76cWw8EEy2xp203Ql9DIs75aiVFhmS6N7HC9jaJYyWpxRZq+raAiqADWMG8Uxcoip6hK8qxAaMNJw7RxPBsvGuBPPq36sxzwxruPiHWVyvfWCKMh8gPOzr4DwOX5jMXsDxlPfUqdgBgOxjjCZaKJ+E2VMJn4HOzskuuq1CA4IHFz9vwJ68XmfRNu3RmS60UTDXzOrs6J44yDbXXpDWjphE1R71Mkqjpf1x5B6PDeIzVfbNdhemAjGVAVWg319Dk7oz3eP73Sn+0SJwaB0zEM1EEc+CHNyCIc2vzoV/5lAD7+8lf4g+99wD/59d8E4Gtf+zLvXjxFNh2mFp0ZGQV/8Pu/zWc/c5/7d1VA+ejx2wS2wLfV/LlelTT2JV/48suYthLeKdoUx2zofJtEQzGdacZf+Ym/hC109beWuE5E1axYXqm9zAgbfv7n/jX+L95k04Rn4hpWbzRKvuZnf+7HeeW1Y2YLVaUaRxF1JTH9lscnKkDfGb7GJz//xb7iZblKqGGZxpxfqErLszfe5av/yo+yM91itXpHzeE85/TknEstu/zu05iiaumsDqFVBk2rwQ2HmLaJY+l9ypXQudRavGbHdVitZ3zqY6/i6Ivpt775T3n1lU/y5S99gUcfvA3A3/rbf5P794/ItNVFnlUYhsWjy/fYO1Tjd3F9ws72gON7IbPLzSVQnVN7h1od7STn5EmGZd9IrGfrlMCbsHe0368/Q7g4GJiaiG8YNrKtMYwOtCLscDBiWV8icHAN9cxbU4fBYMD1TPXdcOTTNg6jUQh6vO7d/jC1XPD4AwV/39qOtD1HxCZR08oMixajy7G0imlblwhaTF3d9r1awQCzmi1d3a7ygi99/kucnLzPw4fq3vVDn/40T58+5fRczX3LsoiiiA6QG2NcJGmuKuedTpxOJiNtYqwDUSPDMD3qpgBTnSlpFjOIpjSN7KGfltcBJpmG6SurAgUF7WXXDYM4ycitqq+oFUVBvKx7lIrrBGTrjOEkYLXSggvDHWhCDPtGBMIwDALXpMi1rYsV0jYGthtgWLpqM8px/I5Otkw09aKtOqo6pdDKwOPhCNlZNF11Mz86i6rosCyboa/PhwpaaZFman8dDB26xsAwJFWl9iSnm+K4gixf9LB4A58ya3orBlCCOm5g99VCJEqR0qgIfTWvTcOlo2R7T63RQXRIsr7CtYPelqMoYxxniBATsk7tpx0NVdHi6QS6Gyjxk7JqcLWgS1YUSCl7EQwLA6SNYwz6eVYXJUXZUNWyPyOFcKjbEsPazNca21Z39Kbd3IcFTZvTUfWJUsfpMAwL29D3R1tgGJ5SQOypAjZFXmLZvoaOQppcY1o396my6PAdk84MkHoviUIXKSFwLCKdVDdkQ+hMsDZojyRBmA55nuG5KjEkJZR5jG272K6mZ8gbGO8f114IWrxoL9qL9qK9aC/ai/aivWgv2ov2ov0JtB+IylXbtiTrTP97Rydq6hJWGs7keRGWZZDmMbazifElVSXptPlhsi4YhJ42ptOchKZlmS1pmoZVpiL1shSE4YBSl3Zkk2CZLZ01oK41gc/xqWtlGLiRqJQSonDQZ0w8zyHN1gSBh9QlZM8R2CJQpoGd5i7VDRg3kqdSNoqH1QlGI51Nu8z4x7/8O/z4T36KdaIyHVk2I8tr7t5XGcwkKcmLhGHksow116fpePjkCaOxjyVUdkKaLlI4WBqqcHg8ZWCuCOEAACAASURBVL2eU2Vruo0yahGxf+uI+XwjS2rg+A2r+E0cDUezzVvs7OxzNTtnrfV2jU4RZZexGqvFMuOll15iNjtT/hBAEI2ZXT3HNLw++zIe71LLtseBT7Z2qJuMZbLo/WOgoaoWnF48ZqRNfC/m58SZy3SsTS87g3XeKuKrrT57Ek1Ji5TOqik0qXZ5KRiOdnpJdzqb7eke8/mMWMM6ZTDE6LYJgy3aVs2zMHKocsl2pDIhWyPJdbzi1tZdLlKV0avKlrJIcbYHWJqM//TpJdFowGMtsrFczRmNlW9JU6lxXywWSlaVpv9dju2BaHri6Py8xLQrTMPFdHUFIU2YbO3x+Olb3L+nxAeKMkPKhjrTpPDhAZKEJEnxXQUrXcxPWM9fZzod4bhacj81OTjcoyjV+6bjA7JiwcnZO2xpTkma1jS1ZHtrhyRVfXV1uaKpUy4vVaZ1f/sOphHw/OmCYajL+6agbhuW84I41gavocSLPBwN1/rd//N7fOy1T4F4n+FYzYX1KqEoxjcQw87E932y4rKXdB2PXBaLGecnJz0WXUqDb37r7V6K3fUEk+0EN4+4vlLjKdH8s+UZy5X6Tbu7H+Lo3i6DYLPOUkadT1ZWZNr7arlaYlkOnuPBxiyzLhTfsNJ+TtGANI45Pz/nSgvTWJaFYRhsT8b4WsAiyzKqqsDQ63GyMyZeVVgCBlrSOU1Trq+uaKXsvTZs28SyHORZo3/3PstlRVFUVBqGXNcpQeDhe2NgI6qjZKArzUXN85K8VFy/8UCtoyRJkG2NaZoUGoq0tT1ia2tCFGnT8s6lTROKeNnveVlakWQxpgWDoc5iupKDvfs4Uksxty2yLZFVzPGhyjYfH2yDcYc8azF01SReJSoTK1V/CsMiCEJqw2E4UdC9waghW8MiWZDqylhdLXj27AQptTmna3N2dYnowNMViO3xBMfxuT05ZDFT6wHLpqbi0WNlGbFaZnzstZdZL84Z6ApwfjhFVoJX76hs5fHxHb7jf4PtwzFS84b29x+wO/5ZBsPbZGsN7yla/vP/7L/geqk++xf//X+P06sVltdga17N9eWCl16a8OUf/tofMZnFstG8f2ZXT+nagjA46NdDVzfUjYE7CJidKN8qz2x599EJn3z1C2r+VAltYxA4w36er+bPmAUR399kbeHaTg+/G4wtDu8eYlsRrqUy9VV1TdsK2iJka1tV1L7w+T/D5SxAap8rLxhAZzAQBoNQVQJ+7q/9WX7/zWeY2y9x/HEl6/6FTz/geD8A/X2nH7xHvpbMVtdcnKtKwPsnZ1zNM5bX55Sa51JJk7xoMDr1vqvcomwlX/rRH+F/++3fU89chEy3D1llC/6dX/wPALhz/wDT9pHNxkC3RMqWo6MHDMfqWYoiZbF4wnQ6ZTnT54OGph3fVZXP9995l7b1yMsbzlroToCWul4QBur1BhazWYyhKztppeD/wjB6HvZyuaYzBI7vYGtI7LMPFrj+TPlvocROluszwuAGZ/T82WNeffVVHKUJQ1XVyPoWbdOxvaPet1pfM965jWVZrLVMf1XmPQ8dAGHjhUPsqKastcCTcEjTlGjkcPe+QntMxlus1tfsHShoa1FVzOdzyqLD0Ea8NiZVW+J4BoE2QG/rCtNw6DZFnGaA49QMw238SAu1FBmGEJim2UPibNthe3tXVfmA56ePWC0bRqNRv6dXdYHj2diOhWlu4PUWSAWzAzCEzXpVIDq/pzkkWYohTNruxqPL0F5qbc97EFiOSVbEBFqQqGugzjq6ruk91lzHZjKa9jz6lhLLaJGt3cMCDbPCMBXCp2400sgc4Ngtln6+plqzXtUcHByQa/iZZdtqvftDTF27si1FzbAszb01BWma0kn6Sq5AaJibZKltQAxLKPSWPq8uLy/xbIdlPqfTXDtXV6eapsDz1H5W1x1BIHousVEbyhXFKPE1D9p0XFzXpa422gKWhr5avWCP6dqYVonrulTVhlMe0FR1719nGxaWaeF5giq7MbZ2XAfTcvrKVY/00pUlz7eJ41RbCmjqjpC0bYvr+cSxFnNzLCzL7sVIDJFjOS2uayGlmj9ZIkHUjKIJjUj02AAk1NoT0TDAcxxC3+rhtmWlKreONehpQKH/R/fX/2f7gQiuLNPGddUEr6oK2fhIqbylAGQTU1UthmUQLzfBjUfX3pDdBwOL9fKSPKtZLDdO0mNs28FxB8w1XMINHWJ5gTA0KbXboylzUlqmkbpgrlcNW6OIxWJFpCdYa7fKQKy4MXdzLIflfM1mwF3XJs9zhsMxhqGNTKsUU5gITd70tGqJEAalVokaBBHnJwW//iv/jO0ddRloyTi/eM7TZ/p3ux5VnSLbCwLNV9ndnZJlMc/XC0y9mY/GLYYNUpuKBlFHmrbkSUjnbnggBlcXLYuFmiTHx8c8+NAXubh6m0Dz7psqIM8Frj1lsVKXBj9wMc2QWJMhs6Lm7YePGQdjskodVMt8RtMov4NCm9ymbctke4jUQhjz9XNl5tpaWJpIaZgSb+iyjk8ITAW9rEiwJFwuFJQnDH2eXF9iGg5Oo8mHzhLZuARBQCXUxeJqtmRVj3rfBKiQ6wTbj2g0oXVRJcwK5b8xGIT6d1XUbUeaKYLzuttBmIJ3rt4k1mROhM11fg1Jyd7uXTWmkUmSzilrddEYDA3ilaStbNBBYOQZXM6usMwQT0MHZosFiBpTbyJ+NFHeKd4BC61gFg2m5JnEDwdUGmpapQ62ETHaVofsdBpxcv6cwUTiaPUgISJC54ir2SOyTF1SxgOXrnUYaYPbZ2ffwrIijvZfxrB1sJHWrOYVRVawWCs4z90Hd1gtajz74wAc3Z7yrX/2XUZjDzNQYxOFE64uG1pKjj+kIU15iW3bLNZL3b9nPDtTalaL5bWew7us4zm+DlSz2KGVObfv7ZDr3/3s/HUG3pQPPbjF3q7imZw8fx8pJVWh1tVkK6ATMVM7Yjra+BSp+V2urxlM1noOCZpqyDvP9UXVc2nrHCkkI60IOZ3ukK5N8lRwcar4fpblEURhT1DuGgvbCkizmFGk+ryqWyxTUsuW+FL1S5ZlJFnG7q6a0+PxhMHBAMsyei+co1uHfO5znwOMngSepjG+beJr49ggMlkszxkMRj2O3xAeZVaSt2l/YRdSMB5P6cSG49WxXiesk5gqVa853N1mb2cXuhpzYz5qwTAKCQIVJEUjD8+3MMyOTl9W21ZQVx15XvSHatEWTLeGtBsxAEMon5Ta6PljvjegayU7e/v9+6KBzXJ9o6bnWCOKzCSVVzTVhiy/gkZ55liaU1ZWORcXZ6BFU8ygxd3aY3m9Zji5rX+DTS0Lnl0tSPUhHoY7PD+d88bbam2DxcXim2zvjHE1f8sf+tiYXJ6pJMnl8wUf+8KnkOYAibqcv3z/x3l+9pTF8yUb4Edotzx69w1++i8rYQUjCKnqx5jGGKHFgJazOfuHLtOdXbJC7VOe41NT4+roKlk+w3UsJtMPI/VF3DQkoguQdFxdqD1hdfqU/a2XsbWapzVLEKLDsQZcXiuIXLp8TrX1Sf5IEyWidei0WuD/+lu/zic/fp8f+eq/xNVM851sB9e2yMuW08s3AJhOjwiifXINcXJw8dyAxeOHfOpTak/4hb/5k/zd//CX+N57jzg7U3Pot3/rEfcOD/n8Z+4CcO/eba7mC1750qf5PGqNGlZNmhes12vCSK1X2cBiVvH+B2qs0iTh/OKC5OyKR2+9C8DhYcB0O+S//x/+MZcz1S+fePU+WVojtE+Sa1uITkH4N+Ij0/GItp7iOhajifq+XM+RTOOJ7t47ZL3o2Ds8ABTUzI9qFosFTRuyNVX7W5xccXAYUmkusZGW+KGFH/mcnWpRrVwiRIfv+Eih1t/2dEzbZX1y07ZdulaSJTcwo8P9Xd56/W0cnWRranWf2dmLmF1rSKyzjyFqHNMkDHQwnnQEvtsLR2Rpg+eA6QTqPEIlsN99703ieNV/3+nJjMFgQFPrtdeU2IaL5QuSVPsr+T6uK3FcmGko/Wg0okhhqoVqynZBUdSEUUeoFURtw6WqKszAxA82fk4lyBzPU3P4k699huvlCcPhkEcfPFbP5zmUpaSq6j54q+sSExdT3xtW8SXTnT3iOGY80UIRdUaSJJj2CFtfjqtKeTn1cGmgbiv1zOVGHMOjrEvoWhot1GCYFp1Z0W38TDuLMjdwXRcdn2AYAn8YkGUZhuH3f5NdQVlv+Okdt4Y7NE3V7/uia2mqFilM/FBzfFpJ28g+Wb5YzLRqYoenucxl3UAjcJ0A01RjM93awjBMFgvtEeq7lEWHaYr+s00REidzPD/oAwQDi6aWOPquJLuK+WyOaXW9YbfrexRF2u/Vnj+mli15dXMO2LaF53jIVmLr/awqckzLwNGUCiFbDKOlrbq+D1QgqZKSGz5c27ZYRtMr/DmOje8GCGH0dJuOGs+LqOqW4eBYv86hbVs6PfetbZOiKKjKDlNDHF1XUJRLFbxtJpVhYrkORu8tFiGlpJY1uU6Et40JSKzA0DxRKKsbjuQf134ggqumaXtBhqJc0bQFpggwtPOyZfo0RsbWYEC7keBFYJsdQqjL6/YkYnltkZQNoy21+Vk2FFVOOl/joTpuIEYkK4u6Vf9dGzm2Lei6mlbLbY4GE5IkxrEccs0lMkxJWcZKNhNwGw/DMDGFQSM3RFX1z8Vi1i9i274hC4KSTm+aShmz6kxER0u6zjm4NSZL1PPsHQSMBncpSr05FDVGY2EJH89Qm8izRwvKosO1bYQmyyarNZbpkesNo24TBoNQyciPtCt2C1V9heurz37j3TeIng+xTXD1ZcBsMy4vV6RZTKex062saHKrj9j9yEXUJm1nk+rKYCWXyNogy9fs7yiD0LLOefb8lIle5HW1ZhBNKLuOda4OGNM0kGnH1taU1VKTVVtBjcTXl8m0ENw6fpmzi3PsUB3g53FGml4hLIGlSe8FMYtnD3nwoVfV725X5Nkaz40YbCke1mw5w7AzruMzClNlbc+vrvEDG8/UXCocTGlRV4JwpL7v+ekpjj+i62CVbzKfFp1Jj88NozHr4gPwwRLqs2fzGGG6+OGgxw27YcRqfUmolddaMyUvK6rsHNNTh8cHz97ntVc+i1cZXF5rQ1Snw7FcDFddMFf5Asc1SZI1tqFeEwZDTLNlPJ2wvbsxauzouCbWBNPhaErob2MwpNWk+svLR9y9+3H29vaYJ7t63DPaJuG1V1XlLEnW/Pmf+QnSbInYZGOfnhNNAvxozDsPv6eez/W5desW+5po7EYjhJ0yO5+TZLpaWEEw9FnE6tJ05+4nSVZTkvyM6bYW53AmpDOL4Zbg5FwFO6998iXOLh5jo8bFcivS9ZDdWzvMrlUwN4s3CQfYGavXuV3LbPWQqZaVf/L0e+zv+7RNx9NH6n2GuOT52SmG2fDZz6kL6ni0zfnFgna+4f5sIfA52B9zfa3mcNfUWLZPXqyxtbKT41jcmR6Tl63upwuqLGU8iTg6UomUqlrw5MkH2LbNUmP756s5TeP0AixCCMLIZb1+mzLbEIvBMBuKSqkggsr62bbidIFKQvm+S9XUdPpgiqKIk+sZTdP0dgkbdbJN5WowHWFaHV3bKMN01AWvyFvSddr/LQwFVdn2QVnbKcNXIQTxWqtS4uC7FWVZ4elqimFYhGHYB9We72BZAtsUmJoDEQZjKp6ynju4+vK4Tgpka2K7KsiukgrLuUXt5zxbq/dVeUGa1RQFXOkg3hQrBCW1oZ/Pn3J5ec3J2ftI1J77zusPuX3rPj/9038JgD/1wz/FzuE+P/Znf4JXXlM8qQf3PkfWrAkGAaHeg/7gd36PT392m899+TMAXM4XBE6A7DpKvffPZifMr+a4wRa15p66tsmqqZCtOiveev2bnF885POf3aeVG24BiLbCME0ev6c4bGZWsLt7j6TeKG51WpHWJNOcktAqGA5UFWLTTFxcJ+J6roKRqlkR+fcRhkFZaXGH4ZSu67i4fMLXv/FPALi++Dw/+/Nf4eRUJdkcTMpCCdt8/Zu/BcAv/LvfIG/3uLv1gFJo4YtuRZae8p/8R78EQBAJXvnYD/P17/wfnGgl0qPtQw6Ptri8zLh7rIQork7P8QLJ7r5SvP3pP/dlfu/r3+FXfv3X+MJXVR/XVc5sdsGrrx7wtY9/BYBnH8xJszmV3l+lFCAFu3sTWv23usgx3EP8qOHTX1TrL01q/j7/Cy+9ooKBz3z2LpPRIZ1Y82uoPr/30i635R62GHLvvpp747FDkddY+uI2HA7pKDk7f857D1Xyxvd9ZtcL6taiK1Xl+M69fbYmh2T6/MjLJUWuLpP/OyqgPTg44kMP7nKuZaaDwMcLBIawe5GUpmnZ2tqirmBnRyu71ZDnKblWWt6ZKjlsDEGtBZCydMHHXnsVKTuur9U4NG3BIJqSaOSM4wRUVYbnu+zsbLg+LWUl6GigVt93dGvK87M3sbXsf5lk3D7YZzab4egAaDANmc8qus6m0lWb0WjEfDYj1Qmwp09Stra2WOQpkaP6abVa0bYSy7IRm8qOYYJR9AJFvu9TFSWDMKLUKo6DaKTsMaTsq3i+b9JxI7GeZRlVnWJaIZ3YiGrUWEZHHKcMBhpVkBWYpomlK251nmAYAbKrmGhhKCFMBBLXCSk36KCuJU1LfI3asCODqqqIIh9doKVuTPan+wjR9fffON7oCOg9wjMxDKHEGXRiz2kMqkqJMgy1/UOWxthWgKWVAU2zwRQdlhURBhtl3hQv6GjrEn/D3xItdOYNckQ0HN/do6k7ZLcpEBSYRsVEW920bckwtLiarwi0XVJVKWuLpiq+D4XS0jVG/5vqVvGGTdPrK4Gm4RBFA+I47gMuz3G1gq/6GMsU1FJiGXZ/ztmeiWka+KaNaWzOWpO6lqxjdbcITA9htJiGQeBvzkMX2dnIJqdtNorBIBt7UyijqVUBopMmhlDP1xktpiXIsnXPtfPcf7Fc4AvO1Yv2or1oL9qL9qK9aC/ai/aivWgv2p9A+4GoXHVd10NdoiggGri0bUuRqChVthaeYyHbDG9j4mkNcCy7x+dm6xZZ+bx074gkVtlfCTRyTBKXlFr2VLaS0HbxNZ/DCyPC0KdIZR/JBn7E5UVL23ZUlfaUaAoC3+mN/1T5UWCYNqbG55qmgC6kaSRpqtIT6ve5fcbE913atqZD0sqNfKlFUbrEV0Yv055cFERRgDQ32V9TwWwMel7U7mCMMbKoamUguelLzx0iWpWtaMwh0+GEpkuRutSdXoETOFSJLgW3BpfLa4TsGA21/LU1o7i0GQwigpGK3qfhFHMY9mqBx3f2SbOC69OM4y2Vdbx9Z8LV1Yzl8hypDSZFU5MlMzxd6m7qCNtWJdzdrQ+p500Xqtxaj7Ed9b4iWTOa7DK7UBCEt999xNUs5+Gjd5lqI7emhmBYsLu/RduqzMrpSct4fMh3vqchQLLDNnPG4xFVtcm4hwShySAcEWs4yHjo0siYvNA5B6NU4yZDKl0hFdaaxXXFeOuIutmo4uQYlosy/IBnFx8wnmyRVUv2tGLhZPuI09Pn1K1PozNQCPCjLUKtNnd6OqfuFljGkjBS45fmaz54+g6mabLQ0J3DWxPSvOFCZx0HA58sbfC9fc5nGsY2b4mGC1wnolj4+plrpEioderMtXZI2gKsmH0NcfzwR4bMF5c8/oO3uHWk/jabFYxHu/zu73wbgL1Dh+vZUhlj6n65OM2J1xXreE6kLQYur+fkVcZkqtd2OMWxPKbbDeOp9p2qQ6pKck/zycbhLpFvU0uTShuEf/Qj97h3+EM8Of06Ukt+r9OMpjFY63U2GhlIbJ7ML3sfr8ltlTW89+GXmW6p7zs/OeezX/oy11eKPxYNX2IUjbg4X2JoH7jlKmEQ2gxHY05ONEdntSJe51xrOMx6dYnlmHS0PRdtGN1ivWrwfZ/5fKnn1ARBw86Ogs0YomR6fJfnJ095+kwpdVVNTeBHjMdjRlM1r4NBwHq57D1DgsDDdisGkUOebmwPlKyv45p9pTyJldH3prKUrRdUmYXjOFQ6E5lmMXVd00nR70u2rfZcoWGJTtPSdArStFF/6qEcXYO9gXDY0DYGQqujVWWDaXW4jrHxxcRxHGYrB8NsENmG9yFonyvMv2oSyzKYDoe4rtpvhGUyHIa00mS+Uv1p+wV0Nk2q+mUdZ7Sag5CmGioooK4aLMsh0P5/nekgnJZorKrLSSLB8Whrn/091ec/96//HT7yiY9wrTmDp9mc//G/+VXefu8NfvFv/QIAlmNgWY56Zs0XjeOUj3/ioxzfUYiJsizxRUBSxgw1dG82e8b9e58jGh1QVWp++oaFBBKdva+amE994k8znhyQNdqiojVxfJuT0zOE5nN8+hNfYDrZ7zP1tuVR01BUJWWq+ZwM2d6+y/e3v/iTP/FH/pufh9/gO8Df4Y9tP6v+8XWe8N/xj/741/x/bN/mnf9/b3ygfs+fzK/449sv/b1v63/79v/r/y2zhrbtmIyhlGq8LucxaSx5/Q+/Dii7lr39LQLP5/5dda7t7W1xPbvg2dNTdnfuAGCYJZcXT/n0p5XiZtdJrq9njHR1HeD2/Ql0JqHmSfqh5PGT9wi9Xe58SFfcsiXDYMj52YxGI2qWyxTf9/nIR9R+2jSSvFig0Fv/N3tvEmt9mt93fZ7/PJ7pnnOnd6yxy1Xu7nLbjiF2Yie2EwUICEEQsTBCCMEOKaxgh7KKxBKJDWwQEhKBKGTHEFh4iO0kbne7uquqq6vqne58z/yfx4fF85z/20ixV1n04v0vr+6ZnvE3fAe119979wnHx8fskjumR+q9yrIGWh6/pfZHkiSE4UNu7y4R+nVxPKZtpmzWe861suLp2YzR+GeIQoXQEP0YP+rYbCaMJgdYl8l6rYx/D7xWKQWjUU+v6/tVFbC+WdL1DPz0URCw2e9oy3rokGRNwWjms9tqRJEwMMwOQT140e13BfQhtlsO3PfF4oTtZo+tDYpDN6KJatIkHTrH40nIfnuH7AVtpb5D4IXK48w6eIRGlGVOGB6hAUu4nlYuNEf4uvtRt2sMYRBGWrmWDt83EKLBtF7D3wyzoe1TOq0c7To2s9lo6Dy6oY3sLRzHwtDxheI7dURRAKgzYBT79J1JoekLtu3j+RZ0r3lRx8cn9J1B0zTDWb7dLWlbczhzs3yL73rg2MN5KmwlSX+QMze1psFCw+gBjMDAMCRtaw5KuW2rlB8PsNtxFCueb5Uq7y6UvU6W7fE8B1/jLNu2xfVMAl+dnZ5vkCQJXcuAFkDUJPs9jh1iaaRDVe6xHQPta0xTV9iWh2EbAxWjyJaAge2I4e4JRhFpUuBq7l1RZLS1RAgTRyskNnVF3eW49pROc8N2yZ4/7/mpSK76TnL5tcIoT6YLLn68xbAqTs+0od1mg2NNMa0527UKbjbLWwxpcTRTAZRrRnSNxLTuB4LiZrOhqioCPyKKDxvdwfePB1+GurSpq5ym7thr8+HNck9Z5Qgsqlqb8Tk+RVORaSnh6eRIOWl7PptEm5G1LUWmFu+BRyP7mqIoBmJl3yljuCgKMA7t0qbGMg122zVINWGe45Hs7oYF7TgeptXhOjHJWkO/fBfTcAnCgEgbhNYyIR6ZCA2RS7Oay8sXxPGYTh+SbVnSVPmQ0LoeRHGAIWcInfA1xR4hTZK0I9EeYe3EY+SbXO7UHKyWKRJI9nseag+kuxvw/GNCL+QAb7662ZDtKpKdGsswDMkzEKbJl1+oAPP4eM5sPOJHn10wPlIvzJKc519m7DVnJ88LXjz/HkEQsLxTY46U+L7L7asdrpb83m07bu1rSm0KbYsAJ4L7zQpDqN8ShA5l0XJyusAPtct5MKKpOmxfzcG28oj8iG12w0zzwMrGAStF0FFkhwNxDKLifq0SGylsjhcjvvoi4y74gfrNzoJRPOOf/rMfgnmQ5U5pug7PVes8TVuCKCeKRnStgu60TU+ebmnahKZSa/h+VZEmywEm4NoOtiMJPMlGr+Hd7oIonNJTsBgrVrTp3WHZBSczdcmvNxWmyIlnMZ/84HO9FjuSZEOe59zcqHGoK5jPU5JU/d79Fwn73QuqrsQ2VZFiu01wPRVor5fa68M/Yr9Ph8OuLjP2uzvGcYSluW+r+4Ro3ONt1EGdrrZgbqjqgu3S1N/zht//nU8w7Yonj9Vv+frZPVWRDR5eCgqSc3X7nNnkANtRn/En3/vxIIQRhDY/+Pz/wJQ6ODg54rvf/T53q3sWJ2oN94Ad+3QCil2v1/U10+nRwPHq25bpNOZ+dYujpbSTdKmw2rWLrfd216e8vFixXD8HYDabc3V7zf3qlqY7eD5ZLOYP2O9TPO3tF0cjlrsU7X3OLi/p2obJbEwUqs/bF3uyvMSuXSpt4ZAlKbPZjFBztdzIo6gKGtky0/xR2zQJw5COboAsl1VF3/PaMsJ0tNmiM4j6CFORfZu2HqTfaSIManp9yXu+gnrQKSNNANl1CNtEYAyBjCEklmsTjV4HlJaljLg3G/XeZXND91wlWGMt2V7ntpLF1edyKzuEadA27SBaIKWk65UksJQqmYuDBWVZstNy5l1r8M0Pvsko/CbvvfshAKPTBf/0Bz9EaJuHx4/n/PCHn3A083nrbQVxvtlmCiZkmqRaRCDLEhZHfxEhNY9I9khR4YUupT4j/uAPfp+/9pv/Op47ItPy8FmdEYYhX3ypEg7XtXjy1jcRpiDXHKFROKPtJMvrJWWlAsrVbsxDYWHqs6zvLUzXoqlKrr7+BICTeMF8ccY/+D//X0zNh6v6hOPpE/7R//I/AHB1+zl/67f/SzwroBcHf5yGkR/xD//X/5Ef/Oj/AeA//O2/y3h0TKfX6za9Q9iS7/+TP+HFi/8LgPP3fhk3ekKb9lQaYtzZDsUyZXej3ic6OaLsjWtZbAAAIABJREFU38cxPB4cq6LT7Ejy+ee/R57dU2vPnra3kVIMxY7AjMHsaGQ3FAO6TtmgWJY3BIq7bIVrj8i0LUnX5gShhezQXnPqMakGbhFAPLJIMxiNXgvM2K6FaTpsN2oensV31HWOba14/lwlEm89PcP3BG6sEpIXF/fsspLpZESkrV9eXfyQR4/OePutD/n6hZrn48VDnGDHDz9XSZxnTbAdcwjaDmsqS5RBNcDd7ZqH5++RZDc4WrhhPHoX21K+gb7mYZdFSxCEPHigYc+vnrPZVkT+DK1LQxAEbDZLongyGLDe3X3JfH48QGTjkc/d3R3n5+dsd2q9IgTzxTFt42JoWNfDBx/Q1CG2q9bYfntDUQnefu+YrtZFtrs7ppNjyrog0QXz+fEx8fho4GXaToR4P+Pi4pKHDxWH5vLimmjiMx6P2Wp7FMezcF2Xj95Xient3TV+AFmxpmvV+hnFDne3axw75MGpKnjc39+zW+84OlJzN4kC2t7FtU203zth6BDYYwVZDnRg73kk+Z6mPZgKjxA2ZGmObavf55gGtmNi4jCbLfQMnrPZ3tFJtWe3mz1H83PSpKHQ9hdHU4Oibsj3JYaGPXpeqIx9hbbWkJKmNqiqgpE2fB5FI5qmwaDDdtSZV2Sl8uPUkvgmAZ0Q5HmuIJLAelkQ+GOSbIPQmgC2GVG3BaUWCJK9RZ6VSFkMlg2z8ZSmeb33eqH8zPblHlMX43zXR5otwhXDHVZVFW0n8TXFQQhVBIvjeBC5cOwew7WI4xGHx7Y6LNvA1udwWWVE0Qghu8FU2/Viyspju9lxeqK4tkWRUlYpQme4202KkB1VUSAOMu+2IEm3hMEp4xP1f8v7PZ0sqDU/zrBq6qpksTgj1YW26SxEGIcC92vY+p/3/FQkV7YlmE20+3O9wTIq1suE9bWqwk3Hp9iRTWmVLI7UoeF7K/oup9HkYGyb+VFM1yX0OnDyfJ/F4gjH8ahKNSCbdUbXgKEJilm64fbugqpuh0pLnZusVveMo+mgqlKVe8YjH2sgk1u0neJQRdFhYbTEnsN6vR6UgJqmYb6YDEnScrnE913GsUdW6cukFXieQxgtOExclrYIKZA62TGETdf2JGU+BEDdOEbKgvVOqewAzE9GXF1ueXmjMN+L0xm9bLlf3SCMg4u6hYmJq/HAceDgeJIsFWiuM1XXKDO33qDVPlfPX27x7XS4zNq2x3RMhJC8+OcqOLdMF9dTHLEDgdeyPequR3Q64EsrulaRfTvtt3B/n1BmXymM+k6rPTYJVZkMfk59Z+N7IVleIwy1EcaxS5H33H+1Qhg3einYuK4zKBPVTcmm3rLfdhyQsLYhqLuWm1VCpqtEjh2xiI8Hkmi8CFhdPmdfloxslTi10iKKOzo+pdfqhEn+BbJzBtJ0EPn8wR/dYXkGZa2SQM+6VEFh3tBpToKUEmlIKm347HkWq6RBdGtm09eBcCErsGC/U/uhvn+J7Qjyrb6YRMzxWcB6eYXQl57jSZbrVyT7mmx+6ARK0jRjOtbBayJwgj3TySmrtRo7yzIwDZcwjPED9X9tV3F5vR4O914WLB6EzI7mQ4d2ujPoO4O2sdlttWmh41DuHL7+SnV2XA+aGrJdq3D7QNMUyP6EfK+Tg/RCdT5ch/1e7W3RLzg5jakqm+9/TyerwZS23zGeHFSrBKvNmnm84P5edZtSPV4XL58TR7o7+Kphn21xNEfgxz+WyN5kMo+4ulemsEIIPGuCRTiMi+d5OG45qPlZlsFuv8Z2BIUWV7BMh6ZpSPOW02PdqTIM0jTlxUvVRS2yhL3mTBw4j8iOr599juv6gzCFbdv0HdxqHqdl2RR5heNag6dMHMdgqEBUavVT23bpY4/t7rUfyPRoQRRF2PpiCoIA0zBIkh2V7oa4oacLUWo86yqlrEr6vgMOPndSFZSEhXswIDc7wEH26iLuuoZe1niejau9d/oe6j6lrCVSHjxsgD4bPNeqqlIFKdHi6eqyK0wMz6VJKnaVKig1Ndhujzh0t3qLvjGgk0MnRxoSExPTCbAdFVxdv7hGdjUff6w4dH/r3/0P+Af/6H/n7/23/w3/9d/9ewAsfIfF8dlgJlmnPU1d8+//7d/GCTVC4nbHeCQRdCRrtfYvr294651vDbyzuq5pRYfrhlxfqHn3vQlvvfMz1G1BojkBsml5MJrw7JkqMP3x937EL//K36YodyqCQXGGRW8im4r2YDA9e4iwLHIdcI68EY7n8uLqknfO1fydPXpMLRvKsmWsu4xWOCPNGpKdKtx8+M5jwmjCanXJdKyKRz2C7Tphff+SJw9VEWY+X1A17VCcc2yfvMm4u3lGYB2I4i6OBdKx8fQ5bzou2+1XzEPNxylt3MDGkQlf3z1X89nN+eDpX+UP/uj/5v0PVbfn9vr7NFWPYarzJrWW9PWMTkKn/Sn70uLB2QNu7i9xIm0U7W3wXQct0EYUjmnanPF4xlIrAwoMzL6lKtthvnpS/NDn+lbt9fHoCNvxaZodo6n23QtipBiRF3vutuqcMC86HFdQlGqPjuMp692eNC8AlZD4vs/m8+cYwh06CKv1FY8eTXh1qYRTHp157PKcLH2tIrlZGphWr8RbgNvrlNvrjMnModZdlGR/Tdc1jGOfqlKfF3g+P/riGd/9ruJuWZ7BZrNhFG7pW7VHl9trjuYxk/EJZaXGxbQdvvjylkCv89Vyg+8HJMk9mtJCFJlsdjdcXd1i6YKSYd6y3H4xxEDXVxdMxjPySmJaB6U8GzeMuLy6x7bVXHVywja5Js3v9TiFlPsWw4747MvLYewc3yItK6ZaIdFwTMo8B82Tmk3nRLGLl3pMpuo7jUYRSbomT5QRMsDHH7/PdrdiopWHHctAmCZFURBY6m+GYfCjLz7j4cNz0lTf0UbL4vSITguGjeIFy9UK78mIRN9PTW1Q5DvCSUihz6m6aJmMAxo954F3xC7ZUpYNlt4zwmi4eP6Kx0/Oh7VRFT3ZbkujA/0wjmjLkkcPpqz1Gl6nWx4+PGW92tI2em+bAe+++5j79Ss9D0useISQ9aDEvVgcAxWLozF5rsXGiorJNB7mar9LGU9C2rZlMVUFkPv7WzzfRMrX/Nyu67CdeIhrXdehx6NtW5rmYL7dUxYpRwvtMZmr2LFtOoJQG/9GPn2nOpmRRuuUVUrbNriBvlN6wXQWMx2HAw/s9HiB4xrsdtuh6BMEJ9R1PXyn3W5HGMb0nYEhVAwZhTYvXjwjHk9B6xQ8fvKAstojsIfP32w2uJ7J3f1Sz4OkaVpsO+D8gdZ00FzLP+v5qUiugtDhW99RG6NrBX0VUKQmppa/9QOb/W6NNCw6DXeZnsYI0wUNBSuSDikLLBFQ6wpGGLqcnY6YTaYsNcldtgl3969wfRUclHXG0SJgvlhQNtrcTcw42tr0tRjakJbtsFgs2GxU1yZNKq6vN/heTKxbnJNpjJAd45k5mB1bbct4HAwX9mx2qhQRO7Ddw+IJSPKEvhEYGtI0msxou5KuOcD9WpA1tuMw0gGQpMJxPAwTet1W3mQNvTSZaUNNxzPwfIs0aQaJemlJHFsOLfp8kyCMHtlH9JqE2ooav9+BIYniI/1eNnW7ozW1eEbdUO5zxoGFaasORtUsqVObrpWDAuRye4swXDpdsTFygevaOI5PlWvlvO0G14ZdtqXV1W3LFriWS6mrHG1bUbc1lmUMG9jxPXAa/LFJqdUIszqh7FzotSqP0dHVFdPJZFAiy7IMx5bc3ywRhjawbRPu7hMMvcawBZFlUmOx0mqIZiDg3obWHEiZrexp2nIg53etgWlJ9psEUwfQy+0tti0YhQsMQx02ZSXojZx4pKWgiwpLguW21JUm0BotmK+oEgMh1feUXUhfSdAKlFK0rNd3HB27yF5X3EKLIOgZx5Oh81AJwXQWDfKw3qiirg22+z2uO9djLNnudkgj5+Bya1o9wpJDULhal5hGy5df3A4G2km6J4wMmsod/s9xJVJ6eK7aa02TY/QWeV5iuqqjMJ2ecvHyYlDRDGML+hijDfGsg76vQ7qzcH0TV6+9uijxI2iag6R7TlWUpM4GOch966THcWg6NVZJnuA4FpGvJXoDh6YG2QosDibCFn2dk5cbWq1AaVg9d8sdi4XaV7Jt2W8SvMAdDEMBLMvBdX322i5hvd4iux5b74/7ZY7tGMpaQsMu+h5OT08pi3pQB0uSDb7vq/EAfN/C88FxDaS+6A1D7QfT8Mm0pHpZbmFV0OpzAwySakXTdJjaDBgp8TyP/XbHaKTOzyiKkL14fUYIQV0KwshGHExEm1q91jUJA3UGIRqEJYbPNzuDurEpGwZzzk42ONJnHAevO/h9T9s3rzvzRyq5o7XodPe+rW16s8cMjUEK3fYMpGhfqww6FrFnIEQwFKJc16UqM1brK/ZL9X//yi/9Cr/+m78xQHdvkhX//f/03+H5Nt/+SFXBv7r8Cs+x8G31vZd3OxzX5cnbHw3nTWAJqiIiHptc3SjD1+12yelbI1ptPSFrSS0kpt3y/NmPAXj04H1mJ1P2u+VQAZ5MpuRZRlGotfKrf/nfYHH8iIvLFxxPVQV8n6yYHp3w4tmn3K3UuPzyWx8gpWQcqrnru5quN7i9vuSpNhGdnz1mXWYKYq9VNz1nxsuL5/zCL6ok5p3zj7m6u0MARaHVZUcGy809pydHPHqqgqu2bWn6GmFrIR5jRNXCbnPBdz5UHb3RyQPu7jMM00EvF4p9QRyY/MI3VWfwd/4koSXGkJJIb5m2Nnn+6nvsN58ys/9jAD7+9b/A51/+Y3b6zo7yBfbIoO5b9jv1wifvf4hpw3bzDM9TAVBgn7DfrQn0GrPaFqO36IqCSKuhWY5HustZnIxotE1Gnrs0LZwc645wuqOqO6SsEbqtka8bTk4fU1Y5pqXGIUlT2nVHLdQ+fvbyBePxmMDxh/fu2BFEijog9Rra7Vfc3J0OSp3XV9/FdcJBvAzg4uIFlmUhtAy6MEvS9IYsWwwFGNeDthFUdTZ0UUdjH9O00VPOflPQ1AbLej0o81V1Q5LWvLr6Ib4m5TuuSVlW3Nxoc+DJEftdCaIdBApWq0IhI0RHqy0U1tsl01nM7forAELnnDR3yLISqQPhpjb44ecv6PueLFfBv+s6xBN3iKd6TEzRI4QxfF5TK6Ec0xI8vyqG13mGxdXNnf5OK+I4xHE8Viut1hvW2E7PdpcQaXXC7a4gjiZU2rRYOjYPHhxzXVwTTg+iEBUffftjPM9C3GvIWOySZAW2FlfrWpNHjxbs9zt6LezlTm26LlDq1FoyXvaW+v6RKrI9e/aMJ2895v5+Seiru1ZYCb5j8/bbb3Nzc6Pn/Qbfg4mmE3Rdx2hk8/TJHFPLrD96+oS2Szg+PR7ETfxgQtcVPNJJbhDl+F7I0ezpIJbheC5CVHSNxeWVmptvfPAA240oCm3hkFxzfnJKltY8eqQQIPOljZRyUIh0HIcgCJBSkqavC6lpXpKmJS6HMTAZT04HERP1GoHnN+z2as9GUcj5wzNevrhAaOSR7/RYtkng6yL3JGA2iXFdG1sLEmVZSZFbhP6EfaoKEE1p0vXGID7iehaeZzM/OkP2ah/d3/+Id959TN1kQ4wVxTameMJqpeL/4/mcs+MzqqoaUDee5ykknHCII1uP558vWfFG0OLN8+Z587x53jxvnjfPm+fN8+Z587x5/iU8PxWdq74VHIWqAua6JleX9wSz0SDz3HY5bhCSFQX+WPs3JCm2OUJoj6le1AjTQHYdgatFJ1qH1XajJD21MMViMadHGcUBeJGPECZVk2JbqjoxmXq44Yy+lYy02IBAYV4XJ6rqUOQV8fiCXsDpuaoyNHXLW0/e5euvvxhwyo7jYBgWOw17chyHNE3xbZtSkybrShLGDr2swNRCFL0g8I+HNmie77GsgDiOByGMuuuRsqGnG0igbW/QdBVS+x2t1xmm6WCY3SBZ2bctZetiuqoCXhY9TdkguRukJztq8qLF9QyW96rL4Pshhtkg5UFG08M3bfKiw3MK/TeXvlPkRNNRYzyyZ1RFj6UzfdNwKcoEaakKOkCblUghKKsaW7dwpdnTyGZYpb4/VhCjpsLRkI71KlFjjD90qoJgRFX0FIWWM/VbLN9ivU+GcQrHPk1j4dseByim3VmYhjMY+iEabLtj4gV0jXrvfZbiRw5CyEE0wDZMAmENxP+6rsnTliAco7v7TKOYri/ZJtuhWh+4Aft1RqrnxXYMqqpiFMXU2pha0tJ0AtO08DVkQ/Q9ddcQH6mxa8oON4hIi4auVJWk6WzOOB6R2hV9q777LHboe9hp3mLXgW0YtJ1FqonwpmniBy551hy8P0nTnMlkMviiJEmGYSSMRiPWmmdmYNI1Y25vr+k7XSW2DCYzjyB47TXiew6y7xmFCift2BZvv2MrKVeUIWsn92zyLb2GF61fXKqWvShpO7UfoiCibDx8V3sw9Sm2Z5PvHQxDi5bobpjneUNnZTKZ0EuJab02qjQ95c3Uabl02bvUnUkwmeDpblZRZITxBI3So65znKhH0iB1V6XpCyzHoWp6et2ltZ2W2WxG2xzGxKLrK3a71/j/IPB4dfGC89Mz9nvd4Z4G2H48QID9KCQcGSCNwfKhaSrGkUVRMlhSjMdjLMvCsbQfiJR0zZq2yUG85jeVZcDx6QzDLPR331MUzQAPcZxzelHTSRvb0N40nYlpmqR5TZJpA3LAMPoB5mnbNq7lUaMk2QFcx4G+pzManANm3vYw5Ot5oWuxBXReh+8qCJAyYO6wHGfYM76rBYS0mExSp9St4Ch2iTT3pcxKJqHNh9/6Dj/7bQUD9IMJX3z5FfJgWtz1XDy/5m/+W38DdLW5ayo6x0fTCNhsn2GIjvl8Qt8ePAIbehL62ufuVp2LXuBzfvQQqSE6OAWysLD7hqs7LTozDYmCKfvr64FU37YtWZJS6H119t67aGQKhZYOj4KYYrfmfrnj8fu/oNaLYZMs77E9beRsu7R5x9Es5uH7vw3A9SZh5M6xgVob/TZ1SWS7TD5QFhXJ3sM2XHqzJtPQVqMP2N1t6e0ES3ezbdullR2m5p3irejuan7pF7/Fe0/VPr5cWwSzOc12jaHP5s1mybtvLzg9VQdJZLusm706pjU6IenviKTNf/6f/nW+vNBiJ+bP8e7bv0ny9tcAPAosnn/1JdKaIzWfqyhyPnu15/13v4mhpa2LKuHoZM5Md+/u77Z0tYXr2syOtXXH/RWn85BkB85BcIUARMVoov35QkEQSTbZivv7g/iPi9EV2NLG0DAyz/MYnVp4ujuR7huk0XFzc0M0UmO33d+yThzi8Bih5bWPT89J1im+dzgTeu7ulozHCgUAcHF1SRROyVMFMzs7nzOfn+A4DkvtcyUME8f16Opu6C6XuYEhTISl44Zig+vZNLKns3SXIRLUsmBxOsHVpM79LmV2ckSSqruh6BKsyMEyTApNvXBsD9tz6fucKNToEiMmzVIqre5QNjfkmaRtW3rNNzoazbjfXGFZ3gDHLrqCeukMXXjPc+hlS9MUTLVNxrbZssvW+n8OxrALGrkhK9VaaXuTpjfYrVeDL9PtKkNKG893WO90O7A36duSo7n6n7vbLceXO6TI+eJLBd1t2hz6kKPj16b2Vz/8lNBfDIIItmlSfL3Hdc0BCrndpUgpaFuL0VidE5v1hiCCbKXe5+k7qoP0jW/8Ahtt/FtVFvFE0Fst732oBEi+9XMfc3P1akCbBNFYCYLsr3jrA7X/fGfEOrnm8fnPsLrXflVGqdAI2vf17bd/hbYR2NYRlqf2/9XVBU+efEjf+jx+qj3z9hVFvSPS0N1H5x9hGAahX5LnGhLnzzHtgvFErfMkv8EwYDF5hNR+qr61YLV5RpotMB0td18usc0I1znALntWy1tc74i6UXG158yYz44YByY73X2tygbPrdlq/jh9wCg4pshWg0T+0eIUxwbbHONpu5Km3SNFz0YL2lUyY3WzYZOVLBbqrs36hpura8LAx9ColGJVYBlram17FIQ1QZBRVS3H2tbpaD7i9HiG41oUOlaR3ev79F/0/FQkV/QwFmqhlmmFL0P264pEw9bCkUmZddSFR1scSOBjhBsgdCB1dBTRdS0CC1cnSY5rMp4sKNIOQx9sfmgQjqdomCbLu5UK2NtqCAaU6ZhNFHikiZpwz7e5vl0NsBbTNPGjkKbrB7PTLK/5008+wbLB0DyhRnZ4P6Ek5wU+WZHTGiaVhpEkeYGwTDzfoW4OyVRGL6XC36O4E64X0XQ9lSZX+r5LXvQkSQ46uKmqBs8PafX/CGFSN3ts237tgN07SJljFBoTLXv6Xql8dXqzVHVJ4Ia0XQvaXK1tLYokG7Cxgh5Ei206lNWBG2JhmZK8Suh0O1gIoQ4LDTlqpVI5Q8gB2+x5HoYpMQ2Hsjg4ioe0XQ0Hv4Uq14ZzYnCkNzDI85KyuMfS5pFBaGMIf1CtMQyLIqnUwd5ruF1tgKj0Iaq5L9R4bk2pzZ0n0QLbVsIXqQ6AwsjBMCuStCfw1QGxWe+IJz5pqjHYpVSk4dV6wPomssMPbPqmpdPM4l3Z4XkByU69rutbHMejPmQ1oCAghjIDlHp9mpbANAV5dphjm+0mwzQFvX7vzz5/Sd8GVE09rNmDq/tBYdPxY7brHbQZjqsTWqCqazzPo+3lsGarugGdRBwdeQShhTBanr6joAOjKOb6+hbXn1GX5rAWdvt71ht1mcymJxRpRplX7HfqUohHPo5jDx5MhinpG4u2dgfDwJOTEXXd0LZa5Q0Ig5h0v6fVRHU/8Og7iTOJhrkaYJp9+xOO9A2mbQ1O9qYpyPMU07SxdTImUUnAbrch1h5dnhfQtd1gbO44FnXT47oCqaGJTV0rsQPLxvLUGdQmGa732qPEssExfMVv0gpYfd8TxzF122DoufI8F8MG0zrwBjO6rqP9CWKxaZrUvUXTSsLwgOOXTCajIQFLkpSyKBmPF+xLbUjuhAS+y3pzO5Cdk3TDZDKh0aqqVfYSx7FJfwLG5ro2VZFhOjamoZPTWu3vgziHVfuMRwscx6bQ+6hvW4qqJCtSdokOrvIawzCYz7XC136PYThEnkmpv3vfNZhSagEeLd7g1Aq+qINHwwrpm46L/QuuV4r3+Rd+/lcwXYfl/XpQI/vTH3yCH4UcjdVl+Ye/9/vM5lP+xr/2N1mtdZLkeRRFgR+off3iheKtzufK6BogzxNG0wllmXN5qQoL52ePieOQVItXNH2HlC1VZXF1pfg5v/5rf4XNZqO4CjqBKsuS9WY1/M8HH32ooKBhOMAeR1HMF59/Sp7nzLUIk2kJktWOAHVn+raDLQz++I//hE//9PsA/KW/9tcpmyW9EdNqfvEkcvn+Vz9GPFNn7kcf/RIWHY4bs9seTFMFN/cXvHy+4hd/XgVTUkpsw8RwDt44MenuM7a7Neu92v/j6Zhkt8IwwbbUmhJ9R9uV9Bq6nxRbvKOIvmo4iEQ2u5qjMCDbC5ZLtY826fc5XzxgPP9LAFyvviArP8GQFZFOTG8vrhj3c2Z+RKF5u/OFh2FNMFDBuTlaEkYVZdFi9mr9zNyQ09OnbJzdUBBw/QlhNObZSwXzLNsMYS54fPodQmunv9PXmKJn5I0GvnbghZjWHemN9tVxp+T7Bq+2MVCf9/H7T7i+uifwJVKo4Pjtt87Zz2+INKysrW3u4wt2h2ASePfpI2zbxtRjuVgcYRDR9BmPtR/Y1UVC03WU9ZYP3lMiEPtdQVl11BoGfeQfY5g2fSe0YiB4rsU+WRHE1gDdk3TUlaTSvlCu5+A6PmXZDMGkaRoIs8XzrUFkyvcgjAI6DT3r+5bJZEqapsO9XdWS6XTBdl3Q8hqGKDAH2KVhdjS54Hhxxs215mFFLq5hqgKz0Gp9ItXeSfo8r3M2mw1RFJEXal33nYHnmZT1GqmLMKF3BMJis1VwwiCyyYuN4gUfikCeMo+9X9+w1UnKfH5EUW1ZrTW01lOFnl62zLufMHz3fV5879nAfd9uch48PGO/3en3fonvzqiqS8pWJS2W5TGbnPGHf/gps5k6ByPfo23z4Y7u73eYjiSMXHTdFG/eErkn5HuTiVa9FiKmqmoiV+3Z/WYPRsZm+yVRpPbfKI549vVnxOEZni4QNMWSo8kj2l793rzY07cuYeRwdaXikvnCpsh6DBo9lmoMbq82nByrz39x/Qmea3N+/IDlRkEcF9MJd7drTM2znU0X2PNHeBOXXMMzy7KmNWpOTp7iuGpubLehqU1OjvVBKRqqsiEMJ5SliuNXyy1x7CJEPnDdRxN1R3e6MG1ZBp5vU5RbLq7U+T2bPMIYmTQFSC06NxtPaBuB7LSpeNZDdMRoZqmGB9AT8/jJ+yzXl7i6QH98phK2P+v5qUiuhGHy6WfqgvF8Uxs0CppGbeCTyTl7M6MKU/Q9j2XagIHrHiagw/Y88qyn11l/05Q8f/kZo9hjOtNYzUJS1wwVm3jqcnV5rWUx1aAVZYYwJNvdHedn6vIwTIX3PxiGZllKHMcIw+bVpbqE67oj8COyMhsObt/3afsdhV5MjezBMsnKll5/nh071HXNPi+Gzgq2Sd5kaCVRLNvibnOvnME1X2R9vcJ2PIqyBp049X1LXbt0ukLruSNsy6Rt+6FbV1cSIXoMXaIVRodhqiTkYOCJcJVoR9sOogFpkhOPg0HZpmk62rbFMHo8zcEwLIemrxCmpCkPxqYqGSh0MoA0cV0bSY+jJQX7piVPMxzbR2j5+V2SUlfdUEUSRkvb9rSlpNNV4t4sCMMQxw7otClzlrb0bT6slTRvMCRstxW+xp1bVUfdZhzN5qSJVgJyDRzTwtElzX2ypq4kruMPBMw022OaAsMQA0/B9Wz6vqDWal6eO6brGlXt0hMYRWN2yRYpBb7m+xV5hYAhyDY8IX3lAAAgAElEQVRNG8/zlA2Bfq84HiNMhb0+kFwFLkVZDIIkbVlTlCWOHQz7oWmh7yosyxi4IL3ogZ5OJ/C9CXZkI8seWx/mWZZhWQZJlis+G9B1PXme4uvkwzAdqhqQkuWdCmxsw1OJdWQhdILnuD1x+HAI9KPYY9WBZ0dEgXqvspbItiHQAW2elzRNTeAL4lh1MPoOHMMkHoUE7gH7DpN4Clr1SHYdbdVhmwzCGweFwL7vB9y3aZpkWUbo6wKBEMSx6hAdTL1tU2HMjxbzIREWQpCXu9cV4qbFEhZ9J4c9Iw2LsiqwTCgrdVB7vs022RB5B0XBDX2n8OcHLHyWJxiWRVFVrxNhYZAmBZ3es66nSMRN3Q4V7ru7GybTMaOZP/Dc+r7l4maDzkvVHjcl2/Ru4E4awuXy+grXNQfRF9+3keQ4eh10QhL4iodhajfHvlUJbtt0eFoBKk3usSyLXJP6w2jCdl+y3e6HIkwQ+Limz2a75+xMST+PYpdXry4pK1//Poumq0mSHtvRFX3TRghBUaQEmpfY9xVZ0jLRVeqems1qx8n5Gf/ef6TMf48Wc/7SL/0i/8Xf+a+Ggk4QRzRdi9SL4uLqml//jd/AC6PBGqFrJcKQ1NqocnV/y8OHj7Etj/ulup8c26QsS9L9mp1WTX369C2FHtDmkpQmYWRy/ep6OLvOz8/JsoyqqoY1FUURX3zxxRBIHR8fkyUpXdcNalpFUbBZ7xTB/EjNu+u6YBg0h4JEVZFVNfvNnvkTFWTPJ3M221ts1xkCTNHDJ5/8M87PngKwfVxjOhWmOR2S7Koq2GxvmY4fcTRTiIyy7bEsi0KfSZPREevlJavVinfe0xLcjsEi9mlin3SrxrMpcrabHZ98rr+n49O2FZYwsX31t3Zr0DQv+ezHazpTGQTbvk1SlKQX2nri6QdsX5U8fuwitIrqxP2QVtj0ZoanJc7T7ZK+7emFihs8v8G3J3z45D0aVMBeVx15VePNTAx99yRlSp7t6TQf1zB7kuKG+/X1QHI3DAPHnJDkCfOFLn51DWbnMx0fuKHw4QfvcXn9Y0bxsZ6/lF/7V38V1+/ZquXCybnH7W3J6eIDvaZ73vvGjO12xf+GSvD+6m98TJm/tj+4uHyBaddMgzHadYUg9nBcgzBc8MWXivPkuGOmizPuNyqYLNOEtq0p0oxOS8hPJgHSari7B904om4TantNU2suepnhOpIgGOHqToQwHTzHoai2nJ6qfdw0HfvdfgjgkzyBDjzbw3IOQjgmQRgisPC0kptt2xiGQdWo77nbbTg6OmM0dhE6CV0sjri6uqJtg4GfOp6c0Xu7AQlgWhLPU936gYdt+1iWSZoITC1aUNV72kbgOVo0oe9p2xTXf404aRqDrNrQi5bxVI2DaVvMjiZstQLueOJQFDVFWVM0urjp9JhOx8mDObnm2k6nU3xPkOjzx7ZCqjphu0s5PlP3WpIuuV9tieIpW11gXa+2WGZDrwWKwniENDqMe4uHD9Q63673uK5Nma+Z6vNb4JBlN/iWmpf57IjlOuf8dESV62JqP2PsBbiWORTfTUxsu2Oj0Un0Hb4fsLrfDAJvTVkxigKSRCX/oRdSVRWLuUFRqb326PED1cXcd5wfK06n5bQIGQzc9K6vyauGbPt6/exfrdndXWMxItTIHNPrsOwJda6+44OHC4pMUhQV51r9cb/PsG2b3W6HF2qOFzVN2w57Zj5/yHq9Jgwj8iLRv68hcH2CiYOrxY6aKue9dx4NiKw8q+gaQRh37HVsaAoTS9xxNrfIMy3YU+nc4894fjqSKyFpNdRtNJmAaMnzLZPZQS49QbYZWZIPPlNB7FA2xSCj7Qc+s9mMIm949qWCE4RBRNl2jOdga7hLltfgpGwydYFauBhuhhA2jfZAStMU3/cp244Xr9RhbrkC27bJCt2GtSzyusY0O2otdWt7Lrs0wTB7fC1ysU8S+k5SH6KdZE/f9/TSHIJzw1CQO8ezB/hLVfWUVY3rqPeRdISRQ1EUFHofeF5AkeXMj6YDsbCuS1zXRgyk0JamrHEcD6ErboahkjWkDsSbVh9OcqiUe35IXpWMxzGZVpYxbeilHDw1TMPR7uUGte5cmVJQ1HsMw8A0D54SIW2dYw9yscrnyzCMwXm9aZR6k8AaWuK+Z+G7BpUmWwahz36/JZ5FQ4W9N0xcx8MwLJL9QfxDdU0OiWovJY5rYzXh8DdhSBwnYpekBDrQz9KaspL4gSbGOzaWEAjLYLVXN6NtOfStg7ArOj3vhiHY7pIB4tjTU9UFjg29Tnpv7+9wHAfPjYZ5932frm+GTqSHS9tAmud0utKKIRFCyc0fPLqSJCGMHA4qbpZrMfaPyLNmUDUSpoPoD8mpVhU0LXoknn1QWuswO0kj5VAp9zxPj1EzqG51XY9r2XS9ujjqxqCuOkI/ItHQy+XtM4QAyzY4m6vLMd012G43+HOs7kuqskGSIbJQf56L5bqD4ItsDXzXw3EEufYfk52lO3wppj6xDEON00H2tWuhzDp6txrm4fCM4imtr+WomxbTfu1Xp4LfHsdzf2I/mvoy7wdFsTRNcRyHVsO1uq6j7UxMs8PxdPVVmnixhyHsAZ7h+wFN01Bphb8g9pG9gRBiSIhmsxlSShVQGweVuIquB9c7+IGoAHsyng7+GqZtUdUNwrBJM/W9HEcpc/XNQfTCwDAEQggMXSXO0h3CaDiaz7S/Dci+pW1NmlrtNT80MJ0jjNbB0HLNiJqsypjNYkqtdCrwCQIfy1ef3/c5vdkwmbqDUINBSJY+Jw4idisFwbFsySQ2qBJFcDdsB0RJPIsxxUHcqKPvG4JIIAdPmYiTd0bsVuq8S/Il/85v/RaPH39Ab6vf/Pf//v9MWdb85V/71QF2KHuBa9tU2nMl2W3xgxA/GFG3rzvsURiwutNWE6t7vv3Nj5Vfixb6Eb2BKTquL28GeeazBw/oOjlU84UMWMyPeP78+aB8OJlMWG62uvOuYYhty36zHqrdcRxTFAVVVQ3BFSjVK9M0OTvTsLWyxHEcLB1ExKHPZ8+fIWXHA61kJaSAPqTpWqJIraHLr294/71zPvrZbwNQGy6+b9A1/QEZyfXNPW+99Ziz06ek+q7rpYEbuTj6HFnf3nN2dsLP/fxvsdtqUr9r0LUZr17eMI3U/ncMweMnb/HVMzWeVdviCpe2rQfocF81ZP2GuqrwdECb5A2mtx98b/abLc9ffMlybfOND7WXWP+Ks8UxVh3y6qXqIJ4enbNNntP0hw5/TBCMeP5j5TsI4IQCmVp4VsKrS5Uwh6MQ0RU8PVeJaW8+4tNPP2URh8RjtR/vrleMI4GL4GyqgmNER+CeIhwtyZ/UzMYTTubfGRAZjh/gWg5CmAQLdbem+y2eawziDnUDebnCeq0OT9dLPv38s0HuuSgKpBTYLuS6hZEXazzXxbTNQcxluVyz2WbcaquSVijIoBf0+Fp9bb3ZMImPcb1g2P+WExCPXLZaWS5JC9K8QNIN5+ntzS3T0Zjp5Agh9euI8Fw5qPLRujRdj5QF+40+k3yL3dWW2dEI2z4UwwSGYXPY2B+89xGBHyNFDWhxHEvy8NEJfS+pKn2+tC73yzWmvgjOzx5ye7vCdV1GI9Wx3G1Vgc42I6Shz0qnIwymSqQDFS8Ks+Dm9oKJVsqUtNR9STQaUx9sB65XiE5iG2oMxuMJ+/0lpm0xmaq1v9svCYKAvpVDN/L89Iy8SIk1rWQ8CVner/FCi8nM1mvYYjGbIo2W3VbTFfw56+UtSX04twyQkl6a/OgLlXg/PH+HydinkzteqFCXo+kD0rwmXqg9Y5kugfMI3zEQzcFbrMI2bXy/UzBxAAyy5IYTDVEvigLTNAn9iFgnVxfPdkxHDxhHap3nec50NOHFq+dYlrofXadmkz4jDo64vFdQViGU6u9md68/qmabVCy8R7x8qeJqW8SMI5e6KBkFR3pt1NzdLYkj9flff/2lKlJLF0d3z6sqZzQ6pm1i6kaPVdfjWAL03RcHIxzDZzQasdmqxNCzQx48eEwvM24v1OuevveI3XaJ0F3VeBThNBJhl0j9+06PT7DsjrIsqW2dsJc/oUDzL3jeCFq8ed48b543z5vnzfPmefO8ed48b543z7+E56eic+W5Lr/yiz8DgBPY1F2CH7yN46kqwH6/xfU9tsl+INXXdUldm4PT83xxRtM0eCF8/AvfBGCXrJnNxwijHaQui6Lg8dMHdHeaIGnXyKxEokifALYfU7VKlrrQWbCocwT2wK8ajSbYdoAQgDhIs2bIDgzEIJcaxzFpkmEbh4y7oqoq4vHoNYSrUTAQ06ypm9eVcct0BmnkpimIohDDMKkrDbtoWoIgoq7bgyo38XiCZQh2u4Ncq0C0Nq5jUGmp8k7WWELQaXyBYUpMC5qmH6r3wjeQXU5Z9ZS6OxEEEXXZDF4YXdfiOSZ931Nq6XlpKgM4z/OU/wzQNQ1pmuMHB+6Pqr76vj90NWzbxjQFVdkMkM2+7ej6hnikhRuahidPnrDdbg8q4Th+BPRKtt0/CCe02LYzjFPf2VRNje16Aw+nqguSrCAeeewyVVn1/RGW6ZLmqkLTdAZ9Z2IYHY3GGLZthaCjrSDUkpz7ZI9peINsbhh6NG1F31uvZbOFBYZF2dQY2nemaissg4HkaxgNaZ7guC6mGQ6/2Q9CPQeWXlMBbVdSaENrxzWQUuL5IbZzcCuXCBkwGUXDWvR8h6rOybVEueu6tG3//+N4lEVJ27aKOKo5VwIIfB/rABlrWgwBdbsbsO9RFBIGE7bbPbrgTduVNKkYYBdZscYyPXx7jNTvLenI85+AQYQhApuuMeh0lygr1qTaxf3QkS2KAtd2htfZpo8dexiG8Zoj5B2I9TsKPQajcYQQrzl7tm0PPi4Hn6QgCLBdD9t97U1TljWuZ3GoRxnCohcmdV0fkGeEfoRp9/SdGIi3pi3Iy4rIPwhoFGRZgWEY2Frndb1eY1gmi8WC21tV9TNNk3gcsVrd67lSXe2qzXB1JdlsLcoyxwsDEr1mjVpgFia+tmvo6g7f9dhu10SBN7yXb5js9tvhDKrrmroyh85g10OSLWkbgXHwJGsTLMegbgoM1O87PiupagnVgYPlsLxaMl/M6PXYGXaL24/ZbF6LeLi2Q9u2hPFrsZNdUhH7Pm6gzyDTIssKgiBgrXlRril5+eMVH33r5wD4T/7tv8PlzTWff/0j3n1PcVH+9J9/l8ePHnByfsrzFy/1+hAYwuD6SkG4i3zLu+98m1E44U4LvNimgZCC1b26K2TfMJlMdDVXCwZVLV1bcn+35vhYVbzDyGO7SXC1SEpZFux2O+7v73nwQEHrpJRst1tG4zGWrdZQliWkacrTd9T3jqKI29tbXNsZhC12ux2b7Yr5fD54teVljeOGA/RUyo4s2fHg/JjjUyXqkec5huWS5XuiWH2v/XbLg/PjAV5cUGqbAEGhIapN0xJFirMnNU9ZiIAkzQj04sh3K26XG1qzI3IO/CrB7/zO7/Lt7/xFKv1enuNiWwGWq+9VL6MuGhxHIlu1Fh17z7d+9le4uFiz0tB5z2nJK3fwN8zSHdd3P8IpHf7Nj/4zAH7vd/8hP/qjP+Tx9Bs8eaR+82gKRR9wojtgYRhxfbtiMhWMpuo7Pf/6lmk8ZjKacPVCVbMfzU/40Y+/4Pj4qVqLXcavfeeb7NcVDx4qLkxylLJPNsSPH1Lk6vecPZjQ9TWZhqPJaMQ0sJFdw/xIzTvSoGthm37FxY36DuNJgO86Aw9zt7ri4uIl7QHvB/zuP/4njKJjPv9SdStOTh9zf5vjhjvqdqfX64T7LMMPXA74vqLMKasNroZPB6ajJOOtikzbM1iM2S0TpNwow1r+P/beJPa2JM/v+kTEmc+d7394U+bLoTKrMttV3abbbmO7kQdkCQsLCYmWWEBjBtuoNwgWIECwYcECLNksQJZYYMkLEINACMmyGoywwBPubldV15BZncMb/vMdz3xORLCIuOelJbe7JXsBKENKKfPm/d97bpw4Eb/hOziuVhqcEXv/yOvdgctHT7m9eWA5d92z9XxGWRYI0Y4cSNihjXjjgWgMxaFCSsXjR+5ZPx46qqFgaN542FVNRaTOSAP3DG3vOrbBA5M84PbWPetBsCOKA4RgFNqY5mfEcTpa3XRt5n+DoW383qwsWThFxVsaz/81WrCv94T+rLXqiO47Li/eIvPdpuvbG6aLNV0rEV7s4Gz9GCmgrd3+en+dsN/V5JMJxdHNgRITDjvNPM+YTdzaC8KMeZyM0O8gUmSTlKZraTwCZZqfIZVBKsHZuZvjPJlhhpaZh1kiQqqqIMsmYxy02WxQKgRRoXt3/16/2jBbZSNn/8tXnxIwpzgmI984TQuSJKSpDZEXLptkktTMqDy8b5LNyNIlm90t+wcvwPJ45cSTvEl7Ek+5ub0ly5IRSl/rO9q+5P7F1Qi5f/rkbReHeE57FIWs1xMCGWJ7dz/PHj2lKHdkc0XXntAXMd/5+COOHjFlyGm7PVYnZKmDRmfZlL5vGHSN9NSLxXxJEFoKj3ipDxVxnHL14vVIy1muM9q25dMffe64VThIeldLZODWVF0KkrgmGJZsvQ9bXC8Y9h1VuSEI3e978Fzy32r8vyK5GozGTNxiLjpFWe+4P/aEHpeUzTR3r+6ompYTFOpQ1lRVwatrt0He70uMbVHBQOZdq7thT5rPKYpixKdbm/LyxcB25wLMjoKyrNGDGM3IAAKpUCqk8wFCVeyZz9djYHy/3RAcdyjvzu3+yHoIDiNmvigK5rMVXmuBrhNMJhMG3RKfHnRjaNqGOAlJfWIhpaTvB05CFVmW0XcOSjd4I8V8kjF0A7tNxcUTj+M9lmCH0WMqiiz1MCAEY6DvoE6GxsNagkCC1UwnMY2HZ6Wpou0CwiBhNvPcLEClMWXpjUfjCFBo0xInHpsuBEYqMHZUOsQI8jzFI7GQWIwR9G1DeAo6hx5rDYGKUP6+N8PBqYN5tbKq0hwPHdYq/B7Nw+aGPM/JVDpCxJr6iIwFQeThISJjkTn/pV57zywryHLlglzlPbralpZmFMKo6xoVJPRtO4plKCU57Pek0YKDhwqqwJImc3oPjRRTy2w5oWuh8vCQOImwQtI0zQg1a5oeK+y4+UkCjLX0pqfwm7kx0OmB4347FhJCYyj2xciTGNqBsqxJko7MqzhZE1D3hs5ux0O8PmzJ0phs6n7vcVsxm66oiv2YAAnr1v7Q9WOinUTOuaIYFS8TsJI4fANjtVYz6JrVeoLw2P4wykmShMbDWIRckicJQRDSt6fvq5nmEwJ1EhWRzoi3KcYkIs/OyXOJHoQ7VID18plr0XuFv/u7O6bTDG0Nq8XS3093/5erM4xPUrASGUDoFUWbpkFKiTb9yNFyRoSCtm0JfPI/nU4xxpkIgjfQljFah2T5SU0vwJqWsizHpOxY9MznS793QT84sRDHNzjBib2PyMPDGOxUleOrnBLFKIoc76uqyLxYhggU2XJC0WyZzU/PUQuYkXOZpjn393dcnJ1THf1BH2jW6wvMYGk7z2VYZaRxQlm5wEbagNVq4FjsWC0c73Top7RtycNmx9QXWIq6p9MD0mP/MS1hVmGkQvln+1Ae6IyBvKcSvjg2ZPRtS+w5bEmasEwXHEqJjE48iR1CKq7ut+N++tb77/LuN57y3jec4t2PPn2JDiqyWTZyZr788lP+xD/9R6iqYfTWE0qwXDzmb/2N/xWA2/svuDj/4zRNhzh5LvUDcrBcvXYJ2WI5YzabUbfVaB4NYIzmuN+N0NLpNOdYtGNwHMeK8lhxe3vLT/+RP+rW53bjuJqK8e9urq4pi8MI99vv99R1TZIkIxTr9csv6bqO/PLyDYe0KEizjMgnH7rtqKqC1Wo1ruuirQhlQBwIag8ZFeHAYnqB8PudVClKWPTQkvizqDwWbPev+fjj3z3CnutSO78xv0dsN7d8+pufI6MPePYttxZfvXrFz/zu30OkAnovPjDolk9+8pJD51Vc4xhQDJSjoExd7zFW0aMw+IC5iYikovdqobvtDe9+45tMV5f86t/9mwD81Ed/mPnqMd/91f+ZTrnCbP9ii7B73lYu2Xp1f0PXH5n06zGh/cb775OHUzpz4Od//gMArJV8+PwbRPFJVCcmECsiDly/8LzaaEm97zCdZb12Cdf9XUeaZQTS8UemeU4W5nSmOeXGrC9CXr3cME8fw9p/Vj5wfVOSZe7MDoY7Hq+e4vKFH7nXdMTh7kiCF8YpKmR/JDEp0iemi/yMvr/CdB295//ooWI1yym9uJLpKy4WGWUXcyzcs3d5lrOvKqIwpD4JC2UxfbvBeJGGWXKGqQXvPnlvFIrQveZitcTakmji5kCbmqYZ8DRJHj09oygadMebJFAq3n5riTUJF95Qth8Khi6l9gXQstkTqYCXr15xvjrBXztMLzDGqRICdK3jPJ6SJGME1lrquiOO3hSKQhURpxHHnQ/YswxCPfI594ctcRyT5rNR6Gs2z5AqJBERBy9kNsSGvu4ZPPSst0598ljsqeoTXzVlMplgkDx4rttuXzNbKDYPbn9drmZ0umJ9fsnBn6MqskiTUFZHYq/8ebPbIKRTOgR4uN9z/viC47bkkeerrtclcTin6cxYjFvML5nNlzQneWKZ0hvNy5e/ycW552ElAS+vXrCcv4X0z8PDbsvl4wl9eSoeH9juSpQMMV6JGwVpEvH9Hzpe3+XlE6JsRldq5h5yPNgNaRTy6L0VUfCmcHrsG5bzlb/nNavFnCiKmOSe31TfkmVThr4fffQm05yyqUk9z/3lyy0ffvgNtpvDKDqXZwFt3RGpcOSGC6Bra1Ifiz7cFaRxxiRL6T3vWwnNzesrHj9+TF2dYvQDZ2dnXL12ucR2c8XyLCfPQo4+Dqtefp9QZjx+/Jjt3vuprf8hBS2EEG8BfxG4xImJ/QVr7Z8TQqyA/xp4B/gc+EVr7VY4wsafA/44UAH/krX27/yDvqPTPXc+APvis2vK45G+jch99VUFPaHIubm/pvQHRd/35NN4TBhe3T2QTxLSTGCtUx25u7tnOlsQqozGiylYHdEOG6zyfA7j+BwqCkcOhBCCOFJcXX1JFrtg6uzsgsPhQO8PUCEtIghQYcDEK4ptH1rOLi89PtonCHVH2dQjzh4c/6FteoLwJEMakmUx6u8JVg19374JoAeDCgRWmHHRKSkwAazO5iNHJ04kRguUV1FEOH7DMHSE/oES1gCSicdgS+k6H1KBpx+w3+8JZMzQ9QSR7w6EkihKmXhy+fG4x5gAhHqjRCgEoQw57vfMTkpreYy1AsFJBWxgvlhS1zXSl/3rpiefpPS9oSxPJELpjdzemIMKYZkuciebCsztkiCI6Ds9Gqe2DcTJwHKV+XlKSCchQdRSFu4apkFG17gEferFFNp2oCiPxJFbd0Eg6PoH8jSl9MpnfSvJkhwhhvFBT6IUPVRjV+X6+jVvvf2E8rBh8IeeMa7LGEpF5CvAUT5lt9uR+IT9WFYkaUqn+1EgRAhBWzesL9YoTkItlvnsbCSTChTrxSVVfaT3OGCjB/rOETNPIgl6sBz7ltQHwoHKaGqNCuQYvDqunCKKIjqfECyXS7quI2Puf4tFa0GWz+g9lyhJQoS0WGtQnsDRdTVKTdCDT85FR9u2nrPnu4rdgDXQernfST4njATzdYg2bgNO5Rprd3SDZpbO/HrpUCJkNvNWCSLE0pFlb7q9rS8CSCnHjsm+2NGWNZFPxFWkfNcvQfpnr6oLwiBxQYNyh95kGpHE2ThPfV/TmOOIqQfXndhsNyilCH1HSAUBd/f3rFYu4MviHKxTk+y9geZkMiHPcx4eHkZRnSiKaNuWy0vPMWlL+r7n4uLRyJPYPDijYSEN8mQxELmDabd3gU2wjrH9QFvXTHxybq1mkqXO1NPzi4QwnJ1lhJ7j9fTiHfbFFY+fvU9VuPt5c1XQ6oEgq6mEU+YT4WO6vkH0nivW1zx6ekZdlzxsHO8jTXMGG7gOa+fVl/qWoTcsT4boekCFhof2Sw637t6cX6y5ev0lwkz45T/zHwDwl//yX+W//R/+Ev/pn/0v/KRLLAGzeMkPf+QC0+VZzu/6zneo6w7ln61+aKiqlrt7lzjFqWU6WdJ0LUHgu1KDwfSG6yvX3VotZ4RhSK2bcU0FgaQ87tjvr/noWw4hoYRAoDF+vUol2WzuSZJk5FNtt65L0HXd+NrN1SuePXs2KoUNg0FrTVmWIzf07s7xmy4uzqjaEwfKUtc1gV8rXXUkVAGrszWVXxsmgCAG3fbMffL/a7/+N5nEKf/47//Dbv1sb4jjhDxWIyLj9dULrO2ZzRaUBy+K0CriUGI8N/V+uyOKJWerNZWvNgdxhO4ksYJbX60XCvLJHHWy9xgsVdHSGUtT+ADTJtRty7EpEIE3V9UJ5aElVO6z9/srPnr+DXQQIb09y4uXn3L2/F3+ifN/je/97e+6dTabYPo5rx68gM4sYX5+TlcJjn59Hm5CyuYnzGcXtH4tfvH5C5QK2Nw7M1KLxvSCxhiatvBr2HVLpJSsVi5YbDvDblsS+sD/2VvnJHFIGoVIz99YLGZUlUSolok/t28+36LtQFG6DunuoUcL85UCk5N1X62mWHMSoaqYz1P6SjAM/hynILQarSXTqZu7strRHGrq6lQkjakOBYOB55duD1JK0YmApmiZLU7iSgekrQikK0yt5wuCICCJAxReECGKqMoj02lE4xE9j88/IEr6kYMZhwsu307YH6/pGvdsny0saW64OH9r5CW+eL3DmhblBYmWi4im6bhcLxA+psvTkGEYsNZi/TlTNxXYhK49nXMldV2j9cDR88XOz89pG832rsbqUxGtJowE+52Pi+yULJnQttVYXJHSCboo1THxHajN9s6hIbRbi9tKup8AACAASURBVLkCrEJbxm7vbnfPfD4njlNXeASULCmbeBQfskKyfeiYZBGHo9tzJTlVWYEaiL3W1zC4IuVYEBGKYHcAq6h9sfBhc8+LL3+DR4+XYxf1y5c/gt8wGF88nmRr0iygqgvuDi4eXm6W3D9cM5vsePvCq7QWDY2o6bqTlY5HbkQT9l5Z8W5/RVnKkXda9BvO1hf0Q0Dsu0ZlU7I/FiiVsyvu/W+uKMqWyzPXxe26lpvNDU+efIDwyIfF2YwffP9z3n3+PrWX1//y1QNxnJK58JGiEDRVQt9WWM/H63Y1i+klx6+g2c7OLjgWzSjSdLZ+TDbJ2e3vSHyhb7lOuL7Zo3povapgU3ektSWbuPVadwdCmVPXd5TeouZsdU4gUl5/uSWfnxBZ3kbktxi/E87VAPxb1tqPgd8H/LIQ4mPg3wF+xVr7AfAr/r8B/ingA//PnwL+89/Bd3w9vh5fj6/H1+Pr8fX4enw9vh5fj6/H/6fHb9u5stZeAVf+349CiB8AT4F/BvhD/m3/FfBXgX/bv/4XrWvB/HUhxEII8dh/zt93mGHg5Y8dbGfQPW0Z0PY1g+9AbXcDebpCyuMoQ6rilLJpMF/htBzLgftNOcIuumFOvSlgaIhDl7lmWc3QdyhvDiql40AZ3Y4SjhKB7jSr+Yq5r0wXTYse5NitCKTrLrVtR+HlN40NOBT7kS8FIJSEwY7Y29lsxnbr/BVOfAete9pBEzEdZaul0l5y3WfJugWliaKIvvNV6unMdX8kHkLo5CiTJB31+aMwJwg64mjiPKMApWDohVecc9LlTdMyDAOCzN+TjvMnMUMvML6iHwSS4ngYeRnLdQI2QOsp2rejt9stkgwlAjLPsdK6xaJITv5KUYK1Gmu1x4tDEM7JJwll0ZDPfAehKlgs1txeeb5FnKOt4ssXt6OvTxS4itegKxLfWs+nEhm0ZL5Sb7Qz2q2PgtR3LOr6wMXZOUW5JYp9N6JTXJxdjH4SBojihENZkHmIipIZXdcQRhmPLt4F4LDfIoNgtACYZkua0iBRPLl0vhPt0HPYlwgkQ3/y7dIsZ2fUXtEsiKFuDsgwGJUdj4eKNM3RvaU88WqUJU/mI75bipChl6RhMiot9l2P0oZAhDQHtz7n87kzCK68ZHxigYEgiN/I0eqB+WKB1QOTmed9DS2D7jlbut+y2+3Q9FTN9o0pZNNQFBXTyYK5N1dshobrmwcCr1I3n2ZeRUuNOOyuOWIjRpjHYHdgQ4ZegPeKaYdr+q5CEHGo3TovDg9Ouj7wXj9pTt9X3N7uRvx//BV5+ROfCqFBCYLoxAMbCFVAVZVoz53I85RABcwm01HyF+tgoye51qatiWJL3ey4993QoVNEsZvnwcuXB6ElCAIK//xHsaI6HLHWjt2JruvQWmOtZfvg1vp0OkUqjfG+c11fEgQDTbMboZCTPCKOA9J0zm7vqoV1VfL220+5v3d752KR8PjyOXmecix2fg3nbPevybP5qJQlpeFhcyDPvGJbrQnDt0iSFV+8ct5Ju2aDUguEeor1PNN+ODJdvjHLlkHG/tDQ9zBbOjiKNSDFDjvE1L4CrURHkmWUtfd8229IctcN6TyX8NNPfsDP/cwf45//xX995Iv+Z3/+z/PP/eIvsvLQrC9ev8RqTTLJ+eLK8VNEGPDo0YeU1W7kF6lY0dQdP/nixwC89fYls/mKeigZPHw5EpKHhy2N//633vqGg2K2FdJ7tZzN13z66Xdpu8PYVdSDBTFgeg91jSKub16TJ+mIPKg7p2JZt80It3316hWTLB/RCofDgSTJMGYYTah3ux1VVfDRRx+Nno6D7tz55M+m17e3fP7ZZ2STKeeXrkp8aAdM23C5nnP0/MLt9oEPf/YXCLxkvNU1QiQ0XT1Cmruu4unTpwgh2e9P5rGZk/P2yM/bzYEsjsjjaISREwr6Y88siSjL1i8GS9f3dP4Mm2Q5ARaGOb2vbq/OFxT1nsPBEKS+C24awiSm8r5sw9Fwf3+HjnMuFl7ePxfcbK55tHzEeu32qb/1d77LT33rOb3vMhTHBfujIExCNr6j3zcV1p7xxa1m0CdT+/cxwwF85Zo+JchbVmqg8F2Gvg2Iwi2IgR//yPMw0p48n2Kkm6frbUG5bzhbPnO8OeCLq5+g+4QwsSO6IwodxzWK3YRWrUKFEVX7RiFSywEZJZw/cs9j3/egJU2wZ+7Nh+sC8ijDhnK0iJhOYiZ5wGLhIXKtJZvm1MeO3u/71VAQSsn87Bxr/BktBQGS1t+7+SKlLXvqQpN64++ibImijGpXsi99dynZUBzteK5uD9c83GrWq0uePF6M6+76akOx+4Km9ep9cko7dFjh1mZRCCQhYRIxNG5fPD8/48XrK7TuMR7aPnQ9WovRYF6qlihImE3m3G9u/X3vmM0mlNWO5co9I5aKwdQjmsbFNQN1c+TCy3s/7LY0bYmmJhCuO5lMIsqiRvp47uGwIYmWSBOSJa4rFc6N0wDoLZXvAKeJoChfc3XlPdCyhK5v2G1/DF59tWkcHL9uCwbvS+a4uAL87wujlNdXdxTbjvPLk52AJZsGvLj+Hkng5NnDpKMfKhJPCziULzm2IWmyomnc3zW3R+J0ztXdhusr18F/+tYzmusG5U3nu6bl8izhy92P2Hraw2wROwi79+x88brj4UEThJZ56V4bhgojW3ZtzU9eOHidVQ3Pnz/n7/7QSRqmaerOuOMPefrY2RCUXcvVzQ3b3ZHHT9ye/tlP7jAUnC2d+mOkMh62R6qiJsvcOs/TCTfXD0Rx7VQncdoFeb4ckR13dyV5PVD3NYuFW4v7XUkYSaJgwe2tOy/yfM6haNGeC5dnU47HIyruR52AbtA05oqHzRVL/Q2/pv4RmggLId4BfjfwN4DLryRM1zjYILjE68VX/uylf+3vSa6EEH8K19kizUIOhZuQrndeKwZFXZx09hW1HRisRHo+Tp6H1FWPsm7RKxXSdQ2TZEbk2/S32y+ZziO00kh/MAVyjhLH0eCuaTRpFlAeixErGoU5Q2+RStN6ye+hlyzWEyp/CIVxjtGKYeh4ePCCCNEckyqathshRlEsMLYdoWZdC1JkSKmJQ3fDD+0dxaFnsXzDKVMyASrw153mE5IkoW1rkqmHWVmcrwcQe/8Gqx0xf7lc+N+rOB57Z3DqF2HbNVjTU3k5etOnpKHCipTAwyWX6wQzPLBYPCXxwiK7ww1CR0wX3vdG9CRZS3lQHF3cxvJcE0Yl5+I5Brex3N/VpLlms/Ut62mK0S0Wzd3DSz+/huPReSXVXoZ0MlVMF5o0c0vrRz/6IUmeoWQ6misPEXRNwnQ6H83jrIZJsmbvvSkkBqkSkjBB+SW/nITEseV4ANO5RG29itlu98zXHua52dN0EcYkTH2i0XSavm2I5cD1Kw/LE4Yk60dPqziOORYPLCYLpl4CuHt4IE4TyrKmLdyBMp/OORbbkRs0zSOsjREDSOFNC+mJjQZh6eyJ8L0gVCXaiwi0LcjwgJADM+9ldDA10WRJrzfkPggzQ8qxKMZkpyoa0nCKUIrQQwezTFEWFWmcUXu8sY0gkJbNzkke932PkiHCOG4OgApDFosZZXnEDCd/M40K3kAArXDJcayCsbCwWr6Lph3xz8YYDqXjs1jjN25doY0kyy3Gy8GHWUQQBLTDad/oaYd76jbA+grM9JQo9DsC5YLcsuzo2dNp99sgxArJZDbFGDefAifuYlpD1bogcDKZURwHFiv3nsVqSls3hKFk7oMy4b1bpIxpvTRx3XXMFpejNHOvdwRpQKu7kZR9fn5OXTUcjnfMFifRCUl/WNCdvFRURZavqI4BUp18xDRSKVZn6egJliYhF48TbqduH7m+K1DJCiM1eeq4U01/hxVw9/CSD77pDjCjA+xwyXbnDuIXL0qapmF2vWK3dYlhvshomh1NFZLlHm7XRghjqRv3+4IgIE0nDhrpg3gpEoLgKV0/YKWflwo06QgrDeOAMBTcXW8Q3lD+T/+Z/4iPvvmP8eLzOz754Q/c7ZKGn/vZP8DWz6eUFqMDelPx4x+6JDCdCuLJgqLY45F6xMTc3L1gf+/26p/68NvESUBTKqQvRNlB8XD7Bb12cK0oPKdrDYkQI+RXo3m4uUGJA2vvO1UcSmwaoQNvdGpaHh7uOFunCB+UySGiMYZ8HlMe/NqrSqaP516UBwatsX1Hr+DoIbldXTGf5WTpYkyqAytAGuypAHPckeYJMgoJA8/ZbWvCRNLqms+/eO1X+ozZNOaw8wmuUig7IIRi5zfwpmuJooS62o9+hoNuEHFM6xON4+aa9focFUbsth4OFiVY0dD2MeXB7c3T2QRtFYE/d6I4pW4b0gBee1jgO+dztJF0yNGnUHc1k0hQ33tz16DDBFOkha73cNfmHKU0dXNk44sGSWiQgWL34NbGJBvAGNrSclJ8El7vXAmBFKdCVIm1dvTQ66UhCHK01iPk32gw9pyu63j/mz4QDjw32u8lVVGSTDRFb6h8EVabEBgwR0Pi4af3uxuWyyX33iy361vSPB/lxcH5UyqlKIuTxYEhDiOyZInynxMt3LWnaUrnjX7BnTEXnsfnfAN7ivqGhU800uQxQSAYjB6LuUJWdO3A5drFDU3bM7SGIA5oG7efPnr0jJubG/LknIsz931D09E2hkh4n7SdIsszZBexfe32jVZHzPIVTVdTlW7O98cvsVaz8gU72UviRFLvDCt//u52t/R1wSR/gvDCF4ormkGPUHPdgRlaJDGpN1yOlGZz/yVxGo3n6O3tjsV8TZq5veXYl2gdkucZzcE924lYoKKQpo/G8zANJkTziKMvBkzzR4ShQhgxGm9naUgUS7A9gy/iDXFMkqVUfp1LldBXPYbhjeWHCBF9T99bus57WAoFJkH6WFR3R4wwdKpkW7r7niQJYZCj1Fu0g3ttlp2jbcHMy5drs6dta1p79GvQS56YhnRqOW4973NzSxgJtP+cNEpB3XF/d0fjqRBXd3fowY6Qx7rqeLgvEEKwXHpKxdAiIos1nzB4iGHXdVx9+b3Rf0yGgqruWM9XvHzluGLb4wNJnKFUxCcvvK68dhYor72dwO/92T9AUe942N4ybdx1t+kZYSxpdUpTu7m7f7jm0dN3aPw+8vr4QxZyShbO2XhjY2sFYQSbXU3nryvRmv22GRMpbSNsVGHshMBbBzTtHYqc+fQJUnqtAv4RmQgLISbAfwf8G9baw2h2C1hrrTiVTn6Hw1r7F4C/ADBbZHYYhSMEUaKp65baZ5KTmXKBiA2YeC5KIANHqvcE3nySImWGNh2dJ+c9e/YMYzV6MOPCGKxhPp8jvfFnU3XE0Yz1fDaS0A/bGi1qsnTxFbJjQdMqpPGO2H3ALJ+w3RyZenLeZD4Qx05kwl8Wx+ORJLUsVqeOV8I0O+P+/p615wRNJ0+5eLSja+HxU/daVVXc3vQkJ6EIqSmKK87Olxi/eF6++JI0mSJlQNe56T87O6Ou65HAV3UVk8mEw+FA5wUswjCkHTSx7/A1bUnRH0jiCVadOCWSRxfvkk3sqN716J0FUp6NG83rl3uMSTm7kDx77jaoNHvM9euBH33vNc/edQfZ6kKjdUzjyfNBmGKDBNqOhQ8md7sNxrZYHEEcwNJzffWKQLk5+cY3HjHYiieXU7Y7t4mszxNuriq2m83o43O2uGS3O4yCIcMwEIVu8xY+6e21pTgcsWag81Xxw4OgrRLqo/b3AJIsJDD6TbeprpikAdWx4OLcVYl3+xuyJKOt/GdXAyEpuhfcnjaR7ZbpdMo0yWi8OV5bHunq1sknAtKsELYgChThyW9smhIEAVmWj9ywIHQO8Qe/qei+Y7FwJsq99xZaLnKkSYnzt9l5n4mBhvl0gfLsfJMN7HdH6IaRl3XY15ydXbDbFgyd98fKJi5B9TyCQRdgpfNU8yTiUIZEUYBCjL8nDCP2+x2J5/EkaQQm810y7ylX71DKMj1VFA3oY0/X6zefE03IwxQVwG7rgqvJ/Jz7hxfkfq0IpRA2Jcmh89y77mQqXTdM3ZlKkPVEYj0aPpdlQ5IoRCCx5rT2GyaTOcVxQxCfFC57kllB5ROiUKycD1BVcnHhExRcd7frGkxw8lMJqJp7tPeFSUIIVMQkVazeccnO1ctb+iZiOX9M27vAcF+XBFGPGdy8ROotbN+xXFnq+mTY67hwfbPl459y1zBJpxgDtnH3JU4CPvnxF/S2J0r8dm9D1mcT3n//gstL1126fv2abBFwd+eu+/x8zaEYSOOIw9Gbeu8bZtNz+q5gvzsZQ8cgzBgY7vcFiJIsT4hOiYXSdL3FYtlt3PwtFisOx7tRCGc2WfH6+ic8e/Qz/Pv/3n8CwMOm4W/+7V/now/e57vf/9tu/jJ49723RiQASOIkpKoaXrz6BIDvfPtnCQLHI228qtk0y7m+fk3tg/P1+jFCCJq2IEhORp8xX3z5CYWv8M9na+ru4AIPb0Y6DIa73S2Xj58TnIyMbYkipPUB9WAVt9cv+PAP/n72nhifZiEm0PRtxO2tqz0q1bA+ewS+g9KZihBDmqy5f/05ALfXn/Du7GPCOBk5QYEVWClHpc7tww1pErJaXvCwdVXjNF8hZEkYnnH90n3fbAqIhLp316S15XgsmU5zNneu6p/Gyei3dTrjB60JrGXrE6k8T1mfnVG3PcNw8klzyVrdlM6tGIfIUKEk8hyIYRhc0cRaQs8XkyKhLHsCaUZezaAtVdFQ+uD1+UUICLpW08duTxgijTDCJTdeFGExPyNLZ1xcuvl8/foly9mUunrDjZDaCebEcfxGVTSOsdZiTt1mJTF2QCpXnARnkgyuKPTG6NtijCHsXREnXdg3Hmb6jWm5RbuA2heiAnmkqUtU5JLzrrlHdoI4fhOO3d9XVBX03clLEZbzHGu1Vy2Fvm+JwxXT+RxjTnFQwmLOWLRYrxbc39zy9Mk7Iw/UmoDpdEpZlhj/vmeXa+q6xngxEmsq5k+WLn7x4irlcQO6cdxCP+faSPIsofP1AqngsG2wek/b+KLhIqWqDzR9Q+C7H3k6xdph5C1lyZKmqAkIKX0RtmkNs/gRdWHw1ozYTrozxvt6db0hzQK6ph05iBhDnqc0rQAv+rJenGG0RPf+rEUym8yo64ow8kU1ramqikm+HJOdquoQwhIGJyGjgECFWDEgQj8HtByKlq4zTL3Kn9aa4lgRx+7Ci+KADCRtM5yONYzSCKuJkpiF5/H1neZwKMj8D26GwflOZdMx0bZG0PcdWjNyJdtyQz80HB58cUUpVDSnrQasOBmwDxy3FWkaI7VH8JQdXWsYPIeuizoetq/RuicM3bm9PwxkceS6p0CWx1gjgICqPKGhAtqhQOt27KIqpajKhsjznQbdEiiF7Wbsjw6hkWVrlAjRfQ/eXD3LI8rjntp373/t+/83qZrz8UfvU/q9q2xfM5uuMJT0xu1d0STjky/+d9LshE5qiMOUQd2M3UIRWuq9ZDGdjD6BXW9IJ2oUUtttN8xXKfvt7Yh+GpqYLLd0zUDl0Ra6d92/32r8jpIrIUSIS6z+krX2v/cv35zgfkKIx8Ctf/0V8NZX/vyZf+23HMaYsfKSZTkWt/k1fnKNMQRhSCSSES4xGMssn45VgIeHB9I0RkiD9sqA2WTG4bAnCGL8n6FkRFPrEQKYRsrJdBjLNHeHpR0ks/kZQkh6v+jyyYzNZkfqA9zNQ4E0hmdPZrSeaBxFEVXVkEURMnAb+tOnKXFwznzlHnwrtxy2O54+D5nNfZWji5lMnnNz+wIhTtAkze/9Pd/m/s4FW21/z0//zIfs98dxA5cy5Xz9hKqQY1foBF1qPKE1yxxR3smnu81ABR1RGLNcecEQseM8XVE1zShnjjXsiyNhlmAa3xrtfOcs9R23/YHLpymrs5As8oHi1RWzheW9bwUs1r6DeLPDDIrQbxh1WTCdndM0zSjb+/G3P2S/PRDHCXHmXjscNMv5N9l7cn7d7FjOn9DVCY8uPAOUgedPL7wao5eWF5rz1Zr7e5cE5tkUhMEMPUN1MhoW5NOU9XyK6d1aqCvLaram8G7wjbGIviUKFIOvcsxSRZJEnM8uxvVrJynTJCTy0CFrIowJsVqPgh3PH7/lNlghybwIQ9M0rOeLNyImOsUkht705KmbO2PAWleBDXxyEyLoho63n7kNebvZE6qQPJ0z+K6RoSQJJrRliW+6EccJVakQXqQB1aCiBKsl2m9sk8mcYeiIYknklfEm0wRMT555dbROcn9/z6PH6/EQ6poaMwSEQeRgDcAw9FxcvFE522/2DL1xAYl//k6CNKfnrKgLDofCi7Z4Q+1yYJKsUcFA679v2B6YL86ovXJmV/UkWcZQ91RewjXwyfVieY7xMLYoUAihyP0huD6LaNsepQTWV+onYUZZ1sSTaLyutpdoE4xzsjncMp0EpMmaQ7339z2kbn33WXrhG61p+pbnz53ctqQnUJa2sbz80iW9QZCQ5AGDKZGB9HMn6doa6SFH0STB2IFjVeA9ten7gjQfiNMZbeeyx7ubI++98zYzb3CZLWJ6Cxern+J7P3CdnarQDF3E5uFIXbitWciOMDZ8+ztOea0qGxAd+/1m3G9iBVaUroDTnOwKdpyv3+H+1ncw0pYkDdAmQftO4L64J42XtI1m8Cpxm+0tq9WKpnZdh5urV/zCz/+z/MIv/Ak++4k7SsqmYDrL6AfDr/66Ey34+d//ezl7NOd2641GhSAIJC9evODuzglRfPjev0pVlRTlAePhNnVT8uNPf50496pxH/y0298iSesDFIvlsy9+SO73+Ml0waF8TRjMEJ54f9jueH33kvfe/X0Ibyxa1A/EGib+UN/fbLGmYDE/J5u51/qiQvctab7g9Ut3KO+Pt6T5jPY0l32POklV7z0kZ2LIsylhHI3QXSkCwiQYBZhMX5AnK+bz1UjSxhqsEg7G6gPo8/MEFaY0PsFMIwfT6ZpmhGut1+cEQeAUMwVfua6Qje8IyRCiOOBwKMYkwlpBljjJ/7FT7aGvoRcVMVYTqgA76NEwV8mIru/I8ngM3oyW6E7T10d/3R9yqHuKaiDyIlAybOkwRCqhq99IOA8WHj97x81h13N99ZpvffAutfeHUBKvLvcmedRdjxCC3pyEm0ICERAnarwmaw1xlCJEPO7XWmtkIEdqgrWWpinRWo/7qZB2/MxTpTybzdF6RugLEvP5c1QoKCt3XwBUtKDTgtzL76tAsj1sEcLQ707JokGoe370ecli5hK189WapmqJvC1AkqR0dUcymRJ4ew8rtT8bnQw/wHZ3T5qGKBuOf1cVFdN8Ou7xtrOsZ2vatiGJ3fl0d3dHpBKMV4hdLlbImaHrOqb+/O+qhqFoCWXI1F9nIyqatvT7pfNOX6ZTqrpE+Gf2cnFJ3fSoaED5BaOJ6JuatUeEMF3SdCVd34xFvH7oKKuWQE6Z525f3Gw2JFFM5M+dSCqO2y3TaU7vRVnCJCZLUqwxpF7IrB+cTU3rA8i+P1BWikk+Z5K7e1NWRy7P3+Hq6oq6dPPQtTDJFiM9pGz2lMeKPJsj/W9puwKlFNoONA9uH8yyiRPw8A9f32mqoWKRXzJN3d5VFAfySULf1lhvRWKVQQWWOHrTSRrqAW0sVXUq8CRIKxmkpvfzHiQC0VlUeEqAFEEwoetLhmbw9/Qcad8oYMfhHKykKKpxf6ubkraXGKtGmxwVSIIwRvnkbr1Oubu9Jww6Go8IM4Nm6DRxnBBELp4xtUYMgiBwz3953NEHHb/+6zueXDhI3upC8v0f/AZWJ3z4gUcQFANvPXuHq2u3v9bFgO0Liuqe8wv3nmNVE8gFYdRhfUHCtAOPLqcjiqqtK+5uBWnOKBSXpXN6faAZBJPcxX7C/oNhgb+toIVX//svgR9Ya//sV/7X/wT8kv/3XwL+x6+8/i8KN34fsP8H8a2+Hl+Pr8fX4+vx9fh6fD2+Hl+Pr8fX4/8P43fSufoDwL8AfFcI8Wv+tX8X+I+B/0YI8a8AXwC/6P/f/4KTYf8UJ8X+J3+7L1ASGl9tnkxbimNNrw0ff/RNAF69vKfte4ahGFv5UgRE4YITODEgpG807dAy9dDB4liDEei+Hyts2tROcEJ6fLWV9G2JlJIHT4g8P3NeBEHUk2Wew7KVzGYLjJdGfXKxJp0GdPqe48EbqRWKfBLz8PBAKFwFoS47onnH1WtvSnc+RfeG2xtNcZKVb/Ys5pYkmzCduOx9uU7Y7/d885tuDpp+Sj/UXJw9/wqcIeT88imf/2TLYE4y4LfoQb6R39bWSYCHTs4ZXCXgow9/muEEHbh0IhvLdcb6bOo/Z0eahQy25uaVq44cDw+cXYZ89pk3iYwfU5Z7/q//oyIO3xhaRvmWIAjYbdx1TiYph8OBULjPjlXEcdvTNpLUm8J9+uNr8jSj2NUk2Qkaabi/fk3sCbyYmE1bgTgQeThaX2miOGCWTsffXNcNXduQ+nZ/FARY0xCogN5DBwQBxaZADDHg7p+UEW1Zonx1/dkjBx3aHUqWc4cNt3SuIoscjVozJRl0xaXnYNRVRxAour4aibdd17KerVxF2Fc6Z6s1Zd2S5afqzxGlFEXR0nroYBynGKs57rYjOV6YBGElxfHkH6VJswm319vRxyOONPPHEx5dvD3COMMw5Pp2T+kN9VQoyPIltjPUJ4lsbcmzlCy1NI2Xkbcl2H7k3s3nU9LUVZoXy6V/j/PaOb+YU+5P3dcFWr/pEm9TQVEUnJ2vKTwW3XQhd7c75t6b6smzp7y+vieMJStf+UTG9E1PklmuPQ5bypAwjNm/9PCCyQwhB5Jpwgffcvdqv3d7yubwgugE/RACS8eh8B566ZS+sxgzMJm6+6CNRMgQJePRhgBxJFAxwrh7HqVQVlui7JIHL1kdKEmSpRRVifFwKWqFCgK++z1HLIBz8QAAIABJREFUnp1kU9I4pG1rKl+Zn02X3hJC0nhJ+iydY/WSzrrfu6u/4Ke/83MMfcj3v+ckx0UE+3rL7vOeqwe3hr/9u97jk9dfEilHDt7tewYCXj58QnkSCBA1Ml5x9mjJYunXlE0RxKPX183NhiRZ0Q03HHwnd5ItKdsD+/0B4b3nFvMJ1zefUVXuD/N0jZY1XbtH25OlwZS2K4hShfUwq0BEFPua99/+OQB+6g/9An/1V/5PvvPTB2YTB7eN44QgUFxfX2Okm4ePvvXHaOpghHBra5nnK37zJ7/h/PqA9fIJXduilED4CrAdBD/5/FdZrlzVMcsXHA4FYQSZJ+PfXt1yKK75+Y//oJsTaccuRegruz9++X36bsdbTz+k8fwKqQIQeuzMv7p6QZjCfP6Ih9J1J5WOiYOMrut48PC+RxePmc2XdCcDdqtoe0ESG15+9j13I4aOJ0/fY1/uRnSHkjHz6YSXL12ltSy3PHnythNcEie7C0MeTCmKguLgvu/J/BFxqii8SIsxBiEUbdtye+s+693nHxOGIceyGJ9bISx9245m5NNpjlKKvhuwHm7T9xZhNJvNjhNBIAxjjHnDpQqiBGGkg6iqE7ROYRBuP/edI41g6PUI61bCQaUGk1J4bqYICqZRxm5zP/rvrVYr8mzCw851AWarM6xQ/PCTz3h66e67lgaBIY7jNwiQOKHve5KvUB2MMV4SX42v9c2BwZjRBxH4e7pUUgYEQeDPIXcfosh1HLuh9QJCoJSzPbH+nImThK4byJI3HI733v0OXdeRekieNYInj50v4wmtEwQSPXRo3TF4EY++LdjsXpEm7r+PVUMUBRT7mrg+Sfm3TLMF2HDsrK0Wj9lsb5ku3HMdCkGa5gghmGYnj0dFU7Vk6eyEtkMqizUBIyfEWFRgWcznI8wynilUYKmbgdZD2YUMmU7nnJ153nAzkMYTkjAckQ9SBo5XHgecuOjp6i0ehXB76+XFl8vRmFh4LtqhOJJGOUqFWE+P6KsGGxgiv//EQUAjBiJl6LWbl+39hslk4vYNeUJftFgsrRedsrYjS5bUh2YUfFpOz+lqWM3OOBTueV/MlhyPNYOnn2Aks+kCpcLRiypJUoQQaK2JvF1CcTwg5RtO8qADLJqqO1IeTkJUCcYMWCsIvO+jUophUJStN0SPAqTUREGAVCcuWoCUIIXFh79O3CFKHAwfh8Tve4sgGM/MAI1SodcBAN1HGOO8tU4xpZIpsUzQVtD3HskVZkSSER6+uduTRnO2u2seXTghjqIo6PQO1Wmk93RL0xSpembKQdbbfo+0EjtovvhNJ0h0/TJFyYRjcUXlzyclM4qDoqxOkFVLpRsmk3O8Kwuvb+9Y5AFdF3Hm7VH0UBGEMyI/TyoKOXsbZtM1t3cO2WF6Q1VHBCpl773LZrN/SM6VtfavAeK3+N9/9O/zfgv88m/3uV8dcRzy3jvuQG3aI4t5TpJkDIObEWFqkghmy9moBFIUFX17GLHbZXVACEE+zbG+lWetZRgsygZsNy4Aunj8iH6o6dqvGKIKR4RNfCv9Ybshz3N63VOUO/++gcGEpKFflbTc397TdQ2brW8rBwFlvSMJ1nQeKqiCiOLYE3ii8e5esd3tGYDq6FrWs/mE69t7knjOYeIezvtNjBUNm81nAMigp64G0qhH+Dbrdt9x9/AZ93cH8sgtjMPuniSejsmW0RIVStrWGesBPHr+MZIU402Tu74lCuYMneHVKwdNyNM15X7P9Zdy5J31emB7ndO1XjGtukffBuyPLXnuAtnFbM3hIWGSTcb3MfQk6pzGczfa/uiUCQOF9DAEZUP29wd3EHlOiZSSoZfjdZfHAWE0USzpvdqb1JJYCbq2o/dJSxTFDFgeeS+HpmkoDjV907Jcerid7ZlkE46HdoTbQE3btlxcukA/TWPquubR2RmFT6CN7enansk8oq/dkSIIESbGDG8w+4FStI0ZD2cp33hJnQJMoSLiWCD9/VzMcnaHkvlsPcJRgkihxIRACbSHXvSmRWtF7tUCLTFJFvPs+aNRpUqbniCJKduGz790G+75+hFRFFD6AL6uQ6I+I44smceGl3XrREXqelTda9oCaw2vblyAO5vNCIIAIx1sAiBOMuaLBCFD0pNHlxKUxZbh6IKBLI/JZzH5JOSd973+jdmhh4tR1anvWxbnAXVTsVidyOSKslZMpgnpzG+AMmKzORD5hHoSRUSJYl+03F67Z/sUzEzymMbfq/l8xn53RHhRiLpqmc+XbDabcc7b1lAcK87O3gguTJYtwkYYLyqwPW6ZzBRG7Zn6aze9ZjJJiTNJ3b3x41NSMl+6uQxVymAaVBKReZGbdJJhTURdV/T2pCAGIjwQe4PE4/HIX/vr3yUMJhjcOtjc3ZNlOUI+0HlBoL/yvxU8eXrO3Z0zWzXEJNEaSzdCfsJYcHtfkqRzWm/0GaiYumxGlVGBZWCLNu45cL/5HkyKxWA9T+iLL+4IIwjVzF93RzfsiRNGpUOtBZgAPUCauPcVhwPPLj/ml//0fwjAn/ylf5lu2PLuu/8mL7505OMgsSRhyo8//yFp7u7NBx98m97ocZ031R6r4Qc/+Bu89dhBL+fTKXXbegNh79H1+oZh2PDhe/8k4Li3IhBobTE+2Hl4uKLrDrz9zEEj6+aAFDFdX5Ekruj16vVvopQmS5dvRDxUAuKI8LDdTz/7VdJJDiKi9EHZ+XwBw8CxOHB/+zkAFx9+QBhktN6k1WinalhVNa2HSyZRSJTOqKs3nod2UFgL+60LMGezjPPLJ0610Ae9QhqMkRz3B27uXTL+0cc/Q2/fmGUnYUTd9WzuH+g8LDCQysHwg2CEzQVBQNu21LU7Q1frC7p2oOlarPTrxUYIE1OX1VikiMKMXjMmwoEyBCqk6dpRICiMA+JJhtQK6YuG2hpqq1kt3FqZTDOq37xFhCHGn0VdXwEZu+2Gxdx9Vj7NiNMYHZxigobZYkFb1SOBfrWcgtUYo8cipRJiVD0F+H/Ye5OfzZI9v+sTEWc+5xnfOeesrLpD3fZt99zYbizcxjKIFUJesGkJ0Uj2wjJbViyR+BcQa0BYYsPSbNpASz369nCnrqqszMp88x2f8cwnIlhEPOe9Rm4sJJDuImNTla+e4Txx4kT8hu/QdY4bpoKYYRQaEMRRQiofINRWuqD2YIiMlRhjsNaOhbeu6+j7hjAK6dsDP0V5tdwDp1QRxWrkNgGosCNWButpAlZYdmVH1w0Pa7/RaC1IkmQ8Z5Jswne/93K8d0I4sYSu2bH3nJ2m3dBUA01bUTcHBdGY45MZq3cu/si80fmHDx+YT905k2UZ2/Wa58+fH4TjiLMZ0yKh8jz3MBLoTpHFOduN9w2NDEEqSEODsMn4WU1b+vsIQoVIERME8ciR2+9cgp9NYnrPKQ9UiLXtuA/X24rpfEE3DLQe3hcHOev1mvk8GwuuTx+/YLfeoD0fV/cdtresb1fYgxJh2bKtB4wZSLwHaBimZGnC/NQF+ruNJgxS+qyn2rtzNUkS5rNjdpsVR14pd7tuXALkYwIVxk7xd78aVWyjIKWqKqy1zL2Ix369oWvbESocxiGBEHRdRTHxiW+owGqSKByhu103uM/1Agxd55LCpm1G71KFIElyuqal83tzEOYMvXngYVuDEgIlI+wBEisCtvWGLPNmvaJjsy7p2oIoPPxNIugQ1pJ57mBVr5nkxyMHq0gjmrri7OQJ+90BbhswzeYMuqH28EU91ARxi21d/BYEPYiGIn1MZTw0WRksJYvFgtZTA/b7gbubisXSrdfpPOHu9p79LqT2SaAxC7Z6y3otuPFKjmfHj/mz21tePncJXzaLePws5y///Cs+ffWLbm0MA+/fX5PnKbO5e95vP7h46K8b/6/UAv//GsbYseqY2yXpJHbmsT5zfvJEk6Y5q9sds2OXLT57/ISbmytCfyOXy4TBuA3rwNFRSiIFPDo/5ukzFzCv1lsCFVB7JRRjeqeUFbRg3AaVpylxJBmGeFRMEkSUW0EfuPft9u85Pj5CkDOfumuIE8l2E9FVgv6gahYPCHNO7xV3ermmbzuS2UCaON7H0DUIG7DbrKi9IkwxcXjjrnOHwvHxKU0zsJd3XB+q9yIkihVRHNP4it5nr77FF3/1midP3ULZbHbc3FyRFymLYzcHt9cruu7q4XAJNPPpGXXVEHjFndvtmr7RpIki8kGg0XOqqiTwCo35xG3qp2fHlJ643XcNUkvubm6YpC6A3lYVSSDw8TuTImN5NGE6nbJee/x/MmG93nJzc8Ni5g7n3c7QdIYkdw9LfixY3a3QnURbtykXxRFGNyRRzNUHd/gnaYyQir72G75MmBYTtLZjlTgvQnQf8fTxY3alm8+223J6+hQZeBWZOKaqV0RxzpNn3gS2sPSdZbu/wnjFoihYkOfpGGyBZNCQZDFbrxo3TWcYYxiGYVRo0oNBSEno1U+G3vL08QX7agc+aLFGsLrfUxRzkF7xrtLEkaD24gfGatrWCbeMMssM7N5fYcWWKHD37+27hsGUTKbu+wJpsWZP05WjsWnZluzKxgXbHnO932+ZziZEB97J7g6jBVGU0PjEtLwuWS7n3H71ZiToK6UcD9If/Fd3G4oio21rtHEk+9OTlMXsiPfv3ToPgoBy36Ct5vXXng8kFFIpkiQbJb+32w+kqWR6IBC3kt5ayt2e4WAce1AWqsQoijJ0ijjOENK9pix3tP53HirC1lpUILi6uiTP3dxtvh7I4gHrqaVdrRnigrAICX2C2Q2Gpmno+hrlA21EQpFnbL0am7YaIQMnr68Tv+4GjOnoTY3xleS66wlET1+7ex4kOXWzYbDVaJJYxEsCMcfoNdYXStLccnNzNa6xLM1pqhWW9oGA3brK5OUf3o1CP0IojFZkvmucxYYo24GeEYcusZgvJbfXFUIsscoFFnEWIMjGThayQpuWoS9Q/m9x3DHoDciAq0s3x//gt/8R//Df+x3+6A+cCuAP/uyP+af/9J+h+2BUl0IOyGzOm7dfsNk6oYazswuabkPvMftpmrLd3fPmmx/yy7/4twBnGLpab4hiReGVHL/46Y+pqy1Hc2efAJaua0EbJj4Qfv/uS5IkYZK7Q72qtoTBBGgYOr/v7y757NWnJNkMbfw500OLGQt/dfkNj1/+ElVfE3pcftU2xEqwX6/GTsDx+QVdyyg+JJRGCLi+umXmA6li7hTMhspg/BnZtS1pn9L5xLg1HXUnyAIBxj//QhEFii9+8lOOzlzgNp2d0ncC5fmAu52zLVmv7zk7dUHhfD6nG1qECjD6UKxKuLu5Zb11qoPnwwlaWTrdILwco9UduutB9KPQRl3XhHGB9d9XNjWzLKLtagJ1SKQGoiTGNBbpBZY0A/v9ntRX8ze7kkEb0kyN3TsZCExv2e02FH7POwhTdIegUAqasmM2m/Ov/uiP3WuiVxwdzQjDcDToDYR0Cro+2UmSwBVarBhVBq11RTqlFCo4ICmcGujhfUoFrqPX994o/WDKHlDtq7FTRjsgUEi/BzVlT9uVGK9gDFDuatIkH39LEASEYUwgQ9quHv+WpJJhqMZrGgZDWQ8PEvl+xFHIwgfwcITWfp/zxemhd+iDzDdahqFjGHqm04D7tTtX7+/v0aZn8xd/xXTm9qXVaoUxw3h+WDMQSkW53/LkieNhr+4aJtOEoigY+gNHtibLYwJ/VuRJjAwsVkgydbDXCB2vTQ0Y435zWd5zfHzMs2fPAHj79q0TXhCC2iMyhJIcz88ZhoHSI0CWyyXJshiFcOI0oQwzrm8+0PmkTBGTxilSQpa657btDLILwVuc5EHkFGEHQeKl2JGSPMjYdHcjv1AOlsU0HxOp9bYkK1KaQIzF3O22Ik1dgrXzYjHTYkZdl2NBQlmJ0YY0Ksj889C1DUGgXDJ5aBNb7QqeB1RMETMMA01jmBXuvodBzG7rmhCd5+RP0hi0K9CAE3MSVjAMA60Xbuh0RRhYBu1jp3zC6dmCzWaLCt39a5oGowNXlJCeqzXJ0b0eLzGKFCKOGPqePD9YzbT0TUBezFlMPBetbembmHLwStJVTJZHrLcrfF0aOwSosKPrynE+o1iQ5ymVT0z3H0qiMKdtLUFwEE4qkGHJdmVHQbeh3zAMmp/8xHXFinTCv/rjPbttOV57kkZM8glS2rEIEqj/ZxPhn4vkahg0lfdNqMqWrDUoJVDqcFAErJuSatcQe1Lmvt4jjBhlXq0ImE0nXF3dcHbsEov7+xvOzubkRcTNtauGLhYzJx3qJ7soCm5vdkRhwMRXHSCga/coGYzB1Xq1o297at89ODk7wWpBFMTU/hBCS06PnrDZbEgTV0WtmzVNd8t85g5sY1OKaE4QG7LsUMUtGbqcNN0BPtjpLKaVDK1bOHcfVgShk4cPvRpTmqQIFJMk4/zUBUB5nvPo9KmrnAI//OEPOT/1kLaDR09VszyejX4k8/mUrhVkWUpXHWSeA2wYoWRPXni1t7jgw1XL0LlrOl9O2W569mvD3L8mjA3lJqKIMtLY/b4km7Ba7Tj20K/FYsZ8WmAZePLqmZ+njufnL/gifsv61gVSpjacLMUo6VzkSyJZMpue4G19GGxNnETMp3OkT/reX73n+fPnY1dFKYHSCXowh9iDSb5kkp/y+MkF13eOAHl9c0W1CzjxwUhVdaTZnEEbIq+cY8yevu+I04jc3780mrJcHPPVGy8+0gxEac5mvyPyAiFXt5cEQUSSJGOwYZUliiIGc+iKCa5vr+hMyzAcpHUlIghY7e7H6mqvBYieKPIQoMZgcclM27lr6HSHtYZiEhFF7keX+z3KPMBcZNAibE0xzTE+mXv6/JjtpmK12nJ85EU7RAwMYxAxmeR03UDXtgw+qA9iTWfWHJ/nD55r1jL0jUsMgbhY0LUGi/OHAVitNdc31yS+8zoMeiSRhj7w74bWeVxtavyZw3R6TN/VaP/9wkgUMednj0b4kvEHdxTH49wJAWW9wWr3fCSRq0zW9WbcSLu2IwxjJGo8jCUZJhpovHjFJH+BaVP6RrFdu0NAicxV0USP4lCdzKnLBuXhIXW7R/YpQlQY7zafpimBLBh0NAqSWBPQ9A2Cgz8P5PGcPJuMHdAosdzcvuZ0/oLerxcrV4RxSpwu/W8xLM8Dsnjm1LNwZOuuGwiDflSgUkoSJQo/nezrAb1VqGBDEntY8H5FnEWUuyuC8KAWuHDBpA9+pBZOZXXQoyRvEs6oq5ZBV/yn/+ifAfDJs9/g9es3vPnmJ34xwne+8x2q5m6E/Bod0TeCL978Ps+ffebmvZhxffcQxETFlB/82Z+QJPDYd666tkb3DVrlY1f43bsfEVDw9OKVuw97JzwQSjXO583dGz598TlRcBCq2CPoiOKI27trP08tjy6+S6egLv3vMyDTjKsPbh08u5jx+PRTNtWWiQ/S1l2HDAM+vPuSvHCTnE+PMIPmgDLr6oZJseD6wyVl477v0fzfQQQh1uwRXm1uPp1QbrbsPdz3+OSY07OXmMBiK58wJCmmaykmEKROllvFCWU1MHjBJ2MtzbbCmoEkfSgsDtJQt90Y/OdBSNfWTKcPATzS0Lb1qEQWSkXdttT1HSr0HZI6JSVE+fOqaweKZEbftwR4IQMZkKUzlKwPgoz0JmMb7JlNDwIFwgvJmNH/TwhBWbYYY8YEOogTqrYduzZxHMPQc/fhnk8/dWsjSkLevn3Hs2fPRgVYEyoPX/Yy7SoY97gHyJ8ci2MPSpXuOoQP7qw1owDOz3bCrBVOodjfPyst8NA5kzIgyxfUdTu+J48S2q4Zu5W97onCEBkHJKmHa1rneZYWBU17eK8kDKPR69MY45TdjBiFvoyWCKnp+x7jz4MgFCgbgPUQstAihGUuTnj6xIkIaN0zDE78o6ndHD++COm6gX3l4a8younWJGbO/cbNxc3VPfcrTZI8+HZWVUOeRUjfNVouj5kuF/RDO3ZD+t55w7VdQ+EThEmhaBtL3bhk5Pj4mDjOadqWEw/L35Z7lJRoIfFHK13t7tsBjYGGJJrw6CxE+G7oduM8JfflepTzD1RCJGLW3l4gKxRFkRGEakRDTKYLZKc4nZ+PZ/n58YRdtRvPogBBXzeEMmJ15xU9k5wkjDHBMJ49gVUsiuUYd96vV2itfWHBI0AihTWS6eJ4VI5eb7fkUYFUY5sKG2gYDKGXdbe2Jomd1+Ji4mLCvrOEYYjyif1kllKVHZN0ChNvZVKtCZTrcgMIoyjrijRNsPhnvbtHmBlS6NEuSbcQqoDTE/ddVbMiDpwce+RjoOdPzuhajTU95xcuQU+SiO2qxCqngNu0JW0Pm1XH0bG7f3e3a7bbgeOz+ShcppQiTmBy5O/ntqTVLdPJgmHwtgBtgmkGAv/Mu/ves5zNCfzekhaGyTxnVsV89doVgUM5IYok+TQn9Pvb3e3BzuXfPP6tghYfx8fxcXwcH8fH8XF8HB/Hx/FxfBwfx799/Fx0rpQKCdTc//+KSTHn/v4evAFcVRqsMGRxwvW1y/onxYyhU2jfDo/ChA/f7JjPnhAkLsN/8eIV2/WGb16vUNL7U8VTsjBEe97JfrslDiWhSCl8tWC3bsjjJffr92hfoVGhy9ilr0jv1g1hkDC0A7mX+8yzgXovWU4nGG/4mscnbLdbFhP3/dt1i7E958dPuP7gpIN1Y0jTnklxjpUHiEiHHgSJl35WYefwpbXk0ZH72939B/qhxA5wd+2qWfdiiwzhwwfXqVMI8jRlv6tHL5rl9BQrt6T+s20vkUPIdr3n5Mh1kqK0Q1hDGBQMHqe8ub3mdLFESC/32d1zND/j8YkZW7Nt15FZmM4jKg/LixJLpDICL/uqiBjagOsPV9woV3V49uIpb16/I5Yxnzx1ldbuTLLrLglDV5GK4ilJcsHQCLR2MLLzi1ecnCYMg2Y5d+978fIpH27ecaAKBhE0+5Q0kYRxOq67dx++4eruLTtvjmmGlCxPuPzgpaD3A8VUcbS8YFe6SlaYlBTFnL53UsQAt+2a1eZmrP4aEfD+/TsavaH21a26rIjjmP1+O85V3/dkWfYAz1QxWreEUUAo/X1Xiq4vSXJGTxkjB0KZUmRuXlpb0bYthj3nFw6+uFoJFouaKJqPFdE8MygV0ns+oDEdWTJhWzVo7fF2tqbrOuI4pKwOBogQpwGRh2tZ2xCHCq0ZRS6GoSPPMuq6HEVgVCBo25rGQzH7zgkEBDHc3DuS/XQxx4qW0nMbQpnR9g0qiKi2vlI3jal3LTKoHnhRqwph7Oi8Pgwdu3IP+xnKE/G19pDTNB2J213XYnSE9ITzOIqpyg1Hi/kIJ06TCXGcselKpPSdK6lJophAnPn70lPW7wjr5VhdnhRTNutrptOMJHBVP91nyCimFw/QqEDHJElCNzz4/9T1nmEYOPfY/kdn3+aP//T3uHjspYRXN5ycLHj/7sNYSb69vcd0GhHEHNxyT05P6FrNvvTy8MKy30IlFL2HVMVx7C0b9INxotb0bUfkYSwqDOj6miTOMX5PSrIpQ29JU0PpBSzKqscMmqZ13zefOenmptzz+JHrfN7drsBE/Jf/+L9BGQcVevv1F3z2rWf8j/+Tg2tNpxMuHj1ls1lhfbcuigq+efeG7eYdv/W3/5Ffs8IJLXg/nqF38unPnj0j8cIUm/WOIJYMg2Hn19Bq+4aXzz+n8N3mqis9SVtxd+sgm/vdDZ9//lsjEd9aQT+0pEnC6s7tU4tlwdHynKpvCT3OOehAJTOqvetcHU9S8mQBcYr2WP++1wxCIWTFha/QBvGculphlffiyqd0dUs37JBR5+/VMXE6obp7z+BhwRZFudtze+eeoU8+/T6dkei2HhEZCMHQWX70oz/g+acONdFbQ93s8Gg4kA3WCrbb7egNpZSi7lz359CpHgbD+u6e4yMv5W0BJMYMDF6wRwSW3W5H16+ZyIOc98R1NcUDJ8la6yD/iXuOQxUhVYQNm9HXzoiQQIZMCvc5m51lOp0ziH6E6UdK0TaDFwTwFXUCrBEIjx3SfUccxwy6I0wOctBHnJ+f8/v/x//Jb/zGr7nv0z1KMHKL27bGGPfZD549gjiMiCYFxl+D1pq2bam8GJDjq1mUUmP3TErp4XcPkEarLVqbkQ80DB3GmLHb5F40EEhBWx84SYqmb5BSjp9trSAIFJv1foTzhpGkbRvCA1RKKbTt0VKO3DBjArDafY7vptVVhVIRxt745SMAJ4xlO++1GQSoIEYphfRIB607x6OdPPdrSiPFMxC+YwY8/wS02bPb36M8NHLoDW2zZ7NyZ+++zzCr1sG0W3cNxnYkSURRTCm996R7/tUoChUEAU3TuP96Hn2WhORFwaAFuedOTacFNzf2oXMlHCSy6xpyzym9lHdYaynykxGWJ2XEbl/xySeu8xnHGe/ffYmSls53C9++viOIFEkxQR+ExS4vCcLUWxPA/HjCtJhyd79i4nmnloHdevOvias0dUO+KLi/cfNihaLIJgx9xyQ5GMwrJCF933J85s7ak6MZu21DU3uhr7ZnNp8SynCEUH64ek8QB+iuRfjfZ9OIxeKInedT1tWGtrEM0jCbues0bU40y+hat09aaUiTmLZvmHn7ojTOCOOEpip5/sztN1IImp0litzZ9+rTT7hbrZhkUyoP4ZQiQJueLA/ZejhSpCRB0JJ4afbj+YLZvMDYkj/909cAzIqULA5YLCKS2MU8f/mXrzk6PmWzcbHhfPaYm5sbVADCx+3tcEmez9C6pdx5BEFacLN6SyDcM9R0EUV+RFPrUSvh7nbNi5dP6Fo95iBh4GKPv278XCRXQohxMc/mKULH2D4kjN3iXU6n1PWeOAyRmQ9M24HJJBsnaNfeUuQzbLcb1VHqsqWvB07mp2MLUHeaOIuJPOk1i6cI4cikUruFeX684G69QRDs0ES2AAAgAElEQVQhY3c4F/kRuluTxe5gjOOEMAzQeYv1m3ssM4p5TjdssCMZeEKR5UxmfqrNjjyfoZAUiQvUJpllNolQASSxC5jv77e8ujhllnloVtRwv7llOp049TZAzI4Zhp4kz9j5QD8rIuq6RXkNfxUo9iuXEKQeTlDXMfu9HL0jhhYCOmaFZFL4Nm8liFLhFGY4GH86vyg86f149pjLqy8xScIkc4IkUvQcHRdEUcR26+B2XTVndqRIQr+pWMt6d0mj3T0F+MM/+iFpFhDHijByi3ayzOjvF/QH6JfYgRhohpap9+hal1/z5o8s02lB5iHlUrkN8XCg7rYN0kLfBoTavUibHav7HYaS6cTNuYhqml4T+01seRIBktv1HYvFwfAROnNHnk9QnisVKQtqy+3dwXNthQig3VuOZi7Iji7OudusmU1zPrx5DcDp/BklezSFnztD21SgpyO8TwhBKHMseoSR9q2Di+z27uAdBkM+LdBDyO2d96IIUoL4Ebt9i/aHXLmpQWvSA1lXhVQVdKVg4OCr0aIHyPMp+70LmKUEqyNs74MWqUFIjBUM9QNUaNv0GKno/XXpoSfNwhH/HyURu2pPlmRMvI9IMMQom9J4fx6DIQwlTbPHenZ+wJy8qDGEI4a9aVpUaNnv3IacJCm93lCVKwLvhZN6k9ey2o1k3KZpQPSEoVtjZbMiUgXNXlAkXmAiy2i7mqcvYfD+UWkWYXVG45OKySTn5l4y9B14D62u2fD08beI04zUB95ff/ENFxdLru4950qHHB0tef369Wi2moQBg3b398qrYN2vNhydx9Sdn0udsNpekUw0N/fu8BBKc3r2in15N8IjV+sSawTzuTvght5y9WHFZGo58YqXm/UOoy1JGrL1ympFURClMYFXhPrm+kusHBDK0Hc+8BYRWRZRN9UIe+q6FqEasonfc2sI5JqzswWX31z5+z7hd/+z/xolzrm6dUa/0SJnu91yeen8q/7Bv//rmMjQr0KIvS9Larm7/ppPXh5z6iGqZrCIrkd6M9ldpdncfMWikKPa2r4qyU1ItEi480n8Wag4efSURh7UAzWiV5AI7q/ddarYkOcnDB5OagQwuP2q2rtrmuVTAvGESEm60s1Bmw4o06ArJxwxPzql0QLVVAzeoDxJe8pKIboteJ9AqUK6zmIO/DwMQlckcs/ae9HJfEm336LiBDxsRaYB29Utyp8723rKWSCg07S4pCydL9h/dYmp7smC77u1YBMGfYNHCSEF3LeCPL7j2YVTpd00hl7XpOIIG7i1V7cV0jacHbvr3NQF+25D0Ec0Ho7aA1255nRpsb5osNOKtl0z86qRIo642d6RhgNPPP+nDDKqdk0iIrrIB75DSyYrjBfCaXRBNFkSVZq9jxNMkmFuNswSTeTFjQhiOluPPMKUlKEM2d1vOT1x5/Zus+X4yTMevfqc//2P/wSAX/0b36Pve/TgztVAZWgRYAY9cheTUNKrhrrbO+EQvIKkDEbop1Iujun1qJ1Hr3vn41l1hD5QQ7gi09AdoJESqzUPWS8YGRDHAmsOgkgKqXq0Fhgv7qBNA0Yh0eNnuetXoyksVjh+lTSkfn9TqcXakL7vRy7K0BfIMEKYAzzbJZfGGAYP85ZWMAwtRsqxyCVlQNmWaH7G+0tKrN/bwHF9hBCk0Wzc8+I4IC8WnJ6/9N/n5qhYiDEJtFZ7/lpP44UvEIay6Yj9dTf7gf32ju16PSYR+01FGGqCXIwJbNv1hFHM3colEWbQ5HnOMAxsNr7QXlYsFkdYqynmXhlP96g4GXmRersniSYkYUCsvOH6ImC92xLKiMTTI/aRpCgKTjyMrSxLYhmitB1NhLM0pWvuyNSCq9srP1c5zW6gK/2ck9APiqE3lF7cRJmIxUnB7foe682AB+FUmA+wxPk0JQoCnj1+wrp0n32yzAlVhB4Ugad/HD07p2wjtDeFPlleUJs1u11LFru1d3Za0LcD3/3E3aub1Q1DM9AFhnDi/bHWIbGAaNLQeSrLyfSU5aOa2Me+rV7x5NkRbbljMXdnkZCKXXlDFFqWcwfZ3jc3hG3CxHPMrm8uSdIl2lS8fO657/mEt2/f8d3vfJu6doloeVMzz3bcvfewy+mS3/j+Z/z0J18z9TDIvW3ZrWusFGRzHw833zA9XnCwCNRxx75dk+Yp+43bT4/OYr7+5gtMl3BQAl0uHwRo/k3j5yK50noYlUKKSUFTrQkjS+h5GFkyJwhjklSN5PO+75FCUkx9MtBkqEDStxatvcqgEEySjCxK2PvDMQoClNbkXlq31x1RolxXwSvCtc2GJLI8f/qYcu9nPBg4O70YlQilssRRiJTpWOEznSCJJUlyPvI9elNjbEOzd9/37PETVutrlOyY+sUjRUyoBNYMo9v80WKJVIb1vZe6jDR9B9Z0COkrq9oleV3XkfiEcnO7oqktx6fu312rsJQ0u5Z6+yCXPsnnCE8qRmh6oxBM2JcPQh+RSamb3XiYSKnoe8Zq12I24dHZd+mqeiScC2GJF0esV/coz8s4OQkxtqDrDmpsA5tNCwQ0pZuDo9OQvtfsyh2tDyjv1wlDL0Zlqdu7miCQRImm3vtAIxr47Lsn9N2A0e5vk8mEo9OY1cpd03YXkWUJfa9pOxdMHs+PyGaCu7sGGfkAoZNo2x2eHe62HZPJgrouWXm53yTOCSN4ls4ecPVpxf1NRZ66gLZYuAO1mGds7ty6290OqDikGXrSies81NYFrh52zmpfkk8FfW/BV4SjFDCge8HNletGRqHDuY/YfzE4bHqTjEpSbb/j7naLtQ9dxeXiEev1mp1fB2EkUcrSNMOIk7YBzKZHzmTTbw9t0yG0GTtsYRIAiq4rCXySZNDEoUALQ9McJIYDtDC0vuOl4sArePZjpa7TJUVRoP2kD8NAluZ0w0DqlfK2+/dEckYYhyMvwkYD01k8rqkoTDzJdoc1h8DfPatFPsdwwJ3vSNOUbPT/myNMTBTFhF6sZhg6JpMJSXLM1hyk3w1Nu8McKr1th7EtYRiNMra3N1A37+k7ffhwjO7pTMu1x2erKOb6nXO0OASB9daQJlOu1ju0da8LQk1Tz8g8z0WIiCQ8Z7tbUTf+mpRmkjzBakO5d2tdBTGYmP3WdcWjxNL3PbttyN2Ve00chywXMU3TEHn10/PjF9zcXtH2ngA+nSEDS28s2t/P46OCutmxnKZujQKrbYfWAuHX63wekYYnvH79l/z6L/27APzC5/8BXZ3S1G/IfQd/COHD+w3PX7nv//4v/ApDF4PaM3Sem6Il19dvyLKEo4XreFVVhRAW4Q2K692WxSxgPi/wTuL0raauB8LFgtW1S662mz3f/cVHdI3vMijBoDXCBJSVC7geP35MkuQuaAX0YBECuq5hX7oD/PQiZTKZsN9syLyK6WAt1a4iL9w1ZbMJpZWgDVFw4LSE3G3uWd1f88zzf0QQIqVGiINoQcJ6veL95VekExeULRZHaK0RhCO/AjPn5vYd+PfNixPiKGBf10iveDu0A7d3lxwfL0blurLcOWlrH8RbLVmvv+LxMqXx545MItQQQKrHwPT2duDiYo40XsFMFVizQZtulH4vdy2TLCMJM6627rlrMAgxUB+6/iqmaStOYosWbu1XTQNIgoRR1Wy/32IYkH5vSc2EQUgIQya+SxyokN1wx0kuqA8qcbIlUynqYH+BRiSaWZozPShe6oHdvubz770ag7I//cGP+PVf+x669XxnA73eIMOA1BPiQmGo2x6pEoxnU7RNR2AtveePhGHglRbDce+JAoUMAiIb0h8OFgRGKJQX/pDWVfnNw7aB0IZm1yEOnHIrWG9umM0WP8P/lQSBIo7TMdlJ05S2rYmT2L/PEsURnR7GpEWC51sZDiGgigKXSPizQvnfKJUaOYF93yOkQEhGDpS11gk8eA6k+hn+2SEuEsLx1bTWP9MVtgzGjN30tm3prGWaFaMYkNaWIC0Q1o7F8TBUSMQ4v33fM5k+4+KpYbdz6yxeONEkeon1naSqb7HmQYAgSSI2mw2r9T0LrzbZtx3b9R1ZkjL481AiEMOA9DGQDWsuTpaEYTiqgxoDRbmgaYex+PfoUcH1B8Gs8PYsm2/Y3e85W57TN97gOWuRJsNqQ4JXe75fk6mQ2BcWw9BQbm8IiwxVe6RRNPDmp285OTnh9NQVnUKr+NEXf+b4kMA8P0JXPT/58x9B4Obu4uKCSTElny+ZH7t5ubxrIFb84i99y92rIWa9viR5EY4CT3fXd6xMz8znEhvbc3x6RBoeU3vesC1CFpMCIefsfbceuWZxMuHuysVcR5Pn0O7RZsPtjbvOly+/h+4rjLin9SbaUZDy2ctTKh+LPoleMeiKZfE5beTu8fTImcefnbzgyy/cnv7bf/+3uN18wcXZC3/vZnz62VOS6ISra28s3AaUu1s++fYFu62bg0BESB3jgWsI2TNZFmxWdxyduGRuMs2IkoGhD9ntfA7g0QV/3fjIufo4Po6P4+P4OD6Oj+Pj+Dg+jo/j4/j/YPxcdK6UFKMBa7Wt6IeWJM4oJg4+0TQDdV3T9Zb1ylXd5/MCM1gunjhcpm7h8vKSPF/y6Nxxb9bre6SUhJGi89XkUDkFwIPa1Ga/Z9A9cRBjUi9/KWNAkkUZtXHdguPZgrbuaGpXaZlNcgIVOVl0r8J3PL9gcaxo64B3772xaLIljhQnx45L0fU7IiWJgpgo8d0XEXF3f0WaSazxSlmdYN/uCXwlZLvfEQQSJQVN4/kUJmS72REVAd3gcdFxyDSLKXuPnZYJBB3Vfk3huTBddYmSCv9TMFZRVlssHbud69A8ffKS6SRn6AWD9xboGokIoetdJeLqg8HSEoUFg/YV4QD2uyuMbHnxwrXp82zGaneHt68gTqckecr9+o7UVyc1d+TplGKecn/rrsFKSWfX7LwpnFSa3u5QQ4aVByn2iKywDL0ijg7eIhV1syfybe2XR0cMNmG92iKCg8yzIIwijo7P8FQ04uAMEzSu6gVkzUBVtswXR+z33lBXw6AFP/jBn474bRn0KJNRe45SlAcMQ8/9zQZhPW7Z7CmvJFneMvUqPP0wEOYp4GWXs5Re7wnigtarfoVyQBtBmicjzj1RC7RoyD0nQQ+R6+QGHYPvfCAs9/clxSSm6w64+oEwEqTetHiz2RDFrnuW5G6d5XlK1/UYY/GNKqbTOUom1LX77KOjJZttRRxnnJ87RZ8PV28IU4lpNcsjB8Gpqoq71T0T361oW+cp5uTWDzDWmH25Gju9WZaDUE7171ABEzHCODnVzsvDZumSoevQvXv2qlYzdB1REoxQCfccQxhHGO1et1ie0rY1g/cf6XuNtTVVKzg7ddDWST6n2m25u92ChzRV2y1a61G+uWlLjBlY76qR73B28oJeD3y4/rFXxgKrEza7G4yHCmViRkBBFAcjVyQOI6x2ld6ZNybUximhbe8PXjiC66tbolhxfOT2kst3b4jFFozks5e/DMCXX/2Y2Txl67H+gZ2SqowwHEYYmRJePWxoefLE7ZVDf8vQ35N42HM+nXO/uSUJI+J5PF7D0Fskmsz/vsXRjLJqRm+jLH7E6zd/yN/6tb9HZP8GAP/L//y/8o//yX9FOVQM3aGrueTruy9oOreXTWcnVGXNYDuS5GACX6Jkw/OLT4kjD+fVLWYYSLwS6ZsvfkAkevL8CZXvYiIEKlQIYdneOUhMXBQgp6MvYj8YkIq20bx57QyeF8duDzmYAwslCWTAZrOi6VzXr+9mIAWiGxwRFwhUxHazH2HX+z6k05oiCen8nAc65u76PUmqCCNXbRYyoCl3BPmBC5Py7u17rKiYTx1MLwpzVru1a8r5UmjTtFTtisZ34WbTJftyTRBH4/MQILi5e8NkVjxYftgeISyt/33T5JgwDCjvN6j5Z/77DKYO6a14MGrXKwKzIooctCaPFtzv96MhL7guzqOjDCUkyqMozAC262DkQDWOnzfcc+X3vHCpHHKl3iF8FzWOIqphQ+07UCrOCYygj0H6bkgsI1ZsuVvdkk5cJ1Bqi5U9gb9uEc7Z7N+hxIbAQ7gC9YIki9mstvzW3/m7APyLf/G/8Wd/8RW/9IsOljR0O/Ihx0g1+tURwfJoznbbMSqxmwGFpedBca8qO5Q12J9RAuz1gAwUhe/WB0GEFepBSS5wkuP6sH4BBagoGtURsZKjoxOwYuSGSQndMLgOlP++yiOADl0HKaVTZ4wjBt/hC9KIyFvYaL8PSmEZMEjfKWv7niSKGIZh7EYdDG+VUgx+XUeRUyYcVRWxaGvda32ntas6p0gn5Wi5o7UmVAp18PbKczrd0HUPvpNFHCNlQBhEBB6xMHSt8yT1a1qGAdZqZBCOnUAhFFVZs9/txo6etc56YVTDb1vCSHF88ZzUBwCOM9jQViWDP5+6tiTLstH0Os0mbg33ZkQo7HY7giDg6OiIylvS3JTOU+pAbfmVX/8+6/sNbdty9cHFT33fcn58StOteProO+73KE2k4hGF8+TJkq+//po0SPnmtfM8zacv+N7fe8m//P0/5Md/8iMAfvlXn/HqxSuOPMXh+vI1URCyXEYE8cGCoybOEnJVsPQwuXL7mrNHC2I/v0jFYnlGkiXowMV99yzQiWSRew7dRUGnQrq6I/D+f9d31zz/5Ncooo53X7vrzGY5u90ly8BrEsgJ4QIuf9ogrNvPf/zjH/Kdb/8CafqU1185Zb5ZOkO3luncrdc0OqGstuy2twReSdL2MecXJ3z99iej2XmSJLASo6rqo0cnbFcd33r1OZn3Sfx+/h3u7xtev/sS5c/k7377KV/+5C2vPnPP/668oi4tL549HSkjd/fvWZ6lKJmhblyct/cc279u/FwkV1EYkHkerooL4sUEawRNfXhgG168OEaamHnuDuOqWnN2/oTH526RXL6/5unZBVEUYa0n4getw+w2cHbuFkEQSpq2xUrX0pvPJF1TEAUx8dRviKJGyYjd9p4nvu16sphQlRtyT9Ju25YgEjxaTkeI03p1S5pOUXLg5ScPBq9ShLTepDHPIpLA8aaSyAVS1momxTOCMBkDyrJa0Q+GTq/9+1JOj8+oqobOSyNf3ayxpiIQEXHsYVW9oGlumPse7sX5KVdXV/zq917xl3/uoEKvvvMJRTHl8sotjnQScXWZMi1e8pOfON5Atf/A1eUHZrM5k5l7qFarjufPnyE9XGS71gxaUTZvWHrYjjYVcZiz2e354q/c9x0ff4s//JMfcHLubvIkP2VfvycKJ8jEmy0LgRIWRIsIPVlWlixPFhyU7pdHBVJlhGHI7Y2bz6OjBSqwxFHMYuE23K9e/xgIEV6a/fLyHWWjSNOU1dpBQTaiwgyCIISjI/e+3XbNrm5G74/drvQmfw+HXlbkNO3AYnHC4KFR+1VEFAt23imctUHTgo1pcMl5aELCKKYVkqv2IJIAQWkJ/Sbd4PwtkmRL6oPXqmzduWklVnvfl+ot8/kRlfeqkIGg1w0CxWrl1svZ2QXFRNI0FaH3LpNKsN3vx6QwjAX7ckseHyO93H3dVggUKlBEPngU0hlRJz4gur1bjWv++vbBn2q1WhEEYDwst6oqoiB0CROQ4Z6btm05YE2ariWJC8RofiwRDKxXd2NyFwYZUdwQqJC+PQhTdESx442A849q25626+h7dx/mc5f43V5fkaZuM6+bjrbbjh4XUhYIQpp2z+Wl+y1DX1OkBfPJ6SjzKgNLnk5p/b3SpmPQgkm+HCFyQSh5/+GG87NHGM8t2K4HlNbE3mOq3F7z4vFLhqHjy6+/BODxk4y+r1gsMjiYapOCrbDBAW4jGKTAoml9VWQxPSOQgsBqSg/Lffb4lOnkiKfnT91S3FwRCBeA1N44ssjmgCaeLoh8sKHyACFmhKHbt253G4IoIptM2K68KIMeKGZOCn46d/tpEigePylJE5eY/t7v/Uv+7m/+J7y4+Pv87u/+DgD/+X/xO+STgKtvWlLlPj8QCW+++REItzYWiwuqbu0I9B6ufHt9xbt3PyWKv4V95ua41TWBDdBectgcYKX6eIRUBxjaukNVe5rOPe/5/JjF6RN6z00xRiOTiGbXMDQuEbX6sfdk88GI1igRsNntQbo5SKIXdMYSCDkKFARxQb3ZYGJ3NvXhjFkeghkof0Y+eb+/JqRFKZfA3t/fk4WKpjkEoVvKasdsnlB4rq3WmkC66z0E2lW9oelWXHi+ShAEaDTWhBgv9GF7y765w5iOPHfnzO12Nb4eoO8Ml5dfkWxblp+5QljX1zTDBtH3zKULLC7ffUEoviT2HGEbt0wmE0rb0Xlvr0BIbq7+ikdHlqrz5t9KI6yi9AbXWVqzvrtldlKiPf+oKfduL1GSxOs5DHXP0WnM4Nem1pAqkGmK6Q567ZYo6Xn+/BRtXYFA9wKTBg5nBwSqRzea5bJABm5PSKUCJIEK2O/dPf2H/+E/5J//D/+cH/7oNQCff/uUxTTnfnUFPjBtxEDbVsznxzQejm2UhLBg6RONwVjSWcF+vyXOYr/OBpIkJJSC1kPLqrYCoYiyB85GKBRx+mCTkc0m7nM89HzoNZGKxrMJIE0LrAiR8DOy7k7w4rA/6/4guw9dcLC4CLDaoK3BeKiiFIo0FIT++w6J1c+aSR/4VM6D9MHLzCVyZlxbDir48L4oCpDSScGPXl+4QvfoCyUlJ8kMMISBHD8rUoqu69CeEGNjhbXxaFmRZzFl3TK0HZX30OpbkGFCudtTeHsdpRRxkI3J1uzohLZ3HmXG37/ZckYoBZNpNnrBSSkoq91DYioAKRzn2Z/3i5OWqtxQ1vdk3kMyFQG39+/RpXvWl0vFYDRJkvAL33fPbd9pFvMJdbMcJfzTWFHkU85PXDx1v7piMfuco0TSfN/RCYokpOx7futvf86tNxJ//K0XXF9fI3zC8L3v/AbffPWW4+NjFke+EPXuPUZLiixh7214jrIJ5duK2i+9p0/OsKbh6psVgy9SxIXi9OwR1ifsqw8V2g7QBkyWLnbK04zyzTuWzyb0pfuw+77m/Ol3effGQbPlJOGLr75Eisfc138OONua9N0JL18cjdD9MCoQ8guUcEXE95dvmWQnhNE9xdQL4QQRr/+q4umrJW++cnFs1w0Ia8j9PpVlkq7KuLt7x9NHns+12XJ6PKHre4LHHvIbCL796jvYzusUIDhaJoQywPqmRRxmzJapp/C4sw7xKfBn/HXj5yK5CoOAb790ajPbrWGzf8dsMePu2i+A8zmahkQFnCzdoY69IE8z2sbdkNN5wWRyRhhYd+OBd+8GUAXT+Yw49uIGVYkK9KjwFZMymyesN9cMB1NYNaNu9hwvJ5wcuxu1ut7z/MURhVd66Y2lau8xWnB25jb3q2tNNntMWZYUE18BaiQf3q9G0704jvnqyw9M53PWW6/PT8xqdYMKBxZH7iCMkgzNQILntOiQplvRtXtevHRBY5wa5scXGDmw90pnZ6ePqJv92FHYbwd+9Vd+kavrb/jO5+63xJlA0PHrv/kLANzcXnFxesLtVcXf+U3nSH1985Z9q3n6YsH1Bxcsf/vzOW27pfJkyDDpiJlCNKP3ROOsSLm6/MD8pKfT7hB6e/WHPH05Z33vNoKTs4qTxwt+8CffMPdE9UePLuiahF6vac1rAD779Hs0lWBSuHu+uq9YHuUUU8V87j77ePGI65uviZKY9drN53Q6IVApf/EXX41rLAkTPrx/9zObreD6bsdsHlHX7tD5cHVJHGWkE7chhgIYWk5Pl2NFMFKWfd1S7wbazneqggmhTOjqg4pTQDPUZJklaL1YhWwIk5bQJgyl/6zwiHKoqLxgSD/ckkULhq6m9X4jQ+eIyyoIGDwfBmuxRoz46jzNGIYOrS1x5FXqBqeEFKhkrCrmkwhETtMcuFqa45Nz+k7jqRp0XcfQWwLcgQjQaU1ZV+Mh5JTEnFN9Zw+eUpCkGWGgMAdy7OKYru8R9sHbRBsLNiAvPL9But9yMMGNE0XTuEQpUO41Qy+Y5Gfc3+0xHkM/m8SU+zWd927pWsPJ8RP25R23K7cOdj6okzLk2qtnhnGMtYLKuxEr2WAM3N3tKbyx4fHxhEhNubty5rsAVb1Ht5Zd6d538eiYdtvT6X5MAr/68hsWy4TF9IT7ledYsSVK07Gi+e1Pn7K/3xFFMb/2N38VgLarabqK8/NTbm5cx7nvLUkxofXBpFKC+fExm82K2yv3+06OzoiUhLgmDA6JsKavy5GbloaS5fKYL7/8K45mLuGK45i23yKMRDduf5GRQmjF+SP3mnboKeuSvuoYWncNUT5FYYkl1Hu3FsphRV0dsd65Cup/9Nv/hF/9/n/Mf/ff/7cEkVt33/3O33QoAhVjfPJYlWt2m/c88glCmixpmkuGAUJzMNncImTDrHhOkHgho5Xzhbpfu2Ty6zc/YZb3nM3no4iQ1R0gafcdd2t3sJ9ePEPLaFTKTNIEbeH25hLpuUtpdooQdjQfV4nrJt7e3BPnh87qKb2VWGNHjx6rLfv9Nfdrl5wfPfkW1gx0QzuaXtZ1jTE7VByOvD1he4y12EO3KYqJE9iVDfOpO8ANmrZtSOKQ1Ctz/uT1X2Bky3TqOJ5pmnO3vSGJ1MgDqfclX739Cz7/7Htoz0G01tI0HYF/rtu2Z+iu0bNiLMCs6/cQKWIZs7k/CC5EPHr2CO33JCF6+r4kUBF56vbTWux49WoGbOhWnneTdMRBgPEBe72vWCwCvv/Lr/iDf+U7eokhCi29ibA+gF3d3TJdXjI5/5sANG1EIDStGVC+CFOuVrz45JT5XPD6te/gLUK63hD5OVCBwbQ9v/lLj9kOrhj309dTTCiJbDcK7ezKPXlu6L34yNevtxz9DUlha7rygJDIyNKMSHQs3PHA5e0Vszzm1IsWXH3YkBcJw3A7ejPeXn99aIoAACAASURBVJc8f/4UKxqarRdmUhaDHjtQg9FUVcWk8B+M46IlmeMbAeRFTF3XzqzVbzj7/R6lwn8tYQmkQsoHtcLDa41tHxIuLbxJshy7RFq4jlTb+uKR71D97IiiiK7rRs8vNy8FQljM8H9/nxw5V1a45CYMGTtXVhvH1fqZa9dG/F/svcezZFt23vfbx7v0mdfXLW+eRRs0utkAumEIghGUJhIZIUZootBEGkj6ayRNNBJDJBhSQNSAZEgQxQhKEFyju9H9Xj/TVa/M9Td95vFWg73zVCNCwIiDHtQeVd3Im/eYtdde5lvfh2FY7YxXVUNtagS9bjvPaNsmrmb8tWQyyzLKpm5J0bIsI0liDsdjUsWUm2UJaZG3JA22KZh0HHq9Hm5fFnhM08RQIsE7pINuWMRx3M54lYUJmkZZlnRVZ65B6jRlWUSq4DmiqvGcqNUSPb94xXxxi6F16aoZcpqKs4tLojBjoIzq6PCQmpqskAlDVercu3PCLIqo1YNJ0g1fvTjnw4+ecueejOmen6344OkHfPVazhZFWcqvfPNXubm55fOfyyKeabn0umMMQ+POqSLo2iSUUc7BsYw7DeGyXp/z8urnXF3tCkMBNxcFo/6uGdDleNynTEpUrZNJb8RIC3n96pzAk/Faki95/fkLNG8377xiGHhYjs+wlMmO4wxp8iG6FmJZM3XPFrezc1DxY9c7ZX57Ra9vcHklSWgmByZ37/1dkjjEUVqinmODNqBjypjSoARDcPjwEEMxXOfxljiPOD4etLPZQmQIrabI5Nn09Oi7eJbBVy9et4LovYMjsiJhPgsJuh1lC/yt65ciudKEhu+/Fa9zA49Oz20TBM83idItdRGiCQVR0Ud0PLsdnrcsD8+VlY9cqXIfDMe4QYfZbEapMvp7x3fZbDYkqqJo6tLRjHoHWLbcUEJk1HWHPK/ageTjBwdswiu+vPhM/p7lEecbnjz+kPWO9cd1eHn2nHt3H9IfyOv82afPcTwLx1PVnybD62eg5xiO/D3TFDhViWGlNKoV6/pj+pMBQlWWzs9u+eDjJ+iiIVIVk48PHiIMnTCs6XQD9awMuuKQKFHsZHRZRytsz+dEVVUW61fooqOqtOC7Y9abGfceBgx6qjP3F2sO77kEPY3bGxnw7R0Omc0iBkNpqLUIca2ApDRJFLW9rpdYgcX+4ZBoo9hY8jVpmmCpSmi3Kzg5PmHUfUB/KH9mewlFYnF9E/P9739fvZshNzc3uAru1w36rNZTrs+LVq18N+QbJ1scV6jnGUDt8+vf/Q4A09kVUFE2M/JsByvt4Dod4mQN6jkcnAiiVdrCyRy7Yu/RIZZls1y+ddyHexNmyxWuoxywnqFrHp6itbacgjzzyfKSQAUWjWnw+lXEZDDk9I5iFNo0pNUcRx0ceuGDqLFNwaAvN7AmBINBjyKHWDnu9SpGNyscV1XzswRNWNi2wA/kc4mjENO0sYwOmhLjDsNQygcoGKvQNIpcUDcFO1cgq5MG69W2TYA0TSOK45Ysw3V9qjIjTkJcBYmrGkER5QwHA3wFjyqbEtPUmC1kZ6DrB6SVhLHsDp3AC2iajChWAsyZjm0FFGlDR7HxmLrg9fkLOt6gZZu6nV7h+x22qhNpWRbL1RRL1/BcRVGvktE0KugpKKauN2y2Fa77lu0uTzOGvbcd6CzU0D0PSAnX0oMORyPSrCJw1ODxckt/0OPV60scBW0dDQ8psjXz6zmVYl8c9HuUeY1Q3a260OkEAdvtlkAdCr5tsVw3UAi63o5uu8YwNDRNCaTqNlVV0He6DO8P1TveUBQ5lgW1Ymjyg4AkT5gqdsJer8fNxZaj/bsMOjIYj+OUrjdhs1231x7HIb7jMrtSB9w2w0QnCLr0xvJ5OqZJXWVojk+soLrYPmFY8r3f+E8AuHPwbc4vXnP25or+QF770dEh26jEMG10lcisFhsWy+fce/IfAFDUEmGgWTWmUCxRNxd4HYfR+ISt6jI0wsIwKzKV3F0vzrHsCZbrEKr3XeUJttNndr1kurwE4MmH30Xoelsd3W63dHt9bq9egapS93qHhPEWXVc2XWU0RUZehOgt+Y9LmsZ4loGmaLqbsmETXb6twguHJNqgaSBUUriaTUHbEmdNK859uzonqUo8RXMaxilRNkXoNo67g8RHCEOnrktMFVxtwyWaWdLpSTvIckUbn8U4vvzZ1cVrtsktg/Hfa4srTV1T1yWaur9ttEIXBmbQk0Q+yGq66ftQlWxUN/Tkjsvk8ID1XImrZwmOqZFVGo2ioz46GPDwocftQsBXct/qTU1VlTuVAJbzkF/5zQO8vs5aFZjGrsZ2u8E0eziKqGm1OOPx0z7TmfTVrlOCq+PYRkvAkixnDPoGmyTDU525StehSbFUYSHXbdIwxBQVWaYSi8ZCkKFpAl114tfzlF/92mNOTuXw+h/8s3/L7HDEP/jt3+Pzn/wAAN92SdIK4QiiQvqq7333KXmUcf5KMmA+mtzl5evXPDkYsl7Lzxw9OODBvSPOL16wTmWi/97jp6zmSzaKhGbgdjH8fnseA1TpGsPov4UANhW+bVEYegvBzbOGpkolXFn59LIs0UTdJtme60pInvkW3ldXjWLhK1s/lWWZomeXvtuyJNTcsezWfvJUJmh101DuyKmSmKouWvY+gEY3Jf28ghhWNGgIxYooP7Mj1Ghp5amonAy9eEuWEQQBruXieR5+IO9ZiAbLNPiFnAw38MjzHCHeyvLYto3jWr9AsCHp8KNd17GpWK/nksJdSc0URYahlczmq/ZdpElOVuQtIRq6RpLKAuTuWemmJbt3Vd0SWlR6hXA7mJq0sUHnPfzBUzRshOour7dXmGWMr/UoVEPg/GaO6xktQZFpBHz54jleZ4yjmKt3BZ4/+bMfsFjJ7zoYjdC1AYdq/OT25oJPbz4lCAIent6Tf28Tsprd8OTRQ378lzIJ82yNyV6fn7yQiKXtStpM1fi8/1Tuh3QZY5sGjSKvsH0dtIRCh1zJ+UzTiv3Dhg+PvolW787RS7brBnuwI8ZJOZwMiKuQxUY2JPp+AJ6Ba+zTO5bx/mY7ZXj6a9wqseWDyTGmY5Kl4EeyIPmzT35E4P2cr3/9+0zGMj69vrhhMjphMZX7bLGo2N+7y/XFAt2Q55phNiTzHKdrcf+ehBNfXP2IzSLj7h0JxS4Tg8HglF5vg2GpsYN8i4aBaXjoqjO+za7429Y7Qot36916t96td+vderferXfr3Xq33q1/D+uXonMlNMCSmXuSbhjudynqkq7ix6+bGr1u8DynbdcKUmq9QnNkxW2xWREmKwK/h27JqkpR1MTrJX63IzUpgLJMuH9/vxUMNd0O19fXRPGKYUdW/cKwwrK65Pmqnf8phEacV9iKDKA/HFHcQpSXXN/IQbw03uA6Ope3L1isZQXa7Zj4gcmVgiVZloXfa0Bbc3gih4jD7Yr9o0MCf0Shqq+mXRJHNaaiXf2147sYds16uaFSld0kK9gulhhan0hVAptSpyxijk+UkBsdzi5fMOgftHCQg8kzbmczXp5LKM/+wQEPjx6wWcasNrI68eTD+4RpyXK55Gtfk/CMWBFp9Aa7joYHNEzcewhFY73aXGG7Hao6oUolXOKjD57w8xc/5uk9WVWp6ow8q/DcpqXgN00T1zY4PT6lVlSlq3SDZ00o61X7LPftY968OWvphYsspCgMsjSnUG16Q3fxPZ9MwUzu3jtiMUv47ncOiRP5mensktjZ4AYHLRFGLRboWo6maFB1C9zAZrtJ6KhO0sSZML0N6fZFS2QQhRnUGffvqQpqs0E0XYpc48XFKwA+vNvnv/5PP+Avf/hTYiEr15+9mnPQ73F6KO3uepmwnksoUV+14Mu84OjogOVyzXCsRAS9HM8fcTPdzT1N8X0PDb+tMrquoK4FQqtxVLdlOr8lCMCydxPZcvDX83VWC/ludc3CtmzGw4C50lOybZOygK2a2eh1K0yjwba9t1pNdsA6SdkstswVrt3xXSzHJlOQiggp3LpZbdg/lFUqGoPtaoWtrjGOUraLNXt7ewhFHlHWmdIkaeh1Zde0zGqSUCfwlH5FtEAXkJBhKTFZx3OAFcN+QKUq7OvtlvFwn6KUdtf195hVM46O+m1V9fLykiy1ybOaw8OdHkdBVWZUqgNeVyXb1YZRZ0yoZt+i7RRTtwh8m2ZX3dpu6PV6WI2ilZ+FuI7Fo/uP2Iayuj0eD3Hsoaweq5GSyXBMUtSYloKZNDo1GpbbaSm5m2JF15ng+WZLSe+4Jp7VZaggY5vwhoO9PZpaJ1faaTQ621WKZZl0fAXPJKXb75Mq0WvPstjGEck2p9dT0FZqyqKmFCWDnvz+VT7j9//+f8ReXwqynl18waA74OdffcrduxLq7Tp9ZstLqqpi0JO+6+L8NVW1ZW+kZAmSLSAwhEaq5njm6zf0el0azSBVsCOhoEwrBY0cTiwGBwfUoqQpdmK1grKpWa1vOL0vK6S+O6Qq3moBmWqm5Hb2mr0DuR/9oAcULRW7oCIKU+Jkyr6Co2umTVPlGKaHULDc9XrFanvJnTsS4qhrFk2Tk1cFtoKezKe3zNdXHIyftRIKhq6TKx0t+T1Lrm+fc7g3wfekna/SKZruYhg1qYKobTaX2LbJYCzvrahKTMOhyqNWZFc0Ob//D36LYXDCJtp1hTM0vX475E/GBx/ZaOwR59LOtMbEwkAz9VYOYj5dkJQrup68P8vQqCrZBc6Vvxn3LU7ujvm///w5gt3Z01A0dTt/5IU2UfY5P/ixSZZK24jCLU1TIsyM83P5Tr/3m+/xne+c8k/+Fwnr7gQaRZUj8hqhUAVCNJLCWeuhG9J/a0LHNB1S1VlK6oSDkYXFkMVWdcG6uaRu120cdV031zNOemtOj2Wl/vu/833+5f/6b3j/mw94//tSI+zFJz9isDfifHGJpzQW3VGf+eoL+nvy//6g5ln/mE7Q5/ZWniGe7aAZEU+f3mMykD7u7p0jfv7zEOdQ2l2SZAhTYJhvRYR/5zvvk6YFQVf6sourazbbAtsN0C153bklyNIKTbPbDo3jOArCJm1TQuUKNuushdJJ29YpqhJ2gsjIfaUbO32sCsfWMQxaMglNM1son74Tc7YshGhagos8zajKml/g2CArcqoio9G0lqBr0OvhOJYkIVDvU7ATcZb7tExzkkKQRCmblZpvGvbIrbT1gbajk2cJTdOwWe80OivStCDLfnEW7e3zARBaLeGMVFhq7lPTBbre0DRvdVdN02TU67I/kudAnGyk7l2UUu70zgybRV2Ql1VLalUbFmm+wVOzvnmZYTsGZZmhqY5XJzjB1U3V2d11xmV3uRPI/ZGmGToCx9Eo1dz+zfWSOo8wTI2DYxmXBB7E2SV1Kc9VxzSZrzbYts1wOFbX6dHzxySblIdqtGS2vCbJCyxbzb5OanTL5ODkMXtjaa9FVVOUMbU6G9ZhThAYuG5Joezu6eMHiGXF5y9+jqUQL9ggXIuTu/JvmVqELkqMKGP/vpzxvJrdkiQLzMZviaiOhofEcczJgbymwNHp9Z5xc3vN/Q9O1N97xk+/+Cv+9E//FZ5Cve1NDmkKD1NXOolOxXY9Bc3i4WMJs/78s58TxymW3/BadZyvrs7xzVM8pTEb57ecXX+OZVmsVTw8mAy5vDmjNwh480b6pcePnwL/mr9p/VIkV43WYCvIWh3nzFYhju9weStxp9PpDZPDMTZm2zJ2vJzbm9t20FFUDpqRsYym7XB+kRYMBmPW8ZogkEa4Wa2I0+1brHG6ASPGtDPCRBqv43tst3OEVdLpS3jG2eWUKjNalp0kLtkbPWQ+vyRXTFIHR3toWiO1etSLoqnIi4i9PWlgjagxjDF1rbVDk48ePuHm9gLDLJgppjzb6uL5ZotRPr+4pjv0WS1TLHV/cT1lsGczu7lEU07DCmy0suaNgvLVvMGwbK4Wly30MlouMb0Kc8cYVLvcTlOqOidXCRRJRZE3eL5FpYLcvIg4PBqTxjscd8pwOKAqYrYbCf3aPx4Qbbvk2Tn7+wr/v91wPH6Kodram1WPLL2hO9ZIE2m8Xf8BcbIkDFPqRgmbuodc3LzC7+4OCosizzBNu4U9WKZLkicUZU5RSMf95MFHvD77nKWat+jEY1xrX8JDS2kvi2XEnftdfPceX3z+XH6Xq5GkBaUKNCzLoA5jFss144l8nxdXl4gmoDfsoHRiaXApq5RQ6Q/1ggkCHU2rOd2XB3Z/UFAaOf/4P/v7/ME/l0QftgYn905aEWrIqGoTTc+4un4lbdHs88mnP0GImq4vAy45IJ6x3ch78ZwRRV6R57OWac3QA6JsBWbVzu2MJ33KKiJXA/S65uH5Brow0HeCvZqNYwY4jsO8misT1uj43fbQs02HOFlSRwXjA5kE3t7c0ut2KNOKZMeQpnksF7e4SnOlLmvqMmc8GLaHZRQmbLcRDx9InY1tOifPE1aLNZZiWzBMjf7ghDhMyRWcV2i5ZEhUzXfPt/FcmyzRMdWwdaygqkWxJVezmYeTU1bhtCWOMB2H/X2fIr/GUVjtk6M90mzL0dFhO+PluC69bsPVlbSpySSgLHOaxsJXWG1/0MMUFdcXK3o9aS+dfY31NmY0kIWF3l2fLE5YTBccHirh7abG0gRux2lhh02t01RpK5LuWTplNcUyHJqyp2yjR900xFGE76pZ1KrBNDQVOIFjK/hrHJKk8pkLTMo6pmtP2K5kIrNZ14i6ager/cDFMmuipsBRhYy6ySnqBM/yiZQW3d/5tX9M173Lq7MvpY2NTnj51WfEUcZvff/3AciLtfR1BuwIIJN4xt3jR+0cUVE0oCUIhszn0nfdzl9w5/jbaIZFrWBrTVNTlT7LW1msyqsNwjJpBAjFsFU2NWmVMN+c4yth8V5vRJqEaEqbqqIh3W4oqgTNlWeD0E0pkqqSK0szicKEJF1gGTKRcRyHui6Iom2rlRiHIVG2pFRzBElWYlChaXqrEZjGIUm6YbJ3p2WcrPIC3fAQYpeIr6mJyLNhq29UUUEtRVYbNfs2X53R6ZQYinwkKxOEaNCE3Wogvnr9nKbzir33fouaHTNmhmk1LRRrGy747ve/yeufeJxF6p4RrKdTtCAgieWM7PBwRZaJttAXbxIaGkVeoIhbohVf/PyaqppQCfmuRFmgCYtEsRpqouH9j/r8+Z9Cpeabi6KgqXIKbUWq/JRlJ3zyk5/RlKrYud3Q70ohrFwltEm6ZW8y4MsLHVP5LscoqXUNTbEVisjErGbkwqO0pZ/SUh3TqGiqiqrazZQlfPD+HpdvZDFp2Ps7fPjNr/hv/7v/jf/iv/w2AHt3hviWQ+N2mOzLvVxnDftHA+Y30qgrI2Yy2qfr7xGoItCwZzGfTdmsQg7U75VlyaDXwdB3YsQVRZO3SShAnVxw/+gepbL7tR1T5Q2WW6G3HxN0vAFxEraMaVWVEgQWhSok9Icdqqri4HDcJgxCSJKIOErZ6R0LISiqimInGKyIMXb/BhB1g2malGWJ1RLtoFgl1cxn4FOWNQKNHTCqLiuapqFq6rb4V9c1m9WStSoslFVBXZpo+tuEiEajqmqaX2BI1HUNU7dxFHzasgw6XY+6rtsEyjBtOpago2WUCvJX15LRclc4SeOUpqkoy5JGj9Q15IhazePXO8i/Tlo47R7VsTFMjV5v0MZmRZkwPjghjLftuEkT1ZSVSZKo0QjW1JWJLkaUtYqx9JpKA0PPQcEHq6rANl0MXTqu0UhDCB0n0BGG8vuilELElYatiNmiPCZcLbiaqQKScNi/9wGOY3G9VpDGpqERDVkRczJW+k2DY+qywTcU6c0sw+zImbrPfvoKgMn+McKvWSmdzUH/kP2jUz779HOevCehdNNFAnFMb5IRKsi2Y3uYdp/bS3m/X744xw0G3B0PKZV9uq6N0Apc/+0zN7wQV7dbqOt6cw6kmEZNFctztSFl1LmD9+SIbSTf3/5en+0iRdTSbzx86HJ5eYnA4GefyLkzzzUYjx28wCNLpW18+1d/g6urK6YzCZUs6y1FYWEaLucXigTI1bhz95if/vQTajUj//rNC/629cuRXNUNKyX46vmm/P/qhv1D6Yw6wT2iMEWYDZutDGCX24Jed0imuhxpklE0tWSyUh2FwO+z3oYk2YLR8fsAWKWPE2itQOrt/BJN0xjv3+fqUh7qhgdOz2e7ibmeyetKixq7J7CUEfa6fa6ntwT+gI7qsJkW2MaIOE7ZxjJBuP/gDq9ebdoK+KtXrwgGOUXi0VeVrB/+7N8xHh0xu11x9748oL96cUFYmJiNqvr1a1bhGQkZmtlXDy5hsUpx/B4VqjOn5yw3KwJfUZVqJnGYUNV5KxBcNBpdb4CJEvArr1lNc4TQMRXrYOAP0A2dIk/beY5R18IyhhhdVYWPZvKQEhrHR/L5hukc012wvJniKvKPvGwYDB1q1cnaGzh0vQmLxZRGdeGyMKbrDlgnXyDU3NBi9QWBN2CpsP/9scbsNiFLIlYqaqrLCs+3GAzG/PTTnyhbKOn1fVLF/1BmGUv9K64uZ3gqOZ/PQjbrDM+LW9rafJpgCodOoAbczT3CaM2wb5OqmY+uM2SxmaKLAZuFcvhGgW14LJTzIe1QVmr+Q8hnvFre4w//Rcz/8D/+EbpioOoNDwnDmoXqGtVljaFZNLlOjnSadRHSCQZs4zlbJWQshEWWlK1AYphsyXITTFiHKqmuHbpeQ1V7hOFOcDGn4/dIEvk8NRHi2mPyAhLFcWG7BXWzYr7JsZSI7+K25PGTA54+kt2JL55/ys10zWBisdyobogoKcqIIhPohrQhVzfRrMO2S+TYJv2+SVnoBDsK3oM+i5uEVAl69gYWcaRx/8ExrqdmIrYhUVliOg2r6VzZ0AF1XXMzlYlqt3fAcNhnNdcYqLrGQtGYa7WN0OUzFtoGSxTQ0u9e0u16lKVLpZXqeV7R63XoDPtslfhvXRbMl5c8uCcJX1y/An3FZmFSuvJdu4ZDEibcf3QHU81zOKaHoX+Fr4Ll4b5AFB0EHkJVfw2tz2o7R7M0DOWXbMtne/MVg95uvqKiKkzy3MNUzIOWsGiaAseY0KigWrdCqH2aSon11gWr2Q2i0XA7OyRAwnoeshW9lvji+GSPKEmp2TED6ni+hecdoOI28gTqUjCNpnz9Y5k4nR4+5bOvLhj3VEexijh78yXf/e4+dx5IcoxtDFnToJcFZaUILdIpzuAAXxELpXlBU1s0dsNyLgs1e+MJTjAmylIKZeuWUVMiWjs/OXpC17xLXTYUSqDUsAVNrXN1+5r3RrLb4rgaeWaBtkv8LRbbkFybYloyQGjQKGsQaq63qjS20QbTy2kqRRTTCJK8QGgNQqEYpstPSPIQTYlCG42G0HOqpqRUwUCppYyPxjSaQ6XtKM4Flt60TJmr7SsM22Lv8H1KNYOhVya6IdB0k3NVwNKcFC84gh3ZUbbCcwdkdYlyO1yuXzHUXWzTJVFJhOM1NJVLXSvGzeqWs5cZN9Epujo/irqkooFUoMlXw+OHeyyXA+Y3isBDN9CskDrRsVQANNnr4PYcbPcGK1VFOwRZmQA7MqcldTEhjkoasVX24tPUFXWo05TSCe0fj7l6I1ir4ojjGyRJhtMNyJWY89H+hMGow3jrs10pdlkDaDQsNYS+Xs9577cfEych2qVKGhyLPK0otYY6VgGeptHd11ik8sxczWd879d+m7Ov/jn/17+Qdvaf/zePcU0LazXn4gsZhHUGHY72Bky/ugBgdPiYsiy4mZ0Tp/I6a+2QN1dnHO8/wlNEBuv1ku5B722QHfYQeULN27ml8V6HV599id+X+/je3hPK3iuuFitcxZhWJTGPDo5xgjGWGtf62c/OsR2HjkKXnL+ZMjr5mLObTynU/dkdgdMYON0AUxWGNCNB103yQhWdm5K0kILdcbYrbARUzQZd71DViizI6OK7DkIlP7VuYpkaTVEStR32mqrUEIWBritkha9hmm/nvnXhgZZRlQ1JvPt7gqoq0MRb4eskkde5o3nP8phiEUMtWmp7y3Ko6pqKFF0x3pZljS60dlZLdtyERDSpGSih+biuS5S+7XBXVcV8vW27y5aeYJomq23YkqSZpontuvS7HQ7UuWbbAkTRIq1oStI0pi5q1ptd0mpQZBpFURFu5bUXhUmal2SpTPRn64IsS0hyvWX5BdB1+Td3wtBCCBy3Q60SMNs2WYQpIm7kDDpgmQJdQOMG/OgzaZ+uZ+MHDj8+e9n+30oMwjDk5ER2ifbuBXz++TmOIt2ImpznL17h+D5ffP4pAIYm8DuQxybLhdy3ewQIbcbt4lI9O0g2l2w6ezi29Kd1GjDu22yiFTTSPnVjQG8E2Vr6iAd3H5EkW9bbgr/84Z8BcHz3HqYdcLt8yVrJ5FSvdR7cu8/ZG4nIevVSEKUZlpuz2MhC0fk05eMP38MSFleKYC1ZW5i1QabITyaTO9xu3/D6/Dn9oUxCsyRnei4YuGMOxtLvvnl5yd+2fimSK03TKRVjku8N0TTwvX16CopV1VDXS+q8ZtiXLc7lekMW2zg7bZFwhWm5DId7rNSwvCMi4sICw+NKsXDFW4MA2opG2QjiaAaGSXckH+Rys6XbN/E7AUWuKiv1kkHXYq0MZ7lZkhaXHOzfp8zlhvJcm6vrS1zXZbinBsXTBMvu8snPpBH6nQ5Z5tJUJuFG0UGLPmG8JM1i3py9AsCyLdI0olBU3nZ5Qhp59Pou4VI+l+6gh6ZXsougEqUqrhC1gaHgE7PZLV2/x8HhCWkuE9NkW7OeLZnsyQy/qCxG/QkVCaYa4JsubtGNhmF3j0wdcq6YUJYwV4lwf2RQA13nkLXaCGUZYZg1h91Tso3c+EW+pYhXOKpFfhuneK5Nr++hKTjoejOjrvtUjYWuAqBt3GDZ61bbpXuobgAAIABJREFU6OrsnLr06PR7fPlCdpsCp4vrHjO9ifHtA2Ubl4Rh0DrNMM/RtJqmqqmVZtfeeMh6FRH4AkNVsx3HI0tpdZqm0xvG4x5FVaIjg6TFYsazR4/Jirili3G9gKALniVb+VmWM9kboWlwfiGD/+1mge8OSfMOrq+6RMJnG76iq/THFvMIQQyNBwpGVtYJeSzoBj02a2nXulkQxQvSVFGJ2gboEWVuYejyAN+Gc9APSLO01RKrm5DFdIWhYBDDyYA6s9ibBGxsq/17Quh0nC6O4kbuWBmb5ZQk3UEHK+7dHbHdRiQbuT9Oju5SVwVxHRKoLsp8do5Gh/0D6TTDaM5mYzEe3qM0ZaDoOgHjB0dsQxmg9LuHzKchw46PpzoKlAVVvqBsSh4/lHogonSo64ZcMRN+7aMPeP78OZtsQVdIyIGlfIPjBQQKShP4ehtcAozHJzSkpElIXSsinIN7WJrFfHqFr97VyfE+jx51iUIVEDUOnjNmeBeqUh0KDZS5R1hp5Ip85KOPe/zVj54y6EpbtHWHZbih3/OJVvLal9EUx9e4vrjEsZRelJvTDXroQulCGQ6ObUAjGI9lhy0MN+TllqoKMXWlucYhN/MX+L46vPSIYe9EQneaW2XDOaPJHvt7eywW0iekeYJlmRiq67fahGTZim5vTFmqDnS6wnYtju98i2gl98Pl9ZzewKZQ7ItNrVMUGSd3jlo4alVVaHqBob3V31ptLnj88GMKVTqv6pwGQdM0XN28knbXd7HMDrpZU+XS1jVd6rOFihzALSWsRlSCFlUlGsJoQ6PPCTrflCZUNRRlhtVSWQtupxfMF1Ms1YESlJIJU3WbSlGz2lyQ5RmeQj6kaUojCgwtaBnEwviW4egAx5LnhxCCoswkm6YKAqs6RTQWnaDPVtmQY9vUddVqf1V1TqfT4eT4AUWpAkXbpKprDMNis5bvr+N79LoH6KpA0BgOaZ5j6IJMdd1vrl7QD74GtUteSd9clBq27pCpruNmqfGTvzqnP7hHuaPkrnNsx2SzDblzR+6jKl8QbQS5gqy7Xoc0caROkSb9VBLF5KlNmZuYqlOdJwsc2ydVhE/9gYvn9phNX+EpqvmyrDB0kyROmEyk3/jGN36F//7f/Z8UxU4vL6Uya4Tlkiiyqu/8xgHb8IrF9Ih+TxYuSy2lLMu2Q1PWIZfXU9YrsMyj9p2auk1R51QqBmi0DZeLlPlSXpNu2cw3Md/7e7/LH/yTfybv+Z/a/Pr3fIa6wcmxCjLjksW05tkzaWNZmaJXGmWR0VXEG/HtOUNT4GQLEkVq05BTVLQdPc8b4Q/7bFSADWB4Bv6xRakryQrHpCw7HO0f4DvSlwz7KZEoiG9fM7Dk/n98YtPYMapeiOtusMUld0cnxLEM2Dt7XW42BVoZUStm3Nroslkv0VXXMU3Asl2aRifoqI6iYZLlFVVJ22WIs2uitUOj7q3QcnzLRdcaTNWVzsqCru9haqIlgaiKkiSk1Y+DOVlc0GCgq2qOYetUdYZoahrlgxyzQ5xs3nbAqDCMGkGDpopOBTGGY6HXVjsOQi0JLcpS3l+eSyKQ7TZCV6QzdV2TpplkiFMMt5pm/DVGQxq91STbdQtNS+dnn77Atm0aNXph6w2+16fXl/7cNCS6xfUMbFMmLUKrMOwCYVRYSufRAuy6ohbyvaRZRpqmjIRokSO6rpMXKVEY/TVWyCyxMB15TVFUoQmp6boDxtSYlFWDrttoO0KwJOHNbM52K79nqAWsb9bkecOLC5lw/dkPA6oabFP6DcsUNFXK3rjDViUtjq1TXWj0ex6GJZ/x5fwMTdOJI/leOl2PzeqG9KXNo8cKXZKvcbMDup0JoeqUV3XEJz+ecveOJJy4na4xLZ3ZbMFAEcXVxQrHcej7Lr5CuOQJXJ19jlAMxqPefQ72K65nLxl1JPLAsxbMzjf0O3scjlXxb7NECL9FFFzdvkZg0PPutYRkebRBYNPvjNCQfmrsG8Af8zetd4QW79a79W69W+/Wu/VuvVvv1rv1br1b/x7WL0Xnqmlqeoq2t2lqqlpjvpixCZWOkGUgDJ2KhCjeEVro1E1BpirXgXfEyfE9VqsVui6ro7ou6PcDdMOjUZW5omhoRM50Ltui/bGPbuwRpjmbWHYZ6sokXVT0uz5lLSuWti/IMikEB9AfDpjNMlaruJ3HEcJmvY2oapeKHUV8SBhn9EeycmYYOppess1XrZJ0p9+jqiomwWk7a+MHoAmDbk/+3mZd4HkQeAOyUFYwkihnvGcThV4rilo2JU39VvROo8SxNVynw+WFHODTa5tRv0sWyfJWnKwYDO5QaQapqmoOBiN0zYDaJOjJSkSWCDqBDansAjb1HfJixe3mFZqm5h2yHEqHg9EJNzeyGxGlEY5jUqjOgN8RZGnM5jYlUVoG4+EdNNOiN/C4mctq+mAYENh7+KZ8L1l8h0WxRGg1rpoXu3v8hEqf09QRQlWNnj5+QpyGLR3uwWGPeLNlb3zIeF8+p+V6wYOHI7qdPkkkf88LNObTJeOJrBoFrkNRxrjOA2xLVuFHw0O6g5Lt1sI4VMP5rxd4+gEHD2UHo6in5GVGngruHknSkqKaEy5WVGVKobSvLC8kEA6ZIkTodaSex8152NJYd/s9HGPMbDYnVZ24zSpjvrnmcP+Jso0Iz++jaW6rk+QZLjpbTFFh6tIWAmeE2fHoDxUUKynQPAvLq8mLnTivhuPqGLpNrvSwhoOG4eAei4387nCjUVYVmzSh15GV62FXo0q7nH15jrYnK4GPTt+nLGp0U+6F6VXB4HAfUTfs70m7Fk3K5dmMoCMrr67tcDDRyNIVkRLszaKMcfcOtbVlfivhtnv7E3qDLt2BrD55HriWzZ2jEa7S7Nk/6QI/ZdDrYRiqMjd06Lk1gVKbryuN+WLKwfgYQ+yo33WKPOHBScDJ3XsAfPX8Jb7nYal97bumpLbOYLuS1/Ts0VOKckN4/pI7R/K7nGbInaMtHU8+k5vZChOLcLOkqWz1XQVJGtHrBsSRouC1KmyrS6N8RNA9QVgpL19/gq2q9w0W62VKt2+zDeWe8dwBvZGLXistPGdDki3QNI1tKN9nWeu4fo/pYorrqkpgpbPdbnE9Tf09l645QKuHxLHsEhmWyeH4G/zB//wv+Yf/sYQv+x2P2eYa35A+MClCFuE5D+7toyF9Z9HEVHWGZ3fZRNI3v7l8ydc//u12lqGsC3TNIk1ybqYSyz4aN3jOiCxLEGKnsSQIwy1hrjSlmvvSVosEzZDfZVsdprMrPF+n40ukQ57VGIbedpss02U6P2c8HDHcdT6qTAoDqyqy47hsonNMz2kJJtAadE1X9NfynZ5dvkDTNMwH8jNVnVI1OoYwidWQ2cXVcw4ORzS1iXLV1PVOW0iRAa1nuEFBXZktrFjoUNdSLiRTULMwDDmeDKjVWVRUcgh+NNnjpz/5K/lejIa7x89I0hLlminTElez2IZylrm2XuP3HmG5NpWCVFU0iKKmrnOev5Joi8OTZ5hm81aXqQqpm4S80ECXPvZbv36HN6+mNASYSt/MqjQ0zSJSunMfvTfCcwY01TVCEb6IWoASZD49kT5hurhmtdZbHaoir9E0CfnfzWr0xjmrFWgEoLq7VAaW2SBUZ1o3UzBiyryPYe6gmCmmZiFsjVDBsS1nw2qbUgpp06JpSGsYBkP+7u/9BgD/xx/9iOPj7zD+Ws3NXL6bRfwVnvmAnmqG3kzfMOjvYdsGva7sTpTFkjIpaHSNvvJxF6stcRxz51Te73pd0BQ5hv0WjraYJ5wenzJbyWq+b63wJgOKWpCq+3UH9+mnPolhoSvkgWGZROtrGkVwdXpwl2W0xjUqugqRcfPyBd3AYD5dME/kLEoQ+GRNB0MJx5Z5TpV5cr7KUVIehcnN7TnjvWMMRXueNx621VCouT6BzipMEIVNbUk70xuHyzfXNE0i4X9IhIvAxFPoCNOwcT0bTWswd7PMTYmpm7i2h2ntKNVr+vUYS3VHNVMnz9NWgwsgyVI1Q1a2M6Qg2GxWVKqNo2kaeZHTHQRstvJnSZLiej2KomqFtpuKdmYZoCIhyzJ0obWzhWkpO0fr+QpbdY6azKPhjKJR4sdNg2m46JrdfkYzBGZT4rgWmrbTebQo66KFS+ZlQ1U26KJBV12qTPn/wPFauCKNhm07qLFIwjBkOOxgCINEdY6rssJ1fMI4ap9VXdd4jvsLQtE1vh/Q6xktL4Eopd6fpc4KwzCwbYeiKOh70s67gcdmtaVoEiz1rrq+T5IklBvpq4tKcOf0IS9evOT6Wl53Eka8+vISx/bbuGQ6fUU32OcNEnZnmjqe62Jg4SpClDzNMbwO9w8ftRqdYbhhNo148ljCvIOBxR//P3+Oqx0xuiPtbtB5xnaZEIU5x4fybBDHYz778iW9vrTFohaslxn9jk+h9PGSsGIyHLI37PFXP/4ZABNFe/83rV+K5ErXBZVq5VWlHGA0zAon2F1eg6Y1pJWgKBWbngU1KY4tA1rP3uPlqzMaEYGa+VjOEkwzo2k00kT+bG+/T5ZlOIqff7kIcTyXujKJdkO9TkJVwmxRoqnDwxDw5s0c21VK5PaKqtbQqZktpYPSRYBp16TZGqHa+etNTJwmDPpKPyqCvJxD3QWFW+52XOpKCu/5jgxIfMcibSrqSkJN8uoTAmOfLBSYSnOlqBJm1w6GOUJTsz1lUbA32cfUB+q6PbbhNctFiFADtGUBZZWSJjthTA+0iCrtsI3lAT4eP2R+u8DvrtnOFf7fikiWDbqC0aX5Et/rEVUxZSPhi7UwCaOKSvsJiYLEPHjva9zOX5EoeF/QC4jCFXVT0lHzcbbu4hguliaoFaNYY1RYwJ4v76W2Ag4mpyyiMw4Um16v75IWOhouh8/U3FnmotmXmIY0/iyPODk54fT0A+arl8qiBJbRg8amG8jn8Obm3+I6e1DKOY3TOwOieMl2G+GqYePJpM+rl1dMJh1eK8G+Rw8PqHILhPzuIjVxbR87ALsrW8izdU24XPDek6ecXSsoRKkRL4YEA/leXK9P1awYjnw0tTVF2ePhBz0MvaETKJhVs892O2E1V2LOWsl4MMJzHZpGsRUVXT76cI+zszPyWH7X/qTP9HbFwVC223/8yR+xt9+jKjpUyomcHJ0itJKXL15xdCQd56Mnx5y/mRLOlTq6ZfDk0UMOR0MixWDWsT0WUczp3TE9xUB3/2SPNMlZqeTj5OCIbtembiKKdAfNE9x7sMfNjQwiTLvEMByqqIdpyP3x7Oget1dLDMemfyqTBs02KfKYwwPFTCZqTg72OTzeY3YjgybblAfGw+PjlhBhu14w7oxaLH4wtCiziFFvhKsYkwzDwNQNDE0jK2RwfHpyShot6AzlPv7ow6e8fPUl/f4R04VMOvXC5MOPPuabX/+VFsKxXYc4J10O9uWzfBwHvHjzipvZF+Q7YgMqnj76gLocc3EldfSKakWaRKyUjlczsfjwwVOub3ylSwZZuWY43idJt5hK8yxKQvyuTpjcqOdioOkWabmmahSrWc8gTKWPa5QvyfKQTr/XzjtUIsYWfQpmLLYyIfoPf++/4p/+T3/I7eySh08lZGy93WJbbkvAEC3WLFaveN9+hqE0usL0krIQZHrCm7Pn6vn9Cr3+fqsf0whBLXKyTU6tbdS9ONhOQEFMo9i0bKvD5eWnGOoAD/y7WLZPoyeg5lMt02e1nuI5I2w1n2rbHmm2baE8WVawDW/x3G4LbcuygqZp0FQiHkUh62jG0+OvtdpQcbLGsX1sWyNO5LVfXFzy9PHHdDqyaLLYXmDoLpow2Yby2W2iJafGQwJ/wFxpb9mmhWmaLFfye6Y35zzo3aPbmRCpRMrRPYoiwTQ9LhXzaK0J9sYPyKtUPTuoaeRckgpWD8cHWIZOKSISFUhpOhRVSKq++zd/5xuEt11ub7cIBX3S9RpDc2iqmO//rtSUsdyczTrEdZQf1iJM0yZPNDxVpEiK16yWDdABTRXRfJ84rhCNvKaDI48Xz8+xnQ7GjrG00TFMKULb7Wfq/Q2YzjLM/k7/K6LSKoSmtXPC09k5s1vJXLcLgExriGZULG7l/+/cHbC3VxHORlQK5oUoKdIcLINcJZTP3uuRomEIRQqDBgaEccKTx3KW+C9/9EP+zf/+Cc+efI9Ek7O9WeUy2bOIt7L44FgZ05svsUyPOFQzNFmIbRkEvkcxPVP31yA8rdXjDNdrju4cI9R+ARh2DfkdtdL1tOHNxRTHq5iuVCHFGzPueNw9OuBmKd9pWpu4/QPWqlDc0DDq99mGc372hfQbo66H36u4uMqwVFCdzD9nNPmIhUq802TOZPiMMMswKrk/msrk5I5PGJ8Rx9J3ffTxN4jiqtVcW29CDKOkLhM8R56jebElDGOCXkkaSVuwrJogCNiu5DMo8oZNmmAadgvXFKLBNgVRukbPVRJmBXiuyXwrzznJyqpRr6O2SKFrFmVTo4saU0XemqaxN+m0xZyiKCQraaNhdKXd1d2gJdPYMQ8LIdD1t6LFdeNS11KwuBW+t20Mw8AP3DYpc5oE09QxDQULtGWBIE3LFtJo6l3KSlPESPK74iTEMJyW0bMfuIBAM96CzIoiQwjJaLj7nGg0iiImXiuSFF0jWW8py5J6Ny9mWWxLCX02VaGkKCsaUdKzd9qUNUKA7zu4aua6H3SomrolREvzEsOwqWrasz1NUzo9A10bobUi6TaT8SH3TiWUP44jTEdjf/9roAqLush59eYz6rJhNJIxnePtyWRZjffE6xVWXVJnFYaC9ydRztn0DX7gEKmcYDzaw7bg88/kGRpuSr71radc35yh5bKw0aQN42HAuKuhK2aYrKh49vAZ3Z6MLXTT4Hb5miJN8Hw1f1tqVFVDlq948kx+Lgje7tf/v/VLkVzVDXQCeQjOZjPyPMcwDOrdJtNNNM3BsORMCIDtuWzWFa4KGK6nN2h6jW4KLs7lgeYHJrZV09QOhiYd9fXlFtsBT4mKJquEF1/9gEF/QseTVXBTWMTJkiSd4ijygaYZUGsZeaGy28wBUrI8w1eJGtqWpgHHzylLJY5XORTZlpWq3pnaAC8YEIYhTlca9Hw+5f7pQ169PGPcl0FLv9vlp2d/wtFdaeCdYEwSNTx5cI/PPpeZs25YdIeCxeqckS8xpZtNyXy+oCykc/c7BnUjsGyXSm0os+MSFzV+IBM337NwO3B9BkeH0iFu1zlZGuF1TGxDfg6xoW5KmlJe92o7p6lSHGvAtYzl8NyKTs/EtEfEhUy43tx+ShTq1I3qFhY2jr2PZWQM1XDgi+dv6PfWDIcDMjVvUJcC083pqjm71TTF78Bs23D3VAarmAlNtY/uz9gu1UxAJ+Wg/2t8tZaB3De/8W0W0w0v3vwAS5Pv2Pcdrq7PCexTKmRgL6oxdTMiVt20NIzoen30xubJfXnIxnHOV/lz4tUQUyWZw4GBXt7l8xevAPjGx9/j8+c/JQjG7A3ldd59cJcX/o8wqmOqw10p2WJow5GiKj09/ZB/9a//kAcPD0kSGbBHm5rp9ZrA6WKqztzRvQNWi4L/94/lcOfv/v5H3FwvMQyL7z2StPnzWcjeYMRoWLTscpqo6AUGpi7v795pj7oyqXLBB4/ke7++WvPo0T2e3T1B4223wK6XHE6k8+sPAob9CYEdtNTkg+GY1/Zz7twZIxQboa0nVDTcP5LJXJhdcHA4wrF7/OAvfgjAex89ZbPZMFHFB99yqJsCz3EwFINSL+iQ2iuOj+/QGHI/bsOcElirmSELh0l/SJXlBK4i+tgqgWEBKxXkNlWIbey1JCZxk8vEyrEQilZe13WSLEHTipad9KP3vk6eXjPoy2eZhRYfvf8tVpspjqUw9HXOzdWGk3tOyyTpuh2mlzqL+a4yKd9Lr/OQQV++93W8ptE8NEZ0RrJ6fn7+GXEY8f7JB9IWk4pPvvgLXNdnNJG+62b6hqDr0RMWN9fy/rIqxtdNRmN5mFzf3lCXBZY4ptBmys412XmhaYWpO12b6+UlnUC+4zwRxNktFSu+9Y1/BIBjHfPTz/6ER0+fYakZj228pmpy3I4Sd76ZYVoQdI/amceqBBodgckmlHvt+KRLVWrtPI5lmdiWzez6hqKSyfGD+98mr0qaRqeslYiw1Wcb3baJTMefSMa5RqDiE+pasFpPGe0NsBSpTpYWkg1MsYxm2RZdr7hz8qhlhERYaFqJruay5uGaNE1xrVErXm9ZGnUtbeRWUYcLdA4OjggjGWg0TUWe52jCYrmWgff/x96b9Fqyped5T/Tdjt2fvsmTfeZtqyXrFllVZJEWUJJpCwIESbA9MAwYMOC/4b/gAQF75IFhQDA0sGwIpmSLLJpVrOZW3S5vdqfL0+8+Yke3ovFgrbPTA1EjDcpArlHmxj6xI9Za8a2ve9+33Wkx7O9R16xA9WVZomkGF5cySbOxOeBg/33qRl/hPNI0xbZdomiJyG/pxENMzafRUvW86rkrnfM3RwD88Q9+wrIIpbSHcnZKAZoWk6qg8OZ8DbMKaaqGUpFJmD7UdUNZVHiuvPDf/PxXmDxZYRJ1rcHQfaqyQJGTMpvNWMzbuJ5FrhKlcVTgOgFaLc8LxxdcvMlxnDameUuOoVFVGbal0w7lPfztL75CNAa1Yl7zdJNGgyTJ2eorMJEGs4lLq1VQK/IYIXI828RUgf5o+pr1vQF13Sa9ZTeyBbqt0WgaqUokQoLFgKSUa+zYNYZlkGoOsUquWOik6Yx//r98wX/930pSm4v6BXWqEarkX5E7bPQdLi7m5Ip5OAxDZrNLTKNmNpX7uqwEu1vbGK5cl7XNPuPxmK5iGAVIsyl+GGKZyi9aTGgPB3h2gqOId3TNwQwFz199xe6e7JBYVguMyuZgX55XmZ7iuyF26nJwT15rmaVQjzEf31tVhAcPfsjRqzd80lUJSTFnMVtQ5BobW9LmxUlBHMNwfchwV+KLk6RktowYL+S+MwOfXncf03wrGFzqHTRNY7ge8OZMOgqtVkhZOJSlDAL7AWxWW8TLCYWac9O0GF3NaHntVSBTpGNOR/NVsGNYJlUlg3NLrXsq6lVlZsUgaJq4rrPCO4Jks6vrGksl2tANmqrCsCzsW0Fn3aCsaooVLjLHtlxs01p5z4ZhrFgOK2XPws1dTFOn3ZVfsk0HrTGwbJ1SJRYLEVFVkr2zUiyYgXeAEGJVQRRCYJo68+htVdO2TRk0lcWqcpXnkmrfNNzV3xVFwWKxWGFf51GKXhoyTaUSHoapsGjKeNqWiahKFlHOzUju4ZNqhGGCr/ar7zp02iGG1rA/lHuj09pA83SWy3zFAFtVgqouVpX6dmdInjfkTYrRSL+vaSre//iHNLW+kqjorT+iqU1qxcNgOxpFIfHFjUosesOaNF8iyhRjLvfLyeEZne6ANL3FpuX87V9/Sjvo0u3IYPx6qWOZcHV1tdpD/UHAcG2D46NfArJStrV+n/OzoxUen8bBdnR0qyBQBYH5+K20wb9rvMNcvRvvxrvxbrwb78a78W68G+/Gu/Fu/AcYvxuVq6phdDNb/duxbJqmIlNl81JkWHbF+uYONyPZUlGWEstxdPI5AJYdsjbYpcgrbF+xBTU5otxG02FjV0bvJycj3HBIrfrl++01Avf3qOoMU2UwPKdPmWls7d7hUtGzu16A7gkM1Vo3nU7xw5r5bEGeysrKwd194vk1i/GSgapYzNIle1v7+L6M5q/Oc9qBQTfY5lRhoHa2d8nSBtt0WMQyszOPTxlu2KSKAtzUu7S7gmcvfrHKFkaLDCtfkqeCi+xI3rvbxnVdponM0FS1RzsccnEWrZgVG6fAtjrktWKNGs/R5hG16OGpKkdV5ezt7ZEuNaKlvFbTuOhmhqmyOmFrSFrM8EyHjsok26aDEBalBqYmPzu9OKbVNdFVtiJapHi6R5pPGY+VrpdjkeURi7mNofApd3Z3OHl5xXUj2+hSITh8fY7vdQlUG4JulHiuzmTiYivx6DQqOY/iVfUgz+e8eHmE0xKYpbwHTwha/iaOMWCRylYITdMIdBeXW3a0GrOl89lXMWkq16rdN9k8WOP69JquL7N8yaLh6uLTVdVxchPx8O5jzq+uubmRf9fT7rDW2YNS4PdlxcLWB2jVjEKT6/D1s7/i+9/9hLxIcNcVBWgRMbq+xmtnq0qZiAtafsVP/v6Hcl1wKLMSwzAQxS1O8Zq13iaGtUWpKo1nZyfs7W+ilbLy0e9+j1IkxKMRkRIMvru2wZPdbbJizs21rIZYhs9PfvQDvnr5KQCuazNodwhaGxiqhaoQGlbdZzDcXlWcXU/nq6++ZmNNbtjHa09wXJubq4jdLVnNsooar6mwfJnmnEym3Lt3j6oQb7OVyzOGHYfA1SlUz/zkZoTtuPiqDePqfIyvOyRNgqnf9ssrKuBax1LMamu7WzTCRU0vR69vABPqks0duS7jUU4hcvxORraU2eTDw0NafosvP5dzsLa2gWt7bGyFHClNOceyOTw94eQ0pTuU1/KcLkl2jOlJG1HPWiyTM1qhxetDOeeGa6JbCVn+Br/lqLnbRjQvcH2FRaUha8bsbu/w5lyViTUHtJLLm5golxUS27dJU5fRjayqJElKKqYM+gZpLjP1s4VB0PLodF2mU2l3RdXGdGpMW2b9TEfnZjThux/9UwahrJ69OvkFs3nEJ9vvr3AuZZ3jaDaFwjaMpofs3tnCsnssFE1/UeQ4ts9stkBU8r6i2MCyOhRC2pY4m+G1dhmNz9BudQpLF12HLKtWbYClaFim1ziqHc20NAqR0DQWhqqGFEVKks7ZtLawVetH3ZRYlrNiBjw5PWKZLjDNLrrCFpRpQVmL1Z6az6ccHNzHsdsrdtmqrnBsDU0zGY3ks2xstfF9n6WqhjqeRa01VJVYnVd6o+M5XbJMWkKGAAAgAElEQVQseasfpIEoSspavrNu4KDVLTSNt5pPhoWuS+bSW6as7Z0DTNMkv8WPGA6u7RIvYo6PZUuMb5fcffB7lELQKLpm04LlvGJtU9rO99/b5ed/PcHUbTRNtfLoGmlS4bo1hiH3Rhi4RNNs1fJUVTmaWWFgYLryO7olqCuduinQuNVmCxRuWN73cBDyi6sZrm+DqrrptkmSaQzWWnz4gTwz/4//7UswDSxLuScVJFlFnWR88h15PoVtg7KxWGYxLVNi5kyvkgLZkdxT/TDi5NAiz7dX+wfTZBnFNLVJty+v3+kFfPZpQhDKdRG1QBMNpgmzS1kB+U/+449ZRiX/0//8Kf/rv5D29IOnNVezl4TKnle5YNNpsXPvfc4uZYv4TZQRBB2uR0sevy/t9YsXz/jq8DWdjqwSB56Ja7WZKbFngLB7l0W6IFX0+74n8W2TeMH6UJ4zQq8Rk4iWP+DiRu0zG0Knx+mx1J2zAgd3v0t+LVhTOFCz7ZMnBuFaSarYO3/z189Z665zIbciea4hRJemWfLiRJ6/hy9P2N99TLezyfJKfvH5V8/ZOjggENJO3rm3RiquSHJIld8wGK7T7+5wfZ2y05dz/PrVF2xvfsyHD+QcRMsL4oWOFYYMNqW9MSybxd6CNIoYqE4js67RrXqFg/I8jyRJsC0DoSjjdWo0U8PxPUpVEbIsC9u2uS2nOY5FnueS5fKW5j3JKYqSeZQilGh5nBREcYqjYB51bVJVFTXa6j3O0yWGYRDNprSUvX61PITGwLZUu60Gga/TabdWDLdlXpJUgjTNqBXOM8sKdF1fYcMsy8KyDPrd7qqd0HVdXNfGNE18JWXhuwG5ElMGWR23bZNOZ02KZgOaLitUSZJQqy6YIsuoqoZK4RSrqkEIyTTYUfIajSkYDHpUih15MBjgux62YWKqKn9eljTTBstyMFQngNYYmIZLqqADXksjbHu4ObQUdCCOY5omo2hKbIXNznOB53XIPLme06jAtjx0e4CpWv3RdKzGwXV7hKb0ke/nE+Iooa5v8dQJaTKhKhrORnKft7oN11cR04ng4I7s9go7AefnEbFqidetlJurc6q8ZmtDitw3WsxstMB1N3G8W7uk9MP+jvE7EVxBQ6h0i0SZs5hNCVoemipVtltSc+rZl3+7IhYwLR3LMdndlOXptBCk6Zgkm2IqEUHDyrHshJubG3xPtj213D7jmys6PWkgF9OMdsfFc4ayKR1Iite0u20s3WdjQ778eV5RFj6uLzdhK4Buu0/LW5IpLNEy0iibgnZ3Y6XCrRsNWTFHU4BF29Vp9Jg88egoPE6WpxTFnFbHIYpve1hz4qXB2tqt7sQFs0lA4OxRKZHdaDmnP3hAuz3DthRWoqwRaUM7lMau3ws5OT3l8ZP7TOcyiIiiKbNlztaWbJGbJ1d4joHpZcwW8r6zNJKg6sairbR2Op2QL776Ff2ebOG6mR7SCrqcXx2vNLsSsaTIGta7O1wrMdD1wRauZ3B0quiTByGxkKKamiYPRs9rM0uOcDSNupTXujq7IGj5HL6WrURoc2wGLMYjeoFa92yO6bg4VhcVh+LYFWkxYdhXwtGLBZ1eh+Fgi6NT2S9/ejymE3TpdibkimL8+z/Y5xd/OSPw5PN+9PQTDl9d8/S9BtdXxqhK6LZ22frwAV99JvUUZlnGYDCgrdpDDEvg+W200sH1pbNaZDfc3dgEseTluVy/g8cuRRQS1/L3ttZCBv0N0mzO6Ea+uEl8ytamy/bGLtcXcg+tr1vMo4j0FrfUBDza7zBcs3lzIuc8z1wCy8VwMnCUoOX736TTa3NyKIlG9nY2iOOEwcf3iBbSAAZ+B103ODy85vvf/wiAujKpmprvfSxbDgfDFotoStM05IoiO6Phyb0DDEtfOQmLecr2bpvvfle2ul3dnHB5PqLRau7ek3s/n42wQxs/kP9/9MDHbxmSTlm1lQgRYFs5TV0ihMJzbW9yenbNdz+R2lt/cfWv2N7oMhcQK1kAw7wVcL1h0G+pdUjJkhF+W+3pbout9R3my2NcFVhsDDucnhdUJUwj+c44QYerG5ONbTmX8/SQ2ljn17/9mtuRLXVwU1xzyNlY4jDDjgW5x3QiW1Q3NzpUHgizRsW8TKOUTt9hXsxIIrn3j09O6HR9KlPOZWsQ4vaGRMmEoC2d1cHGFpdXR6zv2fSXslVpGZcYVoKhSAXCgcF85jOZT+h0b/vHS9JkgeuXKy2xpskJAmvVkiPKhk++84/xjacI1TI2m80oMrhzsLlqB220BIM18lzZwPQYh1LioBSluWnVOI7D5fVLKqSj1ut+iBBi5aAELY8iL7kZH2Go9p6g1aOocmxHX1ExL9IpSX6N7SkdPxw0U1LA3+rOTMYTCrHAsd7DUQDoNF1Kp0j52E0jKMsCg3DlkNR6ia7V6CogK6uCPKsUCZEiYGgMCpGgax7j2REAw/UA1+6sBIqzbIHrhYg0od9VlNxZh1bQJ8tjanWuubZFVWlcXssEjNsW7OzeJynmoDTQNE3q09VVwb2HMiPQlJ4E+yv8gShrRFGxjBb85O9/T36HLrqmg9DJEmlLul2L63TJcFMGNql4Rl0PccwCFX9R5AZZWnD/IKAQSselcqmEja3Q8g1QVymT6Yz3Hylig1yjrHwCzyVRzpzru0Tzgv5AtVRVJVURYAZgKAxbViVYpo9jTRCKRj6a6RiWsSK9aIoGwzQpxGLV+vX5by9I0qf0PHPldCbpAq1eo1npN16QLtu0PWeFoamKGtNyWUwSvEBR6WcRdblGXqpEpqWhlzWBE3CpEm/9exZBOKM7cPnlL6X9/OCjb5CaU/oq0D85OUEUS6pNSJVwYFULstTC0N0VrqbTDRnPCj77Uq772tBn2N0nX7511izX4fLNBb1ArrntBJTUVMLEVnIby3SEqEyiZEquMJZua4txc0FHSWHWecbF8SviaoGWyPPw3tYuJ4fPsFsBeSMTBO8/ukd7fZOzC3mmxfGU9x7/MWW15F//haSb/tYf/CkX58+5ji+5VOeTE5gkWYpQrfSff3ZMr7fDxu46jWrPKuIbrhYZw/5TEiHv87sfPCaKpiQzhRVfxrQGLURV4XpyHepGUFdLOn2fRCzU3ksZeA9AU6ReGAhTx3BcHEXGY9k6Z+enmNkSx1E45aTAshp87xbSEKNTI0RNoQTXHc8nyRa0Wq0V9lRrbFzLW7XelmWJKCoyUaxsoO+ERFFEu9VDQbooNYNOx1r5eI6t4fs+juVhWKq1zZVtiU1V/n8SFxWmqb+VEyhr9Z0a01S41lhqffm+u9K5ggbX81e+r+NaOI5JWYsVgUYcx1RCXm+ptKFMS2c6na78avlMGp4VrEg15M/WK4mFeJmi6ya1VpOIW8F1A6MxKIvybUumZmFaHpaSBcrjnGQxw0YnGSvcuWai6TWmBa7Cvnp+R7YqZnLNN/wWdaWj6Q2LuSJT0xua2iQdXTJRWo2u06LV2qFWbckNLbrDA4So2LonbYSu62iVSVMbaGoPvT76grio6QxksLW+6SOyBUevjrm5JUXb7DBse7w+PCVUyWnB22TIv2v8TgRXdV1zfa1A4ZqObQeItEKdu5iaTrcdolHQG8oPLa/m8NU1ldJXCVpdhIBBeIe8kk58nQ8YDrvUKSQz6XCFnZBh7w7XY5Xp0UyqOiNNSna3JPDu5GJGXufozWLVM29ZLsP+ATdTmRHyfI/lMqWhIFDZ5mQZY9k6tm2s7r3d6yEKVqxcRV6wmAl8J6ITyiAlyxOaJmUyHdHqSMOZiYyiEugKiFsKi07HIs8yjs+kQ7e7fZ95dE3L7yEUOYXjymxglsl5ubk6R9NyXr/+fJWhresMQzf4+isJsK2NEb1mnfV1H72WTmiaj6g1CbYso1tRvwrXWmOZymBnupiziDO6A51ZLrENWVoQxxmV4ZEX0ojYnk2WGHRUtSleNGRJjKYn5KU07nF8zcHDDc7PayyV1TT0CQ0ZrZacp3Rpcnk8InAsjjK5DkdvZKVje2+TXlceROeXF1huyfRGvgR37pu8fP0109mYxUIGNo8ffkCewnj6EkNls/7Vvziivf0Idyjv88vXLyjzKdvtDoZS5e47IQ93vsGnJ3+z0gnzHI8g0FaHvGZobKx3WNtweP65XKutnTv0fFhOBFvrChheCIrI5/5TGfi/PvoMvdmi2w7otaUTP5iabK3tspg1dB5IDFtVzHG0jZVGSae9jusZjMcn7Cgcjxeso+HS6a/x6kQe4gcHj1hEN/T70ogNuwdU+dd0ez6W3lFrZdLUOn/yp/+AaSSdiEUcU1YlU9UTvbyuqOqCm5uI7W1ZvZsWN/h+G8OFtgLx3rt3D8dxVsQfpt0wmwsePXpEnMr36tH+RyTiijRVTEGTM9pr65BZ1JY8ZG1Lw2v6eAGM1aH+4FGPh0/WaBq5Lv/0n/wJi2nG7OVzHtyTVaKt4UP+O/4vPv5wSODfCm9LJrbCVg6grbHW9/GmA0zFBLh3b0BJgmY1dO7LZ0lTwf69Hq22fId+/asF25t36fZC8kzu4WWW0urfYzZaMFWB4c7BNlVWU0+V3QpdHEdQihRUhv/j959ydPoStwV39w4AaAc+rV6LZS7fUZGaBEEPx5szj5Re1SxnZ3eDJOpjt+S9u+GCm/EFQTBQazcnaA2x3DlFIm/q/aePELVgPB5TKcY5TSvI0xhTl+/xew9+gm+/xzR6xf6WZF/62c9ecOdRl/sPd4nmyvnQDCwbzi+k09QfOtzZ/5CKHF0FCGUpD7V5dE5X7b1eZ5u6yVd973pjU1YlVZOwtb0DSKB4WZZglASuIoYZvSHNZuz6kilTa1qU1QyaBl1VymezGZats73+wQpbp2kSi3WLx/nNp78krzP6vS0ydYYYJlS1TqUqpsfHx/zBj57SCWVWGEA3LAxTVqUsV362s7uOobXJi1sduhpdc1gm1+ztyWd59PhHXJyUaFq90t7RjZo8KVdsmn5g09Q6ul2ugsJaCHzPYTq7YW1TVevoUtU5VLcaNw2mbVIUCXEqbUTQCcmTCq0pCBQZz3IpyMspm7sKkzjTyFMLO2DFpik0i0JMsRwD11QMbdk6uuFSI989DQNds+kNBAd35fNNbkqqwsVve2TKEbZMjarUua9YFMuyIk9N3I5Glso59z2Lq1nFnSdtbFVdFoWOGzjkivDJtm1ykWFYJevr8iwYvZjKDgkBukpAGE1DKRo0JajdHZgk4zaGoVGrA7kUBugmjUgYKdKHjzt76JpHLuTzlY6H3lhohSC/ZYS8OWNrvcOTJwf89Kcy2Pi3//uAn/yzJ4wupS3b2Nhge7DDzc0FKq9AXi+ZTiq6wYDrU+njdPs95rOEx49k8qrIR8SLGQNF4AHw8vkXeK5HFKugQpTYrRazJCd9LRM14fqAsBtQe0vGhyohEKV017oUynle3+hzmWekN1d8/aW8llYm+Ft9xCylvyHXL3CGTCfPKZUm0dMHH1BU17Q6Nt//8e8D4Hoa3vABWZbhmtK+kELY76AbMkmq5zCPJxQkhEp0tmqAxqQwLqiVjb2ezCmba5aRfOa1tU3StKHtWZz+6ueATObu9jf5+tUrOmvS8T0bzbi6+A1PP5Rzl2YVthMQJxlCiUIHgUdrbYM6r1GvMr7fQuQFmcLVRnmCyDMs21gFGl5RU9YNWRKh4npMHXSzXrEhZ6LC0Gtc31nZLtN2GQ5b1HW5StRUeUlV1qQzGUQsRIVhaNhmQ68nz6elOcexA1zPxlVaW4atSdIN1XZT16BrNnmZI1T13BuG1DUUxVsMqWnKgEqv1TtUCuIyQwhBtJDvEbVOVerYho2ncFiGoXFnbw3jFj+GRtNAWVQ0SiA8z5egm1RCkcL1BxKrZhm0QnmdusoRSDZWW4GsptMpRTHDVYEbVYWl22RFjdtSTISNI7XDmhjLk58to4w6Z9VxUyLwHQ9RFCvx4bIs8FoBVVXhq2cpq4IyXVCpwFQQk1NQ1/aqKLIoDOompiqaFblRd7jH2qa70tqtNA092OXgvadUheraqhZE8TmGO8ByZGI/juTZ/HeN34ngStek8QAYRxc8uP+YIjdWWdTJfEIhMjTHIVOpgePjK5LIpTdQEak5x9G6GFqB7iphPH/JMp8CLotYluktoySwLIQSP3VbGW1/yHw+4nomQfZFkULa0LhjXAUQXF8PieMbamXwF3GCbozQ9BaLkcxurQ03KRcuaXpNrZw+GoemNLg4U+1vbiCrSlq0Evpz7DYpAk2rUUlinKrL9rZPU8mNkxYJc7GgqZc8uCMrAfNJw/7+PebRjFI5DWevb7AHOr7KMl5Pcyy9Rg9KsoUS540XbG18yHBN/j8rbNb6d5hOT9DVfXue3LiNs+T6StFRVjfkIuXhfWnY4s9fkUSvaD/4E55/LWl7DQRp1GDpM1xVPq0bm8bQ8I0DAEbzMePRDe+/95iuKvN6j+7y+uINDgVRJX9v4Fk43oBWqMCd2h7DbwzxnAGLE+mwf/+//CecnxT85qf/nB/8sRJz9HxydApVubi61OgMPmLbg5dzldnBwvVzBuFTsrl0tHs7FdeTiOZYzoHt6uw8Wmd2cUmhymIf3etyefZbNtvbnCWSWGS7bzPwQ66m8vDUgjZfPz/kW9/5Hp2uXPe9zT6X0wv2791HO5VBi24YZFpMEkmH6N6DdfJJwmIe4/RuqXUD4kXKR0/v8tUz6cSXucbenXXOL+W1K6fGbq3RN8yVuONkdkoDdDodnjz6FgDHFy+wzQ73D+SB+ubwCKflonlr1HNpRE7fvGR7/z3+5jdf0goUyN20aLV2uR7JgHaw5ZGmNmGvwg/k+3d1PmL37gZ5YfHitWxNCrw+ZZayFLIkn41jPnryhM5+yNn/fQTA1gCyyqCppWPjD7podcrF6NnbanNokeYxIoPKlPdk2B6WazJXrSdl2UK0NH74935EnSnxSsUe5Qwc6tu2p0YjzxcM16WBtP0pJhqe0WFjSwZg8/mE7YMus2jGYFMGq4vFjFl8zo1izvzmN/6Y56/OCAcel7E8QANbZy1sczr5jHAg78Fvb/H85m9xVZb87GKGaXYZDtrc2ZHP9+b4nAf73+bF4c8YK9X49qDNcrnEUeKn7Z7PxeUlvYFN2JKORpYeM5uUTOa/xnOUs6MJHGvImzfKJq23KHOfwA24jGSQfXW5oBBzbFcQeqoyL2K6a5uEnmyD8Jx7zGYnuGGf0fS28nHD3/uz/wjT9VkulNSD2SAqjyKVa/zNbz+kSoaIJKJUQXZTucTTJU0Z8cGHMijKpxplbaAp0gtTg2gZ4bZzwkDOi2N1oW5oqgRbZWRHoxMC32TYk99pjJK6NinLClclN+L4BsMwsK2A2wC2QWCYJtOZtC3bextURkJRFFSVoirWcmyzQ7SQ7/83f3/ABx/s8upzB8u9bcED22oxHc+4d18mSdphn3iSolm3oHAPXSupREnjynfh+toAbRvLtgEVmOKwWER89J5sh7uenuLaHlGaYKoW57JpiOYNRXnM9q6sHF8dDxB2hXnrEZUFmulwNbnmYaCon1MN3QlYRAtM5SkaZoMhdDbbcg9PLodUmk5lVBjKKdM0gwadrXWbOpFrnOQlll/RqLKfRkFTmuik6EK1WRsbOOaEmpJGnUW230Y3Z6wN5bzcXAs0r4VlOZjcgsF1ND3nvaebvHwp7ctNpGP5OoFQFRqRkyUL9oYd1nZVS9XXJnni0QxqqlJR5xtD5vENVS3PhsDoEhNSoFEpx0nXZZIwyaY8fCTvvZi7LJcNpgrAzFSj0CIMo4WhmAjXtnpMRyHv39/l7FTa4V8++5wPnu3hqMRGVTaYlovdqhkG0pZcXma4bei5DpliUby6Kigbi0LZDdMPsERFb+MttXMaadzd2WY8vaVKNylyQzLsJdKpW6t3cdo116cpnW1VydV1bN+lsybtVlwsqcsRuchprcl35vz4GWvrXVx/iFVIOzXKX7CIYacv53w+G1HrHRy3ha7L+Tx6fUWr3cc0e7QcGSBkRIhlQ7sj94bV38Dp9llMv+L6Rq7Vk4++ja5pHL/6FW9eyGttbW0xWiyY3VYwCJnPp7TCHSJVDSnmGac3l1R2h5tDOQ+DbkVo2Tz72b+Uv1+1CbpdWkFDkcl9F+p3WeRvCCyLZawkagqBYTc0qkXNant0vHWqZUyZyndtc++A8fUFw527WCoRbekNVuDhqoSv49o0pWSzLlQg2lSQZQm64a1Yr8tCoxWGLJaqClcLXNtElCaGahVsKKg0wXIuUB2NmJaJpusIlTip8gyzWWDaIaZ5SyPfYCBFxw1F1OboIUW6pFHnYykaNFxsm1Wi3/UbDN2lFDWWrijxaykdcRu4JUIyplbl24pwXYNl6RiqcpbmYhVERUrOp6oFGga2YzJXnSOWZRGGHqmyI7btIkSFa9k0qo3cdhqESNEbnbpQ7yglpqXhqCRUkiQUQlYNfUUmEQQhVSXk/5vbgBJqPcdUcBCZkKuxdGNVGfQLgWmEVFW1oukXhU3VlDSaYpvUDOpGJy/z1e+BT2ewS6s75/ZM8Qf/frbAd4QW78a78W68G+/Gu/FuvBvvxrvxbrwb/wHG70TlStN0NIURuPfwCfGy5GZ0Ra0E2HrdIWlWsNEOEHMZPQ+8O+wP9FV1q84cWkFAnJ5hq97Nmja6rrGxqfHwyScAXJ0nnFyc43eVYKgVYmouYfC2V9xxHHzHk3pbt330S4s0G6Er6lLQiBYz/FDQbctM8pvTC0QBnX5DqnQgDN2k09NJVUtOWlywOB+jWQ19peuRVzWFqPG8fQohWwycIEBUBflcZrJ1PaPRfaJogWe11Gc1xycnLPMFrZ5siautitevJfgeYGd9l+l0wSAc4nTlvb/38Y+4Pj3Hs2VGcywsahpKQm6upIDnk/v3uJlqvLl8wZ/9g38GwM9++a/56Ju/z+Hr5+rZXKxgh7Nfv2RnKDNnYXvAWXPOIHQ5O5ZZqd33HyKKjEWttJT2Ntjv3mXCax7ekZnseFai6zpe6FMp/RZvPWR+o9MN5Rrs3R3y5moKTclP/vF/BkBSWMzO/opv/MFDDE1+Twt0jKXPelfmDpL4jAd+B8we73XkPK13u6SORXS5YG9f3nt34NKcjPlgVwKGl6UgTXMe3H/6VoQ6a2iMjFK7ZP++zN516NBz1tCVTlIczXgwbHP66pc0Kjt59jJi9+5TyEtMlRE6PvuCp994ykC1o0ZXKaPo55ALily2Qe3eWeOrl5/yysm491B+79Of/z+k8zmhomttOQFikVE3LpoqdbfXNolHE16dTkhypfvk6BiGwem13GPjdM6jjQdEcYrVUjiXYhutCXG8aya3VObGBujLlRZO298inR3i6A7nZ/LaD59+m9k8IUtP2dySVaGwc4Cl5/SWMi1nDgpc00IXOtv7srp8fPgKzTewm9sK7Rmu5eNbWyuaYOolTqjTlB1M1Wq2SGf4xoCxImTorTf0euu8eD2n05Y2YTqXrb+jeUqj2jo3NwY0ZZvzK9U+5YfMZg2V+YqbiWw5WkTghTVJIbgcy7nK8xTf0wgUtbfhaBT1KW/OYzbXJQB7ejMiSQrW+o/xbJmFLrIEV3vA5eXfAHD//n3yVGceXTOdSnKMXnebl4cvCVp9hBJzns1mhGFImsp3YTqJaHcNlklEVcl97ntbdMI+frshXyoNqyDg4vKYx+/JNh3X7nH2ZkSjW/zwR/8FAH/6h/85k/mMxhjx9bNfqL0hEMLh018peypGtLwOlSi4UPvlez94ysHdbQ5fl3iqhQNM8mK5wk5NZme0tC10I0So9gxNF2RJw5276+xtyUrZ65lLFguCjiLQMDuMxxcYpJiNrAhVosZ2K9I4p1Bg6kVyRtAxSJQGSn9gIcocx7HQkHv45PQV69t9LMta3VdZCXTNZj6XFbYn768ThNssrisMlSFtqoqqKhkrcpfv//g+k1lEhU/g3GJfZdZyEV/wB3/0TbWHBdOioR3IlpVCCLAEeVLy9CNZJRaJiah61HW0yphqtaS8fvKexL4Okw2EEDiOsxJctyyL6XTCJ598tKrgn5QZDjaVuo5pOaRJjONP2b8r9+ebS03SsNfOitAiy2I2twMahRWIEwPXaSirjPK2hdtvIcoYr+Vz+ELOlaHtU4sCibaCdq/LfBSxthmutChffDXGdVvoukboyXlwLB3IGKiz6Te/Osa1AwwadOtWcDlF02vaXYvLU3VuCxOv06JW+jWe7REnKb1uTVWoKhwDRLVA5A616v2y9ISmaVZioLbpoeHK9qnmFveVUzcmULGnNPMOX44wnAfc9oKVIkd3NCaTjLqSc9ANHRbXJppp8NE3pR1+8y+P+Om//YL/6r/5AQA3589IyxTX2qTJFI7H0LE8l8YS5KpDwnNMzKak1pVd9EyCtstctWEDWH7G0csv2NyTxD/zaE7PT4njGL8l13gZHzGJNOJyiZ7KZ7776AMss8FRNsL2A1ytYK33e/iKFvzN8xS71aUi4YvfyI6T9nBIU1p8reAElmWhN9cU2gShfJm6hmfPTumuT8n60u5HNyd02n2MUHbTXD//G5zAY7C2hTmTVaqL82eMFiU7d/Z5T5FxlElC43n0hwo/OvCJCpfBxhbDgXz/4/kl6bKm1AI+eCTtWaNNKKYCV1UnJjcZfj1ieTWDWv5d4xm0jJTQ9JkkRwD0wl2SyxHClmd934ip0ylZkRL25bWT5RzX7ZLnBZnC3y2jmkprEdgKA2lNMBhQlFN6PUV7nlf0+i3mywVVJd9Ry5lz9OJr2h1ZLewNfKosxtLCFR28o8tqm+u4K11EIQol3qt+T7fR3TZUDU39ts26rmvKSsdULcWz9A26XlNn0iYEfoiuyUrYrf6fyDMqTSPLKrJcnn+aZqJr5gpTZts2VZ1jWGAr6nVdtzEMbXWPhjOQ4sMAACAASURBVKHjWS6aZqCrKnVVGdSlQZplGKqiXuQVVVms2gvn80jpjlVUCgMpRE6WZei6uWqpNE0dw9DQDfmdsO2ja1IHdj6T61LZDUIIZtPliuSiqiqqqiJQ5CfzaUbTSFiRrlqFXb+mqhuKXKxEklu+1EVTU0ld12RFimnUTMeXqzkPW206rQ6R0lgbhApq8HeM34ngqqzEqn+1EpL17e69bWKlnK3jobVclsuYQgVAa/0BabpACbZj6g6z2Zyt7XtvhTDrgrLKaQVDnn8lHa12N2Rtc49SsbGUaUG6bMiKcqWnpGkay+USXbdRvg3zyZQH720yupETO5kucL0hmh6tgjLLabG+7TK+tKkUcHPvYB/L1khi+fuz5Q0tf5NCeLxRxAZFccPmxj6pmHJ6Ikv+7aDNRn+LRjkMZxcX9HounV571QYRRxN6w4D+cIPDQ8Uq5Njc3XrM9VgeoK7Zoz8MeX10gqFe2Pe9AZ1wyGwqf+u9J+/z2edf8+jRI7aVwShyDdeDteAjppdyrobDIfHcoIwVNmW4x2TpYYYz7t6RxAKZyIjzmr39+9zZlIvTdm0uz09JM2n8vv2tJ/QCjb98NuJGsbiUywiryrDtnA935aatyw6hcYansBSTukSkCV465nL0awDOzyOqKsbQM+aZnOOnuy3OLjXWlADj2qN1Dt8cEVoeRks+3zIeYWkDHt65i23L+bw4fYNTJ1yP5CG3eWeXZDJHoBEM5IFWpAVkc7bWe2QKd5JyTmmmtBXJBk1Nmlzye3efYtyC7KdXlOkNJzdXiEqWmnc234fUJTuRzmtrUBMvpnQ8j8NX0hlvdb6L569RaSF/9VOpw/Dg3hbt0OPiXM7dci7odzYYTSZo6vf8DkTZAseBeSwPufs7j7m+mNFW2k0bD7YwKodleUOhhCJttyKKvmSrv0+W3bbgzZjPcvqqh/7TX/0Fg14P1/FR/h1nFxeYmkklPO4+lQ7lyckhQsxXBj8tNZYktBYFk7ki9bhzwDi5oBLSFIV6B9sN2NoMmSi8gWW5eP4Wo/FiRaBRaVDlKb7C8Wm6ztnFG6JsSalahxdKoHYynfPxt2UANBnHRHG80rSazMYM1zoYTY/RVD5vp3WHqsxx7IBUaXblqYPrhgiFz3t1/BovGGCJLulStdeWS7Jcw7KGsrUYOH7zOfcPvkNWSCfJqEOybMT+3l0q1VJVVhWLakajG4yVHp4oMwoxYmNTOt51kyPKhE64QaGwIcukYha/oSxLHjySDt/Ll894/+NtbuVcLBvu3L3H9c0Vm+tSFPb5izO2NvewvE1+/MM/lHt90ObP//zPubiQ7Kvvf7xJVQtcs42uKcbUoEAIT6rWqqHjkBUJolaJlN1tLl/52Hazam3RSImTBWvDmDyXz1yLFkHLQKsVSUKpIcScO9t3aXnS2dHqClFUOK7OMlbYWr9P0P+Qjj1Qf1eh6zpNU63aQDFi3n//exIIru61oUHTdBIloNuyrjD1JzS6hqYpditNg9oAXe4D3U6II5+m1inKWxyoh9aYFCLl9Ey2/F1dhQTtR6sAsKoq4qik3/PZ35FB9slrh0VSgl7d8iaRZQWmVXL3vvzOm9OG66sSzWGF8bBNF+ocz885OpR7w3C2pEN0y4apG0TzmAf3AhaJPHfK8kOKKqaqS3T1PqRxg9sTaArPdT1NKUULrQZdnb+LxZywY+KGJXkub1RUNYHngiHtfpHXiEpjkZxwfqlaBbX7uE4Lw6y4DcI0Gtqhwd6uTD7+/C8nBIELRk2j2MmkYKlGo82ZK3tqGB5Nla8YKW0jAAGPHm6uWpUOX07xO13yNMNTDG0YNdF4xh/9mXwXXr86p84tdAcsJVqclTViWaDZBaZipdRps8wLbIUxs3WXGlguU/YVw16yuCLPd9GNht09+Tx3Dx7y7POv+fLzDwD44L0BL357wvZBQaTaEMsmoOV4uDR016Xd7fV6PP/iOft9qU1VWA3z+QXT6FZ3CzTDZilSKtVi5Tc2J9dLwnWP0Ru573r2BmHbRzQOU8XM+fLkiHlc8INvSYKb4+tTdtpDhJ5y/Fq2CptGC8PeIM/OV/eEDUZZ4XrqTFlatPsDJvGUvJDXPr8YgW5z+OzXfOvpnwLw4PETnv36ENeXfzdOLygiGEdn+I48x6NoTC5qqmbIm3N51m1v7nCw+zGWwgxF01P277YxqpJj1XZZW0tawxASA11hQ3/16ZfcefLhCmv/6L1vsIxvKMeCl+r5jI5BrzdkOZ2jF/JdnhydEi9Ttvdk0JlHCY7jcHJ4Qrgm3+07B9ucvnlNN9hnc0u26k7DC7LFkqCt2HsbC8OAPLa4UDpQg3CDk6OINButWv7C4S6zxRGmagdva30s3aVqdCzVRprPC0SZUpVv9RRFoaPRYCoCtFoviJY5vuFRqwSh45hUpc6gPVwxjVqOh2F0MbXbJIIUA66bjFwl9mlqomSE7wcYqmig6zpNrWEpOSfDbGi5PaqmXrEaalpNXVcrFk4hBMPhOtP5jFboq89yOq2QTq+PoQSPy7KQ0BIVNPmBo1oOdZT2MVDjeZ7CmOrqnqRG1i3udLlMieM5ruvjK5ZB27YRQsMPbDRD6aLWkKYF3Y70ga6uZjiOh4a+Eo+eTaQ2mK5pq+snTUndvG051JuK0LaoqorWWlvdpy61w9IlvvKxsmXEv2/8TgRXTaMThAowWMyZTmIMw8BRPfumldLy+0yTUrKfAUlZUAkTS+2KZZ6T5RGTr3MaFRWvDTeJlwWimmCb0rHXarg6n1Ch8Bi2j21b+EGbZSxfxLxMuBldMhj0VpnP3Xt9Lq7OWaie3VozaPvrzOPlKuAL/XXarU0i94juUAZqb84v6a1nKyfbSu8wGl/S7gUUS8X+EglmVknVLAgCdVDoOaLJuJxJg7Gxt08a6eh6h2QhN/3u5l2CsMH1A9xvSifs5fPPcE2Dg8fSQTn58jn7jw4ITBvXU3SpG+ucXswpSrlRbxZnrG/q6NqYeCLnfBIds7k74MH+R7z8WgJoh1vrxKMpn3wkGakuj3J299Yo4piBOrxenqes+x12+gH5UjpOIksY9g7obqqDOKtoPJP3Nr+HpwxGXl2zvJ4imoKWElNcnESsDe7QWpP3OZlfMdjdoxAJQnHGbgcOy6LGDOxVH79eWpjlIctSOt5cm3T8fZaLhE1Fkd0kBUm65Lo6ZFOBJHvDEHsRUyrx2q9fPmPgtimFS67YyjQb3NzGxyUtpJN7lc052Fzj4rmsAuzv7FJ5XV6d3vaTg+fajF+/RHMM+j1p7FpBQ6nB0aEE8HonFkM/IGgN+f73bqtnCRtrA/SmxK/k9RoRMBnXrCswcp4m+KGFn1WMxnK/iNTkYOsxUXSKO1TsNnGK7zbMFU13sGZyPb2g0w3QXXkIXJ/llMuKJP4tg45KNrCG7kWcX8ggzXAEhm+BUZMrrNZsHrO9fxfLG/Dprz+T91nVGE5GRxmxq+ua2ijJ7SlBS65DkkkihaAvA7frc4GgREvPiFMF9LfXeXl0DFqJE9wKi9eI2lgBvvU4IokNLGfCoCMDKUsJz+5trTO9kM+3XOZ0wj5uIPfrbOYisgyj2UYUMtlQVCPm6Sme06NRAqU7O/uMxxPiparmWT6u1cF1Km4mspLb7ftc3jwn7NS0fOmAWU7GfHZBp1Or31/iWgF1ZSMqufeX2SWO18M0HNqq2urZW4ynJ+RLRYThlGRpjWOtkSp2y7oZs7a2RV3ZzGZyTQdDmyKFQAUoo+mYmgjHeMTZhTxghmFDenRIadR0FYFOOt/if/gf/3v+9D/9ibrPGM83KHIfR/Xat7sBSWJgWtrqsAKDWpQU1ZFcK/dbNGWI5maUt1gYy2E6znF6M/pKrqBB0GgVtZJ+WIqKWstodyyySD1zq6RBl5gtFTQMtxc8ePCE0+eK2TVJEXVFy3c4PZEEBf/wH/0Yz+0yu9ax3FsqZIOqajAsaasfPu3z/Nc5eW6vMphZkWPUHkGoKgo2NNUQ13dpGoVvBKIoYmPdR1QymaNpHRoKahV4u55DtMhwuguqUokYJx5llWHqBmUlr1UXNl6gMZ7JZ5tNh1Ro2Prb4LUqGtJsiuVU2KZ0+KLCJGy5K+HPWtfQavDcmssrRVHttDFYUFXViu318jzG7zTkSoizajpYhoUbdFnMlWNfa6T5jPEsx/XlOyomOWCj2KhpGo2yLOgMmxUTWZKAZuiIKsO2b90KnbBlcXQqz4841nADnUYDTb9lt23wXY2yjkiyW5ypQSXeSqMYpo5jmdh2Q6QkRpJMR3crHLchVxlWPdPRqag1Re8fmViWS0O9+o5hWmSJTMYlyr4s4x6Vpq/OeiEEru+zXF4zVListd4+V5d9kjJHK+R++eCDjzl8+Yx/83/KRN/O1u+xt9/izesjrlUC8t7dgMnpDd/58A9YKPyUUerURk1iqCqDZbM9XGOju7Va9/loQeA7lAo33Gr7hDc3RJcJT57IROb18Qnp0mF9GNBWMic1DdubFs++/DcA+INNbpY1DSZtL1DrnjCavsQ3AvyWDBoOr095cHCf0VTapMvJmHEWMxhsUSTyHH/6+DtY9gKtecgslvd1cjXC7RkIhUXHcul2fGzdw3Dkej578Rn9zpCzs1e4t8QpZcoXXz8Ddf4X0ZK7e3e4Hr0iU9Ta4doWaa2xfb9Hpy3vYX2+Q17meI7cY5fjS3b3tzC7OvvvySBXZBHJNCZzBbMLGfS9+HrB93/yY07eyLX6+U/P+P4fPqXWPcZX0u4fv37FxsYW5fQZX3wubfqDJ4948dnP+OCTP5LrUE05PJzSGXZxbZkgPDs/Z3v7HrPlhFqx2fZJeHT/hygSVY6OnxOYAbNpQ6CqdaZW4Ic+nqGtZAfSOkYzwLmVEylg0OpQ6RP0WtoSrSkI2iVVmWA0KhlepNR6RF6pBIHlgdZIHFL91ga2WiGg0+0o4rJsSVU2q86cpqmZTqc0jUZ9S5ijZei6vrJv8nsN/W6XVFWzdN1ksUhYLGJildR0XXslhg6SNl/TNLJsucJAaTrYpqxaKTMsWV3rmtlMEehoGq1WGyHEKuFbFBl1XRKGIbaqgtuOQ7tVre5zZ2ePPM9XtPYAZWmiaRq6rmOab+8tS4oVn4LruswmS/VveZ+maaBbNVpTrch/uu3/H1Su0GvmkSr3azpLMaXjd6iRCzeJZnT6PeqlhWHJiVvESzrdFoVigMibgrSKyNIZ20PpdI4nCwqRUjU5t/a+THIsx6TdkgsyW5yTpzqnV8u3ZdempD/oYDr2KlM2mY2J4ooLxWroe21sZ4LITWLl4LmO4OWLV5huxIsX8nu9zg7pfI1StbrpxoJ2cEDP22MYKMN5fw3Pdjg+PuTggVyw1y9fEd1UfO8bPwQgjgS5nWOZGuG6fBHi+RjXbnEz0aEtjdT93X3m4+mKjvrjB98gNxN+/Ee/T5Yp2tyqwLU0/l/23qRXtiw9z3t230Yfcfr2dnmzuVWZVcmmSFEUKUoUIEA04EZD/QLbgOGRNfTMMKSJYcMA/Q9s2ZYGFEVY7IpktVnZ5+3v6c+JE33E7lsP1jqRnlAjDcrAXaN7DyJ27L32t761vuZ933uH4gC2sbNLpVd89fSP6G0IB992d4lXK+x+RlfqqzzYOOa2ekMs0+IHB22qJEPzd9Y0sk8e9mg19xjPr3EscQ++1WY6ibjXEM7h+vqUdKmwu3PEZCyulZhdYi1hmaWYdxpk+1uEWUIgN8bDrR6ntyuyEpC/pxo5+/fu8+b15zSk1pZl79LxE2YrYRt2VqIbOVvdNmevBHufZ/sYispoOWNjX8z5+HaEZ7dw5GGyt9NBVxLG1yu8UgYoSojfdKA9QJcB+nZYsTqdsrkryACeX1/y8PgeN+MLbk8F9bvRa9Pu9al0F1WToOx4TqXDg3cEQYiju4zDJaWi4MhWmnbD4asXv0DJlmxsS0bGVY6i2kxy0TJqmCo/+uk3HN/fYRyIv7WUHWrTJK0NHEmAEBYpqZoTSmfTVlVqWyNOp0heCNxmg0ypUXSNpWSlW84XHN3z2DsQ1zk9mzIaL7Bt846nFa/pcjMcUttXWFJL7GjbYRKY6wpGkpxgNlvMliq70rlH8RQqd83qVJYp01nAk4ePGd5IYHNRsVjdUClTHm2K9t5lkJOV8Zrhp0htNL2m0zwml8BYJPNlGhvUUrNHVTU83yK9a58wtxhNX6GqV7R94TdsU0NRVHTNxJaH89urSwynotcTm/xsopDUCb5V4shWwTL3afdjstDjWgY7nvOIyeSKRls65NYuqAaT6cW6EtBsb7BarbCNNrubgnxERcEzt1GkxEJWVrS8AV9//Td0uyJpcLj3EbPlNWmUYFri+udnC7pdnVoRgUavv0WRe4yuOjg94SMWyxRVMcjVkuMjcWD/7/75P+fifEIlZQHQKtJUp1JCFotLeQ8Zq0WMzhax1FPzXY/pdMzWrvhesNCpqMmrGhTJMpo7pOUVg22V83NxiLecQ7ISDFNsYotxzqPHO2hWRbiQm7paURUavt/ktVy3D54YlEm2bitRFYMiV6lKZU3B3elbXJ9FUKnfshFqKkmcEWeSstrZII11VFWhkJTKpmkSTjLawi0yHN4Shftoeogmt0rH0oijlGY/Z76UbXnsiAOBDHbiKMO0ctLymtMTsTeU2fdRtZA0rVBku0uwLHjwvsb5pUha1MW+zOyCJgOLOMpodQzyPKWuRLVO12zBgijnQFF08mzFoN9C03fkvWcYhgO1SiCThq6t4XUSnr4UtqFbj6jyGWlWrsmHomVOu+uB4jCfShC466Lr6rripmkORXVGko04P5Wtu/VDarVEN0wUVba7Bwq6VWFKNi/DtNBMC8NmPZ/nk3M+eHcHzwk4PRO24bm7pCXcnYkUDVQ1o91RWEm5jShX6DgaURzj2zLBGiYMmgZpLK5jWztERY2qVejckSsJlrWGVxAH4v2tAo1aEZlpYQcuq2WMZejs7Yq1dnr6kjSrMRydSIL4NwZbHN0/4NU3gijmT/5ij3/2T31efh7QkG35dpXSbje4Wkx4/L5ogX/2s8/53nd/ADLplNzckqk273ws9gHxrhKO7r3DJBDBwXR5QbPpUa4Srq5EAq032EE1VszmV5SyJT1PNBpYNHpi/4gmIxTPZ1XU6JJxsyhTBgOfk5en3IZS1qXW+Hd/9XP2ZVvp2eiEXqfBMrhmd1NUwV6e/w2tjo9aPSbOpbafElOTcvZCEIbd29tjuUrAbLIhGfD29huMpxXpfErXk3Y2VInSiM6GJBXJDJ4Pn1KlIVu7oj372csL+oMdbm5uuJQdk9t795jdvCaKhf+pixuevzxDtRrs7ogWvPlsha6kjE/PyWbic//4nz7k9NWM7370u8IWsz9DqUpYhcS5bPmNQopGB8OaMjwTz9Pv1Xz8qwOyQgRgaXjKYnLG1bnP/n0xx5PRGZPzIZ1en+5AdjZdfcJooXHvWDgTLcvYPXiXRusKJOnFPFCJ4hlZ5ZNKyvhFZuO6NolsezYB1ShQFJdaRh+a4hCnJXWlrn1enM0oC+Vb2vXlFBUdlBzHulu4ObphkSYFuSQNsyyLVZpgGzKpX4Nn12R5QltCPQpKyqJYs+vlWQmorIIIw7hrD9cwPEEc0enItu4yJ8/zdSBVVYIG3vPd/w9ZRkFVl1RlQV3LilAi2ntlQwFVXVPXNaapk93p/xkuaZoyn0UUkpqzqip0VaFakxiVMtFTrX/Pcj2qqhJnFzmKosD1v6Wen88DLEtHVVWCaCnvKcOWvai67qz/9h8abwkt3o634+14O96Ot+PteDvejrfj7Xg7/iOMX47KFSp+7w6kGeN1WqBrpLVswenmfHP2BXmcrjO0/c4mw5szms07ut8aBQ3bVtHv9JzqBY7jUeQ1k4XoU65UhdFQp90XUeegc0BZ1fhubx2ZL5YTlEohDsJ1GdJyGui6RU+qscdRThjNqVKP4aWIbu8fPMTtPyZKr2naoqXKNlwso0uUiUz2yemUnZ1NWp7Jai6eb/ug5nZ4wdG+j6+LCsneYJfQXmJLgeK6gHcOH3B6ekIkdXUark+nZ+L6Bsc7Iiv24ukzorziaFNkqYxYR9VrolXAK4nL+vjxHqWZsSlF0+a3I65uv6ChDVjeinsaDFq0zS6XL9+sxYYvz5/T7TVZrSQAvKVx/SbG9mZsyx7lKte4unqNY3sYtXin0+A1pu2ylNa2870jrp9fcXp5zvWFbHVrKERBQJgOKSVexdJ7dHyT0xuRJVvuKmiuQqtsEEiK3Em+ZDE7Zxnn1H3x3oNgiOPtsmWI7I+rFQR+zfV5wta+AN5+ffoZR80NWk2f8o5tc7yk6e0zHoo2lnhhMq3mmJqKdiszNEbNdRrhpsVaCLPZ3KWx7TG8FVlAw9MJqxVFabD77ofyexpVnqObBXkkbDgOFcz2ikUkMi1aS6XX2eEnP/tLBjviWrXiEq9ibKtiIjEJdrvFdHqNZYl5yscpx4fHvH51SrMp7C6vDG7nrxktY+JbkU1rtgqqKsPpScrxIuL6+hrHKXCbwu4mwZQoHgtwviayr4oz4mw4p78hMoNJvqRj2xRFQSIpXG3fI03GdGwXRYLOKbfY3YWnz0Xbo2X62JZNkmRMp8IWDTfgepQwsGWm121QxjHLKFhnpNJqgWMZKNoeibS9JFph2gVpFEt7HRAGCWGikeXib77svc61FF2+q0qJCZIcW9JmR3HGahXx+N1DLqR+nOltoCkWdQmz8Uz+Xk6r3aeQLQeGXvLw0QNev3mGKjXC6rqmSH1su0Em+0GC6JqsSlkFIo+1Ct6QpjV1rdJsiWe5eJ3Q6fncji7Wuhq6ntF0PEaSBv3+OxtcXbxhf2cXDZE5+/rzT/ngoyd8efEM1zPkPGygGSlzifFMxgF18lvoukkSC5vKCwUVg63dHf78z/4SgP/z//6/2D3Y5XYkMrSdzgDLMEEtyOoTMVeZTVk8RlFz7tKKRZETBLc86Iq1nkc6plVRFhZpJiqfimbgOxWOYa/1sXzHQDN0FEVmXpMZ7b5OFDsosmqjqDoVJWG0wG9IbbbeLlnYJpP4Kr/lkpcVYZBiu2LOyzIjz5r4lkWpRPLdKKxWIf2BuHadm+SZimEpFLIyrlsKuq6TpcIntZwdxqWN5mgo9R2YvGC1DPG6Mb2e8CUXMxXLNaikGKnt2EzHE9779T1WUlA7CBJ0qyavBE0yQJqURNklrbsuikmJ5QlaY0eSQsTLGVl1S1lXBDKbXZYhYFDJUpJWKmjaink0ZjoRGdm8LFBRqOocVVaXyyohLwM8T1Roo5VGUlUkaYkjsSJJkvDoiU8URhSlFEX3KhRNWet/FVlCHA2xLRVHF22ey8DC9CSJgtS5mYQF/Q2L81NZ5bD2cD2PvEzWWl+arjDYhKvLG3RNVOYURUNTVGSCmGCV0m4ZmE7Ej38iKo9+4wG1mpBFCkgfYKoa0+SEq0uJhc0OQRMCy5XEotQYBMspj+875PJ7RW2jaxpFIWm0dYs4yWm6FoG0BYwecZrj2MoaV7MIFuzt3+fLz4QkxxdfPefixe9xtHsPtysqiA3bIEsvibQSR3aO9A4G5NOa4/fE/vsv//hf870nv0XnxRsQklI8fvQOqa7T68gs+bzC79xDcWcML0Xl8fL6im7TYbd9zDfXoo2t49tkYUIhq6PHOzs8fTGmtdcgyYRPWC4igoXF9vYBVy8FYH88vmESLUjFZdgcHGFoJi9evWSVCl8dl2NenLso1TkDeV67d3hA0x9QlaKaVpJydn6NYfp4ptDHe/r8KYuw5ujoMYePhFzK559/KlrNZAvw6YuvKHL4le/+fc5Phd/Y3tymLmNaToPRjfCLzz77a1axgizQsDFoUpQJ2SpmMpcVEgtOLk4ZtHTsvugmOb1JSK0Fs0zY2Ac/+JivPvkxTl+llpgk1/cp9YCN7Xv8F/feBeD52SuSbIvpjTgTVIqJ3eugtwpWoZi7dx8e8+Unz9DylHwu3vGz5zccPv4BeSie5eTpV4TziF7TJZjItmDbY3urzeuTl7z3/V8FwBm0yaMQX0IV8hKm6Yo6jFFkJ9d8Pse2bXTdxJJta05jwNnZKbNXosS3vb3Nwd5DbEcjuqNCtwyiMCPJIwypn5qnJYpakZV3uoU1pqXgmB5hIvaeGg3qck1oYVkW89kS0zTXVak4DsmLkjiO11gmx3EwTfPbileeY+kmWZat2wXv6NnLIidJEnkPGq5roevfVpeqqkLTjDUdfZIk6IaGadnrFvUkSbAsay1ibJouUAlcmaxmBaGgkU+TbytqiqKQJ/m6cq1pOvP5nDiO2dvbWz+LYQgc1lrzUP0P16Z+SYIrmM2EEzOsnKJKKVOfLJeAtiik2amp6wpVMsKhJmxubxPK3ua8iPDcLvsH95lIQoJa19nc2+HTn39KUouF4LtHnL654YF0bMFkRV0puK6HKfFb7WaTzc1NLk7P0Upx6Ov3HG5vJ3SluCvNiiRJSFKdD98RQHFH81FZMmhtUUuGFtvw0dSKl6/Fgrq/d4jXrHHUYs1SYykKRqHy6PEBq5kUmGxkmHWCKw3MbiREwTXtjoK2Eg53uohZzGwU3eB6Ilj+vI6C2tiglKB3xVSokhWVZ/NIstu9fnEGBkzmYp6KtGC32yGLDBTJppNEJtuHB8S5zkgCNy1XY7JakEttjPhqTsQMt3RYjoQDRtOJ4hTbtQhCKcB4ajLYrnl9KxxN9M01Spzx6J1jzmdSj8dv0W42sVWDurpje7xkfJPgy5J5Hs65LEpUPaYh9XGSpYkRTMhVm2AsFr/iV8xmN2zviMPPzThiFqwYLpY8FD6Lm5tLHhwd0VAcPv2hYG07erjP+dUrLMlcmeQrctPAb/jMRhKToBs8PDwkqnVmF6KdZ8Pf4+bsdI3LKpSCr148I5is+P6uwKcN0ETX9QAAIABJREFUT8f4TY8wvFm30ikNH1/TqKVm0J+9+JyH93YxHJtVKBm+uMV0VQo8ElUy5VQrzHa9LpFnGLw6e4Nje6TJHag+YlzqRFmE54mEQJqPME2XC7k5V2VKr+mS5AqOJUVah0t2792nzuFail6aXkWW9ZlMhR24TbA9i9UyIJQYRFU32N3ZYHq7wmuLezgZn7B4cYPXFvPZaG/gOw1UVaPhC7teJDfsH3U4l+x9vqNSpQWlAouFJIV5dEBdmtRKtAb67u9t8OrkFzhSHLjR8NA0BdtvEwbiXc3mEtMUlRgSq2kbHp7X4YuvBCZB0zS2d9/l2YshvQ1hHBdXc0zTpChTTBmgdwe7PH92wuaWOHCi1ozGV/i+z0yKCd5c5OzuHBCWN3iuTPAEPns7e1xdS8KHI5Pnz09JIwXLFc55b/8dep19fvjX/45uX7xjRXFYrGJKiUn48ssJraZHkcdrtrnN/i6f/OwX9Pv7aJK16dXrLzi+d0gpe/9t9QlltUmzZ1AUwt1rlkkQLsnSkP/lf/qXADR7DdBsplKbpt1SKSkJFil90f1CVZsoahNVjVGl/l+elSTZDNcR/18sTZIkQVE9HMlmuZwuaTgOG83HvJTYpbquqYgp5ZqJk5A4DIkTbc3IWpYlNSUVHpUibC/Khrx8OsTzxSEtilcYhk0UlvS3JJOjVlAVHrVbkUvNHNdrk8ZTPvwNQTrz5WcvUfgA3VDXgTCozOY37PeFbZZZgwoTUCgkoF6tFGolob/VYHglN2O9piizdVtgVYqWPMtLGE2lXo5pUqsqmpZTSyY3VVvR67WZ3MoEhdNC1yqKGgopSBxGU9xehG60SGS7a9s1SauMUrbRWIZOGF9wMx5R54I4xbIc6nyG5UCaiD0lTqf4jsflpSQxqHM67R6zJMaWjFumHrGKXxNnNYYproWhoqCgSQGZ5Tyh0awZ9PsQiYTLEh1Vq8hSBXmWAqXGb2ZMRuL3HMfF0GoURQgxA3i2TRBeo2gKliv2VlWv0TOT6k7JdVGwtdWgTBOKpCE/o5GmMZbRWmPmsjTlO+9uYErMTppbGIIYkKwSdlBXBaqWs90zmS7EvJSKilLn6HdYN1WliHPcjYLutkjKvLooKZWaJErXwWNepSjo/NZvCQKNP/2zF/z4by75b/7bX+fNuYhStgf3mM8s4nDKq1vhA7Z7bebhkh998kMAfvudB5SE5Oa3ujmrVUnGgrlMIrbdLkqa0/OOUI9E21ySv8QrGpSk9LbEIp0vJ6ySiGZLnC0ytcPGno3bga8+fwrA5tYDosmUXAmZTIXfnZ0NUbyaTksEFXoxIA1LHt/7O3zx9I/E6yxt2naLvV2LQJ7Nnj8NeXjkEy0l+Um1QtMzirBkNhdngmBW8eGHT3jz+pI/+ld/LOy6moOu8nBP4GM3ey5npwnTxRWm9J23N5cs5yvirQ0cU/ytYWhk+ZAkEf9vNe9xc/uG2XSE70nc7niB3zzgcFfhp6/Opc0W9Dcb3J6Iva/eaNNubVIaKpvbws5W44pG06HZ6sA6KROjax4PHoqg7NPPzxlsuth2m+tz4ctGozGPv3uIZXRZSrjC0YOc68uXuPfE/vSDX3+fr59/TZ4OyCRLWppURG4XXy958dn/I0yv4eGoKivZSm82GtSeg5ZVuE0JV7jfY3Qb02j564RAFJS0m3t87z1x3ijrFZdXM5pVgziWicSkpip1sqpmfCuC1V5nD92OUWQTW5pF3I6uIHPZ2pHtfZVJGkfr1rooClEUlaKANJfQC9tGVS1UxVoHHXWpEwUlRSF8WVVVUNegltxpRd3hHOtaQ/JeoGkqaZojqQxQFEjTFEWt1615VVVQlilFUaAoMmFW11iWSrstzjJJksiAKCeVZEOOpeG7PooqEmUgru36BqYUOy6Kgja7aJpGJVlGoyhgsZjRaDSwZEvhnd/528YvRXBVVyXzsTh4O67Bqxc39Pt97j8SbDplovLNp5+zf28D0xRO5OZ2zPaOz+1EOFJdVxmOR+S1w138VelNXp1/Q29zkywVE6crJv/o9/bxLQkwZ0iv2yaOI1Yr4Qy2N7dQiej1PDYGIgM1Xt7wweOP10Hg1q6LUtpcX97gyn7nXr/D5dWK4dUrqkoY3fH+A7pdA1+C7lzbo2nsQRms6T6DSYRrugSTgFtJhb67u0/H7fHiuSAH2Np30FSL6+sbTFndOjzc4XYyRiFGTh+GklO7fRYLybSmq9iuw/Uy4v6RCCj1zYTx8JqBIw4jhxsHnJ2c095U0UrxLIU25SfPfsje4F0qGZhOsxTX3EdVxaG72+8SFjnjskFTzud8ccH29i6jNGbQE5tAIzKZzVNaEsjJMGLrwWNGkxPcjlhRnd4RxfVrxsUS35XCzYNjXt1+jVKLF3qw/4js1Y8JF5d8NRXv4ftP3uPRwa8RLCqGQ+E4j5oPuOAZuSQDmGRz+g0H0kgEN8C7x+9ye3FBbroc7osDl9OyiMqMRSV+rzPwKFY5ambgb4kDwqIqOJlcY6xCChmIPrs8ZXt7k1QKFjbiBI2I3v1D5osTACyzQncNtLyP5ghn8MlXX7Dlb9Fs3wG3C77+7Cu2NndZFcJxmw2LJCyIkhjTkery4xFO08X3REXx1fWCvLhgx21RZFLgzrVISw/NHDJbSKpizyNc6UQL4SQ1RSH1Klyny0ySXMTJnPFtTZZEbMoK1yrU0d1qjV/ptB4SRRHUOg2ZkGiZDuEsQbMqrm/EOrqZhXx09CvYvniWVRKgpQnjyYK6Futq6+A7fPLzP1sLsDrNCltXWIYBe3vi+SaTDMvSCKIAqyOcZLRK2Ox+SCUDcceHy+spXjlFcsfw4uRE2s0OYSIrpFXAycmcVBesVXncwY1vMPyAc0mSMpqc8fEH/zlRMhL4AaDIY2o94GoiAup+d5fprKYsQTfEOjKcc5arEbsHHsuFZCPNNJ6/OKUhA8402scyBkTKK7JErMfz01ueP/2SdnOPpfQvcQCuVTE4FPM7n9VMp2PUpkO/IyoPNR22+i5ZNePyWlTd3rn/MYv4BbYmbDoL9ultOHR7LQQdA6yWCXuHB/xv/+v/zL174gD9i89X2J7OdCYC2sHKpalZzBdXHD4WSRnTGTAaRehWhaKItbyYR3Q7DvcfibX+V69K8sygUhdrnGsYhvz+P5lQVOfksdj4LD+iqnTSO7pty+X4nsFnP1epJT61KAs0xSfLMmr1boP26HbeYS7nVzcVajKKokKVh+PJeAnVDnkRrkHLYRgTxzF5eYc/GhAqmmS0EvdZJQquZ/DokegC+MXP3uA5D8mKFOMOs1uUNFowXT4jTY4AyWarh+u1F4Yhth2TZnPClbDPuigoixrTMshTCZb2MnrdXZYz4avTIENRBTuXKg8fi+WU9391QBiGUAvfrNZArWJKdqtwPsf1Fd578h0++Qux4etKgKGWlKVFEok56HZ1/IaKWos9VNdsaiWg1WqgSICT3zBpd2oWsxLLkJkoXSfLQyxNBiNFwtHRDtsbOk8/Ef7bchxqNcE0bOw7Fj5lSpqPSFbCXhuNFhUBaqWvGQxVxeKddx7z9VdPUSR5jGWpZKVNJrFwVBGuo7GchBSpZBTTSurSRdU0CqnAmsUrfN9BkeyyYVjiuTlUKoXMzEergGbL5cMn9/i3fyKqEXlZYOigyOA4K1KCZUjjISxl58pw4qApJXWhkklstqobJGnIP/sDgYtejiP+7d/8OU9+8pDdgbj3n/zoC7xewTJJuOMWm6UuSbgkjYVtHHdaKEVCPP8Ww9HodFmmEdErsadtHmygNWw+ff4Jg55IlvV7PcBHqW3Cc0mp3rAgV+m5dxjhFZoN1DaqLtZerTT54MNjvnr+lEFL2Po73/uYo+/0ePVaBGCz2wVm4bHtqiwawkf83j/4fdKk4uT1iM09ic06/4LXp8/Z3RX+Jl5dUiYtdrafcHku2G0fHRxz9nxFlhS8/1AkPDVlm1U640gyLy5XJpoxY3uvx+VrcZg53twg7fv86Be/oLcpfq+IC5qKjmbIdWV28QcJszBkPhPramPgc31zxecrA1tKRuhbXfS8Rpc40Ks3l2gti65Z0LDFXpRuj1GTFcPrgEImtTc3D5lcv6KQiXDXd6BuMZ9PaXbEtdXa5cHxewyHCx4+EkHY+UVJZ8NYS0YEic9H3/ltXr96ztG7otqbFCGqVjG+vqAv32kYBnQGXTJJFGWXNbOrKfsDm3Aq1uhiNKOoDJ6evaDV3pHPvE3JiF98IZLVijGnKmyKqo8iyTHStMC1e/T6LVz/zpd4OK5BLplBK2oqcvI65fxWJAiuzlL+0e//Q4pC0vSrGqqqE4YhtXpHApOSJzlpGq+TD7qlohvGupNFqTU0TaOsq3WQJKpAKmmSo0m2zrquyfMURVabi6KgLEsMw2IpWTE9ad+ObVBVdxTuQvh4NhVzl+UJdV2CUqLIa6uFiaLk5GWBK8+ZpiECQkN2TDiWQ1YkpGm8DihNU8dx+sRxSi79fBxLAOjfMt5irt6Ot+PteDvejrfj7Xg73o634+14O/4jjF+KypWq6iBFRB2rycamQ1nmDGUZvVQUtg638XQXzxHRrFp6zG8DdrcktkjzuSgvGd4+R9NElajIYxoNl0G/h6aJzEBRzCmSGFsVWT9NLfBcjYbbp2GLjF4QDAmWC9JYJ1ZFRn+j4cJ8xZ4nMhPpJMc1bXbNAednAs912Gmjpiq9voUrqZBvzq6x8TneFpH2m9cjdjeajCYZhRTVLcIK39dYLWOoRTT85tUz7h3vsH0knsX3euRZTae3gabfZQZsNnc3mM9WBJLuLVdM1CJhd0v8/vVFQnf7kHp+w7NPRXZrZ7PL43t9slDiV7IF3R2DslQJIlHZyWvRrpikM2xH6mqNFcbL5xzdE1nqrGxiGgOstk8lqTz7uwNyHdBcvnkjMoP37+9yenlFlIiKV6LWhNEcpYTtTTHnSR6Qdnz27R7LlcieR4sATBNFikK+fPYJdTKh427hmiIb2rYecnZ9yv3jeyxXoj/2ZjhlY2eLN89EFs7xbOxGl4NSZSkzWfX0loWpQqUzqe+EqE28boPxlfh/NKnQrIKSDFUR9+klK2wzwutucilbKlRVRa1aVIiMW2JWbB5+yDLReH4h6HePDnvc3AZ4uk8ylLpBikahBgxlx2HD9lF9lZgJkWTcs5UmWTZDyTQiSd1t2gNWw5Dmhpyn+jktwyeLU9o7Yl5ub0/I4wuiMEWTORQtP6dIenR7nrSpDrUS8ebkNb2WFFd0LXxVYVXDtSyHWlYTmzbXSzGfyyhELXRsw0S1RGZuFce49oDpfI4jWSH31R5eR+fkXGTTmp1DhukE3e+g2KI68dnX/4Y40/GdO9HtI4x2xnQSMywC+bwL0sqm07m3brsIkwmHR9/j7I3M+g9L9nY2ub6ZUss20u19MRfj6Q2pzG4rlBRVjKuLexyvKsy+TrPdJp6Laz3a/U1urk9RrBGrpcjMzYpT0qRmc1MIx9qWR14GXJ+vePRQZCJtPSJLNV69GhJK9tNf/fgHuFOFHFHxqgqV0e0VrY6/pqxVKo+itrm/NWD1TPi8fk8hzAvU6kja2BmmpfLy9S3JtsjMf/TkXZavvqDTN7i9le2EWsCgd8z1qfAbx8fHeC0T23XIJLvR7sMtPvnZT/n6i+f8/d8T7FmLYMF0EbCQ9xQlNXYUoisZT74j1tVP/1JBKWxCLaAsxH1GecFht4uEgTKaL3H8BnpRUWSy/c3J+J3v/Cf88b//KaXsx6+sAlKNQrYXeW6EoT6gzKbkEt9kVTroJctlyMa2+FxKwDLMUCT2rax8UKdkUUyrIWwozmwKdNI8xjRlS9yixPGma3mB0+cJZa2gFBaaxKdEcUGnXdBoyyyn2qPMYhRVodJlBhOX2WpIOZuhRk/EQ5cRZaFQSWptSpvF9DM0zcQ2BeYjTA1sNyfJM0zJzFWES+JgTF1KimVSqsKiNjWyQmRHdT1itZgznbSxZJtlho6mZNw1kU2XEbEy4+rCQkFiX+uUum5SFQlRLLA2x4dNWl5zrV9TqkIuQdEKTOVbKu9Wd5t05VJnIrNbEqJpOrUScze6mxbLoCLNJBOgDdRCby6XWMnaXnHv4JDRqWxDtDP0xCLXElRVUtQnP+HF059wOe2jW5LVNM1wFItc0uYXdcbH9x+gtebMpSC6ZlSoVU5QZTQccf3J7ZDrUYWiiOtUZU5VifbeWtpLnBQc7Zl8/tnPGC7EPuZaPlm1WAvA6mZJWRf0tz0m52LdFskDIkOhaRYoksqeykWrK4yuuM+/+zsf8eNP/g/+9b/5a/6H/17oQF1kJ1jNDXatiJVsU44LlY7doD0Qx69XwzH9zR10/VvdnMq0SEaX3DsULYeXi3PGZUy7Y5AmsjNg0sUoJ6hOjwfvChbV6fw5jqdxeSMZEw0YnwRsH3XYHojnnSyfM1l8wIPdD9hpS6ZK0yGu++z27jQYJwzsB4yWF/w9yeh3NZ7i6AWebRFEYsFvtr+LacbkuXgvw2FMv7tPw59yx9z98sUIbJfvHt1fMw//6LPnbG1s8fy1YOXb2t5AS2F6ek4shZtfPjuhtWGwt7mxfn8RHr37ewQSA3U5CdCNGr2OcTuS1l11aLW6mE7M068FzvTRewOW5TWN1oG0V50ymaKVBufXYn04GyqzOKBMK1xFnPMKo4HlW+iO8EmNpES3YjZ794gDwRJ5dTXl558r9Ld2GN5KWZ5mmxcXp2x0xJzrScbiaswH33lCWIj9vxwrhGHN1vEWKsKGd7q7GA7U+7JrY3xBM4948WzKxrbENBJjNTy2OgqT14KN+NXJz1CaXfbfFf7t5c/OcW2TMsmIVbGO3333mGUVE0c+0Z2kwXRGc3fA8FTYS7fncbh9n8tTD1MV+/9v/Gab2TylkNpiimEQFRM6loMhzyTzZUy/rWGZHqr0L/NwyTwKcVThI/zOJqYSk+YzbifCptqmg9K0MZIETbYmF5qBWYEhmYDdno2madRKSCK7g5IIdLckLmJWcyk/4Qr9L02XEi6eQRKrNJoempTXudPcUjVl/W+B0aqF+DsQRhGGqZNlGaX0w5pWye4IITkB0HEkROhvGb8cwZWiU+fi4Zt+h/M3U7Z3DghiicNoNumYW5imTqsp9bBsnQ/f/w1ySX5wcXpD1y7Y7nZZSBKI/b0dkmjBbDxhMBCH416nx+hmRLIShrLpd6miGL9pUmViITZsj7Aq0RVjvdHGWcbh7han8jCnOxkKJYah0pGHnfFyyaBvEiQuyVJcv9V0SKKChmzBa3earMIxWVHRaUtsQaZiWBWt5hY38qRdqCOG81uaXbFZng0nNDwf1fIoZdvacBbSGejYbZeW7DM1jQbXN2fcToVRNDct5kuNRZDjSrzY7UxFdTXmklK93dgmiJYUVYAuW9YcuwTDIc8i8uLO6HPanSaxBGSf3/4cTa/Y6fVYjoXBVUuV2qxJ4gsMCXr/7PNzTM/CkkDgmpRl+pxB+4g4FteaTa5wXI8Sn0TqeE3LFXvbjzkfixYuQ4voDjYoY4cPHot5Gb2esLHRZjEq0WvhtCbLIV3ngNZAtiGWTZaLBR27hX5HtkCHgQtuaZI4Usi00WVx8yWm7CsLZit2NgYodYOb8Z346IzZQkEdNDCkDput2lBkBBIgXakKt9cRSZ4xkGK1btQiiCOW6YRWS7yHR4+OWMwjVKTuhaViWDpxOaIqxOal6w3CpEbRTAxPirLmNbpZrAGm25sP0fKcrIi4uBQOP8syDra6gg5V6rKMbjNQA2xXbByqM8dzdni3dY/Tl6Idtb83wNBrbpYz7sATmwfbjGdTtgZHAKRRiOJUbGw3ODuRQtHuQ/Iix7FLctkDbVldqJfr1oxlMMI2d5iHX1CXUkMnKrBNCMYSh5YGGO4S02hwOxWBqV20afkZZR1wfX0t5+57vHz+mlgGDAftfd68eUF3sMGnnwmShqNj0fKSpQqLmVjblq2yWiYcPxCU53XxkourFQ/dY4parO3ZMqdSl4SLgpYMFB8d/zafff4Jtt6X3wNVTdje6XN6JQSfe+1d2q0+jtcjScS8XF4/IytH7Ek64ygZ02z06fUSVETCZT7LaTee8M2XL/A9sTEM+j7lqGA+Emu0qDIe3/+ADTfgnceiTefNq6/4znvf56uXr3n3+A8A2DioGd006ErNnMFGE8t1RBuGL2x/a3vAf/1f/lfs7OwwGgs7MwyLLJ3RkP51sbqmSjfY36lBtuRpaoOsSjFrd631cTU/p3kcMR5J26x3qHKbqlhQI96NpTb50dd/ynCqYtxtcnGKrlhEsQjmPDvj9clPCYN9TEnhnGcZhl6RJymGLg4tjtmjLmp02R+fs6IubHQ9J4yFbZTFYxR9hWn0qOSBAKUkSmZcXd0F2Ttyc60EQQegohOGM8JQhC1VaYBeAdoaRxAFKd2BTm21iGbC7+u6TlytsCzZ6hKrNFs28QrSSDyvohYChG06hAsZCBshRVUzHwvf3fI9FC1H01USqSPU7OgoKvjWI6ZSSNlxDIIww7EVaVNTZskt4XJ/rZdTqRXBaoLX9Enkfng7foV1toGKsJ+6StHVJrWSEIXinrLqmuubgDJ+glrdCSebFEWObsg2xPgSx2nz6uU5hi7awVRVpUJFNYU2F4BSBcxnJWUt7LwsSzTFwjRNoqW4dqOhoWGj110UGQhXmWjfzxKxZnWzRrEjsjwnl62CtVqhVTqaZZJE4m8Nr+CdRw94+kxcu6wgTjLKMkKRydQ4XlLVNYrusJJ4bfQaQ9NJJIY1j2q0OqfKUhqeDG4uh2zdd4jjBN+X5FtxgN8omU8EdlnR9tnd3ebZ11/zr/538Zk/+Mff5eTiksU0xZI4U7fZpt9uEEyFTR8feqSrCRbfHtbGYUSll5ycCzzw2Tihv9Hh6MAkkWKuZaLR2S65nb3G9gV2KV/VoBagijkwXJ/j9+9jmQoNSTjid1xsS+zHI3kwnY5H9LZ9PCndc3qzIrdeoDUMRufi9xZJSu/oMb0tuL4S7yYOxmzvWJCIoMWscva2HrAKb2jIpN47Bwck5HhliSVxLg/3GsCIQB6WveKQ9lab2fUNDbmvaoMuttOjP0j49MsT8XxWQZ7UmKqAjJjWM372i5f84Pi7TJZSAHk5Ym93ly9fXhDE4t6vb4fMJxFxZyhneEqSZBwbv0arI/b28aJm0DlA1xQ0KUlht12WkwuildgblFaX6RwuJs/pyv145/g9kqSm6RjMrsXvuX6Llq0yG4sk1Fw38JsVy/MrNO4IkNr0jzXSCxdVZkrCxTWrmwRlINZsOooJb+e889HH6/NUUZjUqoWvprhSNuLF7JSDto0ig+qtdhNNdYiXr1iaYn1c3yiYegVhyPRa2F6r76PHCS2JH7r/8AEXV39BZ2sfR9p5kerkSUqtCP+mYWIpBrNZiCOFonXF4nwU4vohRSB8UKu9xYY9o5S4sDqZotlNlNwjluLOnpESTHV80ySTe0EWmmhWQWZJivW0wjQcwrlGoyX8vunHaEqHioCeFIaOkwWKohFLf1DmBb5nQKUSyRY+3bBQVcjzak1gUZalINHR7s6GClGYoygGvi9ZdagEPbxSr4OyXBIh/W3jlyK4MnSddx4IIKWixPzD3/1dzk5GHGyJA5jf9Dg5OaPf6GBJNeatjQ3GlzOO7onDzqKlUyk+eTnl/juir3c2Sjja3aLlFhSFcAZK1cLSdPyWePTlPEHXmtiGh+9KUGh4gdty6Pc3BLYEQfowXSToUvdG0Ss2d/cZXr1BM4WFLxIwqpzheCZAkYBlK2hmhxvJ+rV33OLrp0MMw+DlG5ExGXQ3KeKQm+mS6Uw4n07PoMgUhpfigFkVEavcwms2qGT/+CKZc3N2y/b2NtOlMLAsHeI4Dq2eDJJclZcvzvCaJpkEHxqNilejS/KVOGSbrRWVF6KXTUYj4Xw2NntMZisUY7RmaHM9C9vuMLwWjqa/qRIGMJsGWLo4aGi6jmKV1HWCItmlWk4DVW9jyExkGIb0t3Z582zM8YGoLrhhRB7FDJcLTGRWY7tNms/Zl7pl0/k5O5tHmJXDbCrmLtVDnp+9pO01SVTxPIPBgHl5S6MrwdY3p9iaSmFoaLl8f06b7uEW1z/7KbYEA9+ef8Ph9mPCWCrERwpZmVHnC2yZufJdgzDXCfOQZl+qd0c1QTSirqSAnwlxFGK6Lgu5xII6ZRJMONze/lbsONfp2h0mU7k5pwqGtUuuZmz2hP3M5kP6G03SlUm4FMmG0tLY2tzl5FJklnRLxTNUOr1NMqkb1mq7mJpJnCdsbUjiFLVFzCWqPOCip5xcXHB88F02JLvkxeUbjo8PKUqLva1jafslShVSlBK/EhfMlxdUxh61BGGn6oTBVo86b1GqYmNQqpAkzun3RV/41y+/JNYzOp0uz7/+DICtvccc7h7S8oWNBbOUKj8kTTO0Wjxfv+mxChWKVCjYA3z6yc/xWya+JzKDb15dkdZXTF8Nuf9I4jJvTgBYzSoanrgH1Zgzmww5eyXs3GqA46nM5jGdO4zZak6eWbz/+DtcXggs0+X1a47uNykKMb83wyWz2Ywn738MUrRUVSzqSqPIy7UW1cnJgv3dd2g3hW28+NEI17EYdHaYyx76ph9QMeJwfwNLEmikUQp6zoHUnVlOC2bjEhQFTRHPXDPhfPyMsk7pSEzgzbXG1YnNwVFT2qJJr+ugVG0Opa7dv/gX/yOT2ZT+YJOJZCy9vrkVrEkyGFnOdRQnwvFgeCnuczROsd2KJMnwm/IgXCzwWiWGLg7sSZ5iuTqKoq1Z+Maj53xzEhInD1E14YMooAZyyY7Y21VQ8wZFYaBIEDGVSp2m1FXGwb54npevQ5RaX+tcVUqKrnYI41NaLbFf3FyVKHWTLEmxJItiXYT0NzwcKaQaLAQ4OklXeDKqf50VAAAgAElEQVT4n48SvH4FtVizRW5SagV5UWDK7O9sMubwvs3GwUf88FTqTNkKRQG2Kzbi4WzOb/7dfRqtnKdfieft9hsksQjS0kSs/6P7DRQ1QdXEs+mmRpzPsTSXJBL3YDgpWVoSLHNsGdxkRYhpWiSZJNkwE379o48Ipp11EJiXJaZrUFYKhmQV7A8sdM2jlGB5w6ypKtD1cu0TauY8OP4VLr7eW7NullWFYVnEoXhew45JUg3fPiCRuFZN1ykyUIyKWOoL9juwmhVYtmT0RaGgRlUhS8Rh5zvvP2BrM+L0WqO4yxKjkRQxtaxgKoqC24KffXpBJfFiqqaQ5RlGKYTBAd47GBAGY64u5LHGjKnqgqLIcd07ltEQtIogNgljMS9+s6QsWYskF6VKVcxpuhYnb8S+jaqQRjMc1aeSh8zJ5IZ/8tsf8uRd8ft//jcXPPno+/zVX/wJf/rvRUXmP/tPf4dG94Js5hKkc2nWDaqOyemt8IGHWwcYaIwnYk8DqOMpozwja4ok4qNuzfHuJi9fP8WT1Z++C5ObDMM6YpUIO7+avOLe7j22uyK5sojG1D4sgxWlfMCbqzG+FZIXAabdknbmkqwmuLmw4a6xyXw4xtIW6+SKWgT8+Ec/pOft4O+LvTZBJ1fadLuyImRYXJ++xNIbvHf8nrDXMsDT91CrFXEqfOz2nstomPD4fXGfL158g++WJKnCltQbVNSEWZ2hVBpuV7zTvmMxvz3HkWvdqTf4Ow89SncHfy7eZ5pfcDW5RI1z7u0dAfDVsy9QdYOF1P98dHREsDpjOXnGzZmw61XlsvVRi7Pzl9gS1z5/vaBv+cwXInF7eP8BF8NX+M0GKuL3nj1/zuPHH/Pizafs9cUze3qNo/hM5Z6tOTV6ZwdNdbmdiH2t1/e4Og1peTrDE3EGMEyPyodmIv1UlDP44Dfob+0ThiJQm1y9wje7+L5LZoh7391t4FrLtRjwYnlFe/8JB/d/F98WPv7551/gNe/hOTX6nUZmOWd2fkPbEXMeDl/QocvF+YT2fbFfNJsRYa3y8y9ElWz/8IA6z9GMLpVk7zPUG/x6wPHRPj/+q0+EEdsmBxsOheQkKAKV2/mKjU4XsxZ2l0UhVRWhlBWeJz7nNUvquEsik163wxss3aDb7TIc3wXHFXUxQa98conpNkyNutZwXIndtFWK0iIMY/zOXaW8oKwqirxEQshRVZ2qqtYsg6qqUxQZjuOsK6Z1XaOq+jqhLcb/DwgtoFpHt/1Bk15fZzKJaElRWNuqeXi/yeXrIZ2GOLSodUIULTg5kzTdQYBl+2x191FlFF7UU37+6Te4VmPNsNXtpuQ1FBIIr3sGcbxicnXL/pFkiascRtNLCtVnuRIGfXC4w3g4xpWHSb/R4fMvLtna/JY6OEjOoUyIlYAkFlmUrrXNfPWa3kAcls+nCeaGwvj89VrcsbKW5HlJu9uhsykW9XR5jUaPXBMH/VUwxrFbdLbfZz4T3+tt9bgZhbw5HdHwjfU8ZBOFdl8YQRb7aJrCdv+In/5UkGPYviiZNgfiWV5c/px+v4NJE92TGZNqznJ5TZkpuDKTPB2GWLWFLwONaO5i2gbDq0scyf7UHfgYdsZ4cs3eQATM3fY2T19/w0ZfzIGqVeS5zfZRj+n8BIDNzh6YMArPsXKxgcZlRLerM5V07QdHj1isxqThazpN4ZT7HYdqXtBtdXkjA1hb81ncTlFdsYGrlUa7bZG6GkEsrtVt3ifJM/xeg3konE+nbXB2/RmBFAfd7ne4HkZs9Htc3oogN7X79Lsa09WKTC5+pSzwVRffFc83np5RK7B97yHxrfhMls14uHPAbHhOX9JWZ5mDaUO7I9kXSwXNrsmnFYokO3EqG0cfoPgpvmxpODk/4TSc0dkUh+xKmWPqmhCiNWVrVDwn1toEgcrJyZcAvPveAxpeh6vLOxKBDWw3ZbR6tWZDs1sesyjC8DSuJuKAMBtPaLfbxKmwxTBccXD4LqvVhKwQ3/O9bS6GX9CwjlAlxentzRDPbmC4Yg72tz9iFd5SJj7ffV+0zbw8O8N54KBL9flo9YZ4NUVTOgwkWDcOQ/KiQ7s9YCKZh7Y2Xbb2LX76c2HTDXefInJptdvYhpjPli/s9uGjA2YT2cYWNnnv0d/j5lI8WxpYvPf4N8hZ8vmXPwbgex/+XT779Avu7b+LI8G5l1dv8Lw2c8mAtbHh8vjxYy4uLtbtDDkzLka/4NG93yQIRBWl6fVZTKJ1MuDw4CFRekW0ytdsiJalEWWX7G1+gC4Pbrqa4nb2GErRXdsJsB0NXbMYSTbUsLxidL3CdV1uZWVuMfkAv7mDIitLtWJj6S7tRoM3L0VV8w//8A/Z3TtgGQaUEsSPouJ5LlUus/fVLatlE01vrGnzs8SnIMW0Y8JAAqKVnCwrOHkpxYGtJkk2Q6k0JDM5uwcWB0eP+PFJiS6DFEgo1IQsu6O2r1Fzj6zQsCUzWJEX1JWKaeT02uL33lQmVVajWbJSXigE0ZLtjQF7e+LA9+Z5hOVXFFmBKRMei+WE7//aAeNb0QalsEWahRi2ShSKvUdTVHZ3W7x5fSXfwRNZCfqWmdM0DabTS8LUAFW0/P2/7L3HkyTbleb3c+0eWmZEalHqaQHxALSanm5Md5PTTTMu+C/MjkbjgkZuuZwV/wMuuKPRhhyz6eZwWqAJoAE8iKdQ9UpXVmoROsK15uLeTPQGXM0Ci3KzWlRYhof7veeee+453/m+rMixzTpRKGFzZUgQTkhSHdMUazTNSlTNoihTVq6Yq5V/BOPuLalHho6qWCiKRpyKv3FaHstFhKKV3ChtFzlkeYkl4S9JNsMw66hl67aLukgzlFKVhy3xft/55kc8fOSRZL+hHL6Bu4SycqUZAZMrjzjRQbsR+izJ0fE86ZOcnJU7Jk8HZLkmzafEMAwM28GVcN6NYY3LCwskk6VmahR5hm2aJIkccxTGY58y72NKevYoDslVAbUE0BUhtuqu1NuDL0BRppSaSprdyKrYkGcUudg/SkriLCaOw9sgSSFga7OLVjjYEk1SEoOiops38PeIvYMB2+sNfvgjQSiRFjZxaKBpCoUpGVJV8FZnvHol3jfXq7S7XQZrXc7OhK/8D3/9Jd//yy4vTl6RSGbMNDyhYdvc3RPV7Pn8nNCfU9yopgLUFIwi4/RI+K2NDz9kFl1Tagm6hKyFccl0ekpzfYPLa2EvzU6bpPDx5CEiTDNmyxfc2z8gk3BGw9LJyXGqDaqtvrSXFYWn0OyIoFdbVXDqLcZXD/FLEWR//Mm/YWevxYuHn/L4oWA6bLXXWM3O8UrxnFW7it3qsNbfRDPFM4yOr3jx7Jo/+7M/43ou1lbor/BdFwMRI7z/9jvMpxe4hk8pE9iNeoPR5TPi2QabAyFp0rdMdO3sFno+Po/5+OP3+fLXf0/gi2df31lnHijsvVPn0WMBSd9YX2dto8d8LNba/t6QTjVhdjnnrXd/H4BpOkHF4e7+fc5PhP9u1raIvHOabXHv84sjum2dyeSUhi2QEdVKBde7QFUcApnEP3p4RrvWwpLg3SSIMEuHxSzgYFf4jV989Rl9y2S3fx9FJuNWgc4qWGBIZs57d3d57b7ky6+P0GSMp5UJk5NjmsMuFVv4hLV+k/FsRSATwxsHW4yuznGGm5iy3eWb3/keceLhll0+llB273zEevMOxGJPcb1LFKWLU53xkx98Jm2jxvV4xIffFQfHydExg0GFx09ecu9tKeswmZDmY5Jgzt1dEZupVsLk8JioKmJaO9WYzDzcWsA8Eb7ECFL6jR7Vgzq+J5L2RVjHU8CQJHSaXnBx/ZQvHl+w8sRn3/zmv2RnSydZZdTqEnqpq0TxElfS+09mC+xqilK0Wa2kTI5iyoPSb9j+NE2TByop11CWOHaNKIrIZXwTJyFxHKLrKnkh/u6GAv63XW8ILd5cb64315vrzfXmenO9ud5cb64315vrP8P1u1G5UkoqdZnVSRPSPKFah0w2y11dj3GqBb2tHi9PROaj022gqRmVqsy8FBZR5GHrTR5LLYN2q8bOwR38Vcp2RzQItrstnj15zkr2ROiOhmLVsR0FLxYn0YV3iWpZBNmKaktAGtIip1AiAklZaeUFVlVjulpgSL0a3c45O7+kVumyuyuw6JbV5/J8wflEPPe9B0M++/yaPM3RJM42NX1qtV1Mx2Es+4vmiym6sWD3QDz3aHSNogQs3QuyTMJPxnOiaMZiprPyRPnZtm3a/dYt9GO2uKZVH3JxccXmusCPL9wjsqBGbInM0traFt4yQ29EN0lG5sucYW8bxzZuKXJ1VWU29dAkBFC3M4LQp9aqoMqsXK835PXFK3a230cvxAtOZlPaPYtC4uV3tu9xfDrFqvkEmcje77fuc365xKj2qUks8+eHxzS79xluizk+vjwniGcMujZeJh708nCKbkYcujM6UpDnYnJBzzFwM5Fx3+3ex/PPOfeXZBKylkwvePn5a3bXmqwNxVxNw4DFSiGVVdRae0BsTCj14BYythhPMGodOuvbuLInIC1SXp1M2NwRmVdFs1E0ePX6kFL2itTqPZazFZppUMrs/cSd0DIaZLnM5lslqzjiIjrB0sW93EXM0EyomR0K2ctQra3T7NZ48kKI825v7nI9TvCXJ+zvi0xSHjSZldcYWo1qTVTUjk8u2b+zx03CZXadkHCE4q/jyEpA6PvEQY6i5ICktl2rEPsRzZpcQ42M0dkR1ZZOzRS2cHE8JS9hxgnDDZHp9EMBfZguhO1XbBWDPovlK379hVijD+7u8NO//wdUKWq4Puxz/+4nXE88ItrSXh384IxOY0Ai12hByNmpi6EIeEiz0WP/YJPryxVPvxbNzm+9LTKEj7864qOPRYb05WzG9dWMalWs67X6ENcfoZkmg67oW/DchPffO+Dhw5+AIfVOSBlfJeztvQfA109+jmPXaTWdW62PLIe7e+9xenzG5pYkTjg+YXd7jSSUaygv0FQHx+oykLDS0fWE4aBHkmR0+lJvbJSieBE7XTGfw3Wdh18dMhius1wKSMfeTp3jYxs/muHEQrBTYxurWmKYwqYsy8D3fbrNIf/j//Q/AEIQsSgKojQmiCT0K8/JsgJLirTHvo2qB7zz9if43g3hwxLHWZLmCsj17hgmuqXfIgHiCGzLBCXGXYkMX0PJMJIh7uoQuYwIkxCtluDHIls53Oxx/qJEU/VbeFhZ5iRBQRSPSUIxnnlik+QFmoRwWGaNpT9hc62GJW1x5Y/pVhx0tbyFOWZpgqGb1BxRDT2NS/QK5HmBdkNupPtsbfd5/FTMp2ZUiFIfVJWKJElJMpfBUOP1UY4uHbimFaRFKDnShQD0cK3D8WGBLSExJSWaVlAUEZnUINzZtxmNftNYHSUxqmJSlFAUwnft36nx+a/G1Gz7VmJE6MkU+IEYu4ODIY2qxoWXoZo3pBMqpm2zmHtUHeHzTo+P8JY9dEmpDjlhLMQ43ZXYd37/+/dZLkqCcEWtIX6wyBXx3HLMWx2FZqPG64sIR/arpkVCHPmoZo2FtE+1LAgDm0KmcPMkx9BV8rK4pWv+6KM7PH4JpaaTl2LckySkNLnV0Pv9D+8yHLgkkYfKjYZOiq4bJHGGKnv7drd7qJUqK6kbaOkmqe9j2jmRpD03tYSKEROv6qyWEgHSV4nLAl1WjtI0x3JyJpMJhSTaMi2H2M/RnQhd7od55rG+1ebsREBbFbWDCty5+4Djsx8B8IMfPOHbv/d93GiEKSdwc/N95osF/pFYVx9/fI8z/QVnUigXQMm79OpVvIEgoQojiAqNSqUOuaiirOIZWQNq1ZKDlqhmjUYjVNvGkFpRy0nGoLfOy+fPKDSx32exzf29b6CZPqOxmHelCNGSAjcTvbf+ooXZrNHb3MOWsNXhnQ5HV+d0N9ocRGId9dbu8ejpE7rdHTmWFpZhcj15hTsV41uzh/z5X7U5vnjCbC7mqtdew2kEzBfi9wbDDu7Kp97og0TBpLpDu/suzGZcXYvnPA5Dak5JHInQ9eT0CQt3wfe++SGf/upXAMzcLpcXZygb+9QHYj0sF6CkO9y9I2z/81//jL31dzHbCU9fCqKmzft7XF4+I/YVdrcFJH4eTTGtbdDEczcadV6/egiFeotiqNTr+MEMPy1ZToWulhuavPdgm9ATEDm/KDkd+9wfDvjHv/33wvb/4C+p2iGnL8+wu6Lao3FCOzXxTWHDejHBWI0Yh23e2hbQ6zwMqTRCnp8ds5aJPXKrU6c+sFjIqs3hquB73/8Tnv/6M+xT8c4b+7s8fHHExaHL3QciFuwrJm74iGYq/GucmxiNDG9m80ASGS3PXfpbd7EMMZal5vPk8St2dr+FIVtae501jh//CmopV4di/0WPmb2ccO97/1KMyfycyfEl9967y8cfCDIgpXS5PDlEi3WiqbB/3c5IwoxGV8Rzg8Fdhp23cOM5viQfq1bWWLkuvWYfZG/oeLzEqbbQZftJt94kCQpUTRViWUBa5liGgW05t9IyeZ6L6tU/EyOeLs/pdDq3hBbtal0QBBWCIwK4/f5vu35HDlcaVl08Srs+4OJqRLMxJInF5lwoMfXmGs9ffH3bVLtcrVC0iOgG4qBWqFTrjOcRo7lYiEW5g23ZNHpN5rIJ1I9V2v0dCkRQn2Y6tq0xm+s4bVG+nEwX3L2/zuGzERub4rPrUUKzukEUCviLn3ikZCzdcwpPOO6Z52HbJWu9u4zHsvwdnjCZzTFlc971ZY00PaZQU7oS9mRVSlw3YLa6JElEWfe73/0Tfvnzx1xLzaBKTSNPIfDT276Fl6+O+MbH36XIJnS7omQ7W52TpTllIRZUt19jOfNwHJtWSzzneFyCNScOhfHWq13s6imT6YjtDWH0ZT6hVDLizMCQsKc4hdKExprUYFmUxIVOp9GmLnH1q8AnSuBifC4MH6jUm5xeJeysiUDx/Dxk/+49Xrw4RtNFID7y5/hZSLzIKWU/x87uAZfXAeFKKrZvrXN9ktDR28hYBz2JyGMN4pBZKP6u1JcUawecn0qtr+5zlLKG06hwdC4Z/pSM+/fvk5AxceWmo2UM9xv4gfAYx+cXqE7JbOaTS9IJu1mwClP8+TVZLhZ6Xa9RbbSZSA0ty+ig5LByz+n2hUPMMoNFGlKptDiUDe2VdouxmxFKCJnVG+IGLgZbNGTwYdVj8jhl5J1QtcThZmOnTxgblIVYM2eXD8kyi7oz4OJUlPe3dtfBNNGo4kWSlTK2+OqrY9pNGYSupsTFFb12i8VUkoYYDkViYZt90lLYi2EXLFZTjIokk3Fz+oMKFXPImYRs1ps2JycprZ7KeCzFh60KbnhBIZudZ96cIj+hWd0AyZ7Xqt3j3ncOGC/EQTEv4Oq6ZLQ6ZemLNWrbQyr6OovFBaot1vHr1zP+8A/+kotzsaHmTAndPlGU8cn3BFxjMhYHuHtvtzg6/yUAa8OPuBi9pJTELfMA8tKjYnfpS9HEi9GnNJU2SaGwmAg46HDtAWnic3wqYIidnoMfzOl37xBNhf34boChmgzXm7dz0+qWRNk5mTw8TuYZG9t1FsspjiUCoqS4IgiH6LrOkezx6jW3WU01Gg2RBHr5+hI/DkjKa7Sb3pu4Q5ZOUM0aoScSBIrSJAz9W0HNInfpNLf527/7Pzk+FRt/p9tn5fuouvrPNggBISukP02LEa1Kg4TnnJyJw8DS7VFpr1FkJYuVeGfHDli6EX4oBWA1gygKsWzlFnJ4/8E9vvzsp1jVXQrlponYIHIrNKqSZWz5BRP3DqbevNUWMXSFwI348MN7FJnweRdXc2x7QHrznCUohYZuznn0a0n4UDFR0EjSFXki56FdYX2zzi9/Imyq4vSIyyVxkqBzw5o6Z2f3Pp9/Jv6mKDIUTRBW3IplKz61mo6SdbgdOS1DyXMS2cOzMezRqAcEnkJW/gZyqKgl/jKjURe2l6Yxq3kDXb+ZzxjNzCGqoUj/vbW+z0k7JvRVCglHKTIF01TxpAZTxSpIQwPTcEglgY5SaKRpQhwlfOvbogfZXf4Md9WjKCVjqhIKPfPSotsT+5ylQxwYVGsmpbQNVVcoC+X2UNhsqrSqQ2yrjpR8oiTH0C3UUkWXsDk/ROjs6DfNTBmao5MmObYj5mUyfcHJ2ZKiHFDK4E1RSygs8nQqx+WcxaIgyypkUo9LKyCOcnTbIgwkC206whubrGRbX6MRo5QKRW4wlczDO4MWrYbDLx8ucGQfZhy5aJYt8JZAGoU4VYU0y4hT8ZxlqZBnCVHskq1kMhUdRY0IM+FPVaooms/O/gP2T4TfePHikB//6Iz/4r/8hFdPvwDAC3LiQiFVZEvDrIqSWnQkYyuAO17Q29lh/y0xB/PLKVv9bYKgxsWVsE/VDKmYDieHU8r1G9bGIfVaj9WF+P00XnJ9vWC4toUXiue+XExZuT6asaRREc9+enJB1XboSjH5tB4zc19wfBwwXBcHjb9+9m+p1Wq0KlVOZ+LZ53kDrWET6OL3lucZ+5vfode5T5ELGHJRKrhZC6VZp2KIPVJxErLMZCVh3laSsPX2BotpwbU88HUKBTfwCRdLbNnerOY5aabiywP8ux/fQy8NVrFOsyXm6vX1IS1nwGJ6iHS7OFaL45PXVOrCT25v3cFbLZmP52i6GOPUHWKpHkEYcymJmoxuzGTiENzAgps1BoN9lFhFVYS9LGYug80WebHkdOJKO7vH65OvuZ7IZEejyfpeyeXsKXd2RNIvHE9p73bx4jnLibj/W7tvkxdX/PCrI/F7TslW/T323or55c//XwBazQGdjSqhDzPJtrq1XSf3L/GuxL56FRW8eFnHdGz6Ul90NnmN6am89+EeDzZlAnR8SZgsefZIMF5HRp/3P/l96r2Q3JZEO8MOl/MrYilMX2o59eYBaAs8CSd2wwir0mTlGpQyKWvqKm9/8E0OzwQ0M13p/N73PkRRQuaPfiJ+v9Kl1qgQXL2gUxHwvkCbsKuqOFVh02fHL2jUNmnaCUYqtehWVxhaTOJGzCXE2LbqhNkcTRX7OEqFXJ/gBSmGTChVagZJmlKkKVkitSfjGMMwbpMrKBrtzhBV04himWgrb8STy1tCsjKWrKG/5fqdOFyVKJiOcO5T16XWbTGejljMhBPR9BTveEGjsUanI3H1J0fU6nXOrsQhJstG1Op1ikK5VWhGjdEtm+vJ8jZTfb16xmoW0m2Lv6nULGbLGZoO47kUB7Q05vMSw6xzLcVVS83E0KtMluKwUy1qzCZzDvbXmc3EBNRbKe1Gn8nsiCv5XJV6gW4qDNeFMQfJc9Z6feqVXTDEvVdhSFpkKJpCvysy4xtrfwz6MzTZ4G6VbTrrbY5PnmNKWvn7dz4hTVPW1vaYz0VQbRkmilJlbV1ikqcR9+5vEgYZnuwteu/9b3B2doEiN2Kr4vPsq2vu3X8fwxGGGk0jFMXBMGG+lMKmyZx6rcWTr2Vvk6PzzjsPePTwIYUU2dNUC6duECUeisSwz90Qq9rgdCScZqs1YG19yGQcEkbiXmfjMYYpsp1zV5Jx1BR6gx0uMiFmt/InDDY7nI9PKVPxWdWyMRo1puGYmi4Ocy21z9F4znQps3KVPkrpYa9U2rKhXUtyfN/FUyCRTfWuP0ItTVpS3Z5kjrsK6LVqRLGwxarZBi1gMc+pN4SzUTQdw1Fp9USm5+Lskrpdod9vY+ViUXcaVbJKjfPRFblkpVHMGlmmcD4W/T9OdI1m2KhWzotT4Wy3BvcJVhMcp6Qoxfx9/fSYl8fPee9tETT1ux/wxcOH5OmUXUlCUakN+PkvP2e4hmQ8A6MSkysFG9vCfsqTkt3dexxdX2EWItDwlgnddp/x7IJKS2weK88n0TWmN9TzSoI39ul0Ghydi/WwqayhGRF3t77D8aVofN3Z2WA+TbiYioPT+rBLo7LHfL7g3fcFzn0Zp1S1EbkU2c6LlOv5a0ol5r1335bPBEG8wFArbMsGZatyhxSXdl+Mk+deEq0yWq06qgweTSmaOZuOb+cKZcXdewccnUoa+2iEU1GJsqdcXUvmo3KDMotY6zuomhjPIjPIihGbspE7z1RmU5er8TNsedJ3jA5xfEW7s8V4JDbZvb17zOaX3OgNbmwMqdYcvn74U/b2JasRPq3OAJU6h4fisNjrQqRHHEu2Kd/1SMuIkauQJpIuffSc/mATz98jy8R6t2suWlEhuyFuURROjq/5/OFfs7MnDuevj69Q0CiVnFAeGhR0lBLR2wPkYQNzEBMGS548kgQv5RpeGGCaOiVSPLY6xzD7rFwp6uu4QExZNAkiYS8nF8fUjDZRamOo4vd0NSaMFCyEfxsM1jl+VqUoMsr8Jqi38Pw5rmvTaogDOkTkaoEuyQ6yIsFQVFTNx3NvmqvfIk4n6FRIQuHPwuiK8WzCVFLGa0YAhoaumbd9ZrWqytXVFUohNueSBMqSIofVXMzng/tDNtYiPvMLFEN8L0pCTN267TELowWWVScMYoyamIckTzFUnTLTUDSxjutOjyJpk0mKc8sssXSbwI1QFTEu/irHUNqssgg0sV2rSkmJAVI8s9UymVzHRGGJ3pCkEJmCbpqUhUt/TY5VXEFTa7fCypSFIGoIfVoV4XPr9QZl5pBmOXkhniFVExyjRuCLJE1ezDg/alPkLXQpHh9GCY5ZJVitqDTEmC9XGUGikMiKVEuroZYFql5hPhU+wl0WGMYmBertodoyTLy0vA1O7HrBs5dnXFzWsXsiAIt9F1Vz8P2QtiR4qLdqfPHpMWkh7DwIfMo0o1ark0lyjm6nSxKnzBY5rjwstiqKED/VbjLSEe+9+wCiMaFkMHMqBlHuURQZ4Up81qnBdObhJsJvlJlKVibM4oKtTeE3Lo4v+OzzE/71v34fpyq+16jDeDRnd0ckgRQtQCly9BvYCBAaHuRblPMAACAASURBVFdnTxnKPmXbUFmkU1w3x6rIQ2hSYzGO2X+wzkKSekRLg9HqOakvDj+O1qQxqHF29pq6syfGoF+C4eK6KY48oG/vDEjyBmOZTLpYXFGrbFOvN6nIZE59rYfvX2LbDh1Jpb84f8HW9lusprLqlyRcql9QFCaGJSvX1Q3mixf84tEpB3tiHRdek/tvbfLll4LZdflqhFa0CMsVjTWxFzUbbdLsBK1VwfUXcuxMsHVqsppmKDU8Q+Pq8UMK54YIK6ScJuxtbHN8IRJsS++a+SpnMh7K78HGWod+W2MxE05hNn9Gt9ajOwi4vhS/1zd2yPUj8lDEDfPEp3ArbHRtRueSpGx9k9gdYYQW76wL23v09BF7O+vYsrIbhHNefr2gWmlhqTeslGfMjksMWweZEND1BoVi8C++J9b23/w/vyI1nqCM6lxfiWeyrTrRPGO9a5PJtXV8fohapOxsifixNblmaNX59PARzwOx/v/gj/+UytaUq9GUs4U8DC9C+sM7rN+RyBzD49Ov/pFOq0siCZf2Bxu0uh2OX4lDUmdNwV/MCc4zTGkHQbKk2mhwcTXFlARPG/02jw5fMgmEbZpah8lVzMKb8fWXRwDc+fgDtqMute6ApYxPg+mSrfe+gSvjjUGnRZFHKIWPKQsujpbj+VOmno0juQOKuKDR7JMrUsLF1FmscvpDkyQWY+AHOaCimQ6mLAgYVo6iKLe9VGopeAE8z70lQMozkTzSNI3RtYh5kFIDv+36nThcxXHEpaSQ1DWLSs3BchpU6rJsV7o4RpvL6SGzVBxaNKdKlCpoEj5VqzcwNJvZdMnGUFKalhplgSCOkGVdp1pg6U16dVGGvVydUWoFQZwRFyKQyYolSrpEsSoYlizPatsUrChkcBBkGYWS0m5vcSaz5zEJK2MJRsD6llhkuqGCEt9Sjl9dLdlY75ClC4Y9QQd9dPxPZMo5veYeK18cCP7df/yf2dt7izgUBmA2daI4pdnq4DjynWsK8+UVafYS0xSLo9XqoBsVrmXjdhRlBMsVllXFtsXfvDq6xDQden0RhF5dzun0+ijGjEiW24eDTTxvQlmWrA3E9/J0SOgXbG0IR9rv9nnx9BGtTp2FJ7WbjD4YfVrNPrFsWly4I1q9DpGET5XVMX//oyc4Wp1eTwTAL05GOJWUrV6XVS4y7HpuMp7kt4w0q2VIsYoI4oJhS2SgkiJmOV7Q7e6zkEaf2COUzGS9Jxy5UmhE8SVmZY1rWWVAj7FUF0Wp3rJE7W6+xfX0EKcu5mo8zmmt1cmLOaYM/q+uRrSGJf36A2ah1FgKfe7fvUcomy2z8ASnpTF3M6yO+BvfLxjPXOyGgi+djWPZaGbE7sYfADDLEnrtIZ9/9TmtrmQw82ckUUihlySaZLPzQxrNFoYqSvnTcUKj3cNbFDx5JhzSo5ev2d8cYJo21yPhbHrrDmmm8uVXIkv1jQ8+5Oef/hODrQMGPbHpKNkZ1VrI1v4mv/jspwB0e3v0du4Qh8JB5UXM+fVTCiNmbVMcNhTdZnNrjTTO+Pid3wPg8OQx89UUU67R6WRJVAtQFA27ITKmRbzi5PwYTb/JiqkUlkq1ohLIoNfLp5jWijLvot5AsdQKs+mC3pqsNl/HVCxQ1ALfvakpSJIOR0GTUMwgHKObDXJZCen3LU6PTlnMlnzjA7Fmq5UacVTijko2diWLkpfT0hsEsgI+m8SsDdsEyRlLyfBZZjm22mPpnd/KFyTxgDRsoWgi0+qn51wdpbT7LY5OxQb31v3vYRo14iShWhfBlOtFaIYGN8yZrQZ5FtJrrHN5Lb73rfe+zWraZBWvUa0J+4zCJQoxeSk2QsvY43/93/4t9x7s8O//w1/fjl2Wl5CmKBIuoSo6aZqiSTKSMLlmbbCHRps0FuuqNCL8MMew9FtW0299ckC9YVPmMsOfppiaRRwVFJIO+p1373D+skqQudRkBZ/MIQ0WSJk7LHPIwstp2PkNgoM4yjHNkrVuj2dPD+VzWpRKSSx1derVNWbBKZ2ewclLsf4KXMrcoiwKDF3C1rSUlXeNbT2QlqGS5gWaprGaizW6PtCoVqt4vnhuvaKQJSVqKZgFAbJ0xeHLM1TeoZCOo4xNMjIKZFXFSLi68LGsPlGmy890SmC5umJzS8IeC4U81kk0Sc2uWqiBIIy5e1f4iHpdJ4srlIWJJuFSqAVFkaLIstHO9oDZ5UhQL4fCD1d0G0qLIFjhSqINyxAaV0VVEimlOabeoCyXt4m3JFUpCouiKIT+JGAYCrGf0mqJQOo7nwz4+nMHpbRRVIkLQkHXTZJ0TrUh1l2r0+PoMqMmofXZKiEnx0tLKjXxfsvFjOWiQ1EaKIgxLpKMssgEzhZAL2jU1/GjEEtCExWlRFMhjX16m6LKv7G1ie+OBZQT0DMbPS+JkxVheHO4MvEDn5WfYzYlvC8PQVMo5OHO1sFbjvDnComsXJlFIenmSwIp6taqlawN7/DLr4X9BKGHYYFqmty9IyDGr1884umzZ/y7/6PLvXflXh4XdE2L89ciwbO9M8RuKngzmYEBmnqdjbfu4C7lgawwODt7hlLt3JJ/+eczynqd6QRKOVdZtkAzFSqO8CN+VHIxPqde6VPKw7iiaMR5wdq6w+xc3sur8Hr0kp7U/9td30ONW1gNi9NTUU0f3rnPoDmAwMCuit+z622ceoAi/TdqQZqolFmbXl98dvrqmvWeRbOV0usJv98yazz64ghNvyFE6WI3FcpzWMnE16qsohmf4CZPsBzhKJZBylu76+iSJe/4xRjNLuk/aBLfwJDXvk/cfsrSnTBaSLr7O/exFtcEsdgfAz/GaeyRZRmlKmKQ56dPWO+r7N9bYzES/npyOme7v48km2S1OGUWTEgiE98Xh2E7vcTWa/zhn/8JP/zZfxLPMNgkiTP2ZHvID3/1U+48+ADKEkNqOs5XLqU5ouG0aG8K/+0lC7AUxithK8ONHRK1xJvmDGVybHOjTjGJ8HON+EYLLihYX99kNhZxn7Xe4On51/RaLQqZoP/yy0/Jg4L1zQFX0jfXOk3G7gXNdWkviwinUHGTGR1dvN/57BI18KnUxd6rWDm6Omc6WrG5IeLojqUzH49pV2tsS8bEshjhUWF/KOKw6qDk+BdX7B1s8ud/JeYzKTXy6RmPLyYMJGGXO/P5+7PPWdsQNtZodZnOznHU9i2rcMw1qtpCq3hEspI7Hvts7G7TWxcxSep7WLmLnik4ppjjV8cptVqNnIw4uGFDzTA0nTi++X8qqlhFSVaRqK0kIktSbNuke0PM9v/PZ/GG0OLN9eZ6c7253lxvrjfXm+vN9eZ6c725/nNcvxOVK1VVmcum953dLU5OX1Gr1bArIvNxdjKmuQ+6aiAh11RqDnmq0WiITEtRhliWjaIkvDr6Wt5XJ4lzNrfWmE5Edml/f5dF6nE0Fo2UZW5iWnUqdZNOT2SyLq8UsjCjVq1RSCrfNJtg2L1bHRFdSWg2axydXvLg7W8DMJ5cUqIyHs/56MMPAHjx6gsCf0mrLnC2DcvBMhOchs3RiaDINrSAdmOAH0wZrItM+Xr5FnmR3ipLz+bXOBWTZvUuV9Mj8X76KeQNIEJRZAZIUW8F0ACazSp53EAzElYrccJvNWtYdsnJsaSC1ius9wckUcLUExmbvDzjYPcbPH7yBa1EVAeajSqWXbltWI4iaDQG1JubvJwKIdV2q0IJnByf4VTlWJkBRA0qmsjGxO4cS1eI4/y2F213q0pahES5hi5hXYGvo2uTW5FdL1iwNthi6Z/hFSLTahoGemLir6a32bSKtg62waWkv767u894cs3p+ecMuoL+FqWGZTaI44CVKzLzr19fU29UuTwRGcSN3SFlWXJyGHBwR2RDfM9jcWGiryVENxTOdsR/+sd/vIV55FbJZ8+esnvQ5EJSVDvVNuguh0eL2+/Nx1+gmzlrTdFc6icTFmMFnR6lhKzc3X/Ai9dfcjZ6xoO7ouR/sDXkanKO7wvbiPMrAlclD6Hekno1eRPdtBmPprdN9fvrH/Hzi7+h2xMVsKrToVKzKYOC00BkvOarY7qtXeZXo1uh1igJIcrpSEz78fkJO3tVJlcaSigW5F/86R/x008f0r5T58nRcznGLsN1i709kcl69uw1Ybji/XffQyLbWIQr3OWC3e1P5BhcoChNrq+O6PVFxm3lhlQcA63IbqGsSTZl5r7ACqQuS+2AJJlRN6soMjO4kgQgmtojl6QMWTJnnl1SU0UG1ShM2nbEcGsbfynmZTU7o9vooxkB85FYI81Wi6vZCVkq1tXa2j5ZPkGlekuA0nB6zN0J7njMu++KzHUQzWg3NqmWUmdP0eg33mHlHdKyxby0WyaHx69ZBZfsbIhMZ+Bd0B++zWokbHHljSkNhdTIeOf9bwHgBgYrZZON3TalxIargcM89Li/ISCqP/6Pf8dHH9R5fnZ8W9FrtVXyNEJRFBSJM8/zFF23bqmu1USj2oF2t00oySr85ZJNs0PumGRS/y+lYHStgqSxLcwSt0hRYwMrE/du9lr88scXdIwmQSL8sKXbaGWBn4lM8mxSQSNHsRyKSJauVIUsztC0Y04nEjdT7qIkLpqs6IVZgqqn6GpCnAg4UVrkkIFdsZhJOF9vLSacV4nz31SyVHL00iSQpBrbu1WODq9JZe+UYpcUaYbRajG+Fj6vdaDTrOwwD0c0bQH9UooZmlklS8T4DrZDrucuXtbGlgQhZW4S4ZHFEfe39wAwdZ2AHE3uMZRLslzHdyGNBMx7saozXfYxq9GtHwyDnMxQcCqSgrxewfcNEi3GkNCyMoJADTAtja2+2CNfzBKCMkGXVUaDGlnm4QUK3z4QayVLwY0d6rpOiMjkmomKH/sMdsTYKb7KxWKOZvRRZE+ZY2jEeUwUKmz2RAXo4jqn4lTJb7RhFAdF10lWS+4/6Mh3KQkzG1OHQIokl4pPiklFUjh/670dfvAPDykMlTgUdlY1dDJdISoKhh0pRJssuZ4GlIasYCY5QZaiY6PKqs2dvXX8wMdLC5xM9toqGWDg+1L8tFHj/n6FH5wtbquvCgpFUaBZNUIpvL33fp8yhPlMVuoaJppWRdUDnKaY07WNd5kvn/P1kxO+9S3hBx89ecp3vvEeJxcCGumFF5RmDasmcaUI3annz7+gookx6LS7rDKLe9U2r5+LNdN/+4DST1GMBFsKhFcLlfmkRJc9l/2eiesZJC60+lIbTtUJlxmRYbBKxPsl4Yo7OxtokjBIVxuU1oKCnDv3xL6z9FYskpIvPnvKnQMh4ttt1Lk6idCb0tfaMZZtM7m6oNcT/caWDYswZ3/9PqFsiJsnY/Sqyu6BQDm8OPwaLa5QbzYIZO/yxL0mWV6CGdBqCZTGZDbm2VOPlbxPpWKzVt3g8vIaCuHTvfjX3LlzwOunR7TWZKtA32F8DFZdfG8RXrGM1gnHM2p94TdanZKJd0l5omI3BPzUcyMqdZ1nTwS8sF7r06vX8YIrrJ6wFz8qcJWUz54c0aiI+TqanbJUalhS0+73/viPWOvW+OHPvmZ1JJ6huamxO9zl2RdHqIbwQZ1eiOeeksm6x2hxSVXtU26Z9CwxBhW7x0Q7IgqW6Kb4zKxrHJ6cUkr5hPDlmG98810qTluMDaKqOc6nVGsWa46wj9OTa5x6ztMTAd1PI5vuXpuq08OTvYy2rmJ1WlxKiYpgruKs1fnm3QMWgbDz8cJl491NtCjj+kqM1TRasX+wy1T2wquRxfa7Fa69JUtJOle6NrGdoGd9kGiSyWxBo5UzXop3eX24RDNdgthnd0+s7ZrWwtIVvCBHkQRr3/7eR7x8ccjXJ2IsTTWkmEGlcZ9lLMWVq23c1QhDL8kz4U+NwsIqErYGYiyTioqpWASLM2JP+Lf79/ZYRKdcXF1zdSkh8DeMdL/l+p04XBVFynBNBKZHh68w7QJT71CThrq3t8f4esF8GnPvnliwo9EUywa7ItnDshrT2TXbdywST5AyhPEUZwjeKse2KvLvLChTqhJvaZo2dlXn4vIV3pnYBLa39jk7P6JUgluGuywpSPQZnbZYrCt3LLR/fJ0XL0TjpmlU+eDDjzg/+wG/+vyHAKwP29y7820efS0cqVUraNT3ODuZE0QChri5uclsuiJNQjzJ9a+SE8UBjiEOW1o5YLk8YnPTZtgXpdjp6hFa1qHZ3GWxkkQb/px33r3DxYkwwtC/piivsFQHRwZzpt5hsbomkhALXasQxTlploFkQqrVuyxnCpubm/jBDSvemMXMYF2SfIyulww31ri+fMz6thQoHL/mo3e+z3x1SibxsesH29j2HqNrQSqg2T5keyRZwdWF2ODi2CBML1GVknpNHGRW3or+UMfRxME0KWaMp8cE0Qgku5UbOGwPBnh+hKlJIWPLxzJbdFvCgcyWT7FqPXa7Dzg9Ev1NjXodQy05OXrMxlCKFtoZtt1nIvWdHOddlosVpZbw7JU4CNfsLk7F4vnRp9y/JzZLXR8Sx1csXeF8Wh2d1WrFdFRDioCjxgm5ElIqPl3pzL2ZSqej4iVSTLrb5Hp0QaNjcn4hxtx98gsMJ2Nj8BbXI8FqtL6+jmkbFIVkY6qso+slzT2DOBbOYDa/YrSYsTbYR9fEnLrxHKvmsHDF5vXq7Gvu3P2AxfySwP0NM+DS00iLCnf2RPBoahbz8WtGMzHHFaWCEWcYVszOA+GQvn70GVWz4OTFIZqEKswXS3qdIVksmcE++CNWwSvKUqPXFTDEHItlsGA0F2toc+OA8fUKy/Fwl4l8vx667rOaL3Fs4bKePHlIq9NEsYQD1qsRttHj4uw5ra4IJn2paTabvGLQ2RNj3N5jNr/Cl4FjEiQ8uPMenrvAroqAL89z0mRB4KlU6uKdjy+eUq21aNdEUBEES0bTM4Zr+9iOsOHx/DH3736L0Vgh9cSmujO4w6sXL2lIkcZ6vcXrs5d0OiaubJLOEgMvOmHQu0uRiTXq1GvMlydsbonfy8992v0Bruvy6kiwMW2s/dd0exUyJUPTxXgmyQk7GwPOj4U/ePjy/+K//a/+gh/9L0fo+o1QrIqq6JT/DDSuauLfrR6Q4fDxlsVA93AX8rBTbeDGMbkf4jTFxvTW/S3+7m+foqgC0pGnAYph4vpLHrwtehfDeEqWR2hqm1IKL+Z5QRrl3L0rYHpJZJGnKUmakqcSqmhkVKoane4aJ+fifdAgL1RxEAQWqyXVaoGh11jMJRysZuFYFnGWkstGqCC+wLb3b3XEsqIUYuy6RVVCfj3/CtdNUDTx3HGWY6oKYRCgSEY/w8x48cLFsgeE8lBWFgZmaZNLdtI7u29x/HpEnueUN3qKpkoYqTi2zttvi3f+hx/+iDzbwrRvhI4tEnxW3ikffiASdkcnz0hTg4rSIkqETzCtOp4bU6kK5zJbeBSlJt41vwGj5CQR6EqKWop5Pzq+wrB2fzPvSkaWKyhlRn9NrJmZO8MwNfIip5AED4UCeq4zWgkyl5n/AUWiUast8Vxhr5WKjqYrrMIzDqQuYjp3iOMcQ8IZFTWjLAqyJKaURAadVpeXZypxEZNLWKWlV4lXcyx5cLucnDBbJqAJnSmANPMptIQsyvn4fZHIuLh6zWIBSiOTNlYShRlqvqJdE8/Z7JeMvi7wveAWrlgkKioqgUwYdLoqdmXIxdkYS5ekM1FEnimYjkq9Ksaq3tR5/uIxltQ7KkoNRQmgKMhTce9KTUO3Vxy+jPnqiUh47N/tcOaNGdwT+9pkMqNVs4g8uc6A0eg1CjqxTD42G30e7I6YjF7T39gDYNhocI1HFEXoSv/Wzrb2EkYjkTzWtB6Bt6TutOhLxuTHj3/NannJwrbZ2xb6UfPVBa1qnUkmfOb1+IpWq8V49oxCHlpKLSLyC7rdNloq1uOXX1zTaBb4Y2GbH9/5kJm7otOu8uiFaJeoaw2cuobtNHj++rEYz9xnrb/FF78S2oLf+da/4vgXP8JVl7y9KcZlESTQczk/vCCSz5WnFTqtPTqyZWR7e5dXRy+wzBZeeBM7GTx58Yr6zhqJTIaVHPDeH/TwluI5N9TvcHpxTKQVhBMBoXY621SVkjgDRfbtKF6FVZYxHAj/Fikek9UFd3feuWVRNu2EiX/GV8//gYNNEXve3VpHd7bpSCjd1WjKj58+JcwuqUth843Gxzx5+AqUhED2yE3mI/Z3N5hJ3bJSaxKkY67PhiiG2COfP3rI9rCPYdRv4754tcKfwcEDsQ+gKLx4fobvHVJxZCLRDlHQefLojD/5U9GKMJ59xeR5wP4d8b0gnHM984ijBdyw7jU28cc+zS2xh5k1F0cdsnRDWjXxvX67wtK7ZBX75BKGWG9Z9Lpw8lwcpLTZGllU0mo4VGtiDWlVk1J30MuY0wux/g7eWkNNa8zmknPBSlHVCrW6zmQiYoJT75yKUyOMltzfF3b9y19/iu+HFJl4zlY7QlFi5qOrW6bDMEjZaCs0ayaTWMx7s9HkKhgxXoj935oEzOcmg3s66U3y0TOIxlOsQvRpAzRlHP7brt+JwxUKhJHYmGq1Bmmac3U5odMWk3Q9OuPB/Q9oNuvMFiKjl5cu7V6HqiMyDK9fjqnVasS+c8tu1zA26PfWOU+Pmbsim56VEe1u61YALMtjwjBA1UqqMriazzwcu854fE2nuSfuVXcIozmmKTaASqXGcjWiUmngStKLWi3g66c/Y23Q5vREOIOyGOAuy9vqgetd8OzZ1+zs7dLJxCarayq9tZyL8wA1E4F3EM/Iy5QoFgH1cG0fwxsyGXtMJsJx7u48oGIM8YIJLUnFOr4OWC5CdEuMXeBG1Bshg/7BbaUqdyLi2OfBW8KJTScrDo+fYtuwI6svR8eX9Ls+jlYhLyQVc1DBqphoUjQ5iXOePX9FzeoyH4nNxHFCHj3+BZpaYlfEZ6dnM6rNjHAlexmCnuh50aJbityN9QMuL+vUmzZpKuZmc6dGgc/phTjYrA071CobGLrN2rr43suTEWF4hWm2SCPxnCELzs9dDEf8zcFdi/k4wstOMW0RgCWRQW4bNNtdnr8Q/Rx37vVZeVfMZ6Kf46c/+TmDLYtaW2F8LRxNf33IbH5Jf7DD4bGwxe3BkHfe+oSjYxH0RvEZtqMReApOVWwC08UZJQnvv/u9WyawoD9mOjvk7oGopoWey/r6JqbZwD4QG8XzF4/Z2bmHohbMRrZ89hhDbWJLUcGj4xfU6hWytEUkx6Bi9+l2wFvpWDeirEnEeu8OUSqcCsqS8bjAtusMepIVhx0m85BqN+VIjsu93X38eUwsg6bdjR5Xxws2d/cIJWPi6ekVezsPsDTllszFUh0ij9ugZeU9p1ozSZMal66wYbuyRrdzF0Pa6/n5C2rVDp3eA549Fr1hSpqyvb1P4l+RyAD23fd3CT3rVgjw5OwJG4M9Ot11bBmQuAsxj73OgFUg3llVmpCVdCUNepwHzJcuUTijsMUcL2Yhw7VNyFYUhVhXOxvfpFB9rkaCWlcr1ujU38X35tiSyqo9/JCDrftEnsdAUut6K59Wq8WTpyKo+OSTTxj261xMj6jWxb2fvPolb9//PdJ8zqGsuneaB7TbfRZLsWZmC5f2Wosoidjq/wUAG1vbzMIFWlHBK4W91Dptyqjk03/63wH43r+o8+j5cw6fxpi2SLiUpYKqqmRFTin9oKqqlEpJXkpWLC3kv/mrHY4OX3J9LuZz7Y4KeY1waVBBbOqvDyPiWCORhzLyCNO0yJWYVSw2oSdPVxTlPuQlpaywF+RoRkJFYuhPjlxspwsoKDe9ReTEyYqNrW/y45+IYKdUClTVIs1vRGENKtUEb2mTy0pZ1bAJwhVOpcZiKXzzux/3WSwzIomrV8wCRTFRSptSVs8KZcl8DppMaGVFimIolIBsDSEvZhiVAcVMJZBkAFpeUKu2iDxxyC4Tg4o+IMu839DKaxGtWp8FJ9gSx1+prqMq1i0teV4EhEFCWZi3+1yaF2RlSkZAKmVADLMgCBZ8+O4N/b3NfBait1WSSLI4WhViN+b9t7cxVDHGRV4nTnMsW/ZO5omgfy2WzGX1fuoJZsCiyMhyEchUnAZxGKDWxL2fnT7CML5L7Beosnk9Ly3ytIflLLAkYiEvLGFXkjkzTXNAoUhi2g2JTnAT8kwXvX6y0b8sTHS1pN0UY2c6GbrRQ1VzkJXrvEhQCxtLNRkMxPhdnIREcYYlG9PjFMoS3OWM/lAcmPtrW/zd3/ySorCJZUVNKyqoZkEpbV+3M/7xxz8jTVtI1mWKuMDQbbIsxZCfDYcNlqOcKBS2qJJi2Aq6arFceHKuSv67//7fcPhkSd0S71x1Sg5fPSWMRIKw3Wiy3rVpSEFmgNzPUWsOVTlXP/77/5vNOwecjlX2dkUyYIHCaHJKu6vz+KUIYL25w8HdAWZFrPXR2KPM6pgNjbkISTAr0DGGbG28xXgqvqeYKl8+fM5gQ5AkOe1zrsfnGGqbQCZXO41N0mxE1arQlExy3/39GuevX7O/IQ5p/mjK0fgYLTP56JNv3Np1GimEwQJH+pvFNGSlLkjlXvjrZz/DrFh4QQ3DEoeB81c/p7N2l/2DB5yeSzHgjR6GBo+fij4wDZuKbRGtIgbrsifZzXEMG40YVzLO/vrZ37E1rDO5FPtVs91h6p2xublOJiUNrkZ1/vgP3+MXX/2KpixKtCoFJ2dXNOSBqGFYeEWGn/1/7L1HjG1bet/32/nsk3OofKvq5vBSdz+ym6EJ0aJFwpLoiSXYM9sDTwwDHtnwwBMFAwYEDTywBcuCNbHplizBFgXGZlPke+yX4823cp2qOjntnDxY6xY1ECkPNODgrtG79fbZYa1vfeuL//+CpQxI1ktVCnaHZju5Dsalfo0kyjGbi/1RbpgYY4t2bpfVlXCknj87IlDnGJpJOSdkOGcZqElMMRN6Ks1WSzYyFwAAIABJREFUNEsWQZxD5hqwjZi19U0uhhOMggwkBDqtNYOFRCLudXaZjE9J0xB3Ka4xQgXX87FMlZ/8+F8AoGsazWqdTkvY0VeXY/rDYza21yjKIPfZ5VPcWcpsJUGMkpS7d2Mcb4jvCP1q5+uUShorU7umVNi6scX06oyODNxoicn+e3d5+eVPWbkSNZY5Dx58j9ngjIffFcHc42dH1EoWxZKkTzAKZMRomcLBq3P5vCKdTomNjW1efC2cziAtc/veDgUZYCpWyvz0qxdEbkK1JfbD9PCIk0WTQlXl/q13ADi5OmS9d5ev/lgQY290NiC/wh0ZnD4XZ1i0GaMYU/Dy3O0J2T++kBU6f8Z403P1ZrwZb8ab8Wa8GW/Gm/FmvBlvxpvx72D8hchciSiqiPT0evv0z4fs7ZUJJI781uYeppURxybViihDWjkmOb3CaiajVKFLoWwQB2U0GR29eafJF599hed55AvCC48TH0uxOTj+AoBmt4ZmtNA16zoLNp1OUVUL2y5c1/aORyvWt4p4rvBHHX9ImnnEic7uTZHun80muEsDRXG5cWMHgMHomLP+C7pt8e+bN36G87MhhlIm0kR0QlPrmHqPYjGg3RUe9tGxj0qJqSTdszQPVVNQFZ12U3j4arRJhE+z0bmGNFfUSz7+6IhH74g0tmVk6LrO6ckR1bLIig2uhtiFIhMJFx14MbtbD1jf6LCQ0dedzQIr94Ik0clbIvUbKwvytsnFiZjfre0eg/EBnt9nMRVR/163hqIvidWI4Ux4/WWrS+yMMdSWfMeIwfQEULl7S6TRw3hGHMf0rx6zu/seAGcnC8Ls8rp3azoEzxmQy+X49lNx7/msT6teoNoK8ST3zsrPUShtsVyJKE7/NMfobMrWjQrjmVjPi9MF9+7fIW9uU5C17o6T4+LyiF/8oUiZz8YZcaJg2wVsW2Sl+pfP2L1xl+XUZuuuyMz1+33Ozz3astxvOPF4950HnJycsb8v1mo4WFCr1JitnpPIUtNWdY/JNCNLRATVcyK84IxO+xFIsry797dZjH3mq1fkdCH7qR9SLnbwXBEV215vYuVSzk4uqTdEhDZv18gin41O7prH408+/CM6ndJ136AbxJRrDllWx5GRViVRqNpNzCxkpysiiO1GkdlQYyH5xsJWjZ2NdUbnBxwciejr9oMe89UpjUabTCKkGWbA1eCETZkNXXlzXG8JiYPri+idOk/JF3LkdcmTlEwIwyvC1U0e3P4V+Z59Aj+l0aqxXIgo6mIxo1BIsSUvC1kP3/cp5Bo4kXjPXFVERaMsRTUkZHQ6YzCdUE1EhDYkQsmu0JQKqSWzmmpEfzin0e0RymidG8xpd9dxLBHhj4OUvB0xX83oNEXUNlNtPn/6LdWayUlfRNjK+QJKWuRXf01Az5+dX5AC1WqXRkfyD4ULFEy6zW3SRERIJ9MQDeu6v3Jv9zZJskBLtqlVJBqTklEubpA5DkupS3rdNf6nv/W3+dW/Inq3zmYfsRwc4XgqliyNjqJAQB2lgIQ0V1DJUq7haLOkwG/+ySWffH5GIIlUkxAcPSBNA9a3ZR/fxg4ffnhOnEriVkMlSQU5cSZJS5v1bY5DFU31UG0xn0EQQuaTSgLYxUojDH0M1UI1XxMZxxRsnfFkQOALmdU0Dd/zUc3XqSSVStkgn+ugKL68d4CiKCwWS3o9IVf1WsjRC5tM9lxpqkeWGQRxQIzIXJWKCvNp6Zr7KwUSJSEIA8oF8bzNnQb/6o99cnaeNJUoeNmS8eTqWk8VKxk//ZMTdL2NqksY9Dhi6S8oFgwePxdnT/88IW93SDPZk4SCqtjUqksabbGeT18sQNnH85xrqO4ky9AV/Zpo+OmTDMVYI82Ca1TMOMuIwxhnfsDJsZgDRSuhZyqqLHFEyQhDhZwR05YIu0efe2BopGl8XaGwcn30Qsbf+Ov/BQBPvv2Aby5CavXiNYR0GhgskwmlvIYjz8z5NMTK+ZBZcu0gTBJ8f4AnM+yjSQ5VV0gTn0xmytByuE7ASq7LaNBhOjXRVBtFkX1ZqoHvZUTh7FovTZYamWaiy97e0PPIsowkDVBNkWl9eXjAYAZhnF2jg9m6QZpmeDKDUa6bON6cRGkj27dIVY3IyYhjBzUWujKfUzieqoJUG7AKBmkSY9ll+oMjAN57932+//4v8d5b0TV08+XVkp/57i+jygxttVLgd//lP6dWkjwBQDx12d+9SSSRK+/ub3M4GbPW6zDsP5brt4kzX6IpFWoFSbg+PKPTfXidwYiCMRFTrq7yVAsi+zMZL+h19slXTaZHUldaFaIkRo9ltrKwhqe9olTOM59LaouCxWb9FoPREU4i1ubqMKVdbpJJFNWjy5/Sn0353oO/Sl9WnIRejlI5h+MtiFIhU9vb9/CCJZki9PngdIrRatMpVPn2WFQs6EaONHDw9TprW8J28Fcez84OrrO/Z1efEsUx9foupwcyi1K0mM6fUzDrNGo7ANQaKxajIb01saCzxYBOs4Iam6SmJIqtL3hx+IqNjkLqi7Mv8ivs9RacnYnz37PLKEqZweiKkuz1S/G47AfkShWQWeLVaoYfH1KV3E2hNydvZAwvFhQl7UGUwWA+oVLtcHQk5r2xrqMs5tQkR2irvcarj/rs32ug6GJNtazEbBEwmc3J5SVUf87ganhGuSi+b3hVoFatoDDl6lxk79arTXK5AqVSjcVQ6OZqucXezTv8seTQmg/HvHXnJp4fMeuLNb3feUC2ERFJXaZGGsvlJeNBwt66yPIvpi8wtCZ5w6LYE3bQ8nJFvLRo9EQVx2KWsBqvCAPvGhMgTRO+ffEt7WKNaCXkc+mGFKspXZmhHY8DRoMjusUNmg1ZlbJKeHX4EWcHBufHQpc8fH+Xk8MFexJB+Pe++D2M+hpOPGD0Qpblt9bpVSzyVsrxmeCdiyOVpWLxzvd/Wc7vktHLc/KlFhv3xfO+/ugVtpLj9oM8H30u3vPKk2TJf8b4C+FcaaqCmoiUrrOIyLIFilq6LifwgzlNK8fx02fX9eoX5w4aoShtQLDI9/uX1Coqoex3+OSTJ8xnGbmciSFLhYolm8hXqJVFL8Nick5OT3FWIZOxmKxuZ53l0kHRNUzZkJwqsHRcTo6Ekt7eLVEoVgmdFmcSOrRYqmJZJheXx6iqMHLXu/cYT8/IyxK5crWMXTRYLSIqEj75m6+fYNkJ1WqVSPanlEs9XG/O3q4o3XP8c1wnptPeQZEG0eXlMx49+D5nFwcs5kcA5CyFm3t3OTkUZVeWnVIwbuMtp5AKg29v5xH9y3MUVZJ1GgmWYTMZRGjG6xKSFVlcw8sGBN5rfhOHIJ9SkFDlK8cniysMxmfs7ohv+fbzQ27ffESna5C44l5X/VNqFQNDll2lvka5ajAaLK/L7bZ3S6Bd0Gv1OOoLgrkwzONHY/qnQmGUShoaGYZuYhnCWW7ZLXZaNa6m5ziSb6xWzdjftRkLvc3J4Qm5ShPFMqnVhbJT8dna6DAdzyjnZXlPbPH2g/dx5GHiLHwwx4RximUJo6VS7DAcvUSLu6TBjphzO0JVE2YrIT/FYomriwWVSusaAvhq8BSCt9BzZeJUKMmj42fs327iy96i+cxFzy8ZTJ6gG2JtKrqN54Tcv/kOJ2dfAuCuMlI7xlBl6edMZevuTSx1xJEs/dx8cIPIn+N5Hs2a6FP8K798E8d/xrPn38hv6eIuZqiFc/J52SxrgDu5YLNzk/FKyPqX33xOp7nHcCb248UgYmad0ao22bv5ms05YDg45+TinG5FKLLb+/fpD07wPaGkLeq4ccjKOyMvD4XN1gZJmLFwROlZ5Cjs3bjJbJawWoh5aq3V+PTLT8iZKa5E0t+/1cPzZ4wk0ECz1sSwYibTi+s+LCsvZDIOXVpN8U6ea1CudsiZYs5zhkEcRRTtIifSUWx3WqymCe5CQ5W9BVEUsxyNsWXzLLpLEk4pWWWiUML7TnV6jSb1hk3/QBgI48krtrfvcCFr/WdxSCmnsxzoXHwjS13WN3H8M+rJLTIJ/VwqahwfPKHcFt9ycP4FncoPadffQTWFTKlalSRMCJKUd++KEoe/+7f+O27cvsCVhly9vk3Rfg/f/xH5mjD+g0jCnSvZNRQ7SKJUaSiuranU9jsMPhwSyV6fjIQUncmFx84viYCLplosptk1caypFkiUmKJd4sEDMf/9Ux+UPIahECODYYFKyTIolyX4QKKiJAVIQlIJMR66KT/3/buE/gJZXYcf+ZiaTqC48j4atWqVV8+v0C3xvCgOsAyTJPavexAb9TJP/QjXFzJl6RGJluKsMjpNIfvL5VMWi851r5GqqxiGSpRk1CvCGDg+fk7k3SNRY+JI6rNEYTFfsrst9MZidcnKTdDzGl7wmicph6ZqDOcDXOkoGvoN/CS9dhgUxURRIhQmDPqyfDJqs3R8Wrk6QSR7SiIDzx2z1hXlNoO0wOKZSyGn/SmghWbhLS+pP1SuyY6dIEY11WvgDV1XifyIrYbNwwfiXP3i60OWQYytK2iqdGBVi6vLIz7+E1Fquljk0VnHT+fXDljeVpgOXKptm9h7DSRTRNOVawoODI001qjWNV6dyFKe1T0wYvQkvSZlRYlIE4Pb90SAYL29x3z+BbqlCrASIAxT4tSjXMkYjcW59u2zEYmiE8XSsch8cmaNYKqjykb/+WLIwfkUjHVCiY6lZCtMzcCXpUrddhsynZevbMy8OI99LyaIliRpRNUSfzs9Pef8IiUvDego8skZBVRVw5Yl2z/8xX8PJc0DYxxJdpoviXLJ+JqD1Obv/J1/wN/8j3/w+g9oXZswnbKS4E6LMKK3t0lRz2NJcI5kknH//nc5P50yngg9eGNng8uzQyZjIXfrGy1cV0FRDSLZz71ebZOGMSevnpHJ8ylwDfY2Nzg4FaVOjUqbcrVI4IfUWuJ5paLOdPGcgpUjU2QbQG7GeLViRzrn5XaZn93fRLUPmZ+8LlFr43kZG+u7zJaCZiVNAtwgIZH6rt3soJkZzuiIhQTVsKwKuVqLiX/Ik2+EPbNWv0Gqx5gS3KGYt+h2Njm9/BZVlXQXc5Wryzl6zqEhKYm2d28Q5lVeyO9LgpBSPUSzoVsXzkAcFMmpChcnU3oSWEipGMRRke2W6Ou7XF1ydvqUbmefdlXSiTgevWqdpb5iNJX0E5u7fPnkUxIJUT8bHmOVCthqnoIQH0qllPe/9+ucnh9BXbyon5WpV7oocs8skxz33oVvvvmadlM4XDmzRa3e4MXxS3KyPFNNdO7ffoQmbbr+yYzpdIaGTqMmnI04XFKpFlCJKRVl6XPm8unHX3HzhgDVqpYu8cOQolFkc38HAF33uZzPyFZCpuv1PK4fU7R9lrH43kqrzehqStGs0pXw7Mp4AGt1Epk4mboTrPmcVMmhyP7KyA+JFYUZQxZ9IZ+GZrBwfZiLc8Cu2Pzc3f+EwPmKD/5AOND//q9/j48//hRntiAn5WUy0ahUdb56IZ0mo0hGzNxZMl6Jc6fa3eJyMKNZtslCMcf+co4/XTCS7SCZprDWqrNYZSyW4vt2bmyTZAt+5w8fM5dlstX6n+8+/YVwrtIUWk3RlHZ2dkKmZoyGC+Yyy7B/c53TkwsqNZNIIoqouodpGSwXQpiKhRopBuVKntCX9fiKSf2GxWzmU5KOzMvHY5J0QrUuDrhaaYP51EchIZRGROA1MLUiiqpRKonD/2JwzPgKbt8UmYhyTUSAnJVLrSw24mx5RJaO2bmxh+eKxQzDEDtXZjIW7+25R8wXA1rNDdLsNQnlhLXNDbLE4vBIKJ9ur4aCyYO7PwTg88++5HT0h5Sr59ckl7dvv8Xn3/weoNCQHCSe5+A4Ax7cFfXOCjl836NQtDk9FAasUz6HLMSRlmqjrbNYHBL6ButrIuM1nc6pVIpk6TrLSB6EQUAQHmFIslwja+B5A37uO7/CaHYEwNZeFcdNKCxD3KEQzE6zimY4OBJZDgWIdNa7N5lMhIE5/9pD00oszi6p1IXiVtHY7/wqL5+La6p1j5yts5p7dCWohp4lLGYjGq0mKEJr1SsFLo5PUXVxjeIWMCtFpsPo+gCv19roWo7VKqQo1891F5ycfU1Dohwpho/jjmg1e9RKsmFYy7i8itnbbzGV/Di1ao5SYZ/RTNSBD0dnpIlFp32bwVCs543NO9hqgSBRrqOKlg2eYzC6krwp1TrlapUgCFhJUsjFJKCUK9A/mVG0xSFgqRqGFfKaZjPUTFSqmIZPpyd+t1w6pHGA4zo8ffoHALz14Bcx9V0y2RycqRm1+hozt09ONr1OJyNq+R6T0YhIGsJ3HnyPZ6+O2K5Jfgc7wGfBcJGjJzOt56cj6rpBaipkCAfvvB8xn4bkZN+ZXSrgxSn7u5u8OBTycnGWQlpg/6Yw1pulGkvXoVWrcnYher48t8ut/S3mE49K7nUWc4lm5nBXkqB0p87Ku0JVXQxp/JiWOAxMTeXouThU681dTNOgoJTlO+Up2XWmswEm4m/3dt5nYPb57OvPuX9bZJcq1R7L1QRDl6SCUZ3NGxucXx6IkDzgEZIm0D/yubEp9lH/PCZausSyMbaiGYRxQLFoEGdinsaTkFJuEy8IGQyFoVjIF8nnY3xpUNv2Pqb2CCNvkkpOG8ed43srtm8+5B/9vf9NfJ/5lDu3b5EZQvazdMXzb84pFvNoktRbNzSyTDhWr3vWQEVRNGIZua7aebx+iDJTMRUhr1m4Rqwn6JGHqYqD7/TsisCP0QxJlhup6JqBtxxeZ7PdVY040UR/qyRzjaIcsTIhDlpSXhMMpUQSR+h5IYtKFlEqZoxHc6L4NWG3SpaBIQEt4nCOaRbJ50ssL4WBUqqUyeIMz/O4ufaa4NlgOr1Ck5mzOI5RjTymaaFmYj9US21OldK1w6mpkGYqcehzdirAHFQtJVN0lBSSWDjeWZxRsG0CX0aIu9/HME5J0vT6Xpmi4C5XdLo2nnTwojiHqv9rTkWm4ixX3NnvgQzAOF6MajnEcZHXVfyeF2LnPLJE6MnhIMLOFzGUBEWSO4dBiGUplMo6oUSAdL0QQwNN6knDNAnCGbf327x6JtBCF8sMM28QpyHI/pgwjKiWYipV8fzRtIRGBJlPrMpsaKaghh65gosjg5uKaqLqGabyp4Qwi1VEq2Dz3ffF+fT4qw7HgyWZp2JZEvk3TTEMDaSxPB5aKIqNpoO7kISkhs18POXGfoW27Ct/+c+PUNWH1zaCbigkWYySqbz7tgg+VCtl+pdzWr0evgRcyrSUGJ1SUQZ4Vx6rBVi5Iol0TfP5Anlb4fRoyp4M8P7ar73PV1/9iCCRTlPBJlNTBoMB770rAEk6vXUuzwfoRpGiPI/iaEroJ9fZwj/8ye/RP3/FT367Bv+D+JbO+m0uzk+xVIly6qoMA5OVPqMiUZRTGxZ+gF4wubshjONy0eLk8Ih1yU25Gl9RyNVIbA1N6jeYMJlfsX9rl/lcBJRMVaHZbLGcChvBVOakTsLwfMx33vslMZ+5OQdfx+zuF/AlB9n5aUr3Vnbdt9zbeQDhhCitUq2JdXh29JS9nV1eHXxOFop3r9Y7ZMkSXYJsqXmD2B2wVEvcuSv27LOnCxLVoFVukr8vebX0Fl6cEHpCDg7PnxHFRbZ2HnJ2LuTz9OiU7d4esRKB7M0MnDGXpyf06uKsXwUjvNWSd/ZLfPt/C+CNt7//l7k0puTMGldXRwAY1SY4Ho7U+2pY5eF9C9tcZ21NBHjPn50zuVyRVS+4OhXfbDld1KzBjqzMefUqwKrbBOGINJMgN5nF+eUlF5djqpYQ4sAIyLSMwVDosqG74AcPv8fGRky9JNa0379kvoLeWovlXOiutd5d1EylfyJ57go6x8fPaNb2qZbFuX3/0Toff/Ih81mfVBH689H9d4m0Vwym4ndeEKNZC9K4xMIV+ixSMrxQoygz7LPBghvbW1QNF1fyx54dzqm1CozGQ3IN2fvmzil0CwxlL/oySblR7fDy+IKcKYmp7QL5ZovV5BhvJc6GuT/C9FMMReyPi6OEp588pVyOKDeEU3h8fsDc9dnc3+H5leiDvnfLYDp8jt6UoFBWA1XV8GYV3v2uSHbMH3/BoRdx5RXZkNVsK9+nXKvjecIOS9McSbOKVnS5uS70VKtV59MPfp9H+13smrB/L+bX0ZF/4/gL4lyphNKIuHl7g+FVDk01WZcpxyT1KBWr2PY6l1fS+ehU2dzcRFXERF5cXLBwIoGcgxAmTQ8oForYxhojKaw3tncZTl6Rs8RGXEwdCgUTVbMF4S8wnozI2yX29+6wXAoH5OaNe8xnDqkEW+ifHeO5CXduPWAmketMXSNOM9xVRkWmddPMYTCcsLEmMmUnpwf01nv4XoyzEp7yrf3vMJ2PUI0J3Q0h9IvZFMdZ8k/+2f8MQBh5/PwvfI/+2YKroUCzm877vPMzW3z9+RDNFEqkU9nm/PwUV0ZMAzeiUFDI2za5goQv9pc0Wz0OjyWa2mSBZdmkmc9UbtZatU3/bEzOTlEyMS/7u++QZCvGA7HJhpPPWF9f57J/xdm5BJMIpph6i1pFpyTR+mqVNb58/Mfcu3tH/u6KdmcTzw3Z2hSOjG6tWAYHDC41FkPxO2cVcvzy/6VRE9EZk3fJAh9DLTFdiEhWt1tifBSxihdYRSHOR8cT2r0cQSw2S2/tFvlKgdn8grUN4aBoao4Pf/oJb73z6BpAI9GOKZSa9DrinQ5OP6dQrKIZIUEk5Gc6m1HMtQhdnUpFzMvzo1NmhkVZrrmhzPCDEYvRAaaE67w4PYHkJY8e/iKzsTiwLWPB8YsR9ZpwAhTNxXF0JqM5lmx+NgyDYlklTiKq5S0pn32CYIwvSX09b8Rnn15RbeTp9IRhOhlNKeaLhNGYMBKK89vHH6AbKbYtS8EUi3K5jjfTCGQgI28rGJbJ7OrkGrWt03mHyeJLGhL5aLZyaK53WWgJ52NZymO0ieIj2oU19Lw0rvQId2qih+J386sRCREvn6xor4s59idLbDtiOhTyGscLpuMhrtWmJ5vQ53OXqTNnZ+0egQQR8PwcuqGQyUNe1VJMtcxq5bDREc8LfAkTnevg5MQ7HZ+8pLtR5mQsjNfcqk6rUWZ4mdCRZKTPvx1iqi4Pbt9nOhN7LXBVUAxCWX6XhiF6r8b5yYRbd0VgyFM8Dp58TbW+TWdDGFK93jqF3CaeDNyc9Z9Trio0yptUTTkH0Qo0myi9oC7Lnm3LAN3neCAOgG7rVyiWyyh6ykJ+VxQk7K7v8/f/9t9lvyf01MNHtzi8gGpXEmEPnnF8kqdcKxPI8lPLzJHEEUkUo0knKUMQs0aRuKZQqrLZbHF88JNrA8iNZ5hZjlUc0+yJtZnOLnBXK+yCOFBD1cdbhuTMgP0dYcicH7tkCiRRgG7JgICSkM/HzKQDlmQ5dMUlS1P8QKxppkZUqyknz2Jimc3STAXX8a9LvzTdYzSeMxrUKVXKUoZCstCAVCGIRcP+k691LH2H8PV90gIaNoE7I0Vc4y3rOE5GqSgdxTDANirMp5f8B39JGEkaES/ORxTsOgU5L3HsMxk7PLq7I+Tnm0MB2a8qZNprEAqFmRPw8GGVnESqzVINXVcIXLFW+YKN547odS1KJUkiPnFQCw0cb4RpvQamKWLEMZsdUdXw6SdnoPukqUEqQT1UDeJkRanS5fBQrGmmFYmCmJwENomyFE1NMBSHJBayryoacRJhGmBK4uT5fMFut8noVBjew6lBs2wTxzFJKJ6nGDZ+7KHnfeKlDI5ZGUmSEKZCR2iKipoo9Dp59FTso4v+CD1fhUghkMGcJE7R04TvyGzaBx++JKYImXpd0gwQ+RH7N/ZpV8X36MYGYZCRl86H7zpYuRRV9wjjI/Etk210tYDvrsjkfOoFhcD1qUi9FSQ+abJOQkIos5OGbhCEoOsms6VwJP74w4TlykSRwaMwjDHNHI674NEjQcVydXVFmETYukGkiDPSyBcJUx/TFnvmH/3j/5N8UefrJ0+vv+1s9C1qvkbVFPtlZ7vHydRnvpgROsJWWsQxSeBjaFVUCfRh6iXsQo68rGc0DYvZ9IrLC4V92Yg/H6d0NjpM/TE3bwnj8fPPP6Tje3z3tpCpl88PBCplzuHglQhMqWaZztYGWBaX58IZf/etn+FF/zNCCSIwmcwgGJJvqNdothuN24wGfeIM1m8WpUxN0HJVSgUZJPEC6s0N2jsl/IU4a3dvl7i6OqVWsKlJAKLT80tOTs7odcQ5XuvYLIILXh75VGQAdGevyvDqOXquwMQRumQ7X2WtPMKXAZBSMU/banH04y8pReJbnnzyzyi9812MWGE2ErKOvySYjal3xbxstm5Trxqc9R0mY2G/Ld0hlUKPfK7FLDiUshDR6zR58lhAnL98fMLt977LzmaZx48l8jBVFstjOvUOs4n45kLeomQVqO+JoF7+7JgPfusPeP+H36d/LILc/ZNL9KKJ4/qs9USwP0lmmNYabbnGgb9ga/s2apKn1RFz/vHnPyVVcmimSiADPJ8//jE5o8xoJOzqd976AWkmbKXVXALmxBf4yw6774ry/o8+/QSzsEQNLTRdvHe3qjGbOShmwrEEQEr8FU8/fkJDgtcsZjGjSQ6jmGdrU8zn0y+/RLPOiVYBOxL1b3o5Y32nxtGZKH+NHJu1tQZWPo8uyy7PT68oFqos3YR3vvPzYt1vNNje2GS0EOv5xRevqJdLmHWL01NJiVNRqRdhvtBR5Lx4zoKBf8Z8KvTPg2YTw5wzH4KaCNl/8dkSq6zg6DaOLAuJX1NM/BnjDaDFm/FmvBlvxpvxZrwZb8ab8Wa8GW/Gv4Pxb81cKYqyCfzvQAcR4Pxfsiz7+4qi/PfAfw4M5aX/bZZlvyl/898A/ymihfO/zLLst/68Z6iKynL1uvxFod4oMp24eJ4sjXAqZW7UAAAgAElEQVRnlEplyqXGNefSaulx+HKK44kMRr1eZzr20UwHRUZM2s0bELfIF1KCC/E7L3QoFmq0miIN6xZc7LzFZOQQyBpMJVmweaNJGC5xHPEORatCs7TNeCoiE83yGknJ5KJ/xGAgyhfeevsei2UH30vRVQm9vkyxjDqHR+I9O50mgR9jaDrLhYiKqUaf5WqBZRaxTQkRHVxSKKnc2BPRgpfPBgyHY1AjSmWR6TjpH2A9zuGFcy4lyWarkeIFPk+/lSUyNZ+DoyU3djdBE3M8HGWcnH+JZomI4uXJBEurE0cqmi6iMbVGHVXJEScuW5si6xb6OklWJAjFNevdu8S+wsn0glZbiNJybtBpbJBoY1apJI9zi9y+s4Wmiujaje1H/OEHv0mntc9y+TrSmhBmVdbWehw+Ee9eLpus9R5Sl0AcfrAkXyxwcnbK+oaI+k+Gc7Z3bjJfeQSy1r67m6NQ1hhORYSh0bMIw4BmuczBiSjd63Z63Njrcnz8Ia2WiMK78zn56pyB/F0+n2c2mzCafsFWR5R5VApd+uevGE8GKJI/6u697/Hq+DnPZa3vo7sPceYFeq0uw5WIbqwWr3j7wQ948fIJrwMeqpWxvd1hciWja1vbvHj5mG63SyI5kDrtCpP5gGqpxvGJSK83yhlJVMKXEZRGSSUIPbJohhaLaOh6u8rhwSm1aovCnsgEzmdL7LxBTpbLFfIGSujTawTXmdy506Z/cczbt/eYHIts0rD/Ee+9/QOG34r0++ZeizAoMx98TKUmok1aLYeqtchlCp4syz05GtOub9NrivmNMwsnnLEMc8xGsnkq8VnMZzhzsS57NzbptbdwvRQjE3tof2uPp6+ekMYe21si2nR8NOVyMKYsSyXchUq7uc1qJ6BYEZlrZy7k6HT0FaYsQ2h262R46KaI8IXAi9PHGEqNliH2mscJK2fFTvsu3kyWjHpDUu0UdynWvGJvs3CPaLUanJ3JUr6Cxf7ddzi9fEUuL7KMhfKK6WDKoC/eZWOjCVkOJcywc5LENNIJEofnh19RltFs27AYDWwK/Bog+se8yEdLbBJZ577eWeNHP/oNLD7j0Xf+MgDLpcGdW/DFZx8C8M47v8Yf//gDdFMnkRlay3gNI+H/adkaGVmWXGeubt/sspo6LFcBmiYiwloUE3kRxZJBXfIGPXvu4fs+yPKpTFkRxinVXEggdWcUakSxi21pJKkEU3FX3Pv+XZyl1MvLHKV6BT8ZkPKauH3FZO7grjRkBRdWloGqEAWyb8mMefutO/zoR4dEEs5YU2Lyik4c+nRbYk2X8wMyVQHZp2hoObJ0xWo+5rvvC1LmQF/iuSF27jWZa0oYJNimRVvCCR88u8AwKsRZiJKI59k5C00JuHdP6KSnT38bhZuYVoNQ9ggFgUcaq+ztb3AiKRzCOMZUNUxZLpakPpnioml5Zlci8xAHBkoOjCTj9Vu5fsBO12A4EHp4Pg1JjRxxpAjuLoA0o1LKczkcMZxIYmitialHxJLwOTMVXG9Bmii4S5nNiqBYMohCB03234VJTLNepaCJ3x2NC4SqR5p55CXvVByGpNYCx1dYueJ5iSrIdzMJoKHpGkkyx3Of8vILscZl+12GkYtuAvL+kRtTzhfYksBN/yrwSBhh6uZ1qW+apqhqiG2qpEuxRxeTb9Ct1TVMv6qbKORJE43eWl5eE7Gah9QaBqEUqsDI8MMQwxDR7Zt37/PxH6U4TkChLL4lcFOyzCTTZvzsD0VFzVef/z5u8JCi7EGOoojxYMTdu7evQYQmkwnlch0/dihoQi/5zpz1dpUvPxcZjD/6yW+zvbnN5fklvlzjklXDCWKGjiSOZoJu2hi5Ct2akDv96JjOnTWODq8Y9IWuzhk3yOVzxLLl4Gw4pVKtsdHUmV8K2ei2u0ydAUrOQM/E2VowqpwcPyPbEv++Upbk4zxGeZv+QACwdHu7kOgMr1z27oky7pcHn2CrOR78rMjsPnt+zP79d/nyiw/QVGFjbd6qwsjF1C0yX1bmjA5RTI+yLHXv7dZxv1U5/eZz5pq4ZntnH109wSpW6Z8J+6Zg19i5OWQhKybKlS6BsSJMrvj6pbDNbm+/S2ujTDi22bsjsi+r6QW1ap2rSHInVar47grXrlJ4+B8CUF13cUcucTAnXxBnlmGv88GTA4KvfweAvbsLHu7eolIuYEtMAAKXQOuTxV3eevA98Z41hfnUZ6sh1rx2K+DJk4/Ib+3SqQodn8ubRMMOhDG5/Ov+d43j0zN0Q8hUp7nGzq+UOT58gS05AG7sNKnVy0QJeL6w6XrrZT794id0GyLjZZgKKQn1Vp5vn4lz+/JqxsbGLaxCQEPav7oZELgKwUro+IPn5xSKJvliG0WXFDx0aTZrvDgV2a3NnW0WXkgaB/SK4jx2koye3mHCOZOF7GU0oJNvkMZizsuFiMPzz2i3usw9sdfyuQaGMmZ7o4UjYfnbnYzEneDGElCrV8ENwNdXhIHI3qVOnVLzJU8fr7h/T5T8fvnZCc1yjkJLnO2lQge7pJPmcrQLQk+Z6ITzK3BHzDxxhkR2iKkbbG5LIK6iwSBYcnh8TlUCZu3fuMXV6BUlPYdeEGu11RNz/WeN/z9lgTHwX2dZ9pmiKCXgU0VRfkf+v7+XZdn/+K9frCjKPeBvAPeBNeB3FUW5lb1mp/w3vYShEb82OFMTd7UiclXWZZlO4NWZT13MdAbycNZQyOfOqMo68EQfkDOqVAoNPEUIXP/8Fb0NyKwKliZx7scuCRHduuScKBQ4Ojyn276BL3kndBXGlyPQIEUoc4wOg9kLglAoMbQSw+EZVt6mtyYUTb8/w7BSKtUGI4ny5fsuqhrSaIimV8MqouoK7WaH5UJcM50c0O7WMY1tRlOR0px7x3TNe5wfSxQuO0VXcizcKaYsFbi9f5vlLEXBxJE9OtPBEbOpQ6Eo+49aGyhZgcuziIJkUVc1kyzJUcoLA+no1QmmAbXKOpVqTq5DmfFszN2bP8vhS2H4tlo1nj4+ZXdfKJ7I05mvLoGU8Uz42J32BmQKBWuNgeT/MCsGVwOuyVYtt0Sluk9mTQhl/bFtlkhdWK4mtBqybEZxWS4cDE2iM5UiRqMBmppydSEcN9OyOT1/yvr2HWyJEhm5lzgrnUwSCCa+w9nxkJt3OuRlz87ZybfsbrxLQcuTyWbHdsFgsvTRpUypXsTy6AW7N9+jUxKG03xyTLpyqTUbPHxHNCA/fv6CLE5Zb4taXG+VMBqvWIaHFGzxTmutdwidGpbWZ3NblpF5DleXh6x1hPx4wZQMFZ+AQG6Xk8df0ij0cKYjNiVXQ/9iiF1IUKUxgm4QxwbeZI6VCWNVzTtsNPMEoXqNzKNrGbPlFdsNcaCNRmOS9JiafYPhSjrCSg4lVRjOICcZyy/7J6SXr6hKB3o+WTFYXNAobTPzRYlMhT0G8wFTNWBjTRgfdqmCUfFZKn25fg2uXnhsrW1gLoSiztstpsGctx6+D4DiGBQrVb56+SHupfg+xVDZ3mvz9OtXZIrYR+eTKXY+j6EKx9GfR3jmAXGgs7wSjowpgUrUwEaTZLKNaovzuUbzdU/CKGCWRVSLFpYvyxeyCMNoEU4TZpLcsVQKyNnrtMvi+fNFzNODr9CUMpWqUNwHZ4fc6BZZ22oROJIAuVpC1RfcuSvmPJz5BKlLqZhHV8QB51gzXhz8Id+7/R62LHs4GegcDaoUyxI572xAqVggVSbXfZG/+U9/i8HRP+Nv/mc/x/ETAapx/zv3WIzOkS1XXAUO3kojZ2oQy5K4Ug7F1XGcFa/hDuJUHMhZKvRGrw6ZmrByDHJl2SeVRGR+jlbJQssk71RYJI77OJ4EbrDaBP6CarfKaiX+Nh7kyOXzBGkMSOS4LKakzXAD8XzNjljhoGopumxQjpgzD8rMZgmK3EeKH2JYBgsJtrJeMvGdCF+zsGS/EX6Gmw9J4oyNdRnkCrd4eZ5gSK62IFPI2QZ6ZpLI5vGcsoFpBySSPFPxFRI9IjF8XNmLMndClNgnIrkur/PDhHajzbYsR33+dY3Q0lHiGCsTe89Pbeplhyg8wBkLmdXNHEkSoMhysUSro2Yuy9kzrJrYQ5FqUCYjTDJUQ8hUEiWYms/FpShnXER5dC1GixWUvLjXdOBze7tGrzrl6EDMeRAHqKRIdUA4V+g0KlipwwfPhQGU5R4SuQsSy7pGriSNKOdzyAorvCQlnyrEUZ5I9vGlqcV6XiM3uSRMxfmgKglxGKJL3skkVgW4zFqJxaU4r0ajmCw1iYwFpi/BIzINrXCOMxPG1Xg1xbQqaFFMakmeq1VKwdDYXS/w9EgQ0XrhCs3aRJElT7oZ43gDNpt5nP6xlEUf08iItfTa6VMTi5U74d6ueO90GTA8V4iNGnEoZD8jI0pVcprFXlvoqlVP59PPXpLPZG8vOqvVnF5ng8VcfJ+iaIShSy5nk0qOTC1TaFbb/MN/8F+Jb0kV/CglfQ0gAtTMMheTFT+4K4OrJ1+hpzpheEl/JeZFLxU47s+IVJ2c1BNRdsXjz4es7YgzxS4XSbI5vmtz97ZwVkfTgPOzEwpVG+dEOE6d9TqJ4fOHH4newv21NVBDqrUiqCK4aig52vUdhosjsuh14LKBbdtcygDz9k6Jo9MJ+VaDZ4ciGDh6PGd7Y5fQ83CmQk/d2t7gp8c/xZ6IOW84Fu7ljErlAdWWuNfC79NuNwiWPlEo+U3DNTqd79LYkg60EbNYzZjOYnISDVW1Y86OHSpFg3xTBEW7ayGnZ19SyUsgMy+hVeqy+Z0bzCQ3XJSEnF3MuP/gEUfHXwFQVcfstd+htJ3KaxYYSUjswOlK6Amz+YBf/vn/iJ/8yf/KM2m/FUYWRt6AlZynVp29gs/Lo3PuPRR2QrBcsrdb5fBqyWQi+7cTWMQRW1VpU54eoJVbKGgMJOfh7k6XwXjActpnc0MEhgbDKdVSnXxB2FNoIdPpHMVNURxZol5t0KrUyOdr9KW91n+2ZOtm/dreKJQSXgxeoJ+UefCWKN1bnAU0OxaqDF4vl0O8wGU0H5OawqneqNe5cAZMRyt60qF0MfFij1gCojW7uwwuBixGPllO/C2gwVapx+xsRq4l3n3pphSKLe7IAPp4Maa6ruCvEmxpLy6jI54/W5Ar5zk8FkGKKEqYBZvEl0KX1WolDk+H7O1sM7wSstHr5Fm5V9Srm5hF8Z6Hr75mvVVnJfEbri6+5m6vyc72tgA1A9RCirqscmv3BqOZWOMsk8T2f8b4tzpXWZZdABfyv5eKojwB1v+cn/w14P/IsiwADhVFeQl8D/jwz3kIyEPo6PCCu3fXaTbs60b/UslmPPH56LOv+f4vCNSWxm2Lq/4Z+ZyIWiXKJonxgsHSIQ5lbbNuoSoGj794fl2jmwUJUeRwNRWbtVbtsLnTw1mlnF8JBby2VoNEBwK6HXH/0XhAEsdUa/JA9R2azS6mqbL0RZ9Sq9Pl+PCS6XTI+rpsnFxaLJYnXF2K59XbCZoZMxqMcWT9bxJoTKcqcXxFvSF7Luw7jId9NtZEn1KGhbsKUNIKWSCU69fffkS1lme+mpH6Yimz1GRwkfH+z4n7PP1myo0bN2h3SgyHQhhW04jx8iWrlfDK29W3cd0VN9Z/lm++/RSAbqdCu95iOl3SqAlDdD4bY9vadabu0f0fEh+lqMoZW+u/AIDjrDg4/pq3Hn2HYk6s6Ww0Jp8rEPsS2VHxqRYqRKlLvSa+5eDFlFwBspzOeCLeM0lX1FsVFo5Yz8uhQ76YMRmlbO2K382mPqqVkqlzqkVxePSnEXHi0KpJtKm1Hr5TZTUJr2HCd9bexnXmGGoNTXmN3tVkveCSvY6uh0u+8/AdyvUeH38uDp23HjzEyoEflfjiCzFXl9MBlWqenGyyP+8fUGsVCNMZi5VQkqbuUK6OsIoGU0lsqKBRrusCGQcIxx57vTXGowG+jOjf7m7y6vAlN261uZIZtUKhRkZITkZj0jRi5Y9p1fdAgg/4UYRf6DFyLq6jYrodsdu99ZqHE1NJQKnRKhdYeGLu5u6M9bU8qRtTr0vDtFDn7LLP3dvCqD99fkqESmWzSewKpTW+nFKrNzE0i1Bm61rdOlaxSf/yYwC2zQau0ydTu3S2RdRndBazu1lnMpRIQYpO/8UZeavCnftC9r/44gs65Qoba11iXxhEW4UN9u7v8M0LURNd6RX5+vELbuzu484lEa40Vh69/T6xRAJbRgGsLlEcoVh1Y8bDtZ/HyuUZXwqlWSq2aa93iKZjWpIgeLk4JVwW0Q2RLdDzGqWqwdVpSsMQuqWzYTG4OiMXqdxpCAd6fLii2coIZULh6cUJ6+s1JsMpy1QY7JkV8jP736Xb6vLJt+LdPztQKNsm00DshdCDwaLP1tpt/uk//A1xM/tjfvWvbvBP/vH/w1/7678u5s+PmJ3MuNUQkcgf//6neKqFnk8wpeOUEWOaKqqqoSLRAtUMhRTLFHu2VI/44ptvccOE/J8y6BL5CkY1ptUSMjWZXhFGhiSIBZQpvpNRLlfI5cU+ylk6XpihoIJEbcvnbH7uF/4Sv/F/iWMhiQPUTEdXKsyl7K93bXY6a3zyR2ekiiR4NRTCOCGQ69m+Ucf3QwIvwjZkUCaLUTIThZii7F26PPZIEhNTOq9kCo7v0GjZ3H0o1u93f/+MyM9RlMiAqqng+SEaGaahyXtb+KFFqZjiywytpmZMhsc8eSacSdetQmaRpB6ZhC+eTubsV6tstYu80sX+iJIQk/QaoTEMV+hKylv33+Xpqeyri+YoSkYYReimjMKv5uzd6lx/i+sEFCwNXU0IpWMauAndjYCcVSIJxXW5nAWxS5JIqPlUxXNmlMsNDKmrs1UElkaWJWgyK5WEHsvFgCtZZaCpXVQVFBLQxL3cVUjmLcEwUVOhm0NFQdVVMulcRW5ArWyzt9lhIvudfvp0hmXniPwQTRfyGYUZvc0Gim5L2U8xdYijECR6XhxH1Bp1eltNfvIHIjKfZCV07U/RJkktlMwjizPefVsEwn7843PcGKpxhqq8hsReoWYG1aIwQkt2l0ztkyQucSR7yvSY2IspFjxOzz8AYDAISFGus73z2Yhut0ulWqXfF3u71WpQMPMEUYhhiu9pNZp8/tln/O7v/ra8pkUQeJTLRRyE/r5yYyL/nC8PxHrWcjb19SoHH39NMy/noGwyOx7QatQ4lXDbjdYDSs2A0UAirTZq6HYdZTbiG0m2ato61bxNodKisyUc/Q8++SmYCRtdoRfXt7ukvoHnuNy9/1CuS4ptWWh6jbOBMM57vU28lUNOOr1Pnx1zdHTJ5s0ua+s7Ql7mNskqIZcvUuuIPTroX/Ko9328ubjPy4MZ93/4iNFwiWUIh2s2vCQ2bXJGHiWSoDPVBMcbY5oSifgiwrRt7t3p4TlirYbDQ+qNMtVqiSdHYq0uDl9SK7SwG7J/uxRzcDzi4YObjPpC71t2ynvfeUSShSxcEWiv15vc+45OEsq+6LhDeXOdwfA5V8+Fo+is8mzsfZf27k0Of0sQ0Zr7BTJdu3aybc3Ap0W5M2Mse+YCT2eeXhHOS9za68rvOUefFAgkPHyzs8HBySsadh1N6s6D0wvceEGlXebJYxGkVLMijVqDw2MR7CyWmqAXiTWVQBf6VDdaZDmNSE3QpTNVKabMxn0qZbFny9Uil9OE23vrjOfCzqtZJlEW4IVCpg5eHrF78xbrzTKq1F2zyMMjYL29TpyJ4KY3iKh2y4S+cNLm0wBDz1MvmEwlBkK+WUbJlVHyBk4iglyxVsAqFnj+7FvxLfke3tTBX2nolpjzk5NLutsVNKVNTvaQ//SnH9N41KZaFXbLdORTtFWIIwZXon+r1XvATqtMmqtzeCB6HDdrNaJkRiidq3opzyhYUsKk1BDnzgeffMTb7+3y5at/QachqFf+P/beK9ayLL3v++2898k53HNzxa7q6q6OM8OeGWoYRA4lyKRhGLZAWoIN24BlWHzxi54tgIBhPdqwbFpw4IAQh5QtSxbDkBxO7JmOVd3VFW9OJ+ew8/bDWnWHBDT06MEAbdR6qnvqnB3WWt+3vvj/P7ddf9z4NwK0UBRlG3gN+AHwDvCfK4ryHwDvI7JbI4Tj9e6f+9kpf7kzhu9HZGVqfTVPEYcOy6BLPi8EwbJMzk4vuHqtxdmZSP2SFOic1jAtIWTt/glaZkY2rzMfysMk5bC//xnrzW1KNXEtO22gqjEHZ6JMbzhaUCzWMeyQzW3hKedSDsNRj9nUJUrEApTzW5y3Lwg8CX1JlkTxUTUTFaE02+1z8rks4+mIflcoO3eVUChl6XTE/c4/2efWKy9x3h1QqwvFNvNdeqNDKqUtliuxmLaZYzldsJKgCZ4XkLKr6OqU/lAoms2NK0wnK65tb2FI6O6DvXPu/Ow7aLo46CvlY5aLMb5rM+5JA3Ma4q92WCGuYxltPv+5d3j84AQ9kYhCyRQooagu6bTYrJpmcHL0kNffFI3Ge3ufgLrCTJd5eioUd6NRo75R5qx3hC6jzQQZzi6e0JSwToo+IY5nWNQZj4SQ3brVojvoUS7lsHWxLfvDI1TSrLznRkyaWnmNjUYVPxDRptPxQ5x8DGGa46fCOTbTK/IZgzgSzvnHD05IGSlKuTrZlETc04uUdqpMBjNOz0WEbXf3VRajJYEEryiWsoRuhtHQp7UhuRqCJa4XYNo65zJNXm5m6Q+O0Cvi2rqRYjBcsrZZuOQImbsrHj57hG3ozGXEq1ioECUBioQExtZwtQVOpgQymt3rd8ikixwcXpDJi0MnrRv4UXwZOVksbXzfJExPKcjMyt7ZCYG2h2q7OBnhFE3GYw4mBzjykC8X6yhKxN7kPn/0r4RSHo19vvqLr7BWrPCD94XjUmleIZPT2T8XGUzb1hj124xmoJhCtBeLGYqmYTgFVr5Yv5W3wu8/w0gJeXx69DGZfJ7z/iG5lXimi94pK8/CW4jDpLVeIpNPs1rCyYHkMpsPKGWLuPMlliaCBqPlgvtPemQt4fir/oirV5oMXRNLlk9caQkHZ//okKwtFGG93kBbrZGqCoW8GDbw3IBw3saUXme+kKV71sUwfHK2OPT2PnvKtV0V2xCyMJ8rqJ7CX//yL/Gv/uDrgOBJqmQzaPmA7kToqcQ2COLCZZZja3MNDY+l5lLPiWuPvANmsxn37iW0FTEviaOhKiqq5Gpz7YRGYZP/4+v/lJc3xP78d3/xDU47Pn/7b/4SkUQQHIwO2HzpGnoiI27qDE3XMT2fRPLqqHGMrisQJ5ecTgkqoRchbV7KtSqdQUAYHRNFz+VPxVu5bLQa5LLCaDg6viBRssSyoT1JFDx/wXrrKr4EXFm6PdLZJn54cdnUH4Zj7j/4FgtPcqcoDmHoYhrK5bWqpQa1fBbDSRHLAMvKj9Edk9VCZvRNkZ1NQpUkEe9i2AYLNyCbstBlxUIYFvD8BQV5XgRBxGzq0iw4lKQjOl7sYRk5pB9HREgYKpiJ4AoEuOgOsDJpFpMAOyMMRW+h0yg7bG+LiPS3v3dAYuTAhCiWZYiKhuWAN3Lp9MWaKmaeKAixzOfAGAsa1QLuMuD0YC7fLy3K+DQIJNJiPl1gd2ud+x89k3vRxcrZxKF/ibSYhEM0bcxwWGK5kAAP+pKUaZDJiznonU9plFJsb+/Cgwv5DD4LNUJTYC7LSHOWye2XCrR/IN4ljAOSGJIkYemLvTGdzPjqz3+BcPqAvadyTY2EKE7QJCDSYragaKssJks++lDcz3Fuo2ohup4llnj7Kz+gVs1wcCafybfIZixmc5eVdOJVRSdOXI4vHrOQJaJe5BNFIisKoOoW7nDF61+5gyV5kR4+OcBMp4nigDgSaxoHFlE840tfegmA44NPGfQT7MoC15MZ0zBLEAzYKF/jl37uvwDgO9/5LwmJLhE2fd+nXq8xnY1BwqUvFgsURRE0K66Yv1yrwde+9jWmkrOvsdZiuZyTy/3IWDMCn/VyCtMWz53Lp/nm977HRr7O8EzIf2UnB5HK8CLmmtx7B/snFIot9Eg4d3nHxkonrCYJ6YpwnMoFi/7xCZGf8OmnIuqvRQnVQotIETr37GRAq3kTlAn374vvbO3cZDI7wQgC7twSGaCP732CYlhoKclX5yr81E+/w6NPPmCrIZ5poK/Q1ZjZQGNn42UAJvqUomYzknrfqJv0egPuffqYak2WRqcClkudVFFlU4IdDCdTZrM+tgRbmc88tsvrHDx9TOxLTrtGFsuGSSckMYSdcPet15j1R3Qlv5MVGPiuy3jiUiqKsz2OY3KZGhe9Z7wpy6w9z8MNx4ShzKZrCcZEVFYp0ohPF+fsP/sj9EQh25DZM83AnYek5PqdXgxQjABIGHalfGgh/mBEySleBt+8CGazGY7kq8oUdDKxxuHFAbmsWD8rbVCytphMl5f8ppnUnLPTJRUJaHF6fsw7X/o5Br19FIl06ORs2r0BG2t58jL4V6rMOe12MRC/CyKFGzdvkdEMWuui3G4+bvP4k6eU6kJP3nzpDrYRolo2j/aFTZAabPPyKxWO7h0RS0CZtWaJFQopCfgSrNKsb26Tcww+6AnZ9hYTxuOQ/rRN1hDrMJv0WM2H5NIbcl3msNTJWnnydWGfqnqZXC7HbDQHyW9488YVQtdGotNjKLC2VuPg4AE5STUzH0wJlRXLzh6GDNQWWxkmU5eNjNCLmVqF0+Gc4XyO7wqdm06nGYxXDKcxni/O9mdPf4SC+q8bPzGghaIoGeB3gV9PkmQK/HfAFeAuIrP13/yk15LX+08URXlfUZT35xKC8cV4MV6MF+PFeDFejBfjxXgxXowX4/+r4yfKXCmiaeN3gd9KkuT3AJJEkrSI//8fgH8h/zwDNv7cz9flZ39hJEnyj4F/DLB7pZncuLkNwN6TDhfdE1prDSIZwTw+PiFrN3rpshAAACAASURBVPji517is0cihbty+3jKklJZRAF28jmODrpU6y1UX0R2lr5HtZhHw78kZR2Ph9QqVWo1ESGeTZacdB4yHffZbIlSpc3aywQrl7VmndFIRBn9cIXnBsxl02uSKOhamuF4QFU2Ox8+OSfthLTWXmc4EBES35vT7XgUs3JKogmffNTGdODpUKQ4m+smzcIdprMO+7LxfWt9i+m0zemJ5J3J19g/beNFYzIZERmwjCJf+fLb7B/e59nTh3JiLVKOgSYj/KrSo33q4ehpanUJlzo4Zmf7Gl4gYJ6zeZP+IGBn+xqJJiJX9do6YQKK6vP0qchKffUX/ybz5YIgEe+WymnMFytazSajkexl8CZMpm0MNY0l+WVtO02lmMEuSNI2NyCTK+KuhhRLYl3m/gA/CLCMdUiL75UqrzOfxhTzsik87KFraRbzAU8l99XmTpWL9pT69TLr4nUYLhaUihbIaJOdrdI/mzMYHJGRMMuObTDsG4xGM7Z2RNlDt98h0ldEsg8k1rKs/DHrtRK2KkpGuqMuGdPgYnRGIjkecrkcw+EYxxRZIx1IVkOm45BI8tWslnNspUihXMF3xRy7gUu3s+DaNZHxGnUWpNarPD15SCyzile236LdOWXNbtIoiqjfaPUIA5PQE2scREsWvSVWo4GhiehnNlNjNj7H0tPMZRQ1CEekMyaOIyJgp8N9dCNAXTR4/RVJtppvoJoJhcoWt9/4Jbn3rmI7WR4+EiUWB0//kFtXXsbzFCZj2ZiacnEMg5QGEwlXHqwi3NURlikybprmE6Oja3OOjgT4R6HUoDc8IyOhgweDBFW3IHSZ9kUIaq35EtPRGWEGUlkJfKMMeXB8yu66gDzeLu7gzQbYzPnCG28AcHwi9q3iRmzelDx6ex0UrcpQZpLjoIFTtlGDNJGMwne7h8w6Pq3yVWJTlCpttl5lGTxk5YrIpKE3WAUxJ919FJnuWdk6GaOAFi6JJHltbTfD04eP0SXHTKlZxF0YmCuVUlWUGAbBOt/ZC5lETdKyJ8lxFvgzwcMFsHBs/vB3/hfeaq34+//gPwPgcP+U+OIxS83BkqV7iZvCiA36Q6Fyz7oJfuKTU03msrdIVTQgJomVS0ALXdEAnXxBgjSYNpNRAEqArsu+1gB8LyZt2UjOUtxVRJIYeJ5Y8wgXVbFprWc5kbrMjzX0cEgcG3iBkJm1cg3bqjMYywspAbphQOzghiKqmS/kmA5GdPoBKRkl9pZzlCTG1EWZzrWbdQ4PpgJ7XGYeI0Unijy82YiNdRE9/+D+FEMP8SWajKLqmKqNY6lMpyL6O1mG6JqCtxTf0WxROnd1s4HriSzDZJaQ5AIs0vih+Gw61blzJ0skM2erWMXQdVS0S96p2FuiKBOK2TpzT+jPxEowFQdf0gksZ3NeXi8yHnaIQkknoqmiBE+LWS3EWhUyLoYzpdOT2UktRRhGBO6ctCwdDIM5hXSZ6UAhlISdhmoSJbBcin3g+xE7mzn2D485uZDlS04a1bRIXBdPZoCyhuivbXcklL9j4fsrkshAk7Dymtal030X08pfZrMytkLohvi+BLSIFVJpg6nn4UcyO2Hl8OMxnh+Rlvx0oT+kXs7gOLJiwtRwoxDTNHGkxTKej6mVCjSaZT78UGRpXH9Ks5JFIr8TBAFhEJDNG4SSa6s99DGdGkrioUky7jBOY+oJoaR5aHf6LPw8TqJelgUaZkwUJfQ7T/je935LrPtyjqIbzCVdi6ap5HI5RsMJhbw4L1YrD8OwcF2XmgQyODk55mtf+xq1qqRrCRQ8L6DVaPIMERXvPPyE7JUaDRn1ny/GaJ5PtuyQLYrKEceNqVyrMFt0SWTmOuUYpB2LWSj0iEqGci5L56xLIMu1euca2VSafDOLJs+QrGpw7foNFPVVAAbzYw4P79Gs1ilVxIQ+ffoBW+vXaPfH9GREf+Nak5ODM/yZzPrbaZLVkJSqg+yhe/nNm6irgOXY5/F9ofdnSopKzsOXusXTQtbyDXZvLInlfsmqNmXHYTweMZYluOXNBsNRF0cCMJVKJtm0jaaWSCQQztOn+1y7eQNbPwVFGAWaYuNYBlvrYs6DaISZ2ATuBGQlx3QyJPCeki+B7z/v24uIIodAgsDY3pLJyqdcK6JGEu7esUk0Czsdcf5EVDqp2gZqNGXQkyTb1YhcpsS4NyUQl+bqzVsoyjrT8RBDFedDLbPL9l0NKyXWc/9sH8XWqZYaJNIezqUyTKcL4nhOuSSydYoGmuVSkBVape0886hLe9JnW7Ttsbf/KY69xcJLc3NHtEzsPf6QrJ1lIXu+IuDlrStE8xHf/v3fB6B54ya1Rpac7OfKli3+5I//jHS+RLMi9uLR3n2ePamRzlnMZa/m1B0zXSoUc5IvbxaxmBkspwqptHhfM+UwaQ+YDi7o94Q+zaWzpJwiu7eEbnn04IThaEkqPeHgVGb0swmr5QaZjMNkLOQv9gx2dtZwPeGaZByLybCNt3TBFs9weLTPy6+8RPf0s0tAsumwhzeds9SEPp3sL1BtnZxpYieSKsBQGA/GrBYqi6WwHfT4OW/cv378JGiBCvCbwMMkSf7Rn/u8KfuxAH4F+FT++58DX1MU5R8hAC2uAT/8y+4RRRFhJF5C0RyqNQPTtjg8PBQvOwoplZc8enRORxJF3nm7hWVZdM9E6Ze3vKBVLTLqLKm1hBI76/QoFxroiUH7XDyqRkC/d4LmSHSkeMZ6awcvVwNZcjDp9agWS9x7+AHpgmzAVm1iJcCX9eqGoTFbLhmNZpgSJCHl5LiydZPZOCGRqE03rl3nD37/d8mVhNHbau3w0b/4mM1rMfOJmP5wpbH2eZ2v/Y9/SlXy05ScTR58fM4bb0sBLttU6zrbu5toqhCgJ48O6HXaXNu9jbsU98sXTMqFCvc/EUqsVb9DtdKnUi5fli98+StrRAzY2RF16PvPLpjPBuRKK1xfHKD7J4/Z3LxJpztgrSkEaDz2MXSLel0c/L3uBEWziPw0w4lw7nTDIIwj8oU0niwLCoIsTlZntRTrqWoG7e4eChHZzC0Auudd8vksrt+/NHbMVZrm2jq9gXCoM1kNJfZorlXIpCTNOS63bt0k9sacHQtnNVQclpqJItdKMzwSo0eqEHN+KgTv6lWNdneEF42YHgkHIZ3KEccRtZpQyO5qhZHyGY4v8CXnUzpfYNaLqFQ2KMvDcTLv0qht4cg9FSUdMrrBbKyjIvZUMWPhzcFWalzZFuvXmTzDshxcTxzq2YxJFNooZo5iVSL8qTFqyWC0GLGSiHpWALoJY8lJls4XaTTrOCkYSO6NWnUL72RJo17Ek8zqreptInWKI8EO2uMVWtzErimULGGElnJXGA0XeHGJ23d+BoD5aoGqe3zxS78KQKFQ4Nt/+NtkbJeqDG54NKkUmgzaA7yZUNQbm7cJ4yLjvvg7o+RRFYsg0kgXZb8YCSldxZalBKqZAg8MXaU3Fe+X1bKUNouM3YSRPATq+QJv32ow7Elk0GIZO+uR+Ck+/ET2YNhCvkqpHL0D2RC9CiCrEUti1agQ0nAKDIIuSxmUaRXKTMsKbucCG9kzZ4CmNhlJBLzm5gaYId3BM6qSDHQ5CYgYkk1nyFRlD9vUIQyfooTiueezmFQcMlctfEQZ8rcez5goJbIo+JKo0XdN6qU1Dof3AHj0e9/m7/1KhTtfeJv+qXDGS6UC4y2dnK3CQuzFRD9jetFjOhEHRW8yRtdTzKIFxHKOLYNotURVdRTZE4RiErkhhZzQdzd3X+Ybf9wTPEWyHM000sSJS7FqgOSZms1ASymXxLh5u4Rt6rhum8VS7g0/IJ3RyWQNuodCtt98500KlTnnPdlLUdohCicEqkXCcx4vn/6owjIAVfINKaqKoukEsrl66fboDARHF5eEvTbL1YAvvv0G07Eo3T07u8C0C0h/Ac1UCLyAZjNFpyv0S5iYhJGHrABEVVXm8xn5dIqCRLzULYg1jThZYUmjTFGXNGsbPHoiyvQWnoZtnmMqdYy07N9CwTR93vvg4aXB5weeIHJ+3mvkxWyul2k0VL75Q2FoGHYN31+g6iqRDGoRxwRei3ZXcr4Fc7RliZSRYbYQ81su5tiobXK/M8INhXOVSWdAdYll0ElVVQxlxnF7jq6L4INhqCxcFwcNX5ZjN1t5Hj/6lBhhkOm6iu+HGKp+yT+WMjXyhZi945BAAgm5S484jlG057xhKzRTIZ12mEsHbJmsUJQQRVHx5fmbsjQcLaLdEWvsJSZWysKdLwCxF5UkJGMq3Ll5k9/7ujh71MQm8nzi8DmJeA5TW9CoZzk8kaiUcY5CLkUSxKJnDAijFZbhMV+IvagaVZYscF0PVRGbYbqY4S1i3nwNHu7/7wAMhhU01aAje3a+8pWvkE2lCYKA50VB6XQayzAJ/eiyd/k3/uv/lslsTK1UkZvRwPUS3nnnDf4MEcAKijFZTWd1LPb9MS7V9U0Sd8lsIObAaG1zdPhdhqsp9eo2AKPhOcuxytpVWeq67HPx3SNCbUTTEVZ2TI/RrI06qbK5Lsq6jw/bPDs+JSX362arQtEq0G0vyeTEc5YyMOqPWCYDrjREP6ytrmMkPs2mmKdnn40J5ymuXtnGlfxtq/6UQb/NbDmiUpLAW9M5M3+T+Uqc0dV6hsHhexQzxcvem95ogra+SX6zRSID0Q/f/5i7b7yNKdH04sglCGeUCutcdMR3ctkyUaAShiG6PJPbFxOUaEldOh/TwYJiMU+omNjSaXj0WZtauc6wBzHiHHXsNIoaEMVCceRadcJpQBykOO+L8+K115qMLvZRowxb5S+I9UtPGXUWvPZ5AX7y+OQ+k5VFaKjUdsQ+wNHRYwO0hIuBaGkwKNNoVelIYIxASVOq6YSJTrUk1nRvbw9Hz/LK3VcxZZl6u32GH/sEnghWPX10jKE1uX5lh6m0kfVgSrAcM1ssOZa8j1GiEYUarS2Jnuu6nBz3mV4cUJc8UCnNJrP+EhnEGfbetx5w89Uv4BgelgQti1o7qFaCq5mYskyvVKxjamPMjAg6q9kOSVal5OSYBs/leIoa6mxubmJIRN9OZ46dshi0hfzvXr3OcHzCbBKzVhQOTTZT4ehswmTisb0t9n7ouVQqKdodsRcVS6HfibmyfZPpVFzrzs03OTl+RhKa7O7KvujTJUmy4OhYzN0br7xOd/ghvaGFKeU/TGycMmSyCou5mPMYqY9/zPhJMlfvAL8GfKIoysfys38A/PuKotxFwLMfAv8pQJIkDxRF+afAZwikwb/3lyEFAgRhyP6RMBwVMhTLTSaTGdmcUJK59Dr5osbKVylVhLB0T8dMZodErtgkGb2MpWXo+R0GT8XGXN+8wnnnlEzK4Uw2q6uqgpIoLCX89Xw1J5hfxdR8EhlVrRWzdLuHDNoho5FE+HHOCIMEYrHB840q6ZRPtbTB4TOhuIMgz5/+0X1arTXWt4Sx+s0//oBCbo3VTEYLFw7zscLoAu7cFoJ3/XaFd9/9E7Y2c9y9I9BfdrZT9NrXGLTFApp6h2q1gu/HrJZCiSj6gItOn0r1dUxFCEcuC4dHj1kshHJ4+/Vd7n16TqSe05DoK6OBT7/jk8sK5TAYdtjcLpDJWLQvhHKdzE+YLEOW/uIyAzWeKWiahpIIIchlHHQ1R6e3RxLIelW7hpPKkkwjPv+aMEwtbcG990ek1iRB4dMzCpk66YxKXzb+lvIxu9vXOTrosX1NPGeCi6L6qIYQ6iTK4Psh42GfmTS8C3mbJ589oFzMIQMRbLduEfgzun3RxOh2A/xQJ5Oqc/WqMBAuzo4Zjqe0tssslxItCB/HyjMayh4odUW1mcNzo8tmxyf7bVrra1RrOfpDMcfLWczV7QadjniXpTfkxo2bXMRTMrbMZqlLnLpNHEVkJWrjSdunuVZFk+hkKTVFFLg0y1ViyXBgWzPmPsznOvmGXAjHZ+UGvPHaLwDw+Oh9DCfh/MSmmBPvctZ9n3JtnTBZcdY9kHujgGFCyhaGf1bfIUpGlAOTfEYcsp/ee48bL30elBm/8Ru/Jr5XLnLr1bewLiGjl2xc3WTcO8WVh+MiAU2fEqlwRRIgHu5dsLO7TnlXHCbdzphM1saP8lgr8S6trZsEg2OmQjyYuwFVp8Czw8fk1oQiXSvqeOMl18rXGM2Fk6QEKYIgZqMp9thgMiPOZHBdF6sonP/+2aG4x/o6vb6Qf932sMKE1ULcf7h8QteDha+S6MJJGq7AcRL0bBo9Ep+l7QGGkbsMUDx+ep96o4FtrxFLh0i1F+hYLGca08X7AFi5TTYyV3FdsZ6VrW06h2eE9jb/83dFpDVWCuS1gCCJ0eUzpPIZfvDD36M8EofuP/mvfpnsWooHn50z/OR/BQTFQG9+wXi6ZCVVuZVfZ6OcoigBCs7PZ6xvVImUhFgCtyho+L6Poqk/Ai2IwXV98jkx5+edR+wfnKBbYEl0Ut8PUBSF1167y3lbstmHKRR9hS6jlasZEPZJ2U0uJDy0auhEUcRqoZFKPUeue0x/oKFJBziI5pBYzJIR2ZRYm1La5KSzwEiZxBLSXMckjBJ0VfaB6XDWnqDqxmX/GLpGEiuoyopqRRygi9Ueihldgh0kSULg+RhqQC4rqQJCD81UiRKxxkZso6mw1khxKIMyKzfAMFJoakAoe4TiyKczfe+SNN20iuiKRZi4l9UXo0GfrY1bTPptFhKMI1PM4K5G6IqUqyDGsEIUXUP6NaiGSqLGJIlKLLMR5fIS01JYyV4j3Uwzny9JnIilBHMqldMoScRw4uP5EobYczFTPobMwgd+l+Z6hv3D1eW7JImCEifotsVqIM6Hnd0WndOYUIKfxIGHoWnESYK/FEan5vmknSrLZcRznl8vcIkVLns8x7M56XQGQoOVvJ9ihCRxAsQkEqzC0BKquRwXZxIqPfSxNJ04UjAl2qOp6mxuFDg6PKTXE4ZasZTB0Q1cmbqKEpGJjOM57Y7U1Z5CPuuTJAGqkpJ7eMHNGztYaWGAfefd+6jqbfwgQFPFtZxMial7RqlQpdUSwY3Z/IhIW1LIi3V/7e5dPM8jk3Yo5MRnvu8zdVfs7OwwGIgz63d+9/colEp/Yf8YhkXKeQ62D1uFDbRYoyMRPhu5NG1/SWLVyT1Hs122WS/eIIhOCWXvUsVokssbhAthkySBzs2rJaL0OqFs7NHMFGpgk4SLSzCnt175Mt968BGKrGqY90xKxYjR9D0URC9MWsvS2Nnmo2cz8pHYQ8/2v8/K9ei0JThWyySTsqjVtphJBGMtsth96wYHh8948H1xFr35hbscnB9jyR7ID977kC994fO4gYIiibdvXq9zcX6I6oUYCIO2UsgTJysOZSB1a/06y1WbT+7t8fnPCVCtQjGLoqpc9KuojpAHM52mnN3Al+TV2XKLKFownYb4kronm81SqlosJxE5ie48Ho9x1CaNpkRoTBRmygRVgUJGEtOfPMN0cszcgKNnwjnOVPL81OtfxUPojfksQnfGZPMp0hmhb3qDA3JWwrDXp3VVnJmxZjHy52Rk4PZ8doGpFynaFvO5pNtZq7Kcw5ODNrpsEI2jBdNBwkSiKt6+/Yt4/hQnZ3EuwU0WK4di3sGgwKGkD2lUysRazFBm0zXdYBLN2bp17bKqYXDSR0k2KTVEkL15xcWyLKJxnnxFzO/AHWOqRao3qpw/E0EmRa8RRwtRkQBk6wUibZ3Dow8YLkVAW/cS0mYBxVIZueJaaj6NXa4SuRIQybFZnWX54tv/FsOB2D/f+e491naKPDnY41gckaw1s3z80QN2d4V8esmcSnGNcjlLEok5OD9/hmWBWUnhzyTwhu9hp1S2m0Jmp/4IVU+TqzbpdcU89fun1IwGaDFrVWHHRggZ+3HjJ0EL/A48h5T6C+P/+kt+8w+Bf/j/dO0X48V4MV6MF+PFeDFejBfjxXgxXoz/v4x/I7TA/7eGqkZMZiKq4/sdZosL6pWbFCSKS/d8wnxcY/2qRUdmOo4PxkznU5o1EWnJGDr7xydoeR3fFymMdqfH0dEBuXzqskTMtjKk0wWubItI/fe+/z5WXWE+izk7kr1aS41sNmFrI8vHHx2K35ViMk4Ldy6iKp9+vE+jvo6WROw9FlHxh5/u8Xf/419mPF3Q7Uuy4WZAHHoEgZjqw8NPefm1NI1ylduviujIdOrTbGzy1psvo0gSWN/3ufPKTUJZTrR38IzdneucHvdxRMCNyfSYSqXC2fnHJKaIYKQyu9TqFRRZPzp2vw9ml8PTEaihvHaEH/foDcTfN15qcXp6jLtUKZRFtODl9A2mk4ByKU0i+4ZG04cYps6gLyJglpUin0tz2J5z/ZZ4l2EnxNHLRP4FnbHIHL16N+HfvtXk61+Xdf1Wjt75grAcsS57IkJXIQwW1BoZDERUbLQYYZoBz8H0zs87bK6vM52OqFeLcj0L4EcUCmUGIzFXJ6cH1GoVNjZ/CoDTo6dYVoRuaPi+mJd8sUJ9vcB0OiSfkQiQSYGFNyWbFdF7d66ynGfBDBktBHLe9pUWxXqRo4N9CrKGvlZqEIYzdnbq8jkVpsMYIp3ZUuypJNTJpKYUCioXbZF+3t7YJZ0p0OmLSE+ghWTXdPrdPouZyG4N+y5+4ILmkkpLJKCzI9Dg8YmAOB/Oxmi2BsYIQ0Yew2HMdDJH0/RLpMP5YkhvOKLbf16TXOJzn/sSB08+4pGMZGXXHLrTI1zX5eqOKCM5OTvh8QcfcfOWiNhcdGcE8xhsi4EkA3ZyBu7Cp1DMohpiXurNDPVqnQuZNa63WgxHA7QEcqrYL93DCWE8ZjYRUblWo4WtJVRqDrYst+1ddHnp+hu0BxPMvIggessJxCGHw0MA7r76Mo8/fUym0MI0hKzX07IkZNTnpddEL8GzvRMygcrIFZnyRSdibC8Jx1Nu3BGcKCeDEd75hPrWGhdtgaJYr9Z48vSQr/zMXwPgz771XU76e1TLG6QcoW8eP3vAv/MrfxvHrtO7EGvq6wpJb8C1vOjx3O9l+daDPIswxpSlGYblEXgmTiHLqC/2xpPf/9/461/c4W/9hz8HgJbR2D/p4FgeN2RZqaWG1HMvM0xOUeri+tNxn3o5z5/8UKyn58JsMUcxYiQiNmEY4/s+um6iSK40VdNJEmjJnoQ33v5pVt7HqIpGsHpewqlimhH1hsPBnoSxDnxsJUciy/aW4ZIbO02u7lznd/7Pb4nv+EXMvEMYR8h2H+IQBr0YLxDraSo6mhViKCX8iZC1RqHBcUcjDHRsScoaeC6g40j4XZ0Ui3mPbKZIFIpniBQPNU5Qkhn37olrBZGNoSeXPIkBIWEcsXKnnJ1LdMtlTMYBTfLlhV5CFLpMZmecDefyOiZaNCPCuERD1BKbXCnNM1nBkCQ5wjiFZUYkyfOyS5/19QpH7TbPS8YCNyQkwbbEd1arFfVGAcfOsXBFZjDjxCiaj6nk8BOR/bxx9RaJX6TblzwrtoKq6sSorGR5+EDtMx1nOD4aESVCHhUlIgqTywyGoXoMhnP2L6ZEkVj3KAKDhCj6EaH0cHxMKtdgJcmBUwb4Soij6qymQr/dbFpousVgOiCU2R5LhzgI8GSfm6WbNDeKjKYdIlmWa+sqcWQQJRHT2XNkLhgPBhyfSnoGo0ToeziWTaA/z/YomOaS5dJkuZQlC5pPHBnE6lKuVUw2neHWjW0++OTPcdJEOugJqoS7TmYR4dxnR+q7YqnHZBAQRDZqLA4fz/PwgyXFcpXR/ELuswXzYcgv/Y2fBUQpZr/fx10u6Kxk33AhR6NZp7VW57d/62sAPH2yx8ZmE38m5knXFVKpFOub1uUjGn6BhbEi2xJn4XD4hECz6ffGNAuiTM820sxXM4zQIGuJM6taNzFMC6TuK5cLtPdO6U4nl6V0G+UcTqBRtPKXHGTvvvtDtq9tEcp16fWfcXbus15/iWtXhW7pdSekbJNquowfinLbRrNKf7CgKDN1KQf2988Zu2N8SYUxPPdIPb7KbPyM+ULYb3uPhjjVXVqyyiCVu4o7HOL6FnZOGDifHX2ErRTQkxmm7GvNN7IMZyeXGWHXVSnkNynXF4xmYl0uLk7QtTSNegVf9qJOpn1QrmM4Yg7Ojg+oVUv44QxL6qBX79xiMm7jZE107Ud8UblCiVpDfOeD775HuphnPD8hiMQ5+uzjBdduv0W9niZ9Q7Q55Cs2nc7jy71PPKKYrTMaK2Q0kYUrZvIEyRwjl6XzvBIgDklZKVKhWL9UVsXHJBtnL8tY2xcdnHSG+eqUC1nuev3KLRRzzq6kAPK8EZmUhbu6oC5Lmm/Usnz/3W9RTLt4MjU+pouatrFTP0K8rtQaLGYTZlMhj43GBml9hGZ8CYBf/rWX2L//fS5OjvFUIXvXd3doH5+izMpEK8k9WeiRy5oUMkL/nB4vcFYDyrkCQ1fsA0OtUqyWedp+RJKIedFTHqfn7ct9d3hwRs6qcW33Cv/9H30DgJAxg9GMrfp1MnlJ/qsnnEzPGUhOK10PWSz6RGcJDYmieHA0JF5EWCWdw0OxfiWnhKmkiHRhy6hBwpWtl7jo9EnnZd+nE6AnDrmCyWwhzuhKU+jMHzf+SjhXtpO6JK8cDcdYjQyjyQmKIpSIG85RVTjdW9FtiwN0PgvwMUA2wnthQiZdZrDoYKbE4va7XXau3ibBwJFp5WZ1gx9+9AGTjjA+KtkK0cqhNzjCzMnG9Cgir1a4OJoTe+JQfeXGz/GNP/yAvqxzX1svELgHnJ8d8dodwcr9U597nXZ3QK2VZSXTs2ktRzX3BlHzOeHrjPXmLebzPocnwgBrNnf40pffYTw4YyXT+56rs7FV5vBQCN3W1ha6tUQ3x6xko2gS6yznc2aeR6QLB+ije2fk0luXymHQc5m7e6w1bnJ+Jr6jGUPCKMILxSa56CxZLV2qpU0OnwmgiEazaP8r2QAAIABJREFUSmutjKIoDEfiGRxbJ/IKXNkVkLXL5ZT9w8dca17HkzXCxXwOw5qSLdhMhrKJeKLz4PGC8US8W3O9SWMTFrOYelM2qrsB4/GMfLGMLw//jNlgEe1ja0JhNOsh2bTKahyxVhV8Z9///ge8cfcNRssp533RaJizU8xmRfTU856rFZaZY+FOyOdEv0O/NyEIEtKZCr3ecwZx8BZzalK5j89DTg+esP1yjXpWOAN3tl7hsL3AMpfUSkJpvffsgHqtTBKLvWnoKba3rvDxh/fYviOc+N7pnFKpgGXBwpWwp+GSs1OXrS0BqDGZzzjaf0ij0bhspJ5Oh7z6+s8TKec8fiqcVY82xA7DC5nuX6h88ad/Fnd2jC4bxSt6isRfYlnWZcN8q3kXVd2nVJZlSL7D3uEBs5WOF0ni3VUa3c5hZRRS0nnc0iLu7H6RszPhaISTIbORys4bm1TzkudidoA/WVHc2eHwQChOzQroTvVLgsL+XptqNYUXjClJ3rnMfMXBVGFTltrYQcAcl0LVwe2Kg6nYSPPuw0fc2t1hNBDXrq+lWMxCTE04jsenJyzjmHByxIYEuTgdi/VYr1QYSB6t/lGbwvUWVUX0DOQrVxlNV7xy9zYruX7d9gXXqy1G5wGmpBM4Oj5lrXGTB/clS/36Drl0hUQ94/xQzN1f+/JX8foJ+yf/nKLs1Wy98rc4Dp/wx/fEnv7GgzPsQgXHiEg8WQZhZIltjQ+/+RBrJXolf/3Xf45SVeVwJHvophGhtqLQ2OBQOgyNeppMEJJfX+NC9inN531UM8OjE1E2E8QKkbpA9yyQ9kIcCwJVTdOIkWUliFK5iuSBObuYcXrRx7BNVEX2p/oxuYxJyrY4fCL0oqaZaGaE5j2HRl6xtVMhmypeyr+qwnwxxUnlMGUjer4Aq1VMKHlSEnwSAjxPJW0IQ1ELbDTLIU76GLq4vmEa9CYDbl8V5X5JaOJ7IbodguyLNByFwI25erXJcCT27MpPUDFJZN+ZoRpouuitmC2fQ+oaJGqCIoEplFjBUFV0I2GyeI5oa6JhkeCjSVCNiBHrrdfp94Q+3T9dkrIjXNcnkv1G2ZxNFM04uDjFMEQJkJpYRImOK50Y0zZYLCccH09RVNm/SYRGQBTFxM9JfJdznj1dXPaYGXqO5XKKoi7w5TFz7WaVUqnMeNJFyYdy/VyU2CKQhn+iLDEMGydTQJFrFccQui5xRkNWjJHNqzz49JhEEXKFEpDg4QcWzwv+G/Usjx89ItQ3CWUpm7rysXSdleTxc2yDIBlz2j1DT4Qjs5gtSdlponh6WaKK4mGYaVRZTmiqFnG0glhD08ScW7rD+maep3vPWLiy7NHOoURgSr5Bb2lgGCGvvPwq3/me4ClM4gjVdIl8h0QVe8Fzp7z5xlXOz4XMnJ330J2rRKxIJMm2O7fJZA1K5SzvfyTqkGZjhWohzy/8vHCuFosFrebzAJs4/x3HJuVYBMGK3/zN/wmAaqOB67oY8l28YEk2VyCV/lH3hFOHETq9jgjSTjyNm1uv4vuHvP9ElJ69/cbPM1/2KJSrZCV0dxT7JKqN4Yjn/uRJjySeUchWcX3ZU6bYrFYTjKWKJukEQitB0xxUWR5mpxQsq8bWxjX294S+Mcw0zAbMBiOWF8ImCLUaeimLUZVUBacj8sUMtXWbj+6Leco2Nph3PuALn79JYEkghUcfYxYyVMtiDnbjGh/uP0WJPfyZBC1QE8rVNTrjZ+CKNW2Ud+mehGRz4n6j6TOMZQ5TLxAH4l3efO2LPN27zycfHLF9W+iJVjWPt2xztC8csNFYpZL3CJfxJUXFfDplMQ/RDIdHeyL4Vqts0O4/Q9FE+Xm5sclms0oSvEGmLIOIv7rGfLLPN7/52+QzonRuueiSKFWam8K+iQ4WdM8HoNdJJFdi5Lv0z5YYpTTeSuy9tFPDKa/R74r7R/MVM3OKWtxFlZzezUaD7tmEm7t3cXQB2pQpepi5NLEM4g8GHXqDmLzjsJQ8rOejLplihTBKWN8VrQHeLGIVukxlr+ZitYJzl6qTx5Bnw7ODc2xd42TwTwA4HbxMWjNJHBskdP946LGxcY3HBw+YjcW5lqCScm10qXMjJyL25uSsNLWyZGeaOoynSyrVFpOReM7VdEHeslmF4pl2dxsUnSJ/9Pv/jLtvifld332LH7z7DRyKNLeF7dAffkat1MA0JC1IaEBoELgrLiSAVcZIo2U1xu02Gw1h0y1nJspqhSX7StK2w/RixGLapVQR+7XuNBj1Z2QLMG6L/bJ/KmzeHzf+SjhXrueCrIXPOgn+fMlZv087J8nP7BFKWCRyQ85OhVAXCgZxkOPDI+EMbO3miXwHLTY5PxMRvlw6y5PjY27uXuHefeHIfOP4z6hvrzMfCoPo6i2T9354j7XGlctIeUqfc3LoYtsWd98SoA8XvR5vfWmLx58JISjmHcqlOtc2XidRpeE2HPPGm3e4aM9RDaFcE1yW4ZRUWiiHwfiCgx8cUWva1GpC8M/b97no+VRKORJfREgUPeJob0KpJAR4sfIYDU/JZC08SahnaWUKhTKmnua8LZTw2obDYOBy+7YgOvvo3ndoVDeZjAfUa+JAC6nhuhcsXCGYK18ln7tFpGQwJUGhk7Uo13LMpwmpjDDig8AlUTX2T4WRb5opJos2nhdx7YasQ5/4jHorTN2nlhcCfPShyuHhPju3pEFtV7h9+xX+7JvfZjKM5P1MND1HLlvm+IkwYLe2tlgNsqRTz9HKEtbWdplPz2h3hAC//cWX0XSFSfeMYl44TqVymtPTB6xCcb9iuULnYkzWKTMZC4FdW2+xf3iGEi4oNYQCrJWvYg+XKLIHah62ufvWNYJQw8wKo/MP3v0uYbTkrVfeYSKjtqVqhmqzysbaNgCPHj0mn83xxpsvc9ARyiddCFnEXZ48mbOxIda9O9hnbW2NpXRsVsEITTXpXUxRVJmuiyfcv/eHTJZTNnaeA23kMbU8TlaIb71p0T0bspj4rBaHAGxuVgg0nbN2n1pjTe6zLolqE8kMZnfUw067VOsbtC+E/BWrFcJAIZ/fJklk47SZ5WjwkL4kB451BTU1ZXmRp9F43gibI1OpM+y12doWDs9ouMCbTkjLJoyF12HRVVGNHE8vxOFRaaSom7lLxK1ZsmA2XWGq1iWXieKnKeUjnh49IJsTazV1LaxsBdMWz3h8+JR8tkat1eLkWCi9SkHI0jIxSVnPAV9sLo72RbMO8NKrX+Wzk49577MPefW2WL/FYkX28w2CgzNmQ/HsN67fJUoNOX72XLescTrao2TWKGalU+3Au+//MWU7oncq7vcvP/yXPD3JoNoSbSqfBi0iMR00aXjf+/hD6D/kC5+r8Hf+vb8DQGd0xrx3Qj0v+GS8xYxKJk0QLjAKkizXGPN+/4hXyz9F2RN6sfLya7T9Pu0j6QxoMa6rooYrTGkoqobNKkowtZBYOt6GliGO06SqYh16vY9YzMZkTIdAF3sx8hZkcykiZc6JPFiWikuJHKEte1ONgHSU8OTpQyaytyiXkz1OERCJuWq0Nvnud/dQJLiCZeQJUJhOJrzy8rqcT4eP3rtHunCN0BM6NtY8osBElcSY7cEIhQKqrhBISz/2QgxTwXJMRntijuM4gEgjen4/JUENffyFx2ddYewoWpNoFmNKImU3WpHWTW683OAHH4rnBpUg9jA1mMg9u1Z2ODp4j/ZI7E3VLJDEM3RsltJ5LKYsDo4PiKI0SPLaxPDIoLOQ5KeFTMLM7fNsr0MiqSGNJELVHMJYQ5dGw2TaZ6117XIPa+oSXYnRtQxL2ZN4Zfs67cWIZRRgR8Jo8PwxZrrK3BfO1W4jR/1Kiz957zGBhDDzVhaJohGHMFuIs9XK3MXMbhCcyyb0KI0SOSR2eAkCNRieYqdNVMVEeU7aYyj4SUCcSMCOaMxiYhCFNQJPZkwzGq43xVAcvECs6XolxcCdsxhL5yNZYKs6kZ4hfh4Esn2qZYej8w28RDjQtpagRNGlg6nFKo4Vc9495LGUW8M0URMLJZpjRJLDKlGJ9ISTY3HtOFKJ1RAzhJWUmURdkbg2w9kI3xOOTL93yn/0q3+fVkus1fn5GdlslulsjCJ/VyrmaTZb/LOv/y6fSoN9q1pjMo1IJDG1GtjUyhWUnEQaAjQ04u7skmPOwKMzuI8fxJd8arNRj3p1C7tg4MnAZRTNmHhjXAliEC0z+OaMhr1NIIM5i0Wek8MH6GqWTFbYJcVyhvPTC7Si0Oea2SVxEz748PvYGSkPk3OK+Qa+qhGoYr+s1TL0J6c8fSDWvNla57zdpf10Co74bLxsc2W3zpPDQ/IZSVK8dpUnZ/fwotcByGd1NMNHI8OO7Fcfj6fMwxlxlCcKxPsdHn/GYDZh7Im5qlbLZPUC7iJkNRfAJp0Pfe7cfRXHHnN4IvSU7+ssVmMU2Sum0+P8RKGU38bIiudcRCvmPpRyCTeuCsTZYd+jua5xsC/k6m/8wt+l1dAYtWPGnnAejzvfJF7NMZIWoZStfG0TJ2MxGotrX7/9GsvZijiecNYWchVhUKw5DN3VJfiPFUYE6gmVlDjrh4slWpLQ659TK4m581YBuhnQuZhc9qefXpwyHoxxZP9mrVzEdAw67TGezL46tkq0zLLWapFOi/sd9kekcgoXbWFTjvoQ21OMaMpIcrUGbszGKzcJJOHzefyY3eY64/Yz7LRIZHQ6fc76XQqZa+zWXbk/fdY3NkmkzPbvtckW8mTyMUFf6MrqesCjB+dUtQ2aVRkoPT8kW69hSoTPuL+kr4LiZLEkf+OynaW1dZ3vf/tDFInN0EhVoTZn6QkH2h+mUOOY7uKI/PMea32AOp+zabfoSuLtbLOGG8R4K4n+XMjzw+/dY3Nzm4UMqqlmiduvbPHBR49IFSR32WPhC/y48VfCuYoimHoiba9oDsXiDU6Gf8LH7wuQQT0s8jM/UySKTa5eEwb7dNYn0WEsifh6wyVKkqFabWKaYoPbOY3hoxU/6H2Xgi0W7s037pIrFXntrnA0vv2DP+Wdn8nhuwq5nNi842FA0V4w6EB/IYTK9WacHBvsShQe3RyQeCmuX3kJTbKTlys1Hj85plxy6J+IRbEdlfHiIStfOEmGbnHn1U3O28+YLiQzuK1hmVUUVWGyEgIbhRrN2isglVg1X6A7CBjOuhQkXLKdsYmSKRf9Mz73ukCpWXn/N3tvEqRZdt33/d783jfPOc9ZVV1Dz2gMDZACQFCiSNqkI2xIDlEOb7T0yuGNIxze2OGNpQ2DClmW7HAEHTYti6ItcbIEEAJ6BBpd1d01V86ZX36Z3zy/+T0v7s3sjeHwwgss6u6qIvPlu/ede+655/zP/+/R6z7jo48FJMfStxi5n5EkKbFs3AxcH10fYkcC5mUaWWzdIGNN8GQG4/zknGKuxsH+GfmShOSEIa3mHhWZbdKVErqqUl6skzXFJj/u3UfVxoTj2zSbMnNtjHnja3mKhU3x97QMD+6/z/aNBmPJ0DSbTjHUDEnks7Aogurz5iWGkyErIQ6X7RmjiUumqOEmIhOZJG8TuC6KARnJNjObpSwvbdGTLHXu3ERRVMbTSzJZSRkfDtDNOZNxSLEovvt4fMSwH6Ka4kBbu/EKsR6hJwpFyepxc2uBxuoq075HIhmEbEejM9oHWSKvLpV5evYjYneJVApMd4dDlpdX8OIPePBEXE5vbH6HKKjT7YtD99bN13h4/wDHSfAkFawXBhRLCjXnS8Fl28hQLq0zHEvKU/cZoTclZy1gSSG83uwCAoVKJU8SDaTtmQRBQL8tvovnTtnZ3WUyda8bfydBhzQooM0tBmOp/q6Y5KICugwGNK1Oo7FEq/Wc8ZH4mclQo15bp1AscCwZ4ayMi6YHdOUBkymVUbWYTmdAJKE7g7lJMT/Al8Gzk5bZXlph72wfqywq1w9Pz1heWiBTsBhNxLqk2BjGgJJk4bRslZWVDTIZm1YgnN6VCvyLh0+4IUk23rr9VX7+s/+LjIQTD6dnvHnrGxwb6yzJTNZ3390mGExZWrrB3P85AK3LJtPZAF1WiPI4eGFKuQJ6LIKrZ5+dMBg47E1NDiTDeGgb1BsmtiLeMzEtvL7P88MPmXeFAv3f/NZdvv+f/z1al8/4Z+8L+tuN5UUqURECEcC7TJi2HcJigCcvKCO3yHKlxN7+U+oVcaga80v63R6XHUl6YxaZTXuYVo4rpco0SonDgCjUMAyZuY5nFPOgS5ve39tjOImoLOSvM6ajWUi9vMTaUgPvSiB47mPaMZEktAn8mPqihaIajGUGOputkio+sa/iXCGf0oA0Ma9hSa4fY9omKCFff0sEXO9++13+57/4TxnSJVLFYWylEakW4MvqSyG/SRiMSRNBJQ8QRRGa4TEPzriQFUvdqJKkEbqECbnzGNuKeeXuIg+/EPvd0z1KRo6ZhLVNg4Bla87eQYf5VQUjidBjW5JmiH2UpiGN+jIffCICWiXWUFDQdfVaOLY36PDkSQ93so5lfelPVTUlkI3/a6tZNM0giYrXCpSGYTCbToljl4yEdX313Qo//+QprkQcWXkTUEnC8DogMdWUB58+wfdNLK7IP2wUjWvK+GzOoNm8YDQATRd2EMceqRpiqg6BK77fZ/d/zHR+C1PKEiRJRBwrxElKItn7ltcKTMZT3PmXxBRRCNlsnq6Euu5uZKhUfQ725qDL6n0QoKOiWgrBSDzLsSwsM8s8lBTyZoyKSRQERJEktNBtprMe3c4MVZNkJ7pOGkc4EnblTgPWd4sM548Zz0UglcmskyQJmmZck9OUyzqqOmTiSuIkbNI0JUrVazKX8XTMQjHHzVfW+It/JYiRlxcX+e1/528wkQyilUoF3/eJgpD1dQFpUhSFIAj4wz/8Q3KOqMj6cYRqCJgmwHQ+YWdnmbzzpezoYX9EbIWUpXBs5A3Y3drh9HxCviT3uh5Tq6xw3jkhq4n1tE0DLx6iKCLeCa0JmaxN8/yCak3M5azzjL/23b/OSesTzo5FIKq7FVBtfE8kaRcaRY4vWpSyK+imIu26wnm/Saj0WVoT8Ua24hJni0jlCey8gz4WdPOrKyIxVFZAUwwmioplikuDqrQYDrpkCyIGao1j9LhCY71CX+7ty3EfXYkYdi8o5oXtGVaOVxZWeLH3OQDnx2PC4Am3Nt9laVXEMz/60Y8Iw23ypQWWpJBxthjQ/OKcBSnyO53bVCuLjKb7FFRxNoznHqW6TxLlyUvo5dn5BzzfmzKSzLx/9Ef/JWvVDGaoMBqK90zMAaOpilZysGri91bnGU5OL9m4JWKZR48PyTkldN2jVJRswe0B1ZUlBgf7vPWqSOJ3B0cQqORs4SjTCji1BhktQo3Fs2bhJcPhkCCI0UJx9pTyEVbqg2R/nQUj2hczoii5br04Oz1mMppjWxpdSRFfqxc4Pmxya0vA5t3GgJtr32OhtkImdyXwrnN+ckpNEkz5wZS9B885uphScCRlfWYDUw04uXyONRTv/s47b5NVG8x6Yu+V8z71hQqDcRNFSjj4ccRStc64f0mlJOzl1sY9FhbKzCRKzPMjElVjac2kKxkhQ12jkLN5p1Zj2BZ+KtoMMTMpnoQljqMO1XqWvAq6JcnVum1SxcQ3MiDj2mkcUKgXaD2TrTz2Ol/5jTdpnrUxZewZGwknp0O63RP0sbDhtZrYY79o/H8WEX45Xo6X4+V4OV6Ol+PleDlejpfj5Xg5fvH4pahcRUHI5YnI+g2GY7wdFcdc4uZNSW3dqjA8nbKwscpnDyR2Wh2SRkVGQ5HtsjIa9YUss/iERGZ23WjM2pINSZkF2Tj5b/70EbdvrrJaF7dkJ93Gcc64mBwTRSIj1O30ef3tW6xtJDSbonK1u7pO7s4Oqi3+/eCTkHwmxzRoMu2JbGG5UWRxpcajpx+SpOL/fF8lTRNSmT1cWd5lOJhSyq8ykhCOlbVlJmOPo6M+ednbY9lgFcYMRqIyt/eszdraOuPuiEJJzKU3mhKnU5YW12idilv+aH6I73koqriVt4efUqsuUC2vMpmKZzlahpxzh/qmyEQcn7TR0ckXddYWBQmEHzd58uQJjfoSJ2cCPlgpldne2mAmG3rHowtevXcHXV9n0BcZ9np5gYXFTS5bY4JIvNPm2hJ7e3uU7olMZLd3iWEmJKmHL5uRG7UGw0EbNfUEnTNgWSmNJYtMVsDa2p05QTLkovscOytM17SzfPrxJxSrOonUJIjTiIvuKYYhnn1ydoKpV/HdCVd87Z3RIY3qLqZRZCC1duqlbba2QrotKQA9mtKd9cmVLc5GIqtRyS3y4OP7lBqF65JxqZxhPPAY9EU27fadd7DMG/S9MwZ9YcOKojCctsjnVlldEf1i561DDOOMJanL9q9/+M/JZkpgO4xdke2xcgUsJ4+um1iByMiG/hRVixiNRRan3rjDKIzQMhMiCbeJVYdY93CnLQxJhRr5BeqNAp2BgCUouSkPHgXoRnJNTBHFHmsrq/h0SWTuxRu71BsrXMg+gnzRxsnt4pSyHBwKKMZi+S5mzidfLPPRz/4KgJ27BS7Pzgmnws62NraJwzlpxiQvpT6e/PznvPHm1xmnwqaN6grPZ+cs393h7FjMr1QqkSox+Xz1umo7nV/QvDhENUTFdLGxRX8wJkoc1m8I2OXTx6JXoLK9wGdtUYE6cTuM3TsMHoh1+v7f+g5PHz3l+UGb+8+PANDcHid7j3nz115na0sSb3Q1igsqeiI13gYeg3nCpz/pE7hSJ+UiwY3rGGpM7koQ1Q/Ze3FAKiGV084F6xWfu1s2X/+73wKgmi/z8HxA93iPe1JnJudA3ze4lHCU+r0czswgdROyociwW5kSQTwhazt0ZKUqiX3q1S3GE1kiMmMM1SbwdGJN7D+FhNif4zgVAkkHrekGaTzj5vqmmO/FJWg2qiH2E4CGQymTwVI0RvMr4UaNJAHLlnpHjkqtXuCiFeNKUVaUBEV3CN0YSxLtjIdtOm2XRELkVA3SJEWJ4PBU2NSD+5fMZjlcEhxVZCd9zSD2Ur7+TdGneLJ/TApoekosoeUkOr47ZeqNCBPxfE01BD27FC313Jjbu1tUKymX7SuNmTpRGmHL/tzhPOaVr5T4xm2LH/6pOJ8y2RKaqkGqMx2Jyujm3Q02NxsEnqQzdhSiKEE1QhJZHWkUc7z7jW3+l382RFUkZFPV0E1RbQFQ1Bn37n6bf/XP/xJF9hJP53OiNCXj6NfQyMkkR3/gY1giS+4GLpYTEgcaWUlstLJQ4vSkzdzzychq5Nj3KGWzhLKZXVN8To6GWOYqoWw7E714Ov1ul9deEegOS3/KwWVIon9JfpIkEIXKtSRGnFrk8nU8N8aQsMo4ifHC4TWlc6VQRUuPiSP3unqmKBpJGhIpEYEr9XEKNvNZyCSQoqn5DJGfkjC90onGcWK6gyNCf0n4TISdqoqCIStsJDM03ePo5AvC5Er2wMDSFaJUQ1NlBT+akS9qaJp4jqnbQsssjK77VdNEwwu7PH76EU+fC7/ye7/3n+E4Dq6ssJmGju/NURTlGs5XLpd5//33+fmD+ywti3NsOBGVVl2VQr/6jJ3tFcxE2B1ArBikSgxSqHR3cw1vkmBokMr1nHs2D568h0IJQ0rUjKZd+qM53e4RAKur6xwdeLxy4y7zQHJWmwM+uf8xVlansSyqNlHgQWATSvaos7Mx7tzANCcolliXrZu7nDZ1pl6GvkTYNF+MyWcXyeWFD3z4+DnBPKaQy1GriPkcPtlHQWNprcH9zz8E4M7mq9y9822e7Qm/nNUzJFFIcqqTa0iiGAym0yGL9ZvUFsX/TQYaVpLh7g2BIFrfKvHk0RHj/oC6Lyo0X/va18hn18gULGxbvPuDzz/GtFNSGZdp5pQoMlheusXJqejH2djYYOa6jMcJ3a6Q0kANGfRc1tdEv2G3u88wTDF0E2NDnD31Ronx0yOqi0UiKUnx/PlTlpdvcrIvztrZNCHnqDh2jpkr1ng6Uuh2Yn7lK7/Op5//RNhiCnmrTCTLHpmKQalo0j6dMZ8KH69nInzfJ5w36V4I+wj1iF77klpd2NjDzx6ysrrBwmKR6Vj4JV2zWVsrY1kxU+mrSOvc2FklYwpb7F9G2GaR5W2bJBD9RodHD/gf/vE/4Nd/6z8B4NY9lY8++hMqN+5RLop9NQ0DqrkldrZygKxwhRatyycUTOkXDZvD1nPWFpzr+Q1mBpmCzsKyQipJSzJalsMXR/RnEkHUqNDsP8E371A2RIw+HT5hNi1z6evUKuKbDocpOVthOhIP33ptE3cypt8MyZWFb/F9heXNZZpjj1j6hKKeo2GWKe3Iynzo86K1j6nnCaXe2enFBCcpsrpxk05XxNGKFK3+ReOX4nKlKTo31wXG1XlFJ5Nt8N6HP2ZRspydfzGkauzy0Yc/Y/emhOA8HfI7v/OrTKVDvmh1aSwX8Lw8eQm7sBsKzz/bw3I0EinA+KvfW2V7YQtTimCW8iGDXgE9qqJLZqd7d7d49vkhG7dMVEUcjoPBgKPRR9x7VTTU3bn9Ov3JMyzbwZcsTh/f/1Mcp0a2YDKUGNqZ26Ze3mA+Ff8+Pz9lY6vBfFDgXDLQKYnB8sI6w+4BealmrSgKne4EX7Jw6bpBHMcsLax+2ZznrNFu94iDDKYkp7AcG99PyZTEJv/mq19jOtLRVYNsRsx5bXGVnz/4Kyoy2FJNHzdUQTPIlMV8P//oBdsbN9k/+gxdEUbXH1wSeSkrS8IhV0ojkkDjsn9GQ+rJ1Ko7+P6Irc1Fjo9EYFgoLtNo6JiW+Pv5gsNoluI4VQxHXCJOzp+hpRnmUwhcYdB+ENFY3eYL2cBvZS0uzqfYdo6JhJCctV6wuraBG3RoXQiHn8kaKJqLI3HLcxc8t02pbnEie/QyWZuzYI/AVZF7mtmkzEI/Gk0+AAAgAElEQVS2iCPXxc7nCRWF/qDH7g1xGT853cMumVxejqgsioDvuHnE+sodfBmhPH7+Eyq1IqHXIFeQLGORT7t7Qb5k8eJIwABz+Qz96QXJuYC6NhaWGYxOGU50VNksP53N0I0eUexRLwnYw/7hCy77B9cMP1HssrC4wHAyJIjExlcTA6ecMrqc0igLSNosOGfvuHV9OX9+cEKhWMRwdYplUTYP/DzjiUeqqMwltZul53m+/xxFBtmen/J878fcuLWMaohnj70+4/OA8SRg5554/tHxC7Z2btI5FzYcaEPG0w7TEdQkLKhUaXDZOwYJeTo4PWJ753V6vf61fpSZKTJNRoS+R5oIl3XZblGvL/KDn/0QgM2NbUqlKs2jc3RNat/JOZ1dHBIjnn92dsLf/6/+CXPJNvVf/zf/AMfUyZQKbO/KMv98RjlX4f3f/wGZKzifphMFFq4UfFYUjThxiM08sSa+sZ1VSeY6VugTeyIQ1vSUG68ssP6qCD621pdoLFTA8ehKEcrPmy1ul9dYK+cZjMSBUkkMCvqEzVsbcu1S+p0mqlnilZ03Adg7PeN8cM5irXqttTNWYy6ihLnUH7IyKl7goaUJiWTBC/wAQ9MJAg/FvIJw6RQyOW7dEGt2tNcmVHyi1ECRl5bAm/HWa7cYt10Oz8RBb1l1ht2A+rIIYtRUJZdxOD6bXIuIz6YBegr4Ea/dWpC2r9Pp9zBkX12chhiqjpZo7N4RgdPcazP3obpUwusLW4jNFJ2UWkXM92fvz7CzVfxgSiqZAOPYZmGxSjZXZDCQ0FajjmUUQPYRxqHPdJyisQKJhPOpJqkSoEi9rNRIKYWPefh/fMhs9hsA+HoFFY80NTDl2pUrKo+fPkKX0DpNS0iVlBSF8VD4sv/ob3+bnHPGeHTBWlVcisIwRlEMklj8DOmE0/NTVL1AKpvJowhMy2TYn7C5IpjIstkMl5ePSJWJtEUdlBzTaY9yQewrBZ9ePyBRVObSZg10XM/j6ia1spCjVKrx6NGUWBE2bOg2aaoQBCNsS6zxjZ3X+PxJQKJfJQx9oihGtypUZA/k9ladTz8dE6cmtiHOECU10AztWuMtSQaM+n3cSZFAMjvq6KSoxGmKIdnlJoMzIr8GEkKWhAlBEGLbOqOBmMvOdgnLntBs9kjlBUQzEiIvxJR71jZSXrl5g2rJZSxF7g1HIU3GqLqJIYkvNDXFsD0mlxKC64dkyilKqqGoEmrqB2y/tohi+NTr4vv9+ve+zXzmY0pfrWkqk8mEyA9YXJQECNUqf/AHf0A+n8f3rnTYwNQUNNnzpRsO2ztbKJLYBGC7ushB5z5BKILJ8cxiMDuk2T5jzRSEUu5kjmZk2dzcpnUiztqFeoa5u8idu8JWJsFjyvUKaCPGXQlxnCRsbts8enjGu++KBM90PODi8uJad6pQylCp2ewdfMFEJkk0O6HT65DJLNNrixhkqb7L3D3j8ly8+/b6DdLqjELuFl1JPlSs11ENk1G/x+2bYm9/8lef8tWv/io3boi476K5R74cE7tTShLiOI3nZAu3mUdDMlIb6vjoMcsLG1SkDtXpyQW2XebON3dpXQqIoaJV0HKwd/QFXUk+UK3nyBfqzH0BY3OyJXqjS3RzG10mDU6Pu9h2FsvWubUtEgvvv/dz8gXzmshscWWH1vkeuzfu8uixgPcvLK6wtrTI2cEB5YJ4T1SPg4OH3L0r5hf7Ldx5xHg8JgiEHRQKOfI5g739Z5yePwUgl1uilC3y6RMRy3z1G1+le9JjMJlSrwpfedEZ85W3vsXp4T5zX6xxtxXynV/5LkfPRYL33/3Od8gX1zjrPqE3E3addbJUq2X8cEw2EWddvhChpTqTgfiZctnivPtTPvqnp3zrm98H4Cc/+V+5eWeZTz9+D4C//pt/n7/7H0/5wQfv05GFBQeFe68tcHDSozMQsejMVylXEjpj4Zedxha5jEpBdb9kru0qHJ4/IQ58bMmeWysVsdUstYpk0/RjblZWOW8eUd4QPuHRky5mfQq6RTIV/nO5vEx/5GHLnqg06EDgsHNjlTMp9L2wVGFxuc7M7WHI/r/tWo1xv01Pkb1pWpbbt97g4cPHjGUiysqqDN0TWv2AXF74xcV1scd+0filuFyFUcDjJwLH7M0iTs/avPLaMnEinOTiVoG/+MF7/I3feotaXVyu/DBl5s9QJMNQoWJyePycYtm+ptINxgp3bm+gsMA7d0VF5vDkmGTeozsQAfvdV+9wcuAz8jLXYq6Bb7K2U2JtbZNOSwTjxUqNnKNfO+SZcsBrr9+m34a5LwNaI6JUtghCn1xWGMFZ84Sb22XSRFYGQo168W2eX9zn9g3xcQaDCHc6ZDLuUpT9TO5MJQ5Npq6Yyxuvv8ve8xcMxi0KJfHsF8+eM5vNcCc6jZrMIPglNrdvMpmLjGK/bVEopmipxlxi6C/bJ1SqOby5bOhVykTpGe1uiKEKg7tz+xZxNKNccijlNwHIZ3I0T88IpMHlS3miuUGYtJjOhMENem0qNYf5fESMFFfVFeZTi9a5mFupqtIb9GkPZphSRFRRTQzDYtDtUKoIJ5LB4qIzwi5IUcjYZTrtkypTMrZ4z3anyWJjG9+FYuHL/8vnS5wdC0dqWjZ+2GT/RcLuzj1hP0HI2dk5qu6SlRm2TveceWdGRjYWz/w+hm3BzGDvQBzOpXKWy/MQy5lycSHe6/VXv8uLp8+vm4OTyKPfHRL7I6yccD6TqYtlWahJDhlboakZTKWGnROB+HySUquKS1y9Kta82XqKnZ3TbgVcBsIWC1VQkyqK7FtSMOl2JsxmEXMp6mvaF0zmMaqic7QvAsyb268yN1TQxd9bX9yg0+uzuLLJsC/msry0wEnzM2Zuev3dDS1HGE8pS4X40WwfO6/yYv8Fqi6C1c5ozK3td+mcz8jWhZOqN7Y5O+mxvnZDru8FpFCtOvT6gmBmZffrTCcd4kTYa8iI09NDDKNMQQbQ/fke8VCh54fkSmI9t1Zv0R2es9QQ2co0TWl3TikVVRxDHM5X5AXbW0s8fXYq36nAq28u8OiRCPiKlRx+PCcMRjz4UPxMo7rO9/7eW/yt3XcZDmTzav8xiRvRupSMl4W7jNoPUWzR6wZwMWhTXYR6rcrOikhA1AsZtjbf4PMXwt/0hmcksUY4+bKfQldcwnAARkxpWfRqTNA5vXzOLBKJjWLeAVtjoE/4QJL63K6/ja8mzIYjbF329oWXjNwILxF73UzXUJU5qRqRyssxaUAU6RiaiWGKb+W5PnYmJZaMiWcXLSxHR1ezxIif0Y2UekOn25kwHIn3UjNDPN8CJD20pZEp9jj99IBIEkykzEmICf05qawkoTbwAgNDktWEYYKSiG+mxsKux0EVP3hC6GqEV9R1vk+1/iVl9XCoChKFNEIxhC/xJzOyRQU38EAm0VASkihAFnGBFNe9oN/P4ktmTj2jEzMnln1uQRTiLO+wVf8a40/F4VzUVSKZ/VZlf1PgdQmsVFxyAJUUP4rIZB1MeWEYDU4olnLopuiPAiFB4nshbRmE/p2//Q4vjvboj12suggeI88l9ECNTGJNVM9Ta41UUdAkUYytW5Cm2NkCXiKeNZvmGY4j/ETBkpUVVVXx/RjJZo6t+MxH4M0DMiXhc6MwwI8SXNensSAuzFZGYTo7ImPl5Lr4GIbGZDRksyouNkms0bqcANXrXtTQj1BT41qolshDSx2ICzgZQ65diKHb+PMIVV5qN9aXODgMSaX9KKqC7Shomo2SiDMln7OoVFdQ1AFIQenIj3Ac67pS5nsuxYLFbBZeS6HkayoEGVJVw53JipNicHN3l2ePBSLDsvOoqU4UuijmFZlSROCN2N8f8u9//+8AsLS0wLA35CpS9DwPRVHY2NigUhE+6I//+I958NlnLC+vMB7LhItmkMZcV40bSw7t7s8YdkYgdOGZ9vuoSRYtJ/uywgn5Sg17ouL7svKpdzCtRS6aBwRXlN/pCoo2ppAVfmQaH5AvBihpgbUNsRcuLiYcH12wvbPCw8cfA1Cr1FndXGHUEXtP1TX6owtsq8ZNeWa2Ls7IZhU++fgn7G4Kn97rHhFFEUUZ7wSBixcFOJmY7kDERf4sZF7yMLNFdEkG4lif8fCTH3H76+I5k7RH0Nlhe2uNmaS6Xl5ap9kcsrhY5Pln4jJXL63TaU1YXpVix6ceip7Sau8zl0zLquVx8ujnJLFBTkpgeJ7JrZv3ePpMXIjGg5TF5bwgSxsKu0aJGE96LObXcD3J6Bca7Ny+TX8ozl4zU6VYnXN8co5jiTjhrHnIaDxHy+c5kv2F9YqK57nEkfgug0GH1dV1wtBElzGrlZkT+gOGoyGVoqjEW7mAB5/+jADh4549fkbVMei7L0iHwsdqRoGn+y9wyGBlxLm9Uijw4/feY3tBJOM6F3N+8uMPuXG7Aal4lqE7ZJ0iZ2fnlHKiwpVEPsfHfawrWRClgmW3cUyTf/1n/5P4NjOFGzfXqBTFnn16+CeslBxev7OJkhN+ynSHdDuf0hv1UU0Ro7+ym6fdPicjZXM0K6DXikjyFTRZ7FDiU3a3x9xcf5Nnj8QdIFfQ6PQjluS3KxdSHjz4nDjN0J6Itas3KuTqHpO+T9ER56+bJjy/6HF3U1QU7cSiUS3x4vIpzbmY31e2F4iTObYRXSdKHzxugwYzKc1g6zMY5ClVbfqSlGnuzYgCj1S1QLLnTt3/d0KLlz1XL8fL8XK8HC/Hy/FyvBwvx8vxcrwc/z+MX4rKlaZrLC+IDFjWNtnZcRgMdSxEVnpzJ6G6YHNze5f2hahGfOWrr9Dv+/Q6IsMw9VtYZp7e4DlLS6Lk2enEWBWDW1tLPH7+GQCD0ZhGLYRUQHKeHccUaipVRaPTFlmAveYz6isubmpRqIpsjxcfUiquc3ohMu71hsn7H/yIfEHH90TWL5evMRokZJwKeVNkQxqVIeetM25sCyhPvbTL3OuRzZm0zsS7L62u4AdDXnvjFnkpaNs8a6HqPptFAQG4PG+ReDqVYgHPE5+tXq/xnW/9LuVijg8/FhjhSBlw2jxjfU1Azc7PTzhrDthev4Uns1uKV8cLW0SeWEtFUXCclOdfdLj1iqjiFByNw+YlpmkyGgro3rA3YGNrEVNixVvnHXQ1otJYoSezryFzzpsKqrPPYl1kY45Oj4n1CE8RGff9kwgnZzCezLGVK4HbNuu3t9jeeJ0nsrSdK6h023MkUoHQt4jTMaZuo6lifQ0j4unTp2zvbDCTEFHHyeK7KlF0pYVxTKWW4d7aWyi6WPOcWqJYWKPXP0CX0A/f1zEr0J6Lqoaa2JhRCd0aMPOvmMAWKFpjfM1kOr7SFpoynxvXIqaZbJnZNCSI2xjBpniW3icKCswnZVxfZEi67Q5vvf0qhyciK7bUWKFQtLhod2g2BSzAMvPMhhoLjQW6XUE5XKgsMh25lMoigzKZnJDNVilXllA0Ue0J5gr92SW2vkESiszRwVGX9Y3VawrnfLqMbuTQ0gKrq4m0l1Mcc5n1tW36fTFnL+yioF6LNCppjVrVIU0VRmORqYsCF1MvMZg9BtkLsrTYYDruX1dtTV1UaXe3NpHEg/Sbx7jBAEUyfC3WvkGjVmc4aBFJ2vyKvsBUH7NQrxJFUpcpviRvFyhIuQzPyxDRIklVKjUByWmeir/r+Q7bO8IWsebsvrbNJx8Ley1kFdI4j2mppBnx7PrKAmq+RxwVqEm9qvJigVur32SsCvv56Kef8Bu/+31awzapIvZHNtqg4w1INZ2hhEZkDYv3Pr0Pks68ahYoOAVOmzMOJgIe6phlRuUVVh2TqCeyYQfDCWtLy1hZkR2dDHs4ikpJV9iTNOh7FyGRCmE8IFsV33Qts8CLz9rMPAnXUFxi30NxCmR18TPdyRk5u0ocJ4QyszqdBty7d5OVpV8Vf//0z9DIo6Ya6FeseLBzY4GLzikT6TsalRqhqzGdShFz2yKNdTq9BFPi4wMfHDMh8CM2N8QHOzo5J4zAkP1GmqmhpOCYKa6EQp80m1i5ElGoIlnI8RKL6fSU0UR8vwQDVIUoVMg4wieEwZyso3Hv3jv82f8pWFMzjkUcz0gkdHA+d/lrv3OHwegAP5aZ3SQgSTVMKcnh9ELOBgWedYaE+lW/YwCagqprqLGE161UOT49v65E6JaFqqYoqcKVdFM+r/DhRw/Jlaq4kuYvTUMMO4tuXFW3h3h+zCyYY8vqS5pEGFYWN/BRNbEf/+IHf8mg/5uY9hXT4xwVh6l7RrUk2VBdj37fQ1Wz+HPx94yMznAwYVvq87z5+jb/+x9/iG6tkqSSsj4ao1sOhmrxxuuiqvD06Q8ZTKfYEjGRxBGqCrP5nMU7m+LvzULCyCSIVMzoChERE8cBcSKFjbsDijmHiIhE9vboqoHnu9hODsuQfUrVEoMHl0hiRwI/IVZ89EQllrZRLJRot8fMfRVNkwyCRoY4mZNILvZCvkixBHsH+9drnKYuqqKjmzCfisx1vQ73P/8xL2R/jG7dxdBVQoxrRr8wmlKtrNGo7vCVt78NiFaBVE2wZH+cZRpYlkHkSyp64B/+w3+E6TjMXJ9Usb58Bz1Bmg+727u887XXOJboCIB+egbaDsuyT6s/6BD5KWkyuxa5Pz+yKCxYjHtj6g3xf63WGUmg0TwTviVQHBxbIzJbHL4QvdNxFPKtr3+fducULRW+UjfHzOYDHGlTjmkxnFkUyjaGJfxGsZhnOOnx+ps3Cf0r/bY6kzEgGZoH7pDZ2CBIz9Ezkj23VsB1J2SzebRU+IRi7RaBm3B0KHz8K7e/RRJ4GIUYZP/tSXNGrZHSfN5nuS7231nzPpZzk76sEEXhnMXqIkkS0TwVPuGr37jB6eE5+bKNHwt/enlq8LVvvEpNsvnVqzbD4RAvmBLKKorjZOlNTqHjkiDaHMqlGqZpEvhSwiGdU8zY1HJVPFegLXzPJ3FDTMPm7VuibeT4fI9+p8uRKs7xxkKNmX9Kr29RKgo/NRkHnO4doOsR+cqqfIcVVpdTVmTV2FNC2uMmYRJfQ1TRPMbjGYlpY0ibKpY0Nm+Uefz0UwBcP6CytEJhsczlgYgbynaVF/uf0ajUGci+az9QKFcXsG0p1zAPiOOUJJ2TyQq/ceurX6VcPGcqoZEX5z/j6JMEo2gSjkRcfbZ/xtbGEsNQwPqkodNpzUlssb6GmSGv1YmUlKKkcHcHCtXiTbz0mDfeFbbxb/+yj1LKsS91Sxno9Mjx9Xff4eJAVO+rpTKGraDqEaqErfbGLsWigevJFplMgzEjlKx+DW2fpCOaRyeMRxq1sljjiXdJaiYUZew07I6JwxOW6rsoU4FmCeYxt269wmW7zfqGbKGYfLnP/5/GL8XlytA1CgXhHHbWX8H1EhprGX76M7GQUThiNp3S6j4nJ0Vgx2ODdueUoWwqLhUW8AM42TPZ3RFwu8P+z1BrOQ6aH1LICeNd2yzw4Scf8tYbonR4dPqCTLnGRTO6Fph89bWbfPrgQx59/uf82nd/G4DJGNz4lLzk1L9odVDIYSTb17pIJ8fHpHGTSs2mUhalyuWVKouNHS5agg77/PwDShUVnSK5ophzCiwurXNxcU6pIJtcNZiMIgxbzK9QKFDIOMSYjCZio99a2WLaT7n0LlldF85gONZZWd5gMpK0solLvlChNz2HWGzq1N7HzmUZT4QR9gc+hq1gF8b0uiJwM3WH2VijPT1na1esua45NFtPSEPhoCazCN0YMI/K5HNVOd91/sk//R/5ld8M6M+FeXnzHPN5Sk7ipDVX4bL7BX7YZy7ZK1Qt5NGzj8jbq9hSaysMVVB8ymVR6t7cuMlP73fZ33/BvXs1OT+LVPFwvYmkY4bh6JL1tZskcr7q8BwnW+Gi95BiWcJfAguFHoWKjpqITe3OY+aui50Tz261j7m7mUPr5SnaV9C2E0ynhufC5pYQoh2MWxRrAdOxFM9TCqysL3J8pJCkopS+uvgGj589IJvxr20oTEPGkz5bst9wNGkymeTxpyameUWNfkGaxkRplpyEkeUKKkpcu+4nsYwSrhcSRl82j5umTb2xy/HxPqUFMT+NLcZTH03Sb8eeQjG/jK5kuGwfAdCor2AYOuNJnzt3xfw++/xjTMtmOJKUqoUi7cshiuJTkLAApx5zcPYDVtcXUKWOlsqIjZVlBj15idcSdnZXOT27vP69Yj2mZizTlbTpl50XjMYHaKlNVjpgPxyj5SzOe5fXItAf/dt93vnaKyzUxGH2+cMPaDQaFIqrPHggqZJlksXvpuSysnfKHfLadpn/TRMBkZvMCWPQ4hQ9I5uyn77g+9ZdWhdHlItiX1XtVT7+4Y/ZuCeSJFaYofnkkMSyGXXFZbw777O+fZfW5BLFEY57mBh0J0dUJVGFEq4wdHrMUPn3fvP3APjgrz4gmrUZjrJMZL9YLVtAUz2e7v1EfuNlXqkuc3J8yvqCuCgGtJlOoORsMgnFxdfJlTGLMW+8I3TuDs8OMBSTKPIZTa4gPwaxCgoRlhQbtzWbWJ/QnUq9o6CGqXZI0pBYAhwUNPrjISenlyD7EpNYJQxSAcEDthYMJqOQ/gBkjzRR7BF6KlEEuYI8VNMZsdomlRosQeCjGhmcTEymKL5NrzsnSGKylgmS+GbmD7i9uk5XwnSGEw/0AgoJoYS/6ZrCzvY2vXZEJIWFXXeOocVohphvmiZ0ekeUMgXcUOq5KT5GIjTAALK5hO06tLwJodxXSXaFdNoX+QnJrrC1schonDK/EgLNOmiGge8F2BJWtrLa4NOHB0Qo14kFS88wD1xsSZ9s6Qmhb2A7RXz/SyjfZa9P+/SC73xbfPfbb7zJf/eoxywU39M0dUH5Pc3wxjfEuaYlE8JAIwpCLAkZjaIA141QZU/UcNQmiByCOEG2JGLoOjPPI01Tmk2RSDxvdrHsIl4gda4SH8OwSNOY4VBqyvg1vEAhVRKQZBVpnKAqNrms+Hu/9dtfR0kUfvTTI7IyaRFHKdmsxXQyJyPRWaGSEqd5VEl/r0kb1fQUFOFbRuM2a9USk8kQpF5cEkcoioKqC1vRjIiYLqNBgC73u64aJCgkqYquXPUAR2hKhCEFyW07R4JHIZ9lHl8lhlRK+RI7m99Gles5d2dYts1gIGVkFCHwvLW+wT/67/8xAJ/ef8Ct23cZjL4USVYTlTj+8j231lYYu+d0J7L3DshWqlx0ujS74vLRPrvg9u1bVCs5To8F3K7bO+Mbr/6H9M0vmEr6ci8eUsvfoLEiAsAfvP9n7GwuMeqoVIrSNrSQg4M9QQqmiLX1wh7tM4N37oqfmYYT1LSCk9P4yfsCOri5scBsqlOpLTAKpTajb1Bdijk6Ehf/SmWVYi1mPk8plYSP95IpuVwOkgEXAxFfZKolbm2VOdw/AuCy9TmF4hL95iU92XdaKmboD+eUq5vcuClg1qW6QWO9zI9+LJLJtrHNyuoa52cDvvL1KzKJJndfeZfH++9xU/aszqct3n/vI3IlcWHw5jpJovL6679CtyeC+C8efYznpqyvNmhJkpul2k1URScnxZZHox6D8wGrjW0WpAZpuzVkrVbD0DMM2mJdfA/eefvr9NpiLrlcjov+KXEaUqyIdbk4S8hkIV80GI7ExTecRywuLmPKjHIaDJlPAhxrE9O6aldo42QMNtfX2D8UF8qjB49ZrFXZvi2ebehZWpfnPHz86DreGI1mmKrD5cUQ05aQbcVmNBoQJ2J+K2tlmkczUi3CzIg2gETx+OznMxbkBXfvxSWmNmTesSllxHs6+Q3c1GA4u6Q9FMnxYbWI7eTBEmdK4BrUtwvs7zfJLYhnO/UZQ8/ntJ0hnxH7ozvtc2t3m/75zwB4cdzhzu43GZ88Z+6KmLXnjVC1kGSmYEpIYxTGLNdvMJuLNdl/1mFjfZuTi0sKEmLojn3qCw3m3oCxJHhb3tjk1t2b/PBf/jkAtXqFzeUbuCONxRWxP0YzIDa5sd1gLm1/OBG//4vGL8flyjRxKuIjhVpKplpi/6TL278iuPc/++w9bA98z2BtVRjPsBtiGnmW5A2/kFtiMDrj3qs3efRUNhrWirR7c5YaFl88FRnMUqHMXBnxRHLa9/tt+r1LCoVlDvZFU+HmdoXl2g7tI5ODJ2Ih7765zr/5y0/ZkOxhgZtjZbXAsDNnbVtckqzMOo4dUS4uc9G6ympM0DSNza2rjO0XXLaH1KsaOXlzDqMuB4cDXr13jydPhWF2e6esLt7GkOxPiWcxd9ssL20RpSKwePToETm7wc72Iqn8kqa1jK7YRIkIvPNFk8WVDF98fg6q7CkLmxSLeZYWBEHCtPs5yiTP6uou05Ew3sHgjASXlbVFZlJPSQFyRZWjlsiEbGyucnh8xOJCnk5HBN6j2YBXXlvmT/7oJ9x6VRjfO2+9zcLCa4wi8XuDecTi4grN5oxUFYHp3E2w9RqX43MWF0QA/eTRCd/89jqX5+LZg9E58/mct97+GonE549HPdY3q0ReiiUJMwxTIwgn6LK6lc/WaJ73qTVSutLZqYBuhPTGXSxLrIuWrJIrlRl2xEGxs7ZGp9VDtxLGU3HIpVqJIOmwsNRgKkVDdTNkOAzI54TDCNM2bmizun6DJy8+AGB949e5sfMd3OCMk+ZDaZ8LzL0ZqmQn29m+w7PHL/CCDnVJEBIEdc47zzEthU5XVmm9BMdsiGADCMIEw1AYjHuYMpir2K9wfnCOYSRkpFbL6VGL5ZUa+ayw4dbslMRP0fLpdT/e5vo9XHfGeNzm8ERkP3VLoVSuU6tdZVGPIdEoFRp4gVgrx6xDXMWyVUxVHgLzQyrlHJadyvf2abXn2Ebjuk+he35CpbhJQ/Zz5TIR46HL2vINXFcEcwfNM1YWauwureGNRHB+b2eKEyu0HomD8WZ1i3arTbZUpiAb8XOSNCwMz8jnxDt1hiTEQxYAACAASURBVDN2t+6wtCAc93AyxlR0dDX9kvBh2mN4lPDmO2sEmphztW7geHWGIxFMqs6M8uoih/37jAIxl2pWgRwEwQhtIoV3A517W99Dl/pjnZNHZCOHoh7z8NF9YZ/LdWbtEXbOYaUgvs39p58RdnOUCyLg85yQ4tI20fCQ0VT4pEb9NiWrz8W8Re9cZq5Pqhz2ymSLIih8Lf8Wjp4w98ecHoq9dtjsk2QsNDWAqdgjvq/g8oz/4r/9DwA4ad8mV1TRFJNRIPbM8voSdibDFw8vUK5IBDQNxQ44PhIXi+++/VWqtRz93ph8Xqx5ErnoSkyahtSl6PT9Jwd4XkC5JPeQoTObRqxWitfCtHuHczKZOsHcxc5J5sH5nEJhgd2dRfneD8hYCpCSSLKKKJngOCb3P3183SPr2CZECp4rG5RtjUZjmb3P22hXxAZYhEqAIYVGO1Gfi8yE9rGDeGswwwGxpuC6EzKO2Ff9/jm9wRRVVl5QUlJi0lQjkAJA8/kcXTOIU5BmRhSmzFyXzVWx1y3DYDwMMa3CNfNhTIpm2ChGxOaK8MOdU4/JOCC/7Fw/R9MDlCTlrddEcHyj7jLsHWCVGoSe1IEywQsCTEvsxzgN6Q3mBKqDIVkbwyAFDBw7JYmET9DJ47kRudLVJSbF9RMURaEk+zBGoynTiY+iOPhST83QFfwgIIld+WyFTmtCSEgiyRy8wJXaZwlzT5yZj/d9gnTnmkAHJSQFwiDGUMWc79y5g2pP8b0+ljguCCcJum0y98TvZXM6fjhkNjbRFVl1C1x0MyJRrGsClIyt0mg0iEPZ9xkHONmYeBYiW+bQFJ1yqcHuzlcZDsX+K+YsFMxrsXVFUVlaWqLf7/P7v/8HAKytrTH3fDTdJEmuBLMVZv6UvEyuLi2VmXknuFGfq9Hrtinmbl1rcS2sVMjmHb543GJnQ5BQfO/XvsOTzz/A1CLO++KC5+QKPD37OT+6L/b6m++8S3v0CUa6gOmItTs8vEClyer6CsOeeH59scTCkoEuL7RRNGXmtZhdmBhXbYu6Q3kBuv1zlFAy0CZnnH3e595rIkE4GAwwTZuMlRDMxbP74ynGYp4knZLNyZjHm3By6KGosmfPUHAqDuePOwQzMRdXLaKaBp3ZAT/9F+8DsLWd5clxjhd7IrZ491t1nhw8x3d9aqbYt2Ga0Bo8Zzwe0+8JP2jZKobtYuji73UmF1hWhqcvPiSWBC9rK7fQNlXK5TLDkfg92zE4OjynsSQWodM+RFVrZIslUplgMksjev0JjjNCTUUwvrK8RpJ4bO+Is+jwZJ98eQk3PKNz1Ze10CDVyqjErEgW42IuITDhwQsRKy2XMwTtOTd+ZZmJRJIE4ZTxZMzBixxeIGKC3Zsr5Iw6iewzPj1ssrLRoOUmGJpItBuORr1a4PDwCEMV50x/eIYabXL7tvAbw+ElQTKjPZywtSGKFN3zNqmu8XxPxGF6PsIL8yyuFph3xbc6OH3KneJd3FlAqsg4MzZQdY3EF2fMykaNZueSgXvGxRPRg1wtZRl3Aoo5GzMW36ZcNLFTWFsReofry1lWN8s8fvECWxJordhrnJy+YKqO8WUcFE0UHow+wJGVXVOx6Q0uSHBQXHHBm6gmj5uHZOIimkxqGQS8996PKa2IGKQ3HjFq6uQcD4YioV2oGowue2SdLPsH4qzbXBU//4vGL8XlKghnjFzBdtPqDqktw9SdEu0JZ5ez6xiNOYtLG7x4LgK+eqOC6muk8iD0gxmZjI0XDFitCkic57vcu/km3c45S1I1ejgc8dadt2ldiMvHN25/F8+f0+v1qNXFgZ3JGSwtrrO8ukNWqpMPh2PeeOsW/Z5kJllbpFopEycX1xnM1197jf3nx+hqCVUTG2hteZM4GJFGwphXl7Z4+GiPyXRwLe7mTuss31CYTNssyBu978/woj4rOWHg+70vqK1U6M3ahKnY1Ll8kUxew1WguS+CzLW1VVqtSyxJFDHojTEtUFFxdLGBtlZu0Gw12dsTF8zRYMrWVp1m8xGrsqG+mFsjTAboqsKgLwLKW9vfwvX7ZBzheDrDz8nZNwhDGysnHOnl8HNu3b5F3vpdJlORQWidDnlw8ZcUtsTh4TiLtNoBxwcDlpaE8ZqZKaPRBQkxl23hyO69fouTk31Ksnqwd/QF+WyN2aQrstlAEmVJ0ilTd0y/JWyo0VgkDZbwFOFUYmWO65/RqH6HmSP+jzRDFKVMxscYqnCIqqIzHg2oSoFZVXG4uHxOvjrGkzArVAVb17i9W2c4FGs+6Rv4o5S5J2zKMWz6oyPmkzM2VsS793snHB9f0ljOXcN0+p0ptXLuWkS429tHJ8etnds8fiz+r1LNsrxwh3lwiSeZACvaLt3LCSDmksl7zNyAOFEoSMmBi9YXFCtlut05Z03xvbY2v4kX7/P0xREApZrJ8eUZC9Gd64Dr2d7H3LzxKqbt0+mKS/xX3vib/Pi9P2NzRVRjLbVB6kCgzAhN6bSGGonaYzraQDNFUHbaHKKf+rz5hqiA9Q8OsJwIXUlpnomsuGXoZDN91FgmSawKHa/D2B1dQ6qy2QjL1nHDCn/+4b/k/2bvTYIkyc47v5/v7rHvS+5VWUvX0ivQDRAAQQLDZQbkzFBjNJmNmUzSmHTThRddZKaDzESN5iaZdNCFY9RBxjnpQFI0AiQBgli70XvXXllZuWdEZOwR7uG76/BeJi7D2xxwKL9lWoSH+3vf+/bv/wf457/364wPIu7fEWd2b++M1maeo9MHdFrCWV6cygHyxOBAUiqoqkKznPHmW+Ls/eVf/JRmc5swGaHH4hmKJYc//5ufc+Mrv0EyF5nWn3y2ZGurQn5TOKreZ3MGpyvalS9z9x2JYHjW4+LFCbW1LYZLsea72x38YMSHB8IwNRo6mRaxVE/xh0JJ2+oG9cYao8kzlGAHgO37X8JfLkhky0q6SHl29pSAC4oFkcVVTYvlssjPH6WMB9ILVAR5bSaHc3W9QhSHaKpDS4gimiUqGt4qRpMISfFywnu7v8WN28KAf/ijhyhaDd8UCGziQVcY+hLNLJImQncoWZfEiNETsedKkuFRIMo0HOnMxV5KmGQooY6biMSXmtmYmk0i+/2yyEYNA5pNm8lE7FWWpgK9T/NZ+rKiT56zs4/4/ENJRmpWyAghg1g6FvViiTu3XuPi4x+TypYxBZ1Ed0lScZ+mU0cl4dlohlMUia8wyjAMlUhWsjoli4YZ80lvSWCK8EpDoMKlATQal8P5Gi9fTDEk7HPKgjTLoanJFQLci6MPOJ+a6KqBLtvkQmVFGqXokti8Xilw+PIXRLyBnolgcrUKMEwHU9dZSgj+2SrBUwJM2c6o+RGxpYMREY4lIElyTmQYKFmCI2lA0kgnyhLmK+F4r7wSc9chTQMSLqHRbRIjJp4eUdYFYtqgP8My24Se0N+qkQMVovmKSkkIVaJFpGkFT4lpIWymuwpQsElkAuaLw8/RknV0IyOR5MOqEpPGOTxvzDfeFr/3zv0aLx64pJe9oImOmgUsopRqU5K5b1l8928+w7BMNNmOGRsWZqYwiWQ7cdGkVVkj5hgc2RJvQBBrFMwCbipsdBDEHDy/uOoI0fJ5ktUCRc9Rkm2Bg9UR3/rNfy0SBTIxlKoauhJfVUMNCxy7xL//k/8DOyfhtgMdI4sxlIj4StZTbKOAIytX82yMr1ToNGU2CDgduDQbQ8y8CBSfP3mMZXVptur0LkRyTnt8n95gwuZ2DVW25Z0PTilVNvjNN94V9zl7Qrt+h6dP9ikWRaImV51x4/otjg76tNaEv3F8uke9uM2RK/TdZL5gMvXw/At2ronvDRdfELgV7t6/z2oq5Gz/4AW3bn2bx8++B8Dt7W+SKlNGwzluLO5VK2/grob0eyOurYuukFqpzWn/c3xf2Ppu6w6D0wlu7GFJkmQlt2Axz6jVtmlIv2h42ifRE+69LkA25ouXvNh/QqlsM50Jp7pYLLL/8oRbu2ukktA6SnwSzeG0JypEOlUcJ8DOF/jsC9GO+druTRbTKU+efUCzIWyWomsodp9eX9xnZ+2rWI7PyfEpVmdTyrnPyl/R2dzg2TMRFOX9HGolBZnYKBVK+IuMG9u3efRY2Paz3ow3bt1mZ2P7CiZ/scgIFnPyhtjPXH6N7RvXOXq5jymDiMgtYaQuaRJx66awBU8fjmjeK/O5TOZmoY4WrqNyhO9LQ6oYLH2fRqOBijhH7qRFs2Hw4DPR3jeYnqMbFpsb1zg5F/6b781Q1IhqXfgWYQi1RoN2scrTEyGf995oMJ4taJU36WzIJNDFGFXPYxWFrAyGS1bhEF1V0GUlsGrtcOO+zWHvJUEkztHu7hqLaEhJEX58tVtg7/AhiQ/VurDbTx/3mIw81m7ZDCX5tzef4i37qKkoGtiVkNlswuHhkPSO0C3mvEfqLSm3uSKYDw5PaVW7TGQlK2flWfhDDKNMFElwo3GGF6w4eTKjXRcBs2H8kjrhP3a9ArR4db26Xl2vrlfXq+vV9ep6db26Xl2vrv8E169E5SqOM1TZE91ut1CNEUG45Hgh+modvYRtVIh8hS9/ScwSfP/vfsjOtXVMQ2SIcnabpRfTbDZRJIlZTc3hhwc0O0VM9SsAuPUe7jykWtgBYHDmsrbeJMmXWFoi07K+to2ptXjx7Au+9g3RmjidBPjBBa4rsmLNpEG1VsbQ6kxmIutwcXGBoTcoVDLSniQ3dlq47oLFRGQBak2dr3/tG8wXKxYL2YsaXOBETS76HoWihNI2NJazFcuazK5FKmHkksUGiS9iYi2z2Vxrc3pgYeoik9vvTVm4E0ol0Wscp8e4boKhbKAaE/mcGde2rzFfiiySoijoRkKSZPQl14eSrui02ywWE0xHzjvEZzjWNRRVZJb91YjNdofB8JDMkPwRVomDvVPuvnaHh1+IKt/hiwl37t3HKl1ykh1DNKHWSGg3xT6k2ghDc4gTl0xm62/cus8Pvr/HYi5+T9dVqlULkgqqKuG2o4dM+xmKZtJpiIwFxhgvOWBnV7R07T11qDdrHB8POD8R2VfLVul06yhxnaacx/NXGVG8ZDIRFdOHJ4/4rW//AR/+4lM0W1QZylUTkgo//vELrt8QMhsEZapNH90W2TVDW2fmPSJLj1EUce9CoYiVO8RdBuQsOWuXJYTJkoHM1LfqayQs+fzJj9El10e/l7BzvUajVuXjj0SlzJ0OuPvaFkko9vzo/BmGUWJjY5fFTNwrUg5ZLKFZu4lTiKQMH+H70OmIdVksJuhqCU1R2dwQVc3Tkz6TyZgkW3CJoPz5F59w8946h7I//tp6naJVZr6MWcn2kIyYZu0+/f7DK46ucrHN22++y6nsxyd1sE2dbv0Ovhw6jwMXNW2gSFWUzxk4xoTzs+dXrYK7O3fZ3Nrm+YsLdq5LOPhJiJcseXYszmNqwMsjl3zJRI3E+62ti/VxKjUMCW375PkHWHrCl78u5O7/+6v3BUx5Apkqzqxt2/TOhvhuiqKKjPe9t7eZTUfsPxO/t712j9gbkioxcSwqHyezY5xKhIVBHInKzjDLODk+xZ+L9zXq9xlfPCVZOdzsiuzy04N9VvMBre3rTAJxZtoLi9RMef5ctCrvbm6SBBN2tl7n6Z7Ion7vZycsQw091VFl5VE3EryFTiTJLKeT5xQLBpVCh2ZXPOfGznXCIEXTNGLJJZYGEU/PQvbPRYW9202JM58gS5iEl7MvGc3mOr3e34GcZQq9IZGaMeyLPS5VVI7P91FUm9IlpQE+YWCRL0acD0TW9sWehePUL8dl0KyA2ahHd+Nb5GQV3I9GqGaEpZroiZCPhTfh9/6zb3Ek59yCYICVd9AzjTgWe+wHFxxffMRs6qGkQncpio+WFkFWksajEyBPTi+zkGAclpUnTlwURAY11U7QrTxZnL9qL0yTGFuxABcMsS6RZpFZNoqEmTe0IqYGU3fJ7k1xrrqbGvOfviBRI/xAzt6YFlE0p1KV/Fh6SLW8yXSQyToSWGaehS8AC77yjgAb+X///OfEwfyX5MNaTJaZmKZJpAjdpTprqLzE0o0rrkRHdwhmF9zYFiBJy2BGTEqSZaTy2QsFk/5gzJs3bmIVxVrN5hppml7xXi1WHlGcUalU2dgU5/G7f/vnRPFd8qpOKjsrdEdnulhxa01Ul29u5fn77++jswFyOD9TYhRdI8sycpKI9vSsD2rligIgigJyeYPxaoItQVnGZ4eYikaShuim0MPECVmmokqI+ixb0Ww28dx9kO1aSZxgJCpoY2KEzfrX/+p3ePDoL0iRbeWJi6MqYFscvxQV9v/63/yXdLod+v0BunwG3w+oFEtM+8K2b29v83//6X+gP/kR5bKc4x1lxHGKrpXIUlGN0HUDw7JQNCHnnbWE094zjOCX7li5pjGcfYYZCFuxvXWL0eiCfNFhNRA64q/+5s+499ptdG0T9ZKbMb/CD2bM5sLODSf7VEtvo5oZEwkCoxkmT19+gWPVCFWxBqruECoBTVnFNe2I8eKHbG1uXc2mebNzut0qp4cHVCVNxiqc4a6W1Gs7Ql7zBudnM5JsRl6C8fR6PTrN11jfMDk6FTZsa+M+YVDCD4S8ng0/Zb29Sz4w0eQ+TM9nKPqCi551xbl45/YmZ/05F33xve56EUXz2Vh7hxShm+czl531d6kWY2ahqEbUa9fREo+lL87CIj5gMA2pFxeEkejQOD4GU69hm3nhowCzxRmh73NjR7SohcmcF0+fUCqscXwqWtuKxSIaGbEfYUgbYhQNgnDFeCgrNFWDIDghWNxlrSGqbqtmj4v5AclBynQpfMhyfovWpsHzI/EuxcYBo0WPpWuyvi72ZrE8RqWIgsNsdMlP53N69jmOHHTd3t3g6GCPONOQHNCkiYIetcnZMU8PhR6OY4/zXky+KM5MpVRmrXuN3tmUyBfdFk4uR5xk5GS1qayVMQyLX3z6I+7d/LUrmS6VRviZQRbJaqHnshj36Mr2udhb4S9WJGlCLP2GjTc7nB6/JFPz5PJy/s9dksUB/fCh2Jd+BcdWiZOAZ89FlbHT3ULTL5hcaDRyooJ0wJLMaaBoQi+Oxy6jaUC5W2A5lKAaqkat6/Ds6T6aBPHI5Q0+f/w+9baEcK/lsMw8qmZwJnlRO2tlXHdBq92lVhNyPboQ5+kfu34lgitF0ZjORevZcL6HqTXIUouVJwSnVL1GnI559PhTrkswha/+2ns8fniEYQtncqYOSYIa1VpVDE8C7dYG/f5LVu4Suyo2s1PuMrOHuNKgaqrCef8FKgXWpBEIXAiVEYqasJjLPv4I8rkSW28Lw/S333ufO3dv0Wqss1iI8uL+3ik7O9fRtSKNqgTVOHjEzvUuT58JoYgyBV0tEkUWy5VwSGbTIbZto6o+w7Esxbo6lXKOo5NL5JOMyWSCv4QwFIq0Uiry7PEeGRaVsuyhnc3QDYXJVAQDzdYaq0XG+maJoQzwwmhKo3WbkxPxd6XcIgguaNWv40sQCruYcnJywhtvvMfeyw/Eu5x8TK16zPZ1Ua4djjJmiyWzaQqyPQxlTj5X4v0PfowpZ33u3t8l9HTSUBz8t25+m5dHnxLZGgU5C3N8HFOplHj4/CHbO8Kg/ODv/5pKvXY13D3oe5xnfaJoQqMl5KW9XuPhw4c4TpVgKX6vnqthGgF7T8T7JbFDrXiPxw8PaEq0oGqpTpbNubZxndATzzAZP0alRRDLFq56l+ODOcVinmpd7OfhUR/LjtBshed7QuEXzQZOISVyZQtSYYq7WKBQwQ3FM5y+WJGmSxy7QhRJrqRui9F0Racl+tWn0wNcd8Bad5ecIVoxZtkEpxjy4sUBN++Kls1GpYueVQkSYZxbjRXr67d48vQhfiDOzNb6e+ScNitX5eSFcEQLVZdmq4Hrir2azs/5ynu/zrCfcHokjFCYTkDTxLufSUAZjjg89vAz4cT4vk/gBiTZgoIj1rNUspnODkGJiSQp63bna3zy8QMURTgD5VKV1ayIW5jTaAiF26zd5fPP/wo7FW0Yqh7RbudQLsIrZMDhwGM4fUrOqXD7tmjFiEOVXC2P6QiFPx73qNSKFM0ik1Pxvvam0AOj8Rl2TrQ0bG9vk3NM8olYg3q9huf7KJp1Rdxq6Xmm4xn7z1zu3BKy1++9YLqcEuvCqfB8n0bZ4XRwSlaWAdj9d3jw5EOqNpRkAH0xicnX1inWJf+Qt09/MeVffOV3cCXaZKN4hJumnLtzTEvs30VkkyU6W5LMchHAs0dLRv8QEcSiPVNxbAqlFFVT8JZCphZuhL9akZf+ponNaujjnR2z8ISBSZIEO2+ArpGTyFWqkVAsVAkS6QysbxGsXOI0pd6UMzuJyv/wP/4t0/E669viB9J4TKlY4NrXhQzXG1ucnbxA05MrAJQsiFm6C2olhfV14Vj87PtnZEmEoUqHVrOolrvUaxYLVzhOCjb5fJ4oEPNKAJmms7ZbYoIM2JUIcFA0MdsFUK06lBo2nmujydbE1AjI4l/yFuUaPqssAr1DEIl9140VlmWwkKAezUqJMDLxohlJKgERlIxAE+TLS0+cD9NooaTa1YxQGAekSkqSJBSqIugdjEfEaQm7qJJKfpU41SAzSDMhB8f9IaNhjKZFZPJ/mlEgc6FcLOH6p1IWR5iaDjKYzFKDMFVRlIyLqWhL+uTpMzRNQ1chtsTa+WGCnalsyharxWrAxXBOsdtlJZHzLLOAoenoOsw8cW5Hswis6CoIVc2EOEmIMg8jJ+R19/YOT783olJtEWYSwCbJYSsp3kSi1E1vUixu86LvYoWX3DsqaQJRFGFaEnzEz5gufbSy+FtRM8JUx1ByxK6c33I1hqcrbKuEKr+nxilqqhOshF688VaHnJ3HXaVoEiFVtRTINDJSUESy0R1/wFatInoGgSiNMEyTYD5ja0skx/7wD/+Q0WiMF/iI6WNI05SD4yPKUreML6b86Cf/gW/+To3/509FUqTcbhAnBioZhgxSIn+JqpvosnGoUs6RzNeYSJAWgK21L/F8/30sU+ibcqkO6oqnzz+mURE+yLd/+1tY5pzT3h6mI7nX3DW2t+6yfyhQ4za7O7w8+ALUCM0U73d2dkans4ZlFhhPJLdXEU57PVaxOFfLpcfWxk10JcfeM7F/3eZN6tUSn37ymFxJeOx22ac/eUxZErJ++uCHBKuQ9nqZlWx/z+frZGqAQpG8bIEdjB4BJgmX4xpLNKuCY6QYcv73q3ffZZR+yulA5fpN8c7RFBolG08C+IwnSyrlNrm8weMnIiBazjws54jj5TVu70j+zcMjbq/f5ku/9nsA/NXffo/ubpGnxyNubEmQIrOAP9epNms8eCCCHbKQze0Gk7kIsg1LZzyJqNVNBiPxP1XZYWOzwMuXz8jnhN73gwXxas7mtkjqz+I9VoHNxfQEzxX7vn2zi5uOsHMe5lJ8r1y0mfZidrcvZ65nmGqBJJtydCTer902yJlNJpMBh8dydKZgE8c2oeS5PD87Q1EMlMxg7/Gx/Myc3JrDYhRiSnCait0hs4aMZJtnrdVishgz8yZXoBq2Y0LmMJsK2UjSkGq5S6u5jh/L9uXpgowC+Zx6BfByfXeDs/4Z44mUg1JAkQ5+uqBeFvJzMfBQDJt8LsGUSD+rcI4amDg5cWZXiyXjcYhuT9nsCjmolgu483N2b93GiYVcq6WHDCZzHGnD4jBj67UOv/jwY4KZ2Kv3vvp17JxH6I25e1MABCVJTCW3xC6KhHYxn+Pw4ITDw0MUmWGOQ5tKKY9uKJz1hOxdopT+Y9evRHBlGAZhLAKUfL7FoDfh/u1vsvdULMhs8RxvNcXJmTx4IIKNb3y9S6uT57wnHKlOt8j5SR/TX5KviEX6+QdP2Vi/wWg8o1CSA/Qjl2azxjUJCfy3f/ddisUi48mcfF4IZrvd5WJ4RrO2ztn5AQDu0iNNVe7cFtnwP/qjP+Lhk59QyKnIBCI3d2+R4hJEE1SZkp3NJxyeDOhKSNVrW7d5+PAxhRKsr+0AsJwvRR96kuBK47G1fZM0tkkQBq5UUZhMAvxgRndNBFKjyRHj+YxmY5cE2RsaLVDIYUjy2vnMxdQKHJ797KrnWo9MDg4O+NJ7IlJ/+PgxsdsV/cmaWM/xdEqmpDx+tMcbb4mM6fu/+Af8IOFIZmw0fYVhpVTbKrohYS29U1aehW3nkMi9zMYLymWDSA4VDi56uHOdG3du8OKpMCiKOaBcv8Nu8A653KVz02Tv9Od84yv/VDznFxonZ89ZxSGpBK+YzCMUq8zG1n2ePBUM4mvaBoZpYoQiMzFYfERkZ9y/dwtNon75ns/mVpv5os9p7xKWdMrOdpfFXJK7mgGFos7GtTXSSATe5eJNDo+esfQmFEricI1nD7i79QYHL0SA4hRTqrUmxwd9VF/sZ6lQotdz0XSP9W2xVit/RKlm486EMsriPP3eS27dustkLOQuX8kzGL1gMBjRaIn3GY36bHTLKLJaGOPQ6z+n3alg6kI20qhI3imQs3SWnlCuaZpB6jBbiP1b32jwwc8f8c7b7xGE4vzFCgR+QhrlaTckUeRkiWlWroKk4eSUvBGSJTYbNaHsDk4P2NhqYhv3efJEZMUW7gDD9ikXRVCoKgblesRw8gX7e8JRfO32Nt3WPU6PRDIgXoXo5jWaHYvDMwHucm/3O3z+7ENqrIglQo9lVFh6AeOxnEMrltG1EC1L2d0Scv5Yog1Viy2WkgwwV3RIlzaOLn7vtbtVfvazl+TLZVKJEpcqC+ycwkfv7/P73/ktAB59NKBixGQSze9+d5vvffcvaL95k4fSwH1Z3+DN7jWOzo5QZKVs1HvOzde+wsmZeM54GbPZ2eDHX/yEeCj27/qtNmqkUdNUzqdiXeaZRad6Az8QwWv/NEW3FezWEFsGgb67ZHgaoIQr9o+EvKAr5Ep1PYD2kAAAIABJREFUFrbI5uVzZYqNBpqmsCbRmHTVIFgtCP2ExVgYvtHgnAvOWM6FY7NaKZiGiqoUMaRD5JRyFIoWnRvb3JJV4mvrbVqddfJy6H1+6lPNl/jP/+BdZnIo3J8FHA5PUFKX3okIUjTVRtNjZnKg3tQzZpMxT/b+kkZR6EoNjWC1RCOPLg1vuWwwnbu8eObJve2iai5qUsLSJViNcUaCT+BDKoPo1BfknaEr3netaVN0NKbDESVHzC1kmU+UpCiyyqFaRzzbnxNFt7Al+7CqZGAmrGYBO2tCpp4+/pz5tIotwR00NUM1DVQs6h1xrgrVCFSDNIZL9CHDUgnDJdd3BeJlmD7Dsmos/AhVjknESYiaGRh6epVsuBhNUB2dlZyFMzINp1hglky4d19UQz/fe4xpV0UgkYp10UwNVfVBEWtg2Ru4/hlGmKDLKlwYpER+QKXWIpKw2atkgpKopNLRUBWFLNVZrk4ZSUhnz9XRDJMwWqHJtdIVmyRacfdNcf4P9o94flBEd+pYhgwMY5c4CSGLaXeFg/nk8YgsVTDknqdxhIYAh1qTiTe7aDBZJRiWSSirkZBiWDapXKdOPc/zZ/vMZhGKlGGVDC8LSVMHTc7aGrbB8/0Jq5WcuWzYqJZBNJnzX/13/41Yg3BFEPhomn5VGQNwXZeOnNX+4//1j+luZcwnEEnbk6KQJBGJHhJLQnDLUEmShHZHfG85nxJ5FiS/nLnq9Q8xTBUFIefHJ4c0a9fY2XiHTFZj+70xUdhjOo7otMR5bLcqnJ4/5c4dIVPHB8cYhkHZXMeQ5NfXNjdwFypeOKFeE2dt6V1QzpXJJMF8qrnsHwZ06k0iSTHS7/vMV0usQsa5RJfN29cZe2OKEn57ONJQdYPhxZjAEzqovbEiTSGKanS7wj49ePYBRFt02iJ5ZOdSjg+fsvvVXc5eCB0xyT4h9QP8yYyeXAfb7JJEp6x8iUip6KytXWfunV+RK3/9N97i+z/4c9acDTSJMlrtNHGLPkee+Mx3/sV/y88//jOqmkoQCB2RhBFhqHN04nPnNdEhtfAmzKcDZjOZjKtu8ea7ZY5fHmHZws8M0gGnfR8nVwNNnDU7yFMuNyATtmEy9qhWRZdT4oj1/OSTHjfad5iFCrtbwtZ60UMmiyHLiQyqKyqLxYRapYhjCJ/VsjLc1ZB8KcG2xf+qdZ2jwx4bm8L2TUYeS3eBHwa0OpfonVAqa+wNPmU0k4TdO1AutlhK+PJhf0yhEFJyEty5eOeJv8TUWjRawhad9J5jWWOm4wFzSRTdaq3x+OEjNtbWuH5TfG46H+AnK1aJ+MzpiyHNxgb5UpHQk4A9Rp84jlkOQ9SmnP9VdfL5Ip4v7Ed7vUwp12E2njCYie4yy16nWd9hOh0zWQl9qhkOm6011taFjvjw+19g+yp1Q+fd3xdATegLlr7F177yFqrsyAqDFN/TmS2EHumdnFEsWVzf2cCQemrv2XPW19c56Z2gmUKXXOrjf+z6lQiuFBTaLdma5Wl0OgqKMWT7unBy58shzdp7oATEZXE4Xu4fo2kazYYQriTUyJQe54NDIuQgXLvGaHbIjVt3OD8RUbdqTBmNFnQ6YiHrzQr93ph7d9/m8EiUrPv9c2aLHt5SRZeQ2N1uh8OXfZ48ERkpfytDQWc8OcMPxCIv3JTlLKZ3PiKViCmtRp2LYY9yVWZa1XWClUcuZzEa78nPtAn9kNHslHxBQkRHS85OX2DLrOPsOAJ1RZLBw6diaLFS3qa7+RrzJfSOvgDAtPPkzAZnZ8KBTpOQ6zu7oFd5eSTQyXJmnnyxwKMHBwDYBYUouWA2tMnlhIFJsmPidMHm2ts8evIRACFP6Hb+CdOphKBUAuazJa1uDh1hKGrFXVbhOS+eXVDMCaN6bVflnXvf4efvC1jpOPOYz3SSqMIqksiDGxWyyKGUL7JYCOO1Mk7pVK/xyfsii6QYERvbHfb3h2SpyL5ezB8KhKbpOSvJwt3vD1G1AFdm87sbDisXuusrujXhfPz0pz8mzUxI2+xcE/cq1xPm0yk714TC/+STX6CZCX6Q8HJPDHxu37AI0zMatXX8UGTmozThsy8eYOWETA0nNZIoR75UR8lExUJRZ6xttHl+8DlGQVQeppMYJV1hapITrVvBMN9AQSVXlG1kqspy6bK11UBVxHGdzmccneyTKaL1o9u6w3RyQRym5G0JE5yeM5wsMMyUkoSfPz2ZkPCERl0G2VqejY0M3YzIS2i9WLFxYwXb0bnqtkkV1je3GZ0LZXfaf4KvFFnf2GYoK87+akUYlFBZstG9B8By9Yw37r1Lb/BSfibk9PSMSjWPIyFc40gBKyHTxLlu1teJUw8vijg9E4apUnlBsawzGOzRkgOtJWeL8fQxpaJUdH7AydGQ19+8w5Hkj8tXJNLeasFsKu6VaUUO9yeUukK5/+G//G2+/93/i0bdxpXtDJkaY5gKjx/1ODkWRqdayVPJb5LEYlG++OgBG50O29vXefHy7wE4f/6Y22t3ycVt+iuROf72e99iNNOYDIVj89W3rhEuPNzkhPYtkX04DyIWS407m3dpq6KC51RuEKUGgWxRbbVdvNBDGRR4IXlLXH8lqlB2nZ3bwjhHSchs5jObzaSMDfDmExQS0GSVyDDI5XKYRpG87BlpdDcwHIU4FPomiZek6RlZqKPEQn4Wrk8QzLlYjPGOxOf6Dx1UrUKtIe7dqK9jOCaKqWLIqqLVNHhv90s4+i+r17/9O29h5lIiCUJhmjncpY/CmMGFyJR31vOskhmRC55sf1Ejj7wz5fBQ6ARvuUXJUAAfRQJF6GbEkycP0XmNgoTA17QQNTZRVQnOkeaBnKhmScctTTJ0yyZILs/eCt0okcQqmimcpiRNqRplJsmYjkSq7Y0WROoG1iVka5Ri6wZeFjCcCj2cKSaB3yWfU4gkEmAYRpiKxngu7E5ZV1ksY1TVIOYSkEQliWNUbczBmQADGc9jVKWJLpHzlMRlPpmzu34LfyYc2mBpoKgmURZhywy05/o02iW2bgm7+v2/+wI0m8V8Ra0inl3RgCzDcSwiCf7hriKKjkEsg5jYS9D1HIWyhiurW8+fh5h2HZKENBHyotsak+WMSBfn8MvvvMePnvyMSu4ani8BUJSENIkoFywSiU5IViBOEyLZsWDpFlGSYmoGSSo+8/R8gVVbw3sZkpcVp0SJCZMQQyY2HSvm6HiIbpVQJGlWGAXkTZNV7GIoElltajMMqr8MOjWL8/19/vnvf4e33xZjAQeH+5QKBZIkZTyWwB6qiuM4PHj0MwD+/Z/8Kf/Tv/tnHL64uHLKFCwMK0ZLTTLdv3qfyTTg2q6wA8Wiz3Aw4fr1G8DfAVCt1jk5WeHJtrZrOzsomcV0ccZ4Ktbc0AusvJC1LYtUwkM/f/GSZu1d3rr/TwD4/OP/nbW1DdTMoDcSsphEJtsbb3J28QhXVrO77Q4L5QWqrNCuliqddpHR7Jg33hE66aK/xF0ZKFbIeCySUxtOjU63wWAknF7bqVMoFIijJWFB6K611i6LecjF6DEkwjZUi7cIgoD5QiRz40yh21jj9MhlKR1vZWTg6JugP2V/T9iZ127XeH7wgrwtZGpzp8NoespyuWRzSySLB/0ZlcJ9CjmH87HQ31sbt5gMnvLgVLSafWD9iCAaoSVFKjVxZtxFgm0XuLP7Jv2BeB/dSOifHpLPCV191ntCLvcGjlNnMBbncTkcUi/fJVcIrigpSlmR3sWQYCZsX5pVGSwXbG6/iSHBuJ5d/JQQH9UKORwKXzDyNBSriSVpCfzsiPFqTqv2OrOF0PuqYTGfeZRLm1cO/uHZEaVqW1AhAIqpUmnUUYwxy8umIsXn8OiERPllomRja5fnT89Yyi6xbvs69XqdZ8/eJw5EckXPFFKCq6Ce2EBJdPJ5i7MTyX2ZOrQ6Bc4Ge/QvxNo5BQVVK6JLIJdqIUerWqS7uc2RRAscDwPanS2u30hxZZC7nFloZkwYib/39lx+61tv8MGHPyCXF7792ladLz56wtSL2dgSwVTiqdg2HO6L8/HVt25TVz9gPV7grIT/dmyuUS00CPw+L/dE0vm113cZrRSK0lZstBqMp2eEQcCoJ85VzixDbJHP51lJXq1L8Ll/7HoFaPHqenW9ul5dr65X16vr1fXqenW9ul5d/wmuX4nKlaqq+HKQu1hqM59FhP6cuWRA3rm+yfHLKednY2otkc3SFJdWY5fR5ACAZrONqusES4+x5GpC1eh2O1xMD1nfFhnvvf0jUD0+lhwzWlagUinjB3OyTGQnV/6Su3fv8/HHn1At7QCwWIzQjIC9F6JC5PkXKJmNaZpX5IqHp0OKuTrFSsZiJjIBt2++g2FkPHgqqjbHR2fs7Fxn5S8oSo6Xs94zViuXQqHF3ktRGbt5d4N8xWJ0IaLrIFqy1t0kl6sRpZewq30SS+Hx3h7dmshglPN5vPmM7obIOrx4/ozBRZ4sqV8xya9vNFh5wRWH1uDiDNNwCJMhrdJlO9F7zGYjBsMXbKxL6GcUXjx/RqUmsjjewibKegyGEVtt8ZnPPnnK/dfvcOtWlUy2ITj6Nh9/9BBdllPHF3NanRq93hndjiQozuqcHPepNhMMR1brRg7lQok7b0kuhcMh4/GKza11tEsCSPVdWlWdF/uf05T8WN5qTKHUYP2ayKBOZnMMPB58MiO4IVJCdmnJ0UlIp9NhEYhWrEL0DuOLc1DEHtg5hVV8gF0q0OqI3zvcH1POd2k1S0zlDEKEy3SoXA3ixpGGH4yx8iqKLFmvbW4wGIR027fYXJMkxS+/4NaNm0zHQlYqFROdggB+kNkez/Px3JjumgaSl0VdZJiWTr0uWvImwzlKlqN/PiBwxf6VWjCZ7WNFHZ49OQCg3oJUiYgDUVEcLQ8plXO8OOyjI9pDksSi3dpEwWC+vMyQ5hidqVzffgOAuXdOLv86h+dPqcvBbV3XOTs5xilmbHRES8VsUeDl0R7Dy8HP1AFjTMG+Q1XOU5yf9RgYx1eEwakeUsibjCcJ9+6JKuPG+janxw8oFysUHJGlGvaH5EydOzvimU4Pj9l4rc7+2R66JjLz9YqopmZqhF0Q65Irt1nf1fBW4t3W1y22N5vMl8MraNU0TTFsndl0SP9QZKBv3yvh+QFIgmtnW6FZaEC05I1rYu1CRWVcCDDrBXZyIkM7Skr89U/+gXe/KaGD0zUgpuB0WOlCXhy9SiFnc+zF2Jp4Bn+xJGCFIuGalcBEzwLylspaV6z5cKgwGi847z0hS8X3FM3GzEVUqrLtKsvRqLdB9VEk/0+maCwWC6JoxGIlzpamZiSpR1n2wq+1O7TaX0HNTC67oOySTaqraJmJmYnnGi8v8FwfdyFk+NHex7iLJXFksFhI7h3LotHaob1u0KqKdqVmO0+j3qTREBloy1bZ3CwQhQlb20J+kswkUYe4Cwh9YQu8xYL94wHXrot++eXCYLEcE/gxvpTXzrrHdNnj7LRJkhPPaZs+llEgk207jU04PZ+RK7VQJbS2pUAQp1im+C3HyJOGdTRNQZUZ4UxNWQUxuhmx3hRr9fTRDNu2MSRUsq4UiLMlnndGQQ5bu7MyYJOlK+JYPINi2KiJTpKJ5w6DBigapqFdzfpWamW85YS3vnTzilzdCy7wlRlaKDK7edvBXSTU7yR4qbBrpEVUS8HUFQypN2LVIVU87JL4ezJe4LkKlWKelZzVwF4Q+RGvv77LyyPRIZFmJlmWEsn5CtuyCXyXvD2jXt+Vexywmq3I5x1U+XtJFFMwTTxfyIFVuoOmVyRx/CVIioHrubRLJsWS0NeHR6eYdgcVCbaSxmi6A4lBFIt37o0j+rMSdj6PLu2hoRooinpFPtyo5wl9Fdc7wTFXcq3yxPGceJWjVRHfW+8W+egXI2qSl20xPub29fv8qz/4l5ydi7ZHw9BZei4qKrrsIFh5LpVKmf/+3/4vAFSrVbauVfjuX/6cLJHnUU1IYo00zoMq7WG+xnjWvxpV8OYZpUIVLf2lO5ZlLsVcnetbQo9MZyPSZE65lEPXLmkJSky0Cb6nsbMldHqx0ieJXQ6PRVXlW7/5uxwe7PPZo0/ZvC7Wd7WwSLSAQjmHH4sK1MTV0IwqE8nx2KpvMxkvCUKFs3NRjVGyjDRRMKLrZLJCc/DyCeVSE9sROrfWyBFEE4KZg+2ItrnRRUirfp2lNyBOxf7Nph6bm5ucn4vKx9bGDr2hB1GApYtqVuh2WGgzPDNhe1cAdC0HQzbW3iKT1WZ3GeB5Swr5OlNZ5V/OE7a3d8g5KkdHoooyHByyCqYUa1J/F3Ms5xaNyjZkQj6jMOb0/BmqFjOZiIqT7dSpVSs8eiSqyxvdNY6PDlgsp1y7Juxvo3nG4cE+lnObTBG6o9woUVK3Gco27zgMUIwJH3/0Q27vfBmAdtliMR+LsRBJRXLjWpeTwZi33xSdCB/9fEC9vMMqOGYyFi2bitZgbbPFh5/8A5YlebXWbzBfzq+wBNIsoGjfIIoVdER3V7mc8eD4Ia/f/XU21oS+9icFGpUytZLwDWfzJWGQUSy12b592Rp5TBKrLHyxL0kas1x66HqR7Q3hyxiGRaoKXRtEwme9sf0Oq3kJ3RAydXEKhQRePnhCuyU7j4Z7dDfLnJ6eXnXwFJyIouUQS2qUVsvk+f5H5Kw25Yp4zhfP+3h+TLFiMp+K/Xv64iWNxhbdrrjP1utN0sXbNCsWJTlPNXjep9GssPdwTKMsQEqatQbPPvuMW28LW2TqGdNRGdtMqe2K7623N7m4uOBi4tHtCp2Xk3gB/9j1KxFcZVlGPSeGChfBZ+iaydnZnFJRbNaTxwMcu8it29vMZ7Ivsn+A4wywbLGQimpyc/cN9l8aHJ6Lg6BS4t7tTY6ODjg6FnMgy3lGs13htZs7AHzx8AMmUx3LHLF0hZH7ta+9y4cfPCRNVELJmTFf9gmjJV4gWsFWvsl4NqDZWLsitG1t2hScmOk4wrDEId47/CHnZxds70jy4UhhlQ4hK2DLFkDDWjBfxmxudXDl/YdnIZqRkZdO0uy0x1lvSC1XIosue5kXHJz8hOEg4je++m2xfu6UMAiIE6H8bKtM3u5ycnaE5DBkPlOolBxUOT/SP7jg1s17FPMGi7loQ9CNGbq9ZD5NmUu0vnxe4/h4Sq0qnNaUJQs3xsrOWa6EEutu2pwcH3Lj5p2rgfbJ9IzrG3fZPxaKtNPa4JMPX3DjTo2CLZwtMz8hX0nJsjylsni/3slnbO0+xZFINqtphxs3Nuj1HzPpCdF97dY9VsGQfK6BJbl9ktTD1EvsH0o+EGNFq7BJqZzj40ffBeDajWt445Te8BA/FEq5UUoIVnC0L5SIbuqkjFjMQiYjobQ2Nzc5PvmcMKpjyeHV6XRMZ+0GeVPs8dn5Q/yoz/rWTRxNBPWnJyeoaGy3bxEvhGG4deM2ZBpVydi+nIUsVofkC2Vmkvwwlyuws/02Z2fPaEhnrlSsMBjtk8+Jw63pGboW8drN1ziS8z+DixGlksVk1KMoA5lmY5fp4gg9L9vmChYrL2GxGrK1Lp4hjioMejOs/PIKoUkzE9IwpTcSMuV7Cml6jKJ6GLpobUkYMr5wud3cZDwW91c0l5PDkGrjkotuQKXSJggXWI5Yz5KSI5erM1+I8nulXuP504d029cpS1LmT9//lI21IoZtcbgv2sG66xtc9D16p+K3HLNAnM4oOWvEMmhZSD6fvFrDkoA2nzz4gFYFWkXR6rL0h2zulPjFRxe02kLuPM8jzjIcx+Hf/W9/CcDOtoaOQq4mjEmn3sFQMnZeV1mMhZ4yjZhpNWQwfsJZT7YhpwaHz1dM5EDtbPyQ2KxgOCqaJFvV1BzuZAJKTCxRU7v5HGej8yuHTNXzZHqKouoYOQlQEECmK+Sq9SvkuDhKCFY+/lxyokQBumqgKgGWBI9w8iaNRotisXiFfGbrDooBnuQkcl2FZ4cDNHV1RTCrGQaaYwEZORn0FQoNNjbb5OxLJ/tt4jDCXyUksk1vMfeYz5fM3SFHJwdiHz7tkYTRVftUpipoqkGlUqVUETq90WhRb5epNkuUSsLIOaUGadbhN7aEg5LFiZi10FT8ZSLvNWM0fYH9bokoE3K1nHgsZysmcqbM1F2O91wmFxmOBA3ItBXFShNX9t6XSzHThYehtbENCVaRpqSqQr5kM59IPaHYkGYEsl1EK+bQDQPSjFpNnNn+qU2MD1mBJL1s+ROB1Yacod0/9nH9FEvVcGQgFUUJqhJD5jM8F3uVpjaaBURifVNVQzMtojShVJZOqHeOaljEpFfIg4qiUcrZ7D8Xs4zlfI0kGaJkEZHsljR0HYWEZfDiioD1krhTl7IZBimuu+C9L+8yuhBBy2plkWUpcZJhIp4riDJsXWN7TZyr9z94gJI0UGxIJaiPqjnE8QTbKV21OE2nAWgaiuTLisOAOF1hF1LSRNiQ2dwjSVskiUIi52iVTCUlodkUZ7TbqfHXf/0PGE6VWAaiaWqAUSBOp1eOvhWm2MxYSS41W2/wX/ybP2C+mBLJc6XqKrlcniSK8V2hB2/cuMH//G//mONjIQetThM7bzG8CLFkX5eiBKiqjqJk6Pple+YK1Aw/EWdNU9aolmzOj38JaKEkNfKOzkomPxbLExyzyc7GXX78IzFL2mxVeeON+wwvzjk+EXqxUmmB4vOZ5C3qtMvcu3eP0+Ee86l4X2/pEwZHfPUr3+TwSNzr/LxPzm7y3jtivvnR80/wVgsKZYUwFs8QegpJds5yqdNtCYfdDy/QzenVrHiucJPxbIqhGqiqWIMwWfLw+Q8wTJVQYgA4+QJpplGtCh2v0CJnjOktXuIYO2LfowE5J6GVewtdFwLa805xHAskT5Nl2JRzVbrt63iBCBQ/+PBDFHWD0WxOyRZnK29BotpYsg16eLLknTe/yuH5c05la1ulniOOJsCcRJI3J35KrMCOBJi4OJ2wuVFj6/4N5EdAy2EZFjmtjVUWezoaZWxtt3FXEpzHatBYu0fBUvjGu6LV9OX++4xnY2anEV1Jrh5FMeVagfOe8KdKThG74XByMCCRoybD6SFhWqLdrRD6Qiecn51QLKvsHws5qFabGPqSaxtfZjwXftD5kcbv/tPv8OjRE7odscZnJ4/wZzp3XxMze5VcwnK5JJer482FPF7MjhiNYt54SwT6UTKkUjMZXXgU5GD9ydE+7iKl2dZJUrFXjx5/Ss7YvkpMKWlKEMF4fMxsKuQljHwef/6EStumL9vBo7mNvlEWEMBAq1nEna8o5jLqVeFzzSZDHNNCURROerL9tH2LMB7QPxTn8YezJaZZoFRrEAzEu5RzZc4HPRQ9oyDiUvoXB1y7vkGWief80Y9+SsFp0e7WSCUf33H/AMuyaHebJBLpcLm4nPX8j1+/EsFVkgRol2zX2RZGPiSfn6CkIhsSRwZba2+yWLhokpz3vffe4+XBc+zLTPbFhOlsyHgy5tbNu/LOKz748Ae4M5+8nM0oFFS++PSAVkcYVNsqQ6ZxPniKKisPT55+xsVkj1a7QijJMVXFwndD1rqi53M5MyiVCgwGPV5/XQA+HJ085fnLT2hUdtAi8Vy7N3ZYTGwy+XezmeOk9wRvdY4jYg90C8pVjZOzpzi2JGCcW3hLHwvx3IZRZ9Cf0PcfsLkj/udODPxZgffeW+PopTh4sTLCMmoMh8LRmI4TNjs2dt6/YptfrnoMBkNsQ0LkXnsPb9kjy3QcSXefKnNyZYM0ja6yYN12i521txjK/monV6DT2mY4HjGbCE1TK1fw3TmDwRkKwgGrtYt8+PGPsGTvf7XiYBgrlDRkFYgsx8L3UFWVw+OXtCQ539p6ASUOef6+yCjcvflNfvTpn7G1sQ5lX+5wn6PeU27tfpWTU3E4W40ElRW3rwsHOonh8ZOf4zhNtjZFNaSQK/JycYipt7m+IwfKVxGmUcCWg/+j+XOcwiaWbbK5KYKIfD7PrVuv8ZOf/JS1TWHEbbvO6eBDtFTs8Ws3XsNb6aRBkdOlONSuO6HZTAmX5tX8jZYL0WyTWCrNxXwFZkC+oLPwRECp6Brj6ZRS1bwahG81KihYDHoShtVIaLeqoKTouUt40Aaed04YRliWJGo2cyhJC9cVGbDmustG9+v0l+/j+eI509gkinMQBiw9YSiKZoRpCHZ1gCgOMJIxjh5zfCJko1SuUE4M3HkCkrx54Q4ol69TFkeN3kUfd27h6wOKRfHP8WhKnMZYljDWB4cnbG9v0z90cXSh7EqOwWZzh1W4JInEGtRqBpZ2m/klAmYYoWvwta+8xyeHIrlyciCM7XJ8zIVEkvu1d36Dwfkhc0/I62z2kBv3KvziI4vwMtjRMjJCNM3Ec4WD+bu//01GpyX+zz8RwXmz08PUi6x+ckBODqfl7QybMWZJwSwKGcpSlXy7yYuhhOhlSTwPUZYxSXKJjqbghgtMLSaVFYTnmk1Js64cwGA1wXYMPDe6gro2tCJh4qGbJooMwkqFNo5ZuoKZdfI2KRaqYkEg/hdpI9xkSv+wh5IKA2HrKnm7jKIK/WPaGWFsYjkZiay0xJOYWFuhKClya0i1HvumSrUkZCyfdzAMg0qpjCIR2syCzla1i6ptYTvif7r2FbJ4eWVA/SBg5k6YTYaMh8KZ++LggNBVCFMfP7ysmlgUyy2qXXEeNzebrK9vUqtVaK0JZ85xmtxQvk6tFpKqwrFPVgHeYslKnqHl9AvG/RU37uWYyrmIxXiKF+l4IyE39fIaz59OGF30yEnwGtU0UTOTIIpJ5b1i1cDI11FUWVHIwFLz5As5Vr4I7gbD/5+994ixbUvv+347p5NT5XjzC/e9fpnNZje7RVKyTJOyYAO2bBiC4ZGnHhgGbEAeCLIHsgUYhgHDnsgTwXKSSJGUxG4+dVB3v/zuu7lu1a1cdepCULm9AAAgAElEQVTkuPPeHqxVp2FAnGlAA3fN6uCcXWuv9a1vfen//wJMq06chOimJBuadSjVXHTZTqTb62Hba+haii+zjIaiY9opveERrbrI1sVxim2XiTNJ+JCn+NEYRfc4OBBnNs4MktRA0TU0Gd2ORkMqFQXHluyEp11su0YU+ws2xtnUZnm5QbURcCXbcoBNhr+oRDANjZk6o97YoNUS53g83idODEppGV3e5d14wOpynZUNGTx62SXxA1yvQSDxohkafhizc3MHRRefKbonHFCJx7N1hURVGPam/FvfF5lq2455+n/6mGWPSOKSLM3BT3ySRMi0quXUGi3m8xGGdd1EWEMhIkpCSiu/YuLLsyYjSZH/H/+N7+E6OrPZDMuR2ClFIYwigtmcrQ2RJfqDP/zH/NM/+mNWNzakbLr0Li1Oj4eUa0InpDioagRqiqYLnW6ZJlqU8fq3hAz3L89Ikoi1+l2ux2B0gaMvkylC7kfjDnff+pDpaMIb94UD/fWDL5hHSzhmkzASOu/ZswFOJcCUrKbp2ZxiocKdm+t8+kthZK+sVPGDKbPxCZeH4p1rlU2ipMvec6HPLdtCN6A/6PL2m8Ih2V39PrVyi2iuMM7Es/aeR5ydnVCQGe+rzinV2hL+tAeK0Hn9SQff11mvr1Ktinkd7Z+TK6BIp+nhs4+plJsoub1oe7BU32A83+f45SXFilA4s2CEVXRRM2GrmU7OfBSy/+Qlm9vCQfgrv93ik88/Y6l6A7cqzn+hoJB3DPyeWPP337e4OD2k/eKUknTwLCPlxo1bhMGczoUw2IuehuYolKri/d74wRsYao3ReMD+yY8Awba8ubKDZ+REvnCSsnyP/YM22+siuzWOZnz99AFqkvPyRJzbcZ5wfnVOoaWQOcLBO21DbXmbZy9FG6K/8p2/zi+/eUi52qAlccqzmcnGxjZfPvghzboMpujndNsXC9KyO7vfQSHg8OBogSWcBx3OTlr48ZhZV9zRq9UWemPEQFLbu2UPr6JyeHhJuXndnmGFJO9x2t6X0lnl4PAM1y4yC0Rwc32nxaj3gmjaYm1JnNEXB8+JtVNcS1Z2JDnt/a+wtJz1DWFzvb/9NkeHjzAVA9l5gfXVImHqM5EMhurFnNkk4+7Nd+lMBet2GCZ8+9ff57Ovv+TOushALa0XeL6XL2wEq2CRJip+2FtUbR2fP8ewq9y+0yKRDcItp8zTry5wLKGn7t55kyAZkeQzVlfFeh4fdpnNQ2xHYSBJtIoFadj8OeMV5urVeDVejVfj1Xg1Xo1X49V4NV6NV+Nfw/gLkbnK8owryZy3tLqCkhYY93MmMxFBVPQMLB8lCkklPePRWY6iZfTGAgOVxQVsN6Xb0/BjkRq9d+8Ow/QMzfpVSj4MFX79O9/nySOBq1nfXAE1pFxs0b4SUfDz8x5pHrD/8hnLki5VS1oUygYzSfdZrlVw7SZ6fsmoLSL6u603SefQrCpcyFrtL746ZWN9Cx0R2X38zT71NRUnc7nqigxQwWoQxSGq4pNK6uVioU7NDnm4/2MAVpdvYdSWSJVLFJmCSsKM33j3dzAMjaFsGqhaCu12m0pZRGiW6st0+y/pnKncviUiCJ1Bm5WlXQxX+NZhPmWcdQGDgi4iPdPRmOEox7ULbK2JiJBjVphNEl67IXraHJ1cMpq9oFFcW/TVMs0Mt1AGJSUMRRT1xd4xcaizuiM8/d4g5Fvvv8PR0RHVuojQ+qOEarXO1nqRyUTssVNaZj5/i1QT0bsf/uQf8vqbN9GoU1wREZNc0XC8EmiwJqNEw2EP0xqShiK61emecePmR+i6ylVb/O7w5S+4eeMuBbtKIvtTdYffMJiPePP1D8RadgOiMCXN5uSJKG07PXtEo9FgbW2XIJCNDNdtqvEd/JmIrp2djqlUmkzD3qJUaDbRsE0XChPmmZjDRnWLZwfPUXRJt++tUanc5fJiTLmhyWd9ha3toMUaYSgiOeurGsNhyMaakBXfb+NPCujFNZJcsCE1aiWOj7ssLS8zlKW0ZiEgvUrwZbQpPTc4mH1CfTmj7K7KNTihUjIhK1DyRKYjDWPUwgxbUpU3tuu02xGGHVPQRKbz4PAxppVTLDXJMiGLSTZhnj5Dn4mslK67HF98SZblrLVEtGkwO2e1sMVsKuRHzz0Cf0KUv+DlS/Fsz3F5cvoNaZQSyvKeMKphF3q0NkXUcTwN8MMBnz37MzLZZLvlyoi5blAsyuaj4+dUlzaJ5XNcpUy1UeQf/G9PUCSWIQozFC1HUyxMR4TT/t7f+wlescDdeyIyqRomjlPFtAqL0rZESYiiCD+KGfckrWwyReso6PLMapqBpeZouivLW8CxE1btOuQ6ynWrgHCKkipkmZA7VQNFEf2A4lRE3FAUMsXDwFxkFaJoThrG+BKvOupBmuZoqo5nivPgFgu4ukupXsSQGS5dV0mzGNOU2a04QM8UlEwlln2LgjwgnquoquiDBKApNlGuMpCyOY4SPNuhO5qjXWOQdBVLBdM0cSWbpaYZmJq+KEsslcqsLu9w+9Zri3fJ85z5fE4QBIsS1el0ymAwYCxZKh9+sc9Xn/ycLFZQJBbGMh1arRblcpmqjFyvb2zQaNVpLIkzs7H9Ebt3TAxDI45/XSwnGb7vE0q65na7w0ff6XH/nSmBbB4/HPVJBjqDyVOsstDpg/0rhqfHaK5Yc8WKyaMWcTohNcXdoMT3qRklYkVBlXTXtagARo+KzFh4lkqaJySoqKakg1cidF1ndbPKZCrmlaYGhhqTSzDcOBhjKhpbazZaUaydH81wjAQSn0gVOja1DCw9pyIblE/8hFAN8fDIZCnPPIpoqnOOHk/xh/I8mHOsfJlEl6VSmcF8MOXO1jt0xqKsbDAfYbibhEmIWpAZvamGpcF4JO7j8dAhMhOirE8aShk2FNQ8IhgOmcvMqp9oWE5CKrOaiaKRxxEGEW4uztHJ6YDMcLE0FV3eWQo5SaxQkv2cshQur2JcxyBNZWNhZYqmuqTRjDstUZ61+9o2+8c/4nsf/C4AzeYGZxd9Sp6LJpuyZiRk0ZSS0eLxU6Fj/9u/+/fYvvU6I1n+Xi1Av/9LotgAmTlSsggtB9X2KBausVpjXEWn6gn9NHe6OIqOU/9V3xxD06nWK0TyrH974/cp2Ca//OVP2dkV92+zdoNavcLe3h4rKyKDUa+F9HtDMkkBXiqtcXjQodpUKclm1YPekM3NbQbdmN0bkjnWsJmFDifnoqTqxuoGKytLzCZvYxli3z/57FNK3jovjn9EILPZhZLCytIdiaMDPzwnOQ8pl6ucX4l1qlS2aFRrjIcxXdlEfHNzA9tTeLEn7opisUl3NGdzc4lMUne3R0PalzMsM6PXF3PY3NplNBqRSNsiTA0m02NMZYsY8axOW8Uzm/SnHUJZforikmohklya+TyiOxizducOLUmlf3J8Tq93zupGhfqSuA9fv/chxyf7GBJPdPD4EKc4YjLoUK3IhvZDHS2POJsdUJMMyTdufsjZ5TOGkuJcyR2cqIhbHbMvISppAu3RiIpSZ+SLczvz50RnD1E18fePfvYx82mOWynRRGTPsvmE0fCcomPRl3htt+GwU3oHyxB649NP/ymb69vsbNxgNJV92XojHj38mpXVdU6uOlKGPErWCl5V6O/R+JLOQcBr39rh+FzixQIVpWhwKtm0m2WTglshSANS2XD9Tn2TB+MrFMsikAyUrmpQLTcYSNmwSw127tznix//jNUVca5QFXJVod0Z0KhL1r9gQDTTcTyhq9Ooj+uoPHjyJ0SyAkwxTPaOT0iyHEOWn3euTrFtGwriruh22zQby5ydDPFK0j42HUb+Sx7tny4yxc8fnoIRkk1FxcRl95JqTcUPZpyeCl1SrZc5Ojyk1wvZlPwN497/D8oCNU3DcoXCf/jkmGatyuryGv6ZmLzuRBxffkrJ2UBWmpBEEEcu77zx1wD46Y8/Z2W5SL42o1rdBkDNLDxniUF0tKBQ1mhRrbR46y3pbPlFrvrfoGQx6jXYueUyHe+y3DSpVIVxc97u49krDNqiljkNzunFLm99620+/VI4aqExZal+j4P9X7K+IcoHg3CEbRfwp0IA7txZ5vLqis7gGTdWRA8dRfMx9JxgrpFLEO/mdpVO9xJb0srbygobu6u82M95943fBuDo5CmWrdBo1tg/FdSWtmkymyj0O+IgmJZKq7GDZo+JZPnZB+99j8dP9sgklW9uXhEHPo5pk8teG1GUsLxeIBh7GPKi2N25xTcPv8CR5AB37+3w+VdXDCf7VGStvz8xMMo6rlNGkc3cnHqHRnmNTz4VSuXWrXt0OgMazSp3bosSzpyEb75+SZyEhJLy18tKREmPSBFO74cfvkuhYDIcdhn0xQHK1TEaAYdHf4aq1H+1dhcK3a6gLt2+YXN8fEEYzbh3R8hGluxwdnrJvTsNBmOhqNudQ3RdZy7L4VqVO1z1zohDhYLEQPhTnY7ykvfe+x3+yR/8KQBx2qZWuE+mCSPC8FISVEbTE2xHyI9bGRIlVQx9BcuSZYDRAStLLS4vhYJSgoy1JY+yt86zg5+JuW+8zXLzIy4vprzsipK0p4+mfP/7H/LiuSzlw6JSMVGsGZYq9sE0Q+7c2qXXD4hlmcyXXzzg/W+9xXwi9j3OY0bhZ0T+TcaJLLvwQzRtjOclWJKa1FBbnF28IJAYj/K8Rph08AcKQ1mWV6sUMbQSV+1zLPeathpWlnd5sSf2wfVs3nzjHT755DOiVFLkbrSYDDNkbIC37i+TpT7zmUa1KC4v2zYhMznrfYlri/VULJ880ei1xUVcrS7TOe/QbG0wlg0mlVhcUMWqysWlBC0PIMs/Z3uzKvd8xNLSNts3qhxL2vVKpYbvm2RKRi4paw1DJ5iHTEbCMEbR0DRhVBUrQuEXCgW8QplGsYYpsaCaZqAoOWksDOMg8JnFClPfZyyxd0mSkKYT8jzF8zz5/wwK1QKeLfRUwXOxLQNdgUQCZHzfJwxDhrOAJJQljUYJJU6wnV85NqZlEEUBKWJfpklIOEkhS0hiIYs5MVpuLPA1mpnj2CUMw0KResL2inhFgziNFjS5wdwnn6dkyFJXRWeoGhiahuuK37lFF7wiGjaJcl1mpaLYFpb8Tm4pzJM544vxoo9QFEX4fiAxreIz0yqwvb2EZYvzaOoGuqGRJ/Gi7DlNY3x/xng25bIrAglP954ymUzIc1mumYp7p9VoLQJotbUKy8vLNCRhz3Jrhbt3XkPTFWGpI8hO/DQlCmL6XSEvS7U5k+GEuQR8z2cz+l2fVF3Fk8Q7vasOo+GMzFAwHPGs+TihVE7YvSHO2T/5v0YYaQHHsgkCefaUFK8Elhrz8kr8P9UGXbfJJBbOUl2yJGB3uUH/ugzZjzBcExIF0xb6JZxc8fZru1Qlljnxz1E1iywxSBemQIiDR80rEM8lmUPeRM3GqLnYg5gpZW+Zhw//FK8h6ZPDEpaV4+o6oexBpGsueZxwa0dgNb7+6gWa6qIpKpkqe5LpMXmicPvWNop6vNh3zVBJc2m85AppAtVakTXZw+50MELTDJIkwTTE3NMsZupPeestcWdGqc9oPMc0iqS6cDAVTQclR80cnIIQmI9/+lM2tm9yU+Kw2xdtvIpHriQkWSCFKkTRInJL4z/7L/5zAFY3S+hqTBoLXVKquLTbl0RxDoYk44gzlNxANTJyWc6bJQZLywX8UDhAttmkbN8lic+4Hp7XYjA6pywxJqZt8s2jh7jeGr2BkGlN9xj2MiqVCn4kG7WXa4S+Sibft9e/IpxbqFqBiifuhuXdGv3OgM8/+5zv/+a/A8BgfMjZSYApST7OO18x6mmsLt1lPBZ6Loxi7JVzssThu+/+hvgsHTCb+qCLc2VUHaYzn0KhgeOJANp42ubk4BFvvfkdLttiPU2nxDePPkOT+mbiRxjmjKuLgPlcfKdc0lldL3Fx0cYSapGrCx+v6JLoUveWtlDVDVQVLgfinol8BU3TODk6ZXNT6N3zvUuWlpbxPBF0Pjw+A91la+cmP/vZPwagUrOYTkMmgxqNuvDChsMuuq4SJeKeuXXvTbrjS27deI/LriR4iI8pWFVKNaiXxXk/Pj0jDBVsCfNoty/Y3F1HMVz290UZ8tJSk1vFOxh6gaJ0tHv9M/zwhCAS+3d8eESlcIdWwSWRJZTpUMGxaty/02TYEXNoxxMKXkjiC5n+ze/+Hu2rQx7sPeDeDQGFeP31ZV48f0T79IgbN0XAfDK9xFIreJ7QebW6SZLP8Up1bhXF3nz98338uc+m7Ms6H3YADx2LG6vCbn++/4JcK1HwTKZz2fDdKTIOx+SxuDMrTovp5YjtezeZBWL/LgdwOexTL29QrguH1p+dY3oq+yfCpnXmm2ztNAiTjIsTscfNlSpPngwhn1P0pI2lGLSvTtlYEuRRyzWHy84T+j0NUzpqxDnVWgVLK7C3L/RNo+7x4sWQjRvyvrIdyFMUXPxA6DdDMzF0l9bmBpZs61BYl6CtP2f8hXCuVNUkkkKRRDOiROeqMyCKhTK3vTLx3GPg++SSGahaavLowSU78gW3N2/imtC8UcWSdf29/hXraxU8N8eUEag0jTm72KffE8poMDrHq10SjV67xgfT6w2oVlo0l4pomRC6N18v8PWTf8n7H4mO21loYpsaz558yc1dcfKT+IKLwZBmc4mLMxmdbJistnZ5cCFqRdudl7SWNmnUf5P02qCdjWjUNtHyKYNIRPDnU5/hoE2hdF0XmhKnI6rVMu2eOJyHp99gmibzcJmKKwwEXTWpb7fwZdZvOg9JJw0+fPd19iUT4f7hM8oVj0waGpdXKtvb7zKdzrnqHornaA62vkpupkxCIdC/+PKIwPc5+Zn4zvJKlVs3t9g/yKnVxUHsd2Mm0wGVaoGnL74C4L33XiPBX4BSj0+/4Nsf/VUqlQoPvhTPtl2FTm+fWrNMqyD6TL08esD2dg1XEZdCwdpCzX0if069IQyE+RgcZZmV3U0GY/Gsvad7rK1u070Siu7lwRVBOqLiLdG5bs5bdghjn2dP91nbEspgc/01at57fPP0nwGwu1Pk/KxHkiR8+J7AOzSaPk/3D8j4IffvCzadk8tPGPknZJlQwGGQsrFeo1zcptu5zr4qeEWF3JpSloQg4+k5hYJOtSJZcZZjjs5esrGyjD8Sl4C1WuJk/4x6dZPXVv8yAEF1TPtywEDi3JqrDqfXYNBQOBHheYmy69MfjFlfF/O8sfUtvvj5x/zWb30bgJ99+SPcYhk/GOFK4G+WgWF5pIlCKJuUuo6B45XonwmnJc99LLtAplxw+7bYq3HHYDA8pNkyuQ4WjsczlNylVhUG0WX/U+yezr1b38ZyxbN73T2iQGX3plCsE3+Aruasrr5LqyUMi4uLM2bpJZXlIoEviRtUGPZ91jZlc1c7I1HndAZ9VlsCAzGSDQ6DKAVp1Duuz2hkcXwgzuc0PeeDD36P+/d3eP5cvF/iCYxFliWo2rUCTVC1BEP2KDJ0izzPSdKAcVdcFOPuBVGakKOi6rLXj25g2S5lmeUoFEqYrkuz5iz6nWiqi+u66FrGWBLKDAcz2gfni0xWHMfkeY5t21jSWNZMA8sy8LwiBYkTtG0T0mzRWHU+n5PEKXmmosiov6HmuBUL27SIImnw5TlpFpFIlPYkmDAYDMniDE06mLqqomFgmxa2ZPQsFktYjolpXmOpRJbOUDWiSMzB9yfMZhPaSbLIStmmjmmaOI7Eq3kuhUIBXdcxZBNawzCwpXOZSufN93367f6CEEHMoUixWFxgOl3XY21zk1uuS0FG6/M8xzLNRQZs0h8yGY64vDijL/fv4JM9RoMBiXx2kmSYtku93lqQx2ysbtBYc1ldXaVQEud25+4ylmOiSFnxwxmOpxKMQvpdmd3+G3Om0zFTv8+wK9ZlNpoyGR3y2adiTkFQYx4PSGYB/vy6Yj9AVyKcygr7P5QGpbdGEE1QNEm2oKjEakKxXudK4hSy6DlpNCInpSBl384hDga83BeyEgYpBadG4A8pSxKR/ukpG9/6Ljc2GyiKjFynAWrZI/ZlpUM2xXM03r63wvMjCRxOY0wiwshasEtmyRzHVXn2TAQke70IXVtGUfVFIDOKx6iKR5Z1OTk4BESUXzcUMtl3TtVz0kgjzUImgTgfg3GMomhkeUKSyI7Leo5l6Ezm4hwfHWdM5imqbqBLByxLMrI0Q1dz1jbE/oVRifvvrqLp1wyGJhkKURIQT6QzoFk0mxX+1n/1X+NI/EbJKzGeR8TKQO5DHY0t0I9EmhlI8wRDtzF141dnOe2xtnmDKJJEIcaQvYNPeeP1txcyfXL5c0rFHbK+mPeLZ59RrVqYpsGgJ/EymzXOz14QBAmlinTi+5dMxyqbW+LOfHb+jPVNl3E/X/RFbNXqaHrCzq0yh2ciYGdomxjeGYkMmnhOg2atgOlcovoiyBXHx0SJICNq1kXA9etHewSRz/KSyNiUK1U+/frPmE4LrK+Lz84O96h4Fhen31CUjIyJP2VrtUUQijXvd2dUSsvEEYQSQ6cqy8xnM1QtJpyLtXK9LldXsLsjMDtKVmB1tcUXX/0UryCDDZaFYZRxqlOKJXGHGHqDNAnpjgXG2y4rDHs+3cEZ5YZwEGbzS9bW3+C9d77HcCyybvsHzykXqkxnQqin0wTdNOgODri8Eme7WrVZqbyOWvDpyIql1kqdf/ZPH/GDvyTuWrc0ZDyNcb0ypbLMyCQVDMPEsiO+/FoEaivFErs3tkhDIZtl95Lzk4A7O7f5w49/CsC333gXjDlXVzEVV7LsTgOmuYYi+9pOJ3NU3eP1N26wf/ALAHaWPsQx1lm/41CTvS4tK6dZr3B6dijWXFexCyUm05Aklfhbz0f1PWxN/K/aSovu8Clbm/e4OhHyUqg6JL0hZsGhZor3q9bWmeUDamWxdqfPL8FoUCzYzEPJfBgrLLXKXLw8RpOTzzSfZBwQpNK+aXg8P/qalaVbmLrEV5ou435Is7ZBZUnco1fnc5abtxe8BS+edrlz97dZXenx008E8+k7b3xE4Pc57wy4e1c40NFcZXVD4IwBnEzHdTzqVQfknbm6tMzFRYfpxCeRjJBZds1o8q8efyGcKwUVVVKXbq29RphckObdhddvqiWCVKVgF6g3RKO4MICdHegPhCJ9650dfvHzz2nd3eLyUmzceKIQzEMOXw64+5qIZk2mp4yzKVGUyb+73Lz1IVcnBQxdRDk+eH8X35+jaVOODoXBXulpvH3rB4umoqY9YK4UKXorXF2Kg7jUuMfrd19nZ+Md/o9/9D8CECddPv/059TrQkE1W7tEiUocBcTSAEoTnckwIIxiliQLz1XnDNd1uPfmtvj7TOfs/CW2o/HyUIItazqm4dDrQa0hnMDxaIbrNLE1oVRqKzaaUuLg8GtKEmQ771ss7azSk92uy0Ub8hlx3GVtV3ynd+FyfPYQTVPYuiEU4tlhRLXlsmYKZTQdTzk+7ODZVZRYzNuzY3rjB8RxRGNJXOqnZ102N27QkUbMb3zvHWp1g09++QWuKy6FbmeGbkCtskZPNijUtBGutb0ocfzpTz7mgw8+4PnBAyJJf39ztwBJgyC+YjKUNKv6NlnikCGc0Giu8Nf+7b/JP/wHf8zOHUmXHhlUizd49HAfR0ZtgpmPsXxOLstRxqOQ5dYKr73+Jof74mIq18o45x6lwhIPHwnn8f7bd3n05Au2t0Q0yLXrBOEpYWCgylT+5vL7dIenjMaDRRTcdctMgwsKJVkeEjpkmcb+4TN2bwtFVigUefLsY7ZuWuztidLZNLVQ0zKVipinXQgoJCZzXyGSJXklu8I4mDKZ+Tx+LEDK3/leA7ug8eSZMJoq9RrnvVP0RCeUxsdS5S62rnHVuVyUISpVnyjRuPmGMMSVxCGerbC8dpcslIEF7wLT3CZLYeqLC2xlvcTLw6c0GmL/GsWPGI1O0IgpZcIQda1Nri4OsW3JWicdB8/WiFXxLroLWT9kHl1RK4jz3253cV2YjcScRp0Jb9x7m+k8ZzIRZ9SShnu9usZ4LCJ8ll6h2RgtGL+09HUeP/yS1pqCIbMMqDPUzCHXM3IZADEsSKIIVZOZD3ySNEFRwbwukaOAQ4aiZYvIfJrOSMIpnQsxp3aWE4UZKBnaNXmE6VLwiuzsbrK9KUoOdprrJI7FXJaoTScBSZKTpArT6TWD6ZzZbEb7ZMT1rep6BuWyh6KKeTueS7nsoKCS59eZshwSlTyHWJEoYnKSTCNOJAmN3SAzU1QNVPmsPFdQMcgzlUg2Tu8OxsSdkCSTBAyaoKp2HWeRhXNdl3rDwbKsRdmhbTokSUIcy2zadMrwvMN0NCOVpVC6ruE4FoqaL/REpVKiWipj2eri2aoqMkq2/Mw0YTTuctUJMY4kMYyiUCpV0K1rZkeLtdVttjZvLmQuVURJYyBLeQeDAcPJmNFowumRkOkXL7/k869GRFHEZCwMizgJKZXWWF4WAYL1rRK1ygrFxhKry0Ivrm3XsB0HzYRMZuGULGc6GTG4EPv5+783ZjQeMhoNGE/Es3v9C/JUJ5kaxJGYw3zUhzyAROxdFJnkwZz7t+5y8JUIGs5mE2pLG0C2AG4XSkV+/Qe/S7cn7kzf+hhFC7AdgzgW+2cpReoNHbeoc9ER589wt0iDCM8S98Bs6NGsNcnCEedn4lyFahk7z8jyCEeSiMz9Hq+9+TrzuQj8zGcpumkQJTGplEVdqZHE3+AHl2iSjhplgIKJqoozmqYpmmZhWClH56I6IEpcyFU0jYXzr2gmWZLRrMlsb0Eh9GcoigbSEDIMg1xVULU5l11hqLn2hxSrBgVXX8h5ppighmiSVn65uczf/tt/h9FwTqtZlWusYboWmSQWun3P4fDoGeQFclkpoygZtlPCMvJF0MAyqlOPs1cAACAASURBVJimSmNZ7N/pC43NnQqd3iHXo16rkPiVxb1eLGUMegH1yjZpLKoFzk7Oee3+Gj/+0ZNFwEXRInIlo9sRcrC6vE7gtzm5POT+GyIwPJqOMEwNt+guWppMp0OyxMKVBGHBLEBTMoKpxtWVCMqWSiXCmUKa+JwOBeFCf3bA+touF5dCDo6OXmKgUy2YHO2JfV9bvYdhRcyCNgW5xWHkMwnGxKFY80ZrFUPPMDSNSOqNy+4FZBGmk5JEUoZbZabTHpOp2LvVFY9u/4Qw8XFkJrdU8zg5eUm9fIPRQKxxvbpBlJwtWnAUtQrjSZ9uT8VzxaRGwykHF09Zam3wg+/8hwD84DtlRuMnfP6lcGwevfhTnj7p8a2796hKEg/TmGJaPqmikKfiLjdMWN+uEkiSpELZYjKIiJI2eX5d/pmQJwUcbYl3vyUjEolHyYOzkWzSvNrCdoYMkoj3PhIO5WzQJ54O6IcTdHtb7Fdvyta9+8xVoSP2nz0gTSIs/Sa5rJr4yY8/4bf+8vfodOcEMqg2CxOCi0tKFTHvfr+PoqeMJjMmI+FsrO/eZdw5XlQZjGc9KpU3cG2d52cicNLUmvhBTp4MyFLxfsvldbTQ4uBSvMv2TpVoqtAbj1Ekh+l8OqBYdrjSjgh9GZC0HCynhJOKoIUftbFsg06vy+a2eN+9fZHVKpc3CEJxHoplF12xCa6hO1WPi4sLlMIxlaJ4P8c1GPVmqJrGyanQb2enzygX17hVFYy3kdbj9LBNro4I5+Kdh8sTUDJarQaabOtwfixLm/+c8YrQ4tV4NV6NV+PVeDVejVfj1Xg1Xo1X41/D+AuRuYqThHEsqD2Xq1vY6hqaOVsQBDzff8HquoblNXAdEQlslFtEwWNUVYKYjQqV4jYnJyesbYjMShDkVMoeO7cKBL5M4aUV3NIYPRRe+Z3aXfyxjWZdUK+Jcq2Ly2N2b2xw9HJKbyTK+Rqr32Pv6JJmQ9JaKyaN0gpHx3vcvfN9AF4e9Kg1dP7vP/yf2NkWTeAUYtrzQ6664v3mc4VKdYUwHWLqYp5pZFNoaPi9K6ZTEQ2ZjBRyIjyJ9UljnVZzlU6nvQBlT6djeu2EQiHn4LnEguUJCneoSdzA0+efkec9GoVdipJUo7pZ5eTiOaYu/leSjDk6OqK2VGA4EFE4P7nC1krM/Cv2ngsMUr18F9NOSSNJnxyoqCrM/C4vD0Q6fHl1jTixyNIiriMiuS8Ovsb2Mv7KX/43ATg77fLPj/4E162hyQaeXhFm0yUMzSaVNbr10iqnJ4eLmvr3P7rB2dkhqlZE9US0IlPqOM4yh0cv2doUmaPDTx5Qr77Ha3d+DYDL9in7j2FpuYUmI/VhrBIEGd/9jd9c4LdiZsz9ActNkT24efsWh0d7ZHGFbRHU4MmjQ9Y2KoRhiuXI8p7whLXWu0xGYp3yvItq+nSGpzRlD6vji68peE3C0ESTEVnLbmCZu4xl9sV1YT7rohs2/aGIzOXqMqvbmzx4+hjHEVHGLB5iOjPmIxHpmfUEHXv3qk1tTUTmR+OYwfiCm9u3iafis0cPn9MbJzg1EWVcaRqMhut4jrIoI02TFLdY4tc+/Iinj0WUeOZ3qTeK+L278v1yeoNDjk7OuH9P9EWZTiJyZUypVOHu8kcAfPXg59y6tb0o/fL9Pq36GmHkE8UC5JqEIYo2JY5Edsu0IgxljcPjl2xrK/IsWAS+y8r6KtFMyF6luEF39IhORzxnbeU2Dx8esLKxy1CCn7tXYv4vT15Qqomo+/HJHu+/+13OJG3/cHzB1B9y/+03qTcFJjDKZmRZhmaoKIbQE2EYouYqqgQ2x1GOplkoZEQyw2cYPqBCppJLmmxVNbB1ffGcNI0pFBRAW2R/sjxmNLzi019c8POfiAiproOuGmSI8+E4ZbxyDcsrYsvmhZVaFa9YpGinFAoi4hwlCvNZwlRm5oZDn+OjDqgKii7kNU9zVDTKRRfXEe/jOQa6bmBbQsaCQCUIp6DEKBKrFQRzclK0PCOXJU5Fx0W3Suj6rzJEkZ+QJTnhdeNfP6BzGhJF0SIrZTsmtmFSLIoodb1eZ7nVonSvtMhuZVlGmqZkWbLoJRiGIVE4J08lvbg/xXEcDMtmMpbEDckEUMnTbNH7DhSm83BRmpVkqcD2aBqeJ97ZtiwsXUM3rrNiNroBq+tN3nhDyL5tmqRYxHHITAKgZ9MrOpcTerIB62hwxuHDSzqDC4JQ1uwbGsViGVUpsrwq7pnl1SpbW2uUZFuQcstmaf01FDQyqSPiZM6o73N+fsr33xPf69wIGU1GjOT/P77oUauu8uOvXvKzR0IP67nGqNMhyxWM4XXrji6ff/FTjk7F+SdX8MwSUTDGkaX0c6OIVY54fnxOKEl88BSUNCWQJXm2DVHaZ231PuZD2c9NBXKLXA+uE/MYWoH9F8f87m8LPfzxTx4RZymaGnNdOzib+aIf3+ic4zNZWmq6+GGwyE5ahku7O8Nr5OiOeJeLqxmWWQE1JUvFHmeRhq1Z3NgVZcEnJ59im01UzSTLZXm9ZXM1OOfOzTdYXhJ6StFa5NqcTGYUbNslyQNiPMqSIODv/89/h2H/JbWlG0wTkflPsyJGHJJKbGejZvOLX3SxnAxFZgtVVAzVQc2mBLIFhpKZqOaQyUDYCP3RY2rV+1ycXXI9GtXbHPSecPRSyI/jWKAFXHWPsGTJ8a2dO+w9PmRleZsgEZlxXVOp1YqcnYmqlFazSa3cZNKMGclG3zdvLnN0dEASFRZZW82c0Gs/59u3/l0ApsER/kwlTmYL3TKdxJTLZRQ15qsHoldaqVhnNIjQZclYfU0nCquct49xZK+vLMlYWl9l78WI+UTicZjxfO8JFU9grpu1KocnX2LaObYu9L5t6hhem/nQ4bd/R9hYP/rhz6hX16g2RPYgUy6ZjENu39xmIrO9nUufN+7vsPfNFNsV98N0dkqjWQTZbN02CiyvZOSZziwUa1eum9i2xbP9n3HeFnfB7/8b/wErS7v84Lv/KQDf+7Xf55Ov/4yvPv0hFW8bgBcvzjhRf0p5aQXPE7LwYs9npbmDL/XwxD+lUXoHRU0W2Mxapc7J6RGVok6/LSsk1JiXey9YXRWyMZ/3IMsoZDF1qfczXSVXaxSCCcOpeOf6VpOJOkNPxPru7NYZXJl4RQW7L9bz7V8rctk7Bz3i6ydC1r713g4vD84o1YVe3LptcHJ8iho3GPTEPNV8m/XNEqMrYaeousmDJ5/wVvQ+t++LOX325XN2dm+T+kM0S1SXjMIRLbuGIltPRJmLms1Q1RK1JXHfZ3EXS63SWGst7m0rU5jkUxxDyF0SDtEtDctRqcjqq9cdYYse7D1mdVXYsaedY2yrgKZIiFHeZ7m5S5Yvc/um0CXz4IqVlRWe7x3iysqR5dUt6qW1RbXH1eWMOB3jGBWaK2LtLq4eY9s27csur70uMojlsvj9nzf+QjhXqqYsenYo7oDRoE3Ury9qIDVvTpKuCkKJnkzvN3PqtRa6IX731VcPSPOMOBtydCSEYDK/QDVr1Ks3qTfEBlxcHhDFGddQCsc2GU9OeeP19+lcisVtNgwM3aZYqHJ7W5BHlPMIr1jh7q5gGHqy94DO+Bmj4JCaLi7ere01PvniH/Hm2zuULWGN/9mP/jm2M6Ms+zvEsY8ftQnS9qIJWWupilt0KMU1+n2RqixUHU5OzunL1Oxy/QNOLi4w7ZiLC6HcC9Yq77y9Ra/Xxo8ltkDNCDMV1RTCmxt1dncb5NMGliIEcxaORH8vSXAR+aJ+N4jGNJbFcyxjjTQbY1gFIl/87nzaZfuWzXQmLvUkDfHnYy6vXrK6LpzeQiknz6uM5s+ZyKaea+sNulcx93aEwzebP6NUKbLUXKfgCQfz8OQzdm/e5fnzx+iIQ1Us5rRqawy7QkFarkHZ3SbLjti5KRygZ1/0ee/9mLp6iy8+Fw7m3dtvUW522XssLpNmfZezy0cYTsCwJw5ErWYTajEPHv1LyoU1uX93sA2P00uRcracjMCPOTp6wtauKOu8bB9TbRj0+k+4uS3qqceTNrP5ywVguXOh43omd2/vMhxKEHg+ZjqfU646kAnneDCas1TfoFwVCtLPjsm0gGqjSftKzP3g5EsKhQKqrqKrQoZGfozjxXhVsb69TkCpWqFQCcgiIeeNJR3Pe4f5dELBFc/XswrVpXDRaHAwtDGVJq2VbdrSYIijlKP9DgR9Co5kxRmPmU8STOkId7pDPNegtXxrUdpaLK5x0Rmwc2OJXGIl7969Tbfbo1UWF2NH+1P8uY6qaUSyzENJC9Sr6yxLnFSnv8dgesba2gaDoVDupqlje2WyTMOXjTfj1MApbHH/bQFePTrdw6tWGfSn6J74TrkldEWuxHR7Yg1Mw2Zvb4+rvijltW0HW3eZJQ9Z3xGy8firOk5xTJoqqNIYVxWbPE2Zz6fydyYKOboOEs5JlEQoaDLgI9YgTRKSOF4Y9Xmek2Yp5BqaDAwZuoqSg+cU0TTZuygN0Cxj4aDkqc9scMbwKhbAOOA4F86aWihi2+LcFoolipUyzZYw4FfqRbbXVlBVlbmsx0+zGH86I4lhKvtq9YZTfH+GvJfQbANNU3BtG88RRlKtXqFe83AtjTAU+x7PEubhnFD2EbMsg0K9immaC/xWGAekiYaiKAuyCk3TREPWQDqBsyGD6QDz3FiUTzm2wKIZhrUIohm6i2PbpJm/eM5kMiPqDQhDqffHM4bDIVmSEKnXBrONouQYsoazUipSrnjUK5UFEYamaaiGSSTJQebBFMt2CMOQfk84LY5lg5ISxTG2ZD7MlBLLW6vceEOwuBlmhq7r2JbGbCbkbjjwmc8vubqYc3oodPzB0QFffPMxw/Z1aaaKrtjUW2U8T6x5sVSiWilSK6+hVURp+0ozYClVmEmw9W44YTIO+MnPr6gtCWP1d373JmHok5OSJpIpL1yn0/GZTcWeW6TMgzaxD/5MyOdwOCfVyxx3QkZTsceuZ6KYCo4ujZ1ZiFeY4aclLo/lRepHYMzJyclkw+U0nXPrzh0eSmbeOM3ASGRDXSGvMUOCMCFKY+bXJB7aMokSgizJS9OcOJmx1HKZ+eKd80w49EmeLBwENJdht0PRkw7D0rYol1USNBmkSMKInc1bfPj2e3SlLRHzkqJbx3Yl6Uw0R89sqq0K/8v/8N8D8J3vWQRqhYePRnhlWT6oQoaObkrSi8SgfZbhljXyVOxp0S2iajG3dpdAOsw//uEztjfu8ouf/1Ds39Zd7EK8KBMW8wyo11YXPYr6/TaqWqO61GTYF47Tm28ucdk2GU375JKBMo4tGvXWop+caaW8PHxOqVJHkay7Lw+fMugqtNZ7vHwp9H61dIO1lbs8ePpHALTqN4gjlTiJUGXDXseb8/jxU27euMN0JnFRuU4c5Atm4CAdEsxcNnbWGcuG3Zoy4LNf7LOxdRNDBjsePTri3Rt/k//o3/svAXhy+A9x7JiENj/+WMjLyso6btkhiUOePhbnr9GoisBcIu6LyTyg1SwTxxalwnVj2jn9cwvHGRGG4p3T0CIIJwy7Ys9//Tsf0tufMJ2ELMleRrPgArAplasUiuJ++vv/+3/DvVv3qcqyud3VdzHVNV577X06QwFz0K0K9WqFi8HlQg8GgYKiRliy3L1eb7K//y9p1rcJQsnWy5d89O03mI0SXuyLMst66TbNZpMwkj0sVRvDnNKfzRj0xZxWS0VyBfonIW/eFnbJNy9OIBxy0pV9H2OV+kqZ7nhKJJV6qdSiffWc+WiM4wk7IUfFdV2mMjCVRQ4GDSxDY3VN/G7Sv8RU7rO1Ib4z8h1+7d//iB/9wZ9QrYr79/ZWjD9MOD+bEaVfAnDztTcYWlckYyE/ZjjhYjQhDxXmptiXteYKw26H6bBALtduY/UOodJDzaR+Zc75xSFBNmMwFNCIUs1DmUGaTtAzsTfbmxuct48X9mro51zEF7z91vsLO6Xb73Fy9gjLaFGpiGQDWUT78hhnJi5yy8nIEhfHMjm/EjZl0W4QR1AsG5SK4ndnZ79q+v2vGn8hnKs0TfAlYPDgoY9hRaTKcwxdOAh6VmE6ChjbU66uDgFBRBGGMa2WbNpGAkaCZXm05CXUvqhzevY5rlPk8UOBUzq6+AnVusutbdH4t2A2eP74DFP/hva5ECbdDOgPbPK0iGFLgdavUMoTkPTeeWTy8vJLvGrKwz2xAavLd7l/9/cYdB9z0PszAG691sDWXufx838BQL3p0rsy+Eu//df55tHHgGBHOj/1WVpaw9CuWWMucZ2KiB4DvcFLssTAsZrcvS3mMB97eHaZmTllsyUiHSghaaYQ+QIr5pkDtLRCnE3YuSU87qlv8unXf0xJYnaWl95A0V+Q5yDva5Ksi+8PcD2Fel1Ee3SlxdVpn401caCPp8fk+ph33n8dQxXG3GgQYDopmtKi3xYKd2UL6k2Th09EtOu9Dz7g8ePHnF58TcGRNcosc3XRp1pxaDbFZ0QucTyhXhYZsLOzM27cMmjWSpw8F5dCve5QK1UI5x5/9bf+JgBPnj/k0YNTdEkTPhxP0Mwpy7W3OZ9LIpOOuBxu3FwnkZm45wf/gvtvvc5kJiJZpycFLtsnbO34fPONeJdZ0Gar8C7x3GUgmcgMo0qW9PFcyUjjBvjzlPOjnFkq5jmfh+xuN7CsnO6VWOQknWJoEy7aYq+cWkqzvsann+yxtCbxVHYB1y4xG46IEuHULq/UGQwvSKUTo1XGtCfnOG59gf+5Or9gONrjvXfe5eRE1GErisfG2grl0jW4W0NJVfIkZVfWMj971ub27h1mfpfLC8E4efPmTU7PjmlUZaS1H5CmU5S8yswXDpDt5hQ9jU7ngMGVODPbW7fY3Wry+MUfyXWyMTSTzY2bXLYFHs5zbaazHs8l+YmmaWxsrlAtbnB0Tf3aKuLpFboX5yzLrG1o9Gifx5QcIYum9ZCb27scHp0wD4ROsKwl4EtOLjpUJGnIaHLFxO9jGDIKCOSpy8GzDoWSOGtpmqCpVXJicmQjQ8UCDe6+JoDilxentE+H5JlBjsQb2QL/Y5g50j9A1000W///OFfkMWmakqaSUSzP0VWFNAsWZAqqqhLOsoVTga6i6GDZ5q8cFCUXGZ2ExcU06AxonwUcPJPZZT+ETMM0bTzZ9NAtVEQmrFJaED60WgUsq4VhCqNeSROSNGIy9pmMxRqc96dcnccUCi7VsljjilOi1GiSyybGQTDHMAyKxQJeUTxbNxUUUvr9PkOZkU3TFNNxFlgqUxMEF0kcLrJUea4wGg8ZDofMZ+L9wjBk5s8hu26ubmBZFqVSiYokZWgtNbl5c0lE++X6+b7PbOYviDDSNCWb+fiAloj9myhTyjI6LJ6tEUc+GSnFgswa5xPURENXcnJ5YSdZTpAETCVOQlNdktRHzRwMU7LU6Qam5rK1Weftt0STTcPSyRRIfPFu88mcuT+kO+wwGIhnn58OePT8Id32x+SSTjxOpviRjqaLDF+54lGqFmk2lhfYxdxTaVSWQEmwPfE7z3HJA5vNqjD8l2/EzGZTht0+oWyqPZmPCcIi3Y6CLmU4mV8xHSkYhtBb496MbDnh4dk/I5DEFGgucZ7gKDaexLVFRgbqdBGQcJwiigEGDtk1+2JqUVvSuHXzJr2+kLOz3gzHqWBer12mU/A0ajWbOBXPyjUHTcmI0owsE7KXKAGmpRDF4juD0RxFK2Ca2TXkCq9YpFrzODi4IpQf2t6McW9AnF1jdgo0SvB3/tbfpV4Q8vLuB9/l//mTJ0CDPJRZaSUnyhV0TRhzh0dfMRhNUc0VkIahVywSJwFxNMKQjZpv3VjCsXVu3RFG2tXFOSuzDZbWfwWQv+oENOsVltfF/woeqRQLDWbhS+pV4Vj4wxqFcoLp1jm7EHp4dXUdwzAXTYRXVzYZDXoMujlr22LNh/0EzRozn9rs7ghbKY/rrCyv8s0TccdMZ32m8yvycJe7rwvd6c9zxv2c8XjM1pYIHl9eXmIaGlkunLvtjds8ePAcR6/S92XWRpvRWKtil9wFnjk1Auo3zvnv/tf/RMxpfMHacoViuczNWyLzUSjY+L5PfcnGdoXD3Dk+pVC2ebonbIlb29+h23+O4ziLYLWqqty5fZejw2TRJmMwGKBnOlOZff3sy5/QbC7jEgvqUMAxGhwcH1OpQJr8v+y9R4ysWZbf9/t8fOFdRmSkz5fPv6rXVdVlpqure7o13TPkUByIEChDcEBBECAIHC0EkpAAacGNtloI0IJLghIlSKLI4WAMx7Tv6u6qrqrn/XvpMzK8/7zR4t6M0kINbSigF+/uMhER3/3uPffcY/7nf8TerFSv8Pm9T6nXZN33x3/F3Sc/4dLmHt/6zb8HQGszxvfOWVmpMJtdBOhXKZfXSBUhi4dHLzCNKrqpYco9zhcMHj/qMx36rMtGuHGY0G6fYsm2GbuNyxwdnxElCz74psi0nr14zov9czZqNY5lhjJWbYLA5cp1mfEKxsxcB3eWx5CogjTW2G7dZjpro0sWY3cekrUyxFKXKUoRbzGhXCoxW8jsq2rw8tWdJRFHGMeslL7J9t51PKk30iDPV997j9LaCyx51xVLKfefRlxZE2sZT6ZsbxUxzJRuW+jKZ8/alAsmW6tXKZWFnfnw7nN2L68wi4TNbqgWplLFLlTQMrK2uGgx6CaUszCbHwBgWS1q2W0cZFsgdFqtFe7c+ZxKTchwtb7KrebX6XUHnJ8Im+7b334P33nAwhfOsqaVaK5WqVVX2dgSNuRkKGqlm60iL14Ie23mSATArxi/Fs4VSkwSS+Wwegsl0Tg+f4RVFAcqbyZ4Xp927z6zqYy6WRrlcp125wCAyTSi2SowGk8wFPG9QnGFqt/i5eHPSRMh0pc2v0m3d8xZW3wv9k7Y2SuwWMyxpSL99rf+Jj/78SvOR59z5YoQ1rvHXdKuSmNDkAPE2hr+NEe9nGNlXTgD7XaHTLZLIV+nWhQsaqedu3TnvSXUZa35Lpd2DX72s1+QE4FAIj9PuVFjMY+YjoWwetGQeqOMbUinZdplfeMSUWAvDeiee4xq5DDVMm4i3ofUxnU8HF/CvJjz7KlLrbrGQ0lk8ODRx1QbNpolWaPSQzK5AoaqLMkPdi9bqOoKqhKRKiJzVC5eoX3SZTAVn9nYuEm7E3F+NieNRcTEMIrM3D45u0m1IX5fU8r4QY+CJTIh5+fnlCoanfMMt94RNKHH+zP8cE77fIxhCoVUzBmgGAwl5Wk2G3C036ZVvsVqTTiK+YKHO87jBw5tVzhFQdjDc2O2dsQFNxmnvHjss/1dg6dPBczza19/C9ed4cyHmNISNo0Sjx4+R1eE4fjLz37OpUu7TEcqQXRBdWvQPe+Ryxbp9J8u1/zGjWt8cfdnYk75HJXSGtPplO5MMjStFvCCkWC4vFKW6xLghgMyBWFcFbRduicH7GzVOToR+7l1pcHR+XP2dpo8visOtdEzqLRUMmVhVDx6dkKltoKeqlia2Ktrl96k3z+hN9ynINn60kQjZ66BJTvE+wtW19aYtB2mrshmra6XiVOHbEGjJjNlKkXSNCWRLDnlRsDJYUi22FsyCpYKV1hMx1iZCFvSkB/uH7O1vUciGfbyuTJ+MGYwbENy0YPsDN9fUMyLy8t1XQ72TzhMFhQLIqOoJCp6PqZRrNJq3JTfO2Fz1+BMFufvH3fx05+wGIMmSSc+/skn8F/BZDqnP5TQy4zJ6WTERktc4KgLdDVDMbfJ+18T6/SLH4hgSZIkKJrsoaMaJGmPf/Bf/6dins4J00HIpO+Rysv55dGYVwcnnJ708b0LNrSQ8dQjkga8aqjkrAqJGmFI+JmmW6RpjJpGpJLmNY5UlNRHUy+cspgojtE0Y0knLjl5SBVl6YTpWhHTLpNIgoJ8TkVFEd/3hSzOJ2PGw5T4WLngRABNx9LNZRYgX2tRXylRyOXZllTl169doVkvkMYJiswqdGYiI9sbivNx3h4wGc8ZTb8kptB0HStjUK2WqVbFRasbOnbWwJZ6MUpDptMJ+NrSEU2SmCTRaDRX0eW6aLqCoihLGCKoTCcLJpMZ7Y44/wcHRwSBh6GpmJLZLZvNUl1psLYmAjXraw3q9SrZjEUoqe2j2GE+XRBJEpPZxCWMYxJgKAMpagqWmUfXVfSMZI7UiiQGmJJBUUlAQ8NJRoSBJMvwHAx00thlLtEJQm50YimviqJgGBpbm2+yuyfe76sfqGiJwmIxoNcX35uM5sznc3o9YQwM2hPG/RMOnz5CJgvxQxUtCciX8qiWWIN8yWS1tUuzJZnICg2q1So7G5sYkoRCN13ms5CsGvH3fl9k5l1vTm/eZS57p40HfVbKVXrdHiNJwpA6Cm7s4U2zLMZCf8/mfaJgnVpV6H1n0SfTyKNHOhdJGj8sUW9MOeucMRoLvWFns6hqROjJoIWqE8Uuo9EYPxJGvK7tkCqgKYKgAiBOQ0xbJUkl2cpghB+aJKnHelO2qLBtQjclSEeosoedM60SJHNWNsU8e8Mj/rd/+i8YDlO+9TeFQfun/+IvmXXyqAWIZHBDTQKUMCQjmTq3dy6zmD2htpsh8WXGWw+xDJ32yYLEE3O/fO0KViYgkgQeq6sqL/fvsr0rg4pAvhSycF1GfbEvpXKG0/PH5Kwa6ztCd42HpzhzBXemc/WS2KtnL57j+cesrwumvk9+cZ9WY418xsBfXGRaeqSUMY08viv0Rhh2uf/giEAyL+ayBQwtpHWpgGlJhERX4dKly8wWp3QkgvHt27/Dyckzxkfit1M/x95uA286ZK0u9rPd0dm7cpOXBw9xZfpci3KcHr7ClNCveimHphSYjtxlts51FXRDI2fXseRZs7M687lCqSbOVXd4SqQMyelX2dgQ+vv0/D6ffvoppqERxGJeOzs7PLjTHgQ/tgAAIABJREFUo9XcEXKQnZCxskxmZ5w+FoG+m7eusLlxGc0ICGWrkMMTh93dW6TKRMp0lu985z+hWPD44S/+ULwLFaoFm0ItpGEIObNzFiftB5xJIqNyqc4773yDJ08/plIWe0My4aT9hEq5zv6hkI1i2SBUfGLJlHnaOWDh+Wi2xcGjffnObVxXJc1kmMl2N8WaSTwzCDWp0JUctjVgMjhd6tPALVCw16hVdzjtCTtoOg6pZNcIJHFSvpEAJoqaodEUjvdAH1DKlxhLJsmMnuNPvv8/4jgG26tiPfPVIj/4yZ/RqqwT2kJmB4uUnSJ4kRCWqJwhns1JdBVVFfdAc1MnYxskfod2X2aO6jMWjkmjIRBhC/cRUTImm13HlCR3ujnDnQ8oFE08SaqVLSs4E4eKDLj6SkilZOKHJcau0J1xP2Fjq0YYz5f9zXqdOWE8R0nE92qNGpbp0+32uXZFlJokwYJCK8+jJ1+wKt+5pkkCrF8xXhNavB6vx+vxerwer8fr8Xq8Hq/H6/F6/FsYvxaZqySJKFck3Cf2GA2G3L79IfsHBwDEWkig2WhphsqqxPr7Jt3BC2JVFgxnigyncwLGPHkh6ik0LUUzXZJUxTBl9GX2glib40qq1Frd4LQzZTSOyEiP+1/+yb+kaG9jGcVlkWnOukqixPz4ByIS8f5HBvV6Fc93mcj+Sq6/IFspkbOz+GMRCWjmdhlbr1gEIkKj6U0ePvgZnfFTPtgTGP0BUybTAyYDk5zsCXBt86ssZgm1mkhLZu0ip8cn7F2v0z4WkdVstshndz7BturoqfD6r13f5N79hxiSir1WXqeXnuP7CguZPt3crROFGt0zkXa17AKVqs3hfpftbRFVmQxn7O2t4kwquAuBc/3k+Y/Y3Ssw7It3mw2fQBLx1cu36Us8sGqpzIMcqQ6+LPSNPI0Il1iXXdX9HK4bs73xNo4j3qVcNwnDCkftu2RMEUF8dfg5m5vXyMpIT7d/SBwvsIwQX9ZqOKcel3YL3L1/QKUs5lCrbLCxfpNTSZH/8MEPefvtj7h/9wVVWbjZ702YzCb4yYC3viIoascTj5XmKtOJJLiIVNBNMgUDPBG58icmqhLjB+6yAHIyGnN4eES5JCKPr172GBVPUI0p5bzIgvmLCWfTI1QrRyThPa47Q4lCklhE85qbJkq+RpJq1GW2IFFjitU8o3lEWWKg6+Ump4NXOJ7Yv83SFmY25eTgjMVF1Gj+KVYcoSjr1CWkYtzZJ/U8ho6I4lSrK4SBim4H5Asi4uZ4Lr43Yj6e4M4lNNHuUyqt0OmIKGC+0KBWG7FW+yoHx4KoZbZYEIQJSbjKcCyyYFeuXOOk/YiMzE4cH/ZprlYZjk/QZbawVGnQ7w8ZDmbLffH8EYp6iKGKSOT25lXGkxlq5oyHD4QMp3GWN94qE/lCb1xe38PQFDLliPaZOKONli7Xvkgs++PFepacVceR+9lorDIba9ilGVXZf0yzJ8RxAcNQSGUkN1HmuE7En/yZgPf+3b91g/WsTv2j38CT8ICvTyd0unvMFpCpyFqmkUXobHPv/qcAHO2f0e50WSx6S0p+d6Qwd1zQHHQZDSsWbDQjSygj9YapoaYmappFkbWSmhEI+JEak0TirEFMmiyWPeyCMIeq+5CEKFInGGZIEqcYqoWuy1RHZJCkNqEiZKrXmXFy7JJGKoEkAyqXClQrTTJmhbUNAU1qrqxSWymT1YX+WWnUWFltgqIRSLn2fZd4MWMymbD/9CK7DK4TkpX1MWvrKzSaZS7vblIqC8iKqoKiJviut8wu+b7PbDYTBS+IHldb6ztkM5aAAcq1cuYLHMfDlU2SHccR8KihwMkPeicEQYSKTl5CCAolHdvKUiqV5PuWUA0dRdfQ9YurMiHyI8LQx1kImRr7fUjVZZ8tTTOJ4xjdUpZ7pes66DEo6jIzJmrQYqL4IlOXEMU6fvucUGaEw9DHCz1c30WR6xkmMagKq5sis7tz+QqaoYv1klHqxcLDWXjMJtMlFHPY7/Py+ROePrpIV4IWqdi57DKjmK8UKBSL5IoFMpJ62cxYrK+/gaKky3nHYYjnLPit74jMTuA5JElCGvosPNliJI6pVHf5q+/9AADLqhANHZwgQDHFPDuHI1aKJj3vjLOOOO/VapNEDQll7ZaRhRpNEv0BsS/kxUAn0UKyigGyd5oZpCghOKHQb36YZ72xSn0zj+dJCn4zg2L5JCEokdCnpRWbYnGD7//wewD8/JO/YnfzFpYaUGsJWew9GENSwExNiMQ+BzgooY4t03Cd8TlenEMJHeyL/kOKgRJE+IbNXH7v5Gyfr5or3Hv4xwBsXf6ItfolhoPD5b5Mp3OGk1OKhd8WvxOOOXzm89f/xtd58OovxBoECmqcpVGtLdsCkGrs7u5hWOLMbmyt8+rwlNVKnoIt0DTbGypnZyfUqld4ciD6XNXqq0RJjUJGwqB9FSMxME2D4UT81nZuk67TpVpo0B4IyPbx3T71lUuEqyLC3xs9wg+zLPwXNAvi3m6shxx3v888zLMrSacqVgajoKFIwqd0eMrhuEtrrUEwEme70WjghV26nS4fvvcfAhB6Nnt7l7hzT2Re7h38MRs7TY5Oz5Gtt9C0Ffr9Q9658Q5b2wJu99kX97h1s45lXJSRrFCtWMRBiygQ+rvfdSkUCuSzFqpErxTzPQq5PLFsFaQ2ElTNx7JKrDWvywdO8Zwxlr6Lql/QlQcUqxUaqwL55DsLJuMZxcLKsr6ptb7Gjau7PH726bLBu+PpFMoWriv0fm/gks+VWWu1lnT01VoLUg/HSRhPhT4r+XWaq1VCT9ZO9o9pbV1mVg4pSwhgNlOjWNbpHh+xkhG6Y86AQtlmEov7d9SdouhNht6QdC72vdas8LL9gmpO6IgoDzdufQWPkGguFv3S9cvcvPYd9i6vspgJhNTDe5+yf/pXLHoiQ5vJrTGYepDkeUO2RvImY9zI5+TkaNkDLY4CHHXAs1PxO95Ip9HcYTTv0tLFvDNJg+vv1Mj7Bk8lOVXnrEOluI4uEVmYLk+eHTP3dTZ3xX4GQ5XpbIGGijMTa3ccTrFydZrr4v2ePHnIztYu4PL0sfhMuZLDCxdki8UlBL5SkcXWv2L8WjhXSmoQuZJIYVVDc31Oeo8JJe5VTTUu7RYYjTsEUrlq1oh8pr4sSrUyOl4QoxsOaSzSe/VGnYePf0lztcLartjgLz57TK26xlDC7yLXR9FU0mS6NJbPusd4xTFRmJBI+Mv2esLO1i1MyYDjOgELfwBKSCphTwomSZhnMDrjorG7ZWfQ4y38QBihP//0T9lobZKZb/CLnwv40e6lGpGfZ22jwaHsSn16/Bk7O7sEisDULoZrjAYBgadhSGKBybSDqVeI45AwEPOczT10U1k2VhwNHcLQx865OJKtSDV1Mpkili0ORoqJqeUxrUPWJFxqmrPxophM4zl2Ij63f3bOq/0QFbEHljnCzC6o5X6P4+dCCD39BSvrm7T7Y5prQvhq5T1+/vFLVlfFJbRwHLK5DKPRMbOJrHNJ5rhOghblcGWxbMas021PqVbFmvvxEYPRCX6wydq6uIj9AFxP5a233uf5SwFXHJ+nfP2jLe7cE5dsrRkzHLVxwwnbW0LhP37ymNH8BQoreK6A82UMi6OnHSp1cSwKZpZ7vzggW/JJJfuTbds0d2M6x/Nl0XBtpc7JcZvhRMKuAugch9RXigSJMOKVJE+o9lhbXWG+kIZi4DLq99hqCAMlVGeM5+cEoUqKMFAGowX5TItKvUwhJ4v/h6ek4yKVhtiX2UJhceqyW/uAxBIO0JPHp2ztXkIzXRxPXNp7e+/SPnmOnYr1LFsWJh5jN6C+Ks6DnVnl4OWQZstgnIrntc8esb12Hd8W7/Lw0QtWqnssnHPcQFyySbJCPmeTRDGFrDi358cezeYOQ1mLkjLBMrbJ2CnTuZhn99zBzOhM50J+Fq7HdDolVXSuXBEy/Wz/C8IwpZAvo1viEkh8ePhgRr4g3m1n8xrFUoZ//s9+sKyT3N6+DfyQ+WJEUTZ8DTyflIDihSGMRa1aZerMcVxRb7C7s8bBKxdLS0mQRdmWRRRYBLLwf//8kIxi0b7/KQXpVEdOxHSu0Gi2WN2SdQoPRlRXrlOrCthj+2qb/qjLcNDmlx8LnfDGt3Jcf2ON49Mz+mdCcX/vL76gUCqgyTqN0MugKAswQubzi9oCDdNM0a0U3ZB1LkGEqmSwLCGbQeyhoRIlKqiSLTCyMUlIY59U6rc0iVGTGTnJRBYYCnmrTJL66LKUMIkUZvM+M6XLqwMRuEiYg6KiyAIdP1LJ2Hmy2TzFktDpK/UKX73xDl976xZrsnjctrMEQcR0KnTSYNBjsRD9wAYS3hfHIbm8jZnJks0KmV2prbK5lsfOy+bHEhqpaRqGccHQqKKbGcp1Hdv4ksVQUbQlPDOKItI0xnGcpfMxXvh4jsuRbJa9WLwgDENUFAxNwi5VlXy5Iuq8ChLHX1zDtNSljggjlyCIcKbiHQCCKCQIfOI4RtG/hAHGcbxsJq0qOrZtY1kZUsmAF8UhURIKqJssb4qiFMdz8DpCXr0gIE1TNO1LJ1AzFSzLws5nKJaEQXL5yi6GYSJtA+I4xk8iFosF86k4V4vpgqPDfRbTxZLpLAxDNONL5zFfKlKplSlXq0sio8Z6SxDvZDPLs6YrOkEw5d//DwSEO/RTAs9jOu7jSIbNycCh1SpQbSjc+1gY+s7skIUbkKTiXc48h0LW4m++8Rv8xZ9/IuQsjVFUE0XXvmSzVGI0U+HJ/kUD7TJWJs/CDdA1KQdpjJYUqZRtitJ5PDx4yT//n/8XQlm3ePvmW2hKnuP2Pp4pgg2/83d+iz/84ucYiYoq++8kuoXnjHnzmpDpyE+JojnEdfL2RTG+QpIoGKZBRhI85Bsxid5hZ/t9AF7uf0Ja0cnlvzTWtta28ebPmI+PpICHbK63uLTdYtAXRuh0dkDgr5CpzVmMhD7d3Wsxm/bpyb5TG1t7lAsmjY01Akds/P7hgEphT6yFZGn1RgaVrIUhz3+kxTSubnD3k19wdVXs36UbAy4V+qyVVqmtiH3XtSqvnv+MxedSL04DcrkC67VdTheiVKAR5Zi5PoqfwRkLPW+VbNxFn0gWeQepRjEPnaMpm/KOJlBRIoOc1uCXv/xMLIOSp3vexZmJwMZXb/zHTJ0umZyCZohz/OjuC25c/hAjl/DilbiTEyVhpXKDSMJ0N3ZV/vIv/5wwcrnxpmjefHbaI0r7TOYJaSgCLrlcmTSNefzsFwAU7Ouousdg6FKpiDUolZocHh4TRD6dUxFAvn5rB9dLONoXgXdFBdd7xvb6LdLkgnUv5MnTz8hZV8gVQ7meGUxLZa6LuzbJJSiYjHoR+YKsow3PSRSP7nBGc1XM07ZSBsMR7kzot/XrBeb9EY1SkxAh14dnLzjvBqCWCBE6rlxuEkxnpKF43nzuYBfOKZY3OBqId5mfdDk77lG+JS6C4alDrbaNpo9QDFkbun8MmTY/+OSY/TNxRtXIwlId6gWx5m/e3KU+DxhNzjg+EnauGpS4dfMa7rxHIoNMplUll7eZnh8AUK9ajObnzMYpo6l4Xn0V/Jcp169+fdl8++6dR7ixiysdTCOTMJsa/DvfucGD+8IBiyOdsKdz0jtnqkhCik6BvFkm3hBnPXUiHj89pF4pkZFw9KfPDvmt73yDMJrTlfWNeCLx8avGr4VzpakqhbyYShxkKZdvcnhyn2JOXDCFQpXO2YiZv6AuDe1Ou0/OjkhicTGt1m8wnA6IUDg6vWB20nn/7W9y5/4XnJ4KQ6Zor9Bvz2iuyY70HYX+4JTWRh1LFYtVKUakSszG5h5X9sTGffrxJ3S6P1kWxjvTDG/cvsmLlw+xs0LoV4o11tfX+d6/uUOzJTGzvX10K0tTRjCS8CmO/4JvfuM3+elPfwxAJlPF8yf0BkOaKzcA8EpnVKp5uuey5kLtkCu5vHj5dMmmlaQOt278Bv1zH3NFHKBHj5+QqkMsWzI2aT6ZbAHbtjk+FMpne2OX9vmQXFEotrlzxErhbWyjzXgglFEQRByf3seyE7REKLuPvv5t/vRf/wDVEgfDm2fZ26vxyZ2/5PRQ7MPt9/a4d/9jWpsb5DLC+O+cvSRjZrAl5bG3SNhcvUr3dM5Z76dCCBKb3Z0r9Lo+kSQNefZkn1bjCt2uOBiVepGVyu4Stw2QyTVYqV/j+PiA8KJJauLjBwsasnmt7Y1wFi6VmsmrA4FbHs2O2NjZYj6f0++L/2lpBsuOcVNJUZ+4VJol+t3FkjVua6PBq0dT9PwINRXzPD0/ZjJPODqVzZ1LJfwQpkEfVwYNCsWEYk3n88+fceXyDgCuGxG4GRahiNCcH0JzvcLR4RmpftER3sW24enLAzY2RPSlfzbjg698m5eHB2J9zx/xnQ9/i05vzFw2c11vZCnrRQq5OhnplIVugm1XGPTEpffs6WM+eO93iToD2ufCoM3nHeqNBq+etVm4QgFbls2r9IDxSCjbXC5H+6zP/osJN98Uhc3d8yl2LqXduccb1z6Ue1pkMnKwJWlJZrVEtzPgzoNPWdsShsRvfu336HSPaLU2pNwNsTIVEmXE6ZEw+HKFPMPpY/qjEzKmMFoMrc3+QcJKU0QUH92bsre3R3OjxtGJqIWbTEV2pVYv4bvCsFBVhYXTIVHE8xUytNtfcGn3OhtrIqraaIx49mQfO1cgls2OFRIyuZjH98RlWWlV6bVdyhmdD771m0KuJ0PWN7ZI0xlPn4q5V4tvcXx6zGAkdNJ4NGc8cVhMIlRZCH/lZpWvvLOLYU/5x//4vwDgb3z7v+Ply30sSYSma4Ci4zout98SUb8ktjjc7zLodyGQdN7VlFQf4bqy/keHRFFR0zyJIYzQFBcdhSTRiWQ2AlUnDqNlcXeSpGiqQxzGSP8ATVcEFbtiUa3JJqlUMUwNL1jI52mQqgTunHlP/G94csJnP/kpWbuIIVnicvkKq81NdrZExnRza4PV1XVuXlulWpXNOTM6cRIynU8YSydsOh1z1j5esvDFUUoQBIKYJBX3RZjEqIqGrpvUq2Jd7IxJvmCRy4l9z9kWmUyGXCFPoSA+s6NHS/p3EHTtSZwSBBELacz5bsBk3mc+69M+F4avs/CJomSZNdIMFVVVyGayS/bHbDZLrpDHNE0uyOGjKCKKEhzZFHrhjggCXzBK/j+cQBQFNBVDyr5pmui6TiqdSVPPiO/EKYH0NhU3wVn4BEF/6VBevNsFIYpwviwKhQL1VRGQ3NzZxjJNNNVYfi8IIjxngeeINXBdl9APGLU7dPal8R8nZCwD3TbJZ8U9Wq3XKRSLmDKjmK/kMDIatdUq65JcJZezmU2GOHP4h//tPxRr7IU47pz5VAjeYNhFTSNKuYhLm8K4Onil4jk+jutiycCCpphksytIziuCMCZUXlGultFlLWohp1OIm3z+4BP2D0QwbjAesblzhWJF3L2zecB8MSBjJCB36+d3j9B0izBJMaWOVVSTWNEIAnGvnp74ZEwbJVWJ4i/JKQzFwvPn+Lq8n5QcOc3m5Vjo/a9e/bvEXpusUll+ZzYIubF3jUFfOHK6mcEwfNrHR9QkBbil5Ei0lMGwz3lX6JdioYClNHn7KyKr0h2/QFey9I8dGk3x+wOvi1HLc9ZZsLktslknpy9pFta58LzPH/6Ik7MMW60rXL4mlNDqnonnbxCGFZ6dyM+9MhnOnxDIbMHO6htM3af0z6e0VgSTnK1qhPorPvrmO3zx8QWx1x6Njd/A9cRmffbslDjQWNtw+fxTYRd98MFfI5dfIUk6TGdiHUhVpjOVrDzHC+eY4WDAzs4lKiWxLtGVBJQBcdpEyUriq6zKy+O7XL8s9vj50y6xn6HRKi2bsjcbGywWc3Qz5MEDYS9+7f3vsn/wCl0R99PqpkL7zKFSzTEeid/ud3vkcgU03SOM5V27sDhr3yFvi2C1YnRRkga5UrJkro3CFvOZw+blJoEkb0gJcByNsiQRe/H8iGp5jdmsgyfraIejLjs7O8y9I847E7nvcHT6kFJJzNPfz2ImOaqVIu2uCIDaORtDz6IbKn1Z090/9thZzWHLxs2tvV264zHj8QA1FHs69Xze+co7zAJhI4w7Lra1YHUlpCsZExfOhDDs4c9V3rz6tpC9ocNm8zdQfaG7XT/gRfsxRWON1BC2RKT43HnyKe++9eZyzXv9Cev2ZbI5IcNfuVHh7otzUquLK1FF03GG22/vcefzn2GGQq7rLYswHZMizt7oTONr734Vd9TFlTTy62+s8PzZM5z5gta62Jtcq4G3GPLqpdjPQrnBSrZOtZplPhFzrzds7j94SblqgSZ0wnAudd+vGK9rrl6P1+P1eD1ej9fj9Xg9Xo/X4/V4Pf4tDCVN0//vT/3/PLZ2VtI/+G9EitxxUxLVoVRuMZ6KyHk1v0scKZx3B3iyH8964wqGPVxGhLPmFtlsnrtfPMGZCm/65q2rGGqdRv0SDx+LtO71G7s8e/aSXdkVNgg9zk5GZPPKkj7VsFS80McNY5pNkfJ3piMSdYCe7ACC/lbVT8iYNQ4PBOxJN1IUdK7svkUkw73t9oju4vtsNL4OQCFrspiPaLWazCRm/+DwhGIxRxRqeJ7w6OvVXUH/LCNnipowXRygG/llvyMUl2K+SjZT4bwrsi+uYxBEIwYTke3JF6s0apeoVNY5kCny1XqZWJ3RORd/K5pHxqxgGiEnByIyiH6Mbuc5PRpSroioRi5bZD4/o1YRkeXYt9naeIM0iPAl5bhuqqDkmc09NEPWndWqGOk6R13xmdZqAyVSOT/tcvO2WN/OacD6Zp3O4IAbN0QN1P37d/ne935OrSGi8JpqsrpWYb4Y0WiIFHVW3+G8/5B8wSBjiv/NJgFZu0yUyt4bno8bd1C1Bb1j8Zndy+vcvf+IiXOE5w3lb63ipBEbWzL93ffY2apwftahKOmMV5p5ep0FimWQyPqU9tmQldpbGLKp8P7hS8Yjg0JZIVmY8ntFXG+I53kEss7sW9/+iFF/RhSISIuWrTObH3H1xirjiYgSRVFIpdDAmxm4sglkQsibN77OLBB77DhzzFSn203Y3BHZmkFvSOKmtBolUlPsw4vTZ2zubBLORcT7/NTDytaYjg6YiwAYV29bqEmD4XhApydZzeIGjjskXxC6wrZzBE6MoWfxQ1m3Z+VQ4ix+OKKQF+9cqVTIZ5ucygi/gkan0yGMYHNHyHAlv0saZ4jkWupKlXxF57M7f0XGFBEpQ13h6OSYjK0SyRoaUynjBm2yEtoaBBFeELG7eRlfRg/7vSF/8r8/4vf//rv02iK6nM1miRmRxDLqb5roRkrgmty4KeAvf/iH3+P0UMcuWIQXn0NQgxsyKvbbf3uTKDXIEXPrtojUCVrbMru7JU5PZYRt0EDRSrRlZLndPmE8HjPsT5lNBEX+X/9bu+SyRU7OnvHhR+K3nHGDP/jP/3vKJUljmzqQ6oxHLn/wD34HgD/4R9/gL//0IaoWcnog9u9/+h/+L0qlFr6kEoySBZqmkUYKk5Ej11hD1zKouo8meYHjNKVUyuN7yXJd0iQkilI0VcKVtBDPD0liFV2XGDViQEWTsMAwTFEVHU3Rl1mbNIlITEVC81L5OQHJC0OZKYsErbypmGQk9LpcatJa3aJWr1OtCfjL1vY6zWaNUjkr9zOPH8aMJmN6PQHXOO/2GIzGTMYzTiUzXxylKImCJev/cqZJPmezUitTq14wltUolnLkJYzFyBropoYEd8m1U0nJoOnqkrFQU1JRg+VI6unZjMViwWg4ZzQSEffxeIzv+4Thl42UdV3Qz6uyXs3OZSkUCpimiaZ8GfcMowTH94iDixYOMZ7nLXuEJUmCrgtK+gsYaSYrGsSqqsryjlcVwfqZfEn3n0UhimNRxwWiz5mmoGjqEiGhmxo5NbeswbJzOSw7g6prmLZYq1TOIwlmeFLnuc6EfvecQNZgqalOGmnolkNGu2ganqHassnk6jx4JGDylcommhUtoaA5y0RJIQzGF6V2jGcLTs9Pmc2mXCSJojAlCGeYlsjCBUlMqkyJw5B5T8KsXJ/zsx4338rw7tcEmuTk2MLxSjiBuLM102Y8PWNFUfnGd0W24MlDh599HJAUdQxJPx1nbeZjnzf2xPvNnR4//1hj93JpSVs9WiywVQs9q9IZCjvhr3+wzm++l+Gv7gn4lG03WKltEE5H/KN/KBjo/s9/9Y85P33Ctasi+zOYLohCoc//7M/+FQB7V98km80ShC6jodBvrfUq46HL1rZ4txevHmJnq9j2iK5k+KvXy3R6h2TtbfxE/HM0OaNevo4bine70SxhVYqsrrzFs+eyT1loMZ94tIcv+cUDYU/dWr9Oba3KNBHU6Htr20ynWQrlJgVdyN3J+XNApVYFt+fKOagcnjpsbYu2BLff3OCX9x4SxzErDcHoGUUBjx93qNcrFGXrh+nijOlIRZNtAVIMcgWV7lnKxo6Q17OTNjevvsdJZ0StJgQmcBPKKz0Oj0QPpqyxx2iQ5exkxJXrAgmw0qhweHBKs7GFJ7Mt81mA4w5o1ESGzwn66LrPykqek0NHfi9PEM3odMbkC2Lftzd2aayW+PhjkYXrj/a5vPcOk9k51bKAE3qOSrVmoGAym4nz9/z5Y4rFMpbsTTmfO6y1dqmWVul0BQRe02OmU4dsNrPsh+X5CaGvcvW2yMy9fPSEVusGmjnm8b3PxZzW32W6GFG08hg52coiLTGbP2IkSz02W2sMuhNm/RmbG+Kdb9x8g9PTXzIZifMfLs6xcwaHLx+QzYq9una9xhvrNqZu8ennYu5h3iRKIgzZ8uCkd0poFCjmS4zGwr7xvID19RoZs8yZhFRqtkecpiyGAs327fd/m9bKmLvPu2SKYj9ZMbwSAAAgAElEQVSHR2PqGy1myYCMbMUw7i0o5ZtkcuIsTLsZVN2j056hqOIcF5smqW1jaBrBXLYPiWxaW/DyqcjwZa01bAN2Ll2h15fohHhAvxfTWt3AkRl8XUv4z/7OP/ksTdN3+X8ZvxawwDgJ6Q6FI7Xe3GGxiOkeedQkVEHPpJiaTtLvLGsXgmRO92hOviCK0DNmncV8zBtv3MaRtMDOfEysRdhreT56//cA+NGPv4+drWNISM54NsCLhqxWijRqAhaUsep8du9H5PKCdABgpdkgjkRDQABF6+KMM4y6LuubEq51Pufalbf50c/+D67dEIba3rU91sPvLvurdM5PKJczTIc+IWJz4zjC932yVpVCdlOuSQpaSBSJ56fEqEmT2dijUrtoVBdiagGHR5+SBOJCs+wEzwFbUoK2Dz0eP/oh65uXWMheMf1eDbSE4UDWA6kJGWvGpd0NTs+EMIVpm3e++iZnacSLR0IB1+oOxUKOYk7CvCo1omBOtmxy8FgItGUWWVkp0FhZodsTxuOrV0NWq3nek7TrL1/sc3L6OTp5dE1ADtc2i5x2T8nnSzyVhCRBoGMXFCp14dwV8nWmi1ccHJ0ThRI7vXFOEE+59cZ3+OJToXzWN1qcnD3DCyUFaJCl1izw+IHDmtBrPH5xh8/vPOb2Wztosknij/78gHc/3COfEcbO4/PndE/b7OysUqiJ/706bhOTUsmV6HfE/uXzayTKCGcqG7laNT74nV1+/IP7hI40HgMFf7JCfdWlsSeU+csnQzx3wPvvfQOAe88/xzLz7D8/wZaY/cU85Hz/hI3WFrWGuMTz2W1eHOyj6UI2MnoOo1Cn1YpxF8KYRFV41X6AYm6jy2bcrW2bNNSQJXs0axliY8R4ErB+STgpkV9nNO5ysH+MLvvoTEYvwRrgyxpIc6qSzSuk2hkSYUSx0uLJwzPsXEJWEgQcnR4wnz2lXhcXjqlr7OyuYCqyBwEwmXSYLaZLKBH6K7xwi5vXfoPhVBCpTAc+9eoOhn3G0UuhuBPNZn1jD1Uak6Zp4rkh2VxKZ18o6Uu7G8AjNDVLQRLFjCbHpGlKxhbn0QtUwrmKZSXcfyjghNmCjqoVAA3kGuNmSAxwZI+bXmfKQe8V71x/m09/KeAMb7/f4MWrO5z0Ddaq35ayscr54IQoFvP2fZ+UmOGow5Zkg6+UG9x/8EvqtSb37oh3fvMrMzbWNxmOhMOg6waKqmKaOn/6r4Sx893fvcl4MmB9Y4WNbbkOVhFNM5aOsB8pBG6A43j8/f9SFsebfe7eOcCdVEmko9/v9hh2hySykLvnnmAbBTQ9JSPh2UQWmYxBnHgkkipY1VSiKF428DVNAVFL8JeU8SgJhDpRHC/lRVNVilkL7aJnl2oAKoIDR+5NdMzTgxeEzyJCSY6jYECiLiF4diZHpVZndW1teWaiJKFYqLK2us7OVWEgJGmEqoqeggCzyRR37nJ42uazO0LfuCFYuoZhXtA+m5TKOUqFPAVbnG3byqBlTQxDw5a1UqalkTHMZc+uXDZHPVeiuRGhKrIGSjPQFJ0giJjJ2pux7PvVlw7gcDjk6OhA9OCSS55EKapmYNoZCmWh82zbplAt05TP03VjCfmTPhL+Ys586hAEwXKt0FSiKPpy7WybIJMjn8+TN2TvuyQhigMBsZRGi++4zPw5QVs23Q3DpeOVkZC8bFY0fDazGvmsuKMLRZvWxptosl5NUU3iUEfVfWJZ3zSfJ0ymPRbjff7Xf/ZPAEEtrxCRkS0dfFUjny9SKzVoyBqT3uiMKA4olXJYsl2ClsQEQYCuSWIIVcUwoVQq8c5N0cJhY32N3qTHd3/3NvsvxTm6//kTNE3HlzWXSmwyH3TJl7K8+8FXAPjpx3+J72cw4y8bYQd+Suh7bGzKOt6Hc+bzPopaxA8kkYkGJDFR4IGso1vfbXJyeMJHt/4aAP3ZYyIdhpKqHWDiP8WNPB4/EzBkK1vnyt4bHL28z56ElY/n55j5PHMHCrKxqW3pZBo12lIHXt2+wmh8wMTN0JOBaDMbUyjVCd0ZkWz+a0YZCrqBPxdB2lPHYD7v8fj5Pufn4h5dX79FLVPCc/b5/X/v3xXPy9uctB9g+eL5j58+Y3fjtykVHZ4+EaQTZqaGP3NxlSEnp+Id3y9+l27wbxgfic/4kUGz8Sa5bBU9L3Tej75/hytXvsJkdszLQ+G81atbrG1mePJc6MnNjR26nTGu72FowhFtNW363ZRGaYeTE9E/0dQNyoU3UTxZ1hHOSdKIj771IX3ZeHc0CLh14z3Ou6+WjoypblKtrFNvCjk/76ZMxyE3rm/wxSc/ACBjNVnMQ/KZFrubwqmdu2Me3D+UwRlYqV0lDBJ0HV69EnNvrGwynvgMhwNU2cn8xo03GY6PsG1JZJYtcnJyiKWVKOTFPerME4q5mEotw8mRkNmsZrNxo0i3I4KUa2tlomTCeDhlpSrm9JVr32Tv8iZZVcOWcGlTV9h/+AMePBSlHs4sxrWgvnsZ1Rbn/+j0HikW7Y5w0irVTUy1wu1336FzJux2PzS4d65ghOc8PxB7vPpGHifOUDCFTVuo64SqStHWKBry8os99g+O2L2Ro1yWdoGWMO0HVOvi73vPfkzJep/xsI3uCANurZnj8ZMvKDRaeIZ43sibEiYWwWAu184jY9nUtlqkinCI5rOQYDZAVbPYUnfVszn82YzVDeFLjI5jclWbybRLhNiXQT9gOktoNl1Oz8SZXF+T7/Arxq+Fc5WkMSqiSDNfrJKzG2Qyc7xQGOyd42OgSCFfR03F5W9aI1obG/TkwVBmU4yMR6W0zUZTKLvFYkJKFiOX5fO7ImKh5CZUm2v0B0K5X7/1Aab5BW5wxEhmvJJoTH2lQoqPqYvnReGcyXRIuSQZf176bG/XKOTsZaFxvbjF/qs2H37wu0xnwihrn/Uw9SrFsriY9nZuMZ9PKZdqpKpsSJwoTCcDNle3GZyLz7nxE47PDri8J3CnqiayEX40J5H2s2XZLIIRzlxnPhPr4HoOKDqVshDoMBkwHk/QrRNcaUiduseUSgWGYzFH3/cp5LL0R68oSnY7M9jk7p1T4jBDKqPNCzcgUSPuPBRRq2vXL5PVtzh51CejC6XVqNcJkh6vDhcMe+Jduv1DMu+WSKRh+stffMr21Yh68QaqLDh/uf+U87bD2trasjar2+tRKa1yeiwzXq0supVnY2ODmuyYvvDbWGadF89OaXeFok6YUanXGPRl3Vv/Dtlqk1QN2T8UF8zl62vo9m0yepaVunjnxSimkG1x+Eys080b24yHI9RY4+5PhNLKFvKkRgfXiQhdcanvXLvMZHZGtSGex7nN83sjKhULD/EugeczGs5ZX9sglI2hZ9Mul3ff5fBQREwySUQ8X5AtGrSq4qAfzA6p1ooUCgXOJHtOq3lEvppnfCpksb7SQlPyjIZPcV1xZhSjyMbaFU5PR8QIua4uVBrVDZ48Fs5AnM65ees2aqjjOOJ7R5M2Tjwhrfk4FwxJ5Qn5ooG7L9SF4yXM5wbVZgbfF+cIdYxiTzjp9nFk80Hf98lnLdpn4n1V1efq3k389EsSmIQAOxdj54UcZDObvNw/4FrpPVxZk5DLFIhDn9kgRV8SFMBo0mM6EHOsNEJq1RazWZ9SSRh+gSzSXWkUSSUCejCJydmbLOT7Fgo5AjdiNpujyDosM6uSqiFR7BJLFaloJqYVMJXFsqdHLvlKFS9USX3hOP3sp6/YaF1iOvFoVsW8nHAKSoJ7ERU3QrxBiqKk3LglLtCHD+9SqZRYW28xHstMSxzzzW/f5p/90z+We5wj8i2KRZ2XL0XQ4t/80VNuvqPy/MUjcpY4754D5WqCI9nm0sRAVRMsy+L2hwKP3/Uecvn9y1xufoPxqXjerctv8MXDe3z+8L5Yc/Ov8Rd/8udUKiu8eiXOzHmnx6IXoqsGhmRIS1QF09LJ5YRjk6YhpqWRpgmqvLw8N8FQXRRU0kQ2uY1VVE0j8IWOUHBRVZXEVC7KvlAUAytjkc8py15ipBEpMbqWWcpYt/eMs/PHS6M3UVRIVZJEXZJcZKwchWKVfFkYKOVKjWqtTK2+xu5lcWGnpo6hasvnL1yPyXjGSX9C4Mo+PjGoiJquC4KHrJ3BsgwyWfGsXM7CzhjESrokwjBNC10VhBNZWUin6zqFcpFsUTgRzY2WzG6FXzbG9QOmcwfHcXCn4qyNuxN8z1uSZWiahmXZ5HI57Iw8D9UctUqVXC6Hboq9UlXhXF0E2VzXZbqYMBn28GWfG1O3sE0Ly7Io5MW8MqZFvppZZiJRFTRNIwzDZRYuSRIWgcdikdKXhA9xHKFrNpbsTZMvWDQbLdIUKrJhaHWtgNcocevWLX7xsai//aM/+iMqtVU86aBkVR/HOyEeTNiXTsNHH36d3a1r+MGczU0h+3o2y/rKLnZGyEGpUKBYrbCxs0sqncFFOECJE0ZDh40NYSf8R7//dWbOiH5f/PZoMGE0anJ2esz3fiwMNz+tMPM6WJOEJBB6RTdsvIXL/rH47Siu8NG314nDZFmDmBCxcCJUI8KW8nky6qDFB+TnYn0XxyblSwFbF0QOwP7TIeX8Zeyy2OPGmsaLl79AjUyytnBeMcY0WpcoV0JC6ZhVV8p8/P27JJ5kHd59Gyu3xuD0lEuSXbIzuM90pHNt7xoq4jxE3oTx7Mmyye9PP/lzbu5ex1A1VmpChj3nEEt9m0trTXTZN/Tw9IBsVqdzIOa5vfYGvjPj1cNT4kjWG1dLrJYr3H8costMZyc6Y2/7A4o58fyf//JTtvrbVCoVVFPohPrKOmedB0znU2plWbuERhimZHNiTs+fnrDSKFNYKxFIeVFUE8MeMxifYpvCiWg0BBrjgizjyYsvKBVX6XTPmY0vzsOUldoWq41LlMqS7OTwGF1fwXfE33EUsLpylXr2Pf72790ScpAZ8+Mf/5BO7ynPnglW2L3rb/K1D7/KD394IP7efo+j9s+wrCx2XpL4jI4IY403b36N8UwEtbujAzKGucyK97ohcQznnVN0TeibQqFEmiTMRgk3rgn7cDxtEwZQlOt7cu7Tapj4+Ciynup8+AnzOz/m8HBMJZWEQJpFqhdZ2RDrqzsx7vmQpn0fTRdO2UQvUiw1Kdji7rv/6JSVvEqiVdja2AHAymmcdIZcXa9z+y1xPh4cfMLYtfngffHbZTVHb9ShWrtGJO3joxdnlEp5xlMHJxR6o6S3aFYz+IYMHns63aCNE8MlybmQKepcv7bg8HCOmRfop0u7NpNpiBFLBNPijEy+QMoITUI0Ll99C5uIq1s3mUm4TuBNePLyLrmssANbb9lMJx0ePHrO1Rs35R6n+P1TDvfHqJL1s38mU8G/YvxaOFeaqi2LyU9Oz/D9kPpqiVQezrxdp1DIo5sRw74wcs/OHFS1S146u+edu1RrWYJohYwqFnLmzTg7v4MbtGk1haBc37jO06dPyUoDfjzPomgaRHUcTxzq6ajL6sp1kjRgJov4q82QnJmjLJudLsodMhlIIjAUyfaUhUyuwMLtMZBMK1vrX2Gx6DHoCQOztbLKxnqd/ReP0DRZ1Js1yapXMBUXTReXuKmo3L59e0mHNRr4hPGYaqlFriQu3sePn9NsrBMmI5KLMumkShg5nLdFRKG5niPx94hDuNQSUdzHj17gmwGthhDUuTMgcIoshiofviMgeXc+f0E+n2Fto8DZoXienhkRe6v0RiLSe+/eEVqScmlXx3HFxds+yXLSeUkmD0kqDnqxlKPfP+Qvfiwb1W6bVKs7HJ8e/t/svcezZMmV5ve7Mu6NG1o9rVNnVWVJVAENFNBodE8LTjfbyCGtzWjGFc34R9CMO5rxj6BY0DikcYYzPc0eNlqgUQAKVSiUSC2e1i+0jrhxNRfuL8DF9G4WWKTvMjMy4l7348ePn/Od76M5FNA2L+hTyr/Ly5e7c9jK5uYW/b4/h/IoRJweDEjnA4YDASHxXJ1iweLFs6+wHLF+pXjCq4MzchlxAasurWKoBeKkRbEsqqGv9k5IlAFxqoiJmJc33i4zi1U0KZp4el6n4KxyY7NEsSCCcXea0G5ugDFgFopsSKPepVmPWNsSzx0zI50tU3J0sjvisHr5tIWuDzk9GnLjpnDw2zurPHz8BUVZFXvj3Ts0LhqMpzPOz4Wdx7GKO/ZoeFcYiXAi52cNDGvGRBZVup0+2WKAmqioilyH0yaTXp+llWWaV5IsxnVIpkOyWWHDmr3A/vEJqYrFRFYiXp720FI+kWcQRyLwLuYW6VwkBBPh8G1niutG0AErJZIix0cXOFmFDz96h15T0l+PsySxxlhS+TqZPLt7bXxvOA+EKwt5rLTJoYSs5gsxdsbgq0c/5dkjkUVd3cihJgqQp1ASDrDXneLoC1hZyarYCVH1DhfHF5Qq4tLiumIdX704nZPOLNZWqJQXOJXJbT/osbi8xNnZGF1eGJz0Aip9FGxMybAX6x6hH8wp5L0oppjSODrepeSI35v6HqNByNryW6RNYVOtUZ/xdEYgaXQ1xSGKRywvZefEDePBjMk45vTkgs0tyUCV3uDNdy+x/qWkp41mqEaA71tzsppPf/YEK7vK1vYNTONaON1mMopR5CU0iqfoqk0Yunz9mWDcWlq/zac/eYbyYZ7ZQKxVNI64bD7n5pbIQH/w4U1+8MM8i5V1dvfEwX/V6FAqrbD79IjzU5F9Pbyc0W0POdgTyR3TyNJtjQjCGENerux0hkATMMFrMXVFTVCUEE020KuKCagkoTen1lZVhSRKCGJlHsQnCSiJxjQW/lTXdTLZPPAbQglFUWTVTEWVJBcJEaPBxRxGfnAY4/shJCqODD4MRVRfykVJbFSqkM5n2VhZwJaU8alUCgKPmRvgTkWAMpl6DEdT6m0xl2HoEyUxacOZX+4cx8ZOm2h6jKqJ9dMNBV1L5jBvVdeIASVJfgPliyMMS6fg5ClKgp4kDuW/S+hnGOK6LrOZz0gG9b3jNkmSCMFl7ZqGXFTXrimPHcdhbXkFXTfmsMBEzrXneVzTBk1nU5RRf+6XwzgmJYO46wqW4zg4dpr0QgndkOeFqmPo9m+e03eZTHtEocaoKwLMlKPj+RGJqxBL0eBoEmIUwZesalpikdZT2FaaVlskXO69/S7/3X//P/Do6VeMXGELw86Y6aTPVV8ETYfHDYgVvPATkZ0E0k6WlJOjUDBJ2WJedNNANwoUKyKALlUrzGYr3Ll3n2ZdfPdKLU/pD2cM+yPGnvj+yJ/QaUwIIjEX9+7fZ+SP0RUT15VJJy0kY6SJ9YBHn4jM/1J+ATQLDCkifMOgP22zsHab6zHqHrK5skEmK3z3+cEBS7UNTKPGUF70Yy+gcd7Hzo6YSPIPf5zlrXc+4NVzkUyut9rYRoCj9qjl3gRg3LnAzvs06ofcuinkYByrx+pGhuN9YQf/7V/8KVGzTnc6IpHQ4fbgCtX2SbyErx/9FIDq2hLdVoHioljz1dUap+ceerZKXsZFhhEzGHbI5SfoUjz+6PgpevlDthaEP59557Q6NguLKyATkiOvgZ02KRTW6fYG8nMq+eIiGUcyUtYsVpfuEXIAkVg/z3OxU2W63jm7z48B+P0/2MSwevSGoiqmGT6j6T7LtTfmsNVsNk+jcUUcx2QkwVroJdhFh1u3RbKz2DZxpwP29vbYXBZosJ0bt1j4s032D58wc8X+mwYx036PiiPmvFLJ0GwXCEOfyUSc9zs7G+wdf81l/WCepAzCGZl0jWZLJFxrtTUyMwVTzXIlBYnjKCCih5XKcXwoIXixh6qYpHMiJslYWZaKd/mdD+7wf/3rvxLrEBg0uMTzylxKsiolnBLrGrtTiRLZu+A//+hbuG6dXVdA1JeWLY6Ofsm4J/Z6rjglSek0W2cYuiQa6emUSgXaox5HUlC6UnqfzVp2Lu9xdHhCtXCTvZPnzPpir9+7fZeXu4/YrN7GkRfoi6MBm3dKXJ2L7x4rMboJO6srNMaS+MMo0T5o0xpPeGNBxHREFsF4xtKSrHiPTfQwIYhdDg9EtalfHxInFXZ3X5HIZJEbWCwULTSJMjptn1AtpCmlDdyhFE6vqyxWV3H9IyYjYeuW/Zv9+h8arwktXo/X4/V4PV6P1+P1eD1ej9fj9Xg9/iOM34rKFYmKlRY32byWYzKGy3qLQl5k2LJmHjXUuGr3CNVjAEyrSm0xz+mRuCW/cf8B/iTFF1/9I9/7HdFboKkxhgnvf/tbPP1GZCxevNjFNCPaHXFT73SvsDMB7sihkBbVs0rN4ezsgBs7m4zkDdsdWlRKZUY9KVRbdlit3ufstImXiKpGnAxx8mlaFyElmWFPWTPanSHVirhNz2ZNJq7D9vYNen2RFTs+3UWhTyq1xqAn/i7UfIZTV9AjA461zq0bS+zt7eGHIoNw99a3OTo6oNOOycrSvdsf4NgVCgXZg6UuofIcJUnmpAzvvH2DRIsZDEQ2yLA8hhjcu32X3kBkoIfDOm9vvYs3aZEkokSyVFvl88++5tZd8W47Ww84PDhl5/YqWiyyvb2Wx2S8g57uE0nRyxQbxMk+fpCW3z2l0ThGM0ISOZ/d1pR88XOiaIg3ltBEzWIwuCKTSUtDGZPJZHCsLGubwjY+/flzrmaHuF4XOyvKmPVWnfOTKcWaWJdIneC5O1xdzuh0RBY+ky8wmQ5ZKd3mqiGyGpGXJ5UGNxJZne2Nt6kWN0hmPkgB5FQxxu8mlMwtSkWpdxCUyGVjZr7Iqlxc9ilXDCrGGkPZdJ7NOiyurZIz7tFsiKzt6VmfXM6h3RZ/PtxrUyrkOT8dUl0R89KfDug2VRK6GKrIsKdTKv5kSior6W938swGMbo9Ii21d5wZhEGO89aAUlk0nZrKhFFnRG1NZMAbrTbBTMeJ01xI+YK3Nx4w8Pqsri/x+KGAiAWDFKbpky5JMgJPI+PkCIMRkSQ2GA7HjPp5lHhIck1HG5oM+jNyefHcvSHk8wq6rpOTVMz1Vh3fC/FDkXm18hEZM8NgMGB9R3wmCmISstjpiGfPRUYvm1vEsHz8UKxxqEzodiJu3rtFuy2qYEEgsoHVchEvEOsXByUaV2dkZHN+NnuTvVenZNJpLiWH863KW2TTAaPpBMsUWcYZESYO0fW7BTq2btNzh6Srwl51p8FsPKBYKNMbCdtwgwF+5BLJfgvP81HUPvcfVIilmHSpXGBpaYdmfcIn/yia3L+wHvLR926xvC6ya+2rCuhNVJV5f9qzJ03+5M8/IJtP0zwX3z9xpzh5kygSe0bRRI+N7/vcuSlkJVKpCfe3H2BqJRZvCHs5Pb+iurFJoyEyoV//skk2bTG4vKS2LDKDy0ur1JtnfPjtGr/zbVEVbod9SEzKeWFjD79+SRhoDHo+p8diDi7O2wSxzsH+KR25NqqWIiGaV2hsO4Wm6FiWhSKrWZouqkCKmoCEJieJQhQlKOq1rlZIFHlAjKpd6w2qxGGCrpt4skKqoKEaGSypd2SoGqoiBOyve2Hi2GM2crnsC1s53X2F53lEJPPeCcMwsDIL5HIZSnLd8+UiCyulOZxZM1IkCsST2ZzkYjx16Q3GeF4wt/XrapuuXcPMDEzTxLJNHFkZskwNxVBQE1BikWFXEkCJ59TzKBGWbZB2UvNqoYqA6qmqOte1CsMQz/PpD8T7tTt1fE98RxRf98wJSJKua+TyEoJjWagZG8eSsgSK6DvyvNm8mjWaTRiMh0RXTRJZ89I1G83w59WtSmkNO5PCylrkcsJ/J2gEcYBqJXzwkYBZ/fVf/xV+5JKoUoYkmQIp3NmUcl7Y6z/+3d+yuXaL7nCAnRHfpaNh5VRMKZeSXXLQjYTYi0Bq6HizCd6wx8nBiNCTFPWJhxeAKYlbFMUjRRHf9HFkBaOayeKmHaqFNDNN9Mwq/hjlvkIkIc7T0ZAEk5gJjiN7WtIhq9VF9o72uJDUzZryJt1Rg5msuJkZlSJp+hcSigCslVZJp3xcSTSkeBati0s2b9RotkT1ruDU2Nks8fnnL+c0/XGmi5XYtCcCOqz3DdR4xPryXS4boq8mny3Q742opheYdkV1oNdqsphZ5DtviX28ePt9BoUG31v/iETCIH/19BdsrK/wxU+7NGzhW9NOjvPJPht5ETs1L1uUCnm8sMCwK/Z/plhhMO6BusKG7JnTNZ9UOs+TXQFRX6guUalm6fSvyMvWi0brlJXVCkqySDYvKxb+IkmszmF63jQmikY8e/WQ+zdFn2unc0Ucd4mjhFRWzOnx+VOKxTxHxyLuU5WIjF0imE2I5L5CMXFnbTIZk70DsVaVSgHLsji/FHPX703QlCwXF39DhIA//M3fjkkCm9WNNGvrYt0tRSOl2CiqoPt/+XhIsVbl1dEvCWUcdHU5Y3mlxuHeS9bWNsVcKRUGozPGEzHnQTgmZVTpzg5Iy17Gfr+PaSVsLd+i2ZDSOUGXSqlMty/8TSmt0222yDsVqo5se3ATckv3MKMhi44gvhiPTFS0eS9s536Nx+kU/uA2M4SfaDw5JG+tsnNbwMrP90+IC2OSMCGUtORhssfpSY5cPk2uIj5XW87TGe3i9sQeSikVlLiHN5yxvih6GY9Ov6FWWSFva0wlVNCb1dl/NsaVfZm56iKPvtgnmykwkLaY+Fe0Axc7bdCSbRaGZ6AYA06PpbZZoDNUxihWQkZqkhlOxHR2SSOYEoyEz8tZq0zJcNIWd4mdpW38+oiSvsbpgbDh2mKGTMHgybMrdnYkHNT+jSTQf2j8VlyuzJRJuyEeVDOq5ByFwE0RuqIkd9w/Z+oNSGYG731LlLH7nRndy11mXVnaG05xRyr3b73P6b7AQn747fe4vGxy9GpEXqpU2+ksk5GG6YiAoVzL4o41ploX25G6LHWfXKZIEHZYkMK3YVhhf/+KYlkcOHpS4bJ7RGs4xpDCpqbh0PUaGIEAACAASURBVG43MW197uyavQtWb9hMh+I5M45KqzWmr5ooutjUhfxdnGxEtzPBLl5vhCl6CHZGXu5mHRx7jbt3HjAat+W7pAh9g50b69y+IWCPu68OefDgTdSUeJeHT16ypG6ScTQSeRAGYYBpt7jaFYZjpSFtpeh1L1laFoFbdSVHqJ3TvIhZXhUYVs+d8vHH79OQulCnV6fYZZiOQqJAGLSXDFi/ncY01zk7FWXs3vgVZpLFkAKX/f4F5WqGKFRRZTNiGJio+gzDzPDtD34EwL/8P/41GztpIkOsp2lvsGCuMQ1P6I7F+y1tVFkpVvj5r59wLB3izlt3MdIa9Ya4KG7cdLga1Mms2rx3R8Ae958e0RpecXnxjMgT0cfGzjJPX12xuigCx4zhcHGwR3NwgiObLbVYRbeOSWdKJJqACvSn56Ts3JwBZ7GyjTeLOT1uUV4UxCLjgc9i8Qa10jITKdi5s75Grz/EqEl4SuwzGHo4uRR9SZahp20SdYQ3SmHLICXSdQICkEKc9Xqd8TDh3v0dNBmolRdyuH6DxJ/iToXN9mc+ZrrHgmTqsm2bMJpwVu9gGeKdC9kCmuaybLiYS5KEZTyhHmcYNIS9GnZCSvUYdsYoiwJGli+UGLcs6s0RqbTsKSFEwSBKxD5OYg9vrBPGCu2BuNBWiktY2YTOWFxoR9MUx+fHJMqUvC2+ezgNiEIPXS9y+464IEynMyHgLSPHXH6Jna01grGOqQtbXF0TB1257Mxhs5cXI9JmiUpxE4BHjz8ll83hzzTKBcnM58eYKR/Vi4lU8ex6ohORcM0NEM5iFNVE17JzIdxEVxj3E6IkR68nDgZ/OmbsuYwky2HgQTAbMZ4OQRF7rVzJM/NGVBc1CqfiGb74bI+7b21y5y1hY/9+7yXVWgE/mJLIJk8VhRePOnzv4xuc7grbG40GpDMbMiAFNVEJoimOU2QSSwaq2RXvfu87vHzaYTYUe7k7O2LJ+R4rC8JvLRQz+KHL3tE5uuwfO32xT6Vq0G0FRFLM3dUGNLtXrK9K6Kka8db79zCMgNlEMLKqiokfR7RbE6yU+K5PPvmEdnMCsfjzwe4Zqgq9/oSJ7NkbDSeYegrdsOc9SClLQ9MSTFP4RdtIoSgKs9kMebciISBBiAZrUgSaJIUamyjab9gKE5iL7wKomoaqmKQkpDIIItJaCj+YEkfXpAwR3uCUq4nHxaHsa4t0PGI02bOXcyqkciaWnaFcFv48U8xSLjvYmYKEQAoiijCA6eyaoGjGcDDm/KxNJMmOFEX0NymKQtqS/Vu2hW3bOJJQI52y0UgwdZ3omglDtzFSHlE4JUquL50aKd3EkeLOJCqmps8hunCthRUzGY2ZyB6vdqOP54dCyFgOVRVsgtd9Z45jY1kprHQWJdHk+6moanouiNztNaAn+uQUKXKvmiliJSCXc+bweiNtkiQKioQqK7pBEE0wDBVN9o9d1btMp1PGkz5ndeFL4qmO63nMZH8jcYJpWqK3TUIhLdvGyqvYjk1KQj3tdAnD0OZ9LmEYEwQRxkxh1JOwoKBPHE8Yj/vcvCWCKyO7hBdOUCUAqFap4kqfbEobIgn4yU9+yr/7t3/JR28LZrwbtxb5+qtnqJHwy4aSpt7psZxrzed3/d7HNE4fY0o9ueJWjqOnHZxRne1Fsa+GrUt+9bMDgiQilRGf0/QMvSuDTFGc2TMzoqDWGHVcqmUBY3KNDie9GUZmhuGIOV9ZWOfTh19xFUqY9bOHREOo5b7B8cQF7HD/GfsbH6IvReiI89DwLd6+9TaNpvCB5dIaz57s88F33iLhWjNzRDqtoqsqliKe8/b6HeIwZjAQv//t9/4T9PSAw6MT0hnhA8vlMsFEwXJ81stCS/DZy1+DmcORfuTps19w5+5b/Mkf/Df89Kd/C0Cp7OCHA8LYYElC/s8vd5n4q5RkEmjof8M0VumfDFgoiDN61G5TLuYI/RHbmxKeXSpyePiIDfn7+ew5drZKs5fj+ELMy+b9DRbXbOoXTR4+FwlJM5UhVgNiVfjcybjN1q3fxUhO8BRx4Zr5A/r7JZZqa1SlEH2zPmU0bKIokiVaCYn8Ga5nsSoT9GuVHLc3P+b5k4eYCD9/ctVkZXmbtZJY98O9DgsLWZ4eHhLLWDcOdEq5Erv7Z/Qk89/m6ionBxcUKmLd+60Lhv2IJAkpl8QlybbLxGqK6UDs9Tg1odMySGc1saeBIIyoFgsYtk7OEXOsGgGDrsW6TIQP+iOOT3ZJJnA6/VK8y723CHsD2u0GmiL29rh3hZpfIZMS7zJsdkhlIFTGWJLASg8d8hkfd6yxlpUFiKrFZNrn5TfiXcqrGdxBF9UtMfFkz7y1hDfxMXUdR/a6jkcDnJHJj74j1jidrfH00f9Lszlg8a6w82y6jB9E3Nh5l7ffEfv4i5+J/rp/avxWXK68WcRVXbz8jbs2mWyB3mDI+ZkUMU17qGhs39qZM9cYahbHrmBvCWeWxCbd/gVWNo0nnevjx8+olBe4uHrF+sqm+K2pQbWaRlfFoffk5UP++A/+lF5nxOMnQuDuzdvfJp2xefjka3RDGEalkGZtdR3Zn8x47DMYDrFMh9FE9mWtrDDom+QKylyYzh0bHAxcBgMRxPS7MW8/eIdQaxCJfUEcQ6GwTJJMyebFYlqpBUq1iEcPxUasVldIYoPziyfEkTAw21zgz/7s93n0+Bu+fCgW+s69FZrtCT33FwAsLC5w8OKYpGbxxt2PAPjx3/97VjfzbEs6+nrziM1tm0EzQ/1KihGmC6xtO0wmI4ZTsTarKxV67RZLUp09n9ng8nLA3tE+lZJwiGEYknYMOr0GhinW4eatNM8eNbhxT6qJO8toRkCr1USXwqbL6xlS6iaXzaeMfZHNipUuhWKVhGuxzBKG7TIcnPHJT4UdLG/cRIv7eGGbgqS/bba6xH4GLRBOpf5ygpYPWd9apF0XNnW0f8Tb730X3+sRTsV8ttuXbN3RGTWv2bssgjhkefkmVk5sWN/1WFv8LtnsIr/89HMA1jdvcXp6QsYSvVTFYpF6a4iBwlVDONve1RhFMThsfMV1D0LsNRl0XOTrEZQ0DCeg3W7P+5TSOY1ZEGCkI0iEQxyNrkibeUYdyRCn6jiWzu7TExYXRdb27t1toshg7NaJZjKYS1l4bpqTK2GLgWtiGnlIonmPzuHhMRk7zZdXV0w9cQn0kzyzWMgPAKTSWS5PGmRzFUHoAgy7JkurOuncEodnIqPn+TMKRRtP0vvqeoWJ10dVdQxTOLYoMhhNPDxX/H7dbeB6U2wzjSVJS4ZJHdvSWF9b5tlL0Ws3mkxZWl6cZ8WnozFXV1eYhsPSirBP1RDzfHbW4O49kVnVVhR63SmRZP28cesGidrj6GhCRjZw1mo62UOVRjcgbYgLWpxE6EaCKvsBppMRk7HHjRtbLCwsyPd1OT0c0+3OSGJx2VGjGWPPw/OF/bSbDbZ2svzoD7d59ljstW7/nO9+9Gd88/Wv+NZ3NgGoLmRxUnn+6I9EMulnP94nCEKIU/MLgma4PH18TBT9gI0tMVfptEUcxySI4DUMQ2zbZtSdMJkKP1UoG+zuviBXUZDkeWTTawx6HpORmLNiqc9oGkPiMWiKZ885Bbq9fSx9jX4oeiV1JU8QzWjIHoGVlTV+9fnX2Gl9TnFer9fRTZ1bN94llBWS+w8qpLMlVuRa5dK/R/2qw3g8ZfdYBMvd7pTZMIfb8Wk1xHwenJwy8Qy6dVnFYUZCgGVrkIjD37Is7DQEwQzTkBU8VSdOvHmlTMchiAMgQIll0EAIygwvFBsyjnzCSATbqnpNEAK6rRMlNlZOSnfoKj4xcz1mhvQmEfrwnPqlrJgECWYqTRwJIiKxVmkyaYdqVaxdNp9jqVRgY3kBW9KQx4rKzPOYejNGA+GHZ35Iq9nndCoz7hGoSoKVTmFI1j/DsrDTKpm0TSZ9XfFOoWohiir70JKEKELQvF8rG6Oi6zqpfA5H3lYrmoqqBPMqVZIosl9Nw5PEKX4QMOr08U9OkYAFYiVG0VQU2YifzmTJF3Ok7AxFWXVP1BhVcwjDhEJBUq+ns7iuP2d/jOMYTTVIkmjes9fvTRhNhqwsr1FD0rrrBq43I5T0/lEY4k19xsMh05kkmLq6JDhOoekgc30YKYuU6cy/O52xsdMpirk0zsq1oHyEZljESUIcy0RJFKLEBoqkHHe9GaZuYJgapyfChv/q3/4bzo6OScIQpyx6ZiPDx9ArICtn4bCLFw84H3vXi8D50a9Zqr5DT1YZj3tjFtaq+G6XjlqT6x6Szpd559Z77F6Ifspev8X3v/UDXogCDbOozWLGodeZomZEoH+4e8zaVoHzkzopU8RBg96EUlWncSjiDVNbJl3t8/nDX3J3XbDZ/uAv/gUX+7/m8aM+b729CYBuWbx80cApivXsj7qkMnBwsMelFK9Nm2XeePM2F+ft+f4bDsfYdvAbYePeJcOTLulMhoLsCVajNIZiEcQdXu6Kc9TOqkwjl6ms6P3ugz9BH7m8OmnhjcT8ebZKqXSfzuAUdyzWoVwo4eMylILP5dwqZ8c9yqVVVFX4Fj/qsrx2j5fPvsCbXCcEdaYDUBfExffqIqRcUFhfus3jp+IsMowVguklg6sxO+siyd2bXqLpWRRT+J/Dk5/w1ddF3n3nh5yci6Saao25qh8ShwZPHgqm2p2dHRYX3+fZS8FyWMreoj9osF26w1VdzOf3fuePyS68yb/49u/x9S/+bwBaV0MOGg3KlljPSiVHLlvm7OyMQlH2IJkjdM0miRzWq1Iwe3pOffiSquwf+09//8/wgzp///O/JEL2gXkQJSa2ZA90LxJUdYLnuTSlnM/CUo7B4IJ2K823P3xXzGcwwh2maDfF3HXaYwqZNXphnVjagaMukF0w8ZIJvY64rN6894Bmw8OXpBsLi2tcXjQxUwqxdC7lcpnJxCRyu5wdibXqPH3GnY1FLE0yA/aviLwUupOiLG2q645JpdMsVJdBldIdl4/IWw6fff4z8b6xTa9xQnX1jXn8v7d/ygdvf0S3+2sGHWFni+tyH/4T47ficoUCsXrdHOwyGA3pD7q880CUDhuXU7bfWsUwdR49kvAe65x+a8b6+iYAvj+ltpAnkzGZyY1x486GKB+rszkV43CYYNoKk4kw5o2tMg+fPGQwPkNLCaM/PD0gDEPy2eqcwrnTGTIetcnlhPE66RxK4nDVuJozj01G+2yu3yeJx3Nl9bSdZzabsLwksiN5x2AWTBl1JrxxVxjh/sFLvHDMLBjixOJCoBkzjk/3MVOSi9/vcdnoM532WVwSDv/hF+d4Xg/HTnMlKdTv3rpPoWjTaIqFnypwc/su27ct/IkIRLc3t7j3xj3Gcp4K5SGWnsNZ93Asselsc5mj3V1WlrL0h8KYNNXAdSesL4sMWJyEOMUORSPPUMKgarUyL18+YmGpgC3JP0Ivw8qGQTYtaVCHHYbDAWGQEMzExr+5cx8vGNKdzNjfPwbgnXfvMXGn2JZw3Jrpc3p2RHfUYm1DXKQG/RNm2RVu7uxwJeF1b93ZoLiyzdljcZH6/Jsfk1EiTl7FpOTt+I/+5C3a7RT5zCrWspiX43qXctFGk3StgT+ikLfoDvvorsjibG9U2Xt+RKd3SlZCd2Klz3vfvsfJM3Fp8Wcqg8mEYWtMcUVWAlYtmu1LdGdGVRKJDDtTHCeHFwv7CeIisZtjMhojUU+gFEkSmAUtrmkps/Y6mmaQSou90Gy6pJ0xuYJG/Ur8x37v12zerhAFBt2xgIgUjWX03AWGDHCXix8z6s24NIYMB8JJdrodHl/2+OCj72MVxDsnrkfj6jFvvfnHAJiOjz+dsVDd4vRKHHqTWYihlZh6fYiFU7bSEEdZdEkQYqdDes0Jll4iDkXA58djmo0hZaljZOhpdEWnkCmzXBXBiGOHKGGWXm/A6rJ4piCMGQ6H3LkrssjdzpDzi2NKFW1Ot32twTUYzXjxShyylmVi6Bkuz8XpPPRdwnhAyrRIyWrzWcvDLjpo+1NU7VqHKQQ1mjMKTsYhlmUTRxrNhvguM6XiZJbo9WdzcoXQm9IZdDEkg1m9XueHP7pNuzHgzk3RMHxw+JLJpINpmriTa3Y5k3AyYuO2uLB/9NENPvnHfUqVIr6sgqUslcP9K54+umBjW9hUGHlEYYwq7TyKPHw/RNM0VAryu6c8f17n1r08jiWCm9a0wcXF13z4wccAPPrqAt2csFja5uxCZBlX1tYJAxslN8KTGWdDcYgCk5MTcaFWVR1F1fG8gNqCYHGbTGwy+ZD942+oVMU65wpZvKlC4gs/1Rq59DoB+doatiPW6v2tJdyxwf231njySESL927+15wfDgk0sbbHh232XzVpNab4sgJ9enpKuz3FmyVzPbNc3kZBm7NNamYPK5VH1zJzVslIMSER1SkQhBNJLN5pJhkhARJ8FEUFRVbvxjGqoZLIbHMYuNiWhmmU5lXGoqkQxb6gqQ9F4i3ypnRGDc7PBcvpNYNmoipYlgjKUqZFsVilWCxSqEhK45yOvWxjWdcaUxHeLGA8neDJi8VoMKA7Cbh0O/jXMbsGdlrDdqSulpUhnVZIWcZvoNdxCIQoqAQzMZ9+FBFgzm06CCRUk5BMVuzjfErDNHVM3SJOxA9GoUIURPO5m4xdxv0hg26LS1+Tc6WhaApROGNRXjKtVBbPb0q4J3NK/zjR5lTzcRzy1Vdf8OY779HqCN9lJjpoKtc4SFUVWmSqqVKVGf0Ve5m06WAYNhrCV7rTCaE/nSdEPXdEo93m64srFmSz/Fvv3iWaRqKSKJM2um4RKrN5oJjLZRj1B/z9j/+eT3769+L9PJ9SoYg7mbJYFXvU93qoms32HZG4eXXwS27f/RHt9t7cxqZJj+P2E5Yrgg1uOPDRdZVklkZBMp1myqwuViB2cUfChnPpMoPR5Rw6XMkt0W8cUKjdYeyLmMfJWsSJy8ryJnsvxd+tLW9x4/YSrx4J0g0j7bJor7H0B+v0m+Ly8c3nX2MWDZR8mxe74qxVNYc3332bzyQt+cbGBsuri5ycHLGyIuCT5UKZQX+KlcpgWyJYPT+rc/feJi2ZJCmUVRIvj1EI+NUvBRnH7btr7B+ckclacwkcXS2wsFIkEwnyg5VyyCef/Jj+SOXWexJxkrlJr3eBEuukpZzI+tptjrs9JlI79fjFkGqtTDaTUJf6m9XqTc7qpwRRjoUFEXsmzj7lxTyy4IZq9ZlOAy4OG6wubQq70xP02Tp/+IMVvnkiktru5ArNKNK6EvN0/+63mHhDXux+Rm8ifGW1eIsHd77Dl19+ydameJ9ysYKih2TnrRAK+ewSmYUQXZ7HR3u7/PIf/oZyYYs7D4R93Hr/TY6uXs3nKYnSxPGYweiCQlEkFoO4wXBYolpZQJGkM5pvs7G0jNxqrG9u8NWjXXQW2KgKG7pKTkjpOUZj8dxZu8R42qTba4KsZke+DURU8hsEMxH7Tr1jFmopUrrYe5GVp1jRiGPYkXG7qlzQbk9RrRqmJRIgj54/JmMssCrnJNFmLC6s0Oufsr4sbCpIjjk57uCkU9gS4r9TuEXntM5l4zoxXURRfUIvYKEgYpJCeonZNOTi8jkbNZG43Fg0UZwWL5+L/b+1tcm7qwt89P3/gtAQz/5/7v2PPP7yE6Z+wJklzieJtvwnx2tCi9fj9Xg9Xo/X4/V4PV6P1+P1eD1ej/8I47eichUEAR9/LPps9g726Xba3Nr6nXnDqe/12Nt/iKmuzNXfVT9gfX1d4PaBXMnD1DYZ91Q0XVRR1lZu8Vf/7m+oLqmkFJHVWLhdxDYXOLkQJdZmp0Uma9HqgpUW/y8MhxQzBYbDgFxGVpL0EHSXRJYqA39CHKksLpTR5O2WRGPkNginbSxT/F2lXKPTHjMaiexatphmOOpgpbZpt2RWs7jC2XFDaJ7YIrP75a+/YWnNYXFJ3MpTZobziyNsszqn23558HMGQczLL01++IcC53rvzjoPv94jnIl50XIGlYU87rhCiMj23r97g2bzct5Qv1Z7k8GoycJSjrbsqxm7Z2xvrNOZvmJjS/R91Ot1MvmEl/ufARAFE9bWa1y1G0RI4eZTl1Kphuv2UCIxn3E4ZG1tjVimHRUs7uz8iHbnjGpVzO/pSYN0bsLm1gqTkVh30+lQskokEptupRXsTIpV520USS+c0yeYSh+rPKMrm/pbJx6PH/0dNUldfPPeJrcXb4KhsLkqhAafv/wxw1EHx75LGIrf6/c9Uqk8PZkJHU3qOC602pC9L6ooP/6HH7NcW0VJPMplkdmxcxle7D4nlJlPO5th+9YKv754hSuz6SlCFhczoBhoifjcwkKB8cglY8tKVl9hFl2hp8GROOnBaIaiafh+MhcRHXs+4/ExKfOasnaGZtskWomzc5FlXFtf5Op0zGAY4SWq/P4WpcISqibW5f7qAsPOQ0jq3FgQa7xVdnC+/yGnlwNmYzEPhUyEtfYGTSmDkPYCUHJM3YhYEicUiiaWXmEaXGHJChBJirXtEpcdkS189uqI2+s7JIEtYFxAHMBibQlVk/aKT7VaZKG8wrAvCUnikPWVEi93X10jKsnlCqxv3OXxYwGfUNHIZdMEswGB5A4OEqmbkV2mUhFVm1bnkMkkwUwJ16crJqOBhpky6A9EdiuVK2NnXVQtBln50FSNwJuR0kW2O2U6KJrL4eEl3kzY9db2bVotHc3Q5n01gT9j7A5xW6Jyns1ZoLVRwvvUr8R8/vM/+lN+9cXn1ColnJyUiBheUCyUGbXFd9+5X+Inf68QRGOQEgeWlWeQdHn01RlvvSeqYJatoyQJYSgx+1pC5AdEcThvWm40L9nZuctk3OTeTVH5Sxll3OefM5PNwTt3VrmqP2bihdy8K5ufxwPabcgXF8hIYWFT1wjDmPt3BQ69XKpgGDZXjTPOLiX5SHYVTZ8wnnaIpDTIxvoO3qxDX2rttZodlpYz1M+O5zBWP+6Tyef56pcvOTkQz6WELyiWapQk1EW1znj/228x7qeoLUvtm90DfDeHH58z7AhbfLX7nKuLIeO+1ChpxfT7XSZjD9uS0C+ljq6bpKU2jq6mSJKEJAlxbFGhgYjI1UCfoKrX8LMIRQ3n8EJdKRL6I3yzOxcDnvkqiaqhqQaK3I+apqFbCnlH9hbJylASxajqNXnMkPpZn7PDYH5ah7GKoqbmMghpO0O5XCWdTZOVJBRLqzVMM4WTys97oAQVepe+rFL77ohGV1Q2o7nunIpppbDtFHZaUunbKdJmhJkStq9ZOqaVJgoC/DmZwwxVhSAeoMj+tCCYkIQBKV08p2k4lAqgqw6kxF5TtRhvBpGfw06JeVlaXqT5sI2Zk3ICUUSMgqr8RjxaUSMm0xGu62Iast8oFTGbeai63LO6jucGhH6AOw7n32VqKqomILQAhXIJK52mJhXmFU1ANqfeTIhWA5o6xZvFqKpOrAhbCAMNJ5cipYjn/PKLX/Pjv/5/GPQ6c6F2004RhiGWZdFpHAvbawbkK0PO5P73Y4ez/QNW5FkI0BpcsFGr0fOE78xmApLYolzbInSF+PHuy+ekuhkm/YjsgvAvjrPOi+dPuJAVoXvvrjHoRiTKAF1KDngTk62VBzi5aK55NvMGzNwaPYk6qJJi4gUMWgeMr8Q8lbdszo4e0gsD8orcf0nMyVGT25LSvdms48+m2FkFXwoLu+MJtu2wuJDm+ExUoH/w8cecnx8zllWclFUmMUccHvZY2xDVmEFvhqqFLK+UOTgQnyuVs5yftehLSYVIX2D7gxs02iPUtIjx9HTCQrrI7m6DalnoFLXqDQadKRsrohVi++0dXux/RswIQ9sEYGOpzIsnuxSrZYa++L3puE8hu8RgIOK+6TBgGvcwDWcOSQ/CMT/76lMO994gLXXJuu2ExdUshZJAGVw1umys79DsfIUjoZhKFBN5FqVMDVUebP3OgPPmEwxdvEsUT7DMEoqbolwS+/HNjVuM3ymxd37CoC4qpGtqiOOE1DXxe71WxNpGgdXVCuWS2H+aUabVuiQIAqrL4hmCTsKDe9/j5ETY5l/97f/Ck+dfUna2cAdiH9nmEp4XcPxMzPk7b/2Ae/fe4Jef/wMqwqZWlmqcXrQZeLt8/mtB/rFYu0G5lOFcxtrlSoHBYIyja+i6sNerszoZZwUsj2Ak3q9QKJFJQjzZV285AcNBnVJmhdlMxAROPs0b98t40wBdF5WqvWcvyRhVvvt9cRblcyVeHj5FSRlMJI29lffYKBdp9ftcnYrn2lhbpusOMBXhz5snD4nUBeKvP6E1FVXNje0ik9mM55/9isQWz24Nxb74p8ZvxeUqZav8+gvRZ1Ne9ilktnn2aJ+dW5LRy9Gx0iVm7phCUTiNIMyhKAma1LTSlSyg0x/tc+um2FC7r07IZxeZjhuEinCu2YzG6dk+l01Rgk+VcgwnTSrlZUxZKvX9FIapERoRE00s3Mjtk8mkiXzxmcGsz/273+L0fI8oFp8xDINSJYtprtPvCshWp3vJyto6k4kw8P6gQdraYmmhxv6BKH+XylkSNaBS2abbEs5ta2cR054yHYsFrw/qFMtlzHLA8ZGAed1/UGL7Zonf+/42/bZw8K/2vmEy1nClqGAxdw/PHzMc72OkxQautxMmbhdLFxey3qBOt9/AcnbQzeuN6NHzT/DNMftn4l0G3Tqbyys82PkuANXcMqEf8nx3D3SxEV4dvkQpD1A0B10yrVn5mP36PmV5iXC9C6aTJZYXV3i+KyBHhXJC4NawrDKNoTD6SSNkeS3H0ycCurC4WCBlB6TTJn0p+OiYDp5qU8plUNckfDHqc2+jzIYrnN9O7QGfdtpMZi1+9StxCdxae4edWzWePn2OJgkQ0CMWiuukZJPo3qFLpz1EN1J0emJz5goVekMPR/W5Sa0OOAAAIABJREFUtSPK9JetAZquYKfF4RypHaazAb//hx/y1a6AWUSjHFGisbmxQ4zUoumeky6YHO5LmN5ykeb5Y/KFIte4QNdvoCk63tRhYl0LU7fZ3lkhJZt6l5cN1Ejj4qQ/hyr1Rx6NsynFhRyq1NHx4z4KBWYj8eevvzxiebVGRouot6+kvdyGcJ3J+KesysZp03Y5ObtiGogAN5no1FtjGr09bBl0Rp5OtjijfVinlBWXzpkb8stPn7O4JX5veaWMauiMRi2MUCQfMuksYTyltiACXCVU2djYYDryabfFnKcdg6dPn3Pz9g1aLRGQdDt9wkAhL5MfV/ULgiBke32VobwkZa0a0MaxHDot8V0pK4uvKoxkH1gqBj2aUe+CYcqL8OwCSy8Sp0w0Ca+LCTFVB1UVfmQy9tFVk9t3tqnXpcBsktDvx6TzHonUQPOCiERR6LXEfvzg/SVyhSyuN+Xg8LGYp8mE2/cWODocz3ugarVt3OnVXHvjn//57/G//a+PME2dmdQDcqcqacfg058/5M//QgQkuq6QROG8yT4KQsyUjabFqIq4uD19dMFHH1apLZn87BMhCL6xfpPawgpXjbq0zW9474N3SWINTeLOVTVLNndMzrHIZzYB6Ay7vHHvAYsVYftX5y20TEIuU+KyLqDKS3e26Y3a5LNLvPeO8B2/+PQfKRZyXEkR4+XVCoE/xUl5vP/9fwbA4+e/xnVjvvX+d9laFkGDU1J4tvuQszOxLltbb/Ly+UucbMTBZ+Lg3dm+R5xzUVjlzl3x7KF+xH/2X709h94dHTSpVdc4P2vw6oV4zn67jKIo7L8Q6zkZdfC9mMDX52QHUagT4VMoWPiB7N/STWEXUr9KMWcYakzsp67bKYmUmDhMSIwE15vK/6eiqgop/5rgQiFWwA8D1P+fYK+ZtbA1B0PC48I4IFESkkQK3Lptzk+PmbkByTWpR2RhGAa2k8e2xbrnCjmKlTyZnAh6i/ky2Dq2nZrDF33fF4LFU4+p7AHqtDqEs1j2qIlzTlVVstnsvE/JydjoukYmlcZ2hO/KZ0ugJnOokmArDPCUIaHUj4kiBYUAVYVEXlpypRKJ6qEgzotEcVHRicIIXZJ6OI7DxcUZK+s7NFti3VPYKIYOkmVQT5mYpommKaTkhctybFJ2CttKzYk8JrOA4cjjxYs9aVMbWJaJbqbm0PkAj1ngC1012TOnxgrH+yf8/Cc/BeD5k6coxOTzWVQJ2QzDEFSFKIlB9plub36LT/72Lzm5EL9378Fdxq09Tge/YQv87ht/ypdf/xzbEdCoWrVMY7TP8VmdjTXhK41KFpUst9cdmk3hm7vdIbXKNouLwsbOL04YdNtctD0qBQHnr5UKuGOXbmtCJi385/HgEc32Ipsror/KMRTi8ZSVlTfI3xOfOWy9Ytt6wLA3xpZwUMUIuKhfEiRZaXg2b7+7w8GRQhz/BvIXzFTiOEZBzOfB3jmhZ1KSLMf+GGrrVWYzUExh11989iX/7Pd+yMV5k4vzupxPn/XiFotbYg5i3eWLL464ubOJJfdfMh1QWcjzxAvIrIqkqJmEjIZtFvNi7cxUQqFWJfGHlDdFHPTe7VWS1jmeqbJ7JYLqpdoKh8/3WVkT0LpSyaayVObFi/M5gdV47HPnvS069TOmA3G2Z4p5Ru4AJSXhjEbC5fkxKdvGlXqRS8UsF5fHrG+s4kgB8sPdIYZhcXvnA7F+9YeEkUerO2LSFv7m5GgXJeozmA5YcoStR3k4nVRZXhRrpVRc/JlGSq8ymUjtrZGOrscYWoWy7E+fjC84OW9TlMnHq8se93bukygxT/bEJf53P/4+3U4fdyyFjfunKOpdvvXBdzg9FRcu3zXZWFrCcw1eNkR8+l/+ye/zcv9n1GS/09XJGe+/d5/dkz1OT4/Fek5ndFpTOu6UBckO7lQ0gt6UgRRWLpYMKvk8k8mIekMkTGuLWSZ9l8VaibzUPFuvjShvbvLySLQqpFM1fHWGNhywJvui3bTJ4fEuKys7lJeEvYz6Z5hUuL0mbMPWfE7OfA5PDkhlrrVMYfPmOvfefJ9QEu3o0m//U+O34nJFopPJCiNM6+todoRtK6R1EbxiXRD4U9LphKwiMJfZXJlOewSRDLLtHMPBmGppB00Rwdxl60t0o4rqLXHVEJvF86foVoJpCCO0Q53u8Jz3vnUbXzJgPXp+yKTnks3Z7H0j+mhW8stkMkU0VRjA9s5N+sMRUy9Gkc681amzdatCr6NwciZ+b2W1zM9//hU3b4gM8WRikjcjzi4a+JEULZ70idQZJ8cp8jlRQUi0Hv/z//Sv+JM//SEAISq93gwFnVJJ9GEkhHRaAWPzkmJJ9HT1Bzn0dERZE3PnzSKG/RSxeYAtGeGUTIWp5xNK7LY7cXGKNpHi4Uvw7dX5GX4YUV60sGUvWmDD2WmfN1aEwz8/mdHqvKSwkOVv/0401Da7pyyup6hUKii6uMwZU5vxcIom2VmWFm7jzoYYsyGmJL3o9wKWqkUmbpPaomSXGWU4vzhhFonnbDQUCkWH/f19qguyajOckkpyNI6PeftNkbEwqzdo9DxSt0TA98lnP6NNl8pimazwo5zU97AnQ5yMjqFLZe7EZDodk8iqQ6WyzMl5QqJ7PHt2Kdd9nak3Y9r2uMyKCtCTF4956+3bRNLuFCPHctXh4vicjZtiiy3mtijmipxeXjKQivBJakzBrmGci0O12WmTMZeZjCYEkmLcNsrEXshKdRkjIxs36y6zkY7viv+XyltMByOWl/Kopljj/cNDUo7CyGfOyKYZCQP3FQslUb377NPPuT1ZZ31hlbFkiTo7f8HCpEHa0Xm8J5qbF9cSVEPD8MR3H+7u485c0rkSSSADGctkOPTRqZEyxO8F/pBqzcafyr7FbpvSVoalheV5A703HmNoAbdviYP/ydd7DAcdgshHN8Uz5Qs5FDViOG7gy2ZyRZthphICSQyWyxukDANd0/Bk1fb73/8h/zvPsZwZsjjB5WUPTdMYdMVnVmuLmKpCHHYxZAP9+tIGhpYh+OU5saSaTdSAhGge9Fq6Q+inUROFnMwId4cefmSiBwlIyvYojtAVjZSkyF5cVfnF57/i4w//nPffl0mK4gat7j6TWYNpLBIJaauM7ZQ5vhQH3K0H2/zu77/Pv/lXn1BdFHYWBgop06LZ6vP4kci0ptNphn0f7bppL9GAmNFoNBcy/973H2CwgD9OEasik+yHE9ZqP+SyJfp/DD3N0dEZhWKZ02ORiXzjjbfY2C5ysPeS7c1NsQ6Jymjs8qwunrNUKPLNo5+wtnaDrCP28Xg0IvACVCXmxXMRUBayNRxHwTBkQkTzCdw8GXuB8xOx19JUWd3c/P/Ye7MfybL8vu9z19j3PXLPrKysqqyq7q7u6p6e5nCGM+OhaJESJQiiZMuAV8EG9CL/BfKT4QeDNiDTfrBli7YgShChGdqcGXIWcqanp7fq2tfc94jI2Pe4ux/OyRwBNkk9+IEG6gCFyoyMuHHvOb/zO7/1+0VRDRTZt/fyxRHVaolQSCxorzsgGb5BJNrENC4i80l2D16SzaV5tS2eLxW9gTOaZ2dfQN1HYqIpOmTGSCT1y2fZuPompyciuBMPFRmNZjx//hhFFRUFR6d7dFsBZ3tDshLZ9bzRYdgH2xPzq5ojdDVCLGShSadM13xChoKqBhhybXxfQVMNfNmrZfseihqg6zqGzBI5jkPgO/iBiyONRxeVwFNRA4mcpYXQDINI2L+UT0+dAD6K32UqAYkGfZfDPY/AvYBrjxCoFrFYnKgMiGTzeSKJJLFEnKX5ix6WFRQ/wJGbzXJd+oMRs6nLcCiN+tY5k8kE11EvM0mGCXpYvazGiEdN4okIiXiWsExu65ojqAI89zJbN7+0iBlKYdnCsNEMncAX83KBPOg6PtZ0RjwWIZEQ+2HqjvEC/xJQIwgC3OkIz4LpUDqiloUfWEQiMapz4hwtlwsk8iGW1+WZ6Tiit8udYUqqiUw0g+c5NBs1Ht4XZ93h/iu2Xr3AkqjGoVAIXTcYj0aX0P2e72NoCj7wwVcE0mm/NSAVv4WZFOfA0G2yMv8mcb0AfE/IgmOiZWx09xfw+zeur/DZRy84awidWyjlsPs6nZqHGRaycFp7RSaeuTQ4U8kB6USRrf0tNFX2FrpRHt47JFOMkJRBkphyi4iu43dFQNRK9JkM2thGhOPzz+U9FIim5yhXmkwlkIliTImFUiwuCGN9Z/8+tbpHr1e/RNiMmiYn+x0WF5ZZKAidF45NODt7hT0V6znozginIyiYRELCTrj7zi3Ozxu4sxDvvCP604ejAafjc1yZ1Rz2e2jhCJ6mEUgi9dP6Nj978Dl33nwbX5f9qWqKSqHA8ycimBtrLmEkI8yllzltiCDXt39/h6srRba2W8wuEDZVm5tv3GZhQfQ7vnx5j3ufP6FQrjCbivN/Ynsk7AVGzhGGLRFqy1msYMhwLNZvaWGB2mmNVGQd3Re2Yb1+RqFcpNedXJLMHx7vcOfuDfYOngmZnrqsrsU5b+1Tb4gAaLmyQKm8TPP4CWe2kNmJm2NmDOh0JUkyGTzf4fDwmDfeEETGhpbG9Ye0m2KfAthjk2G7znQoZLhYrtAfDogns1gz8Z7eqI1uplBM8f3pbJH7jz/ixuYijfaBuLYyTyqukIkucO2KkP2njz7BV2ecSFLhN994g3uffEyokGDcFefvm7evsP3sgJWld7l+Xczdp48/QYsW6E+E7T0dJEmGKnT7D4gnhP3f7U4Ja1ViaYX6mTj7er0Buw+2uXNHgHN0Rw1QOkQmEWayhGAyHJDUIvRq5yQrQmYnAw9dGbAsz7T+eZeFhSm3bl7ne9/9EQBrVxY43q2RSIbptYVtVikIh+3PGq97rl6P1+P1eD1ej9fj9Xg9Xo/X4/V4Pf4/GH8pMle+b+P5Iu27s2WTiEOuGOL09CKKGmNhaYFarXZJpFoogO2MKJZExO3s7JBKpYJKgsN9UWoSSazSHwyYTXdZvyrKZlrNLiFTp1oRXme/fUQiWmB/22PqHwBguwbpdAjfGZKXZLypZIrT4w6GLB3sj7pUqsv4qoEjyc4m7oCtl2MUTGaW7M3yPIqlTSxPRM4836HdEchg7aaIqqTSaVyrTygxZeSIKJE1cnjv3Q8uiX7z6eu0B88xDI2J5ChIxOdZ24hTO9/Ck2VIx2fbmBGDVFSUfoQTIWqdA65dewvFEBGhn376bQxtQjEqMhghPYVrhTlvNQls4c27LqSjUUbnLrYr7qFQLBIky/zO//bfAhCLqrz19jrNl0dcuSqJInsbPHv5iNubv8xIMiBG477IMElellSijBWa4jgTUgmRtn/45B7xxHPUoEz9THxuaLUJJUwiE4mcpWbo9DroSpa7b31N3OfUYzKZ0OoM+fyekKG+W6fujfhjWZ97o7JCpZqhPbTQEOsymwW0x/tUSmmODyXaVBxa4wG9nlir6TRENJak3XQImyIOcXy8TyIZxho7fPiRKPkrlhPUjjvMFUXkrNvtclTf4fiwRXFV3HvQ36NrpNCMOGGZ/RyNcnTHAeG45NlxdVzbpdseYsvad6sfJhlzyS8UePbqSK5DGEUbMB5IfgfDYDp2KWZ1VJntqVarEBrhTNO0akI2fIbozgIRSVD8wZdvs737FMVyaQ5FiUMkEWFz9RonJ0fcvnnRZxKQDefZPhLzm4qpLK2V+eTjY65dEVlMVR3R7kzJZ1O02uJanucQGBaOJKGOhZNYQ5j6e7iumJf1hXU6nQ7ToViraFTF9gbkchmGEzGfrW4HAp2ZbdPpiLXyfB+UDupFf5XjcPvmTZJJjVJVyL4js0e+P8KX9XaJSJj5+Sq5pIimndRPyRdSpJIunY5cd3tGrGSIMhPlIgMEispln2LAhOkghpK3SMTFfZ630/iKj215KJ6QM0/1sC0LTUZQVX3C0tJ7dAZDxlPJLdL2UdQZiVScaEzCNbs6vcEIPS4iqB9/eo/rtxf517+v/QKJ0LUJhSLMpmNqx2JNK5U56mevSCbEPlYwmE6nJBJJzg6lvskpRMM2gT9mc0Nwezx9+hjDSHF0JmS6Mh+hkniLs9MDfJk5NhQDU82xvFyi3hSlH71xgwCb9EXGXfUwIjMCzSGTFPfQatUIGVX6oyd4EjWx3Qi4tjmHK6Oj50OHjWt5eucnHJyJyO7iyjr79eekI1lOzkRGz/Fdhk6SQBNz1x/X0JV5up0hltS5hXSMm5vv0Ovvk8mK+dQpo6oT4pLbaK5yhePjfZ4+e8L77/wNAAbjYz75+B7z87LsKhzhbOeA937pFrVzER1dvp2gkFxjrbzJ7t6BeJbWiCefn4MkoR04Ezr1CcfHQ5pN2cfrCMJg13UxzItiQYjH4wQyI2Wapujpcb3LDI2ugCBX83EsIYuqBoEKiuSPU1HwgxkBKo4sW8cLoRs+geKhy5I4Qw8TqN4versUFcUx8f0JnabYV/XTZ7iugD6/eB+ohONF4rLyIJFOkSvkiccSlJZk2VXIQNdhEviCmBmYThyGgxkT2Yt6Xu9zuOeh+DuEZIm47/uE4yrhWIjJROipTDKMZvgo/0YGyglcTHQciYYYC8cYjEdMRyMMWYI36o4JRWO4srfXCzxUTQXNx5TlhIl8nPHIRlF9xrJ0/vjMJjjyiUr4+0QiSjYXJ5qNkZTooM++eMXzpx/y6tUTzusi6u54M1xbIZ8Jy98FabNuGLieRJzUDTRNQ1MU3IlYr3iQwPVOufvOlwE4239BZzxjGK9dysWT3ftMvWX+87//HwHwu//r7xAK3aCSvo4hSZNvXnuTbmOL5188xIiIDIZpJJhYCo1tkX11A5dYcsKbm19mMq3JdWiSz5bIZH06TVH5E1XmSIeznJyL9oz58gq6UcL3fWp74tx560urHO8+Yf7aFW5fWQbg23/4LwjFVF4+FWd2ubJKtzljeW6NWvNAXKtyE899TjobIh0VKHxf+fK7bO99yNPHooRreW7Io2ePcewkffMC6TTF6vI6itFlb0+cPaXKHIlSlyf3Rabcnk1JJhIUchVevRKv5fIlmucjXr58xsKikM/F+bcYGBOiaaGTMpkcrurS607QdYmiWonyxY5NOK4zlxS6pDsYMjHiRPtCVlauLHFw1GTSd3AVIQcKYRqN54TVBO4F1YMW4uTkiLk50a8aNVIsVrNAl91tMVe3bv0SiYxBqzGgLfdfvhTns3sfXlYnVSsbbG0/IZYuceuaeM3qdmFmYk8zfPWu6HU72dqnOldiMpWluxSIx2xQx2hSL5XnFP70Tx6wsXHtMsseDtKgzRhL2ey1B3Ttc4Yjn/mSqPx5uXvC3HzksuS43VDJl3ROTs7J5wX0vOcENCZHDC2LQlpkoHaOD7n7pa/iaEJ37jUO0JIG6USckWxDePxowPr8GqhNzg7EvS/k1jlrtCjmRTXLZHzKzG4RNZexJN9hthQjHppxfDhGlSX+haUM06bKZCYRxZUZk6GJrtmcD8V+fP/2Bqf3ntIfWhgZ2TvlqMRCYRpnAgUwZKTwzAg7tRHvfl3woh7svSAcTuG5Ll/9kkBNnsiyxT9r/KVwrlR02jVhyGVzIaqVZRTPp9sQm+XKepFu20FXFSIRSTTWi9BudVlYEiseiyap188o5qpYkstAsxRMM0oxd5XJQLyv3jgkOk5z1hD9TvGCxmLpXQ6PH+HLFLxjzZi14mxs3MbXhBExGYxZW7/K9o4oWZmORqTsHqPJgJOauM87d66iuwvMZjMUXSxUszljfUPh/FiSkaW6GGoO3YySyUqI2vGU+lkfr2jgyb6WQnYdrdqj2xMHY6N5gOVM0XQP1xGfyxdLHOx3SWfK9DrimedKC7S7E/JFUbJyeFJjp/acg+k2MgNPpawS1Qp4siNgPBvS77UZDRwMTRidi3PLoCYYu3skZC3syWmdarHAnbvCoHbtKZlcmLOTcxJhcTDNL2fYvPNNrKl1Ccmruhqr84s4klRw7/A+k7FHOpPAmYmNv7SwSDSSpH4yxAiJU1V1TAb92SWUr6OoZDIGrcaYJ8/FIdA+GRGEG0x1MCV4RDSSxDir8ZWvCUUe9n0ev3hCKpsjkAZ3KqnSHUA4doYqv282y6CHTHRTlIx6kx79YZ1sIc1kJOZze/8Z8cQSs4nPzJIku2dTBqGR6DFAQLNf3Siwdi3LD34g0vtmqUAs5ZKPhziQzZWF1ArdyRGxqJjfRDRBu1UnOkxgSr8mmA0x1RCDXgvPF4aaF6RIJ+ZQFGm4+Q6pdBozHKcnmywtd0A+OU+j1SZmiDmeq9xg/criJWz2ZDZldf4adjBBn0i28mgYR21TWSxxdCbKJYaNCN14n6l0suPhCNZ0wle/WeZ0Syiy2cQjkojSbp1e9gTlsgVs30fxZOmgbqMpCulUGWQfRioRJh5dYizLElKJKkbY48Wr7UtoZEUJiMWStHtdNNlErKEwHveJmLL2PrB48eIpqWyGaFiUMw1HwkiPx1KMxkN5rR69Xp1YVMzJcnWNbu+AYW/KWDbw6sY5Rsgmlkhd9se5ngG+gm5e1OxP2dupc+XqEssLohz1k0+3CacV7JFNSGL3+tjMrDYLVQmbHXiousr+0T6bN8WeGU5G1I5dPvjqNQZ9MVfdYZ1sqcDRqdA3Zwd7vHnjqyRTcXw5n4YREg36psmj+6KEwrJmGIZ2yScT+BqGEWLYt4gmpd7IzdPvKKQLfXb3BSBIaS7F0ck2qZxwevf3m0TWRlxZuUm7KV7LxotEYmEGkwGOvywE1FB4tfWYqOR4y2UXqZYd6ic2UckxNbMOmUxcCLIogXgtlhjz7OkLoiFJbZF0eLXVoFBaY2qLdd959QwzMiW/toLriQN7beUKE+ucowPZ56bYONM6ucw8iipea3Qe8UsbX2cwPEYPhNOn6R6T2QkhWV7Y6fRRlRAL82Ua51tSPtNUl2I0zy/6ZZuUyivUT3XqbWlcrV/hvJZg2q7x5KUoD1tb3eCtdzbIyYCdE+6hKRYoKXZ3hZGbz+R59XIPLYixuyXkstexOT1pMulJ+PShoKdA1QlFftEsbYR0QiGTsAzsKZqGFwT4vnBMVRRRfqrrOBfQyIqPr7t4noMmAxCKouC7PqrkSfN9GwINP/DRo2JdzHicIAhEqZ4tdKWuqLh2jV5bfK7dgp0tBd83UGWJYygUEv/CaVIZWZKWSRJNxChXRAA0tBoRjqGvoEhgKM/z6PfH9EdTfNn3dVKv4XkaquxlRjVEL6EsDQQRTDFUg/29HSqLwrEYTqdY/KJfLR6PY+g6rmVjWZKnMPAwTY2QGUG9ABZBwdeCS7lz+jOOTk8Yt475/HNhJ/zat36Vv/cf3sWy59h5Is6x6bTH3vYhH34i9LlhhLBsG0VTL3vRbNtGU3Q0RcWR+nrcmLBWXiKdE0q+PLrOQaPF8lvLl2v+wQfv8/jRC374Q8G98+9+68t89tkJ0XSG86aQ1xf7UeayCVauvEGzKwzFYiKH5veplCW3WTTO9qtjJprH5i1RlmhNfw5OFWvc4ET2vrz75gL1o21u3hZcmEOnw1Jujs+e/ylzC6KlIR2rYK5bPHr4A6zW++I+v/wej7c+vOzr6TWz3Lx5i+db93EmQsc2z3uEQiGazSanx/8LAJ3OIz798JB/+A+F8ziYfk7vXCOZVXE9ERybODUOtwdcvVnFMEdyPlUU1SZwhWwmTHj55AXJ2DzZvNC5vfqAmytrzPQZB7vi+ULGPEFIRYmIdelPanieR8iPEJdO9XFvh/rI4mYhjduTpZflHIES4mRf9BaFImFu3azy/Nk519/4AIAH9z9mqTxHJgu9jgyw9PqkElFSKbE/oqE4kbTB7l6fZEbYgqPJkPPukLlqgX5byGwquUBvOBDAR8DB8WNcR2Ujm0bi59CeQr5S5Jt3luj1hZ1Zt6bcTr5BStoNJ2eHaHqCdCp7yRdbVnxyuQzhUJQwrryHI8ZDl5vXBSDSzsEJ0ZBJPOOydyqeORYLYU8EBxfA1qt9FNUgEoN+V9idCwtLTOwm9cND8oaQjZge5vFnz8iVxZ493Tvj+vqbRHSLaEjyotk9huMSy1dyjJrCnhqet2i3Dhj6sp8zZDIeg6KpaJJ77/S4Q7mYwnMSKIqkslHjLM0ncByxPz9/+IiNqzd4tPUQ3xA6aNV6A0JxcnEIopIv1kgTMRMECTHB7b7HQiTJ+aDP6UCClClVCtkEh+dbHB6LBMh4+Isg2f/b+EvhXNmOxdK8MDCVIIwz8kmlI5dIcrFYgvZ5j8AOSJVlbXH9BHQfR9aPVxcKNJoO24evKC0KJVKvHzBfiPPws11aspcgVHLIz0q4thCuVt2iV39OsRLC08XGqJ11+OpX7tDrDghFxIJrTphKdpmnM2FwOvaEYSfM8ckB84tiwWctlal3QCqV4d13RN3nsydPsAcj0kJf4PgK7W6HUsG8RPTyPQWdBMV0GscRu6Pd7JAphAkCmbla89g7GjCXWidhis15dtogng6hdkukE5LQLKyh6mcc7QgDwYhPWS4uMRkPsWVvmH+a56AZkJMIQ+N+F1PVqCRLFPLLAFhujYHjk04vETJlJDI2YDxtcAE7Fqg6M2tEfi6EJftqdnZPWA4qOLZPXIIN7B48YK60TCIj+sLu3n0TewpHx9s028IgWlgs8/T5KYEGkYxQkulUFPotGh3RxGiaI/q9DIam8cVnPwfgyx/cxQjP8eTpHjl5iI/6USJhk9FAaqN0iCtrm0SMBUZTca39g4ekE3GwVshKFJ7dg8/JhjYIZuIgjidMdneGKP6ITlvy3AQa26/apCLRS5JaTdGxQhqtpjBwNcMlHb3Ks/0D8svCaPHHsLS4TDKxwdOn3wbAtc+JZdJYMtJSOztnOB2QLMY4PxeGRa5YoVopcn7SYaUssq82I5zBjLh05rBCGN6QpfkqbpESAAAgAElEQVQSkYFwIg6Oe3h+j2I5R3sgDqKVKxucdmvEk+Lavhbm+KSJqU8Y9iWZ82qYsTKjdnh8aQC985UVdCPg8WdCiZWuJzg4HBEiQ1Hux3pvhO+PuLZ4nURJyGLt9IiJZ1KT0VHDjhBPJHGmU/KSLLsx6uBNZmwsCblrNOrk88tMRjCbXcIBMBjUUBSFeELoCc/LYJhh+jOxP0aew3TqcHCwgzMUDslCRcjfZ09eEZENw7F4hOmwSaYkrnPasmm128QSM3SZ7XEDm7ARJmIO6UhyYwMFP/BxZLTSwuP21Wu8dWeF+x+L59PMKIGjoODhyQhboHhMxzMyBZmdDPuc7T6g3XfxXREZzCR1VNPmwaODywx7Kh5m3G1ytiMMspCRZ/foI8JhncFIrKcZ9lCIEomo7O+IIJBuGphmmEASQAaAqkZw3TaJlHCAbt/6Ct/5zj8jElsgGhE64dnTB5hmmojUP1HTYDg+5crqJvcfiT6l4exz5ivLuM6QRk1GPpMz1lY2iEnktb2Dx0xnQ8b2iK1dSQIfFuiq5XIZ1xMH3/Fhh+pCCN8T+3Fr+5BMukgmVWVlTkQsf/ijP2R18RbH2qeUJOdZo7mPFtW4IfnNPvvsp2xszFOv75GICbmLhG1+8tG/JJvNstcQQZi1lSs4U598SsjZYDThpD7i/ff+Aw7qAtTDG/pE9CIxSZaZyxbpj5okM0UchAK3RzMWFudQlCTXDWGI+t6EVDbC0QXXl2kxmB0QVsvk8kIGXW/M22/PU04s4n9TGnO1Dp5yg4REJ/zuj35AMp4l7C9z/6mI6Fsjj3ZtRHcwRZHIlcNZD1NJEJK9THpohEEcR7EveX08ZmhqBNcLgezp8vwpaqCi+nJf+SIrFPgeKEKmCOK4juiP05QLhL0wqh4iJqtG0F0sTcVDw5AABXrg49g2g8EB3Y7Qn74bxvUsTFUGGhSIhLJEEybpvJiDVDJDLJagkkyipMQ8hELzPPEcdnaFExHRgUBFUzU8WSWiKCbh6Jizsxc8fyzIXCMxU/LSySxVPEk4msQwo2jS0Q9HNAIzQiqt4LvivgI3YDrr0ZZ6qtOpMe5PmQ5bpJPCYX73lxXm5iOkY19noSpsgN2tOn/tN3+d53//vwOg3mgTiyZxPBfHEXNgGDpe4GOYURKSI3OambK985I5T/TCVKsxKlmbT3/yCEQimd39M4rpPE8PLjiYCtx8a5NGt82NdQH4cm//Ex7tJXnjnRUiabHGJ8cGE0+hsiozikpAeS5DNOzy9MmBXIciZnjMrDfml94RtlJ1pcTAn9KVmQ9GCl1vgD/xyOeF7B8fPyJuZvngrS/xf/yz7wOwfnsNtIB0WHwfSptXDz9neeNtBtOGlE+Fs70ahfnbXLspvq91ssfKnRn3XgrnsdOfEInrhHMpakdSf5fTxGMzuqMOhYrQ1+NRG21mUKyK9Sz5i1xNZ2laI2KysbYfdHAw0CyTUl7I1NbLP+Hrv/xbdE2xR0ejEZ3xPpOxSUqSnccmaZaKNoa+RnpR8hnOjklGqkwjEkyqsYtrXeXu21UC7aJPqUQQ8bG9LOGw1B2ZNK12l9hFEMo9o9ONkM9HcSSXqe/bzOVLRAOFouSUCsU8+v0U5yfi2pX5dTIRjWg0yvHxRbAwzXh8imuVMGRQe3PjCtXsHIOucLYajSZTxyefWqAsudoUT8dLNTneP2AoAS3S6TLt7kP+6E9EEGFtsYg2jNGbqkTTQl4126M8H7rkxlIDg+tLy9x/9jnJ4pxcvzrWJOCNd27z4rEIOt25/R62FRBWxbO8feMuZCwOdmokE8KZmy8FTMYKnY7JWFYeVDZLPPz+z4jFhUy3W3Eqtzdx3BHH0uHTqZDKlAnSDooj+uH6zVNatkNxRchG0VhkaXGN6aBGpyP6Tj/62bd5d/M2lucwkQHdXAo6XQunJc6wTCpGSGniouHLZEcuEWMyHKJoUXYbQq7VwZ/fVfWXwrnSVANTepbxRJThsMaz5x2islzq5c45s4nCwlyWSEJMeOfFOeV5jYaM7I56HoUFk3FvjS9dExGF33t6n1oQpnS1QmZJCOHtu9do7VrsHwmFPLUHuF6Xpw/PmK8Kw2Zp7ioKJqreYjqRUT/b5E9//h3uvCUO1NrZIaqicnPzFuORhOmcTVHDFmO3z4ttsRnThXna9XOKVUkAq+ZJReZo95vUz8Ui5Ysx1jbm6Q16hGXEK52LoxkqcZnG7nRbLCysEVWS1PfEgsdTGt1uHyWeIiTLXXYOv6BUTqPHJNKS6qEYPplChscvxIGthtposSyTQMxlaeUavuWTSxc5PRUgBsNZG9WbMI4cUpcQ55s3rqAbGqOhuO9k2kfRfYr567R7+/K+51CCMPF4mE5HIvMt3WF1dZXmqYj+1vZHePSZWmMcRUT9PvmkRzgV4fSshf1KGJRzS3lM1SQvPVPT1DnYPaRUSLNxRaRrC5lrnNWaKJzRaV6AYzQwwwovnku2eTNONV9kOuti+2KTRaIqhhFiNuui9YTsFfNLjMcBUYl21R/NWF4oo2ohHFesZ3kxRe9cAWwsWzyPgcG4P6KtijWo5tb44fefkF/xKUUvIq1RPD/O0cmImSINEnoM+mlCObHmFVSy4Rj98YR5qfCXliusLM3z0vZJSoQmLZbj1cETEjlxmFTzixw/e8rzl8ckS2LDz89HOdqbEDFcKvPicz/5/KcMvS5flZnHpBLwN//jVW5fCxPui/c8f7nPZ7sBUyVPSjYNp4w4Q98mLhv4J06CdM5g1O0zlgTImSxEgipT38KaiD153uoydSYEshTTwqHWbGE7IdoyK6UrNqlonNq5mMt2b4ISb5DKhuhsCTnDM5k4LslkklhEIJKMrQ6HxwdU54RiLWc2OTzdYuoYRCRICoqMjmPjGeLnwcgilQkT2GJ+Z859br9xlZODcyxVOCimfp3d7ROsmYEq4bXRLDQ9dEmDMB11ma9UuXn7Bj/63ocAxKNJRk6fSFjFnQrDVNNUQprO6qrIoDQ6J2BEsalTl+SctZrL5u0Ke4fPCYfFfQWBRTafYOKIg2JpfZlm7xlacoxuSQjuUMBsbBMgspfApeHsywbeIFDwZInSUDYRf/L594knU6jEOK4JPZgtGDiWxmQkG/9tF9O0+PFP/oj5sjAC793/Gbn0HCtLd9A0oUtcprx8sY1pij07Gs/YP9glnytz7bpEEKzvUTtxKeZXaHZEkOvkrE469wa9vmySzuRYWl7g0fZDIqrIRGQKSXy9Tjh0i5dbojpgYWmF9vk2lqQJMPUUe/svCILhpXM1GyVAVSjP5egOxBy7jkMqb/JSwgk75oTVuzP+9ce/zeGu2I9feb9MNvk+fl/MuaLq5LJXOD3/FFeWhyWjSwxGIyajIS93fgLA5rW3GU+nOJLiIGyqmF4JTQ2DL+G+M1F2tp4xK7t4lnAQpv4QRVeZToQhvr6RZa54A88LUbopDKJ0tEDQj6B6IRp9URqlh5Icvurx9IUwpIaDMIPWCGsc0JQZWi0UxfW7mCGVqCzBUxQNVXcvEXZxNXzPJhQKi8wsYDtTNCK4Xh9TF4ap50/xlBAzX5bRaFFwLXRVEShHgIOLp9roSpRwSHwu8B1CEQNrKgFDVAfL7jAc6bS6wpEJ3F08z0PVLmN2hMMhNF0hFhGfCxQF15uh6SEUTQKEKDq2FZBMm/zVvyn02ZVrGi+f1bF7Qif88rcKNHtHbD8bkcoLfbO7e0rMm+OjP9hC1SSRuTPC930C5yKYoxIwJZMrMx2L1z7/WY9SKUXt4IiBRIS7tvEu9dY+46mYl4tsFXCJRBgEAb7vi7NGGo+NvRZX52/QkrbLwFkiUV3ivVtV4LsAROMm1XSJ/aYAZHm+/ZLN63fRzDkCXVwnZJukroSwRm3SWTHnvdEZ16+usL0lzmMlSFEs+LzaOqOyWJX3phEKq2TTVYY94VQ/evQEB4VIWji0S9UVBq0Om9e/ia6K59vI3UHRC3QOX/GD7/8TIRuZNPMpn+yKXONIhkmjz8+++IRCVcydU9MwQgUm9X0OZPlZbC6MYWv0zoQ+aI+m3Lm5ysnhHj1J+THrnRBNL6IYHieHYv+n8lFcM4ktkeuUpEer73HrnV/h9Eg4TpWigRMZMeqOaEqbYG3tKkenjy9lejqdYupJsuUciZhwGtKJqzx/ts9kbDOTZT7Xbt7m08+e8v77AkWxPPdzWvVTzpsxChUxn1fXr/Pxz++xOBfijdtCd336oxPCiQhDW5SOndcPSIQrbKzO87FsJ1i5ssRkrOEoAQfHQk/9xl//OqmYwqNnYv2Wl5fpnbWonYwvSxz3DvdJh27Q7p5gTsTzkO7xcucTxiOhW9ZX8hwdN4guRWlPhM4b9cLMrBqGoRGV9A/nrQ7lxeXL/REOdBQnRzzqoUTFvGwfHhLrR/AkmFS9tkcsNiJXmcOQGfbh+SnWVEFREixeBErPe1y9eg0dGfDdPaLV7tLpepQXxLocHrfYftFkfaVIQVZbDdp55gvXaHXE565cjXJWe4Wm5IlKiqNwJMThyRMIDFYrYs6zS3OcPHiMfyCJvzevMGq3iZhFIiEhUz5purMJo9YUS1br9LsanXEHIy4BKhIhDg9GHHQsNtdFoK8767KwkINumFBInDNzc8Ju/LPGXwhooShKWFGUzxRFeaQoyjNFUf4r+fqKoiifKoqyoyjKv1AUAbGmKEpI/r4j/778F33H6/F6vB6vx+vxerwer8fr8Xq8Hq/H/9/Hv03mygK+HgTBSFEUA/iZoijfA/5L4LeDIPg9RVH+J+A/Af5H+X83CIIriqL8HeC/AX7rz/sCTVeJS2CDx08/JZUwSaSSTCYiQhSoFhO3x9MX5wS+iOQMRz6x5BKOJaI/Ez/geCdGu9Pje3/8TwG4+++8zd7TGfgD1LysYd1tc35wSEH2QBy99FCNIZvrb3FBSlKqRnBsj8XFBc5l47bi94ibZc46IuqQKxRwJiWItbAk38nY6qNYLp4Dw8kBAOHxFt26ja+IKK7phUhENcBD0mUQiunoRpRYLIovm5THI5u4HmGhJKIjj7d7zPwI7WGbyURCcGeWOB/uMmXIUEIFO47N8dk20YjIauQTOTrNGYPpiHxWvFbJ5Xn+4pyQjDD26xbWrMettZucS+jnfKTE4dk+t9bmmJNNi7bbp90cXHLFTKcjXGuKGdphZonyHkMD07DRjA6eI8SrUq3iBhZ1WR+cVYscHpxRqhokIyIyMIidEI7C8mIY7GVx/WES1bCJyrIS0zSYq4ZxnYB8VTzvRz//IQEmrh/Hl1xb0WiYk/0Rf+XXJV/O45dMJz5zlXl2ZYRo7PWwxj6lcpgjSby7vnGV8dRibIsIdCwSZzIBw1QuoUvxNJYXiijKlMCX/RzY+EGa+7KMRQ1MVlYyDJw282nxLMeDAZlkioifJiF7rJbW5+icT0hmZX9F3KR2YrCyXOfWXRGhOTmw+fGn32V5cZH8goi0Pn74OSsrG1iyh23YGeHbIb71q+/z4T1R4uRYXcxkGi1IsroiIi3NoyErpWsMW2LPBM6Y8+Y8v3PvE37rqwLq1oikSZRGpBMOwVTIx2FNwU04xGRk6ZMPP+WDD95iNNGxZB+GFnPojttYM9Blen1qu8wmU1Ykx0Sj3kHNxLGmM1pnFzwiORq9AUNZputj09huMpuOSEqi2LBqoJoF7JnOl94V1AQPn37Oe+/dZWtLPMv+/jneLEw1lyImI/XHsgn69rWr1HqiVCEIT8mnbqFLGOuolqN/7nHj2jVSOSGLOy/6LCzN8S+PXjAdiywGakCgaMhWJsJmDAWP7d1dmj0R5Uwloli9DqoSYMjafsuyKBR10gUR/W2OevSmLdLZBQYDkSUqL6d4vv2CVCLNcVPol/HQJ94zCKfEvDx5/gmVco7NG6v85A/F3EUMBTUI42vTyx6rX4yLuFmA53lomsb2jogSV1azDLthFH/CYCh7ENUEvu/T6Qv9mk3P4btRTk53OT4S2aVev0Otccbnn72kOi8yOYah0+/alOfEfsxkTU5qDt1enVZTrINrR8nnTUa9CGeSn+r2mzc4PNxFQfa+rVR5+OynJDJ5nm+JjFAhsUTP9mmcf4QZkf1FDQtN9WmPhA66crXE/Yd7VEtL9HpiP6yu3qb78hmPHz8inRbXt62Aen1GMiPWM15YIBTb582v1MhWxb5KpGE8G19mIKyZjx7ZIxINIRG58bUug75Cr9ejWhVllrF4mv39XdJZQ/4eprvXR0+20WWJYb3RJ5ePYwVDxjOhv+eraxwd1nBmImqshTT2jp6izN4gmxbR2PPzEVYwY2n1OtOGkJdra8t842srPJYlVfge1shiafkdHt4T5dKHjTOOdh2ajTHttsyUTab4gcJMZsp03cAgghoaoahiXUw9gmFohMliyWx9OJTAwcWQWVvHH+N7Oro2IxwSz+f6Bp7qoLoKnqQY8V0DhfAlNDoqGLpKgIN+gRMTqBiaSRAEqPIeXNfFcd3L7I8fBOi6iqIEKMoF2IGLoccYD2f8tb8h4L0Pjvb5td9cuSz3WVu9ySefdvjmXy3SkmVB3/i1W3znnz+lN5qSkJUxnuLjKgGKKWRKVQ0CBPHveCSqLz756CX/2T/4Eh/vfsr774rKmN29LRLpJNYFLLmi48iHvSQ7VhSCwEPXVb72gejNfHV/xFlrwPV10RPcb7QgsC/LJwE60xHJcJ5kSJz/b92+y6NPX/LWl97m4EzYJNFIiuapg1E02d4S2YmVlRVevHjC7TcFT1I6XeV7/9fvko+tENhTKVM1btzYJB0vMfUkMIR/Ri57k3JWnBXh1JiToynvvf8mj59+LG7KWOK49YDv//C/5x/9138PgN/8O3+LH/3+t3ksOfuiiTzf+sbf5qd/+s+5WPZCxUdt5pjMDtjxRJnu3er7dOunFHIC8GGpCPWaQzlt0O+IzTZSFHRvH2ucJVcR9tPezgPM2CbFgshOjuw2bjjKYHrA9TfEe7qdGg9e7BMKGaQKElp+kiSa7tLtiUxStbTB4eERqzfKHB8JnTcaBLx1+y715gFx2WbR6QwoVXO0WmKPjqcJTo5rqK5JeU7oktPGNlc2pyyuPWc4Ebqy48ZZTiQwZCtGBJNokMWfBbz35V8R8nr+BGdYIJMa0GsKOXv5tINuzDB1sUdfvfwclQmqVqJ5LmHlQyGavR0GPZ1cWuyRqW2hMOTFtgD++ZXNr3FtZcazZ02WN5LyPo+JRwto9pBBT5ybJ0cD1JBJIiTe0521ubV5k0KxzMwT93R60uCk/px4SsCgv3XnW7ROn6CY40s6oZkX4Ho2tdopCyXR/vFk66f07k/5ynuiFHT16gKpUZGbIZPTI0HJMWi5/Nqvf8CDzz9Bl9nCnq1TWJ4nGhff3+21mI59iiUdR3KnmYZJMXuTrd0H1A6E7VnZzJFPJplfFr1hAQO6jT6Br1PJCp6yE6dJr2NxdWWO569EZZPiLHF1vkBjLNZuOIjjzmasLOg4U2FTXtm8Sbtd5/nOCcVFYc88Pn7Enzf+QucqEKf2SP5qyH8B8HXg35Ov/1PgHyGcq78ufwb4V8A/VhRFCf6fp//lUDWf/RNhVGiRJlM7z/LVPAe7srRGNxiPmmRyJk4g+xsSsLXTopK9CkCjfsziaoFAHVNOCiOprG+ghO/TPdvHlwdDr+ZSXVnhbCwU1Oq1PIsLf5vxeEi3f4HoN2PivSKVvcnEEgfteDJBU/KkYsLAzCbn6XPO1ulDzLDYwJ4O1nBKo+aRyEqC11KZQdC8ZIhP5mckUwmefnqfokQ1CwKF4WRE/bRGNOpdzDudYxs7LQiRnemIhbkSWHGcsCQ27inki2UODs94/lAojagRYeFqHF/W3jf3PfLlJbb2HrI8J4Re10usbWSptUVpT7/XJJ3M4AYGruSmiMcTrC1dQ7FSl7Xoaugc2+2g+LIcrXwTz59weHiMI/mOgqBDKKySTuXIFYUQHtdf8cXTYxJxSTKljFG0MMd7HtGoeJZ8Jkuj2SEcTjEaiZNXURWM2BB3IsXPSjCdBoDPH/3xjwHYWC8SDSc5PeuQTQlll4kvUS1VL5GQWp1tdDVLf5DGt4RD9PaX3uLhvWeYepZwSBgRhwcnROIxPFnG1hlNULwIiuJTlE2otfoBo+iUTEwnKxvYG6dNrq0WeacolE8xXGHUHaESoz8QG1/1dRxtwMvGPXJ5cS3VUyiVNbZeCmO5lI+RzATYdptuTciZNYizNLdOOuvT6giZzeQ1OmeHFKuylLbs87W7v8zZaZuyJANsdV0mU5uFpTwP7ol66mtXlpgvV6ifiHlyjR4//uIl02mWf/xtIT/2CNSwS6D4XL0mZPi81cJqTzipiWfZvHqdQReSySK5lFjT/d0tIrEEs6nNeCpk2ExFGM2mDCURrh+K0hwNcb0hqZJ4vkavRzJaZtaX/YdYeAToQZIrtwWapW83sL0Zc9VrvNoWz4Jr8OjBDudNYVRE4gFr6/NMhuC7Ql7SGSGTezv7eNKZMvQosYrPRPahlTILeEqPcd/GnknUobkpyYyOETIJJMqQoUeYWjZhudc1FALfpdVycALhTEZ1j1gsgue6JGVZ7vlZi6VVg9FUGP6qqpJMVajvD8gXxfzO3C6xdJx+e0IgnXhfNTk8rRM2JLjLNMn8TYPotTQ/+z8FSIJCAk+1URXl0rlSFAVVVS9LARX5N1XTGA4uuLfCWL7LaWuHqOzbG4w8zJB9SXB5POpghM4p5BZpS6O+WMrw8Mkn3Ln9S0TC4nM7O/dJZzOXBvT5eZNYZIFuu8OrV6JM5847G7x6dorv79CqyTKdlXl8p8dtucaff3yfRDrHSbuLGQgj8+4bN7n/9AuiSZVUUcj1oDNjeW6VwJfIed4y0/4uW8MHvP22aFhxvAGlUp6p1bvsi7h96wM+/NkfUCzIgNKww3A/QSL5Tcox4aT4E4t2q0v1QjZPjlHNLnMLq+zK/jFLH5FIJZlfSGAinKvp8Jx01uDRExFcWVtaJxw2GfRckCBJltPCD5XI51eZzcR+7/dgvrhIkBRlLM8ffYdKtcDJ/i66J4zj1aUQE2wWCkUOYkJff/boEwbDJkey/2BtZZV8McPP7/2YjXVJqLn2Bs57PrbTZzqNSHlJsrX7nGxGGI7PXj6j25jR74RptoQhMx7azGYjVCKC+BaIxV1AwTOETGlqjmgMNALcCyJNdUpIieD6PobsRbXcGZ4foBkXJaqe4D5SXBRZmui7Lh4CwfACwEZVVULh6KUMm5qGouh4voPChdMiBM6ahHn8QKJLrnt062BLsIOdl89JxkymwwGLRREgnM8u8+zxjzANQ8AuAioxdMVH1S+APlwIdMAnGpelUTvPuf9pjbn5AvfuCYcklBxgDc7RNMlJ5noEgQDduCjLNQwD8NF0hZkrZH/lyhIP9j6n1pM8W+saJ+c93pQ8WwCGq9CfnPFiVxihubklNjaX6Hef8rN7IlB0q7pJOmFBkOTtO8Jx+/GPf8g7d/8uv/LV3wTAtnd59vwh52c11pffBSC9EOHpo0e8d/s3sGaeXPcGOhHOzoTRvbEwT713ym//z/8FVxaXAXj4yX269XNuv/cO7baY8//9d3+PzY13yc9EIMsPzbM1arC8tMG4LvTU8XaTIOlxZW6e4YUtEVlgoRrBCAuHz4tUKYbK+NMaE1usy1mnTSg8h68MOT2ViJcxj6VKhJ1doZPiGY/+eEi5UuS0Lc6wRvOMbrfL2++8x+mZuId0NgR+lkpJ7IWJ1eTGxk2+uPeAblfIfqmwgqZHcAP3EnHSCURP/MGhcMDmqjnW1tbZ3t7m+Eic473ZPsnSCS+eBhw8F3vyrXd/FWgRjYnee8Xwef5gl2jhGjNbfN+075KZi6D5XRIZyfOactDJsyQBSfZPtplfvInjTTg8PhDyUlmm3trB0Na4dVvYvw/uPSCTiXBlTejTai7Bp48fsrC+juqK+yymLXzFoVgwOZWIha7dIZNZwLPE+pWLm6hRjx98+HPyZSH7NhMCJ4rdF3t24a0ojYMw2UKU/kzYBKlQFE1r0Gk3WKyKREkiVkQz+4xsce3jnVP0SIniG0X8ExFgXrla4OjkmFx2nslYBLXzpSgr8yvsT4XDnkgvEYlc5eiwT6Ui9JtueDQbPZaXruDJ8np/kGalFOegJkDEzlo2129uMqx3yedk8qGe5/rVDPunx2xcFTo2EtYZjfuoI4nwaZpE0nGcICASk05u4yPqBwFX15fwQxJox5L27J8x/q16rhRF0YAvgCvA/wDsAr0gCC6CEyfAnPx5DjgGCILAVRSlD+SA1p91fcty2T0UB9OdO2uMeiatdodWS37EPKeymOFwr0taNtlFox5vv2+iWeKwTKezbGxm8awzbsgD++d/+kf4jMlmF8nGJNrUjRyd4JzlpHBadsdd7j//E/E3CS866FukzAqHJ8eMurKpF51IpE9FErA6M5vJrE3EnEcNCaNXDZJksxXm8xkOz8TznG7VycXmyaeFQev4PbYOH3Br8yauIoTXsQeMhmMMPYaqCaXhug6lYhUzLr4/zwaDSZONzWV2DyRkpOrx4tUhv/GNb7GyJPoiTLdErXnOD376BwAkwyq2paIqJQ6PRB3vTN3juHHI/LJwNAa2ydGLbQLlu5QqwriajGcEM0G63BtKVmzzCtlUgnZHGBrjaYN4LEMknGRfZm0WFxfRVJ9Q2GBrVzTCr19dJRn7gKf3ZDPivEM6ZfLyoE9PF8o1PZmj15/QGR1RkFHbbq/NcihLInqRKZvRa3ZJp9P8p//+PwDg29/9JwS5gExex7GFk7Szs8Xd91Y5kig585Uqk6FDe/CU+SURRXn5YpcAi+UrMT76SByW8WiJTDZORypbz7cZDSxUVGKR6eVrmcQc7qxNT/anDIMJzXaH+U0RHbHbYzx3yg8MTRUAACAASURBVGg24PGeiHz8rQ/e4ekXH1GfQrUstsrz5y/YvLFGNSVR48Z1UskF1OkKzWNx7W63QTq9ijNpE40K2c/HrkKyIcIcwGmvxr2dJsVkhbUN4XB17ve4WU7THR2QldCo7fE59ce7vHnz1wA4a/RIJYuUYgqORFGb+mcobp7JoMvWlsh0RBMlasdDYknZHLzbI0qSdHHIUCJzliorJKNphpNTZjLiPe12SYazHEuACSMSIhh5lLNpXh4LmcpmYDTugSvkLhpVKeXSApZaxj4jqSQnL1u89cY80bAl18Hiw5+dsX5NKPI7d97k04/22Hgjz2wse9oMj4/YY+aPWF8Tju+wp6GFVWKurFUPTErzGY6OjkBGxfUgjuO1iEXjtFWZPfej6HpwCQ5g2zOi8QiOlSLQxfO6gY+uRUAZY0oADcUPKFUNAl8YtN2mTyyvcPVqmaePxeGhhsOk0nE0dYwm72Fn+5BEPoMjnaaFUoH9vQ6xWIJ49sJAUFENVUBOy+DRJUrgv+FsXaC/eRJLt35ew/MjFMo5Om0h672u6HGNxpYBOD57TCadZzYNmEmaB6cbwnVDfPzZT7iyIg6mbr9Do3XKZCLmpTqfASWJqvf5xje+Ia518hQUi6lzxNvvCr3bap2yMF+lUBbP8tbbGzi2yuHRFl/7sshEYIVYWkowDQKKRbHOqZDGbDIlLoNcBAp33r7FyDJZXRSwxA8efYwaamEYBs222CRfPPlD+oPWJaqZotmkkgVMtUhFFfthu/YZK0sROm3Zl5kysPwJXzz4jIgEnShXrzGyW7x69orrK0J/RpJhIrFF5qrCQBoObDbWrtHo1XElnUAkmmY0dIkn7csgk+a7dFs+TIRu+fW/8nd58HibdOWI47qIioayd9BDPo+/eISiCefDDKcZjyeUisI4b3ea9NsahUKJbkdc69qVNU5O95iMbOyZmONvffM30A2N9kREt9/7apZyep14GpBN4Y36CSeHNVrNEe22WPeTozHOyKU/Fr/3R13GE1DRCGT23DQNVC+DHrHAl4ASSRPXCVCQzp3qYNkTVBJYEglQ13Vc10XX9V8g7Dne/83em8VIlqX3fb+7xb2x70vue2Vl1l7dXT3dM5qZHprDRRRpW6QtgqJNW5ZsGJAN2H4QBFsyDPnB9oNswLIBWrQsyZAISVyGpDjDnpnumeme3qqrqruWrKzc99j37UbEXfxwTtVQMCnSMAzIQJ23ioqMuHHOd779+//xfV4gEfq+i+t6oPgoqoS89QEcXFfjZF8EU6sbSZyQzbAhAxszRLm5SyKWp9oUtueDjz7h2aM2sYTFaCyDPs8XAZ9MwKi+h2VZTJwR/b74bMfx+O3ffJ9f+g9WsGVHxqX5S5xcbIGsTmiahueJ4PB5cKWqKr7vEwqFaJZFQDJyeyys3kGTAFoPHn2btYXXOTwXyQiAfC7DxUWNzauLAHh+n/NiEZUgP/Uzfx6Akw+f8Nobb/H0aJ+9HRGE+U6M/eO7fPe/+acA/KVf/s/5xV/6j/h7f++/5em28BsW1sIYRpTD430iYbHni9NXOSs+JqSKSlLPUQln8qysrZKSXTCNVImLcoXLr33xBYCOMlYxQgOubwqAmd3PH9J7/5j5N3+CUUwkjwuXe1iRONXSiJvzQg8boy4z6znee/BDsSc9qOgNQukAnqxgvnr1dVqjM5xmCM0WdzIytUgoqBONOVI2fCLhJKaeoiSJzI+O+1y9foVut/Ni/k9VVfr9Cc2h+JxBf0gutcnXfvxrfCaJhU9PLjguBXB8m4TUsY32EENXWFwV/3782RbzC9Pk81nO5czcyuWrGPo0x+UaBTnzfHpxzGTs0U0KHX+4e8DGpQ0eP/2U/JS4a1PT83R7DWLZJGOEvDx68ik3L79CzxZ3LZoM0Wk0SWVjrCyJvWvUXTKJFSYTm0pR+MiObbK8OEW1J2zRt773LaKZPOfVMn5PvGcmN08g1qfbMJhdFnpJqWskkyk0mbSoFzuM7Tjx7Ij+SHxWLJrFG48wZLm5XNomk9XodOvEJDBGp1ZkKnOVbPYZu9JvWN9YxUHjk0/E/i5Pr2FGAzx6uIMm79rU7DSdbZvpGZPTotDNxWKfWKREIiPux/bjJlPTl1hZK9BoteUe9AhGdMKJCf2uCNSGHZ87t5a4LBEMv3u0y+4H98hMx3i0L85lebaApqXJzCS4eVkEXG+//TZLN37qRcL3h+/dZ/lyjmSgQLUpfMhiv0bETBKJhDi+ELIXMSRK3R+z/lTBle/7LnBTUZQE8FvA5T/N3/3LlqIofwX4KwCxpMXyqsjeDUcuuUIUnAyzM+K1serRavSYmg5h6sLIKuqYZq2JOxIKqZBZZe9ZCcNs8dvf+QYAuWSYfCaH3Yvz0X3h/F+9NeTxYYXXbolMT71+RiiqYKqL1CUUZMAIMB5EaNRbhMMSRCAwoNPpcL8sBGV1IY87MckmlqjJjHAmeIOlwiYPn/02qbjY2tmZS4wGEaoNcfEXVy8RiapM+i7BmBDofrPPaDIArUssIVHULkZM3An9hrgYMSuJrk3Rbk44P5FGVj1gpnCZTivB909FO9hcfp29wz3KDaHI3XQMu9em0WnTaUpoazVALj1HzJLIa6Ex5Z7LxVGL2oW4UCErRH/g8tZXvkJ+ShjCeqnHeGITDYkKWLPe5mj/iH6/96IN4vysgmL42CMNyxJBxCcf7KMpZYJBsZdHZ0XcPR3HHaCpIrAYj07oDbvoWoxhRwIgDG1ODiuEI+KShYIub965wV/59/9TVmfFgOnv/84nDLqnBMMxHDkoXpjR2Nk+JZMRQZphjNC1Hs2WiW2L7NbUVITxKMHnD85YXRGGod1r0RtOaLeEAs4ko8QKKZqDDglZZag1mjRLNS5tznB/X5ypYU4gEKB8XJF/p3L5Wo6HW2Nur0jOJcXHC6d5cy7Ev7YuYch/7jV+45MeqiUCoubhiFZPZeJ10GQVRQm67BU/ZG5ugW5DKPh48IKUMY1riPNsDB0CXpVepU+lJc4mk/OonHbo9TrkUuIc9ESUk942730mqn4h1SMeC3J64RFOCGXbaXu028fkZmIMZHtm5ewEV/GxFDmcn0gwnckRTiicnInfcnRyQCpdYOzW8YXnw7Bjo4U8EjIo6/W6RK0U2UyGocxKt1s9rICOL9vY4nqCxfwUY69FryOUreYX2NyI4lKlWBKKMxJOc/3GFOvrIiP96OEOa+tBrHAQT0LGd2VSYGYqhi/5fzYuZ3i6/YjbN6SzHitQq18QS2ggncBwMIOql+gN6vgSyEDxwdAUnpffA8EA5XqLzuhHvFO+MgFPwVc0LFPcLc87YHVtisfPRGKj2x8wZMjQGBIMi/dopkY45qAoDtW6cFYL2QK65eO4IilzWn/K8NjkS1++QXZFyOLTz+ukwhoTW8F/jgTqeS/aqeB5kCWqWZ58eiuoMRg6HJ/sgS9hq2MxatULJjKrGgzO0OnvC2fWEzqpP2ximiZH+xUGPQFHa1gjfN/HCMhKXbNEJOySnUpweiHuWsAMk0yHiFgbpBJi30eTOpmMxcW5eE8+t4zrKrhGjdpA6OpBPcTQabKwvEjjQpxlNOrS6XYIBIQhLNYeEA6HUbwkJ2fCwbx942s82v4Wjn+CIwPDYT/C+sZlqlUBkuKi4Gl9zuo7mJKqYDKKMz/7Cp2e0KV9t0QguMz6lQhD6ZT1bRvFT7I4fYcv3BFm8Dd+9x8xu3SZhJxvblUdymc94jMKXV8kSSxjGj3V4vj8e+TSom1ltjBHtXSK2hX3+O5H8yhmkLnZVSa2qFKhXXBWP6BvJ4hEhX5LJiIoExVLVg9D8Rb+SCGaytJpiexvuzPEslIEQzFKFfHsT549YGVlg4MfiM++Nn+NSqnNabFFVCbxuq0S03Mx5hemSWWF41Tv7aF5QzwvI2XD5Z1vbaGSp90T3zcZxqhdXNDvx7koCodE0zQcJ8RYQpwHTJVwyMRxPQwJ9KMoCrquMplMMCUXlW7AaNwjYMoWQEcELQFTcOcB+J6BEQDU/vMCFJql0yxOGMozd5tN8vkNYvEAY0cmLbciuIqLGgigygAIHFRNwXN+9ExW0MD3IRQSOiEYMjg8OEfTLlFti8rRwZFPr6NiS746y7IAwfOlvEh2KHieRywSJpIVQbXTeIZpG7RsoRMaJWimKkzUc54vIzhLPOMxkZyLuXCGzkTh2dEhgYoQtBu3brO1s8vE7dAcCduTKOQJhzzys2Kffue7v8abt3+Rv/jz/xVv/0DAoA87FpfWVrl7/9svbIMZ9Bi7WVZnxF24e/4bIjAZXKUfFOeXywe46O1y8JsdblwWHF2qUuc3v/ERy8si6fxXf/oGnz8yyKbTfOdAJFf39ntELJOYYUJJ6KDl1VVaowapmAg0zLRN9aJEKnONfEYkou5/fJdYKs2rty7x8FORECiXjxk0XGISGTCbjVFrddg/OSYsu37mcjE6bY+JPXwxZuGPfeKRFPawJc9YY+/gAZ8/GjIzJ84lEjUZDJtous/TbREUOZ7C+tpNXIna7NFnOOyRzS4RkB0vMXOa83OdVr2CPRZ6anb1Ohubq5wcCR/h0somITPK9LTHk+0jAKYWYxjqmNMLk2s3REJp2D6lXHyGLvfFccPE9DGVYoOFBeGnkCxzXjolm1qiLJHrVtajVOstHOlPDQMOmVyaeCZA41Dc7YOTbW688lX0/IBKUTyDYWXp223yCZEoimfKNKonBA2VhbxIjtn2HtValLllcS5zU/P89t//Z4QTC8Rka6RjJwgGLQz9Gh1D6O8AEVzfpiBHWxqNFrPJDP5oTC4tazETCGg5onETpyhtwWyORCZFryrs2PXrS9gjhdysQtMW9rF6VhK0DP4GBQkWd94/oxMqYLSEjUmGd4jNXSI5ozNWRCyxvnYby61hhBcYdUVVMxkvMO7XmYzEGU9PpQnrY5zeEEve44ATI5NcoD90sJ9zVvJcf/zR608EtPjDy/f9FvAu8AaQUJ43QMMs8FwznANzAPL/40D9j/isX/V9/1Xf9199js72cr1cL9fL9XK9XC/Xy/VyvVwv18v1/9f1J1auFEXJAhPf91uKogSBH0eAVLwL/Dzw68C/C3xD/snvyH9/KP//nX/ZvBWAaYa4fUsQj/3jX/8HbF5e5drlWS6KYuCs3WuQSU/TrBepuGK4Mj+VoVYZszIvovler0+71Wd+fpF8VvyscDaENtFo1tokHRG9n7X2WEnFaMgSPRMf3w6ixg6plp4z3sfI5oekknFcCT87mah49FBNObyqRWk0ywQ9k0JCzHil4jq90S7ZqRxxOSvV6BZx9B6vvSGGYHttleL5Lr3ROfNJSbyZzuGM+mha6gVccjaboz+u0KrLrF/SRffnUYJjsgUx66N4Ko4/4f37v8f5mcii2PYfoGpd4rIScfjwgmQsSyQQo9uVz65PaHR8ej2R/Rk7YzKZJUrlFpYleZlcDdPS+O737yIpO5jYYxYWE7RkW+Da+hSTiYunB2h2JbCBH2XQajOZVPAkL0s4HEEJBLioiayRaYSp16uYAQ9DZv3dyYhwWGXcM+i6IoORm4kQDKZfZIMqjRbT2S9gmgG29kXb41d+fIlyHWq1BkPZXmOYFr3emIApMnyOckIw0cNXLap1WUZ3Iwx6GiPbY+SI39NstwhoNlc3RUb69KSEq3TRQiMq9eezNzF+7K032Dl8jC4rAYavEUsFiIVErqLVdXBLLpYRYigJdesVl2zQZ47HLFvi/N7+wRnl5iKvfEkMuO7t/iMmk3PC4RgXR7Jypbug6hw+q7K4sghAfzggGfOpSshadWhwffMN9g4OaPeFvCxG85izPsWiz3gkXmtX20StGDuPRcY0GcxgRYf0tTqVU9Eekkpk+Qu//BrvffghxSPZ8jedRdNSjCXsuo9LY9ji6KJDMir2OBCC/YtjdGdCT7bbBFNpLipFEr7IpmljCyek8axYImrJ0no4hBlQUWSCZeQMcFWHcFSnUhXnPj13Cdse8PhRlcFQyMZwVGN+bo2tR6I1o9upsrFxi7s/fEwoJs5ltnADuMv6So65guhNL9YOmJ9PoxhCqGudx0yYMFt4k9yUyFI/2blLRJkhlRpQqQqZ0sM+47GLZlry91ps756wtJhAlzmm8aiHM9KwEiH6Xdm24vU4OzlAD4psVyQxoj9x6TtdFNlqNuwPiaQmTFQVQxJaphMGdt3C1GSGtpDgo0/u8+Dh5xQKQm8cPBqhujaK8qPqmeOBpasv/i3ALBR0Q+XkQJLj1jxisRjF4j5xyb1TK3eIRVN0bNE+hTJEVSI0m00iMiM8nvQxA1Fu3/oixbLI+tWbHaLxKKOxyChaaoh6s0UydZm+5CDTLZ+hd048mGPgiGdIFyJEoxCQLWuHR/tMF9bIJvPs7Iqh96XlDHEtz9HeKTevfRmARvcRo4nL1LyQ1/ufPqLZjJNMphk74hn++Tf/CauXpuj0o6QSosoXD8XRNIW4nJ3cPX5GsVLkzqtvoSvi3oYdgx9++h2SSVFR9CdjOjWV2esxyqfi3HvOAaYRYmZm5UX7y+rCTbSogsQ+4PLGEhZx9k7OSGaEDrS7Ds1mkcnQwO79aNZHCY3ILogsNfYcrfIJpZNzcnnxWq1/n15zTDoeJxwXlfgnW1v8h7/8i/yjX/8nAEwvuOSS0zTaPSTvL3sHJfLTQfrdJk+fiefUA1EG3hm37gj5efzogJAVIDPlcHEq3qN5ER4/2eba+p+j0xa2r1Z3cfVDchJ0KqZt8voNj9SswYNtYXduXH2dbCRPu9vi7j0BSDI1M8PHHx5jBMTvPT6sUi8NmAwdmg1xP8bjMZZl4Xke3aZ4+HAkiKZb8JwsW1NxlAmKovN8EiFgiGpWMGjw8UeiivrWT/4EvlNjOitkupDd5PT0mPNmi6lZIWcfvnNIMOgxGkx4XrhSNQ/F10Fy0+m6ga7rdNpDFN2Rr6kcHZTZfxLgjS98FYBqrcHW9qdMRuI9lsUfApZ5Pr/lofhCZ/ZGorJaPG+TzIWYSEL79UsJzk5OSU/JVmWgerFFKBZiogt77Gs9jms7LGzMkJXyebDzKUosiBUK4LniPmwfPeHq6k2yKWHDqq1j/s7//pe5svlnMSPifuxt7/PF13+ar731Ezx5ItryxoMki7NzPDgXpOJRo0DMDRFPJgEhB81nJdb9L6IuaHQHomMoEUxxZXqON24K2fzGP9hicPlVrrU69A5F1S2RarKUfhV/3HnBF9kb7fH0WZRuWzzT9FqS3miEOgqRmRf7cOf1W7z/7bdpz2UJF8T9W+d1jkqPcCSoVqekoPg+n33+Lrac+/rq6z/NWfOE/d3HRC3R5rh53ULXhi9kajzpE4yYJDNhmnVh116/c4NyucbTZ3eJRIWeiEZy3L33A0xTVPQKhWV6/SrLCYuLC+E3eM4uuVyOePTLzMwK2auet2lXzrk4F/ZjYSVEvW9jD1wW5Kz2dCrBk60Drl6ZojMQFeDRaEg4GGMwFG2XlVqVcjPD+rUNhq74voHdxXeDWGaMqU2h3w4OTlAIgKR5iWXyhGNJAmoQPSSqZ8mQweeP3yWWiNKoin2fn5kmk83Tao/lZxssLCTZ3i6jeELHR9Mpbt4O8tEHwve+2F7ip372F/nmu+8QjAj7nxlrbO1+jk6COzeFri41PuOkNCafElWjubU8580SE18jIWfKPrl/D7ubJhTIk45KKHSvwtFWh7EkA1a1OdodCCfj4AhdUshH6XehXqnSqghf/rxXZr9yDK44u9nFAM1ekVvqHTJydvLg3g+wzCGt4Rb2c1on1SfSqr0Aq5orLDKcVElnQ/QH4vvKtS5+v8XuWYuZK+Ju9Yv/t5rRv7D+NG2BU8Dfl3NXKvBPfN//PUVRtoBfVxTlbwEPgF+T7/814B8qirIHNIC/8Cd9wWQ85mhfCPjm2i1wTB4/ecDGFdHi9P13y0yiMDu9QHpKGIZyvUY8GcDTxMVPpWbQlBDxWBhTOk5nFxUuKs+wkgFSBeEgtHopcqkkB6eSnDdhMB4H0CYWIVMIuG5APjNHrzWgXBPl9mgygef2mYyFE9isj9F0j5XFBbYfSeb1VoNAaMxEVTk7EE6gpxgMWj6eHHoPGgFOj87Izef48H1xgeZWNHr9Mvn0JlpAfH4869M49FAs8e+ePWLQfYCnWxSmRHm2325SrZ6SS6WxokK5apbDsJ7DmwgnrdE8p9ms0rEnhKJCaXW7A4JRg8N9oYyCkQnjYQcrqKBa4nPKxR5R36XW7pBJiBKu6054sn1ISJIYP360SzoTxfPiZAvi7+q1LmbIQNVNLEksun+wR9iMYViSHHgWDNOjXVdYWJJIgCELe+iDOkQfC+NRrg1YWLOpP2cvT8R4cvI+/+P/MuTR5x8BsLgaIp9fZXe7zKYU+gf39ti4Mk+lIeYWRmOXRCyGo1QxTPGcF+VzUukEyeg8fdnPPex1mZqLYkiH1qVBfklnZAcwJBngJDrkw0/fo1QqgSH2IROKUjrvY+ZFi1qpdk4sXCIdC3BuC+X62nqbyUmD0rnNH3jC6Hyy41P2bN59V8z8Oa6C5wq0pIVVsXflUgtDm6U/KlE8FXckGC6gGxWuXxUOWGgSoXTWJh2ZoeKLM+03ZhmNDun3QlQrR0KG/AYRr0BYsqObAZeHnzUxgxFcOQPhYXL4bIAymKYwLV7b2WmSyqg0WkKJ+WqAkKGSiepMdHGP/MCARFQnHc9wWhX3wXBVzOkEdlsOobsO3qhNMneJdl22UGYChMIByjKQCsWjVDs9kgEdIywd77MtlhfmmV9Y5+hQOBv9fpHRpMrEF20RRkBn0IN/8+e/zsmJ+P6dA+EwphI3qNZkq5AXBatFIi7m457uvYNhDNB1k+++83sARGI50E9xnAnItkDft9GUAM+nTPWARbPZJ5OyGT1HklR9AoqK4rkUK+IZXn3lKuurAd77XDichfwMWwcHOC5EI0I2IkGNbl9lrIxxVHHGZ0Wd+XSScFR84Y1br9Gpn6EqYb70JdGS8/Hbv4ahhBkrLvgSCEMOYj9fnuegaRqqqqJp4h51Wj3ajSHeIIwREzI8XYhyfHyMPRYJmHTOwrHDNGsdcITV6bUdcCZ06mdcuiyC1cH+mGAgSVs6A73+iETaYevpY26/Ku6jQpCp2SlG9jlPn4ozmV9KYFhxVEW0mil6i659wnjgMDMt23TMTYxAn8K0RVeiA3a6YRbWFjg8EN+Xm44R0CyqtV06PfFbbt3exPMdPD/LdEG2kXtpjk53mZoR7S8/+1Nf5h//xq/xyUfv89aXxPB/d1hE0+rM5UXL8dbTIelYiEFDodUVrXQBdZpur01IPydmClmst87RjHNicYG4GdTXyCZNGq0uw66Qu3QqTzBooXpxul2ZCBs3UDWD3pGwV+kZDcU00IizfybuQ/Xc5q03fpK+V+ToWOipheVrbO9/ihIWDu7ugct5sEQ0l8buiWe6qHyT1NzXmVu4Tkui51Wb5yR0ne3HwoFW3HmsmEc2m+Peh+I+zk+HUfwhimajm8L2NNqHhKKXcWSL1dnRPkE1TvH4jHhC3NEH29/l1toXOTmqcGldJBZddcDN1xZIyWHy10cDfG/A7NQm33n7d8V+GmEO9yvgRujKBF2t0qfe6DPoie+zQjFQPFwn8EKGPX+Mqhqoivki+deogTeeZXZmUTznaZVoLMH+46e4ktOqWO6RSkeYjCOABNpRELNhkkhZ0cFVFEbjDgaydVcVc56ffvKUL31NzOg9ePApkZgi2pMABRFcidkr6al5/guwjlhSOI9aYIdHp/dJhYRsZqJzNNgjMhD7BNDpHjBS5tE18YzHB0XWl9aod4fcf/A9IQfpJcZDhXJbJT8r2s8Pzx9x79kPmJYtiLP5OW6/dp2AdsrxmXCWTcvA8Wvcu3+IPRL6LRILY6XTLCoSQMsJMJ0pMKwdYSWEz9UKq4TsIJ4+JisJpcsHNUIpl199+zcAuHb1a6wsK3z44TNyU2JG6Ne/v8NkucXyhsVYDgoPqj3GpTN0R7aVdpsEjASfPrrLj+d/VjynOsP84hKV1jlIbqGL1jamFkKTIwb6RMEax9hYnObpkbCrJ8cHLC1tkHwth+MIB3oql2Vr6ynjiQjuHHeI646ot5qsFURLo+Zp9Bse6yubfHRXtDQur8So1g8ZS7/vzS/M0+k0ODoo/iFeM59uxyaR+BHRr92vMRg3KBSe87JBtXHM3NQKpmyhrjXKvPXlr3K89ZgD6S+GZy3GwwumkpKLMpRFWfbRtS7hsOS+S8wSjpxSqx2TmxXnFY5kuSgeo/vi+6en1/DGXS4uSsSicoa9c0i/3SKdmCISFHamVW1iBqL4prBF05kN0qksy2s9Hj4WM3p55qjWqwx8kaTttU44PYa5qRyJ2PORgwjEmhxs9Tk6FLp5Zf0K5fbHHJ8JgIl8aplAIEHtvEghJfS+5oOrFNk9qHHnDcEhe1J8hILK3PQiAAd7J6xcWuL44PQFyM5oYtOsO1y9EeH0XOiJL83c4uDRUzyZJI1bi4T8AZNBm2pHguMlo1QdnV67RP1I/OalpRmOD0/QMkJ3tos1rm0usb9VJZ8X9uLPfv0LHG19yObmJucjEfQR+H9JIuz7/kPg1h/x+gFw54943QZ+4U/63D+8DCOApYkIeOnGNDs7e1y5/GfY2hYO9HQhhxVU0FQLdyyM1biRJ2p62BJhaGT4lGpNxvRZmhaXpTAb5/1PP2HRnGFtSghhNuxg9yaEDbFBITONFWrheirNhvis1eUcB/sP0YwEQ0co19r5PqFAhnhEKMBhb8jS0gwnu+eMbGGYVleu0Gq36fVtDFMou2a1RtTI4o6Fkhw4E3L5JIZRRZXD8p6WIaynOa3uY5hCCB6eNFmdyTEoy/mjoMlQq2JoHgNbKJbzizKpTJxINEn5vmskqgAAIABJREFUE3E5Y/kI6riC3RLOyKWZPKWLAamsT68j/s61gvR7baIR4cBPPJdgRGNkO7gtYakyyQTt7gUBI0NHEvY121VM0wBNKJVGuYtiJAUi2qrs/4+oDLoOvUGDoC8rZaZJmw66nE2LdbLkMotYgQ59SXpphUKYhko0HKVcE6/h6Ow8KePJQfxkMsnszDRju8ncgnj2QmaZTtPmF3/h5/nBD94H4NrmCmbAIGKILPm1xR/jrFxCM5OotnDGj88qBIwQ5cYFU3PiTBNTWS7qDSYSBjUaM2mV2limTn8gqj39zpjuoEtsyiKqyyxKroBm2bT7kuRTA9Va5Kh+QUAXz55ydY7KJTqjKE3pwD47bDBK+NgdSVi4ucBgZKH3m7TbQvlNFJd03KR0oJCIC/mMMqRf7LMjnYO1xQ0WVhdoPd5iWSrSw/MKATWB4lVRVZnO7oWoTwaYMmjRgxqNnR65hQitpgTsGJ1xclRFsfpEZFVjMnFxBj7ORA53j11iuSQjD0YVibCXKHBWO8RMR/BlCj+STDByO5gyc21Pxpj6DD4uhmRf7zhdOi0XNKHYdDPB/kkZs9554QhXKhWCAYPZwgoROQPh+Qaq5hKXaIW24dMbdDk+2MaWsO5XNsT/eY7HypqYc3nn3TqLG9PsH0jI+mGCaDjD3c/fJ5MXOqhSalJYytAbHaCrefl9QXxVEUhigO+N8TWDwXiCI6vimqHSGjfJBHOM5LxYetrg7GzAeCCh3/M6rg/euIPXFfuiWRq9to0RgoEt9qUwnWM6v8DuqXCIzptPeOP2qzTrIzLTIvgf6TBxFAKG8SJj7vk+rvsjWGtV9fE8SSosjeP09AZ3P3nIG6/9OX7mz/0cAH/7f/0v8AM+riOcrXhkgTbntN02vkTvLMwW6I+GWH6KopzjyU9naNdrZMLirM7Kp5x1NZLJJEFN7F2tfJd0IU2jViMiySs79QmGPiGTFs/9hdd+ir3Du+iKz3lJ3NutJ79NNp0hW5hC18TdSgZNKhcPSEZE4m3s+pSqfW7dfJNnzwSSZDJ6iWL9c5rtUzkHA/Vii1jK4vTsuWE8460f+0m+8ft/h48eiIzs6swiigXdwXNi7Eu4bplW94xbNwRs9vaTY25dfQvT0nkss/6xfATXX6JxKmzT9EaI/eMnRMIK48HzmT2DUnmPuZmbmHHhBD7Zv0vQuMa6DFQfP/wGl1NzLK29iXJH2I+nD1uclD7iyuYXsVQx62M6Y7rdU8bSgZ9KhCmdt3C8COWSyG7PLWxwenhBcc/FRzoRq8uclk7oN+UcsXUMrsnnj+D6mggog06XScCjPxkyuBCVlkxqCrsHli8cooE/ZGKOaLXGeEg9NWkx1h18xULXhM385u+/w/riJmWZFAokbbxumELB4o23JOpX4A4/9pNJth7dZVNCaVvqAg8/e8RJWQSP3//tM6odF1fto7tiP3VVw/M8NMtm2JPV5ECCN9+codEQyG623eD0wuXGnRXe+464R8OBQyyZkpDpwq4FDDFn5Y2EnActn0F3IJA3FVm1HdmEojoffbzF2+9ItNdQDyu0hOOJGROUoACOcV2eu1aqrjDuwsxsmmpR2JCRGyMRipCUGf16o83q9BpzhWvAN8V++sDomPK58C2mFi9T6o+YHH6M1RLn2Q0tMbuaIWLXOD4VXT4Ls+uE9HkKs+IZTy8e0e2dYQZz3L7x0wB02g0Gdo319TmePhNVjYvTZ/jumOmCCIj2Dx+jqx6ek2YikwHJeIgf3rvLwvIUkaDYq7UrG5RLZ0QkjPzyWo7qYZ1wBBqS9PprX92gcVJB0eaJSMTJkZ/njZ+4Tq0ski0X3RrhzATdivCtbwoqnTdf/zJmIsvTp0+5fEn8nnG7RyG3QuKK0DenT05JJ3SqjX0iYSEb0azF/s7HZGObnDTFvpRrfV65vsZ774p5Y8dTmZleZG/ncw5OxTxXn6sw6ZHRZvnC7a/L/atyefYypyUhU51OB19RUfQJAemX6J6K4jVwRxbxpPSVKiVSkSSWBGCzlSTXb81iV/tMbHFvp9cWeHawSyo9zUZYktr7I7Z294nFhEyrTg2tbeJYLuV94bskp4M0ak1mZue595Go8kejChvxHFsn4q4lrua5qBxTLp4x6ckZoZDJyAsI3SxJdbtNk2g4jvN8fsjt8+DxPtFImEuXhM+su12qjRDJiLAfLh49p8X+xQkVSeWhGyOWFmLEYyF82QlgWGnSsRz5lDirnYMPsAJBBm6bB/fFfVybzYMaR7FU7j98D4DF2SlUYkyti/cUO0/o9Vw63TpLC5IG4bxMPGsymWRJWGI/64Mx+RvrWIYMQpMROs0OsbjG+ZmQxbOLE3LZWfRgBHMkZ7XOTxmPbZK9oJRNA4jhBkucNkWgWGyfoOopSpU6x/uiW+bGpkjQ/nHr/9HM1cv1cr1cL9fL9XK9XC/Xy/VyvVwv18v1R68/FVrg/9fLdaBUFhmUcueQoJnl4aNHdPoSGSyiEI7k6TUHZPKyH97vkk5MU2+KzI4z6ZBMKqgafPhQ8JaEojrXbm4wVVjk4lhkX8b9GoPBOfm0yJztH+1w7eobnF1UWVgQ2dBkMkMwGMTQszzZFpkVU4mzsb5E+UJkPqPpOIdHRWZmZlA1kTGp14fEslN8vPXPuLQm+k57/V0uWvUXmflCborFmTROqEbelm0Aoyy1zjZe3GEss8tLa1nKuxNsWXkeOXU0Xef8rErXOgLg5qXX+fje7/H1n51w+ZJoSfvn/3yf0VBnal5k7S9Kdfr9LhE9R1X2Fg/GXTLZGP2RyLTm8tM0my3s4YhQWETztdoJmmphhiwc2camYTLqKyCx/33XodOu4KJwfCAyIaZhMbT7WKEwSNhcU9dglCabF+LWH9aIJlIEwyZ9OQfW7oxpt/oCUSryPOuuoKshegPx/cnoLK3GmGp1n4UZiUDTrtBpwuOtu7z6hnhtMoyxvb3DzRuvi72ceouJ/msUzzw0VZzVpfVV6s0OmupQLYpMhDtx8H2FZk1yCzkhCoU0ISPNYUfIgat4aKEQ1zfmSURFRmZvb49sOMrlqyKr8t6Dd0kXQgS1LMWiqOLcPRwz0tJMtCGjrjj3mhmgXCsxlxAtD722SqNXYSmdIxUWFait/R063RqplAqebNnsXZCKhTivlKSM+cTjUySyOUp7QjbUgY4RM4gGQ/QCIgvetXrYkzF2WyL1dcpMLSTwDOcFzLsVsunYfWZTK4xckSHFH9EdtYjERXuI67p0+m1838SxhSw0Km1CVohW3aYnijaY4QETZ8BkLCFLFXD8NtVqg7Al9kAzHRKJGKr3nMeoxnQuQaNjs/1Y/BbT0ji+qFOtvYPdF7Lw5hs3KJbPXrRY2LaNw4RyzXzR3rPoi7bJk4si+3uypWrBpPLMRY0KPRKOjKmUbGKxAL5sOXC9Cd44QUCdQtUk/5bnAT9qrXMVFd/1GU9sJhMhw95IE5DjwwHdochSN3sG2Uycy6uizaPWqbI0Z5BJXKNXF+d5fn5Od1gkGZhiJiNkeNwfUnG75OZF69D9T6tcvTRFuVEl8kxUJy7NTnNxVkFVn7eniAz8c64rEISsz/89GUgo9pMx/9lf/e+5vLnJX/+b/wkAA2eAEQgQiQjZ6A4rBEyTTDZMCFHp6LbrRLNBUlaCekNkUVOJGM2mRlO2v4UjOYJxhfF4zMOnojq4kL1Ev9skbM0RCIu77fkjIsEc9ZaY8Rr2nnBa3ObW9RvELCH7wdsu3/7e73Bp7doLgl7FgPHkEkNf6OGxVyOVukS7DAtpMbu4u/uIWCKK6qcpD4V9CMXn8PwBi3NCFt/5g29xZeMr/MJP/3t8+53fAmBp/t+g1vmUTz8RHRNra+t4fg9Ti1Mtit/XaB+wfxwgFs6RlAhb+4fPmJ9fQpEVItcZ4401av0qtkQZs2slTDNKr9dHl3QCG2uv0G/mUQNCL//Y5SWGxQuK3//feO2OqGZlFvLsOD7zygOuLomzefeeTWmskM4IGVZ6C6Sm9un2m1xfE601V2/f5O3v/l3ajTNu3hTIuCO3Q8hKszAvfsvx8TEfv99jedlhGJEt4maYcNSlUKjxZFd2ciReoR8LsSfbbHXDZ9Q9IR5eJugJ+Hv8Q5qHRfrNJsaMqBKvX50mFXLpSSTL5fwUj59qON0ariF0XuukTSVg47pwsi32anZWJWpFuP26yCR///dGuI6Bqilokotq4o4AA1MPUeuIM1b9EI7XpFYTsjFbWEBRKiwWlvmfPxSyqKsG4/EYx3GQBWeUkY9pGgQCEq1QCzBxKpiB2I/44ogQMhUq5SatmrAht97c4OP3Sy/un+N4eB7o+o/Ixn08UDwi0RBnp2KPBz2V3PQ8p4eiMhjQcox7Ht365/Az4u8sfY6ructUl0X2fuv+PiFD5Wd++a+xrIrz+93f+k3srsXx+UfYkuz8L/3bf4NYLMH/8D/9NfH9egXTShMI6OzuCwS8sJVEUw2elQ/oD8WeT83HSCR7PN4VLepThWV8L4BhDnkiZ/be+tJPMj+7Qbd3yEVV6Njl6QjD4Yil2UUAmsdllHGSL/6ZL/LpvT8AYKd4gKWZHO4fEVHE/dNTFb718QOSkqw3riWwAhaFxTRxyRHY6Ti8/oU3mXj9F35RJB7lrLyPJufT+t0Wlp8ikQlTr4p9Oa+c0etUsE0VzRJ6MJaa0Oxa3LolmrAe3/2M88NtXDPDrJxhHbsleq7C+9v7hMTVYmlxjcGkzcfHokIUbpzieFCt7TGTETo9Yhr0O0Pc6gELK6KacX3uNpVaHacv5Ee1XFKRaXaO76LKbpbymcLa2iWOD0vkJA+bHhqg6EE0SdNzdmyyvj7DRfWcy9fEHp8fnbFw+TU67TPCaaGDvngnyMHOPV6Vowk7Z/cpVjU2bi8SlYjXuhmjPaoyHI4YSIqhft+ia3dJJUXVeGf7MdOzMTptWN0UnQcf/XAX0/BQFDmPHxjz7HibYumCJdkZYDPkrG4zGYX56hvC77p373u4TpqlDeFbxLNpqiWXr1x9lWdPRdtlqzHD0lqAbr/Plcuiatos9ti4DLtPRNXR7YeJZ6JclIqgCXk1tDyxeJjeoM205IstXXSol0fML0jMhXCYXsfn0ePPcT0hr+lEGsUbMh5NSGWFbFycBDB0jVBUyF0wFODDjz9gjE0qLs5YV4NoAY9et0khLTAWFmdEh9wft/7VCK48m4TEy3e9EHgBhrbLQDI2q7pFLp9h3LHZeSqEfHp6mlgiiqzMcnKxz3jkk04VCATkfMUgQ2/cxQ6PKJXFQc0txtF70zQlL0somqTT7xGOjcjlxUU/PyyRTIZxRkOSIXFwI9/jyaNt6nLAPVsIULkwSaRsOj3xWqNxRrbfZCH/Cv2GEIJYNEwwYdAeia22rQmfHz1hZ3ebzWVhhGKxBkuXwuzs25weCkNbKbao1xUWJZS3pqk0qmOcUR7XFJfluLqDakb4/rsjwgFBwnywZbF2NcVFU5Sxu2oNxXSZms/Q84QwjcoqnU6PoJzTanfqxBNhwpEAXTnE7I7ACPrUK3XCclYLxSYeM1+0HHm+gxFIoA41XOmIx7Mh1K6LqqoEJC9CNh2mUmy/GEbWDY2T030sM/4C9MLxVEKhMEO7w7AvnitoGvT6NQwJJvns6Q6qYtDtt/Flu2Y8bqJoA8q1Mtev/1sAfO8HW1y6NsWgL77vn/7u3yIYsamVwjiKcM4vL99kf69COGYQjwmHVjFb9JsOQUnAPGLC7l6LqXmbaFw4uZph405UmiUHQ9Z9dcNieWGTFQmV+u6977D15BNyRoaleTFQe3b2KZoWoeOGOTgR0YeVsEkqK7Q6Ys+t1j6qCdOzr3B0IJzXQiGHpUYoXfRewB47xoB4akKrIrkqJjUy6RlqjRYHVdHikIyv8PTRZ0xNpag3ZLAasnDcEV3JAxGxdALxOPX2GaoigpvdvTLXrqyQjFtMZKdA326ihwI0S+KZbHtCNpPHGzu02kLOJ66GqwWxu21M2b9t9+K4ikZPcm+Ypvh+jAGG5J2zAhb7O6esLsv7T4vBSJD9xhPP54dUyh2bsOowk5Hktbvn9Ec2i2uy59uHWqPK3PQ16mURfJiGNGLNJoUZ8fnvfPAJYTPA6ELIXTqVA7+H44SIRIWgXd18hU8/fspgAIr2HOdZwCrL0SY0RcFzfRxnwmgk2yVdj2AwSvmixOq6MHqba5f54Q+/S0ySRGamEihuB69voqii/U3RVJaWFohEIgw6Yj8DjsbRs8csLIggdHU5z/7hIy6tzpHIi1bM5FSA09MAuvIj0lL8fxGO3fO8FzNX9kjM8fw7v/Qfc+eNL/AXf+Xn8HUhi+FIjF5//CJQHGkt5vNLpCYGSUO8NlVY4rDapNbfwZPQ3aWSx9RsllJJ9Od3OyrxoEo4GkIiadOfFLkyfZnxwOf8TDjCwagJ2phmR8hiY/KYZGyeTnNMuyt0V2is8srN16i0izw7FsHq4uwGF7Ui4aDQ1ZVOk+uXJ3QaxyxNiXvcsj3awxrlWpfliJCP/mAXL9Lj/n3xnnA0hBEecrhlcfuKCEg6w2fYPYPbt8WsWLlcopCdZ29vH03O8SbjBfLJa5yePyWekgA2vQOCDZ35WfF37U4VXytTr1zQ74r3bF5ZQVVh62EZwxJnHE9pbD28x/4z8VveuH6JilHl6p1l3n5XtDjbpsooYfGs60BVPMPhZJVQ5gqNHaEPFtZszHCB6VyEx4+FnQtY89y49gXe+8EnlCRBsNYtkYxeYmZKyObB9gkTO8Tm+gbf/Y6YCXz19gZzq1fwmvssLy0CcLJzRFBfJpMSzlbHu0/9UAG3xGu3hEM0Gc3RbXto4Sp7B2I+LRmNsP/kc1Y2RNCrjUP42hHnVZd0Ttg+U3lK3XYxAgbNmpgXsawI7eYxniTdTWdDXJTH6KryokVc13XGE4fxBKyQuLcffnCXSGqDzJSko0gluffZAy6v3eb0SOyBGXYY2TqKoqNJO+b7LrY9ekEGPOiP8T2V0WRIwJSQ6q6B604IRQJsfSaScT/381+mshjAHohkbjQaZTQavaA/EJ8tSO+73TYzOQFt3Q4W2Xr4gERSYvcrOq4/pNMRegug5ytsl+5Tk7ObhdkcTrfH//l3f5X/+m/+QwBWNp7y/Sd3uXn1ZyleCF3i2mG+8cHfplqXbex2i43LM0SDBcpF0Xbluh0MNUsqtcjVaTHZUalf8NmjeywvCofRMi2qtWPGoy6xiJCXk+IuE/rk81MMy2IP7t+9y+b6TSTXOQcP9zATcX7nnT1OtsWszUxhk659jpY0aLsiSJoazfHTt9N8diZaPyeKQaXcZufZU0YDEVTfeT3Eb/3ODzHDDq+8IhIEJydbvPfhhy9a69cXL/Pt73ybf/3P/8xzujHsQY+bb77O1tNjAo4chbA19hrPmEoL+3H1zg2KlSPq1Q4zC0InPLl7hjvyWZqdwxkLHbv98D6xcIw/syQCBjM+YP+gRyG5wki29+k4WKEwo/GYSlX8nmrZoD6oM5bzzatXTd779LvEwwnCsl06k9Bpdoa0B33qB6LFOJ1YYaqwgC+TR4f7+zj+ColYlEdPxQy5b8W5FI/Trz4ltCvkI3H1KqurX2UuJPZ31tKoRl1KY49KX8j5k8fvkQxGyMczLN8USZFHOw9RrSC9vtAtszPzPPn8HsGYxecPZFLdUNBU6A+E/RjYKosL62TTQS7OJJlz2mQyVml3epxUhOydFSfceX2Gp49FIDWVmWV9McOzZ0+JWqJ1j7BDqVLh6OiUL39RwNEf977PZw87eJ5oS/zS16Y5Pmzx+p2vgCH2PJVKMRzV2Ntu4itCPkdOGcwS3/wDkUT4qa//DIHgmJGjksmK9+QyWbqdMWelZygtESyapksmF6Z4JhKwhak0i8uXKNaO6HTl/VvZpFisksgkUCWYyr27ImHzx61/JYIrx3GoNoVQOmONeCyPHqxSkKhf1Uqfo9PPSEXT2G2ZSVZjPH12hu0I5yASyVMu1xgM2xTmhKN4vFtnbWWZQa9PXKK/jPpTGCEXPSm+LxuZ43h3zNgfM+yJz04kczTqLQoFE88XQhc000QiQXp9YTiikQL6AvT6E2w5lLl+eYWT2pDesIMtkYHCZgJV1xi2hDJqDyEWSGBoKnuPhdMZjXvYcxrGRCcbFEIXCifJZafYuxAK0Qw6zC9usPP5GYmkjNTPL7A7OtOzU+QSsur2lR43b7/GeVfMYP3eu/+QXC6HZSa59bpQ5sf7VVoth6FEObJHI7ywCHKHQ+n4WxZmMIjjjhiPnju5HlYkwER63cFQjNFIxfP66AGRzdOMCIm4haVrqJokQF2Y5YnxDEeiI01ch3bLRk9FsSTIhT0YMJjY5AspOi2h2Bp1m2w2R1ci2dj2hInfIB7PYU8kimNtQiQUw9C1F0Pu4VQVT2mj68LwB604hqpz7UaBel1kJ1TFZWMjSbPmYuiSCFOZYuQ2icfFc+/uDbh0LUenoTNyJflgxSCXNRjaY/b3xWB4Np/j8OiEsCmrWyMfTYlhWkHaPaFo4qEYAT3B2BswvyhnHtwuMSuLIw14q7lPMhvh2XaFZFIY+rP6Pp1JllarzfyqCBAcJUi5XKc9EgbVM2yKH75HPKGRDkk+rtopRjTBk6NTFEcYlH6piWlqrM4LpVUtXbD38IS167N0JbLbpY3rTPwhH378AbduC2Lq2ZlF9k+PsRLimQKjFKHAHKNRi9FAOATRYJRseIb+oExdDtAnE2OGtodhSkLbQAmVBJaaIZOSPeYTm7mVAgE5oNyrTWj3z1DVEOGIzAj7AwJmgWGnTa8niU2PG8SzaXZ2hSOuqB6aCqXzA0ZD8Z6SRATtOvvEdeHEjzQFx3HYXBXG+ofv/YB8PsncTJhaSZyDoY0IRYN0exU0Xez5j2aXJEkvCqqqSIJTOVvojfEdlXaryey0CKpn5xZYXr6MbkjglnCbfiuL41bJpUXAHolOaLd72HYPJOpX0FJY5BITqTcqjWesz9/k5OSIQ0mWOVRUxo5HUBKVgqhcOZ5HQAZXvu+/IBH25TU+2m9w7/HfYqKdEQ4JnTAejxl0h+gyseC2NM7aY3IzSWzpEDX7GsurVwgFwtSaQr8dndQYj8eY4ucx6GtoqgK+R6Mm5ODaZoSdnR0yqSjNzpHYl5UN0DqMpZO0uhrHHtYxtCQTtyOfPUC7YpHITaEGhT7rdNokM1n8kfh9+cwUeFFu3Fjn8eMPxF7VTCJphfWNKBOZWIjo81Sqj9BMmVSzZqg2zlmYW6ZdlzOs5c9YX/oKxZK4x1OFAqo6Ijfj0aiJzdOVHOdnO9TrJ3TaIrmhYTIcdF+Q3l8casSSY84vjvniHUH42m60GLkVrlzd5HM5q1XZL+IpGpYkRP7O9g79foVW5XX+8q/8dQDuf/ANTisOrfo2PUmIuvLKGslQjjNHBGXTMyOKtTGfPX5CQQJ4PHn6XZZXC8TiBWJJWbFsHOC6Lns7IsBtXuj8l3/jV/ju24fceUWApNSbDQb9AZmOi62LquL2RZvZyJBwStyrjl1mafaLjCdVAhLc6N7D9wmGlmhXVS4viO+rDZtMr68Tjwmd2x5MWEtvMNKqfP8H3wbgJ29/FQ0XRdfILomzevrwENNUCCdEADa/OOaDjx4ynZ7CkdXX8WiEFnjOMyNkoVhxiGYyPPhcJBqXJ9f5yo99id/8p9+k3RP3I5aOE9BhPHYwDCHrE8dGJ4gVEu9ZWorz0ft10ukgg6GQfV0TVSjLhE8/Fnq/XLrO06376HKm9HmVS9xFiZ6r6fi+QiQSwQgL53T73j1cVyGXFpV1RVH4+NNvc+XaOs9XJupSrZYJpUUVVzdDqCgEJ2d847f+DwB+/me/zntPnvHZ/V0uX74JwDe/999Raj7i/2LvPX4ky7I0v98TZs+0lq5lhIeHzIhIXVmVlZVVLat7uhuN6eY0QHBBbriev4E7AgQBggABAiQwxHQ3e1oMp1VVZZdIFZkRkaE8IlxLc9NaPbOnuLg3vDgEajeLWsQFEon0dDd7795zzz33O+d836UN8dmqcg2PKc5Ep5AVfj+VkKQqypjnEqwejqYszt0gn5W9cMExur7EcFgiHpH94+02us9FMao4suLk+o2reJMpybjYC9svKlxZv4zpdFndFM/uKpCbzFOtbrMihXA/ePeH7D3+BlP2FqdSaSLpIJHwCoO+iLme7v8Vycg7hGJ+fv6piIPikSTvfusDRiPhW25ef4+F9Vn+8i/+HzJxEYMsrSc5Lk3plzyMmPj8QnGZWNRh68kRAG9/6y7xQpzc9JR798Tl+Nvv/SHdxhlPHv+MjUuCvfqNN6+x9fAZZlPEapXjHvbYYePONZ7K7MvE1Vi9vEDpcEgisQTAo6N/JpTzEZdsusNxj2JhgclkyFlF7KtAMM9e5ZxE2M+gI7Kaqh2nVH9Mvy9s6e3bb3Cw8w2BUAhPVq6sZle49+gBm+trVM5FgF978ZCzRpt/3hMA6G99e5PZeJ9eO0d1LNbqg2+/xfX1W0RTCXp1MX+LC3c5rW1xcCx83vUrN7l8bYNgYkRvIOz1/MhhZJsX/fHNaoQP37/G579oMCcJH/ILLu3TLptXV3jxQmjBjno+Bv0qtgTejWCE09Mq/qmNIostXMOkUq2xdmmGF5J9NRTPM/VadKWI+eOHeSDEwcHzC7KxuSUDa+xSOa0zsET8fXY8YHYmw+qKiIUnVof9w3NmZmYZWcLnffnVL3CdMP6giSGzmori5/nTU7JpYec7zw9ZWl3Ec9SLy9WTrZ+j6wlmFq+Rzwl//aQl/MCvGr8WlyvHm9IciIn1+6IMKx2MSOuCwUxzVgnoLuXWObohJvf0fEi1Xqc1EuhIKJCmUdFIp9NMyuKw3D2pgDFk53GbW7eEo27376OqKdI5cVC1HJu333+X07Md7t921T/sAAAgAElEQVQTgfAsOtZkQGuvRlQ2FsYTG+zsfc3iikghtxse/lCPqRUQ3gM42N/CCyn4gj7GpkAn5vPXKGQj7B6LZuRYdJ6joxPeKrzL3JxwBtUz2CufclLav6CRnY/OMbHrDKrCScdnM/SrQ+LBMF/+VLzzH/zeH7P17CuC0RE9SewRDA35q7/739FjYg4MPQtOkEg4RWsoSyjdPslUBl2iFepIwzRNHGdMNCgOS8tysGzBXREMiUtY0FjCtjwsRwTiiqLhWCaG4bEoacIrjT1CPo9CYompLDucTk6Jp1QOd8UlxnUgncijqzrmSPyOh0Ov1yISDJBJCSOvVVqEA0H8PrEG44lJuz/ECOrY8oJXOi6RL4zRVZ0vvhCN6bffXKHTUiiKOIP5hTyzhTy9YYOTAzGf4fQx09GI733nN3ixdSTWfT7E570GtZq4BC4vFvBGU1rnbeIJEWRn0zquYpLKhnj+VKD1Pl8AM6BwT7I4zeQLTF0Ta1wmJoUxG70EtdE+rYYpmpWBeCqCP1HC6Yk5//BbP2D3sMRY6dHrCttIRa9wfn5AOpFj0BE/w9olZM5jISnrUzHOun08JYopkd2Z5SWG7SCN3oBkRjgRw4lTzEWJ58RanZzucmljFs80uHJZHOy1bp1INM3161cJGmL/Pds6ZHEhhSdTiM1SH2vSE6rtkvI7GFRw7THF/AwDhL1YyhR/yE8iJg6YsVnBs1QcxaFVkYLWxgTXVdGkyKehGwwHGsFoAFv+zKdHSETCuKrKRIorzy0u0B33OT4TF+pAIEQmkWOn1sCRGdqpLux92k9y+EzYbC6yTKs5YOuFyPAVZ5aJhBSmpoYuxWQfP9tCD5gEwzpTyUR2gUbL1JUQShY0wIq8tdgTj4nloqFxcCpQxr/++21ymSxBKXrZbo/xhcc0z/w0GiKwmZtdRrE04uE0sazwGwdHLwjoFv2eQNdUNCaWi237GUt+EstsEwsHcRyH/7/axavMla7rF//vlYj3j3/8Y7Krx8QTEern4gWH4wH53AKDvtijY0ujPTzGUYIs58RhFTNmGfVHnDXKbFwT/hQ3QLXSxpBlz4mohuGmOC3tcEWyxnXbLRqNJj6tyMqyKFtxbI/Tkyo+ycY4bCdo93ZQo0NWCsIWK2U/nl7m/OgxqYIAnUx/j3xkmYEmnjMSLjCa6Nz7ssbAFIf/8tI6/e4ZVj1AfFb4+Yk5pbmnc+O68N+t1hm6oqArOsdnR8L2AhbNzj7JtGSN6o2IRaIMxz1MyTJWKY/5wXe/x9m/7LA0K0guVN8lzsqnxGIiYijrLRx3xJXN2zzZFmVW8dg8qm6zu/+QwVAAEh+8+yGMVugMhS3OGhmOd3s8vL/LX8VE0FItObz13gc8+pdTovLsa54rnEw+5+7t3wTgvNwFzebqnTlUWYI7tcecnO6RTKc5PxcBQq0c5M27KyQN4RhnokGe3z/EsvqU92SwdTVK5WiC5QYoyDV97+4H3PvpX7MQFvu4VQ2w+rZJp63y7KkAMGpnET7+rVUmM5tcKoh1eLzfoTvJYPhFlYHVP8UIxOjbcOuqKM/SjBXCbKEHcuweiqDT9drM5tfRoyITePcdj7/4y0dYloPnShIYn4qnukJ8WLIa1hsVzst1+hNxjn9x/4Df+Ogj7n22h6b9MuNl2X0URcey5cXJ59FrjtmQBDh//Gdv8Om/bDGd+tElK57nOeDp+A2N1li83+nBgHQij22JfezzaXieg6KoOJLy25ra4Km4jnohX7C+fpPS6RmjiQBOpuMga6t3KMzIWjQg7IVw4kVCkqbfa5Wo1SY4AZWXsu2h+s4HfO8HP+TRowcMpiI4PzjdIZmOY7siME7FsnzxxQMSmQDryyJDm03P02p9zexcnq0tEUtcu3kF1W+xsydIYXRDJ+K/xsjpMpEi0Mtzt9nfO8GqRLgsA9jD0i6JQBJdSrjkV9Ioepd+pcXajMj21EdbTAIuf/D7/xVhRaAw2YKPkZnh2BIAQbsyIJLViUVm0HUBUtRPdKyAiTUpEgyLC4LjWihahNs3FuQa/z3J1Ft89J2PqdcE6DTt5Vlc3eTjGzHu7YpLWaM95A8//JDF3E8AeFn+hEbHz/LKZXa+FHP3ySef8OEHH3Hr7iU+vSf27cujBZYK87gp4XRvrd3mk198Qq1W4+Y1QQJTbzVptloEYyrlmrCFK5urbB+2iUmAMB1QGVZ0ZtbmqZyJzz45sEnMGNjmgHBQ+P1grMf5cYtOS7xvqzPkxp1L1A46kBS2352OefPdtzjY2cefFZn5v/nsU1x/nJvf+T4Af3d2TuVxn7mMxl1ZYvy//m//Cw8Wv+HS0ia7EkA63XH57sebuJ64AN1/ep+ZuQTpcPxCLPvGzbdRlWX298W+yiTHPHv+NdX+EYc1AWSYziZLCzOcnJUxEDHsW3ddpmaTBZlJHg1rRCMZdMWg54g1Xl3f5Mqljzg4fMDlNeHfRmOFZr/KeVt8v5LzEYx4xOJLKJr4bMfrcl6vkpu5RGFWxIdhf51wWMGSwFsgEGJuPsvhwTmmKdZvfnmJynmXQCDGxJLC4pbGbDHLsCfOwkvLl6k1D2g2h0SCYn5jyRG1RpWX24eYMhN4ZUMAtL9qvCa0eD1ej9fj9Xg9Xo/X4/V4PV6P1+P1+C8wfi0yVwo+YlGJTFpVjk6PWVm6ys1rAvl4+s05xwen5BZm6Q8EYllrnFFvlUhmBWpcb7QYjQO4DY+XL48AUBWX8vmI4nwGB4GQNloO/mCdviS4mEwCTKZTWq0y6YJA5irVFq7SoVEbs7YqEJJo6pjepMrkVCAKuuYRS+Q4OSgTlqj0e9++Q7M85MHWM5bkLfy8vIVnFUGWZj169oJoYkLYP8O5TA8P3RbdEWxsLuNMBNKh6Daddo+1uVeIcBYcHyhTbl0TSICnWoTTBpDm8WOBmOj+EUvrSVp9gTa5Tpt0Psvu/gGerMdNpOd4vrXL7JwsM3McJqZKKBjHkWhlKOpxVjtC9UBVxLyYY4tmp0skKkUwfTa2NcUfSLO9I1A5c9pm8/IijXaHhaJA3UrlM2x3wtVNgXafnJxjTf2Y1vRCI8Qwwvg1HU016HQF0rp5dZ1w0MezbZF+TyQL+ENFur0qji3QykjYj+NOCIVCDIciC9bpjWnU+nS7Ar1bWbrMkyd7rF4usL4pMl6PHg24tHqVzSuXwRHIhxEx+dM/eYN/+Pv/AEAsHubwsE44qvL+2x8B8OL5A2xHoVwt4UwFqjkdGFTrFbJpsXbDco2p2yWXc3E7Yu7a5imJXI7esEMsKmzWSGocl8akDFG6UCrtMuh2WVxLMemIOTbCIUamn9//+I/4H/7H/wmAQCzAct4hHpQ1+4MIncYBi6tZGhWBwvnVOK1qg5DPY3VRlGf09BZXN++ydSiog4sLRVzNxmqN2N0Wc54uZhmNxjRbIxJxMcf9YY9WJ4qmiz3jUy1G4xrZTIHcnMhE9IZdqo1TTC9NSPY6ddsuuWKSgCEQ2UqlR6/XIp50mcgexITiJ5Uy6DSkLMHYQLFthp0eSBrk9GwMb2Li8/lwZS9Ds9NmNBkRDkSlnSvYtsfIdnEVkbE6KsleNn+c0pGkAE4e4+HDJzWKBj2H4ahONrFGtSHT/KrHtA3WNPKf9S4p6GiaLCXwbGx7iuM4qLL5WNcmWJaK52uyeEmi/K0m4XiC8z3RC6NqDobuw7KHBHSRQTjcLZOfSWJZHi+3RdlxOJRgp/KUxbgo99m8ssbWyTf0Jx5+KVq8sXqFvScvCQfFu7wanudxUTClqhflSq7Mum3vPiG1GKVb05nIcinDSKJ6IRxXZFWcXg+fHqDd0ZnI0tbOtEQs7SOiBxlVhC106xbWpI1niwzR4d4uS3Mh1hc3aNRkVjGkMOhZ5G5k6XRkj1XbIpq0KZfF9yWnKa6tfsjZySmOpNs2wl0uL69TqYawXNlv6NjUqh1MWcob9Ycolb5kKfVt5nOimXw83SMcUPA7sxxKQiLFp5NIBLAsgdAmkkl0Q6Fc6bAie18VAkTC6Qv/s3v0ObHgPKn4GqmYlJEIerQbLn/0B3/EF5//WDx7fI471z7k518I7aY3775FNBbi5fF9RlNZts6IVqfEjcvfQpWlnw8+fUy3+oJv/54gP9r65h7J/A3++M9uENMEwn967HG8X8fwX2JmVpSajicjKo0OT2WWwbAm+LUQ5eYA2xVz7mLze7/7++zt7RAciDPrvbffYHvrgMvLImt07fspPvmZENX+6cu/B8BXTrO6docHD7dRQyKrcPDiKdYkQSIm5unzX5yzemWARZsrK6JPYnkuT+PwmOjMMjoChS8fPCGctmg0RYbm3aUN/vaLJyyuFwn4BWpc7T4l4h9wfHBAPC8JibAplVv0zwUhgqLZGIYfhQCokmRHsfBcA3AxAsLau80J6bjK8bGw99/67p+iKROq5Rpx2azuWHXQEqiuD1dKhRh+P55rsbIm9uPcfJhLl5cpnzcutIw8TNEb5Yr/AvjsZy+YW4wjmaeZTMYoiibLcCXNu9+g7/ZJJJI4pqQKT0S5fecmlZrIWCaiea5f+4An20JnTxiaQT6Q5qtPBbnK6uosPsNl2qyjB8X7/uL+X2ObASyvTTwk5jyRSOMpVcy+1DZSdpnYDfKzt5hK23/+4gGDgUmxYHBVZoByMxpb248ZSp20+WSesf2MTrdB0i/6svKZdU5PzjGtHlLtguu37tKtd3h5IMqEe+aI5cUctmHTa4izaKIGCIXg5LDHaCjihMaLl7jWgIMd8TtvX38HIz7icP+M2Vn5LqEVyqUDOoEOb78lsm7tZgc8H+PmKwHma5yUtxk3pqRT4l1Ms8Puy0eMC3FKsicoGnN58PQLsllxfgwHNvPZTSatKUtLIsNuJIJYvUPOz7oXP1PNMRF1QnMkbOp5dZ+NK9dodGqk0q90p2J883Wb3/yN71APi0zudFRjsWBjyKqbhGFQH+2x8zLEyqroa4tHQyiuRmvQ4rwn1iamK8xm1vntj8Ves2yb47MzNu/coHwiKmUePtzjytJlEskgz45E9UryjWvkszN0JZvU0PEwolkWLiUpd8SZcu3NTQbTATv1EllJnPTum8t0mg1Un4gN/WE/J5UGDx40CetyXy1tsX/0GSubYg+tXArQ6zf51m2TTlna2VGUnmNQnR6SlERfemiFRNhgb0+UCU5GQ4bNPvnZFaE3CTz6pgn6Pq3zOsmUONdikQLuxCI/L+b3qPyQW5u/gx4Y8XxHZMoy2SjBAETDFq2mrHrx+TAMhXpVZMWikQwnZydUyl0uX5W+xRY98oFgDL8h3gdG9AdtJmOxZy1rjOFLoigj/Ib42f7eAfnCAi5Tjk6E3x33pOjxrxi/FpcrXdMpl8RhnU+vcu1yingsw3/8T8LZJFMB0slFHLdJoy2F8PwxwoE4tZIIoFs1FbwBpWGTbFIcCqpicHRQJRIZcXomey68OrlCnoicV1+0zRf3X5IM5wkHxYatVHrkikmuX7vE9q5YzHpnj0HHwKeJhQsEdGrVFpnUEv6w2EC1ukO9PQbNT68val8DRoFgMMmZ1LgI62NmozOYkxM+fyAO/pW1AsXZCb1jDdMTvT3tWgc1qLC8JFnGzkdcX3+LY+vwor9hJrPAT//pAW+9OUMgKHrIxpMgp/sTAvL9xp0UzeEALBVdbvRev08mnbvQ58Hy4U01Gr0W5kg2W6c1ZmeLDHt9Ie4LKGqXWOKXteWK6uI3gqjxDooUgHTaIb65d8aVa1nOWuKZ0pkc5rCBZYv5nVgDopEZMD3akvjDtj0SyTDDwQSf5BCwHZNmp0dELlY2k6NetwkZXZSgcAbXrlyhVvYztmvMLouDodpsEDDi+GSZV6tdQgtMaTQdUMSFaGP9Kienz6lUlrm0IZzyva8eEu5arK0JhzGZTgkYMeIpj4ePRYO5N7U52N9l7VaKK9dF4PuLT78gEg3iU0Va+bzeJz8fx5p6BGUN+8c3b/KLz55RXLbQXHHRfrojLtfzUs+pWWmRK6qYI5WoJFc4q+yzsf42n/7in0VpCuD0e6jpGXw+MS8Pn2xx6Y0VtEiQ8Uj8bOA/ZmyZhHwKjikvsCmVnjXAssScR0M6/nCIUG7K1BG2MOgPGY772BOFclUeRBMLzQ1hqjIQd1SyMymW5ufYPRBrXKr0SCZyJJP5i4DEb9SoNxv4BpJAI6aClmJqD7BMcfEJ6gFG4wC+oCy3Gwt9GSPoA098Tq87xR/2aHUHJGVDcqfbIhNPE5QlR/1uG3c6QMfDNMVnma54z5eHTy4+y+9kaXfPmS+KfRUI2zQbCsHQOa4MiCbTFqO+H03NCUVRAFeUwV5cthwFPAXPcfGcVyyDfib2kFgqzMQSttcfwqNHFbIJ4YhTaYVqqU44FMRFPFMsEaVSmhCKtS5KjHU8FpLLJDVxaXEGU6YjnWAojC1FrxUN/GEDxVP+s0vgq39ejVc9V4rUojEnDqeHE2oli6DUqynmspyVDlm/Inoi7n9aAsViacPAk3vbsCOsLVzlZ//0c7gqbH009FiYz3N+INbh+kYcyxowN7PEyZGw72i4wGymgDn04UltNmdioNgOt6+KXp/zswrDzoBifoV4VoAyzd4nnB53yM8t8eChAATCkRrpYoaWDKADusZsZoNiehbTEj5XYY653By9eok/uv1vAPj88c8w4jFaIxHMNds9VDeMprsoinA4iUCW/Z2nxJOy+Tlxg/PyIVcuRUnLXoqjw20q5z1y2TTmUMyLP+nnxpWreAibHoxG9HsBDncPL1gwo+EEfmOC6qVYWxSfVdKecHUjzpNnUnB+aDAcDnnwzc/54JaYFz2sYaNwY+ESA1lCGQxZuNaAdET4rcMnT7l8OUtLHTGbFxen7EwGzwrSbzvkM6J80VAdZuZtnm4JsMqdvgW+Psf7h6wui2cq5tf45It/x9QtsCYFULVWh0sby3z7PcGGery7zelzhY9/+CGVstj/taMmH9zdpNZrc3Iggp3M7AK2mwLJwlmq79PpVZntaozCUjutqPLg4Rm57CLjkbjU3n7nLaqHDay+sHNfSCeRDDEaO0SCsk/KmYKjoetcaM/5DIdmKUwhIubO5wX44tNtGi2TXEb4Rc8JY7kqnqqhKuLvJmOVYEhjdkEyiIbD5Gd87Gz3SQp3g6p62K6J52mEo+IcPTysoSjeBTOgpmk4jofn/dKmxP/3mEwm3Lx+F4C/+du/4M6dt1mcE+tijj2azVOaNXGmAXR7PfrVEQvzsn2hMebW3XWsJwrFmFgrH2lqrccY/giP9sVF7ePfucKn954Tk4RBtqOQTCc5r+wSktqe0WiYbHaB4XBIVRJTnJ7WWFm9QUgSPqmKTn/QYDgYE00JAKQ7esnUMtF1G0UXF9OH9z4ll7hELClAtptrRca9Fu3RMZojwFtTaVBIv8Fxv8R5STzn/kGFP/7NP+PD/1r0Nm2f72G2LYbDLv22ePZkcIV3fvBDyo1tRlIjs1BIEFYNyofCNgauTbW6x0L+CgFZ9qxpPhyvS29UIhUXMUFxJsTR7kvKLclEOFYwNJPz3WOQ3ArTkxCuWeHq9U06prCNhfwCu88eE5KaoLF8nlhKw9WgPRS2Hwh5rG/Mofs8ugMBbpwcnDK/MHcBHkfTy6hnExLZNLmCZMH8yVfcunQZc+ixuCBijlarwdxskp3nkpBs3KXRrRGOFFHleTGbTfDk8DkxI8TiqihNa1T2OdnfIZ8XwPvmYoFOq0smEecXX4pyyUwhzrDUJBb2Y09kH227wslJnU5fvG+2MEsy3iLuT9OWoMizJ1U2buY4OxOl7pVSknDEwN6vkg2LS+Bv//Ajdh7u4MVj7J+KZ5+aBX73D29y3hbngOd5WO6Al6fPLkpg0zmNdtPjvW+vc3IofPOL7a9ZXbrMyqogCPMsnf7wjEH7nGJG2H4wOGX3sEx6JUEkI9b92bMnGK0k8ZQsz268IBDWuf7GGmmptfXw6QNSqTjZ3C/7KRs1UL0VcjPCpkrVBoZhkEzHiUaEzw1HNhj2NHzBEa2WsGFrIgPVXzF+LS5XpjmkK5uBU6Fl/BGTh48+I5UQ9Y7JrMLpSYlgdEBIF4hwo+4wHoFiSVFR08FVTDKJAu2RuKiNRiMUO8Jo2iWVFJvMthxa513GYdmcZ3YopPNEIzF0SdMdDcSwhn467SEdiZC4kxXu3l3j8RNxMGVSKc6G55jOAeO26Jn5+qvnZAoqcyt+jvaEI4uFPVw8NEk9PeyV0Nw02jjNnTdE8NeoTCjtO2ST0K6LA23UqBMJGDiS1XDc9WH3HpJJBzmQCEYgqvP9H37AyxeHFxeeVCbMdKhQP5XMLtMJ3sRHOOxij8Rnp2bSlEsnRKMyCDVtLNsin41zfCLmxXP99BoeuuEjnRenh0qUeDxJqyeCmNPTOrF4iEAyhGSsZuVakXAUplqPcrUiP3+CPlGodsUmKxSzdLtD+sMePkPS2Lc6mFabUNAg7heB787LU3JFP35J99kbddnbKxMNh7nxhjj13HEMI9DCsTTiMpGDPqJTaZAIiVpj11ZJZHx4dgxVl8jnNEQ+k+fJN8/wGVL8NxCkYx7hOuJ9L69eJheZ5cGjn4HMBQQTCkrIo5hbvkDF4skshuISkxTyUy1EdzDEHpjEo6IHYvfREapTY9zosTgjNno6UMAX0ShmRADWHU2ZDKeEU6DIrdltm6CaNOrnvHFXHGDdvomr6+yfChtbvbRA2J3h5VcvmCmIIN6IxHC1KvnYAoV5sY/U2Br3v/yMoCJOE48dLl26Sb+vcrAr0C1rbBHWc2iuQqMjbEEJ+AmG+wRsEfiPO0G6dYev6w/wdLE2l268hT9g0Ot18WTAHgnGqY1q1NvCac3m0th9i0wigCrVzavDLp1xF7+8CAfCkEiHqNXKJGLiwMlmc3R7NQLhCLY8rHzhMOeVJjk558FAkH6/xIQQPk/4hHQ6zjY9/EacTlcKYaoajjWi3RUHh0YMnzGh3ekz6gunnMpFUZwA/bqHJmlzVVVFlcKlIJgDxb+9C5DC08EZGViuRaUmApLhdIRf9YOkh++3NRIxnW5nyESSiKQzczS7L8Bdpij32qjbI6L4abVFT8Szp0MyS2kmposj3685qBCwwcJDl8/5inZdkb1wiiS7cF0XT5GC61OXRsXEr+kEZDN+vVZjYbHA+ZH4nXSiSGFewVEnqFKcc/PyDWqlDn/yr/8Nj7eEGKeqtGg1RsSSwoa/9Z03OTms8OTxMzY2xUGv+EaMB4fs7KgEguJSFovNkI5epXwqfMLG8neYjNpM/W3aHeFfhuMe3W6Qqf2Cm1c+FvOwc4/d53skpVh2v9FAmYYJjqp4AeHzkvl1to4PscYm6MJXrm/eotE+J5MRwUjppEqtUmJpbpl6RwQfnXEdvzODN5WU3LqNz6fx9MmXJAOr8n1dYikbc2hy7fJ70s4jfPPwPh3ZAD6YDGl2X/K73/kjxlNhd988e8TxWYefn/9H/tv/7r8BYPnyW6STadodQcSRWJglGUvyfPsZpaqYl7Nmj8QlF9MsYlji89u9PpuLb5LwCwR8ZinB1tnXxGMBjkoiQ9oaGYTUDVKx8EUFwWg85tnDe0Tj4v0OSg9xzR7ZWIR+S6x797zGresfMhn0mZWXwGrpJcX0u/zo7/8GgKuLN/EFA2w/3aIzFEF2LrGMrSZx6SF5khhPRvh8Ha4U3gSg50xI5fqEoinWb0q2x4Mz9LhFPr/I8anIOJ80D9G8IJfmhZDrXu1HZHJRTo7Bkb5Z9QTQYTlDohJJrHdGfPP4Ke9/W5I5BM/587/+B3zhGK5E7BTPh6pO8Twb6boYdUxW1zLcvCP85NnZCbffyfP5z/dRFLHfLcfD5/Ph2IKqHaBRGzKZmIQkiZC4WCkXFysQYIfnuaRSSWpSFPn9N3+HRMrHi5eS3juYwY6O8WvOxd/NpfKc914SiYq9frL7nL2XgDG9yIolU11q5yZhI8nt2yK+ODzYIZUoUpMsg5Y9IhYp0DPPUELi8zuDPSzflN4gQjIu9lE8tsjL/U/wy7MhlvBh6Hn8uu9izreenOJ4JqobZmZGfF/QKTAyVXxR4SPa7TaDbpfUYoHTPQGqxTI5XFxSqTn+1fcEY2ImsUlv3KfWE2D5zcVFjKsh4qEIR4cCiJ6fW8YctmnXy0TCUk6krXJ8eMD1KyKL+6h6n4Dfz2jYo1QV9rO6msVyTqnu+0guCvvc3inz9saHvHgumOSuXrvN1s4+ek6nfHIEwMbVW6TSN+nWpxdi1bn8PE92fk5XElrcmr9COm9xdtYjLTOty0s5qtU6g2GTTlueM+ll3vvgfX70I0HcclI5pz89Zza0hNURz3RlaZXT80Oubd7hWF5cFCfCaKSSnRUgV9pt4ztSePjkHrdWRQYxtzjLYNwmk57l3ueif+vL+0f823/733MoSbYOaofMFG9xeLbPXEESpwT6LM4sUD3vMjBFvN2qD1haXmXiCp9bPW3zzvuXefn8lLl50fOo62esZG4wbIq+TE8N4Y50islbNM7F3/38X74kF1rk7o3fZnVZ+K6DozNePt4mHsnKtWuyeukGmjLgVM65aihoio9m0+PRE7Hu167dIVMYc7ovALVk9BIrq3maHY+ulGIZj4Pk53I0BzX8pjh7CsUFUHVaHXH2hgJJ+sMGxXyGE/l92dQME6vB118/ZGlZZKp9eohQ1Icn4/94BvYOtglFgiQlqFbI59nd3UVTVLIp8XeDtnj3XzV+LS5XsViSm9fFQdVqVOj0+6xdmaXXEUHa8uwlDPuMRzv3WFuXMAMVQkEHV6LUiQgEgpfpj5uEgsK5jQY24fgYnx4hKam065UmmjFEceWrj2LouQDt3oSIDPBOjg7Izxd5uf+SW9cFEujYEertCrMLIvA3zS5vvfMDXrx4yUiyk+m6znnTR286xGHv/OkAACAASURBVBqJ9Gy50sTRbe6+I/6ufKLy1YOnhCMGoVeXG3tCLBjGbI8Jyk0dm5/FUBTGXUlfrkTo9qecNHc4PxOHrGIkMEf7VKtVAj5h+HTmcFyVIeK/Y4UMk8mEoM+PTxPvfLJ3jq7r+A1xugz0DrF4DF2H2ULiYl0qoy7FcIzzsrh8hI0Bmq0xkZoTM+k4ETuM+dwkmhaHwKDbpO/aaFjYsvylfO6QSlosybKLQX1KMpQgZOik4uL79o4OCUaCJGIq7bLYQOlclHariesXdjDpNpmbX8QbO1TOxNzVml+xsnKJTKrAwctduQ5jcplNDFnG1hlU6E1ymKMj8pKSU/eSmJM0zUGJpaWoXNMpne45qk/MU3+yxtHZMe99+AO+fCqcX6P9gmvXVnn06CEJ+VlLaxG0SRhFBv4rhRif/vRrxs6YXFZsdDtsEI+lOelp6JL1pzk+4aO3V1BGkjWhb+NpcVKJOHsHwtG4EY+DswOKqzOU68KmcsUYgzFISSLmZ2b58tNHzKwm0GNibZqNLrc27nBYrRCV0c7ZvR06nQ7xeXEoLGZucrR/hq3ZyDs8/miS8WSA3wsxOyf2Wq12hmGNsWS5z8JSEVOZ0m07F5nHnRc7jPsDOoM6aRFrYOoQ8UWZk4xXqWiMpZxBdzLAlGWPAfpMxio+Xfx3rz/AxU82u0RMNkkP6ue0B0M0TaMg9elsLcVJs4seFXbeH1uMpiqKMkaT9LedkbDvbruFX2aAmvU6qpai3ZLlWiE/o5FDOBgkLjXevJGBYxnYeOiSrtmybfwqF0ikNbEEM59tX8hBOJ6K4/WJR3zEfCL4cCdVhmOLnq8u12qJnWd7zBSTBPwCDWi2j9jceJNoOM+BLHu4e+0dRnaNSkus3Vh3GfQcPGXA5FUZa3SKGrJRxvrFZc91PXT9l9TsnuKiaQqO4+CXQeFkaDK3sEIiM+Hez48AeOP2VVRXwxuLQ9e2ujjTIH7Dx+YtgSB2em1Ux+HkaBtPEsrE4zPMzmQZD2QD/1hDUXWuXHmLZldcWkbDIdHQLM1ajVVJnT81J1hDhaNdEVzpZoH5ZT92vUupL/Zx4VKe5OQmz7Y+IxMQl9O10CwPWwM8XdhGLBxlMJmQm4/x5KksWw1U8KldEqksWzsioL1p6GQSSaZS+sHEIb00Ryzjp3QsbMqZDFm+GWMss/fNrkkyNEe7UcZniJ9tLF7HG4LmqZyVBUq9sjSHM+nQ64jn7lo2ycIa88t3+fE//B0A2eDbbH4QpdrdoSnLJRdm30VnyNqGCBxDSpZSr8b1tXf52ed/DsDlmWVCtTSBsEJagjCmqmAPLWbjwqYHnWOuLb5Bs3rOzIIAlEqNZ7R6z3hj8z10TczdZ1/+LevzsyQl21WtCYF4DmtkE59ZEvO7tMjO8UMGTgavK2nI3WVcXwdfVPiN4+Y+s6kchhsnPK7LuXrJdLCAZ/uodoQN5XOzTLwBlYoACLp2jHCvQPCWx/ZT4RcjwVkWEnEC4TGlc7F+ieQKYyzckHi/+YVrpFINjrZtvKBkiZ2q+FQHXQsxRbyfqphMTAdXE/P77//vn1A/VUmGc3iS0dNVJxhqjLHbvShfxO2ytBbjqCIC7+lI4f13vsv/Ef4MWx6rqqYzmSJ0tl7td3eEPU2iyfIpFOdCR9FyxfeBH9uxSWR1Jn5Jid822Not0ZLlp4VMmkDEIT0rdS8BpTdmWNWoy+qPhc3rtKoNXK9NWwLD9qHKOFDBG8TIpMW7eMopqrtIKirOlP6wyvz8Iju7XYYd4UuisTnC0RgT06UqLyT7+wfE4gHiWXEWHh1VcaYh1q+sor3SzDM94tFZytUa3zwTgW8smAA7jCNpuqc27J/UeO/N7+K/IoLshbkkx3tPmYkZ7JcF2LF1/hPOj1tc35AyCO6QkBvFF65iScKQZr2EperMLKzgjoXPm8vHMWwTE/E7w5HO8to6uh0mkhDP4EwczImNGp1iDcWeWSu+ha1P6MqMTb3aIBIIksktcygvc93RDgorRKJp9KCIQX765Y+IxWYZKALIPCgfUO+HiBcMbFcy15aPOD3qcvdOhlt3BOCx9fKQf//n/45iWvj4zrjM7HKe87MtTEuWxKd8dPtN6vVTskVxRj55vMVqcY69F8KG1WiQYGKGxcAESxf2QzeMQZRnT7exXOE7PvqwiGWPiEpJo2CvT7dVI5vJU25IdtDWGUFtnpAvhqMJkHkSVLh0OU48eRuA54cVSqct1hZuEUuIy0Nk3MKb+EjGBNFQOhqj22tiGDGSGeGHW5U6J4MvaPdvkJ0XazVTyFBr10hHxBpcujSDObXxdJ3SqfAR+EJMLZNub8ytt0UmNx6Io46SaIg5t90+uwdtFKPF+anY64riEQzpaBh4uqSM96KUz7cpSM2wyXTI1Bpydl5BlXhHuVZjeXmJUCTLSFaABEMQiji0pe5ktXnCxvpNVDdDLC72zN7hU3oDk+XlZUZD4T/7fgHQ/qrxmtDi9Xg9Xo/X4/V4PV6P1+P1eD1ej9fjv8D4tchceY7C4qxIea6v2fSHDfb3DklEBAReq9UZOkMWZwuoErFIJR3OTsYUCyJ7UG90SGQMzPMgfSlsWpyNM+x75AphZCKJYCTIdOqSyYmyhGDaj+2NqHUqeBHZWxBWmTptQoEUp0cCXfL0Eo6S4WBX3OZv3dpkb/8l/UGDalkgA5oSQ6dLrzJBlb0a2cIclWqHv/xzUUZTSFxm/WqWTnvMuCNu3KHIDOOYTjyvsYBAjsr1Fr2eTTgkkIHz2gEDs43md8nlxDvv7j3HmWoE9ZQQ4gCa9QahSJCipC4+OBH1/PHw/AVa4KhShG0kUfGBhj2xsdwOsahAGQzDQBtNmNgTigExV91JnanaJivL9Pq2gRJSSDjeRUbodNukUz5mrpiiZ1blOkDAl6TRFGUC3WkX32jCG7eu8/JAIFlLG0nCBHEVH4tzYt23nh+gaAnSUYEUROd96KrG3t4Rqi1QhqkSp1KrMfUOKaTE7yWMdVzVT0Kmb3tnSYZmm0Q2zFAiioP2Fr0OxJMapivm5en2LplclJmIQAEff73Nwf4WzdGAsqRPTmhZpiOHSDSFLik/48EItj7EL+tMPv2Hf2Z9aZ6Fy3NUKgJBDERCPPxqi8131zAc8VwL0Qb9lo3uyX4A34SzsxKaf0xDCtoV5zM4gymDwRC/pBg/e96lae/jC4ts4fMTBSfm0BurhCXNcsLXZGpqvNh6zKAle3SsMKlUhrbU1Ij45gj5k4zVKZJ9Gnc6whx2CST8GLIcRHE02paNLvukBuEa4/6IYWdKTmqgmP0eoViIsFakK0WR/bqKZavsNwWCWQorzKZzmK6L6wl7Hfc1Lq/P0KgLW8mlLnNWKaN4HWyJYIaUFMWCWFtPrnu1ekA4HKPbEd9lTlv41DCqHqBZlwLeMfH346GCX5YPOt6Q6TSCqwuEedIYkI2n6TZGjGOvxI41fAQI4seVfW5+vy5Eg6W4JJqK6nooyi8p0MNTl/HUImAYdNvC4ZhDB9Xx0xkLpHA03MPzNKxpClf2fIQCWcaDMY3KfXIzIktrxBwqBxqlM4HU5XMLqBmDcqWCgkBoDX+QaMygORZCwfBK14qLskDPVQEVRRE9kgDO2CObyhKJt7l1R2TUW7UhV67NEA6JeXEdhdH0jNnCMocHoob+2tXbBAMhjkqfE4uLdbenBu1mj2BUvG+rHWNiteiM2gRj4v02rn4Ls5Ugn+6Sywl0/q/+r5/SLZe5dUeQFmleCsVziIVWCRjCd7XrPVq1F8wU1jEkacdo3CcYHFNMiQxNv62QT4wYtOvoMoNhuGs0mvvY/gTf/q6gSw74wmiqSelI1Mv71BDZhI/a6YgVWf4Wj1/Diw/5yU9Fiew779ziZ//0CNcJE1ZFiWM8mEUPVClVnzGTF6VJz57fJ5PwWJwRc1mpV4gQpHR8QkieYZsbS/THU3LZZUZDYUOJyICJ6nKyIxDQN7/9XSLOA6bTMHe/K87DJ5+d8PatGY7PT0kmRXnd3tFn6EYAIyfWvKAvsjZT4B///v8kkxbzksm9S+ngHtGURqMq7Prtu9/DsizqVXGm+UIRHKXHdKKyuiIQ97PjHVLhWdKJVT79hRCrjSbnSRtJFkSlEo8HZfy+MMWlJOSlrtbLpwRCMazJCDchxc21Ca3DAeGrIgNVNNLoCwqlgypLUvrh/KxGb9ige2hx47YoX7K9Bq1Kl0RcVqk4QaIxH+akRUwT9uPpY1wPVFe9kEdQPJVGtcmsLEPsN9PgjXG8AYoUtFfcCI6n4/P5UHziPLLtKTduXsG1RbZgb2+bd2++z8xsitMTYVOe5qApGqqqX9DBW5bYZ4ZfvK/tWEynU3w+7WI/Oo6DEQhwenpKMiP89eaV61i1PtffFfNy9NimelQHqUcG8KzcIFg8pxgWGQ1tbDA7F6Hb9REIy32sjmidBJgrGHyzJTLAK5c2iadsXrz4KQBT16FSyxM2ikg2atqtU8zxhFHfTzYv/OLCSpqv7z0nZAhSmHfuvMtw0uFg/5j1NZG5zhbneLH9FZqmYASEHx70+7z39hv87FORtZ2dWySVDtHpNpmXFRLH1UOCiTzdSZ9qSZz340mL2XSOk0PRZjGeDrl+5duYgyGRrJxzVWO2MEe1toOGmM9SecjY52F2RVYjowU52H7B3Tc+4nxbxDrBaIa1pff44uu/JZ+dkbZu8/DRMy5vincJhTUOj0o8fviE3/ytPwbg5PRTPE9haLapSbHzdCqH6gUJBaQeoNdiOHSIJwqUTkQW7O6d90kn65TLVaLBJTF/717m+TOLZ/dFme7ixi2ioTWCuTEhSev+4P4Whj9Co9FiX4pcf/zxn9CsPMUnZVAcRUV18tjTE2rHMkOqwdpygdVZm2FBVh+ZOt98+pzcohQ2b/coFos8uH+P65cEGVcmOk+70SY/Y/ByW/iE2991aZhP6HRFCeBsfpbm4TnpSwa7B69KYrNMK4fYI7Hml5ZyJLN52q0KhswWHh+VKC6tMrYrdNvimdqnfRaW53AdEQO1mjqj/hHm1OCd94V/K1fr7DeqhIfzXBOui7PzPpm47yJ7WFycYWvrnFBMYWqJffy9j9/j+ctvUL0UU0vGCUmN8ChMqylivFQ2RM4/j6qPaDfE3rq2scTL7WPCEZ35JXGGlU9amG0Vv5QcigUNJlYby+pR2ZYiyeEU4bBGs9m6KMF/RVbyq8avx+UKl90DUTrQ6J3heUOCegBDio8elZqilMFLYo3Fi+Uzedq1YwxZbz1x2hxXzggnsvjH4rUmUx+630+j1ceZis9aWFboNkMoUo29UTkkmsgzHSrYknUokSoydhSGdg3bJ3vBghl290rclY3GtXoZnzGg2+mQyYhUbLPRI+IP0xl6eLL5sFG1sRUdyxYLMdQ87n/1klw2SH5GlMgclpr0h0P6gSGDntTMsTTc6ZheXzhk25ui+32Ew0FaDRGoTSce8UiQqdnHJ9mlUFxUxaNREQfoZDBifnGeVqNJty8DtWIeczxFl02pPp+F7YzwBxSGpmRt0xwM4gTQISjmM66kGLb6rLyxBEB//5CGOuZ6OociBYLj8S4bc9d5+M0WhMTnB2N+OoM+g6FsPHbTBBIOzw63sWzxOyM3iC+sEw1E8fvFmsbiYZzxkIFsQh+6YcatCUPLoS/Fa/VQgUzOT72n4vnE3EUjKRbWs+xJJqJEMoqqD7C9HJoUjrPHGrE5j16vzqAnniESixIOLF4IFLa6FXLFHL1BByMkfpZKxhg3B4SiJvNFsTkn4ySV3pBoUtjP9dsbzF8OUbbOyPhE8KEMD8mngtzY2CDx6sDM+6nUK0xkG5g/HELzdajXOhfN8r3mkOnYxHM0VjZkD5nPoX3aRJlKmxpNSEZjOJgclUQZSSIS5bx8QiySRJVMmYqq4tP8VEsyuHI6rK/Mcdot02rXL/7u0vo1zk4aOFN5SfIpDEb9iz3T3W+xkM6jRiK4ugxsgjYxwyCbmsfXEsFiv2+RCARIauJgqnc6+EIBxqMuvYrYV0Y0yPHxKYYuglBrCnMzS7TaJVR5GbDdEclgiNHEpNsTAVGnMaFQjGBOhL160yRqyMFzFUIBsS4jU0xsKBSg0xXfF4v4MLsKjkzah0MxeuYAJWDimFLTRnUZTAbAHD7ZG2bbU0DBJ7W+bNPDdRw8H7xiD+uoQ/zJCN3xGG8sDpRkIojnOChj8XfaVKMwV6TRPCOakMKm+mUmQxc8j25bCmiOd0jH1ohK4ebcbJBOzSIWDzBsCbteWrxG42BEzTm6IBG56LX6//zbcxUUNHTfK9/iEAknmZkNMJVlXZmUznQyYmlF2KahubRaMeqtOhtXxbykchOODwbE40UGo1eEPUGub75PrS3KZsu1R+AUyeVnOD4XLFFr2rt07VMMPY3miYD5T//0T3i5/58Ih8ReT6VCNOsNLl/NUz2VPZbdErffuMOTJy9JZgTolEpcJt6xsCXIVphbIZPVgBiPtv4KgLSdBF2na57z1QNJnOLPcfPGDSZTMQcrSxlUW6fndvD5w9KG/Rw8fkplW9jKFi+J2Iv4tCG90yMA9gyVb715k87AT2sgQIP3PrrMwfYx52XhAzvDEY52xnLiMuX7Yp6uLVwnwJBENEKjJX5v6yc/48X2IZfXxL7eevQlYcfm1gfzhBRxmfONviI2s8CtxRX+wz/+zwDorQWy8wtossz7u1ff5vD8BW9/8H32HknttMVbpK7+K9KJEFNXEovE5/n8pz8msSBspdOtYI8C/PD7H3F4LALTUmWbzesztPsvmCkIUO3Ntz+gNzokLBm+QvEAq7kV7NaEzILwb0/2DhkpdQL6hJmVdfl9N0n6f87W8U+FnYdyGPEZOtMpxwdiH8djSVSfzWg8vhCmntounpqgVBMxQSYZwLTq6JofV2pfep6HY3v4/M5Ff6qGRq81ZaYoboH9ZhyPKcFwjPFE7CufX8PxBhhGmMlAnEe5fIxsfkqlLfzF+vo6T188YG41xe6e8KfJSIjJZIJnK6/4OVAVA9fl4iI1Nkf4fWEUxUPxXvVmCsINVVWpyx6N/dJLtKDHiRRuHQ7mCUay9NqyVAoIJHMcHn+JNRB2fm3pHabWlGAkQacv5i6gqywsrBDxp7FcwVLXbjYIh1VmCmIOqu0SgVCUdC6B54p9NbFmeLnzkDt3b3O0J87Rs8MO62vXKObFhW9/55Sx2WF1bZmzU7Eu9XKPjY1bPHr2CdgCSIhFHCq1MsW86Enstiw6DZNc0ubkVFz4RpaGEYnxzdMfkZ0RNlXMr+PzQowl8Zc5jPOTT36MyRjDPy/XReH+gx8xn7tEXJafBXwpbNdG6gVjeGNUX5z+cIrhCTvo1AdcXb5KMXsZnybOAsdzUYwmn34hQO6Z3E3imSlv3LrKmbzw1ZtVLq0lCQdTeKoUhkeh3dqjkBPPFI4tMB1FGY/7jKROqGmd8dVX91leWOfx4T8CEAx8n80rNxi3hB3kFgzOTp9RSMzTkH1ZN9+4jt9ROTp+gDqSoHrlhHR0jrgUtH3yok4oniSgDuiEhC/TdJ1y5Sm5xCajsbjc2I6L7dVQWZHvt8hw0GJhZo1HT4T+5ztvvcn7H9zg/v37jGVfZLPsYLZVymfCFu9+cAurn6fWGHB6Ji6GM8VF8pk0japsUdH8nO3tYZlBrr99XdjZ6YDJwGOh6GcqmZxX1zZRo23+X/be41eyLL/z+1wTN+4N7+N5nz4rXfmqdtWO3RyKwxkJAwmgBBmMFlrMH6LNQBBmIWghQAAJgsSQ7B6Rotp3V1dXl01vXubzLry/Ya7X4px8LS16VrPoRZ7dC8S7ce45v/M7P/v9PvpSPNt2qnzzO5fYfvCAn3wmSsYX5/Jg9/EzBZbeFYGw+o/uceHyKj1ZWdvtDLCsKlN7QFL2Qjx59pjxOGI8e37uJwxPDNbXLvHxR0IHJlKL6DGFSmEDJDfrsGfz9Xf/GV7Y5ec/E2Tu7771dU7r93FcoZdL5Rydrk3chLIpzlGz1eX265fZeXHKgrT7el3heP2+8QfhXM3cGUNXXPL2ZMpk0uSdt97lwT1xqPPlIs+3zxiN2iiyZj5uqiiKyuBMRDAmvo+vwqhTOycVNOMpxtM2w8EYU/ZhlEtblPMmBwcHAKSTceyBzXQcZ6iJw2JPezhBAs2IUBQh9IcHdcxYkU5PGI6K5qBEJvYwwh4JYydtFZgFMaxU9hz1qz8c4YcepZJQKo1am/FoQq9rU5Pe9HDWRcNhhAaqiMxls1nckcE0EAdR0w3UKMZk7BBKh6Scn2PQ61Mq5s9hqxU1wrZtFFUo0sjTIITxeIwiC0/7/QFqZBKFY/kuM1Q1JJ9bojtw5HeGpDFpjUcsVoVxvHHpEve/fMyoI3u+tDHZwGTaV9CL4v/mVwya9SaZXJ7QEIpFjfLEdY+ZJUmaixUagxNKlWWm/ZT8vTOaDYeNtT5uIJHPDAXX9qhUhBOaLVfZnj5nsTrHqC+dSTOi23ZQMzqKhKPdOXlGlNDQTPG+C9lV9g77FMtFDg6FMs9kLKJoRjJp0pHvM+n6xOjgSsN4HNhEuoo71Wk1RfZHnwRU5jMM60meSnSri69Z9I8PSenCyX733e/wm7tfMgwjLlbEPIdOjBt/HGGWh/xf//RXYl6lDMOpQiCzGuHEYjIe0RjbJE1xybmRgqtquJ7C549FT0BMj2PpxXNy2N6kj5koMJw0MSSi38TRCb0pShgxGkrko8USe4fPCTwhG7XGHok4zCIdV5OIlzOHwekZ6XSeTrcp9y+kpGaYSVCGbCGFoumU02l2GkJJ2oFLNV7AtCAre6WcSY+337zOzo64+NMFk4FTZxKExOJC9cyXM/SaE/yJmPeMHrnEAlqywkyi+bj+gMGwS6PeJp8XxnkiGUPXTWyJcjQ3nyGdytNq986jfgSyPyp0cWYSLj2TxbQcdEU6SUyZOQqVaopIXgpWcki/ZUEsRhTJWwiBAGZIqE573MMPfHTfxZfZUC3Q8GZDzFJIWvbDDKZNFNUjbohznYjF6A17oKWwRzKrmfH51//df8Mvf/kD9o+EfBYqFQrZJHYkzt5gNCZmxLhyZY3hF+L3DCMgU3Dx93+HTqZpCmHo//+dLNmU/xKoRYtBsz4iVwqxbXFBLC0VyOXKmFIOwsihMKdg5mKkZUR97/gLYmaBZDZB9mVEWHW59+Auq5viO5X5OHbXotlokIqL83h09Ih8NsfRwV3GsqcrHV8UaIeWsJL2z74k8goMp2N0Q5yHy2tvEswCcsUEja4glPzg7fdodWcU18V6Voopzk6PiHyXP/lT0Szfs7t4x1WUdIuYImShXn/Gbz5pYg/FOfanVWZDFV2f8dttacQvX2YxW+HNNz8Qa94x0c0GpcI6774rkEH7qk+9MwDNQPLSMu2ZrMy/Tycu7iJ9GOP4uMXR4zO++T1B9FtUq3S6E3p7Lu+/J+Y5l1fYunCba8si628tpMiMFQ73n+BKMveLK3kYdGn6Ft/+mniWFSxyuHPApCGMwmf9Gb3mGRvrF0jeFPL56NkuNzav0K6fkZeQ4+3nXzBfTrAi2dV/8OwZt1avcv83d9lviTO6cmGVDz/5EG9a5Z2boh9Gc3o8f3yfC4ui/zhdLDAJxiwubp4HReczJrmUhT40Od4Wjvbx6D6aphMFQh80OzZFvUMxu0go+1WcMMCIKxyf9Ni6KhG9vjwgn48RSeS6qdsjFvcw4nGkP4nrhmiagaJ6+J4mZdFiNnN5+kzoydrJFDOewPM1dEkxgjJD1SS6Ziic6tU1nb2jT6mfiedcu7rM7sljrt64yE/+4UDIi++iaiHnHAeApsaYOBMsQwavUAVJsYQ8B1EB4vsjVlZWuCllKKY6fP7gc+ZT4l67sHqRBzuP2JbrBrBWydA8LeJJff7wwROu33iNXs8nlxd7XM3H2DnqYPv75GS2EFWlb3dRQjGnyxe+SSqT5sNf/YyMrMiYzMbcvn2HnednLEonLGb16XXt84qb6aTH6uoqO8/3yRfE/6UzIlNlD6aU1sS8qnNJ7KFDLi/spMFwn7ffuUPSSlCvi8UqpiKa9TaXLm4ynAidfnx2QkIrkpRgOdn8OrGsTrPZppAUOn5jsUoyTKApOqvzQjae7zwjmavQ6oo720xUySbimJ7OXFaswVwqw+OdX2IaJjn5Wa/XIZtew86I/VT1kOWVdR5v/4q5gug3Sie+hmUouJMUMWkapxIW8+VFPv1YgM4osTxra6soasT6ppjTyfEh5WKF8UjlLbnHh/vPme2HzEkwmcCbMZl1SGVfYzIQDu2vP/oVC9mr/Omf/Rk/+blw+nwvIGZp9EZCb6UyMY5qd1muLjKRQZLtJx/z/o1vMwqnBBJ91Z1OmV9+n2xaKKVMfsL9+6esLK1x84awPXVD4/P7X2IkQ9a3RPBmVGtgtwwWq8IOe/7sMw4PTvjgnf+BS5fE3O2pjT/JM78szseTnX2UwAbLoV4XQZlCt8lMv4CylWYmtobe/jOUYo7LtwVKpqZPePhsHzMqsyp79FNZndW3rtPrnLH/UOiSVLLDTz88Ii6JlQvlGL4yIFvIM/WE/j5rHNFtz1haq7CwIKpa2g2Xx0+es3VZvO9k2idE57MvPuGNt0XAp3Yw46z9jM7gFFcVdvvRSZ9vfe+P+Iu/+t/Ec+yI1coFarUaVkLY33q8zfbOgGJhibb0AVznP+4+veq5ejVejVfj1Xg1Xo1X49V4NV6NV+PV+E8w/iAyV44fcPeRSCFPhw7FgsmXD/Zp9yVq06TP0X4TdJPFeeGVziYO01mPuITydiObwFOZjKeYOYnQMuxgxrLk8ybLyyKy0us2KBYSeGMRVTErFdSgjaWBK5nx9DBB4PmkEyqqI1Gx0hVAZXtHZNPSVhZV9zCMFIO+iEBnsxGz0QQC0GUvhqHNCIIpPuMc6wAAIABJREFUHYn65YY+c+vzDEZTao0DAFJmGl+zMJMmqswq1I/aGLkx+OL9JuMxuXyGyXhGqSyi4rqio6txpkOVUJPoZ+k4McNkPBYRjZXVJcbjEYlEClXCpaqKR6c+Iic5IBzXw3V9Rv0xqaSIYHhMySXi2A2bRkNECwbNAUldZyqzW2sbW6TjcTxHxU+KrNRZF0I9xdW3L6HNJLLiqEOt0WWWkH1ZwzMKyRhxX0XPiXmfPOkwV7A4Pj4F3ZbzDEgkcgxnIoozPDzAiQbk8guMe2J9R5MpQTjA11ROTkVk5+K8wSd3Pz4nrx2UhgzHLpVFhVRSRF/CyKU/GlOsJqEnyiz0SKF22mWuKspmRg2HTHWOfGKekS2yOP3akHg8hm+MaM5EZHXwtM/GQoG07Jc72n+G3epTKhXJmjJCpIU8fXqA4YUsLYqI5XjQIlVU6Z+I9z06qJHO55i4U3RZLjWYOhgxBVWLk5Ww2bbbJ2tl8GTkRMFgMJwShBpxU2RfZrMZQagS4pFIiBjK2PaY2i5jT/yeH3SoDOfwPY1pW0S3c9Uq3iygNmoyGIp3vryxTjB0uFgSsvnkeMrUChl7HRKRkCndSDIZjwU5p8x0WEGMg4Mjopjsj/NG5JUqgR2gqmLNx26cWDbElSV8mWqZwaxHo16nnBcR9pmTRDNA1xL4EqXOdV263SbVOZGiz+ZMer06ZlLBl9HlyMsATawkzFfEPnTrAxaWizhTkYXzHJsoNEgYFi9OZK/mhkk8lWFstwk8Ed02TRPPDc8pD4IgQFEUZrMZEeJsa04CjAGr18q4M7EPtSczVpaWsWUkcuiNSBppur0mC7Iv0uWY//Xf/c9sbMWZk0hLjdY+uupRkuhd+HG2Vm7hzcasr4hnNdoPiJkmUaSgSlRDQR8cochSRUVRCJUQXVHPibcV1edgt873//n7DCWXUKV4kbG7fd6XaSQjEimN5YWrdAaiT8nxIy5uXMGenjCRGSjbhakX0WqJPda0LHp8Sl5NMbXFWu1uP+fWjW/z3W9/wNQR0cLn20/QtCoTWdapkMNI+hw0HpAOhJ6IFJhORhhxHVMXEfZ6Y8ClrUXuHYrsxM7TbdYWrxA3fIppCcHtpVFyYwajCC0udFXgdUmnkxRzIruMG2NtvUKzbrN5UZw1ww5ptRqYZdF/8L233uOjj/4DeiHDaUc8J5nskUwlcR0FMyWyd6eH+2xtGVy7JP7vt583WV8sM5ru8ZsPxX1xc22Tyvwc//4fPubhrshwvfV2mmvXr+N2hO48+kWDrStvU2v/mnxRyOeTB49IJ9JMRiFzc2LuJ2yzuXWFQkpEVT+9+ynVjRs8PdqlEJNZv2KGyfAUc+YxGAp5qaRKbKYNfvRrEYX/1qV3MKtzbH/5a+ayQrdknAxf2/o+x/YhTVsgV+595nJh/gJvXn0dgI8e/ZjDk0NacYeKIdfFyhJpKYJkg5Ij+nZPvQ7Ziok9FPfx1Rt36LVPefjlYz74joBZH4zO6PU6JBLh+X2YNErkk0WaA4FIV07dZGXJ5hdeA/Ulwp/qE4a+gEaXCJ4u4AcTHkpk10ZzQipbwfUdQhnhVzUDP9JR9ThhKD577U4J09pnbl5EwDPpMulEGtfTzzPsoKIpEVNnimmJ+zckwHMdVFNE4XVdx3Xdc6JxQKCJRgrFXImkKvl4HtbZylykawtFddw+Rg0cti6vA+J89HsN0sk5DEnkfuFreWZ+m/4Lj3Re6LxOp0sqWWVzeY3Gicg8JtJlVuZWuH9XlOTWax2cwwaqGnHhsli7Z88eM7YdLDPJ1dfEuTo6foJlKtRbIip/6fI1CGOMh9u88foaIHRLv+2wVFnAlxkEhU0KpYhuT2RjRqMBcT3J7v5DVMT7ZqwMugoxdY5OQ5zb0djm4pUcR0fizl4qJXBVjWY94sZV0ctoOx0y8wskk0kCU+gJ25thhh6BJnTuOBqhtbpYSo4L10Qf33atSas/YzGzfI6Qurq8waNH+9y6IUivQyXk+LSGO1lm/Za4Gz79zR5DY4jvd3jzTZG1DYI29z4/5fU74u+H23fp9wfceO0Ow5FY8+HQ4cLmGk+39/jpj2XvcHmRdDHJWUOkcayMx/rqGnfv/5LlJdHf+MH73+eLz3/F870jEimh5/f2z+iNO0xl9Uy5amIkPI5bdUoFYfvG479hZHzK4Rcx/uS73wDgsNak32+d056gTNm6cA3X73BwJGTqduUNiqVVVN1hOhLz2jmpMaVNMhC6S5sssrWQ5sXzzzFk/60/iUgtxQkjsccri1me7+6RSl7hoaxKuf3mGpcXUzx98JStja8DsPyNDP0XuyQQd0VYDPCOXCaFdSzJV+e2JoyYYMXmSEvC3rFmMRwNubgu0XsjnTAMODw+Ym5B2KxzlQVK5THOxGTUkdUkdg9F9SiXhH3lhyOO9nok0zAciEz5eDyi0+sRixsUykLn6ald/v4Hj1iZF72ay+tx7HaHQSfL/JywQZqjHrNJllangZkQd2t3IJsYf8/4g3CufC+gK+vQA29AbJLl8NETzKRYbF0xyWazjCYDZhNxefTbY/JF6/ziiMUz4Bmk1QgzJgn0Yi0ymQzZrCY4T4B8Po7nTijJcq10PsFwBMV8jmj6kiDUo5IyGdsuk4E41GbGotloEZecFnosjz2qEUVjYoZ4VrvbIQoTeK5LNi0Oi5VKEwsSTCXRqG74zNSAiAmlSl4ugE887jH1Q+JpsXFzKZOJF+H64n3L5TLtdo9UIn0O/eqMAlzXZ3ktz3Asa1QUn4nrYEl+DNebkk6nsUcuCQmOYSU0VHWIoYvfSgRZoihkbr7A+LzfCNqzNlvlec6kYeF6IdX5kK1rQhkZVo7j5pB00OdlvYSvmFgpUFMBqi9KW9zgmHwlzcGBaIw3jQAlmGNu0WM4EIdsZamMr0xwhwpnsidoabFIKqnSlhxF0UzFizQapw1C0ezCeDZG14rogY8zFkaKP7vBZLqPKZ3JB8efYsRN7LsjCpKcd+YqDJw2PTeFNxFrt7C8wOiwR1o21FtBnJiaxov6+LKR8o3rbzEcd3ly8pikTG1/9qMh639epjcSzojJjMDzcYIxzw9F2Vxcj5NTVqg97lCX5IPpgsawZhFN5CWUF8a6rut0+8IAKycL6HEY9Ltc3RKkoYORjZVNMuxIpeVNGLkeuWyaiiw/PT4+IGlVcWZ9shnx/MlwTCoVEUhZUeOLRATstev4jnQaTgbMzS2wUqySWBTGI67DLA5NaQycdc4oL6zRmM5IxMVneS2Fp+qM7QZGKORsOlJJlHI8lQSXMcMiN58g5jTxZy97JxTqjQalckG+25TRwGbiOpiSnLvdmaDNPIg8/JcgG0oMPQaTqYSnjXQ832E2c87lPEScXVVNMJaXVXW5hD1uUykK2Rz28xQKBdrdJoEsVfJnGUb9MYpRRDvvnRD8NS/L7YLAI6ap5zw2AO2ZzcZmDs3UGLaFzF65cZ12vYsnnbJUOo89tklaOdyZhG32TillttjdG7C0LNYhn4kTTzioEkJ+ffkyMVzuPryHLg2+YnqTtK7yiboDyu+a4cW7R3LekkBYUdBlU38ykaHV7vH06cPzvh1VTXB21se2xRoEdoyrpQuousXWhqiFt6wdXNcl8A0k5zSqqvPOe5fYfyEu8EgZMJ01GAxGrCxcBUBnncpcle0Xj5hMJTBMrkQxt8poKs9HKoauptk7PaAke1FHQ4e5xQoEG5x0fgHAznHEt9/5NsGhMCJuvv4GteMOF6++yc6+7Ntt9Vhb2OLwwCHwZV+bUSAXz3B0LIxHVTFIZxLEEwqTqdibbCLPhUurPJW9Is+e/z/ML+p0hyOmY7F2w+6QSdjh7TtvMJ2J8/5k94Cp7xBThP65sLrI00df4JgBWU2cobsf/ZaFzbd5/buXWSyJvrZo1uc3n/wj37khygSfjX7Cbn3E9uNTfEuAKxiRQTE7Ilkt0I7EXTBsdvny822uXRJG6B995RvYWpd7zRr3PxKlgosXrnDp0iXafpeElBclgomv8+4tUfYYxmfs7j1hczHDxg0BZPCLnz7jyuYm5c2L1M5EAMRLTLh9+W36J+LZo1OFy9cvsPNom9SKMGj3Zl/Q/NXH/Lf/xb/h+KEocXIbQ452Duj2xV650xlbF+4w07vUa8K4W1qZ5/ioxtDuoMbEmUnHlyDwiWZiX6y4ybUr11GU4/PgBqGCYRgEgYciSYR9PNKZOZKmeBfHPSGtexBGGNIBC0MVXX9ZciUe9Uff/S6/+vDvznun33//fT797S/xgpCi5JWw7TGKAmbCxHWELaHFVMkp9zvwCnGeIjzvZemugaaoHB4eQ0KiamkxXpwcoMgycrfnc+viJSb9ISD6Y6pLqxy0zlhYETrwpPaIUKvx3rcvEyLk82S2wLQ7pNEYMvLEnHTFpdtxmJP6NIpUzEyOfBGePhD7WVlYIlRm5IsZzmrCuWk3x8wtmlRj4o6pn/TxXfjud/8YJxD3TO20w+r8Kl66ylCWsse1HPVaC8uSpa2JGvfu/YY7N7/JaV3cc76XpD9+SMcOWd3IyuenySTi1Dyxn+urUF6u8t7rAcrklwCYRpKz5oDTk1XajnBafCWgXbexJUKZng353rvv8ei39zkeSFLYzhgzSNPudrj3pdiHN969yvK6wbOnwrkjynPpygp6GFA7PZD70qdULpNKx8+d02q1SnUpiaeKs26ZGkYMuoMDdneE7nr39a/iTl1CpUs2L+yZZmePTOGD88DN46efYdsamxvXGMk+urx1jdeuvs4vfv5rbt0UvUu375T48snnDLviORcurjIYBJgxnVOpYwvqLYbNFt/61veYDsU+HD5ymbtxRPNAPHuxcoGDw0Oy2QLlqtibR4+fsbic5+h5m2xS3JEby1Wi+AZjW5yJzc1F9GSJ412b4kvibV+jpzRRZXtBwopIhlmSts3ME4GUk/Eqye59lqs7zPYlMfXRBuWNtwjqoueqvf+M3vCQayWfI1+U6c1deZMXzx5C0Gbnvtjjtc1bvPHPKuw/ugtAp9Nhce4yaxtF6m0BNjTpV/CDDhc23kSX1Dmub6FqBmcnYp16g1PC0CeZijMdS0J0fUxSy+H6AZoqqSwmj9GUOQoZ8Xe/1aB+OKU6n+P+YxGIKlZzNFsnmCmPoiL6Cyv5NPAjft/4g3CuiBTSSaHp9LhGPB4nVGO4ssFs5qiMZiHVaoFO8yV6R4ZIi/BlxiYMFcIwIJUwzo0q00gwGPZQojRnZ+JwbGwlCP0USih+r7Y3wtKz6AEkZPSu1Rqyu9ujUFwmnZfK7eSQmF5ClYaUPW7T6Xgksy6h7MuoZJdxZj66boDkZgpVjak7IpsTHnCoj1C1LMZ4ytATBnQ2OQduQOBP0GXmwel46L5LXBqYk4nNfLVCGKiEsg8rbiQplnXsWQfTss5/L/R9ziT6WioRR1ViWFaSRlNEGapzG0zcAC8U62toCYyYMOhfMllPJz7dgU+w6vLuhjDYH73ooGWShKE4dJ88/Iww9FlPJhg7Yp5bly/Rrde49/Qhc5a4VLXYgHo7QpG19wupdcx4hQcPHuJJo3c4jXDidfLJKhe3hJBPetAfh+ALMR2Opji+g6vVsOJiDqE3o9G3yas50oaYe68/BEqMZe3vaOqzkl9iOvJ58ULIRrrYI5YwSZoWXdnYfNZuMTdfISkdaGKHpNPzvNh7yktrMl8I2D+YcXNtnlvvCiPpq3cinj3fwekL2Xj7jSK6mmD37Cl/+mfCEe2PZjSaQ4zAZ763BoDnTPDUPhOpHJaqqzy495QgCImpwlgedGz0Ugp7PKPZkk6mbeInfCxZZt92puh6mvHIZ6gLmYprLrqqkC3Oo8j+v2IxS0gDXSIfhbpJhMOyUSYhmcjzxQypkoU9tZmNXzpTA05bLQxZVx+pFqNWG9dUcSSxMLOBAJeI4kxkf9MkDOhMmhRykgNp5nOws01pKc9oKJ3/dofl3AJdSdIYS0dkzRzuYEKnJmR4oVKk2TkiLmUZYH4xgaYkGEpkwiCcks+sY+SmHB8Lw7RarrJDjeHQplAUyrVrT5hNFNKSVHQ07dDYOyOTKXD9mjDqdTXDsGERS2po4UsHaIqmxVCV3zktwrESwBYASRWyikpVS0PCkPNyKc6lGI2EE5hOWHh9n2G3Q07yBqnqHIVKGXvWO+ffUpWAuLrK6obMjhyf4Y/H3L55k6eHomH39utv8U8//BJV/V1fFUooHUBJ7KEoEKkEKKiItQoDndFwzOHR2blB+XTnU0yzSCoj/y8EQ03iOC0m0qke9QdcfPMKraaB44hnzVdWmQ1jbG2IyKc928Vzl1lbG9FriWf92b/4V9x99DMC9QxLojaWSgXa9QamzJSbyTGdVo9KaYFcTlzYY3XGWavGynyJyVicyVjCpjFoovjirCvEcIIBnb7DRBpqoWLS7ExY37hBpyEMynIpzk9+/GPeeOddAKysx9C2aXcPMRSxx6mlDDmzh2WIPU6mk6RTFisLKr4miWpHAVH/hI9+9SHf+oZ41vLcOp6fodOWQANXS5SrF/jkl/83l94U67v52nVePB1y5ZbFsHcgvqfqzM+t8Isv/xGAK2tr9KcxVi6uslAQAZ7yyhydqc3+owd89XVBgPx//OWPyMVVnLrQ5y8OshQvLvOt7/wLnuSFQTIaOzimwnIqjzcUivDJk895cTTm6//8fwQgW9FJJquEvTqnz4UeTlAlpcR59vgF6YyoPEibBprq0p8Jma6sbNDuDGiedNF18S49TyU2GPLJz/+ep8ci42WbCXRtATMjDMBWr4H6+Iirm19h9/inAOjWNRYWSlT9EpEMbuy9OGJrbZNLm8KI6Q+a7O8ekU5Y+BJkR4BbCFnXZC+xbrjUGyP+7q/F+TATKeHwqCaODFJahkGITuSpEAlb4oc//Etu37xBrSv6R7a3X3C063HjjXkMU3bV22AYcTxvdg645AUzQDl3+OLxOK7rC045CTDjeQFhGHHp0hWSc+L59367y6Wrb6BKlLNWv0ut2+XWsnhfgGh8xtrcGiB0YDZ1hcl4ifsf2dy4KZDWxoMutl0nn53HzAj95gQ+oW6fo6iWinkSOSil3sTzxZo3220ubX6XVvuMVls4VwcHLYaDPJuXhH7VdRcC2Nu9z523RR/R1DZ58OQB8xUfTfZ0P3+yx8J6gu3nAvVvYgfcvPYakTJmPJJBYPsMSGFoOZIxcY5z2QbObEQwFXv34T89JKtXSJQCLt0WZ8azk4Smjx2+wJLVD/V6k4WNCmmJVlrrtTls9hhbGo7kG/VjfZLWiHvPTlmWRLhmyqZ+FvD+238MwMMnP2c8HLCwkKF7Is7a6kqJidOnWKqe8zfeu3vCN75zm5MzIQeZTAYtFtDv+hQy4m7PJCuQO2HqXGUwEvuwtuyyffCEyBXOajJh0my1UJUzKlVhNywuF3i2PeL2jTc5OhAZbm8cJ5NJU0iKu6jXOqXeeMaw41ORve9LuTk+u3uEMnnAoCHe+eLWCo3+Mc5Y/F4mV+Ko9gTXdXF9IWfhLIfnOehagomsXmns7bG0cZmVVfEu9nBKMpHm9HSbclYEbzaWcvzDPzzkrdsis9PoP6ewcIGFxTK3s+L3d3cbfPokyXzpXSqyN6t3ckTYeEF3Vziqqcwl8tkb3H/wS7ShCLIdpO6hVd5ibT3HzBNrvr9/l9JkC38mDRy9hc8c02kZbyZtkADWFy/Qad4nnhbrMp1EzNw+vqzQSGdMGp1HnL7wuXxFOI9qZJHJGxyfNLi0LBzavZ0QnCqVN8U98NEvHa7fvEDHfsTimghS9LsalbkUB/tH5CQo2vJFmRz5PeMPwrkydB1NEcovCjUmsynjkXNOyFcoWsw8nU6/TbYiLl7LihGpabyJROzQHMLQI3CyZJCORuQym3mEwRhNFwrx6KSP6wywZNN7JVMkVB1aHR9nJCI0pUIOQwvwnTGzWULOsUQ6YzAav/w9AyU2I50zmQ7Fs/3IBT1gZIfn7+MxoFQooEji2GASMnVbeOOQiowoRGGMjjMiMpNMh+KSW8zNcVavk0+J73jePooyoFGbEZeohsW8RSlTxB7NaLZFlMhKZ3DckHJVHE7PGZNM5bCHI2KGcBAa3QNCP2IqI3C5lMGo36dcStGUjc1BMMMyYxydjemNJKx038XRXKKkUJCWYmAl8hyctghltsDM1UlpadonNgNPKIx33l/guOajKcJJOxmfcPboC2LoxCzpyCge2jjHzIdcUqzVSa2FaZrMleX6KgFpP4kTugQSEjutWiSXLTxDQaJ7Mw3G9Md11isiqprOX2TvxT7VcpH5ZVlmaadJqhm8kYsho/6aEadcjmO3xLNnYUiqFGGdZLl1TSit975RwI9PuP1WmSdPhDEVJrq88UEJfyjeL2UVOOo+Q0tN+dt/EBfaoBFSKOYoV6tsXhR7c7z/hN6xS06Seh4enhLXTCJVxZXwpVFkUG91sfIVZrJx2o33iCd0pg0JYmArJAsRihk7ByQJYzrGbMK1y+scn0oyPj/EHih4EgnJzPuM+hHhdIgbCoXkDoactMe0OwMmEhBC1eKkExbIOcXyBpOpgzEM0GQ52tiKkzGqxFSNkdybckonGOsMZWYgk1YxJwkGHQ8tIyO7swxjxyWUkeWR5+LYI7A0vLgs4TRj6JpFwkqeB1zskYOmuQSytCdpFfDCKa3jHjFD7GdHouotLqwQaeISqJ010ZQCJ33hgOWSBYqFCrGYjyVl+Pj0DEO/TCwKmckaQ12Loes6joSjV4kgDPHd4Dy44kc6RjrGVA/wVDGvfCaBqkXEDCkr6gAziMhYKxiq+L/JxOWsNqDXV1m5LC56DYVWbcJ4LJG6zppcu3iN3Z09FFXowA8/+icyuXk0/XeQ8KrKeSQdIIxUVFUYopEu5h5Xk9iuw8TWCUtCT43sIc2uw/KiQK6bL6dYmb/IYNjGlKXXyUSB+tmEVquHERMyO5dfx/eHdPsS5EZJEPgxLq2+x73+ZwCcnvR57dI3+MWH/wHDFO/caj8nV1hkdu6kXaHfeki33SY+L+DZG+NtoliMs+4nRPIuqLWHWMYhG8siAPP5b35GtXKDs8NjfIl+ujS/gsaU47097twRzeqjXp//+r/879mV1BS5TIqpv8OFzeu4UxF463T2iNQ1tEjcHzElzd//zV/zzbe+iZEVd8Og1qdYKqBbBzz+SGQZVstFjHSWVkHoslZ/h1gyx82tN3n4QmR7KuUF/uUff8Bxr8bqRZFZOTv+nMXSPOmMiOIeHe6hTj1CI4MrCS4LuWvE8xmyOrgSlOFf/0//hqOde6wtiTXozhw0P4vX7JHUxByKxZC5whI7h/dAltwaxhrLaw61feF8TPor5IpZfE4JJmJ9q9kUCTXk5tWL1HtiXa6uvs+jwSGxsggQRmcvcNtj3vv69+j2RfQ+r6+QmC9xfPKUji5k/ztvvMFJzSaTEU7o53s/YufgAcXIZCYBbMaDENft8pV3v0GjJiLeg3yf5eoVAke8b2dq8ZV3Fvmr/3MbRUabI1VB0xU8J3ZO5mrGM8zcKe2W0CWWmYNIJyTCNF5SEygYhka/3+ftN8S6//H37rDzdMAbN/8UgCcvfs5w3CZurPC1rwlH5q/+8ifEDYtIAV86U5qmEfrqeZZKUQRQhqr+7jPTTAAqB/uHXJVO5txyjmIsiych3dWqw2gI9+oiww/w4V+84M53btKXmde+neO1G9f47W9/xotHwlhOGVm0csC7b36Lo4YwYB8867CyWeSZtAfee+8dPvvkc6ZZg2xG3E+9TsDDJx+SSKTOg6kXLqv0uhNGXfFu3f4e88XXMNQMj+6LfQm1Do7fp9XOkpWlUXHTY2zPWF1ZA6DVPMD1h9x78JSlRWGcZ+MJtK6G46hMbVOui8ni4iLpuNCLhhfxb//t/07M2mJlV+jAr3/zJs0jn3JpnqTUUy5zNPtDFmS5VpUp+4e7ZHMWxwdCp1slDU9T+eq33mU8eAlo04Uww84TIdPBVOH54R6Ke4UgEpUy6wt3ePiow90vDs5RYRfWdI5rZ4zkefSHBhtb6wzsFr2W0Hn11nNUHAZ9sD3xfNsOMJMj+gOxThe2rhNGKoZh0BsfALC9o5I0UuSyCZySMNTLZY3t+zusSkqOTHyDaLbPN773DnZH3GeHByfcevsayWScZFKUet74YIMf/M0OuZxIGnx570MsM8PUbZCIi8++9Z3v8+Gvfks6kSImEfaqV77Di/49/GNxPgwcjusRt98q43vi/b540eLNt68j4/6spdapNc44rmscycKRfJTl6uV1jp+pJNJi/5L5ZQYzFb8gvvSTR4eU5z3K829z6Q0hd512g4NRi+3nJyxVhQxNxveZjHaIZIVWPrPC7s4x6ZSDvIrIZuHhFyfcur3AR18Ixz6VSpIt6UxtsZaL8ws8uPeCzQvrnElqm3hskebkIYae5/G2CCzkshkK81lOGiKQsbxVxcMhX1xj90AgCqatDVKZkKQRcWFDlJ/jC3vo941XgBavxqvxarwar8ar8Wq8Gq/Gq/FqvBr/CcYfRObK9zxcWZoVxCYocYtIj2FPhMcbG8WwYiGhZTEei88GfY14fEYiEFFcJYpQVBM/cAllI/XQ7pJImPhOQCDhkmOWgWVojPoi+uP1bYrVJNNxiCo95VjSIu741OpDcmXxf7NQQQt8HAmDbsQjrJjKdGiSyogIWyJVxJ620a02Rkz2dOll3NEMXxURPtc1CMMkSlylUhUe9slxnVTSIJ9PcHYmohNh0SOTmWM0FhHTxbllGs0+m5cqFLMiEjHt+fhBk9XVtXOIysrSGomJzbAnog6GphE4bbKJkEpOlBg92GmyWprHi8QazJQhxBVq4wapjCQxjZnkiylQuiRnMkWtzCiWkvRkvXWn1qWSnrGwmiSKiZDC8+d1EokSdmcxssYQAAAgAElEQVTM2BbfO6n5uE6CzlCSGPeHLJcXiJGg64t5RorKdKTR7tfxJZRtKpdDCz16sudKsQwCRUWb6uQqMoThazR6E3SGbFRF1LbdSaHn1llZELLxdPuEt9+6hatqfPr5LwDYMlfx8iqjRg9FkhYura9z8qBFQfIYKKrLwf4JRiIinhHP+ou/PmYWtukMLAZTEdF799tZ7PERI11E4Wp2wFlwRnYuxUVdpJ4HpQGGZeIHEc9fiIj+ZBwjXcyfZ0OzVpJw5nJ2NCIlM5aK1sHvxfCigJYvopFFM02t06IzEL+nGAZhACgzApnZycQLlBIme/tP8CX5cL+tYiRS2K74v/bpjAtL17jX2MWQqiChZolroKeqRF0R0UslU9iTEZ7ky83n0hBa6HEL2xblBd50hFbIEqkx8jIjE0ws7Nn4HJAEwyOVTzBoR8xkdmt5qcTB/phMRZZBdh1iukkiGeFLbrqz2hFhpNGpD8kWZG8YLgQqk7Ek9NQbWMkkCV3HiIsygZmMLNmzFnkZ0ctn8sxGEJdlLc5kSqUwz9jukUyIz0qZDfZbEbqlo4WyVyPyIYqhyr8DzxehqUhFkSV4uq5Sq9VIpuIkRYAdM2URKl2urooo7tnZCXkzTqmaZW9f7Gcqv86w18WMmdRaYm/iVgIjptJuvyx7jPPrj7/EsjS2Loks6tQu8dr110glD3Bkf4oR1wlDD8KX2SsfFRdN0Qk9WcZgjHE8G2+8Tjohyiy6jYCt1RViutBbhqmzd/SQ1fUlHMkRlEun0VyNZBTHmQh9067XiKfjaFI2tGiDRHLK9uefoLpCnz76+EMGVy+ytrTAVELnl1emTCY6LyTPTjSJM59JsLb8Tdo9IcPD4YxvffM1hpMJLxAZ9Sj0SRgGaQk6cXF+RsceMAr7ZGXzerascDwYkq2WeL4neiyuXX6Xs8YBsbSY00Jlju3tj2gEx1y/KrITk/ERw2kfZyT0zfOdz3CiMY927rEme1iuX75Mv9YmUNdYXxL69KjzjFbziHRORJHNkYeR7vHGf/ZV1o9Fad3R7lN8tcfJ0T45U+iuYiLL/S9/SkGCrTSmJ8wbiywmYG9PRMBT+q+pXr1MvbaPMRX6bb/9M3KFNays2KtcXKO194ixFUEky+udiC+2P+X+zz5lKEmLb797ndVCkcSCKEuKxV2CTpNCFkJF7OdJo4eevgyahtcVkdzfnN6jNdrjvixdSgQbXP36RR78+Aes3xCyeNhskY1PWN7awuyJSoO9B3Va0ZDQFPfHxYWL1OMBCwtzLBTF2n12f5+wP+WLe4e4E9Gz9trcTfr1GKOx6K8oLa1ysvuAyItw00KXxaYzInRCxUeR9AFO4KAYKqHkx1M0UHSIAo8I8R1V11F0CByPd94Q5W6pxDq5yj6eL87eUvk6lWydLx5+QUaWyapRnEDz0AIFpC0RqRahNiMMxe9ZVpzJeIZh6Oc6QfRpRqTSFvmSkP3dvTqTQsRInquUtsZs+oi+BJcBiF9Q6I2aKDkh06UFhcmwRj4f41hG2C8vXWU06PGjn/97Ll4W0fRqLmQ9f439lOAo+vFPPiSd0dGsPsenso8vNofvNzg6eoYhy11Ny0eJJuSLkrPLrRDqLmY8xO5IXkRFJ2GUCdUBgWyrmK+UafWeoqmS8DlMcnRyQqGc5ekzkSFdmJsnkUqSKyRx5F0wmZrUj7rMlYSuPjup8Sf/1b/CjernZcG7L/a4/8UT/vzP/5yd56JvR4s7zGYzzLjIXOWLGQb1Ia0aVCVH1/PtMzL5DLsvTgglL+qN27eYjEwGbdH3XSiYLM1d4P4nn5OWJbiVks/mxjJnhydUpO2wc9Rjb/8ZaUPoyc2L80zGfVpHUyJV7J9mOPR6Iw5rB9hjIUMXLrxGONNo94ZSDizW1ud4+vQeuuRA3R2e4XigTMfE0+Jsj5yIQm6RmSPs3OagxspilZxm0RuLvSpX8hDGaDUcsikh1//0t7+kVx/y3le/BsDG5hpaFKfT2MOdCvnc3b/H6voKw2Hz/DzEKlO8M4OVC6I/ttU6hGkbNWYw6orfS2ojdk97fOUDoTc+/fgL+t0TGo+2ufmGAK9oJdpYtsHWBZ2EIeTl40/qbNzaxEAA4dy8UqGZntLsG7SfyvsqEZHOJJgMjnA9sael3CU+/eKHlMuiPPT6la+gLrZxgz6ZjLjDvrj7Kaa1wpndRjXEZ8uL3+Td917jh3/7N0LGBg5vvX2JXjdk64p4Vrt5xmiYJIwrZFNCXirVOI3aKV4g9bfV5/Spy6VLF7i4LrLbMVao956QK0/xVWHz7LwQd9LvG38QzlUYRedGjOXFCVyXdKIIBeG0jJ0JgWsynikYljj8hjXDcwOSKSGoZ0cB2bSOog9wJHhEZa5Mr2vjzCZkshL1Kw6O75FJi/9LJ5OEoYtpmiA5UQaDAa5nszCfI3hZrqibhI5NRabR/cBlGoKuQL8vHKJ67ZRIU0llQxT1JVJWi2o1TSYljZZUxGQquJyOakLZDQcjCoUC9dP6eZmTG/bILKSYjcWlPnXaKKpPKh2jLw9sLIgIA8GpcG1DHI7TRpNxr0NMNq+PJwqzwOf2rWs8eSIUVNZSCY0CkS4OsGvHCP2ASjJDMhCHru+H9IcNKqUM2aIwNkZHE/aO2xgSDe7i9TViXsj8Ypn9M+Ek9Qc68cwIxYjI5cRaHR0o1GpdvFA4V6l0nP16ByvuEkqjLJf3MTyFzfQmq1fFIX5w/yFpU2fQF8aWEiloukvg+cymEjRh2mIyjkipCaoFcYmHTsRUmRFGsuyxkGWusMBPf/pTUrr4jpKN8NwxajqGIksVdvcPCOM+mrw8L9y4Ruusw+bmCrt74kLT9BBvlufx8SEba6LMYv+TNBNHIVEWl2OxpBDkS8SUKvcfi7Kgi5sLWFGMk6N9gkjI2dhOMM3YNHvisBbRWZhfJR7PM5EZ5+FgQi4fw41sfFlqoiU1Wp0m6xuivKjfH9LqtojHY0SSPTyZtzg+a1JeqDKTzc7tbpNKtUoknde5Yophf5dssoQak6zjcYW4HqfTb5PLluSe2mi6SVqVnGStGkEUks4pZOfFOYq6CfpdB9McEVqyjNMfohoK4cuywMwylYLFYHREViJVnp41SWeSKHJOb752lRfPjgmckEgR7zt2RliGjuuEDHtinqVCATWKgUSDc2ddYgYM3YhqXijJmOw1M1SDaVusQTFlsX5xjv26JBUc9hlOOjiOjT4ReqPZjLCsi0SEhBKoRVFCFIXzIA2EqKpKqEYgS3eCyGNra4V43KBdF2em29knnVNAgnyMhjHc2YTRZEKvI+ZUyOqoqkqpYp2XHbqugWEaBFKXaYZGZTFLs9mkPxBrVarmsZ1TFCVCVYTRqaoqUaTyu6IEjVDTCAMFNCFnSpgjnTI4ODpg44owyuKmhqak8ENRQjq1SwyGHRJmiqxEsjLNGdlkiYXqAkNJInxSO8Gtz9i6LEpwM5GJ6hjMwiJl6ZAcGW0y2QGjrguSBPbwic902uGNq4I7qZhdpla7TzB1KEjOntlwkd/8ap/FjSp7+5KM9/YmtaMDnKFYz3K6QqpsMLe0wK9+8kPxe7Fdktl5jvcf8pU7Aoyjc/AUUg51R+hcZX/MxuVbvDh9hjMT71xdXqZxNCBUhGzcee0DHrofoSdUGhIBzujUSRRy5HWFQBF6f31ljS0cto8ksblpEHgT/vEHf8PGRWFY1IdDJj/7R8ahxt0dsQ9WqGKkVmh9fk/Iz1wJVQ2xdI24JdZp+/CYnTDBQpjDjoRsXL+0SWsyRPoZKI5PY3jIauoN6p44D8W5Kv1f/IpIzbJ6R+xN6CVodUOqVWnwDcfsH9UpLa6TiMTDzDmTv/nkY/o7Gq+/L87/t/9smfZZj+v74l264yUKlTKTr1xmJvtvw0OPe/37zA17PP5c3DOXrt3g1lev0qwJJ+nChatUKhUKsSSdttiHb35wmy8/fgozh0WJ5JhOGpyM7rG3K8p2fvqL3/Ktf/k10sUi3YFwUEwrie1NiMdieL5E69Q0guj/y/GmQhihqjrqy7VSVAjjWGaOK9eEg7f9/Am3bl/n089FmWelkqHdGrG8sEp2STjH/+5/+RkZLYlHRPSSU1LxUYgIw5dceHF0XUVRI6Lw5XciwijATMR5KsvIC+UFjISNXRf3hTedkE7pWJLbDKC6GafTnVAIhPMxbNj0sUkmklxYFN/buDKHeayD3uJ4X9wzq0uv8enHv8CVTkWxnEfRbIYjDyUSxqSV0NFjKXL5a4zk3ToeB8wtFnipN0I/QdzI0W5MuX1bIOU9efZbDMPg8uWv8+KJAC3Z3QnY2LjJ8ankiqsk6PcUkpbJ4pzQLfWzMV/9YIPjox6doQDj0FWTudXL1NsSqCJMUSnn+PJuh5uvXROfOdvceesWZtLnZffAfOU9Pv38M772NSErO9tHZFJVVH0qQEMQHIimYbC2fB03Eme51jhgcWEFFOFI9ZoKW6sFSt//I56/OBDrkp7QaXtcvXKLdl8gVSpemrm8wdgW67t70KHfdUiYZbIpoYO+uPsUTc0wN7/E3oFYzy/v/Zqrl94hWxD78Hj7l4RBDNPUSWeFE1HOLbF/eI/6WYtIRi5LxU0WS1sct0QwnliD5ZU1jk6O6U9EwGVvt8mt1+9QqSikMsJutp04Fy9fZtyXveGlKXt7x5QXF8ktis/6rRPyGQ3f90lJTlBnHHHtylWspNAt/WddfE+j33VpD0W5naUnyefWefilOI8ZQyeyLBLrWWZj4awGfYvi2gaLFZ170uZxoxi7z56ztSrxBgyHUd3nnbfuMJTBuYcPThnNOmxuXGc6FGtXqeT4/ve/z9/9w0/EnGY/IR1fp5wvMB2KwNR3vv6f0+k3mF+ZZ3VZnLWtzQt89NF/YHFNOFtRFDAc9lGVItWy+Gx/9zGGuslX373Do8eiP3U6mufqlYucngk56HZdAZzSb7DzTKz5d779BuhtZpMRjx8KOUtm/uOFf38QzpWmaRRWRKSgO3AxDIPRsElcEZesFypMwwkRyrkii8ez+I5HsyY2JJ2NoetTVDWBnhGC6gQTipUCaqSix2RzpeOg+ZDNS8dtFhCFFpE/wJCGmqrkmc16pDMm445wUnqdBrlCnEgiNs1mA6LIIfAV4qrMUuUsupMmKStJtyO+t7ZWImUJ4wlgOJpgmD6TyYTRSDiKm+uX6XZaLC7MMZU9CAEee0fPqUpm8FTKoNX0ODl7QUJmxRaW1+g1LLrDXQ73RBR8NPBZWVmj0RIHIfJmoCocHh6KjAOQHAY48SYThLJPWApX194kbkzpNsR6biylOemfoIQeLsIYiP2/7L1Xr2xbep73zFhzVs5VK4cd1s7h5GYHNtnsZpOyKYKiaMOUCUGGb/wb/BcEGDDsGxuwJEOQYdmkuk2J7Gaz+/TpcPI5O4e198qxalUOc9bMvhhjr+aF6CvB6Is9bhZWoWqGMb7xjS++r+5QKqeYSETBJ092uXa5Qr+/yJWrIkPTGwVMnCPMlE5ZRgaOT48wDDB9SaSq5ohKLokWkfKFcW4peayCSkqPefJINESHoUIcq+QlHbunKVSKNQ6HJ0zlPFVLc5SKNsPhEeW0MNSslRH9sU9WRojn39B58XyT9752mZ2Xoueiq8zIDLMkah9Dro3qJ2h6laIhNuLp0RGFis3B/ikpQxhgSZhQr1XIVer0O+Kz/jAmMg3620LGVucWuHHlBkcnhxQsMVcZu8qL7WesX/kKO7tCcebsKbXyMjmJ7NbtfEE64xGoLrOumPNyuYYWa8REeJJQUklslMTh8WNxoK1eWEXVNcYTT4CpANvbLS7VF1CDFIH01Ox0mliJQSItFkt1Tg8PmK/NEUigliBxSAKdIIioLAqlOJy8JFvIEkdCpvXQQolVWicjMnkxx81GhV53RDAzKVVkr4TTZdwNyOWFIk8ZRbZ3NomJKFVkD+I0wjANFIlc2Vxu8GTzJSoiqwSiCb2Uy5IxE5RYyFRKc+i0R+fOQDbXIPYiIneK05ekzHJex+Mx+awwAt3AZe/khOlM6JFKrYpCjKEaTOX98vklnIlGrETo0uhMYlC1mCD4FfxqHMcoSUIke66K+TyeM+P09JhKVcLIz1yOdjS6Eh0tW4BOK2QWTklLWoDO2UMMzSdllFGkSlb1Ge7UxJAZ4VK+iB/MePPdN5g64p0fP/+Ur371qyRJgq6rUjYE2IYpewaiKCYMQzQ1hYZYl0SZgergTDLoiOdUlCP63T6m7OecTfYoF8okro+RFTJcsHJ4zoSB38UJhXzeuHyHWj3Li+ciSr3bOyOTytNYSdNcEMGV8jADs4RSM6Y3ktUIqRmL61mGPeGspsxjbKvJFy+fs74hDCe9aLOxfI2HTz7kunTeTjbbdI9GZNaEUXb/SZeMXcabOizJHo+d7SPmOKV9esxf/+1PALh15zL99oiS3NtJlLD7YouUpTF1xDkzl1EZj56Rrwh5nSkOsV1irnEBNxT3+2TrQ965+A06kzFpKS+r8yUwfSZTSR6rTjgZtXn70jukDbH39vCwC2s0dZOBZNnUAo25Ro3MXRH9xUg4OTnhiwcPsWZiPaPKCqXdXeKLTeqrcj61PI9/8Dm2zFJVl3MsrF7k6aPnlIU/y7PuMXalzJ3FOvacCFZNett0T/dZMkRPmzlRWdhwmZ7scOaL8zdtpGgGU373ny2zsSyMltbuv6GIz8qqgO3udD5jZ3PA298pcf9zcYb8o2/dYji7irHYoFYSWcULF5YIxw76TOy9Yn4RO+mw86TD5QviWh+//wWlcprmYoajQ/E+6vIqyjakLDFPpXmNd27dRY2+jy+Zm13fw9B1wihC02SWKFGlU/MrAu0oilF09RxMU9M03GmP69eXGfbFGXL39lWePH3K19/5UwB++uG/ZDrx+NqV32L3kXCgUxaEYYKqmMQych0nHpqqngdAgtBHURPiOEKTqVxBPqzQPjtlFgqj7PrGN5hvNBhIgKJOq8N8sYkfvQrcQNpo8LT/EaYtMoNGXCRE53DrGReXRDTdmURYqTSKZjOWFTWzsceXn9zn7a+tCpluzNEbtfnks2NyJbFWlUKTK1dW+fTz9wlcYRO88dZdFDXkxTMh57mChuc5+OGIoyMRoX/v3d/k5dZTPvn0Z1xaEc+VTTdZWVlBkcBinUEbO63w9PEjVha/CsDXvrrO9u5n+JF77ghn8lWOO5tosj8+X8kz6M349nffZlNmqW5e/yrdszbHraNzgI61FZ2337nDaCyeM4oCjJTP8vIaCUI3W1aabtfh5ctdkpS4XzAbUy6WOO6IapNOu0WpoDGLXNY3RMD1o4+ecO3mIjt7Dzg62AWgUC5Ry1+hawmd+2jvKaXCEnEy5dmuIDafb75NtbGI6zo06iIbem1DZThwcF2JamgG+H6amTfB0IUertdymKRQDRVNAixtv3hCqhhQbL6qyKrwYveQS/OLnPaE/Ny8cwfXH5LO53j5Unw2GAnKEd2QPW12llqlgDs94eFjQU2Qty7S6x5hF2NGrTP57JfRlALlvDgH1tc9Qjp89sUnlEsio05Ko1hyGcqqirSl0RkElOaLhBLh0zSzmNmY7eM+obStr68t4R/4rCwJfb53YrGYafH0/j1W1oWu/qM/+kN+/KO/xhvNUGUw9Oykz8SF73ztD4VMu20efNxm/eoSA084bg8eHpDNLqImCjMJZKJE+8SJh+uJudy4VmN3d0Do2Yy64rP//Hf/W3aPP2Bn+wXOVKyNoY6YDCPGI2EzZ+wmYZRwcLRJpf4Kq+Eeo4FHvV7H0GXS4Eg4ln/feN1z9Xq8Hq/H6/F6vB6vx+vxerwer8fr8Z9g/FpkrpIoYjgUkYjuNIUZRcSBQ0bW/+OGKGpMJpsmkaSlvgOplEHaFF6xYYJKTBjN8D0RrbAti1gZoKdSTAav+iIMDCMklGlYJ/BIgiFpw2YyFNORshzm55fwvARFFdGQtUs5TL3A8bGIfGiGR7mSJ/DUczQtRQ2xI4t+18OUqEaFnMVk5DB4BTVtZsinTGp5i4wlokaT8Zg4jFBRkOXipJQCy7Umnb6436CV4LsRzaUUJwcikrztdwj8KTNPx5aQ7YHSY2frCYnMclTKFaIkYmG+iibDd10KZDJnDPYlqbCVot065LSrUZckbRetBaxkDNqIiUQwbFaW6E8U8ETkbuVqDRMTkhQf/ESgquiWjq0VyDfTnOyLyOOli02uXl/hZE+swScffUS1miWlNEhkT5k/cdFzEZlSjjfeETwsn3z2kCiYsLEhota9yZjpJODO7ZskquzLsk3GE59KeYmu7JUolEPmsgV2d0SZztPtx2xceZNyvUa1IEr53n/yCQuFHMX8RSaOiOKUC2lOpg6azHhU6hlmQUignJ1D4t+4+gY7218wGU0x02KxsqbGeOKTjkTkdXA8YVTvoJMllxe/G7ljMrkcw8kZjbqIlL18/oCcNaReEZHe9tEJZ6camGlcT8xLSgsJginpXJbZTMx7dzRkfqlJqyOec3vnJeVKDW8WosktPR5PaWstbDtNWpbpqarOyUmX5XUR+ey0+4zGAb2zfeYWJbHx1IHEJJurMJTw4UbaQkkp6BKyOvbBNlU03SOKJBrTQZ9EVUCbMRkJ2c9ly6QtiOUecv0tzOyMdK50TrxrpROmk4BCXczT862XlBoFup0jmk0RIYoSh8Adk7HK+LK3aNRNsE2TIBD36rZPMNNplMBgJOvVDQlv5M4iEkXMnW6k8bBwxyIi3euMKRfyZNJlbJklmoxNVFUn8D10Q8SfwkABJcIPZJRMUQjDAA2NREbcZu4Qd2piG0WOd8X6qWZEpVKi1xWRz3L+MoXiAHU6IfJFtNnWq2iahqGnzmGdNRXG/pBA1vCPZg5JFBOpAUEgrp3O2UynLvlshkFPZk00BVM3zq8TxzGmqeN7Ea9iaaoWYOgmruvy9JHQu6oCU+eQalXMWdq2CMYObnpILOkSjrfP0AwVxY7xJay7zTH7hwqdU7GHMs0Eq+yxP+xwKiHAM0mGYUdnOO7RGYuo9NzcEqGToWCLiOmjL56xvLLO1668yXFbRGOdcYet3oR6NUOxKLNugxqNCzCUUf61y3Xmy9d58uwhA9mPG44Thi2PbD7PhTVx/QePX3LxwlWSREQrDw6PWVqoMxl08STB5OPJLiEuuuxDC0ca1+Y3OHYHVCuiPOxW3sSLZ7QnDhslIXs7ez2KVYtGQ5QcjVqnNLK3OBhN+M0bAq3wu7VlDl5uErkeI7mPb129THrYYlPSCRyOO1y6foHstEFVkt43Ls/RtHIc7bdRZclPsKjyzu/8AeFUZBQOXmxz+72vk+gFxi9Fj1kUqlQvXMTyT2EqItf1QpXxcw/NEfux73a4tH6Vnz17n4xE01xdTXjj2pDuyc/Zel/ol+W3rlBaXcKLhAynmzZ3NnIUGirXTVFaF2ZOiAcdWkczirZYq6xSwDeH+Ip4zpRqMe75WDUVLyPh7guL+PEZ7d0B1y+IaPaLx5sEsxSFJTGfcW9C/+QY29CRQITosUJChKJo5xxyhqaec7oB5391RUWqdHRFZTY2uHwjJp0XpUmun+A5Lpoh5uXK1TW+/OQpO7svSOeEPl1fq7J75JE2bZAZYF01UBKNRGaySBQMQ8fzpufExmEYAiqtVoubb4n9d/HCMsNOFzUU2YmMZTBzA3zE+QWw1LxFtVbm333/LwC4vH6LUmmFK79xgeebIkv8w/f/A5eXbzI3b+C54rfuWOGbv3Wb4VSUM129tsGff+8Bq0sbfOvb4pxxvWN++pMfc/fGbzOSSMDDcZtycYnmnHi3wWSb3YNjMpn8eebDTKU4Om5TrKQ5ORH65pu/NU93dEAs+4+uX/0GL1++BHWXUk3M/2SacOvKn9AafMnWrqiwyZeyjEdjiEXZYxhF7Bx+hJW/zmgs5OzF1uesLd2gWKxSLAr9cnj6lCj2SSTpfbO+wHjc46cfvODCBbFHPc+DWOPCpSaf35MlqRfXuPflDmuXxZkyHfV4/KTN5ZtlzmQJoJGKsK0cWBHzicja9AcdXL9FGMp+TruJqWVp91pcuSzslFt3bvPxL7+gOV9AlZm4YDZm9+Aeg76Y3+vXbqOmEqIgTbkkdNJx64SYiHjWZOmS+MwPHtJcbbArSaFzpk7aVPn4ix/ix+JaXhRxYe0GI2cPVdqZdqrKbDpiqgqd2x7M0FN5ymqG5aqYl/rCBiP3lMl0G1PWWRaKJs8f73D5osjWF4tFnGmOpcUJM0/M8XjSx91yWJY9poNBxNxqA10PCWU1km7YzAITJewwG4vSz+Pn22ysL/OjXwp9bmVDtABK1QqPnoi+8zAwyGZNDo5GLC6LOZ+6x+yc7rD5UFz7j//Rt6jlOlTqKwx2xDpcvRlzdPSYs+4Rb0iI+OFgTD5boNMWe2EyNCmXGnTbY1LSl3jw4CMsO0W3M+HqhpiXo6NjpuMsF1dFprU3esFw6nPWHnDxLaG/t3Y/pFFbZTye4vkie1YqyT7Dv2f8WjhXiq7gSvJKzYnQw4BwBu2h2FDpjImlZwljgygSCjBj6xhGhlgelv12iK7rjCcD5mpCCJRkCHHCdByeK+BYiVFVg5G8n+v7WFpC4M+oSC6qTq/LqT8hl0+hyvpq1wsx9Br5gphQ0/Kw0gqaFlDMCeO122tjpSPSioWiiufq9ScU0w0SWT41v2KjGAHxIMXpqaz/N1VQLeJIw3fFAZo1LSZjn3xaOANngy5Xr2bpjwzW1yWARmbIsNNEm/XY3hICbWghjWrhvN+p05/hRlOOuy2mfWEImyULo+OzKEEaQjOHR598Hrpt4TD88OwXFK0UuWpErIqNd3ji4CYhhaxwaLsdh2xK42R6CJrYiGEISViFyETTxRxMhy5PvmzhIwyG+fUq82sG3YMB1bQw5rS4wWHviGMGw3sAACAASURBVMAbsidr7a9srEHkMHPFtXvtAWlbZ3frEXNLoizh2e4hmumwvnaH7c7PAUgNmmixjm5KA2xlAS8YcrajYMh+jhtzV9HCFmpa42xfGLBGymcyOOJ0IiHOtQz57AQzmZyXzZ25j7DNIWrNoCkbww+eh4SzgHpVXHthaY7euIs3jRnp4l2C44QLi7eYjicMZTp6aWGRYjXk5EQoGt0O8MIAgwqTofjdkBMsVSeTq+J7olciX0px1uviuaac3xSzyZTbN69z/0vRv1EuV/HNKRnbxovFwbe7f8r83ApqJA69cadD3k7jotNui8PYDR0KeYsk0ZjMJImoL7jDVE3IZqw4TJwUvqtSKYt3tgs2Z90+uhFwuC0CAvmcjmXrBJEsJ8jmMTNFOmcTBi2x7tdvLfH4wQndI3EolC9mGA36zJeLeJJbLI4TTCVPHAVkJEy/M/GIA4gDSUtQrNHtd2guzZNoQs7HE3Ff2yzgjGWfi60w9aaoiSxHVRUK2Qz7ezvkZM+HxhyaqpOoNqHsEQKVJEnOoeBVVScKQzTNOAe5ydXSKImJjs2yNI73944w8SlmhKrdebaJmlVIZyw8eXjlyxbubEiiBPj+KzJgk74zOT8UYn+GMx0y8ybkpPGaBC4PJ/ew7TlcCXEeJYkoA9SM8+dWDQPf985LlRTFhEQlnQ7ZfC5ABDRFIZfV0TXJO9c2OAh2KOSqVL5yA4DJuEV3NMBMV5hGwjm1qGEbNrfeekvMeW+Xzt4ZmpUHRTz7MJXgKFtcunmV+JGQDTMMSMYRGdm3sDI3R9qOqTYsDmVpcnO+gTcL2Ts8ouOIPZm1ywymIYWC0G9aSuWLR79kb3uP63dvi2dXO7TaXSJT44v7uwBkdJ1Jb5ecLfRpISyx8/wh+70jvvtb/xSAw8GUo9OAiwtiDnqjIamFZVZr6/Ta4kBdXLjCTz76CSlFoRuJEsN63SEKxsSeuHZufpW5udv84G/+Z/58Kt7lD/7Bn5E3mriTAzZGQs68KKawUKVeF3KqjRTqpsH1P/6HnPSFAz3afkx3IU1p+RLRq97JrT1WNy5x1BNz8s7bX6UzjCnkfVa//bsAtA5buL1TjgceyADBlVqaK29d4URCfs98j+kXKpnyIk2xHQiMgNbwCoP+GSt3REn684MR4795xuKCqDn87KjPy/1TSu6QvbHQSXtuiffefJs5e8baRXEeVudn6H6BWBX8XOmSxVncJvA0NrdEeXbkeNy983UOtj/j2T0JnJAJmCvqzF0WzsDR9jFHnQN0DfSppKiwUngKpFSNlPaKxDeWpL6/cq40TRO9kbJ0N0kSsrmA29feRZU2Qed0ipEKebErSkg3N7e4fPkmU9cnCMQzLS3O83J7Cy0d/Z0ywCm6apAkvyLw1jSNOI6lUyVIhONohm3lKJeEvHz4yQ9IGKAnYp4MTefdO+/ymYSUBjju/QQtfcS735SBvkKPzccHoM4TSd5Hkzq3br/F/tGH2FnJi7aQ0GppWLZs/L//ESET0qrGk/tyz5o2B1tjTHYo1YRxPpye0OtMeftNAe4yeV5mfq7IzFGYn5floe1j4tk8RmpIqiBkcf9oi9axx9IFcf8PfvEB3/zmN8lUx3z5mQDV2LhyjY8/P2Q6nZIrS50wHDOddgklOffa6iopK2Z/7xRfgh11+4dk7AIk+jkPY7m4RBCfMegLA1rVLEhmLC6XmTliXhYW69w/2SRlWSzPC5lNpXzWr5TotoRz53sxF68t0z3bJp0TOqhaC/nZB5/wD/7gK7iStPhK8w0ePXrE9euilPaKYfBvv/e/cGXjK8zPi57nP/+33+PiRpOj3Q6LS0IvjQY+tVqNek0ELTN2g0JZoX06ZtgTaxoEeUw9wqhMeLgjyGrL1jw/+uGX/Pa3hT598ukvKDSXyOSzlDTBg5bKurzY/TlxbDEdiDOkMWdRaywyk6WuB7stbt1eQSFA7b1ifJ9SzpUZtzqsXRWOTG+4S2e4z88/nkqZKgnsgcSgWRf2DUmAqYKRFmvXd0+49VYGdegyPBO/C7WQrD4jTiW8c+s74p2thONOm0xVyM/uXpfB1ONrb3+HsQzwPHr6CQtrDYprXfYlQbAZ5alk0/Tlufrxs/tcur7Cv/jeX/DGLeFIVYwUaaOEGqi0D8X7NRtL6MR4khrp9KSLN4tIZyPGAwmzvrjGzlabuWr9nEdrZbHMyckJh4fibAqjInbK4OatufOEy3ztNtu7DykU6yyuC7u5K8Gm/r6hJEny//mF/z9GKqclb/6eEBzf0Rn3RgSuwyudVagWUQwTb+RiWuJ57bSKploMZW+K67pUq2V6XYeUJUEvrADPhcBLEymyHtcGzwloSiK3/mTApDfDtjzykqHZMEoct0/I5nzKefG97qRLEqo0miLSoiYwcboYenL+nbP2gEQfMXNUzJRQwMVChkmfcxSuUBnjBwlNO8toJiKttYUm/WGI5zv4Miqtxyl0Lcs0FN/Jp8poxpTJzEC3hUDn8yYHu0PMVIPVefHsnbZLr3PGoiT+7Qy6mJkU+8cnFHLCSdJMheloiC0RfxLVY+y6ZAydOJJ9IMGMoq2QKejnyDxaaDAJTtDku/SGPoY2wTCKeL4E2dDToESYmsVoIJ4ziTXyeQUkIEOpWsFPNMJgxt0rYt3VOMX+/ggr56BHQpGuXFrj6GiLpw9FZMkuFJg5feqlJqokafZokctmcIYZJqp0xo00OT1LpSbWZXQ2JuIIU69QbQql0jnYI9ZCVCtPT6JSRu6QWEvOo7jZwjyTmUvUS7hwWbzz2WDEtB+QrumcTcX9wiDNzcu3ePJARPgajUt0zyZ4kyHVBSHEnbMZjcY6g/GQfEYY3rmcyvHuPsFMgjIoKpELtdo6Lw9FP1WuoJFSsxhaiZHk44lil7Rdwg/EHDhTn4ydopDLnpNle05ApCmE7piFRbHuo6mDodtE8uDvdruUy2X6vSEpGaENIwVND8mlaxiaUIpeoOCGDnmpXD0/xkrlQA9wHSGv3kjBG6eolStEupCFYrFEJgNxKBXpsyOskoGiD2kWRfaskNI5PG6TktnfhfkKzjhgb3uXVEbMXalSwfMsRuMzFIRi0/QJtpklkeADva6GplvoFYdOS9w/ly2y/Ys2c3cyIiIJ5HIZND2hIwmKV5cXIAw4bbWo1sUzKawRRhBHAY7/Kw4bYo+j/VcN2Tqh72NqOgOJPHrj5hyN+RytoxZmRhjMzeo1vKCHmZIonKkUI/cEBRNvJt65N+wQoZBJFxnLLIphzoj1tMgkAoVcEVs3SeKQJJCGYhiStlMMexnaLeGcqrouCY4R3yEgn7U5PjhFkaAMSaKIBv/IxJIAQc2FGCUyyEmgn+kgxNBMfC9CM4SOnWsUWVwrMxoZLKwLo2V1cQlLBT2RDfyezmgUksop6LbklIumnO59yDe+/l/gJ6+Msl3cWUKtKhurXZ9sRufhsy0KEiEtChQKuSLVapGTlshCB7MJKT9DW0bqJ1rA9UsX2H3yjD3poM8vzXG4+5TpQGFOotLdffMd9o+/xLTEgWqm8oyGO8yXqtiakKkgibBKDbr7ouczqJaxKxeojEYEMljWISI6dojUhK+8IUCEXu7uE8cR8xfFvZyByX5nj6WFN9l9KXTC5eoaxZVFBv0jVvLCELWaDUb+Gc6ecHB3T16ieTY3btygI8mkLdWkPzglZecpZMVa5YpzBGiMZLWHZTXxoj5qMiVtioi0XrC5/9GnrG+ss3MsvmcoZTaurKOEQqa6uyMuXZ3H9fd4ui3PHatMxc4wIeF4RwaGQoe7164xGYk1nsYtHH2Rvacfk5aEy/nSV1ls5ojDLmZJPEPgjJmcHaHlhJNm1HJ87//+l2xs3MWUADr0PUxzVWTGi0LOrly5Rtjv020LI/vqG6vs7j/jf/jn7/Ozh8Ipy2eyhIZKEkTnaH3CqYrQdSF3up4hSUDVfmXjhEFCJhXxv/+Lf07nTBj/o9EZxydnFErivBiM9yHxmXgJb1wR8vlv/vUH/Kt/9UvqjTJRKNYhUUKIE0KJyqRpCqmUzWjUO89cmaZF98zhz/6b3+HOb4gzWY0TdAUUieiZJGOKuSJLcwt8/Rv/PQD/0/92lc5sxsuXwiEKI5+VtessVSp0NsX9Ni5/FaOmYeo2PUmAbFkWTx/fY+OKMEIVY0S/N2PY95E0fhRTt9jde8mT57/grbfE9wrVFN7MpFYT9k0xv8Cnn/2ScrmKaozku6QopK9w3H5I71QGrnI6k4lDXSLs9roDWqcD3njrMkeHIgO1uDhPOqfy5OHxuZ7/jXf+gIBnTPpyr4cKmjnluP2c6USse7Ewh6FHDEdnOOd2bJpyTT/vvdUNFc2Y4roBcw0xv7s7J4TRjMC3eeuOqHpx4g4PHj+gnhdB2fHEQTMTwmnAb3ztPwPg5OQLWu0JesoECWRULSxhmQU0U+jOs6MOa5cXefzsS+JI2nSc4czO2Ns+5NJF0XvuezG1WoVPPhfAH4XMOm++vUGne0K3LfvHVi+jGwbH3U8J5bUuNpY4POlQkbKYDcccDyOqS2V8eV64/gmeP8J1YvxIOASe75AxrvPuewJ05mTvFM0wePTiI5RIzIupJty4/jaVRpFnWyIQrWomfuDy8qVwbK6ufRfPHUBUpNoQa5MyVf7q+/dYuSp0/satSxxuP2ayM+Op5ECrLBt85Teuc9o/odpckM9ukDJmBJrQ+YHfRKnUUGIPZyL09/Ote5x1fS68OaFqfA2ATBgw2UuoXRV76MFWi5nSYG6uweV1oYNePnxJJrVAdbF8zo8VhmdsPntOTdroe0cnHB61WJpfo1oU8vLs+QH1WpPDw0OuXRXBuFnQYXd3m5kkVo7jNHdv32Jr+yndjrDxLl64ShjNsG2TdlfoRcus8t/9s//x8yRJ3uI/Mn4tMleWmUICqOE4E8bjKYQBi/MSZSRWCXyHUiF/HtWIA5cgOSVjrwKQy0IQjsgWonMjIg4LJIqDYYfYSMfJnGEZcHIoJq3eLFBfKjDXbPLpp+IgzNW61OfKKIqLlROGrxmD504ZjuWDejaQIlJnvGiJxra5uTkKuQWen+2Ts4SyqVYs1NghJUkMNzfHhLHKxq0FEol4tbPTwUxlcGZDVENClQYJuUyWdFoIStrKkrZLRMqYckP8btRVWF1cZOPaBvc/fl+8n1rh4uUNxjORVi4UNTrdDtVSBtUQghlOVNRUmoNjEcWpp6vUC1V8X8dBQgCrGrZt47kRk564VjBLkclaKBVh3CmMILIYDmfki0I5pDQF1/XQ7DSKLBlLgpgk0GlaIqrTqBU57Z+SrWV4eSgMC2c65NLSW3QnI8anQpn7ig5JjKIJpRIEAbl8iW5vQFY2TWq5Aqpik8tpzMbi+rYesr54nYeb4l0KOZPF6iVmiYLTF4ZGfa5Ie6gQTz0mA1HioIQqcdpm0hFGWnfSoTR/gdJ8j0FbKJr7D0IqKz6nz0eE8v0W5wu8/PwJqUAYbsOTFyhawjR0SXWFQsrmIk6PDkin07hjiUDpaYynI1ISoMQZprl6aR3HcVBCca1itoI7BNcJGAzF5q/VavhewumJ2OSXrl4mSRK2trbJ5yTkaGeE76poccI0K5WbMsP1XWJfInOmc7T6XdaWGr8qDxkMsQyL47NjFuaFYREGU3K5FKpkPreNiOHolJmToL1am5mLYQa02icYsjl30GmzuJRGlxmvK1cbhCkNxYC6zPYqQ4Ni3sGVDsNxq0spW6LZbGCnhbyqcRrskHSUZiphpSv5i/SHL8lLWoJcyWc2i4mmU3JyPpmJPTdfq8kDE8I44uD4mBVJQhl6MyajGWkrQyKRMlXDQE0CoshHVcU1DFVn4vbOsz+vyox+hR4I9VqB+bkMK8tVdnYEbLXjTmgs1OhKWHslsslpC3hRn7yM4vqJAapNHEVEkbiwERoQqCSO0GUTx6U17lMupslmXhkkBkftGYapo8hMlaoqhGGILtFC/dkMO2VSKheYjP9OpC0xiVWfmXTsL168haGkODoQez1OXPp9MG2DUMqLHxUJI5293TYvd4ST2b2xzVzxEt96QyCKfe8v/z1X7q7j+xEHp+LgLZlpKuoNPv/JI+yyjJQrIyZ+xHFHrKetTUkFJRYWKxyeiCxRJl1le+uAw9M+PVkeGYU+dzc26B6LMmS1qHB6NmHixiwvC8NpFuvUF1aobNR5FTz8+aMfY/sJkjsTq9GGsM+4G9BThBF4ce0t9k8esbHxe2LtvCkpz0HJ2rimmIP+zhYXKiV2uyP+9qc/A6BYbTDyunQfij10Z/0umbRKPd0mXhaO1NPtZyyqXcLBiOvvCWej7/b48pPPuLsizop88yrPnz/He7JD47KEBdY1rl37Dc4ePqPVEXrxtK9Rracwa0L2m0UDZyti5MPZQMzT7GDA7Xd+H3t8yJzw+TicjBgc7TC/sArAxh0DpR/THwTUisIhMktNwuiE7DDmveuypPJ4ytE4ZuwIg2i9WWepUmSqVljPCgfTyuvsbz2iNr9ETpZwlooWD9wu9pIEMppAI5kjXYzPy1hHozG3bixwYa3B0Z4k1T4b0e10mMpg3OMdWC2VCf2ISOoWRdchDEgAw5B0CXFCFIUkya+crSSJJeCL+M5oOOKtm29Rb6psb4k9GcUO/X6fpTUxL9sHR5h6iVQuxe6uOAtu3VzDTn8CiU4YiXWOFLB0FUN7BR4TCOROTUGVwBthKNALPc9nNhWOkusMcEYhcxKCP4o9nj17xuncNRBI2vQOL5BpTPmHfySM5UfPH9I+7jPO+LzcEQGlZu0iumkwm81YXxVByu997y+oz9kMxiIYMRx4ZLM2lhWzuCC+c9p6xPxqlWu3/in9kTh/67Uavd6QSlms+VnngMZckWotzV/+5d8CMB75fOfbBqrukpc0AJcv3uHhs09ZXRVzF8SfgpLH0EpUJay7peaZ9IcsLedJy5JbRR3z859+zrtvfRuAFy8/48KFixQLDWauOKODwMMwLCyrTqkidLMTnNI7G/DGbQEc4QcT7j18RMZuoBhCppyZS6GYplIT1C0AL18ckHhFSgWRDc1kzuiPzshV5/n0C+FotI5ecOnyHVTdZmlJ7NH97SP2epssXRBZKsXqMx5nuH37Jh9++DEA+cwiuUoO3zHOEXZNU+fkuMMFCdxy88ZdNjc3sdIJEeI5O50W6azNsKOzvCJkYdbzcLoqC3WxZ4adNqnsRayUxnAsgLC6HQffDdAMl8lUnJHFwiK1apajA6HLYt/BMvO8d/crtFvifqoesX/6iIc7U95+U5DF//IXj7n95hUODmV7RjjDTqeIvJgvPhcVNbcv/j5/9Kd3+PRjce1RK6TZnONp7wXv/IHwK6ZOj1asEaYjZpFY49q8yqef3aPbFvv4+soq68spTk+3CFyxZ0rpPCl0Ri8iDjvizPzmu29QKJ9ieiLo9ealCv/Hv/8LVptf42c/ELZ2vXiDTKXB/kGPxw+FA2vqAWkzD7p4363tXZpzFxhPJ1SrYl3K1TJT12dptURXttwMRw4XLm9w0hZy9+jpPZ6/mOBP6ixJ4JbB5ICEiJc7XYp5YWfqyiu6k//4eA1o8Xq8Hq/H6/F6vB6vx+vxerwer8fr8Z9g/FpkrrwgoHUooqrNssnChRWGU4gU8VkQOpiqijuFSKbgvYlLqVRDMUU0X1VSzFyffjekUhee83jSppAtk8vlGPRFJGcySrCMPAtNEXnRNZvxaERqIcXqmkhn9sIt/DDA90MKeeHxztyIOIyx8xLEoGTTbY+pFAtoqvDCE2WKQYlC3iaTldDvY4WslcJOi0j9d77zNc7OxvS7A7ISXMGaTRmNRuiGwVT2+8xilTjlY8gSjsnAp1bJkMlqxBIaPVLGWJkJJAvYaQnskQ0oVl2itox4d3XW5lfw4ykDWefankxJ2SEZmV0LjIRuv4Oi2WCK+2d0BS1WCYKIdCKimmrOQlVCRpJnx4w1tCSgns8zlJFI1dIxlAy5gka2It4v8D1KpRKRJ57p+WafVBpSRkC/L6Jwi41FWkeH9J1TvLFYv8Fsh2zeQJcEfuPpmLSts7Q8h5kWz3TqTAhCnYyaQldEZDeYeAw6bcYzkdkplHM833OoljLMPEkqeOfrRPsvOdp9xjsXJHCCHfOLn74glReZgVmYZtI6wlJjzKKIvtQuKaiBT7k+x8meaIhOwhQrG8scSgCNlG4wHE1ZXrhKLMslPTfBSLIknkKxKkEYBi2y9iKaLsv0+g4PHz7m8voV7lwTKfKz3haTUZeZN6ZQEDKUJAnTyYDF5VcNlSGdXg/FVOlNZKlQAYpzWczQIPBFdmLsTlFQyepi3cPQpVnTOT5oYaREZHC+WcUZh1TyGRJJ4tuo1Dk6PaHbF5nAYtFCTSwKtgWaiJRfvLPM0WEH3TAo58TeOm1NyGbTXFoX++pw/BmTIIdipPAlYefIMyjNzTOTDbxaYtA964E2QUmJeRpPpuhqhpiESl2sTbdzTL5QYCAJZzN5k0j1yJmXOBiKzMdcM8M24LnxOfl4oiaUchW6Z0Jel+cqlIo58mWdTkfs4xiVRLFQ1QRN9m+RxHje7BzgIpJzkyTReVR85k6o1+d48OgLdLmPKpUacZxhJNflwobNeP9UZOvDV1k/D8U0OG2NyZsygjkZMu0PeAUrHSQBcegz6kGvJRubA58kiWjMZ8+pHjRN5e+WegeBRzqdxjAsHAmAgDrFc3RMK2E4kETLQ51BfxfLENHCKBxQbeZpzJeQSTBymTztznNaxzMqC+Iek4FFqmrw/pc/BGBhqYo36jHxQi5K4uRW12My3WW5dhEZQOTwMEfDzmPnxBwMO3toasCj918ytyRKYqYDj9DR+OLzL9jrCNlrzl3l6f0fMDcn7m85ZU727qFrHuZI6MXbt+9ycHCGlTVIZkIPf/PN9/jD3/0zfv6zvwLg+3/zv1JvLJOqVNnfFRUL482Y+coCraEA3SiFFb7c/JKlr27g9iQ5aH2JtFKl5gzY3hd7+827G9gZh0fboof2x4++T7p4GfdFD0d71c+pYqcquM0U3/+l4G9pFhoYpsn9F7JH8fJFalmDei6Fuy/6oj4/9VleO2CpvEBBlhOmlJiXLzZpFoV+Pc2OKdRtikmeoir29nBwxrS/x6PNx3zltqCoqGXnyOXTfPij/yBkc+MW0bSHHYMiAZ6y1YhPHh9glUv0I3H2LGUbbHk+Rixk+FQ1uOoZ3KndYXNPzJ3h1bn/4gnjL3/Ob/7WfyU+m55RzF8gj9j/W4e/oNJoEh76LNdFM3m0NGO4t8/9vSNWrwh+o6W1t0gVHvLgs4+ETPdT/GTrCaplY0Zyj0Ywi0PSqgmBBIExDQLZgwkIvqkoQVWU8z0aBAGLi3kO9vqUsqKX0Fe/5Prti0xkf1y5eIlnu3/O7bXvMGeIDIa5OsG2VIhMdO1VqbBJQnRODxMnEYqSCL4t2c9lGjpRFDLXaLIoqwqsqoEfzvjoc5H5yBUXOD0bUSz2zp997kaRez854q//H9FDu3ZxnvdufpNf3vsB73z3vwTg+OiEaNtBN0NC2Ytea5aw0yrOWMxTLq8QeArr6+s8un8mr7VEEDp0R1s05sSZcu+LJ5SKTZ5uir6vZrNGMG5xfNLlT/7xfw3AD/76Rzx69IS19XlKMtOZyQfcvnGTjCSKbp/+mMuXrqGbs/M5SFkOUaRycnZEbklk4sKkg+9FPHoqskaHh8dcuHCB09Yhhqw8iKKA4chhbfUyWzsiY2Fkp+SydcJY6POHD58QuEVc9YztLWnOJiqakkNNFFqyUuXKtRUeP3jBbkvMZ3MuR8bW8aPkPBO5sLSKYWj0BmPOuiIr7fRn2JbK/p44U6y0hufvM3K1c4Cpk5NPyedqvPv279IfCh3gui7z8/NUa6JMcGv7EcHMJpM2MWSZ9bUbKxyfdKkU56gV5dnuxQTOkO6ZsCVwDdbfrnC6v8l0KjLHnutw7crbPHn6ERdXxHwWyzqP7+3x7hsSOnx0xKA1xTRsyhJOvDsc4NNhdWGVzWevYMfLfPDBJ2w9k/LzLYdarYEz3eHqFZG16Qy+ZOdzqFdEVvPmBZuffrBDqVbirCVsoEvLeb58/Ih6cR67KvbHSTck0pYozAk9sjP4JVbnHeYW13n6UNw/l1ln44rK/fsPMRbE+r0461Kqa5yeiv1w+8Y7/M57v81cPcvDe0Kf/l//57/mT//JPyGTd/j8vgB4uXF1mYODExoSin3maXihQRJFfH5PlAAvzddJFIcXm2NU2fYwmfqga5iWyBaurF6hWaxjL2bJStLiqb/PTz/4MXaqxKUNoRMO9oXe/vvGr4VzpSsG6axE9inqoJmoTpdE9juk0x6drkG54GDqYqGsRCNRB4zH8lAomGipGCsXEPmyTykXMDoLcIcDmvNi4s4mAZHi4HpCKOKowCTyebD9KZWsKMEbd8cYqkWlliVQxMarlXOEbglLwvn1On0MI8XRaYv5qjAGKoU8B+0R5XqNxUXJKWVn2Xp5yMmeWIjxLCGIp3i6gufsApAooOoJqhbQaIjfOQ54kYsmmbRL1QKR6tLvRRjSAbMyFu4szaOHB4RTcf1COsvxUQ9flvJU5opcuFjn4YPHOK/Quwo5vFkeVRXGQRyEKEmEGrl4riyxyMeY45lQVGVNzsuIUIlISXJXXc2QtTIoWowtUfHUyGcWzHAcg7wlykM8XSNSFFRTliVOJ7gTn+Gwd94A6vRnhImPbqyQpMT6nfWOSRkLOFOhjEIvYm+7TfqmhSv2GOFwTFuZkFLymIowDB3Fw535JBKcw1pP0/VzzCYz5i8IOWh3nkgnaJ/HmkiJV8sab3wlz862kKmUqmFYOrsnQ0qy1KSYi5klBaxSlpuLwjDce95h5hiY4l8m/TGlQhlvNiCdFnId+3n0tMOg77E7FevgjE3yEyJpDAAAIABJREFUFUhJFD4tilBMg/aojym5GzYuXWcy+RjX75/3DvQ6A4bDiJpEJzs6PGM2cySAhzCys9kcnj/gZDAhnxGlifl0AcNU6XVFeUqhWKHbm5HS8xQkshOqy7XFm0zH0TlS5V77GWpSwtCEYxOHEa43wyiOUKSCCsxTrr5Z5MEnhzw+FDI0N1/GV8/48oWY33K5QTgeQ2IzSgnFqVopjo4TPOn05tMBmpZCiRSmHelETAy87IRCKU93KJ69Mp8mmDnU5sS7DQcOYaCg2C75slSIoVgz2wwwdCHDYRwzdXyqNYmgqKdB0wgiUVYEkEp0FCPATRIUacwpSULohphyDnwlJtYgjgWIBICilvnlJw8ZjvoUSsKQ2rr3Swy1RiRBRcJHCgoDzCRHviQOtIJVoDcMiEfgS3Z71x2SstJMR2Kv+a5HpVxn7EwZTcXcmUYGVVVwJz66DPAoiiBVtWxdXsfj3Xff5W9++Nc4juSrM8G0fBRMokh81u/3ubB+kcFA6EW72KBaLDEdTclmRIlarzVheektrv9xzP6+ONAuNdcYdKd4kgR+5e0VTg9OiFE4PBbv0u5E1KsW/dEZjWVhbORWahw/fYDbFms8UBTa+1uUmhsk0ni1ijrtwRlzzXWWLwrUJiWc8nzzE45OJbGx1kJVQbfN856SD9//EN3uYqayxIpE1Dx8zg9+9CWVhjAQCnOXMPJ5zKrNrczviHfO5igXLHYPX5XWuNz6yh0C10WRHma+XOLwxQ6envB7fywat59vbdN+2GVlVeif026djZVFnj3dIY6FQTS/dA0nmBDGY168FI5T9o082aLBU2kALp4UwdA5nZzS74jfrTWbdE5e8Piz51iSxCpthlxZWuPBE9mLas0oFJsUKzVUU5R5+ZMIs5Ilv3ydrZ7s28sPOOnB/IYo5XPafcJimiCl0W8Jo3B49IiR3yVsxyiR2CNWweXu9bf4d38pypLmvAOelnSKmRTrTWGAPd4+5Ftv3+C4M8GXpWYHLw6ork04u/c3AOi5MrXrl9i79wxDcid1gVpljdVaiXZHGLDPvnfGlZsFqtKY29naIrNYJeToHDwi0UMMF0IdEgkwkVIUdCONKgMihmIQkRAmCpo0oI1Q540bqxwdfMBgIHTlN77xXR7ce5+9x6Is6drdS5SXfgdlVABFyPVBJ0ZJYhKtTyz1teJPSYxfAWjoaoYoDNE1A1cGtBJdQ1USpkMVyxLO8Pf/7UcsbJzSGghdVq9UuXbtDeaaa4Bw/nvHHhdv3mRFyv3+4XOeb4U40wzrDRGAGZ0MUW2DqbtFIAOXi80VPvrk5yw0hP5ZKaRoHY65eavEpQ1xRrfa+8wvpZm5Op9+KOY8VzDQlRS25GXc3wlpXMizf/gZO9vCLvrHf/gnfPHwZ7R7J6i6kPXNTQ8lXUCXwAbv3f1tTrpP2bkfkpIgFHbGplFPMxgmjFtC32R0i3feusSDZ8LZiYn4+POPWV5exveFvD5/tsPXvv4Ox61d7KzQCaNumXq9xuam7CPMzBg6Q9YWbjIaCH2jKgoLCyWOh/coGaIM8PRgRrVaZTwTvWlqsoAfHxO4KouSB242HrO3uc216xf5UqKoxqpJMDMoW9KZzMb4fp/dlwkTGbBLFzw0JcGyPXQZrBr3O9y+8ZuE0n4cj6f0hx3ylSVqTaG77t1/TBIpvPOV9/BDsX77w5BuZoieiOtkizkG7TYls8nMEfZaNlfjYPc5d659gwVZLvlXP/qIS3ffxrQl35mTIdEj0pbFWPJxDttjUrk0RydtZhKsyhnH3Fy5xfUVybnWHbAzc4j8gFsbItixcSPm/R8+IJB9ricdj9X1Gu3RC7K20EmV+VXqgxNs0yJByNBkHBBFGl4o/i9V6+xsn7LamEcxxBqbxRy9yQBNNVlcqclnGtHIXWWWFuv5y08ecuPNBvc3N3n7vd8H4OqtNgU7x+HuCbWyLGnWE7LZGVZmFYBrl7Ok9CxP90+xZrJM3kswjTRWKqZUl0jHXwzQzCkP7ou+s3KhRpB3UEOd3Xui/P3W3WV+/9t/yPHpMSRi/VJZMfd/3/i1cK6iICIcikMwt5hl8+GASlUlJ52did9jZd0m8UxGsl/FMEy0JEVWkmXGEx8lnFHOpFFffRZlac6nsGyTSDob6UKHTDZHSzjOpLIKmUzMqD9GkUhdtlpFTxmgxDhyAzXK6xglFW8mBKw37NNuazTnqhy3hKB60QAUnYOjFjlZi356coQfRRRL4qAajo8JohgSFT8QGyqdTdDMmLm5Gm0JcaooM2ytQColkfL6bdLpNIoC47G4n27kmLgupqFiGcIAOjsYodk+g4kwkgzLY/dwSKvdJ2uLTEDWztA9myHtMdLZBsOZgx8PSLxXfVkplDBEU/K0ZAShWsoymHjkMkKY87kKZ/tTZrFDZVX8zumVyWcUXGdGhJg7L/ZhqjOLxO/K+RpeMsSwCpzKyEelNk+SRGiTEZ4lNt6FW8tEiU5WEVZT+3SPslXgrNthSRKUVqpLvHy5j5mxJIEkOI7PXmufxkWJ3OMHrFy00QOFYVcYx0E6wTYsli+s4ERiHdyJQ73RYEk6TdX6Es+375MuDRnKXp8oTJOyoNubsPNSkoEqMBoNCDxx7WJ1nbO2x0F7h4WGmHMfl/7Ao5yrUKsKhdQ2D/DVCWl9FQBVnxArCc5sfI5K9+TJE6qVeQ72W7xiwgzDmEo9x9GJhOkfDCiV04RReO4gjEYj8rZJya4yGsherWoeIs5pAkIPMmmYjobsPRdzYGkWau2Uo06LVFFSGmh1CumEQlY2qhOTMhy0tEJVZol7gxGf/eIMf5ClMSc+E43J/y97b/JkWXbf933ufN88DzlnVmZlDV1d1YVu9ACgSUAgAUqWZcqSZYVsRzhCtv4ee+EIh+2FvVCEQiGKkmmSIEESI4Geh5qzsirnzJdvnu+78/XinEp4Ye60wKLOrjLq3XffOb/zm3/fr0kSiPMbepAtpJhMx2iBuI+ZjEm1GFDaFsb66OCERLWZOw67u2JG4PT0gk5/SLFiosjhWC9M0HSLkUQrcwOXUjWDEiYUJel0LPvt6/UmCwkMESUxa+vNq2BHVUwW/gRn4YEq5AVVwfVj/DBEU18FlAGqBqmUhNqVDoCmaVgSrKI3OyYIAjKFCn4onBvVXqDbEEylqjVN4nmaUr1OviTOZTIOMOwC3VaKal3ovCTOc3jUZzQR+mBtdYnpdEYmlyEnAR9UdOrVEq3eBFeSVZpqGsMwkFeBXKHCz3/2MednPe5/Q2Tqx+MJx0enGEaMaYpnKej8s3/+z/nxX//fAMxmMQQJ6UwaS854WWHIzO8SRjaKKhzF/uSQ8tIWOytiJuH05IgbK+tErsNsIfSGn3IIZy43377Pf/xjka1/4527mKUcoxPx+x4+OeT3fvg9hk6XWKJgvtx/RPsixczxWL8hs/quh22kCVQhL/msxmwwYO64JK8QYROL7tkAlQkZOf9zePwV+dwW44XY80KhgRpphE6aVlcEDW+WPuDJ4330rDirvlrgreXbPD35ioGcDWtUi2ipLvPxkE8/FaAz2aKBmTY4PhC2IfAMvvzVl3hqwNwRuno+TbB0i6WlFSxJH+IGCz7/259hpuVwftShVrSp11bRJLz30ekx2WKRQm1OvyOM1kI1+WrRJ5K0JIvBgOx8RqpzzO41Ebx2O2c09DKWbqNLAu2nj/bx3C65rNjflK3zf//RL8kaWZab4p0q28scdcb84YffwrsQ+vvF+TMWdYuVFZGxtY0YN5hweupeVUm7gcfhr48IFiOWKqKKQcoj0i3euCMgjn/01/+eZqnBW9/cukICvV+6w3h2TKVeoP1Y3MlqecHTB5dU1sQZp1IJ60sr1Cs9okgEgYapEvkQxWDor2auAvzAR9eFnowiD1XTEDzgsfwc2LmA47Nz4kR87sc/+TPeuX+LkQx2BoMLpm4W0+/hysrj6tYmtWKNVn+KJgGzYlUjSXRUTTw7CRJJ0RBeVcpeBV6TyZi1nU0ANm+/oFQrUFwV1bt0kmPozinUZHYAiIIUrtLi+o6A+97cvMaTZ5/ye29+yJcPBKrhYDjn29/5AZ2exlyCKx2fHnD//n06wz357zJLq3UmwwX7eyIYL1XSdC/n3L13HVUmH7xwznh8SmxIP6ykkzg28/Mmb9wTvsXB88eYyhorG2laEuxkZbmKqeepVERCazqaoUdL6KmnNFaE3HUPjynbt2kuVdl7KgEYjDHFYpFyRgTQ939nnT/68x9z48Y2VZmsJs5wedGn3qhwfCgSdKlMhLOYsLktvq/d9qiXb1HI5gh9oUtmkzanJy3uv/37nJ2IIEmJI6JkgR6L7xv2hqws36IbnRNK9NzBeEC+UGM0ccgWxd168eICyyiRxOL3KkaeXDbL9rVlIkRi4Vef/gkZM8WDrx+xXBPP37q+zln7BUMZ2CwmHhtL90hZAc/3xG8xjAJ3bi7z1//Px9SbQn8ub+TRFyHMxOeUwpjENxmFYyo3hM71nBLlVEgYzvn4oQhOi6UMydhBzQn70Wq1qDSWcbwpOUvco/XmLvPomOtrJQZz8XuefH2On0QMxqIz4LLXY319hWy+ysmFSDYMZikqtRKGIe7swg1ZTG10LYMze5XoU1EiDS3JkDFE8F9cUyiVW3z8iXj2zlaDlVsNLvqXuFPh1642c8wHU/LZNK0LofP+4MNvc3FwwUT6CIVyyM7uMnsHP+Fc5G1474O7zJ0Fi0AhL33rpWaR7mVA7Eg/STVoXLNx9oZ8+N3vCxl++YyzM4d3P7jB158LXZLP1ag10qhPZRfHbMTYNZh3uixJ4LvpzKVUSREFJr/42ZfirDblbPffsX4rgiuUGNnhQKfTIVNIUa0VODsVpdFiNcN00sVxLDSZmU9IsE2VJBbO1nzqks0YGKqO48rBxvmc9bXrKHoLdyE+t7ldpHUaUihLfH4rYbm+yiCzoNURAA+FgkUYJLhzH9MSDuV0OGRza52LiXBillaalEslYn1GGMlshTfGMmzSqQKnFxJQIlMmjhIWoXgnd2Ewm01YXm1SKMnfomiouken16UuB+2toY2qJaQlv1LvMsH1xxiajhKLvw16Y1RNJwpMBhKxrFxKEXk2vi+E/uS0z+m5QdrUyaSEExg4IWk7hx8KIRyN28R6iDOdEYqfRz4XMXM99ERDtWVlRYGUZWNqMuuvxKxtVBgqCZpEfzLKC3ZWt4iDmMu+EN4SJabzDqWM2HMncIjcOWZYJJ0RBz/ujcmnIVVMM+7I95o6JMYCS/I0LaKA1QYU0xmub4oLfP5yQjFjYds6Qwn4kE4pNGolrFdD6MGI84sem8vbpCSKY6B0ScIzdCtDVVbY0vYS0VQhXxNB0/HxZ1QLDcrrCoOOUIi5sIqVtnh+fMbmdQExPBxM6A6OKWbEcwrZGkQOOxv3iRKhRDzXRS23SIIOIzkY3p+MKebqjC5Fy0Mqv8RkMiFJYjTJUzZxFkynY5ZX1+h2xXulshkqjSJfSRTF5nIDRVmgJjqvnAjTNNDJoNoLLCnDgZcwnbnIn4uie/RHc8rpKnZOVolTOYajC1aXKyxCyd+Ch4eBL0EnNENF8V1KZQNLtvc9+SxC02rUNkTCAsCdxTgDlWpFDucujpj3A4jTGBLgRSdhMumSyMzre3c/YNxzuDgec3kgHIZCySeVqRImIfmCMB5zb4xhBBi2+FyuWML1JhhJFssSf/OkMI8nfWxD7IHvhvi+z2XrNy04uYpGFKcJoldtlzFRHBKFCba8M3NnTpIkV87SK8jnJAFDtgBm7QJmOcXl6CWKBNNINAVFM5jOXoFJjAhHIZenz1hqCKSB09NDCqUcS0srzGRVczrrE+shzXXpiIczCqUMqgYZORSuKzb1eoPhzGcun58QoWrxFSKkacGzva+ZTDzGY+Es39i9TRQqDIYd7FgOfL885ONPvmRlVTgM4/GU89MBiZqiLbPSQRTz4vAZpXwBUyKybTQ3qOSrHDwSlawf/MGHfP3VF1zbXOXONYFEdvzinOHEJ2sH/Mv/4bvic7e2+dN/2+dsLOTu9r1b/OWPfsGbb31A7AjdefHCo1BN88MffMDL58IZMDMTZuMBP/5IWNn1tRRKvKDZLCMTpPQHLvn8ChenL6EjAhdF3WRj632kKmPR7zLvj0hb5aukyP5Zm4U7w5XVu3Jxl8uDhzw7+ojdFQHYcXl+xjwIcLwZI5kYMuYK46mHoQv5sTJZ/NgiicGZCcdmPjvFc0Mu+13K0vZ0uw6FYh0vEgmC8ayN75QZjkdXnFm9eQ9Xn9EfzqilhZM7dccct0fcvCuG5RfnVfrzMX5vgmoKnZvN5vnlF18SRY/Z3vgAgGoti+4uePBcBIW7177N9//eP6bvw2wkbG2GKvW0y+eH+6wUhC1K51PEkcr73xeB26xzTLW8xsLPMJqIysd7lRid72CXrlGS6IufPf0xf/wf/oR7OyKov/f+tzk46TJqXWL5Mvu7axEaM/6n/+tPuHtbtJGulyu8s7rKFx+LipddLDIbtZg7HdRXU+KJTkKIqkIsK1eGocmgRt69RCFRIpIoYS5b4leXm+xurTHqHTObi/Or5pt0LwakTXFnJhMXz33B5vZ9xm2J0JgrUGtqnHd0VCQaoRHghVwF9SoaqqKjKBr+Kw67lE6chJQrRT7+tQBhse2YWmmDlmwhK2bq3Ly9xdPnH/NqvfPeNocnUw4OxP4WcnmqdZP+YM7qmjj38fxXPH+2z/vvf8jLQ9HOl80o9MZ7VIri/6iqQaW8Qrt7wNY1YTMNK6CQXePg5Qnr66Ky0x8/p93dp/dCGIe11QqKZ3Dv1j1mY9lun0yZui3SVplaTVZRcwX+7E//LTduiWSyv4Df/dY3iBhe6anrHyyzmOc4a9XJZIUd3by2gaomTCVMuGWlWFupkrKqHLwQ1aVMTkXBot1uo0paB0spUmzqtC+Fr2Yqa3zjzvv8+uO/YuFK4KZwRrmyQ7s1oNsWjv21nSUOX5S4/84mAA8f7nPR2sP3EnoDIfs3rt9EifKE/hQf4Ze8/fYKC89lsZAjALGJqkXEsX2FEvvOW9/l6fNfoxk1Zp4I0BM/A5F9hdBczDZZWs3w4uCQJBR6or6W5pMHj1hbewe7KH1I5yX61KW5IuzT737/Ll//fELkBrw8EXtXWV2i3W0xGsVMZNIwbeT54FsbHB8KnjtTr9CobVGsZvj8q58BMOx8xvWbN/FCBV3+vlpNZXN7mfZnQp9Wqk2y2SUaxW1qdSH7Xz96yFLlBl4sqjjdQchsvOAb37xHrS6C12eP91ipL+G6Dl988jkA737wFu5MZ31d6LvZ9JQDZ0ySLEhXxDmk1TJJvstnX/T5zocC7v7nnz7izfouRUUE4r7i8uMffUqpvMFQIt8NZx3OLloUmyaWDJhLWZXT4Jh6UY49+AteHF0yuGxxcS72zplHJAl0OmMSGf4Uy6LN/41bAi14OrR4ebyHkaxRLArd4o8u8BODi/YBekaczWwmvufvWq8BLV6v1+v1er1er9fr9Xq9Xq/X6/V6vf4TrN+KypWZMrEqIhvkuQnposfMcXjjLQm4EHhcHNeprFsMuiKSnE4cLL0Aisj0FotlkYnSTNKayPbWVlSceYvZ1GXnlhyybw2ZOT6ZtIimLVPj5HmLdDVNVUK/wwWqm8WZJ6RlxltV5pwcdcmWJYy2Ap6v8PzxkOs3xbtP+gVCdNLpNO5CvOdkHqOq0O2JrHG5kiNbsDk/HZMqi8yHlbLY3tlCURKyOZERUmK4vDwkjF+VYjVUNaBYWKLryZmyvE6vO2TkdKnVRJZoFo4YD0GTIBBp20bBxjZ8Li9FdqRhJxRKZV5IIkfNVkhnFRr5VY6mItOzfnsdrx/iOg6hKrN3eRM7gXFLVDTqy01Cd4zXDVBk9lAtLmi3u/R6PdIy6s9mykzjIrrk1PFdhzlT2v0Jm5JkL2VZqFaaiROgaUIsnekM3dTJGaJacW1Np1YJqBUbnF9IqNmFxxtvbjJf9Kk0Rbb39KyDhsZCVgHeur/Jp589wfEHFCWZ8+XonHdu3uDBkykbVfF9nfYhWdIE8lrUqzZh3KXnzklL/p/teomDwzYbtRpjyfG0dbOAN1vn2Rciy2gZQ2bdS5TxIYkcetX0LLV6TMoOqauBPNM0h90+thwWMWYzsrkc5+0z1pbFvoShh6YrRJFDpS5kMZXO0++fUJZzPbOpgx8MKefr2LLVMwoDFsoCO6XhzkTlQbds9DgRbZpASk2Ry+bQ81lyKZFn0YlJ6SVmc584EVm38fCYYDJkY03At5r5EUq2SEKKx18LGX7jXp3epMciCAgScc6qbaKnYnoTKWcoOGGCZQQEkSTxNepsXtti1BOZwacPj7m9ex2vFmHKeTUfk3RKozeYEoaiolcuL+P5c5Dtb8N+j3KlyFK5wKXMVuqKqPCWiyuUS7J6NumgGnNu3JRgIIpFf9Kj1XJJm+IcdAOCRUwmlSdBnFUQuliWiS5bDe2USRzHOIvZ1TxXykrjBC20RCdRxF3TEoPDR31yBaE3Yi9h0LFY28gQSBLhxE9zsueQaM+uznjn+hb5rRUM2YvfOzpm2h1jGia5nKjGOIFCz1nQ784YjUTWNhVoWJZFNivuf69zwbvvfYebN67z6ScCfOAnP/kFhqFg2Ab1pshgGrrNz372KTUJtrJ1bY3mUh3TUuj35azfwKdcXsfUsnQ7Int3VAlobGR49wMxWF2uVijWtth7OeH0QABDZNUs9z78LsPOE5CtHs8+eoHTGnBtVVTvVm7f4GD/gO37W3z1a/G5tTeu8/zFlP/tX/8Ff/+HAno58SJ+/tkF19aEnjQKId3ugOzMR5sIXXn8bEJtNcf6eonOWLxno7jBbLzgR78UZJ3ffusNcukC09GYxJUto45NrbpKpyOEqrm6gVmI+PSvn9BcEwAzE2/K+fFTdM2kINE5AqYs3DFDV2Rxq3EDdxRQaiyhauLcNX2FRXCCG45pdeQ8RSZEUWPstJBTjRKhEjP1FowPX82UFOhPJ6hmir1zMZRtpaGQ3UAW2BhPpxDHLBKHXz0QcwONWoVJuCCMPEZ7vwbgVnKfpbXrFNaEDpyrLqWta8zPplfgKofdFkPPoe5rXMo7ee3WFg9+/TVDybPnDg84Pfw3NHfeZllSYkwvpniLI3LZc9odkXH+2ac/Y2trm2pB6BHXVnnn3SKffj1kTXYeTFUo5Xf4R/8o5PSF2Kt8eYtE01lMxb74eoivHDAeH2JInrIktlG0EEVLUJJXJMICoCqQEO6mqZHEIaquMxsLnffO79+lP+nQ7be59w1RiZt6F5wPB/hST+ZyRbSwybOjC3KWkLP+fISvaEQ46DIlncQJKsoVmAyxaDs2DAPfF7IYBAGaprG/v8c3PxAEvb3umI9+vcftd0SlLl/0OD17REO2BAN88dlzIjxu3hR66xc//ZL1zRq5gsrRoah41apbqNqE0ShAUcR9v2i94N6bf5+9fVHBePP2PR58/RXN5hKhJ3RL6/KQ8fgIOztn76XgdNvY2MJxNN66LSq02eqULz7d4/b1t6mtyJbt0zbNRoH9F6esr4l3vege8J3vfIfTtqhqNJurtDpPGTszmmVRzerMF4x7L7m+s82oJzsyzns4gU26JgzWzJry+9/7ISSFK/Lax3sfkVAgk7FwfdHmGKs6k4GOkkgi9VjnwVdfstSs8/kXoo3NSCW4ns/xyWeoiN88GtZ5895tHj4Ud2E89tB02Niu8vipqDYNxyMG3TMKJZNsVoKNWQUePv5bsnnxnvUlm+Gwx6D/OcWS8Ck73RmZVJ3JKEbXJTR6WSNyK8TxSP6fS/Z/3eXspM8//if/pXiH6QWhd0oSXdDrC9nvti741vvrXJyJu/dXfwHvvnObZy/2acrZsIWv8PL0JYa6xOZ1UaE8fPGYk9MaY9kevrQdcdj6khX1JpWquGtv3i3Raj/n2V6XZlk8a3W1ztn54RV9yvHJc0rFLJ9/+bfs7Ih7a5oG/dkZ05nwO9WkzsathB/9+C/4Bz8UtBW3bjWxUy6//JsTrl0T3Q/D+dd8/mmHO/dERej04jE7GysUS8vMfbEvR8e/Zvn2FttvrXKwdwRAqlLF3IppfSz8N0+1iDMR733/h/zxv/ljIS9jFyOImI0mDOUssTdKEyoBz14KWdm+dosoULix1aAuRxoGgwDHnTEdaaALfTacnBK82IBEtr9nAuIoQFcNVteEn/DJR19Qfus273/nHT7/VLSRj6bC//u71m9FcJUkKmoolFjKmOIHPXQMuq1XyIAaa+sara5Lvy2MZb5go6gDiCR/jFLg7pu79PozpgNJMDlWWF0rMtRCMtKxd0Z9kjihWhbKSE1PsRIVzfZ5diAOaWW1SHOpQH8yIvKFkBcLKmEcoCoi4Ft4CZ12n3ff3+LlC2H0tjaucdFZMFmM8OTskjt2yWXzWNIoREmAYStsXa8xnIt3Wl6rkGDTG7ykLhH2dGuO6/kocoA+kw/otgIif0hvIEq4q/YqcaRTqdmoqlA2gRJR3jAY9oQBH/c83NmURqOGLwf8D3pz4t4LEtnKl7GqOIMRueyUD94VTr2RgkK5SHk3x2lbGHrPmeEFsL4l9mDmjcjbSwx7R3z4vrhQFwMPlylrW8uoilAYl6dnDJkxn0kCaKuBgoVpGESxbCFbzFFsA9cPrnhLZvOAVEojkgFKNAsZajb9bg8jJYxXZaPA+UCAPZTKkvF+MCJbNAgkUljvLKFWWqVa1Tk/F0FZtpSl3/HJ5BWQ/E1ZcxNLnzIbi2fXK2v4DDg8v2R3Uzh3zlhjZbWONsnx4Fj03h48b1HMLrG2Kfqmx+MRrhITeD6jiZCzpaVlAmfBUr6BL/vjb6+nyWYUTiVyXbVeICIhOytcMdDHUUQuY5IrZK7Ql9qAjjMEAAAgAElEQVTtDn7ikiCJlBc+mUyKWrl5hb6oJyaYEePJAlMOYDvODN3USMvA23cSsnqBiTukJ8E/1CCglKsTxA7tvtirzaVN/sW//AP2Horf++RFRMEK6XZ0VqtydslNo3kGmZSLlRIyOx4MWTg2qytCpuazDkGcI2NUyOaFQzKcjIl7MZokhT69PCZpG6RSKeaSQypJUvizMbqlE8s2y+GoT6PShEDIT2W5hOsO8BZjLPksyxC/0zCMq3Yi07SYzDxkly5ePMH1EyytchWooQRYtkroj7FMIVNx6FLIZ4kD4aTpQYSmaeiaeTVzMZx38cMIRVVwpeypeKRthaxRkrI4wTRMuu0hi5mcI9BybG6Y5HIZGjLBs/+sTet0yIUkgM3mbdww4tr2OqotZ/tsC52E9c0a6Z7QJYZuMp8vCDxJ4J0kODOPTLpERToy6VwTP/RJEsjnc3JfTDw3IJSD1Pt7Z/T6bQwb6nWhk9J2iWtbK2SyOqtbwlhl7SYfP3jCtU1hrH/14CH18hpmNkO1LuTu/PSMX33+11y/scvhqWjvm152WNmtk0iDpgcx/+K//2f89G9+TlbOEq1uZPn2uzf487/4CdO2SFw0SzX+0Q+/wf5zEbA7C4VKdpNpb8p0Kpyk1bVtCrUsz/b2iSQA0e+8vYPjj7h7RzjUkR6SryxjaxlGUr9lrQUnox6BnMf79JOfcnB+jmpXaR+L1t1SsU7a1llMslfy2Z+ekssWMWTLsaGrLNSQi8u9KztgG03K5Q16w0N8KRvlSgPNiDmTqKNv3NqlVM7w0cc/ZWVF7GekxCiqSbO5SSKTXO32IZniBeOhCO4uz6aYqRlzR2NjQ3zu6PkLNm/cJJ210SUQzqOnn3F0csD166IVbDDsM/rVY5Z33sAqCPvbqK9y3rtgFkzpdoTz8aM//Q+kChnWNv5rKYsbrO6YjKcXPGwJJ8mfdFBDH+vGu1eO9y//1wO++Z0/JM5LXigMem2NzcJtFhMRgLXjHl+9fMx6eZmRBPbo9Xr0/RF6SXK+pTNc2yiRzR4SytZkVdExTRPHczAUIUMkCYoS/wb0QoE4CrE0Hc8TZ7p1rUitGPPBNzcI5NzX2cEFiTrHkI08o+EMEgXLVMhlxd8y6Rxvv/U2n33yR2QrssV4GqJo+m/QOROFOI7RNO2qfVhREgxDogfKNvVCU6O5tU5Fkp8eH5yxeeMeF93/T1vg/b/HVw9/ydmZuC/VWonFzGA8PSGdFrNv6YzKdL7g8Owpu9eX5Bl/wXg85+Z1EdhMRi3Sqk06XaHTPQJgZ3eF8TTNbHFC76VwYMfDDL/3e/+UxVjYnf29Q7ZvVPnswZ/w1q2/B0Aqk+XoqMPKynV6coQisXUq5SbdoWgdbDZ2mYw/xrLSxJp4lu5quPOQR/sHLBA6z86rjIYqG3khr3sfP2I/PuXOm29ycine8/Ybb/LwyRNWlzfIFmTi5OWC3d01LDkrenl5wXA8I51dYX1TBAOt9gmjXky9uo0biu8LQpWT86MrEvpMxiFWIp7uvcSRLaOjWZebb15jPOnQ7wgb7TkOb9//3hXa7Hw+J5dZIQj2GPSEEcnYGfKlZby4x2gqOdawOTj8Ke++L1rdBgeXLK+s8Dvf/Q77T0Xbc66gksul2D94TCLRen//e/8AbX7CpeQWzWgJT8/anE/OWc2L9trJ+YEAk1ne4OaumNt799oWauQRI9s1S2XC5Jjjs1+x0hSfcwY6tdwuWnDGYiRn64oO83HM6pKQxc2Vm4xHLe69cZPZQujT/nBGuZbm7FK2dG4U6U9G5Erw+Ik4q2a9wPHxmO/87ns8eynaEOejDHff3sRdiLtXym/Qbk0wkghLFXa1uFmmfXDOtGNyKoOV/+q793l+csaLY5FEqG9bjIc6z54eU5TckGfnl9Ryy/jRPrs3RfBo2VMuHi54575IhPlJh9bzGU3rFqYMHov5ArNJRLd/RGNZ+KyzmUMcKgS+sI922ubG1hsUck1mI3HuhZzJ00ct7JTCYCj80c0dMRP+d63fiuAq8kOiiQiaKuUmczdLLh8RBBK8Ip1m/8kFupri7q5wYIeTAVEUkU0Jx01NTJRQJWUraDIBNO57jMZTMvkc4UIcyvp6niRq0FgWTpJdzzA25ww6Q25uS8LXokEYTNDVGKMgNnzQ1hk6x9SWxcM1Q6XWyGFYfWxNOB+TUZt8tcp4FNCsie9rnQbEMYRSuQeBTq2e57JziKrLqlhSZDgYU62VOZMTe763AH3KfC6FsGyxcDSCoMX6pjCqndYcRQ+IIpVEzn0dX1zQWFthIY163kqRUlUmkwmKzMzn8lUyaY1IDuXnMzmCuIyRdSk15fzB3pQP31OYDUzeeksEFu58QHfio0ohHE7mbO7colRfp5gR+/nls09oXNPxwyGhHOKfjiZUVhvIeUg6vQWlQhosDcV6RRSrMB0M0K0iui0MU7W6zHh8iY4ED1BsJvOQRTigIjNLC0fn4OU+7717l+f7wgF6+86HPHvwgHe+KQju+pc9BsMuw3ZCRqLbHB8dUry+jOdOiAoScrxRw5sZbG+IZ19b3+DoeI/VssIHb/8uAP/6//jfWdvcoFKqsbolABCe7weMB3PiWBiq4aiPosSkjCXsspzxsnv0Oylm8QVd6ZCMRy4rG+tXA7WnJ4eouoEfJmTlnNlkPsUyNCYXI2LJXKvrBrlckzCUqJGGiaYFdC+72LYkJF4IosFiusrluXBkGs0y+UKKg5dCaTXKK1haihiPdEUYx9CxSEKPYA7/438nIJW3tvOgf0l4Lj63cbtGqZylsdSBQBj107M+U8fBUAtU6uLehos8zjhgIgfF7ZTGsDdmMh3SUIUhzOciuoMBpswMpqspXp5dkDPzKLGE908iKvU85xeXjCWz+/JKg2CxwHeE3K/tbtMfeAR+QrUkzngmwW/SGY12VyjuyXiBgkloCqcpVOcsFiFRyBUaY+JboFqomvGb4fjYJ5vK4cgAV0liDFUjNAx8yeyuGnkstUB3vI8ukzC5XIq8bdO/EAa8216QyTjk8mlWl5ry/GB5qYamRiTSsU+lHfKNVSqyklTMpslmc0RJhCbnzArFGuPZhIYRsbkpnqXpJpZlMZ2KfXJmDu12mz/983/DjZs7cj8qeEGItwDXkTDSUYhtp8hmJNLidEC9UcC0bRZyjxczn4XjMR7raNJYBc6ExVzj449E8BMToqgT7EyKKBI6XcOmmq7zcP8zCiWhJ3aXVlkYeUYjcS7byzbn7SPu3N5m3BXBhmov8fLwhHffu0cwFXL9+UdfoGYz3H9LZEPPzs4JAzifTzGrIst4/923OGmdYBgWWTkfevisz9d7n3Hv25vi/CyDjx/9irJ5m49+LPTGP/lvb3F8vE+UiD0paCYXz3z+1b/6V6gL4Uz+9M9+hJ8xUeIAuyR05XAckJQTfEWc8XTYo1zdIBVGuClx10ejS0ZTjYU74v7d35UylOfw6GtyWeEcdHovCJMs5UqR0Vgm9XLrJFGL8fQCVd7/cmET3wnxQ2H4q40GS8u3OD3okJVgGRs7Pmu1Jpe9UxZyXiVfMXEGB5ydyMSN1sAfdzg571EtShCafJWJG6GoNm9s3wDgg3fe4umLl3z8qYBGL1ayrDTWmQ5imjIIdDMT3GRB0SyRXwib/IffeotGeo4iE6eD4YR5t83GzRukVBk8TuaYEZh2zFgReuL56R7fun2bWlXI+YOXF9hGFUUtkMhOFVULCYMENdZAe0VDAFES/uYe4xMnPn4QYUmghjA+5atnz0lr28w8EaArKYf5LGQ+lQTakUWx0iDunZOSlAs9Q+GtO1sogS5IzQHT8AgSiGQwp6iCtJg4uYJnV1WbIIio1hqYaXFeg5cvKYQb5PPiDs1ml+y/HBNpovoDcHZ+yI1bqxwdHYnv74y4trWBbmu4C/Hs0WBMKlskldLQVXF+W1tbVKtV8jmhp05HKi9efomWh3RaBBbLjdscHPwN+wfHZCUJ+8pamXb7gljOq5l2isizuHPjPQqvKuXhjPFsjpo6pdMVQV++nGcRtgjljOfp0ZiQiFplGV/CpR+dnpArVNFUDUuiH5N4rG2l+fozAchQa+gUdZ0oWjAcCtn//POXLK1VOTx+giFByppLVS7Oj1lZFrrMC4aMpi28Q4fpvCPPIUVrcIkfaaiaJs/KZ2OjgNIWsn984JLK6TizhM0VEYjWl0s8ePSIt+7eYtKTCZeMxaDXp9YUezBZnBB7abZW3uVYEqnv7jY52O+RJAWKeUkM77kYhnUF195YylIqlfjpT/6WVVmtt8w6kRqxdXOd3kCi/AULBi2XVEXostvv5/j8y59SLm1eUeAkypx0dhnSKh89+iMhQ70NNrc3ybiBPAeXtbV7WOUMSFn0GKLEZcxMCV3OYTcaGT778icsFmI//+E/fJ+//sshfrbH0bGoAKlWDdQ8mbxMerttFD+isdTk8ddivsoPbmNmsjx89pjd2yLo+PhXz/D67hWB782bK1ycXuB7l+iyoljU7tKe9tBUi29/X8ywf/3oEblUgVt3ReA4np5TN+vsffbndAdCpkqla+RXyyjVFS5Ohbzkchbl1Cp56T8OJinWmmV21lYYy6p7ytCpVtMMF894+JX42+1btxhPekxlsvN24z8jVzzlT//jR2zJ6p2iaASeyni+R16CJGXyr7Kx///r9czV6/V6vV6v1+v1er1er9fr9Xq9Xq/Xf4L1W1G5CgMPdyJbuLwhmh4RGQLiE2AetdnZuIdhK/SnolVJMyPSlkVKE//H1A2GIwfX95nI7HYhn+HD732D3pnGiwOBkHT7bg3XKaBoolVBiWzyOZuNxiatqchExNaEjNrAfdKn3RXZyI0Vm2Jwl/ZMtEZl8xUG3QHV8jLFipynyt7loH/JaLhAi2VLkmrhzCdkbDkTNR+iaw0MqgxHRwDsPfFQNJeMnebOrXsA/OqXX5Mt2lTrIuuXJAp2KmBptXbVclBvpOn0jnAcyMm5ndXmEoZuUVwS2ZG8XSR0oDs6QTFFBjqdLtO9bHEp55a++c3r3H97i1b3hK6sTmTVPPP5HM3K4ckKl6mX0JIxQSwy0td3t4lClaVygY++EGhFy6sFRsMRpmnjSTTCzTvvcXF2iSmhvSPfIYirxJpBMBPn7gSg5yJSVsBs+gqCMyFHgalEAVxdLaPqGrPujMgTGcWLVp9atsS467K+LNpdOq0L7ty5S+dSyMHZ8TGJDhEmfvQKtdHh+YsnZFIZXkhelmtrPlkzz4WsHqpAkmjc2dlh76GYV8mXyuhWzOngGXnJ7ZXJzbC1JToXImvUKBQIUVCNFKsVkTl/fPSU7EoDz+1SlRwkijbl+HhKUaKHlYsV/DAkni+uMnWZTIbhcES+UCJRJSKjBsEiYjoVGRvX8SmVimRsDVXOq6HE5LMZyrkaCzmPk02liaKIWlXIhmkaxP4INJO8KSpQvhNQWgq5896HPD0Vsy9/9ckDbq2n2XskfsvW9RkXJz7FUp7JTJzN2nqd+WTK4dMOoStkfftGjihYEHjinVQ1xfrmEpoR4jji/vXbIZph4kpI11wui2WnSOsaSiD5ZKIMOj6FTJm0hJVtliq4zhhdwr9FEWTSVc4vL8hmXyEmivMZDT36A1ldIiabNfDkTEQ6p6PpRULfBEXIyyKcoxsWdlrBnclyaxyhKgnGq0yopYssuSeqWgCRF5BOBxhhnrSsPB49PyVrZrFS4g7du3edZlW0CcWIykehaKH5FaqNFMsrooqxeu2EbLHEqC853nyXbKZImMTMZcuf67rMxhPcecygJ7Jumq7geQviWHL/WBalUol8Pn/VGlUul1kqltFU86rC1R90URSF6URUWjRNA1XBCwIyBTkTqGqoKEymDpok+rxwuiR+TFZmQlE8NNtksZiBbLsyNZ3WsM3SSo6nh+L3vHzmkEoFBJLT6rAyRYkXnHcuKGaEfDrqHuNRn3xaVNoA8qs11IxKyhKZ3Vu3mxjGjA++9U3GE9mimmhsrFznH/zgPi+fiP54zw+4kcnScsSMiTIzSGKV0XyIVhI64bjVx7QyHB6JisZhb4SayrB9e4edLZHd/vknP8P0S/TGZ0S6qHCvV3eJ5i6xpPKwE4vzJ+eU6iVGc7Gf+fwyoT+nlM9xcS6qL4Y+YPf6zavKtbuYcnTwjJy9i6WJ/xO4Y8qFCufn51Qaspo9GVHIXqOSe9UxMeXlY43Va2mubYrOirNLm+FogJWOODz7TLxn8w6WleLFnqgQXX+rzixyCJ0ps6GQz1Elj2Fn8GYJecnt4ylluqdzfNkS6ycep+fPqFZXSeRc4/pGjZ7vMmgNee9NMZs5freLZ9VIJGy+n5qytrGOntP5ck/MBKUii6JWQ4nGfHPn9wH49Kv/yCcPO9y7I2DIx4t9Ot0x47GLbUmo0yQhiiJM076yh0kUg5qQSNjIIJQV18WCkqzMLfxzuu0YxZ9x/963ANh/8R9QLZfNZVFNe/HiCD2JyZfX6PVFRTa0pnz1eY9ETfDlc4kTElVDf6VzY40k8VFUFU2T86K+j6brPH/+gu6FOJs7u+/T7w5otUTV5htvbfNg/xmO5K8E2D/4lFT2Pik585UrnKAa5zz+usXW9qY4FzdmZQ3qlQpqIpEq1QaGDv1L8U6rq03uvfkug9mI0BV/Oz7aR8Pk937nv+Gdd0QLVa2W4d/9+3/HoSTCXlmLaF8eUsldw2jI8xu2WVtd5c073+KkKs6v1e6w/6JNsykq55aiMRjnyeQWHB4fib/ZS9h2ES+cUjBF1fZi8CmRF5HLiGcX7RJKlOPp02Nh4ADTDri87FCplJiOJVJuPmYxUxlI5Nx8voDrD8ln8tQb4h3Ozg+xywmWpbMqu1AeP33MIrR4+lBUqddWVjg67JLPrzDoiWfV61WK2QbnJwMU2XJ/++YWqB6HJ8InSJs1FH3MeDxhQ5Kdnxweoaow7yuUC6JqM2Of1fUCnZa4axurO9hp8GYmayvCT/HCGbev3WY8fkk1L2zB04eP0KhRXBatnz/7+C9Q9Cxpx0SR9Ay2nWK2GOB5GpWSaPk7fbHP4IsDLvfE74v8Ah+8989J1zLYaXGPC6UGz4+/JFEnVFOi8r9/1GPn+nsM+6KK89lnz9jYqfDwwT6pvPBTDDtPt99nPJEdBfoqmjajUtvl9ptCplzHITEi3Mjh6WOh8+yUxvLyNQYSiXTQ7WHaU8rFbbLSrD776BfEzV3WduocfCb0lOfH1O40+OLBvpTpMfe3b3Hv9pv88leC3NlQfLzhjELexNEltL2V4dvvvs9oKP7teWlSpoETTMgXReXx/Hify/4UM5fm1htCXlRUtlbvkk6LDp9O95ynzx9z9/4O8/mrkY0UinVJNsxiW+Ief/xTcVf+rvVbEVwZZgrVFJcsShSU2Gc8WVCURt2bpjjuPkYrZBhJEIF0ukjVzjKU/Fjz+TmnrQ4rq6vkJImYu5iQMa8xNNr02kLhtrtdnOmcW7dEy8PBwQEZO+F0NCGQDoJqW2hhnd0VlTd2xEUYTh3UlMpaRuDlr+80+cmfveTzT75ieUU4eAeDp7QdD3cWoobCWdRJsDQD3xdtV6aZYtif4MynWJY43MCJcJ2Q7IrG0aGA176+W6PX8a6ciiSC+lKawAdFla10hkMmXSGMFhRki8FoZHB5ckImI5StlwkYDAZMJy7bN4QTX9CnhIWIel30A5tpnVb3iPl4gGUJp8mwFRaOwWIW4SPhTDea5EvQOhGO26gfU8iPePD8BXFRiFLrZMDaUgVTtehIOPiz0z63N9N4kttg7b13mHsBn37y9RV3SjD1MK2IYTwjK1ux2qchS8vbTBXh5PvhGH9qES4MxudC+RmGQxxl6XQGGN4rosEps2DO+oYoK1uTPMHilEymjOfK9tDGLfb2L6lVJwSIfTk+OGR9bYtaVQQaC3dCoZjm+cMnDGU/8NbuBq4XY0xGuJeS1TxVw0xlMWIhP+3LZxTrKnM35OhEBN7Ly2WGg5e4vSxJSrb3VRLSiokqFU0unef04pQw9JEcwriuh6olIiiXfdluIAhgDTlZnS1X0NAw9YRQ9v+rKlyc9ancLmLnxHk9f9nCtE3SBSE/URhhGzbEM6JYGKHAGvHyNOKr/b9CK4jft7yq8PBoiquLO7R/dslyeY3ZxCPwxMvPJxqmVaFS1cERsucPoJzNYxTFnqdTOeIYFl6fhpwt7EQdvDlXgZThx+hKgK3bxJYwOM3VBq2jNgYK+YLYA8/xsI08KVt81+XFmBCPaukanUuhJDNZoT8Ojk4oSwLWSjnNZNolJwPa3qiD4ucw9QoRImhx5j6KlgIMXMlrZ1o6URRdDctrKKgoaJpGKS/hvj2fs7MBYeQwaQuDXUjnUPFYqYn2AkPPonoqqpmQr4k7m8/WWMws8uUKgWxJa65cY+/JIdKfxXFd9l4+x0yZV8zyWmRgmRp2Cgzz1aB/RC5TuZoDWXg+YQC6nsJzhVPY787odsdsbDWZSy4qy7IIvBAZ0+PMfbzYx7QNPMm1JWggFKxUmt5A6ISlQg6lYLIIxLPjwMedBqTMNIkE+sBMYfo+550BunQCU3iMpiM0mXRyZhP0XJaQLCNX/Og4peE4WRq1KsWMbOOcB8y8HueSWHx1qUyplqF12qFkijP97Cc/4+47N0msLHdviqBo/+SCy7hK70gY/kLW4OxozHx6TjAR+7m920ENPBrrsm1ne43JIGQRTfmjP/obAM4eOWzfXObWzipnQyELB/svWK3X8VxxBqFiYJdSPPjqAGcmnr15fcp8MefazhLVJcm99fyC5foqw9kRALaR4Y3bb7LefIfn+8KJsO0M86BFo7oieBSBfC7H3HuKN6hLOdextnvo6hKH58IhcUYx6+vLjBdDlorC4Vuv3eTxxVd0+zIQf/oczQq47AzJp8X9UAs2y5Uai+CC9uQr+awxmlajKOXOypbZWt9AH0dgyVYhp82otSBXVnm2L9oHzwbH3NLTHJ+J1iF9rcLKygc87j3CdKVo5F38zBDdzGMEYs4lG0eoapGxnIXZ2r1LM6MRRj6xpCGJQwNDjwjDkFC25emKhW3DTML7R3GComgsHJ9qXQTjceyQJCu44RGPn38KQL22zGX7mLMz4QibVsKvP/5LVtfvkpbw+r7Tpn5NQ7dVkMFUGMzRlRyxTK4YmkYUJOi6djUfq+smum5iGCZ3v3EfgM8/+YJ8wcRZCB1xcHZGhEKpsgMIuPbltTqj4YxYQk+vrKwwmbVZXa/g+sJZ/e7v/IBHT36M4qe4vitlIR8wHYdsbIn3fvbliHr5Pb55I3elE1bWrlHMr6KoPu5cyOJkfIaSqPTlbOOdW98iv2vyt7/8Eiyh3zQtwXc0Npq1qznslFFmZXOHi2PRUvnG29t8/vUUghQ7W78DQKIOOTvuUSlXIRG/ealeoNMe8of/+T8FYH//F+zvH1CoV4mTNflbdDKZAu3LMwoy4VIvrII/vUr45nI5Wm2DhRuipYWdazRyBNGE0WDG/ovu1bMuWpfc3hWgIqYZMpnM2d1dYu+JCJwePXxGqVxgY2MNXdpykogw9Oldimfrhosb9onDc8Zy9nXQFnN2mzfLnF4IQBlFz1Gvx8RzIZuzrsNCU/nuh+9i2kI2+v0Jz/Yes7GyTb0qzsH1HhFFY8JAKOKKtcZoOuFi1EaT86P5QoIXjlG9kL4kFi6vNFlv3CJ5TwJodF6QSnVxFxpTOY87dw9xJmPcxZTlexITwI8ZLZ6SlvbwcvAV7UHM3W98g9PLffmsLkqS4Xvf+y8ACOIhH/3tL2hfdqlWhP5+cvmYRE1hmjHzkTjjaqXIaHKJocoZRQ92tu7SbrvostV06917DJwBF8d7ZGryHnkJ7dZLdnaEDM9aGmlDo/0iYLkmQGBIOVxePGZb+QbX1yUAmmLQ7b3Aj8S/PcVHj1McHJ0SSzCXP/jBD/jLn/0FqWKVwJc2ZZFhOr8EiRGwsqFy95u/y+MH54wmrwK3LER5TE1lIQOutLRdf9f6rQiuNFWlcy45QwyDWPWwbIWFL/mUNIPy2hamruPJDRkOzkmlUvSHQpjCcEa5WqI/nqIiDO94ZPA//y//J6WmhVUSTsvf/Nwjk0pxKTPZvhuiKx63b10nWQiBW1FWOG+1+M53b3F6JqpZtbTC0mqDz78SFYzzl1M0q4VllEkCOd+Ui0iRpU9AK5FIgLZCep5C0SV5beJgDC3sVIFQTtUbtoNmmXTGDllJHhsu0mT1LJYkIzzpH7OxsszM8Zgmr6ovHqVCkblj0VwTGe/Tiy9Y3lrGSgtnx+8uSIIhlfIyeZnlX9kw0bvXGcbCmaxmbHrDhIUbEDnCeDXWLQpVm6XVVY6OJb9BP8T1pwwl8lK1YeFqc87bfRaheO98ZoXT9hmxFvAqwbdaXaY3H1CRAWBxdcj5xz2+/947XBrCoKnpEc38Dk/OLoki4Yy/vWuT+CMUSwRJR4dHTMc6luHTbIp9KVfT9C5GrG80ePjsSMiTrRIdm+CJ9y6XixTq7zMa7VEuic+NZnBze4V2r4WzEAFQTilydjJle0dcmpcHT1lbXwYzYHVVBFze3OHy8oiNjQ2e74nnh5GOPjbIl8X+hoZKqz+l3syTkwHRYj6hkKmSs1JX1YKgb6NHCbEqEcXsCllzGdVYXJHHelEP3aiQtlM4M+HQapZF2ipBLBSwTpZu5wTdDMhLUsZyxkQtwGI8JSsz0G+/VaDTvyBfFnM1jjfHTBVxu8c4i5fyTAts31lm7kNKVonWGivokU8qJX5fMZ9GS1QSRcGRDvv+wTOWUxFxnGPuCOcmm95AMQIWoTAA6VKKtJ2j0w5QNGEcN1Y3cB2PnJyhm0xGZNIFZpMQR3KGnB89ZzidkTLyaJ6QPVWLuehNaNaF8QKHvFkgcvtsb4n+cdcT+3z/jZvMXCjafqYAACAASURBVKHwFwsNxciRzok9SI+3GasGtpEQzmWlTA1RkoDQN3HGPfmbM/i+i5mSittLMJOY0I/wHWH0FraDqnsUMyVUCSLSafVI57IcHInv9/0Wqq6RSqXYQNzZp89eUiqVGDkzZnOxV7quo+vqb1DH/Ig4jqmXG2xuiZmWai1HrVqkUiz9pnoWLwjDEM8VOmk6cbm47BHHXKGDLhyP+cLn8y+eXVXYLDsgjuMrB6yQs0ljEoYhcxnsOP4CBZVkMkWX+swJEkJ3Ti4nnqPbKdpOh8gLSUt5Wcz6aJqOGqtkZJCkaCk2c3UaTZEF9EMPTVNZWskzlH31CToEHhedcyYSpKhULrK5scJkJgLo/nCKruVoVptMBmKP7/+/7L1JjGVZet/3u/O9b57ivYgXc0TOWVmZNfbMJrvFZpOUZAFeSDJAG17YgCV4YQG2YC9sw4AXtgwakARYECDLtlaUJZuSIZFtUmx2N7t6qMrKrJwzIzNjjngR8ebhzoMX5+RrGBC9EmAu8qyqIt+779xzvvOdb/h//+/bXyKITMahSSLJW/RcykoyxV4T7FrReIk7H1ZoLWl0ToVhWKoscLR3QlU2r883i3izI45/+pLzPRkxtcao+RKaUuTSgjije6MBR6+OKC/IHmFRiKZopFGOSlXIp+t3+fBL73LRcTk7EHszPpvSLwzJNLFOpgXTYMSjwWe0lsQeN60CJycuzkYNdyrmdTYaMx77tNrifB4cdSgXSnQvXlBrC6Ol1mrgpwqh16bdFGc0dqdcWr9KoyrWZDLUyNSApStLzKSRNhtMyVZOCZUJE8nC115apWSvgiqeMxsdo7k5Ymw02a/Oj1UW1+qcHu0QycjQ2kKJk94LSiuy15d7zA/u/w71xQKxJWSqUrjJ4Ow5Ln2sssxKt6+SKU0MQ+iRScfC/kod1XJQ5N/QYpREJ8kUDOn0JRmkoYqmyLMQWuhmROxNWF8Vd8jm2jVeHx6ihAWyqTgPvqmgpAbBRNyHR/6A9aVv0tl/THtbRO9LrNPtn2JoJrp05lItQ41T0QASQR4jemsxRx6kSYSmQu/CZSZ7ZPbP7rL72OQ3/tJ3AHj1/AW5YIXhTMg0wPZSjR998im33/1lsXfk2Xn5lGZTxzbe3E/PSKMigeLyxz/6fQBu3fwa5bbH4UA4tJu3vsy1W7eZTIy5zo0ti6fHD1GSCp1TUVezurKEG4BdE+d/d/+YL73/Td6/k3F+LhwuVXUoOJc47p7y9J4s6t+2mXQTCpbQp+edM0pWiUJhk+VVIYu7r1+Cesbj5z9ne0OwipbKGqWizctdkVkuVW5TrWtEoUapKOROV8fsPumBqtJsiDX+9P4Tqgs5DEMyNLshhp7DsRbIy+89fvKCjBiiKmubwinrd1U+fO82P78rgiSV3Ao3rt4h8cbEktGv0qijqRH7u8fzmvXr165wsNsjLxu31ysateqXGPQnKDIIfO/BH/Lrv/5rmI6P/0rs4eraApPhCZasy1Tyi0TZGD9NmQ2Fw/fo88csNIo8ffSYG1e/LPdhi97wkCgWNpBmluj2T7l1+QaLbaE7P/nJc1TdIxg9xsqJddcji0kxpKKJ73XPQrr6AYv1NYqyzvXFziNMs05kevwf//RfAPDrv/HLTIc9TiZij5ea2xzvD8iye6iqsOlquQaKajKSxFvdwRHvXPsKnaMeSiKe3Wxt8fOf/BRVhfaK0FN+6HFw+JosFfuy2LzEaBbQbC3ja6KGdf9whjvN8OMBm5eEbj45fkqKxf6BcO5it8DwweeUFlZZkqy/h8d7uGOV1/ZzrlfEHl8c7TGdBQTSHl9bukacdZmNXa7fEA77T7/4lIlrsLjQoBdI30E5pdYocffnP5HvN6CQr7DcrPPxd8W+3H1wn6mrcu2ddYYdcc/osp/unzb+TDhXSZpSXhJCmGURhlEgTmDsC2Wk6QmTsz7lnEkmO4qbZo0kNlDk/5PmMdQqgbfPRDokmgW5vM559wzNFIdRtU0yI+LgVBbnL2yj6Q6ffHKftoxuaXpGoin87LNHgjkIWN3S2d0PODmW7ITnE7A8bn9pkcm5UMCjYZ+Zd8H7t7d59EoYwuOpT+J6ODIKH0YT1q9c4uGDXRrLsoi/bOH7GqqqgyJ+bzi9oGjVSHQR0bDtPJOZihdopFJJko057/XYXN/gaFcIYk6xKKBzcSYuy3xlmbyho2U1jmRU6tTLKFV9Xh8JI2bppk57c4UnD7qsrAhIR6a7fPLzDvnCCFuyYHnuGYvVTfyhLIIPBuw86rDYLuJPxTynScD5KKRaDKnXxHqens+4tt4iUIUD/eDeLmtb7xD6MRs1qYAVl/F4yjfWMj7+WKxL+1KE7uh8+kNJqX6s85WvNskt1Pmjn4n9m5wtYzYHDEYhuZyM0EwDcI7YfSr2vP2VDxilPQ4He1imJMLwQlaXVxhOc0wCcUjM8gZJcMJxRzwnVRMuBh2q5WVGIyGLqjGVzGopSSjmni9YlEo1zgdifTVNYTCIscwRbQkLzBSTQc8ljCbUq20p9xNsq8japogaf/KDXRzLIJj6tJbE3w6Om2TpjFpllaHMlBUsjUrJmkdxZxMXyzJQVQvPF/vuxy66XsB1Q1ZlE78g9DAMDVVmoBI3YTw+YXm1jS9EAcWFmmmzVCox6Uso60GIkk15eLAHgFMwKFdtjjo7jMb+/P1aS3UUR2VD0shXKjn6/T6Drlg7b3zEu+9cw1QM8uaqXAOXzNDwXaHo1lcXOTzaZzjuoegyw4dNu1XDtoqEoZh7tVoly45ZbIt3U8nhuxFbG+8ymkqO6jcEINYYTRZclyoG/WHM2ZFQ7mpssthYYjaD2BefsVWDlJg08YgCcR4NrYyum0RSVtI0Rs0Ey94bKF3YMTBMAy+J54xpqysNMlUhljbhYDDC0E3K1QqBzLSqGuTyNuPJkEJByMtoMiSn5bAdcVmaFngzn153gC+pw6tnJdrtJvncBY0FsQ7VWgknn8eSRb12LiVTDCazKYuSdn1n5xWOY4OqE0sGUd/3yefzTCZCEC7CEFVVMQwDRcIXDV2wrllmbg47HE6mQMpMzklVVQpOHkVR0GXmynYKZFlElqnEyUw+y2EyHTHZkeQKCEa2wWAwb8qcZAoXFyP8IMCx32Qx6+gOLEpD3Mmr+NMcQabQ3hQZmtnUxcyGjKYzLo6EHs7lbCqVS7Tb4sxM3QsKjs1oNKNclQ6m5XL92hq7e8Kp331yzGIJmjmDdEOc2Z2Oz6vXn/Pee18jXxUGuz0y8e1zeq74rUZ9kShUufXuBqYhs1SvT9l9lDIajoilTOVVnfPDLrdWZbPe4grL2y32d17Qeyz02zhfpdRokkxD9l4LQzhIVcJpyngszvrJ0QnaUpU4Ujg9FhmF0ZnCwH1Ju91CVcXcbSNhFoyoSBbHQqHCQquO63VwcmIOR8czglkXy9CpWGI9956eceO2zuCkL9/vMl+8fMilrTXcI+Fw2ZZKkjPIck3OZFNWxSwSqEV+//e/D0BzuUi1WGC8m7HcFHPKogGOVmU6vuDhoXi/5tIaXrrHcF+sXeqaPH16ROhHkIm7QdVt4thDVTVBIgFomkoUBXNShpgppApZ4rDcFoGM8azDemuFKIjxjyRbJz1+dvqCQlG8b3u5QK1xmc1fbrLzcwGzmo0HjHo++aJOlr5hAnVIdU3ASoA0TVFVXQYpZLNxVCAhyzJWF0XQp9na5MaaxYvPBKuamyySKxzwa+/9Vf4rfheA508SvvalX+bJU5HJQstx+53fZOoOMUxxHypxgILN+WkfXTKWHh494mI6IEmFXm5s9vjP/+Z/xPrWB5SLAilTqlhoWDg5HUcXtsvBwQGTUcI7N0Wm9/ToOc937oFiUCyLd6lW65TzFj/9kwdcu3FTrF0+wY1ecbAvgs5nz1dYX9vkp5/9M1ZORJah0VzAm7lUCsu0WiKDPwu7zEIXW5YFdDr3CbOA7cuXGU+EPq3VFtjZfcBy6xJPX4jsUhIVWDEX2dkRsnLzxhU222tgHLN/IFibt9Y3qFVWGU98GouS4Ml/xM9/us/SonDusiSkVFhnPH3NVKKKNmo54mAIcUqQCN388MEzNpZXaayJ/7/30xcYtoaXnnPxWmZDvvsd/CAhy+pUK0J3xcmExkKVY6l/dK3D1pUif/j7P6VcFvfqnfe3Odg/YaGxQhgLPbhcLXJ4aGLKwFSUHVEox+Rsi1TeFx/eeZ8kHNLvDrGL4vz1D4c0ShnIO3OlvYGmm+hGQhQKnXvj2nU6g/s4ziLtupD1x49ecvXGEjOZYXfsMnfevc7Me407FXqRZMZoGKHakrRInRGlLteub/F6RwYE9As+/Og2/d4My3lD3hZgO0VcT8IECwmu22U8dRnKMqDPf7bLex/eor1ynZN9YVuXymt4foeFvJCVfDNPkuWoLtTYk5DtleYdqtcd7t1/yE96MlC7sUIwfU61LlBpuVKNs/Mx9bbDUUe2ySjXqORjzo461Jcl8dV4gpU1Wa/LrFissthwKOVMHtwVcq0rDu/fbvDs2S4lS+iunCWzB3/KeEto8Xa8HW/H2/F2vB1vx9vxdrwdb8fb8W9g/JnIXKVpNKczDqOMqlXAnfYpVmSzw5mHO47QdRMlExHaKIxxvTHHMlJHbLOwqFHI5ef9lEw7pODoRHZ+HuX3A5eJlxD5MstR6BNHKaadpz8THv7w6ResrWwzjQJS2Vxx1KvQWqxw45pIwx6cHHNycUoQdHGnwoM1jQRfhR998hjZqok4SGm3i8QyuhUMK0w5wqkOSWU/l+koI41VTFvHsMT7oevMfJ+eLCJcWlhBURSm4xGGISGGvsqlrS2MpMB5JiIIaSHHQf+AiswIedE5rWaNx5/sUiuKCFT7eo2Tk4iS7Ed0fHTK6/0Rqm5yPhRRhtSImAUzDMcglbUEWaJy3j8gVUWk4PXukNOzC8IsjyVrvJI0pWCmmI7H+ZmIMrSKl+j2z9mWuPDYrzLoDghzKVEgIhhM4XrpjGvLGq96Iqvw+Y5H6qtc2hJZgL/wV1ZZWnf4+//bc372XKzde2sZnd1z8nmHWxIu9emfHJJbimnfEhj316+mnIwfYRRmrK+I9Y1jlZdHJ3izKfWC2NMsvgDF4MWOiNCYVsbK6iKPnzyjImEBi+0SnYMpo1GMYYp5Fcsqk/GAztEbfHcRUy2QRCn9noiK2Y6GouXQ0hwvXwmZLZUdXu28wPdlbwrHpN1c58XOU1RZ+5K3l3GT5/h+h3eui/q//aN9RqNzTF3ssZPTccwFJuOQpWXxfoP+OYqeUasucHYuIvGVahMnZ5KTWdzO9BWeP6OrhViZiMZM+y77u+folkmYCpkNo4TmkoUWi2zB7vkpraUWvquSMyWleqmA714wHk+IJXTvon9MLmez0BDrSwSxlxD7EdGbRlO6iZJmkIlI6+HBAePxgGariCoppNPMQVN9LrojKmWx5uORR7u9OC90bi0sYuopj5/cJ8qEDDcXRXasP3TJEiHDrjdk6ouagDcy3VqsMAoGJLJBcZqCnsuhJBGxhDSGYZ3AVTBM2XtHU4kSiMOIxUWxBgutHJPRmHq9TiJrs6YTn+6gj+OIKGetViPwQ3q93hyCV6lURH8cXSeWvZPy+TyW6cxJKDTNwMmLSP5QUvJOZwEHBx0ajSbtJZElzuV7875UAN2LPq7r0jk/I5HQXd0wcJw81Xqe0UhkqpIkw/ddQWQBxHFKmqYoikIUvZmDhqZppFk812dJmKFp6pzyOI5SZkSYmo4uKbJNw6HWqJOmMQpvSG0iPM/DljVzCjrn56ckZFycScrqwQjDsElSFUURCvXx41foukqxIM5Mo6UzGc3IFxLOZB3YdJyQqGNGfQVkuwI/PMAwy7QlaYEfXKDrOu3mJYLoTaalwEKzxDvvi+z9//473+OXvvEB3/+T+4SyxUFr7bvcuaVzcNAlkFm44TRDUYpc2RawQEdVGfYHZCrYltirL9/ZRjFMVMvh+Eic/+NXY668c5N7rwXq4NpSmwXbJtRy9IdC32zV1hmcnOAYKYasVzva36M3heFQrK+Vtbk47WPaEbGMQGvFIavN2+TzJg8fi0Lx7/zqn6c/fkwg77Ri2UYzcnT2Q3KObDkycGkvL5PGPWZjIYvVUoPZ2QmRJHcZm8ecdQcstj6ivSRpumf7nB33SbWM08+F/l7/mkOztMFf+4t/HYAf3fsRga+zsF7FC4QsnhyfkgYKllKgXNoAIM0iqsUSSSbeT7VVapUC04mPKqn10zRD002SJJk3C0+UAN0M5vUqaeqSJg6KolBtvYH3FrFyq4STgKkla0NK67yzkePJayEHzfICu0//iOmPYzbXxJxiL+bK9UX++P9+TRLJeWkaoZJiIGQsSxUyRUEm0oRMaSrIWs1Hj0T2ZXHpJt60R4DQUybnBMNVXh89m38vTkTz4VjWj+i6zeHpE6rVOoOxtHncErdu3WZnf5csE5nOvb3PaC2v8cmPxZ4rX/11Pr79LX73X/wBf+0//isA/Gf/yd+mUW/yl3/rSzx5LGqEis42K61tbNkepj/ocuO6yRf3d7Ak2VGSnHN0uEujucY02AOgc27w/gdfZdQXMMRcq0ShFMGxjyYj+z5HaIbO8mKD8wtxF50Mdink61wMBKX7SuUKiRGiEfNawu1fR0t87Ze+yr17D1lviyzxk8fPmXptrt8WmZcwCIk4Ye/VPvWmyMxhJbw8eooWVYglXLpWreP7LmNp32xsbJArmnx6/wmaRDo933lKzd4kZ+vosr9owalRrhQ4OxRZ24/e/7fZPf4xx3sqly6LOZycPcHzZjQbm2xdFhnSBw9/REqRRamXXf+Me5/1aS05nHWEXbT/Ej748h2++PzVnK48iRRWVlYIZfsZ77RJMT/G1XtzIoznr15i6xql+gapIW2OhkJ3PMaQGUxdLeI4EKdDzk9kLdGqTeYvsbj03hxBMOknKBi0V8QdfffzT1lurZHFRa5eFe9yundMpabN640rxRUOjp5zfnzG+rLIYOqWwuPHrylXciAh8XEYY9saN24I4pjnz15TLKvcv/+Ab3ztuwB85asN9g+fMhr1WF8TLX8qtYQnj48p18QexNEYNItoOqRelRTu+SKWo7Kw1OboRMC6u70+a6sfUq0IG2EwPqRWr1IpbXB6LHRSrV5mbavOZBiQSZjz2cWY48OnXNsQPRA1LcFyYkbdIfXyopQzm1HH49rmJXrSri023pQk/OvHnwnnyjRV3pddnE9PuiRZShqZ+EOxmYpisrJUF/CWyRuoYEoQejQa4pLVVIskG6GqNlUJxcoVEsIAasUGp5KhyTJTKtXG3GjJlJQkyzC0Ip7EittOnr29c2rVHBMJC+xedOj16pRKwsAslwoMxzXIEpyCmKc780lSn4WVBpEseru6USY1fQ774tmVZgPXH9JoLpBKJW2oBidnx5g5+xfvp+Yo5htQEAbYwO1i11Q2bzd5/URcAq3VDexalaefHbB1SbDGHJ0dsNZuEUhIZafbpWjUWV5sIbkq2HtxhmYbeH2xBheoNFZMAl+jL4tlE61IFof4U59I9lPRNYdSAeyyWN/XryasbFeZjSMiTVy8Z3sjsigibxTIxBTQihFqPuLzz8XlsbyZo5yt8+DJEdOieL+rCyfUdI2fv0yxbCGW9VKR8prDynVhLP6Df/yUvZcKg4FPoy2U0eOHT3n8pMfXv/MOO6fSEd3Ocf1Kg7NjCQ9xTghPQ3L5KqrE2a5UGpycO1y9vIoh+6LsHncYDGJ0SxbLVkscHnWwbRvPE896/KCHolpEbsJkJBza6VQnTTRUyVpVKlgEsxQjrpIo4lmd0wucfIX9vSlhJP42GYdsbVwiJ2uiNleqDIcTNNWcd6DPl8fMzg3iMMKsi+/lHYdCwUDJZD2X52JaOteuXWMmGxSXik0uLk65SE7I5cXnJrNT/DAhy4TCX6g3GAwMsriAURRrbgYGW2trBHFAX9aGrS6UmYwSFtvirK3mK7ze28fKGSw1Jb56OmEymbG0tEm5KH7v7LzPaOhTkeiCtbVFTruvaTZa1Evie83mFfxgRG8olN9w6GPbJvmShaaIdRmOp5BaNBeW5g1edV2jezEkkB3pSUzCMCZOI4JI/P5gKP7trONTkJBRPxqz1Krzsx8Lg3Zr+zZ5p4huehiSZSyehYRxSjaZcPPGhnjGiY+a2QSeMAqtnIZhGOi6ieuKfUkTlUqlIiGjkkUpEOyM+YJsrDzpo2t5KpWKgAEj4EQZYNv2nBFSVVW8MCKUhDZL9RaDgWTMyot1ieOEJI7Z2z/jxUuxfsWcQ5Ik85oP0zLmxfWJ7IU3nU6xbRfNHM7700RRhKqqqLLbsm2b5PN5xuMhuiRO0Q1VwP00HdeVjGxAHMXYsgYr5xSYzWa4sTtfl9nEZjzyqTeKLCxIdrCmg5PTCYI3uHWV1lKRwXhAyxfv53ktslRnOouYTsVehkHMdDae1/UNRgbjqY9pqSSS/UNBJY5jNNUhle+eLxio0ZRHjwVrrGUb2KbKyxdfUGuI36s2TAajE754Itay1NriZU/lhy936feFcVVeuODO9esoikn3ZE/Mc+bSqLV4/kRc8rffu4ZVjAldg1ZTQIDGI5/nT55TadoYEoql2zqf3P0CrSrk9f6n91AnM1Y2mly6LgJF/+v//I9YqjXZWFlhdCH0VDJpMTzvsvta9ghb26I/OqfRqpE3xRrs750zHduUqxoXZ+Jzn/7sKbPphGNZD7y46LOxpXLSOSRJxLPXt5eZeiFOrkGpLJ51tDvmzuVb9ALxfm5sUiuuksYWucoGAC8PHlF2lvjyxx+zXBH62rAV7t5/zrvvifU1CibDQZ9a7da8HjcJuqy/myfyTAY9YXgvLOX40fefcueOCI557gRDz5NlKqZsHptmKUmSoKoqQSDkTLd04kglkZCuNNHwkxGWrXPziiCialQmjEddTvsXlBdl8HaqoFkBq6LkgygKWFxuUNhex5EkCe3qCtPpAY5ZpS+dN8VI0KMYRX3D0KqQoZJloi8OiDosRVHwPG9ucwRuF8PSSTWx73eubTOe1Mnyv+ibs7CUMZpGrF16H4C9g0ckSczLF322Lwmj96D7mv39M+xcwkg641/98q/RuRjz7/47wqH9J7/zt/nmL/0W/9Zf+Dovd0ST4l//7nvcvn2bP/ijf4qmintmqaFQrHl4Y2EkbK5+wN7uMYsLN1F1sQZ7e8+pVIrEcUaSyDKO1KTbm7C2KZyf6STg8KjPu+98RK8n7uPJWEM381hWmyARf7t3/y6NepNGUSz6O1sLDKZHDLozPr79FwHY2f0J455B0WmSz4m1qlRy1EoaeibWPAx9FDWmVV9gMpFwyagJ0RQrF9GoiXvmpDMmSwN8qb973TNIE25c/Zh/9YMfAvDlr37E1z76NouNS3ihsBMcR+Hx/UesbYt51oqbLG+7/JPO9+cQ7o+2rnP35y8oVOB8KJzadrtNoWjx/JkI1K6srDEznqNQZ2VZwM/K5TKPHu6RJjoPHwsW09XNHFGYcXAozsLW1RbauIqtWey9FFDIOBSNrlfaZQxbOEVlrYYfT3j1QpzRZrOJEgbMZjOWZEB5OgkgUwl9j/1DYbtUqnkm7iHTkbh3LG2F9a11quUSY9lQutaoU1ss8eipmGPoFri0fpmL81/UCKaZSqZNiRKNzTUByzs5PiOfL9M5FrozTQIK5hpf/8Ya/VNxhq68U6JzsQvGhONTQebmBjpRYGI5IuAb0UMzZ7hewGlH1sdt2fSOEuIoY1MyQgahy0X3Hv2eCPhUq1XQEvZ3XHRHyN33/+SAD798i2F/iCaDf63Fy0TehLNT2ffqxjtkSYRSylPKC5vHKs548uSE/nkgWElhThr3pw1l3l38/8fRWChktz6QDE1OhXzeIcsSLmQzSUXRMAwNPVdhPBORjjSGKAoRaH3QVJs4ndBYKPL8tbiIl5Zszk+HlPN5CnlZNKwrPLx/RFk2z7PKKnGUUSk3CIM3VOUQeSmW/ouoWKr4qFmO6UzMSTcczGKBydTHzsmo33CKGk3wU5D6iIKRx008KmuyniszSNwxs5mCZE8nDEMsM49m6POolFPIYxllUokxV1IPH5eZN6UgmcEWmmUOTo95/8ZtYkkC0TnYY9GpcCFx737eYjxVqFrGnL40axikSY7ZmVinfDEmU6YQtXCK4qLy1SFmXCCKM0xpmJYqBp3DCbYhjINCoUCuZBN5GU/uPZL7Z3P1ZhVHsQkDGcFQBfNeOCc6MKivLDPqDrmyLCIDDeeQ3c4xVjGPkxMGX7ejcHQS0ZHR9VqzSv80wjCm3LgtG8z5OSYXFxSdRSwp6+tXDS6OpiiSGjkOfU73Ezav1zjYEVGH1aUmy1uXBJNNKrITgaLxRz/8lKUVWfcyCHG9gOpCRq8rFI2hVFholiiYFQoFmSUaHHN+NqJaEXtcrRW5e+9PWF3ZnMunqitM3ZjjozGNuvje6ckQjYx6TRictqNTKDicdXz8ULxzoZqSuovU6hrBTDwrS6BYcfBkA9j19VVcb8T5WR9HetCnp6ekiU59IUdXZnd0M6Ncrs4v/jiZUauWyQyNTF6W02mXIAhYWlrGlUXucZBSLCoYkhzgYtCnVFugPzgjJ4vxC7kWg0mPcTilIAvhdSdPFEU40jj3vAHN5QVsPUe7LoxHUpEN8SOhNC2zwNHREakSY0qWqjD0yeUKDEZ9gvTN+QMlLszJB548/QInV8EySxydigut0nD4yb/s8M0/fxlNkfWN9jJWLsKUGZNioc14ENL3fEaSSMF3YzA1wkGXnCV+7/zEo1JaQpMF9aato6k20/FsTlFbKRfQVINGo8FkImu1DEs4YdLZURQF1ABdM+eOTJxmpGlKEEXzzJGu6/h+IHWcJPpJU2zbnjtEWZZh2w5e4KGr4ntBJ9FoKgAAIABJREFUEAiKahmNTZIEXdfFc7NfUD0rSkYcxySyLi0MA7IsQ5NF2m/qrIRjJT6jaSJ6aZomuny+6w9IkwxZhoKu62SZgpoxr4+L45hCrsTS0iLFgtBdubyFpmVzg1M03AwJQ3dOf6sqBoZlM5mM5lS6URQSBMG8mXS/O6NYLKHpOWYSeWBaoGQqWeKjvGEszDQGg8G89tW2HNI0xfe8Oe1yGHhYugVyDaxCjqk7plHNocgMgqqZeEmEoWlz4gZDV9E0A9sW76ZoEKcRrYU1Ls5FtqJ33mNxYYWjoxMs2czdm85Y3aiiaZJpMTHIqxqlgoafinleeucrhN6UcPSamWTmfPb0FcPIpSN1khpnKJpKEGss1WUWvK4yGfchyuifiPertCBXVOn3xDoViha33l3j008fUlsU52GhVcD3MrKwwXd+QwTs9l71aLdq3Hsi2pB4/pjZtM9a8yvzOr6Re5+ado183aA/EO/z7V/+KicnOySKcBr++Ps/5sbVazSWiuw8FUagbdusb7XYeb1Da0nowcH4jGplcd68uqguUms4/Pf/4/fpJ2LtHNOBLCEIfAxJ3Z2moKspfUkrHUcZgT+jWc/z278tnI1+Z5/ReZeFj67iSMTJ3ssdsmrEUlnI2ODinO55hk6Z1Q2RlR5Nn2PbOf6nv/MpB2dSpys6WqqRycCigk6cBFiGMm/0m6QRqgpxoPDf/a3/EIBhch+vCyVZj6fnbDJrSrN4hd/6rd8G4O/9o99iMPC4dFVkQ8+7IzaW3kO1j/jsMxEYqtcW6Z3vUGusMhkJ/VmwHc4HnTd9Y1lubHPaHfObv/mb/Kvv/3MAquV1CkWDDJ2bN0Xm4cHjH0KmocVCn1abJsNxj95gn8MDcWfevPLnWN9s8OrVDiWJKuqc9Vjb2GYoM0K7u6+olBvMxj6/9I0/B8BnX/yA58/3uXbtBpLdG3c6oHs2JI3Enn/7W9/lvPeCJ49ecfmKmIOmWjz8YpfvfPc32JUNeyuVBsNTn5vviPq1h09+TJxOmIxDokCyIdcSDo9PWFlsMxpIYoqb62RZRu88kPL6gtOTLh++/02iSNhcF/2MUinG1stkipDrRsMhCVwUS+jAotPi7KIDqLzaFfV47394mb3XPfxghKmL87dxqcjjB8e0ZDZtacVh/2CP50+OuSz3tFwukzJBj2+yvC427Ac/+j2KhQXW1kVWzAvO6F04aNoFvY6s33LKDLrnlIoLXL62AUAW+PTGQ/IlcUf3+wecdcbk8gqWZFEtlYrEcYLnTwk8IXsLyz4PPve5fUdk61utNmFyxs6TYyplsVmD8T7uLJnr6m//yrc4PrhgMplSaYjfi7OUmfsSb2qxsizu9skopnfRxZUB38uX3sGbTbnwLrBS4WCuXvK5d/c5mhVjGcJ+Wllc5OT0IQpiLdfWlzDthBe7Q67JddHUEbOLED9R6PSFT1CpmRhWiCuRa95Mo1ZZprlQZiZZxqutJWaTBNMOkbFGrHSVre08iQxk/t4f/kveefcWxXyBl8/3AChULIbDgEK+gioRPSsrOX7lW//N3SzLPuRfM/5MZK5SMqpNcchy+QWCICGKJ1x7dwOAYW/M4X6femVEJFn+fC+iVmvQkwaR7Si0lhYZTU4pLggD82IwZDpNKDoOqjSuXC9gY3sTV1IQm4aDrkcYRkSpLL43mw7IF0qEwYRuXxpOCzXC0KVclUVwbkBGSBjGWAVhRLSaOr0Li6QX0VoXEQUvjAhdhelMRp2NAvmCQ6YE80sBxaDaqHPWvUDRhNBnqYgwGEimARQWqjUWK20yWR1vZwoVvcru0xMKbfGsRlvn4GmHIBCGcbOyRqVRZNA9YLEhlNYwibArCsVEXM5OtYaStsnbDh1JYz0dVMgXXVJFp15ckGvepVSskkiWlMif4SdtttYLcFMou0iJCNMRiqKzJNmsfvSjL1hZWaZcFHswvoiwWx5GPsdYpre++HyEp4D5TGVtU6S/TS3mwzvwfEcolas3Nvn5ZJ9yaxNDNkowzRFfWr9FRS8QKCIq9fLwC7JIxx1IoxCbS9sFAj9l44qY5+rGEnFi8OTJI5YlNXLgGehWn+FAPMdzY/KFAr0zl9FAZqVKGZqmYBWGXHQleYQbYFk66xsCPvFy54BCvoSuOVycy542psOwn6FrCv2ezAgtreF7CaeSsclxHELfQrdSNFmY2jvNyOV7DIZCUQDkbIMwyGi1hIwlSczMHVKqmJgS1lGJDRyjynDUpdGQpZWaimEEnJ4Kx9ubQehHLLeauL44DzkrR5zM2Nvf4cqmSNOnpsd0MsYX9h62VcCfJqiRQxQLFTLyXNzQI1M90lSckdTxqDby+ANhjNTKaximRee8Q1466J4/JOeU5lmcvb1dYgLKlRwzT5z1LNXpHu1Sb9UwpZOSxCHJVKfXFZd6a6lNLl/lojecsw51zgRUJos1Bm/6+GQejZZJrAqZSqsmw1GE5hRwZA8dbzZESyH0fLzJmxYKeVxvjC0hQK7vYpkxrutRLorLK+808H2XMEwwTelM6TGmYxBLaB2KgqZo+GE0j3ymXoAfRei6PnecgiBE0zQcJzff4zRNmc1mcyM+SmJc3yWKIlJd/F6WgZIydzQKhQIKKp4bzkkoFEUhl8uJHjzSmbNNEyefx/MkuYuuo6owmYyo14XeSLOYxuoyuq7h++KMGHoD1/UZTcT6jsdjlDQjTDJSyRKVxQqT6ZTo4HD+PU1TKZeLczjadDZBVQV1tS1bYgyGPdyZzLY9EwaecDJBkdGrNM1wbIiTAYr2JgunE0cBuqKTyihjlon1fpP5CMOA84sOzXpzvi553SHDRM1JOGwQUjAdlNghk3CbMNMh8jEMC00yLQZxhBdExDJokUQh1WqZWPXJpLzeev9dxuMxlytb8yyc7xvka5W5k+0mKoNZzMnJKZEMnEziz8hUhVdP71GXDmaY+hTyLRYRhps/c7GclKnfYzgW+uZ8qKArIR++fwW3KZ61s/uSvf0Bof+mB1KNB58fE3o2Z6diTg8enLCxVcZS4ZNPBNRrb/811fIWWSL22MlZBF6FF6932d8XbTIyXJxCSvBshB+K/Xv89BFFy6G1Jc66n7ocnU05GE2Jp5IIZ+LRGQ1pLubZO5RG7vmEm1cu8eihcMA++nCDJ08P8WMFQ54rVQXfC1E0dQ5XUjDJ1JBIMu4CpIFNtVaiO/tXAJxeJKwV3ifpDXn+ubjrli9dRqn28LoS/ppYxMOHbC1/m2wodLWSOpx6Q/w0I5FBJ7uYJ1J1SN8EqDWyLCNF+0XgJMlQVY0oiSiUpL5WTFqLa0wGQueutFcpVyrc/fT5fN6RqmDlE16+FLC9/b0RuUKTqB+z0BKGfzgb8qvf/sv8+N7v8kqy7jUbS1SbBU6OxNql2XWWVyv8zj/+R/zqd4Szc96ZEoQj0kThh5/8U7Hmw/u44yJXLwlolH9SRrdUXrx8yEpT3AOWk/LpZ1/w5a99hCFJtXRT5fxsQFeSFtlOGcvJUasucXwmnI/TTodv/MrHuOEJL3fe9GEysHQTzZTMoEpCFproxpjDE7Evo67NnVsfc/fz780zK8tfafFqfML3vi/WBSWkXl3DKZ2T+ELfW/nrnA7+iMQLcBzhHGu6g+9PMSW810pzlKsarnvE8YEw/re3v8biksH52Sm6JZzH5zv3mU47HB6J91tbWSbn1ChUE2JFZLgfP46pVutU6uV5puzBk0c4xSKnfUGygbpNRkBjoUwQi/v38LDPwd6IzY2MqSf00uvdFyzW81y9JJ/z4BNWVy9j2kUSaa/5QZGPP/6IKOtw0t8TsjCJKFYajEbiDM1mAWvLm9Rqdb54IjKW1eoycTLFnVrckrBKz5vx0ZdgOBQy/eDRTyFa4s7tj8kQdu1CUuHe509or4g53v3sPuOuzYdfXWNflkKE6YDF+iWy5ISD1xKlVbNYXm2wtyPO5+HxCwI3xVMyFFXolu7nCZXaMraj8+qlcJJatQb1+gK7e2I/Xc9m3E8pF4sE0m6vNzW8gc90lLG1LVBv40kPVclTqkhUmj5h4B+iuSn5nLBhX+/sUcwtMBz6c4Key+sOSlLg8T0RtPjgvTsUGmXu331JWZK57B/2yeVyJOoETer0MP7/pqx4S2jxdrwdb8fb8Xa8HW/H2/F2vB1vx9vxb2D8mYAF1hZy2Ve+KzzLJEshLRKHJqW8iPR0Tg5YaDZ4uf8FBiJamM/ZuF7CUEY27YJCtVagezF60/4HJYaiY+NNAgqOhPelKUvtFr2B7DUUm2RpTBB42LIhYpRMMfUSGSGJjMzbeZW8YzPoCW++UCigGSq9wRDbljVXU/DCCYsLDQYS0pCaLlmQoWki6ugnM9Yal/DHY1JEhHTmuRgFH8VICWfC3y0WCuiZRiijcAvLyxwfH5MlKVeuiBRu6PXJlJA0NQm6IrJ683aTn959QbUhKUj7NuedEYE6msO8bm5+gFX1iPti711TxQ2G6KqBY0tK14shS4vrjMdDPE+8S6NexsAkDUVGQc1ssiRAVRRqKyKrsnf4ksmgT2OxhSVp8nNqnURzGMm9un65ynQcs7Kywv6hgM00WysMZyO6J8cUZQQ4dAMCXrK2/RWxdkFCs7HIycVnTGUEfLm8zMUwIdfIkWYiipIFIy52LGpVkUkqNy2cqoKGRxCJ9xsMp3zwwS36vYBnzwS++axzQLtdZG9XRNPiKCOIAyyzOK8fMUwFw7CYTS9YaokMycqaxdLSIlEgBG9w4ZIqKaOhz/OnIrq1vLzC/u45Tk5nIhugep5HvdYkVcS+OJZJ3mniRT2msuGy4zgsr9m8eNahvSqicLbhkEYmzbo4H8PRCfmCzkV3MM9ErF8ucXHSI5+rcFUSYdz97CHTyQxdZkwLxTqqBsFwgi57oKkGjGc+WZZx6bJ4v8/uPgFUkkR8plrXODo44csff0Qqc+tRCL7vsbq8xM4rsaeh6VMsFvHOY7nHDV6ePKVSrLFcfpPpDPGDCWWJF4mjFMuB84vDeYS/VtsmCrtMvSll2TfEn/k4WYtA9iOJ8OmOBqgqqMimvpnPZz94xbWb6+QltBU1o1pvkM8JOMNme4txoHBwOkAmORh7EyxNZffpCwp5KcO5AqqSsbEh6h2CKGQyntLrdrl+VWDMG02H6XQKqLjyzHieTxgl88zcm4i2omgCIghMXY9CoUAo6c/Fvyvzuqk3sqLrOmEoovUgIHhBEODO/Hm9n6FbNGoVCkVx/gPPZzyeoKCh6HKtoojxcIRhGPNMjqobuK6LIuNtqmri+z62aaAbkpjCNAgCMQ9HUsT7gctsGqBIBhbxvBTP8+bvYmgmru8xnbqUJfQql7OJwhnXboj1fP/D62h6ijeDp08E9v7lziGuF+H7oUhVAIqiYxo26OL8q2iksUOGhx/KejyjjKaEpHGGLslbLEsjI5mvealQxvd9siwhljKsUiSIfIJEnE+SDC1V0bU8sSTxiVMw4wzD0OaQSkXR5plAAEOFQtFG1Sxmsoa21VqiPxgxGPWpSoKX0WiEqioUZN+iQjnFzGnEiU/sypqWwCNfaHAxGaPKnnJW3kZV9TlEvbVYJ0tU3Ml43jNr99UrWrVt/u7f+6/ZPRM1Jbv7Y54/OeHzn4sIbcksEMcxXjJmLPXbaBTh5EIsPaHVFnv88mWHXCFPwRLznE1SrIKJHySkMppuORGWcZmNRoGaLOJ/dfCM5kqBbl/ot25nTBiOaa+UaEnd2e96DEfnrK2s8+qlrLmYuJwdz7h5XUSkaytlHj98RBBfJZFw3iwKUdOURIVAnjXDzKGkE3odEQE3tRwX3Q7/6d/8a1TqIlOdtxWmyQv2Ho5QJeQ2V1zh1pV3yeSdPRh2Wa8v0KlZTC4ExLjs5GluKvyt//Yznj2W1NL5Akmiocjmo2QGGbGEAQqdF0aiTcZkHPBX/32RObp8p8vrzohZICLnH299yPbqHV53zvkb/97fB+B/+Wd/g9OTh0S+kLHV5feYpYc8f3bBlz96F4CnXzxEUxsU6wYH+wKyqcQVvvr1bzEdi/2cDvvoVonB5BWdYyHX79y6yuHRa5YWt7AtsVc99wcstd4nmIg9f/7iPpeuVXCHBULZ/y/MepRKbS7dWMPWxVp99tkTjk4v+PjrojasPzgXRBxhQs6R8jLVqNbh4f0vyEt92uu6fOObt+l0xPk4PDimqJdZXm3gBW9gZDe4f+8xxXyTpVVhvxmssLP7Y1RVwtjHKeVymVwhxrBlnflJhhucErk5Ll8WdXsnnQMUI6ZcEPrmnXfW2Xv9FHfi0pB9Hzcv3eLRw59h6XV82cz95GSHrfXr88bfL18+olHdwovP2Xks9v29j9t8/vnnfPXj75AoQvY+/+yE1bVFSiXxvYvuGaPRiEa9ycwTsnh2MsRxHHJ2k1JF6M+zi9c4+iUmrrAbtreu4gcTBl1YXhbZrIc7n9IorqMqFvW2hJZmHmf9E8YX4p5rtQySWZtU785bI2xt3WLn1T0ub79HQaKIDg8PGU1nkAiUUXu5Shgm+NOUQkncF/fvHtFc0eb6dToJuLT2de68X+Wzz0Sj8TAJubx2B001mPlncu1OuHnjDqedPQAaC2Xuf/FzlteuoutCFu/+7ICVlTaNZm6OmrL1HGqSoy6hyqE3oFIqMJwNcHRZT92d0WiskCuvECPWczKecXDyAt0Qn6kt1Hl1+AmGcpX3PhAQ585uB282plJd49KSILyyzHOmU4X2grBJBkGfTq9H7zyk0nhjLw5ZXGxz3jkjDt/UErv8l//F7/3ZhgXGEURTsble5KKqCUuNFmeSoMCxSgSzIcvNS3ROJc99e5OjY49JIIR5bbvGyeEUb6ZSrwoBU3WbViVHqCnYhoRUxB5K6qEr4rJOVJ9coYAdaHMojW5pxJlHmM6o1iX0wovpnI/ISzjawB1gqk1UY0gkYRDdsyntVp3pyCWTbDPRIE9RM1i8ImrK9s+P6B+foRoaE0+k7s28jaJbhKGGkxcQI2/Ww1Jtpq5sQnn6iiiK0UIDT5JVGBQZno/JzARVCn73aEAWWmgSTtTzOuRWNJrFNhd74lm5xTETr4IXCKEkX8P1RmS+gaYLhahmBpPhMYWyw5uaizjromDOe/Zsr90gjHucng158liknsv1RYrFbdJpwED2vrG3IxabSziSBfDFi2c0K2329w8py335+q98nX/4D/4h/rRHQZJV2MUSefM6qiX2MxpeYMVNvJ7Pex/9KgDF3DJPvvd/stXysKVXXaq9y8Y3tlldF4esfxxzcPIM057RHYjJB5nJRc8njSrkcmKeWhLRu4hwZOPfcTDGVIu4IzDk39zxlFE/ZHV9mTQUyu5g94TTwxRFQsYaLZPRaED3YowpHXZUF9PxUVkkJzu025ZKo2VzciyMj/pyiYyI2FVZastapnyZQqFIazlkKAleKhUNQ9GYTGWfsnaNNHPJlCqaJZ498vaoNRoYOviukJf337vOyekxpnyXyXSIaRWJ8yYTeRlrqkMlZ5PLaxzIXiLf+NJNDg97WM4bpjeobF6laKvMJDmH5ZTxozFHnVdsbAnIwdFgl5nXpyXZ9K5d3iQ1Ijpnx5x3xbPN4gbn3QPiTBg6+VyZztE5Tk72qQEODl+yslzFtAw6J9LxnaZk4TGlkpCf8WxCc7XJixfPWFkRBsJYEgBcv9qm2xWyfv36NYx8xMWpUJqvnz2gvLzJQrVEbyCZ8xQfUOn2zwEBwblx/RK93sm81qhcrXD9+nX+r3/2u5x2xDlW9SaFQg5UBUsGc/SphqYZc0exXKoSJilhGBKFYq+q1QpBEP6/YIGWZaFp2i+a+pbLxHGKrpt4MrAQ+AmKYlCrW8Sy2XDBybG4VMc0xFmvbLa5desOjx89RdGF/IxHI/q9IUEQkKbic7OpRxiGuLLeqVhM2d5uYdsWli3OVT7vkKUx0+l07pQVC5sMhlMGspl7lmXopk6xtDQnarFtm1LVZDL2ufupgC+Nhh6WWeThA6G/vZmK5084ODifNygOgwQ38MnlTZyCOA+uOyVWIZJOta2bxGGKomXzwIKipihKSopPJB2nYKJgmgayNI3hMCMIPBQFTFPIS6INUJSUkjQ4o3BIlKkkiocmnc6crjJLU0LZ1Fn8XoQfefN1MvQcXgDD4cW8/xBnJ+RyeWrVAq6sx9MTHYOMKJEsfL2UtAd2OYcvWf+alQYrK2u0jYgHd38q1iqLqVpltiqiXibVMtKkR22pzYKsd7i6nYe0zN/5u/8Dxz0BFSzVl2ksFPkP/rrQnR++8yEpQ37vez/l2TMh+2P/Kcd7RwSTIvFMQk0Dh/PpjD1JPmJYMZXQZHV5g2Ff1vqN4MY7Tex6xmefi2acej4iPJxhyWBZo27j5NsMzo/oyECfbtqkUUyuoPHueyJoeNE9p7mYsroqjJ/erMP65gaPnmaosm4wzRJUJQNUdEkMoesqURDMe0xFoUpGgGHFVCXJxo9++AfMpiHf+qVvECOMzp/8aIdXrw8pm8IG0dQc3WsuhWmR3kictXRxSm5YInZdsvRN/Z1OpgwhFbKZphmqpgK/aMYNzP/7DXmLrhd49rPHXHtTN5yd8uOf9Uij8fw7rx+PKDcXGc1ELfNJ9ylHrwK2t1d58rkIBnZnO2T+lO2r32WlKZ51997v8b0/+Od89cNvAXB0cMTS6har7etcvS6ev/NkhqHnOD7qsLUt7vul+gfsve5w46qQKc9X8Wc2/ckDagURnIu8MWcXBvZxnpuSKe/yjR5P9x7QlzVX01CQ5Cw3L3PeEfMcul0uzlqUzWUMQxjev/TNL3F40iOUtWnXr12DWMMwdM6Hwsn+4x9/j63193m1+wW9oTB8/9L/w96bxUpypXd+v9gzMnLf7r5XFWtjsUg22ZS61WotUC+jZeAHY2BDA48Bj+EHA36wYXsebMOAYfhxHgYDDASPZgxbGo8wkqClJbWkEVtiN5tsFtdibbfq7jfvvbkvkbFH+OGcm9U9cGv04AfBqAAIkomMuJHnfOecb/l///8vf43e7BPGPbG3/NTPXOFP/vgvKcUJx8fCNyRdZeeldczyMlkiIOqJ9oT9vXO++fUvi+8YU7K0wJUrNzFNcYY9ftxjZelNqrWIzkC8V+fUJ5cz5hDuRulNwsAlDArEiRjPUV9h2Et5unvIcCDOmVq1ReAFtKXmouePcOwKxYKNogp7Das1Aj+j6CwCIqA0tTVu3t7gW98SxDvNxpSFxQajyS6BL+yzUV9gOhiwvbNOLifec9jO8Md5Xr8rgoh33vk29WKetfXrINdHEAhdtKd738edChu+fvMVLLsosOTAcHJMGhvMph6tRbEev/LlVzm+eMzphUgGLKzZ7LefYDwuUizJPtOkwtF+nys3yrT3xLpSjZjvvPunvPWmIJPpT58RKgHT0ZRrO+I9f/GXNvjBe58S+UVeuf2GfFZMms4oyH7ZT+6d8PRxh43NFUayf7uYW2U0yDDNmDgT8zAbmJgUSNORnBefsvkFGgsFDvbFGV0sNKnUq5x1XDryzLL1lG7PZzgWCYpIr1ItrFC/fcrnkuFzMOwSBi4b69fwpp6cYxX4Fj/u+ltRuSpW7OzWFyXrmJdRckqkcTZvvF9dzaNqEbl8kfe/K5yynWt1DLOIXRKL5+nRD1hpXqFsm5yfiwU881KyuEylopHJA2zmRaj5Cb2ROLxMXWfme0xcH1tmOeu1RY5P7tNqXZkHXOP+iNZinlQRDopl54gTj+6JSr5wScno0z3XWV9poBuyqc4LePZ0wp0viCBt6p6wVL3O6VmbU8ni1NiymLgxulrBVCTLRTTEnY4pSyE1rQZpkOHECv2xMB6zYmFqEbXcNsUlsdkc7H/O5uYmAzkGfqLjlOuo3gQ38eUYaPhegFO8ZNwJIFYol8uMxmIBDUZTWk6V4nqFruxri6YuK6UcEpqOkznUWgYD7wIvkWwSoYXj5FCjAFU2gQca9KcXXF0TY2Bgk5HnsP2Ya7KqEo5zOOUpR+0LNJldjpWAcdfj9g1RgYoJmPVy5B2LzdsiCD15GjP2T8jUPsOO+Ht3X3mN3uCQmqTk3H8wpVr1aLZMPEnc8Mn9UxarK1SrJZ4dCpvqH/lUag4jKQYaeCoX50PKpQa1hrhvd/cU1zW4srXMSLLpmXEBtdijIPuIrHpEwWyy+7jHq2+Kd9dTh+OLpxhmmfYzEUh40YA3f3aNQV8EnalXpdedoKgRpbKwxZWVJcJsyng0QdeE0zc4G7C+XUCXKvWTyQg/mGGbBfJF2WytqkTuEhtbOu0j8Xs67R6GamOYwlZSzYPUJohdqg3ZsJt/idHQxXJcqjUxp+PxkO6Zxst3xeauJptcdI7o9Lo0lkTWbzJNRe+DkrBS2wTgnXfe4eq1TUwZsA8mFwzdkUjp6OLdk0AjVcbEkfj7tu3gewOSoDzPGq0s3GLcOSec5sgiYYuqk6OSzzOeCUd1qZmn20voji9oNEXARZLxO7/5Hv/Rf/wmicwA62oRRWFOcVyqltA0m1mgc9ERtu/5Y1zP4+nTA2RLEHfuvorjOHiSndB1J0SRS7Va4sqOyIaGkUq320XXzDn7WhCEZEAkm2CDIEA3LFRVnbP4pWmKphmid0o67JZlCYIJ7TkJhfi77rz6kmUZlmVRKhQxTPGZndcxdYU4Fs+ejD3+zjf/LqP+jD/41v8tx9jGNE0sy8KUAYGdtzBNY067XqmY5PN5HMehIqtNSRLRajWIw5DhUDjsCRbT6ZTpVDgogR/iej5REOJIVkPLskjTmNXVTf7qL4Xjfe/D+5RLFUJZLoyjFMMwsJ3cvIcmTVMSBNnH5WdZnLCwsECcXDIDanieN68aXY4LiB6xLH3OvgjMg6skismyDNM05wGtH0ToPzTecRxjmwZGzppXEdM0RTcFQYiiZvPvKYoy/1uj0RhNNShTLbgMAAAgAElEQVTk7PlcWZZFlGSoqkp8KXEQxoLMyHhOHlJ0HFQUFFn1T+KQnK6SRT6HHXFetJqL6LqBYYl3ajQrVMoFRqPe/D0H7XPOzjsUynlOJXWw7/usr2/ylZ8WTozrn/H+ex+TZGMaEulQrzQYdSKY5TiVDokOeDmTSk3sZe3uhFnoE/ojXtoQTq+j6MR+j4lWZu9YONW1apXV1RxPZD/Q6uIOnfMzSksLrLTE/j0cTFDUmMBN0SXRR6meoVvKnBksGKUEqs3pmU0hL2wxS2bEqUZEiCUrq2kaE02n9E6Fc5dpEUms8dZb60xGYo9d3Vjj4b1jqtUS29siEM05Ppo1o97YBMCwHab+ObFb4+UN0Xj/8N493vjyLf7Xf/z77J/LPkwL1NAi1X+IkjnLgHRuU6HnY1o6o9GIr/7CKwDs3NJZWd7EyYv99PDi23z2QZ9f/Xv/Of/gP/zfAPiv/qevk7Nd+n0xBk4RXnnlS9y792weRGxvb7KzXePkeMrOpuiL2n38jMFwl9UVmdDauksQHfPZg7M5a2xiDKCfp7TQ4qIrnHg3zPMTX7jLE9nncn42ZPOqhqXV6UpWuEJ+Cd1SGU0GLJWFc7y0ssijx+/S7Yr1v3zD4dmBRqts0JSVq+FIo1RNsZyM9z/4CwDKlWtcv3aVP/8TIaT82p07VOoVznf32bwlxuX47JCc3aSS5hlOxLtvXr/Kh59/xvKKOHd2P33Eq69ss/vsQ3yJHNm5fgdVLXB0sE9rSVT5ipqHPxsTyh66cXjG+WRCqVDniy+LOb6/26a5dAXHNphMhP+09+yIV1//Akcnoneq11Z4460bXHRP5yLea+srRG6RxcUKn3z0vpj3bMRsYvLaF6VY7+f3UDSX6cSaU/WftJ/y8pVvkOq7mJoI/jUroN+u8OaXhW3+6Z//GzTVplC2novHF7bxgxlecE69IdbRRWdIo3GNyBV7y9bSNRZWyszCiOGFuO908JDBdEzeDAVzILC99SqtZY1v/4kQ+n7p2h1ILYbDIQ3Za7tUX+Oo1+VsIKq4k+mQkTtmpaVQMoS0RZw2WFmpcXT4YN63q5gzCvmd+Voo2BWGw30SRaWoi8r1xoaD70eEyYT9Q0FacmvrS9QqJrmCGIOaY/Do/mec9U551hGVsp3Nr+E4LqcHJ9Qbwq+86J8RhjrLkpCs0zni9bu/jJ+O+PQzYefrq1to+XP2np3MidkUUhyrjGaI+bz/8RnbO1fRzQnHhyI4vv7SDkHgY2oGZcnuurv7iP/6v/y9H1u5etFz9eJ6cb24XlwvrhfXi+vF9eJ6cb24Xlz/H1x/K2CBSZygXUKqKnl63Sn+NGJ9XVBW9npd6i2DsRvRWBDRpjudcfX6Ol1ZxSmWM7oXPmmhhOuL1EA+X+SiMyGXWJRLEmZVbdAfWIw6IitXbWpkSYalW6SIaL7fO8axlvGmE0ZSW6boNNAMCKS+izuZYTtQLOUIL/VQrYRms8Bo3KdYkBlhG65da/GVnxeZiT/+3SmOvcbZ8SGlBRHRq3GZnKbgOA5HT6X+QFGnYNdwRPIHNbUZj/okjokqufenvouh+hg5D3Ukxs+myOF+D+uylwKV4WBM4ruYkqa7YBnYtk27K7JUTsFC103GsxFWTjynnOWIgE7vAlOTLIqKytloSqkuMphKZnI+GVEurzCTWRwvmKBpYOsWp21JK79QxCkXSKWelJ+MyRk5Nq6uciq1BbTMwcsSBm6HLJCsW4Rsr6wzk/1HtYUqq80qR3sX7H8uMgqlehXGddY2F7k/E3N1dHKMnqY8PRDPXlisUF9pcHjanpe/0ywmNVw++uiAlqRCbzSLtPsBcShyDplvE3hj1KqBJ7V3tnaWUGKVZ8d9rl4T89BpT3npVoXjPQkFdW1ytQA7n3Imoa2a4dFslYkDhUpLjMN6pc7Dj09oLYksI8oI0zRZaLVoLOjSfvIcHHZR1JRqQ/ZhmSWcSkgi8ZlhJyVv29QbDmOR3CaKEvr9J4y6DTrn4h1WVypcv36D41PxpTQt4vuQNw2GMvNYXIvZ2ikwdSM8CRFLkowbt5eQup8Uiy4LyzVuvvwGM1/M+3v3vkelauONLU7kvJu2ie9qTAKxRmfhFE3LMZ50aTaEDWnVDD9MCCclaZshFiZO08QbCzv4g3/9Lprhs7FewJM0z5sbV8mXZjh1MS/u1CRSBry8emVO063Iyt7JWcDaisiwOU4ZFIVAstv5fkqceqhajp6kcE6VlE6nw/Xr156zNg57tM/P0SVbWa1aptqooSkZp2eS6l7PYVoOlpmbV6UyNLwwwLqkAM/lUTXtR6oxaSqqCmmazu9zXZcoiuaVCEVRBORO159XZtKU2WxGFIRzu86yBE1T0WWlZjpx+fVf/98ZDsdMxpJZsbU0v9+UvXZxHGMY2ry3MEvUeXXNkhWSmeui6yqGYYhqN2DmLDzPmxOm6bro1RKCw5cMhhlZFhGl2bzXrd5YJiUDCXF0ijnCyJ9reQFYeZtcLieqfRKOqaEwGo1+aFyS+ZhcVv3iOJ5XAy/Th6ZpoijKfHyV+fvq8/vK5TKaqs7ZGC3LIAxDJpMJsVxrWZYRuRG2ncORUMVatYDj2Fz+scCv43kekR8RRXI+/SlJIioal7A10zTJ5XRUSVVumSqRFK32/VC+U5VMM5hMZixJ2QpNNSgUSriusPOjwxP6jkMcJoxG4v6t9Q3WNpqsbi7xivYmAB9++DHECr/2TwVD3GB0wYJdYHFtiUQX59PQL1IpL+As2Ki2yFyvb9RQoxp/9ucCArOzsS4q41HCW2+KasxkdMLv/84DKncXuLEg7KtmlRmNU4JEPKczSpj4MWG/zWwkESEjjziAxeUCBOKz4+OQ7SstlpviOQeTR8RpjFMoc8n5n6YZqqqjJuF8HZm5IjGXumlArOJYBRI/YTIU9vpodEx52SIMEs66ourdSGymozz+SPx/c2lC/yJmlLQ5Oxd+wunBMSdhB9225nBe03bwtQhdsmIqigJZRvZDKsKqKrTh0jTF0oTt/8ovfhMvnPLkQDAYPv4k440vvsZnDz6d35d3AtKojqKIOS7at/jedx/hVH0W12Vmvj/B0i1UTeHzh4J9LY48vvQTP8vpkVhHvcGYydgnSzTyEkGwffMa/9dv/BveaBQJp5dQxIDvf/yE5br4zuJCnVnf4vrLXyKvCGjU2D3hon2BZeehKHyXZxe7VBeKDMYC1jab6gxPznlt/Wd4vC8qHbl8AT0r4056jM/FXC00G4wvzrl2Tfh4YTih5WxjbqmcykrZ1tLP8/jp71CzXG61vghAyYq4/Qs/zdm+qHLc/MbPcffmTb79hxYzKVEzGu4S+x6vb22RSFmX46P7tDsFvv7VXwLg5Pwd1IMeK5vX+KuPBPTyrTdeZjrtEoclVAkVDvWAMHC5sbIJwLcPfoDnbZJECW++ISrAH3/8MbZ9wWcPZuSkb1bP2Vz7iVucnEuJGmzOzy9YWbg61xtdbiyiWAMe7+5hG8KmCoUKkfqILBWQPN2C2RhW11a43xZVvizRGfRmvPHm63MtsStbV+h0j7m4kPI6hkl/tEyx7uFLivFyqYVm5Yhcj9fubkn71Pn+9/4twUyMXRxq9IdH7GzcBCmyu9veEygyeTZogUvRhslggVjyDSzvuJy2R4zcC8JQoi/SHFN1H0324+byRbK+imnlmPr7AHz+UOXKzhu43oh8Ufj273z0exTU69QWTuU7jVCSmOOjM4oVMS4Hxx+y3FqmUs/jSvbq5lKeSmmLyUTYYrW6xO/+3m+wtnlVnPuAadkcnfXxZ1Uay2JfqtUNPvrgIxYXhB/YXCgQxB1SJWFRInM6nQl3X73K8eEzdp+JSvxs9tfXpv5WBFemYZBTxA8ldXn11R26F1McRxxCSepgqRX2Hh7w5puizOtPPLonXTBkyTHbxm6UeO2167z/A3FgH54+ol4v0GqsM5EwlqeHHxP4KjXZ8O17PpqukHMcZjNxnztQgAGG7lCTDYnFeo7xeCoPUXjjCzf4+MOH5IvgInUuFItCFWx1nW5bGGL7/JStKy0effz895aXz1nfaRDL4e93A8p1g0n/mHpNGGbgQTCboUu9mSDsY1lFOu6UUHoyBbVIisPe4JDtWByO5ZyJN/UYeJfCvxlBpmBZxtyJCFwfNWcSBOIAT9UUJQtxLAt88VuqxSpjT9BDF6Xi9kxPSROFUPZ3uH6ApqdkvRjjUuPFihmPRhRqG2xtiobko/ExlmMxkSX5wBuztVGn2VoknIoFlDcKnJ1d4OgmiSYOD03NMx2OWV4Uh+yor1B0LKIQFuvi2Z2jNivLJerNZarD98R7+h7hpMnWpmzWnXS4OD7ioj8gkfBFz4VPHz2gVdqiMxKL82zSw8lZc2z8yvICrpeysb3DWH7nk3tPWKotoagxF6fCplJNoX0UMVNFUIFbxRh51JY88tKZDOkymy7QOT5Dy4t5VzSdVtUkjAUcrehkZErESbtDQTbezvy+gIhFGqcXj+TcrDLpNbFsqcauD3BsE1OxWFsU45LiUXAM9vePWd+WfUO3rjMaDQgiYec5u0A+1+fkYEpRanaN+h5KquEUq9glCXcZ+Jh6ma67D4CRT8iCIt3uOU/2hWiibkZ4M4/jY4+d6yKQuVraIU4HXMj+ppWNLfqDNl5QZTQQYxUmKVYOlExq2sUVqk4LS1HpdMSh/uarW+xsrOJFfUp5qed2/ww7eIkkFuvsjasllopL/Kvf+wHOpYippMqu1DaYhZc9lgHlcpVqQ2yk4+kU27CI0oSShEGOhi6aZjCZDqhJaISVy9Narv4IJC+MErIMTEmDHkSib6rXlxEugvjGNHJzKFgcxaRKKIIDSUwRhAGaaaBhYFnPg50fDhjCMERRFEzTfE6ckBN9WUkYkZOQ5ul0hoKGql1CqutYOZ3llYV5QBEEgRBfjUTgABAnCVGUzoMYwxa6U6Zhkcpgzsrl5oGMZV+SXGjzAA0AVaWQFTAMY067nmUZSVLGfv4tpn5ERjJ3RNPII00T7IIzh2InSUIURUK4WL5XnIhA8vLZuq5L2GH6QwLIOfkq6hySctm/djl/OdshSQTBRVGeBZkcm9nsknBG9Gm1Ws05gUcQhWRRiO+Hc925UW9IFPbmEE7D1LAsg1xRoVKS2juZ2DeT+PmcJklCFAfEMmkxHrmAShylKNKmonRKEvtUqsXnFPxhxslph2JBOAyarjOdeuRyFsWySDb4iegbfPBwF9MUY9dqrrDYbHHlilifKS7jzpDeYMh5V+xBk+k5cbLLy7dvo0lYft5pctYeYNqyJ0mJsa0cYy/ie+8Jp/6i06e5tUndcfj8UJw9X/vPvsEf/dYfkcrAVDVDbt38Ah/ee5+LmVj/hUKL5XWNSsXg80+EU7SxsQFxxJPPxHdarSUspcT5+ZRSUfw+NBWUCF1V5vqUcWyRMCZJLwkmLHI5lWZLxZLCzc3aK6zvGDx79hQnJxzho5M9xqOA/lTs1XsXAxaWFgnTFDcW72Q1Mz4/fMCoV8eWUgHCrkzU9HlrRQYo/BBMEGH/qqoyGQi7/s6f/gXHJ2dYeXHfq3fXCMOEOJ3M7xlf6HztF77I/pFw7gajAabpoSgquiL2KQWXvYMzPG9KpSK+Vyxo/Pbv/Bn/4O//KgAPnvwJabxIFPm0e2KO9b0pd16+RufCp+fJPbJQZLN+lduvCNv4F//8t/jSV6/wwQffJovEutq+ViT2l2ktNvGkoPS0/4SzYQ6zJPaknZU3qMZL+L0Jy2Vx/u6PT0iSBE0rsbgu/LeccUrv7BOWN4UN19YKlBsVql6KciKSCK7fYzrpsXStzuEjQcpSPPmI95KUUize+82v/T3Gkx5HJw9pbQhoZJgaePGUdx/vU64JaJkxiyhWhnzw+NsAvHLtVaLxM778xausSc2u7u7HOGrMNJ/SmV32yFq47ohA6s7Vqg1crw1pjr09EQx704TBRcbKRondJyKgvHNrm739h5x3hH/T647Iopxc+2I8w9BnOpnRqLxMHAmbef0LN/no/ts8OxTnaq1eot/ps762RU8GTlEUUS5B96JHvXXZDvKQQtFGIjFJyagtRJy0B+QMYRsXw08JwzxXNjeIfEmAZOiUCk0qZbEn9fodUDL80OfpM0F8s7F0HasRM5TJ1mquxuLKNufdQ1JPPGe460NBiBeH8aV8QRnd9jiR+4GaHTPzpuTiIlvbop9yNB4wnF2wf3zCjZuCGGptfYVee0itJfbAjz465tbtBVJzka0N4d9Ua3keP3pKvbnG8ZHUviQvzk25/Gyrzhe/ZHF2dkJRilX3pk8IvBGxb82lVzrtDq+9+jrnUrqlXsuBajGetDF18Z3l1Rpv/8V3aTSqjAdSymJN+Bk/7vpbEVwlSYonmXOqTh5NcUizAYnMCN195af57vf/kMWNIkPZGD4Z9mgu+4DYDHKFlCy2+eDTe8xScVpVFsuYpslB+wRTCvZlVp56o0wqo3kl8EBRGAwvyFtisOxcRrGkoKoqw4kUJByOyeVUNtcFhnY29inmi2zuNNjbExtwmqosLBbQshzb25sA3Psgw7RSqnVhKK98pcxf/PHHBOSxTNmX4fmsL97h6PACzRROWKXs0ruYsL0lMd9PDsmMlIVFh0Q6ivmwjJdMmMQDvJkw4CBNUEwbR1bO4iSkVa7hTsfMJlKoVSkwGQ9Q5PgaionvxsQJFCVBgD9NhA5XHFIti43MHcWYdp7s0sE0dSzVxp8F9Loi0CjndRaqNbbXNhhJlih3OGV5sY6liApNdalMpQKzacDSonBezw4mbK68xMCt0ZcsWIE/wjJSKhWJwe70GLsBzaVVJjMx5k7VwM3gz959jzgTh+zG6iKxleGm4jsXk33ydpHKks1ILgzdL5HNxkTBlH5X2MLOSzuYepGjZ+LgCOOI9e0cwazD2bF4p7/7Sz/Ll3/yZf7RP/o17IJwuJprRZ486GMuit/bXMmTGXlQTDQ5x4Qq3d4JrdYSqirG09C6VJY3MBwxn0ftXXKOz4JWYSQrkUE8RdUM7EKdJLjUQCtydtFDJohZXlnk6YMDwjqsLQnHcHGxyGRq8JWv/CQDSdQwGk95un8+7+fojk8pFAqUyhVOT0RAUConnLRDauVNdEsGb1ZMsdpkMhDOyKA3wclndLqfz0kS1lauMXEvuH5bB1WM5/n4IeVqhdKCJJjwhkxdjfWVBgPpzCl5E3ca4XlirtRZEVc7RokzXn9VbLa2bbNSKhJHNSrLItNZy+3xpdfeQhuJLNI79/6Kf/35Idde/wprGzfF75XY71fvvIo3Exv+/sEu/fM+fiC14vIV0tRFUSPqDemAtZbZjrcxLRVf9i6BcNovg6RL0V7fDzHkf89mYq4areLciQ/DkCyO0dXnDpeia3NBRoBGo0EURfOqCkAcp2gaP1K5UhSF8Xg8J5PQdV1k7bOM/lDMsaZpZIlKmkoGUz1ENVRWVlZpNoTd9ft9wtDHsiyOj8Xh77ozVEWfM4NqmoGippimSSr7x3TdQdd1Zp47r55dihvHMmDQNJ1MEQmOS+x9LpdDMSPxG+PL3jqbJIEsk4yChkVGgjv15oyCYRiSStauqSuCaNMUvWCXz0mSBFVVsSxrPuaXgZeqqhSLRTk3MzEX8r0vK1lxHBPIYFXTBINjXvaKpWlKGAYMRkPOOxfzz/K5PKVSEd2SGeF6TghF688ZIUejCRkGbVnVVFWVKAhJs4hqVVYHlutoekYaS6ZORNDoTj2mvpi/yXiGrpsMBy4TqdUmerwyXFk1NnWVLFPQjfo8Q1upVpm6E5QfatkLo4SHj59y44Y4U/I5gyjbp1GoocgM+Oa1EkkUoZJyeiB6l/ae7FFd2OSNLwvnteJUePj5A2qtCpWqcISv39Y4PD6k09nHnYr7fv833ubiUZelovh9/dML1u+8ykLzS9z7gWgeH/RnRDObC4+5ntraeo6T42NMxDxsLN/kBw8OsCybVBLfqKqCohqEoYKh1eRnBgrWPHhV1QhVVdnfG1KW52GxkvDk2QGkPqWGPJOXrrN/cEKmJnJerjGdaAzGj7m+9VUAHjx4wGsvX+PjsEO/L3yQvGGQxSmpbLJXpW2p6vNqaJqmZJmCZVmcHoi19vBjn6XVKmdSz8nKKliFlMPD3flcjS5GHO09YiBFb/00YdBOaS43GI3EXO0/G1OuNmguF/Emwhbrtk1n9B5/8Ed/LGyzkiMMnzAbG2zcFGQVj47ew52FNM0lajUxdkuNNT77/AMS6TstL6/iuyZOISWQmmQm6+zsuHz28ENOLoQvsVVZRI/GaL4IpEa7GUZO5bOzj4lT0XtX5E1iQyFR+uSk6PSi8YzzTpt8X6yFsRajui57Bx2CSDzr9VfvsHu+yvmoTG1FjPH+3gmGUSaTLd5/+FffY6ecce/tP8O8IdZMo1ZAT0ysUpGC7CW8Xt/i/pM9hpLQKpxNeGnL5jt/9PuYsk/5B9/9gOu37uJnAY4t5rJ/3qXdy9i4I9bMxtYi4/GQNI4JZhIZcbDPrTt3CNwUyxZ788OnTyg4CximGF/FHpBkCqVWxljqb3ZGbWbTjNu3Xp+fyYeHx5y3O+hynE5OXRYXl+l2u7QWxNq2cgqDQcxskjDqSN23ZIUoatNYFOM5Hfc4Osn46P473L4t1m2ztc5pe5/BYMDmpvie541IE4PxTAbLI4uvfOWn+PzJh0xlperkYsiNJYdxO5bP0Th62qHaaDANRS+jGyvEk5g0rmFa4j3jSKE/GuHY4lwtOGWINWrlIt9/956ws5WrXLlpsXvS4+lTEazWnW0KtsFM6lzqVsZnDzvkrRztc7FmxsMma1stDo/aoMnKv10kSvtcdMR9eSvCMDMUtcjRgfBv8oURRpZDpUv3Qsx7tdIiDGZUKnJMZjHTccrVndscSgHtTqdDpWrR67rsbIpq/SXr44+7/r3BlaIoOeA7gCW//1tZlv2PiqL8OvDTMFe5/U+yLPtIESfcPwa+Cczk5/f++r+RokpqXT8JuRgcgh5Qa4nN9qPPPsC2c/Q6feKxWGRrS8tUCzGpZOrpjfbpDx4TBTkMS1IVRyXah2PCZEpzURihpZWYDiJi2f+skaCaEdXCAoHMsOVLORRDZTjuUpKHx8SdoGQ5Hj0Qg23nUpLQZO9Je565DQKHLEtIUpOOdGi3rpWwCxHHUiDx3fefMp35+K6OroiX+MIbVygUR6ztRBzuy4Z5z+Xm7R1SmQUoVDLi2EWLVQwZTe/vHVEpN8inDmMJ02kt15kOJ2SygV+zc5zudyELKchMZ6VUxgsDanmZAVMyIWAbhhRskWlNbY3pbMhsGnLgiU2yaTUZTkaokmyhVa7hjqZUawaahD35ox5B4HLWOWEsxXhLxRruNKSfijFI2CJWVYajgLuvisZYVelwfHLEyBvjeZIJLD9je+M1zs7EYmkPD0kNjfHZhJ2rYvPZPT+mlWtiWGPGE3Hf299/wPZqmRvbrwMwmI14ujvgpVsNhkOxyCyrgBLYjKIeCytStFit8L233yNfkrDE1GFjw+Hg/jk/85MCWvPVn3uFf/F//Ca3X25Sk5vd091nvP7la1iWyMp9/OgzNlaKuLOI0xMp5mpa3L6zhjsZ4/fkIaykBGmfyZl4b7vsMZsE5CsGkaQFHg0jyjWd824b0xSBxXicoBopF3KzM5Mq5VKGYczoSmawQT/i7KKH682olEX27tHjQ6I4o7UgDq8wmaKqJTw3T7V+yRp3wfXr1xn0x/OydzVf5/MHT2i0xJj7g4ju+RBFVzAkLOD07AnN+g5KlhEmwqm29RxeL8U2xDZj5Ys0rSrtzn1MTThOSqbRH7sUC+KdVpZWiGOXckmj3xeb+2KrSrvnYRoBuUQmQIpl/u2779HbF8xSev0KN37251jfKBMGkhVTVobK+RyZlDRYW1lnNArISYIbQ8+TpDFJ5s+DmzjKGA7HGGZGJiENuq4ym80uGcExTRNV1fF9n9kla1yqYJoamvmcQj1/uS6kw19zHAaDAY7jzJ1xPwywnTzTyew5AUJOOPqXpBD9fp+MBNvJz5/tejMMwyBToCATIAU7L4WMxd4ynbn4vo/vxZweCbsulgrYtoWuOSwvSTKOMKQ/HOMFwnEbTSZEUYQXhM8DvEuaUHheSUoVNM2EeRAUzMk7dAnT8YIIJYtRDZ1EBn3jSYCumfNqEwjIn+M48wqNYRhM3TG2bc8DLt+dCVp6ycaqSYjlZWUPLglCRAA7hwEqwsG9hJC5rotpmhiGMf+OgDJqz8kzMrEvFovFHwlyZ7MZgR8zkU3haQJOwcaSTJ22o1OuVlDUlJqErSqKwXTikSYqs+klZfSULMvw5ZjnbQtTV7DtPPmiGJdGvYyuq6RxhB9fimobTEbhc6ZH10VVFc7OznAccV70ekKWoFIpPa+UpT6lSonuUPy9frdHFHukCVSry/MxD4IxOctg55bYz0hSUqakifh7zcUyhfLLPNt9iqqLNXp+2kdTT7DNBa5VhUMbjQ9Z2KmwLRnoarmMd//sbdodH0kSR85yOD485c2fvMHjB2JvPnpa5OD4gtQTc965eAdPqZBvLhFKIpMsS4mDCaqqo0jm3ywB352iyhaDLFUolBxayzq6Jub0YnjM+vo6hqGTqSI43X12RBbnMSSMuN9LqNQ0qqMq9z8VLLhLyzUMTWUycslJqmdSD1U1CaX9JGRoKPPko5j4FNDQdZ3BSCY8wohpcMFkLMZJ0S+YPpsxeU4WSBBNuffhfQ4OhPOac5qkuk/vkceyJIaaBh+jRmOCo/ycrdPKb1MsXOPkTIxlbzSlXlvEt4Z88PE74r5xm8hUKa4WyQJhGy9fu8Gnjz7gvC/201QfMejepVZ3uL8vECE5bYOdG2UGnSmnhyKAXtRf4fWv3uDX/vlvAvDL32gQ2CHJYEY1FQyGY/M2VmgAACAASURBVG9AWVnk9vo2ZxcCzhedfsqC3eJLXxXsff/kWx/TasLe5z0WNsX4fvjgIUXnKkbLJFAjeV8fogKnsWQiVXr83rf/kllUYF0yOdulHDk3ZUUr4yWiajNL4dHTx7SqovLxV29/h3rRYhYqDCS19vZP/SIPDj8l6Pa4fVMk6Fy/yGJ9hWvbIjH86NER3c6A6Sjmyz8pWDdnV32G4zbLq4uopjhr4zSjfTLk9h1RoQmSHuWyjV0waB8LG75y9Ranh23C9CmWIhKJV7dfY+/ZQ8pFsR6rNxbp9Pc4a7fp98T6r1RKpJkCSsqnD8TclArL3Fzb5KNH35VmV6BZV1lf32Y8E/7bweExrUodVYVuX+wBU++Q8WxKqSgRGmaO/eMnTMYuS8vy3dMZ2WiFm1fEftALR9y4s0n/xGdnUfgk9x8/pFZUaR935nulqurkzEVKEio5m4zJ0oTBsM/6qjh3nMYhx0c9moUNEiluvljepFKf8rvf+tcALK/cQTU7ZGnATCKyatUCo1EeN5owG0pIZVH48JfQ9nqzwnQyZDSasCMrXqN+joJZZO2lgGdPhS/f655iF2FyyeKqlikWanS72rwtQNdMVpZbhEsxTl6cwe7e8wr2/9v1N6lcBcDPZlk2VRTFAP5KUZRL/sH/Jsuy3/p3vv8N4Kr854vAP5X/fnG9uF5cL64X14vrxfXienG9uF5cL67/317/3uAqEzgKqaqIIf/56/jbfwX4l/K+dxVFqSiKspRlWfvH3qFmDKTY4nK5glNOGfQDjk5EFsXJl3FHCqZdZmNHZLPWVhdoH4Q8OxRFMduuY9qwtLzK8anATk7ckPEkIEx9kguR0R8Oh5QqFnZRRJ8VSjSWanQHM4bnEkPrm1y7to0flNk/3AegUV1EM2fMxuKnOzkHNecShgaViuwJGrQJvDpHR4dcvymifsM0GA9Dbr10V773NQ7bHzN2+9imyDavbsecHMUcHfWoNGU0nFQ4Pe4RyTJ2cTWhVGpw8mSClpPNzgsJ+XyEkZVBQgXHgYepm/NGRyNWSfyMQsER4ptAmMxASfAlbKdSLBFFCTldpygx7X6YMBzH+GFGKpstGZ1j5M05BMkPEwx0kjTGsEV2Ip8ziZgyCVwSWTkIk5iJl6HbwowePPyIuy/fpVAo8N73BEXmzRtNdDNge22R3fuiwrWxeZUnT485PxW/ZefOKqE/RTE8njwT33H9KWvXl+lfzDA1SeE+TilaO5yeifvOTs9RkjyLxTschSKz43lTQtfgxt2XGciqRrt7xtZVjXxBZI2ULM/B4ee0mlvsPhZl8794+10yVWNxo8Y0FuOwfb1FlI1QfTG+eVthNj6n325SWxSfrS7l6A073Llzm/Gp7O3zE/wkYWFJ0sqPJjh2BXfiCUgmogFzNJ6RKTqu7FnTtBmObaNLIcWT86ekQUqhqKEb4jeXSwrlSo3e4IAwcqQtKpRq5rx6ZxccPG+IXQqJpbhywTAwCwrZOKNQFfPnxWeYZn5uU2qm0Fqq8fmDT1hcFBWn/nCCNz3m9u1rPHoslvrR7pCXtpdJRuI5Q/+cIHtGqbqIkRfjcnp0zsZGnVZLQAdG44DJOMPzptRlNj1KfOqLyzgVm7ysvi5XVpmsR8Q/ITKMimaQDkM63TFxLOGM2mUGOSUnaYhnYYCeg9QXNu0HE1mxUDFlpSW1IGebpGlMKrPimqYRx+G8ryaKAhRFoVIp8fzSSZJkTjwBzHuoLiFyk8mERqOF67pzoeEsy0jicA5VA+aEF52OgEv6vo/jOPPnXT5bURSm48n8vlkwQzMU1PhSaFhF1016/TEzSYBgGBqaruB57o9UiS5JFAByeRNDVUjTbN5zFfxQD9Xl77v8/8tx0S0L27CZzWZokqLatGx0csxmM4oFAb2I41joekmWFE1RSZOEMIjnfVKqqqKg4U49AgmTy5lCOFnPm/NxTVMBX7yESyqKMof4XVahCoXCnBTk8veKqhdc9kAIYedsPg6qqTL1PLqDwXzcL+F/+XyegtSPiaIQ1JizjlgfuUleyoikc82uSxtq1WvkWzk5LoJA5LIaE3ohSqpw1h6g6pe/zyUKXMolh1K9PH+WU7DJJImJaWXouknOcubvPukLvaGDgyPydvn5vBlnVOqXek4GSeiiqjpBIPZTVdExLR3fj0ikjk8chyiZxnFbQHnfee8ellkkjVRevSulQnIaH7074fYbt3Dk2p6cF2ktNTjtiP3AKq1hFmrcvLLM17/6JQAGkzZPn50RRhG/8h8I6NXTJ2e0Fr6MUxJ2kLcKvPPhKb4SoF3qU4YmlmkSxymxhPg7hYwkmcznkzRPq1VjeT3k8JmA8BSMTaqVJsenT+mNhcZaMb8h+t1UsUYtvUKzssqH39nl5dffEnOTzegNBoSRC6mkNEcnwEPj0u5UUrIfoWC+7PVL05REVjY126A/VLFKsoJ5HpIpUxqtKyC1tx7sn7O6ukxpQVQGdncfU1920PQKb78temHWrzRQEpPJeEomJQ0efHKMqli0FoXdH7fP2X0csHoj5kKeo0ZWQrUSeuMxli7O7Ud7B5StBiNJ9FMq1Xj8ZJeXlC1e2v4qAK5/zuFextbGTZZLklylEnFwesTipqjCfXfvt8mSjFX7OhslWdWYvc/hoxMWiosUJETUjd5ia7vE7/6F2JOazXVS00OtRdgSmZNNPc69FD8es/eZoELfbGyyeuUGybnYb67f3eZ8kvD66h2conj3hz/YJ6yZ9B8/Q5M6jONxk1mQ0p88h+k6TsY4jXC0RfmbcyzVt6jUbc67EtLYaKAVVD54T1TcZv6McnGZWhXOOpeQaoVmY4sk9RlIQpnxwKdaqaMg5uGNV77J7pM9vPGUWlX8Pt+dUq00adQ03ntH+rqOzfr6NkdH4vcaZpFyNUeWmpRL4qw9OnlIzioSBBlf/8Y3AZhOp0R+kVZDVIQ0wyaS5eE0Fmv0a1/9GqH3GQ8ePCJFVKq6PY9iWaNSE3tEFBjkHYVa/RU++1T0eK+sVNkbPcOUkOOlxXW6z7r0znvk8+LZwSDkpbtvoSjf57OPxH2thU02Fq/MobyaogjkQqZgS+I017WEAPykxNUtUemsVmL8WcLLV78OQEyKGxnEuKjy3OkPBzx5+jmvv/lFXKmd1m6fUSwr2EVJQjWYgCo07iyp7dkoNXHHHt3TMTtrQmDa45RHe59QKosqp67YLC01GQ+guSAqkUfHTyAu0lxwePhQtCKUS8Jn+XHX36jnShEnxQfAFeCfZFn2fUVR/gvgf1EU5X8A/gz477IsC4AV4OiHbj+Wn7X/nWf+Q+AfAth5g6tXxcDGqcKTJ2eUnCJI2MNCrYndCpgMXKp5YTznp22m3ghHNq2XazPC0KJ9vMf+rthILSNHwc7QaKAbwsG88foGg+Ep9Zow8PXmdaazkHbvANeVm7lt4c9m5PM6q6vCeWrWqlxcXFCT47lzpcVH9z6mXFpkY1N86M0mnB6ec/XGEnIumU0dmg2HR49E4NZqbKCFC5TzKpYpjG7v8ZAg1igVVziRDHdb2yaVkooXSpYs1SBMAhT9+bStLLd4+uwIzWpgm5dMcjp6ZuAUxbjU6lXcsUtn3EGREBxTLWKZNqk8iEXfgk6xWKbXE86cFyS4rkexUMOVGMpxPKBVKJGX/cL98YhyoYyWKExlT4s36pMZEUutGtNACkVaCppqMOlKgeI0oHcxwsgpsokb2qcaD++fUe2l+J44BB4+mlDKO7x0S/TV6aZFlkY4ukOnKw6qm8sv8e77n1FfylPXxQGztahz2rmPUxQBbqW0hF3TeXJwTqkgG4R7A3auLbO7+wDdugyYqwRR7TnDl3tK6FsEZsxY9qs1lpc5754SawGBL0kghj1yuRoTVyw6RUvpTT2sfJ6TQzF2UZCi6Qn33j9EVYWTsrbRIhs3OToR9028KdVqFV03CKXuE1qGZRbwvZQklbAgVOzcEt5UHBTnxyc0qiu4foAjoS0PHh2xc7VE3l7HkkF8ikupbM+1MU4vDrCsEjnLwM3EO/neiMNDi0F/zOqqGPe80SKMe/RGIpisV2rkczZkKooU2fUmCkubS3z8yX2WpB7O1//TX2LSOyeLxMGrajM6g3NSxWA0kdj+1SopCqiXDbZFdq7WCAOPlRXxnMWFFuViC7QIVX5vGGckqcdMiq6FkxFhHJHL5anUxdoO5TwurS9y6XCtJRmD8QhPYnB0w2A8nhL4KYH8fhQHRHFMmprEP8T8pWnW3FnWdZNMEdpMc52kWUA+nydOknlvVjRzSZJk7vg7jsN0OhMsfPKzwXCIrutzZjFgTuRweV8ul0NVVQzzeRNNkiQCylssz2GAuqoSBvFc0KneqOG7PkEQUGsI2xeseRF5x5k/bzabUSg5c5heGEu4sKnPNbs01cayrB/pDdO0jCTJCCXMUgQvOqpqSs0fMI0cmmphJBmGhIheBpJSKkoEQkkIpPNAtFwuzwOkS9F3BY1mvUUog6bLXrQfHjvTNEUfWBzPe9su4X9zoWFFkSLK6Tyodl2XXM6cwzo1XTy7VKzMg8kkyYjCmGEwfU5gYVgYukGpfAlBBNs2CQPtOcuhphHHMf3RcE6YEccxOdskZ4n1aWoGhYpFtVmi1Vr8kd9ycnhER0J+fT8gSdX5XCVpQsHJQIm4fkM0bpNGoMRUKiXOZFB0dnYuWCjlmLhegB/GGFqM5M8gS1Isy0LXdcYjcV+5UkTRNfyZZKQt1FAUnThO+P49oTuTxglL6y8xbD/mVEJ++8MOF1MXRZ5X3e4eltPi4rzDv/w/BfjFKapcfWmFwTjgj/9YkGPUyhUKTo5mvjEfJ8+HzFaIZJBtGTmi1AUyTNkGkEYpgQ+W7kgbjuhe9EijFFMRjmmQJXzy2ROKhRqjwT4AQz5HT8sc77lyPicMLp6iF/Q5TM6Phjj5GrVGnf3RZU9XiqnnSCXEUUWZE7RcBvFJlqEBqgpRIL4YRwJ+WhZxDTlzicZSEVV9DvldvVbg9OgZ2wURcF69vcZ4nKJqY0plsT5Sb5miozKctTF0YcMlp0izVZ+voVpxhX58gXuiQyqc49SuUDJVHn64x+ameM/fePivSKMcX3pLOJynJ8csrlZB71AsCIa22I4JwylLSzukpnjW+7tv0+l0CKfi3Ln71i/x4fv3iFsb9GSwur78BfLWUw77H/HzN74BwIP0c75/P6OyLn5z7CastIoMDkcMFWGf08k5w0EXq3Wb5VWRRBv2Y6p+xqMjMS/f/fQzfvXvf53O2QGfyQTo9be28PsxR6lOoSreKxylFKs5Hj0ROnsba6/S9+Ci2+Plq5sAmErA2f4ucbZISwrfP/r0KQuVCsWCmKzuQOH84oyNldfYuSb201zR4rN7h6zvGIwlRM00clx7aYfDI9FHl8V9KpUab3/nBzQlmZKipqRkjCcOP/c1EcT3u0Mm7pCS7DP3/YzxSOHa1Q3CROwbnz0ckrdbJGmf8444x5aXF/j04z1ay8LOFa0CkUK7/SE5S/YSF9Z4uPeMm1fXePfTB8IW4jytRZtOW/g3O1svMxidMHEPWVsTAZhuOCjeCM0Tger06SM2Kwlf/uYGv/H7gg1xcekKx0ePaNYabG2IfVhRdHL5jGJJ+H0PP+0xnQRsbFYJJYGHpbfIFJfGxhrrUtD6/HTMzA9Y3JCsmINTxm2dazevcXok/Mzj84ekqcXxweE8aegUVFS1jDuVPkF2TBynGEkNUvFZMZ9DMVUKZpX7n4u+z1uv3uD61TeZumJ/jYKI05Mz3FFesJgCgZ+iM2Q6KrCyLGKQp8/EGP64628UXGVZlgB3FUWpAL+tKMpt4L8HzgAT+GfAfwv8z3+T58ln/jN5H6VqLvMDYTiGWcIyMqJkwPrqpnhJPURXc3SjHmdS6NMw8hj5EclYZqmNPL7vo+gBa9vixwdTj8XFCrXy9rxX4bS9h9u1ieUEmEkbP+2hKQrNulgs9coOxbKKZaeMpDimkiZoaQlFOsad7hk3b90lZ5TY3haB4eOHR6ys2fTPE84zkdVotHKMhsxx2id75zSbTTK9wXgiIvzINwmSAcXqmIJkLOychizWKyQLskl7pjHrD6lWNXJNcZicHLv02yZr6yF2UZyO/fMh682XyCTuNYsj8nmTpeoq41OZVYlmpChEMrs9C2OyOENRZxQlO2IWRxTtPMOxhyOJG5KyQ65gUpFsScNum4gYf5KhKeLvlQoObjhj0JtQkNnlaeJi6jkM2T+i2RqHF3s0W5u4qTjQnuyfkZoKJ91jajnxvXb7Ardg4xfEJh2EY66sXSOLCkShyCS1J23uvNLkeH+GJ/tjjFyBbu+Eg7YY383lJgurNdqHXX7iNTFX778TcNT7hOpKi0xSh7q+ip23MUxhG2VqDDvP0FbG1PLS2dHyTN2YRmUBX/ZcDP0h0czFrIrNyHPP8TIFTU8oFoVD0h9HbKysEoQTXLlJtuIFZn4HDLGRMlRQkgrTYRdFHpam2qJUyzF1nzPQaWaZRPFwZbZ5bXsBA5sg0PEljX2sDvH9GisrTTRdbPjfe/cZEzdPVdp5pVIh72g8+GifVl0coDfeuMPu7kPWNossSjFejTonF20u232qtQKPHhzSbCzPHczWosNJ51PKThNLEfZSqTp0egqBKmx6aanFSq3Fhx98l2ZFZDXzlR0Ggz6FgtjE6o0inbMB5XKT4UDM+6BzQrU5Jok1LHnwpqaBYxjE0u5UXcVyKhhxjCKprQtyU0+JMaSTWyw4mEZAYUNkpDx/wsyt4ropo5HYpCezMX4YMJ0E/w97bxYrSXbe+f1ij8jIPW/m3W/durWyuoq9sZstktIMJVHSSLIWAwMb8FgYW4Ag2MD4wQYMA34y/GLYAy+wDcOA4RnNYo/lkWSNJIqkRA0lskk2l96qu6pru7fuljf3PWOP8MM5GdU90EieB8OCUfGWF3kjT5xz4pzzfd9/IZJVTUXRSOKMQOLzNc0QVZ0kygObgu2iqBpxEOSVjvliThzHuRHveDyV0t5xLtRSKBSkFPozUQRd14njOL+ProuqWJrFz7hhcSwO2BnkClRRimUU8iB0NJqwWMwol4tYUgM4CSOy7FlFBcCxNZIkyVXxlGhBEmdEcZTLumtahu/PRaAiA8pU0QnC4GMiG5ZsF7mRcRAEaFqIbihMZULAlEFbKr/j2i6FootFkgcNK6l5S3/GYQuDAAXyebdSCUySjGDlFYDgXBUKhRwfHwRBbhoMIpBacbNW6oSFQoH5fIkhjZX1VCdOExzHzKuhguOTSO6VeI8ty2KxSLDt1eFYI/B0ktTD8yTJXoqlTCbzfBzS1COJFSa+6BPbMJlNp8RRyv17Yv9QDZ1apUS1Ws7fkTTNmC88kNwi2yqQxDAcLDh68l05Dia2o7K1sZ5zIPb392k0CjjSGTsMMlTF5rx9Sl/uq93OCN/LhPiHvH9/NKbiltBkJJz6OuWKzsFeg/lcrNX1WhPPW5CyT02qy+40tyg6Lr6MPubeAku1qCRFlpJXa5om3//+MWkWcfuFF+XzxcxnA8YjuZ5bDqriEEthCBAHIDQwDCc3IM/UOYqSEUaenK8Khq5gawXKUlb+2o3rvP+97/Bwcg/NEkmmkX9MYnTRJEcoiGxeuGoQnPbRUtHnlzeaoC851AaEUoTF1TTiRQoyuEuyFCXL8iTman7quo5pWkSyqlE1L/GTP3eFf/qbvyc+ry1IYxXTeaanOeqmbDU/RSZ5jnGaEPlzFAz2tmXw6E8JlhmfefkW/Z5IfDlWgdnknF5frGVJalKvb1FwDRSZOFXVHrrSAKOJLpV5k1gDVN59WyT6er0eN67pjB0o3xBr0quvvsG3v/9VHh/2uLIj+uq1T7/EO/feZzQS682wd8Ev/dTf4vodjT/8hghkeoeH6IUCqgbvvi+SzIWiRq1mMekJ3sv3vjnh3/3VX6DXvctWWVY+ZzPWt2+QZQljKZN//eY252dtbraEefViv8Nbf/omr926w82fFxzr7771VZKozmu3X8+D42Uc8vkf/WladamqaLbo9trsb7SoSpuew6MZd167wzvvHnHnZSGz/oN3v8Npt8Xlgnj/nx6ek2Qh9x//kEtXfxqAwXDM53/iEk8eddi9JMUcggpxkpJlEjVSmDKZzCjVDBbBijupc+vWbTrdY5YLMdd399cZz0f5nL50eY/D48dMJiKBC+AWasz9EYWyhWWI3+uPzhlNBrSaIqHcWm/w7vc+wFtm/MzPiAD9v/0v/gP+9s/+lzS3H/OVb4ig70d/9NMcHv8AHRFMzqYDiq5Fr9eGWLRpe9tlj1PO74sz14/8+B1ufmHO//W7H1AxBJ8yjC8YdzLqfovNDckJXI6YzcZ0OlIPoNViOp6Qpi6DqRiXUrHOcg6WPWM0Fmvz0Wkf2zFzYbPz9jmus8FosESxxToVxzG7ew163XMaNbGXl0oW48lFjlbQnQzHKVG0LGKpgl2q1rk4PmZ/Z5d9mei79+BDavVNtnZEH0Q+XHT6XLneZDoVY7VcLllvrWG5Y9575wgAp/BJVdB/8fpXUgvMsmysKMqfAD+TZdl/Jf8cKIryvwL/kfx8Bux+7N925N/+pVeSwHwkFoMlc9bqDWwNpnLz0rUd5osLdi5vY1jicHP8pEtGmKsMhu0i1UqLzrnP7pZYNE3XYNCPGE0/Yiajbl1NuHx9N5ejvXvvEXvru2w0t3jQFqXYnQ2Xi+MxkZry0quCcPnowZRyYcz70rHZtT3Kqk57MuYD6ZOwuVYmNC1UTcM0xUtcKxcYj8dEifh9tTBjFkUU7CprGwL25C6gMzNpTy7wWAkgVNCNhF5HfL68d4Prr73BWfsxqSmKgJ99bY9OvUwQPeFcEv0Kbo1G1WUxfAbh6fiHRMUyFeluv+gMaGxWcFVx+OyPRFZlOVvm6kG1eoPJbErB9vE9kdWoVbZQ1YxDqRRUtIr43oDQmOGUhYpiOLNZK5sEWQzyYKP6GtPQzystiqXhuBUG7UMyR3yn6w1wzIww8UlsMS2v773A0dlTwkAEFsVilTc/eoQfB+xXxYugBhWO3nmCW16TmUwoaibLeUClKTYOtw79fkgEfOVNASMN4xnrG5fwFj6RrOBd3blCb9Jj4UlophmCU0Jjj/lCbEx6yaBQ1Tk9e8xaXWSJTLNEf9lHlXLtpuZS0E0yHQxXLJKXtXWO7j3k8u0dOidiMX98t0O56NKdiTnsaCWCMMZbRjlMT9Ez5t4TnLLFzZsiq/jk/iHd+RRPSuRayZJ4KuBXoS8I0AVnh9FsDmcJRib9G9YOMN2MQIplOJZKr9Pmi3/tFRZSUtWtmOhmzAu3bvPovlQCWnYpOFs0JFl+fHrKzRvXOR4OSRQxpkeH9ynVq1SsKmZZzKEv/+HXmI+HvPH65wA4e3DISfuc1vo2taZYgDvjIwo1B1VWJop2geLlIp4/py0z7qVilfliRr83IpNFE8sy0E2NWP7BtG2iJCMNMgoSlqTJSsY3//S91TkUXbPx/CQ/KGqGShQJEYaV/1CapujoLL05lowoVwHUqhJSKpnEcUySZJSl3Lbv+yhRjOO4hL5U3VN0LMdmKg8HhmFQr4mD9ipIKrhCfjxOEzS54GeKqFZ5MmCIQ1GlSqL4Y4GFnKaGQUG+a3EcE4Zh7sdVrpZY39hCURRWCazE0DFNkyzL8udRkwQ1TQmk4ISqCfU+XdVyqfkkSViFZLrMzPu+j20XchirCGB0HMfJK0krcYkgCHL52zSNKblODmNTdAHjS+IsF/+AFAG0SlDkADoyAFq12zTFOCi6lsOxdF38LQ4TEim0EUUR5VIpF3fQNQ1NVmgymWGP0gSn6OTjslwKwRB/6aGqKyXAhCSUEEWZMEvjFN14Js6RJDEpsdAySKTf2NxH1TQ03c79BtfWWkynU5IkysdO0zTMgpofEJIwwltOmU2HOeBM0xRUDVSpMBZHEWmaUiq5lCTc3bEsppMZ/d6ETKrCPvzoTMwhWWWsVErUaxV291rcuCkqXnuX6lSrVcIoIwxEP0wmM9rnfXwJM+pcDBkOPZ4ejciQwbE7QNNEpW9VDbUsE7do5VLwlmOTpksMzaZur/oqZGu3jIKWw3Lm8yUpHlNf7Jnh0EfTDDIyEqkMhpqhKRpZEqPId1lJMzF2MrFguyZ/69/6aZ4ePqYkE1h62OUnvnSd9sWcP/rj9wB49faX+PJXfouNbbF/zJdTvvyPQlprBap1cXS5eKLhFmzSmYGqreangaZauUqtrmqQpGLey/dBiVSiJEFTdDREG4ajNv/L//QBu1KxTVUjTo+nlErPKsKOpnPtWokL6QPZPg0xLJW9Sy1imYVvT9uslZoEsUeqrMRjppwfpezsCAK/6Qb0xiMWHTVPDBVw0G2H7Yafe/vFiwTTCim4Yl+9tVamfxGibfp847vfBGBjq8nJyYhEtZkOz2QfZ4wGEWEg5vTx+ILd7TOO/uQjKvJeYzVjseiSLRKO7os1/ZXPvEAYDHPLiNt3qnz5a1/FNjMmXXFvb+5gbpm8/84pGxJKm2Uekb8g2RTv7LW9bd577z2+8b17vBCJexWLLd566xHOls1JVyQg1yotvvKHX+O1zwoBLSMuszw9YzLsMZ6ICkSWthmN93n505/la18R9IGD/dc5PPohj5+IOXVl/wa7e5v0+30eHYrzYrFS5OTUZ2P7gCgWbe8cKiSpTyxtVj66N2N9q0EWl9jeFvvFfOqhmQaZYvP0SCRTOsOQ04sALxB7rR+XaDZazEY+r0pPuaPTh/jBHAUrR02USyUq5QKHR+Kc0u6MKbouvp/xu7/5z8TfLs7oxt+npb3BtSsiOF3Oz+ifd9naEXPz6HhEvVnk/r0hP/clEWAu0yHHT1Juboh96zvfv49eqLJ4EFGpiR2h2Nrk7KzHdJxwcFkEOwkp33vzgmpDl44bcAAAIABJREFUjJ1btDm4vknghaiJhEbOIwqORvv8EeOBOFe65YRhLyOSljGVQopjZphWRP9CJCjK7hoFW2c86WC5Yg8ZHx7w6dd2OTsRcvid7gnFeh3XKDOV+8WTR4cU3Qb92YwsE+NQLgboWsZMCqJFIbQaZcbhBXNPjF+QhpwPTpgcBnz2NXEOm3Y+pkDz51x/sQsWoChKU1asUBTFAb4E3FcUZVP+TQF+Cbgr/+V3gV9RxPUGMPkL+VbPr+fX8+v59fx6fj2/nl/Pr+fX8+v59f+D6/9J5WoT+PuSd6UC/0eWZb+nKMrXFUVpAgrwDvDr8vt/gJBhf4SQYv93/rIfSJMY1xZZqygeMh3PCVAp1KRXjD1AQ+PBw3tsbYiIO0qmZGpEEosI+KLToT/IKNeqdCVn52CnTjzXuDgLaEn/Hz+dMQsfEUaieuBaBo+PDtGtCy5dkjALA7xwSeQbdI5F9aPgekwuhly/Iopyy+GEh08/ot7axcpElnE0GdCP+lSrVZRMRPlPnx5iFxSm0iF+c7NBpdTi8XGXMFxlwGAejzDNErGENIV+RJYUKMgMWPvkKcN2n3INkLL1y0Wbje06lvEi/beFzKrrJmRqiCYJ/GkaY6oiCx/KSoe7XqLWqjAZiPts1Groqk651aI7EiTfQrlF5+KCal3DdkQbZssTwsyiuibJ817KtL+kdskAXfRv77RD4+o1tq9e4c23vyd+z84ouTUmQ5Fh2KrvEAYpYSFi0BdVqWaphZYmlCsldESfD5bnWE5C0RIVov54jGoqVGwdLxSVOtcpMfcyonhKQZq6lHfLFEoadWl62b4Yo7GATGM2l5K1usFwMKbkljAKso8vztAMDSUS80czIpotk97iOLcFCNMYzUopLFwWEs7Tm55jV2qMRnKMmyVQYTQJKEmhEbVis7ffpFxqomSCLGtZJrNJiGWJuX/8uI9eOGdzp0YUivmZJQXcUo0sXXD2WPyf6ugoCRiZmPvLEDAm2KbGxaEY04MbQlo0DGYUDPG3gCFmouNKDlbi62jZGv2BwsVQZHs4s4m9AoPBEqfYkOPnsl5tcN4VlayZFnH89BQvSlAdMRdKzhba3MZ3+jyV4jRrmy1Utco/+dOvA+C4BdQ45qU3XuOtb4rM4NqOSs38FJsNATNR1Jj2+SnFwhqvvfpZ2U863X4HlJCC9NBYzH3BqZnL9zryMAwLRYnwl5L/I+fDzPNJJTQpUUbouoYl4TATKduaJElesTBNk1iJhQiGsuKCGTnUDETFplwuE0XPYIFJkrBYLDAMI4fXFVxb8HakVPqq6gTPqmCqpuWcqpWMbBCF6AU3J/D7vo+qCLPzFcwrTVMcxyHwfZaSY2GaJo7j5BlN4YmksFh4eQUhiWO8OCAMwxxmpakqhgFxIr4T+D6aJjhDuUlyEKAokke04jfZ1ifELXzfJ8syDFlRAvD8kDgKP9EuXXcJwzCH6QF4YZBzz0BWwRyX0PNzqOdi4WEYRv4dRVFQDf0TkL/IF/exbJsoklUFXSdJ04+ZCIsKVZjE+VgZhkUcP/PCqtfrLBbPPL1W8yAJI4IgyMfh4/5Wq+8oioJpqTnkMM0CwiCm0WjkUJPeYEEaP4MTrkyOoyjK54aSZui6eN5YVhWdQhFdL2BLrlgcp6Rpynw+x/PE73mziMZaBUWNKUrrjK3dOq7r5hw6VdW4aHd5++13CXxR0RsOFriui2lqNNdFu3b2mqxv1NneFpUIy9bp9XoM+lN6XZG97XZGzGY+SRoiC2MoikFzbR2kqa5mLMlIcF2LVPqUzRcTSmUHQ7d4/31RCYjCjGKxQCKr0svQR9ELJAQ51FRR5RxUlfydChcLSNRcMl5RHN5660Msy+JDyX1JZmN0x8R2dP76T4mK+vZ2g89+7u/w9IlY3957/yE3btxCtSOePBXiEe8/OaZx4xYoCoa+4iXOMQ0wNFk1DgNMXSdJw9xHU1V1yX8LCWWl0cvmlNYyNEu0ezLrY5gFUmmkDnD92h7DXpdhV4pOlQsUKyXCeMGjx205XxTWayonDxPiWHyvUDS49bLLsC/uNe1mRHQpFvfYkIIEg/4cywTLcgl8MRfXmim2vUZrrSXn9JAkVKi34AePBITr7t0PiROHhTfkqC8g96WKzvbWAY2agHmfdR7x3Xe+Q5T6uQ+jZbm8+Y13qVVquKY4F7311gN2Nreor4vxHI67eEubSnNC90y08/LlHS5Ox0yn59y6Icaqf24wGaXMpgK+OJ/e4I3Xf5zv/uAbnJ2LPSxKZ2xslbDiEEcV77aOgpUteevrot2Vmk29XsNbDtEMgbTY3d7nD377j6lULqPKvWM+X+IvbCxLzKnB+Ajf95lOAurS/6u+bnH8ZMn1n9/knXdE5erhUZerN38m9xFsNbfwFgp2UWM4kCgmFcqlXabFOZ1zsbfHI4NStU6jKd7t8eCMSmmXs84x//Af/G8A3Lh5wGhyThw46HJtHo/GbG6t40u/0/FAxTJ10miD198Q1Tq7HNIdn5KV7vLmtwR8+I03PsdLr/wisSrORUrXRvWGfPGFfe5siLNZWDzg9w9nnKSin2ZJj//x74/ZvbTPcCbkFSrTq6BeJYsX1KXwzjf/9D1a65vY0iy7fd6lWnNxGw4FKYA2Go1YLI9YLGckkRSKiZo0WxmLhdwrEwdFDTGNBroqznSGGTLsTygWi6ipqEDd+FQRJdEoWGLiXdpZY2tzh0dH34FUQuIzlYQFd+92MKXmwbXrB2SZg65JCwlFweeYw8MuB1KCX68taa7t0TeG3PtArFPD02eV5j/vUj6+cfx/dZXqZvZjPyV0/k+6Uxw3Qc9C0kwM0lorQU3L9NtDMrnghpEiDjqSuF2tV2k0arQvjqnvi4HzuxOc0GKt3mAcivLeYHlOHC64dkkc5kgMZkFI6CsspfnhpSsNpmNhBHp8dgRApsfc2HwFHFlaNw0On5xQr1RpyPPBMivz6PwRUWBSlHA3056ymMeokuNgWR6WtkVvHuHLNqVKjOmo6FqN8VC8HCWngGNrrEn41M7GOh++/4hCJWThiY0wjAMiJtRrzdyfqtvtMuiO8GUgpSo2fjohzJas2yIwNCsmvV6PljQVnXRTbMOkUEkZL8SE8+IQlhmpElOuiAU3yRKSbJ6bXo5GPQy9gFpWSaRyXt2sYxglllrMbCaVgMololBlgeSrpCqkZRRjStEQ/ZIuTLxsCqbJUJI0J8GcqlNnVyq23H96F0VR0LEolqRiSLDETxJUQ0WPxCGnVnNwaxaTmYQuLSYslzNK1QIrqx7TcLEMm8lwQn3FlVou8NMMXRcHG9dSGQ0X6I6RK24VjAaWlXDWPccxBXxwGcyJtZRQCn9Uig6aajNbxGw2xGaSzTKq9YRMrzKYioVUiXwW85jpUrRze3eHKPYIvRHVioCMlItN0hT6g/OcQxSnEIce84UkT2s6sd9mvbyBrskg0JzRGw2oWiV2WwIi0h09pV7bpHsm5vlavcJ4NmWZLLHtFUdvyVp9nfHYp94U75FlaHSf9tCkk/3En5KFMXpapVwX8643OKTi1pnOlriq+F61vsbR2dNnkDzLJPRCmpUaTclBWtuq4/s+jikWNscsceXKZaI4pCs5ghdnHrptsFjMqNVqcvw0RqMBO9KLo9/p0+sM0LQCMWIc3n7vbR7ce8yv/PqvYciDd5ZlLL05voQcKYqSBzarg7frlvCXQoXOkAfYMAxRVTWHlYEQN8iyZyIJK1jXx4UodEMlDp8FYEJYQcCXcl7WfE6xWMQwjPxwLNZlNb93kiREUUSlUvmEQWkURcQfE5hYBYmrdT0MQ3RdJ03JgytFEV5OHw+KRGA3fyYKYek5xHAVNKhoxIngG31cDTFOwjyIWAlMhGGIZa64RWkOMfwX4XyrdqqqgMJpmpG3U8AWvTyIEc8Tk6Zpfp9VP644aas2WbqB53m5IIngZSV5u03TzD2yolU0kEqoqPZMVCQIAizL+YT3lSK/t2q7omu5mbGYPy6+72OY9rN5YBqCP2ZZ+e+ACGJjuW7Ytk0cx5TL5dz8OE1jvPmCxWKB761MkhdUqm4OxaxWirTW11hrVnIe2GLhMRxM6PcmLOay7amKH3iYpmhntVamXHSoVotYEoodhxHz+YLFPGAo96LF3KPfHxOF0n/QMdncbHJwdTPn6K4EQwzDYCT/r9sdsJiHzKYL2e6QMJbcN5ncMC2NQkGMRaMhkmjL5ZIsS9iX3Okf3v+I+dIgzKLc34xUIU5CslTDsKRf3OiC08f30CXnq9Gs8/kv3GbpL7hyRXBKa0Wb/tBHURM0KYBULbqcP+1QcUWft9arPHh4jzhckknIYRLZOEWDb3z7XU6k+ahTNon9CFWTHmikEhYIoYQ0pXGEkmVoippDYC9drnP7pU360ki9WlcEvNYN+O1/IGBsP/OLt8myjIJclxUtJCNk2AsplsS6PJ5eEAURjdoO1br00ws9UnWObtTk7/s0alXO2mfs7wrF4u3tGkG44PHDc6piu+D+h2M2NhtMFyJAqRb2KNcKnJ/N2F4XkP/59IIoW+ClAWtNceg0dYPZ1Gc4EGOs6SbFtYQHTw7ZkJx5K55yeHjIy7feAAlR3drYZtxf0NwQn58+GuMrAakyJArEPKg1bPwgpt15giFFSrwg4LOv3+apVAt+9TO3yZKI1uYGx6cC3ucHAUHg8Noru3znewJQ5ToF4kWGJ0W2qpsb9NszDvaaHHYENHIxirhz8xZF6zpnw3cBOOvfp2hf4fJ1ycv66AR/kbK+vplzmWfLHq31BoFn0OuJ/nv5pTdYTD3IZOK23aHeKmHaEceHIpC5en2bMJlw/DDBLcvESTHh4jxioyXOp93+h0ynY27cfAFPBsKaauIFY7LE5s4LInC6+/4DGnWbmRQIW6tdJYhGFKtLCoYYv4v+hyRxiV/6m6/yf/7vvyXaPiyxf3CZzT3xfO2zDgfbB/z46z+K7wlO4OHDDln13+ShFHD48OE3KDnbaFlKZyQSzGXVp7x5Cct00GQyt1SsM5wc0mmLwD9DoVyrYihWDicul13u33/IemsTPxLjUHI32dvboz88EvOuB62NEk8vjtAlv9HQUjpnc0rVbdak+a9ph3z4wWOqDalyvIxxzHUy/YzhSPRdubLJfJrgmAU0qax88nTERusFalLf4MHDp5RKDuVyHVMG2Uo6xtBMvGCZKyTqOPzq3/67P8iy7DP8Ode/Eufq/61LN1Q2t0REetzvYZlrlAtGjlueTXsEXhtVNYlCsRHefGGXJK4znIrIOQwjnh530C2XQU9E3JPzKdvlDU7OD/GkeENmhdgFkyAUi/taQ6HXb2O7BVxNEP90fchaq0T3/JjbnzqQbfBR1JizU3Ewtk2PnUvXCMYG7XORRdm4XCeIixRrGcfHK7Nai0LRxzLFJqS5N/GiNpk6QzGlOpFaJUthvuhRKYpFJA41RjMP1RSLQa/XIwsVaoUIVUocTxcpuzsHdC9SMnd1oG0y6sbIPY8oTjGULcJkyVFbkEe3lXU2t9Zp98SzpKYDVkYaPiPeB+cXWHaZMA2eqWLpBp22T22lQJlZ1OtFRlFAQYpeGKZBtVhkfHTE5YZUe7u0yTc++CE1WQELgoBZNGOzvkbiiz4InAn1Vp3H7xwTScJwve5QKxYYTURflotllsEc1zZZSi6KGmgYlkJCzEDyWkpumdPTMZlUdqu7ZaKgSL/TpdFoyGdxaV+cY5s2Z+2B/D+LYdil4oq5YasywK03CJeJ/D2d7tkEu14jDWTWqDMiMwJKFfG5qu/QbS8pNgYMpGFnydIZLlQGc5G9AVDVAok/xq2KPleSmMViQKIGjOS9u5Njyq7Fpf0dTCne8P7RIVcu7zB/ciEHQqM3DNCVKdWqeKWn0yXVeoXhWQ/HFItPkoZ0Oh00TRwYOoM2tl1lOVwweirm1M5WCTVLUS2HB8fSwLKY0djaZDCQyYBER9UtKmWbaVcE0KpeZppOqZW3cCyptpYa3Nq7gSsrgxe9DkbFYTia0I6kfGqvz8Zmk4UqA1o7ZPiDEdubG3xwX2SIatUGdqlJfzIm6K2U5BrYVpG3vv0dQCQ7atUKi9mCWl08y6/8ys/xn/LfYZkxs4U48Jm2QxyHeQVKHMxNFotFngWcjidYlkWaiswakHOUVrwswSnKiGNwHCnUoim5xPjq8L9c+EJ1TtoSxGkCWYZhaASBzEpXy8Lg1g9oVGv57wmRC1nBzDKm0ylkEMrqj2U6QhmQZwf9VFZn8gqNbeeKhqsAT1FiskyRwcyqkpZ+oqom+kP/xL1M0yJeLqUQxLNqVpZlFKRq6yrAdGw3b1OWiWDSMDUM65n5bxRFuaqZoqkULJckznIxDhEAmhQKLuOxxOO7LkEQfKJKtBKmWAVhYRgymc/yypt4ZsmnY6Xilgpim/LM4Nk2LSHkINtdKBSYzRZY1jNJ/TRNyeJEBhLib6qhyz4O876zLAtNVwhC8Xxh5Av+lgyeQcjPF4sFUintvVwucRyH2WyWP5/jWGxubmJZFpOZOHyMxzqeF7BcinvPpwuePD7DMCxse5XEM3BdF011qNfF+z8cDrFtPZdG7nbbHB/paEqGpq3UGGPcokWpVODGzX0AiiUH13Xz6u94POTstMfjRyecnrTzcTctHUi4fCASHqVygSvXmhSLgs9VLJbpdoaYpkVXyrP3ukMu2j2Wi4RHD0/kM9uoekhP8nrmiqjUqUmWB7mGrot3KExR5CHX80YY+rN3oVwus7mxh59E9EcimbKcRWSpimkbmLaYE/ceHPH7v/t15lKG/Nr1fa5fv0FR02h3ReXh+vXrxOmcWsPhWHKO1ayIqigkqSfbpKIqKppq5uOepBGmZhKHSs4vGo9D3n33IVkqxuH82GJtbY1KcR0Q66Jjq5yd9kirYl+djGcoWsxyCQc3RH82tjVOH88wLY0oFXvk/YeH7F+5yWlH9OVWc4v22QXT6Zx4XQSF84nK2+/ew7QDGk1xvrl6UCNMhqxZ4uCYhQ7+MiBTPA4u3wSgP1hyeu7jWnVUySj56KMHbG618nfvc5/7Im+9+/vsbq3he2Jv6Iym1BotOv0ZxCsV45DRos3TdwVHaDpO2N5tQbSBZYt2BkFAv9cjSX0MySF1HZO77x2TpNK8ujPl5PQJ9bOPGA7F/qQbFerVbf75nz3I+ZRPDj9grXKdfWnl8/jwhN3NV2huunzwUAQNlmWRZT7zqcdsJlEiWYtKQ+dQmjkX3XVcd0S3e4FbFu2cTKf0Bx2uXX6R61dEkWA0GaNrMbOhmJuvvfEKp2fHBGHC6elKnCrDrSboloIiOXMP7w35iR//Gyy9kfzGBmpco9dZYhdFH6ytl5menEGicHIixvm8fYyWvkC5Ib4z859Sb1SpVrdoNmXifQzdTo+TY49r10Wl8Su/+4SXX73J3XdlZRePOLT44l9rYDs/B0B59w/4jd/6zznY+gUAvvDjP8s///YfY4Yl6uuWnNMZy3afYtUXXiZAwanw+PERxYKYr698Zpfz9oxqsZHbLGWYtBpXUBSPghQys6yQb3/rm5RrYq5sr2/zznt32Tqo8affFgit/e0bxEnIbHBKsyaUJOPQpt4ok2ayMkiDcrVIt2/jL+U5M1wAU8ql9bxSpio6qjHHD8WeXSgmjCZndHtn1ApCm2F31yFcOhiWxumJmLOf/8Lr/EXXX8q5en49v55fz6/n1/Pr+fX8en49v55fz6/n119+/ZWABTbXa9kv/02hTBLbY5aLERYV7IqsZj3uUC7rvPyZF/mjr7wFQLFqEfgp9abIQB8fD0kYYRcqhDIDtVYvY+g6oT9ja1dEwd3ejGJVR5PQpVJB473Hp1y9UkedipKMbkcEnka17HD8WGQ+djcqVDdbxJk0gB1NGM98OoMnrFlSHSUp4DQmnB6P6Er5yUqtilWMcKX56WSUMpvN8OIO25fF71VLe/iLiFFvQFFWri46ExZBj9am6APbsoiXZTaapZy/cXx6j9qaSxhVcrjE44/uc/uF13jwUJTDl0FCEjnYNoSx6BdLT5jHCu2RrMKVbUzF4MrOQa6AoqQBfqRSqRksJYelvhnTbnvUKgKqmMRL4tjH0VUSRypLLRK2dvZZjqdca4ly9DsffJeBOmDdEdmSYSfBKBWIjZjxUGQwN/e2WI4SgosuWl0a6CoVojijWBZ9MhsPMS2VZRyQJiJD4/d9zGqKY5SI51I5p9lgPJsSyMyZqmnU3Baas2Q4lLj2zGBzvUGSJLkEdxT6FMpNPGnu6jgOsb+kXq5QkaXA4/YRXpLiz1WKthzjYg1/6WJIs+VSQeH0ZECxZjP2RH/WqiXS2MZLJlSrAtbhaC6DYZ9KQ3xOGJB4LoPugtqKJ7HT4OSsx3pzj5H0nVl4fa7fPuDsRGRQo2VA6CUYlkmtIbJp4/6CznjIzb3rqLHov17/nHJlk7WayNg4bspotuTh0za39wWX8fLuFd5+fJdI83N4n61bzL0h47F4lnq9SpgsMVKNG3tC/nYUTDg6f4+rW7doS4Wrkt0gjWEqjRudQoEwiSm4OkEks7808YMll/Y3ZJsyJpMpB3u3aZ+LDFEUe1hWDUVR6Ep1K9d2SJOEkydHANy6ep31tSb90wk3XxKZ8299901++3fe4vNf/AI7l8S7Nl9MhGeJfLb11ia+H+fS5yBMduM4JQxiMlVWhqTn3jMYmy7NQeOPwQndHAq7updlWTn8DKR/FVKxTlZVisUilm58wpxX0zSm02n+e4vFAk0T0CtF1/J7i2da5JnjlWHp6rOAWAkuz8rUNwgC4ijNvwuQkeSy5iDm/uoeqypcwSmKyk2WEQRS7lZXP1HdWsErRTVIzftC0wSU0A+ecdw+3gdRFAmonqLnEEPT1PF9n0iq4YGoQDmOgywg4i89CoXCJ5QPoyjCcRzCMMwrhitY4GpchNeXkJ5ftcGXlaC8OiK5XcvlMq/q+b6ProhndCWMDE1lNpvl9ymVXPFb0TPzaFEJTQVcUlZIi6UCSgah5OyuvM0s65kKmGmaqBLauJKDt2RleOXHF/rCryvN4rztURRgGBZpopKlkiMUhpTLZcKch6ai6gFZqrAmVWJLbonpdMpwMM7XxSwTMM+1hoCH1+oVtneaaHqML1XNLl26RBQldNrTPJve6XRFxUXOjVLZpVQqsrHR4tJlca/NzXVUTWG5XDIaivXl/KzHbBowlft4N9AIAwXDeFaJDH0B2ctSDVtsh5w//IDFcJxDv199/TXu3LwiuHwyK24okHgRqqKzGr4/++bXqdY3WV+X6nbjISWniqL4FKUS6EW7S7ms8+S4zf1H0g7GttCyhGRlVp6qmHrG0ptQLgmExGi4JPBnFIsJwUJ8r1HfZH2ziJYJpMX54RjXiXjp5Rf4x78j5Ms/e3uXzb0KI2kcf3rWo7m5SaG2YDCUPNOlQ7PR5PUf2eedtz8AYGt3D6MS8sFdwS168daLqImG7ag8PRaQNdd4gVQ5ZTRe5PNla3NfcNikMbWlaXSHp1z0jrlz545ot3uV7ughqVYgS6VlzGBIpdak05bQU0I2NqqM+gMMQ3rMaQ00DeqNEp70wwrjESgRiuSUNhp1ZpMBw1HAwZ7g2nrRKePRgpl/zEyavjfWrmMqcxxDrPHrm0W++4MvU6+tsZDoEscu0VircDHo0KyI8WvUKhwdn3L9xj4AZ8cPqLq3+fRL1zg9FFUpx1U5fPwE29wkldVQjAJWOWQhFXbrJYVJPySNIUzEHra3d0Dgp6TJElWu7U9P+/z8z/48w574TozHdLZgOu8QSa/2VmuNwPMx7CD3opxPM+rldSpVcZ774MP32ds94Nvf/w6bO3I/tteZjEMCv8vuruiHyfQUNTVwJWS01dpgPrDY2Tdon4v5Ol/2SaMin3ntDj/4oZhnW1tb7OwdcO+e6INKVaPfbXOwu86/9qV/G4CCW2YyfcqXf/9/AODtD8+JjDJ2VsCSsNWN/W3SpcLC7+R+eJf2W1x0e6hSrXhn32IyUYj9jCtXxVnwvffep98NuHZjnaKszPleTBKDG4v7dC4+pGDuUN9ucXIhKsn18hoXo/uUqk2eHotzbK26x5UbRd6Xcv/DUUxrS2E5LVAorXiSE5QMdMUik1Lz661tvHDC09NDAKqVTbJswHwWYZqSMhJOcK0Wm+truT1LEI35T/7O7/xLYYF/JYKrRsvJfvSvC3z1PE2wrAXrtX0kbYhRb850MscpZzRqYjLNhmU2tovYllghjw57uBWfk/NDlj1xmGtuFTEtB92ecmVfQNTaxymHJ4948TNicN1CyPd+0ObazXWyWCxk/U5KqeBAbBB4ohG3r11jHmdcSJjA7kaTe4/uswgXZHMhqa4y4+B6XUgPy5Kj5Wg8eHzOZCq9dyox7Ysu9TUX1xXY4qPHfa4c7DIa9ll40knerYOisbEnBrfX6ZDFRSolHWd1qJpOqNSqoJoMuuIgapomqa4zmoqNaumrKGFItpywe0XAHu/efx/DNtCLok3V8i6hH1AswGIsS92jCdvbG5RrsC1f4N7gKarm8OCeKGsf3LDwvYzpaEqiiU2v7NbQtZitzUucPhYLy9nFIdX9Ar0LKWhRWOf0SY/EmdLYEjCoxVxD0zNmkzmKLQ4k/ScKlw5ugCEgXaPuKbt7O0xDH9sWcIn5YE6xYnJyOObyjhjTiTdiOFtQk0HodLjAW8Zcvb6VH9z8pQqoLOcjDFNseoWCjZ4mK/VkYjJUUjZr+3Q6Aq5hlGKmfohuZBCId6fkljk/61GriQC6UdPJsoRUc5iPZDCnaISxRr3homti/ILFErAplsUPTkcBjVaJME7pj8QLXKs1IEmxTYPRUCwiN25e5nvvfw9HCn28/MI11Mzgu9+/R6EgIU6qSm8ec7DdYjYUh5SNrQqG4VJ0xMI9GI04bY/ANqgWwv3RAAAgAElEQVQWpRS6u0577IE2ZUsaLpezKkm85P1jsfiUqjWa9Qqz3hS9KIPArS3uvvMR1TWXonwnwyBmPpkxl1Aoxy2gqoKzkUgC9trGFqap0+uKd1ZVTZIkolj6mNDBLCIMY5ySwUD2gaJkqKkBUtLVzMoQqSwnbW7cFu9joib8w9/4M/7GL77BjkxkRFHAcLDAlrhp0ygSRxlRlOQS7sKXxiYKM1TjmeS4pj4TUjBNU/BsNPKD/2g4kYIBySdEJ1bcKBBBk6aK4CX3sFJUwjDE8zxcydVMkkSIkMsgZDqeoJsGqqqvvNVJZKCTpOKwKPpPBAOu9JSL41gc0FU1T8qs2h4EQS6gYds2cRg84xbJNlmGmcuQJ0mCHwS4rouirOTg4/w3QPDHVFWVHKrkY30Q5xBFEDC5VcAD5AIRoR9g289MfaMo+gTnasVpW8H7sizD0PSck7a6VtDMPCgKAyETLu+1gnkCeR8IXoyfG0UbhpEHp6txtywLDSkXL9e8FdwyN2AOfVzXpVy0cm8qXdeJokjAGiXfbwU5DeQhQlVVAeXTtLxtuq7jL+Y4jsNSmtyHYchiOcv7SUUBUvxgTiwji3KpSZJEJGlAKg2tTUv/BBTU8zwiT0BEy2VxAEpin7W1Gts7LQqu6IePPrrHjesv0em08/87O+2xmMc5Cdw0TRqNGuubbh7Eb29vUG9U6XUHst0RF+0+w+GEp0ftfIw1TaNSKXFwRazfGxtNNjbXUKVwxN/7p2+iKhZRFEIi+YaZj2bqxJGCaoj+PLv3CC2D2UJ8vvPpW1ze20BVFbzVvA5TMiNBSVQMmZB0HIdarYYqZd4NHSaTifBOi5+dj/Z3N/jWm9/n7feF30+9XmO5HJFJ/liWRmjo6JoNqrQFqcQsFh79dkAhE+O1tl7m1/69XybwBUw/mLp4iwtmU5X/+R9+BYDru9v44TiXlR8MIprNJus7KShi7SQtUaw5xHGKzN0SR1UC5QRJd0TPmkxGfRr1MomkRlSrwpzbsjV6UlDKMBUK9jqOXDf8+YwgzBjOTjEkZO2VT3+GRXjB+/eOuPWCgER1+zMUI2QwEUJYhpEwPA9olDbZ3xFJ52H/hCRxeeWzl7h7V1AoqvU6vYsutbJYh5M05unxQ9a3ynQ64h21SwPq1Qbn7QvmvlgrnVKFogqW5JgrGIymbRQ9RZECT6qpgOIxniyJZiIQ/ZHXX2Q8iykUpJjTcoiSWFz91GX6XdH2KChz41PbxInKwpcwYrPPRe+EJ0eSJ7WzS69/SqWwnb/vqB6KGuMPy7z62j4A/+yr/4SD3c/z2mcEZO3d936IW26i6COOjsS4r9UvUakYnF98RKkkOcj1fR7dO2OtIZ7PC3zKtTK2o/DDd0Vh4dKlfXzfoFiyCaU9gm1HnJ/OKUrLzM2NJmkCldIzWxDP89jYqtA+ianUxdjE3EONtrl6XSQ3nx6e0Khv8c47P+Dsqbj3r/76v86nbtyiVRLv5/c/+nt8/ds/xDBL2JIfO+7YXLm8zuOH57gF0fZEucAPQFPF/CkWCzh2jePjY/YvicR7uapxcXHBfJpw+2Vxnvng/SfMJzqODLzfe++rjPoJr7z+k1y+JmB6uunz8PFd9i9/muOnImmwvbvBZLyguS3mysn5ExbLKSgurqTNuLYLUZ1B74KdbVlM0VzuP/iAxoY4t4xHE7Y2mhw/7eFWpNR8eR3PnxPMMtbqcq/VNf7DX/vNv9rBVaXuZj/6RRFcDYMLDK1MFioUZBa+VLToDU6x1H3mUu3NUG0qlQpRIAag4Bp4vokfneP5IkgK/RlqZrOxlZGuBB5UhXqzQudcLFB3bm3ieR7ngzazSBzip12dL3xhnycfhdy4LkzS+l0Po/iUyVD0V7W6QRIHNKpXePRYvCy6PoZgiqrU0HSRmSvU4PDpY+zCytDUw1+YdKcjAsk3KjplotjHNMsEoVgMXMfFMEGeYXDddSqlLe7e+yoHeyLYmQ5jUExSVAIZGJbLFp3xFFUq7tVaNSadc6pUmEo/jm5vyOa+TRyKRez8rMenrt9guRzilqXp7VClVNap1zVMSx4wlxr9QYhbltU7f0KpvE6BAt2p+P1KtUh/9ITG2iX8qXjJtCAkCTwO5aZXMZZcWbtDEI45vDgCIFYNMBcMFy6NssxmLwXRP8vEi3F+dIJrKzQ2K3hS2GQxmaPEYNmNPNubhkuWSUYk09taELDWvASqlwsZhAsNMgvDTElZGUXrbDe38eU8aF902dxo4WhFyERfleo6nh/SnixwpRiHpaWcdc/Z2RbVn077ENUJWEQJVUPscvWNCoPhAtdxiCW2Nw5iyqUakrpBlFhE4ZLxYMz+nngfND1DUU2Oz84pSUEJzTLpDy741M1PAzDon1EqlTg/ndFsrCqkUzI9pVEw2KxclmM6ZH19i35PJAhGowk/9wu/zHtvfRdDZo0uRj1GUw8vCHGkCfRatcKwM2IqK3q1VoFGaY3O2ZJqS4xVwYkYXISkapGNqlgkS6UC/cFFvgmdnJ2yvbfNZDihJpnUnj+h2+2zfyD6bjqdEkY+vr+k2RT3yTIFSzcYjQYMJ/L9NyzSRKcmD4WkGUqaEiwzfKkkWakX+KPfu8vP/xuvsrcv+vPehw+oVlqMpcqgZbrUyuvCmyrPSIVYZgFNexZMicPxM6GIVTY+DP2PVbyMPKhYKdD5vo9lWXnwEwQBtmV8QiiiWW8QRRG2befVF8uyhEKg/E4QBEKgIY5JZGChmwZJmhIGAZo00PaWSyaTSW5aa8hAynGcnESs6zq1Wg3LsvJgYzwc4XkeirISwkjzKtTqmVfBSpplzGX/FQoFUU37WOVqFdg8E8xQgfQTB/skFUHT6nlXFTEle1bN8jyPLMtwXTcPgFb3CGT6V1efmR+v2hDHcX5oX3mQRVEEqpIHwr7v4zgOqqrm1SUhuBHlQa/neZimKYVGvLwPTEUR3D1ZUQrDMP9t8fsiCCiXy8+4XqngormuS1mKVSwWC5IkYSxJ6JqmEWep5HqJ9VRfFUU+xnMDyLJnc6zd7lAsOOgGOfJhMpmzXPh4XoSS+2NpuEWbckUcdgquhWMa1OstxgORjBuPxwRBRPu8h++LgMQyXXb2KtQb4l27c+cWpiUO5ytRjUePjrho9zg57jCbLmUfxxi6TbUmnnetWWZnd53tnVYuJkGm4Psx85nH0aE45Ha7A4aDab75xW6LJMnwvEXOb1zxnBQsskwEqccf3kdLVZYywLx15wU263Xxfq4CZmw8dUy55JJK83jTtOFjSRLXdimYBvP5nJIU7JlMhxQMi/ff+5B7D8R+XyhWII5QVqJMUYqmi/0kkJWW6TygtV7BdSOOH4sxdd0Sv/ALX+DkUKBLqsY2r9w54N69e/zj3xeckv/+7/7HdLp9jtriO3sHN+j2e7z17R+ia+LZX3npNQ6PPqRS2cGU5bvh5BzbVgl90eeb2xv0J09ZeifYhlgT6rVNgsBDUx1mS9GmxXKMomZsbe0DcPiozeZWnck04Kas9jy4e5+1jQILr8ynXhKH3De/9QPKpTqKJuZwrzulUi5yaaeZc0pHwxne0qa5VcwRA0kSUXZdMvkeDwdtvNmCy9d3eestwcepN5qAz0brEr2pSDqH2gXF5DpLOTft0pLZLEWzIEjFvuYvbFrrDXw/xJTr7nw6o1rc4fLVhny+x1za3SMMMnRjLOdiC0VL2Vi/xFQGvt3ujMHsPq4l9tCy28S2I06OZhxckYFa0MSwZxw/Puel20LVcLQ84eTJkJdeEWJSo/EFmqkxWXREYhZwzCaz2WOiJCEORWB46/qLeMFJfs5s1Pd5ePghB5euopkr7vIpaWZw+8V9zla8aHONi87DXFU18R3W1zfxFj7V+ioJ5GNqLdZaTo5CWV9vcvI4YHNPrBGds4DGuouXdrn7kah+Pr1/wk/95E/zYz8puHdXD15iOO3wJ3/2QzqykjQ6n/Hy7R8jiMa0u6JyvbZWRaXCdC64k1s7daLAYjwe0+uINeLFF18gjGdcnE+Ye+L9n81mLOcq+3uiGLBWSzl6ckixssWH9wU/7vJeg43NJklq5+iEze0i773dxXRl9dWNmM9nYC7wpWl5q/oqSTyn3xly45oYm3fe/TZOOUM1VsIbOpP5EPwqmirm50uv/BizScRyMiHOxFy86Ab8N//ZH/8VD65qVvbq6zLrYG2jKjZbWykTmfG2rIhCoYCibnB8Joz/ajWdgrHJo49E5qXREtK+42GAUpSGesMlrp5Rrfg4ctOxnTKZdkEwFy9GWS+gJRn3z47Yuik6G9/BtJ8ynxRxXTGhP/PFa9z71ozNPdHOQAvJlgHr5Rc47YjDXJg+RMlUut0ZMynTia5QrFTpdSXZUhpc9nozanUxKSJPkr4VNSfM65QwjTgnLX/qhTuEocnJ+btUHVGFi0OFzuARhmWjSLdof5pSrBYI52IyjeZTLu9u4SQOT0ai+qKmUxr1Jk+PRfawWingFgrouo5uif+bL6eUGi6u4zLqS/NffcLaWp1uR/TB9hUVy2yy3ajxzkcie3DRPuPq/hrjmcpsLBbSsmZRdyr0Y5HB7E1j0mDBRr3I2VhM1OkiRE10rJKaV90216tMewuqRZFVOXx6TMMuomsKviX619JiVMNhOZ3RKInDuJ9ldMcTMhl4t9YtqsVrzGbnTKRSn7dM2Vg7oNawWSzF2IwGPrVSC8OUsECjxmjawSooXHTFGBuqQbVcQ9EjLm+JTM6D+4foboAj5e+n44hZOGGRJjiKmGeVVkYQGyR+imXJ7HJhm0IRumfieaMoorVucefWC7z/jljYgsCnWKxQLreYTMQ4XMzO2aivYejiPu1hB8sqkPkhP/a5L8kxvcxv/NZ/zWfuXOX6poDuzWchk9GMYCE21PXWFi+8+BJf+9qfcDqUGUwrZrNU5PFHp2RFMc6NjSJ6FjGSsItwPEY3bHaubDPsiIWz7FQxLEdmmMWaMpkNiVGwXXEoW/oeuh7TKJVAfmc8nuK4dl4dGU0mlEoVTEvl9EzIILslFStrUavVmMhM5HwZUnBcFlIdzdAiprMRVsFAVeQBczjhvTfP+JV//yd5criSL9ao1ksMBqLSu9bY4v9m702eJMnuO7+P7+6x75H7UllrV/UGoEEsBECCoBlEipqhxNGMmUxmki4ySQfdpOscJDPpIjP9AxJ1kIYyiaQo0wxpHO7AEGw0Gt2N7q7uWrJyz4zI2CPcPXx3Hd7LKLSZqBMPONQ7VaVFuL9462/5/r7fRn2dPIfRSIyBaZrU6i2WfkxJRuGEE6CuyA8cx2E6HQsxY+kM/HxW5IYZTDgQ8UvGPVWFLF9lj0BAHKMo+kKGRlEEOcaNwXfDArjwPcoS6mJL6FsYBCsj/iYav4IlSga6YrG4YjBzHIcsFU6BIfueZQm+JKsAcU5pmrZyDm/6kCQJrud9QSD456nR4zhesSq+hPwJJr0bwgfRL2P12ZtxybIMx7JXfbdtG9u2CYJg5dyoqophGLiyQDkOI0k0kq++d0NkkSTJar5u2ARvMl5ZJpyfIAjI0xsj2yRN85UDWCqV8DxvJSZ8M66L8RjTdlYZxCwVfoCxgnQq6IqKbtn4cr3eZNxEhu6l4LJ45sv3B0FAlmUrwhVB6qFKBsZgtTbEeshXa0xTVNIsZn1dZALKFZu1tTV832UyEWeXuwjo94e4C8kI60cUC1AtV6hLJ2JtvcGtg21UVV2x2c2mLoPrGZ4Mjg0Hc5Z+RKlUodEQwZxGs0S9UWFnt7uCCqVpiuu6nJ0KA+zifMh0HDAZu6vxLFeKdLp1NjZbNFtS1LNSpNVq895PhOD7n793TKlYYT6fY0rEQpoticIEXbVJpXN1/snHmLrF1Bfn6W//039Eu1ql37/Cl0yHxGCbVRbzHvbNus4ywjzEKYhzytRswsCl5JQoVMX7vMClaBb59JNnPD8WBq2mO2gK5Ip09BWVNMnRdQtPMrslaYDv+1TKDdZ3xDxfvlD5T/+j/4CTJ/8SgLp2zd31CkmQ8l//z8Ko/89/rUJn64CFZLK0GkVyvcFiGQLinjk/G5JkEzLDY7P7bQCmi2PULCOWEiBRalJspURxD8cQDtHl1Rmz2Yxq02StJQJ0qq4w858ym0lhc0fDsVrMFgvqFTFO/ZMlj97c4/y6x8aayDyUqi7HT8dsbYs7enqtsbPX5PD4OctAzEOpUGa2HKAYKlEoGXZ9n2CaYqjifd1WiTSCzJ6SazeSETphMEYzHBK5b+NUJ/ZGtJrC2Wlv1nny7CmqXqPelZT8yYzTFz7r3TaWDBoaGJweHrG/L2y8wewK2yhQtRuokkArSK8pldbRrIhqWWaOvIzA16g2pTNnrTManVCwalxfC9ulUu7gWBoPDl4niGQWLKmj63NK0ia4Hp1yOTik2biNbop9PB646LmJaRXZPRDB+GFvgaYtGVyJPv3q977Oef85/fM+liUcQ7MYYTk6F70rDg/FHXl783s8eKPBZx99IMazs8tHP3uP+/fvUm+KsyRaFkiYiLNIloj0hx63Hzzk6Fysu0qlwv6tOlfHC0wJjbx16y5PPv6UIBTvX8RPub/1NoVGzE8+FPZ4rRqRxWusbzSZjl+y15qGQ6UqCZ9Mj5NDl7VNk+dHYm+vNd9m6algXK3Os+H4hPOzHrdeE3DUh/uP6F9c0xucYkpik069xNZGmyhxUE3xvh/94JD1ncaKVl4zYDiY0m5trdgY++MhhmoRzG3e+Ypgz3z69Cn+ckKtJdZ571LHrifM+j2aZXGejsdjDE1HU5ZUKiLrt4hy/tv/6vf/XufqFaHFq/aqvWqv2qv2qr1qr9qr9qq9aq/aP0D7hchc1epO/mu/JaFuixR/GaKZLjv74m+VusL5sct6t7PCjwb+kMvLMdtbwmk8Oz/HLihkiUOWS4rzQsSgH1Ar1ggnIvJpmw67dyoMJyKq0mo4rG91WcQvcGyRSlfje6DMmV/nNOoimpXYL5iOyqzviM8Mhpd02tt43oJNGS08O31GHNZZBH3Oe4LaMgktTKtORUK6nn5+yu7uPr3BEF3Ss89nS3Q1JUsy5lOpU9CuEgYZC5la39/fRcmWZEFEFokIjR+FlNsF5t6cVGqgFJw1vFkPuyWePRkuqOgGY29JRRYtB5mLrRbxJCSgWbMoGhYnJ2NqXfGZ0JtRL6vMCylGKCJJX/3ym/jTEYoUX5sqS7JBgatZn0pNpsiJ2G1t8MGzPuWKiKLv2S2mGVzJuiVdaTKbXqNqIyxdRLzG4xFe4NFsthlJkU3PnfLa5j6eJ3ULOGIysFAKKUYudXZUFbusEiUxjhTjTJKENFWYyWLgvdtbDK5jqjWHc0mgYbom1VqBku0wD8X7duobXM76LMcSklO2iZIAzShQlJHPWRzhqgFv79ymIJYih5fXZIWXkfo0W6JrNsPEpVQUEbA8jEmyBaphoiFqmebjC954sM/5sRjP7g4sFxm3HtyiYot5OD45RFUbGOqEUEJbuzsmJycnhKGEYmll8hwm0+GKan5jfYujq2fslCzSUMxNZhjsblYIR6Ljtcomaa4SZHNOX4jfvEyWNNYLuO413kD8Zs3KaG/s0T8X83cxOOL2/pfZv2XQPxMRoVLLIUk9OpVtzo9FbVZWMBmeXEMiondjY8HO7gFt2+RERtw67TukTAh98Vtm45hqrUSYDPCWIpNUK2+RphbecryiHi9XTQoFeyViWm9VMU2TcNnj4JbAudtmm//hv/ldfvOfPSCWmP1SscnMPaYgs5yaWuTqskexYq1qZ8rFDrVqG9/3qVbFXKVpipJrJDIhHcdLNEtEfINA1sIkIZVKAZWXlNjewscyK6iqpEH2QnQ9pVZqkKayRkjJsMwi/nIOEtZh6mXy9CV1OEAYxOTqS42pPJdZFjX/OShdKHWtXma8LEsQYdzAArMkJU9SHMsmlcK0aZKv6jsAVMNcQfFummVZqJpGoVBiNBJZ6EqpgmHoNCT5UMGxGI/HmKa+ok8XOl6VVTZOjJ8QMc5fvpIgDqQelxg70zRX8MKbeirX91aZGxDZrYJTEtmrlXCrSkpOFMer3yzeGX+hLitPxfdvxk7XTJbLJaWyFIqWNWlOwVrpTvm+vxJmTuX70lSQgdwQQOiaSaVSYe7OVs9eIQN0XVDqI7JZURStCCssQ0gCJGGy+p4fBiDn/IYKPcsylPxljdfNeGXkq4zifLqgUilRLTsUZQZ6Y2MNXVdXZwSoDK/HPHnyZFXzuFh4xFFKpVKh0xHR9Ga7QbtVWNWU1uplptMxea4wGoo5Pj/rMZ97DK+9le5Us1XDtnW2tgXSotOtoWkqxZLDTGpfnR9fEi6hP7hmMRPrTVcz7IpNJgVnZ0FOnmuEgYsp6zeCzCVIQxyjiD8XmaSrJycYxktimre+/AblikOpVKQoa0OjKCAnI4nTFUokWCbourEiabmREyDXyZWX+6harXJ6esrz5+JuvxHFzmUmKcsTLF0nywPyWN6H+QJdV1ksPCryLKl2I7719jeZP/shAC37Ck2pcna54A8/EOv1Wwc604lKKPfnoy9vU2nsEOQhe3ckxPnZc1qtBr2r0UvIqJLizmB7tyPX65xmu8TFYEBVaicm8Yz5fI47V7AktPTh67c5O71gGYn57HTWWMxA1yNuyWzP5cUhk/GCBwffYjw7FnOlm8zCAEXCNL/0zq/z0Y9/wGg6pi2h31PfJ8t8/IVP0RJj0Oufs71+b2WDzCYReZLy2ls7LJYSajZ2McwCXjjD88S47O7c4Xp4Rirp2lMf3rr3iOPLJ0SS5Oq6f0693sSqFrAkQuI6XuApc+qJuI832jvYzRqBe4aeSd0iVWMyuyTVXJybWrBkjhZ0acram4g54bzGP/7tf4sXz8UYfPrZu+zuNvBnZSpSCmW69LHUiMgV73vzS/v87LM/Z2N9H0tKdB49O6Naq3P39peJZH3q46cfsfDHvPXwt8RaqS/50z/+I8ySzd17bwNwdv4Cw4QoHZH4Yp298dZXUIwlP/trcfdalSFKVieMFmzvinlIIw3HVtGyGudDsWcqVZtuZxN3IVEw/XMO7m8SLOOV8G6t1mDpTXnzzTdFvw9PUJQcxypwfCzGYG2jziefPKVa3uBXv/slAP74T/6StbU16lVhy+zv7/L08MdkOBwdC+inmlforpcYj65XNbrNRoetzTV+9Ld/BsD25tfIzQvmE7h7S5wl87HP1laLMEo56ws7od1Z5/TimJaUALoejsnzCZq5IHbFWTLwjtjY2KBgrXFyJLJ13fo2rnfGTMq1hJGwJweDHm++9isAHDwwefr4BY3aDu2GeP7+Pfjq/X/+iw0LbDSc/BvfFDUXhq2hmQqa7a4u0PX1NrqhYDktDg8F5jIJUnSjymwhReGaVUzTwp25+KnY6Avfw9BKzAceqUx3l+0K27sVWl2x6BNCnjw9odLyUZA6As1N2u0y7WqX2Uhs4vPZB9y/f1ekMIFue5/L/icEizaVstSimE3IUDg++YxyVSzo0fSaeqvBdCyssoU7xfd9VEPHlw5RnpmgLkh8nVzqQIhCWI9UXhSFosp6Z53peIFjStYYq0yt0eWTxz9DlSrYtlYkyVKyTNY75AkF08DUmyAhFReDE7Q4oNEVB91wPgV8LG2HUkP0c9KfsVZq0Et63JW1RLqxIHDnVIqSVUmdU9NrpFnAbCwuy929HY7Px1wNL9joCmKBslPA910GUh+kVu2SxNDrn5Hn4sBvdmpcD8eMpyMcuSaLtRLBNCd3ZI0SRUwlZjrx6BRF38uFJmN3SMyUekdsIH85o1iucXos+lQsOUTLEdVmE9+TxrhaZ6qHKGlCVV68ncomWwc6z34moG6T+ZTMKpPlCsWiuAQGZwGJarNXKtNfCCd3bc0mDH3efCQOlf5hn0/PPyWu6KiSmatUKhDEU3S9Ru9MbOJvfukdPHfK1oFImx8dD1BVh7Vmjd5Q9L25obAYRyi6RiwNkkq5hRv0QMICq5UOWWYTxzGDgcA7K2pEc61OMXXIUrEWK+0i/vicR7uyn4Mei+SCgrHN3Bdwyb99/1P2H21RLlU5+lgY0K+/fsCTZ6eUyrLmqlvFd1XeeLCPIWGPT54/Jc8EeYota67yOKbY6OBPxIEfhDGR6sAso7Uhvtfr9chJWF/bA8BzffIsZT6fU5SQjvHIZX2jzXV/TEFCYssVh0KJn4Pbqli2jqGWV+Qja519fu93/4jf+U++iooY4/FwiW7GxKmYu0a9ievNWEZzKpJpyV0IuFpORF2u9TgOMUwFVzJQFpwy5UqLZRjQ60tIRamEbdUwtRLZDSsKGaqWY1vi/YqiESdL8jhfQaOKJYfpbISuvazN8n0flIyGDIjcMABmCqvPuK6LruvYBYc0vmGUSyQEL1m9vyChKVEo4WeaTqVUhp+D7kVhgrv0iSVELQgFiUIcxysjNEoFeUWt2lg5omkWYpo6RUfuoW6TjbUuYeSvYGztdlsShCQrrP91f8zCXa4cEj+QDgsRSSTWtdCz0leEGACaIVgab+qNkjjDsoRjbN6QZSwD/DDAdhySVPSzVCqt2PoA4kjALEsloVUEkEhSjBt/7+Y9N6QWN32ynJeEFyDqBIMgWDlgy+WSNMlRgKrUDQyCYFWbdVNnFobCwdSMlzVRlVIZf+GuHKbZbIZhGPz8PX0Dn7x5zs/rct3ACZeBh6FbLD2PpWQ6E78xolgUY1epVKhVC9TqFRoN4Ry3Wi2yLOPoxRmDgdj/h4cvSCID1xXOT7FYpNVq0WiW2dsX+/Hg9ha1eoEgiDiS7Gvj0YLpxGMgHbAoTAiCSMA9C+I+3t7cot3uEsY+sZwbx7KZLT0+/EzsY0WvkOWKqJeVWMw480jVDFtzuD4XdUnTixG6ZZLLetzf+Z3fwXXnuN6cG+6BIFjKYIe6+ly1VhzdEYcAACAASURBVCaKlisHTOxZhdkkXP1msc4cnj87YjS+cY5NNNUglro6WRJRrhTQtYShhNLXK2VAJUkybEOeQfNzvvXLb1Ipit9HqDIdNGiutflffk8It37rV79Op9Wk1RHfabZUskxlOOzhypKDKIxpd1qYenlFhJWkOuPRnGpFnBvrGy0+e/wJWmnJYi7ZdAs1ND1ltrim4Ih5N/QC5WqVqWSktWzwlxNmk5z7916XnxF1ocu5ThiLzwVJznAwYX1bQOSvLl+QZbDWWcOQdaCVepv5OCaKe2hSlHkZzNEVm7msN0TV6LY7+F6Caoj9f9m7wi6UCIKIjS2xzjTT4/OjT9Ek2cp65T7dps0P/+5dDiRh14ujZzx48y6zXkTJEPvv8/PPaW21UWLxvnp1gyBJmQyG6NJWMsyALLGwi2ViRYq5xw5RMGRTiiZv7W+gaRbTQcB3v/d1AP7sT/+UYFak1tS490A4vjpFnh89pm6LBEGxOiZWLGaTlNcfiL/95IOf8O1vf5e51+Nv/kKUAXzjV/f50Y8+5rV7AuZ5cXHC3QcmZ5cXZKlYC3Fc5dvfvcMf/F//OxVD1EFt7BjM/Rm6rP9bThVu3+pwejigVRe27sj7FKfQZT7XsRUZYG3tozoLNAm3mwwnGHmJZttCooAFLDlTaTSEzUWeYxpF6vU6T56KvaepJophU7QqVCTT8Seffc6jN7dYSAHfPC2hWTnXvRNSeZ4Hvkq5ljKe9MklsY/vJbz15kNadREg+Dd/+wGWXSBOfDrtmhyDa2ztgHe+fov/54//FQCt1ha2VWUqNcqurwKarSpPnzxesRFP5wuSPCL0izy4L2CyWSrqn10ZWBhNAva37/PVL3+PTleM+b/4vf8J21RxigpBJM5FJXP4z/7D//UXW0Q4R8Fbiq7Ui0XQRiR5QkkyqMyDHslcYzbuY0gmObtsE4Yey1gcdHbkMBjO2NioQSgO6bmXkrGgWMvYfyAcBG+yoDc5RZeY2mqtw/YtB7tgciKFfy8GnzKbt2n/0gaZLlbY3t4jrsdHaKlYYOPxGE0x2d2rrbDozHMWixGluo4uCzfXNiocvRize0ssCu9YodnqMhzNSHNhZCeJgqE10PSM198Um+Xw6AVW0aOkCAcFLSZLDZxCiVwe5uWyhj8bsLPe5lqy4HmTJZ29OrEvjCRvarDMQ7bXHY6uZN2QFbLWqDOXtTeb6zssgxmdmsNQRgG+9uYtnjw547U7tzn/XBiPB68XMIwUXTIolR2LZqPEp+9NufOaOFxPL0/JsWm0TcaeiEAltNCzCpXWjXCrzuhsyNbmASN5gWfBkoppUO40iabicJ1NXOJIIZXWjqoHxEqEmmS89UhgrnOlSvIiZTjzOT8VF9rerS7Fkompiw28mM0oNm2iRUaOOHyuvTn1epUg88gkOvbks1MODr7O2bmIqrSaayyNGWW1yURest32AYaT4fkuMoiK7/voJCxkND/MckIlxgxVkNHtZeyytr3PIuixtyU2bDSf8vZb9/jJx0INfrIYsLG2Ta1scnou1vX5xYBiwcBfgCWjoRWnxJMnV9Sa4jmNkopKznQ2xVKE4bS1eYcoDdBICDNJqazkqEqAKtmmgmRBc61DMHV5601xPjx689f56dOfcHH1nGZXjNVgMAM9pVKTdSeBRhIGuPOcjjTKJmMX151imyZfq4vPtRsmP5oe4d2wnA2XFNYs1tsleiOxFouVIsPhlItLse666xUUVSXN7VXtxvZugyyAB/fuMF2IA7DXP6YebxBL53VtrU28rDKZTCiXxbhkqhhD1xvhe8KQKZZaoERkcg37SxvbKqLpOSCMljz3IDVp1juEvqjNipKMZZisSAyCaIlVdPCjOal6IwZeYDl3UQqgKWKtG6aGU9CIQ2HIJVmAu/Ro1uq4Cyk+asH14IyD/Udk0ukL42uq5RZzKYxtWRbuQmRNbrJpBatAFEVkiYLviTPPtm20XKEqhakNQ8PzFkyn05XzkZHjuy66qhFkN0QNMXHy0tmqVsRa0xRVCB8j674UhfliuqpLCqOExXzJVSzGqd+b8OzJOc1mfUUmEQYLgvDqC86NqugUCgUMGfDp9wcii6OoKwdPUXV0KRJsGGI8sywjzWIWMtCgqipOsYCjOVjmS6fHShxMyyLL5SUeBKRJjvwpVCrCwPY8b+XI3Igdr0g30lQ4VslLwo6SU8APIizbwHfl/Gkm1XYNT56nqqJjF01Mw1hl+GzbXokd3ziGqqqKbKD+sg4sTiMyLWcpRWgrlRKJJPEolsR4+r5PLgkzQDhzhqbhuS6RrDEr1SzUPKTZKtBdEwZfuVxGVXRGI1mjdH7Jxfk1H334+UoQuVgsYtsma+stWtKQ2d37JqVydTWW0+mUF4fH9AanHL4QtbZ/9ZcFNNWk0SyzvSNqEtY3tmk2Ex69IdZUp9tiPp8zGo24lHfRxUWP999/ih8EKya3omOSmTl2SRg/ruuT5apkiUxXc6UoCrqWE0s0i6IrqCooN1kcVRFG+9rWqs4tiiLiyF/9DoDRaESWZbhyPnXDwDRNSmWDTlca9ZpBvdZmOrvm8ko4j+12F9edoWgvhbGzJEfVi5Qla6umWVimQ5qm6CWxZrfr+wRxkTASe7RSrXDr1j2WMosD8Nv/7q/w+ecfMpsJpMV8kuO5IhNrSSrATrtOr39GsVRnKgmlbu09ZLlUuOoLZ0vRAjrdbabLc4pFKR7dv2ZvfwsnsTAk06Gl1zD0mMCThFp2k0rJZnod8+wzERw7uL3Fi+efsvSTFbHI2m6bVsvk5FwwKG50yriBynw+WRE3DGeneJMmnbUUQwYSBlcJtZpNZ108ZzpZcHE5ZH2zxGwm9n+zW2O+8EhSKJTE3z7//JyGs053S2YBqx1G7jHFTg1FFfuhaLTxpyFJqtCPRKA0ST1u77zOj38sGPemQ8gzHys3WOZiPHfud+n3piRhQJiKuVJICbyMmSHmszoPWMxd1jpN3vuxqG/a37tPo9FkMr5gLIOiKS6+1qdqit/3wUcvKK9vs71bRJdn3nd+49f4l7/3F6C7zD25Fq83+KV3vsxyKTOWb7d5/PgTxv2Y9rpwmN98+w5PnlxRLx+QJWIfqeoGpg6nJ2Let9YbnBye8/DeHdJE3INJsk+OSrW2QAvE3j4/e0ao+Nw5ELV3WpqiphnTUYBuv8yGaprDxYW055KEuwcPOTs7Q5WkM45dJs1moPkMrsX31rsmL54+ZnQtDKVGa4qu2jSaHU5PhU1Zq7aZzc8wtBKpJFwzzJxnzy7wWlKSx8pZ36wyGmpkMpum6CWuhme8/zMfWY7LxeUJeWpjF2X99uI5jeZDbt/ZxpOB8Ht7D/DDOa4/WzE0xhHUmmUGU3GWheE6b7/2m+xsrfH+h38OQBSYNOoGU+/TlRTGbCECDH9f+4VwrpIkIdXFYI/mZYolm3pLx5cLTNUNGtU1En9KIuk2TaWFXbRZzMX3phOfUtEiWCbMrsUBQZxj2Q6LYEJfUoVaZoG9R/dWEc2LcxcUleOTAWvb8rIK5phFiydHT9EQC7pd10iNKbOJuIT2D4oMhwOyXGU0EYZFsVbDjxT8mU6tLem2Y5N7d3fIFXH41UsVLk49MHxKknZ5MAsp1MQC/tsfigLBZttA1W38VPwWJbZYeGN0I2drTURRRqMB5XKVUqHOYCmMx+5GizxVKUtu1qvzx9TbFcYzd0WOMTMymjloioi0htkcs5hxdnkC0vjR8jZB0Cf1VB7dEbSrQXJJqeDQKUpHajzk86eHPHr0AENSDj//8U/5/je/xdnAYRKJufEmIcX6HCO7oboc0W5WiCKPXJVsYWj4UUK93qDbFs9qBxHX/QuWS0n7rMwIlwm7u9u8/4k42KxSGc0sYVYcarbMFg6G2GaThiQ2yUopqa5hl9bxA2FY+NmcRBcZhaNTsTbI65wP+6zfF99zRz7VAmj+nHAgI97rCwy7yunjK/7t73xTrKHBkuH0nJ8eiegTjsZGp0lNqRAWxEV+fjpAVSwMrUOmC0ei2Ix5fnxIbyAOxHfe7jI4jtC3HBpFYcw5lQ6jxYxbrQK1mtR9Oxpze+8hgZyrPLUZT68olXR0OacqGp3GDvPxGb0TccEYpo1DnaMbIpNui9lsDGlKo7wu5yGmZg+hUeTWpoAB9PsL7ryh4V3KzG7rNmE05+piyJfeENG7ZqNDuaoym3rUA6lPNVdoNpoEmYyw1zxyY53IVDEbYn8EbkaqKZxcCqhNufEaearh+imhNIIMY4mVNbB0h0Relo2mQhxMcSyxZ0ksrk6vuH3/AQmSWUpGKQ9uvca1DBqoqo5hlyGXunCHhzSaNXzfp2BJUp1codVskucJuey7kkOWqCsIkKZDrydJXGRQZmGEtFotomSKYUgtsayMH0AqYayuN2Fv94Dh9TU1CZdwvQHFkkkQzlfwjFq9iK68JMu4gSBZpsl8ehMksVEUhcV8tHIIHNPCsHX6VyJ6V6mU0HSFRw8fstaVRDQbG0wnc6GnJGFyM5l9eSGN5eHQQ9d1KvUGCpK1rZSSJBlesFyhCtJMOH5NqQeSpime5+Oe9TAlC5fIfuWQZdRqYr5MSwONlyQXaoZT1PHceJV9uSHQcBxn5QB5nodjF7HlXJmmiapr5CkES7kfSFE1jTTPVk60adgkSrIap5s+maa5cpwURaFQKKwyQo5jMRtP0HUdR8I8syxCV8E2TIrSSIrjGF3TSSx58SuR0ARLopV2kqZpuK6LItkUAeqNBrPZjKIjmWSzjCRLMJvmCnKoKyrX/T6GbjCairOrVqthWQ6BDOq1OhXc+Qzr5zS7bijW59MlVxfHYr0YBoWCRbMl7oY7d+5QKho4jsPJich4z6YeSZxzfnbNxx8J6K6qaqBoNFvi/NnZ3WBn5xZvvV1Cl5pruq6S5zlnp0POTsX3njx5TBDEAnIKaLpCo1Gn223TkMXjd771NqblMPWnjCQ0cTpxWYQB17MbB0WTc5KvYLO5kqFkClkUEPuBXAs6SZahyML4i4sLkiT5AjNnlmUUbIs0TSlIOm/d1L7wGcFMGBD6Jqee2EdBuGRjw4XcRCJumUwmGIZBLO9oNQfPT0hjg7ffFmen7yX85P0fY9smjiHWZ6uqM50tMDKxhqfTAdEM7J+D5U4HF8wn5ytobq1ZplOrc3beW73/86MrbKNCxpjZXHz3ejhle+tNhuO/BiBKIi7PT3FqIvgDsHeryGBwTr28RUHemcPxBdO5R7cjUAfFYouz8zmOY3Hv3l0Aer0rDN3GqlosXGGwj64XLF0PT9pqftGmWKrTH09XRDiakVKoTgiDEjpizF9/q8XVZY+B1J2cz0KisEIn28ELxRmfxgsKxQKeH3ByIuwnp9AgwUeXQe7TTy9ZJhl1u4LkNWBzbZNit0HuufzgvccANMp1Tj9/QS4dqdpGgfFlSLFURsnFs48PL7nuedy5+4C92yK7ZFgKvasptnRonz87pVpzmM4qbG3KAJalEqczZvMeR8/EfO3uNlGTDgevPRLjaZnkxTI7+w3+7i/fA2B7f487D9d4fvSCSlUQhCzCM9zTNrdlFq7VrpLeLXJZuKC7KRy1H7/7hFKpwVfe+RrDidB0Ojs6w3U9NrpiPrWkS2M94GJwQlXKjtx/eIvnL864PktY3xJ3+Z3uNu/+8Anmhnj2+votnj47ouLscuuOCOyPxn0CL1ghH3Z371AoW1wPA2o1kRHq96+wdRtNM1A0eXZRhSyi0ZaICdund+rS2dhGctWxudag2sj54d+8t8r8P7h/j35vysVA2FP16hqKohKGSzYkffpP3uujqDnFSYmtLRGESSKN8eITbOMWAN3GPc4vn7G/c0Bqib1drMQkM5Vb621G1zKjr2jkSoDkjsHRi9SbEdfXTymXxLnfqHdYLn12tt/i3XcFXPHh/a8Bf8Xf114RWrxqr9qr9qq9aq/aq/aqvWqv2qv2qv0DtF+Imqtqzcq/+xvC+1TQGfR99m83V5or5AZpYgioiYz2fvzpExRNXSnEz2YzTNvBtAwSX0R2S1WHha/gRy6pjEAXpMpavyeiXTVV4cGb6+RZhfNLkfbUHY8ck3rHJsklXGnD4fx5iCGFDVuVLvVGmVbtAbokePj48ac011TyqEKrLjzsKIjo93s8eSKgZtOJz/b2JrZT48MPZEHdRpMgCEUNhCG8/GUY0F4vMJ2Ifs/6PhWnRHezxY2LHXkTKs0qz876VGsisrLwEjrN6qqWIY4y2u028yAhkPSwvr6k5DlsSBzxyeyCVBO8/tW68NSn45DvffchBa2LlkmxLSvF9XsomYhIO+U2F72MPAxX3P9Pzubc2uwSpw6fH4mo0U7DJFYbuEsR1VkuMnZ2NhiPe3gSimFbdcIoIifGkmldNXYY9fvcvy2iOs+eXFGoKRQLDQ6PXsixa2PYCgtvSSbx+AXLIlpmGFJjajq7prrRwtI7DPoCvqDmAZ16nfnUY397S45dgaeHP2X9jpjj6aJKuox58LBJOBTzcv/eNv/mz09pr1e4d1dESI6OLzg9eUEm0+iKHaIGGanlYEja9SxQKVWrhElEkklRXVPBd1066yJaaKsJ81lIda1OIGlsbc2mXNwhcF00U8KChmNU4yXZga7ZQhdHCUGRRf0oxHlMt1ZlNhN/a3bXsFWdUNZglGoGjqUSxSaG3GuWXmQe9Nndew3LFN/rX1+yTHOqplwvR8fs7W9xcPs+07mIeH/2+AjNivD9gGefHQPw8PZrnLseI08KXOsR8bzM63cOiBBj8NHxR6x3b3F1JvZZngc0Kh0MRWfpi6jmemcPS1EpVgwuLyey7w6eP0ZNavIzu1z1zrFtm9MLsdfeeecd/sf//v/kP/4vfpPZXDy/01nj+PgET9ZOmaZOuVxmsVishHGLToEwjCk55VXt0jIMKZerhJH4f06MomYEXoa3EGujVLXQjRzNMJjOxPvqtTago8po3nS2oFqoUCmt4cs+BNEIRdEoF1urPli2Rhrrq0yLoZl43pJKpbLStJrNZpimRbVe+wIN+Xg4WlHWdtttut0u9XoV46YMM88xTYNSqUSxJPZIGIakabx6zmCwZD5bMF24KwKGHJXJZIJmGi9JFHKRVbgh0FCUnCxPMDQdkIKvWUapVMH3/VXGq1QqoKoqtiShWXiuIKXIlJfinIisUBiGq7qim/qqm3ZDaZ/nOarMsMVJCIqCYZmQvayVAlbCu77vr7Subp7teUupQyWFVAOfaqmIbRk4jr16p2NZqKrKaDKVnwvwvOUKrjV3FyiKwnz+snYqiCOcQuELgtKWZZEkyarWKE4EkYVuGqvs3Ww2I4liyuXyF7S0wjBcCaIXHAfIKFg2S++m/iegVq+iadqKxj6JU4IgWRH9+H4AuUa5UqBccWSfNNqdGpVqEV3eda43x3cVfE+M4eB6wmzmslwuV9mJZrNBpVKi0XJWdWbNZh1FzVdrYzFf0utd0+9dMx6KMVj6LrbjUGuVVzCdjfVNBrMZnx8tZJ9ipgtXQgFfzr2maWT+jKPHInqvmpak2BfIh69+9avkqiIykpJFIEkS0viGtELW2mUxURSs9pqu6yiKQrHkrNaLoijEkagFvdF4m06nLBYLVFuKQo9iQi+GPKZck9nQtMk/+Sf/HpU6zEYCRvT483ep1zcYynORbEQyzykVa/zRH34IwHe+v0eWJVQkFXylrrJ0DcgtLs7FXWvZ0G62qLeqnJyIszJHiDmP5+I5aaiSLddorpnsbO8B8JP3f4yiKGiKzv6euMNUVchMrMm7aDZ18dwY3Q7odEQGYzIZMZ+7xIFJEAukTODHFCpVInlfmYUqkT+j2mgyGQg7rNyoQWLjL5YEofjN6xs1Bj0TpyIlHawho0lGtdzBsG8ouUciG5lGSBUJnGKGbTdo10Sf/PEQz8vo7lexJIX70WmfWR5wfHiFVhBzut0uYCY2YSbWhhf06Bba7Gw7IOngt9feIEmXPH12zDIRe2u5dHj41gbPDsWd0m1XGA77KHkZiYwkCw2RYYoVElmLtrPX5ZMPhnzna78NwCL+BKuik4Y1dveEbdiq13j8/BOeP5vxm/9IoIMOn/WYDC6xJIT7V371+yyjKc8Pn/HR478Ta6H0kM6WSRJPqBSEPdw7H0BuYMpatN5lj0qpSKn4Epxm6AUarSZnZxfUO+Jz/SMXNbK4eyDG0yhqaHqJdmeDwVBkEE/Pz6hWy6SJ6FOeQbVWEJqUUituMhmgWybV1hquJCRplC1mswVxJgZqMrukWnRI/IAokfXblX1a7SrHJy/oSA6AwF+S52BI+N3VxTntTp1hL4RM7Md7D+vMRha39nZIpRbVwhvw+PEntBoCWZWTkbHAUQ+491Bk9H764SfYZoEwmqNrol9JPqBcaXJxIp7z3e/8Y157o8zRi3Msee7/xZ//jIn3EfNJxp3bYqzOT3z+u3/+L36xa640XafXF5NUb5gYhZjDowGGFE2r1lVubX2J7e1d3vvJ3wBg2BGqlmJLIoc8c/BcHS9JMWUKcDAdoqtdvHlIXUIhlEwhDCeUJBa2UE7p95aYxksNG0uPGY8X+LHNdCwG/Oxoyd0727z1SEDBPvnwOVGY8eHHH6yM5VsHOzhOE7ue8dF7AqccRVPKJZWvvC3G/+OPjrk661Nrx3z31wTOdTINeP78mGKxyFyyGNabHebDiPlcHJpba21srQyJxnAoYGy3d3Y4PLtANXTyTBre8ZwwnaHbsuA8rnD0ogeVhJasmbFMg2yZMJqITVArlTD0IkapArq4iL/1/df5ux8dooUzXntT1ggoI9KsjD+5YfMqMp88x8tc1gpiPI1M5bOrC251Dlh3BMtQzDmmYXB+LAzOjfZtxrOIJNFfwqfsAkoeEKc+S19c2FYO9XabmS+MGNVQMCwdRU0xbLE2tNRmOujR7LSFMQXMZy6zuc9rr4v3L8IlnhsSzK+IpQit3bIJPJfFMsCpiwOqWqtxeqEjUR5UqkWM9SGBPebR2+JZ7/7JhxQjk3/67/z7/O7/JnRK7j2sUWzc55PHEtqGQ15TmS9nVIvi2UkOZ0+Puf/2HoORrIuw69haREGucxYFyvUZiR+gSzhqo9REXSaYjsloKC+0JKDo2CwkOYDn5Rh6AUVh5UA3GnXUvMh04tNuycPgtEelVKJQuNHecHH7IY9e/w4VCaEM6RFGGVfTPjVZ41EorHF9fMrcEBfMxt4WcRry45/8hM0NcVHsbu7QHz6hXHS4/Y7UgViG3K5ts3gs1qu3TLFVOLocM3Y/F2PVLHJ+NkSXcDvLzhmPr6kWG5RKAiaQ5zlBEuENhxSKch9jEHoZ9++K2rssSWl3qvhhj298Q+hXLOY3DKEaSUGcCcPrc3a3tgklHE1RFDTdwLErpBJnPxr3yFIVTdNXTpih20RJiOVIjaJUZzxyadfb1MoSWudPQTMYDFyaTTF/KRGmoTKdS6ZMwyLNXZbhlCyXekPBnHZrgywPV4X3p6dD6rXOSvujWq5RtC2iZUC7faMtVBNCt7aJrt5A0hRs8yXTX38wIMsyHj9+TBpLVjxdFwLFhr4yRFEyHNNaERssfJf5fIHnLZEyUDQaDTRT1EDdGPppHIk6l5XulU4QpDjl0sqRiqII1/cwdWNFAhFFCaVSBU3WpqpKxDIISNNwZeTe1ECVyy+dXCGYrK5qaLJc1AklSfKSiCJISbNM1DgpYkBLpdIXdK8Ei6JFHMerflarVTRN+YI2VrUqao1uRJlLpRKmIRykYlH03Q8jojBZORXz+YIsy1A1C88Ta/B6NCSKY6IoWr1P13VM08STjHSZkmEWDFGfJWuLSvUypmELx0LCcmaLObZdoNNZk+OUMhpey98jjJbpLGM66WMYBhsbYv932mVKJRvDlItMSej3JkzGU84uhNGrqSa9vsd0OqYgiS+q1TKtRomtbbGvO13xO01LZzIWBvRgMOLi6gWnFzqmrEG6EdNuNmV9TK1IsVTkl772JUxbro0g5qOPnqCYOr6sWfvwow/wkhgMEczJSSUBRb7SJMsVBU018MMlSJ0iQ9NZBO5qLS4WC5ZLD9u2SYvSEgYc28QwX8IzgyDD0EortkDPTdB1kyiJkL4xmqZSKttYBYfWWlP2a4Orqys0KTCvHaSCyU11VmNsGg7vf/A32IUym8090U+9SbXVYDATTlIeqxi2QpS/ZLZEG1Nw2miKOIMvT64JXJtut8XehhjPWlNnmZ1xPZygmWKdaXmJN97axpYw/R/+5U/xlIST4z7VivhenqmcnV/y8OF9NOlAL+YujXqH589F0HJzs8vR8YD1jSZX5+JcdMMFppWRKB5JJn5zvVFjEQWEEpJbbXZJvQxFcUhySWDVyQjnKoqeUkzEnNpWDbvYJ5aCz05xA89/iqoPKKhSk7RQJopDgiDgzoEIsH788Sfsbh9glMXc2arNPBkw9WyODoWTbepV1EpMp5WgmJJd0lWoVKtMZQ2bbVTpbDb58LNDwplYw7/8X/4zNvYSHrze4tNPhG30s48vuDwfUS7LGlRDJQhUyCOsghRuXzo8uP8lprNDTiWjrlUu8/3feg1vKhlvG1Wuei8Ilj5lCYk/fPKC3dtt7jzIObsQgfZmt4qmtCk7Ys+6yyt+/O4TOps2t/YEW+B0McQ0ypw8n7H1FQE7NHeKRNGU04EUuHaqbK6voeUxw5FYZ3HqcXoeUW6YuJ7U2mzUMbSA95+Juu/N/S621capmUwla3KwTIgjd8V4e3R8yKOHX6JQsIklb0Cj3WI4vGbhXaNIwqXPPv0QjCtUqa8W+RU6hSrVlsn1ldxrC1+w+YU6mawpD8MpjUaT1rr4nmFrBDOF11436MsKjlnfplCA3mWfSBF33dbWFg8f/BJOSTz7hz94l7ffeofrwRk//IEIAm/tl5lNR+iayWQk1uf+wQHT6Zxv7Q7/TAAAIABJREFUfEPwHVj2KX/2r8959vSKclX06bLfo1DOObj1GlEkHGjzpSzl/2f7hXCukiyh2BSX5XDqkRPRaNnEgdgYM3dOSMZwck21LrzSfn+Arof0rkUmolCqUG0VeX50tIo27e4dMB0GFO0aaSCNAaBWa+HJQm7fsxkO+5TsOqaMPJbsBrWdMsPhADUVC7NZ2MLR6vzsfVHrQ1bikw8vUfQZrz0Q+OrBRchk9iM6nRqedIqyVMdQdKZSVf3WnT0WnsfO7jrHL8RFWG1H7OyXGPZEUS4ASkaWxytMu2lpjMY9tFKRxBJ/+/zoHKtQp9asUiyIqbxaXDHzFTYbMrKTh8SpwTLQOXoq6zC6m2yt1bg8F4vEiRc0zCa+n9JeEwbtxYsxt/a73LtX5EiqgLtXRRQ1RpcW4LA/pGiWabTbPHn/UwDsZoCpbzAe9UETB27vEpR4TFkXN9Xw7Ji7d+4xWZgsJQ16yTFxlwpxrlK2ZUTBC3BqDvOZLBx3ArzAQFNz1nfFIR0MPSqlqrjQY+mkxBm6njKdit9nFwxiI0ezbLbkBVft1LkeXXGweYAp0bGfHH1AYbeAJo3QvXUTs6SSx00mF2IjKnmX1l2bT48es7kjLtmnzx9z++7rNKVzlykZ42COGkMus3W2YXH//i2m/XAlnBi51zh2i+Mj4Wg4xgY6OfWygyHnuDe8xMocUkVFkQw7rhcQRilzKQaqqTYJAUE0Qy4XXNclCX0sK8K/EhGoOALTX2I7UuR3PsK0m2h6yt3b9wD44XsfMRovCeIJqjRXIy9ibdfhUArxGvpdTs8OaXa2Ob2URfx5QJyqXA6HGNIgKLVLnF8do0jHv90qUi4mnJ1csNsVB+cyNhktrqjI/Z+z5O7th7x4dkmnLdbibDqE3KBYLGFKpjZV8Vlf22EpxbJRPUxL43oY8vG1GM8NKfKcJDmlopgrd3GJZevkvjgZj84+p9Gs0Lsargr9nYJGu90mij1USfm7XPoMJ2P2JCtWuVghCjPcYM58ccOwZWNpDpb1MlugGyqzSW8l4Luz0+Hq/IzZ9IzdXUE0kGWiDtH1vFVR/8KdUamW2NsVRsVkMGcwEkb1jQCyXbS5vLwkigK6svC+2Wwync5pyMy5bTv0B2PhpEghddf3MAumMOzl+iwUCoxmUw5PjgHBoBbHMVkqAgMA49lUOGZRyDIU3ysVHVSFFQlFEkGpVBbU9TILp2kG7jRErzokkmwoSRJct0dJGoFRLLNPqrrKXNm2TRRFgrTj56jli8XiisY+DGSmRtZn3TTHcchIV0afqih4rot+I15bLq/etxItllmYwUCMr6IozMYTNjY2CAO59g2DJF5KMWDJhlap4Xke5+dXq7EEMSaGLZ55kx0zDENkmeW/NVWlYIv90ajZuPM5i6FHJjNumqEzjzx03cQxxH7cXN9g4bk/xxaY0u12MVRlRUSyuyUyRp63YC4ZUp8fXTGbLjE1yYqX6xSrNo5jceeOWGedtTb9fp80XSdMxN4aj6acXoy5HnmruUvSCMexVtmfarXK7q06ea58walOopi+DApd9sWayDIoSrr7aqVAo7lBpVWg3ZLMnEHMn/zVX5NoN2y6mQi0Zgo3RPpZCkqusljMvpDRI8txZJbKtm3JyJiwWFyv5lRTRTb1hi2wUqmQ5wqVshQRNk1UVUdz0hV6Jo4iJpMls/GMK/mqG1mITlcGFtISwTzBbA6ZjCVaoHlAs9nGDy95fCTu39H8jOf9n5JJKY1mo0OxZHPdG61+Rrd5h+lsTu9K/M0smHR3W4SBz4kkbirPVGw7w9AKeDOZuUpH/Nm/+jGvPRQEXiVnh7V2gfa0zscfieDfvQe7bGw1GPYjlkvx+xQ1wfXmK1KWfl9nMh3Q6qwRBZkcAw27qOCUUwyZEfFmCw4O7vP0MzEzphGilxTGkz4VGWwYDWOScE6eRsRLsbdr5SKqVkZDnJOZktJsOizmKgtXBqLMlDSNiQONk0Nxxhq6xuMX77JU9wBYjlS21zo8O3xBuyPO5mfPn1DKCzTrdTxZj2eVbIo1FUfW+iQLBW82o+BYzCfij7//f/8Bv/69b5BkA7Y3xFr8/m98i9//g7/iXDLCRqFOq/oGB/cLvPt3whaslyqsbzRw/SPu3BYG+mI0ZN7L+dbXZFD9sw8omrt84yu3OPpcBN7VJMXOG3z9nQMOz4TXcHUxxaTEw18SgYwfvfdn3Lr9kE8/+ylRJNZLZ71CuAzZ6LTpX4jvFYsp/fMlt3ZEwF4hwtJhOkxoFsU9c3j2FKNgsshzPE/WXN2xKRTqXFyKcSpWbC5Pjzh+9oStrhhPTTO4fWufy57o9+2DHU5Ojtje3iZIxPzleU4YHnH1QuXLX/qGWBuX93GcDSae6Pd+5wGOeYXrVml3xZibeovLy1PyPGIyFns0TQ36/UsuxmK/bLUf0Gi5fPzhC7797e+ItWHk/OH/8UekkcI7v/yOmPdnh9x7sMngWvRpd+sRtWqbci3lvfeEfRqHdbS8yBuv3+MHPxTkJp9/PKC7VmEqM8skAdeDE6pN+PQTwYFwcOcRuiHYew1NnBNh9Lf8/7VXNVev2qv2qr1qr9qr9qq9aq/aq/aqvWr/AO0XouaqUjfzd74rI8LlKpcXfap1jcVUZDUKjoWumdQaVSqVPQA+ffwhd+500aRw3NHpCaqjopkVxpJ16GBvn6uLUxRFwZcidJZdIwjdVS0MihBn1DMb3RJRUG9qUm+UabbWSFWR9iRQefrsY3Z2RUZoa3OPJJvwyceHmJbUmDLb7B449C9Dhn3Rh+6mgTspr3R9VK1AsaqjZDWGQ/E+pzJD1VLmI4UsF/0aT/skqYYq2XUujo5ob1aJnYSZFBrebqyBpjHyYwyZhDRNmzAdUoyE36xnDlpVI49zPFdE00xNsGYtZdTItKo0Kyahl2Ha4v3tahunVGM2O2VjRzDnDIdD/OSaYkVGTIOMLNggCl3cUPTpOk7R3JxqocbSEmPu9QzCZYAqKYgVdcnW2ibPPr9AM0VGqFJaw3V9Fu6YzrqIDGixRZAvSQMZ3coyllgUiiF+KrIaNUun4FSpV22uzkX0rlBQmbkjClJjIsgW2DakHjiqiKZ3b+8zOjlke+8ehyci03E2+X/Ze4+nybIzve93vUnv87Plq6sduoFuAI0BOIYczgxBMSQuNCFSEoN/gbbc6n/QghsppAgpJDEkjhSaUdBoIIyBGQBt0aa6qst83qQ311stzsksIEKz4wKLurv6KvPmvee855zXPO/znPLKg7eI1rKXoXHNzs13ufhkSrwQ2ey6U+fSSzistbnzHYFX/8kHT+m5Dkkgxvdo/Jxho46SN5FoN6LyjFxRuRovsCWtUb/RwgsLApmlDsOYdq1B/9Aikxn5s+Mpd2/dIhh7LGV20qkOmM0mVGsC5rFcBBiGRqVq4st+gLLQaLouUVbQ6oss2NXlU7L1glfuy+xaGrKeR3Q7A27viEznoF/l6dkzMjWgWrkp5kEvuVp8wp1dAUFYjD3SfEpv/y6fPRJjF3hzdGPAOveoIDLj6yQjji9pV8Tv59mSVrvC6CqkKWF6/U6brFBJpDbdxeVzUBxajca2OuHNa9y5t8vKu2Yl+0UalRY1t8X1SFTlOt06mlJl7XvsH4is49qb8j/8y7/kP/7j79JqibFarC4xrZwiF8+o63A5GlOttFiuxZr1/AV7uwfEkcrUE9kzTdGxTRdHVrcbzSqnp89ptndIQgljNQssy2AVXuPIasSGIr1VF5WzMJpTlDEoOYXcu+azFRXXolTAMqvShk1MEyRqhl5riOu0mIxnWzhTRobnrcjznGZTCoSHCb3egGIDJ2x0oFQJw4hc0sjHcUySFcRxSlNql1Qcl8Vise0nabaqeOuAJEnodEQfRpwmMquvEkq6J0uvoqpCdBFENUbX9V/rYcnzHE0XcLsokBlLSxdU5HI8FU2V1QRly06oKMoLpjh5TmmahvYrwsob7S3bdlHkOsqyDNVQycuCDdIqyzIsy9pWOcIwxLJtmXGV/biOs2Uo3Px+WSgEa4+KhJWZpkWSFZim+UL7KgxRlBdCznEsermSNCBMNvTCgtlRCCqLOa5Vq5SFgm3kcg5s7t69S55mzGUV9fJqRJJknJ+fk0jttKzISYucSkVUf9rtNhSJrMiIZw+8Na1Wi1t3b20p21VVxfeirW7Z8yfPubi+EH2vcl+suDXQVNqdJvP5dDvvVbe21ctSJePhpqoIou+s0axtYcniczq6bmKoL+xgU+1berJ6p2poqkmulmRS8LXMCwrTwEvFmGssiZOSIitRNrIShY5pV3n66G8oJMNmTo6qsn3fW7du4QU+eV6iy2cQumkZjmO9ENUuhA1teuFM06ZaqWOY7hYFY9kGRZFRFBm1uhh3ypzlcg6ywndxccZbbz/g9OJzvvhUwMpeff0BfrCg0lTRVXFmrf0AVYXJVLK41nQUvYKa2vzi34v99O//ozcxrJjFXPJMawX9QQPPiwgkY3GS+ihmgmXUyUJZratMsa0aJ0cSOaPEWE6N1+7fI5UK6N3uLienz3jl1RvMJAvus6en1JsZ8tghiSycWsZ8tULZYJVLk/2DPvPlFYps4PRDn36jhx9LGYQyJEgVIm9OVfaBG6YNpYVWFttKc+AnKJjUWuLeQaCjmwmG7iJl7kjya1zX5cnDGQd7QvNouZjRbBbYfTGWZF0O95t89vhjtEL4kEo+p0xKmt0eC0mNXmubDPc7PP9KVHq0LAOtgtYKOH4kKmVFltGuDnn1QZeq7J9utHs0exankn31pz/7kju3vsY3v/UGP/rxD8W9jJSdztsMdyCU/f69dh8vj4lnYv5qjoE73KPXi7n4UvzeOlToVVuYdYvz8YYNsYXjZOSyIhQFde6+1uLo+MkWCj3YafPkyyf0W0NMTdi6F1xQ5hVWS9lbWimx7V00K2YktS8tvUerVWF0PWUl2R5tO6NZOeTmoYDXh8lTsjznyVdTvvs73wZgeuEzmR+B7HcschVF1VktQyp1Ka4eTSlzl8MHQ55/Jd7voHGXk7OPuJbaaXs7uzw4POTZ8Ygc4ffV6k2CaIS3zrhz6zUAfvH+39Dp2VwtxF725oPbpGFMv9tDt8X7Pfp8xje/+TqnJ4/wfNk/Nrqi2WhtWU2Pnk342tcfsFheE4cbYXOVYGawf1DnieQEsO1d6s0Ky6lYx3/497/Fk5Ov+H/+3Yc0e+Jvql6h0+vgrTwoxR63mkf81//iT36ze67IVfRMLuA8o9WospheU7cFtKUsQ6Fsv5wxHAgjME2TIJzSqIqDP8sKGnTRFWjsCoiMt5zgeT6mo5FpYuOOghFFGeNUBF49CtcUiopmqGiJMJRo4XFVjCkrJaWEmgXemu7tPTzZ1PfB518ybOsM2nVcSyz8lb9mfKHSqLrsS5Xo5ydjVmGEfykOyzJdEwXX3HlwG1XqQMwmCkWu0eglXF9uDicX24R9KWJmW3ukqoJdltRa4jln8ZrS1DFVC1Nurmhz9EBjuRYb6WBYQ0k1cmI0UaVnMQtBKbBlr4+3Pqai3CLyI2wJMr+ezlg+PuMb33p1q0kyW86p1mrEC2G8lqayGCXUGwrTa7FY46VBfdBmfu1jSWrNmr6mVm8yiySEzHK5XqzItZBcUmLP0zWtfpMsj5jJoNN2cqquw0TqXg36XcKrBWajw3QuNrtqf49cC5lPfJBkA2q9haInTCZiU6nWatTadcbelFpNzNVnH/4S042Jz74kk/DF4bBKqk3Ra8IWE8/m3/3pD2i2Kvzdb4mFv5wp/ME3f58///Mf8PHPBE65bmW8cv82v/xU4NUPhkNee/0eZWHy8ANxWFbsJvPilJ19h1ZN2J5alCiLlN9+W5S1P3n/J0z8EdFpE1f21fTaYKMztwO0WNheFIFpOeTSGVG1EtWsUOo5c9lnVHcaLPKIne4eoeyLsBWLuFLharWBJVkYVY2sWPHRs5+Jsbq2ycMVzVqf0D8C4MGrd5lfDbg4lxS5SYpZsXh6fIqXSbr0WpWzJxfcv7WHKgviXjyhrjTx1wJSUW13UdM2d28ZTKYCXJOELl4ZM5GkCUrZomHWqNeqjGbiICyNOacXY3SlsoWHZaXNzC9RZU9bWLpUXR2zcEkkLOnpUwFjMGwLPxabOVrOdBIQhsL5uHlwm9x3KTSFdnUo53OAmme0qzaqIptjFQ/TUvClgOfVRc6tG29Qb7iMRsIWUXLisETNdbJYvE/NrYNisPAE5CGOY6o1B0tt40WS9KJq468UVE0hlxp2syCmLPNtDxaFg6WHaDqMZxLH36wT+CNGsyuOT8VafnD/bZ49e/KCaKDfochLTHQmc/G9drvN0yfPhfhwIX5vPJuzXi+3cMbJ7JRer0ejVd3CHh27QZ4plGq5he6pqiogzBtYIDG2XZLEJakUNjbMnDIpIM2xZY9lxamQlS+o0Q3DIk1z4ixlI0Zl6Dp5lmEa2hZKpygKpqajSueuVMBybNL0xb3iLKVMBc36hrK9NEtUjV8hk3hBc79x+NMkQdO0bdC00aGq1X/F7rIM2zBQtXL7TLqlC7pyGfQ5phBfVnQNRzZNb/S6Ws3m1mGvOjau6+LY4jnq1QpxHHL3zg1u3xXnx6D321TqDuPxmEupBZcmOfOZx4Xsk5rOVkynMasw3tJ0Z7lJlAScXXxMJgPf4U4fTVO2lMf93QH9wwErSU4BMJ7OUBVdwKkUYzsPSZqim5sARUVVFXQ0dBkc64YIjlvt/naMi6IQvW3VF6QQy+USTdOoyQDIDyN0s8TMNOJSrJnUdLDNAQ7y354BRQZFjilFYYPUI42nKEFBJvW3TNvC930OZA9trdFEVcVzbQLmLMtQ1Jwk9bc6ep1ue0umsnlulAJVywgisU+EsYprV7g8u2TYF8kbRSsoFJXjp4J6/stHj4mihFanSXcgzsirySlOxeX48pp+W4zVZLaiVqvRkCKpumKiGSGjxQZwCJbpkFHQaIvzcTZfslxFaJpCVQYkreYdykSQyLR7Ikny/vtzbKvKb/+OgIc9evQITVWJ0wRPiggb2oLVvOTjDx+SZMKGNdVBL3e3ML1azaE3rLEOPqfREMmxKJkwGa8IwgLd2eiNFZycT7Y2pVjCLtqtFq7cg7x4TRwl3Li5z9MjsZfEZU6r7WK5Yj7nqyNWUU67qW6TD2napd1tsj5UGcn+mAcPunjDgNWJmLt9rU7VOSTMPmHgyoBk6VBticBtKSGN3YMuz+enTKVNfe9rN3n+2QhVqTHoi/O/Xq/y7PFTHj0MkZrvuC2f3VWPPBDf69fanJ5O6e9d89YbgoTipz/6IWp2SamaqJH44jtvv8l48RkfHQtY2el5l+/1bmB4A0zZr/bqQZPBTp/5KKC1I9bI2999E0UrKeS5micuqX7Csy9OcKR8wY9+8BlhkNH6ust8JoJ404k4vzxHlf1/T5+G/NZ7FpeXJV97W/Qgnx+PcVs2u1qV2liK1esG9Z7Bs8cCNtfYs/jlo6f0Ol0uzoTfkKymUBosJcFUHETsDW/xztdf58unglbeMfvs7e0TBx6TYwlbvXnJ9377d/jlF0Ir6snjT1heBwz3uvhyv1Fjm8X6nDKpM5e0/BYN9gcPqDry9xZNGl1xRmnSj3cq8PGHl9y//y5uQ5zz01nAZDbZinzfv38fShWlaFBKwrXTZyrffOdrqOWM7kDEF1dXZ7jN13jtDdGq8Nc/+gVurcp/8o//IX/zgeirvxid4jR0Zv4Fy5mwqQ0t/N92/WZUrppO+b2/J3Chrt3i6Owr7n2thb8SCzb1Yb28oNGxMSQRhaqlFGXG9Zlwdjo9i/kswFsb7ElDTfKMZbREMR3OrsTBVK91qds2sTSUrMixjDbVSkIgI9ciNlA0G6epEkvV5tLcIYtmqLlUR/dzdgZDajWHSDaPT8cet18fksQl9faGhSvl9PQYRRHPregKfhjQbgy3h7vp+IzHY1qtfeJIZu/KHD9YY+pi0xwetglildRTSGPx7JGyIEwTdjp9/JF4hpiMVqOJhOdzevYMvVTJM41cVtjSOCHPVExDGEeUXGIoBbbhbgVYVcWhJELVUhr1rrzXEXv7vW11bX+vy9/89BPe/MYbjGVV5fo8pNG9SRbMkLqfxF6BbrTIZZ/berGkUakSBAGJ7DHTXZtwtWLXabCUopBR7GPZCkUqPqOqKrt7t5l7U9ZS7DBRI9LYom03CZZiDCb+iv5uBUMT90lShTxWaXdqJJv5zGqkxRxNbZNssqHkRMWKpnQGdF3HaQwoVh41Tbyz5lbot3ZRKip5Ij7XqHWwzISzC3HIGmqF66sxhze7XE3Fc7baXU7PjtgZ9jk5EpvBTu8Qp9Lixj0xUEdPRky9CeE8oZDNU+v1GlvVKayCpiNsYXydYRoq11cy+9Nw0QyHs8tHdBtSryrTUJUUQ69gb3q59YQ8sbaORpquadUHuHULA3GgLSfHDIdD4lRh7knyD71Cs1ohMaSNRSmW45BmOn4kNuA8T1HyCo4NaiEO/1G4Qk+TbaP43o1bGKXNdDLBscVn9na6vP/ph0xkZXCn26XpdhnNR1tigZ3+bcJkTq1SR83Fmrk4HzHc3aEndYSCKGQ8WVIxoVapbu3n3/zvH/P9P35nG7T43pJ2c2/L4hauEyxLYeUtt70y/d4Ojx6eUK9VaUsGo9OzZ6y9OXtSU8P3YzTVRNMUfBlIqaWKoVfJ8xjLEjZr6C5hlGC5myb/FMe0mc9mWJrYI+azNet1QK/XoyWzbjkRk9GcXk9UvJ49ecxrr72CF0zJZSCTZyaH+/cYT09IcmHrluWiYG2rAMOdA+bzJbajUsqqTRAkxFFGrzfAD4V9zhcjVC1nLat3pjbk/r1XSeOMSqUmPzPGcV1M00aX/ZNJFKOoGYoU5zZ0h5KUohCN8wC6oYiA3DS3fSqarhCG/ov+pDTFtl0yyi17npK/6KVJN+q/eYFlWUTS+dA0jaIoME17GxRtiDAsy9hWabIsQ1GUrYCvYWjkxYu/g+jb2vQLAdu+ql/ty9pUrDaEGJvfU1V1WwEzTRNN04S4uNzjwyiiUqlQ/oqQsmOKnqWqK7XpVBWVgjAMqbqO/J5PrVZlOBzSlw67qqoMh8OtDQterJzjk+ecXwkH/f2fPRZMi1FKGEdyjEVf26a3ablckmYhtWZj+96qruE6sg9uo6NXirnajIHjONuARf8Vhr0kSVBkMAMvKo+b8Y2iaEtMsRm7OE2IghBbN1AkCcQ61TCNHkkibHM5maFYJnmSQCHZAo2CZLXg5KvH26BaM1SWyyVvvSV6oO/fv890Ot0GsyBYIlVVx3VtViuxv3meR5mztQ1d1zEtHccxt9WtVquFWhb4nrfVZiuKnJU/5+JKOG66mTKb+rh6l25HzFWhBig6+IlHEohxqDVgtQq2tt9q9gijJeQGP/mByKb/3e8/wHEqXF2LZ6zUTfJyTb1ex1Qb0j5zDnYb9IcDHj4UmkCT8Zyy0La20WjWiOOQ4XB3208VrHPidEGUrLdJEl21iDyN4a5IMI2nR3R7u1yNr2jKqr+mqxSJQ7trsQwnW1u4urwmTTfBlkLVcYnDZEsCc3T8hE5LCDlfT48AqFf7WBWdOJKJFMPEW2fkZcb+vhg724Dx8pTKMKQhK/9PPoxZKCHdmrh3w21QMRwePn+C7gq7Uxc2zZ7OehWgVMUYa5qG743wfbEem1aFXrNLZsXknqw4WxlaDWbXz3j+ifjb2+8e0upbXF+J82m32eHGzpvk6mJL6vHs2REVs81rD+7x6KkIUr7z7ns8PfoArRBz9U/++L+g06iSxxG3DkRBIPDn4FaoufeESBqQJac8/nTKxZnoc7++eMrDh3/NXDO5cVvYtdNK+PyTR9w6uEmtKp7z9OqcwgjQJaInLS1u7Qz49Ph9OqpAWxVGysHvPWD0l5cUmtg/Vc3ka+98h/c/EAHQ9GjJ/fsP8PMFmirWzflsTLfV5uRIJKtv3q4QrXT2Bq9xX2ph/eIXTzHdhCKP6PdF0qBMdd795h3+7M/+LSDOVT9Y4TgG04Wobn34ycfcuXmHy9MZrbrwXZptHW+p0uyI8e0NVfz5Abl2zXIufInv/NZ7PD96H13pY9csaftrFG1NTaIMJuMlChrv/dZb/PTHnwGwv79LSUq10+DJF4JRc+UHmKXF7p4gLfP9kNPTT7C1A77zO+JvT54+AhTGo/k2qba3d8C/+K/+x9/sypWqKpiGGBDfD8gilczL0GQGbB2oZPjMJw5vfkMsvDRfcXlSomRi8UyuJ5hWnSRd40sIYJF0MPWC1cynbYqJM42IpJhiSOFGS9HJkojFvEQ3ZeNmHhN7KyrNAUEgDCzPjmg2dhgMBKRKNVT80OPhyTF1V0xu43aT08sxtuuyuBSLcb0IMOw1ilSfVvIBvX6TMtW5HgsnO/JSqnWNOF4SBGKzi+OMer1CKrNpx1dHhN6MjrtLHIiFWKk57O8MuL5cUKlIAoTjKa5dMpZCykVscfuBSaddoMis8WQeUG2HHD0RAdHZMxfDWVGkzrZBWdWXlHkVRdeZzmWlw3KZLTwGPTEHK8/n8OYejz4+xanLTcuuomYJ8/mMfCmzxFoVXJswEM8U+z71XhetLLmSB1yU5fTrTWIvoJQMRqbmYFcg9CQcRSmYLkYkRUIi6ehDPxOZ3ekJui4Wo9s0iJKcUv67UAJKdDx/wXQinMfe0KTe2GW1nmCbMrud6mBWQKqx11ULNYZH0zVvvibm3dBSLtZLOpUWy/hIvF+9wgcfnGJXJCV3MyJyUj48+iW3b4oM4sLTsOw2y+WcblM4N1eXExR9ztm1sFeNCqZjoajlC3IFu0ac5mRBgRRjxzAdlssJrqRd9fw1tqPSqHRoyiZif73GUFWiNNzalBd4dDv21vFXVYckLQku16i6yCi7WgbpAAAgAElEQVTWanUuJmeopbF1mDUnIVFbXByLhmjbrZJmGkWeo5TC7haLGbka4mo2A10cHkWhs45WDHqi+rP2U5JoSp5BJklKLrUUy6xw76b4ThrnrEMVp9bBcaWTXWZYVgO30qBmiaz0YjVjujxDMcVaaLc73Dg4xF+NMWRD+yZweH72nJ098T3DsfGDEKcqKya2g6Ik2E5JRR5UQRDRqHdoNm0CCZ/IopJOo89CQqV6/SFhkBGlL8gWqvU6CiahF28Z9sL1mkajgSdhdEEQEGo+pm5jSmHa23cOGe7e4vLynCSXh55aodP2iSRhx907D0DJqVV6JKkYu93dIeOrgLLQaEjR8FJVCfyEVMLD8iKiJOb6eo4iJSPmsxWO3UBbpEThZm3llEXK1bXIhL779htcXJ7SbvW2pDOWI8RDO21zW+mgKNHVAkcyZ8VhjqqpZFnAcineudV6QcmdSgreEuHguo6k97VNQQef5jiGpC9PBHW7ohm4zgsqbYUCXdkEbgagbgMeEMGN4wgmwI3z2JAw062jn8TkWcmvJhfLosAwjG1Qvwm8NE3bOsKbudZ1fft7gj3xRTVvQ7derb5gTNywGZa8YFaMs5ROtYW9OT9q9e1nEwmfMm2L5XLJs5/+nDLbwA5j4jjm4FBUFJIkodNrY1kGpik+895736TZbHJxcUkiK/reOhDQTykm3+40SRJBib+ScD7XEAK7QgxazJ9hCOr9TUC0XIpERK1a5eTkZDt+zWYTTdFQ1Y1bUfwarb6iKNi2jWVZrCX0Ok1jbNulLBKybDO2LqpWbOdG0TXKsvi1+zmWyTLwyfMcVSaikijGMsztmK9WK8qyJAzDX5k3FQUdUOl0xD7c6+1IAhZJepWnIhBJXUwZ8F2cXBLHazQ1ZyDZAqPYQ9cjmpIEygsuGe47OKrN/iZIGV9zNbrGqbt4kSRFalgMel3iRMzDYn6NYYLjvHDH8kxhNl1hS6Fq13VYrgL8dUmii3N1PDlHx2A+PyOXSYR2v7Z9Z4CMENvRuLi42Npwp90nTEqOT9aYMkniVgc4VZNSSmQ0WnVWqzkHhz0uzsWeNxgMqLVtyqwkWUu2zighi4FcPKfjlliWg2PuYMq2gP6gwWy8pNmwaFVFoKaqKetpilsX47uaFbz33re4Wj7HF0cfb7/yKo1Fyaz8ikKTCdDS4JW9Lg8fCt+pefd3UPSUVrfO5aUULV+M6N14QDUr+ey5cOLf+tqrmPmag46Yl1UUkVkx9UqVVSjOvqdfTbjx2i63br9BwxH3t80VWVluGf6MClQMg939u/zNY0FocD33+f733iPOnqFJCjm3YhItXf7ZP/unAOwd2KThivHlGYOW8HVrFYXPf/kpZ/M/4ZNfCoTL9CrFsHUymXS2bPjrjz7g4anP939PnKO/+w8q5MUxS7/Nvqxwr/whzabGszOBLllMz1m1m9wYvslcUvcbRhVl7HO+ntFpy8SwYfPhxz9mJCUcAlKenZ0QqQmxKmyokrXIiOnK+fzq08ccHL7Dcn3Kn/yfH4j3rdewEod2W+dUipbfu/OAH/34fSJp59fXPm+/c4eHn55QJMIOXrn3NpPRGQou3cFGqD0jyZdoiqz+nigYWkx332IhJRzS2GDYe43Ts68IUvEu3W6Xq+s17Vsb+G2Erpn88pdn3HtF+G/oIaPRlGLdppBMtU415PLpNd228NW++93XyLw+Sj7g9PKh+L11wdnolEb9PrfviXYTP5GIlb/leklo8fJ6eb28Xl4vr5fXy+vl9fJ6eb28Xl7/Aa7fiMqVoZusRyIt/+YbNVaXOouxSmsgsk2rp3Peev0dnl+NWUvo19nplCKtk0iK9UKx2dvvU6gBhtTxSYIRu706rcjm6VNRScoMFTSLVbTRuVmg5Q5ZppOqstJimOzcbqMpLvNIZD46zQa62+RaahTNJucM2wavH95kuhKZj4V/TmF4NJoVVlciO9HptNCtW4Ty99bra/x5jSC7xJGZ8lrFot4YMBrPsRuyWufHWFUTJRZR//mpx06nT5ZMsKsi4h5decwupoxXa27siSzc3u6QhmXR2RW/f+9+g7y4oIhT/FSK/1o+Nw4djh9vBBnXFIWBrkWMR7ISMLCJvQTFVJjI96s2XSxD50xWf6q2RbD0ORlFtMuN8OaMgxslURLTqomsyt5ehdFkuaVhtmoO42hOmufbjKKtaKxCn3rLpS4rJldXV9SbdQJF0i5nMZW6wXK6RJFldFPLMdQUy1ZotmR5OJiyWhW0K6JkvQ5SbDvD1E36ezLTs0jxoicoGNtG7X6ni5FajKYiI7EyTHYbOt/u3CV5IioYM2NN6trMzia88qoUVzy5RIu8baZuejLDdbukWcpUijuuV+foGuRFTFMKdua5j5rXyTORBZzHK8LIw7RruKa4t1JqxKlPp9XYVhDjYEGalagbDZ9Ki7yIyPKA67Gw1zTKMe0cx6mwXkmdkmWKVYYMdkSG3DA0/DimWasxXmzob6FIDNHrY8r+nzAFP8WUOM+y0FkvfHRbNO2DEJhVFahbVVSpO2OaJppSJUjEc0+nUwa9DlEUYUiBWUWr06haTMcCZlKt1wjygGrVEbpuQLQI8ZMV7WaPtSROSc0Cw7RIpP2s5j5kHpql44eSCEPCS0tdZSpFtbMwpls3mU7EfHbaNfxlwmoFX39LYNM9z6PIT0njjLfe/IYYl7dN/pd/9T/T6UrIYRhimBamU2M+F5WB2XxJGuc0m80twYNt2yR5toUmrdcelUpVQJFUKRDujWn32qyDMYasPNhahUKrkMsstVo0uDqZYFWCLezi/HRBGC2o1WrYEvu58jx6/SbXY5Gt/Orpx6DqOHadUnKqd1pN2q0OhmHwaNuX2GA0GmNLZcwvv/olB4d7rPyYi3Nxr/v33kRVRE9Skoh5T9OSmu6QSQINTVdZrRZomkKjIe6VJAGO45AW8RZ27DgWtapDVVJyG6qGruus1/62YjGX1LhhFBNJKvuyKFB0HUt35L0TcjLK8gWhhKgcFei6viXoKMucUnnRX6WpBqpRkqUvqlm26xJF0TbD77ouZVkK4dl8A18ytiQYG5hcrVYRFRRZsdlUfTRN20LrNs+yWCzodETlw7IsZssFQSj25SBcbStEqkQQWJZFXa2jmdq2l6ksFZIkYTIVe4tSKKw9D1VVt59R1JJms0mj3dj2sDSaFWxH/7X+o9UyYraYb0knTNMkiiJBeS/HYbVaURTFFja3Wi5Jk4Q8e6Ht5TiOIDZJX8AqoyjBcV48t227xHFCWSpbCKWiKpQoZFmGKeGIml4hSqKtppXlmGIcNTDknldEEbEXYBgGiiRqMQwLz/O2VOxCpFrARSUARFY4M4I4oyJtaDUX2liOKc6P/qCNphdoZUqrLeH8ho6qNLi6OCeVtjieTNBNg/FCVHvzNEMvC+ymylSSanmriL3dA66mp+i2hMSqddbrcLs+dFUFNSAMNkTzoCgaw2GbxVrY79nJKc12DQVjSw/f6Ta5nl4xHPaZS9kR07KEXICscqYJBGmIbZsUkhAlLxICP6VR7W0riE8eX3H39g0URcy5roFtuSynPod7Agr99OkR1ZoQag6WYkD39w95cGfAs2PRb1yrNhmNL2k1S1S1uZ2XejPj6tLf6im6rk6ZGPT7mrSxSz7/6hMMw+DvvCfotvNQQVPb6NEu3bogXLr3D6qE4WhLVLM/SElNyB2dez2xVxd6RKB6VOp7eJmEQvvXVLU6nvQfdQe+fPicg70q7379e8LOqk+pVw5pV8ptX2vrfo3FwiZeS5h3L+fRo2N+97f/OT/57KdyHqo0Oi6T6zog9tPjo1P+0//s+/T3xJz74QhLNTGciH/53/03AITrlGU65/x6xrvvCvryrPYYtaJQyHmoDlt844++x42Lz0iKHwPw6Zfv8Pt/75+zmh8zv5BwljLHMO/RcsT7de64PHv019y5+bu8/c6r4t6rv+D4g59T1TqMJ8IPatwCZRUxldVJtQJ6q8bjnz5lLXXK7t6+TxF2qTtyDMwhQZxz516F0aWsz6ghiqZgWnsg0SyPHj8nisaoUvR+MT3j4qJDs22yXIn136z2mE5O2N3rcbD/OgCj0Yg3XnubG3uiuvXjn/yM7/9H3+R/+z/+ewYd8ZnZ8glnRwmdnkm82XKUAm9VshxJ4p9kTb/7HbqHHgvZb1xzuozHUy7f/wJL6r4+uHWDWXPF2hNtHR/+1Kfea9OsWOzdEPPy+lsmmrXm+VOP+UL4hwtZvf3brt+I4CrLo20Tc61i881vvsH10iNNhQP04JVXmFxf0tv3WXtiI3UrTUzd4FJif4eDKv2BhlPd4aOPhVH0h22OrwKW/gK9KTbOVqtHWaREsgy68kwajQbNrs3RqWRasVQmlwF5vqbblJjdWKXwJ8QSkkPi0Wu8ytnzM2ypH6PTotKrkRdLkkJulJpKFCZEUm/FdV2SKCJIY+yKMNbbt7/OaHpGooYsJmLjtm0TLwhQZY9Cu5rhmArTccaG0idJMtA0dCdnsRKL7L03d7CKEBvxe7PJp7hugaYmaIYkalgY/MX/HfPZJ+Le3UEd1+ijGyqKFCN0HIflfEzFbWyZshy7yvX1Nal0WuuVKq5p8MrtGyRSeTcML9F1lVyBQMI8uoc3+ODxn9N1BPQrVBIipSAu0i02fDGdUevWCdWMaCIJGDQTf+GxkgQXzVaNMs3QFZWlDPjqdZ3ZaE6zVsWWit779TvE9ZREwl/8UCEvU+LIRPZD09mxODstMVSFQkKxLseXFA5bgovpKqFZ6/Pcn2JJ+FJrp8X1bIw9tDieCod9MQkZDGpkivh3WiZcXl/RbNW2TrZm6HheSJFbW0hqc6/P2ckYSxe2GWUZbrWFohXMpehsrVbDqJbEZbgNxpczle6gjycha8v1kjzPCb0Cw5Dz55pkmc7CC9Glg97uuDx9dE4k50+vBNQaDYJUw7EkTDY3mC9W5K6CIYUTa3aV8bMj6hJGY5omq9U1rpazWEuB50LBzIUAoNaTjqGucXI2p9aSDq2Sspol2G6F1BfP8Pj5l7xx/wGFJJNZ+EvsqkMQBDgSQrKzs8M8MPCDBb7sw9A1l0q1QR4JG16tAso0otbs4Ui45HwhDoz+YIdU9n2hJ+iWQbclHFzHUlHdGjVniCGZl8ajYwaDHrri8uSZ0NF759232N3rE0ho63K5pCBjZ2+fdlsyAYYh7Xab0fWMnaGAnzx7/pjd3R2WSzFXZanQ39ln8fhD1pGYzxv79/j0i4+wDBPbFGNccRxGZzm9vtTn8gI0K2Vvf4cw2PTHWJRqSeCVGLKnM4lDzs5HOK7U7LEUwmjN/btfR5H9KldXFxiqQxCsXzCkWRpx5m91mSwNyiKk0mhRr4vxfPLkl+wMD/GCnMVCOI+VSpUwKtGNF9AsTYckzrFtsXdunH7btre9U3qaAu5WhHbY72PbrtD5kqx/3bbQTZot5kxm4vfW6zV5Xm4FgxVFochzkiTZBk6VSoUgEMHG5m95npPmGXH066yGIihSt5/RNG37nSiKSJIESzqsIJkIZd+Q44ixStOUIAi2vWmWZZEkCXGUUpXB5KYva9OPtRmX9XpNkshjWLUZT6eUZYktCTuEWHGFKIq2zJOO45AkCaa16T+W+ltZhquLv8VhRpRkFLM1k7HUCDI1XNdG0168r+NatNUmzaaw/cl8huM44h3k2dPrOvjBi/6c3d1d8jz/Na2vQoo2Z1m6DY5rNSHuvIGaJ4lgmwxD4ewDlEpBloJTsdGk/tYySsnSmA07R54laGUBZUGeyvU+GxF5awxNId9gcOXYb/rs0jjjejzC8zxu37u9fU7DEMx/s9lsay95XuJHMtB4MqVSdfBmHp89FElZ3ShpN6tkpcJYnk/TmY8fhTSHws4V04QU4jDi9LnomWl3mizXAZqhYkmh74W3xnWrzOQa6vcOyIsCT+qRASRpwGQRYehiD7518x7j+SlZHjKRCd52u0u16hIl4VZTKgxDwjBmA0pabxlQZyiZuFf71Rqm4RLGM9yqeCbLLMm1Oc+eif3cNFxa7QqlonIiSSjeeuO3uH23w2r+Yh6uxo85enrM4Q0BWZutLjA0E9uuspIkRVcXJdVqjUYn4dbNHfmCJoOvOzx6JM7MwV7A6XXK1++/BrKn++TqiMHuIevjjNGR+Nxn089AjblxU8C8xuczMq1OmjtoEn7WulFwMRlRq/fo1WRbh6oTBxXeeONN8fuax6C9h7eY88P/V+gd/ef/5ff5/IPPOH+WsLsne7yeneKYDf7gt39XPJP3KfVDjSgfcXNXBJ17uzp7hw2ypAKa1N+MfVbhBV88lBqh65TJaM7Pf/oBjtRObDUOeO3de5z86Q8JA/F+dgUefnrOe98WzLxKsCCeh2j2W1RsCVFfFzz/wifgAsuScPDCI1+U7O4I7oIvPv0Ut1lnuTjGPpSi070D3r1j8efvn/DzM3E+nF9PiSYGpS9ZDjs3iGceN9sDnp+K8Xz++ITdV3usJrLVRNOxTJWPfj4lkf2chqZwNb6gyByqFbGX3LzZ4rOHx4TLDcOuw3K9IPY9lqGAL9bCm+zfOKTp3OL1N0R/0/Qvx+zsd5jIBOHBYZ+j44fs7LYoImHDf/hH3+Hnv/gxj74Ys78vEtF5rnD3bpcyF/vkTv8WKimTqymLqVgPSpnQrA+ov17hdCT6U8+uLygwGOyIpOWnnzzm9cZb/Oz9f0tF+ui9Tp1mdY9vfP1btCQL5molbORvu34jgitN0anIzeGDz0948OYtdpoxk5FsUFQDmlaDOHFQJQ7UsFWycs7OLbGR16s5k8kIUHntbbGgLk/WXJ/PaXYclE3qKlVQlIBqRXzPX9sMdi0uL6YQi0MvDRWqVo1+v0okw+IsT4hDqMlG4/4rDeZFSNqEhS8WkF4a+M+alEZ1S+s+ms54cHeItxS/d3YVYjcj9CynXhdGcXZ2xvNnY2I1or8r7m8qFhRLvJk86PM5uhqiGCZRJKWhVQ3D1akqdVJPbEjv/2TCrZ0q3e5Sjl2F6UQjTz0uZuLwmF6bLFYGe4eSeSn0iMoravouS18YnGIOsGsGRZrh6mI8O1YLpargy2ZIy3Gw3ZI8CZFtEjRaDdLYptJq4Ekh5X/9Zz+gWq1hS4HLpqVzfnlGs9XEW8oFW6RUHZuriyt2JcX4epZSczSRZkI4k0mRU6oaxebA9i0qjo6q6mShmL/ZaE7ghRjGxjYMDLfCZBSwWorDstHP0UqHKArpSBKIKMzhfEEpM59WGbOeXnPz1bvoEvs+Ob3kerTm/ivd7eGx8hdMv5zTaov3K4iJi5Bk7lEzxRi3qjcJp+fkWUG8EM917a3IM5WLiXimw5sDTNtlPpmCdJbXXkatoTJeXOJIh2S4O8T3S84k9bxl6jTqOut5iKbJCskqYjWP6O/U8ROxAVYbLsM7bSxZ2S3SksX1gkqNrXjtaLyi21OJlYA0Fu9ca7hYBzdIpdPiWjZlq02qxGjSCSSFxA+4Go15cCDJaXSdcqBwuRYBigaQaVBqdAci+FiOfKazJTt9gWMOL0pKUsLAJ9CEnXvBFN2p4XszUhlc1d1DGmaHSkc808X5GKWs41Yr296QLeFAXrKYirk6PBhi6xrvvSdoZv/1//pv2N3po6g5T59JWvk4IjrLMMwJlqS7/snP/5Kd3SYjuSft39hlNr+GMuP+3fsA/MVf/Zhuu0Gt4nB1LrJbd27e4vziDNOQvRNOlTD0WXsBt28IB2E+j7HsLv5yQk8yQhVpTq/f3Ioft7sVNKPKRx89FfTqgOlAVpQ0mhbz9bmcY50yTskKsdY1PcdxVZ6ffEyvIRubiwLPC7l15y7HR+J7jlljf/eQlSQxyZKY9dpnOQ/otTdEKpdUG/ssV+esJJV2mq+4e/tNViuR5JpMr7h5cJ+yMMjzjcRAQqNVJ8/KrcO+mnlMJgsaMoCPowJN06hWqzgySWIZJmEckZcq9YZ4BkU1MXWDWPaUTSYzam7t14gpRMAoAqAt859m4Jr2r9Osy//ffCaKIhRF2fZcGYaxrVRtrk0fl22b2/Xvui5FUXB1Jea81+thWRZxKYIueBFYKIrya8QQvV5P9gDBer0izwTLYSarMZpp4UcxGipOTdiQpik4jr3tiVKKgjxNKcnJZKZe1USFKvJCKo6w4STOqFUtDNmLmqUhYRhimCbVTS+MoeN5AZ7nocmMs67r23cUvy+qUc1mcxtcxXG87fP51f40Xde3VSrLMjEMnbI0SeWe5EcphqFhoG2rKHFhgpJtA+gyS1EVhTRL0NmQMkWURUaJshU7L/Nii47YXMN+j3LQI5P83nmeo+smrVYHXZcED5HPjYPDLRoiCUMsU+d58JxqIav1WkyYeuR5SkUGJNWWRrbMMSRqQ9Nh5U/ZObhNoyn22DRf4Sc+eVEhl2Q81YZOs9EgTcR91sECQy/4lfY0oqSgiH36PbE+6vU6WdHCMFQ6LfGcnueTZlAqKaHsmYsij2anjS4FvAfDA5bLJbbZYDKS9OyFiaZnrNdL7tx9U37vkslkwiuyN+X04kt006biDDANcT599umnnB63GU8uuH1b7CWGCd1eG8uUCTWtShbF2KbBcib+dnizx2x9hl5WSKREzKC1Q+Rl9CVpQW4FOK02N28aIMmHMm3Jxaig7tRwe8K2Ot03saoWY4nQ6OwM2Ou2+eSTpzR74hy/MbR4fn7Kl4+mfOMtwfL76Ksz/vD7/xilEO/yi59+TpYYvPXq36HfFOdTGmTMlwEHw7skiPHsRxmuXWFydQTA7TvvksVnHJ0ccf+mCIAuRk+xdBPbtmmWYv9u3rB5/vhyu38fnxxRaSW4bZOKZEisNBr4aYV3v/1HPHv+GADdqfPaO/vbxNtqec6suMbI4epa2PbNmx5u7xr/3OVS9vbfv3+X8/Vfs9/6AwDu3XyFTy4vieKQv/q5YAJ+/WCfIJ/x9Ks6blOyO/sGTtulY4jz2Eptln7OMo042BcJiSyLGF+cEEom4t27eyxmx3hzePVr4qx/+OiM115/m+PjU64uJTNu1EbXKjQaItiKY4/lakrgxSxkz/XK+YR4XeXuHZsPPhZ7QpwmTGYeS4mQanQNgnhNFve4eVfY9Z/+X/+eslRwKgVPnwhW4Vs379PpOuSSdfT4aUCre874QqHdF3Zn6BZJVrJGo9OXfl96jbpu8OFn4j69/TpZcsprD2pcXIu/rbw1cRzzP/2rXzCfSsTJ7EVS5//v+o0IroqiRCZ/caxd1Nxl7I0w6uLhh72Y0WnAeJqD1ARJVQ9VKwhCCRdJm5w+tnn9jT10TTgIN/dsvvn623zx2VfU6qJq8sWj5+wfduj2ZJbT8ri6PEdT6yDZqeIk4rd+b4+PP3qIIUkujIGO6jvsSc2gJ4+/Igp0arUaqiqa5Zczn1o9YbEKUAyZZTRK1sscQxObdJQ+JfN13rz/DuFcbMBPTj/iD/7RTT767CHXFzLLn/nsDxxyCQG4s/c9rldnWPUATUIh60aXdeBTMVRU2aCflxnnV1N8TzxTXGRMr0P8ZYEp4YSpFlBaCfmGBtmygIRKe02+FgtBd3PCmYJaamRSm6aoZtw6vMHjp2IjWK1WjJdzYqe2bUJXDYdgtSAtAkxZKet2Wui6jiEhQKvJjF6jR0G5ZTDqDlqkUUi/3mEuA652b49cWyETmlxML+n3uxiOQ90Q81kuc3IlIw4h8sRzDg+bTNWYlqRdH83nTCcjWq0Wji2+d3V5RaWeYqoWwVosliyFpAh5fVdsyJfeAgMTfVnlSDLl9OoV7vZ7qKHN/EL8zXYMVDVjvpQVN8ul2epyPTqjKSmHg9xjmSypVBwSXWyIUQyO2eW110XWL1orzGcBWRCT5puMe0Ya+dR7PVZzkUHsuArj62tQJczSciiykrrbRxbByIsYf10IBrtSOE4UDrder7KSG9v4RGFvsIO3XDO+EodVtW0Tqzr7vS73D0TQ8MO//Jy1HqFKZ9mzbGynQhynIiAFVAz2DvaJPRVfZrMuHp7RHw7ICmHnpqHTsB1m4YoNgZdhd6g2elRlcmWoh8yXZ1SdNoaEBR5fPidexjQqNmopnA3Htrm4OMW0pbOVZDSbXZbemHopmKTeevNtPuaMNAxpNSU0ql7FW662Y9Du1/jyq0/odA/p9sX3nKoGpc7Dz5/RllnpTquBZhqU0gFrVBtkccZkPuGjD0Xm82BnwPOjrxj2b2xhgHmRMRx28aSNOY7BfDbhYO+Q62sx5oZe59aN23irCVEibLja7ECypC4bjy8uJ1g29IYdlFI6rxT0hgbBIsGPxEFk1dqUpcF8IWGW1RpZqoCdExUb5zWkYldYr1d0u2I9GKrFehpgSWhWraFCqbP2fSIJm71z5w7rxZyj4yNMSziGgb+kzNlWUSsVh8vrU9rtHoEkwnDcOsvlFEMzt9WJ7rDLeDze6iutPJ8kSViuva2zbJs6milUrTZVkyzLfy3gMU2dSrXKer1+4cRLEgoBSxOOb7pl+9tAxkSgZFnWr8EJN/ThIPY3VVWp1+vbIEnAylLB8ifhdhvInCXHxPd9qtWqpPp+EaAkSYKuq1gbwhXfx7QsCsn0qGpg6QaKVm6rMVmWoeu6pIjf4F9KAi+ilIGGbpikcUa93noBt9NyykLBsC0UWamyLYvZbPGCsj6OqVZdlss1q5WYq5xSEk+YWyKMohQBTrwh+igLyY4YbnW1BIuiYM+UMS6xhBe+YDV8QcbhOvK80GxQYvI8pyjEc1mmThAkSC4JTMsgTzMKQLPEXGmahqoKhIS2YXukxLI1LEmVmxebNedQrWw0FlXWQcx8PkWTpAFBuObTzz7c7tXNZpXTkxHL9YiaDP4b7TqnxydUKhWuLsU+bDsOSaazkqiRnBxT1zi7GFOTEhGK7qIbCoblUioSNlosuLi4QN3nVUcAACAASURBVJHw6arTIA4TlMLZjlMYKpimzmQiqcvjnNVqRa872Aa5AlZ6Rc2usZxJFlxFR1drW+KYo+fHpFlEt1XlwatiP8+ijPl8Rn+4z8m5IG6oNzWCKMEPN6zKTfJ8xXqdsrsrAqnZ+Ij5YkKz0cXzN1TaMYbuUhbi3RQK6g2X46fntNpi/16trtgZDJjOFxSSQdSpqOx2X+f9j/5KvIvt4qoqZ8dX3L4hIIDnxylJOqHfajB/KBIXf/gPf59Z9AXBUoxBvWJwcTkjSH2MWDj13myPZJGScMBakhqNF+f85Ec/5J/+k+8CcPJswOVFyNe/eQPrQ8k43azx4LUD+rXbjEdi3PNWyXDP5tVbguzgYnFJo3obTV/x5SMRtDiuyvGTL7CqNqolbDj0LBpNlxJhG81WBd1weOV+i5NTse9nyojVQufVu98mSMS4G2qHq8kpvc5NAExcVtOC4W6VQUOM+bDVZ3I5Yx2o3H5djNX1aEqWlPzgL/9bAG7vv82Nyj2+ml8zltXLpqXw4y8iitaAeCn+FiwNhrdzTi/E2EXeGYVeISbBlXvl7Zs38f1LSlckKK68BUqp02k2WUvYqmUWfPXVU27feoXrawGv++rROe2eTi7ZnhvtnKvLGfu7hxtpOOyKzziMQangyfk7vVhx95U3mFyLOV4uU4aHBtNxQmsg5mU+X2DpA+qtNjkiabDyjzGsIa4r9vyD/R6j0YRmy6bXF8/w7OgZo9mcxEx4/Z4Yu/GVzSo7ozsUflIcQVjXWSxmDGWl9ejJCsPVyClptsQ63dmRRY6/5XpJaPHyenm9vF5eL6+X18vr5fXyenm9vF5e/wGu34jKlaFDvSriPKtmcjU6QylSopXMgAdTnFqdt7/dJgpF+XK0fApqiSd7GYbdOslKo970mU82VL4ZSfKYwe0an30uqi39mxqGEfHkM5EFeONrLebz/4+992iWLE3v+37H+/Tu+lumq9o3ZjADYECAEikKGwkfgDtRC+20ET+FPodCCy20YoSkCCJAgCQG49A91aa6fN26Nm96d87J47V435sNKGJ2XIwi6t1V1s3Mk69/nudv1piOzv2PpJnsScDXL3/DXEtoeCI6VfOM9onPIhWZCLNtkWUKWgUjafybpjq1ZsUf/ugRb14LuM1qFlJhk6qiQlNvtOn2AkzF4OXFVwDs9xv8/G+e88kfd3YeXYuLiiopObgvpT31NX/06ef87a9/gSKhNWGyQVUMTFRh+ggoVoFiliwTmTnXwW3bDG9n6JJzUT/QKLfWzgDSsDyWq1tubxYYljRGU0xcx2I+W+FKEuqmCAlnEYYv+lfJMzq1DsPLNaaETwXtOqURsc51PF2UIwt7Q1lmjKYiOxNN5tRsl0IH07nzICmxbYdSUelK2NPNcMy9D1rcnAvYZVUlZElEFG/xJEQmLROKLGfQ9bCkL8NykVCmyg5v7ro+mlrRqvdZLESGT9e2KMkBrU5Jlol+Wc4LTh99wXgh5pTlVRx4NSbTa9JCZG22mck8XmAu36LbIhuyCiN0zcaWhGhD0WlaTQo7YjGSXlFWjU6/Q1LGZBK64zkWH58eoUis+LPoivlyzXGzTd0Umc9Xb19xb3/AIk1xZTUkS7bEm5gHpyITeX1xjRvomJ6Dqolsz2KTUe/UqUowJJH5uDtgs54ylWumtd9nEU6wXZfP7gus+HgS0+yesl7ccBOKkvjD/TZfXl2RSAGGNIfLyyWGUdKR3hTbTYLneSRxwkpmoHqDgPn8gkIT24yue8zmQxTHYzgTf1Mb1Hl7/ZThSGRQKy3H8UqKPCeUcvtOw8UJLU6OH/L1E+HngnGL7SpE0jvG0EApM+oNl+VUrNF6TWSwfM/aZeHTOIJS4TdfCvND3cg5OrlHhc5yI95n5DAcvqLVG7CJxHOqiolj10Fmm79+8j297j4//vxn/Kf//FdivtgGjbqPpirUZRZ8E06oSFGlp9XZ2Rv29o6o1DVSQZqPHn/Ize0runstBvunAFyeXVFWK776SuwRg8EBr9+8pl738GQF+uzdFcenXdbhgsGB2Bfz1GAbldQkBLcoKuJYoVH3uLkV6yHPElzXJYoX+HLfVUg5Od7fmdBeDM9pBDV07QfeF5XG02ff0+8dIRGbBG6b5WqB44ofU6v7rFYLtul8V9kxLZ28jJmMh/R64jln8xCUguFEzDHX8Wk0WhiGQSSzoZt4i6+5TGYTdEvsObVandH4Gk2aA6u6RhiGO74UiIpCFIbY9g/QOcO0BXRYcr60SsAGDdOkSKWvXpbjuu6uctVsioq7kFqX1TTbxjT1neiD6OPin0izN5tN8kxIid9BDHVdR9fFd97xjVLJ1QpkPymKgqoJYY+pFKuwbRtNtUi2CSpiDqOpKIpCsyaqvWmaYhk26/V6JzpRViqGqaGpUJQ/wFfSdLuDvzmOQxRtJR9UmnjrmhQHUSnleTGdzmnWmrsKVDsISIucMAx3nL07iKSoeInXfN//JzLoaRJTFMJrK5Ec5KLy0M0SQ9OZymqIjorruqi5rJSVQsa/UkpyWbEMtyFpnqEYKnl5J6GeoGkaS5mV10MdN/BJknhXSQ7DEMt3SdMYRZfWK7mYixPJod1uHdJ0S6Nu7bjE61WMaVeSwygRCq5Bq+1TVneehEuafY/bmyFVdAdDhDiNcJycUhHfZxoGtu2jcIc80MnyNa79Qya802nh+z7n52J9qEpKs1nn/PyCQEI4bVdhMcto1HyaDTE2q3DFJlzs5uv+wR5RtMF1VCJpnD6ZDnGDGmVVsZRw4qrqYTkuy5kYg3unH3I1/A7LsDh7ey2fSidNMm7XMw6l31+auKzSJS++Fz5CpgWGqeI6TWLJEdzEWyDk8OQBuUQ1XF6c0Qya/Ok/E7DEpy9/i+EYLCYF33wn5K8NM+Hk9JR6rcvnXwi44mZzztNvN3wgLU7Gw3/AaR9xs15z1BGCRJZtsJplmCc3/Oefi/E7eeDS6xps5+Iscl2Hn/2LE168fcb9LwRyJIyWqKWOo9W5/1CM1fblnGa3wWgl6BJNv01Qy9huNVxLVPTu3zdJtvDk6XOCtuiXz+4d8vzFExxL7Hd7/QGj8TWe26DbFp9dqjdEo4h1d0ZHQrcuzt7R7/RJbTHuWQKf/cHPUIqc+VT052gyxbPrXN08IaiL+5pXN0kyn8ZSQPlWkxuGYcq9+1/w6FS89vNv/paklfNBz+HtjZTu39Mp1hG55BJnhg1KRd002BuIs305fctkscB1xXf1Wk2ySKMoTFYLiURoH3Ax/J5nTy84PhFn33w6ZDVzaDTEGVOrBZyfveZmONztG6rW5fhY5c3rK4KmmBtuveT5q18TSG56UW74+d9NqdVd3gg3GExLw3MzZtOIruRKvXt3RlkqDPbFfvr1l6+plJhSydFscVeKswknp0cMr2+E1gNw2DmhWw9IJI+/2z5kEV/jOwOG0i5pvAo5/GAf1W+zkfy0l89FTPG72u+FiXCv61f/07/5EwCsRghGxXgxZiGJo9uFy6Djsq17DCdi8Sf5mG7gYG3EpFyNtkT5gk9+8jm3UqnHtlRmq2v2Bw92qlHbLSRpTCrxzkkxpdZzyKxbClUcxMPLDFWp6LcfsJiI11JVpV5XKe+U3WZbFDPm/uE+3/9cLIRybeGdNAhcHVvCXW5vR3S6AZYjFlRVlPh2k/FiyvBaQnlsg02Ycfpgn73DO7+vGNt0iCURbx6HFEbC8EJjJaECg65OlQdU2or63WUqdFEUhY6ccOPlCqsOt8OrnYqbElTkiYpjS4PLdcZ6EdNuNhnLvqs1NB6fPOTt2xF2IH1SwgTf99E1cYmo2T2m07dkmYMleRK6qbGI17QP97iV41fmKVk+oVpJ5SVFwbLAdS2WMthRNDBcg7JS6UtiuIJFklZUuhiDq+GQsqyj6hWVPJiCmkOSqviuSx7fKSapFHgsxuJ9jmagmiVBrcHVjYAX9PcOMEyFZTRHl/2gGjr5Otpxm1aTiH63S5oWKEg+XhmjajrLcoIh4Zlue4/tOiOTh67fbqFlQkxAF/c2CtMlVVSi1Yw8lw7mDZ+G2+Htd2cAdE6aDJcbSkunGUhhg6oiCxOScoMmsf52UCdcbMgkbqZVr1Fd32IZGu8kSXu93OIZFnpNJQtFf94fDHBqOd9fiR3KsA067jGqseB4IErk56/esi22DA72SSRHz3PrDNMNNXn2Xy9vWV9rVOqC+4/Fxj0fzXj04WOmM1ivhHKUqTqUlcKgLwLF67M5kbpBcwx0CVtJVA/Hyxleimeq109JMgXLKLFLS/5ei9l0RaNjskrFOgp8nbKymF2LdX3c9LiNSjy3IFdFHzhZi//47wSP6n1739639+3/L+1f/eUHOL7HqxcCeu4FNYoiIY4zWnVxtjeCGtNFTLvrMF/KAKjSWK2nFBKKvbffJ6jZ3AzP6bclTwqL0egG2/PoS+GdyeSSNNS4L4UpposxUajR6uqUiTi38yxiPJ6R5zqffSb2/d/8+iW5klFJpeVPP/8xy8WQk5MeL1+KvdcyWji1GfV6HVMVn9Xrd3jxYsQf/kQESS9ePSNZbYkqG+WOv60phHpBkcyYSJGLvtrmX/7kv2Mq+dx/+/d/zenpMePrEXttwdvV9JJtUuC1N3z1pTiLfvyTx3RaRzvzc88MOH1gcvkmppIKlFWVMZ1s+OjzfTJV3EtefVvw4x8P+PLvRfD4Z//8J/zt3/0VteCEtTTk2t/fBw0uLi5EAg5wrAxTryOZxigYuM0pb16H6Jq8B+kJSaxTq5m8k35xQaPPanNDthWB/mqR0bvX5vZ2TEsmC7/8++ecHPd59OFjZhIOmmQVtlmn1hZndr7WyOIMy/X47ntxtt5/2OdieMtobmL5EtqaBTRrDtYdjy9SKfKUOBpjmWIupKspeWlQl55keQZhWZJQ33ECzayiKEQCzQxEH/s49IMe84W4Pzb7JefTGWapQyXvi84G3bbpHxwThSLYaXoDLD1nG8p7ZzTFtwN6/SZfff1Ezv0Wn336kO++eUrvUARz8aaAyuDg+AEAhTnm9ctzTvcfUbNFYBhFMypDI1YWvHwhEkJ/8a9+yn/8D7/Y+TkOjhz2ap9j+lu+eSFMoetNj1wJmV/WqKRa6Ompzf/yb/7332ki/HsRXB0eeNW//bf/EoCouEZRXSajmLovOu2g/5jfPvklZ6NLKlVcaJ0amFWTdkM8/3dfnaMah/RPA06OxAR/8+qGVrOPAmS5mKyT8ZI08Tg8EZnPy5sZD39U8OzliIXk+jRqR+haScM7xLVF8LbOLtmsIhIpelEZMJpPSdIVex2RSVrdOOimwmo+4oMTQfRzLJO0iOh0xAVzG5YUW5v+aZu5NCQd3l7w6N6Aht+UZolwPXvL1WTOyb649Lb6Gt88fcLVmY8ixQ5q9YrX319y0NunXROff3HxkmhtYtWkQVpTodk+YbVcInUMSPKC8XiF9G0my1OCwMFUNcKpmNCWYbLfa5NmKoZ9Z2xcUFYR61Bwhpr+HtsoxlQTMkV8X24W6JZKuMzJ5eLIkw2+a7OQZGPdqHAcjzwtdgIFSVLgeU22WcSgJX5LmiiE2xBfOnCvNxssOyBOMqZzcZj02h0U3aAsFCp58a6UnKRKdlK3m8WCmumz2YY4DcnVUgKm0ylBQyGOxdxotXqk05xczhWlrEizmHqzTZrJLGe1olRKHN1BiSURvUgJaiaVzNAaQYPFeE5RZARyXIKaTUVCWZZMx2JD9L06JRVTKaOrGdDqtFnOYtqSBKqXFleXZ3R6fRKZSd7oGg3DwZf8g1IpmE2GKPoPcsIH7R7LzZS0VCllv7i6i+0GxJrYgIsqYzNJ6Ry5zGQgXHd0qFSG1yGV/M33HtxjnQFSBh1fZXazRNNLCom1d2xQTYN4U6HfqbMWBbrboURsYmYhbFTDKKMrBQq2SkoebZlnYrPt9z02k1syRawlAEfzUdwtT795Qa0uAsyGfkimh9T3ZYbxDPZafUZpQlaK/jxsNSiLLov1kPVazNlEh/1el5bMwr09P2cdr2g26zhSuGU1W2IZFoFfp5Sk/vH4FYE3oFETQe8qPCfLKjTdxbBFwmcbV4CLXyvJS6mC1fqIr379hHsP7jKY9/nNP/yCxx/ex9DFHvTi+7eg5PT6LXQpSBKFKYeHh1xfi3nuui7T2Rhd13dS7FlaUCklmyhhKc24/brKYrWmLuedrptk25L9/fZO8CVJltT9Oufvbji6J57raviObmuPLL9TYyxQyzaavsWQFQtdt5guNrR7bZ69ELj6TrfGzfV4lykvS2g2A66GF+zt7cm+G1OzB9RbBWksfrNp5xSFSHgA9Dr3ePPuS7qdQxrePfGc8VqIhlCjVpcm0+kGy/J21hYoKYapYhoempQvDuMZqpKjKT6uVK7KyxAqnVyC/Q2zxDRcilxlu73ji93ZSWzlnPZQK0iz7S7T2mq1hBqqNNoFiNOENM13fCfBj6qoqmL3PsdxZAXnByT+nXLdnShElmUkSYJt2zu57TRN0TQN0/zBHDdN053E+N3nZFm2E5K4a1VV7apGICpshmHs+GtxsqVKhfqhKoVpFosFlmURBMGu6ncn4nH3W3RFRdf1HWftrg/iOBZCIfkPFb27ZwNRhQsCmTjT7xQZIzRDZ7EMWciqSa3ZJMkSFEV8ThRm5NkWU4ckEevq8vwdlm6hVD88V1FkFFnG0bFYH6YuFCEdT93ZUTRaTW6Wb1HKCl9yM1SjJMsj4kicV7Wgy2wyJvAGeJIft9yMyZUE3aztxiEM13QbXXJV8PG2SUgUqthWAEhRFN0VF+Sux7aSSq6WS5Ytd1zfvcEBabomSysMySFNwwQFk8Gh+C3L5YzZ9K4yKcbPczqMJ7d0ugHLjdjf0qTC800UpCiT4zBfjGg3WqRSKXN4fU2ndYBuK+zti3U1Ha7xPFVUlAE0aHcGXF59S08a7+ZJSaPRYr1SdwmsPNfQrSaKIfrAdjSybUW7Y5JuxXM+Pr3PeP6M7crn088eA/D1d1/iBBr5VqxP09FZpHPyokSRwiizjc+f/PQhf/M3/w+l5NomWcG/+PO/oIpEJWk6XbIuNyRZStcQ+8bBns3F6Iq9wTHJVoxVvamziVJ+8mMRzN27f8xkNEXVE4qt2Cuvrl7TO1S5Hl5weynWg2np/OnPPmE6FKgb07OYzqesFhmGNLD/6slv+fjxHzM4NLmVKKY4yun1A4pc7J3L1YTR6Bo3cBmPxN8cHrWpMHn7+oalrBx/9OlDrkevQVqVZFmGYW24uUiQdC7uH/2UJFtgGz00W+z7FxcX2Hqf+p7k45VNVvMNQb1OcSfmpiYMp0MuRiv6DbnvthtcX14QS65vs+2yXoVUqUOtKfpFVYVgVLMl9pfRcIjZsLiZzVDlGn3Qe8xg/4Dx1Q2zO+RIw0Z3DOryfhzPViilyWKzRtXEWhvs11hHW1znmMVaBJhK0uDBvT6aLj57sxZ7kuWYPH0mqkWGbjPodbEMi0ZL9HGn2WJ0e4ViSCumskTRHbIk4v6pCLhIMsI85/XlVyil2It+9tO/oCyGvH4lxqV7uCUNEy5vMpoDMQ+22YSvf/kGrWzw+DOhu1DoIf/r//x//87g6j3n6n1739639+19e9/et/ftfXvf3rf37b9A+73gXKmVSkNiol9+t8Kub+h2+swWIkt1vXmJNnA5cfdptUUmZzIWmZyvv5N6+T2b/aMGe/sPef5bUY5uNvfJ0ph6rY1bigxJ/6Mel2cZmlRjuv+gzpvnX6IVHT7+QGSy3r1e0u2dUKU5SSFgZFploSYVtuRO6ZaD2RsQFx43UmlFUdfYmU3g1lCkEe5kOqLbrjEaiiqV59ZwaiXff/mGZSze9+DxIWVZ48tf3mBJlcHHnw4o44CrNyLCf/fyOb12n879A371jYjer66u2e82yaIVc5khaTQG7B2UpKWo3s3CKSVb3rx5Q0tWCzzLoWYZSLEkolTDiE1abYPKkqabhUZWqSR5RCBLqpPJENOCXBpFWrZKVfooekEayyxnXFBkOr5uIlVX8Vr7JNmWVEqsxikUeoZpqIQr8VnddouyLEnDFMsRY7XerGg0AmKpCOk4PnkRYWo6e13xTJYVMFsJKfiilJwZw6DmNkmlt1Ecx2SxjhM0USTRZZve4Dcq8qxCJl/YLOaQqDRbMtudZGznIUWaY8oy33q+Jt5WaH1tBxVcbzdkukG/JTJ8aZmT6yWa6bGSnmRRFLE/2GO4uKaoxBjXAp3FJkLzZHZ0OcdcrSmTjEpC4q7GY0oDNusIT8rB13WL+c2EWPZvXmwxbIsqq3bGm5tNhEqNKot3kthRGeM2aozO5Ry2Fe59MGCjjDHr4pnGswWWUqfdbpNI6N7l/Ib9wTGKI6q41/MJtY5FWW0hlry6SqNSFFxrSilxHYYJOUtWUzEOnzzYYz67ZbXMubgS69b0Ypxqj3ZfZCYnqyvatotmWgyXIluYqnNqah0zN7m3/6kchynT0ZxUKowNek0qxWAzu0aV37/dZqw353iBh+WKfWORLJitJ2wiURHalib9wT7LxQLdFOO+13/AYnqNoUAozXLXqxiFOa2uyOaNz5c02gGVGjLYOwXgdjhjOp0wONjDkB5PZ2fPwC4wpJLc5fVrPnz8AcvVnHAj1r/rO2R5zM1wSJGJQQ1cjzRfcjsWsJZ6vUlRFrTr+9xcC7Wp8XDCvdMHhNF6x79p94Qa5Goh1oLnWqyWCfu9Pp6sQFtqnSLL6XbqbGOxv/iuw2h2hmuKdaVaJmVuUKQaqiLnxmiMZlXoSp+mrIwvZnPu3z/l7ExAo9vtGnmest8/RJHS/YPuMUf9B8yWL4hKkaG9f3Sfd2dDZguRgV6FE0bTV2iahivn+XR5Ra0WoKCy2Yh9OIo3VKVOUBdZx5rfJMsjknSFJxXoHLtGWcUoakYkq9KaprNaj/GkapxlNdB1jSTdoO4k/9fYto0qN8Y02+44Qo48n1ar1a6qFEn+iGnaO2l38W8huX6nEAiiuqSq6q56BD9UhO6k2TVNw3VdqRD4j4y4JZfsTtUwz3PSNKUhs89hGO4UBe/+RlGE0bCqqrtK1Xq9Frwu+W9TNzAtR3iAyepPp9kiyzKWy+XuNcMwsG17V9lL05Q03tJsNndVHE3TyLaJ6AP5vHdS7PVArKuqqphMJjiOs4NnlUrJejYnijMK2Q/haoVp6bv9xzYrNtsthukxWYiqRhpVKGZGWaW78QCdRruxq6KmeYJfCzCsgqAlZfrLjHqjw9XV9wQ1MaZ5YlCUFobkYFXZlrrTxrAsUslzq7dbrDdzpssZR0cic32w1+b123egid9yfNKnSAwuzxf4npRtVUJqdZX5cogEctCsFwR+jUwq2U2nc3q9DrafEkYSWu52SdKQeCN+715vj3S7pahKbqTh68Ghy/5Bl/VmiiF5rYUmKoaBdwfBr3BMG9MwGEtIvBs4xFmEa1m8eCG56K19PNdiIivgrt+h0jK8WgdHwtHNusr33z/l009/RlWI3/ybr37LwVFBqyHuFrfjc/Z6fRzdYu9Al8+psJjVCHoq46nYz5J4y2JhYzlifba9GutpTKuvUUqYXrFaUlkbykqn0ROfNR7O+Xf/1//GH34qaCS3w0s++PgRi+UYvy7e1x7UaHa6aEZKkYn37e13iJIbnn0rqiMff/QRijLh+jJmfyD2+FbHo+67PLl+y96egMQtN8958fQViiI9n75d8uM/vM9f//Vfc3okUEWDbhvPtZlPlrx8LXn0vR8xHI52xuKVskHBJYkyAl/s1YvFhul8Qqt3StAVc/jtu6eg1phuBOTw9OgBnpqxdq6pkN6s4YSyssiqaxxDnDNZbqJWFeu12Bcrd8piMyNOFfxArMc3Z9/g+B10rN2e8/LyLbbh4uli/Ew9Q1ML5lFFZ0/052qZYDn2D+qhqFRVQbNpoEg11Pliildvo5oGewNRDcUqWGUZo3OBcigig/uDPYKut7OtMOYdsnLNcnVOrSaVwNMJ3369Yv/Il2O84PjohFdvz0Aqga62YzbnId3OgFzanFzfzqh7LrOhOFOKKuBnf/4Zr14/51LKw1tGRVCr4TsDfAlzLPOKNNvu9k5T6/Gr5/+eVuuATl9UQ6ONQxy/5eSewUaiO+4Mvn9X+70IrtBV3t2Iy9ag1aHQC0bhFU5HTMJf/OLXBLaF7TQZXZ4BsFqsODpp8+if/RSAPPcxFIvhy7MdFGIbp+RbFyW32CZCFKHWhE8++RnvLgSGltxh0PwE0zGo1cQEV3olqGsMK2cxF6819wtsp2QzF5/t2fDBxx9g2y0m0lzNd32+/O0Z0XrIdHItf88xTb9DlopFPZvNsMwavu/u5Lbj1Q112+X4wQGuIw/CRYSe2KiIA85Sa2SrJpl2zp/8VOCdb67u43lL4mWMqYnL4/XwLVFa0h5IKN11hVeLufdgwEZecm2roio0Ht27v3umbZwzH205OBCvaVbJ0+9eEtR1rm7EhaikoMx1SunXsQxnpEnBJo8ppCiDrtgYvklcbZlJ3PDFdMHRwT69juSBTRa4rodpahjSWFFVKyxDoVZWO3GOWsPhZniOKiGHqlLR7vgUaUEYinG4DSdUekGWllh3ON7SpYxLFlNpJt09YpqtSSqV0Zk4mPZ6HuQpm9mGmpTpTrMVjl+jkpyyJM+wHY3BvoVEo1IL6synKX6rw8Xb1/I1l6IwuD2Xkqd9G4MC0opKBjaqohNuUsrC2PXf2fkVpqWjS35et94mWq7p9RuMpax7fa+OY9Qowi3RSASwvZqP268zngooiKZqaIWCqmrYUko7l3ccw6yoSSjkKr5gujnj8FCUyIfTd4yml0y3M2p3vmHbim0eoQUJK2nCfDVOyDMF/+5yFYFv++R5iGOIsZrMJ2TbnJ+cfsA7uR6idMLh/mPMRAQDHafPL559+/hVBQAAIABJREFUgxmYHB2LC8pkeInlhTvhj1k8we0NYFESSR8J3VIIHB1bqXAssSmH/pxa2gIZGJcUZJaEKhZi3sV5h1zfcjPb7ALhAsiSeOed5rkNVquQVhCgSbGDqgrxajaNfpNyLOb+fv+Y9Sbd+TT5NY9wDR9/9AWrpRSvWUa0WwPOXk8wJGQzKVVa3RaTmfQjOXnM5dU52yRDM43d3PfqLXSlRSShWFplsFqt6XbEId/ptHh3/oq3Zy/59ENB3O61O6xXMz589BHffvcP4rnqBZ9//BHffy8ONEPVCRwFqozZXHIgs4q9/iGuW+JIIZrZYku4GVHlcr7aNj/7549ZLjbSPxCCZkqv9RGj0ZIqN+T31ViFM2wpaBFt15S5xkH3SBi/AjW/zjYLKQuDuhSiiaOcTrvH/QcCJvTt859z7D7g6t1w52/Urvt4noNlm8zWgnuyLdbkqUEgL/DPnp9jOVCy5t6xgPyoNMjSClWrdkb0ZFCrudSl5P9stkBVVXHJVyR8OYNMrXbQQfEVCp7j7SB/eV6iqJXwh5JB0l0Q05Jw5jzPybKM+XzOXfN9X0B8DOOfSGmXZU4mk1V3h7vjOOS5CMoMw9hBA+98pO4ggsIsFhzHkwIb1U6uvSx/gCneiTncBX13QeCdX5UipetF34mgzLMdcgn5S/OMvKh2EuuW5aBWMJ1OdyIXRVHgeR5VVe34zUEQUGT5Dl7o+/6u/9drsUbDMCSOYyzX2wUkWZ6TJTmKXNxVoWBoOppS7rwTLVORAai98+hrNutUFDiuLvtOY71eYiuCAC8+OyQtMjz7gMVMnIf1wEUtDRaSG6IGBmUCRrYikfvi5CbEROeoe0K1lkm7KMKsFMZrkVi4vlQ4OTql5k9Zr8W863Q6FGWCbTlocu+IwiXRKmOvJ/bl9WbBzc0thRZTl3u1E/hML2/unAowtD62aaGgczC4M/7VGI9v6XQb/wiWaxAnCxz3zuMvJ6JiOZtxcCw4V64f8O7yHbrp4isSQpUv+erJC+yahO06LtdXKVm6IJCiU9PVAtu2mc3m7N0TSbXOQRO/q7KUY66bHoWi8PDRT7B8sW+8fXWJ63ooxpTNSq7/JMK0muyfiDvB2fkbFuMZo9uEvrzQ9vdrfP305wRth2ZDjGnDu09gDlin4hz4oz/7M66vX9FwDrh/KqW0Q5fTe03GN5dcXpwBsN/dR6WiLu94v33yS27HN/R6e3z9pTifPv5Rh//z//gV/81/+xdsc7Ffz+cBw81oZ8nz6PERy0XIQf8Bigwwmx2H0ehLbOuYh/dOAfj+6bc8fPAR1h2lIs2pig2a4RLnImm4TZZsU43Z8i3RRjyX7TSI1dudbcZ4tOI2WmP5OZoq5vnTVy9pddusVhmW5IuvFnMa3paGTOpdni0YdHtEyZx8Jc3N9T6X5xd88MknZLEI1F5dzLCcLS6x/JsmFQaak7OUIhdpWWE5Bkkizg/NLFBVkzJV6TXFPAjzjBevv+bw9AFz6aeWFim6oWCpYh1P8opRsqGIJySZeM79ey2+/u1rPnz0KYcSovrlr37DajPFmghY+fHRCetwwmy6IJPnk+VqOC7M5u+4TSWvLa14dPgA3ZIcum3OZjUmjSPOJP/v0UePsLKYigJdFeP35vUlg34DvybuIJtwwf17jxnfXHL2rYgbDo/2+PwPHmC4GquFmAttV/Tr72q/F8FVnMRcLs4AcO0+s9UNvUGdaCI2sY8/ech8tcZxAwrJ3/jDHzU4e66wkgO+WsZ8/OgDXr2boRtiYxkNx9TqLts83GWc3UBH8W7AEgdPrdYhGWusJiEXb0QA5LsO82lOHK9QDfF3mWZRpKDfcYvinFe/vcb3CpZrsdBP7+1hAPP5FYN9cYhYasL5xWs6HZERLnINTXPRrBxrKwn7mkndNQgaDi9fiIX+/PklX/z4BEMqmqiaT65MCJxDAl96aBxdc3W+xfda1KRKlG6ccjMZMZ2IfuoPTMJlge/pHJ7IbGFkYns661wssNLWKBRwbJetfG27jPB8C9+3SGMxmRwXomhL3RcZ0zLbUOYpgRkQSs5MViTcrqbYToBZFwvI91WWsyWKJRZZv+MxX2/IdIc7D9o0V4i3cHL6gJtLkXlAK3Ecj6MjccGMw4gyTwia+o6voqURt7NrsjTFsOTlpqzodH/AmJuGj69kxFFMKatZeWgzn204Ojgir8QYV6XKfDFmLtYYNa9Nq9vCdhxWsoqaJMI7ZxtuMS1xoOVFxnZbYctsc5XmFJWOpau4jvSisW2m8ymB7aJJRca0iMnKdLcI0zBDqTQ00yJO5CUiMTEUm3W8xmmI3zzcDvEqBdeT6mj1gF6zx+uLd4SSTxWgkuYlmzAml7yhStNZzGM8S16g1YrxcIvmVVSRePa60uNyPcM2Supynq3DOZvtLaoulJCW6xlF4VAqW5byORttDc0wMKo6HV+M8822zosXL/jzz8UF+vk370TAfJugFWKtHR37fPN0xam8MARmjfm8Yq+l4khPlKbtsVFzjh8d4MvD47ffnFOrebh16SsSwc2LK3AVOj2xrqIyZBWneJ7HRnrRNM0BMRWLjYzKshme63B7O8ExxGd5nsPx0QOWm4hOU4yVaSmswnMSmUTQVOh2HZ49+/UuUPSdFudnb3E8G19mcpeTW3xPKGgBDIcj1us1zeYBk4UIytq9OlGUMOi3KQoxfpZmcX274uOPRKXO9WzOzy/xPQcpooht2mwUg+loyL0TQea+uT7Du99kry8uLZWyxenVWK+WzKTYycOTL1iuZ9hGjTi6U+YL6Tbv06qL6utqM+P757/ggwc/RnYdpnnEfDEh3IREG/FZDX+fyWS0u8yVZck2zdiEc67fid/X63YJWjWmk1tMS1wQZvNrDg4OduqPq3hCq3VIr+OArL5OxgsWswTDXBHLLP9kekW7tb/D56+jOXnl0Gq1GN6KhJahT9kmEbru4slkQxgtsO37O4+iTTgTZswVJDIAC7yO5FJlu3kQxRs2cYYiA0UR+Wm0281d0HDnpXWnRKooCqZh4zo+pvVDtemOt3TH6cqyhCAIdgqNuq5zdXWFZVkMpNDAarXAcZx/ws1KkmTn1wUiUMnzfKcUCMIXzHGcHe9JvHanfCgztiUYlkmZ5bv3VYigzzAMVOmjhapg6BbcKfWFIRQ5tm3vnklRFGE8rGk/eLzJgKsmlTPjZAtFjmVZP/C+4liYHc/m5Lt+MLBt6wfz5jLH0HTm0wmJRDHohkqJxmAwoNsVl7K82KJrNprxjwLTYoMb6HiO2MuK5RkX5+fcO/5ImLUDSboiSxX6MuPeada5ub6kstkZBtfaPvPbKbN8iiXVc9PNBq/tUYTiEjgdReTROXvdBlUmzlpLCViECY7rEsg7R7Gp2N/vsZxKb7GyoDXwyYsaYSLmYppsMBx3pzD44tUzHLNOlqdY8tzRqWjUfFRV5eJSzP2qNAjqKgvpc6cbmvBWjLMdguF6NCIrK7ZJjm2KuWsaGkUxQ63Ec4erMQY9nJrKUiYJbMNFMQ3moxTdH8u5UfHi24j9A9F37Y4JKDx78WuqUvy+6zcJHz5+QBHrvHj5VHyWfcjDD4/5u19Lr6hApXbsERgDsrnop1Uc82hwn7G+oG+IS/xYWbN3r0NnI5M56yn7B0foSsD0Ziqn65Rvny4hXlBKJMB8ecN0kvDhR58AcDX7Jd+/+JpG47/nD38iKlBhPsRrhQxnXzOV/dfd6/Hdt+/wXclNGy+5uVxj6Rr9vvQbLAwsVaVIUo5OxN1ofDNndjtHk8G55TRQlQzbcolLccdaLG+JM5s809B1cc7cLl+xSRe0AhFguu6C6WZKERmspVH73kGD9WaLbXu75MaD0w5lETO8FOOiFg7R2qTSSi6kAXLN2uN48ClFumI1FGOjpRW6VnEgRSGmt0N0zyHwdOYysVhr+cRhwt0WmGRbylhDKXWitVhrvh9wdj2kvB6y3xd33/nllq7bwEQKohTXbNKKpt/B8cVnP/nu5wwO9lgu1mQrsVe3m8eE629IpfDXcJjhODbROuHBBx8B0GjarBZTVG3DOBf79fFBF00zSJI7M3OfNy/PyNKSRx+I/tyGG8rcQC313Z2uzCra/T5PvhUqld99d8Zew+bwqEe4Fvv3fDIn2RbUmjXWmZhnD47FvPld7fciuFIUjeODHwOwDi950H1AXqg0uuKC8ub1OWme8WnvEVkgL/HKWwZtg/tH4uK2aWUkyRX7B33aTZGhGY9nzGdLOp02vX2xGNOs5Fe/+hW5hNFt1lNqtQGq4hMuxQJezKeY7BGXU1RZ9jz/XlQdmrKaFpkmYXyB443ZSGjb9eiW1Sal1ztiIOWLb6/OQanIM0km35Y4wYbVbY4TSGXAxOV8GOMtI5RSml4WBWfXt/i6VAFEZzIviL0RviX+5ubNmO12TbHVcWRAGQR13IbNmzciSPP8CrUqaDUatLpio3n29RtKOoxG4qDq9GwMJSHeApo8QOMJrUaXsoQ71MVsekNZ5aQynRb4Dr7jM5quqEnDwNt5RODUSNbbHdlRdRwqLceSG93o7RDNstFcbef63Wg0yJSMNy+e4npig1qtFwRue2fgqWsas8kKRfVYShNYQwFilc8//gnvXopKUqEkhNsQV1ak4mJNkPuslzc8OBWCBIpeMjg6YDKa7gwQW80B23WG7Yt/24ZHuE5YLafokiR5O5rQaqpUpY5lS3J2kVOqOa5UOcpKBbfRx9JzzDuFvdEUz/cwUXemoVmZEiZrNBmUlYlFrVnj7NUV9Yb4vngaM8sm7B/eYy3NnLdRgqlZbGSgWOoZ02zMNg7R7kxSK5XRaESmQik/P0sMXKvGthCbdLxd0gzaoNVQZbBhmipHBzXmmxWlJFy3agHLNARL9LldD/HcilWyQTFEf6LoxFHEWXSGc2cQasR49YK5vIgn1oLjwz6d9hxzKw171YKPPswZvxMXvM9/+gdk5ZTf/sMbSlc893/9o4f8zS+f0PnilGtZ3j84qFHkBhNZzfvij45wdJ3xcsxyIsncnRDbswnjmEKeDLalYRAQheIyolGhaTaWW+PmRlRH6mkNzw9RVZ3vX4jMlapVHB6c7GAeRVIRxyGn9/fQVXHIfnv2ina/juZm5BKiqpCjlSpTKT1/eNDAsl3iJGEjxzO+XFIWBnG0oiUNCh3fxg8LXr/9GoD9/UNa7R6e4xJLUn8ab7FMHy9QMCU8xHWaLCYruj2xhtbhFl1RqAcBUSIu/9v8GsOoMzhy+PqJUEM62Dvm+F6D759IY2zXJ1ptefPmKYFzKp99j998+Uv29gdMZiIB0vWbtOw2qkRB5VWOZuQ8f/E1f/AzUUmaT+YMh0P29ns8lcpV9x58xM31iBIpaJPHqMxRCx1Hwlicmse7dyMUzcHxJGm522cbb1itxVzsdvdJ05Lx7UgES0CarVksJ7Q7A66lOXarcUAULQg3d0m1AYahMZtfoUkLB0MNUXVtF0CPp1vqjQBd1XZS5ZZtSsGGcicgkSRbFEXZweayLCMvUhS0Hfzmrrmu+/+pHBW7/0uShDzP6Xa7u0DNsgwURWG1Wu2+TwhHbHemxf84kLqD8ilKJWTcNY1E7hOqqlKW5a5KBZCmOYqisJUXElPTURSFJM92kEbLsoQpbSkTRbqKZXvMZrNdJSrLMgGpVNVdP0ynUyaz6S6xqCgKeZ5juQ51V7zPMAwePnzIcrncPaemaaxWq10lbzq5RtVUTNPm4EAIRdUaAd1uG9s3SaWUvmH4UBnkEnqaJAn1ts+789f02mKMvZrH3t4eYTzEl1UaTTWZzSbYUuApTJak5QrLPWQrq4XFaoPvu0zKNUMpxdzxW2wXEZuwks9k0Aw8Xr+55XBfBMe34yu22y2N+mPWU5FsOD44pNEM0GSN9uJ6RZZWOL66g8RlWYGmKTvBkKvJBKPl4vs+FXeS/3Uury9J8mQncrMOM1QrYSMFPOq6RxhvcQ2H4UisBdU0qEqTUk2YzsQFVisNHjw+Ibkz3R2Puf+gxmq1YLWSUvrmkjhSsF2L+TiS87mi9AO2slI3DGPiUOHBfY35Qlz0G60DqspkONyAKueZ5XI7HqHI4GO8GGFoJv/iLz9nKS/+3z55id5sYVQONwtxoZ1xS/Qs5UcPxcX2xZNX3P/oRwR7GqmEdY7PIw73eyzSmGNpV/Ly5TmqWnE7OxNzamRwevhTzs7O6Pviwq5aoBkKr96ckW0DOYcu2CYpOeK3FOkKRctYrtJdtdCza1DVGU1eU6+Je+wHjwu+fvI9mkRMxOsVYRRhBQErKfmdpxb7R22uz64pSrHeA79DvozZrsT51DA+IIks0rLiY2kCfXH1nIPuJ4wmF6RyPysUjYs3F/hdEegXWcZo8o5Ov0ORi3XkdQvyasLwKqUnpd9TNef2dokvBZDiNCHNCq5vr2m3pYhQngvEhlSbtlyPq8tb0iji9PgUgCoHw1AoIoPhlbhXRhHsfXHA86dC4W9vUGN2G7Isp1L0BZoNl8V0yeR8zaefiXW0XRfU6nuYpjRuzwzm04wqVxnfivNpb+8hhWuQJTaVRDqVEVyOp7skwsMPbZ5884xuZx9Pjuf4ZoKiLbAdk71j8dqzN+eYtsXNSKxPXSvpdjqkVUF4l99RawxnG7p7AypD7FMLeX7/rvZe0OJ9e9/et/ftfXvf3rf37X1739639+2/QPu9qFzpusE8Elkyxe6imibqeks6Fq/1/QMeHH5Ku36PvCWi/rfvfHIt5KtvBIEQNcJ2dLLM5mYoIuVwDapSEEYLLq8kKVhzKBKXVJb2NqVGlphYlkOrKbI/FxcJUTKhKEo6dZEJmN0OidIxxURkR/yWSbRd0uzsEUtu0XiypB3s0W8f8Z/+5ucA1LwWzaBGkf3gc0Xmo+UlqjRzXMVLNlmKPs/wDFGtOz0+YDSdYgdS0tVR0VVBqL7IRVbDMWooZUFeKTuIgR2EOM4Bn312CsCTJ2+o1CWLRcTNUDxDp9lGoSCQBP50E1MVBVZVEUszyKbXpe7WmC0XO98nVe8IGIsI3Em3Ec1Gm/EsRNOkzHqZo24rGq67i9wX64igU2MlsyyZHVBaFZmjYEi5/Q1bKiPG8C3MUnzffFGQbWd0pIjJbDPHdlwsu04l5W/zNGOw12a9WrFaiP6s+yYV2x13CtWg26yzTlY7KE+95VCUW1StxHLE3NCshJOHPRZLkaWK4imabmJbdbbJHbTGx3ZqbCZTKlkR8l2XiiWZNMG0DYNks8DyNC5uZPVOU8kIWW9CDgcnst8VsNgZVWqWjqlrtIImWSJ+n4FBvTtgs1pTSj6Fh0VZmSh3BEzVw6xUgsKirkvyeJZTxg1ahx7jhfh8NVXJlAVZIknvuQeJhmFX6J6o8mVxxOR6ger71Lsiuxwu51iqzeR6Jt/n4vouWBBKbLgeQrbRcVo5S8m5Ovm4g6qtGF5KkvTAwa1VOIqJi3jOsIz50cnHPNUEJjpJJ5zeO+AnH37O3/3VbwB49t2QP370Kd+9ud1J23/08Qla6e2kyuu1OvNaSUOJWd/KzPn4Ate2qHKTbltkz9+9fk2320VTxO+NVhuyPKTXdxnsiUzdcr7g7dlzPC/ADkRf+V6TF6/e0O+J5240Pcq8QZm5zGIBUTPtjOVGR1dSTo5FZnA+SsgTk6b8/pvJkrrjoOoFzWZTzrMlvf0ecZSTySzjfDnDMFxMySdZhUums4iVrjGdiWpav9Mmy2PKVZ1u94fnunx3TSAlyA21yXg8odk2OJX+H6tpyuH9fTarhIb0zPniD37Cf/j3vyLJxVj90R/9Ea/PviItUmxP7EHj6Rn1psFsEqNIqMeDe6e8eXVLJaXnq7xkOLpkmyx3lY84jfhXf/Ff8fz5Sz75VEJwQpVGs04mIXjxbUwcLTCqAENWQ25uhmi6SlrGTOdiX+r2OmzCBd2mWEPLRUiebZgvr9lKn5KDw/uUhc5yEeHYcm2rKpPpBZL3T1n6FKWGqoeosuzmOBYXFxd89oWouL15+444SsjyZAd1S7a54EkVKbaEqG6iDb5f28FRNpsIy7IQy1PsEXeCE2EY7oQoDMNgOBzu5MkXiwWdTmdXhQIhApGmKYZh7DLlruviui5LycusKoWyLPE8b1flN6R4hqZpu0qVaZpUVbX77Dv59iRJsORvUdQKXRVS8nefVfcD4jTZVX+zLENXVJrN5u5vqqrCNE10Xd+9dgdtvHvONE0JGnVUVWUrjdtNxyYvChqNxq6iF0URjtPdmVCfnJyw3W7RdXZVmzzPSYucslJw7rgPakwUbnYwz7zI0BGGyHfQ/VWYsVmnKCUkUurZ8yr6e0dkpRQ2Wa0pFJXJYrozbnZ8l5vZLe2TNl4g+moyXNL2NfZb0j4hSrmdXdE/7hBLeF+haKi6Q6VCuyeq/FG6JhxukGATBgdtFvMI3agwJQe5IqMstliWWAv7BwfYlo6igCNfm66mBDWHdZjsRCdyNHK2IO8WzW6P+XQORYkq5+J4NMP3WuRpTk2+r8oNptMJruQIGZZLXoQUpY4uzY0ffbjPfBGi2wqhFMLZrHMMx+XoUJqDr17S7OtcDm8JAilIMHuBaef0e4dszzP5my1GsylpJtbsh4++oKvanH1zw1Ba4vzln/8Fw+0VXreHJu1YXj1/hlJt6bcFvO9/+B8/41e/PBNCBqnYc3Un44P7ezz5fsJEyoJ/+MljLofPeHchUBu9zhF7hxXnZwt0T4zVu+sXhKFGo96ndyp+z/DmNQe9GqORmK9Hp0e8fPGW49PHqPodJWXJalLx8Rcfc3bxKwCsxR77xx9wIf2rbFtDiUUVOY9Evzw6/ZCr4TWu16XRkyJMkYoVfMDNlYCozaoR908/xDQzLs8FWiAOFc5nr8kKnW5HjE3gatRrAVNpdhz4EE0TLi+MnQ1IHM/IswLLq3jyXMCx7x+f0KxrrDZiXDJMFuGEPC9ZR+K895wWm82MloTIr5KMwG+xf+/Bznbh1bvX7B89ZDNPqFQxNz796IjJeE2lifVSpBH1Wg00gyQRFVOlOCQL4dFHOoYh+vPd2y2Nlo5SSV9PU6fdsfnwk4c7c/WT44e8u3jGfBriOeIZhtc3qJWNL++U8801H3xywu3lEBBn7eAwoNvZZ7WqiNbirFstMvYGfVZLIbbidX2m6zl22aB3INbseDGhs+cxW8cohthv5onon9/Vfi98rnp7TvWv//WfAvAHX/wxw9ECqxZzOxPuyA8OfsRies0yuqWUEK5SNbl6N6LXFhuNQsT52w1B02S1kqpD2yGtRpN4VVLKQ7xS10TLOv8ve28Sa1m25nf9dt/v05/b3xs3IyIjIzNfk6/qvSqqVAjbGAQyYs6YEWKEGCJREiAEE4RgjBAIT5AsSzZyGbAtd1V21WvzZUZmZGR0tz/39OfsvmWwVpysJ1GMLFSDWJNQXJ2zz9prfetbX/v/h11x4UTRhiK36e85BJ4Qwq+efYMTJMRrF1cSouXJlEYJkTQ0bLM1CqZAGCplM6LZx3YMyiankHWgbQ15Gu0aHXXdJ1rD3fqCruR42RsHXL69oGlVkkzM/WDvA7bxPQdDsbnrLGK2ntLrhazuxSVe5gVPPj5itdxSroXj4voDRvs90lRyoBAzW6yo1YZaAmiYtYrll4LAACiKnCKrqDOdI8nKXcQKUTlDM0vGstFQVV1urqesZVPS4f6I9WpFq6kkqWxUUkp0y6dsXeJEGFxVFpFHOZop2dF9h6Ko2d/f35XNzWb3BJ2Aoo7JtuJQZWmFYba8q6zp9ToolNzezHbcV5ZhgKmTZwVFJIzARw9OSauETJZYrNc5eRbhBw5lKmuErQHb9Zq9/ZBCNrEkGahm825ZKJKGpq1IkxwkV8Ro5IuGdbXBC4UyV5qc+XpBzxSyuL6/pw5ryjRDU8X+aSgkeULQ9+l3JIDGNkdtLG4mQtEMDi2KtCAMPCKp7FqjwrZ8At/m+kKkxDWnJasUgkD8fpVk+JbO6f4e06lwDJ0gJN2kZE7Jqyuh4IchuGpAmkmEoTpBjQ00N9khXg38Pmgqk2RGnEnEov0HPP9qQk+iflHrnB2ENF2bryXAzIGtYpRDwrFNvJVGWHXJ6fiMe4nMd5+o9Ls66TTnR/+aKMVQ9Aa30nkmyfrGo4c8ePIB6t3PCJfCSPuj2xxbeYjaVVDkZZw3Or39kI4sBbm+iYnKkqoqyJYS8dKseXR2wsXlNbHsXTTyDo1Wslm+K8MYQ9NQVVssCXKxWC/YO+yB2rKS5S7HB4ds1xv6HWkgbUpsR2W+WmCZ4hw7nQ1X05hWc+n4Qj4Puj0Wt1tWkTgLibJGy2zCrkHbfGf02m7Lelni2cJ59IKKNM13JQ51Bb7XZ7vd7njE8jRj2OtzeHjMWJaD/NN//n/TVDV7Y9EHdnh8xGRyS6nMeWfo2+qYtq7wO7BeiOd/+OEP+eM/+SPOz0Vt+na54NGjR1xfzrFkP9VsfkPQCdkmSwYSGfPg+Ih/9k9+QWcgzlVb27x+/ZLh2OHTjwR3YaskbKI1Xz17hQR2ItmqfP+zD/jiF+JCGwx9un0LsoDBQKzBv/izP6U37rKKp+iSbyhLWs5PHrFYCGO5yLeYpkka6ztOQtsTJVqz+ZrAlUhnlkqaxuQS4U9RFFB0ykLBkKVXh8MBbuCTS1Ss9XaLpmlUZcNGBp3CMKTjH9A0zQ411XE8BoMB93dT+WyNKIqo63pXrvUOTAK+A67QdZ26rnelX7e3t4xGI6qq2jkaWZbRNJUAxMjy3dz/vJPkeQFlWe7Q+UBwPlVtg2naO2dHUZTf6MtqaqibEsu2d98rqxzTNMmSFNv4DqwiLfJd75ap6aRpSpIku54r3/d37/fu33fffddjluQZ/X6ftm135Yuapu36whrpcAlEQ3337NVqgWmKEsc4S3efKaoUz3fJZBnnbHqNQF1oAAAgAElEQVRDt+dzcyvsBssy0HWT+8kVriwrpfEwDIvry9ccn4iznBdgOyGa+Y5HbENTGShJxSoV+253h5RRRlkuKV0JnOQHlMv5Dt3SMUfQpgShzb0Egep1QqoyRlcDahmIUlWTxXq2MwINQyNLYiyjSy1lajDqcXt3zWAodLXtGNzdzjEMC98Xf0uSjI5nsk1SPBl0mi42GFZOUwvdYmgWTQ0H/ogb2WOmGh53kwtC36MnHSDTaqkbm0ISpHYHJnWrczt5SegKw9T1RhhuRBgecvd2IuUl4+nTMyzznQHdspwnbNY53YGQl0V8DcWYMoWjEzHP5fae5Ubj7InQnY8+PuUHBw/5h3/vc/Y/kuWgtxM0s+XlqwWridCf5+fnhHsq6Ux85sHxQ7yRS9g18GV59ldfvqA1KwzVo1UkoqdXoqk+k4l0/Md9FGq223i3nl88u+Z7vz3ANY6Y3L4B4Gj/gC+ffbMDk2mViLJwOT4+ZbUVumt62xKEHnUz4+1rUf6N1eFwf0wrAcloK9o6xw8MdOM7PbC8s0ntV8SpCFaNgj6u2iCPLAcP+symS77+9prJjXA+HK9mPDjB9tIdGa/WWMzulthDoScDv+XNqylheMrwQDgD9zeX3N1sCfujHTDEcfcQhRW9/Xe8j5cYWoXStCQywFsbJv1AQ5HcW9s8JV57nO33yVIxJ9XRuJne4ukeV1MB8PKT337Cr362wB0IGfO9nMWmxVTqXeDEsAq0NsDVVWb3Yu36nVMae8L1S3n3Ho2oap3RqI8q2x401eH4ZMyzL77iPpZgde6YuorIM8nP+eghi/sVg569a6+x/Q5RDHF2gW74cq36aFpKKav8qmJFON6jyXSCQOjcr15ekKsF+8dnDKTdPrue8t//53/nL+S5+kuRuVIwwRKK9ae//uc8ffgJ8abkMJRNvatLptvX0PpMJzKCuRfgehlpJhaIVmd44PDNF3c0sknIDRva3KcuFOay3tnyRCP/NhbPma9afF9jcpNzU30un9XQsc5I22tMCaludz9iHV8SSaQg3w/wA5f1oiaS5Kp2qDKbLjGMetcAWSkbRvuHxLGMFuZbEeWzOmyl8RpdzaHVqGuIE/H8vIqI0gWXt++ieRl7J0Nmszt0ifCjahbXVysejUdM3130rsKzXz9DkX0EZ+f7lGlGx+/Ryl6puonwTZv5Qnwn6IdsyxndoU6SiHVpUVDahuUsZSuVSJyoQEMi67I73QBVtfFCm0YT854uZ3haTZPFFEthpCimQ//AxXBknb1qE0d3NE3JYiY+UxSNQFK0FYxWAj7oU6raYStBS4xSw3Vs6kZDdpazzBfosUWLxvEHAnDhYjJhFWcUEgWs33OxtRIKj0oevMac0h/qlEXBzUT2x5hgWGDL2mIVn1oz0bSWvbFQYjf3UzZVwQfn52Tld4hQiqETSRARq9PDMAz8oUDLAnj29VfsH3Q4Oxijy6xJrm5ZbpYM9yT0e5KB0qBaKvW7OuJcQzNUjg7PuJek04aikJcJq6WQadvy0U2TpE4wJEP8ZHbJeNRnPp0TSiARKo/GDlgl4mIcd3oEYZdp1GLUYk5NUbB/ckRIn7fSSDHwORnUKJ4kGmxH1I1Hkq2p1+L9atMn7LVM7t7Sl31YdmfETZaxkdGtVskw1EOMUUW2Fe93dz/DcwqO998hkxUU0xs2kzvcB38NgB90Nrxdrul0B3z1SijuHz59QnSjsLHF/7fKkvH4Id++vePTp6IPc76d8c+ePcPwAvqhMHK7loWZpBz2hG65XVwQpxWKqmDKLEeTKiy2S6pIoa6E4TRxVtSmRyqhkrUip8nGDMY+M9nfsLwt0VyDwkypJJre6mKNhkljiss53Wj0LMhWLZkk3mzihIE6wA5NljPhNESKxmIJh12xn2pbsd7MaZWaofzbIo3QVYu63vJ//SORrc+rmGFvTC4j11/dfY1tqbRpzqgnLoWu1+Xi6oKb5TWmKc7MZP05//pf+V1evxYR06LIMcyas/Mx/9Zf//cA+Lv/x9/CcWxeXk45fyAcmVffTnj4gcer10KXnX4Q0tanfPrpR6iScmDQOWSe1Dz/OqGMZcbrgy5qM+e3fij6CDBa/uj//Jc8Pjnk8EzMqTFT3l5WOKbNQAZTxmGXtp3TIgl7zZrx/pDVUmShAJJ6Spv30O2AdSwiuV3tgG0SU8ggSVZmeLrNJ2fnWIpw/gM3Y7md8PNfS4So03PSNGa1TeiFYt6X91OyfIZtjL5zNkyT2fyaVPb+lLmKbpZ0vYOd45QXW2zboqkVFEXIRlUVGKbC/UzM0Q8dyjKlKApMGewwNZW0aIk38Z9DAmzIsmyHklcVNQoqSivQ/gDqRsE2beqqxrVkVLwUsOU7qPIiwzAsNuv1DsQjCALSskLTtB3UvKqqWJa1c+YAHN/DC78jGs7zHM/zdnOD74Ax3gWvQitE0zThmMpnJ3WFaZpYlkUl37mqGpqmoZXfy5sIhRxF12kkOa+m6yhsubp+uXMkxoMxRR2jG0L2J3cbuh0fQw/RZRAmyxPKuqQzDFjI+6G4Tzka+ixkgFArSmrbxzPVHSpmUW9p7RZVddC34vlGCqF9xmuZnTg8itimS+LSwJJ9w7PlCsuw0fUteitkSLMKfCug6xzKvbom6HXZrit0RYLquDZ930WRZSKbWGWRbrBzc0dDopQGUZwR9CxKGcw19BpNMXb9a4YjoP5n8XSHXDcceoThGfezGVZPIjTmOS0bdInYOFts8Rwb2xzSSLthGc1gq7BYXLDXFXdWY1r88svX9D1hwM9XGf0zFyNQuPhaomX6Jqa15oPHT0lLEe3XHZfjrkMYiP9ffRWRvlR5+qMx6UboRa9/yP3NHKfTwZYOiaaoeJxiheJ7Dx49xtRWlJseWl/YJYZdg6+RrmYsJUJqNzzB83TUVvbLrO5oqw6HBweoUl7+xt8Y8b/+z3+HP/j9w10f9tX9HYP9Q5JMBE6++vwVoX/AZj3n6kq8X687hlbF8Q75nd8X+uzl62/Jsy2WJ0FEbjb09wy+vbzh5FBk3eeztxS5zUDr4Uu6C1sxqJUS3ZdogbMN3766Jo8bDsbCyR0fAnWFY/coSkm4PEs4OO2QSA9he6fTdfvsjS1WEva8qRQ0y0atWw6G4v47e7DHy+fLnWPR9Rzu5leYRsjeuwqbYk2e57ukRX/UI9W3TLc3aLVwTJ3WxFQdNL1mv/dAyNCdwV4/5O1C3NFuc8rj0z2++uUzAkX2qxcps/VL4pXPJ58+BmD/pI/u6jSROC+u2cENMuJ8iaWLeydJGhbzCNeyMWUw/v56QtArieQdEycrOkFI26wZjwTgU2X5WFaOGx9hSTCsr569YG9gs5yJveruuyzjNY4TIM1oHh6O8IMuV/M71rk8I1Oxrn/R+EvhXEFNUQuDz7XP+PrFtxwdauiaEIDXb5/z8OkD3r7ZYJiSe+diARQUuUSWKzt4vk6n3+XTTwSc+C9/9pq4ndPgsF3LyFXro5jFLrMTLxs8Q0Ehxw9lCVAw5tWLKYZlg0Rjeftyxv6ZiSpTnnXRYrQOeXLLSII5LGczXNfGNCF+BwbQP2C52NDtS0b6Yo1hOnQCl7s7WUqnmziOS1FndIdCMJabNZbdxZNR46qJieMS3xuhqZn8Gxi6h6J7lIpQIkleUVGzlNmQ4dDH1X2SzZYiERfMQU+lXG84HYso0joqGXVOeHv9gkaW5PUHHdK84OCwz3Yjo6FWjKIoHB4K4yfNtlQV9JUBkyuRZm5UnbhQ6HZgtCcR09KMVs93Eb4qr1DRyNOaAxlhny0N7qd3dMIhF5KnIC1iTs51NHlRVY3KYn2HFViM9oUBP5+2mJZDpaosZHQ5zTI6ns9sKUoANjczHNfHVcGSsLKoNVFUU+b5Durddkz0rku6lohtbc7e0COOOlxMpnKvXD49/5DJ7BXtO5jeGWhYdN+BnWzvMbScMi+xdfG3Tz76Adv0DtfrYqhij799+Qw/6KDbYl+StiTseER5jPRH2O8PMPSWF88+57gvLuOry7fMr7eEQwnzmkdcL2oW3i1nJ7I5F4OyaAh9FyUW+7ddptBknMqm8OntLXbo4bsWliyN6vg2F5cTVNvccXtVaGzSGNeQ/GYdl9vFEkVLOOiJ9xuFPRaLBcNuH00aBHf3d8StRtCXyHV1xux+iqU36Pvie6af8eZiQu+puKzzbEWr7aP5/wa5JlAij/Zbvnz7xxweabi6dNjrhu5I5X4uvnc89vA8nfBa5au3osQwK2P2ui5lo5KuReTTcw0CZ7AzFJu2IslSBr0hmcyKWb7D0cEhk+sLFnNxjnuDDn7H46svBCBD6KgYXZ+LiymFNHrzTMetDZbZmkpyaGA5uG1LsZABCXuMqVkoesNyKc4xhkLVNAh8NnFZ5mlLtlaYxOIzZydHzKbXtG0FMrOyN9pndDjgi1//iv5AnBHd7PPi+QWmJ4yP/n6f+e2W73/8gKYR+ubL5z/n0cOnvLy4QmslH5Y1JtrMsSQ87V/9g9+nbRU0wyFOJIfVyOHl6wsG/Q95R/FRNnOaXKeVDoOh+7RKzuXFPbomI9cTm08+/j4/eLph/0Rkxn79+ddcXy0ZjUU21lP2+Lf/2u+xP3b4+lsR5Do67lCXIW9eXfPkY1Gq9+bNK1ot4/ETIT8vnwdE25If/dYjfv65KMV2tBFpskJTDTRVfu7la7phQJ6ItXM9n9PjPVBbvnz+RryMfsNkHWM5Yi0LJaVuVD568AOuJyLApBYl8TaidWscRxgW19cvsZxyB3biu/tomkqrbslkMGezzsmdlsDv7KDKHcciT/Ud11iv67NaLjEMg1KCR1i6SRgaVFW1y0D5vo/neTsnqW4qARRhGWxj4SDYtouitDtADABF19AVlSwTclAXNVm2llHk79AHTdOkLOsd2IamIWHrZdVI06AoCr7v70A24s1Wohiav8Hj1arKDtGsbdtdmaMpURz3+30WiwVFUVLLc1TXNUrLrqy0LEuKcsv6dr5DGbQsi7pq0Qyd3kBC2JsWyXrJjUTO05QueZ6jqCWqLuaUrCo8z6I3DFjJKpHh4T6h46DJZ+dpQa015HWBL6sMlEaUSybkKLKMfBtHmK7O0+8LPbVcrHF8C8sISSV4jON1sMyG7XrLsYRej5Oa/f0hjgREWi0DXMchju5x5brc3F6gVC79d8iEywo1hTbQmEswl9CAqtVpkiGptINMq8LUeygUUs51qlVOVlaE8h6dL1boBgQdk6aW2cIGDvYf8/pK6M5kU9G2CtttyYFEQ7W1hKpsWa6vMSUVyuquxtP26Uqo9LdXL6ivDgl8k70Tcc90Bn00M8J1FeY3kgrl8BGW3ZJKQ/h49BOGXZV1sqbWhM7903/xLYd9iyAscNzHUjgDOgOLZCNsi+vpBaNQYb2doElOq+ure04/6XF9PeHhuUBbjdIrzs5/xOWleDatjqoYrKP5Lqv59bMZw+GYy9s/o5bO1V/767/HP/nHX9ANRDnzk0/hfrJCt3t0+mIfvFBBxaSuFC6vRGCmyGzcUCHKhB4ejI/YP+iQRZDLFpHVBs4OPDbrhEDyBq7Xt/QHA26uxfc2mzt6ow4PTj1M4x234JbpdMLxiU0YiHWoyg2hv8/0QvCWnT84Q9FLyrqlL7NZ7faWqq2gUjE8IS9ffXNB4PbZZiJQu40a8lRD1VYMhqKM/OXFhMurOY4sh6vqDMtsiFcph5Je52AvYPMygirFlLw1eZJg4/Lxh8LhDDUBxnR0uMeRtCGbZoHt6PjnR5ycC/twk94QGAP+4F8XCSHLqvn7f/THdAbHdHtCXl5885b9/T5FmeIYYg7OIGZb3GAbMmgSNRjBgnhR8w9f/CMAzh5+iFb59PtDOp6wfw+P1liqSTsS+me6fsnRg49oI42zvY8BeJ38mgoN3zrEk/QlD46f8r/9j3/GXzTeA1q8H+/H+/F+vB/vx/vxfrwf78f78X78Kxh/KXqu9g/D9id/IKIqql5yfHSKpkecHgiv0TKPmS/uMf0Vd7ciq2DqHaJ4w0zCdp6dPuLi8itOHwy4eC6i1He3SwwnwzA1FAkLnqYOmqbhyYiQ75fM7iNUfA4OhQd8fX3D1fWCsGMy2heRAUVtWM1hvhR1oY5bYRgaumpgWsKTNYwOQWAxm19SZJLcLbqnE46Jo+/W2e+05DWsNyIbcnhwzDYR5Qx+ICKteV7g+TaRhCDdrjRqRQc1ph+K6JYXjtisY/qmy+WliJiYlobthBSZJKYdd2maCs+1qWXkenkVc/TggFIR66SbFsv1gjevJtiSh+b4g5AircnznFpChxdljEoXNxRRQMezcRyb9aThl18KUuZHT86ZTKaMhj6LmSyFqiJ0V0eXsPbj4QhNbUk25W5NdEMlTXKCvsmd5NXwA5tagTiSWUdtQd2scJT9HbliHdV4tsftfLrrDRl1+0yn812ktUojvH6foqjohoHc49fQWDSVQ3co+bGI8UYafiM+s1kviI0t48Pv8fa5KJf65MNHLBcrrm43OLKHzLFNovUUzxYRG79r0aoaUVLgyeRwJzynJKfTHfHsmegvapUI1+lRy7rsSs8JvJDNIuLB0QP5ghXr5YyqbTg8ehchjUmqFQ+fiihOmlRst/eYqrcrs5zNCrq+yvH5iMvX4owsZkuOT0fvWgRRqQjMDvfzO1RFliGZJkHYY50uSQshHw8/eMTLV1+zNxSpdVcb0tCyjN8icQx4/PAjZvMlaTrfRbOTMuZ+taKS3Cmeb9MNdLTWJEvEBnb7W243GV1dnL1eUDHuhzjWKd/IBl6tWmH0wbV93jwXJTiKXvLRJz/c1Venac46nzFyQ764FuWMmuEQaD6m4XF7LVL4fd/H8kxuL8X/dU/DMD2KtGa+FlmURjcxrR6hX+PI8+gYOo5uM78VsnlxfUN3YPPw/EPSRGRIk7pmtbinKCwq2Ryv2RU9q4Mpo/LrVYLnhywWGzZbqct6LaPhMU61x2L9RszL3kBlUxdCpgbDA+bLOaEf0A/FnLJqw3x7yTB8QOAKWYjiNVmpsomWUu58Am+EF6hUW5H5KKuUhw+PmM5uGO0JvXtzc4+tdfBk78R4dEBZtByfHewIirdRg6pYdDp7rCRxaqMUzO6TXX3+aLjHbD7BMV3OTvfk2j1g6A64XvycSGYHF8lbirQmsEVU/Ec/+AmGHfO//81/wumHovTDDVRev7kj2rT89o8EcfImmWK77a4cTdd8Ts9GzGZLlFbIUJzMiLKFAPOQ5M3np3sUUcZqIXSZ37Gpm4ibyyV5LM7fgw/7rNOWTHLo+H0bra2xS4/Rsehpq7KEVbykE465mwidUBYKnU6XvBTPHg77bFYNiu5iW9/Bs+uqRSfY/+58pCtU1UR5h4zeqqJEzjQlQa7gZdF00WOlYO2e5boum43IjpimiWnqgktLPktVdPI8x7bdHaBFmqY0TbPLsIEojyyKYscV9a4fSlX1XZZIVdXfAMZYrRbouoBs//OZK1VVURTlXXuqkA+Z5frzQ9f1HbeXYRgiu6R916u12Wxo6+o7yHil4eXbXxKGIZnkXPTDlrKOKDKF51+L826qCp1uQCUfPu4f4foa62hBKcvBNN0nWUX4nZBOT9JdLDd03TET2cd3v7ri4GifV5d3dGXppa0a6LrOJs3YZhKG3PdwLJtWvp6qqqyWG3SDHWy9qrVQN5RliSPBhjw7wLRLTE2Wg6cKQegRpRdEkjcoXUf09h5h2mLeL79+w8GoS6Wq7En46/X2Br1xadhiSxvkzasIywGnIwFDzJC8iKkrFU9mWjt+h8ndnMOTU77+WvBOdUMX2oqseAcvrRKE+xR1w+hAyP7zb7/h5LhPVZZcXwu7xHe6WFpGU4uqkSSxsZw+Dx/7REtJ2eIGBKFCVt7RVEKG60ZntVrgSU7E0/EndMdDLm9/zuJS3g2HOj3jKfPsOT/6njj/R8eHNMaaOhPr+/rtlHiuMxi23E7EeegHAxb5C6oEeh1xZ0bpFUHQIUsk0Eevh+k2XL5Zo0pwrI8++hTPDXjx6mcs7sWmPv3eOVcXc+pK/N/p+TRlwaeffp8rmeX76U9/ziA85vC4x9u3QhbTvKYgZSlLxo8PHzO7f0uRZnzwgais2mwbDHVOnYUUlVhPRUm5v084PRNZozeXb6iqDNPyRHoRONo/p27X3N695fFDkdGPooy764SpJFsPHJdOry96lfpi31ebLarWw9BqvE4j5eWawPW5n4qL3DA6fPDogF/88k8YSBAmz7WIo4xYZv2D0BQcaZZFI7OFPT/E9RXWy3tU2btctxGL65bRibhjVvcLNtmM4fCUhx98BMDbi1cMh31sR2c+E9Vr8bYiCD1GB6JSZ5u8pswO+Ph7H7CMRFY6iufkqw5H40NGR6K645tfXbLOG1xLzHO1qjh5fEibzHn1RnKEnZyxWVQcHTskEgDJaAdUVcI2Erb9ydkD3tz+jHzq8tFjkflsrIT5esuPP/s9NpKK4Xo+47/9T/6Xv9w9V/Adn0PgH7DdbtmsUx5Jxm3LNCmLhr47YjkTi+S4JaPhAx6di417/uIXGKbJ5dUd374QnwlCB031aJqIH3xfvP/P/uSC5fIVpezV+vwXKYGnc3oyZHIrLuKr19c4po+rmLz5QhgRR58eYvanjGUq0fccsmTJ3XWBoorFdsOMly9SDk/NXW247WmsNnPKQlxUjtdhsSzRdX1nrE7u5nT6XWpibiayN8x0iLMlisxiq4qN5YJp2bS12LY0adhut1heTV/2YbieRpabOH3ZCF+3rKJbqmaMIYXO67towRZNlvLEsbg49/cPmS/F+/rOAc9fT0jzFbZkvB71nuKEBUFfGMs3NysuLibkZQbS0ZitrmgBte3S5kJJHu3v0ao17+CR4myLriqkRU0tSYsdx8APOsTJAs8Tv1eVCmmRo6pCEcTJFl21GZ8FxJJbDFNjdT/DsUxC2Zy7ni+EASKN0DhOSacTXMdH4gqgoGHaBppqQCuJKbWG1W1KG0jS5EAhsAKmb19ycCTkLCljrq7m6I2CYQol0jQNqgWFNFriKERFwzUrmkI2gUYLOiOT2fwF20go0tFgn4PxGUUpJjVfvUbLVU6GJyzvxUWvaRrTWUJn0KGSddmjQxPV0ZhNhdwdn+zx0cen5Fkk+GiAi5dTZtcmtzcLykwYEY8+eMxscY0iz5rnaOSFitpCJYkNDcWiqmAxWXB4JAzf28sthtZlsRTznJHgWAbJJsWTjaKqZvH64i1hzyTfSE63siJwumSyJzHfLsjVPt2Ox2QtHKeitRl9OGIqyyBu3mzpj894NX/DdSqZ7JMLnLqPXi/Y6wmDJPA71PqGa0maOHB7dM1zLq5e0srAhmWYrKM1dbGgJ4leLVtnlSe7EkCn7hI6DpbacjsRe+V2LUzVwdAr0kii90U1m9kLnnwozv8H53tcTG548eqaxw8lotDNLapnojUK9Uas1WA/ZLlcYkpny+865EnE3kGfgz3Z9xXfUTcJUfxi1+w8cM64m0/RZYnV1fSaXq/DYjVFkf1Uy2iBFfhYrkdvIIlMVzPSqqQrSzG3yxmHezZlU1OUYj2Hoz3eXLykG4yY3UvCziRG73S4nYv1vLid8/TpEy7uvkVhX8r1K7rDlDiLxLlBNNBrps5AEovf3F5hmGDYOmku5DWOXxPFl8w3bziQ5SBR1uez3z3FM8U8O4HN3/u7/5RKi/EDcamWVUsnCAg9g0heaP2uzWx+y4MzUf4a+vvczn7J1cuC88dCvxlmitcO6A98hnsyyLWI2MxLHEPsX5msUcyGn/zkx+wNxJy+/uWvQb/j6EDsZ2+0z3x2wcn5I5YbIS/DoY/fUyiLGkOWPR6c7LPdZKwmIpg06FpU1QrbNikk+qJh1xRpTVEbmJK0fLm+wdYDbLl2juPQti1VVZGmwqjWFQVNNWQfk/helhXC8ZDQh7plkpf5b/RhoarYnk8cxzsHyPM8oijCtWV/Y5mh1iphGP5GP5WqqrRtu0NITJKEsiz/HCCHCTTUdc1M3sfUDYZhoJkGiuz7etd79c5JatsWdYdiqEjZSISj1qo0kjxaU6BR1R0yYJys0fSK9fYOV/b2TJdTqDU8d8jjD4Xsm6rFbLph1Bd6f7Z4y1l4imk6TO8k6fVYQzdLBiN3V157cnLE9G6KIc2h0+MnNMT03C51JYFaHJW0LqlbaGvJkTmvMDoWs40EilArXNdFISfavONzUrCMkLZRSCQ4RlE0aFFGWwmZ/v6nv8Pd9Q1VC1kq3lk3fDq+xlzqkd5RyCpa4xkDvvjVL8Vn/IDAzGnJoCPW8/i0T17EJEUi13dJtzckLVd8+aUIBvz1v/Lv0jZr4jjmqexPXSzvSeMSV8riOpqyjmI6I5/Xl6IUem98zP39Ja4eUtbijja1Bt1QKBBn5vRDlyza8uzLl2iqsN8++TBgu63Q1CFpIeybyU3K06efsFmIu8F3jjja14nic85+S+iEj793yKcP9inb3+KP/4UI8Pzyy5+h2y0vn4nzODjUubm65ouvbX78478i9kp5y/U3M05PHmB5Yv+yvEueZxwff0/Ixvyaq8nXbBYO5w9FYGEyvUNTZsznMc+/EfdTpx/Q7ZsompjnT//0DYf7Y37xZz/FkSh1g04XpU24vV5iKuJ+qtWIb1+u+OFvi9+ryiXJIqPb6XM/fSHkXPOxjAM++dEBP/+pkKGm3GM8KlivRXDsaPyQb15/jqoq7yi9ubh4g+Oa6MqAm2sZiPZd/E7DNJIlh6sF3VGP+TyikDKlWRmPPuoxv5lz9a2Qz5ODp+wf6xiGCM5fXUUEbp8ff/ZXub4RjmKRpBRJy6dPhKNxN3tL3TbESYIpHanWyJncxfSHLmkifk/BoD8YksTClllt5vjhiP39EEv2gQ97j3DdhDdvrghlW87r51N++/BFt0AAACAASURBVHctOj15j1sfMl9tub1bsUmkXaQW6IZOVW14cv4ZAE5Z8Lf//s/Re0JHqI3C/WyG3RasEvG+zf2SKL7jgye/Sy1bfNaTLY8eH/Dt12KPD/dOSOM7bpOM1+tncg4NauJRb5c8+7VAhMxw+f8afykyV/2h3f77/8EDAK5eRyiKQzfsiagPcHJ0jONUrNct11dC6G3PYtg/wpMRmrzY8PpFwmjPZjMTSj0MQ6os5M3VTwnDd8zjW46P9ul1ZBS+YzIceFxfrnZeuKrUpPmMn//0T9gbiSiD+8BhtY6Yy4hGvI04PRVG/notLkIvUKARJJZNLUnoiojhcEglYWynkw2e18ExDSwZbZ5O1xRNiuFkKNLd3axyLNPFqt6hI84YHYzRlD5qK/52t7wXaFRRSqu/I0RMmE23hB0JK7uuaJsclQBH9vbsDUOSrGK+FhdOmmf0Bx3Wi5YPHgtFs1wuePNmgm3bdDsS5rnTYxtlfPv6DQDDY42q0rCsIXkm4b6VBkuzGY/6LGYS3UpvaLWEjaxxt3SNIPBIo5o4Fkql0wnI0paiWlGWMjPmBqAmRMl3tfiu3aHX+w7uN4prDEUh6HdZSAS41XTOYLyHKp2fPMrIozn9cLwzIlStQdMUdMtE02TTclFwd50wOBbGR5TNeXJ+TjRvd8puvY3ZHw+J1AxLwubamkHb5qSSTmA+z0mKlNFBwGFPOChJNiWOU/zQQ4JiEXgjXFchkR7fmzevOH/wkYDrV2RWTzFZrDNm63tsX6yf2TqgZAxHXblXa47PfB6df8T4QDz82y9j/uVPX2K5Ggcj0eei6wXT+T2GjGCm+Qqn3We9XuJKyPGiUGlrFV1rGcm5f/XiJYNRD+s7u42mrDgcnOxYzo+OT3n+8kt0u+X1SxEBCkMdQ3eppANtmDaj4T6r7QU92atlOfD61YKBL41J9Yii2dAdmWwTYdxtpis2SkLfDznuy+h9Y7GpQZegCb635PVrjbOjh1y+llncwCZrKuo0pxu8u/RgtV1hS4e9bn3aumK7iPBlVlO3LcrKZDW/IpdZRcezqHObJ2fCOL+7u8AOOmySgm5Xymfikpklq/mGwBIylZYNlumjy2h6UdUcDYbUbUMjkc8q22EbxxSrFaYhzt9//B/+p/x3/9N/g+YIHVhRY2kmtmYQbSWohmWiaDq+4RJJhMSDow5X93cs5mJfup7No4cfsi1SRl1pvFoqq2lKk684PhAXZmfkcHc7Y3kp3uXBwy5xpFMrMxRpdCb5iv39Qy7ezOhLFLPldkUUpTw4Ez0JWZZQ5g2K0uJ7IgP19u1b9HALVcB4KNY4jTMO9kNmU0mNEBxwcDBmsv6adzG/2aTCDwyODsfMZxKVSilYzFLCrohID0c+t9czvve975HV4m64u87wQ4VtumAuKxtsy0KtnZ3eQI3pdF0sw2U4EIZhNKk4ODJQbRGxvb+dcT35liDY4/RY9I9MVi+5vLkkdMa4Eokw2kQkSYLrCqNQMRrSpGCR3GDJjAJNQxB0oVUpZbBhOp1jG2NGsnHccTzytMDzgl3WqEgzVFUVfViV+J6CgWna1NLccl1bZpxqbBlEqKuCqqrQdX2HfqqqKroiqgTEHiTYfkDbKixltUDbthL2XfuNjNefB7RQFAVd1ymKbNcXZWoCar5R+A1AC5EFk4a4aZKmqUAblAh/4jM1hmHsvqfrOlVVUEnnvGg3XN59znq9ZjiSsNL5iiyuccwevf53vbybzYZ+X+jFILQFwp7lkcqO/azd4mkhQdjj9luRBf/w00fUVULXEWf7drtCVXOSpmT1jppk0Gc6nZKsE3QJGWyaDpsoIV6Ic9XvemhGhmm6qHJvkrglLzYCKl+iDNaVTjd0kRgieI5Bv3tAmqbYltBTilVTxnN8T+jJbRtztZgSeh002QuXrCrSqqCqE1RJO9LthqxXCUUtzn9Nhq4d0zEtphPhCB8dHfPw8UMWm3tcCcWeJAmL+Yo4lecDFUUz8AKfV2/fAPD0wyeUacJ2vWIkq3w8rc9ifcNWOsaquSI0XEy61BLJbtA3uXx9Rye0cEKxp9c3bzF5yOPH4hyPegekccI6jTk9E/v39sWajx/FfP75hKyQhvao4vJ6iyUBSoLuORoKtqNwfSXe+cc/POPV21c8efgxhiVskPWy5ey8z+UbmZlrTDRvJkjXl+K+WNzrnJweMZvd0ZEId0EQYFgVr16KjJBjHlDXU5K4wdBlLxMZKBVXl3ccHYuMTF3m3CxXGJIsN40uOTnY52623JEIHx+c4TkOV5czOl1xr2VJhKH72JJeYDAYgJby05/+AsOQZMC+xWq1IPSGvPpW6LwffvYJm+iWtBFnTWt17u7XlLXCJ0/FPX43meIFfU5OG3qycuv6dYBldvnBb4lz9eXnL8gyle9/dsbzb8T50OwaFWWnO1fLmKIosE0HTXYWddw+1/MrVMWkqsTeGHZKFpu4rgRpK1s+fvIRf/zP/oRPP/ktAPaPfbabmLKZoytCV54dnzO7nzCRJNT39wU/+Oz7GHbLyxfC0d/f7zK/XeN5AUP3AQAfnof86s2fcfaBOAv/+B/co/Z8lNTizUx8r+sEbDYbLO2Az34ksoN3d7fE+ZSTY9EbZjstjw4HxChErcimTV5f8XDvMTeXU0yJ6NvZC/jP/qO/+Rdmrt73XL0f78f78X68H+/H+/F+vB/vx/vxfvwrGH8pMledvtV+9vsiWmGbKoH1kPl8Tilr2H/nJz9GU2o2mxWF9Ipn0zX9PQtVf5cx8ahLndu7t/gSPWQy3eD5Kt/77ITbCxEtcLyY7330Cc+/FLWb2/iWz370A2xjzItvRHRi/3DAm4uvuLufUGViXq2/pszsXYTPsW2yKCfsODs0pNlyRdFkeJ5HW4qUeJRMaVtl1xsSBl0MS0DNlhJVzbICGgXSbMXxqYhi3t8JEk6rkv6vtsHvBbS1R1uK7FmplVR1QT5PMRyJeGebhEGfyZ3ICMXJGtfpEAYuZS0yO77f5fpqg+mLSES/P0RrbUyzxJFwrdcXMaZromsqi6mIKA5GPsv1HM0Sv19VKv1xhzKrSbYSxU1RSLMVhmUSvYvMKyWjvSFJJNF1vACNlvUqw5Xz3mw2eG4PVatoMvH8KFuhaDGuI7KMs9k9rq/g2CFLiQTo2h69fsDr2ysqmfYLnBDbtglkv0y2SLl5+5ow6GEbkgei59IqBbbnsJQEpaZhE5omG5mFi+oKzaypYzjoiSj85eUl/sjCMocsVkIW6rblRz/+AXdTEUVazO5wdJtkk6PJ7Jlh5GyWKp2uS9AR87y/v0PXKyxdRMqzskVTG/phuCsPKSsVL/Boybm9u5B/a3FsG0X2sKmajefrRMmUAwnrPp9smS8Lzp+cM7kR82rbmNOzc755/RKA0TigiULuZxOOjsWZMXSbxXyG57hsV0I+Hn/0mLvJZNezt92sMGuVpjDxZNR4MNijrGJKNeNuKuRaVacMwjH392Kv9sbH3NxOGO6rGLLfwAtrok1JJsuunE4PTWuxVZtEyn6rFWTEDMMQCzGn+UyjtUxOPhRyPr8uSZYf0bYTFMkflaNzdTPh0dlD5rIHaTqf0NVNAglBnKYab97ccHZ4zNGBKA+7ur1iMpmxNxoTZyJjQpBj22MMSRSrlCVBb8QqXpFI2Pyeo7LYVCSUBCOxx9NrBV8x2JMkkZNZga8Pub74ltMzER3VPZ/OYEyZbCkzSUzt2NxmG2QrHGVZEy1jzs9Omc0lcXKng6541HlBIcuAOl2P6WyFKUt5m6LAtDq0Ro7ff0fFYEBm4pHhaSKqqbhzlvcz/s3f+XcAOD0/4/Mvfs3F5OsdcfObiyXrZEngnYNELN1uLtgfP0GTPa3b+A5TG2DaJZYkKb+9mRO1OcOuhyLREBeTGaG/R+dd1qGw8H2fKFviStJy1/bpdC1UDapCQtuvZ6iNzmy5kDLcw7ZNxuN9Dg9FOeHN9R2g8ebqV7SSCqEsS66utjx69Eg+2+Tm6pZu36A/kBH27ic8efCYP/2VKAXZrm949Pic6Sollr/38uJrLM/lcPyY5UzIlKbobKM5huy5bPUESz9lsZngyGzFZp0yHp5Rl8WuPDuKItpGx/PF+ratIlD6ippBty8/k9DrdCmKatebZVs+TdOyicWZcV0Xy7JIswpfIsLRlgKVz7R3HD22baKqEK0ld5NjUrcaVVV9xzsjM0iqqu76ot5xUX3HoVXjOA5JEu2QAdVWlEdXbbODqNd1E0VVKWV2S/R7gaFqO6hwRVFoVUVCuL8jQNZI03hH+dHqMbeTF2i6hURwR1ELyiLFc4d4lkTKNBocr6Yo3pUjWqQxGE7D/ULyD2mgGy2d4AhTQrJaoclXz17we5/9jpDNdMPF2xtOnpzx8tUbIQvbmGHQJ91uMAyxEYt4heaY7PvvylhTknSN2uqYkkNns9kShiZVnaI1sjfbVKirlET2+p0eH6Ax4NWr1+zvi8y1ohWk5ZYwlCiqdQW2xeGDAVcvJI9XBpVpU5RbikySyXZdknSJTPrRGw6YTzfki5STE6HfppNbfvTj3+Z6ckcuIdybtiDseCw3kvA5L2kbgzDo7bJZYeDTFDFtU1FKmPxR75y0vuVyKWwn1zrE13x0bU0h7RRb6+D5Gov7CM0RmSNNCYjjmocPhf5ZL+8Iuge06pL5hfjMcHzI1eXPGB6cEsgMnqo3qI7Jty8EwXy8HXB6eMo2WaBIpFPXiNluawb97m6Nu0HIhx+d8lrefTpjxsces9mEywvRO9XpnNHrjilLA8OVaH2rnP6oz/XVQu4L6GbGejVj2BcVIcvlkrBns93EdLoiC/782Qv8fdEHCRDaBtE6pdEsHJn5UIuSTtcmzzY7/Z0lFkdHR6CKNZhNV2iaTp7VlNV3fHWmnbNex1AL+dg/6DGb3xHJUteet0/ZZKRpTVfycSb5gsqo6IUGnkQHTtYBHz39kKadyt/bksYqDx7us5XUBN88v+Unv/MJt7dij+9uEvYORpRVxFb2fVrqgKjcYlpQ5OL8Ky3YfkjPE+fsfrWhyUxc09rxlI5HR0TJBsuwUQ2ReTw9eMLzFz+jLykH5vMY3TJxnR6vX4mS2I77CC+oiaKIKpZ9fFnM0Sc6R4dCDv7233qJ3nEwlJSoEGcv9OHi8pped5+e1HlVJfhHg0Bk/T988AnJYsWLN2vGp+IgTa9ucc09Dj9wdzRORQT/w3/5D/7CzJX2h3/4h/9vf///dfxX//V/8Yfjoy5No/Powad4rsNisSbPoGlUmnZDkSgsV3Ncx0ShxfZb/E7MZruhqnJce0gUbVAVl7BrYzkanm/x5OnHJJHGyfkeg9GA+XLOcm6CYtAqJotZxa+/+JLVZk2Ux8RZxM3tlLLRGR/0cEOFoKejNi57BwMW9zW66hB2cn74w0co1SHXN29JkxzVbNiudTo9gySJqZsU1w0wtJAiK1HRcGyLxXyOadqsNnPyPGO9nlMUBZ1un2iZkGxT5tMFvqejqwqq1tLr7KNoBk1bUBU1TVszmU2pqoJRZ0iSbmmaStTn5ylVqQIKeZ3QYpLXG7yOhmpA48SUaCgGoGvUlATeiOViSttCnleEXQ+qENNU6A11Oj0Ty/Tx3DFlO0fTBZxxlets1veYeoCqaFDDcN+npYtq1piWheFbtKqJZSgYhk5dqVRlxnYToWs2dd1S1QVxlKGg0zYRTZtTpCpBx2M46OO6Jut1RtXMsG2bzbKlrjQsS0NRFdA1HL+D47ioTYupqbx6/g3zyQRPt9jfO0RpWqo6o20rlusFByeHFFVJmiW0NAwHA+pmS6kbYGis1xvq9ZzQtlm2G6IqYtMUpFlNUSs0bUFLw/HpAZqu8/kXnzOfz6nbEs/voBsdrq5XRHGJ7ZQ0TQYomLZB07bcTqcouonr91F0g0ZRQKvQdY0ozinrSjh/mzuqMsM2HSzTotJyGlSCro1hq2S5QdReY9gdsqomKRtaVaUTdHECg5oCw9bwfI+kSFEtMB0DVVOoixzDtsgSQbCaxiWz2ZTjo8cUlYZmuOimwsuXl7hdh1ZVONs/p2P4aKbG8KyD33VYTCOoK2ojJy10FFUlSeYYhka328HzXdbbNYNhlzRNWK8ykjjj4OAxeqfi5asVUd7Q2++RbguK2CBRCsGR4+fYoULbVszXc7Z5Ssfb46BvMHmTEM9ULp6lHA0aev0DLu9uyYqc2WaO61ms1wvRaN9UdJ0OaqmSZyllJgAAtqsUBR1VbUnTBLQW13XJkxxDs9AVg6RJaBTItxl5UVIlKoYZcvv/sPfezpItW3rfb2tduurollfPffe9wQhGkAGDBokIBn04pMW/Af78HTRh0WPQIgOMGc5gSGBAvnni6tu35ZFVp+TWem8YmX0miMAwaMB4RqfXJ7p27cpca2XmWt/6vuUlSunSlSp10qPWHlEUM1qoaEoPBZwfj9H0Fk2DptRp1JjF1OD45Jhg4JNlNb3WklYbJmMfy4G7+wO9pVLUHU3boykahtozmrgsN/dUbU0clgTGGENvSMuUtm+xPJu6gGEwwDJsmr7BDYayp0snzxWW9wWB79AkBboGbVewjq756PlXmIpJ1dT83d//OzTdw/On3K62pFmN4/soWo1peVzfvSNJYz795FPCbcPPr7/jfnOPYxmoqoGhG2y3O9I0pe0aTi+eEIdbzo4+xXNm5IXCIYk5Op2imQab7Q5Nt6mzClPV6Vs4Oz5mu90QxgVpUZEVBVF6T6fuuLl5TZptMA2X+fyYH77/iavrr3nz5gcC/wzL7rGMAEXRsSyftm/wnQFlnlCXOX1T07c6lu0zHh9j6APquuFuectsOsBzDeL0niStydOeXXhHXmaE8T1F4/P42Rnf/O4VhzBFV4ZAKWjfe5uu9dltC2xLx7Q6VAV8b0DfWBRFSpqG5HkBaDRtQUdL3RR0fUmaHXAsUPWWri9o6ozxZMAh3KLQ03U1aR6j6xqObWKZOnVbkGYRPR26rtB1FT09uqFTlAW27aIbBrbj0rY9judiOy4qGqiCUv0/hPxpmoZpGhiGTtPUNE370Iulqip5nqMoKmVZUdcNpmHSdS2WbdM0DYqi0LSdEENWFJDCx/17RXgU6ZMdhqaSJiGmqaCpAmbVNCk9OarW8OrVD6R5gmnqTGYDXM8gjjJca8zQ92nbAz05adIRjBw22wNFWRNFBV2tols1ZVmhoGCZAYo5pMhSqqKlqBr2YYzrGxRVRZTGHKKEXXLH0eiMvm5xdIt0HzNwfVQF8jKlbRsc20BVO5q8oSpz0jzEMl0WZwuWt1uKsmQ+H5HEKbZt4jkDKXidYJjgWja2ZQp9sEZnPB7RKwWq1rEYjcCA7SElL2u6JsfodaLtlibv6OqexWJO15qkRYJl6+iGQpF3NHWPF9iYpkFXa7Slz3gCfafQdS0oJkVR4w89kmxH39fs9wcUxXggFlGBvlGIo5BhMMDUdZReocgTsqSg66BtejoKNNPisC/pG4O+NbFN0W+rGAqokCV7Aj+g6XN2u5wib1HNnkMc06ITpTmus2B7d4tpDZkuxgSjAUmZY2sBuyjGdTzatuflu4gs63CNEaY+AVpQ95iGzyFUqCqFydBmubnGtlzaWqPvFDx/RJmXrDfX5HlG19eE8ZYsLdB0G8NwCYYOL35+iePOUPSettMoSoW371ZYjkmvgBk03C1zUHXSpCRJc1TNJEzuGQxmuM4QXTN4d/sKTRuj9gp0Oof1LaY5YV9tUNWOus1wOh3bB8+bkRcFimrg2Cb3qx1tW5LnBaPRkKqELI/wvQmm4aAoBlVbk+cVwWCEYRn4voXrqbx6eyOgt7pGR4FuqJR5RlVlzBcnRGnL0ckRTW7T9w6O5xAme/abVCS7LZO6TXj97pqyC4mzEN+yaasaxzYxdZ3Xb98xHHtstwVhWpCXYo9yHZUkjUBt6KmJwhhnaNLlGlUJuudxujjCtVzyvKRr4fjoEZrWcXQ8YbsJaRuF1V2J61u0uU9TmsyPbb7//gcWC48o3KMqkCQxs/kpRVOwz64o+5DJ7Jjb2z3/6n//ht/85oazJxNur3POzo/QlR7H1Dgc4PEnE6qq5GRyhmO71GXFarVhGEzpGoVwHfFP/9k/49Ov5owHHkeLBa59TNWmVEUq/K/qmYx0/uZfvbr7i7/4i//xP3av+YMgtOh7yFJxQ7y73WAaFW7QYNiicmWZM/whaNqIOBUYyOHIYXWXPqgsX75b0Xca88WY6UBkD37e/sj//eu/AUXDFR/DVH1SdnSyIVPxXAbeI3ZZgeuKTMtscYypOgxGYFjvM2wnmJaKJbWaXr76iUOSsTqsWEuxXG9o4g9NdocD07GoQGVJyGG/J5UNrsNgxCcff8TPL1c0tbgpV1WN547pa/VBW6RIa2pPwZekDMv1NeP5hKZROToSmQh76PHTzy/I9YRGk2KVfU1VpMg2IqYDC703mIyOySVBwOWPW47ODK6vZTPpwGCdXFE35YNqfIPCIXzH6ek5ti3ZXsIY12+I7+Q8HUNe7GkUlU0ksum2OqDdtnT9DFUyZWmdTrhfoutStNieEaYpg8BlOhEVvtUqwvR16irD86W+UpfhOmPut4Jkw/E0itpFNxwCmaBtUDFMG6eHRGqLqU0nWO8knjwIPLIsYTCxMXWR1dhFPVmRsU8iHFk92x3uWcdLul78u+sUXH9E0k9I5O8ztA7fDlANg0xmhIsq5833V+ju+8ykznJ1RWAZWIFs7m5znj7+jDQK2O5E5iOYLHA9g30qsmJ93aApOtEuZijnJe9CkibFN1z6SthivM14dL5ARWbA0xcsnnhE4RrbkVUjxcfQx2RZ9oCV1lUP09UoJclGXYCr9xRFhSPx41EYMhgErA8bSqmBso6W+JOOW1kt/PjRV1zf/oQ70Xi7Ffo/R/Mv6NKCd8tXPP/kl8Jmr1PWqz0j2WztBR5VUzCbLaiHYu5evnzJn/7nz/ji05uHNV4nLa2SMJZsXn2nYecuX3x5QlML1qj18i0T6yMGErN//OSOZuth+zBdiIxX/O6Wo+Nztrs9C4lhr6KIwoFwKbLb3qTh+PiUJCxQpY6XoRq0bcYvf/Ul3/1e6IYoqo6maCSxJL2wa6I4x3MmOHIdHl98we3NmqJTGEtmN5WQLCsfbMM1oTR7tELB80RF9m71gs3NmvF8QSxFysMyw3F7DNkUrjQGlq6xXG2YH4vPResQQ28pixhHZnYPYchsvCCLhC8kZYU37ugLnc2tsGHFMkhDm5ntsI/EmjbWkNUuQWtkpd6x+fHyBcOxQSTJFTw6hv6cLEv54tkTYddFgWZVjERIwg9cijxnGDxhu34LwOTIgrzidPqM5b3IuruBz8nzM0rJ+mWZC2xDx/FsHp2JjPB6dc/bq1dMTsZkpdQlo2cwWTCSMQIU4oPGYnrEXpKk3N9taNWQ+fyY4UQyq/oGjj7n+p3IXB8dOXz+2Zf85ptvHvTxjtyAvEn49tfCpntDY3244ez4CYlEUXz+xZ+wjmK++/G3nDwS8WXk1ex2FQvZD/T27gWPP16Qxy1xJrK9fdsTeAO8AKpakhtZIxQM7rdiDdq2pS4LurqjkGLyumay2x1o6o7jY2HDf/mXf82nn33JSAq5LldX4tKjWQ9Cw22rMBlP0TRFHHiQlbJewZBEGIKw4h8qTSCqS33fi/5WabO+7xPH6UOVSpEXJcMwHjS7uq7DMCyqqnrouYjiGM8LHogxmrpGV3W6rn2oUlm2wWZ7L7RzJBnH9v6SONliS+KN4XBCFCmUBewkAcvJ4imW0REedlTZ+/1ogqHrLBbCNpP4QJHXaJr2UPlI0pK0zHh6esL9nbDPvCkwVZ9C9vUZtoLl+dxd3eBIBtrR2OVQbDF9l9FUVPmrtMCuWzJZmTs7eUbdl6RpjTsQ1S1VM2i6nkfnn5HE4vuK3MFWXXoZNw7RCsccUlU8iNcmdYatdQSqWANr0FNXNYG+4NCI/WK9rnn8dEqadBhyw4+Le45PTh5EoZsahqOa/b5lIrX3HKUlK3fcv75mMBTx5aOnn7Na3WOp79kfMzy/xbEDpAY1690ltjnl5HxEKPu1ixL8wMczxtJeHVQ9AzxSqfVlYpJlOVUd0/Zi3VebFE3XH/Qc1+EdrlmyWy7ZywqN6s3wHItGcTBNqW/Gjn0IF5KExjJGnE6PeHv7kkr2ZVX1CMs8Jolbnsse8q60WC6vcW1RZUyyW9Q2I4mENh+IXrSqe8n97meOLbGvXN69o2lLQtnPVbKnSjVOTsZ0xXvR2TFaMaZKTJJestIOZ3R9Q3wvfqDNnFprsO0Zxd6Uc65wu9lj6C1tI/7WKgqDkUVVyv5qfYZu3JKlBYns+x7MRFX4+OgCwxAx6O3rkLNzj6ePBcO2o2koVszd3ZbFRPAGhOmGvIrYbj36UvjRfD7HNW2u92L/zTINzx1jOTquK4J6GodkTY0lz06WZXF3d0dVKriOFCjPM9J6RloesCzh/49PvySudxx2sioX1TROjuNY1JXs+bq5oe0SLq/eMhxJrT2joek1QokoSlvo+5aXP96htMKPR2OP5W3I7eaGon1/5qn4xS/+hN9/K35LWVdMZxrRrqaXdqe3CuRTLl/cMjJEte6n71c8+nzOSs7B6eyCv/2r/w1HH3N1K/72i3/yKYqqslnljKYi7jIU94x/bPxhXK7ajk4mtPI+5d3tltHYY+gJw9lHGV4wIu/uwRTB7tW7HaalouvikJTmBRePTqirijCTAV8F27WYznys9yxRdcuLH2/5+FPBMPT4KVx/1xEfDFxfwt2qlNOLEYfojvu3UoDR+B3r9Zbj+RMAAm/IIVwxGHs8U8Smquk9m6uYLDeI1uIgo9oNqtZzcS7K320Vkdcqfd3jyMbi6TygakNsZ0EaCYc9nh8xnmp0lliiM+UIQ9MptBrkFYgR2gAAIABJREFU38K3W3zTQvcNGslGmJYhmhajScamqX+MVs8o65AkFZN8cj6l7XWGUgzR9mp8IyCtTbJcwKxsbcT4eMQ2jah2kg4+31Fel4yGYnO5vN7R9Q2WohFYwhGbNmM0mrO6i9EkGUdS3DNdDEmkwOWLH684OjO4v0+wXRG0isZCs3XUgUppinc/sqds7mNa4z1USsHQBxRFxnggDoGaanGo7qkpmMuSvKtDnDR4srlbs3UWA4cozlHkJdR1B+RFS9FVD2x2baRg2gN0KVRttSpp4xLnWzx5sOhNh6zPMeueYCA2or5RSMMDTyW9aBLtKRsLw/XpOglt6Vy0vmVVv8KvxHuFUY+tmeSxcHKlVzEdk642CSV7H4lJoI1Q25wGST+tq9zf3TI5E3Z3fPERVteSNHfQjx/eaTAfsNq+JpBwpe06IVVyagmxmrgmwXCIFfRE9yJwP3/6hDTJaE1oJaHM7pCi9B1uI3zor/+v/xV/NKVd7RmP3s9ByqvLN4zHJ2zuxGV44B/j9hoLGYxudjc0tYZGjzMUQfLkpOXVNy8ZSYgFmsYnv3jCyPdZL6Vws6Hw+kVLuLP5N//n34pp2av8d//DF3z/o2Beunm15Ysnj+iVnKoSG9xw3hNtD3RJSW9KAc00ptM0zEBevL0z7tcxuqfTSfrrKNug6ja7MsU5lnT3cYTlOxhTcSkMDxnPn83Yxy11KuzlNrrGHnR8cjrElGQH23XGOFDopajn4+efswtXVF5F3b5njTugqCUDU8WWECf/kLCYTrh7KTeYMuPksceXF0/57e/FBWE4PcYcWIw4ZSchVGozZOTZ6JZ4z1dfr/nkyWfs44jZWFw66/aAgUZcpjSyET1fl7TFJRri93Z9Qqem3K5qNN6zYrbEYUtWbDiSJAx3V1ecPplSSvSk2hvYw55dtkKRkhGHaANmwrH7nN6UxD7NEr/9iDITdhe3KRfWI1a7jLUvHpa0Hd1wxup+y9lM2HrY6SRbHVMevHUKfLsgLUqm7/3fKkEZCyRDK2x/t06w7YKji/ex65I4+xa116liSSizOxCuD3SZ+L3eUU/aaaR5wlqKUJ+ejLl+fcVo6FPqYo5/vt1zPBhQIjJ4TV/x9ucrmuaegYT3KVioqoBSFzIOu3rD7fWao2OxLod0T910VE1D34jYrJs2r39+wdn5MW9fiHWfBROqOOdvf/N7AD755DnB2EMzdKKDeIdea8iiLePREaomvi9vU0zLo+qkMG1SMvAhyzpBHgRUdUgUh3jWlESefLsmQbU0ckm3X9c1Q39CkdcgWTBVQ2cfrfEsD1Ne3kZDj65XKOVBrm4bWtUkKyIM2Y7QdyZFu6dhz91eip2nFUncEkmR7bzo+fjzT3h38xO2K/eCEaioLKwzZlMRS66v1ly+u+O/+q//GwD+j7/8a3oFwqxht5OwrkZFsQyW9ysKqUkxnkwJdymK5JD3DYs+s4jzA6mET1Vthe6ZNF1JW4rP3YVLDN1h4Yvvh4JECtCPhyIuKl3J2B9QJAlN8z7mlMTJ+oGtzFDn7PYhQy+gaIQfRyuFs49crm+F/88uFrz48R2BOWV2KmNS0XE41Jw/eszyXpw3BmMbRc9RerHGJ+cm0aElXFU8OhN29vZdiK4m6G5GW4m/DUYG8UHFcUWsVvWcQ1Sjo5Mnwh+D0ZC2OJCHOkYv/t+jx6cckmsimSB0h2OOj2bcvLulTcVatX5HXGWYasAhluLKpoFlaMQHkRBpNAPH9RiMXOLUlLaYkOR7LNPhZiVgnVWvcno85OVPIgFyfHzK6/vv2Yc5Ewm3M7SUJN5wevbkgVSrSO8YDmZ0kml1F7fYlUm8y9hKCn5N10FvuNle00gSltkiYHOXkSTCFs3AQR9WGKZNLf2hakKitsOxY7pYPH9ziHAMDcuT0MiByj5sabPuIYm/qjTiSMX3VRxX2n6ywbAHLOV+3DY6gW8xnj7l7la0BdA4VFXP1fKSpx+LS6bphkRhi9JIQhu1xPfOGA1sHE3sKXncMXRtsnCDbwqb7QtI0xBT4s+zLGE6mjP2HrGVUM9wvafxO6JDKG3FZb+PGI0HJLGYlyQvMIKYyXDESrZHVIs1abTDdiXBjGKx2cYcndokhVjPydRlNDjh8vYVq42IsUN/yN3lJbr0vYuTJ1TjmqRW2MoEbx97qHpC18GukGQ1yyv28QpTzu8+rCnKGAuwbPGefe8SbmKeXkwe2Jb9gcHEDdgehO/9/rffoCoVmqWh2fLC/vUKrW3p6hbXFBf29SvxO/+x8YHQ4sP4MD6MD+PD+DA+jA/jw/gwPowP4z/B+IOoXCm9ii0rA1XeEG5bdBTOZuJW/vLNG+7u/jW27fJEiqvNJiZ5UWEa4sb91ZdTttsDZRUzGoks52Q8pSiG0NdcvhZZhtvla/78n055dCZun3/3d/8aq5qi9lN0W3aB6g13yzW9tsGwRQbKtoa8id5yWfwEQDA0KcscTXUYz0S24PZ2SZiWrO/2fPQLUX42XJMiCdnLRkPDaQl/vmSTqoxnInvQ4pAkFZ5t4A2kPpWa0pgWpiXeu9ShiGu2XcJY0s8Xgxy/dPBPpySXbwFw/IY6H2Ah4USVR5Hfoqoqo4F4z8F8wtW7gqPH4tnrQ47mFGRJyNCRTYT3MZYLh7BEUSS9p65hWQ6dpJnVdR1NN4iikK4TWYaTxZA8SjiaBmxlxssfTonLjEBS3Rr6HdFeYTqdc/1OZI0sc0CS9ljjkDIWmYc43BL4E5JUNjprAXEaU3c5W9lkq5sGg5FHFm1oZVZqPjtHtzVqKe56v9pgeS2WYlB1svoz9NivM2gVDF28e2805FFH0/TSxmySQ8jZkxmdbIw/hDpxkfH80exB46U2VM6OL4gkHXZVtdjWiKIsHshHPHPAb7+7Qdd1JiPhdprb4Y1cylSsS5bU2MGQ0lk+EKCYSkuj6jiaR5rKvghX9D1IPgscx+Gw2WOpE6xWZpL1nra9Y3dIMWX2JaoPTKopntQba9uS211IX9YEpsh0ep4jIDtKRyErwI7pUGcFw7HMwnUaulGShAPaXHzfMn2L6+pYhklVSzHnSU87NFneioxUr4zAyoiLPRiyQtKGzEYzOvney+s7ispAWRxxK6EYo9Exf/TlmN9883cPFMez4Yi8CVkfBGzv/PHHWJMZy8M3KJ2Ypz5uULWYVq1pTfEszdBZXe346JmII66r8OSxR694vH0jRYRbHd83efXdj6iSUl3FIVvneKrI2Oq2QqIUtI1BlcvsqJJyNppRlD0DCQvSyEHRQVZMd+mOSuu43625GIlM9uTcZrtpqNSGofT/yYlDnve4QynEaXnM5xM8N2ASCN/Osoy73Tv+6PM/pQtFdbmstjR1wMh6IubO2/P65h2jmUomKyZNatAQo/Yq46l4FuqarKjYhiIjHPgzDmGMH7hEWyma6lh0Xc7iaIIu1WoX56fcre+xVFERqkuLMLzFcCKcgYiBq9sdamsy80saWa3L8pLNMqLIRQZT9VyW6zXbeM1MVu9e/PA9g8VY9KceIjnHJlXdodrvs/4mq+WB07MLUklk8P3rN9CrPHl2hCHpxPebkC+/uODmjcjwVyX0jsmPr35mcSRhpEnLbHGB74o5Ces1bZGyT2NGc/G3m/s7MEoa1WItqwpnxydkaUsnM9l2G/D88yNu7o8equLT2YAw3GFoCoP3gs+HBE2pUCXFct32BEHA2dkZWSiqYnXe8mfP/owoTXi7Fmvjjl2Oz6a0mqgeVnXDYZ8wmQ4eZA+qLKNKY9JDQjAWFcSqycmrezSkSLLvk2Y2TdsyW4j98Obmjk8+/pwsrShlk/10PKEsa4pCwG9czyPJQ/q+xXQlmdNujaZaVI2Gbor9qS0VdE2nltWYpqqomj2WaaJIjcX15i2dsiPPDpiWRJeULb7roEjY3PHpMX2XcXI8fyAIcMwReZIRxpe8fi18++nsUyx0/uov/xKAq9sbRscjDKvH8iVMN28YDmcoeoeiSJH7pMWyfW5vJCmD/xzV3PN4/IxQyntsm4Q2atEME1X67Zdnv2S1vqYpZNa/LxgFUzRN49VrUVU8PTrGtGw6JeR0IlsFmoaqC2lqYfvTqUutOET7nKMTMQdZ2dFpNo+eir33cEh58vFzqrJhfiRQNy9/ekEwOsMwO5JC6o2pKm9/esfjCwEP2+57bm+XnJ4ckUgB5rSs8DyHtvTw5W8J05RdFDOUyKzecNE9E9vSKDMRW8JtymR4RBpXjIbic7eXawazIaaEWMVRyKsXLYbmYXpS0H51xWI0ojUMJrKaPR6PybOEw174hzuYY3sm19dLdFvEQEVR6KhQ9I7bGxE3jo/OCHcVE4mG6JWIrlVF37TUQIsisFydIu9xJZnCzeUV233Js6cCUn08OuKQbBlOA46ORJxqSSjSjr5y2W7FuteVjWnaLI7F3rfcRShqTRoemEktwdvVGyaTR9iKxnYn1mHkuwS+gdxCUWqVqlhi+xppJIWwzYC+a9jtNgw7KQOiWxR5w6nUA6SFLK8oK42PPhb207ct69Uay1YfiGEMfUCSHNBk64Xra1iWSVt3hIWw60fnn/DNi9/jWBa9RGlcXl7y7MkFnlyrrmvZHrb4TYlURsA0FvRKi/K+rWM4YL1ek4QllqyATUYBdAp50eC6wob3+wNVYWKqsv2l3dK3LtPJgFwSRa33CVmpUmQKhSSGivcVwdDCdSTaZNey3qU4wwDDEfO02l2TlzsMe4AjmX76uiAJC3Sp6q23FuluiT21KaScj2bXTMZHXK8uCVNRHXSdgNfLOyxZcbfMKYZXYnoWaS7mZbs3MbWO0UDh//lGkGpk+f9bHP0/HH8QlyvD0DDl5Wp5ucF3VFzbfgh2/ihiOnqCaflcXQrI0ZNnJ9iuz1aKXu5CIbx4CLc80Cp1Dof4HYv5I2bSOb76k19xfX3Fr2+EKF3XDMnKira84Uyy/oynU1xnwu1dy5Nz0T9yu/w9nzz/hDgSG05epIwnU77+3Q1NL/oIzo4/54//y1N+/A4++0Ic3qJ0z0ttizsSxqRUOdu7mtHcR5FYyCIJGTkexaFBk/PgTMckSYIuIUcDuyJuSgzPYx+KoJxFKYZ7zurdkr4TG72hTUmThsWpCGJpcs+T51O+/vslzUQY5rb6iSRX2Rzk/Lsdb95tGY6n7A8iOOg61K0pG5tlP1dZkOYZjisvhW1B1/cEwwEHGYy8TMNQFHbpEk3qgaRlSTAaEmWSWcYuGDtjuipClXh8e+zTxVdM9RGtLg/eTY6ql8xHwsnW9xVh2LA484kkHVLbWKh9S5u1dFKHKakKBr7JQkKJyrKmbGLaWmcgL7T7YkfVhGidy1iydbmTAb/79c9cPJE4d2+KEV9z2NxhyICh6hWTwZzd/p73WFbXGeIHBvdrsQadpjBwXcq6YWQKW+zans+fPiXOEwKpWH7/8wtub0MenT0RNhUmrDYbqjZkOhWbgG853OzWuJaNvPPRZxCceuSZgGLUbUJvWLjDgFLis/JiR7m2ePLohL//VrAhXRyf8fzoOd9+KzZ+beSRskNv1Adh4cPhgK6blGXJUDa2bVZLdAU6KWKaxjrB0MBxQNcls2OkEm4rzs8GRFJsOI8yFMN96DtzrIz9vmd/aLBMKbypjakbhUYe5NTO4nDf0MYxhtRuC9M16ZsVjjdkLC87X376Ky5v/h5VaqJ99uRzZk9OefU/v8C33kPINviBTZF2qJ2YPE1TuPj4mFJeNIoyoWxixuMxpjzkOsGAJElQ+prThXjW7dUO1VTopU2fLCY0dKzulgzlAUWzTPI252g6oNXFHDz/7BnL7R2WLXyv7StUTUHXTTYb4cdFFnI8PyHarylkQiBwPQ73NV98JjbZu/WWNz+/w3zS4Xtys9olNJ1CXqXYcrOMK5OsyFHb98xuHdg5ujEjfg/dsUaYjka4jVEUcbg5f/yEy9dXD8QGcRajqwMMzeToWNjG8u4Kzx1Rpg3B/D28JgddoZc9UQ0apuoQ5yFJKWKz7S2I0xuyJmc0kPO5/onBiYom17jsPIKBTeeN+P7td8J++hxSndPRFEX2CWZhTGDrD/1AVaNSlwXpz6+oK3GSOZ4/RlV1HAxWd8InLdPn5xf/8H/atuZ+e2A0PkaxxMVpMSvwHB9fasCsbxrSJGEwPufmrcDez0c2Q2fI3WqPL+FgVV5Q5zqf/uIr8e+iZrm/pNMVDlvhj5Zjcog32JbBYix8+9XPP7BYHPPqSoi76pqFac548/MNlkwaGqbGT69+JE4SCimQ55oub+9eo0r2vrwooeoobw4YElIduAFYOr4/IJa6aFl0QNF1HKlz59k9d6s189OAqysRE+JIYb9bUNclXfv+4NZS5gamZFqtigZV0zAdnfR9AsYxBGGFUpPlUp8qU3FcBVv6VVtU5NmBJDygS0j6drOF3mAwPqVuYvmsnLZRmc/FJSKKDqi6BY1Cupc9iUrIZntDMLCZTERsjvU9tRmjSoHrs7MxzjDgx9ffc7GQyU7LwaxBoSWS/ZOdmgro/omwzfPFgm+/viN4pHAqLztzZUZ02NF0OgcJNdP1iPPRBVUv3sk0bSxbw7IsykT0uYxGY8oqpigLdoqAEdWVynDgch+KGLSO9zR1C6iEkum0QWGzz0ijtXz2jHSfoZk5L16IQ+hseMzq3TXjhc9YxoQkUzkanhNu5F7kDrEUD0U12crel+OLM67efkeh1STy8u9Pn3Lx1GJ7L6BncZ4xPp4C2QP7ommPCSuFTb6mVITPuLYLhkXgi7YAPW/p65Ii3nIk188+esR8MOXm+pLZRCQyug7SfU2TSy01CnZWhOnqqIpM/vUdfQuvX94xHonPVVXJcn3DqdRu3IdX7JM9ljnA9kQMLIsKz5uSJDv0XMRdy59gYJNE4kB9PD8nTvaouoltC3u52+RY5oC27x80pZI4R6UFhJ1Ppo+ZjkwuX25gKuygzDuyeMPhnofk31df/JK83PLtnYTyKRq6qmFrNkki/cMtsV0breqwJKtw21XEcYzrSKbcVsW2HYKBjqEK387yElVVGQ6H2FJ8sm5bdDPDlD1zqtJz9faWQTDGtYUt5EnM88cX3N9v0GXSaTgYE4fNQ9zX1QFtVxElOxLxMYqm5598/iWVjPHv3r1jPjslDlNM830MitENnbpoHpIwumHS1jq6TCwqmkIQ6LS5R+AJf7xZ3eM4U2yrffCr93vx6kqcEZpRg9lbrO82OLIv09A6NHtGSUUl57NXehTbfdDV0zuH0/k5eR0htbhpsz1xUmJbKr5MqpdRzb6Kmc7Fs2234XBoCDSNthO2f3mzxXN8VtvqwR+++uWf8m//F3H2/4+NP4jLVdt17Ldi4z8+Nbg4/yPCfcU+FPjxItN4+thlF2c8/VTc3uksfvf7r/n4448BePv2DlXP8QOX9VY4UBJtWcyOoBmBKSokL37aUGQ9p+fCWdf7t5j2CSPfw5ANe7rmER1qlHbG777+dwD0pUKvxnS1cILxYMHyOsI1ThjOpWialbP4aMzt3ZDLN8IyG/tAZ3dUtRRNbFUGpyPG+jEt4iBlGDVqC0XSEWfiwBWvMuYnp/hSbdonIiWjSHM8KXb66OkJWaoTLmMefSUyVWWqoSprek18/2q7pzcNxqcjTEmhfjhoWL5BuJeBm5a+gKb1GI5ENma/j/GHBnVVcjhInLTjQAezichyZkmK47gcogNHZ7KhftcymTrkWYjRiYA/cm12yx2xrDZ17Rhl1tNUMA/eXwJT9HZAi0WaCKeaDlyatnnIzmiazXxygaVUTMeSMn55Q1MFeMGEWpeCgckGvZsQyoy77mZMRgH6wGVyLJw6fBujNjphmqH1MkBFJa7b0snsel4dMLBI9iquvCQNfI2qSsjShrZ+L6q3pm18lF42DJsGqtahNhqWDD524NCXBY3ZcyNp8utUYzQa8OKlcNDZ0MQfqISRy24pDkSxkjJ8dEwaX2NIDLIaqOSUuPIQqPQqUdaQbyICW/bR6YFQUN/vmUtpguQ+4rb5kVgSXMxOBqTXBaNgRiEPr76tsFrdoOoGXS+eZWouSZTiyr4M6hhdsUnK+EGaYLE4Zj4fsdpsGAQiwA8HDq8v1xiBmJcXvw358o/PcKwpbfL+HY4o0h15KgLW7d0908mEs/GM+43w/7BaczRaYBj2Qzb9enlHWJacTj4FYHMTE2c/s9nu+fQXIiZc3q057HM8d8TtpXjPTgF3YtJJceAkjimqnM0+eyAkuN9tGY4CTF/n8krSHpsu8/NTskjaYtXTGz2LhU/vSyKVNqVvfVarHm8sbP9wvwGjQdFyadMOh7ymLsF1RCyJdi0mMYZi4MtNVm0tTobWAzFFFVccTRZUdYdskyJOIxzXR+1rPEf0G3VTlaw8PFBrDyYeRVWwXq85PxV9n7vdjq7yhZisTESlkYJhO9zdijkfjGAxm3F19QOmLg5Sw9GMxWJGUdToUhxXT3sur3/kdCL8v9YHxIcUdWDjSrKhfRyhFwY/XL/jl8/Fe544IxQC8lrG+DDFmp6xvHrFTiaPfG+IoqhkVYUvxTg1LSHKQ0YyS20MAm5WSxbeFEMSM7x69QOfffUlL6/fUL9v9I+21JWC50qSFKVhl2Qobk24FEk8T9HR1BRVxpG7zR4/GGH6PmYiqfU31/j6BNMOaFpxML1fVTz/+Bnf/yQo3H3XIKxjsixDt+XFphqQVwqoPWtJoOHNVDqjwpUHue06ZjZ7RBTuyTLxOd3oKYoMbxAwlUmgNC9QFYPtXsQRxzIpq4zheP4gNVFXEHgeKCXTI7FWRR/x7MlnRHvxbM+1OJroeIYgMAEwUVGaDKXN8SQlflNGjIYByEpSGKVCCL03UfX3/TEhvu/StBWhvFD6gUNXjdHkRdi2D+x2IaauY7wXYHdCHp09482rJZnkWTd9ncHAJ05kX8b4EXVZ0VYKrryMd3XFZOSTZj1n58Km3r67oixbnjwRl9ei7Mm6iifPPyORshmGaVNT0bYKAykeHZd70qQkkOQO2/2WweAc9ITbg0zi5SXTyQnbTcRUJqImR3M2y+uHPXqxCCiTnrboeHR2Ku3MYLPZMxxbbA7CrqbDEVG+opD26uoTplMIsxUHmUwNdIM43RPJU+Fo7NK0PX2R81j22hq9wnimUVbxwyV3Mn3C6zcrJmMxT4fdEkPTePMuwnWksHkDit6jqQZZIQ7MUVTQKwe2kvTq5OQpigKH7Q5qKW2R6yh6x8QfUUoESGCP+Pa7n7Dl2cIxArpWIAQ2m7fib+6A+2xDmlRM57LKV2YYio0me+h0V6VtGtquYC+rhYqioKkWvrt4IEAZjWAxm9P2whaHwTGb7ZbFacB2d5C2aFC393gDC1UR65Cne+xBzSEV723ZU84unvL9z9+ShZJwoVCZnQzIyxuGsuoeRR2K2qAiEQu6TlYWWI5LKp+laRrzoznhJkeRwXl9d88+vqerxb+9gYnZu7z45jWffiJImXxPIU5aNB3aXlZ3246+U9nvxLPPzk+gLziEO1JVxFPH0uiVFs8f8565LDzsGI/ndInsDe9q5rMpbdOQ51KIvk0o04o4TVEUiZCqTeJuw9FMVu/jhMFUZ3m/x5DnhslszP3dhu1WVtNr0U80nR3TdsJefdNltwbTMnB94TOeN6SpY2xP+LWhz0jSA7vdDkeSqyTbmr2xQ1VUzi/EZbxIWsLdLU0p5rwqEjQT+jKn18U+4xlj7lYxrZU+yAk4Qx8MkRgE0GlxXZWqhkoS/XRVhq0rOHpAI0lE1F5HMUyQRENxEeFYPnqjkMmL4tjzyNIGTbOYjkXSOYnFneUfGx96rj6MD+PD+DA+jA/jw/gwPowP48P4MP4TjD+IypWiwNGpuJEujkZ8/fvfEu4bxmORSZpMZszn56TdkivJRBZFGYvzCTdrkXVMiwrH1dnuS548khSSgw5T0yirPY4sASqdxsefTB++2/dstpsIJ2joJT37YRNjOCqX1+8o3vf7oBNMIuJYZHEcTyUJVeIwJJXsNrMjne9+8wa7s4kbkQHKwh7X1KgLmaVu91iqxc39lumx+FzXCm2S+cUYVSTYULUey+7YSzjKzlQYWGP0ocH8TGTKSjUi6FqqucVhI/GqYchoNEKRuPqnH5/iBQNuV5fUmfjd1kAnOUSMA/GcpnZQtZzwULB4LjIYdrDg9etXDIdDLF1kQ5qy4aPHz6F+nwWo0WwHb+Rjv2d23DcsN3v6vkItZfXOyTAUlamEJe6jmPWhZew/IglFxmbgD9iHe8pu9yCqWbU9Va5TSMY93Sw4mvpEYUIlWcCePjlnOPLZpTsSSV8a3/cYfsdsIuY3rsC1ZxzyPS/fvBQT3OioncHTi2OW1+9pwGumo/lDpayuM44WFu2yJgkldenglOXNOxQFBhI/rnYanjvhcC3WfH7ioBum0HaQosxaW3OVbzkkGV8OnwBQBAFFW/NUip9GeULX5cxmM/JQZH+HzoS4iRkN5w+Ml2FxR6XU2BKuud3uBeW249PKfElW5IxGHvUm4L/4c7Gmm8Oet6/XjCcCarZbL5kFQ5zA4T3m8H69Jwxrjo+nRDLD3rYtJ6dzdImd7oOCzf0K07HRpTSBYkLU3rEPcyI5fz/98ALLGjPvRQbs2ZkJVc3qdsnIEbZ4e32NSs58Lv6taAv+7Fd/xk/fvqTKJcwj10m7FtUtSBuRFdu8uWM6d3gtmYn0NiLLMuqg5/VrESO0XoNeJ2/2FIr43MfPPyLchCz34nO+76GZNoblsz+IbGHX6SiKw83NW3rJmHg+HbK6vGQsxaQfnRzxZnOHYfaEkiK/jnXcwKPvlYd+kaPjCXGyfWBQsw2XLFxj2haVzLh53py8OaD2LoEiKgiG5XE4rNhHwveOTmY8/+icFz+9oZeQv2Fgc3x6QpmuuVqJrGJPg2MpbN5DRvsCtWl8TIzVAAAgAElEQVQZDCaED6K3DX2jcHa+QJFbwPXbDY+eDqlqKV65XPGnv/oTkmjFYibQAmkVcXW3wjIDXr39GoDT01MeP14gVQ+4eHbG7tbnbrMkkL1LcVqBUjEZDEDSVnvujE4JMGVG2PFb4nJLHqa4Ugz0ZHoElUrXdQ/V877tGI4DOgmR265vMByXm3WMbUpoYqDzb17/hlYFXYoyz2YLijRi30gByKommExYbm95fCEqenEREzgeV5J5zfZH5E3ND1dvUSQ8xA5cWlUjbwuQWenhcMCbN6+Y+lKIWzVp8hKt75lMxP6xW77i/PRXTKdjXr4WrH+areEEHpWUkFjMh9i2hWVDK/sGHNfi5OKU7SbmzZt3AJydXbDdHVClaHpVVRwOB2zDZHQu+5banFqpqcqMSoq3d73C7nBAVWWlLIw4Gs9IkpBUVmRVzUDTG3aHHXEift9oNKIoCnJJD29bAf7AI8s7wlCgH1zXpcoSuqZg4Ih1b9o9ZRuTb9+/Z85uH5ElMY8eCWbVkX+MbQyo6yvmUgBd0TuWqx2DYCLXuCSKr6DReP5cwO1VpSOKVXyvoJTC3seTCVlj8cMLASsdjo8YnSxYL9ecTGW/b6FwefcO0xzy+FhkoKuNSTDzURWJJNFyzs57Dsv2Qcjc0Hy2UcLxyYyZrMz/9O4lrVax3YlMeVVoPL44Q9MbfnghWEy32zXjWcAhqqgl++JNGINRMhuITH2ZwyGNifMMzxDnoPFwSG23DwLlmqawX4eo6GxlNTRP99yHNdPJnE5CoZp0g2Y7VIpYu91hz8Bb4HgdtexzKcoe1zVQCcjk+ea2/RHTKmlaEe9e//iSWfAYywxIakmpbrTYbofneGy2wv/S3QFL1alzCS+0AiaLKVkVsZJsbOezIaZisN7dECay91XT+OKr5xwkpfshPVBWGqYxxtBExTLPOjpVwQpUCunHtm2SZzWhlEZZLI6ZjETvtir7YZ2gw/U1oijBaEXMuzie8ubtj+iaWLvzixFxGeIHNlorgpcb2BhGh2GqD0gj1/EpyoSdRFa5pQKGytD3ibayejY2uLzZYqoduuy/UwMVtbMYyjNCUe1pe/js049p5LPjuMP2HcJ9ApKRtaoqQW0vWWo9z+TmRvSTh1LI/GQxZ7Y45tXrd4ynYm9ve+gVlRKxnm2nkeVr0jhjPhGVzqPFgCJXOD09pZdsxGWq4PohWylM32sVdQ+e79JWkj3TnpIUW559JCq9TZvz4scbPG+OLWVs1vcHPv/8M1br12SSve/t6xWL+QnXsr1nNpuhKhbX61ecKgL9ZCkpZZhx9NglkigNS1OpUoXOErF6Fzk8ffaYSjeJYjF3TbMjLkoUPExP2KxpWfRKhqoJP1scOST7kMCcU3di7pLQRg0CNHvGfSTOAKqZY+jpA8Nm2+iEh3vOH11gKVIWqO2wLQ3fG7KV/TStFAX/x8b/78uVoiga8Gvgpu/7/1ZRlKfA/wRMgb8H/vu+7ytFUSzgXwJ/AmyBf973/dv/r2f3KARDYYSu/Zh/8S/+OS9fveXH70UD7x//+TE//fSCXXJHUoqD9qOnZ7x8ccNo8B6Le6AoOoZjm3dvhHOa+gjbOTAKjpDoBS6eKTRVQSNpWKs8petVVvcZGwkPOTt7zD6MyfKK2UhsFLeXB0zP45nU1fn+x+8Jxianj55gSshYXm14/S6k0e4eGoS7rUGbaehywVtNIfDGnJ56rDYCctQ1OkfzpxzNRlSyvG+aDi9fvsEcSeV1d0iulDx7dsTXX4uDzXRyRNPUXN3c8fnxHwEw8ls8y3o4NDmBynpbo/Yas4UwlBfXd5RpxtFYOEsUt0ymAWGbUMoNIIojptMFcbjD9yTddqeiKzpK/15wUmyqvVpweSk2pq5WOD06pq4yKkNsxkVW4ngqa6kj4gQxXTWi76+xHLHuvR5hOCF5bNDZwhGGwQDHGaDJsvY2vOfd24zA9xhI+KJpKOyTHUmVoMjDhmv3zMaTf8DeRiG1kmLqNaYlAvAhahhNJ/RVxmeS3MAPRixXV7iSnCMpdKH7NB6gyIO+adRMhiN28e5BH0bTNMoyZ3EsDt69mmHbJioaqiPtrMgxFA3DMQT/KTDxFTTNJpQU9egad9c7nl+4nJwKu17dhjRKRdaNuLl9Kdd4yNHiiPulgLpGUYM9HjCezBjIHrY4jpk4KopT8dHnAv9vvW748/9M5cVLcSD6q79JcQYe8SHHlHhuU9MYjT3KKsGTJ2Zds8mygq4Rn+tpCdwhWDmT4Uh+X0dZtQTDOZrUuYg2Hh9/ckQr++OKSOe7X69ZPB49aN+kaYhuqSzvxbPzrOGbb75Bb3XGUqPocLukKToapWFbCdsw9SnLdUlZvdehS5mOXTzziMNWBGXHHdK2DQ01nrSzJMmI4hhfarCNBzPavmcb7hkOxO+dzRZ888130BuMTsSalnWF0ZocZI/nytKIw5CqLQhG4pC0rJY0dcnji3Pu78XaPHv+R/xuucUcm9KmSt69vGQ88RlOxTs4tsFgMCPcdawlZPT0RKPWWkYSqqgaDb/7+t/SlC5zSdgzPZuRFBGbzYZMQlTzSOWjJ08pJMkGfQ9tRnow/z17bxJrWbbmd/12v/fZZ+/Tn3PP7SJuNJmR+d7L11bzeOWibINoysJCuIQFWAxAnhgJCRCSZ0wYMAIkJJBnwMBIMIEBEiVhV5Upyo/X5MuXGZkZGd3t7+nb3bcM1oprLFXjEjAA5ZpkROQ5++y11re+9bX/P54tZP9b3/oWd/MlN9OXmKbs7bFULq9uaPpC37z/jSd8/vxLPK/PaxmQsH2dODOIi4jRsTh/Sq5z0nvCxa0AFnl7cU0SJihqRpCKy+vopEWwbDDq9Qm3Yl1io2S7+xxb9qvsAocgD8m3EX0JHrGbbvjog2/zB3/0+3QH4veatkVJwfVcBq/yCK89wrbbRIU4V9PVnFavz8nwhPmd0Oma6REubylk74SptUBV0MyKTAYWSiVhuVtiyIBBnCQUaYFqa/Rlj0BeViyX56DouNZIPluh3GrYEn4/zGriIqOpxyQb2Zxf5Sh5QBKWPHsinNVffpbSOe7dl7+2mj5JKkoAt6HsN1Bq9uGO2XKCIhFsiqKgrgQcNEBdahyNzlgsJ5SFMOpdz2UfVPh+G8MUcjZdzJguXtGXHHqGXjHs9SlRefBYlNImecBsMaNSa9aSV+dqdsmTowc0XeGgXF1d0PQc/JZNQ5b8NJyCqjBIC4e8EO9eqXvC7Rppv0OtkpYB82VBuyX7N6OUND2nKCPmC2lAN2y8ZotSlp4lUUaz2aXp2uQSsENRaipCVrsFrVrsTaPRIM/h5PQhAI7ZItrm+LWPWYjzr9dw1D+gN+wxmUp9FscYXsAH74nnpNGaye0LulaDvuzn+mqV8N7ZY3bLPZdzoc9265j26BhNk+X1RsXri3NQUxqeuIuSwme9SWl1fGxfzGe525JGCpNAGuyOQsNpEVU+pezZifYpuyhDk/yDcVJwOH4AlXIP6oGugRqjWwrrnfi3m7tLxv1H5LI06kc/+j631xeYeodSGsJ+d8TN5QV5VWDo4vf8jka40eg1pbGulihJittsstqK+6nhmcTFhru3FxiqsG96/QF5qYCayn1RWM93NDwdV8rdchnguTr9UY9K8v/VlcLzLz5D08VdoRgOeVYS7nb0ZPBPHxhcXFwI8mhJpfHl56/p99vkkoNxMV9xPD5gdr2ieyDWKogmeO4Yy1RBOht5UnM4fMwuFmuuWhXL6w2qaqDKvmHDriiKiscPP2Qu9Ty1SpVDS1KOKGjkSsXdZM77p+8BMN98xXSx5WQ84uFDIXtvXl/SGbrsJM2Doii4eot222IyE+fdsjxuby/p9/tUxbtARgffd7m5FYGU6ayk2zng/PaOfl/cRa7XZLfZkmYxzaZ4r8vra4oyR5N7HO5TBm0Ho6Gw3Ir7sOkrpGFNpZSoEvxrH+Ycn3XvW2kOj09R9ZjbMKc3FL9nqBXZPiRNxfmslAxVgywtKWSAMElNwnjC8fEpV9dCJxwcpZTFlo601SpqolDhV37jN3nx8c8BOD48wjRqdpstgyPxe6ubHWqlEUl+xQdHXRabO9qDDrlcpzhqYFkppbbHkI7p6xfnnJ706Ejo9+VkSZXXvHj5iqcfiVLh1sMutVoQJuF9v28YLfE8i1Davk2vTafRIi5CkvwdlY5KrWrUaYUuS6jPz4Wf8SeNP0/m6t8FvgAZaoT/BPhP67r+7xRF+a+Afwv4L+V/13VdP1EU5a/Lz/2rf9qDywK+enUuJtaIKHI4ftDi8FhcAtc3aypzg6V17rMtq8WKH3znu2jysPqOx93tjKbhktZCiaVZQFVqeJbD5Vw0Fh6euNxcbOn3xQakYcrg1CeKY0xTLPbzz76gd+jitY54+0Y4BO1hid874aef/QSA0/E3sJobLs9vOZQ8JQ3rgKOhi9Z9wPOPRf39g9GYbQGpJKGsMYmqnGhxhecIo8xQGjhozK5vmd+Ki6nbG1DkKZYk9TTKGGto8+qrlzx6IA51HpTEasVHR++jSl6b3aZiPk85O5NN/cGE7W5FrWhcT0XENA0iHh49I5VZo9rKMFo+Wlqy20pSzwbsVhlJktB7hyhWqYRJSCEV29HREYv5mkzJ8QzJ6uvExMmWohARDoA4S3F8h750FMcnH/HmzYR2y0LNxaVXVHsaVpt9uMMqhfBGYUHX455PouX3sXSDhqtxI4E3Dv0Omtog2K7x3nGgeArrsBDhHCAvl1C32C2T+x6T4eGIfXCFrSsspCGMqmCaJu84NUeuQVa1mC9u+eCxcKovrnaUZUhv4NJuiaMQbPbE2RbDFBec5zbYbTc0PZtcount45pG4mF4LSQIDy3VYLXdYUuAkEzZMhqNyXYBakc8e3Q0ZBHMWW0WeH3xb5WeM1ldkkvD1Gs3aPkt1KxkH8p+CnSagyaKs+PllcjkpHkJU4vtTOzfX/urf5Hf/fu/D1lEuy+JMZOc2+sJZVlzJpGV1psZx8eHFFK5ZllGEK8o85xCNrmahs6we4Ktt7leCKN6dNpmv68JZb9DUVi8/60+nfYhr84FyEZ/0GC3jahKIQdlnVJpFavdLZ7k5yiqHNd3mBCi6GL/ug2XzSokiISMqXpG29OpwgpLEw7DZHqJaWkoqFCLfVjEEUleMJIErElRMp9vqbUKAymv6YZW28G1WmiyvyLcpvQ7HV5KElrD3eHbDb68XFLnYs0PegO6DZvw/0K4+vb8FePDPltp/FwvUtQKdFTmN+Kid12XNDJ478lDlkuJ+heHtDp9Kpk5W++2TK42nJx0KKQEVZXB7d2MqlbwJbjC0dBi4HV4+VoEptyWLbjZwhWHD78JwOnJU+4mS9brLb40tNMSirLG1WS2sK7ZRHM8/5hCgoE4bhPd0UjygBcvRbb30eFTPhy9x2Qh/n406PO7n/4eR4MWmUS8XAchjw7GdHseX7wQQEK6d0xaVoxkU/gqn1LuXIYHQ9FnAMznW7788nPCNMRVZK9bKf493Yv1bNomeZgzemARS7k+G4/Yr0viuzWORMqc390QbxIengqZnk8DVpsl3aHHLhSXpOc0Wa9jDk8kOaSdEa725HaGIxvAb6/vaHgaruVRFpJUV1VxbBvVEEbaYrNE1z2ysmR1K0kvfR+3aRPEK+ZL8XthtGW+umEgSWn3+4D1eovb8sll70aeJlzNrjBUjUqRhORZiFJDLfskkyjD7bl4lk8kwSsUpUKrbRQMQund7Pd7LLOBLoNOwW7LYrFks1lzNxc6oj/sEccxhtm4z6xGyZ7tLr9v/PdbY4LdhqpM78lrz2+XlIXKw7Pje7JzRXNATylk5cFsFtDtjjg9bVFKB6HKLPZhgOna1LLaAlXFbMBKBuP6/SMWs5ThqM/VpZCz8bjHOpigqS7VOyLa6xm1WXAoe5LSfUhLN1Gcil0idHyz2cSuHdbBmqKWpKiuhunBVxcSaTEBr/lDLq4/IZJIp0a/xY9//BNOxge4MgBx+GjIKp7TssR6rrcBrmtRVDGzlcxG9k+plTluwyeQ8Q4bBVVV74m/63qCXppYSoXWkCixDY0yzsikcafWDcJ8z9mDI7JYTDjPVXZrnXATcDgS2ddB18HWTS7eChvos49fY2kqercilgTlvb7Gw9NHvLp7Q6stq0k2GyzdZrkXhn/fP2SXTXBQUN/tSw5G1WPct5ishU5QnYwqi+i1hUOUbGP6nQYPTvv8Hz+WvTZOg2C/xzA1pAjjeR4d3+fy7bn43j7HsRp4nkolK2NaHYfvffd9slTj/FwEosf9B/THDe4Wwp4zFRc1tzHUglA6q7rRYno349k3nrCcCRlabXOePHxGPBGO4mZ5S5IG+L5PGos93i5XeF6PqlTZLMW6n5w8wG96bHZC7sIoo+05uGqXspJZlMzg4WkbS3G4vBLzSYsKw9LY3cqAsmUT7tdUpY5tCWcgSvfYjQ6lkoEmdNd2l5KlFZ2WWM8gXFISU1cKuvIOOXJDkVZ4rs92I+6L9x8/oigzNlks3/uEZLfF1G1iSaC72m2I9hlZGKLWEogiVAl+tiANZcBgu2Y47mJYBt2ecKC//Ow5vYM2O3mHnV+8xrF9dA006ZgeDFuY9oqri4j3PxD3zMs3HzOZbNAkOnG31eJ28iWTWRNfBgjTYEcRq5wcH5HLPrrf+ud+hZ//+KdUG7Evpldi1j7bfUSYivnqqoNtWyy2c3TZe34yHmNrGkvJEXY06FIZFf1DE9d9h4oLab5lcn1LKKuRhuMh20VAsyvs//n2NQ1zgK2DZhr3ewwaJVArMqDk/yPy9T9u/BM5V4qiHAO/DfzHwL+nKIoC/CXgX5Mf+a+B/wjhXP1V+WeA/wH4LxRFUepasgb+MaOqc3pjYUjdXVzz448n7NMxDYlAs1xtCKIJitJj0JOlbEaXq7dv6MrsS7gJBQx4HBPJhv2O32M0HHN9eX1vVNvGANfJaDSll9quMBsK+yShqkWkZXz0kPZxwnYZcPBALOA2TPjsxS/4zX/61wCYT3I+/skEXdXQVSHQbV+j02/z5ScvGLiyAdLwaTdqtpKEMtFuydKQpAqwPTE/z1WpygjDMHj/fRFBnKzvePThEw58IRSxc0NVmczvuG/Ew97h7DKKWiEKxPwUw6Qsduwz4XxM5wlut0Gc1FxfCcXZc31WqwXDllDIWTHhfPYZjvuIhi3WZbNeYxojuv0+lkRoW8w2PH70VCAyAjd3t6RJgWe6pNLh0tyKVInZJyWWLO9xfYsqr6gkitNyekfX8CjWJmEpm7vbFg3Lwt+pWNJJ6fVP2MzX9yVBnfEhdsNkHdyxldmsA29EXeU0LAE6IuajoVsZuinkwKPLPtRRDY/hUBhuebzHqAyKykA3hUztVxu6w0N0Qzz74sUl7cMj7IZF3xPR5s/3n2B5AZo2YC0BMxzTA2N3jzanqTZhsMW2Ut6Jfb0LGJydsF+u8WSpwPntNUfjIyjF3s3iNS3Pp98eMJHNkoYJSVxTWwW1NN7SqMBFp1Ik5LhaUuYxi92WB5Ks2q4qVuEVDWPMfC5LL5Y3dPs2e0nW+enffcF7v6Lz8nMF2d/K9PaGk6MD6rqmks7bcNBjMplw9C5boes4XhtV18nlu2/2M5KwYLE5J9PFetqNmjifYBpCSZ++1yQMCvJihyrJamfzDX7LRrGEouufDNgvVkRRRZxJUsFujygIuY1ndCQAih03OO0coiKJVTt9FouU1tggj4XyK/cGT95/zM+e/xK/J9Yu3oa0PZNdLqGQVJ3KKXhw+pT5TKxTmus4jSaKmmNLkJLC1AnSDchMz3yd0fU9DsZH1OU7JFCfwVGfV+evabZlFG6R0uy75KVE03RsDo4PMAwLRZYAue0K2xiyDCdcTcW5tUyHga2ykhFU12zS75ziuE1qCSF9M98S5AaOU1PLqJtSNFGqhLb5rvQkozQcuq1DEkkQ/g/+8He5m8/wuw6aKTMruYpuGuwiYZSpaoblNtkHGYaUu320IQhVKkKOT2Tkun3CH/z9f8jZM6Gn1DLi8ZNDnh0/4atrYdBe3d3yneOP+IfPf0L3RJJcJjFpHFBIFEW/3+So3cZxbXSJfFhuA1zbRwtMHNmgPzufU7kWEpeCRqNJkujcLGdYEiAkCjfkhQJNnc1U6KU8WfPNs/eRAVsCZUmeVSxmMYqku6iqirgqmEugCFsv0FSNdbABWa7Z7R+z2k0wNIGWCmDZR6hxQJVIlMxwwW5qUlrpPYiI5Vm8vbmF2qCoJWhB12AbJpxKkJ0ozFHUmCjb3Gci0yBHUTW8ZhfFEHNRyhrP6+A7suE7jkiTmE67TUeSiG/2t1iOTbTbs9gIZ67TcrAtl47MNif7gGgXsd+taEoM7tevvuLs7EMWqy0tafy3Wgaz6R2ejN7vtjGPHj6mSBOKXKzB+LiJY5koasFWEkOvpnuq2uXwRMzPtAKW84B2d09ZCd1S4nFy+oSsXrOSJYZVneE220Q7cYaCfc7wwGW9Cu8pKrK8pOU9pOFYOJIsHr/JOt2wl8G4uqo4PX5AcZvSbkonYr0lNWqWq/B+PrrlEMcq23eZpGaTXVFiPv4GjibLM2uVurwhL2J0hA766voNXssnkNQhRa2SVhm3k+t7xDtrv6HdbbFZ3+GYYr/iWgEtxZHW13ZXcrWb0znokMozutZslrsVo764r/ZBxny7Yf9ig1GJ8/GdZ9/nh7854JPnvySRJfG21+TLLz/HMsTcDEunrFLiZHNfTrxZJZwcPQT9pyyXklyVPo12Qh5L5NOyQ6tVYtgOo8N3Wbg9wc7Ba8GxI2RD0yEO93gNGbQ86NH1Blxc3dCRwcAwj+j1RsTJlsqQCHv5mk73CY4lgVvsmNVyxsOzb7OQZbmzu5LXr675nd/5V7i6EM6/qu158dUFhgy8DUY+abrGUG2SROxDy+ugUDKb3hFH71A34Wb6BkMG4+NNwbA/IEj3qPK+1yubpuew3szpdsRdp6oqQbi6z9qaVsxuvUJTTLayjM31mhRpQa2XrGU5//h4QJzFtCUwhq4VHAwUprMZrj2Q8gmFFpBlJX1JgD65XVBXOzo9+142isSm2WySpRIxdb/B0h3ifU4hnSnTUPDc4X2F1nJ+R50qVGqb9lDI/uRuha40UGwbZACk6RssFzf3dkqBxnweoygqb89F1j/PHRqNBq9fCwe34XhoioGmaHz/+yLQ/8tPPyaNbHyvyeWFyLqlYZPDcYdSlQ7uaoPfafPqzWs+eCQrrfw+nqVRlSqlzEqtVzsup3vG74tztpxtCKIU12+RG0L2F7M1TgPyuoFmyrk0Xcq8oNMX36t0g7TY8+BZh20o1imbbtFNhYbrgQQbK42MPIIkEvJTlipxHbNeZ7hSx9q2gqKnxGFJJVtS3gXX/qTxTwpo8Z8B/yHwzlXrAZu6lq4mXANH8s9HwBWA/P9b+fmvx9fj6/H1+Hp8Pb4eX4+vx9fj6/H1+P/t+DMzV4qi/BVgVtf1zxRF+a3/p35YUZS/CfxNAMfVefpIpEGLoAlKBarDi5eCsPfDDz+klR4zmy4YSt6Zl19MCOIIvyNhkA2XKA5JQ5MqFlGGwjbI8xzT0Yll6nefzVnGE4xURApsp2C3fc0XP9NpuiLi1mm7kCuM+8f88mNRXlOUCR98/4RcFf7lF69f43cO0LQttSwBUloOb9/OGAx6LDcirZymEfvVDFfWnXrNMVcvA4ZPfHaxiOwuVivUvcq33z+kqkXkqLZt5vGCyysRTRsdOpTsePS4T5aKSORukeKZLWZXSwrZQH90PKTRHLJaSLJc02B2s8Z28vu6ZSO1eHz2IaUstQlmVxx0j2k6Q87PZTlRs0Gw3PDgcZ/dWvjgDbfFfPWay3PJX2OVJDuL0AywJZeBoWkEisIuzbEkpLmntYhSk4ORiG7pik7noEOtKLiyBNBsOJxfXuG0XHxJ+BiEK3Q75eAdhHQQoDsqm7im64lIS7tls1iFKKWGIQkty7pCVRM0CV0e5jXvffsD1qtLLl6LtVstZ5w89DBpsN/KNG/LIQw2qJZ4p9TIIc846p7w8y9FOZPjqTheg2xn4snGZsXK0VTzHpzDc7t0ej6VnjNqiXJCKhvLqtmoNWEk+VWSjCxJMCT8dh2pqF7FXksoZL1xXeikccBwNCaVUWLXVjBNAzUX890sA0oqDroNujICNl28Ra8MLl4u7rkaRiMVW7F4/NEHAFg/rNlEMcFmye2N2HfN8KiqirLMyWUZYKuncdp9TFvOdzlfodDh7eure9JCr60QhGsafgslkrwT65rB6ZjyHeSwoVDoGqvdiqKQ0Ohug32ckMmsYxLNsKlZB1sKU3zvqPUe63SFV5vEc1lUeZYQxAV5JlSYbteoVUoVh8xvRZbo/WcPSdItplpgyixfYShYdgdkSVWYrTg+OYbaQAa3qfOSdRywjwJcW5T8mmWGqisMj0UkMtwH2A98yreXNC2huxRCMqVGNXQ0qSdOT1xmNze0fHH2yqJgOy9xOjqPH4hnLbfXxFFIFBX3oCFtv8F8saHVEjKcpVsBfpBvsWS/WJpmDFo1tt2mkrVR4S5inpss9rJsR4tRy5q73Y7FnXhWc9RG9zTWcwtTl6VQheCC8j0h+4tZSKVmbJLlfVP/UdOjDiJ0xSGzxBpfJF9x/P4xeSHO+mY9xYhVokDBVYUcHHtdsEqsWsPoyL7IhY1alWwl991ht8+rl2/4wW98xKXsmc3qEN9p0RsdsLoTWXdMnZFvYhpCl2SVxcnokIvLN2iSIiLOtozGNvtAJZARy0HXIS5T4q3Qi6ap0+lBFATomojC75c540fde/lxdRe/LQgkByeinLDe7jh78gG7JObt+Sspe49JNZtr2RRuFyPK/IZ1GHF0JEuTC4U41YjjgE5X7N92teDh6WPeTN7I905YhP/7XQUAACAASURBVBN8xaMpyTmj5RTf96nrGk9C26NVpFsVVXJhJeGURqNPqazwe+8yFg+Z3NwADieSUDard2RRTCJ5WjRP8BPdLKYglgXbGLFer+n3jigqsQ7zmYJWp6xlBmzUe8DV5Q2mGd+D/+xWCSenB6TFFFlNSJZlDMdt8kTs1ctXn5HETRTTp98Rsjg69VhvNpxffk6rJRvTVZcvP3vJ4ZHYT7VyURQF31fpyPKzNE3JqoqryztGw2O5xy5UW7JM3IVxknCxmrIvajxp6rSaxxTWEnUfU1eSvDndUdcuj2TWf7Gas98syWsYS16mtHJQHQ1D7fHp20/FBFUTY5+gyvtftUJQuxyMH1JJyojNcoZh9KHW0ZqytyczSHc5alOSMlsHDB7VqLXC/FZkHj3fpWieMb0SJdZ+t6DtKESRSSjX96uLF8RZyoPjx1xfiiyDoTg8fvCQMJTAEXpNVRo0ez1ymWFfzq7YvdnS9U/ZIPSw1zYBnTyXFROtCKXQuFvMOD0Td5geVOyTPXnu4MlzPJ3ecnAypELMbRls6PgdlssQU/YDuU2L1XZDVWq4kii65eYs7y4IZKnio28csd7Nmcy2WJJEvDPscnu7ZTqdc/pAZPBKYnzX54uX4uyVuUmjUdJyRhxIIlzFqdCaA8p8x4EEc4ijNXm5oSzE2Wt1NIY9n/2rBauduLdH4zbBPsVxLeYzkUF0fR1V01jIPl5d1TBthzxPsCX3ZRwu6fVbaIoOinj3dbDEazYwG2J+lt5htQo4ODq8tw2rCvTMQbEror0E7aoNnEaT+Xwq91MjSlIcQ0Vi+NBwDymVCQ/HxyzmwoaM4hRNC1mV4r3LqkMULei7Ftdvhb3WGT3g9vaW00aHvWyZaPcbbGObpi2BcDKVIN1hqDaRlIWiivmD/+2G8ZHI4rS6FklgcLO4xH8rwc2UikKJ2a8KSvmi731jzPn1DRuZEbb0EUVmEm6umd6cA9Br+oyfPiLNAlq+0Amff/WCwfCAtgQoejN5i2W77Ocr+gOhF9Nlilk49PQET9prap5hNkwyWcJt1iZJXoNSciTvhpWSEwYVjq3SbAoZXi1ijFq7BwiLwlPUfI1TOniStDiulpz2D7i+DdhI4Cvf+b9PIvwj4F9SFOVfBGxEz9V/DrQVRdFlduoYuJGfvwFOgGtFIAy0EMAW/9io6/rvAH8HoNVp1Ju5WEjH0vH7oGjxfdN7u9Xh+fM7NDXhFz8TvRp5XNHtjuh6ksk6F6VEWZKhaUKgj47bpHGFZUf3zYD9nkKve8J8Ig5imuSslyl+Bz78UDyrrGJMbch2tSeUjaF/4be+g6GrnH8man1bVhuv3eTg8Iy3r2RqW9vxqz/4gC+fB3z0faFwcyXl8jJnNBab9MUXX3D6Xpt652PLWvheLydQLbSGwaAlNu6r3ysYnT3kUhNlT4WisVyntIYb0kSCJKRw+uyM4fiUhiFJ6OqI65sbHj0Ryuji8o6ijFEVG68hFEu0DtCNhOVU9sZ0x+yCmNVuTp2LdWk3RqyWtyQ57DPxuZY/YDrLacuG87Is+Wd/4yOenh2wl+SOSb6n0BziCC5kX0ZZaKiNNYlkiLdtm9lmQSWfAXDonmA6JpvtiiSQXD9KSb/nEAfveBMcyjzFUk1MiXj18vUr/LaL322iS1LNMAyI45hdIhTW0fiI2d2M/a7CcsTvHYy79L33uJu8YTCU/T65QxCv7sEODo+GJElFlNfUsoyl7fvoRot23ySthWykeYRhte/rn5vehLrSaJhjptN3SIRN0hhRsiobtXuDATUlC9mD4WgOZV4TRgGHJ6IM8cWLl/TaI7TKIN5IYsimjdNoEkSyZKxX4LkGLX+M5LhmFUS0XQ3DqlBl+lpTfIIt5B3p/JQb0tSgd9CmaQuHy1BzKjSmmxVZKuZX4aGUAgwCoCgzFvMJrmtgyqZ6XQcqi+U8opZEmHUWs9/6eG2xnre3U4yGgtmwUTfie89Ojrm+3tAYCuN8tlpTGxYHJ0fkoXjvbPWGumixXO44eyjWpdFocnP5Ek3yH03vSkbjPmkV0jmVZ7tcY2oF33z/MTPZj9NslzSaOpvlOxCamu0kZb9/zTe/JQIgV5d3NPQu7QMf4x2pFCZZVGHJXH1UJaxvd5ihRu9Q9inqHabTO4Ig4uj4IQDL5RLDbmG7Qv/sdjva/ZIg3FPW4tmL1RZda+D5LpYt3nO9m+G27XsEJQGekLBdbwn2wiBqtR3SuMC27XtjCkUX/WeSeHu32xGFCaPD8T2Jd5GXTG/nKAVYLQlaUiekqUYtQUS0usSodXahxehYXCJHhw/x7JgwDdjKYFUebESvoiHPcU+DKKFYVeiyDOr0I5fzt8/J2ZFvJB9W6VAqOX3p2DS1E379h6fEYcD1W0Gq+8H3nxIkM6L9nMcH3wJgH9W8fH7Jb/yaKEf58vVrnj07ZR+NkLYHwW6DUQ7Iq5RDeRnraoERqpQStfHN7I5+b4R/fIBvCBn69PNfEm6HZIksce45zOY5aR6xDYUxl6xKjs++zyefv+L4WDhcWbIlCvdUhSyb22m89+F3uFpdsZUOSXNwhqN73IU31FIHhWFKmSbsN8KQCoIKy1EwS41Alhz3nENsTNJsTSgDaLZp0hoo9+TnmlGzWi9odfvkEtTjm995n7/wW4/5/b//U87eE3u8WmaUURu/LfstrlZs0x3j0xEz2XMVJ9AZjtlspyxX4t01tcHw4IiN1D/bMCavQoqsxjElAm1zS1LvqFSFSDpc6BWG7rOSz3n27EMUtUGQTJhLtLmruy959N5TDFOlqmSQUutycHiIIcGAuk2TxWKJqTnk70iugw3j4w4lMU5TnOXr6R2Vrt2XrQ+6xzz//EsefXjGIpa9qFZIFSWE6Yb+SJx32+5zd7PjXJaetVod9FplOOpw+UYAhBwcn+E1GyTrNY40+vJSo2UdkoTCwA02GbWfCf4jqTbGw0esF1sORmfczaXzbWo0Gg6F5NUpCpNwX9BomCD5KTW9olS2/ODXhV6eLy+5vp3iOM17VEXDTLj+fEmwDXn0UJDqLpdrDNPmgXSop9M70jwl3uzJZS+Tikaw31IWDj3ZV3N3fYPvDTA98eySFCqbOJjz1eeif9wz2hgaVFTsFXn+k5w98b3ObxoG07sZRZ7jyACToXrURUCv12YtnYZoU9P2R/T67xBv5xwOTlAUBaUWsuG7Ju89OuX28i21DI5pmklZxAx94fDVocnl9C3dgc58IgIpx60e55+t6B12WecSzdK1qdIeliTdjZKYtxeXlLUG8tlhkKKq2n25PcB0dku/NyKUvcwKNQeHLdI8YLUWZ63jdyhyA9208H0JSBJFtFsD9hLQYrPJUEqH3TLHcyURrq1wcXdDtil5cPJQfm/GarXieCwCb5PrBY7foNnQ+fJClOU9ePge+00K9YbhWHzPaRh8+ssXWB0ZgHUL1ELBsT1iWSa728xRqpj5LL8HhijSHfFG48EHQg7mqzlxrLHer3lwJgIL6/UtrqfjysDbbhtR5zqDUZPVRtiG3dYpba9idbdiLVsariY6UZHgSiRps9B48vR9er/27fs1ePP6E+7ml5ycnjGX/XGe3WQ+WXMjOaZG3RHtdp/F6oLdVOjAYdfl4MBnt7JZl+LfwnWObSpYkqBcTXSazpCW45AGkmD+oM3t7Y7VMrq3F5MgZzw+IpQ8e7pe0O33CRc5WSHuvhqbm+s9iuKg69LWfQca9SeMP9O5quv6bwN/G0Bmrv6Duq7/dUVR/nvgryEQA/9N4H+UX/mf5N//SP7/v/en9VsBVFVJmsnGv6aKooQ0/Qbf/94/A8BPf/YJ282CNLBJJWKZpduY5iE7ybh9c/uKZ88+pC4jbE/WZROTlDENe0j3XYPg/ivyMmU2FQt09qFDndUoKcSpJERzWviei2mFfGSKC+xHP/rLfPLzF9SKcO6+9a0zDNPjzesZF2+FAW02bJLBLaenXWoZZVwuI4o8Zy2b8zqHPbpeSeu4y/Ofy+ZVtY/TWuOdpHz1qZjPN747xPYaxNG7hmidhuWwu7PwbElGOBqSZyolBZudWD/LMjgYnbCSRHzXl3N6vT5RtKLri4tQ7Zc8f/ElB0fiHbf7iG0YMT5uozviwpks5vR9n2HXJZFGrq5GjAd9VFUIc57VZEnGF5+9xrJlT0uqUKsbhj2bbzwTivP07Bk///QFcSwhgVGxHZPbmwmmhHnfb9Ys7+4wNBXNl5CqjsUu2LNYiLVrtjv4rk0aFzhSSZpKjGUb5IXLlYzeffSdJyjo3Mms391kga4vMLW2yIoCw1Gf2eQKv9XA0N8pjSW9UZeFJPD1B01yLSJOlvi+2Idx/5Dz6xs8p8K2pQG7KamKkAcPhYypioOCiaEr95d6u9vh4nyCbhr37OtxlJMnMaqkCWgddJnf3WHqKus7cREPvCZFWbAJQ8ayUbusEtJkRRwIJy1LIW0UUIeEsZCfPI/R1CEHwxFv3pyL9WymKFXFy9cS3OWsga63KPMJz74pmlAns9f4zRHa3GCykPtclVR1xvZSrGeS7Oj1egTbmEbjHUN8hqLktDwfXTaBUjmgVEwmt3KvXMyGxWYV4ksUzuupqJd/l1HoGxZFoJJkkKhCIbbaLqvrlEYTuiMh+2/eXpAXFgnCcOt1D7i+XLLLltS5DMp4Ja6rodUQScdQNzX2u4j5ai3/3iDKbml1DZ5/JmHd7YJ+XyNJDVZLUT/ePzhEURNqvZBnwWN8dEDsqax37wAt2kThkv6gx2wudEJWwXA45FpSSARBQL/VpCgqwkj0Vx2detxcbaDyubsV3zs5a1BkBo7MYFiOIFVfzqp7h9Y2Hbb7COdIY7MW7+W6FnG2oZQNy4btYrlN0ZuUi3MUpQv8lsN8uuJBW5KyG3dUqGilBJ15OmZ1t+XB2MPviDOz364oU5UyTGi5wgDZ7hOCaMrRI2Hs3Gyu+d73n2HVLWaSEDXKtgzax/zw+2d89UpUI6wIsWqLJ2PxPbvR5Tr6BXdvZzz+UNTjVxuNbLOm4x5Qyb7Ph10XTzV5/kLo4YOjHnGS43gVlgT/OImfsl9HnD5o34PFLOYXqC2LaC70oq21UeomxDW77N0ZHaJUEYrsactrC8s3MXYWYSDBajyf29kCy4bdVgadWg/YzDOiTMz3e9/5Bpvwgl67iWMJAyXJUoJ8zmAwYDETl3iWV6yzOUX87rxAHoWouklfAtoU2Yqq9LC1PvtEyKxjN/H9Ec+/+qmY7+mY0eEZ2+gO3xW6ZTK/ZLWqKOuKUAanTk5OuLu44/Hjh2Lvohk/ePaMxSIiOn1HUFyxCXdESchYZnKqOmGxmPPkqUBV3e/3VIpJFIS0e0IOMqUiiCtMo8H4UGTP03RHXReM3kGelwnrdcRwfEwZifOgKw6Lyzk2Ldq2CMLEcc34uM9iLfTUYp1hWi7T+QRPOpSG7bLdZYRxhqLLLHizZLXc0BuINa/Lkg+ffUAQh1iyZ263W7LfR/SGh1iyL/rVmxfYhoMriakd24OqpipTBgNhdGZJTJQFtN1D6kpGWGodSw/JpL7puG1W62tarQ4GMlOd1Xzjw8dkZcxcQtlnmYLv+ZiSeFczYbPZUysdLF98Zr69o1RqFmtJ7zE6JCkqwrhkt5dojHXGyemIJA65uBLn4dHZe8zma9Z78T3TUji/fMVB5wSvI/kSlJKi2KGqCtulONtlrLHJ3/LomXDKZpdr0nTF0WDMaiX0vqIauA2PTEnvjdWm4aHpJjt5F3V6x+hFjlLPyCREftN2qPIYHZ++7JnfLGJcT2dxJxyGUrXRNA21bt1nbde7DL2h0fGaKNJRe/P2hm6rjz8Sz8mKlKdHH2AqK56ORSZ3dBIzaqsoLbiVyHVBVKGbDshe1CgJ8Z02eZlSS4CgwfAxSQy3k5d0JUqkYdhcX18zPpBZVK3i5naCbXko0gmLsi1FGVOVLu86ZfZJQZAVJLJndx7f0TAsOs6Ar94Kh30wGGA2mqiElBJMqdE2qbcVYSDk4PTslMOTAV98+gk9iS5b11tGB31upzPUjdjTB70DGm2LSvbVqZWObmicX73m4EAC5sQ7sgA8r4cqES69Rg9LK5jNRPZ8tawxrCa2U9z3aiq1RhDsuL6WlTleizpPCeMQRSIfG8oA06o4e3yGtxL67O56SnvgcCLBVtSqiWUoLDdLctlP7To+eaLw8//9K3JNnGPTNRk/ekCci7tQqz1m1wturjI+/Ejs+8Xlms2m5uzxEG0q7vazkybXswmFxNzrtkw22x3TdUKaSjREu0e7ZVNVxT2Rsu/32W322LJPsVIK4jhkFxWUssro8XsnbOchURjjSHTwNP9T3RqUP8Pv+cc//I+cq7+iKMojhGPVBT4G/o26rlNFUWzgvwW+C6yAv17X9Zs/7bntrlX/O//+vwBAmbkURYXtqnz1VpRiaVbC9duaYFPzvV8V0cI0avDmyymWK4TS81yyXKOsK8yWEILlJCHZtvjoV0pKyTO1WF2CptKQ5T6tXsab15f4zQO+810RJQq3GU23gdet+PK5iEodHY3Yxxl3V2Kx/9Jv/oiXz5/zd/+b/5m/8bd+Qzx7HREXACFvXglo4veffIu8UillXLUyQj7+eMqjR21iyaZtYDLq63Q7fX7+y3MAzs4e8slPXvIbPxQAF1EeMJ3GtPwDDE0c4PV6TRipqPaS7VIc9LPTM3RdJUzeNbTnTCYTup0mroRinq7u8D2XKhW/XxHj+haaYRKEQghVXHRVo2RJy5dIcrmItiu1EML9tuT2ZkGnaREUIiLlNLpoaoMkSLAkzOugZ5EmBoVUIEUJo9GYyWxJKMt2KAWvmWUarCUCXBjt0HVI5Hs2mz6mXZJlCaU0ZEo0+gOfONDJUvF7pw97fPnFKyJZP3Fw2ME2FfK0hEpGIuoax67QVOueP8pu1FRFTiIbR7NSIyxiNC0n2ogDfHr0hIvr13QbY2xXHLJtuGcXru9hWNeLHb7nUVYBpi0cp/UqoCpVRuMW86lQWo1GE80sKSQak66rTKd39Dqt+wZT22owm60wdRNPImUGUUCpCiRMAFPxWM43DMcmuoQXXW1ivK7Ldrem3RKyHkfnuLZLmcpyRj3FsDxcx6CSBsOT95/x5uUb4iilltD2q82WStUw3kVayxS/6WEZDluZIi/LHNOBmgxdOsyHB0e8/OocryUuBbW2uZvOiOKYkweSE8iyGfZcXl7IjHDPJttoTCc7mgOx5hoNorVFcxhQF2I9k42O7ehEMnrkOC5qXZDFOwLJz9PwcjRNJQ4VRkfSyI1Lzs9ndIcym2caZFmCoposZzKredjCcBQ2q4SBRBByHZugTFjIqPhp/5ibt3M0U7uPVvqGR1lX9EdDJrJcI0xSkiS558dKkoRh6wE3d1/Q7Yt12e0SLLPNyckRE4m0aJo6r15e8PBUXEzRfsP0LsI0LPyOcGjTqGR82OVmcoGpibPd9Ez2wUIAOiDoGlAKVFW9L+eNqUHLOO51aXvCYf/Fi1/Q77VYXEukt8cqx60HHHUsrl8IA0irK+ra5WY+5Qc/Es54uNzQGfjcToQcXF2/4bd/+y+T7FXWgQh2xEnN0bBNFQXk0nBSnZrZzYIPJQ1Cnuf8bPIp9U7ltCey7sv5LZGSkt2AJcF/NCekezhg4MpI6/IcQ2sTpxHDkXDYr14vGQzG1FqKaYv5nb/9CTg22U7s8XyyoD3qo6sJlSwj0VQHzzOJQmGYpmlKFNeUhY7b8KQMg+mCgsV2InRep3OErao0+0Kmut0hf/TxHzLyDhmNhPOaVTHTxQsUpYmhirnExRLHrZjPJB9gpjMat4j2EQcSjjrYrul22yTZFgnMx3YFbtMglhd/lCw4OjqmzO174269mYryYUtBleUuR+MHLO/WTKdChkfHQ7pdlc8+OeeDbwneqVevvuT49BgFh6qW66JnKIrCK4noWxYqfrPFZrO4N0LDfYTjCI43VRrCnt0iCbL7z2R1yHojeGWGEqVytVyiKAp1GeNKUA0w2ewikOAHjjWkzGI22xXf/Na3xfdWG7brHaapY0po5KxKoKzIJNjRZnPHw5NTDN1Ds8S+X128orJsDMOgkOWuilqjaYAEijA1k37fJkpFQAEgzUXFRdcbM50KHq04SOl7D1BlpcxyHXBw1CZLVVzJ4xdFG548fZ/f/8O/hy0z+LpqkMcVtbQJOr0hqlFQ5AJICqBQI4a9EfPJSspYh9liyna7vW+yb5guQZBAnd5X+Qz6YxRNpZbUGkGwwdALjo4PePVSIp0aFppaYpomcSBkI89zzMYWSSOIVbbJ1Iym7dyDc6iOxWq2odGzKVMRkKAU6IiqDH5Yioen68TpmigTa95vddiFAcfHp2xXQvaSEFzPIiiEnsyLNqqyZDmtefpE6JYs21AlOutlRiZ5igwrp2H36I5kKb0akwURalFhO8JgV5sJzU6f5XzOXKJlV4rDNtjz8JGw8aoqY7tekkQazZaYtKG1CbYqcXZ3X1HT643YbXa4rljfCgXLstiFAaYpqV50k17rAKoSRRPOxjbMqGpYSrvho++e8ekvP8Z3BkhAVnarPZrVpNXUCGXgK8/guHdMKrmwTNdgfnnDbhcxktmsXbhCNywM28HQhT6t9A1pUpEl0pncp/T7Ha6v5rRlYLhhmyiFjqYApggy6YzQzFJkW4EwKqmUnLIyUExZPqwabDcxnivlQCuxTJ0sS2jLTKfndVCMgobRZbEUd9jZ6fuYdsmLz2X5tAG+20bXLLp9sX9us8cXX31GhQ+GuC9uL3OODwf4PfF7u0WEWipoWopMfJJmOsMjA7QCT9IHxEFObZTwbg9mG4J9jm5ynw1F0VC1BovF7L7sOE0zoh0kEvnY95vonsrkMiKvJVhdxyVYl2iahozBsJgtuf10+7O6rn/AHzP+XCTCdV3/HvB78s9vgF/9Yz6TAL/z53nu1+Pr8fX4enw9vh5fj6/H1+Pr8fX4evx/ffy5nKv/t4bndjElc/YiusWyPf7X/+VTnJbw5k+eajx8eIppeITBO+6LIYpxhyPBD5ymzfTtjs6BeU9M1+pVdLyaYfs97q7F9+rM5/ChycVrEVF4+vSUw8Fj8jrh7WsR2XlwOiYMCjb7S773K78OwNtXF2yDCR98U9T+f/nyC0xL5d/+W3+D1qGMFtRvuflqDjuVf/4v/ssA3NyFLF5/SSRTnoVjMvB6mIbJLBQJve9/8JSnhx/y4otrRi0R5XMNm0cnQzTpJR85R6TJDUF8hePKWtgsotZColVEFooo43q9pqpDwkjMN4xLmr5HURTMZpLPxe+g1gnzhYga2Y5Gs+GQ5wVy6Wg2bFBrGs0hs6lkaHdsBgcQ7mTERvEwNJPxWcX5K8lWrdRs9ivGj46ZL0Q5WGn5bOZbkFDCpuUwW23IyopaZjmsZgPFMnBaLTbv2NFbLqpa4TRlIzcqjmOKyNFOclrQEuWD2yVeW6zL67dviKKMw0OR5Wx4FcvphrKK+MF3/ykAPvn4lyyXG5rNBrYtor1O2qbT1IglTHe/f0p+V7NebjiSDbVBvsdseAwPRkS5CKN4qs7NTXRf/ubYGmme47sNEsnnkmUZdqNmvSzRFAnJG4cUcU5Dgh1MpnPKqmayWN+XSxpGQZaWGLpKKhu1s6JE0RrsduI9hyONo5M2WVpQS6JR39WYTxeYdkUs68U1DkjjBFf2KGx2NT1XZbpJ0BDR1x//wSe4vkmz3eH1G1nOZyh4iovSFPse7Ut0XSeMAyzZTKppDUpiyqrgaCSyBfP5njIrySSHhuOXdDoWw4FPqyV7kOKQz19+gSv7H243Ca5pkpkxuozQKqmJboTo1Yi97C3qD5vcXM9ZrMTZa/sVjgXj1gOcpigniPOa7T6i3enfkznWdcxw6BDK7JZm7ImCmoY14ulDUVZSk7JdxlRhyTYT51bruczWM1DEZ5SmQpVnqIpGGcjG1pYLZHz+/AW65ARyHAd0hWjzrhbeYx/M6HYHLCRhcLgv+ODDDleXr98xRrCYpPiOiyObvHZzhYNBH6tZoUhKA0VRuLyaYLv1PcR4w2lSVAmGJJQp9ZooSNjM9jQH4uFVoTNodbEjm7tXIktj223Mts6jptiH1MhoGDUX5xNkEpx9sKXVtnj44QEdSeq7vNkxbo+5ei76Mk79MfvpDrc9xGy8K7frk2YTWr0OcSpkfRu85f2nYwwJ4HMzn9Hx+jQNi8wRazw87bCaTXHeHxDJ+SilS6akTOdCd+pVA7/bYDeNmE1lL1pH6K44S7EaMiJc5diBgibTP0fvnZBVMdeLKU/GImuz2WxgGxDthbx2ewdYdkKW5ajy962GQl4WRPuUptRLZjOi3fQJcnGGfvH8E/yOy3S5JUoE4fvR8BFG3SE1QtpDWVa20ciDko7MjqqaQRzH1HpJIkuVtIYraAMUlWgpNkLXdcxmynon/t7rj1mvcjzf5P9k7716LMuy/L7f8f76e8NmZKSpzDLdXdV2ejhDAjIQBALkp9GTvpIECHqjBErjNI7T0766qtKHv94d7/WwdwRfOIQEkMA85H7LRNx7z9l7bbfW30SpWON36QpFt0lyH9MXv/f7V69QKx1ssffdrm7Y7H0Oz05ZLMXvxSm8ezcTEDnpb+a5XQzLopLr8mR8wuw2QVXcB+872+pimjqbdcREekjS6lxfv3swI9/st0RxhW7X7DxRxWmsCkMHGo2t5CBbnoEeGNwuRMX0wDHJ84zheMByI/aspi7xPQXTMMkkLzJf7zEMg/FQVqnLBTfzG05PPqGVHBPL6WB5DcvlHf2RqCq2lUer1vgyM2+oGkVZkGY7cim7bFsO1zfvOfjygIOJgLLu9Q2jcZdciuMYgUHR7Gl1j9VOzKvtLsTq3GH3a8JEilMNT+l2Bxiu+JswTFhOQ7ygpZZ+R/3OCXkeP5h6QPC0kAAAIABJREFUZ/me/XrD0cEpWXIvbOShqC1Znj2Y3LZqTlLEBNL3TlMrDLPhu3d/YLUUlcDTwwPaMifNFBYr8QxHJyN2ofJQsTG6CYoSkKQ5ZSYq3oPRU4Z+h912ge6I52qbgqrMkfoyRMUKOxhRFTqV5Hg1hYOhlOzXIeFOjLHnDISQgIwDxzFYXFdQOLz+WkCxLTsh3EWMh485k5D49W7OJrli90b84OHohNX2Ds00SffinOLvj7HmXZbThELGxujEotevub4WCInhcExVNlimQa8rDlmrVUiWWRi2RnMv+Z+3BEGAKr3htuEczzvCcYwHj6cia9ltEyzLwrLlOIQthquiSguONNxQ5Rnz3ZKuVE6yrR5JsUWzjukHooqyWywospBQesO1O53z4xesevHDHnZ6+pSsaEiShEiSrPsjiySLcCz5+43KPtzSHwdUuazMmTqKrrDZLoiW93yhdxweHLPd3K9vJftoQxJZjI/upclNOl0fW5fcKbNhvb2mE4xR5QE1ySPyRUHoRCjSruRuu8J3TWYz8S5//LOXRJsdYbYGRZxz76Z7Fsstk4M+ZSOe/XB8xNGjiFpWklbJHkcLWE5Tnr8Qc9ZwK96/W4FSUZVi3X//as3ouMfkWBpvJzX7/Y7JUZ9wI74rK2NaGkzHo2zvBSkCtrsp/YF4l7yqCWchmmbiSEP5ZL9BNzoM+1169yJTccUtsoL7n2j/LC5XcRLyd3//FwD0ekN6vZqnz05YLcXhcXFzQ2/wgb/6M4OB9HfMy4I/+tPPuJZ8J8exePE9g+V2y/FYTNiLNxkj/4j55Z6hhL+cHCost7d87wsBt8kiBYwF0b7k9ECUjHuOx9/+8peMzmru5oJcrRkqZuMQraU/TqPhjvuswxn7hQjU128uKOcehweHLKRp8W9+8Yaf/vxPuZuJg2rVwqMf61zdfeDlqVThqbt8/c0tg7GOthIDbDYbnr2wKBsxkG9evUMjQ2sMMik0oFATb3M8Y4hqiwX3D1+/5uXLE3R5WS2LkMmoR5bllFJIYbG8ozew6R+Kz9jGEXeLFV98/pj5VEzEKFygNA6jXg8Jq2U06kO6QC8lzEtNCMY6abTDasVkSeIlnz15wu1iiyF9ZzI1J9G2KIk0+fX6bLZ7BoMRmYT3GYZBXbe8e/cOpyO+33YCinLPTm6ovtulKl2qEvah2OjPT46YzxaYlkOci4Usq9c8//ScuTQM3GwL6rpkNHT59rvfAzA+7DFpRuRFSyw3vTiPKJOcSppFXFxeo5QllukSS+PGfbaiSlUqbcugIxbE7SrDdZd4rthwXDdgfrcjj7e0kkC/3W7poHF2/Cl5Jvrhw9Uto8MDTFsaKasLTMPCMUwc+QxpmnN4OGG2mrORfCpUBVUz6Q7FBaVo9szmS44nT7m8EXDU7kAjz1tU1UGRkD/FVOn3HJYLyc/TJxRFQbhPUKWi36Dfp1U09tvwQR3QtWzWyzXSyoy6rdjuV/S6wQPva7st6fS6VJXOThJ9W6XmxafHXF+JzdmwLFynS57kvPpWcpKUnMODDuVWbJbZrMAJKjwsXv9ebPwaCocDH9qYT14I4va7b6/J85xAKv40tTCh/PxHJ/zmW/F7y1mEF5wQ7UpG0ixT13x+/90Vbk9CJXSXk1Of1TxlsRSXncOjEZZdksQFz0/FYp6rOfq8pSchCNe3OyoKDvodqKTipaWy2iRUVUW8EZtelua4tkcmoa6e6ZLWMftpiS7haCfHPeoqItpVHEq+Su2v0VSH6wtpZnlyyGY7J9y3KNJM8urqWkBkRh3WC8m/K2uSKsTriZiKwy1FXKJoGrq8lHW7Gq26Ia8NvLFUl3M84mzGciqeezAYgKbS1BqffCYuH0mkss2u6PQDfvtbcWk47Fdss/e0vphDw9Me1/vf8Nnhf0dHqmm9+u6OftBjn2/57EysedE8ZL2pKOWF6Ca6pDvo0vR00mtppGy0WKMztttbBgci1qu8i2saRKmIn8Dp8PbNJcNHIxTpc3Pz7o5nL0coisvddC777wWv/vAdgwPxvrbdoVYCrq6uyFIR2GGyp7FMDENCXdw+i+0Hhv0em634mySuaGho2wa/e+95NmMYHD0IPlSNiloX2I6D44s+r/WKRq/pdYZsZJztdxsG/gRDqpoulrd4wYjBZMBKHnrbGmyzYjfX8Xvy8G86rGY77lUTonhBr3NClNziBuJiY+U1adbiOx57STBvyWmKElsejFFcVE1lMZ0x6IlEFE1Lv9sjSTKRGAA6nS5NbXB4KPbQqoBuMGQ88VEUOf83MUrdkOxTIl3E3sGxwcvvPSWQKoBOd8w+2aAoFmEh+qDrm+iKRRzmKFJxTlV0FA0ORmKPni+nHHbGtHVDKi8WruuzX+84eTQijMR8r7Sap0+f8fqdgO0lVUG/NyaMtyzvxJp39uSUTmBxc7Eis0P5XRq7eEvbSPETTRjJV5VBkksfRlfjaHzMze2aQfdelbZkG8WYtkxs7jZUVcVwMESVpPeibfhw+4pKyfF9MbeTRMWxmoe5vd7kPDoPiMIUzxBJPN9xmd4tcSU5v6xyxpMepydjVov7A3uMN7A57fW4vZFcdNulLPMHIQVLD2irjCIxkV6raG2DoQ0oi5rTQwmprHJGvVMUVbxvXqpYPnQHXa7eiHe5vfvAn/7JT/jVr7aUcq45DpSNQSvFSPxAIUkjOt6ERnJK15s72lZh1D8h3InvD+Mp+7ACeSbo9Eqi0AIlJ03F33QVE9cfM18twRO/NzoecWSePVyS7nZ7ilbHN1zKUPLHjIw43lDkyoPpfFv7lEWLoojzRrRbMxr2sEz1Iek8na2wzAnHkwl3tyI+q6qiKmoaufmZrst0vmE0GhAn4jkNw8L2NeL9jn7/XIyNv2ezm+IGYs6++u4K2zjEcNwH1cZaXxLoJlmWoUj+TrdjEm5X7DMpLNbzuV3coPs9fHmBdgOffLPDMCzKTIpMFSX9oEORi9jsOBbTdcjk8JjNQjznPlxjKAFoFpbVkf2u8v7imjoX+2hQKVhmn5Q9u60UplE0NKVCC0RfRvucqlTRuiaJnI/oGW1tUFcpByMJ04tLpsvdAyR+sd6jqy212tDIq8ewZ9EPXpDkO+ZL0cejfpdh94hoJ3iZtrsnSVKOP5nwu/f/AMDR5DmNvmUyPsGQHCvvUwer6xMX/3EP20ULKqWilp6rURJiWhW2YVLIMVWxcAObRpWm6WGJoZrouoku9QUM3aFpNKqSB5isIYXP/qn2z+JypSgVQffeNb6iZc5/+9//jL/4M7FIzmYWOyUnCHKOTkUnBZ2a717/FT1XDKSmGnijDcE4AGmE92/+7b/m4u0lXTeg2xOT//pyyOGRRb8vFrG3H15jWhEnxy8ZBGIxb7OCH331YzbpnIUE7fa8Lk+ffslMZtMePXnG13+Yc/ZswDffiKztj7/6I9qwRc3gLhaH+B//8ecYbc3ZY3HQWKRTfvOPX/Onf/LHzG/EAlhXPmZQkxYNrSnFKiaPUQyTV98K2dc6E2bBnuPdq0gz6VrsLkyCE+2BdNoPjihTlVZm2D1zAK1BXuRYlvg/N+igGRlPn34FwK9/+zWW5/P6/QXVw2RtePSoi2LquP59dmJN3+tTlbJaKIUZAu0JF4kgqp898bCdiqqMHsxAp7d3qLXFZCwPjnXN8eEJd3d3ZBIjfP7kjOVqhWXYDIZislx8mNKS0e+Jf7e5wma+p1FMelIQwXV02nZAnFeUskpU1S3baMM9m9DzAryOSeB7bOTGtFotOT4+YTCe8MtfisubYkRolUUszUC9bgcvULB0i+VKVu8sFd1QuZxOMZCfqwM2y/jBfNiy+qiqy2DYfzAkbduaInOpK5WmFQeS09MzkrwhDGVlqWowdB3DMpktxaHT9wOSIqUXuGzWYmzC1MYJqgeJ9aJIsd0BcbbDk3KmNRonx11Mw8KWBMzb2yl56hJHkq9mr1B1n8Aw2UnM9XI9o9cb0HEcNMnfSOOESqkesnK22cGxdKJwQyaz2YblsljM6A8CcgncT8od5aLFccTnoqghCRfsVyG55Df0Owq+YXI5FRuxb7doZYVaGHzxTGaIlxmuW+F4Kqv1Ur7fhrposSWPsDfKGDojfvCjZ/wv/9u/E/Hp2fT6PpZvoWjSSHkXMzkZYsqqg2GkdLod8jyiqGV2crdD13R8PyYpRL9skoi6tDBlRUo3U5LIYLlvOZYufnVdCi5HqRLH9/jtgLoueXwuzSTVhuV7A8dt0Q154fImvH/3Fr8zQlElSTot0U2F8YFY3xbrFbcXe1wnQLfFJuCYHT779JDXb2eE8pJrGAX+oEMojdSbNkc3DDzHfOAp2nqfKKnwPIWlNCluE4fnnzxnmot+Kv0QvCFaqHL9ShCwDw77WMYSzx8zGEkDZEXh4nqKNby3kHDpOD1W2wWVlOSd9I9oKjg7M1jO/07EwqbG6ozwAvG+Z8MD1gvYfVjTBpK7dHhIut+T5zlKIWKo7z3id9/8lpEcP71ToTkNVVsxktzC9qDg/MmI//svfk2liBjudweovsNeCv3ML1ccnz/ltDMRvBWgPxiynSe4pujLtg0JzCHT2yWxPGRbRp9KiTgYPWZ+KyrXtWayj0JKqR7aFDH7WEG3YtJ72fz9HftwRRj3SRPxTKoOtuc8XLZ63QPW+xDDgUIetjpuH9dMSc0pWSHWvLLO0ZQQVRoGe9YA3WjYhntsRx7g04i+NyCM5pSy+hL4xzx9fso7qcbYHTq8n33g+PARhqyQdCofyzGp6pxWZnazNEJ3WlayclZmCn/0s09Zb6+YXov9cdAbg5oyGBqMJfctTuccn57z4UokfEzDo9EilvMZpiPGb71I8S2fThCgShW+7X5HnoIiDzGe3SeLCjB5MP68urxj6I/Y7EK+uRDnhK++/y/JG42OrIpH+RLf9WnymLNzKale7fjm2z2mPaBuxHxQ9BTXr0ljcdlBUWgbHddwMKSa5X6dobYVilXS3Bs173KKuiKQHDPbc9nvI5IkwrXFM/R6fZLZJevVmsNTmXQqDRara1K5z7z45AlhcoVS2Shy/9+uQrIoZSBNaF3bZba4Y7G+Y7USnzt//Jy4iFisNygSsfDq1Rv8voYi+c1lEjEaioTEXpag93GDYys4gY5li2fPNjme0yWVe4PdLUnyiGWk0JNquq7T48/++leMey73gpBJWFCVQjwMQFVciiijThcPcTDLb9CwmC/uOJSG2bPlW1Rzj2eLeJ3fbDAVl7ZtGYwE39DzVRQVLKvElkaxb7+7ZNSxHoRqDLdlsy25vV5xfnYuxj17j9dx0eOAu4Xg+wyPAjqBTyqrOJ6vs1nG3Lwr+PIn0pbHHOJ1bNabHZlMpj4+87i6XOJ5Yj5GewVd19juZw+V6yypMQYG588fcXspVTeVnHfTK87OpHVHnpHlLa5XYMjKjmpoNIW47JqSf5dVKUlT48rLj2/Y4CvUVYUnK6tv3rzBMHWiTU6UiLUjyAwG/eOHymMaRxitQx43OFJ4K97FVDTYAaSJWLvWc5+u13mwPekPLaKwoGlLdEWMn6ZpoGjEiRQxcTyuZyW0G7pSZGO32tEbTMjK9uEsmu8VTNVgLPlx233O4eMB7XTHbCZ+/7rK8bw+QdfHlGtlmlxiVF8ym8og00bU1pZ5fkN+n/hefcBUDfTwPVkq1gRTOaBebx+4m8vlElN1UIoWRyZuqqDLYNRjsbmlbqVKdLFH0yGXKrFta1HXLboD+1By0aKIyckQ3bG4kPYIhnPPEf1Pt/+vJsIf28f2sX1sH9vH9rF9bB/bx/axfWwf23+m/f9SC/yv1Tpdu/2f/ud/A0CyzwmTkMPDYy6krv/o0Of96x2DgxxFlvfiBIZDhRefSDWtSOHt1QV522AooiqlNSqPTl3CbUxVicxjEJygGd0HRbj97jWOX5PtBuTS0O6rL8dEe5u3d2+whyJLdDj8jE284M1r8T0vX55Rxzqr2Q3HUsY2TXUsr8SsjpgvRLa3LHN24RRFGsW+m04J+iqfDV7gyErZcnuFoe9xrR5TCct7+dWAb357x0JWyk7OTkhy2G30BwlJTbG4/jBD0xs6EmOdhS2KvmcgJU/jrCZKE8KooKplVSpRicKMbld8Ji6WHB51CbcxE8lbGnfH9A7AMnpcXYvsz/e/95TX3015dC4gJKPBCXmRslrvuViIrIbaW/D+my3ZvqVqRVZcp4+jV5SmyBQ4jsV+u6Mucw4ORNZI13XyPKVRhKkqgGUMOT97xEpWD7VWp8x1vE6XXBEVjHhVEMUxw8MRSEnzb797g67B5y9l5WO/wDR79DoHZBJyYBsedaXgeHApYWsoJmXc8OQT0S/ffXhHbTS4jk0TSshKU9MqOrVW0wukCWWsoDQWvaEtY7MgT0v6fYvrG1GV8oOGZ49/ys31BRUCIjoaPSUpNGpd8kKSAtd2aMqGPLv3XBCqPKatgVRfjLcNlt9gSEnuOF3iOQfstosHqFIYKvQCU2QipcHs5198ynqdkUn/r7LZYdCjVlQymZXybIu6bdgnMT2p6JXsYrI44eS5iNfNOmK/CQl8k44vsk1FUZOmCUfHA2rpCXY1XUNqcXoqsriXd3M0taLjdsnae/8mnarMiNP7bH5JtCgYjk8oFVFlmF7A8+cdVuGO/kiMw+WbjHRv8ezFsXymNV9+9ozxocWf/fnfyz6o6XYsAt8kk8pVtaHgD0ZoEiJraQ7Z3sSxNUKZubYdndntioOxyXwjxsbWPEzPopAYWdN3WZcZ4XLLJwNpcj3fMRwfcXW3oJR9rhsKJ6cDNmsBYzk6HnA7qzg67HF9JeaVp0/Y7Tf4nQ4lUu62N0TRIJMc0ypVmAwesd3s8TuiD66v39ALHnOzmKNJZbUib6gUG38sspXz+YzTg1P6gY/hib/Z3KzQG4/GzHD9ex+oEsVSQEK60l1MVGfstzVnEg6GPqNtHUzF4tFEcK6Upk9cXNLpizzdu28ynn0yQcdjOJaZ1ve/YHTcwVNULt5JVdHOZ+yyCwpZNUL1UQOhhBfYIs7z0kZvc0JlytAXfRxXOh3PopTwl3q/pLYSzG7AgS2eKZouaTSLi9tLHKlm5Zk2WqGyk2OsORZFG2J4JtMryUnwe5RFSCz96v7Hf/U/8Mtf/oa0zukMxVy37Zwo9miLDrasWOTqDa5hMd9K6WndwXV9StdguxTcMLXWMSwP3XJYrsQzPDk9Qi1rtpLXZ5gOSZ5iuwZZIueHaVDHGVbbYSv5I5OxzX694JNnAsaexi1ff/0HBicQRzKLa/uk4Zb1fP/AsQzcMbZi0xtJOGFU0R/1iJPwQQ1xudihYNKfqJSZ5EXVOhkLKEV15Msvv6Tbcbm9nhFLA/a6ytlHd5ycPoFWjHulhuR1SJaL37cth9vpe6KdxuBQ/F4/cBh2Rlxe3OB3RXVysZ6htvCzn/8QgF/+5lvsUmM8GBC2ou+KosA3OqRlyVUoEATPJp+QhkskfRQMG13XsS0DxRRj/PZmRrK/w7YCDo/E+mZoHT58+MDTp88Bwatpa4doE3MovczycEebG+SNyvGx2CN1PWO1T9GlWqCiKAz6Q969f82gK+ZMrz9hvrvg5naNqkgochCxnO7o96RimoTPNlVKcS+eWyikaYoq7QVMW6NqWlrFoCs5Qqg5ZWaQZBssTVbiLQvV3BFJ2PxmWvDo9ISgZzCfyS83G4aHPXbbnFLCunxHY9CZkBfiXepOSRLtScKCji7WEq0qWO0X6GnA0VOxb6+nIXWT4Eue3WaVczTosllfo2vi/aKkwnU0dKNl2Bcw64PDAd++/VuKRFYi3m0wLR8nMBkNxTyeb37P+fljLi4WNLqU/NZH5J1bnEasBy4OgSeUY6c34pzw5PEZbdFQqDnf/F7Ah0/Px2hmjK6J2AyCPu9ev6PjHjzs22Fc0hnW3N7uKaVCsWlF9DtPGcg581d/92tOT0/RjZpIogWOD59RVhlZltGUIoYLYwWNwX4r1m9b7dBUmTCBdwWdwHa7mG2Lqes0tej3XC24mt3x+aOnAJwcTHizvCJcbRjJNX01zyirFFPp0umJubXfren3jtEVEef7TYZiwjab0zaij4swQdc7qN2EjuwH2zjEtEsWkhflBjqzWUzQOWK1E3tWXanUBSiSB/rkyWOuLnbUTUZnLNb9pgFDV3BcjyQX/TK7S/ny888xbQmxLA5YrN+iaF2QVIWub1CUcwzliFp6pQ3GCmXRMPJlhTiKme4WKJbC089EVfPtN+8IDJez0SOefyqoAn/9//x7Gs0BVcwzUzGo65z319doUqJe0QryNqbFRoJgGPTGmEZJVSYyxmzatqUxa/are38zHbc3QFc1Emm9UqoFd79Y/ZdRC/yv1WzHIEzFpvvq9ZoyUwi8CakkFV58uMKwfGY38P0fiwNzt4w5P/6EKpIHzs0dTRZwc5Wy3gjYw/GxS1P1qTKTqSxD/vCrU978/m8evA063hkd5xnX6+/46kdC9vz3b254/OicJF9z+Y04CPPCIi9qTLlxqKXLercgq3OQ5VNF9Xn66ID5csb2lQjWJJ+hWiO6I7EgjhuVZ4fnJFGCkoggbKKGxV7h+Am8+yBKqjfrFXWTMJQXoLJqmd/WpMWKji+hAp7DYKyw35QspFmtFwTYgYHui0NFlqzYxgtcz4VUPHur55y9HNFK8zUzO8LpOpwcjrEkfyTXU1bTlsnEJ3DEZvLbX13QGfh4gfTHira8ev2eyZn+4P0xf7dGLS1OjlzyRHKuEgXLqejJPtisI3RaPvviM8JQXHbiMJamqjX9gdjQfMcRfkGl+B634+F2CvJkx9VbUZrtDQeYrYOjK0ylTqeVVHzvyzNapDG12kU1DG5vVriuOJiWScFw1OGbr7/BCyS8sZOTNQO20vuj7yskocOoZ7OTvhN+v0OYpDRlwWYnhT3UAOqMdiPGM9mlvPjsU2olpJGy+boyZHZ7RZYn+CPxfrWlUzd7skj0gU8XVTdImz2OJzHQho9pHVAoGVuJYQ+GoFkDUnlJGg8P0Bqb1PIfYE8D3ycvQXFcDEm8fftmxsGBhmWI2A/DEbtiRuCNSCQZeOQ/JUwLUm2JIon9fWeIO/BRuZeHB/ckYL9KaaS0vYrHeOxxc7PAvIci5w1ekLDZSIljXcWyXZIsppGXm7IOMHQfKYdCHE15+fIJTeUQxuL3Xr5siPIEi5IwFIfOTs/g/MkxSS2NOUl5+WzMX/3i90jkAEenNqruEEYFhYSMem5AtN1hBZIzkFeopcmuugZVbF5VqeDbFZ3hY1JJsm2KGN1SaAsZi0qHxjKxDg1iCfM6+PSAOFmh6xHjkUjw6FZCU8Vopvj3Jt7RWBnzZIkruXYHnQmqYeJ6HivJ1Wo1lf3O4PMnL8XY3bxmn0Q01ZZMztG6HHB0csj17IqzR0LSPKoLoihCz0VsHHkaxycBZa1SSu8breMQJzv6is/3ToUZ7/vla0zzCMcUfX4dtbhtTm3lVJro87LR6Lgq+9mKmRz3o4lGQcbFB9Evlqcxi1/z0x9+xXf/KH5vsS3pPzaZLzxUW457OyMtI97eivf9/LMDtqtbdmFFmkkfkWTGi6fP8JtDlnN5eWzA1nxyCalqM42mUgm6Bu8+CCnfvheg2TWHR0ds7sQzTNMVk8MTKnnwLsolMRUOXVrJw1h++MCjH5yR7u/5cQFxHOKf2JSK5IosFOKk5nBckMq5rSYOj4ZPoBKxuIs16qplvrhCRwSjoZr0ukMWqzmWeZ9IUKgbk9VGrPnjwRF1rOI7A/ahtCaYeJRaTlLvMKR32XS6o+d12U7FGGdxyuHRCYU+x5HEmrpOSbIIKo/+WBzefbsmnWVUSLjW+pJGczDaglkk1tO40Qg8levLlK7kXH7+6XM+3GYP86osF/zD387Ic5PuSPyNqdZ4QYfDwQn/8I3w38IpKZJYwIqAvPGwgwGnpwNWCynmsEpJdxdk9YqdzHGZms+jyZChKtYft3LQbJddlSApENh+n6o2uZhdMD4TcyuMM6CgSMTvOd2CQmnQTZe9HNOmBG8wwFWtByuSfZ3R6Y64uxJ9nqcZTken1x1xeSH65fj4kLJdU+5qygfOhYtSpZjGva2DRd40lFRUcq3cbWPmN3PqsiBpRAy5Rgf0nFh6FFVRhRWAqzsspFDT4eEhpt9QSv7IuDtmuY5wez6LhTTGtVym2ynjkf/gE6q1Q5Jtiq6LMT9/odK0Fa8+XDGQVIiTk0fE0ZZku8V1pZiKZfBh9QG7I0VvZh0sa8TgMOHuUuwNXU3DNwfkrUpaiv9r7RLH1llMRT8N+49o9YThYYc8ErHY6bmE0Zq6qUik39Ddckq3M+HDTNIZBl3m6xVuZ8xye2/mPCFLLaK4ZnIizg5+R+P2UufgqbTkSHTCMKXbPWQkDcMbI2a9rzHNiqPHItb9nkscJ2x3UlgsU4Rf3EBjvhG/p2k+84VIOt97CU7nG1abC3RNHOCfP35KQ0S8T2klVFmrLe7uLiiKDMcW/V7bBXmR0JFQ5dXdmpPDAfNpSiXhmYXWUCYFmWFhuOLMkcYWnmFwOReiHstwjdI6DI7H5G+kmNNowE10S39ko9Zi7eo7h2ySFV1bvG935HFxccmg16FWxefi1iGLNYbGAaol1+F8T7FVUaUBumuYdLoxHc+jLsW7rDeXdDsjanlBmU33HB6OWCxvufeur9oKR7HZrlMaQ3y327FYxDPKhdj/x/2EJlMpmoqTJ+KCOekesF15WK7BaiaFWtQJobphk4ixyjIhuKa0PlYuxsWpbAZdm9U8ZnIi+k61R2TRnsATi0S0q/GDHqcHJVu5ry7jEAWfus7xu+L/8qalzjsMZNLCUFyW0ZKuZbGUUuyWMUIrG/blErcv+oX1fx7498/ictW2DXUuHljRbnnxxRmL1Zq7azFI509P+OwHPf64dycAAAAgAElEQVSvf/cHbi7EZDTtkt+s/5qOIzpkt69YbbfcLV9xMBC3/tG4S9k2NIpC0BUHmQ9XrzEdm9MzkfW7erviH37xC/qD4OH2vlmHTG//lqopMXSRRWlqhdU8pyOJ8evNDDfQub5U+dVO8KIOTw65eJeQbMMHn4sfff9H/Pu/+S1bQxxGBv1PmDcmStjw6lYY/zlWie8P2KclG4mh3S5nGBb0A3lo2rfs9hsMw2Mf3ldadiith6blPJKLyHJZoKuwlrjsKMwYDgekcctoIA6PkXrD2dmITF7uqlpnvZuyyxqsRiz4vaMOit0lrHKOn4rLgDY3qdqcP0gPL1qdxWbJNFEeHL9t26dreex2N2Ti67Ftm1pp8SyZealWjMdd5rPlg2t83ZQEXY8wDNFLMTlmyxW2rWCYYhLEcUWWKgRBwJMXIjMYpwaOW5BUBbH0uXry8hFON2C+SmRMVehKQR7VjKW/QpEV/OIXv+bJs2esViKmNruU55+0JA/qej3sYM/0ZssPfyhUIpeLPXmxwFADLq/FZa43gLZuHg5SQc9mH4WE0Qpkv3R7LlWZMuxYJNJA7+LDHariYOsyE+lmhFFC01r0J6LP1SamYM0qDElSaTppZHhqRCC9RaqyQdGhSkuKRPRBZioMD3p8++Y1I6nEF3RUws2ekSSczncX9MYT8iqm0cSilRUNplJSRSG1XKidfoDbUfnmnfSr0DV0VaVCfXBVbyuFXtNSFgXzhXjnl58csbyKmRxIRTFdZ7HZ4PVMdGMi36/F80ekljiY7nN4/e6SwWhEWUje4MDFq/qstN+Rl52HsTK7SzbygHky9vjFb/+ei+vFf1Rxsz12uw2m5eLcKw+qKmUeYVYiFp1uj7jZUexLDFkRNjoq/uQQ09XQZOb4ky8e892bOd++EhvxT/7IpygyZrMVL4/Eu9iVzSZXSJoGXxqbambNbgu2JCMX2Y66McnWFid9MQ5mAGMnYLFeUclnuLmeohcGyVCMsVqZKEpGrZY0iHj5yc9/wPXsG84fPcNW7z17XNB0okwcXh89OyUtdoS7kmdDEVPfvr+kaTVm+4QrX5rxPvLJ8h23H0R/LpsVSqXguj6WIU2vVyVlovAvfvwn/M0//gaA9e5vqHVPKL4BxwcTosTid7/7Ff2eWAOPApXbt0v6/RqrL+ba8tJgNzM4G4i+2y/fEG89jg97LJayiur2uVvO8NQTulKp8vzJMbd3V5jSO+3rP7xjeGKTFiFVda9u1yPKFoT7GMcTmc7ugYtabnDFmYza9+mYHkY+pmmkP86gi5JmDCT/aLmbE9bg1S77laiODDuHHJx1WaZrxlLasTd+xHV6jSa9hR4d+Ly7e4dv+QzkfrHb7FAo6HW7lNIvLstjsiyiK98ljTO01me13SLv3ZR5ShqVHJ8O2a0lp7TI6XR67FZi/fnsxRfM1yGr2MGTPIDdtkZpAwaTgvFEzKNXv7vhpH9IKi/eCiatphB4PS6/vUdaWLz86iXf/5dfYhqyclVWHBxMSGOx7/z229/TNhqdTo0rD4VN1tDWCh/ufo1tS7Ww5Yqu3WEg1VD36Yr9NkPPa2LpJXZ29hVJGbKfTzGlSqRpl+yjHf/7/yr+xp0E6MqK/TpGl/yxZLal37GgUgilyJQVK3gDg95ExF3TpMR5wcXmEltykI+9HoeTERezC1LJDdVMD9/skWT3lwGVipiqCbFdqXhXq+iaS29UEsl9czYLUdqIUiq7RguoixKvH1BKM6OkjtnlLY+Pnz6s+4vlO1znEROJ2pjO35JvFE5ffMFkLNEs6yWm3qPjivmxXt2x3UbkjU5ZiMm2ijacP35GlMxB8uN0BXq9HoOe+J7L23fQqlSZRS69qdbbirYy6Hg+uuRhV2WFZbgosVQn3M8wun3u3qV0ZaLW13MMFwzTZ74V86HIbfq9CUspDvD6zbd88vyctlKoJXJlsRciIcePOmzXkudWQ1NpvPiBSBS/ef2Bbt1ldJqiIvbounS4uLiiG3i0jdjL724qdGfCXCYyPT9Cay1uLm8IfLHG6o1NnlxiG0NcV2RTomjBsD+mkgiJwcglTVXu7mYE0n8sz2E0GbNeR1SlmNueMyDe5w/ian7gEMcVaZzhSh6WbtS0jUkSp5w9EpeGKJ1ja81DhUZtS5oy59Hp8YOfkqor2F2X2e2MIpfjZ5rQ2Fi+eG5NUWjKiOlNQleTh3pVw1JN8iQllSJXHeOIOmtIFTG381JlMnmMpoKqe/K7ck6OejTsSaSAhWm5BIND9jK5Ol1+wNa6NEmO3op4mYyPWS4zJtKk+frDElM36XY8rq6kyfVRj4PDEarqMlvdi7fFLGZTBnINbqoIxxrg6g19iSh4//oNxwc9PLdDLL235vMp/aMO0V70QZbX2HaH2+mC+Z2oTh4ceJS1RpSE/O1f/jkAhmaioGJ05GVu0uPuZktRRTgd8ex2rJOmMarm4EmvxH2UUZMTS7SQbSWkcYimxJiy7+oqQ7NsVBw0iViQGmD/ZPtnAQscjJz2T/4bsfF//v3nvHu9xgu6FDLLQWthGDmHB2f85V/+BwBefDbBsApuLkTQn5+fs4wv2ad7nj0Speebd9d8+vRzVtsSSyotzRcxZZrweCI69pv3V2i6gqqqaNJx27Yb8jznh1/+nCgWi0GYZtzObh/kGuOoxNYDfvC973N1I4Ipr1LyOMT1OiANbPOm4PX1irXcTKx+hybNcFUXUxGLSFPtePrkgCTdcHMpFg3dSDiYjFiHYrIYxpB9vCbLTFqZRTUN0Nselqk8wLpMqwt6xoW8hHa6I3QzIwgCqloET7LJcD2fk8diYbubztnulvzg2UsqWS0wApjvt0RRREcqq7Vtw/sPb/GkQIHrujx9/JS/+dXX+APxvrtNxdHoCNdquLuSWbdhj7aBSGYP02JHb9jBdrpEshLhBS6b7Zy6Lun5YhGpqpbrqznjA+l235QoqonjeWz3YqNyHAfPU6hqAQ0FqLIVy+0GryM2L9dpUZuGzdTk6JGElcYKZa7iD0xup2ITUPSUtk4ZjsTJJkkKylThcHRAIc2Oj0/7vH1/iWtr7LbiuYK+ynq35fhA9Kfntfz21+8ZH3nY0sDT8zw8z2OxWOBKaeK2bcmK6kHK9+yRz+00otc5wpSxmBchWVvRqC1Vea/C12Cp0NxL3WKiqTpdt8NiIQU0DI2eH5AWKYtQLFqB3zJsHRZLqR42KlH0AfUmpS+JxsU+Y+C5JHVEpUoolBXg2BqrueinolK4ubrEt8c4jhRuCISZZ1nFKKWYI3UJtqk/VI3Sco1uBLSUHIzPAQizW3reY2aLDwBkiYbrmrRazGYpFZSGJvFmh91TmE/FuGuqzelkwvZOPGOiTDEtBdOV6XWAtqYsM1EhauUlRVWp6phxX1wcW93mdjXlpNdBk1WqVRahNDWPTkbMlhI+aBnkpU0tD2lZNedi+oF+f4wh2d1erjGtM7yeTpJIcmyd8OLpF+xllXF6eYnTmZDvU3xHPPvp8SlJFLMOp+hSNCRLNJ4fn9DKzfLV2ytOjk5IipijE9F3tmJyvXyPrujs1mJsbNdBtQwseeAL+gMa0+buak43Ff/3q6+/o3fQ4eiwj9aK2NOVCY8fj/nFL/8cALMfcPc65LNPn2L0xBxNkwqjcvj5z37Er18Jg/dvvrng6adnVIWE8mVzQCWPKlxpbNroGS9PXrBI1ixKcUF3rRHH3Qmzd1L5LM3x/BFnJyP+w69Essrpehh2nxqFJBJxpughQRfCWMTU509fojsGX3/3e2xFbISPD85Zr7eEmy2PJaG80mERx5SVWIc79oCbi5Sf/ouv+Ie/EjBSw2uxBxb5WmZC9y3rOKR2hZANwNHkMUk+ZeAd4khBhJvVikWY4agSdl2VBMGE/qDH1ZWAdQfdCUEQYBiakHwHdFcligoMCZcuti2jicsyvcCRQi35Noe6oWrFGiJiqoBWo6pEbAx7E0zN4OZ2T0fc15nfJuh+i2c6hDt5WfUMNNVkK/tyt1nSP5oQ6DVTCX/5Vz/5CdFqR1TbpJFY8+oKRoM+eSX241KrKLMcz1bIJVTRVn0W+z1WJxRuoUBZqJxORtxdi9gMvBF5uSHPN5xOvgAgzGrm8XvKNmEnEQOH3QFlmHB+8AMAFvmUrImYHJyykntt67iUUYTpBhiBFGVIa/S2ZNQT6JawithHCb5pM5ACCIoqbCQuV3doUlSjY1vk6y0/+uKPAFgtQ7598yu6I5flSoyx65pYdkyeOOStVL0NXLJkTyyTAdtdwve+fEpdK8zmYozPnk64uLhiMO6TSHL8fLVkt2j44Y8Fmkg3V7z63Ss+efpTDoZi/s83IdP5LQeH0jy7UgjjgiQvKCXs2rEMkrymVfe0chyaQmVy2H24oNwtbnDtPoGncHMnqiFlZeJ7fXStfBA3CoIemp0TWFKdhz2rzZbxwRP2Uo1x3BlhKgbbcElfmlznec5uF3J2KhNMjsbt9YZ4X2I40g6mzBj0TomS1YNxs+1Y5ElNIysDnjPhaNIhyVOmUtnRdW3aJqEsGuJUvPNg1GWfR5S12AfWc4XJyKLrW6i1tMlofXbhhuOTCbYvFURvrvCs3kOlrjdwmM/nrNYZphRJ8QIP2294/3aKJiGcR4dj0iinKKSdiN2gGxqKpj9UwTe7PedPjlG1mpUUc4ijiFZp0KQS6HAwQdcb5nerB0rKwdGEusjYzhMcUzzXdHeJN5g8XPjCVY6hxORtg1qLC19/OMC2NN5f3uJJ5U+HgNasKKWCqI5JmqaMRz0SWV7SNIOibLEsDb0VD59mJZbvPBQf8gxef3vBy6fPubkSF+i0LvE6Jaqs1LelQxpW9PonfPNaoMQOH1s8efqUu7uUohLjVxQFtqMjNYUoU9AUneHIp5VyD67uEPgO13dLej1pNp5vyNucTFagdbOGVkczCp6cC6SFbu15++YaKhdc8V1ltMOyLDRXvMvVxZLDXo+63nBzd38e9tiGe4HC6Mt1t2ygcbCk8Fddl3RMlbQouZNCW71gRJmVVHr7kKxe3k5ZfLP9J2GBHwUtPraP7WP72D62j+1j+9g+to/tY/vY/gu0fxawwKbmAc/96vUNbevgdxwaeVO/urjAdz0uLq84eyKwr7tohq+qfP+H4tL49t0HltsU1ehweyfujF73hKhUCTOT3Vbc6Oe7PXm0pKmkL0xj0HOG7DcR/b7E8RZ7To9eMp21cC8e4SgsljNaCfrWFIVVuCPMA9Ybkdm5ur3i+PiY+Ycpli0yD1XZkMQ7FJnZbW+39P0Oqb6lkvKldV3y3ZsrmqbCdSUUy/N49TZhOJbGZllFkiSYJqiqyAhHYY7vhYSxTicQv5elOdG24fz8HIDNfoFpGSTJlnAnzTE7XY6PT7m9EThpzQLTNIniAlN+92KxpW0rHMN+IPUt1is6ne6D/0lV5Lx/+46uM6JMBd/hZDzCNlWi7Y7nT0Q1cjp/y89++qe8fy9+L887BL2A9WZDKatp201DGtfYjsZaYm/TesZgOECX2Z80aUjzCM0S/QpQqxGK12d6e4XeSqy95WIbJprE7DelSVXq5PWeblfw6qJogeWCoZtsV6ISeHDkcXh0xGolZdBdGzcY4No520hkkvvdIaNexdXllE8+F32+Xie4tsFuJ/rp+jrmyfMuSuszkTK20/mcuoH+4OChnlzWIeOR/wBPubndMj4YYWg1l28kEffsEfv9gs1uyaAvzYcznYoQT2a76lplvV7Q9jMUmWHvDjz2mxl9t0uj3UPiCuJ1iyGzk4W6IwlzRqdHKIaUh81r6qYl3Rf0BuLZ26ImDmNUyZPar2I8y+XowKQ3kDKrS5U03WD6BZWUra5qk0rRiWRlJ/APUY2EaKNjSE+JaBWjV1OyveiDp08+Rdd1vnv1NZoizbnXe7BUvE6fwf7e9wUGXZ9sI+WFC4P+0CDZZw9VBs9xuL2JSJOQ02NRwdB0hbLQKWXFfjtfo9UBbaOSICoPUVViNw37TcZOViyVMOPxkwm//LWo2ExOR3iuC039UG3qd3wub9/j6S2mKuaxqnmstjW7VHx3XaokScKjQ/9BYCZOMqqyZjAYsthJjLdec7e+RrGl8eezM+ZXU7xBgCez8G5TopQ1kdHSKhIOtk45fzKilrKys7d3dDodTkyDjRyX558P6B8OsAKVN99Ivyiz4vImxPGlT4oWcPzzI4yOwetXAn7mNz49R+Uv/o//E1wR+/1+lyzJH/iVpyfnhLstWVHy2Q8E9HofL7Esi3iV4PcEzHkxi/DMFeNjgSDYLBoenY/YFQXn0lfr4uodbb3GNEeYrlh34yzD7kxQJTQjjgp2q6mwDzBF5vPdxRt6XY+D8YQkEVUazIhO1yEuRcZ9MV9Su3tuVm94cS6QDm8v/8DFbPWQMf2kf87RqMPddvYg07/Zx6TJnh+f/oxfficqbNs4oVi1nH8lKiZXt++xzC5KC0Ff4vjNls0mxbdt9jvRn2P3FNcZsttLIv7pE25ubvDHxw8QMk1pGAyGvL+e0e+I7TrLY1RNwfIk/NVx8AwH146pWom+cFRqvUE3ffr3nNJBh7cfbpkcSA5Wx6CsKyzdoDOSfffmjnC5JzVUtPreWsIhzzS2Ei5tjRsc32K7zBhOxOeyrGQbh4wHPrGcM6ba42J6i2GIsaqUmlaHIjN4+0FU9BqzJCtbjibnRFMBUe27I9KmJpZWF6YDRwcvmS2nRKnkZQQWaQGDE48wE8/leAFZHktRayjTkoHfIUx3bIp7v6MMRfHxR52HCqJm9PEseHchoJEXFwv8rsZicUG/KzLlZdGw2+zwfe9BiGKxXuD5HRxpKzGZjCjKlCzJMRX5zmFNuBKxV0mvu9U04fz0hOVaQIyfnE94/uwR+3DGQfeJjM8bDAcyWQV4ef4pd7cbrCJntV3IOIhIax1DbbBtsUc+evqUm5srWrmvKk3N8eEhaXjD/FbExtGJTauG7LY1/a6EmrUFetUnltYa+32K43XZRzGtKq07FJ9t3FA0Lkh4ZpFvOBg8IZfS5UUR4TgOrZKRpqLPz05egtpS1nu8juiX9brAdg1qiSgo1JC7dQZKwcGpQISEG1guMxStQNMkRLWxUbkj3EiLhV6HloT1NuGg/6UYh2OH8FVKozSkiUSzlBpGoFPKvXa5KGlVB9uDOBFxYLUqb95c0Ouc4DuiX1aLOWcn5w/+XI5roSo68+UMV0LNPM9it02xbfNBxKM/1AUH/N4vPNzjehaG71BLARTLM/lwtUCtXToHgubQObCJigxXypInSozja/8ve++xa9uSnel90/u5vNn22Hvz5s2b9GSVgGKpIAEUIHb0COpJ0FNJzyCoKUBUAQRVxSSZ5trjzzbL++mtGhFnUQ2yV4CycaK3N5aZK2JEjBFj/OP/cRSLUvY81YVCVCRMLocCGgvsPp6oWxNPogWOh4hePyBO16S5WL/bm6dstgd2p4yppFC/GF0xX92zkJqgh11Bp+syW78lkDqaJDEoBbuNOA+GPQ/TPbLafeDnvxQtOOv9I9/9+B7PNzhJX47SMJ14LGbCzzl2h0HP5XjYgSLW3fZ18qQhSTI6n7THFYW6MUhLMedabaNj4ug1j5K0pCHmcADU3Zlef+T3KBqVNBK/JeyHZKcCTWl5+eIpAA/vZ/ScMZvD5gylT5OSJzd91ltR2a0SjbIJ0LDwHEkw5RpUlk7aVGeR+br6JEL8L4/fi8tVS8t6KRbA7/gML0yOccRmKYLcr795ztuf7rE8hcNBOJ3dNqMsA6paBAf3jwtMJ8R2FE4PUpxPg+TCpq4yXMkWVix2TKZTWksY+OzjPZquc/vsCdu1CP4Px4xet2a7n4MmYXm6TTd8hi6d+mq55/IqZLfJ2EhGmG73ktUi4fHjjOtbcbFIsoJWac5CakpWYlo2puoTy8ZG07CxbRdDtygr2Xjb7uj0WzTJjniM9qiqie+7LBbiOT1niu0VnA41qTzcTLvFamG+FM7Ltl0MpYOqpegSTrg7rFmsllieFD8NNeL4SDu8Yr4W85kWOY5m0Bv0efdWXJxefPGSxWpFLAkYOoFHkufUpYrpiGAyjXJaEwL3ioUU5zNdh/v5A5HE+jtmh48fHlA0RYCvgfVyhmP5dOwhHyRm17BtTMtDl032egrjwSV5dgB5cbJNm/uHBagKA1lKt8wQt+ez3onPKasWBZfB0OXjnfh941GPskqxdJ1L2Qhb1zHlscDTRbA8DMdMx0N++vE7rm/Eet4/3GN7LqanU8vS+npVcPu8iyG1IvyDy9OnfTarw1nzwTBUwq7F8XBAV2XTcFuxWe/RDBGAObbHarkjiXI6srTdkuP5JnnpUkhHsd/vePnlBbGE+9R5gefYHJIjvZFkcVNr9lHM0O2jyYtolLT03S4Ps/diXUyV63GXVGn4/h+ETtk47NG5GYGqnlms5ssFUbpDkaeFG4R0Ow5VrrNZSbHcLCPoh2h0SCVZjGIDqkUghTCrOKVVodPxSEqpEN84bNdrDFXMQb9n8+7je8IwJMkkiUFmY/oGSRmfNd6wTGJNxbkR9vNV54ImVTDYUVXifZZlEwRd4ijFkZCqTqfDu7cf2BwlVtwNicmplJCNZB0zDIvFxxUKUJZi/3VCn/iw5UrqTjWKyqQ/paqqM6QiiWqCzohkXdKxhJP1hzWnJEWV9tp1fL74gy8FvEmK+tZthK61NJVKlYpn932VYxGTJ590ryxavUTRFaJYit4etpxOB1Srw14yar58+YL9IQJF2EqkViTZga4Z8OyZ6Bv8zXd/j+O4fPftezwJP/N7NSYKjuxFc20Hw2p5/PhIIsUkB7c2H9Ml+/KEH8uehCBgs7jDtISTj6MrRoM+rhnxb/4rAev6/od/4h9//Zqvvv4Fd4+CPe/l4ApbUXhyKxja8uKOj6sVvWDEZiP2qK7YXF9d8erNOzLJYvb02XO0tmLUF9/39scZXs+l1/NAOtmyhtV6z7MLlzqWgfAhYn+/xnbFWTKdBszv4M3ffuTf/vLPAbCxubJ9VAkzGToO33/3msl0hBcI+4zKlJ4/5vX8NY3U8dPLLn/0JwNmO2FTHXuM5jqkZc1cCnhOrhqOsYZvdRgPLqRdt6z39/zsKxGgaHlLkac4bUgi+w08RTtDkmjEsytNS1HmBN5A2o/G4VgxvQlY7cRr/dBgeYzIlCNfPBHw6PtZguX2+PJLMec/vPodL6ZfML/7gOoIv9PmXRa7A0/++IJkKZMbyZEn4ZDTSvjeNK7QagsNE0/C7YttRW/icTpkhPK5HMdif1RRJOzqGO+pq5a8qLClRqKqOjRlTdlqjKfSZ5YRmq9TWcKG87RgNpth+wq6JT5Ld7s4vYasOVBW8uJ0EqQzqtQIS48Roevw8589Z/4oYontZs3AdCh3ET+fiHmn0rnfrtEtsX5JtcfILS4mf8BEnqfL1T3rDwd8//Is4pvnJZ3Qhq7Yo6uHA64VMrns8uHxvXjf7sAvfvFLkmSD2xGfdRiVXE5GHCVLZBrn1JVOra5ISxFkO0HN4+LI4SRZ69QfOe5PaEZIVwpFR9GSk5KBrmJL1s9/+s0/0u+OqKTN9LpdemHIh1dvuL2V0avWsl6ndIPe2bZUVPJkh+eK14TBgOHUZ7s/0pP6lE19IG7W9PsDMkko0+12SY4ZhbyUaWYMVNRtjOcIOw8ci7w40dQVkhQPVTGJkxxkfKOqgJVSlCp3P4ggt9fzeP6zG+Jjwet3wj+1usKT2xd4tvA7ZVOy3+0pYp9ZLs6Wi5s/4KtfjDnuT8SJvMg4Fo2aY0jykarQqNsar2tiB8JekzjDsbuYmgvStweuQXqMifciseiYFqWS8sWXz1htBQT/cEz4xS++4NWrV6RSkNxwcpqywg878gdrnKIU0xQxHAjffnvr0igqWSnOvCZzqAvOArfXVxPW2x2apuBYwq6bIqXWazaHhI4zlZ9VUpQZroTpX0xDomTPYDBitxVxQhzHGC7kx4SVvBjs9iZ5AZa88PUHOdlBYzNX8F6K3xyGCvHRZzIVe6/IU3TDZXDRUKqySFErGLrLbrfEMjtyjWvSvMW2xO+t6pKkOpKkOZ4n1r1pMz48LLGCEW5HtkucSnbb/VlnLy8SOv2A4yGnlLpsutkSBB7bfUFXCjUHqslstUbrSlKfqmS32fLv/90fU8h7UIPCq9f3DC6uaSWt6GG/40695+Ja+MKtmtEPe8RlzvqNbGU51Fzf3tA2kBRi/19c9tm+kq1L/8L4/bhctdAfiw28O8TU84qqKs7NgH//n5doaIzcKx7loaVpOvezI4FswNRtCMI+3/72B64vxORePHvJbL2hKUw6kkHE7Fp0LrocUkmb6/RxbJvlbH5mPjPMDovtmjRNQTLOhY7LdDI4s93oBrz68SPv9Ef6Q5F91QyVpIbGts+OMM1zVKMiPoqNiKlySvc8v7jlKPu5hoNbDFPFgLP4aF15DHybg8w6xHlE4Hd58/oeVzKdZeWeJrJxfY9WisfFSUUY9M/Y4qw4sF69Q1U8urKxeLFN0VXtvPHXyQrXDllut6SpbO5WLJKioNkeuJiKbG+WljS1hiYpz7fHiGG/T1ScWEoKeb9jUFc1Za5wks2jbV6xPj4SyorX8TCnLlviQ4Fh/XPzYZ21LB929CQDVX8wYbU5ECWSkqZuKMsYRVPOTdNB2GWdpwy6F+itDDrzI7oT4HgSZ98AtYKKxl6SXCzm9wy7U5I04usvJd1umVBFCoPxpwPR4tWPr+mEQxokcYNWoBomrepgymzhL//EIY1VCsns5AYNHz7cEfg2jWT4apqc0+FIXUOeC9tzPQPTsFDka1aLGbrbpVQ4UxXPFw/so4Qw6J9FmUcDh8NxhyJRvYHvkWUKVVYShuJCdNxusLUemhJiaSJI2qUZbdDw7CtJqX7csZy9J4pMXFldqtUtc6wAACAASURBVJOIU+Ry++wL3t+9F+veFMTAqCeCA0NvMMyY7MHi5lZcLGxP4acfM1pVO4sG102G5SkYkiY4PR2pUo/+IODuo8RzVzFV1VLmks3ndGJ72nBz8wSvEHt79rAnSk/YhYsnKxhe4PHmhzVuRzx3t3XI4gOWWtPKincWNwx6PcbD0Vlk89vf/UianbgYiyqD3uS02o7f/JAwuRCHa0dtqCwfLJe+pLZXKwOtrZlOxfx+//aRTifAVGtiiWlvKpOr6QU/3P0WW2ZflSbH8xpIxBoPByOMxsBUA3ayB0PVSsqyxLBBbltMY0BHNzkcZH+O3qBgs3hYMX8U32fWFYqt0nVNbp6J6svd/AOTyyGlTLYEuo3SGNT7nJ0jGSGHt2TRFq2o8SQrZWiPqXPQEK85pjVxodMQcjGW+9FuuPuwoNO7xjIkquD9nMGgSycQyZXHxQ7bnLKYKfyv/9v/DsB4XHE1fcKPv36HIquDqqcwmLzkV/8oxNZvb58ytQM6+gBbVomyxuDjxw2OZ3NxISrOWZQJBlSZEu6EAY2is5mdCKTAc5mlXF48JU9SWinsa1sNlulRyD7F+x8y+v0Ow18qZDKD+Rf/3V/xuHrHJ+7Kw8OJYGQz/tk1v/u1CNw8J8fWXCq7YvtRBOPj7oiKgvggEin+YMBsMWM8njAaiwB+tXpHN5jQGwe8eftePHswZNjziaWIeL6z8DyLttmdM96GHWIYCi+ePWG3lmyozghN2XL3QVyonz8P2W7u6as+eSGbsp0O/Z5HU+woM+GLjtkMx++hllL8tCwYDvssZh8xPiWUpiZZHuCYNmpP7K3p9TWnasHtSyloHZ8IgiGm1vC4Ec9QJQq6bVJHa65kz3OUnIgPR5yRCACzvKasUiaTMdu58KO1VmHbCqrakCSy180tMHSdMhbna1NXZCWYToDflYQLRU1nGBAne+mhwTdcbEPnKJN/pa2wayNObzdcjMSFcntYQ1Dh6CG/lWv613/1P1AUCYujYAvsj0KCIEQzWv7hH4XoNa2FH1xwOOx4Ki+rs0XFqx+/x9aF7b98cc1um1AVJs+uBMvnD9+/IfBtDLXPTlY/nj254XRao0uimLZouLm54f1dyvogEzymSnc44XQU67naxvQ7DrPHGV9++UcA7DZ7fF9DUzQWj8IWVa0mT2KuLsWc93sBf/d3f8to3CMWW4/Zaovn+qRJTlcmhqoyZzgaoclqepSlPN4vcKwhdz/KBMH1BNfukJ9qnl6Lzy/LFrWbnPtlfvppTdPmKIpKnIrfMh167JYZrtFjsRbP6YUqaqMh84xomsn9Yo6m2mjnS3XDq1evuLkNuX0mzubZbMfHx4L+UPZObzOSY8CL5z1SKetw3CxYLpcMJmNUSTKj6zqG4RLLWOL66pb3H+9oVRPLEM8eH99gGDpVBT15WdWcDmql05EkSapVkWYJ88UdYUdcHv2nQ8oyRTdqOqbw21lW0wu6tBJNEx8TamoMzUSXz3RYbkiONcOrAa4UvvWNPkqV8vhB7PVEiZmMJsTJAUNKsaBZPB4f8QOLppHJf0/B0nrossqoqy2O47NdJgwHwt9/9+PvqJSS3vAGRZUxiN/iuzbxWjxTJ7jEMdbkVQaSzCE+leiWQtXIZEu2R1G66LUFlryca2AaKrQjPF/4lDg5cNxX1I1MhOseu92e0z47FxbGoydUtLRVwUIWNxzdQVN0AkmkksQ7HK/B98d0ZVJttd6TJgUqBqlMSMZqArpyTkgeNmv6vsvhsOP1O2GLjmvw/MmULG3JUzGfY9+l73cp9lJmpbbojgNOi4SLK2nnUYWCSbdrka/E2eV6/5/+7n9h/H5croCs/OQUVLIsw7IsCgmlU5WAY/qB7Q/JOdOZZnuiKMV3RMC3O34gTeY8vbml05H8+LOSy94UN1RJG6mVZHR59WYJ0oFfjafoWHx4eMNw+ImxEFarudStEAfp5cUt28OanYTWbbaPhP4VphHw+CAuTm73QGVq9DsWy1hewvBRKgVVFxcLJSmJaJgvN/zsawEBmM0TtscC129B0mQ/LhagDOj5n1L1DXmZM72cfEpK05ITn2qiZEWZiX9OJgOOUYxly8zE9kjo9nBtj0xmyq4vbqjzlKO8uIGCbfvsN7szBMA3HZIixw0DokhWnByHqijQNVkON31O+wjH8RnLTH1RJBhGi6bWaLqE7qFgWRquzJIvdnPyJCUpShzkoRI4ZEmC5/sMJI31/fIdZR0RugP5fX1BAtGmfOLkrbIcw1QoyhpVQmLiNCI5lMj+RNqywDEtLMfEktmfjm8y6IRoqs27N2LjXd9cYIcRP/0gKnW3Ly4IQhvdTNgfxbxEeYJua0yvQ/Y7qWHleSIIPjvLGtO02exP2JY4bE/7E47l0LY2qSR42EZrbNtEqyW9t9PD6GroocW7mazeNSZhYBIn27MumWcYLObrs9p9HEUUeYujeeSyQXm72WO0KopRY8ikQdhxyJoE5AXeqH3SNGXQ72J0hF13+gFJpvHtP/2AJrODpqfTcQaUstr0+O5Im7T8L//zX1KpfwPA3cOMZ1/YRLGLmovf/OFxS9MG7E4iE2kqAd2gpcxCXFuSuRg1aVKQFp+c+oHBeMJqE7GU9L6TaZ8ystFbh+NJ/K+KTV5cjdBdYT+PdxH4K9KThuuIi03TgKpqtG3LYS8riDq0lk5Vi4uNrWrkacLzl78gzaXwBQ23Nzfs2wxDVlZrFHTLxHBlk62nczhumfS8Mz18xwlp8hMvvvToShrrqrmmaVNiydRldDRmHxfodksjK4q+36e0amy3JY2E8//4ccnz589JZbBjqhDnLU2m0ko6c68/YLPZ82V/ykY2gVvBDaWu0r+S0JpjxXK9oB8qLI+S4ngwQlNsRuEAVyYIDseYplbPDI03TyfcPczo+DoX/U+X8RU3T7+gqg1UqXn0B9/cUFYzdMkC+PxqRB1VfPHLPo8bAbMKwz+liLcU5QlPYj/2GQyalsVO2MbF5ZjN/YLX2QOehEZv1jvGY5fHxx6xhDQ2Vc5Ff4LVF2fJcrEnOUWEroUqKeqf3d7y6u13/Ps/+ktOrZir9T8tSe05sYRL/cHNH1PaMYPba04/ykA/cnn96gO/fPmNmJPohNv3ebN4w2AknilsUg5lQb5a8uRazEvRnnh42DK9EEm2WG0wUoO0Sslk0sBSQxxX4/3DT+iGpBN2HAzNJy4EzGuxXnN9ectut8I2xDnleCp+6HM47JmvxBxfXg9RTY2uhBz6roUy9tDVLqXM3ldoXAxfUCQKmSRXMnSL4cAlkpe0/Tbnd69/JMoq0kicXf2fjWku4bQr+fJnwj89LrcYpokl4X1O5dPpBmT5iTyWLLjdkDxX+ObrX9LIhv39omTQf3omYJhOR1RFRotxZlrzOxXrTcnV4ClVJBgoURuyWOdTYlPXLLTaQFVsChmU5UaEjsrD/YwXz8VFZmgMmJ827GrZUJ+d6AxtFFvnQZL4DAcX7PI90fqR3rW4LP79j3+HretM+k8BeQGzFBarBHmU4Fg+3VEfpc3ZS4bU/apidNnlyhGJmrcff4cTBMzXCXVeybXp8ObVI91BwCKSSI7WpTewiSQcPXS6bPc7msqi1cTv268jhlcTTEcS4xQxrutS1wseH6U8DBp6qaBg4usilGutFFP752rn4XCi2+2iaganVCROJpMbRpMQpT2gtsIWN4ucfm/AQbIM53mNYYU0RUrHE2e1puTsDkvGgy7f/ySZjo0eN7dDtlLnMos0bCfAMAwGV5Ky3nSoqg2qWvLzn4k5/vGnOZ4f8lSSav3jP3yHobtUdU4otjbl0cKze1R5TSMlMC6nLlULulbLZ1L54qsOah0wlCRFabpl0Lsm2m3xJJpF0zSKoqZtJAFSlOJYNuvVnquxsIOrySXb3Yqu1zn72tXykafXL86x02adEHQuGY5tNkexDioGm7VF4F6RZOJ13e6U5eqBblf8GMtrycsU27QxJMtolNV0exec9ifUSKxXeONSFPk5Pp12LzmeEtTa5JhIQqm0QrUaQjdgJeVn0irnl08uKArJBLxbM56OUBqTnUyAvHhyySlLUE2Lg2RIXq10dDfBk5XktNTwvD6dyZ6TLCSEbh8rKLi7EzZtuT1MQ+e4K9DlHr0cTBl0e9w9ztgsJHunX1GkBZZENbQUaIrPeBzSykqZqoKi2qCp53OiOtQEvs39w3sAdLXD7C5hPNHZ78Rnb+YVdQtPngx5kGROp0KlbAzK4lO8qhL4XTTdwpD28ub1gSdPJ9i2g90Rz/Vnf/xzvvvhO2YSafXFL/6UU5ox26wYyLYHfzDECQKibI0mE7WbpUz6/yvjM6HF5/F5fB6fx+fxeXwen8fn8Xl8Hp/Hf4Hxe1G5UtSWSDZ7Bn6Pujqxiw9IyQ6yPCOLXW5urjlKMbD5csZg6LOT+iOK4pLuC3o9g50kmAg6XRSz5nG5xZU6KVFcoVjWmQ77tF5Txy4dd0AQiIxCWiW0FNhWeCYp4LLl8fEHVEuqSPcusG2bsqzojET2zrL6pPGCNI25lHoVZROCkpFIStfR7ZQ426HoDh9nUgG7tLBdneS0JznJ2n2pk5YHWtmA2Rv0sG2XKDpQpCIrbtkGmhHh2j5qV+pq5FvKNKCS1ZFOp0OZGNyt7s46V2lUs5otMLqi1K05LtEupyzAkBkMWhNVLVHalkY+Q51rVHGG6QqzcW0XRbewPRVDUo5rWoiqx1SliiN1rcpWo6EgkRn+9FRi2Q7TXodUZitOcUGW5gwvujzO3os1ns8ZTjtksjlfUxI0raUBSgm7LFOR0cuzglYV2YlO0MetXdRSvG97WmM5HoFtUmoSUnnKmRdLhv3Buan3FD0wHj/FC8X7phcd5rOGKDkSJ5IeNuiy3RWUdUIrG4B6XQ3f96hkFlA1E+bLLbZhYXmSXKHS6bguUaLzIPtjhpddHMPGlfoVDScOeUrS5OiSpts3A9I4YzKZUNay6fSQczV6QiV7ksbjMbP5kSLOUUoxn6ZpMnRCNtstBynUXLYZL794SnoSe+3hcYNtj+g4Gkn0qV+lIolPDLohusSGn5IdjtriSjhRwYb/8X/6D5TFr/jt34tKkqINccYRReESSfKYtvLwjBGpVF53bPDsgI/zt3T6oho5sHs8pGvGEjqkaAXH/QZDGzDsi0rA4uFAr1+htAaRPLK6PY9TdcfIloLM9QNFUhE4fSIJC3LdgPrQ0gk8KkkQcDHtM58VuB1JVV77OOGQH+/n1JbI5vWDW3TFJJotqSWUtW5yer0LXn8UvYxPvrrALExe/eoNnsyYDoKGY9zQ8Z9jSLhdvkvYzLf4EvZRNyaqEtHp+xiKyNoejxFaaLPfVSQHCaVVcxw35GosKvVvlt8zGV8z6ekcMmEH3U6PIknxFYtXUnSye91FNUy2sqes152geVcsHx9QJK17dmzRa4Oe0/D+/XvEZNkEvfEZbrs5FOSlzjE/UcsG5cO+QFcsLL3lyy/F+fYf/+7X9MIeeGKNN9sag4RWK5gthJ11nSVe6NBXxxwiMcdO1+XbH35NK8vwrz88QKuS5KezDtTFRcjxGJEmW1yp+1Y3KpFSsHwU67CcH7i8eIKpG+SScOHJ86/5/jcfaKuaj+/FGZupLa4zxlXEb6nSCL3qcXqvEMv5/NtffSTPQ9YLMSdFu2Zxp6L7Lf2JOJePh4aHfcR1YJ6JGnarDK9ncCw+aSIVtLpOU4PnSarrYZ/1ek5aaNxeCxpyU8vIjhVJIn7vYHRJkq8JfWgaKXSlNahGSZG3hJ2J/CyDqpwS2FIcNF7guCHbzQlHnsNYPmVxIo8SKklMYbsdyrglykW2+2Iy4JhB2B1gV8KPPtw9QtpwMWlIUmEvvcGI3WFPV2Z6f3r1hqZMCDsTyvITTG9BN3jJenfkE6PEPn1AVbu0UvOpru+4GDyhapMzdK/jjmG5QG2zMxlAXCjkTY0i5zdoXXqdkDhaUUtB+bDvUJwifv7FSyopOv3D41umF0MuJBnBel9iKirr2eycbb6YXHAz9Pj2VFDJvpq74yuGXh8vEXu0TCu6wxGRf48rxXiH3Qmb04yqaGgb+VmXffyxTi+U2e3ThKqpOWZbVEv2eCs+WaxitxWGPAPcJiBOK/xA/J0kEVrTpchTVOkvNM1gvz8ykRTnm9mCzSZGU8Kz/liWPXJaqlxfTRhfyX6u5Ld0OxNmj1Juo7EwDIOiLen25Tk1DFgs5liKi65JsgGvoWlLLq8lXNpNmT9GTC57XN2Kvf5h+SNN69LUAY4r9oxvWxS5xmwm/MCLLyesVnM0xUKXYtXHKKM7uCbLjxwjYXu6rmJaybmCkp8UrHGApTholTybOx4qGfEhZXopnmt7vMeoTBykRqD6SJqcMPWatpW9y36XokgIfJNP+FrLtpgt5tjmP5/nvucwe7xHkdBhpYbQHuK5IYuVkIy4uh2yP64IAlHJMq0jpiXQEKasQJd1zX6/wTC1s4zL2/cbXN9jLyVy4iyl0wuZreb0pQbqaHKNoln4ak0pbdjWDbK65udfi3P/44c3KI2BrltcXYkz8M3rj3TDkNX9DFXuEStwaIqGTMolxOmc5SrB1G2CQMynYSq0mskpPtGVgrklGnbYO8c36/WBNGoxnYZWxl37ake5S8iljmBoTiizGl1R6UuEhmep3H14Q5aBrkgET2lgmiaOjBeXj0eev7ilriJKiTK6u3sgSzUMo2ItY/k//8Vf0NQJgSPOuzTb06KR59YZQbBzHsjShv0m4tK9kHMcM3r+hNdvfpDr0mI7GmkZMZWtLY4ZoZsmNzc3vP7hOwDu36xxdZ9ACrBvNyfyZkYwaDElRHz9cIJ9yXDs4jji7MpkdfpfG78Xl6u6gko6pvuHt9hWSLfnM38UAYNn9+iFDnFcc3cnjP5i2kfHRJXlPsNSSZKGIs0oZDCQaCeMUZdDbeJI4bZytySpG4xWNv63Bk5HQzcUUhksH+KWMBiQZiesTxok1YEordAle2AQ2ChKS1kmOJ/EVt0u+2NMkrRsP5X8OxWq2iFtRbCzOp5QapUvvrgGRZSMP36YsV1vyNIaWuHALi/6FIUgwwAok5r5ZottdhgNpZDqcY2ueEDO8SS1L0yHOJ3jWrK2jsFye8d0NBYCdcBxdeL6yRTTFnOy2bRodonhXaCYsmk5jbE6Ng+7NRdTCXfZn3j+1VdUUnSzbjJaHFpV4RR/CubGVJVOqSaUMnBqm5YgUDll4vsm189Jy4jx0OHxQRy2re5SaxnHvKCVDGn9QYCp2PSl2OrmdCDP97i2RbqX5ejxJXXxiGHYFLlwOo4BWpuAhE9+/fUF0U4l8HwGstyv6wZF2pImES9fSkYvfcr7+ztGshRM47HYfgdaQSghI+8ff4PvDtDyiumNcDr7ZENZqnR7YjvNZ3N6bpdO6HLYCliSUuns4hJFT7meiENyu1vQvfbOIq27I6hNhaMVFJks01cHHM9gd4hICjEvtt5BdWsMOZ++EVBEe/7wT7/i2x9E429R5iihS3S8pzMWh8Zp3xI4PdaPwjEals70aoxvWdxJwe6UiqIqcF2L4044vq++9qgTnwfJ4vjX//2YD2/+D759D54m7PXlN0P2kc3f/197rl6I/ff0+RM2h3sqKQ44uPqGh7uPmA6YksxhfTqCatPtyQAsayizAMySw0nYWZImeBOX6n3KH8ggonZtPsxDStl3Enoq2xiuri+ZVxI206j87OsBb1+tCXzxvjg6oegamgxo1X6HMj8Q+Ba1vHirmUZBja6HZBJiEPoBdZUylEyL6buc+WGFZbsgNWYeH1MGI53H+St6A7FnhuMRi1VxtmGt0Ulbl+M6Adl47wQ6RXPiejrlJ6lrN+35FNmO8TPxvnFzQXoq6V4aFCcJt1Ui3JHHKt7gDkK57inNtkFyx6BFJ+bLGYqX4RriNVkS4QYuqWnjXYp5CZ0hp+OWwa34fVmckKUxKh1CSQbiew2apjIaX7CRgXdNys2XL5l/kMyj9ZZSc1hva2zprOa7lIla0iQaqj2Qtr9lvY6ZXMl+h8UWIwi4fzvD/0LsvzzWKKOEn39xxVb2rGZVTHK0qKTg49PrK3zb5eHuDU9uJFHD99/yl//11/z00+tzA3u/35DmGbmEmmdqy9XU5X7+iC0JGLRThB/UrJbytyk2X/7smqw68eFB+KKwDOkHIa1Wochm/LRIKbYarWRaxSookgOBPYZWOOfyqHJaVQRXY/JKnHlfXX7Drx9/e4YApeWKrGq5veixl/Mb2LcYpUpRPWCHkjhlu0LVPI61TNhNQvbHmG22ww/F98X1Fku1SfOG0JON2ts5o4HB5igC6v7NBdFhR05x1nhsywov8FmcHslk/63njAmCAcn+E/lBTemY3J/e8eJa9Fc1mUfWRJyOBf/uzwRMzy8cmmNDLPsG1+WWn373Fu9CJZDspBaXdEYJb+fvzr1T4UBlOSuwzmvXZb8+0WjQep9UoFXUUiPZqngj2dCeaQy6YxYyeeVqHpbaYmoOn5xBUabM9Iqs1jGkrx17VxR5TCwvGqmjYSc7tNagllDoSX/E/P6BU5ExnIo5VhWdrIj4zTvx+2zNxjNzCl3Fk+K/SpxyIoOyRy7nM+ioqI1KvysTBkVEgYE98DlKPR4jCDimaz7Mxffn24Q//uYP2d9/y2YjYOvTmytCP0XpFywUQYhA1eeH335gI5PQ3as+Zs9hGAzJUnHGb9cRlhYQuAa5ZF98fvszHMvm+9ciMO34Xf76r/4btrs9+72EYs1quuEIwzA4JtLXajXLaEEioW6HSKXrj1mut9S6eF/gNKTZBk1RWT/k0oYMNrOEdiTeN7q0KO2WJlVA9t6NrkzSMqVtC2bLV9IWLlH0kp20qSc3tywfYjynYrcTsGfTHKCpUOQqyEuL1pYYbYtuiu/f748UecXV5JqTbOGYjq9QG4v5/COeZE19+2qLGwacavEaWxnQFAq2lXOU/dsYLX5gYigq6V5eVh2LtjygSEh+3TbM11sux1fUuViHrFUwtITkkKEjnvO4rbC0BjTxmihpcAObTqiylyyjg1GfLNthmNo5iedaJu9mH/Ek+UjvYkxZZCzmS64uRBJvt6lQ3BQ9tFFP4mJQZi3jS53FvdxDlsG047GOI3JJRGNoNkqhMpDJgUap0A2dwOzQSqKhVRrjWi5JktCV+xEsVocDSiGS7N98+XMMN2GzVLiaimTqm7c/4YU6pzRiJJ+9UFe8+T45J0T9nkJruLhTl63sk9rHJZamczG5JpWQzflqQ1rnKKo47+xBxXobM2kglW0zpjvk4rbl/esVjieeYX1cEXQDel3x/Q+PH/F6Bk5jER1lccWwubkIqKoYxxD7X5Eabf/a+L24XEELisRgYmDoDaZp0+uIg7uuUk6nmO7QPGNmFU2nbjVyWVVptArH66JpCpNr4YQcz2OzPFIne6JSZpJboVj9iba71FsqrWS729HtiECmrFrKJubm9pL7D2ITf3xY4jg+iWwYXi4OvHzyjNMhwZNBxP60xzYrbr8ZUcdic757s0C3Ul58IShd7x8+cnVpst0/ML8XBj4ad9AUH3NS40na3PWiIk4jauVT43YfL/RYr1fMluLQMgwdOywpi4ZG9mYcDg26ZmBKVqXjIebpk6847Y8Umdiwk4tL3nz8ji++FNmg+/sZ40uVyhTBLYgme1MzMVqNXIpJhoHPbrvEko3jWZ6yWj4yvb5GayVTn2VRNQWa0iXJRCaiqiMW8xZPGr3jKTzM5uyWNa4Uctys7ri8uURXIIvEfE5HFxwPG3ZbiVW3XE6nkn7Qo5KZwdliQa1qeGGNoojnPGxdLFNnOJRkEq1Fp+eRFitS2edS5hVh6BEOfApJgLDezalQUHWxEX98+5q6bqjrGl0X83s9vabXG1FXCejiuW57Vzi2x//9H0X/0ZdffI3jWayXGRt5AGsm1G2JrcDNWM6DmXI1HrLaiEDq8e6eJ1/0WC+9Mz2s3ZvihCp612P/VmThp5cQRQmZDBQfVt/SHVokRUwwEmszGP2c+9++wnEc8kKyn11OeXO3wJXZJlUzCDwF2ojLJ+LSWSlCfV4pYq6GYh5GoclR2fFn34jvW72zGYY+z7+y2bwT8/nT6wOHqGZ8O8BxJXNcNsMLG1RVUrpWFtPxCMdRePWDCJZ70w79qYKMtXh8WFC2NcdjTihV3EdTg/WuQAltjpItyFYyTrsHjLH8bN0mUF0U1cWUJe8sy0jyBCfQqaT0gmGq1Gl+poffP74l7Di4psZRqtbbHRe1aWmOa1LZr9LWRxS1PItXF3mLZVn4XoApG7BLtaUuHaajrwj6wqY+fHjD9dULpLYjVVVguxZxnlNKwpckU9Ask8fZguunwhHaqkoVp2yXItgKHJN+oLMrS0wp0mrnDW2tUpQbuoGYQN0N+e7VHVeX4uxMkz29gQuGRZzKytzohjxrUDA5HkWVv8wTrq4m7GRDPYXLzZNLwjA8s4PWuUKaZST3HwTTJxAMPMpGO7O4KaVCXWVYhsd4KsgcTtslUezz+HhHpYv5M1qPjq+jykuuqTlsZ0v+8A+/ZPZB2EagD/ny5XP+4dc/YEnikvnjPY7XoxOKeTIMi0O0Ight+iNh12/fbdivuxSJybEVAcmL51+z+fCe58+fArBZbfnd774n7PYp0k9C0T3QLU6l3LO2wv6YcIi2DIfCNxixhTH0SPb3pKUkCJmEZMfqTIe/T7eEnk28zEg1YQeBuuWXP/+SV7tHahlsLB8WbNMtVSEDm45BntSkWUmSi7XK8j4YU8AGQzKfNVMCp6KRqIp4kxGnCZapC5pjoIpalNsjnq6B7L/R8grf7FHp4rzRixatrThtU/pBX9pBTKqe0AwLC0l2QEOtVOiyP7bb81jsDmiqQpLIit62xOl5mL0dS2lnXz/7mt/+9lsU2lCFUQAAIABJREFU2TfkxyE3L5/xN9//Dd/8XFyE19sPaEaFrjW08oKn6Taa3qBpwqYqNaEJlzT1P1c1TrsVw8GAJN2zmklq++kVx2LDMRfJFdO0WW4bFuuCly9FAnS2eYdWO9iuRSEZ72JNQS9rHNkf4ykO6/UaI7TJDp/8ocI2PjEYDbElQsE2dFaJwvZe2OvzmwuqQkGvNC4HMmnQHDEVi6JKCUzxDPmh5fKyTy4vEU1dkmhb0qrilJXSXl2MWKWSl0Ij6PP4uCOcBNhSKN3QYPT0ll20482rN+IZnr3AHgQ8GctkUpFhOzrr9Zq99DPXV1cYSkmWRBwlqY5haxzjJYej+LsuLV7f/Ybvvv2JL74SkgqqWZJkLQVrTqWwPY8rVqvkLJFTJhvqVsG1dAxDIl5akziOodV48uyTFMMDfesJw7Ekyyr3rE4R4UQjlygK0/Y5pQlVbZ2lO9qsQbcsLHn5qJKIptyQrEc8kVW3x/lHFEwcP6CUCXPXs0iyDq1kks2TmH7vCstUaD6J3mYJXd+nKmrqStieY+nURYxhiL+jeMN0eMlht6YjWerKtqGmRW11Vkt5floOoeeTy6LBuGuxXO857hL64SeiiCNdrc/N1QUfP3wLwGb3kabQWK/FWTYaXqMYLVV7OiePPT/DJMeuLymdTyRec1AHFPIS0Q0NmmZL1/f56ZVkX+z3cVsbrVbObLJ+1+T0EKEfxLzs3Ii43mOrLUUi/FPdKNiWSSaFnE/pHpqC6+EEVElecaiofBPTd6mks1PrFkv3sKW/6roms9UcXVdZrkUsYzsah0ND2LMoJdvrauYw6HskB/GMnhuSZBnJasdGMoE7VoCiaWyimMd34n/DmyckpxivK2U7yogsV/j2dwlFI/zcX/ybP+T7X6/ZH9bYljjfxhcmSbo7V/jHE4uqVNBqC9+QXAmmQpxt0SydSpPESdonPoR/eXzuufo8Po/P4/P4PD6Pz+Pz+Dw+j8/j8/gvMJRWimn+/zmCrt1+9WcCRmOaOmkUo2sOhipuloraUtZ72rallNll02kIwz5ZJjJnTZtyOlZ0OgahxBZnx4okrYibDTQiy+B3fLK0hUJSs/tDOl2V0DeJE5GhXS23WKaDoau8/0lkSG6e9XiYPeJ7IusYeD1MXWO3vefqmcB8LrZLtNrk+mLAQbITnU4xg9EERWbhLNMmz2JmiyWS4Ic81fEDE8vWqeRluG4TDC3Ak31gddXQtAZRvD8/w48/vcEPVRRszE8lXNXBMnVmkmklDLvoagcVledPBYztfv6BptbIZOa1rQO6I52yLPlkD4qqs9tuqQqDvoQclXVKvz9iORdZgCSJGI56aJqC64jX3H34QKfXR1F16lbijaMTw841yOpa2hRsDwmj/gWxhEF5gY+umyznMyqZzW6UEsdVKRsJ/dQdNAMqtWArWWMG7hjTzSgKE0fqK8wX77i5vj6veVbtCDyfslApZQUj6GjUlUq8V7iQ+ip5diKpM0JZ/i4LIWpcVQ3DkYRwfvyIomj0hh67rciY3kxeUtUbQl+UlT13yg/v/xObVYsmM9du6BElJ8q8oO+LcrSuF0RRQSUFGVtV43B6JDna9EZiHUaDp+Tlnu0hY3IpmQePO46HlFJSuiulxfXFmM1mR38iS9YOZFsFy+nwsBRwCU11sK0G2/gkTL2lpaTOFOyueM7tKScwNJ70e/zR1yKr+PCwwgo0gq74vnhxoq4d9nrOu7dirvL4QKYpJOmBvsSna4pHmVeUlWS8s1Se3N6wWW/JskquMUTxnlJmjZ4+f8Z8ueZ4jLEl9fx4MMSxXL5fvKaQQilfjsZMe1PePoo1cH2PQA/Iyh11LaGtScPFxYT1JoJWfFbV1PT7fQo5d5vDnjZuGHZG5LKqopsmlAbf/u4NA1nNfvJsSF5HvH33Vq6dh+t0uLwYsdkISOxkOqLMdWwrYLb8HgDbU0milkzC2FzHoa5zWkwqqYliBQaqUWHpAb2h7NVMTzzs18yPws5fDKfo2pFVk3E9ElWb/bsZ+wQuRg0dT1TGX3+Yo3oKQSjWZTffMOhP2SUz2lYcLt1wSnTMaesURepv9fohdd2SSwbR8WDK6RRj6w6KzHImRUxexHR7IxJZ0dN1laxMcWU2b3uMuLq9RkPh+9c/AdAPA2wC0vaRZCeeq2p31IWKrblyngwMUyM7tWw34nz5t3/xZ9SlzmK1Q5Esn5rRsNudqLRPQo4lge1BbaHJatpht4KypeN7tF3x+dvtlrpquZE04fcf7nFth+nlBTsJ/UiiNaOrL/AkfPrj/D2t0mA6onoN0GFCpifkp/i8bw1To0wSVF38tlat6Ngdom3GphLz9M2XY5pc4fG0xJNw8J7pcuB01rQq24QsL/FtA1fCl6vCwDdU7I7JQopjjlwVJSnYyfflioOi6NiWzsNM7PWr6yFxlTIMBuiyP3W5WqObLqqVyvVMsfSASf/i3LvckOKHPXaHHaXs3xwMb7AUlwspl/Kff/2fKIyKIAjIpX0OBl32SUrXUZh2JXQ2hkhRMFTxmmLTYAxC9qclSiay8GHXYLnakRcRnoT8GVZI4HeYSXpxd9RBV2NUQtYbUSUKPRNPGXB/N8PpyUqOknCIIxSZTff9MbvtGj9wmMo9g5pT5irH5MhQSpHMVxHpMeLiuag2eZZDUiQci4qeLnxtx9eYrbckacwkEFUhVSkoWgNdk70ork0cVfT7XSnjAtv1jusnXX71D/+A6z0FoOt16PY87u8FlM8PE6KqJKtskNDv8eUlRWaQJGIO4rTBN3yGU5XtUpx5l+PnrOKEMqrYbcXZNX4WkuTtmTGNysD0HCwM8kI8k22LfpkqM0BSck8nHd7+tESi+3B8h6Te4Opjbi/Envn22/8H2+lSGzWBXKvZfYSiKDSNOFtCq8PNuMvhMEOXlYEgHLHe7qnqlFDC7Vy7g28HZya5/WHFenvE77Rnodhub8zV1RWr9T3LlZirQfeCqrVpVVGhVRuD4z6i2+ljSwHdtDhguz2oT9B+0jw6UNfB2RcdT1uG/SsCz8EURxd1pZMkCWEYkkvIvWLktGRnxFSLS12m7NcVT54KP+76Dnfz1wR+n1BWgH9885pu6J4px1VPxXICVg8HJrJvaLVd0XH6XD91uf8oYZ2NRSfUmUuYfh57/If/9hnf/vA9ryU0unMxIL1PeToYsJBMeWXbotUt/Svhr3bzDUpZo6k2hi/htRcW23lFW5gUsrrcGA43/YAqEgv//eINmdry53/y7MyCnaU6hllyOgqbUk2HrtunzhpcqZU6Wx5wXBdNbzAcyab3+IjX75+h2WaWopgWnW7Aeid8g9L6dLoDltsZa7Hs9PsOoeNjSn4D19jQnI6Mezm2pId3fQ/bL9msDe4XUrJB1/nwbs7T58JeD7Jn7Mn1LX4g7hdJcs+P38+p2uosbTOeesznBwxJL51mWypUVM0illVU1zNQlBKl1kGxpG2U/Pb//PCrtm3/jH9h/F7AApumYS11L168fMo+PbKNVrx4KSZyu91h2S1xHGPKwPDq6pYoTcilbonjdHCchP1xxT6SAox6iONYmEbvTKU9W8wxdYOOFMuL8hXFWuenH/eMhqIE6LkBSuMQnzbcXEs1e7dLWy3xbPFMupKRnWImoymJ5Mcv44YwsEh2DfFJ/E9VWrbLE09figB+sXoPlUavO6ZBOJ2b2z7zhy1FrpwDhNurZ7x/d8dR9o9ZtoJhdIiOJaYUQH727AWz2QOGoZwvFq3UBru5FpCcx8dHHEfhYjpldxKbpdvvsNtGjDrC4eR5yX6zZDi+JC2EhbeVj2u5NLrCo2xWHU0HbHc7KhloeIGPZTqoWsVaCv/6YYhlORyPO0ypYfX85itmjxsUSb/ZHXTo9CfURUu/LxsG5zuaCnzHOEM9FcNlMOpzdycw5lmeoRg1uqcQygufa9WcogOWPiHLpYMZd4Ga/eET5MEiLSKi/5e9N1mSLMnO9L47z9dmc/MxPCIyMrMqK6sKQAPoFrDZLSQ3xIIbvhcfgSu+ANct7EVLk91oNIBCVuUUc/hobrNdu/PIhap7bYhdL0CRUJFcZIiZ+b2qR48ePec//3/IUSTpRTLXaGodVW3ZHKTy+OiUfJ9jS9jj4bDD8QKqqn4SZT7EB3zfJyvhN9/+SwDSaE/b9khiMff/z//97/j6V6/4tPv0NAdJdCAIXXTT4W4lApn+kUGlKbSyd8L0WlwlwPbhhbywX99+j2n79IdDVhuxR9KsI49ynkstE1szuLtfEY5tLENqly1u0f0+eVNgqMIZDAKTMOxzkL1MlWlRUTH1L9nFj5hyCAOdTmn5j//pv4p1n57w+npFKw/ihw8qv/mLkGrY8Oq3Yq6We4OHn3Ls8BRf0pUfooi6VnnxXPRgbPdzOsXk6maJLR2+Y4eYekApdZmyfUVdJDiWSlOJ+dSNHqv9nH7PZruVjXSmz3y1IpKCntPhgLYp2G8UbKmzEfYtmq7F8VoS2cNyfPqcu7v7p8PTdDraHGytI06l9IPVkacpX748pReKg3Cx+kTbmgyk4KSi2RxNLijyJZ4jna2icEjm5EWM4zz6riWHOEVTxW8buo7r9dhHByZHwob32YJh/5QiNvl0JYLjNLklvBii7cVzjnzRMzFxhyxvxWUg3nUEU48sr5kMZLO81VGWNcsb8b5V2fEhuUNxSjypwfL69XvGwwnnpyekiaQ4bxSSOGYvkx10DzRNQ0rKsQxMN9slXmBQFgl1IXsEoohWi/BDAQtq6oSuhg6LgdS+sXWfdLvAdUckrXj20DnFDApMW+z/LE/Y7HeUG5tvv70EIOgpvP7hAcNpgMcgSSM/JFihtOn+EePhgM0mYi8hjoPxgDY3oYmwZAO7qoJm6Wwknfmg12c07lFVKZ28AAXeDK1Vub8VgU7XdXh9j/nDLWOZsGuVlPiwI1pETwQTSVERei69odh77z/cMnYDZhch2k7qq3g+d+sVddRSmLInWIcirugPRGAaZSbT8Tnr1d3ThdbzFAJH54fXn2hNKaT8q69YRBErCdf2JuCYDUqZUue6tLs7Rscv2KUH2kj8/tFkzOT4iLu5CM4P0S0P+x0jv//U6F/XpiAcMl0qCf06RLdYwTPW0sfH0YHzL064vnngZCx80OGwx7RDBnrA3Z2woW9efMt89QFFlyLtZkyyzxmOAuxG7KNOTWhKBdfqU8ng37VtDE2jL+FT63iDVnaYeoehCTtQOpXp0IVqSutL+YK3G8pGZzQRgVQU53z5zRcobcaDTMKMxj3KqKIuanJLBNq/eHbGf/7xB76WfuphuWax3tDzAoaSBOqwX9FVFXVZEcrgODpsKfY5PQnBq1oouzWdklJIiJPX84jKDLc3e9JKcoyKm9uPPJdB4HrzEaVw0NQOVbZHbHb3qGqHJwlKsqoha5bU2pB+KOzu+uMStd/huj6+DOoX0Zy8Uhn0xXrullscwyOJE3oT4U+zLCEcnZArB6pS7ON3P2/JioTjY3l+JEsMt09atuTSzr66eMmbq4/47oxEUrb3fQ+/bz8lVylNUFNUW2c+l7DZ0Sl5emBy2uf6o7Ch6cDksNujyaSJZQbMxiMUU2V2JtZ4v07Yb2KUTkOVEFUr7FFv71Hknt1tKvpDB0NvqRrp86oOJd/QNjplvpFrtaMfmvT6jzpUOVm6Q+80NBkLTmdTlqtbsiLFkRpG0WGL59pkEq5ZVCWTqUnPOwaZEKzLivFgzGYXcXIsoIl/8ut/wU8//T22DNjjpERXKgahgWuL752fzlBJWN6njEdiTQ9JxCFW6I+EX2x7Ncv1nqPpKcZY2N3NYk4vHKP1OwJTPHuZWrhKTS3j4SAI8G0DlIrVRpJHvE2wbQ8vzHn/RvilF89/w0OUY6hir83GIzq9oSpVOtl20PNciqzkeCrmLskKiiyjzltMeXE6OXdJE4M0PeC6Yq3Ozk5Z7SJ2W7Euf/HNC24XG5IsxlBFPGwHHYcsIokVnj0Tc1c3a5L0gCUlALKdzVlPY3tzQ9WKPTs+gfKhxDYcDF3EebtDzZevRmiyxyCvG4LBiEatuL6TxFtVS1W2HD8LSBOxR1//vGB8ZDwVbrpOYRdl2F6DKm/eXddRlQ111aBLvbHw/xc6V233lAW4/vhAURQcTYZPDaCuD9t1waDXQ5Mve3//IARvZeDY1Ca2q6I1Bl0je21UhaLLUCsdR/ZFtG2N4+rkUotD02v225TZZIamiSA32qW0VcF4FLJ8EJcN3ax4fn5GJRlCbF3D7w/YbZMn0olfffUFP//hNf0e6Mpj0FBT1jkf3j9iTA1GQ5e7+ZJcBnM9t6PKWlyvQ+nEM7x/c0N/EPD6nTjo0zTm5ESjKpUnfPXFxSm6qpHnO85PhLFeX1/jeQ59KWzcH/SwDJ27u+unzI7nhYSBjSYbsufrB0aTkDovOWwfs1sdSq7j+ybhiQj0bTcgK1JeXYhD4dOnK/aLLZqtoGvCKQdBQFpEdDRPQX3T1vT6Dk4gHMj+sCMIbKpqy2otHLCleTRlg2MoGD1JLKA73M5vObmQTHJtw8ebD/juEFUGZckuoaoCVK1kOhWb+up9hmGWT71TaQZdo2GaOnkmf1uzKKodumqwl02oSfKGfm/KUuod6JpJXXbUdcOwL1XHcUmShDK22UXCQT3cL6hyD8cXjvT85YD0kPPy/ISyE5ds2o7tfocduIQD4TTyfEmR81TRq3cBVR1zeTnl+r2Yl/kq5cXzC27u1tTyIPQNh/NLl9VjoDgOUHoW9njI9b2wF6VzqLZrev7oSbSwayuy9IBhSmbJCnGpcTP8UNidFovDovIU1oWs/G1ydlHL3Y14zj//9oJmnNNubBaJeKbZdIRzUpIVFkvJjDmdzNjvclKpq1U3CvfLW3RXp5NZI2/gkMcFz/vCptI4pk5yDNNFl1WNojxwl+ywmxxNdeW8HDjs1hxL4oiu6yjrnBevRlSNJMtYbjD1AXmeMr8TgeJ2+w7DENVIANe3CPo9ZtMJi7fiM9Fuw9n0C8o0pZH6e6bho6rqk0bRYrHAsU64vYp4fikEbvf7HdFhSxggyGmAPNUwNf+pQbqtdBRFYXw0ZfMgkh3rLYx7PXa7ew6yidcye3jqkJfH4uDo6gfKeICah9x/+DvxGcujy1rsfoDxqKNXg22qOENxELaNwmZfktUNO0k6MxwO0dF5+9MVfiC/p1YoekcoA0DN8Oj3DaL9jofFnbQpFbW1ubu94eL8Uv6+St7qHD1W0+ItD/Nrnp38gqkMOlfLOeHQp8tMzFA2Fneit88JxN+7+35OOJ3xV//jn/H77/4TAFcfInp9H13XieKltAWT0cymKsX3tsuMtu7Y7hecPxN/7+rjA4PgHF2zySK5R/whu90OVZLlhKFHU9UcDgmzExGYrvcPFFn21B9nGhZZuuf0eMbQET7o7vYBrW158ewcQ16q319d0TQiqQTw8uVzbNUgawpsR2aEf/8exzfRLZ3BSPan6mC3FrUixcf9jLraoakNttQI7Ps+SZLw21//kvlS+JtdVGAGAdpeaj5VO/RapSv7HF+Iv1ekDofdBs2sGPVFn0u5y3mzek8pzxhfHRKcwtXNLVPJ3pnnOaZtEth9ShlQKk3OfpMS+mKeQs9F7wxCK+QbqYX145sfOT6fcPX2A8djkdibnIwo6z15JS7w+JDfNaSVQufLBEGy5hdffcHV1Q2aLkkuTI372ztmx+KZnNYXqIq2ZTOXCbO2h6apZMWWdC/nz+ihKypFLlkOQ4/F3T3DYIxniMBUbyqasiTw+sQHyXh34fLs2TmtJBZZ3G0Iex55VnF7JyrVjuPj98R/y5XYD4HbRwtFFQRgMrrg5va9YGzshC2k6Q4DnVZVaPVcrhd4vv5UGfTNM05eDtjGH7n/KBNKgYumL1jdysx5/xwviMmKluU7Wdnxeoy9AZmypZNC8dpBo01LVF/M3SAAT1Pweybeo0J5V7Pb7TBUD+vxjNQjToZnPPKFXH88EBz38UODJBdrVRU1o+kJm3hBIpl/nUAl4JLdStjiswuT3T6mbixmMxH4r7efmF3Y7PcHTs+EvZiqiuMMuboVyaSzkUOjxlSxydFIrBVFRVnvUa0OVV4yVa3i7OQrZJsk06OEKFmTpflTLFjVOk1nQF2hy56ZX//6gvndFssW+2MwDAg9H7X1aSTp29sPP9IbDGhrlQaZoA8DAqdPJRO34aBHGu85PwspJPKgaQqsbohppny4EsQbuuoxHgyoJOlB2XboKFi2RSL72qzAw1Bc0nSDoj4mRWtmJx6rlUgoV5noK03LglgSi7hajmW5HO5zNJkwc5SWlpL9SnxGMyMc95LDviONJQpmZpPkW/I8YDgSSIfpsc3VbkVryl4tU+fhU0qVFtiSsThNDuiErB7u5RwMCfsmeXyglHNQNA2N22L4DgeJJjsd23iVzbAn/HLPDnho1+yihKoQZ7SHimYaKIr6dNnpj3pstjd0G5mkXSeYvoV39AqjEM9ZU2B4Hp3Rp5Ji1b2BTdDvkUgxad9uOCxWXEcFf/5n3wIQN1t2ac2nD3NohR9WOofpZMzvf/97QCARTKXGMxzuZYIgCEY0XYXl6WhSg3AtWZj/qfHP4nJlmjrx4VGQq+b09JSmSikrSeXrjjj96htu79+SSIeYpyr7eIchM25VkTA+0VEUk14oDO5+vcTrNKpc5/RUXBDqrGYUjpmvhAGs55+YDGcMfZfvfxCOdDo5pVVLuqZ9YnuJo5RB4KGbsvztm8RxjG3pmLJa8On1Pa4VMhoOuLoWDjiK9vRHnlA0BbbrhuVih+OadJUwnjc/blC1iOhwh6aIoMF2TWgcnp8/sqrcYmgdrdlw7Au4VhIfaJuK4/EJlWRMKbOU8XjM/VI4LUs36DqVyWTGXlauWmoC/4x/+J1Qn59MJhR5R1HsaGrxTGVZU2UNitkSSFHmvKxwXZerG7Hx9/s9/d6QVqkJesJQV+s1dVdyPJuQJ+Kdl6sY3Wh4iMUm6CqNuqlolBTjUfww10VlyWoxZDaraUoO+zWOIw8cy+D0/IhtkpJLsdWBHbCJV/TCEbuDCB4t08dx1SdI3u39HaOzGZ/e72gkNGowbRiNQ+Kd9kStW9cxu92Onsz6GbrLITqg6hppLOzA9UIU1WK3L7i/EwGfZXiYvs56Jy42pmFwcTxl0h/zQVbdfnz7Pf7gGMt1aCTdvlFrKK2KLpUq+06f+/ktXRTwixdijU+PPdabiPOpQyrn0y4V9E5hci6+9+F6g+9ZbB+WDGTVLd6X2IZFmxVoUnC56iyaNuGwEQdjmWf0/R7bTYQu6ZLbpkJzW8pGR5VkI4WyZ3+oGfXF9776yzX/13/IeHH5JV++Eoflz28+8Pbv7vnFn/0W1D8AkOVDZrNz3khq1MHE5+oqZjx5TlmL9Vsv72iygotXUhz80JFuNVq1RtHF3zMMAwUd13DxfWGLVaKg+yGNhAkWWU55yFg2W5r2EbJmYtkazb5gPBbBhusM2O8iUMUaKI1G2J/w05v3T5dO23HYrVZk+R+DY93w0fWMXihgF71ej7Le07U6thRE/jh/SxAENE1DIUWRR6MJ203MXgpOT4YjQOEPv/8JR0LpZscnOLZNvFsTHIkAtheO8XSTu3vxLm2Yg++w37yjPxX+pm0twlFHVzT8/d/KKuNRyOjUp5RQ2tVdjNmJ/mX3SMzB6dE50TZFVxoCWQE6ms2I05L9VhxMhqaSxgU9r89hL4JVRVW5ub4WEDnpF6sip2o65vcfAXBMiyJLaeo1eSEvpnpOodn0+gZVI3yzkuRUK43Vg/jti6MLvPGQbXpDIQkefC9kPLHZHxJaSbNs2hD0TG6vRUDbtBrLRc50dsJKZtNPzi7Z7Tc4gYqZCRtO0hTfsxhI2vymKlGMBtNSmc+FXzJ90JqMSPqRsDdmt94xcE/4/h8Fbe/lq1MU9YjtfEO+Ej73/OQSFbi9FXt9MD7j4/U1ThBwdScC4fPpF8T5B6yeTy3p4He3C2aTU1QZFG7TJZaSYDsmSicqAfeftkzOXDoleRKdzrOWeP+ec7meq5XGen7PV1+NebOQldzjEf2ezd39NddrkYybBB7j2RkrKeo9G05YJyvaqn2CZ+13axzbQ9c0Jn2RuLj6uMZ3MopSsn4OBxiKysl4ysd34pyzVJ/5xxWYGl8ciT3y45v/wM+vl4wlhfvZ8wnJeo/qBuSpmIPAnXD96Yqqrp7E6mejc/o+T35KVWA0HPHp4y39QJwzpmbw4ec7trsI05OJr7ZiNjHZ7MWcN7FJHteoZocuSYt8c4wyWBBXKsdDERP81z/8RL/f57ufhJ+qy5zT0Qn/+Xff03cU+c4zDF9nvVjzxZlIJFy9nWMGGrNH2ZUq5/x8TFdXBH2RhBm0fe4WCaBSSTbCgf2MKHpAFre4OD4mSdekaU5vJHxJ5ztURUgtoftKm2FbAYd0z9mlmM+e5XLYQ66XYIjnXN3lXJyFqDLeqGvo2NMf+Lx+I9ZqOJnhWDWmppPsxVnbNTqd/sC7N8JvnA8vmA09Sg3+y/dSMLgXMLMu6GoNT5LH1HXN3fye2UBWcQ8H+v6EMtnRk+iERnV59+EezQwopDDteBCSpCWKJAXYpRviKqJY6mQSOqzoLcG0z9XDHY6sLtm6y+aw5fxMkGwMjlri5JJGXfLTj8KuVbXjsCswqPF14TfSPAFV4SBtbLV+QNeeo3YHTOnjh75H1wkR5KUkXBgOh8wfElQJK9/tN0wnJxRNRJzKy7E3YLl8IK23hIFIcptWx2Gf0cpEhmkomLpOldW4koq9rGJa1cUPbNJMBOp1K2D0VVNKuzsjL2Js18LWJQ35aktRtnieQ50IH6toKodqDZ1MXhkB601EFEUojbCptpxhqDVpvsOSUkRlp9CmNY0mfOft7oBljyiTGEsm7FQU5g9YZonIAAAgAElEQVR3nD8Ta7DZJKzKDa9eHPHxo9hrVV5hdDZFajIcyUv1ZkGLiy9ZTt9fXZPkGZpukiK+97C0aJqK05MeiZQhWcwzHC8kCMX/b9Y1P71tGfop5UHMy3re8urrCZMjm9//XjK5ug6WG1C34vLaVjpB32A2u3xCNc1XFXWt4wcjBjLJ7YUVb35+w/hIJk7vU1qgoWE0Ee/SVBq+O6JqDnRyb0kE7T85PhNafB6fx+fxeXwen8fn8Xl8Hp/H5/F5/DcY/ywqV7pmoLUS5nVYcnx8TFl1DEeyOW+Rs3z4mbBnQSYeWW1N/vJP/jV1KzID+/hA0SW0rSky08DR0YTNao2lqUSy8dZzfLRCJ5Bimf7JlNnwOdv9PaO+yGTpio3uaLiuRxmKTIemGdTtgclIlDjruma7zbFtm+ggbuGW5bBYLBiNx9zKjGVd16i6Rikp3OuuxrIc6kNFLoWTQ8/FdX1Go3MqiXOdTEe8ff+aWmYwXr44JQhdoviA1MZFxePlqxNcN+TtGwEVchwPVdGxJWxO61rCoEdZltiOeOfTsylvfrxhdiyqI52SUqQdHQ2dFHfLEh0MFcWyaZRHjQCH5fbhqbnb9nokZUq0jcCQDaCWgqm6LLcRh41451CWVBVdZHp6Xo/1akF/MsCW2js3t/fMjk9ZRRvaRsInkojJeIQvtRzyqmWzjVANk9CVzavZkn5osdnOcT3xvaZxKNKKWEIXfGeKaXUEfQvDFvmEwdBmt4v54tUFqkxBLOYdcZYSSzr6om6wLRXbUbm6Etnt4diGTuPsRR9yid+OMhT1gRfnYj59+4Jo/8BquaeuxXO+ePkV+7hmu1sxlpXAm+sI23A5Honvffh+zt3tmjJynsSrV9GcQe8U04SjkXhQtfFZRgccV2QGLd2kyWOUtsW3n0m7yzF8FaXr0GRTdt1mlI3JeCKeKVprZHFGOJzg+sLuNtsI03ZIkpxYaqV0bUMYmvzJNxK6sNnjWibPj56xTUUF4cN3d5hjj6vr99SleC5Na7i+e4Ml5X8UxWAymjIMLD5di2y60dp8cfkb7qSO0HqzJRgMycuUYCCzo1XJcTgm8KCThAtN0ZHsIk7PhI/oOoU0yen1dHYr8ZmLizE0OtE+e+q9wa4IQwNNFdnnQ7InK2L8UcAukdXzQsc2HHIlQ5UCiIHrkMQNaSazVopOVnZ88ctLNomoWNq2hWPbbDd7KqmPkyY7Ar9HKXu86rJhvdtzenbMyVS8n2FYLO8WmFpIGAibWqw+YeU+DZK2V685mtm4jk8lfyuKWuI4YXWjcH4i9lHdLFk9VHRSX8m3Azy9QbddLE9qhFUpptFwdjrm+ERknD99ek+eNWSxeL/RcEQS66SHkkpWTGazEU7gACq2fM6xAjcP10+9jK7ucNSf4ZktH34WGW/XDXEHLT98/5rTl5Iieq9x+uyEQhILOYqK7jRkZcJXvxAwyyRZkWYH+qOQaiU1CLM1y7c7Ro/QoQZc12O/36HL6kvVlmz3dxyf/ApPajwtf/49o+noqULTaTqWrbNaP2BIUday1lldHzBMUbEZ9mY0tcNyueRE9qKYjs719T2UBqOxOC+yuOT05IirK4F8aNsVluFQHkpOj0VF1nBVqlwnPyS0kh56u9lxcnb6RFqQpTXT2TMMw+bhTviyfuBiWh3/+Lu3XJyJnqD76I7tXUYkoUNm3+L5lzPq8kBVPkKVHjjcTlAjhzPZ2+c4W1aLDxydicx5Gkd0hcaf/elvefuz6Cn1nCnnZ8esNzu0R+kMK2M8nHCzEBqTnt8nzw+oqsr9rahE9Ic20+mUIip4/V727do6zy9PeIjEZzY7C88ekDsFY1vYwc3tFXUn9m9PEgIlUU0v6PH6tfh755fPuPv4QB4pjGTV1vcsXK3A91sKCfVcLWCX7Z4IkMzWwTQ1kjyirqU0ynVN4Jacnz7nd9/9LQD2qEeebmllL4Xth8T7mq+/fMn2Xvj9+eKekXYEKMzvxXo9uzzj/c177EBqWgYBSmYTdwWa7Lks9hFNHaG7LbnU2sQssS2fspY+QU05ZDmd5pN1wp9anUZbuEyOJB19kUN1xElvyHwu7Gy7LxifOCRLlSIRZ/SzZ8c8vxyzXopnbEyNosxYzDMUmWu/fHnBarVgM494VHweDG1224KLL8XeG/ohVbXF9aeMp8LOrUDB0BROjy652gr4W68/ojQiAk/s49CbsjnsifMtpjGUdjDgl7/5NafnJ3z68B0Ar7//B77++pLn8rc3SQ55Rn9kYTzCQ20Vw1apspqLSzGfXVVy9/4d82sBUbu7LxgdDRhMHfoSPbPZLrH0DkXTnoiSDklBXraonXhOvz9ksdliaGAWct2tHm1d0+v/kcI9zxrCcEDXPuqkxaA27NMYGVLS658QDlS6OGDxINZPt+HZ6XMKWXm8urnDGrhYhkFfktV8mC+olQrDVmg7sQ4vXpxyOOzYbkTcOR0aqK3GZrEmsMT3bCMEu8IIPCpV2H58SOnaEDopI4FDUaWEXp+ue2yzUHE0D6XTkNQFLG+3tGVHKfsrmy7E7Y3xhxGGJASLDyvGxxqJbNPxwx514fMwL5+EjUtatttbtusIR0IMNaWiM1reXgntzYnjsthueXl5TFaINU6rGM/tY1say0ycoy+e/4K6zVHk2eBqLaNjjYe7Ja2U23n2p6c0psbv7l6jh8JPpWWB4TTkUnsrS1TibEUU21xtRNynKDr9vkPgKqhSjinaJTjWFKUWnwnCOVd3W9yhTyN7ICcnU/JDQpnqTyR6Y9mD9k+NfxaXq6KoKVLhaCajC1Stodf3ULpHPZ6UUeDjehbJQUxuWyss7vY48v38wEAtfVQ1fGKgq+sWzxigkhJJRqjz41OatEHuQzzvhLc/zRlOFC6fiUN1szuQlxX3tzvOz0Xw9tOPHziahSSpOCgWDym73YHJBAJZ9kz2NcPBlI8fbjEl1lfVG8qmRrY3YSk6rmtwdbPl2YU4YIos5+6uQMXBcsSm/ru//x1loRDKpl6Vlra2OOxWT43b0/EFWVywuH+PJRsbVa2jbcF3xQE6v/2I5zk0lOQy4Nvs9nRaiWEKyGGUxPihgao4mFKbwtBCsiZGVzSSSMz5u/kb2q7g5FhAwSzLRdFUJqOLJ0KEQtmSpxG+KfSZABQ7ZrVOUCRcq1QiirJB6WxSqfUR9h0O5R3OyKNNLLlW54z7Ibd34uDvDQZkZcVydYMuoTUdY2otoinKJxhg3sWUaYUr4SKOf2CxynH9PoVsxH/zds7xyYi7+yWtVB7XjQIzUGjlgVO2HWVe4YQ+YfgI16yJDxn3yxazFItabGK+ejVFacVvX324YrtbMugH2JIAoWsL9BpcU2EdiYOvN5yQHUp+9zeCOacoE4aTKbpdEqXCQem2zf1yha1Z9KQQ7jyLCUKDUpIdkKb0R8/Jy5KNZKXLtT3NVqWrG5ACiIPejNEkoJF9YA/ZnMAfCBICqUQe5yVeaVIcVIaSGKKsMgxnz0QyA/28anh1rNPzWn74g4CadtuO6S9CFrc32BLvv1xsCPreE7QuTyJcyyON1/Q98feG9hi1ySlbcQidvRyxPaSMvB5tJi5pN1e3TPo+ZdpQFZJ50J9w1htQl0u55hnWJCSKNvQCAdM5xBGGXnN6PENRxG/pukpRlSSySVvXHHQ7oNNVRrJnLjA8yrSh7RQqGZStDyv01sJxxd/frneY5pjb+0+UlWQiLBuy+ICqOBiSQUzXLMqiIpYEN64dcno2w+vbRAvx7KYZslvtmR55ZKUkmChdqjqjVMQa9HUXq+3z0+sPOBJnrxgGiyxlenr81Dw+64+hVSgqcRA6PZ8oyTE6k7UkUumUhMl0gO/32G8fWfcMfN9jMhF+6/5mjWEYXFycPTF1tSiin0Ft2a8E7NhBod/vP/VAtGw5GZ7y7vuPhK7wnYHdJ1sX/Pabr6kr8ey1dUN/ZPLwIPzyvqmxCxfVrrmei0vZw/WWFy/PqaqKpP4o3ln3cIIelif2Y9dmxNGey8vnrDZi7m6v3+J4KnQW3/0ggrnp0TFt17DZijk3VI39Hg5RzlASGWXNgaAf0BsK/7PZ3nJx+if8z//LX/N//O//GwCL1Ro/GHD51QV/+F4E50E4YrfZosm10jUVUyvI45JQHvy1FZM0Dj1No5GJtunFOa2qcH0tnik8m/Aw36HpJru9eJfp8BlxXHF2/hVRKkgZ5vdrTo+mnFyK+a3dhnyVUu9UTqfyXeIYp7AZ2i1qKXxJVoHvDCkl6UV0eCAIjnn/85rAEb7lF99c8LvvfsCy+igSOjs9NWgz0Z8GULUFYTCCDsYTSVpi9jA0DcUx+LQWiZLji+eEPehWYo01Q2H27IRos6CVukV+YFGUFm1X0g/FeTQcjlnvPqDyaJs1zkCnMXJ2G/FbeQKXF2f89NOBvi3OvkG/Qmk9Mtn03nNtmkrn7u6eb3/75+Lv9VXW61toUgJJTKEoDlWdEcpESt7VpHGE7ShMJyJ4dHyD9WZPU9XcS9+h2ApBf0SNsJflumCx3lAZf/TfM3dAMCyIohxLktrE8YLVasPFi2+Ena+3pHlLZdTsZR/2kWNT5AeeyTXe3a+ID0u02iOTzG5fPptxs/uJNnMYyoC9N7NIMwdTl7bRpURFTnrIsHxxXswfrvh0tWI68kklA5ymnHFx+oxPa3HWvr+75jd/8udcP9yjaeJ7egOwwfT6aE0ov2dBY5LKvJTS7nH7DtdzhX/xxV8B8PwX39KqLb4f0pNJGUevsc2KqztxGUlrHbsKwC24l9A9Iy2YliPOB89QJcnV7f0CTfMIQhGrbeMFWpizOZR0iHeeHI0JAoN3bz8wOxPr53kOW23HIRXn1X6dM530MXSVUgopV4WB49gk6Y6jmZz3TUS026NrIg4Lejp3i2uKwsBzJInI+orBCOq1h+08auYdsVxE1Ir0w+6ALG3ohx1xIln/+h5FGpMmOkhB6zQp0bWAXvDY47nA9xv2uwPNSOqi1SG9qkNdNoSm8IP3ywXBxHzqW6SyCMya7b7hWArR27bOp7crHAJaW7IYFgJC2soeZEtRiOJ7DmjUsvdctQwMXWPzIL7Tm2xwTIsshpu5eBd0D8c2cUObQuoEnk5PuFvFNLLvTG0tjkcTijyllq3opm4xGJpkccKwLzVP9z9Q5iGeJDEan05Q7Iy8svnNl18D8PPP36EGA1R/QiqZD/thj6QskeaD73bkhU56qBlK/Vhv6KN0JX/7N/f8q78QPkHvOu7ufhA6h8DzL75AU2/IywqlE3FDEu1Jki1loWC7j/qbF4CAj/5/jX8WlysAry8beIdjqjrDc6a8fy8yNIpaMvA8Xr/5yPMLkQlsB5VQwVZko3jX4dkV8/ktvZ6YyIePMWHY0e/3n5rqb25u+OXXL0kP4hDScSi7BxxvTHYQzzB/eODs5DlJsaOQrDTHJ30mwy/4/sd/AERWRVdsulZ/arI3jANYOflmy4nMCEf7nLKKsGzZJ6GovH97jRcqHCS15nB2jOM0xKxQW4mFrTUsu33KaHi+zT7ast9vceXi3ny6Zuub/Nt/81e8fyMCINfqMGwFTdLRHo2n7FYRbjj8Y19WnqGbFXcPIvA4mb5kMLC4+nRDIjG8Qa9hcbujPwlQpThmeDxm0PdpZFCv29AbjjjsYhpZQdRwmIYBVRcTR8JhHKINF9M+Mv7D7hzcgUHdNtx9Es/d73mcX7ygyFNS2Wuj2wo5FbVkUGzLlLbUKBOFRorAWl6Jp7nQlFhtKP/NoXFK2kcF7drB1nSaqmZ0LJ5p3BvSKBq6qVJLPL5Wt2RNQyszfNm+4Xho8tPfXTM5lrj6jcJ8GzOKHTRP/H4wDDHdKW/fiAyNgsFwFNCiE8iqzdXGYG8kGEbAYiEyzt5BJdNyMkSGZjQZYzs6QRA8BeNZoXB+HLDf77FkJmGomNx+vEFzxByge8TxAdMzqBDfWy9zjiY9gmHwRIQRhh67zRZHNuLrmoZjOsT5mlxSAA/8kK4Lqdslv/qN2GtvP8yZ2n2qQnitYt0x/GbGcvXArbS72csJTVxj2kPKWMojFCqruzn/5t/+tZiDq/eslw+UVc7RSKrGZxsobVxbXMiqg4pWu9y+mzMMxKFwfnHMfrdlR8JU9jxl+YqeOyaRPXSeomMrJlmmYcl5yfIMzSrFxVFmLA3DxdYcKjnnw+GQJN1x/3CPZckegSHcfpozHMyoUnGJUOwQzVIpI1kdrRwO1YoqrcjSR8ZSg/7giLZtkUlpbMsg2kZMJ+L9NE2hyw44YchB0gSn2Zaj5x5xvKeWlaPQtUiNllcTSSubZHz/3d/jBhbrRBx6I2dA9KnA3uf86Z/+CoBDvML2KgJPrN317S22OSDZJ/xPf/1rAP72b34m2nbMjjT2km1R6VyqrqKQB2pdpLjuEbt9xsNGJAP6vQlFkaGbFrbsZXBMnbpqcMJH2tweu/2Csy8GTxf21XpNqxnc3S/Z7cQecd2Qjx9umUyHcl00lss1SZzgeaKS+8XXMzSr4IefF0xklWi+v+Hl5QxXinreLkpMs6PK1rSV8KfeQMfopjgdJLGw63qYUdKi5pJJioR1uqUfzKhkYJHtar799hW/fy38YlUXDCY6//7f/Z+MJGtcYyiQHtjOP1JLe9H7Okqh0RuLd3m4fSDNK2ZTj1pmkve3e/RDxOmr50h2ZqoCtquMQpbOd/cpeZ7z6tVLHF38W+80YHMV0dYRuWxM/+br57ROTiMzu8uHK6aDEcq5TZWI4M42DYJeR1u5VJ3MStc2vX4LuuxhtU06pcXzGupanA0395CmET1fwZNJEs32eHt3y3AgqbWDgMNOIxxb4Irfmk577LYZF+MJ/7gW53YeH2hiE1cy2X34+I7+Kx/XDZ980smRTxZnlEWCLfup5osPrNdrhmeSQS1dYzkupjtBQ6znKOixW+eEfQNF2oKuVESbim+/Ec3rXZaxqXccqROyRFxM29pCU0M+3S2IZaV6OOqBUrPZiIUZjTzW8Z6HtcGrL8UzVJkglVJNg5PjSwCU8sD0fMz2RlyE0y7F0UHDwJN9GVmWsI0KXFV9Ip1YJh3WYESuiLnzgoI4iinSDFVWxu2+Quq7VLIfeBieYroN+zSnPxCxxMPmI8PwlP6pTSyrYm9/nvPiYkDZivXcpTv2m5wvnr+kkcK7y/mCy5Mx+6RkNBKXj/1+TtIVKDJTPxz6GHWBVh6eKkKa0tIWe9IUJkPph7M1mlKzTsWF2ghekW4r/uqv/lf+1b/+HwD4x59+h69YTKczIinC/qtf/3f87X/899SPZ20e0ZtM2e+3OBIpU2QaWwoMu2UvL6vDizPur27IJbrlq1+dsz6k6FqB/njeVw1vfljjDU5A9tr88OkTuq0/oYVcJ2S/3jCePCPayZuhesPEOqFta6IHMVf93hTTSjk/FUx295t71CLAckqmQxGrRfEBrRmjWTfohfDpD3fvefn8nH0iPmMFDavlFk+ZcNgLP6XbKkrV0VQl/Z7Ya0ka0QKnkgk4TUrSNOX0xRGtzGBVVctkcsLDaokv+6Isp6UqGqhlhc0sGI0maHrB7mEr13RMuk9wxz4Hkc/h+EyhqDyeX4iq+L7c8O7tJ1hUJLIPq+eO2a0WeJJpsShLAtfj22+f8/at2OtprmK4Hqa2x5JkVe/efcSxPX71reiPW727obUV0qTBtWVBojwQFTmaplHIvrOu6VC6kvNvxBm2O3zih99vUNQKArlnJlM+vF3TGx6YHouL9j5OiNM9vpRwGh6dQ1OjGjpVKs65u/d3nF7MmE09UinZ0u/1USyLkUT0JHGJ7wyh3tKXJD5XH++YXRxxf73k9Ej6qQcRG/xT45/J5arjkAijPz7xyfcx9/e32BK61yHgL69evUKVN0k6TVJKi8+cnJ3wsL4l8HzuZfB6/uyCQc8lihL68sJVNDb7XUIrmXrWdYZlG+x2GyQCjzAM8X2X+fU1RScM+vhoxPX1Na5k3PEDg7ao8TwHRRGH3jbaMpz6nJycMJuJ4HFlRyxXJbmEM/V6PWazKYbdYOiPuiw7qrSlN7EYSfazn3/+gYuvXjKTQb3l1lx9fM3R0RGtpFunVvFck7u7uyedK7SGrmufmvrbuuFwOGDaAQOZ3SrLCl0xefZMVKCidYGq5liWg++JTf7x6h3T2QzTM/AdSWihpJhmh63KoLAp+OEPP+JaLiNZ3t9FezRFxbJ89muZ6fADyrxCVR41uxps02az2xHITJala7x5/ROns2OQa5ylBcvlEldCAOu6pW4qhqPwiexkNO6zWi14dnnGw63IYMyORux2G9JMkhaoHbbtYdkuloQYHg47doeE8WhELQ/CvCgolQ7blvS3RYyq9Xl2+ZJWMkIqbctwOCKPc1wZABVlCaqOI22jN5iwXD1QVhWv38qGTxOMQEdTO3xfBGrL97c0TsP5c7HGjuHgeiZZkZPIZ59Op6TJnsFgQF2LdX+YLzEM7Wl/tG1Dlsd0qoMimWyGwz5JEmPZKplUWu8N+iRZTC0PpouLCz59mLN42JPVYj7/5Nd/SuANyfYVn96JQ8A2BijNjvmD8MinpxNcP+Bv/+YdgS8utLqq8enuipe//Jp7SSc+Ho4oW50HSYNa1zWmrjPoTVjKqs1g4NDr9VhLJrQwGJHVsYDbStzFKiopmpzBUYCuiXceDQPU1iC0xFwWUUGSp4R+D00SRfTCoZiXsqOVB3a0jTAMh1LCp7I85+P796ApnJ+JA223i5jMJgROSCnJVd7e3HBxfs6gJw+FfMPRZEK8TZhOhb2EYYjrDri9vSWQGjqWaRCGIQfJEKVocHRyzH5/AMkIN+4N2Wy3VHX3ZLNHJz36dh95TvHuu9e8fHZBnEdM5EWtZ3r8y9mfoTQ5UmKJYtWyWqZohpjPxXLB6bnO178+45NsPvbcgCTbcXV1Q7J7ZLMysMKOoSUOjt/+9kv+y9//A64/fIIYd11H13WCIVAysgX2lDhL0GSSq8tV5ldbdFVjMJTMg+oRry5F4/bbdwIOqhkOaVo8QVbevr9iNjsm3qaoEp7VD/t8uvkZXevwpA8wEgtN6Z5gs5qmUVUFruOxWIv3y4uM08sXzO8XPH8pmOuSQ4TmGhgyEL+5XuBPXIajkIcHEXh7nsfbt2+f7C7s2dzc3LDd7nFE2p6Uir7roqsGYSD84vWnG0JtwF5mpHVDZeIGQMdK6h32RyGO4WGZDne3V/KZWk5PT7k8F4Hbcr5mdHxCXddP8NDtdsu7958wfIPzE/Eug+OAH97/Dt8Tn5lNZtRZQRRvcB6r93WB64UMRyMSCXEqo5ykyJHbn6oDoy3p9UPUTtKe77eMpxOyIsI0JdSz53N8MmUfyYt3U3J8do6i5SwWW7meGl2rUlU6o4EISBzbZLfcMzkTZ9r8vmIb7TkZjViuxZwHQx8v9BgaPhtJcqFoYFoWOwknPKwPqJZBvzfmeCoJbYqKNM5Iq1jcfADV1FB1jflC+Jt0s6d33hckRtJXr3Zbmkahasonf5qmGUcnwydik0Oc0u/32e0bdjsRlJmqjqIIe3v8Xt9x+fjxiqEn/LdSNzhux2q9oDeQmoTpgaPjKZ3a8f6d0L5TWxfbMClksGzp0DUKtumgSORBXde0bftki2O9h+/7XN0/0EgYm2spgjynKNhK3cemrWnb+uldLp5fED3cEMcJuivWMwx7tK2w9+lQrE2WrIVegRxJFpNnYn86Uq9qv10T2C7z+Q7TFc8wOxqhobHfCdufTs5pWoPBsMd6I+ylrTK80OPtm+/57nei2lsUe8aeiWlIqHvbsNlsME2N0Be+8+OHezzfZ7/fo8uKTNfURFH8RIN9/eEjhhsSBi661Oi8ublGVfv0g5DdWuy1pmlwTZedlDMJgyGm7XN3d4chyUB6/T5lWeI4FqX0QV3XEQQBHz/KhEFXYKgOpqs/aRdqhkGWZXieRyKT4ZeXlziOyT4RcV+WJXRdh+M4tJ2IzeI8YuD5RPvNU8IzrzU0eIKVb7ZL2rZlvV0x64uz1jY91qsFZVZQyBB+2Ouz2u2eZGQ2mwVtWzKZjtAMWeXvGsKBx3Q64pmkuzeMincf5xyk71psDvh+SJQtmUqiFteH3bqmkhVw0wrYb3PeRB8IemIdGq2gaRqOj4+JJbOrokhofJo+zeVisURXzCffWRQVSqnQGQqlhPNpLYynfT5+ENDTpquZTAesFrdcfRB27TkuL56f44U6iYxd6qql1xvQl8yLy8WaX371kvvlgtMTEY8bmy2HeIumq2xk0nDSG+A4Fk37iIZSyYuScBKy24j9/+zZM3bpHN1Q6ck4epuI9/qnxmdCi8/j8/g8Po/P4/P4PD6Pz+Pz+Dw+j/8G459H5UqBr7/+JQDr1YGqbhgOB2xlNsQwTZIkoe+3T1Ub33OwbZNOYlW//+H3zI6HzE5OGMns1na9oqNBQcOSdN49p4drj1hIIcU4Lrm7W/HFyyMcR5RYe0GPw+FAr9ejVnP5uZiiFBhxgKJIsGyPtmt4kFl33dBQFZ0oTvn0UVTP5vMVw5ELsmw/HA6J4oKjWe9JwDNKt/SDAXGyYb8VN+VvfvktPd9CkZndD+8/YVkW6+UDvi8yyePxlK4tSZIEXdL5aorQJXisVnieQ+D7WLrxlFltG5Wm7Z6mP00bosOGwP9jdUTXXFpgf9g/isaTtTG20eE1IhOCqeM7LsdHJ2wlHv/i9IyuKdnHe8Yyg2kaFeluxXgsoAT5pqQoMjRNQ2kkBKAoeHZ2jmOb1DspNNO2bJYrdrJf5vj4mC+/uOCnn35AQzx/tNtimQYP97eMR6LyUJYpWX7A88WcDEdH/Pj6E37YPRYLOOxSHrZ7+sMRRdPK9TPpOR47SYhiOzqv391g2iFHpyKze3e7RAtCTEMhk1TTugLf/eF7PCkS0u4jajo6RaFr87IAAAs0SURBVKGS2imaYtNUkCc5RyOR+bj8ywGNC4Yrsj/ZvqCV8LXH/rG7uzlnp0eMx2PuJKmG67q0VfLHDGp/RB+HooYHqcHiqBaapqHqCiPZF5EXMZatPdGSa2qH67pMj1QOslk1TVMqCg6Hhycoa9O1lNqao6HInJleyGq1YbPe44Xit+k0hsM+dVE+VYUUCs4uT8nTR6x4jSn38qNI6mA45vr+ji8uLwGY3y85JCmWZeNaEj+ut5iuRqv9ERue5zkUFYrsnbQMk+1uzeDsjFRCW3uhTZaWBGH4RGSw2Syg1Zgdi0qrooieodnxhExmkhWlo2ka8irn/voRH9/j+uoB/XQsbUWh6xrxHpLqXlUVFss5t3fX/PKbV0+/pev6k+ZaOOgR54moxEk72Kz3rDcRs9MZhiv9S5ujNS11JjbfX/33f0ESHTgJJhRSdDrfZygGDAb9pzlvuxJdczg5FZk6x3PR7Y6qrvnDd6Kf4vnlGZatYdkmlqTN3WUFDTGGrFzd3tzTthW6bvAwF7YRhDWaZhBtYgzrUZR9S1eBK8XVHc/i21+/4uXzU3wJFczLHMqaJN3yzS8E1OP+fkuaFmzWIpPcNC1JWuL3wieI8Zs3b1CNlunRiE5S7lMq1FXxlOndryP6gxBV/SNpUWcKwfndLkKRz1kWDU1+wJU4/iDsc/78hPyQg6RZzrIMXdef9AB1XadsaqIkpjaE3Q1PpmR5zuLTNbqsHHmmR5nVeBLW1nMcbN1gsTxgyCqq0irYtouq6uTZY3b7C8bT/7e9u4uNrKzjOP79z7Qz085M29m2W9jdLqywvGwILBtjIBKCEA0qES+IwWgkhIQbLjDRGPTGaMKFN6JGQ2IAReMbWUWJF0YCm+iNCAgILhqg7Lp9b3c67XTeO/17cZ7tNhv1hqGzO+f3SZqe85xJ9tn5nZ7O0+dtnIXFEwBcecXlrFdqzM5NUwpDHI/cfJjmfmewkGMoF/177558B99oMxAWaSnXK1TXK1xzzbVMheXEPeEk+5Ns2ialMN+43ox6VxphY5+hsV1sVhtseoti6Pkora1y0USOTGaQWrj3NottllcWcD/7szc8vEGrVSERejvS6TTV6jpzc0uUQ89Kmk3GR3excno5vJ8JyuUyc+0NimHeaXo4Tbm8QF8SlsLcXqeJJaEv9DLumdxHX6qf5kY0OgSgvd5gcs8Bqq0UUzPR+5fKDZKwDKWwXcvYyAhTJ/5NNpklmx8M9+ssu4bGaKzVtt7PWqPB4uIylTB6Zmh4gKXlIhdffGCr9yWJkRpM0mw2mQ9zF/dcfRmVRpXX3oje8yuOXEm5VGd09zizM9Hni4OXXcbplSIzc9McDD2Uq8UKCTao1aIcUok+ivOr5EcHyQ1E9Wy1GlRrdfKZwtb76wknnR6gEDaTrawtkcsNsVpa2OodmJgYpVorb432WFlZYffu3SRga97wzKlZ9l9yEYvFFQbCvV4YGqaRTFELC2oVCgXmFuZJ2CYeehTTmWE2WmXGxyZp2NnPRROjeymE+eOFsf1kBrIcP36cdhgR0q7VefWtFzl+8i3S4eeoMNzPRqPCYpgDOZQfZjPRz/LyPCWP7kUjTaNeZyQ/QitsjrswO4/RT73aCO9Tk/xQH5sbTVbD/LF6tU4qHb1nm+H/19+EVqu1tRiXe/RcHhhIELbQol6vUyiMUa3WOB323ywMjZFMwlAYEleaP00mP0itXqVvIwwjN9hMtBkaz2ztmZUbzFIqLlIJw3T7cm3cnXK5srXlQKVZxhstLJmkEeaU5fNZarUaM9NR7+vuiyaiDdAZYOlUNPRywzdo02J0fIxk+Gw02D9EX2qA9TD5bXR8F/lcjtJaiWyYt1/fqJDNpqnVy+TD/OJ3p07Sn85wajpaPGZ+2dm7d4KJvWOcCPMbl+bXGMqPsbYa/V9y+Wivrma7zVo5LHpRcdKZGpP79wBhxFIj6o06FbajGWga/akk6WSKvrAFj5HA3VhZXiMbRl9l0kkWZucYGQm/s09vcvWhSXJZoxqm7qyvr1NaaZDoH90aIppOZ8jnspRmo+xabSgWi4yPj7O6Gj1vEkloNZpkUtmthdoymRRYm1x4fkM/K9Ua7XZ72+ewWXbvG6LddObDXqK18DnjfzF3/78v2AlmtgRUgOVu10W6YgxlH1fKPt6Uf3wp+/hS9vHWK/lf4u7j/+3CedG4AjCzl9z9g92uh+w8ZR9fyj7elH98Kfv4UvbxFof8NedKRERERESkA9S4EhERERER6YDzqXH1w25XQLpG2ceXso835R9fyj6+lH289Xz+582cKxERERERkQvZ+dRzJSIiIiIicsHqeuPKzG43s3+Z2dtm9lC36yOdZ2ZPmNmimb2xrWyXmT1rZm+F74VQbmb2vXA//N3MjnSv5vJemdmkmR0zs+Nm9g8zezCUK/8eZ2YZM/urmb0Wsv9GKD9gZi+EjH9lZqlQng7nb4frl3az/vLemVnSzF4xs9+Hc2UfE2Z2wsxeN7NXzeylUKbnfgyY2YiZHTWzf5rZm2Z2Y9yy72rjysySwA+AjwOHgM+a2aFu1kneFz8Gbj+n7CHgOXc/CDwXziG6Fw6Gr/uBR3eojvL+2AC+5O6HgBuAB8LPuPLvfQ3gVne/DjgM3G5mNwDfAh5x98uBFeC+8Pr7gJVQ/kh4nVzYHgTe3Hau7OPlI+5+eNuy23rux8N3gT+4+1XAdUTPgFhl3+2eqw8Bb7v7lLs3gV8Cd3a5TtJh7v4noHhO8Z3Ak+H4SeDT28p/4pG/ACNmdvHO1FQ6zd3n3P1v4bhM9JDdi/LveSHD9XDaH74cuBU4GsrPzf7MPXEUuM3MbIeqKx1mZvuATwKPhXND2cednvs9zsyGgZuBxwHcvenuJWKWfbcbV3uBU9vOp0OZ9L4Jd58Lx/PARDjWPdGjwlCf64EXUP6xEIaFvQosAs8C7wAld98IL9me71b24foqMLqzNZYO+g7wFWAznI+i7OPEgT+a2ctmdn8o03O/9x0AloAfhSHBj5lZlphl3+3GlQgeLVmpZSt7mJnlgF8DX3T3te3XlH/vcve2ux8G9hGNVLiqy1WSHWBmdwCL7v5yt+siXXOTux8hGvb1gJndvP2invs9qw84Ajzq7tcDFc4OAQTikX23G1czwOS2832hTHrfwpmu3/B9MZTrnugxZtZP1LD6mbv/JhQr/xgJw0KOATcSDfvoC5e257uVfbg+DJze4apKZ3wY+JSZnSAa7n8r0TwMZR8T7j4Tvi8CTxP9cUXP/d43DUy7+wvh/ChRYytW2Xe7cfUicDCsIJQC7gae6XKdZGc8A9wTju8Bfret/AthBZkbgNVtXclygQnzJh4H3nT3b2+7pPx7nJmNm9lIOB4APko05+4YcFd42bnZn7kn7gKed23EeEFy96+6+z53v5To9/rz7v45lH0smFnWzPJnjoGPAW+g537Pc/d54JSZXRmKbgOOE7Psu76JsJl9gmhsdhJ4wt0f7mqFpOPM7BfALcAYsAB8Hfgt8BSwHzgJfMbdi+HD+PeJVhesAve6+0vdqLe8d2Z2E/Bn4HXOzr34GtG8K+Xfw8zsWqKJy0miP+Q95e7fNLMPEPVm7AJeAT7v7g0zywA/JZqXVwTudvep7tReOsXMbgG+7O53KPt4CDk/HU77gJ+7+8NmNoqe+z3PzA4TLWSTAqaAewm/A4hJ9l1vXImIiIiIiPSCbg8LFBERERER6QlqXImIiIiIiHSAGlciIiIiIiIdoMaViIiIiIhIB6hxJSIiIiIi0gFqXImIiIiIiHSAGlciIiIiIiIdoMaViIiIiIhIB/wHsD9gY4ceWooAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# show the results\n",
+ "show_result_pyplot(model, img, result)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.7"
+ },
+ "pycharm": {
+ "stem_cell": {
+ "cell_type": "raw",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": []
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/demo/video_demo.py b/demo/video_demo.py
new file mode 100644
index 00000000..661130b4
--- /dev/null
+++ b/demo/video_demo.py
@@ -0,0 +1,60 @@
+import argparse
+
+import cv2
+import mmcv
+
+from mmdet.apis import inference_detector, init_detector
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='MMDetection video demo')
+ parser.add_argument('video', help='Video file')
+ parser.add_argument('config', help='Config file')
+ parser.add_argument('checkpoint', help='Checkpoint file')
+ parser.add_argument(
+ '--device', default='cuda:0', help='Device used for inference')
+ parser.add_argument(
+ '--score-thr', type=float, default=0.3, help='Bbox score threshold')
+ parser.add_argument('--out', type=str, help='Output video file')
+ parser.add_argument('--show', action='store_true', help='Show video')
+ parser.add_argument(
+ '--wait-time',
+ type=float,
+ default=1,
+ help='The interval of show (s), 0 is block')
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+ assert args.out or args.show, \
+ ('Please specify at least one operation (save/show the '
+ 'video) with the argument "--out" or "--show"')
+
+ model = init_detector(args.config, args.checkpoint, device=args.device)
+
+ video_reader = mmcv.VideoReader(args.video)
+ video_writer = None
+ if args.out:
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
+ video_writer = cv2.VideoWriter(
+ args.out, fourcc, video_reader.fps,
+ (video_reader.width, video_reader.height))
+
+ for frame in mmcv.track_iter_progress(video_reader):
+ result = inference_detector(model, frame)
+ frame = model.show_result(frame, result, score_thr=args.score_thr)
+ if args.show:
+ cv2.namedWindow('video', 0)
+ mmcv.imshow(frame, 'video', args.wait_time)
+ if args.out:
+ video_writer.write(frame)
+
+ if video_writer:
+ video_writer.release()
+ cv2.destroyAllWindows()
+
+
+if __name__ == '__main__':
+ main()
diff --git a/demo/webcam_demo.py b/demo/webcam_demo.py
new file mode 100644
index 00000000..5bded14f
--- /dev/null
+++ b/demo/webcam_demo.py
@@ -0,0 +1,46 @@
+import argparse
+
+import cv2
+import torch
+
+from mmdet.apis import inference_detector, init_detector
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='MMDetection webcam demo')
+ parser.add_argument('config', help='test config file path')
+ parser.add_argument('checkpoint', help='checkpoint file')
+ parser.add_argument(
+ '--device', type=str, default='cuda:0', help='CPU/CUDA device option')
+ parser.add_argument(
+ '--camera-id', type=int, default=0, help='camera device id')
+ parser.add_argument(
+ '--score-thr', type=float, default=0.5, help='bbox score threshold')
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+
+ device = torch.device(args.device)
+
+ model = init_detector(args.config, args.checkpoint, device=device)
+
+ camera = cv2.VideoCapture(args.camera_id)
+
+ print('Press "Esc", "q" or "Q" to exit.')
+ while True:
+ ret_val, img = camera.read()
+ result = inference_detector(model, img)
+
+ ch = cv2.waitKey(1)
+ if ch == 27 or ch == ord('q') or ch == ord('Q'):
+ break
+
+ model.show_result(
+ img, result, score_thr=args.score_thr, wait_time=1, show=True)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/docker/Dockerfile b/docker/Dockerfile
new file mode 100644
index 00000000..81e458fc
--- /dev/null
+++ b/docker/Dockerfile
@@ -0,0 +1,24 @@
+ARG PYTORCH="1.6.0"
+ARG CUDA="10.1"
+ARG CUDNN="7"
+
+FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
+
+ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0+PTX"
+ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
+ENV CMAKE_PREFIX_PATH="$(dirname $(which conda))/../"
+
+RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 \
+ && apt-get clean \
+ && rm -rf /var/lib/apt/lists/*
+
+# Install MMCV
+RUN pip install mmcv-full==latest+torch1.6.0+cu101 -f https://openmmlab.oss-accelerate.aliyuncs.com/mmcv/dist/index.html
+
+# Install MMDetection
+RUN conda clean --all
+RUN git clone https://github.com/open-mmlab/mmdetection.git /mmdetection
+WORKDIR /mmdetection
+ENV FORCE_CUDA="1"
+RUN pip install -r requirements/build.txt
+RUN pip install --no-cache-dir -e .
diff --git a/docker/serve/Dockerfile b/docker/serve/Dockerfile
new file mode 100644
index 00000000..b3076f98
--- /dev/null
+++ b/docker/serve/Dockerfile
@@ -0,0 +1,47 @@
+ARG PYTORCH="1.6.0"
+ARG CUDA="10.1"
+ARG CUDNN="7"
+FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
+
+ARG MMCV="1.2.7"
+ARG MMDET="2.13.0"
+
+ENV PYTHONUNBUFFERED TRUE
+
+RUN apt-get update && \
+ DEBIAN_FRONTEND=noninteractive apt-get install --no-install-recommends -y \
+ ca-certificates \
+ g++ \
+ openjdk-11-jre-headless \
+ # MMDet Requirements
+ ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 \
+ && rm -rf /var/lib/apt/lists/*
+
+ENV PATH="/opt/conda/bin:$PATH"
+RUN export FORCE_CUDA=1
+
+# TORCHSEVER
+RUN pip install torchserve torch-model-archiver
+
+# MMLAB
+RUN pip install mmcv-full==${MMCV} -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
+RUN pip install mmdet==${MMDET}
+
+RUN useradd -m model-server \
+ && mkdir -p /home/model-server/tmp
+
+COPY entrypoint.sh /usr/local/bin/entrypoint.sh
+
+RUN chmod +x /usr/local/bin/entrypoint.sh \
+ && chown -R model-server /home/model-server
+
+COPY config.properties /home/model-server/config.properties
+RUN mkdir /home/model-server/model-store && chown -R model-server /home/model-server/model-store
+
+EXPOSE 8080 8081 8082
+
+USER model-server
+WORKDIR /home/model-server
+ENV TEMP=/home/model-server/tmp
+ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
+CMD ["serve"]
diff --git a/docker/serve/config.properties b/docker/serve/config.properties
new file mode 100644
index 00000000..efb9c47e
--- /dev/null
+++ b/docker/serve/config.properties
@@ -0,0 +1,5 @@
+inference_address=http://0.0.0.0:8080
+management_address=http://0.0.0.0:8081
+metrics_address=http://0.0.0.0:8082
+model_store=/home/model-server/model-store
+load_models=all
diff --git a/docker/serve/entrypoint.sh b/docker/serve/entrypoint.sh
new file mode 100644
index 00000000..41ba00b0
--- /dev/null
+++ b/docker/serve/entrypoint.sh
@@ -0,0 +1,12 @@
+#!/bin/bash
+set -e
+
+if [[ "$1" = "serve" ]]; then
+ shift 1
+ torchserve --start --ts-config /home/model-server/config.properties
+else
+ eval "$@"
+fi
+
+# prevent docker exit
+tail -f /dev/null
diff --git a/docs/1_exist_data_model.md b/docs/1_exist_data_model.md
new file mode 100644
index 00000000..a2a0b718
--- /dev/null
+++ b/docs/1_exist_data_model.md
@@ -0,0 +1,569 @@
+# 1: Inference and train with existing models and standard datasets
+
+MMDetection provides hundreds of existing and existing detection models in [Model Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html)), and supports multiple standard datasets, including Pascal VOC, COCO, CityScapes, LVIS, etc. This note will show how to perform common tasks on these existing models and standard datasets, including:
+
+- Use existing models to inference on given images.
+- Test existing models on standard datasets.
+- Train predefined models on standard datasets.
+
+## Inference with existing models
+
+By inference, we mean using trained models to detect objects on images. In MMDetection, a model is defined by a configuration file and existing model parameters are save in a checkpoint file.
+
+To start with, we recommend [Faster RCNN](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn) with this [configuration file](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) and this [checkpoint file](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth). It is recommended to download the checkpoint file to `checkpoints` directory.
+
+### High-level APIs for inference
+
+MMDetection provide high-level Python APIs for inference on images. Here is an example of building the model and inference on given images or videos.
+
+```python
+from mmdet.apis import init_detector, inference_detector
+import mmcv
+
+# Specify the path to model config and checkpoint file
+config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
+
+# build the model from a config file and a checkpoint file
+model = init_detector(config_file, checkpoint_file, device='cuda:0')
+
+# test a single image and show the results
+img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
+result = inference_detector(model, img)
+# visualize the results in a new window
+model.show_result(img, result)
+# or save the visualization results to image files
+model.show_result(img, result, out_file='result.jpg')
+
+# test a video and show the results
+video = mmcv.VideoReader('video.mp4')
+for frame in video:
+ result = inference_detector(model, frame)
+ model.show_result(frame, result, wait_time=1)
+```
+
+A notebook demo can be found in [demo/inference_demo.ipynb](https://github.com/open-mmlab/mmdetection/blob/master/demo/inference_demo.ipynb).
+
+Note: `inference_detector` only supports single-image inference for now.
+
+### Asynchronous interface - supported for Python 3.7+
+
+For Python 3.7+, MMDetection also supports async interfaces.
+By utilizing CUDA streams, it allows not to block CPU on GPU bound inference code and enables better CPU/GPU utilization for single-threaded application. Inference can be done concurrently either between different input data samples or between different models of some inference pipeline.
+
+See `tests/async_benchmark.py` to compare the speed of synchronous and asynchronous interfaces.
+
+```python
+import asyncio
+import torch
+from mmdet.apis import init_detector, async_inference_detector
+from mmdet.utils.contextmanagers import concurrent
+
+async def main():
+ config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+ checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
+ device = 'cuda:0'
+ model = init_detector(config_file, checkpoint=checkpoint_file, device=device)
+
+ # queue is used for concurrent inference of multiple images
+ streamqueue = asyncio.Queue()
+ # queue size defines concurrency level
+ streamqueue_size = 3
+
+ for _ in range(streamqueue_size):
+ streamqueue.put_nowait(torch.cuda.Stream(device=device))
+
+ # test a single image and show the results
+ img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
+
+ async with concurrent(streamqueue):
+ result = await async_inference_detector(model, img)
+
+ # visualize the results in a new window
+ model.show_result(img, result)
+ # or save the visualization results to image files
+ model.show_result(img, result, out_file='result.jpg')
+
+
+asyncio.run(main())
+
+```
+
+### Demos
+
+We also provide three demo scripts, implemented with high-level APIs and supporting functionality codes.
+Source codes are available [here](https://github.com/open-mmlab/mmdetection/tree/master/demo).
+
+#### Image demo
+
+This script performs inference on a single image.
+
+```shell
+python demo/image_demo.py \
+ ${IMAGE_FILE} \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ [--device ${GPU_ID}] \
+ [--score-thr ${SCORE_THR}]
+```
+
+Examples:
+
+```shell
+python demo/image_demo.py demo/demo.jpg \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
+ --device cpu
+```
+
+#### Webcam demo
+
+This is a live demo from a webcam.
+
+```shell
+python demo/webcam_demo.py \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ [--device ${GPU_ID}] \
+ [--camera-id ${CAMERA-ID}] \
+ [--score-thr ${SCORE_THR}]
+```
+
+Examples:
+
+```shell
+python demo/webcam_demo.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
+```
+
+#### Video demo
+
+This script performs inference on a video.
+
+```shell
+python demo/video_demo.py \
+ ${VIDEO_FILE} \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ [--device ${GPU_ID}] \
+ [--score-thr ${SCORE_THR}] \
+ [--out ${OUT_FILE}] \
+ [--show] \
+ [--wait-time ${WAIT_TIME}]
+```
+
+Examples:
+
+```shell
+python demo/video_demo.py demo/demo.mp4 \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
+ --out result.mp4
+```
+
+## Test existing models on standard datasets
+
+To evaluate a model's accuracy, one usually tests the model on some standard datasets.
+MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and [more](https://github.com/open-mmlab/mmdetection/tree/master/configs/_base_/datasets).
+This section will show how to test existing models on supported datasets.
+
+### Prepare datasets
+
+Public datasets like [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/index.html) or mirror and [COCO](https://cocodataset.org/#download) are available from official websites or mirrors. Note: In the detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
+It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to `$MMDETECTION/data` as below.
+If your folder structure is different, you may need to change the corresponding paths in config files.
+
+```plain
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+│ ├── cityscapes
+│ │ ├── annotations
+│ │ ├── leftImg8bit
+│ │ │ ├── train
+│ │ │ ├── val
+│ │ ├── gtFine
+│ │ │ ├── train
+│ │ │ ├── val
+│ ├── VOCdevkit
+│ │ ├── VOC2007
+│ │ ├── VOC2012
+```
+
+Some models require additional [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) datasets, such as HTC, DetectoRS and SCNet, you can download and unzip then move to the coco folder. The directory should be like this.
+
+```plain
+mmdetection
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+│ │ ├── stuffthingmaps
+```
+
+The [cityscapes](https://www.cityscapes-dataset.com/) annotations need to be converted into the coco format using `tools/dataset_converters/cityscapes.py`:
+
+```shell
+pip install cityscapesscripts
+
+python tools/dataset_converters/cityscapes.py \
+ ./data/cityscapes \
+ --nproc 8 \
+ --out-dir ./data/cityscapes/annotations
+```
+
+TODO: CHANGE TO THE NEW PATH
+
+### Test existing models
+
+We provide testing scripts for evaluating an existing model on the whole dataset (COCO, PASCAL VOC, Cityscapes, etc.).
+The following testing environments are supported:
+
+- single GPU
+- single node multiple GPUs
+- multiple nodes
+
+Choose the proper script to perform testing depending on the testing environment.
+
+```shell
+# single-gpu testing
+python tools/test.py \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ [--out ${RESULT_FILE}] \
+ [--eval ${EVAL_METRICS}] \
+ [--show]
+
+# multi-gpu testing
+bash tools/dist_test.sh \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ ${GPU_NUM} \
+ [--out ${RESULT_FILE}] \
+ [--eval ${EVAL_METRICS}]
+```
+
+`tools/dist_test.sh` also supports multi-node testing, but relies on PyTorch's [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
+
+Optional arguments:
+
+- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
+- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., `proposal_fast`, `proposal`, `bbox`, `segm` are available for COCO, `mAP`, `recall` for PASCAL VOC. Cityscapes could be evaluated by `cityscapes` as well as all COCO metrics.
+- `--show`: If specified, detection results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment. Otherwise, you may encounter an error like `cannot connect to X server`.
+- `--show-dir`: If specified, detection results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
+- `--show-score-thr`: If specified, detections with scores below this threshold will be removed.
+- `--cfg-options`: if specified, the key-value pair optional cfg will be merged into config file
+- `--eval-options`: if specified, the key-value pair optional eval cfg will be kwargs for dataset.evaluate() function, it's only for evaluation
+
+### Examples
+
+Assume that you have already downloaded the checkpoints to the directory `checkpoints/`.
+
+1. Test Faster R-CNN and visualize the results. Press any key for the next image.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn).
+
+ ```shell
+ python tools/test.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
+ --show
+ ```
+
+2. Test Faster R-CNN and save the painted images for future visualization.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn).
+
+ ```shell
+ python tools/test.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
+ --show-dir faster_rcnn_r50_fpn_1x_results
+ ```
+
+3. Test Faster R-CNN on PASCAL VOC (without saving the test results) and evaluate the mAP.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc).
+
+ ```shell
+ python tools/test.py \
+ configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
+ checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth \
+ --eval mAP
+ ```
+
+4. Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
+
+ ```shell
+ ./tools/dist_test.sh \
+ configs/mask_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
+ 8 \
+ --out results.pkl \
+ --eval bbox segm
+ ```
+
+5. Test Mask R-CNN with 8 GPUs, and evaluate the **classwise** bbox and mask AP.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
+
+ ```shell
+ ./tools/dist_test.sh \
+ configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
+ 8 \
+ --out results.pkl \
+ --eval bbox segm \
+ --options "classwise=True"
+ ```
+
+6. Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files for submitting to the official evaluation server.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
+
+ ```shell
+ ./tools/dist_test.sh \
+ configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
+ 8 \
+ --format-only \
+ --options "jsonfile_prefix=./mask_rcnn_test-dev_results"
+ ```
+
+ This command generates two JSON files `mask_rcnn_test-dev_results.bbox.json` and `mask_rcnn_test-dev_results.segm.json`.
+
+7. Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate txt and png files for submitting to the official evaluation server.
+ Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes).
+
+ ```shell
+ ./tools/dist_test.sh \
+ configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py \
+ checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
+ 8 \
+ --format-only \
+ --options "txtfile_prefix=./mask_rcnn_cityscapes_test_results"
+ ```
+
+ The generated png and txt would be under `./mask_rcnn_cityscapes_test_results` directory.
+
+### Test without Ground Truth Annotations
+
+MMDetection supports to test models without ground-truth annotations using `CocoDataset`. If your dataset format is not in COCO format, please convert them to COCO format. For example, if your dataset format is VOC, you can directly convert it to COCO format by the [script in tools.](https://github.com/open-mmlab/mmdetection/tree/master/tools/dataset_converters/pascal_voc.py)
+
+```shell
+# single-gpu testing
+python tools/test.py \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ --format-only \
+ --options ${JSONFILE_PREFIX} \
+ [--show]
+
+# multi-gpu testing
+bash tools/dist_test.sh \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ ${GPU_NUM} \
+ --format-only \
+ --options ${JSONFILE_PREFIX} \
+ [--show]
+```
+
+Assuming that the checkpoints in the [model zoo](https://mmdetection.readthedocs.io/en/latest/modelzoo_statistics.html) have been downloaded to the directory `checkpoints/`, we can test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files using the following command.
+
+```sh
+./tools/dist_test.sh \
+ configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
+ checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
+ 8 \
+ -format-only \
+ --options "jsonfile_prefix=./mask_rcnn_test-dev_results"
+```
+
+This command generates two JSON files `mask_rcnn_test-dev_results.bbox.json` and `mask_rcnn_test-dev_results.segm.json`.
+
+### Batch Inference
+
+MMDetection supports inference with a single image or batched images in test mode. By default, we use single-image inference and you can use batch inference by modifying `samples_per_gpu` in the config of test data. You can do that either by modifying the config as below.
+
+```shell
+data = dict(train=dict(...), val=dict(...), test=dict(samples_per_gpu=2, ...))
+```
+
+Or you can set it through `--cfg-options` as `--cfg-options data.test.samples_per_gpu=2`
+
+### Deprecated ImageToTensor
+
+In test mode, `ImageToTensor` pipeline is deprecated, it's replaced by `DefaultFormatBundle` that recommended to manually replace it in the test data pipeline in your config file. examples:
+
+```python
+# use ImageToTensor (deprecated)
+pipelines = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+ ]
+
+# manually replace ImageToTensor to DefaultFormatBundle (recommended)
+pipelines = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img']),
+ ])
+ ]
+```
+
+## Train predefined models on standard datasets
+
+MMDetection also provides out-of-the-box tools for training detection models.
+This section will show how to train _predefined_ models (under [configs](https://github.com/open-mmlab/mmdetection/tree/master/configs)) on standard datasets i.e. COCO.
+
+**Important**: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8\*2 = 16).
+According to the [linear scaling rule](https://arxiv.org/abs/1706.02677), you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., `lr=0.01` for 4 GPUs \* 2 imgs/gpu and `lr=0.08` for 16 GPUs \* 4 imgs/gpu.
+
+### Prepare datasets
+
+Training requires preparing datasets too. See section [Prepare datasets](#prepare-datasets) above for details.
+
+**Note**:
+Currently, the config files under `configs/cityscapes` use COCO pretrained weights to initialize.
+You could download the existing models in advance if the network connection is unavailable or slow. Otherwise, it would cause errors at the beginning of training.
+
+### Training on a single GPU
+
+We provide `tools/train.py` to launch training jobs on a single GPU.
+The basic usage is as follows.
+
+```shell
+python tools/train.py \
+ ${CONFIG_FILE} \
+ [optional arguments]
+```
+
+During training, log files and checkpoints will be saved to the working directory, which is specified by `work_dir` in the config file or via CLI argument `--work-dir`.
+
+By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the config file as shown below.
+
+```python
+# evaluate the model every 12 epoch.
+evaluation = dict(interval=12)
+```
+
+This tool accepts several optional arguments, including:
+
+- `--no-validate` (**not suggested**): Disable evaluation during training.
+- `--work-dir ${WORK_DIR}`: Override the working directory.
+- `--resume-from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.
+- `--options 'Key=value'`: Overrides other settings in the used config.
+
+**Note**:
+
+Difference between `resume-from` and `load-from`:
+
+`resume-from` loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
+`load-from` only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.
+
+### Training on multiple GPUs
+
+We provide `tools/dist_train.sh` to launch training on multiple GPUs.
+The basic usage is as follows.
+
+```shell
+bash ./tools/dist_train.sh \
+ ${CONFIG_FILE} \
+ ${GPU_NUM} \
+ [optional arguments]
+```
+
+Optional arguments remain the same as stated [above](#train-with-a-single-GPU).
+
+#### Launch multiple jobs simultaneously
+
+If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
+you need to specify different ports (29500 by default) for each job to avoid communication conflict.
+
+If you use `dist_train.sh` to launch training jobs, you can set the port in commands.
+
+```shell
+CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
+CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
+```
+
+### Training on multiple nodes
+
+MMDetection relies on `torch.distributed` package for distributed training.
+Thus, as a basic usage, one can launch distributed training via PyTorch's [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
+
+### Manage jobs with Slurm
+
+[Slurm](https://slurm.schedmd.com/) is a good job scheduling system for computing clusters.
+On a cluster managed by Slurm, you can use `slurm_train.sh` to spawn training jobs. It supports both single-node and multi-node training.
+
+The basic usage is as follows.
+
+```shell
+[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}
+```
+
+Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named _dev_, and set the work-dir to some shared file systems.
+
+```shell
+GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x
+```
+
+You can check [the source code](https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh) to review full arguments and environment variables.
+
+When using Slurm, the port option need to be set in one of the following ways:
+
+1. Set the port through `--options`. This is more recommended since it does not change the original configs.
+
+ ```shell
+ CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --options 'dist_params.port=29500'
+ CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --options 'dist_params.port=29501'
+ ```
+
+2. Modify the config files to set different communication ports.
+
+ In `config1.py`, set
+
+ ```python
+ dist_params = dict(backend='nccl', port=29500)
+ ```
+
+ In `config2.py`, set
+
+ ```python
+ dist_params = dict(backend='nccl', port=29501)
+ ```
+
+ Then you can launch two jobs with `config1.py` and `config2.py`.
+
+ ```shell
+ CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
+ CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
+ ```
diff --git a/docs/2_new_data_model.md b/docs/2_new_data_model.md
new file mode 100644
index 00000000..a9736e7e
--- /dev/null
+++ b/docs/2_new_data_model.md
@@ -0,0 +1,263 @@
+# 2: Train with customized datasets
+
+In this note, you will know how to inference, test, and train predefined models with customized datasets. We use the [balloon dataset](https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon) as an example to describe the whole process.
+
+The basic steps are as below:
+
+1. Prepare the customized dataset
+2. Prepare a config
+3. Train, test, inference models on the customized dataset.
+
+## Prepare the customized dataset
+
+There are three ways to support a new dataset in MMDetection:
+
+1. reorganize the dataset into COCO format.
+2. reorganize the dataset into a middle format.
+3. implement a new dataset.
+
+Usually we recommend to use the first two methods which are usually easier than the third.
+
+In this note, we give an example for converting the data into COCO format.
+
+**Note**: MMDetection only supports evaluating mask AP of dataset in COCO format for now.
+So for instance segmentation task users should convert the data into coco format.
+
+### COCO annotation format
+
+The necessary keys of COCO format for instance segmentation is as below, for the complete details, please refer [here](https://cocodataset.org/#format-data).
+
+```json
+{
+ "images": [image],
+ "annotations": [annotation],
+ "categories": [category]
+}
+
+
+image = {
+ "id": int,
+ "width": int,
+ "height": int,
+ "file_name": str,
+}
+
+annotation = {
+ "id": int,
+ "image_id": int,
+ "category_id": int,
+ "segmentation": RLE or [polygon],
+ "area": float,
+ "bbox": [x,y,width,height],
+ "iscrowd": 0 or 1,
+}
+
+categories = [{
+ "id": int,
+ "name": str,
+ "supercategory": str,
+}]
+```
+
+Assume we use the balloon dataset.
+After downloading the data, we need to implement a function to convert the annotation format into the COCO format. Then we can use implemented COCODataset to load the data and perform training and evaluation.
+
+If you take a look at the dataset, you will find the dataset format is as below:
+
+```json
+{'base64_img_data': '',
+ 'file_attributes': {},
+ 'filename': '34020010494_e5cb88e1c4_k.jpg',
+ 'fileref': '',
+ 'regions': {'0': {'region_attributes': {},
+ 'shape_attributes': {'all_points_x': [1020,
+ 1000,
+ 994,
+ 1003,
+ 1023,
+ 1050,
+ 1089,
+ 1134,
+ 1190,
+ 1265,
+ 1321,
+ 1361,
+ 1403,
+ 1428,
+ 1442,
+ 1445,
+ 1441,
+ 1427,
+ 1400,
+ 1361,
+ 1316,
+ 1269,
+ 1228,
+ 1198,
+ 1207,
+ 1210,
+ 1190,
+ 1177,
+ 1172,
+ 1174,
+ 1170,
+ 1153,
+ 1127,
+ 1104,
+ 1061,
+ 1032,
+ 1020],
+ 'all_points_y': [963,
+ 899,
+ 841,
+ 787,
+ 738,
+ 700,
+ 663,
+ 638,
+ 621,
+ 619,
+ 643,
+ 672,
+ 720,
+ 765,
+ 800,
+ 860,
+ 896,
+ 942,
+ 990,
+ 1035,
+ 1079,
+ 1112,
+ 1129,
+ 1134,
+ 1144,
+ 1153,
+ 1166,
+ 1166,
+ 1150,
+ 1136,
+ 1129,
+ 1122,
+ 1112,
+ 1084,
+ 1037,
+ 989,
+ 963],
+ 'name': 'polygon'}}},
+ 'size': 1115004}
+```
+
+The annotation is a JSON file where each key indicates an image's all annotations.
+The code to convert the balloon dataset into coco format is as below.
+
+```python
+import os.path as osp
+
+def convert_balloon_to_coco(ann_file, out_file, image_prefix):
+ data_infos = mmcv.load(ann_file)
+
+ annotations = []
+ images = []
+ obj_count = 0
+ for idx, v in enumerate(mmcv.track_iter_progress(data_infos.values())):
+ filename = v['filename']
+ img_path = osp.join(image_prefix, filename)
+ height, width = mmcv.imread(img_path).shape[:2]
+
+ images.append(dict(
+ id=idx,
+ file_name=filename,
+ height=height,
+ width=width))
+
+ bboxes = []
+ labels = []
+ masks = []
+ for _, obj in v['regions'].items():
+ assert not obj['region_attributes']
+ obj = obj['shape_attributes']
+ px = obj['all_points_x']
+ py = obj['all_points_y']
+ poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
+ poly = [p for x in poly for p in x]
+
+ x_min, y_min, x_max, y_max = (
+ min(px), min(py), max(px), max(py))
+
+
+ data_anno = dict(
+ image_id=idx,
+ id=obj_count,
+ category_id=0,
+ bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
+ area=(x_max - x_min) * (y_max - y_min),
+ segmentation=[poly],
+ iscrowd=0)
+ annotations.append(data_anno)
+ obj_count += 1
+
+ coco_format_json = dict(
+ images=images,
+ annotations=annotations,
+ categories=[{'id':0, 'name': 'balloon'}])
+ mmcv.dump(coco_format_json, out_file)
+
+```
+
+Using the function above, users can successfully convert the annotation file into json format, then we can use `CocoDataset` to train and evaluate the model.
+
+## Prepare a config
+
+The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory `configs/balloon/` and named as `mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py`, the config is as below.
+
+```python
+# The new config inherits a base config to highlight the necessary modification
+_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
+
+# We also need to change the num_classes in head to match the dataset's annotation
+model = dict(
+ roi_head=dict(
+ bbox_head=dict(num_classes=1),
+ mask_head=dict(num_classes=1)))
+
+# Modify dataset related settings
+dataset_type = 'COCODataset'
+classes = ('balloon',)
+data = dict(
+ train=dict(
+ img_prefix='balloon/train/',
+ classes=classes,
+ ann_file='balloon/train/annotation_coco.json'),
+ val=dict(
+ img_prefix='balloon/val/',
+ classes=classes,
+ ann_file='balloon/val/annotation_coco.json'),
+ test=dict(
+ img_prefix='balloon/val/',
+ classes=classes,
+ ann_file='balloon/val/annotation_coco.json'))
+
+# We can use the pre-trained Mask RCNN model to obtain higher performance
+load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'
+```
+
+## Train a new model
+
+To train a model with the new config, you can simply run
+
+```shell
+python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py
+```
+
+For more detailed usages, please refer to the [Case 1](1_exist_data_model.md).
+
+## Test and inference
+
+To test the trained model, you can simply run
+
+```shell
+python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py/latest.pth --eval bbox segm
+```
+
+For more detailed usages, please refer to the [Case 1](1_exist_data_model.md).
diff --git a/docs/3_exist_data_new_model.md b/docs/3_exist_data_new_model.md
new file mode 100644
index 00000000..2ea0e812
--- /dev/null
+++ b/docs/3_exist_data_new_model.md
@@ -0,0 +1,275 @@
+# 3: Train with customized models and standard datasets
+
+In this note, you will know how to train, test and inference your own customized models under standard datasets. We use the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole process, which using [`AugFPN`](https://github.com/Gus-Guo/AugFPN) to replace the defalut `FPN` as neck, and add `Rotate` or `Translate` as training-time auto augmentation.
+
+The basic steps are as below:
+
+1. Prepare the standard dataset
+2. Prepare your own customized model
+3. Prepare a config
+4. Train, test, and inference models on the standard dataset.
+
+## Prepare the standard dataset
+
+In this note, as we use the standard cityscapes dataset as an example.
+
+It is recommended to symlink the dataset root to `$MMDETECTION/data`.
+If your folder structure is different, you may need to change the corresponding paths in config files.
+
+```none
+mmdetection
+├── mmdet
+├── tools
+├── configs
+├── data
+│ ├── coco
+│ │ ├── annotations
+│ │ ├── train2017
+│ │ ├── val2017
+│ │ ├── test2017
+│ ├── cityscapes
+│ │ ├── annotations
+│ │ ├── leftImg8bit
+│ │ │ ├── train
+│ │ │ ├── val
+│ │ ├── gtFine
+│ │ │ ├── train
+│ │ │ ├── val
+│ ├── VOCdevkit
+│ │ ├── VOC2007
+│ │ ├── VOC2012
+
+```
+
+The cityscapes annotations have to be converted into the coco format using `tools/dataset_converters/cityscapes.py`:
+
+```shell
+pip install cityscapesscripts
+python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations
+```
+
+Currently the config files in `cityscapes` use COCO pre-trained weights to initialize.
+You could download the pre-trained models in advance if network is unavailable or slow, otherwise it would cause errors at the beginning of training.
+
+## Prepare your own customized model
+
+The second step is to use your own module or training setting. Assume that we want to implement a new neck called `AugFPN` to replace with the default `FPN` under the existing detector Cascade Mask R-CNN R50. The following implements`AugFPN` under MMDetection.
+
+### 1. Define a new neck (e.g. AugFPN)
+
+Firstly create a new file `mmdet/models/necks/augfpn.py`.
+
+```python
+from ..builder import NECKS
+
+@NECKS.register_module()
+class AugFPN(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ num_outs,
+ start_level=0,
+ end_level=-1,
+ add_extra_convs=False):
+ pass
+
+ def forward(self, inputs):
+ # implementation is ignored
+ pass
+```
+
+### 2. Import the module
+
+You can either add the following line to `mmdet/models/necks/__init__.py`,
+
+```python
+from .augfpn import AugFPN
+```
+
+or alternatively add
+
+```python
+custom_imports = dict(
+ imports=['mmdet.models.necks.augfpn.py'],
+ allow_failed_imports=False)
+```
+
+to the config file and avoid modifying the original code.
+
+### 3. Modify the config file
+
+```python
+neck=dict(
+ type='AugFPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5)
+```
+
+For more detailed usages about customize your own models (e.g. implement a new backbone, head, loss, etc) and runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc), please refer to the guideline [Customize Models](tutorials/customize_models.md) and [Customize Runtime Settings](tutorials/customize_runtime.md) respectively.
+
+## Prepare a config
+
+The third step is to prepare a config for your own training setting. Assume that we want to add `AugFPN` and `Rotate` or `Translate` augmentation to existing Cascade Mask R-CNN R50 to train the cityscapes dataset, and assume the config is under directory `configs/cityscapes/` and named as `cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py`, the config is as below.
+
+```python
+# The new config inherits the base configs to highlight the necessary modification
+_base_ = [
+ '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
+]
+
+model = dict(
+ # set None to avoid loading ImageNet pretrained backbone,
+ # instead here we set `load_from` to load from COCO pretrained detectors.
+ pretrained=None,
+ # replace neck from defaultly `FPN` to our new implemented module `AugFPN`
+ neck=dict(
+ type='AugFPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5),
+ # We also need to change the num_classes in head from 80 to 8, to match the
+ # cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_head`.
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ # change the number of classes from defaultly COCO to cityscapes
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ # change the number of classes from defaultly COCO to cityscapes
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
+ loss_weight=1.0)),
+ dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ # change the number of classes from defaultly COCO to cityscapes
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
+ reg_class_agnostic=True,
+ loss_cls=dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
+ ],
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ # change the number of classes from defaultly COCO to cityscapes
+ num_classes=8,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
+
+# over-write `train_pipeline` for new added `AutoAugment` training setting
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='AutoAugment',
+ policies=[
+ [dict(
+ type='Rotate',
+ level=5,
+ img_fill_val=(124, 116, 104),
+ prob=0.5,
+ scale=1)
+ ],
+ [dict(type='Rotate', level=7, img_fill_val=(124, 116, 104)),
+ dict(
+ type='Translate',
+ level=5,
+ prob=0.5,
+ img_fill_val=(124, 116, 104))
+ ],
+ ]),
+ dict(
+ type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+
+# set batch_size per gpu, and set new training pipeline
+data = dict(
+ samples_per_gpu=1,
+ workers_per_gpu=3,
+ # over-write `pipeline` with new training pipeline setting
+ train=dict(dataset=dict(pipeline=train_pipeline)))
+
+# Set optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# Set customized learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[8])
+total_epochs = 10
+
+# We can use the COCO pretrained Cascade Mask R-CNN R50 model for more stable performance initialization
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'
+```
+
+## Train a new model
+
+To train a model with the new config, you can simply run
+
+```shell
+python tools/train.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py
+```
+
+For more detailed usages, please refer to the [Case 1](1_exist_data_model.md).
+
+## Test and inference
+
+To test the trained model, you can simply run
+
+```shell
+python tools/test.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py work_dirs/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py/latest.pth --eval bbox segm
+```
+
+For more detailed usages, please refer to the [Case 1](1_exist_data_model.md).
diff --git a/docs/Makefile b/docs/Makefile
new file mode 100644
index 00000000..d4bb2cbb
--- /dev/null
+++ b/docs/Makefile
@@ -0,0 +1,20 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line, and also
+# from the environment for the first two.
+SPHINXOPTS ?=
+SPHINXBUILD ?= sphinx-build
+SOURCEDIR = .
+BUILDDIR = _build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
diff --git a/docs/api.rst b/docs/api.rst
new file mode 100644
index 00000000..04406303
--- /dev/null
+++ b/docs/api.rst
@@ -0,0 +1,101 @@
+API Reference
+=================
+
+mmdet.apis
+--------------
+.. automodule:: mmdet.apis
+ :members:
+
+mmdet.core
+--------------
+
+anchor
+^^^^^^^^^^
+.. automodule:: mmdet.core.anchor
+ :members:
+
+bbox
+^^^^^^^^^^
+.. automodule:: mmdet.core.bbox
+ :members:
+
+export
+^^^^^^^^^^
+.. automodule:: mmdet.core.export
+ :members:
+
+mask
+^^^^^^^^^^
+.. automodule:: mmdet.core.mask
+ :members:
+
+evaluation
+^^^^^^^^^^
+.. automodule:: mmdet.core.evaluation
+ :members:
+
+post_processing
+^^^^^^^^^^^^^^^
+.. automodule:: mmdet.core.post_processing
+ :members:
+
+optimizer
+^^^^^^^^^^
+.. automodule:: mmdet.core.optimizer
+ :members:
+
+utils
+^^^^^^^^^^
+.. automodule:: mmdet.core.utils
+ :members:
+
+mmdet.datasets
+--------------
+
+datasets
+^^^^^^^^^^
+.. automodule:: mmdet.datasets
+ :members:
+
+pipelines
+^^^^^^^^^^
+.. automodule:: mmdet.datasets.pipelines
+ :members:
+
+mmdet.models
+--------------
+
+detectors
+^^^^^^^^^^
+.. automodule:: mmdet.models.detectors
+ :members:
+
+backbones
+^^^^^^^^^^
+.. automodule:: mmdet.models.backbones
+ :members:
+
+necks
+^^^^^^^^^^^^
+.. automodule:: mmdet.models.necks
+ :members:
+
+dense_heads
+^^^^^^^^^^^^
+.. automodule:: mmdet.models.dense_heads
+ :members:
+
+roi_heads
+^^^^^^^^^^
+.. automodule:: mmdet.models.roi_heads
+ :members:
+
+losses
+^^^^^^^^^^
+.. automodule:: mmdet.models.losses
+ :members:
+
+utils
+^^^^^^^^^^
+.. automodule:: mmdet.models.utils
+ :members:
diff --git a/docs/changelog.md b/docs/changelog.md
index cd875970..4d8182f1 100644
--- a/docs/changelog.md
+++ b/docs/changelog.md
@@ -1,143 +1,884 @@
-# ChangeLog
-
-## V0.0.4
-### 2020.11.10
-**(1) 新特性**
-- 新增cornernet代码和注释
-- 新增cornernet文档
-
-### 2020.11.9
-**(1) 新特性**
-- 新增reppointsv2代码和注释
-- 新增reppointsv2文档
-
-### 2020.11.6
-**(1) 新特性**
-- 新增reppoints代码和注释
-- 新增reppoints文档
-
-### 2020.11.4
-**(1) 新特性**
-- 新增ga代码和注释
-- 新增ga文档
-- 新增sabl代码和注释
-- 新增sabl文档
-
-### 2020.11.2
-**(1) 新特性**
-- 新增vfnet代码和注释
-- 新增vfnet文档
-
-
-### 2020.10.29
-**(1) 新特性**
-- 新增ssd代码
-- 新增ssd文档
-- 新增yolov1文档
-
-
-### 2020.10.25
-**(1) 新特性**
-- 新增dynamic rcnn模型
-- 新增dynamic rcnn文档和注释
-- 新增libra rcnn模型
-- 新增libra rcnn文档和注释
-
-
-### 2020.10.24
-**(1) 新特性**
-- 新增cascade rcnn模型
-- 新增cascade rcnn文档和注释
-
-### 2020.10.23
-**(1) 新特性**
-- 新增faster rcnn模型
-- 新增faster rcnn文档和注释
-
-### 2020.10.22
-**(1) 新特性**
-- 新增PAA模型
-- 新增PAA文档和注释
-
-### 2020.10.20
-**(1) 新特性**
-- 新增PISA模型
-- 新增PISA文档和注释
-
-### 2020.10.18
-**(1) 新特性**
-- 新增GFL模型
-- 新增GFL分析代码和文档
-
-### 2020.10.15
-**(1) 新特性**
-- 新增ATSS模型
-- 新增ATSS分析代码和文档
-
-### 2020.10.13
-**(1) 新特性**
-- 同步mmcv和mmdetection
-- 新增FCOS模型
-- 新增FCOS分析代码
-
-### 2020.10.08
-**(1) 新特性**
-- 同步mmcv和mmdetection
-
-### 2020.09.28
-**(1) 新特性**
-- 新增letterresize操作,和yolov5的detector数据处理一致
-- 分析yolov5和mmdetection-mini mAP不一致的原因
-
-
-### 2020.09.23
-**(1) 新特性**
-- 新增yolov5的s/m/l/x模型
-- 新增yolov5转化为mmdetection-mini脚本
-
-
-## V0.0.3
-### 2020.09.18
-**(1) 新特性**
-- 新增coco可视化工具,包括显示所有label和仅仅显示gt bbox格式,显示效果极佳
-- 新增voc2coco工具
-- 新增coco格式的voc数据datasets
-- 新增coco格式的wider face数据datasets
-- 新增任意数据格式转coco类CocoCreator
-- 新增wider face转coco格式工具toos/convert
-
-
-## V0.0.2
-### 2020.09.17
-**(1) 新特性**
-- 新增模型感受野自动计算工具tools/receptive_analyze
-- 同步最新版本mmcv和mmdetection
-- 新增前向推理时间统计工具tools/inference_analyze
-- 新增数据分析工具tools/dataset_analyze
-- 新增特征图可视化工具tools/featuremap_analyze
+## Changelog
+### v2.13.0 (01/6/2021)
+#### Highlights
-### 2020.09.16
-**(1) 新特性**
-- 新增darknet中yolo系列模型,直接darknet权重直接导入,支持微调训练
-- 新增darknet权重转mmdetection权重工具
-- 新增各个部分注释(持续更新)
-- 新增loss分析工具loss_analyze
-
-### 2020.09.11
-**(1) 新特性**
-- 新增数据可视化工具browse_dataset
-- 新增anchor分析工具anchor_analyze
-- 新增retinanet和yolov3的正样本anchor分析代码
-- 完成retinanet和yolov3
-- 新增各个部分注释(持续更新)
-
-## V0.0.1
-### 2020.09.08
+- Support new methods: [CenterNet](https://arxiv.org/abs/1904.07850), [Seesaw Loss](https://arxiv.org/abs/2008.10032), [MobileNetV2](https://arxiv.org/abs/1801.04381)
-**(1) 新特性**
-- 第一次提交
+#### New Features
+- Support paper [Objects as Points](https://arxiv.org/abs/1904.07850) (#4602)
+- Support paper [Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021)](https://arxiv.org/abs/2008.10032) (#5128)
+- Support [MobileNetV2](https://arxiv.org/abs/1801.04381) backbone and inverted residual block (#5122)
+- Support [MIM](https://github.com/open-mmlab/mim) (#5143)
+- ONNX exportation with dynamic shapes of CornerNet (#5136)
+- Add `mask_soft` config option to allow non-binary masks (#4615)
+- Add PWC metafile (#5135)
+#### Bug Fixes
+- Fix YOLOv3 FP16 training error (#5172)
+- Fix Cacscade R-CNN TTA test error when `det_bboxes` length is 0 (#5221)
+- Fix `iou_thr` variable naming errors in VOC recall calculation function (#5195)
+- Fix Faster R-CNN performance dropped in ONNX Runtime (#5197)
+- Fix DETR dict changed error when using python 3.8 during iteration (#5226)
+
+#### Improvements
+
+- Refactor ONNX export of two stage detector (#5205)
+- Replace MMDetection's EvalHook with MMCV's EvalHook for consistency (#4806)
+- Update RoI extractor for ONNX (#5194)
+- Use better parameter initialization in YOLOv3 head for higher performance (#5181)
+- Release new DCN models of Mask R-CNN by mixed-precision training (#5201)
+- Update YOLOv3 model weights (#5229)
+- Add DetectoRS ResNet-101 model weights (#4960)
+- Discard bboxes with sizes equals to `min_bbox_size` (#5011)
+- Remove duplicated code in DETR head (#5129)
+- Remove unnecessary object in class definition (#5180)
+- Fix doc link (#5192)
+
+### v2.12.0 (01/5/2021)
+
+#### Highlights
+
+- Support new methods: [AutoAssign](https://arxiv.org/abs/2007.03496), [YOLOF](https://arxiv.org/abs/2103.09460), and [Deformable DETR](https://arxiv.org/abs/2010.04159)
+- Stable support of exporting models to ONNX with batched images and dynamic shape (#5039)
+
+#### Backwards Incompatible Changes
+
+MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.15.0 (maybe longer).
+In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.
+
+- MMCV version. MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including `BaseModule` for unified parameter initialization, model registry, and the CUDA operator `MultiScaleDeformableAttn` for [Deformable DETR](https://arxiv.org/abs/2010.04159). Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users skip MMCV v1.3.2 and use v1.3.3, though v1.3.2 might work for most cases.
+- Unified model initialization (#4750). To unify the parameter initialization in OpenMMLab projects, MMCV supports `BaseModule` that accepts `init_cfg` to allow the modules' parameters initialized in a flexible and unified manner. Now the users need to explicitly call `model.init_weights()` in the training script to initialize the model (as in [here](https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162), previously this was handled by the detector. The models in MMDetection have been re-benchmarked to ensure accuracy based on PR #4750. **The downstream projects should update their code accordingly to use MMDetection v2.12.0**.
+- Unified model registry (#5059). To easily use backbones implemented in other OpenMMLab projects, MMDetection migrates to inherit the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection.
+- Mask AP evaluation (#4898). Previous versions calculate the areas of masks through the bounding boxes when calculating the mask AP of small, medium, and large instances. To indeed use the areas of masks, we pop the key `bbox` during mask AP calculation. This change does not affect the overall mask AP evaluation and aligns the mask AP of similar models in other projects like Detectron2.
+
+#### New Features
+
+- Support paper [AutoAssign: Differentiable Label Assignment for Dense Object Detection](https://arxiv.org/abs/2007.03496) (#4295)
+- Support paper [You Only Look One-level Feature](https://arxiv.org/abs/2103.09460) (#4295)
+- Support paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) (#4778)
+- Support calculating IoU with FP16 tensor in `bbox_overlaps` to save memory and keep speed (#4889)
+- Add `__repr__` in custom dataset to count the number of instances (#4756)
+- Add windows support by updating requirements.txt (#5052)
+- Stable support of exporting models to ONNX with batched images and dynamic shape, including SSD, FSAF,FCOS, YOLOv3, RetinaNet, Faster R-CNN, and Mask R-CNN (#5039)
+
+#### Improvements
+
+- Use MMCV `MODEL_REGISTRY` (#5059)
+- Unified parameter initialization for more flexible usage (#4750)
+- Rename variable names and fix docstring in anchor head (#4883)
+- Support training with empty GT in Cascade RPN (#4928)
+- Add more details of usage of `test_robustness` in documentation (#4917)
+- Changing to use `pycocotools` instead of `mmpycocotools` to fully support Detectron2 and MMDetection in one environment (#4939)
+- Update torch serve dockerfile to support dockers of more versions (#4954)
+- Add check for training with single class dataset (#4973)
+- Refactor transformer and DETR Head (#4763)
+- Update FPG model zoo (#5079)
+- More accurate mask AP of small/medium/large instances (#4898)
+
+#### Bug Fixes
+
+- Fix bug in mean_ap.py when calculating mAP by 11 points (#4875)
+- Fix error when key `meta` is not in old checkpoints (#4936)
+- Fix hanging bug when training with empty GT in VFNet, GFL, and FCOS by changing the place of `reduce_mean` (#4923, #4978, #5058)
+- Fix asyncronized inference error and provide related demo (#4941)
+- Fix IoU losses dimensionality unmatch error (#4982)
+- Fix torch.randperm whtn using PyTorch 1.8 (#5014)
+- Fix empty bbox error in `mask_head` when using CARAFE (#5062)
+- Fix `supplement_mask` bug when there are zero-size RoIs (#5065)
+- Fix testing with empty rois in RoI Heads (#5081)
+
+### v2.11.0 (01/4/2021)
+
+**Highlights**
+
+- Support new method: [Localization Distillation for Object Detection](https://arxiv.org/pdf/2102.12252.pdf)
+- Support Pytorch2ONNX with batch inference and dynamic shape
+
+**New Features**
+
+- Support [Localization Distillation for Object Detection](https://arxiv.org/pdf/2102.12252.pdf) (#4758)
+- Support Pytorch2ONNX with batch inference and dynamic shape for Faster-RCNN and mainstream one-stage detectors (#4796)
+
+**Improvements**
+
+- Support batch inference in head of RetinaNet (#4699)
+- Add batch dimension in second stage of Faster-RCNN (#4785)
+- Support batch inference in bbox coder (#4721)
+- Add check for `ann_ids` in `COCODataset` to ensure it is unique (#4789)
+- support for showing the FPN results (#4716)
+- support dynamic shape for grid_anchor (#4684)
+- Move pycocotools version check to when it is used (#4880)
+
+**Bug Fixes**
+
+- Fix a bug of TridentNet when doing the batch inference (#4717)
+- Fix a bug of Pytorch2ONNX in FASF (#4735)
+- Fix a bug when show the image with float type (#4732)
+
+### v2.10.0 (01/03/2021)
+
+#### Highlights
+
+- Support new methods: [FPG](https://arxiv.org/abs/2004.03580)
+- Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN.
+
+#### New Features
+
+- Support ONNX2TensorRT for SSD, FSAF, FCOS, YOLOv3, and Faster R-CNN (#4569)
+- Support [Feature Pyramid Grids (FPG)](https://arxiv.org/abs/2004.03580) (#4645)
+- Support video demo (#4420)
+- Add seed option for sampler (#4665)
+- Support to customize type of runner (#4570, #4669)
+- Support synchronizing BN buffer in `EvalHook` (#4582)
+- Add script for GIF demo (#4573)
+
+#### Bug Fixes
+
+- Fix ConfigDict AttributeError and add Colab link (#4643)
+- Avoid crash in empty gt training of GFL head (#4631)
+- Fix `iou_thrs` bug in RPN evaluation (#4581)
+- Fix syntax error of config when upgrading model version (#4584)
+
+#### Improvements
+
+- Refactor unit test file structures (#4600)
+- Refactor nms config (#4636)
+- Get loading pipeline by checking the class directly rather than through config strings (#4619)
+- Add doctests for mask target generation and mask structures (#4614)
+- Use deep copy when copying pipeline arguments (#4621)
+- Update documentations (#4642, #4650, #4620, #4630)
+- Remove redundant code calling `import_modules_from_strings` (#4601)
+- Clean deprecated FP16 API (#4571)
+- Check whether `CLASSES` is correctly initialized in the intialization of `XMLDataset` (#4555)
+- Support batch inference in the inference API (#4462, #4526)
+- Clean deprecated warning and fix 'meta' error (#4695)
+
+### v2.9.0 (01/02/2021)
+
+#### Highlights
+
+- Support new methods: [SCNet](https://arxiv.org/abs/2012.10150), [Sparse R-CNN](https://arxiv.org/abs/2011.12450)
+- Move `train_cfg` and `test_cfg` into model in configs
+- Support to visualize results based on prediction quality
+
+#### New Features
+
+- Support [SCNet](https://arxiv.org/abs/2012.10150) (#4356)
+- Support [Sparse R-CNN](https://arxiv.org/abs/2011.12450) (#4219)
+- Support evaluate mAP by multiple IoUs (#4398)
+- Support concatenate dataset for testing (#4452)
+- Support to visualize results based on prediction quality (#4441)
+- Add ONNX simplify option to Pytorch2ONNX script (#4468)
+- Add hook for checking compatibility of class numbers in heads and datasets (#4508)
+
+#### Bug Fixes
+
+- Fix CPU inference bug of Cascade RPN (#4410)
+- Fix NMS error of CornerNet when there is no prediction box (#4409)
+- Fix TypeError in CornerNet inference (#4411)
+- Fix bug of PAA when training with background images (#4391)
+- Fix the error that the window data is not destroyed when `out_file is not None` and `show==False` (#4442)
+- Fix order of NMS `score_factor` that will decrease the performance of YOLOv3 (#4473)
+- Fix bug in HTC TTA when the number of detection boxes is 0 (#4516)
+- Fix resize error in mask data structures (#4520)
+
+#### Improvements
+
+- Allow to customize classes in LVIS dataset (#4382)
+- Add tutorials for building new models with existing datasets (#4396)
+- Add CPU compatibility information in documentation (#4405)
+- Add documentation of deprecated `ImageToTensor` for batch inference (#4408)
+- Add more details in documentation for customizing dataset (#4430)
+- Switch `imshow_det_bboxes` visualization backend from OpenCV to Matplotlib (#4389)
+- Deprecate `ImageToTensor` in `image_demo.py` (#4400)
+- Move train_cfg/test_cfg into model (#4347, #4489)
+- Update docstring for `reg_decoded_bbox` option in bbox heads (#4467)
+- Update dataset information in documentation (#4525)
+- Release pre-trained R50 and R101 PAA detectors with multi-scale 3x training schedules (#4495)
+- Add guidance for speed benchmark (#4537)
+
+### v2.8.0 (04/01/2021)
+
+#### Highlights
+
+- Support new methods: [Cascade RPN](https://arxiv.org/abs/1909.06720), [TridentNet](https://arxiv.org/abs/1901.01892)
+
+#### New Features
+
+- Support [Cascade RPN](https://arxiv.org/abs/1909.06720) (#1900)
+- Support [TridentNet](https://arxiv.org/abs/1901.01892) (#3313)
+
+#### Bug Fixes
+
+- Fix bug of show result in async_benchmark (#4367)
+- Fix scale factor in MaskTestMixin (#4366)
+- Fix but when returning indices in `multiclass_nms` (#4362)
+- Fix bug of empirical attention in resnext backbone error (#4300)
+- Fix bug of `img_norm_cfg` in FCOS-HRNet models with updated performance and models (#4250)
+- Fix invalid checkpoint and log in Mask R-CNN models on Cityscapes dataset (#4287)
+- Fix bug in distributed sampler when dataset is too small (#4257)
+- Fix bug of 'PAFPN has no attribute extra_convs_on_inputs' (#4235)
+
+#### Improvements
+
+- Update model url from aws to aliyun (#4349)
+- Update ATSS for PyTorch 1.6+ (#4359)
+- Update script to install ruby in pre-commit installation (#4360)
+- Delete deprecated `mmdet.ops` (#4325)
+- Refactor hungarian assigner for more general usage in Sparse R-CNN (#4259)
+- Handle scipy import in DETR to reduce package dependencies (#4339)
+- Update documentation of usages for config options after MMCV (1.2.3) supports overriding list in config (#4326)
+- Update pre-train models of faster rcnn trained on COCO subsets (#4307)
+- Avoid zero or too small value for beta in Dynamic R-CNN (#4303)
+- Add doccumentation for Pytorch2ONNX (#4271)
+- Add deprecated warning FPN arguments (#4264)
+- Support returning indices of kept bboxes when using nms (#4251)
+- Update type and device requirements when creating tensors `GFLHead` (#4210)
+- Update device requirements when creating tensors in `CrossEntropyLoss` (#4224)
+
+### v2.7.0 (30/11/2020)
+
+- Support new method: [DETR](https://arxiv.org/abs/2005.12872), [ResNest](https://arxiv.org/abs/2004.08955), Faster R-CNN DC5.
+- Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX.
+
+#### New Features
+
+- Support [DETR](https://arxiv.org/abs/2005.12872) (#4201, #4206)
+- Support to link the best checkpoint in training (#3773)
+- Support to override config through options in inference.py (#4175)
+- Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX (#4087, #4083)
+- Support [ResNeSt](https://arxiv.org/abs/2004.08955) backbone (#2959)
+- Support unclip border bbox regression (#4076)
+- Add tpfp func in evaluating AP (#4069)
+- Support mixed precision training of SSD detector with other backbones (#4081)
+- Add Faster R-CNN DC5 models (#4043)
+
+#### Bug Fixes
+
+- Fix bug of `gpu_id` in distributed training mode (#4163)
+- Support Albumentations with version higher than 0.5 (#4032)
+- Fix num_classes bug in faster rcnn config (#4088)
+- Update code in docs/2_new_data_model.md (#4041)
+
+#### Improvements
+
+- Ensure DCN offset to have similar type as features in VFNet (#4198)
+- Add config links in README files of models (#4190)
+- Add tutorials for loss conventions (#3818)
+- Add solution to installation issues in 30-series GPUs (#4176)
+- Update docker version in get_started.md (#4145)
+- Add model statistics and polish some titles in configs README (#4140)
+- Clamp neg probability in FreeAnchor (#4082)
+- Speed up expanding large images (#4089)
+- Fix Pytorch 1.7 incompatibility issues (#4103)
+- Update trouble shooting page to resolve segmentation fault (#4055)
+- Update aLRP-Loss in project page (#4078)
+- Clean duplicated `reduce_mean` function (#4056)
+- Refactor Q&A (#4045)
+
+### v2.6.0 (1/11/2020)
+
+- Support new method: [VarifocalNet](https://arxiv.org/abs/2008.13367).
+- Refactored documentation with more tutorials.
+
+#### New Features
+
+- Support GIoU calculation in `BboxOverlaps2D`, and re-implement `giou_loss` using `bbox_overlaps` (#3936)
+- Support random sampling in CPU mode (#3948)
+- Support VarifocalNet (#3666, #4024)
+
+#### Bug Fixes
+
+- Fix SABL validating bug in Cascade R-CNN (#3913)
+- Avoid division by zero in PAA head when num_pos=0 (#3938)
+- Fix temporary directory bug of multi-node testing error (#4034, #4017)
+- Fix `--show-dir` option in test script (#4025)
+- Fix GA-RetinaNet r50 model url (#3983)
+- Update code in docs and fix broken urls (#3947)
+
+#### Improvements
+
+- Refactor pytorch2onnx API into `mmdet.core.export` and use `generate_inputs_and_wrap_model` for pytorch2onnx (#3857, #3912)
+- Update RPN upgrade scripts for v2.5.0 compatibility (#3986)
+- Use mmcv `tensor2imgs` (#4010)
+- Update test robustness (#4000)
+- Update trouble shooting page (#3994)
+- Accelerate PAA training speed (#3985)
+- Support batch_size > 1 in validation (#3966)
+- Use RoIAlign implemented in MMCV for inference in CPU mode (#3930)
+- Documentation refactoring (#4031)
+
+### v2.5.0 (5/10/2020)
+
+#### Highlights
+
+- Support new methods: [YOLACT](https://arxiv.org/abs/1904.02689), [CentripetalNet](https://arxiv.org/abs/2003.09119).
+- Add more documentations for easier and more clear usage.
+
+#### Backwards Incompatible Changes
+
+**FP16 related methods are imported from mmcv instead of mmdet. (#3766, #3822)**
+Mixed precision training utils in `mmdet.core.fp16` are moved to `mmcv.runner`, including `force_fp32`, `auto_fp16`, `wrap_fp16_model`, and `Fp16OptimizerHook`. A deprecation warning will be raised if users attempt to import those methods from `mmdet.core.fp16`, and will be finally removed in V2.10.0.
+
+**[0, N-1] represents foreground classes and N indicates background classes for all models. (#3221)**
+Before v2.5.0, the background label for RPN is 0, and N for other heads. Now the behavior is consistent for all models. Thus `self.background_labels` in `dense_heads` is removed and all heads use `self.num_classes` to indicate the class index of background labels.
+This change has no effect on the pre-trained models in the v2.x model zoo, but will affect the training of all models with RPN heads. Two-stage detectors whose RPN head uses softmax will be affected because the order of categories is changed.
+
+**Only call `get_subset_by_classes` when `test_mode=True` and `self.filter_empty_gt=True` (#3695)**
+Function `get_subset_by_classes` in dataset is refactored and only filters out images when `test_mode=True` and `self.filter_empty_gt=True`.
+ In the original implementation, `get_subset_by_classes` is not related to the flag `self.filter_empty_gt` and will only be called when the classes is set during initialization no matter `test_mode` is `True` or `False`. This brings ambiguous behavior and potential bugs in many cases. After v2.5.0, if `filter_empty_gt=False`, no matter whether the classes are specified in a dataset, the dataset will use all the images in the annotations. If `filter_empty_gt=True` and `test_mode=True`, no matter whether the classes are specified, the dataset will call ``get_subset_by_classes` to check the images and filter out images containing no GT boxes. Therefore, the users should be responsible for the data filtering/cleaning process for the test dataset.
+
+#### New Features
+
+- Test time augmentation for single stage detectors (#3844, #3638)
+- Support to show the name of experiments during training (#3764)
+- Add `Shear`, `Rotate`, `Translate` Augmentation (#3656, #3619, #3687)
+- Add image-only transformations including `Constrast`, `Equalize`, `Color`, and `Brightness`. (#3643)
+- Support [YOLACT](https://arxiv.org/abs/1904.02689) (#3456)
+- Support [CentripetalNet](https://arxiv.org/abs/2003.09119) (#3390)
+- Support PyTorch 1.6 in docker (#3905)
+
+#### Bug Fixes
+
+- Fix the bug of training ATSS when there is no ground truth boxes (#3702)
+- Fix the bug of using Focal Loss when there is `num_pos` is 0 (#3702)
+- Fix the label index mapping in dataset browser (#3708)
+- Fix Mask R-CNN training stuck problem when ther is no positive rois (#3713)
+- Fix the bug of `self.rpn_head.test_cfg` in `RPNTestMixin` by using `self.rpn_head` in rpn head (#3808)
+- Fix deprecated `Conv2d` from mmcv.ops (#3791)
+- Fix device bug in RepPoints (#3836)
+- Fix SABL validating bug (#3849)
+- Use `https://download.openmmlab.com/mmcv/dist/index.html` for installing MMCV (#3840)
+- Fix nonzero in NMS for PyTorch 1.6.0 (#3867)
+- Fix the API change bug of PAA (#3883)
+- Fix typo in bbox_flip (#3886)
+- Fix cv2 import error of ligGL.so.1 in Dockerfile (#3891)
+
+#### Improvements
+
+- Change to use `mmcv.utils.collect_env` for collecting environment information to avoid duplicate codes (#3779)
+- Update checkpoint file names to v2.0 models in documentation (#3795)
+- Update tutorials for changing runtime settings (#3778), modifing loss (#3777)
+- Improve the function of `simple_test_bboxes` in SABL (#3853)
+- Convert mask to bool before using it as img's index for robustness and speedup (#3870)
+- Improve documentation of modules and dataset customization (#3821)
+
+### v2.4.0 (5/9/2020)
+
+**Highlights**
+
+- Fix lots of issues/bugs and reorganize the trouble shooting page
+- Support new methods [SABL](https://arxiv.org/abs/1912.04260), [YOLOv3](https://arxiv.org/abs/1804.02767), and [PAA Assign](https://arxiv.org/abs/2007.08103)
+- Support Batch Inference
+- Start to publish `mmdet` package to PyPI since v2.3.0
+- Switch model zoo to download.openmmlab.com
+
+**Backwards Incompatible Changes**
+
+- Support Batch Inference (#3564, #3686, #3705): Since v2.4.0, MMDetection could inference model with multiple images in a single GPU.
+ This change influences all the test APIs in MMDetection and downstream codebases. To help the users migrate their code, we use `replace_ImageToTensor` (#3686) to convert legacy test data pipelines during dataset initialization.
+- Support RandomFlip with horizontal/vertical/diagonal direction (#3608): Since v2.4.0, MMDetection supports horizontal/vertical/diagonal flip in the data augmentation. This influences bounding box, mask, and image transformations in data augmentation process and the process that will map those data back to the original format.
+- Migrate to use `mmlvis` and `mmpycocotools` for COCO and LVIS dataset (#3727). The APIs are fully compatible with the original `lvis` and `pycocotools`. Users need to uninstall the existing pycocotools and lvis packages in their environment first and install `mmlvis` & `mmpycocotools`.
+
+**Bug Fixes**
+
+- Fix default mean/std for onnx (#3491)
+- Fix coco evaluation and add metric items (#3497)
+- Fix typo for install.md (#3516)
+- Fix atss when sampler per gpu is 1 (#3528)
+- Fix import of fuse_conv_bn (#3529)
+- Fix bug of gaussian_target, update unittest of heatmap (#3543)
+- Fixed VOC2012 evaluate (#3553)
+- Fix scale factor bug of rescale (#3566)
+- Fix with_xxx_attributes in base detector (#3567)
+- Fix boxes scaling when number is 0 (#3575)
+- Fix rfp check when neck config is a list (#3591)
+- Fix import of fuse conv bn in benchmark.py (#3606)
+- Fix webcam demo (#3634)
+- Fix typo and itemize issues in tutorial (#3658)
+- Fix error in distributed training when some levels of FPN are not assigned with bounding boxes (#3670)
+- Fix the width and height orders of stride in valid flag generation (#3685)
+- Fix weight initialization bug in Res2Net DCN (#3714)
+- Fix bug in OHEMSampler (#3677)
+
+**New Features**
+
+- Support Cutout augmentation (#3521)
+- Support evaluation on multiple datasets through ConcatDataset (#3522)
+- Support [PAA assign](https://arxiv.org/abs/2007.08103) #(3547)
+- Support eval metric with pickle results (#3607)
+- Support [YOLOv3](https://arxiv.org/abs/1804.02767) (#3083)
+- Support [SABL](https://arxiv.org/abs/1912.04260) (#3603)
+- Support to publish to Pypi in github-action (#3510)
+- Support custom imports (#3641)
+
+**Improvements**
+
+- Refactor common issues in documentation (#3530)
+- Add pytorch 1.6 to CI config (#3532)
+- Add config to runner meta (#3534)
+- Add eval-option flag for testing (#3537)
+- Add init_eval to evaluation hook (#3550)
+- Add include_bkg in ClassBalancedDataset (#3577)
+- Using config's loading in inference_detector (#3611)
+- Add ATSS ResNet-101 models in model zoo (#3639)
+- Update urls to download.openmmlab.com (#3665)
+- Support non-mask training for CocoDataset (#3711)
+
+### v2.3.0 (5/8/2020)
+
+**Highlights**
+
+- The CUDA/C++ operators have been moved to `mmcv.ops`. For backward compatibility `mmdet.ops` is kept as warppers of `mmcv.ops`.
+- Support new methods [CornerNet](https://arxiv.org/abs/1808.01244), [DIOU](https://arxiv.org/abs/1911.08287)/[CIOU](https://arxiv.org/abs/2005.03572) loss, and new dataset: [LVIS V1](https://arxiv.org/abs/1908.03195)
+- Provide more detailed colab training tutorials and more complete documentation.
+- Support to convert RetinaNet from Pytorch to ONNX.
+
+**Bug Fixes**
+
+- Fix the model initialization bug of DetectoRS (#3187)
+- Fix the bug of module names in NASFCOSHead (#3205)
+- Fix the filename bug in publish_model.py (#3237)
+- Fix the dimensionality bug when `inside_flags.any()` is `False` in dense heads (#3242)
+- Fix the bug of forgetting to pass flip directions in `MultiScaleFlipAug` (#3262)
+- Fixed the bug caused by default value of `stem_channels` (#3333)
+- Fix the bug of model checkpoint loading for CPU inference (#3318, #3316)
+- Fix topk bug when box number is smaller than the expected topk number in ATSSAssigner (#3361)
+- Fix the gt priority bug in center_region_assigner.py (#3208)
+- Fix NaN issue of iou calculation in iou_loss.py (#3394)
+- Fix the bug that `iou_thrs` is not actually used during evaluation in coco.py (#3407)
+- Fix test-time augmentation of RepPoints (#3435)
+- Fix runtimeError caused by incontiguous tensor in Res2Net+DCN (#3412)
+
+**New Features**
+
+- Support [CornerNet](https://arxiv.org/abs/1808.01244) (#3036)
+- Support [DIOU](https://arxiv.org/abs/1911.08287)/[CIOU](https://arxiv.org/abs/2005.03572) loss (#3151)
+- Support [LVIS V1](https://arxiv.org/abs/1908.03195) dataset (#)
+- Support customized hooks in training (#3395)
+- Support fp16 training of generalized focal loss (#3410)
+- Support to convert RetinaNet from Pytorch to ONNX (#3075)
+
+**Improvements**
+
+- Support to process ignore boxes in ATSS assigner (#3082)
+- Allow to crop images without ground truth in `RandomCrop` (#3153)
+- Enable the the `Accuracy` module to set threshold (#3155)
+- Refactoring unit tests (#3206)
+- Unify the training settings of `to_float32` and `norm_cfg` in RegNets configs (#3210)
+- Add colab training tutorials for beginners (#3213, #3273)
+- Move CUDA/C++ operators into `mmcv.ops` and keep `mmdet.ops` as warppers for backward compatibility (#3232)(#3457)
+- Update installation scripts in documentation (#3290) and dockerfile (#3320)
+- Support to set image resize backend (#3392)
+- Remove git hash in version file (#3466)
+- Check mmcv version to force version compatibility (#3460)
+
+### v2.2.0 (1/7/2020)
+
+**Highlights**
+
+- Support new methods: [DetectoRS](https://arxiv.org/abs/2006.02334), [PointRend](https://arxiv.org/abs/1912.08193), [Generalized Focal Loss](https://arxiv.org/abs/2006.04388), [Dynamic R-CNN](https://arxiv.org/abs/2004.06002)
+
+**Bug Fixes**
+
+- Fix FreeAnchor when no gt in image (#3176)
+- Clean up deprecated usage of `register_module()` (#3092, #3161)
+- Fix pretrain bug in NAS FCOS (#3145)
+- Fix `num_classes` in SSD (#3142)
+- Fix FCOS warmup (#3119)
+- Fix `rstrip` in `tools/publish_model.py`
+- Fix `flip_ratio` default value in RandomFLip pipeline (#3106)
+- Fix cityscapes eval with ms_rcnn (#3112)
+- Fix RPN softmax (#3056)
+- Fix filename of LVIS@v0.5 (#2998)
+- Fix nan loss by filtering out-of-frame gt_bboxes in COCO (#2999)
+- Fix bug in FSAF (#3018)
+- Add FocalLoss `num_classes` check (#2964)
+- Fix PISA Loss when there are no gts (#2992)
+- Avoid nan in `iou_calculator` (#2975)
+- Prevent possible bugs in loading and transforms caused by shallow copy (#2967)
+
+**New Features**
+
+- Add DetectoRS (#3064)
+- Support Generalize Focal Loss (#3097)
+- Support PointRend (#2752)
+- Support Dynamic R-CNN (#3040)
+- Add DeepFashion dataset (#2968)
+- Implement FCOS training tricks (#2935)
+- Use BaseDenseHead as base class for anchor-base heads (#2963)
+- Add `with_cp` for BasicBlock (#2891)
+- Add `stem_channels` argument for ResNet (#2954)
+
+**Improvements**
+
+- Add anchor free base head (#2867)
+- Migrate to github action (#3137)
+- Add docstring for datasets, pipelines, core modules and methods (#3130, #3125, #3120)
+- Add VOC benchmark (#3060)
+- Add `concat` mode in GRoI (#3098)
+- Remove cmd arg `autorescale-lr` (#3080)
+- Use `len(data['img_metas'])` to indicate `num_samples` (#3073, #3053)
+- Switch to EpochBasedRunner (#2976)
+
+### v2.1.0 (8/6/2020)
+
+**Highlights**
+
+- Support new backbones: [RegNetX](https://arxiv.org/abs/2003.13678), [Res2Net](https://arxiv.org/abs/1904.01169)
+- Support new methods: [NASFCOS](https://arxiv.org/abs/1906.04423), [PISA](https://arxiv.org/abs/1904.04821), [GRoIE](https://arxiv.org/abs/2004.13665)
+- Support new dataset: [LVIS](https://arxiv.org/abs/1908.03195)
+
+**Bug Fixes**
+
+- Change the CLI argument `--validate` to `--no-validate` to enable validation after training epochs by default. (#2651)
+- Add missing cython to docker file (#2713)
+- Fix bug in nms cpu implementation (#2754)
+- Fix bug when showing mask results (#2763)
+- Fix gcc requirement (#2806)
+- Fix bug in async test (#2820)
+- Fix mask encoding-decoding bugs in test API (#2824)
+- Fix bug in test time augmentation (#2858, #2921, #2944)
+- Fix a typo in comment of apis/train (#2877)
+- Fix the bug of returning None when no gt bboxes are in the original image in `RandomCrop`. Fix the bug that misses to handle `gt_bboxes_ignore`, `gt_label_ignore`, and `gt_masks_ignore` in `RandomCrop`, `MinIoURandomCrop` and `Expand` modules. (#2810)
+- Fix bug of `base_channels` of regnet (#2917)
+- Fix the bug of logger when loading pre-trained weights in base detector (#2936)
+
+**New Features**
+
+- Add IoU models (#2666)
+- Add colab demo for inference
+- Support class agnostic nms (#2553)
+- Add benchmark gathering scripts for development only (#2676)
+- Add mmdet-based project links (#2736, #2767, #2895)
+- Add config dump in training (#2779)
+- Add ClassBalancedDataset (#2721)
+- Add res2net backbone (#2237)
+- Support RegNetX models (#2710)
+- Use `mmcv.FileClient` to support different storage backends (#2712)
+- Add ClassBalancedDataset (#2721)
+- Code Release: Prime Sample Attention in Object Detection (CVPR 2020) (#2626)
+- Implement NASFCOS (#2682)
+- Add class weight in CrossEntropyLoss (#2797)
+- Support LVIS dataset (#2088)
+- Support GRoIE (#2584)
+
+**Improvements**
+
+- Allow different x and y strides in anchor heads. (#2629)
+- Make FSAF loss more robust to no gt (#2680)
+- Compute pure inference time instead (#2657) and update inference speed (#2730)
+- Avoided the possibility that a patch with 0 area is cropped. (#2704)
+- Add warnings when deprecated `imgs_per_gpu` is used. (#2700)
+- Add a mask rcnn example for config (#2645)
+- Update model zoo (#2762, #2866, #2876, #2879, #2831)
+- Add `ori_filename` to img_metas and use it in test show-dir (#2612)
+- Use `img_fields` to handle multiple images during image transform (#2800)
+- Add upsample_cfg support in FPN (#2787)
+- Add `['img']` as default `img_fields` for back compatibility (#2809)
+- Rename the pretrained model from `open-mmlab://resnet50_caffe` and `open-mmlab://resnet50_caffe_bgr` to `open-mmlab://detectron/resnet50_caffe` and `open-mmlab://detectron2/resnet50_caffe`. (#2832)
+- Added sleep(2) in test.py to reduce hanging problem (#2847)
+- Support `c10::half` in CARAFE (#2890)
+- Improve documentations (#2918, #2714)
+- Use optimizer constructor in mmcv and clean the original implementation in `mmdet.core.optimizer` (#2947)
+
+### v2.0.0 (6/5/2020)
+
+In this release, we made lots of major refactoring and modifications.
+
+1. **Faster speed**. We optimize the training and inference speed for common models, achieving up to 30% speedup for training and 25% for inference. Please refer to [model zoo](model_zoo.md#comparison-with-detectron2) for details.
+
+2. **Higher performance**. We change some default hyperparameters with no additional cost, which leads to a gain of performance for most models. Please refer to [compatibility](compatibility.md#training-hyperparameters) for details.
+
+3. **More documentation and tutorials**. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it [here](https://mmdetection.readthedocs.io/en/latest/).
+
+4. **Support PyTorch 1.5**. The support for 1.1 and 1.2 is dropped, and we switch to some new APIs.
+
+5. **Better configuration system**. Inheritance is supported to reduce the redundancy of configs.
+
+6. **Better modular design**. Towards the goal of simplicity and flexibility, we simplify some encapsulation while add more other configurable modules like BBoxCoder, IoUCalculator, OptimizerConstructor, RoIHead. Target computation is also included in heads and the call hierarchy is simpler.
+
+7. Support new methods: [FSAF](https://arxiv.org/abs/1903.00621) and PAFPN (part of [PAFPN](https://arxiv.org/abs/1803.01534)).
+
+**Breaking Changes**
+Models training with MMDetection 1.x are not fully compatible with 2.0, please refer to the [compatibility doc](compatibility.md) for the details and how to migrate to the new version.
+
+**Improvements**
+
+- Unify cuda and cpp API for custom ops. (#2277)
+- New config files with inheritance. (#2216)
+- Encapsulate the second stage into RoI heads. (#1999)
+- Refactor GCNet/EmpericalAttention into plugins. (#2345)
+- Set low quality match as an option in IoU-based bbox assigners. (#2375)
+- Change the codebase's coordinate system. (#2380)
+- Refactor the category order in heads. 0 means the first positive class instead of background now. (#2374)
+- Add bbox sampler and assigner registry. (#2419)
+- Speed up the inference of RPN. (#2420)
+- Add `train_cfg` and `test_cfg` as class members in all anchor heads. (#2422)
+- Merge target computation methods into heads. (#2429)
+- Add bbox coder to support different bbox encoding and losses. (#2480)
+- Unify the API for regression loss. (#2156)
+- Refactor Anchor Generator. (#2474)
+- Make `lr` an optional argument for optimizers. (#2509)
+- Migrate to modules and methods in MMCV. (#2502, #2511, #2569, #2572)
+- Support PyTorch 1.5. (#2524)
+- Drop the support for Python 3.5 and use F-string in the codebase. (#2531)
+
+**Bug Fixes**
+
+- Fix the scale factors for resized images without keep the aspect ratio. (#2039)
+- Check if max_num > 0 before slicing in NMS. (#2486)
+- Fix Deformable RoIPool when there is no instance. (#2490)
+- Fix the default value of assigned labels. (#2536)
+- Fix the evaluation of Cityscapes. (#2578)
+
+**New Features**
+
+- Add deep_stem and avg_down option to ResNet, i.e., support ResNetV1d. (#2252)
+- Add L1 loss. (#2376)
+- Support both polygon and bitmap for instance masks. (#2353, #2540)
+- Support CPU mode for inference. (#2385)
+- Add optimizer constructor for complicated configuration of optimizers. (#2397, #2488)
+- Implement PAFPN. (#2392)
+- Support empty tensor input for some modules. (#2280)
+- Support for custom dataset classes without overriding it. (#2408, #2443)
+- Support to train subsets of coco dataset. (#2340)
+- Add iou_calculator to potentially support more IoU calculation methods. (2405)
+- Support class wise mean AP (was removed in the last version). (#2459)
+- Add option to save the testing result images. (#2414)
+- Support MomentumUpdaterHook. (#2571)
+- Add a demo to inference a single image. (#2605)
+
+### v1.1.0 (24/2/2020)
+
+**Highlights**
+
+- Dataset evaluation is rewritten with a unified api, which is used by both evaluation hooks and test scripts.
+- Support new methods: [CARAFE](https://arxiv.org/abs/1905.02188).
+
+**Breaking Changes**
+
+- The new MMDDP inherits from the official DDP, thus the `__init__` api is changed to be the same as official DDP.
+- The `mask_head` field in HTC config files is modified.
+- The evaluation and testing script is updated.
+- In all transforms, instance masks are stored as a numpy array shaped (n, h, w) instead of a list of (h, w) arrays, where n is the number of instances.
+
+**Bug Fixes**
+
+- Fix IOU assigners when ignore_iof_thr > 0 and there is no pred boxes. (#2135)
+- Fix mAP evaluation when there are no ignored boxes. (#2116)
+- Fix the empty RoI input for Deformable RoI Pooling. (#2099)
+- Fix the dataset settings for multiple workflows. (#2103)
+- Fix the warning related to `torch.uint8` in PyTorch 1.4. (#2105)
+- Fix the inference demo on devices other than gpu:0. (#2098)
+- Fix Dockerfile. (#2097)
+- Fix the bug that `pad_val` is unused in Pad transform. (#2093)
+- Fix the albumentation transform when there is no ground truth bbox. (#2032)
+
+**Improvements**
+
+- Use torch instead of numpy for random sampling. (#2094)
+- Migrate to the new MMDDP implementation in MMCV v0.3. (#2090)
+- Add meta information in logs. (#2086)
+- Rewrite Soft NMS with pytorch extension and remove cython as a dependency. (#2056)
+- Rewrite dataset evaluation. (#2042, #2087, #2114, #2128)
+- Use numpy array for masks in transforms. (#2030)
+
+**New Features**
+
+- Implement "CARAFE: Content-Aware ReAssembly of FEatures". (#1583)
+- Add `worker_init_fn()` in data_loader when seed is set. (#2066, #2111)
+- Add logging utils. (#2035)
+
+### v1.0.0 (30/1/2020)
+
+This release mainly improves the code quality and add more docstrings.
+
+**Highlights**
+
+- Documentation is online now: https://mmdetection.readthedocs.io.
+- Support new models: [ATSS](https://arxiv.org/abs/1912.02424).
+- DCN is now available with the api `build_conv_layer` and `ConvModule` like the normal conv layer.
+- A tool to collect environment information is available for trouble shooting.
+
+**Bug Fixes**
+
+- Fix the incompatibility of the latest numpy and pycocotools. (#2024)
+- Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)
+- Fix the dimension issue for `refine_bboxes()`. (#1962)
+- Fix the typo when `seg_prefix` is a list. (#1906)
+- Add segmentation map cropping to RandomCrop. (#1880)
+- Fix the return value of `ga_shape_target_single()`. (#1853)
+- Fix the loaded shape of empty proposals. (#1819)
+- Fix the mask data type when using albumentation. (#1818)
+
+**Improvements**
+
+- Enhance AssignResult and SamplingResult. (#1995)
+- Add ability to overwrite existing module in Registry. (#1982)
+- Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)
+- Check NaN in `SSDHead`. (#1935)
+- Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)
+- Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)
+- Init the root logger before constructing Runner to log more information. (#1865)
+- Split `SegResizeFlipPadRescale` into different existing transforms. (#1852)
+- Move `init_dist()` to MMCV. (#1851)
+- Documentation and docstring improvements. (#1971, #1938, #1869, #1838)
+- Fix the color of the same class for mask visualization. (#1834)
+- Remove the option `keep_all_stages` in HTC and Cascade R-CNN. (#1806)
+
+**New Features**
+
+- Add two test-time options `crop_mask` and `rle_mask_encode` for mask heads. (#2013)
+- Support loading grayscale images as single channel. (#1975)
+- Implement "Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection". (#1872)
+- Add sphinx generated docs. (#1859, #1864)
+- Add GN support for flops computation. (#1850)
+- Collect env info for trouble shooting. (#1812)
+
+### v1.0rc1 (13/12/2019)
+
+The RC1 release mainly focuses on improving the user experience, and fixing bugs.
+
+**Highlights**
+
+- Support new models: [FoveaBox](https://arxiv.org/abs/1904.03797), [RepPoints](https://arxiv.org/abs/1904.11490) and [FreeAnchor](https://arxiv.org/abs/1909.02466).
+- Add a Dockerfile.
+- Add a jupyter notebook demo and a webcam demo.
+- Setup the code style and CI.
+- Add lots of docstrings and unit tests.
+- Fix lots of bugs.
+
+**Breaking Changes**
+
+- There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)
+
+**Bug Fixes**
+
+- Fix a sampling interval bug in Libra R-CNN. (#1800)
+- Fix the learning rate in SSD300 WIDER FACE. (#1781)
+- Fix the scaling issue when `keep_ratio=False`. (#1730)
+- Fix typos. (#1721, #1492, #1242, #1108, #1107)
+- Fix the shuffle argument in `build_dataloader`. (#1693)
+- Clip the proposal when computing mask targets. (#1688)
+- Fix the "index out of range" bug for samplers in some corner cases. (#1610, #1404)
+- Fix the NMS issue on devices other than GPU:0. (#1603)
+- Fix SSD Head and GHM Loss on CPU. (#1578)
+- Fix the OOM error when there are too many gt bboxes. (#1575)
+- Fix the wrong keyword argument `nms_cfg` in HTC. (#1573)
+- Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)
+- Fix a scale bug in the Non Local op. (#1528)
+- Fix a bug in transforms when `gt_bboxes_ignore` is None. (#1498)
+- Fix a bug when `img_prefix` is None. (#1497)
+- Pass the device argument to `grid_anchors` and `valid_flags`. (#1478)
+- Fix the data pipeline for test_robustness. (#1476)
+- Fix the argument type of deformable pooling. (#1390)
+- Fix the coco_eval when there are only two classes. (#1376)
+- Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)
+- Fix the mask cropping in RandomCrop. (#1333)
+- Fix zero outputs in DeformConv when not running on cuda:0. (#1326)
+- Fix the type issue in Expand. (#1288)
+- Fix the inference API. (#1255)
+- Fix the inplace operation in Expand. (#1249)
+- Fix the from-scratch training config. (#1196)
+- Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)
+- Fix FCOS when input images has no positive sample. (#1136)
+- Fix recursive imports. (#1099)
+
+**Improvements**
+
+- Print the config file and mmdet version in the log. (#1721)
+- Lint the code before compiling in travis CI. (#1715)
+- Add a probability argument for the `Expand` transform. (#1651)
+- Update the PyTorch and CUDA version in the docker file. (#1615)
+- Raise a warning when specifying `--validate` in non-distributed training. (#1624, #1651)
+- Beautify the mAP printing. (#1614)
+- Add pre-commit hook. (#1536)
+- Add the argument `in_channels` to backbones. (#1475)
+- Add lots of docstrings and unit tests, thanks to [@Erotemic](https://github.com/Erotemic). (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)
+- Add support for multi-node distributed test when there is no shared storage. (#1399)
+- Optimize Dockerfile to reduce the image size. (#1306)
+- Update new results of HRNet. (#1284, #1182)
+- Add an argument `no_norm_on_lateral` in FPN. (#1240)
+- Test the compiling in CI. (#1235)
+- Move docs to a separate folder. (#1233)
+- Add a jupyter notebook demo. (#1158)
+- Support different type of dataset for training. (#1133)
+- Use int64_t instead of long in cuda kernels. (#1131)
+- Support unsquare RoIs for bbox and mask heads. (#1128)
+- Manually add type promotion to make compatible to PyTorch 1.2. (#1114)
+- Allowing validation dataset for computing validation loss. (#1093)
+- Use `.scalar_type()` instead of `.type()` to suppress some warnings. (#1070)
+
+**New Features**
+
+- Add an option `--with_ap` to compute the AP for each class. (#1549)
+- Implement "FreeAnchor: Learning to Match Anchors for Visual Object Detection". (#1391)
+- Support [Albumentations](https://github.com/albumentations-team/albumentations) for augmentations in the data pipeline. (#1354)
+- Implement "FoveaBox: Beyond Anchor-based Object Detector". (#1339)
+- Support horizontal and vertical flipping. (#1273, #1115)
+- Implement "RepPoints: Point Set Representation for Object Detection". (#1265)
+- Add test-time augmentation to HTC and Cascade R-CNN. (#1251)
+- Add a COCO result analysis tool. (#1228)
+- Add Dockerfile. (#1168)
+- Add a webcam demo. (#1155, #1150)
+- Add FLOPs counter. (#1127)
+- Allow arbitrary layer order for ConvModule. (#1078)
+
+### v1.0rc0 (27/07/2019)
+
+- Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!
+- Support two additional datasets: WIDER FACE and Cityscapes.
+- Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.
+- Speed up multi-gpu testing.
+- Integrate all compiling and installing in a single script.
+
+### v0.6.0 (14/04/2019)
+
+- Up to 30% speedup compared to the model zoo.
+- Support both PyTorch stable and nightly version.
+- Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.
+
+### v0.6rc0(06/02/2019)
+
+- Migrate to PyTorch 1.0.
+
+### v0.5.7 (06/02/2019)
+
+- Add support for Deformable ConvNet v2. (Many thanks to the authors and [@chengdazhi](https://github.com/chengdazhi))
+- This is the last release based on PyTorch 0.4.1.
+
+### v0.5.6 (17/01/2019)
+
+- Add support for Group Normalization.
+- Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.
+
+### v0.5.5 (22/12/2018)
+
+- Add SSD for COCO and PASCAL VOC.
+- Add ResNeXt backbones and detection models.
+- Refactoring for Samplers/Assigners and add OHEM.
+- Add VOC dataset and evaluation scripts.
+
+### v0.5.4 (27/11/2018)
+
+- Add SingleStageDetector and RetinaNet.
+
+### v0.5.3 (26/11/2018)
+
+- Add Cascade R-CNN and Cascade Mask R-CNN.
+- Add support for Soft-NMS in config files.
+
+### v0.5.2 (21/10/2018)
+
+- Add support for custom datasets.
+- Add a script to convert PASCAL VOC annotations to the expected format.
+
+### v0.5.1 (20/10/2018)
+
+- Add BBoxAssigner and BBoxSampler, the `train_cfg` field in config files are restructured.
+- `ConvFCRoIHead` / `SharedFCRoIHead` are renamed to `ConvFCBBoxHead` / `SharedFCBBoxHead` for consistency.
diff --git a/docs/compatibility.md b/docs/compatibility.md
new file mode 100644
index 00000000..c0bc2119
--- /dev/null
+++ b/docs/compatibility.md
@@ -0,0 +1,114 @@
+# Compatibility of MMDetection 2.x
+
+## MMDetection 2.12.0
+
+MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.15.0 (maybe longer).
+In v2.12.0 MMDetection inevitably brings some BC-breakings, including the MMCV dependency, model initialization, model registry, and mask AP evaluation.
+
+### MMCV Version
+
+MMDetection v2.12.0 relies on the newest features in MMCV 1.3.3, including `BaseModule` for unified parameter initialization, model registry, and the CUDA operator `MultiScaleDeformableAttn` for [Deformable DETR](https://arxiv.org/abs/2010.04159). Note that MMCV 1.3.2 already contains all the features used by MMDet but has known issues. Therefore, we recommend users to skip MMCV v1.3.2 and use v1.3.2, though v1.3.2 might work for most of the cases.
+
+### Unified model initialization
+
+To unify the parameter initialization in OpenMMLab projects, MMCV supports `BaseModule` that accepts `init_cfg` to allow the modules' parameters initialized in a flexible and unified manner. Now the users need to explicitly call `model.init_weights()` in the training script to initialize the model (as in [here](https://github.com/open-mmlab/mmdetection/blob/master/tools/train.py#L162), previously this was handled by the detector. **The downstream projects must update their model initialization accordingly to use MMDetection v2.12.0**. Please refer to PR #4750 for details.
+
+### Unified model registry
+
+To easily use backbones implemented in other OpenMMLab projects, MMDetection v2.12.0 inherits the model registry created in MMCV (#760). In this way, as long as the backbone is supported in an OpenMMLab project and that project also uses the registry in MMCV, users can use that backbone in MMDetection by simply modifying the config without copying the code of that backbone into MMDetection. Please refer to PR #5059 for more details.
+
+### Mask AP evaluation
+
+Before [PR 4898](https://github.com/open-mmlab/mmdetection/pull/4898) and V2.12.0, the mask AP of small, medium, and large instances is calculated based on the bounding box area rather than the real mask area. This leads to higher `APs` and `APm` but lower `APl` but will not affect the overall mask AP. [PR 4898](https://github.com/open-mmlab/mmdetection/pull/4898) change it to use mask areas by deleting `bbox` in mask AP calculation.
+The new calculation does not affect the overall mask AP evaluation and is consistent with [Detectron2](https://github.com/facebookresearch/detectron2/).
+
+## Compatibility with MMDetection 1.x
+
+MMDetection 2.0 goes through a big refactoring and addresses many legacy issues. It is not compatible with the 1.x version, i.e., running inference with the same model weights in these two versions will produce different results. Thus, MMDetection 2.0 re-benchmarks all the models and provides their links and logs in the model zoo.
+
+The major differences are in four folds: coordinate system, codebase conventions, training hyperparameters, and modular design.
+
+### Coordinate System
+
+The new coordinate system is consistent with [Detectron2](https://github.com/facebookresearch/detectron2/) and treats the center of the most left-top pixel as (0, 0) rather than the left-top corner of that pixel.
+Accordingly, the system interprets the coordinates in COCO bounding box and segmentation annotations as coordinates in range `[0, width]` or `[0, height]`.
+This modification affects all the computation related to the bbox and pixel selection,
+which is more natural and accurate.
+
+- The height and width of a box with corners (x1, y1) and (x2, y2) in the new coordinate system is computed as `width = x2 - x1` and `height = y2 - y1`.
+ In MMDetection 1.x and previous version, a "+ 1" was added both height and width.
+ This modification are in three folds:
+
+ 1. Box transformation and encoding/decoding in regression.
+ 2. IoU calculation. This affects the matching process between ground truth and bounding box and the NMS process. The effect to compatibility is very negligible, though.
+ 3. The corners of bounding box is in float type and no longer quantized. This should provide more accurate bounding box results. This also makes the bounding box and RoIs not required to have minimum size of 1, whose effect is small, though.
+
+- The anchors are center-aligned to feature grid points and in float type.
+ In MMDetection 1.x and previous version, the anchors are in `int` type and not center-aligned.
+ This affects the anchor generation in RPN and all the anchor-based methods.
+
+- ROIAlign is better aligned with the image coordinate system. The new implementation is adopted from [Detectron2](https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign).
+ The RoIs are shifted by half a pixel by default when they are used to cropping RoI features, compared to MMDetection 1.x.
+ The old behavior is still available by setting `aligned=False` instead of `aligned=True`.
+
+- Mask cropping and pasting are more accurate.
+
+ 1. We use the new RoIAlign to crop mask targets. In MMDetection 1.x, the bounding box is quantized before it is used to crop mask target, and the crop process is implemented by numpy. In new implementation, the bounding box for crop is not quantized and sent to RoIAlign. This implementation accelerates the training speed by a large margin (~0.1s per iter, ~2 hour when training Mask R50 for 1x schedule) and should be more accurate.
+
+ 2. In MMDetection 2.0, the "`paste_mask()`" function is different and should be more accurate than those in previous versions. This change follows the modification in [Detectron2](https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/masks.py) and can improve mask AP on COCO by ~0.5% absolute.
+
+### Codebase Conventions
+
+- MMDetection 2.0 changes the order of class labels to reduce unused parameters in regression and mask branch more naturally (without +1 and -1).
+ This effect all the classification layers of the model to have a different ordering of class labels. The final layers of regression branch and mask head no longer keep K+1 channels for K categories, and their class orders are consistent with the classification branch.
+
+ - In MMDetection 2.0, label "K" means background, and labels [0, K-1] correspond to the K = num_categories object categories.
+
+ - In MMDetection 1.x and previous version, label "0" means background, and labels [1, K] correspond to the K categories.
+
+ - **Note**: The class order of softmax RPN is still the same as that in 1.x in versions<=2.4.0 while sigmoid RPN is not affected. The class orders in all heads are unified since MMDetection v2.5.0.
+
+- Low quality matching in R-CNN is not used. In MMDetection 1.x and previous versions, the `max_iou_assigner` will match low quality boxes for each ground truth box in both RPN and R-CNN training. We observe this sometimes does not assign the most perfect GT box to some bounding boxes,
+ thus MMDetection 2.0 do not allow low quality matching by default in R-CNN training in the new system. This sometimes may slightly improve the box AP (~0.1% absolute).
+
+- Separate scale factors for width and height. In MMDetection 1.x and previous versions, the scale factor is a single float in mode `keep_ratio=True`. This is slightly inaccurate because the scale factors for width and height have slight difference. MMDetection 2.0 adopts separate scale factors for width and height, the improvement on AP ~0.1% absolute.
+
+- Configs name conventions are changed. MMDetection V2.0 adopts the new name convention to maintain the gradually growing model zoo as the following:
+
+ ```shell
+ [model]_(model setting)_[backbone]_[neck]_(norm setting)_(misc)_(gpu x batch)_[schedule]_[dataset].py,
+ ```
+
+ where the (`misc`) includes DCN and GCBlock, etc. More details are illustrated in the [documentation for config](config.md)
+
+- MMDetection V2.0 uses new ResNet Caffe backbones to reduce warnings when loading pre-trained models. Most of the new backbones' weights are the same as the former ones but do not have `conv.bias`, except that they use a different `img_norm_cfg`. Thus, the new backbone will not cause warning of unexpected keys.
+
+### Training Hyperparameters
+
+The change in training hyperparameters does not affect
+model-level compatibility but slightly improves the performance. The major ones are:
+
+- The number of proposals after nms is changed from 2000 to 1000 by setting `nms_post=1000` and `max_num=1000`.
+ This slightly improves both mask AP and bbox AP by ~0.2% absolute.
+
+- The default box regression losses for Mask R-CNN, Faster R-CNN and RetinaNet are changed from smooth L1 Loss to L1 loss. This leads to an overall improvement in box AP (~0.6% absolute). However, using L1-loss for other methods such as Cascade R-CNN and HTC does not improve the performance, so we keep the original settings for these methods.
+
+- The sample num of RoIAlign layer is set to be 0 for simplicity. This leads to slightly improvement on mask AP (~0.2% absolute).
+
+- The default setting does not use gradient clipping anymore during training for faster training speed. This does not degrade performance of the most of models. For some models such as RepPoints we keep using gradient clipping to stabilize the training process and to obtain better performance.
+
+- The default warmup ratio is changed from 1/3 to 0.001 for a more smooth warming up process since the gradient clipping is usually not used. The effect is found negligible during our re-benchmarking, though.
+
+### Upgrade Models from 1.x to 2.0
+
+To convert the models trained by MMDetection V1.x to MMDetection V2.0, the users can use the script `tools/model_converters/upgrade_model_version.py` to convert
+their models. The converted models can be run in MMDetection V2.0 with slightly dropped performance (less than 1% AP absolute).
+Details can be found in `configs/legacy`.
+
+## pycocotools compatibility
+
+`mmpycocotools` is the OpenMMlab's folk of official `pycocotools`, which works for both MMDetection and Detectron2.
+Before [PR 4939](https://github.com/open-mmlab/mmdetection/pull/4939), since `pycocotools` and `mmpycocotool` have the same package name, if users already installed `pyccocotools` (installed Detectron2 first under the same environment), then the setup of MMDetection will skip installing `mmpycocotool`. Thus MMDetection fails due to the missing `mmpycocotools`.
+If MMDetection is installed before Detectron2, they could work under the same environment.
+[PR 4939](https://github.com/open-mmlab/mmdetection/pull/4939) deprecates mmpycocotools in favor of official pycocotools.
+Users may install MMDetection and Detectron2 under the same environment after [PR 4939](https://github.com/open-mmlab/mmdetection/pull/4939), no matter what the installation order is.
diff --git a/docs/conf.py b/docs/conf.py
new file mode 100644
index 00000000..1c60d9c5
--- /dev/null
+++ b/docs/conf.py
@@ -0,0 +1,90 @@
+# Configuration file for the Sphinx documentation builder.
+#
+# This file only contains a selection of the most common options. For a full
+# list see the documentation:
+# https://www.sphinx-doc.org/en/master/usage/configuration.html
+
+# -- Path setup --------------------------------------------------------------
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+#
+import os
+import subprocess
+import sys
+
+sys.path.insert(0, os.path.abspath('..'))
+
+# -- Project information -----------------------------------------------------
+
+project = 'MMDetection'
+copyright = '2018-2020, OpenMMLab'
+author = 'MMDetection Authors'
+version_file = '../mmdet/version.py'
+
+
+def get_version():
+ with open(version_file, 'r') as f:
+ exec(compile(f.read(), version_file, 'exec'))
+ return locals()['__version__']
+
+
+# The full version, including alpha/beta/rc tags
+release = get_version()
+
+# -- General configuration ---------------------------------------------------
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ 'sphinx.ext.autodoc',
+ 'sphinx.ext.napoleon',
+ 'sphinx.ext.viewcode',
+ 'recommonmark',
+ 'sphinx_markdown_tables',
+]
+
+autodoc_mock_imports = [
+ 'matplotlib', 'pycocotools', 'terminaltables', 'mmdet.version', 'mmcv.ops'
+]
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ['_templates']
+
+# The suffix(es) of source filenames.
+# You can specify multiple suffix as a list of string:
+#
+source_suffix = {
+ '.rst': 'restructuredtext',
+ '.md': 'markdown',
+}
+
+# The master toctree document.
+master_doc = 'index'
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+# This pattern also affects html_static_path and html_extra_path.
+exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
+
+# -- Options for HTML output -------------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+#
+html_theme = 'sphinx_rtd_theme'
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named "default.css" will overwrite the builtin "default.css".
+html_static_path = ['_static']
+
+
+def builder_inited_handler(app):
+ subprocess.run(['./stat.py'])
+
+
+def setup(app):
+ app.connect('builder-inited', builder_inited_handler)
diff --git a/docs/conventions.md b/docs/conventions.md
new file mode 100644
index 00000000..86e8cb72
--- /dev/null
+++ b/docs/conventions.md
@@ -0,0 +1,31 @@
+# Conventions
+
+Please check the following conventions if you would like to modify MMDetection as your own project.
+
+## Loss
+
+In MMDetection, a `dict` containing losses and metrics will be returned by `model(**data)`.
+
+For example, in bbox head,
+
+```python
+class BBoxHead(nn.Module):
+ ...
+ def loss(self, ...):
+ losses = dict()
+ # classification loss
+ losses['loss_cls'] = self.loss_cls(...)
+ # classification accuracy
+ losses['acc'] = accuracy(...)
+ # bbox regression loss
+ losses['loss_bbox'] = self.loss_bbox(...)
+ return losses
+```
+
+`bbox_head.loss()` will be called during model forward.
+The returned dict contains `'loss_bbox'`, `'loss_cls'`, `'acc'` .
+Only `'loss_bbox'`, `'loss_cls'` will be used during back propagation,
+`'acc'` will only be used as a metric to monitor training process.
+
+By default, only values whose keys contain `'loss'` will be back propagated.
+This behavior could be changed by modifying `BaseDetector.train_step()`.
diff --git a/docs/faq.md b/docs/faq.md
new file mode 100644
index 00000000..ba2ed6b8
--- /dev/null
+++ b/docs/faq.md
@@ -0,0 +1,88 @@
+We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the [provided templates](https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md/) and make sure you fill in all required information in the template.
+
+## MMCV Installation
+
+- Compatibility issue between MMCV and MMDetection; "ConvWS is already registered in conv layer"; "AssertionError: MMCV==xxx is used but incompatible. Please install mmcv>=xxx, <=xxx."
+
+ Please install the correct version of MMCV for the version of your MMDetection following the [installation instruction](https://mmdetection.readthedocs.io/en/latest/get_started.html#installation).
+
+- "No module named 'mmcv.ops'"; "No module named 'mmcv._ext'".
+
+ 1. Uninstall existing mmcv in the environment using `pip uninstall mmcv`.
+ 2. Install mmcv-full following the [installation instruction](https://mmcv.readthedocs.io/en/latest/#installation).
+
+## PyTorch/CUDA Environment
+
+- "RTX 30 series card fails when building MMCV or MMDet"
+
+ 1. Temporary work-around: do `MMCV_WITH_OPS=1 MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80' pip install -e .`.
+ The common issue is `nvcc fatal : Unsupported gpu architecture 'compute_86'`. This means that the compiler should optimize for sm_86, i.e., nvidia 30 series card, but such optimizations have not been supported by CUDA toolkit 11.0.
+ This work-around modifies the compile flag by adding `MMCV_CUDA_ARGS='-gencode=arch=compute_80,code=sm_80'`, which tells `nvcc` to optimize for **sm_80**, i.e., Nvidia A100. Although A100 is different from the 30 series card, they use similar ampere architecture. This may hurt the performance but it works.
+ 2. PyTorch developers have updated that the default compiler flags should be fixed by [pytorch/pytorch#47585](https://github.com/pytorch/pytorch/pull/47585). So using PyTorch-nightly may also be able to solve the problem, though we have not tested it yet.
+
+- "invalid device function" or "no kernel image is available for execution".
+
+ 1. Check if your cuda runtime version (under `/usr/local/`), `nvcc --version` and `conda list cudatoolkit` version match.
+ 2. Run `python mmdet/utils/collect_env.py` to check whether PyTorch, torchvision, and MMCV are built for the correct GPU architecture.
+ You may need to set `TORCH_CUDA_ARCH_LIST` to reinstall MMCV.
+ The GPU arch table could be found [here](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list),
+ i.e. run `TORCH_CUDA_ARCH_LIST=7.0 pip install mmcv-full` to build MMCV for Volta GPUs.
+ The compatibility issue could happen when using old GPUS, e.g., Tesla K80 (3.7) on colab.
+ 3. Check whether the running environment is the same as that when mmcv/mmdet has compiled.
+ For example, you may compile mmcv using CUDA 10.0 but run it on CUDA 9.0 environments.
+
+- "undefined symbol" or "cannot open xxx.so".
+
+ 1. If those symbols are CUDA/C++ symbols (e.g., libcudart.so or GLIBCXX), check whether the CUDA/GCC runtimes are the same as those used for compiling mmcv,
+ i.e. run `python mmdet/utils/collect_env.py` to see if `"MMCV Compiler"`/`"MMCV CUDA Compiler"` is the same as `"GCC"`/`"CUDA_HOME"`.
+ 2. If those symbols are PyTorch symbols (e.g., symbols containing caffe, aten, and TH), check whether the PyTorch version is the same as that used for compiling mmcv.
+ 3. Run `python mmdet/utils/collect_env.py` to check whether PyTorch, torchvision, and MMCV are built by and running on the same environment.
+
+- setuptools.sandbox.UnpickleableException: DistutilsSetupError("each element of 'ext_modules' option must be an Extension instance or 2-tuple")
+
+ 1. If you are using miniconda rather than anaconda, check whether Cython is installed as indicated in [#3379](https://github.com/open-mmlab/mmdetection/issues/3379).
+ You need to manually install Cython first and then run command `pip install -r requirements.txt`.
+ 2. You may also need to check the compatibility between the `setuptools`, `Cython`, and `PyTorch` in your environment.
+
+- "Segmentation fault".
+ 1. Check you GCC version and use GCC 5.4. This usually caused by the incompatibility between PyTorch and the environment (e.g., GCC < 4.9 for PyTorch). We also recommand the users to avoid using GCC 5.5 because many feedbacks report that GCC 5.5 will cause "segmentation fault" and simply changing it to GCC 5.4 could solve the problem.
+
+ 2. Check whether PyTorch is correctly installed and could use CUDA op, e.g. type the following command in your terminal.
+
+ ```shell
+ python -c 'import torch; print(torch.cuda.is_available())'
+ ```
+
+ And see whether they could correctly output results.
+
+ 3. If Pytorch is correctly installed, check whether MMCV is correctly installed.
+
+ ```shell
+ python -c 'import mmcv; import mmcv.ops'
+ ```
+
+ If MMCV is correctly installed, then there will be no issue of the above two commands.
+
+ 4. If MMCV and Pytorch is correctly installed, you man use `ipdb`, `pdb` to set breakpoints or directly add 'print' in mmdetection code and see which part leads the segmentation fault.
+
+## Training
+
+- "Loss goes Nan"
+ 1. Check if the dataset annotations are valid: zero-size bounding boxes will cause the regression loss to be Nan due to the commonly used transformation for box regression. Some small size (width or height are smaller than 1) boxes will also cause this problem after data augmentation (e.g., instaboost). So check the data and try to filter out those zero-size boxes and skip some risky augmentations on the small-size boxes when you face the problem.
+ 2. Reduce the learning rate: the learning rate might be too large due to some reasons, e.g., change of batch size. You can rescale them to the value that could stably train the model.
+ 3. Extend the warmup iterations: some models are sensitive to the learning rate at the start of the training. You can extend the warmup iterations, e.g., change the `warmup_iters` from 500 to 1000 or 2000.
+ 4. Add gradient clipping: some models requires gradient clipping to stablize the training process. The default of `grad_clip` is `None`, you can add gradient clippint to avoid gradients that are too large, i.e., set `optimizer_config=dict(_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))` in your config file. If your config does not inherits from any basic config that contains `optimizer_config=dict(grad_clip=None)`, you can simply add `optimizer_config=dict(grad_clip=dict(max_norm=35, norm_type=2))`.
+- ’GPU out of memory"
+ 1. There are some scenarios when there are large amount of ground truth boxes, which may cause OOM during target assignment. You can set `gpu_assign_thr=N` in the config of assigner thus the assigner will calculate box overlaps through CPU when there are more than N GT boxes.
+ 2. Set `with_cp=True` in the backbone. This uses the sublinear strategy in PyTorch to reduce GPU memory cost in the backbone.
+ 3. Try mixed precision training using following the examples in `config/fp16`. The `loss_scale` might need further tuning for different models.
+
+- "RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one"
+ 1. This error indicates that your module has parameters that were not used in producing loss. This phenomenon may be caused by running different branches in your code in DDP mode.
+ 2. You can set ` find_unused_parameters = True` in the config to solve the above problems or find those unused parameters manually.
+
+## Evaluation
+
+- COCO Dataset, AP or AR = -1
+ 1. According to the definition of COCO dataset, the small and medium areas in an image are less than 1024 (32\*32), 9216 (96\*96), respectively.
+ 2. If the corresponding area has no object, the result of AP and AR will set to -1.
diff --git a/docs/get_started.md b/docs/get_started.md
new file mode 100644
index 00000000..35995317
--- /dev/null
+++ b/docs/get_started.md
@@ -0,0 +1,239 @@
+## Prerequisites
+
+- Linux or macOS (Windows is in experimental support)
+- Python 3.6+
+- PyTorch 1.3+
+- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
+- GCC 5+
+- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)
+
+The compatible MMDetection and MMCV versions are as below. Please install the correct version of MMCV to avoid installation issues.
+
+| MMDetection version | MMCV version |
+|:-------------------:|:-------------------:|
+| master | mmcv-full>=1.3.3, <1.4.0 |
+| 2.13.0 | mmcv-full>=1.3.3, <1.4.0 |
+| 2.12.0 | mmcv-full>=1.3.3, <1.4.0 |
+| 2.11.0 | mmcv-full>=1.2.4, <1.4.0 |
+| 2.10.0 | mmcv-full>=1.2.4, <1.4.0 |
+| 2.9.0 | mmcv-full>=1.2.4, <1.4.0 |
+| 2.8.0 | mmcv-full>=1.2.4, <1.4.0 |
+| 2.7.0 | mmcv-full>=1.1.5, <1.4.0 |
+| 2.6.0 | mmcv-full>=1.1.5, <1.4.0 |
+| 2.5.0 | mmcv-full>=1.1.5, <1.4.0 |
+| 2.4.0 | mmcv-full>=1.1.1, <1.4.0 |
+| 2.3.0 | mmcv-full==1.0.5 |
+| 2.3.0rc0 | mmcv-full>=1.0.2 |
+| 2.2.1 | mmcv==0.6.2 |
+| 2.2.0 | mmcv==0.6.2 |
+| 2.1.0 | mmcv>=0.5.9, <=0.6.1|
+| 2.0.0 | mmcv>=0.5.1, <=0.5.8|
+
+Note: You need to run `pip uninstall mmcv` first if you have mmcv installed.
+If mmcv and mmcv-full are both installed, there will be `ModuleNotFoundError`.
+
+## Installation
+
+### Prepare environment
+
+1. Create a conda virtual environment and activate it.
+
+ ```shell
+ conda create -n open-mmlab python=3.7 -y
+ conda activate open-mmlab
+ ```
+
+2. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/), e.g.,
+
+ ```shell
+ conda install pytorch torchvision -c pytorch
+ ```
+
+ Note: Make sure that your compilation CUDA version and runtime CUDA version match.
+ You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
+
+ `E.g.1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
+ PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
+
+ ```shell
+ conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
+ ```
+
+ `E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
+ PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
+
+ ```shell
+ conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
+ ```
+
+ If you build PyTorch from source instead of installing the prebuilt pacakge,
+ you can use more CUDA versions such as 9.0.
+
+
+### Install MMDetection
+
+We recommend you to install MMDetection with [MIM](https://github.com/open-mmlab/mim).
+
+```shell
+pip install openmim
+mim install mmdet
+```
+
+MIM can automatically install OpenMMLab projects and their requirements.
+
+Or, you can install MMDetection manually:
+
+1. Install mmcv-full, we recommend you to install the pre-build package as below.
+
+ ```shell
+ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
+ ```
+
+ Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:
+
+ ```shell
+ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
+ ```
+
+ See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
+ Optionally you can choose to compile mmcv from source by the following command
+
+ ```shell
+ git clone https://github.com/open-mmlab/mmcv.git
+ cd mmcv
+ MMCV_WITH_OPS=1 pip install -e . # package mmcv-full will be installed after this step
+ cd ..
+ ```
+
+ Or directly run
+
+ ```shell
+ pip install mmcv-full
+ ```
+
+2. Clone the MMDetection repository.
+
+ ```shell
+ git clone https://github.com/open-mmlab/mmdetection.git
+ cd mmdetection
+ ```
+
+3. Install build requirements and then install MMDetection.
+
+ ```shell
+ pip install -r requirements/build.txt
+ pip install -v -e . # or "python setup.py develop"
+ ```
+
+ Or, you can simply install mmdetection with the following commands:
+
+ ```shell
+ pip install mmdet
+ ```
+
+Note:
+
+a. Following the above instructions, MMDetection is installed on `dev` mode
+, any local modifications made to the code will take effect without the need to reinstall it.
+
+b. If you would like to use `opencv-python-headless` instead of `opencv-python`,
+you can install it before installing MMCV.
+
+c. Some dependencies are optional. Simply running `pip install -v -e .` will
+ only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
+
+### Install with CPU only
+
+The code can be built for CPU only environment (where CUDA isn't available).
+
+In CPU mode you can run the demo/webcam_demo.py for example.
+However some functionality is gone in this mode:
+
+- Deformable Convolution
+- Modulated Deformable Convolution
+- ROI pooling
+- Deformable ROI pooling
+- CARAFE: Content-Aware ReAssembly of FEatures
+- SyncBatchNorm
+- CrissCrossAttention: Criss-Cross Attention
+- MaskedConv2d
+- Temporal Interlace Shift
+- nms_cuda
+- sigmoid_focal_loss_cuda
+- bbox_overlaps
+
+So if you try to run inference with a model containing above ops you will get an error. The following table lists the related methods that cannot inference on CPU due to dependency on these operators
+
+| Operator | Model |
+| :-----------------------------------------------------: | :----------------------------------------------------------: |
+| Deformable Convolution/Modulated Deformable Convolution | DCN、Guided Anchoring、RepPoints、CentripetalNet、VFNet、CascadeRPN、NAS-FCOS、DetectoRS |
+| MaskedConv2d | Guided Anchoring |
+| CARAFE | CARAFE |
+| SyncBatchNorm | ResNeSt |
+
+**Notice**: MMDetection does not support training with CPU for now.
+
+### Another option: Docker Image
+
+We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection/blob/master/docker/Dockerfile) to build an image. Ensure that you are using [docker version](https://docs.docker.com/engine/install/) >=19.03.
+
+```shell
+# build an image with PyTorch 1.6, CUDA 10.1
+docker build -t mmdetection docker/
+```
+
+Run it with
+
+```shell
+docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection
+```
+
+### A from-scratch setup script
+
+Assuming that you already have CUDA 10.1 installed, here is a full script for setting up MMDetection with conda.
+
+```shell
+conda create -n open-mmlab python=3.7 -y
+conda activate open-mmlab
+
+conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -y
+
+# install the latest mmcv
+pip install mmcv-full==latest+torch1.6.0+cu101 -f https://download.openmmlab.com/mmcv/dist/index.html
+
+# install mmdetection
+git clone https://github.com/open-mmlab/mmdetection.git
+cd mmdetection
+pip install -r requirements/build.txt
+pip install -v -e .
+```
+
+### Developing with multiple MMDetection versions
+
+The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection in the current directory.
+
+To use the default MMDetection installed in the environment rather than that you are working with, you can remove the following line in those scripts
+
+```shell
+PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
+```
+
+## Verification
+
+To verify whether MMDetection and the required environment are installed correctly, we can run sample Python code to initialize a detector and run inference a demo image:
+
+```python
+from mmdet.apis import init_detector, inference_detector
+
+config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+# download the checkpoint from model zoo and put it in `checkpoints/`
+# url: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
+checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
+device = 'cuda:0'
+# init a detector
+model = init_detector(config_file, checkpoint_file, device=device)
+# inference the demo image
+inference_detector(model, 'demo/demo.jpg')
+```
+
+The above code is supposed to run successfully upon you finish the installation.
diff --git a/docs/index.rst b/docs/index.rst
new file mode 100644
index 00000000..5b30e241
--- /dev/null
+++ b/docs/index.rst
@@ -0,0 +1,50 @@
+Welcome to MMDetection's documentation!
+=======================================
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Get Started
+
+ get_started.md
+ modelzoo_statistics.md
+ model_zoo.md
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Quick Run
+
+ 1_exist_data_model.md
+ 2_new_data_model.md
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Tutorials
+
+ tutorials/index.rst
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Useful Tools and Scripts
+
+ useful_tools.md
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Notes
+
+ conventions.md
+ compatibility.md
+ projects.md
+ changelog.md
+ faq.md
+
+.. toctree::
+ :caption: API Reference
+
+ api.rst
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`search`
diff --git a/docs/install.md b/docs/install.md
deleted file mode 100644
index de44217c..00000000
--- a/docs/install.md
+++ /dev/null
@@ -1,7 +0,0 @@
-python和pytorch版本和mmdetection要求的完全相同
-
- git clone https://github.com/hhaAndroid/mmdetection-mini
- cd mmdetection-mini
- pip install -r requirements.txt
- python setup.py develop
-
diff --git a/docs/make.bat b/docs/make.bat
new file mode 100644
index 00000000..922152e9
--- /dev/null
+++ b/docs/make.bat
@@ -0,0 +1,35 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=.
+set BUILDDIR=_build
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.http://sphinx-doc.org/
+ exit /b 1
+)
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+
+:end
+popd
diff --git a/docs/model_zoo.md b/docs/model_zoo.md
index 0a64d116..3ab631d9 100644
--- a/docs/model_zoo.md
+++ b/docs/model_zoo.md
@@ -1,232 +1,303 @@
-# Model Zoo
-## retinanet
-和mmdetection完全一致
-## yolov3
-和mmdetection完全一致
-## darknet中yolo系列
-目前支持yolov3/v4和tiny-yolov3/v4的模型
-对比结果如下:
-
-测试配置为:
-```python
- test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- conf_thr=0.005,
- nms=dict(type='nms', iou_thr=0.45),
- max_per_img=100)
-```
+# Benchmark and Model Zoo
-### tiny-yolov3
+## Mirror sites
-权重下载链接: https://github.com/AlexeyAB/darknet
-对应配置: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny.cfg
-darknet: 33.1% mAP@0.5 - 345(R) FPS - 5.6 BFlops - 33.7 MB
-mmdetection: 36.5% mAP@0.5 -35.4 MB
+We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
+You can replace `https://s3.ap-northeast-2.amazonaws.com/open-mmlab` with `https://open-mmlab.oss-cn-beijing.aliyuncs.com` in model urls.
-注意: yolov3-tiny.cfg中最后一个[yolo]节点,mask 应该是 1,2,3,而不是github里面的0,1,2
+## Common settings
+- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
+- We use distributed training.
+- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo, caffe-style pretrained backbones are converted from the newly released model from detectron2.
+- For fair comparison with other codebases, we report the GPU memory as the maximum value of `torch.cuda.max_memory_allocated()` for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows.
+- We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script [benchmark.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py) which computes the average time on 2000 images.
-### tiny-yolov4
+## Baselines
-权重下载链接: https://github.com/AlexeyAB/darknet
-对应配置: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg
-darknet: 416x416 40.2% mAP@0.5 - 371(1080Ti) FPS / 330(RTX2070) FPS - 6.9 BFlops - 23.1 MB
-mmdetection: 416x416 37.9% mAP@0.5 (19.2 mAP@0.5:0.95) -24.3 MB
+### RPN
-注意:更低的原因应该是该配置里面有一个scale_x_y = 1.05一些参数不一样,目前没有利用到
+Please refer to [RPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/rpn) for details.
-附加内容:
-mmdetection: 416x416 考虑scale_x_y = 1.05 37.9% mAP@0.5 (19.3 mAP@0.5:0.95) -24.3 MB
+### Faster R-CNN
-修改配置为:
+Please refer to [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn) for details.
-```python
- test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.000000005,
- conf_thr=0.001,
- nms=dict(type='nms', iou_thr=0.45),
- max_per_img=100)
-```
-参考: https://github.com/AlexeyAB/darknet/tree/master/src/yolo_layer.c
-mmdetection: 416x416 考虑scale_x_y = 1.05 38.0% mAP@0.5 (19.3 mAP@0.5:0.95) -24.3 MB
+### Mask R-CNN
+Please refer to [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn) for details.
-### yolov3
+### Fast R-CNN (with pre-computed proposals)
-权重下载链接: https://github.com/AlexeyAB/darknet
-对应配置: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg
-darknet(test_dev): 416x416 55.3% mAP@0.5 (31.0 mAP@0.5:0.95) - 66(R) FPS - 65.9 BFlops - 236 MB
-darknet(val2017): 416x416 65.9 mAP@0.5
-mmdetection(val2017): 416x416 66.8 mAP@0.5 (37.4 mAP@0.5:0.95) -248 MB
+Please refer to [Fast R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/fast_rcnn) for details.
+### RetinaNet
-### yolov4
+Please refer to [RetinaNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet) for details.
-权重下载链接: https://github.com/AlexeyAB/darknet
-对应配置: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg
+### Cascade R-CNN and Cascade Mask R-CNN
-darknet: 416x416 62.8% mAP@0.5 (41.2% AP@0.5:0.95) - 55(R) FPS / 96(V) FPS - 60.1 BFlops 245 MB
-darknet: 608x608 65.7% mAP@0.5 (43.5% AP@0.5:0.95) - 55(R) FPS / 96(V) FPS - 60.1 BFlops 245 MB
+Please refer to [Cascade R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/cascade_rcnn) for details.
-mmdetection: 416x416 65.7% mAP@0.5 (41.7% AP@0.5:0.95) -257. MB
-mmdetection: 608x608 72.9% mAP@0.5 (48.1% AP@0.5:0.95) -257.7 MB
+### Hybrid Task Cascade (HTC)
-注意: yolov4的anchor尺寸变了,不同于yolov3, 下载的权重是608x608训练过的,测试用了两种尺度而已
+Please refer to [HTC](https://github.com/open-mmlab/mmdetection/blob/master/configs/htc) for details.
+### SSD
-附加内容:
-mmdetection: 416x416 考虑scale 65.8% mAP@0.5 (42.0% AP@0.5:0.95) -257. MB
-mmdetection: 608x608 考虑scale 73.0% mAP@0.5 (48.4% AP@0.5:0.95) -257.7 MB
+Please refer to [SSD](https://github.com/open-mmlab/mmdetection/blob/master/configs/ssd) for details.
+### Group Normalization (GN)
-### 附加说明
+Please refer to [Group Normalization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn) for details.
-- darknet权重转mmdetection的脚本在tools/darknet文件夹里面
-- 模型实现参考了https://github.com/Tencent/ObjectDetection-OneStageDet
+### Weight Standardization
+Please refer to [Weight Standardization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn+ws) for details.
-## yolov5
-目前采用的是yolov5 v3发行版本
+### Deformable Convolution v2
-yolov5采用了pytorch1.6的版本,其包括nn.Hardswish()函数,而pytorch1.3没有
-故我采用了替代版本,效果测试后是一样的。
+Please refer to [Deformable Convolutional Networks](https://github.com/open-mmlab/mmdetection/blob/master/configs/dcn) for details.
-640x640,采用coco2017的val2017测试
+### CARAFE: Content-Aware ReAssembly of FEatures
-yolov5参数: conf_thres=0.001 iou_thres=0.65
-mmdetection:
+Please refer to [CARAFE](https://github.com/open-mmlab/mmdetection/blob/master/configs/carafe) for details.
-```python
- test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- conf_thr=0.001,
- nms=dict(type='nms', iou_thr=0.65),
- max_per_img=100)
-```
+### Instaboost
+Please refer to [Instaboost](https://github.com/open-mmlab/mmdetection/blob/master/configs/instaboost) for details.
+### Libra R-CNN
-orig yolov5s: 37.0@mAP0.5...0.9 56.2@mAP0.
-mmdetection: 36.0@mAP0.5...0.9 56.3@mAP0.5
+Please refer to [Libra R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/libra_rcnn) for details.
+### Guided Anchoring
+Please refer to [Guided Anchoring](https://github.com/open-mmlab/mmdetection/blob/master/configs/guided_anchoring) for details.
-可以看出有一点差距,原因可能有:图片前逻辑处理不一样,yolov5是采用letterbox方式(pad指定值),
-而mmdetection是直接保持长宽比进行resize,没有pad操作。
+### FCOS
-后续有空我会把letterbox操作写到mmdetection里面,就可以完全相同了
+Please refer to [FCOS](https://github.com/open-mmlab/mmdetection/blob/master/configs/fcos) for details.
-我将mmdetection-mini的骨架加上head部分代码嵌入到yolov5中,切换不同模型测试
-,结果和原始yolov5完全相同,说明整个模型部分代码没有任何问题。如下图所示:
+### FoveaBox
+Please refer to [FoveaBox](https://github.com/open-mmlab/mmdetection/blob/master/configs/foveabox) for details.
-后来发现mmdetection还有一个score_thr阈值,而yolov5是没有这个参数的
-故将该参数设置的极小进行测试score_thr=0.0000001
+### RepPoints
-```python
- test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.0000001,
- conf_thr=0.001,
- nms=dict(type='nms', iou_thr=0.6),
- max_per_img=300)
-```
+Please refer to [RepPoints](https://github.com/open-mmlab/mmdetection/blob/master/configs/reppoints) for details.
-结果如下:
+### FreeAnchor
-orig yolov5s: 37.0@mAP0.5...0.9 56.2@mAP0.
-mmdetection: 36.6@mAP0.5...0.9 56.6@mAP0.5
+Please refer to [FreeAnchor](https://github.com/open-mmlab/mmdetection/blob/master/configs/free_anchor) for details.
-指标就非常接近了
+### Grid R-CNN (plus)
-当切换为letterresize模式,采用同样配置
+Please refer to [Grid R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/grid_rcnn) for details.
-orig yolov5s: 37.0@mAP0.5...0.9 56.2@mAP0.
-mmdetection: 36.6@mAP0.5...0.9 56.5@mAP0.5
+### GHM
-看来不是letterresize问题,差别几乎没有。剩下差距的0.4个点就不清楚了。
+Please refer to [GHM](https://github.com/open-mmlab/mmdetection/blob/master/configs/ghm) for details.
+### GCNet
+Please refer to [GCNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/gcnet) for details.
-其余模型: 测试参数为letterresize模式,且配置为:
-```python
- test_cfg = dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.0000001,
- conf_thr=0.001,
- nms=dict(type='nms', iou_thr=0.6),
- max_per_img=300)
-```
+### HRNet
+
+Please refer to [HRNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/hrnet) for details.
+
+### Mask Scoring R-CNN
+
+Please refer to [Mask Scoring R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/ms_rcnn) for details.
+
+### Train from Scratch
+
+Please refer to [Rethinking ImageNet Pre-training](https://github.com/open-mmlab/mmdetection/blob/master/configs/scratch) for details.
+
+### NAS-FPN
+
+Please refer to [NAS-FPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/nas_fpn) for details.
+
+### ATSS
+
+Please refer to [ATSS](https://github.com/open-mmlab/mmdetection/blob/master/configs/atss) for details.
+
+### FSAF
+
+Please refer to [FSAF](https://github.com/open-mmlab/mmdetection/blob/master/configs/fsaf) for details.
+
+### RegNetX
+
+Please refer to [RegNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet) for details.
+
+### Res2Net
+
+Please refer to [Res2Net](https://github.com/open-mmlab/mmdetection/blob/master/configs/res2net) for details.
+
+### GRoIE
+
+Please refer to [GRoIE](https://github.com/open-mmlab/mmdetection/blob/master/configs/groie) for details.
+
+### Dynamic R-CNN
+
+Please refer to [Dynamic R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/dynamic_rcnn) for details.
+
+### PointRend
+
+Please refer to [PointRend](https://github.com/open-mmlab/mmdetection/blob/master/configs/point_rend) for details.
+
+### DetectoRS
+
+Please refer to [DetectoRS](https://github.com/open-mmlab/mmdetection/blob/master/configs/detectors) for details.
+
+### Generalized Focal Loss
+
+Please refer to [Generalized Focal Loss](https://github.com/open-mmlab/mmdetection/blob/master/configs/gfl) for details.
+### CornerNet
-orig yolov5m: 44.3@mAP0.5...0.9 63.2@mAP0.5
-mmdetection: 43.9@mAP0.5...0.9 63.4@mAP0.5
+Please refer to [CornerNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/cornernet) for details.
+### YOLOv3
+Please refer to [YOLOv3](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolo) for details.
-orig yolov5l: 47.7@mAP0.5...0.9 66.5@mAP0.5
-mmdetection: 47.1@mAP0.5...0.9 66.2@mAP0.5
+### PAA
+Please refer to [PAA](https://github.com/open-mmlab/mmdetection/blob/master/configs/paa) for details.
+### SABL
-orig yolov5x: 49.2@mAP0.5...0.9 67.7@mAP0.5
-mmdetection: 48.6@mAP0.5...0.9 67.6@mAP0.5
+Please refer to [SABL](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl) for details.
+
+### CentripetalNet
+
+Please refer to [CentripetalNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/centripetalnet) for details.
+
+### ResNeSt
+
+Please refer to [ResNeSt](https://github.com/open-mmlab/mmdetection/blob/master/configs/resnest) for details.
+
+### DETR
+
+Please refer to [DETR](https://github.com/open-mmlab/mmdetection/blob/master/configs/detr) for details.
+
+### Deformable DETR
+
+Please refer to [Deformable DETR](https://github.com/open-mmlab/mmdetection/blob/master/configs/deformable_detr) for details.
+
+### AutoAssign
+
+Please refer to [AutoAssign](https://github.com/open-mmlab/mmdetection/blob/master/configs/autoassign) for details.
+
+### YOLOF
+
+Please refer to [YOLOF](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolof) for details.
+
+
+### Seesaw Loss
+
+Please refer to [Seesaw Loss](https://github.com/open-mmlab/mmdetection/blob/master/configs/seesaw_loss) for details.
+
+### CenterNet
+
+Please refer to [CenterNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/centernet) for details.
+
+### Other datasets
+
+We also benchmark some methods on [PASCAL VOC](https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc), [Cityscapes](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes) and [WIDER FACE](https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face).
+
+### Pre-trained Models
+
+We also train [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn) and [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn) using ResNet-50 and [RegNetX-3.2G](https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet) with multi-scale training and longer schedules. These models serve as strong pre-trained models for downstream tasks for convenience.
+
+## Speed benchmark
+
+### Training Speed benchmark
+
+We provide [analyze_logs.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py) to get average time of iteration in training. You can find examples in [Log Analysis](https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis).
+
+We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from [detectron2](https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/)).
+For mmdetection, we benchmark with [mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py), which should have the same setting with [mask_rcnn_R_50_FPN_noaug_1x.yaml](https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml) of detectron2.
+We also provide the [checkpoint](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth) and [training log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json) for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.
+
+| Implementation | Throughput (img/s) |
+| -------------------------------------------------------------------------------------- | ------------------ |
+| [Detectron2](https://github.com/facebookresearch/detectron2) | 62 |
+| [MMDetection](https://github.com/open-mmlab/mmdetection) | 61 |
+| [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/) | 53 |
+| [tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) | 50 |
+| [simpledet](https://github.com/TuSimple/simpledet/) | 39 |
+| [Detectron](https://github.com/facebookresearch/Detectron) | 19 |
+| [matterport/Mask_RCNN](https://github.com/matterport/Mask_RCNN/) | 14 |
+
+### Inference Speed Benchmark
+
+We provide [benchmark.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py) to benchmark the inference latency.
+The script benchmarkes the model with 2000 images and calculates the average time ignoring first 5 times. You can change the output log interval (defaults: 50) by setting `LOG-INTERVAL`.
+
+```shell
+python toools/benchmark.py ${CONFIG} ${CHECKPOINT} [--log-interval $[LOG-INTERVAL]] [--fuse-conv-bn]
+```
+The latency of all models in our model zoo is benchmarked without setting `fuse-conv-bn`, you can get a lower latency by setting it.
-再次仔细检查,发现letterresize虽然是用了,但是其输入shape是自适应的,其保证了训练和测试的数据处理逻辑一样(除了mosaic逻辑外)也就是说yolov5的
-测试模式下,每个batch内部的shape是不一样的。这个才是造成最终差异的原因。
+## Comparison with Detectron2
-而在detertor代码里面,是直接调用letterresize,而输入shape是指定的,所以才会找出
-我们在对某一张图进行demo 测试时候,结果完全相同,但是test代码时候mAP不一致。
+We compare mmdetection with [Detectron2](https://github.com/facebookresearch/detectron2.git) in terms of speed and performance.
+We use the commit id [185c27e](https://github.com/facebookresearch/detectron2/tree/185c27e4b4d2d4c68b5627b3765420c6d7f5a659)(30/4/2020) of detectron.
+For fair comparison, we install and run both frameworks on the same machine.
+### Hardware
+- 8 NVIDIA Tesla V100 (32G) GPUs
+- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
-yolov5采用dataloader进行测试时候,实际上是有自适应的,虽然你设置的是640的输入,其流程是:
+### Software environment
-1. 遍历所有验证集图片的shape,保存起来
-2. 开启Rectangular模式,对所有shape按照h/w比例从小到大排序
-3. 计算所有验证集,一共可以构成多少个batch,然后对前面排序后的shape进行连续截取操作,并且考虑h/w大于1和小于1的场景,
-因为h/w不同,pad的方向也不同,保存每个batch内部的shape比例都差不多
-4. 将每个batch内部的shape值转化为指定的图片大小比例,例如打算网络预测最大不超过640,那么所有shape都要不大于640
-5. 对batch内部图片进行letterbox操作,测试或者训练时候,不开启minimum rectangle操作。也就是输出shape一定等于指定的shape。这样可以保证
-每个batch内部输出的图片shape完全相同
+- Python 3.7
+- PyTorch 1.4
+- CUDA 10.1
+- CUDNN 7.6.03
+- NCCL 2.4.08
+### Performance
-而mmdetection中test时候实现的逻辑是:
-1. 将每张图片LetterResize到640x640(输出不一定是640x640)
-2. 将图片shape pad到32的整数倍,右下pad
-3. 在collate函数中将一个batch内部的图片全部右下pad到当前batch最大的w和h,变成相同shape
+| Type | Lr schd | Detectron2 | mmdetection | Download |
+| -------------------------------------------------------------------------------------------------------------------------------------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------- | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py) | 1x | [37.9](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml) | 38.0 | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-5324cff8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco_20200429_234554.log.json) |
+| [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py) | 1x | [38.6 & 35.2](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml) | 38.8 & 35.4 | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco-dbecf295.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco_20200430_054239.log.json) |
+| [Retinanet](https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_1x_coco.py) | 1x | [36.5](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml) | 37.0 | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/retinanet_r50_caffe_fpn_mstrain_1x_coco/retinanet_r50_caffe_fpn_mstrain_1x_coco-586977a0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/retinanet_r50_caffe_fpn_mstrain_1x_coco/retinanet_r50_caffe_fpn_mstrain_1x_coco_20200430_014748.log.json) |
-可以看出yolov5这种设置会更好一点。应该就是这个差异导致的mAP不一样。
+### Training Speed
+The training speed is measure with s/iter. The lower, the better.
-关于yolov5中心点解码问题的分析:
-yolov5中是:
-x_center_pred = (pred_bboxes[..., 0] * 2. - 0.5 + grid[:, 0]) * stride # xy
-y_center_pred = (pred_bboxes[..., 1] * 2. - 0.5 + grid[:, 1]) * stride # xy
+| Type | Detectron2 | mmdetection |
+| ------------ | ---------- | ----------- |
+| Faster R-CNN | 0.210 | 0.216 |
+| Mask R-CNN | 0.261 | 0.265 |
+| Retinanet | 0.200 | 0.205 |
-pred_bboxes的xy是相对网格左上角的偏移,而mmdetection中anchor是相对网格中心,以x方向为例
- (x*2-0.5+grid_x)*s
-= (x*2-0.5)*s+grid_x*s # yolov5
-= (x*2-0.5)*s+(xcenter/s-0.5)*s
-= (x-0.5)*2*s+xcenter # mmdetection
+### Inference Speed
+The inference speed is measured with fps (img/s) on a single GPU, the higher, the better.
+To be consistent with Detectron2, we report the pure inference speed (without the time of data loading).
+For Mask R-CNN, we exclude the time of RLE encoding in post-processing.
+We also include the officially reported speed in the parentheses, which is slightly higher
+than the results tested on our server due to differences of hardwares.
-关于yolov4的scale_xy,中心点解码问题的分析:
-yolov4中是:
-x_center_pred = (pred_bboxes[..., 0] * self.scale_x_y - 0.5 * (self.scale_x_y - 1) + grid[:, 0]) * stride # xy
+| Type | Detectron2 | mmdetection |
+| ------------ | ----------- | ----------- |
+| Faster R-CNN | 25.6 (26.3) | 22.2 |
+| Mask R-CNN | 22.5 (23.3) | 19.6 |
+| Retinanet | 17.8 (18.2) | 20.6 |
-pred_bboxes的xy是相对网格左上角的偏移,而mmdetection中anchor是相对网格中心,以x方向为例
+### Training memory
- (x*1.05-0.5(1.05-1)+grid)*s
-= (x*1.05-0.5(1.05-1))*s+grid_x*s
-= (x*1.05-0.5(1.05-1))*s+(xcenter/s-0.5)*s
-= (x*1.05-0.5(1.05-1)-0.5)*s+xcenter
\ No newline at end of file
+| Type | Detectron2 | mmdetection |
+| ------------ | ---------- | ----------- |
+| Faster R-CNN | 3.0 | 3.8 |
+| Mask R-CNN | 3.4 | 3.9 |
+| Retinanet | 3.9 | 3.4 |
diff --git a/docs/projects.md b/docs/projects.md
new file mode 100644
index 00000000..5b7c240f
--- /dev/null
+++ b/docs/projects.md
@@ -0,0 +1,46 @@
+# Projects based on MMDetection
+
+There are many projects built upon MMDetection.
+We list some of them as examples of how to extend MMDetection for your own projects.
+Pull requests are also welcomed.
+
+## Projects as an extension
+
+Some projects extend the boundary of MMDetection for deployment or other research fields.
+They reveal the potential of what MMDetection can do. We list several of them as below.
+
+- [OTEDetection](https://github.com/opencv/mmdetection): OpenVINO training extensions for object detection.
+- [MMDetection3d](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
+
+## Projects of papers
+
+There are also projects released with papers.
+Some of the papers are published in top-tier conferences (CVPR, ICCV, and ECCV), the others are also highly influential.
+To make this list also a reference for the community to develop and compare new object detection algorithms, we list them following the time order of top-tier conferences.
+Methods already supported and maintained by MMDetection are not listed.
+
+- Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax, CVPR2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf)[[github]](https://github.com/FishYuLi/BalancedGroupSoftmax)
+- Coherent Reconstruction of Multiple Humans from a Single Image, CVPR2020. [[paper]](https://jiangwenpl.github.io/multiperson/)[[github]](https://github.com/JiangWenPL/multiperson)
+- Look-into-Object: Self-supervised Structure Modeling for Object Recognition, CVPR 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Look-Into-Object_Self-Supervised_Structure_Modeling_for_Object_Recognition_CVPR_2020_paper.pdf)[[github]](https://github.com/JDAI-CV/LIO)
+- Video Panoptic Segmentation, CVPR2020. [[paper]](https://arxiv.org/abs/2006.11339)[[github]](https://github.com/mcahny/vps)
+- D2Det: Towards High Quality Object Detection and Instance Segmentation, CVPR2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/html/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.html)[[github]](https://github.com/JialeCao001/D2Det)
+- CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2003.09119)[[github]](https://github.com/KiveeDong/CentripetalNet)
+- Learning a Unified Sample Weighting Network for Object Detection, CVPR 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/html/Cai_Learning_a_Unified_Sample_Weighting_Network_for_Object_Detection_CVPR_2020_paper.html)[[github]](https://github.com/caiqi/sample-weighting-network)
+- Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2005.03101) [[github]](https://github.com/jshilong/SEPC)
+- Revisiting the Sibling Head in Object Detector, CVPR2020. [[paper]](https://arxiv.org/abs/2003.07540)[[github]](https://github.com/Sense-X/TSD)
+- PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [[paper]](https://arxiv.org/abs/1909.13226)[[github]](https://github.com/xieenze/PolarMask)
+- Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2003.11818)[[github]](https://github.com/ggjy/HitDet.pytorch)
+- ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [[paper]](https://arxiv.org/abs/2001.00281)[[github]](https://github.com/amirgholami/ZeroQ)
+- CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [[paper]](https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf)[[github]](https://github.com/VDIGPKU/CBNet)
+- RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020. [[paper]](https://arxiv.org/abs/1912.05070)[[github]](https://github.com/wangsr126/RDSNet)
+- Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [[paper]](https://arxiv.org/abs/1909.00700)[[github]](https://github.com/ZJULearning/ttfnet)
+- Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019. [[paper]](https://arxiv.org/abs/1909.06720)[[github]](https://github.com/thangvubk/Cascade-RPN)
+- Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf)[[github]](https://github.com/chanyn/Reasoning-RCNN)
+- Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [[paper]](https://arxiv.org/abs/1812.00155)[[github]](https://github.com/dingjiansw101/AerialDetection)
+- SOLO: Segmenting Objects by Locations. [[paper]](https://arxiv.org/abs/1912.04488)[[github]](https://github.com/WXinlong/SOLO)
+- SOLOv2: Dynamic, Faster and Stronger. [[paper]](https://arxiv.org/abs/2003.10152)[[github]](https://github.com/WXinlong/SOLO)
+- Dense Peppoints: Representing Visual Objects with Dense Point Sets. [[paper]](https://arxiv.org/abs/1912.11473)[[github]](https://github.com/justimyhxu/Dense-RepPoints)
+- IterDet: Iterative Scheme for Object Detection in Crowded Environments. [[paper]](https://arxiv.org/abs/2005.05708)[[github]](https://github.com/saic-vul/iterdet)
+- Cross-Iteration Batch Normalization. [[paper]](https://arxiv.org/abs/2002.05712)[[github]](https://github.com/Howal/Cross-iterationBatchNorm)
+- Generalizable Pedestrian Detection: The Elephant In The Room, CVPR2021. [[paper]](https://arxiv.org/abs/2003.08799)[[github]](https://github.com/hasanirtiza/Pedestron)
+- A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection, NeurIPS2020 [[paper]](https://arxiv.org/abs/2009.13592)[[github]](https://github.com/kemaloksuz/aLRPLoss)
diff --git a/docs/robustness_benchmarking.md b/docs/robustness_benchmarking.md
new file mode 100644
index 00000000..5be16dfa
--- /dev/null
+++ b/docs/robustness_benchmarking.md
@@ -0,0 +1,110 @@
+# Corruption Benchmarking
+
+## Introduction
+
+We provide tools to test object detection and instance segmentation models on the image corruption benchmark defined in [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484).
+This page provides basic tutorials how to use the benchmark.
+
+```latex
+@article{michaelis2019winter,
+ title={Benchmarking Robustness in Object Detection:
+ Autonomous Driving when Winter is Coming},
+ author={Michaelis, Claudio and Mitzkus, Benjamin and
+ Geirhos, Robert and Rusak, Evgenia and
+ Bringmann, Oliver and Ecker, Alexander S. and
+ Bethge, Matthias and Brendel, Wieland},
+ journal={arXiv:1907.07484},
+ year={2019}
+}
+```
+
+
+
+## About the benchmark
+
+To submit results to the benchmark please visit the [benchmark homepage](https://github.com/bethgelab/robust-detection-benchmark)
+
+The benchmark is modelled after the [imagenet-c benchmark](https://github.com/hendrycks/robustness) which was originally
+published in [Benchmarking Neural Network Robustness to Common Corruptions and Perturbations](https://arxiv.org/abs/1903.12261) (ICLR 2019) by Dan Hendrycks and Thomas Dietterich.
+
+The image corruption functions are included in this library but can be installed separately using:
+
+```shell
+pip install imagecorruptions
+```
+
+Compared to imagenet-c a few changes had to be made to handle images of arbitrary size and greyscale images.
+We also modfied the 'motion blur' and 'snow' corruptions to remove dependency from a linux specific library,
+which would have to be installed separately otherwise. For details please refer to the [imagecorruptions repository](https://github.com/bethgelab/imagecorruptions).
+
+## Inference with pretrained models
+
+We provide a testing script to evaluate a models performance on any combination of the corruptions provided in the benchmark.
+
+### Test a dataset
+
+- [x] single GPU testing
+- [ ] multiple GPU testing
+- [ ] visualize detection results
+
+You can use the following commands to test a models performance under the 15 corruptions used in the benchmark.
+
+```shell
+# single-gpu testing
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
+```
+
+Alternatively different group of corruptions can be selected.
+
+```shell
+# noise
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions noise
+
+# blur
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions blur
+
+# wetaher
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions weather
+
+# digital
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions digital
+```
+
+Or a costom set of corruptions e.g.:
+
+```shell
+# gaussian noise, zoom blur and snow
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions gaussian_noise zoom_blur snow
+```
+
+Finally the corruption severities to evaluate can be chosen.
+Severity 0 corresponds to clean data and the effect increases from 1 to 5.
+
+```shell
+# severity 1
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 1
+
+# severities 0,2,4
+python tools/analysis_tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 0 2 4
+```
+
+## Results for modelzoo models
+
+The results on COCO 2017val are shown in the below table.
+
+Model | Backbone | Style | Lr schd | box AP clean | box AP corr. | box % | mask AP clean | mask AP corr. | mask % |
+:-----:|:---------:|:-------:|:-------:|:------------:|:------------:|:-----:|:-------------:|:-------------:|:------:|
+Faster R-CNN | R-50-FPN | pytorch | 1x | 36.3 | 18.2 | 50.2 | - | - | - |
+Faster R-CNN | R-101-FPN | pytorch | 1x | 38.5 | 20.9 | 54.2 | - | - | - |
+Faster R-CNN | X-101-32x4d-FPN | pytorch |1x | 40.1 | 22.3 | 55.5 | - | - | - |
+Faster R-CNN | X-101-64x4d-FPN | pytorch |1x | 41.3 | 23.4 | 56.6 | - | - | - |
+Faster R-CNN | R-50-FPN-DCN | pytorch | 1x | 40.0 | 22.4 | 56.1 | - | - | - |
+Faster R-CNN | X-101-32x4d-FPN-DCN | pytorch | 1x | 43.4 | 26.7 | 61.6 | - | - | - |
+Mask R-CNN | R-50-FPN | pytorch | 1x | 37.3 | 18.7 | 50.1 | 34.2 | 16.8 | 49.1 |
+Mask R-CNN | R-50-FPN-DCN | pytorch | 1x | 41.1 | 23.3 | 56.7 | 37.2 | 20.7 | 55.7 |
+Cascade R-CNN | R-50-FPN | pytorch | 1x | 40.4 | 20.1 | 49.7 | - | - | - |
+Cascade Mask R-CNN | R-50-FPN | pytorch | 1x| 41.2 | 20.7 | 50.2 | 35.7 | 17.6 | 49.3 |
+RetinaNet | R-50-FPN | pytorch | 1x | 35.6 | 17.8 | 50.1 | - | - | - |
+Hybrid Task Cascade | X-101-64x4d-FPN-DCN | pytorch | 1x | 50.6 | 32.7 | 64.7 | 43.8 | 28.1 | 64.0 |
+
+Results may vary slightly due to the stochastic application of the corruptions.
diff --git a/docs/stat.py b/docs/stat.py
new file mode 100755
index 00000000..9625c62e
--- /dev/null
+++ b/docs/stat.py
@@ -0,0 +1,64 @@
+#!/usr/bin/env python
+import functools as func
+import glob
+import os.path as osp
+import re
+
+import numpy as np
+
+url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/master/'
+
+files = sorted(glob.glob('../configs/*/README.md'))
+
+stats = []
+titles = []
+num_ckpts = 0
+
+for f in files:
+ url = osp.dirname(f.replace('../', url_prefix))
+
+ with open(f, 'r') as content_file:
+ content = content_file.read()
+
+ title = content.split('\n')[0].replace('# ', '').strip()
+ ckpts = set(x.lower().strip()
+ for x in re.findall(r'\[model\]\((https?.*)\)', content))
+
+ if len(ckpts) == 0:
+ continue
+
+ _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)]
+ assert len(_papertype) > 0
+ papertype = _papertype[0]
+
+ paper = set([(papertype, title)])
+
+ titles.append(title)
+ num_ckpts += len(ckpts)
+
+ statsmsg = f"""
+\t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts)
+"""
+ stats.append((paper, ckpts, statsmsg))
+
+allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats])
+msglist = '\n'.join(x for _, _, x in stats)
+
+papertypes, papercounts = np.unique([t for t, _ in allpapers],
+ return_counts=True)
+countstr = '\n'.join(
+ [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
+
+modelzoo = f"""
+# Model Zoo Statistics
+
+* Number of papers: {len(set(titles))}
+{countstr}
+
+* Number of checkpoints: {num_ckpts}
+
+{msglist}
+"""
+
+with open('modelzoo_statistics.md', 'w') as f:
+ f.write(modelzoo)
diff --git a/docs/tutorials/config.md b/docs/tutorials/config.md
new file mode 100644
index 00000000..449a42ca
--- /dev/null
+++ b/docs/tutorials/config.md
@@ -0,0 +1,532 @@
+# Tutorial 1: Learn about Configs
+
+We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
+If you wish to inspect the config file, you may run `python tools/misc/print_config.py /PATH/TO/CONFIG` to see the complete config.
+
+## Modify config through script arguments
+
+When submitting jobs using "tools/train.py" or "tools/test.py", you may specify `--cfg-options` to in-place modify the config.
+
+- Update config keys of dict chains.
+
+ The config options can be specified following the order of the dict keys in the original config.
+ For example, `--cfg-options model.backbone.norm_eval=False` changes the all BN modules in model backbones to `train` mode.
+
+- Update keys inside a list of configs.
+
+ Some config dicts are composed as a list in your config. For example, the training pipeline `data.train.pipeline` is normally a list
+ e.g. `[dict(type='LoadImageFromFile'), ...]`. If you want to change `'LoadImageFromFile'` to `'LoadImageFromWebcam'` in the pipeline,
+ you may specify `--cfg-options data.train.pipeline.0.type=LoadImageFromWebcam`.
+
+- Update values of list/tuples.
+
+ If the value to be updated is a list or a tuple. For example, the config file normally sets `workflow=[('train', 1)]`. If you want to
+ change this key, you may specify `--cfg-options workflow="[(train,1),(val,1)]"`. Note that the quotation mark \" is necessary to
+ support list/tuple data types, and that **NO** white space is allowed inside the quotation marks in the specified value.
+
+## Config File Structure
+
+There are 4 basic component types under `config/_base_`, dataset, model, schedule, default_runtime.
+Many methods could be easily constructed with one of each like Faster R-CNN, Mask R-CNN, Cascade R-CNN, RPN, SSD.
+The configs that are composed by components from `_base_` are called _primitive_.
+
+For all configs under the same folder, it is recommended to have only **one** _primitive_ config. All other configs should inherit from the _primitive_ config. In this way, the maximum of inheritance level is 3.
+
+For easy understanding, we recommend contributors to inherit from existing methods.
+For example, if some modification is made base on Faster R-CNN, user may first inherit the basic Faster R-CNN structure by specifying `_base_ = ../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py`, then modify the necessary fields in the config files.
+
+If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder `xxx_rcnn` under `configs`,
+
+Please refer to [mmcv](https://mmcv.readthedocs.io/en/latest/utils.html#config) for detailed documentation.
+
+## Config Name Style
+
+We follow the below style to name config files. Contributors are advised to follow the same style.
+
+```
+{model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_{schedule}_{dataset}
+```
+
+`{xxx}` is required field and `[yyy]` is optional.
+
+- `{model}`: model type like `faster_rcnn`, `mask_rcnn`, etc.
+- `[model setting]`: specific setting for some model, like `without_semantic` for `htc`, `moment` for `reppoints`, etc.
+- `{backbone}`: backbone type like `r50` (ResNet-50), `x101` (ResNeXt-101).
+- `{neck}`: neck type like `fpn`, `pafpn`, `nasfpn`, `c4`.
+- `[norm_setting]`: `bn` (Batch Normalization) is used unless specified, other norm layer type could be `gn` (Group Normalization), `syncbn` (Synchronized Batch Normalization).
+ `gn-head`/`gn-neck` indicates GN is applied in head/neck only, while `gn-all` means GN is applied in the entire model, e.g. backbone, neck, head.
+- `[misc]`: miscellaneous setting/plugins of model, e.g. `dconv`, `gcb`, `attention`, `albu`, `mstrain`.
+- `[gpu x batch_per_gpu]`: GPUs and samples per GPU, `8x2` is used by default.
+- `{schedule}`: training schedule, options are `1x`, `2x`, `20e`, etc.
+ `1x` and `2x` means 12 epochs and 24 epochs respectively.
+ `20e` is adopted in cascade models, which denotes 20 epochs.
+ For `1x`/`2x`, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs.
+ For `20e`, initial learning rate decays by a factor of 10 at the 16th and 19th epochs.
+- `{dataset}`: dataset like `coco`, `cityscapes`, `voc_0712`, `wider_face`.
+
+## Deprecated train_cfg/test_cfg
+
+The `train_cfg` and `test_cfg` are deprecated in config file, please specify them in the model config. The original config structure is as below.
+
+```python
+# deprecated
+model = dict(
+ type=...,
+ ...
+)
+train_cfg=dict(...)
+test_cfg=dict(...)
+```
+
+The migration example is as below.
+
+```python
+# recommended
+model = dict(
+ type=...,
+ ...
+ train_cfg=dict(...),
+ test_cfg=dict(...),
+)
+```
+
+## An Example of Mask R-CNN
+
+To help the users have a basic idea of a complete config and the modules in a modern detection system,
+we make brief comments on the config of Mask R-CNN using ResNet50 and FPN as the following.
+For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.
+
+```python
+model = dict(
+ type='MaskRCNN', # The name of detector
+ pretrained=
+ 'torchvision://resnet50', # The ImageNet pretrained backbone to be loaded
+ backbone=dict( # The config of backbone
+ type='ResNet', # The type of the backbone, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py#L288 for more details.
+ depth=50, # The depth of backbone, usually it is 50 or 101 for ResNet and ResNext backbones.
+ num_stages=4, # Number of stages of the backbone.
+ out_indices=(0, 1, 2, 3), # The index of output feature maps produced in each stages
+ frozen_stages=1, # The weights in the first 1 stage are fronzen
+ norm_cfg=dict( # The config of normalization layers.
+ type='BN', # Type of norm layer, usually it is BN or GN
+ requires_grad=True), # Whether to train the gamma and beta in BN
+ norm_eval=True, # Whether to freeze the statistics in BN
+ style='pytorch'), # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
+ neck=dict(
+ type='FPN', # The neck of detector is FPN. We also support 'NASFPN', 'PAFPN', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/fpn.py#L10 for more details.
+ in_channels=[256, 512, 1024, 2048], # The input channels, this is consistent with the output channels of backbone
+ out_channels=256, # The output channels of each level of the pyramid feature map
+ num_outs=5), # The number of output scales
+ rpn_head=dict(
+ type='RPNHead', # The type of RPN head is 'RPNHead', we also support 'GARPNHead', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/rpn_head.py#L12 for more details.
+ in_channels=256, # The input channels of each input feature map, this is consistent with the output channels of neck
+ feat_channels=256, # Feature channels of convolutional layers in the head.
+ anchor_generator=dict( # The config of anchor generator
+ type='AnchorGenerator', # Most of methods use AnchorGenerator, SSD Detectors uses `SSDAnchorGenerator`. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/anchor/anchor_generator.py#L10 for more details
+ scales=[8], # Basic scale of the anchor, the area of the anchor in one position of a feature map will be scale * base_sizes
+ ratios=[0.5, 1.0, 2.0], # The ratio between height and width.
+ strides=[4, 8, 16, 32, 64]), # The strides of the anchor generator. This is consistent with the FPN feature strides. The strides will be taken as base_sizes if base_sizes is not set.
+ bbox_coder=dict( # Config of box coder to encode and decode the boxes during training and testing
+ type='DeltaXYWHBBoxCoder', # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9 for more details.
+ target_means=[0.0, 0.0, 0.0, 0.0], # The target means used to encode and decode boxes
+ target_stds=[1.0, 1.0, 1.0, 1.0]), # The standard variance used to encode and decode boxes
+ loss_cls=dict( # Config of loss function for the classification branch
+ type='CrossEntropyLoss', # Type of loss for classification branch, we also support FocalLoss etc.
+ use_sigmoid=True, # RPN usually perform two-class classification, so it usually uses sigmoid function.
+ loss_weight=1.0), # Loss weight of the classification branch.
+ loss_bbox=dict( # Config of loss function for the regression branch.
+ type='L1Loss', # Type of loss, we also support many IoU Losses and smooth L1-loss, etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/smooth_l1_loss.py#L56 for implementation.
+ loss_weight=1.0)), # Loss weight of the regression branch.
+ roi_head=dict( # RoIHead encapsulates the second stage of two-stage/cascade detectors.
+ type='StandardRoIHead', # Type of the RoI head. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/standard_roi_head.py#L10 for implementation.
+ bbox_roi_extractor=dict( # RoI feature extractor for bbox regression.
+ type='SingleRoIExtractor', # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/roi_extractors/single_level.py#L10 for details.
+ roi_layer=dict( # Config of RoI Layer
+ type='RoIAlign', # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/roi_align/roi_align.py#L79 for details.
+ output_size=7, # The output size of feature maps.
+ sampling_ratio=0), # Sampling ratio when extracting the RoI features. 0 means adaptive ratio.
+ out_channels=256, # output channels of the extracted feature.
+ featmap_strides=[4, 8, 16, 32]), # Strides of multi-scale feature maps. It should be consistent to the architecture of the backbone.
+ bbox_head=dict( # Config of box head in the RoIHead.
+ type='Shared2FCBBoxHead', # Type of the bbox head, Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177 for implementation details.
+ in_channels=256, # Input channels for bbox head. This is consistent with the out_channels in roi_extractor
+ fc_out_channels=1024, # Output feature channels of FC layers.
+ roi_feat_size=7, # Size of RoI features
+ num_classes=80, # Number of classes for classification
+ bbox_coder=dict( # Box coder used in the second stage.
+ type='DeltaXYWHBBoxCoder', # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods.
+ target_means=[0.0, 0.0, 0.0, 0.0], # Means used to encode and decode box
+ target_stds=[0.1, 0.1, 0.2, 0.2]), # Standard variance for encoding and decoding. It is smaller since the boxes are more accurate. [0.1, 0.1, 0.2, 0.2] is a conventional setting.
+ reg_class_agnostic=False, # Whether the regression is class agnostic.
+ loss_cls=dict( # Config of loss function for the classification branch
+ type='CrossEntropyLoss', # Type of loss for classification branch, we also support FocalLoss etc.
+ use_sigmoid=False, # Whether to use sigmoid.
+ loss_weight=1.0), # Loss weight of the classification branch.
+ loss_bbox=dict( # Config of loss function for the regression branch.
+ type='L1Loss', # Type of loss, we also support many IoU Losses and smooth L1-loss, etc.
+ loss_weight=1.0)), # Loss weight of the regression branch.
+ mask_roi_extractor=dict( # RoI feature extractor for bbox regression.
+ type='SingleRoIExtractor', # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor.
+ roi_layer=dict( # Config of RoI Layer that extracts features for instance segmentation
+ type='RoIAlign', # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported
+ output_size=14, # The output size of feature maps.
+ sampling_ratio=0), # Sampling ratio when extracting the RoI features.
+ out_channels=256, # Output channels of the extracted feature.
+ featmap_strides=[4, 8, 16, 32]), # Strides of multi-scale feature maps.
+ mask_head=dict( # Mask prediction head
+ type='FCNMaskHead', # Type of mask head, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21 for implementation details.
+ num_convs=4, # Number of convolutional layers in mask head.
+ in_channels=256, # Input channels, should be consistent with the output channels of mask roi extractor.
+ conv_out_channels=256, # Output channels of the convolutional layer.
+ num_classes=80, # Number of class to be segmented.
+ loss_mask=dict( # Config of loss function for the mask branch.
+ type='CrossEntropyLoss', # Type of loss used for segmentation
+ use_mask=True, # Whether to only train the mask in the correct class.
+ loss_weight=1.0)))) # Loss weight of mask branch.
+ train_cfg = dict( # Config of training hyperparameters for rpn and rcnn
+ rpn=dict( # Training config of rpn
+ assigner=dict( # Config of assigner
+ type='MaxIoUAssigner', # Type of assigner, MaxIoUAssigner is used for many common detectors. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
+ pos_iou_thr=0.7, # IoU >= threshold 0.7 will be taken as positive samples
+ neg_iou_thr=0.3, # IoU < threshold 0.3 will be taken as negative samples
+ min_pos_iou=0.3, # The minimal IoU threshold to take boxes as positive samples
+ match_low_quality=True, # Whether to match the boxes under low quality (see API doc for more details).
+ ignore_iof_thr=-1), # IoF threshold for ignoring bboxes
+ sampler=dict( # Config of positive/negative sampler
+ type='RandomSampler', # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
+ num=256, # Number of samples
+ pos_fraction=0.5, # The ratio of positive samples in the total samples.
+ neg_pos_ub=-1, # The upper bound of negative samples based on the number of positive samples.
+ add_gt_as_proposals=False), # Whether add GT as proposals after sampling.
+ allowed_border=-1, # The border allowed after padding for valid anchors.
+ pos_weight=-1, # The weight of positive samples during training.
+ debug=False), # Whether to set the debug mode
+ rpn_proposal=dict( # The config to generate proposals during training
+ nms_across_levels=False, # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
+ nms_pre=2000, # The number of boxes before NMS
+ nms_post=1000, # The number of boxes to be kept by NMS, Only work in `GARPNHead`.
+ max_per_img=1000, # The number of boxes to be kept after NMS.
+ nms=dict( # Config of nms
+ type='nms', #Type of nms
+ iou_threshold=0.7 # NMS threshold
+ ),
+ min_bbox_size=0), # The allowed minimal box size
+ rcnn=dict( # The config for the roi heads.
+ assigner=dict( # Config of assigner for second stage, this is different for that in rpn
+ type='MaxIoUAssigner', # Type of assigner, MaxIoUAssigner is used for all roi_heads for now. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
+ pos_iou_thr=0.5, # IoU >= threshold 0.5 will be taken as positive samples
+ neg_iou_thr=0.5, # IoU < threshold 0.5 will be taken as negative samples
+ min_pos_iou=0.5, # The minimal IoU threshold to take boxes as positive samples
+ match_low_quality=False, # Whether to match the boxes under low quality (see API doc for more details).
+ ignore_iof_thr=-1), # IoF threshold for ignoring bboxes
+ sampler=dict(
+ type='RandomSampler', # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
+ num=512, # Number of samples
+ pos_fraction=0.25, # The ratio of positive samples in the total samples.
+ neg_pos_ub=-1, # The upper bound of negative samples based on the number of positive samples.
+ add_gt_as_proposals=True
+ ), # Whether add GT as proposals after sampling.
+ mask_size=28, # Size of mask
+ pos_weight=-1, # The weight of positive samples during training.
+ debug=False)) # Whether to set the debug mode
+ test_cfg = dict( # Config for testing hyperparameters for rpn and rcnn
+ rpn=dict( # The config to generate proposals during testing
+ nms_across_levels=False, # Whether to do NMS for boxes across levels. Only work in `GARPNHead`, naive rpn does not support do nms cross levels.
+ nms_pre=1000, # The number of boxes before NMS
+ nms_post=1000, # The number of boxes to be kept by NMS, Only work in `GARPNHead`.
+ max_per_img=1000, # The number of boxes to be kept after NMS.
+ nms=dict( # Config of nms
+ type='nms', #Type of nms
+ iou_threshold=0.7 # NMS threshold
+ ),
+ min_bbox_size=0), # The allowed minimal box size
+ rcnn=dict( # The config for the roi heads.
+ score_thr=0.05, # Threshold to filter out boxes
+ nms=dict( # Config of nms in the second stage
+ type='nms', # Type of nms
+ iou_thr=0.5), # NMS threshold
+ max_per_img=100, # Max number of detections of each image
+ mask_thr_binary=0.5)) # Threshold of mask prediction
+dataset_type = 'CocoDataset' # Dataset type, this will be used to define the dataset
+data_root = 'data/coco/' # Root path of data
+img_norm_cfg = dict( # Image normalization config to normalize the input images
+ mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained backbone models
+ std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-trained backbone models
+ to_rgb=True
+) # The channel orders of image used to pre-training the pre-trained backbone models
+train_pipeline = [ # Training pipeline
+ dict(type='LoadImageFromFile'), # First pipeline to load images from file path
+ dict(
+ type='LoadAnnotations', # Second pipeline to load annotations for current image
+ with_bbox=True, # Whether to use bounding box, True for detection
+ with_mask=True, # Whether to use instance mask, True for instance segmentation
+ poly2mask=False), # Whether to convert the polygon mask to instance mask, set False for acceleration and to save memory
+ dict(
+ type='Resize', # Augmentation pipeline that resize the images and their annotations
+ img_scale=(1333, 800), # The largest scale of image
+ keep_ratio=True
+ ), # whether to keep the ratio between height and width.
+ dict(
+ type='RandomFlip', # Augmentation pipeline that flip the images and their annotations
+ flip_ratio=0.5), # The ratio or probability to flip
+ dict(
+ type='Normalize', # Augmentation pipeline that normalize the input images
+ mean=[123.675, 116.28, 103.53], # These keys are the same of img_norm_cfg since the
+ std=[58.395, 57.12, 57.375], # keys of img_norm_cfg are used here as arguments
+ to_rgb=True),
+ dict(
+ type='Pad', # Padding config
+ size_divisor=32), # The number the padded images should be divisible
+ dict(type='DefaultFormatBundle'), # Default format bundle to gather data in the pipeline
+ dict(
+ type='Collect', # Pipeline that decides which keys in the data should be passed to the detector
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'), # First pipeline to load images from file path
+ dict(
+ type='MultiScaleFlipAug', # An encapsulation that encapsulates the testing augmentations
+ img_scale=(1333, 800), # Decides the largest scale for testing, used for the Resize pipeline
+ flip=False, # Whether to flip images during testing
+ transforms=[
+ dict(type='Resize', # Use resize augmentation
+ keep_ratio=True), # Whether to keep the ratio between height and width, the img_scale set here will be suppressed by the img_scale set above.
+ dict(type='RandomFlip'), # Thought RandomFlip is added in pipeline, it is not used because flip=False
+ dict(
+ type='Normalize', # Normalization config, the values are from img_norm_cfg
+ mean=[123.675, 116.28, 103.53],
+ std=[58.395, 57.12, 57.375],
+ to_rgb=True),
+ dict(
+ type='Pad', # Padding config to pad images divisable by 32.
+ size_divisor=32),
+ dict(
+ type='ImageToTensor', # convert image to tensor
+ keys=['img']),
+ dict(
+ type='Collect', # Collect pipeline that collect necessary keys for testing.
+ keys=['img'])
+ ])
+]
+data = dict(
+ samples_per_gpu=2, # Batch size of a single GPU
+ workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
+ train=dict( # Train dataset config
+ type='CocoDataset', # Type of dataset, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py#L19 for details.
+ ann_file='data/coco/annotations/instances_train2017.json', # Path of annotation file
+ img_prefix='data/coco/train2017/', # Prefix of image path
+ pipeline=[ # pipeline, this is passed by the train_pipeline created before.
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ poly2mask=False),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(
+ type='Normalize',
+ mean=[123.675, 116.28, 103.53],
+ std=[58.395, 57.12, 57.375],
+ to_rgb=True),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(
+ type='Collect',
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
+ ]),
+ val=dict( # Validation dataset config
+ type='CocoDataset',
+ ann_file='data/coco/annotations/instances_val2017.json',
+ img_prefix='data/coco/val2017/',
+ pipeline=[ # Pipeline is passed by test_pipeline created before
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(
+ type='Normalize',
+ mean=[123.675, 116.28, 103.53],
+ std=[58.395, 57.12, 57.375],
+ to_rgb=True),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+ ]),
+ test=dict( # Test dataset config, modify the ann_file for test-dev/test submission
+ type='CocoDataset',
+ ann_file='data/coco/annotations/instances_val2017.json',
+ img_prefix='data/coco/val2017/',
+ pipeline=[ # Pipeline is passed by test_pipeline created before
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(
+ type='Normalize',
+ mean=[123.675, 116.28, 103.53],
+ std=[58.395, 57.12, 57.375],
+ to_rgb=True),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img'])
+ ])
+ ],
+ samples_per_gpu=2 # Batch size of a single GPU used in testing
+ ))
+evaluation = dict( # The config to build the evaluation hook, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7 for more details.
+ interval=1, # Evaluation interval
+ metric=['bbox', 'segm']) # Metrics used during evaluation
+optimizer = dict( # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
+ type='SGD', # Type of optimizers, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13 for more details
+ lr=0.02, # Learning rate of optimizers, see detail usages of the parameters in the documentaion of PyTorch
+ momentum=0.9, # Momentum
+ weight_decay=0.0001) # Weight decay of SGD
+optimizer_config = dict( # Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
+ grad_clip=None) # Most of the methods do not use gradient clip
+lr_config = dict( # Learning rate scheduler config used to register LrUpdater hook
+ policy='step', # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
+ warmup='linear', # The warmup policy, also support `exp` and `constant`.
+ warmup_iters=500, # The number of iterations for warmup
+ warmup_ratio=
+ 0.001, # The ratio of the starting learning rate used for warmup
+ step=[8, 11]) # Steps to decay the learning rate
+runner = dict(type='EpochBasedRunner', max_epochs=12) # Runner that runs the workflow in total max_epochs
+checkpoint_config = dict( # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
+ interval=1) # The save interval is 1
+log_config = dict( # config to register logger hook
+ interval=50, # Interval to print the log
+ hooks=[
+ # dict(type='TensorboardLoggerHook') # The Tensorboard logger is also supported
+ dict(type='TextLoggerHook')
+ ]) # The logger used to record the training process.
+dist_params = dict(backend='nccl') # Parameters to setup distributed training, the port can also be set.
+log_level = 'INFO' # The level of logging.
+load_from = None # load models as a pre-trained model from a given path. This will not resume training.
+resume_from = None # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
+workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 12 epochs according to the total_epochs.
+work_dir = 'work_dir' # Directory to save the model checkpoints and logs for the current experiments.
+```
+
+## FAQ
+
+### Ignore some fields in the base configs
+
+Sometimes, you may set `_delete_=True` to ignore some of fields in base configs.
+You may refer to [mmcv](https://mmcv.readthedocs.io/en/latest/utils.html#inherit-from-base-config-with-ignored-fields) for simple illustration.
+
+In MMDetection, for example, to change the backbone of Mask R-CNN with the following config.
+
+```python
+model = dict(
+ type='MaskRCNN',
+ pretrained='torchvision://resnet50',
+ backbone=dict(
+ type='ResNet',
+ depth=50,
+ num_stages=4,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=1,
+ norm_cfg=dict(type='BN', requires_grad=True),
+ norm_eval=True,
+ style='pytorch'),
+ neck=dict(...),
+ rpn_head=dict(...),
+ roi_head=dict(...))
+```
+
+`ResNet` and `HRNet` use different keywords to construct.
+
+```python
+_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ pretrained='open-mmlab://msra/hrnetv2_w32',
+ backbone=dict(
+ _delete_=True,
+ type='HRNet',
+ extra=dict(
+ stage1=dict(
+ num_modules=1,
+ num_branches=1,
+ block='BOTTLENECK',
+ num_blocks=(4, ),
+ num_channels=(64, )),
+ stage2=dict(
+ num_modules=1,
+ num_branches=2,
+ block='BASIC',
+ num_blocks=(4, 4),
+ num_channels=(32, 64)),
+ stage3=dict(
+ num_modules=4,
+ num_branches=3,
+ block='BASIC',
+ num_blocks=(4, 4, 4),
+ num_channels=(32, 64, 128)),
+ stage4=dict(
+ num_modules=3,
+ num_branches=4,
+ block='BASIC',
+ num_blocks=(4, 4, 4, 4),
+ num_channels=(32, 64, 128, 256)))),
+ neck=dict(...))
+```
+
+The `_delete_=True` would replace all old keys in `backbone` field with new keys.
+
+### Use intermediate variables in configs
+
+Some intermediate variables are used in the configs files, like `train_pipeline`/`test_pipeline` in datasets.
+It's worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate variables into corresponding fields again.
+For example, we would like to use multi scale strategy to train a Mask R-CNN. `train_pipeline`/`test_pipeline` are intermediate variable we would like modify.
+
+```python
+_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+ dict(
+ type='Resize',
+ img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
+ (1333, 768), (1333, 800)],
+ multiscale_mode="value",
+ keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+data = dict(
+ train=dict(pipeline=train_pipeline),
+ val=dict(pipeline=test_pipeline),
+ test=dict(pipeline=test_pipeline))
+```
+
+We first define the new `train_pipeline`/`test_pipeline` and pass them into `data`.
diff --git a/docs/tutorials/customize_dataset.md b/docs/tutorials/customize_dataset.md
new file mode 100644
index 00000000..d1e956d4
--- /dev/null
+++ b/docs/tutorials/customize_dataset.md
@@ -0,0 +1,487 @@
+# Tutorial 2: Customize Datasets
+
+## Support new data format
+
+To support a new data format, you can either convert them to existing formats (COCO format or PASCAL format) or directly convert them to the middle format. You could also choose to convert them offline (before training by a script) or online (implement a new dataset and do the conversion at training). In MMDetection, we recommend to convert the data into COCO formats and do the conversion offline, thus you only need to modify the config's data annotation paths and classes after the conversion of your data.
+
+### Reorganize new data formats to existing format
+
+The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).
+
+The annotation json files in COCO format has the following necessary keys:
+
+```python
+'images': [
+ {
+ 'file_name': 'COCO_val2014_000000001268.jpg',
+ 'height': 427,
+ 'width': 640,
+ 'id': 1268
+ },
+ ...
+],
+
+'annotations': [
+ {
+ 'segmentation': [[192.81,
+ 247.09,
+ ...
+ 219.03,
+ 249.06]], # if you have mask labels
+ 'area': 1035.749,
+ 'iscrowd': 0,
+ 'image_id': 1268,
+ 'bbox': [192.81, 224.8, 74.73, 33.43],
+ 'category_id': 16,
+ 'id': 42986
+ },
+ ...
+],
+
+'categories': [
+ {'id': 0, 'name': 'car'},
+ ]
+```
+
+There are three necessary keys in the json file:
+
+- `images`: contains a list of images with their informations like `file_name`, `height`, `width`, and `id`.
+- `annotations`: contains the list of instance annotations.
+- `categories`: contains the list of categories names and their ID.
+
+After the data pre-processing, there are two steps for users to train the customized new dataset with existing format (e.g. COCO format):
+
+1. Modify the config file for using the customized dataset.
+2. Check the annotations of the customized dataset.
+
+Here we give an example to show the above two steps, which uses a customized dataset of 5 classes with COCO format to train an existing Cascade MaskRCNN R50 FPN detector.
+
+#### 1. Modify the config file for using the customized dataset
+
+There are two aspects involved in the modification of config file:
+
+1. The `data` field. Specifically, you need to explicitly add the `classes` fields in `data.train`, `data.val` and `data.test`.
+2. The `num_classes` field in the `model` part. Explicitly over-write all the `num_classes` from default value (e.g. 80 in COCO) to your classes number.
+
+In `configs/my_custom_config.py`:
+
+```python
+
+# the new config inherits the base configs to highlight the necessary modification
+_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
+
+# 1. dataset settings
+dataset_type = 'CocoDataset'
+classes = ('a', 'b', 'c', 'd', 'e')
+data = dict(
+ samples_per_gpu=2,
+ workers_per_gpu=2,
+ train=dict(
+ type=dataset_type,
+ # explicitly add your class names to the field `classes`
+ classes=classes,
+ ann_file='path/to/your/train/annotation_data',
+ img_prefix='path/to/your/train/image_data'),
+ val=dict(
+ type=dataset_type,
+ # explicitly add your class names to the field `classes`
+ classes=classes,
+ ann_file='path/to/your/val/annotation_data',
+ img_prefix='path/to/your/val/image_data'),
+ test=dict(
+ type=dataset_type,
+ # explicitly add your class names to the field `classes`
+ classes=classes,
+ ann_file='path/to/your/test/annotation_data',
+ img_prefix='path/to/your/test/image_data'))
+
+# 2. model settings
+
+# explicitly over-write all the `num_classes` field from default 80 to 5.
+model = dict(
+ roi_head=dict(
+ bbox_head=[
+ dict(
+ type='Shared2FCBBoxHead',
+ # explicitly over-write all the `num_classes` field from default 80 to 5.
+ num_classes=5),
+ dict(
+ type='Shared2FCBBoxHead',
+ # explicitly over-write all the `num_classes` field from default 80 to 5.
+ num_classes=5),
+ dict(
+ type='Shared2FCBBoxHead',
+ # explicitly over-write all the `num_classes` field from default 80 to 5.
+ num_classes=5)],
+ # explicitly over-write all the `num_classes` field from default 80 to 5.
+ mask_head=dict(num_classes=5)))
+```
+
+#### 2. Check the annotations of the customized dataset
+
+Assuming your customized dataset is COCO format, make sure you have the correct annotations in the customized dataset:
+
+1. The length for `categories` field in annotations should exactly equal the tuple length of `classes` fields in your config, meaning the number of classes (e.g. 5 in this example).
+2. The `classes` fields in your config file should have exactly the same elements and the same order with the `name` in `categories` of annotations. MMDetection automatically maps the uncontinuous `id` in `categories` to the continuous label indices, so the string order of `name` in `categories` field affects the order of label indices. Meanwhile, the string order of `classes` in config affects the label text during visualization of predicted bounding boxes.
+3. The `category_id` in `annotations` field should be valid, i.e., all values in `category_id` should belong to `id` in `categories`.
+
+Here is a valid example of annotations:
+
+```python
+
+'annotations': [
+ {
+ 'segmentation': [[192.81,
+ 247.09,
+ ...
+ 219.03,
+ 249.06]], # if you have mask labels
+ 'area': 1035.749,
+ 'iscrowd': 0,
+ 'image_id': 1268,
+ 'bbox': [192.81, 224.8, 74.73, 33.43],
+ 'category_id': 16,
+ 'id': 42986
+ },
+ ...
+],
+
+# MMDetection automatically maps the uncontinuous `id` to the continuous label indices.
+'categories': [
+ {'id': 1, 'name': 'a'}, {'id': 3, 'name': 'b'}, {'id': 4, 'name': 'c'}, {'id': 16, 'name': 'd'}, {'id': 17, 'name': 'e'},
+ ]
+```
+
+We use this way to support CityScapes dataset. The script is in [cityscapes.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/dataset_converters/cityscapes.py) and we also provide the finetuning [configs](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes).
+
+**Note**
+
+1. For instance segmentation datasets, **MMDetection only supports evaluating mask AP of dataset in COCO format for now**.
+2. It is recommanded to convert the data offline before training, thus you can still use `CocoDataset` and only need to modify the path of annotations and the training classes.
+
+### Reorganize new data format to middle format
+
+It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
+Actually, we define a simple annotation format and all existing datasets are
+processed to be compatible with it, either online or offline.
+
+The annotation of a dataset is a list of dict, each dict corresponds to an image.
+There are 3 field `filename` (relative path), `width`, `height` for testing,
+and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields:
+`bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide
+annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore`
+to cover them.
+
+Here is an example.
+
+```python
+
+[
+ {
+ 'filename': 'a.jpg',
+ 'width': 1280,
+ 'height': 720,
+ 'ann': {
+ 'bboxes': (n, 4),
+ 'labels': (n, ),
+ 'bboxes_ignore': (k, 4),
+ 'labels_ignore': (k, ) (optional field)
+ }
+ },
+ ...
+]
+```
+
+There are two ways to work with custom datasets.
+
+- online conversion
+
+ You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods
+ `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`,
+ like [CocoDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py) and [VOCDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/voc.py).
+
+- offline conversion
+
+ You can convert the annotation format to the expected format above and save it to
+ a pickle or json file, like [pascal_voc.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/dataset_converters/pascal_voc.py).
+ Then you can simply use `CustomDataset`.
+
+### An example of customized dataset
+
+Assume the annotation is in a new format in text files.
+The bounding boxes annotations are stored in text file `annotation.txt` as the following
+
+```
+#
+000001.jpg
+1280 720
+2
+10 20 40 60 1
+20 40 50 60 2
+#
+000002.jpg
+1280 720
+3
+50 20 40 60 2
+20 40 30 45 2
+30 40 50 60 3
+```
+
+We can create a new dataset in `mmdet/datasets/my_dataset.py` to load the data.
+
+```python
+import mmcv
+import numpy as np
+
+from .builder import DATASETS
+from .custom import CustomDataset
+
+
+@DATASETS.register_module()
+class MyDataset(CustomDataset):
+
+ CLASSES = ('person', 'bicycle', 'car', 'motorcycle')
+
+ def load_annotations(self, ann_file):
+ ann_list = mmcv.list_from_file(ann_file)
+
+ data_infos = []
+ for i, ann_line in enumerate(ann_list):
+ if ann_line != '#':
+ continue
+
+ img_shape = ann_list[i + 2].split(' ')
+ width = int(img_shape[0])
+ height = int(img_shape[1])
+ bbox_number = int(ann_list[i + 3])
+
+ anns = ann_line.split(' ')
+ bboxes = []
+ labels = []
+ for anns in ann_list[i + 4:i + 4 + bbox_number]:
+ bboxes.append([float(ann) for ann in anns[:4]])
+ labels.append(int(anns[4]))
+
+ data_infos.append(
+ dict(
+ filename=ann_list[i + 1],
+ width=width,
+ height=height,
+ ann=dict(
+ bboxes=np.array(bboxes).astype(np.float32),
+ labels=np.array(labels).astype(np.int64))
+ ))
+
+ return data_infos
+
+ def get_ann_info(self, idx):
+ return self.data_infos[idx]['ann']
+
+```
+
+Then in the config, to use `MyDataset` you can modify the config as the following
+
+```python
+dataset_A_train = dict(
+ type='MyDataset',
+ ann_file = 'image_list.txt',
+ pipeline=train_pipeline
+)
+```
+
+## Customize datasets by dataset wrappers
+
+MMDetection also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training.
+Currently it supports to three dataset wrappers as below:
+
+- `RepeatDataset`: simply repeat the whole dataset.
+- `ClassBalancedDataset`: repeat dataset in a class balanced manner.
+- `ConcatDataset`: concat datasets.
+
+### Repeat dataset
+
+We use `RepeatDataset` as wrapper to repeat the dataset. For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following
+
+```python
+dataset_A_train = dict(
+ type='RepeatDataset',
+ times=N,
+ dataset=dict( # This is the original config of Dataset_A
+ type='Dataset_A',
+ ...
+ pipeline=train_pipeline
+ )
+ )
+```
+
+### Class balanced dataset
+
+We use `ClassBalancedDataset` as wrapper to repeat the dataset based on category
+frequency. The dataset to repeat needs to instantiate function `self.get_cat_ids(idx)`
+to support `ClassBalancedDataset`.
+For example, to repeat `Dataset_A` with `oversample_thr=1e-3`, the config looks like the following
+
+```python
+dataset_A_train = dict(
+ type='ClassBalancedDataset',
+ oversample_thr=1e-3,
+ dataset=dict( # This is the original config of Dataset_A
+ type='Dataset_A',
+ ...
+ pipeline=train_pipeline
+ )
+ )
+```
+
+You may refer to [source code](../../mmdet/datasets/dataset_wrappers.py) for details.
+
+### Concatenate dataset
+
+There are three ways to concatenate the dataset.
+
+1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.
+
+ ```python
+ dataset_A_train = dict(
+ type='Dataset_A',
+ ann_file = ['anno_file_1', 'anno_file_2'],
+ pipeline=train_pipeline
+ )
+ ```
+
+ If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately. To test the concatenated datasets as a whole, you can set `separate_eval=False` as below.
+
+ ```python
+ dataset_A_train = dict(
+ type='Dataset_A',
+ ann_file = ['anno_file_1', 'anno_file_2'],
+ separate_eval=False,
+ pipeline=train_pipeline
+ )
+ ```
+
+2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
+
+ ```python
+ dataset_A_train = dict()
+ dataset_B_train = dict()
+
+ data = dict(
+ imgs_per_gpu=2,
+ workers_per_gpu=2,
+ train = [
+ dataset_A_train,
+ dataset_B_train
+ ],
+ val = dataset_A_val,
+ test = dataset_A_test
+ )
+ ```
+
+ If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset separately.
+
+3. We also support to define `ConcatDataset` explicitly as the following.
+
+ ```python
+ dataset_A_val = dict()
+ dataset_B_val = dict()
+
+ data = dict(
+ imgs_per_gpu=2,
+ workers_per_gpu=2,
+ train=dataset_A_train,
+ val=dict(
+ type='ConcatDataset',
+ datasets=[dataset_A_val, dataset_B_val],
+ separate_eval=False))
+ ```
+
+ This manner allows users to evaluate all the datasets as a single one by setting `separate_eval=False`.
+
+**Note:**
+
+1. The option `separate_eval=False` assumes the datasets use `self.data_infos` during evaluation. Therefore, COCO datasets do not support this behavior since COCO datasets do not fully rely on `self.data_infos` for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not suggested.
+2. Evaluating `ClassBalancedDataset` and `RepeatDataset` is not supported thus evaluating concatenated datasets of these types is also not supported.
+
+A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.
+
+```python
+dataset_A_train = dict(
+ type='RepeatDataset',
+ times=N,
+ dataset=dict(
+ type='Dataset_A',
+ ...
+ pipeline=train_pipeline
+ )
+)
+dataset_A_val = dict(
+ ...
+ pipeline=test_pipeline
+)
+dataset_A_test = dict(
+ ...
+ pipeline=test_pipeline
+)
+dataset_B_train = dict(
+ type='RepeatDataset',
+ times=M,
+ dataset=dict(
+ type='Dataset_B',
+ ...
+ pipeline=train_pipeline
+ )
+)
+data = dict(
+ imgs_per_gpu=2,
+ workers_per_gpu=2,
+ train = [
+ dataset_A_train,
+ dataset_B_train
+ ],
+ val = dataset_A_val,
+ test = dataset_A_test
+)
+
+```
+
+## Modify Dataset Classes
+
+With existing dataset types, we can modify the class names of them to train subset of the annotations.
+For example, if you want to train only three classes of the current dataset,
+you can modify the classes of dataset.
+The dataset will filter out the ground truth boxes of other classes automatically.
+
+```python
+classes = ('person', 'bicycle', 'car')
+data = dict(
+ train=dict(classes=classes),
+ val=dict(classes=classes),
+ test=dict(classes=classes))
+```
+
+MMDetection V2.0 also supports to read the classes from a file, which is common in real applications.
+For example, assume the `classes.txt` contains the name of classes as the following.
+
+```
+person
+bicycle
+car
+```
+
+Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.
+
+```python
+classes = 'path/to/classes.txt'
+data = dict(
+ train=dict(classes=classes),
+ val=dict(classes=classes),
+ test=dict(classes=classes))
+```
+
+**Note**:
+
+- Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filter the empty GT images when `filter_empty_gt=True` and `test_mode=False`. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when `filter_empty_gt=True` and `test_mode=False`, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves.
+- Since the middle format only has box labels and does not contain the class names, when using `CustomDataset`, users cannot filter out the empty GT images through configs but only do this offline.
+- Please remember to modify the `num_classes` in the head when specifying `classes` in dataset. We implemented [NumClassCheckHook](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/utils.py) to check whether the numbers are consistent since v2.9.0(after PR#4508).
+- The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in the future (depends on the progress).
diff --git a/docs/tutorials/customize_losses.md b/docs/tutorials/customize_losses.md
new file mode 100644
index 00000000..c3e1ddd8
--- /dev/null
+++ b/docs/tutorials/customize_losses.md
@@ -0,0 +1,105 @@
+# Tutorial 6: Customize Losses
+
+MMDetection provides users with different loss functions. But the default configuration may be not applicable for different datasets or models, so users may want to modify a specific loss to adapt the new situation.
+
+This tutorial first elaborate the computation pipeline of losses, then give some instructions about how to modify each step. The modification can be categorized as tweaking and weighting.
+
+## Computation pipeline of a loss
+
+Given the input prediction and target, as well as the weights, a loss function maps the input tensor to the final loss scalar. The mapping can be divided into four steps:
+
+1. Get **element-wise** or sample-wise loss by the loss kernel function.
+
+2. Weighting the loss with a weight tensor **element-wisely**.
+
+3. Reduce the loss tensor to a **scalar**.
+
+4. Weighting the loss with a **scalar**.
+
+## Tweaking loss
+
+Tweaking a loss is more related with step 1, 3, 4, and most modifications can be specified in the config.
+Here we take [Focal Loss (FL)](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/focal_loss.py) as an example.
+The following code sniper are the construction method and config of FL respectively, they are actually one to one correspondence.
+
+```python
+@LOSSES.register_module()
+class FocalLoss(nn.Module):
+
+ def __init__(self,
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ reduction='mean',
+ loss_weight=1.0):
+```
+
+```python
+loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0)
+```
+
+### Tweaking hyper-parameters (step 1)
+
+`gamma` and `beta` are two hyper-parameters in the Focal Loss. Say if we want to change the value of `gamma` to be 1.5 and `alpha` to be 0.5, then we can specify them in the config as follows:
+
+```python
+loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=1.5,
+ alpha=0.5,
+ loss_weight=1.0)
+```
+
+### Tweaking the way of reduction (step 3)
+
+The default way of reduction is `mean` for FL. Say if we want to change the reduction from `mean` to `sum`, we can specify it in the config as follows:
+
+```python
+loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=1.0,
+ reduction='sum')
+```
+
+### Tweaking loss weight (step 4)
+
+The loss weight here is a scalar which controls the weight of different losses in multi-task learning, e.g. classification loss and regression loss. Say if we want to change to loss weight of classification loss to be 0.5, we can specify it in the config as follows:
+
+```python
+loss_cls=dict(
+ type='FocalLoss',
+ use_sigmoid=True,
+ gamma=2.0,
+ alpha=0.25,
+ loss_weight=0.5)
+```
+
+## Weighting loss (step 2)
+
+Weighting loss means we re-weight the loss element-wisely. To be more specific, we multiply the loss tensor with a weight tensor which has the same shape. As a result, different entries of the loss can be scaled differently, and so called element-wisely.
+The loss weight varies across different models and highly context related, but overall there are two kinds of loss weights, `label_weights` for classification loss and `bbox_weights` for bbox regression loss. You can find them in the `get_target` method of the corresponding head. Here we take [ATSSHead](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/atss_head.py#L530) as an example, which inherit [AnchorHead](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/anchor_head.py) but overwrite its `get_targets` method which yields different `label_weights` and `bbox_weights`.
+
+```
+class ATSSHead(AnchorHead):
+
+ ...
+
+ def get_targets(self,
+ anchor_list,
+ valid_flag_list,
+ gt_bboxes_list,
+ img_metas,
+ gt_bboxes_ignore_list=None,
+ gt_labels_list=None,
+ label_channels=1,
+ unmap_outputs=True):
+```
diff --git a/docs/tutorials/customize_models.md b/docs/tutorials/customize_models.md
new file mode 100644
index 00000000..81c39125
--- /dev/null
+++ b/docs/tutorials/customize_models.md
@@ -0,0 +1,363 @@
+# Tutorial 4: Customize Models
+
+We basically categorize model components into 5 types.
+
+- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
+- neck: the component between backbones and heads, e.g., FPN, PAFPN.
+- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
+- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.
+- loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss.
+
+## Develop new components
+
+### Add a new backbone
+
+Here we show how to develop new components with an example of MobileNet.
+
+#### 1. Define a new backbone (e.g. MobileNet)
+
+Create a new file `mmdet/models/backbones/mobilenet.py`.
+
+```python
+import torch.nn as nn
+
+from ..builder import BACKBONES
+
+
+@BACKBONES.register_module()
+class MobileNet(nn.Module):
+
+ def __init__(self, arg1, arg2):
+ pass
+
+ def forward(self, x): # should return a tuple
+ pass
+```
+
+#### 2. Import the module
+
+You can either add the following line to `mmdet/models/backbones/__init__.py`
+
+```python
+from .mobilenet import MobileNet
+```
+
+or alternatively add
+
+```python
+custom_imports = dict(
+ imports=['mmdet.models.backbones.mobilenet'],
+ allow_failed_imports=False)
+```
+
+to the config file to avoid modifying the original code.
+
+#### 3. Use the backbone in your config file
+
+```python
+model = dict(
+ ...
+ backbone=dict(
+ type='MobileNet',
+ arg1=xxx,
+ arg2=xxx),
+ ...
+```
+
+### Add new necks
+
+#### 1. Define a neck (e.g. PAFPN)
+
+Create a new file `mmdet/models/necks/pafpn.py`.
+
+```python
+from ..builder import NECKS
+
+@NECKS.register_module()
+class PAFPN(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ num_outs,
+ start_level=0,
+ end_level=-1,
+ add_extra_convs=False):
+ pass
+
+ def forward(self, inputs):
+ # implementation is ignored
+ pass
+```
+
+#### 2. Import the module
+
+You can either add the following line to `mmdet/models/necks/__init__.py`,
+
+```python
+from .pafpn import PAFPN
+```
+
+or alternatively add
+
+```python
+custom_imports = dict(
+ imports=['mmdet.models.necks.pafpn.py'],
+ allow_failed_imports=False)
+```
+
+to the config file and avoid modifying the original code.
+
+#### 3. Modify the config file
+
+```python
+neck=dict(
+ type='PAFPN',
+ in_channels=[256, 512, 1024, 2048],
+ out_channels=256,
+ num_outs=5)
+```
+
+### Add new heads
+
+Here we show how to develop a new head with the example of [Double Head R-CNN](https://arxiv.org/abs/1904.06493) as the following.
+
+First, add a new bbox head in `mmdet/models/roi_heads/bbox_heads/double_bbox_head.py`.
+Double Head R-CNN implements a new bbox head for object detection.
+To implement a bbox head, basically we need to implement three functions of the new module as the following.
+
+```python
+from mmdet.models.builder import HEADS
+from .bbox_head import BBoxHead
+
+@HEADS.register_module()
+class DoubleConvFCBBoxHead(BBoxHead):
+ r"""Bbox head used in Double-Head R-CNN
+
+ /-> cls
+ /-> shared convs ->
+ \-> reg
+ roi features
+ /-> cls
+ \-> shared fc ->
+ \-> reg
+ """ # noqa: W605
+
+ def __init__(self,
+ num_convs=0,
+ num_fcs=0,
+ conv_out_channels=1024,
+ fc_out_channels=1024,
+ conv_cfg=None,
+ norm_cfg=dict(type='BN'),
+ **kwargs):
+ kwargs.setdefault('with_avg_pool', True)
+ super(DoubleConvFCBBoxHead, self).__init__(**kwargs)
+
+
+ def forward(self, x_cls, x_reg):
+
+```
+
+Second, implement a new RoI Head if it is necessary. We plan to inherit the new `DoubleHeadRoIHead` from `StandardRoIHead`. We can find that a `StandardRoIHead` already implements the following functions.
+
+```python
+import torch
+
+from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
+from ..builder import HEADS, build_head, build_roi_extractor
+from .base_roi_head import BaseRoIHead
+from .test_mixins import BBoxTestMixin, MaskTestMixin
+
+
+@HEADS.register_module()
+class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
+ """Simplest base roi head including one bbox head and one mask head.
+ """
+
+ def init_assigner_sampler(self):
+
+ def init_bbox_head(self, bbox_roi_extractor, bbox_head):
+
+ def init_mask_head(self, mask_roi_extractor, mask_head):
+
+
+ def forward_dummy(self, x, proposals):
+
+
+ def forward_train(self,
+ x,
+ img_metas,
+ proposal_list,
+ gt_bboxes,
+ gt_labels,
+ gt_bboxes_ignore=None,
+ gt_masks=None):
+
+ def _bbox_forward(self, x, rois):
+
+ def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
+ img_metas):
+
+ def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
+ img_metas):
+
+ def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None):
+
+
+ def simple_test(self,
+ x,
+ proposal_list,
+ img_metas,
+ proposals=None,
+ rescale=False):
+ """Test without augmentation."""
+
+```
+
+Double Head's modification is mainly in the bbox_forward logic, and it inherits other logics from the `StandardRoIHead`.
+In the `mmdet/models/roi_heads/double_roi_head.py`, we implement the new RoI Head as the following:
+
+```python
+from ..builder import HEADS
+from .standard_roi_head import StandardRoIHead
+
+
+@HEADS.register_module()
+class DoubleHeadRoIHead(StandardRoIHead):
+ """RoI head for Double Head RCNN
+
+ https://arxiv.org/abs/1904.06493
+ """
+
+ def __init__(self, reg_roi_scale_factor, **kwargs):
+ super(DoubleHeadRoIHead, self).__init__(**kwargs)
+ self.reg_roi_scale_factor = reg_roi_scale_factor
+
+ def _bbox_forward(self, x, rois):
+ bbox_cls_feats = self.bbox_roi_extractor(
+ x[:self.bbox_roi_extractor.num_inputs], rois)
+ bbox_reg_feats = self.bbox_roi_extractor(
+ x[:self.bbox_roi_extractor.num_inputs],
+ rois,
+ roi_scale_factor=self.reg_roi_scale_factor)
+ if self.with_shared_head:
+ bbox_cls_feats = self.shared_head(bbox_cls_feats)
+ bbox_reg_feats = self.shared_head(bbox_reg_feats)
+ cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
+
+ bbox_results = dict(
+ cls_score=cls_score,
+ bbox_pred=bbox_pred,
+ bbox_feats=bbox_cls_feats)
+ return bbox_results
+```
+
+Last, the users need to add the module in
+`mmdet/models/bbox_heads/__init__.py` and `mmdet/models/roi_heads/__init__.py` thus the corresponding registry could find and load them.
+
+Alternatively, the users can add
+
+```python
+custom_imports=dict(
+ imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head'])
+```
+
+to the config file and achieve the same goal.
+
+The config file of Double Head R-CNN is as the following
+
+```python
+_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
+model = dict(
+ roi_head=dict(
+ type='DoubleHeadRoIHead',
+ reg_roi_scale_factor=1.3,
+ bbox_head=dict(
+ _delete_=True,
+ type='DoubleConvFCBBoxHead',
+ num_convs=4,
+ num_fcs=2,
+ in_channels=256,
+ conv_out_channels=1024,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=80,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
+
+```
+
+Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification.
+The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new
+`DoubleConvFCBBoxHead`, the arguments are set according to the `__init__` function of each module.
+
+### Add new loss
+
+Assume you want to add a new loss as `MyLoss`, for bounding box regression.
+To add a new loss function, the users need implement it in `mmdet/models/losses/my_loss.py`.
+The decorator `weighted_loss` enable the loss to be weighted for each element.
+
+```python
+import torch
+import torch.nn as nn
+
+from ..builder import LOSSES
+from .utils import weighted_loss
+
+@weighted_loss
+def my_loss(pred, target):
+ assert pred.size() == target.size() and target.numel() > 0
+ loss = torch.abs(pred - target)
+ return loss
+
+@LOSSES.register_module()
+class MyLoss(nn.Module):
+
+ def __init__(self, reduction='mean', loss_weight=1.0):
+ super(MyLoss, self).__init__()
+ self.reduction = reduction
+ self.loss_weight = loss_weight
+
+ def forward(self,
+ pred,
+ target,
+ weight=None,
+ avg_factor=None,
+ reduction_override=None):
+ assert reduction_override in (None, 'none', 'mean', 'sum')
+ reduction = (
+ reduction_override if reduction_override else self.reduction)
+ loss_bbox = self.loss_weight * my_loss(
+ pred, target, weight, reduction=reduction, avg_factor=avg_factor)
+ return loss_bbox
+```
+
+Then the users need to add it in the `mmdet/models/losses/__init__.py`.
+
+```python
+from .my_loss import MyLoss, my_loss
+
+```
+
+Alternatively, you can add
+
+```python
+custom_imports=dict(
+ imports=['mmdet.models.losses.my_loss'])
+```
+
+to the config file and achieve the same goal.
+
+To use it, modify the `loss_xxx` field.
+Since MyLoss is for regression, you need to modify the `loss_bbox` field in the head.
+
+```python
+loss_bbox=dict(type='MyLoss', loss_weight=1.0))
+```
diff --git a/docs/tutorials/customize_runtime.md b/docs/tutorials/customize_runtime.md
new file mode 100644
index 00000000..616ce508
--- /dev/null
+++ b/docs/tutorials/customize_runtime.md
@@ -0,0 +1,323 @@
+# Tutorial 5: Customize Runtime Settings
+
+## Customize optimization settings
+
+### Customize optimizer supported by Pytorch
+
+We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the `optimizer` field of config files.
+For example, if you want to use `ADAM` (note that the performance could drop a lot), the modification could be as the following.
+
+```python
+optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
+```
+
+To modify the learning rate of the model, the users only need to modify the `lr` in the config of optimizer. The users can directly set arguments following the [API doc](https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim) of PyTorch.
+
+### Customize self-implemented optimizer
+
+#### 1. Define a new optimizer
+
+A customized optimizer could be defined as following.
+
+Assume you want to add a optimizer named `MyOptimizer`, which has arguments `a`, `b`, and `c`.
+You need to create a new directory named `mmdet/core/optimizer`.
+And then implement the new optimizer in a file, e.g., in `mmdet/core/optimizer/my_optimizer.py`:
+
+```python
+from .registry import OPTIMIZERS
+from torch.optim import Optimizer
+
+
+@OPTIMIZERS.register_module()
+class MyOptimizer(Optimizer):
+
+ def __init__(self, a, b, c)
+
+```
+
+#### 2. Add the optimizer to registry
+
+To find the above module defined above, this module should be imported into the main namespace at first. There are two options to achieve it.
+
+- Modify `mmdet/core/optimizer/__init__.py` to import it.
+
+ The newly defined module should be imported in `mmdet/core/optimizer/__init__.py` so that the registry will
+ find the new module and add it:
+
+```python
+from .my_optimizer import MyOptimizer
+```
+
+- Use `custom_imports` in the config to manually import it
+
+```python
+custom_imports = dict(imports=['mmdet.core.optimizer.my_optimizer'], allow_failed_imports=False)
+```
+
+The module `mmdet.core.optimizer.my_optimizer` will be imported at the beginning of the program and the class `MyOptimizer` is then automatically registered.
+Note that only the package containing the class `MyOptimizer` should be imported.
+`mmdet.core.optimizer.my_optimizer.MyOptimizer` **cannot** be imported directly.
+
+Actually users can use a totally different file directory structure using this importing method, as long as the module root can be located in `PYTHONPATH`.
+
+#### 3. Specify the optimizer in the config file
+
+Then you can use `MyOptimizer` in `optimizer` field of config files.
+In the configs, the optimizers are defined by the field `optimizer` like the following:
+
+```python
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+```
+
+To use your own optimizer, the field can be changed to
+
+```python
+optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)
+```
+
+### Customize optimizer constructor
+
+Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
+The users can do those fine-grained parameter tuning through customizing optimizer constructor.
+
+```python
+from mmcv.utils import build_from_cfg
+
+from mmcv.runner.optimizer import OPTIMIZER_BUILDERS, OPTIMIZERS
+from mmdet.utils import get_root_logger
+from .my_optimizer import MyOptimizer
+
+
+@OPTIMIZER_BUILDERS.register_module()
+class MyOptimizerConstructor(object):
+
+ def __init__(self, optimizer_cfg, paramwise_cfg=None):
+
+ def __call__(self, model):
+
+ return my_optimizer
+
+```
+
+The default optimizer constructor is implemented [here](https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11), which could also serve as a template for new optimizer constructor.
+
+### Additional settings
+
+Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training. Feel free to create PR, issue for more settings.
+
+- __Use gradient clip to stabilize training__:
+ Some models need gradient clip to clip the gradients to stabilize the training process. An example is as below:
+
+ ```python
+ optimizer_config = dict(
+ _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
+ ```
+
+ If your config inherits the base config which already sets the `optimizer_config`, you might need `_delete_=True` to overide the unnecessary settings. See the [config documenetation](https://mmdetection.readthedocs.io/en/latest/config.html) for more details.
+
+- __Use momentum schedule to accelerate model convergence__:
+ We support momentum scheduler to modify model's momentum according to learning rate, which could make the model converge in a faster way.
+ Momentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection to accelerate convergence.
+ For more details, please refer to the implementation of [CyclicLrUpdater](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327) and [CyclicMomentumUpdater](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130).
+
+ ```python
+ lr_config = dict(
+ policy='cyclic',
+ target_ratio=(10, 1e-4),
+ cyclic_times=1,
+ step_ratio_up=0.4,
+ )
+ momentum_config = dict(
+ policy='cyclic',
+ target_ratio=(0.85 / 0.95, 1),
+ cyclic_times=1,
+ step_ratio_up=0.4,
+ )
+ ```
+
+## Customize training schedules
+
+By default we use step learning rate with 1x schedule, this calls [`StepLRHook`](https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153) in MMCV.
+We support many other learning rate schedule [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py), such as `CosineAnnealing` and `Poly` schedule. Here are some examples
+
+- Poly schedule:
+
+ ```python
+ lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
+ ```
+
+- ConsineAnnealing schedule:
+
+ ```python
+ lr_config = dict(
+ policy='CosineAnnealing',
+ warmup='linear',
+ warmup_iters=1000,
+ warmup_ratio=1.0 / 10,
+ min_lr_ratio=1e-5)
+ ```
+
+## Customize workflow
+
+Workflow is a list of (phase, epochs) to specify the running order and epochs.
+By default it is set to be
+
+```python
+workflow = [('train', 1)]
+```
+
+which means running 1 epoch for training.
+Sometimes user may want to check some metrics (e.g. loss, accuracy) about the model on the validate set.
+In such case, we can set the workflow as
+
+```python
+[('train', 1), ('val', 1)]
+```
+
+so that 1 epoch for training and 1 epoch for validation will be run iteratively.
+
+**Note**:
+
+1. The parameters of model will not be updated during val epoch.
+2. Keyword `total_epochs` in the config only controls the number of training epochs and will not affect the validation workflow.
+3. Workflows `[('train', 1), ('val', 1)]` and `[('train', 1)]` will not change the behavior of `EvalHook` because `EvalHook` is called by `after_train_epoch` and validation workflow only affect hooks that are called through `after_val_epoch`. Therefore, the only difference between `[('train', 1), ('val', 1)]` and `[('train', 1)]` is that the runner will calculate losses on validation set after each training epoch.
+
+## Customize hooks
+
+### Customize self-implemented hooks
+
+#### 1. Implement a new hook
+
+There are some occasions when the users might need to implement a new hook. MMDetection supports customized hooks in training (#3395) since v2.3.0. Thus the users could implement a hook directly in mmdet or their mmdet-based codebases and use the hook by only modifying the config in training.
+Before v2.3.0, the users need to modify the code to get the hook registered before training starts.
+Here we give an example of creating a new hook in mmdet and using it in training.
+
+```python
+from mmcv.runner import HOOKS, Hook
+
+
+@HOOKS.register_module()
+class MyHook(Hook):
+
+ def __init__(self, a, b):
+ pass
+
+ def before_run(self, runner):
+ pass
+
+ def after_run(self, runner):
+ pass
+
+ def before_epoch(self, runner):
+ pass
+
+ def after_epoch(self, runner):
+ pass
+
+ def before_iter(self, runner):
+ pass
+
+ def after_iter(self, runner):
+ pass
+```
+
+Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training in `before_run`, `after_run`, `before_epoch`, `after_epoch`, `before_iter`, and `after_iter`.
+
+#### 2. Register the new hook
+
+Then we need to make `MyHook` imported. Assuming the file is in `mmdet/core/utils/my_hook.py` there are two ways to do that:
+
+- Modify `mmdet/core/utils/__init__.py` to import it.
+
+ The newly defined module should be imported in `mmdet/core/utils/__init__.py` so that the registry will
+ find the new module and add it:
+
+```python
+from .my_hook import MyHook
+```
+
+- Use `custom_imports` in the config to manually import it
+
+```python
+custom_imports = dict(imports=['mmdet.core.utils.my_hook'], allow_failed_imports=False)
+```
+
+#### 3. Modify the config
+
+```python
+custom_hooks = [
+ dict(type='MyHook', a=a_value, b=b_value)
+]
+```
+
+You can also set the priority of the hook by adding key `priority` to `'NORMAL'` or `'HIGHEST'` as below
+
+```python
+custom_hooks = [
+ dict(type='MyHook', a=a_value, b=b_value, priority='NORMAL')
+]
+```
+
+By default the hook's priority is set as `NORMAL` during registration.
+
+### Use hooks implemented in MMCV
+
+If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below
+
+#### 4. Example: `NumClassCheckHook`
+
+We implement a customized hook named [NumClassCheckHook](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/utils.py) to check whether the `num_classes` in head matches the length of `CLASSSES` in `dataset`.
+
+We set it in [default_runtime.py](https://github.com/open-mmlab/mmdetection/blob/master/configs/_base_/default_runtime.py).
+
+```python
+custom_hooks = [dict(type='NumClassCheckHook')]
+```
+
+### Modify default runtime hooks
+
+There are some common hooks that are not registerd through `custom_hooks`, they are
+
+- log_config
+- checkpoint_config
+- evaluation
+- lr_config
+- optimizer_config
+- momentum_config
+
+In those hooks, only the logger hook has the `VERY_LOW` priority, others' priority are `NORMAL`.
+The above-mentioned tutorials already covers how to modify `optimizer_config`, `momentum_config`, and `lr_config`.
+Here we reveals how what we can do with `log_config`, `checkpoint_config`, and `evaluation`.
+
+#### Checkpoint config
+
+The MMCV runner will use `checkpoint_config` to initialize [`CheckpointHook`](https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py#L9).
+
+```python
+checkpoint_config = dict(interval=1)
+```
+
+The users could set `max_keep_ckpts` to only save only small number of checkpoints or decide whether to store state dict of optimizer by `save_optimizer`. More details of the arguments are [here](https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook)
+
+#### Log config
+
+The `log_config` wraps multiple logger hooks and enables to set intervals. Now MMCV supports `WandbLoggerHook`, `MlflowLoggerHook`, and `TensorboardLoggerHook`.
+The detail usages can be found in the [doc](https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook).
+
+```python
+log_config = dict(
+ interval=50,
+ hooks=[
+ dict(type='TextLoggerHook'),
+ dict(type='TensorboardLoggerHook')
+ ])
+```
+
+#### Evaluation config
+
+The config of `evaluation` will be used to initialize the [`EvalHook`](https://github.com/open-mmlab/mmdetection/blob/7a404a2c000620d52156774a5025070d9e00d918/mmdet/core/evaluation/eval_hooks.py#L8).
+Except the key `interval`, other arguments such as `metric` will be passed to the `dataset.evaluate()`
+
+```python
+evaluation = dict(interval=1, metric='bbox')
+```
diff --git a/docs/tutorials/data_pipeline.md b/docs/tutorials/data_pipeline.md
new file mode 100644
index 00000000..7ea5665f
--- /dev/null
+++ b/docs/tutorials/data_pipeline.md
@@ -0,0 +1,184 @@
+# Tutorial 3: Customize Data Pipelines
+
+## Design of Data pipelines
+
+Following typical conventions, we use `Dataset` and `DataLoader` for data loading
+with multiple workers. `Dataset` returns a dict of data items corresponding
+the arguments of models' forward method.
+Since the data in object detection may not be the same size (image size, gt bbox size, etc.),
+we introduce a new `DataContainer` type in MMCV to help collect and distribute
+data of different size.
+See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.
+
+The data preparation pipeline and the dataset is decomposed. Usually a dataset
+defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
+A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.
+
+We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
+
+
+The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.
+
+Here is a pipeline example for Faster R-CNN.
+
+```python
+img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(
+ type='MultiScaleFlipAug',
+ img_scale=(1333, 800),
+ flip=False,
+ transforms=[
+ dict(type='Resize', keep_ratio=True),
+ dict(type='RandomFlip'),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='ImageToTensor', keys=['img']),
+ dict(type='Collect', keys=['img']),
+ ])
+]
+```
+
+For each operation, we list the related dict fields that are added/updated/removed.
+
+### Data loading
+
+`LoadImageFromFile`
+
+- add: img, img_shape, ori_shape
+
+`LoadAnnotations`
+
+- add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields
+
+`LoadProposals`
+
+- add: proposals
+
+### Pre-processing
+
+`Resize`
+
+- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
+- update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields
+
+`RandomFlip`
+
+- add: flip
+- update: img, *bbox_fields, *mask_fields, *seg_fields
+
+`Pad`
+
+- add: pad_fixed_size, pad_size_divisor
+- update: img, pad_shape, *mask_fields, *seg_fields
+
+`RandomCrop`
+
+- update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields
+
+`Normalize`
+
+- add: img_norm_cfg
+- update: img
+
+`SegRescale`
+
+- update: gt_semantic_seg
+
+`PhotoMetricDistortion`
+
+- update: img
+
+`Expand`
+
+- update: img, gt_bboxes
+
+`MinIoURandomCrop`
+
+- update: img, gt_bboxes, gt_labels
+
+`Corrupt`
+
+- update: img
+
+### Formatting
+
+`ToTensor`
+
+- update: specified by `keys`.
+
+`ImageToTensor`
+
+- update: specified by `keys`.
+
+`Transpose`
+
+- update: specified by `keys`.
+
+`ToDataContainer`
+
+- update: specified by `fields`.
+
+`DefaultFormatBundle`
+
+- update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg
+
+`Collect`
+
+- add: img_meta (the keys of img_meta is specified by `meta_keys`)
+- remove: all other keys except for those specified by `keys`
+
+### Test time augmentation
+
+`MultiScaleFlipAug`
+
+## Extend and use custom pipelines
+
+1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict.
+
+ ```python
+ from mmdet.datasets import PIPELINES
+
+ @PIPELINES.register_module()
+ class MyTransform:
+
+ def __call__(self, results):
+ results['dummy'] = True
+ return results
+ ```
+
+2. Import the new class.
+
+ ```python
+ from .my_pipeline import MyTransform
+ ```
+
+3. Use it in config files.
+
+ ```python
+ img_norm_cfg = dict(
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+ train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', with_bbox=True),
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+ dict(type='RandomFlip', flip_ratio=0.5),
+ dict(type='Normalize', **img_norm_cfg),
+ dict(type='Pad', size_divisor=32),
+ dict(type='MyTransform'),
+ dict(type='DefaultFormatBundle'),
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+ ]
+ ```
diff --git a/docs/tutorials/finetune.md b/docs/tutorials/finetune.md
new file mode 100644
index 00000000..afa5021a
--- /dev/null
+++ b/docs/tutorials/finetune.md
@@ -0,0 +1,89 @@
+# Tutorial 7: Finetuning Models
+
+Detectors pre-trained on the COCO dataset can serve as a good pre-trained model for other datasets, e.g., CityScapes and KITTI Dataset.
+This tutorial provides instruction for users to use the models provided in the [Model Zoo](../model_zoo.md) for other datasets to obtain better performance.
+
+There are two steps to finetune a model on a new dataset.
+
+- Add support for the new dataset following [Tutorial 2: Customize Datasets](customize_dataset.md).
+- Modify the configs as will be discussed in this tutorial.
+
+Take the finetuning process on Cityscapes Dataset as an example, the users need to modify five parts in the config.
+
+## Inherit base configs
+
+To release the burden and reduce bugs in writing the whole configs, MMDetection V2.0 support inheriting configs from multiple existing configs. To finetune a Mask RCNN model, the new config needs to inherit
+`_base_/models/mask_rcnn_r50_fpn.py` to build the basic structure of the model. To use the Cityscapes Dataset, the new config can also simply inherit `_base_/datasets/cityscapes_instance.py`. For runtime settings such as training schedules, the new config needs to inherit `_base_/default_runtime.py`. This configs are in the `configs` directory and the users can also choose to write the whole contents rather than use inheritance.
+
+```python
+_base_ = [
+ '../_base_/models/mask_rcnn_r50_fpn.py',
+ '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
+]
+```
+
+## Modify head
+
+Then the new config needs to modify the head according to the class numbers of the new datasets. By only changing `num_classes` in the roi_head, the weights of the pre-trained models are mostly reused except the final prediction head.
+
+```python
+model = dict(
+ pretrained=None,
+ roi_head=dict(
+ bbox_head=dict(
+ type='Shared2FCBBoxHead',
+ in_channels=256,
+ fc_out_channels=1024,
+ roi_feat_size=7,
+ num_classes=8,
+ bbox_coder=dict(
+ type='DeltaXYWHBBoxCoder',
+ target_means=[0., 0., 0., 0.],
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
+ reg_class_agnostic=False,
+ loss_cls=dict(
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
+ mask_head=dict(
+ type='FCNMaskHead',
+ num_convs=4,
+ in_channels=256,
+ conv_out_channels=256,
+ num_classes=8,
+ loss_mask=dict(
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
+```
+
+## Modify dataset
+
+The users may also need to prepare the dataset and write the configs about dataset. MMDetection V2.0 already support VOC, WIDER FACE, COCO and Cityscapes Dataset.
+
+## Modify training schedule
+
+The finetuning hyperparameters vary from the default schedule. It usually requires smaller learning rate and less training epochs
+
+```python
+# optimizer
+# lr is set for a batch size of 8
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+ policy='step',
+ warmup='linear',
+ warmup_iters=500,
+ warmup_ratio=0.001,
+ step=[7])
+# the max_epochs and step in lr_config need specifically tuned for the customized dataset
+runner = dict(max_epochs=8)
+log_config = dict(interval=100)
+```
+
+## Use pre-trained model
+
+To use the pre-trained model, the new config add the link of pre-trained models in the `load_from`. The users might need to download the model weights before training to avoid the download time during training.
+
+```python
+load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa
+
+```
diff --git a/docs/tutorials/index.rst b/docs/tutorials/index.rst
new file mode 100644
index 00000000..659a5cb6
--- /dev/null
+++ b/docs/tutorials/index.rst
@@ -0,0 +1,12 @@
+.. toctree::
+ :maxdepth: 2
+
+ config.md
+ customize_dataset.md
+ data_pipeline.md
+ customize_models.md
+ customize_runtime.md
+ customize_losses.md
+ finetune.md
+ pytorch2onnx.md
+ onnx2tensorrt.md
diff --git a/docs/tutorials/onnx2tensorrt.md b/docs/tutorials/onnx2tensorrt.md
new file mode 100644
index 00000000..e654da3b
--- /dev/null
+++ b/docs/tutorials/onnx2tensorrt.md
@@ -0,0 +1,105 @@
+# Tutorial 9: ONNX to TensorRT (Experimental)
+
+
+
+- [Tutorial 9: ONNX to TensorRT (Experimental)](#tutorial-9-onnx-to-tensorrt-experimental)
+ - [How to convert models from ONNX to TensorRT](#how-to-convert-models-from-onnx-to-tensorrt)
+ - [Prerequisite](#prerequisite)
+ - [Usage](#usage)
+ - [How to evaluate the exported models](#how-to-evaluate-the-exported-models)
+ - [List of supported models convertable to TensorRT](#list-of-supported-models-convertable-to-tensorrt)
+ - [Reminders](#reminders)
+ - [FAQs](#faqs)
+
+
+
+## How to convert models from ONNX to TensorRT
+
+### Prerequisite
+
+1. Please refer to [get_started.md](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation of MMCV and MMDetection from source.
+2. Please refer to [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md/) to install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins.
+3. Use our tool [pytorch2onnx](https://mmdetection.readthedocs.io/en/latest/tutorials/pytorch2onnx.html) to convert the model from PyTorch to ONNX.
+
+### Usage
+
+```bash
+python tools/deployment/onnx2tensorrt.py \
+ ${MODEL} \
+ --trt-file ${TRT_FILE} \
+ --input-img ${INPUT_IMAGE_PATH} \
+ --shape ${IMAGE_SHAPE} \
+ --max-shape ${MAX_IMAGE_SHAPE} \
+ --mean ${IMAGE_MEAN} \
+ --std ${IMAGE_STD} \
+ --dataset ${DATASET_NAME} \
+ --workspace-size {WORKSPACE_SIZE} \
+ --show \
+ --verify \
+```
+
+Description of all arguments:
+
+- `model` : The path of an ONNX model file.
+- `--trt-file`: The Path of output TensorRT engine file. If not specified, it will be set to `tmp.trt`.
+- `--input-img` : The path of an input image for tracing and conversion. By default, it will be set to `demo/demo.jpg`.
+- `--shape`: The height and width of model input. If not specified, it will be set to `400 600`.
+- `--max-shape`: The maximum height and width of model input. If not specified, it will be set to the same as `--shape`.
+- `--mean` : Three mean values for the input image. If not specified, it will be set to `123.675 116.28 103.53`.
+- `--std` : Three std values for the input image. If not specified, it will be set to `58.395 57.12 57.375`.
+- `--dataset` : The dataset name for the input model. If not specified, it will be set to `coco`.
+- `--workspace-size` : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it will be set to `1` GiB.
+- `--show`: Determines whether to show the outputs of the model. If not specified, it will be set to `False`.
+- `--verify`: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If not specified, it will be set to `False`.
+- `--to-rgb`: Determines whether to convert the input image to RGB mode. If not specified, it will be set to `True`.
+- `--verbose`: Determines whether to print logging messages. It's useful for debugging. If not specified, it will be set to `False`.
+
+Example:
+
+```bash
+python tools/deployment/onnx2tensorrt.py \
+ checkpoints/retinanet_r50_fpn_1x_coco.onnx \
+ --trt-file checkpoints/retinanet_r50_fpn_1x_coco.trt \
+ --input-img demo/demo.jpg \
+ --shape 400 600 \
+ --mean 123.675 116.28 103.53 \
+ --std 58.395 57.12 57.375 \
+ --show \
+ --verify \
+```
+
+## How to evaluate the exported models
+
+We prepare a tool `tools/deplopyment/test.py` to evaluate TensorRT models.
+
+Please refer to following links for more information.
+
+- [how-to-evaluate-the-exported-models](pytorch2onnx.md#how-to-evaluate-the-exported-models)
+- [results-and-models](pytorch2onnx.md#results-and-models)
+
+## List of supported models convertable to TensorRT
+
+The table below lists the models that are guaranteed to be convertable to TensorRT.
+
+| Model | Config | Dynamic Shape | Batch Inference | Note |
+| :----------: | :--------------------------------------------------: | :-----------: | :-------------: | :---: |
+| SSD | `configs/ssd/ssd300_coco.py` | Y | Y | |
+| FSAF | `configs/fsaf/fsaf_r50_fpn_1x_coco.py` | Y | Y | |
+| FCOS | `configs/fcos/fcos_r50_caffe_fpn_4x4_1x_coco.py` | Y | Y | |
+| YOLOv3 | `configs/yolo/yolov3_d53_mstrain-608_273e_coco.py` | Y | Y | |
+| RetinaNet | `configs/retinanet/retinanet_r50_fpn_1x_coco.py` | Y | Y | |
+| Faster R-CNN | `configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py` | Y | Y | |
+| Mask R-CNN | `configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py` | Y | Y | |
+
+Notes:
+
+- *All models above are tested with Pytorch==1.6.0, onnx==1.7.0 and TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0*
+
+## Reminders
+
+- If you meet any problem with the listed models above, please create an issue and it would be taken care of soon. For models not included in the list, we may not provide much help here due to the limited resources. Please try to dig a little deeper and debug by yourself.
+- Because this feature is experimental and may change fast, please always try with the latest `mmcv` and `mmdetecion`.
+
+## FAQs
+
+- None
diff --git a/docs/tutorials/pytorch2onnx.md b/docs/tutorials/pytorch2onnx.md
new file mode 100644
index 00000000..668ab328
--- /dev/null
+++ b/docs/tutorials/pytorch2onnx.md
@@ -0,0 +1,275 @@
+# Tutorial 8: Pytorch to ONNX (Experimental)
+
+
+
+- [Tutorial 8: Pytorch to ONNX (Experimental)](#tutorial-8-pytorch-to-onnx-experimental)
+ - [How to convert models from Pytorch to ONNX](#how-to-convert-models-from-pytorch-to-onnx)
+ - [Prerequisite](#prerequisite)
+ - [Usage](#usage)
+ - [Description of all arguments](#description-of-all-arguments)
+ - [How to evaluate the exported models](#how-to-evaluate-the-exported-models)
+ - [Prerequisite](#prerequisite-1)
+ - [Usage](#usage-1)
+ - [Description of all arguments](#description-of-all-arguments-1)
+ - [Results and Models](#results-and-models)
+ - [List of supported models exportable to ONNX](#list-of-supported-models-exportable-to-onnx)
+ - [The Parameters of Non-Maximum Suppression in ONNX Export](#the-parameters-of-non-maximum-suppression-in-onnx-export)
+ - [Reminders](#reminders)
+ - [FAQs](#faqs)
+
+
+
+## How to convert models from Pytorch to ONNX
+
+### Prerequisite
+
+1. Please refer to [get_started.md](../get_started.md) for installation of MMCV and MMDetection.
+2. Install onnx and onnxruntime
+
+ ```shell
+ pip install onnx onnxruntime
+ ```
+
+### Usage
+
+```bash
+python tools/deployment/pytorch2onnx.py \
+ ${CONFIG_FILE} \
+ ${CHECKPOINT_FILE} \
+ --output-file ${OUTPUT_FILE} \
+ --input-img ${INPUT_IMAGE_PATH} \
+ --shape ${IMAGE_SHAPE} \
+ --mean ${IMAGE_MEAN} \
+ --std ${IMAGE_STD} \
+ --dataset ${DATASET_NAME} \
+ --test-img ${TEST_IMAGE_PATH} \
+ --opset-version ${OPSET_VERSION} \
+ --cfg-options ${CFG_OPTIONS}
+ --dynamic-export \
+ --show \
+ --verify \
+ --simplify \
+```
+
+### Description of all arguments
+
+- `config` : The path of a model config file.
+- `checkpoint` : The path of a model checkpoint file.
+- `--output-file`: The path of output ONNX model. If not specified, it will be set to `tmp.onnx`.
+- `--input-img`: The path of an input image for tracing and conversion. By default, it will be set to `tests/data/color.jpg`.
+- `--shape`: The height and width of input tensor to the model. If not specified, it will be set to `800 1216`.
+- `--mean` : Three mean values for the input image. If not specified, it will be set to `123.675 116.28 103.53`.
+- `--std` : Three std values for the input image. If not specified, it will be set to `58.395 57.12 57.375`.
+- `--dataset` : The dataset name for the input model. If not specified, it will be set to `coco`.
+- `--test-img` : The path of an image to verify the exported ONNX model. By default, it will be set to `None`, meaning it will use `--input-img` for verification.
+- `--opset-version` : The opset version of ONNX. If not specified, it will be set to `11`.
+- `--dynamic-export`: Determines whether to export ONNX model with dynamic input and output shapes. If not specified, it will be set to `False`.
+- `--show`: Determines whether to print the architecture of the exported model and whether to show detection outputs when `--verify` is set to `True`. If not specified, it will be set to `False`.
+- `--verify`: Determines whether to verify the correctness of an exported model. If not specified, it will be set to `False`.
+- `--simplify`: Determines whether to simplify the exported ONNX model. If not specified, it will be set to `False`.
+- `--cfg-options`: Override some settings in the used config file, the key-value pair in `xxx=yyy` format will be merged into config file.
+
+Example:
+
+```bash
+python tools/deployment/pytorch2onnx.py \
+ configs/yolo/yolov3_d53_mstrain-608_273e_coco.py \
+ checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.pth \
+ --output-file checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco.onnx \
+ --input-img demo/demo.jpg \
+ --test-img tests/data/color.jpg \
+ --shape 608 608 \
+ --mean 0 0 0 \
+ --std 255 255 255 \
+ --show \
+ --verify \
+ --dynamic-export \
+ --cfg-options \
+ model.test_cfg.deploy_nms_pre=-1 \
+```
+
+## How to evaluate the exported models
+
+We prepare a tool `tools/deplopyment/test.py` to evaluate ONNX models with ONNXRuntime and TensorRT.
+
+### Prerequisite
+
+- Install onnx and onnxruntime-gpu
+
+ ```shell
+ pip install onnx onnxruntime-gpu
+ ```
+
+- Install TensorRT by referring to [how-to-build-tensorrt-plugins-in-mmcv](https://mmcv.readthedocs.io/en/latest/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv)(optional)
+
+### Usage
+
+```bash
+python tools/deployment/test.py \
+ ${CONFIG_FILE} \
+ ${MODEL_FILE} \
+ --out ${OUTPUT_FILE} \
+ --backend ${BACKEND} \
+ --format-only ${FORMAT_ONLY} \
+ --eval ${EVALUATION_METRICS} \
+ --show-dir ${SHOW_DIRECTORY} \
+ ----show-score-thr ${SHOW_SCORE_THRESHOLD} \
+ ----cfg-options ${CFG_OPTIONS} \
+ ----eval-options ${EVALUATION_OPTIONS} \
+```
+
+### Description of all arguments
+
+- `config`: The path of a model config file.
+- `model`: The path of an input model file.
+- `--out`: The path of output result file in pickle format.
+- `--backend`: Backend for input model to run and should be `onnxruntime` or `tensorrt`.
+- `--format-only` : Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. If not specified, it will be set to `False`.
+- `--eval`: Evaluation metrics, which depends on the dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC.
+- `--show-dir`: Directory where painted images will be saved
+- `--show-score-thr`: Score threshold. Default is set to `0.3`.
+- `--cfg-options`: Override some settings in the used config file, the key-value pair in `xxx=yyy` format will be merged into config file.
+- `--eval-options`: Custom options for evaluation, the key-value pair in `xxx=yyy` format will be kwargs for `dataset.evaluate()` function
+
+### Results and Models
+
+
+
+ Model
+ Config
+ Metric
+ PyTorch
+ ONNX Runtime
+ TensorRT
+
+
+ FCOS
+ configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+ Box AP
+ 36.6
+ 36.5
+ 36.3
+
+
+ FSAF
+ configs/fsaf/fsaf_r50_fpn_1x_coco.py
+ Box AP
+ 36.0
+ 36.0
+ 35.9
+
+
+ RetinaNet
+ configs/retinanet/retinanet_r50_fpn_1x_coco.py
+ Box AP
+ 36.5
+ 36.4
+ 36.3
+
+
+ SSD
+ configs/ssd/ssd300_coco.py
+ Box AP
+ 25.6
+ 25.6
+ 25.6
+
+
+ YOLOv3
+ configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
+ Box AP
+ 33.5
+ 33.5
+ 33.5
+
+
+ Faster R-CNN
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
+ Box AP
+ 37.4
+ 37.4
+ 37.0
+
+
+ Mask R-CNN
+ configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
+ Box AP
+ 38.2
+ 38.1
+ 37.7
+
+
+ Mask AP
+ 34.7
+ 33.7
+ 33.3
+
+
+ CornerNet
+ configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
+ Box AP
+ 40.6
+ 40.4
+
+
+
+Notes:
+
+- All ONNX models are evaluated with dynamic shape on coco dataset and images are preprocessed according to the original config file. Note that CornerNet is evaluated without test-time flip, since currently only single-scale evaluation is supported with ONNX Runtime.
+
+- Mask AP of Mask R-CNN drops by 1% for ONNXRuntime. The main reason is that the predicted masks are directly interpolated to original image in PyTorch, while they are at first interpolated to the preprocessed input image of the model and then to original image in other backend.
+
+## List of supported models exportable to ONNX
+
+The table below lists the models that are guaranteed to be exportable to ONNX and runnable in ONNX Runtime.
+
+| Model | Config | Dynamic Shape | Batch Inference | Note |
+| :----------: | :-----------------------------------------------------------------: | :-----------: | :-------------: | :---------------------------------------------------------------------------: |
+| FCOS | `configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py` | Y | Y | |
+| FSAF | `configs/fsaf/fsaf_r50_fpn_1x_coco.py` | Y | Y | |
+| RetinaNet | `configs/retinanet/retinanet_r50_fpn_1x_coco.py` | Y | Y | |
+| SSD | `configs/ssd/ssd300_coco.py` | Y | Y | |
+| YOLOv3 | `configs/yolo/yolov3_d53_mstrain-608_273e_coco.py` | Y | Y | |
+| Faster R-CNN | `configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py` | Y | Y | |
+| Mask R-CNN | `configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py` | Y | Y | |
+| CornerNet | `configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py` | Y | N | no flip, no batch inference, tested with torch==1.7.0 and onnxruntime==1.5.1. |
+
+Notes:
+
+- Minimum required version of MMCV is `1.3.5`
+
+- *All models above are tested with Pytorch==1.6.0 and onnxruntime==1.5.1*, except for CornerNet. For more details about the
+torch version when exporting CornerNet to ONNX, which involves `mmcv::cummax`, please refer to the [Known Issues](https://github.com/open-mmlab/mmcv/blob/master/docs/onnxruntime_op.md#known-issues) in mmcv.
+
+- Currently only single-scale evaluation is supported with ONNX Runtime, also `mmcv::SoftNonMaxSuppression` is only supported for single image by now.
+
+- If the deployed backend platform is TensorRT, please add environment variables before running the file:
+
+ ```bash
+ export ONNX_BACKEND=MMCVTensorRT
+ ```
+
+- If you want to use the `--dynamic-export` parameter in the TensorRT backend to export ONNX, please remove the `--simplify` parameter, and vice versa.
+
+## The Parameters of Non-Maximum Suppression in ONNX Export
+
+In the process of exporting the ONNX model, we set some parameters for the NMS op to control the number of output bounding boxes. The following will introduce the parameter setting of the NMS op in the supported models. You can set these parameters through `--cfg-options`.
+
+- `nms_pre`: The number of boxes before NMS. The default setting is `1000`.
+
+- `deploy_nms_pre`: The number of boxes before NMS when exporting to ONNX model. The default setting is `0`.
+
+- `max_per_img`: The number of boxes to be kept after NMS. The default setting is `100`.
+
+- `max_output_boxes_per_class`: Maximum number of output boxes per class of NMS. The default setting is `200`.
+
+## Reminders
+
+- When the input model has custom op such as `RoIAlign` and if you want to verify the exported ONNX model, you may have to build `mmcv` with [ONNXRuntime](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) from source.
+- `mmcv.onnx.simplify` feature is based on [onnx-simplifier](https://github.com/daquexian/onnx-simplifier). If you want to try it, please refer to [onnx in `mmcv`](https://mmcv.readthedocs.io/en/latest/onnx.html) and [onnxruntime op in `mmcv`](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) for more information.
+- If you meet any problem with the listed models above, please create an issue and it would be taken care of soon. For models not included in the list, please try to dig a little deeper and debug a little bit more and hopefully solve them by yourself.
+- Because this feature is experimental and may change fast, please always try with the latest `mmcv` and `mmdetecion`.
+
+## FAQs
+
+- None
diff --git a/docs/useful_tools.md b/docs/useful_tools.md
new file mode 100644
index 00000000..2306e26f
--- /dev/null
+++ b/docs/useful_tools.md
@@ -0,0 +1,384 @@
+Apart from training/testing scripts, We provide lots of useful tools under the
+ `tools/` directory.
+
+## Log Analysis
+
+`tools/analysis_tools/analyze_logs.py` plots loss/mAP curves given a training
+ log file. Run `pip install seaborn` first to install the dependency.
+
+ ```shell
+python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
+ ```
+
+
+
+Examples:
+
+- Plot the classification loss of some run.
+
+ ```shell
+ python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
+ ```
+
+- Plot the classification and regression loss of some run, and save the figure to a pdf.
+
+ ```shell
+ python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf
+ ```
+
+- Compare the bbox mAP of two runs in the same figure.
+
+ ```shell
+ python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2
+ ```
+
+- Compute the average training speed.
+
+ ```shell
+ python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-outliers]
+ ```
+
+ The output is expected to be like the following.
+
+ ```text
+ -----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
+ slowest epoch 11, average time is 1.2024
+ fastest epoch 1, average time is 1.1909
+ time std over epochs is 0.0028
+ average iter time: 1.1959 s/iter
+ ```
+
+## Result Analysis
+
+`tools/analysis_tools/analyze_results.py` calculates single image mAP and saves or shows the topk images with the highest and lowest scores based on prediction results.
+
+**Usage**
+
+```shell
+python tools/analysis_tools/analyze_results.py \
+ ${CONFIG} \
+ ${PREDICTION_PATH} \
+ ${SHOW_DIR} \
+ [--show] \
+ [--wait-time ${WAIT_TIME}] \
+ [--topk ${TOPK}] \
+ [--show-score-thr ${SHOW_SCORE_THR}] \
+ [--cfg-options ${CFG_OPTIONS}]
+```
+
+Description of all arguments:
+
+- `config` : The path of a model config file.
+- `prediction_path`: Output result file in pickle format from `tools/test.py`
+- `show_dir`: Directory where painted GT and detection images will be saved
+- `--show`:Determines whether to show painted images, If not specified, it will be set to `False`
+- `--wait-time`: The interval of show (s), 0 is block
+- `--topk`: The number of saved images that have the highest and lowest `topk` scores after sorting. If not specified, it will be set to `20`.
+- `--show-score-thr`: Show score threshold. If not specified, it will be set to `0`.
+- `--cfg-options`: If specified, the key-value pair optional cfg will be merged into config file
+
+**Examples**:
+
+Assume that you have got result file in pickle format from `tools/test.py` in the path './result.pkl'.
+
+1. Test Faster R-CNN and visualize the results, save images to the directory `results/`
+
+```shell
+python tools/analysis_tools/analyze_results.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ result.pkl \
+ results \
+ --show
+```
+
+2. Test Faster R-CNN and specified topk to 50, save images to the directory `results/`
+
+```shell
+python tools/analysis_tools/analyze_results.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ result.pkl \
+ results \
+ --topk 50
+```
+
+3. If you want to filter the low score prediction results, you can specify the `show-score-thr` parameter
+
+```shell
+python tools/analysis_tools/analyze_results.py \
+ configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
+ result.pkl \
+ results \
+ --show-score-thr 0.3
+```
+
+## Visualization
+
+### Visualize Datasets
+
+`tools/misc/browse_dataset.py` helps the user to browse a detection dataset (both
+ images and bounding box annotations) visually, or save the image to a
+ designated directory.
+
+```shell
+python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]
+```
+
+### Visualize Models
+
+First, convert the model to ONNX as described
+[here](#convert-mmdetection-model-to-onnx-experimental).
+Note that currently only RetinaNet is supported, support for other models
+ will be coming in later versions.
+The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron).
+
+### Visualize Predictions
+
+If you need a lightweight GUI for visualizing the detection results, you can refer [DetVisGUI project](https://github.com/Chien-Hung/DetVisGUI/tree/mmdetection).
+
+## Error Analysis
+
+`tools/analysis_tools/coco_error_analysis.py` analyzes COCO results per category and by
+ different criterion. It can also make a plot to provide useful information.
+
+```shell
+python tools/analysis_tools/coco_error_analysis.py ${RESULT} ${OUT_DIR} [-h] [--ann ${ANN}] [--types ${TYPES[TYPES...]}]
+```
+
+Example:
+
+Assume that you have got [Mask R-CNN checkpoint file](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) in the path 'checkpoint'. For other checkpoints, please refer to our [model zoo](./model_zoo.md). You can use the following command to get the results bbox and segmentation json file.
+
+```shell
+# out: results.bbox.json and results.segm.json
+python tools/test.py \
+ configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
+ checkpoint/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
+ --format-only \
+ --options "jsonfile_prefix=./results"
+```
+
+1. Get COCO bbox error results per category , save analyze result images to the directory `results/`
+
+```shell
+python tools/analysis_tools/coco_error_analysis.py \
+ results.bbox.json \
+ results \
+ --ann=data/coco/annotations/instances_val2017.json \
+```
+
+2. Get COCO segmentation error results per category , save analyze result images to the directory `results/`
+
+```shell
+python tools/analysis_tools/coco_error_analysis.py \
+ results.segm.json \
+ results \
+ --ann=data/coco/annotations/instances_val2017.json \
+ --types='segm'
+```
+
+## Model Serving
+
+In order to serve an `MMDetection` model with [`TorchServe`](https://pytorch.org/serve/), you can follow the steps:
+
+### 1. Convert model from MMDetection to TorchServe
+
+```shell
+python tools/deployment/mmdet2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
+--output-folder ${MODEL_STORE} \
+--model-name ${MODEL_NAME}
+```
+
+***Note**: ${MODEL_STORE} needs to be an absolute path to a folder.
+
+### 2. Build `mmdet-serve` docker image
+
+```shell
+docker build -t mmdet-serve:latest docker/serve/
+```
+
+### 3. Run `mmdet-serve`
+
+Check the official docs for [running TorchServe with docker](https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment).
+
+In order to run in GPU, you need to install [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). You can omit the `--gpus` argument in order to run in CPU.
+
+Example:
+
+```shell
+docker run --rm \
+--cpus 8 \
+--gpus device=0 \
+-p8080:8080 -p8081:8081 -p8082:8082 \
+--mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \
+mmdet-serve:latest
+```
+
+[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/) about the Inference (8080), Management (8081) and Metrics (8082) APis
+
+### 4. Test deployment
+
+```shell
+curl -O curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg
+curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg
+```
+
+You should obtain a respose similar to:
+
+```json
+[
+ {
+ "dog": [
+ 402.9117736816406,
+ 124.19664001464844,
+ 571.7910766601562,
+ 292.6463623046875
+ ],
+ "score": 0.9561963081359863
+ },
+ {
+ "dog": [
+ 293.90057373046875,
+ 196.2908477783203,
+ 417.4869079589844,
+ 286.2522277832031
+ ],
+ "score": 0.9179860353469849
+ },
+ {
+ "dog": [
+ 202.178466796875,
+ 86.3709487915039,
+ 311.9863586425781,
+ 276.28411865234375
+ ],
+ "score": 0.8933767080307007
+ }
+]
+```
+
+## Model Complexity
+
+`tools/analysis_tools/get_flops.py` is a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) to compute the FLOPs and params of a given model.
+
+```shell
+python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
+```
+
+You will get the results like this.
+
+```text
+==============================
+Input shape: (3, 1280, 800)
+Flops: 239.32 GFLOPs
+Params: 37.74 M
+==============================
+```
+
+**Note**: This tool is still experimental and we do not guarantee that the
+ number is absolutely correct. You may well use the result for simple
+ comparisons, but double check it before you adopt it in technical reports or papers.
+
+1. FLOPs are related to the input shape while parameters are not. The default
+ input shape is (1, 3, 1280, 800).
+2. Some operators are not counted into FLOPs like GN and custom operators. Refer to [`mmcv.cnn.get_model_complexity_info()`](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py) for details.
+3. The FLOPs of two-stage detectors is dependent on the number of proposals.
+
+## Model conversion
+
+### MMDetection model to ONNX (experimental)
+
+We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. We also support comparing the output results between Pytorch and ONNX model for verification.
+
+```shell
+python tools/deployment/pytorch2onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --output_file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
+```
+
+**Note**: This tool is still experimental. Some customized operators are not supported for now. For a detailed description of the usage and the list of supported models, please refer to [pytorch2onnx](tutorials/pytorch2onnx.md).
+
+### MMDetection 1.x model to MMDetection 2.x
+
+`tools/model_converters/upgrade_model_version.py` upgrades a previous MMDetection checkpoint
+ to the new version. Note that this script is not guaranteed to work as some
+ breaking changes are introduced in the new version. It is recommended to
+ directly use the new checkpoints.
+
+```shell
+python tools/model_converters/upgrade_model_version.py ${IN_FILE} ${OUT_FILE} [-h] [--num-classes NUM_CLASSES]
+```
+
+### RegNet model to MMDetection
+
+`tools/model_converters/regnet2mmdet.py` convert keys in pycls pretrained RegNet models to
+ MMDetection style.
+
+```shell
+python tools/model_converters/regnet2mmdet.py ${SRC} ${DST} [-h]
+```
+
+### Detectron ResNet to Pytorch
+
+`tools/model_converters/detectron2pytorch.py` converts keys in the original detectron pretrained
+ ResNet models to PyTorch style.
+
+```shell
+python tools/model_converters/detectron2pytorch.py ${SRC} ${DST} ${DEPTH} [-h]
+```
+
+### Prepare a model for publishing
+
+`tools/model_converters/publish_model.py` helps users to prepare their model for publishing.
+
+Before you upload a model to AWS, you may want to
+
+1. convert model weights to CPU tensors
+2. delete the optimizer states and
+3. compute the hash of the checkpoint file and append the hash id to the
+ filename.
+
+```shell
+python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
+```
+
+E.g.,
+
+```shell
+python tools/model_converters/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
+```
+
+The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.
+
+## Dataset Conversion
+
+`tools/data_converters/` contains tools to convert the Cityscapes dataset
+ and Pascal VOC dataset to the COCO format.
+
+```shell
+python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir ${IMG_DIR}] [--gt-dir ${GT_DIR}] [-o ${OUT_DIR}] [--nproc ${NPROC}]
+python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]
+```
+
+## Robust Detection Benchmark
+
+`tools/analysis_tools/test_robustness.py` and`tools/analysis_tools/robustness_eval.py` helps users to evaluate model robustness. The core idea comes from [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484). For more information how to evaluate models on corrupted images and results for a set of standard models please refer to [robustness_benchmarking.md](robustness_benchmarking.md).
+
+## Miscellaneous
+
+### Evaluating a metric
+
+`tools/analysis_tools/eval_metric.py` evaluates certain metrics of a pkl result file
+ according to a config file.
+
+```shell
+python tools/analysis_tools/eval_metric.py ${CONFIG} ${PKL_RESULTS} [-h] [--format-only] [--eval ${EVAL[EVAL ...]}]
+ [--cfg-options ${CFG_OPTIONS [CFG_OPTIONS ...]}]
+ [--eval-options ${EVAL_OPTIONS [EVAL_OPTIONS ...]}]
+```
+
+### Print the entire config
+
+`tools/misc/print_config.py` prints the whole config verbatim, expanding all its
+ imports.
+
+```shell
+python tools/misc/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
+```
diff --git a/image_name.txt b/image_name.txt
new file mode 100644
index 00000000..51c9702f
--- /dev/null
+++ b/image_name.txt
@@ -0,0 +1,5000 @@
+000000298251.jpg
+000000205333.jpg
+000000449661.jpg
+000000485237.jpg
+000000375469.jpg
+000000460682.jpg
+000000185473.jpg
+000000143068.jpg
+000000096549.jpg
+000000527220.jpg
+000000161044.jpg
+000000490413.jpg
+000000504000.jpg
+000000044590.jpg
+000000554266.jpg
+000000068409.jpg
+000000190676.jpg
+000000493566.jpg
+000000329614.jpg
+000000509014.jpg
+000000485480.jpg
+000000311883.jpg
+000000578500.jpg
+000000242934.jpg
+000000438226.jpg
+000000312278.jpg
+000000194216.jpg
+000000209972.jpg
+000000519039.jpg
+000000118515.jpg
+000000450439.jpg
+000000546556.jpg
+000000438955.jpg
+000000549055.jpg
+000000146825.jpg
+000000347456.jpg
+000000504439.jpg
+000000259597.jpg
+000000565607.jpg
+000000125072.jpg
+000000001490.jpg
+000000224093.jpg
+000000425702.jpg
+000000368038.jpg
+000000047828.jpg
+000000228942.jpg
+000000050943.jpg
+000000221502.jpg
+000000423798.jpg
+000000334977.jpg
+000000129945.jpg
+000000323709.jpg
+000000417285.jpg
+000000525600.jpg
+000000290293.jpg
+000000309467.jpg
+000000416991.jpg
+000000152740.jpg
+000000045090.jpg
+000000401250.jpg
+000000522751.jpg
+000000141671.jpg
+000000378099.jpg
+000000235778.jpg
+000000458223.jpg
+000000429011.jpg
+000000351559.jpg
+000000110211.jpg
+000000260657.jpg
+000000015660.jpg
+000000005477.jpg
+000000172396.jpg
+000000006040.jpg
+000000083531.jpg
+000000581317.jpg
+000000416534.jpg
+000000293044.jpg
+000000442456.jpg
+000000370042.jpg
+000000143961.jpg
+000000181303.jpg
+000000098716.jpg
+000000449190.jpg
+000000137727.jpg
+000000534394.jpg
+000000217219.jpg
+000000165257.jpg
+000000112798.jpg
+000000493286.jpg
+000000288882.jpg
+000000255912.jpg
+000000300276.jpg
+000000047740.jpg
+000000568814.jpg
+000000302030.jpg
+000000176901.jpg
+000000007991.jpg
+000000133244.jpg
+000000268378.jpg
+000000201148.jpg
+000000177213.jpg
+000000325347.jpg
+000000283038.jpg
+000000140840.jpg
+000000533493.jpg
+000000259571.jpg
+000000021465.jpg
+000000356428.jpg
+000000297578.jpg
+000000529122.jpg
+000000089880.jpg
+000000559099.jpg
+000000532071.jpg
+000000439180.jpg
+000000383384.jpg
+000000496722.jpg
+000000482978.jpg
+000000482970.jpg
+000000186042.jpg
+000000116825.jpg
+000000055167.jpg
+000000516601.jpg
+000000243148.jpg
+000000579818.jpg
+000000226802.jpg
+000000182021.jpg
+000000300659.jpg
+000000060102.jpg
+000000517687.jpg
+000000147223.jpg
+000000320743.jpg
+000000277020.jpg
+000000314294.jpg
+000000082812.jpg
+000000230008.jpg
+000000338624.jpg
+000000157213.jpg
+000000172595.jpg
+000000182805.jpg
+000000541055.jpg
+000000379842.jpg
+000000181796.jpg
+000000180296.jpg
+000000372466.jpg
+000000095707.jpg
+000000564336.jpg
+000000162543.jpg
+000000488251.jpg
+000000030675.jpg
+000000417085.jpg
+000000395903.jpg
+000000372203.jpg
+000000172083.jpg
+000000128051.jpg
+000000508586.jpg
+000000326541.jpg
+000000268000.jpg
+000000355240.jpg
+000000415741.jpg
+000000460927.jpg
+000000340272.jpg
+000000051309.jpg
+000000046378.jpg
+000000361586.jpg
+000000191845.jpg
+000000122927.jpg
+000000093437.jpg
+000000344795.jpg
+000000036678.jpg
+000000294831.jpg
+000000503855.jpg
+000000010363.jpg
+000000172571.jpg
+000000145020.jpg
+000000005600.jpg
+000000007281.jpg
+000000389316.jpg
+000000006723.jpg
+000000133233.jpg
+000000456143.jpg
+000000327592.jpg
+000000447917.jpg
+000000400082.jpg
+000000003255.jpg
+000000553788.jpg
+000000065485.jpg
+000000074457.jpg
+000000338428.jpg
+000000514914.jpg
+000000068286.jpg
+000000002592.jpg
+000000476258.jpg
+000000236308.jpg
+000000051712.jpg
+000000041488.jpg
+000000508917.jpg
+000000555705.jpg
+000000019042.jpg
+000000061960.jpg
+000000207728.jpg
+000000420472.jpg
+000000565624.jpg
+000000319184.jpg
+000000532901.jpg
+000000272148.jpg
+000000252701.jpg
+000000351530.jpg
+000000211120.jpg
+000000401991.jpg
+000000190007.jpg
+000000282046.jpg
+000000505451.jpg
+000000270908.jpg
+000000078032.jpg
+000000088462.jpg
+000000310072.jpg
+000000070254.jpg
+000000374551.jpg
+000000309391.jpg
+000000003661.jpg
+000000451435.jpg
+000000157847.jpg
+000000446206.jpg
+000000182202.jpg
+000000002299.jpg
+000000472298.jpg
+000000159684.jpg
+000000174482.jpg
+000000139260.jpg
+000000313454.jpg
+000000160864.jpg
+000000356094.jpg
+000000090631.jpg
+000000024021.jpg
+000000168330.jpg
+000000046872.jpg
+000000123213.jpg
+000000197388.jpg
+000000291490.jpg
+000000394275.jpg
+000000190236.jpg
+000000147725.jpg
+000000050638.jpg
+000000479953.jpg
+000000343496.jpg
+000000270883.jpg
+000000340175.jpg
+000000332901.jpg
+000000263403.jpg
+000000034257.jpg
+000000084241.jpg
+000000177357.jpg
+000000501005.jpg
+000000427338.jpg
+000000537153.jpg
+000000266400.jpg
+000000321333.jpg
+000000319935.jpg
+000000311928.jpg
+000000364102.jpg
+000000198805.jpg
+000000150649.jpg
+000000493334.jpg
+000000574520.jpg
+000000182441.jpg
+000000579655.jpg
+000000236690.jpg
+000000367195.jpg
+000000152686.jpg
+000000537827.jpg
+000000327306.jpg
+000000231747.jpg
+000000454978.jpg
+000000420916.jpg
+000000524108.jpg
+000000565778.jpg
+000000434230.jpg
+000000068933.jpg
+000000057760.jpg
+000000210032.jpg
+000000474039.jpg
+000000140929.jpg
+000000482436.jpg
+000000441543.jpg
+000000085478.jpg
+000000114770.jpg
+000000345027.jpg
+000000465675.jpg
+000000085911.jpg
+000000036936.jpg
+000000198915.jpg
+000000375015.jpg
+000000534664.jpg
+000000014439.jpg
+000000211674.jpg
+000000265816.jpg
+000000293324.jpg
+000000519208.jpg
+000000305309.jpg
+000000076731.jpg
+000000205401.jpg
+000000497867.jpg
+000000166563.jpg
+000000188439.jpg
+000000230993.jpg
+000000532493.jpg
+000000524850.jpg
+000000333237.jpg
+000000177714.jpg
+000000476215.jpg
+000000504389.jpg
+000000117908.jpg
+000000027696.jpg
+000000320642.jpg
+000000049060.jpg
+000000309678.jpg
+000000183675.jpg
+000000555050.jpg
+000000334719.jpg
+000000577149.jpg
+000000036660.jpg
+000000553664.jpg
+000000384136.jpg
+000000353518.jpg
+000000137950.jpg
+000000356612.jpg
+000000344888.jpg
+000000356432.jpg
+000000447342.jpg
+000000568213.jpg
+000000405306.jpg
+000000110721.jpg
+000000516871.jpg
+000000421060.jpg
+000000054592.jpg
+000000304180.jpg
+000000110282.jpg
+000000037777.jpg
+000000125936.jpg
+000000001993.jpg
+000000363666.jpg
+000000104572.jpg
+000000334371.jpg
+000000267933.jpg
+000000246963.jpg
+000000353180.jpg
+000000413395.jpg
+000000281447.jpg
+000000389532.jpg
+000000095843.jpg
+000000436883.jpg
+000000559513.jpg
+000000039477.jpg
+000000284106.jpg
+000000529966.jpg
+000000385719.jpg
+000000058539.jpg
+000000565776.jpg
+000000419601.jpg
+000000285894.jpg
+000000114884.jpg
+000000574425.jpg
+000000161875.jpg
+000000364587.jpg
+000000521956.jpg
+000000423229.jpg
+000000155443.jpg
+000000229358.jpg
+000000387916.jpg
+000000060090.jpg
+000000181753.jpg
+000000295138.jpg
+000000392722.jpg
+000000513181.jpg
+000000334417.jpg
+000000032285.jpg
+000000459467.jpg
+000000163314.jpg
+000000125245.jpg
+000000393093.jpg
+000000049810.jpg
+000000061268.jpg
+000000185409.jpg
+000000268375.jpg
+000000479030.jpg
+000000289992.jpg
+000000420840.jpg
+000000271116.jpg
+000000277689.jpg
+000000564133.jpg
+000000481404.jpg
+000000323751.jpg
+000000321887.jpg
+000000143572.jpg
+000000567432.jpg
+000000505565.jpg
+000000122962.jpg
+000000396568.jpg
+000000572517.jpg
+000000222458.jpg
+000000440508.jpg
+000000263966.jpg
+000000339870.jpg
+000000313182.jpg
+000000471991.jpg
+000000460147.jpg
+000000328286.jpg
+000000214753.jpg
+000000157124.jpg
+000000327769.jpg
+000000091406.jpg
+000000468332.jpg
+000000245026.jpg
+000000199236.jpg
+000000545407.jpg
+000000577862.jpg
+000000441247.jpg
+000000340451.jpg
+000000497568.jpg
+000000109827.jpg
+000000353027.jpg
+000000512564.jpg
+000000010764.jpg
+000000255749.jpg
+000000158744.jpg
+000000015079.jpg
+000000433243.jpg
+000000227898.jpg
+000000015338.jpg
+000000159977.jpg
+000000022371.jpg
+000000414673.jpg
+000000515579.jpg
+000000384666.jpg
+000000579893.jpg
+000000064359.jpg
+000000479155.jpg
+000000534601.jpg
+000000370677.jpg
+000000388056.jpg
+000000485895.jpg
+000000473121.jpg
+000000461036.jpg
+000000046497.jpg
+000000426166.jpg
+000000099810.jpg
+000000388903.jpg
+000000267946.jpg
+000000365387.jpg
+000000136715.jpg
+000000213935.jpg
+000000131556.jpg
+000000247838.jpg
+000000548506.jpg
+000000082180.jpg
+000000013546.jpg
+000000280930.jpg
+000000013597.jpg
+000000217948.jpg
+000000445439.jpg
+000000181666.jpg
+000000130613.jpg
+000000063602.jpg
+000000520871.jpg
+000000011760.jpg
+000000466416.jpg
+000000307172.jpg
+000000314541.jpg
+000000182162.jpg
+000000156278.jpg
+000000466256.jpg
+000000551820.jpg
+000000404678.jpg
+000000506310.jpg
+000000044279.jpg
+000000509131.jpg
+000000119911.jpg
+000000312340.jpg
+000000284743.jpg
+000000004134.jpg
+000000232692.jpg
+000000133819.jpg
+000000286422.jpg
+000000554002.jpg
+000000389804.jpg
+000000580757.jpg
+000000458663.jpg
+000000173383.jpg
+000000357060.jpg
+000000001818.jpg
+000000356505.jpg
+000000388215.jpg
+000000564280.jpg
+000000507797.jpg
+000000077595.jpg
+000000288762.jpg
+000000523194.jpg
+000000000785.jpg
+000000173302.jpg
+000000005037.jpg
+000000005193.jpg
+000000565012.jpg
+000000579091.jpg
+000000363188.jpg
+000000237864.jpg
+000000396729.jpg
+000000453166.jpg
+000000361919.jpg
+000000132587.jpg
+000000158956.jpg
+000000154425.jpg
+000000361571.jpg
+000000454798.jpg
+000000135902.jpg
+000000546829.jpg
+000000106281.jpg
+000000111951.jpg
+000000333402.jpg
+000000070774.jpg
+000000500613.jpg
+000000224119.jpg
+000000322724.jpg
+000000550471.jpg
+000000563882.jpg
+000000006213.jpg
+000000144932.jpg
+000000567640.jpg
+000000387148.jpg
+000000433103.jpg
+000000304560.jpg
+000000198960.jpg
+000000048924.jpg
+000000028285.jpg
+000000197870.jpg
+000000437239.jpg
+000000500270.jpg
+000000513484.jpg
+000000205776.jpg
+000000572678.jpg
+000000513524.jpg
+000000426297.jpg
+000000438774.jpg
+000000194832.jpg
+000000186637.jpg
+000000124975.jpg
+000000205324.jpg
+000000542423.jpg
+000000114907.jpg
+000000031296.jpg
+000000560312.jpg
+000000294350.jpg
+000000199771.jpg
+000000572555.jpg
+000000200667.jpg
+000000417465.jpg
+000000560266.jpg
+000000052017.jpg
+000000091615.jpg
+000000562207.jpg
+000000436617.jpg
+000000187362.jpg
+000000148508.jpg
+000000273232.jpg
+000000192607.jpg
+000000419201.jpg
+000000493613.jpg
+000000089045.jpg
+000000442480.jpg
+000000184324.jpg
+000000125806.jpg
+000000441586.jpg
+000000167572.jpg
+000000044260.jpg
+000000530854.jpg
+000000088345.jpg
+000000571008.jpg
+000000127955.jpg
+000000423971.jpg
+000000023899.jpg
+000000381360.jpg
+000000472046.jpg
+000000195754.jpg
+000000090062.jpg
+000000498709.jpg
+000000547519.jpg
+000000042296.jpg
+000000258388.jpg
+000000117719.jpg
+000000492968.jpg
+000000024919.jpg
+000000057244.jpg
+000000209142.jpg
+000000440184.jpg
+000000200162.jpg
+000000468233.jpg
+000000442009.jpg
+000000536343.jpg
+000000115870.jpg
+000000079229.jpg
+000000303653.jpg
+000000374727.jpg
+000000372819.jpg
+000000159282.jpg
+000000163118.jpg
+000000148739.jpg
+000000153510.jpg
+000000289659.jpg
+000000151000.jpg
+000000504635.jpg
+000000089296.jpg
+000000300842.jpg
+000000109992.jpg
+000000107094.jpg
+000000542776.jpg
+000000113720.jpg
+000000088250.jpg
+000000308631.jpg
+000000507015.jpg
+000000502599.jpg
+000000291861.jpg
+000000160728.jpg
+000000484760.jpg
+000000500049.jpg
+000000353051.jpg
+000000378873.jpg
+000000306139.jpg
+000000292488.jpg
+000000380706.jpg
+000000369081.jpg
+000000545100.jpg
+000000485071.jpg
+000000099242.jpg
+000000307598.jpg
+000000349860.jpg
+000000368294.jpg
+000000306733.jpg
+000000541291.jpg
+000000170670.jpg
+000000096001.jpg
+000000101884.jpg
+000000378673.jpg
+000000117425.jpg
+000000361180.jpg
+000000500826.jpg
+000000488270.jpg
+000000166478.jpg
+000000314709.jpg
+000000166521.jpg
+000000377946.jpg
+000000555012.jpg
+000000080022.jpg
+000000303566.jpg
+000000352618.jpg
+000000289938.jpg
+000000484351.jpg
+000000290179.jpg
+000000353970.jpg
+000000290592.jpg
+000000557916.jpg
+000000171382.jpg
+000000320490.jpg
+000000364126.jpg
+000000102805.jpg
+000000542127.jpg
+000000382088.jpg
+000000180560.jpg
+000000140640.jpg
+000000471023.jpg
+000000258911.jpg
+000000321118.jpg
+000000257865.jpg
+000000515982.jpg
+000000434479.jpg
+000000031093.jpg
+000000031217.jpg
+000000033005.jpg
+000000549738.jpg
+000000127987.jpg
+000000029640.jpg
+000000027972.jpg
+000000205514.jpg
+000000552883.jpg
+000000026564.jpg
+000000460494.jpg
+000000253452.jpg
+000000256518.jpg
+000000431693.jpg
+000000431568.jpg
+000000553094.jpg
+000000423123.jpg
+000000044699.jpg
+000000463542.jpg
+000000532481.jpg
+000000043816.jpg
+000000042628.jpg
+000000571264.jpg
+000000424776.jpg
+000000424349.jpg
+000000041872.jpg
+000000571804.jpg
+000000263860.jpg
+000000332351.jpg
+000000261888.jpg
+000000037689.jpg
+000000261161.jpg
+000000571857.jpg
+000000007108.jpg
+000000034071.jpg
+000000231879.jpg
+000000326082.jpg
+000000251572.jpg
+000000250901.jpg
+000000527215.jpg
+000000334555.jpg
+000000226130.jpg
+000000219440.jpg
+000000221693.jpg
+000000465180.jpg
+000000010092.jpg
+000000132796.jpg
+000000218362.jpg
+000000458054.jpg
+000000222559.jpg
+000000008844.jpg
+000000455219.jpg
+000000008532.jpg
+000000521717.jpg
+000000525155.jpg
+000000235857.jpg
+000000456496.jpg
+000000334006.jpg
+000000014007.jpg
+000000449603.jpg
+000000527695.jpg
+000000250282.jpg
+000000210388.jpg
+000000022192.jpg
+000000138979.jpg
+000000467315.jpg
+000000552371.jpg
+000000519338.jpg
+000000529148.jpg
+000000018380.jpg
+000000018833.jpg
+000000129812.jpg
+000000446117.jpg
+000000328238.jpg
+000000446651.jpg
+000000213593.jpg
+000000447465.jpg
+000000459437.jpg
+000000577864.jpg
+000000448256.jpg
+000000493442.jpg
+000000228144.jpg
+000000224222.jpg
+000000568584.jpg
+000000346905.jpg
+000000397351.jpg
+000000462629.jpg
+000000179265.jpg
+000000566923.jpg
+000000055150.jpg
+000000410712.jpg
+000000475365.jpg
+000000344611.jpg
+000000057027.jpg
+000000475904.jpg
+000000566282.jpg
+000000057597.jpg
+000000396863.jpg
+000000330790.jpg
+000000407960.jpg
+000000407614.jpg
+000000229216.jpg
+000000535858.jpg
+000000402433.jpg
+000000121744.jpg
+000000567011.jpg
+000000267351.jpg
+000000405972.jpg
+000000277005.jpg
+000000063154.jpg
+000000278973.jpg
+000000182155.jpg
+000000462756.jpg
+000000413689.jpg
+000000476770.jpg
+000000512476.jpg
+000000548555.jpg
+000000533816.jpg
+000000119445.jpg
+000000568981.jpg
+000000052412.jpg
+000000283520.jpg
+000000000139.jpg
+000000413247.jpg
+000000324818.jpg
+000000270402.jpg
+000000142620.jpg
+000000052996.jpg
+000000284762.jpg
+000000267903.jpg
+000000389197.jpg
+000000391290.jpg
+000000071226.jpg
+000000473237.jpg
+000000498807.jpg
+000000346968.jpg
+000000547383.jpg
+000000176799.jpg
+000000417608.jpg
+000000447088.jpg
+000000526392.jpg
+000000446703.jpg
+000000508312.jpg
+000000223955.jpg
+000000278749.jpg
+000000307074.jpg
+000000446005.jpg
+000000279730.jpg
+000000349837.jpg
+000000243199.jpg
+000000559543.jpg
+000000566042.jpg
+000000334767.jpg
+000000497344.jpg
+000000105249.jpg
+000000239857.jpg
+000000398438.jpg
+000000137246.jpg
+000000226417.jpg
+000000157098.jpg
+000000449406.jpg
+000000284282.jpg
+000000449198.jpg
+000000556193.jpg
+000000400367.jpg
+000000360097.jpg
+000000100723.jpg
+000000156924.jpg
+000000006471.jpg
+000000545826.jpg
+000000350405.jpg
+000000060886.jpg
+000000529528.jpg
+000000503823.jpg
+000000245915.jpg
+000000259097.jpg
+000000553511.jpg
+000000109798.jpg
+000000033221.jpg
+000000271457.jpg
+000000523241.jpg
+000000319696.jpg
+000000572956.jpg
+000000428867.jpg
+000000319100.jpg
+000000428454.jpg
+000000428280.jpg
+000000053529.jpg
+000000163562.jpg
+000000040083.jpg
+000000318908.jpg
+000000125129.jpg
+000000351609.jpg
+000000376284.jpg
+000000570664.jpg
+000000473821.jpg
+000000273493.jpg
+000000031248.jpg
+000000312489.jpg
+000000139684.jpg
+000000477118.jpg
+000000344621.jpg
+000000020992.jpg
+000000210708.jpg
+000000159311.jpg
+000000293804.jpg
+000000293474.jpg
+000000439854.jpg
+000000253386.jpg
+000000127494.jpg
+000000438876.jpg
+000000434204.jpg
+000000257084.jpg
+000000324715.jpg
+000000408774.jpg
+000000122969.jpg
+000000340697.jpg
+000000535306.jpg
+000000435205.jpg
+000000097924.jpg
+000000007386.jpg
+000000191288.jpg
+000000537506.jpg
+000000050145.jpg
+000000553990.jpg
+000000140270.jpg
+000000144114.jpg
+000000009378.jpg
+000000534605.jpg
+000000100510.jpg
+000000441442.jpg
+000000329827.jpg
+000000135673.jpg
+000000549390.jpg
+000000151516.jpg
+000000135604.jpg
+000000321790.jpg
+000000500423.jpg
+000000322829.jpg
+000000547886.jpg
+000000144300.jpg
+000000320696.jpg
+000000324614.jpg
+000000142238.jpg
+000000326248.jpg
+000000317433.jpg
+000000141597.jpg
+000000548524.jpg
+000000148999.jpg
+000000548780.jpg
+000000148730.jpg
+000000150224.jpg
+000000139871.jpg
+000000139883.jpg
+000000328337.jpg
+000000329219.jpg
+000000137294.jpg
+000000137106.jpg
+000000136915.jpg
+000000135872.jpg
+000000136355.jpg
+000000329456.jpg
+000000142971.jpg
+000000229997.jpg
+000000152120.jpg
+000000259640.jpg
+000000259625.jpg
+000000201646.jpg
+000000515350.jpg
+000000203580.jpg
+000000203629.jpg
+000000255917.jpg
+000000256195.jpg
+000000255965.jpg
+000000516318.jpg
+000000200961.jpg
+000000205647.jpg
+000000254516.jpg
+000000253819.jpg
+000000206994.jpg
+000000206831.jpg
+000000253002.jpg
+000000208901.jpg
+000000209222.jpg
+000000209613.jpg
+000000530052.jpg
+000000249180.jpg
+000000530162.jpg
+000000210855.jpg
+000000515266.jpg
+000000200152.jpg
+000000270122.jpg
+000000189820.jpg
+000000189451.jpg
+000000269866.jpg
+000000269196.jpg
+000000269632.jpg
+000000533206.jpg
+000000190841.jpg
+000000266892.jpg
+000000192871.jpg
+000000260470.jpg
+000000532575.jpg
+000000532129.jpg
+000000512657.jpg
+000000194716.jpg
+000000512648.jpg
+000000263463.jpg
+000000196185.jpg
+000000196442.jpg
+000000197004.jpg
+000000514979.jpg
+000000515025.jpg
+000000532530.jpg
+000000189226.jpg
+000000249129.jpg
+000000248616.jpg
+000000521509.jpg
+000000221872.jpg
+000000221754.jpg
+000000237071.jpg
+000000222118.jpg
+000000222235.jpg
+000000222863.jpg
+000000525247.jpg
+000000224337.jpg
+000000235241.jpg
+000000526706.jpg
+000000235252.jpg
+000000225670.jpg
+000000233727.jpg
+000000522156.jpg
+000000233139.jpg
+000000232684.jpg
+000000226984.jpg
+000000523033.jpg
+000000523957.jpg
+000000228771.jpg
+000000229221.jpg
+000000234779.jpg
+000000248400.jpg
+000000237984.jpg
+000000219578.jpg
+000000248111.jpg
+000000212800.jpg
+000000213035.jpg
+000000245102.jpg
+000000528578.jpg
+000000213830.jpg
+000000214539.jpg
+000000527960.jpg
+000000214224.jpg
+000000520077.jpg
+000000220764.jpg
+000000215778.jpg
+000000241602.jpg
+000000216636.jpg
+000000216739.jpg
+000000217285.jpg
+000000240754.jpg
+000000218249.jpg
+000000239627.jpg
+000000526751.jpg
+000000239041.jpg
+000000220584.jpg
+000000216296.jpg
+000000151820.jpg
+000000270297.jpg
+000000271728.jpg
+000000303893.jpg
+000000303908.jpg
+000000162732.jpg
+000000504074.jpg
+000000302990.jpg
+000000163155.jpg
+000000504415.jpg
+000000301421.jpg
+000000504580.jpg
+000000300341.jpg
+000000161799.jpg
+000000300155.jpg
+000000165039.jpg
+000000299720.jpg
+000000542856.jpg
+000000166259.jpg
+000000297595.jpg
+000000166391.jpg
+000000166664.jpg
+000000296969.jpg
+000000296657.jpg
+000000296649.jpg
+000000164885.jpg
+000000167128.jpg
+000000543581.jpg
+000000304365.jpg
+000000312720.jpg
+000000312421.jpg
+000000546219.jpg
+000000311392.jpg
+000000311303.jpg
+000000311789.jpg
+000000545730.jpg
+000000153669.jpg
+000000154004.jpg
+000000311518.jpg
+000000304291.jpg
+000000311295.jpg
+000000154339.jpg
+000000311002.jpg
+000000309964.jpg
+000000155291.jpg
+000000501243.jpg
+000000308545.jpg
+000000157767.jpg
+000000157807.jpg
+000000305343.jpg
+000000544519.jpg
+000000310980.jpg
+000000272049.jpg
+000000167240.jpg
+000000295713.jpg
+000000281409.jpg
+000000179642.jpg
+000000281032.jpg
+000000279887.jpg
+000000180878.jpg
+000000537241.jpg
+000000180487.jpg
+000000277051.jpg
+000000278006.jpg
+000000276434.jpg
+000000178982.jpg
+000000509719.jpg
+000000275791.jpg
+000000509403.jpg
+000000274066.jpg
+000000535094.jpg
+000000273617.jpg
+000000511076.jpg
+000000511398.jpg
+000000186282.jpg
+000000186422.jpg
+000000186938.jpg
+000000184338.jpg
+000000167540.jpg
+000000281759.jpg
+000000178469.jpg
+000000294695.jpg
+000000293300.jpg
+000000293200.jpg
+000000506707.jpg
+000000291619.jpg
+000000170955.jpg
+000000290833.jpg
+000000541123.jpg
+000000289702.jpg
+000000172649.jpg
+000000538458.jpg
+000000540466.jpg
+000000288584.jpg
+000000286503.jpg
+000000284764.jpg
+000000284725.jpg
+000000539883.jpg
+000000284296.jpg
+000000283318.jpg
+000000283268.jpg
+000000283412.jpg
+000000177539.jpg
+000000540502.jpg
+000000331604.jpg
+000000229601.jpg
+000000079408.jpg
+000000397279.jpg
+000000397133.jpg
+000000396903.jpg
+000000396338.jpg
+000000068628.jpg
+000000013177.jpg
+000000069213.jpg
+000000396200.jpg
+000000479126.jpg
+000000071711.jpg
+000000393838.jpg
+000000392481.jpg
+000000578792.jpg
+000000451043.jpg
+000000391144.jpg
+000000074058.jpg
+000000390246.jpg
+000000074860.jpg
+000000075456.jpg
+000000076261.jpg
+000000389566.jpg
+000000388846.jpg
+000000012062.jpg
+000000579070.jpg
+000000452122.jpg
+000000397327.jpg
+000000386352.jpg
+000000067315.jpg
+000000066886.jpg
+000000014380.jpg
+000000405970.jpg
+000000405691.jpg
+000000013923.jpg
+000000404805.jpg
+000000449909.jpg
+000000477227.jpg
+000000404479.jpg
+000000404128.jpg
+000000063965.jpg
+000000477805.jpg
+000000402615.jpg
+000000402519.jpg
+000000013348.jpg
+000000065288.jpg
+000000566436.jpg
+000000064898.jpg
+000000065350.jpg
+000000400803.jpg
+000000400815.jpg
+000000065736.jpg
+000000066231.jpg
+000000066561.jpg
+000000398905.jpg
+000000398652.jpg
+000000398203.jpg
+000000079031.jpg
+000000011197.jpg
+000000563702.jpg
+000000377723.jpg
+000000377635.jpg
+000000377588.jpg
+000000377486.jpg
+000000453981.jpg
+000000377239.jpg
+000000377113.jpg
+000000088485.jpg
+000000376625.jpg
+000000454661.jpg
+000000454750.jpg
+000000376278.jpg
+000000376206.jpg
+000000089670.jpg
+000000089648.jpg
+000000090155.jpg
+000000090956.jpg
+000000375430.jpg
+000000008762.jpg
+000000482735.jpg
+000000374052.jpg
+000000092053.jpg
+000000373705.jpg
+000000561009.jpg
+000000092660.jpg
+000000378284.jpg
+000000482100.jpg
+000000086582.jpg
+000000085823.jpg
+000000563470.jpg
+000000080340.jpg
+000000080659.jpg
+000000452793.jpg
+000000383621.jpg
+000000383443.jpg
+000000080671.jpg
+000000382111.jpg
+000000081988.jpg
+000000464872.jpg
+000000382009.jpg
+000000381971.jpg
+000000060507.jpg
+000000009590.jpg
+000000082821.jpg
+000000083172.jpg
+000000084031.jpg
+000000481413.jpg
+000000084477.jpg
+000000453708.jpg
+000000084752.jpg
+000000453722.jpg
+000000481582.jpg
+000000378139.jpg
+000000085682.jpg
+000000085772.jpg
+000000082715.jpg
+000000476119.jpg
+000000407518.jpg
+000000060052.jpg
+000000433774.jpg
+000000574297.jpg
+000000032610.jpg
+000000032735.jpg
+000000445834.jpg
+000000032570.jpg
+000000445846.jpg
+000000018737.jpg
+000000431727.jpg
+000000572620.jpg
+000000033854.jpg
+000000018491.jpg
+000000034205.jpg
+000000429690.jpg
+000000429109.jpg
+000000017959.jpg
+000000571718.jpg
+000000471756.jpg
+000000426372.jpg
+000000038118.jpg
+000000426253.jpg
+000000038825.jpg
+000000038829.jpg
+000000426268.jpg
+000000039480.jpg
+000000031322.jpg
+000000031118.jpg
+000000445658.jpg
+000000030828.jpg
+000000021879.jpg
+000000023034.jpg
+000000576052.jpg
+000000023781.jpg
+000000467776.jpg
+000000440475.jpg
+000000468245.jpg
+000000576654.jpg
+000000025057.jpg
+000000025181.jpg
+000000445248.jpg
+000000575205.jpg
+000000039551.jpg
+000000575243.jpg
+000000438862.jpg
+000000026204.jpg
+000000026941.jpg
+000000468954.jpg
+000000576955.jpg
+000000437898.jpg
+000000577182.jpg
+000000028449.jpg
+000000575081.jpg
+000000020059.jpg
+000000435206.jpg
+000000435003.jpg
+000000439290.jpg
+000000093717.jpg
+000000039956.jpg
+000000017178.jpg
+000000413404.jpg
+000000053624.jpg
+000000054164.jpg
+000000475064.jpg
+000000475150.jpg
+000000054593.jpg
+000000411938.jpg
+000000411665.jpg
+000000568710.jpg
+000000015254.jpg
+000000055072.jpg
+000000568290.jpg
+000000410878.jpg
+000000449432.jpg
+000000057149.jpg
+000000449579.jpg
+000000410428.jpg
+000000409211.jpg
+000000014473.jpg
+000000409198.jpg
+000000408830.jpg
+000000014038.jpg
+000000408120.jpg
+000000407943.jpg
+000000059044.jpg
+000000052891.jpg
+000000414261.jpg
+000000052462.jpg
+000000015751.jpg
+000000570782.jpg
+000000473015.jpg
+000000422998.jpg
+000000043581.jpg
+000000044652.jpg
+000000044877.jpg
+000000473974.jpg
+000000422670.jpg
+000000422706.jpg
+000000473869.jpg
+000000447789.jpg
+000000418961.jpg
+000000040036.jpg
+000000577959.jpg
+000000418959.jpg
+000000048396.jpg
+000000048504.jpg
+000000418281.jpg
+000000474028.jpg
+000000050380.jpg
+000000416837.jpg
+000000050679.jpg
+000000051326.jpg
+000000569565.jpg
+000000051610.jpg
+000000474344.jpg
+000000418696.jpg
+000000561223.jpg
+000000442822.jpg
+000000364557.jpg
+000000552902.jpg
+000000464358.jpg
+000000002157.jpg
+000000462728.jpg
+000000355610.jpg
+000000127263.jpg
+000000552842.jpg
+000000104666.jpg
+000000555412.jpg
+000000001268.jpg
+000000362682.jpg
+000000350607.jpg
+000000461405.jpg
+000000553221.jpg
+000000362716.jpg
+000000458768.jpg
+000000128476.jpg
+000000365098.jpg
+000000347664.jpg
+000000347693.jpg
+000000003553.jpg
+000000365385.jpg
+000000100624.jpg
+000000365095.jpg
+000000006771.jpg
+000000101068.jpg
+000000352900.jpg
+000000357430.jpg
+000000102411.jpg
+000000119516.jpg
+000000128658.jpg
+000000128372.jpg
+000000558421.jpg
+000000126137.jpg
+000000100582.jpg
+000000341681.jpg
+000000347163.jpg
+000000463690.jpg
+000000359135.jpg
+000000110638.jpg
+000000359540.jpg
+000000356427.jpg
+000000492758.jpg
+000000489046.jpg
+000000002149.jpg
+000000344816.jpg
+000000344059.jpg
+000000344100.jpg
+000000358427.jpg
+000000108503.jpg
+000000357459.jpg
+000000123131.jpg
+000000107087.jpg
+000000124798.jpg
+000000360564.jpg
+000000006460.jpg
+000000105264.jpg
+000000458325.jpg
+000000355257.jpg
+000000361621.jpg
+000000493284.jpg
+000000002261.jpg
+000000125572.jpg
+000000106330.jpg
+000000361103.jpg
+000000360951.jpg
+000000457559.jpg
+000000342397.jpg
+000000492110.jpg
+000000360393.jpg
+000000120572.jpg
+000000114871.jpg
+000000357081.jpg
+000000365655.jpg
+000000132544.jpg
+000000132931.jpg
+000000334309.jpg
+000000131386.jpg
+000000097994.jpg
+000000581482.jpg
+000000133000.jpg
+000000098018.jpg
+000000007816.jpg
+000000551804.jpg
+000000118921.jpg
+000000351589.jpg
+000000007795.jpg
+000000490171.jpg
+000000486438.jpg
+000000455624.jpg
+000000463037.jpg
+000000118367.jpg
+000000133645.jpg
+000000490515.jpg
+000000094614.jpg
+000000002473.jpg
+000000463174.jpg
+000000094944.jpg
+000000350488.jpg
+000000491008.jpg
+000000133969.jpg
+000000371552.jpg
+000000007818.jpg
+000000095155.jpg
+000000096427.jpg
+000000560371.jpg
+000000133418.jpg
+000000456015.jpg
+000000559842.jpg
+000000335081.jpg
+000000115898.jpg
+000000115118.jpg
+000000100274.jpg
+000000336309.jpg
+000000130566.jpg
+000000457848.jpg
+000000130699.jpg
+000000366199.jpg
+000000229753.jpg
+000000335800.jpg
+000000463730.jpg
+000000456865.jpg
+000000000885.jpg
+000000336232.jpg
+000000337055.jpg
+000000349302.jpg
+000000367818.jpg
+000000486112.jpg
+000000367095.jpg
+000000447611.jpg
+000000379332.jpg
+000000312237.jpg
+000000069106.jpg
+000000546011.jpg
+000000431545.jpg
+000000017031.jpg
+000000027982.jpg
+000000189078.jpg
+000000577539.jpg
+000000095786.jpg
+000000078426.jpg
+000000410612.jpg
+000000025139.jpg
+000000119233.jpg
+000000261061.jpg
+000000099182.jpg
+000000238013.jpg
+000000325991.jpg
+000000515577.jpg
+000000324158.jpg
+000000136772.jpg
+000000022892.jpg
+000000146831.jpg
+000000554156.jpg
+000000528399.jpg
+000000348012.jpg
+000000054123.jpg
+000000271471.jpg
+000000190140.jpg
+000000243867.jpg
+000000499768.jpg
+000000416269.jpg
+000000269316.jpg
+000000577976.jpg
+000000189698.jpg
+000000244099.jpg
+000000270244.jpg
+000000533855.jpg
+000000448365.jpg
+000000272136.jpg
+000000051976.jpg
+000000120853.jpg
+000000371042.jpg
+000000571893.jpg
+000000548246.jpg
+000000431896.jpg
+000000327701.jpg
+000000530820.jpg
+000000338325.jpg
+000000336658.jpg
+000000433374.jpg
+000000138550.jpg
+000000130465.jpg
+000000019109.jpg
+000000256868.jpg
+000000205105.jpg
+000000029596.jpg
+000000335450.jpg
+000000467176.jpg
+000000246968.jpg
+000000437331.jpg
+000000205834.jpg
+000000027186.jpg
+000000136033.jpg
+000000252219.jpg
+000000133567.jpg
+000000209530.jpg
+000000023937.jpg
+000000023359.jpg
+000000023126.jpg
+000000494913.jpg
+000000249786.jpg
+000000230166.jpg
+000000049091.jpg
+000000229948.jpg
+000000128148.jpg
+000000191672.jpg
+000000343937.jpg
+000000267169.jpg
+000000193162.jpg
+000000343561.jpg
+000000580418.jpg
+000000193429.jpg
+000000553731.jpg
+000000045472.jpg
+000000570756.jpg
+000000016958.jpg
+000000343218.jpg
+000000473219.jpg
+000000125405.jpg
+000000017182.jpg
+000000263679.jpg
+000000195918.jpg
+000000263425.jpg
+000000126216.jpg
+000000426329.jpg
+000000427997.jpg
+000000140420.jpg
+000000213422.jpg
+000000199551.jpg
+000000244833.jpg
+000000429761.jpg
+000000018770.jpg
+000000430871.jpg
+000000117374.jpg
+000000491464.jpg
+000000312586.jpg
+000000308394.jpg
+000000556765.jpg
+000000283070.jpg
+000000458255.jpg
+000000085089.jpg
+000000177893.jpg
+000000538236.jpg
+000000224051.jpg
+000000358923.jpg
+000000360325.jpg
+000000108026.jpg
+000000453860.jpg
+000000178744.jpg
+000000298994.jpg
+000000164969.jpg
+000000522638.jpg
+000000289415.jpg
+000000012670.jpg
+000000160556.jpg
+000000005992.jpg
+000000086220.jpg
+000000537355.jpg
+000000479596.jpg
+000000073946.jpg
+000000104603.jpg
+000000210273.jpg
+000000465549.jpg
+000000012120.jpg
+000000078266.jpg
+000000310622.jpg
+000000224807.jpg
+000000525083.jpg
+000000117492.jpg
+000000479732.jpg
+000000080273.jpg
+000000364297.jpg
+000000155571.jpg
+000000383339.jpg
+000000082085.jpg
+000000106048.jpg
+000000082688.jpg
+000000284991.jpg
+000000380913.jpg
+000000294783.jpg
+000000545958.jpg
+000000110359.jpg
+000000386277.jpg
+000000483999.jpg
+000000062355.jpg
+000000449996.jpg
+000000509735.jpg
+000000554291.jpg
+000000060932.jpg
+000000315450.jpg
+000000062554.jpg
+000000484893.jpg
+000000373353.jpg
+000000183127.jpg
+000000304404.jpg
+000000476704.jpg
+000000183648.jpg
+000000161781.jpg
+000000241297.jpg
+000000372317.jpg
+000000407650.jpg
+000000525322.jpg
+000000535523.jpg
+000000459809.jpg
+000000510095.jpg
+000000372307.jpg
+000000301563.jpg
+000000509258.jpg
+000000402118.jpg
+000000464786.jpg
+000000350679.jpg
+000000097022.jpg
+000000356387.jpg
+000000013291.jpg
+000000461275.jpg
+000000330369.jpg
+000000212226.jpg
+000000440336.jpg
+000000490125.jpg
+000000263299.jpg
+000000099114.jpg
+000000055299.jpg
+000000579635.jpg
+000000196141.jpg
+000000428111.jpg
+000000443844.jpg
+000000041633.jpg
+000000236426.jpg
+000000218091.jpg
+000000133087.jpg
+000000332318.jpg
+000000089697.jpg
+000000111609.jpg
+000000121242.jpg
+000000515828.jpg
+000000544811.jpg
+000000369675.jpg
+000000419408.jpg
+000000090208.jpg
+000000465718.jpg
+000000417911.jpg
+000000279278.jpg
+000000183500.jpg
+000000396580.jpg
+000000537964.jpg
+000000094336.jpg
+000000579970.jpg
+000000283785.jpg
+000000111086.jpg
+000000565962.jpg
+000000563653.jpg
+000000502336.jpg
+000000303863.jpg
+000000090891.jpg
+000000475572.jpg
+000000244019.jpg
+000000475387.jpg
+000000176037.jpg
+000000050165.jpg
+000000186345.jpg
+000000098261.jpg
+000000336209.jpg
+000000558213.jpg
+000000319369.jpg
+000000297343.jpg
+000000230819.jpg
+000000396526.jpg
+000000308391.jpg
+000000199442.jpg
+000000161978.jpg
+000000192670.jpg
+000000495054.jpg
+000000297681.jpg
+000000126592.jpg
+000000557672.jpg
+000000455716.jpg
+000000395575.jpg
+000000453841.jpg
+000000549136.jpg
+000000383842.jpg
+000000287874.jpg
+000000108440.jpg
+000000286507.jpg
+000000036494.jpg
+000000509008.jpg
+000000517523.jpg
+000000451090.jpg
+000000390555.jpg
+000000075393.jpg
+000000288685.jpg
+000000187585.jpg
+000000025228.jpg
+000000239537.jpg
+000000214192.jpg
+000000145620.jpg
+000000064084.jpg
+000000384651.jpg
+000000192904.jpg
+000000286458.jpg
+000000569700.jpg
+000000448410.jpg
+000000147205.jpg
+000000372349.jpg
+000000039484.jpg
+000000261732.jpg
+000000316054.jpg
+000000080949.jpg
+000000475223.jpg
+000000531495.jpg
+000000052507.jpg
+000000436551.jpg
+000000214205.jpg
+000000469652.jpg
+000000514797.jpg
+000000506004.jpg
+000000238866.jpg
+000000492905.jpg
+000000485844.jpg
+000000016228.jpg
+000000509699.jpg
+000000127530.jpg
+000000217060.jpg
+000000239773.jpg
+000000353096.jpg
+000000297698.jpg
+000000471893.jpg
+000000081061.jpg
+000000279927.jpg
+000000378453.jpg
+000000236599.jpg
+000000171611.jpg
+000000112634.jpg
+000000580294.jpg
+000000083540.jpg
+000000277197.jpg
+000000166509.jpg
+000000082986.jpg
+000000064523.jpg
+000000481480.jpg
+000000562581.jpg
+000000165681.jpg
+000000383289.jpg
+000000154431.jpg
+000000316404.jpg
+000000039951.jpg
+000000410510.jpg
+000000455597.jpg
+000000181421.jpg
+000000511999.jpg
+000000091495.jpg
+000000323263.jpg
+000000343524.jpg
+000000078404.jpg
+000000356498.jpg
+000000209747.jpg
+000000315187.jpg
+000000335427.jpg
+000000085329.jpg
+000000282037.jpg
+000000568439.jpg
+000000029397.jpg
+000000236914.jpg
+000000030213.jpg
+000000174018.jpg
+000000159112.jpg
+000000349480.jpg
+000000121031.jpg
+000000215072.jpg
+000000205289.jpg
+000000162366.jpg
+000000113403.jpg
+000000341196.jpg
+000000272566.jpg
+000000575815.jpg
+000000463618.jpg
+000000157138.jpg
+000000149622.jpg
+000000226662.jpg
+000000296634.jpg
+000000551822.jpg
+000000575357.jpg
+000000139099.jpg
+000000151857.jpg
+000000364884.jpg
+000000430961.jpg
+000000082846.jpg
+000000274460.jpg
+000000188465.jpg
+000000231169.jpg
+000000567898.jpg
+000000562121.jpg
+000000378116.jpg
+000000530061.jpg
+000000540928.jpg
+000000512776.jpg
+000000134112.jpg
+000000158227.jpg
+000000102331.jpg
+000000163640.jpg
+000000482800.jpg
+000000153229.jpg
+000000250205.jpg
+000000210230.jpg
+000000442836.jpg
+000000093965.jpg
+000000020247.jpg
+000000421834.jpg
+000000420069.jpg
+000000532855.jpg
+000000521259.jpg
+000000140556.jpg
+000000273551.jpg
+000000049759.jpg
+000000033759.jpg
+000000384949.jpg
+000000203546.jpg
+000000434459.jpg
+000000136600.jpg
+000000269113.jpg
+000000192699.jpg
+000000464251.jpg
+000000079144.jpg
+000000457884.jpg
+000000061418.jpg
+000000052565.jpg
+000000447314.jpg
+000000502168.jpg
+000000252216.jpg
+000000539143.jpg
+000000345361.jpg
+000000391375.jpg
+000000008211.jpg
+000000242060.jpg
+000000334530.jpg
+000000468124.jpg
+000000235784.jpg
+000000463918.jpg
+000000469174.jpg
+000000160012.jpg
+000000249643.jpg
+000000348881.jpg
+000000234807.jpg
+000000231822.jpg
+000000061333.jpg
+000000035279.jpg
+000000481159.jpg
+000000225946.jpg
+000000498032.jpg
+000000149770.jpg
+000000064718.jpg
+000000331799.jpg
+000000011511.jpg
+000000530836.jpg
+000000244379.jpg
+000000154705.jpg
+000000048555.jpg
+000000188906.jpg
+000000390301.jpg
+000000500565.jpg
+000000058384.jpg
+000000117197.jpg
+000000485130.jpg
+000000216419.jpg
+000000016249.jpg
+000000155179.jpg
+000000425925.jpg
+000000105923.jpg
+000000175438.jpg
+000000331280.jpg
+000000578967.jpg
+000000150638.jpg
+000000226408.jpg
+000000225757.jpg
+000000220858.jpg
+000000267537.jpg
+000000087470.jpg
+000000225405.jpg
+000000016010.jpg
+000000480275.jpg
+000000480021.jpg
+000000306893.jpg
+000000245576.jpg
+000000430286.jpg
+000000223747.jpg
+000000578545.jpg
+000000415238.jpg
+000000534639.jpg
+000000275727.jpg
+000000258793.jpg
+000000261712.jpg
+000000512194.jpg
+000000241319.jpg
+000000170474.jpg
+000000183104.jpg
+000000193926.jpg
+000000290771.jpg
+000000405205.jpg
+000000172935.jpg
+000000545129.jpg
+000000273715.jpg
+000000508730.jpg
+000000443498.jpg
+000000255824.jpg
+000000466986.jpg
+000000363461.jpg
+000000430973.jpg
+000000370900.jpg
+000000483050.jpg
+000000230362.jpg
+000000429530.jpg
+000000499313.jpg
+000000341921.jpg
+000000343315.jpg
+000000399560.jpg
+000000388258.jpg
+000000366611.jpg
+000000581781.jpg
+000000190753.jpg
+000000197796.jpg
+000000096960.jpg
+000000140583.jpg
+000000079651.jpg
+000000121586.jpg
+000000109900.jpg
+000000151051.jpg
+000000195165.jpg
+000000076417.jpg
+000000177489.jpg
+000000197022.jpg
+000000058029.jpg
+000000170099.jpg
+000000019221.jpg
+000000546964.jpg
+000000156076.jpg
+000000530624.jpg
+000000300039.jpg
+000000042888.jpg
+000000088951.jpg
+000000244592.jpg
+000000019742.jpg
+000000325527.jpg
+000000049761.jpg
+000000515077.jpg
+000000335177.jpg
+000000249219.jpg
+000000491757.jpg
+000000389451.jpg
+000000444879.jpg
+000000345252.jpg
+000000022755.jpg
+000000450758.jpg
+000000198641.jpg
+000000470779.jpg
+000000493019.jpg
+000000563604.jpg
+000000152771.jpg
+000000468632.jpg
+000000151962.jpg
+000000119452.jpg
+000000348488.jpg
+000000491213.jpg
+000000120420.jpg
+000000119038.jpg
+000000471789.jpg
+000000121153.jpg
+000000470924.jpg
+000000572303.jpg
+000000119088.jpg
+000000471450.jpg
+000000119828.jpg
+000000348481.jpg
+000000119677.jpg
+000000347370.jpg
+000000347544.jpg
+000000036844.jpg
+000000491366.jpg
+000000428218.jpg
+000000037751.jpg
+000000119641.jpg
+000000037670.jpg
+000000229659.jpg
+000000491725.jpg
+000000347930.jpg
+000000463522.jpg
+000000120777.jpg
+000000123633.jpg
+000000343934.jpg
+000000343466.jpg
+000000343453.jpg
+000000124636.jpg
+000000342367.jpg
+000000125211.jpg
+000000124659.jpg
+000000034417.jpg
+000000429623.jpg
+000000125778.jpg
+000000430048.jpg
+000000126107.jpg
+000000341973.jpg
+000000430056.jpg
+000000553669.jpg
+000000125257.jpg
+000000429598.jpg
+000000123480.jpg
+000000344029.jpg
+000000346638.jpg
+000000428562.jpg
+000000492077.jpg
+000000345397.jpg
+000000345385.jpg
+000000118594.jpg
+000000035326.jpg
+000000345466.jpg
+000000121497.jpg
+000000034873.jpg
+000000572900.jpg
+000000121673.jpg
+000000492284.jpg
+000000122672.jpg
+000000122606.jpg
+000000122166.jpg
+000000343976.jpg
+000000554735.jpg
+000000345356.jpg
+000000490470.jpg
+000000118209.jpg
+000000357941.jpg
+000000425390.jpg
+000000489014.jpg
+000000357737.jpg
+000000357501.jpg
+000000041888.jpg
+000000357748.jpg
+000000488736.jpg
+000000108864.jpg
+000000109055.jpg
+000000109916.jpg
+000000109976.jpg
+000000356968.jpg
+000000356531.jpg
+000000041635.jpg
+000000109441.jpg
+000000039769.jpg
+000000110449.jpg
+000000426241.jpg
+000000357978.jpg
+000000356261.jpg
+000000357888.jpg
+000000358525.jpg
+000000041990.jpg
+000000361268.jpg
+000000105912.jpg
+000000106389.jpg
+000000424721.jpg
+000000106235.jpg
+000000360661.jpg
+000000106266.jpg
+000000424551.jpg
+000000424642.jpg
+000000557501.jpg
+000000107339.jpg
+000000424975.jpg
+000000472030.jpg
+000000359937.jpg
+000000107851.jpg
+000000108244.jpg
+000000359219.jpg
+000000107554.jpg
+000000556498.jpg
+000000356347.jpg
+000000356169.jpg
+000000356125.jpg
+000000351810.jpg
+000000115885.jpg
+000000351331.jpg
+000000037988.jpg
+000000116206.jpg
+000000116068.jpg
+000000116208.jpg
+000000427055.jpg
+000000116589.jpg
+000000471567.jpg
+000000351096.jpg
+000000350833.jpg
+000000117645.jpg
+000000126110.jpg
+000000350122.jpg
+000000350023.jpg
+000000350054.jpg
+000000350003.jpg
+000000037740.jpg
+000000352491.jpg
+000000427034.jpg
+000000571943.jpg
+000000038070.jpg
+000000355817.jpg
+000000355677.jpg
+000000039785.jpg
+000000039405.jpg
+000000112110.jpg
+000000355905.jpg
+000000112298.jpg
+000000355169.jpg
+000000354829.jpg
+000000118405.jpg
+000000354307.jpg
+000000112378.jpg
+000000113051.jpg
+000000555005.jpg
+000000113235.jpg
+000000113354.jpg
+000000113589.jpg
+000000571598.jpg
+000000426795.jpg
+000000555009.jpg
+000000354753.jpg
+000000127092.jpg
+000000338905.jpg
+000000126226.jpg
+000000142324.jpg
+000000142472.jpg
+000000325306.jpg
+000000325114.jpg
+000000498747.jpg
+000000142790.jpg
+000000548267.jpg
+000000143931.jpg
+000000142092.jpg
+000000324258.jpg
+000000323895.jpg
+000000498286.jpg
+000000144003.jpg
+000000323799.jpg
+000000498463.jpg
+000000144706.jpg
+000000145591.jpg
+000000435880.jpg
+000000029393.jpg
+000000547502.jpg
+000000325838.jpg
+000000141328.jpg
+000000138639.jpg
+000000574315.jpg
+000000138819.jpg
+000000030785.jpg
+000000327780.jpg
+000000327890.jpg
+000000139077.jpg
+000000139872.jpg
+000000325483.jpg
+000000140076.jpg
+000000140203.jpg
+000000326970.jpg
+000000326627.jpg
+000000326542.jpg
+000000030494.jpg
+000000141821.jpg
+000000469246.jpg
+000000326174.jpg
+000000327605.jpg
+000000498857.jpg
+000000498919.jpg
+000000499266.jpg
+000000547336.jpg
+000000147745.jpg
+000000319617.jpg
+000000147729.jpg
+000000320425.jpg
+000000319534.jpg
+000000468965.jpg
+000000147740.jpg
+000000547144.jpg
+000000318455.jpg
+000000148620.jpg
+000000148707.jpg
+000000500211.jpg
+000000148719.jpg
+000000318080.jpg
+000000027620.jpg
+000000316666.jpg
+000000317024.jpg
+000000148662.jpg
+000000320632.jpg
+000000499775.jpg
+000000320554.jpg
+000000499181.jpg
+000000145781.jpg
+000000435299.jpg
+000000322895.jpg
+000000322610.jpg
+000000145597.jpg
+000000469192.jpg
+000000322574.jpg
+000000322352.jpg
+000000322163.jpg
+000000322211.jpg
+000000469067.jpg
+000000146363.jpg
+000000146457.jpg
+000000321214.jpg
+000000146498.jpg
+000000146489.jpg
+000000320664.jpg
+000000057672.jpg
+000000138856.jpg
+000000341719.jpg
+000000329080.jpg
+000000434548.jpg
+000000337498.jpg
+000000337987.jpg
+000000129135.jpg
+000000129492.jpg
+000000129756.jpg
+000000573391.jpg
+000000432085.jpg
+000000336587.jpg
+000000129416.jpg
+000000470773.jpg
+000000131131.jpg
+000000335658.jpg
+000000336053.jpg
+000000335529.jpg
+000000470121.jpg
+000000469828.jpg
+000000551815.jpg
+000000130599.jpg
+000000130826.jpg
+000000131379.jpg
+000000032887.jpg
+000000129113.jpg
+000000553339.jpg
+000000341094.jpg
+000000127517.jpg
+000000340894.jpg
+000000430073.jpg
+000000340930.jpg
+000000034452.jpg
+000000340015.jpg
+000000431140.jpg
+000000034139.jpg
+000000128675.jpg
+000000430875.jpg
+000000338901.jpg
+000000338625.jpg
+000000033114.jpg
+000000129054.jpg
+000000033109.jpg
+000000129062.jpg
+000000573008.jpg
+000000131138.jpg
+000000551780.jpg
+000000551794.jpg
+000000134856.jpg
+000000031735.jpg
+000000573943.jpg
+000000494863.jpg
+000000134886.jpg
+000000330396.jpg
+000000135561.jpg
+000000330554.jpg
+000000433515.jpg
+000000434297.jpg
+000000136334.jpg
+000000329455.jpg
+000000434996.jpg
+000000496597.jpg
+000000496409.jpg
+000000549674.jpg
+000000031269.jpg
+000000496854.jpg
+000000550084.jpg
+000000134722.jpg
+000000134096.jpg
+000000331817.jpg
+000000573258.jpg
+000000433134.jpg
+000000334521.jpg
+000000550714.jpg
+000000132375.jpg
+000000433204.jpg
+000000334399.jpg
+000000333772.jpg
+000000433192.jpg
+000000551350.jpg
+000000494634.jpg
+000000495146.jpg
+000000032334.jpg
+000000550691.jpg
+000000494759.jpg
+000000573626.jpg
+000000134322.jpg
+000000332845.jpg
+000000433915.jpg
+000000496954.jpg
+000000361238.jpg
+000000104782.jpg
+000000488075.jpg
+000000395343.jpg
+000000070739.jpg
+000000394206.jpg
+000000071938.jpg
+000000394199.jpg
+000000393226.jpg
+000000474881.jpg
+000000052413.jpg
+000000479248.jpg
+000000393569.jpg
+000000072795.jpg
+000000393056.jpg
+000000393014.jpg
+000000474452.jpg
+000000051938.jpg
+000000565563.jpg
+000000072813.jpg
+000000073326.jpg
+000000479448.jpg
+000000394611.jpg
+000000394677.jpg
+000000394510.jpg
+000000569030.jpg
+000000414133.jpg
+000000067896.jpg
+000000565853.jpg
+000000067616.jpg
+000000068093.jpg
+000000068387.jpg
+000000068833.jpg
+000000396518.jpg
+000000068765.jpg
+000000396274.jpg
+000000069224.jpg
+000000395633.jpg
+000000069795.jpg
+000000414034.jpg
+000000395701.jpg
+000000395801.jpg
+000000479099.jpg
+000000070048.jpg
+000000414795.jpg
+000000397303.jpg
+000000051738.jpg
+000000073533.jpg
+000000078823.jpg
+000000386912.jpg
+000000078843.jpg
+000000387387.jpg
+000000387383.jpg
+000000474293.jpg
+000000416104.jpg
+000000078748.jpg
+000000387098.jpg
+000000079034.jpg
+000000385997.jpg
+000000079565.jpg
+000000079588.jpg
+000000385205.jpg
+000000385029.jpg
+000000385190.jpg
+000000474170.jpg
+000000384527.jpg
+000000416256.jpg
+000000051314.jpg
+000000415990.jpg
+000000078420.jpg
+000000074200.jpg
+000000074209.jpg
+000000391140.jpg
+000000390826.jpg
+000000480212.jpg
+000000389933.jpg
+000000074256.jpg
+000000415194.jpg
+000000389812.jpg
+000000389684.jpg
+000000415536.jpg
+000000076416.jpg
+000000075612.jpg
+000000415727.jpg
+000000415716.jpg
+000000076547.jpg
+000000077396.jpg
+000000076625.jpg
+000000076468.jpg
+000000414385.jpg
+000000416330.jpg
+000000067406.jpg
+000000397354.jpg
+000000061108.jpg
+000000405279.jpg
+000000405432.jpg
+000000061171.jpg
+000000405249.jpg
+000000405195.jpg
+000000404923.jpg
+000000061584.jpg
+000000060823.jpg
+000000061658.jpg
+000000061471.jpg
+000000410650.jpg
+000000410934.jpg
+000000404484.jpg
+000000062353.jpg
+000000476787.jpg
+000000404568.jpg
+000000566524.jpg
+000000476810.jpg
+000000060835.jpg
+000000056344.jpg
+000000406611.jpg
+000000409630.jpg
+000000409475.jpg
+000000057725.jpg
+000000058350.jpg
+000000408696.jpg
+000000408112.jpg
+000000407868.jpg
+000000410456.jpg
+000000059598.jpg
+000000567740.jpg
+000000567886.jpg
+000000407524.jpg
+000000475678.jpg
+000000056288.jpg
+000000475732.jpg
+000000060363.jpg
+000000407298.jpg
+000000060770.jpg
+000000406997.jpg
+000000403817.jpg
+000000398237.jpg
+000000410880.jpg
+000000411530.jpg
+000000400161.jpg
+000000066635.jpg
+000000399296.jpg
+000000412240.jpg
+000000475191.jpg
+000000399655.jpg
+000000412531.jpg
+000000399205.jpg
+000000411953.jpg
+000000566758.jpg
+000000569273.jpg
+000000398377.jpg
+000000066771.jpg
+000000569059.jpg
+000000397639.jpg
+000000066926.jpg
+000000478862.jpg
+000000053626.jpg
+000000478721.jpg
+000000400922.jpg
+000000066038.jpg
+000000065798.jpg
+000000402992.jpg
+000000403353.jpg
+000000402783.jpg
+000000402765.jpg
+000000411754.jpg
+000000055528.jpg
+000000063740.jpg
+000000402473.jpg
+000000064495.jpg
+000000064499.jpg
+000000477623.jpg
+000000402346.jpg
+000000064868.jpg
+000000401862.jpg
+000000055002.jpg
+000000401446.jpg
+000000065455.jpg
+000000411817.jpg
+000000478286.jpg
+000000477441.jpg
+000000384670.jpg
+000000384661.jpg
+000000384616.jpg
+000000369442.jpg
+000000369370.jpg
+000000560178.jpg
+000000369503.jpg
+000000045728.jpg
+000000485424.jpg
+000000368982.jpg
+000000097679.jpg
+000000421757.jpg
+000000368961.jpg
+000000098497.jpg
+000000368900.jpg
+000000368940.jpg
+000000560256.jpg
+000000368684.jpg
+000000368456.jpg
+000000098520.jpg
+000000098839.jpg
+000000045229.jpg
+000000097337.jpg
+000000369771.jpg
+000000369757.jpg
+000000046804.jpg
+000000094185.jpg
+000000484296.jpg
+000000046252.jpg
+000000371677.jpg
+000000371749.jpg
+000000484415.jpg
+000000560474.jpg
+000000095069.jpg
+000000046031.jpg
+000000095899.jpg
+000000370999.jpg
+000000095862.jpg
+000000046048.jpg
+000000370711.jpg
+000000370478.jpg
+000000370208.jpg
+000000097230.jpg
+000000421455.jpg
+000000422836.jpg
+000000093261.jpg
+000000367386.jpg
+000000099039.jpg
+000000363840.jpg
+000000423617.jpg
+000000364166.jpg
+000000104198.jpg
+000000363784.jpg
+000000363207.jpg
+000000104455.jpg
+000000042178.jpg
+000000104119.jpg
+000000104619.jpg
+000000104612.jpg
+000000148957.jpg
+000000424545.jpg
+000000362434.jpg
+000000558073.jpg
+000000361730.jpg
+000000570834.jpg
+000000361506.jpg
+000000104669.jpg
+000000103548.jpg
+000000558854.jpg
+000000558558.jpg
+000000045550.jpg
+000000570688.jpg
+000000486104.jpg
+000000559348.jpg
+000000366884.jpg
+000000099428.jpg
+000000486046.jpg
+000000365745.jpg
+000000100238.jpg
+000000366141.jpg
+000000486479.jpg
+000000365886.jpg
+000000365766.jpg
+000000100283.jpg
+000000101420.jpg
+000000472678.jpg
+000000558114.jpg
+000000101762.jpg
+000000364322.jpg
+000000559956.jpg
+000000093353.jpg
+000000484404.jpg
+000000561366.jpg
+000000417043.jpg
+000000382030.jpg
+000000083113.jpg
+000000051008.jpg
+000000084270.jpg
+000000084170.jpg
+000000084362.jpg
+000000050331.jpg
+000000562561.jpg
+000000562843.jpg
+000000084650.jpg
+000000050006.jpg
+000000379441.jpg
+000000562443.jpg
+000000085195.jpg
+000000481567.jpg
+000000085157.jpg
+000000050326.jpg
+000000481390.jpg
+000000563267.jpg
+000000081766.jpg
+000000416885.jpg
+000000384513.jpg
+000000384468.jpg
+000000384350.jpg
+000000080413.jpg
+000000080274.jpg
+000000383921.jpg
+000000050828.jpg
+000000383676.jpg
+000000416451.jpg
+000000416758.jpg
+000000383606.jpg
+000000383386.jpg
+000000383337.jpg
+000000081738.jpg
+000000382743.jpg
+000000081394.jpg
+000000562818.jpg
+000000382696.jpg
+000000382125.jpg
+000000417632.jpg
+000000562448.jpg
+000000377882.jpg
+000000087038.jpg
+000000089556.jpg
+000000376093.jpg
+000000375763.jpg
+000000375493.jpg
+000000482917.jpg
+000000090003.jpg
+000000090108.jpg
+000000419653.jpg
+000000561256.jpg
+000000091500.jpg
+000000047112.jpg
+000000091654.jpg
+000000047010.jpg
+000000092091.jpg
+000000091779.jpg
+000000482585.jpg
+000000091921.jpg
+000000374369.jpg
+000000483531.jpg
+000000561679.jpg
+000000557172.jpg
+000000376310.jpg
+000000482719.jpg
+000000086483.jpg
+000000086755.jpg
+000000087144.jpg
+000000417876.jpg
+000000377814.jpg
+000000417779.jpg
+000000570456.jpg
+000000048153.jpg
+000000047819.jpg
+000000482319.jpg
+000000561958.jpg
+000000377393.jpg
+000000088269.jpg
+000000047769.jpg
+000000474078.jpg
+000000482275.jpg
+000000474021.jpg
+000000047121.jpg
+000000376365.jpg
+000000561889.jpg
+000000575187.jpg
+000000147415.jpg
+000000273711.jpg
+000000195842.jpg
+000000196009.jpg
+000000196759.jpg
+000000196843.jpg
+000000262938.jpg
+000000008690.jpg
+000000513567.jpg
+000000262587.jpg
+000000513688.jpg
+000000262487.jpg
+000000455267.jpg
+000000514508.jpg
+000000532058.jpg
+000000514376.jpg
+000000530975.jpg
+000000531135.jpg
+000000531134.jpg
+000000513041.jpg
+000000512985.jpg
+000000009483.jpg
+000000194940.jpg
+000000453302.jpg
+000000267191.jpg
+000000453584.jpg
+000000267300.jpg
+000000453341.jpg
+000000532761.jpg
+000000193245.jpg
+000000010995.jpg
+000000261116.jpg
+000000266409.jpg
+000000193674.jpg
+000000009914.jpg
+000000194724.jpg
+000000009891.jpg
+000000009400.jpg
+000000194746.jpg
+000000195045.jpg
+000000009769.jpg
+000000193884.jpg
+000000531707.jpg
+000000199681.jpg
+000000260925.jpg
+000000516143.jpg
+000000256916.jpg
+000000464476.jpg
+000000256775.jpg
+000000256192.jpg
+000000530466.jpg
+000000205282.jpg
+000000530470.jpg
+000000007511.jpg
+000000255747.jpg
+000000530099.jpg
+000000255664.jpg
+000000007574.jpg
+000000206218.jpg
+000000456559.jpg
+000000254814.jpg
+000000255165.jpg
+000000206411.jpg
+000000206027.jpg
+000000267434.jpg
+000000203488.jpg
+000000203389.jpg
+000000200252.jpg
+000000200839.jpg
+000000200421.jpg
+000000259690.jpg
+000000008021.jpg
+000000260105.jpg
+000000259854.jpg
+000000515445.jpg
+000000257370.jpg
+000000201676.jpg
+000000201934.jpg
+000000455872.jpg
+000000259382.jpg
+000000455937.jpg
+000000203095.jpg
+000000007784.jpg
+000000203294.jpg
+000000257566.jpg
+000000201418.jpg
+000000516677.jpg
+000000191761.jpg
+000000533145.jpg
+000000465822.jpg
+000000465836.jpg
+000000276024.jpg
+000000275198.jpg
+000000509656.jpg
+000000183965.jpg
+000000184384.jpg
+000000275749.jpg
+000000012667.jpg
+000000184400.jpg
+000000184611.jpg
+000000184762.jpg
+000000274687.jpg
+000000451144.jpg
+000000185472.jpg
+000000510329.jpg
+000000274272.jpg
+000000276720.jpg
+000000509451.jpg
+000000276707.jpg
+000000184321.jpg
+000000013774.jpg
+000000537270.jpg
+000000180751.jpg
+000000450075.jpg
+000000279145.jpg
+000000509260.jpg
+000000181816.jpg
+000000013659.jpg
+000000025986.jpg
+000000278705.jpg
+000000182417.jpg
+000000277584.jpg
+000000013729.jpg
+000000466156.jpg
+000000536947.jpg
+000000450303.jpg
+000000450399.jpg
+000000276055.jpg
+000000278463.jpg
+000000579158.jpg
+000000185599.jpg
+000000534673.jpg
+000000189213.jpg
+000000189310.jpg
+000000270066.jpg
+000000533536.jpg
+000000269682.jpg
+000000189752.jpg
+000000189775.jpg
+000000269314.jpg
+000000270386.jpg
+000000189475.jpg
+000000010977.jpg
+000000453001.jpg
+000000190756.jpg
+000000190648.jpg
+000000268729.jpg
+000000268996.jpg
+000000191471.jpg
+000000267940.jpg
+000000010707.jpg
+000000465129.jpg
+000000511599.jpg
+000000452321.jpg
+000000186296.jpg
+000000451155.jpg
+000000273198.jpg
+000000465806.jpg
+000000451693.jpg
+000000451571.jpg
+000000011149.jpg
+000000272416.jpg
+000000270474.jpg
+000000187144.jpg
+000000272212.jpg
+000000011122.jpg
+000000187249.jpg
+000000534041.jpg
+000000511647.jpg
+000000187734.jpg
+000000187990.jpg
+000000187745.jpg
+000000187236.jpg
+000000279769.jpg
+000000516316.jpg
+000000206579.jpg
+000000002153.jpg
+000000002006.jpg
+000000460841.jpg
+000000236721.jpg
+000000222299.jpg
+000000236592.jpg
+000000222317.jpg
+000000236412.jpg
+000000521601.jpg
+000000526256.jpg
+000000223090.jpg
+000000001675.jpg
+000000001503.jpg
+000000001532.jpg
+000000235399.jpg
+000000522007.jpg
+000000224664.jpg
+000000222094.jpg
+000000526103.jpg
+000000521540.jpg
+000000221213.jpg
+000000240767.jpg
+000000217753.jpg
+000000459954.jpg
+000000239843.jpg
+000000218424.jpg
+000000460160.jpg
+000000520659.jpg
+000000460333.jpg
+000000224675.jpg
+000000463802.jpg
+000000581062.jpg
+000000526728.jpg
+000000463647.jpg
+000000239347.jpg
+000000521052.jpg
+000000002587.jpg
+000000220732.jpg
+000000221017.jpg
+000000238410.jpg
+000000235064.jpg
+000000521819.jpg
+000000524742.jpg
+000000231580.jpg
+000000001000.jpg
+000000227478.jpg
+000000227187.jpg
+000000523175.jpg
+000000231097.jpg
+000000227511.jpg
+000000227985.jpg
+000000231549.jpg
+000000230450.jpg
+000000227765.jpg
+000000524456.jpg
+000000228981.jpg
+000000523807.jpg
+000000523811.jpg
+000000463199.jpg
+000000229311.jpg
+000000462904.jpg
+000000523782.jpg
+000000520832.jpg
+000000227491.jpg
+000000227044.jpg
+000000234660.jpg
+000000234757.jpg
+000000225532.jpg
+000000234413.jpg
+000000233825.jpg
+000000226058.jpg
+000000226171.jpg
+000000226592.jpg
+000000463527.jpg
+000000522713.jpg
+000000233033.jpg
+000000226903.jpg
+000000227482.jpg
+000000462576.jpg
+000000232538.jpg
+000000581100.jpg
+000000232244.jpg
+000000232088.jpg
+000000226883.jpg
+000000253835.jpg
+000000527528.jpg
+000000217425.jpg
+000000250758.jpg
+000000210299.jpg
+000000210394.jpg
+000000210502.jpg
+000000210915.jpg
+000000458045.jpg
+000000248980.jpg
+000000005586.jpg
+000000248752.jpg
+000000518326.jpg
+000000458109.jpg
+000000211069.jpg
+000000248334.jpg
+000000248631.jpg
+000000248314.jpg
+000000248112.jpg
+000000529939.jpg
+000000518213.jpg
+000000209829.jpg
+000000251119.jpg
+000000006894.jpg
+000000253742.jpg
+000000457078.jpg
+000000206487.jpg
+000000253433.jpg
+000000206838.jpg
+000000006954.jpg
+000000516708.jpg
+000000207585.jpg
+000000458410.jpg
+000000516916.jpg
+000000208208.jpg
+000000252332.jpg
+000000207844.jpg
+000000208363.jpg
+000000208423.jpg
+000000251824.jpg
+000000517056.jpg
+000000517069.jpg
+000000207538.jpg
+000000518770.jpg
+000000211825.jpg
+000000212072.jpg
+000000215245.jpg
+000000519764.jpg
+000000242946.jpg
+000000002923.jpg
+000000459757.jpg
+000000216277.jpg
+000000463842.jpg
+000000520264.jpg
+000000244411.jpg
+000000215723.jpg
+000000520324.jpg
+000000215644.jpg
+000000241677.jpg
+000000520531.jpg
+000000216497.jpg
+000000520707.jpg
+000000241326.jpg
+000000217400.jpg
+000000242724.jpg
+000000527427.jpg
+000000214869.jpg
+000000213816.jpg
+000000247806.jpg
+000000005001.jpg
+000000246883.jpg
+000000458790.jpg
+000000529762.jpg
+000000458755.jpg
+000000245764.jpg
+000000004795.jpg
+000000244181.jpg
+000000529105.jpg
+000000245448.jpg
+000000004495.jpg
+000000459195.jpg
+000000464089.jpg
+000000003845.jpg
+000000580197.jpg
+000000519611.jpg
+000000459662.jpg
+000000528862.jpg
+000000180383.jpg
+000000475779.jpg
+000000024027.jpg
+000000159399.jpg
+000000170116.jpg
+000000292997.jpg
+000000155451.jpg
+000000505942.jpg
+000000293245.jpg
+000000169169.jpg
+000000169356.jpg
+000000169996.jpg
+000000293390.jpg
+000000293625.jpg
+000000019402.jpg
+000000445792.jpg
+000000439773.jpg
+000000501523.jpg
+000000308793.jpg
+000000541664.jpg
+000000295316.jpg
+000000168619.jpg
+000000162130.jpg
+000000541773.jpg
+000000156643.jpg
+000000308753.jpg
+000000309655.jpg
+000000309452.jpg
+000000156071.jpg
+000000575372.jpg
+000000294855.jpg
+000000168337.jpg
+000000168593.jpg
+000000019786.jpg
+000000295420.jpg
+000000159458.jpg
+000000018837.jpg
+000000159791.jpg
+000000439715.jpg
+000000170893.jpg
+000000022969.jpg
+000000018150.jpg
+000000017714.jpg
+000000507037.jpg
+000000155051.jpg
+000000501023.jpg
+000000171298.jpg
+000000171757.jpg
+000000468501.jpg
+000000441553.jpg
+000000171740.jpg
+000000439593.jpg
+000000447169.jpg
+000000167898.jpg
+000000506933.jpg
+000000170545.jpg
+000000018575.jpg
+000000161861.jpg
+000000544605.jpg
+000000292456.jpg
+000000155341.jpg
+000000506454.jpg
+000000305695.jpg
+000000292155.jpg
+000000310200.jpg
+000000506656.jpg
+000000292225.jpg
+000000446207.jpg
+000000309938.jpg
+000000155145.jpg
+000000018193.jpg
+000000167902.jpg
+000000445602.jpg
+000000296222.jpg
+000000543047.jpg
+000000022935.jpg
+000000162035.jpg
+000000157928.jpg
+000000157390.jpg
+000000022589.jpg
+000000301867.jpg
+000000300913.jpg
+000000164883.jpg
+000000442661.jpg
+000000165336.jpg
+000000299887.jpg
+000000165500.jpg
+000000502347.jpg
+000000542625.jpg
+000000299609.jpg
+000000467848.jpg
+000000163611.jpg
+000000302760.jpg
+000000024144.jpg
+000000442323.jpg
+000000442161.jpg
+000000302536.jpg
+000000303305.jpg
+000000164602.jpg
+000000302165.jpg
+000000022623.jpg
+000000307145.jpg
+000000543300.jpg
+000000543528.jpg
+000000163258.jpg
+000000301981.jpg
+000000024243.jpg
+000000154000.jpg
+000000308328.jpg
+000000575970.jpg
+000000297085.jpg
+000000444275.jpg
+000000166642.jpg
+000000297147.jpg
+000000308476.jpg
+000000019432.jpg
+000000297396.jpg
+000000167122.jpg
+000000296231.jpg
+000000167486.jpg
+000000296317.jpg
+000000296224.jpg
+000000024610.jpg
+000000545219.jpg
+000000167159.jpg
+000000308430.jpg
+000000020553.jpg
+000000576031.jpg
+000000157046.jpg
+000000442746.jpg
+000000299355.jpg
+000000441491.jpg
+000000166166.jpg
+000000308466.jpg
+000000021503.jpg
+000000298396.jpg
+000000298697.jpg
+000000165831.jpg
+000000021903.jpg
+000000443303.jpg
+000000297562.jpg
+000000166287.jpg
+000000543043.jpg
+000000154087.jpg
+000000017627.jpg
+000000546826.jpg
+000000176446.jpg
+000000283717.jpg
+000000538364.jpg
+000000314034.jpg
+000000284623.jpg
+000000176606.jpg
+000000176701.jpg
+000000161032.jpg
+000000015278.jpg
+000000313783.jpg
+000000306582.jpg
+000000448448.jpg
+000000015335.jpg
+000000539962.jpg
+000000546823.jpg
+000000313562.jpg
+000000151662.jpg
+000000508101.jpg
+000000015517.jpg
+000000174004.jpg
+000000500663.jpg
+000000313034.jpg
+000000312552.jpg
+000000176634.jpg
+000000025603.jpg
+000000540414.jpg
+000000175387.jpg
+000000015497.jpg
+000000313130.jpg
+000000285349.jpg
+000000448810.jpg
+000000578489.jpg
+000000314251.jpg
+000000176847.jpg
+000000014888.jpg
+000000179765.jpg
+000000026465.jpg
+000000468925.jpg
+000000161008.jpg
+000000179653.jpg
+000000180101.jpg
+000000014226.jpg
+000000281179.jpg
+000000179898.jpg
+000000280918.jpg
+000000280710.jpg
+000000180188.jpg
+000000023230.jpg
+000000440507.jpg
+000000023272.jpg
+000000153011.jpg
+000000537812.jpg
+000000537802.jpg
+000000176857.jpg
+000000177015.jpg
+000000538067.jpg
+000000508639.jpg
+000000282298.jpg
+000000177934.jpg
+000000281687.jpg
+000000537991.jpg
+000000179141.jpg
+000000546976.jpg
+000000150417.jpg
+000000500477.jpg
+000000179112.jpg
+000000440617.jpg
+000000151480.jpg
+000000312549.jpg
+000000163057.jpg
+000000312406.jpg
+000000161609.jpg
+000000507473.jpg
+000000289222.jpg
+000000016439.jpg
+000000289059.jpg
+000000172877.jpg
+000000447522.jpg
+000000289393.jpg
+000000289417.jpg
+000000312213.jpg
+000000447200.jpg
+000000577735.jpg
+000000025593.jpg
+000000172856.jpg
+000000507575.jpg
+000000289960.jpg
+000000447313.jpg
+000000153527.jpg
+000000172547.jpg
+000000447187.jpg
+000000172330.jpg
+000000289741.jpg
+000000153632.jpg
+000000161397.jpg
+000000290248.jpg
+000000290619.jpg
+000000025393.jpg
+000000017207.jpg
+000000154213.jpg
+000000171190.jpg
+000000172648.jpg
+000000288430.jpg
+000000540932.jpg
+000000468505.jpg
+000000448263.jpg
+000000312192.jpg
+000000287667.jpg
+000000173004.jpg
+000000287649.jpg
+000000287291.jpg
+000000153343.jpg
+000000507975.jpg
+000000304817.jpg
+000000160666.jpg
+000000578093.jpg
+000000286994.jpg
+000000287545.jpg
+000000286553.jpg
+000000287714.jpg
+000000015956.jpg
+000000288042.jpg
+000000025560.jpg
+000000173183.jpg
+000000439426.jpg
+000000173008.jpg
+000000287959.jpg
+000000448076.jpg
+000000304984.jpg
+000000243626.jpg
+000000175364.jpg
+000000489305.jpg
+000000367680.jpg
+000000286708.jpg
+000000377368.jpg
+000000455301.jpg
+000000062808.jpg
+000000250619.jpg
+000000376264.jpg
+000000395180.jpg
+000000285788.jpg
+000000281693.jpg
+000000242678.jpg
+000000124277.jpg
+000000561335.jpg
+000000535608.jpg
+000000043314.jpg
+000000461573.jpg
+000000050149.jpg
+000000554595.jpg
+000000158548.jpg
+000000434247.jpg
+000000007278.jpg
+000000058705.jpg
+000000099024.jpg
+000000227399.jpg
+000000280325.jpg
+000000133778.jpg
+000000504711.jpg
+000000493799.jpg
+000000505638.jpg
+000000000632.jpg
+000000064462.jpg
+000000513580.jpg
+000000570448.jpg
+000000331317.jpg
+000000462614.jpg
+000000067213.jpg
+000000228436.jpg
+000000149375.jpg
+000000172977.jpg
+000000058393.jpg
+000000066135.jpg
+000000087875.jpg
+000000110972.jpg
+000000245513.jpg
+000000263594.jpg
+000000163746.jpg
+000000229553.jpg
+000000201775.jpg
+000000553776.jpg
+000000125850.jpg
+000000300233.jpg
+000000201426.jpg
+000000149222.jpg
+000000029187.jpg
+000000100428.jpg
+000000559547.jpg
+000000484978.jpg
+000000203864.jpg
+000000425361.jpg
+000000128654.jpg
+000000029984.jpg
+000000441286.jpg
+000000379800.jpg
+000000359781.jpg
+000000507667.jpg
+000000042528.jpg
+000000022396.jpg
+000000527616.jpg
+000000311909.jpg
+000000343706.jpg
+000000488664.jpg
+000000579321.jpg
+000000194506.jpg
+000000554328.jpg
+000000078565.jpg
+000000291791.jpg
+000000412362.jpg
+000000268831.jpg
+000000184791.jpg
+000000076211.jpg
+000000280779.jpg
+000000232348.jpg
+000000096825.jpg
+000000281929.jpg
+000000297022.jpg
+000000170278.jpg
+000000069356.jpg
+000000329447.jpg
+000000535156.jpg
+000000006614.jpg
+000000226154.jpg
+000000560880.jpg
+000000257478.jpg
+000000323496.jpg
+000000359855.jpg
+000000174123.jpg
+000000060855.jpg
+000000403385.jpg
+000000174371.jpg
+000000042070.jpg
+000000146155.jpg
+000000318114.jpg
+000000071756.jpg
+000000410735.jpg
+000000407646.jpg
+000000427256.jpg
+000000160772.jpg
+000000189806.jpg
+000000488710.jpg
+000000273420.jpg
+000000424162.jpg
+000000183246.jpg
+000000500257.jpg
+000000232646.jpg
+000000284279.jpg
+000000316015.jpg
+000000427160.jpg
+000000527784.jpg
+000000292330.jpg
+000000302882.jpg
+000000132622.jpg
+000000210030.jpg
+000000295809.jpg
+000000456394.jpg
+000000221155.jpg
+000000085576.jpg
+000000236784.jpg
+000000545594.jpg
+000000344268.jpg
+000000094852.jpg
+000000121591.jpg
+000000540962.jpg
+000000046463.jpg
+000000001425.jpg
+000000153568.jpg
+000000153797.jpg
+000000181499.jpg
+000000204186.jpg
+000000127660.jpg
+000000465430.jpg
+000000462371.jpg
+000000315257.jpg
+000000286523.jpg
+000000170739.jpg
+000000556000.jpg
+000000152465.jpg
+000000555597.jpg
+000000092839.jpg
+000000534270.jpg
+000000454067.jpg
+000000513283.jpg
+000000567197.jpg
+000000140286.jpg
+000000304545.jpg
+000000173799.jpg
+000000089271.jpg
+000000147498.jpg
+000000250766.jpg
+000000520009.jpg
+000000212559.jpg
+000000454404.jpg
+000000455352.jpg
+000000006012.jpg
+000000170191.jpg
+000000106881.jpg
+000000364636.jpg
+000000459634.jpg
+000000011051.jpg
+000000210099.jpg
+000000489764.jpg
+000000223182.jpg
+000000008899.jpg
+000000146667.jpg
+000000229747.jpg
+000000502136.jpg
+000000203317.jpg
+000000389381.jpg
+000000577932.jpg
+000000032901.jpg
+000000149568.jpg
+000000508602.jpg
+000000455555.jpg
+000000186624.jpg
+000000419098.jpg
+000000229858.jpg
+000000002685.jpg
+000000437514.jpg
+000000549930.jpg
+000000099053.jpg
+000000212573.jpg
+000000451879.jpg
+000000243989.jpg
+000000063047.jpg
+000000137576.jpg
+000000177065.jpg
+000000489842.jpg
+000000338219.jpg
+000000461751.jpg
+000000161879.jpg
+000000338718.jpg
+000000243075.jpg
+000000194875.jpg
+000000569972.jpg
+000000061747.jpg
+000000548339.jpg
+000000293858.jpg
+000000392818.jpg
+000000449312.jpg
+000000357816.jpg
+000000063552.jpg
+000000365207.jpg
+000000383838.jpg
+000000480842.jpg
+000000202001.jpg
+000000284445.jpg
+000000045070.jpg
+000000503841.jpg
+000000181542.jpg
+000000082807.jpg
+000000164363.jpg
+000000050811.jpg
+000000022479.jpg
+000000331075.jpg
+000000325031.jpg
+000000188296.jpg
+000000263969.jpg
+000000489611.jpg
+000000218997.jpg
+000000436738.jpg
+000000058111.jpg
+000000273132.jpg
+000000369812.jpg
+000000372718.jpg
+000000149406.jpg
+000000090284.jpg
+000000481573.jpg
+000000315001.jpg
+000000134882.jpg
+000000452084.jpg
+000000416745.jpg
+000000443969.jpg
+000000165518.jpg
+000000165351.jpg
+000000066706.jpg
+000000164115.jpg
+000000302452.jpg
+000000442306.jpg
+000000544052.jpg
+000000544306.jpg
+000000297353.jpg
+000000297084.jpg
+000000169076.jpg
+000000054605.jpg
+000000292446.jpg
+000000292082.jpg
+000000292024.jpg
+000000170595.jpg
+000000541634.jpg
+000000290768.jpg
+000000290081.jpg
+000000507081.jpg
+000000017029.jpg
+000000016451.jpg
+000000507235.jpg
+000000173091.jpg
+000000506279.jpg
+000000023023.jpg
+000000502229.jpg
+000000305609.jpg
+000000432898.jpg
+000000132116.jpg
+000000031749.jpg
+000000331569.jpg
+000000073118.jpg
+000000329542.jpg
+000000138954.jpg
+000000393282.jpg
+000000435081.jpg
+000000326462.jpg
+000000143998.jpg
+000000322959.jpg
+000000547854.jpg
+000000028993.jpg
+000000027768.jpg
+000000319607.jpg
+000000317999.jpg
+000000315492.jpg
+000000397681.jpg
+000000468577.jpg
+000000154644.jpg
+000000154947.jpg
+000000310862.jpg
+000000398810.jpg
+000000157601.jpg
+000000158660.jpg
+000000287527.jpg
+000000544565.jpg
+000000286908.jpg
+000000175251.jpg
+000000335954.jpg
+000000517832.jpg
+000000250127.jpg
+000000210520.jpg
+000000247917.jpg
+000000212166.jpg
+000000246454.jpg
+000000245311.jpg
+000000004765.jpg
+000000459396.jpg
+000000003501.jpg
+000000240250.jpg
+000000057232.jpg
+000000527029.jpg
+000000219283.jpg
+000000222455.jpg
+000000525286.jpg
+000000001584.jpg
+000000461009.jpg
+000000224200.jpg
+000000524280.jpg
+000000234526.jpg
+000000581357.jpg
+000000233771.jpg
+000000522393.jpg
+000000232489.jpg
+000000409358.jpg
+000000463283.jpg
+000000251537.jpg
+000000530146.jpg
+000000457262.jpg
+000000456662.jpg
+000000066817.jpg
+000000539445.jpg
+000000509824.jpg
+000000274708.jpg
+000000535253.jpg
+000000534827.jpg
+000000402720.jpg
+000000511453.jpg
+000000186873.jpg
+000000533958.jpg
+000000403584.jpg
+000000189828.jpg
+000000010583.jpg
+000000173371.jpg
+000000191614.jpg
+000000265518.jpg
+000000265777.jpg
+000000264535.jpg
+000000056350.jpg
+000000512929.jpg
+000000455157.jpg
+000000008277.jpg
+000000262048.jpg
+000000198510.jpg
+000000008629.jpg
+000000202445.jpg
+000000204871.jpg
+000000255536.jpg
+000000266768.jpg
+000000552612.jpg
+000000162092.jpg
+000000493772.jpg
+000000047801.jpg
+000000116362.jpg
+000000492937.jpg
+000000560279.jpg
+000000097988.jpg
+000000078170.jpg
+000000492878.jpg
+000000429718.jpg
+000000123321.jpg
+000000422886.jpg
+000000389315.jpg
+000000121506.jpg
+000000074733.jpg
+000000102707.jpg
+000000472375.jpg
+000000363072.jpg
+000000345941.jpg
+000000572462.jpg
+000000105335.jpg
+000000106563.jpg
+000000106912.jpg
+000000360137.jpg
+000000039670.jpg
+000000110884.jpg
+000000426836.jpg
+000000489924.jpg
+000000115245.jpg
+000000419882.jpg
+000000341828.jpg
+000000117525.jpg
+000000088848.jpg
+000000379453.jpg
+000000380711.jpg
+000000414638.jpg
+000000562243.jpg
+000000386134.jpg
+000000562229.jpg
+000000084664.jpg
+000000480122.jpg
+000000127624.jpg
+000000033707.jpg
+000000050896.jpg
+000000419096.jpg
+000000561465.jpg
+000000080666.jpg
+000000562197.jpg
+000000047571.jpg
+000000407825.jpg
+000000007888.jpg
+000000043435.jpg
+000000028809.jpg
+000000338191.jpg
+000000391722.jpg
+000000058636.jpg
+000000270677.jpg
+000000223738.jpg
+000000113867.jpg
+000000474164.jpg
+000000183391.jpg
+000000393115.jpg
+000000092177.jpg
+000000563281.jpg
+000000367082.jpg
+000000042563.jpg
+000000410221.jpg
+000000000872.jpg
+000000134034.jpg
+000000460967.jpg
+000000365208.jpg
+000000027932.jpg
+000000119995.jpg
+000000578922.jpg
+000000278353.jpg
+000000173830.jpg
+000000153299.jpg
+000000307658.jpg
+000000348045.jpg
+000000291664.jpg
+000000166426.jpg
+000000019924.jpg
+000000000285.jpg
+000000464689.jpg
+000000345261.jpg
+000000381639.jpg
+000000197658.jpg
+000000239274.jpg
+000000056127.jpg
+000000297427.jpg
+000000237118.jpg
+000000255483.jpg
+000000499622.jpg
+000000181969.jpg
+000000493905.jpg
+000000500716.jpg
+000000406417.jpg
+000000463849.jpg
+000000166165.jpg
+000000363875.jpg
+000000579902.jpg
+000000239717.jpg
+000000009448.jpg
+000000009772.jpg
+000000346703.jpg
+000000374545.jpg
+000000215114.jpg
+000000033104.jpg
+000000321557.jpg
+000000352760.jpg
+000000415882.jpg
+000000349594.jpg
+000000366225.jpg
+000000370813.jpg
+000000190307.jpg
+000000020571.jpg
+000000162415.jpg
+000000478136.jpg
+000000309484.jpg
+000000255401.jpg
+000000279774.jpg
+000000512403.jpg
+000000289343.jpg
+000000471869.jpg
+000000532690.jpg
+000000377000.jpg
+000000312263.jpg
+000000471087.jpg
+000000339442.jpg
+000000261796.jpg
+000000213445.jpg
+000000519688.jpg
+000000193717.jpg
+000000288062.jpg
+000000289594.jpg
+000000192716.jpg
+000000018519.jpg
+000000335328.jpg
+000000087742.jpg
+000000276804.jpg
+000000297830.jpg
+000000295478.jpg
+000000021604.jpg
+000000371529.jpg
+000000290163.jpg
+000000179487.jpg
+000000152870.jpg
+000000522940.jpg
+000000450686.jpg
+000000409268.jpg
+000000437351.jpg
+000000185890.jpg
+000000351823.jpg
+000000085665.jpg
+000000056545.jpg
+000000249025.jpg
+000000244750.jpg
+000000360943.jpg
+000000276284.jpg
+000000332570.jpg
+000000236845.jpg
+000000404534.jpg
+000000464522.jpg
+000000554579.jpg
+000000482477.jpg
+000000128748.jpg
+000000271997.jpg
+000000342128.jpg
+000000377670.jpg
+000000039914.jpg
+000000067310.jpg
+000000203639.jpg
+000000109118.jpg
+000000059635.jpg
+000000565153.jpg
+000000379476.jpg
+000000339823.jpg
+000000400044.jpg
+000000412887.jpg
+000000358195.jpg
+000000574810.jpg
+000000369323.jpg
+000000530457.jpg
+000000022705.jpg
+000000480936.jpg
+000000163117.jpg
+000000560911.jpg
+000000078915.jpg
+000000053994.jpg
+000000070229.jpg
+000000314177.jpg
+000000231831.jpg
+000000017436.jpg
+000000551215.jpg
+000000493864.jpg
+000000523229.jpg
+000000494188.jpg
+000000523100.jpg
+000000573094.jpg
+000000480985.jpg
+000000494427.jpg
+000000480944.jpg
+000000551304.jpg
+000000550349.jpg
+000000529568.jpg
+000000495448.jpg
+000000521141.jpg
+000000552775.jpg
+000000474786.jpg
+000000549220.jpg
+000000569976.jpg
+000000499109.jpg
+000000520301.jpg
+000000568147.jpg
+000000528524.jpg
+000000528977.jpg
+000000579900.jpg
+000000564023.jpg
+000000519491.jpg
+000000497628.jpg
+000000492282.jpg
+000000565989.jpg
+000000488592.jpg
+000000491613.jpg
+000000569917.jpg
+000000488673.jpg
+000000507223.jpg
+000000556158.jpg
+000000491470.jpg
+000000466567.jpg
+000000555972.jpg
+000000489091.jpg
+000000506178.jpg
+000000505789.jpg
+000000501368.jpg
+000000466602.jpg
+000000541952.jpg
+000000542089.jpg
+000000491497.jpg
+000000502737.jpg
+000000571313.jpg
+000000505169.jpg
+000000565391.jpg
+000000502732.jpg
+000000554838.jpg
+000000503755.jpg
+000000491216.jpg
+000000490936.jpg
+000000542073.jpg
+000000482487.jpg
+000000508482.jpg
+000000488385.jpg
+000000516804.jpg
+000000516038.jpg
+000000484029.jpg
+000000531036.jpg
+000000473406.jpg
+000000464824.jpg
+000000512836.jpg
+000000486040.jpg
+000000574823.jpg
+000000570471.jpg
+000000512248.jpg
+000000546626.jpg
+000000478420.jpg
+000000477288.jpg
+000000477955.jpg
+000000579307.jpg
+000000546325.jpg
+000000486573.jpg
+000000536073.jpg
+000000578871.jpg
+000000466085.jpg
+000000491867.jpg
+000000466835.jpg
+000000537053.jpg
+000000568690.jpg
+000000478474.jpg
+000000557884.jpg
+000000478393.jpg
+000000000724.jpg
+000000182923.jpg
+000000343076.jpg
+000000086956.jpg
+000000343149.jpg
+000000085376.jpg
+000000084674.jpg
+000000344909.jpg
+000000345469.jpg
+000000246308.jpg
+000000245651.jpg
+000000347254.jpg
+000000150726.jpg
+000000080932.jpg
+000000347335.jpg
+000000245173.jpg
+000000348216.jpg
+000000243495.jpg
+000000243204.jpg
+000000243344.jpg
+000000349152.jpg
+000000342186.jpg
+000000152214.jpg
+000000087244.jpg
+000000342006.jpg
+000000094326.jpg
+000000252507.jpg
+000000252559.jpg
+000000092416.jpg
+000000252294.jpg
+000000089761.jpg
+000000251140.jpg
+000000251065.jpg
+000000088432.jpg
+000000334483.jpg
+000000336265.jpg
+000000250137.jpg
+000000147338.jpg
+000000338560.jpg
+000000248810.jpg
+000000338532.jpg
+000000088218.jpg
+000000147518.jpg
+000000246436.jpg
+000000150265.jpg
+000000329041.jpg
+000000153217.jpg
+000000240023.jpg
+000000366178.jpg
+000000233238.jpg
+000000157418.jpg
+000000062025.jpg
+000000060449.jpg
+000000060347.jpg
+000000368752.jpg
+000000232563.jpg
+000000275392.jpg
+000000369541.jpg
+000000057238.jpg
+000000161128.jpg
+000000370270.jpg
+000000057150.jpg
+000000231339.jpg
+000000371472.jpg
+000000371699.jpg
+000000055022.jpg
+000000372577.jpg
+000000066523.jpg
+000000153529.jpg
+000000233567.jpg
+000000067180.jpg
+000000350148.jpg
+000000350388.jpg
+000000079188.jpg
+000000154718.jpg
+000000352584.jpg
+000000239318.jpg
+000000074646.jpg
+000000238039.jpg
+000000155154.jpg
+000000356424.jpg
+000000237316.jpg
+000000357567.jpg
+000000357903.jpg
+000000359833.jpg
+000000236730.jpg
+000000157756.jpg
+000000235057.jpg
+000000234607.jpg
+000000361551.jpg
+000000234366.jpg
+000000144784.jpg
+000000094871.jpg
+000000094751.jpg
+000000112997.jpg
+000000111179.jpg
+000000131273.jpg
+000000266082.jpg
+000000294162.jpg
+000000131444.jpg
+000000295231.jpg
+000000264441.jpg
+000000296284.jpg
+000000109313.jpg
+000000108253.jpg
+000000298904.jpg
+000000299553.jpg
+000000107226.jpg
+000000301061.jpg
+000000264335.jpg
+000000301718.jpg
+000000263796.jpg
+000000303818.jpg
+000000267670.jpg
+000000104803.jpg
+000000292005.jpg
+000000269121.jpg
+000000278848.jpg
+000000128598.jpg
+000000273712.jpg
+000000129322.jpg
+000000282296.jpg
+000000282912.jpg
+000000124442.jpg
+000000283113.jpg
+000000284698.jpg
+000000123585.jpg
+000000122745.jpg
+000000273642.jpg
+000000121417.jpg
+000000286907.jpg
+000000120584.jpg
+000000119365.jpg
+000000130386.jpg
+000000269942.jpg
+000000269932.jpg
+000000115946.jpg
+000000103723.jpg
+000000262631.jpg
+000000261706.jpg
+000000320706.jpg
+000000182611.jpg
+000000322844.jpg
+000000322968.jpg
+000000140658.jpg
+000000142585.jpg
+000000323151.jpg
+000000323202.jpg
+000000323355.jpg
+000000256407.jpg
+000000255718.jpg
+000000324927.jpg
+000000326128.jpg
+000000098392.jpg
+000000328117.jpg
+000000097585.jpg
+000000254016.jpg
+000000328683.jpg
+000000143556.jpg
+000000320232.jpg
+000000319721.jpg
+000000318138.jpg
+000000257169.jpg
+000000135410.jpg
+000000306700.jpg
+000000102644.jpg
+000000135670.jpg
+000000308193.jpg
+000000101780.jpg
+000000308587.jpg
+000000308799.jpg
+000000138241.jpg
+000000231125.jpg
+000000311081.jpg
+000000311190.jpg
+000000311394.jpg
+000000258541.jpg
+000000313588.jpg
+000000101022.jpg
+000000314182.jpg
+000000257896.jpg
+000000314264.jpg
+000000314914.jpg
+000000311180.jpg
+000000054628.jpg
+000000232649.jpg
+000000374982.jpg
+000000199977.jpg
+000000199055.jpg
+000000198928.jpg
+000000427649.jpg
+000000197528.jpg
+000000196754.jpg
+000000429281.jpg
+000000174231.jpg
+000000175443.jpg
+000000176232.jpg
+000000192047.jpg
+000000014831.jpg
+000000192191.jpg
+000000433980.jpg
+000000435208.jpg
+000000437110.jpg
+000000012748.jpg
+000000437392.jpg
+000000438017.jpg
+000000173057.jpg
+000000190923.jpg
+000000425221.jpg
+000000016502.jpg
+000000168974.jpg
+000000025096.jpg
+000000024567.jpg
+000000207306.jpg
+000000023666.jpg
+000000417249.jpg
+000000021839.jpg
+000000171050.jpg
+000000419312.jpg
+000000205542.jpg
+000000017899.jpg
+000000373382.jpg
+000000017905.jpg
+000000172617.jpg
+000000202228.jpg
+000000423506.jpg
+000000202339.jpg
+000000173033.jpg
+000000424135.jpg
+000000425226.jpg
+000000414510.jpg
+000000177861.jpg
+000000439623.jpg
+000000003934.jpg
+000000184978.jpg
+000000453040.jpg
+000000452784.jpg
+000000453634.jpg
+000000179392.jpg
+000000455981.jpg
+000000456292.jpg
+000000002532.jpg
+000000180011.jpg
+000000458992.jpg
+000000183709.jpg
+000000459272.jpg
+000000459500.jpg
+000000459887.jpg
+000000001353.jpg
+000000180792.jpg
+000000180798.jpg
+000000460929.jpg
+000000451714.jpg
+000000189436.jpg
+000000185802.jpg
+000000005060.jpg
+000000013004.jpg
+000000188592.jpg
+000000012639.jpg
+000000442463.jpg
+000000012576.jpg
+000000443426.jpg
+000000012280.jpg
+000000011699.jpg
+000000011615.jpg
+000000445675.jpg
+000000178028.jpg
+000000187271.jpg
+000000446522.jpg
+000000187243.jpg
+000000450100.jpg
+000000450202.jpg
+000000006763.jpg
+000000177935.jpg
+000000186632.jpg
+000000451150.jpg
+000000212453.jpg
+000000420281.jpg
+000000212895.jpg
+000000388927.jpg
+000000221708.jpg
+000000043737.jpg
+000000391648.jpg
+000000392228.jpg
+000000042889.jpg
+000000025394.jpg
+000000394328.jpg
+000000163290.jpg
+000000042276.jpg
+000000395388.jpg
+000000164637.jpg
+000000218439.jpg
+000000217957.jpg
+000000038678.jpg
+000000217614.jpg
+000000400573.jpg
+000000044068.jpg
+000000036861.jpg
+000000384850.jpg
+000000382734.jpg
+000000375078.jpg
+000000053909.jpg
+000000161642.jpg
+000000376307.jpg
+000000376442.jpg
+000000376478.jpg
+000000376856.jpg
+000000376900.jpg
+000000052007.jpg
+000000229111.jpg
+000000161925.jpg
+000000226147.jpg
+000000226111.jpg
+000000224724.jpg
+000000223959.jpg
+000000222991.jpg
+000000162581.jpg
+000000384808.jpg
+000000216516.jpg
+000000393469.jpg
+000000407002.jpg
+000000166918.jpg
+000000032817.jpg
+000000213255.jpg
+000000402096.jpg
+000000407083.jpg
+000000167353.jpg
+000000213086.jpg
+000000213605.jpg
+000000409424.jpg
+000000213171.jpg
+000000213033.jpg
+000000032081.jpg
+000000031620.jpg
+000000411774.jpg
+000000030504.jpg
+000000028452.jpg
+000000032811.jpg
+000000213547.jpg
+000000127476.jpg
+000000035682.jpg
+000000035770.jpg
+000000167067.jpg
+000000166277.jpg
+000000166747.jpg
+000000404191.jpg
+000000214720.jpg
+000000404601.jpg
+000000035963.jpg
+000000260266.jpg
+000000089078.jpg
+000000263474.jpg
+000000064574.jpg
+000000100489.jpg
+000000168883.jpg
+000000581206.jpg
+000000465179.jpg
+000000436315.jpg
+000000318238.jpg
+000000376322.jpg
+000000029675.jpg
+000000491090.jpg
+000000287347.jpg
+000000460683.jpg
+000000455448.jpg
+000000158945.jpg
+000000581615.jpg
+000000279541.jpg
+000000286182.jpg
+000000407574.jpg
+000000175535.jpg
+000000356248.jpg
+000000081594.jpg
+000000565597.jpg
+000000355325.jpg
+000000016598.jpg
+000000237517.jpg
+000000479912.jpg
+000000323571.jpg
+000000007088.jpg
+000000452891.jpg
+000000344614.jpg
+000000386210.jpg
+000000191580.jpg
+000000111207.jpg
+000000017379.jpg
+000000368212.jpg
+000000559707.jpg
+000000373315.jpg
+000000570539.jpg
+000000379533.jpg
+000000270705.jpg
+000000286660.jpg
+000000222735.jpg
+000000191013.jpg
+000000262227.jpg
+000000263644.jpg
+000000322429.jpg
+000000370818.jpg
+000000404922.jpg
+000000546717.jpg
+000000151938.jpg
+000000367569.jpg
+000000276921.jpg
+000000576566.jpg
+000000491683.jpg
+000000563648.jpg
+000000273760.jpg
+000000426376.jpg
+000000209753.jpg
+000000073702.jpg
+000000274219.jpg
+000000438304.jpg
+000000289229.jpg
+000000361142.jpg
+000000131938.jpg
+000000425906.jpg
+000000044195.jpg
+000000138115.jpg
+000000423519.jpg
+000000241668.jpg
+000000477689.jpg
+000000563603.jpg
+000000211042.jpg
+000000438907.jpg
+000000032941.jpg
+000000322944.jpg
+000000341469.jpg
+000000237928.jpg
+000000261982.jpg
+000000101787.jpg
+000000097278.jpg
+000000002431.jpg
+000000225184.jpg
+000000186980.jpg
+000000240940.jpg
+000000210789.jpg
+000000514586.jpg
+000000439525.jpg
+000000183716.jpg
+000000331352.jpg
+000000128699.jpg
+000000462031.jpg
+000000148783.jpg
+000000423944.jpg
+000000311950.jpg
+000000219271.jpg
+000000403565.jpg
+000000572388.jpg
+000000178618.jpg
+000000470173.jpg
+000000005529.jpg
+000000491130.jpg
+000000281414.jpg
+000000003156.jpg
+000000017115.jpg
+000000223789.jpg
+000000473118.jpg
+000000407403.jpg
+000000451308.jpg
+000000427077.jpg
+000000430377.jpg
+000000170613.jpg
+000000038576.jpg
+000000186449.jpg
+000000291634.jpg
+000000261535.jpg
+000000328430.jpg
+000000110784.jpg
+000000015597.jpg
+000000569825.jpg
+000000377497.jpg
+000000185950.jpg
+000000049269.jpg
+000000066841.jpg
+000000476491.jpg
+000000215259.jpg
+000000230983.jpg
+000000500464.jpg
+000000023751.jpg
+000000514540.jpg
+000000578236.jpg
+000000294163.jpg
+000000357742.jpg
+000000132408.jpg
+000000380203.jpg
+000000438269.jpg
+000000563758.jpg
+000000007977.jpg
+000000116439.jpg
+000000035197.jpg
+000000559160.jpg
+000000145665.jpg
+000000228214.jpg
+000000309173.jpg
+000000156372.jpg
+000000221291.jpg
+000000293071.jpg
+000000231508.jpg
+000000000776.jpg
+000000292060.jpg
+000000511384.jpg
+000000272364.jpg
+000000161820.jpg
+000000179174.jpg
+000000409867.jpg
+000000409542.jpg
+000000038210.jpg
+000000381587.jpg
+000000291551.jpg
+000000526197.jpg
+000000293794.jpg
+000000406129.jpg
+000000290843.jpg
+000000203931.jpg
+000000425227.jpg
+000000398028.jpg
+000000162858.jpg
+000000301135.jpg
+000000333956.jpg
+000000179214.jpg
+000000179285.jpg
+000000077460.jpg
+000000053505.jpg
+000000192964.jpg
+000000140439.jpg
+000000306136.jpg
+000000071877.jpg
+000000156292.jpg
+000000349184.jpg
+000000098633.jpg
+000000470952.jpg
+000000564127.jpg
+000000365521.jpg
+000000080153.jpg
+000000304812.jpg
+000000190637.jpg
+000000427500.jpg
+000000446574.jpg
+000000439522.jpg
+000000439994.jpg
+000000198489.jpg
+000000336628.jpg
+000000333069.jpg
+000000329319.jpg
+000000135890.jpg
+000000450488.jpg
+000000050844.jpg
+000000217872.jpg
+000000264968.jpg
+000000194471.jpg
+000000305317.jpg
+000000262895.jpg
+000000231237.jpg
+000000580410.jpg
+000000001296.jpg
+000000540280.jpg
+000000001761.jpg
+000000171788.jpg
+000000006818.jpg
+000000013201.jpg
+000000015746.jpg
+000000172946.jpg
+000000176778.jpg
+000000020333.jpg
+000000537672.jpg
+000000127182.jpg
+000000025424.jpg
+000000087476.jpg
+000000088265.jpg
+000000562059.jpg
+000000088040.jpg
+000000091619.jpg
+000000093154.jpg
+000000547816.jpg
+000000098853.jpg
+000000099054.jpg
+000000138492.jpg
+000000136633.jpg
+000000082696.jpg
+000000102356.jpg
+000000550322.jpg
+000000134689.jpg
+000000105014.jpg
+000000556873.jpg
+000000105455.jpg
+000000551439.jpg
+000000130586.jpg
+000000122046.jpg
+000000125062.jpg
+000000125472.jpg
+000000127135.jpg
+000000102820.jpg
+000000025386.jpg
+000000563349.jpg
+000000079837.jpg
+000000026690.jpg
+000000031050.jpg
+000000033368.jpg
+000000163682.jpg
+000000036539.jpg
+000000040471.jpg
+000000163951.jpg
+000000570736.jpg
+000000048564.jpg
+000000049259.jpg
+000000051961.jpg
+000000151629.jpg
+000000054931.jpg
+000000567825.jpg
+000000059920.jpg
+000000059386.jpg
+000000062692.jpg
+000000565877.jpg
+000000070158.jpg
+000000157365.jpg
+000000072281.jpg
+000000073153.jpg
+000000564091.jpg
+000000154358.jpg
+000000544444.jpg
+000000568195.jpg
+000000521719.jpg
+000000183049.jpg
+000000303713.jpg
+000000302107.jpg
+000000504589.jpg
+000000298738.jpg
+000000295797.jpg
+000000410487.jpg
+000000410496.jpg
+000000507042.jpg
+000000288862.jpg
+000000288391.jpg
+000000508370.jpg
+000000507893.jpg
+000000283037.jpg
+000000412894.jpg
+000000280891.jpg
+000000276285.jpg
+000000414340.jpg
+000000248284.jpg
+000000423104.jpg
+000000253695.jpg
+000000420230.jpg
+000000261318.jpg
+000000262682.jpg
+000000406570.jpg
+000000419379.jpg
+000000416343.jpg
+000000265108.jpg
+000000266206.jpg
+000000474167.jpg
+000000511321.jpg
+000000275058.jpg
+000000418062.jpg
+000000246522.jpg
+000000322864.jpg
+000000497599.jpg
+000000372260.jpg
+000000370375.jpg
+000000378244.jpg
+000000378454.jpg
+000000366711.jpg
+000000481386.jpg
+000000389109.jpg
+000000359677.jpg
+000000357238.jpg
+000000354547.jpg
+000000350002.jpg
+000000398742.jpg
+000000349678.jpg
+000000399764.jpg
+000000348243.jpg
+000000347265.jpg
+000000347174.jpg
+000000323828.jpg
+000000404839.jpg
+000000495732.jpg
+000000496571.jpg
+000000404249.jpg
+000000403122.jpg
+000000499031.jpg
+000000494869.jpg
+000000336356.jpg
+000000402334.jpg
+000000492992.jpg
+000000343803.jpg
+000000492362.jpg
+000000346232.jpg
+000000333745.jpg
+000000519522.jpg
+000000285047.jpg
+000000520910.jpg
+000000459153.jpg
+000000455085.jpg
+000000233370.jpg
+000000465585.jpg
+000000460347.jpg
+000000527750.jpg
+000000199395.jpg
+000000193743.jpg
+000000187513.jpg
+000000445365.jpg
+000000235836.jpg
+000000444142.jpg
+000000466125.jpg
+000000450559.jpg
+000000442993.jpg
+000000214703.jpg
+000000231527.jpg
+000000199310.jpg
+000000223188.jpg
+000000213224.jpg
+000000243034.jpg
+000000229849.jpg
+000000427655.jpg
+000000183437.jpg
+000000432468.jpg
+000000214200.jpg
+000000227686.jpg
+000000458702.jpg
+000000222825.jpg
+000000535578.jpg
+000000432553.jpg
+000000260106.jpg
+000000032038.jpg
+000000088970.jpg
+000000011813.jpg
+000000292415.jpg
+000000342295.jpg
+000000286849.jpg
+000000346707.jpg
+000000117914.jpg
+000000188689.jpg
+000000315219.jpg
+000000301376.jpg
+000000375278.jpg
+000000005503.jpg
+000000327601.jpg
+000000180135.jpg
+000000367228.jpg
+000000020107.jpg
+000000303499.jpg
+000000220310.jpg
+000000261036.jpg
+000000574702.jpg
+000000186929.jpg
+000000390902.jpg
+000000412286.jpg
+000000474095.jpg
+000000108495.jpg
+000000565045.jpg
+000000261097.jpg
+000000451084.jpg
+000000209757.jpg
+000000181859.jpg
+000000096493.jpg
+000000528980.jpg
+000000034760.jpg
+000000330818.jpg
+000000333697.jpg
+000000426203.jpg
+000000084492.jpg
+000000055950.jpg
+000000369751.jpg
+000000376112.jpg
+000000377575.jpg
+000000460379.jpg
+000000485802.jpg
+000000485972.jpg
+000000365642.jpg
+000000378605.jpg
+000000185157.jpg
+000000487583.jpg
+000000386457.jpg
+000000386879.jpg
+000000360960.jpg
+000000565469.jpg
+000000489339.jpg
+000000394559.jpg
+000000394940.jpg
+000000351362.jpg
+000000350019.jpg
+000000079969.jpg
+000000193348.jpg
+000000193181.jpg
+000000528705.jpg
+000000464144.jpg
+000000082765.jpg
+000000400794.jpg
+000000401244.jpg
+000000193494.jpg
+000000483667.jpg
+000000415748.jpg
+000000266981.jpg
+000000260261.jpg
+000000441468.jpg
+000000419974.jpg
+000000289586.jpg
+000000240049.jpg
+000000021167.jpg
+000000258883.jpg
+000000374083.jpg
+000000413552.jpg
+000000132329.jpg
+000000521405.jpg
+000000274411.jpg
+000000575500.jpg
+000000166768.jpg
+000000236166.jpg
+000000132703.jpg
+000000242287.jpg
+000000549167.jpg
+000000475484.jpg
+000000476514.jpg
+000000519569.jpg
+000000502910.jpg
+000000306437.jpg
+000000032861.jpg
+000000144984.jpg
+000000252716.jpg
+000000512330.jpg
+000000144333.jpg
+000000421923.jpg
+000000476415.jpg
+000000106757.jpg
+000000399462.jpg
+000000187055.jpg
+000000140987.jpg
+000000259830.jpg
+000000352582.jpg
+000000396205.jpg
+000000040757.jpg
+000000131431.jpg
+000000058655.jpg
+000000472623.jpg
+000000378515.jpg
+000000144798.jpg
+000000133631.jpg
+000000431876.jpg
+000000369037.jpg
+000000033638.jpg
+000000462643.jpg
+000000308165.jpg
+000000168458.jpg
+000000328030.jpg
+000000304396.jpg
+000000165713.jpg
+000000035062.jpg
+000000329323.jpg
+000000004395.jpg
+000000332455.jpg
+000000110042.jpg
+000000111036.jpg
+000000177383.jpg
+000000163257.jpg
+000000338304.jpg
+000000204329.jpg
+000000103585.jpg
+000000128112.jpg
+000000402774.jpg
+000000114049.jpg
+000000223130.jpg
+000000122217.jpg
+000000414170.jpg
+000000545007.jpg
+000000231088.jpg
+000000279714.jpg
+000000560011.jpg
+000000249550.jpg
+000000206135.jpg
+000000136466.jpg
+000000256941.jpg
+000000292236.jpg
+000000074092.jpg
+000000416170.jpg
+000000474854.jpg
+000000572408.jpg
+000000000802.jpg
+000000015272.jpg
+000000382122.jpg
+000000047585.jpg
+000000092939.jpg
+000000206025.jpg
+000000072852.jpg
+000000352684.jpg
+000000521231.jpg
+000000242411.jpg
+000000245320.jpg
+000000257624.jpg
+000000104424.jpg
+000000522889.jpg
+000000521282.jpg
+000000065074.jpg
+000000551660.jpg
+000000271402.jpg
+000000531771.jpg
+000000054967.jpg
+000000362520.jpg
+000000201025.jpg
+000000557258.jpg
+000000414676.jpg
+000000112626.jpg
+000000026926.jpg
+000000080057.jpg
+000000528314.jpg
+000000570169.jpg
+000000263068.jpg
+000000219485.jpg
+000000370486.jpg
+000000185292.jpg
+000000546659.jpg
+000000127270.jpg
+000000281754.jpg
+000000550939.jpg
+000000577584.jpg
+000000252776.jpg
+000000309495.jpg
+000000361147.jpg
+000000550426.jpg
+000000467511.jpg
+000000276018.jpg
+000000153782.jpg
+000000098287.jpg
+000000491071.jpg
+000000116479.jpg
+000000368335.jpg
+000000150930.jpg
+000000440171.jpg
+000000445999.jpg
+000000201072.jpg
+000000456303.jpg
+000000079014.jpg
+000000127394.jpg
+000000045596.jpg
+000000516173.jpg
+000000445722.jpg
+000000054654.jpg
+000000015440.jpg
+000000338986.jpg
+000000424521.jpg
+000000262440.jpg
+000000185250.jpg
+000000328601.jpg
+000000369310.jpg
+000000328959.jpg
+000000133343.jpg
+000000254368.jpg
+000000146358.jpg
+000000130579.jpg
+000000151657.jpg
+000000078959.jpg
+000000292908.jpg
+000000392933.jpg
+000000348708.jpg
+000000546475.jpg
+000000437205.jpg
+000000460229.jpg
+000000190853.jpg
+000000071451.jpg
+000000038048.jpg
+000000327617.jpg
+000000431848.jpg
+000000094157.jpg
+000000069138.jpg
+000000550797.jpg
+000000488166.jpg
+000000084431.jpg
+000000092124.jpg
+000000060899.jpg
+000000051598.jpg
+000000068078.jpg
+000000221281.jpg
+000000466339.jpg
+000000173044.jpg
+000000052591.jpg
+000000117744.jpg
+000000341058.jpg
+000000354072.jpg
+000000308531.jpg
+000000505573.jpg
+000000110999.jpg
+000000125952.jpg
+000000536038.jpg
+000000244496.jpg
+000000485027.jpg
+000000031817.jpg
+000000500478.jpg
+000000206271.jpg
+000000067534.jpg
+000000289516.jpg
+000000511760.jpg
+000000342971.jpg
+000000452515.jpg
+000000042102.jpg
diff --git a/info b/info
index b719192c..52c80545 100644
--- a/info
+++ b/info
@@ -1,126 +1,82 @@
-cuda编译: python setup.py develop
-
-
-../configs/retinanet/retinanet_r50_fpn_coco.py
-../configs/retinanet/retinanet_r50_fpn_voc.py
-../configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco.py
-../configs/atss/atss_r50_fpn_1x_coco.py
-../configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py
-../configs/gfl/gfl_r50_fpn_1x_coco.py
-../configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
-../configs/paa/paa_r50_fpn_1x_coco.py
-../configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
-../configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
-../configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py
-../configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
-../configs/ssd/ssd300_coco.py
-../configs/vfnet/vfnet_r50_fpn_1x_coco.py
-../configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
-../configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py
-../configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
-../configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+head_1x_coco.py
-../configs/reppointv2/reppoints_v2_r50_fpn_1x_coco.py
-../configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
-
-
-
-demo: demo.jpg ../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth
-demo: bus.jpg ../configs/yolo/rr_yolov5_416_coco.py ../yolov5s.pth
-
-../configs/yolo/yolov3_d53_320_273e_coco.py /home/pi/Downloads/yolov3_d53_320_273e_coco-421362b6.pth --eval bbox
-../configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py /home/pi/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox
-
-
-test:
-
-评估:
-../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth --eval bbox
-../configs/yolo/rr_yolov3_d53_416_coco.py ../yolov3.pth --show
-../configs/yolo/rr_tiny_yolov3_416_coco.py ../tiny_yolov3.pth --show # 416x416
-../configs/yolo/rr_yolov4_cspd53_416_coco.py ../yolov4.pth --show # 416x416
-../configs/yolo/rr_tiny_yolov4_416_coco.py ../tiny_yolov4.pth --show # 416x416
-../configs/yolo/rr_yolov5_416_coco.py ../yolov5s_mm.pth --show # 416x416
-../configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco.py /home/pi/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_4x4_1x_coco_20200603-67b3859f.pth --show # 416x416
-
-
-显示:
-../configs/retinanet/retinanet_r50_fpn_coco.py ../tools/work_dirs/retinanet_r50_fpn_coco/latest.pth --show
-
-
-当前同步更新日期:
- mmcv: Skip opencv requirement if it's already installed in the env (i.e. via conda) (#616) David de la Iglesia Castro* 2020/10/17 下午5:58
- mmdetection: Merge pull request #4006 from v-qjqs/doc AemikaChow* 2020/10/28 下午7:25
-
-
-../configs/yolo/yolov3_d53_320_273e_coco.py /home/hha/Downloads/yolov3_d53_320_273e_coco-421362b6.pth
-
-
-首先需要注意coco2014和coco2017,虽然图片是一样的,但是训练、验证和测试集划分原则的是不一样的。
-理论上不能用coco2014数据训练,然后在coco2017验证集或者测试集上面测试,因为有些数据是交叉的
-
-
-还有一个细节需要注意:coco数据集有两种划分原则,coco2014和coco2017,数据还是这些,但是划分方式变了
-具体见:https://blog.csdn.net/sinat_34569355/article/details/104548480
-
-
-MSCOCO2014数据集:
-训练集: 82783张,13.5GB, 验证集:40504张,6.6GB,共计123287张
-
-MSCOCO2017数据集:
-训练集:118287张,19.3GB,验证集: 5000张,1814.7M,共计123287张
-
-
-coco2014:
-
-The 2014 release contains 82,783 training, 40,504 validation, and 40,775 testing images
-train2014 + val2014=123287,然后从val2014里面随机分出5000张验证集叫做minival2014(社区自己随机分的,没有对比性)
-
-在2017年开始,将数据重新进行了划分,主要是从val2014里面随机挑选了5000张数据变成val2017,其余数据合并到train2017
-
-测试集图片应该一直没有咋变化
-
-
-train2017 == trainval35k
-
- == train2014 + val2014 - minival2014
-
- == train2014 + val2014 - val2017
-
-
-因为虽然都是5000张,但是minival2014不等于val2017,所以我们下载darknet权重(其在train2014 + val2014 - minival2014上面训练的),但是在
-val2017上面测试,发现mAP比论文高了很多的原因。因为val2017数据可能出现在coco2014训练数据集中。
-
-
-
-关于这coco2014和2017,在https://cocodataset.org/#download里面有说明
-
-
-在yolov3论文中,训练数据是coco2014,也就是train2014 + val2014,指标计算是在test_dev上面得到json,并提交给coco服务器得到的。
-并不是在minival2014上面测试的
-
-
-
-u版本yolov3 https://github.com/ultralytics/yolov3
-贴的指标是不公平的。因为对于原版本yolov3结果来说,其是在test_dev上面测试的。但是
-YOLOv3-SPP-ultralytics是在minival2014上面测试的,是不公平的。
-
-
-
-首先从这个https://github.com/ultralytics/yolov5
-
-1. val2017和test_dev2017虽然数量差别很大,但是mAP其实是差不多的,test_dev会难一点点(这个是否如此,有待商榷)
-2. yolov3里面贴的指标例如YOLOv3 608, map=33.1,其实是test_dev的结果
-原文里面没有写,但是可以对照retinanet论文找到
-
-
-
-test_dev2017=40670张
-test_dev2014=40775张
-
-
-coco/trainvalno5k.txt: 表示coco2014训练集,实际上应该就是train2017数据集
-5k.txt or coco_val_5k.list: 表示coco2014验证集,其实就是val2017
-
-
-
-
+ 单张图片结果目前应该是完全对齐了,但是最终 mAP 会差1个点。
+
+官方:
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.367
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.555
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.398
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.223
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.419
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.462
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.306
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.518
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.576
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.391
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.641
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716
+
+
+采用 yolov5 实现的后处理逻辑,mAP低一些,但是速度快
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.357
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.539
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.387
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.208
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.408
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.452
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.537
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.543
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.544
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.373
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.604
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.653
+
+
+# test
+i, j = (mlvl_pred_map[:, 5:] > conf_thr).nonzero(as_tuple=False).T
+mlvl_pred_map = torch.cat((mlvl_pred_map[:, :4][i], mlvl_pred_map[i, j + 5, None], j[:, None].float()), 1)
+
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.550
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.395
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.216
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.416
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.467
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.590
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.599
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.600
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.443
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.662
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.729
+
+
+需要将 proposal_nums 100 300 1000 [1, 10, 100]
+
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.549
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.395
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.216
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.416
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.467
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.304
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.522
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.590
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.427
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.654
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.726
+
+
+
+
+
+采用 mmdet 原先实现的后处理逻辑,mAP会高一些,但是速度特别慢
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.364
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.548
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.395
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.222
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.414
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.455
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.593
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.600
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.600
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.439
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.662
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.736
diff --git a/mmdet/__about__.py b/mmdet/__about__.py
deleted file mode 100644
index cd8751ea..00000000
--- a/mmdet/__about__.py
+++ /dev/null
@@ -1,17 +0,0 @@
-#!/usr/bin/env python
-# -*- coding:utf-8 -*-
-from __future__ import absolute_import, division, print_function
-
-__all__ = [
- "__title__", "__summary__", "__version__", "__author__",
- "__email__", "__copyright__", "__url__",
-]
-
-__author__ = 'huang hai an'
-__date__ = '2020.09.10'
-__copyright__ = "Copyright 2020, HHA"
-__title__ = "mmdetection-mini"
-__summary__ = ("mmdetection-mini is one stage detector.",)
-__version__ = "0.0.4"
-__email__ = "1286304229@qq.com"
-__url__ = 'https://github.com/hhaAndroid/mmdetection-mini'
diff --git a/mmdet/__init__.py b/mmdet/__init__.py
index 01747c07..bb2117e5 100644
--- a/mmdet/__init__.py
+++ b/mmdet/__init__.py
@@ -1,8 +1,28 @@
-# -*- coding: utf-8 -*-
-# ======================================================
-# @Time : 20-9-7 下午8:13
-# @Author : huang ha
-# @Email : huang_ha@rr.com
-# @File : __init__.py.py
-# @Comment:
-# ======================================================
\ No newline at end of file
+import mmcv
+
+from .version import __version__, short_version
+
+
+def digit_version(version_str):
+ digit_version = []
+ for x in version_str.split('.'):
+ if x.isdigit():
+ digit_version.append(int(x))
+ elif x.find('rc') != -1:
+ patch_version = x.split('rc')
+ digit_version.append(int(patch_version[0]) - 1)
+ digit_version.append(int(patch_version[1]))
+ return digit_version
+
+
+mmcv_minimum_version = '1.3.2'
+mmcv_maximum_version = '1.4.0'
+mmcv_version = digit_version(mmcv.__version__)
+
+
+assert (mmcv_version >= digit_version(mmcv_minimum_version)
+ and mmcv_version <= digit_version(mmcv_maximum_version)), \
+ f'MMCV=={mmcv.__version__} is used but incompatible. ' \
+ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
+
+__all__ = ['__version__', 'short_version']
diff --git a/mmdet/apis/__init__.py b/mmdet/apis/__init__.py
index f8db182b..046cfd28 100644
--- a/mmdet/apis/__init__.py
+++ b/mmdet/apis/__init__.py
@@ -1,10 +1,15 @@
-from .inference import (inference_detector,
+from .inference import (async_inference_detector, inference_detector,
init_detector, show_result_pyplot)
-from .test import single_gpu_test
+from .test import multi_gpu_test, single_gpu_test
from .train import get_root_logger, set_random_seed, train_detector
+from .custom_optimizer import CustomOptimizer
+from .one_cycle_lr_update import OneCycleLrUpdaterHook
+from .accumulate_optimizer import AccumulateOptimizerHook
+from .ema import EMAHook
__all__ = [
'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector',
- 'inference_detector', 'show_result_pyplot',
-'single_gpu_test'
+ 'async_inference_detector', 'inference_detector', 'show_result_pyplot',
+ 'multi_gpu_test', 'single_gpu_test', 'CustomOptimizer', 'OneCycleLrUpdaterHook',
+ 'AccumulateOptimizerHook', 'EMAHook'
]
diff --git a/mmdet/apis/accumulate_optimizer.py b/mmdet/apis/accumulate_optimizer.py
new file mode 100644
index 00000000..0dd5508b
--- /dev/null
+++ b/mmdet/apis/accumulate_optimizer.py
@@ -0,0 +1,40 @@
+from mmcv.runner.hooks import HOOKS, Hook
+from torch.nn.utils import clip_grad
+import numpy as np
+
+
+@HOOKS.register_module()
+class AccumulateOptimizerHook(Hook):
+
+ def __init__(self,
+ grad_clip=None,
+ update_iterval=1,
+ warm_iter=1000,
+ repeat_num=1):
+ self.grad_clip = grad_clip
+ self.update_iterval = update_iterval
+ # self.warm_iter = warm_iter
+ self.warmup_epochs = 3
+ self.repeat_num = repeat_num
+
+ def clip_grads(self, params):
+ params = list(
+ filter(lambda p: p.requires_grad and p.grad is not None, params))
+ if len(params) > 0:
+ return clip_grad.clip_grad_norm_(params, **self.grad_clip)
+
+ def after_train_iter(self, runner):
+ dataloader_len = len(runner.data_loader) // self.repeat_num
+ warmup_total_iters = max(round(self.warmup_epochs * dataloader_len), 1000)
+ accumulate = max(1, np.interp(runner.iter, [0, warmup_total_iters], [1, self.update_iterval]).round())
+ runner.outputs['loss'].backward()
+
+ if self.grad_clip is not None:
+ grad_norm = self.clip_grads(runner.model.parameters())
+ if grad_norm is not None:
+ # Add grad norm to the logger
+ runner.log_buffer.update({'grad_norm': float(grad_norm)},
+ runner.outputs['num_samples'])
+ if runner.iter % accumulate == 0:
+ runner.optimizer.step()
+ runner.optimizer.zero_grad()
diff --git a/mmdet/apis/custom_optimizer.py b/mmdet/apis/custom_optimizer.py
new file mode 100644
index 00000000..2397016a
--- /dev/null
+++ b/mmdet/apis/custom_optimizer.py
@@ -0,0 +1,32 @@
+import torch.nn as nn
+
+from mmcv.utils import build_from_cfg
+from mmcv.runner.optimizer.builder import OPTIMIZER_BUILDERS, OPTIMIZERS
+
+
+@OPTIMIZER_BUILDERS.register_module()
+class CustomOptimizer:
+ def __init__(self, optimizer_cfg, paramwise_cfg=None):
+ self.optimizer_cfg = optimizer_cfg
+ self.weight_decay = 0.0005
+
+ def __call__(self, model):
+ if hasattr(model, 'module'):
+ model = model.module
+ optimizer_cfg = self.optimizer_cfg.copy()
+ optimizer_cfg['params'] = []
+
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
+ for k, v in model.named_modules():
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
+ pg2.append(v.bias) # biases
+ if isinstance(v, nn.BatchNorm2d):
+ pg0.append(v.weight) # no decay
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
+ pg1.append(v.weight) # apply decay
+
+ optimizer_cfg['params'].append({'params': pg0})
+ optimizer_cfg['params'].append({'params': pg1, 'weight_decay': self.weight_decay}) # add pg1 with weight_decay
+ optimizer_cfg['params'].append(({'params': pg2})) # add pg2 (biases)
+
+ return build_from_cfg(optimizer_cfg, OPTIMIZERS)
diff --git a/mmdet/apis/ema.py b/mmdet/apis/ema.py
new file mode 100644
index 00000000..1f97b489
--- /dev/null
+++ b/mmdet/apis/ema.py
@@ -0,0 +1,99 @@
+from mmcv.runner.hooks import HOOKS, Hook
+import torch.nn as nn
+import math
+
+
+def is_parallel(model):
+ # Returns True if model is of type DP or DDP
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+@HOOKS.register_module(force=True)
+class EMAHook(Hook):
+ r"""Exponential Moving Average Hook.
+
+ Use Exponential Moving Average on all parameters of model in training
+ process. All parameters have a ema backup, which update by the formula
+ as below. EMAHook takes priority over EvalHook and CheckpointSaverHook.
+
+ .. math::
+
+ \text{Xema_{t+1}} = (1 - \text{momentum}) \times
+ \text{Xema_{t}} + \text{momentum} \times X_t
+
+ Args:
+ momentum (float): The momentum used for updating ema parameter.
+ Defaults to 0.0002.
+ interval (int): Update ema parameter every interval iteration.
+ Defaults to 1.
+ warm_up (int): During first warm_up steps, we may use smaller momentum
+ to update ema parameters more slowly. Defaults to 100.
+ resume_from (str): The checkpoint path. Defaults to None.
+ """
+
+ def __init__(self,
+ momentum=0.0002,
+ interval=1,
+ warm_up=100,
+ resume_from=None):
+ assert isinstance(interval, int) and interval > 0
+ self.warm_up = warm_up
+ self.interval = interval
+ assert momentum > 0 and momentum < 1
+ self.momentum = momentum**interval
+ self.checkpoint = resume_from
+ self.decay = lambda x: 0.9999 * (1 - math.exp(-x / 2000))
+
+ def before_run(self, runner):
+ """To resume model with it's ema parameters more friendly.
+
+ Register ema parameter as ``named_buffer`` to model
+ """
+ model = runner.model
+ if is_parallel(model):
+ model = model.module
+ self.param_ema_buffer = {}
+ # self.model_parameters = dict(model.named_parameters(recurse=True))
+ self.model_parameters = model.state_dict() # BN also needs ema
+ for name, value in self.model_parameters.items():
+ # "." is not allowed in module's buffer name
+ buffer_name = f"ema_{name.replace('.', '_')}"
+ self.param_ema_buffer[name] = buffer_name
+ model.register_buffer(buffer_name, value.data.clone())
+ self.model_buffers = dict(model.named_buffers(recurse=True))
+ if self.checkpoint is not None:
+ runner.resume(self.checkpoint)
+
+ def after_train_iter(self, runner):
+ """Update ema parameter every self.interval iterations."""
+ curr_step = runner.iter
+ # We warm up the momentum considering the instability at beginning
+ decay = self.decay(curr_step)
+ # momentum = min(self.momentum,
+ # (1 + curr_step) / (self.warm_up + curr_step))
+ if curr_step % self.interval != 0:
+ return
+ for name, parameter in self.model_parameters.items():
+ # exclude num_tracking
+ if parameter.dtype.is_floating_point:
+ buffer_name = self.param_ema_buffer[name]
+ buffer_parameter = self.model_buffers[buffer_name]
+ buffer_parameter.mul_(decay).add_(1-decay, parameter.data)
+
+ def after_train_epoch(self, runner):
+ """We load parameter values from ema backup to model before the
+ EvalHook."""
+ self._swap_ema_parameters()
+
+ def before_train_epoch(self, runner):
+ """We recover model's parameter from ema backup after last epoch's
+ EvalHook."""
+ self._swap_ema_parameters()
+
+ def _swap_ema_parameters(self):
+ """Swap the parameter of model with parameter in ema_buffer."""
+ for name, value in self.model_parameters.items():
+ temp = value.data.clone()
+ ema_buffer = self.model_buffers[self.param_ema_buffer[name]]
+ value.data.copy_(ema_buffer.data)
+ ema_buffer.data.copy_(temp)
diff --git a/mmdet/apis/inference.py b/mmdet/apis/inference.py
index 264de81b..c257c7f2 100644
--- a/mmdet/apis/inference.py
+++ b/mmdet/apis/inference.py
@@ -1,52 +1,63 @@
-import matplotlib.pyplot as plt
-from mmdet import cv_core
+import warnings
+
+import mmcv
import numpy as np
import torch
-from mmdet.cv_core.ops import RoIPool
-from mmdet.cv_core.parallel import collate
-from mmdet.cv_core.runner import load_checkpoint
+from mmcv.ops import RoIPool
+from mmcv.parallel import collate, scatter
+from mmcv.runner import load_checkpoint
+from mmdet.core import get_classes
+from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
-from mmdet.datasets import build_dataset
-def init_detector(config, checkpoint=None, device='cuda:0'):
+def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
"""Initialize a detector from config file.
Args:
- config (str or :obj:`mmdet.cv_core.Config`): Config file path or the config
+ config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
+ cfg_options (dict): Options to override some settings in the used
+ config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
- config = cv_core.Config.fromfile(config)
- elif not isinstance(config, cv_core.Config):
+ config = mmcv.Config.fromfile(config)
+ elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
+ if cfg_options is not None:
+ config.merge_from_dict(cfg_options)
config.model.pretrained = None
- model = build_detector(config.model, test_cfg=config.test_cfg)
+ config.model.train_cfg = None
+ model = build_detector(config.model, test_cfg=config.get('test_cfg'))
if checkpoint is not None:
map_loc = 'cpu' if device == 'cpu' else None
checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc)
- if 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']:
+ if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
- dataset = build_dataset(config.data.test)
- model.CLASSES = dataset.CLASSES
-
+ warnings.simplefilter('once')
+ warnings.warn('Class names are not saved in the checkpoint\'s '
+ 'meta data, use COCO classes by default.')
+ model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
-class LoadImage(object):
- """A simple pipeline to load image."""
+class LoadImage:
+ """Deprecated.
+
+ A simple pipeline to load image.
+ """
def __call__(self, results):
"""Call function to load images into results.
@@ -54,17 +65,20 @@ def __call__(self, results):
Args:
results (dict): A result dict contains the file name
of the image to be read.
-
Returns:
dict: ``results`` will be returned containing loaded image.
"""
+ warnings.simplefilter('once')
+ warnings.warn('`LoadImage` is deprecated and will be removed in '
+ 'future releases. You may use `LoadImageFromWebcam` '
+ 'from `mmdet.datasets.pipelines.` instead.')
if isinstance(results['img'], str):
results['filename'] = results['img']
results['ori_filename'] = results['img']
else:
results['filename'] = None
results['ori_filename'] = None
- img = cv_core.imread(results['img'])
+ img = mmcv.imread(results['img'])
results['img'] = img
results['img_fields'] = ['img']
results['img_shape'] = img.shape
@@ -72,42 +86,135 @@ def __call__(self, results):
return results
-def inference_detector(model, img):
+def inference_detector(model, imgs):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
- imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
- images.
+ imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
+ Either image files or loaded images.
Returns:
- If imgs is a str, a generator will be returned, otherwise return the
- detection results directly.
+ If imgs is a list or tuple, the same length list type results
+ will be returned, otherwise return the detection results directly.
"""
+
+ if isinstance(imgs, (list, tuple)):
+ is_batch = True
+ else:
+ imgs = [imgs]
+ is_batch = False
+
cfg = model.cfg
- data = dict(img_info=dict(filename=img), img_prefix=None)
- # build the data pipeline
+ device = next(model.parameters()).device # model device
+
+ if isinstance(imgs[0], np.ndarray):
+ cfg = cfg.copy()
+ # set loading pipeline type
+ cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
+
+ cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
- data = test_pipeline(data)
- data = collate([data], samples_per_gpu=1)
+
+ datas = []
+ for img in imgs:
+ # prepare data
+ if isinstance(img, np.ndarray):
+ # directly add img
+ data = dict(img=img)
+ else:
+ # add information into dict
+ data = dict(img_info=dict(filename=img), img_prefix=None)
+ # build the data pipeline
+ data = test_pipeline(data)
+ datas.append(data)
+
+ data = collate(datas, samples_per_gpu=len(imgs))
+ # just get the actual data from DataContainer
+ data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
+ data['img'] = [img.data[0] for img in data['img']]
if next(model.parameters()).is_cuda:
- data['img'][0] = data['img'][0].cuda()
- data['img_metas'] = data['img_metas'][0].data
+ # scatter to specified GPU
+ data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
- # just get the actual data from DataContainer
- data['img_metas'] = data['img_metas'][0].data
# forward the model
with torch.no_grad():
- result = model(return_loss=False, rescale=True, **data)[0]
- return result
+ results = model(return_loss=False, rescale=True, **data)
+
+ if not is_batch:
+ return results[0]
+ else:
+ return results
+
+
+async def async_inference_detector(model, imgs):
+ """Async inference image(s) with the detector.
+
+ Args:
+ model (nn.Module): The loaded detector.
+ img (str | ndarray): Either image files or loaded images.
+
+ Returns:
+ Awaitable detection results.
+ """
+ if not isinstance(imgs, (list, tuple)):
+ imgs = [imgs]
+
+ cfg = model.cfg
+ device = next(model.parameters()).device # model device
+
+ if isinstance(imgs[0], np.ndarray):
+ cfg = cfg.copy()
+ # set loading pipeline type
+ cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
+
+ cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
+ test_pipeline = Compose(cfg.data.test.pipeline)
+
+ datas = []
+ for img in imgs:
+ # prepare data
+ if isinstance(img, np.ndarray):
+ # directly add img
+ data = dict(img=img)
+ else:
+ # add information into dict
+ data = dict(img_info=dict(filename=img), img_prefix=None)
+ # build the data pipeline
+ data = test_pipeline(data)
+ datas.append(data)
+
+ data = collate(datas, samples_per_gpu=len(imgs))
+ # just get the actual data from DataContainer
+ data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
+ data['img'] = [img.data[0] for img in data['img']]
+ if next(model.parameters()).is_cuda:
+ # scatter to specified GPU
+ data = scatter(data, [device])[0]
+ else:
+ for m in model.modules():
+ assert not isinstance(
+ m, RoIPool
+ ), 'CPU inference with RoIPool is not supported currently.'
+
+ # We don't restore `torch.is_grad_enabled()` value during concurrent
+ # inference since execution can overlap
+ torch.set_grad_enabled(False)
+ results = await model.aforward_test(rescale=True, **data)
+ return results
-def show_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15, 10)):
+def show_result_pyplot(model,
+ img,
+ result,
+ score_thr=0.3,
+ title='result',
+ wait_time=0):
"""Visualize the detection results on the image.
Args:
@@ -116,12 +223,18 @@ def show_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15, 10)):
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
score_thr (float): The threshold to visualize the bboxes and masks.
- fig_size (tuple): Figure size of the pyplot figure.
+ title (str): Title of the pyplot figure.
+ wait_time (float): Value of waitKey param.
+ Default: 0.
"""
if hasattr(model, 'module'):
model = model.module
- img = model.show_result(img, result, score_thr=score_thr, show=False)
- cv_core.imshow(img)
- # plt.figure(figsize=fig_size)
- # plt.imshow(cv_core.bgr2rgb(img))
- # plt.show()
+ model.show_result(
+ img,
+ result,
+ score_thr=score_thr,
+ show=True,
+ wait_time=wait_time,
+ win_name=title,
+ bbox_color=(72, 101, 241),
+ text_color=(72, 101, 241))
diff --git a/mmdet/apis/one_cycle_lr_update.py b/mmdet/apis/one_cycle_lr_update.py
new file mode 100644
index 00000000..efa1daa2
--- /dev/null
+++ b/mmdet/apis/one_cycle_lr_update.py
@@ -0,0 +1,74 @@
+from mmcv.runner import LrUpdaterHook
+from mmcv.runner.hooks import HOOKS, Hook
+
+import math
+import numpy as np
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+ # lambda function for sinusoidal ramp from y1 to y2
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+@HOOKS.register_module(force=True)
+class OneCycleLrUpdaterHook(Hook):
+ def __init__(self, repeat_num=1, max_epoch=300, **kwargs):
+ super(OneCycleLrUpdaterHook, self).__init__(**kwargs)
+ # self.warmup_iters = 1000
+ # self.xi = [0, self.warmup_iters]
+ self.warmup_bias_lr = 0.1
+ self.warmup_momentum = 0.8
+ self.warmup_epochs = 3
+ self.repeat_num = repeat_num
+ self.momentum = 0.937
+ self.lf = one_cycle(1, 0.2, max_epoch)
+ self.warmup_end = False
+
+ def before_run(self, runner):
+ # NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
+ # it will be set according to the optimizer params
+ if isinstance(runner.optimizer, dict):
+ self.base_lr = {}
+ for k, optim in runner.optimizer.items():
+ for group in optim.param_groups:
+ group.setdefault('initial_lr', group['lr'])
+ _base_lr = [
+ group['initial_lr'] for group in optim.param_groups
+ ]
+ self.base_lr.update({k: _base_lr})
+ else:
+ for group in runner.optimizer.param_groups:
+ group.setdefault('initial_lr', group['lr'])
+ self.base_lr = [
+ group['initial_lr'] for group in runner.optimizer.param_groups
+ ]
+
+ def before_train_iter(self, runner):
+ cur_iters = runner.iter
+ cur_epoch = runner.epoch
+ optimizer = runner.optimizer
+
+ # The minimum warmup is 1000
+ dataloader_len = len(runner.data_loader) // self.repeat_num
+ warmup_total_iters = max(round(self.warmup_epochs * dataloader_len), 1000)
+ xi = [0, warmup_total_iters]
+
+ if cur_iters <= warmup_total_iters:
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(cur_iters, xi,
+ [self.warmup_bias_lr if j == 2 else 0.0, self.base_lr[j] * self.lf(cur_epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(cur_iters, xi, [self.warmup_momentum, self.momentum])
+ # print('xxxxx-ni=', cur_iters, [x['lr'] for x in optimizer.param_groups])
+ else:
+ self.warmup_end = True
+
+ def after_train_epoch(self, runner):
+ if self.warmup_end:
+ cur_epoch = runner.epoch
+ optimizer = runner.optimizer
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = self.base_lr[j] * self.lf(cur_epoch)
+ # print('xxxxx-ni=', 1, [x['lr'] for x in optimizer.param_groups])
diff --git a/mmdet/apis/test.py b/mmdet/apis/test.py
index 38d9504e..fdfa1253 100644
--- a/mmdet/apis/test.py
+++ b/mmdet/apis/test.py
@@ -1,7 +1,16 @@
import os.path as osp
+import pickle
+import shutil
+import tempfile
+import time
+
+import mmcv
import torch
-from mmdet import cv_core
-from mmdet.det_core import tensor2imgs
+import torch.distributed as dist
+from mmcv.image import tensor2imgs
+from mmcv.runner import get_dist_info
+
+from mmdet.core import encode_mask_results
def single_gpu_test(model,
@@ -12,14 +21,13 @@ def single_gpu_test(model,
model.eval()
results = []
dataset = data_loader.dataset
- prog_bar = cv_core.ProgressBar(len(dataset))
+ prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
- result = model(return_loss=False, rescale=True, **data)
+ result = model.model._forward(data, return_loss=False, rescale=True)
batch_size = len(result)
if show or out_dir:
- # 由于前面替换pipeline的原因,在batch=1的时候输出其实是tensor,而batch大于1的时候是dc
if batch_size == 1 and isinstance(data['img'][0], torch.Tensor):
img_tensor = data['img'][0]
else:
@@ -33,7 +41,7 @@ def single_gpu_test(model,
img_show = img[:h, :w, :]
ori_h, ori_w = img_meta['ori_shape'][:-1]
- img_show = cv_core.imresize(img_show, (ori_w, ori_h))
+ img_show = mmcv.imresize(img_show, (ori_w, ori_h))
if out_dir:
out_file = osp.join(out_dir, img_meta['ori_filename'])
@@ -46,6 +54,11 @@ def single_gpu_test(model,
show=show,
out_file=out_file,
score_thr=show_score_thr)
+
+ # encode mask results
+ if isinstance(result[0], tuple):
+ result = [(bbox_results, encode_mask_results(mask_results))
+ for bbox_results, mask_results in result]
results.extend(result)
for _ in range(batch_size):
@@ -53,3 +66,125 @@ def single_gpu_test(model,
return results
+def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
+ """Test model with multiple gpus.
+
+ This method tests model with multiple gpus and collects the results
+ under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
+ it encodes results to gpu tensors and use gpu communication for results
+ collection. On cpu mode it saves the results on different gpus to 'tmpdir'
+ and collects them by the rank 0 worker.
+
+ Args:
+ model (nn.Module): Model to be tested.
+ data_loader (nn.Dataloader): Pytorch data loader.
+ tmpdir (str): Path of directory to save the temporary results from
+ different gpus under cpu mode.
+ gpu_collect (bool): Option to use either gpu or cpu to collect results.
+
+ Returns:
+ list: The prediction results.
+ """
+ model.eval()
+ results = []
+ dataset = data_loader.dataset
+ rank, world_size = get_dist_info()
+ if rank == 0:
+ prog_bar = mmcv.ProgressBar(len(dataset))
+ time.sleep(2) # This line can prevent deadlock problem in some cases.
+ for i, data in enumerate(data_loader):
+ with torch.no_grad():
+ result = model.module._forward(data, return_loss=False, rescale=True)
+ # encode mask results
+ if isinstance(result[0], tuple):
+ result = [(bbox_results, encode_mask_results(mask_results))
+ for bbox_results, mask_results in result]
+ results.extend(result)
+
+ if rank == 0:
+ batch_size = len(result)
+ for _ in range(batch_size * world_size):
+ prog_bar.update()
+
+ # collect results from all ranks
+ if gpu_collect:
+ results = collect_results_gpu(results, len(dataset))
+ else:
+ results = collect_results_cpu(results, len(dataset), tmpdir)
+ return results
+
+
+def collect_results_cpu(result_part, size, tmpdir=None):
+ rank, world_size = get_dist_info()
+ # create a tmp dir if it is not specified
+ if tmpdir is None:
+ MAX_LEN = 512
+ # 32 is whitespace
+ dir_tensor = torch.full((MAX_LEN, ),
+ 32,
+ dtype=torch.uint8,
+ device='cuda')
+ if rank == 0:
+ mmcv.mkdir_or_exist('.dist_test')
+ tmpdir = tempfile.mkdtemp(dir='.dist_test')
+ tmpdir = torch.tensor(
+ bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
+ dir_tensor[:len(tmpdir)] = tmpdir
+ dist.broadcast(dir_tensor, 0)
+ tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
+ else:
+ mmcv.mkdir_or_exist(tmpdir)
+ # dump the part result to the dir
+ mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
+ dist.barrier()
+ # collect all parts
+ if rank != 0:
+ return None
+ else:
+ # load results of all parts from tmp dir
+ part_list = []
+ for i in range(world_size):
+ part_file = osp.join(tmpdir, f'part_{i}.pkl')
+ part_list.append(mmcv.load(part_file))
+ # sort the results
+ ordered_results = []
+ for res in zip(*part_list):
+ ordered_results.extend(list(res))
+ # the dataloader may pad some samples
+ ordered_results = ordered_results[:size]
+ # remove tmp dir
+ shutil.rmtree(tmpdir)
+ return ordered_results
+
+
+def collect_results_gpu(result_part, size):
+ rank, world_size = get_dist_info()
+ # dump result part to tensor with pickle
+ part_tensor = torch.tensor(
+ bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
+ # gather all result part tensor shape
+ shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
+ shape_list = [shape_tensor.clone() for _ in range(world_size)]
+ dist.all_gather(shape_list, shape_tensor)
+ # padding result part tensor to max length
+ shape_max = torch.tensor(shape_list).max()
+ part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
+ part_send[:shape_tensor[0]] = part_tensor
+ part_recv_list = [
+ part_tensor.new_zeros(shape_max) for _ in range(world_size)
+ ]
+ # gather all result part
+ dist.all_gather(part_recv_list, part_send)
+
+ if rank == 0:
+ part_list = []
+ for recv, shape in zip(part_recv_list, shape_list):
+ part_list.append(
+ pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()))
+ # sort the results
+ ordered_results = []
+ for res in zip(*part_list):
+ ordered_results.extend(list(res))
+ # the dataloader may pad some samples
+ ordered_results = ordered_results[:size]
+ return ordered_results
diff --git a/mmdet/apis/train.py b/mmdet/apis/train.py
index 9d574c41..a97e8c3c 100644
--- a/mmdet/apis/train.py
+++ b/mmdet/apis/train.py
@@ -1,14 +1,37 @@
import random
+import warnings
+from torch.nn.parallel.distributed import DistributedDataParallel
+from torch.nn.parallel import DataParallel
+
import numpy as np
+import torch.nn as nn
import torch
+from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
+from mmcv.runner import (HOOKS, DistSamplerSeedHook, EpochBasedRunner,
+ Fp16OptimizerHook, OptimizerHook, build_optimizer,
+ build_runner)
+from mmcv.utils import build_from_cfg
-from mmdet.cv_core.runner import (HOOKS, EpochBasedRunner, OptimizerHook, build_optimizer)
-from mmdet.cv_core import build_from_cfg, MMDataParallel
-from mmdet.det_core import EvalHook
-from mmdet.datasets import build_dataloader, build_dataset
+from mmdet.core import DistEvalHook, EvalHook
+from mmdet.datasets import (build_dataloader, build_dataset,
+ replace_ImageToTensor)
from mmdet.utils import get_root_logger
+class VMMDistributedDataParallel(DistributedDataParallel):
+ def train_step(self, *inputs, **kwargs):
+ return self.forward(*inputs, **kwargs)
+
+
+class VMMDataParallel(nn.Module):
+ def __init__(self, model):
+ super().__init__()
+ self.model = model
+
+ def train_step(self, *inputs, **kwargs):
+ return self.model.forward(*inputs, **kwargs)
+
+
def set_random_seed(seed, deterministic=False):
"""Set random seed.
@@ -31,6 +54,7 @@ def set_random_seed(seed, deterministic=False):
def train_detector(model,
dataset,
cfg,
+ distributed=False,
validate=False,
timestamp=None,
meta=None):
@@ -38,31 +62,77 @@ def train_detector(model,
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
+ if 'imgs_per_gpu' in cfg.data:
+ logger.warning('"imgs_per_gpu" is deprecated in MMDet V2.0. '
+ 'Please use "samples_per_gpu" instead')
+ if 'samples_per_gpu' in cfg.data:
+ logger.warning(
+ f'Got "imgs_per_gpu"={cfg.data.imgs_per_gpu} and '
+ f'"samples_per_gpu"={cfg.data.samples_per_gpu}, "imgs_per_gpu"'
+ f'={cfg.data.imgs_per_gpu} is used in this experiments')
+ else:
+ logger.warning(
+ 'Automatically set "samples_per_gpu"="imgs_per_gpu"='
+ f'{cfg.data.imgs_per_gpu} in this experiments')
+ cfg.data.samples_per_gpu = cfg.data.imgs_per_gpu
+
data_loaders = [
build_dataloader(
ds,
cfg.data.samples_per_gpu,
cfg.data.workers_per_gpu,
+ # cfg.gpus will be ignored if distributed
len(cfg.gpu_ids),
+ dist=distributed,
seed=cfg.seed) for ds in dataset
]
- # 作用很大,不仅仅是做dataparallel,还包括对DataContainer数据解码
- model = MMDataParallel(
- model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
+ # put model on gpus
+ if distributed:
+ find_unused_parameters = cfg.get('find_unused_parameters', False)
+ # Sets the `find_unused_parameters` parameter in
+ # torch.nn.parallel.DistributedDataParallel
+ model = VMMDistributedDataParallel(
+ model.cuda(),
+ device_ids=[torch.cuda.current_device()],
+ broadcast_buffers=False,
+ find_unused_parameters=find_unused_parameters)
+ else:
+ model = VMMDataParallel(model).cuda(cfg.gpu_ids[0])
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
- runner = EpochBasedRunner(
- model,
- optimizer=optimizer,
- work_dir=cfg.work_dir,
- logger=logger,
- meta=meta)
+
+ if 'runner' not in cfg:
+ cfg.runner = {
+ 'type': 'EpochBasedRunner',
+ 'max_epochs': cfg.total_epochs
+ }
+ warnings.warn(
+ 'config is now expected to have a `runner` section, '
+ 'please set `runner` in your config.', UserWarning)
+ else:
+ if 'total_epochs' in cfg:
+ assert cfg.total_epochs == cfg.runner.max_epochs
+
+ runner = build_runner(
+ cfg.runner,
+ default_args=dict(
+ model=model,
+ optimizer=optimizer,
+ work_dir=cfg.work_dir,
+ logger=logger,
+ meta=meta))
+
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
- if 'type' not in cfg.optimizer_config:
+ # fp16 setting
+ fp16_cfg = cfg.get('fp16', None)
+ if fp16_cfg is not None:
+ optimizer_config = Fp16OptimizerHook(
+ **cfg.optimizer_config, **fp16_cfg, distributed=distributed)
+ elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
@@ -71,19 +141,31 @@ def train_detector(model,
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config,
cfg.get('momentum_config', None))
+ if distributed:
+ if isinstance(runner, EpochBasedRunner):
+ runner.register_hook(DistSamplerSeedHook())
+
# register eval hooks
if validate:
- # 验证评估模式采用的是hook模式注册
+ # Support batch_size > 1 in validation
+ val_samples_per_gpu = cfg.data.val.pop('samples_per_gpu', 1)
+ if val_samples_per_gpu > 1:
+ # Replace 'ImageToTensor' to 'DefaultFormatBundle'
+ cfg.data.val.pipeline = replace_ImageToTensor(
+ cfg.data.val.pipeline)
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(
val_dataset,
- samples_per_gpu=1,
+ samples_per_gpu=val_samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
+ dist=distributed,
shuffle=False)
eval_cfg = cfg.get('evaluation', {})
- runner.register_hook(EvalHook(val_dataloader, **eval_cfg))
+ eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
+ eval_hook = DistEvalHook if distributed else EvalHook
+ runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
- # 用户自定义的hook列表
+ # user-defined hooks
if cfg.get('custom_hooks', None):
custom_hooks = cfg.custom_hooks
assert isinstance(custom_hooks, list), \
@@ -101,4 +183,4 @@ def train_detector(model,
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
- runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
+ runner.run(data_loaders, cfg.workflow)
diff --git a/mmdet/core/__init__.py b/mmdet/core/__init__.py
new file mode 100644
index 00000000..00a54e2b
--- /dev/null
+++ b/mmdet/core/__init__.py
@@ -0,0 +1,6 @@
+from .anchor import * # noqa: F401, F403
+from .bbox import * # noqa: F401, F403
+from .evaluation import * # noqa: F401, F403
+from .mask import * # noqa: F401, F403
+from .post_processing import * # noqa: F401, F403
+from .utils import * # noqa: F401, F403
diff --git a/mmdet/core/anchor/__init__.py b/mmdet/core/anchor/__init__.py
new file mode 100644
index 00000000..5838ff3e
--- /dev/null
+++ b/mmdet/core/anchor/__init__.py
@@ -0,0 +1,11 @@
+from .anchor_generator import (AnchorGenerator, LegacyAnchorGenerator,
+ YOLOAnchorGenerator)
+from .builder import ANCHOR_GENERATORS, build_anchor_generator
+from .point_generator import PointGenerator
+from .utils import anchor_inside_flags, calc_region, images_to_levels
+
+__all__ = [
+ 'AnchorGenerator', 'LegacyAnchorGenerator', 'anchor_inside_flags',
+ 'PointGenerator', 'images_to_levels', 'calc_region',
+ 'build_anchor_generator', 'ANCHOR_GENERATORS', 'YOLOAnchorGenerator'
+]
diff --git a/mmdet/det_core/anchor/anchor_generator.py b/mmdet/core/anchor/anchor_generator.py
similarity index 90%
rename from mmdet/det_core/anchor/anchor_generator.py
rename to mmdet/core/anchor/anchor_generator.py
index a0bdc80f..3c2fd5a0 100644
--- a/mmdet/det_core/anchor/anchor_generator.py
+++ b/mmdet/core/anchor/anchor_generator.py
@@ -1,4 +1,4 @@
-from mmdet import cv_core
+import mmcv
import numpy as np
import torch
from torch.nn.modules.utils import _pair
@@ -7,7 +7,7 @@
@ANCHOR_GENERATORS.register_module()
-class AnchorGenerator(object):
+class AnchorGenerator:
"""Standard anchor generator for 2D anchor-based detectors.
Args:
@@ -56,13 +56,13 @@ class AnchorGenerator(object):
"""
def __init__(self,
- strides, # 每个特征图层输出stride
- ratios, # 每层的anchor有多少种长宽比
+ strides,
+ ratios,
scales=None,
base_sizes=None,
scale_major=True,
- octave_base_scale=None, # 每层特征图的base anchor scale
- scales_per_octave=None, # 每层有多少个anchor scales
+ octave_base_scale=None,
+ scales_per_octave=None,
centers=None,
center_offset=0.):
# check center and center_offset
@@ -93,7 +93,6 @@ def __init__(self,
if scales is not None:
self.scales = torch.Tensor(scales)
elif octave_base_scale is not None and scales_per_octave is not None:
- # 固定设置,retinanet使用,每层有scales_per_octave个anchor尺度
octave_scales = np.array(
[2**(i / scales_per_octave) for i in range(scales_per_octave)])
scales = octave_scales * octave_base_scale
@@ -134,13 +133,12 @@ def gen_base_anchors(self):
center = self.centers[i]
multi_level_base_anchors.append(
self.gen_single_level_base_anchors(
- base_size, # 其实就是stride
+ base_size,
scales=self.scales,
ratios=self.ratios,
center=center))
return multi_level_base_anchors
- # 计算0,0位置的n个anchor base size xyxy格式
def gen_single_level_base_anchors(self,
base_size,
scales,
@@ -178,9 +176,6 @@ def gen_single_level_base_anchors(self,
# use float anchor and the anchor's center is aligned with the
# pixel center
- # x_center=0,也就是原图到特征图没有设置偏移,假设原图是32x32 stride=32,输出特征图就是一个点假设原图anchor是100x100
- # 理论上特征图这个点应该和原图的(16,16)处对齐,也就是x_center=16,但是考虑到采用偏移后代码后续复杂很多
- # 在v2版本里面去掉了,也就是原图左上角点对应特征图点,在v1版本里面有中心偏移
base_anchors = [
x_center - 0.5 * ws, y_center - 0.5 * hs, x_center + 0.5 * ws,
y_center + 0.5 * hs
@@ -201,8 +196,9 @@ def _meshgrid(self, x, y, row_major=True):
Returns:
tuple[torch.Tensor]: The mesh grids of x and y.
"""
- xx = x.repeat(len(y))
- yy = y.view(-1, 1).repeat(1, len(x)).view(-1)
+ # use shape instead of len to keep tracing while exporting to onnx
+ xx = x.repeat(y.shape[0])
+ yy = y.view(-1, 1).repeat(1, x.shape[0]).view(-1)
if row_major:
return xx, yy
else:
@@ -255,10 +251,8 @@ def single_level_grid_anchors(self,
Returns:
torch.Tensor: Anchors in the overall feature maps.
"""
+ # keep as Tensor, so that we can covert to ONNX correctly
feat_h, feat_w = featmap_size
- # convert Tensor to int, so that we can covert to ONNX correctlly
- feat_h = int(feat_h)
- feat_w = int(feat_w)
shift_x = torch.arange(0, feat_w, device=device) * stride[0]
shift_y = torch.arange(0, feat_h, device=device) * stride[1]
@@ -269,7 +263,7 @@ def single_level_grid_anchors(self,
# add A anchors (1, A, 4) to K shifts (K, 1, 4) to get
# shifted anchors (K, A, 4), reshape to (K*A, 4)
- all_anchors = base_anchors[None, :, :] + shifts[:, None, :] # 直接加网格就可以算出整个特征图每个位置的anchor
+ all_anchors = base_anchors[None, :, :] + shifts[:, None, :]
all_anchors = all_anchors.view(-1, 4)
# first A rows correspond to A anchors of (0, 0) in feature map,
# then (0, 1), (0, 2), ...
@@ -289,21 +283,17 @@ def valid_flags(self, featmap_sizes, pad_shape, device='cuda'):
"""
assert self.num_levels == len(featmap_sizes)
multi_level_flags = []
- # 计算每张图片的多个anchor的有效位置,由于collate会采用当前batch内部最大的w,h对图片进行右下pad全黑像素操作
- # 原则是:pad全黑区域算无效区域,因为图片pad都是右下角像素,一定是pad,不可能crop,故np.ceil向上取整
for i in range(self.num_levels):
anchor_stride = self.strides[i]
feat_h, feat_w = featmap_sizes[i]
h, w = pad_shape[:2]
- # 这个valid生效是由于图片被pad了,导致实际有效图片w,h小于输入tensor
- # 同样的,去掉这些位置的anchor
valid_feat_h = min(int(np.ceil(h / anchor_stride[1])), feat_h)
valid_feat_w = min(int(np.ceil(w / anchor_stride[0])), feat_w)
flags = self.single_level_valid_flags((feat_h, feat_w),
(valid_feat_h, valid_feat_w),
self.num_base_anchors[i],
device=device)
- multi_level_flags.append(flags) # 有效位置设置为1,否则为0
+ multi_level_flags.append(flags)
return multi_level_flags
def single_level_valid_flags(self,
@@ -380,32 +370,25 @@ def __init__(self,
input_size=300,
scale_major=True):
assert len(strides) == len(ratios)
- assert cv_core.is_tuple_of(basesize_ratio_range, float)
+ assert mmcv.is_tuple_of(basesize_ratio_range, float)
self.strides = [_pair(stride) for stride in strides]
- self.input_size = input_size # 300
- # 特征图上(0,0)坐标点对应到原图上的坐标
+ self.input_size = input_size
self.centers = [(stride[0] / 2., stride[1] / 2.)
for stride in self.strides]
- # 基本min_ratio和max_ratio范围,voc是0.2,0.9
self.basesize_ratio_range = basesize_ratio_range
# calculate anchor ratios and sizes
min_ratio, max_ratio = basesize_ratio_range
- # 先将base ratio全部乘上100,并且取整
min_ratio = int(min_ratio * 100)
max_ratio = int(max_ratio * 100)
- # 然后计算step
step = int(np.floor(max_ratio - min_ratio) / (self.num_levels - 2))
min_sizes = []
max_sizes = []
- # 计算第2个输出图和第self.num_levels个特征图anchor的min_size和max_size
for ratio in range(int(min_ratio), int(max_ratio) + 1, step):
min_sizes.append(int(self.input_size * ratio / 100))
max_sizes.append(int(self.input_size * (ratio + step) / 100))
- # 第1个输出图单独算min_size和max_size
if self.input_size == 300:
- # conv4_3层的anchor单独设置,不采用公式
if basesize_ratio_range[0] == 0.15: # SSD300 COCO
min_sizes.insert(0, int(self.input_size * 7 / 100))
max_sizes.insert(0, int(self.input_size * 15 / 100))
@@ -427,7 +410,7 @@ def __init__(self,
else:
raise ValueError('basesize_ratio_range[0] should be either 0.1'
'or 0.15 when input_size is 512, got'
- ' {basesize_ratio_range[0]}.')
+ f' {basesize_ratio_range[0]}.')
else:
raise ValueError('Only support 300 or 512 in SSDAnchorGenerator'
f', got {self.input_size}.')
@@ -435,9 +418,7 @@ def __init__(self,
anchor_ratios = []
anchor_scales = []
for k in range(len(self.strides)):
- # 每个输出特征图的尺度变化
scales = [1., np.sqrt(max_sizes[k] / min_sizes[k])]
- # 每个输出特征图的高宽比
anchor_ratio = [1.]
for r in ratios[k]:
anchor_ratio += [1 / r, r] # 4 or 6 ratio
@@ -527,6 +508,7 @@ class LegacyAnchorGenerator(AnchorGenerator):
in v1.x models.
Examples:
+ >>> from mmdet.core import LegacyAnchorGenerator
>>> self = LegacyAnchorGenerator(
>>> [16], [1.], [1.], [9], center_offset=0.5)
>>> all_anchors = self.grid_anchors(((2, 2),), device='cpu')
@@ -668,14 +650,11 @@ def gen_single_level_base_anchors(self, base_sizes_per_level, center=None):
"""
x_center, y_center = center
base_anchors = []
- for base_size in base_sizes_per_level: # 遍历每层的3个anchor size
+ for base_size in base_sizes_per_level:
w, h = base_size
# use float anchor and the anchor's center is aligned with the
# pixel center
- # 映射到原图,假设32x32的原图,原图anchor大小是100x100,stride=32,
- # 那么特征图就是一个点,那么这个点(可以认为是特征图上面0点)的anchor映射到原图左上角坐标就是,-100/2+16
- # 在标准的anchor generator里面没有进行偏移
base_anchor = torch.Tensor([
x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w,
y_center + 0.5 * h
@@ -741,8 +720,8 @@ def single_level_responsible_flags(self,
responsible_grid = torch.zeros(
feat_h * feat_w, dtype=torch.uint8, device=device)
- responsible_grid[gt_bboxes_grid_idx] = 1 # 计算当前gt bbox中心在特征图的hxw的哪个位置,需要同时广播到3个anchor上
+ responsible_grid[gt_bboxes_grid_idx] = 1
responsible_grid = responsible_grid[:, None].expand(
responsible_grid.size(0), num_base_anchors).contiguous().view(-1)
- return responsible_grid # 扩展到每层的n个anchor上 输出维度=hxwx3
+ return responsible_grid
diff --git a/mmdet/core/anchor/builder.py b/mmdet/core/anchor/builder.py
new file mode 100644
index 00000000..d79b448e
--- /dev/null
+++ b/mmdet/core/anchor/builder.py
@@ -0,0 +1,7 @@
+from mmcv.utils import Registry, build_from_cfg
+
+ANCHOR_GENERATORS = Registry('Anchor generator')
+
+
+def build_anchor_generator(cfg, default_args=None):
+ return build_from_cfg(cfg, ANCHOR_GENERATORS, default_args)
diff --git a/mmdet/det_core/anchor/point_generator.py b/mmdet/core/anchor/point_generator.py
similarity index 87%
rename from mmdet/det_core/anchor/point_generator.py
rename to mmdet/core/anchor/point_generator.py
index a1409375..496ba18e 100644
--- a/mmdet/det_core/anchor/point_generator.py
+++ b/mmdet/core/anchor/point_generator.py
@@ -4,7 +4,7 @@
@ANCHOR_GENERATORS.register_module()
-class PointGenerator(object):
+class PointGenerator:
def _meshgrid(self, x, y, row_major=True):
xx = x.repeat(len(y))
@@ -15,7 +15,6 @@ def _meshgrid(self, x, y, row_major=True):
return yy, xx
def grid_points(self, featmap_size, stride=16, device='cuda'):
- # 为特征图的每个点生成相对原图左上角坐标(没有偏移0.5),额外stack上stride
feat_h, feat_w = featmap_size
shift_x = torch.arange(0., feat_w, device=device) * stride
shift_y = torch.arange(0., feat_h, device=device) * stride
@@ -26,7 +25,6 @@ def grid_points(self, featmap_size, stride=16, device='cuda'):
return all_points
def valid_flags(self, featmap_size, valid_size, device='cuda'):
- # 生成每个点是否有效的flag图
feat_h, feat_w = featmap_size
valid_h, valid_w = valid_size
assert valid_h <= feat_h and valid_w <= feat_w
diff --git a/mmdet/det_core/anchor/utils.py b/mmdet/core/anchor/utils.py
similarity index 100%
rename from mmdet/det_core/anchor/utils.py
rename to mmdet/core/anchor/utils.py
diff --git a/mmdet/core/bbox/__init__.py b/mmdet/core/bbox/__init__.py
new file mode 100644
index 00000000..6e4c349f
--- /dev/null
+++ b/mmdet/core/bbox/__init__.py
@@ -0,0 +1,27 @@
+from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner,
+ MaxIoUAssigner, RegionAssigner)
+from .builder import build_assigner, build_bbox_coder, build_sampler
+from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, PseudoBBoxCoder,
+ TBLRBBoxCoder, YOLOV5BBoxCoder)
+from .iou_calculators import BboxOverlaps2D, bbox_overlaps
+from .samplers import (BaseSampler, CombinedSampler,
+ InstanceBalancedPosSampler, IoUBalancedNegSampler,
+ OHEMSampler, PseudoSampler, RandomSampler,
+ SamplingResult, ScoreHLRSampler)
+from .transforms import (bbox2distance, bbox2result, bbox2roi,
+ bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping,
+ bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh,
+ distance2bbox, roi2bbox)
+
+__all__ = [
+ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner',
+ 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler',
+ 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler',
+ 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner',
+ 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back',
+ 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance',
+ 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder',
+ 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'CenterRegionAssigner',
+ 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh',
+ 'RegionAssigner', 'YOLOV5BBoxCoder'
+]
diff --git a/mmdet/core/bbox/assigners/__init__.py b/mmdet/core/bbox/assigners/__init__.py
new file mode 100644
index 00000000..891e6237
--- /dev/null
+++ b/mmdet/core/bbox/assigners/__init__.py
@@ -0,0 +1,17 @@
+from .approx_max_iou_assigner import ApproxMaxIoUAssigner
+from .assign_result import AssignResult
+from .atss_assigner import ATSSAssigner
+from .base_assigner import BaseAssigner
+from .center_region_assigner import CenterRegionAssigner
+from .grid_assigner import GridAssigner
+from .hungarian_assigner import HungarianAssigner
+from .max_iou_assigner import MaxIoUAssigner
+from .point_assigner import PointAssigner
+from .region_assigner import RegionAssigner
+from .uniform_assigner import UniformAssigner
+
+__all__ = [
+ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult',
+ 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner',
+ 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner'
+]
diff --git a/mmdet/det_core/bbox/assigners/approx_max_iou_assigner.py b/mmdet/core/bbox/assigners/approx_max_iou_assigner.py
similarity index 95%
rename from mmdet/det_core/bbox/assigners/approx_max_iou_assigner.py
rename to mmdet/core/bbox/assigners/approx_max_iou_assigner.py
index 7639f34f..6d07656d 100644
--- a/mmdet/det_core/bbox/assigners/approx_max_iou_assigner.py
+++ b/mmdet/core/bbox/assigners/approx_max_iou_assigner.py
@@ -118,15 +118,12 @@ def assign(self,
gt_bboxes_ignore = gt_bboxes_ignore.cpu()
if gt_labels is not None:
gt_labels = gt_labels.cpu()
- # 依然是anchor和gt bbox计算iou
all_overlaps = self.iou_calculator(approxs, gt_bboxes)
overlaps, _ = all_overlaps.view(approxs_per_octave, num_squares,
num_gts).max(dim=0)
overlaps = torch.transpose(overlaps, 0, 1)
- # 如果考虑某些gt bbox忽略,则需要计算squares, gt_bboxes_ignore的iou
- # 因为approxs_per_octave只是中间替代品,真正进行bbox编解码的是squares个gt bbox
if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None
and gt_bboxes_ignore.numel() > 0 and squares.numel() > 0):
if self.ignore_wrt_candidates:
@@ -139,7 +136,6 @@ def assign(self,
ignore_max_overlaps, _ = ignore_overlaps.max(dim=0)
overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1
- # 正负样本分配和squares没有关系
assign_result = self.assign_wrt_overlaps(overlaps, gt_labels)
if assign_on_cpu:
assign_result.gt_inds = assign_result.gt_inds.to(device)
diff --git a/mmdet/det_core/bbox/assigners/assign_result.py b/mmdet/core/bbox/assigners/assign_result.py
similarity index 98%
rename from mmdet/det_core/bbox/assigners/assign_result.py
rename to mmdet/core/bbox/assigners/assign_result.py
index f8917fef..6a16ca20 100644
--- a/mmdet/det_core/bbox/assigners/assign_result.py
+++ b/mmdet/core/bbox/assigners/assign_result.py
@@ -100,7 +100,7 @@ def random(cls, **kwargs):
Args:
num_preds: number of predicted boxes
num_gts: number of true boxes
- p_ignore (float): probability of a predicted box assinged to an
+ p_ignore (float): probability of a predicted box assigned to an
ignored truth
p_assigned (float): probability of a predicted box not being
assigned
@@ -111,11 +111,11 @@ def random(cls, **kwargs):
:obj:`AssignResult`: Randomly generated assign results.
Example:
- >>> from mmdet.det_core.bbox.assigners.assign_result import * # NOQA
+ >>> from mmdet.core.bbox.assigners.assign_result import * # NOQA
>>> self = AssignResult.random()
>>> print(self.info)
"""
- from mmdet.det_core.bbox import demodata
+ from mmdet.core.bbox import demodata
rng = demodata.ensure_rng(kwargs.get('rng', None))
num_gts = kwargs.get('num_gts', None)
diff --git a/mmdet/det_core/bbox/assigners/atss_assigner.py b/mmdet/core/bbox/assigners/atss_assigner.py
similarity index 99%
rename from mmdet/det_core/bbox/assigners/atss_assigner.py
rename to mmdet/core/bbox/assigners/atss_assigner.py
index 8e21726b..d4fe9d0e 100644
--- a/mmdet/det_core/bbox/assigners/atss_assigner.py
+++ b/mmdet/core/bbox/assigners/atss_assigner.py
@@ -48,7 +48,7 @@ def assign(self,
4. get corresponding iou for the these candidates, and compute the
mean and std, set mean + std as the iou threshold
5. select these candidates whose iou are greater than or equal to
- the threshold as postive
+ the threshold as positive
6. limit the positive sample's center in gt
diff --git a/mmdet/core/bbox/assigners/base_assigner.py b/mmdet/core/bbox/assigners/base_assigner.py
new file mode 100644
index 00000000..1ff0160d
--- /dev/null
+++ b/mmdet/core/bbox/assigners/base_assigner.py
@@ -0,0 +1,9 @@
+from abc import ABCMeta, abstractmethod
+
+
+class BaseAssigner(metaclass=ABCMeta):
+ """Base assigner that assigns boxes to ground truth boxes."""
+
+ @abstractmethod
+ def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None):
+ """Assign boxes to either a ground truth boxes or a negative boxes."""
diff --git a/mmdet/core/bbox/assigners/center_region_assigner.py b/mmdet/core/bbox/assigners/center_region_assigner.py
new file mode 100644
index 00000000..488e3b61
--- /dev/null
+++ b/mmdet/core/bbox/assigners/center_region_assigner.py
@@ -0,0 +1,335 @@
+import torch
+
+from ..builder import BBOX_ASSIGNERS
+from ..iou_calculators import build_iou_calculator
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+
+def scale_boxes(bboxes, scale):
+ """Expand an array of boxes by a given scale.
+
+ Args:
+ bboxes (Tensor): Shape (m, 4)
+ scale (float): The scale factor of bboxes
+
+ Returns:
+ (Tensor): Shape (m, 4). Scaled bboxes
+ """
+ assert bboxes.size(1) == 4
+ w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
+ h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
+ x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
+ y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
+
+ w_half *= scale
+ h_half *= scale
+
+ boxes_scaled = torch.zeros_like(bboxes)
+ boxes_scaled[:, 0] = x_c - w_half
+ boxes_scaled[:, 2] = x_c + w_half
+ boxes_scaled[:, 1] = y_c - h_half
+ boxes_scaled[:, 3] = y_c + h_half
+ return boxes_scaled
+
+
+def is_located_in(points, bboxes):
+ """Are points located in bboxes.
+
+ Args:
+ points (Tensor): Points, shape: (m, 2).
+ bboxes (Tensor): Bounding boxes, shape: (n, 4).
+
+ Return:
+ Tensor: Flags indicating if points are located in bboxes, shape: (m, n).
+ """
+ assert points.size(1) == 2
+ assert bboxes.size(1) == 4
+ return (points[:, 0].unsqueeze(1) > bboxes[:, 0].unsqueeze(0)) & \
+ (points[:, 0].unsqueeze(1) < bboxes[:, 2].unsqueeze(0)) & \
+ (points[:, 1].unsqueeze(1) > bboxes[:, 1].unsqueeze(0)) & \
+ (points[:, 1].unsqueeze(1) < bboxes[:, 3].unsqueeze(0))
+
+
+def bboxes_area(bboxes):
+ """Compute the area of an array of bboxes.
+
+ Args:
+ bboxes (Tensor): The coordinates ox bboxes. Shape: (m, 4)
+
+ Returns:
+ Tensor: Area of the bboxes. Shape: (m, )
+ """
+ assert bboxes.size(1) == 4
+ w = (bboxes[:, 2] - bboxes[:, 0])
+ h = (bboxes[:, 3] - bboxes[:, 1])
+ areas = w * h
+ return areas
+
+
+@BBOX_ASSIGNERS.register_module()
+class CenterRegionAssigner(BaseAssigner):
+ """Assign pixels at the center region of a bbox as positive.
+
+ Each proposals will be assigned with `-1`, `0`, or a positive integer
+ indicating the ground truth index.
+ - -1: negative samples
+ - semi-positive numbers: positive sample, index (0-based) of assigned gt
+
+ Args:
+ pos_scale (float): Threshold within which pixels are
+ labelled as positive.
+ neg_scale (float): Threshold above which pixels are
+ labelled as positive.
+ min_pos_iof (float): Minimum iof of a pixel with a gt to be
+ labelled as positive. Default: 1e-2
+ ignore_gt_scale (float): Threshold within which the pixels
+ are ignored when the gt is labelled as shadowed. Default: 0.5
+ foreground_dominate (bool): If True, the bbox will be assigned as
+ positive when a gt's kernel region overlaps with another's shadowed
+ (ignored) region, otherwise it is set as ignored. Default to False.
+ """
+
+ def __init__(self,
+ pos_scale,
+ neg_scale,
+ min_pos_iof=1e-2,
+ ignore_gt_scale=0.5,
+ foreground_dominate=False,
+ iou_calculator=dict(type='BboxOverlaps2D')):
+ self.pos_scale = pos_scale
+ self.neg_scale = neg_scale
+ self.min_pos_iof = min_pos_iof
+ self.ignore_gt_scale = ignore_gt_scale
+ self.foreground_dominate = foreground_dominate
+ self.iou_calculator = build_iou_calculator(iou_calculator)
+
+ def get_gt_priorities(self, gt_bboxes):
+ """Get gt priorities according to their areas.
+
+ Smaller gt has higher priority.
+
+ Args:
+ gt_bboxes (Tensor): Ground truth boxes, shape (k, 4).
+
+ Returns:
+ Tensor: The priority of gts so that gts with larger priority is \
+ more likely to be assigned. Shape (k, )
+ """
+ gt_areas = bboxes_area(gt_bboxes)
+ # Rank all gt bbox areas. Smaller objects has larger priority
+ _, sort_idx = gt_areas.sort(descending=True)
+ sort_idx = sort_idx.argsort()
+ return sort_idx
+
+ def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None):
+ """Assign gt to bboxes.
+
+ This method assigns gts to every bbox (proposal/anchor), each bbox \
+ will be assigned with -1, or a semi-positive number. -1 means \
+ negative sample, semi-positive number is the index (0-based) of \
+ assigned gt.
+
+ Args:
+ bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4).
+ gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
+ gt_bboxes_ignore (tensor, optional): Ground truth bboxes that are
+ labelled as `ignored`, e.g., crowd boxes in COCO.
+ gt_labels (tensor, optional): Label of gt_bboxes, shape (num_gts,).
+
+ Returns:
+ :obj:`AssignResult`: The assigned result. Note that \
+ shadowed_labels of shape (N, 2) is also added as an \
+ `assign_result` attribute. `shadowed_labels` is a tensor \
+ composed of N pairs of anchor_ind, class_label], where N \
+ is the number of anchors that lie in the outer region of a \
+ gt, anchor_ind is the shadowed anchor index and class_label \
+ is the shadowed class label.
+
+ Example:
+ >>> self = CenterRegionAssigner(0.2, 0.2)
+ >>> bboxes = torch.Tensor([[0, 0, 10, 10], [10, 10, 20, 20]])
+ >>> gt_bboxes = torch.Tensor([[0, 0, 10, 10]])
+ >>> assign_result = self.assign(bboxes, gt_bboxes)
+ >>> expected_gt_inds = torch.LongTensor([1, 0])
+ >>> assert torch.all(assign_result.gt_inds == expected_gt_inds)
+ """
+ # There are in total 5 steps in the pixel assignment
+ # 1. Find core (the center region, say inner 0.2)
+ # and shadow (the relatively ourter part, say inner 0.2-0.5)
+ # regions of every gt.
+ # 2. Find all prior bboxes that lie in gt_core and gt_shadow regions
+ # 3. Assign prior bboxes in gt_core with a one-hot id of the gt in
+ # the image.
+ # 3.1. For overlapping objects, the prior bboxes in gt_core is
+ # assigned with the object with smallest area
+ # 4. Assign prior bboxes with class label according to its gt id.
+ # 4.1. Assign -1 to prior bboxes lying in shadowed gts
+ # 4.2. Assign positive prior boxes with the corresponding label
+ # 5. Find pixels lying in the shadow of an object and assign them with
+ # background label, but set the loss weight of its corresponding
+ # gt to zero.
+ assert bboxes.size(1) == 4, 'bboxes must have size of 4'
+ # 1. Find core positive and shadow region of every gt
+ gt_core = scale_boxes(gt_bboxes, self.pos_scale)
+ gt_shadow = scale_boxes(gt_bboxes, self.neg_scale)
+
+ # 2. Find prior bboxes that lie in gt_core and gt_shadow regions
+ bbox_centers = (bboxes[:, 2:4] + bboxes[:, 0:2]) / 2
+ # The center points lie within the gt boxes
+ is_bbox_in_gt = is_located_in(bbox_centers, gt_bboxes)
+ # Only calculate bbox and gt_core IoF. This enables small prior bboxes
+ # to match large gts
+ bbox_and_gt_core_overlaps = self.iou_calculator(
+ bboxes, gt_core, mode='iof')
+ # The center point of effective priors should be within the gt box
+ is_bbox_in_gt_core = is_bbox_in_gt & (
+ bbox_and_gt_core_overlaps > self.min_pos_iof) # shape (n, k)
+
+ is_bbox_in_gt_shadow = (
+ self.iou_calculator(bboxes, gt_shadow, mode='iof') >
+ self.min_pos_iof)
+ # Rule out center effective positive pixels
+ is_bbox_in_gt_shadow &= (~is_bbox_in_gt_core)
+
+ num_gts, num_bboxes = gt_bboxes.size(0), bboxes.size(0)
+ if num_gts == 0 or num_bboxes == 0:
+ # If no gts exist, assign all pixels to negative
+ assigned_gt_ids = \
+ is_bbox_in_gt_core.new_zeros((num_bboxes,),
+ dtype=torch.long)
+ pixels_in_gt_shadow = assigned_gt_ids.new_empty((0, 2))
+ else:
+ # Step 3: assign a one-hot gt id to each pixel, and smaller objects
+ # have high priority to assign the pixel.
+ sort_idx = self.get_gt_priorities(gt_bboxes)
+ assigned_gt_ids, pixels_in_gt_shadow = \
+ self.assign_one_hot_gt_indices(is_bbox_in_gt_core,
+ is_bbox_in_gt_shadow,
+ gt_priority=sort_idx)
+
+ if gt_bboxes_ignore is not None and gt_bboxes_ignore.numel() > 0:
+ # No ground truth or boxes, return empty assignment
+ gt_bboxes_ignore = scale_boxes(
+ gt_bboxes_ignore, scale=self.ignore_gt_scale)
+ is_bbox_in_ignored_gts = is_located_in(bbox_centers,
+ gt_bboxes_ignore)
+ is_bbox_in_ignored_gts = is_bbox_in_ignored_gts.any(dim=1)
+ assigned_gt_ids[is_bbox_in_ignored_gts] = -1
+
+ # 4. Assign prior bboxes with class label according to its gt id.
+ assigned_labels = None
+ shadowed_pixel_labels = None
+ if gt_labels is not None:
+ # Default assigned label is the background (-1)
+ assigned_labels = assigned_gt_ids.new_full((num_bboxes, ), -1)
+ pos_inds = torch.nonzero(
+ assigned_gt_ids > 0, as_tuple=False).squeeze()
+ if pos_inds.numel() > 0:
+ assigned_labels[pos_inds] = gt_labels[assigned_gt_ids[pos_inds]
+ - 1]
+ # 5. Find pixels lying in the shadow of an object
+ shadowed_pixel_labels = pixels_in_gt_shadow.clone()
+ if pixels_in_gt_shadow.numel() > 0:
+ pixel_idx, gt_idx =\
+ pixels_in_gt_shadow[:, 0], pixels_in_gt_shadow[:, 1]
+ assert (assigned_gt_ids[pixel_idx] != gt_idx).all(), \
+ 'Some pixels are dually assigned to ignore and gt!'
+ shadowed_pixel_labels[:, 1] = gt_labels[gt_idx - 1]
+ override = (
+ assigned_labels[pixel_idx] == shadowed_pixel_labels[:, 1])
+ if self.foreground_dominate:
+ # When a pixel is both positive and shadowed, set it as pos
+ shadowed_pixel_labels = shadowed_pixel_labels[~override]
+ else:
+ # When a pixel is both pos and shadowed, set it as shadowed
+ assigned_labels[pixel_idx[override]] = -1
+ assigned_gt_ids[pixel_idx[override]] = 0
+
+ assign_result = AssignResult(
+ num_gts, assigned_gt_ids, None, labels=assigned_labels)
+ # Add shadowed_labels as assign_result property. Shape: (num_shadow, 2)
+ assign_result.set_extra_property('shadowed_labels',
+ shadowed_pixel_labels)
+ return assign_result
+
+ def assign_one_hot_gt_indices(self,
+ is_bbox_in_gt_core,
+ is_bbox_in_gt_shadow,
+ gt_priority=None):
+ """Assign only one gt index to each prior box.
+
+ Gts with large gt_priority are more likely to be assigned.
+
+ Args:
+ is_bbox_in_gt_core (Tensor): Bool tensor indicating the bbox center
+ is in the core area of a gt (e.g. 0-0.2).
+ Shape: (num_prior, num_gt).
+ is_bbox_in_gt_shadow (Tensor): Bool tensor indicating the bbox
+ center is in the shadowed area of a gt (e.g. 0.2-0.5).
+ Shape: (num_prior, num_gt).
+ gt_priority (Tensor): Priorities of gts. The gt with a higher
+ priority is more likely to be assigned to the bbox when the bbox
+ match with multiple gts. Shape: (num_gt, ).
+
+ Returns:
+ tuple: Returns (assigned_gt_inds, shadowed_gt_inds).
+
+ - assigned_gt_inds: The assigned gt index of each prior bbox \
+ (i.e. index from 1 to num_gts). Shape: (num_prior, ).
+ - shadowed_gt_inds: shadowed gt indices. It is a tensor of \
+ shape (num_ignore, 2) with first column being the \
+ shadowed prior bbox indices and the second column the \
+ shadowed gt indices (1-based).
+ """
+ num_bboxes, num_gts = is_bbox_in_gt_core.shape
+
+ if gt_priority is None:
+ gt_priority = torch.arange(
+ num_gts, device=is_bbox_in_gt_core.device)
+ assert gt_priority.size(0) == num_gts
+ # The bigger gt_priority, the more preferable to be assigned
+ # The assigned inds are by default 0 (background)
+ assigned_gt_inds = is_bbox_in_gt_core.new_zeros((num_bboxes, ),
+ dtype=torch.long)
+ # Shadowed bboxes are assigned to be background. But the corresponding
+ # label is ignored during loss calculation, which is done through
+ # shadowed_gt_inds
+ shadowed_gt_inds = torch.nonzero(is_bbox_in_gt_shadow, as_tuple=False)
+ if is_bbox_in_gt_core.sum() == 0: # No gt match
+ shadowed_gt_inds[:, 1] += 1 # 1-based. For consistency issue
+ return assigned_gt_inds, shadowed_gt_inds
+
+ # The priority of each prior box and gt pair. If one prior box is
+ # matched bo multiple gts. Only the pair with the highest priority
+ # is saved
+ pair_priority = is_bbox_in_gt_core.new_full((num_bboxes, num_gts),
+ -1,
+ dtype=torch.long)
+
+ # Each bbox could match with multiple gts.
+ # The following codes deal with this situation
+ # Matched bboxes (to any gt). Shape: (num_pos_anchor, )
+ inds_of_match = torch.any(is_bbox_in_gt_core, dim=1)
+ # The matched gt index of each positive bbox. Length >= num_pos_anchor
+ # , since one bbox could match multiple gts
+ matched_bbox_gt_inds = torch.nonzero(
+ is_bbox_in_gt_core, as_tuple=False)[:, 1]
+ # Assign priority to each bbox-gt pair.
+ pair_priority[is_bbox_in_gt_core] = gt_priority[matched_bbox_gt_inds]
+ _, argmax_priority = pair_priority[inds_of_match].max(dim=1)
+ assigned_gt_inds[inds_of_match] = argmax_priority + 1 # 1-based
+ # Zero-out the assigned anchor box to filter the shadowed gt indices
+ is_bbox_in_gt_core[inds_of_match, argmax_priority] = 0
+ # Concat the shadowed indices due to overlapping with that out side of
+ # effective scale. shape: (total_num_ignore, 2)
+ shadowed_gt_inds = torch.cat(
+ (shadowed_gt_inds, torch.nonzero(
+ is_bbox_in_gt_core, as_tuple=False)),
+ dim=0)
+ # `is_bbox_in_gt_core` should be changed back to keep arguments intact.
+ is_bbox_in_gt_core[inds_of_match, argmax_priority] = 1
+ # 1-based shadowed gt indices, to be consistent with `assigned_gt_inds`
+ if shadowed_gt_inds.numel() > 0:
+ shadowed_gt_inds[:, 1] += 1
+ return assigned_gt_inds, shadowed_gt_inds
diff --git a/mmdet/det_core/bbox/assigners/grid_assigner.py b/mmdet/core/bbox/assigners/grid_assigner.py
similarity index 75%
rename from mmdet/det_core/bbox/assigners/grid_assigner.py
rename to mmdet/core/bbox/assigners/grid_assigner.py
index dcb82348..7390ea63 100644
--- a/mmdet/det_core/bbox/assigners/grid_assigner.py
+++ b/mmdet/core/bbox/assigners/grid_assigner.py
@@ -5,8 +5,7 @@
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
-# 整个算法流程和max_iou_assigner非常类似,只不过多了一个box_responsible_flags限制
-# 所以可以看出,其分配测试和原版yolov3有差别,主要是本文策略会引入更多正样本,可能能加速收敛
+
@BBOX_ASSIGNERS.register_module()
class GridAssigner(BaseAssigner):
"""Assign a corresponding gt bbox or background to each bbox.
@@ -74,7 +73,7 @@ def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None):
# compute iou between all gt and bboxes
overlaps = self.iou_calculator(gt_bboxes, bboxes)
- # 1. assign -1 by default 先把所有anchor位置设置为忽略
+ # 1. assign -1 by default
assigned_gt_inds = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
@@ -101,9 +100,8 @@ def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None):
# for each anchor, which gt best overlaps with it
# for each anchor, the max iou of all gts
# shape of max_overlaps == argmax_overlaps == num_bboxes
- max_overlaps, argmax_overlaps = overlaps.max(dim=0) # 对于每个anchor,找到和他最匹配的gt iou
+ max_overlaps, argmax_overlaps = overlaps.max(dim=0)
- # 将所有anchor位置的max_overlaps阈值小于阈值的,全部认为是负样本
if isinstance(self.neg_iou_thr, float):
assigned_gt_inds[(max_overlaps >= 0)
& (max_overlaps <= self.neg_iou_thr)] = 0
@@ -116,36 +114,25 @@ def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None):
# positive IOU threshold, the order matters.
# the prior condition of comparision is to filter out all
# unrelated anchors, i.e. not box_responsible_flags
- # 将没有gt bbox中心位置的anchor iou强制设置为最小值-1
- # 意思是为了避免:gt bbox中心落在A格子内部,但是最大Iou对应的anchor不在A,而是B,不允许出现这种情况
- # 虽然出现这种情况也是可以训练的,但是这不符合yolo思想,因为我们是强制落在网格处的才负责预测
overlaps[:, ~box_responsible_flags.type(torch.bool)] = -1.
# calculate max_overlaps again, but this time we only consider IOUs
# for anchors responsible for prediction
- max_overlaps, argmax_overlaps = overlaps.max(dim=0) # 对于每个anchor,找到和他最匹配的gt iou
+ max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# for each gt, which anchor best overlaps with it
# for each gt, the max iou of all proposals
# shape of gt_max_overlaps == gt_argmax_overlaps == num_gts
- gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) # 对于每个gt,找到和他最匹配的anchor
+ gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1)
- # 对于所有anchor中的每一个位置,如果该位置和gt bbox的iou大于阈值,并且gt bbox的中心落在对应的anchor处
- # 这个操作会导致:仅仅处于gt bbox落在的网格中心的anchor,并且iou要大,才会匹配
- # 和yolo原论文有点区别:原始论文是每个gt bbox一定有一个唯一的anchor进行对应,不存在多个anchor对应1个Gt
- # 而这里,可能存在,因为任何一个网络中心都有三个anchor,如果这三个都大于self.pos_iou_thr,那就有可能
- # 这里,可能有些gt bbox还没有anchor匹配,后面会解决
pos_inds = (max_overlaps >
self.pos_iou_thr) & box_responsible_flags.type(torch.bool)
- assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 # 正样本anchor,保存对应的gt bbox索引,表示和其匹配上
+ assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1
# 4. assign positive to max overlapped anchors within responsible cell
- # 遍历每个Gt,判断和他iou最大的anchor,是否大于self.min_pos_iou=0阈值
- # 这里可以保证每个gt一定有anchor进行匹配
for i in range(num_gts):
if gt_max_overlaps[i] > self.min_pos_iou:
if self.gt_max_assign_all:
- # 找出anchor索引,一定要满足box_responsible_flags才行
max_iou_inds = (overlaps[i, :] == gt_max_overlaps[i]) & \
box_responsible_flags.type(torch.bool)
assigned_gt_inds[max_iou_inds] = i + 1
@@ -159,7 +146,7 @@ def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None):
assigned_gt_inds > 0, as_tuple=False).squeeze()
if pos_inds.numel() > 0:
assigned_labels[pos_inds] = gt_labels[
- assigned_gt_inds[pos_inds] - 1] # 正样本anchor处的label值
+ assigned_gt_inds[pos_inds] - 1]
else:
assigned_labels = None
diff --git a/mmdet/core/bbox/assigners/hungarian_assigner.py b/mmdet/core/bbox/assigners/hungarian_assigner.py
new file mode 100644
index 00000000..e10cc14a
--- /dev/null
+++ b/mmdet/core/bbox/assigners/hungarian_assigner.py
@@ -0,0 +1,145 @@
+import torch
+
+from ..builder import BBOX_ASSIGNERS
+from ..match_costs import build_match_cost
+from ..transforms import bbox_cxcywh_to_xyxy
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+try:
+ from scipy.optimize import linear_sum_assignment
+except ImportError:
+ linear_sum_assignment = None
+
+
+@BBOX_ASSIGNERS.register_module()
+class HungarianAssigner(BaseAssigner):
+ """Computes one-to-one matching between predictions and ground truth.
+
+ This class computes an assignment between the targets and the predictions
+ based on the costs. The costs are weighted sum of three components:
+ classification cost, regression L1 cost and regression iou cost. The
+ targets don't include the no_object, so generally there are more
+ predictions than targets. After the one-to-one matching, the un-matched
+ are treated as backgrounds. Thus each query prediction will be assigned
+ with `0` or a positive integer indicating the ground truth index:
+
+ - 0: negative sample, no assigned gt
+ - positive integer: positive sample, index (1-based) of assigned gt
+
+ Args:
+ cls_weight (int | float, optional): The scale factor for classification
+ cost. Default 1.0.
+ bbox_weight (int | float, optional): The scale factor for regression
+ L1 cost. Default 1.0.
+ iou_weight (int | float, optional): The scale factor for regression
+ iou cost. Default 1.0.
+ iou_calculator (dict | optional): The config for the iou calculation.
+ Default type `BboxOverlaps2D`.
+ iou_mode (str | optional): "iou" (intersection over union), "iof"
+ (intersection over foreground), or "giou" (generalized
+ intersection over union). Default "giou".
+ """
+
+ def __init__(self,
+ cls_cost=dict(type='ClassificationCost', weight=1.),
+ reg_cost=dict(type='BBoxL1Cost', weight=1.0),
+ iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0)):
+ self.cls_cost = build_match_cost(cls_cost)
+ self.reg_cost = build_match_cost(reg_cost)
+ self.iou_cost = build_match_cost(iou_cost)
+
+ def assign(self,
+ bbox_pred,
+ cls_pred,
+ gt_bboxes,
+ gt_labels,
+ img_meta,
+ gt_bboxes_ignore=None,
+ eps=1e-7):
+ """Computes one-to-one matching based on the weighted costs.
+
+ This method assign each query prediction to a ground truth or
+ background. The `assigned_gt_inds` with -1 means don't care,
+ 0 means negative sample, and positive number is the index (1-based)
+ of assigned gt.
+ The assignment is done in the following steps, the order matters.
+
+ 1. assign every prediction to -1
+ 2. compute the weighted costs
+ 3. do Hungarian matching on CPU based on the costs
+ 4. assign all to 0 (background) first, then for each matched pair
+ between predictions and gts, treat this prediction as foreground
+ and assign the corresponding gt index (plus 1) to it.
+
+ Args:
+ bbox_pred (Tensor): Predicted boxes with normalized coordinates
+ (cx, cy, w, h), which are all in range [0, 1]. Shape
+ [num_query, 4].
+ cls_pred (Tensor): Predicted classification logits, shape
+ [num_query, num_class].
+ gt_bboxes (Tensor): Ground truth boxes with unnormalized
+ coordinates (x1, y1, x2, y2). Shape [num_gt, 4].
+ gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).
+ img_meta (dict): Meta information for current image.
+ gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
+ labelled as `ignored`. Default None.
+ eps (int | float, optional): A value added to the denominator for
+ numerical stability. Default 1e-7.
+
+ Returns:
+ :obj:`AssignResult`: The assigned result.
+ """
+ assert gt_bboxes_ignore is None, \
+ 'Only case when gt_bboxes_ignore is None is supported.'
+ num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0)
+
+ # 1. assign -1 by default
+ assigned_gt_inds = bbox_pred.new_full((num_bboxes, ),
+ -1,
+ dtype=torch.long)
+ assigned_labels = bbox_pred.new_full((num_bboxes, ),
+ -1,
+ dtype=torch.long)
+ if num_gts == 0 or num_bboxes == 0:
+ # No ground truth or boxes, return empty assignment
+ if num_gts == 0:
+ # No ground truth, assign all to background
+ assigned_gt_inds[:] = 0
+ return AssignResult(
+ num_gts, assigned_gt_inds, None, labels=assigned_labels)
+ img_h, img_w, _ = img_meta['img_shape']
+ factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
+ img_h]).unsqueeze(0)
+
+ # 2. compute the weighted costs
+ # classification and bboxcost.
+ cls_cost = self.cls_cost(cls_pred, gt_labels)
+ # regression L1 cost
+ normalize_gt_bboxes = gt_bboxes / factor
+ reg_cost = self.reg_cost(bbox_pred, normalize_gt_bboxes)
+ # regression iou cost, defaultly giou is used in official DETR.
+ bboxes = bbox_cxcywh_to_xyxy(bbox_pred) * factor
+ iou_cost = self.iou_cost(bboxes, gt_bboxes)
+ # weighted sum of above three costs
+ cost = cls_cost + reg_cost + iou_cost
+
+ # 3. do Hungarian matching on CPU using linear_sum_assignment
+ cost = cost.detach().cpu()
+ if linear_sum_assignment is None:
+ raise ImportError('Please run "pip install scipy" '
+ 'to install scipy first.')
+ matched_row_inds, matched_col_inds = linear_sum_assignment(cost)
+ matched_row_inds = torch.from_numpy(matched_row_inds).to(
+ bbox_pred.device)
+ matched_col_inds = torch.from_numpy(matched_col_inds).to(
+ bbox_pred.device)
+
+ # 4. assign backgrounds and foregrounds
+ # assign all indices to backgrounds first
+ assigned_gt_inds[:] = 0
+ # assign foregrounds based on matching results
+ assigned_gt_inds[matched_row_inds] = matched_col_inds + 1
+ assigned_labels[matched_row_inds] = gt_labels[matched_col_inds]
+ return AssignResult(
+ num_gts, assigned_gt_inds, None, labels=assigned_labels)
diff --git a/mmdet/det_core/bbox/assigners/max_iou_assigner.py b/mmdet/core/bbox/assigners/max_iou_assigner.py
similarity index 99%
rename from mmdet/det_core/bbox/assigners/max_iou_assigner.py
rename to mmdet/core/bbox/assigners/max_iou_assigner.py
index a99f77e1..5cf4c4b4 100644
--- a/mmdet/det_core/bbox/assigners/max_iou_assigner.py
+++ b/mmdet/core/bbox/assigners/max_iou_assigner.py
@@ -182,7 +182,7 @@ def assign_wrt_overlaps(self, overlaps, gt_labels=None):
assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1
if self.match_low_quality:
- # Low-quality matching will overwirte the assigned_gt_inds assigned
+ # Low-quality matching will overwrite the assigned_gt_inds assigned
# in Step 3. Thus, the assigned gt might not be the best one for
# prediction.
# For example, if bbox A has 0.9 and 0.8 iou with GT bbox 1 & 2,
diff --git a/mmdet/core/bbox/assigners/point_assigner.py b/mmdet/core/bbox/assigners/point_assigner.py
new file mode 100644
index 00000000..fb8f5e4e
--- /dev/null
+++ b/mmdet/core/bbox/assigners/point_assigner.py
@@ -0,0 +1,133 @@
+import torch
+
+from ..builder import BBOX_ASSIGNERS
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+
+@BBOX_ASSIGNERS.register_module()
+class PointAssigner(BaseAssigner):
+ """Assign a corresponding gt bbox or background to each point.
+
+ Each proposals will be assigned with `0`, or a positive integer
+ indicating the ground truth index.
+
+ - 0: negative sample, no assigned gt
+ - positive integer: positive sample, index (1-based) of assigned gt
+ """
+
+ def __init__(self, scale=4, pos_num=3):
+ self.scale = scale
+ self.pos_num = pos_num
+
+ def assign(self, points, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None):
+ """Assign gt to points.
+
+ This method assign a gt bbox to every points set, each points set
+ will be assigned with the background_label (-1), or a label number.
+ -1 is background, and semi-positive number is the index (0-based) of
+ assigned gt.
+ The assignment is done in following steps, the order matters.
+
+ 1. assign every points to the background_label (-1)
+ 2. A point is assigned to some gt bbox if
+ (i) the point is within the k closest points to the gt bbox
+ (ii) the distance between this point and the gt is smaller than
+ other gt bboxes
+
+ Args:
+ points (Tensor): points to be assigned, shape(n, 3) while last
+ dimension stands for (x, y, stride).
+ gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
+ gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
+ labelled as `ignored`, e.g., crowd boxes in COCO.
+ NOTE: currently unused.
+ gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
+
+ Returns:
+ :obj:`AssignResult`: The assign result.
+ """
+ num_points = points.shape[0]
+ num_gts = gt_bboxes.shape[0]
+
+ if num_gts == 0 or num_points == 0:
+ # If no truth assign everything to the background
+ assigned_gt_inds = points.new_full((num_points, ),
+ 0,
+ dtype=torch.long)
+ if gt_labels is None:
+ assigned_labels = None
+ else:
+ assigned_labels = points.new_full((num_points, ),
+ -1,
+ dtype=torch.long)
+ return AssignResult(
+ num_gts, assigned_gt_inds, None, labels=assigned_labels)
+
+ points_xy = points[:, :2]
+ points_stride = points[:, 2]
+ points_lvl = torch.log2(
+ points_stride).int() # [3...,4...,5...,6...,7...]
+ lvl_min, lvl_max = points_lvl.min(), points_lvl.max()
+
+ # assign gt box
+ gt_bboxes_xy = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2
+ gt_bboxes_wh = (gt_bboxes[:, 2:] - gt_bboxes[:, :2]).clamp(min=1e-6)
+ scale = self.scale
+ gt_bboxes_lvl = ((torch.log2(gt_bboxes_wh[:, 0] / scale) +
+ torch.log2(gt_bboxes_wh[:, 1] / scale)) / 2).int()
+ gt_bboxes_lvl = torch.clamp(gt_bboxes_lvl, min=lvl_min, max=lvl_max)
+
+ # stores the assigned gt index of each point
+ assigned_gt_inds = points.new_zeros((num_points, ), dtype=torch.long)
+ # stores the assigned gt dist (to this point) of each point
+ assigned_gt_dist = points.new_full((num_points, ), float('inf'))
+ points_range = torch.arange(points.shape[0])
+
+ for idx in range(num_gts):
+ gt_lvl = gt_bboxes_lvl[idx]
+ # get the index of points in this level
+ lvl_idx = gt_lvl == points_lvl
+ points_index = points_range[lvl_idx]
+ # get the points in this level
+ lvl_points = points_xy[lvl_idx, :]
+ # get the center point of gt
+ gt_point = gt_bboxes_xy[[idx], :]
+ # get width and height of gt
+ gt_wh = gt_bboxes_wh[[idx], :]
+ # compute the distance between gt center and
+ # all points in this level
+ points_gt_dist = ((lvl_points - gt_point) / gt_wh).norm(dim=1)
+ # find the nearest k points to gt center in this level
+ min_dist, min_dist_index = torch.topk(
+ points_gt_dist, self.pos_num, largest=False)
+ # the index of nearest k points to gt center in this level
+ min_dist_points_index = points_index[min_dist_index]
+ # The less_than_recorded_index stores the index
+ # of min_dist that is less then the assigned_gt_dist. Where
+ # assigned_gt_dist stores the dist from previous assigned gt
+ # (if exist) to each point.
+ less_than_recorded_index = min_dist < assigned_gt_dist[
+ min_dist_points_index]
+ # The min_dist_points_index stores the index of points satisfy:
+ # (1) it is k nearest to current gt center in this level.
+ # (2) it is closer to current gt center than other gt center.
+ min_dist_points_index = min_dist_points_index[
+ less_than_recorded_index]
+ # assign the result
+ assigned_gt_inds[min_dist_points_index] = idx + 1
+ assigned_gt_dist[min_dist_points_index] = min_dist[
+ less_than_recorded_index]
+
+ if gt_labels is not None:
+ assigned_labels = assigned_gt_inds.new_full((num_points, ), -1)
+ pos_inds = torch.nonzero(
+ assigned_gt_inds > 0, as_tuple=False).squeeze()
+ if pos_inds.numel() > 0:
+ assigned_labels[pos_inds] = gt_labels[
+ assigned_gt_inds[pos_inds] - 1]
+ else:
+ assigned_labels = None
+
+ return AssignResult(
+ num_gts, assigned_gt_inds, None, labels=assigned_labels)
diff --git a/mmdet/core/bbox/assigners/region_assigner.py b/mmdet/core/bbox/assigners/region_assigner.py
new file mode 100644
index 00000000..2e8464b9
--- /dev/null
+++ b/mmdet/core/bbox/assigners/region_assigner.py
@@ -0,0 +1,221 @@
+import torch
+
+from mmdet.core import anchor_inside_flags
+from ..builder import BBOX_ASSIGNERS
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+
+def calc_region(bbox, ratio, stride, featmap_size=None):
+ """Calculate region of the box defined by the ratio, the ratio is from the
+ center of the box to every edge."""
+ # project bbox on the feature
+ f_bbox = bbox / stride
+ x1 = torch.round((1 - ratio) * f_bbox[0] + ratio * f_bbox[2])
+ y1 = torch.round((1 - ratio) * f_bbox[1] + ratio * f_bbox[3])
+ x2 = torch.round(ratio * f_bbox[0] + (1 - ratio) * f_bbox[2])
+ y2 = torch.round(ratio * f_bbox[1] + (1 - ratio) * f_bbox[3])
+ if featmap_size is not None:
+ x1 = x1.clamp(min=0, max=featmap_size[1])
+ y1 = y1.clamp(min=0, max=featmap_size[0])
+ x2 = x2.clamp(min=0, max=featmap_size[1])
+ y2 = y2.clamp(min=0, max=featmap_size[0])
+ return (x1, y1, x2, y2)
+
+
+def anchor_ctr_inside_region_flags(anchors, stride, region):
+ """Get the flag indicate whether anchor centers are inside regions."""
+ x1, y1, x2, y2 = region
+ f_anchors = anchors / stride
+ x = (f_anchors[:, 0] + f_anchors[:, 2]) * 0.5
+ y = (f_anchors[:, 1] + f_anchors[:, 3]) * 0.5
+ flags = (x >= x1) & (x <= x2) & (y >= y1) & (y <= y2)
+ return flags
+
+
+@BBOX_ASSIGNERS.register_module()
+class RegionAssigner(BaseAssigner):
+ """Assign a corresponding gt bbox or background to each bbox.
+
+ Each proposals will be assigned with `-1`, `0`, or a positive integer
+ indicating the ground truth index.
+
+ - -1: don't care
+ - 0: negative sample, no assigned gt
+ - positive integer: positive sample, index (1-based) of assigned gt
+
+ Args:
+ center_ratio: ratio of the region in the center of the bbox to
+ define positive sample.
+ ignore_ratio: ratio of the region to define ignore samples.
+ """
+
+ def __init__(self, center_ratio=0.2, ignore_ratio=0.5):
+ self.center_ratio = center_ratio
+ self.ignore_ratio = ignore_ratio
+
+ def assign(self,
+ mlvl_anchors,
+ mlvl_valid_flags,
+ gt_bboxes,
+ img_meta,
+ featmap_sizes,
+ anchor_scale,
+ anchor_strides,
+ gt_bboxes_ignore=None,
+ gt_labels=None,
+ allowed_border=0):
+ """Assign gt to anchors.
+
+ This method assign a gt bbox to every bbox (proposal/anchor), each bbox
+ will be assigned with -1, 0, or a positive number. -1 means don't care,
+ 0 means negative sample, positive number is the index (1-based) of
+ assigned gt.
+ The assignment is done in following steps, the order matters.
+
+ 1. Assign every anchor to 0 (negative)
+ For each gt_bboxes:
+ 2. Compute ignore flags based on ignore_region then
+ assign -1 to anchors w.r.t. ignore flags
+ 3. Compute pos flags based on center_region then
+ assign gt_bboxes to anchors w.r.t. pos flags
+ 4. Compute ignore flags based on adjacent anchor lvl then
+ assign -1 to anchors w.r.t. ignore flags
+ 5. Assign anchor outside of image to -1
+
+ Args:
+ mlvl_anchors (list[Tensor]): Multi level anchors.
+ mlvl_valid_flags (list[Tensor]): Multi level valid flags.
+ gt_bboxes (Tensor): Ground truth bboxes of image
+ img_meta (dict): Meta info of image.
+ featmap_sizes (list[Tensor]): Feature mapsize each level
+ anchor_scale (int): Scale of the anchor.
+ anchor_strides (list[int]): Stride of the anchor.
+ gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
+ gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
+ labelled as `ignored`, e.g., crowd boxes in COCO.
+ gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
+ allowed_border (int, optional): The border to allow the valid
+ anchor. Defaults to 0.
+
+ Returns:
+ :obj:`AssignResult`: The assign result.
+ """
+ if gt_bboxes_ignore is not None:
+ raise NotImplementedError
+
+ num_gts = gt_bboxes.shape[0]
+ num_bboxes = sum(x.shape[0] for x in mlvl_anchors)
+
+ if num_gts == 0 or num_bboxes == 0:
+ # No ground truth or boxes, return empty assignment
+ max_overlaps = gt_bboxes.new_zeros((num_bboxes, ))
+ assigned_gt_inds = gt_bboxes.new_zeros((num_bboxes, ),
+ dtype=torch.long)
+ if gt_labels is None:
+ assigned_labels = None
+ else:
+ assigned_labels = gt_bboxes.new_full((num_bboxes, ),
+ -1,
+ dtype=torch.long)
+ return AssignResult(
+ num_gts,
+ assigned_gt_inds,
+ max_overlaps,
+ labels=assigned_labels)
+
+ num_lvls = len(mlvl_anchors)
+ r1 = (1 - self.center_ratio) / 2
+ r2 = (1 - self.ignore_ratio) / 2
+
+ scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
+ (gt_bboxes[:, 3] - gt_bboxes[:, 1]))
+ min_anchor_size = scale.new_full(
+ (1, ), float(anchor_scale * anchor_strides[0]))
+ target_lvls = torch.floor(
+ torch.log2(scale) - torch.log2(min_anchor_size) + 0.5)
+ target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long()
+
+ # 1. assign 0 (negative) by default
+ mlvl_assigned_gt_inds = []
+ mlvl_ignore_flags = []
+ for lvl in range(num_lvls):
+ h, w = featmap_sizes[lvl]
+ assert h * w == mlvl_anchors[lvl].shape[0]
+ assigned_gt_inds = gt_bboxes.new_full((h * w, ),
+ 0,
+ dtype=torch.long)
+ ignore_flags = torch.zeros_like(assigned_gt_inds)
+ mlvl_assigned_gt_inds.append(assigned_gt_inds)
+ mlvl_ignore_flags.append(ignore_flags)
+
+ for gt_id in range(num_gts):
+ lvl = target_lvls[gt_id].item()
+ featmap_size = featmap_sizes[lvl]
+ stride = anchor_strides[lvl]
+ anchors = mlvl_anchors[lvl]
+ gt_bbox = gt_bboxes[gt_id, :4]
+
+ # Compute regions
+ ignore_region = calc_region(gt_bbox, r2, stride, featmap_size)
+ ctr_region = calc_region(gt_bbox, r1, stride, featmap_size)
+
+ # 2. Assign -1 to ignore flags
+ ignore_flags = anchor_ctr_inside_region_flags(
+ anchors, stride, ignore_region)
+ mlvl_assigned_gt_inds[lvl][ignore_flags] = -1
+
+ # 3. Assign gt_bboxes to pos flags
+ pos_flags = anchor_ctr_inside_region_flags(anchors, stride,
+ ctr_region)
+ mlvl_assigned_gt_inds[lvl][pos_flags] = gt_id + 1
+
+ # 4. Assign -1 to ignore adjacent lvl
+ if lvl > 0:
+ d_lvl = lvl - 1
+ d_anchors = mlvl_anchors[d_lvl]
+ d_featmap_size = featmap_sizes[d_lvl]
+ d_stride = anchor_strides[d_lvl]
+ d_ignore_region = calc_region(gt_bbox, r2, d_stride,
+ d_featmap_size)
+ ignore_flags = anchor_ctr_inside_region_flags(
+ d_anchors, d_stride, d_ignore_region)
+ mlvl_ignore_flags[d_lvl][ignore_flags] = 1
+ if lvl < num_lvls - 1:
+ u_lvl = lvl + 1
+ u_anchors = mlvl_anchors[u_lvl]
+ u_featmap_size = featmap_sizes[u_lvl]
+ u_stride = anchor_strides[u_lvl]
+ u_ignore_region = calc_region(gt_bbox, r2, u_stride,
+ u_featmap_size)
+ ignore_flags = anchor_ctr_inside_region_flags(
+ u_anchors, u_stride, u_ignore_region)
+ mlvl_ignore_flags[u_lvl][ignore_flags] = 1
+
+ # 4. (cont.) Assign -1 to ignore adjacent lvl
+ for lvl in range(num_lvls):
+ ignore_flags = mlvl_ignore_flags[lvl]
+ mlvl_assigned_gt_inds[lvl][ignore_flags] = -1
+
+ # 5. Assign -1 to anchor outside of image
+ flat_assigned_gt_inds = torch.cat(mlvl_assigned_gt_inds)
+ flat_anchors = torch.cat(mlvl_anchors)
+ flat_valid_flags = torch.cat(mlvl_valid_flags)
+ assert (flat_assigned_gt_inds.shape[0] == flat_anchors.shape[0] ==
+ flat_valid_flags.shape[0])
+ inside_flags = anchor_inside_flags(flat_anchors, flat_valid_flags,
+ img_meta['img_shape'],
+ allowed_border)
+ outside_flags = ~inside_flags
+ flat_assigned_gt_inds[outside_flags] = -1
+
+ if gt_labels is not None:
+ assigned_labels = torch.zeros_like(flat_assigned_gt_inds)
+ pos_flags = assigned_gt_inds > 0
+ assigned_labels[pos_flags] = gt_labels[
+ flat_assigned_gt_inds[pos_flags] - 1]
+ else:
+ assigned_labels = None
+
+ return AssignResult(
+ num_gts, flat_assigned_gt_inds, None, labels=assigned_labels)
diff --git a/mmdet/core/bbox/assigners/uniform_assigner.py b/mmdet/core/bbox/assigners/uniform_assigner.py
new file mode 100644
index 00000000..1d606dee
--- /dev/null
+++ b/mmdet/core/bbox/assigners/uniform_assigner.py
@@ -0,0 +1,134 @@
+import torch
+
+from ..builder import BBOX_ASSIGNERS
+from ..iou_calculators import build_iou_calculator
+from ..transforms import bbox_xyxy_to_cxcywh
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+
+@BBOX_ASSIGNERS.register_module()
+class UniformAssigner(BaseAssigner):
+ """Uniform Matching between the anchors and gt boxes, which can achieve
+ balance in positive anchors, and gt_bboxes_ignore was not considered for
+ now.
+
+ Args:
+ pos_ignore_thr (float): the threshold to ignore positive anchors
+ neg_ignore_thr (float): the threshold to ignore negative anchors
+ match_times(int): Number of positive anchors for each gt box.
+ Default 4.
+ iou_calculator (dict): iou_calculator config
+ """
+
+ def __init__(self,
+ pos_ignore_thr,
+ neg_ignore_thr,
+ match_times=4,
+ iou_calculator=dict(type='BboxOverlaps2D')):
+ self.match_times = match_times
+ self.pos_ignore_thr = pos_ignore_thr
+ self.neg_ignore_thr = neg_ignore_thr
+ self.iou_calculator = build_iou_calculator(iou_calculator)
+
+ def assign(self,
+ bbox_pred,
+ anchor,
+ gt_bboxes,
+ gt_bboxes_ignore=None,
+ gt_labels=None):
+ num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0)
+
+ # 1. assign -1 by default
+ assigned_gt_inds = bbox_pred.new_full((num_bboxes, ),
+ 0,
+ dtype=torch.long)
+ assigned_labels = bbox_pred.new_full((num_bboxes, ),
+ -1,
+ dtype=torch.long)
+ if num_gts == 0 or num_bboxes == 0:
+ # No ground truth or boxes, return empty assignment
+ if num_gts == 0:
+ # No ground truth, assign all to background
+ assigned_gt_inds[:] = 0
+ assign_result = AssignResult(
+ num_gts, assigned_gt_inds, None, labels=assigned_labels)
+ assign_result.set_extra_property(
+ 'pos_idx', bbox_pred.new_empty(0, dtype=torch.bool))
+ assign_result.set_extra_property('pos_predicted_boxes',
+ bbox_pred.new_empty((0, 4)))
+ assign_result.set_extra_property('target_boxes',
+ bbox_pred.new_empty((0, 4)))
+ return assign_result
+
+ # 2. Compute the L1 cost between boxes
+ # Note that we use anchors and predict boxes both
+ cost_bbox = torch.cdist(
+ bbox_xyxy_to_cxcywh(bbox_pred),
+ bbox_xyxy_to_cxcywh(gt_bboxes),
+ p=1)
+ cost_bbox_anchors = torch.cdist(
+ bbox_xyxy_to_cxcywh(anchor), bbox_xyxy_to_cxcywh(gt_bboxes), p=1)
+
+ # We found that topk function has different results in cpu and
+ # cuda mode. In order to ensure consistency with the source code,
+ # we also use cpu mode.
+ # TODO: Check whether the performance of cpu and cuda are the same.
+ C = cost_bbox.cpu()
+ C1 = cost_bbox_anchors.cpu()
+
+ # self.match_times x n
+ index = torch.topk(
+ C, # c=b,n,x c[i]=n,x
+ k=self.match_times,
+ dim=0,
+ largest=False)[1]
+
+ # self.match_times x n
+ index1 = torch.topk(C1, k=self.match_times, dim=0, largest=False)[1]
+ # (self.match_times*2) x n
+ indexes = torch.cat((index, index1),
+ dim=1).reshape(-1).to(bbox_pred.device)
+
+ pred_overlaps = self.iou_calculator(bbox_pred, gt_bboxes)
+ anchor_overlaps = self.iou_calculator(anchor, gt_bboxes)
+ pred_max_overlaps, _ = pred_overlaps.max(dim=1)
+ anchor_max_overlaps, _ = anchor_overlaps.max(dim=0)
+
+ # 3. Compute the ignore indexes use gt_bboxes and predict boxes
+ ignore_idx = pred_max_overlaps > self.neg_ignore_thr
+ assigned_gt_inds[ignore_idx] = -1
+
+ # 4. Compute the ignore indexes of positive sample use anchors
+ # and predict boxes
+ pos_gt_index = torch.arange(
+ 0, C1.size(1),
+ device=bbox_pred.device).repeat(self.match_times * 2)
+ pos_ious = anchor_overlaps[indexes, pos_gt_index]
+ pos_ignore_idx = pos_ious < self.pos_ignore_thr
+
+ pos_gt_index_with_ignore = pos_gt_index + 1
+ pos_gt_index_with_ignore[pos_ignore_idx] = -1
+ assigned_gt_inds[indexes] = pos_gt_index_with_ignore
+
+ if gt_labels is not None:
+ assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
+ pos_inds = torch.nonzero(
+ assigned_gt_inds > 0, as_tuple=False).squeeze()
+ if pos_inds.numel() > 0:
+ assigned_labels[pos_inds] = gt_labels[
+ assigned_gt_inds[pos_inds] - 1]
+ else:
+ assigned_labels = None
+
+ assign_result = AssignResult(
+ num_gts,
+ assigned_gt_inds,
+ anchor_max_overlaps,
+ labels=assigned_labels)
+ assign_result.set_extra_property('pos_idx', ~pos_ignore_idx)
+ assign_result.set_extra_property('pos_predicted_boxes',
+ bbox_pred[indexes])
+ assign_result.set_extra_property('target_boxes',
+ gt_bboxes[pos_gt_index])
+ return assign_result
diff --git a/mmdet/core/bbox/builder.py b/mmdet/core/bbox/builder.py
new file mode 100644
index 00000000..682683b6
--- /dev/null
+++ b/mmdet/core/bbox/builder.py
@@ -0,0 +1,20 @@
+from mmcv.utils import Registry, build_from_cfg
+
+BBOX_ASSIGNERS = Registry('bbox_assigner')
+BBOX_SAMPLERS = Registry('bbox_sampler')
+BBOX_CODERS = Registry('bbox_coder')
+
+
+def build_assigner(cfg, **default_args):
+ """Builder of box assigner."""
+ return build_from_cfg(cfg, BBOX_ASSIGNERS, default_args)
+
+
+def build_sampler(cfg, **default_args):
+ """Builder of box sampler."""
+ return build_from_cfg(cfg, BBOX_SAMPLERS, default_args)
+
+
+def build_bbox_coder(cfg, **default_args):
+ """Builder of box coder."""
+ return build_from_cfg(cfg, BBOX_CODERS, default_args)
diff --git a/mmdet/core/bbox/coder/__init__.py b/mmdet/core/bbox/coder/__init__.py
new file mode 100644
index 00000000..50002f12
--- /dev/null
+++ b/mmdet/core/bbox/coder/__init__.py
@@ -0,0 +1,14 @@
+from .base_bbox_coder import BaseBBoxCoder
+from .bucketing_bbox_coder import BucketingBBoxCoder
+from .delta_xywh_bbox_coder import DeltaXYWHBBoxCoder
+from .legacy_delta_xywh_bbox_coder import LegacyDeltaXYWHBBoxCoder
+from .pseudo_bbox_coder import PseudoBBoxCoder
+from .tblr_bbox_coder import TBLRBBoxCoder
+from .yolo_bbox_coder import YOLOBBoxCoder
+from .yolov5_bbox_coder import YOLOV5BBoxCoder
+
+__all__ = [
+ 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder',
+ 'LegacyDeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'YOLOBBoxCoder',
+ 'BucketingBBoxCoder', 'YOLOV5BBoxCoder'
+]
diff --git a/mmdet/det_core/bbox/coder/base_bbox_coder.py b/mmdet/core/bbox/coder/base_bbox_coder.py
similarity index 94%
rename from mmdet/det_core/bbox/coder/base_bbox_coder.py
rename to mmdet/core/bbox/coder/base_bbox_coder.py
index 6e427272..cf0b34c7 100644
--- a/mmdet/det_core/bbox/coder/base_bbox_coder.py
+++ b/mmdet/core/bbox/coder/base_bbox_coder.py
@@ -10,10 +10,8 @@ def __init__(self, **kwargs):
@abstractmethod
def encode(self, bboxes, gt_bboxes):
"""Encode deltas between bboxes and ground truth boxes."""
- pass
@abstractmethod
def decode(self, bboxes, bboxes_pred):
"""Decode the predicted bboxes according to prediction and base
boxes."""
- pass
diff --git a/mmdet/det_core/bbox/coder/bucketing_bbox_coder.py b/mmdet/core/bbox/coder/bucketing_bbox_coder.py
similarity index 77%
rename from mmdet/det_core/bbox/coder/bucketing_bbox_coder.py
rename to mmdet/core/bbox/coder/bucketing_bbox_coder.py
index a64f16aa..92d24b45 100644
--- a/mmdet/det_core/bbox/coder/bucketing_bbox_coder.py
+++ b/mmdet/core/bbox/coder/bucketing_bbox_coder.py
@@ -1,3 +1,4 @@
+import mmcv
import numpy as np
import torch
import torch.nn.functional as F
@@ -9,7 +10,7 @@
@BBOX_CODERS.register_module()
class BucketingBBoxCoder(BaseBBoxCoder):
- """Bucketing BBox Coder for Side-Aware Bounday Localization (SABL).
+ """Bucketing BBox Coder for Side-Aware Boundary Localization (SABL).
Boundary Localization with Bucketing and Bucketing Guided Rescoring
are implemented here.
@@ -26,6 +27,8 @@ class BucketingBBoxCoder(BaseBBoxCoder):
To avoid too large offset displacements. Defaults to 1.0.
cls_ignore_neighbor (bool): Ignore second nearest bucket or Not.
Defaults to True.
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
"""
def __init__(self,
@@ -33,13 +36,15 @@ def __init__(self,
scale_factor,
offset_topk=2,
offset_upperbound=1.0,
- cls_ignore_neighbor=True):
+ cls_ignore_neighbor=True,
+ clip_border=True):
super(BucketingBBoxCoder, self).__init__()
self.num_buckets = num_buckets
self.scale_factor = scale_factor
self.offset_topk = offset_topk
self.offset_upperbound = offset_upperbound
self.cls_ignore_neighbor = cls_ignore_neighbor
+ self.clip_border = clip_border
def encode(self, bboxes, gt_bboxes):
"""Get bucketing estimation and fine regression targets during
@@ -81,11 +86,12 @@ def decode(self, bboxes, pred_bboxes, max_shape=None):
0) == bboxes.size(0)
decoded_bboxes = bucket2bbox(bboxes, cls_preds, offset_preds,
self.num_buckets, self.scale_factor,
- max_shape)
+ max_shape, self.clip_border)
return decoded_bboxes
+@mmcv.jit(coderize=True)
def generat_buckets(proposals, num_buckets, scale_factor=1.0):
"""Generate buckets w.r.t bucket number and scale factor of proposals.
@@ -105,28 +111,21 @@ def generat_buckets(proposals, num_buckets, scale_factor=1.0):
- t_buckets: Top buckets. Shape (n, ceil(side_num/2)).
- d_buckets: Down buckets. Shape (n, ceil(side_num/2)).
"""
- # 先把proposal扩大scale_factor倍数,尽可能保证该proposals能够把整个gt bbox全部扩进来
- proposals = bbox_rescale(proposals, scale_factor) # x1y1x2y2
+ proposals = bbox_rescale(proposals, scale_factor)
# number of buckets in each side
- #
side_num = int(np.ceil(num_buckets / 2.0))
- pw = proposals[..., 2] - proposals[..., 0] # 原图尺度
+ pw = proposals[..., 2] - proposals[..., 0]
ph = proposals[..., 3] - proposals[..., 1]
px1 = proposals[..., 0]
py1 = proposals[..., 1]
px2 = proposals[..., 2]
py2 = proposals[..., 3]
- # 每个桶的长度,对于任何一条边都包括side_num个桶
bucket_w = pw / num_buckets
bucket_h = ph / num_buckets
# left buckets
- # 计算px1值和side_num个桶的距离,假设一共7个桶,而px1=200,每个桶占据bucket_w=10个像素
- # 0.5表示桶的中心偏移
- # 则输出表示200+0.5x10,200+1.5x10,200+2.5x10....,需要结合后面代码才知道为啥要如此些代码
- # 输出shape=(N,side_num)
l_buckets = px1[:, None] + (0.5 + torch.arange(
0, side_num).to(proposals).float())[None, :] * bucket_w[:, None]
# right buckets
@@ -141,6 +140,7 @@ def generat_buckets(proposals, num_buckets, scale_factor=1.0):
return bucket_w, bucket_h, l_buckets, r_buckets, t_buckets, d_buckets
+@mmcv.jit(coderize=True)
def bbox2bucket(proposals,
gt,
num_buckets,
@@ -178,9 +178,8 @@ def bbox2bucket(proposals,
assert proposals.size() == gt.size()
# generate buckets
- proposals = proposals.float() # 其实就是anchor或者rpn输出的roi
- gt = gt.float() # 对应负责的gt bbox
- # 每个shape=(N,side_num)
+ proposals = proposals.float()
+ gt = gt.float()
(bucket_w, bucket_h, l_buckets, r_buckets, t_buckets,
d_buckets) = generat_buckets(proposals, num_buckets, scale_factor)
@@ -191,21 +190,12 @@ def bbox2bucket(proposals,
# generate offset targets and weights
# offsets from buckets to gts
- # 计算当前边距离side_num个桶的相对距离
- # 假设l_buckets的某条边输出值是:200+0.5x10,200+1.5x10,200+2.5x10....,
- # gx1值假设为220,则l_offsets输出是 (200+0.5x10-200)/10=-1.5,....
- # 肯定按照从小到大排列,其实abs(l_offsets)越小表示某个桶越和gt接近
- # 表征每个桶中心距离坐标相对gt坐标的偏移值
- # 假设有7个桶,那么每个桶都可以和同一个GT bbox算归一化的偏移
- # 假设这7个桶里面有两个是正样本,那么对应的两个桶都负责该gt bbox边预测
l_offsets = (l_buckets - gx1[:, None]) / bucket_w[:, None]
r_offsets = (r_buckets - gx2[:, None]) / bucket_w[:, None]
t_offsets = (t_buckets - gy1[:, None]) / bucket_h[:, None]
d_offsets = (d_buckets - gy2[:, None]) / bucket_h[:, None]
# select top-k nearset buckets
- # top1肯定就是该gt bbox落在对应桶内的取值了,落在哪个桶和anchor的wh有关系
- # top2是最近的一个邻居桶
l_topk, l_label = l_offsets.abs().topk(
offset_topk, dim=1, largest=False, sorted=True)
r_topk, r_label = r_offsets.abs().topk(
@@ -222,50 +212,40 @@ def bbox2bucket(proposals,
inds = torch.arange(0, proposals.size(0)).to(proposals).long()
# generate offset weights of top-k nearset buckets
- # 对于第二步refine回归问题来说,gt桶和最近邻居桶都是正样本
- # 但是对于第一步分类来说,邻居桶是忽略位置,避免模糊样本
for k in range(offset_topk):
if k >= 1:
- # 如果偏离gt bbox比较远,就当做背景
- # 这个操作其实是把最近的邻居权重设置为1(也可能没有邻居)
offset_l_weights[inds, l_label[:,
- k]] = (l_topk[:, k] <
- offset_upperbound).float()
+ k]] = (l_topk[:, k] <
+ offset_upperbound).float()
offset_r_weights[inds, r_label[:,
- k]] = (r_topk[:, k] <
- offset_upperbound).float()
+ k]] = (r_topk[:, k] <
+ offset_upperbound).float()
offset_t_weights[inds, t_label[:,
- k]] = (t_topk[:, k] <
- offset_upperbound).float()
+ k]] = (t_topk[:, k] <
+ offset_upperbound).float()
offset_d_weights[inds, d_label[:,
- k]] = (d_topk[:, k] <
- offset_upperbound).float()
+ k]] = (d_topk[:, k] <
+ offset_upperbound).float()
else:
offset_l_weights[inds, l_label[:, k]] = 1.0
offset_r_weights[inds, r_label[:, k]] = 1.0
offset_t_weights[inds, t_label[:, k]] = 1.0
offset_d_weights[inds, d_label[:, k]] = 1.0
- # 该offsets要返回,用于算refine回归
offsets = torch.cat([l_offsets, r_offsets, t_offsets, d_offsets], dim=-1)
- # 以offset_l_weights为例,对于任何一个anchor,在确定其属于正样本后,还需要确定内部有多少个正样本,最多是7个
- # 故还需要确定内部的7个,那几个才是正样本
offsets_weights = torch.cat([
offset_l_weights, offset_r_weights, offset_t_weights, offset_d_weights
],
- dim=-1)
+ dim=-1)
# generate bucket labels and weight
side_num = int(np.ceil(num_buckets / 2.0))
- # bbox分类分支的label
labels = torch.stack(
[l_label[:, 0], r_label[:, 0], t_label[:, 0], d_label[:, 0]], dim=-1)
batch_size = labels.size(0)
- # 变成one-hot格式训练
bucket_labels = F.one_hot(labels.view(-1), side_num).view(batch_size,
-1).float()
- # l_offsets.abs()表示gt bbox落在对应桶和作用两个邻居桶位置权重设为为1
bucket_cls_l_weights = (l_offsets.abs() < 1).float()
bucket_cls_r_weights = (r_offsets.abs() < 1).float()
bucket_cls_t_weights = (t_offsets.abs() < 1).float()
@@ -274,12 +254,9 @@ def bbox2bucket(proposals,
bucket_cls_l_weights, bucket_cls_r_weights, bucket_cls_t_weights,
bucket_cls_d_weights
],
- dim=-1)
- # ignore second nearest buckets for cls if necessay
+ dim=-1)
+ # ignore second nearest buckets for cls if necessary
if cls_ignore_neighbor:
- # bucket_labels == 0 背景
- # bucket_cls_weights == 1 表示gt桶和邻居桶
- # 实现忽略邻居位置的效果
bucket_cls_weights = (~((bucket_cls_weights == 1) &
(bucket_labels == 0))).float()
else:
@@ -287,12 +264,14 @@ def bbox2bucket(proposals,
return offsets, offsets_weights, bucket_labels, bucket_cls_weights
+@mmcv.jit(coderize=True)
def bucket2bbox(proposals,
cls_preds,
offset_preds,
num_buckets,
scale_factor=1.0,
- max_shape=None):
+ max_shape=None,
+ clip_border=True):
"""Apply bucketing estimation (cls preds) and fine regression (offset
preds) to generate det bboxes.
@@ -303,6 +282,8 @@ def bucket2bbox(proposals,
num_buckets (int): Number of buckets.
scale_factor (float): Scale factor to rescale proposals.
max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W)
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
Returns:
tuple[Tensor]: (bboxes, loc_confidence).
@@ -316,11 +297,9 @@ def bucket2bbox(proposals,
cls_preds = cls_preds.view(-1, side_num)
offset_preds = offset_preds.view(-1, side_num)
- # bbox的桶分类分支
scores = F.softmax(cls_preds, dim=1)
score_topk, score_label = scores.topk(2, dim=1, largest=True, sorted=True)
- # 也需要扩大,保证训练和测试一致
rescaled_proposals = bbox_rescale(proposals, scale_factor)
pw = rescaled_proposals[..., 2] - rescaled_proposals[..., 0]
@@ -333,11 +312,10 @@ def bucket2bbox(proposals,
bucket_w = pw / num_buckets
bucket_h = ph / num_buckets
- score_inds_l = score_label[0::4, 0] # top1
+ score_inds_l = score_label[0::4, 0]
score_inds_r = score_label[1::4, 0]
score_inds_t = score_label[2::4, 0]
score_inds_d = score_label[3::4, 0]
- # 落在哪个桶里面,已经还原成了原图坐标值了
l_buckets = px1 + (0.5 + score_inds_l.float()) * bucket_w
r_buckets = px2 - (0.5 + score_inds_r.float()) * bucket_w
t_buckets = py1 + (0.5 + score_inds_t.float()) * bucket_h
@@ -345,19 +323,17 @@ def bucket2bbox(proposals,
offsets = offset_preds.view(-1, 4, side_num)
inds = torch.arange(proposals.size(0)).to(proposals).long()
- # 桶内偏移预测
l_offsets = offsets[:, 0, :][inds, score_inds_l]
r_offsets = offsets[:, 1, :][inds, score_inds_r]
t_offsets = offsets[:, 2, :][inds, score_inds_t]
d_offsets = offsets[:, 3, :][inds, score_inds_d]
- # 进行refine,得到最终坐标
x1 = l_buckets - l_offsets * bucket_w
x2 = r_buckets - r_offsets * bucket_w
y1 = t_buckets - t_offsets * bucket_h
y2 = d_buckets - d_offsets * bucket_h
- if max_shape is not None:
+ if clip_border and max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1] - 1)
y1 = y1.clamp(min=0, max=max_shape[0] - 1)
x2 = x2.clamp(min=0, max=max_shape[1] - 1)
@@ -365,7 +341,7 @@ def bucket2bbox(proposals,
bboxes = torch.cat([x1[:, None], y1[:, None], x2[:, None], y2[:, None]],
dim=-1)
- # bbox预测置信度分值loc_confidence是对top2的预测分值进行加权
+ # bucketing guided rescoring
loc_confidence = score_topk[:, 0]
top2_neighbor_inds = (score_label[:, 0] - score_label[:, 1]).abs() == 1
loc_confidence += score_topk[:, 1] * top2_neighbor_inds.float()
diff --git a/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py b/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py
new file mode 100644
index 00000000..98d30906
--- /dev/null
+++ b/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py
@@ -0,0 +1,271 @@
+import mmcv
+import numpy as np
+import torch
+
+from ..builder import BBOX_CODERS
+from .base_bbox_coder import BaseBBoxCoder
+
+
+@BBOX_CODERS.register_module()
+class DeltaXYWHBBoxCoder(BaseBBoxCoder):
+ """Delta XYWH BBox coder.
+
+ Following the practice in `R-CNN `_,
+ this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and
+ decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2).
+
+ Args:
+ target_means (Sequence[float]): Denormalizing means of target for
+ delta coordinates
+ target_stds (Sequence[float]): Denormalizing standard deviation of
+ target for delta coordinates
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
+ add_ctr_clamp (bool): Whether to add center clamp, when added, the
+ predicted box is clamped is its center is too far away from
+ the original anchor's center. Only used by YOLOF. Default False.
+ ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF.
+ Default 32.
+ """
+
+ def __init__(self,
+ target_means=(0., 0., 0., 0.),
+ target_stds=(1., 1., 1., 1.),
+ clip_border=True,
+ add_ctr_clamp=False,
+ ctr_clamp=32):
+ super(BaseBBoxCoder, self).__init__()
+ self.means = target_means
+ self.stds = target_stds
+ self.clip_border = clip_border
+ self.add_ctr_clamp = add_ctr_clamp
+ self.ctr_clamp = ctr_clamp
+
+ def encode(self, bboxes, gt_bboxes):
+ """Get box regression transformation deltas that can be used to
+ transform the ``bboxes`` into the ``gt_bboxes``.
+
+ Args:
+ bboxes (torch.Tensor): Source boxes, e.g., object proposals.
+ gt_bboxes (torch.Tensor): Target of the transformation, e.g.,
+ ground-truth boxes.
+
+ Returns:
+ torch.Tensor: Box transformation deltas
+ """
+
+ assert bboxes.size(0) == gt_bboxes.size(0)
+ assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
+ encoded_bboxes = bbox2delta(bboxes, gt_bboxes, self.means, self.stds)
+ return encoded_bboxes
+
+ def decode(self,
+ bboxes,
+ pred_bboxes,
+ max_shape=None,
+ wh_ratio_clip=16 / 1000):
+ """Apply transformation `pred_bboxes` to `boxes`.
+
+ Args:
+ bboxes (torch.Tensor): Basic boxes. Shape (B, N, 4) or (N, 4)
+ pred_bboxes (Tensor): Encoded offsets with respect to each roi.
+ Has shape (B, N, num_classes * 4) or (B, N, 4) or
+ (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H
+ when rois is a grid of anchors.Offset encoding follows [1]_.
+ max_shape (Sequence[int] or torch.Tensor or Sequence[
+ Sequence[int]],optional): Maximum bounds for boxes, specifies
+ (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then
+ the max_shape should be a Sequence[Sequence[int]]
+ and the length of max_shape should also be B.
+ wh_ratio_clip (float, optional): The allowed ratio between
+ width and height.
+
+ Returns:
+ torch.Tensor: Decoded boxes.
+ """
+
+ assert pred_bboxes.size(0) == bboxes.size(0)
+ if pred_bboxes.ndim == 3:
+ assert pred_bboxes.size(1) == bboxes.size(1)
+ decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means, self.stds,
+ max_shape, wh_ratio_clip, self.clip_border,
+ self.add_ctr_clamp, self.ctr_clamp)
+
+ return decoded_bboxes
+
+
+@mmcv.jit(coderize=True)
+def bbox2delta(proposals, gt, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.)):
+ """Compute deltas of proposals w.r.t. gt.
+
+ We usually compute the deltas of x, y, w, h of proposals w.r.t ground
+ truth bboxes to get regression target.
+ This is the inverse function of :func:`delta2bbox`.
+
+ Args:
+ proposals (Tensor): Boxes to be transformed, shape (N, ..., 4)
+ gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4)
+ means (Sequence[float]): Denormalizing means for delta coordinates
+ stds (Sequence[float]): Denormalizing standard deviation for delta
+ coordinates
+
+ Returns:
+ Tensor: deltas with shape (N, 4), where columns represent dx, dy,
+ dw, dh.
+ """
+ assert proposals.size() == gt.size()
+
+ proposals = proposals.float()
+ gt = gt.float()
+ px = (proposals[..., 0] + proposals[..., 2]) * 0.5
+ py = (proposals[..., 1] + proposals[..., 3]) * 0.5
+ pw = proposals[..., 2] - proposals[..., 0]
+ ph = proposals[..., 3] - proposals[..., 1]
+
+ gx = (gt[..., 0] + gt[..., 2]) * 0.5
+ gy = (gt[..., 1] + gt[..., 3]) * 0.5
+ gw = gt[..., 2] - gt[..., 0]
+ gh = gt[..., 3] - gt[..., 1]
+
+ dx = (gx - px) / pw
+ dy = (gy - py) / ph
+ dw = torch.log(gw / pw)
+ dh = torch.log(gh / ph)
+ deltas = torch.stack([dx, dy, dw, dh], dim=-1)
+
+ means = deltas.new_tensor(means).unsqueeze(0)
+ stds = deltas.new_tensor(stds).unsqueeze(0)
+ deltas = deltas.sub_(means).div_(stds)
+
+ return deltas
+
+
+@mmcv.jit(coderize=True)
+def delta2bbox(rois,
+ deltas,
+ means=(0., 0., 0., 0.),
+ stds=(1., 1., 1., 1.),
+ max_shape=None,
+ wh_ratio_clip=16 / 1000,
+ clip_border=True,
+ add_ctr_clamp=False,
+ ctr_clamp=32):
+ """Apply deltas to shift/scale base boxes.
+
+ Typically the rois are anchor or proposed bounding boxes and the deltas are
+ network outputs used to shift/scale those boxes.
+ This is the inverse function of :func:`bbox2delta`.
+
+ Args:
+ rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4)
+ deltas (Tensor): Encoded offsets with respect to each roi.
+ Has shape (B, N, num_classes * 4) or (B, N, 4) or
+ (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H
+ when rois is a grid of anchors.Offset encoding follows [1]_.
+ means (Sequence[float]): Denormalizing means for delta coordinates
+ stds (Sequence[float]): Denormalizing standard deviation for delta
+ coordinates
+ max_shape (Sequence[int] or torch.Tensor or Sequence[
+ Sequence[int]],optional): Maximum bounds for boxes, specifies
+ (H, W, C) or (H, W). If rois shape is (B, N, 4), then
+ the max_shape should be a Sequence[Sequence[int]]
+ and the length of max_shape should also be B.
+ wh_ratio_clip (float): Maximum aspect ratio for boxes.
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
+ add_ctr_clamp (bool): Whether to add center clamp, when added, the
+ predicted box is clamped is its center is too far away from
+ the original anchor's center. Only used by YOLOF. Default False.
+ ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF.
+ Default 32.
+
+ Returns:
+ Tensor: Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or
+ (N, num_classes * 4) or (N, 4), where 4 represent
+ tl_x, tl_y, br_x, br_y.
+
+ References:
+ .. [1] https://arxiv.org/abs/1311.2524
+
+ Example:
+ >>> rois = torch.Tensor([[ 0., 0., 1., 1.],
+ >>> [ 0., 0., 1., 1.],
+ >>> [ 0., 0., 1., 1.],
+ >>> [ 5., 5., 5., 5.]])
+ >>> deltas = torch.Tensor([[ 0., 0., 0., 0.],
+ >>> [ 1., 1., 1., 1.],
+ >>> [ 0., 0., 2., -1.],
+ >>> [ 0.7, -1.9, -0.5, 0.3]])
+ >>> delta2bbox(rois, deltas, max_shape=(32, 32, 3))
+ tensor([[0.0000, 0.0000, 1.0000, 1.0000],
+ [0.1409, 0.1409, 2.8591, 2.8591],
+ [0.0000, 0.3161, 4.1945, 0.6839],
+ [5.0000, 5.0000, 5.0000, 5.0000]])
+ """
+ means = deltas.new_tensor(means).view(1,
+ -1).repeat(1,
+ deltas.size(-1) // 4)
+ stds = deltas.new_tensor(stds).view(1, -1).repeat(1, deltas.size(-1) // 4)
+ denorm_deltas = deltas * stds + means
+ dx = denorm_deltas[..., 0::4]
+ dy = denorm_deltas[..., 1::4]
+ dw = denorm_deltas[..., 2::4]
+ dh = denorm_deltas[..., 3::4]
+
+ x1, y1 = rois[..., 0], rois[..., 1]
+ x2, y2 = rois[..., 2], rois[..., 3]
+ # Compute center of each roi
+ px = ((x1 + x2) * 0.5).unsqueeze(-1).expand_as(dx)
+ py = ((y1 + y2) * 0.5).unsqueeze(-1).expand_as(dy)
+ # Compute width/height of each roi
+ pw = (x2 - x1).unsqueeze(-1).expand_as(dw)
+ ph = (y2 - y1).unsqueeze(-1).expand_as(dh)
+
+ dx_width = pw * dx
+ dy_height = ph * dy
+
+ max_ratio = np.abs(np.log(wh_ratio_clip))
+ if add_ctr_clamp:
+ dx_width = torch.clamp(dx_width, max=ctr_clamp, min=-ctr_clamp)
+ dy_height = torch.clamp(dy_height, max=ctr_clamp, min=-ctr_clamp)
+ dw = torch.clamp(dw, max=max_ratio)
+ dh = torch.clamp(dh, max=max_ratio)
+ else:
+ dw = dw.clamp(min=-max_ratio, max=max_ratio)
+ dh = dh.clamp(min=-max_ratio, max=max_ratio)
+ # Use exp(network energy) to enlarge/shrink each roi
+ gw = pw * dw.exp()
+ gh = ph * dh.exp()
+ # Use network energy to shift the center of each roi
+ gx = px + dx_width
+ gy = py + dy_height
+ # Convert center-xy/width/height to top-left, bottom-right
+ x1 = gx - gw * 0.5
+ y1 = gy - gh * 0.5
+ x2 = gx + gw * 0.5
+ y2 = gy + gh * 0.5
+
+ bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size())
+
+ if clip_border and max_shape is not None:
+ # clip bboxes with dynamic `min` and `max` for onnx
+ if torch.onnx.is_in_onnx_export():
+ from mmdet.core.export import dynamic_clip_for_onnx
+ x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
+ bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size())
+ return bboxes
+ if not isinstance(max_shape, torch.Tensor):
+ max_shape = x1.new_tensor(max_shape)
+ max_shape = max_shape[..., :2].type_as(x1)
+ if max_shape.ndim == 2:
+ assert bboxes.ndim == 3
+ assert max_shape.size(0) == bboxes.size(0)
+
+ min_xy = x1.new_tensor(0)
+ max_xy = torch.cat(
+ [max_shape] * (deltas.size(-1) // 2),
+ dim=-1).flip(-1).unsqueeze(-2)
+ bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
+ bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
+
+ return bboxes
diff --git a/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py b/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py
new file mode 100644
index 00000000..190309fd
--- /dev/null
+++ b/mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py
@@ -0,0 +1,215 @@
+import mmcv
+import numpy as np
+import torch
+
+from ..builder import BBOX_CODERS
+from .base_bbox_coder import BaseBBoxCoder
+
+
+@BBOX_CODERS.register_module()
+class LegacyDeltaXYWHBBoxCoder(BaseBBoxCoder):
+ """Legacy Delta XYWH BBox coder used in MMDet V1.x.
+
+ Following the practice in R-CNN [1]_, this coder encodes bbox (x1, y1, x2,
+ y2) into delta (dx, dy, dw, dh) and decodes delta (dx, dy, dw, dh)
+ back to original bbox (x1, y1, x2, y2).
+
+ Note:
+ The main difference between :class`LegacyDeltaXYWHBBoxCoder` and
+ :class:`DeltaXYWHBBoxCoder` is whether ``+ 1`` is used during width and
+ height calculation. We suggest to only use this coder when testing with
+ MMDet V1.x models.
+
+ References:
+ .. [1] https://arxiv.org/abs/1311.2524
+
+ Args:
+ target_means (Sequence[float]): denormalizing means of target for
+ delta coordinates
+ target_stds (Sequence[float]): denormalizing standard deviation of
+ target for delta coordinates
+ """
+
+ def __init__(self,
+ target_means=(0., 0., 0., 0.),
+ target_stds=(1., 1., 1., 1.)):
+ super(BaseBBoxCoder, self).__init__()
+ self.means = target_means
+ self.stds = target_stds
+
+ def encode(self, bboxes, gt_bboxes):
+ """Get box regression transformation deltas that can be used to
+ transform the ``bboxes`` into the ``gt_bboxes``.
+
+ Args:
+ bboxes (torch.Tensor): source boxes, e.g., object proposals.
+ gt_bboxes (torch.Tensor): target of the transformation, e.g.,
+ ground-truth boxes.
+
+ Returns:
+ torch.Tensor: Box transformation deltas
+ """
+ assert bboxes.size(0) == gt_bboxes.size(0)
+ assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
+ encoded_bboxes = legacy_bbox2delta(bboxes, gt_bboxes, self.means,
+ self.stds)
+ return encoded_bboxes
+
+ def decode(self,
+ bboxes,
+ pred_bboxes,
+ max_shape=None,
+ wh_ratio_clip=16 / 1000):
+ """Apply transformation `pred_bboxes` to `boxes`.
+
+ Args:
+ boxes (torch.Tensor): Basic boxes.
+ pred_bboxes (torch.Tensor): Encoded boxes with shape
+ max_shape (tuple[int], optional): Maximum shape of boxes.
+ Defaults to None.
+ wh_ratio_clip (float, optional): The allowed ratio between
+ width and height.
+
+ Returns:
+ torch.Tensor: Decoded boxes.
+ """
+ assert pred_bboxes.size(0) == bboxes.size(0)
+ decoded_bboxes = legacy_delta2bbox(bboxes, pred_bboxes, self.means,
+ self.stds, max_shape, wh_ratio_clip)
+
+ return decoded_bboxes
+
+
+@mmcv.jit(coderize=True)
+def legacy_bbox2delta(proposals,
+ gt,
+ means=(0., 0., 0., 0.),
+ stds=(1., 1., 1., 1.)):
+ """Compute deltas of proposals w.r.t. gt in the MMDet V1.x manner.
+
+ We usually compute the deltas of x, y, w, h of proposals w.r.t ground
+ truth bboxes to get regression target.
+ This is the inverse function of `delta2bbox()`
+
+ Args:
+ proposals (Tensor): Boxes to be transformed, shape (N, ..., 4)
+ gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4)
+ means (Sequence[float]): Denormalizing means for delta coordinates
+ stds (Sequence[float]): Denormalizing standard deviation for delta
+ coordinates
+
+ Returns:
+ Tensor: deltas with shape (N, 4), where columns represent dx, dy,
+ dw, dh.
+ """
+ assert proposals.size() == gt.size()
+
+ proposals = proposals.float()
+ gt = gt.float()
+ px = (proposals[..., 0] + proposals[..., 2]) * 0.5
+ py = (proposals[..., 1] + proposals[..., 3]) * 0.5
+ pw = proposals[..., 2] - proposals[..., 0] + 1.0
+ ph = proposals[..., 3] - proposals[..., 1] + 1.0
+
+ gx = (gt[..., 0] + gt[..., 2]) * 0.5
+ gy = (gt[..., 1] + gt[..., 3]) * 0.5
+ gw = gt[..., 2] - gt[..., 0] + 1.0
+ gh = gt[..., 3] - gt[..., 1] + 1.0
+
+ dx = (gx - px) / pw
+ dy = (gy - py) / ph
+ dw = torch.log(gw / pw)
+ dh = torch.log(gh / ph)
+ deltas = torch.stack([dx, dy, dw, dh], dim=-1)
+
+ means = deltas.new_tensor(means).unsqueeze(0)
+ stds = deltas.new_tensor(stds).unsqueeze(0)
+ deltas = deltas.sub_(means).div_(stds)
+
+ return deltas
+
+
+@mmcv.jit(coderize=True)
+def legacy_delta2bbox(rois,
+ deltas,
+ means=(0., 0., 0., 0.),
+ stds=(1., 1., 1., 1.),
+ max_shape=None,
+ wh_ratio_clip=16 / 1000):
+ """Apply deltas to shift/scale base boxes in the MMDet V1.x manner.
+
+ Typically the rois are anchor or proposed bounding boxes and the deltas are
+ network outputs used to shift/scale those boxes.
+ This is the inverse function of `bbox2delta()`
+
+ Args:
+ rois (Tensor): Boxes to be transformed. Has shape (N, 4)
+ deltas (Tensor): Encoded offsets with respect to each roi.
+ Has shape (N, 4 * num_classes). Note N = num_anchors * W * H when
+ rois is a grid of anchors. Offset encoding follows [1]_.
+ means (Sequence[float]): Denormalizing means for delta coordinates
+ stds (Sequence[float]): Denormalizing standard deviation for delta
+ coordinates
+ max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W)
+ wh_ratio_clip (float): Maximum aspect ratio for boxes.
+
+ Returns:
+ Tensor: Boxes with shape (N, 4), where columns represent
+ tl_x, tl_y, br_x, br_y.
+
+ References:
+ .. [1] https://arxiv.org/abs/1311.2524
+
+ Example:
+ >>> rois = torch.Tensor([[ 0., 0., 1., 1.],
+ >>> [ 0., 0., 1., 1.],
+ >>> [ 0., 0., 1., 1.],
+ >>> [ 5., 5., 5., 5.]])
+ >>> deltas = torch.Tensor([[ 0., 0., 0., 0.],
+ >>> [ 1., 1., 1., 1.],
+ >>> [ 0., 0., 2., -1.],
+ >>> [ 0.7, -1.9, -0.5, 0.3]])
+ >>> legacy_delta2bbox(rois, deltas, max_shape=(32, 32))
+ tensor([[0.0000, 0.0000, 1.5000, 1.5000],
+ [0.0000, 0.0000, 5.2183, 5.2183],
+ [0.0000, 0.1321, 7.8891, 0.8679],
+ [5.3967, 2.4251, 6.0033, 3.7749]])
+ """
+ means = deltas.new_tensor(means).repeat(1, deltas.size(1) // 4)
+ stds = deltas.new_tensor(stds).repeat(1, deltas.size(1) // 4)
+ denorm_deltas = deltas * stds + means
+ dx = denorm_deltas[:, 0::4]
+ dy = denorm_deltas[:, 1::4]
+ dw = denorm_deltas[:, 2::4]
+ dh = denorm_deltas[:, 3::4]
+ max_ratio = np.abs(np.log(wh_ratio_clip))
+ dw = dw.clamp(min=-max_ratio, max=max_ratio)
+ dh = dh.clamp(min=-max_ratio, max=max_ratio)
+ # Compute center of each roi
+ px = ((rois[:, 0] + rois[:, 2]) * 0.5).unsqueeze(1).expand_as(dx)
+ py = ((rois[:, 1] + rois[:, 3]) * 0.5).unsqueeze(1).expand_as(dy)
+ # Compute width/height of each roi
+ pw = (rois[:, 2] - rois[:, 0] + 1.0).unsqueeze(1).expand_as(dw)
+ ph = (rois[:, 3] - rois[:, 1] + 1.0).unsqueeze(1).expand_as(dh)
+ # Use exp(network energy) to enlarge/shrink each roi
+ gw = pw * dw.exp()
+ gh = ph * dh.exp()
+ # Use network energy to shift the center of each roi
+ gx = px + pw * dx
+ gy = py + ph * dy
+ # Convert center-xy/width/height to top-left, bottom-right
+
+ # The true legacy box coder should +- 0.5 here.
+ # However, current implementation improves the performance when testing
+ # the models trained in MMDetection 1.X (~0.5 bbox AP, 0.2 mask AP)
+ x1 = gx - gw * 0.5
+ y1 = gy - gh * 0.5
+ x2 = gx + gw * 0.5
+ y2 = gy + gh * 0.5
+ if max_shape is not None:
+ x1 = x1.clamp(min=0, max=max_shape[1] - 1)
+ y1 = y1.clamp(min=0, max=max_shape[0] - 1)
+ x2 = x2.clamp(min=0, max=max_shape[1] - 1)
+ y2 = y2.clamp(min=0, max=max_shape[0] - 1)
+ bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view_as(deltas)
+ return bboxes
diff --git a/mmdet/core/bbox/coder/pseudo_bbox_coder.py b/mmdet/core/bbox/coder/pseudo_bbox_coder.py
new file mode 100644
index 00000000..1c8346f4
--- /dev/null
+++ b/mmdet/core/bbox/coder/pseudo_bbox_coder.py
@@ -0,0 +1,18 @@
+from ..builder import BBOX_CODERS
+from .base_bbox_coder import BaseBBoxCoder
+
+
+@BBOX_CODERS.register_module()
+class PseudoBBoxCoder(BaseBBoxCoder):
+ """Pseudo bounding box coder."""
+
+ def __init__(self, **kwargs):
+ super(BaseBBoxCoder, self).__init__(**kwargs)
+
+ def encode(self, bboxes, gt_bboxes):
+ """torch.Tensor: return the given ``bboxes``"""
+ return gt_bboxes
+
+ def decode(self, bboxes, pred_bboxes):
+ """torch.Tensor: return the given ``pred_bboxes``"""
+ return pred_bboxes
diff --git a/mmdet/core/bbox/coder/tblr_bbox_coder.py b/mmdet/core/bbox/coder/tblr_bbox_coder.py
new file mode 100644
index 00000000..c45c6167
--- /dev/null
+++ b/mmdet/core/bbox/coder/tblr_bbox_coder.py
@@ -0,0 +1,205 @@
+import mmcv
+import torch
+
+from ..builder import BBOX_CODERS
+from .base_bbox_coder import BaseBBoxCoder
+
+
+@BBOX_CODERS.register_module()
+class TBLRBBoxCoder(BaseBBoxCoder):
+ """TBLR BBox coder.
+
+ Following the practice in `FSAF `_,
+ this coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left,
+ right) and decode it back to the original.
+
+ Args:
+ normalizer (list | float): Normalization factor to be
+ divided with when coding the coordinates. If it is a list, it should
+ have length of 4 indicating normalization factor in tblr dims.
+ Otherwise it is a unified float factor for all dims. Default: 4.0
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
+ """
+
+ def __init__(self, normalizer=4.0, clip_border=True):
+ super(BaseBBoxCoder, self).__init__()
+ self.normalizer = normalizer
+ self.clip_border = clip_border
+
+ def encode(self, bboxes, gt_bboxes):
+ """Get box regression transformation deltas that can be used to
+ transform the ``bboxes`` into the ``gt_bboxes`` in the (top, left,
+ bottom, right) order.
+
+ Args:
+ bboxes (torch.Tensor): source boxes, e.g., object proposals.
+ gt_bboxes (torch.Tensor): target of the transformation, e.g.,
+ ground truth boxes.
+
+ Returns:
+ torch.Tensor: Box transformation deltas
+ """
+ assert bboxes.size(0) == gt_bboxes.size(0)
+ assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
+ encoded_bboxes = bboxes2tblr(
+ bboxes, gt_bboxes, normalizer=self.normalizer)
+ return encoded_bboxes
+
+ def decode(self, bboxes, pred_bboxes, max_shape=None):
+ """Apply transformation `pred_bboxes` to `boxes`.
+
+ Args:
+ bboxes (torch.Tensor): Basic boxes.Shape (B, N, 4) or (N, 4)
+ pred_bboxes (torch.Tensor): Encoded boxes with shape
+ (B, N, 4) or (N, 4)
+ max_shape (Sequence[int] or torch.Tensor or Sequence[
+ Sequence[int]],optional): Maximum bounds for boxes, specifies
+ (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then
+ the max_shape should be a Sequence[Sequence[int]]
+ and the length of max_shape should also be B.
+
+ Returns:
+ torch.Tensor: Decoded boxes.
+ """
+ decoded_bboxes = tblr2bboxes(
+ bboxes,
+ pred_bboxes,
+ normalizer=self.normalizer,
+ max_shape=max_shape,
+ clip_border=self.clip_border)
+
+ return decoded_bboxes
+
+
+@mmcv.jit(coderize=True)
+def bboxes2tblr(priors, gts, normalizer=4.0, normalize_by_wh=True):
+ """Encode ground truth boxes to tblr coordinate.
+
+ It first convert the gt coordinate to tblr format,
+ (top, bottom, left, right), relative to prior box centers.
+ The tblr coordinate may be normalized by the side length of prior bboxes
+ if `normalize_by_wh` is specified as True, and it is then normalized by
+ the `normalizer` factor.
+
+ Args:
+ priors (Tensor): Prior boxes in point form
+ Shape: (num_proposals,4).
+ gts (Tensor): Coords of ground truth for each prior in point-form
+ Shape: (num_proposals, 4).
+ normalizer (Sequence[float] | float): normalization parameter of
+ encoded boxes. If it is a list, it has to have length = 4.
+ Default: 4.0
+ normalize_by_wh (bool): Whether to normalize tblr coordinate by the
+ side length (wh) of prior bboxes.
+
+ Return:
+ encoded boxes (Tensor), Shape: (num_proposals, 4)
+ """
+
+ # dist b/t match center and prior's center
+ if not isinstance(normalizer, float):
+ normalizer = torch.tensor(normalizer, device=priors.device)
+ assert len(normalizer) == 4, 'Normalizer must have length = 4'
+ assert priors.size(0) == gts.size(0)
+ prior_centers = (priors[:, 0:2] + priors[:, 2:4]) / 2
+ xmin, ymin, xmax, ymax = gts.split(1, dim=1)
+ top = prior_centers[:, 1].unsqueeze(1) - ymin
+ bottom = ymax - prior_centers[:, 1].unsqueeze(1)
+ left = prior_centers[:, 0].unsqueeze(1) - xmin
+ right = xmax - prior_centers[:, 0].unsqueeze(1)
+ loc = torch.cat((top, bottom, left, right), dim=1)
+ if normalize_by_wh:
+ # Normalize tblr by anchor width and height
+ wh = priors[:, 2:4] - priors[:, 0:2]
+ w, h = torch.split(wh, 1, dim=1)
+ loc[:, :2] /= h # tb is normalized by h
+ loc[:, 2:] /= w # lr is normalized by w
+ # Normalize tblr by the given normalization factor
+ return loc / normalizer
+
+
+@mmcv.jit(coderize=True)
+def tblr2bboxes(priors,
+ tblr,
+ normalizer=4.0,
+ normalize_by_wh=True,
+ max_shape=None,
+ clip_border=True):
+ """Decode tblr outputs to prediction boxes.
+
+ The process includes 3 steps: 1) De-normalize tblr coordinates by
+ multiplying it with `normalizer`; 2) De-normalize tblr coordinates by the
+ prior bbox width and height if `normalize_by_wh` is `True`; 3) Convert
+ tblr (top, bottom, left, right) pair relative to the center of priors back
+ to (xmin, ymin, xmax, ymax) coordinate.
+
+ Args:
+ priors (Tensor): Prior boxes in point form (x0, y0, x1, y1)
+ Shape: (N,4) or (B, N, 4).
+ tblr (Tensor): Coords of network output in tblr form
+ Shape: (N, 4) or (B, N, 4).
+ normalizer (Sequence[float] | float): Normalization parameter of
+ encoded boxes. By list, it represents the normalization factors at
+ tblr dims. By float, it is the unified normalization factor at all
+ dims. Default: 4.0
+ normalize_by_wh (bool): Whether the tblr coordinates have been
+ normalized by the side length (wh) of prior bboxes.
+ max_shape (Sequence[int] or torch.Tensor or Sequence[
+ Sequence[int]],optional): Maximum bounds for boxes, specifies
+ (H, W, C) or (H, W). If priors shape is (B, N, 4), then
+ the max_shape should be a Sequence[Sequence[int]]
+ and the length of max_shape should also be B.
+ clip_border (bool, optional): Whether clip the objects outside the
+ border of the image. Defaults to True.
+
+ Return:
+ encoded boxes (Tensor): Boxes with shape (N, 4) or (B, N, 4)
+ """
+ if not isinstance(normalizer, float):
+ normalizer = torch.tensor(normalizer, device=priors.device)
+ assert len(normalizer) == 4, 'Normalizer must have length = 4'
+ assert priors.size(0) == tblr.size(0)
+ if priors.ndim == 3:
+ assert priors.size(1) == tblr.size(1)
+
+ loc_decode = tblr * normalizer
+ prior_centers = (priors[..., 0:2] + priors[..., 2:4]) / 2
+ if normalize_by_wh:
+ wh = priors[..., 2:4] - priors[..., 0:2]
+ w, h = torch.split(wh, 1, dim=-1)
+ # Inplace operation with slice would failed for exporting to ONNX
+ th = h * loc_decode[..., :2] # tb
+ tw = w * loc_decode[..., 2:] # lr
+ loc_decode = torch.cat([th, tw], dim=-1)
+ # Cannot be exported using onnx when loc_decode.split(1, dim=-1)
+ top, bottom, left, right = loc_decode.split((1, 1, 1, 1), dim=-1)
+ xmin = prior_centers[..., 0].unsqueeze(-1) - left
+ xmax = prior_centers[..., 0].unsqueeze(-1) + right
+ ymin = prior_centers[..., 1].unsqueeze(-1) - top
+ ymax = prior_centers[..., 1].unsqueeze(-1) + bottom
+
+ bboxes = torch.cat((xmin, ymin, xmax, ymax), dim=-1)
+
+ if clip_border and max_shape is not None:
+ # clip bboxes with dynamic `min` and `max` for onnx
+ if torch.onnx.is_in_onnx_export():
+ from mmdet.core.export import dynamic_clip_for_onnx
+ xmin, ymin, xmax, ymax = dynamic_clip_for_onnx(
+ xmin, ymin, xmax, ymax, max_shape)
+ bboxes = torch.cat([xmin, ymin, xmax, ymax], dim=-1)
+ return bboxes
+ if not isinstance(max_shape, torch.Tensor):
+ max_shape = priors.new_tensor(max_shape)
+ max_shape = max_shape[..., :2].type_as(priors)
+ if max_shape.ndim == 2:
+ assert bboxes.ndim == 3
+ assert max_shape.size(0) == bboxes.size(0)
+
+ min_xy = priors.new_tensor(0)
+ max_xy = torch.cat([max_shape, max_shape],
+ dim=-1).flip(-1).unsqueeze(-2)
+ bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
+ bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
+
+ return bboxes
diff --git a/mmdet/det_core/bbox/coder/yolo_bbox_coder.py b/mmdet/core/bbox/coder/yolo_bbox_coder.py
similarity index 82%
rename from mmdet/det_core/bbox/coder/yolo_bbox_coder.py
rename to mmdet/core/bbox/coder/yolo_bbox_coder.py
index bdc85628..d6d0e82a 100644
--- a/mmdet/det_core/bbox/coder/yolo_bbox_coder.py
+++ b/mmdet/core/bbox/coder/yolo_bbox_coder.py
@@ -1,3 +1,4 @@
+import mmcv
import torch
from ..builder import BBOX_CODERS
@@ -17,11 +18,11 @@ class YOLOBBoxCoder(BaseBBoxCoder):
eps (float): Min value of cx, cy when encoding.
"""
- def __init__(self, eps=1e-6, scale_x_y=1.0):
+ def __init__(self, eps=1e-6):
super(BaseBBoxCoder, self).__init__()
self.eps = eps
- self.scale_x_y = scale_x_y
+ @mmcv.jit(coderize=True)
def encode(self, bboxes, gt_bboxes, stride):
"""Get box regression transformation deltas that can be used to
transform the ``bboxes`` into the ``gt_bboxes``.
@@ -38,7 +39,6 @@ def encode(self, bboxes, gt_bboxes, stride):
assert bboxes.size(0) == gt_bboxes.size(0)
assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
- # 所有值都是原图坐标值,故需要/ stride,变成特征图尺度
x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5
y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5
w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0]
@@ -47,11 +47,8 @@ def encode(self, bboxes, gt_bboxes, stride):
y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5
w = bboxes[..., 2] - bboxes[..., 0]
h = bboxes[..., 3] - bboxes[..., 1]
- # w h编码是 gt bbox的宽高/anchor宽高,加上log,
- # 保证大小bbox的宽高预测值不会差距很大(log可以拉近差距),保证训练过程更加稳定而已
w_target = torch.log((w_gt / w).clamp(min=self.eps))
h_target = torch.log((h_gt / h).clamp(min=self.eps))
- # xy编码就是gt中心基于左上角网格点的偏移
x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp(
self.eps, 1 - self.eps)
y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp(
@@ -60,6 +57,7 @@ def encode(self, bboxes, gt_bboxes, stride):
[x_center_target, y_center_target, w_target, h_target], dim=-1)
return encoded_bboxes
+ @mmcv.jit(coderize=True)
def decode(self, bboxes, pred_bboxes, stride):
"""Apply transformation `pred_bboxes` to `boxes`.
@@ -78,8 +76,8 @@ def decode(self, bboxes, pred_bboxes, stride):
w = bboxes[..., 2] - bboxes[..., 0]
h = bboxes[..., 3] - bboxes[..., 1]
# Get outputs x, y
- x_center_pred = (pred_bboxes[..., 0] * self.scale_x_y - 0.5 * (self.scale_x_y - 1) - 0.5) * stride + x_center
- y_center_pred = (pred_bboxes[..., 1] * self.scale_x_y - 0.5 * (self.scale_x_y - 1) - 0.5) * stride + y_center
+ x_center_pred = (pred_bboxes[..., 0] - 0.5) * stride + x_center
+ y_center_pred = (pred_bboxes[..., 1] - 0.5) * stride + y_center
w_pred = torch.exp(pred_bboxes[..., 2]) * w
h_pred = torch.exp(pred_bboxes[..., 3]) * h
diff --git a/mmdet/det_core/bbox/coder/yolov5_bbox_coder.py b/mmdet/core/bbox/coder/yolov5_bbox_coder.py
similarity index 97%
rename from mmdet/det_core/bbox/coder/yolov5_bbox_coder.py
rename to mmdet/core/bbox/coder/yolov5_bbox_coder.py
index 4caedc44..1b85f6ae 100644
--- a/mmdet/det_core/bbox/coder/yolov5_bbox_coder.py
+++ b/mmdet/core/bbox/coder/yolov5_bbox_coder.py
@@ -91,8 +91,8 @@ def decode(self, bboxes, pred_bboxes, stride):
# y_center_pred = (pred_bboxes[..., 1] * 2. - 0.5 + grid[:, 1]) * stride # xy
# wh也需要sigmoid,然后乘以4来还原
- w_pred = (pred_bboxes[..., 2].sigmoid() * 2) ** 2 * w
- h_pred = (pred_bboxes[..., 3].sigmoid() * 2) ** 2 * h
+ w_pred = (pred_bboxes[..., 2] * 2) ** 2 * w
+ h_pred = (pred_bboxes[..., 3] * 2) ** 2 * h
decoded_bboxes = torch.stack(
(x_center_pred - w_pred / 2, y_center_pred - h_pred / 2,
diff --git a/mmdet/core/bbox/demodata.py b/mmdet/core/bbox/demodata.py
new file mode 100644
index 00000000..feecb693
--- /dev/null
+++ b/mmdet/core/bbox/demodata.py
@@ -0,0 +1,41 @@
+import numpy as np
+import torch
+
+from mmdet.utils.util_random import ensure_rng
+
+
+def random_boxes(num=1, scale=1, rng=None):
+ """Simple version of ``kwimage.Boxes.random``
+
+ Returns:
+ Tensor: shape (n, 4) in x1, y1, x2, y2 format.
+
+ References:
+ https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
+
+ Example:
+ >>> num = 3
+ >>> scale = 512
+ >>> rng = 0
+ >>> boxes = random_boxes(num, scale, rng)
+ >>> print(boxes)
+ tensor([[280.9925, 278.9802, 308.6148, 366.1769],
+ [216.9113, 330.6978, 224.0446, 456.5878],
+ [405.3632, 196.3221, 493.3953, 270.7942]])
+ """
+ rng = ensure_rng(rng)
+
+ tlbr = rng.rand(num, 4).astype(np.float32)
+
+ tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
+ tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
+ br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
+ br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
+
+ tlbr[:, 0] = tl_x * scale
+ tlbr[:, 1] = tl_y * scale
+ tlbr[:, 2] = br_x * scale
+ tlbr[:, 3] = br_y * scale
+
+ boxes = torch.from_numpy(tlbr)
+ return boxes
diff --git a/mmdet/det_core/bbox/iou_calculators/__init__.py b/mmdet/core/bbox/iou_calculators/__init__.py
similarity index 100%
rename from mmdet/det_core/bbox/iou_calculators/__init__.py
rename to mmdet/core/bbox/iou_calculators/__init__.py
diff --git a/mmdet/core/bbox/iou_calculators/builder.py b/mmdet/core/bbox/iou_calculators/builder.py
new file mode 100644
index 00000000..09094d7e
--- /dev/null
+++ b/mmdet/core/bbox/iou_calculators/builder.py
@@ -0,0 +1,8 @@
+from mmcv.utils import Registry, build_from_cfg
+
+IOU_CALCULATORS = Registry('IoU calculator')
+
+
+def build_iou_calculator(cfg, default_args=None):
+ """Builder of IoU calculator."""
+ return build_from_cfg(cfg, IOU_CALCULATORS, default_args)
diff --git a/mmdet/core/bbox/iou_calculators/iou2d_calculator.py b/mmdet/core/bbox/iou_calculators/iou2d_calculator.py
new file mode 100644
index 00000000..25f2b467
--- /dev/null
+++ b/mmdet/core/bbox/iou_calculators/iou2d_calculator.py
@@ -0,0 +1,260 @@
+import torch
+
+from .builder import IOU_CALCULATORS
+
+
+def cast_tensor_type(x, scale=1., dtype=None):
+ if dtype == 'fp16':
+ # scale is for preventing overflows
+ x = (x / scale).half()
+ return x
+
+
+def fp16_clamp(x, min=None, max=None):
+ if not x.is_cuda and x.dtype == torch.float16:
+ # clamp for cpu float16, tensor fp16 has no clamp implementation
+ return x.float().clamp(min, max).half()
+
+ return x.clamp(min, max)
+
+
+@IOU_CALCULATORS.register_module()
+class BboxOverlaps2D:
+ """2D Overlaps (e.g. IoUs, GIoUs) Calculator."""
+
+ def __init__(self, scale=1., dtype=None):
+ self.scale = scale
+ self.dtype = dtype
+
+ def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False):
+ """Calculate IoU between 2D bboxes.
+
+ Args:
+ bboxes1 (Tensor): bboxes have shape (m, 4) in
+ format, or shape (m, 5) in format.
+ bboxes2 (Tensor): bboxes have shape (m, 4) in
+ format, shape (m, 5) in format, or be
+ empty. If ``is_aligned `` is ``True``, then m and n must be
+ equal.
+ mode (str): "iou" (intersection over union), "iof" (intersection
+ over foreground), or "giou" (generalized intersection over
+ union).
+ is_aligned (bool, optional): If True, then m and n must be equal.
+ Default False.
+
+ Returns:
+ Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
+ """
+ assert bboxes1.size(-1) in [0, 4, 5]
+ assert bboxes2.size(-1) in [0, 4, 5]
+ if bboxes2.size(-1) == 5:
+ bboxes2 = bboxes2[..., :4]
+ if bboxes1.size(-1) == 5:
+ bboxes1 = bboxes1[..., :4]
+
+ if self.dtype == 'fp16':
+ # change tensor type to save cpu and cuda memory and keep speed
+ bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype)
+ bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype)
+ overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
+ if not overlaps.is_cuda and overlaps.dtype == torch.float16:
+ # resume cpu float32
+ overlaps = overlaps.float()
+ return overlaps
+
+ return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
+
+ def __repr__(self):
+ """str: a string describing the module"""
+ repr_str = self.__class__.__name__ + f'(' \
+ f'scale={self.scale}, dtype={self.dtype})'
+ return repr_str
+
+
+def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6):
+ """Calculate overlap between two set of bboxes.
+
+ FP16 Contributed by https://github.com/open-mmlab/mmdetection/pull/4889
+ Note:
+ Assume bboxes1 is M x 4, bboxes2 is N x 4, when mode is 'iou',
+ there are some new generated variable when calculating IOU
+ using bbox_overlaps function:
+
+ 1) is_aligned is False
+ area1: M x 1
+ area2: N x 1
+ lt: M x N x 2
+ rb: M x N x 2
+ wh: M x N x 2
+ overlap: M x N x 1
+ union: M x N x 1
+ ious: M x N x 1
+
+ Total memory:
+ S = (9 x N x M + N + M) * 4 Byte,
+
+ When using FP16, we can reduce:
+ R = (9 x N x M + N + M) * 4 / 2 Byte
+ R large than (N + M) * 4 * 2 is always true when N and M >= 1.
+ Obviously, N + M <= N * M < 3 * N * M, when N >=2 and M >=2,
+ N + 1 < 3 * N, when N or M is 1.
+
+ Given M = 40 (ground truth), N = 400000 (three anchor boxes
+ in per grid, FPN, R-CNNs),
+ R = 275 MB (one times)
+
+ A special case (dense detection), M = 512 (ground truth),
+ R = 3516 MB = 3.43 GB
+
+ When the batch size is B, reduce:
+ B x R
+
+ Therefore, CUDA memory runs out frequently.
+
+ Experiments on GeForce RTX 2080Ti (11019 MiB):
+
+ | dtype | M | N | Use | Real | Ideal |
+ |:----:|:----:|:----:|:----:|:----:|:----:|
+ | FP32 | 512 | 400000 | 8020 MiB | -- | -- |
+ | FP16 | 512 | 400000 | 4504 MiB | 3516 MiB | 3516 MiB |
+ | FP32 | 40 | 400000 | 1540 MiB | -- | -- |
+ | FP16 | 40 | 400000 | 1264 MiB | 276MiB | 275 MiB |
+
+ 2) is_aligned is True
+ area1: N x 1
+ area2: N x 1
+ lt: N x 2
+ rb: N x 2
+ wh: N x 2
+ overlap: N x 1
+ union: N x 1
+ ious: N x 1
+
+ Total memory:
+ S = 11 x N * 4 Byte
+
+ When using FP16, we can reduce:
+ R = 11 x N * 4 / 2 Byte
+
+ So do the 'giou' (large than 'iou').
+
+ Time-wise, FP16 is generally faster than FP32.
+
+ When gpu_assign_thr is not -1, it takes more time on cpu
+ but not reduce memory.
+ There, we can reduce half the memory and keep the speed.
+
+ If ``is_aligned `` is ``False``, then calculate the overlaps between each
+ bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
+ pair of bboxes1 and bboxes2.
+
+ Args:
+ bboxes1 (Tensor): shape (B, m, 4) in format or empty.
+ bboxes2 (Tensor): shape (B, n, 4) in format or empty.
+ B indicates the batch dim, in shape (B1, B2, ..., Bn).
+ If ``is_aligned `` is ``True``, then m and n must be equal.
+ mode (str): "iou" (intersection over union), "iof" (intersection over
+ foreground) or "giou" (generalized intersection over union).
+ Default "iou".
+ is_aligned (bool, optional): If True, then m and n must be equal.
+ Default False.
+ eps (float, optional): A value added to the denominator for numerical
+ stability. Default 1e-6.
+
+ Returns:
+ Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
+
+ Example:
+ >>> bboxes1 = torch.FloatTensor([
+ >>> [0, 0, 10, 10],
+ >>> [10, 10, 20, 20],
+ >>> [32, 32, 38, 42],
+ >>> ])
+ >>> bboxes2 = torch.FloatTensor([
+ >>> [0, 0, 10, 20],
+ >>> [0, 10, 10, 19],
+ >>> [10, 10, 20, 20],
+ >>> ])
+ >>> overlaps = bbox_overlaps(bboxes1, bboxes2)
+ >>> assert overlaps.shape == (3, 3)
+ >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True)
+ >>> assert overlaps.shape == (3, )
+
+ Example:
+ >>> empty = torch.empty(0, 4)
+ >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]])
+ >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
+ >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
+ >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
+ """
+
+ assert mode in ['iou', 'iof', 'giou'], f'Unsupported mode {mode}'
+ # Either the boxes are empty or the length of boxes' last dimension is 4
+ assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0)
+ assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0)
+
+ # Batch dim must be the same
+ # Batch dim: (B1, B2, ... Bn)
+ assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
+ batch_shape = bboxes1.shape[:-2]
+
+ rows = bboxes1.size(-2)
+ cols = bboxes2.size(-2)
+ if is_aligned:
+ assert rows == cols
+
+ if rows * cols == 0:
+ if is_aligned:
+ return bboxes1.new(batch_shape + (rows, ))
+ else:
+ return bboxes1.new(batch_shape + (rows, cols))
+
+ area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (
+ bboxes1[..., 3] - bboxes1[..., 1])
+ area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (
+ bboxes2[..., 3] - bboxes2[..., 1])
+
+ if is_aligned:
+ lt = torch.max(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2]
+ rb = torch.min(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2]
+
+ wh = fp16_clamp(rb - lt, min=0)
+ overlap = wh[..., 0] * wh[..., 1]
+
+ if mode in ['iou', 'giou']:
+ union = area1 + area2 - overlap
+ else:
+ union = area1
+ if mode == 'giou':
+ enclosed_lt = torch.min(bboxes1[..., :2], bboxes2[..., :2])
+ enclosed_rb = torch.max(bboxes1[..., 2:], bboxes2[..., 2:])
+ else:
+ lt = torch.max(bboxes1[..., :, None, :2],
+ bboxes2[..., None, :, :2]) # [B, rows, cols, 2]
+ rb = torch.min(bboxes1[..., :, None, 2:],
+ bboxes2[..., None, :, 2:]) # [B, rows, cols, 2]
+
+ wh = fp16_clamp(rb - lt, min=0)
+ overlap = wh[..., 0] * wh[..., 1]
+
+ if mode in ['iou', 'giou']:
+ union = area1[..., None] + area2[..., None, :] - overlap
+ else:
+ union = area1[..., None]
+ if mode == 'giou':
+ enclosed_lt = torch.min(bboxes1[..., :, None, :2],
+ bboxes2[..., None, :, :2])
+ enclosed_rb = torch.max(bboxes1[..., :, None, 2:],
+ bboxes2[..., None, :, 2:])
+
+ eps = union.new_tensor([eps])
+ union = torch.max(union, eps)
+ ious = overlap / union
+ if mode in ['iou', 'iof']:
+ return ious
+ # calculate gious
+ enclose_wh = fp16_clamp(enclosed_rb - enclosed_lt, min=0)
+ enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
+ enclose_area = torch.max(enclose_area, eps)
+ gious = ious - (enclose_area - union) / enclose_area
+ return gious
diff --git a/mmdet/core/bbox/match_costs/__init__.py b/mmdet/core/bbox/match_costs/__init__.py
new file mode 100644
index 00000000..add5e0d3
--- /dev/null
+++ b/mmdet/core/bbox/match_costs/__init__.py
@@ -0,0 +1,7 @@
+from .builder import build_match_cost
+from .match_cost import BBoxL1Cost, ClassificationCost, FocalLossCost, IoUCost
+
+__all__ = [
+ 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost',
+ 'FocalLossCost'
+]
diff --git a/mmdet/core/bbox/match_costs/builder.py b/mmdet/core/bbox/match_costs/builder.py
new file mode 100644
index 00000000..6894017d
--- /dev/null
+++ b/mmdet/core/bbox/match_costs/builder.py
@@ -0,0 +1,8 @@
+from mmcv.utils import Registry, build_from_cfg
+
+MATCH_COST = Registry('Match Cost')
+
+
+def build_match_cost(cfg, default_args=None):
+ """Builder of IoU calculator."""
+ return build_from_cfg(cfg, MATCH_COST, default_args)
diff --git a/mmdet/core/bbox/match_costs/match_cost.py b/mmdet/core/bbox/match_costs/match_cost.py
new file mode 100644
index 00000000..ae852a5d
--- /dev/null
+++ b/mmdet/core/bbox/match_costs/match_cost.py
@@ -0,0 +1,184 @@
+import torch
+
+from mmdet.core.bbox.iou_calculators import bbox_overlaps
+from mmdet.core.bbox.transforms import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh
+from .builder import MATCH_COST
+
+
+@MATCH_COST.register_module()
+class BBoxL1Cost:
+ """BBoxL1Cost.
+
+ Args:
+ weight (int | float, optional): loss_weight
+ box_format (str, optional): 'xyxy' for DETR, 'xywh' for Sparse_RCNN
+
+ Examples:
+ >>> from mmdet.core.bbox.match_costs.match_cost import BBoxL1Cost
+ >>> import torch
+ >>> self = BBoxL1Cost()
+ >>> bbox_pred = torch.rand(1, 4)
+ >>> gt_bboxes= torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
+ >>> factor = torch.tensor([10, 8, 10, 8])
+ >>> self(bbox_pred, gt_bboxes, factor)
+ tensor([[1.6172, 1.6422]])
+ """
+
+ def __init__(self, weight=1., box_format='xyxy'):
+ self.weight = weight
+ assert box_format in ['xyxy', 'xywh']
+ self.box_format = box_format
+
+ def __call__(self, bbox_pred, gt_bboxes):
+ """
+ Args:
+ bbox_pred (Tensor): Predicted boxes with normalized coordinates
+ (cx, cy, w, h), which are all in range [0, 1]. Shape
+ [num_query, 4].
+ gt_bboxes (Tensor): Ground truth boxes with normalized
+ coordinates (x1, y1, x2, y2). Shape [num_gt, 4].
+
+ Returns:
+ torch.Tensor: bbox_cost value with weight
+ """
+ if self.box_format == 'xywh':
+ gt_bboxes = bbox_xyxy_to_cxcywh(gt_bboxes)
+ elif self.box_format == 'xyxy':
+ bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
+ bbox_cost = torch.cdist(bbox_pred, gt_bboxes, p=1)
+ return bbox_cost * self.weight
+
+
+@MATCH_COST.register_module()
+class FocalLossCost:
+ """FocalLossCost.
+
+ Args:
+ weight (int | float, optional): loss_weight
+ alpha (int | float, optional): focal_loss alpha
+ gamma (int | float, optional): focal_loss gamma
+ eps (float, optional): default 1e-12
+
+ Examples:
+ >>> from mmdet.core.bbox.match_costs.match_cost import FocalLossCost
+ >>> import torch
+ >>> self = FocalLossCost()
+ >>> cls_pred = torch.rand(4, 3)
+ >>> gt_labels = torch.tensor([0, 1, 2])
+ >>> factor = torch.tensor([10, 8, 10, 8])
+ >>> self(cls_pred, gt_labels)
+ tensor([[-0.3236, -0.3364, -0.2699],
+ [-0.3439, -0.3209, -0.4807],
+ [-0.4099, -0.3795, -0.2929],
+ [-0.1950, -0.1207, -0.2626]])
+ """
+
+ def __init__(self, weight=1., alpha=0.25, gamma=2, eps=1e-12):
+ self.weight = weight
+ self.alpha = alpha
+ self.gamma = gamma
+ self.eps = eps
+
+ def __call__(self, cls_pred, gt_labels):
+ """
+ Args:
+ cls_pred (Tensor): Predicted classification logits, shape
+ [num_query, num_class].
+ gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).
+
+ Returns:
+ torch.Tensor: cls_cost value with weight
+ """
+ cls_pred = cls_pred.sigmoid()
+ neg_cost = -(1 - cls_pred + self.eps).log() * (
+ 1 - self.alpha) * cls_pred.pow(self.gamma)
+ pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
+ 1 - cls_pred).pow(self.gamma)
+ cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels]
+ return cls_cost * self.weight
+
+
+@MATCH_COST.register_module()
+class ClassificationCost:
+ """ClsSoftmaxCost.
+
+ Args:
+ weight (int | float, optional): loss_weight
+
+ Examples:
+ >>> from mmdet.core.bbox.match_costs.match_cost import \
+ ... ClassificationCost
+ >>> import torch
+ >>> self = ClassificationCost()
+ >>> cls_pred = torch.rand(4, 3)
+ >>> gt_labels = torch.tensor([0, 1, 2])
+ >>> factor = torch.tensor([10, 8, 10, 8])
+ >>> self(cls_pred, gt_labels)
+ tensor([[-0.3430, -0.3525, -0.3045],
+ [-0.3077, -0.2931, -0.3992],
+ [-0.3664, -0.3455, -0.2881],
+ [-0.3343, -0.2701, -0.3956]])
+ """
+
+ def __init__(self, weight=1.):
+ self.weight = weight
+
+ def __call__(self, cls_pred, gt_labels):
+ """
+ Args:
+ cls_pred (Tensor): Predicted classification logits, shape
+ [num_query, num_class].
+ gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).
+
+ Returns:
+ torch.Tensor: cls_cost value with weight
+ """
+ # Following the official DETR repo, contrary to the loss that
+ # NLL is used, we approximate it in 1 - cls_score[gt_label].
+ # The 1 is a constant that doesn't change the matching,
+ # so it can be omitted.
+ cls_score = cls_pred.softmax(-1)
+ cls_cost = -cls_score[:, gt_labels]
+ return cls_cost * self.weight
+
+
+@MATCH_COST.register_module()
+class IoUCost:
+ """IoUCost.
+
+ Args:
+ iou_mode (str, optional): iou mode such as 'iou' | 'giou'
+ weight (int | float, optional): loss weight
+
+ Examples:
+ >>> from mmdet.core.bbox.match_costs.match_cost import IoUCost
+ >>> import torch
+ >>> self = IoUCost()
+ >>> bboxes = torch.FloatTensor([[1,1, 2, 2], [2, 2, 3, 4]])
+ >>> gt_bboxes = torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
+ >>> self(bboxes, gt_bboxes)
+ tensor([[-0.1250, 0.1667],
+ [ 0.1667, -0.5000]])
+ """
+
+ def __init__(self, iou_mode='giou', weight=1.):
+ self.weight = weight
+ self.iou_mode = iou_mode
+
+ def __call__(self, bboxes, gt_bboxes):
+ """
+ Args:
+ bboxes (Tensor): Predicted boxes with unnormalized coordinates
+ (x1, y1, x2, y2). Shape [num_query, 4].
+ gt_bboxes (Tensor): Ground truth boxes with unnormalized
+ coordinates (x1, y1, x2, y2). Shape [num_gt, 4].
+
+ Returns:
+ torch.Tensor: iou_cost value with weight
+ """
+ # overlaps: [num_bboxes, num_gt]
+ overlaps = bbox_overlaps(
+ bboxes, gt_bboxes, mode=self.iou_mode, is_aligned=False)
+ # The 1 is a constant that doesn't change the matching, so omitted.
+ iou_cost = -overlaps
+ return iou_cost * self.weight
diff --git a/mmdet/core/bbox/samplers/__init__.py b/mmdet/core/bbox/samplers/__init__.py
new file mode 100644
index 00000000..0b06303f
--- /dev/null
+++ b/mmdet/core/bbox/samplers/__init__.py
@@ -0,0 +1,15 @@
+from .base_sampler import BaseSampler
+from .combined_sampler import CombinedSampler
+from .instance_balanced_pos_sampler import InstanceBalancedPosSampler
+from .iou_balanced_neg_sampler import IoUBalancedNegSampler
+from .ohem_sampler import OHEMSampler
+from .pseudo_sampler import PseudoSampler
+from .random_sampler import RandomSampler
+from .sampling_result import SamplingResult
+from .score_hlr_sampler import ScoreHLRSampler
+
+__all__ = [
+ 'BaseSampler', 'PseudoSampler', 'RandomSampler',
+ 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler',
+ 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler'
+]
diff --git a/mmdet/det_core/bbox/samplers/base_sampler.py b/mmdet/core/bbox/samplers/base_sampler.py
similarity index 94%
rename from mmdet/det_core/bbox/samplers/base_sampler.py
rename to mmdet/core/bbox/samplers/base_sampler.py
index 6e988ce3..9ea35def 100644
--- a/mmdet/det_core/bbox/samplers/base_sampler.py
+++ b/mmdet/core/bbox/samplers/base_sampler.py
@@ -52,9 +52,9 @@ def sample(self,
:obj:`SamplingResult`: Sampling result.
Example:
- >>> from mmdet.det_core.bbox import RandomSampler
- >>> from mmdet.det_core.bbox import AssignResult
- >>> from mmdet.det_core.bbox.demodata import ensure_rng, random_boxes
+ >>> from mmdet.core.bbox import RandomSampler
+ >>> from mmdet.core.bbox import AssignResult
+ >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes
>>> rng = ensure_rng(None)
>>> assign_result = AssignResult.random(rng=rng)
>>> bboxes = random_boxes(assign_result.num_preds, rng=rng)
diff --git a/mmdet/det_core/bbox/samplers/combined_sampler.py b/mmdet/core/bbox/samplers/combined_sampler.py
similarity index 100%
rename from mmdet/det_core/bbox/samplers/combined_sampler.py
rename to mmdet/core/bbox/samplers/combined_sampler.py
diff --git a/mmdet/det_core/bbox/samplers/instance_balanced_pos_sampler.py b/mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py
similarity index 100%
rename from mmdet/det_core/bbox/samplers/instance_balanced_pos_sampler.py
rename to mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py
diff --git a/mmdet/det_core/bbox/samplers/iou_balanced_neg_sampler.py b/mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
similarity index 100%
rename from mmdet/det_core/bbox/samplers/iou_balanced_neg_sampler.py
rename to mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
diff --git a/mmdet/core/bbox/samplers/ohem_sampler.py b/mmdet/core/bbox/samplers/ohem_sampler.py
new file mode 100644
index 00000000..8b99f60e
--- /dev/null
+++ b/mmdet/core/bbox/samplers/ohem_sampler.py
@@ -0,0 +1,107 @@
+import torch
+
+from ..builder import BBOX_SAMPLERS
+from ..transforms import bbox2roi
+from .base_sampler import BaseSampler
+
+
+@BBOX_SAMPLERS.register_module()
+class OHEMSampler(BaseSampler):
+ r"""Online Hard Example Mining Sampler described in `Training Region-based
+ Object Detectors with Online Hard Example Mining
+ `_.
+ """
+
+ def __init__(self,
+ num,
+ pos_fraction,
+ context,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ **kwargs):
+ super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub,
+ add_gt_as_proposals)
+ self.context = context
+ if not hasattr(self.context, 'num_stages'):
+ self.bbox_head = self.context.bbox_head
+ else:
+ self.bbox_head = self.context.bbox_head[self.context.current_stage]
+
+ def hard_mining(self, inds, num_expected, bboxes, labels, feats):
+ with torch.no_grad():
+ rois = bbox2roi([bboxes])
+ if not hasattr(self.context, 'num_stages'):
+ bbox_results = self.context._bbox_forward(feats, rois)
+ else:
+ bbox_results = self.context._bbox_forward(
+ self.context.current_stage, feats, rois)
+ cls_score = bbox_results['cls_score']
+ loss = self.bbox_head.loss(
+ cls_score=cls_score,
+ bbox_pred=None,
+ rois=rois,
+ labels=labels,
+ label_weights=cls_score.new_ones(cls_score.size(0)),
+ bbox_targets=None,
+ bbox_weights=None,
+ reduction_override='none')['loss_cls']
+ _, topk_loss_inds = loss.topk(num_expected)
+ return inds[topk_loss_inds]
+
+ def _sample_pos(self,
+ assign_result,
+ num_expected,
+ bboxes=None,
+ feats=None,
+ **kwargs):
+ """Sample positive boxes.
+
+ Args:
+ assign_result (:obj:`AssignResult`): Assigned results
+ num_expected (int): Number of expected positive samples
+ bboxes (torch.Tensor, optional): Boxes. Defaults to None.
+ feats (list[torch.Tensor], optional): Multi-level features.
+ Defaults to None.
+
+ Returns:
+ torch.Tensor: Indices of positive samples
+ """
+ # Sample some hard positive samples
+ pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False)
+ if pos_inds.numel() != 0:
+ pos_inds = pos_inds.squeeze(1)
+ if pos_inds.numel() <= num_expected:
+ return pos_inds
+ else:
+ return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds],
+ assign_result.labels[pos_inds], feats)
+
+ def _sample_neg(self,
+ assign_result,
+ num_expected,
+ bboxes=None,
+ feats=None,
+ **kwargs):
+ """Sample negative boxes.
+
+ Args:
+ assign_result (:obj:`AssignResult`): Assigned results
+ num_expected (int): Number of expected negative samples
+ bboxes (torch.Tensor, optional): Boxes. Defaults to None.
+ feats (list[torch.Tensor], optional): Multi-level features.
+ Defaults to None.
+
+ Returns:
+ torch.Tensor: Indices of negative samples
+ """
+ # Sample some hard negative samples
+ neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False)
+ if neg_inds.numel() != 0:
+ neg_inds = neg_inds.squeeze(1)
+ if len(neg_inds) <= num_expected:
+ return neg_inds
+ else:
+ neg_labels = assign_result.labels.new_empty(
+ neg_inds.size(0)).fill_(self.bbox_head.num_classes)
+ return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds],
+ neg_labels, feats)
diff --git a/mmdet/det_core/bbox/samplers/pseudo_sampler.py b/mmdet/core/bbox/samplers/pseudo_sampler.py
similarity index 100%
rename from mmdet/det_core/bbox/samplers/pseudo_sampler.py
rename to mmdet/core/bbox/samplers/pseudo_sampler.py
diff --git a/mmdet/det_core/bbox/samplers/random_sampler.py b/mmdet/core/bbox/samplers/random_sampler.py
similarity index 89%
rename from mmdet/det_core/bbox/samplers/random_sampler.py
rename to mmdet/core/bbox/samplers/random_sampler.py
index 8eb9d07e..c23a7a1f 100644
--- a/mmdet/det_core/bbox/samplers/random_sampler.py
+++ b/mmdet/core/bbox/samplers/random_sampler.py
@@ -23,7 +23,7 @@ def __init__(self,
neg_pos_ub=-1,
add_gt_as_proposals=True,
**kwargs):
- from mmdet.det_core.bbox import demodata
+ from mmdet.core.bbox import demodata
super(RandomSampler, self).__init__(num, pos_fraction, neg_pos_ub,
add_gt_as_proposals)
self.rng = demodata.ensure_rng(kwargs.get('rng', None))
@@ -51,7 +51,10 @@ def random_choice(self, gallery, num):
else:
device = 'cpu'
gallery = torch.tensor(gallery, dtype=torch.long, device=device)
- perm = torch.randperm(gallery.numel(), device=gallery.device)[:num]
+ # This is a temporary fix. We can revert the following code
+ # when PyTorch fixes the abnormal return of torch.randperm.
+ # See: https://github.com/open-mmlab/mmdetection/pull/5014
+ perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device)
rand_inds = gallery[perm]
if not is_tensor:
rand_inds = rand_inds.cpu().numpy()
diff --git a/mmdet/det_core/bbox/samplers/sampling_result.py b/mmdet/core/bbox/samplers/sampling_result.py
similarity index 93%
rename from mmdet/det_core/bbox/samplers/sampling_result.py
rename to mmdet/core/bbox/samplers/sampling_result.py
index fa35f99a..1ca2d29c 100644
--- a/mmdet/det_core/bbox/samplers/sampling_result.py
+++ b/mmdet/core/bbox/samplers/sampling_result.py
@@ -8,7 +8,7 @@ class SamplingResult(util_mixins.NiceRepr):
Example:
>>> # xdoctest: +IGNORE_WANT
- >>> from mmdet.det_core.bbox.samplers.sampling_result import * # NOQA
+ >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random(rng=10)
>>> print(f'self = {self}')
self = >> from mmdet.det_core.bbox.samplers.sampling_result import * # NOQA
+ >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random()
>>> print(self.__dict__)
"""
- from mmdet.det_core.bbox.samplers.random_sampler import RandomSampler
- from mmdet.det_core.bbox.assigners.assign_result import AssignResult
- from mmdet.det_core.bbox import demodata
+ from mmdet.core.bbox.samplers.random_sampler import RandomSampler
+ from mmdet.core.bbox.assigners.assign_result import AssignResult
+ from mmdet.core.bbox import demodata
rng = demodata.ensure_rng(rng)
# make probabalistic?
diff --git a/mmdet/core/bbox/samplers/score_hlr_sampler.py b/mmdet/core/bbox/samplers/score_hlr_sampler.py
new file mode 100644
index 00000000..83244ed5
--- /dev/null
+++ b/mmdet/core/bbox/samplers/score_hlr_sampler.py
@@ -0,0 +1,264 @@
+import torch
+from mmcv.ops import nms_match
+
+from ..builder import BBOX_SAMPLERS
+from ..transforms import bbox2roi
+from .base_sampler import BaseSampler
+from .sampling_result import SamplingResult
+
+
+@BBOX_SAMPLERS.register_module()
+class ScoreHLRSampler(BaseSampler):
+ r"""Importance-based Sample Reweighting (ISR_N), described in `Prime Sample
+ Attention in Object Detection `_.
+
+ Score hierarchical local rank (HLR) differentiates with RandomSampler in
+ negative part. It firstly computes Score-HLR in a two-step way,
+ then linearly maps score hlr to the loss weights.
+
+ Args:
+ num (int): Total number of sampled RoIs.
+ pos_fraction (float): Fraction of positive samples.
+ context (:class:`BaseRoIHead`): RoI head that the sampler belongs to.
+ neg_pos_ub (int): Upper bound of the ratio of num negative to num
+ positive, -1 means no upper bound.
+ add_gt_as_proposals (bool): Whether to add ground truth as proposals.
+ k (float): Power of the non-linear mapping.
+ bias (float): Shift of the non-linear mapping.
+ score_thr (float): Minimum score that a negative sample is to be
+ considered as valid bbox.
+ """
+
+ def __init__(self,
+ num,
+ pos_fraction,
+ context,
+ neg_pos_ub=-1,
+ add_gt_as_proposals=True,
+ k=0.5,
+ bias=0,
+ score_thr=0.05,
+ iou_thr=0.5,
+ **kwargs):
+ super().__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals)
+ self.k = k
+ self.bias = bias
+ self.score_thr = score_thr
+ self.iou_thr = iou_thr
+ self.context = context
+ # context of cascade detectors is a list, so distinguish them here.
+ if not hasattr(context, 'num_stages'):
+ self.bbox_roi_extractor = context.bbox_roi_extractor
+ self.bbox_head = context.bbox_head
+ self.with_shared_head = context.with_shared_head
+ if self.with_shared_head:
+ self.shared_head = context.shared_head
+ else:
+ self.bbox_roi_extractor = context.bbox_roi_extractor[
+ context.current_stage]
+ self.bbox_head = context.bbox_head[context.current_stage]
+
+ @staticmethod
+ def random_choice(gallery, num):
+ """Randomly select some elements from the gallery.
+
+ If `gallery` is a Tensor, the returned indices will be a Tensor;
+ If `gallery` is a ndarray or list, the returned indices will be a
+ ndarray.
+
+ Args:
+ gallery (Tensor | ndarray | list): indices pool.
+ num (int): expected sample num.
+
+ Returns:
+ Tensor or ndarray: sampled indices.
+ """
+ assert len(gallery) >= num
+
+ is_tensor = isinstance(gallery, torch.Tensor)
+ if not is_tensor:
+ if torch.cuda.is_available():
+ device = torch.cuda.current_device()
+ else:
+ device = 'cpu'
+ gallery = torch.tensor(gallery, dtype=torch.long, device=device)
+ perm = torch.randperm(gallery.numel(), device=gallery.device)[:num]
+ rand_inds = gallery[perm]
+ if not is_tensor:
+ rand_inds = rand_inds.cpu().numpy()
+ return rand_inds
+
+ def _sample_pos(self, assign_result, num_expected, **kwargs):
+ """Randomly sample some positive samples."""
+ pos_inds = torch.nonzero(assign_result.gt_inds > 0).flatten()
+ if pos_inds.numel() <= num_expected:
+ return pos_inds
+ else:
+ return self.random_choice(pos_inds, num_expected)
+
+ def _sample_neg(self,
+ assign_result,
+ num_expected,
+ bboxes,
+ feats=None,
+ img_meta=None,
+ **kwargs):
+ """Sample negative samples.
+
+ Score-HLR sampler is done in the following steps:
+ 1. Take the maximum positive score prediction of each negative samples
+ as s_i.
+ 2. Filter out negative samples whose s_i <= score_thr, the left samples
+ are called valid samples.
+ 3. Use NMS-Match to divide valid samples into different groups,
+ samples in the same group will greatly overlap with each other
+ 4. Rank the matched samples in two-steps to get Score-HLR.
+ (1) In the same group, rank samples with their scores.
+ (2) In the same score rank across different groups,
+ rank samples with their scores again.
+ 5. Linearly map Score-HLR to the final label weights.
+
+ Args:
+ assign_result (:obj:`AssignResult`): result of assigner.
+ num_expected (int): Expected number of samples.
+ bboxes (Tensor): bbox to be sampled.
+ feats (Tensor): Features come from FPN.
+ img_meta (dict): Meta information dictionary.
+ """
+ neg_inds = torch.nonzero(assign_result.gt_inds == 0).flatten()
+ num_neg = neg_inds.size(0)
+ if num_neg == 0:
+ return neg_inds, None
+ with torch.no_grad():
+ neg_bboxes = bboxes[neg_inds]
+ neg_rois = bbox2roi([neg_bboxes])
+ bbox_result = self.context._bbox_forward(feats, neg_rois)
+ cls_score, bbox_pred = bbox_result['cls_score'], bbox_result[
+ 'bbox_pred']
+
+ ori_loss = self.bbox_head.loss(
+ cls_score=cls_score,
+ bbox_pred=None,
+ rois=None,
+ labels=neg_inds.new_full((num_neg, ),
+ self.bbox_head.num_classes),
+ label_weights=cls_score.new_ones(num_neg),
+ bbox_targets=None,
+ bbox_weights=None,
+ reduction_override='none')['loss_cls']
+
+ # filter out samples with the max score lower than score_thr
+ max_score, argmax_score = cls_score.softmax(-1)[:, :-1].max(-1)
+ valid_inds = (max_score > self.score_thr).nonzero().view(-1)
+ invalid_inds = (max_score <= self.score_thr).nonzero().view(-1)
+ num_valid = valid_inds.size(0)
+ num_invalid = invalid_inds.size(0)
+
+ num_expected = min(num_neg, num_expected)
+ num_hlr = min(num_valid, num_expected)
+ num_rand = num_expected - num_hlr
+ if num_valid > 0:
+ valid_rois = neg_rois[valid_inds]
+ valid_max_score = max_score[valid_inds]
+ valid_argmax_score = argmax_score[valid_inds]
+ valid_bbox_pred = bbox_pred[valid_inds]
+
+ # valid_bbox_pred shape: [num_valid, #num_classes, 4]
+ valid_bbox_pred = valid_bbox_pred.view(
+ valid_bbox_pred.size(0), -1, 4)
+ selected_bbox_pred = valid_bbox_pred[range(num_valid),
+ valid_argmax_score]
+ pred_bboxes = self.bbox_head.bbox_coder.decode(
+ valid_rois[:, 1:], selected_bbox_pred)
+ pred_bboxes_with_score = torch.cat(
+ [pred_bboxes, valid_max_score[:, None]], -1)
+ group = nms_match(pred_bboxes_with_score, self.iou_thr)
+
+ # imp: importance
+ imp = cls_score.new_zeros(num_valid)
+ for g in group:
+ g_score = valid_max_score[g]
+ # g_score has already sorted
+ rank = g_score.new_tensor(range(g_score.size(0)))
+ imp[g] = num_valid - rank + g_score
+ _, imp_rank_inds = imp.sort(descending=True)
+ _, imp_rank = imp_rank_inds.sort()
+ hlr_inds = imp_rank_inds[:num_expected]
+
+ if num_rand > 0:
+ rand_inds = torch.randperm(num_invalid)[:num_rand]
+ select_inds = torch.cat(
+ [valid_inds[hlr_inds], invalid_inds[rand_inds]])
+ else:
+ select_inds = valid_inds[hlr_inds]
+
+ neg_label_weights = cls_score.new_ones(num_expected)
+
+ up_bound = max(num_expected, num_valid)
+ imp_weights = (up_bound -
+ imp_rank[hlr_inds].float()) / up_bound
+ neg_label_weights[:num_hlr] = imp_weights
+ neg_label_weights[num_hlr:] = imp_weights.min()
+ neg_label_weights = (self.bias +
+ (1 - self.bias) * neg_label_weights).pow(
+ self.k)
+ ori_selected_loss = ori_loss[select_inds]
+ new_loss = ori_selected_loss * neg_label_weights
+ norm_ratio = ori_selected_loss.sum() / new_loss.sum()
+ neg_label_weights *= norm_ratio
+ else:
+ neg_label_weights = cls_score.new_ones(num_expected)
+ select_inds = torch.randperm(num_neg)[:num_expected]
+
+ return neg_inds[select_inds], neg_label_weights
+
+ def sample(self,
+ assign_result,
+ bboxes,
+ gt_bboxes,
+ gt_labels=None,
+ img_meta=None,
+ **kwargs):
+ """Sample positive and negative bboxes.
+
+ This is a simple implementation of bbox sampling given candidates,
+ assigning results and ground truth bboxes.
+
+ Args:
+ assign_result (:obj:`AssignResult`): Bbox assigning results.
+ bboxes (Tensor): Boxes to be sampled from.
+ gt_bboxes (Tensor): Ground truth bboxes.
+ gt_labels (Tensor, optional): Class labels of ground truth bboxes.
+
+ Returns:
+ tuple[:obj:`SamplingResult`, Tensor]: Sampling result and negative
+ label weights.
+ """
+ bboxes = bboxes[:, :4]
+
+ gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8)
+ if self.add_gt_as_proposals:
+ bboxes = torch.cat([gt_bboxes, bboxes], dim=0)
+ assign_result.add_gt_(gt_labels)
+ gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8)
+ gt_flags = torch.cat([gt_ones, gt_flags])
+
+ num_expected_pos = int(self.num * self.pos_fraction)
+ pos_inds = self.pos_sampler._sample_pos(
+ assign_result, num_expected_pos, bboxes=bboxes, **kwargs)
+ num_sampled_pos = pos_inds.numel()
+ num_expected_neg = self.num - num_sampled_pos
+ if self.neg_pos_ub >= 0:
+ _pos = max(1, num_sampled_pos)
+ neg_upper_bound = int(self.neg_pos_ub * _pos)
+ if num_expected_neg > neg_upper_bound:
+ num_expected_neg = neg_upper_bound
+ neg_inds, neg_label_weights = self.neg_sampler._sample_neg(
+ assign_result,
+ num_expected_neg,
+ bboxes,
+ img_meta=img_meta,
+ **kwargs)
+
+ return SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes,
+ assign_result, gt_flags), neg_label_weights
diff --git a/mmdet/core/bbox/transforms.py b/mmdet/core/bbox/transforms.py
new file mode 100644
index 00000000..fb141f47
--- /dev/null
+++ b/mmdet/core/bbox/transforms.py
@@ -0,0 +1,246 @@
+import numpy as np
+import torch
+
+
+def bbox_flip(bboxes, img_shape, direction='horizontal'):
+ """Flip bboxes horizontally or vertically.
+
+ Args:
+ bboxes (Tensor): Shape (..., 4*k)
+ img_shape (tuple): Image shape.
+ direction (str): Flip direction, options are "horizontal", "vertical",
+ "diagonal". Default: "horizontal"
+
+ Returns:
+ Tensor: Flipped bboxes.
+ """
+ assert bboxes.shape[-1] % 4 == 0
+ assert direction in ['horizontal', 'vertical', 'diagonal']
+ flipped = bboxes.clone()
+ if direction == 'horizontal':
+ flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
+ flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
+ elif direction == 'vertical':
+ flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
+ flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
+ else:
+ flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
+ flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
+ flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
+ flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
+ return flipped
+
+
+def bbox_mapping(bboxes,
+ img_shape,
+ scale_factor,
+ flip,
+ flip_direction='horizontal'):
+ """Map bboxes from the original image scale to testing scale."""
+ new_bboxes = bboxes * bboxes.new_tensor(scale_factor)
+ if flip:
+ new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction)
+ return new_bboxes
+
+
+def bbox_mapping_back(bboxes,
+ img_shape,
+ scale_factor,
+ flip,
+ flip_direction='horizontal'):
+ """Map bboxes from testing scale to original image scale."""
+ new_bboxes = bbox_flip(bboxes, img_shape,
+ flip_direction) if flip else bboxes
+ new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor)
+ return new_bboxes.view(bboxes.shape)
+
+
+def bbox2roi(bbox_list):
+ """Convert a list of bboxes to roi format.
+
+ Args:
+ bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
+ of images.
+
+ Returns:
+ Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2]
+ """
+ rois_list = []
+ for img_id, bboxes in enumerate(bbox_list):
+ if bboxes.size(0) > 0:
+ img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
+ rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1)
+ else:
+ rois = bboxes.new_zeros((0, 5))
+ rois_list.append(rois)
+ rois = torch.cat(rois_list, 0)
+ return rois
+
+
+def roi2bbox(rois):
+ """Convert rois to bounding box format.
+
+ Args:
+ rois (torch.Tensor): RoIs with the shape (n, 5) where the first
+ column indicates batch id of each RoI.
+
+ Returns:
+ list[torch.Tensor]: Converted boxes of corresponding rois.
+ """
+ bbox_list = []
+ img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
+ for img_id in img_ids:
+ inds = (rois[:, 0] == img_id.item())
+ bbox = rois[inds, 1:]
+ bbox_list.append(bbox)
+ return bbox_list
+
+
+def bbox2result(bboxes, labels, num_classes):
+ """Convert detection results to a list of numpy arrays.
+
+ Args:
+ bboxes (torch.Tensor | np.ndarray): shape (n, 5)
+ labels (torch.Tensor | np.ndarray): shape (n, )
+ num_classes (int): class number, including background class
+
+ Returns:
+ list(ndarray): bbox results of each class
+ """
+ if bboxes.shape[0] == 0:
+ return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
+ else:
+ if isinstance(bboxes, torch.Tensor):
+ bboxes = bboxes.detach().cpu().numpy()
+ labels = labels.detach().cpu().numpy()
+ return [bboxes[labels == i, :] for i in range(num_classes)]
+
+
+def distance2bbox(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (B, N, 2) or (N, 2).
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
+ max_shape (Sequence[int] or torch.Tensor or Sequence[
+ Sequence[int]],optional): Maximum bounds for boxes, specifies
+ (H, W, C) or (H, W). If priors shape is (B, N, 4), then
+ the max_shape should be a Sequence[Sequence[int]]
+ and the length of max_shape should also be B.
+
+ Returns:
+ Tensor: Boxes with shape (N, 4) or (B, N, 4)
+ """
+ x1 = points[..., 0] - distance[..., 0]
+ y1 = points[..., 1] - distance[..., 1]
+ x2 = points[..., 0] + distance[..., 2]
+ y2 = points[..., 1] + distance[..., 3]
+
+ bboxes = torch.stack([x1, y1, x2, y2], -1)
+
+ if max_shape is not None:
+ # clip bboxes with dynamic `min` and `max` for onnx
+ if torch.onnx.is_in_onnx_export():
+ from mmdet.core.export import dynamic_clip_for_onnx
+ x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
+ bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
+ return bboxes
+ if not isinstance(max_shape, torch.Tensor):
+ max_shape = x1.new_tensor(max_shape)
+ max_shape = max_shape[..., :2].type_as(x1)
+ if max_shape.ndim == 2:
+ assert bboxes.ndim == 3
+ assert max_shape.size(0) == bboxes.size(0)
+
+ min_xy = x1.new_tensor(0)
+ max_xy = torch.cat([max_shape, max_shape],
+ dim=-1).flip(-1).unsqueeze(-2)
+ bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
+ bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
+
+ return bboxes
+
+
+def bbox2distance(points, bbox, max_dis=None, eps=0.1):
+ """Decode bounding box based on distances.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ bbox (Tensor): Shape (n, 4), "xyxy" format
+ max_dis (float): Upper bound of the distance.
+ eps (float): a small value to ensure target < max_dis, instead <=
+
+ Returns:
+ Tensor: Decoded distances.
+ """
+ left = points[:, 0] - bbox[:, 0]
+ top = points[:, 1] - bbox[:, 1]
+ right = bbox[:, 2] - points[:, 0]
+ bottom = bbox[:, 3] - points[:, 1]
+ if max_dis is not None:
+ left = left.clamp(min=0, max=max_dis - eps)
+ top = top.clamp(min=0, max=max_dis - eps)
+ right = right.clamp(min=0, max=max_dis - eps)
+ bottom = bottom.clamp(min=0, max=max_dis - eps)
+ return torch.stack([left, top, right, bottom], -1)
+
+
+def bbox_rescale(bboxes, scale_factor=1.0):
+ """Rescale bounding box w.r.t. scale_factor.
+
+ Args:
+ bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois
+ scale_factor (float): rescale factor
+
+ Returns:
+ Tensor: Rescaled bboxes.
+ """
+ if bboxes.size(1) == 5:
+ bboxes_ = bboxes[:, 1:]
+ inds_ = bboxes[:, 0]
+ else:
+ bboxes_ = bboxes
+ cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5
+ cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5
+ w = bboxes_[:, 2] - bboxes_[:, 0]
+ h = bboxes_[:, 3] - bboxes_[:, 1]
+ w = w * scale_factor
+ h = h * scale_factor
+ x1 = cx - 0.5 * w
+ x2 = cx + 0.5 * w
+ y1 = cy - 0.5 * h
+ y2 = cy + 0.5 * h
+ if bboxes.size(1) == 5:
+ rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1)
+ else:
+ rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
+ return rescaled_bboxes
+
+
+def bbox_cxcywh_to_xyxy(bbox):
+ """Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
+
+ Args:
+ bbox (Tensor): Shape (n, 4) for bboxes.
+
+ Returns:
+ Tensor: Converted bboxes.
+ """
+ cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1)
+ bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)]
+ return torch.cat(bbox_new, dim=-1)
+
+
+def bbox_xyxy_to_cxcywh(bbox):
+ """Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
+
+ Args:
+ bbox (Tensor): Shape (n, 4) for bboxes.
+
+ Returns:
+ Tensor: Converted bboxes.
+ """
+ x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1)
+ bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)]
+ return torch.cat(bbox_new, dim=-1)
diff --git a/mmdet/core/evaluation/__init__.py b/mmdet/core/evaluation/__init__.py
new file mode 100644
index 00000000..d11ef15b
--- /dev/null
+++ b/mmdet/core/evaluation/__init__.py
@@ -0,0 +1,15 @@
+from .class_names import (cityscapes_classes, coco_classes, dataset_aliases,
+ get_classes, imagenet_det_classes,
+ imagenet_vid_classes, voc_classes)
+from .eval_hooks import DistEvalHook, EvalHook
+from .mean_ap import average_precision, eval_map, print_map_summary
+from .recall import (eval_recalls, plot_iou_recall, plot_num_recall,
+ print_recall_summary)
+
+__all__ = [
+ 'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes',
+ 'coco_classes', 'cityscapes_classes', 'dataset_aliases', 'get_classes',
+ 'DistEvalHook', 'EvalHook', 'average_precision', 'eval_map',
+ 'print_map_summary', 'eval_recalls', 'print_recall_summary',
+ 'plot_num_recall', 'plot_iou_recall'
+]
diff --git a/mmdet/det_core/evaluation/bbox_overlaps.py b/mmdet/core/evaluation/bbox_overlaps.py
similarity index 100%
rename from mmdet/det_core/evaluation/bbox_overlaps.py
rename to mmdet/core/evaluation/bbox_overlaps.py
diff --git a/mmdet/det_core/evaluation/class_names.py b/mmdet/core/evaluation/class_names.py
similarity index 97%
rename from mmdet/det_core/evaluation/class_names.py
rename to mmdet/core/evaluation/class_names.py
index 87de6aab..c2487c2e 100644
--- a/mmdet/det_core/evaluation/class_names.py
+++ b/mmdet/core/evaluation/class_names.py
@@ -1,4 +1,4 @@
-import mmdet.cv_core
+import mmcv
def wider_face_classes():
@@ -94,7 +94,7 @@ def cityscapes_classes():
'imagenet_det': ['det', 'imagenet_det', 'ilsvrc_det'],
'imagenet_vid': ['vid', 'imagenet_vid', 'ilsvrc_vid'],
'coco': ['coco', 'mscoco', 'ms_coco'],
- 'wider_face': ['WIDERFaceDataset', 'wider_face', 'WDIERFace'],
+ 'wider_face': ['WIDERFaceDataset', 'wider_face', 'WIDERFace'],
'cityscapes': ['cityscapes']
}
@@ -106,7 +106,7 @@ def get_classes(dataset):
for alias in aliases:
alias2name[alias] = name
- if mmdet.cv_core.is_str(dataset):
+ if mmcv.is_str(dataset):
if dataset in alias2name:
labels = eval(alias2name[dataset] + '_classes()')
else:
diff --git a/mmdet/core/evaluation/eval_hooks.py b/mmdet/core/evaluation/eval_hooks.py
new file mode 100644
index 00000000..68dc92f2
--- /dev/null
+++ b/mmdet/core/evaluation/eval_hooks.py
@@ -0,0 +1,60 @@
+import os.path as osp
+
+import torch.distributed as dist
+from mmcv.runner import DistEvalHook as BaseDistEvalHook
+from mmcv.runner import EvalHook as BaseEvalHook
+from torch.nn.modules.batchnorm import _BatchNorm
+
+
+class EvalHook(BaseEvalHook):
+
+ def _do_evaluate(self, runner):
+ """perform evaluation and save ckpt."""
+ if not self._should_evaluate(runner):
+ return
+
+ from mmdet.apis import single_gpu_test
+ results = single_gpu_test(runner.model, self.dataloader, show=False)
+ runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
+ key_score = self.evaluate(runner, results)
+ if self.save_best:
+ self._save_ckpt(runner, key_score)
+
+
+class DistEvalHook(BaseDistEvalHook):
+
+ def _do_evaluate(self, runner):
+ """perform evaluation and save ckpt."""
+ # Synchronization of BatchNorm's buffer (running_mean
+ # and running_var) is not supported in the DDP of pytorch,
+ # which may cause the inconsistent performance of models in
+ # different ranks, so we broadcast BatchNorm's buffers
+ # of rank 0 to other ranks to avoid this.
+ if self.broadcast_bn_buffer:
+ model = runner.model
+ for name, module in model.named_modules():
+ if isinstance(module,
+ _BatchNorm) and module.track_running_stats:
+ dist.broadcast(module.running_var, 0)
+ dist.broadcast(module.running_mean, 0)
+
+ if not self._should_evaluate(runner):
+ return
+
+ tmpdir = self.tmpdir
+ if tmpdir is None:
+ tmpdir = osp.join(runner.work_dir, '.eval_hook')
+
+ from mmdet.apis import multi_gpu_test
+ results = multi_gpu_test(
+ runner.model,
+ self.dataloader,
+ tmpdir=tmpdir,
+ gpu_collect=self.gpu_collect)
+ if runner.rank == 0:
+ print('\n')
+ runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
+ key_score = self.evaluate(runner, results)
+
+ if self.save_best:
+ self._save_ckpt(runner, key_score)
diff --git a/mmdet/det_core/evaluation/mean_ap.py b/mmdet/core/evaluation/mean_ap.py
similarity index 94%
rename from mmdet/det_core/evaluation/mean_ap.py
rename to mmdet/core/evaluation/mean_ap.py
index 7053442f..1d653a35 100644
--- a/mmdet/det_core/evaluation/mean_ap.py
+++ b/mmdet/core/evaluation/mean_ap.py
@@ -1,8 +1,8 @@
from multiprocessing import Pool
-import mmdet.cv_core
+import mmcv
import numpy as np
-from mmdet.cv_core.utils import print_log
+from mmcv.utils import print_log
from terminaltables import AsciiTable
from .bbox_overlaps import bbox_overlaps
@@ -47,7 +47,7 @@ def average_precision(recalls, precisions, mode='area'):
precs = precisions[i, recalls[i, :] >= thr]
prec = precs.max() if precs.size > 0 else 0
ap[i] += prec
- ap /= 11
+ ap /= 11
else:
raise ValueError(
'Unrecognized mode, only "area" and "11points" are supported')
@@ -124,7 +124,7 @@ def tpfp_imagenet(det_bboxes,
# find best overlapped available gt
for j in range(num_gts):
# different from PASCAL VOC: allow finding other gts if the
- # best overlaped ones are already matched by other det bboxes
+ # best overlapped ones are already matched by other det bboxes
if gt_covered[j]:
continue
elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou:
@@ -270,6 +270,7 @@ def eval_map(det_results,
iou_thr=0.5,
dataset=None,
logger=None,
+ tpfp_fn=None,
nproc=4):
"""Evaluate mAP of a dataset.
@@ -294,7 +295,12 @@ def eval_map(det_results,
there are minor differences in metrics for different datsets, e.g.
"voc07", "imagenet_det", etc. Default: None.
logger (logging.Logger | str | None): The way to print the mAP
- summary. See `mmdet.utils.print_log()` for details. Default: None.
+ summary. See `mmcv.utils.print_log()` for details. Default: None.
+ tpfp_fn (callable | None): The function used to determine true/
+ false positives. If None, :func:`tpfp_default` is used as default
+ unless dataset is 'det' or 'vid' (:func:`tpfp_imagenet` in this
+ case). If it is given as a function, then this function is used
+ to evaluate tp & fp. Default None.
nproc (int): Processes used for computing TP and FP.
Default: 4.
@@ -316,13 +322,18 @@ def eval_map(det_results,
cls_dets, cls_gts, cls_gts_ignore = get_cls_results(
det_results, annotations, i)
# choose proper function according to datasets to compute tp and fp
- if dataset in ['det', 'vid']:
- tpfp_func = tpfp_imagenet
- else:
- tpfp_func = tpfp_default
+ if tpfp_fn is None:
+ if dataset in ['det', 'vid']:
+ tpfp_fn = tpfp_imagenet
+ else:
+ tpfp_fn = tpfp_default
+ if not callable(tpfp_fn):
+ raise ValueError(
+ f'tpfp_fn has to be a function or None, but got {tpfp_fn}')
+
# compute tp and fp for each image with multiple processes
tpfp = pool.starmap(
- tpfp_func,
+ tpfp_fn,
zip(cls_dets, cls_gts, cls_gts_ignore,
[iou_thr for _ in range(num_imgs)],
[area_ranges for _ in range(num_imgs)]))
@@ -406,7 +417,7 @@ def print_map_summary(mean_ap,
dataset (list[str] | str | None): Dataset name or dataset classes.
scale_ranges (list[tuple] | None): Range of scales to be evaluated.
logger (logging.Logger | str | None): The way to print the mAP
- summary. See `mmdet.utils.print_log()` for details. Default: None.
+ summary. See `mmcv.utils.print_log()` for details. Default: None.
"""
if logger == 'silent':
@@ -433,7 +444,7 @@ def print_map_summary(mean_ap,
if dataset is None:
label_names = [str(i) for i in range(num_classes)]
- elif mmdet.cv_core.is_str(dataset):
+ elif mmcv.is_str(dataset):
label_names = get_classes(dataset)
else:
label_names = dataset
diff --git a/mmdet/core/evaluation/recall.py b/mmdet/core/evaluation/recall.py
new file mode 100644
index 00000000..23ec744f
--- /dev/null
+++ b/mmdet/core/evaluation/recall.py
@@ -0,0 +1,189 @@
+from collections.abc import Sequence
+
+import numpy as np
+from mmcv.utils import print_log
+from terminaltables import AsciiTable
+
+from .bbox_overlaps import bbox_overlaps
+
+
+def _recalls(all_ious, proposal_nums, thrs):
+
+ img_num = all_ious.shape[0]
+ total_gt_num = sum([ious.shape[0] for ious in all_ious])
+
+ _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32)
+ for k, proposal_num in enumerate(proposal_nums):
+ tmp_ious = np.zeros(0)
+ for i in range(img_num):
+ ious = all_ious[i][:, :proposal_num].copy()
+ gt_ious = np.zeros((ious.shape[0]))
+ if ious.size == 0:
+ tmp_ious = np.hstack((tmp_ious, gt_ious))
+ continue
+ for j in range(ious.shape[0]):
+ gt_max_overlaps = ious.argmax(axis=1)
+ max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps]
+ gt_idx = max_ious.argmax()
+ gt_ious[j] = max_ious[gt_idx]
+ box_idx = gt_max_overlaps[gt_idx]
+ ious[gt_idx, :] = -1
+ ious[:, box_idx] = -1
+ tmp_ious = np.hstack((tmp_ious, gt_ious))
+ _ious[k, :] = tmp_ious
+
+ _ious = np.fliplr(np.sort(_ious, axis=1))
+ recalls = np.zeros((proposal_nums.size, thrs.size))
+ for i, thr in enumerate(thrs):
+ recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num)
+
+ return recalls
+
+
+def set_recall_param(proposal_nums, iou_thrs):
+ """Check proposal_nums and iou_thrs and set correct format."""
+ if isinstance(proposal_nums, Sequence):
+ _proposal_nums = np.array(proposal_nums)
+ elif isinstance(proposal_nums, int):
+ _proposal_nums = np.array([proposal_nums])
+ else:
+ _proposal_nums = proposal_nums
+
+ if iou_thrs is None:
+ _iou_thrs = np.array([0.5])
+ elif isinstance(iou_thrs, Sequence):
+ _iou_thrs = np.array(iou_thrs)
+ elif isinstance(iou_thrs, float):
+ _iou_thrs = np.array([iou_thrs])
+ else:
+ _iou_thrs = iou_thrs
+
+ return _proposal_nums, _iou_thrs
+
+
+def eval_recalls(gts,
+ proposals,
+ proposal_nums=None,
+ iou_thrs=0.5,
+ logger=None):
+ """Calculate recalls.
+
+ Args:
+ gts (list[ndarray]): a list of arrays of shape (n, 4)
+ proposals (list[ndarray]): a list of arrays of shape (k, 4) or (k, 5)
+ proposal_nums (int | Sequence[int]): Top N proposals to be evaluated.
+ iou_thrs (float | Sequence[float]): IoU thresholds. Default: 0.5.
+ logger (logging.Logger | str | None): The way to print the recall
+ summary. See `mmcv.utils.print_log()` for details. Default: None.
+
+ Returns:
+ ndarray: recalls of different ious and proposal nums
+ """
+
+ img_num = len(gts)
+ assert img_num == len(proposals)
+
+ proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs)
+
+ all_ious = []
+ for i in range(img_num):
+ if proposals[i].ndim == 2 and proposals[i].shape[1] == 5:
+ scores = proposals[i][:, 4]
+ sort_idx = np.argsort(scores)[::-1]
+ img_proposal = proposals[i][sort_idx, :]
+ else:
+ img_proposal = proposals[i]
+ prop_num = min(img_proposal.shape[0], proposal_nums[-1])
+ if gts[i] is None or gts[i].shape[0] == 0:
+ ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32)
+ else:
+ ious = bbox_overlaps(gts[i], img_proposal[:prop_num, :4])
+ all_ious.append(ious)
+ all_ious = np.array(all_ious)
+ recalls = _recalls(all_ious, proposal_nums, iou_thrs)
+
+ print_recall_summary(recalls, proposal_nums, iou_thrs, logger=logger)
+ return recalls
+
+
+def print_recall_summary(recalls,
+ proposal_nums,
+ iou_thrs,
+ row_idxs=None,
+ col_idxs=None,
+ logger=None):
+ """Print recalls in a table.
+
+ Args:
+ recalls (ndarray): calculated from `bbox_recalls`
+ proposal_nums (ndarray or list): top N proposals
+ iou_thrs (ndarray or list): iou thresholds
+ row_idxs (ndarray): which rows(proposal nums) to print
+ col_idxs (ndarray): which cols(iou thresholds) to print
+ logger (logging.Logger | str | None): The way to print the recall
+ summary. See `mmcv.utils.print_log()` for details. Default: None.
+ """
+ proposal_nums = np.array(proposal_nums, dtype=np.int32)
+ iou_thrs = np.array(iou_thrs)
+ if row_idxs is None:
+ row_idxs = np.arange(proposal_nums.size)
+ if col_idxs is None:
+ col_idxs = np.arange(iou_thrs.size)
+ row_header = [''] + iou_thrs[col_idxs].tolist()
+ table_data = [row_header]
+ for i, num in enumerate(proposal_nums[row_idxs]):
+ row = [f'{val:.3f}' for val in recalls[row_idxs[i], col_idxs].tolist()]
+ row.insert(0, num)
+ table_data.append(row)
+ table = AsciiTable(table_data)
+ print_log('\n' + table.table, logger=logger)
+
+
+def plot_num_recall(recalls, proposal_nums):
+ """Plot Proposal_num-Recalls curve.
+
+ Args:
+ recalls(ndarray or list): shape (k,)
+ proposal_nums(ndarray or list): same shape as `recalls`
+ """
+ if isinstance(proposal_nums, np.ndarray):
+ _proposal_nums = proposal_nums.tolist()
+ else:
+ _proposal_nums = proposal_nums
+ if isinstance(recalls, np.ndarray):
+ _recalls = recalls.tolist()
+ else:
+ _recalls = recalls
+
+ import matplotlib.pyplot as plt
+ f = plt.figure()
+ plt.plot([0] + _proposal_nums, [0] + _recalls)
+ plt.xlabel('Proposal num')
+ plt.ylabel('Recall')
+ plt.axis([0, proposal_nums.max(), 0, 1])
+ f.show()
+
+
+def plot_iou_recall(recalls, iou_thrs):
+ """Plot IoU-Recalls curve.
+
+ Args:
+ recalls(ndarray or list): shape (k,)
+ iou_thrs(ndarray or list): same shape as `recalls`
+ """
+ if isinstance(iou_thrs, np.ndarray):
+ _iou_thrs = iou_thrs.tolist()
+ else:
+ _iou_thrs = iou_thrs
+ if isinstance(recalls, np.ndarray):
+ _recalls = recalls.tolist()
+ else:
+ _recalls = recalls
+
+ import matplotlib.pyplot as plt
+ f = plt.figure()
+ plt.plot(_iou_thrs + [1.0], _recalls + [0.])
+ plt.xlabel('IoU')
+ plt.ylabel('Recall')
+ plt.axis([iou_thrs.min(), 1, 0, 1])
+ f.show()
diff --git a/mmdet/core/export/__init__.py b/mmdet/core/export/__init__.py
new file mode 100644
index 00000000..91685619
--- /dev/null
+++ b/mmdet/core/export/__init__.py
@@ -0,0 +1,11 @@
+from .onnx_helper import (add_dummy_nms_for_onnx, dynamic_clip_for_onnx,
+ get_k_for_topk)
+from .pytorch2onnx import (build_model_from_cfg,
+ generate_inputs_and_wrap_model,
+ preprocess_example_input)
+
+__all__ = [
+ 'build_model_from_cfg', 'generate_inputs_and_wrap_model',
+ 'preprocess_example_input', 'get_k_for_topk', 'add_dummy_nms_for_onnx',
+ 'dynamic_clip_for_onnx'
+]
diff --git a/mmdet/core/export/model_wrappers.py b/mmdet/core/export/model_wrappers.py
new file mode 100644
index 00000000..ca8a7489
--- /dev/null
+++ b/mmdet/core/export/model_wrappers.py
@@ -0,0 +1,172 @@
+import os.path as osp
+import warnings
+
+import numpy as np
+import torch
+
+from mmdet.core import bbox2result
+from mmdet.models import BaseDetector
+
+
+class DeployBaseDetector(BaseDetector):
+ """DeployBaseDetector."""
+
+ def __init__(self, class_names, device_id):
+ super(DeployBaseDetector, self).__init__()
+ self.CLASSES = class_names
+ self.device_id = device_id
+
+ def simple_test(self, img, img_metas, **kwargs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def aug_test(self, imgs, img_metas, **kwargs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def extract_feat(self, imgs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def forward_train(self, imgs, img_metas, **kwargs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def val_step(self, data, optimizer):
+ raise NotImplementedError('This method is not implemented.')
+
+ def train_step(self, data, optimizer):
+ raise NotImplementedError('This method is not implemented.')
+
+ def aforward_test(self, *, img, img_metas, **kwargs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def async_simple_test(self, img, img_metas, **kwargs):
+ raise NotImplementedError('This method is not implemented.')
+
+ def forward(self, img, img_metas, return_loss=True, **kwargs):
+ outputs = self.forward_test(img, img_metas, **kwargs)
+ batch_dets, batch_labels = outputs[:2]
+ batch_masks = outputs[2] if len(outputs) == 3 else None
+ batch_size = img[0].shape[0]
+ img_metas = img_metas[0]
+ results = []
+ rescale = kwargs.get('rescale', True)
+ for i in range(batch_size):
+ dets, labels = batch_dets[i], batch_labels[i]
+ if rescale:
+ scale_factor = img_metas[i]['scale_factor']
+
+ if isinstance(scale_factor, (list, tuple, np.ndarray)):
+ assert len(scale_factor) == 4
+ scale_factor = np.array(scale_factor)[None, :] # [1,4]
+ dets[:, :4] /= scale_factor
+
+ if 'border' in img_metas[i]:
+ # offset pixel of the top-left corners between original image
+ # and padded/enlarged image, 'border' is used when exporting
+ # CornerNet and CentripetalNet to onnx
+ x_off = img_metas[i]['border'][2]
+ y_off = img_metas[i]['border'][0]
+ dets[:, [0, 2]] -= x_off
+ dets[:, [1, 3]] -= y_off
+ dets[:, :4] *= (dets[:, :4] > 0).astype(dets.dtype)
+
+ dets_results = bbox2result(dets, labels, len(self.CLASSES))
+
+ if batch_masks is not None:
+ masks = batch_masks[i]
+ img_h, img_w = img_metas[i]['img_shape'][:2]
+ ori_h, ori_w = img_metas[i]['ori_shape'][:2]
+ masks = masks[:, :img_h, :img_w]
+ if rescale:
+ masks = masks.astype(np.float32)
+ masks = torch.from_numpy(masks)
+ masks = torch.nn.functional.interpolate(
+ masks.unsqueeze(0), size=(ori_h, ori_w))
+ masks = masks.squeeze(0).detach().numpy()
+ if masks.dtype != np.bool:
+ masks = masks >= 0.5
+ segms_results = [[] for _ in range(len(self.CLASSES))]
+ for j in range(len(dets)):
+ segms_results[labels[j]].append(masks[j])
+ results.append((dets_results, segms_results))
+ else:
+ results.append(dets_results)
+ return results
+
+
+class ONNXRuntimeDetector(DeployBaseDetector):
+ """Wrapper for detector's inference with ONNXRuntime."""
+
+ def __init__(self, onnx_file, class_names, device_id):
+ super(ONNXRuntimeDetector, self).__init__(class_names, device_id)
+ import onnxruntime as ort
+
+ # get the custom op path
+ ort_custom_op_path = ''
+ try:
+ from mmcv.ops import get_onnxruntime_op_path
+ ort_custom_op_path = get_onnxruntime_op_path()
+ except (ImportError, ModuleNotFoundError):
+ warnings.warn('If input model has custom op from mmcv, \
+ you may have to build mmcv with ONNXRuntime from source.')
+ session_options = ort.SessionOptions()
+ # register custom op for onnxruntime
+ if osp.exists(ort_custom_op_path):
+ session_options.register_custom_ops_library(ort_custom_op_path)
+ sess = ort.InferenceSession(onnx_file, session_options)
+ providers = ['CPUExecutionProvider']
+ options = [{}]
+ is_cuda_available = ort.get_device() == 'GPU'
+ if is_cuda_available:
+ providers.insert(0, 'CUDAExecutionProvider')
+ options.insert(0, {'device_id': device_id})
+
+ sess.set_providers(providers, options)
+
+ self.sess = sess
+ self.io_binding = sess.io_binding()
+ self.output_names = [_.name for _ in sess.get_outputs()]
+ self.is_cuda_available = is_cuda_available
+
+ def forward_test(self, imgs, img_metas, **kwargs):
+ input_data = imgs[0]
+ # set io binding for inputs/outputs
+ device_type = 'cuda' if self.is_cuda_available else 'cpu'
+ if not self.is_cuda_available:
+ input_data = input_data.cpu()
+ self.io_binding.bind_input(
+ name='input',
+ device_type=device_type,
+ device_id=self.device_id,
+ element_type=np.float32,
+ shape=input_data.shape,
+ buffer_ptr=input_data.data_ptr())
+
+ for name in self.output_names:
+ self.io_binding.bind_output(name)
+ # run session to get outputs
+ self.sess.run_with_iobinding(self.io_binding)
+ ort_outputs = self.io_binding.copy_outputs_to_cpu()
+ return ort_outputs
+
+
+class TensorRTDetector(DeployBaseDetector):
+ """Wrapper for detector's inference with TensorRT."""
+
+ def __init__(self, engine_file, class_names, device_id, output_names):
+ super(TensorRTDetector, self).__init__(class_names, device_id)
+ try:
+ from mmcv.tensorrt import TRTWraper
+ except (ImportError, ModuleNotFoundError):
+ raise RuntimeError(
+ 'Please install TensorRT: https://mmcv.readthedocs.io/en/latest/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv' # noqa
+ )
+
+ self.output_names = output_names
+ self.model = TRTWraper(engine_file, ['input'], output_names)
+
+ def forward_test(self, imgs, img_metas, **kwargs):
+ input_data = imgs[0]
+ with torch.cuda.device(self.device_id), torch.no_grad():
+ outputs = self.model({'input': input_data})
+ outputs = [outputs[name] for name in self.output_names]
+ outputs = [out.detach().cpu().numpy() for out in outputs]
+ return outputs
diff --git a/mmdet/core/export/onnx_helper.py b/mmdet/core/export/onnx_helper.py
new file mode 100644
index 00000000..4bab842d
--- /dev/null
+++ b/mmdet/core/export/onnx_helper.py
@@ -0,0 +1,222 @@
+import os
+
+import torch
+
+
+def dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape):
+ """Clip boxes dynamically for onnx.
+
+ Since torch.clamp cannot have dynamic `min` and `max`, we scale the
+ boxes by 1/max_shape and clamp in the range [0, 1].
+
+ Args:
+ x1 (Tensor): The x1 for bounding boxes.
+ y1 (Tensor): The y1 for bounding boxes.
+ x2 (Tensor): The x2 for bounding boxes.
+ y2 (Tensor): The y2 for bounding boxes.
+ max_shape (Tensor or torch.Size): The (H,W) of original image.
+ Returns:
+ tuple(Tensor): The clipped x1, y1, x2, y2.
+ """
+ assert isinstance(
+ max_shape,
+ torch.Tensor), '`max_shape` should be tensor of (h,w) for onnx'
+
+ # scale by 1/max_shape
+ x1 = x1 / max_shape[1]
+ y1 = y1 / max_shape[0]
+ x2 = x2 / max_shape[1]
+ y2 = y2 / max_shape[0]
+
+ # clamp [0, 1]
+ x1 = torch.clamp(x1, 0, 1)
+ y1 = torch.clamp(y1, 0, 1)
+ x2 = torch.clamp(x2, 0, 1)
+ y2 = torch.clamp(y2, 0, 1)
+
+ # scale back
+ x1 = x1 * max_shape[1]
+ y1 = y1 * max_shape[0]
+ x2 = x2 * max_shape[1]
+ y2 = y2 * max_shape[0]
+ return x1, y1, x2, y2
+
+
+def get_k_for_topk(k, size):
+ """Get k of TopK for onnx exporting.
+
+ The K of TopK in TensorRT should not be a Tensor, while in ONNX Runtime
+ it could be a Tensor.Due to dynamic shape feature, we have to decide
+ whether to do TopK and what K it should be while exporting to ONNX.
+ If returned K is less than zero, it means we do not have to do
+ TopK operation.
+
+ Args:
+ k (int or Tensor): The set k value for nms from config file.
+ size (Tensor or torch.Size): The number of elements of \
+ TopK's input tensor
+ Returns:
+ tuple: (int or Tensor): The final K for TopK.
+ """
+ ret_k = -1
+ if k <= 0 or size <= 0:
+ return ret_k
+ if torch.onnx.is_in_onnx_export():
+ is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
+ if is_trt_backend:
+ # TensorRT does not support dynamic K with TopK op
+ if 0 < k < size:
+ ret_k = k
+ else:
+ # Always keep topk op for dynamic input in onnx for ONNX Runtime
+ ret_k = torch.where(k < size, k, size)
+ elif k < size:
+ ret_k = k
+ else:
+ # ret_k is -1
+ pass
+ return ret_k
+
+
+def add_dummy_nms_for_onnx(boxes,
+ scores,
+ max_output_boxes_per_class=1000,
+ iou_threshold=0.5,
+ score_threshold=0.05,
+ pre_top_k=-1,
+ after_top_k=-1,
+ labels=None):
+ """Create a dummy onnx::NonMaxSuppression op while exporting to ONNX.
+
+ This function helps exporting to onnx with batch and multiclass NMS op.
+ It only supports class-agnostic detection results. That is, the scores
+ is of shape (N, num_bboxes, num_classes) and the boxes is of shape
+ (N, num_boxes, 4).
+
+ Args:
+ boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4]
+ scores (Tensor): The detection scores of shape
+ [N, num_boxes, num_classes]
+ max_output_boxes_per_class (int): Maximum number of output
+ boxes per class of nms. Defaults to 1000.
+ iou_threshold (float): IOU threshold of nms. Defaults to 0.5
+ score_threshold (float): score threshold of nms.
+ Defaults to 0.05.
+ pre_top_k (bool): Number of top K boxes to keep before nms.
+ Defaults to -1.
+ after_top_k (int): Number of top K boxes to keep after nms.
+ Defaults to -1.
+ labels (Tensor, optional): It not None, explicit labels would be used.
+ Otherwise, labels would be automatically generated using
+ num_classed. Defaults to None.
+
+ Returns:
+ tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] and class labels
+ of shape [N, num_det].
+ """
+ max_output_boxes_per_class = torch.LongTensor([max_output_boxes_per_class])
+ iou_threshold = torch.tensor([iou_threshold], dtype=torch.float32)
+ score_threshold = torch.tensor([score_threshold], dtype=torch.float32)
+ batch_size = scores.shape[0]
+ num_class = scores.shape[2]
+
+ nms_pre = torch.tensor(pre_top_k, device=scores.device, dtype=torch.long)
+ nms_pre = get_k_for_topk(nms_pre, boxes.shape[1])
+
+ if nms_pre > 0:
+ max_scores, _ = scores.max(-1)
+ _, topk_inds = max_scores.topk(nms_pre)
+ batch_inds = torch.arange(batch_size).view(
+ -1, 1).expand_as(topk_inds).long()
+ # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
+ transformed_inds = boxes.shape[1] * batch_inds + topk_inds
+ boxes = boxes.reshape(-1, 4)[transformed_inds, :].reshape(
+ batch_size, -1, 4)
+ scores = scores.reshape(-1, num_class)[transformed_inds, :].reshape(
+ batch_size, -1, num_class)
+ if labels is not None:
+ labels = labels.reshape(-1, 1)[transformed_inds].reshape(
+ batch_size, -1)
+
+ scores = scores.permute(0, 2, 1)
+ num_box = boxes.shape[1]
+ # turn off tracing to create a dummy output of nms
+ state = torch._C._get_tracing_state()
+ # dummy indices of nms's output
+ num_fake_det = 2
+ batch_inds = torch.randint(batch_size, (num_fake_det, 1))
+ cls_inds = torch.randint(num_class, (num_fake_det, 1))
+ box_inds = torch.randint(num_box, (num_fake_det, 1))
+ indices = torch.cat([batch_inds, cls_inds, box_inds], dim=1)
+ output = indices
+ setattr(DummyONNXNMSop, 'output', output)
+
+ # open tracing
+ torch._C._set_tracing_state(state)
+ selected_indices = DummyONNXNMSop.apply(boxes, scores,
+ max_output_boxes_per_class,
+ iou_threshold, score_threshold)
+
+ batch_inds, cls_inds = selected_indices[:, 0], selected_indices[:, 1]
+ box_inds = selected_indices[:, 2]
+ if labels is None:
+ labels = torch.arange(num_class, dtype=torch.long).to(scores.device)
+ labels = labels.view(1, num_class, 1).expand_as(scores)
+ scores = scores.reshape(-1, 1)
+ boxes = boxes.reshape(batch_size, -1).repeat(1, num_class).reshape(-1, 4)
+ pos_inds = (num_class * batch_inds + cls_inds) * num_box + box_inds
+ mask = scores.new_zeros(scores.shape)
+ # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
+ # PyTorch style code: mask[batch_inds, box_inds] += 1
+ mask[pos_inds, :] += 1
+ scores = scores * mask
+ boxes = boxes * mask
+
+ scores = scores.reshape(batch_size, -1)
+ boxes = boxes.reshape(batch_size, -1, 4)
+ labels = labels.reshape(batch_size, -1)
+
+ nms_after = torch.tensor(
+ after_top_k, device=scores.device, dtype=torch.long)
+ nms_after = get_k_for_topk(nms_after, num_box * num_class)
+
+ if nms_after > 0:
+ _, topk_inds = scores.topk(nms_after)
+ batch_inds = torch.arange(batch_size).view(-1, 1).expand_as(topk_inds)
+ # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
+ transformed_inds = scores.shape[1] * batch_inds + topk_inds
+ scores = scores.reshape(-1, 1)[transformed_inds, :].reshape(
+ batch_size, -1)
+ boxes = boxes.reshape(-1, 4)[transformed_inds, :].reshape(
+ batch_size, -1, 4)
+ labels = labels.reshape(-1, 1)[transformed_inds, :].reshape(
+ batch_size, -1)
+
+ scores = scores.unsqueeze(2)
+ dets = torch.cat([boxes, scores], dim=2)
+ return dets, labels
+
+
+class DummyONNXNMSop(torch.autograd.Function):
+ """DummyONNXNMSop.
+
+ This class is only for creating onnx::NonMaxSuppression.
+ """
+
+ @staticmethod
+ def forward(ctx, boxes, scores, max_output_boxes_per_class, iou_threshold,
+ score_threshold):
+
+ return DummyONNXNMSop.output
+
+ @staticmethod
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold,
+ score_threshold):
+ return g.op(
+ 'NonMaxSuppression',
+ boxes,
+ scores,
+ max_output_boxes_per_class,
+ iou_threshold,
+ score_threshold,
+ outputs=1)
diff --git a/mmdet/core/export/pytorch2onnx.py b/mmdet/core/export/pytorch2onnx.py
new file mode 100644
index 00000000..40f5ed6d
--- /dev/null
+++ b/mmdet/core/export/pytorch2onnx.py
@@ -0,0 +1,154 @@
+from functools import partial
+
+import mmcv
+import numpy as np
+import torch
+from mmcv.runner import load_checkpoint
+
+
+def generate_inputs_and_wrap_model(config_path,
+ checkpoint_path,
+ input_config,
+ cfg_options=None):
+ """Prepare sample input and wrap model for ONNX export.
+
+ The ONNX export API only accept args, and all inputs should be
+ torch.Tensor or corresponding types (such as tuple of tensor).
+ So we should call this function before exporting. This function will:
+
+ 1. generate corresponding inputs which are used to execute the model.
+ 2. Wrap the model's forward function.
+
+ For example, the MMDet models' forward function has a parameter
+ ``return_loss:bool``. As we want to set it as False while export API
+ supports neither bool type or kwargs. So we have to replace the forward
+ like: ``model.forward = partial(model.forward, return_loss=False)``
+
+ Args:
+ config_path (str): the OpenMMLab config for the model we want to
+ export to ONNX
+ checkpoint_path (str): Path to the corresponding checkpoint
+ input_config (dict): the exactly data in this dict depends on the
+ framework. For MMSeg, we can just declare the input shape,
+ and generate the dummy data accordingly. However, for MMDet,
+ we may pass the real img path, or the NMS will return None
+ as there is no legal bbox.
+
+ Returns:
+ tuple: (model, tensor_data) wrapped model which can be called by \
+ model(*tensor_data) and a list of inputs which are used to execute \
+ the model while exporting.
+ """
+
+ model = build_model_from_cfg(
+ config_path, checkpoint_path, cfg_options=cfg_options)
+ one_img, one_meta = preprocess_example_input(input_config)
+ tensor_data = [one_img]
+ model.forward = partial(
+ model.forward, img_metas=[[one_meta]], return_loss=False)
+
+ # pytorch has some bug in pytorch1.3, we have to fix it
+ # by replacing these existing op
+ opset_version = 11
+ # put the import within the function thus it will not cause import error
+ # when not using this function
+ try:
+ from mmcv.onnx.symbolic import register_extra_symbolics
+ except ModuleNotFoundError:
+ raise NotImplementedError('please update mmcv to version>=v1.0.4')
+ register_extra_symbolics(opset_version)
+
+ return model, tensor_data
+
+
+def build_model_from_cfg(config_path, checkpoint_path, cfg_options=None):
+ """Build a model from config and load the given checkpoint.
+
+ Args:
+ config_path (str): the OpenMMLab config for the model we want to
+ export to ONNX
+ checkpoint_path (str): Path to the corresponding checkpoint
+
+ Returns:
+ torch.nn.Module: the built model
+ """
+ from mmdet.models import build_detector
+
+ cfg = mmcv.Config.fromfile(config_path)
+ if cfg_options is not None:
+ cfg.merge_from_dict(cfg_options)
+ # import modules from string list.
+ if cfg.get('custom_imports', None):
+ from mmcv.utils import import_modules_from_strings
+ import_modules_from_strings(**cfg['custom_imports'])
+ # set cudnn_benchmark
+ if cfg.get('cudnn_benchmark', False):
+ torch.backends.cudnn.benchmark = True
+ cfg.model.pretrained = None
+ cfg.data.test.test_mode = True
+
+ # build the model
+ cfg.model.train_cfg = None
+ model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
+ load_checkpoint(model, checkpoint_path, map_location='cpu')
+ model.cpu().eval()
+ return model
+
+
+def preprocess_example_input(input_config):
+ """Prepare an example input image for ``generate_inputs_and_wrap_model``.
+
+ Args:
+ input_config (dict): customized config describing the example input.
+
+ Returns:
+ tuple: (one_img, one_meta), tensor of the example input image and \
+ meta information for the example input image.
+
+ Examples:
+ >>> from mmdet.core.export import preprocess_example_input
+ >>> input_config = {
+ >>> 'input_shape': (1,3,224,224),
+ >>> 'input_path': 'demo/demo.jpg',
+ >>> 'normalize_cfg': {
+ >>> 'mean': (123.675, 116.28, 103.53),
+ >>> 'std': (58.395, 57.12, 57.375)
+ >>> }
+ >>> }
+ >>> one_img, one_meta = preprocess_example_input(input_config)
+ >>> print(one_img.shape)
+ torch.Size([1, 3, 224, 224])
+ >>> print(one_meta)
+ {'img_shape': (224, 224, 3),
+ 'ori_shape': (224, 224, 3),
+ 'pad_shape': (224, 224, 3),
+ 'filename': '.png',
+ 'scale_factor': 1.0,
+ 'flip': False}
+ """
+ input_path = input_config['input_path']
+ input_shape = input_config['input_shape']
+ one_img = mmcv.imread(input_path)
+ one_img = mmcv.imresize(one_img, input_shape[2:][::-1])
+ show_img = one_img.copy()
+ if 'normalize_cfg' in input_config.keys():
+ normalize_cfg = input_config['normalize_cfg']
+ mean = np.array(normalize_cfg['mean'], dtype=np.float32)
+ std = np.array(normalize_cfg['std'], dtype=np.float32)
+ to_rgb = normalize_cfg.get('to_rgb', True)
+ one_img = mmcv.imnormalize(one_img, mean, std, to_rgb=to_rgb)
+ one_img = one_img.transpose(2, 0, 1)
+ one_img = torch.from_numpy(one_img).unsqueeze(0).float().requires_grad_(
+ True)
+ (_, C, H, W) = input_shape
+ one_meta = {
+ 'img_shape': (H, W, C),
+ 'ori_shape': (H, W, C),
+ 'pad_shape': (H, W, C),
+ 'filename': '.png',
+ 'scale_factor': np.ones(4),
+ 'flip': False,
+ 'show_img': show_img,
+ }
+
+ return one_img, one_meta
diff --git a/mmdet/core/mask/__init__.py b/mmdet/core/mask/__init__.py
new file mode 100644
index 00000000..ab1e88bc
--- /dev/null
+++ b/mmdet/core/mask/__init__.py
@@ -0,0 +1,8 @@
+from .mask_target import mask_target
+from .structures import BaseInstanceMasks, BitmapMasks, PolygonMasks
+from .utils import encode_mask_results, split_combined_polys
+
+__all__ = [
+ 'split_combined_polys', 'mask_target', 'BaseInstanceMasks', 'BitmapMasks',
+ 'PolygonMasks', 'encode_mask_results'
+]
diff --git a/mmdet/core/mask/mask_target.py b/mmdet/core/mask/mask_target.py
new file mode 100644
index 00000000..cfccd77c
--- /dev/null
+++ b/mmdet/core/mask/mask_target.py
@@ -0,0 +1,126 @@
+import numpy as np
+import torch
+from torch.nn.modules.utils import _pair
+
+
+def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list,
+ cfg):
+ """Compute mask target for positive proposals in multiple images.
+
+ Args:
+ pos_proposals_list (list[Tensor]): Positive proposals in multiple
+ images.
+ pos_assigned_gt_inds_list (list[Tensor]): Assigned GT indices for each
+ positive proposals.
+ gt_masks_list (list[:obj:`BaseInstanceMasks`]): Ground truth masks of
+ each image.
+ cfg (dict): Config dict that specifies the mask size.
+
+ Returns:
+ list[Tensor]: Mask target of each image.
+
+ Example:
+ >>> import mmcv
+ >>> import mmdet
+ >>> from mmdet.core.mask import BitmapMasks
+ >>> from mmdet.core.mask.mask_target import *
+ >>> H, W = 17, 18
+ >>> cfg = mmcv.Config({'mask_size': (13, 14)})
+ >>> rng = np.random.RandomState(0)
+ >>> # Positive proposals (tl_x, tl_y, br_x, br_y) for each image
+ >>> pos_proposals_list = [
+ >>> torch.Tensor([
+ >>> [ 7.2425, 5.5929, 13.9414, 14.9541],
+ >>> [ 7.3241, 3.6170, 16.3850, 15.3102],
+ >>> ]),
+ >>> torch.Tensor([
+ >>> [ 4.8448, 6.4010, 7.0314, 9.7681],
+ >>> [ 5.9790, 2.6989, 7.4416, 4.8580],
+ >>> [ 0.0000, 0.0000, 0.1398, 9.8232],
+ >>> ]),
+ >>> ]
+ >>> # Corresponding class index for each proposal for each image
+ >>> pos_assigned_gt_inds_list = [
+ >>> torch.LongTensor([7, 0]),
+ >>> torch.LongTensor([5, 4, 1]),
+ >>> ]
+ >>> # Ground truth mask for each true object for each image
+ >>> gt_masks_list = [
+ >>> BitmapMasks(rng.rand(8, H, W), height=H, width=W),
+ >>> BitmapMasks(rng.rand(6, H, W), height=H, width=W),
+ >>> ]
+ >>> mask_targets = mask_target(
+ >>> pos_proposals_list, pos_assigned_gt_inds_list,
+ >>> gt_masks_list, cfg)
+ >>> assert mask_targets.shape == (5,) + cfg['mask_size']
+ """
+ cfg_list = [cfg for _ in range(len(pos_proposals_list))]
+ mask_targets = map(mask_target_single, pos_proposals_list,
+ pos_assigned_gt_inds_list, gt_masks_list, cfg_list)
+ mask_targets = list(mask_targets)
+ if len(mask_targets) > 0:
+ mask_targets = torch.cat(mask_targets)
+ return mask_targets
+
+
+def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
+ """Compute mask target for each positive proposal in the image.
+
+ Args:
+ pos_proposals (Tensor): Positive proposals.
+ pos_assigned_gt_inds (Tensor): Assigned GT inds of positive proposals.
+ gt_masks (:obj:`BaseInstanceMasks`): GT masks in the format of Bitmap
+ or Polygon.
+ cfg (dict): Config dict that indicate the mask size.
+
+ Returns:
+ Tensor: Mask target of each positive proposals in the image.
+
+ Example:
+ >>> import mmcv
+ >>> import mmdet
+ >>> from mmdet.core.mask import BitmapMasks
+ >>> from mmdet.core.mask.mask_target import * # NOQA
+ >>> H, W = 32, 32
+ >>> cfg = mmcv.Config({'mask_size': (7, 11)})
+ >>> rng = np.random.RandomState(0)
+ >>> # Masks for each ground truth box (relative to the image)
+ >>> gt_masks_data = rng.rand(3, H, W)
+ >>> gt_masks = BitmapMasks(gt_masks_data, height=H, width=W)
+ >>> # Predicted positive boxes in one image
+ >>> pos_proposals = torch.FloatTensor([
+ >>> [ 16.2, 5.5, 19.9, 20.9],
+ >>> [ 17.3, 13.6, 19.3, 19.3],
+ >>> [ 14.8, 16.4, 17.0, 23.7],
+ >>> [ 0.0, 0.0, 16.0, 16.0],
+ >>> [ 4.0, 0.0, 20.0, 16.0],
+ >>> ])
+ >>> # For each predicted proposal, its assignment to a gt mask
+ >>> pos_assigned_gt_inds = torch.LongTensor([0, 1, 2, 1, 1])
+ >>> mask_targets = mask_target_single(
+ >>> pos_proposals, pos_assigned_gt_inds, gt_masks, cfg)
+ >>> assert mask_targets.shape == (5,) + cfg['mask_size']
+ """
+ device = pos_proposals.device
+ mask_size = _pair(cfg.mask_size)
+ binarize = not cfg.get('soft_mask_target', False)
+ num_pos = pos_proposals.size(0)
+ if num_pos > 0:
+ proposals_np = pos_proposals.cpu().numpy()
+ maxh, maxw = gt_masks.height, gt_masks.width
+ proposals_np[:, [0, 2]] = np.clip(proposals_np[:, [0, 2]], 0, maxw)
+ proposals_np[:, [1, 3]] = np.clip(proposals_np[:, [1, 3]], 0, maxh)
+ pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
+
+ mask_targets = gt_masks.crop_and_resize(
+ proposals_np,
+ mask_size,
+ device=device,
+ inds=pos_assigned_gt_inds,
+ binarize=binarize).to_ndarray()
+
+ mask_targets = torch.from_numpy(mask_targets).float().to(device)
+ else:
+ mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
+
+ return mask_targets
diff --git a/mmdet/core/mask/structures.py b/mmdet/core/mask/structures.py
new file mode 100644
index 00000000..6f5a62ae
--- /dev/null
+++ b/mmdet/core/mask/structures.py
@@ -0,0 +1,1037 @@
+from abc import ABCMeta, abstractmethod
+
+import cv2
+import mmcv
+import numpy as np
+import pycocotools.mask as maskUtils
+import torch
+from mmcv.ops.roi_align import roi_align
+
+
+class BaseInstanceMasks(metaclass=ABCMeta):
+ """Base class for instance masks."""
+
+ @abstractmethod
+ def rescale(self, scale, interpolation='nearest'):
+ """Rescale masks as large as possible while keeping the aspect ratio.
+ For details can refer to `mmcv.imrescale`.
+
+ Args:
+ scale (tuple[int]): The maximum size (h, w) of rescaled mask.
+ interpolation (str): Same as :func:`mmcv.imrescale`.
+
+ Returns:
+ BaseInstanceMasks: The rescaled masks.
+ """
+
+ @abstractmethod
+ def resize(self, out_shape, interpolation='nearest'):
+ """Resize masks to the given out_shape.
+
+ Args:
+ out_shape: Target (h, w) of resized mask.
+ interpolation (str): See :func:`mmcv.imresize`.
+
+ Returns:
+ BaseInstanceMasks: The resized masks.
+ """
+
+ @abstractmethod
+ def flip(self, flip_direction='horizontal'):
+ """Flip masks alone the given direction.
+
+ Args:
+ flip_direction (str): Either 'horizontal' or 'vertical'.
+
+ Returns:
+ BaseInstanceMasks: The flipped masks.
+ """
+
+ @abstractmethod
+ def pad(self, out_shape, pad_val):
+ """Pad masks to the given size of (h, w).
+
+ Args:
+ out_shape (tuple[int]): Target (h, w) of padded mask.
+ pad_val (int): The padded value.
+
+ Returns:
+ BaseInstanceMasks: The padded masks.
+ """
+
+ @abstractmethod
+ def crop(self, bbox):
+ """Crop each mask by the given bbox.
+
+ Args:
+ bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ).
+
+ Return:
+ BaseInstanceMasks: The cropped masks.
+ """
+
+ @abstractmethod
+ def crop_and_resize(self,
+ bboxes,
+ out_shape,
+ inds,
+ device,
+ interpolation='bilinear',
+ binarize=True):
+ """Crop and resize masks by the given bboxes.
+
+ This function is mainly used in mask targets computation.
+ It firstly align mask to bboxes by assigned_inds, then crop mask by the
+ assigned bbox and resize to the size of (mask_h, mask_w)
+
+ Args:
+ bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
+ out_shape (tuple[int]): Target (h, w) of resized mask
+ inds (ndarray): Indexes to assign masks to each bbox,
+ shape (N,) and values should be between [0, num_masks - 1].
+ device (str): Device of bboxes
+ interpolation (str): See `mmcv.imresize`
+ binarize (bool): if True fractional values are rounded to 0 or 1
+ after the resize operation. if False and unsupported an error
+ will be raised. Defaults to True.
+
+ Return:
+ BaseInstanceMasks: the cropped and resized masks.
+ """
+
+ @abstractmethod
+ def expand(self, expanded_h, expanded_w, top, left):
+ """see :class:`Expand`."""
+
+ @property
+ @abstractmethod
+ def areas(self):
+ """ndarray: areas of each instance."""
+
+ @abstractmethod
+ def to_ndarray(self):
+ """Convert masks to the format of ndarray.
+
+ Return:
+ ndarray: Converted masks in the format of ndarray.
+ """
+
+ @abstractmethod
+ def to_tensor(self, dtype, device):
+ """Convert masks to the format of Tensor.
+
+ Args:
+ dtype (str): Dtype of converted mask.
+ device (torch.device): Device of converted masks.
+
+ Returns:
+ Tensor: Converted masks in the format of Tensor.
+ """
+
+ @abstractmethod
+ def translate(self,
+ out_shape,
+ offset,
+ direction='horizontal',
+ fill_val=0,
+ interpolation='bilinear'):
+ """Translate the masks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ offset (int | float): The offset for translate.
+ direction (str): The translate direction, either "horizontal"
+ or "vertical".
+ fill_val (int | float): Border value. Default 0.
+ interpolation (str): Same as :func:`mmcv.imtranslate`.
+
+ Returns:
+ Translated masks.
+ """
+
+ def shear(self,
+ out_shape,
+ magnitude,
+ direction='horizontal',
+ border_value=0,
+ interpolation='bilinear'):
+ """Shear the masks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ magnitude (int | float): The magnitude used for shear.
+ direction (str): The shear direction, either "horizontal"
+ or "vertical".
+ border_value (int | tuple[int]): Value used in case of a
+ constant border. Default 0.
+ interpolation (str): Same as in :func:`mmcv.imshear`.
+
+ Returns:
+ ndarray: Sheared masks.
+ """
+
+ @abstractmethod
+ def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
+ """Rotate the masks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ angle (int | float): Rotation angle in degrees. Positive values
+ mean counter-clockwise rotation.
+ center (tuple[float], optional): Center point (w, h) of the
+ rotation in source image. If not specified, the center of
+ the image will be used.
+ scale (int | float): Isotropic scale factor.
+ fill_val (int | float): Border value. Default 0 for masks.
+
+ Returns:
+ Rotated masks.
+ """
+
+
+class BitmapMasks(BaseInstanceMasks):
+ """This class represents masks in the form of bitmaps.
+
+ Args:
+ masks (ndarray): ndarray of masks in shape (N, H, W), where N is
+ the number of objects.
+ height (int): height of masks
+ width (int): width of masks
+
+ Example:
+ >>> from mmdet.core.mask.structures import * # NOQA
+ >>> num_masks, H, W = 3, 32, 32
+ >>> rng = np.random.RandomState(0)
+ >>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int)
+ >>> self = BitmapMasks(masks, height=H, width=W)
+
+ >>> # demo crop_and_resize
+ >>> num_boxes = 5
+ >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes)
+ >>> out_shape = (14, 14)
+ >>> inds = torch.randint(0, len(self), size=(num_boxes,))
+ >>> device = 'cpu'
+ >>> interpolation = 'bilinear'
+ >>> new = self.crop_and_resize(
+ ... bboxes, out_shape, inds, device, interpolation)
+ >>> assert len(new) == num_boxes
+ >>> assert new.height, new.width == out_shape
+ """
+
+ def __init__(self, masks, height, width):
+ self.height = height
+ self.width = width
+ if len(masks) == 0:
+ self.masks = np.empty((0, self.height, self.width), dtype=np.uint8)
+ else:
+ assert isinstance(masks, (list, np.ndarray))
+ if isinstance(masks, list):
+ assert isinstance(masks[0], np.ndarray)
+ assert masks[0].ndim == 2 # (H, W)
+ else:
+ assert masks.ndim == 3 # (N, H, W)
+
+ self.masks = np.stack(masks).reshape(-1, height, width)
+ assert self.masks.shape[1] == self.height
+ assert self.masks.shape[2] == self.width
+
+ def __getitem__(self, index):
+ """Index the BitmapMask.
+
+ Args:
+ index (int | ndarray): Indices in the format of integer or ndarray.
+
+ Returns:
+ :obj:`BitmapMasks`: Indexed bitmap masks.
+ """
+ masks = self.masks[index].reshape(-1, self.height, self.width)
+ return BitmapMasks(masks, self.height, self.width)
+
+ def __iter__(self):
+ return iter(self.masks)
+
+ def __repr__(self):
+ s = self.__class__.__name__ + '('
+ s += f'num_masks={len(self.masks)}, '
+ s += f'height={self.height}, '
+ s += f'width={self.width})'
+ return s
+
+ def __len__(self):
+ """Number of masks."""
+ return len(self.masks)
+
+ def rescale(self, scale, interpolation='nearest'):
+ """See :func:`BaseInstanceMasks.rescale`."""
+ if len(self.masks) == 0:
+ new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
+ rescaled_masks = np.empty((0, new_h, new_w), dtype=np.uint8)
+ else:
+ rescaled_masks = np.stack([
+ mmcv.imrescale(mask, scale, interpolation=interpolation)
+ for mask in self.masks
+ ])
+ height, width = rescaled_masks.shape[1:]
+ return BitmapMasks(rescaled_masks, height, width)
+
+ def resize(self, out_shape, interpolation='nearest'):
+ """See :func:`BaseInstanceMasks.resize`."""
+ if len(self.masks) == 0:
+ resized_masks = np.empty((0, *out_shape), dtype=np.uint8)
+ else:
+ resized_masks = np.stack([
+ mmcv.imresize(
+ mask, out_shape[::-1], interpolation=interpolation)
+ for mask in self.masks
+ ])
+ return BitmapMasks(resized_masks, *out_shape)
+
+ def flip(self, flip_direction='horizontal'):
+ """See :func:`BaseInstanceMasks.flip`."""
+ assert flip_direction in ('horizontal', 'vertical', 'diagonal')
+
+ if len(self.masks) == 0:
+ flipped_masks = self.masks
+ else:
+ flipped_masks = np.stack([
+ mmcv.imflip(mask, direction=flip_direction)
+ for mask in self.masks
+ ])
+ return BitmapMasks(flipped_masks, self.height, self.width)
+
+ def pad(self, out_shape, pad_val=0):
+ """See :func:`BaseInstanceMasks.pad`."""
+ if len(self.masks) == 0:
+ padded_masks = np.empty((0, *out_shape), dtype=np.uint8)
+ else:
+ padded_masks = np.stack([
+ mmcv.impad(mask, shape=out_shape, pad_val=pad_val)
+ for mask in self.masks
+ ])
+ return BitmapMasks(padded_masks, *out_shape)
+
+ def crop(self, bbox):
+ """See :func:`BaseInstanceMasks.crop`."""
+ assert isinstance(bbox, np.ndarray)
+ assert bbox.ndim == 1
+
+ # clip the boundary
+ bbox = bbox.copy()
+ bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
+ bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
+ x1, y1, x2, y2 = bbox
+ w = np.maximum(x2 - x1, 1)
+ h = np.maximum(y2 - y1, 1)
+
+ if len(self.masks) == 0:
+ cropped_masks = np.empty((0, h, w), dtype=np.uint8)
+ else:
+ cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w]
+ return BitmapMasks(cropped_masks, h, w)
+
+ def crop_and_resize(self,
+ bboxes,
+ out_shape,
+ inds,
+ device='cpu',
+ interpolation='bilinear',
+ binarize=True):
+ """See :func:`BaseInstanceMasks.crop_and_resize`."""
+ if len(self.masks) == 0:
+ empty_masks = np.empty((0, *out_shape), dtype=np.uint8)
+ return BitmapMasks(empty_masks, *out_shape)
+
+ # convert bboxes to tensor
+ if isinstance(bboxes, np.ndarray):
+ bboxes = torch.from_numpy(bboxes).to(device=device)
+ if isinstance(inds, np.ndarray):
+ inds = torch.from_numpy(inds).to(device=device)
+
+ num_bbox = bboxes.shape[0]
+ fake_inds = torch.arange(
+ num_bbox, device=device).to(dtype=bboxes.dtype)[:, None]
+ rois = torch.cat([fake_inds, bboxes], dim=1) # Nx5
+ rois = rois.to(device=device)
+ if num_bbox > 0:
+ gt_masks_th = torch.from_numpy(self.masks).to(device).index_select(
+ 0, inds).to(dtype=rois.dtype)
+ targets = roi_align(gt_masks_th[:, None, :, :], rois, out_shape,
+ 1.0, 0, 'avg', True).squeeze(1)
+ if binarize:
+ resized_masks = (targets >= 0.5).cpu().numpy()
+ else:
+ resized_masks = targets.cpu().numpy()
+ else:
+ resized_masks = []
+ return BitmapMasks(resized_masks, *out_shape)
+
+ def expand(self, expanded_h, expanded_w, top, left):
+ """See :func:`BaseInstanceMasks.expand`."""
+ if len(self.masks) == 0:
+ expanded_mask = np.empty((0, expanded_h, expanded_w),
+ dtype=np.uint8)
+ else:
+ expanded_mask = np.zeros((len(self), expanded_h, expanded_w),
+ dtype=np.uint8)
+ expanded_mask[:, top:top + self.height,
+ left:left + self.width] = self.masks
+ return BitmapMasks(expanded_mask, expanded_h, expanded_w)
+
+ def translate(self,
+ out_shape,
+ offset,
+ direction='horizontal',
+ fill_val=0,
+ interpolation='bilinear'):
+ """Translate the BitmapMasks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ offset (int | float): The offset for translate.
+ direction (str): The translate direction, either "horizontal"
+ or "vertical".
+ fill_val (int | float): Border value. Default 0 for masks.
+ interpolation (str): Same as :func:`mmcv.imtranslate`.
+
+ Returns:
+ BitmapMasks: Translated BitmapMasks.
+
+ Example:
+ >>> from mmdet.core.mask.structures import BitmapMasks
+ >>> self = BitmapMasks.random(dtype=np.uint8)
+ >>> out_shape = (32, 32)
+ >>> offset = 4
+ >>> direction = 'horizontal'
+ >>> fill_val = 0
+ >>> interpolation = 'bilinear'
+ >>> # Note, There seem to be issues when:
+ >>> # * out_shape is different than self's shape
+ >>> # * the mask dtype is not supported by cv2.AffineWarp
+ >>> new = self.translate(out_shape, offset, direction, fill_val,
+ >>> interpolation)
+ >>> assert len(new) == len(self)
+ >>> assert new.height, new.width == out_shape
+ """
+ if len(self.masks) == 0:
+ translated_masks = np.empty((0, *out_shape), dtype=np.uint8)
+ else:
+ translated_masks = mmcv.imtranslate(
+ self.masks.transpose((1, 2, 0)),
+ offset,
+ direction,
+ border_value=fill_val,
+ interpolation=interpolation)
+ if translated_masks.ndim == 2:
+ translated_masks = translated_masks[:, :, None]
+ translated_masks = translated_masks.transpose(
+ (2, 0, 1)).astype(self.masks.dtype)
+ return BitmapMasks(translated_masks, *out_shape)
+
+ def shear(self,
+ out_shape,
+ magnitude,
+ direction='horizontal',
+ border_value=0,
+ interpolation='bilinear'):
+ """Shear the BitmapMasks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ magnitude (int | float): The magnitude used for shear.
+ direction (str): The shear direction, either "horizontal"
+ or "vertical".
+ border_value (int | tuple[int]): Value used in case of a
+ constant border.
+ interpolation (str): Same as in :func:`mmcv.imshear`.
+
+ Returns:
+ BitmapMasks: The sheared masks.
+ """
+ if len(self.masks) == 0:
+ sheared_masks = np.empty((0, *out_shape), dtype=np.uint8)
+ else:
+ sheared_masks = mmcv.imshear(
+ self.masks.transpose((1, 2, 0)),
+ magnitude,
+ direction,
+ border_value=border_value,
+ interpolation=interpolation)
+ if sheared_masks.ndim == 2:
+ sheared_masks = sheared_masks[:, :, None]
+ sheared_masks = sheared_masks.transpose(
+ (2, 0, 1)).astype(self.masks.dtype)
+ return BitmapMasks(sheared_masks, *out_shape)
+
+ def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
+ """Rotate the BitmapMasks.
+
+ Args:
+ out_shape (tuple[int]): Shape for output mask, format (h, w).
+ angle (int | float): Rotation angle in degrees. Positive values
+ mean counter-clockwise rotation.
+ center (tuple[float], optional): Center point (w, h) of the
+ rotation in source image. If not specified, the center of
+ the image will be used.
+ scale (int | float): Isotropic scale factor.
+ fill_val (int | float): Border value. Default 0 for masks.
+
+ Returns:
+ BitmapMasks: Rotated BitmapMasks.
+ """
+ if len(self.masks) == 0:
+ rotated_masks = np.empty((0, *out_shape), dtype=self.masks.dtype)
+ else:
+ rotated_masks = mmcv.imrotate(
+ self.masks.transpose((1, 2, 0)),
+ angle,
+ center=center,
+ scale=scale,
+ border_value=fill_val)
+ if rotated_masks.ndim == 2:
+ # case when only one mask, (h, w)
+ rotated_masks = rotated_masks[:, :, None] # (h, w, 1)
+ rotated_masks = rotated_masks.transpose(
+ (2, 0, 1)).astype(self.masks.dtype)
+ return BitmapMasks(rotated_masks, *out_shape)
+
+ @property
+ def areas(self):
+ """See :py:attr:`BaseInstanceMasks.areas`."""
+ return self.masks.sum((1, 2))
+
+ def to_ndarray(self):
+ """See :func:`BaseInstanceMasks.to_ndarray`."""
+ return self.masks
+
+ def to_tensor(self, dtype, device):
+ """See :func:`BaseInstanceMasks.to_tensor`."""
+ return torch.tensor(self.masks, dtype=dtype, device=device)
+
+ @classmethod
+ def random(cls,
+ num_masks=3,
+ height=32,
+ width=32,
+ dtype=np.uint8,
+ rng=None):
+ """Generate random bitmap masks for demo / testing purposes.
+
+ Example:
+ >>> from mmdet.core.mask.structures import BitmapMasks
+ >>> self = BitmapMasks.random()
+ >>> print('self = {}'.format(self))
+ self = BitmapMasks(num_masks=3, height=32, width=32)
+ """
+ from mmdet.utils.util_random import ensure_rng
+ rng = ensure_rng(rng)
+ masks = (rng.rand(num_masks, height, width) > 0.1).astype(dtype)
+ self = cls(masks, height=height, width=width)
+ return self
+
+
+class PolygonMasks(BaseInstanceMasks):
+ """This class represents masks in the form of polygons.
+
+ Polygons is a list of three levels. The first level of the list
+ corresponds to objects, the second level to the polys that compose the
+ object, the third level to the poly coordinates
+
+ Args:
+ masks (list[list[ndarray]]): The first level of the list
+ corresponds to objects, the second level to the polys that
+ compose the object, the third level to the poly coordinates
+ height (int): height of masks
+ width (int): width of masks
+
+ Example:
+ >>> from mmdet.core.mask.structures import * # NOQA
+ >>> masks = [
+ >>> [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ]
+ >>> ]
+ >>> height, width = 16, 16
+ >>> self = PolygonMasks(masks, height, width)
+
+ >>> # demo translate
+ >>> new = self.translate((16, 16), 4., direction='horizontal')
+ >>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2])
+ >>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4)
+
+ >>> # demo crop_and_resize
+ >>> num_boxes = 3
+ >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes)
+ >>> out_shape = (16, 16)
+ >>> inds = torch.randint(0, len(self), size=(num_boxes,))
+ >>> device = 'cpu'
+ >>> interpolation = 'bilinear'
+ >>> new = self.crop_and_resize(
+ ... bboxes, out_shape, inds, device, interpolation)
+ >>> assert len(new) == num_boxes
+ >>> assert new.height, new.width == out_shape
+ """
+
+ def __init__(self, masks, height, width):
+ assert isinstance(masks, list)
+ if len(masks) > 0:
+ assert isinstance(masks[0], list)
+ assert isinstance(masks[0][0], np.ndarray)
+
+ self.height = height
+ self.width = width
+ self.masks = masks
+
+ def __getitem__(self, index):
+ """Index the polygon masks.
+
+ Args:
+ index (ndarray | List): The indices.
+
+ Returns:
+ :obj:`PolygonMasks`: The indexed polygon masks.
+ """
+ if isinstance(index, np.ndarray):
+ index = index.tolist()
+ if isinstance(index, list):
+ masks = [self.masks[i] for i in index]
+ else:
+ try:
+ masks = self.masks[index]
+ except Exception:
+ raise ValueError(
+ f'Unsupported input of type {type(index)} for indexing!')
+ if len(masks) and isinstance(masks[0], np.ndarray):
+ masks = [masks] # ensure a list of three levels
+ return PolygonMasks(masks, self.height, self.width)
+
+ def __iter__(self):
+ return iter(self.masks)
+
+ def __repr__(self):
+ s = self.__class__.__name__ + '('
+ s += f'num_masks={len(self.masks)}, '
+ s += f'height={self.height}, '
+ s += f'width={self.width})'
+ return s
+
+ def __len__(self):
+ """Number of masks."""
+ return len(self.masks)
+
+ def rescale(self, scale, interpolation=None):
+ """see :func:`BaseInstanceMasks.rescale`"""
+ new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
+ if len(self.masks) == 0:
+ rescaled_masks = PolygonMasks([], new_h, new_w)
+ else:
+ rescaled_masks = self.resize((new_h, new_w))
+ return rescaled_masks
+
+ def resize(self, out_shape, interpolation=None):
+ """see :func:`BaseInstanceMasks.resize`"""
+ if len(self.masks) == 0:
+ resized_masks = PolygonMasks([], *out_shape)
+ else:
+ h_scale = out_shape[0] / self.height
+ w_scale = out_shape[1] / self.width
+ resized_masks = []
+ for poly_per_obj in self.masks:
+ resized_poly = []
+ for p in poly_per_obj:
+ p = p.copy()
+ p[0::2] *= w_scale
+ p[1::2] *= h_scale
+ resized_poly.append(p)
+ resized_masks.append(resized_poly)
+ resized_masks = PolygonMasks(resized_masks, *out_shape)
+ return resized_masks
+
+ def flip(self, flip_direction='horizontal'):
+ """see :func:`BaseInstanceMasks.flip`"""
+ assert flip_direction in ('horizontal', 'vertical', 'diagonal')
+ if len(self.masks) == 0:
+ flipped_masks = PolygonMasks([], self.height, self.width)
+ else:
+ flipped_masks = []
+ for poly_per_obj in self.masks:
+ flipped_poly_per_obj = []
+ for p in poly_per_obj:
+ p = p.copy()
+ if flip_direction == 'horizontal':
+ p[0::2] = self.width - p[0::2]
+ elif flip_direction == 'vertical':
+ p[1::2] = self.height - p[1::2]
+ else:
+ p[0::2] = self.width - p[0::2]
+ p[1::2] = self.height - p[1::2]
+ flipped_poly_per_obj.append(p)
+ flipped_masks.append(flipped_poly_per_obj)
+ flipped_masks = PolygonMasks(flipped_masks, self.height,
+ self.width)
+ return flipped_masks
+
+ def crop(self, bbox):
+ """see :func:`BaseInstanceMasks.crop`"""
+ assert isinstance(bbox, np.ndarray)
+ assert bbox.ndim == 1
+
+ # clip the boundary
+ bbox = bbox.copy()
+ bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
+ bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
+ x1, y1, x2, y2 = bbox
+ w = np.maximum(x2 - x1, 1)
+ h = np.maximum(y2 - y1, 1)
+
+ if len(self.masks) == 0:
+ cropped_masks = PolygonMasks([], h, w)
+ else:
+ cropped_masks = []
+ for poly_per_obj in self.masks:
+ cropped_poly_per_obj = []
+ for p in poly_per_obj:
+ # pycocotools will clip the boundary
+ p = p.copy()
+ p[0::2] -= bbox[0]
+ p[1::2] -= bbox[1]
+ cropped_poly_per_obj.append(p)
+ cropped_masks.append(cropped_poly_per_obj)
+ cropped_masks = PolygonMasks(cropped_masks, h, w)
+ return cropped_masks
+
+ def pad(self, out_shape, pad_val=0):
+ """padding has no effect on polygons`"""
+ return PolygonMasks(self.masks, *out_shape)
+
+ def expand(self, *args, **kwargs):
+ """TODO: Add expand for polygon"""
+ raise NotImplementedError
+
+ def crop_and_resize(self,
+ bboxes,
+ out_shape,
+ inds,
+ device='cpu',
+ interpolation='bilinear',
+ binarize=True):
+ """see :func:`BaseInstanceMasks.crop_and_resize`"""
+ out_h, out_w = out_shape
+ if len(self.masks) == 0:
+ return PolygonMasks([], out_h, out_w)
+
+ if not binarize:
+ raise ValueError('Polygons are always binary, '
+ 'setting binarize=False is unsupported')
+
+ resized_masks = []
+ for i in range(len(bboxes)):
+ mask = self.masks[inds[i]]
+ bbox = bboxes[i, :]
+ x1, y1, x2, y2 = bbox
+ w = np.maximum(x2 - x1, 1)
+ h = np.maximum(y2 - y1, 1)
+ h_scale = out_h / max(h, 0.1) # avoid too large scale
+ w_scale = out_w / max(w, 0.1)
+
+ resized_mask = []
+ for p in mask:
+ p = p.copy()
+ # crop
+ # pycocotools will clip the boundary
+ p[0::2] -= bbox[0]
+ p[1::2] -= bbox[1]
+
+ # resize
+ p[0::2] *= w_scale
+ p[1::2] *= h_scale
+ resized_mask.append(p)
+ resized_masks.append(resized_mask)
+ return PolygonMasks(resized_masks, *out_shape)
+
+ def translate(self,
+ out_shape,
+ offset,
+ direction='horizontal',
+ fill_val=None,
+ interpolation=None):
+ """Translate the PolygonMasks.
+
+ Example:
+ >>> self = PolygonMasks.random(dtype=np.int)
+ >>> out_shape = (self.height, self.width)
+ >>> new = self.translate(out_shape, 4., direction='horizontal')
+ >>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2])
+ >>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4) # noqa: E501
+ """
+ assert fill_val is None or fill_val == 0, 'Here fill_val is not '\
+ f'used, and defaultly should be None or 0. got {fill_val}.'
+ if len(self.masks) == 0:
+ translated_masks = PolygonMasks([], *out_shape)
+ else:
+ translated_masks = []
+ for poly_per_obj in self.masks:
+ translated_poly_per_obj = []
+ for p in poly_per_obj:
+ p = p.copy()
+ if direction == 'horizontal':
+ p[0::2] = np.clip(p[0::2] + offset, 0, out_shape[1])
+ elif direction == 'vertical':
+ p[1::2] = np.clip(p[1::2] + offset, 0, out_shape[0])
+ translated_poly_per_obj.append(p)
+ translated_masks.append(translated_poly_per_obj)
+ translated_masks = PolygonMasks(translated_masks, *out_shape)
+ return translated_masks
+
+ def shear(self,
+ out_shape,
+ magnitude,
+ direction='horizontal',
+ border_value=0,
+ interpolation='bilinear'):
+ """See :func:`BaseInstanceMasks.shear`."""
+ if len(self.masks) == 0:
+ sheared_masks = PolygonMasks([], *out_shape)
+ else:
+ sheared_masks = []
+ if direction == 'horizontal':
+ shear_matrix = np.stack([[1, magnitude],
+ [0, 1]]).astype(np.float32)
+ elif direction == 'vertical':
+ shear_matrix = np.stack([[1, 0], [magnitude,
+ 1]]).astype(np.float32)
+ for poly_per_obj in self.masks:
+ sheared_poly = []
+ for p in poly_per_obj:
+ p = np.stack([p[0::2], p[1::2]], axis=0) # [2, n]
+ new_coords = np.matmul(shear_matrix, p) # [2, n]
+ new_coords[0, :] = np.clip(new_coords[0, :], 0,
+ out_shape[1])
+ new_coords[1, :] = np.clip(new_coords[1, :], 0,
+ out_shape[0])
+ sheared_poly.append(
+ new_coords.transpose((1, 0)).reshape(-1))
+ sheared_masks.append(sheared_poly)
+ sheared_masks = PolygonMasks(sheared_masks, *out_shape)
+ return sheared_masks
+
+ def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
+ """See :func:`BaseInstanceMasks.rotate`."""
+ if len(self.masks) == 0:
+ rotated_masks = PolygonMasks([], *out_shape)
+ else:
+ rotated_masks = []
+ rotate_matrix = cv2.getRotationMatrix2D(center, -angle, scale)
+ for poly_per_obj in self.masks:
+ rotated_poly = []
+ for p in poly_per_obj:
+ p = p.copy()
+ coords = np.stack([p[0::2], p[1::2]], axis=1) # [n, 2]
+ # pad 1 to convert from format [x, y] to homogeneous
+ # coordinates format [x, y, 1]
+ coords = np.concatenate(
+ (coords, np.ones((coords.shape[0], 1), coords.dtype)),
+ axis=1) # [n, 3]
+ rotated_coords = np.matmul(
+ rotate_matrix[None, :, :],
+ coords[:, :, None])[..., 0] # [n, 2, 1] -> [n, 2]
+ rotated_coords[:, 0] = np.clip(rotated_coords[:, 0], 0,
+ out_shape[1])
+ rotated_coords[:, 1] = np.clip(rotated_coords[:, 1], 0,
+ out_shape[0])
+ rotated_poly.append(rotated_coords.reshape(-1))
+ rotated_masks.append(rotated_poly)
+ rotated_masks = PolygonMasks(rotated_masks, *out_shape)
+ return rotated_masks
+
+ def to_bitmap(self):
+ """convert polygon masks to bitmap masks."""
+ bitmap_masks = self.to_ndarray()
+ return BitmapMasks(bitmap_masks, self.height, self.width)
+
+ @property
+ def areas(self):
+ """Compute areas of masks.
+
+ This func is modified from `detectron2
+ `_.
+ The function only works with Polygons using the shoelace formula.
+
+ Return:
+ ndarray: areas of each instance
+ """ # noqa: W501
+ area = []
+ for polygons_per_obj in self.masks:
+ area_per_obj = 0
+ for p in polygons_per_obj:
+ area_per_obj += self._polygon_area(p[0::2], p[1::2])
+ area.append(area_per_obj)
+ return np.asarray(area)
+
+ def _polygon_area(self, x, y):
+ """Compute the area of a component of a polygon.
+
+ Using the shoelace formula:
+ https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
+
+ Args:
+ x (ndarray): x coordinates of the component
+ y (ndarray): y coordinates of the component
+
+ Return:
+ float: the are of the component
+ """ # noqa: 501
+ return 0.5 * np.abs(
+ np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
+
+ def to_ndarray(self):
+ """Convert masks to the format of ndarray."""
+ if len(self.masks) == 0:
+ return np.empty((0, self.height, self.width), dtype=np.uint8)
+ bitmap_masks = []
+ for poly_per_obj in self.masks:
+ bitmap_masks.append(
+ polygon_to_bitmap(poly_per_obj, self.height, self.width))
+ return np.stack(bitmap_masks)
+
+ def to_tensor(self, dtype, device):
+ """See :func:`BaseInstanceMasks.to_tensor`."""
+ if len(self.masks) == 0:
+ return torch.empty((0, self.height, self.width),
+ dtype=dtype,
+ device=device)
+ ndarray_masks = self.to_ndarray()
+ return torch.tensor(ndarray_masks, dtype=dtype, device=device)
+
+ @classmethod
+ def random(cls,
+ num_masks=3,
+ height=32,
+ width=32,
+ n_verts=5,
+ dtype=np.float32,
+ rng=None):
+ """Generate random polygon masks for demo / testing purposes.
+
+ Adapted from [1]_
+
+ References:
+ .. [1] https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379 # noqa: E501
+
+ Example:
+ >>> from mmdet.core.mask.structures import PolygonMasks
+ >>> self = PolygonMasks.random()
+ >>> print('self = {}'.format(self))
+ """
+ from mmdet.utils.util_random import ensure_rng
+ rng = ensure_rng(rng)
+
+ def _gen_polygon(n, irregularity, spikeyness):
+ """Creates the polygon by sampling points on a circle around the
+ centre. Random noise is added by varying the angular spacing
+ between sequential points, and by varying the radial distance of
+ each point from the centre.
+
+ Based on original code by Mike Ounsworth
+
+ Args:
+ n (int): number of vertices
+ irregularity (float): [0,1] indicating how much variance there
+ is in the angular spacing of vertices. [0,1] will map to
+ [0, 2pi/numberOfVerts]
+ spikeyness (float): [0,1] indicating how much variance there is
+ in each vertex from the circle of radius aveRadius. [0,1]
+ will map to [0, aveRadius]
+
+ Returns:
+ a list of vertices, in CCW order.
+ """
+ from scipy.stats import truncnorm
+ # Generate around the unit circle
+ cx, cy = (0.0, 0.0)
+ radius = 1
+
+ tau = np.pi * 2
+
+ irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / n
+ spikeyness = np.clip(spikeyness, 1e-9, 1)
+
+ # generate n angle steps
+ lower = (tau / n) - irregularity
+ upper = (tau / n) + irregularity
+ angle_steps = rng.uniform(lower, upper, n)
+
+ # normalize the steps so that point 0 and point n+1 are the same
+ k = angle_steps.sum() / (2 * np.pi)
+ angles = (angle_steps / k).cumsum() + rng.uniform(0, tau)
+
+ # Convert high and low values to be wrt the standard normal range
+ # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
+ low = 0
+ high = 2 * radius
+ mean = radius
+ std = spikeyness
+ a = (low - mean) / std
+ b = (high - mean) / std
+ tnorm = truncnorm(a=a, b=b, loc=mean, scale=std)
+
+ # now generate the points
+ radii = tnorm.rvs(n, random_state=rng)
+ x_pts = cx + radii * np.cos(angles)
+ y_pts = cy + radii * np.sin(angles)
+
+ points = np.hstack([x_pts[:, None], y_pts[:, None]])
+
+ # Scale to 0-1 space
+ points = points - points.min(axis=0)
+ points = points / points.max(axis=0)
+
+ # Randomly place within 0-1 space
+ points = points * (rng.rand() * .8 + .2)
+ min_pt = points.min(axis=0)
+ max_pt = points.max(axis=0)
+
+ high = (1 - max_pt)
+ low = (0 - min_pt)
+ offset = (rng.rand(2) * (high - low)) + low
+ points = points + offset
+ return points
+
+ def _order_vertices(verts):
+ """
+ References:
+ https://stackoverflow.com/questions/1709283/how-can-i-sort-a-coordinate-list-for-a-rectangle-counterclockwise
+ """
+ mlat = verts.T[0].sum() / len(verts)
+ mlng = verts.T[1].sum() / len(verts)
+
+ tau = np.pi * 2
+ angle = (np.arctan2(mlat - verts.T[0], verts.T[1] - mlng) +
+ tau) % tau
+ sortx = angle.argsort()
+ verts = verts.take(sortx, axis=0)
+ return verts
+
+ # Generate a random exterior for each requested mask
+ masks = []
+ for _ in range(num_masks):
+ exterior = _order_vertices(_gen_polygon(n_verts, 0.9, 0.9))
+ exterior = (exterior * [(width, height)]).astype(dtype)
+ masks.append([exterior.ravel()])
+
+ self = cls(masks, height, width)
+ return self
+
+
+def polygon_to_bitmap(polygons, height, width):
+ """Convert masks from the form of polygons to bitmaps.
+
+ Args:
+ polygons (list[ndarray]): masks in polygon representation
+ height (int): mask height
+ width (int): mask width
+
+ Return:
+ ndarray: the converted masks in bitmap representation
+ """
+ rles = maskUtils.frPyObjects(polygons, height, width)
+ rle = maskUtils.merge(rles)
+ bitmap_mask = maskUtils.decode(rle).astype(np.bool)
+ return bitmap_mask
diff --git a/mmdet/core/mask/utils.py b/mmdet/core/mask/utils.py
new file mode 100644
index 00000000..c8820829
--- /dev/null
+++ b/mmdet/core/mask/utils.py
@@ -0,0 +1,63 @@
+import mmcv
+import numpy as np
+import pycocotools.mask as mask_util
+
+
+def split_combined_polys(polys, poly_lens, polys_per_mask):
+ """Split the combined 1-D polys into masks.
+
+ A mask is represented as a list of polys, and a poly is represented as
+ a 1-D array. In dataset, all masks are concatenated into a single 1-D
+ tensor. Here we need to split the tensor into original representations.
+
+ Args:
+ polys (list): a list (length = image num) of 1-D tensors
+ poly_lens (list): a list (length = image num) of poly length
+ polys_per_mask (list): a list (length = image num) of poly number
+ of each mask
+
+ Returns:
+ list: a list (length = image num) of list (length = mask num) of \
+ list (length = poly num) of numpy array.
+ """
+ mask_polys_list = []
+ for img_id in range(len(polys)):
+ polys_single = polys[img_id]
+ polys_lens_single = poly_lens[img_id].tolist()
+ polys_per_mask_single = polys_per_mask[img_id].tolist()
+
+ split_polys = mmcv.slice_list(polys_single, polys_lens_single)
+ mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single)
+ mask_polys_list.append(mask_polys)
+ return mask_polys_list
+
+
+# TODO: move this function to more proper place
+def encode_mask_results(mask_results):
+ """Encode bitmap mask to RLE code.
+
+ Args:
+ mask_results (list | tuple[list]): bitmap mask results.
+ In mask scoring rcnn, mask_results is a tuple of (segm_results,
+ segm_cls_score).
+
+ Returns:
+ list | tuple: RLE encoded mask.
+ """
+ if isinstance(mask_results, tuple): # mask scoring
+ cls_segms, cls_mask_scores = mask_results
+ else:
+ cls_segms = mask_results
+ num_classes = len(cls_segms)
+ encoded_mask_results = [[] for _ in range(num_classes)]
+ for i in range(len(cls_segms)):
+ for cls_segm in cls_segms[i]:
+ encoded_mask_results[i].append(
+ mask_util.encode(
+ np.array(
+ cls_segm[:, :, np.newaxis], order='F',
+ dtype='uint8'))[0]) # encoded with RLE
+ if isinstance(mask_results, tuple):
+ return encoded_mask_results, cls_mask_scores
+ else:
+ return encoded_mask_results
diff --git a/mmdet/core/post_processing/__init__.py b/mmdet/core/post_processing/__init__.py
new file mode 100644
index 00000000..880b3f06
--- /dev/null
+++ b/mmdet/core/post_processing/__init__.py
@@ -0,0 +1,8 @@
+from .bbox_nms import fast_nms, multiclass_nms
+from .merge_augs import (merge_aug_bboxes, merge_aug_masks,
+ merge_aug_proposals, merge_aug_scores)
+
+__all__ = [
+ 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes',
+ 'merge_aug_scores', 'merge_aug_masks', 'fast_nms'
+]
diff --git a/mmdet/core/post_processing/bbox_nms.py b/mmdet/core/post_processing/bbox_nms.py
new file mode 100644
index 00000000..9d95db88
--- /dev/null
+++ b/mmdet/core/post_processing/bbox_nms.py
@@ -0,0 +1,170 @@
+import torch
+from mmcv.ops.nms import batched_nms
+
+from mmdet.core.bbox.iou_calculators import bbox_overlaps
+
+
+def multiclass_nms(multi_bboxes,
+ multi_scores,
+ score_thr,
+ nms_cfg,
+ max_num=-1,
+ score_factors=None,
+ return_inds=False):
+ """NMS for multi-class bboxes.
+
+ Args:
+ multi_bboxes (Tensor): shape (n, #class*4) or (n, 4)
+ multi_scores (Tensor): shape (n, #class), where the last column
+ contains scores of the background class, but this will be ignored.
+ score_thr (float): bbox threshold, bboxes with scores lower than it
+ will not be considered.
+ nms_thr (float): NMS IoU threshold
+ max_num (int, optional): if there are more than max_num bboxes after
+ NMS, only top max_num will be kept. Default to -1.
+ score_factors (Tensor, optional): The factors multiplied to scores
+ before applying NMS. Default to None.
+ return_inds (bool, optional): Whether return the indices of kept
+ bboxes. Default to False.
+
+ Returns:
+ tuple: (dets, labels, indices (optional)), tensors of shape (k, 5),
+ (k), and (k). Dets are boxes with scores. Labels are 0-based.
+ """
+ num_classes = multi_scores.size(1) - 1
+ # exclude background category
+ if multi_bboxes.shape[1] > 4:
+ bboxes = multi_bboxes.view(multi_scores.size(0), -1, 4)
+ else:
+ bboxes = multi_bboxes[:, None].expand(
+ multi_scores.size(0), num_classes, 4)
+
+ scores = multi_scores[:, :-1]
+
+ labels = torch.arange(num_classes, dtype=torch.long)
+ labels = labels.view(1, -1).expand_as(scores)
+
+ bboxes = bboxes.reshape(-1, 4)
+ scores = scores.reshape(-1)
+ labels = labels.reshape(-1)
+
+ if not torch.onnx.is_in_onnx_export():
+ # NonZero not supported in TensorRT
+ # remove low scoring boxes
+ valid_mask = scores > score_thr
+ # multiply score_factor after threshold to preserve more bboxes, improve
+ # mAP by 1% for YOLOv3
+ if score_factors is not None:
+ # expand the shape to match original shape of score
+ score_factors = score_factors.view(-1, 1).expand(
+ multi_scores.size(0), num_classes)
+ score_factors = score_factors.reshape(-1)
+ scores = scores * score_factors
+
+ if not torch.onnx.is_in_onnx_export():
+ # NonZero not supported in TensorRT
+ inds = valid_mask.nonzero(as_tuple=False).squeeze(1)
+ bboxes, scores, labels = bboxes[inds], scores[inds], labels[inds]
+ else:
+ # TensorRT NMS plugin has invalid output filled with -1
+ # add dummy data to make detection output correct.
+ bboxes = torch.cat([bboxes, bboxes.new_zeros(1, 4)], dim=0)
+ scores = torch.cat([scores, scores.new_zeros(1)], dim=0)
+ labels = torch.cat([labels, labels.new_zeros(1)], dim=0)
+
+ if bboxes.numel() == 0:
+ if torch.onnx.is_in_onnx_export():
+ raise RuntimeError('[ONNX Error] Can not record NMS '
+ 'as it has not been executed this time')
+ dets = torch.cat([bboxes, scores[:, None]], -1)
+ if return_inds:
+ return dets, labels, inds
+ else:
+ return dets, labels
+
+ dets, keep = batched_nms(bboxes, scores, labels, nms_cfg)
+
+ if max_num > 0:
+ dets = dets[:max_num]
+ keep = keep[:max_num]
+
+ if return_inds:
+ return dets, labels[keep], keep
+ else:
+ return dets, labels[keep]
+
+
+def fast_nms(multi_bboxes,
+ multi_scores,
+ multi_coeffs,
+ score_thr,
+ iou_thr,
+ top_k,
+ max_num=-1):
+ """Fast NMS in `YOLACT `_.
+
+ Fast NMS allows already-removed detections to suppress other detections so
+ that every instance can be decided to be kept or discarded in parallel,
+ which is not possible in traditional NMS. This relaxation allows us to
+ implement Fast NMS entirely in standard GPU-accelerated matrix operations.
+
+ Args:
+ multi_bboxes (Tensor): shape (n, #class*4) or (n, 4)
+ multi_scores (Tensor): shape (n, #class+1), where the last column
+ contains scores of the background class, but this will be ignored.
+ multi_coeffs (Tensor): shape (n, #class*coeffs_dim).
+ score_thr (float): bbox threshold, bboxes with scores lower than it
+ will not be considered.
+ iou_thr (float): IoU threshold to be considered as conflicted.
+ top_k (int): if there are more than top_k bboxes before NMS,
+ only top top_k will be kept.
+ max_num (int): if there are more than max_num bboxes after NMS,
+ only top max_num will be kept. If -1, keep all the bboxes.
+ Default: -1.
+
+ Returns:
+ tuple: (dets, labels, coefficients), tensors of shape (k, 5), (k, 1),
+ and (k, coeffs_dim). Dets are boxes with scores.
+ Labels are 0-based.
+ """
+
+ scores = multi_scores[:, :-1].t() # [#class, n]
+ scores, idx = scores.sort(1, descending=True)
+
+ idx = idx[:, :top_k].contiguous()
+ scores = scores[:, :top_k] # [#class, topk]
+ num_classes, num_dets = idx.size()
+ boxes = multi_bboxes[idx.view(-1), :].view(num_classes, num_dets, 4)
+ coeffs = multi_coeffs[idx.view(-1), :].view(num_classes, num_dets, -1)
+
+ iou = bbox_overlaps(boxes, boxes) # [#class, topk, topk]
+ iou.triu_(diagonal=1)
+ iou_max, _ = iou.max(dim=1)
+
+ # Now just filter out the ones higher than the threshold
+ keep = iou_max <= iou_thr
+
+ # Second thresholding introduces 0.2 mAP gain at negligible time cost
+ keep *= scores > score_thr
+
+ # Assign each kept detection to its corresponding class
+ classes = torch.arange(
+ num_classes, device=boxes.device)[:, None].expand_as(keep)
+ classes = classes[keep]
+
+ boxes = boxes[keep]
+ coeffs = coeffs[keep]
+ scores = scores[keep]
+
+ # Only keep the top max_num highest scores across all classes
+ scores, idx = scores.sort(0, descending=True)
+ if max_num > 0:
+ idx = idx[:max_num]
+ scores = scores[:max_num]
+
+ classes = classes[idx]
+ boxes = boxes[idx]
+ coeffs = coeffs[idx]
+
+ cls_dets = torch.cat([boxes, scores[:, None]], dim=1)
+ return cls_dets, classes, coeffs
diff --git a/mmdet/core/post_processing/merge_augs.py b/mmdet/core/post_processing/merge_augs.py
new file mode 100644
index 00000000..dbcf79d1
--- /dev/null
+++ b/mmdet/core/post_processing/merge_augs.py
@@ -0,0 +1,150 @@
+import copy
+import warnings
+
+import numpy as np
+import torch
+from mmcv import ConfigDict
+from mmcv.ops import nms
+
+from ..bbox import bbox_mapping_back
+
+
+def merge_aug_proposals(aug_proposals, img_metas, cfg):
+ """Merge augmented proposals (multiscale, flip, etc.)
+
+ Args:
+ aug_proposals (list[Tensor]): proposals from different testing
+ schemes, shape (n, 5). Note that they are not rescaled to the
+ original image size.
+
+ img_metas (list[dict]): list of image info dict where each dict has:
+ 'img_shape', 'scale_factor', 'flip', and may also contain
+ 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
+ For details on the values of these keys see
+ `mmdet/datasets/pipelines/formatting.py:Collect`.
+
+ cfg (dict): rpn test config.
+
+ Returns:
+ Tensor: shape (n, 4), proposals corresponding to original image scale.
+ """
+
+ cfg = copy.deepcopy(cfg)
+
+ # deprecate arguments warning
+ if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg:
+ warnings.warn(
+ 'In rpn_proposal or test_cfg, '
+ 'nms_thr has been moved to a dict named nms as '
+ 'iou_threshold, max_num has been renamed as max_per_img, '
+ 'name of original arguments and the way to specify '
+ 'iou_threshold of NMS will be deprecated.')
+ if 'nms' not in cfg:
+ cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr))
+ if 'max_num' in cfg:
+ if 'max_per_img' in cfg:
+ assert cfg.max_num == cfg.max_per_img, f'You set max_num and ' \
+ f'max_per_img at the same time, but get {cfg.max_num} ' \
+ f'and {cfg.max_per_img} respectively' \
+ f'Please delete max_num which will be deprecated.'
+ else:
+ cfg.max_per_img = cfg.max_num
+ if 'nms_thr' in cfg:
+ assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set ' \
+ f'iou_threshold in nms and ' \
+ f'nms_thr at the same time, but get ' \
+ f'{cfg.nms.iou_threshold} and {cfg.nms_thr}' \
+ f' respectively. Please delete the nms_thr ' \
+ f'which will be deprecated.'
+
+ recovered_proposals = []
+ for proposals, img_info in zip(aug_proposals, img_metas):
+ img_shape = img_info['img_shape']
+ scale_factor = img_info['scale_factor']
+ flip = img_info['flip']
+ flip_direction = img_info['flip_direction']
+ _proposals = proposals.clone()
+ _proposals[:, :4] = bbox_mapping_back(_proposals[:, :4], img_shape,
+ scale_factor, flip,
+ flip_direction)
+ recovered_proposals.append(_proposals)
+ aug_proposals = torch.cat(recovered_proposals, dim=0)
+ merged_proposals, _ = nms(aug_proposals[:, :4].contiguous(),
+ aug_proposals[:, -1].contiguous(),
+ cfg.nms.iou_threshold)
+ scores = merged_proposals[:, 4]
+ _, order = scores.sort(0, descending=True)
+ num = min(cfg.max_per_img, merged_proposals.shape[0])
+ order = order[:num]
+ merged_proposals = merged_proposals[order, :]
+ return merged_proposals
+
+
+def merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg):
+ """Merge augmented detection bboxes and scores.
+
+ Args:
+ aug_bboxes (list[Tensor]): shape (n, 4*#class)
+ aug_scores (list[Tensor] or None): shape (n, #class)
+ img_shapes (list[Tensor]): shape (3, ).
+ rcnn_test_cfg (dict): rcnn test config.
+
+ Returns:
+ tuple: (bboxes, scores)
+ """
+ recovered_bboxes = []
+ for bboxes, img_info in zip(aug_bboxes, img_metas):
+ img_shape = img_info[0]['img_shape']
+ scale_factor = img_info[0]['scale_factor']
+ flip = img_info[0]['flip']
+ flip_direction = img_info[0]['flip_direction']
+ bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip,
+ flip_direction)
+ recovered_bboxes.append(bboxes)
+ bboxes = torch.stack(recovered_bboxes).mean(dim=0)
+ if aug_scores is None:
+ return bboxes
+ else:
+ scores = torch.stack(aug_scores).mean(dim=0)
+ return bboxes, scores
+
+
+def merge_aug_scores(aug_scores):
+ """Merge augmented bbox scores."""
+ if isinstance(aug_scores[0], torch.Tensor):
+ return torch.mean(torch.stack(aug_scores), dim=0)
+ else:
+ return np.mean(aug_scores, axis=0)
+
+
+def merge_aug_masks(aug_masks, img_metas, rcnn_test_cfg, weights=None):
+ """Merge augmented mask prediction.
+
+ Args:
+ aug_masks (list[ndarray]): shape (n, #class, h, w)
+ img_shapes (list[ndarray]): shape (3, ).
+ rcnn_test_cfg (dict): rcnn test config.
+
+ Returns:
+ tuple: (bboxes, scores)
+ """
+ recovered_masks = []
+ for mask, img_info in zip(aug_masks, img_metas):
+ flip = img_info[0]['flip']
+ flip_direction = img_info[0]['flip_direction']
+ if flip:
+ if flip_direction == 'horizontal':
+ mask = mask[:, :, :, ::-1]
+ elif flip_direction == 'vertical':
+ mask = mask[:, :, ::-1, :]
+ else:
+ raise ValueError(
+ f"Invalid flipping direction '{flip_direction}'")
+ recovered_masks.append(mask)
+
+ if weights is None:
+ merged_masks = np.mean(recovered_masks, axis=0)
+ else:
+ merged_masks = np.average(
+ np.array(recovered_masks), axis=0, weights=np.array(weights))
+ return merged_masks
diff --git a/mmdet/core/utils/__init__.py b/mmdet/core/utils/__init__.py
new file mode 100644
index 00000000..37ed26f0
--- /dev/null
+++ b/mmdet/core/utils/__init__.py
@@ -0,0 +1,7 @@
+from .dist_utils import DistOptimizerHook, allreduce_grads, reduce_mean
+from .misc import flip_tensor, mask2ndarray, multi_apply, unmap
+
+__all__ = [
+ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply',
+ 'unmap', 'mask2ndarray', 'flip_tensor'
+]
diff --git a/mmdet/core/utils/dist_utils.py b/mmdet/core/utils/dist_utils.py
new file mode 100644
index 00000000..5fe77753
--- /dev/null
+++ b/mmdet/core/utils/dist_utils.py
@@ -0,0 +1,69 @@
+import warnings
+from collections import OrderedDict
+
+import torch.distributed as dist
+from mmcv.runner import OptimizerHook
+from torch._utils import (_flatten_dense_tensors, _take_tensors,
+ _unflatten_dense_tensors)
+
+
+def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
+ if bucket_size_mb > 0:
+ bucket_size_bytes = bucket_size_mb * 1024 * 1024
+ buckets = _take_tensors(tensors, bucket_size_bytes)
+ else:
+ buckets = OrderedDict()
+ for tensor in tensors:
+ tp = tensor.type()
+ if tp not in buckets:
+ buckets[tp] = []
+ buckets[tp].append(tensor)
+ buckets = buckets.values()
+
+ for bucket in buckets:
+ flat_tensors = _flatten_dense_tensors(bucket)
+ dist.all_reduce(flat_tensors)
+ flat_tensors.div_(world_size)
+ for tensor, synced in zip(
+ bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
+ tensor.copy_(synced)
+
+
+def allreduce_grads(params, coalesce=True, bucket_size_mb=-1):
+ """Allreduce gradients.
+
+ Args:
+ params (list[torch.Parameters]): List of parameters of a model
+ coalesce (bool, optional): Whether allreduce parameters as a whole.
+ Defaults to True.
+ bucket_size_mb (int, optional): Size of bucket, the unit is MB.
+ Defaults to -1.
+ """
+ grads = [
+ param.grad.data for param in params
+ if param.requires_grad and param.grad is not None
+ ]
+ world_size = dist.get_world_size()
+ if coalesce:
+ _allreduce_coalesced(grads, world_size, bucket_size_mb)
+ else:
+ for tensor in grads:
+ dist.all_reduce(tensor.div_(world_size))
+
+
+class DistOptimizerHook(OptimizerHook):
+ """Deprecated optimizer hook for distributed training."""
+
+ def __init__(self, *args, **kwargs):
+ warnings.warn('"DistOptimizerHook" is deprecated, please switch to'
+ '"mmcv.runner.OptimizerHook".')
+ super().__init__(*args, **kwargs)
+
+
+def reduce_mean(tensor):
+ """"Obtain the mean of tensor on different GPUs."""
+ if not (dist.is_available() and dist.is_initialized()):
+ return tensor
+ tensor = tensor.clone()
+ dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM)
+ return tensor
diff --git a/mmdet/core/utils/misc.py b/mmdet/core/utils/misc.py
new file mode 100644
index 00000000..e1f40d8c
--- /dev/null
+++ b/mmdet/core/utils/misc.py
@@ -0,0 +1,84 @@
+from functools import partial
+
+import numpy as np
+import torch
+from six.moves import map, zip
+
+from ..mask.structures import BitmapMasks, PolygonMasks
+
+
+def multi_apply(func, *args, **kwargs):
+ """Apply function to a list of arguments.
+
+ Note:
+ This function applies the ``func`` to multiple inputs and
+ map the multiple outputs of the ``func`` into different
+ list. Each list contains the same type of outputs corresponding
+ to different inputs.
+
+ Args:
+ func (Function): A function that will be applied to a list of
+ arguments
+
+ Returns:
+ tuple(list): A tuple containing multiple list, each list contains \
+ a kind of returned results by the function
+ """
+ pfunc = partial(func, **kwargs) if kwargs else func
+ map_results = map(pfunc, *args)
+ return tuple(map(list, zip(*map_results)))
+
+
+def unmap(data, count, inds, fill=0):
+ """Unmap a subset of item (data) back to the original set of items (of size
+ count)"""
+ if data.dim() == 1:
+ ret = data.new_full((count, ), fill)
+ ret[inds.type(torch.bool)] = data
+ else:
+ new_size = (count, ) + data.size()[1:]
+ ret = data.new_full(new_size, fill)
+ ret[inds.type(torch.bool), :] = data
+ return ret
+
+
+def mask2ndarray(mask):
+ """Convert Mask to ndarray..
+
+ Args:
+ mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or
+ torch.Tensor or np.ndarray): The mask to be converted.
+
+ Returns:
+ np.ndarray: Ndarray mask of shape (n, h, w) that has been converted
+ """
+ if isinstance(mask, (BitmapMasks, PolygonMasks)):
+ mask = mask.to_ndarray()
+ elif isinstance(mask, torch.Tensor):
+ mask = mask.detach().cpu().numpy()
+ elif not isinstance(mask, np.ndarray):
+ raise TypeError(f'Unsupported {type(mask)} data type')
+ return mask
+
+
+def flip_tensor(src_tensor, flip_direction):
+ """flip tensor base on flip_direction.
+
+ Args:
+ src_tensor (Tensor): input feature map, shape (B, C, H, W).
+ flip_direction (str): The flipping direction. Options are
+ 'horizontal', 'vertical', 'diagonal'.
+
+ Returns:
+ out_tensor (Tensor): Flipped tensor.
+ """
+ assert src_tensor.ndim == 4
+ valid_directions = ['horizontal', 'vertical', 'diagonal']
+ assert flip_direction in valid_directions
+ if flip_direction == 'horizontal':
+ out_tensor = torch.flip(src_tensor, [3])
+ elif flip_direction == 'vertical':
+ out_tensor = torch.flip(src_tensor, [2])
+ else:
+ out_tensor = torch.flip(src_tensor, [2, 3])
+ return out_tensor
diff --git a/mmdet/core/visualization/__init__.py b/mmdet/core/visualization/__init__.py
new file mode 100644
index 00000000..4ff995c0
--- /dev/null
+++ b/mmdet/core/visualization/__init__.py
@@ -0,0 +1,4 @@
+from .image import (color_val_matplotlib, imshow_det_bboxes,
+ imshow_gt_det_bboxes)
+
+__all__ = ['imshow_det_bboxes', 'imshow_gt_det_bboxes', 'color_val_matplotlib']
diff --git a/mmdet/core/visualization/image.py b/mmdet/core/visualization/image.py
new file mode 100644
index 00000000..5a148384
--- /dev/null
+++ b/mmdet/core/visualization/image.py
@@ -0,0 +1,303 @@
+import matplotlib.pyplot as plt
+import mmcv
+import numpy as np
+import pycocotools.mask as mask_util
+from matplotlib.collections import PatchCollection
+from matplotlib.patches import Polygon
+
+from ..utils import mask2ndarray
+
+EPS = 1e-2
+
+
+def color_val_matplotlib(color):
+ """Convert various input in BGR order to normalized RGB matplotlib color
+ tuples,
+
+ Args:
+ color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
+
+ Returns:
+ tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
+ """
+ color = mmcv.color_val(color)
+ color = [color / 255 for color in color[::-1]]
+ return tuple(color)
+
+
+def imshow_det_bboxes(img,
+ bboxes,
+ labels,
+ segms=None,
+ class_names=None,
+ score_thr=0,
+ bbox_color='green',
+ text_color='green',
+ mask_color=None,
+ thickness=2,
+ font_size=13,
+ win_name='',
+ show=True,
+ wait_time=0,
+ out_file=None):
+ """Draw bboxes and class labels (with scores) on an image.
+
+ Args:
+ img (str or ndarray): The image to be displayed.
+ bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
+ (n, 5).
+ labels (ndarray): Labels of bboxes.
+ segms (ndarray or None): Masks, shaped (n,h,w) or None
+ class_names (list[str]): Names of each classes.
+ score_thr (float): Minimum score of bboxes to be shown. Default: 0
+ bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
+ The tuple of color should be in BGR order. Default: 'green'
+ text_color (str or tuple(int) or :obj:`Color`):Color of texts.
+ The tuple of color should be in BGR order. Default: 'green'
+ mask_color (str or tuple(int) or :obj:`Color`, optional):
+ Color of masks. The tuple of color should be in BGR order.
+ Default: None
+ thickness (int): Thickness of lines. Default: 2
+ font_size (int): Font size of texts. Default: 13
+ show (bool): Whether to show the image. Default: True
+ win_name (str): The window name. Default: ''
+ wait_time (float): Value of waitKey param. Default: 0.
+ out_file (str, optional): The filename to write the image.
+ Default: None
+
+ Returns:
+ ndarray: The image with bboxes drawn on it.
+ """
+ assert bboxes.ndim == 2, \
+ f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
+ assert labels.ndim == 1, \
+ f' labels ndim should be 1, but its ndim is {labels.ndim}.'
+ assert bboxes.shape[0] == labels.shape[0], \
+ 'bboxes.shape[0] and labels.shape[0] should have the same length.'
+ assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
+ f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
+ img = mmcv.imread(img).astype(np.uint8)
+
+ if score_thr > 0:
+ assert bboxes.shape[1] == 5
+ scores = bboxes[:, -1]
+ inds = scores > score_thr
+ bboxes = bboxes[inds, :]
+ labels = labels[inds]
+ if segms is not None:
+ segms = segms[inds, ...]
+
+ mask_colors = []
+ if labels.shape[0] > 0:
+ if mask_color is None:
+ # random color
+ np.random.seed(42)
+ mask_colors = [
+ np.random.randint(0, 256, (1, 3), dtype=np.uint8)
+ for _ in range(max(labels) + 1)
+ ]
+ else:
+ # specify color
+ mask_colors = [
+ np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
+ ] * (
+ max(labels) + 1)
+
+ bbox_color = color_val_matplotlib(bbox_color)
+ text_color = color_val_matplotlib(text_color)
+
+ img = mmcv.bgr2rgb(img)
+ width, height = img.shape[1], img.shape[0]
+ img = np.ascontiguousarray(img)
+
+ fig = plt.figure(win_name, frameon=False)
+ plt.title(win_name)
+ canvas = fig.canvas
+ dpi = fig.get_dpi()
+ # add a small EPS to avoid precision lost due to matplotlib's truncation
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
+ fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)
+
+ # remove white edges by set subplot margin
+ plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
+ ax = plt.gca()
+ ax.axis('off')
+
+ polygons = []
+ color = []
+ for i, (bbox, label) in enumerate(zip(bboxes, labels)):
+ bbox_int = bbox.astype(np.int32)
+ poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
+ [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
+ np_poly = np.array(poly).reshape((4, 2))
+ polygons.append(Polygon(np_poly))
+ color.append(bbox_color)
+ label_text = class_names[
+ label] if class_names is not None else f'class {label}'
+ if len(bbox) > 4:
+ label_text += f'|{bbox[-1]:.02f}'
+ ax.text(
+ bbox_int[0],
+ bbox_int[1],
+ f'{label_text}',
+ bbox={
+ 'facecolor': 'black',
+ 'alpha': 0.8,
+ 'pad': 0.7,
+ 'edgecolor': 'none'
+ },
+ color=text_color,
+ fontsize=font_size,
+ verticalalignment='top',
+ horizontalalignment='left')
+ if segms is not None:
+ color_mask = mask_colors[labels[i]]
+ mask = segms[i].astype(bool)
+ img[mask] = img[mask] * 0.5 + color_mask * 0.5
+
+ plt.imshow(img)
+
+ p = PatchCollection(
+ polygons, facecolor='none', edgecolors=color, linewidths=thickness)
+ ax.add_collection(p)
+
+ stream, _ = canvas.print_to_buffer()
+ buffer = np.frombuffer(stream, dtype='uint8')
+ img_rgba = buffer.reshape(height, width, 4)
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
+ img = rgb.astype('uint8')
+ img = mmcv.rgb2bgr(img)
+
+ if show:
+ # We do not use cv2 for display because in some cases, opencv will
+ # conflict with Qt, it will output a warning: Current thread
+ # is not the object's thread. You can refer to
+ # https://github.com/opencv/opencv-python/issues/46 for details
+ if wait_time == 0:
+ plt.show()
+ else:
+ plt.show(block=False)
+ plt.pause(wait_time)
+ if out_file is not None:
+ mmcv.imwrite(img, out_file)
+
+ plt.close()
+
+ return img
+
+
+def imshow_gt_det_bboxes(img,
+ annotation,
+ result,
+ class_names=None,
+ score_thr=0,
+ gt_bbox_color=(255, 102, 61),
+ gt_text_color=(255, 102, 61),
+ gt_mask_color=(255, 102, 61),
+ det_bbox_color=(72, 101, 241),
+ det_text_color=(72, 101, 241),
+ det_mask_color=(72, 101, 241),
+ thickness=2,
+ font_size=13,
+ win_name='',
+ show=True,
+ wait_time=0,
+ out_file=None):
+ """General visualization GT and result function.
+
+ Args:
+ img (str or ndarray): The image to be displayed.)
+ annotation (dict): Ground truth annotations where contain keys of
+ 'gt_bboxes' and 'gt_labels' or 'gt_masks'
+ result (tuple[list] or list): The detection result, can be either
+ (bbox, segm) or just bbox.
+ class_names (list[str]): Names of each classes.
+ score_thr (float): Minimum score of bboxes to be shown. Default: 0
+ gt_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
+ The tuple of color should be in BGR order. Default: (255, 102, 61)
+ gt_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
+ The tuple of color should be in BGR order. Default: (255, 102, 61)
+ gt_mask_color (str or tuple(int) or :obj:`Color`, optional):
+ Color of masks. The tuple of color should be in BGR order.
+ Default: (255, 102, 61)
+ det_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
+ The tuple of color should be in BGR order. Default: (72, 101, 241)
+ det_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
+ The tuple of color should be in BGR order. Default: (72, 101, 241)
+ det_mask_color (str or tuple(int) or :obj:`Color`, optional):
+ Color of masks. The tuple of color should be in BGR order.
+ Default: (72, 101, 241)
+ thickness (int): Thickness of lines. Default: 2
+ font_size (int): Font size of texts. Default: 13
+ win_name (str): The window name. Default: ''
+ show (bool): Whether to show the image. Default: True
+ wait_time (float): Value of waitKey param. Default: 0.
+ out_file (str, optional): The filename to write the image.
+ Default: None
+
+ Returns:
+ ndarray: The image with bboxes or masks drawn on it.
+ """
+ assert 'gt_bboxes' in annotation
+ assert 'gt_labels' in annotation
+ assert isinstance(
+ result,
+ (tuple, list)), f'Expected tuple or list, but get {type(result)}'
+
+ gt_masks = annotation.get('gt_masks', None)
+ if gt_masks is not None:
+ gt_masks = mask2ndarray(gt_masks)
+
+ img = mmcv.imread(img)
+
+ img = imshow_det_bboxes(
+ img,
+ annotation['gt_bboxes'],
+ annotation['gt_labels'],
+ gt_masks,
+ class_names=class_names,
+ bbox_color=gt_bbox_color,
+ text_color=gt_text_color,
+ mask_color=gt_mask_color,
+ thickness=thickness,
+ font_size=font_size,
+ win_name=win_name,
+ show=False)
+
+ if isinstance(result, tuple):
+ bbox_result, segm_result = result
+ if isinstance(segm_result, tuple):
+ segm_result = segm_result[0] # ms rcnn
+ else:
+ bbox_result, segm_result = result, None
+
+ bboxes = np.vstack(bbox_result)
+ labels = [
+ np.full(bbox.shape[0], i, dtype=np.int32)
+ for i, bbox in enumerate(bbox_result)
+ ]
+ labels = np.concatenate(labels)
+
+ segms = None
+ if segm_result is not None and len(labels) > 0: # non empty
+ segms = mmcv.concat_list(segm_result)
+ segms = mask_util.decode(segms)
+ segms = segms.transpose(2, 0, 1)
+
+ img = imshow_det_bboxes(
+ img,
+ bboxes,
+ labels,
+ segms=segms,
+ class_names=class_names,
+ score_thr=score_thr,
+ bbox_color=det_bbox_color,
+ text_color=det_text_color,
+ mask_color=det_mask_color,
+ thickness=thickness,
+ font_size=font_size,
+ win_name=win_name,
+ show=show,
+ wait_time=wait_time,
+ out_file=out_file)
+ return img
diff --git a/mmdet/cv_core/__init__.py b/mmdet/cv_core/__init__.py
deleted file mode 100644
index 39b0e646..00000000
--- a/mmdet/cv_core/__init__.py
+++ /dev/null
@@ -1,17 +0,0 @@
-# -*- coding: utf-8 -*-
-# ======================================================
-# @Time : 20-9-7 下午8:14
-# @Author : huang ha
-# @Email : huang_ha@rr.com
-# @File : __init__.py.py
-# @Comment:
-# ======================================================
-from .fileio import *
-from .image import *
-from .utils import *
-from .visualization import *
-from .runner import *
-from .parallel import *
-from .ops import *
-from .cnn import *
-
diff --git a/mmdet/cv_core/cnn/__init__.py b/mmdet/cv_core/cnn/__init__.py
deleted file mode 100644
index 30519412..00000000
--- a/mmdet/cv_core/cnn/__init__.py
+++ /dev/null
@@ -1,23 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-
-from .vgg import VGG
-from .bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
- PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS,
- ConvModule, build_activation_layer,
- build_conv_layer,
- build_norm_layer, build_padding_layer,
- build_upsample_layer, is_norm, Scale,
- NonLocal1d, NonLocal2d, NonLocal3d)
-
-from .utils import (bias_init_with_prob, constant_init, kaiming_init,
- normal_init, uniform_init, xavier_init)
-
-__all__ = [
- 'VGG', 'constant_init', 'xavier_init', 'normal_init', 'uniform_init',
- 'kaiming_init', 'bias_init_with_prob', 'ConvModule',
- 'build_activation_layer', 'build_conv_layer', 'build_norm_layer',
- 'build_padding_layer', 'build_upsample_layer',
- 'is_norm', 'ACTIVATION_LAYERS',
- 'CONV_LAYERS', 'NORM_LAYERS', 'PADDING_LAYERS', 'UPSAMPLE_LAYERS',
- 'PLUGIN_LAYERS', 'Scale', 'NonLocal1d', 'NonLocal2d', 'NonLocal3d'
-]
diff --git a/mmdet/cv_core/cnn/bricks/__init__.py b/mmdet/cv_core/cnn/bricks/__init__.py
deleted file mode 100644
index b6a65874..00000000
--- a/mmdet/cv_core/cnn/bricks/__init__.py
+++ /dev/null
@@ -1,20 +0,0 @@
-from .activation import build_activation_layer
-from .conv import build_conv_layer
-from .conv_module import ConvModule
-from .norm import build_norm_layer, is_norm
-from .padding import build_padding_layer
-from .registry import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
- PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS)
-from .upsample import build_upsample_layer
-from .scale import Scale
-from .non_local import NonLocal1d, NonLocal2d, NonLocal3d
-from .conv2d_adaptive_padding import Conv2dAdaptivePadding
-from .wrappers import Conv2d, ConvTranspose2d, Linear, MaxPool2d
-
-__all__ = [
- 'ConvModule', 'build_activation_layer', 'build_conv_layer',
- 'build_norm_layer', 'build_padding_layer', 'build_upsample_layer', 'is_norm',
- 'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS', 'PADDING_LAYERS',
- 'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale', 'Conv2dAdaptivePadding', 'Conv2d', 'ConvTranspose2d',
- 'MaxPool2d', 'NonLocal1d', 'NonLocal2d', 'NonLocal3d'
-]
diff --git a/mmdet/cv_core/cnn/bricks/activation.py b/mmdet/cv_core/cnn/bricks/activation.py
deleted file mode 100644
index d80b66df..00000000
--- a/mmdet/cv_core/cnn/bricks/activation.py
+++ /dev/null
@@ -1,24 +0,0 @@
-import torch.nn as nn
-
-from mmdet.cv_core import build_from_cfg
-from .registry import ACTIVATION_LAYERS
-
-for module in [
- nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU,
- nn.Sigmoid, nn.Tanh
-]:
- ACTIVATION_LAYERS.register_module(module=module)
-
-
-def build_activation_layer(cfg):
- """Build activation layer.
-
- Args:
- cfg (dict): The activation layer config, which should contain:
- - type (str): Layer type.
- - layer args: Args needed to instantiate an activation layer.
-
- Returns:
- nn.Module: Created activation layer.
- """
- return build_from_cfg(cfg, ACTIVATION_LAYERS)
diff --git a/mmdet/cv_core/cnn/bricks/conv.py b/mmdet/cv_core/cnn/bricks/conv.py
deleted file mode 100644
index e84cfed0..00000000
--- a/mmdet/cv_core/cnn/bricks/conv.py
+++ /dev/null
@@ -1,43 +0,0 @@
-from torch import nn
-
-from .registry import CONV_LAYERS
-
-CONV_LAYERS.register_module('Conv1d', module=nn.Conv1d)
-CONV_LAYERS.register_module('Conv2d', module=nn.Conv2d)
-CONV_LAYERS.register_module('Conv3d', module=nn.Conv3d)
-CONV_LAYERS.register_module('Conv', module=nn.Conv2d)
-
-
-def build_conv_layer(cfg, *args, **kwargs):
- """Build convolution layer.
-
- Args:
- cfg (None or dict): The conv layer config, which should contain:
- - type (str): Layer type.
- - layer args: Args needed to instantiate an activation layer.
- args (argument list): Arguments passed to the `__init__`
- method of the corresponding conv layer.
- kwargs (keyword arguments): Keyword arguments passed to the `__init__`
- method of the corresponding conv layer.
-
- Returns:
- nn.Module: Created conv layer.
- """
- if cfg is None:
- cfg_ = dict(type='Conv2d')
- else:
- if not isinstance(cfg, dict):
- raise TypeError('cfg must be a dict')
- if 'type' not in cfg:
- raise KeyError('the cfg dict must contain the key "type"')
- cfg_ = cfg.copy()
-
- layer_type = cfg_.pop('type')
- if layer_type not in CONV_LAYERS:
- raise KeyError(f'Unrecognized norm type {layer_type}')
- else:
- conv_layer = CONV_LAYERS.get(layer_type)
-
- layer = conv_layer(*args, **kwargs, **cfg_)
-
- return layer
diff --git a/mmdet/cv_core/cnn/bricks/conv2d_adaptive_padding.py b/mmdet/cv_core/cnn/bricks/conv2d_adaptive_padding.py
deleted file mode 100644
index 1143d25f..00000000
--- a/mmdet/cv_core/cnn/bricks/conv2d_adaptive_padding.py
+++ /dev/null
@@ -1,61 +0,0 @@
-import math
-
-from torch import nn
-from torch.nn import functional as F
-
-from .registry import CONV_LAYERS
-
-
-@CONV_LAYERS.register_module()
-class Conv2dAdaptivePadding(nn.Conv2d):
- """ Implementation of 2D convolution in tensorflow with `padding` as
- "same", which applies padding to input (if needed) so that input image
- gets fully covered by filter and stride you specified. For stride 1, this
- will ensure that output image size is same as input. For stride of 2,
- output dimensions will be half, for example.
-
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of
- the input. Default: 0
- dilation (int or tuple, optional): Spacing between kernel elements.
- Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- """
-
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=True):
- super().__init__(in_channels, out_channels, kernel_size, stride, 0,
- dilation, groups, bias)
-
- def forward(self, x):
- img_h, img_w = x.size()[-2:]
- kernel_h, kernel_w = self.weight.size()[-2:]
- stride_h, stride_w = self.stride
- output_h = math.ceil(img_h / stride_h)
- output_w = math.ceil(img_w / stride_w)
- pad_h = (
- max((output_h - 1) * self.stride[0] +
- (kernel_h - 1) * self.dilation[0] + 1 - img_h, 0))
- pad_w = (
- max((output_w - 1) * self.stride[1] +
- (kernel_w - 1) * self.dilation[1] + 1 - img_w, 0))
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, [
- pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
- ])
- return F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
- self.dilation, self.groups)
diff --git a/mmdet/cv_core/cnn/bricks/conv_module.py b/mmdet/cv_core/cnn/bricks/conv_module.py
deleted file mode 100644
index d30c0042..00000000
--- a/mmdet/cv_core/cnn/bricks/conv_module.py
+++ /dev/null
@@ -1,190 +0,0 @@
-import warnings
-
-import torch.nn as nn
-
-from ..utils import constant_init, kaiming_init
-from .activation import build_activation_layer
-from .conv import build_conv_layer
-from .norm import build_norm_layer
-from .padding import build_padding_layer
-from .registry import PLUGIN_LAYERS
-
-
-@PLUGIN_LAYERS.register_module()
-class ConvModule(nn.Module):
- """A conv block that bundles conv/norm/activation layers.
-
- This block simplifies the usage of convolution layers, which are commonly
- used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
- It is based upon three build methods: `build_conv_layer()`,
- `build_norm_layer()` and `build_activation_layer()`.
-
- Besides, we add some additional features in this module.
- 1. Automatically set `bias` of the conv layer.
- 2. Spectral norm is supported.
- 3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
- supports zero and circular padding, and we add "reflect" padding mode.
-
- Args:
- in_channels (int): Same as nn.Conv2d.
- out_channels (int): Same as nn.Conv2d.
- kernel_size (int | tuple[int]): Same as nn.Conv2d.
- stride (int | tuple[int]): Same as nn.Conv2d.
- padding (int | tuple[int]): Same as nn.Conv2d.
- dilation (int | tuple[int]): Same as nn.Conv2d.
- groups (int): Same as nn.Conv2d.
- bias (bool | str): If specified as `auto`, it will be decided by the
- norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
- False. Default: "auto".
- conv_cfg (dict): Config dict for convolution layer. Default: None,
- which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer. Default: None.
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='ReLU').
- inplace (bool): Whether to use inplace mode for activation.
- Default: True.
- with_spectral_norm (bool): Whether use spectral norm in conv module.
- Default: False.
- padding_mode (str): If the `padding_mode` has not been supported by
- current `Conv2d` in PyTorch, we will use our own padding layer
- instead. Currently, we support ['zeros', 'circular'] with official
- implementation and ['reflect'] with our own implementation.
- Default: 'zeros'.
- order (tuple[str]): The order of conv/norm/activation layers. It is a
- sequence of "conv", "norm" and "act". Common examples are
- ("conv", "norm", "act") and ("act", "conv", "norm").
- Default: ('conv', 'norm', 'act').
- """
-
- _abbr_ = 'conv_block'
-
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias='auto',
- conv_cfg=None,
- norm_cfg=None,
- act_cfg=dict(type='ReLU'),
- inplace=True,
- with_spectral_norm=False,
- padding_mode='zeros',
- order=('conv', 'norm', 'act')):
- super(ConvModule, self).__init__()
- assert conv_cfg is None or isinstance(conv_cfg, dict)
- assert norm_cfg is None or isinstance(norm_cfg, dict)
- assert act_cfg is None or isinstance(act_cfg, dict)
- official_padding_mode = ['zeros', 'circular']
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.act_cfg = act_cfg
- self.inplace = inplace
- self.with_spectral_norm = with_spectral_norm
- self.with_explicit_padding = padding_mode not in official_padding_mode
- self.order = order
- assert isinstance(self.order, tuple) and len(self.order) == 3
- assert set(order) == set(['conv', 'norm', 'act'])
-
- self.with_norm = norm_cfg is not None
- self.with_activation = act_cfg is not None
- # if the conv layer is before a norm layer, bias is unnecessary.
- if bias == 'auto':
- bias = not self.with_norm
- self.with_bias = bias
-
- if self.with_norm and self.with_bias:
- warnings.warn('ConvModule has norm and bias at the same time')
-
- if self.with_explicit_padding:
- pad_cfg = dict(type=padding_mode)
- self.padding_layer = build_padding_layer(pad_cfg, padding)
-
- # reset padding to 0 for conv module
- conv_padding = 0 if self.with_explicit_padding else padding
- # build convolution layer
- self.conv = build_conv_layer(
- conv_cfg,
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=conv_padding,
- dilation=dilation,
- groups=groups,
- bias=bias)
- # export the attributes of self.conv to a higher level for convenience
- self.in_channels = self.conv.in_channels
- self.out_channels = self.conv.out_channels
- self.kernel_size = self.conv.kernel_size
- self.stride = self.conv.stride
- self.padding = padding
- self.dilation = self.conv.dilation
- self.transposed = self.conv.transposed
- self.output_padding = self.conv.output_padding
- self.groups = self.conv.groups
-
- if self.with_spectral_norm:
- self.conv = nn.utils.spectral_norm(self.conv)
-
- # build normalization layers
- if self.with_norm:
- # norm layer is after conv layer
- if order.index('norm') > order.index('conv'):
- norm_channels = out_channels
- else:
- norm_channels = in_channels
- self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
- self.add_module(self.norm_name, norm)
-
- # build activation layer
- if self.with_activation:
- act_cfg_ = act_cfg.copy()
- # nn.Tanh has no 'inplace' argument
- if act_cfg_['type'] not in [
- 'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish'
- ]:
- act_cfg_.setdefault('inplace', inplace)
- self.activate = build_activation_layer(act_cfg_)
-
- # Use msra init by default
- self.init_weights()
-
- @property
- def norm(self):
- return getattr(self, self.norm_name)
-
- def init_weights(self):
- # 1. It is mainly for customized conv layers with their own
- # initialization manners, and we do not want ConvModule to
- # overrides the initialization.
- # 2. For customized conv layers without their own initialization
- # manners, they will be initialized by this method with default
- # `kaiming_init`.
- # 3. For PyTorch's conv layers, they will be initialized anyway by
- # their own `reset_parameters` methods.
- if not hasattr(self.conv, 'init_weights'):
- if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
- nonlinearity = 'leaky_relu'
- a = self.act_cfg.get('negative_slope', 0.01)
- else:
- nonlinearity = 'relu'
- a = 0
- kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
- if self.with_norm:
- constant_init(self.norm, 1, bias=0)
-
- def forward(self, x, activate=True, norm=True):
- for layer in self.order:
- if layer == 'conv':
- if self.with_explicit_padding:
- x = self.padding_layer(x)
- x = self.conv(x)
- elif layer == 'norm' and norm and self.with_norm:
- x = self.norm(x)
- elif layer == 'act' and activate and self.with_activation:
- x = self.activate(x)
- return x
diff --git a/mmdet/cv_core/cnn/bricks/non_local.py b/mmdet/cv_core/cnn/bricks/non_local.py
deleted file mode 100644
index 3ee06566..00000000
--- a/mmdet/cv_core/cnn/bricks/non_local.py
+++ /dev/null
@@ -1,305 +0,0 @@
-from abc import ABCMeta
-
-import torch
-import torch.nn as nn
-
-from ..utils import constant_init, normal_init
-from .conv_module import ConvModule
-from .registry import PLUGIN_LAYERS
-
-
-class _NonLocalNd(nn.Module, metaclass=ABCMeta):
- """Basic Non-local module.
-
- This module is proposed in
- "Non-local Neural Networks"
- Paper reference: https://arxiv.org/abs/1711.07971
- Code reference: https://github.com/AlexHex7/Non-local_pytorch
-
- Args:
- in_channels (int): Channels of the input feature map.
- reduction (int): Channel reduction ratio. Default: 2.
- use_scale (bool): Whether to scale pairwise_weight by
- `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`.
- Default: True.
- conv_cfg (None | dict): The config dict for convolution layers.
- If not specified, it will use `nn.Conv2d` for convolution layers.
- Default: None.
- norm_cfg (None | dict): The config dict for normalization layers.
- Default: None. (This parameter is only applicable to conv_out.)
- mode (str): Options are `gaussian`, `concatenation`,
- `embedded_gaussian` and `dot_product`. Default: embedded_gaussian.
- """
-
- def __init__(self,
- in_channels,
- reduction=2,
- use_scale=True,
- conv_cfg=None,
- norm_cfg=None,
- mode='embedded_gaussian',
- **kwargs):
- super(_NonLocalNd, self).__init__()
- self.in_channels = in_channels
- self.reduction = reduction
- self.use_scale = use_scale
- self.inter_channels = max(in_channels // reduction, 1)
- self.mode = mode
-
- if mode not in [
- 'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation'
- ]:
- raise ValueError("Mode should be in 'gaussian', 'concatenation', "
- f"'embedded_gaussian' or 'dot_product', but got "
- f'{mode} instead.')
-
- # g, theta, phi are defaulted as `nn.ConvNd`.
- # Here we use ConvModule for potential usage.
- self.g = ConvModule(
- self.in_channels,
- self.inter_channels,
- kernel_size=1,
- conv_cfg=conv_cfg,
- act_cfg=None)
- self.conv_out = ConvModule(
- self.inter_channels,
- self.in_channels,
- kernel_size=1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=None)
-
- if self.mode != 'gaussian':
- self.theta = ConvModule(
- self.in_channels,
- self.inter_channels,
- kernel_size=1,
- conv_cfg=conv_cfg,
- act_cfg=None)
- self.phi = ConvModule(
- self.in_channels,
- self.inter_channels,
- kernel_size=1,
- conv_cfg=conv_cfg,
- act_cfg=None)
-
- if self.mode == 'concatenation':
- self.concat_project = ConvModule(
- self.inter_channels * 2,
- 1,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False,
- act_cfg=dict(type='ReLU'))
-
- self.init_weights(**kwargs)
-
- def init_weights(self, std=0.01, zeros_init=True):
- if self.mode != 'gaussian':
- for m in [self.g, self.theta, self.phi]:
- normal_init(m.conv, std=std)
- else:
- normal_init(self.g.conv, std=std)
- if zeros_init:
- if self.conv_out.norm_cfg is None:
- constant_init(self.conv_out.conv, 0)
- else:
- constant_init(self.conv_out.norm, 0)
- else:
- if self.conv_out.norm_cfg is None:
- normal_init(self.conv_out.conv, std=std)
- else:
- normal_init(self.conv_out.norm, std=std)
-
- def gaussian(self, theta_x, phi_x):
- # NonLocal1d pairwise_weight: [N, H, H]
- # NonLocal2d pairwise_weight: [N, HxW, HxW]
- # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
- pairwise_weight = torch.matmul(theta_x, phi_x)
- pairwise_weight = pairwise_weight.softmax(dim=-1)
- return pairwise_weight
-
- def embedded_gaussian(self, theta_x, phi_x):
- # NonLocal1d pairwise_weight: [N, H, H]
- # NonLocal2d pairwise_weight: [N, HxW, HxW]
- # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
- pairwise_weight = torch.matmul(theta_x, phi_x)
- if self.use_scale:
- # theta_x.shape[-1] is `self.inter_channels`
- pairwise_weight /= theta_x.shape[-1]**0.5
- pairwise_weight = pairwise_weight.softmax(dim=-1)
- return pairwise_weight
-
- def dot_product(self, theta_x, phi_x):
- # NonLocal1d pairwise_weight: [N, H, H]
- # NonLocal2d pairwise_weight: [N, HxW, HxW]
- # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
- pairwise_weight = torch.matmul(theta_x, phi_x)
- pairwise_weight /= pairwise_weight.shape[-1]
- return pairwise_weight
-
- def concatenation(self, theta_x, phi_x):
- # NonLocal1d pairwise_weight: [N, H, H]
- # NonLocal2d pairwise_weight: [N, HxW, HxW]
- # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
- h = theta_x.size(2)
- w = phi_x.size(3)
- theta_x = theta_x.repeat(1, 1, 1, w)
- phi_x = phi_x.repeat(1, 1, h, 1)
-
- concat_feature = torch.cat([theta_x, phi_x], dim=1)
- pairwise_weight = self.concat_project(concat_feature)
- n, _, h, w = pairwise_weight.size()
- pairwise_weight = pairwise_weight.view(n, h, w)
- pairwise_weight /= pairwise_weight.shape[-1]
-
- return pairwise_weight
-
- def forward(self, x):
- # Assume `reduction = 1`, then `inter_channels = C`
- # or `inter_channels = C` when `mode="gaussian"`
-
- # NonLocal1d x: [N, C, H]
- # NonLocal2d x: [N, C, H, W]
- # NonLocal3d x: [N, C, T, H, W]
- n = x.size(0)
-
- # NonLocal1d g_x: [N, H, C]
- # NonLocal2d g_x: [N, HxW, C]
- # NonLocal3d g_x: [N, TxHxW, C]
- g_x = self.g(x).view(n, self.inter_channels, -1)
- g_x = g_x.permute(0, 2, 1)
-
- # NonLocal1d theta_x: [N, H, C], phi_x: [N, C, H]
- # NonLocal2d theta_x: [N, HxW, C], phi_x: [N, C, HxW]
- # NonLocal3d theta_x: [N, TxHxW, C], phi_x: [N, C, TxHxW]
- if self.mode == 'gaussian':
- theta_x = x.view(n, self.in_channels, -1)
- theta_x = theta_x.permute(0, 2, 1)
- if self.sub_sample:
- phi_x = self.phi(x).view(n, self.in_channels, -1)
- else:
- phi_x = x.view(n, self.in_channels, -1)
- elif self.mode == 'concatenation':
- theta_x = self.theta(x).view(n, self.inter_channels, -1, 1)
- phi_x = self.phi(x).view(n, self.inter_channels, 1, -1)
- else:
- theta_x = self.theta(x).view(n, self.inter_channels, -1)
- theta_x = theta_x.permute(0, 2, 1)
- phi_x = self.phi(x).view(n, self.inter_channels, -1)
-
- pairwise_func = getattr(self, self.mode)
- # NonLocal1d pairwise_weight: [N, H, H]
- # NonLocal2d pairwise_weight: [N, HxW, HxW]
- # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW]
- pairwise_weight = pairwise_func(theta_x, phi_x)
-
- # NonLocal1d y: [N, H, C]
- # NonLocal2d y: [N, HxW, C]
- # NonLocal3d y: [N, TxHxW, C]
- y = torch.matmul(pairwise_weight, g_x)
- # NonLocal1d y: [N, C, H]
- # NonLocal2d y: [N, C, H, W]
- # NonLocal3d y: [N, C, T, H, W]
- y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels,
- *x.size()[2:])
-
- output = x + self.conv_out(y)
-
- return output
-
-
-class NonLocal1d(_NonLocalNd):
- """1D Non-local module.
-
- Args:
- in_channels (int): Same as `NonLocalND`.
- sub_sample (bool): Whether to apply max pooling after pairwise
- function (Note that the `sub_sample` is applied on spatial only).
- Default: False.
- conv_cfg (None | dict): Same as `NonLocalND`.
- Default: dict(type='Conv1d').
- """
-
- def __init__(self,
- in_channels,
- sub_sample=False,
- conv_cfg=dict(type='Conv1d'),
- **kwargs):
- super(NonLocal1d, self).__init__(
- in_channels, conv_cfg=conv_cfg, **kwargs)
-
- self.sub_sample = sub_sample
-
- if sub_sample:
- max_pool_layer = nn.MaxPool1d(kernel_size=2)
- self.g = nn.Sequential(self.g, max_pool_layer)
- if self.mode != 'gaussian':
- self.phi = nn.Sequential(self.phi, max_pool_layer)
- else:
- self.phi = max_pool_layer
-
-
-@PLUGIN_LAYERS.register_module()
-class NonLocal2d(_NonLocalNd):
- """2D Non-local module.
-
- Args:
- in_channels (int): Same as `NonLocalND`.
- sub_sample (bool): Whether to apply max pooling after pairwise
- function (Note that the `sub_sample` is applied on spatial only).
- Default: False.
- conv_cfg (None | dict): Same as `NonLocalND`.
- Default: dict(type='Conv2d').
- """
-
- _abbr_ = 'nonlocal_block'
-
- def __init__(self,
- in_channels,
- sub_sample=False,
- conv_cfg=dict(type='Conv2d'),
- **kwargs):
- super(NonLocal2d, self).__init__(
- in_channels, conv_cfg=conv_cfg, **kwargs)
-
- self.sub_sample = sub_sample
-
- if sub_sample:
- max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
- self.g = nn.Sequential(self.g, max_pool_layer)
- if self.mode != 'gaussian':
- self.phi = nn.Sequential(self.phi, max_pool_layer)
- else:
- self.phi = max_pool_layer
-
-
-class NonLocal3d(_NonLocalNd):
- """3D Non-local module.
-
- Args:
- in_channels (int): Same as `NonLocalND`.
- sub_sample (bool): Whether to apply max pooling after pairwise
- function (Note that the `sub_sample` is applied on spatial only).
- Default: False.
- conv_cfg (None | dict): Same as `NonLocalND`.
- Default: dict(type='Conv3d').
- """
-
- def __init__(self,
- in_channels,
- sub_sample=False,
- conv_cfg=dict(type='Conv3d'),
- **kwargs):
- super(NonLocal3d, self).__init__(
- in_channels, conv_cfg=conv_cfg, **kwargs)
- self.sub_sample = sub_sample
-
- if sub_sample:
- max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
- self.g = nn.Sequential(self.g, max_pool_layer)
- if self.mode != 'gaussian':
- self.phi = nn.Sequential(self.phi, max_pool_layer)
- else:
- self.phi = max_pool_layer
diff --git a/mmdet/cv_core/cnn/bricks/norm.py b/mmdet/cv_core/cnn/bricks/norm.py
deleted file mode 100644
index 3394045a..00000000
--- a/mmdet/cv_core/cnn/bricks/norm.py
+++ /dev/null
@@ -1,145 +0,0 @@
-import inspect
-
-import torch.nn as nn
-
-from mmdet.cv_core.utils import is_tuple_of
-from torch.nn.modules.instancenorm import _InstanceNorm
-from torch.nn.modules.batchnorm import _BatchNorm
-
-
-from .registry import NORM_LAYERS
-
-NORM_LAYERS.register_module('BN', module=nn.BatchNorm2d)
-NORM_LAYERS.register_module('BN1d', module=nn.BatchNorm1d)
-NORM_LAYERS.register_module('BN2d', module=nn.BatchNorm2d)
-NORM_LAYERS.register_module('BN3d', module=nn.BatchNorm3d)
-NORM_LAYERS.register_module('GN', module=nn.GroupNorm)
-NORM_LAYERS.register_module('LN', module=nn.LayerNorm)
-NORM_LAYERS.register_module('IN', module=nn.InstanceNorm2d)
-NORM_LAYERS.register_module('IN1d', module=nn.InstanceNorm1d)
-NORM_LAYERS.register_module('IN2d', module=nn.InstanceNorm2d)
-NORM_LAYERS.register_module('IN3d', module=nn.InstanceNorm3d)
-
-
-def infer_abbr(class_type):
- """Infer abbreviation from the class name.
-
- When we build a norm layer with `build_norm_layer()`, we want to preserve
- the norm type in variable names, e.g, self.bn1, self.gn. This method will
- infer the abbreviation to map class types to abbreviations.
-
- Rule 1: If the class has the property "_abbr_", return the property.
- Rule 2: If the parent class is _BatchNorm, GroupNorm, LayerNorm or
- InstanceNorm, the abbreviation of this layer will be "bn", "gn", "ln" and
- "in" respectively.
- Rule 3: If the class name contains "batch", "group", "layer" or "instance",
- the abbreviation of this layer will be "bn", "gn", "ln" and "in"
- respectively.
- Rule 4: Otherwise, the abbreviation falls back to "norm".
-
- Args:
- class_type (type): The norm layer type.
-
- Returns:
- str: The inferred abbreviation.
- """
- if not inspect.isclass(class_type):
- raise TypeError(
- f'class_type must be a type, but got {type(class_type)}')
- if hasattr(class_type, '_abbr_'):
- return class_type._abbr_
- if issubclass(class_type, _InstanceNorm): # IN is a subclass of BN
- return 'in'
- elif issubclass(class_type, _BatchNorm):
- return 'bn'
- elif issubclass(class_type, nn.GroupNorm):
- return 'gn'
- elif issubclass(class_type, nn.LayerNorm):
- return 'ln'
- else:
- class_name = class_type.__name__.lower()
- if 'batch' in class_name:
- return 'bn'
- elif 'group' in class_name:
- return 'gn'
- elif 'layer' in class_name:
- return 'ln'
- elif 'instance' in class_name:
- return 'in'
- else:
- return 'norm'
-
-
-def build_norm_layer(cfg, num_features, postfix=''):
- """Build normalization layer.
-
- Args:
- cfg (dict): The norm layer config, which should contain:
-
- - type (str): Layer type.
- - layer args: Args needed to instantiate a norm layer.
- - requires_grad (bool, optional): Whether stop gradient updates.
- num_features (int): Number of input channels.
- postfix (int | str): The postfix to be appended into norm abbreviation
- to create named layer.
-
- Returns:
- (str, nn.Module): The first element is the layer name consisting of
- abbreviation and postfix, e.g., bn1, gn. The second element is the
- created norm layer.
- """
- if not isinstance(cfg, dict):
- raise TypeError('cfg must be a dict')
- if 'type' not in cfg:
- raise KeyError('the cfg dict must contain the key "type"')
- cfg_ = cfg.copy()
-
- layer_type = cfg_.pop('type')
- if layer_type not in NORM_LAYERS:
- raise KeyError(f'Unrecognized norm type {layer_type}')
-
- norm_layer = NORM_LAYERS.get(layer_type)
- abbr = infer_abbr(norm_layer)
-
- assert isinstance(postfix, (int, str))
- name = abbr + str(postfix)
-
- requires_grad = cfg_.pop('requires_grad', True)
- cfg_.setdefault('eps', 1e-5)
- if layer_type != 'GN':
- layer = norm_layer(num_features, **cfg_)
- if layer_type == 'SyncBN':
- layer._specify_ddp_gpu_num(1)
- else:
- assert 'num_groups' in cfg_
- layer = norm_layer(num_channels=num_features, **cfg_)
-
- for param in layer.parameters():
- param.requires_grad = requires_grad
-
- return name, layer
-
-
-def is_norm(layer, exclude=None):
- """Check if a layer is a normalization layer.
-
- Args:
- layer (nn.Module): The layer to be checked.
- exclude (type | tuple[type]): Types to be excluded.
-
- Returns:
- bool: Whether the layer is a norm layer.
- """
- if exclude is not None:
- if not isinstance(exclude, tuple):
- exclude = (exclude, )
- if not is_tuple_of(exclude, type):
- raise TypeError(
- f'"exclude" must be either None or type or a tuple of types, '
- f'but got {type(exclude)}: {exclude}')
-
- if exclude and isinstance(layer, exclude):
- return False
-
- all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm)
- return isinstance(layer, all_norm_bases)
diff --git a/mmdet/cv_core/cnn/bricks/padding.py b/mmdet/cv_core/cnn/bricks/padding.py
deleted file mode 100644
index b7e82129..00000000
--- a/mmdet/cv_core/cnn/bricks/padding.py
+++ /dev/null
@@ -1,35 +0,0 @@
-import torch.nn as nn
-
-from .registry import PADDING_LAYERS
-
-PADDING_LAYERS.register_module('zero', module=nn.ZeroPad2d)
-PADDING_LAYERS.register_module('reflect', module=nn.ReflectionPad2d)
-PADDING_LAYERS.register_module('replicate', module=nn.ReplicationPad2d)
-
-
-def build_padding_layer(cfg, *args, **kwargs):
- """Build padding layer.
-
- Args:
- cfg (None or dict): The padding layer config, which should contain:
- - type (str): Layer type.
- - layer args: Args needed to instantiate a padding layer.
-
- Returns:
- nn.Module: Created padding layer.
- """
- if not isinstance(cfg, dict):
- raise TypeError('cfg must be a dict')
- if 'type' not in cfg:
- raise KeyError('the cfg dict must contain the key "type"')
-
- cfg_ = cfg.copy()
- padding_type = cfg_.pop('type')
- if padding_type not in PADDING_LAYERS:
- raise KeyError(f'Unrecognized padding type {padding_type}.')
- else:
- padding_layer = PADDING_LAYERS.get(padding_type)
-
- layer = padding_layer(*args, **kwargs, **cfg_)
-
- return layer
diff --git a/mmdet/cv_core/cnn/bricks/registry.py b/mmdet/cv_core/cnn/bricks/registry.py
deleted file mode 100644
index 03c99b0b..00000000
--- a/mmdet/cv_core/cnn/bricks/registry.py
+++ /dev/null
@@ -1,8 +0,0 @@
-from mmdet.cv_core.utils import Registry
-
-CONV_LAYERS = Registry('conv layer')
-NORM_LAYERS = Registry('norm layer')
-ACTIVATION_LAYERS = Registry('activation layer')
-PADDING_LAYERS = Registry('padding layer')
-UPSAMPLE_LAYERS = Registry('upsample layer')
-PLUGIN_LAYERS = Registry('plugin layer')
diff --git a/mmdet/cv_core/cnn/bricks/scale.py b/mmdet/cv_core/cnn/bricks/scale.py
deleted file mode 100644
index be7109b8..00000000
--- a/mmdet/cv_core/cnn/bricks/scale.py
+++ /dev/null
@@ -1,20 +0,0 @@
-import torch
-import torch.nn as nn
-
-
-class Scale(nn.Module):
- """A learnable scale parameter.
-
- This layer scales the input by a learnable factor. It multiplies a
- learnable scale parameter of shape (1,) with input of any shape.
-
- Args:
- scale (float): Initial value of scale factor. Default: 1.0
- """
-
- def __init__(self, scale=1.0):
- super(Scale, self).__init__()
- self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
-
- def forward(self, x):
- return x * self.scale
diff --git a/mmdet/cv_core/cnn/bricks/upsample.py b/mmdet/cv_core/cnn/bricks/upsample.py
deleted file mode 100644
index c1388c39..00000000
--- a/mmdet/cv_core/cnn/bricks/upsample.py
+++ /dev/null
@@ -1,83 +0,0 @@
-import torch.nn as nn
-import torch.nn.functional as F
-
-from ..utils import xavier_init
-from .registry import UPSAMPLE_LAYERS
-
-UPSAMPLE_LAYERS.register_module('nearest', module=nn.Upsample)
-UPSAMPLE_LAYERS.register_module('bilinear', module=nn.Upsample)
-
-
-@UPSAMPLE_LAYERS.register_module(name='pixel_shuffle')
-class PixelShufflePack(nn.Module):
- """Pixel Shuffle upsample layer.
-
- This module packs `F.pixel_shuffle()` and a nn.Conv2d module together to
- achieve a simple upsampling with pixel shuffle.
-
- Args:
- in_channels (int): Number of input channels.
- out_channels (int): Number of output channels.
- scale_factor (int): Upsample ratio.
- upsample_kernel (int): Kernel size of the conv layer to expand the
- channels.
- """
-
- def __init__(self, in_channels, out_channels, scale_factor,
- upsample_kernel):
- super(PixelShufflePack, self).__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.scale_factor = scale_factor
- self.upsample_kernel = upsample_kernel
- self.upsample_conv = nn.Conv2d(
- self.in_channels,
- self.out_channels * scale_factor * scale_factor,
- self.upsample_kernel,
- padding=(self.upsample_kernel - 1) // 2)
- self.init_weights()
-
- def init_weights(self):
- xavier_init(self.upsample_conv, distribution='uniform')
-
- def forward(self, x):
- x = self.upsample_conv(x)
- x = F.pixel_shuffle(x, self.scale_factor)
- return x
-
-
-def build_upsample_layer(cfg, *args, **kwargs):
- """Build upsample layer.
-
- Args:
- cfg (dict): The upsample layer config, which should contain:
-
- - type (str): Layer type.
- - scale_factor (int): Upsample ratio, which is not applicable to
- deconv.
- - layer args: Args needed to instantiate a upsample layer.
- args (argument list): Arguments passed to the ``__init__``
- method of the corresponding conv layer.
- kwargs (keyword arguments): Keyword arguments passed to the
- ``__init__`` method of the corresponding conv layer.
-
- Returns:
- nn.Module: Created upsample layer.
- """
- if not isinstance(cfg, dict):
- raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
- if 'type' not in cfg:
- raise KeyError(
- f'the cfg dict must contain the key "type", but got {cfg}')
- cfg_ = cfg.copy()
-
- layer_type = cfg_.pop('type')
- if layer_type not in UPSAMPLE_LAYERS:
- raise KeyError(f'Unrecognized upsample type {layer_type}')
- else:
- upsample = UPSAMPLE_LAYERS.get(layer_type)
-
- if upsample is nn.Upsample:
- cfg_['mode'] = layer_type
- layer = upsample(*args, **kwargs, **cfg_)
- return layer
diff --git a/mmdet/cv_core/cnn/bricks/wrappers.py b/mmdet/cv_core/cnn/bricks/wrappers.py
deleted file mode 100644
index 6f9b694d..00000000
--- a/mmdet/cv_core/cnn/bricks/wrappers.py
+++ /dev/null
@@ -1,109 +0,0 @@
-r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501
-
-Wrap some nn modules to support empty tensor input. Currently, these wrappers
-are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask
-heads are trained on only positive RoIs.
-"""
-import math
-
-import torch
-import torch.nn as nn
-from torch.nn.modules.utils import _pair
-
-from .registry import CONV_LAYERS, UPSAMPLE_LAYERS
-
-# torch.__version__ could be 1.3.1+cu92, we only need the first two
-# for comparison
-TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
-
-
-class NewEmptyTensorOp(torch.autograd.Function):
-
- @staticmethod
- def forward(ctx, x, new_shape):
- ctx.shape = x.shape
- return x.new_empty(new_shape)
-
- @staticmethod
- def backward(ctx, grad):
- shape = ctx.shape
- return NewEmptyTensorOp.apply(grad, shape), None
-
-
-@CONV_LAYERS.register_module('Conv', force=True)
-class Conv2d(nn.Conv2d):
-
- def forward(self, x):
- if x.numel() == 0 and TORCH_VERSION <= (1, 4):
- out_shape = [x.shape[0], self.out_channels]
- for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
- self.padding, self.stride, self.dilation):
- o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
- out_shape.append(o)
- empty = NewEmptyTensorOp.apply(x, out_shape)
- if self.training:
- # produce dummy gradient to avoid DDP warning.
- dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
- return empty + dummy
- else:
- return empty
-
- return super().forward(x)
-
-
-@CONV_LAYERS.register_module()
-@CONV_LAYERS.register_module('deconv')
-@UPSAMPLE_LAYERS.register_module('deconv', force=True)
-class ConvTranspose2d(nn.ConvTranspose2d):
-
- def forward(self, x):
- if x.numel() == 0 and TORCH_VERSION <= (1, 4):
- out_shape = [x.shape[0], self.out_channels]
- for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
- self.padding, self.stride,
- self.dilation, self.output_padding):
- out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
- empty = NewEmptyTensorOp.apply(x, out_shape)
- if self.training:
- # produce dummy gradient to avoid DDP warning.
- dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
- return empty + dummy
- else:
- return empty
-
- return super(ConvTranspose2d, self).forward(x)
-
-
-class MaxPool2d(nn.MaxPool2d):
-
- def forward(self, x):
- # PyTorch 1.6 does not support empty tensor inference yet
- if x.numel() == 0 and TORCH_VERSION <= (1, 6):
- out_shape = list(x.shape[:2])
- for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
- _pair(self.padding), _pair(self.stride),
- _pair(self.dilation)):
- o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
- o = math.ceil(o) if self.ceil_mode else math.floor(o)
- out_shape.append(o)
- empty = NewEmptyTensorOp.apply(x, out_shape)
- return empty
-
- return super().forward(x)
-
-
-class Linear(torch.nn.Linear):
-
- def forward(self, x):
- # empty tensor forward of Linear layer is supported in Pytorch 1.6
- if x.numel() == 0 and TORCH_VERSION <= (1, 5):
- out_shape = [x.shape[0], self.out_features]
- empty = NewEmptyTensorOp.apply(x, out_shape)
- if self.training:
- # produce dummy gradient to avoid DDP warning.
- dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
- return empty + dummy
- else:
- return empty
-
- return super().forward(x)
diff --git a/mmdet/cv_core/cnn/utils/__init__.py b/mmdet/cv_core/cnn/utils/__init__.py
deleted file mode 100644
index a9d86fe7..00000000
--- a/mmdet/cv_core/cnn/utils/__init__.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from .weight_init import (bias_init_with_prob,
- constant_init, kaiming_init, normal_init,
- uniform_init, xavier_init)
-
-__all__ = [
- 'bias_init_with_prob',
- 'constant_init', 'kaiming_init', 'normal_init', 'uniform_init',
- 'xavier_init',
-]
diff --git a/mmdet/cv_core/cnn/utils/weight_init.py b/mmdet/cv_core/cnn/utils/weight_init.py
deleted file mode 100644
index 6eedd9f7..00000000
--- a/mmdet/cv_core/cnn/utils/weight_init.py
+++ /dev/null
@@ -1,55 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import numpy as np
-import torch.nn as nn
-
-
-def constant_init(module, val, bias=0):
- if hasattr(module, 'weight') and module.weight is not None:
- nn.init.constant_(module.weight, val)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
-
-
-def xavier_init(module, gain=1, bias=0, distribution='normal'):
- assert distribution in ['uniform', 'normal']
- if distribution == 'uniform':
- nn.init.xavier_uniform_(module.weight, gain=gain)
- else:
- nn.init.xavier_normal_(module.weight, gain=gain)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
-
-
-def normal_init(module, mean=0, std=1, bias=0):
- nn.init.normal_(module.weight, mean, std)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
-
-
-def uniform_init(module, a=0, b=1, bias=0):
- nn.init.uniform_(module.weight, a, b)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
-
-
-def kaiming_init(module,
- a=0,
- mode='fan_out',
- nonlinearity='relu',
- bias=0,
- distribution='normal'):
- assert distribution in ['uniform', 'normal']
- if distribution == 'uniform':
- nn.init.kaiming_uniform_(
- module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
- else:
- nn.init.kaiming_normal_(
- module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
-
-
-def bias_init_with_prob(prior_prob):
- """initialize conv/fc bias value according to giving probablity."""
- bias_init = float(-np.log((1 - prior_prob) / prior_prob))
- return bias_init
diff --git a/mmdet/cv_core/cnn/vgg.py b/mmdet/cv_core/cnn/vgg.py
deleted file mode 100644
index c20b5d0f..00000000
--- a/mmdet/cv_core/cnn/vgg.py
+++ /dev/null
@@ -1,175 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import logging
-
-import torch.nn as nn
-
-from ..runner import load_checkpoint
-from .utils import constant_init, kaiming_init, normal_init
-
-
-def conv3x3(in_planes, out_planes, dilation=1):
- """3x3 convolution with padding."""
- return nn.Conv2d(
- in_planes,
- out_planes,
- kernel_size=3,
- padding=dilation,
- dilation=dilation)
-
-
-def make_vgg_layer(inplanes,
- planes,
- num_blocks,
- dilation=1,
- with_bn=False,
- ceil_mode=False):
- layers = []
- for _ in range(num_blocks):
- layers.append(conv3x3(inplanes, planes, dilation))
- if with_bn:
- layers.append(nn.BatchNorm2d(planes))
- layers.append(nn.ReLU(inplace=True))
- inplanes = planes
- layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode))
-
- return layers
-
-
-class VGG(nn.Module):
- """VGG backbone.
-
- Args:
- depth (int): Depth of vgg, from {11, 13, 16, 19}.
- with_bn (bool): Use BatchNorm or not.
- num_classes (int): number of classes for classification.
- num_stages (int): VGG stages, normally 5.
- dilations (Sequence[int]): Dilation of each stage.
- out_indices (Sequence[int]): Output from which stages.
- frozen_stages (int): Stages to be frozen (all param fixed). -1 means
- not freezing any parameters.
- bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
- running stats (mean and var).
- bn_frozen (bool): Whether to freeze weight and bias of BN layers.
- """
-
- arch_settings = {
- 11: (1, 1, 2, 2, 2),
- 13: (2, 2, 2, 2, 2),
- 16: (2, 2, 3, 3, 3),
- 19: (2, 2, 4, 4, 4)
- }
-
- def __init__(self,
- depth,
- with_bn=False,
- num_classes=-1,
- num_stages=5,
- dilations=(1, 1, 1, 1, 1),
- out_indices=(0, 1, 2, 3, 4),
- frozen_stages=-1,
- bn_eval=True,
- bn_frozen=False,
- ceil_mode=False,
- with_last_pool=True):
- super(VGG, self).__init__()
- if depth not in self.arch_settings:
- raise KeyError(f'invalid depth {depth} for vgg')
- assert num_stages >= 1 and num_stages <= 5
- stage_blocks = self.arch_settings[depth]
- self.stage_blocks = stage_blocks[:num_stages]
- assert len(dilations) == num_stages
- assert max(out_indices) <= num_stages
-
- self.num_classes = num_classes
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- self.bn_eval = bn_eval
- self.bn_frozen = bn_frozen
-
- self.inplanes = 3
- start_idx = 0
- vgg_layers = []
- self.range_sub_modules = []
- for i, num_blocks in enumerate(self.stage_blocks):
- num_modules = num_blocks * (2 + with_bn) + 1
- end_idx = start_idx + num_modules
- dilation = dilations[i]
- planes = 64 * 2**i if i < 4 else 512
- vgg_layer = make_vgg_layer(
- self.inplanes,
- planes,
- num_blocks,
- dilation=dilation,
- with_bn=with_bn,
- ceil_mode=ceil_mode)
- vgg_layers.extend(vgg_layer)
- self.inplanes = planes
- self.range_sub_modules.append([start_idx, end_idx])
- start_idx = end_idx
- if not with_last_pool:
- vgg_layers.pop(-1)
- self.range_sub_modules[-1][1] -= 1
- self.module_name = 'features'
- self.add_module(self.module_name, nn.Sequential(*vgg_layers))
-
- if self.num_classes > 0:
- self.classifier = nn.Sequential(
- nn.Linear(512 * 7 * 7, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, num_classes),
- )
-
- def init_weights(self, pretrained=None):
- if isinstance(pretrained, str):
- logger = logging.getLogger()
- load_checkpoint(self, pretrained, strict=False, logger=logger)
- elif pretrained is None:
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- kaiming_init(m)
- elif isinstance(m, nn.BatchNorm2d):
- constant_init(m, 1)
- elif isinstance(m, nn.Linear):
- normal_init(m, std=0.01)
- else:
- raise TypeError('pretrained must be a str or None')
-
- def forward(self, x):
- outs = []
- vgg_layers = getattr(self, self.module_name)
- for i in range(len(self.stage_blocks)):
- for j in range(*self.range_sub_modules[i]):
- vgg_layer = vgg_layers[j]
- x = vgg_layer(x)
- if i in self.out_indices:
- outs.append(x)
- if self.num_classes > 0:
- x = x.view(x.size(0), -1)
- x = self.classifier(x)
- outs.append(x)
- if len(outs) == 1:
- return outs[0]
- else:
- return tuple(outs)
-
- def train(self, mode=True):
- super(VGG, self).train(mode)
- if self.bn_eval:
- for m in self.modules():
- if isinstance(m, nn.BatchNorm2d):
- m.eval()
- if self.bn_frozen:
- for params in m.parameters():
- params.requires_grad = False
- vgg_layers = getattr(self, self.module_name)
- if mode and self.frozen_stages >= 0:
- for i in range(self.frozen_stages):
- for j in range(*self.range_sub_modules[i]):
- mod = vgg_layers[j]
- mod.eval()
- for param in mod.parameters():
- param.requires_grad = False
diff --git a/mmdet/cv_core/fileio/__init__.py b/mmdet/cv_core/fileio/__init__.py
deleted file mode 100644
index b307027a..00000000
--- a/mmdet/cv_core/fileio/__init__.py
+++ /dev/null
@@ -1,11 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from .file_client import BaseStorageBackend, FileClient
-from .handlers import BaseFileHandler, JsonHandler, PickleHandler, YamlHandler
-from .io import dump, load, register_handler
-from .parse import dict_from_file, list_from_file
-
-__all__ = [
- 'BaseStorageBackend', 'FileClient', 'load', 'dump', 'register_handler',
- 'BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler',
- 'list_from_file', 'dict_from_file'
-]
diff --git a/mmdet/cv_core/fileio/file_client.py b/mmdet/cv_core/fileio/file_client.py
deleted file mode 100644
index 99a71b64..00000000
--- a/mmdet/cv_core/fileio/file_client.py
+++ /dev/null
@@ -1,230 +0,0 @@
-import inspect
-from abc import ABCMeta, abstractmethod
-
-
-class BaseStorageBackend(metaclass=ABCMeta):
- """Abstract class of storage backends.
-
- All backends need to implement two apis: ``get()`` and ``get_text()``.
- ``get()`` reads the file as a byte stream and ``get_text()`` reads the file
- as texts.
- """
-
- @abstractmethod
- def get(self, filepath):
- pass
-
- @abstractmethod
- def get_text(self, filepath):
- pass
-
-
-# 内存缓存功能库
-class MemcachedBackend(BaseStorageBackend):
- """Memcached storage backend.
-
- Attributes:
- server_list_cfg (str): Config file for memcached server list.
- client_cfg (str): Config file for memcached client.
- sys_path (str | None): Additional path to be appended to `sys.path`.
- Default: None.
- """
-
- def __init__(self, server_list_cfg, client_cfg, sys_path=None):
- if sys_path is not None:
- import sys
- sys.path.append(sys_path)
- try:
- import mc
- except ImportError:
- raise ImportError(
- 'Please install memcached to enable MemcachedBackend.')
-
- self.server_list_cfg = server_list_cfg
- self.client_cfg = client_cfg
- self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg,
- self.client_cfg)
- # mc.pyvector servers as a point which points to a memory cache
- self._mc_buffer = mc.pyvector()
-
- def get(self, filepath):
- filepath = str(filepath)
- import mc
- self._client.Get(filepath, self._mc_buffer)
- value_buf = mc.ConvertBuffer(self._mc_buffer)
- return value_buf
-
- def get_text(self, filepath):
- raise NotImplementedError
-
-
-# Lightning Memory-Mapped Database 快如闪电的内存映射数据库,减少io读取
-class LmdbBackend(BaseStorageBackend):
- """Lmdb storage backend.
-
- Args:
- db_path (str): Lmdb database path.
- readonly (bool, optional): Lmdb environment parameter. If True,
- disallow any write operations. Default: True.
- lock (bool, optional): Lmdb environment parameter. If False, when
- concurrent access occurs, do not lock the database. Default: False.
- readahead (bool, optional): Lmdb environment parameter. If False,
- disable the OS filesystem readahead mechanism, which may improve
- random read performance when a database is larger than RAM.
- Default: False.
-
- Attributes:
- db_path (str): Lmdb database path.
- """
-
- def __init__(self,
- db_path,
- readonly=True,
- lock=False,
- readahead=False,
- **kwargs):
- try:
- import lmdb
- except ImportError:
- raise ImportError('Please install lmdb to enable LmdbBackend.')
-
- self.db_path = str(db_path) # 需要先传入lmdb格式数据路径
- self._client = lmdb.open(
- self.db_path,
- readonly=readonly,
- lock=lock,
- readahead=readahead,
- **kwargs)
-
- def get(self, filepath):
- """Get values according to the filepath.
-
- Args:
- filepath (str | obj:`Path`): Here, filepath is the lmdb key.
- """
- filepath = str(filepath)
- with self._client.begin(write=False) as txn:
- value_buf = txn.get(filepath.encode('ascii'))
- return value_buf
-
- def get_text(self, filepath):
- raise NotImplementedError
-
-
-# 仅仅读取图片字节而已,没有其他功能
-class HardDiskBackend(BaseStorageBackend):
- """Raw hard disks storage backend."""
-
- def get(self, filepath):
- filepath = str(filepath)
- with open(filepath, 'rb') as f:
- value_buf = f.read()
- return value_buf
-
- def get_text(self, filepath):
- filepath = str(filepath)
- with open(filepath, 'r') as f:
- value_buf = f.read()
- return value_buf
-
-
-class FileClient:
- """A general file client to access files in different backend.
-
- The client loads a file or text in a specified backend from its path
- and return it as a binary file. it can also register other backend
- accessor with a given name and backend class.
-
- Attributes:
- backend (str): The storage backend type. Options are "disk", "ceph",
- "memcached" and "lmdb".
- client (:obj:`BaseStorageBackend`): The backend object.
- """
-
- _backends = {
- 'disk': HardDiskBackend,
- 'memcached': MemcachedBackend,
- 'lmdb': LmdbBackend,
- }
-
- def __init__(self, backend='disk', **kwargs):
- if backend not in self._backends:
- raise ValueError(
- f'Backend {backend} is not supported. Currently supported ones'
- f' are {list(self._backends.keys())}')
- self.backend = backend
- self.client = self._backends[backend](**kwargs)
-
- @classmethod
- def _register_backend(cls, name, backend, force=False):
- if not isinstance(name, str):
- raise TypeError('the backend name should be a string, '
- f'but got {type(name)}')
- if not inspect.isclass(backend):
- raise TypeError(
- f'backend should be a class but got {type(backend)}')
- if not issubclass(backend, BaseStorageBackend):
- raise TypeError(
- f'backend {backend} is not a subclass of BaseStorageBackend')
- if not force and name in cls._backends:
- raise KeyError(
- f'{name} is already registered as a storage backend, '
- 'add "force=True" if you want to override it')
-
- cls._backends[name] = backend
-
- @classmethod
- def register_backend(cls, name, backend=None, force=False):
- """Register a backend to FileClient.
-
- This method can be used as a normal class method or a decorator.
-
- .. code-block:: python
-
- class NewBackend(BaseStorageBackend):
-
- def get(self, filepath):
- return filepath
-
- def get_text(self, filepath):
- return filepath
-
- FileClient.register_backend('new', NewBackend)
-
- or
-
- .. code-block:: python
-
- @FileClient.register_backend('new')
- class NewBackend(BaseStorageBackend):
-
- def get(self, filepath):
- return filepath
-
- def get_text(self, filepath):
- return filepath
-
- Args:
- name (str): The name of the registered backend.
- backend (class, optional): The backend class to be registered,
- which must be a subclass of :class:`BaseStorageBackend`.
- When this method is used as a decorator, backend is None.
- Defaults to None.
- force (bool, optional): Whether to override the backend if the name
- has already been registered. Defaults to False.
- """
- if backend is not None:
- cls._register_backend(name, backend, force=force)
- return
-
- def _register(backend_cls):
- cls._register_backend(name, backend_cls, force=force)
- return backend_cls
-
- return _register
-
- def get(self, filepath):
- return self.client.get(filepath)
-
- def get_text(self, filepath):
- return self.client.get_text(filepath)
diff --git a/mmdet/cv_core/fileio/handlers/__init__.py b/mmdet/cv_core/fileio/handlers/__init__.py
deleted file mode 100644
index 2fbc6ec9..00000000
--- a/mmdet/cv_core/fileio/handlers/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from .base import BaseFileHandler
-from .json_handler import JsonHandler
-from .pickle_handler import PickleHandler
-from .yaml_handler import YamlHandler
-
-__all__ = ['BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler']
diff --git a/mmdet/cv_core/fileio/handlers/base.py b/mmdet/cv_core/fileio/handlers/base.py
deleted file mode 100644
index 91f3fe1f..00000000
--- a/mmdet/cv_core/fileio/handlers/base.py
+++ /dev/null
@@ -1,25 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from abc import ABCMeta, abstractmethod
-
-
-class BaseFileHandler(metaclass=ABCMeta):
-
- @abstractmethod
- def load_from_fileobj(self, file, **kwargs):
- pass
-
- @abstractmethod
- def dump_to_fileobj(self, obj, file, **kwargs):
- pass
-
- @abstractmethod
- def dump_to_str(self, obj, **kwargs):
- pass
-
- def load_from_path(self, filepath, mode='r', **kwargs):
- with open(filepath, mode) as f:
- return self.load_from_fileobj(f, **kwargs)
-
- def dump_to_path(self, obj, filepath, mode='w', **kwargs):
- with open(filepath, mode) as f:
- self.dump_to_fileobj(obj, f, **kwargs)
diff --git a/mmdet/cv_core/fileio/handlers/json_handler.py b/mmdet/cv_core/fileio/handlers/json_handler.py
deleted file mode 100644
index d92c397f..00000000
--- a/mmdet/cv_core/fileio/handlers/json_handler.py
+++ /dev/null
@@ -1,36 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import json
-
-import numpy as np
-
-from .base import BaseFileHandler
-
-
-def set_default(obj):
- """Set default json values for non-serializable values.
-
- It helps convert ``set``, ``range`` and ``np.ndarray`` data types to list.
- It also converts ``np.generic`` (including ``np.int32``, ``np.float32``,
- etc.) into plain numbers of plain python built-in types.
- """
- if isinstance(obj, (set, range)):
- return list(obj)
- elif isinstance(obj, np.ndarray):
- return obj.tolist()
- elif isinstance(obj, np.generic):
- return obj.item()
- raise TypeError(f'{type(obj)} is unsupported for json dump')
-
-
-class JsonHandler(BaseFileHandler):
-
- def load_from_fileobj(self, file):
- return json.load(file)
-
- def dump_to_fileobj(self, obj, file, **kwargs):
- kwargs.setdefault('default', set_default)
- json.dump(obj, file, **kwargs)
-
- def dump_to_str(self, obj, **kwargs):
- kwargs.setdefault('default', set_default)
- return json.dumps(obj, **kwargs)
diff --git a/mmdet/cv_core/fileio/handlers/pickle_handler.py b/mmdet/cv_core/fileio/handlers/pickle_handler.py
deleted file mode 100644
index b22b1dc1..00000000
--- a/mmdet/cv_core/fileio/handlers/pickle_handler.py
+++ /dev/null
@@ -1,26 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import pickle
-
-from .base import BaseFileHandler
-
-
-class PickleHandler(BaseFileHandler):
-
- def load_from_fileobj(self, file, **kwargs):
- return pickle.load(file, **kwargs)
-
- def load_from_path(self, filepath, **kwargs):
- return super(PickleHandler, self).load_from_path(
- filepath, mode='rb', **kwargs)
-
- def dump_to_str(self, obj, **kwargs):
- kwargs.setdefault('protocol', 2)
- return pickle.dumps(obj, **kwargs)
-
- def dump_to_fileobj(self, obj, file, **kwargs):
- kwargs.setdefault('protocol', 2)
- pickle.dump(obj, file, **kwargs)
-
- def dump_to_path(self, obj, filepath, **kwargs):
- super(PickleHandler, self).dump_to_path(
- obj, filepath, mode='wb', **kwargs)
diff --git a/mmdet/cv_core/fileio/handlers/yaml_handler.py b/mmdet/cv_core/fileio/handlers/yaml_handler.py
deleted file mode 100644
index c93eba8d..00000000
--- a/mmdet/cv_core/fileio/handlers/yaml_handler.py
+++ /dev/null
@@ -1,24 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import yaml
-
-try:
- from yaml import CLoader as Loader, CDumper as Dumper
-except ImportError:
- from yaml import Loader, Dumper
-
-from .base import BaseFileHandler # isort:skip
-
-
-class YamlHandler(BaseFileHandler):
-
- def load_from_fileobj(self, file, **kwargs):
- kwargs.setdefault('Loader', Loader)
- return yaml.load(file, **kwargs)
-
- def dump_to_fileobj(self, obj, file, **kwargs):
- kwargs.setdefault('Dumper', Dumper)
- yaml.dump(obj, file, **kwargs)
-
- def dump_to_str(self, obj, **kwargs):
- kwargs.setdefault('Dumper', Dumper)
- return yaml.dump(obj, **kwargs)
diff --git a/mmdet/cv_core/fileio/io.py b/mmdet/cv_core/fileio/io.py
deleted file mode 100644
index 777df97a..00000000
--- a/mmdet/cv_core/fileio/io.py
+++ /dev/null
@@ -1,112 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from pathlib import Path
-
-from ..utils import is_list_of, is_str
-from .handlers import BaseFileHandler, JsonHandler, PickleHandler, YamlHandler
-
-file_handlers = {
- 'json': JsonHandler(),
- 'yaml': YamlHandler(),
- 'yml': YamlHandler(),
- 'pickle': PickleHandler(),
- 'pkl': PickleHandler()
-}
-
-
-def load(file, file_format=None, **kwargs):
- """Load data from json/yaml/pickle files.
-
- This method provides a unified api for loading data from serialized files.
-
- Args:
- file (str or :obj:`Path` or file-like object): Filename or a file-like
- object.
- file_format (str, optional): If not specified, the file format will be
- inferred from the file extension, otherwise use the specified one.
- Currently supported formats include "json", "yaml/yml" and
- "pickle/pkl".
-
- Returns:
- The content from the file.
- """
- if isinstance(file, Path):
- file = str(file)
- if file_format is None and is_str(file):
- file_format = file.split('.')[-1]
- if file_format not in file_handlers:
- raise TypeError(f'Unsupported format: {file_format}')
-
- handler = file_handlers[file_format]
- if is_str(file):
- obj = handler.load_from_path(file, **kwargs)
- elif hasattr(file, 'read'):
- obj = handler.load_from_fileobj(file, **kwargs)
- else:
- raise TypeError('"file" must be a filepath str or a file-object')
- return obj
-
-
-def dump(obj, file=None, file_format=None, **kwargs):
- """Dump data to json/yaml/pickle strings or files.
-
- This method provides a unified api for dumping data as strings or to files,
- and also supports custom arguments for each file format.
-
- Args:
- obj (any): The python object to be dumped.
- file (str or :obj:`Path` or file-like object, optional): If not
- specified, then the object is dump to a str, otherwise to a file
- specified by the filename or file-like object.
- file_format (str, optional): Same as :func:`load`.
-
- Returns:
- bool: True for success, False otherwise.
- """
- if isinstance(file, Path):
- file = str(file)
- if file_format is None:
- if is_str(file):
- file_format = file.split('.')[-1]
- elif file is None:
- raise ValueError(
- 'file_format must be specified since file is None')
- if file_format not in file_handlers:
- raise TypeError(f'Unsupported format: {file_format}')
-
- handler = file_handlers[file_format]
- if file is None:
- return handler.dump_to_str(obj, **kwargs)
- elif is_str(file):
- handler.dump_to_path(obj, file, **kwargs)
- elif hasattr(file, 'write'):
- handler.dump_to_fileobj(obj, file, **kwargs)
- else:
- raise TypeError('"file" must be a filename str or a file-object')
-
-
-def _register_handler(handler, file_formats):
- """Register a handler for some file extensions.
-
- Args:
- handler (:obj:`BaseFileHandler`): Handler to be registered.
- file_formats (str or list[str]): File formats to be handled by this
- handler.
- """
- if not isinstance(handler, BaseFileHandler):
- raise TypeError(
- f'handler must be a child of BaseFileHandler, not {type(handler)}')
- if isinstance(file_formats, str):
- file_formats = [file_formats]
- if not is_list_of(file_formats, str):
- raise TypeError('file_formats must be a str or a list of str')
- for ext in file_formats:
- file_handlers[ext] = handler
-
-
-def register_handler(file_formats, **kwargs):
-
- def wrap(cls):
- _register_handler(cls(**kwargs), file_formats)
- return cls
-
- return wrap
diff --git a/mmdet/cv_core/fileio/parse.py b/mmdet/cv_core/fileio/parse.py
deleted file mode 100644
index 556c4cfd..00000000
--- a/mmdet/cv_core/fileio/parse.py
+++ /dev/null
@@ -1,51 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-def list_from_file(filename, prefix='', offset=0, max_num=0):
- """Load a text file and parse the content as a list of strings.
-
- Args:
- filename (str): Filename.
- prefix (str): The prefix to be inserted to the begining of each item.
- offset (int): The offset of lines.
- max_num (int): The maximum number of lines to be read,
- zeros and negatives mean no limitation.
-
- Returns:
- list[str]: A list of strings.
- """
- cnt = 0
- item_list = []
- with open(filename, 'r') as f:
- for _ in range(offset):
- f.readline()
- for line in f:
- if max_num > 0 and cnt >= max_num:
- break
- item_list.append(prefix + line.rstrip('\n'))
- cnt += 1
- return item_list
-
-
-def dict_from_file(filename, key_type=str):
- """Load a text file and parse the content as a dict.
-
- Each line of the text file will be two or more columns splited by
- whitespaces or tabs. The first column will be parsed as dict keys, and
- the following columns will be parsed as dict values.
-
- Args:
- filename(str): Filename.
- key_type(type): Type of the dict's keys. str is user by default and
- type conversion will be performed if specified.
-
- Returns:
- dict: The parsed contents.
- """
- mapping = {}
- with open(filename, 'r') as f:
- for line in f:
- items = line.rstrip('\n').split()
- assert len(items) >= 2
- key = key_type(items[0])
- val = items[1:] if len(items) > 2 else items[1]
- mapping[key] = val
- return mapping
diff --git a/mmdet/cv_core/image/__init__.py b/mmdet/cv_core/image/__init__.py
deleted file mode 100644
index 432d6319..00000000
--- a/mmdet/cv_core/image/__init__.py
+++ /dev/null
@@ -1,24 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-from .colorspace import (bgr2gray, bgr2hls, bgr2hsv, bgr2rgb, bgr2ycbcr,
- gray2bgr, gray2rgb, hls2bgr, hsv2bgr, imconvert,
- rgb2bgr, rgb2gray, rgb2ycbcr, ycbcr2bgr, ycbcr2rgb)
-from .geometric import (imcrop, imflip, imflip_, impad, impad_to_multiple,
- imrescale, imresize, imresize_like, imrotate, imshear,
- imtranslate, rescale_size)
-from .io import imfrombytes, imread, imwrite, supported_backends, use_backend
-from .misc import tensor2imgs, show_img, show_bbox, show_tensor
-from .photometric import (adjust_brightness, adjust_color, adjust_contrast,
- imdenormalize, imequalize, iminvert, imnormalize,
- imnormalize_, posterize, solarize)
-
-__all__ = [
- 'bgr2gray', 'bgr2hls', 'bgr2hsv', 'bgr2rgb', 'gray2bgr', 'gray2rgb',
- 'hls2bgr', 'hsv2bgr', 'imconvert', 'rgb2bgr', 'rgb2gray', 'imrescale',
- 'imresize', 'imresize_like', 'rescale_size', 'imcrop', 'imflip', 'imflip_',
- 'impad', 'impad_to_multiple', 'imrotate', 'imfrombytes', 'imread',
- 'imwrite', 'supported_backends', 'use_backend', 'imdenormalize',
- 'imnormalize', 'imnormalize_', 'iminvert', 'posterize', 'solarize',
- 'rgb2ycbcr', 'bgr2ycbcr', 'ycbcr2rgb', 'ycbcr2bgr', 'tensor2imgs',
- 'imshear', 'imtranslate', 'adjust_color', 'imequalize',
- 'adjust_brightness', 'adjust_contrast', 'show_img', 'show_bbox', 'show_tensor'
-]
diff --git a/mmdet/cv_core/image/colorspace.py b/mmdet/cv_core/image/colorspace.py
deleted file mode 100644
index 56cfe657..00000000
--- a/mmdet/cv_core/image/colorspace.py
+++ /dev/null
@@ -1,306 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import cv2
-import numpy as np
-
-
-def imconvert(img, src, dst):
- """Convert an image from the src colorspace to dst colorspace.
-
- Args:
- img (ndarray): The input image.
- src (str): The source colorspace, e.g., 'rgb', 'hsv'.
- dst (str): The destination colorspace, e.g., 'rgb', 'hsv'.
-
- Returns:
- ndarray: The converted image.
- """
- code = getattr(cv2, f'COLOR_{src.upper()}2{dst.upper()}')
- out_img = cv2.cvtColor(img, code)
- return out_img
-
-
-def bgr2gray(img, keepdim=False):
- """Convert a BGR image to grayscale image.
-
- Args:
- img (ndarray): The input image.
- keepdim (bool): If False (by default), then return the grayscale image
- with 2 dims, otherwise 3 dims.
-
- Returns:
- ndarray: The converted grayscale image.
- """
- out_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- if keepdim:
- out_img = out_img[..., None]
- return out_img
-
-
-def rgb2gray(img, keepdim=False):
- """Convert a RGB image to grayscale image.
-
- Args:
- img (ndarray): The input image.
- keepdim (bool): If False (by default), then return the grayscale image
- with 2 dims, otherwise 3 dims.
-
- Returns:
- ndarray: The converted grayscale image.
- """
- out_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
- if keepdim:
- out_img = out_img[..., None]
- return out_img
-
-
-def gray2bgr(img):
- """Convert a grayscale image to BGR image.
-
- Args:
- img (ndarray): The input image.
-
- Returns:
- ndarray: The converted BGR image.
- """
- img = img[..., None] if img.ndim == 2 else img
- out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- return out_img
-
-
-def gray2rgb(img):
- """Convert a grayscale image to RGB image.
-
- Args:
- img (ndarray): The input image.
-
- Returns:
- ndarray: The converted RGB image.
- """
- img = img[..., None] if img.ndim == 2 else img
- out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
- return out_img
-
-
-def _convert_input_type_range(img):
- """Convert the type and range of the input image.
-
- It converts the input image to np.float32 type and range of [0, 1].
- It is mainly used for pre-processing the input image in colorspace
- convertion functions such as rgb2ycbcr and ycbcr2rgb.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- (ndarray): The converted image with type of np.float32 and range of
- [0, 1].
- """
- img_type = img.dtype
- img = img.astype(np.float32)
- if img_type == np.float32:
- pass
- elif img_type == np.uint8:
- img /= 255.
- else:
- raise TypeError('The img type should be np.float32 or np.uint8, '
- f'but got {img_type}')
- return img
-
-
-def _convert_output_type_range(img, dst_type):
- """Convert the type and range of the image according to dst_type.
-
- It converts the image to desired type and range. If `dst_type` is np.uint8,
- images will be converted to np.uint8 type with range [0, 255]. If
- `dst_type` is np.float32, it converts the image to np.float32 type with
- range [0, 1].
- It is mainly used for post-processing images in colorspace convertion
- functions such as rgb2ycbcr and ycbcr2rgb.
-
- Args:
- img (ndarray): The image to be converted with np.float32 type and
- range [0, 255].
- dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
- converts the image to np.uint8 type with range [0, 255]. If
- dst_type is np.float32, it converts the image to np.float32 type
- with range [0, 1].
-
- Returns:
- (ndarray): The converted image with desired type and range.
- """
- if dst_type not in (np.uint8, np.float32):
- raise TypeError('The dst_type should be np.float32 or np.uint8, '
- f'but got {dst_type}')
- if dst_type == np.uint8:
- img = img.round()
- else:
- img /= 255.
- return img.astype(dst_type)
-
-
-def rgb2ycbcr(img, y_only=False):
- """Convert a RGB image to YCbCr image.
-
- This function produces the same results as Matlab's `rgb2ycbcr` function.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
- y_only (bool): Whether to only return Y channel. Default: False.
-
- Returns:
- ndarray: The converted YCbCr image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img)
- if y_only:
- out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
- else:
- out_img = np.matmul(
- img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
- [24.966, 112.0, -18.214]]) + [16, 128, 128]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def bgr2ycbcr(img, y_only=False):
- """Convert a BGR image to YCbCr image.
-
- The bgr version of rgb2ycbcr.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
- y_only (bool): Whether to only return Y channel. Default: False.
-
- Returns:
- ndarray: The converted YCbCr image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img)
- if y_only:
- out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
- else:
- out_img = np.matmul(
- img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
- [65.481, -37.797, 112.0]]) + [16, 128, 128]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def ycbcr2rgb(img):
- """Convert a YCbCr image to RGB image.
-
- This function produces the same results as Matlab's ycbcr2rgb function.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- ndarray: The converted RGB image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img) * 255
- out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621],
- [0, -0.00153632, 0.00791071],
- [0.00625893, -0.00318811, 0]]) * 255.0 + [
- -222.921, 135.576, -276.836
- ]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def ycbcr2bgr(img):
- """Convert a YCbCr image to BGR image.
-
- The bgr version of ycbcr2rgb.
- It implements the ITU-R BT.601 conversion for standard-definition
- television. See more details in
- https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
-
- It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
- In OpenCV, it implements a JPEG conversion. See more details in
- https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
-
- Args:
- img (ndarray): The input image. It accepts:
- 1. np.uint8 type with range [0, 255];
- 2. np.float32 type with range [0, 1].
-
- Returns:
- ndarray: The converted BGR image. The output image has the same type
- and range as input image.
- """
- img_type = img.dtype
- img = _convert_input_type_range(img) * 255
- out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621],
- [0.00791071, -0.00153632, 0],
- [0, -0.00318811, 0.00625893]]) * 255.0 + [
- -276.836, 135.576, -222.921
- ]
- out_img = _convert_output_type_range(out_img, img_type)
- return out_img
-
-
-def convert_color_factory(src, dst):
-
- code = getattr(cv2, f'COLOR_{src.upper()}2{dst.upper()}')
-
- def convert_color(img):
- out_img = cv2.cvtColor(img, code)
- return out_img
-
- convert_color.__doc__ = f"""Convert a {src.upper()} image to {dst.upper()}
- image.
-
- Args:
- img (ndarray or str): The input image.
-
- Returns:
- ndarray: The converted {dst.upper()} image.
- """
-
- return convert_color
-
-
-bgr2rgb = convert_color_factory('bgr', 'rgb')
-
-rgb2bgr = convert_color_factory('rgb', 'bgr')
-
-bgr2hsv = convert_color_factory('bgr', 'hsv')
-
-hsv2bgr = convert_color_factory('hsv', 'bgr')
-
-bgr2hls = convert_color_factory('bgr', 'hls')
-
-hls2bgr = convert_color_factory('hls', 'bgr')
diff --git a/mmdet/cv_core/image/geometric.py b/mmdet/cv_core/image/geometric.py
deleted file mode 100644
index 1219e53f..00000000
--- a/mmdet/cv_core/image/geometric.py
+++ /dev/null
@@ -1,608 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import numbers
-
-import cv2
-import numpy as np
-
-from .io import imread_backend
-
-try:
- from PIL import Image
-except ImportError:
- Image = None
-
-
-def _scale_size(size, scale):
- """Rescale a size by a ratio.
-
- Args:
- size (tuple[int]): (w, h).
- scale (float): Scaling factor.
-
- Returns:
- tuple[int]: scaled size.
- """
- w, h = size
- return int(w * float(scale) + 0.5), int(h * float(scale) + 0.5)
-
-
-cv2_interp_codes = {
- 'nearest': cv2.INTER_NEAREST,
- 'bilinear': cv2.INTER_LINEAR,
- 'bicubic': cv2.INTER_CUBIC,
- 'area': cv2.INTER_AREA,
- 'lanczos': cv2.INTER_LANCZOS4
-}
-
-if Image is not None:
- pillow_interp_codes = {
- 'nearest': Image.NEAREST,
- 'bilinear': Image.BILINEAR,
- 'bicubic': Image.BICUBIC,
- 'box': Image.BOX,
- 'lanczos': Image.LANCZOS,
- 'hamming': Image.HAMMING
- }
-
-
-def imresize(img,
- size,
- return_scale=False,
- interpolation='bilinear',
- out=None,
- backend=None):
- """Resize image to a given size.
-
- Args:
- img (ndarray): The input image.
- size (tuple[int]): Target size (w, h).
- return_scale (bool): Whether to return `w_scale` and `h_scale`.
- interpolation (str): Interpolation method, accepted values are
- "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
- backend, "nearest", "bilinear" for 'pillow' backend.
- out (ndarray): The output destination.
- backend (str | None): The image resize backend type. Options are `cv2`,
- `pillow`, `None`. If backend is None, the global imread_backend
- specified by ``mmdet.cv_core.use_backend()`` will be used. Default: None.
-
- Returns:
- tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
- `resized_img`.
- """
- h, w = img.shape[:2]
- if backend is None:
- backend = imread_backend
- if backend not in ['cv2', 'pillow']:
- raise ValueError(f'backend: {backend} is not supported for resize.'
- f"Supported backends are 'cv2', 'pillow'")
-
- if backend == 'pillow':
- assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
- pil_image = Image.fromarray(img)
- pil_image = pil_image.resize(size, pillow_interp_codes[interpolation])
- resized_img = np.array(pil_image)
- else:
- resized_img = cv2.resize(
- img, size, dst=out, interpolation=cv2_interp_codes[interpolation])
- if not return_scale:
- return resized_img
- else:
- w_scale = size[0] / w
- h_scale = size[1] / h
- return resized_img, w_scale, h_scale
-
-
-def imresize_like(img,
- dst_img,
- return_scale=False,
- interpolation='bilinear',
- backend=None):
- """Resize image to the same size of a given image.
-
- Args:
- img (ndarray): The input image.
- dst_img (ndarray): The target image.
- return_scale (bool): Whether to return `w_scale` and `h_scale`.
- interpolation (str): Same as :func:`resize`.
- backend (str | None): Same as :func:`resize`.
-
- Returns:
- tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
- `resized_img`.
- """
- h, w = dst_img.shape[:2]
- return imresize(img, (w, h), return_scale, interpolation, backend=backend)
-
-
-def rescale_size(old_size, scale, return_scale=False):
- """Calculate the new size to be rescaled to.
-
- Args:
- old_size (tuple[int]): The old size (w, h) of image.
- scale (float | tuple[int]): The scaling factor or maximum size.
- If it is a float number, then the image will be rescaled by this
- factor, else if it is a tuple of 2 integers, then the image will
- be rescaled as large as possible within the scale.
- return_scale (bool): Whether to return the scaling factor besides the
- rescaled image size.
-
- Returns:
- tuple[int]: The new rescaled image size.
- """
- w, h = old_size
- if isinstance(scale, (float, int)):
- if scale <= 0:
- raise ValueError(f'Invalid scale {scale}, must be positive.')
- scale_factor = scale # 如果scale就是一个数,说明是比例因子,那就直接设置scale_factor即可
- elif isinstance(scale, tuple):
- max_long_edge = max(scale)
- max_short_edge = min(scale)
- # 如果是tuple,则找到符合要求的最大缩放系数,原则是resize后长短边必须都在指定的范围
- scale_factor = min(max_long_edge / max(h, w),
- max_short_edge / min(h, w))
- else:
- raise TypeError(
- f'Scale must be a number or tuple of int, but got {type(scale)}')
-
- new_size = _scale_size((w, h), scale_factor)
-
- if return_scale:
- return new_size, scale_factor
- else:
- return new_size
-
-
-# 保持长宽比的resize操作
-def imrescale(img,
- scale,
- return_scale=False,
- interpolation='bilinear',
- backend=None):
- """Resize image while keeping the aspect ratio.
-
- Args:
- img (ndarray): The input image.
- scale (float | tuple[int]): The scaling factor or maximum size.
- If it is a float number, then the image will be rescaled by this
- factor, else if it is a tuple of 2 integers, then the image will
- be rescaled as large as possible within the scale.
- return_scale (bool): Whether to return the scaling factor besides the
- rescaled image.
- interpolation (str): Same as :func:`resize`.
- backend (str | None): Same as :func:`resize`.
-
- Returns:
- ndarray: The rescaled image.
- """
- h, w = img.shape[:2]
- new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
- rescaled_img = imresize(
- img, new_size, interpolation=interpolation, backend=backend)
- if return_scale:
- return rescaled_img, scale_factor
- else:
- return rescaled_img
-
-
-def imflip(img, direction='horizontal'):
- """Flip an image horizontally or vertically.
-
- Args:
- img (ndarray): Image to be flipped.
- direction (str): The flip direction, either "horizontal" or
- "vertical" or "diagonal".
-
- Returns:
- ndarray: The flipped image.
- """
- assert direction in ['horizontal', 'vertical', 'diagonal']
- if direction == 'horizontal':
- return np.flip(img, axis=1)
- elif direction == 'vertical':
- return np.flip(img, axis=0)
- else:
- return np.flip(img, axis=(0, 1))
-
-
-def imflip_(img, direction='horizontal'):
- """Inplace flip an image horizontally or vertically.
-
- Args:
- img (ndarray): Image to be flipped.
- direction (str): The flip direction, either "horizontal" or
- "vertical" or "diagonal".
-
- Returns:
- ndarray: The flipped image (inplace).
- """
- assert direction in ['horizontal', 'vertical', 'diagonal']
- if direction == 'horizontal':
- return cv2.flip(img, 1, img)
- elif direction == 'vertical':
- return cv2.flip(img, 0, img)
- else:
- return cv2.flip(img, -1, img)
-
-
-def imrotate(img,
- angle,
- center=None,
- scale=1.0,
- border_value=0,
- interpolation='bilinear',
- auto_bound=False):
- """Rotate an image.
-
- Args:
- img (ndarray): Image to be rotated.
- angle (float): Rotation angle in degrees, positive values mean
- clockwise rotation.
- center (tuple[float], optional): Center point (w, h) of the rotation in
- the source image. If not specified, the center of the image will be
- used.
- scale (float): Isotropic scale factor.
- border_value (int): Border value.
- interpolation (str): Same as :func:`resize`.
- auto_bound (bool): Whether to adjust the image size to cover the whole
- rotated image.
-
- Returns:
- ndarray: The rotated image.
- """
- if center is not None and auto_bound:
- raise ValueError('`auto_bound` conflicts with `center`')
- h, w = img.shape[:2]
- if center is None:
- center = ((w - 1) * 0.5, (h - 1) * 0.5)
- assert isinstance(center, tuple)
-
- matrix = cv2.getRotationMatrix2D(center, -angle, scale)
- if auto_bound:
- cos = np.abs(matrix[0, 0])
- sin = np.abs(matrix[0, 1])
- new_w = h * sin + w * cos
- new_h = h * cos + w * sin
- matrix[0, 2] += (new_w - w) * 0.5
- matrix[1, 2] += (new_h - h) * 0.5
- w = int(np.round(new_w))
- h = int(np.round(new_h))
- rotated = cv2.warpAffine(
- img,
- matrix, (w, h),
- flags=cv2_interp_codes[interpolation],
- borderValue=border_value)
- return rotated
-
-
-def bbox_clip(bboxes, img_shape):
- """Clip bboxes to fit the image shape.
-
- Args:
- bboxes (ndarray): Shape (..., 4*k)
- img_shape (tuple[int]): (height, width) of the image.
-
- Returns:
- ndarray: Clipped bboxes.
- """
- assert bboxes.shape[-1] % 4 == 0
- cmin = np.empty(bboxes.shape[-1], dtype=bboxes.dtype)
- cmin[0::2] = img_shape[1] - 1
- cmin[1::2] = img_shape[0] - 1
- clipped_bboxes = np.maximum(np.minimum(bboxes, cmin), 0)
- return clipped_bboxes
-
-
-def bbox_scaling(bboxes, scale, clip_shape=None):
- """Scaling bboxes w.r.t the box center.
-
- Args:
- bboxes (ndarray): Shape(..., 4).
- scale (float): Scaling factor.
- clip_shape (tuple[int], optional): If specified, bboxes that exceed the
- boundary will be clipped according to the given shape (h, w).
-
- Returns:
- ndarray: Scaled bboxes.
- """
- if float(scale) == 1.0:
- scaled_bboxes = bboxes.copy()
- else:
- w = bboxes[..., 2] - bboxes[..., 0] + 1
- h = bboxes[..., 3] - bboxes[..., 1] + 1
- dw = (w * (scale - 1)) * 0.5
- dh = (h * (scale - 1)) * 0.5
- scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1)
- if clip_shape is not None:
- return bbox_clip(scaled_bboxes, clip_shape)
- else:
- return scaled_bboxes
-
-
-def imcrop(img, bboxes, scale=1.0, pad_fill=None):
- """Crop image patches.
-
- 3 steps: scale the bboxes -> clip bboxes -> crop and pad.
-
- Args:
- img (ndarray): Image to be cropped.
- bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes.
- scale (float, optional): Scale ratio of bboxes, the default value
- 1.0 means no padding.
- pad_fill (Number | list[Number]): Value to be filled for padding.
- Default: None, which means no padding.
-
- Returns:
- list[ndarray] | ndarray: The cropped image patches.
- """
- chn = 1 if img.ndim == 2 else img.shape[2]
- if pad_fill is not None:
- if isinstance(pad_fill, (int, float)):
- pad_fill = [pad_fill for _ in range(chn)]
- assert len(pad_fill) == chn
-
- _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes
- scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32)
- clipped_bbox = bbox_clip(scaled_bboxes, img.shape)
-
- patches = []
- for i in range(clipped_bbox.shape[0]):
- x1, y1, x2, y2 = tuple(clipped_bbox[i, :])
- if pad_fill is None:
- patch = img[y1:y2 + 1, x1:x2 + 1, ...]
- else:
- _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :])
- if chn == 1:
- patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1)
- else:
- patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn)
- patch = np.array(
- pad_fill, dtype=img.dtype) * np.ones(
- patch_shape, dtype=img.dtype)
- x_start = 0 if _x1 >= 0 else -_x1
- y_start = 0 if _y1 >= 0 else -_y1
- w = x2 - x1 + 1
- h = y2 - y1 + 1
- patch[y_start:y_start + h, x_start:x_start + w,
- ...] = img[y1:y1 + h, x1:x1 + w, ...]
- patches.append(patch)
-
- if bboxes.ndim == 1:
- return patches[0]
- else:
- return patches
-
-
-def impad(img,
- *,
- shape=None,
- padding=None,
- pad_val=0,
- padding_mode='constant'):
- """Pad the given image to a certain shape or pad on all sides with
- specified padding mode and padding value.
-
- Args:
- img (ndarray): Image to be padded.
- shape (tuple[int]): Expected padding shape (h, w). Default: None.
- padding (int or tuple[int]): Padding on each border. If a single int is
- provided this is used to pad all borders. If tuple of length 2 is
- provided this is the padding on left/right and top/bottom
- respectively. If a tuple of length 4 is provided this is the
- padding for the left, top, right and bottom borders respectively.
- Default: None. Note that `shape` and `padding` can not be both
- set.
- pad_val (Number | Sequence[Number]): Values to be filled in padding
- areas when padding_mode is 'constant'. Default: 0.
- padding_mode (str): Type of padding. Should be: constant, edge,
- reflect or symmetric. Default: constant.
-
- - constant: pads with a constant value, this value is specified
- with pad_val.
- - edge: pads with the last value at the edge of the image.
- - reflect: pads with reflection of image without repeating the
- last value on the edge. For example, padding [1, 2, 3, 4]
- with 2 elements on both sides in reflect mode will result
- in [3, 2, 1, 2, 3, 4, 3, 2].
- - symmetric: pads with reflection of image repeating the last
- value on the edge. For example, padding [1, 2, 3, 4] with
- 2 elements on both sides in symmetric mode will result in
- [2, 1, 1, 2, 3, 4, 4, 3]
-
- Returns:
- ndarray: The padded image.
- """
-
- assert (shape is not None) ^ (padding is not None)
- if shape is not None:
- padding = (0, 0, shape[1] - img.shape[1], shape[0] - img.shape[0])
-
- # check pad_val
- if isinstance(pad_val, tuple):
- assert len(pad_val) == img.shape[-1]
- elif not isinstance(pad_val, numbers.Number):
- raise TypeError('pad_val must be a int or a tuple. '
- f'But received {type(pad_val)}')
-
- # check padding
- if isinstance(padding, tuple) and len(padding) in [2, 4]:
- if len(padding) == 2:
- padding = (padding[0], padding[1], padding[0], padding[1])
- elif isinstance(padding, numbers.Number):
- padding = (padding, padding, padding, padding)
- else:
- raise ValueError('Padding must be a int or a 2, or 4 element tuple.'
- f'But received {padding}')
-
- # check padding mode
- assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
-
- border_type = {
- 'constant': cv2.BORDER_CONSTANT,
- 'edge': cv2.BORDER_REPLICATE,
- 'reflect': cv2.BORDER_REFLECT_101,
- 'symmetric': cv2.BORDER_REFLECT
- }
- img = cv2.copyMakeBorder(
- img,
- padding[1],
- padding[3],
- padding[0],
- padding[2],
- border_type[padding_mode],
- value=pad_val)
-
- return img
-
-
-def impad_to_multiple(img, divisor, pad_val=0):
- """Pad an image to ensure each edge to be multiple to some number.
-
- Args:
- img (ndarray): Image to be padded.
- divisor (int): Padded image edges will be multiple to divisor.
- pad_val (Number | Sequence[Number]): Same as :func:`impad`.
-
- Returns:
- ndarray: The padded image.
- """
- pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
- pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
- return impad(img, shape=(pad_h, pad_w), pad_val=pad_val)
-
-
-def _get_shear_matrix(magnitude, direction='horizontal'):
- """Generate the shear matrix for transformation.
-
- Args:
- magnitude (int | float): The magnitude used for shear.
- direction (str): Thie flip direction, either "horizontal"
- or "vertical".
-
- Returns:
- ndarray: The shear matrix with dtype float32.
- """
- if direction == 'horizontal':
- shear_matrix = np.float32([[1, magnitude, 0], [0, 1, 0]])
- elif direction == 'vertical':
- shear_matrix = np.float32([[1, 0, 0], [magnitude, 1, 0]])
- return shear_matrix
-
-
-def imshear(img,
- magnitude,
- direction='horizontal',
- border_value=0,
- interpolation='bilinear'):
- """Shear an image.
-
- Args:
- img (ndarray): Image to be sheared with format (h, w)
- or (h, w, c).
- magnitude (int | float): The magnitude used for shear.
- direction (str): Thie flip direction, either "horizontal"
- or "vertical".
- border_value (int | tuple[int]): Value used in case of a
- constant border.
- interpolation (str): Same as :func:`resize`.
-
- Returns:
- ndarray: The sheared image.
- """
- assert direction in ['horizontal',
- 'vertical'], f'Invalid direction: {direction}'
- height, width = img.shape[:2]
- if img.ndim == 2:
- channels = 1
- elif img.ndim == 3:
- channels = img.shape[-1]
- if isinstance(border_value, int):
- border_value = tuple([border_value] * channels)
- elif isinstance(border_value, tuple):
- assert len(border_value) == channels, \
- 'Expected the num of elements in tuple equals the channels' \
- 'of input image. Found {} vs {}'.format(
- len(border_value), channels)
- else:
- raise ValueError(
- f'Invalid type {type(border_value)} for `border_value`')
- shear_matrix = _get_shear_matrix(magnitude, direction)
- sheared = cv2.warpAffine(
- img,
- shear_matrix,
- (width, height),
- # Note case when the number elements in `border_value`
- # greater than 3 (e.g. shearing masks whose channels large
- # than 3) will raise TypeError in `cv2.warpAffine`.
- # Here simply slice the first 3 values in `border_value`.
- borderValue=border_value[:3],
- flags=cv2_interp_codes[interpolation])
- return sheared
-
-
-def _get_translate_matrix(offset, direction='horizontal'):
- """Generate the translate matrix.
-
- Args:
- offset (int | float): The offset used for translate.
- direction (str): The translate direction, either
- "horizontal" or "vertical".
-
- Returns:
- ndarray: The translate matrix with dtype float32.
- """
- if direction == 'horizontal':
- translate_matrix = np.float32([[1, 0, offset], [0, 1, 0]])
- elif direction == 'vertical':
- translate_matrix = np.float32([[1, 0, 0], [0, 1, offset]])
- return translate_matrix
-
-
-def imtranslate(img,
- offset,
- direction='horizontal',
- border_value=0,
- interpolation='bilinear'):
- """Translate an image.
-
- Args:
- img (ndarray): Image to be translated with format
- (h, w) or (h, w, c).
- offset (int | float): The offset used for translate.
- direction (str): The translate direction, either "horizontal"
- or "vertical".
- border_value (int | tuple[int]): Value used in case of a
- constant border.
- interpolation (str): Same as :func:`resize`.
-
- Returns:
- ndarray: The translated image.
- """
- assert direction in ['horizontal',
- 'vertical'], f'Invalid direction: {direction}'
- height, width = img.shape[:2]
- if img.ndim == 2:
- channels = 1
- elif img.ndim == 3:
- channels = img.shape[-1]
- if isinstance(border_value, int):
- border_value = tuple([border_value] * channels)
- elif isinstance(border_value, tuple):
- assert len(border_value) == channels, \
- 'Expected the num of elements in tuple equals the channels' \
- 'of input image. Found {} vs {}'.format(
- len(border_value), channels)
- else:
- raise ValueError(
- f'Invalid type {type(border_value)} for `border_value`.')
- translate_matrix = _get_translate_matrix(offset, direction)
- translated = cv2.warpAffine(
- img,
- translate_matrix,
- (width, height),
- # Note case when the number elements in `border_value`
- # greater than 3 (e.g. translating masks whose channels
- # large than 3) will raise TypeError in `cv2.warpAffine`.
- # Here simply slice the first 3 values in `border_value`.
- borderValue=border_value[:3],
- flags=cv2_interp_codes[interpolation])
- return translated
diff --git a/mmdet/cv_core/image/io.py b/mmdet/cv_core/image/io.py
deleted file mode 100644
index d4e4cf38..00000000
--- a/mmdet/cv_core/image/io.py
+++ /dev/null
@@ -1,234 +0,0 @@
-# Copyright (c) Open-MMLab. All rights reserved.
-import io
-import os.path as osp
-from pathlib import Path
-
-import cv2
-import numpy as np
-from cv2 import IMREAD_COLOR, IMREAD_GRAYSCALE, IMREAD_UNCHANGED
-
-from mmdet.cv_core.utils import check_file_exist, is_str, mkdir_or_exist
-
-try:
- from turbojpeg import TJCS_RGB, TJPF_BGR, TJPF_GRAY, TurboJPEG
-except ImportError:
- TJCS_RGB = TJPF_GRAY = TJPF_BGR = TurboJPEG = None
-
-try:
- from PIL import Image
-except ImportError:
- Image = None
-
-jpeg = None
-supported_backends = ['cv2', 'turbojpeg', 'pillow']
-
-imread_flags = {
- 'color': IMREAD_COLOR,
- 'grayscale': IMREAD_GRAYSCALE,
- 'unchanged': IMREAD_UNCHANGED
-}
-
-imread_backend = 'cv2'
-
-
-def use_backend(backend):
- """Select a backend for image decoding.
-
- Args:
- backend (str): The image decoding backend type. Options are `cv2`,
- `pillow`, `turbojpeg` (see https://github.com/lilohuang/PyTurboJPEG).
- `turbojpeg` is faster but it only supports `.jpeg` file format.
- """
- assert backend in supported_backends
- global imread_backend
- imread_backend = backend
- if imread_backend == 'turbojpeg':
- if TurboJPEG is None:
- raise ImportError('`PyTurboJPEG` is not installed')
- global jpeg
- if jpeg is None:
- jpeg = TurboJPEG()
- elif imread_backend == 'pillow':
- if Image is None:
- raise ImportError('`Pillow` is not installed')
-
-
-def _jpegflag(flag='color', channel_order='bgr'):
- channel_order = channel_order.lower()
- if channel_order not in ['rgb', 'bgr']:
- raise ValueError('channel order must be either "rgb" or "bgr"')
-
- if flag == 'color':
- if channel_order == 'bgr':
- return TJPF_BGR
- elif channel_order == 'rgb':
- return TJCS_RGB
- elif flag == 'grayscale':
- return TJPF_GRAY
- else:
- raise ValueError('flag must be "color" or "grayscale"')
-
-
-def _pillow2array(img, flag='color', channel_order='bgr'):
- """Convert a pillow image to numpy array.
-
- Args:
- img (:obj:`PIL.Image.Image`): The image loaded using PIL
- flag (str): Flags specifying the color type of a loaded image,
- candidates are 'color', 'grayscale' and 'unchanged'.
- Default to 'color'.
- channel_order (str): The channel order of the output image array,
- candidates are 'bgr' and 'rgb'. Default to 'bgr'.
-
- Returns:
- np.ndarray: The converted numpy array
- """
- channel_order = channel_order.lower()
- if channel_order not in ['rgb', 'bgr']:
- raise ValueError('channel order must be either "rgb" or "bgr"')
-
- if flag == 'unchanged':
- array = np.array(img)
- if array.ndim >= 3 and array.shape[2] >= 3: # color image
- array[:, :, :3] = array[:, :, (2, 1, 0)] # RGB to BGR
- else:
- # If the image mode is not 'RGB', convert it to 'RGB' first.
- if img.mode != 'RGB':
- if img.mode != 'LA':
- # Most formats except 'LA' can be directly converted to RGB
- img = img.convert('RGB')
- else:
- # When the mode is 'LA', the default conversion will fill in
- # the canvas with black, which sometimes shadows black objects
- # in the foreground.
- #
- # Therefore, a random color (124, 117, 104) is used for canvas
- img_rgba = img.convert('RGBA')
- img = Image.new('RGB', img_rgba.size, (124, 117, 104))
- img.paste(img_rgba, mask=img_rgba.split()[3]) # 3 is alpha
- if flag == 'color':
- array = np.array(img)
- if channel_order != 'rgb':
- array = array[:, :, ::-1] # RGB to BGR
- elif flag == 'grayscale':
- img = img.convert('L')
- array = np.array(img)
- else:
- raise ValueError(
- 'flag must be "color", "grayscale" or "unchanged", '
- f'but got {flag}')
- return array
-
-
-def imread(img_or_path, flag='color', channel_order='bgr', backend=None):
- """Read an image.
-
- Args:
- img_or_path (ndarray or str or Path): Either a numpy array or str or
- pathlib.Path. If it is a numpy array (loaded image), then
- it will be returned as is.
- flag (str): Flags specifying the color type of a loaded image,
- candidates are `color`, `grayscale` and `unchanged`.
- Note that the `turbojpeg` backened does not support `unchanged`.
- channel_order (str): Order of channel, candidates are `bgr` and `rgb`.
- backend (str | None): The image decoding backend type. Options are
- `cv2`, `pillow`, `turbojpeg`, `None`. If backend is None, the
- global imread_backend specified by ``mmdet.cv_core.use_backend()`` will be
- used. Default: None.
-
- Returns:
- ndarray: Loaded image array.
- """
-
- if backend is None:
- backend = imread_backend
- if backend not in supported_backends:
- raise ValueError(f'backend: {backend} is not supported. Supported '
- "backends are 'cv2', 'turbojpeg', 'pillow'")
- if isinstance(img_or_path, Path):
- img_or_path = str(img_or_path)
- # 如果图片已经读取,则不需要再读
- if isinstance(img_or_path, np.ndarray):
- return img_or_path
- elif is_str(img_or_path):
- check_file_exist(img_or_path,
- f'img file does not exist: {img_or_path}')
- if backend == 'turbojpeg':
- with open(img_or_path, 'rb') as in_file:
- img = jpeg.decode(in_file.read(),
- _jpegflag(flag, channel_order))
- if img.shape[-1] == 1:
- img = img[:, :, 0]
- return img
- elif backend == 'pillow':
- img = Image.open(img_or_path)
- img = _pillow2array(img, flag, channel_order)
- return img
- else:
- flag = imread_flags[flag] if is_str(flag) else flag
- img = cv2.imread(img_or_path, flag)
- if flag == IMREAD_COLOR and channel_order == 'rgb':
- cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
- return img
- else:
- raise TypeError('"img" must be a numpy array or a str or '
- 'a pathlib.Path object')
-
-
-# 默认就是opencv的bgr格式
-def imfrombytes(content, flag='color', channel_order='bgr', backend=None):
- """Read an image from bytes.
-
- Args:
- content (bytes): Image bytes got from files or other streams.
- flag (str): Same as :func:`imread`.
- backend (str | None): The image decoding backend type. Options are
- `cv2`, `pillow`, `turbojpeg`, `None`. If backend is None, the
- global imread_backend specified by ``mmdet.cv_core.use_backend()`` will be
- used. Default: None.
-
- Returns:
- ndarray: Loaded image array.
- """
-
- if backend is None:
- backend = imread_backend
- if backend not in supported_backends:
- raise ValueError(f'backend: {backend} is not supported. Supported '
- "backends are 'cv2', 'turbojpeg', 'pillow'")
- if backend == 'turbojpeg':
- img = jpeg.decode(content, _jpegflag(flag, channel_order))
- if img.shape[-1] == 1:
- img = img[:, :, 0]
- return img
- elif backend == 'pillow':
- buff = io.BytesIO(content)
- img = Image.open(buff)
- img = _pillow2array(img, flag, channel_order)
- return img
- else:
- img_np = np.frombuffer(content, np.uint8)
- flag = imread_flags[flag] if is_str(flag) else flag
- img = cv2.imdecode(img_np, flag)
- if flag == IMREAD_COLOR and channel_order == 'rgb':
- cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
- return img
-
-
-def imwrite(img, file_path, params=None, auto_mkdir=True):
- """Write image to file.
-
- Args:
- img (ndarray): Image array to be written.
- file_path (str): Image file path.
- params (None or list): Same as opencv's :func:`imwrite` interface.
- auto_mkdir (bool): If the parent folder of `file_path` does not exist,
- whether to create it automatically.
-
- Returns:
- bool: Successful or not.
- """
- if auto_mkdir:
- dir_name = osp.abspath(osp.dirname(file_path))
- mkdir_or_exist(dir_name)
- return cv2.imwrite(file_path, img, params)
diff --git a/mmdet/cv_core/image/misc.py b/mmdet/cv_core/image/misc.py
deleted file mode 100644
index 7e1b33ef..00000000
--- a/mmdet/cv_core/image/misc.py
+++ /dev/null
@@ -1,294 +0,0 @@
-import numpy as np
-import cv2
-
-from mmdet import cv_core
-
-import torch
-import torch.nn.functional as F
-
-
-
-def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
- """Convert tensor to 3-channel images.
-
- Args:
- tensor (torch.Tensor): Tensor that contains multiple images, shape (
- N, C, H, W).
- mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
- std (tuple[float], optional): Standard deviation of images.
- Defaults to (1, 1, 1).
- to_rgb (bool, optional): Whether the tensor was converted to RGB
- format in the first place. If so, convert it back to BGR.
- Defaults to True.
-
- Returns:
- list[np.ndarray]: A list that contains multiple images.
- """
-
- if torch is None:
- raise RuntimeError('pytorch is not installed')
- assert torch.is_tensor(tensor) and tensor.ndim == 4
- assert len(mean) == 3
- assert len(std) == 3
-
- num_imgs = tensor.size(0)
- mean = np.array(mean, dtype=np.float32)
- std = np.array(std, dtype=np.float32)
- imgs = []
- for img_id in range(num_imgs):
- img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
- img = cv_core.imdenormalize(
- img, mean, std, to_bgr=to_rgb).astype(np.uint8)
- imgs.append(np.ascontiguousarray(img))
- return imgs
-
-
-def merge_imgs(imgs, row_col_num):
- """
- Merges all input images as an image with specified merge format.
-
- :param imgs : img list
- :param row_col_num : number of rows and columns displayed
- :return img : merges img
- """
-
- length = len(imgs)
- row, col = row_col_num
-
- assert row > 0 or col > 0, 'row and col cannot be negative at same time!'
- color = random_color(rgb=True).astype(np.float64)
-
- for img in imgs:
- cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), color)
-
- if row_col_num[1] < 0 or length < row:
- merge_imgs = np.hstack(imgs)
- elif row_col_num[0] < 0 or length < col:
- merge_imgs = np.vstack(imgs)
- else:
- assert row * col >= length, 'Imgs overboundary, not enough windows to display all imgs!'
-
- fill_img_list = [np.zeros(imgs[0].shape, dtype=np.uint8)] * (row * col - length)
- imgs.extend(fill_img_list)
- merge_imgs_col = []
- for i in range(row):
- start = col * i
- end = col * (i + 1)
- merge_col = np.hstack(imgs[start: end])
- merge_imgs_col.append(merge_col)
-
- merge_imgs = np.vstack(merge_imgs_col)
-
- return merge_imgs
-
-
-def show_img(imgs, window_names=None, wait_time_ms=0, is_merge=False, row_col_num=(1, -1)):
- """
- Displays an image or a list of images in specified windows or self-initiated windows.
- You can also control display wait time by parameter 'wait_time_ms'.
- Additionally, this function provides an optional parameter 'is_merge' to
- decide whether to display all imgs in a particular window 'merge'.
- Besides, parameter 'row_col_num' supports user specified merge format.
- Notice, specified format must be greater than or equal to imgs number.
-
- :param imgs: numpy.ndarray or list.
- :param window_names: specified or None, if None, function will create different windows as '1', '2'.
- :param wait_time_ms: display wait time.
- :param is_merge: whether to merge all images.
- :param row_col_num: merge format. default is (1, -1), image will line up to show.
- example=(2, 5), images will display in two rows and five columns.
- """
- if not isinstance(imgs, list):
- imgs = [imgs]
-
- if window_names is None:
- window_names = list(range(len(imgs)))
- else:
- if not isinstance(window_names, list):
- window_names = [window_names]
- assert len(imgs) == len(window_names), 'window names does not match images!'
-
- if is_merge:
- merge_imgs1 = merge_imgs(imgs, row_col_num)
-
- cv2.namedWindow('merge', 0)
- cv2.imshow('merge', merge_imgs1)
- else:
- for img, win_name in zip(imgs, window_names):
- if img is None:
- continue
- win_name = str(win_name)
- cv2.namedWindow(win_name, 0)
- cv2.imshow(win_name, img)
-
- cv2.waitKey(wait_time_ms)
-
-
-_COLORS = np.array(
- [
- 0.000, 0.447, 0.741,
- 0.850, 0.325, 0.098,
- 0.929, 0.694, 0.125,
- 0.494, 0.184, 0.556,
- 0.466, 0.674, 0.188,
- 0.301, 0.745, 0.933,
- 0.635, 0.078, 0.184,
- 0.300, 0.300, 0.300,
- 1.000, 0.667, 0.500,
- 1.000, 1.000, 0.500,
- 0.000, 0.333, 1.000,
- 0.000, 0.667, 1.000,
- 0.000, 1.000, 1.000,
- 0.333, 0.000, 1.000,
- 0.333, 0.333, 1.000,
- 0.333, 0.667, 1.000,
- 0.333, 1.000, 1.000,
- 0.667, 0.000, 1.000,
- 0.667, 0.333, 1.000
- ]
-).astype(np.float32).reshape(-1, 3)
-
-
-def random_color(rgb=False, maximum=255):
- """
- Args:
- rgb (bool): whether to return RGB colors or BGR colors.
- maximum (int): either 255 or 1
-
- Returns:
- ndarray: a vector of 3 numbers
- """
- idx = np.random.randint(0, len(_COLORS))
- ret = _COLORS[idx] * maximum
- if not rgb:
- ret = ret[::-1]
- return ret
-
-
-def show_bbox(image, bboxs_list, color=None,
- thickness=1, font_scale=0.3, wait_time_ms=0, names=None,
- is_show=True, is_without_mask=False):
- """
- Visualize bbox in object detection by drawing rectangle.
-
- :param image: numpy.ndarray.
- :param bboxs_list: list: [pts_xyxy, prob, id]: label or prediction.
- :param color: tuple.
- :param thickness: int.
- :param fontScale: float.
- :param wait_time_ms: int
- :param names: string: window name
- :param is_show: bool: whether to display during middle process
- :return: numpy.ndarray
- """
- assert image is not None
- font = cv2.FONT_HERSHEY_SIMPLEX
- image_copy = image.copy()
- for bbox in bboxs_list:
- if len(bbox) == 5:
- txt = '{:.3f}'.format(bbox[4])
- elif len(bbox) == 6:
- txt = 'p={:.3f},id={:.3f}'.format(bbox[4], bbox[5])
- bbox_f = np.array(bbox[:4], np.int32)
- if color is None:
- colors = random_color(rgb=True).astype(np.float64)
- else:
- colors = color
-
- if not is_without_mask:
- image_copy = cv2.rectangle(image_copy, (bbox_f[0], bbox_f[1]), (bbox_f[2], bbox_f[3]), colors,
- thickness)
- else:
- mask = np.zeros_like(image_copy, np.uint8)
- mask1 = cv2.rectangle(mask, (bbox_f[0], bbox_f[1]), (bbox_f[2], bbox_f[3]), colors, -1)
- mask = np.zeros_like(image_copy, np.uint8)
- mask2 = cv2.rectangle(mask, (bbox_f[0], bbox_f[1]), (bbox_f[2], bbox_f[3]), colors, thickness)
- mask2 = cv2.addWeighted(mask1, 0.5, mask2, 8, 0.0)
- image_copy = cv2.addWeighted(image_copy, 1.0, mask2, 0.6, 0.0)
- if len(bbox) == 5 or len(bbox) == 6:
- cv2.putText(image_copy, txt, (bbox_f[0], bbox_f[1] - 2),
- font, font_scale, (255, 255, 255), thickness=thickness, lineType=cv2.LINE_AA)
- if is_show:
- show_img(image_copy, names, wait_time_ms)
- return image_copy
-
-
-def show_tensor(tensor, resize_hw=None, top_k=50, mode='CHW', is_show=True,
- wait_time_ms=0, show_split=True, is_merge=True, row_col_num=(1, -1)):
- """
-
- :param wait_time_ms:
- :param tensor: torch.tensor
- :param resize_hw: list:
- :param top_k: int
- :param mode: string: 'CHW' , 'HWC'
- """
-
- def normalize_numpy(array):
- max_value = np.max(array)
- min_value = np.min(array)
- array = (array - min_value) / (max_value - min_value)
- return array
-
- assert tensor.dim() == 3, 'Dim of input tensor should be 3, please check your tensor dimension!'
-
- # 默认tensor格式,通道在前
- if mode == 'CHW':
- tensor = tensor
- else:
- tensor = tensor.permute(2, 0, 1)
-
- # 利用torch中的resize函数进行插值, 选择双线性插值平滑
- if resize_hw is not None:
- tensor = tensor[None]
- tensor = F.interpolate(tensor, resize_hw, mode='bilinear')
- tensor = tensor.squeeze(0)
-
- tensor = tensor.permute(1, 2, 0)
-
- channel = tensor.shape[2]
-
- if tensor.device == 'cpu':
- tensor = tensor.detach().numpy()
- else:
- tensor = tensor.cpu().detach().numpy()
- if not show_split:
- # sum可能会越界,所以需要归一化
- sum_tensor = np.sum(tensor, axis=2)
- sum_tensor = normalize_numpy(sum_tensor) * 255
- sum_tensor = sum_tensor.astype(np.uint8)
-
- # 热力图显示
- sum_tensor = cv2.applyColorMap(np.uint8(sum_tensor), cv2.COLORMAP_JET)
- # mean_tensor = cv2.applyColorMap(np.uint8(mean_tensor), cv2.COLORMAP_JET)
-
- if is_show:
- show_img([sum_tensor], ['sum'], wait_time_ms=wait_time_ms)
- return [sum_tensor]
- else:
- assert top_k > 0, 'top k should be positive!'
- channel_sum = np.sum(tensor, axis=(0, 1))
- index = np.argsort(channel_sum)
- select_index = index[:top_k]
- tensor = tensor[:, :, select_index]
- tensor = np.clip(tensor, 0, np.max(tensor))
-
- single_tensor_list = []
- if top_k > channel:
- top_k = channel
- for c in range(top_k):
- single_tensor = tensor[..., c]
- single_tensor = normalize_numpy(single_tensor) * 255
- single_tensor = single_tensor.astype(np.uint8)
-
- single_tensor = cv2.applyColorMap(np.uint8(single_tensor), cv2.COLORMAP_JET)
- single_tensor_list.append(single_tensor)
-
- if is_merge:
- return_imgs = merge_imgs(single_tensor_list, row_col_num=row_col_num)
- else:
- return_imgs = single_tensor_list
-
- if is_show:
- show_img(return_imgs, wait_time_ms=wait_time_ms, is_merge=is_merge)
- return return_imgs
diff --git a/mmdet/cv_core/image/photometric.py b/mmdet/cv_core/image/photometric.py
deleted file mode 100644
index 5323431a..00000000
--- a/mmdet/cv_core/image/photometric.py
+++ /dev/null
@@ -1,226 +0,0 @@
-import cv2
-import numpy as np
-
-from .colorspace import bgr2gray, gray2bgr
-
-
-def imnormalize(img, mean, std, to_rgb=True):
- """Normalize an image with mean and std.
-
- Args:
- img (ndarray): Image to be normalized.
- mean (ndarray): The mean to be used for normalize.
- std (ndarray): The std to be used for normalize.
- to_rgb (bool): Whether to convert to rgb.
-
- Returns:
- ndarray: The normalized image.
- """
- img = img.copy().astype(np.float32)
- return imnormalize_(img, mean, std, to_rgb)
-
-
-def imnormalize_(img, mean, std, to_rgb=True):
- """Inplace normalize an image with mean and std.
-
- Args:
- img (ndarray): Image to be normalized.
- mean (ndarray): The mean to be used for normalize.
- std (ndarray): The std to be used for normalize.
- to_rgb (bool): Whether to convert to rgb.
-
- Returns:
- ndarray: The normalized image.
- """
- # cv2 inplace normalization does not accept uint8
- assert img.dtype != np.uint8
- mean = np.float64(mean.reshape(1, -1))
- stdinv = 1 / np.float64(std.reshape(1, -1))
- if to_rgb:
- cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) # inplace
- cv2.subtract(img, mean, img) # inplace
- cv2.multiply(img, stdinv, img) # inplace
- return img
-
-
-def imdenormalize(img, mean, std, to_bgr=True):
- assert img.dtype != np.uint8
- mean = mean.reshape(1, -1).astype(np.float64)
- std = std.reshape(1, -1).astype(np.float64)
- img = cv2.multiply(img, std) # make a copy
- cv2.add(img, mean, img) # inplace
- if to_bgr:
- cv2.cvtColor(img, cv2.COLOR_RGB2BGR, img) # inplace
- return img
-
-
-def iminvert(img):
- """Invert (negate) an image.
-
- Args:
- img (ndarray): Image to be inverted.
-
- Returns:
- ndarray: The inverted image.
- """
- return np.full_like(img, 255) - img
-
-
-def solarize(img, thr=128):
- """Solarize an image (invert all pixel values above a threshold)
-
- Args:
- img (ndarray): Image to be solarized.
- thr (int): Threshold for solarizing (0 - 255).
-
- Returns:
- ndarray: The solarized image.
- """
- img = np.where(img < thr, img, 255 - img)
- return img
-
-
-def posterize(img, bits):
- """Posterize an image (reduce the number of bits for each color channel)
-
- Args:
- img (ndarray): Image to be posterized.
- bits (int): Number of bits (1 to 8) to use for posterizing.
-
- Returns:
- ndarray: The posterized image.
- """
- shift = 8 - bits
- img = np.left_shift(np.right_shift(img, shift), shift)
- return img
-
-
-def adjust_color(img, alpha=1, beta=None, gamma=0):
- """It blends the source image and its gray image:
-
- ``output = img * alpha + gray_img * beta + gamma``
-
- Args:
- img (ndarray): The input source image.
- alpha (int | float): Weight for the source image. Default 1.
- beta (int | float): Weight for the converted gray image.
- If None, it's assigned the value (1 - `alpha`).
- gamma (int | float): Scalar added to each sum.
- Same as :func:`cv2.addWeighted`. Default 0.
-
- Returns:
- ndarray: Colored image which has the same size and dtype as input.
- """
- gray_img = bgr2gray(img)
- gray_img = np.tile(gray_img[..., None], [1, 1, 3])
- if beta is None:
- beta = 1 - alpha
- colored_img = cv2.addWeighted(img, alpha, gray_img, beta, gamma)
- if not colored_img.dtype == np.uint8:
- # Note when the dtype of `img` is not defaultly `np.uint8`
- # (e.g. np.float32), the value in `colored_img` got from cv2
- # is not guaranteed to be in range [0, 255], so here clip
- # is needed.
- colored_img = np.clip(colored_img, 0, 255)
- return colored_img
-
-
-def imequalize(img):
- """Equalize the image histogram.
-
- This function applies a non-linear mapping to the input image,
- in order to create a uniform distribution of grayscale values
- in the output image.
-
- Args:
- img (ndarray): Image to be equalized.
-
- Returns:
- ndarray: The equalized image.
- """
-
- def _scale_channel(im, c):
- """Scale the data in the corresponding channel."""
- im = im[:, :, c]
- # Compute the histogram of the image channel.
- histo = np.histogram(im, 256, (0, 255))[0]
- # For computing the step, filter out the nonzeros.
- nonzero_histo = histo[histo > 0]
- step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
- if not step:
- lut = np.array(range(256))
- else:
- # Compute the cumulative sum, shifted by step // 2
- # and then normalized by step.
- lut = (np.cumsum(histo) + (step // 2)) // step
- # Shift lut, prepending with 0.
- lut = np.concatenate([[0], lut[:-1]], 0)
- # If step is zero, return the original image.
- # Otherwise, index from lut.
- return np.where(np.equal(step, 0), im, lut[im])
-
- # Scales each channel independently and then stacks
- # the result.
- s1 = _scale_channel(img, 0)
- s2 = _scale_channel(img, 1)
- s3 = _scale_channel(img, 2)
- equalized_img = np.stack([s1, s2, s3], axis=-1)
- return equalized_img
-
-
-def adjust_brightness(img, factor=1.):
- """Adjust image brightness.
-
- This function controls the brightness of an image. An
- enhancement factor of 0.0 gives a black image.
- A factor of 1.0 gives the original image. This function
- blends the source image and the degenerated black image:
-
- ``output = img * factor + degenerated * (1 - factor)``
-
- Args:
- img (ndarray): Image to be brightened.
- factor (float): A value controls the enhancement.
- Factor 1.0 returns the original image, lower
- factors mean less color (brightness, contrast,
- etc), and higher values more. Default 1.
-
- Returns:
- ndarray: The brightened image.
- """
- degenerated = np.zeros_like(img)
- # Note manually convert the dtype to np.float32, to
- # achieve as close results as PIL.ImageEnhance.Brightness.
- # Set beta=1-factor, and gamma=0
- brightened_img = cv2.addWeighted(
- img.astype(np.float32), factor, degenerated.astype(np.float32),
- 1 - factor, 0)
- return brightened_img.astype(img.dtype)
-
-
-def adjust_contrast(img, factor=1.):
- """Adjust image contrast.
-
- This function controls the contrast of an image. An
- enhancement factor of 0.0 gives a solid grey
- image. A factor of 1.0 gives the original image. It
- blends the source image and the degenerated mean image:
-
- ``output = img * factor + degenerated * (1 - factor)``
-
- Args:
- img (ndarray): Image to be contrasted. BGR order.
- factor (float): Same as :func:`mmcv.adjust_brightness`.
-
- Returns:
- ndarray: The contrasted image.
- """
- gray_img = bgr2gray(img)
- hist = np.histogram(gray_img, 256, (0, 255))[0]
- mean = round(np.sum(gray_img) / np.sum(hist))
- degenerated = (np.ones_like(img[..., 0]) * mean).astype(img.dtype)
- degenerated = gray2bgr(degenerated)
- contrasted_img = cv2.addWeighted(
- img.astype(np.float32), factor, degenerated.astype(np.float32),
- 1 - factor, 0)
- return contrasted_img.astype(img.dtype)
diff --git a/mmdet/cv_core/model_zoo/mmcls.json b/mmdet/cv_core/model_zoo/mmcls.json
deleted file mode 100644
index 822b9951..00000000
--- a/mmdet/cv_core/model_zoo/mmcls.json
+++ /dev/null
@@ -1,13 +0,0 @@
-{
- "resnet50_v1d": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnetv1d50_batch256_20200708-1ad0ce94.pth",
- "resnet101_v1d": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnetv1d101_batch256_20200708-9cb302ef.pth",
- "resnet152_v1d": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnetv1d152_batch256_20200708-e79cb6a2.pth",
- "resnext50": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnext50_32x4d_batch256_20200708-c07adbb7.pth",
- "resnext101": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnext101_32x8d_batch256_20200708-1ec34aa7.pth",
- "resnext152": "https://download.openmmlab.com/mmclassification/v0/imagenet/resnext152_32x4d_batch256_20200708-aab5034c.pth",
- "se-resnet50": "https://download.openmmlab.com/mmclassification/v0/imagenet/se-resnet50_batch256_20200804-ae206104.pth",
- "se-resnet101": "https://download.openmmlab.com/mmclassification/v0/imagenet/se-resnet101_batch256_20200804-ba5b51d4.pth",
- "shufflenet_v1": "https://download.openmmlab.com/mmclassification/v0/imagenet/shufflenet_v1_batch1024_20200804-5d6cec73.pth",
- "shufflenet_v2": "https://download.openmmlab.com/mmclassification/v0/imagenet/shufflenet_v2_batch1024_20200812-5bf4721e.pth",
- "mobilenet_v2": "https://download.openmmlab.com/mmclassification/v0/imagenet/mobilenet_v2_batch256_20200708-3b2dc3af.pth"
-}
diff --git a/mmdet/cv_core/model_zoo/open_mmlab.json b/mmdet/cv_core/model_zoo/open_mmlab.json
deleted file mode 100644
index c0e975d4..00000000
--- a/mmdet/cv_core/model_zoo/open_mmlab.json
+++ /dev/null
@@ -1,46 +0,0 @@
-{
- "vgg16_caffe": "https://download.openmmlab.com/pretrain/third_party/vgg16_caffe-292e1171.pth",
- "detectron/resnet50_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet50_caffe-788b5fa3.pth",
- "detectron2/resnet50_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet50_msra-5891d200.pth",
- "detectron/resnet101_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet101_caffe-3ad79236.pth",
- "detectron2/resnet101_caffe": "https://download.openmmlab.com/pretrain/third_party/resnet101_msra-6cc46731.pth",
- "detectron2/resnext101_32x8d": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x8d-1516f1aa.pth",
- "resnext50_32x4d": "https://download.openmmlab.com/pretrain/third_party/resnext50-32x4d-0ab1a123.pth",
- "resnext101_32x4d": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d-a5af3160.pth",
- "resnext101_64x4d": "https://download.openmmlab.com/pretrain/third_party/resnext101_64x4d-ee2c6f71.pth",
- "contrib/resnet50_gn": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn_thangvubk-ad1730dd.pth",
- "detectron/resnet50_gn": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn-9186a21c.pth",
- "detectron/resnet101_gn": "https://download.openmmlab.com/pretrain/third_party/resnet101_gn-cac0ab98.pth",
- "jhu/resnet50_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnet50_gn_ws-15beedd8.pth",
- "jhu/resnet101_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnet101_gn_ws-3e3c308c.pth",
- "jhu/resnext50_32x4d_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnext50_32x4d_gn_ws-0d87ac85.pth",
- "jhu/resnext101_32x4d_gn_ws": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d_gn_ws-34ac1a9e.pth",
- "jhu/resnext50_32x4d_gn": "https://download.openmmlab.com/pretrain/third_party/resnext50_32x4d_gn-c7e8b754.pth",
- "jhu/resnext101_32x4d_gn": "https://download.openmmlab.com/pretrain/third_party/resnext101_32x4d_gn-ac3bb84e.pth",
- "msra/hrnetv2_w18_small": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w18_small-b5a04e21.pth",
- "msra/hrnetv2_w18": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w18-00eb2006.pth",
- "msra/hrnetv2_w32": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w32-dc9eeb4f.pth",
- "msra/hrnetv2_w40": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w40-ed0b031c.pth",
- "msra/hrnetv2_w48": "https://download.openmmlab.com/pretrain/third_party/hrnetv2_w48-d2186c55.pth",
- "bninception_caffe": "https://download.openmmlab.com/pretrain/third_party/bn_inception_caffe-ed2e8665.pth",
- "kin400/i3d_r50_f32s2_k400": "https://download.openmmlab.com/pretrain/third_party/i3d_r50_f32s2_k400-2c57e077.pth",
- "kin400/nl3d_r50_f32s2_k400": "https://download.openmmlab.com/pretrain/third_party/nl3d_r50_f32s2_k400-fa7e7caa.pth",
- "res2net101_v1d_26w_4s": "https://download.openmmlab.com/pretrain/third_party/res2net101_v1d_26w_4s_mmdetv2-f0a600f9.pth",
- "regnetx_400mf": "https://download.openmmlab.com/pretrain/third_party/regnetx_400mf-a5b10d96.pth",
- "regnetx_800mf": "https://download.openmmlab.com/pretrain/third_party/regnetx_800mf-1f4be4c7.pth",
- "regnetx_1.6gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_1.6gf-5791c176.pth",
- "regnetx_3.2gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_3.2gf-c2599b0f.pth",
- "regnetx_4.0gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_4.0gf-a88f671e.pth",
- "regnetx_6.4gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_6.4gf-006af45d.pth",
- "regnetx_8.0gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_8.0gf-3c68abe7.pth",
- "regnetx_12gf": "https://download.openmmlab.com/pretrain/third_party/regnetx_12gf-4c2a3350.pth",
- "resnet50_v1c": "https://download.openmmlab.com/pretrain/third_party/resnet50_v1c-2cccc1ad.pth",
- "resnet101_v1c": "https://download.openmmlab.com/pretrain/third_party/resnet101_v1c-e67eebb6.pth",
- "mmedit/vgg16": "https://download.openmmlab.com/mmediting/third_party/vgg_state_dict.pth",
- "mmedit/res34_en_nomixup": "https://download.openmmlab.com/mmediting/third_party/model_best_resnet34_En_nomixup.pth",
- "mmedit/mobilenet_v2": "https://download.openmmlab.com/mmediting/third_party/mobilenet_v2.pth",
- "resnest50": "https://download.openmmlab.com/pretrain/third_party/resnest50_d2-7497a55b.pth",
- "resnest101": "https://download.openmmlab.com/pretrain/third_party/resnest101_d2-f3b931b2.pth",
- "resnest200": "https://download.openmmlab.com/pretrain/third_party/resnest200_d2-ca88e41f.pth",
- "darknet53": "https://download.openmmlab.com/pretrain/third_party/darknet53-a628ea1b.pth"
-}
diff --git a/mmdet/cv_core/ops/__init__.py b/mmdet/cv_core/ops/__init__.py
deleted file mode 100644
index 727de0f9..00000000
--- a/mmdet/cv_core/ops/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from .bbox import bbox_overlaps
-from .carafe import CARAFE, CARAFENaive, CARAFEPack, carafe, carafe_naive
-from .cc_attention import CrissCrossAttention
-from .corner_pool import CornerPool, TLPool, BRPool
-from .deform_conv import DeformConv2d, DeformConv2dPack, deform_conv2d
-from .deform_roi_pool import (DeformRoIPool, DeformRoIPoolPack,
- ModulatedDeformRoIPoolPack, deform_roi_pool)
-from .focal_loss import (SigmoidFocalLoss, SoftmaxFocalLoss,
- sigmoid_focal_loss, softmax_focal_loss)
-from .info import get_compiler_version, get_compiling_cuda_version
-from .masked_conv import MaskedConv2d, masked_conv2d
-from .modulated_deform_conv import (ModulatedDeformConv2d,
- ModulatedDeformConv2dPack,
- modulated_deform_conv2d)
-from .nms import batched_nms, nms, nms_match, soft_nms
-from .point_sample import (SimpleRoIAlign, point_sample,
- rel_roi_point_to_rel_img_point)
-from .psa_mask import PSAMask
-from .roi_align import RoIAlign, roi_align
-from .roi_pool import RoIPool, roi_pool
-from .sync_bn import SyncBatchNorm
-from .tin_shift import TINShift, tin_shift
-
-__all__ = [
- 'bbox_overlaps', 'CARAFE', 'CARAFENaive', 'CARAFEPack', 'carafe',
- 'carafe_naive', 'CornerPool', 'TLPool', 'BRPool', 'DeformConv2d', 'DeformConv2dPack',
- 'deform_conv2d', 'DeformRoIPool', 'DeformRoIPoolPack',
- 'ModulatedDeformRoIPoolPack', 'deform_roi_pool', 'SigmoidFocalLoss',
- 'SoftmaxFocalLoss', 'sigmoid_focal_loss', 'softmax_focal_loss',
- 'get_compiler_version', 'get_compiling_cuda_version', 'MaskedConv2d',
- 'masked_conv2d', 'ModulatedDeformConv2d', 'ModulatedDeformConv2dPack',
- 'modulated_deform_conv2d', 'batched_nms', 'nms', 'soft_nms', 'nms_match',
- 'RoIAlign', 'roi_align', 'RoIPool', 'roi_pool', 'SyncBatchNorm', 'CrissCrossAttention', 'PSAMask',
- 'point_sample', 'rel_roi_point_to_rel_img_point', 'SimpleRoIAlign', 'TINShift', 'tin_shift'
-]
diff --git a/mmdet/cv_core/ops/bbox.py b/mmdet/cv_core/ops/bbox.py
deleted file mode 100644
index 06bd10e2..00000000
--- a/mmdet/cv_core/ops/bbox.py
+++ /dev/null
@@ -1,71 +0,0 @@
-from ..utils import ext_loader
-
-ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps'])
-
-
-def bbox_overlaps(bboxes1, bboxes2, mode='iou', aligned=False, offset=0):
- """Calculate overlap between two set of bboxes.
-
- If ``aligned`` is ``False``, then calculate the ious between each bbox
- of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
- bboxes1 and bboxes2.
-
- Args:
- bboxes1 (Tensor): shape (m, 4) in format or empty.
- bboxes2 (Tensor): shape (n, 4) in format or empty.
- If aligned is ``True``, then m and n must be equal.
- mode (str): "iou" (intersection over union) or iof (intersection over
- foreground).
-
- Returns:
- ious(Tensor): shape (m, n) if aligned == False else shape (m, 1)
-
- Example:
- >>> bboxes1 = torch.FloatTensor([
- >>> [0, 0, 10, 10],
- >>> [10, 10, 20, 20],
- >>> [32, 32, 38, 42],
- >>> ])
- >>> bboxes2 = torch.FloatTensor([
- >>> [0, 0, 10, 20],
- >>> [0, 10, 10, 19],
- >>> [10, 10, 20, 20],
- >>> ])
- >>> bbox_overlaps(bboxes1, bboxes2)
- tensor([[0.5000, 0.0000, 0.0000],
- [0.0000, 0.0000, 1.0000],
- [0.0000, 0.0000, 0.0000]])
-
- Example:
- >>> empty = torch.FloatTensor([])
- >>> nonempty = torch.FloatTensor([
- >>> [0, 0, 10, 9],
- >>> ])
- >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
- >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
- >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
- """
-
- mode_dict = {'iou': 0, 'iof': 1}
- assert mode in mode_dict.keys()
- mode_flag = mode_dict[mode]
- # Either the boxes are empty or the length of boxes's last dimenstion is 4
- assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0)
- assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0)
- assert offset == 1 or offset == 0
-
- rows = bboxes1.size(0)
- cols = bboxes2.size(0)
- if aligned:
- assert rows == cols
-
- if rows * cols == 0:
- return bboxes1.new(rows, 1) if aligned else bboxes1.new(rows, cols)
-
- if aligned:
- ious = bboxes1.new_zeros(rows)
- else:
- ious = bboxes1.new_zeros((rows, cols))
- ext_module.bbox_overlaps(
- bboxes1, bboxes2, ious, mode=mode_flag, aligned=aligned, offset=offset)
- return ious
diff --git a/mmdet/cv_core/ops/carafe.py b/mmdet/cv_core/ops/carafe.py
deleted file mode 100644
index 35befb4a..00000000
--- a/mmdet/cv_core/ops/carafe.py
+++ /dev/null
@@ -1,284 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.autograd import Function
-from torch.nn.modules.module import Module
-
-from ..cnn import UPSAMPLE_LAYERS, normal_init, xavier_init
-from ..utils import ext_loader
-
-ext_module = ext_loader.load_ext('_ext', [
- 'carafe_naive_forward', 'carafe_naive_backward', 'carafe_forward',
- 'carafe_backward'
-])
-
-
-class CARAFENaiveFunction(Function):
-
- @staticmethod
- def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
- return g.op(
- 'MMCVCARAFENaive',
- features,
- masks,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
-
- @staticmethod
- def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
- assert scale_factor >= 1
- assert masks.size(1) == kernel_size * kernel_size * group_size
- assert masks.size(-1) == features.size(-1) * scale_factor
- assert masks.size(-2) == features.size(-2) * scale_factor
- assert features.size(1) % group_size == 0
- assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
- ctx.kernel_size = kernel_size
- ctx.group_size = group_size
- ctx.scale_factor = scale_factor
- ctx.feature_size = features.size()
- ctx.mask_size = masks.size()
-
- n, c, h, w = features.size()
- output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
- ext_module.carafe_naive_forward(
- features,
- masks,
- output,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
-
- if features.requires_grad or masks.requires_grad:
- ctx.save_for_backward(features, masks)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- assert grad_output.is_cuda
-
- features, masks = ctx.saved_tensors
- kernel_size = ctx.kernel_size
- group_size = ctx.group_size
- scale_factor = ctx.scale_factor
-
- grad_input = torch.zeros_like(features)
- grad_masks = torch.zeros_like(masks)
- ext_module.carafe_naive_backward(
- grad_output.contiguous(),
- features,
- masks,
- grad_input,
- grad_masks,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
-
- return grad_input, grad_masks, None, None, None
-
-
-carafe_naive = CARAFENaiveFunction.apply
-
-
-class CARAFENaive(Module):
-
- def __init__(self, kernel_size, group_size, scale_factor):
- super(CARAFENaive, self).__init__()
-
- assert isinstance(kernel_size, int) and isinstance(
- group_size, int) and isinstance(scale_factor, int)
- self.kernel_size = kernel_size
- self.group_size = group_size
- self.scale_factor = scale_factor
-
- def forward(self, features, masks):
- return carafe_naive(features, masks, self.kernel_size, self.group_size,
- self.scale_factor)
-
-
-class CARAFEFunction(Function):
-
- @staticmethod
- def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
- return g.op(
- 'MMCVCARAFE',
- features,
- masks,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
-
- @staticmethod
- def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
- assert scale_factor >= 1
- assert masks.size(1) == kernel_size * kernel_size * group_size
- assert masks.size(-1) == features.size(-1) * scale_factor
- assert masks.size(-2) == features.size(-2) * scale_factor
- assert features.size(1) % group_size == 0
- assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
- ctx.kernel_size = kernel_size
- ctx.group_size = group_size
- ctx.scale_factor = scale_factor
- ctx.feature_size = features.size()
- ctx.mask_size = masks.size()
-
- n, c, h, w = features.size()
- output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
- routput = features.new_zeros(output.size(), requires_grad=False)
- rfeatures = features.new_zeros(features.size(), requires_grad=False)
- rmasks = masks.new_zeros(masks.size(), requires_grad=False)
- ext_module.carafe_forward(
- features,
- masks,
- rfeatures,
- routput,
- rmasks,
- output,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
-
- if features.requires_grad or masks.requires_grad:
- ctx.save_for_backward(features, masks, rfeatures)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- assert grad_output.is_cuda
-
- features, masks, rfeatures = ctx.saved_tensors
- kernel_size = ctx.kernel_size
- group_size = ctx.group_size
- scale_factor = ctx.scale_factor
-
- rgrad_output = torch.zeros_like(grad_output, requires_grad=False)
- rgrad_input_hs = torch.zeros_like(grad_output, requires_grad=False)
- rgrad_input = torch.zeros_like(features, requires_grad=False)
- rgrad_masks = torch.zeros_like(masks, requires_grad=False)
- grad_input = torch.zeros_like(features, requires_grad=False)
- grad_masks = torch.zeros_like(masks, requires_grad=False)
- ext_module.carafe_backward(
- grad_output.contiguous(),
- rfeatures,
- masks,
- rgrad_output,
- rgrad_input_hs,
- rgrad_input,
- rgrad_masks,
- grad_input,
- grad_masks,
- kernel_size=kernel_size,
- group_size=group_size,
- scale_factor=scale_factor)
- return grad_input, grad_masks, None, None, None
-
-
-carafe = CARAFEFunction.apply
-
-
-class CARAFE(Module):
- """ CARAFE: Content-Aware ReAssembly of FEatures
-
- Please refer to https://arxiv.org/abs/1905.02188 for more details.
-
- Args:
- kernel_size (int): reassemble kernel size
- group_size (int): reassemble group size
- scale_factor (int): upsample ratio
-
- Returns:
- upsampled feature map
- """
-
- def __init__(self, kernel_size, group_size, scale_factor):
- super(CARAFE, self).__init__()
-
- assert isinstance(kernel_size, int) and isinstance(
- group_size, int) and isinstance(scale_factor, int)
- self.kernel_size = kernel_size
- self.group_size = group_size
- self.scale_factor = scale_factor
-
- def forward(self, features, masks):
- return carafe(features, masks, self.kernel_size, self.group_size,
- self.scale_factor)
-
-
-@UPSAMPLE_LAYERS.register_module(name='carafe')
-class CARAFEPack(nn.Module):
- """A unified package of CARAFE upsampler that contains: 1) channel
- compressor 2) content encoder 3) CARAFE op.
-
- Official implementation of ICCV 2019 paper
- CARAFE: Content-Aware ReAssembly of FEatures
- Please refer to https://arxiv.org/abs/1905.02188 for more details.
-
- Args:
- channels (int): input feature channels
- scale_factor (int): upsample ratio
- up_kernel (int): kernel size of CARAFE op
- up_group (int): group size of CARAFE op
- encoder_kernel (int): kernel size of content encoder
- encoder_dilation (int): dilation of content encoder
- compressed_channels (int): output channels of channels compressor
-
- Returns:
- upsampled feature map
- """
-
- def __init__(self,
- channels,
- scale_factor,
- up_kernel=5,
- up_group=1,
- encoder_kernel=3,
- encoder_dilation=1,
- compressed_channels=64):
- super(CARAFEPack, self).__init__()
- self.channels = channels
- self.scale_factor = scale_factor
- self.up_kernel = up_kernel
- self.up_group = up_group
- self.encoder_kernel = encoder_kernel
- self.encoder_dilation = encoder_dilation
- self.compressed_channels = compressed_channels
- self.channel_compressor = nn.Conv2d(channels, self.compressed_channels,
- 1)
- self.content_encoder = nn.Conv2d(
- self.compressed_channels,
- self.up_kernel * self.up_kernel * self.up_group *
- self.scale_factor * self.scale_factor,
- self.encoder_kernel,
- padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
- dilation=self.encoder_dilation,
- groups=1)
- self.init_weights()
-
- def init_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- xavier_init(m, distribution='uniform')
- normal_init(self.content_encoder, std=0.001)
-
- def kernel_normalizer(self, mask):
- mask = F.pixel_shuffle(mask, self.scale_factor)
- n, mask_c, h, w = mask.size()
- mask_channel = int(mask_c / (self.up_kernel * self.up_kernel))
- mask = mask.view(n, mask_channel, -1, h, w)
-
- mask = F.softmax(mask, dim=2)
- mask = mask.view(n, mask_c, h, w).contiguous()
-
- return mask
-
- def feature_reassemble(self, x, mask):
- x = carafe(x, mask, self.up_kernel, self.up_group, self.scale_factor)
- return x
-
- def forward(self, x):
- compressed_x = self.channel_compressor(x)
- mask = self.content_encoder(compressed_x)
- mask = self.kernel_normalizer(mask)
-
- x = self.feature_reassemble(x, mask)
- return x
diff --git a/mmdet/cv_core/ops/cc_attention.py b/mmdet/cv_core/ops/cc_attention.py
deleted file mode 100644
index 5f05a477..00000000
--- a/mmdet/cv_core/ops/cc_attention.py
+++ /dev/null
@@ -1,95 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.autograd.function import once_differentiable
-
-from mmdet.cv_core.cnn import Scale
-from ..utils import ext_loader
-
-ext_module = ext_loader.load_ext(
- '_ext', ['ca_forward', 'ca_backward', 'ca_map_forward', 'ca_map_backward'])
-
-
-class CAWeightFunction(torch.autograd.Function):
-
- @staticmethod
- def symbolic(g, t, f):
- return g.op('MMCVCAWeight', t, f)
-
- @staticmethod
- def forward(ctx, t, f):
- n, c, h, w = t.size()
- weight = torch.zeros(n, h + w - 1, h, w).to(t.device)
- ext_module.ca_forward(t, f, weight)
-
- ctx.save_for_backward(t, f)
-
- return weight
-
- @staticmethod
- @once_differentiable
- def backward(ctx, dw):
- t, f = ctx.saved_tensors
- dt = torch.zeros_like(t)
- df = torch.zeros_like(f)
- ext_module.ca_backward(dw, t, f, dt, df)
- return dt, df
-
-
-class CAMapFunction(torch.autograd.Function):
-
- @staticmethod
- def symbolic(g, weight, v):
- return g.op('MMCVCAMap', weight, v)
-
- @staticmethod
- def forward(ctx, weight, v):
- out = torch.zeros_like(v)
- ext_module.ca_map_forward(weight, v, out)
-
- ctx.save_for_backward(weight, v)
-
- return out
-
- @staticmethod
- @once_differentiable
- def backward(ctx, dout):
- weight, v = ctx.saved_tensors
- dw = torch.zeros_like(weight)
- dv = torch.zeros_like(v)
- ext_module.ca_map_backward(dout, weight, v, dw, dv)
-
- return dw, dv
-
-
-ca_weight = CAWeightFunction.apply
-ca_map = CAMapFunction.apply
-
-
-class CrissCrossAttention(nn.Module):
- """Criss-Cross Attention Module."""
-
- def __init__(self, in_channels):
- super(CrissCrossAttention, self).__init__()
- self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
- self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
- self.value_conv = nn.Conv2d(in_channels, in_channels, 1)
- self.gamma = Scale(0.)
- self.in_channels = in_channels
-
- def forward(self, x):
- proj_query = self.query_conv(x)
- proj_key = self.key_conv(x)
- proj_value = self.value_conv(x)
-
- energy = ca_weight(proj_query, proj_key)
- attention = F.softmax(energy, 1)
- out = ca_map(attention, proj_value)
- out = self.gamma(out) + x
-
- return out
-
- def __repr__(self):
- s = self.__class__.__name__
- s += f'(in_channels={self.in_channels})'
- return s
diff --git a/mmdet/cv_core/ops/corner_pool.py b/mmdet/cv_core/ops/corner_pool.py
deleted file mode 100644
index 9f49f4c7..00000000
--- a/mmdet/cv_core/ops/corner_pool.py
+++ /dev/null
@@ -1,198 +0,0 @@
-import torch
-from torch import nn
-from torch.autograd import Function
-from ..cnn import ConvModule
-from ..utils import ext_loader
-
-ext_module = ext_loader.load_ext('_ext', [
- 'top_pool_forward', 'top_pool_backward', 'bottom_pool_forward',
- 'bottom_pool_backward', 'left_pool_forward', 'left_pool_backward',
- 'right_pool_forward', 'right_pool_backward'
-])
-
-
-class TopPoolFunction(Function):
-
- @staticmethod
- def forward(ctx, input):
- output = ext_module.top_pool_forward(input)
- ctx.save_for_backward(input)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- input, = ctx.saved_tensors
- output = ext_module.top_pool_backward(input, grad_output)
- return output
-
-
-class BottomPoolFunction(Function):
-
- @staticmethod
- def forward(ctx, input):
- output = ext_module.bottom_pool_forward(input)
- ctx.save_for_backward(input)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- input, = ctx.saved_tensors
- output = ext_module.bottom_pool_backward(input, grad_output)
- return output
-
-
-class LeftPoolFunction(Function):
-
- @staticmethod
- def forward(ctx, input):
- output = ext_module.left_pool_forward(input)
- ctx.save_for_backward(input)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- input, = ctx.saved_tensors
- output = ext_module.left_pool_backward(input, grad_output)
- return output
-
-
-class RightPoolFunction(Function):
-
- @staticmethod
- def forward(ctx, input):
- output = ext_module.right_pool_forward(input)
- ctx.save_for_backward(input)
- return output
-
- @staticmethod
- def backward(ctx, grad_output):
- input, = ctx.saved_tensors
- output = ext_module.right_pool_backward(input, grad_output)
- return output
-
-
-class CornerPool(nn.Module):
- """Corner Pooling.
-
- Corner Pooling is a new type of pooling layer that helps a
- convolutional network better localize corners of bounding boxes.
-
- Please refer to https://arxiv.org/abs/1808.01244 for more details.
- Code is modified from https://github.com/princeton-vl/CornerNet-Lite.
-
- Args:
- mode(str): Pooling orientation for the pooling layer
-
- - 'bottom': Bottom Pooling
- - 'left': Left Pooling
- - 'right': Right Pooling
- - 'top': Top Pooling
-
- Returns:
- Feature map after pooling.
- """
-
- pool_functions = {
- 'bottom': BottomPoolFunction,
- 'left': LeftPoolFunction,
- 'right': RightPoolFunction,
- 'top': TopPoolFunction,
- }
-
- cummax_dim_flip = {
- 'bottom': (2, False),
- 'left': (3, True),
- 'right': (3, False),
- 'top': (2, True),
- }
-
- def __init__(self, mode):
- super(CornerPool, self).__init__()
- assert mode in self.pool_functions
- self.mode = mode
- self.corner_pool = self.pool_functions[mode]
-
- def forward(self, x):
- if torch.__version__ != 'parrots' and torch.__version__ >= '1.5.0':
- dim, flip = self.cummax_dim_flip[self.mode]
- if flip:
- x = x.flip(dim)
- pool_tensor, _ = torch.cummax(x, dim=dim)
- if flip:
- pool_tensor = pool_tensor.flip(dim)
- return pool_tensor
- else:
- return self.corner_pool.apply(x)
-
-
-class CornerPoolPack(nn.Module):
- def __init__(self, dim, pool1, pool2, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3,
- corner_dim=128):
- super(CornerPoolPack, self).__init__()
- self.p1_conv1 = ConvModule(
- dim,
- corner_dim,
- first_kernel_size,
- stride=1,
- padding=(first_kernel_size - 1) // 2,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg)
- self.p2_conv1 = ConvModule(
- dim,
- corner_dim,
- first_kernel_size,
- stride=1,
- padding=(first_kernel_size - 1) // 2,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg)
-
- self.p_conv1 = nn.Conv2d(corner_dim, dim, 3, padding=1, bias=False)
- self.p_gn1 = nn.GroupNorm(num_groups=32, num_channels=dim)
-
- self.conv1 = nn.Conv2d(dim, dim, 1, bias=False)
- self.gn1 = nn.GroupNorm(num_groups=32, num_channels=dim)
- self.relu1 = nn.ReLU(inplace=True)
-
- self.conv2 = ConvModule(
- dim,
- dim,
- kernel_size,
- stride=1,
- padding=(kernel_size - 1) // 2,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg)
-
- self.pool1 = pool1
- self.pool2 = pool2
-
- def forward(self, x):
- # pool 1
- p1_conv1 = self.p1_conv1(x)
- pool1 = self.pool1(p1_conv1)
-
- # pool 2
- p2_conv1 = self.p2_conv1(x)
- pool2 = self.pool2(p2_conv1)
-
- # pool 1 + pool 2
- p_conv1 = self.p_conv1(pool1 + pool2)
- p_gn1 = self.p_gn1(p_conv1)
-
- conv1 = self.conv1(x)
- gn1 = self.gn1(conv1)
- relu1 = self.relu1(p_gn1 + gn1)
-
- conv2 = self.conv2(relu1)
- return conv2
-
-
-class TLPool(CornerPoolPack):
- def __init__(self, dim, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3, corner_dim=128):
- super(TLPool, self).__init__(dim, CornerPool('top'), CornerPool('left'), conv_cfg, norm_cfg, first_kernel_size,
- kernel_size, corner_dim)
-
-
-class BRPool(CornerPoolPack):
- def __init__(self, dim, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3, corner_dim=128):
- super(BRPool, self).__init__(dim, CornerPool('bottom'), CornerPool('right'), conv_cfg, norm_cfg,
- first_kernel_size, kernel_size, corner_dim)
diff --git a/mmdet/cv_core/ops/csrc/bbox_overlaps_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/bbox_overlaps_cuda_kernel.cuh
deleted file mode 100644
index e5fccaba..00000000
--- a/mmdet/cv_core/ops/csrc/bbox_overlaps_cuda_kernel.cuh
+++ /dev/null
@@ -1,83 +0,0 @@
-#ifndef BBOX_OVERLAPS_CUDA_KERNEL_CUH
-#define BBOX_OVERLAPS_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__global__ void bbox_overlaps_cuda_kernel(const T* bbox1, const T* bbox2,
- T* ious, const int num_bbox1,
- const int num_bbox2, const int mode,
- const bool aligned,
- const int offset) {
- if (aligned) {
- CUDA_1D_KERNEL_LOOP(index, num_bbox1) {
- int b1 = index;
- int b2 = index;
-
- int base1 = b1 * 4;
- T b1_x1 = bbox1[base1];
- T b1_y1 = bbox1[base1 + 1];
- T b1_x2 = bbox1[base1 + 2];
- T b1_y2 = bbox1[base1 + 3];
- T b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset);
-
- int base2 = b2 * 4;
- T b2_x1 = bbox2[base2];
- T b2_y1 = bbox2[base2 + 1];
- T b2_x2 = bbox2[base2 + 2];
- T b2_y2 = bbox2[base2 + 3];
- T b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset);
-
- T left = fmaxf(b1_x1, b2_x1), right = fminf(b1_x2, b2_x2);
- T top = fmaxf(b1_y1, b2_y1), bottom = fminf(b1_y2, b2_y2);
- T width = fmaxf(right - left + offset, 0.f);
- T height = fmaxf(bottom - top + offset, 0.f);
- T interS = width * height;
- T baseS = 1.0;
- if (mode == 0) {
- baseS = fmaxf(b1_area + b2_area - interS, T(offset));
- } else if (mode == 1) {
- baseS = fmaxf(b1_area, T(offset));
- }
- ious[index] = interS / baseS;
- }
- } else {
- CUDA_1D_KERNEL_LOOP(index, num_bbox1 * num_bbox2) {
- int b1 = index / num_bbox2;
- int b2 = index % num_bbox2;
-
- int base1 = b1 * 4;
- T b1_x1 = bbox1[base1];
- T b1_y1 = bbox1[base1 + 1];
- T b1_x2 = bbox1[base1 + 2];
- T b1_y2 = bbox1[base1 + 3];
- T b1_area = (b1_x2 - b1_x1 + offset) * (b1_y2 - b1_y1 + offset);
-
- int base2 = b2 * 4;
- T b2_x1 = bbox2[base2];
- T b2_y1 = bbox2[base2 + 1];
- T b2_x2 = bbox2[base2 + 2];
- T b2_y2 = bbox2[base2 + 3];
- T b2_area = (b2_x2 - b2_x1 + offset) * (b2_y2 - b2_y1 + offset);
-
- T left = fmaxf(b1_x1, b2_x1), right = fminf(b1_x2, b2_x2);
- T top = fmaxf(b1_y1, b2_y1), bottom = fminf(b1_y2, b2_y2);
- T width = fmaxf(right - left + offset, 0.f);
- T height = fmaxf(bottom - top + offset, 0.f);
- T interS = width * height;
- T baseS = 1.0;
- if (mode == 0) {
- baseS = fmaxf(b1_area + b2_area - interS, T(offset));
- } else if (mode == 1) {
- baseS = fmaxf(b1_area, T(offset));
- }
- ious[index] = interS / baseS;
- }
- }
-}
-
-#endif // BBOX_OVERLAPS_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/carafe_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/carafe_cuda_kernel.cuh
deleted file mode 100644
index e9b569d3..00000000
--- a/mmdet/cv_core/ops/csrc/carafe_cuda_kernel.cuh
+++ /dev/null
@@ -1,314 +0,0 @@
-#ifndef CARAFE_CUDA_KERNEL_CUH
-#define CARAFE_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-#define WARP_SIZE 32
-#define THREADS_PER_PIXEL 32
-#define MAX_SHARED_MEMORY 49152
-#define MAX_SHARED_SCALAR_T 6144 // 49152 / 8 = 6144
-#define MAXIMIZE_KERNEL_SIZE true
-#define kTileDim 32
-#define kBlockRows 8
-#define FULL_MASK 0xffffffff
-
-inline int divideUP(const int x, const int y) { return (((x) + (y)-1) / (y)); }
-
-__device__ inline int Loc2Index(const int n, const int c, const int h,
- const int w, const int channel_num,
- const int height, const int width) {
- int index = w + (h + (c + n * channel_num) * height) * width;
- return index;
-}
-/* TODO: move this to a common place */
-template
-__device__ inline scalar_t min(scalar_t a, scalar_t b) {
- return a < b ? a : b;
-}
-
-template
-__device__ inline scalar_t max(scalar_t a, scalar_t b) {
- return a > b ? a : b;
-}
-
-template
-__device__ __forceinline__ scalar_t warpReduceSum(scalar_t val) {
- for (int offset = 16; offset > 0; offset /= 2)
- val += __shfl_down_sync(FULL_MASK, val, offset);
- return val;
-}
-
-template <>
-__device__ __forceinline__ phalf warpReduceSum(phalf val) {
- for (int offset = 16; offset > 0; offset /= 2)
- __PHALF(val) +=
- __shfl_down_sync(FULL_MASK, static_cast<__half>(__PHALF(val)), offset);
- return val;
-}
-
-// Splits the original matrix into submatrices with size 32 * 32.
-// Each block transposes one submatrix by loading it into shared memory.
-// Reference https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
-template
-__global__ void BatchTranspose2DCUDAKernel(const int N, const int H,
- const int W, const int dh,
- const int dw,
- const scalar_t *__restrict__ X,
- scalar_t *__restrict__ Y) {
- __shared__ scalar_t tile[kTileDim][kTileDim + 1];
- const int n = blockIdx.x / (dh * dw);
- const int k = blockIdx.x % (dh * dw);
- const int r = k / dw;
- const int c = k % dw;
- const int offset = n * H * W;
- int x = c * kTileDim + threadIdx.x;
- int y = r * kTileDim + threadIdx.y;
- if (x < W) {
- for (int i = 0; threadIdx.y + i < kTileDim && y + i < H; i += kBlockRows) {
- tile[threadIdx.y + i][threadIdx.x] = X[offset + (y + i) * W + x];
- }
- }
- __syncthreads();
- x = r * kTileDim + threadIdx.x;
- y = c * kTileDim + threadIdx.y;
- if (x < H) {
- for (int i = 0; threadIdx.y + i < kTileDim && y + i < W; i += kBlockRows) {
- Y[offset + (y + i) * H + x] = tile[threadIdx.x][threadIdx.y + i];
- }
- }
-}
-template
-__global__ void CARAFEForward(
- const int num_kernels, const scalar_t *__restrict__ bottom_data,
- const scalar_t *__restrict__ bottom_masks, const int kernel_size,
- const int group_size, const int scale_factor, const int channels,
- const int down_height, const int down_width, const int height,
- const int width, const int mask_channels, scalar_t *__restrict__ top_data) {
-#if MAXIMIZE_KERNEL_SIZE
- __shared__ float shared_mask[MAX_SHARED_SCALAR_T * 2];
-#else
- __shared__ scalar_t shared_mask[MAX_SHARED_SCALAR_T];
-#endif
-
- int index = threadIdx.x + blockIdx.x * blockDim.x;
- if (index > num_kernels - 1) {
- return;
- }
- const int pixel_id = threadIdx.x / THREADS_PER_PIXEL;
- const int split_id = threadIdx.x % THREADS_PER_PIXEL;
- index = index / THREADS_PER_PIXEL;
- const int pw = index % width;
- const int ph = (index / width) % height;
- const int n = index / width / height;
-
- const int down_pw = pw / scale_factor;
- const int down_ph = ph / scale_factor;
-
- const int start_w = down_pw - (kernel_size - 1) / 2;
- const int end_w = down_pw + (kernel_size - 1) / 2 + 1;
- const int start_h = down_ph - (kernel_size - 1) / 2;
- const int end_h = down_ph + (kernel_size - 1) / 2 + 1;
- for (int c = split_id; c < mask_channels; c += THREADS_PER_PIXEL) {
- int mask_index = Loc2Index(n, ph, pw, c, height, width, mask_channels);
- shared_mask[c * WARP_SIZE + pixel_id] = bottom_masks[mask_index];
- }
- __syncthreads();
-
- const int channels_per_group = ceilf(channels / (float)group_size);
-#pragma unroll
- for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
- int mask_group = c / channels_per_group;
- scalar_t output_val = 0;
-#pragma unroll
- for (int iy = start_h; iy < end_h; iy++) {
-#pragma unroll
- for (int ix = start_w; ix < end_w; ix++) {
- if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
- continue;
- }
- int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
- int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
- int mask_c =
- (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
- int feat_index =
- Loc2Index(n, iy, ix, c, down_height, down_width, channels);
-
- output_val += bottom_data[feat_index] *
- shared_mask[mask_c * WARP_SIZE + pixel_id];
- }
- }
-
- int top_index = Loc2Index(n, ph, pw, c, height, width, channels);
- top_data[top_index] = output_val;
- }
-}
-
-template
-__global__ void CARAFEBackward_Feature(
- const int num_kernels, const scalar_t *__restrict__ top_diff,
- const scalar_t *__restrict__ bottom_masks, const int kernel_size,
- const int group_size, const int scale_factor, const int channels,
- const int down_height, const int down_width, const int height,
- const int width, const int mask_channels,
- scalar_t *__restrict__ bottom_diff) {
-#if MAXIMIZE_KERNEL_SIZE
- __shared__ float shared_mask[MAX_SHARED_SCALAR_T * 2];
-#else
- __shared__ scalar_t shared_mask[MAX_SHARED_SCALAR_T];
-#endif
-
- int index = threadIdx.x + blockIdx.x * blockDim.x;
- if (index > num_kernels - 1) {
- return;
- }
-
- const int pixel_id = threadIdx.x / THREADS_PER_PIXEL;
- const int split_id = threadIdx.x % THREADS_PER_PIXEL;
- // (n, c, ph, pw) is an element in the bottom_data
- index = index / THREADS_PER_PIXEL;
- const int pw = index % width;
- const int ph = (index / width) % height;
- const int n = index / width / height;
-
- const int start_w = pw - (kernel_size - 1) * scale_factor / 2;
- const int end_w = pw + (kernel_size - 1) * scale_factor / 2 + 1;
- const int start_h = ph - (kernel_size - 1) * scale_factor / 2;
- const int end_h = ph + (kernel_size - 1) * scale_factor / 2 + 1;
- for (int c = split_id; c < mask_channels; c += THREADS_PER_PIXEL) {
- const int mask_w = (c % kernel_size) * scale_factor;
- const int mask_h = (c / kernel_size % kernel_size) * scale_factor;
- const int mask_x = start_w + mask_w;
- const int mask_y = start_h + mask_h;
- if (mask_y < 0 || mask_y > height - 1 || mask_x < 0 || mask_x > width - 1) {
- shared_mask[c * WARP_SIZE + pixel_id] = 0;
- continue;
- }
- const int mask_group = c / (kernel_size * kernel_size);
- const int mask_c = (2 * mask_group + 1) * kernel_size * kernel_size - c - 1;
- int mask_index =
- Loc2Index(n, mask_c, mask_y, mask_x, mask_channels, height, width);
- shared_mask[c * WARP_SIZE + pixel_id] = bottom_masks[mask_index];
- }
- __syncthreads();
- const int channels_per_group = ceilf(channels / (float)group_size);
-#pragma unroll
- for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
- int mask_group = c / channels_per_group;
- int top_index = Loc2Index(n, ph, pw, c, height, width, channels);
- scalar_t output_val = 0;
-#pragma unroll
- for (int iy = start_h; iy < end_h; iy += scale_factor) {
-#pragma unroll
- for (int ix = start_w; ix < end_w; ix += scale_factor) {
- if (iy < 0 || iy > height - 1 || ix < 0 || ix > width - 1) {
- continue;
- }
- int mask_iy =
- (iy - ph + (kernel_size - 1) * scale_factor / 2) / scale_factor;
- int mask_ix =
- (ix - pw + (kernel_size - 1) * scale_factor / 2) / scale_factor;
- int mask_c =
- (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
- int feat_index = Loc2Index(n, iy, ix, c, height, width, channels);
- output_val +=
- shared_mask[mask_c * WARP_SIZE + pixel_id] * top_diff[feat_index];
- }
- }
- bottom_diff[top_index] = output_val;
- }
-}
-
-template
-__global__ void FeatureSum(const int num_kernels,
- const scalar_t *__restrict__ input_data,
- const int scale_factor, const int channels,
- const int height, const int width,
- scalar_t *__restrict__ output_data) {
- int index = threadIdx.x + blockIdx.x * blockDim.x;
- if (index > num_kernels - 1) {
- return;
- }
- const int split_id = threadIdx.x % THREADS_PER_PIXEL;
- index = index / THREADS_PER_PIXEL;
- const int pw = index % width;
- const int ph = (index / width) % height;
- const int n = index / width / height;
- for (int c = split_id; c < channels; c += THREADS_PER_PIXEL) {
- scalar_t output_val = 0;
- for (int iy = ph * scale_factor; iy < (ph + 1) * scale_factor; iy++) {
- for (int ix = pw * scale_factor; ix < (pw + 1) * scale_factor; ix++) {
- int input_id = Loc2Index(n, iy, ix, c, height * scale_factor,
- width * scale_factor, channels);
- output_val += input_data[input_id];
- }
- }
- const int output_id = Loc2Index(n, ph, pw, c, height, width, channels);
- output_data[output_id] = output_val;
- }
-}
-
-template
-__global__ void CARAFEBackward_Mask(const int num_kernels,
- const scalar_t *__restrict__ top_diff,
- const scalar_t *__restrict__ bottom_data,
- const int kernel_size, const int group_size,
- const int scale_factor, const int channels,
- const int down_height, const int down_width,
- const int height, const int width,
- const int mask_channels,
- scalar_t *__restrict__ mask_diff) {
- int index = threadIdx.x + blockIdx.x * blockDim.x;
- if (index > num_kernels - 1) {
- return;
- }
-
- const int lane_id = index % WARP_SIZE;
- index = index / WARP_SIZE;
- const int mask_c = index % mask_channels;
- // (n, c, ph, pw) is an element in the bottom_data
- index = index / mask_channels;
- const int pw = index % width;
- const int ph = (index / width) % height;
- const int n = index / width / height;
-
- const int down_pw = pw / scale_factor;
- const int down_ph = ph / scale_factor;
-
- const int mask_group = mask_c / (kernel_size * kernel_size);
- const int mask_loc = mask_c % (kernel_size * kernel_size);
-
- const int offset_x = mask_loc % kernel_size - (kernel_size - 1) / 2;
- const int offset_y =
- mask_loc / kernel_size % kernel_size - (kernel_size - 1) / 2;
-
- const int down_x = down_pw + offset_x;
- const int down_y = down_ph + offset_y;
-
- scalar_t output_val = 0;
-
- if (down_y >= 0 && down_y <= down_height - 1 && down_x >= 0 &&
- down_x <= down_width - 1) {
- const int channels_per_mask = ceilf(channels / (float)group_size);
- const int start = channels_per_mask * mask_group;
- const int end = min(channels_per_mask * (mask_group + 1), channels);
- for (int c = start + lane_id; c < end; c += WARP_SIZE) {
- int bottom_id =
- Loc2Index(n, down_y, down_x, c, down_height, down_width, channels);
- int top_id = Loc2Index(n, ph, pw, c, height, width, channels);
- output_val += top_diff[top_id] * bottom_data[bottom_id];
- }
- }
- __syncwarp();
- output_val = warpReduceSum(output_val);
- if (lane_id == 0) {
- const int mask_id =
- Loc2Index(n, ph, pw, mask_c, height, width, mask_channels);
- mask_diff[mask_id] = output_val;
- }
-}
-
-#endif // CARAFE_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/carafe_naive_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/carafe_naive_cuda_kernel.cuh
deleted file mode 100644
index 6f375162..00000000
--- a/mmdet/cv_core/ops/csrc/carafe_naive_cuda_kernel.cuh
+++ /dev/null
@@ -1,110 +0,0 @@
-#ifndef CARAFE_NAIVE_CUDA_KERNEL_CUH
-#define CARAFE_NAIVE_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-__device__ inline int Loc2Index(const int n, const int c, const int h,
- const int w, const int channel_num,
- const int height, const int width) {
- int index = w + (h + (c + n * channel_num) * height) * width;
- return index;
-}
-
-template
-__global__ void carafe_naive_forward_cuda_kernel(
- const int nthreads, const scalar_t *bottom_data,
- const scalar_t *bottom_masks, scalar_t *top_data, const int kernel_size,
- const int group_size, const int scale_factor, const int channels,
- const int height, const int width) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the bottom_data
- int pw = index % width;
- int ph = (index / width) % height;
- int c = (index / width / height) % channels;
- int n = index / width / height / channels;
-
- int mask_channels = kernel_size * kernel_size * group_size;
- int mask_group = c / (channels / group_size);
-
- int down_pw = pw / scale_factor;
- int down_ph = ph / scale_factor;
- int down_width = width / scale_factor;
- int down_height = height / scale_factor;
- int start_w = down_pw - (kernel_size - 1) / 2;
- int end_w = down_pw + (kernel_size - 1) / 2 + 1;
- int start_h = down_ph - (kernel_size - 1) / 2;
- int end_h = down_ph + (kernel_size - 1) / 2 + 1;
-
- scalar_t output_val = 0;
- for (int iy = start_h; iy < end_h; iy++) {
- for (int ix = start_w; ix < end_w; ix++) {
- if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
- continue;
- }
- int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
- int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
- int mask_c =
- (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
- int feat_index =
- Loc2Index(n, c, iy, ix, channels, down_height, down_width);
- int mask_index =
- Loc2Index(n, mask_c, ph, pw, mask_channels, height, width);
- output_val += bottom_data[feat_index] * bottom_masks[mask_index];
- }
- }
- top_data[index] = output_val;
- }
-}
-
-template
-__global__ void carafe_naive_backward_cuda_kernel(
- const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_data,
- const scalar_t *bottom_masks, scalar_t *bottom_diff, scalar_t *mask_diff,
- const int kernel_size, const int group_size, const int scale_factor,
- const int channels, const int height, const int width) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the bottom_data
- int pw = index % width;
- int ph = (index / width) % height;
- int c = (index / width / height) % channels;
- int n = index / width / height / channels;
-
- int mask_channels = kernel_size * kernel_size * group_size;
- int mask_group = c / (channels / group_size);
-
- int down_pw = pw / scale_factor;
- int down_ph = ph / scale_factor;
- int down_width = width / scale_factor;
- int down_height = height / scale_factor;
- int start_w = down_pw - (kernel_size - 1) / 2;
- int end_w = down_pw + (kernel_size - 1) / 2 + 1;
- int start_h = down_ph - (kernel_size - 1) / 2;
- int end_h = down_ph + (kernel_size - 1) / 2 + 1;
-
- for (int iy = start_h; iy < end_h; iy++) {
- for (int ix = start_w; ix < end_w; ix++) {
- if (iy < 0 || iy > down_height - 1 || ix < 0 || ix > down_width - 1) {
- continue;
- }
- int mask_iy = iy - down_ph + (kernel_size - 1) / 2;
- int mask_ix = ix - down_pw + (kernel_size - 1) / 2;
- int mask_c =
- (mask_group * kernel_size + mask_iy) * kernel_size + mask_ix;
- int feat_index =
- Loc2Index(n, c, iy, ix, channels, down_height, down_width);
- int mask_index =
- Loc2Index(n, mask_c, ph, pw, mask_channels, height, width);
- atomicAdd(bottom_diff + feat_index,
- bottom_masks[mask_index] * top_diff[index]);
- atomicAdd(mask_diff + mask_index,
- bottom_data[feat_index] * top_diff[index]);
- }
- }
- }
-}
-
-#endif // CARAFE_NAIVE_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/cc_attention_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/cc_attention_cuda_kernel.cuh
deleted file mode 100644
index 0dd9c33c..00000000
--- a/mmdet/cv_core/ops/csrc/cc_attention_cuda_kernel.cuh
+++ /dev/null
@@ -1,185 +0,0 @@
-#ifndef CC_ATTENTION_CUDA_KERNEL_CUH
-#define CC_ATTENTION_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__global__ void ca_forward_kernel(const T *t, const T *f, T *weight, int num,
- int chn, int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int z = blockIdx.z;
-
- if (x < width && y < height && z < height + width - 1) {
- for (int batch = 0; batch < num; ++batch) {
- for (int plane = 0; plane < chn; ++plane) {
- T _t = t[(batch * chn + plane) * sp + y * width + x];
-
- if (z < width) {
- int i = z;
- T _f = f[(batch * chn + plane) * sp + y * width + i];
- weight[(batch * len + i) * sp + y * width + x] += _t * _f;
- } else {
- int i = z - width;
- int j = i < y ? i : i + 1;
-
- T _f = f[(batch * chn + plane) * sp + j * width + x];
- weight[(batch * len + width + i) * sp + y * width + x] += _t * _f;
- }
- }
- }
- }
-}
-
-template
-__global__ void ca_backward_kernel_t(const T *dw, const T *t, const T *f, T *dt,
- int num, int chn, int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int plane = blockIdx.z;
-
- if (x < width && y < height && plane < chn) {
- for (int batch = 0; batch < num; ++batch) {
- for (int i = 0; i < width; ++i) {
- T _dw = dw[(batch * len + i) * sp + y * width + x];
- T _f = f[(batch * chn + plane) * sp + y * width + i];
- dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
- }
- for (int i = 0; i < height; ++i) {
- if (i == y) continue;
- int j = i < y ? i : i - 1;
-
- T _dw = dw[(batch * len + width + j) * sp + y * width + x];
- T _f = f[(batch * chn + plane) * sp + i * width + x];
- dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
- }
- }
- }
-}
-
-template
-__global__ void ca_backward_kernel_f(const T *dw, const T *t, const T *f, T *df,
- int num, int chn, int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int plane = blockIdx.z;
-
- if (x < width && y < height && plane < chn) {
- for (int batch = 0; batch < num; ++batch) {
- for (int i = 0; i < width; ++i) {
- T _dw = dw[(batch * len + x) * sp + y * width + i];
- T _t = t[(batch * chn + plane) * sp + y * width + i];
- df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
- }
- for (int i = 0; i < height; ++i) {
- if (i == y) continue;
- int j = i > y ? y : y - 1;
-
- T _dw = dw[(batch * len + width + j) * sp + i * width + x];
- T _t = t[(batch * chn + plane) * sp + i * width + x];
- df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
- }
- }
- }
-}
-
-template
-__global__ void ca_map_forward_kernel(const T *weight, const T *g, T *out,
- int num, int chn, int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int plane = blockIdx.z;
-
- if (x < width && y < height && plane < chn) {
- for (int batch = 0; batch < num; ++batch) {
- for (int i = 0; i < width; ++i) {
- T _g = g[(batch * chn + plane) * sp + y * width + i];
- T _w = weight[(batch * len + i) * sp + y * width + x];
- out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
- }
- for (int i = 0; i < height; ++i) {
- if (i == y) continue;
-
- int j = i < y ? i : i - 1;
-
- T _g = g[(batch * chn + plane) * sp + i * width + x];
- T _w = weight[(batch * len + width + j) * sp + y * width + x];
- out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
- }
- }
- }
-}
-
-template
-__global__ void ca_map_backward_kernel_w(const T *dout, const T *weight,
- const T *g, T *dw, int num, int chn,
- int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int z = blockIdx.z;
-
- if (x < width && y < height && z < height + width - 1) {
- for (int batch = 0; batch < num; ++batch) {
- for (int plane = 0; plane < chn; ++plane) {
- T _dout = dout[(batch * chn + plane) * sp + y * width + x];
-
- if (z < width) {
- int i = z;
- T _g = g[(batch * chn + plane) * sp + y * width + i];
- dw[(batch * len + i) * sp + y * width + x] += _dout * _g;
- } else {
- int i = z - width;
- int j = i < y ? i : i + 1;
-
- T _g = g[(batch * chn + plane) * sp + j * width + x];
- dw[(batch * len + width + i) * sp + y * width + x] += _dout * _g;
- }
- }
- }
- }
-}
-
-template
-__global__ void ca_map_backward_kernel_g(const T *dout, const T *weight,
- const T *g, T *dg, int num, int chn,
- int height, int width) {
- int x = blockIdx.x * blockDim.x + threadIdx.x;
- int y = blockIdx.y * blockDim.y + threadIdx.y;
- int sp = height * width;
- int len = height + width - 1;
- int plane = blockIdx.z;
-
- if (x < width && y < height && plane < chn) {
- for (int batch = 0; batch < num; ++batch) {
- for (int i = 0; i < width; ++i) {
- T _dout = dout[(batch * chn + plane) * sp + y * width + i];
- T _w = weight[(batch * len + x) * sp + y * width + i];
- dg[(batch * chn + plane) * sp + y * width + x] += _dout * _w;
- }
- for (int i = 0; i < height; ++i) {
- if (i == y) continue;
- int j = i > y ? y : y - 1;
-
- T _dout = dout[(batch * chn + plane) * sp + i * width + x];
- T _w = weight[(batch * len + width + j) * sp + i * width + x];
- dg[(batch * chn + plane) * sp + y * width + x] += _dout * _w;
- }
- }
- }
-}
-
-#endif // CC_ATTENTION_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/common_cuda_helper.hpp b/mmdet/cv_core/ops/csrc/common_cuda_helper.hpp
deleted file mode 100644
index a9ab6e82..00000000
--- a/mmdet/cv_core/ops/csrc/common_cuda_helper.hpp
+++ /dev/null
@@ -1,110 +0,0 @@
-#ifndef COMMON_CUDA_HELPER
-#define COMMON_CUDA_HELPER
-
-#include
-
-#define CUDA_1D_KERNEL_LOOP(i, n) \
- for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
- i += blockDim.x * gridDim.x)
-
-#define THREADS_PER_BLOCK 512
-
-inline int GET_BLOCKS(const int N) {
- int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
- int max_block_num = 4096;
- return min(optimal_block_num, max_block_num);
-}
-
-template
-__device__ T bilinear_interpolate(const T* input, const int height,
- const int width, T y, T x,
- const int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) return 0;
-
- if (y <= 0) y = 0;
- if (x <= 0) x = 0;
-
- int y_low = (int)y;
- int x_low = (int)x;
- int y_high;
- int x_high;
-
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
-
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
-
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // do bilinear interpolation
- T v1 = input[y_low * width + x_low];
- T v2 = input[y_low * width + x_high];
- T v3 = input[y_high * width + x_low];
- T v4 = input[y_high * width + x_high];
- T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
-
- T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
-
- return val;
-}
-
-template
-__device__ void bilinear_interpolate_gradient(
- const int height, const int width, T y, T x, T& w1, T& w2, T& w3, T& w4,
- int& x_low, int& x_high, int& y_low, int& y_high,
- const int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- w1 = w2 = w3 = w4 = 0.;
- x_low = x_high = y_low = y_high = -1;
- return;
- }
-
- if (y <= 0) y = 0;
- if (x <= 0) x = 0;
-
- y_low = (int)y;
- x_low = (int)x;
-
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
-
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
-
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
-
- // reference in forward
- // T v1 = input[y_low * width + x_low];
- // T v2 = input[y_low * width + x_high];
- // T v3 = input[y_high * width + x_low];
- // T v4 = input[y_high * width + x_high];
- // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
-
- w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
-
- return;
-}
-#endif // COMMON_CUDA_HELPER
diff --git a/mmdet/cv_core/ops/csrc/deform_conv_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/deform_conv_cuda_kernel.cuh
deleted file mode 100644
index b6ddf34c..00000000
--- a/mmdet/cv_core/ops/csrc/deform_conv_cuda_kernel.cuh
+++ /dev/null
@@ -1,362 +0,0 @@
-/*!
- ******************* BEGIN Caffe Copyright Notice and Disclaimer
- *****************
- *
- * COPYRIGHT
- *
- * All contributions by the University of California:
- * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
- * All rights reserved.
- *
- * All other contributions:
- * Copyright (c) 2014-2017, the respective contributors
- * All rights reserved.
- *
- * Caffe uses a shared copyright model: each contributor holds copyright over
- * their contributions to Caffe. The project versioning records all such
- * contribution and copyright details. If a contributor wants to further mark
- * their specific copyright on a particular contribution, they should indicate
- * their copyright solely in the commit message of the change when it is
- * committed.
- *
- * LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- *this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
- *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * CONTRIBUTION AGREEMENT
- *
- * By contributing to the BVLC/caffe repository through pull-request, comment,
- * or otherwise, the contributor releases their content to the
- * license and copyright terms herein.
- *
- ***************** END Caffe Copyright Notice and Disclaimer
- *********************
- *
- * Copyright (c) 2018 Microsoft
- * Licensed under The MIT License [see LICENSE for details]
- * \file modulated_deformable_im2col.cuh
- * \brief Function definitions of converting an image to
- * column matrix based on kernel, padding, dilation, and offset.
- * These functions are mainly used in deformable convolution operators.
- * \ref: https://arxiv.org/abs/1703.06211
- * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
- */
-
-// modified from
-// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
-
-#ifndef DEFORM_CONV_CUDA_KERNEL_CUH
-#define DEFORM_CONV_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__device__ T deformable_im2col_bilinear(const T *input, const int data_width,
- const int height, const int width, T h,
- T w) {
- if (h <= -1 || height <= h || w <= -1 || width <= w) {
- return 0;
- }
-
- int h_low = floor(h);
- int w_low = floor(w);
- int h_high = h_low + 1;
- int w_high = w_low + 1;
-
- T lh = h - h_low;
- T lw = w - w_low;
- T hh = 1 - lh, hw = 1 - lw;
-
- T v1 = 0;
- if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
- T v2 = 0;
- if (h_low >= 0 && w_high <= width - 1)
- v2 = input[h_low * data_width + w_high];
- T v3 = 0;
- if (h_high <= height - 1 && w_low >= 0)
- v3 = input[h_high * data_width + w_low];
- T v4 = 0;
- if (h_high <= height - 1 && w_high <= width - 1)
- v4 = input[h_high * data_width + w_high];
-
- T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
-
- T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
-}
-
-template
-__device__ T get_gradient_weight(T argmax_h, T argmax_w, const int h,
- const int w, const int height,
- const int width) {
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
- argmax_w >= width) {
- // empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- T weight = 0;
- if (h == argmax_h_low && w == argmax_w_low)
- weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
- if (h == argmax_h_low && w == argmax_w_high)
- weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
- if (h == argmax_h_high && w == argmax_w_low)
- weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
- if (h == argmax_h_high && w == argmax_w_high)
- weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
- return weight;
-}
-
-template
-__device__ T get_coordinate_weight(T argmax_h, T argmax_w, const int height,
- const int width, const T *im_data,
- const int data_width, const int bp_dir) {
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
- argmax_w >= width) {
- // empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- T weight = 0;
-
- if (bp_dir == 0) {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_w_low + 1 - argmax_w) *
- im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += -1 * (argmax_w - argmax_w_low) *
- im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += (argmax_w_low + 1 - argmax_w) *
- im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_w - argmax_w_low) *
- im_data[argmax_h_high * data_width + argmax_w_high];
- } else if (bp_dir == 1) {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_h_low + 1 - argmax_h) *
- im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += (argmax_h_low + 1 - argmax_h) *
- im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += -1 * (argmax_h - argmax_h_low) *
- im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_h - argmax_h_low) *
- im_data[argmax_h_high * data_width + argmax_w_high];
- }
-
- return weight;
-}
-
-template
-__global__ void deformable_im2col_gpu_kernel(
- const int n, const T *data_im, const T *data_offset, const int height,
- const int width, const int kernel_h, const int kernel_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group, const int batch_size,
- const int num_channels, const int deformable_group, const int height_col,
- const int width_col, T *data_col) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- // index index of output matrix
- const int w_col = index % width_col;
- const int h_col = (index / width_col) % height_col;
- const int b_col = (index / width_col / height_col) % batch_size;
- const int c_im = (index / width_col / height_col) / batch_size;
- const int c_col = c_im * kernel_h * kernel_w;
-
- // compute deformable group index
- const int deformable_group_index = c_im / channel_per_deformable_group;
-
- const int h_in = h_col * stride_h - pad_h;
- const int w_in = w_col * stride_w - pad_w;
- T *data_col_ptr =
- data_col +
- ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
- const T *data_im_ptr =
- data_im + (b_col * num_channels + c_im) * height * width;
- const T *data_offset_ptr =
- data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
-
- for (int i = 0; i < kernel_h; ++i) {
- for (int j = 0; j < kernel_w; ++j) {
- const int data_offset_h_ptr =
- ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
- const int data_offset_w_ptr =
- ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
- w_col;
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- T val = static_cast(0);
- const T h_im = h_in + i * dilation_h + offset_h;
- const T w_im = w_in + j * dilation_w + offset_w;
- if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
- val = deformable_im2col_bilinear(data_im_ptr, width, height, width,
- h_im, w_im);
- *data_col_ptr = val;
- data_col_ptr += batch_size * height_col * width_col;
- }
- }
- }
-}
-
-template
-__global__ void deformable_col2im_gpu_kernel(
- const int n, const T *data_col, const T *data_offset, const int channels,
- const int height, const int width, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group, const int batch_size,
- const int deformable_group, const int height_col, const int width_col,
- T *grad_im) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- const int j = (index / width_col / height_col / batch_size) % kernel_w;
- const int i =
- (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
- const int c =
- index / width_col / height_col / batch_size / kernel_w / kernel_h;
- // compute the start and end of the output
-
- const int deformable_group_index = c / channel_per_deformable_group;
-
- int w_out = index % width_col;
- int h_out = (index / width_col) % height_col;
- int b = (index / width_col / height_col) % batch_size;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
-
- const T *data_offset_ptr =
- data_offset + (b * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
- const int data_offset_h_ptr =
- ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
- const int data_offset_w_ptr =
- ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
- const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
-
- const T cur_top_grad = data_col[index];
- const int cur_h = (int)cur_inv_h_data;
- const int cur_w = (int)cur_inv_w_data;
- for (int dy = -2; dy <= 2; dy++) {
- for (int dx = -2; dx <= 2; dx++) {
- if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
- cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
- abs(cur_inv_w_data - (cur_w + dx)) < 1) {
- int cur_bottom_grad_pos =
- ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
- T weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data,
- cur_h + dy, cur_w + dx, height, width);
- atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
- }
- }
- }
- }
-}
-
-template
-__global__ void deformable_col2im_coord_gpu_kernel(
- const int n, const T *data_col, const T *data_im, const T *data_offset,
- const int channels, const int height, const int width, const int kernel_h,
- const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
- const int stride_w, const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group, const int batch_size,
- const int offset_channels, const int deformable_group, const int height_col,
- const int width_col, T *grad_offset) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- T val = 0;
- int w = index % width_col;
- int h = (index / width_col) % height_col;
- int c = (index / width_col / height_col) % offset_channels;
- int b = (index / width_col / height_col) / offset_channels;
- // compute the start and end of the output
-
- const int deformable_group_index = c / (2 * kernel_h * kernel_w);
- const int col_step = kernel_h * kernel_w;
- int cnt = 0;
- const T *data_col_ptr = data_col + deformable_group_index *
- channel_per_deformable_group *
- batch_size * width_col * height_col;
- const T *data_im_ptr =
- data_im + (b * deformable_group + deformable_group_index) *
- channel_per_deformable_group / kernel_h / kernel_w *
- height * width;
- const T *data_offset_ptr =
- data_offset + (b * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
-
- const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
-
- for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
- col_c += col_step) {
- const int col_pos =
- (((col_c * batch_size + b) * height_col) + h) * width_col + w;
- const int bp_dir = offset_c % 2;
-
- int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
- int i =
- (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
- int w_out = col_pos % width_col;
- int h_out = (col_pos / width_col) % height_col;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
- const int data_offset_h_ptr =
- (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
- const int data_offset_w_ptr =
- (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
- w_out);
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- T inv_h = h_in + i * dilation_h + offset_h;
- T inv_w = w_in + j * dilation_w + offset_w;
- if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
- inv_h = inv_w = -2;
- const T weight = get_coordinate_weight(inv_h, inv_w, height, width,
- data_im_ptr + cnt * height * width,
- width, bp_dir);
- val += weight * data_col_ptr[col_pos];
- cnt += 1;
- }
-
- grad_offset[index] = val;
- }
-}
-
-#endif // DEFORM_CONV_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/deform_roi_pool_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/deform_roi_pool_cuda_kernel.cuh
deleted file mode 100644
index e6b59b39..00000000
--- a/mmdet/cv_core/ops/csrc/deform_roi_pool_cuda_kernel.cuh
+++ /dev/null
@@ -1,183 +0,0 @@
-#ifndef DEFORM_ROI_POOL_CUDA_KERNEL_CUH
-#define DEFORM_ROI_POOL_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__global__ void deform_roi_pool_forward_cuda_kernel(
- const int nthreads, const T* input, const T* rois, const T* offset,
- T* output, const int pooled_height, const int pooled_width,
- const T spatial_scale, const int sampling_ratio, const T gamma,
- const int channels, const int height, const int width) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
-
- const T* offset_rois = rois + n * 5;
- int roi_batch_ind = offset_rois[0];
-
- // Do not using rounding; this implementation detail is critical
- T roi_start_w = offset_rois[1] * spatial_scale - 0.5;
- T roi_start_h = offset_rois[2] * spatial_scale - 0.5;
- T roi_end_w = offset_rois[3] * spatial_scale - 0.5;
- T roi_end_h = offset_rois[4] * spatial_scale - 0.5;
-
- T roi_width = roi_end_w - roi_start_w;
- T roi_height = roi_end_h - roi_start_h;
-
- T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
- T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
-
- const T* offset_input =
- input + (roi_batch_ind * channels + c) * height * width;
-
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h =
- (sampling_ratio > 0)
- ? sampling_ratio
- : static_cast(ceil(roi_height / pooled_height));
- int roi_bin_grid_w = (sampling_ratio > 0)
- ? sampling_ratio
- : static_cast(ceil(roi_width / pooled_width));
-
- // Compute roi offset
- if (offset != NULL) {
- const T* offset_cur_w = offset + n * pooled_width * pooled_height * 2 +
- ph * pooled_width + pw;
- T offset_roi_w = gamma * roi_width * offset_cur_w[0];
- T offset_roi_h =
- gamma * roi_height * offset_cur_w[pooled_width * pooled_height];
- roi_start_w += offset_roi_w;
- roi_start_h += offset_roi_h;
- }
-
- // We do average pooling inside a bin
- const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1);
- T output_val = 0.;
- for (int iy = 0; iy < roi_bin_grid_h; iy++) {
- const T y = roi_start_h + ph * bin_size_h +
- static_cast(iy + .5f) * bin_size_h /
- static_cast(roi_bin_grid_h);
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const T x = roi_start_w + pw * bin_size_w +
- static_cast(ix + .5f) * bin_size_w /
- static_cast(roi_bin_grid_w);
- T val = bilinear_interpolate(offset_input, height, width, y, x, index);
- output_val += val;
- }
- }
- output[index] = output_val / count;
- }
-}
-
-template
-__global__ void deform_roi_pool_backward_cuda_kernel(
- const int nthreads, const T* grad_output, const T* input, const T* rois,
- const T* offset, T* grad_input, T* grad_offset, const int pooled_height,
- const int pooled_width, const T spatial_scale, const int sampling_ratio,
- const T gamma, const int channels, const int height, const int width) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
-
- const T* offset_rois = rois + n * 5;
- int roi_batch_ind = offset_rois[0];
- const T* offset_input =
- input + ((roi_batch_ind * channels + c) * height * width);
- T* offset_grad_input =
- grad_input + ((roi_batch_ind * channels + c) * height * width);
-
- // Do not using rounding; this implementation detail is critical
- T roi_start_w = offset_rois[1] * spatial_scale - 0.5;
- T roi_start_h = offset_rois[2] * spatial_scale - 0.5;
- T roi_end_w = offset_rois[3] * spatial_scale - 0.5;
- T roi_end_h = offset_rois[4] * spatial_scale - 0.5;
-
- T roi_width = roi_end_w - roi_start_w;
- T roi_height = roi_end_h - roi_start_h;
-
- T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
- T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
-
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h =
- (sampling_ratio > 0)
- ? sampling_ratio
- : static_cast(ceil(roi_height / pooled_height));
- int roi_bin_grid_w = (sampling_ratio > 0)
- ? sampling_ratio
- : static_cast(ceil(roi_width / pooled_width));
-
- // Compute roi offset
- if (offset != NULL) {
- const T* offset_cur_w = offset + n * pooled_width * pooled_height * 2 +
- ph * pooled_width + pw;
- T offset_roi_w = gamma * roi_width * offset_cur_w[0];
- T offset_roi_h =
- gamma * roi_height * offset_cur_w[pooled_width * pooled_height];
- roi_start_w += offset_roi_w;
- roi_start_h += offset_roi_h;
- }
-
- // We do average (integral) pooling inside a bin
- const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
- const T grad_output_this_bin = grad_output[index] / count;
-
- for (int iy = 0; iy < roi_bin_grid_h; iy++) {
- const T y = roi_start_h + ph * bin_size_h +
- static_cast(iy + .5f) * bin_size_h /
- static_cast(roi_bin_grid_h);
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const T x = roi_start_w + pw * bin_size_w +
- static_cast(ix + .5f) * bin_size_w /
- static_cast(roi_bin_grid_w);
-
- T w1, w2, w3, w4;
- int x_low, x_high, y_low, y_high;
- bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
- x_low, x_high, y_low, y_high, index);
-
- if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
- atomicAdd(offset_grad_input + y_low * width + x_low,
- grad_output_this_bin * w1);
- atomicAdd(offset_grad_input + y_low * width + x_high,
- grad_output_this_bin * w2);
- atomicAdd(offset_grad_input + y_high * width + x_low,
- grad_output_this_bin * w3);
- atomicAdd(offset_grad_input + y_high * width + x_high,
- grad_output_this_bin * w4);
- if (offset != NULL) {
- T input_00 = offset_input[y_low * width + x_low];
- T input_10 = offset_input[y_low * width + x_high];
- T input_01 = offset_input[y_high * width + x_low];
- T input_11 = offset_input[y_high * width + x_high];
- T ogx = gamma * roi_width * grad_output_this_bin *
- (input_11 * (y - y_low) + input_10 * (y_high - y) +
- input_01 * (y_low - y) + input_00 * (y - y_high));
- T ogy = gamma * roi_height * grad_output_this_bin *
- (input_11 * (x - x_low) + input_01 * (x_high - x) +
- input_10 * (x_low - x) + input_00 * (x - x_high));
- atomicAdd(grad_offset + n * pooled_width * pooled_height * 2 +
- ph * pooled_width + pw,
- ogx);
- atomicAdd(grad_offset + n * pooled_width * pooled_height * 2 +
- pooled_width * pooled_height + ph * pooled_width + pw,
- ogy);
- }
- }
- }
- }
- }
-}
-
-#endif // DEFORM_ROI_POOL_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/masked_conv2d_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/masked_conv2d_cuda_kernel.cuh
deleted file mode 100644
index 4be8329a..00000000
--- a/mmdet/cv_core/ops/csrc/masked_conv2d_cuda_kernel.cuh
+++ /dev/null
@@ -1,61 +0,0 @@
-#ifndef MASKED_CONV2D_CUDA_KERNEL_CUH
-#define MASKED_CONV2D_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__global__ void MaskedIm2colForward(const int n, const scalar_t *data_im,
- const int height, const int width,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int64_t *mask_h_idx,
- const int64_t *mask_w_idx,
- const int mask_cnt, scalar_t *data_col) {
- // mask_cnt * channels
- CUDA_1D_KERNEL_LOOP(index, n) {
- const int m_index = index % mask_cnt;
- const int h_col = mask_h_idx[m_index];
- const int w_col = mask_w_idx[m_index];
- const int c_im = index / mask_cnt;
- const int c_col = c_im * kernel_h * kernel_w;
- const int h_offset = h_col - pad_h;
- const int w_offset = w_col - pad_w;
- scalar_t *data_col_ptr = data_col + c_col * mask_cnt + m_index;
- for (int i = 0; i < kernel_h; ++i) {
- int h_im = h_offset + i;
- for (int j = 0; j < kernel_w; ++j) {
- int w_im = w_offset + j;
- if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
- *data_col_ptr =
- (scalar_t)data_im[(c_im * height + h_im) * width + w_im];
- } else {
- *data_col_ptr = 0.0;
- }
- data_col_ptr += mask_cnt;
- }
- }
- }
-}
-
-template
-__global__ void MaskedCol2imForward(const int n, const scalar_t *data_col,
- const int height, const int width,
- const int channels,
- const int64_t *mask_h_idx,
- const int64_t *mask_w_idx,
- const int mask_cnt, scalar_t *data_im) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- const int m_index = index % mask_cnt;
- const int h_im = mask_h_idx[m_index];
- const int w_im = mask_w_idx[m_index];
- const int c_im = index / mask_cnt;
- // compute the start and end of the output
- data_im[(c_im * height + h_im) * width + w_im] = data_col[index];
- }
-}
-
-#endif // MASKED_CONV2D_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/modulated_deform_conv_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/modulated_deform_conv_cuda_kernel.cuh
deleted file mode 100644
index 9953a094..00000000
--- a/mmdet/cv_core/ops/csrc/modulated_deform_conv_cuda_kernel.cuh
+++ /dev/null
@@ -1,394 +0,0 @@
-/*!
- ******************* BEGIN Caffe Copyright Notice and Disclaimer
- *****************
- *
- * COPYRIGHT
- *
- * All contributions by the University of California:
- * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
- * All rights reserved.
- *
- * All other contributions:
- * Copyright (c) 2014-2017, the respective contributors
- * All rights reserved.
- *
- * Caffe uses a shared copyright model: each contributor holds copyright over
- * their contributions to Caffe. The project versioning records all such
- * contribution and copyright details. If a contributor wants to further mark
- * their specific copyright on a particular contribution, they should indicate
- * their copyright solely in the commit message of the change when it is
- * committed.
- *
- * LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- *this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
- *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * CONTRIBUTION AGREEMENT
- *
- * By contributing to the BVLC/caffe repository through pull-request, comment,
- * or otherwise, the contributor releases their content to the
- * license and copyright terms herein.
- *
- ***************** END Caffe Copyright Notice and Disclaimer
- *********************
- *
- * Copyright (c) 2018 Microsoft
- * Licensed under The MIT License [see LICENSE for details]
- * \file modulated_deformable_im2col.cuh
- * \brief Function definitions of converting an image to
- * column matrix based on kernel, padding, dilation, and offset.
- * These functions are mainly used in deformable convolution operators.
- * \ref: https://arxiv.org/abs/1703.06211
- * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
- */
-
-// modified from
-// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
-
-#ifndef MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
-#define MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-template
-__device__ T dmcn_im2col_bilinear(const T *input, const int data_width,
- const int height, const int width, T h, T w) {
- int h_low = floor(h);
- int w_low = floor(w);
- int h_high = h_low + 1;
- int w_high = w_low + 1;
-
- T lh = h - h_low;
- T lw = w - w_low;
- T hh = 1 - lh, hw = 1 - lw;
-
- T v1 = 0;
- if (h_low >= 0 && w_low >= 0) v1 = input[h_low * data_width + w_low];
- T v2 = 0;
- if (h_low >= 0 && w_high <= width - 1)
- v2 = input[h_low * data_width + w_high];
- T v3 = 0;
- if (h_high <= height - 1 && w_low >= 0)
- v3 = input[h_high * data_width + w_low];
- T v4 = 0;
- if (h_high <= height - 1 && w_high <= width - 1)
- v4 = input[h_high * data_width + w_high];
-
- T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
-
- T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
-}
-
-template
-__device__ T dmcn_get_gradient_weight(T argmax_h, T argmax_w, const int h,
- const int w, const int height,
- const int width) {
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
- argmax_w >= width) {
- // empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- T weight = 0;
- if (h == argmax_h_low && w == argmax_w_low)
- weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
- if (h == argmax_h_low && w == argmax_w_high)
- weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
- if (h == argmax_h_high && w == argmax_w_low)
- weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
- if (h == argmax_h_high && w == argmax_w_high)
- weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
- return weight;
-}
-
-template
-__device__ T dmcn_get_coordinate_weight(T argmax_h, T argmax_w,
- const int height, const int width,
- const T *im_data, const int data_width,
- const int bp_dir) {
- if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
- argmax_w >= width) {
- // empty
- return 0;
- }
-
- int argmax_h_low = floor(argmax_h);
- int argmax_w_low = floor(argmax_w);
- int argmax_h_high = argmax_h_low + 1;
- int argmax_w_high = argmax_w_low + 1;
-
- T weight = 0;
-
- if (bp_dir == 0) {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_w_low + 1 - argmax_w) *
- im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += -1 * (argmax_w - argmax_w_low) *
- im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += (argmax_w_low + 1 - argmax_w) *
- im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_w - argmax_w_low) *
- im_data[argmax_h_high * data_width + argmax_w_high];
- } else if (bp_dir == 1) {
- if (argmax_h_low >= 0 && argmax_w_low >= 0)
- weight += -1 * (argmax_h_low + 1 - argmax_h) *
- im_data[argmax_h_low * data_width + argmax_w_low];
- if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
- weight += (argmax_h_low + 1 - argmax_h) *
- im_data[argmax_h_low * data_width + argmax_w_high];
- if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
- weight += -1 * (argmax_h - argmax_h_low) *
- im_data[argmax_h_high * data_width + argmax_w_low];
- if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
- weight += (argmax_h - argmax_h_low) *
- im_data[argmax_h_high * data_width + argmax_w_high];
- }
-
- return weight;
-}
-
-template
-__global__ void modulated_deformable_im2col_gpu_kernel(
- const int n, const T *data_im, const T *data_offset, const T *data_mask,
- const int height, const int width, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group, const int batch_size,
- const int num_channels, const int deformable_group, const int height_col,
- const int width_col, T *data_col) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- // index index of output matrix
- const int w_col = index % width_col;
- const int h_col = (index / width_col) % height_col;
- const int b_col = (index / width_col / height_col) % batch_size;
- const int c_im = (index / width_col / height_col) / batch_size;
- const int c_col = c_im * kernel_h * kernel_w;
-
- // compute deformable group index
- const int deformable_group_index = c_im / channel_per_deformable_group;
-
- const int h_in = h_col * stride_h - pad_h;
- const int w_in = w_col * stride_w - pad_w;
-
- T *data_col_ptr =
- data_col +
- ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
- const T *data_im_ptr =
- data_im + (b_col * num_channels + c_im) * height * width;
- const T *data_offset_ptr =
- data_offset + (b_col * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
-
- const T *data_mask_ptr =
- data_mask + (b_col * deformable_group + deformable_group_index) *
- kernel_h * kernel_w * height_col * width_col;
-
- for (int i = 0; i < kernel_h; ++i) {
- for (int j = 0; j < kernel_w; ++j) {
- const int data_offset_h_ptr =
- ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
- const int data_offset_w_ptr =
- ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
- w_col;
- const int data_mask_hw_ptr =
- ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- const T mask = data_mask_ptr[data_mask_hw_ptr];
- T val = static_cast(0);
- const T h_im = h_in + i * dilation_h + offset_h;
- const T w_im = w_in + j * dilation_w + offset_w;
- if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
- val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im,
- w_im);
- *data_col_ptr = val * mask;
- data_col_ptr += batch_size * height_col * width_col;
- }
- }
- }
-}
-
-template
-__global__ void modulated_deformable_col2im_gpu_kernel(
- const int n, const T *data_col, const T *data_offset, const T *data_mask,
- const int channels, const int height, const int width, const int kernel_h,
- const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
- const int stride_w, const int dilation_h, const int dilation_w,
- const int channel_per_deformable_group, const int batch_size,
- const int deformable_group, const int height_col, const int width_col,
- T *grad_im) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- const int j = (index / width_col / height_col / batch_size) % kernel_w;
- const int i =
- (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
- const int c =
- index / width_col / height_col / batch_size / kernel_w / kernel_h;
- // compute the start and end of the output
-
- const int deformable_group_index = c / channel_per_deformable_group;
-
- int w_out = index % width_col;
- int h_out = (index / width_col) % height_col;
- int b = (index / width_col / height_col) % batch_size;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
-
- const T *data_offset_ptr =
- data_offset + (b * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
- const T *data_mask_ptr =
- data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
- kernel_w * height_col * width_col;
- const int data_offset_h_ptr =
- ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
- const int data_offset_w_ptr =
- ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
- const int data_mask_hw_ptr =
- ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- const T mask = data_mask_ptr[data_mask_hw_ptr];
- const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
- const T cur_inv_w_data = w_in + j * dilation_w + offset_w;
-
- const T cur_top_grad = data_col[index] * mask;
- const int cur_h = (int)cur_inv_h_data;
- const int cur_w = (int)cur_inv_w_data;
- for (int dy = -2; dy <= 2; dy++) {
- for (int dx = -2; dx <= 2; dx++) {
- if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
- cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
- abs(cur_inv_w_data - (cur_w + dx)) < 1) {
- int cur_bottom_grad_pos =
- ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
- T weight =
- dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data,
- cur_h + dy, cur_w + dx, height, width);
- atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
- }
- }
- }
- }
-}
-
-template
-__global__ void modulated_deformable_col2im_coord_gpu_kernel(
- const int n, const T *data_col, const T *data_im, const T *data_offset,
- const T *data_mask, const int channels, const int height, const int width,
- const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
- const int stride_h, const int stride_w, const int dilation_h,
- const int dilation_w, const int channel_per_deformable_group,
- const int batch_size, const int offset_channels, const int deformable_group,
- const int height_col, const int width_col, T *grad_offset, T *grad_mask) {
- CUDA_1D_KERNEL_LOOP(index, n) {
- T val = 0, mval = 0;
- int w = index % width_col;
- int h = (index / width_col) % height_col;
- int c = (index / width_col / height_col) % offset_channels;
- int b = (index / width_col / height_col) / offset_channels;
- // compute the start and end of the output
-
- const int deformable_group_index = c / (2 * kernel_h * kernel_w);
- const int col_step = kernel_h * kernel_w;
- int cnt = 0;
- const T *data_col_ptr = data_col + deformable_group_index *
- channel_per_deformable_group *
- batch_size * width_col * height_col;
- const T *data_im_ptr =
- data_im + (b * deformable_group + deformable_group_index) *
- channel_per_deformable_group / kernel_h / kernel_w *
- height * width;
- const T *data_offset_ptr =
- data_offset + (b * deformable_group + deformable_group_index) * 2 *
- kernel_h * kernel_w * height_col * width_col;
- const T *data_mask_ptr =
- data_mask + (b * deformable_group + deformable_group_index) * kernel_h *
- kernel_w * height_col * width_col;
-
- const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
-
- for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
- col_c += col_step) {
- const int col_pos =
- (((col_c * batch_size + b) * height_col) + h) * width_col + w;
- const int bp_dir = offset_c % 2;
-
- int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
- int i =
- (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
- int w_out = col_pos % width_col;
- int h_out = (col_pos / width_col) % height_col;
- int w_in = w_out * stride_w - pad_w;
- int h_in = h_out * stride_h - pad_h;
- const int data_offset_h_ptr =
- (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
- const int data_offset_w_ptr =
- (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
- w_out);
- const int data_mask_hw_ptr =
- (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
- const T offset_h = data_offset_ptr[data_offset_h_ptr];
- const T offset_w = data_offset_ptr[data_offset_w_ptr];
- const T mask = data_mask_ptr[data_mask_hw_ptr];
- T inv_h = h_in + i * dilation_h + offset_h;
- T inv_w = w_in + j * dilation_w + offset_w;
- if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
- inv_h = inv_w = -2;
- else
- mval += data_col_ptr[col_pos] *
- dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width,
- height, width, inv_h, inv_w);
- const T weight = dmcn_get_coordinate_weight(
- inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
- width, bp_dir);
- val += weight * data_col_ptr[col_pos] * mask;
- cnt += 1;
- }
- // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
- grad_offset[index] = val;
- if (offset_c % 2 == 0)
- // KERNEL_ASSIGN(grad_mask[(((b * deformable_group +
- // deformable_group_index) * kernel_h * kernel_w + offset_c / 2) *
- // height_col + h) * width_col + w], mask_req, mval);
- grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
- kernel_w +
- offset_c / 2) *
- height_col +
- h) *
- width_col +
- w] = mval;
- }
-}
-
-#endif // MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/nms_cuda_kernel.cuh b/mmdet/cv_core/ops/csrc/nms_cuda_kernel.cuh
deleted file mode 100644
index bde6334f..00000000
--- a/mmdet/cv_core/ops/csrc/nms_cuda_kernel.cuh
+++ /dev/null
@@ -1,69 +0,0 @@
-#ifndef NMS_CUDA_KERNEL_CUH
-#define NMS_CUDA_KERNEL_CUH
-
-#ifdef MMCV_USE_PARROTS
-#include "parrots_cuda_helper.hpp"
-#else
-#include "pytorch_cuda_helper.hpp"
-#endif
-
-#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
-int const threadsPerBlock = sizeof(unsigned long long int) * 8;
-
-__device__ inline bool devIoU(float const *const a, float const *const b,
- const int offset, const float threshold) {
- float left = fmaxf(a[0], b[0]), right = fminf(a[2], b[2]);
- float top = fmaxf(a[1], b[1]), bottom = fminf(a[3], b[3]);
- float width = fmaxf(right - left + offset, 0.f),
- height = fmaxf(bottom - top + offset, 0.f);
- float interS = width * height;
- float Sa = (a[2] - a[0] + offset) * (a[3] - a[1] + offset);
- float Sb = (b[2] - b[0] + offset) * (b[3] - b[1] + offset);
- return interS > threshold * (Sa + Sb - interS);
-}
-
-__global__ void nms_cuda(const int n_boxes, const float iou_threshold,
- const int offset, const float *dev_boxes,
- unsigned long long *dev_mask) {
- const int row_start = blockIdx.y;
- const int col_start = blockIdx.x;
- const int tid = threadIdx.x;
-
- if (row_start > col_start) return;
-
- const int row_size =
- fminf(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
- const int col_size =
- fminf(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
-
- __shared__ float block_boxes[threadsPerBlock * 4];
- if (tid < col_size) {
- block_boxes[tid * 4 + 0] =
- dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 0];
- block_boxes[tid * 4 + 1] =
- dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 1];
- block_boxes[tid * 4 + 2] =
- dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 2];
- block_boxes[tid * 4 + 3] =
- dev_boxes[(threadsPerBlock * col_start + tid) * 4 + 3];
- }
- __syncthreads();
-
- if (tid < row_size) {
- const int cur_box_idx = threadsPerBlock * row_start + tid;
- const float *cur_box = dev_boxes + cur_box_idx * 4;
- int i = 0;
- unsigned long long int t = 0;
- int start = 0;
- if (row_start == col_start) {
- start = tid + 1;
- }
- for (i = start; i < col_size; i++) {
- if (devIoU(cur_box, block_boxes + i * 4, offset, iou_threshold)) {
- t |= 1ULL << i;
- }
- }
- dev_mask[cur_box_idx * gridDim.y + col_start] = t;
- }
-}
-#endif // NMS_CUDA_KERNEL_CUH
diff --git a/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps.cpp b/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps.cpp
deleted file mode 100644
index aff8ea12..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps.cpp
+++ /dev/null
@@ -1,36 +0,0 @@
-#include "parrots_cpp_helper.hpp"
-
-void BBoxOverlapsCUDAKernelLauncher(const DArrayLite bboxes1,
- const DArrayLite bboxes2, DArrayLite ious,
- const int mode, const bool aligned,
- const int offset, cudaStream_t stream);
-
-void bbox_overlaps_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int mode, offset;
- bool aligned;
- SSAttrs(attr)
- .get("mode", mode)
- .get("aligned", aligned)
- .get("offset", offset)
- .done();
-
- const auto& bboxes1 = ins[0];
- const auto& bboxes2 = ins[1];
-
- auto& ious = outs[0];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- BBoxOverlapsCUDAKernelLauncher(bboxes1, bboxes2, ious, mode, aligned, offset,
- stream);
-}
-
-PARROTS_EXTENSION_REGISTER(bbox_overlaps)
- .attr("mode")
- .attr("aligned")
- .attr("offset")
- .input(2)
- .output(1)
- .apply(bbox_overlaps_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps_cuda.cu b/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps_cuda.cu
deleted file mode 100644
index 8c7abb6a..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/bbox_overlaps_cuda.cu
+++ /dev/null
@@ -1,22 +0,0 @@
-#include "bbox_overlaps_cuda_kernel.cuh"
-#include "parrots_cuda_helper.hpp"
-
-void BBoxOverlapsCUDAKernelLauncher(const DArrayLite bboxes1,
- const DArrayLite bboxes2, DArrayLite ious,
- const int mode, const bool aligned,
- const int offset, cudaStream_t stream) {
- int output_size = ious.size();
- int num_bbox1 = bboxes1.dim(0);
- int num_bbox2 = bboxes2.dim(0);
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- bboxes1.elemType().prim(), ([&] {
- bbox_overlaps_cuda_kernel
- <<>>(
- bboxes1.ptr(), bboxes2.ptr(),
- ious.ptr(), num_bbox1, num_bbox2, mode, aligned,
- offset);
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
diff --git a/mmdet/cv_core/ops/csrc/parrots/carafe.cpp b/mmdet/cv_core/ops/csrc/parrots/carafe.cpp
deleted file mode 100644
index 0a4a7c76..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/carafe.cpp
+++ /dev/null
@@ -1,84 +0,0 @@
-#include "parrots_cpp_helper.hpp"
-
-void CARAFEForwardCUDAKernelLauncher(
- const DArrayLite features, const DArrayLite masks, DArrayLite rfeatures,
- DArrayLite routput, DArrayLite rmasks, DArrayLite output,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream);
-
-void CARAFEBackwardCUDAKernelLauncher(
- const DArrayLite top_grad, const DArrayLite rfeatures,
- const DArrayLite masks, DArrayLite rtop_grad, DArrayLite rbottom_grad_hs,
- DArrayLite rbottom_grad, DArrayLite rmask_grad, DArrayLite bottom_grad,
- DArrayLite mask_grad, const int kernel_size, const int group_size,
- const int scale_factor, cudaStream_t stream);
-
-void carafe_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kernel_size, group_size, scale_factor;
- SSAttrs(attr)
- .get("kernel_size", kernel_size)
- .get("group_size", group_size)
- .get("scale_factor", scale_factor)
- .done();
-
- const auto& features = ins[0];
- const auto& masks = ins[1];
-
- auto& rfeatures = outs[0];
- auto& routput = outs[1];
- auto& rmasks = outs[2];
- auto& output = outs[3];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CARAFEForwardCUDAKernelLauncher(features, masks, rfeatures, routput, rmasks,
- output, kernel_size, group_size, scale_factor,
- stream);
-}
-
-void carafe_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kernel_size, group_size, scale_factor;
- SSAttrs(attr)
- .get("kernel_size", kernel_size)
- .get("group_size", group_size)
- .get("scale_factor", scale_factor)
- .done();
-
- const auto& top_grad = ins[0];
- const auto& rfeatures = ins[1];
- const auto& masks = ins[2];
-
- auto& rtop_grad = outs[0];
- auto rbottom_grad_hs = outs[1];
- auto& rbottom_grad = outs[2];
- auto& rmask_grad = outs[3];
- auto& bottom_grad = outs[4];
- auto& mask_grad = outs[5];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CARAFEBackwardCUDAKernelLauncher(top_grad, rfeatures, masks, rtop_grad,
- rbottom_grad_hs, rbottom_grad, rmask_grad,
- bottom_grad, mask_grad, kernel_size,
- group_size, scale_factor, stream);
-}
-
-PARROTS_EXTENSION_REGISTER(carafe_forward)
- .attr("kernel_size")
- .attr("group_size")
- .attr("scale_factor")
- .input(2)
- .output(4)
- .apply(carafe_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(carafe_backward)
- .attr("kernel_size")
- .attr("group_size")
- .attr("scale_factor")
- .input(3)
- .output(6)
- .apply(carafe_backward_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/carafe_cuda.cu b/mmdet/cv_core/ops/csrc/parrots/carafe_cuda.cu
deleted file mode 100644
index 2a95e5f7..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/carafe_cuda.cu
+++ /dev/null
@@ -1,144 +0,0 @@
-#include "carafe_cuda_kernel.cuh"
-#include "parrots_cuda_helper.hpp"
-
-void CARAFEForwardCUDAKernelLauncher(
- const DArrayLite features, const DArrayLite masks, DArrayLite rfeatures,
- DArrayLite routput, DArrayLite rmasks, DArrayLite output,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream) {
- const int batch_size = output.dim(0);
- const int channels = output.dim(1);
- const int output_height = output.dim(2);
- const int output_width = output.dim(3);
-
- const int input_height = features.dim(2);
- const int input_width = features.dim(3);
-
- const int mask_channels = masks.dim(1);
-
- // one warp per pixel
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- const int dh = divideUP(channels, kTileDim);
- const int dw = divideUP(input_height * input_width, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, channels, input_height * input_width, dh, dw,
- features.ptr(), rfeatures.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- const int dh = divideUP(mask_channels, kTileDim);
- const int dw = divideUP(output_height * output_width, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, mask_channels, output_height * output_width, dh, dw,
- masks.ptr(), rmasks.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- const int num_kernels =
- batch_size * output_height * output_width * THREADS_PER_PIXEL;
-
- CARAFEForward<<>>(
- num_kernels, rfeatures.ptr(), rmasks.ptr(),
- kernel_size, group_size, scale_factor, channels, input_height,
- input_width, output_height, output_width, mask_channels,
- routput.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- const int dh = divideUP(output_height * output_width, kTileDim);
- const int dw = divideUP(channels, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, output_height * output_width, channels, dh, dw,
- routput.ptr(), output.ptr());
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void CARAFEBackwardCUDAKernelLauncher(
- const DArrayLite top_grad, const DArrayLite rfeatures,
- const DArrayLite masks, DArrayLite rtop_grad, DArrayLite rbottom_grad_hs,
- DArrayLite rbottom_grad, DArrayLite rmask_grad, DArrayLite bottom_grad,
- DArrayLite mask_grad, const int kernel_size, const int group_size,
- const int scale_factor, cudaStream_t stream) {
- const int batch_size = top_grad.dim(0);
- const int channels = top_grad.dim(1);
- const int output_height = top_grad.dim(2);
- const int output_width = top_grad.dim(3);
-
- const int input_height = bottom_grad.dim(2);
- const int input_width = bottom_grad.dim(3);
-
- const int mask_channels = masks.dim(1);
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int dh = divideUP(channels, kTileDim);
- const int dw = divideUP(output_height * output_width, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, channels, output_height * output_width, dh, dw,
- top_grad.ptr(), rtop_grad.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int num_kernels =
- batch_size * output_height * output_width * THREADS_PER_PIXEL;
-
- CARAFEBackward_Feature
- <<>>(num_kernels, rtop_grad.ptr(),
- masks.ptr(), kernel_size, group_size,
- scale_factor, channels, input_height, input_width,
- output_height, output_width, mask_channels,
- rbottom_grad_hs.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int num_kernels =
- batch_size * input_height * input_width * THREADS_PER_PIXEL;
-
- FeatureSum<<>>(
- num_kernels, rbottom_grad_hs.ptr(), scale_factor,
- channels, input_height, input_width, rbottom_grad.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int dh = divideUP(input_height * input_width, kTileDim);
- const int dw = divideUP(channels, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, input_height * input_width, channels, dh, dw,
- rbottom_grad.ptr(), bottom_grad.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int num_kernels = batch_size * output_height * output_width *
- mask_channels * WARP_SIZE;
-
- CARAFEBackward_Mask
- <<>>(num_kernels, rtop_grad.ptr(),
- rfeatures.ptr(), kernel_size, group_size,
- scale_factor, channels, input_height, input_width,
- output_height, output_width, mask_channels,
- rmask_grad.ptr());
- }));
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- top_grad.elemType().prim(), ([&] {
- const int dh = divideUP(output_height * output_width, kTileDim);
- const int dw = divideUP(mask_channels, kTileDim);
- BatchTranspose2DCUDAKernel
- <<>>(
- batch_size, output_height * output_width, mask_channels, dh, dw,
- rmask_grad.ptr(), mask_grad.ptr());
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
diff --git a/mmdet/cv_core/ops/csrc/parrots/carafe_naive.cpp b/mmdet/cv_core/ops/csrc/parrots/carafe_naive.cpp
deleted file mode 100644
index b1a9047a..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/carafe_naive.cpp
+++ /dev/null
@@ -1,73 +0,0 @@
-#include "parrots_cpp_helper.hpp"
-
-void CARAFENAIVEForwardCUDAKernelLauncher(
- const DArrayLite features, const DArrayLite masks, DArrayLite output,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream);
-
-void CARAFENAIVEBackwardCUDAKernelLauncher(
- const DArrayLite top_grad, const DArrayLite features,
- const DArrayLite masks, DArrayLite bottom_grad, DArrayLite mask_grad,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream);
-
-void carafe_naive_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kernel_size, group_size, scale_factor;
- SSAttrs(attr)
- .get("kernel_size", kernel_size)
- .get("group_size", group_size)
- .get("scale_factor", scale_factor)
- .done();
-
- const auto& features = ins[0];
- const auto& masks = ins[1];
-
- auto& output = outs[0];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CARAFENAIVEForwardCUDAKernelLauncher(features, masks, output, kernel_size,
- group_size, scale_factor, stream);
-}
-
-void carafe_naive_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kernel_size, group_size, scale_factor;
- SSAttrs(attr)
- .get("kernel_size", kernel_size)
- .get("group_size", group_size)
- .get("scale_factor", scale_factor)
- .done();
-
- const auto& top_grad = ins[0];
- const auto& features = ins[1];
- const auto& masks = ins[2];
-
- auto& bottom_grad = outs[0];
- auto& mask_grad = outs[1];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CARAFENAIVEBackwardCUDAKernelLauncher(top_grad, features, masks, bottom_grad,
- mask_grad, kernel_size, group_size,
- scale_factor, stream);
-}
-
-PARROTS_EXTENSION_REGISTER(carafe_naive_forward)
- .attr("kernel_size")
- .attr("group_size")
- .attr("scale_factor")
- .input(2)
- .output(1)
- .apply(carafe_naive_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(carafe_naive_backward)
- .attr("kernel_size")
- .attr("group_size")
- .attr("scale_factor")
- .input(3)
- .output(2)
- .apply(carafe_naive_backward_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/carafe_naive_cuda.cu b/mmdet/cv_core/ops/csrc/parrots/carafe_naive_cuda.cu
deleted file mode 100644
index 2592ece9..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/carafe_naive_cuda.cu
+++ /dev/null
@@ -1,46 +0,0 @@
-#include "carafe_naive_cuda_kernel.cuh"
-#include "parrots_cuda_helper.hpp"
-
-void CARAFENAIVEForwardCUDAKernelLauncher(
- const DArrayLite features, const DArrayLite masks, DArrayLite output,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream) {
- int output_size = output.size();
- int channels = output.dim(1);
- int height = output.dim(2);
- int width = output.dim(3);
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- carafe_naive_forward_cuda_kernel
- <<>>(
- output_size, features.ptr(), masks.ptr(),
- output.ptr(), kernel_size, group_size, scale_factor,
- channels, height, width);
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void CARAFENAIVEBackwardCUDAKernelLauncher(
- const DArrayLite top_grad, const DArrayLite features,
- const DArrayLite masks, DArrayLite bottom_grad, DArrayLite mask_grad,
- const int kernel_size, const int group_size, const int scale_factor,
- cudaStream_t stream) {
- int output_size = top_grad.size();
- int channels = top_grad.dim(1);
- int height = top_grad.dim(2);
- int width = top_grad.dim(3);
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- features.elemType().prim(), ([&] {
- carafe_naive_backward_cuda_kernel
- <<>>(
- output_size, top_grad.ptr(), features.ptr(),
- masks.ptr(), bottom_grad.ptr(),
- mask_grad.ptr(), kernel_size, group_size,
- scale_factor, channels, height, width);
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
diff --git a/mmdet/cv_core/ops/csrc/parrots/cc_attention.cpp b/mmdet/cv_core/ops/csrc/parrots/cc_attention.cpp
deleted file mode 100644
index efc7c055..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/cc_attention.cpp
+++ /dev/null
@@ -1,88 +0,0 @@
-#include "parrots_cpp_helper.hpp"
-
-void CAForwardCUDAKernelLauncher(const DArrayLite t, const DArrayLite f,
- DArrayLite weight, CudaContext &ctx,
- cudaStream_t stream);
-
-void CABackwardCUDAKernelLauncher(const DArrayLite dw, const DArrayLite t,
- const DArrayLite f, DArrayLite dt,
- DArrayLite df, CudaContext &ctx,
- cudaStream_t stream);
-
-void CAMapForwardCUDAKernelLauncher(const DArrayLite weight, const DArrayLite g,
- DArrayLite out, CudaContext &ctx,
- cudaStream_t stream);
-
-void CAMapBackwardCUDAKernelLauncher(const DArrayLite dout,
- const DArrayLite weight,
- const DArrayLite g, DArrayLite dw,
- DArrayLite dg, CudaContext &ctx,
- cudaStream_t stream);
-
-void ca_forward_cuda(CudaContext &ctx, const SSElement &attr,
- const OperatorBase::in_list_t &ins,
- OperatorBase::out_list_t &outs) {
- const auto &t = ins[0];
- const auto &f = ins[1];
- auto &weight = outs[0];
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CAForwardCUDAKernelLauncher(t, f, weight, ctx, stream);
-}
-
-void ca_backward_cuda(CudaContext &ctx, const SSElement &attr,
- const OperatorBase::in_list_t &ins,
- OperatorBase::out_list_t &outs) {
- const auto &dw = ins[0];
- const auto &t = ins[1];
- const auto &f = ins[2];
- auto &dt = outs[0];
- auto &df = outs[1];
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CABackwardCUDAKernelLauncher(dw, t, f, dt, df, ctx, stream);
-}
-
-void ca_map_forward_cuda(CudaContext &ctx, const SSElement &attr,
- const OperatorBase::in_list_t &ins,
- OperatorBase::out_list_t &outs) {
- const auto &weight = ins[0];
- const auto &g = ins[1];
- auto &out = outs[0];
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CAMapForwardCUDAKernelLauncher(weight, g, out, ctx, stream);
-}
-
-void ca_map_backward_cuda(CudaContext &ctx, const SSElement &attr,
- const OperatorBase::in_list_t &ins,
- OperatorBase::out_list_t &outs) {
- const auto &dout = ins[0];
- const auto &weight = ins[1];
- const auto &g = ins[2];
- auto &dw = outs[0];
- auto &dg = outs[1];
- cudaStream_t stream = getStreamNative(ctx.getStream());
- CAMapBackwardCUDAKernelLauncher(dout, weight, g, dw, dg, ctx, stream);
-}
-
-PARROTS_EXTENSION_REGISTER(ca_forward)
- .input(2)
- .output(1)
- .apply(ca_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(ca_backward)
- .input(3)
- .output(2)
- .apply(ca_backward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(ca_map_forward)
- .input(2)
- .output(1)
- .apply(ca_map_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(ca_map_backward)
- .input(3)
- .output(2)
- .apply(ca_map_backward_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/cc_attention_cuda_kernel.cu b/mmdet/cv_core/ops/csrc/parrots/cc_attention_cuda_kernel.cu
deleted file mode 100644
index 7656f749..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/cc_attention_cuda_kernel.cu
+++ /dev/null
@@ -1,109 +0,0 @@
-#include "cc_attention_cuda_kernel.cuh"
-#include "parrots_cuda_helper.hpp"
-
-void CAForwardCUDAKernelLauncher(const DArrayLite t, const DArrayLite f,
- DArrayLite weight, CudaContext &ctx,
- cudaStream_t stream) {
- auto n = t.dim(0);
- auto c = t.dim(1);
- auto h = t.dim(2);
- auto w = t.dim(3);
-
- // Run kernel
- dim3 threads(32, 32);
- int d1 = (w + threads.x - 1) / threads.x;
- int d2 = (h + threads.y - 1) / threads.y;
- int d3 = h + w;
- dim3 blocks(d1, d2, d3);
-
- PARROTS_DISPATCH_FLOATING_TYPES(t.elemType().prim(), [&] {
- ca_forward_kernel
- <<>>(t.ptr(), f.ptr(),
- weight.ptr(), n, c, h, w);
- });
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void CABackwardCUDAKernelLauncher(const DArrayLite dw, const DArrayLite t,
- const DArrayLite f, DArrayLite dt,
- DArrayLite df, CudaContext &ctx,
- cudaStream_t stream) {
- auto n = t.dim(0);
- auto c = t.dim(1);
- auto h = t.dim(2);
- auto w = t.dim(3);
-
- // Run kernel
- dim3 threads(32, 32);
- int d1 = (w + threads.x - 1) / threads.x;
- int d2 = (h + threads.y - 1) / threads.y;
- int d3 = c;
- dim3 blocks(d1, d2, d3);
-
- PARROTS_DISPATCH_FLOATING_TYPES(t.elemType().prim(), [&] {
- ca_backward_kernel_t<<>>(
- dw.ptr(), t.ptr(), f.ptr(),
- dt.ptr(), n, c, h, w);
- });
-
- PARROTS_DISPATCH_FLOATING_TYPES(f.elemType().prim(), [&] {
- ca_backward_kernel_f<<>>(
- dw.ptr(), t.ptr(), f.ptr(),
- df.ptr(), n, c, h, w);
- });
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void CAMapForwardCUDAKernelLauncher(const DArrayLite weight, const DArrayLite g,
- DArrayLite out, CudaContext &ctx,
- cudaStream_t stream) {
- auto n = g.dim(0);
- auto c = g.dim(1);
- auto h = g.dim(2);
- auto w = g.dim(3);
-
- // Run kernel
- dim3 threads(32, 32);
- int d1 = (w + threads.x - 1) / threads.x;
- int d2 = (h + threads.y - 1) / threads.y;
- int d3 = c;
- dim3 blocks(d1, d2, d3);
-
- PARROTS_DISPATCH_FLOATING_TYPES(g.elemType().prim(), [&] {
- ca_map_forward_kernel<<>>(
- weight.ptr(), g.ptr(), out.ptr(), n, c, h,
- w);
- });
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void CAMapBackwardCUDAKernelLauncher(const DArrayLite dout,
- const DArrayLite weight,
- const DArrayLite g, DArrayLite dw,
- DArrayLite dg, CudaContext &ctx,
- cudaStream_t stream) {
- auto n = dout.dim(0);
- auto c = dout.dim(1);
- auto h = dout.dim(2);
- auto w = dout.dim(3);
-
- // Run kernel
- dim3 threads(32, 32);
- int d1 = (w + threads.x - 1) / threads.x;
- int d2 = (h + threads.y - 1) / threads.y;
- int d3 = h + w;
- dim3 blocks(d1, d2, d3);
-
- PARROTS_DISPATCH_FLOATING_TYPES(weight.elemType().prim(), [&] {
- ca_map_backward_kernel_w<<>>(
- dout.ptr(), weight.ptr(), g.ptr(),
- dw.ptr(), n, c, h, w);
- });
-
- PARROTS_DISPATCH_FLOATING_TYPES(g.elemType().prim(), [&] {
- ca_map_backward_kernel_g<<>>(
- dout.ptr(), weight.ptr(), g.ptr(),
- dg.ptr(), n, c, h, w);
- });
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
diff --git a/mmdet/cv_core/ops/csrc/parrots/corner_pool.cpp b/mmdet/cv_core/ops/csrc/parrots/corner_pool.cpp
deleted file mode 100644
index dca8cf1d..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/corner_pool.cpp
+++ /dev/null
@@ -1,83 +0,0 @@
-// Modified from
-// https://github.com/princeton-vl/CornerNet-Lite/tree/master/core/models/py_utils/_cpools/src
-#include "parrots_cpp_helper.hpp"
-
-void bottom_pool_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void bottom_pool_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void top_pool_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void top_pool_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void left_pool_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void left_pool_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void right_pool_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-void right_pool_backward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {}
-
-PARROTS_EXTENSION_REGISTER(bottom_pool_forward)
- .input(1)
- .output(1)
- .apply(bottom_pool_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(bottom_pool_backward)
- .input(2)
- .output(1)
- .apply(bottom_pool_backward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(top_pool_forward)
- .input(1)
- .output(1)
- .apply(top_pool_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(top_pool_backward)
- .input(2)
- .output(1)
- .apply(top_pool_backward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(left_pool_forward)
- .input(1)
- .output(1)
- .apply(left_pool_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(left_pool_backward)
- .input(2)
- .output(1)
- .apply(left_pool_backward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(right_pool_forward)
- .input(1)
- .output(1)
- .apply(right_pool_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(right_pool_backward)
- .input(2)
- .output(1)
- .apply(right_pool_backward_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/deform_conv.cpp b/mmdet/cv_core/ops/csrc/parrots/deform_conv.cpp
deleted file mode 100644
index c471faab..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/deform_conv.cpp
+++ /dev/null
@@ -1,181 +0,0 @@
-// Copyright (c) 2018, SenseTime.
-#include "parrots_cpp_helper.hpp"
-
-void DeformConvForwardCUDAKernelLauncher(
- const DArrayLite input, const DArrayLite weight, const DArrayLite offset,
- DArrayLite output, DArrayLite columns, DArrayLite ones, int kW, int kH,
- int dW, int dH, int padW, int padH, int dilationW, int dilationH, int group,
- int deformable_group, int im2col_step, CudaContext& ctx,
- cudaStream_t stream);
-
-void DeformConvBackwardInputCUDAKernelLauncher(
- const DArrayLite input, const DArrayLite offset,
- const DArrayLite gradOutput, DArrayLite gradInput, DArrayLite gradOffset,
- DArrayLite weight, DArrayLite columns, int kW, int kH, int dW, int dH,
- int padW, int padH, int dilationW, int dilationH, int group,
- int deformable_group, int im2col_step, CudaContext& ctx,
- cudaStream_t stream);
-
-void DeformConvBackwardParametersCUDAKernelLauncher(
- const DArrayLite input, const DArrayLite offset,
- const DArrayLite gradOutput, DArrayLite gradWeight, DArrayLite columns,
- DArrayLite ones, int kW, int kH, int dW, int dH, int padW, int padH,
- int dilationW, int dilationH, int group, int deformable_group, float scale,
- int im2col_step, CudaContext& ctx, cudaStream_t stream);
-
-void deform_conv_forward_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
- im2col_step;
- SSAttrs(attr)
- .get("kW", kW)
- .get("kH", kH)
- .get("dW", dW)
- .get("dH", dH)
- .get("padW", padW)
- .get("padH", padH)
- .get("dilationW", dilationW)
- .get("dilationH", dilationH)
- .get("group", group)
- .get("deformable_group", deformable_group)
- .get("im2col_step", im2col_step)
- .done();
-
- const auto input = ins[0];
- const auto weight = ins[1];
- const auto offset = ins[2];
-
- auto output = outs[0];
- auto columns = outs[1];
- auto ones = outs[2];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- DeformConvForwardCUDAKernelLauncher(
- input, weight, offset, output, columns, ones, kW, kH, dW, dH, padW, padH,
- dilationW, dilationH, group, deformable_group, im2col_step, ctx, stream);
-}
-
-void deform_conv_backward_input_cuda(CudaContext& ctx, const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
- im2col_step;
- SSAttrs(attr)
- .get("kW", kW)
- .get("kH", kH)
- .get("dW", dW)
- .get("dH", dH)
- .get("padW", padW)
- .get("padH", padH)
- .get("dilationW", dilationW)
- .get("dilationH", dilationH)
- .get("group", group)
- .get("deformable_group", deformable_group)
- .get("im2col_step", im2col_step)
- .done();
-
- auto input = ins[0];
- auto offset = ins[1];
- auto gradOutput = ins[2];
-
- auto gradInput = outs[0];
- auto gradOffset = outs[1];
- auto weight = outs[2];
- auto columns = outs[3];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- DeformConvBackwardInputCUDAKernelLauncher(
- input, offset, gradOutput, gradInput, gradOffset, weight, columns, kW, kH,
- dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
- im2col_step, ctx, stream);
-}
-
-void deform_conv_backward_parameters_cuda(CudaContext& ctx,
- const SSElement& attr,
- const OperatorBase::in_list_t& ins,
- OperatorBase::out_list_t& outs) {
- int kW, kH, dW, dH, padW, padH, dilationW, dilationH, group, deformable_group,
- im2col_step;
- float scale;
- SSAttrs(attr)
- .get("kW", kW)
- .get("kH", kH)
- .get("dW", dW)
- .get("dH", dH)
- .get("padW", padW)
- .get("padH", padH)
- .get("dilationW", dilationW)
- .get("dilationH", dilationH)
- .get("group", group)
- .get("deformable_group", deformable_group)
- .get("scale", scale)
- .get("im2col_step", im2col_step)
- .done();
-
- auto input = ins[0];
- auto offset = ins[1];
- auto gradOutput = ins[2];
-
- auto gradWeight = outs[0];
- auto columns = outs[1];
- auto ones = outs[2];
-
- cudaStream_t stream = getStreamNative(ctx.getStream());
- DeformConvBackwardParametersCUDAKernelLauncher(
- input, offset, gradOutput, gradWeight, columns, ones, kW, kH, dW, dH,
- padW, padH, dilationW, dilationH, group, deformable_group, scale,
- im2col_step, ctx, stream);
-}
-
-PARROTS_EXTENSION_REGISTER(deform_conv_forward)
- .attr("kW")
- .attr("kH")
- .attr("dW")
- .attr("dH")
- .attr("padW")
- .attr("padH")
- .attr("dilationW")
- .attr("dilationH")
- .attr("group")
- .attr("deformable_group")
- .attr("im2col_step")
- .input(3)
- .output(3)
- .apply(deform_conv_forward_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(deform_conv_backward_input)
- .attr("kW")
- .attr("kH")
- .attr("dW")
- .attr("dH")
- .attr("padW")
- .attr("padH")
- .attr("dilationW")
- .attr("dilationH")
- .attr("group")
- .attr("deformable_group")
- .attr("im2col_step")
- .input(3)
- .output(4)
- .apply(deform_conv_backward_input_cuda)
- .done();
-
-PARROTS_EXTENSION_REGISTER(deform_conv_backward_parameters)
- .attr("kW")
- .attr("kH")
- .attr("dW")
- .attr("dH")
- .attr("padW")
- .attr("padH")
- .attr("dilationW")
- .attr("dilationH")
- .attr("group")
- .attr("deformable_group")
- .attr("scale")
- .attr("im2col_step")
- .input(3)
- .output(3)
- .apply(deform_conv_backward_parameters_cuda)
- .done();
diff --git a/mmdet/cv_core/ops/csrc/parrots/deform_conv_cuda.cu b/mmdet/cv_core/ops/csrc/parrots/deform_conv_cuda.cu
deleted file mode 100644
index 6aa1147f..00000000
--- a/mmdet/cv_core/ops/csrc/parrots/deform_conv_cuda.cu
+++ /dev/null
@@ -1,515 +0,0 @@
-#include "deform_conv_cuda_kernel.cuh"
-#include "parrots_cuda_helper.hpp"
-
-void deformable_im2col(DArrayLite data_im, DArrayLite data_offset,
- const int channels, const int height, const int width,
- const int ksize_h, const int ksize_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group,
- DArrayLite data_col, cudaStream_t stream) {
- // num_axes should be smaller than block size
- // todo: check parallel_imgs is correctly passed in
- int height_col =
- (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col =
- (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels = channels * height_col * width_col * parallel_imgs;
- int channel_per_deformable_group = channels / deformable_group;
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_im.elemType().prim(), ([&] {
- deformable_im2col_gpu_kernel
- <<>>(
- num_kernels, data_im.ptr(),
- data_offset.ptr(), height, width, ksize_h, ksize_w,
- pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
- channel_per_deformable_group, parallel_imgs, channels,
- deformable_group, height_col, width_col,
- data_col.ptr());
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void deformable_col2im(DArrayLite data_col, DArrayLite data_offset,
- const int channels, const int height, const int width,
- const int ksize_h, const int ksize_w, const int pad_h,
- const int pad_w, const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group,
- DArrayLite grad_im, cudaStream_t stream) {
- int height_col =
- (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col =
- (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels =
- channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
- int channel_per_deformable_group = channels / deformable_group;
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.elemType().prim(), ([&] {
- deformable_col2im_gpu_kernel<<>>(
- num_kernels, data_col.ptr(), data_offset.ptr(),
- channels, height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
- stride_w, dilation_h, dilation_w, channel_per_deformable_group,
- parallel_imgs, deformable_group, height_col, width_col,
- grad_im.ptr());
- }));
-
- PARROTS_CUDA_CHECK(cudaGetLastError());
-}
-
-void deformable_col2im_coord(
- DArrayLite data_col, DArrayLite data_im, DArrayLite data_offset,
- const int channels, const int height, const int width, const int ksize_h,
- const int ksize_w, const int pad_h, const int pad_w, const int stride_h,
- const int stride_w, const int dilation_h, const int dilation_w,
- const int parallel_imgs, const int deformable_group, DArrayLite grad_offset,
- cudaStream_t stream) {
- int height_col =
- (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
- int width_col =
- (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
- int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w *
- deformable_group * parallel_imgs;
- int channel_per_deformable_group =
- channels * ksize_h * ksize_w / deformable_group;
-
- PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
- data_col.elemType().prim(), ([&] {
- deformable_col2im_coord_gpu_kernel<<>>(
- num_kernels, data_col.ptr