diff --git a/0165180(7).ipynb b/0165180(7).ipynb new file mode 100644 index 0000000..f0a9383 --- /dev/null +++ b/0165180(7).ipynb @@ -0,0 +1,572 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 第七次练习" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "+ 请务必交到exer7文件夹下,**谢绝交到master下**\n", + "+ 请不要改动任何文件,拜托\n", + "+ 请在12月20日前提交。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "请写一下姓名和学号:\n", + "+ 姓名 文华虎\n", + "+ 学号 0165180" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib\n", + "plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签\n", + "plt.rcParams['axes.unicode_minus']=False #用来正常显示负号" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name '请参考下面命令将CEPS' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0m请参考下面命令将CEPS\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcsv数据读入python\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name '请参考下面命令将CEPS' is not defined" + ] + } + ], + "source": [ + "请参考下面命令将CEPS.csv数据读入python" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2717: DtypeWarning: Columns (20,22,23,25,28,29,39,49,74,124,125,126,127,128,129,130,131,138,140,141,147,160,161,162,165,170,174,175,176,177,179,180,181,182,183,184,188,191,194,195,196,199,221,222,223,224,251,252,254,289,290,294,295,296) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idsclsidsschidsctyidsframesubsamplesweightfallgrade9stcog...steco_3cstonlystsibstsibrankstmedustfedustprhedustfdrunkstprfightstprrel
0111133218.7388920011...31333112
1211133216.5182340017...21858112
2311133216.5182340012...2213333111
3411133218.7388920010...21677112
4511133217.5530400010...31788112
\n", + "

5 rows × 300 columns

\n", + "
" + ], + "text/plain": [ + " ids clsids schids ctyids frame subsample sweight fall grade9 \\\n", + "0 1 1 1 1 3 3 218.738892 0 0 \n", + "1 2 1 1 1 3 3 216.518234 0 0 \n", + "2 3 1 1 1 3 3 216.518234 0 0 \n", + "3 4 1 1 1 3 3 218.738892 0 0 \n", + "4 5 1 1 1 3 3 217.553040 0 0 \n", + "\n", + " stcog ... steco_3c stonly stsib stsibrank stmedu stfedu stprhedu \\\n", + "0 11 ... 3 1 3 3 3 \n", + "1 17 ... 2 1 8 5 8 \n", + "2 12 ... 2 2 1 3 3 3 3 \n", + "3 10 ... 2 1 6 7 7 \n", + "4 10 ... 3 1 7 8 8 \n", + "\n", + " stfdrunk stprfight stprrel \n", + "0 1 1 2 \n", + "1 1 1 2 \n", + "2 1 1 1 \n", + "3 1 1 2 \n", + "4 1 1 2 \n", + "\n", + "[5 rows x 300 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('CEPS.csv',encoding='gb2312')\n", + "df.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面的图都至少需要在图上标注:\n", + "+ 图标题\n", + "+ x轴标题\n", + "+ y轴标题\n", + "+ 适当修改x轴或者y轴的刻度及标签,使之清晰美观\n", + "+ 根据需要添加图例" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 散点图\n", + "反映期中考试标准化成绩语文(stdchn)和期中考试标准化成绩数学(stdmat)的相关关系" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2717: DtypeWarning: Columns (20,22,23,25,28,29,39,49,74,124,125,126,127,128,129,130,131,138,140,141,147,160,161,162,165,170,174,175,176,177,179,180,181,182,183,184,188,191,194,195,196,199,221,222,223,224,251,252,254,289,290,294,295,296) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEdCAYAAADq/dscAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucHFWV+L8nkwlMCDIBIpCBQAQMqCFEIiAJGFgxIoJD\nUEFdFV1EWNSFZYNBoiAbJEt84CqIuIr+5BkBR9igQQ0IgkGTDRB1ibwScHhskIQIDGQyOb8/7q1M\nTU+9eqaru6v7fD+f/kzPrapbpx59z73nnHuuqCqGYRhGczKi1gIYhmEYtcOUgGEYRhNjSsAwDKOJ\nMSVgGIbRxJgSMAzDaGJMCRiGYTQxpgSqiIjsUvL/DiLSJiItCceMFJExIrJNhvq3ExGphKwR9b5F\nRHbw/2+fx3kaDRFpF5E3RZQfJiLHDKNeex5GxTAlUCVE5HRglYjsESpeC7wCbBYRjfoAvcDfgY+m\n1L8vsAr4RA7iT/R1f0FERgF3ATeJyOgEec4VkU+KSFvCPo+LyHVDEUgcB4vIu4Zw7DEiMsl/P19E\nNvuGtU1Evigi4/y2b4vI9SKyfUp9I0XkayLy8VDZNsD/AEtEZKeSQ+YCt4vIp8uV3VPz5yEinxeR\nr/nvo0XkBhH5SMk+O4rIhSIyNUudEef4Z/9s3lfGMSNEZL9hfpqqXRxZawGaiF8AC4BFInKEqvYC\nU3GN/GagD1gE7AocAQhOSY8ARgHrU+p/HNgAXCoiXar6QgVlf8n/fVlVN4nIlcCVuAbuGFV9Kbyz\n75V+zsvzI1+2O7AT8Fpo11ZgjIjsFyobBaxX1af8cSOAw4HXA3vgGsC3AFOAscDjIjJJVTdnuRBf\n378B+4jIQbj73gK8ilO05wM/9LsfDoxS1b+nVLsTcAzwryKynapeoaqvicjXgW8B3wc6/fkPBN4L\n/MaXD4WaPY8QhwIT/Pde4CRgdck+RwAXABuBlWVfpZMteDZZ2Q743yGcK8wOOJmbA1W1T5U+wCcB\nBc6O2f4n4GfDqH+6r/+KCsu9i6/3i6Gy03A/0ndF7P8Pfv/3hMq+hBvRPB/69OF+4MH/LwA9wEUl\n9f3Z17cReM5//zKu0T4CaMM1FtvGfEaU1DcGeAL4LPCvwBac0n0YuDy0zyZgfsZ7NA54DDey2z1U\nfg+wFBjt/78D1xiPL+LzAPbBKeHFwEPAfsD+vv7/BA4EtvP7XuaPf90Qr/MUX+9lwOklnzOAs4Ez\nS47Z1h9zYUR9C4BZCeeb54/dppK/n3r/iL94o0qIyDeBear6dxHZGZiEa2w24RqMG3A/0DAbVPVV\nf/zrcD/2XlXdElH/t4B7VHVRxLZgVNGqod6tN1d8IEHsbYFvALcDtwWHAfsCzwC/UNVVofp+CoxR\n1aNFZCzQp6obRWQ73I9sk9/1YeBe4J/8/9v4fQf0/MT5Ul5V1Re9We07qiol+8wFLomRv1NVf+b3\nmwK8w1/TC7gG8oPAp4G9cb3ah3CN4W3ADFW9N3SeVqClVEa/7QBgrKr+JlQ2DnheVdX7AW4HPq2q\nV8XIWtfPQ0RuAk5MkA3gbThT2JPA71V1duj4FqBNS0YrUYjIKcDVOOXfW7J5hL8P61R1z9AxI/2+\nX1bVC0PlHwauBa4D/r2krqf9/Zjnt41U1b40+RqGWmuhZv4A78f9CNM+4R7cmozHJH0eLZFjii8v\n7RmW9hJ7GNhL3IhrQD4equsoXAO6v///P4C/AQfhGumn/TWswf1YXwr9/wzwqZR7drp7bQeVn+2v\nYa/QJ7i/7w7t92HgLzib+rOhe7ICZ7JYhTOZfCvh/l0Wqu9zFXgexxXleQCjcWaja4BloXIFvkj/\nqCwYfUR9ns34+zjF7//OMn9XA0YCwO7+HkXJ8ndgN79fMBKQWrcN1fyYTyBnvLPu9bgfbNC7WK+u\np/FzoAP3wzsLZ+LYH/fCAvyzL3syVOXlOPPFq/7Y83C9wd9HnH53XA93MfAHXG9xFO7FDxOMKD6r\nqj+MuY7VwHJV/UjUdr/PtsCNwMvAt7wT8iCc/Xs1bgR0Xmj/R4HfquopJfWMxvX8t/g6NgOb1f9S\nQ/sFvUHB27ZVdU1o++7+a9DTRVWvA64TkQnA/bjGcwdcg7OLqv7K91afxvloLvCHHuCv7cO43nLA\ny/7vCbiedDn8A/BtnAkpTF0+D9y78ya8iQfYtsR/EIxs1wLn4BrUY3Hv2xHAxTjfSJqPZbhs7cWL\nyBigC+f/+LyqXurL3wP8ty97Jnxw6XvW8NRaCzX6B3gng3sfb4nY71bgiZKy//L7R9pUcT/Kl4Bv\nx2z/J3/8O1JkfIvf75SEfe4DlpYccwne/hsq/waut/kJXK/6FZyZ5a8R9yHps4+v74cZ9v1vIkYI\nwAy/fWZJ+TQvz904Jaq4xv4lnMPzGF/29dAx7/Nl+5bUdaYvP3AI70YnJSO9en4e/rjXcD6NqNHJ\ni3g/Sui4Ni/Hx0mwt+PMX+WOoDpj6toMXIjz6/zey/sVnHI9AzfSeh64uuS4eaXvUDN8bCSQP/fj\nepE9uB/9QuA1b5vdDvej2QIcDCzzfoKAybhe02hvJ35WVXuCjeoiQ+7ERbFEMdPXHzVKCBP0PI/0\nvccwd6vqn3GNxltC5afgens9wEUhmc4GEJFD/P5zVfUxEZmBMzeEo1GiaMGZFLr9/+fiGurNuB/+\n/cAbcI5YwZkmFNdIJ+KjZC4G5gC/xPkCzvCbF+B6yV+jPzJkSujw8f48fy2p9lfAh4A1IrI/cCT9\nPp5BPpsQv8SNKI4GHizZVpfPQ11EW+J8FT+K+gPuvd0eNxp9BBfJ9bKqxp0vGK19AfhpikzBCGpT\n0k6q+pKI/AD4k6reIyKbgCvo9/ecmnKe5qDWWqiZPvTbOPek3/5YzmdmRJ0n+21TSsrH4Hq2izLI\ntX/COU/2+1xMv0kgMJesIaJnh2s0/oxTPi2h8p1w0SRJn/YEOd8Rkms0cFJoW6aRAHAIznbdgvMb\nXIlTMq04E8d7/TErcT3bFn/cfODJjM+3D9e4vlry2ZL0LIvyPPz9i5PvIr99tr8Hx/tjLgP+nHDN\n7yZl9BPaNxhBRfoK8COB0P+C8w+txCnJjbhOxpfw/gC/X1OOBJpqUkQd0Qd8FdfobKOqkvbB/ZB/\nG1HXLcD/Af9SUv4J3EjjexnkGeX/fix0vnf4ssA/sQrXC5yCG9rvhvuhDejZ+eiZ63AN7MeAnURk\nuu+Fn46L4U76vD9Bzvmh7/OA60XkhAzXF+aPOBPJCFyUy6eAX6tqr6puxM3HWIIz87wOZzoCF/pY\n2mMv5ce4eQUtqrqNqm6rqtvi7tlNOCXQjWso/5hQT70/j9dw7/D+oc9Mv+3vqvrvqnoLLsoquH+T\ngEcTrnko0ThJIy1E5O0i8mPcPf8JLiDgKJxZ62bcnJBuEfmLiJT+fpoGUwI1QlVfVRemOUJceoGk\nz7Z+/0ETolR1E3Ap8HERmQZbnWHn40wnv8ogzhj/N9yABLNk1/m/9/u/R9LfiP2/iLoux0+MwpkF\nnsPZrhXXCwMXRlmq5CZGyLAVEfkormf/B1/0FdyP+moRGZ9+iVv5Ls5UsQmniEcA90v/DO1f4uzT\ny3DRQx/wJo5DiVbCW1HVPnUmk7Dcn8DN/zgSNyfhDap6gao+H1WHp96fR5IJKWyiuQN4t3fgvx0X\nAh1HbOqUBEalbH8cOAwXdj0FFyJ6D+4duA03+fAsXHDAL4dw/obAfAI1QkR2UdXncEPnL6TsPg83\n/I/jP3GTha4VkUNxfofXA7P9jz2Ncf7vhlBZ0Oj8DUBVnxCRNbgh9HbAJzRingIuhcFuwAO4CJQ1\n9Nv3SxvIVThb87uThBORDtw1LsP1tt+mzt77SZxd/ZvAr9Mu0nMOzvxzBC7McSaukR6BCxP9nVfO\niMj1uN7z/TjTyZ0Rsr0FFxUT5wN4E66B+wLufrxV+tP8CK43/5SqPhY6pq6fB/2zrKNm5oZ79D/G\n3etzcaOq2yL2DwjSWVwtIlennD8g0T/hf197B/+LyDO439JncdFcF6jqRbh3CxGZHVVPo2NKoDZM\nBv7Lpy0IwgN3i9jvdbgfbk/Etq2oaq+InIzrqS4D3gh8VVXvyyjP/v5vd6is3f8N91jvwCmbH6pq\nZM9JfQhmzHlagy/eHLEPzpwVZoAjVFxunGtwvb5P0G92QFXv86kZbmKgEzcW3zAgIp8BlgMPqJuE\ndhLOibkwtPtlwGeAHwAPqmqUg/0s+idXJfHDhG1fZKCpq26fR4g+Vd3afvhw3AGpJVT1YRH5CW7U\ndouqJoXQ/pr+685KqZM+Fj8i2x3ndP46brb54jLP15CYEqgNV+N6MTvie06q+mzpTiISzNRMtH16\nHsD1tE7ydXaVIc/hOGdauDc6BRfNEcxUPgAXBQMD47CPA55R1eX+/x1xo5AOnEnhTTil9y/4Gag4\np97RuAbm3lCdz5XULbjGcyZwqm9UZoYFV9Vz/L5T/N/UkY+fgfwYLsrkBRF5yMt7L240ENT9pIjc\nhnNyxvVOF+JCeXuJtmsfj5vrcTKDc+uMwN2Tp0vK6/J5lNCS5V7jnOsCtImIRI1MReQo3HOeq6rX\nichuwGGqerPfPhoX0fVfqtrtyyYCC0Xkc6UmOH++Ut6G60RchJvPcR3p5qTmoNae6Wb64CZuKS6q\nY4Yvm0tMRAKu96fAWSn17o5LUKe4XvMjuEZpPrBjyrHb4MwOd/v/b6Z/VvL9vmwGzgzxFM6+2gf8\ng992pd93b9yQ/lX6I0Vew9mqb8GlLQjO2YLr+a3D5cH5Ba7H3VIiWyvwHeCqUFncjOEgXj8c2fJh\nX3ZUwvXPxEVRbfT7PgYc7LedjDPzvIabPfvmITzzUyhjHkE9P4/Q/p/BKanwvQ4itz4T2m8WrgPz\nPS/jJTH1XUcowg03Se8lYAf//2R//DWhY07zx5xfUtcIX35hxHnG4EYAd/p9vlSyPYjYG1nrtqKa\nn5oL0CwfXO9kiX/JPhUqnxvReAWft5GgBHC9w+/7H/fzwId8+RhcPPQW3GzR7+ImrY2KqON0f44z\n/f+fxU1EuhIXV34uriH8X1xPckdcg/gCLqzvjzhH6wh//KW4LJ3TYs53sP8RbsH1ZHfFzWpV3Gjm\noIhjRoa+n0G0EphTWk5/iOh7I/Zv8w3JM7g8N7vjzCGX4UJ4r/LH/sjfh/W4RvLoMp970FhlVQJF\neB5n42Zwh8v2IqQEcO/vC8B1/v9z/fb/IJSWwR+3CbgtVHY0Je+9fw5b6FfQAvwOZyrdJ7TfKH/s\nt0kOfe3EZfENl11GaIJbs3xqLkCzfHA9s2eAm0rKk2Kug8+c0P6dOEfoY37bK/7lHRtxzqnAz+gf\n8r/kf/Cf99t39z/UZymZlYzLSLrSH9dFKF4c1+t7OSTfT1Ou/V24XDyr/f7PMDhfzvG4UNdeInpx\nof2CHEEjS8p3AvbL8BwOw0XRrMcpznNxCfWC7ef68o2EMlTiGtGnieh9RpyjHTd79z9wpgcNN1QJ\nxxXieQCfJ6QEcJE/v/F1nYILp33Gv2ttof2CRvbXwDhf9hNfdnBovxE4f8j/hsr2wY0+FofKDvXH\n/jxUNpr031PaZ/tatxfV/NRcgGb64ELSdi4pu4R0c9AFobLjfNnDuOHrzhnOuzuuN7gMZx44wJe3\n4nqqJ0ccs6tvdE6LqXMqLl3DQ8AhKed/K05Z3YWbpRnZ08I5x+/BZdmMqysYOQ3ph4pzti/GjSjG\nRGyfhRtdDUr1jIsC+gawbYbzLPVybgS+l1G2QjwPXMdlc8l+m3BZTXfDjVxupySFhd/3UuCc0P/T\nwu93qPwk4I0lZR8Hdi0pu4jQKMs/XyWhI5FwXwJz0KAOVSN/LJV0jfFOr9GaHDdeeswkVS11MmY+\nn6qWJiyL2zfSkTfE826rEemXGxUReT3O7PFcBeus2+chIq3qHbTi0jmjGRf6qSR+TsIbcem7M/+m\nmhlTAoZhGE2MzRg2DMNoYkwJGIZhNDF1P1ls55131r322qvWYhiGYRSGFStWPK+q49L3LIAS2Guv\nvVi+fHmtxTAMwygMIrI2675mDjIMw2hiTAkYhmE0MaYEDMMwmhhTAoZhGE2MKQHDMIwmpu6jgwzD\nMJLoWtnNwiWreXpDD+Pb25gzaxKdUztqLVZhMCVgGEZh6VrZzXm3rKKn1619072hh/NuWQVgiiAj\npgQMwygsC5es3qoAAnp6+1i4ZHVVlEAjjEJMCRiGUVie3hC9/HZceSVplFGIKQHDqBCN0CscCrW8\n7vHtbXRHNPjj29tyP3etRyGVwqKDDKMCBL3C7g09KP29wq6V3bUWLVdqfd1zZk2irbVlQFlbawtz\nZk3K/dy1HIVUElMChlEBknqFjUytr7tzageXzJ5MR3sbAnS0t3HJ7MmJPfGuld1MX7CUiXMXM33B\n0iErrLjRRjVGIZXEzEGGUQEapVdYLvVw3Z1TOzKbXyppx58za9KAuqB6o5BKYiMBw6gAjdIrLJei\nXXclRy5DGYXUIzYSMIwK0Ci9wnIp2nVXeuRSziikXjElYBgVIGgIqhUlUy+RSEO97qzyV/o6axlN\nVKtrTqPuF5qfNm2a2qIyhtFPqV0bXO+7KKaIrPLncZ21unfVvmYRWaGq07Lsaz4BwygYtY7IKYeo\nSJys8udxnbWy49fymtMwc5BhFIx6iMjJQlwkTmkjF1Aqf17XWQs7ftZrqcWzNSVgNA31YkcfLnF2\n7R3aWitS/3DuU/jYESL0lZib4xQADLbL19J+X2myXkstrtnMQUZTUOuZrZVkzqxJkT/clzdtHvb1\nRN2ns258gAO/fEdq3aXHliqAJKIiiqKuc4QvLxpZZzbXYga0KQGjKSiSHT0LWyLKevt02NcTdZ8A\nNvT0pirNuGPTiLPLL1/7wqDr3AKc/9PiKe+svoha+CzMHGQ0BUWxo2chqaEf7vUkHZ+WHG0o5xbg\n3rlHRW67/v6nIstf3tRXyGydWX0R1fZZmBIwmoI8ba15+hqi6k5qbId7PXH3KSDt3FHHtkT4BgIU\nmL5g6VZzR/hak8xJRczWWa/kag4SkbEicruI3CMiV/qy74vIfSIyL89zG0aYvGytefoa4uqOcwAL\nw7eXR92nMElKJu4ef+2DU7jspANj6+3e0MOcnzzInJseHHCtaRRxFFeP5D0S+ChwjapeJyLXisi5\nQIuqHiYiV4jIvqr6SM4yGEZuM3rzyCkf9P6jGsKe3j62bR1BW2vLgPMK8JFDJ2w951BHJ8E+X77t\nT6x/pXfAtjSlmeUex11X75byJ61WKmKmWlFj9RqdluuMYRH5CPBG4BvArcAfgf9W1dtF5P3A9qp6\ndVIdNmPYqGcmzl1M1C9IgCcWHFt2fVEzRqPq/sZJB8Y2KJWadZpXoxV3z+IQGLR/pWb5VmsGcbVn\nKpczYzjvkcBvgWOBzwEPA9sAwTh5I7BP1EEichpwGsCECRNyFtEoGvXUo6q0ryFLhM349rZE52GW\n0cm8rlVcf/9T9KnSIsKHDtmD+Z2TBxyT1UFZ7vNI8zuE6Whv4965Rw2S98SDyksfHSdf2r2q1LtW\nz6uQ5R0i+hXgdFW9CKcEPgwEv44xcedX1atUdZqqThs3blzOIhpFot7i/Svta0izc2epO66BDcrn\nda3immVPbnW89qlyzbInmde1qmx5h/I8ou5Z6wihtUUGlAXX2rWym5tXdA+Q9+YV3ZmeeZp8SVFj\nlXzX6jk6LW8lMBqYLCItwCHAAmCG3zYFWJPz+Y0Go97i/Ssd1500gshad4tIYnlc6GVcecC8rlXs\nfd7t7DV3MXufdzvzulYN6XlE3bOFH5jCwvdPYezofqf3NiNd8zScZ552bNJ6CJV81+p53YW8zUGX\nAFcDewK/w/kG7hGR8cAxwKE5n99oMNJ6VLUwFVUyrjsuP385iiUutDLck07aHnUPl699gWuWPTlg\n3/D/pUQ9p6h6wTXUZ9/4ADu0tfLyps1b99/Q08ucmx6kty9a3iy96LT3JWk9hLNvfGDI5y2lntdd\nyFUJqOrvgTeHy0RkJnA0cKmqvpjn+Y3GI8kGX8mlA2tFJaKYOmLuUYfvdY4QiArGGSHxSd9eLXMm\ncGkPN6reOTc9CNofGbShp3dQPXEKIOoccfsk+WyS7ndcJNNQeu/VXm+iHKo+WUxV1wOLqn1eozFI\n6lHVs/OtHIY7skjrdW4zcgQ9vYMTT2wzckTsPUyiNFw1qocbVW9SA59G1l50lh543P2udO+9Xlch\ns9xBRqFIssHXs/OtmqT5KV6NUABBebn3qkUkk0+k0s8gq3lsOD6bRllDOA1LG2EUjrgeVSOlHh4u\nSb3OtPsUtW27US28vGnwiGCLKsvXvrA1/09g9z/7xgcGmDzKCQvNwvK1L1SlMa7X3nslsZGA0TDU\nIg1vEUm6T3HbLj5hMv946OA5Owpbw0uTQir32mloijiugcoa0lpvIcX1iCkBo6EIwgoBxo5ubcjh\n+3BJMnOEtwX09PZxzqIHgfjw0+vvfyrRJ7Ps8fWRx40QBpyrlLZR8XmM0kJaof5CiusRMwcZDUHU\ntPw427eRbObonNpRdkhon2qiTybOBbxFXSrpuFQSUSao8DnTMD9ROqYEjIagUSKDqklS6ogsveww\nLSLsusO2sb6GZ198NbLRDkYWQ/EZxI1KArpWdkcucRmcz3CYOchoCKzHVx5pqSPKWRoS4NA3jI21\n+++1UxsfOmSPyG1BeVoK66RjowhGhlHXYX6igZgSMBqCep6WX4+kpY5I62WXsuZvPbF2/2WPr2d+\np3MsB/W2iPCPh07YOvKI8lO0x6ybAAw4Noq4RHxBSKuNDvsxc5DRENTztPw8GG56jLTUER86ZI9E\nH0ApSXb/PlUmzl3M+PY2vvbBKQPkTLqO4aRfjhsBblE1BVCCKQGjIajnaflJDKUxz5IeIy1VdNyS\nj0FPPewbyGIaSrL7AwPCMwM5064j/Ey7N/TQIjIgsmco6aptZDiYXBeVqQS2qIzRqAy1pzt9wdLY\n3EBB7v2oXnzYhJJlnzRZS497Yt1L3PvYC7Fyl8qZdh1J5067T9VexKXeKGdRGfMJGEaNGGoMe5oT\nPEuq6DQbfSmBzT7OV3Dnw+tY87dsTvhAzqzO/Eqlq24WBVAuZg4yjBox1IimNFNHmr0/YH7n5ETn\naimdUzsqkl45kDOryWao96kZUj5UAhsJGDWna2U30xcsZeLcxUxfsLSmU/qHI0vWY4P94gyxaXbr\nqHBKAY7cz63Cl7aozHBIisLKYm9vHSFbnfVzZk0atJoYON9A+P4NN/Krnt6vesSUgFFT6im3y3Bk\nyXpseL8oskQ0dU7t4MSDOgg3nwpbl1zceUx0aGVceTmUm3doEKVtfowmDN+/4eSEqqf3q14xJWDU\nlHrK7ZLnMoZJ+wWUY7e+8+F1g9rP4HzP/X1T5DFx5eWQNe+QED3y6O1TFi5ZTdfKbs5Z9ODWBWWi\nCM/4Hqp9v57er3rFfAJGTamnmb7DkSXrsXH7CQyIiKnU+fIgLe9QsG3i3MWR+wS98XJy/wzVvl9P\n71e9YkrAqCn1FM+9Q1tr5BKHlVjGsNz9hnO+LDl40iZpVWK+RZwsQbx/1jqGI1M9vV/1ipmDjJpS\nL2sAdK3sHrDIecAIIfMyhlmuo1LXG5WnJ6hn+t47Rh4TlCfZyStpQ4+71qx5iYLrGY5M9fJ+1TOm\nBIyaUi/x3AuXrI5c8zbBZD2ArNdRieud17UqclLWWyfsQOfUDq791NsHKYLpe+/ItZ96O5BsJ6+k\nDT3uWpPWDwgTrA0xHJnq5f2qZ2zGsGFAbD57GDyDtdbsfd7tsSkfHrvkPanHx11r4MaN2/bEgmPL\nETOWtNnHYUoXsc9LpkajnBnD5hMwDJJt6fXmRMw6GSyOoawxXE5MfprtPvj/rJiJZ2F6evti8xyZ\nXb8ymDnIMOifaBVFvTU2w50MNpQ1hisdk985tSOzWahP1ez6OWIjAcPAxd1HIWRzDFeTuDTPSYus\nhMmScTXI3An9awwvX/vCgDQTpb3+VzZtjrTdn7PoQc6+8YFB54lK/x1FR3sbR+43bkBW1BMPspQQ\nlcKUgGEQb/JRklMW14LSNM9RqaLTGM4aw/M7J0emgY4jMOUkpYp+ekMP27aOoCdiXei9dmrj5hXd\nA1ZBu3lFN9P23LHunk0RMcewYZCenjkv0mzoaesCDJW0etOcz3H3Kwtx9zSuzjifQL057OsJSyVt\nGGVSi3jyNBt62jrAQyVLvWnO5+E4y8udxRsnS7057IuKKQHDoDbx5Gnx71nWBRgKWepNcz7HOcvb\n21oTcwclHRtXXm49Rnnk6hMQkTOAk/y/7cD9/pz7A7er6vw8z28Y5ZAlP02lUipAeo94OKGgSeae\nLPWmOZ/j1nS+8Pg3p64RHDe6iqvzxIM6uHlFd9OsH11tch0JqOp3VHWmqs4E7gEeA1pU9TBgvIjs\nm+f5DaOSRJlvzr7xgSGbZ9J6xEMNBU0z94yIOTwo71rZzeKHnhl83hHCtD3dTOQsI6dyR1dx+8/v\nnMyJB3UMWAXNooMqR1Wig0SkA9gVF2yxyBcvBWYAj1RDBsMYLlHmGwWuXfbkkCJV4nq+QQ93qKGg\nSeae+Z2TaZHodBgtkjybt2+Lbk3tDNlGTuVm/4zav2tlt0UH5Ui1fAJnAt8BtgOCmSMbgV2idhaR\n00RkuYgsX7cuOn7bMKpNUhhpJXPrBA1buesAB6SZeyKiMLeWJ613ALVxxtqaAPmS+0hAREYARwHn\nA+8DgjHwGGKUkKpeBVwFLkQ0bxkNIwt5pJZI6ymXuw4wxIdUZplRnGV942pjawLkSzXMQYcDy1RV\nRWQFzgS0DJgCmCo36ookx++cWZNi890kNY6VdCZnIc2MNHZ0K+tfGbxuwtjRrYweNXJYS1+WS/je\n7NDWighseKV3wH2yNQHypRrmoFnA3f57F/BREfk68EEgeukhw6gBWXLfRDlVW1sktnGsxRq30/bc\nkZYSQcNO3WMP2C3yuDfttn3sOsHtba0VD5ktvTcbenpZ/0rvoPsUl9cpKd+TkZ3clYCqfkFVb/Hf\nNwIzcSPNggQ3AAAa10lEQVSBI1X1xbzPbxhZSbM9L1yyOtKhut2okbGNYy3s2QuXrKavRNDAqQvx\neZLu82sUlPopLjvpQB644F0VH72k+R+C+xQnb1y5UR5Vzx2kquvpjxAyjEGkmU/yMq+k2Z7jtr8Y\nsSRl1jrjCK6xe0PPVht/R8ZlIId6HYGD+965R0Xez0rf9+Gs3Zz1eCMdSyBn1BVRicnCScfStg+H\nNNvzUGzTQzmm9BqjErABsfdhqNcB8Q1rHvc9y3rIlVjjwEjG0kYYdUUWk0xe5pW0/EFDyS80lGPO\n/2l8euUsy0BmuY64OKG4hjXufOcsepCJcxczfcHSSD9H18pupi9YGrlPnP+hVGZbJzhfbCRg1BVD\nNWVUwjSQlmc/Sx7+cussZV7XKl7elJxfP81EkuU6lq99gWuXPTlgKcmkhjUtuVvUyCBt9FAqZ1x0\nUEA1I6yaCUslbdQVaSmda5XyuVrEpXAOEzcPAMq7D+XY+LOmjg6fv9GfVT1jqaSNwpKHSaZIZEkO\nF7dPufehc2oH9849iicWHBvrDA5IM90EhEcMNsmrGJg5yKgr8jDJJFHtiVxpJPXykyiNHKo0Qb3n\nLHowUb6wT8EmeRUDMwcZTUtcquO81xFIIsgAWi6XnXRgVWSeOHcxcS1G6b2rx/vbLJg5yDAyUOvE\nZFGRM/M7J7PdqGizS1Lun7xnIQckLfwy3FTSRm0wc5DRtNTSZp0UOXPxCZMzL64SECivvBvYuPTX\ncY17uamkjepjSsBoWqpls47yOySNQoLImShfxbQ9d4xNYlcN5VVpn4xRe8wnYDQt1bBZx50jbjKY\nAE8sODaxTgu9NNIoxydgIwGjaRlKr7ZrZTcX3vonNvh8QWNHt3LBcW+OPSauxx8XBbRDW2uq3Gkr\nkhlGOZgSMJqacmzWXSu7mfOTB+kNZehc/0ovc256cGtdpSTNtG0dIQPqAnh502a6VnZXdBayYSRh\nSsCoOfUWqx/HwiWrBzXaAL19GuuUjfM7dLS38cqmzYMWd0mqK0xRHK5FebbNjIWIGjWlFouuDJWh\npDVOmuG8IWJ1r7TzFIkiPdtmJlEJiMjuIjLSf39nxPZWEXljXsIZjU+1YvWTsllmJS1ldBRJsfJx\nx9R6Rm0l7hXEP9uzbnxgWPUalSXNHPR94F9E5GDg9SKyI/A6oAX4FXAqsD3wmVylNArPUBdAqdS5\nK5ELP26N4fDykvO6VnH9/U/Rp0qLCB86ZA/md0ZHG9WjgzfqXp114wNceOufuPD4eAd4FEnPsJLr\nQBjDI80ctAXoAT6MW3joM0AHsCtwIPBeYE6eAhrFJ8ksUI3ecKVGG8vXvhBZfvBeY+mc2rE15UMQ\n9dOnyjXLnmRe16rI4+pxRm3cko8benrLNuWkPcNqzs424olVAiLyLmAscIj/2+43/QC4AVgPfFpV\nG8OAaeTGcBZAqQSVGm1cf/9TkeXLHl+fuD2uHMrL5FkNku5JuY12lsyjjeL/KDJJ5qB/AnYHTsb1\n/oO3cyJwEbAbcFau0hk1pxLRHUmNcDXCHSs1Mzgue2a451/OcZWk3OcUt3/ako/dG3qYOHdx2Qvq\nxNVZa/+HkaAEVPUkEfk5cDZwJfAnYB/gAeB4nBL4mYg8oKrPVENYo7pUypae1gjnHe545H7jIjNz\nHrnfuLLqiZvgFSR2S9ueF+U+p6T9o/wUpSjZ34Xg2cbNnLYJbrUnzScgwCjgRb/v08DvgGXAZOAK\n4J/zFNCoHZWypdd6IZg7H15XVnkcHzpkj8TytO15Ue5zSto/8FOMHZ0+c7mcd6Ee/R+GIy066AfA\nOtxIYDfgcpyJaC3OV7AC+HaeAhq1o1K29FrPcK3UdczvnAwQGf2TZXtelHt9aeXh3nvwzOIMWuXc\nw6JMcGs2YpWAiLSp6iIfFnoR8CBwJ04RvAv4tqoeICIfqI6oRrWpZJbNWjYAlbyO+Z2TExv1tO3l\nksXWX+71Zd0//MziktaZTb/4JJmDbhCRu4DDcM7hSbh5A7uqSz36qoi0q+or+Ytp1IJam3EqRVGv\nI+uM23Kvbyj3o6j30EgnSQnMBi4ATgJ+DdwHfAOYJCJtQDdweO4SGjWjUey4Rb2OrLb+cq9vKPej\nqPfQSCfTegIicijwnKo+ISI7qerfROTtwOOq+lyeAtp6AkajkTWcM2493yxrDtQLlkCuNlR8PQFV\nXRb6/jf/dS1wnIj8UlXXli+m0cw0UuNQzrWUE85ZrZXP8qJSIcZGvqQlkDtcRB7x348VkYmhzW8E\n3gk8IiLjU+q5QkSO89+/LyL3ici8YcpuFJRaZJesVFK0qHrLuZZywjmLboevVnJAY3gkpY34FnAa\n8JKICM438D8icrmIjFPVu4D7gceBWJOQiByOcybfJiKzgRZVPQwYLyL7VvBajIJQ7cYhT6VT7rWU\nE7ZZdDt8NZIDGsMn0hzk00evAb4O3O+jgT4mImOAc4CHROTPwCbgaFWNnF4oIq3A94DbReR9wExg\nkd+8FJgBPFKxqzEKQbUbh7TJUcOh3Gsp18RT5Nj6opuzmoW4kcBIYDTweWA3EfmmiFwP3IUbHfwO\n2BHoUtX47FjwMeDPwKXAwcCZuKgigI3ALlEHichpIrJcRJavW1ferE6j/ql2Hv08lU6511J0E0+Y\nNBNbI11rIxOnBLbBpYsYAfTh1g74KvBeVe1Q1dnAEcCnRCQpTGEqcJWqPgtcA9wNBL+OMXHnV9Wr\nVHWaqk4bN668/C5G/VPtxiFPpROXfyiuvOgmnoAsJrZGudZGJ9IcpKovAl8EEJETVPU2//16EVkH\nPI9LJ3Ee8F0RWRaKGgrzKPAG/30asBfOBLQMmAKYh6gJqXYaiTwXbxlKXqIim3gCsprYGuFaG50s\nIaLhUOXpwGdxq4sdCHwcOCVGAYCbYfwDETkZaMX5BG710UTHAIcOUW6j4FSzcchT6dS78zOvUNx6\nv24jO5nmCYR4SVV/BiAiPwNuUNW743ZW1b8DA3ILichM4GjgUj/iMIzcyaJ0htJg1rPzM884/Xq+\nbqM8siiBbUXkB7iJiruJyBU4p+5jOEdvWajqevojhAyjaiQ18kNtMOtxneCAtPDV4YwQ6vm6jfLI\nogTOArbDmYVuwUUN7YZzDM8Xkd8CJ6nq5tykNIxhktbIDzWMtNZpspOIM80E1z6cEUI9X7dRHqlK\nQFWXxm3zieTebwrAGA7VSCGR1sgPx8ZdK+dn2n2LM9m0iFRk3oQ5fRuDtJXFABCRFhFpCf2/J4Cq\n9qjqj/MSzmh8qpVCIq2Rr/bcheGS5b7FheLGrXlsTt3mJJMSAF4D1olIu///NznJYzQZ1UohkdbI\nF21iU5b71jm1gxMP6hiwBvKJB3XQUTCFZ+RLUu6gc0XkPP/vKlXdEdje/29dBqMiVCvUMK2RL9rE\npiz3rWtlNzev6N7a8+9T5eYV3Ry537hCKTwjX5J8AiuA80XkaPrnCqwRkb0hdslRwyiLaoUaZnFk\nFsnGneW+xY0W7nx4HZfMnpyLH6aRUoQ3C7FKQFV/DfxaRI4BLvbFvcD7qyGY0RxUM9SwSI18Glnu\nW9JoIY97YesHFJO09QQ+BvwlVPRH4ESgQ0RuEZGbReTDeQpoNDZFM8PUC1nuW7Wd3bZ+QDGJHQmI\nyGeAM4CPhooVOB24FfgmsCcwF7guRxmNBqeReujVJO2+VXtCl6WSKCZJPoFrgO+rao/46AIAVX1Q\nRF5R1d+IyI5AZ95CGumYLdYopdoTuuL8FCNEmDh3sb2XdUqST2CDiBwqInsBiMgoYNuSfV4AZucp\noJGO2WKNOKo5yooaeQBbo5PsvaxPkkJEJwBdwMsAqroJ+ESV5DLKwGyxRj1Q6qdoCVkQAuy9rD+S\nRgJPisgMVX1URLpE5AXgAL95+7jjjOpjtlijXgiPPCbOXRy5j72X9UVi7iBVfdR/3QF4TVV7/f8z\ngn1EZFtVfTUn+YwMWFrf5qFIvh97L4tBatoI7wtYCUwO0kao6hq/7W04k5FRQ4qW8sAYGtXKs1Qp\n7L0sBlmyiG4SkdcBc4AJIjIGWArcBlwFfDJfEY00LK1vczDUdNe1wt7LYpA0T2AG8Fff61+rqh/y\n5e243v/ngH9LWlnMqB4Wa9/4FNH3Y+9l/ZNkDvoIcIeIdAN7iMj5InIL8HPgdmA/4B99LiHDMHKm\naOmujWKQpATOVdU3AicDdwLH42YIz1TVS1X1EWA+8J38xTQMw2zsRh4k+QQ+LSInAXcDzwEPA08C\nt4vIalyW0TcDP8xbSMMwzMZu5EOSEvg5cA8wE9gft9D8N4F/8tuuBM5XVcsbZBhVwmzsRqVJUgL/\niUsdvSNwEE4hfAfYHfgFsBo4VURuV9X/y1tQo7EoUry7YTQySUrgPcA8YB0ue+jfgC8BdwDLcOag\nRcDngXPyFdNoJPLMdWTKxTDKI8kxfCrwPPAM8Hvgt8DbgQ3A4cClqvorYGreQhqNRV65joo2mcow\n6oGk3EGXA4jINjjzTw/OFPQnVX0FCFJKHJu3kEZjkVe8e9EmUxlGPZCaNkJVX1PVv6vqZlVdo6r/\nU7K9fmeqGHVJXvHuRZxMZRi1JlUJGEalySve3SZTGUb5mBIwqk5e6wrbZCrDKJ/UBHLDQURGAo/7\nD8BngbNw8w5uV9X5eZ7fqF/yiHe3yVSGUT65KgHcIjTXq+rnAURkNtCiqoeJyBUisq9PP2EYFcEm\nUxlGeeStBA4FThCR6cBa4EXc3AJw6ahnAIOUgIicBpwGMGHChJxFNAzDaF7y9gn8AXiHqs7AzS84\nBgiCtjcCu0QdpKpXqeo0VZ02bty4nEU0DMNoXvJWAg+p6jP++8PAzkAQqjGmCuc3DMMwEsi7Ef6x\niEwRkRbgBOBM+tcnngKsyfn8hmFUmK6V3UxfsJSJcxczfcFSm5FdcPL2CVwEXIfLQHorbkWye0Rk\nPM40dGjO5zcMo4LkmffJqA25jgRU9Y+qeoCqTlbV81V1Iy419TLgSFV9Mc/zG4ZRWfLK+2TUjrxH\nAoNQ1fX0RwgZhlEgLDVH41F1JWAYeWKppPNlfHsb3RENvqXmKC4WnWM0DJZKOn8sNUfjYUrAaBjM\nXp0/eeV9MmqHmYOMhsHs1dXBUnM0FjYSMBoGSyVtGOVjSsBoGMxebRjlY+Ygo2GwVNKGUT6mBIyG\nwuzVhlEeZg4yDMNoYkwJGIZhNDGmBAzDMJoYUwKGYRhNjCkBwzCMJsaUgGEYRhNjSsAwDKOJsXkC\nhtGEWMptI8CUgGE0GbZEpBHGzEGG0WRYym0jjI0EDKNAVMKMYym3jTCmBAzDU+928kqZcdpHt7L+\nld7IcqP5MHOQYVCMpSkrZcZRLa/caGxMCRgGxbCTV8qM82LP4FFAUrnR2JgSMAyKYSev1MpptgKb\nEcaUgJELXSu7mb5gKRPnLmb6gqV1ZVaJImvDWMvrqtTKabYCmxHGlIBRcYpgXy8lS8NY6+vqnNrB\nJbMn09HehgAd7W1cMnty2c7rStVjNAaide4NmjZtmi5fvrzWYhhlMH3BUrojzCgd7W3cO/eoGkiU\njbTooKJel9F8iMgKVZ2WZV8LETUqThHs61GkLU1Z1OsyjCTMHGRUnEZ1PDbqdRnNTVWUgIjsIiIr\n/ffvi8h9IjKvGuc2qk+jOh4b9bqM5qZaI4GvAm0iMhtoUdXDgPEism+Vzm9UkUZ1PDbqdRnNTe6O\nYRE5CvggsB/wEPALVb1dRN4PbK+qV0cccxpwGsCECRMOWrt2ba4yGoZhNBLlOIZzHQmIyCjgS8Bc\nX7QdEMTTbQR2iTpOVa9S1WmqOm3cuHF5imgYhtHU5G0Omgtcrqob/P8vAYEXbUwVzm8YhmEkkHeI\n6DuBo0TkTOBAYALwFLAMmALUT2IWwzCMJiRXJaCqRwTfReQu4HjgHhEZDxwDHJrn+Q3DMIxkqmaO\nUdWZqroRmIkbCRypqi9W6/yGYRjGYKo+Y1hV1wOLqn1ewzAMYzDmmDUMw2hiTAkYhmE0MaYEDMMw\nmhhTAoZhGE2MKQHDMIwmxpSAYRhGE2NKwDAMo4kxJWAYhtHEmBIwDMNoYkwJGIZhNDGmBAzDMJoY\nUwKGYRhNjCkBwzCMJsaUgGEYRhNjSsAwDKOJMSVgGIbRxJgSMAzDaGJMCRiGYTQxpgQMwzCaGFMC\nhmEYTYwpAcMwjCZmZK0FyIOuld0sXLKapzf0ML69jTmzJtE5taPWYhmGYdQdDacEulZ2c94tq+jp\n7QOge0MP592yCsAUgWEYRgkNZw5auGT1VgUQ0NPbx8Ilq2skkWEYRv3ScErg6Q09ZZUbhmE0Mw2n\nBMa3t5VVbhiG0czkrgREZEcROVpEds77XABzZk2irbVlQFlbawtzZk2qxukNwzAKRa5KQER2AxYD\nBwN3isg4Efm+iNwnIvPyOGfn1A4umT2ZjvY2BOhob+OS2ZPNKWwYhhFB3tFBbwbOVtVlIjIWOApo\nUdXDROQKEdlXVR+p9Ek7p3ZYo28YhpGBXJWAqv4KQESOwI0GdgQW+c1LgRlAxZWAYRiGkY1q+AQE\nOAnoBQTo9ps2ArvEHHOaiCwXkeXr1q3LW0TDMIymJXcloI4zgfuAQ4EgTGdM3PlV9SpVnaaq08aN\nG5e3iIZhGE1L3o7hz4vIx/y/7cACnAkIYAqwJs/zG4ZhGMnk7Ri+ClgkIqcCfwS6gLtFZDxwDG5k\nYBiGYdQIUdXqntBFCR0N3K2qz2bYfx2wNkeRdgaez7H+vCiq3FBc2YsqNxRXdpN7aOypqpls6VVX\nAvWGiCxX1Wm1lqNciio3FFf2osoNxZXd5M6fhksbYRiGYWTHlIBhGEYTY0rAOa+LSFHlhuLKXlS5\nobiym9w50/Q+AcMwjGbGRgKGYRhNTNMpgWqntjYMw6hnmkoJ1CK1dSURkV1EZKX/Xgi5RWSkiDwp\nInf5z+SiyA7gs90e578XQm4ROSN0vx8Qke8WQXYRGSsit4vIPSJypS+re7kBRGSiiCz2sn/NlxVC\n9qZSAvSntr4YWEIotTUwXkT2ral06XwVaBOR2RRH7gOA61V1pqrOBPalILKLyOHArqp6W5Huuap+\nJ3S/7wEeoxiyfxS4RlUPB7YXkXMphtwA/wH8u5d99yK9L02lBFT1V35tgyC19SwGp7auS0TkKOBl\n4FlgJgWRG5ca5AQR+a2IXAu8kwLILiKtwPeANSLyPop1zwEQkQ5gV2B3iiH734BJItIO7AHsRTHk\nBngj8D/++/8BX6MgsjeVEoChpbauNSIyCvgSMNcXbUcB5Pb8AXiHqs4ANuByRhVB9o8BfwYuxXUY\nzqQYcoc5E/gOxXlffosbKX4OeBjYhmLIDXATcIE3Hb4b1/AXQvamUwJDSW1dB8wFLlfVDf7/lyiG\n3AAPqeoz/vvDuJwqRZB9KnCVz291DXA3xZAbABEZgTN33klx3pevAKer6kW4d+XDFENuVHU+8HPg\nVOBHFOee169geVDg1NbvBM4UkbuAA4HjKIbcAD8WkSki0gKcgOudFkH2R4E3+O/TcKaJIsgdcDiw\nTN1EoBUUQ/bRwGT/rhxCcX6fAQ8AE4CvU5x73lyTxXwG00W4YeYfgfNwPbxf41Nbq+qLtZMwHa8I\njsc5/OpebhF5C3AdzvR2K86BVveyi8j2wA9ww/hW4GSc/HUtd4CIfAVYrqq3iMjrKMY9Pxi4GtgT\n+B1wIgWQO0BEvgw8qqo/Lso9hyZTAlGUm9q6Xiiq3FBc2YsqNxRX9qLKDcWRvemVgGEYRjPTVD4B\nwzAMYyCmBAzDMJqYvNcYNoymwk90eg3YrKq9tZbHMNKwkYDR0IhIq4iM9N+38fHzpftsE1E2TkQO\nGcIp/w2YA5wlIt8On8/nUbpVRLYrOdciEZk1hHMZxrAxJWA0OscBN4nIaOByYImIrBCRp0VkiYjc\ngUsqWMo44EYRGVPm+XqAzbi0Ae0MTBcwA2hX1ZdF5CR//l/48n8XkV+IyC9FZEKZ5zSMIWPRQUbD\n4xvV54AP4nrpr8PNW3jC73IhLqa7RVU3hY67GLhDVX8TKmsF+lR1i4j8A3AZzvwT8HqgBXgGN79g\njKru7Y+9BjdP5V5AcYrmNeAbwI3A/bhZpo+G5TCMPDElYDQsIjIdN/FoC3AzzgfWAtwGzAMeBLqA\n+bhEa5fglMNuwLpQVaNxEwxf9HV8QFV/IyLHA7NV9ZTQOY8HjlbVz4pIi6r2+fK3Az/EpXK4AZcL\n6nRgB1ym1b8C63EZV39Y4VthGLGYY9hoZPbApdn4NHCbqr4MICL742bTviYiewJPq+pdwA1+pucq\nVd0zqMTng29R1S+X1B/Vg3oaNxoAuFpEfqKqt+FGIjfiFMFDwHhc1sk+3KjhaZwSeL2IvEtV7xj2\n1RtGBswnYDQsqnqDqp6La1x39b6Ae3Api5f4FBy9wI9E5Ax/zEbgLyIyJVTVe4CoRlmAThF5WESe\nEpEbcZkj9/FpJ47HZSJFVR/HpSjpBS7GjUDeCnTiMme+w39/0hSAUU1sJGA0C2tV9aCM+16Bi/L5\nqI8Q2k5Vfxex32jgBlU9XUQ6gXeq6jPiVrA7B2faeQxA3HKmPwf+AvwY+GdgMnAY/QnGPoHzVxhG\n1bCRgNEs7O9DNDf4JReDz9Mick54R1X9KbCniHwA+DZwbkydu+FyxYNrvJ/33+8HzsA5nIM6n8dF\nBr0Zl09mLf2/v4twCgWcz8IwqoaNBIxm4RbgI8BLqnpgUCgicxkY3RNwKvAn4E5VXRJT50HAPSKy\nA8738Jj3KUwE/qyqz4nIkbje/57AuX61rzbgMzjn8C44/0AHLrPtg8O+UsMoAxsJGA2Nnwg2FrhM\nVX+f8Zh3A9cCXwReFZGficihJfu0Ae8CfoWL9pkBPIJbxOW7wCYR+VdcBNCxuHDUq4FZqvoW4Enc\nSOI24Gzc/IILgVOjJq8ZRl5YiKjR0IjIW4GPqurZ/v8XcY11wK70x+n/K84J/DDwb6r6qD/mBNza\nE7sCd+Ea7WOBE1T1BL/PO3ArSn1OVW/1cxN+CewN7KuqwZwE/IzhnwArgStUtTtUvhD4T1V9uPJ3\nwzAGY0rAaCpEZLsgVLSkXHChpLeq6tMxx+4H7KeqXf7/UcGkLp8eYidVXRfavxXYRVX/msOlGEZF\nMCVgGIbRxJhPwDAMo4kxJWAYhtHEmBIwDMNoYkwJGIZhNDGmBAzDMJqY/w+PhL+xxoEBtQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sentinels = {'stdchn': [' '], 'stdmat': [' ']}\n", + "df = pd.read_csv('CEPS.csv',encoding='gb2312', na_values=sentinels)\n", + "df = df.head(200)\n", + "\n", + "x1=df['stdchn']\n", + "x=[]\n", + "for x2 in x1:\n", + " x.append(float(x2))\n", + "y=[]\n", + "y1=df['stdmat']\n", + "for y2 in y1:\n", + " y.append(float(y2))\n", + "\n", + "fig=plt.figure()\n", + "ax1=fig.add_subplot()\n", + "plt.title('语文成绩和数学成绩散点图', fontsize=20)\n", + "plt.xlabel('语文成绩', fontsize=12)\n", + "plt.ylabel('数学成绩', fontsize=12)\n", + "plt.scatter(x, y)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 饼图\n", + "对问题“你是独生子女吗”(b01)的回答有“是”和“否”两种回答,相应的数字分别是1和2。请画一个饼图反映二者的比例。" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\pandas\\computation\\expressions.py:182: UserWarning: evaluating in Python space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead\n", + " unsupported[op_str]))\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAD6CAYAAACWAD2nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XHW9//HXd9Zksrdpmu5pS2iLhRZKCWU9XGQNInUF\nWVTUq1e9Xq/e683PteJC3Ffk6lVAEBUR0EIARcoAIgRaSkuhpGlpStts3bI0k8ks5/v740wg1K6Z\nyXxPZj7PxyMP0pnMzDth+u433/M936O01gghhDDPYzqAEEIIhxSyEEK4hBSyEEK4hBSyEEK4hBSy\nEEK4hBSyEEK4hM90ADF+hMOqEmgEPgbMAq4BvmZZ2k7zeecBm4ApwDzL0o+lbv89cJ9l6bsO8phF\nwIuWpe1wWN0IJCxLf+kQz68An2Xp+CiyXQp8Eqi3rCOvEU29VgCIHc3XCzGSFLI4Fu8FsCydCIfV\nlUDVoco4HFafAz4NtB9w11Tgh5alvz3itk8AE4A5wO+Ax1K3R4G9h8jyAE5R/hkYAhKHyT0FWBkO\nqyHgwJJcBBQBMy1L7zjIYy3g2UOVa6qAtwK7gWLgJuDDQCIcVsOPOQmotCzdd5iMQkghi6MTDqsg\n8F/A2anP/xWIhsPqhdSXKKAQOMWy9H4gDjyPU5wjXQbEDrjta8DLwO8tS/8kHFa/BE4FZgJnhcNq\nP7DSsvSXU1kWATaw8miyW5ZuTz3fyO9nBvBD4EHghkOUMcA7gIsO89w6HFYJy9KnhsNqBbDXsvSi\nA16rW8pYHA0pZHG0vgTUWJbeEQ6r/wGaLEt/PBxWVcAu4HLgA6kyBvDijG43H/A8e1P3ARAOq8XA\n74GfA2enbp4JXAGsAH6DM/p934jn+CgQAjaGwwqgEtDhsLoG5x+GEmC5Zenmg30j4bC6CvgC8EnL\n0uED7psOPAJEcP5+zADuSr0OOKPgASCIM42xjTePzpPhsLoOKLcs/eNwWHk4/OhdiNdJIYsjCofV\necByYFc4rGpwphgWp+5+EZiGU4TfG/GwGHAGzq/rIxUDz434cyvwTmAj0JGaAjjYNIidyjIHZ+56\ngWXpnanbVuDMIX/9KL+l44DfHFjGAKmR8oLU834d+INl6W+k/jwPeDT12oebH54B9KQ+L+fQ0y5C\nvIkUsjga/8Ap5FWWpdvCYXU8UJ4qzziQBF6xLP3KiINaP7Es/eNDPWE4rAI4JToAvBQOq/cCVamP\ng63+GR6ilgEfBzoO89ye4bnt1EG5b+CMaodNT9132YjbioBvWJb+Y+o+P86c+bIRX3MhcO9RHKyr\nwPmHZvjzPUf4eiEAKWRxFCxLDwGbRvzangTCOMUIzijwr+GwuhCnoO8ChkYc1JqM8yv+a6k/D5f2\nJ4HmcFi9A2flxv04o20PztxuNXBW6jFPprKsBdaGw6oxHFbvwpkOGDllEQB+CXwz9fUPpp7rdeGw\nakjd13iYb/vtONMiZ4fDaiXOwcCPAVcd/qcFOAcjPx8Oq8+PeM0B4DzL0s8exeNFnpJ1yGI0vgo0\nW5ZeBWBZel/qtjuANsvSpwJXAxtw5oW/BdxiWfqs1J/PA06zLN0cDqvTcIr5Ct4Yxa5Pfc1K4GOW\npY8DPjQygGXpBsvSx1mWng/8FPiRZen5lqXnWJb+ZrrfYGqkvBx4G9CS+t5esiy9/iBfPim1RO9d\nOIOcr1qWXmxZejFwCnAazlz6gStOhHgTKWRxTFLzqPW8MToedgvOvOnS1J/fC8wf8ev99eGwegoY\n/pgAkBoxXmBZuheoAdotS3/GsnTXiNc8AVg1Nt/RoVmWftay9PXAz4DzgWXhsPpWOKwmHfClvZal\nr8T5GSwEHg+HVTgcVmHgcZx/rCo5zDSLECBTFuLYeHBO4FhqWToWDqsinKVuw8u/Lkz9twZnDfLf\nwmH1MLATuN2y9BeHnygcVt5wWIUsS0dwRpjX4MzjTg+H1TuBUuBknDnjKHBGqpg3coQTL4bnsVNT\nLQfeF8SZCjnUMjdSKyOOx1mD/EGcke0SYD/O0r+XwmH1I8vS30i91o2pn8H3D/F8M4D3WJZOHuo1\nhQApZHFs/KSKLjVSXg/cO3xnqown4Ixmv25Z+qbUlMQHgMvCYfVhnDIN4hT524AmnLW+y3FG1UU4\nJ3JsAT4DbAO2p15rOtCNM389co4agHBYXZH6VAHBcFidYlk6NuJ+L87BtjjO9MKh/Fvq/idxlvJt\nHHHfl8JhdStw7vD3DPzfoZ4oHFZfBD6Ls8xOiMNScsUQMVrhsAqMLLwRt8+2LL3VRKYjGbkCI0uv\nFwLiozltW+QfKWQhhHAJOagnhBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAu\nIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIdtvCtepaWhSOJdymgJMOsRHEc6AQqX+O/Jz\nG+gH+oBeYB/OlbF34Wzf2QZsaWusj2brexLiaMhub8KYmoamIFCLc5Xn+SM+5uEU7ljSOPsstx7w\nsb6tsX7bGL+2EAclhSyypqahqQY4E+dKzsuAk3Dnb2kdwNOpj2eA1TKaFtkghSzGTE1DUzVwCXCe\n1vpcpdRM05lGKQ68gHN9vAeAv7c11svlmETGSSGLjKppaJoLLNdaLwdOV0rl4oHjvcBDOFfFfrit\nsb7PcB6RI6SQRdpqGpoW45TwO5RSC03nybI4zsj5XuCutsb6vYbziHFMClmMSk1DUxlwjdb6Y3lY\nwocSA+4HbgMekmkNcaykkMUxqWloOk3b9r+huFIpT4HpPC62E/gV8Mu2xvrtpsOI8UEKWRxRTUNT\nIXCdtpOfVB6vjIaPjQ38GbixrbH+OdNhhLtJIYtDqmloCmk7+Qngc8rjrTSdJwf8DaeYV5kOItxJ\nCln8k5qGpmKdiH0a5fms8vrKTefJQc8ANwL3tzXWy19A8TopZPG6moamUp2IfRaP99PK4y01nScP\nvAj8v7bG+ibTQYQ7SCELahqavHYs+u/K6/uq8vqkiLPvL8Bn2hrrXzYdRJglhZznZvzH7y9VXv9N\nnkBBjekseS4B/Bz4Sltj/R7TYYQZUsh5auan75qhtb7VW1hyvuks4k32AV8FbmprrE+YDiOySwo5\nz9Q0NHkS+/fe4C0s/W/l9QVM5xGHtB64rq2xfp3pICJ7pJDzyNTrf3KSt2TSH72FJbWms4ijEge+\nhrNUTkbLeUAKOQ+EautU+Tnv/5p/wrTPKa/PbzqPOGargffLQb/cJ4Wc46qv+U6Nr6zqT76SykWm\ns4i0DAFfBr7b1lhvmw4jxoYUcg6b+sGffNw3Ydp3PP5gyHQWkTFPAle2Nda3mw4iMk8KOQeVLr2i\nsHjRRb8PVM683HQWMSa6cEo5bDqIyCwp5BxTcf6HFxQdf8b9vrLJc01nEWMqiXOW33dMBxGZI4Wc\nRUqpjTjbMo60QGs9LRPPX/m2/3p74ZxTf+0tLCnLxPOJceG3wIfbGusHTQcR6ZNCziKl1FrgrgNu\nfr/WekE6zxuqrfMUL7r4y4U1iz+vfAFZRZF/ngfe3tZYv8N0EJEeKeQsShXyRw64+Rat9Umjfc5Q\nbV2otO5ddwSnLViulFLpJRTj2HbggrbG+hbTQcToSSFnkVLqHmDiATfHtdYXjOb5QrV1VWXL3nNf\ncOr8M9JPJ3LAbuCStsb61aaDiNGRQs4CpdQC4F9xDsQcjAdYqbUOH+1zhuadMbvs9HevDE45Xq7g\nIUbqB66QTfDHJynkLFBKBYBi4FJgAzAFOBv4JuAFAsB+rfVRHZgpeos1v6zuXX8OVM0+fowii/Ft\nCLiqrbH+PtNBxLHxmA6QD7TWMa31XuAzOKPkQeA9wD3A3cB5R1vGxYsuXFx2xpUPSRmLwwgCd9c0\nNF1vOog4NjJCzhKlVD3wecCPc221mNZ6xbE8R8nii5eV1r3rbn/FlIwskxM5TwPXtjXW32k6iDg6\nUshZoJSaBTwMXIDzl+TTOFMWHqAQqARu0lp//VDPUXTCueeUn3X1nf4J06ZnIbLIHQngHW2N9feb\nDiKOTAo5S5RSlVrr3aN5bOj4ZeeUn3X1rYGq2XMynUvkhSjO6ouw6SDi8KSQXS5UW7e09PR3314w\nbcF801nEuNYP/IssiXM3OajnYqHauoXFiy6+WcpYZEAJ8HBNQ1NaZ4WKsSWF7FKh2ro5oXln/qRw\n7tIlprOInDER+EtNQ1OV6SDi4KSQXShUW1cdnDr/20UnnHe2nA0tMmwGzpI42fPEhaSQXSZUW1fm\nLZ7wxZIlb7tYeTxe03lETjoH+IHpEOKfSSG7SKi2zofH+7Gy09+z3BMoLDKdR+S0T9Q0NH3QdAjx\nZlLI7rK8dMnl1/rKqqaaDiLyws01DU2nmQ4h3iCF7BKh2rolhXOXfqJg5olvMZ1F5I0gcG9NQ9Nk\n00GEQwrZBUK1dVP9E6d/rvjEC5aZziLyzjTg9pqGJjl67AJSyIaFautCeLyfKl36jvOU1xcwnUfk\npQuBT5kOIaSQjQrV1ingupLFl7zVW1Q+yXQekdcaaxqaZLrMMClks5b6K2ddWjBr8WLTQUTeK8CZ\nuvCZDpLPpJANCdXWlePxfrB06RWnyXpj4RKnAA2mQ+QzKWQDUlMV15QsvuRUb6hMjnALN/lSTUPT\niaZD5CspZDOW+itnXVgwa/HJpoMIcYAA8HNZdWGGFHKWhWrryoEPlCx52ykyVSFcahlwtekQ+UgK\nOYuGpypCxy+b5yueIJdhEm7WWNPQJKfvZ5kUcnadgNd/WmjeWaeYDiLEEUzDuQakyCIp5CwJ1db5\ngGtKFl00xxMoLDedR4ij8JmahqbZpkPkEynk7FnmCZXVFMw86VTTQYQ4SgXA90yHyCdSyFkQqq0r\nAq4sPeWy+crrC5rOI8QxWF7T0HSO6RD5Qgo5Oy72T5xR7a+as8h0ECFG4cumA+QLKeQxFqqtqwIu\nLT7xrccruR6TGJ/Or2loOt10iHwghTz23u6rmBryTZiesxu3JAf2oZMJ0zHE2Pqi6QD5QGmtTWfI\nWaHaumrgxvJzrlsUmFRj/Ky8/rUPMrDxCQDsoQGCU+Yx8eJPsuevP6NwzhJCx9Ud9HHaTrLzfz+M\nr9w5y3vCBR8j+tqLRDY+SdV7biCy6R8UL/yXrH0fwpiT2xrrXzAdIpfJzk5j6yJv8US/f+LMk0wH\nASg5+VJKTr4UgL2P/C9FC88nun0DyYF9hyxjgFj3VopOOIcK641LsPWvXknRwvOIdW5C+eU4ZZ74\nAvBu0yFymUxZjJFQbV0lcG7xwvNr3HaKdKJ/N8mBfQSqZrPn4Z/iK60i0vrMIb8+1t5CZNPTdP7m\nc+y6/ztoO4nWGp1MMLh1LYVzlmQxvTDoHTUNTQtMh8hlUshj5zzlL/AGJs91XVv1P99E8cmXsn/D\nKvyVMyirexdDHZvoW3P/Qb8+MKWWye9rpPqab+MJFjO4ZTWFs09mcMtz+Eoq2XXP14huW5/l70IY\n4AE+bTpELpNCHgOh2rpi4IKiBedOUj5/gek8I2ltE922noKZJxHv3kLJoovxFldQfMJ5RF87eKkG\nJs3GVzwBAP/E6ST27aRowTmUn3U1noIiCucuJbLpqWx+G8Kcq2SPi7EjhTw2Tgd8wWnzXbfueGj7\nSwSnzkMpha98KomeTuf2zlZ8pVUHfczuB75HrPtVtJ0ksulp/FVzAIjv3YmvfArK60cODueNEuBK\n0yFylRRyhoVq67xAvb9qjvaGyqaaznOgwa3PUzBjIQDFJ11A9LX1dN75P/SvbaL0tOXEdr/Gvifu\neNNjys68kt0PfJ+OWz9FcNp8CmsWYw9F8BZV4J84g/51D1M4S65ClUc+YjpArpJlbxkWqq2bD/xP\n2RlXzQtOqV1mOo8QY+Sktsb6F02HyDUyQs68s/F44/5Kdyx1E2KMyCh5DEghZ1BqE6G60HF1ZR5/\nUA58iFx2TU1Dk6sOWOcCKeTMWgR4gzMWyuhY5LoK4BLTIXKNFHKGpC7PdIEnWDToK6s63nQeIbLg\nnaYD5Bop5MyZAtQUzFlSqZRHfq4iH1xW09AUMB0il0hxZM4iQAeq5sjoWOSLMkB2lcogKeTMWYZS\nPb7y6uNMBxEii95mOkAukULOgFBtXQUwIzh9YanHF5DVFSKf1JsOkEukkDPjeIDgtPm1poMIkWWz\nahqaTjQdIldIIWfGUiDinzBN5o9FPjrfdIBcIYWcplBtXQA4yVs8IeotLK02nUcIA84wHSBXSCGn\nbw7gDU6dN8V0ECEMOdN0gFwhhZy+4wHtmzB9mukgQhgytaahqcZ0iFwghZy+hUC/r2TSdNNBhDBI\npi0yQAo5DaHaOh8wG+j3FpXJCFnkM5m2yAAp5PRUA55A1ZwJyiuXXhZ5TUbIGSCFnJ7pgApMniPT\nFSLfnVjT0CSDkjRJIadnHhDzlVW77lJNQmSZF5BtA9IkhZyeBUCfJ1RWaTqIEC4gJ0alSQp5lEK1\ndYVAFRDxFBRJIQvh/MYo0iCFPHoTAVsFQn6Pv6DEdBghXEAKOU1SyKNXCXj8E6dPMB1ECJeQQk6T\nFPLoTQK0r3RSuekgQriEFHKapJBHbxow5C2qkEIWwjGhpqGpwnSI8UwKefSmAFFPYYkUshBvqDId\nYDyTQh69yUDU4y8MmQ4ihItMNB1gPJNCHoVQbZ0fKAViyucvMJ1HCBeRQk6DFPLoFAIaQHmlkIUY\nQQo5DVLIo/NGCcsIWYiR5CSpNEghj04BMkIW4mBkhJwGKeTReb2ElccnhSzEG6SQ0yCFPDoFgEJ5\nlPL6AqbDCOEihaYDjGdSyKNTACjlL/CZDiKEy3hNBxjPpJBHxxkh66Q2HUQIl5FBShrkhzc6fgCd\nTNimgwjHhdG/ts+jLW46R75K2DowqcjXFvUW7YR603HGLSnk0UkCCjsphewSb/c8magv3TLLdI48\nNwXYYTrEeCZTFqOjUx9oLbMWbtA+GJxkOoMAIGE6wHgmhTw6I0bGWkbJLtAfqNplOoMApJDTIoU8\nOq+PkNFSyG7QribJe9kdpJDTIG/i0bEBBYDWSbNRBEC7mizrwd1hv+kA45kU8ujYDM8hJ+ODhrMI\noMNTLWdMukOX6QDjmRTy6Lw+KtbxIRkRuEC7t1r2pXaHTtMBxjMp5NGJkBoh2/GhAcNZBDDkCfmG\nkgyZziGkkNMhhTw6AwxPWcQHpZBdYn/CK9NH5kkhp0EKeXQGSB3Us2ODMmXhEr3JoIyQzZNCToMU\n8ujsJ1XIeigiI2SX2JMMyanTZmnkoF5apJBHJ4qz0sJjR/dLIbtEt10mSxDN2sOKXlmHnAYp5FGI\ntDZroA/wJ/p37zOdRzg6dYWcx26WTFekSQp59HqBQHz3a3tMBxGODirl/WzWNtMBxjt5A49eB1Bg\nR/uHZOmbO+ykSnYvNGud6QDjnRTy6LWRulyNPTSw22wUAdDuqQ6azpDnXjAdYLyTQh69XQyfHDLQ\n0204iwDavdVyPTez1poOMN5JIY/eblKFnOjfJUt9XGC3p7LQlt33TOkHtpgOMd5JIY9eN87PTyX2\ntUshu4BWPjWY8MjZemasZ0WvrHJJkxTyKEVam4dwRskFQ52bu7S2ZWTmAn1JnxSyGTJ/nAFSyOl5\nFSjWscG4HenrMB1GwL5EYcx0hjwlhZwBUsjp2URqpUWir1vWYLrAbrtYzhQzQwo5A6SQ07OV1IG9\n+O5tUsgu0GWXy9RRlmmtB4D1pnPkAink9OwgtadFdPtLr2m5BLVxHUxQpjPkG6XUKlb0ylRRBkgh\npyHS2hwHNgNl9mBf1I72y3pkwzqY5DWdIQ89ZDpArpBCTt8LQAlAom9Xm9kool1N9pvOkIekkDNE\nCjl9rzI8j9y9davhLHlvp2eKnD6dRVrrV1jR22Y6R66QQk7f9tR/PYNb12zRdkI2STeow1tdZDpD\nPlFKyeg4g6SQ0xRpbY6SmkfW8aFEore71XSmfDbgKfHHk8g/itnzsOkAuUQKOTOeAkoBYp2tLxvO\nkvf2Jz0R0xnygdY6AjxuOkcukULOjJeGP4lsWd2q7aScnGBQbyIgFzvNAqXUY6zolZ91BkkhZ0Ck\ntXkPztUSyvTQQCzRt1t2vTJobzIka2Kz407TAXKNFHLmPAmUAcS6Nm80nCWvddulcrHTMWZr3Qvc\nZzpHrpFCzpwNw58MbnmuRaYtzOmSi51mwx2s6I2aDpFrpJAzpxvnOnsl9mBfNL5350tHeoAYGx1M\nlPf1GPMo9SvTGXKRvHEzJNLarIEwUAEw+Orq54wGymPtyh0XO907qHlkS4LdkdHvd9S13yaedNeA\nP2Hrdazold3dxoAUcmatxjlrzzO0fcPO5GBfp+lA+Winqg5k+zV7o5pL7hzggjsGWH5XhG09NvW/\njfDsziTn/TrCroGDl3LC1sz8QT/WbQNYtw3wYleSnz4b46xbBhiIaf66JYHf6679knwe9QvTGXKV\nFHIGRVqb9+GUchXA0I6NMko2oN0zJesXO73zxTifOT3II9cWUV2kWNeV5AcXBfnCOUEumuvj+Y6D\nF/L6LpurFvoJf6CI8AeKOHGylxc6k1x7kp/n2pOE/O4qY1vrIeC3pnPkKinkzFsFBAEGXnnyRZ1M\nyDrNLOv2VhXaWd4K9eNLA1ww15kp2RXRVBUpTp/u44ltCZ7dmWTZjINvQvfMjiT3vZLgrFsGuPre\nCAlbozXEbfjrlgSX1Lpi9mWke1jR22M6RK6SQs68VmAXUKxjkXh892uycXeWJZXfE00qI9fWe3p7\ngn1RzenTfWituWtDHL8XDjXrsHSql8c/EOLv1xdRHlQ82Jrgwrk+HtgUZ3qph8t/F+Gxre5ZsONR\n6qemM+QyKeQMi7Q228CDwASAgZanmmXj+uzrT/iyviRr76Dm3x+KcsvlzoyJUoqb6gs5Y7qXBzYd\nvFRPmuxhSonz13B+pZfWPTbvXejnq1aQ8gJFfa2Peza6Y2uOoYR+ghW9T5vOkcukkMfGapwrifji\nu7buSfR0yIkiWdaTLMjqVFEsqXnP3RFuPL+AWeUevvX3IW5f55ww2BPVlBccfIh87X2DrOtMkrQ1\n970SZ1G1M7WxaY/N3ApF0KewXfLPuc/D501nyHVSyGMg0tq8H2fTlckAAxufeEIGydm1O1mc1WHl\nr56Ps6YjyTeeHMK6bYCacg93rI9zzq0DJDVcONfLy7uSfHHVmwfuXz43yLX3DbL45wMsm+7lrXN8\n9A1pqos9nDDJyy/WxHjrHPPzyJG4ftp7Q99TpnPkOiVFMTZCtXWTgUac/ZLtivM/eqW/fPI8w7Hy\nxg+Gvtq2vKylxnSOXJG09TneG/qeNJ0j18kIeYxEWpu7cLblTI2Sw2H5xy97OrVc7DRTInHdLGWc\nHVLIY+tBIAB4Yu0tnYmeDtkrOUvaqZT3doYEvXzOdIZ8IW/aMRRpbW4H/sHwKHnDqsdkxUV27FTV\ncrHTDIjE9bPeG/qeMJ0jX0ghj737cUbJ3lj3q7vj3VtXmw6UD3Z6qgtMZxjvtNY66OU/TefIJ1LI\nYyzS2tyJs+nQFIC+NStX6URMLjE0xjo91Vk/fTrX9ES5z3tD3z9M58gnUsjZcT/OuuSgPdgXHXx1\nzd9MB8p1vd6KYMLGPae4jTPRhI4U+PhX0znyjRRyFkRam/cCdwPVAPtffGRtcqBnh9lUuW8g4TFy\n+nQu2B3RXy78Rt8e0znyjRRy9oSBLqAcYP+LjzwoB/jGVl/SL4U8CnsH9cvTSz3fN50jH0khZ0mk\ntTkO/BpnA3s1tHNjR3xX2xrDsXLa3mTIHZtAjCNJW9uRuL6GFb0yWDBACjm7XgGeZvgA3+o/P2rH\no31mI+WuXXaJzCEfo64Bfdv07/evNZ0jX0khZ1HqMk93AwoI2IN90YENj/5JZi7GRpddLj/YYzAQ\n03sKfOqTpnPkMynkLIu0Nu8B/gBMAxh8dc3WWOdm2dJwDHQwUU6fPkq21rpzv75+wrf6ZN7dIClk\nM1YBL5FaddHX/MdHk4P9XWYj5Z6duONip+PBK7vt2+b+uH+l6Rz5TgrZgEhrcxL4Fc4FUUM6GU/2\nP3//vdpOypxnBrV7sn+x0/Foe6/detOzsY+aziGkkI1JTV3cgjNKVrHOzd3RbevkhJEMaldy+vSR\n9A/pgae2J99203MxWZHiAlLIZq0GngCmA/Q//0BzvKfzFbORckentzpkOoObJW2tn92Z/MSVf4y0\nmM4iHFLIBqVWXfwO6CF1wkjP3++8LznY3200WI6Ie4LeaIKsX1tvvFjXZf/2/NsHfm06h3iDFLJh\nkdbmAeBmoAwI6qGBWO8zd/9ONiDKjP6ET1YNHMS2HrvlV8/HPmg6h3gzKWQXiLQ2bwZuxVkK50ns\n3dHTv+4vf9Datg1HG/d6ksGsXux0PNg3qHuf3iHzxm4kheweTwIPATMBom1rtw1uee5Bs5HGvz12\nkZTOCJG4jt6/KX7VlX+MtJrOIv6ZFLJLjDiLbwOpk0b2r/vLmljXlmeNBhvndtml8ltGSjypE7/f\nEF9x3X2DD5nOIg5OCtlFIq3NCeDnwD6gEqDnqd89HN/XsdFosHGsU1fI6dM4Z+Ld90riF396JfFd\n01nEoUkhu0yktbkf+BHgB4rRtu55/LZ7En27thiONi61Mynv3+Naa+5vSdz9m/Xx/1zZEk+aziMO\nLe/frG4UaW3eCfwQmEDqTL59j//6ruTAvu2Go407O5Wcrffw5sQjv1ob/9DKlnjMdBZxeFLILhVp\nbd4I/BTnitVBHYvE94VvuzM50LPTcLRxpV1NzutCfmxr4h83r46/b2VLfL/pLOLIlGz96G6h2roz\ngY8CO4CYp7AkWGFdf503VDbVcLRxYWJi1+Ca4v/IywuePvpq4pkfNceWr2yJdx7tY5RSfwJKcPZZ\n8QA+IIazZWxQa33WmIQVgBTyuBCqrTsP+CDDpRwqK6g457r3eYsqZhiO5n7aZkvwatvrUXnz26Ct\ntb53Y+LJ29fFr1nZEh/VNJdSqhhnGeZvtdY3ZzahOJS8eZOOZ5HW5sdwLv80HfDbkd7o3kf/7/Z4\nT6fsQXBEUy8AAAAJNElEQVQkykMk6cmbsx4Ttk7eujb+yO3r4h9Mo4xPAZ7BWRO/USm1Sin1H0qp\nYEbDin8ihTx+rALuAGYABToeTexb9cu7YnJdviPqS+THxU5jSR2/6dnYfX9uSXxoZUv81WN9vFJq\nvlLq1zhbw34UeCR11zXAIuAlpdTZmUssDiSFPE5EWpt1pLX5EeBnOFt2Okvinrj9geiOlx83HM/V\n9iULc351QSSuB7/7j9hvHt2a/LeVLfEdo3waD/A3YInW+qnhG7XW7Vrr63GmzY56PlocO5lDHodC\ntXUnAP8JRHBOIqF40UVLCueeVq+UkssWHeC22H+/ZpXunGk6x1jpier+bz819KsN3fZXVrbE07po\nrlKqCmgFXjzgrrcAi7XW29J5fnF4MkIehyKtzS8D38D5/zcJnNOs96//6291Ip4Xv54fiy5dnrOn\nT2/rsbu+8lj0exu67S+kW8YpCWCt1vqskR9AMyAnlYwxKeRxKtLa3AZ8HRgApgIMbm7evO+J23+e\njPS2m8zmNh069y52qrXmsa2JFz/zl+hXtvboG1e2xDN14NIGTlFKPTPyAzg9Q88vDkMKeRyLtDZ3\n4YyU24AawJvYt7N37yM33xLr3rraZDY3ybWLnUYTevCnz8Ye/cEzsW/GbX6Z4TPw/MDzWuvTR37g\nrLrwZvB1xEHIHHIOCNXW+YF3ApfiHHSJABQtPP+kUO3plymP128yn2lnDj3VfWfZTVWmc2TCzj67\n88a/Dz36Wq/+AfD8ypZ4Rv8CK6U8QInWujeTzyuOjhRyjgjV1ilgCfARIA7sBghUH1dVuuTyd3sK\niitN5jNpTnxL36qSL5WazpGuJ7clNvzwmdh9cZubVrbEu0znEZknhZxjQrV1U4FPAFOA7YBWvoC3\ndOlyKzDl+DPzcRVGoT0Q3xj6yLj9LWEwrgdvfSH+zMObE7cCf1jZEperoOQoKeQcFKqtK8RZzH82\nI6YwgtMWTCledPEV3sKSnPj1/Vhs8r9vKOBlXJ1pprVmXZe98cfNsdW7I/qnwHOZnqIQ7iKFnKNS\nUxinAe/H2SCmA9B4fZ7SU684Jzht/tlKefLmoO7z6tqeCcFkuekcR2vfoN79izWx557annwe+NnK\nlrisnMkDUsg5LlRbVw5cDdQBXTjL5AhMOX5yyeJLLs+XXeNW2R/qmhManGw6x5EkbJ149NXkml+s\niW2M2/wJeFimKPKHFHIeSI2WTwY+BASAdpztFSk+8YLFBbNPOd/jDxYbjDjm/hj/1I5TS3ZPN53j\ncLbus1/94TNDL2zt0c8Bt8uoOP9IIeeRUG1dKXAlcCbOKdc9ACpYFCg5+dKzglOOPz1Xl8jdPPSF\nbZeUbZ1lOsfB9ET1nntejr/w55ZEC/AboHllSzxnzy4UhyaFnGdSo+UTcA76TcE56BcF8JVNLile\ndJHlr5x1cq6txvhy9Htt15evqTGdY6SeqN7zYGt89d0vJbqTmlXAvRk6/VmMU1LIeSp1MsmZwHuA\nIE4xxwH8k2ZPLDrh3LP9E6efmCsH/j4c/fX2L5b/xRUb+vdE9Z6HWhPP/uGl+K6kph24dWVLfJPp\nXMI8KeQ8F6qtKwbeClyGM6/cSWoTGV95dWnRCeedHqiavUR5feP62nSXRh/u+Fn57VNMZjigiDuB\nu4G1ciVoMUwKWQAQqq2bgFPK56Zuen3E7CksCRa/5fylganz6sbrwb/FsbV7/lT6nYkmXrtrv73j\n0a2JF+9+KTFcxH8AXpAiFgeSQhZvEqqtmwhYwEU465d3AYMAyhfwFi0498Tg1PmneIvH1/X8Jic7\nIs1Fnw1l6/WiCT34Ure97k+vxDet67I1zpJDKWJxWFLI4qBSUxnLgMuBYpxVGa8fcPJXzppQOHfp\nokDV7EWeQGGZoZhHTemE3lJwLZ4xPFiptWZHn371768lX7hnY3xvLIkPp4jvRopYHAUpZHFYodq6\nAM6mRZfjXDoqgTNqfn3Lx4LZS2oKZp642F8xdYGb55pf8l49UOTXRZl+3v4h3bO+K7n+no2J1s17\nbQ/OnsLNwOPAZlnCJo6WFLI4KqnlcjU4Z/ydCxTg7JGxB6eAUP6gr2DW4ppg9XG1vvIptZ5gqMJU\n3oN5hvfvqS6Ipz2PnLR1smO/3rZxl936+LZE2/ou24Ozj3A78DDOgbr96b6OyD9SyOKYpUbNJ+AU\n8yJAAf04J5q8Phr0T5o9sWDGwlp/5Yxab9GEWcrjMbrB+UPJj7YvKOof1ani+2O699V9duvajuTm\nv25J7OyPUYJTwnGckfBTwGuy+Y9IhxSySEtqr4wTcS7xMw/nKjQJYC+pE04AVKDQH5w6f6q/cuZ0\nX9nkGd6iimnZXrFxR+yzr51d2nHEi53Gkzq+d1B3de7Xndt67Y417cntazvtGDA8Vz4ArAZeAFpW\ntsSjh3wyIY6BFLLImNS2n3OBk3B2mivFGT0PAL2kltEN85ZWFQer5071lU+d4i0qm+gJFleoQGGF\nxx/M+DwvwHejN7S9q/yVmpG3Dcb1wO6I7mzvtzvbenTnhu5kx4vd9l5bU4BTwEGc9dmv4lzGqAXY\nKfPCYixIIYsxkZpzngrUAguBBUBh6m6NM8WxH2c0/SYqEPL7J0yt8JVWlXuLJ1R4gkUlyhcoUL5A\nUHn9QeX1BUn9V3m8Aa21Bp1Eaxtt21rrJNq20TpJYihetH97hc/reeWi6F/2nK3XxLsHdN/OPru3\nrcfu2xclAYRwVpIEUtkUztz4y8BanANzMicsxpwUssiKVEFXAtOBGcB8YA7OPOzwm9ALDOGse46m\nPk+LQqtFavNVE+n/s1IEcEa8wytBhke57UArsAVn3+jOlS3xwXRfW4hjJYUsjEmVdAlQkfqYAEzD\nGVlXA+U4ZT38MdKB64kP9kZWgJqnXps2jd0veBTdQDfO2uA9OGcjdq9siccP8lghsk4KWbhWqLbO\nA6+Paoc/CnhjlKtx9t2wUx/JEf8dwlmWNwDEI63N8kYXrieFLIQQLpETWysKIUQukEIWQgiXkEIW\nQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiX\nkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiX+P/t/jGhHlz5IAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "labels = ('是', '否')\n", + "x=sum(df.b01==1)/sum((df.b01==1)+(df.b01==2))\n", + "y=sum(df.b01==2)/sum((df.b01==1)+(df.b01==2))\n", + "sizes=[x,y]\n", + "fig1,ax1 = plt.subplots()\n", + "ax1.set_title(\"你是独生子女吗\",fontdict = None, loc='center',color='y')\n", + "ax1.pie(sizes,labels=labels,autopct='%1.1f%%',shadow=True)\n", + "ax1.axis('equal')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 直方图\n", + "反映变量“每天晚上睡多长时间-小时”(b18a)的分布情况。" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHNJREFUeJzt3X94FuWd7/H31xhBiCG4BSOgTZeLbaF2oZJ6YiQ0YIhl\ns6XYbaHuOUi3eGCr2+1p2r20GulCccXarbtbqHuypXtqLF2yhXoqFBtRckEOUggaujXrQjlSf6BZ\nLD9yEqGkyff8MQME8hPNzBOe+byui4tnnuee3N/B+MnkvmfuMXdHRESS45JUFyAiIvFS8IuIJIyC\nX0QkYRT8IiIJo+AXEUkYBb+ISMIo+EUugJldZWaZqa5D5N0Y8OA3s0vN7BUzqw3/fMjM1pjZDjOr\nGOj+RHoTBvULZvY+M9tkZtvN7G/72Oec71cz+wszqzOz4UCpu7fFUrxIRKI44/9D4IfuXuzuxcAE\nIMPdC4ExZjYhgj5FevJN4HLgIeDr7l4EjDOz4u4am9kn6fr9OgWoAj4CvB1L1SIRujSCr1kA3Gpm\nNwG/Bo4D1eFnzwLTgP0R9CtyDjObCbQCbwJ/ADwffvSfwIgedium6/erAZlAKbAionJFYmMDvWSD\nmX0EeM3d3zCz1cAfAXPdfa+ZlQLXu/vKbvZbDCwGGD58+NQPfOADA1qXJEtHRwf79+9n/PjxHDhw\ngOzsbDo6Ohg+fDivvfYaEydOJCMjo8t+Bw8eZPTo0QwbNozm5mbefvttLrvsMn7zm98wYsQIjh07\nxtVXX80VV1yRgqMS6d2ePXvecvdRfbWL4oz/F+7+2/D1S8DtBL9qA2TRw/CSu1cClQD5+fleX18f\nQWmSFMuXL2fixIl8+tOfpri4mNraWurq6nj44Yf57Gc/S0VF99NNX/ziF7ntttsoKChgw4YNvPTS\nS9x77738/Oc/58CBAzQ1NXHgwAFWrVoV8xGJ9M3Mft2fdlGM8VeZ2WQzywBuBe4i+HUZYDJwMII+\nRc6xZcsWVq9eTXFxMQ0NDdxxxx1MmTKFV155hfLy8h73mzp1KnV1dQDs3buXvLw8APbt28f48eMZ\nMmQIHR0dcRyCSGSiOONfDqwlGBf9CfAEsN3MxgCzCeYARCK1bdu2M6+Li4v57ne/y9e+9jXKy8sZ\nNmwYAI2Njaxdu5YVK84O28+dO5eioiIOHTrE5s2b2blzJ83NzeTm5jJp0iSWLFnC0qVLYz8ekYE0\n4GP83XZiNhKYBWxz9zf7aq+hHnk38u7Z9K72bz/ZwsmXX2DoNdeRkTWy17YHV5a9q75EBpKZ7XH3\n/L7aRXHG34W7H+XslRIig1rG0CyGTyxKdRkikdGduyIiCaPgFxFJGAW/iEjCKPhFRBJGwS8ikjAK\nfhGRhFHwi4gkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0Qk\nYRT8IjE6cuQITz/9NG+99dY7/hpNTU20tbUNYFWSNAp+kYg1NTXx4Q9/mDfeeIOysjJ27drFjBkz\nOHz4cI/7LFq0iMLCwjPPA161ahXTpk2jtbWVmpoaMjMz4ypf0pCCXyRiX/nKVzhx4gQvvvgijzzy\nCPfddx+33HILzz//fLftN2zYQHt7Ozt27ODQoUPs37+fhoYGFixYwO7du888LF7knVLwi0To2Wef\nZfjw4eTm5lJSUkJBQQHbtm1j165d3Hjjjd3uU1tby7x58wCYOXMmdXV1uDttbW3U1NQwe/bsOA9B\n0pCCXyQip06dYvny5axcufLMe+7OunXryMzMJCMjo9v9WltbGTt2LADZ2dk0NTVRWlrKxo0bGTdu\nHHPmzGHr1q2xHIOkJwW/SERWrlzJXXfdRU5Ozpn3zIzVq1dTWFjIxo0bu90vKyuLEydOANDS0kJH\nRwfz589n2bJl5OTkUFZWxvr162M5BklPCn6RiGzZsoXVq1dTXFxMQ0MDZsZjjz0GwLFjx875gdDZ\n1KlTqaurA2Dv3r3k5eUBsG/fPsaPH8+QIUPo6OiI5RgkPSn4RSKybds2amtrqa2tZcqUKRw5coSq\nqiqmT59Oe3s7paWlNDY2UlFRcc5+c+fOpaqqivLycqqrqykrK6O5uZnc3FwmTZpEZWUlJSUlKToq\nSQfm7qmuoYv8/Hyvr69PdRlykcq7Z1NsfR1cWRZJDe0nWzj58gsMveY6MrJGvqMaJHnMbI+75/fV\n7tI4ihGRC5MxNIvhE4tSXYakKQ31iIgkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIw\nCn4RkYSJLPjN7CozeyF8vcbMdphZRV/7iYhItKI84/8mcLmZfRLIcPdCYIyZTYiwTxER6UMkwW9m\nM4FW4E2gGKgOP3oWmBZFnyIi0j8DHvxmdhmwFLgnfGs48Hr4uhm4qof9FptZvZnV9/YsUhEReXei\nOOO/B1jt7sfC7Rbg8vB1Vk99unulu+e7e/6oUaMiKEtERCCa1TlLgJlmdhcwBbgWeBXYCUwG/iOC\nPkVEpJ8GPPjdffrp12ZWC8wBtpvZGGA2UDDQfYqISP9Feh2/uxe7ezPBBO9OYIa7H4+yTxER6V0s\nD2Jx96OcvbJHRERSSHfuiogkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR\n8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo+EVEEkbBLyKSMAp+EZGEUfBLZI4cOcLTTz/NW2+9\n1e32O9HU1ERbW9tAlSiSSAp+icQbb7xBWVkZu3btYsaMGbz66qvnbB8+fLjHfRctWkRhYSErVqwA\nYNWqVUybNo3W1lZqamrIzMyM6zBE0lIsj16U5HnxxRd55JFHKCgo4OjRozQ2Np6z/fzzz3PLLbd0\n2W/Dhg20t7ezY8cO7rzzTvbv309DQwMLFixg9+7dDBs2LAVHI5JedMYvkSgpKaGgoIBt27axa9cu\nbrzxxi7b3amtrWXevHkAzJw5k7q6OtydtrY2ampqmD17dpyHIZKWFPwSGXdn3bp1ZGZmkpGR0WW7\nO62trYwdOxaA7OxsmpqaKC0tZePGjYwbN445c+awdevWOA9DJO0o+CUyZsbq1aspLCxk48aNXba7\nk5WVxYkTJwBoaWmho6OD+fPns2zZMnJycigrK2P9+vVxHoZI2lHwSyQeeughHnvsMQCOHTvGwYMH\nz9nOycnpdr+pU6dSV1cHwN69e8nLywNg3759jB8/niFDhtDR0RH9AYikMQW/RGLx4sVUVVUxffp0\n2tvbu2yXlpbS2NhIRUXFOfvNnTuXqqoqysvLqa6upqysjObmZnJzc5k0aRKVlZWUlJSk6KhE0oO5\ne6pr6CI/P9/r6+tTXYa8Q3n3bHpX+7efbOHkyy8w9JrryMga2WO7gyvLIun/QgzmGiR5zGyPu+f3\n1U6Xc8qgkzE0i+ETi1Jdhkja0lCPiEjCKPhFRBJGwS8ikjAKfhGRhFHwi4gkjIJfRCRhFPwiIgmj\n4BcRSZjIgt/MrjSzWWb2nqj6EBGRCxdJ8JvZ1cAm4AZgq5mNMrM1ZrbDzCr62F1ERCIU1Rn/B4Ev\nufsDwM+AmUCGuxcCY8xsQkT9iohIHyJZq8fdtwCY2XSCs/4rgerw42eBacD+KPoWEZHeRTnGb8B8\noA0w4PXwo2bgqm7aLzazejOr7+1B3CIi8u5EFvweuAvYARQAl4cfZXXXr7tXunu+u+ePGjUqqrJE\nRBIvqsndu83s9nAzB1hJMLwDMBk4GEW/IiLSt6jW468Eqs3sDuCXwBPANjMbA8wm+A1ARERSIKrJ\n3aPArM7vmVlx+N433P14FP2KiEjfYnsCV/jDoLrPhiIiEikt2SAikjAKfhGRhFHwi4gkjIJfRCRh\nFPwiIgmj4BcRSRgFv4hIwij4RUQSps/gN7Mh521famafi64kERGJUq/Bb2YZBGvsLLPAZ4EvA7fG\nUZyIiAy8XoPf3duBE8ABYC7wYeCHwO+iL01ERKLQnzF+J3iIyk+BkcA3w/dEROQi1NdQz3yCkL8G\n+BeC5ZYvA8aa2Twz+9PoSxQRkYHU1+qcVwHXAr8PTAAWA1cAQ4GrgSE97yoiIoNRX2P8/wC8Cvxf\noBX4R+A4cMDd/97dvxF9iSIiMpD6M8Z/CXAYWAj8MbAo0opERCRSfY3xX0rwkPQbgJcJHqTyN5x9\ncLqIiFxkehzjNzMDit39BjMbC4wFmoFHgalmdgmwxN0fjadUEREZCH1N7v4PYAuwAjja6f03gK8D\nv46oLhERiUiPQz3u7sDVZnYT8DbwIPB7wG8Jgn+7u1fGUqWIiAyYvs74DbgeeB/BuP7/IriO/0PA\nIjP7pbu/FmmFIiIyoHob478EaHL3b4fj/fcT3MxlwK+A/w6sAW6Jo1ARERkYvQ31dAALzWx1eD3/\nBKAKuBJ4wt1/Bfx1LFWKiMiA6es6/o8DN5nZ7WHb8UAD8IyZFbn7c1EXKCIiA6uv4D8BLCe4a7cj\nfO9F4IvACjO7KsLaREQkAn0F/yvAEuDPgEyCid3PAb8AHgK+Gml1IiIy4Hq9qsfd6wgnb83sT919\nrZn9K8EPjKeAI9GXKCIiA6mvyznPcPe14d+db+TaOeAViYhIpPSwdRGRhFHwi4gkjIJfRCRhFPwi\nIgmj4BcRSRgFv4hIwkQS/GY2wsw2m9nTZvZjM7vMzNaY2Q4zq4iiTxER6Z+ozvj/K/Atd58FvAl8\nBshw90JgjJlNiKhfERHpQ79v4LoQ7v6dTpujgP8G/F24/SwwDdgfRd8iItK7SMf4zexGYCTwKvB6\n+HYz0GVxNzNbbGb1ZlZ/+PDhKMsSEUm0yILfzK4Evk2wqFsLwRO8ALK669fdK909393zR40aFVVZ\nIiKJF9Xk7mVANfBVd/81sIdgeAdgMnAwin5FRKRvUZ3xLwKmAveZWS3B4xoXmNm3gHnApoj6FRGR\nPkQ1ufso8Gjn98zsJ8As4BvufjyKfkVEpG+RBH93wuWcq+PqT0REuqc7d0VEEkbBLyKSMAp+EZGE\nUfCLiCSMgl9EJGEU/CIiCaPgFxFJGAW/iEjCKPhFRBJGwS8ikjAKfhGRhFHwi4gkjIJfRCRhFPwi\nIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo\n+EVEEkbBLyKSMAp+EZGEUfCLiCSMgl9EJGEU/NJvTU1NtLW1pboMEXmXFPxpqqmpiaKiojPbixYt\norCwkBUrVvS63/ntVq1axbRp02htbaWmpobMzMxI6xaR6Cn409DRo0dZuHAhra2tAGzYsIH29nZ2\n7NjBoUOH2L9/f7f7ddeuoaGBBQsWsHv3boYNGxbnYYhIRBT8aSgjI4N169aRnZ0NQG1tLfPmzQNg\n5syZ1NXVdbtfd+3cnba2Nmpqapg9e3Y8ByAikVLwp6Hs7GxGjBhxZru1tZWxY8ee+aypqanb/bpr\nV1paysaNGxk3bhxz5sxh69at0R+AiERKwZ8AWVlZnDhxAoCWlhY6Ojr63W7+/PksW7aMnJwcysrK\nWL9+fWx1y+Ciyf30EVnwm9lVZra90/YaM9thZhVR9Sndmzp16pnhnb1795KXl3dB7fbt28f48eMZ\nMmRIjz80ZHB7+eWXKSsro6ioiC9/+cs9ttPkfjJEEvxmNhL4PjA83P4kkOHuhcAYM5sQRb/Svblz\n51JVVUV5eTnV1dWUlZXR2NhIRUVFn+2am5vJzc1l0qRJVFZWUlJSkqKjkHfj7rvv5v7772f79u28\n9tpr1NbWdmmjyf3kuDSir9sOzAf+d7hdDFSHr58FpgHnXFpiZouBxQDXXnttRGWlv7x7Np3dKPir\nM9vtM+6l6sALDL35PiY/eHpy90Ye79y+x3bAM9vgYw9QvgvKd23i4MqyiI9EBtK+ffu4/vrrARg9\nejTHjx/v0qavyf3zTxTk4hXJGb+7N7t75++s4cDr4etm4Kpu9ql093x3zx81alQUZSVaxtAshk8s\nIiNr5IC0k4vLpz71KZYtW8aTTz7JU089xc0339yljSb3kyOqM/7ztQCXh6+z0KSySKwqKiqoq6vj\n4YcfZuHChWRlZXVp09Pkfl5eHgcOHDgzuT9jxoy4y5cBFlcA7yEY3gGYDByMqV8RCU2ZMoVXXnmF\n8vLybj/X5H5yxHXG/wSw3czGALOBgpj6FZHQww8/THl5OcOGDaOxsZG1a9ees4TH3LlzKSoq4tCh\nQ2zevJmdO3eeM7m/ZMkSli5dmsIjkIFi7h5PR8GVPrOAbe7+Zm9t8/Pzvb6+Ppa60k3eeZO1Uelt\ncjfVNcTVfzrW0H6yhZMvv8DQa67r9zyPJvoHDzPb4+75fbWL64wfdz/K2St7RGQQOj25L+lNk6wi\nIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo\n+EVEEkbBLyKSMAp+EZGEUfCLiCSMgl9EJGEU/CIiCaPgFxFJGAW/iEjCKPhFRBJGwS8iF5Wmpiba\n2tpSXcZFTcEvIrE5fvw4s2fPZtasWdx6662cOnWq23aLFi2isLCQFStWALBq1SqmTZtGa2srNTU1\nZGZmxll22lHwi0hsfvCDH1BeXs7TTz9Nbm4uTz31VJc2GzZsoL29nR07dnDo0CH2799PQ0MDCxYs\nYPfu3QwbNiwFlaeXS1NdgIgkx5133nnm9eHDhxk9enSXNrW1tcybNw+AmTNnUldXh7vT1tZGTU0N\nFRUVsdWbrnTGLyKxe+655zh69CgFBQVdPmttbWXs2LEAZGdn09TURGlpKRs3bmTcuHHMmTOHrVu3\nxl1yWlHw92IwTCINhhpEBtKRI0f4whe+wPe+971uP8/KyuLEiRMAtLS00NHRwfz581m2bBk5OTmU\nlZWxfv36OEtOO2kd/E1NTRQVFfXaJupJpMFQg8hgcerUKebNm8eDDz7Ie9/73m7bTJ06lbq6OgD2\n7t1LXl4eAPv27WP8+PEMGTKEjo6OuEpOS2kb/EePHmXhwoW0trb22CbqSaTBUIPIYLJmzRr27NnD\nAw88QHFxMcuWLesyZj937lyqqqooLy+nurqasrIympubyc3NZdKkSVRWVlJSUpKiI0gPaTu5m5GR\nwbp16/jEJz7RY5uoJ5EGQw0iqZR3z6bz3rmWEUse52C49c/BiA6Pn9eufca9VB14gaE338fkB+vO\nfvDMNvjYA5TvgvJdZ/c5uLJswGtPZ2l7xp+dnc2IESN6bRP1JNJgqEHkYpQxNIvhE4vIyBqZ6lLS\nUtqe8fdHT5NIeXl5HDhw4Mwk0owZM9K6BhFJlrQ94++PwTCJNBhqEJFkScwZf2NjI2vXrj1z5QwE\nk0hFRUUcOnSIzZs3s3PnznMmkZYsWcLSpUvTqgYREXP3VNfQRX5+vtfX11/QPl0nkfqn/WQLJ19+\ngaHXXNev8cTeJpEu5hou1GCuIa7+VUPv/Q+WGpLEzPa4e35f7WI94zezNcBE4KfuvqKv9nE4PYmU\n9BpEJDliG+M3s08CGe5eCIwxswlx9S0iImfFOblbDFSHr58FpsXYt4iIhGIb4w+Hef7B3feaWSlw\nvbuv7PT5YmBxuPl+4D9iKezCvQd4SzWoBtUwaPpXDWe9392v6KtRnGP8LcDl4esszvttw90rgcoY\n63lHzKy+P5MnqkE1JKWGVPevGs6toT/t4hzq2cPZ4Z3JcOaubRERiVGcZ/xPANvNbAwwG+i6ELeI\niEQutjN+d28mmODdCcxw9+Nx9T3ABsNwlGoIqIZAqmtIdf+gGk7rVw2D8gYuERGJTqLX6rlQZnal\nmc0ys/ekuhYRkXdKwd9PZnY1sAm4AdhqZqNSWMtVZvZCivq+1MxeMbPa8M+HUlFHWMt3zOzjKer7\n853+DRrM7H/G3P9IM/upmW03s3+Ms+9ONbzPzDaFNfxtKmqQd0bB338fBL7k7g8APwOuT2Et3+Ts\npbFx+0Pgh+5eHP75t1QUYWZFQK67P5mK/t390dP/BsB24J9iLmEB8Li7FwFXmFkqLiN8CPh6WMM4\nMyuOs/PwBGh7p+01ZrbDzPT0oj4o+PvJ3be4+04zm05w1v9cKuows5lAK/BmKvonuBrrVjOrM7Mf\nmFnsK7yaWSZB0B40s54fbxZPLWMJfgBd2KqC795vgPebWQ5wDfBKzP0D/AHwfPj6P4Henzo0gMxs\nJPB9YHi4rSVhLoCC/wKYmQHzgTagPQX9XwYsBe6Ju+9OdgMfdfdpwDHgj1JQw+1AI/AN4AYz+0IK\najjtLuDRFPRbB0wA/hJ4CTiaghp+BHwtHG77GPBMjH23E/y/2BxuF6MlYfpNwX8BPHAXsAP44xSU\ncA+w2t2PpaDv037h7m+Er18iCJ+4fRiodPc3gceBlDyezMwuAWYCqXg25t8Af+7uywn+O/xZ3AWE\nK+xuBu4Avu/uLTH23XzeJeHDgdfD183AVXHVcjFS8PeTmd1tZreHmzkEZ7txKwHuMrNaYIqZfTcF\nNVSZ2WQzywBuBfamoIZfAb8fvs4Hfp2CGgCKgJ2emmuihwEfCv87/BcgVddlNwDXAt9KUf+n9bok\njJwrMU/gGgCVQLWZ3QH8EqiJuwB3n376tZnVuvsdcdcALAfWAgb8xN23pKCGNcD3zOwzQCbwqRTU\nAHALsC1FfT8I/DPwXoL5ph+mqI6/Ar7l7m+nqP/TTi8Js5NgSZjBusjjoKAbuETkohWeABWbWTbB\n1VXPEC4JcxGvDhA5Bb+IpIXwSp9ZwLZw/kd6oOAXEUkYTYCIiCSMgl9EJGEU/JJ44d2vUXzd3zOz\n28LXmeENgCIppzF+SXtmNpngngOAdQR32mYSXAt/GHgV+AXBTVBOsBTAUs4uRwAwNLxbubd+/hJo\nc/dHw+0hwD7g48BXCW4q6gibTwXel+Kb8SShdB2/JMEHCQJ9VPh6BXCSYJGx5UAGMB2oAH4HjAWe\nd/eS01/AzH4a/j2d4Jr5/cBEd+98h2g7cCpslwFcCZQDb7r7bZ0LCm/C++0AH6dIvyj4JQlOAZ8B\nhhDceHcnwU1oECz/MJHg7t8HCX5AfAv4oJn9iOBmoL0EdwtDEO4/dve/MLPdZvY54DqCHxiTgQ4z\n+y3wJPAjd7/JzH4W/iA47WPh3/p1W1JCwS9J8fdALnAo/FNPsLDZvxH8QHiLYDjmd2G7F939U2b2\nY+Az7v678Ou0E6xOeh0w2t2/Z2bXuPurZvbnwEl3f9zMhhIs5gdwqbvfDGduOPqdhvsllRT8kjRf\nIljz6CYgj2DNnyuAvyYYAnKCHxKTzWwLwdDQFjPrIFgDv/MZ/04zuxx4MhwC6skHwq8FwW8FIiml\n4JekKAcuAxYTDP18h2CFy0cJhnuyODvGnwvsdfcSM/s8weTvzwhCf1ynr2nufsLMVgMf6aXvfz89\nXxCO7YuklIJfksAIxu1zCVaSvBb4KMFk7w3A+wiu7jk9xv9tADObRDAsdDvwlLt3hA+eOT3UMxbA\n3f8pbN/TEtVTOp/xp+LhNSKd6RtQkuAyzp7x309wpt8O/AnwVNjmowQPNXkdmEQwYfsdYBHB+u6P\nm9lW4N85O9TztfP66Txwf8npbXd/z/kFhQ/V6Tj/fZE46Dp+SXtmNpHgJOcAwUTueoIwP33FThbw\nJ6dXcwxv6Po88E13bzOzYcB9wMMEw0RXuHvTeX18muDS0Dvc/f+Y2WiCZasLuqnnB8AEd78hkgMW\n6YOCX2QAhJO8He7e57X5ZnaFu/+/GMoS6ZaCX0QkYbRWj4hIwij4RUQSRsEvIpIwCn4RkYRR8IuI\nJMz/BxfczB7HbMAoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x1=df['b18a']\n", + "x1=x1[:150]\n", + "name_list = ['3', '4', '5', '6','7','8','9','10']\n", + "num_list = [1,1,10,33,49,43,9,2]\n", + "rects=plt.bar(range(len(num_list)), num_list)\n", + "index=[0,1,2,3,4,5,6,7,8,9]\n", + "index=[float(c)+0.4 for c in index]\n", + "plt.ylim(ymax=50, ymin=0)\n", + "plt.xticks(index, name_list)\n", + "plt.ylabel(\"频率\") \n", + "plt.xlabel(\"睡眠时间\")\n", + "for rect in rects:\n", + " height = rect.get_height()\n", + " plt.text(rect.get_x() + rect.get_width() / 2, height, str(height)+'%', ha='center', va='bottom')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 柱图\n", + "反映变量\"你妈妈是做什么工作的\"(b08a)的职业分布情况,数字和编码关系如下:\n", + "\n", + "+ 1\t国家机关事业单位领导与工作人员\n", + "+ 2\t企业/公司中高级管理人员\n", + "+ 3\t教师、工程师、医生、律师\n", + "+ 4\t技术工人(包括司机)\n", + "+ 5\t生产与制造业一般职工\n", + "+ 6\t商业与服务业一般职工\n", + "+ 7\t个体户\n", + "+ 8\t农民\n", + "+ 9 无业、失业、下岗\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAESCAYAAAD33gzfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm85nP9//HHc84sRhiyDskkU762iF+LVGRElizfr0hp\nEBMpyleaahSpb5NURMt3VAitKonWoalUviKJFoXGGlnHPuvz98f7fZnL5Tpzzpk5c87F9bzfbnM7\n12d7v1+fz5yZ1+e9fK6PbBMRERHPfiOGO4CIiIgYGkn6ERERXSJJPyIioksk6UdERHSJJP2IiIgu\nkaQfEV1LUo+kEU3LkjRqOGOKWJ6S9COim70RuFPSbEk3AA8Cx0t6TNIf658bJX2n9UBJ8yW9QtLe\nkq4a8sgjlsLI4Q4gImK42P6+pJcAfwNuBKbZ/rCk/W1vCSBpe+CwNoc/CDwCPFT/RHS8tPQjImA6\ncH7T8qKW7Za0gqSTJI2u6x4FFgALG/tL2k7Sx5Z7tBFLKUk/IgKmAm9Z0g62nwD2AfZYwm57AesM\nYlwRgypJPyICxgGrNy23/t+o+vNsYPISynkD8NXBCyticGVMPyICjgAeA/5dlx+S9Mem7T+vP78J\nfEzSGq0FSHotMML2b5drpBHLIEk/IqKM6d8IfELSiygt9ucB1wK72r4YwPZtkr4OPL9NGVsAXxqi\neCOWSpJ+RHQtSZsA2wK7U7rwnwtsDOwP3EpJ+sdKWtf2DADbB9djn1KW7dOHLvKIpZOkHxHdbAHw\nI+AnwMrAh4C1Kcn/rbYXSToE+J2ky4Gb64S+XklaAbDtucs39IiBk+3hjiEiYthJ2g44EbgNeK/t\nB5q2TabMyn8n8HgfRa1Aed7/vOUVa8TSStKPiIjoEnlkLyIioksk6UdERHSJJP2IiIgukdn70VHW\nWGMNT5gwYbjDiIh4Rrn66qvvtb1mX/sl6UdHmTBhAlddlbeURkQMhKRb+rNfuvcjIiK6RJJ+RERE\nl0jSj4iI6BJJ+hEREV0iST8iIqJLJOlHRER0iST9iIiILpGkHxER0SXy5TzRUa67Yw4Tpl4y3GHE\ns9Ts6bsNdwgRwyot/YiIiC6RpB8REdElkvQjIiK6RJJ+REREl0jSj0ElabQkDXccERHxdJm9vwwk\nvQ44EZgLjAbm1U2jgXfbvrZp388D1wGjgNVtn7AM9U4EbgL2B9a2/dkl7LvM9UrqAUbYnt/L9lHA\nItsLgV8BewD3SDoEWMP2yZJWBn5m+5UDrT8iIgZHkv4ysH0ZcBmApN/afs0Sdp8DPAb0AGOWtk5J\nI4DzgEmAKTccSzIY9e4KHC+pcVOzCXAjT73J+QBwKbAAOE7SXGALYEVJq1B+1/qKNSIilqMk/cGz\noHWFpDWBL9jel5IgF1GHVCSNBP4EbGV7IMnwLcCqwHeA8UCPpDdSWvLft33GYNdr+4fAD5vO62Lg\ncNu3t9n97cDK9fOFLdvO6t8pRkTE8pCkv5QkjaMktUbi3EzSZcB8Sgt8JeDNwMaSNmpTxNbAzQNJ\n+JJGA3sCL7X9qKQpwBO2v9a8n+17JA1avUuIZzXbD7Ssvhi4pZdD1gE2a1POFGAKQM8qay5rWBER\n0Ysk/aVkew6wA4CkdYFTgX8Dp9ie3dhP0reA/doUsQ9w7gCr3RxYG/hunSu3ITBX0gF1+4rAUbb/\nCAxmve2sCfxU0iG2/69p/e3ALsBrbF9W5wN8APgUZbz/aWzPAGYAjBk/0YMQW0REtJHZ+4Njb2Bm\nL9suBHZqWTcCeCNwUWOFpK0lvXhJldi+2varbe9CmSw3B3gEOND2LrZfUxP+oNbbi3soNxDnSHpV\n0/qFlO79XSX9kjIscG/tWUhCj4gYRkn6y6i28g8Hvtmy/nmSemxfT5l012wRsI3tx5vWzQW+2p/H\n3eps+XOAzwBHAz+UtFXzPsuj3la2b6Ak/k2aw6td/j+jTBwU8EpJzx1o+RERMbiS9JeBpPGUMewT\nbT9ESaqNQekTgd0ljbL9tEl+dUx+pKQxdfl64AHgbUuob6SkPYBfAz+3/Q3bVwIHA2dI+pmkzSWN\nGcx6l8T2X2yf2bRqhKQDgd2BXW2/gXIDsDblCYKIiBgmGdNfSpKeT3lEbart79bVFwKn1HHs+4Hn\nAZdLajzfPqnp+L0o1/8c4It19THAfUuodpVaxgG2b26stP1XSdsBO1MepXsrMGUQ6201hvK0QDuj\nbZ/LU+cN/KHWdfcA6oiIiEEmO8OsS0vSKrWFH0tQhyMm2P5HX/uOGT/R4yefOgRRRTfKq3Xj2UrS\n1ba36Wu/tPSXQRJ+/9Rv8usz4UdExPKVMf2IiIgukZZ+dJTN1xvHVemCjYhYLtLSj4iI6BJJ+hER\nEV0iST8iIqJLJOlHRER0iUzki45y3R1zmDD1kl635znriIill5Z+REREl0jSj4iI6BJJ+hEREV0i\nST+WiqSVJf3HcMcRERH9l4l8sbReBhwEHNi8UtLXgQnAYy37bwK8wfa1QxFcREQ8XZJ+9JukDwE7\n1cW1gLGSZtXl62y/G5gPHGL7by3Hng3MG6JQIyKijST9GIiNgcMpb8y7BtjR9s0ATcnfwFcltWvp\nf2aI4oyIiDaS9GMgJtteJOljlO77nYEvSvp/wOub9jvE9t8k7QU83/bnhiPYiIh4qiT96Lea8KcC\n2wM7AL+U9A/gJGAf4F911zMlPQqMA9aStCtl0uittg9tLVfSFGAKQM8qay7384iI6FZJ+tEvkjYE\nTgbGADfaflzSacDXgE1tP9C0+2G1pT8C+IXtXZZUtu0ZwAyAMeMnevmcQURE5JG96K+RwJeA9wFI\n2gD4KXARcJKkMc07S9oC6AGukPRfdV1uMiMihlGSfvSL7b/bngk8B3gFcAmwLnAEMAf4m6TnAesB\nnwOmAWOBjwFHS3ozcHrt6o+IiGGQpB8DtSLwQ+AVtv/k4kPADrZvB/4CHGf7TbYfsv0wsCfluf7n\nAJcNW+QREV0u3a0xILZ/Dfy6zfrZ9efRbbbdD7x3uQcXERFLlJZ+REREl0jSj4iI6BJJ+hEREV0i\nY/rRUTZfbxxXTd9tuMOIiHhWSks/IiKiSyTpR0REdIkk/YiIiC6RMf3oKNfdMYcJUy8Z7jAiIp5m\n9rNgvlFa+hEREV0iST8iIqJLJOlHRER0iST9iIiILpGkH08haVVJo4Y7joiIGHxJ+tHqS8An2m2Q\nNFNST/28v6QpSypI0qslvW85xBgREUshST+eJOk/68eNJb22ZdsrgJtY/DuzEJhft42Q1O536Wpg\n4nIKNyIiBijP6QcAkvYEjgHeSUns/yvpC7bPrru8E7gMuEDSOODV9biDKcn/PcB1ktYH/gDc0FT2\n5fXjNsBzbC9c/mcUERGtkvS7XE3SJwLPB94IHAg8DOwCnCPpncA5wK7AZbb3lLQzsCKwAPic7Qua\nipwHXGp7/zZ13dQu4ddhgikAPausOZinFxERTZL0YzSlZX6Y7YWSngAW2r4f2EPS7sAm1HH+2o0/\nFTgPMHCUpB/ZfqyWZ2DHptZ9s3XaBWB7BjADYMz4iR68U4uIiGZJ+l3O9k3AGUvYfjFwsaT/Alal\nJOefAXcCKwGfBH4kabLtW+o+P7I9ubUsSddJGmF70XI4lYiI6EOSfgzEDsADwAbAAZSx/2uAT1OG\nB24BtgKu6+X4lyXhR0QMnyT9aCV6f6rj57bPljQG2IvS0j/H9oKmffYFPtjuYNuPD2qkERExIEn6\n0WoUZVy+HQHYnlvH9kc3J3xJewCjbP99+YcZEREDlaQfT2H7c72sv6Bl+RttdvsVZVJgRER0oCT9\nGDS25wBzhjuOiIhoL9/IFxER0SXS0o+Osvl647hq+m7DHUZExLNSWvoRERFdIkk/IiKiSyTpR0RE\ndImM6UdHue6OOUyYeslwhxERMaRmD9FcprT0IyIiukSSfkRERJdI0o+IiOgSSfoRERFdIkk/IiKi\nS3Rt0pfUMwhlrC9p1GDE01SmBrO8fta5n6TVlrB9ZHNcg33OERExNLom6atoTvQfk7Rr0/ae+rrY\nxvLnJR0u6d2STuil2K8Dq/RR7yWSLpd0q6QXSrpb0ixJV0j6dptDfiRp836cT3/i66/DgEdruYdI\nul7STZJ2rtvfDNxb434A+Iikf9flWZJubIqr7c2UpBGS8ohoRMQw6qb/hLcATpG0CFgHuA3YXNIn\ngVuA0cAngF/U/ecAjwE9wJheylwD+FabxvlYYAfb8wBsbyfpDGAh8Hvbu0vaFDiy+SBJ7wB2AVaS\ntBBYrdb/MtuPtdTRn/j6JGkmMA74raSv1NXHAZsAc2v850rar8Y90/Y0SVvZ3q2WMaupyC9L2hAw\nsEEt4y7K79qVwDFLG2tERCybrkn6tq8FdpK0FvBlYF9K0j4H2MO2Ja0p6Tu29wXmAYuovSG1lfon\nYCvbc2t39722J/VVtaSLgU2BU2pZLwa+CRzf2EnSIcAkSqt6J8oNyGnA0Y2EL2lN4Av9iW8Al+Ze\n4GuUxPyiGsO7gRcAa0saV1+ZO7Ym9/Ub59X2ZO2Dm85pGnC77bOXFICkKcAUgJ5V1hxA6BERMRBd\n070PIGkGcDGlS/6nwPmUG58rJJ1l+x5gY0kbtTl8a+DmpoS6DnBPf+q1vTvQ+Jq59YE9KIl2w6ax\n8u8Db6H0OkwArgB+CNzfVE6/4qtDFb3OWWgdyqAk/o0oSf/3tm8Dvg28sJYL8Ljt7YF/Norpx6n3\ni+0ZtrexvU3PiuMGq9iIiGjRNS39ah7wNuC1lK7xG4G3U5L/W+o+3wL2a3PsPsC5TcvjgFVq93iz\nUcBI26/qJYaFwMHA6cBBtj8jaWPgc5TkezXwW+BDwPOAEyWtD3zV9kX9jO+DwAckzeslhtHA0XUI\n4XWUG5hVgQuBQyXtADwOrGH7f+oxrS39lzd16zfWRUREB+u2pA/wKuBNlLFwgNnA+KbtFwJnALOa\n1o0A3gicAGVSGnBTa9e+pDGUcexpTavXqclxIqV7/07gYeBnwCsBbP9N0qeADwPrUlrcbwAeqWV8\nwPbv+huf7ZOAk/q4Do2Yd6LcLDxBGcc/qsb6Z6B5QuHjjTF9SasAG1Mm/y31fIKIiBha3Zj0fwPM\np7T6r6Ak2ispLV5sXy9pEk9N3IuAbWw/XpdfApwuaUFL2SOBEyk3Eo2Z7I/a3r5O5Gv4FvDdljpm\n1T/jgEspk/cWSTqNpmGYfsY3EK7nsyplcuMlwE+AXYG96nm8GFhf0ll138nAKyhDEiOBHYB3LEXd\nERExhLox6UMZi38/cDjwcxZPhhsDLLI9v3VGvu1H62S5HtvXANu1K1jSkZRxeeo+19fPoyhd+6Ik\n1/Up3feN8udLegllkuGJNeGPpoy13zHA+Po1kU/SxHotTgO2p0zeey6lF2QFSov/GkpPyAxKL8Pz\ngX8A29q+oHHOkrahTALcC2jcDI0H5kk6tC6PBr5j+1P9iS8iIgZXtyX90QC2fwz8GEDSeOAiSrJ9\nKzBF0vy6/5Pd95L2olyvc4AvthZcy/lB3Wfvuvp5wDmS9qUkwH8BK1Fa6S8G3iFpR8pjgj+gPIZ3\nhO2rJD0f+B7wG9uza3lLHV8v9gEuANYCPkKZvPcNShf/HMrjd1+x/R3qcELt2p8EHNFUznHA6ran\nA9P7WXdERAwx2W2fvOoqksYuZdd4azkrtnmevr/H9theuKwxDLDOkbYXNC2PBhY2xyFJHsJfkjHj\nJ3r85FOHqrqIiI4we/puy3S8pKttb9PXft3W0m9rMBJ+LWepEn49dkgTfq1zQcvy02b7D2XCj4iI\n5StJPzrK5uuN46plvOONiIj2uurLeSIiIrpZkn5ERESXSNKPiIjoEkn6ERERXSIT+aKjXHfHHCZM\nvaTvHZfCsj4SExHxTJeWfkRERJdI0o+IiOgSSfoRERFdIkk/IiKiSyTpR0REdIkk/V5IWlHSOkvY\nvr6kUUMZ0/IgaT9Jqy1h+0g1vcf32XDOERHdqmuSvqS1JO1dP79P0mFt9hnRlOC2A05p2tb6eOPX\ngVX6qHM7SS+X9PU222ZI+o/6+f2SVpA0WtIpNY6fLKHcz0s6XNK7JZ2wpBj64TDg0VruIZKul3ST\npJ3r9jcD90qaJekB4COS/l2XZ0m6sSmunl7iHdHm+kVExBDrpv+IdwS2AL4PzK9/Wu0MvK8m/oUA\nkmYBBkZI2qXpjXxrAN9qagQ3jAV2AMYB3wQ+AawpaVfgLmA8cCMwupYL8M+636XALsBGwJaSfgjc\nb3tySx1zgMeAHmDMgK5CE0kza5y/lfSVuvo4YBNgLoDtcyXtZ3t3STNtT5O0le3dmq5Pw5clbVjP\na4Naxl2U37MrgWOWNtaIiFh23ZT0DwDWlfRK4HnAAkkHAaOAc21/yfaPgR9L+h2wl+27Jb0B2L85\n8dabgnttT+qtMkn7A98AVqIk+HGUZP1SSsJ+ku1vS/oRsBuwD3Ar8D1gX6BH0grAysAXbO8LzAMW\nUXtqaiv6T8BWtucO4JrcC3yNkphfBEwC3g28AFhb0jjbc4CxNbmv3wi5XWG2D246/2nA7bbP7isI\nSVOAKQA9q6w5gPAjImIguiLpS9oaGGl767r8HuDBJSSkc4BXAhcCbwE+XxO9bC8C1gHu6aPae4H1\nKK32VYFNKTcbpilpSppEuSF5iNL78Nq6/Wbg05TE/iPbP5S0saSN2tS1NXCz7bmNLnbbC3u5Fj1l\nsxc1xbkRJen/3vZtkr5N6fbfGrgMeLzR0m8U08e5D4jtGcAMgDHjJ7a9oYiIiGXXFUmf0tr+iKSe\n1mQoaaTtBfXzVOAQ4N91+di626coie5Y4HeUVvsqTUmwYRTl5uJVwEzgcuA/6v5fAhYAhzYfYHsm\nMFPSLNvbS/oZT51r8WvbP6yfvwXs1+b89gHOrZ8/CHxA0rxersVo4GhJC4HXUW5gVqXc4BwqaQfg\ncWAN2/9Tj2lt6b+8qVu/sS4iIjpcVyR927+sLdzLJc3lqd37T1DG0aGMx3/A9nd7K0vSCOCm1q59\nSWMo49jT6qpxwFnAA5Qx8k9RWvO39RHuCrZfU8vcCPho07YLgTOAWU3rRgBvBE6o53oScFIfdTRi\n3olys/BEjfEoYCLwZ2Dzpl2fbOlLWgXYmDL5b6nnE0RExNDriqQPT3Z3vxKW2L2/DtDX215eApwu\naUHL+pHAicDspuWbgFOB99RtJ1NuApaULDdrakWPpUzya5zD9XU4YFrT/ouAbZomGA6E6/msSrkZ\nuQT4CbArsBeApBcD60s6q+47GXgFZULkSMqkxXcsRd0RETHEuiLp1/H4EUsY5x5J6Zp/FWUiW69s\nX0N5nK9dOUcCt9TF1sfX3gtcZ/ujdd+315+jKL0AW0k6AjjE9oV12yrA/6ufxwCLbM9vfWLA9qP1\nHHr6O5FP0kTKvITTgO0pk/eeW+NegdLiv4bytMEMSi/D84F/ANvavqBxzpK2oUwC3IsyhEE9bp6k\nxnDGaOA7tj/Vn/giImLwdUXSp0xI+7SkpzymJ+mt9eMY4MfAN233NhbeK0njgR9QrufedfVfKS3g\nLajj6LZd9z+LMrHvX5SJgvcBawFvB94l6YOURwbHAGMknQ3cD0xpOocnhxck7VXrPgf4Yj/D3ge4\noNb7EeDblKcNjqI8ZfBlSV+x/R3qcEK9CZkEHNFUznHA6ranA9P7WXdERAwD1TzU9SStCjzUNKt9\noMevaPuxvvcsPQ/ux4WvPRSjgYWNyYaDpXkCY11u1LOwaV2/4hxMY8ZP9PjJpy6XsmdP3225lBsR\nMdwkXW17m77265aWfp9sP7iMx/cr4dd9+5VI634Dee6+31pvItr1cAx1wo+IiOUrST86yubrjeOq\ntMgjIpaLrvnu/YiIiG6XpB8REdElkvQjIiK6RMb0o6Ncd8ccJkzt6/uRnlny1EBEdIq09CMiIrpE\nkn5ERESXSNKPiIjoEkn6ERERXSJJPyIioksk6Q8hSWMltb59b2nK6ZH0oqU8doSkNZqWx6j1tX0R\nEfGs1HVJX9JlLcu/rq+tbbfv+yQdLmm8pHMkjWja1jZ516Ta26OQxwMHDzDeDSR9umX1W+jjjXaS\nNpV0Xv38LUk/kPRX4GRg96ZEfybwE0nt/tzZUuaf688VJE2rfz7Qss8n6mt7IyKiw3TNc/r1tbDr\nACMkTQCmARMor7i9pCbBj9tuvimYD8y1/S9JtwPbApfXbV+WtCFgYAPKi3HuolzTK4Fj2oSxAHhk\nADGvCHwGOKxp3WhgKnCPpJlNu68GnG/7M5LWB14AjJO0nu396rGzbB/bXIftty2h/pvqz556ng/X\nz6OB19dzPAv4RNNh04GvSjrY9kP9PdeIiFj+uibpU94bPwlYHdgKONz2AkkzbU+qSf91kn5HSeCi\nJPOFkibXMiZJOsb2b2w/2WKXNA243fbZfcTwHGDlAcR8JPBp2/c3rfs88BXbT2n9S9ofWK8ubghs\nDawJ7CTpbcCjwGaSLgLGAhcBNwMfBh5vqXcFYB9Kogd4A/BBYAtgJnAs8IDtqyQ92nyg7TmSPgq8\nFzixPycpaQowBaBnlTX7c0hERCyFrkn6tm8EbpS0L7AGcLKkTYH/kHQxcH9t9V4KIOlI4EPAY8Bn\nbF80CGFsCoyjdKn3xxa2P9VYkHQwpZV9vKQ96uqNgR3r+scBbP9S0i2U1v7XGzcjtaX/xpY6ev36\nu8YIgO2La3I/s9a1AqXXoi3b10o6trftbfafAcwAGDN+Yl7nGxGxnHTNmL6kCZKmUxLhDcAJlK77\n9YCTgHub9h0LHE7puv4acEzzeP5S1j+OkvDXk7RWPw9rTaxn17j+aHt729sDPwEWAqN4aot9PKVn\n44Q+4nqXpL9Kmln//EXSf7fZdX/KTeJFwEo8vXegr9gjImKYdU3Sp4x5zwSut/2rOt58v6RNgP+m\ndJs3fBL4OnAPcCvwG8qNwbI4CjgP+F/6mITXZEG9WQDAtild7ltKmiVpFrAJZe7BKtRELOkAylyA\nPwDTJH1N0uW1vJmSbmyq4xHgNNuTbE+qx81tDkLSOsCLKHMWvgtsDtzXW9B1LkKeCIiI6DBdk/Rt\nX2N7ZsvqDwM/Am6wfVOdef9xygS/Tzbt9xFgK0lnSlp9oHVL2pYyLv4l2xcCq0s6uh+HnkeZtNfq\nyZa+7ZdRJvodAfxDUo/trwNvpgxZLKLcFLy1KbHPbinv6EZLnzI5r/XJhH2BUwFsn0WZO3D9EuI+\nBvhWP84vIiKGUNck/fps+yRglKR16uS8bwDnA6+VdBQlub0I2LcmSwBsLwD2BO4G1pE0VdIVki6v\nLeiDgfc3liVdKel9td79gS8A/2V7YS3yQGA/SedKWru3mG3/Elgk6V1NqxdRWvXNzgC2BF7J4l6E\n5gmDAs5rSuzrN21bEfhs0w3BvsDldYij8ftxhu0fAD11mOMg4IeLL602kNR4QuDtwHNt/7i384qI\niOHRTRP5FkragTILfTPKmPcbbd+n8pz+IUCP7X2bDlsBGFOPn095zA/gz/Sji17SxsBewI62n+wO\nt/2QpNdRJgquQbmZ6C3uD0nasml5nqR/Srqa0jU/n3IjIMojifvXx+rOYnFvxUhKS392jes3TeV9\noaW+P0vaAvgHZT5DY1gBytMHewK/sX1XXXcP8D3qRDzgattf6evaRETE0NPi/88j+keSvJx+ccaM\nn+jxk09dHkUPm9nTdxvuECLiWU7S1ba36Wu/runej8GzvBJ+REQsX13TvR/PDJuvN46r0jKOiFgu\n0tKPiIjoEkn6ERERXSJJPyIioksk6UdERHSJTOSLjnLdHXOYMLXXdwBFxDNEHlXtTGnpR0REdIkk\n/YiIiC6RpB8REdElkvQjIiK6xLMi6UvaXtLmkka1rB8hablNVpS0dn1xTkfEV9+At9zUF/n0Z79h\n+fuIiIgl6/j/gOurWh8HfgyMorxf/nTb/2za7eXAjcBnJS0AXgr8ETDl7W/fHUB9PU2vwG1ePwIY\nYXuBpJcApwMbAadJWgicw+L31G8J/Iftfw1mfJI2B34EXNvLLqMkvc323ZLWAl5l+/v1Nb8P2j6z\nP/X0Uvf6wFck7UO5WTwGuAqYBcyzPa9p90H7+4iIiMHT0Ulf0ieAV1OSxUHAZygJZHZNwq8C/gu4\nDXi0vg8eSRdT3l//xFJU+2VJG9Y6NwDmAndRrtWVwDG2rwVeI+li25+U9DLgbNsn1PpnAQskvRLY\nfxDjmw9cavsgSXsCK9s+r5d9dwS2AL5fj5s/wLqeJGkD4EzgHcBE4GXAJpRX7b4c6AE+uBzONyIi\nBlHHJv3aUj0buBdYFXgJ8DDwfErrciJwGqUXoHHMdErre2vg6/XG4F22b+9vvbYPbipvGnC77bNb\nYnsRsBvwAkn/TWnF7t/03vvNKIlw/mDHV8tZDfgUcJ+kQ4DHgLHA8bZ/W3c7AFi3JuLnUW5CDqL0\nlpxr+0sDqHIRcDTlet9NufbrAy8CFgJrSLoSuH15nG9ERAyOjk36lKSyNaW1ui5wAfBJ4KPA/wGT\ngUspLf2G/wfsDFxISXpnUJLcYJsD/AMYR+lqvxxofY/xo5Rk22yw4psEvL923f/D9sTmjZK2Bkba\n3rouv4fSvX/2UtSF7dskHUHpsj+JcoPxDsq5PwpsB1xE6YVp1q/zlTQFmALQs8qaSxNiRET0Qycn\n/b9REvtrgPsoyf0XlBuBR4Drm/YVpTXa7j3vg/7u96Yx8wU1nrWBQ4DxlBuCucBHKAlxecT3cmAz\nSYcBa9fu8xHAzbbfBawEfKTd/ARJI20vGEhlkl4PHAd8ENgQ2JZyM7Yq5ebnR7YXSXryEAZwvrZn\nUMb6GTN+4qD/fUVERNHJSf/1wGXAx4CvUVqC9wBfBvYAjqckW9WfDyypsNr6fcT2DcsamKTVgbdT\nWr6rAb8CdgI+TBl6+K3teZL+3/KIz/ax9ZgjKMn3O8DXbLtu/2WdaX+5pLk8tXv/CWCXAdZ7PTCN\ncmPxLuAFlJ6YF1CGXSYAv6vn2q/zjYiIodfJj+zdTmnlf5GSVKZSJtZdBmxk+1bKGP8NlMl+f+ap\n57M5JSEavFEjAAAYIElEQVQ1Wttzga+qqTm6DCYDX6Ak0A9Reh5+AbwVOBn4saSxyys+SatLej9l\n0txLKMn38joBEQDbC22/0vb2lG716ba3t71LS3F91mv7zrrfKOBIYAfK38t76udp9VG8gZxvREQM\nsU5u6d8K/C8lsU61/U5JOwH7ATdJOoGSYPegtKwfk/QTSreyKAnovbbvAbB9vaQHgLdRHq97GklT\ngb0o3fZQuuvnSTq0Lo+mtKpPrfscWLvPrwNeW2OaZXtW3f9vkgYtvibvo0yY26k+KneCpL9Tkv/N\nNYGPaPfoYT3PkcBCF/2tV5RehQOAeZRu/v+kDL30AOfbPq+/5xsREUOvY5N+HTd/kDJZ7+T6rPk6\nwD6U1uLRlOT3UuBN9ZiTASSNAe6y/beWYo+hJKne6pwOTO9vjJJWrD9/TmnVrg/sJulR4ArgEsok\nt0GJj/L3tQtlvgPADi0N9BGS1gb+Dnxa0lMe05P01vpxDKW34uZ+1gullX+D7WNqWR8C/s/2zKby\nXz3A842IiCGkOgz8jCVJ7uCTGMr4agtfthcNRX29xbAs5ztm/ESPn3zqYIYUEcMgr9YdWpKutt36\nFNnTdGxLv786OeHD0MZX6xrW69Hpfx8REd2skyfyRURExCB6xrf049ll8/XGcVW6BSMilou09CMi\nIrpEkn5ERESXSNKPiIjoEhnTj45y3R1zmDD1kuEOI6Ir5LG67pOWfkRERJdI0o+IiOgSSfoRERFd\nIkk/IiKiSyTp90HS6DbrxgzSK3rb1bda40U+vWxfv5/lfFjSak3L7+zvsX2UO1ZSz7KWExERQ+8Z\nO3tf0nTgl7Z/3Mv2z1NeeTsKWN32Cb3sNxp4s+1zmtYdT3lf/MuB11Pe6NfsTGBtSe2+Z34L2+u2\nqed4ypvmzmxZvzblNbWNst4PXFtfSwvlxuxvtu+XtAZwTn3F8C8or/edR/l7PNH2r2uZO9VyXitp\nFPB24BPAvvXNe5dQ3ns/odZxK/BZ4DZga+BqYCtgHdtPeVMfcDzl7XxfbnOOAuYAf2jZtBmwre2/\nP/1yRUTEUHlGJn1J/wlsCmwj6Vrbd7bZbQ7wGOVd72OWUNxBQCPBImkCsL3tk2riPUnSc23f39jH\n9tuWENtNvWyaV/+0Wp3yeuCFdfmn9eeW9WcP8C/gfuDdwAcpr67dGTjL9v6Svg7MrvVvCZwBbAJ8\nm3LDcjRwBLAx8GvbP5e0HbARMBb4M3C77UmSZtWfM9skfCg3Go+0O0HblvQX29u3XJMLezn3iIgY\nQs+4pC/pHZSktxfl/fU/kPRx2xdKWhP4gu19KUlmEXUIQ9JI4E/AVrbn1nXPAdawfWtTFZ8DpgLY\nXijpJEoreHI9Zjfgw8DjLaGtAOxD01vuJP0VuKMuPh+YJ+nAuu8jtnex/RfgL5KuodyoNIwCbrZ9\nYC1ra0rPwxWUlvuFQCMpr2v7tvr5TuAdtm+RdASwP/BH4JvA2pQbIWxfLmkdYCXbv5a0tqRZwJb1\n50t6+St4DrByuw21pT9e0syWTS+g3LxERMQwesYkfUnbAtOBvwK7A1sABwC7Ap+R9FFKMtxY0kZt\nitiakkTnNq17O/CVpjqOBW60/XtJBwA/sP19SbtLmmb7Y7YvoXSP9xZn8+J825Oayr7L9nm1N+GM\nlkP/APyjaXlUy/YRwLXAJ4E3AysCo2ri3lzSxcAbgT2A90tqvpF5KSX5A2woaSpwO6W3YIyk64C7\nbe9YW/rbS5opSW1elbspMI4yxPEUdd8N2l2XJZE0BZgC0LPKmgM9PCIi+ukZk/QpLffjgRdSkthc\noMf2PZIOBiYCNwHfAvZrc/w+wLmNBUmrAmNs312XX0dJmDvVCW/vrWVB6Rr/pqRX2f6NpHcBR7K4\nFb8u8BXbn26pc1FfJyVpHPCDuvjCNtt3BPapNyKrA3Ns/7m2/HejdPmvBVxge5Gk2cB/A69piq9h\nZcrNxp31z98pNw93AuvXFvpL6s+tKDceT3bL11jHAZa0lu1/t8R6GGUuweyWep8HfNX2ye2uge0Z\nwAyAMeMntpsnERERg+AZk/RtXwVPJud/AfcAe0ramJKcDrQ9r44fnwHMajp8BKUVfELTukN56mS0\nXwD/V8v4IHBc7d7fG7jI9j5N+z4CnGb7SzWmQyld9q1GNnV1N7r3D6r7PtQU24O295K0B4u7wW37\nB5IuoCTZFwMXADMlfRi4BfgGcCKlq/+KetClNaaPU+YBNLvP9kmNBUn/pHTv/wt4UV03q9E70cZR\nwHmUm4npwCEt2+cDZ9v+mKQdgHF12OVdPIN+1yIinq2eif8Rm8Xj5j+w/a6nbLSvlzQJmNa0ehGw\nje3HASStRel6f6DpOAOPStoCWNP2L+qmzShj0p9pieNoSf9VP68L/G+bWA+xfWWts7l7fwVqkm06\nFyi9B9Pr50+wuAfAwD8pk/ueC4yn9D4cAJxcj9m5pe75lJuBp5C0qu0Hm1ZtJOkQypCBWNzSH0O5\nkZpdj9sWeAPw6nozdLCko22f1lx80+fXUIYQGlqHKyIiYog9o5L+kp4Pr9tGAotsz299jN72o3Uy\nXw9lLP/0NmVsCHwf+LWkGZSJb6JMbvtO02S5FYHP1m5pJG0KrCBpLE3ffdBI+NWIWha2n6BMKoSn\nJsoxLO6NWNSyfWvgf4BLKePms4AnKBPrFlFm5t/TVNZC4PKWU5xGuZF4UNKelCGMK4ErbX+1nsvT\nWvqS9qdMbtzVduMpgwOBn0jaBji2DpP8Ahgt6fnA3sCbJF1Ur+kPiYiIYfWMSvqUxDEa2K6xoqn7\n/Bbgt8CU+iw6wKSm/fainO85lPH3do+dzanb/0AZ7/5nvYHYh9JyPR/A9heaD6pj7FtQJuJ9rZfY\nV6qxt3ryRsb2Ds0bJL2FkuAftv07YAeVL9z5b+D/gO9RbgT+BJwnaR3b36mHrwyc0lLXi1l8U/In\nYBfbD0uaLOk0So9Co6WvWv6llCcldrR9X1OsD9Whlg8Ba9Qbqv0pEyxXAw6w/XdJxwDHAUdImmz7\nr71cn4iIWM709MnZ0Skk9TS1rFu3NXo1FvVn/77qqWU1P24oYER/y6vxHAT8qt2X8EjaBJht+7El\nlTNm/ESPn3zqQMKPiKWUV+s+e0i62vY2fe33TGvpd5UlJVzbCway/0DrqTcA/S6vxvO0b+lr2v6X\npYktIiIGT757PyIiokukpR8dZfP1xnFVuhwjIpaLtPQjIiK6RJJ+REREl0jSj4iI6BJJ+hEREV0i\nE/mio1x3xxwmTO31JYZdKc9SR8RgSUs/IiKiSyTpR0REdIkk/YiIiC6RpB8REdEllkvSl7SppI2W\nQ7nqe69Bq2uVps9rL2NZL5a0xrJH9WR560satPfTS3qVpBfWz4dJem4f+49d0muOIyKiM/U5e1/S\nCOAB4JpedtmS8srWrZrW/SewoqRzm9b9xvbDtcw/295U0grAsXX7QtufaKl7NeCrwH/Wt8n9SNI7\nbf+zbl8H2JTFL4bZjfKO+Uvrcg/wZ9t3NZX5eeA6YBSwuu0T2pzzupSXx+wqaUXgd5K2tv1Ay36n\nAx+1fY+kw4Dr6ytwW00HzpH0BOUd9osor7EVcJHtL0raG/g0cHPLsVsBa7e8YOfrlNfd3kcvenvj\nXv37HNFS3vuBz9T4jgTO6q3c6vga59NesFNvzOZQXk/cbDNg23Zv4IuIiKHRZ9K3vUjStcDrGsuw\n+NWrlAQ7gZLMGsmikXRXrT+PoLxP/QZKsnu4thRHA68HjqnHPpn06/YHgWuBzSXNBR4HZksaWZPW\nKpRk0khu6wBz6zooif0O4MmkT0lIj1FuCMa0nq+k9YB9gXmSjqXc0MwGJku6wPbtdb8NgR2B99Rr\n8cd63O8aPRK2LellwN3AocD7be8s6SvAibZvbar6ceC3wHktIX2Cp1sD+Fabjo+xwA625wFfrjEa\n2KBel7sof+dXUq55oxdjXduzJE0FxgE/qWUL+Lzt77XUswB4pE1cjXP+i+3tm9dLuhCY1+6YiIgY\nGv19Tn8RpRV9pKTnUxLng8DX6nZTegJWAvanJIuFdf21wHcpSeINwAeBLYCZlFb+A7avkvRoS51T\nalmuP6EkrV9QEux7bP9d0sPA1cBfgPG13gnAJsCrbd8kaU3gC7b3pSSeRdShjfoe+D8BW9meCzwP\n2AY4BXhb3XYOcHit9/Yay3uAH9bYDqlxImlmPf/3SLoNmAZcT0ne/yvpPmAX4IU1se5r+55a5iie\n/ndyPPAmST+1fV+9objX9iSWwPbBjc+SpgG32z67za7vAh6UtDKl9+AcYFa9CWjc2LV6DrByu3rr\nMePrdWj2AsqNVkREDJOBfDnPJcCPKcnuKuBySvJ8h+0rgSsljaa0Ng+lJNyHJL0e+Gdt1d5ak/uZ\nlFbyCpRW49PY/iLwRQBJB9V1Z7fZdRGlu/53lKGGeZQbgIXA/HrcPZI27mWewdbAzTXhN8rbjtJr\nMKFu3xPYiNqdLenFwFuA022fL2mB7W/VbR8Evmn75hr3B4CXA9sCu1Na8hsD61J6RxpurPutQ72B\nqHooLfsL6/I6wD0Mgjo8sj9wC3AUpbdlzaZdRtVeg1abUnoEzmzdYLvRszCQOKZQbvLoWWXNPvaO\niIilNZCkvzml9bs+8CbgYWAqgKQNKC3SjYCzKYlq33oTsBflRqFh/1rvRZQW8uPtKpP0E8r4PJQk\nMlpSo8X/HODdtv9ISb49lETdaOk3JqKNbSryW8B+baraB2ieezCCcnPzSUor+CrgCsq4d8PuwAnA\n6nX5MElXALcC76CMzQP8hNJyfrzGuGFdvxHlukBN8LZvpNxkNF+D1wPzbf+iafU4YJU2LelRwEjb\nr2pzjr05mPL3dmiNeQHl7/RUSQ9Sbpp2aolpXI3Bktay/e+W7YdRrtXslrqeB3zV9smtQdieAcwA\nGDN+olu3R0TE4Oh30rd9LbBTHee+npK0rq6b76BMLlsVmAx8jJL8zwQut/1XeLJl+SJKN/13KTcS\nbSej2d6l8bneAKwOvLl5Ml292XiUxePg21FuFK6iJPgDJH2vxn4hcAYwq6maEcAbKQm84VbKkMQu\nwMS6z6p13d9rbJ+WtB3Q6GI/l3Izcwnwu0avQZ1AuHON9TTKzcRLKDcjdwNrl016M/B2Ft/kNGwA\nLJR0dy37DOCm1q59SWPqvtPaXcslmE65rofafqKWBWXoZFYvxxxFud531OMPadk+Hzjb9sck7QCM\ns32hpHeRr32OiBhW/f5PWNLxlC7q51AS4jwWJ8t1KS3jbwPnU1rPF1O6w0+tiffPlIlupwIfsH2W\npLdRbiB6q1PARynzBX4GzJR0mO3GzPCFlB6HRhf0E/XPI5Tk82hjm+3rJU3iqYlxEbCN7cdrfTvX\n7Y2JgRvUPy+ty5MlnWz7+y2hXgJ8hJLgf9RyDu+hzAO4x/Yf6jj/yymz31VC8zeAb0j6CPDxxsx6\nSYcDTzSGNSRtBZwuqXVIZCRwIk9vXS9RnXTXblOjpT8KONz2dbX+bSnzMl5te6GkgyUdbfu05lNu\n+vwaFs+BoJYXERHDpL9Jv8f2Se02SJpFaa1/ntK6vgQ4kJL8TRmrvVjSccAZNdFMq4+OHQQcsLgo\nbQC8AriAcoNwOHCx7VPqDkdRZq3fDrzT9l/r43VvqHU1uve3rD9/YPuG2hJeZHt+a5Kz/WidzNdj\n+6fAT5vO7SPAr1q615/cXPc5n8Vj2G8C7qxj1Gfb/jLwG+Cb9TpAmTm/P+XJgXGUCZENYymz6htd\n4CtSblwasV5D6c14ejDSkZSxeeos/L1YPF9iPOVphEPr8mjgO7Y/Vc+jNfM/raVfh1amArs2PQp4\nIGWm/zbAsbbvpky0HF0nfO5NmYR4EfB9ysTHiIgYJv19Tn+Lmtzb2RJYjzJe/WbbD0r6GeU//+tq\nkt8OeKRO8oLSW7An5dn9xuN09wDfA2bUVuRY4ADbdzYqsv0bSZtSniRodLWfApwiaRdKr8DkxnBC\nk7cCUyTNr8tPdo9L2qteh3OoEwebrEDvrdOxlOQ5ueWZ90a5PTW+30t6OWWOw+soPRFvqjcgU4E9\nKAkRSm/BSvX4U4BX034eQnM944Ef1HPYu9Y5ndL13h+j6nk0jKTl90LSxpSbiB1tPzkcUydqvg74\nELBGvXnan/J0xmqUv7+/SzoGOI7y2Ga7v5+IiBgCWpyHl7CTNLqXWdzLVrkk9yeALjSQayNpRduP\nLe+Y+hHHSErvza/afQmPpE2A2UuKdcz4iR4/+dTlF+QzUF6tGxF9kXS17W362q9f3fvLI+HXcpPw\nezGQa9MJCR+g9ng87Vv6mrb/ZQjDiYiIFnnhTkRERJfII1TRUTZfbxxXpTs7ImK5SEs/IiKiSyTp\nR0REdIkk/YiIiC6RpB8REdElkvQjIiK6RJJ+REREl0jSj4iI6BJJ+hEREV0iST8iIqJL9OuFOxFD\nRdLDwA3DHUcbawD3DncQbSSugUlcA5O4BmY449rA9pp97ZSv4Y1Oc0N/3hQ11CRdlbj6L3ENTOIa\nmMS19NK9HxER0SWS9CMiIrpEkn50mhnDHUAvEtfAJK6BSVwDk7iWUibyRUREdIm09CMiIrpEkn5E\nRAAg6bmSdpK0xnDH0qxT43omStKPjiHpK5J+K2nacMfSIGmkpFslzap/Nu+AmNaW9Oum5Y64bs1x\ndcJ1kzRO0o8l/VzS9yWN7oRr1Utcw/47Jmk8cAnwMuAXktbskOvVLq5hv15N8a0t6Zr6edivV1+S\n9KMjSNoH6LG9LbCupInDHVO1BfAN29vXP9cNZzCSVgPOAZ5TlzviurXGRWdct7cAn7G9E3AXsD8d\ncK3axDWV4b9WAJsC77X9ceCnwOvojOvVGtchdMb1ajgFGNsp/xb7kqQfnWJ74Nv182XAdsMXylO8\nAthb0uWSzpc03F9otRDYD3ioLm9PZ1y31riG/brZ/oLtn9fFNYG30gHXqk1cC+iA3zHbM21fIek1\nlFb1znTG9WqN63E64HoBSHod8Cjl5m17OuB69SVJPzrFc4A76ueHgLWHMZZmvwdea3s74EFg1+EM\nxvZDtuc0reqI69Ymro65bpJeCawG3EYHXKuGprh+TudcK1Fu3uYDokOuV0tc19IB10vSaODDlJ4a\n6JB/i31J0o9O8Qgwtn5eic753fyT7X/Vz38DOq3LLtdtCSQ9Fzid0iXcMdeqJa6OuFYALo4Efkvp\nremI69US1zodcr2mAp+3/WBd7pjfryXpyKCiK13N4u6wlwCzhy+UpzhX0ksk9QB7U1oZnSTXrRe1\nJfZt4AO2b6FDrlWbuIb9WtW43i/pbXVxVWA6nXG9WuP6UidcL2AScKSkWcCWwB50wPXqS76cJzqC\npFWAXwOXAm8AXtHSXTwsJG0GfJ3S1XmR7Q8Nc0gASJple/tOu25NcQ37dZN0BPA/LE4KZwHHMMzX\nqk1cvwD+k2H+HauTMb8NjAGuBz4A/Irhv16tcX0ROJ8O+jdZE/8b6aB/i71J0o+OUf9x7wT8yvZd\nwx3PM0WuW//lWg1MrtfAPBOuV5J+REREl8iYfkRERJdI0o+IiOgSSfoREW3U2eGNzyMk5f/LeMbL\nmH5EBCDp1cDzKc9a/5DytcJrA6Z849qplEeyLqNM1noY+DxwAbCr7YXDEHbEgAz3V4pGRHSK44EZ\nwHHA1rZ3kXQUcI3tX0taifJOgW2BtSg3BBOAR20vbPQE2F40LNFH9EO6qyIiivn152dtHyHpaMpX\nvB4g6Wxg9frnA8DGwH3AkcBGkn4F3A5sM+RRRwxAWvoR0fUkvQV4LnBUWdTBwI3A4cBjwAeB9Skt\n+09Tkv46lJb/h+q+77B95ZAHHzEASfoR0fVsn1+77xut/RuBtwEbAgcB99f1JwIHUhL/fMo3620N\nzANuHsKQI5ZKkn5EdL36Apw9ga8CmwC7Aw9Qvvr1TmAFoIfyFbATKd+tviXwAuB7tZgfD23UEQOX\nMf2IiJLQ31s/H87iLvvNgL8A/wJupXwH/KXAecD5tucDf6DcMPx+iGOOGLAk/YiI0n2/EXA0cIDt\nv1IexdsduJfydrfbgC9Rkv40YDNJLwA2pXTvv3QY4o4YkHTvR0TAy4CdgTfZ/pekbSnj92+zfYuk\n9YH3A5tTxu5fQRkGOAs4FrgbuEDSAbZvGpYziOiHfDlPREQ/SRppe0H9LGBE40t5JMn5DzU6XJJ+\nREREl8iYfkRERJdI0o+IiOgSSfoRERFdIkk/IiKiS/x/fZ39kXD8lpwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x1=sum(df.b08a=='1')\n", + "x2=sum(df.b08a=='2')\n", + "x3=sum(df.b08a=='3')\n", + "x4=sum(df.b08a=='4')\n", + "x5=sum(df.b08a=='5')\n", + "x6=sum(df.b08a=='6')\n", + "x7=sum(df.b08a=='7')\n", + "x8=sum(df.b08a=='8')\n", + "x9=sum(df.b08a=='9')\n", + "name_list=['国家机关事业单位领导与工作人员','企业/公司中高级管理人员',\n", + "'教师、工程师、医生、律师','技术工人(包括司机)','生产与制造业一般职工',\n", + "'商业与服务业一般职工','个体户','农民','无业、失业、下岗']\n", + "num_list=[x1,x2,x3,x4,x5,x6,x7,x8,x9]\n", + "plt.barh(range(len(num_list)),num_list,tick_label=name_list)\n", + "\n", + "plt.xlabel('频数')\n", + "plt.title(\"职业\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exer7/0165192.ipynb b/exer7/0165192.ipynb new file mode 100644 index 0000000..1ec7f83 --- /dev/null +++ b/exer7/0165192.ipynb @@ -0,0 +1,572 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 第七次练习" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "+ 请务必交到exer7文件夹下,**谢绝交到master下**\n", + "+ 请不要改动任何文件,拜托\n", + "+ 请在12月20日前提交。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "请写一下姓名和学号:\n", + "+ 姓名 王惠民\n", + "+ 学号 0165192" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib\n", + "plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签\n", + "plt.rcParams['axes.unicode_minus']=False #用来正常显示负号" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name '请参考下面命令将CEPS' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0m请参考下面命令将CEPS\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcsv数据读入python\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name '请参考下面命令将CEPS' is not defined" + ] + } + ], + "source": [ + "请参考下面命令将CEPS.csv数据读入python" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2717: DtypeWarning: Columns (20,22,23,25,28,29,39,49,74,124,125,126,127,128,129,130,131,138,140,141,147,160,161,162,165,170,174,175,176,177,179,180,181,182,183,184,188,191,194,195,196,199,221,222,223,224,251,252,254,289,290,294,295,296) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idsclsidsschidsctyidsframesubsamplesweightfallgrade9stcog...steco_3cstonlystsibstsibrankstmedustfedustprhedustfdrunkstprfightstprrel
0111133218.7388920011...31333112
1211133216.5182340017...21858112
2311133216.5182340012...2213333111
3411133218.7388920010...21677112
4511133217.5530400010...31788112
\n", + "

5 rows × 300 columns

\n", + "
" + ], + "text/plain": [ + " ids clsids schids ctyids frame subsample sweight fall grade9 \\\n", + "0 1 1 1 1 3 3 218.738892 0 0 \n", + "1 2 1 1 1 3 3 216.518234 0 0 \n", + "2 3 1 1 1 3 3 216.518234 0 0 \n", + "3 4 1 1 1 3 3 218.738892 0 0 \n", + "4 5 1 1 1 3 3 217.553040 0 0 \n", + "\n", + " stcog ... steco_3c stonly stsib stsibrank stmedu stfedu stprhedu \\\n", + "0 11 ... 3 1 3 3 3 \n", + "1 17 ... 2 1 8 5 8 \n", + "2 12 ... 2 2 1 3 3 3 3 \n", + "3 10 ... 2 1 6 7 7 \n", + "4 10 ... 3 1 7 8 8 \n", + "\n", + " stfdrunk stprfight stprrel \n", + "0 1 1 2 \n", + "1 1 1 2 \n", + "2 1 1 1 \n", + "3 1 1 2 \n", + "4 1 1 2 \n", + "\n", + "[5 rows x 300 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('CEPS.csv',encoding='gb2312')\n", + "df.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面的图都至少需要在图上标注:\n", + "+ 图标题\n", + "+ x轴标题\n", + "+ y轴标题\n", + "+ 适当修改x轴或者y轴的刻度及标签,使之清晰美观\n", + "+ 根据需要添加图例" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 散点图\n", + "反映期中考试标准化成绩语文(stdchn)和期中考试标准化成绩数学(stdmat)的相关关系" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2717: DtypeWarning: Columns (20,22,23,25,28,29,39,49,74,124,125,126,127,128,129,130,131,138,140,141,147,160,161,162,165,170,174,175,176,177,179,180,181,182,183,184,188,191,194,195,196,199,221,222,223,224,251,252,254,289,290,294,295,296) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEdCAYAAADq/dscAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucHFWV+L8nkwlMCDIBIpCBQAQMqCFEIiAJGFgxIoJD\nUEFdFV1EWNSFZYNBoiAbJEt84CqIuIr+5BkBR9igQQ0IgkGTDRB1ibwScHhskIQIDGQyOb8/7q1M\nTU+9eqaru6v7fD+f/kzPrapbpx59z73nnHuuqCqGYRhGczKi1gIYhmEYtcOUgGEYRhNjSsAwDKOJ\nMSVgGIbRxJgSMAzDaGJMCRiGYTQxpgSqiIjsUvL/DiLSJiItCceMFJExIrJNhvq3ExGphKwR9b5F\nRHbw/2+fx3kaDRFpF5E3RZQfJiLHDKNeex5GxTAlUCVE5HRglYjsESpeC7wCbBYRjfoAvcDfgY+m\n1L8vsAr4RA7iT/R1f0FERgF3ATeJyOgEec4VkU+KSFvCPo+LyHVDEUgcB4vIu4Zw7DEiMsl/P19E\nNvuGtU1Evigi4/y2b4vI9SKyfUp9I0XkayLy8VDZNsD/AEtEZKeSQ+YCt4vIp8uV3VPz5yEinxeR\nr/nvo0XkBhH5SMk+O4rIhSIyNUudEef4Z/9s3lfGMSNEZL9hfpqqXRxZawGaiF8AC4BFInKEqvYC\nU3GN/GagD1gE7AocAQhOSY8ARgHrU+p/HNgAXCoiXar6QgVlf8n/fVlVN4nIlcCVuAbuGFV9Kbyz\n75V+zsvzI1+2O7AT8Fpo11ZgjIjsFyobBaxX1af8cSOAw4HXA3vgGsC3AFOAscDjIjJJVTdnuRBf\n378B+4jIQbj73gK8ilO05wM/9LsfDoxS1b+nVLsTcAzwryKynapeoaqvicjXgW8B3wc6/fkPBN4L\n/MaXD4WaPY8QhwIT/Pde4CRgdck+RwAXABuBlWVfpZMteDZZ2Q743yGcK8wOOJmbA1W1T5U+wCcB\nBc6O2f4n4GfDqH+6r/+KCsu9i6/3i6Gy03A/0ndF7P8Pfv/3hMq+hBvRPB/69OF+4MH/LwA9wEUl\n9f3Z17cReM5//zKu0T4CaMM1FtvGfEaU1DcGeAL4LPCvwBac0n0YuDy0zyZgfsZ7NA54DDey2z1U\nfg+wFBjt/78D1xiPL+LzAPbBKeHFwEPAfsD+vv7/BA4EtvP7XuaPf90Qr/MUX+9lwOklnzOAs4Ez\nS47Z1h9zYUR9C4BZCeeb54/dppK/n3r/iL94o0qIyDeBear6dxHZGZiEa2w24RqMG3A/0DAbVPVV\nf/zrcD/2XlXdElH/t4B7VHVRxLZgVNGqod6tN1d8IEHsbYFvALcDtwWHAfsCzwC/UNVVofp+CoxR\n1aNFZCzQp6obRWQ73I9sk9/1YeBe4J/8/9v4fQf0/MT5Ul5V1Re9We07qiol+8wFLomRv1NVf+b3\nmwK8w1/TC7gG8oPAp4G9cb3ah3CN4W3ADFW9N3SeVqClVEa/7QBgrKr+JlQ2DnheVdX7AW4HPq2q\nV8XIWtfPQ0RuAk5MkA3gbThT2JPA71V1duj4FqBNS0YrUYjIKcDVOOXfW7J5hL8P61R1z9AxI/2+\nX1bVC0PlHwauBa4D/r2krqf9/Zjnt41U1b40+RqGWmuhZv4A78f9CNM+4R7cmozHJH0eLZFjii8v\n7RmW9hJ7GNhL3IhrQD4equsoXAO6v///P4C/AQfhGumn/TWswf1YXwr9/wzwqZR7drp7bQeVn+2v\nYa/QJ7i/7w7t92HgLzib+rOhe7ICZ7JYhTOZfCvh/l0Wqu9zFXgexxXleQCjcWaja4BloXIFvkj/\nqCwYfUR9ns34+zjF7//OMn9XA0YCwO7+HkXJ8ndgN79fMBKQWrcN1fyYTyBnvLPu9bgfbNC7WK+u\np/FzoAP3wzsLZ+LYH/fCAvyzL3syVOXlOPPFq/7Y83C9wd9HnH53XA93MfAHXG9xFO7FDxOMKD6r\nqj+MuY7VwHJV/UjUdr/PtsCNwMvAt7wT8iCc/Xs1bgR0Xmj/R4HfquopJfWMxvX8t/g6NgOb1f9S\nQ/sFvUHB27ZVdU1o++7+a9DTRVWvA64TkQnA/bjGcwdcg7OLqv7K91afxvloLvCHHuCv7cO43nLA\ny/7vCbiedDn8A/BtnAkpTF0+D9y78ya8iQfYtsR/EIxs1wLn4BrUY3Hv2xHAxTjfSJqPZbhs7cWL\nyBigC+f/+LyqXurL3wP8ty97Jnxw6XvW8NRaCzX6B3gng3sfb4nY71bgiZKy//L7R9pUcT/Kl4Bv\nx2z/J3/8O1JkfIvf75SEfe4DlpYccwne/hsq/waut/kJXK/6FZyZ5a8R9yHps4+v74cZ9v1vIkYI\nwAy/fWZJ+TQvz904Jaq4xv4lnMPzGF/29dAx7/Nl+5bUdaYvP3AI70YnJSO9en4e/rjXcD6NqNHJ\ni3g/Sui4Ni/Hx0mwt+PMX+WOoDpj6toMXIjz6/zey/sVnHI9AzfSeh64uuS4eaXvUDN8bCSQP/fj\nepE9uB/9QuA1b5vdDvej2QIcDCzzfoKAybhe02hvJ35WVXuCjeoiQ+7ERbFEMdPXHzVKCBP0PI/0\nvccwd6vqn3GNxltC5afgens9wEUhmc4GEJFD/P5zVfUxEZmBMzeEo1GiaMGZFLr9/+fiGurNuB/+\n/cAbcI5YwZkmFNdIJ+KjZC4G5gC/xPkCzvCbF+B6yV+jPzJkSujw8f48fy2p9lfAh4A1IrI/cCT9\nPp5BPpsQv8SNKI4GHizZVpfPQ11EW+J8FT+K+gPuvd0eNxp9BBfJ9bKqxp0vGK19AfhpikzBCGpT\n0k6q+pKI/AD4k6reIyKbgCvo9/ecmnKe5qDWWqiZPvTbOPek3/5YzmdmRJ0n+21TSsrH4Hq2izLI\ntX/COU/2+1xMv0kgMJesIaJnh2s0/oxTPi2h8p1w0SRJn/YEOd8Rkms0cFJoW6aRAHAIznbdgvMb\nXIlTMq04E8d7/TErcT3bFn/cfODJjM+3D9e4vlry2ZL0LIvyPPz9i5PvIr99tr8Hx/tjLgP+nHDN\n7yZl9BPaNxhBRfoK8COB0P+C8w+txCnJjbhOxpfw/gC/X1OOBJpqUkQd0Qd8FdfobKOqkvbB/ZB/\nG1HXLcD/Af9SUv4J3EjjexnkGeX/fix0vnf4ssA/sQrXC5yCG9rvhvuhDejZ+eiZ63AN7MeAnURk\nuu+Fn46L4U76vD9Bzvmh7/OA60XkhAzXF+aPOBPJCFyUy6eAX6tqr6puxM3HWIIz87wOZzoCF/pY\n2mMv5ce4eQUtqrqNqm6rqtvi7tlNOCXQjWso/5hQT70/j9dw7/D+oc9Mv+3vqvrvqnoLLsoquH+T\ngEcTrnko0ThJIy1E5O0i8mPcPf8JLiDgKJxZ62bcnJBuEfmLiJT+fpoGUwI1QlVfVRemOUJceoGk\nz7Z+/0ETolR1E3Ap8HERmQZbnWHn40wnv8ogzhj/N9yABLNk1/m/9/u/R9LfiP2/iLoux0+MwpkF\nnsPZrhXXCwMXRlmq5CZGyLAVEfkormf/B1/0FdyP+moRGZ9+iVv5Ls5UsQmniEcA90v/DO1f4uzT\ny3DRQx/wJo5DiVbCW1HVPnUmk7Dcn8DN/zgSNyfhDap6gao+H1WHp96fR5IJKWyiuQN4t3fgvx0X\nAh1HbOqUBEalbH8cOAwXdj0FFyJ6D+4duA03+fAsXHDAL4dw/obAfAI1QkR2UdXncEPnL6TsPg83\n/I/jP3GTha4VkUNxfofXA7P9jz2Ncf7vhlBZ0Oj8DUBVnxCRNbgh9HbAJzRingIuhcFuwAO4CJQ1\n9Nv3SxvIVThb87uThBORDtw1LsP1tt+mzt77SZxd/ZvAr9Mu0nMOzvxzBC7McSaukR6BCxP9nVfO\niMj1uN7z/TjTyZ0Rsr0FFxUT5wN4E66B+wLufrxV+tP8CK43/5SqPhY6pq6fB/2zrKNm5oZ79D/G\n3etzcaOq2yL2DwjSWVwtIlennD8g0T/hf197B/+LyDO439JncdFcF6jqRbh3CxGZHVVPo2NKoDZM\nBv7Lpy0IwgN3i9jvdbgfbk/Etq2oaq+InIzrqS4D3gh8VVXvyyjP/v5vd6is3f8N91jvwCmbH6pq\nZM9JfQhmzHlagy/eHLEPzpwVZoAjVFxunGtwvb5P0G92QFXv86kZbmKgEzcW3zAgIp8BlgMPqJuE\ndhLOibkwtPtlwGeAHwAPqmqUg/0s+idXJfHDhG1fZKCpq26fR4g+Vd3afvhw3AGpJVT1YRH5CW7U\ndouqJoXQ/pr+685KqZM+Fj8i2x3ndP46brb54jLP15CYEqgNV+N6MTvie06q+mzpTiISzNRMtH16\nHsD1tE7ydXaVIc/hOGdauDc6BRfNEcxUPgAXBQMD47CPA55R1eX+/x1xo5AOnEnhTTil9y/4Gag4\np97RuAbm3lCdz5XULbjGcyZwqm9UZoYFV9Vz/L5T/N/UkY+fgfwYLsrkBRF5yMt7L240ENT9pIjc\nhnNyxvVOF+JCeXuJtmsfj5vrcTKDc+uMwN2Tp0vK6/J5lNCS5V7jnOsCtImIRI1MReQo3HOeq6rX\nichuwGGqerPfPhoX0fVfqtrtyyYCC0Xkc6UmOH++Ut6G60RchJvPcR3p5qTmoNae6Wb64CZuKS6q\nY4Yvm0tMRAKu96fAWSn17o5LUKe4XvMjuEZpPrBjyrHb4MwOd/v/b6Z/VvL9vmwGzgzxFM6+2gf8\ng992pd93b9yQ/lX6I0Vew9mqb8GlLQjO2YLr+a3D5cH5Ba7H3VIiWyvwHeCqUFncjOEgXj8c2fJh\nX3ZUwvXPxEVRbfT7PgYc7LedjDPzvIabPfvmITzzUyhjHkE9P4/Q/p/BKanwvQ4itz4T2m8WrgPz\nPS/jJTH1XUcowg03Se8lYAf//2R//DWhY07zx5xfUtcIX35hxHnG4EYAd/p9vlSyPYjYG1nrtqKa\nn5oL0CwfXO9kiX/JPhUqnxvReAWft5GgBHC9w+/7H/fzwId8+RhcPPQW3GzR7+ImrY2KqON0f44z\n/f+fxU1EuhIXV34uriH8X1xPckdcg/gCLqzvjzhH6wh//KW4LJ3TYs53sP8RbsH1ZHfFzWpV3Gjm\noIhjRoa+n0G0EphTWk5/iOh7I/Zv8w3JM7g8N7vjzCGX4UJ4r/LH/sjfh/W4RvLoMp970FhlVQJF\neB5n42Zwh8v2IqQEcO/vC8B1/v9z/fb/IJSWwR+3CbgtVHY0Je+9fw5b6FfQAvwOZyrdJ7TfKH/s\nt0kOfe3EZfENl11GaIJbs3xqLkCzfHA9s2eAm0rKk2Kug8+c0P6dOEfoY37bK/7lHRtxzqnAz+gf\n8r/kf/Cf99t39z/UZymZlYzLSLrSH9dFKF4c1+t7OSTfT1Ou/V24XDyr/f7PMDhfzvG4UNdeInpx\nof2CHEEjS8p3AvbL8BwOw0XRrMcpznNxCfWC7ef68o2EMlTiGtGnieh9RpyjHTd79z9wpgcNN1QJ\nxxXieQCfJ6QEcJE/v/F1nYILp33Gv2ttof2CRvbXwDhf9hNfdnBovxE4f8j/hsr2wY0+FofKDvXH\n/jxUNpr031PaZ/tatxfV/NRcgGb64ELSdi4pu4R0c9AFobLjfNnDuOHrzhnOuzuuN7gMZx44wJe3\n4nqqJ0ccs6tvdE6LqXMqLl3DQ8AhKed/K05Z3YWbpRnZ08I5x+/BZdmMqysYOQ3ph4pzti/GjSjG\nRGyfhRtdDUr1jIsC+gawbYbzLPVybgS+l1G2QjwPXMdlc8l+m3BZTXfDjVxupySFhd/3UuCc0P/T\nwu93qPwk4I0lZR8Hdi0pu4jQKMs/XyWhI5FwXwJz0KAOVSN/LJV0jfFOr9GaHDdeeswkVS11MmY+\nn6qWJiyL2zfSkTfE826rEemXGxUReT3O7PFcBeus2+chIq3qHbTi0jmjGRf6qSR+TsIbcem7M/+m\nmhlTAoZhGE2MzRg2DMNoYkwJGIZhNDF1P1ls55131r322qvWYhiGYRSGFStWPK+q49L3LIAS2Guv\nvVi+fHmtxTAMwygMIrI2675mDjIMw2hiTAkYhmE0MaYEDMMwmhhTAoZhGE2MKQHDMIwmpu6jgwzD\nMJLoWtnNwiWreXpDD+Pb25gzaxKdUztqLVZhMCVgGEZh6VrZzXm3rKKn1619072hh/NuWQVgiiAj\npgQMwygsC5es3qoAAnp6+1i4ZHVVlEAjjEJMCRiGUVie3hC9/HZceSVplFGIKQHDqBCN0CscCrW8\n7vHtbXRHNPjj29tyP3etRyGVwqKDDKMCBL3C7g09KP29wq6V3bUWLVdqfd1zZk2irbVlQFlbawtz\nZk3K/dy1HIVUElMChlEBknqFjUytr7tzageXzJ5MR3sbAnS0t3HJ7MmJPfGuld1MX7CUiXMXM33B\n0iErrLjRRjVGIZXEzEGGUQEapVdYLvVw3Z1TOzKbXyppx58za9KAuqB6o5BKYiMBw6gAjdIrLJei\nXXclRy5DGYXUIzYSMIwK0Ci9wnIp2nVXeuRSziikXjElYBgVIGgIqhUlUy+RSEO97qzyV/o6axlN\nVKtrTqPuF5qfNm2a2qIyhtFPqV0bXO+7KKaIrPLncZ21unfVvmYRWaGq07Lsaz4BwygYtY7IKYeo\nSJys8udxnbWy49fymtMwc5BhFIx6iMjJQlwkTmkjF1Aqf17XWQs7ftZrqcWzNSVgNA31YkcfLnF2\n7R3aWitS/3DuU/jYESL0lZib4xQADLbL19J+X2myXkstrtnMQUZTUOuZrZVkzqxJkT/clzdtHvb1\nRN2ns258gAO/fEdq3aXHliqAJKIiiqKuc4QvLxpZZzbXYga0KQGjKSiSHT0LWyLKevt02NcTdZ8A\nNvT0pirNuGPTiLPLL1/7wqDr3AKc/9PiKe+svoha+CzMHGQ0BUWxo2chqaEf7vUkHZ+WHG0o5xbg\n3rlHRW67/v6nIstf3tRXyGydWX0R1fZZmBIwmoI8ba15+hqi6k5qbId7PXH3KSDt3FHHtkT4BgIU\nmL5g6VZzR/hak8xJRczWWa/kag4SkbEicruI3CMiV/qy74vIfSIyL89zG0aYvGytefoa4uqOcwAL\nw7eXR92nMElKJu4ef+2DU7jspANj6+3e0MOcnzzInJseHHCtaRRxFFeP5D0S+ChwjapeJyLXisi5\nQIuqHiYiV4jIvqr6SM4yGEZuM3rzyCkf9P6jGsKe3j62bR1BW2vLgPMK8JFDJ2w951BHJ8E+X77t\nT6x/pXfAtjSlmeUex11X75byJ61WKmKmWlFj9RqdluuMYRH5CPBG4BvArcAfgf9W1dtF5P3A9qp6\ndVIdNmPYqGcmzl1M1C9IgCcWHFt2fVEzRqPq/sZJB8Y2KJWadZpXoxV3z+IQGLR/pWb5VmsGcbVn\nKpczYzjvkcBvgWOBzwEPA9sAwTh5I7BP1EEichpwGsCECRNyFtEoGvXUo6q0ryFLhM349rZE52GW\n0cm8rlVcf/9T9KnSIsKHDtmD+Z2TBxyT1UFZ7vNI8zuE6Whv4965Rw2S98SDyksfHSdf2r2q1LtW\nz6uQ5R0i+hXgdFW9CKcEPgwEv44xcedX1atUdZqqThs3blzOIhpFot7i/Svta0izc2epO66BDcrn\nda3immVPbnW89qlyzbInmde1qmx5h/I8ou5Z6wihtUUGlAXX2rWym5tXdA+Q9+YV3ZmeeZp8SVFj\nlXzX6jk6LW8lMBqYLCItwCHAAmCG3zYFWJPz+Y0Go97i/Ssd1500gshad4tIYnlc6GVcecC8rlXs\nfd7t7DV3MXufdzvzulYN6XlE3bOFH5jCwvdPYezofqf3NiNd8zScZ552bNJ6CJV81+p53YW8zUGX\nAFcDewK/w/kG7hGR8cAxwKE5n99oMNJ6VLUwFVUyrjsuP385iiUutDLck07aHnUPl699gWuWPTlg\n3/D/pUQ9p6h6wTXUZ9/4ADu0tfLyps1b99/Q08ucmx6kty9a3iy96LT3JWk9hLNvfGDI5y2lntdd\nyFUJqOrvgTeHy0RkJnA0cKmqvpjn+Y3GI8kGX8mlA2tFJaKYOmLuUYfvdY4QiArGGSHxSd9eLXMm\ncGkPN6reOTc9CNofGbShp3dQPXEKIOoccfsk+WyS7ndcJNNQeu/VXm+iHKo+WUxV1wOLqn1eozFI\n6lHVs/OtHIY7skjrdW4zcgQ9vYMTT2wzckTsPUyiNFw1qocbVW9SA59G1l50lh543P2udO+9Xlch\ns9xBRqFIssHXs/OtmqT5KV6NUABBebn3qkUkk0+k0s8gq3lsOD6bRllDOA1LG2EUjrgeVSOlHh4u\nSb3OtPsUtW27US28vGnwiGCLKsvXvrA1/09g9z/7xgcGmDzKCQvNwvK1L1SlMa7X3nslsZGA0TDU\nIg1vEUm6T3HbLj5hMv946OA5Owpbw0uTQir32mloijiugcoa0lpvIcX1iCkBo6EIwgoBxo5ubcjh\n+3BJMnOEtwX09PZxzqIHgfjw0+vvfyrRJ7Ps8fWRx40QBpyrlLZR8XmM0kJaof5CiusRMwcZDUHU\ntPw427eRbObonNpRdkhon2qiTybOBbxFXSrpuFQSUSao8DnTMD9ROqYEjIagUSKDqklS6ogsveww\nLSLsusO2sb6GZ198NbLRDkYWQ/EZxI1KArpWdkcucRmcz3CYOchoCKzHVx5pqSPKWRoS4NA3jI21\n+++1UxsfOmSPyG1BeVoK66RjowhGhlHXYX6igZgSMBqCep6WX4+kpY5I62WXsuZvPbF2/2WPr2d+\np3MsB/W2iPCPh07YOvKI8lO0x6ybAAw4Noq4RHxBSKuNDvsxc5DRENTztPw8GG56jLTUER86ZI9E\nH0ApSXb/PlUmzl3M+PY2vvbBKQPkTLqO4aRfjhsBblE1BVCCKQGjIajnaflJDKUxz5IeIy1VdNyS\nj0FPPewbyGIaSrL7AwPCMwM5064j/Ey7N/TQIjIgsmco6aptZDiYXBeVqQS2qIzRqAy1pzt9wdLY\n3EBB7v2oXnzYhJJlnzRZS497Yt1L3PvYC7Fyl8qZdh1J5067T9VexKXeKGdRGfMJGEaNGGoMe5oT\nPEuq6DQbfSmBzT7OV3Dnw+tY87dsTvhAzqzO/Eqlq24WBVAuZg4yjBox1IimNFNHmr0/YH7n5ETn\naimdUzsqkl45kDOryWao96kZUj5UAhsJGDWna2U30xcsZeLcxUxfsLSmU/qHI0vWY4P94gyxaXbr\nqHBKAY7cz63Cl7aozHBIisLKYm9vHSFbnfVzZk0atJoYON9A+P4NN/Krnt6vesSUgFFT6im3y3Bk\nyXpseL8oskQ0dU7t4MSDOgg3nwpbl1zceUx0aGVceTmUm3doEKVtfowmDN+/4eSEqqf3q14xJWDU\nlHrK7ZLnMoZJ+wWUY7e+8+F1g9rP4HzP/X1T5DFx5eWQNe+QED3y6O1TFi5ZTdfKbs5Z9ODWBWWi\nCM/4Hqp9v57er3rFfAJGTamnmb7DkSXrsXH7CQyIiKnU+fIgLe9QsG3i3MWR+wS98XJy/wzVvl9P\n71e9YkrAqCn1FM+9Q1tr5BKHlVjGsNz9hnO+LDl40iZpVWK+RZwsQbx/1jqGI1M9vV/1ipmDjJpS\nL2sAdK3sHrDIecAIIfMyhlmuo1LXG5WnJ6hn+t47Rh4TlCfZyStpQ4+71qx5iYLrGY5M9fJ+1TOm\nBIyaUi/x3AuXrI5c8zbBZD2ArNdRieud17UqclLWWyfsQOfUDq791NsHKYLpe+/ItZ96O5BsJ6+k\nDT3uWpPWDwgTrA0xHJnq5f2qZ2zGsGFAbD57GDyDtdbsfd7tsSkfHrvkPanHx11r4MaN2/bEgmPL\nETOWtNnHYUoXsc9LpkajnBnD5hMwDJJt6fXmRMw6GSyOoawxXE5MfprtPvj/rJiJZ2F6evti8xyZ\nXb8ymDnIMOifaBVFvTU2w50MNpQ1hisdk985tSOzWahP1ez6OWIjAcPAxd1HIWRzDFeTuDTPSYus\nhMmScTXI3An9awwvX/vCgDQTpb3+VzZtjrTdn7PoQc6+8YFB54lK/x1FR3sbR+43bkBW1BMPspQQ\nlcKUgGEQb/JRklMW14LSNM9RqaLTGM4aw/M7J0emgY4jMOUkpYp+ekMP27aOoCdiXei9dmrj5hXd\nA1ZBu3lFN9P23LHunk0RMcewYZCenjkv0mzoaesCDJW0etOcz3H3Kwtx9zSuzjifQL057OsJSyVt\nGGVSi3jyNBt62jrAQyVLvWnO5+E4y8udxRsnS7057IuKKQHDoDbx5Gnx71nWBRgKWepNcz7HOcvb\n21oTcwclHRtXXm49Rnnk6hMQkTOAk/y/7cD9/pz7A7er6vw8z28Y5ZAlP02lUipAeo94OKGgSeae\nLPWmOZ/j1nS+8Pg3p64RHDe6iqvzxIM6uHlFd9OsH11tch0JqOp3VHWmqs4E7gEeA1pU9TBgvIjs\nm+f5DaOSRJlvzr7xgSGbZ9J6xEMNBU0z94yIOTwo71rZzeKHnhl83hHCtD3dTOQsI6dyR1dx+8/v\nnMyJB3UMWAXNooMqR1Wig0SkA9gVF2yxyBcvBWYAj1RDBsMYLlHmGwWuXfbkkCJV4nq+QQ93qKGg\nSeae+Z2TaZHodBgtkjybt2+Lbk3tDNlGTuVm/4zav2tlt0UH5Ui1fAJnAt8BtgOCmSMbgV2idhaR\n00RkuYgsX7cuOn7bMKpNUhhpJXPrBA1buesAB6SZeyKiMLeWJ613ALVxxtqaAPmS+0hAREYARwHn\nA+8DgjHwGGKUkKpeBVwFLkQ0bxkNIwt5pJZI6ymXuw4wxIdUZplRnGV942pjawLkSzXMQYcDy1RV\nRWQFzgS0DJgCmCo36ookx++cWZNi890kNY6VdCZnIc2MNHZ0K+tfGbxuwtjRrYweNXJYS1+WS/je\n7NDWighseKV3wH2yNQHypRrmoFnA3f57F/BREfk68EEgeukhw6gBWXLfRDlVW1sktnGsxRq30/bc\nkZYSQcNO3WMP2C3yuDfttn3sOsHtba0VD5ktvTcbenpZ/0rvoPsUl9cpKd+TkZ3clYCqfkFVb/Hf\nNwIzcSPNggQ3AAAa10lEQVSBI1X1xbzPbxhZSbM9L1yyOtKhut2okbGNYy3s2QuXrKavRNDAqQvx\neZLu82sUlPopLjvpQB644F0VH72k+R+C+xQnb1y5UR5Vzx2kquvpjxAyjEGkmU/yMq+k2Z7jtr8Y\nsSRl1jrjCK6xe0PPVht/R8ZlIId6HYGD+965R0Xez0rf9+Gs3Zz1eCMdSyBn1BVRicnCScfStg+H\nNNvzUGzTQzmm9BqjErABsfdhqNcB8Q1rHvc9y3rIlVjjwEjG0kYYdUUWk0xe5pW0/EFDyS80lGPO\n/2l8euUsy0BmuY64OKG4hjXufOcsepCJcxczfcHSSD9H18pupi9YGrlPnP+hVGZbJzhfbCRg1BVD\nNWVUwjSQlmc/Sx7+cussZV7XKl7elJxfP81EkuU6lq99gWuXPTlgKcmkhjUtuVvUyCBt9FAqZ1x0\nUEA1I6yaCUslbdQVaSmda5XyuVrEpXAOEzcPAMq7D+XY+LOmjg6fv9GfVT1jqaSNwpKHSaZIZEkO\nF7dPufehc2oH9849iicWHBvrDA5IM90EhEcMNsmrGJg5yKgr8jDJJFHtiVxpJPXykyiNHKo0Qb3n\nLHowUb6wT8EmeRUDMwcZTUtcquO81xFIIsgAWi6XnXRgVWSeOHcxcS1G6b2rx/vbLJg5yDAyUOvE\nZFGRM/M7J7PdqGizS1Lun7xnIQckLfwy3FTSRm0wc5DRtNTSZp0UOXPxCZMzL64SECivvBvYuPTX\ncY17uamkjepjSsBoWqpls47yOySNQoLImShfxbQ9d4xNYlcN5VVpn4xRe8wnYDQt1bBZx50jbjKY\nAE8sODaxTgu9NNIoxydgIwGjaRlKr7ZrZTcX3vonNvh8QWNHt3LBcW+OPSauxx8XBbRDW2uq3Gkr\nkhlGOZgSMJqacmzWXSu7mfOTB+kNZehc/0ovc256cGtdpSTNtG0dIQPqAnh502a6VnZXdBayYSRh\nSsCoOfUWqx/HwiWrBzXaAL19GuuUjfM7dLS38cqmzYMWd0mqK0xRHK5FebbNjIWIGjWlFouuDJWh\npDVOmuG8IWJ1r7TzFIkiPdtmJlEJiMjuIjLSf39nxPZWEXljXsIZjU+1YvWTsllmJS1ldBRJsfJx\nx9R6Rm0l7hXEP9uzbnxgWPUalSXNHPR94F9E5GDg9SKyI/A6oAX4FXAqsD3wmVylNArPUBdAqdS5\nK5ELP26N4fDykvO6VnH9/U/Rp0qLCB86ZA/md0ZHG9WjgzfqXp114wNceOufuPD4eAd4FEnPsJLr\nQBjDI80ctAXoAT6MW3joM0AHsCtwIPBeYE6eAhrFJ8ksUI3ecKVGG8vXvhBZfvBeY+mc2rE15UMQ\n9dOnyjXLnmRe16rI4+pxRm3cko8benrLNuWkPcNqzs424olVAiLyLmAscIj/2+43/QC4AVgPfFpV\nG8OAaeTGcBZAqQSVGm1cf/9TkeXLHl+fuD2uHMrL5FkNku5JuY12lsyjjeL/KDJJ5qB/AnYHTsb1\n/oO3cyJwEbAbcFau0hk1pxLRHUmNcDXCHSs1Mzgue2a451/OcZWk3OcUt3/ako/dG3qYOHdx2Qvq\nxNVZa/+HkaAEVPUkEfk5cDZwJfAnYB/gAeB4nBL4mYg8oKrPVENYo7pUypae1gjnHe545H7jIjNz\nHrnfuLLqiZvgFSR2S9ueF+U+p6T9o/wUpSjZ34Xg2cbNnLYJbrUnzScgwCjgRb/v08DvgGXAZOAK\n4J/zFNCoHZWypdd6IZg7H15XVnkcHzpkj8TytO15Ue5zSto/8FOMHZ0+c7mcd6Ee/R+GIy066AfA\nOtxIYDfgcpyJaC3OV7AC+HaeAhq1o1K29FrPcK3UdczvnAwQGf2TZXtelHt9aeXh3nvwzOIMWuXc\nw6JMcGs2YpWAiLSp6iIfFnoR8CBwJ04RvAv4tqoeICIfqI6oRrWpZJbNWjYAlbyO+Z2TExv1tO3l\nksXWX+71Zd0//MziktaZTb/4JJmDbhCRu4DDcM7hSbh5A7uqSz36qoi0q+or+Ytp1IJam3EqRVGv\nI+uM23Kvbyj3o6j30EgnSQnMBi4ATgJ+DdwHfAOYJCJtQDdweO4SGjWjUey4Rb2OrLb+cq9vKPej\nqPfQSCfTegIicijwnKo+ISI7qerfROTtwOOq+lyeAtp6AkajkTWcM2493yxrDtQLlkCuNlR8PQFV\nXRb6/jf/dS1wnIj8UlXXli+m0cw0UuNQzrWUE85ZrZXP8qJSIcZGvqQlkDtcRB7x348VkYmhzW8E\n3gk8IiLjU+q5QkSO89+/LyL3ici8YcpuFJRaZJesVFK0qHrLuZZywjmLboevVnJAY3gkpY34FnAa\n8JKICM438D8icrmIjFPVu4D7gceBWJOQiByOcybfJiKzgRZVPQwYLyL7VvBajIJQ7cYhT6VT7rWU\nE7ZZdDt8NZIDGsMn0hzk00evAb4O3O+jgT4mImOAc4CHROTPwCbgaFWNnF4oIq3A94DbReR9wExg\nkd+8FJgBPFKxqzEKQbUbh7TJUcOh3Gsp18RT5Nj6opuzmoW4kcBIYDTweWA3EfmmiFwP3IUbHfwO\n2BHoUtX47FjwMeDPwKXAwcCZuKgigI3ALlEHichpIrJcRJavW1ferE6j/ql2Hv08lU6511J0E0+Y\nNBNbI11rIxOnBLbBpYsYAfTh1g74KvBeVe1Q1dnAEcCnRCQpTGEqcJWqPgtcA9wNBL+OMXHnV9Wr\nVHWaqk4bN668/C5G/VPtxiFPpROXfyiuvOgmnoAsJrZGudZGJ9IcpKovAl8EEJETVPU2//16EVkH\nPI9LJ3Ee8F0RWRaKGgrzKPAG/30asBfOBLQMmAKYh6gJqXYaiTwXbxlKXqIim3gCsprYGuFaG50s\nIaLhUOXpwGdxq4sdCHwcOCVGAYCbYfwDETkZaMX5BG710UTHAIcOUW6j4FSzcchT6dS78zOvUNx6\nv24jO5nmCYR4SVV/BiAiPwNuUNW743ZW1b8DA3ILichM4GjgUj/iMIzcyaJ0htJg1rPzM884/Xq+\nbqM8siiBbUXkB7iJiruJyBU4p+5jOEdvWajqevojhAyjaiQ18kNtMOtxneCAtPDV4YwQ6vm6jfLI\nogTOArbDmYVuwUUN7YZzDM8Xkd8CJ6nq5tykNIxhktbIDzWMtNZpspOIM80E1z6cEUI9X7dRHqlK\nQFWXxm3zieTebwrAGA7VSCGR1sgPx8ZdK+dn2n2LM9m0iFRk3oQ5fRuDtJXFABCRFhFpCf2/J4Cq\n9qjqj/MSzmh8qpVCIq2Rr/bcheGS5b7FheLGrXlsTt3mJJMSAF4D1olIu///NznJYzQZ1UohkdbI\nF21iU5b71jm1gxMP6hiwBvKJB3XQUTCFZ+RLUu6gc0XkPP/vKlXdEdje/29dBqMiVCvUMK2RL9rE\npiz3rWtlNzev6N7a8+9T5eYV3Ry537hCKTwjX5J8AiuA80XkaPrnCqwRkb0hdslRwyiLaoUaZnFk\nFsnGneW+xY0W7nx4HZfMnpyLH6aRUoQ3C7FKQFV/DfxaRI4BLvbFvcD7qyGY0RxUM9SwSI18Glnu\nW9JoIY97YesHFJO09QQ+BvwlVPRH4ESgQ0RuEZGbReTDeQpoNDZFM8PUC1nuW7Wd3bZ+QDGJHQmI\nyGeAM4CPhooVOB24FfgmsCcwF7guRxmNBqeReujVJO2+VXtCl6WSKCZJPoFrgO+rao/46AIAVX1Q\nRF5R1d+IyI5AZ95CGumYLdYopdoTuuL8FCNEmDh3sb2XdUqST2CDiBwqInsBiMgoYNuSfV4AZucp\noJGO2WKNOKo5yooaeQBbo5PsvaxPkkJEJwBdwMsAqroJ+ESV5DLKwGyxRj1Q6qdoCVkQAuy9rD+S\nRgJPisgMVX1URLpE5AXgAL95+7jjjOpjtlijXgiPPCbOXRy5j72X9UVi7iBVfdR/3QF4TVV7/f8z\ngn1EZFtVfTUn+YwMWFrf5qFIvh97L4tBatoI7wtYCUwO0kao6hq/7W04k5FRQ4qW8sAYGtXKs1Qp\n7L0sBlmyiG4SkdcBc4AJIjIGWArcBlwFfDJfEY00LK1vczDUdNe1wt7LYpA0T2AG8Fff61+rqh/y\n5e243v/ngH9LWlnMqB4Wa9/4FNH3Y+9l/ZNkDvoIcIeIdAN7iMj5InIL8HPgdmA/4B99LiHDMHKm\naOmujWKQpATOVdU3AicDdwLH42YIz1TVS1X1EWA+8J38xTQMw2zsRh4k+QQ+LSInAXcDzwEPA08C\nt4vIalyW0TcDP8xbSMMwzMZu5EOSEvg5cA8wE9gft9D8N4F/8tuuBM5XVcsbZBhVwmzsRqVJUgL/\niUsdvSNwEE4hfAfYHfgFsBo4VURuV9X/y1tQo7EoUry7YTQySUrgPcA8YB0ue+jfgC8BdwDLcOag\nRcDngXPyFdNoJPLMdWTKxTDKI8kxfCrwPPAM8Hvgt8DbgQ3A4cClqvorYGreQhqNRV65joo2mcow\n6oGk3EGXA4jINjjzTw/OFPQnVX0FCFJKHJu3kEZjkVe8e9EmUxlGPZCaNkJVX1PVv6vqZlVdo6r/\nU7K9fmeqGHVJXvHuRZxMZRi1JlUJGEalySve3SZTGUb5mBIwqk5e6wrbZCrDKJ/UBHLDQURGAo/7\nD8BngbNw8w5uV9X5eZ7fqF/yiHe3yVSGUT65KgHcIjTXq+rnAURkNtCiqoeJyBUisq9PP2EYFcEm\nUxlGeeStBA4FThCR6cBa4EXc3AJw6ahnAIOUgIicBpwGMGHChJxFNAzDaF7y9gn8AXiHqs7AzS84\nBgiCtjcCu0QdpKpXqeo0VZ02bty4nEU0DMNoXvJWAg+p6jP++8PAzkAQqjGmCuc3DMMwEsi7Ef6x\niEwRkRbgBOBM+tcnngKsyfn8hmFUmK6V3UxfsJSJcxczfcFSm5FdcPL2CVwEXIfLQHorbkWye0Rk\nPM40dGjO5zcMo4LkmffJqA25jgRU9Y+qeoCqTlbV81V1Iy419TLgSFV9Mc/zG4ZRWfLK+2TUjrxH\nAoNQ1fX0RwgZhlEgLDVH41F1JWAYeWKppPNlfHsb3RENvqXmKC4WnWM0DJZKOn8sNUfjYUrAaBjM\nXp0/eeV9MmqHmYOMhsHs1dXBUnM0FjYSMBoGSyVtGOVjSsBoGMxebRjlY+Ygo2GwVNKGUT6mBIyG\nwuzVhlEeZg4yDMNoYkwJGIZhNDGmBAzDMJoYUwKGYRhNjCkBwzCMJsaUgGEYRhNjSsAwDKOJsXkC\nhtGEWMptI8CUgGE0GbZEpBHGzEGG0WRYym0jjI0EDKNAVMKMYym3jTCmBAzDU+928kqZcdpHt7L+\nld7IcqP5MHOQYVCMpSkrZcZRLa/caGxMCRgGxbCTV8qM82LP4FFAUrnR2JgSMAyKYSev1MpptgKb\nEcaUgJELXSu7mb5gKRPnLmb6gqV1ZVaJImvDWMvrqtTKabYCmxHGlIBRcYpgXy8lS8NY6+vqnNrB\nJbMn09HehgAd7W1cMnty2c7rStVjNAaide4NmjZtmi5fvrzWYhhlMH3BUrojzCgd7W3cO/eoGkiU\njbTooKJel9F8iMgKVZ2WZV8LETUqThHs61GkLU1Z1OsyjCTMHGRUnEZ1PDbqdRnNTVWUgIjsIiIr\n/ffvi8h9IjKvGuc2qk+jOh4b9bqM5qZaI4GvAm0iMhtoUdXDgPEism+Vzm9UkUZ1PDbqdRnNTe6O\nYRE5CvggsB/wEPALVb1dRN4PbK+qV0cccxpwGsCECRMOWrt2ba4yGoZhNBLlOIZzHQmIyCjgS8Bc\nX7QdEMTTbQR2iTpOVa9S1WmqOm3cuHF5imgYhtHU5G0Omgtcrqob/P8vAYEXbUwVzm8YhmEkkHeI\n6DuBo0TkTOBAYALwFLAMmALUT2IWwzCMJiRXJaCqRwTfReQu4HjgHhEZDxwDHJrn+Q3DMIxkqmaO\nUdWZqroRmIkbCRypqi9W6/yGYRjGYKo+Y1hV1wOLqn1ewzAMYzDmmDUMw2hiTAkYhmE0MaYEDMMw\nmhhTAoZhGE2MKQHDMIwmxpSAYRhGE2NKwDAMo4kxJWAYhtHEmBIwDMNoYkwJGIZhNDGmBAzDMJoY\nUwKGYRhNjCkBwzCMJsaUgGEYRhNjSsAwDKOJMSVgGIbRxJgSMAzDaGJMCRiGYTQxpgQMwzCaGFMC\nhmEYTYwpAcMwjCZmZK0FyIOuld0sXLKapzf0ML69jTmzJtE5taPWYhmGYdQdDacEulZ2c94tq+jp\n7QOge0MP592yCsAUgWEYRgkNZw5auGT1VgUQ0NPbx8Ilq2skkWEYRv3ScErg6Q09ZZUbhmE0Mw2n\nBMa3t5VVbhiG0czkrgREZEcROVpEds77XABzZk2irbVlQFlbawtzZk2qxukNwzAKRa5KQER2AxYD\nBwN3isg4Efm+iNwnIvPyOGfn1A4umT2ZjvY2BOhob+OS2ZPNKWwYhhFB3tFBbwbOVtVlIjIWOApo\nUdXDROQKEdlXVR+p9Ek7p3ZYo28YhpGBXJWAqv4KQESOwI0GdgQW+c1LgRlAxZWAYRiGkY1q+AQE\nOAnoBQTo9ps2ArvEHHOaiCwXkeXr1q3LW0TDMIymJXcloI4zgfuAQ4EgTGdM3PlV9SpVnaaq08aN\nG5e3iIZhGE1L3o7hz4vIx/y/7cACnAkIYAqwJs/zG4ZhGMnk7Ri+ClgkIqcCfwS6gLtFZDxwDG5k\nYBiGYdQIUdXqntBFCR0N3K2qz2bYfx2wNkeRdgaez7H+vCiq3FBc2YsqNxRXdpN7aOypqpls6VVX\nAvWGiCxX1Wm1lqNciio3FFf2osoNxZXd5M6fhksbYRiGYWTHlIBhGEYTY0rAOa+LSFHlhuLKXlS5\nobiym9w50/Q+AcMwjGbGRgKGYRhNTNMpgWqntjYMw6hnmkoJ1CK1dSURkV1EZKX/Xgi5RWSkiDwp\nInf5z+SiyA7gs90e578XQm4ROSN0vx8Qke8WQXYRGSsit4vIPSJypS+re7kBRGSiiCz2sn/NlxVC\n9qZSAvSntr4YWEIotTUwXkT2ral06XwVaBOR2RRH7gOA61V1pqrOBPalILKLyOHArqp6W5Huuap+\nJ3S/7wEeoxiyfxS4RlUPB7YXkXMphtwA/wH8u5d99yK9L02lBFT1V35tgyC19SwGp7auS0TkKOBl\n4FlgJgWRG5ca5AQR+a2IXAu8kwLILiKtwPeANSLyPop1zwEQkQ5gV2B3iiH734BJItIO7AHsRTHk\nBngj8D/++/8BX6MgsjeVEoChpbauNSIyCvgSMNcXbUcB5Pb8AXiHqs4ANuByRhVB9o8BfwYuxXUY\nzqQYcoc5E/gOxXlffosbKX4OeBjYhmLIDXATcIE3Hb4b1/AXQvamUwJDSW1dB8wFLlfVDf7/lyiG\n3AAPqeoz/vvDuJwqRZB9KnCVz291DXA3xZAbABEZgTN33klx3pevAKer6kW4d+XDFENuVHU+8HPg\nVOBHFOee169geVDg1NbvBM4UkbuAA4HjKIbcAD8WkSki0gKcgOudFkH2R4E3+O/TcKaJIsgdcDiw\nTN1EoBUUQ/bRwGT/rhxCcX6fAQ8AE4CvU5x73lyTxXwG00W4YeYfgfNwPbxf41Nbq+qLtZMwHa8I\njsc5/OpebhF5C3AdzvR2K86BVveyi8j2wA9ww/hW4GSc/HUtd4CIfAVYrqq3iMjrKMY9Pxi4GtgT\n+B1wIgWQO0BEvgw8qqo/Lso9hyZTAlGUm9q6Xiiq3FBc2YsqNxRX9qLKDcWRvemVgGEYRjPTVD4B\nwzAMYyCmBAzDMJqYvNcYNoymwk90eg3YrKq9tZbHMNKwkYDR0IhIq4iM9N+38fHzpftsE1E2TkQO\nGcIp/w2YA5wlIt8On8/nUbpVRLYrOdciEZk1hHMZxrAxJWA0OscBN4nIaOByYImIrBCRp0VkiYjc\ngUsqWMo44EYRGVPm+XqAzbi0Ae0MTBcwA2hX1ZdF5CR//l/48n8XkV+IyC9FZEKZ5zSMIWPRQUbD\n4xvV54AP4nrpr8PNW3jC73IhLqa7RVU3hY67GLhDVX8TKmsF+lR1i4j8A3AZzvwT8HqgBXgGN79g\njKru7Y+9BjdP5V5AcYrmNeAbwI3A/bhZpo+G5TCMPDElYDQsIjIdN/FoC3AzzgfWAtwGzAMeBLqA\n+bhEa5fglMNuwLpQVaNxEwxf9HV8QFV/IyLHA7NV9ZTQOY8HjlbVz4pIi6r2+fK3Az/EpXK4AZcL\n6nRgB1ym1b8C63EZV39Y4VthGLGYY9hoZPbApdn4NHCbqr4MICL742bTviYiewJPq+pdwA1+pucq\nVd0zqMTng29R1S+X1B/Vg3oaNxoAuFpEfqKqt+FGIjfiFMFDwHhc1sk+3KjhaZwSeL2IvEtV7xj2\n1RtGBswnYDQsqnqDqp6La1x39b6Ae3Api5f4FBy9wI9E5Ax/zEbgLyIyJVTVe4CoRlmAThF5WESe\nEpEbcZkj9/FpJ47HZSJFVR/HpSjpBS7GjUDeCnTiMme+w39/0hSAUU1sJGA0C2tV9aCM+16Bi/L5\nqI8Q2k5Vfxex32jgBlU9XUQ6gXeq6jPiVrA7B2faeQxA3HKmPwf+AvwY+GdgMnAY/QnGPoHzVxhG\n1bCRgNEs7O9DNDf4JReDz9Mick54R1X9KbCniHwA+DZwbkydu+FyxYNrvJ/33+8HzsA5nIM6n8dF\nBr0Zl09mLf2/v4twCgWcz8IwqoaNBIxm4RbgI8BLqnpgUCgicxkY3RNwKvAn4E5VXRJT50HAPSKy\nA8738Jj3KUwE/qyqz4nIkbje/57AuX61rzbgMzjn8C44/0AHLrPtg8O+UsMoAxsJGA2Nnwg2FrhM\nVX+f8Zh3A9cCXwReFZGficihJfu0Ae8CfoWL9pkBPIJbxOW7wCYR+VdcBNCxuHDUq4FZqvoW4Enc\nSOI24Gzc/IILgVOjJq8ZRl5YiKjR0IjIW4GPqurZ/v8XcY11wK70x+n/K84J/DDwb6r6qD/mBNza\nE7sCd+Ea7WOBE1T1BL/PO3ArSn1OVW/1cxN+CewN7KuqwZwE/IzhnwArgStUtTtUvhD4T1V9uPJ3\nwzAGY0rAaCpEZLsgVLSkXHChpLeq6tMxx+4H7KeqXf7/UcGkLp8eYidVXRfavxXYRVX/msOlGEZF\nMCVgGIbRxJhPwDAMo4kxJWAYhtHEmBIwDMNoYkwJGIZhNDGmBAzDMJqY/w+PhL+xxoEBtQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sentinels = {'stdchn': [' '], 'stdmat': [' ']}\n", + "df = pd.read_csv('CEPS.csv',encoding='gb2312', na_values=sentinels)\n", + "df = df.head(200)\n", + "\n", + "x1=df['stdchn']\n", + "x=[]\n", + "for x2 in x1:\n", + " x.append(float(x2))\n", + "y=[]\n", + "y1=df['stdmat']\n", + "for y2 in y1:\n", + " y.append(float(y2))\n", + "\n", + "fig=plt.figure()\n", + "ax1=fig.add_subplot()\n", + "plt.title('语文成绩和数学成绩散点图', fontsize=20)\n", + "plt.xlabel('语文成绩', fontsize=12)\n", + "plt.ylabel('数学成绩', fontsize=12)\n", + "plt.scatter(x, y)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 饼图\n", + "对问题“你是独生子女吗”(b01)的回答有“是”和“否”两种回答,相应的数字分别是1和2。请画一个饼图反映二者的比例。" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\python\\lib\\site-packages\\pandas\\computation\\expressions.py:182: UserWarning: evaluating in Python space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead\n", + " unsupported[op_str]))\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAD6CAYAAACWAD2nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XHW9//HXd9Zksrdpmu5pS2iLhRZKCWU9XGQNInUF\nWVTUq1e9Xq/e683PteJC3Ffk6lVAEBUR0EIARcoAIgRaSkuhpGlpStts3bI0k8ks5/v740wg1K6Z\nyXxPZj7PxyMP0pnMzDth+u433/M936O01gghhDDPYzqAEEIIhxSyEEK4hBSyEEK4hBSyEEK4hBSy\nEEK4hBSyEEK4hM90ADF+hMOqEmgEPgbMAq4BvmZZ2k7zeecBm4ApwDzL0o+lbv89cJ9l6bsO8phF\nwIuWpe1wWN0IJCxLf+kQz68An2Xp+CiyXQp8Eqi3rCOvEU29VgCIHc3XCzGSFLI4Fu8FsCydCIfV\nlUDVoco4HFafAz4NtB9w11Tgh5alvz3itk8AE4A5wO+Ax1K3R4G9h8jyAE5R/hkYAhKHyT0FWBkO\nqyHgwJJcBBQBMy1L7zjIYy3g2UOVa6qAtwK7gWLgJuDDQCIcVsOPOQmotCzdd5iMQkghi6MTDqsg\n8F/A2anP/xWIhsPqhdSXKKAQOMWy9H4gDjyPU5wjXQbEDrjta8DLwO8tS/8kHFa/BE4FZgJnhcNq\nP7DSsvSXU1kWATaw8miyW5ZuTz3fyO9nBvBD4EHghkOUMcA7gIsO89w6HFYJy9KnhsNqBbDXsvSi\nA16rW8pYHA0pZHG0vgTUWJbeEQ6r/wGaLEt/PBxWVcAu4HLgA6kyBvDijG43H/A8e1P3ARAOq8XA\n74GfA2enbp4JXAGsAH6DM/p934jn+CgQAjaGwwqgEtDhsLoG5x+GEmC5Zenmg30j4bC6CvgC8EnL\n0uED7psOPAJEcP5+zADuSr0OOKPgASCIM42xjTePzpPhsLoOKLcs/eNwWHk4/OhdiNdJIYsjCofV\necByYFc4rGpwphgWp+5+EZiGU4TfG/GwGHAGzq/rIxUDz434cyvwTmAj0JGaAjjYNIidyjIHZ+56\ngWXpnanbVuDMIX/9KL+l44DfHFjGAKmR8oLU834d+INl6W+k/jwPeDT12oebH54B9KQ+L+fQ0y5C\nvIkUsjga/8Ap5FWWpdvCYXU8UJ4qzziQBF6xLP3KiINaP7Es/eNDPWE4rAI4JToAvBQOq/cCVamP\ng63+GR6ilgEfBzoO89ye4bnt1EG5b+CMaodNT9132YjbioBvWJb+Y+o+P86c+bIRX3MhcO9RHKyr\nwPmHZvjzPUf4eiEAKWRxFCxLDwGbRvzangTCOMUIzijwr+GwuhCnoO8ChkYc1JqM8yv+a6k/D5f2\nJ4HmcFi9A2flxv04o20PztxuNXBW6jFPprKsBdaGw6oxHFbvwpkOGDllEQB+CXwz9fUPpp7rdeGw\nakjd13iYb/vtONMiZ4fDaiXOwcCPAVcd/qcFOAcjPx8Oq8+PeM0B4DzL0s8exeNFnpJ1yGI0vgo0\nW5ZeBWBZel/qtjuANsvSpwJXAxtw5oW/BdxiWfqs1J/PA06zLN0cDqvTcIr5Ct4Yxa5Pfc1K4GOW\npY8DPjQygGXpBsvSx1mWng/8FPiRZen5lqXnWJb+ZrrfYGqkvBx4G9CS+t5esiy9/iBfPim1RO9d\nOIOcr1qWXmxZejFwCnAazlz6gStOhHgTKWRxTFLzqPW8MToedgvOvOnS1J/fC8wf8ev99eGwegoY\n/pgAkBoxXmBZuheoAdotS3/GsnTXiNc8AVg1Nt/RoVmWftay9PXAz4DzgWXhsPpWOKwmHfClvZal\nr8T5GSwEHg+HVTgcVmHgcZx/rCo5zDSLECBTFuLYeHBO4FhqWToWDqsinKVuw8u/Lkz9twZnDfLf\nwmH1MLATuN2y9BeHnygcVt5wWIUsS0dwRpjX4MzjTg+H1TuBUuBknDnjKHBGqpg3coQTL4bnsVNT\nLQfeF8SZCjnUMjdSKyOOx1mD/EGcke0SYD/O0r+XwmH1I8vS30i91o2pn8H3D/F8M4D3WJZOHuo1\nhQApZHFs/KSKLjVSXg/cO3xnqown4Ixmv25Z+qbUlMQHgMvCYfVhnDIN4hT524AmnLW+y3FG1UU4\nJ3JsAT4DbAO2p15rOtCNM389co4agHBYXZH6VAHBcFidYlk6NuJ+L87BtjjO9MKh/Fvq/idxlvJt\nHHHfl8JhdStw7vD3DPzfoZ4oHFZfBD6Ls8xOiMNScsUQMVrhsAqMLLwRt8+2LL3VRKYjGbkCI0uv\nFwLiozltW+QfKWQhhHAJOagnhBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAu\nIYUshBAuIYUshBAuIYUshBAuIYUshBAuIYUshBAuIdtvCtepaWhSOJdymgJMOsRHEc6AQqX+O/Jz\nG+gH+oBeYB/OlbF34Wzf2QZsaWusj2brexLiaMhub8KYmoamIFCLc5Xn+SM+5uEU7ljSOPsstx7w\nsb6tsX7bGL+2EAclhSyypqahqQY4E+dKzsuAk3Dnb2kdwNOpj2eA1TKaFtkghSzGTE1DUzVwCXCe\n1vpcpdRM05lGKQ68gHN9vAeAv7c11svlmETGSSGLjKppaJoLLNdaLwdOV0rl4oHjvcBDOFfFfrit\nsb7PcB6RI6SQRdpqGpoW45TwO5RSC03nybI4zsj5XuCutsb6vYbziHFMClmMSk1DUxlwjdb6Y3lY\nwocSA+4HbgMekmkNcaykkMUxqWloOk3b9r+huFIpT4HpPC62E/gV8Mu2xvrtpsOI8UEKWRxRTUNT\nIXCdtpOfVB6vjIaPjQ38GbixrbH+OdNhhLtJIYtDqmloCmk7+Qngc8rjrTSdJwf8DaeYV5kOItxJ\nCln8k5qGpmKdiH0a5fms8vrKTefJQc8ANwL3tzXWy19A8TopZPG6moamUp2IfRaP99PK4y01nScP\nvAj8v7bG+ibTQYQ7SCELahqavHYs+u/K6/uq8vqkiLPvL8Bn2hrrXzYdRJglhZznZvzH7y9VXv9N\nnkBBjekseS4B/Bz4Sltj/R7TYYQZUsh5auan75qhtb7VW1hyvuks4k32AV8FbmprrE+YDiOySwo5\nz9Q0NHkS+/fe4C0s/W/l9QVM5xGHtB64rq2xfp3pICJ7pJDzyNTrf3KSt2TSH72FJbWms4ijEge+\nhrNUTkbLeUAKOQ+EautU+Tnv/5p/wrTPKa/PbzqPOGargffLQb/cJ4Wc46qv+U6Nr6zqT76SykWm\ns4i0DAFfBr7b1lhvmw4jxoYUcg6b+sGffNw3Ydp3PP5gyHQWkTFPAle2Nda3mw4iMk8KOQeVLr2i\nsHjRRb8PVM683HQWMSa6cEo5bDqIyCwp5BxTcf6HFxQdf8b9vrLJc01nEWMqiXOW33dMBxGZI4Wc\nRUqpjTjbMo60QGs9LRPPX/m2/3p74ZxTf+0tLCnLxPOJceG3wIfbGusHTQcR6ZNCziKl1FrgrgNu\nfr/WekE6zxuqrfMUL7r4y4U1iz+vfAFZRZF/ngfe3tZYv8N0EJEeKeQsShXyRw64+Rat9Umjfc5Q\nbV2otO5ddwSnLViulFLpJRTj2HbggrbG+hbTQcToSSFnkVLqHmDiATfHtdYXjOb5QrV1VWXL3nNf\ncOr8M9JPJ3LAbuCStsb61aaDiNGRQs4CpdQC4F9xDsQcjAdYqbUOH+1zhuadMbvs9HevDE45Xq7g\nIUbqB66QTfDHJynkLFBKBYBi4FJgAzAFOBv4JuAFAsB+rfVRHZgpeos1v6zuXX8OVM0+fowii/Ft\nCLiqrbH+PtNBxLHxmA6QD7TWMa31XuAzOKPkQeA9wD3A3cB5R1vGxYsuXFx2xpUPSRmLwwgCd9c0\nNF1vOog4NjJCzhKlVD3wecCPc221mNZ6xbE8R8nii5eV1r3rbn/FlIwskxM5TwPXtjXW32k6iDg6\nUshZoJSaBTwMXIDzl+TTOFMWHqAQqARu0lp//VDPUXTCueeUn3X1nf4J06ZnIbLIHQngHW2N9feb\nDiKOTAo5S5RSlVrr3aN5bOj4ZeeUn3X1rYGq2XMynUvkhSjO6ouw6SDi8KSQXS5UW7e09PR3314w\nbcF801nEuNYP/IssiXM3OajnYqHauoXFiy6+WcpYZEAJ8HBNQ1NaZ4WKsSWF7FKh2ro5oXln/qRw\n7tIlprOInDER+EtNQ1OV6SDi4KSQXShUW1cdnDr/20UnnHe2nA0tMmwGzpI42fPEhaSQXSZUW1fm\nLZ7wxZIlb7tYeTxe03lETjoH+IHpEOKfSSG7SKi2zofH+7Gy09+z3BMoLDKdR+S0T9Q0NH3QdAjx\nZlLI7rK8dMnl1/rKqqaaDiLyws01DU2nmQ4h3iCF7BKh2rolhXOXfqJg5olvMZ1F5I0gcG9NQ9Nk\n00GEQwrZBUK1dVP9E6d/rvjEC5aZziLyzjTg9pqGJjl67AJSyIaFautCeLyfKl36jvOU1xcwnUfk\npQuBT5kOIaSQjQrV1ingupLFl7zVW1Q+yXQekdcaaxqaZLrMMClks5b6K2ddWjBr8WLTQUTeK8CZ\nuvCZDpLPpJANCdXWlePxfrB06RWnyXpj4RKnAA2mQ+QzKWQDUlMV15QsvuRUb6hMjnALN/lSTUPT\niaZD5CspZDOW+itnXVgwa/HJpoMIcYAA8HNZdWGGFHKWhWrryoEPlCx52ykyVSFcahlwtekQ+UgK\nOYuGpypCxy+b5yueIJdhEm7WWNPQJKfvZ5kUcnadgNd/WmjeWaeYDiLEEUzDuQakyCIp5CwJ1db5\ngGtKFl00xxMoLDedR4ij8JmahqbZpkPkEynk7FnmCZXVFMw86VTTQYQ4SgXA90yHyCdSyFkQqq0r\nAq4sPeWy+crrC5rOI8QxWF7T0HSO6RD5Qgo5Oy72T5xR7a+as8h0ECFG4cumA+QLKeQxFqqtqwIu\nLT7xrccruR6TGJ/Or2loOt10iHwghTz23u6rmBryTZiesxu3JAf2oZMJ0zHE2Pqi6QD5QGmtTWfI\nWaHaumrgxvJzrlsUmFRj/Ky8/rUPMrDxCQDsoQGCU+Yx8eJPsuevP6NwzhJCx9Ud9HHaTrLzfz+M\nr9w5y3vCBR8j+tqLRDY+SdV7biCy6R8UL/yXrH0fwpiT2xrrXzAdIpfJzk5j6yJv8US/f+LMk0wH\nASg5+VJKTr4UgL2P/C9FC88nun0DyYF9hyxjgFj3VopOOIcK641LsPWvXknRwvOIdW5C+eU4ZZ74\nAvBu0yFymUxZjJFQbV0lcG7xwvNr3HaKdKJ/N8mBfQSqZrPn4Z/iK60i0vrMIb8+1t5CZNPTdP7m\nc+y6/ztoO4nWGp1MMLh1LYVzlmQxvTDoHTUNTQtMh8hlUshj5zzlL/AGJs91XVv1P99E8cmXsn/D\nKvyVMyirexdDHZvoW3P/Qb8+MKWWye9rpPqab+MJFjO4ZTWFs09mcMtz+Eoq2XXP14huW5/l70IY\n4AE+bTpELpNCHgOh2rpi4IKiBedOUj5/gek8I2ltE922noKZJxHv3kLJoovxFldQfMJ5RF87eKkG\nJs3GVzwBAP/E6ST27aRowTmUn3U1noIiCucuJbLpqWx+G8Kcq2SPi7EjhTw2Tgd8wWnzXbfueGj7\nSwSnzkMpha98KomeTuf2zlZ8pVUHfczuB75HrPtVtJ0ksulp/FVzAIjv3YmvfArK60cODueNEuBK\n0yFylRRyhoVq67xAvb9qjvaGyqaaznOgwa3PUzBjIQDFJ11A9LX1dN75P/SvbaL0tOXEdr/Gvifu\neNNjys68kt0PfJ+OWz9FcNp8CmsWYw9F8BZV4J84g/51D1M4S65ClUc+YjpArpJlbxkWqq2bD/xP\n2RlXzQtOqV1mOo8QY+Sktsb6F02HyDUyQs68s/F44/5Kdyx1E2KMyCh5DEghZ1BqE6G60HF1ZR5/\nUA58iFx2TU1Dk6sOWOcCKeTMWgR4gzMWyuhY5LoK4BLTIXKNFHKGpC7PdIEnWDToK6s63nQeIbLg\nnaYD5Bop5MyZAtQUzFlSqZRHfq4iH1xW09AUMB0il0hxZM4iQAeq5sjoWOSLMkB2lcogKeTMWYZS\nPb7y6uNMBxEii95mOkAukULOgFBtXQUwIzh9YanHF5DVFSKf1JsOkEukkDPjeIDgtPm1poMIkWWz\nahqaTjQdIldIIWfGUiDinzBN5o9FPjrfdIBcIYWcplBtXQA4yVs8IeotLK02nUcIA84wHSBXSCGn\nbw7gDU6dN8V0ECEMOdN0gFwhhZy+4wHtmzB9mukgQhgytaahqcZ0iFwghZy+hUC/r2TSdNNBhDBI\npi0yQAo5DaHaOh8wG+j3FpXJCFnkM5m2yAAp5PRUA55A1ZwJyiuXXhZ5TUbIGSCFnJ7pgApMniPT\nFSLfnVjT0CSDkjRJIadnHhDzlVW77lJNQmSZF5BtA9IkhZyeBUCfJ1RWaTqIEC4gJ0alSQp5lEK1\ndYVAFRDxFBRJIQvh/MYo0iCFPHoTAVsFQn6Pv6DEdBghXEAKOU1SyKNXCXj8E6dPMB1ECJeQQk6T\nFPLoTQK0r3RSuekgQriEFHKapJBHbxow5C2qkEIWwjGhpqGpwnSI8UwKefSmAFFPYYkUshBvqDId\nYDyTQh69yUDU4y8MmQ4ihItMNB1gPJNCHoVQbZ0fKAViyucvMJ1HCBeRQk6DFPLoFAIaQHmlkIUY\nQQo5DVLIo/NGCcsIWYiR5CSpNEghj04BMkIW4mBkhJwGKeTReb2ElccnhSzEG6SQ0yCFPDoFgEJ5\nlPL6AqbDCOEihaYDjGdSyKNTACjlL/CZDiKEy3hNBxjPpJBHxxkh66Q2HUQIl5FBShrkhzc6fgCd\nTNimgwjHhdG/ts+jLW46R75K2DowqcjXFvUW7YR603HGLSnk0UkCCjsphewSb/c8magv3TLLdI48\nNwXYYTrEeCZTFqOjUx9oLbMWbtA+GJxkOoMAIGE6wHgmhTw6I0bGWkbJLtAfqNplOoMApJDTIoU8\nOq+PkNFSyG7QribJe9kdpJDTIG/i0bEBBYDWSbNRBEC7mizrwd1hv+kA45kU8ujYDM8hJ+ODhrMI\noMNTLWdMukOX6QDjmRTy6Lw+KtbxIRkRuEC7t1r2pXaHTtMBxjMp5NGJkBoh2/GhAcNZBDDkCfmG\nkgyZziGkkNMhhTw6AwxPWcQHpZBdYn/CK9NH5kkhp0EKeXQGSB3Us2ODMmXhEr3JoIyQzZNCToMU\n8ujsJ1XIeigiI2SX2JMMyanTZmnkoF5apJBHJ4qz0sJjR/dLIbtEt10mSxDN2sOKXlmHnAYp5FGI\ntDZroA/wJ/p37zOdRzg6dYWcx26WTFekSQp59HqBQHz3a3tMBxGODirl/WzWNtMBxjt5A49eB1Bg\nR/uHZOmbO+ykSnYvNGud6QDjnRTy6LWRulyNPTSw22wUAdDuqQ6azpDnXjAdYLyTQh69XQyfHDLQ\n0204iwDavdVyPTez1poOMN5JIY/eblKFnOjfJUt9XGC3p7LQlt33TOkHtpgOMd5JIY9eN87PTyX2\ntUshu4BWPjWY8MjZemasZ0WvrHJJkxTyKEVam4dwRskFQ52bu7S2ZWTmAn1JnxSyGTJ/nAFSyOl5\nFSjWscG4HenrMB1GwL5EYcx0hjwlhZwBUsjp2URqpUWir1vWYLrAbrtYzhQzQwo5A6SQ07OV1IG9\n+O5tUsgu0GWXy9RRlmmtB4D1pnPkAink9OwgtadFdPtLr2m5BLVxHUxQpjPkG6XUKlb0ylRRBkgh\npyHS2hwHNgNl9mBf1I72y3pkwzqY5DWdIQ89ZDpArpBCTt8LQAlAom9Xm9kool1N9pvOkIekkDNE\nCjl9rzI8j9y9davhLHlvp2eKnD6dRVrrV1jR22Y6R66QQk7f9tR/PYNb12zRdkI2STeow1tdZDpD\nPlFKyeg4g6SQ0xRpbY6SmkfW8aFEore71XSmfDbgKfHHk8g/itnzsOkAuUQKOTOeAkoBYp2tLxvO\nkvf2Jz0R0xnygdY6AjxuOkcukULOjJeGP4lsWd2q7aScnGBQbyIgFzvNAqXUY6zolZ91BkkhZ0Ck\ntXkPztUSyvTQQCzRt1t2vTJobzIka2Kz407TAXKNFHLmPAmUAcS6Nm80nCWvddulcrHTMWZr3Qvc\nZzpHrpFCzpwNw58MbnmuRaYtzOmSi51mwx2s6I2aDpFrpJAzpxvnOnsl9mBfNL5350tHeoAYGx1M\nlPf1GPMo9SvTGXKRvHEzJNLarIEwUAEw+Orq54wGymPtyh0XO907qHlkS4LdkdHvd9S13yaedNeA\nP2Hrdazold3dxoAUcmatxjlrzzO0fcPO5GBfp+lA+Winqg5k+zV7o5pL7hzggjsGWH5XhG09NvW/\njfDsziTn/TrCroGDl3LC1sz8QT/WbQNYtw3wYleSnz4b46xbBhiIaf66JYHf6679knwe9QvTGXKV\nFHIGRVqb9+GUchXA0I6NMko2oN0zJesXO73zxTifOT3II9cWUV2kWNeV5AcXBfnCOUEumuvj+Y6D\nF/L6LpurFvoJf6CI8AeKOHGylxc6k1x7kp/n2pOE/O4qY1vrIeC3pnPkKinkzFsFBAEGXnnyRZ1M\nyDrNLOv2VhXaWd4K9eNLA1ww15kp2RXRVBUpTp/u44ltCZ7dmWTZjINvQvfMjiT3vZLgrFsGuPre\nCAlbozXEbfjrlgSX1Lpi9mWke1jR22M6RK6SQs68VmAXUKxjkXh892uycXeWJZXfE00qI9fWe3p7\ngn1RzenTfWituWtDHL8XDjXrsHSql8c/EOLv1xdRHlQ82Jrgwrk+HtgUZ3qph8t/F+Gxre5ZsONR\n6qemM+QyKeQMi7Q228CDwASAgZanmmXj+uzrT/iyviRr76Dm3x+KcsvlzoyJUoqb6gs5Y7qXBzYd\nvFRPmuxhSonz13B+pZfWPTbvXejnq1aQ8gJFfa2Peza6Y2uOoYR+ghW9T5vOkcukkMfGapwrifji\nu7buSfR0yIkiWdaTLMjqVFEsqXnP3RFuPL+AWeUevvX3IW5f55ww2BPVlBccfIh87X2DrOtMkrQ1\n970SZ1G1M7WxaY/N3ApF0KewXfLPuc/D501nyHVSyGMg0tq8H2fTlckAAxufeEIGydm1O1mc1WHl\nr56Ps6YjyTeeHMK6bYCacg93rI9zzq0DJDVcONfLy7uSfHHVmwfuXz43yLX3DbL45wMsm+7lrXN8\n9A1pqos9nDDJyy/WxHjrHPPzyJG4ftp7Q99TpnPkOiVFMTZCtXWTgUac/ZLtivM/eqW/fPI8w7Hy\nxg+Gvtq2vKylxnSOXJG09TneG/qeNJ0j18kIeYxEWpu7cLblTI2Sw2H5xy97OrVc7DRTInHdLGWc\nHVLIY+tBIAB4Yu0tnYmeDtkrOUvaqZT3doYEvXzOdIZ8IW/aMRRpbW4H/sHwKHnDqsdkxUV27FTV\ncrHTDIjE9bPeG/qeMJ0jX0ghj737cUbJ3lj3q7vj3VtXmw6UD3Z6qgtMZxjvtNY66OU/TefIJ1LI\nYyzS2tyJs+nQFIC+NStX6URMLjE0xjo91Vk/fTrX9ES5z3tD3z9M58gnUsjZcT/OuuSgPdgXHXx1\nzd9MB8p1vd6KYMLGPae4jTPRhI4U+PhX0znyjRRyFkRam/cCdwPVAPtffGRtcqBnh9lUuW8g4TFy\n+nQu2B3RXy78Rt8e0znyjRRy9oSBLqAcYP+LjzwoB/jGVl/SL4U8CnsH9cvTSz3fN50jH0khZ0mk\ntTkO/BpnA3s1tHNjR3xX2xrDsXLa3mTIHZtAjCNJW9uRuL6GFb0yWDBACjm7XgGeZvgA3+o/P2rH\no31mI+WuXXaJzCEfo64Bfdv07/evNZ0jX0khZ1HqMk93AwoI2IN90YENj/5JZi7GRpddLj/YYzAQ\n03sKfOqTpnPkMynkLIu0Nu8B/gBMAxh8dc3WWOdm2dJwDHQwUU6fPkq21rpzv75+wrf6ZN7dIClk\nM1YBL5FaddHX/MdHk4P9XWYj5Z6duONip+PBK7vt2+b+uH+l6Rz5TgrZgEhrcxL4Fc4FUUM6GU/2\nP3//vdpOypxnBrV7sn+x0/Foe6/detOzsY+aziGkkI1JTV3cgjNKVrHOzd3RbevkhJEMaldy+vSR\n9A/pgae2J99203MxWZHiAlLIZq0GngCmA/Q//0BzvKfzFbORckentzpkOoObJW2tn92Z/MSVf4y0\nmM4iHFLIBqVWXfwO6CF1wkjP3++8LznY3200WI6Ie4LeaIKsX1tvvFjXZf/2/NsHfm06h3iDFLJh\nkdbmAeBmoAwI6qGBWO8zd/9ONiDKjP6ET1YNHMS2HrvlV8/HPmg6h3gzKWQXiLQ2bwZuxVkK50ns\n3dHTv+4vf9Datg1HG/d6ksGsXux0PNg3qHuf3iHzxm4kheweTwIPATMBom1rtw1uee5Bs5HGvz12\nkZTOCJG4jt6/KX7VlX+MtJrOIv6ZFLJLjDiLbwOpk0b2r/vLmljXlmeNBhvndtml8ltGSjypE7/f\nEF9x3X2DD5nOIg5OCtlFIq3NCeDnwD6gEqDnqd89HN/XsdFosHGsU1fI6dM4Z+Ld90riF396JfFd\n01nEoUkhu0yktbkf+BHgB4rRtu55/LZ7En27thiONi61Mynv3+Naa+5vSdz9m/Xx/1zZEk+aziMO\nLe/frG4UaW3eCfwQmEDqTL59j//6ruTAvu2Go407O5Wcrffw5sQjv1ob/9DKlnjMdBZxeFLILhVp\nbd4I/BTnitVBHYvE94VvuzM50LPTcLRxpV1NzutCfmxr4h83r46/b2VLfL/pLOLIlGz96G6h2roz\ngY8CO4CYp7AkWGFdf503VDbVcLRxYWJi1+Ca4v/IywuePvpq4pkfNceWr2yJdx7tY5RSfwJKcPZZ\n8QA+IIazZWxQa33WmIQVgBTyuBCqrTsP+CDDpRwqK6g457r3eYsqZhiO5n7aZkvwatvrUXnz26Ct\ntb53Y+LJ29fFr1nZEh/VNJdSqhhnGeZvtdY3ZzahOJS8eZOOZ5HW5sdwLv80HfDbkd7o3kf/7/Z4\nT6fsQXBEUy8AAAAJNElEQVQkykMk6cmbsx4Ttk7eujb+yO3r4h9Mo4xPAZ7BWRO/USm1Sin1H0qp\nYEbDin8ihTx+rALuAGYABToeTexb9cu7YnJdviPqS+THxU5jSR2/6dnYfX9uSXxoZUv81WN9vFJq\nvlLq1zhbw34UeCR11zXAIuAlpdTZmUssDiSFPE5EWpt1pLX5EeBnOFt2Okvinrj9geiOlx83HM/V\n9iULc351QSSuB7/7j9hvHt2a/LeVLfEdo3waD/A3YInW+qnhG7XW7Vrr63GmzY56PlocO5lDHodC\ntXUnAP8JRHBOIqF40UVLCueeVq+UkssWHeC22H+/ZpXunGk6x1jpier+bz819KsN3fZXVrbE07po\nrlKqCmgFXjzgrrcAi7XW29J5fnF4MkIehyKtzS8D38D5/zcJnNOs96//6291Ip4Xv54fiy5dnrOn\nT2/rsbu+8lj0exu67S+kW8YpCWCt1vqskR9AMyAnlYwxKeRxKtLa3AZ8HRgApgIMbm7evO+J23+e\njPS2m8zmNh069y52qrXmsa2JFz/zl+hXtvboG1e2xDN14NIGTlFKPTPyAzg9Q88vDkMKeRyLtDZ3\n4YyU24AawJvYt7N37yM33xLr3rraZDY3ybWLnUYTevCnz8Ye/cEzsW/GbX6Z4TPw/MDzWuvTR37g\nrLrwZvB1xEHIHHIOCNXW+YF3ApfiHHSJABQtPP+kUO3plymP128yn2lnDj3VfWfZTVWmc2TCzj67\n88a/Dz36Wq/+AfD8ypZ4Rv8CK6U8QInWujeTzyuOjhRyjgjV1ilgCfARIA7sBghUH1dVuuTyd3sK\niitN5jNpTnxL36qSL5WazpGuJ7clNvzwmdh9cZubVrbEu0znEZknhZxjQrV1U4FPAFOA7YBWvoC3\ndOlyKzDl+DPzcRVGoT0Q3xj6yLj9LWEwrgdvfSH+zMObE7cCf1jZEperoOQoKeQcFKqtK8RZzH82\nI6YwgtMWTCledPEV3sKSnPj1/Vhs8r9vKOBlXJ1pprVmXZe98cfNsdW7I/qnwHOZnqIQ7iKFnKNS\nUxinAe/H2SCmA9B4fZ7SU684Jzht/tlKefLmoO7z6tqeCcFkuekcR2vfoN79izWx557annwe+NnK\nlrisnMkDUsg5LlRbVw5cDdQBXTjL5AhMOX5yyeJLLs+XXeNW2R/qmhManGw6x5EkbJ149NXkml+s\niW2M2/wJeFimKPKHFHIeSI2WTwY+BASAdpztFSk+8YLFBbNPOd/jDxYbjDjm/hj/1I5TS3ZPN53j\ncLbus1/94TNDL2zt0c8Bt8uoOP9IIeeRUG1dKXAlcCbOKdc9ACpYFCg5+dKzglOOPz1Xl8jdPPSF\nbZeUbZ1lOsfB9ET1nntejr/w55ZEC/AboHllSzxnzy4UhyaFnGdSo+UTcA76TcE56BcF8JVNLile\ndJHlr5x1cq6txvhy9Htt15evqTGdY6SeqN7zYGt89d0vJbqTmlXAvRk6/VmMU1LIeSp1MsmZwHuA\nIE4xxwH8k2ZPLDrh3LP9E6efmCsH/j4c/fX2L5b/xRUb+vdE9Z6HWhPP/uGl+K6kph24dWVLfJPp\nXMI8KeQ8F6qtKwbeClyGM6/cSWoTGV95dWnRCeedHqiavUR5feP62nSXRh/u+Fn57VNMZjigiDuB\nu4G1ciVoMUwKWQAQqq2bgFPK56Zuen3E7CksCRa/5fylganz6sbrwb/FsbV7/lT6nYkmXrtrv73j\n0a2JF+9+KTFcxH8AXpAiFgeSQhZvEqqtmwhYwEU465d3AYMAyhfwFi0498Tg1PmneIvH1/X8Jic7\nIs1Fnw1l6/WiCT34Ure97k+vxDet67I1zpJDKWJxWFLI4qBSUxnLgMuBYpxVGa8fcPJXzppQOHfp\nokDV7EWeQGGZoZhHTemE3lJwLZ4xPFiptWZHn371768lX7hnY3xvLIkPp4jvRopYHAUpZHFYodq6\nAM6mRZfjXDoqgTNqfn3Lx4LZS2oKZp642F8xdYGb55pf8l49UOTXRZl+3v4h3bO+K7n+no2J1s17\nbQ/OnsLNwOPAZlnCJo6WFLI4KqnlcjU4Z/ydCxTg7JGxB6eAUP6gr2DW4ppg9XG1vvIptZ5gqMJU\n3oN5hvfvqS6Ipz2PnLR1smO/3rZxl936+LZE2/ou24Ozj3A78DDOgbr96b6OyD9SyOKYpUbNJ+AU\n8yJAAf04J5q8Phr0T5o9sWDGwlp/5Yxab9GEWcrjMbrB+UPJj7YvKOof1ani+2O699V9duvajuTm\nv25J7OyPUYJTwnGckfBTwGuy+Y9IhxSySEtqr4wTcS7xMw/nKjQJYC+pE04AVKDQH5w6f6q/cuZ0\nX9nkGd6iimnZXrFxR+yzr51d2nHEi53Gkzq+d1B3de7Xndt67Y417cntazvtGDA8Vz4ArAZeAFpW\ntsSjh3wyIY6BFLLImNS2n3OBk3B2mivFGT0PAL2kltEN85ZWFQer5071lU+d4i0qm+gJFleoQGGF\nxx/M+DwvwHejN7S9q/yVmpG3Dcb1wO6I7mzvtzvbenTnhu5kx4vd9l5bU4BTwEGc9dmv4lzGqAXY\nKfPCYixIIYsxkZpzngrUAguBBUBh6m6NM8WxH2c0/SYqEPL7J0yt8JVWlXuLJ1R4gkUlyhcoUL5A\nUHn9QeX1BUn9V3m8Aa21Bp1Eaxtt21rrJNq20TpJYihetH97hc/reeWi6F/2nK3XxLsHdN/OPru3\nrcfu2xclAYRwVpIEUtkUztz4y8BanANzMicsxpwUssiKVEFXAtOBGcB8YA7OPOzwm9ALDOGse46m\nPk+LQqtFavNVE+n/s1IEcEa8wytBhke57UArsAVn3+jOlS3xwXRfW4hjJYUsjEmVdAlQkfqYAEzD\nGVlXA+U4ZT38MdKB64kP9kZWgJqnXps2jd0veBTdQDfO2uA9OGcjdq9siccP8lghsk4KWbhWqLbO\nA6+Paoc/CnhjlKtx9t2wUx/JEf8dwlmWNwDEI63N8kYXrieFLIQQLpETWysKIUQukEIWQgiXkEIW\nQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiX\nkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiXkEIWQgiX+P/t/jGhHlz5IAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "labels = ('是', '否')\n", + "x=sum(df.b01==1)/sum((df.b01==1)+(df.b01==2))\n", + "y=sum(df.b01==2)/sum((df.b01==1)+(df.b01==2))\n", + "sizes=[x,y]\n", + "fig1,ax1 = plt.subplots()\n", + "ax1.set_title(\"你是独生子女吗\",fontdict = None, loc='center',color='y')\n", + "ax1.pie(sizes,labels=labels,autopct='%1.1f%%',shadow=True)\n", + "ax1.axis('equal')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 直方图\n", + "反映变量“每天晚上睡多长时间-小时”(b18a)的分布情况。" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHNJREFUeJzt3X94FuWd7/H31xhBiCG4BSOgTZeLbaF2oZJ6YiQ0YIhl\ns6XYbaHuOUi3eGCr2+1p2r20GulCccXarbtbqHuypXtqLF2yhXoqFBtRckEOUggaujXrQjlSf6BZ\nLD9yEqGkyff8MQME8hPNzBOe+byui4tnnuee3N/B+MnkvmfuMXdHRESS45JUFyAiIvFS8IuIJIyC\nX0QkYRT8IiIJo+AXEUkYBb+ISMIo+EUugJldZWaZqa5D5N0Y8OA3s0vN7BUzqw3/fMjM1pjZDjOr\nGOj+RHoTBvULZvY+M9tkZtvN7G/72Oec71cz+wszqzOz4UCpu7fFUrxIRKI44/9D4IfuXuzuxcAE\nIMPdC4ExZjYhgj5FevJN4HLgIeDr7l4EjDOz4u4am9kn6fr9OgWoAj4CvB1L1SIRujSCr1kA3Gpm\nNwG/Bo4D1eFnzwLTgP0R9CtyDjObCbQCbwJ/ADwffvSfwIgedium6/erAZlAKbAionJFYmMDvWSD\nmX0EeM3d3zCz1cAfAXPdfa+ZlQLXu/vKbvZbDCwGGD58+NQPfOADA1qXJEtHRwf79+9n/PjxHDhw\ngOzsbDo6Ohg+fDivvfYaEydOJCMjo8t+Bw8eZPTo0QwbNozm5mbefvttLrvsMn7zm98wYsQIjh07\nxtVXX80VV1yRgqMS6d2ePXvecvdRfbWL4oz/F+7+2/D1S8DtBL9qA2TRw/CSu1cClQD5+fleX18f\nQWmSFMuXL2fixIl8+tOfpri4mNraWurq6nj44Yf57Gc/S0VF99NNX/ziF7ntttsoKChgw4YNvPTS\nS9x77738/Oc/58CBAzQ1NXHgwAFWrVoV8xGJ9M3Mft2fdlGM8VeZ2WQzywBuBe4i+HUZYDJwMII+\nRc6xZcsWVq9eTXFxMQ0NDdxxxx1MmTKFV155hfLy8h73mzp1KnV1dQDs3buXvLw8APbt28f48eMZ\nMmQIHR0dcRyCSGSiOONfDqwlGBf9CfAEsN3MxgCzCeYARCK1bdu2M6+Li4v57ne/y9e+9jXKy8sZ\nNmwYAI2Njaxdu5YVK84O28+dO5eioiIOHTrE5s2b2blzJ83NzeTm5jJp0iSWLFnC0qVLYz8ekYE0\n4GP83XZiNhKYBWxz9zf7aq+hHnk38u7Z9K72bz/ZwsmXX2DoNdeRkTWy17YHV5a9q75EBpKZ7XH3\n/L7aRXHG34W7H+XslRIig1rG0CyGTyxKdRkikdGduyIiCaPgFxFJGAW/iEjCKPhFRBJGwS8ikjAK\nfhGRhFHwi4gkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0Qk\nYRT8IjE6cuQITz/9NG+99dY7/hpNTU20tbUNYFWSNAp+kYg1NTXx4Q9/mDfeeIOysjJ27drFjBkz\nOHz4cI/7LFq0iMLCwjPPA161ahXTpk2jtbWVmpoaMjMz4ypf0pCCXyRiX/nKVzhx4gQvvvgijzzy\nCPfddx+33HILzz//fLftN2zYQHt7Ozt27ODQoUPs37+fhoYGFixYwO7du888LF7knVLwi0To2Wef\nZfjw4eTm5lJSUkJBQQHbtm1j165d3Hjjjd3uU1tby7x58wCYOXMmdXV1uDttbW3U1NQwe/bsOA9B\n0pCCXyQip06dYvny5axcufLMe+7OunXryMzMJCMjo9v9WltbGTt2LADZ2dk0NTVRWlrKxo0bGTdu\nHHPmzGHr1q2xHIOkJwW/SERWrlzJXXfdRU5Ozpn3zIzVq1dTWFjIxo0bu90vKyuLEydOANDS0kJH\nRwfz589n2bJl5OTkUFZWxvr162M5BklPCn6RiGzZsoXVq1dTXFxMQ0MDZsZjjz0GwLFjx875gdDZ\n1KlTqaurA2Dv3r3k5eUBsG/fPsaPH8+QIUPo6OiI5RgkPSn4RSKybds2amtrqa2tZcqUKRw5coSq\nqiqmT59Oe3s7paWlNDY2UlFRcc5+c+fOpaqqivLycqqrqykrK6O5uZnc3FwmTZpEZWUlJSUlKToq\nSQfm7qmuoYv8/Hyvr69PdRlykcq7Z1NsfR1cWRZJDe0nWzj58gsMveY6MrJGvqMaJHnMbI+75/fV\n7tI4ihGRC5MxNIvhE4tSXYakKQ31iIgkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIw\nCn4RkYSJLPjN7CozeyF8vcbMdphZRV/7iYhItKI84/8mcLmZfRLIcPdCYIyZTYiwTxER6UMkwW9m\nM4FW4E2gGKgOP3oWmBZFnyIi0j8DHvxmdhmwFLgnfGs48Hr4uhm4qof9FptZvZnV9/YsUhEReXei\nOOO/B1jt7sfC7Rbg8vB1Vk99unulu+e7e/6oUaMiKEtERCCa1TlLgJlmdhcwBbgWeBXYCUwG/iOC\nPkVEpJ8GPPjdffrp12ZWC8wBtpvZGGA2UDDQfYqISP9Feh2/uxe7ezPBBO9OYIa7H4+yTxER6V0s\nD2Jx96OcvbJHRERSSHfuiogkjIJfRCRhFPwiIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR\n8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo+EVEEkbBLyKSMAp+EZGEUfBLZI4cOcLTTz/NW2+9\n1e32O9HU1ERbW9tAlSiSSAp+icQbb7xBWVkZu3btYsaMGbz66qvnbB8+fLjHfRctWkRhYSErVqwA\nYNWqVUybNo3W1lZqamrIzMyM6zBE0lIsj16U5HnxxRd55JFHKCgo4OjRozQ2Np6z/fzzz3PLLbd0\n2W/Dhg20t7ezY8cO7rzzTvbv309DQwMLFixg9+7dDBs2LAVHI5JedMYvkSgpKaGgoIBt27axa9cu\nbrzxxi7b3amtrWXevHkAzJw5k7q6OtydtrY2ampqmD17dpyHIZKWFPwSGXdn3bp1ZGZmkpGR0WW7\nO62trYwdOxaA7OxsmpqaKC0tZePGjYwbN445c+awdevWOA9DJO0o+CUyZsbq1aspLCxk48aNXba7\nk5WVxYkTJwBoaWmho6OD+fPns2zZMnJycigrK2P9+vVxHoZI2lHwSyQeeughHnvsMQCOHTvGwYMH\nz9nOycnpdr+pU6dSV1cHwN69e8nLywNg3759jB8/niFDhtDR0RH9AYikMQW/RGLx4sVUVVUxffp0\n2tvbu2yXlpbS2NhIRUXFOfvNnTuXqqoqysvLqa6upqysjObmZnJzc5k0aRKVlZWUlJSk6KhE0oO5\ne6pr6CI/P9/r6+tTXYa8Q3n3bHpX+7efbOHkyy8w9JrryMga2WO7gyvLIun/QgzmGiR5zGyPu+f3\n1U6Xc8qgkzE0i+ETi1Jdhkja0lCPiEjCKPhFRBJGwS8ikjAKfhGRhFHwi4gkjIJfRCRhFPwiIgmj\n4BcRSZjIgt/MrjSzWWb2nqj6EBGRCxdJ8JvZ1cAm4AZgq5mNMrM1ZrbDzCr62F1ERCIU1Rn/B4Ev\nufsDwM+AmUCGuxcCY8xsQkT9iohIHyJZq8fdtwCY2XSCs/4rgerw42eBacD+KPoWEZHeRTnGb8B8\noA0w4PXwo2bgqm7aLzazejOr7+1B3CIi8u5EFvweuAvYARQAl4cfZXXXr7tXunu+u+ePGjUqqrJE\nRBIvqsndu83s9nAzB1hJMLwDMBk4GEW/IiLSt6jW468Eqs3sDuCXwBPANjMbA8wm+A1ARERSIKrJ\n3aPArM7vmVlx+N433P14FP2KiEjfYnsCV/jDoLrPhiIiEikt2SAikjAKfhGRhFHwi4gkjIJfRCRh\nFPwiIgmj4BcRSRgFv4hIwij4RUQSps/gN7Mh521famafi64kERGJUq/Bb2YZBGvsLLPAZ4EvA7fG\nUZyIiAy8XoPf3duBE8ABYC7wYeCHwO+iL01ERKLQnzF+J3iIyk+BkcA3w/dEROQi1NdQz3yCkL8G\n+BeC5ZYvA8aa2Twz+9PoSxQRkYHU1+qcVwHXAr8PTAAWA1cAQ4GrgSE97yoiIoNRX2P8/wC8Cvxf\noBX4R+A4cMDd/97dvxF9iSIiMpD6M8Z/CXAYWAj8MbAo0opERCRSfY3xX0rwkPQbgJcJHqTyN5x9\ncLqIiFxkehzjNzMDit39BjMbC4wFmoFHgalmdgmwxN0fjadUEREZCH1N7v4PYAuwAjja6f03gK8D\nv46oLhERiUiPQz3u7sDVZnYT8DbwIPB7wG8Jgn+7u1fGUqWIiAyYvs74DbgeeB/BuP7/IriO/0PA\nIjP7pbu/FmmFIiIyoHob478EaHL3b4fj/fcT3MxlwK+A/w6sAW6Jo1ARERkYvQ31dAALzWx1eD3/\nBKAKuBJ4wt1/Bfx1LFWKiMiA6es6/o8DN5nZ7WHb8UAD8IyZFbn7c1EXKCIiA6uv4D8BLCe4a7cj\nfO9F4IvACjO7KsLaREQkAn0F/yvAEuDPgEyCid3PAb8AHgK+Gml1IiIy4Hq9qsfd6wgnb83sT919\nrZn9K8EPjKeAI9GXKCIiA6mvyznPcPe14d+db+TaOeAViYhIpPSwdRGRhFHwi4gkjIJfRCRhFPwi\nIgmj4BcRSRgFv4hIwkQS/GY2wsw2m9nTZvZjM7vMzNaY2Q4zq4iiTxER6Z+ozvj/K/Atd58FvAl8\nBshw90JgjJlNiKhfERHpQ79v4LoQ7v6dTpujgP8G/F24/SwwDdgfRd8iItK7SMf4zexGYCTwKvB6\n+HYz0GVxNzNbbGb1ZlZ/+PDhKMsSEUm0yILfzK4Evk2wqFsLwRO8ALK669fdK909393zR40aFVVZ\nIiKJF9Xk7mVANfBVd/81sIdgeAdgMnAwin5FRKRvUZ3xLwKmAveZWS3B4xoXmNm3gHnApoj6FRGR\nPkQ1ufso8Gjn98zsJ8As4BvufjyKfkVEpG+RBH93wuWcq+PqT0REuqc7d0VEEkbBLyKSMAp+EZGE\nUfCLiCSMgl9EJGEU/CIiCaPgFxFJGAW/iEjCKPhFRBJGwS8ikjAKfhGRhFHwi4gkjIJfRCRhFPwi\nIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo\n+EVEEkbBLyKSMAp+EZGEUfCLiCSMgl9EJGEU/NJvTU1NtLW1pboMEXmXFPxpqqmpiaKiojPbixYt\norCwkBUrVvS63/ntVq1axbRp02htbaWmpobMzMxI6xaR6Cn409DRo0dZuHAhra2tAGzYsIH29nZ2\n7NjBoUOH2L9/f7f7ddeuoaGBBQsWsHv3boYNGxbnYYhIRBT8aSgjI4N169aRnZ0NQG1tLfPmzQNg\n5syZ1NXVdbtfd+3cnba2Nmpqapg9e3Y8ByAikVLwp6Hs7GxGjBhxZru1tZWxY8ee+aypqanb/bpr\nV1paysaNGxk3bhxz5sxh69at0R+AiERKwZ8AWVlZnDhxAoCWlhY6Ojr63W7+/PksW7aMnJwcysrK\nWL9+fWx1y+Ciyf30EVnwm9lVZra90/YaM9thZhVR9Sndmzp16pnhnb1795KXl3dB7fbt28f48eMZ\nMmRIjz80ZHB7+eWXKSsro6ioiC9/+cs9ttPkfjJEEvxmNhL4PjA83P4kkOHuhcAYM5sQRb/Svblz\n51JVVUV5eTnV1dWUlZXR2NhIRUVFn+2am5vJzc1l0qRJVFZWUlJSkqKjkHfj7rvv5v7772f79u28\n9tpr1NbWdmmjyf3kuDSir9sOzAf+d7hdDFSHr58FpgHnXFpiZouBxQDXXnttRGWlv7x7Np3dKPir\nM9vtM+6l6sALDL35PiY/eHpy90Ye79y+x3bAM9vgYw9QvgvKd23i4MqyiI9EBtK+ffu4/vrrARg9\nejTHjx/v0qavyf3zTxTk4hXJGb+7N7t75++s4cDr4etm4Kpu9ql093x3zx81alQUZSVaxtAshk8s\nIiNr5IC0k4vLpz71KZYtW8aTTz7JU089xc0339yljSb3kyOqM/7ztQCXh6+z0KSySKwqKiqoq6vj\n4YcfZuHChWRlZXVp09Pkfl5eHgcOHDgzuT9jxoy4y5cBFlcA7yEY3gGYDByMqV8RCU2ZMoVXXnmF\n8vLybj/X5H5yxHXG/wSw3czGALOBgpj6FZHQww8/THl5OcOGDaOxsZG1a9ees4TH3LlzKSoq4tCh\nQ2zevJmdO3eeM7m/ZMkSli5dmsIjkIFi7h5PR8GVPrOAbe7+Zm9t8/Pzvb6+Ppa60k3eeZO1Uelt\ncjfVNcTVfzrW0H6yhZMvv8DQa67r9zyPJvoHDzPb4+75fbWL64wfdz/K2St7RGQQOj25L+lNk6wi\nIgmj4BcRSRgFv4hIwij4RUQSRsEvIpIwCn4RkYRR8IuIJIyCX0QkYRT8IiIJo+AXEUkYBb+ISMIo\n+EVEEkbBLyKSMAp+EZGEUfCLiCSMgl9EJGEU/CIiCaPgFxFJGAW/iEjCKPhFRBJGwS8iF5Wmpiba\n2tpSXcZFTcEvIrE5fvw4s2fPZtasWdx6662cOnWq23aLFi2isLCQFStWALBq1SqmTZtGa2srNTU1\nZGZmxll22lHwi0hsfvCDH1BeXs7TTz9Nbm4uTz31VJc2GzZsoL29nR07dnDo0CH2799PQ0MDCxYs\nYPfu3QwbNiwFlaeXS1NdgIgkx5133nnm9eHDhxk9enSXNrW1tcybNw+AmTNnUldXh7vT1tZGTU0N\nFRUVsdWbrnTGLyKxe+655zh69CgFBQVdPmttbWXs2LEAZGdn09TURGlpKRs3bmTcuHHMmTOHrVu3\nxl1yWlHw92IwTCINhhpEBtKRI0f4whe+wPe+971uP8/KyuLEiRMAtLS00NHRwfz581m2bBk5OTmU\nlZWxfv36OEtOO2kd/E1NTRQVFfXaJupJpMFQg8hgcerUKebNm8eDDz7Ie9/73m7bTJ06lbq6OgD2\n7t1LXl4eAPv27WP8+PEMGTKEjo6OuEpOS2kb/EePHmXhwoW0trb22CbqSaTBUIPIYLJmzRr27NnD\nAw88QHFxMcuWLesyZj937lyqqqooLy+nurqasrIympubyc3NZdKkSVRWVlJSUpKiI0gPaTu5m5GR\nwbp16/jEJz7RY5uoJ5EGQw0iqZR3z6bz3rmWEUse52C49c/BiA6Pn9eufca9VB14gaE338fkB+vO\nfvDMNvjYA5TvgvJdZ/c5uLJswGtPZ2l7xp+dnc2IESN6bRP1JNJgqEHkYpQxNIvhE4vIyBqZ6lLS\nUtqe8fdHT5NIeXl5HDhw4Mwk0owZM9K6BhFJlrQ94++PwTCJNBhqEJFkScwZf2NjI2vXrj1z5QwE\nk0hFRUUcOnSIzZs3s3PnznMmkZYsWcLSpUvTqgYREXP3VNfQRX5+vtfX11/QPl0nkfqn/WQLJ19+\ngaHXXNev8cTeJpEu5hou1GCuIa7+VUPv/Q+WGpLEzPa4e35f7WI94zezNcBE4KfuvqKv9nE4PYmU\n9BpEJDliG+M3s08CGe5eCIwxswlx9S0iImfFOblbDFSHr58FpsXYt4iIhGIb4w+Hef7B3feaWSlw\nvbuv7PT5YmBxuPl+4D9iKezCvQd4SzWoBtUwaPpXDWe9392v6KtRnGP8LcDl4esszvttw90rgcoY\n63lHzKy+P5MnqkE1JKWGVPevGs6toT/t4hzq2cPZ4Z3JcOaubRERiVGcZ/xPANvNbAwwG+i6ELeI\niEQutjN+d28mmODdCcxw9+Nx9T3ABsNwlGoIqIZAqmtIdf+gGk7rVw2D8gYuERGJTqLX6rlQZnal\nmc0ys/ekuhYRkXdKwd9PZnY1sAm4AdhqZqNSWMtVZvZCivq+1MxeMbPa8M+HUlFHWMt3zOzjKer7\n853+DRrM7H/G3P9IM/upmW03s3+Ms+9ONbzPzDaFNfxtKmqQd0bB338fBL7k7g8APwOuT2Et3+Ts\npbFx+0Pgh+5eHP75t1QUYWZFQK67P5mK/t390dP/BsB24J9iLmEB8Li7FwFXmFkqLiN8CPh6WMM4\nMyuOs/PwBGh7p+01ZrbDzPT0oj4o+PvJ3be4+04zm05w1v9cKuows5lAK/BmKvonuBrrVjOrM7Mf\nmFnsK7yaWSZB0B40s54fbxZPLWMJfgBd2KqC795vgPebWQ5wDfBKzP0D/AHwfPj6P4Henzo0gMxs\nJPB9YHi4rSVhLoCC/wKYmQHzgTagPQX9XwYsBe6Ju+9OdgMfdfdpwDHgj1JQw+1AI/AN4AYz+0IK\najjtLuDRFPRbB0wA/hJ4CTiaghp+BHwtHG77GPBMjH23E/y/2BxuF6MlYfpNwX8BPHAXsAP44xSU\ncA+w2t2PpaDv037h7m+Er18iCJ+4fRiodPc3gceBlDyezMwuAWYCqXg25t8Af+7uywn+O/xZ3AWE\nK+xuBu4Avu/uLTH23XzeJeHDgdfD183AVXHVcjFS8PeTmd1tZreHmzkEZ7txKwHuMrNaYIqZfTcF\nNVSZ2WQzywBuBfamoIZfAb8fvs4Hfp2CGgCKgJ2emmuihwEfCv87/BcgVddlNwDXAt9KUf+n9bok\njJwrMU/gGgCVQLWZ3QH8EqiJuwB3n376tZnVuvsdcdcALAfWAgb8xN23pKCGNcD3zOwzQCbwqRTU\nAHALsC1FfT8I/DPwXoL5ph+mqI6/Ar7l7m+nqP/TTi8Js5NgSZjBusjjoKAbuETkohWeABWbWTbB\n1VXPEC4JcxGvDhA5Bb+IpIXwSp9ZwLZw/kd6oOAXEUkYTYCIiCSMgl9EJGEU/JJ44d2vUXzd3zOz\n28LXmeENgCIppzF+SXtmNpngngOAdQR32mYSXAt/GHgV+AXBTVBOsBTAUs4uRwAwNLxbubd+/hJo\nc/dHw+0hwD7g48BXCW4q6gibTwXel+Kb8SShdB2/JMEHCQJ9VPh6BXCSYJGx5UAGMB2oAH4HjAWe\nd/eS01/AzH4a/j2d4Jr5/cBEd+98h2g7cCpslwFcCZQDb7r7bZ0LCm/C++0AH6dIvyj4JQlOAZ8B\nhhDceHcnwU1oECz/MJHg7t8HCX5AfAv4oJn9iOBmoL0EdwtDEO4/dve/MLPdZvY54DqCHxiTgQ4z\n+y3wJPAjd7/JzH4W/iA47WPh3/p1W1JCwS9J8fdALnAo/FNPsLDZvxH8QHiLYDjmd2G7F939U2b2\nY+Az7v678Ou0E6xOeh0w2t2/Z2bXuPurZvbnwEl3f9zMhhIs5gdwqbvfDGduOPqdhvsllRT8kjRf\nIljz6CYgj2DNnyuAvyYYAnKCHxKTzWwLwdDQFjPrIFgDv/MZ/04zuxx4MhwC6skHwq8FwW8FIiml\n4JekKAcuAxYTDP18h2CFy0cJhnuyODvGnwvsdfcSM/s8weTvzwhCf1ynr2nufsLMVgMf6aXvfz89\nXxCO7YuklIJfksAIxu1zCVaSvBb4KMFk7w3A+wiu7jk9xv9tADObRDAsdDvwlLt3hA+eOT3UMxbA\n3f8pbN/TEtVTOp/xp+LhNSKd6RtQkuAyzp7x309wpt8O/AnwVNjmowQPNXkdmEQwYfsdYBHB+u6P\nm9lW4N85O9TztfP66Txwf8npbXd/z/kFhQ/V6Tj/fZE46Dp+SXtmNpHgJOcAwUTueoIwP33FThbw\nJ6dXcwxv6Po88E13bzOzYcB9wMMEw0RXuHvTeX18muDS0Dvc/f+Y2WiCZasLuqnnB8AEd78hkgMW\n6YOCX2QAhJO8He7e57X5ZnaFu/+/GMoS6ZaCX0QkYbRWj4hIwij4RUQSRsEvIpIwCn4RkYRR8IuI\nJMz/BxfczB7HbMAoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x1=df['b18a']\n", + "x1=x1[:150]\n", + "name_list = ['3', '4', '5', '6','7','8','9','10']\n", + "num_list = [1,1,10,33,49,43,9,2]\n", + "rects=plt.bar(range(len(num_list)), num_list)\n", + "index=[0,1,2,3,4,5,6,7,8,9]\n", + "index=[float(c)+0.4 for c in index]\n", + "plt.ylim(ymax=50, ymin=0)\n", + "plt.xticks(index, name_list)\n", + "plt.ylabel(\"频率\") \n", + "plt.xlabel(\"睡眠时间\")\n", + "for rect in rects:\n", + " height = rect.get_height()\n", + " plt.text(rect.get_x() + rect.get_width() / 2, height, str(height)+'%', ha='center', va='bottom')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 柱图\n", + "反映变量\"你妈妈是做什么工作的\"(b08a)的职业分布情况,数字和编码关系如下:\n", + "\n", + "+ 1\t国家机关事业单位领导与工作人员\n", + "+ 2\t企业/公司中高级管理人员\n", + "+ 3\t教师、工程师、医生、律师\n", + "+ 4\t技术工人(包括司机)\n", + "+ 5\t生产与制造业一般职工\n", + "+ 6\t商业与服务业一般职工\n", + "+ 7\t个体户\n", + "+ 8\t农民\n", + "+ 9 无业、失业、下岗\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAESCAYAAAD33gzfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm85nP9//HHc84sRhiyDskkU762iF+LVGRElizfr0hp\nEBMpyleaahSpb5NURMt3VAitKonWoalUviKJFoXGGlnHPuvz98f7fZnL5Tpzzpk5c87F9bzfbnM7\n12d7v1+fz5yZ1+e9fK6PbBMRERHPfiOGO4CIiIgYGkn6ERERXSJJPyIioksk6UdERHSJJP2IiIgu\nkaQfEV1LUo+kEU3LkjRqOGOKWJ6S9COim70RuFPSbEk3AA8Cx0t6TNIf658bJX2n9UBJ8yW9QtLe\nkq4a8sgjlsLI4Q4gImK42P6+pJcAfwNuBKbZ/rCk/W1vCSBpe+CwNoc/CDwCPFT/RHS8tPQjImA6\ncH7T8qKW7Za0gqSTJI2u6x4FFgALG/tL2k7Sx5Z7tBFLKUk/IgKmAm9Z0g62nwD2AfZYwm57AesM\nYlwRgypJPyICxgGrNy23/t+o+vNsYPISynkD8NXBCyticGVMPyICjgAeA/5dlx+S9Mem7T+vP78J\nfEzSGq0FSHotMML2b5drpBHLIEk/IqKM6d8IfELSiygt9ucB1wK72r4YwPZtkr4OPL9NGVsAXxqi\neCOWSpJ+RHQtSZsA2wK7U7rwnwtsDOwP3EpJ+sdKWtf2DADbB9djn1KW7dOHLvKIpZOkHxHdbAHw\nI+AnwMrAh4C1Kcn/rbYXSToE+J2ky4Gb64S+XklaAbDtucs39IiBk+3hjiEiYthJ2g44EbgNeK/t\nB5q2TabMyn8n8HgfRa1Aed7/vOUVa8TSStKPiIjoEnlkLyIioksk6UdERHSJJP2IiIgukdn70VHW\nWGMNT5gwYbjDiIh4Rrn66qvvtb1mX/sl6UdHmTBhAlddlbeURkQMhKRb+rNfuvcjIiK6RJJ+RERE\nl0jSj4iI6BJJ+hEREV0iST8iIqJLJOlHRER0iST9iIiILpGkHxER0SXy5TzRUa67Yw4Tpl4y3GHE\ns9Ts6bsNdwgRwyot/YiIiC6RpB8REdElkvQjIiK6RJJ+REREl0jSj0ElabQkDXccERHxdJm9vwwk\nvQ44EZgLjAbm1U2jgXfbvrZp388D1wGjgNVtn7AM9U4EbgL2B9a2/dkl7LvM9UrqAUbYnt/L9lHA\nItsLgV8BewD3SDoEWMP2yZJWBn5m+5UDrT8iIgZHkv4ysH0ZcBmApN/afs0Sdp8DPAb0AGOWtk5J\nI4DzgEmAKTccSzIY9e4KHC+pcVOzCXAjT73J+QBwKbAAOE7SXGALYEVJq1B+1/qKNSIilqMk/cGz\noHWFpDWBL9jel5IgF1GHVCSNBP4EbGV7IMnwLcCqwHeA8UCPpDdSWvLft33GYNdr+4fAD5vO62Lg\ncNu3t9n97cDK9fOFLdvO6t8pRkTE8pCkv5QkjaMktUbi3EzSZcB8Sgt8JeDNwMaSNmpTxNbAzQNJ\n+JJGA3sCL7X9qKQpwBO2v9a8n+17JA1avUuIZzXbD7Ssvhi4pZdD1gE2a1POFGAKQM8qay5rWBER\n0Ysk/aVkew6wA4CkdYFTgX8Dp9ie3dhP0reA/doUsQ9w7gCr3RxYG/hunSu3ITBX0gF1+4rAUbb/\nCAxmve2sCfxU0iG2/69p/e3ALsBrbF9W5wN8APgUZbz/aWzPAGYAjBk/0YMQW0REtJHZ+4Njb2Bm\nL9suBHZqWTcCeCNwUWOFpK0lvXhJldi+2varbe9CmSw3B3gEOND2LrZfUxP+oNbbi3soNxDnSHpV\n0/qFlO79XSX9kjIscG/tWUhCj4gYRkn6y6i28g8Hvtmy/nmSemxfT5l012wRsI3tx5vWzQW+2p/H\n3eps+XOAzwBHAz+UtFXzPsuj3la2b6Ak/k2aw6td/j+jTBwU8EpJzx1o+RERMbiS9JeBpPGUMewT\nbT9ESaqNQekTgd0ljbL9tEl+dUx+pKQxdfl64AHgbUuob6SkPYBfAz+3/Q3bVwIHA2dI+pmkzSWN\nGcx6l8T2X2yf2bRqhKQDgd2BXW2/gXIDsDblCYKIiBgmGdNfSpKeT3lEbart79bVFwKn1HHs+4Hn\nAZdLajzfPqnp+L0o1/8c4It19THAfUuodpVaxgG2b26stP1XSdsBO1MepXsrMGUQ6201hvK0QDuj\nbZ/LU+cN/KHWdfcA6oiIiEEmO8OsS0vSKrWFH0tQhyMm2P5HX/uOGT/R4yefOgRRRTfKq3Xj2UrS\n1ba36Wu/tPSXQRJ+/9Rv8usz4UdExPKVMf2IiIgukZZ+dJTN1xvHVemCjYhYLtLSj4iI6BJJ+hER\nEV0iST8iIqJLJOlHRER0iUzki45y3R1zmDD1kl635znriIill5Z+REREl0jSj4iI6BJJ+hEREV0i\nST+WiqSVJf3HcMcRERH9l4l8sbReBhwEHNi8UtLXgQnAYy37bwK8wfa1QxFcREQ8XZJ+9JukDwE7\n1cW1gLGSZtXl62y/G5gPHGL7by3Hng3MG6JQIyKijST9GIiNgcMpb8y7BtjR9s0ATcnfwFcltWvp\nf2aI4oyIiDaS9GMgJtteJOljlO77nYEvSvp/wOub9jvE9t8k7QU83/bnhiPYiIh4qiT96Lea8KcC\n2wM7AL+U9A/gJGAf4F911zMlPQqMA9aStCtl0uittg9tLVfSFGAKQM8qay7384iI6FZJ+tEvkjYE\nTgbGADfaflzSacDXgE1tP9C0+2G1pT8C+IXtXZZUtu0ZwAyAMeMnevmcQURE5JG96K+RwJeA9wFI\n2gD4KXARcJKkMc07S9oC6AGukPRfdV1uMiMihlGSfvSL7b/bngk8B3gFcAmwLnAEMAf4m6TnAesB\nnwOmAWOBjwFHS3ozcHrt6o+IiGGQpB8DtSLwQ+AVtv/k4kPADrZvB/4CHGf7TbYfsv0wsCfluf7n\nAJcNW+QREV0u3a0xILZ/Dfy6zfrZ9efRbbbdD7x3uQcXERFLlJZ+REREl0jSj4iI6BJJ+hEREV0i\nY/rRUTZfbxxXTd9tuMOIiHhWSks/IiKiSyTpR0REdIkk/YiIiC6RMf3oKNfdMYcJUy8Z7jAiIp5m\n9rNgvlFa+hEREV0iST8iIqJLJOlHRER0iST9iIiILpGkH08haVVJo4Y7joiIGHxJ+tHqS8An2m2Q\nNFNST/28v6QpSypI0qslvW85xBgREUshST+eJOk/68eNJb22ZdsrgJtY/DuzEJhft42Q1O536Wpg\n4nIKNyIiBijP6QcAkvYEjgHeSUns/yvpC7bPrru8E7gMuEDSOODV9biDKcn/PcB1ktYH/gDc0FT2\n5fXjNsBzbC9c/mcUERGtkvS7XE3SJwLPB94IHAg8DOwCnCPpncA5wK7AZbb3lLQzsCKwAPic7Qua\nipwHXGp7/zZ13dQu4ddhgikAPausOZinFxERTZL0YzSlZX6Y7YWSngAW2r4f2EPS7sAm1HH+2o0/\nFTgPMHCUpB/ZfqyWZ2DHptZ9s3XaBWB7BjADYMz4iR68U4uIiGZJ+l3O9k3AGUvYfjFwsaT/Alal\nJOefAXcCKwGfBH4kabLtW+o+P7I9ubUsSddJGmF70XI4lYiI6EOSfgzEDsADwAbAAZSx/2uAT1OG\nB24BtgKu6+X4lyXhR0QMnyT9aCV6f6rj57bPljQG2IvS0j/H9oKmffYFPtjuYNuPD2qkERExIEn6\n0WoUZVy+HQHYnlvH9kc3J3xJewCjbP99+YcZEREDlaQfT2H7c72sv6Bl+RttdvsVZVJgRER0oCT9\nGDS25wBzhjuOiIhoL9/IFxER0SXS0o+Osvl647hq+m7DHUZExLNSWvoRERFdIkk/IiKiSyTpR0RE\ndImM6UdHue6OOUyYeslwhxERMaRmD9FcprT0IyIiukSSfkRERJdI0o+IiOgSSfoRERFdIkk/IiKi\nS3Rt0pfUMwhlrC9p1GDE01SmBrO8fta5n6TVlrB9ZHNcg33OERExNLom6atoTvQfk7Rr0/ae+rrY\nxvLnJR0u6d2STuil2K8Dq/RR7yWSLpd0q6QXSrpb0ixJV0j6dptDfiRp836cT3/i66/DgEdruYdI\nul7STZJ2rtvfDNxb434A+Iikf9flWZJubIqr7c2UpBGS8ohoRMQw6qb/hLcATpG0CFgHuA3YXNIn\ngVuA0cAngF/U/ecAjwE9wJheylwD+FabxvlYYAfb8wBsbyfpDGAh8Hvbu0vaFDiy+SBJ7wB2AVaS\ntBBYrdb/MtuPtdTRn/j6JGkmMA74raSv1NXHAZsAc2v850rar8Y90/Y0SVvZ3q2WMaupyC9L2hAw\nsEEt4y7K79qVwDFLG2tERCybrkn6tq8FdpK0FvBlYF9K0j4H2MO2Ja0p6Tu29wXmAYuovSG1lfon\nYCvbc2t39722J/VVtaSLgU2BU2pZLwa+CRzf2EnSIcAkSqt6J8oNyGnA0Y2EL2lN4Av9iW8Al+Ze\n4GuUxPyiGsO7gRcAa0saV1+ZO7Ym9/Ub59X2ZO2Dm85pGnC77bOXFICkKcAUgJ5V1hxA6BERMRBd\n070PIGkGcDGlS/6nwPmUG58rJJ1l+x5gY0kbtTl8a+DmpoS6DnBPf+q1vTvQ+Jq59YE9KIl2w6ax\n8u8Db6H0OkwArgB+CNzfVE6/4qtDFb3OWWgdyqAk/o0oSf/3tm8Dvg28sJYL8Ljt7YF/Norpx6n3\ni+0ZtrexvU3PiuMGq9iIiGjRNS39ah7wNuC1lK7xG4G3U5L/W+o+3wL2a3PsPsC5TcvjgFVq93iz\nUcBI26/qJYaFwMHA6cBBtj8jaWPgc5TkezXwW+BDwPOAEyWtD3zV9kX9jO+DwAckzeslhtHA0XUI\n4XWUG5hVgQuBQyXtADwOrGH7f+oxrS39lzd16zfWRUREB+u2pA/wKuBNlLFwgNnA+KbtFwJnALOa\n1o0A3gicAGVSGnBTa9e+pDGUcexpTavXqclxIqV7/07gYeBnwCsBbP9N0qeADwPrUlrcbwAeqWV8\nwPbv+huf7ZOAk/q4Do2Yd6LcLDxBGcc/qsb6Z6B5QuHjjTF9SasAG1Mm/y31fIKIiBha3Zj0fwPM\np7T6r6Ak2ispLV5sXy9pEk9N3IuAbWw/XpdfApwuaUFL2SOBEyk3Eo2Z7I/a3r5O5Gv4FvDdljpm\n1T/jgEspk/cWSTqNpmGYfsY3EK7nsyplcuMlwE+AXYG96nm8GFhf0ll138nAKyhDEiOBHYB3LEXd\nERExhLox6UMZi38/cDjwcxZPhhsDLLI9v3VGvu1H62S5HtvXANu1K1jSkZRxeeo+19fPoyhd+6Ik\n1/Up3feN8udLegllkuGJNeGPpoy13zHA+Po1kU/SxHotTgO2p0zeey6lF2QFSov/GkpPyAxKL8Pz\ngX8A29q+oHHOkrahTALcC2jcDI0H5kk6tC6PBr5j+1P9iS8iIgZXtyX90QC2fwz8GEDSeOAiSrJ9\nKzBF0vy6/5Pd95L2olyvc4AvthZcy/lB3Wfvuvp5wDmS9qUkwH8BK1Fa6S8G3iFpR8pjgj+gPIZ3\nhO2rJD0f+B7wG9uza3lLHV8v9gEuANYCPkKZvPcNShf/HMrjd1+x/R3qcELt2p8EHNFUznHA6ran\nA9P7WXdERAwx2W2fvOoqksYuZdd4azkrtnmevr/H9theuKwxDLDOkbYXNC2PBhY2xyFJHsJfkjHj\nJ3r85FOHqrqIiI4we/puy3S8pKttb9PXft3W0m9rMBJ+LWepEn49dkgTfq1zQcvy02b7D2XCj4iI\n5StJPzrK5uuN46plvOONiIj2uurLeSIiIrpZkn5ERESXSNKPiIjoEkn6ERERXSIT+aKjXHfHHCZM\nvaTvHZfCsj4SExHxTJeWfkRERJdI0o+IiOgSSfoRERFdIkk/IiKiSyTpR0REdIkk/V5IWlHSOkvY\nvr6kUUMZ0/IgaT9Jqy1h+0g1vcf32XDOERHdqmuSvqS1JO1dP79P0mFt9hnRlOC2A05p2tb6eOPX\ngVX6qHM7SS+X9PU222ZI+o/6+f2SVpA0WtIpNY6fLKHcz0s6XNK7JZ2wpBj64TDg0VruIZKul3ST\npJ3r9jcD90qaJekB4COS/l2XZ0m6sSmunl7iHdHm+kVExBDrpv+IdwS2AL4PzK9/Wu0MvK8m/oUA\nkmYBBkZI2qXpjXxrAN9qagQ3jAV2AMYB3wQ+AawpaVfgLmA8cCMwupYL8M+636XALsBGwJaSfgjc\nb3tySx1zgMeAHmDMgK5CE0kza5y/lfSVuvo4YBNgLoDtcyXtZ3t3STNtT5O0le3dmq5Pw5clbVjP\na4Naxl2U37MrgWOWNtaIiFh23ZT0DwDWlfRK4HnAAkkHAaOAc21/yfaPgR9L+h2wl+27Jb0B2L85\n8dabgnttT+qtMkn7A98AVqIk+HGUZP1SSsJ+ku1vS/oRsBuwD3Ar8D1gX6BH0grAysAXbO8LzAMW\nUXtqaiv6T8BWtucO4JrcC3yNkphfBEwC3g28AFhb0jjbc4CxNbmv3wi5XWG2D246/2nA7bbP7isI\nSVOAKQA9q6w5gPAjImIguiLpS9oaGGl767r8HuDBJSSkc4BXAhcCbwE+XxO9bC8C1gHu6aPae4H1\nKK32VYFNKTcbpilpSppEuSF5iNL78Nq6/Wbg05TE/iPbP5S0saSN2tS1NXCz7bmNLnbbC3u5Fj1l\nsxc1xbkRJen/3vZtkr5N6fbfGrgMeLzR0m8U08e5D4jtGcAMgDHjJ7a9oYiIiGXXFUmf0tr+iKSe\n1mQoaaTtBfXzVOAQ4N91+di626coie5Y4HeUVvsqTUmwYRTl5uJVwEzgcuA/6v5fAhYAhzYfYHsm\nMFPSLNvbS/oZT51r8WvbP6yfvwXs1+b89gHOrZ8/CHxA0rxersVo4GhJC4HXUW5gVqXc4BwqaQfg\ncWAN2/9Tj2lt6b+8qVu/sS4iIjpcVyR927+sLdzLJc3lqd37T1DG0aGMx3/A9nd7K0vSCOCm1q59\nSWMo49jT6qpxwFnAA5Qx8k9RWvO39RHuCrZfU8vcCPho07YLgTOAWU3rRgBvBE6o53oScFIfdTRi\n3olys/BEjfEoYCLwZ2Dzpl2fbOlLWgXYmDL5b6nnE0RExNDriqQPT3Z3vxKW2L2/DtDX215eApwu\naUHL+pHAicDspuWbgFOB99RtJ1NuApaULDdrakWPpUzya5zD9XU4YFrT/ouAbZomGA6E6/msSrkZ\nuQT4CbArsBeApBcD60s6q+47GXgFZULkSMqkxXcsRd0RETHEuiLp1/H4EUsY5x5J6Zp/FWUiW69s\nX0N5nK9dOUcCt9TF1sfX3gtcZ/ujdd+315+jKL0AW0k6AjjE9oV12yrA/6ufxwCLbM9vfWLA9qP1\nHHr6O5FP0kTKvITTgO0pk/eeW+NegdLiv4bytMEMSi/D84F/ANvavqBxzpK2oUwC3IsyhEE9bp6k\nxnDGaOA7tj/Vn/giImLwdUXSp0xI+7SkpzymJ+mt9eMY4MfAN233NhbeK0njgR9QrufedfVfKS3g\nLajj6LZd9z+LMrHvX5SJgvcBawFvB94l6YOURwbHAGMknQ3cD0xpOocnhxck7VXrPgf4Yj/D3ge4\noNb7EeDblKcNjqI8ZfBlSV+x/R3qcEK9CZkEHNFUznHA6ranA9P7WXdERAwD1TzU9SStCjzUNKt9\noMevaPuxvvcsPQ/ux4WvPRSjgYWNyYaDpXkCY11u1LOwaV2/4hxMY8ZP9PjJpy6XsmdP3225lBsR\nMdwkXW17m77265aWfp9sP7iMx/cr4dd9+5VI634Dee6+31pvItr1cAx1wo+IiOUrST86yubrjeOq\ntMgjIpaLrvnu/YiIiG6XpB8REdElkvQjIiK6RMb0o6Ncd8ccJkzt6/uRnlny1EBEdIq09CMiIrpE\nkn5ERESXSNKPiIjoEkn6ERERXSJJPyIioksk6Q8hSWMltb59b2nK6ZH0oqU8doSkNZqWx6j1tX0R\nEfGs1HVJX9JlLcu/rq+tbbfv+yQdLmm8pHMkjWja1jZ516Ta26OQxwMHDzDeDSR9umX1W+jjjXaS\nNpV0Xv38LUk/kPRX4GRg96ZEfybwE0nt/tzZUuaf688VJE2rfz7Qss8n6mt7IyKiw3TNc/r1tbDr\nACMkTQCmARMor7i9pCbBj9tuvimYD8y1/S9JtwPbApfXbV+WtCFgYAPKi3HuolzTK4Fj2oSxAHhk\nADGvCHwGOKxp3WhgKnCPpJlNu68GnG/7M5LWB14AjJO0nu396rGzbB/bXIftty2h/pvqz556ng/X\nz6OB19dzPAv4RNNh04GvSjrY9kP9PdeIiFj+uibpU94bPwlYHdgKONz2AkkzbU+qSf91kn5HSeCi\nJPOFkibXMiZJOsb2b2w/2WKXNA243fbZfcTwHGDlAcR8JPBp2/c3rfs88BXbT2n9S9ofWK8ubghs\nDawJ7CTpbcCjwGaSLgLGAhcBNwMfBh5vqXcFYB9Kogd4A/BBYAtgJnAs8IDtqyQ92nyg7TmSPgq8\nFzixPycpaQowBaBnlTX7c0hERCyFrkn6tm8EbpS0L7AGcLKkTYH/kHQxcH9t9V4KIOlI4EPAY8Bn\nbF80CGFsCoyjdKn3xxa2P9VYkHQwpZV9vKQ96uqNgR3r+scBbP9S0i2U1v7XGzcjtaX/xpY6ev36\nu8YIgO2La3I/s9a1AqXXoi3b10o6trftbfafAcwAGDN+Yl7nGxGxnHTNmL6kCZKmUxLhDcAJlK77\n9YCTgHub9h0LHE7puv4acEzzeP5S1j+OkvDXk7RWPw9rTaxn17j+aHt729sDPwEWAqN4aot9PKVn\n44Q+4nqXpL9Kmln//EXSf7fZdX/KTeJFwEo8vXegr9gjImKYdU3Sp4x5zwSut/2rOt58v6RNgP+m\ndJs3fBL4OnAPcCvwG8qNwbI4CjgP+F/6mITXZEG9WQDAtild7ltKmiVpFrAJZe7BKtRELOkAylyA\nPwDTJH1N0uW1vJmSbmyq4xHgNNuTbE+qx81tDkLSOsCLKHMWvgtsDtzXW9B1LkKeCIiI6DBdk/Rt\nX2N7ZsvqDwM/Am6wfVOdef9xygS/Tzbt9xFgK0lnSlp9oHVL2pYyLv4l2xcCq0s6uh+HnkeZtNfq\nyZa+7ZdRJvodAfxDUo/trwNvpgxZLKLcFLy1KbHPbinv6EZLnzI5r/XJhH2BUwFsn0WZO3D9EuI+\nBvhWP84vIiKGUNck/fps+yRglKR16uS8bwDnA6+VdBQlub0I2LcmSwBsLwD2BO4G1pE0VdIVki6v\nLeiDgfc3liVdKel9td79gS8A/2V7YS3yQGA/SedKWru3mG3/Elgk6V1NqxdRWvXNzgC2BF7J4l6E\n5gmDAs5rSuzrN21bEfhs0w3BvsDldYij8ftxhu0fAD11mOMg4IeLL602kNR4QuDtwHNt/7i384qI\niOHRTRP5FkragTILfTPKmPcbbd+n8pz+IUCP7X2bDlsBGFOPn095zA/gz/Sji17SxsBewI62n+wO\nt/2QpNdRJgquQbmZ6C3uD0nasml5nqR/Srqa0jU/n3IjIMojifvXx+rOYnFvxUhKS392jes3TeV9\noaW+P0vaAvgHZT5DY1gBytMHewK/sX1XXXcP8D3qRDzgattf6evaRETE0NPi/88j+keSvJx+ccaM\nn+jxk09dHkUPm9nTdxvuECLiWU7S1ba36Wu/runej8GzvBJ+REQsX13TvR/PDJuvN46r0jKOiFgu\n0tKPiIjoEkn6ERERXSJJPyIioksk6UdERHSJTOSLjnLdHXOYMLXXdwBFxDNEHlXtTGnpR0REdIkk\n/YiIiC6RpB8REdElkvQjIiK6xLMi6UvaXtLmkka1rB8hablNVpS0dn1xTkfEV9+At9zUF/n0Z79h\n+fuIiIgl6/j/gOurWh8HfgyMorxf/nTb/2za7eXAjcBnJS0AXgr8ETDl7W/fHUB9PU2vwG1ePwIY\nYXuBpJcApwMbAadJWgicw+L31G8J/Iftfw1mfJI2B34EXNvLLqMkvc323ZLWAl5l+/v1Nb8P2j6z\nP/X0Uvf6wFck7UO5WTwGuAqYBcyzPa9p90H7+4iIiMHT0Ulf0ieAV1OSxUHAZygJZHZNwq8C/gu4\nDXi0vg8eSRdT3l//xFJU+2VJG9Y6NwDmAndRrtWVwDG2rwVeI+li25+U9DLgbNsn1PpnAQskvRLY\nfxDjmw9cavsgSXsCK9s+r5d9dwS2AL5fj5s/wLqeJGkD4EzgHcBE4GXAJpRX7b4c6AE+uBzONyIi\nBlHHJv3aUj0buBdYFXgJ8DDwfErrciJwGqUXoHHMdErre2vg6/XG4F22b+9vvbYPbipvGnC77bNb\nYnsRsBvwAkn/TWnF7t/03vvNKIlw/mDHV8tZDfgUcJ+kQ4DHgLHA8bZ/W3c7AFi3JuLnUW5CDqL0\nlpxr+0sDqHIRcDTlet9NufbrAy8CFgJrSLoSuH15nG9ERAyOjk36lKSyNaW1ui5wAfBJ4KPA/wGT\ngUspLf2G/wfsDFxISXpnUJLcYJsD/AMYR+lqvxxofY/xo5Rk22yw4psEvL923f/D9sTmjZK2Bkba\n3rouv4fSvX/2UtSF7dskHUHpsj+JcoPxDsq5PwpsB1xE6YVp1q/zlTQFmALQs8qaSxNiRET0Qycn\n/b9REvtrgPsoyf0XlBuBR4Drm/YVpTXa7j3vg/7u96Yx8wU1nrWBQ4DxlBuCucBHKAlxecT3cmAz\nSYcBa9fu8xHAzbbfBawEfKTd/ARJI20vGEhlkl4PHAd8ENgQ2JZyM7Yq5ebnR7YXSXryEAZwvrZn\nUMb6GTN+4qD/fUVERNHJSf/1wGXAx4CvUVqC9wBfBvYAjqckW9WfDyypsNr6fcT2DcsamKTVgbdT\nWr6rAb8CdgI+TBl6+K3teZL+3/KIz/ax9ZgjKMn3O8DXbLtu/2WdaX+5pLk8tXv/CWCXAdZ7PTCN\ncmPxLuAFlJ6YF1CGXSYAv6vn2q/zjYiIodfJj+zdTmnlf5GSVKZSJtZdBmxk+1bKGP8NlMl+f+ap\n57M5JSEavFEjAAAYIElEQVQ1Wttzga+qqTm6DCYDX6Ak0A9Reh5+AbwVOBn4saSxyys+SatLej9l\n0txLKMn38joBEQDbC22/0vb2lG716ba3t71LS3F91mv7zrrfKOBIYAfK38t76udp9VG8gZxvREQM\nsU5u6d8K/C8lsU61/U5JOwH7ATdJOoGSYPegtKwfk/QTSreyKAnovbbvAbB9vaQHgLdRHq97GklT\ngb0o3fZQuuvnSTq0Lo+mtKpPrfscWLvPrwNeW2OaZXtW3f9vkgYtvibvo0yY26k+KneCpL9Tkv/N\nNYGPaPfoYT3PkcBCF/2tV5RehQOAeZRu/v+kDL30AOfbPq+/5xsREUOvY5N+HTd/kDJZ7+T6rPk6\nwD6U1uLRlOT3UuBN9ZiTASSNAe6y/beWYo+hJKne6pwOTO9vjJJWrD9/TmnVrg/sJulR4ArgEsok\nt0GJj/L3tQtlvgPADi0N9BGS1gb+Dnxa0lMe05P01vpxDKW34uZ+1gullX+D7WNqWR8C/s/2zKby\nXz3A842IiCGkOgz8jCVJ7uCTGMr4agtfthcNRX29xbAs5ztm/ESPn3zqYIYUEcMgr9YdWpKutt36\nFNnTdGxLv786OeHD0MZX6xrW69Hpfx8REd2skyfyRURExCB6xrf049ll8/XGcVW6BSMilou09CMi\nIrpEkn5ERESXSNKPiIjoEhnTj45y3R1zmDD1kuEOI6Ir5LG67pOWfkRERJdI0o+IiOgSSfoRERFd\nIkk/IiKiSyTp90HS6DbrxgzSK3rb1bda40U+vWxfv5/lfFjSak3L7+zvsX2UO1ZSz7KWExERQ+8Z\nO3tf0nTgl7Z/3Mv2z1NeeTsKWN32Cb3sNxp4s+1zmtYdT3lf/MuB11Pe6NfsTGBtSe2+Z34L2+u2\nqed4ypvmzmxZvzblNbWNst4PXFtfSwvlxuxvtu+XtAZwTn3F8C8or/edR/l7PNH2r2uZO9VyXitp\nFPB24BPAvvXNe5dQ3ns/odZxK/BZ4DZga+BqYCtgHdtPeVMfcDzl7XxfbnOOAuYAf2jZtBmwre2/\nP/1yRUTEUHlGJn1J/wlsCmwj6Vrbd7bZbQ7wGOVd72OWUNxBQCPBImkCsL3tk2riPUnSc23f39jH\n9tuWENtNvWyaV/+0Wp3yeuCFdfmn9eeW9WcP8C/gfuDdwAcpr67dGTjL9v6Svg7MrvVvCZwBbAJ8\nm3LDcjRwBLAx8GvbP5e0HbARMBb4M3C77UmSZtWfM9skfCg3Go+0O0HblvQX29u3XJMLezn3iIgY\nQs+4pC/pHZSktxfl/fU/kPRx2xdKWhP4gu19KUlmEXUIQ9JI4E/AVrbn1nXPAdawfWtTFZ8DpgLY\nXijpJEoreHI9Zjfgw8DjLaGtAOxD01vuJP0VuKMuPh+YJ+nAuu8jtnex/RfgL5KuodyoNIwCbrZ9\nYC1ra0rPwxWUlvuFQCMpr2v7tvr5TuAdtm+RdASwP/BH4JvA2pQbIWxfLmkdYCXbv5a0tqRZwJb1\n50t6+St4DrByuw21pT9e0syWTS+g3LxERMQwesYkfUnbAtOBvwK7A1sABwC7Ap+R9FFKMtxY0kZt\nitiakkTnNq17O/CVpjqOBW60/XtJBwA/sP19SbtLmmb7Y7YvoXSP9xZn8+J825Oayr7L9nm1N+GM\nlkP/APyjaXlUy/YRwLXAJ4E3AysCo2ri3lzSxcAbgT2A90tqvpF5KSX5A2woaSpwO6W3YIyk64C7\nbe9YW/rbS5opSW1elbspMI4yxPEUdd8N2l2XJZE0BZgC0LPKmgM9PCIi+ukZk/QpLffjgRdSkthc\noMf2PZIOBiYCNwHfAvZrc/w+wLmNBUmrAmNs312XX0dJmDvVCW/vrWVB6Rr/pqRX2f6NpHcBR7K4\nFb8u8BXbn26pc1FfJyVpHPCDuvjCNtt3BPapNyKrA3Ns/7m2/HejdPmvBVxge5Gk2cB/A69piq9h\nZcrNxp31z98pNw93AuvXFvpL6s+tKDceT3bL11jHAZa0lu1/t8R6GGUuweyWep8HfNX2ye2uge0Z\nwAyAMeMntpsnERERg+AZk/RtXwVPJud/AfcAe0ramJKcDrQ9r44fnwHMajp8BKUVfELTukN56mS0\nXwD/V8v4IHBc7d7fG7jI9j5N+z4CnGb7SzWmQyld9q1GNnV1N7r3D6r7PtQU24O295K0B4u7wW37\nB5IuoCTZFwMXADMlfRi4BfgGcCKlq/+KetClNaaPU+YBNLvP9kmNBUn/pHTv/wt4UV03q9E70cZR\nwHmUm4npwCEt2+cDZ9v+mKQdgHF12OVdPIN+1yIinq2eif8Rm8Xj5j+w/a6nbLSvlzQJmNa0ehGw\nje3HASStRel6f6DpOAOPStoCWNP2L+qmzShj0p9pieNoSf9VP68L/G+bWA+xfWWts7l7fwVqkm06\nFyi9B9Pr50+wuAfAwD8pk/ueC4yn9D4cAJxcj9m5pe75lJuBp5C0qu0Hm1ZtJOkQypCBWNzSH0O5\nkZpdj9sWeAPw6nozdLCko22f1lx80+fXUIYQGlqHKyIiYog9o5L+kp4Pr9tGAotsz299jN72o3Uy\nXw9lLP/0NmVsCHwf+LWkGZSJb6JMbvtO02S5FYHP1m5pJG0KrCBpLE3ffdBI+NWIWha2n6BMKoSn\nJsoxLO6NWNSyfWvgf4BLKePms4AnKBPrFlFm5t/TVNZC4PKWU5xGuZF4UNKelCGMK4ErbX+1nsvT\nWvqS9qdMbtzVduMpgwOBn0jaBji2DpP8Ahgt6fnA3sCbJF1Ur+kPiYiIYfWMSvqUxDEa2K6xoqn7\n/Bbgt8CU+iw6wKSm/fainO85lPH3do+dzanb/0AZ7/5nvYHYh9JyPR/A9heaD6pj7FtQJuJ9rZfY\nV6qxt3ryRsb2Ds0bJL2FkuAftv07YAeVL9z5b+D/gO9RbgT+BJwnaR3b36mHrwyc0lLXi1l8U/In\nYBfbD0uaLOk0So9Co6WvWv6llCcldrR9X1OsD9Whlg8Ba9Qbqv0pEyxXAw6w/XdJxwDHAUdImmz7\nr71cn4iIWM709MnZ0Skk9TS1rFu3NXo1FvVn/77qqWU1P24oYER/y6vxHAT8qt2X8EjaBJht+7El\nlTNm/ESPn3zqQMKPiKWUV+s+e0i62vY2fe33TGvpd5UlJVzbCway/0DrqTcA/S6vxvO0b+lr2v6X\npYktIiIGT757PyIiokukpR8dZfP1xnFVuhwjIpaLtPQjIiK6RJJ+REREl0jSj4iI6BJJ+hEREV0i\nE/mio1x3xxwmTO31JYZdKc9SR8RgSUs/IiKiSyTpR0REdIkk/YiIiC6RpB8REdEllkvSl7SppI2W\nQ7nqe69Bq2uVps9rL2NZL5a0xrJH9WR560satPfTS3qVpBfWz4dJem4f+49d0muOIyKiM/U5e1/S\nCOAB4JpedtmS8srWrZrW/SewoqRzm9b9xvbDtcw/295U0grAsXX7QtufaKl7NeCrwH/Wt8n9SNI7\nbf+zbl8H2JTFL4bZjfKO+Uvrcg/wZ9t3NZX5eeA6YBSwuu0T2pzzupSXx+wqaUXgd5K2tv1Ay36n\nAx+1fY+kw4Dr6ytwW00HzpH0BOUd9osor7EVcJHtL0raG/g0cHPLsVsBa7e8YOfrlNfd3kcvenvj\nXv37HNFS3vuBz9T4jgTO6q3c6vga59NesFNvzOZQXk/cbDNg23Zv4IuIiKHRZ9K3vUjStcDrGsuw\n+NWrlAQ7gZLMGsmikXRXrT+PoLxP/QZKsnu4thRHA68HjqnHPpn06/YHgWuBzSXNBR4HZksaWZPW\nKpRk0khu6wBz6zooif0O4MmkT0lIj1FuCMa0nq+k9YB9gXmSjqXc0MwGJku6wPbtdb8NgR2B99Rr\n8cd63O8aPRK2LellwN3AocD7be8s6SvAibZvbar6ceC3wHktIX2Cp1sD+Fabjo+xwA625wFfrjEa\n2KBel7sof+dXUq55oxdjXduzJE0FxgE/qWUL+Lzt77XUswB4pE1cjXP+i+3tm9dLuhCY1+6YiIgY\nGv19Tn8RpRV9pKTnUxLng8DX6nZTegJWAvanJIuFdf21wHcpSeINwAeBLYCZlFb+A7avkvRoS51T\nalmuP6EkrV9QEux7bP9d0sPA1cBfgPG13gnAJsCrbd8kaU3gC7b3pSSeRdShjfoe+D8BW9meCzwP\n2AY4BXhb3XYOcHit9/Yay3uAH9bYDqlxImlmPf/3SLoNmAZcT0ne/yvpPmAX4IU1se5r+55a5iie\n/ndyPPAmST+1fV+9objX9iSWwPbBjc+SpgG32z67za7vAh6UtDKl9+AcYFa9CWjc2LV6DrByu3rr\nMePrdWj2AsqNVkREDJOBfDnPJcCPKcnuKuBySvJ8h+0rgSsljaa0Ng+lJNyHJL0e+Gdt1d5ak/uZ\nlFbyCpRW49PY/iLwRQBJB9V1Z7fZdRGlu/53lKGGeZQbgIXA/HrcPZI27mWewdbAzTXhN8rbjtJr\nMKFu3xPYiNqdLenFwFuA022fL2mB7W/VbR8Evmn75hr3B4CXA9sCu1Na8hsD61J6RxpurPutQ72B\nqHooLfsL6/I6wD0Mgjo8sj9wC3AUpbdlzaZdRtVeg1abUnoEzmzdYLvRszCQOKZQbvLoWWXNPvaO\niIilNZCkvzml9bs+8CbgYWAqgKQNKC3SjYCzKYlq33oTsBflRqFh/1rvRZQW8uPtKpP0E8r4PJQk\nMlpSo8X/HODdtv9ISb49lETdaOk3JqKNbSryW8B+baraB2ieezCCcnPzSUor+CrgCsq4d8PuwAnA\n6nX5MElXALcC76CMzQP8hNJyfrzGuGFdvxHlukBN8LZvpNxkNF+D1wPzbf+iafU4YJU2LelRwEjb\nr2pzjr05mPL3dmiNeQHl7/RUSQ9Sbpp2aolpXI3Bktay/e+W7YdRrtXslrqeB3zV9smtQdieAcwA\nGDN+olu3R0TE4Oh30rd9LbBTHee+npK0rq6b76BMLlsVmAx8jJL8zwQut/1XeLJl+SJKN/13KTcS\nbSej2d6l8bneAKwOvLl5Ml292XiUxePg21FuFK6iJPgDJH2vxn4hcAYwq6maEcAbKQm84VbKkMQu\nwMS6z6p13d9rbJ+WtB3Q6GI/l3Izcwnwu0avQZ1AuHON9TTKzcRLKDcjdwNrl016M/B2Ft/kNGwA\nLJR0dy37DOCm1q59SWPqvtPaXcslmE65rofafqKWBWXoZFYvxxxFud531OMPadk+Hzjb9sck7QCM\ns32hpHeRr32OiBhW/f5PWNLxlC7q51AS4jwWJ8t1KS3jbwPnU1rPF1O6w0+tiffPlIlupwIfsH2W\npLdRbiB6q1PARynzBX4GzJR0mO3GzPCFlB6HRhf0E/XPI5Tk82hjm+3rJU3iqYlxEbCN7cdrfTvX\n7Y2JgRvUPy+ty5MlnWz7+y2hXgJ8hJLgf9RyDu+hzAO4x/Yf6jj/yymz31VC8zeAb0j6CPDxxsx6\nSYcDTzSGNSRtBZwuqXVIZCRwIk9vXS9RnXTXblOjpT8KONz2dbX+bSnzMl5te6GkgyUdbfu05lNu\n+vwaFs+BoJYXERHDpL9Jv8f2Se02SJpFaa1/ntK6vgQ4kJL8TRmrvVjSccAZNdFMq4+OHQQcsLgo\nbQC8AriAcoNwOHCx7VPqDkdRZq3fDrzT9l/r43VvqHU1uve3rD9/YPuG2hJeZHt+a5Kz/WidzNdj\n+6fAT5vO7SPAr1q615/cXPc5n8Vj2G8C7qxj1Gfb/jLwG+Cb9TpAmTm/P+XJgXGUCZENYymz6htd\n4CtSblwasV5D6c14ejDSkZSxeeos/L1YPF9iPOVphEPr8mjgO7Y/Vc+jNfM/raVfh1amArs2PQp4\nIGWm/zbAsbbvpky0HF0nfO5NmYR4EfB9ysTHiIgYJv19Tn+Lmtzb2RJYjzJe/WbbD0r6GeU//+tq\nkt8OeKRO8oLSW7An5dn9xuN09wDfA2bUVuRY4ADbdzYqsv0bSZtSniRodLWfApwiaRdKr8DkxnBC\nk7cCUyTNr8tPdo9L2qteh3OoEwebrEDvrdOxlOQ5ueWZ90a5PTW+30t6OWWOw+soPRFvqjcgU4E9\nKAkRSm/BSvX4U4BX034eQnM944Ef1HPYu9Y5ndL13h+j6nk0jKTl90LSxpSbiB1tPzkcUydqvg74\nELBGvXnan/J0xmqUv7+/SzoGOI7y2Ga7v5+IiBgCWpyHl7CTNLqXWdzLVrkk9yeALjSQayNpRduP\nLe+Y+hHHSErvza/afQmPpE2A2UuKdcz4iR4/+dTlF+QzUF6tGxF9kXS17W362q9f3fvLI+HXcpPw\nezGQa9MJCR+g9ng87Vv6mrb/ZQjDiYiIFnnhTkRERJfII1TRUTZfbxxXpTs7ImK5SEs/IiKiSyTp\nR0REdIkk/YiIiC6RpB8REdElkvQjIiK6RJJ+REREl0jSj4iI6BJJ+hEREV0iST8iIqJL9OuFOxFD\nRdLDwA3DHUcbawD3DncQbSSugUlcA5O4BmY449rA9pp97ZSv4Y1Oc0N/3hQ11CRdlbj6L3ENTOIa\nmMS19NK9HxER0SWS9CMiIrpEkn50mhnDHUAvEtfAJK6BSVwDk7iWUibyRUREdIm09CMiIrpEkn5E\nRAAg6bmSdpK0xnDH0qxT43omStKPjiHpK5J+K2nacMfSIGmkpFslzap/Nu+AmNaW9Oum5Y64bs1x\ndcJ1kzRO0o8l/VzS9yWN7oRr1Utcw/47Jmk8cAnwMuAXktbskOvVLq5hv15N8a0t6Zr6edivV1+S\n9KMjSNoH6LG9LbCupInDHVO1BfAN29vXP9cNZzCSVgPOAZ5TlzviurXGRWdct7cAn7G9E3AXsD8d\ncK3axDWV4b9WAJsC77X9ceCnwOvojOvVGtchdMb1ajgFGNsp/xb7kqQfnWJ74Nv182XAdsMXylO8\nAthb0uWSzpc03F9otRDYD3ioLm9PZ1y31riG/brZ/oLtn9fFNYG30gHXqk1cC+iA3zHbM21fIek1\nlFb1znTG9WqN63E64HoBSHod8Cjl5m17OuB69SVJPzrFc4A76ueHgLWHMZZmvwdea3s74EFg1+EM\nxvZDtuc0reqI69Ymro65bpJeCawG3EYHXKuGprh+TudcK1Fu3uYDokOuV0tc19IB10vSaODDlJ4a\n6JB/i31J0o9O8Qgwtn5eic753fyT7X/Vz38DOq3LLtdtCSQ9Fzid0iXcMdeqJa6OuFYALo4Efkvp\nremI69US1zodcr2mAp+3/WBd7pjfryXpyKCiK13N4u6wlwCzhy+UpzhX0ksk9QB7U1oZnSTXrRe1\nJfZt4AO2b6FDrlWbuIb9WtW43i/pbXVxVWA6nXG9WuP6UidcL2AScKSkWcCWwB50wPXqS76cJzqC\npFWAXwOXAm8AXtHSXTwsJG0GfJ3S1XmR7Q8Nc0gASJple/tOu25NcQ37dZN0BPA/LE4KZwHHMMzX\nqk1cvwD+k2H+HauTMb8NjAGuBz4A/Irhv16tcX0ROJ8O+jdZE/8b6aB/i71J0o+OUf9x7wT8yvZd\nwx3PM0WuW//lWg1MrtfAPBOuV5J+REREl8iYfkRERJdI0o+IiOgSSfoREW3U2eGNzyMk5f/LeMbL\nmH5EBCDp1cDzKc9a/5DytcJrA6Z849qplEeyLqNM1noY+DxwAbCr7YXDEHbEgAz3V4pGRHSK44EZ\nwHHA1rZ3kXQUcI3tX0taifJOgW2BtSg3BBOAR20vbPQE2F40LNFH9EO6qyIiivn152dtHyHpaMpX\nvB4g6Wxg9frnA8DGwH3AkcBGkn4F3A5sM+RRRwxAWvoR0fUkvQV4LnBUWdTBwI3A4cBjwAeB9Skt\n+09Tkv46lJb/h+q+77B95ZAHHzEASfoR0fVsn1+77xut/RuBtwEbAgcB99f1JwIHUhL/fMo3620N\nzANuHsKQI5ZKkn5EdL36Apw9ga8CmwC7Aw9Qvvr1TmAFoIfyFbATKd+tviXwAuB7tZgfD23UEQOX\nMf2IiJLQ31s/H87iLvvNgL8A/wJupXwH/KXAecD5tucDf6DcMPx+iGOOGLAk/YiI0n2/EXA0cIDt\nv1IexdsduJfydrfbgC9Rkv40YDNJLwA2pXTvv3QY4o4YkHTvR0TAy4CdgTfZ/pekbSnj92+zfYuk\n9YH3A5tTxu5fQRkGOAs4FrgbuEDSAbZvGpYziOiHfDlPREQ/SRppe0H9LGBE40t5JMn5DzU6XJJ+\nREREl8iYfkRERJdI0o+IiOgSSfoRERFdIkk/IiKiS/x/fZ39kXD8lpwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x1=sum(df.b08a=='1')\n", + "x2=sum(df.b08a=='2')\n", + "x3=sum(df.b08a=='3')\n", + "x4=sum(df.b08a=='4')\n", + "x5=sum(df.b08a=='5')\n", + "x6=sum(df.b08a=='6')\n", + "x7=sum(df.b08a=='7')\n", + "x8=sum(df.b08a=='8')\n", + "x9=sum(df.b08a=='9')\n", + "name_list=['国家机关事业单位领导与工作人员','企业/公司中高级管理人员',\n", + "'教师、工程师、医生、律师','技术工人(包括司机)','生产与制造业一般职工',\n", + "'商业与服务业一般职工','个体户','农民','无业、失业、下岗']\n", + "num_list=[x1,x2,x3,x4,x5,x6,x7,x8,x9]\n", + "plt.barh(range(len(num_list)),num_list,tick_label=name_list)\n", + "\n", + "plt.xlabel('频数')\n", + "plt.title(\"职业\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exer8/0165202 coursework.ipynb b/exer8/0165202 coursework.ipynb new file mode 100644 index 0000000..15a9bce --- /dev/null +++ b/exer8/0165202 coursework.ipynb @@ -0,0 +1,2422 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 课程论文" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " 请务必交到exer8文件夹下,**谢绝交到master下**\n", + "+ 请不要改动任何文件,拜托\n", + "+ 请于12月30日前先在github上提交\n", + "+ 请在元旦后提交纸质版,将本页面文件先打印为pdf格式,再去打印店付印\n", + "+ 请将论文模板和本页面文件一起装订,前者放上面,本页面文件放下面\n", + "+ 纸质版提交时间和地点请留意微信群通知" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "请写一下姓名和学号:\n", + "+ 姓名 温高枫 \n", + "+ 学号 0165202" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 样本均值分布的统计试验" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "+ 请将CEPS.csv数据读入python\n", + "+ 请从中随机抽取1000个数据\n", + "+ 请根据问卷从数据中挑选两个连续型变量(likert量表可以近似看作连续变量)\n", + "+ 计算这两个连续变量的均值\n", + "+ 重复随机抽取—计算均值这个过程30次,得到两个变量30个样本均值\n", + "+ 绘制这30个样本均值的直方图\n", + "+ 计算均值的均值和标准误" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib\n", + "plt.rcParams['font.sans-serif']=['SimHei'] \n", + "plt.rcParams['axes.unicode_minus']=False \n", + "data = pd.read_csv(r'CEPS.csv',engine='python')\n", + "data.head" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E:\\anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:2: FutureWarning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n", + " from ipykernel import kernelapp as app\n", + "E:\\anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:3: FutureWarning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n", + " app.launch_new_instance()\n" + ] + } + ], + "source": [ + "x=data.sample(n=1000)\n", + "x1=x['b15d1'].convert_objects(convert_numeric=True)\n", + "x2=x['b15f1'].convert_objects(convert_numeric=True)\n", + "#选取 b09:课外看书时间 b12:游戏时间" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8626653102746694" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x1.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.637948717948718" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x2.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E:\\anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:6: FutureWarning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n", + "E:\\anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:8: FutureWarning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{1: 0.9411764705882353, 2: 0.9527235354573484, 3: 0.8430173292558614, 4: 0.8386433710174718, 5: 0.8831967213114754, 6: 0.9370485036119711, 7: 0.8663926002055499, 8: 0.9496402877697842, 9: 0.8622816032887975, 10: 0.9335410176531672, 11: 0.8773006134969326, 12: 0.9104938271604939, 13: 0.8950050968399592, 14: 0.8500517063081696, 15: 0.8981481481481481, 16: 0.8561151079136691, 17: 0.8431372549019608, 18: 0.9412371134020618, 19: 0.8847736625514403, 20: 0.8746145940390545, 21: 0.8791322314049587, 22: 0.9104016477857878, 23: 0.8128834355828221, 24: 0.86302780638517, 25: 0.8706365503080082, 26: 0.8895705521472392, 27: 0.886734693877551, 28: 0.9462809917355371, 29: 0.818089430894309, 30: 0.8225641025641026}\n", + "{1: 0.5954825462012321, 2: 0.6772216547497446, 3: 0.7037793667007151, 4: 0.6026422764227642, 5: 0.6629441624365482, 6: 0.6625766871165644, 7: 0.6424923391215526, 8: 0.6876288659793814, 9: 0.5466666666666666, 10: 0.6137295081967213, 11: 0.6171079429735234, 12: 0.7322348094747683, 13: 0.48028311425682507, 14: 0.6230690010298661, 15: 0.7107692307692308, 16: 0.6515463917525773, 17: 0.6100307062436029, 18: 0.7237113402061855, 19: 0.676530612244898, 20: 0.6656472986748216, 21: 0.5874485596707819, 22: 0.6330275229357798, 23: 0.5663265306122449, 24: 0.7158859470468432, 25: 0.5656154628687691, 26: 0.6206896551724138, 27: 0.7727272727272727, 28: 0.7343589743589743, 29: 0.646998982706002, 30: 0.6483180428134556}\n" + ] + } + ], + "source": [ + "count=0\n", + "mean_b15d1={}\n", + "mean_b15f1={}\n", + "while count<30:\n", + " data_x=data.sample(n=1000)\n", + " mean_b15d1_a=data_x['b15d1'].convert_objects(convert_numeric=True).mean()\n", + " mean_b15d1[count+1]= mean_b15d1_a\n", + " mean_b15f1_a=data_x['b15f1'].convert_objects(convert_numeric=True).mean()\n", + " mean_b15f1[count+1]= mean_b15f1_a\n", + " count=count+1\n", + "print(mean_b15d1)\n", + "print(mean_b15f1)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVPWZ7/HPl0YWARVND4hrvK7JVYxptTU4tguKGkwg\nTnBEnYxOuFFvlpnMXDUyyeiQmGQSk6u5GlGTOIxhxBiXaxJHiRIWJWOjgBLJdZK44BKRsIiK0vDc\nP87ppih+p6rRPt0s3/frVa8+dc5zzvlVPV311O+sigjMzMyq9erpBpiZ2ZbJBcLMzJJcIMzMLMkF\nwszMklwgzMwsyQXCtkuSBklST7fDbEvmAmFbHUkNkhpqTO8tqVfVuH+XdHbFqK8BlxbM/xeSrsyH\nvyXpD5LmS3pdUquk1yR9tGqewyX9uOL5UEmvdPL19JK0i6SDJI2U9HlJhxbENkt6vOL5XZI+2Jn1\nVMzze0kHVI37qqQD8+F+td5f23707ukGmLXLv2BPAFYmJh8E7BYRfwJOB/5ZUls+bSjZj52XAAF9\ngHOBBRXzv50/2p0AnFHQlFnAZEn/CrwDXAncB9wdESMk/SgfX+kU4A811lf5Ov8W+DzwBhDAwcBM\nYBmwHFgB7A88mZj9HeDNiuc/AX4u6aiI+KOkRuDBiumPRsRFVctYmz8qPQNMk3Qs8BiwtuL97QP0\niYiDU6/Htl0uELYlWQdcHhE/qp4gKYA2gIj4v3kP4WcR0SbpMmBgREyUtCPZl+9TVYuI/IGkg4AP\nAL+u2sp0YESsiohXJP0NsDSf52rgCmAPSYuB3YF/q1r+eGCgpPaic2b7+hK+C7yVv14B3wF+XDG9\nD/DritfeC+gVEW35Mtu/uImI2yT9N+DLwCVAA7BLROwrqQX4B0njgMH5+gIYBJwt6T8j4iFJ/wR8\nG3g6It4ENuqRSNoXuKfgtdg2zAXCtiRtmzH9HGAk8D+rYi4FhkfEOgBJHwKmAX8GjJQ0HngO+FJE\nfL19JklLgXck9QXWRsSd+XiRFYefAXcCLcAtlSuUNAp4LiLOlDQI+H/AqnzaROCHEfFi/ryBrLfz\nG7Jf8WOAqWwoaAL6ASGpX0SsAY4FrpO0DugP7C2pNY8/mKwn1L7ZaV3V+9FehHoB6/Nx7YWrvTr+\nDXAtsGvFctt9AVhCcbGzbZgLhG1J6n0JVU6/EPiNpAfaR0hqzsd/uCJuAXAIcDPZr+B5wBzgs5K+\nEhFX5nE7RMQaSf8CnChp94gYBuwAXEBWjA7Il/MR4N/zde4MXANcnC+nGXi0Yv2/A+6SdFxEvA0c\nD0wi21TUkC9rFvD1innaN5P9ALgpImYDH8rXdzjw3YhoyZ8/BTwbEa/n864HhkmaDwwEnoqIf5e0\nf0T8Vz7P54F/i4gl+Txt+XwDgdkR8YU87kdkBcm2Uy4QtiUJ4CpJX6gxPRuIWJ3vdF5MtrkIsl/k\n50bEHyvi1gPr801JAbwKjCUrHP8g6acR8WT7siPiHwAk/TbftPNtsi/OwWQFYlK+6Nfy6aeTbR76\nuKQL82n3Vqx/qqSjge8Bn46Ih8h6BEj6BrAbWQ+i2o8jYlXeg+kDvBPpC6c1ApU7w9cDL0XE4fkm\npi9I2gl4SNKpEfF0YhkdzQX+UtKI/Pm+bLopzbYjLhC2JQngyzX2QSDpRLIv28odte07qUflMb3I\nvtQviohfbrSCbJPNY3ncmcAkSd9i000zQbYj+9v5tL2B95F9+b9F9tk5JyKmVqzzZmA08Bmynke7\nS4HHJX0wIhblsVcDf0e2+WoJG/sO2SatVWSbkH5FtvmLfLm7SGqfZy2wRNK8iBhF4sjEvNBcDXw6\nX2ctU6t6ELYdc4GwLUm9w66V/wL/wEYjK3ZS15n/cEm7RcQtko4BriP79f88mx7VA/Bm/kt8X2Au\n8DrwLDA2LzQdImJ9vv/h8oh4Q9IuFdPelnRM/kV9MDA5X87dZEdbrapa79D29uS/+P+s4rVutIkp\nHzcW+Fj+tIGNNzG19xi+X9ADqeTD3m0j/oewLUm9E9c2+8Q2ScdIugc4CXg/8Kykc4ApwISIuIbs\nh9JbVbMOBW7MjxC6C5gILAQeAeZIOrJqPVcDayLi5lQ7IqK9CLxO9iv9fLKeyUyyQlH5WLGZL3NP\nskN8ISsQL0XE4WQ7n3vn6+/MTuY1ZPtfWvOd1R8mXThtO+EehG1JGqi9D6Lo/7UXxT92XgTuAD6Z\n7yQmPxT25xGxIi8AHwT+1D5DfhJZkG3qeZhss8xM4IKImCTpGeBOSX8PzCY7AmhnNvyKL2xTfjTT\nDe2rIis6C6vCLqTYDvl87UdY/Zzsi7z9JMC3gfYd9zPJdsi3v65dyYrJbmx8RNgOZIfR3kvF/pOK\n+YZT/wgz2wa5QNiWpDe190EU/b/2JduRu4mIeJ6qHa35sf7t+zCmkn1BXl0x/RlJTWSHw94fES9L\n2jOPIyJul/RTsiKyN9kJbV+LiMpf24Vtqor5O2B11fi982kp72ufFhEh6QJgaX6OBPmJhBPy4fVs\nOLSVfPgm4NaIqNyxPaiorZLOAv4V+Jc6r8W2QfId5cysiKR+QENEvNHTbbHu5wJhZmZJpeyklrSz\npF9IejC/mFhR9/UWSY/kZ5sWjjMzs+5X1lFM44FrImIk2Uk8o6oD8kPzGiLiWLLD8g5IjSupfWZm\nVkcpO6kj4vqKp41kZ69WayG7Rg7AQ8AIsssJVI97pnImSRPId8INGDDgwwcf7AtMmpltjnnz5r0W\nEY314ko9iik/GWlwRMxNTB5AdggiZCcK7V8wbiMRMZnsRCOampqitbX62mJmZlaLpOc6E1dagciP\nub4O+ERByGo2XAhsINnmrtQ4MzPrAWXtpO5Dtqno8ogoqlTzyDYhAQwnu/RAapyZmfWAsnoQ7Zdc\nvkLSFWRno+5Qda2cu4FZkoYBp5FdJjkS48zMrAeUtZP6BjZcTqAoZlV+OeKRwDcjYiVAapyZbb3W\nrl3LkiVLWLNmTf1g61L9+vVjzz33ZIcddqgfnNCjl9qIiOVsOGqpcJyZbb2WLFnCoEGD2Hfffam6\nxauVKCJYtmwZS5Ys4f3vf/+7WoZ3AptZqdasWcNuu+3m4tDNJLHbbru9p56bC4SZlc7FoWe81/fd\nBcLM7D1avnw5ixcv5u6772b27NmlrWfZsmVMnZrdoXbt2rWUfS09Fwgz2y5cddVV3HHHHcyePZt9\n992Xo48+mv3224/jjjuOc845pyPui1/8Ik8/nd2Ib86cOXzmM5/ZZFlnnnkmhx12GE1NTQwaNIjx\n48dz9dVXM2vWrI55qx100EEAvPTSS4wePZpVq6pvJLipa6+9lhtu2HC8z8CBA7nssstYuHAh559/\nPieddBInn3wyJ598MoMHD2bFis2911RtLhBm1r2krn100sUXX8zKlStpaGjYZFqfPtn1RNetW8fD\nDz/MgQceCEDfvn3p3XvTY3m+/vWvc+GFF/KpT32KXXfdldNPP50jjzySvffem8MOO6wjbu3ataxf\nn92SY6eddgJg2LBhXHLJJYwbNw6AmTNnsscee9DS0sKQIUM2Wk9DQ8NGbfvTn/7ENddcw9ChQ5k6\ndSoPPfQQ06dPZ/r06QwfPpy+fYtuI/Lu+IZBZrbN+9WvfsULL7zA0UcfzcqVKxkzZgwf+9jHuP/+\n+zn//PP5xje+AcA999zDG2+8wUknncQTTzzBvfdmN9hbv349vXplv6fb2toYPHgwRx99NIsWLeKE\nE06gubm5Y1r7juF+/frxwx/+kDvvvBNJPPPMM4waNYq33nqLHXfckdtvvx3IisCYMWP43ve+x5FH\nHskPfvADnnrqKXr37s2CBQvo1asXffv2ZfTo0Zx11lnMmTOHU089lXXr1nW8vvvvvx/o+n09LhBm\nts3bZZddePzxx7nvvvsYN24cDQ0N3HLLLfzud7+jra2NU045hba2Nr7zne/w8MMPM3ToUI477jgG\nDBjA8uXLGTVqFHfffTc77rgjU6dOZdq0aTQ0NDBjxgxGjBjBpEmTOta1du1axo4dy4UXXsiECROY\nMGECAM3Nzdx///088cQTTJ48uaNH0dDQwF133cVTTz3Fq6++ygUXXMALL7zAXnvtxfe//3369evH\nueeey5o1azrOZ2hra+OXv/wlAC0tLcleTldwgTCzbd7w4cNZvnw5ra2tfOlLX+K1117j9ddfZ+nS\npcyfP58nnniCZcuWMX78eC677DLOOOMMjj/+eAAGDx7MuHHjuPDCC5k6dSrnnXce5513HjfeeCO/\n//3vO3oPAH/84x8ZPXo0p5xyCnPmzOFzn/tcx5f6okWLaG5uZtWqVaxcuZJFixYxc+bMjXoQzc3N\nvPXWW4wePZqZM2cWvp7Fixdz8sknA7BgwYLS3jcXCDPbbqxevZobb7yR3r17c/jhh/Pqq69y2223\ncdRRRwHZr/nDDz+cU089lcWLF/Pii9nFpc8880weeeQRZsyYwfDhw7niiitYsWIFq1evZvr06R3L\nf/nllzuWdcwxx/DrX/+649d9c3Mzc+duuLB1U1MTQMc+CshObuvfvz+XXHIJjz32WOHrOOSQQzrW\n29LS0gXvTJoLhJltN7773e9yxBFHcN9993Haaaexfv16Lr74Yq688krOPPNMAObNm8fEiRPZfffd\nOwoEwNVXX40kfvKTn/CRj3yEIUOG0KdPH84666yOmAceeKBjP0CvXr069ltUW7duXUfhaGtr69jE\n1L6+T3/60wA888wzyfnnz5+/UQ+ira3tvbwthVwgzGy78OyzzzJy5EhuuukmjjjiCM444wzuu+8+\n7r33Xs4++2wWLlzYEXfzzTcDbHSeQfsXf3tBqOw5dMbatWsB+O1vf8snPvEJTjrpJCArFu2bmK68\n8sqN5qlc//r16zuev/baa5ss/5133iksSO+WC4SZda+ST+4q8vGPf5yPfvSjvPHGG+yzzz48+uij\nrF27lr322os5c+Zwzz33sGjRIm666aaOed5+++2OL/Zqa9asYc6cOSxZsqRj3EsvvcSHPvShTWLf\nfPNNVq9eDcD+++/P/fffz5577glkm5raz5H4yle+0jHPHXfcwbXXXttRrFavXs3bb7+dbMv48eNp\na2vrOCS2q6jsM/HK5DvKmW35nn76aQ455JCebsZW56233uo4xLWe119/nUGDBiWnpd5/SfMioqne\nct2DMDPbAvXv379+UK6oOLxXPpPazEq3NW+p2Jq91/fdBcLMStWvXz+WLVvmItHN2u8H0a9fv3e9\nDG9iMrNS7bnnnixZsoSlS5f2dFO2O+13lHu3SisQkoYAP4mI4wqmXwSMy5/uAvwauAT4ff4A+GxE\nPFlWG82sfDvssMO7vqOZ9axSCoSkwcCtwICimMr7Vku6Lo8/DJgaEZeW0S4zM+u8svZBrCPrHdS9\n4LmkPYChEdEKNANjJM2WdJskbwIzM+shpRSIiFgVESs7GX4JeU8CeAw4PiJGACuA08ton5mZ1dej\nRzFJ6gWcCDycj1oYES/nw4uBAxLzTJDUKqnVO73MzMrT04e5HgfMjQ3Hv02RNFxSAzAG2OQ6thEx\nOSKaIqKpsbGxO9tqZrZd6ZYCIekDkiYlJp0KVF70/CpgCjAfeDQiNu9qWGZm1mV8LSYzs+1MZ6/F\n1NObmMzMbAvlAmFmZkkuEGZmluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZmluQCYWZm\nSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZmluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkml\nFQhJQyTNqjG9t6TnJc3IH4fm42+R9IikiWW1zczM6iulQEgaDNwKDKgRdhgwNSJa8seTksYCDRFx\nLDBM0gFltM/MzOorqwexDhgHrKoR0wyMkTRb0m2SegMtwLR8+kPAiJLaZ2ZmdZRSICJiVUSsrBP2\nGHB8RIwAVgCnk/U4XsynrwKGVM8kaYKkVkmtS5cu7cpmm5lZhZ7cSb0wIl7OhxcDBwCrgf75uIEk\n2hcRkyOiKSKaGhsbu6elZmbboZ4sEFMkDZfUAIwBFgDz2LBZaTjwbA+1zcxsu9e7O1Yi6QPAORFR\neWTSVcCPAQH3RsR0STsBsyQNA04j209hZmY9QBHR023YSH4E1EhgZkS8Uiu2qakpWltbu6dhZmbb\nCEnzIqKpXly39CA2R0QsZ8ORTGZm1kN8JrWZmSW5QJiZWZILhJmZJblAmJlZkguEmZkluUCYmVmS\nC4SZmSW5QJiZWZILhJmZJblAmJlZkguEmZkluUCYmVmSC4SZmSW5QJiZWZILhJmZJblAmJlZkguE\nmZkluUCYmVlSaQVC0hBJs2pM31nSLyQ9KOkuSX0k9Zb0vKQZ+ePQstpnZma1lVIgJA0GbgUG1Agb\nD1wTESOBV4BRwGHA1IhoyR9PltE+MzOrr6wexDpgHLCqKCAiro+IB/OnjcCrQDMwRtJsSbdJ6l1S\n+8zMrI5SCkRErIqIlZ2JlXQMMDgi5gKPAcdHxAhgBXB6In6CpFZJrUuXLu3SdpuZ2QY9upNa0q7A\ndcAF+aiFEfFyPrwYOKB6noiYHBFNEdHU2NjYTS01M9v+9FiBkNQHmAZcHhHP5aOnSBouqQEYAyzo\nqfaZmW3vuqVASPqApElVoy8EPgxckR+xNA64CpgCzAcejYjp3dE+MzPblCKip9vwrjU1NUVra2tP\nN8PMbKsiaV5ENNWL84lyZmaW5AJhZmZJLhBmZpbkAmFmZkk1C4SkXpKSl8vIp32ynGaZmVlPq3cp\ni32BsyQ9BgyumibgPLJzGczMbBtTr0C0kV1X6R+BWcAQ4M+Bx4FngK33GFkzM6upsEDkF8qbBAwC\ndgd+Rnbpi4OA/wTmkJ3oZmZm26B6O6lnAe9UxUXVXzMz2wYV9iAiok3SA8DOZJfjvg7oT9ab2B04\nh+wS3WZmtg2qtw9iL2B+RHyreoKkXmSbnczMbBtUax9EX+AKYI2kExMhvYAXy2qYmZn1rFqbmN4G\nTpO0H/A1stuBfgFYlocI6Ft6C83MrEfUvaVnRPweOFvSWcDzEbG4/GaZmVlPq1sgJO0FDCW7w1ub\npD2ANcAbEbGm5PaZmVkPqVsggAnAPsDbwA75ow/QKOmZiPh0ie0zM7Me0pkCAfCPEfGcpIHAFyPi\nSkkClpTYNjMz60H1LtZ3MNkJcSFpLPBVss1M50Z2K7rR3dBGMzPrAbUOc90R+BbwIWBF/vhfZGdW\n/0rSwoh4vFtaaWZm3a6wBxERb0bER8muv7QauAjol/ccLgKW11qwpCGSZtWJuUXSI5Im1hpnZmbd\nr+4NgyLiTeAvgeMiYqWkHYArI+KFonkkDQZuBZL3kshjxgINEXEsMEzSAalxm/l6zMysi9TcSS1p\nDtkmpcOBn2f7pRFwqKRhEfFSwazrgHHAPTUW38KGe0k8BIwg25xVPe6Zuq/CzMy6XL2jmE4h+7J/\nCDgDWJ+PPwf4FNkZ1puIiFUAeUEpMoANl+pYBexfMG4jkiaQHXrL3nvvXaf5Zmb2btXcxBQR7SfD\nXQmsiYi380twPAAsfI/rXk12dViAgXlbUuOq2zQ5IpoioqmxsfE9NsHMzIrU3QeReyLfOd3ufRFx\n33tc9zyyTUgAw4FnC8aZmVkP6MylNhqA24ET8ue7AT+VNCoiOrV/QNIHgHMiovLIpLuBWZKGAacB\nzWTnXFSPMzOzHtCZo5jWkd2bGkk7A3cAt3amOERES/73N1XFoX0/RQswFzghIlamxm3OizEzs67T\n2U1MDZLaj0r6DnByV6w8IpZHxLSIeKXWuB4nbfowM9vG1TvM9QKyo5hayO798GNgV2BnSX8N9ImI\nG8tuZGlSX/ThW2138Puz5XJutlzbUG7q7YPYEVibD68n20fQj6zn0R9oKK9ptlm2hn/Kop7XltZO\nMwPqFIiI+B6ApHOBqcAngYnA8oi4vvzmmZlZT+ns5b7fiojrJd0OTAEeLrFNZma2Bai7kzo/zLUP\nQEQsA8YAJ0r6RMltM6vPBxBsuZybrV5nehBDyS6tgaRBEfG6pGnAY6W2zKwrlbH/Y2vY72P2HnTm\nhkHHA0dJ6sOGi+99LCKeL7txZmal62xPZzvsEdW6YVA/sjvI7Q9cR9aT6C1pb6Bv/rchIv7QLS3d\nXm2vv1K319fd1cp4H52b7UZhgYiINZL+AvgfZPeD+AiwH9mF+/YD/ikPvaDkNppZd9iWvvi3pdfS\ng2r1IBqAnwNPAtcC9wH/ERF/LemXEeHCsDXytnjbmvl/rVvV6kGsA06VdDLwJtlJcZMl7U52Ap3Z\ntqmrv4T8pWZbqbpHMUXEdEl3RsQnJJ1JdqmNY8tv2lbIXwT2Xvl/yLYg9a7FNJfszm5Nkh4BdgP+\nDBibb4LqGxEjai3DCviLwMy2cPUutdEMHYXifwPnAq8Dl0bEC+U3z8zMeuoHZWcv931dRNweEaOB\nH5GdG2Fm1jW2w3MMkq95C3vdnboWU0TcVjH8QHnNMTOzLUVnexBmZradcYEwM7MkFwgzM0sqrUBI\nukXSI5ImFky/SNKM/DFf0o2Sekt6vmL8oWW1z8zMaiulQEgaS3Yhv2OBYZIOqI6JiBsioiUiWoBZ\nwE3AYcDU9vER8WQZ7TMzs/rK6kG0ANPy4YeAwpPpJO0BDI2IVqAZGCNptqTbJG1ylJWkCZJaJbUu\nXbq0hKabmRmUVyAGAC/mw6uAITViLwFuyIcfA47Pz85eAZxeHRwRkyOiKSKaGhsbu7DJZmZWqawC\nsRronw8PLFqPpF7AiWy4x/XCiHg5H14MbLJpyszMukdZBWIeGzYrDQeeLYg7Dpgb0XHO+BRJw/Pr\nPI0BFpTUPjMzq6OsAnE3cJ6ka4BPAoskTUrEnQrMrHh+FTAFmA88GhHTS2qfmZnV0alLbWyuiFgl\nqQUYCXwzIl4h0RuIiC9VPX+K7EgmMzPrYaUUCICIWM6GI5nMzGwr4zOpzcwsyQXCzMySXCDMzCzJ\nBcLMzJJcIMzMLMkFwszMklwgzMwsyQXCzMySXCDMzCzJBcLMzJJcIMzMLMkFwszMklwgzMwsyQXC\nzMySXCDMzCzJBcLMzJJcIMzMLMkFwszMkkorEJJukfSIpIkF03tLel7SjPxxaGfmMzOz7lFKgZA0\nFmiIiGOBYZIOSIQdBkyNiJb88WQn5zMzs25QVg+iBZiWDz8EjEjENANjJM2WdJuk3p2ZT9IESa2S\nWpcuXdrlDTczs0xZBWIA8GI+vAoYkoh5DDg+IkYAK4DTOzNfREyOiKaIaGpsbOzyhpuZWaZ3Sctd\nDfTPhweSLkQLI+LtfHgxcEAn5zMzs25Q1hfwPDZsHhoOPJuImSJpuKQGYAywoJPzmZlZNyirB3E3\nMEvSMOA04GxJkyKi8sikq4AfAwLujYjpknaqmq+5pPaZmVkdpRSIiFglqQUYCXwzIl4h6yFUxjxF\ndiRTrflWltE+MzOrr6weBBGxnA1HJJU+n5mZdS3vBDYzsyQXCDMzS3KBMDOzJBcIMzNLcoEwM7Mk\nFwgzM0tygTAzsyQXCDMzS3KBMDOzJBcIMzNLcoEwM7MkFwgzM0tygTAzsyQXCDMzS3KBMDOzJBcI\nMzNLcoEwM7MkFwgzM0sqrUBIukXSI5ImFkzfWdIvJD0o6S5JfST1lvS8pBn549Cy2mdmZrWVUiAk\njQUaIuJYYJikAxJh44FrImIk8AowCjgMmBoRLfnjyTLaZ2Zm9fUuabktwLR8+CFgBPBMZUBEXF/x\ntBF4FWgGxkj6CPAc8FcR0VZSG83MrIayNjENAF7Mh1cBQ4oCJR0DDI6IucBjwPERMQJYAZyeiJ8g\nqVVS69KlS7u+5WZmBpRXIFYD/fPhgUXrkbQrcB1wQT5qYUS8nA8vBjbZNBURkyOiKSKaGhsbu7bV\nZmbWoawCMY9ssxLAcODZ6gBJfcg2Q10eEc/lo6dIGi6pARgDLCipfWZmVkdZBeJu4DxJ1wCfBBZJ\nmlQVcyHwYeCK/IilccBVwBRgPvBoREwvqX1mZlZHKTupI2KVpBZgJPDNiHiFqt5ARNwA3JCY/bAy\n2mRmZpunrKOYiIjlbDiSyczMtjI+k9rMzJJcIMzMLMkFwszMklwgzMwsyQXCzMySXCDMzCzJBcLM\nzJJcIMzMLMkFwszMklwgzMwsyQXCzMySXCDMzCzJBcLMzJJcIMzMLMkFwszMklwgzMwsyQXCzMyS\nXCDMzCyptAIh6RZJj0iauDkxnZnPzMzKV0qBkDQWaIiIY4Fhkg7oTExn5jMzs+5RVg+iBZiWDz8E\njOhkTGfmMzOzbtC7pOUOAF7Mh1cB+3cypu58kiYAE/KnqyX9tova3L6C9wGvdXuc1719rXtraKPX\nvW2sO22fzgSVVSBWA/3z4YGkeyqpmLrzRcRkYHJXNraSpNaIaOruOK97+1r31tBGr3vbWPd7UdYm\npnls2Dw0HHi2kzGdmc/MzLpBWT2Iu4FZkoYBpwFnS5oUERNrxDQDkRhnZmY9oJQeRESsItvhPBc4\nISIWVBWHVMzK1Lgy2ldHZzdfdXWc1719rXtraKPXvW2s+11TRJS9DjMz2wr5TOoSSdpV0khlRxvY\nFsg52nI5Nz3PBaKCpCGSZtWJ2VnSLyQ9KOkuSX0K4nYHfgYcBTwsqbET636iTkxvSc9LmpE/Dq0T\nf72k0XViLqpY3nxJNxbEDZb0c0mzJH2/xvLeL+lnedy3a627M6pzUpSjyvG1clQVVzNHqXWl8lS1\nzMIcFSwvmaOqZRbmqCquMEdVce8pR6n3t0ZeqmOTuUmM34dEbmrMn8pLqp2b5KbGMjfKTSLu8zXy\nUh07JJWbRNxBRblRTxTMiPAj28w2GLgfeLxO3MXAyHz4BuDMgriTgeZ8+FvAqXWWOwVYXCfmCOAb\nnXw9xwE/3cz34DqgqWDa54Bz8uHbasRNq3jdtwMtiZghwKyK57cAjwATa+WkKEeJuGSOEnGFOaqx\nro3ylFhmMkep5RXlqNb/YmWOEutO5igRl8wRsDPwC+BB4C6gTyo3iff3r2q0tzr2cwW52SRnqdzU\nyO0mn58CZ6ncAAAEeUlEQVRE7JcLcpNa9ya5KVp36rNT8LpTuamO+1NBbnYHHgWuAJ4EGlO56eqH\nexAbrAPGkZ2gVygiro+IB/OnjcCrBXHTI2KupD8n+xX0aNEyJZ0IvAG8UqeNzcAYSbMl3SYpeRSa\npB2Am4BnJX2szjLb59kDGBoRrQUhy4CDJO0C7AU8XxB3IPB4Pvwq2ZdO5XoGA7eSnRRZ77Is1Tkp\nytFG42vkqDquVo42WVdBnqrjinK0UVydHCVfZyJH1XFFOaqOK8rReOCaiBiZv8azSeQm8f7+IdXe\ngtj/TOUmlbNUblJxRZ+fRGwbidwk4paTyE3R/1Xqs5OIHUQiN4m4HUnn5oPA30bEV4H/AE6kGy5L\n5AKRi4hVsRlHTUk6BhgcEXNrxIjsg7OW7EOaiulD9svmsk6s9jHg+IgYAawATi+IOx/4DfBN4ChJ\nn+3Esi8h+wVTZDZwANkvocVkH6KUnwBfybvmo4BfVk2v/rJqoeDyKtU5KcpR0fjqHKXiinJUHVuU\np8QykzlKxBXmqMb/4kY5SsQlc5SIS+Yo8WV1LjUufVPx/s6s99mpzkXR56dyfK3PT3sc2Zdpzc9P\nReyD1Pj8VMQdSI3PT6LthZ+dimX+GzU+PxVxk0jnpvrHzKl0x2WJyuqabK0PYEYnYnYFWoF9OrnM\nfwbGFUz7MvAXnVk30Ldi+LPAFwvivgeMyocPoc6mJrIfCnPJj2oriLkN2Ckf/jtgQo3YEcA91Oj6\ntr9Wsm7y8Hz4FOCyejkpep8qx9fKUWr+ohxVtLNmniriauaoIq5ujqpeT2GOKpZZM0dVyyvMEXAM\n2RdTYW5S72+NvGwUW5SbGuM3yk1lXCfyUhlbmJuquMLcJF5LrbxULrMwN4llJnMDCPg/eW5+WJSb\nrny4B7GZ8l+S04DLI+K5GnGXSjo/f7oL2S+WlJOBSyTNAA6XdHON1U+RNFxSAzAGWFAQ91/Afvlw\nE1DYztxxwNzI/9sK7Agcmq/7aLKTGovMB/YGrqmzXujcZVk2Swk5gs7naavOkaRdybanX0BBbjr7\n/qZii+ZNxCVzk5i/MC+J2GRuEnHJ3BS0PZmXRGwyNwXLTOYmMpeQ7Xdopos/N0llVJ2t+UH9X/EX\nkXUPZ+SPop5Be5d2JnA9NX6db8a6/zuwkGwn1VdrxA0C7sjX/SiwR53lfg0YWyfmKGAR2ZfGg8DA\nGrFXAud15rWSbWr5+4r5zqn3vhS9TxXLrJmjiri6OUqtq9a4ejmqiKubIzb+xV+Yo4pl1sxR1fI2\nyRHZTunpbNhpmsxN0ftb8L5Ux36lYN5NlpnKTa3cJv5PUuveJDeJuL9K5aagjcm8JGIvTeWmYJmp\n3FwKnJ8PX5e3sebnpisePlHOeoSkGRHRImknYBZZt/k0siM4euIM+u2epIvIvvDaez0/JNsc4tz0\nsPzgjmlAX+Ap4HKyAlZqblwgrMfl//wjgZkRUe9ILutGzs2Wqzty4wJhZmZJ3kltZmZJLhBmZpbk\nAmFmZkkuEGZmluQCYWZmSf8fM6R5XGDySKUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ind=np.arange(len(mean_b15d1.values()))\n", + "width=0.5\n", + "fig, ax = plt.subplots()\n", + "rects1 = ax.bar(ind - width/2, mean_b15d1.values(), width, \n", + " color='red', label='课外看书时间')\n", + "ax.set_ylabel('样本均值')\n", + "ax.set_title('日平均课外看书时间')\n", + "ax.set_xticks(ind)\n", + "ax.set_xticklabels(mean_b15d1.keys())\n", + "ax.legend()\n", + "ax.set_ylim(0,2)\n", + "\n", + "def autolabel(rects, xpos='center'):\n", + " xpos = xpos.lower() \n", + " ha = {'center': 'center', 'right': 'left', 'left': 'right'}\n", + " offset = {'center': 1, 'right': 1, 'left': 1} \n", + " for rect in rects:\n", + " height = rect.get_height()\n", + " ax.text(rect.get_x() + rect.get_width()*offset[xpos], 2*height,\n", + " '{}'.format(height), ha=ha[xpos], va='bottom')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucFPWZ7/HPlxluCnHRzKIEjbpLjNmjJHHioiFKFPCy\nkhyM8YLmsuaEvDye3ZjduJoNJqvB7BqNbjTrLUuyhqgRT9bLbiAqUY544YRBQc1Kjnty0GCCIoKI\nEXHgOX9UDdM0v+puYGqage/79erXVFc/VfXrfqb76V/9qqoVEZiZmVXr1+wGmJnZzskFwszMklwg\nzMwsyQXCzMySXCDMzCzJBcLMzJJcIMwaIGmoJJW4/sFlrdtse7lA2C5PUouklhqPt0rqVzXvx5LO\nrJj1TeCigmX/UlL//P4PJL2r4vEFkoY30MwHJY2RNEzSOxqIr2zDryWNqpp3uaT35NODaj1/syKt\nzW6A2faSdBvwUeC1xMOHAPtExKvAycA3JHXmj+1L9uXot4CAAcA5wJKK5d/Kb10+CvxZQVMOBv4N\nOBGYAxwP/FDSocA7gcMkfRBYBvwfoF9EvF21jt/n2/sbYCjwP/Ln2AY8UBH3eEScV7Xs2/mt0nPA\nLElHAwuBtyue/wBgQES8t+D5mAEuENa3bQS+EhH/Uv2ApAA6ASLi3/Iewk8jolPSxcCQiJgmaQ/g\ni8AzVauI/IakQ4D3Af+7ai/TeyJiLXCBpFGSHiX/oJb0SeAxsg/nDwH98/b8MXCJpA1kxeO+iPgi\nsC7f3hXAP0nqnxeRFuAPIuJASeOACyWdAQzLn3+QFZQzJf0iIh6U9HfAt4FnI+L3wJ9UvTYHAvc0\n8gLb7s0Fwvqyzm14fAowgfybeYWLgNERsRFA0geAWcAfAhMknQ08D/xtRPxD10KSVgIbJA0E9ouI\n5yRNAW6JiHGShgELgKPyXkylf8vX8QVg73zeGmAvYD9gPnATcC5ZEai0kazX0w/YlM/rul5OV/X6\nb8C1wN6SOqqWvwBYXrGMWSGPQVhfVu9DrvLxzwEfk/SxrhmSxuTzv1ARtwQ4FLiLrJj8NXAGsFTS\n1yvi+kfEerLewQJJ/7Vqe4cArwJPSFqW30bm2/12Pih9ANmun0uBDwO3AN8AhgA/ytezCRghaTHw\nz8CmiPgxcH9E3BwR3wNWAz+KiJ/ny3Tmyw0BHomI9ohoJ+sleTDcGuYCYX1ZAJdJWlx9q3g8m4hY\nB5wJPFKx/NvAORHxUkXcpojorFj+ZeBUYDYwUdJhleuOiEeAY4E/Jdu3/35JvyIrOh8B/oisl/I8\n8Eq+7IvAjWS7rZ4lGwv5MXADcDZwGPBEHrsJ+G1EvJ+sZ0A+iP1gPsZR7/U5S1JH3pM4BfccbBt4\nF5P1ZQF8rcYYBJKOA75LNgjcpWuQ+sQ8ph/Zt+3zKr6FZxvIegkL87iPAdMlXcWWu37+E/hb4P3A\nfWQf9Gfm29gIXE9WKLrGRK6WNBtoBz4REZskHUm2+2cy8IcRsSZf91Zf4iJiraS/Bz4P/FWd1+j2\niLggb/9Wr5NZLS4Q1pfV6wErIh4k+6bePbNikLrO8u+XtE9EzJB0FHAdcBvwAlseNfRR4DTgJ2S7\nlbr8EzCKrPjcA9xLNngM8GC+3MFkBeZJsl7IaOAzFetooXsX0xCyHgfAjVH/Wv3eQ2A7xAXC+rJ6\nJ65t84lteSG4GPgg2Yf4/Hzw+TLg9Ih4Ih8/eLNisfHA42Q9iP/omhkRn8/XuTwijq3YxjvpHt+4\nGTiOrHexEvi/EVE5sNxCvospP4rponzdjewqWg8cVzFQPRD4QSOvgxm4QFjf1kI2BnFBweNF/9/9\nKP52/SJwJ1kxeAsgPxR2dkSskfRHZIeNVvYUJpEdnvoA2fkU+xY1WNJeZL2Jv4+ImyR9MD/s9Jtk\nxeVYSX9C1vNYDvwauD9f/GHg0Yp17Q2MBPZhyyO2+pOda3EvWa+lug2jqX8EmJkLhPVprdQegyj6\n/x5INqC8lYh4ge4jiLrm/Z7uMYzbyT6A/z7fzslkxeI0skHoVuBS4N/znsLpwIaK1R0D/GdE3JTf\n/zIwj+yopL+RdAzZOEY/siL1KjA1b8cmug9tJZ/+HtmhtSsq5g8ten6STgN+CFyZetyskvyTo2bb\nL7+MxqFkRyJtAFYAfxwRz0hqBf4B+ElEPF5jHYdFxNMV998DfDgienx3kKRBQEtEvNHT67ZdTykF\nIu9G/5js29Q64IyI2JCIm0H25podEdOL5pmZWe8r6yiHs4GrI2IC2TeqE6sDJJ1K9k3maLKjNEal\n5pXUPjMzq6OUMYiIuL7ibhvZyUbVxpFd0gCyo0XGAh9IzHuuciFJU8n3ye65555HvPe9vt6Ymdm2\nWLRo0SsR0VYvrtRB6vyQwWERsSDx8J5kR4wArCW7iFlq3hYi4mayQwNpb2+Pjo7qS82YmVktkp5v\nJK60ApEfgncd8ImCkHV0XxdmCNnurtQ8MzNrglI+gCUNINtV9JWIKKpUi8h2IUF29uiygnlmZtYE\nZfUgPgccAXxV0leBh8iufll5aYO7yc5SHQGcBIwhu7ZO9TwzM2uCsgapbyC7YFmtmLX5pQMmAN+K\niNcAUvPMzLq8/fbbLF++nPXr1ze7KTu9QYMGMXLkSPr3779dyzf1TOqIWE33UUuF88zMuixfvpyh\nQ4dy4IEHUvULf1YhIli1ahXLly/noIMO2q51eBDYzPqU9evXs88++7g41CGJffbZZ4d6Wi4QZtbn\nuDg0ZkdfJxcIMzNLcoEwM9sBb7zxBp2dnZunX3/99cLYHR1YX7VqFbfffjuQDdaXfbFVFwgz69Mk\n9eitEStXrmTSpEmsXLmSe++9l2uvvRaAe+65h6uuuqpwuYkTJ7JmzRq+853vNPThfu2113LDDd0H\nhA4ZMoSLL76Yp556ik9/+tMcf/zxjB8/nvHjxzNs2DDWrFlTY23bzr8HYWa2jdra2rjgggu48847\n2Xvvvdm4cSP33Xcfs2fPZvny5UycOJEJEyYwZ84cBgwYgCTmzJnDkCFDGDRoEJ2dnSxcuJAjjzyS\nhx9+mLPOOotRo0bx7LPP8tJLL23eTktLCwMGZD/tsXHjRl599VWuvvpq9t133809iS7jxo1j4MCB\nPfo8XSDMzLbRq6++yhFHHMGBBx7IlClTuOKKK3jppZdYvXo18+bN2xx34YUXsn79es466ywAhg0b\nxi9+8QuGDBnCP/7jP3LZZZfR0tLC5MmT+e53v8uHPvQhvv/97/PMM8/Q2trKkiVL6NevHwMHDmTS\npEmcdtppPProo5xwwgls3Lhx83Z+9rOfAT0/eO8CYWa2jX79619z4YUX8u1vf5u99tqLNWvWsG7d\nOvbff39OOeUUFixYwIwZM7jtttv42te+xogRIzjhhBP41a9+xR577MFxxx3HNddcw/Dhw3nllVe4\n6667eOaZZ3j55Zc599xz+c1vfsP+++/PjTfeyKBBgzjnnHNYv3795hPeOjs7+fnPfw5kPYfW1nI+\nyl0gzMy2UXt7O3PmzKGzs5P+/fuzatUqli1bxo033sisWbM45JBD+PjHP86KFSv47Gc/yxe/+EWu\nvPJK7rjjDoYMGcK8efOICKZMmbJFD2LMmDG8+eabTJo0iYcffrhw+0uXLmX8+PEALFmypLTn6UFq\nM7PtcOONN7Js2TIkMXr0aFpaWpg4cSKXXHIJjz76KNOnT+cLX/gCL730EkOHDmWPPfbgqKOO4o47\n7mDRokWceeaZAGza1P0z4xHB4MGDOf/881m4cGHhtg899FDmzp3L3LlzGT16dGnP0T0IM7PtMHv2\n7M0f8l3uv/9+pk+fzpgxYxg/fjx33303xxxzDFdccQUTJkzgoIMO4qGHHuKHP/wh/fpl3887Ozs3\n72J68cXs53A+//nPA/Dcc8+Rsnjx4i16EF2H2fY0Fwgz69PKPhcg5be//S1Dhw5l7ty5TJw4kc7O\nzs0DxF3tWbhwIdOnT+ehhx5izpw5PPnkk1x++eV86UtfYsaMGYwcOZJf/vKXjBw5cvMupksvvbTw\nuW3atGnz/VdeeWWrNm3YsGFz0ekp3sVkZraN5s2bx/HHH89PfvITpkyZwpVXXskpp5zCvffey513\n3snBBx/MunXrmDFjBkOHDuWTn/wk11xzDV/+8peZNm0ap59+OmPHjqWtrY329nYuueQSAL7+9a9v\n3sadd97Jtddey6hRowBYt24db731VrI9Z599Np2dnZsPie0pakb17Sn+yVGz3c+zzz7LoYce2uxm\nJG3YsIHW1taGvslv2LCh5gf6m2++ufkQ13pef/11hg4dmnws9XpJWhQR7fXW611MZtbnRMROecG+\nbfkGXy928ODBNR+vVFQcdrQD4F1MZtanDBo0iFWrVjVl7KEv6fo9iEGDBm33OtyDMLM+ZeTIkSxf\nvpyVK1c2uyk7va5flNteLhBm1qf0799/u38hzbZNabuYJA2XNL/G4+dJmpffFku6SVKrpBcq5h9W\nVvvMzKy2UnoQkoYBtwB7FsVExA3ADXn8dXn84cDtEXFRGe0yM7PGldWD2AicAaytFyjpXcC+EdEB\njAEmS3pE0q2SvAvMzKxJSikQEbE2Il5rMPx88p4EsBA4NiLGAmuAk6uDJU2V1CGpw4NUZmblaeph\nrpL6AccBD+WznoqI3+XTS4FR1ctExM0R0R4R7W1tbb3UUjOz3U+zz4P4CLAgug9onilptKQWYDJQ\n3nVszcyspl4pEJLeJ2l64qETgMqLnl8GzAQWA49HxNzeaJ+ZmW3N12IyM9vNNHotpmbvYjIzs52U\nC4SZmSW5QJiZWZILhJmZJblAmJlZkguEmZkluUCYmVmSC4SZmSW5QJiZWZILhJmZJblAmJlZkguE\nmZkluUCYmVmSC4SZmSW5QJiZWZILhJmZJblAmJlZkguEmZkluUCYmVlSaQVC0nBJ82s83irpBUnz\n8tth+fwZkh6TNK2stpmZWX2lFAhJw4BbgD1rhB0O3B4R4/Lb05JOBVoi4mhghKRRZbTPzMzqK6sH\nsRE4A1hbI2YMMFnSI5JuldQKjANm5Y8/CIwtqX1mZlZHKQUiItZGxGt1whYCx0bEWGANcDJZj+PF\n/PG1wPDqhSRNldQhqWPlypU92WwzM6vQzEHqpyLid/n0UmAUsA4YnM8bQqJ9EXFzRLRHRHtbW1vv\ntNTMbDfUzAIxU9JoSS3AZGAJsIju3UqjgWVNapuZ2W6vtTc2Iul9wJSIqDwy6TLgNkDAvRExV9I7\ngPmSRgAnkY1TmJlZEygimt2GLeRHQE0AHo6IFbVi29vbo6Ojo3caZma2i5C0KCLa68X1Sg9iW0TE\narqPZDIzsybxmdRmZpbkAmFmZkkuEGZmluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZm\nluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZmluQCYWZmSS4QZmaW5AJhZmZJpRUIScMl\nza/x+F6S5kh6QNJdkgZIapX0gqR5+e2wstpnZma1lVIgJA0DbgH2rBF2NnB1REwAVgAnAocDt0fE\nuPz2dBntMzOz+srqQWwEzgDWFgVExPUR8UB+tw14GRgDTJb0iKRbJbWW1D4zM6ujlAIREWsj4rVG\nYiUdBQyLiAXAQuDYiBgLrAFOTsRPldQhqWPlypU92m4zM+vW1EFqSXsD1wHn5rOeiojf5dNLgVHV\ny0TEzRHRHhHtbW1tvdRSM7PdT9MKhKQBwCzgKxHxfD57pqTRklqAycCSZrXPzGx31ysFQtL7JE2v\nmv054Ajgq/kRS2cAlwEzgcXA4xExtzfaZ2ZmW1NENLsN2629vT06Ojqa3Qwzsz5F0qKIaK8X5xPl\nzMwsyQXCzMySXCDMzCzJBcLMzJJcIMzMLKlmgZDUT1Lyekr5Y6eX0ywzM2u2etc6OhA4TdJCYFjV\nYwI+RXaym5mZ7WLqFYhOsgvvXQLMB4YDxwBPAM8BffckCjMzq6mwQORXUp0ODAX2A35Kdm2kQ4Bf\nAI+SnQltZma7oHqD1POBDVVxUfXXzMx2QYU9iIjolHQ/sBfZ7zVcBwwm603sB0wh+w0HMzPbBdUb\ng9gfWBwRV1U/IKkf2W4nMzPbBdUagxgIfBVYL+m4REg/4MWyGmZmZs1VaxfTW8BJkg4Gvkn2e9EX\nAKvyEAEDS2+hmZk1Rd3ffI6IXwNnSjoNeCEilpbfLDMza7a6BULS/sC+ZD8B2inpXcB64I2IWF9y\n+8zMrEnqFghgKvBu4C2gf34bALRJei4iPl9i+8zMrEkaKRAAl0TE85KGAH8dEZdKErC8xLaZmVkT\n1btY33vJTogLSacCl5PtZjonst8qndQLbTQzsyaodZjrHsBVwAeANfntb8jOrP5fkp6KiCd6pZVm\nZtbrCnsQEfH7iDiF7PpL64DzgEF5z+E8YHWtFUsaLml+nZgZkh6TNK3WPDMz6311fzAoIn4PnAV8\nJCJek9QfuDQiflO0jKRhwC1A8rck8phTgZaIOBoYIWlUat42Ph8zM+shNQepJT1Ktkvp/cDsbFwa\nAYdJGhERvy1YdCNwBnBPjdWPo/u3JB4ExpLtzqqe91xVm6aSHVnFAQccUKv5Zma2A+r1ICYCJwHP\nAn+WT58IXAh8tmihiFgbEa/VWfeedF+qYy3Zb02k5lWv++aIaI+I9ra2tjqbMDOz7VWzBxERbwBI\nuhRYn48/kF/l9QM7uO11ZFeHBRhCVqxS88zMrAka/QB+sqs45N4ZEf++g9teRLYLCWA0sKxgnpmZ\nNUEjl9poAe4APprf3wf4V0knRsRzNRfuXsf7gCkRUXlk0t3AfEkjyHZdjSE756J6npmZNUEjRzFt\nJPttaiTtBdwJ3NJIcYiIcfnf/6gqDkTEWrKB6gXARyPitdS8bXkyZmbWcxrdxdQiqeuopGuA8T2x\n8YhYHRGzImJFrXlmZtb76h3mei7ZIavjyH774TZgb2AvSX8ODIiIm8pupJmZ9b56YxB7AG/n05vI\nxggGkfU8BgMt5TXNzMyaqd5hrt8FkHQOcDtwOjANWB0R15ffPDMza5ZGL/f9ZkRcL+kOYCbwUIlt\nMjOznUDdQer8MNcBABGxCpgMHCfpEyW3zczMmqiRo5j2BaYASBoaEW+RXS9pYZkNMzOz5mrkB4OO\nBY6UNIDui+99PCJeKLtxZmbWPIUFQtIgsl+Quwh4J1lPolXSAcBASQdIOqh3mmlmZr2tcJA6ItZL\n+iTwBbLfg/gwcDBwaf737/LQc0tuo5mZNUGtnxxtAWYDTwPXAv8O3BcRfy7p5xHhwmBmtgur1YPY\nCJwgaTzwe7KT4m6WtB/ZCXRmZrYLq3seRETMlfSTiPiEpI+RXWrj6PKbZmZmzVTvWkwLyH7ZrV3S\nY8A+wB8Cp+a7oAZGxNha6zAzs76p3qU2xsDmQvEd4BzgdeCiiPhN+c0zM7NmafRy39dFxB0RMQn4\nF7JzI8zMbBfW0LWYIuLWiun7y2uOmZntLBrtQZiZ2W7GBcLMzJJKKxCSZkh6TNK0gsfPkzQvvy2W\ndJOkVkkvVMw/rKz2mZltC0lb3XZ1pRQISacCLRFxNDBC0qjqmIi4ISLGRcQ4YD7wPeBw4Pau+RHx\ndBntMzOz+srqQYwjuyQ4wINA4bkSkt4F7BsRHcAYYLKkRyTdKmmrQXRJUyV1SOpYuXJlCU03MzMo\nr0DsCbyYT68FhteIPR+4IZ9eCBybn3y3Bji5Ojgibo6I9ohob2tr68Emm5lZpbIKxDpgcD49pGg7\nkvoBx9H9E6ZPRcTv8umlwFa7pswq7Y77hW3ntiv9T5ZVIBbRvVtpNLCsIO4jwIKIiPz+TEmj88t4\nTAaWlNQ+sz5tV/oQsp1XWQXibuBTkq4GTgd+KWl6Iu4E4OGK+5cBM4HFwOMRMbek9plZH+TC2Lsa\nOpN6W0XEWknjgAnAtyJiBYneQET8bdX9Z8iOZOqTUv+s3Z0j29U437arK6VAAETEarqPZDIzsz6m\ntAJhfZ+/IZvt3lwgGuAPSuur/L9rO8IFwswAFxPbmgvETq7RN63f3GbW01wgzErm4m0pRYfo7kxf\nAF0gdjPb8k9pZrs3FwgzK4V7Tn2fC4RZFX+w7V6c72IuENZr+sI+12bbXZ+37ZxcIJrEHwRmtrPb\nrQuEP6TNzIrt1gXCzLadv1jtPsq63LeZmfVx7kGYWdP1dK/EvZye4R6EmZkluQdhO8zf1sx2Te5B\nmJlZkguEmZkllVYgJM2Q9JikaQWPt0p6QdK8/HZYI8uZmVnvKKVASDoVaImIo4ERkkYlwg4Hbo+I\ncfnt6QaXMzOzXlBWD2IcMCuffhAYm4gZA0yW9IikWyW1NrKcpKmSOiR1rFy5sscbbmZmmbIKxJ7A\ni/n0WmB4ImYhcGxEjAXWACc3slxE3BwR7RHR3tbW1uMNNzOzTFmHua4DBufTQ0gXoqci4q18eikw\nqsHlzMysF5T1AbyI7t1Do4FliZiZkkZLagEmA0saXM5sm0lK3sysWFk9iLuB+ZJGACcBZ0qaHhGV\nRyZdBtwGCLg3IuZKekfVcmNKap+ZmdVRSoGIiLWSxgETgG9FxAqyHkJlzDNkRzLVWu61MtpnZmb1\nlXapjYhYTfcRSaUvZ2ZmPcuDwGZmluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZmluQC\nYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFmZkkuEGZmluQCYWZmSS4QZmaW5AJhZmZJLhBmZpbkAmFm\nZkmlFQhJMyQ9JmlaweN7SZoj6QFJd0kaIKlV0guS5uW3w8pqn5mZ1VZKgZB0KtASEUcDIySNSoSd\nDVwdEROAFcCJwOHA7RExLr89XUb7zMysvtaS1jsOmJVPPwiMBZ6rDIiI6yvutgEvA2OAyZI+DDwP\nfCYiOktqo5mZ1VDWLqY9gRfz6bXA8KJASUcBwyJiAbAQODYixgJrgJMT8VMldUjqWLlyZc+33MzM\ngPIKxDpgcD49pGg7kvYGrgPOzWc9FRG/y6eXAlvtmoqImyOiPSLa29raerbVZma2WVkFYhHZbiWA\n0cCy6gBJA8h2Q30lIp7PZ8+UNFpSCzAZWFJS+8zMrI6yCsTdwKckXQ2cDvxS0vSqmM8BRwBfzY9Y\nOgO4DJgJLAYej4i5JbXPzMzqKGWQOiLWShoHTAC+FRErqOoNRMQNwA2JxQ8vo01mZrZtyjqKiYhY\nTfeRTGZm1sf4TGozM0tygTAzsyQXCDMzS3KBMDOzJBcIMzNLcoEwM7MkFwgzM0tygTAzsyQXCDMz\nS3KBMDOzJBcIMzNLcoEwM7MkFwgzM0tygTAzsyQXCDMzS3KBMDOzJBcIMzNLcoEwM7MkFwgzM0sq\nrUBImiHpMUnTtiWmkeXMzKx8pRQISacCLRFxNDBC0qhGYhpZzszMekdrSesdB8zKpx8ExgLPNRDz\ngXrLSZoKTM3vrpP0qx5sN5LeCbzS23He9u617b7QRm9719h2gXc3FBURPX4DZgCj8+mJwMWNxDSy\nXNk3oKMZcd727rXtvtBGb3vX2PaO3Moag1gHDM6nh5DelZWKaWQ5MzPrBWV9AC8i2z0EMBpY1mBM\nI8uZmVkvKGsM4m5gvqQRwEnAmZKmR8S0GjFjgEjM6203NynO2969tt0X2uht7xrb3m7K92X1/Iql\nYcAE4OGIWNFoTCPLmZlZ+UorEAaS9gaOAJ6MiO092sBK5BztvJyb5vMgcAVJwyXNrxOzl6Q5kh6Q\ndJekAQVx+wE/BY4EHpLU1sC2n6wT0yrpBUnz8tthdeKvlzSpTsx5FetbLOmmgrhhkmZLmi/pxhrr\nO0jST/O4b9fadiOqc1KUo8r5tXJUFVczR6ltpfJUtc7CHBWsL5mjqnUW5qgqrjBHVXE7lKPU61sj\nL9Wxydwk5r+bRG5qLJ/KS6qdW+Wmxjq3yE0i7os18lIdOzyVm0TcIUW5kbS3pAnKDm/tHWUfJtVX\nbsAw4GfAE3Xi/jswIZ++AfhYQdx4YEw+fRVwQp31zgSW1on5IHBFg8/nI8C/buNrcB3QXvDYXwJT\n8ulba8TNqnjedwDjEjHDgfkV92cAjwHTauWkKEeJuGSOEnGFOaqxrS3ylFhnMkep9RXlqNb/YmWO\nEttO5igRl8wRsBcwB3gAuAsYkMpN4vX9TI32Vsf+ZUFutspZKjc1crvV+ycR+7WC3KS2vVVuirad\neu8UPO9UbqrjXi3IzX7A48BXgaeBtlRuevrmHkS3jcAZwNpaQRFxfUQ8kN9tA14uiJsbEQskHUP2\nLejxonVKOg54A6g35jIGmCzpEUm3SkoeZCCpP/A9YJmkj9dZZ9cy7wL2jYiOgpBVwCGS/gDYH3ih\nIO49wBP59MtkHzqV2xkG3ALsmd+vdfZ8dU6KcrTF/Bo5qo6rlaOttlWQp+q4ohxtEVcnR8nnmchR\ndVxRjqrjinJ0NnB1REzIn+OZJHKTeH3/X6q9BbG/SOUmlbNUblJxRe+fRGwnidwk4laTyE3R/1Xq\nvZOIHUoiN4m4PUjn5k+AL0XE5cB9wHH0wlUnXCByEbE2Il5rNF7SUcCwiFhQI0Zkb5y3yd6kqZgB\nZN9sLm5gswuBYyNiLLAGOLkg7tPAfwDfAo6U9BcNrPt8sm8wRR4BRpF9E1pK9iZK+Z/A1/Ou+YnA\nz6ser/6wGsfWZ88DW+ekKEdF86tzlIorylF1bFGeEutM5igRV5ijGv+LW+QoEZfMUSIumaPEh9U5\nFOQmf026Xt+H6713qnNR9P6pnF/r/dMVR/ZhWvP9UxH7ADXePxVx76HG+yfR9sL3TsU6f0SN909F\n3HTSuan+MnMCNXLTY8rqmvTVGzCvgZi9gQ7g3Q2u8xvAGQWPfQ34ZCPbBgZWTP8F8NcFcd8FTsyn\nD6XOriayLwoLyA9aKIi5FXhHPv1XwNQasWOBe6jR9e16rjR21v28WvdT82vlKLV8UY4q2lkzTxVx\nNXNUEVc3R1XPpzBHFeusmaOq9RXmCDiK7IOpMDep17dGXraILcpNjflb5KYyroG8VMYW5qYqrjA3\niedSKy8PBBkJAAAB5klEQVSV6yzMTWKdydwAAv4pz80PinLTkzf3ILZR/k1yFvCViHi+RtxFkj6d\n3/0Dsm8sKeOB8yXNA94v6Z9rbH6mpNGSWoDJwJKCuP8EDs6n24HCduY+AiyI/L+twB7AYfm2/5Ts\nnJUii4EDgKvrbBdKOHu+hBxB43nq0zlSduTQdcC5FOSm0dc3FVu0bCIumZvE8oV5ScQmc5OIS+am\noO3JvCRik7kpWGcyN5E5n2zcYQy9cdWJMqpOX75R/1v8eWTdw3n5rahn0NWlfRi4nhrfzrdh2/8F\neIpskOryGnFDgTvzbT8OvKvOer8JnFon5kjgl2QfGg8AQ2rEXgp8qpHnSrar5csVy02p97oUvU4V\n66yZo4q4ujlKbavWvHo5qoirmyO2/MZfmKOKddbMUdX6tsoR2aD0XLoHTZO5KXp9C16X6tivFyy7\n1TpTuamV28T/SWrbW+UmEfeZVG4K2pjMSyL2olRuCtaZys1FwKfz6evyNtZ83/TEzedBWFNImhcR\n4yS9A5hP1m0+iewIjobHgqznSDqP7AOvq9fzA7LdIc5Nk+UHd8wCBgLPAF8hK2Cl5sYFwppOPnt+\np+Xc7Lx6IzcuEGZmluRBajMzS3KBMDOzJBcIMzNLcoEwM7MkFwgzM0v6//ZSNcKT//7JAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ind=np.arange(len(mean_b15f1.values()))\n", + "width=0.5\n", + "fig, ax = plt.subplots()\n", + "rects1 = ax.bar(ind - width/2, mean_b15f1.values(), width, \n", + " color='black', label='游戏时间')\n", + "ax.set_ylabel('样本均值')\n", + "ax.set_title('日平均游戏时间')\n", + "ax.set_xticks(ind)\n", + "ax.set_xticklabels(mean_b15f1.keys())\n", + "ax.legend()\n", + "ax.set_ylim(0,2)\n", + "\n", + "def autolabel(rects, xpos='center'):\n", + " xpos = xpos.lower() # normalize the case of the parameter\n", + " ha = {'center': 'center', 'right': 'left', 'left': 'right'}\n", + " offset = {'center': 1, 'right': 1, 'left': 1} # x_txt = x + w*off\n", + "\n", + " for rect in rects:\n", + " height = rect.get_height()\n", + " ax.text(rect.get_x() + rect.get_width()*offset[xpos], 2*height,\n", + " '{}'.format(height), ha=ha[xpos], va='bottom')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "样本均值:\n", + "游戏时间 0.645916\n", + "课外看书时间 0.884595\n", + "dtype: float64\n", + "\n", + "样本标准误:\n", + "游戏时间 0.063491\n", + "课外看书时间 0.040913\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "b15d1=[]\n", + "for i in mean_b15d1.values():\n", + " b15d1.append(i)\n", + "b15f1=[]\n", + "for i in mean_b15f1.values():\n", + " b15f1.append(i)\n", + "average={'课外看书时间':b15d1,'游戏时间':b15f1}\n", + "frame = pd.DataFrame(average,index=mean_b15d1.keys())\n", + "\n", + "print('样本均值:')\n", + "print(frame.mean())\n", + "print('\\n样本标准误:')\n", + "print(frame.std())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 回归分析" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "+ 请从CEPS.csv数据里挑选若干变量建立回归方程,要求至少三个自变量\n", + " + 如,学生的学业成绩受认知水平、家庭收入的影响\n", + " + 考虑因变量和自变量间的实质关系,变量间关系应该是有意义\n", + " + 选择自变量时,注意变量的类型,如果是分类变量,需要进行编码\n", + "+ 请报告回归方程的结果,需要包括:\n", + " + 模型拟合指标\n", + " + 模型的显著性检验结果\n", + " + 变量的系数\n", + " + 各系数的显著性检验结果\n", + " + 对模型结果的解释\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E:\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2717: DtypeWarning: Columns (20,22,23,25,28,29,39,74,124,125,126,127,128,129,130,131,138,140,141,147,160,161,162,165,170,174,175,176,177,179,180,181,182,183,184,188,191,195,196,199,221,222,223,224,251,252,254,289,290,294,295,296) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idsclsidsschidsctyidsframesubsamplesweightfallgrade9stcog...steco_3cstonlystsibstsibrankstmedustfedustprhedustfdrunkstprfightstprrel
172791728040010326113349.566406003...1222333112
82388239210551433295.581360003...1222636112
904905298233223.366684008...21666112
759875991945113131310.6614990014...21222112
13588135893158121114033.718506117...1213233112
1446144740103112729.416748014...2211636112
740674071894913131176.1748050111...2211636112
4660466112431822102.6992261111...1213868112
1665166644113112502.2473140113...2213646112
1005910060246641611960.4675291010...2211333112
83728373213551433326.0052800110...2213233112
11920119212827319112595.052979114...2222333
169951699639610226113535.2973630012...12231222
11612116132767218112267.509277105...11444112
58345835156411133270.640533109...2223333112
12529125302947619113419.157959117...1211222112
1531515316356922333273.5830690012...21266112
484485175233219.7800600012...2213333112
969970308233225.657578007...21636112
1475147641113112564.9416500011...21868112
116811693493112535.2038570014...21777112
170511705239610226113535.2973630011...2211233112
184371843842110827113951.1748051111...21466112
651565161714512112047.8463131017...21888112
16192161933799825111380.108765109...112331
114211433493112535.2038570015...21444112
84138414214561433281.8925780010...2213636112
11680116812777218112267.5095211013...1213333111
1540815409359932433290.8241880014...21323112
2043204453144111766.4536131011...1222333112
..................................................................
6360636116844113394.228058105...3221377
923792382316015113871.945312107...31666112
10562105632576717112164.1279301012...2211333112
4282428311128722441.2486881114...21899112
170021700339610226113535.297363005...2223333112
61096110163421133230.8265231113...1211666112
13493134943148121113597.105957118...1188811
1501150241113112550.5578610016...21777112
294129427519533195.0462040113...21424112
745974601905013131268.5256350015...2211333112
687688236233288.2196660110...22333112
3317331882216113251.6293951012...21366112
14264142653318622112362.489502009...1211677212
928592862336015113895.416992113...2211233111
61816182164431133185.690994108...21333112
734173421874913131344.8675540014...2211366112
10051006318233254.069702013...21366112
1572015721366942433340.0030210120...2211366112
477478175233222.0341490012...1213233112
19112191134331112833414.8270571111...1211666112
1479814799344892333322.4707030014...11366111
12031120322847419112515.7910161012...2211656112
11567115682757118112504.348145118...1213323122
291929207419533173.631958004...31323121
875687572215715112256.531006115...21122111
172211722239910326113299.711670006...1221122112
926927298233223.3666840013...2213333112
1550715508361932433615.3928220119...2213266112
397139729925722577.784546119...21555112
422423144133253.2534790010...31333112
\n", + "

1000 rows × 300 columns

\n", + "
" + ], + "text/plain": [ + " ids clsids schids ctyids frame subsample sweight fall \\\n", + "17279 17280 400 103 26 1 1 3349.566406 0 \n", + "8238 8239 210 55 14 3 3 295.581360 0 \n", + "904 905 29 8 2 3 3 223.366684 0 \n", + "7598 7599 194 51 13 1 3 1310.661499 0 \n", + "13588 13589 315 81 21 1 1 4033.718506 1 \n", + "1446 1447 40 10 3 1 1 2729.416748 0 \n", + "7406 7407 189 49 13 1 3 1176.174805 0 \n", + "4660 4661 124 31 8 2 2 102.699226 1 \n", + "1665 1666 44 11 3 1 1 2502.247314 0 \n", + "10059 10060 246 64 16 1 1 960.467529 1 \n", + "8372 8373 213 55 14 3 3 326.005280 0 \n", + "11920 11921 282 73 19 1 1 2595.052979 1 \n", + "16995 16996 396 102 26 1 1 3535.297363 0 \n", + "11612 11613 276 72 18 1 1 2267.509277 1 \n", + "5834 5835 156 41 11 3 3 270.640533 1 \n", + "12529 12530 294 76 19 1 1 3419.157959 1 \n", + "15315 15316 356 92 23 3 3 273.583069 0 \n", + "484 485 17 5 2 3 3 219.780060 0 \n", + "969 970 30 8 2 3 3 225.657578 0 \n", + "1475 1476 41 11 3 1 1 2564.941650 0 \n", + "1168 1169 34 9 3 1 1 2535.203857 0 \n", + "17051 17052 396 102 26 1 1 3535.297363 0 \n", + "18437 18438 421 108 27 1 1 3951.174805 1 \n", + "6515 6516 171 45 12 1 1 2047.846313 1 \n", + "16192 16193 379 98 25 1 1 1380.108765 1 \n", + "1142 1143 34 9 3 1 1 2535.203857 0 \n", + "8413 8414 214 56 14 3 3 281.892578 0 \n", + "11680 11681 277 72 18 1 1 2267.509521 1 \n", + "15408 15409 359 93 24 3 3 290.824188 0 \n", + "2043 2044 53 14 4 1 1 1766.453613 1 \n", + "... ... ... ... ... ... ... ... ... \n", + "6360 6361 168 44 11 3 3 94.228058 1 \n", + "9237 9238 231 60 15 1 1 3871.945312 1 \n", + "10562 10563 257 67 17 1 1 2164.127930 1 \n", + "4282 4283 111 28 7 2 2 441.248688 1 \n", + "17002 17003 396 102 26 1 1 3535.297363 0 \n", + "6109 6110 163 42 11 3 3 230.826523 1 \n", + "13493 13494 314 81 21 1 1 3597.105957 1 \n", + "1501 1502 41 11 3 1 1 2550.557861 0 \n", + "2941 2942 75 19 5 3 3 195.046204 0 \n", + "7459 7460 190 50 13 1 3 1268.525635 0 \n", + "687 688 23 6 2 3 3 288.219666 0 \n", + "3317 3318 82 21 6 1 1 3251.629395 1 \n", + "14264 14265 331 86 22 1 1 2362.489502 0 \n", + "9285 9286 233 60 15 1 1 3895.416992 1 \n", + "6181 6182 164 43 11 3 3 185.690994 1 \n", + "7341 7342 187 49 13 1 3 1344.867554 0 \n", + "1005 1006 31 8 2 3 3 254.069702 0 \n", + "15720 15721 366 94 24 3 3 340.003021 0 \n", + "477 478 17 5 2 3 3 222.034149 0 \n", + "19112 19113 433 111 28 3 3 414.827057 1 \n", + "14798 14799 344 89 23 3 3 322.470703 0 \n", + "12031 12032 284 74 19 1 1 2515.791016 1 \n", + "11567 11568 275 71 18 1 1 2504.348145 1 \n", + "2919 2920 74 19 5 3 3 173.631958 0 \n", + "8756 8757 221 57 15 1 1 2256.531006 1 \n", + "17221 17222 399 103 26 1 1 3299.711670 0 \n", + "926 927 29 8 2 3 3 223.366684 0 \n", + "15507 15508 361 93 24 3 3 615.392822 0 \n", + "3971 3972 99 25 7 2 2 577.784546 1 \n", + "422 423 14 4 1 3 3 253.253479 0 \n", + "\n", + " grade9 stcog ... steco_3c stonly stsib stsibrank stmedu stfedu \\\n", + "17279 0 3 ... 1 2 2 2 3 3 \n", + "8238 0 3 ... 1 2 2 2 6 3 \n", + "904 0 8 ... 2 1 6 6 \n", + "7598 0 14 ... 2 1 2 2 \n", + "13588 1 7 ... 1 2 1 3 2 3 \n", + "1446 1 4 ... 2 2 1 1 6 3 \n", + "7406 1 11 ... 2 2 1 1 6 3 \n", + "4660 1 11 ... 1 2 1 3 8 6 \n", + "1665 1 13 ... 2 2 1 3 6 4 \n", + "10059 0 10 ... 2 2 1 1 3 3 \n", + "8372 1 10 ... 2 2 1 3 2 3 \n", + "11920 1 4 ... 2 2 2 2 3 3 \n", + "16995 0 12 ... 1 2 2 3 1 2 \n", + "11612 0 5 ... 1 1 4 4 \n", + "5834 0 9 ... 2 2 2 3 3 3 \n", + "12529 1 7 ... 1 2 1 1 2 2 \n", + "15315 0 12 ... 2 1 2 6 \n", + "484 0 12 ... 2 2 1 3 3 3 \n", + "969 0 7 ... 2 1 6 3 \n", + "1475 0 11 ... 2 1 8 6 \n", + "1168 0 14 ... 2 1 7 7 \n", + "17051 0 11 ... 2 2 1 1 2 3 \n", + "18437 1 11 ... 2 1 4 6 \n", + "6515 0 17 ... 2 1 8 8 \n", + "16192 0 9 ... 1 1 2 3 \n", + "1142 0 15 ... 2 1 4 4 \n", + "8413 0 10 ... 2 2 1 3 6 3 \n", + "11680 0 13 ... 1 2 1 3 3 3 \n", + "15408 0 14 ... 2 1 3 2 \n", + "2043 0 11 ... 1 2 2 2 3 3 \n", + "... ... ... ... ... ... ... ... ... ... \n", + "6360 0 5 ... 3 2 2 1 3 7 \n", + "9237 0 7 ... 3 1 6 6 \n", + "10562 0 12 ... 2 2 1 1 3 3 \n", + "4282 1 14 ... 2 1 8 9 \n", + "17002 0 5 ... 2 2 2 3 3 3 \n", + "6109 1 13 ... 1 2 1 1 6 6 \n", + "13493 1 8 ... 1 1 8 8 \n", + "1501 0 16 ... 2 1 7 7 \n", + "2941 1 13 ... 2 1 4 2 \n", + "7459 0 15 ... 2 2 1 1 3 3 \n", + "687 1 10 ... 2 2 3 3 \n", + "3317 0 12 ... 2 1 3 6 \n", + "14264 0 9 ... 1 2 1 1 6 7 \n", + "9285 1 3 ... 2 2 1 1 2 3 \n", + "6181 0 8 ... 2 1 3 3 \n", + "7341 0 14 ... 2 2 1 1 3 6 \n", + "1005 1 3 ... 2 1 3 6 \n", + "15720 1 20 ... 2 2 1 1 3 6 \n", + "477 0 12 ... 1 2 1 3 2 3 \n", + "19112 1 11 ... 1 2 1 1 6 6 \n", + "14798 0 14 ... 1 1 3 6 \n", + "12031 0 12 ... 2 2 1 1 6 5 \n", + "11567 1 8 ... 1 2 1 3 3 2 \n", + "2919 0 4 ... 3 1 3 2 \n", + "8756 1 5 ... 2 1 1 2 \n", + "17221 0 6 ... 1 2 2 1 1 2 \n", + "926 0 13 ... 2 2 1 3 3 3 \n", + "15507 1 19 ... 2 2 1 3 2 6 \n", + "3971 1 9 ... 2 1 5 5 \n", + "422 0 10 ... 3 1 3 3 \n", + "\n", + " stprhedu stfdrunk stprfight stprrel \n", + "17279 3 1 1 2 \n", + "8238 6 1 1 2 \n", + "904 6 1 1 2 \n", + "7598 2 1 1 2 \n", + "13588 3 1 1 2 \n", + "1446 6 1 1 2 \n", + "7406 6 1 1 2 \n", + "4660 8 1 1 2 \n", + "1665 6 1 1 2 \n", + "10059 3 1 1 2 \n", + "8372 3 1 1 2 \n", + "11920 3 \n", + "16995 2 2 \n", + "11612 4 1 1 2 \n", + "5834 3 1 1 2 \n", + "12529 2 1 1 2 \n", + "15315 6 1 1 2 \n", + "484 3 1 1 2 \n", + "969 6 1 1 2 \n", + "1475 8 1 1 2 \n", + "1168 7 1 1 2 \n", + "17051 3 1 1 2 \n", + "18437 6 1 1 2 \n", + "6515 8 1 1 2 \n", + "16192 3 1 \n", + "1142 4 1 1 2 \n", + "8413 6 1 1 2 \n", + "11680 3 1 1 1 \n", + "15408 3 1 1 2 \n", + "2043 3 1 1 2 \n", + "... ... ... ... ... \n", + "6360 7 \n", + "9237 6 1 1 2 \n", + "10562 3 1 1 2 \n", + "4282 9 1 1 2 \n", + "17002 3 1 1 2 \n", + "6109 6 1 1 2 \n", + "13493 8 1 1 \n", + "1501 7 1 1 2 \n", + "2941 4 1 1 2 \n", + "7459 3 1 1 2 \n", + "687 3 1 1 2 \n", + "3317 6 1 1 2 \n", + "14264 7 2 1 2 \n", + "9285 3 1 1 1 \n", + "6181 3 1 1 2 \n", + "7341 6 1 1 2 \n", + "1005 6 1 1 2 \n", + "15720 6 1 1 2 \n", + "477 3 1 1 2 \n", + "19112 6 1 1 2 \n", + "14798 6 1 1 1 \n", + "12031 6 1 1 2 \n", + "11567 3 1 2 2 \n", + "2919 3 1 2 1 \n", + "8756 2 1 1 1 \n", + "17221 2 1 1 2 \n", + "926 3 1 1 2 \n", + "15507 6 1 1 2 \n", + "3971 5 1 1 2 \n", + "422 3 1 1 2 \n", + "\n", + "[1000 rows x 300 columns]" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf\n", + "import numpy as np\n", + "import pandas as pd\n", + "#导入数据\n", + "sentinels = {'c12': [' '], 'b01': [' '], 'b06': [' '], 'b07': [' ']}\n", + "df = pd.read_csv('CEPS.csv',encoding='gb2312', na_values=sentinels)\n", + "df=df.sample(n=1000) #随机抽取1000个样本数据\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#建立数据框\n", + "data = pd.DataFrame({\n", + " 'x1': df.b01,\n", + " 'x2': df.b06,\n", + " 'x3': df.b07,\n", + " 'y': df.c12})\n", + "#父母的教育程度和家庭状况对孩子成绩的影响\n", + "data=data.dropna(axis=0,how='any') " + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "model_x= ['x1', 'x2','x3']\n", + "X = data.loc[ :,model_x].values\n", + "y=data['y'].values" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "model = sm.OLS(y, X) #拟合普通最小二乘回归\n", + "results = model.fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.96508224, 0.19474391, 0.1526462 ])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results.params #各变量系数" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.850\n", + "Model: OLS Adj. R-squared: 0.849\n", + "Method: Least Squares F-statistic: 1842.\n", + "Date: Sun, 30 Dec 2018 Prob (F-statistic): 0.00\n", + "Time: 22:38:32 Log-Likelihood: -1603.6\n", + "No. Observations: 980 AIC: 3213.\n", + "Df Residuals: 977 BIC: 3228.\n", + "Df Model: 3 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [95.0% Conf. Int.]\n", + "------------------------------------------------------------------------------\n", + "x1 0.9651 0.042 22.911 0.000 0.882 1.048\n", + "x2 0.1947 0.026 7.403 0.000 0.143 0.246\n", + "x3 0.1526 0.025 6.004 0.000 0.103 0.203\n", + "==============================================================================\n", + "Omnibus: 25.077 Durbin-Watson: 1.925\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.088\n", + "Skew: -0.144 Prob(JB): 0.000529\n", + "Kurtosis: 2.465 Cond. No. 6.87\n", + "==============================================================================\n", + "\n", + "Warnings:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "print(results.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "1.模型拟合指标\n", + "y=“你目前的成绩”\n", + "x1=“是否独生子女”x2=“你妈妈的教育水平”,x3=“你爸爸的教育水平”\n", + "2.模型的显著性检验结果\n", + "F统计量的p值小于0.05,R方为0.85,模型是合理的,对因变量的的波动因素的解释度达85%\n", + "3.变量的系数\n", + "分别为:0.96508224, 0.19474391, 0.1526462 \n", + "4.各系数的显著性检验结果\n", + "x1,x2,x3的系数的p值均接近于0,小于0.05,拒绝原假设,说明自变量与因变量之间是显著性相关的。\n", + "5.对模型结果的解释\n", + "原数据是服从正态分布的\n", + "线性回归模型y=0.96508224*x1+0.19474391*x2+0.1526462*x3\n", + "可以看到,非独生子女成绩往往会更高,妈妈的教育水平比父亲的教育水平对孩子成绩的影响力更大,\n", + "毕竟母亲一般较父亲与孩子相处的时间更多,对孩子的影响也较大。" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}