+"""
+
+Dubins path planner sample code
+
+author Atsushi Sakai(@Atsushi_twi)
+
+"""
+import sys
+import pathlib
+sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
+
+from math import sin, cos, atan2, sqrt, acos, pi, hypot
+import numpy as np
+from utils.angle import angle_mod, rot_mat_2d
+
+show_animation = True
+
+
+[docs]def plan_dubins_path(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature,
+
step_size=0.1, selected_types=None):
+
"""
+
Plan dubins path
+
+
Parameters
+
----------
+
s_x : float
+
x position of the start point [m]
+
s_y : float
+
y position of the start point [m]
+
s_yaw : float
+
yaw angle of the start point [rad]
+
g_x : float
+
x position of the goal point [m]
+
g_y : float
+
y position of the end point [m]
+
g_yaw : float
+
yaw angle of the end point [rad]
+
curvature : float
+
curvature for curve [1/m]
+
step_size : float (optional)
+
step size between two path points [m]. Default is 0.1
+
selected_types : a list of string or None
+
selected path planning types. If None, all types are used for
+
path planning, and minimum path length result is returned.
+
You can select used path plannings types by a string list.
+
e.g.: ["RSL", "RSR"]
+
+
Returns
+
-------
+
x_list: array
+
x positions of the path
+
y_list: array
+
y positions of the path
+
yaw_list: array
+
yaw angles of the path
+
modes: array
+
mode list of the path
+
lengths: array
+
arrow_length list of the path segments.
+
+
Examples
+
--------
+
You can generate a dubins path.
+
+
>>> start_x = 1.0 # [m]
+
>>> start_y = 1.0 # [m]
+
>>> start_yaw = np.deg2rad(45.0) # [rad]
+
>>> end_x = -3.0 # [m]
+
>>> end_y = -3.0 # [m]
+
>>> end_yaw = np.deg2rad(-45.0) # [rad]
+
>>> curvature = 1.0
+
>>> path_x, path_y, path_yaw, mode, _ = plan_dubins_path(
+
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
+
>>> plt.plot(path_x, path_y, label="final course " + "".join(mode))
+
>>> plot_arrow(start_x, start_y, start_yaw)
+
>>> plot_arrow(end_x, end_y, end_yaw)
+
>>> plt.legend()
+
>>> plt.grid(True)
+
>>> plt.axis("equal")
+
>>> plt.show()
+
+
.. image:: dubins_path.jpg
+
"""
+
if selected_types is None:
+
planning_funcs = _PATH_TYPE_MAP.values()
+
else:
+
planning_funcs = [_PATH_TYPE_MAP[ptype] for ptype in selected_types]
+
+
# calculate local goal x, y, yaw
+
l_rot = rot_mat_2d(s_yaw)
+
le_xy = np.stack([g_x - s_x, g_y - s_y]).T @ l_rot
+
local_goal_x = le_xy[0]
+
local_goal_y = le_xy[1]
+
local_goal_yaw = g_yaw - s_yaw
+
+
lp_x, lp_y, lp_yaw, modes, lengths = _dubins_path_planning_from_origin(
+
local_goal_x, local_goal_y, local_goal_yaw, curvature, step_size,
+
planning_funcs)
+
+
# Convert a local coordinate path to the global coordinate
+
rot = rot_mat_2d(-s_yaw)
+
converted_xy = np.stack([lp_x, lp_y]).T @ rot
+
x_list = converted_xy[:, 0] + s_x
+
y_list = converted_xy[:, 1] + s_y
+
yaw_list = angle_mod(np.array(lp_yaw) + s_yaw)
+
+
return x_list, y_list, yaw_list, modes, lengths
+
+
+def _mod2pi(theta):
+ return angle_mod(theta, zero_2_2pi=True)
+
+
+def _calc_trig_funcs(alpha, beta):
+ sin_a = sin(alpha)
+ sin_b = sin(beta)
+ cos_a = cos(alpha)
+ cos_b = cos(beta)
+ cos_ab = cos(alpha - beta)
+ return sin_a, sin_b, cos_a, cos_b, cos_ab
+
+
+def _LSL(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ mode = ["L", "S", "L"]
+ p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_a - sin_b))
+ if p_squared < 0: # invalid configuration
+ return None, None, None, mode
+ tmp = atan2((cos_b - cos_a), d + sin_a - sin_b)
+ d1 = _mod2pi(-alpha + tmp)
+ d2 = sqrt(p_squared)
+ d3 = _mod2pi(beta - tmp)
+ return d1, d2, d3, mode
+
+
+def _RSR(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ mode = ["R", "S", "R"]
+ p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_b - sin_a))
+ if p_squared < 0:
+ return None, None, None, mode
+ tmp = atan2((cos_a - cos_b), d - sin_a + sin_b)
+ d1 = _mod2pi(alpha - tmp)
+ d2 = sqrt(p_squared)
+ d3 = _mod2pi(-beta + tmp)
+ return d1, d2, d3, mode
+
+
+def _LSR(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ p_squared = -2 + d ** 2 + (2 * cos_ab) + (2 * d * (sin_a + sin_b))
+ mode = ["L", "S", "R"]
+ if p_squared < 0:
+ return None, None, None, mode
+ d1 = sqrt(p_squared)
+ tmp = atan2((-cos_a - cos_b), (d + sin_a + sin_b)) - atan2(-2.0, d1)
+ d2 = _mod2pi(-alpha + tmp)
+ d3 = _mod2pi(-_mod2pi(beta) + tmp)
+ return d2, d1, d3, mode
+
+
+def _RSL(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ p_squared = d ** 2 - 2 + (2 * cos_ab) - (2 * d * (sin_a + sin_b))
+ mode = ["R", "S", "L"]
+ if p_squared < 0:
+ return None, None, None, mode
+ d1 = sqrt(p_squared)
+ tmp = atan2((cos_a + cos_b), (d - sin_a - sin_b)) - atan2(2.0, d1)
+ d2 = _mod2pi(alpha - tmp)
+ d3 = _mod2pi(beta - tmp)
+ return d2, d1, d3, mode
+
+
+def _RLR(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ mode = ["R", "L", "R"]
+ tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (sin_a - sin_b)) / 8.0
+ if abs(tmp) > 1.0:
+ return None, None, None, mode
+ d2 = _mod2pi(2 * pi - acos(tmp))
+ d1 = _mod2pi(alpha - atan2(cos_a - cos_b, d - sin_a + sin_b) + d2 / 2.0)
+ d3 = _mod2pi(alpha - beta - d1 + d2)
+ return d1, d2, d3, mode
+
+
+def _LRL(alpha, beta, d):
+ sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta)
+ mode = ["L", "R", "L"]
+ tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (- sin_a + sin_b)) / 8.0
+ if abs(tmp) > 1.0:
+ return None, None, None, mode
+ d2 = _mod2pi(2 * pi - acos(tmp))
+ d1 = _mod2pi(-alpha - atan2(cos_a - cos_b, d + sin_a - sin_b) + d2 / 2.0)
+ d3 = _mod2pi(_mod2pi(beta) - alpha - d1 + _mod2pi(d2))
+ return d1, d2, d3, mode
+
+
+_PATH_TYPE_MAP = {"LSL": _LSL, "RSR": _RSR, "LSR": _LSR, "RSL": _RSL,
+ "RLR": _RLR, "LRL": _LRL, }
+
+
+def _dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature,
+ step_size, planning_funcs):
+ dx = end_x
+ dy = end_y
+ d = hypot(dx, dy) * curvature
+
+ theta = _mod2pi(atan2(dy, dx))
+ alpha = _mod2pi(-theta)
+ beta = _mod2pi(end_yaw - theta)
+
+ best_cost = float("inf")
+ b_d1, b_d2, b_d3, b_mode = None, None, None, None
+
+ for planner in planning_funcs:
+ d1, d2, d3, mode = planner(alpha, beta, d)
+ if d1 is None:
+ continue
+
+ cost = (abs(d1) + abs(d2) + abs(d3))
+ if best_cost > cost: # Select minimum length one.
+ b_d1, b_d2, b_d3, b_mode, best_cost = d1, d2, d3, mode, cost
+
+ lengths = [b_d1, b_d2, b_d3]
+ x_list, y_list, yaw_list = _generate_local_course(lengths, b_mode,
+ curvature, step_size)
+
+ lengths = [length / curvature for length in lengths]
+
+ return x_list, y_list, yaw_list, b_mode, lengths
+
+
+def _interpolate(length, mode, max_curvature, origin_x, origin_y,
+ origin_yaw, path_x, path_y, path_yaw):
+ if mode == "S":
+ path_x.append(origin_x + length / max_curvature * cos(origin_yaw))
+ path_y.append(origin_y + length / max_curvature * sin(origin_yaw))
+ path_yaw.append(origin_yaw)
+ else: # curve
+ ldx = sin(length) / max_curvature
+ ldy = 0.0
+ if mode == "L": # left turn
+ ldy = (1.0 - cos(length)) / max_curvature
+ elif mode == "R": # right turn
+ ldy = (1.0 - cos(length)) / -max_curvature
+ gdx = cos(-origin_yaw) * ldx + sin(-origin_yaw) * ldy
+ gdy = -sin(-origin_yaw) * ldx + cos(-origin_yaw) * ldy
+ path_x.append(origin_x + gdx)
+ path_y.append(origin_y + gdy)
+
+ if mode == "L": # left turn
+ path_yaw.append(origin_yaw + length)
+ elif mode == "R": # right turn
+ path_yaw.append(origin_yaw - length)
+
+ return path_x, path_y, path_yaw
+
+
+def _generate_local_course(lengths, modes, max_curvature, step_size):
+ p_x, p_y, p_yaw = [0.0], [0.0], [0.0]
+
+ for (mode, length) in zip(modes, lengths):
+ if length == 0.0:
+ continue
+
+ # set origin state
+ origin_x, origin_y, origin_yaw = p_x[-1], p_y[-1], p_yaw[-1]
+
+ current_length = step_size
+ while abs(current_length + step_size) <= abs(length):
+ p_x, p_y, p_yaw = _interpolate(current_length, mode, max_curvature,
+ origin_x, origin_y, origin_yaw,
+ p_x, p_y, p_yaw)
+ current_length += step_size
+
+ p_x, p_y, p_yaw = _interpolate(length, mode, max_curvature, origin_x,
+ origin_y, origin_yaw, p_x, p_y, p_yaw)
+
+ return p_x, p_y, p_yaw
+
+
+def main():
+ print("Dubins path planner sample start!!")
+ import matplotlib.pyplot as plt
+ from utils.plot import plot_arrow
+
+ start_x = 1.0 # [m]
+ start_y = 1.0 # [m]
+ start_yaw = np.deg2rad(45.0) # [rad]
+
+ end_x = -3.0 # [m]
+ end_y = -3.0 # [m]
+ end_yaw = np.deg2rad(-45.0) # [rad]
+
+ curvature = 1.0
+
+ path_x, path_y, path_yaw, mode, lengths = plan_dubins_path(start_x,
+ start_y,
+ start_yaw,
+ end_x,
+ end_y,
+ end_yaw,
+ curvature)
+
+ if show_animation:
+ plt.plot(path_x, path_y, label="".join(mode))
+ plot_arrow(start_x, start_y, start_yaw)
+ plot_arrow(end_x, end_y, end_yaw)
+ plt.legend()
+ plt.grid(True)
+ plt.axis("equal")
+ plt.show()
+
+
+if __name__ == '__main__':
+ main()
+