- 2.27.0 (latest)
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
RandomForestRegressor(
    n_estimators: int = 100,
    *,
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 0.8,
    gamma: float = 0.0,
    max_depth: int = 15,
    subsample: float = 0.8,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    tol: float = 0.01,
    enable_global_explain: bool = False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)A random forest regressor.
A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
Parameters | 
      |
|---|---|
| Name | Description | 
n_estimators | 
        
  	Optional[int]
  	Number of parallel trees constructed during each iteration. Default to 100. Minimum value is 2.  | 
      
tree_method | 
        
  	Optional[str]
  	Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: "exact", "approx", "hist".  | 
      
min_child_weight | 
        
  	Optional[float]
  	Minimum sum of instance weight(hessian) needed in a child. Default to 1.  | 
      
colsample_bytree | 
        
  	Optional[float]
  	Subsample ratio of columns when constructing each tree. Default to 1.0. The value should be between 0 and 1.  | 
      
colsample_bylevel | 
        
  	Optional[float]
  	Subsample ratio of columns for each level. Default to 1.0. The value should be between 0 and 1.  | 
      
colsample_bynode | 
        
  	Optional[float]
  	Subsample ratio of columns for each split. Default to 0.8. The value should be between 0 and 1.  | 
      
gamma | 
        
  	Optional[float]
  	(min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0.  | 
      
max_depth | 
        
  	Optional[int]
  	Maximum tree depth for base learners. Default to 15. The value should be greater than 0 and less than 1.  | 
      
reg_alpha | 
        
  	Optional[float]
  	L1 regularization term on weights (xgb's alpha). Default to 0.0.  | 
      
reg_lambda | 
        
  	Optional[float]
  	L2 regularization term on weights (xgb's lambda). Default to 1.0.  | 
      
tol | 
        
  	Optional[float]
  	Minimum relative loss improvement necessary to continue training. Default to 0.01.  | 
      
enable_global_explain | 
        
  	Optional[bool]
  	Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False.  | 
      
xgboost_version | 
        
  	Optional[str]
  	Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".  | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    X_eval: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
    y_eval: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
) -> bigframes.ml.base._TBuild a forest of trees from the training set (X, y).
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          Series or DataFrame of shape (n_samples, n_features). Training data.  | 
      
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          Series or DataFrame of shape (n_samples,) or (n_samples, n_targets). Target values. Will be cast to X's dtype if necessary.  | 
      
X_eval | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          Series or DataFrame of shape (n_samples, n_features). Evaluation data.  | 
      
y_eval | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          Series or DataFrame of shape (n_samples,) or (n_samples, n_targets). Evaluation target values. Will be cast to X_eval's dtype if necessary.  | 
      
| Returns | |
|---|---|
| Type | Description | 
ForestModel | 
        Fitted estimator. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
predict
predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.dataframe.DataFramePredict regression target for X.
The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest.
| Parameter | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
          Series or DataFrame of shape (n_samples, n_features). The data matrix for which we want to get the predictions.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        The predicted values. | 
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._TRegister the model to Vertex AI.
After register, go to the Google Cloud console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
| Parameter | |
|---|---|
| Name | Description | 
vertex_ai_model_id | 
        
          Optional[str], default None
          Optional string id as model id in Vertex. If not set, will default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.  | 
      
score
score(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
)Calculate evaluation metrics of the model.
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          A BigQuery DataFrame as evaluation data.  | 
      
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          A BigQuery DataFrame as evaluation labels.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        The DataFrame as evaluation result. | 
to_gbq
to_gbq(
    model_name: str, replace: bool = False
) -> bigframes.ml.ensemble.RandomForestRegressorSave the model to BigQuery.
| Parameters | |
|---|---|
| Name | Description | 
model_name | 
        
          str
          The name of the model.  | 
      
replace | 
        
          bool, default False
          Determine whether to replace if the model already exists. Default to False.  | 
      
| Returns | |
|---|---|
| Type | Description | 
RandomForestRegressor | 
        Saved model. |