- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
Ensemble models. This module is styled after Scikit-Learn's ensemble module: https://scikit-learn.org/stable/modules/ensemble.html
Classes
RandomForestClassifier
RandomForestClassifier(
    num_parallel_tree: int = 100,
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 0.8,
    gamma: float = 0.0,
    max_depth: int = 15,
    subsample: float = 0.8,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop=True,
    min_rel_progress: float = 0.01,
    enable_global_explain=False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9",
)A random forest classifier.
A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
RandomForestRegressor
RandomForestRegressor(
    num_parallel_tree: int = 100,
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree=1.0,
    colsample_bylevel=1.0,
    colsample_bynode=0.8,
    gamma=0.0,
    max_depth: int = 15,
    subsample=0.8,
    reg_alpha=0.0,
    reg_lambda=1.0,
    early_stop=True,
    min_rel_progress=0.01,
    enable_global_explain=False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9",
)A random forest regressor.
A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
XGBClassifier
XGBClassifier(
    num_parallel_tree: int = 1,
    booster: typing.Literal["gbtree", "dart"] = "gbtree",
    dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 1.0,
    gamma: float = 0.0,
    max_depth: int = 6,
    subsample: float = 1.0,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop: bool = True,
    learning_rate: float = 0.3,
    max_iterations: int = 20,
    min_rel_progress: float = 0.01,
    enable_global_explain: bool = False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9",
)XGBoost classifier model.
| Parameters | |
|---|---|
| Name | Description | 
num_parallel_tree | 
        
          Optional[int]
          Number of parallel trees constructed during each iteration. Default to 1.  | 
      
booster | 
        
          Optional[str]
          Specify which booster to use: gbtree or dart. Default to "gbtree".  | 
      
dart_normalized_type | 
        
          Optional[str]
          Type of normalization algorithm for DART booster. Possible values: "TREE", "FOREST". Default to "TREE".  | 
      
tree_method | 
        
          Optional[str]
          Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist".  | 
      
min_child_weight | 
        
          Optional[float]
          Minimum sum of instance weight(hessian) needed in a child. Default to 1.  | 
      
colsample_bytree | 
        
          Optional[float]
          Subsample ratio of columns when constructing each tree. Default to 1.0.  | 
      
colsample_bylevel | 
        
          Optional[float]
          Subsample ratio of columns for each level. Default to 1.0.  | 
      
colsample_bynode | 
        
          Optional[float]
          Subsample ratio of columns for each split. Default to 1.0.  | 
      
gamma | 
        
          Optional[float]
          (min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0.  | 
      
max_depth | 
        
          Optional[int]
          Maximum tree depth for base learners. Default to 6.  | 
      
subsample | 
        
          Optional[float]
          Subsample ratio of the training instance. Default to 1.0.  | 
      
reg_alpha | 
        
          Optional[float]
          L1 regularization term on weights (xgb's alpha). Default to 0.0.  | 
      
reg_lambda | 
        
          Optional[float]
          L2 regularization term on weights (xgb's lambda). Default to 1.0.  | 
      
early_stop | 
        
          Optional[bool]
          Whether training should stop after the first iteration. Default to True.  | 
      
learning_rate | 
        
          Optional[float]
          Boosting learning rate (xgb's "eta"). Default to 0.3.  | 
      
max_iterations | 
        
          Optional[int]
          Maximum number of rounds for boosting. Default to 20.  | 
      
min_rel_progress | 
        
          Optional[float]
          Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01.  | 
      
enable_global_explain | 
        
          Optional[bool]
          Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False.  | 
      
xgboost_version | 
        
          Optional[str]
          Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".  | 
      
XGBRegressor
XGBRegressor(
    num_parallel_tree: int = 1,
    booster: typing.Literal["gbtree", "dart"] = "gbtree",
    dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 1.0,
    gamma: float = 0.0,
    max_depth: int = 6,
    subsample: float = 1.0,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop: float = True,
    learning_rate: float = 0.3,
    max_iterations: int = 20,
    min_rel_progress: float = 0.01,
    enable_global_explain: bool = False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9",
)XGBoost regression model.
| Parameters | |
|---|---|
| Name | Description | 
num_parallel_tree | 
        
          Optional[int]
          Number of parallel trees constructed during each iteration. Default to 1.  | 
      
booster | 
        
          Optional[str]
          Specify which booster to use: gbtree or dart. Default to "gbtree".  | 
      
dart_normalized_type | 
        
          Optional[str]
          Type of normalization algorithm for DART booster. Possible values: "TREE", "FOREST". Default to "TREE".  | 
      
tree_method | 
        
          Optional[str]
          Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist".  | 
      
min_child_weight | 
        
          Optional[float]
          Minimum sum of instance weight(hessian) needed in a child. Default to 1.  | 
      
colsample_bytree | 
        
          Optional[float]
          Subsample ratio of columns when constructing each tree. Default to 1.0.  | 
      
colsample_bylevel | 
        
          Optional[float]
          Subsample ratio of columns for each level. Default to 1.0.  | 
      
colsample_bynode | 
        
          Optional[float]
          Subsample ratio of columns for each split. Default to 1.0.  | 
      
gamma | 
        
          Optional[float]
          (min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0.  | 
      
max_depth | 
        
          Optional[int]
          Maximum tree depth for base learners. Default to 6.  | 
      
subsample | 
        
          Optional[float]
          Subsample ratio of the training instance. Default to 1.0.  | 
      
reg_alpha | 
        
          Optional[float]
          L1 regularization term on weights (xgb's alpha). Default to 0.0.  | 
      
reg_lambda | 
        
          Optional[float]
          L2 regularization term on weights (xgb's lambda). Default to 1.0.  | 
      
early_stop | 
        
          Optional[bool]
          Whether training should stop after the first iteration. Default to True.  | 
      
learning_rate | 
        
          Optional[float]
          Boosting learning rate (xgb's "eta"). Default to 0.3.  | 
      
max_iterations | 
        
          Optional[int]
          Maximum number of rounds for boosting. Default to 20.  | 
      
min_rel_progress | 
        
          Optional[float]
          Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01.  | 
      
enable_global_explain | 
        
          Optional[bool]
          Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False.  | 
      
xgboost_version | 
        
          Optional[str]
          Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".  |