- 1.122.0 (latest)
 - 1.121.0
 - 1.120.0
 - 1.119.0
 - 1.118.0
 - 1.117.0
 - 1.116.0
 - 1.115.0
 - 1.114.0
 - 1.113.0
 - 1.112.0
 - 1.111.0
 - 1.110.0
 - 1.109.0
 - 1.108.0
 - 1.107.0
 - 1.106.0
 - 1.105.0
 - 1.104.0
 - 1.103.0
 - 1.102.0
 - 1.101.0
 - 1.100.0
 - 1.99.0
 - 1.98.0
 - 1.97.0
 - 1.96.0
 - 1.95.1
 - 1.94.0
 - 1.93.1
 - 1.92.0
 - 1.91.0
 - 1.90.0
 - 1.89.0
 - 1.88.0
 - 1.87.0
 - 1.86.0
 - 1.85.0
 - 1.84.0
 - 1.83.0
 - 1.82.0
 - 1.81.0
 - 1.80.0
 - 1.79.0
 - 1.78.0
 - 1.77.0
 - 1.76.0
 - 1.75.0
 - 1.74.0
 - 1.73.0
 - 1.72.0
 - 1.71.1
 - 1.70.0
 - 1.69.0
 - 1.68.0
 - 1.67.1
 - 1.66.0
 - 1.65.0
 - 1.63.0
 - 1.62.0
 - 1.60.0
 - 1.59.0
 - 1.58.0
 - 1.57.0
 - 1.56.0
 - 1.55.0
 - 1.54.1
 - 1.53.0
 - 1.52.0
 - 1.51.0
 - 1.50.0
 - 1.49.0
 - 1.48.0
 - 1.47.0
 - 1.46.0
 - 1.45.0
 - 1.44.0
 - 1.43.0
 - 1.39.0
 - 1.38.1
 - 1.37.0
 - 1.36.4
 - 1.35.0
 - 1.34.0
 - 1.33.1
 - 1.32.0
 - 1.31.1
 - 1.30.1
 - 1.29.0
 - 1.28.1
 - 1.27.1
 - 1.26.1
 - 1.25.0
 - 1.24.1
 - 1.23.0
 - 1.22.1
 - 1.21.0
 - 1.20.0
 - 1.19.1
 - 1.18.3
 - 1.17.1
 - 1.16.1
 - 1.15.1
 - 1.14.0
 - 1.13.1
 - 1.12.1
 - 1.11.0
 - 1.10.0
 - 1.9.0
 - 1.8.1
 - 1.7.1
 - 1.6.2
 - 1.5.0
 - 1.4.3
 - 1.3.0
 - 1.2.0
 - 1.1.1
 - 1.0.1
 - 0.9.0
 - 0.8.0
 - 0.7.1
 - 0.6.0
 - 0.5.1
 - 0.4.0
 - 0.3.1
 
Classes for working with language models.
Classes
ChatMessage
ChatMessage(content: str, author: str)A chat message.
CountTokensResponse
CountTokensResponse(
    total_tokens: int,
    total_billable_characters: int,
    _count_tokens_response: typing.Any,
)The response from a count_tokens request. .. attribute:: total_tokens
The total number of tokens counted across all instances passed to the request.
:type: int
EvaluationClassificationMetric
EvaluationClassificationMetric(
    label_name: typing.Optional[str] = None,
    auPrc: typing.Optional[float] = None,
    auRoc: typing.Optional[float] = None,
    logLoss: typing.Optional[float] = None,
    confidenceMetrics: typing.Optional[
        typing.List[typing.Dict[str, typing.Any]]
    ] = None,
    confusionMatrix: typing.Optional[typing.Dict[str, typing.Any]] = None,
)The evaluation metric response for classification metrics.
| Parameters | |
|---|---|
| Name | Description | 
label_name | 
        
          str
          Optional. The name of the label associated with the metrics. This is only returned when   | 
      
auPrc | 
        
          float
          Optional. The area under the precision recall curve.  | 
      
auRoc | 
        
          float
          Optional. The area under the receiver operating characteristic curve.  | 
      
logLoss | 
        
          float
          Optional. Logarithmic loss.  | 
      
confidenceMetrics | 
        
          List[Dict[str, Any]]
          Optional. This is only returned when   | 
      
confusionMatrix | 
        
          Dict[str, Any]
          Optional. This is only returned when   | 
      
EvaluationMetric
EvaluationMetric(
    bleu: typing.Optional[float] = None, rougeLSum: typing.Optional[float] = None
)The evaluation metric response.
| Parameters | |
|---|---|
| Name | Description | 
bleu | 
        
          float
          Optional. BLEU (Bilingual evauation understudy). Scores based on sacrebleu implementation.  | 
      
rougeLSum | 
        
          float
          Optional. ROUGE-L (Longest Common Subsequence) scoring at summary level.  | 
      
EvaluationQuestionAnsweringSpec
EvaluationQuestionAnsweringSpec(
    ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
    task_name: str = "question-answering",
)Spec for question answering model evaluation tasks.
EvaluationTextClassificationSpec
EvaluationTextClassificationSpec(
    ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
    target_column_name: str,
    class_names: typing.List[str],
)Spec for text classification model evaluation tasks.
| Parameters | |
|---|---|
| Name | Description | 
target_column_name | 
        
          str
          Required. The label column in the dataset provided in   | 
      
class_names | 
        
          List[str]
          Required. A list of all possible label names in your dataset. Required when task_name='text-classification'.  | 
      
EvaluationTextGenerationSpec
EvaluationTextGenerationSpec(
    ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame]
)Spec for text generation model evaluation tasks.
EvaluationTextSummarizationSpec
EvaluationTextSummarizationSpec(
    ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
    task_name: str = "summarization",
)Spec for text summarization model evaluation tasks.
InputOutputTextPair
InputOutputTextPair(input_text: str, output_text: str)InputOutputTextPair represents a pair of input and output texts.
TextEmbedding
TextEmbedding(
    values: typing.List[float],
    statistics: typing.Optional[
        vertexai.language_models.TextEmbeddingStatistics
    ] = None,
    _prediction_response: typing.Optional[
        google.cloud.aiplatform.models.Prediction
    ] = None,
)Text embedding vector and statistics.
TextEmbeddingInput
TextEmbeddingInput(
    text: str,
    task_type: typing.Optional[str] = None,
    title: typing.Optional[str] = None,
)Structural text embedding input.
TextGenerationResponse
TextGenerationResponse(text: str, _prediction_response: typing.Any, is_blocked: bool = False, errors: typing.Tuple[int] = (), safety_attributes: typing.Dict[str, float] = <factory>, grounding_metadata: typing.Optional[vertexai.language_models._language_models.GroundingMetadata] = None)TextGenerationResponse represents a response of a language model. .. attribute:: text
The generated text
:type: str
TuningEvaluationSpec
TuningEvaluationSpec(
    evaluation_data: typing.Optional[str] = None,
    evaluation_interval: typing.Optional[int] = None,
    enable_early_stopping: typing.Optional[bool] = None,
    enable_checkpoint_selection: typing.Optional[bool] = None,
    tensorboard: typing.Optional[
        typing.Union[
            google.cloud.aiplatform.tensorboard.tensorboard_resource.Tensorboard, str
        ]
    ] = None,
)Specification for model evaluation to perform during tuning.