
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Chapter 9:

Deductive Proofs of
Predicate Logic Formulas

In this chapter, we will develop the notion of formal deductive proofs for Predicate
Logic. As in the case of Propositional Logic, we will have axioms and inference rules, but
we will now need to handle all of the new constructs of Predicate Logic. The effort that we
made in the study of Propositional Logic in the first part of this book will bear its fruits
as it will allow us to use arbitrary tautologies in our proofs.

This chapter is rather technical, focusing on the exact syntactic details of our proof
system for Predicate Logic. Before we dive into the details, let us give a high level overview
of the components of our proof system:

• Assumptions and Axioms: A line in a proof may be an assumption or a logical
axiom, which as you will see, we will treat in the same way. The specific set of axioms
that we will use will only be specified in the next chapter. The main complication
here is that we allow syntactic families of formulas, called schemas1, as axioms.
For example, we would like to be able to have a single axiom schema that says that
for any formula φ, any variable name x, and any term τ , the following is an axiom:
‘(∀x[φ(x)]→φ(τ))’.

• Inference Rules: We will have exactly two axiomatic inference rules. The first is our
old acquaintance Modus Ponens (MP) that deduces the formula ‘ψ’ from previous
lines ‘φ’ and ‘(φ→ψ)’. The second is called Universal Generalization and allows
arbitrary universal quantifications of previous lines: deducing a formula ‘∀x[φ]’ from
a previous line ‘φ’.

• Tautologies: We will allow using any tautology of Propositional Logic as a line in
our proof (we will see below precisely how a tautology of Propositional Logic can be
used in a predicate-logic proof). We allow ourselves this power as we already know
from our study of Propositional Logic that any such tautology has a proof from some
short list of propositional-logic axioms (we will give the precise justification below,
via a predicate-logic version of the Tautology Theorem).

The structure of this chapter is as follows: we start with an example of a proof. We
then formally define the somewhat involved notion of schemas that we will allow using. We
continue by fully specifying our proof system and making sure that it is sound: anything
that is syntactically proven from some assumptions indeed semantically follows from them.
Finally, we revisit our choice of allowing arbitrary tautologies in our proof system and show
that by your solutions to the tasks of Chapter 6, this really is only a matter of convenience.

1Another frequently used plural form of “schemas,” which you may encounter in many books, is
“schemata.” For simplicity, in this book we will stick with “schemas.”

137 Draft; comments welcome

www.LogicThruPython.org

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1 Example of a Proof
As our example we will look at a proof of the following syllogism: All Greeks are human,
all humans are mortal; thus, all Greeks are mortal. This syllogism may be formulated and
proved in Predicate Logic as follows.

Assumptions:

1. ‘∀x[(Greek(x)→Human(x))]’

2. ‘∀x[(Human(x)→Mortal(x))]’

Conclusion: ‘∀x[(Greek(x)→Mortal(x))]’

Proof:

1. ‘∀x[(Greek(x)→Human(x))]’. Justification: first assumption.

2. ‘(∀x[(Greek(x)→Human(x))]→(Greek(x)→Human(x)))’. Justification: this is an in-
stance of an axiom schema that says that for any formula φ, any variable name x,
and any term τ , the following is an axiom: ‘(∀x[φ(x)]→φ(τ))’. In this case, φ(x) is
taken to be ‘(Greek(x)→Human(x))’, and both x and τ are taken to be ‘x’.

3. ‘(Greek(x)→Human(x))’. Justification: Modus Ponens (MP) from Lines 1 and 2.

4. ‘∀x[(Human(x)→Mortal(x))]’. Justification: second assumption.

5. ‘(∀x[(Human(x)→Mortal(x))]→(Human(x)→Mortal(x)))’. Justification: this, again,
is another instance of the same axiom schema ‘(∀x[φ(x)]→φ(τ))’, this time with φ(x)
taken to be ‘(Human(x)→Mortal(x))’, and again with x and τ both taken to be ‘x’.

6. ‘(Human(x)→Mortal(x))’. Justification: Modus Ponens (MP) from Lines 4 and 5.

7. ‘((Greek(x)→Human(x))→((Human(x)→Mortal(x))→(Greek(x)→Mortal(x))))’.
Justification: the structure of this line has the form ‘((p→q)→((q→r)→(p→r)))’,
which is a tautology of Propositional Logic.

8. ‘((Human(x)→Mortal(x))→(Greek(x)→Mortal(x)))’. Justification: Modus Ponens
(MP) from Lines 3 and 7.

9. ‘(Greek(x)→Mortal(x))’. Justification: Modus Ponens (MP) from Lines 6 and 8.

10. ‘∀x[(Greek(x)→Mortal(x))]’. Justification: Universal Generalization of Line 9.

While this proof may look unintuitive, here is a way to think about it. Technically, our
proof system allows using lines that are not sentences, i.e., allows using lines that have
free variable names. Intuitively, a formula with free variable names should be thought of as
though all of its free variable names are universally quantified. Lines 1–6 of the proof take
us from the quantified assumptions to essentially equivalent formulas without the explicit
quantification. The technical advantage of having omitted the universal quantifiers is that
we now have formulas that “look like” propositional logic formulas, which we already know
how to handle. Indeed, Lines 7–9 rely only on propositional-logic-like arguments to obtain
the required conclusion. Finally, Line 10 moves back to the required explicitly quantified
form of the conclusion.

Chapter 9 138 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2 Schemas
Recall that in Propositional Logic, we could have a formula like ‘(x|~x)’ as an axiom,
with the understanding that we can “plug in” any formula for ‘x’. Thus, for example,
substituting ‘(p→q)’ for ‘x’ gives that the formula ‘((p→q)|~(p→q))’ is a specialization
of this axiom, which we are also allowed to use. We will need a similar mechanism for
Predicate Logic, but here we will make the rules of what exactly can be substituted, and
where, explicit. There are various possible levels of generality for defining schemas, and,
as usual, we choose some sufficient intermediate level of generality, trading off elegance,
ease of implementation, and ease of use.

While in Propositional Logic we either had assumptions that have to be taken com-
pletely literally without any substitutions on one extreme, or axioms where essentially
any symbol could be consistently replaced with any formula when using the axiom on
the other extreme, in Predicate Logic we will have the full range in between these two
extremes. For example we may wish to write an assumption such as ‘plus(c,d)=plus(d,c)’,
where ‘c’ and ‘d’ are templates that could be (consistently) replaced by any terms but
‘plus’ cannot be replaced by any other function name. In contrast, we may wish to write
an assumption such as ‘plus(0,c)=c’ where ‘c’ is a template that could be replaced by any
term but neither ‘plus’ nor ‘0’ can be replaced.

As a different example, as already mentioned above, we will also wish to be able to
represent some axiom schemas, each of which standing for a collection of axioms of
a certain type. That is, in traditional mathematical textual proofs we can say things
like “for any formula φ, any term τ , and any variable name x, the following is an ax-
iom: ‘(∀x[φ(x)]→φ(τ))’,” and we will wish to capture such statements as axioms as well.
(Attentive readers may have noticed that we had in fact already encountered this axiom
schema in the proof example above.) In our computerized representation, we will use
relation names as templates for formulas, constant names as templates for terms, and
variable names as templates for variable names, so we will represent this axiom schema
as ‘(∀x[R(x)]→R(c))’ while explicitly stating that ‘R’, ‘x’, and ‘c’ are all templates. In
this case, roughly speaking, ‘R’ is a template for any “formula into which a term can be
substituted,” ‘c’ is a template for any term, and ‘x’ is a template for any variable name.
Any choice of such formula, term, and variable name to substitute for the templates creates
a different instance of this axiom schema. All constant, variable, and relation names (if
any) that we do not specify to be templates should always be taken literally in any instance
of the axiom schema.

The file predicates/proofs.py defines (among other classes) a Python class Schema
that represents a schema as a regular predicate-logic formula together with the set of
constructs of this formula—constant names, variable names, and/or relation names—that
serve as templates (placeholders).

predicates/proofs.py

@frozen
class Schema:

"""An immutable schema of predicate-logic formulas, comprised of a formula
along with the constant names, variable names, and nullary or unary relation
names in that formula that serve as templates. A template constant name is a
placeholder for any term. A template variable name is a placeholder for any
variable name. A template nullary or unary relation name is a placeholder
for any (parametrized for a unary template relation name) predicate-logic
formula that does not refer to any variable name in the schema (except

Chapter 9 139 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

possibly through its instantiated argument for a unary relation name).

Attributes:
formula: the formula of the schema.
templates: the constant, variable, and relation names from the formula

that serve as templates.
"""
formula: Formula
templates: FrozenSet[str]

def __init__(self, formula: Formula,
templates: AbstractSet[str] = frozenset()):

"""Initializes a `Schema` from its formula and template names.

Parameters:
formula: the formula for the schema.
templates: the constant, variable, and relation names from the

formula to serve as templates.
"""
for template in templates:

assert is_constant(template) or is_variable(template) or \
is_relation(template)

if is_relation(template):
arities = {arity for relation,arity in formula.relations() if

relation == template}
assert arities == {0} or arities == {1}

self.formula = formula
self.templates = frozenset(templates)

The default value (for the constructor of this class) of the set of templates is the empty
set, which corresponds to a schema with only one possible instance (because there are no
templates that can be replaced): the original schema formula. We will now review each of
the three types of syntactic constructs can potentially serve as templates: constant names,
variable names, and relation names.

2.1 Templates Constants Names
A constant name that is specified as a template can serve as a placeholder for any term.
Thus, for example, the schema

Schema(Formula.parse('c=c'), {'c'})

has as instances all of the following formulas (among others): ‘0=0’, ‘x=x’,
‘plus(x,y)=plus(x,y)’.

2.2 Templates Variable Names
A variable name that is specified as a template can serve as a placeholder for any variable
name. For example, the schema

Schema(Formula.parse('(times(x,0)=0&Ax[Ey[plus(x,y)=0]])'), {'x'})

has the following as an instance: ‘(times(z,0)=0&∀z[∃y[plus(z,y)=0]])’. As this example
shows, all occurrences of the template variable name should be replaced, including free and
bound occurrences, as well as occurrences that immediately follow a quantifier.

Chapter 9 140 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2.3 Templates Relation Names
A relation name that is specified as a template can serve as a placeholder for an arbitrary
formula that may possibly be “parametrized” by a single “parameter.” Let us first con-
sider the simpler case of a parameter-less template relation name—a template whose
invocations in the schema formula are nullary, such as is the case in the schema

Schema(Formula.parse('(Q()|~Q())'), {'Q'})

for the template ‘Q’. A parameter-less template relation name such as ‘Q’ in this schema
can serve as a placeholder for any formula. Thus, for example, this schema has the following
as an instance: ‘(c=y|~c=y)’.

Let us now consider the more intricate case of a parametrized template relation
name—a template whose invocations in the schema formula are unary, such as is the case
in the schema

Schema(Formula.parse('(Ax[(R(x)−>Q(x))]−>(Az[R(z)]−>Aw[Q(w)]))'),
{'R', 'Q'})

for each of the templates ‘Q’ and ‘R’.2 A parametrized template relation name such as
‘Q’ or ‘R’ in this schema can serve as a placeholder for any parametrized formula,
that is, a formula that optionally contains a placeholder for the argument of the unary
invocation. Thus, for example, this schema can be instantiated with ‘R(�)’ defined as
‘�=7’ (parametrized by the placeholder �), and with ‘Q(�)’ defined as ‘T(y,�)’ to obtain
the following instance of this schema: ‘(∀x[(x=7→T(y,x))]→(∀z[z=7]→∀w[T(y,w)]))’.

Note that when defining the parametrized template ‘Q(�)’ as ‘T(y,�)’ in the last
example, and when defining the parameter-less template ‘Q()’ as ‘c=y’ in the preceding
example, we allowed the formula that replaces the template relation name to contain free
variable names (‘y’ in both examples). In order to avoid unintended (and not logically
sound) quantifications, we however restrict this to only be allowed for free variable names
that do not get bound by a quantifier in the resulting instance of the schema. Thus, for
example, if we look at the schema

Schema(Formula.parse('(Ax[R(x)]−>R(c))'), {'R', 'c', 'x'})

that appeared in the proof example above, then we allow to instantiate this schema with
‘R(�)’ defined as ‘�=0’ to get ‘(∀x[x=0]→c=0)’, but we do not allow to instantiate it with
‘R(�)’ defined as ‘�=x’, so ‘(∀x[x=x]→c=x)’ is not an instance of this schema (nor is it a
logically sound statement), since the free variable name ‘x’ in ‘�=x’ would get bound by
the universal quantifier in the resulting schema instance if such a substitution were to be
made.3

Let us look more closely at the process of, e.g., taking the above schema

Schema(Formula.parse('(Ax[R(x)]−>R(c))'), {'R', 'c', 'x'})

and instantiating it with ‘s(1)’ for ‘c’, with ‘(∃z[s(z)=�]→Q(�))’ for ‘R(�)’, and with ‘y’
for ‘x’:

2Note above that the constructor of class Schema verifies for each template relation name that its
invocations in the schema formula are either all nullary—corresponding to a parameter-less template—or
all unary—corresponding to a parametrized template.

3Programming language aficionados may notice that this is a classic issue of variable scope. We
resolved it this way since our formulas do not have a syntax to allow specifying that unlike the first ‘x’ in
‘x=x’, which has “local scope,” the second ‘x’ in ‘x=x’ should have “global scope” like the ‘x’ in ‘c=x’.

Chapter 9 141 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1. The variable name ‘x’ that immediately follows the universal quantification gets
substituted for ‘y’.

2. For the first occurrence of ‘R’ in the schema (i.e., for ‘R(x)’) we first substitute
‘y’ for ‘x’ to get the instantiated argument ‘y’ of that invocation of this tem-
plate relation name. This instantiated argument then gets substituted for all occur-
rences of the parameter ‘�’ in the parametrized formula ‘(∃z[s(z)=�]→Q(�))’ to get
‘(∃z[s(z)=y]→Q(y))’ as the final replacement for ‘R(x)’.

3. For the second occurrence (i.e., for ‘R(c)’) we substitute ‘s(1)’ for ‘c’ to get the
instantiated argument ‘s(1)’ of that invocation of this template relation name. This
instantiated argument then gets substituted for all occurrences of the parameter ‘�’
in the parametrized formula ‘(∃z[s(z)=�]→Q(�))’ to get ‘(∃z[s(z)=s(1)]→Q(s(1)))’
as the final replacement for ‘R(c)’.

4. Altogether, we get ‘(∀y[(∃z[s(z)=y]→Q(y))]→(∃z[s(z)=s(1)]→Q(s(1))))’ as the re-
sulting instance of this axiom schema (which is indeed a logically sound statement).

One final restriction we must verify regards quantification within parametrized formulas
that are substituted for parametrized template relation names. Consider again the schema

Schema(Formula.parse('(Ax[R(x)]−>R(c))'), {'R', 'c', 'x'})

as above. If we were to allow to instantiate this schema with ‘R(�)’ as ‘∃x[�=7]’,
then we would get ‘(∀x[∃x[x=7]]→∃x[c=7])’, which is not logically sound. Therefore, in
parametrized formulas that replace (parametrized) template relation names, we do not
allow quantifications that bound any variable name in any instantiated argument of that
parametrized template relation name.4

2.4 Handling Parametrized Formulas
We will represent parametrized formulas in Python as regular Formula objects that use the
constant name ‘ ’ (underscore) as the placeholder. So, for example, the first parametrized
formula given as an example above, ‘�=7’, would be represented in Python by the formula

4This is again an issue of variable scope. Some readers may at this point wonder why we do not
disallow some other “scope-confusing instantiations.” Consider, e.g., the “intuitively correct” schema
Schema(Formula.parse('Ex[R(c)]−>R(c)'), {'c'}). Replacing ‘c’ with ‘x’ in this schema would yield
the not logically sound “instance” ‘∃x[R(x)]→R(x)’, so to avoid that we could have restricted terms that
replace template constant names to contain only free variable names that do not get bound by a quantifier
in the resulting instance of the schema, analogously to the first constraint above regarding variable names
in formulas that replace template relation names. As another example, consider the “intuitively correct”
schema Schema(Formula.parse('Ey[˜y=x]'), {'y'}). Replacing ‘y’ with ‘x’ in this schema would yield
the not logically sound “instance” ‘∃x[~x=x]’, so to avoid that we could have restricted substitutions of
template variable names to only those substitutions that do not make other existing variable names bound
by quantifications over the substituted variable names. While restrictions such as these could have been
useful, and would certainly have prevented some instances of some schemas from not being logically sound,
this is in fact not the case for any of the schemas that we will use in this book. More generally, there is
no “right” or “wrong” set of restrictions to impose here: all that we need, as we will see in the following
chapters, is to have enough restrictions in place on the possible instances of schemas to make sure that the
specific schemas that we define and use throughout this book have only logically sound instances (but do
still have as legal instances all of the intended logically sound instances that we will need in our proofs).
As we will see in Chapter 10, for the schemas that we chose for this book, the two restrictions detailed
above in the text suffice.

Chapter 9 142 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

that is returned by Formula.parse('_=7'). To avoid confusion, from this point onward,
throughout the book and throughout all tests, we will use the constant name ‘ ’ only for
this purpose.

To handle the substitution of arguments into parametrized formulas, we will implement
a notion of substitution in a predicate-logic expression—a term or a formula—where all
occurrences of a constant name (specifically, ‘ ’) are “replaced” by some term. Looking
at the tree representation of the expression in which we wish to make the substitution,
we simply replace every leaf labeled with the constant name ‘ ’ with a subtree that is
the tree of the substituting term. Recall that by the second restriction on instantiating
parametrized formulas given above, we altogether disallow any such substitution in which
any variable name that appears in the substituting term gets bound by any quantifier of
the formula, so we will have the code that implements the substitution raise an exception
in such cases.

While for handling parametrized formulas it is enough to handle substitutions of the
constant name ‘ ’, we will later want to be able to apply the same mechanics of substitution
(including the “scope checking” of variable names in the term to be substituted) also to
substitute a term for a variable name rather than for a constant name. In this specific use
case, though, and this will become clearer in the next chapter, we will want to be somewhat
careful to only replace free occurrences of the variable name. Consider, for example, the
formula ‘(R(x)&∀x[Q(x)])’. If we are asked to replace the variable name ‘x’ in this formula
with the term ‘c’, we will see that it will be useful that only the ‘x’ in ‘R(x)’ be replaced,
since the ‘x’ in ‘Q(x)’ refers to the variable name universally quantified over (‘∀x’) in the
second part of the formula.

In the following two tasks, you will implement the mechanics of the above-described
substitution. You will be asked to implement these not only for a single constant or
variable name, but in fact also for substituting several constant and/or variable names at
the same time. As this functionality will be useful for us in a variety of contexts beyond
handling parametrized formulas, you are asked to implement it as part of the classes Term
and Formula in the file predicates/syntax.py.

Task 1. Implement the missing code for the method substitute(substitution_map,
forbidden_variables) of class Term, which returns the term obtained from the current
term by replacing each occurrence of each variable or constant name that is a key of
the given substitution map with the term to which it is mapped. This method raises a
ForbiddenVariableError (an exception defined in the file predicates/syntax.py) if a
term that is used in the requested substitution contains one of the given forbidden variable
names.

predicates/syntax.py

class ForbiddenVariableError(Exception):
"""Raised by `Term.substitute` and `Formula.substitute` when a substituted
term contains a variable name that is forbidden in that context.

Attributes:
variable_name: the variable name that was forbidden in the context in

which a term containing it was to be substituted.
"""
variable_name: str

def __init__(self, variable_name: str):
"""Initializes a `ForbiddenVariableError` from the offending variable
name.

Chapter 9 143 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:
variable_name: variable name that is forbidden in the context in

which a term containing it is to be substituted.
"""
assert is_variable(variable_name)
self.variable_name = variable_name

...
class Term:

...
def substitute(self, substitution_map: Mapping[str, Term],

forbidden_variables: AbstractSet[str] = frozenset()) -> Term:
"""Substitutes in the current term, each constant name `construct` or
variable name `construct` that is a key in `substitution_map` with the
term `substitution_map[construct]`.

Parameters:
substitution_map: mapping defining the substitutions to be

performed.
forbidden_variables: variable names not allowed in substitution

terms.

Returns:
The term resulting from performing all substitutions. Only
constant name and variable name occurrences originating in the
current term are substituted (i.e., those originating in one of the
specified substitutions are not subjected to additional
substitutions).

Raises:
ForbiddenVariableError: If a term that is used in the requested

substitution contains a variable name from
`forbidden_variables`.

Examples:
>>> Term.parse('f(x,c)').substitute(
... {'c': Term.parse('plus(d,x)'), 'x': Term.parse('c')}, {'y'})
f(c,plus(d,x))

>>> Term.parse('f(x,c)').substitute(
... {'c': Term.parse('plus(d,y)')}, {'y'})
Traceback (most recent call last):

...
predicates.syntax.ForbiddenVariableError: y

"""
for construct in substitution_map:

assert is_constant(construct) or is_variable(construct)
for variable in forbidden_variables:

assert is_variable(variable)
Task 9.1

Hint: Use recursion.
Task 2. Implement the missing code for the method substitute(substitution_map,
forbidden_variables) of class Formula, which returns the formula obtained from the
current formula by replacing each occurrence of each constant name that is a key of the
given substitution map with the term to which it is mapped, and replacing each free
occurrence of each variable name that is a key of the given substitution map with the term

Chapter 9 144 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

to which it is mapped. This method raises a ForbiddenVariableError if a term that is
used in the requested substitution contains a variable name that either is one of the given
forbidden variable names or becomes bound when the term is substituted into the formula.

predicates/syntax.py

class Formula:
...

def substitute(self, substitution_map: Mapping[str, Term],
forbidden_variables: AbstractSet[str] = frozenset()) -> \

Formula:
"""Substitutes in the current formula, each constant name `construct` or
free occurrence of variable name `construct` that is a key in
`substitution_map` with the term `substitution_map[construct]`.

Parameters:
substitution_map: mapping defining the substitutions to be

performed.
forbidden_variables: variable names not allowed in substitution

terms.

Returns:
The formula resulting from performing all substitutions. Only
constant name and variable name occurrences originating in the
current formula are substituted (i.e., those originating in one of
the specified substitutions are not subjected to additional
substitutions).

Raises:
ForbiddenVariableError: If a term that is used in the requested

substitution contains a variable name from `forbidden_variables`
or a variable name occurrence that becomes bound when that term
is substituted into the current formula.

Examples:
>>> Formula.parse('Ay[x=c]').substitute(
... {'c': Term.parse('plus(d,x)'), 'x': Term.parse('c')}, {'z'})
Ay[c=plus(d,x)]

>>> Formula.parse('Ay[x=c]').substitute(
... {'c': Term.parse('plus(d,z)')}, {'z'})
Traceback (most recent call last):

...
predicates.syntax.ForbiddenVariableError: z

>>> Formula.parse('Ay[x=c]').substitute(
... {'c': Term.parse('plus(d,y)')})
Traceback (most recent call last):

...
predicates.syntax.ForbiddenVariableError: y

"""
for construct in substitution_map:

assert is_constant(construct) or is_variable(construct)
for variable in forbidden_variables:

assert is_variable(variable)
Task 9.2

Hint: Use recursion, augmenting the set forbidden_variables in the recursive call with
quantified variable names as needed. In the recursion base use your solution to Task 1.

Chapter 9 145 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2.5 Instantiating Schemas
We can now implement the most important functionality of the Schema class, which is to
instantiate the schema according to a given instantiation map.

Recall that our plan is to use the substitute() method that you have implemented
in Task 2 to handle the burden of substituting instantiated arguments into parametrized
formulas that replace parametrized template relation names—and that this method will
raise an exception if and only if the second restriction above is violated. In addition, you
will be able to use the substitute() method of class Term that you have implemented
in Task 1, due to its ability to handle both constant and variable name placeholders, and
furthermore to handle several such placeholders at once, to handle some of the burden
of instantiating template constant and variable names by sparing you from writing any
more recursions over terms. Most of the work that remains is to write a recursion over
formulas that handles that the overall instantiation of all types of templates—parameter-
less template relation names, parametrized template relation names, template constant
names, and template variable names—while verifying that we adhere also to the first
restriction above. The recursive helper method that you will implement in the following
task does precisely this.

Task 3. Implement the missing code for the static method _instantiate_helper of class
Schema. This recursive method takes four arguments:

1. A formula.

2. A map constants_and_variables_instantiation_map that maps each template
constant name and template variable name to a term that is to be substituted for
that template in formula. A constant name may be mapped to any term, while a
variable name may only be mapped to (a term whose root is) a variable name.

3. A map relations_instantiation_map that maps each template relation name to a
formula that is to be substituted for it. For parametrized templates relation names,
the mapped formula is parametrized by the constant name '_'.

4. A set bound_variables of variable names that are to be treated as being “quantified
by outer layers of the recursion.” The implication is (see below) that a template
relation name in formula may not be mapped by relation_instantiation_map to
a formula that has free variable names that are in this set, just like (see below) it
may not be mapped to a formula that has free variable names that get quantified
when plugged into formula.

The method returns a formula resulting from performing all of the above-described sub-
stitutions to formula.

This method raises a Schema.BoundVariableError (an exception defined for
you in the class Schema) if any free variable name in any formula from
relations_instantiation_map that is substituted for a (parameter-less or parametrized)
template relation name gets bound in the returned formula or is in the set
bound_variables.

The method also raises a Schema.BoundVariableError (this is our recommendation,
but for the convenience of readers who are unfamiliar with the details of exception handling,
the tests that we provide also accept raising any other exception) if for an invocation of a
parametrized template relation name, the substitution of the instantiated argument into

Chapter 9 146 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

the parametrized formula to which the template relation name is mapped causes a variable
name in the instantiated argument to get bound by a quantification in that parametrized
formula (that is, if the corresponding call to the method substitute() of that formula
raises an exception).

predicates/proofs.py

class Schema:
...

class BoundVariableError(Exception):
"""Raised by `_instantiate_helper` when a variable name becomes bound
during a schema instantiation in a way that is disallowed in that
context.

Attributes:
variable_name: the variable name that became bound in a way that was

disallowed during a schema instantiation.
relation_name: the relation name during whose substitution the

relevant occurrence of the variable name became bound.
"""
variable_name: str
relation_name: str

def __init__(self, variable_name: str, relation_name: str):
"""Initializes a `˜Schema.BoundVariableError` from the offending
variable name and the relation name during whose substitution the
error occurred.

Parameters:
variable_name: variable name that is to become bound in a way

that is disallowed during a schema instantiation.
relation_name: the relation name during whose substitution the

relevant occurrence of the variable name is to become bound.
"""
assert is_variable(variable_name)
assert is_relation(relation_name)
self.variable_name = variable_name
self.relation_name = relation_name

@staticmethod
def _instantiate_helper(formula: Formula,

constants_and_variables_instantiation_map:
Mapping[str, Term],
relations_instantiation_map: Mapping[str, Formula],
bound_variables: AbstractSet[str] = frozenset()) \

-> Formula:
"""Performs the following substitutions in the given formula:

1. Substitute each occurrence of each constant name or variable name
that is a key of the given constants and variables instantiation map
with the term mapped to this name by this map.

2. Substitute each nullary invocation of each relation name that is a
key of the given relations instantiation map with the formula mapped
to it by this map.

3. For each unary invocation of each relation name that is a key of the
given relations instantiation map, first perform all substitutions
to the argument of this invocation (according to the given constants
and variables instantiation map), then substitute the result for

Chapter 9 147 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

each occurrence of the constant name '_' in the formula mapped to the
relation name by this map, and then substitute the result for this
unary invocation of the relation name.

Only name occurrences originating in the given formula are substituted
(i.e., name occurrences originating in one of the above substitutions
are not subjected to additional substitutions).

Parameters:
formula: formula in which to perform the substitutions.
constants_and_variables_instantiation_map: mapping from constant

names and variable names in the given formula to terms to be
substituted for them, where the roots of terms mapped to
variable names are variable names.

relations_instantiation_map: mapping from nullary and unary relation
names in the given formula to formulas to be substituted for
them, where formulas to be substituted for unary relation names
are parametrized by the constant name '_'.

bound_variables: variable names to be treated as bound (see below).

Returns:
The result of all substitutions.

Raises:
BoundVariableError: if one of the following occurs when substituting

an invocation of a relation name:

1. A free occurrence of a variable name in the formula
mapped to the relation name by the given relations
instantiation map is in `bound_variables` or becomes bound
by a quantification in the given formula after all variable
names in the given formula have been substituted.

2. For a unary invocation: a variable name that is in the
argument to that invocation after all substitutions have been
applied to this argument, becomes bound by a quantification
in the formula mapped to the relation name by the given
relations instantiation map.

Examples:
The following succeeds:

>>> Schema._instantiate_helper(
... Formula.parse('Ax[(Q(c)->R(x))]'), {'x': Term('w')},
... {'Q': Formula.parse('y=_')}, {'x', 'z'})
Aw[(y=c->R(w))]

however the following fails since 'Q(c)' is to be substituted with
'y=c' while 'y' is specified to be treated as bound:

>>> Schema._instantiate_helper(
... Formula.parse('Ax[(Q(c)->R(x))]'), {},
... {'Q': Formula.parse('y=_')}, {'x', 'y', 'z'})
Traceback (most recent call last):

...
predicates.proofs.Schema.BoundVariableError: ('y', 'Q')

and the following fails since as 'Q(c)' is to be substituted with
'y=c', 'y' is to become bound by the quantification 'Ay':

Chapter 9 148 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

>>> Schema._instantiate_helper(
... Formula.parse('Ax[(Q(c)->R(x))]'), {'x': Term('y')},
... {'Q': Formula.parse('y=_')})
Traceback (most recent call last):

...
predicates.proofs.Schema.BoundVariableError: ('y', 'Q')

The following succeeds:

>>> Schema._instantiate_helper(
... Formula.parse('Ax[(Q(c)->R(x))]'),
... {'c': Term.parse('plus(d,x)')},
... {'Q': Formula.parse('Ey[y=_]')})
Ax[(Ey[y=plus(d,x)]->R(x))]

however the following fails since as '_' is to be substituted with
'plus(d,y)' in 'Ey[y=_]', the 'y' in 'plus(d,y)' is to become bound
by the quantification 'Ey':

>>> Schema._instantiate_helper(
... Formula.parse('Ax[(Q(c)->R(x))]'),
... {'c': Term.parse('plus(d,y)')},
... {'Q': Formula.parse('Ey[y=_]')})
Traceback (most recent call last):

...
predicates.proofs.Schema.BoundVariableError: ('y', 'Q')

"""
for construct in constants_and_variables_instantiation_map:

assert is_constant(construct) or is_variable(construct)
if is_variable(construct):

assert is_variable(
constants_and_variables_instantiation_map[construct].root)

for relation in relations_instantiation_map:
assert is_relation(relation)

for variable in bound_variables:
assert is_variable(variable)

Task 9.3

Guidelines: This method should naturally be implemented recursively. Two simple base
cases are when formula is an invocation of a relation name that is not a template, or an
equality. The required substitution here is simply given by the substitute() method of
class Formula (and you should completely disregard the set bound_variables in these two
simple base cases). Another simple base case is when formula is a nullary invocation of a
(parameter-less) template relation name. In this case, the formula to which this relation
name is mapped should simply be returned (but only after checking that the free variable
names of this formula are disjoint from the set bound_variables—otherwise an exception
should be raised). The interesting base case is when formula is a unary invocation of a
(parametrized) template relation name, that is, of the form ‘R(t)’ where R is a template
relation name and t is a term. In this case, you should first use the substitute() method
of class Term to make the substitutions in t to obtain the instantiated argument t′ of this
invocation, and then you should “plug” the instantiated argument t′ into the formula φ to
which this template relation name is mapped by using the substitute() method of class
Formula with the substitution map {'_': t′}. (Of course, in this case you should also
check before that the free variable names of φ are disjoint from the set bound_variables—
otherwise an exception should be raised.) The recursion over the formula structure is

Chapter 9 149 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

simple, where the only nontrivial step is the case where formula is a quantification of the
form ‘∀x[φ]’ or ‘∃x[φ]’. In this case, if the quantification variable name is a template then
it should be replaced as specified, and (regardless of whether or not the quantification
variable name is a template) deeper recursion levels should take the quantification into
account, i.e., the quantification variable name (after any replacement) should be included
in the bound_variables set that is passed to deeper recursion levels.
Hint: Make sure that you understand why in each of the calls to any of the substitute()
methods that are detailed in the above guidelines, an empty set should always be specified
as the set of forbidden variable names.

We are now finally ready to implement the main method of the Schema class.

Task 4. Implement the missing code for the method instantiate(instantiation_map)
of class Schema, which takes an instantiation map—a map that maps each template of the
current schema to what it should be instantiated to—and returns the instantiated schema
instance, as explained in Sections 2.1 through 2.3. Templates that are not mapped by
the given instantiation map remain as is in the returned instance. If the instantiation
map specifies a constant, variable, or relation name that is not a template, or if an illegal
instantiation (violating one of the two restrictions from Section 2.3) is requested, then None
is returned instead.

predicates/proofs.py

#: A mapping from constant names, variable names, and relation names to
#: terms, variable names, and formulas respectively.
InstantiationMap = Mapping[str, Union[Term, str, Formula]]
...
class Schema:

...
def instantiate(self, instantiation_map: InstantiationMap) -> \

Union[Formula, None]:
"""Instantiates the current schema according to the given map from
templates of the current schema to expressions.

Parameters:
instantiation_map: mapping from templates of the current schema to

expressions of the type for which they serve as placeholders.
That is, constant names are mapped to terms, variable names are
mapped to variable names (strings), and relation names are
mapped to formulas where unary relation names are mapped to
formulas parametrized by the constant name ``'_'``.

Returns:
The predicate-logic formula obtained by applying the substitutions
specified by the given map to the formula of the current schema:

1. Each occurrence in the formula of the current schema of each
template constant name specified in the given map is substituted
with the term to which that template constant name is mapped.

2. Each occurrence in the formula of the current schema of each
template variable name specified in the given map is substituted
with the variable name to which that template variable name is
mapped.

3. Each nullary invocation in the formula of the current schema of
each template relation name specified in the given map is
substituted with the formula to which that template relation name

Chapter 9 150 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

is mapped.
4. Each unary invocation in the formula of the current schema of

each template relation name specified in the given map is
substituted with the formula to which that template relation name
is mapped, in which each occurrence of the constant name '_' is
substituted with the instantiated argument of that invocation of
the template relation name (that is, the term that results from
instantiating the argument of that invocation by performing all
the specified substitutions on it).

``None`` is returned if one of the keys of the given map is not a
template of the current schema or if one of the following occurs
when substituting an invocation of a template relation name:

1. A free occurrence of a variable name in the formula substituted
for the template relation name becomes bound by a quantification
in the instantiated schema formula, except if the template
relation name is unary and this free occurrence originates in the
instantiated argument of the invocation of the template relation
name.

2. For a unary invocation: a variable name in the instantiated
argument of that invocation becomes bound by a quantification in
the formula that is substituted for the invocation of the
template relation name.

Examples:
>>> s = Schema(Formula.parse('(Q(c1,c2)->(R(c1)->R(c2)))'),
... {'c1', 'c2', 'R'})
>>> s.instantiate({'c1': Term.parse('plus(x,1)'),
... 'R': Formula.parse('Q(_,y)')})
(Q(plus(x,1),c2)->(Q(plus(x,1),y)->Q(c2,y)))
>>> s.instantiate({'c1': Term.parse('plus(x,1)'),
... 'c2': Term.parse('c1'),
... 'R': Formula.parse('Q(_,y)')})
(Q(plus(x,1),c1)->(Q(plus(x,1),y)->Q(c1,y)))

>>> s = Schema(Formula.parse('(P()->P())'), {'P'})
>>> s.instantiate({'P': Formula.parse('plus(a,b)=c')})
(plus(a,b)=c->plus(a,b)=c)

For the following schema:

>>> s = Schema(Formula.parse('(Q(d)->Ax[(R(x)->Q(f(c)))])'),
... {'R', 'Q', 'x', 'c'})

the following succeeds:

>>> s.instantiate({'R': Formula.parse('_=0'),
... 'Q': Formula.parse('x=_'),
... 'x': 'w'})
(x=d->Aw[(w=0->x=f(c))])

however, the following returns ``None`` because 'd' is not a
template of the schema:

>>> s.instantiate({'R': Formula.parse('_=0'),
... 'Q': Formula.parse('x=_'),
... 'x': 'w',

Chapter 9 151 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

... 'd': Term('z')})

and the following returns ``None`` because 'z' that is free in the
assignment to 'Q' is to become bound by a quantification in the
instantiated schema formula:

>>> s.instantiate({'R': Formula.parse('_=0'),
... 'Q': Formula.parse('s(z)=_'),
... 'x': 'z'})

and the following returns ``None`` because 'y' in the instantiated
argument 'f(plus(a,y))' of the second invocation of 'Q' is to become
bound by the quantification in the formula substituted for 'Q':

>>> s.instantiate({'R': Formula.parse('_=0'),
... 'Q': Formula.parse('Ay[s(y)=_]'),
... 'c': Term.parse('plus(a,y)')})

"""
for construct in instantiation_map:

if is_variable(construct):
assert is_variable(instantiation_map[construct])

elif is_constant(construct):
assert isinstance(instantiation_map[construct], Term)

else:
assert is_relation(construct)
assert isinstance(instantiation_map[construct], Formula)

Task 9.4

Guidelines: Call your solution to Task 3 with the appropriate arguments that you will
derive from instantiation_map. Do not forget to check for illegal arguments, and to
handle exceptions raised by _instantiate_helper().

We conclude this section by recalling the Specialization Soundness Lemma of Proposi-
tional Logic, which states that every specialization of a sound inference rule is itself sound
as well. While it would have been nice to have an analogous lemma for Predicate Logic, it
is not clear exactly what such a lemma would mean: that every instance of a sound schema
is sound? But what does it mean for a schema to be sound? In Propositional Logic since
both an inference rule and its specializations are inference rules, this lemma has nontrivial
meaning since there is a definition, that does not involve specialization, for what it means
for an inference rule to be sound. In Predicate Logic, however, formulas are instances of
schemas rather than specializations of formulas, and while it is clear what it means for a
formula to be sound—to hold in every model—it is not clear what it means for a schema to
be sound (without mentioning instantiation). Indeed, what would it mean for a schema to
hold in every model? Therefore, in Predicate Logic, we do not have an analogous lemma,
but rather we define the soundness5 property of schemas so that this statement holds by
definition:

Definition (Sound Formula; Sound Schema). We say that a predicate-logic formula is
sound if it holds in every model that has interpretations for all its constant, function, and
relation names, under any assignment to its free variable names. We say that a schema is
sound if every instance of it (an instance is a predicate-logic formula) is sound.

5What we call sound schemas are often called valid schemas. In this book, however, we use the term
valid for syntactic “correctness” (e.g., valid proof) and the term sound for semantic “correctness,” both
for simplicity and to emphasize the contrast between the syntactic and semantic worlds.

Chapter 9 152 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

In fact, as we will see in the next chapter, the two restrictions on instantiations that
we imposed above are in place to make sure that our the axiom schemas in our axiomatic
system for predicate logic—see the next chapter—are sound: to disallow “instances” of
these schemas that would not hold in all models, and would thus render these schemas not
sound.

Before moving on to defining proofs in Predicate Logic, we note an important difference
in the definition of soundness between Propositional Logic and Predicate Logic. Unlike
in Propositional Logic, where the soundness of any inference rule (or formula) could be
checked using a finite semantic procedure (checking all of the finitely many possible mod-
els by calling is_sound_inference()), in Predicate Logic there may be infinitely many
models for a given formula, and so just semantically checking soundness by going over all
possible models is infeasible.6 We will discuss this point in the next chapter. For the next
section, we will assume that we are somehow assured that some basic schemas or formulas
are sound, and we will wish to use them to prove that other formulas are sound as well.

3 Proofs
We can now move to defining formal deductive proofs in Predicate Logic. Just like in
Propositional Logic, a proof gives a formal derivation of a conclusion from a list of as-
sumptions/axioms, via a set of inference rules, where the derivation itself is a list
of lines, each of which contains a formula that is justified as being (an instance of) an
assumption/axiom, or by previous lines via an inference rule. Of course, here the formulas
in the lines will be predicate-logic (rather than propositional) formulas, and we will have
different axioms and inference rules (and allow different assumptions) than in Proposi-
tional Logic. There are many possible variants for the allowed inference rules and logical
axioms for Predicate Logic. We will use a system that has two inference rules (that have
assumptions) rather than one in Propositional Logic,7 and a handful of axiom schemas
that we will get to know in the next chapter. More specifically, we will allow the following
types of justifications for the lines in our proofs:

• Assumption/Axiom: We may, of course, use any of our assumptions/axioms of
the proof in it, and note that as our assumptions/axioms are given as schemas, any
instance of an assumed/axiomatic schema may be used. For simplicity, we do not
make any formal or programmatic distinction between assumptions and axioms, and
may refer to these both as assumptions and as axioms of the proof, however one
may pragmatically think of assumptions/axioms that are schemas with templates as
playing a part somewhat similar to that of the axioms from our propositional-logic
proofs, while assumptions/axioms that do not have any templates can be thought of
as analogous to regular assumptions in our propositional-logic proofs.

• Modus Ponens: We will keep allowing Modus Ponens, or MP, as an inference rule.
6A certain set of formulas for which there is a finite semantic procedure for verifying their soundness—

tautologies (in Predicate Logic this is no longer a synonym for a sound formula, but rather a special case
of a sound formula)—will be mentioned in Section 3 and discussed in Section 4.

7For simplicity, in our predicate-logic proofs we force what we only used as a convention in our
propositional-logic proofs: that whenever we can “encode” a needed inference rule as an axiom, we do
so. We therefore only allow two inference rules (that have assumptions) that we will need, which it turns
out we cannot encode as axioms without introducing other inference rules: our tried-and-true MP and a
newly introduced inference rule called UG (see below).

Chapter 9 153 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

That is, from φ and ‘(φ→ψ)’ (that are justified in previous proof lines) we may
deduce ψ.

• Universal Generalization: We introduce one new allowed inference rule, named
Universal Generalization, or UG. That is, from any formula φ (that is justified in
a previous proof line), for any variable name x we may deduce ‘∀x[φ]’. For exam-
ple, from the formula ‘(R(x)→Q(x))’ we may deduce ‘∀x[(R(x)→Q(x))]’ as well as
‘∀z[(R(x)→Q(x))]’. As we will see below, the UG rule syntactically encompasses our
semantic treatment of free variable names as being universally quantified.

• Tautology: Finally, we will also allow the use of any predicate-logic tautology
without proof, where a predicate-logic tautology is a formula that is a propositional-
logic tautology when viewed as a propositional formula (see below for the precise
definition). For example, ‘(R(x)→R(x))’ is a (predicate-logic) tautology, and so is
‘(∀x[R(x)]→∀x[R(x)])’, but ‘∀x[(R(x)→R(x))]’ is not a tautology (once again, see
below for the precise definition). While attentive readers would at this point protest
the blatant usage within proofs of something that has to be semantically (albeit
finitely) checked (i.e., whether a given formula is a tautology), we note that allowing
any tautology is purely for simplicity, as we could have alternatively added a small
set of schemas, each representing one of the our axioms from Chapter 6 as assump-
tions/axioms, and “inlined” the proof of any needed tautology using these axioms.
We show how to do this in Section 4 below.

For example, here is a simple proof that uses each of the four justification types defined
above:
Assumption: ‘R(c)’, where c is a template
Conclusion: ‘∀x[~~R(x)]’
Proof:

1. ‘R(x)’. Justification: instance of the assumption, instantiated with c defined as ‘x’.

2. ‘(R(x)→~~R(x))’. Justification: a tautology.

3. ‘~~R(x)’. Justification: MP from from Lines 1 and 2.

4. ‘∀x[~~R(x)]’. Justification: UG of Line 3.
The file predicates/proofs.py defines the Python class Proof that represents such

a proof, and contains a set of assumptions/axioms that are Schema objects, a conclusion
that is a Formula object, and the body of the proof that consists of its lines (see below).

predicates/proofs.py

@frozen
class Proof:

"""An immutable deductive proof in Predicate Logic, comprised of a list of
assumptions/axioms, a conclusion, and a list of lines that prove the
conclusion from (instances of) these assumptions/axioms and from
tautologies, via the Modus Ponens (MP) and Universal Generalization (UG)
inference rules.

Attributes:
assumptions: the assumption/axioms of the proof.
conclusion: the conclusion of the proof.
lines: the lines of the proof.

Chapter 9 154 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
assumptions: FrozenSet[Schema]
conclusion: Formula
lines: Tuple[Proof.Line, ...]

def __init__(self, assumptions: AbstractSet[Schema], conclusion: Formula,
lines: Sequence[Proof.Line]):

"""Initializes a `Proof` from its assumptions/axioms, conclusion,
and lines.

Parameters:
assumptions: the assumption/axioms for the proof.
conclusion: the conclusion for the proof.
lines: the lines for the proof.

"""
self.assumptions = frozenset(assumptions)
self.conclusion = conclusion
self.lines = tuple(lines)

Unlike in Propositional Logic where we had one inner class that represented any line
with any of the two allowed types of line justifications (being an assumption or being the
conclusion of an allowed inference rule), here we will have a different inner class for each
of the four allowed types of line justifications. Each of these four line classes will adhere
to the following “interface”:

1. It is immutable.

2. It has a field called formula that contains the formula justified by the line.

3. It has a method is_valid(assumptions, lines, line_number) that checks if the
line validly justifies its formula given the assumptions/axioms of the proof and given
the other lines of the proof (the method is also given the line number of the current
line within the lines of the proof).8

This unified “interface” allows code that operates on the lines of a proof to handle all lines
similarly and transparently. For example, this allows the following simple implementation
of the method is_valid() of class Proof that we have already implemented for you, which
checks the validity of the current proof:

predicates/proofs.py

class Proof:
...

#: An immutable proof line.
Line = Union[AssumptionLine, MPLine, UGLine, TautologyLine]
...
def is_valid(self) -> bool:

"""Checks if the current proof is a valid proof of its claimed
conclusion from (instances of) its assumptions/axioms.

Returns:
``True`` if the current proof is a valid proof of its claimed
conclusion from (instances of) its assumptions/axioms, ``False``
otherwise.

8The motivation for the design decision of having this method take the assumptions of the proof and
the lines of the proof as two separate arguments rather than just take the entire Proof object as one
argument will become clear in the next chapter.

Chapter 9 155 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
if len(self.lines) == 0 or self.lines[-1].formula != self.conclusion:

return False
for line_number in range(len(self.lines)):

if not self.lines[line_number].is_valid(self.assumptions,
self.lines, line_number):

return False
return True

As in Chapter 4, the main functional aspect of the Proof class is in checking the
validity of a proof. While we have already implemented the method is_valid() of this
class for you, it is missing its core components that deal with verification of the four allowed
justification types—the implementations for the is_valid() methods of the various classes
of proof lines. In the tasks of this section, you will implement these components.

3.1 Assumption/Axiom Lines
The inner class Proof.AssumptionLine is used for proof lines justified as instances of
assumptions/axioms. This class holds, in addition to the formula that it justifies, also the
assumption/axiom (a schema) whose instance this formula is, as well as the instantiation
map according to which this assumption/axiom can be instantiated to obtain this formula
(the map may be empty if the assumption/axiom has no templates).

predicates/proofs.py

class Proof:
...

@frozen
class AssumptionLine:

"""An immutable proof line justified as an instance of an
assumption/axiom.

Attributes:
formula: the formula justified by the line.
assumption: the assumption/axiom that instantiates the formula.
instantiation_map: the mapping instantiating the formula from the

assumption/axiom.
"""
formula: Formula
assumption: Schema
instantiation_map: InstantiationMap

def __init__(self, formula: Formula, assumption: Schema,
instantiation_map: InstantiationMap):

"""Initializes an `Proof.AssumptionLine` from its formula, its
justifying assumption/axiom, and its instantiation map from the
justifying assumption/axiom.

Parameters:
formula: the formula to be justified by the line.
assumption: the assumption/axiom that instantiates the formula.
instantiation_map: the mapping instantiating the formula from

the assumption/axiom.
"""
for construct in instantiation_map:

if is_variable(construct):
assert is_variable(instantiation_map[construct])

Chapter 9 156 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

elif is_constant(construct):
assert isinstance(instantiation_map[construct], Term)

else:
assert is_relation(construct)
assert isinstance(instantiation_map[construct], Formula)

self.formula = formula
self.assumption = assumption
self.instantiation_map = frozendict(instantiation_map)

Task 5. Implement the missing code for the method is_valid(assumptions, lines,
line_number) of class Proof.AssumptionLine, which returns whether the formula of the
current line is validly justified within the context of the specified proof (i.e., whether it
really is an instantiation, as specified, of one of the assumption/axiom of this proof).

predicates/proofs.py

class Proof:
...

class AssumptionLine:
...

def is_valid(self, assumptions: AbstractSet[Schema],
lines: Sequence[Proof.Line], line_number: int) -> bool:

"""Checks if the current line is validly justified in the context of
the specified proof.

Parameters:
assumptions: assumptions/axioms of the proof.
lines: lines of the proof.
line_number: line number of the current line in the given lines.

Returns:
``True`` if the assumption/axiom of the current line is an
assumption/axiom of the specified proof and if the formula
justified by the current line is a valid instance of this
assumption/axiom via the instantiation map of the current line,
``False`` otherwise.

"""
assert line_number < len(lines) and lines[line_number] is self
Task 9.5

Hint: Recall that this method takes the three arguments assumptions, lines, and
line_number in order to take the same arguments as the is_valid() methods of other
proof line classes. You need not use all of these in your solution to this task.

3.2 Modus Ponens (MP) Lines
The inner class Proof.MPLine is used for proof lines justified by the MP inference rule.
This class holds, in addition to the formula that it justifies, also the line numbers of the
previous lines from which this formula is deduced via MP.

predicates/proofs.py

class Proof:
...

@frozen
class MPLine:

"""An immutable proof line justified by the Modus Ponens (MP) inference

Chapter 9 157 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

rule.

Attributes:
formula: the formula justified by the line.
antecedent_line_number: the line number of the antecedent of the MP

inference justifying the line.
conditional_line_number: the line number of the conditional of the

MP inference justifying the line.
"""
formula: Formula
antecedent_line_number: int
conditional_line_number: int

def __init__(self, formula: Formula, antecedent_line_number: int,
conditional_line_number: int):

"""Initializes a `Proof.MPLine` from its formula and line numbers of
the antecedent and conditional of the MP inference justifying it.

Parameters:
formula: the formula to be justified by the line.
antecedent_line_number: the line number of the antecedent of the

MP inference to justify the line.
conditional_line_number: the line number of the conditional of

the MP inference to justify the line.
"""
self.formula = formula
self.antecedent_line_number = antecedent_line_number
self.conditional_line_number = conditional_line_number

Task 6. Implement the missing code for the method is_valid(assumptions, lines,
line_number) of class Proof.MPLine, which returns whether the formula of the current
line is validly justified via an application of MP to the specified previous lines.

predicates/proofs.py

class Proof:
...

class MPLine:
...

def is_valid(self, assumptions: AbstractSet[Schema],
lines: Sequence[Proof.Line], line_number: int) -> bool:

"""Checks if the current line is validly justified in the context of
the specified proof.

Parameters:
assumptions: assumptions/axioms of the proof.
lines: lines of the proof.
line_number: line number of the current line in the given lines.

Returns:
``True`` if the formula of the line from the given lines whose
number is the conditional line number justifying the current
line is '(`antecedent`->`consequent`)', where `antecedent` is
the formula of the line from the given lines whose number is the
antecedent line number justifying the current line and
`consequent` is the formula justified by the current line;
``False`` otherwise.

"""

Chapter 9 158 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assert line_number < len(lines) and lines[line_number] is self
Task 9.6

Hint: Recall again that this method takes the three arguments assumptions, lines, and
line_number in order to take the same arguments as the is_valid() methods of other
proof line classes. You need not use all of these in your solution to this task.

3.3 Universal Generalization (UG) Lines
The inner class Proof.UGLine is used for proof lines justified by the UG inference rule.
This class holds, in addition to the formula that it justifies, also the line number of the
previous line from which this formula is deduced via UG.

predicates/proofs.py

class Proof:
...

@frozen
class UGLine:

"""An immutable proof line justified by the Universal Generalization
(UG) inference rule.

Attributes:
formula: the formula justified by the line.
nonquantified_line_number: the line number of the statement

quantified by the formula.
"""
formula: Formula
nonquantified_line_number: int

def __init__(self, formula: Formula, nonquantified_line_number: int):
"""Initializes a `Proof.UGLine` from its formula and line number of
the statement quantified by the formula.

Parameters:
formula: the formula to be justified by the line.
nonquantified_line_number: the line number of the statement

quantified by the formula.
"""
self.formula = formula
self.nonquantified_line_number = nonquantified_line_number

Task 7. Implement the missing code for the method is_valid(assumptions, lines,
line_number) of class Proof.UGLine, which returns whether the formula of the current
line is validly justified via an application of UG to the specified previous line.

predicates/proofs.py

class Proof:
...

class UGLine:
...

def is_valid(self, assumptions: AbstractSet[Schema],
lines: Sequence[Proof.Line], line_number: int) -> bool:

"""Checks if the current line is validly justified in the context of
the specified proof.

Parameters:

Chapter 9 159 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assumptions: assumptions/axioms of the proof.
lines: lines of the proof.
line_number: line number of the current line in the given lines.

Returns:
``True`` if the formula of the current line is of the form
'A`x`[`nonquantified`]', where `nonquantified` is the formula of
the line from the given lines whose number is the nonquantified
line number justifying the current line and `x` is any variable
name; ``False`` otherwise.

"""
assert line_number < len(lines) and lines[line_number] is self
Task 9.7

Hint: Recall once more that this method takes the three arguments assumptions, lines,
and line_number in order to take the same arguments as the is_valid() methods of
other proof line classes. You need not use all of these in your solution to this task.

3.4 Tautology Lines
We now finally give a precise definition for what a predicate-logic tautology is. Predicate-
logic formulas generalize propositional formulas by replacing the propositional vari-
able names with structured subformulas whose root is a relation name, an equal-
ity, or a quantifier. We define the propositional skeleton of a predicate-logic for-
mula as the propositional formula that is obtained by consistently replacing each of
these subformulas with a new propositional variable name. For example, the propo-
sitional skeleton of ‘(R(x)|Q(y))→R(x))’ is ‘((z1|z2)→z1)’, the propositional skeleton of
‘(~x=s(0)→GT(x,1))’ is ‘(~z1→z2)’, and the propositional skeleton of ‘∀x[(R(x)→R(x))]’
is ‘z1’. We call a predicate-logic formula a (predicate-logic) tautology if its propo-
sitional skeleton (a propositional formula) is a propositional-logic tautology.9 The inner
class Proof.TautologyLine is used for proof lines justified as predicate-logic tautologies.

predicates/proofs.py

class Proof:
...

@frozen
class TautologyLine:

"""An immutable proof line justified as a tautology.

Attributes:
formula: the formula justified by the line.

"""
formula: Formula

def __init__(self, formula: Formula):
"""Initializes a `Proof.TautologyLine` from its formula.

Parameters:

9We use the terminology the propositional skeleton somewhat misleadingly, as there are many proposi-
tional skeletons for any given predicate-logic formula. For example, ‘((z3|z4)→z3)’ is also a propositional
skeleton of the formula ‘(R(x)|Q(y))→R(x))’. There is no problem here, though, since either all proposi-
tional skeletons of a given formula are propositional-logic tautologies, or none are.

Chapter 9 160 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

formula: the formula to be justified by the line.
"""
self.formula = formula

Task 8. Implement the missing code for the method propositional_skeleton() of class
Formula (in the file predicates/syntax.py), which returns a propositional skeleton of the
current (predicate-logic) formula—an object of class propositions.syntax.Formula10—
along with the map from propositional variable names of the returned propositional skele-
ton (e.g., ‘z8’) to the predicate-logic subformulas of the current formula that they have
replaced.

predicates/syntax.py

class Formula:
...

def propositional_skeleton(self) -> Tuple[PropositionalFormula,
Mapping[str, Formula]]:

"""Computes a propositional skeleton of the current formula.

Returns:
A pair. The first element of the pair is a propositional formula
obtained from the current formula by substituting every (outermost)
subformula that has a relation name or quantifier at its root with a
propositional variable name, consistently such that multiple
identical such (outermost) subformulas are substituted with the same
propositional variable name. The propositional variable names used
for substitution are obtained, from left to right (considering their
first occurrence), by calling `next(fresh_variable_name_generator)`.
The second element of the pair is a mapping from each propositional
variable name to the subformula for which it was substituted.

Examples:
>>> formula = Formula.parse('((Ax[x=7]&x=7)|(˜Q(y)->x=7))')
>>> formula.propositional_skeleton()
(((z1&z2)|(˜z3->z2)), {'z1': Ax[x=7], 'z2': x=7, 'z3': Q(y)})
>>> formula.propositional_skeleton()
(((z4&z5)|(˜z6->z5)), {'z4': Ax[x=7], 'z5': x=7, 'z6': Q(y)})

"""
Task 9.8

Guidelines: The propositional variable names in the returned propositional formula
should be named ‘z1’, ‘z2’, . . . , ordered according to their first (left-most) occurrence
in the original predicate-logic formula, with the numbering increasing between successive
calls to propositional_skeleton. Call next(fresh_variable_name_generator) (this
generator is imported for you from predicates/util.py) to generate these variable names.

Task 9. Implement the missing code for the method is_valid(assumptions, lines,
line_number) of class Proof.TautologyLine, which returns whether the formula of the
current line really is a (predicate-logic) tautology.

10To avoid naming conflicts, this class is imported for you into predicates/syntax.py under the name
PropositionalFormula.

Chapter 9 161 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

predicates/proofs.py

class Proof:
...

class TautologyLine:
...

def is_valid(self, assumptions: AbstractSet[Schema],
lines: Sequence[Proof.Line], line_number: int) -> bool:

"""Checks if the current line is validly justified in the context of
the specified proof.

Parameters:
assumptions: assumptions/axioms of the proof.
lines: lines of the proof.
line_number: line number of the current line in the given lines.

Returns:
``True`` if the formula justified by the current line is a
(predicate-logic) tautology, ``False`` otherwise.

"""
assert line_number < len(lines) and lines[line_number] is self
Task 9.9

Hints: Use your solution to Task 8. The function propositions.semantics.
is_tautology() is imported for you into predicates/proofs.py under the name
is_propositional_tautology(). Recall yet again that this method takes the three argu-
ments assumptions, lines, and line_number in order to take the same arguments as the
is_valid() methods of other proof line classes. You need not use these in your solution
to this task.

As already noted, we allow for the use of tautologies without proof purely for simplicity.
Indeed, by proving all needed tautologies and “inlining” the proofs we could have done away
with tautology justifications, as well as with their semantic validation, resulting in purely
syntactic validation of proofs, as one may desire. We will discuss (and implement) this in
Section 4 below.

3.5 The Soundness of Proofs
Similarly to Propositional Logic, we will say that a formula φ is provable from a set of
schemas A, and write A ` φ, if there is a (valid) proof of φ from the assumptions/axioms A
(using assumption lines, MP lines, UG lines, and tautology lines). Very similarly to Propo-
sitional Logic, it is not hard to prove that the above proof system is sound:

Definition (Entailment; Sound Inference). We say that a set of assumptions A entails
a conclusion φ if every model that satisfies each of the assumptions in A (under any
assignment to its free variable names) also satisfies φ (under any assignment to its free
variable names). We denote this by A |= φ.11 We say that the inference of φ from A is
sound if A |= φ. If A is the empty set then we simply write |= φ, which is equivalent to
saying that φ is sound (as defined on page 152).

11As we have remarked also in the first part of this book, the symbol |= is sometimes used also in a
slightly different way: for a model M and a formula φ one may write M |= φ (i.e., M is a model of φ) to
mean that φ evaluates to True in the model M .

Chapter 9 162 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Theorem (The Soundness Theorem for Predicate Logic). Any inference that is provable
via (only) sound assumptions/axioms is sound. That is, if X contains only sound schemas,
and if A ∪X ` φ, then A |= φ.

As programmatically proving the Soundness Theorem for Predicate Logic would not
add any new insights beyond your corresponding programmatic proof of the Soundness
Theorem for Propositional Logic, we will skip the involved programming, and instead
prove the soundness of the Predicate Logic in the traditional mathematical way, using
induction over the lines of a proof:

Proof. Fix a model of (all of the instances of) A. All that we need to verify is that if the
formulas of all previous lines hold in the model, then each type of justification that we
allow results in a formula (for the line that follows) that holds in the model as well:

• Assumption/axiom line: Any instance of any schema in A holds in the model by
definition of the model. Any schema in X is sound, and so by definition any of its
instances is sound and so holds in any model.

• MP line: The reasoning is similar yet a bit more detailed. Fix an assignment to
the free variable names of the formula justified by the line. Arbitrarily augment the
assignment with values for any additional free variable names that occur in the two
justifying formulas (from previous lines)—this does not change the truth value of
the justified formula in the model under that assignment. By definition, each of the
justifying formulas holds in the model under the augmented assignment, so by the
semantic definition of the evaluation of the implication operator, so does the justified
formula. So, the justified formula holds in the model under the original assignment.

• UG line: The justifying formula (from a previous line) holds in the model under any
assignment to its free variable names, and in particular under any assignment to free
occurrences of the variable name over which UG is taken, and that is precisely also
the semantic meaning of the universal quantification in the formula justified by the
UG line.12

• Tautology line: Any assignment to the free variable names of the formula justified
by the line defines, together with the model, a truth value for each subformula whose
root is a relation name, equality, or quantifier. This corresponds to an assignment of
a truth value to each of the propositional variable names of the propositional skeleton
of the justified formula—in other words, this corresponds to a propositional model in
which this propositional skeleton can be evaluated. Since this propositional skeleton
evaluates to True under the latter model (as it is a propositional-logic tautology),
so does the justified formula itself in the original (predicate-logic) model under the
original assignment.

We conclude this section with a brief discussion of why we have chosen (as is custom-
ary) to treat free variable names as universally quantified in formulas—a semantic decision
that we made already at the end of Chapter 7 when we defined what it means for a model
to be a model of a given formula, and which is syntactically captured in our proof system
by the UG axiomatic inference rule. First, why allow free variable names at all? Well,
to avoid clutter. Indeed, we could have done just as well without allowing free variable

12This argument clarifies our cryptic comment above, that UG syntactically encompasses our semantic
treatment of free variable names as being universally quantified.

Chapter 9 163 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

names in formulas if we would have, e.g., allowed every universal closure of a tautology,
that is, every formula of the form ‘∀p1[∀p1[· · · ∀pn[φ]· · ·]]’ where φ is a tautology and the
quantifications are over all of the free variable names of φ, but then, to avoid losing ex-
pressive power, we would have had to define MP in a much more bulky way: to allow
not only to deduce, e.g., ‘~(R(x,y)→Q(x,y))’ from ‘R(x,y)’ and from ‘~Q(x,y)’, but also
to deduce, e.g., ‘∀x[∀y[~(R(x,y)→Q(x,y))]’ from ‘∀x[∀y[R(x,y)]’ and from ‘∀x[∀y[~Q(x,y)]’.
Given this example, it is easy to see that choosing to allow free occurrences of variable
names and to treat them as universally quantified, in combination with allowing UG, gives
a far simpler definition of proof justifications. Second, why do we treat free variable names
as universally quantified and not, say, existentially quantified? Well, since in that case,
while tautologies would still be valid (well, at least as long as there is at least one element
in the universe), the above usage of MP would for example not be valid. Indeed, deducing
‘∃x[∃y[~(R(x,y)→Q(x,y))]’ from ‘∃x[∃y[R(x,y)]’ and from ‘∃x[∃y[~Q(x,y)]]’ is fundamen-
tally flawed (make sure that you understand why). Very similarly, in the next section we
will see that treating free variable names as universally quantified allows us to easily trans-
late a propositional-logic proof of the (propositional-logic tautology) propositional skeleton
of a predicate-logic tautology into a predicate-logic proof for that predicate-logic tautology,
which in fact allows us to translate any predicate-logic proof into a proof without tautology
line justifications.

4 Getting Rid of Tautology Lines
We conclude this chapter by showing that the ability to use tautologies as building blocks
in our proof does not really give our proofs more proving power (and so is for convenience
only). That is, in this section you will show that any (predicate-logic) tautology is provable
using only assumption/axiom and MP line justifications via a set of schemas that corre-
spond to our axiomatic system for Propositional Logic. For convenience, we will focus
in this section only on tautologies whose propositional skeletons contain only the impli-
cation and negation operators, and will therefore only require schemas that correspond
to our axiomatic system for implication and negation.13 These schemas are defined in
predicates/proofs.py.

predicates/proofs.py

Schema equivalents of the propositional-logic axioms for implication and
negation

#: Schema equivalent of the propositional-logic self implication axiom `I0`.
I0_SCHEMA = Schema(Formula.parse('(P()->P())'), {'P'})
#: Schema equivalent of the propositional-logic implication introduction (right)
#: axiom `I1`.
I1_SCHEMA = Schema(Formula.parse('(Q()->(P()->Q()))'), {'P', 'Q'})
#: Schema equivalent of the propositional-logic self-distribution of implication
#: axiom `D`.
D_SCHEMA = Schema(Formula.parse(

'((P()->(Q()->R()))->((P()->Q())->(P()->R())))'), {'P', 'Q', 'R'})
#: Schema equivalent of the propositional-logic implication introduction (left)
#: axiom `I2`.

13Readers who have worked through the optional-reading section on adding additional operators in
Chapter 6 will notice that their solution to that section can be easily used to generalize everything in the
current section to tautologies with arbitrary operators in their propositional skeletons.

Chapter 9 164 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

I2_SCHEMA = Schema(Formula.parse('(˜P()->(P()->Q()))'), {'P', 'Q'})
#: Schema equivalent of the propositional-logic converse contraposition axiom
#: `N`.
N_SCHEMA = Schema(Formula.parse('((˜Q()->˜P())->(P()->Q()))'), {'P', 'Q'})
#: Schema equivalent of the propositional-logic negative-implication
#: introduction axiom `NI`.
NI_SCHEMA = Schema(Formula.parse('(P()->(˜Q()->˜(P()->Q())))'), {'P', 'Q'})
#: Schema equivalent of the propositional-logic double-negation introduction
#: axiom `NN`.
NN_SCHEMA = Schema(Formula.parse('(P()->˜˜P())'), {'P'})
#: Schema equivalent of the propositional-logic resolution axiom `R`.
R_SCHEMA = Schema(Formula.parse(

'((Q()->P())->((˜Q()->P())->P()))'), {'P', 'Q'})

#: Schema system equivalent of the axioms of the propositional-logic large
#: axiomatic system for implication and negation `AXIOMATIC_SYSTEM`.
PROPOSITIONAL_AXIOMATIC_SYSTEM_SCHEMAS = {I0_SCHEMA, I1_SCHEMA, D_SCHEMA,

I2_SCHEMA, N_SCHEMA, NI_SCHEMA,
NN_SCHEMA, R_SCHEMA}

#: Mapping from propositional-logic axioms for implication and negation to their
#: schema equivalents.
PROPOSITIONAL_AXIOM_TO_SCHEMA = {

I0: I0_SCHEMA, I1: I1_SCHEMA, D: D_SCHEMA, I2: I2_SCHEMA, N: N_SCHEMA,
NI: NI_SCHEMA, NN: NN_SCHEMA, R: R_SCHEMA}

Lemma. All of the above schemas are sound.

Proof. It is straightforward to see that each instance of these schemas is a (predicate-
logic) tautology, so the same reasoning as in the proof of the Soundness Theorem above
applies.

Our strategy for proving any predicate-logic tautology (without tautology line justifica-
tions of course) from the above schemas is quite straightforward at a high level: Since the
propositional skeleton of the given predicate-logic tautology is a propositional-logic tau-
tology, by the Tautology Theorem from Chapter 6, this propositional skeleton is provable
via our axiomatic system for Propositional Logic. We will syntactically “translate” this
propositional-logic proof, line by line, into a predicate-logic proof of the given predicate-
logic tautology. The resulting proof will have the exact same structure and arguments
of the propositional-logic proof. However, instead of operating on propositional formulas
constructed out of the propositional variable names of that propositional skeleton as build-
ing blocks, it will operate in exactly the same way on predicate-logic formulas constructed
in exactly the same way out of the predicate-logic subformulas that replace (in the given
predicate-logic tautology) these propositional variable names. Hence, of course, instead of
culminating in proving the propositional skeleton of the given predicate-logic tautology, it
will culminate in proving the given predicate-logic tautology itself.

Concretely, we will “translate” the formula justified by each line of the proof by simply
replacing every occurrence of any of these propositional variable names with the appropri-
ate predicate-logic subformula. What about justifying these translated formulas? First,
we will notice that MP justifications from the propositional-logic proof remain valid fol-
lowing this translation. Second, any specialization of one of our axioms that is used in
the propositional-logic proof gets translated into an instance of the schema equivalent (as
defined above) of this axiom. By both of these, we will indeed be able to validly justify

Chapter 9 165 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

all of the arguments of the “translated” proof. Our first step is to “translate” a proposi-
tional skeleton of a predicate-logic formula into that predicate-logic formula using a given
substitution map.

Task 10. Implement the missing code for the static method
from_propositional_skeleton(skeleton, substitution_map) of class Formula,
which returns a predicate-logic formula formula such that the pair (skeleton,
substitution_map) is a legal return value (not imposing any restrictions on variable
names or their orders, though) of formula.propositional_skeleton().

predicates/syntax.py

class Formula:
...

@staticmethod
def from_propositional_skeleton(skeleton: PropositionalFormula,

substitution_map: Mapping[str, Formula]) \
-> Formula:

"""Computes a predicate-logic formula from a propositional skeleton and
a substitution map.

Arguments:
skeleton: propositional skeleton for the formula to compute,

containing no constants or operators beyond '˜', '->', '|', and
'&'.

substitution_map: mapping from each propositional variable name of
the given propositional skeleton to a predicate-logic formula.

Returns:
A predicate-logic formula obtained from the given propositional
skeleton by substituting each propositional variable name with the
formula mapped to it by the given map.

Examples:
>>> Formula.from_propositional_skeleton(
... PropositionalFormula.parse('((z1&z2)|(˜z3->z2))'),
... {'z1': Formula.parse('Ax[x=7]'), 'z2': Formula.parse('x=7'),
... 'z3': Formula.parse('Q(y)')})
((Ax[x=7]&x=7)|(˜Q(y)->x=7))

>>> Formula.from_propositional_skeleton(
... PropositionalFormula.parse('((z9&z2)|(˜z3->z2))'),
... {'z2': Formula.parse('x=7'), 'z3': Formula.parse('Q(y)'),
... 'z9': Formula.parse('Ax[x=7]')})
((Ax[x=7]&x=7)|(˜Q(y)->x=7))

"""
for operator in skeleton.operators():

assert is_unary(operator) or is_binary(operator)
for variable in skeleton.variables():

assert variable in substitution_map
Task 9.10

Our next and main steps are to handle the translation of axiom justifications, and using
that to translate an entire proof of a propositional skeleton of a predicate-logic formula
into a proof of that formula.

Task 11.

Chapter 9 166 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

a. Implement the missing code for the function
_axiom_specialization_map_to_schema_instantiation_map(
propositional_specialization_map, substitution_map). This function
takes as input a specialization map that specifies how a propositional-logic axiom
axiom from AXIOMATIC_SYSTEM specializes into some specialization specialization,
and a substitution map that specifies how to transform specialization into a
predicate-logic formula formula (i.e., formula is the formula returned by calling
Formula.from_propositional_skeleton(specialization, substitution_map),
a call which raises no assertion errors). The function returns an instantiation map
for instantiating the schema equivalent of axiom (e.g., if axiom is I0, then its schema
equivalent is I0 SCHEMA) into formula.

predicates/proofs.py

def _axiom_specialization_map_to_schema_instantiation_map(
propositional_specialization_map: PropositionalSpecializationMap,
substitution_map: Mapping[str, Formula]) -> Mapping[str, Formula]:

"""Composes the given propositional-logic specialization map, specifying the
transformation from a propositional-logic axiom to a specialization of it,
and the given substitution map, specifying the transformation from that
specialization (as a propositional skeleton) to a predicate-logic formula,
into an instantiation map specifying how to instantiate the schema
equivalent of that axiom into the same predicate-logic formula.

Parameters:
propositional_specialization_map: mapping specifying how some

propositional-logic axiom `axiom` (which is not specified) from
`AXIOMATIC_SYSTEM` specializes into some specialization
`specialization` (which is also not specified), and containing no
constants or operators beyond '˜', '->', '|', and '&'.

substitution_map: mapping from each propositional variable name of
`specialization` to a predicate-logic formula.

Returns:
An instantiation map for instantiating the schema equivalent of `axiom`
into the predicate-logic formula obtained from its propositional
skeleton `specialization` by the given substitution map.

Examples:
>>> _axiom_specialization_map_to_schema_instantiation_map(
... {'p': PropositionalFormula.parse('(z1->z2)'),
... 'q': PropositionalFormula.parse('˜z1')},
... {'z1': Formula.parse('Ax[(x=5&M())]'),
... 'z2': Formula.parse('R(f(8,9))')})
{'P': (Ax[(x=5&M())]->R(f(8,9))), 'Q': ˜Ax[(x=5&M())]}

"""
for variable in propositional_specialization_map:

assert is_propositional_variable(variable)
for operator in propositional_specialization_map[variable].operators():

assert is_unary(operator) or is_binary(operator)
for variable in substitution_map:

assert is_propositional_variable(variable)
Task 9.11a

Hint: You may assume that the keys of propositional_specialization_map are
a subset of {'p', 'q', 'r'}.

Chapter 9 167 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

b. Implement the missing code for the function _prove_from_skeleton_proof(
formula, skeleton_proof, substitution_map). This function takes as input
a predicate-logic formula formula, a propositional-logic proof14 of a propositional
skeleton skeleton of formula via AXIOMATIC_SYSTEM, and a substitution map such
that the pair (skeleton, substitution_map) is a legal return value of a call to
formula.propositional_skeleton(). The function returns a predicate-logic proof
of formula via PROPOSITIONAL_AXIOMATIC_SYSTEM_SCHEMAS that contains only as-
sumption/axiom and MP lines.

predicates/proofs.py

def _prove_from_skeleton_proof(formula: Formula,
skeleton_proof: PropositionalProof,
substitution_map: Mapping[str, Formula]) -> \

Proof:
"""Translates the given proof of a propositional skeleton of the given
predicate-logic formula into a proof of that predicate-logic formula.

Parameters:
formula: predicate-logic formula to prove.
skeleton_proof: valid propositional-logic proof of a propositional

skeleton of the given formula, from no assumptions and via
`AXIOMATIC_SYSTEM`, and containing no constants or operators beyond
'˜', '->', '|', and '&'.

substitution_map: mapping from each propositional variable name of the
propositional skeleton of the given formula that is proven in the
given proof to the respective predicate-logic subformula of the
given formula.

Returns:
A valid predicate-logic proof of the given formula from the axioms
`PROPOSITIONAL_AXIOMATIC_SYSTEM_SCHEMAS` via only assumption lines and
MP lines.

"""
assert len(skeleton_proof.statement.assumptions) == 0 and \

skeleton_proof.rules.issubset(PROPOSITIONAL_AXIOMATIC_SYSTEM) and \
skeleton_proof.is_valid()

assert Formula.from_propositional_skeleton(
skeleton_proof.statement.conclusion, substitution_map) == formula

for line in skeleton_proof.lines:
for operator in line.formula.operators():

assert is_unary(operator) or is_binary(operator)
Task 9.11b

Guidelines: Since there are no assumptions in the given proof, each line is either
the result of an application of MP to previous lines, or a specialization of an axiom.
In either case, “translate” the formula justified by the line using your solution to
Task 10; in the latter case use also your solution to the first part of this task to
“translate” the specialization map.
Hint: To allow you to use the method formula_specialization_map() of class
propositions.proofs.InferenceRule (which also takes an object of this class as
an argument) while maintaining readability, that class is imported for you into
predicates/proofs.py under the name PropositionalInferenceRule.

14To avoid naming conflicts, the class propositions.proofs.Proof is imported for you into
predicates/proofs.py under the name PropositionalProof.

Chapter 9 168 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

You are now in good shape to use your solution of Task 11 to show that every predicate-
logic tautology is provable via the above schemas.

Task 12 (Programmatic Proof of the Predicate-Logic Version of the Tautol-
ogy Theorem). Implement the missing code for the function prove_tautology(
tautology), which proves the given predicate-logic tautology from the axioms
PROPOSITIONAL_AXIOMATIC_SYSTEM_SCHEMAS with only assumption/axiom and MP lines.

predicates/proofs.py

def prove_tautology(tautology: Formula) -> Proof:
"""Proves the given predicate-logic tautology.

Parameters:
tautology: predicate-logic tautology, whose propositional skeleton

contains no constants or operators beyond '->' and '˜', to prove.

Returns:
A valid proof of the given predicate-logic tautology from the axioms
`PROPOSITIONAL_AXIOMATIC_SYSTEM_SCHEMAS` via only assumption lines
and MP lines.

"""
skeleton = tautology.propositional_skeleton()[0]
assert is_propositional_tautology(skeleton)
assert skeleton.operators().issubset({'->', '˜'})
Task 9.12

Hint: To avoid naming conflicts, the function propositions.tautology.
prove_tautology() is imported for you into predicates/proofs.py under the
name prove_propositional_tautology().

The optional-reading section on adding additional operators in Chapter 6, which you
may or may not have worked through, discusses how a solution to that section can be used
to implement the function propositions.tautology.prove_tautology() in a way that
can handle propositional-logic tautologies with arbitrary constant and operators, using an
extended axiomatic system that we denoted by Ĥ (rather than our axiomatic system for
implication and negation from that chapter, which we denoted by H). Even if you have not
worked through that optional-reading section, it should be clear to you that plugging in
such an enhanced implementation of propositions.tautology.prove_tautology() into
your solution to Task 12 (and removing the assertion in the beginning of the function that
you have implemented in that task, that verifies that the only operators in the propositional
skeleton of the given tautology are the implication and negation operators) will immediately
allow your solution to work with tautologies with arbitrary operators in their propositional
skeletons. Your solution to Task 12 proves the following theorem:

Theorem (The Tautology Theorem: Predicate-Logic Version). For every predicate-logic
tautology φ, there exists a valid proof of φ that uses only assumption/axiom and MP line
justifications (and not tautology or UG line justifications), from the schema equivalents of
H (or from the schema equivalents of Ĥ if the propositional skeleton of φ contains any
operators beyond implication and negation).

We therefore obtain that indeed tautology line justifications can be dropped from our
proofs without losing any proving power (as long as we add a few schemas):

Chapter 9 169 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Corollary. If a predicate-logic formula φ is provable from a set of assumptions/axioms A,
then it is provable without tautology line justifications from A as well as the schema equiv-
alents of Ĥ.

Chapter 9 170 Draft; comments welcome

	1 Example of a Proof
	2 Schemas
	2.1 Templates Constants Names
	2.2 Templates Variable Names
	2.3 Templates Relation Names
	2.4 Handling Parametrized Formulas
	2.5 Instantiating Schemas

	3 Proofs
	3.1 Assumption/Axiom Lines
	3.2 Modus Ponens (MP) Lines
	3.3 Universal Generalization (UG) Lines
	3.4 Tautology Lines
	3.5 The Soundness of Proofs

	4 Getting Rid of Tautology Lines

