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Chapter 8:

Getting Rid of Functions and Equality

Taking a bird’s-eye view of Chapter 3, in that chapter we have shown, within the
context of Propositional Logic, that there exists a simple syntactic procedure to modify
sets of “rich formulas” (in that chapter: formulas that use arbitrary operators) to sets of
“less-rich formulas” (say, those using only the operators ‘—’ and ‘~’) without losing any
expressiveness, in the sense that a set of rich formulas has a model if and only if the corre-
sponding set of less-rich formulas has a model (in that chapter, it in fact turned out to be
the exact same model). In this chapter, we will follow a conceptually similar (yet techni-
cally quite different) path, and see that we can essentially eliminate two ingredients from
our predicate-logic expressions with essentially no loss of any expressiveness. Specifically,
you will show that we can syntactically replace all function invocations with invocations
of appropriate relations, and that we can syntactically replace any equality with the invo-
cation of an essentially equivalent relation. The point with all these replacements will be
the same: that we do not lose expressive power in the same sense that if we take a set of
formulas that may contain function invocations and equalities (“rich formulas”), and take
the corresponding set of formulas that results from syntactically replacing all these with
corresponding relation invocations (“less-rich formulas”), then while they do not share the
same models (as was the case in Chapter 3), models can still be translated back and forth
between these sets of formulas, and in particular, the former set of formulas has a model if
and only if the latter does, so the question of “does a given set of formulas have a model”
can encode the same set of problems whether or not we allow the usage of functions and
equalities. This will allow us to use functions and equalities whenever we find it convenient
to do so (e.g., in Chapter 10), and to ignore them when we find it inconvenient to use them
(as will be the case in Chapter 12).

1 Getting Rid of Functions

In this section, we will show that we can eliminate all function invocations from predicate-
logic formulas without losing expressive power. The idea is that a function f : 2" — (2 can
be “encoded” as a relation F' C 2" where for every ay,...,a, € 2 and B € 2, we have
that 8is f(ay,. .., ) if and only if F(8, a1, ..., a,) holds.! Of course, such an “encoding”
relation F' is not arbitrary but has the special property that for every ay, ..., a, € {2 there
exists a single (no more and no less) f € {2 such that F(8,aq,...,a,). So, we will
transform any formula ¢ that contains any invocations of function names f,..., fx to an
essentially equivalent formula that instead contains invocations of corresponding relation
names Fi, ..., Fy. Specifically, each function invocation will be replaced by an invocation
of a corresponding relation that has the same name as the function, except that the first
letter is capitalized. For example, an invocation of the function named ‘f” will be replaced

'In fact, this is how functions are formally defined in the mathematical field known as Set Theory,
where all mathematical objects, including functions, are defined as sets.
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by an invocation of the corresponding relation named ‘F’, an invocation of the function
named ‘f7” by an invocation of the corresponding relation named ‘F7’, and an invocation of
the function named ‘plus’ by an invocation of the corresponding relation named ‘Plus’. In
the file predicates/functions.py, which contains all of the Python functions that you
are asked to implement in this chapter, we have already implemented for you two functions
that perform this translation from function names to relation names and back:

s
def

def

-

( i i B
kpredlcates/functlons.pyJ \

function_name_to_relation_name(function: str) -> str:
"""Converts the given function name to a canonically corresponding relation
name.

Parameters:
function: function name to convert.

Returns:
A relation name that is the same as the given function name, except that
its first letter is capitalized.

nnn

assert is_function(function)

return function[0] .upper() + function[1:]

relation_name_to_function_name(relation: str) -> str:
"""Converts the given relation name to a canonically corresponding function
name.

Parameters:
relation: relation name to convert.

Returns:
A function name “function® such that
“function_name_to_relation_name(function)™ is the given relation name.
nnn
assert is_relation(relation)
return relation[0].lower() + relation[1:] )

Definition (Relation Corresponding to Function; Function-Free Analog of Model).

o Given an n-ary function f defined over a universe {2, we say that a given n+ l-ary

relation F' defined over the same universe {2 is the relation that corresponds to the
function f if for all 5, aq, ..., @, € 2 we have that F(8, a4, ..., a,) holds if and only

if fag,...,qp)is B.

Given a model M that contains functions, we say that a model M’ is the function-
free analog of the model M if M’ is identical to M except that each function inter-
pretation in M is replaced in M’ with the relation interpretation that corresponds to
it (as just defined), where the latter interpretation is assigned to the relation name
that is the same as the function name to which the former interpretation is assigned,
except that the first letter of the relation name is capitalized.

For example, the following model with a single unary function and a single unary
relation. . .:

o Universe 2 = {0, 1, 2}.

o The interpretation of the constant name ‘0’ is 0 € 2.
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o The interpretation of the unary function name ‘inverse’ is inverse(l) =0,
inverse(2) = 1, and inverse(0) = 2.

 The interpretation of the unary relation name ‘IsPrimitive’ is {(2)}.

...1s encoded by its following function-free analog model with a single binary relation that
corresponds to the above unary function, and the same single unary relation:

« Universe, as above, 2 = {0, 1,2}.
o The interpretation of the constant name ‘0’ is 0 € {2 as above.

o The interpretation of the binary relation name ‘Inverse’ is {(O, 1),(1,2), (2, O)}

o The interpretation of the unary relation name ‘IsPrimitive’ is {(2)} as above.

In the next two task, you will transform a given model to its function-free analog model

and back.

Task 1. Implement the missing code for the function
replace_functions_with _relations_in_model(model), which returns the function-free
analog model of the given model that may contain function invocations.

( : ; N
/ kpredlcates/functlons.py) \

def replace_functions_with_relations_in_model (model: Model[T]) -> Model[T]:
"""Converts the given model to a canonically corresponding model without any
function interpretations, replacing each function interpretation with a
canonically corresponding relation interpretation.

Parameters:
model: model to convert, such that there exist no canonically
corresponding function name and relation name that both have
interpretations in this model.

Returns:
A model obtained from the given model by replacing every function
interpretation of a function name with a relation interpretation of the
canonically corresponding relation name, such that the relation

interpretation contains any tuple ("x17,..., xn”) if and only if “x1°
is the output of the function interpretation for the arguments
(Cx2°,...,°xn7).

nnn
for function in model.function_interpretations:

assert function_name_to_relation_name(function) not in \
model.relation_interpretations

\_ # Task 8.1 Y,

Task 2.  Implement the missing code for the function
replace_relations_with_functions_in_model(model, original_ functions), which
returns the model that has interpretations for the given function names (and not for any
other function names), and whose function-free analog is the given model.

[predicates/functions .pyj

def replace_relations_with_functions_in_model (model: Model[T],
original_functions:
AbstractSet[str]) -> \
Union[Model[T], Nonel:
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"""Converts the given model with no function interpretations to a
canonically corresponding model with interpretations for the given function
names, having each new function interpretation replace a canonically
corresponding relation interpretation.

Parameters:
model: model to convert, that contains no function interpretations.
original _functions: function names for the model to convert to,
such that no relation name that canonically corresponds to any of
these function names has an interpretation in the given model.

Returns:
A model “model” with the given function names such that
“replace_functions_with_relations_in_mode(model)~ is the given model, or
““None™ " if no such model exists.

nnn

assert len(model.function_interpretations) ==

for function in original_functions:
assert is_function(function)
assert function not in model.function_interpretations
assert function_name_to_relation_name(function) in \

model.relation_interpretations

K # Task 8.2 j

Hint: You should return None unless for every one of the given function names there is
a correspondingly named relation interpretation in the given model that corresponds to a

function, i.e., if this relation interpretation is n+ l-ary, then for every ay,...,a, in the
universe of the given model, there exists a single (no more and no less) § in the universe
of the given model such that (8, a; ..., a,) is in this relation interpretation.

We now move on to the task of converting a formula that may contain function invoca-
tions to a function-free analog formula that instead contains invocation of the corresponding
relation names. Our goal is that the truth value of the former in any model M be the same
as that of the latter in the function-free analog model of the same model M:

Definition (Function-Free Analog of Formula). Given a formula ¢ that may contain
function invocations, we say that a formula ¢’ that contains no function invocations is
a function-free analog? of the formula ¢ if all of the following hold.

1. ¢’ uses the same relation names as ¢, and in addition, for each function name in ¢,
the formula ¢ also uses a relation with the same name except that the first letter of
the relation name is capitalized.

2. ¢ has the same set of free variable names as ¢.

3. For every model M and for every assignment of elements from the universe of M
to the free variable names of ¢, the truth value of ¢ in the model M under the
given assignment is the same as the truth value of ¢’ in the model M’ that is the
function-free analog of M under the same assignment.

The basic idea is to introduce a new variable name, say z, to hold the value of every func-
tion invocation ‘ f(z)’ in the original formula. We will then replace the usage of the value of

2While we have defined above the function-free analog of a model, we define here a function-free analog
of a formula. While a formula may indeed have more than one function-free analog, we will for simplicity
focus below on a specific function-free analog for any given formula.
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the function invocation by the new variable name (i.e., replace ‘ f(x)” with ‘z’), and add an
assumption that indeed ‘z=f(z)’, however this assumption will be specified using the cor-
responding relation name, i.e., it will be specified as ‘F'(z,x)". For example, a function-free
analog of the formula ‘IsPrimitive(inverse(x))’ (that uses the function and relation names
as in the first model in the above example) is ‘Jz[(Inverse(z,x)&IsPrimitive(z))]” (which
uses the two relation names as in the second model in the above example).

With some more care, we can also handle formulas that contain function invocations
whose arguments are themselves function invocations, such as ‘R(f(g(x))’ In such a case,
we will also introduce new variable names for all “intermediate” function invocations.
To understand how to handle such formulas, let us first formalize the task of taking a
term that contains multiple (hierarchical) function invocations, and breaking it into steps
while introducing explicit variable names for intermediate values. (This is exactly what a
compiler for any programming language does when parsing such a term!)

Task 3. Implement the missing code for the function _compile term(term), which takes
a term whose root is a function invocation (possibly with nested function invocations
further down the term tree) and returns “steps” that “break down” the given term, each
of which is a formula of the form ‘y=f(xy,...,z,)’, where y is a new variable name, f is
a function name, and each z; is either a constant name or a variable name, such that the
left-hand-side variable name of the last step (the “y of the last step”) evaluates to the value
of the whole given term.

( : ; N
/ kpredlcates/functlons.py) \

def _compile_term(term: Term) -> List[Formula]:
"""Syntactically compiles the given term into a list of single-function
invocation steps.

Parameters:
term: term to compile, whose root is a function invocation, and which

contains no variable names starting with "~z

Returns:
A list of steps, each of which is a formula of the form
'*y>="f"(Cx17,...,’xn")', where y  is a new variable name obtained by
calling “next(fresh_variable_name_generator)”, “f° is a function name,

and each of the "x i is either a constant name or a variable name. If
"x i is a new variable name, then it is also the left-hand side of a
previous step, where all of the steps "leading up to" “x1° precede those
"leading up" to "x2°, etc. If all the returned steps hold in any model,
then the left-hand-side variable name of the last returned step
evaluates in that model to the value of the given term.

nnn

assert is_function(term.root)

for variable in term.variables():
assert variable[0] != 'z'

\_ # Task 8.3 Y

Example: Given the term ‘f(g(g(0)),h(x))’, the function should return the formulas
‘z1=g(0)’, ‘z2=g(z1)’, ‘z3=h(x)’, and ‘z4=£(22,z3)’, in this order, coinciding with the fol-
lowing break-down of the term:
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Guidelines: The new variable names used in the returned steps, in the order of the steps,
should be generated by calling next (fresh_variable name_generator) (this generator,
which makes sure that numbering continues to increase between successive calls to your
function, is imported for you from logic_utils.py®), and you may assume that variable
names generated this way do not occur anywhere in the given term.

We can now see how the “compiler” that you implemented in Task 3 can be used to
find a function-free analog of a formula whose root is a relation invocation whose argu-
ments contain multiple nested function invocations, such as ‘R(f(g(x)),h(2,y),3)’. Using
this formula as an example, note that for the term ‘f(g(x))’, your “compiler” returns the
two steps ‘zl=g(x)" and ‘z2=f(z1)’, and for the term ‘h(2,y)’, your “compiler” subsequently
returns the single step ‘z3=h(2,y). The function-free analog formula will go over all the
new variable names (where it will go over the relation invocation arguments in left-to-right
order, and for each argument it will go over the list of new variable names created for
it in the order of the steps returned by your “compiler”). For each new variable name
over which it goes, the function-free analog formula will existentially (3) quantify over it,
stating that relation invocation that corresponds to the function invocation in the step for
this variable name should be satisfied, and that all of these, as well as the root relation
invocation being satisfied, should hold simultaneously. For example, in our example the
equivalent resulting formula is

‘Fz1[(G(z1,x)&322[(F(22,21)&323[(H(23,2,y) &R (22, 23, 3))])])]’

Finding a function-free analog of a formula whose root is an equality is very similar (in this
context, an equality is no different than any other relation invocation), and finally finding
function-free analogs of composite formulas (i.e., formulas whose root is a Boolean operator
or a quantification) can be done recursively, by respectively compositing the function-free
analogs of their subformulas.

Task 4. Implement the missing code for the function
replace_functions with _relations_in formula(formula), which returns the
function-free analog formula (constructed as described above) of the given formula that
may contain function invocations.

/ [predicates/functions .pyj

def replace_functions_with_relations_in_formula(formula: Formula) -> Formula:
"""Syntactically converts the given formula to a formula that does not
contain any function invocations, and is "one-way equivalent" in the sense
that the former holds in a model if and only if the latter holds in the
canonically corresponding model with no function interpretations.

Parameters:
formula: formula to convert, which contains no variable names starting
with "7z ", and such that there exist no canonically corresponding
function name and relation name that are both invoked in this
formula.

Returns:
A formula such that the given formula holds in any model "model” if and
only if the returned formula holds in
“replace_function_with_relations_in_model (model) " .

3S0 a second call to _compile_term() with the same term ‘f(g(g(0)),h(x))’ from the above example will
return the formulas ‘z5=g(0)’, ‘z6=g(z5)’, ‘z7=h(x)’, and ‘z8=£(26,27) if implemented using this generator,
which is the behavior that we seek.
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assert len({function_name_to_relation_name(function) for
function,arity in formula.functions()}.intersection(
{relation for relation,arity in formula.relations()})) ==
for variable in formula.variables():
assert variable[0] != 'z'

K # Task 8.4 j

Hints: As with many (but not all) other tasks in this part of the book, here too it is
possible to have the exact same code that handles relation names also handle equality, and
you should do precisely this. Use recursion for formulas that have quantifiers or Boolean
operators at their root.

Your solution to Task 4 guarantees the following: for every model model, if
we take new_formula=replace_functions with_relations_in_ formula(formula) and
new_model=replace_functions _with relations_in_model(model), then new_model is
a model of new_formula (recall that we mean by this that new_formula holds in
new_model) if and only if model is a model of formula. Note that this only gives us
a guarantee regarding the truth values of the function-free new_formula in a model that
is a function-free analog of some model (as opposed to in a model that is not the function-
free analog of any model), that is, in a model where the interpretations of the new re-
lation names correspond to functions. In particular, it is possible that formula has no
model whereas new_formula has a model (in which some new relations names have in-
terpretations that do not correspond to functions). We will now add a verification of
this property of relations, thereby ensuring that the interpretation of each new relation
name, in any model of the function-free new_formula (and not only in those returned
by replace_functions with_relations_in_model()), indeed corresponds to some func-
tion.

Note that, e.g., for the interpretation of a binary relation name F' to indeed correspond
to some unary function, we need both that 1) for every a € {2 there exists § € (2
such that the function maps « to 8: ‘Vx[Jz[F(z,x)]]’, and 2) there exists only one such /3:
‘(Wx[(Vz1[(Vz2[((F(21,x)&F(22,x))—2z1=22)])])])’. So, we will construct a set of formulas by
starting with the function-free equivalent of some original formula. For each relation name
that corresponds to a function name in the original formula, we will then add to this set
a formula—the conjunction of the above two formulas, modified as appropriate according
to the arity of the relation name*—that ensures that the interpretation of this relation
name indeed corresponds to some function. This will guarantee that the obtained set of
formulas has the property that any model of this set can be decoded into a model of the
original formula (i.e., is returned by replace_functions_with_relations_in_model ()
given some model). We will now implement this procedure, not only for a single original
formula, but more generally for a set of original formulas.

Task 5. Implement in the missing code for the function
replace_functions_with relations_in formulas(formulas), which returns for-
mulas containing 1) a function-free analog of each of the given formulas, obtained via
Task 4, and 2) for every function name that appears in the given formulas, a formula
that verifies that the interpretation of the corresponding relation name that replaced it
indeed corresponds to a function.

4Throughout this book, whenever you are given a set of formulas, you may always assume that any
function name or relation name that appears multiple times in these formulas is always invoked with the
same arity.
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( : : B
Ve kpredlcates/functlons.py) ~

def replace_functions_with_relations_in_formulas(formulas:
AbstractSet [Formula]) -> \
Set [Formula] :
"""Syntactically converts the given set of formulas to a set of formulas
that do not contain any function invocations, and is "two-way
equivalent" in the sense that:

1. The former holds in a model if and only if the latter holds in the
canonically corresponding model with no function interpretations.

2. The latter holds in a model if and only if that model has a
canonically corresponding model with interpretations for the function
names of the former, and the former holds in that model.

Parameters:
formulas: formulas to convert, which contain no variable names starting
with “"z° 7, and such that there exist no canonically corresponding
function name and relation name that are both invoked in these
formulas.
Returns:

A set of formulas, one for each given formula as well as one additional
formula for each relation name that replaces a function name from the
given formulas, such that:

1. The given formulas hold in a model "model” if and only if the
returned formulas hold in
“replace_functions_with_relations_in_model (model) " .

2. The returned formulas hold in a model “model™ if and only if
“replace_relations_with_functions_in_model (model,original_ functions) ",
where “original_functions®™ are all the function names in the given
formulas, is a model and the given formulas hold in it.

nnn
assert len(set.union(*[{function_name_to_relation_name(function) for
function,arity in formula.functions()}
for formula in formulas]).intersection(
set.union(*[{relation for relation,arity in
formula.relations()} for
formula in formulas]))) ==
for formula in formulas:
for variable in formula.variables():
assert variable[0] != 'z'

\\ # Task 8.5 J/

For every formula set formulas and its corresponding function-free formula set
new_formulas=replace_functions_with_relations_in_formulas(formulas), we now
have a two-way assurance. First, as before, we have for every model model of formulas that
replace_functions_with _relations_in model(model) is a model of new_formulas.
Second, we now also have the other direction: if functions is the set of function
names used in formulas, then we also have for every model model of new_formulas
that replace_relations_with_ functions_in model(model, functions) is a model of
formulas. Therefore, there exists a model of the set formulas (that may contain function
invocations) if and only if there exists a model of the function-free set new_formulas. Your
solutions in this chapter so far therefore prove the following theorem:

Theorem (Redundance of Functions). For every set F' of formulas (which may contain
function invocations), there exists a set F' of function-free formulas obtainable from F wvia

Chapter 8 130 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

an efficient syntactic procedure, such that F' has a model if and only if F' has a model.
Moreover, given a model of F' there is a simple natural way to convert it into a model of
F' and vice versa.

Admittedly, the above theorem is stated in a somewhat informal manner. While as
computer scientists we have a reasonable understanding of the word “efficient” in “efficient
syntactic procedure,” the phrase “simple natural way” justifiably seems less grounded and
precise. We intentionally do not want to dive too deeply into the precise meaning of this
phrase in this book, but will note that the idea is that there is a one-to-one correspondence
between models of ' and models of F” (so in a strong sense the sets of the models that F
and F’ can represent are “as rich”) that has many additional desirable properties beyond
the ability to convert models back and forth. For example, this correspondence is local
in the sense that given a model of F’, to find the interpretation of a single function
name (or other construct name) in the corresponding model of F' we need only look at a
single interpretation in F’ and do not need any “global” information about F’. Interested
readers are advised to seek out a text on Model Theory, and specifically read about
homomorphisms between models, for a deeper look into the beautiful world that here
we merely peek into.

2 Getting Rid of Equality

We now move to the second simplification of this chapter, eliminating equalities in
formulas. Since you have already shown how to eliminate function invocations from
formulas without losing any expressive power, we will assume henceforth that our
formulas and models are function-free. Unlike in the previous section, we will start
with transforming formulas as in Task 5, and only then move to converting models
back and forth as in Tasks 1 and 2. Our strategy here for transforming individual
formulas into equality-free ones is very simple: replace any equality ‘7=c’ (where
7 and o are terms) with a matching invocation of the relation name ‘SAME’ i.e.,
‘SAME(7,0)’. Once again, we must also add some formulas that force ‘SAME’ to have
the intended interpretation, but the catch is that we cannot use the equality symbol
in these formulas (otherwise, we will have gained nothing). So, which conditions that
can be expressed without using equalities capture the meaning of the equality relation?
First, it is clear that ‘SAME’ should have the basic properties of reflexivity (SAME(x,x)),
symmetry (SAME(x,y) iff SAME(y,x)), and transitivity (SAME(x,y) and SAME(y,z)
imply SAME(x,z)). These do not suffice, however. Indeed, the main requirement that
will connect this new relation name to its intended interpretation is that ‘SAME(7,0)’
implies that in every formula where we have 7 we can replace it by ¢. For any unary rela-
tion name R, this would mean requiring that ‘Vx[Vy[(SAME(x,y)—(R(x)—=R(¥)))]]’,
for any  binary relation name ‘R’ it would mean requiring that
Vx1[Vx2[Vy1[Vy2[((SAME(x1,y1)&SAME(x2,y2))—(R(x1,x2)—R(y1,y2)))]]]]’ etc.
If we introduce such a formula for each relation name that our formulas contain, then we
are assured that in every formula we can replace any term by any “SAME term,” without
changing the truth value of the formula.

Task 6. Implement the missing code for the function
replace_equality_with SAME in formulas(formulas), which returns equality-free
formulas containing 1) the equality-free analog of each of the given formulas (obtained by
replacing every equality with a matching invocation of the relation name ‘SAME’), and
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2) additional formulas that ensure that ‘SAME’ has the required semantics (reflexivity,
symmetry, transitivity, and being respected by all relations).

( i i B
/ kpredlcates/functlons.pyJ \

def replace_equality_with_SAME_in_formulas(formulas: AbstractSet[Formula]) -> \
Set [Formula] :
"""Syntactically converts the given set of formulas to a canonically
corresponding set of formulas that do not contain any equalities, consisting
of the following formulas:

1. A formula for each of the given formulas, where each equality is
replaced with a matching invocation of the relation name 'SAME'.

2. Formula(s) that ensure that in any model of the returned formulas, the
interpretation of the relation name 'SAME' is reflexive, symmetric,
and transitive.

3. For each relation name from the given formulas, formula(s) that ensure
that in any model of the returned formulas, the interpretation of this
relation name respects the interpretation of the relation name 'SAME'.

Parameters:
formulas: formulas to convert, that contain no function names and do not
contain the relation name 'SAME'.

Returns:
The converted set of formulas.
nmmn
for formula in formulas:
assert len(formula.functions()) ==
assert 'SAME' not in \
{relation for relation,arity in formula.relations()}

\\ # Task 8.6 J/

Having defined the transformation for formulas, similarly to the previous section we now
wish to convert a model of the original formulas to a model of the equality-free formulas,
in a way that preserves the truth value.

Task 7. Implement the missing code for the function
add_SAME as_equality_in_model (model), which returns a model that is identical
to the given model, with the addition of an interpretation of the relation name ‘SAME’
that behaves like equality.

( ; : B
Ve Kpredlcates/functlons.py) ~

def add_SAME_as_equality_in_model (model: Model[T]) -> Modell[T]:
"""Adds an interpretation of the relation name 'SAME' in the given model,
that canonically corresponds to equality in the given model.

Parameters:
model: model that has no interpretation of the relation name 'SAME', to
add the interpretation to.

Returns:
A model obtained from the given model by adding an interpretation of the
relation name 'SAME', that contains precisely all pairs ("x°, x") for

every element “x° of the universe of the given model.
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assert 'SAME' not in model.relation_interpretations
# Task 8.7

Your solutions to Tasks 6 and 7 guarantee that for every formula set
formulas and its corresponding equality-free formula set new_formulas=
replace_equality_with_SAME_in formulas(formulas), for every model
model it is the case that model is a model of formulas if and only if
add_SAME_as_equality_in_model (model) is a model of new_formulas. Once again,
though, similarly to the previous section, we need to make sure that we have not
introduced any additional models when removing equality. As in Task 2, we will do so
by showing that every model of the new set of equality-free formulas can be converted
into a model of the original set of formulas. When going in this “opposite direction,” a
conceptual difficulty arises: the semantics of equality is that for any two terms 7 and o,
the truth value of the formula ‘r=¢" is True if and only if the values of these two terms
are both the exact same element of (2. There is no way to force such semantics without
the equality symbol! This means that in some sense, the new set of formulas supports
richer models not supported by the original set of formulas. For example, consider the
formula ‘Vx[Vy[x=y]]. It is easy to see that every model that satisfies it must have only
a single element in its universe. There is no way to force a model to have only a single
element without using equality: the formula ‘Vx[Vy[SAME(x,y)]]’ can be satisfied by a
model with two elements (and in fact, can be satisfied by a model with any number of
elements!), even if we demand that the interpretation of ‘SAME’ be reflexive, symmetric,
and transitive. Nevertheless, the different elements in such a model really are the same as
each other as we have put formulas in place requiring that they act in exactly the same
way in every possible formula.

In general, whenever a model contains different elements that are “the SAME” as each
other, if we keep only a single representative in our model for each such set of items that
are “the SAME” as each other, then we force equality to behave like ‘SAME’. Formally,
the interpretation of ‘SAME’ partitions the elements of the universe into equivalence
classes, and our new model will have a single representative for each equivalence class. As
an example, consider the following model:

e Universe 2 ={0,...,10}.
e The interpretation of the constant name ‘0’ is 0 € (2.
e The interpretation of the constant name ‘4’ is 4 € (2.

e The interpretation of the ternary relation name ‘Plus’ is such that for every
a, 3,7 € £2, we have that (v,a, ) is in the interpretation of ‘Plus’ if and only if
v = a + 8 modulo 4.

o The interpretation of the ternary relation name ‘Times’ is such that for every
a, 3,7 € 2, we have that (v, «,3) is in the interpretation of ‘Times’ if and only
if ¥ = a -  modulo 4.

o The interpretation of the (binary) relation name ‘SAME’ is such that for every
a, f € 2, we have that («, §) is in the interpretation of ‘SAME’ if and only if o = 3

modulo 4.
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It is straightforward to verify that the interpretation of ‘SAME’ in this model is reflexive,
symmetric, transitive, and respected by both other relations. For the latter property, note
that indeed if a,a’ € 2 are “the SAME,” 3,5 € §2 are “the SAME,” and ~,7" € 2
are “the SAME,” then (v, «, ) is in the interpretation of one of these relation names if
and only if (7/,a, ') is in the interpretation of that relation name. It is straightforward
to see that the interpretation of the relation name ‘SAME’ in the above model has four
equivalence classes: {0,4,8},{1,5,9},{2,6,10},{3,7}. So, taking one representative from
each equivalence class, say, 8 for the first, 1 for the second, 6 for the third, and 3 for the
fourth, we obtain the following model, where the interpretation of all relation names (with
respect to the chosen representatives of the various equivalence classes) are preserved, but
equality behaves like ‘SAME’ does in the original model:

e Universe 2 = {8,1,6,3}.

o The interpretation of the constant name ‘0’, and the interpretation of the constant
name ‘4’ are both 8 € {2 (since 8 is the representative of the equivalence class that
contains both original interpretations 0 and 4).

e The interpretation of the ternary relation name ‘Plus’ is such that for every
a, 3,7 € £2, we have that (v,a, ) is in the interpretation of ‘Plus’ if and only if
v = a + [ modulo 4.

o The interpretation of the ternary relation name ‘Times’ is such that for every
a, 3,7 € 2, we have that (v, «, ) is in the interpretation of ‘Times’ if and only
if v = a - modulo 4.

Of course, had we chosen 0 as the representative of the first equivalence class, 1 of the
second, 2 of the third, and 3 of the fourth, we would have gotten what seems like a “nicer”
model with 2 = {0,1,2,3}, with ‘0’ interpreted as 0 € (2, and with ‘Plus’ and ‘Times’
interpreted respectively as addition and multiplication modulo 4 (and with ‘4’ interpreted
as 0 € {2, which is 4 modulo 4), but looking more closely we notice that these two models
are in fact identical up to “renaming” the four elements of the model, so the latter model
only seems “nicer” to us, but mathematically both are equivalent and we will be as happy
with either of them.

It is worth examining what would have gone wrong had we just removed the
relation name ‘SAME’ from the original model without shrinking the universe to
contain only one representative from each equivalence class. First and more obvi-
ously, we would have had a problem with formulas that contain both constants: the
formula ‘SAME(0,4)" holds in the original model while the corresponding formula
‘0=4" would not have held in the new model had we not shrunk its universe. (This
formula does hold in the new model with only one representative from each equiva-
lence class, since the interpretations of both constants ‘0’ and ‘4’ in that model are
the same: the universe element 8 € (2.) There is another more subtle yet more

fundamental problem with not shrinking the universe, though: consider the formula
‘Fv[Iw[Ix[Ty[TFz[(~SAME(v,w) & (~SAME(v,x)&- - - (~SAME(x,2)&~SAME(y,z))- - - )]]]]]’

where the conjunction goes over all 10 pairs of distinct variable names out of ‘v’... ‘7",
checking that the interpretations of no two of these variable names are “the SAME.” This
formula does not hold in the original model. Nonetheless, the corresponding formula
‘Fv[Iw[Ix[Ty[Tz](~v=w& (~v=x&- - - (~x=z&~y=2)---))]]]]]’ would have held in the new

model had we not shrunk its universe. (This formula does not hold in the new model with

Chapter 8 134 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

only one representative from each equivalence class, since it universe does not contain five
distinct elements.) Indeed, shrinking the universe to contain only one representative from
each equivalence class is the only way to force equality in the new model to behave like
‘SAME’ does in the original model. Your final task in this chapter is to implement this
conversion.

Task 8. Implement the missing code for the function
make_equality_as_SAME_in_model(model), which returns an analog of the given
model without the interpretation of ‘SAME’, and containing exactly one representative
from each equivalence class of the interpretation of ‘SAME’ in the given model. It
is required that for every formula set formulas and its corresponding equality-free
formula set new_formulas=replace_equality_with_SAME in formulas(formulas), for
every model model it is the case that model is a model of new_formulas if and only if
make equality_as_SAME in model(model) is a model of formulas.

( ; i 2
/ Kpredlcates/functlons.py) \

def make_equality_as_SAME_in_model (model: Model[T]) -> Model[T]:
"""Converts the given model to a model where equality coincides with the
interpretation of 'SAME' in the given model, in the sense that any set of
formulas holds in the returned model if and only if its canonically
corresponding set of formulas that do not contain equality holds in the
given model.

Parameters:
model: model to convert, that contains no function interpretations, and
contains an interpretation of the relation name 'SAME' that is
reflexive, symmetric, transitive, and respected by the
interpretations of all other relation names.

Returns:
A model that is a model of any set “formulas® if and only if the given
model is a model of “replace_equality_with_SAME(formulas) . The universe
of the returned model corresponds to the equivalence classes of the
interpretation of 'SAME' in the given model.

nnn

assert 'SAME' in model.relation_interpretations and \

model.relation_arities['SAME'] ==
assert len(model.function_interpretations) ==
\_ # Task 8.8 Y

The guarantees of your solutions to Tasks 7 and 8 prove the following theorem:

Theorem (Redundance of Equality). For every set F' of formulas (which may contain
equality), there exists a set F' of equality-free formulas obtainable from F via an efficient
syntactic procedure, such that F' has a model if and only if F' has a model. Moreover,
given a model of F' there is a simple natural way to convert it into a model of F' and vice
versa.

Once again, we resort to an admittedly informal statement of the above theorem. Recall
that we have remarked that in the Theorem on Redundance of Functions, “simple natural
way” in particular meant that the correspondence between models of F' and models of F’
was one-to-one. To make our informality in the above theorem even worse, by now you
know that when removing equality, the correspondence between models of F' and models
of F' is not one-to-one (indeed, several models of F’ will be mapped to the same model
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of F since we are collapsing every equivalence class into a single representative, and for
example it is impossible to unambiguously recover the size of each equivalence class after it
had been collapsed). Nonetheless, it turns out that this correspondence maintains many of
the natural properties of one-to-one correspondences—and in particular still, in a precise
strong sense, the models that F' and F’ can represent are “as rich”—as well as many
additional desirable properties such as the locality property discussed above. Once again,
interested readers are advised to seek out a text on Model Theory (and specifically on
homomorphisms between models) for a more detailed and formal discussion.
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