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Abstract. The Rényi divergence is a measure of divergence between
distributions. It has recently found several applications in lattice-based
cryptography. The contribution of this paper is twofold.

First, we give theoretic results which renders it more efficient and easier
to use. This is done by providing two lemmas, which give tight bounds
in very common situations — for distributions that are tailcut or have
a bounded relative error. We then connect the Rényi divergence to the
max-log distance. This allows the Rényi divergence to indirectly benefit
from all the advantages of a distance.

Second, we apply our new results to five practical usecases. It allows us to
claim 256 bits of security for a floating-point precision of 53 bits, in cases
that until now either required more than 150 bits of precision or were
limited to 100 bits of security: rejection sampling, trapdoor sampling
(61 bits in this case) and a new sampler by Micciancio and Walter. We
also propose a new and compact approach for table-based sampling, and
squeeze the standard deviation of trapdoor samplers by a factor that
provides a gain of 30 bits of security in practice.

Keywords: Rényi Divergence, Security Proofs, Lattice-Based Cryptography,
Gaussian Sampling.

1 Introduction

An essential tool in cryptography is the use of divergence measures to prove
the security of cryptographic schemes. As an introductory example, we consider
the statistical distance A. It verifies a probability preservation property, which
states that for any two distributions P, Q and any measureable event E over the
support of P and Q, we have

Q(E) = P(E) — A(P, Q). (1)

In a cryptographic context, a useful abstraction is to modelize a cryptographic
scheme as relying on some ideal distribution Q and the success of an attacker
against this scheme as an event E. If A(P, Q) is negligible, (1) will allow to say
that a scheme secure with Q will stay secure if one replaces Q by an “imperfect”
distribution P. Many other measures can be used to provide security arguments
in cryptography (see e.g. [Cac97]).
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The Rényi divergence. In the subfield of lattice-based crytography, the Rényi
divergence [Ré61] has been used for cryptographic proofs in several recent works.
Noted R,, it is somewhat trickier to use than the statistical distance. First, it
is parameterized by a value a € [0, +0o0], and has different properties depending
on a. It is not a distance, as it is asymmetric and does not verify the triangle
inequality; the lack of these two properties can be problematic in security proofs.
Interestingly, it also verifies a probability preservation property. For any event
E C Supp(Q) and a € (1,+00), we have

Q(E) = P(E)" "V /R,(P|Q). (2)

(2) is not additive like (1), but rather multiplicative. We will later see that in
the context of search problems, it allows to give tighter bounds in practice.

1.1 Floating-Point in Lattice-Based Cryptography

Lattice-based cryptography has proven to be a serious candidate for post-quantum
cryptography. It is efficient and allows to instantiate a wide range of crypto-
graphic primitives. Some lattice-based schemes [DDLL13,ADPS16] have even
already been deployed in large-scale projects.!

A notable characteristic of lattice-based cryptography is that it often makes
extensive use of floating-point arithmetic, for several reasons.

Gaussians. The first vector for the use of floating-point arithmetic in lattice-
based cryptography is the widespread need to sample from discrete Gaussian dis-
tributions. When done by standard approaches like precomputed tables, [Peil0]
the required precision is rather high and renders the use of these tables cumber-
some if not impractical.

On the other hand, bitwise approaches [DDLL13] have been developed to
circumvent these floating-point issues, but they can be somewhat tricky to im-
plement.

Rejection sampling. In the early lattice-based signature schemes GGH [GGHI7]
and NTRUSign [HHGP 03], there existed a correlation between the secret key
and the distribution of the signatures. This subsequently led to several key-
recovery attacks [GJSS01,GS02,NR06,Wan10,DN12b] which broke the signature
schemes and their evolutions.

A provably secure countermeasure was introduced by Lyubashevsky [Lyu09].
The idea is to use rejection sampling as a final step, in order to “factor out” the
correlation between the key and the distribution of the signatures.

This paradigm was instantiated in [Lyul2,GLP12,DDLL13,PDG14,POG15].
Now, in the existing implementations [DDLL13], this step is not done in floating-
point. Because of precision concerns, another approach based on combining
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Bernoulli samples was chosen. We will see in section 4.3 that this approach
also has several drawbacks.

Trapdoor sampling. In lattice-based cryptography, the tool that makes the
most intensive use of floating-point arithmetic is arguably trapdoor sampling.
Introduced by Gentry et al. [GPV08], it is a cornerstone of lattice-based cryptog-
raphy, as it has numerous applications such as hash-and-sign and identity-based
encryption in the random oracle model [GPV08], signatures in the standard
model [CHKP10,Boy10], hierarchical IBE [CHKP10,ABB10a,ABB10b], attribute-
based encryption [Boy13,BGG*14], and much more.

The existing algorithms [Kle00,GPV08,Peil0,MP12] heavily rely on floating-
point arithmetic and they perform between O(nlogn) and O(n?) floating-point
operations. However, the best available estimations require 150 bits of precision
for a security of 256 bits, which is completely impractical.

As we can see, floating-point arithmetic can be found everywhere in lattice-
based cryptography. However, if often comes with high precision, which makes
it impractical as it stands.

1.2 Ouwur Contributions

Theory. We provide theoretic tools related to the use of the Rényi divergence
in cryptographic proofs. They make it not only simpler to use, but also very
efficient in some easily-identifiable situations.

1. We establish two lemmas that bound the Rényi divergence of related distri-
butions in two very common situations in lattice-based cryptography. The
first lemma concerns tailcut distributions, and for this reason we call it the
tailcut lemma. The second one involves distributions which relative error is
bounded, so we call it the relative error lemma. The second lemma is par-
ticularly powerful in the sense that it often allows to take very aggressive
parameters.

2. We show that taking a = 2)\ + 1 allows to have tight and efficient Rényi
divergence-based security arguments for cryptographic schemes based on
search problems. We also derive simple and explicit conditions on distri-
butions that allow to easily replace a distribution by another in this context.

3. A simple and versatile distance of divergence was recently introduced by Mic-
ciancio and Walter [MW17], the max-log distance. We establish a “reverse
Pinsker” inequality between it and the Rényi divergence. An immediate con-
sequence is that we may benefit from the best of both worlds: the versatility
of the max-log distance, and the power of the Rényi divergence.



Practice. Our results are not purely theoretic. In section 4, we present five
applications of them in lattice-based cryptography.

1. We start by the study of a sampler recently introduced by Micciancio and
Walter [MW17]. We show that for this sampler, the security analysis pro-
vided by [MW17] can be improved and we can claim a full security of 256
bits instead of the 100 bits claimed in [MW17].

2. We revisit the table-based approach (see e.g. [Peil0]) for sampling distri-
butions such as discrete Gaussians. By a Rényi divergence-based analysis
combined to a little tweak on the precomputed table, we reduce the stor-
age size by an order of magnitude, both in theory and in practice (where
we gain a factor 9). Our improvement seems highly composable with other
techniques related to precomputed tables.

3. We analyze the rejection sampling step of BLISS [DDLL13]. We show that
it can be done simply and efficiently in floating-point, simultaneously elimi-
nating the issues — code complexity, side-channel attacks, table storage, etc.
— that plagued the only previously existing approach.

4. We then study trapdoor samplers [Kle00,GPV08,Peil0]. We improve the
usual bounds on the standard deviation o by obtaining a new bound which
is both smaller and essentially independent of the security level A. In practice,
we gain about 30 bits of security compared to a statistical distance-based
analysis.

5. The last contribution is also related to trapdoor samplers. We show that a
precision of 64 bits allows 256 bits of security, whereas previous estimations
[LP15,Prel5] required a precision of 150 bits.

A word on the security parameter and number of queries. In order to
make our results as simple as possible and to derive explicit bounds, we consider
in this paper that the security level A and the number of queries g verify A < 256
and g, < 2%%. The first choice is arguably standard.

For the bound on ¢5, we consider that making more than signature queries
would be extremely costly and, unlike queries to e.g. a hash function, require
the presence of the target to attack. In addition, it would be easily detectable
by the target and so we believe it to be impractical.

Finally, a more pragmatic reason comes from NIST’s current call for proposals
for post-quantum cryptography,? which explicitely assumes that an attacker can
make no more than 264 signatures queries (resp. decryption queries).

However, if one decides to take gs > 254, our results could be easily adapted,
but their efficiency would be impacted.
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1.3 Related Works

In the context of lattice-based cryptography, Stehlé, Steinfeld and their coau-
thors [LLSS14,L.PSS14,BLL™15] have used the Rényi divergergence to derive bet-
ter parameters for cryptographic schemes. The Rényi divergence has also been
used by [BGM™16] to improve security proofs, and in [TT15], which aims to
improve the proofs from [BLLT15].

A few papers [PDG14,DLP14] used a third metric, the Kullback-Leibler di-
vergence — actually the Rényi divergence of order 1 —, but the Rényi divergence
has since then given better results [BLL'15, this work].

Precision issues have been tackled by [DN12a], which resorted to lazy Gaus-
sian sampling but still didn’t eliminate high-precision. A precision analysis of
trapdoor samplers by Prest [Prel5] gave about 120 bits of precision for A = 192
— which we extrapolate to 150 for A = 256. A recent work by Saarinen [Saal5]
has also claimed that using p-bit fixed point approximation achieves 2p bits of
security, but this was proven to be incorrect by [MW17], which also introduced
the max-log distance.

Finally, recent works [BS16,Mir17] have studied the usefulness of the Rényi
divergence in the context of differential privacy and have independently come
up with results similar to our relative error lemma.

1.4 Roadmap

Section 2 introduces the notations and tools that we will use throughout the
paper, including the Rényi divergence.

Section 3 is dedicated to our theoretic results. We first present the tailcut
and relative error lemmas, as well as typical usecases for their applications. We
give a framework for using them in cryptographic proofs, along with explicit
bounds. Finally, we establish a connection between the Rényi divergence and
the max-log distance.

Section 4 presents five applications of our theoretic results. We first give a
tighter analysis of a sampler from [MW17], then we revisit the standard table-
based approach for sampling Discrete distributions. We then show that rejection
sampling in BLISS can be done simply in floating-point arithmetic. To conclude,
we study trapdoor samplers and provide improved bounds on the standard de-
viation and precision with which they can be used.

Section 5 concludes this article and presents related open problems.



2 Preliminaries

2.1 Notations

Cryptographic parameters. When clear from context, let A be the security
level of a scheme and g5 the number of public queries that an attacker can make.
In this article, we consider that A < 256 and g, < 264

Probabilities For any distribution D, we denote its support by Supp(D). We
may abbreviate the statistical distance and Kullback-Leibler divergence by SD
and KLD. As a mnemonic device, we will often refer to D as some perfect
distribution, and to Ds as a distribution close to D in a sense parameterized by

J.

Matrices and vectors. Matrices will usually be in bold uppercase (e.g. B),
vectors in bold lowercase (e.g. v) and scalars in italic (e.g. s). Vectors are repre-
sented as rows. The p-norm of an vector v is denoted by ||v||,, and by convention
V]| = [|v]l2- Let || B|l2 = maxxo ||xB]|2/|/x||2 be the spectral norm of a matrix,
it is also the maximum of its singular values and is sometimes denoted by s;(B).
For B = (bi;)i,;, we define the max norm of B as ||B|max = max;_; |b;;].

Gram-Schmidt orthogonalization. An important tool in lattice-based cryp-
tography is the Gram-Schmidt orthogonalization of a full-rank matrix B, which
is the unique factorization B = L - B such that L is lower triangular with 1’s
on the diagonal, and B is orthogonal. Noting B= (Bi)i, it allows to define the

Gram-Schmidt norm, defined as ||B||qs = max; ||by]|.

Lattices and Gaussians. A lattice will be denoted by A. For a matrix B €
R™*™ let A(B) be the lattice generated by B: A(B) = Z" - B. We define the
Gaussian function py e as poc(x) = exp(—||x — c||?/20?), and the Gaussian
distribution D/ 4 c over a lattice as

PJ,C(X)
ZZGA vaC(Z)

The parameter ¢ may be omitted when it is equal to zero.

Dpoe(x) =

Smoothing parameter. For ¢ > 0, we define the smoothing parameter n.(A) of
a lattice as the smallest value o > 0 such that p;,,(4*\0) < e. We carefully note
that in the existing literature, some definitions take the smoothing parameter to
be our definition multiplied by a factor v/27. A useful bound on the smoothing
parameter is given by [MRO7]:

ne(Z") < 717\/; log <2n <1 + 1)) (3)




2.2 The Rényi Divergence
We define the Rényi divergence in the same way as [BLLT15].

Definition 1 (Rényi divergence). Let P, Q be two distributions such that
Supp(P) C Supp(Q). For a € (1,400), we define the Rényi divergence of order
a by

RPIQ=| ¥ P:Ei

z€Supp(P)
In addition, we define the Rényi divergence of order +o0o by

max P(x)
z€Supp(P) Q(.I‘) '

R (P||Q) =

Again, this definition is slightly different from some other existing definitions,
which take the log of ours. However, it is more convenient for our purposes.
Generic (resp. cryptographic) properties of the Rényi divergence can be found
in [VEH14] (resp. [BLL"15]). We recall the most important ones.

Lemma 1 ([BLL"15, Lemma 2.9]). For two distributions P, Q and two fam-
ilies of distributions (P;);, (Q;)i, the Rényi divergence verifies the following prop-
erties:

— Data processing inequality. For any function f, R,(P7||Q7) < R.(P||Q).
— Multiplicativity. R.(][;, Pil| [, Qi) = I1; Ra(Pi]| Qi)-
— Probability preservation. For any event E C Supp(Q) and a € (1, +00),

Q(E) > P(E)*“~V /R,(P|Q),
Q(E) > P(E)/R (P Q).

However, we note that the Rényi divergence is not a distance. In section 3.4,
we circumvent this issue by linking the Rényi divergence to the max-log distance.

3 Main Results

In this section, we present our theoretic results: the tailcut lemma and relative
error lemma for bounding the Rényi divergence between distributions, a generic
framework for using these lemmas and a “reverse Pinsker” inequality that con-
nects the Rényi divergence to the max-log distance.

3.1 The Tailcut Lemma

This first lemma may arguably be considered as folklore; it is already briefly
mentioned in e.g. [BLL*15]. Here we make it explicit, as applications of it arise
naturally in lattice-based cryptography, especially whenever Gaussians distribu-
tions are used.



Lemma 2 (Tailcut). Let D,D; be two distributions such that:
— 36 > 0 such that & <1+ 5 over Supp(Ds)

Then for a € (1,+00]:
Ro(Ds||D) <1+

Proof. We note S = Supp(Dy). If a # +o0:
Ds(x)"

a—1 __ a—1 a—1
R.(Ds|D) —ZW <(1+9) ZDé(f)S(l‘f‘(S) ;
eSS zeSs
which yields the result. If a = +00, the result is immediate. O

We may also refer to lemma 2 as the tailcut lemma. For the rest of the paper,
D will typically refer to a “perfect” distribution, and Dy to a distribution which
is close to D in a sense parameterized by 6.

Usecases. As its name implies, the tailcut lemma is adapted to situations where
Ds is a “tailcut” of D: we discard a set T' C Supp(D) such that D(T) < §. In
order to still have a true measure of probability, the remaining probabilities
are scaled by a factor #(T) ~ 14+ D(T) <1+ 4, and we note Ds the new
distribution. Lemma 2 gives a relation of closeness between D and Ds in this
case, which is illustrated by the figure 1.

3.2 The Relative Error Lemma

In our second lemma, the conditions are slightly stricter than for the tailcut
lemma, but as a compensation the result is a much stronger closeness relation.
It is somewhat similar to the [PDG14, Lemma 2] for the KLD, but allows tighter
security arguments.

Lemma 3 (Relative error). Let D, Ds be two distributions such that:

— Supp(Ds) = Supp(D)
— 36 >0 such that 1 — 5 < Z2 <146 over Supp(Ds)

Then, for a € (1,400):

a(a —1)62 = ad?
< — ~ —
Ra(Ds||D) < <1+2(1_5)a+1> 1+

a

Proof. Let f, : (z,y) — (z—éﬁ We compute values of f, and its derivatives
around (0, y):

falz,y) =y forx =0
;ﬁ(x,y):l—a forz =0
8k (x,y) = ala — Dy*(x +y) !

< ala=l) for |z| < 8-y



We now use partial Taylor bounds. If || < § -y, then:

0fa
ox

a(a —1)62
21— o)t Y

fa(l'vy)gfa(oay)+ (Ovy)l'+
Let S = Supp(Ds). Taking y = Ds(i), © = D(i) — Ds(i), then summing ¢ all over
S and using the fact that ), ¢ Ds(i) = > ;g D(i) = 1 yields the result:

Ds(i)* <1 a(a —1)62

R.(Ds||D) = DT = 2(1 — o)atl

€S

We may also refer to lemma 3 as the relative error lemma.

Usecases. The relative error lemma can be used when the relative error between
Ds and D is bounded. This may typically happen when the probabilities of D
are stored in floating-point with a precision log, d — though we will see that it is
not limited to this situation. Again, this is illustrated by figure 1.

Tailcut lemma Relative error lemma

Fig. 1. Typical usecases for the tailcut lemma and the relative error lemma

3.3 Security Arguments using the Rényi Divergence

We consider a cryptographic scheme making gs queries to either a perfect dis-
tribution D or an imperfect distribution Ds. Let E be an event breaking the
scheme by solving a search problem, and € (resp. £5) the probability that this
event occurs under the use of D (resp. Ds). We suppose that 5 > 27*. By the
data processing and probability preservation inequalities:

e>ey/“"V /R, (DY |D%)
> /"D /R, (Ds| D)%

We can choose any value in (1,+00) for a, but small values for a impact the
tightness of the reduction and large values impact its efficiency. Setting a = 2A+1
seems to be a good compromise. Indeed, we then have E;/(aq) > 55/\/5, SO we
lose at most half a bit of security in the process.
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Our goal is now to have R,(Ds||D)% = 2(1), so that we have an almost tight
security reduction. In this regard, having R,(Ds||D) < 1+ 4%13 is enough, since
it yields R,(Ds|| D)% < e'/* < /2 by a classic inequality.?

This yields ¢ > 272~ By contraposition, a (A + 1)-bit secure scheme with
D will be at least A-bit secure when replacing D by Ds if the following condition
is met: ]

R.(Ds||D) < 1+E fora=2\+1 (4)
S

We make two important remarks: first, this analysis is valid only for cryp-
tographic schemes relying on search problems. This is the case for all the ap-
plications we consider in this paper, but for cryptographic schemes relying on
decision problems, one may rather rely on SD-based, KLD-based analyses, or on
specific Rényi divergence-based analyses as in [BLLT15, Section 4].

Second, the savings provided by our analysis heavily rely on the fact that the
number of queries is limited. This was already observed in [BLLT15].

Practical Implications. We consider a cryptographic scheme with A+1 < 257
bits of security making ¢, < 2%* queries to a distribution D. Replacing D by
another distribution Ds will make the scheme lose at most one bit of security,
provided that one of these conditions is verified:

Ds 1
< =
5 <1496 foré 1 (5)

ds
62 1
< 6
(1 —=0)H1 = 4)gs (©6)
(5) comes from the tailcut lemma with (4), and (6) from the relative error lemma
with (4). For A < 256 and ¢, < 264

— the condition 5 translates to § < 276
— the condition 6 translates to § < 2737,

Supp(Ds) = Supp(D), and 1 —§ < % <146 for

3.4 Relation to the max-log Distance

In [MW17], Micciancio and Walter introduced a new metric, the max-log dis-
tance. They argue that this metric is both easy to use and allows to have sharp
bounds in cryptographic proofs.

In lemma 4, we show that the log of the Rényi divergence is bounded (up to
a constant) by the square of the max-log distance. It can be seen as a “reverse”
analogue of Pinsker inequality for the SD and KLD, so we call it the reverse
Pinsker inequality.

Definition 2 (max-log distance [MW17]). The maz-log distance between
two distributions P and Q over the same support S is

A (P, Q) = max |log P(x) — log Q(z)]

3 (1+2z/n)" <e” for z,n > 0.
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Lemma 4 (Reverse Pinsker inequality). For two distributions P, Q of com-
mon support, we have:

1
a(a —1)(e (P2 —1)2\ @ 1+ alAwi(P, Q)
2(2 - eAML(P’Q))a+1 Ay —0 2

Ra(PI|Q) < <1+

Proof. We note Ay, (P, Q) = 9§ for some 6 > 0. We have:

AvL(P,Q) =6 = Vae S, |logP(z) —log Q(x)| <48

—§ « P(z) §
= VIES,G Sg(x)ﬁe

1
ala—1)(e®—1)2 a1
= Ra(P”Q) < (1 + (Q(Qi)e(ﬁ)a,-Fll) )

The first implication applies the definition of the max-log distance, the second
one passes to the exponential, the third one applies the relative error lemma. [

There are two implications from lemma 4. First, we can add the max-log
distance to our tools. Unlike the Rényi divergence, it is actually a distance,
which is often useful when performing security analyses.

Second, the lemma 4 provides evidence that the Rényi divergence gives sharper
bounds than the max-log distance, as the log of the former is essentially bounded
by the square of the second.

In addition, we point out that the max-log distance is defined only for dis-
tributions with a common support. For example, it cannot be applied to tailcut
distributions. It is nevertheless a useful measure. One may for example use it
if a true distance is needed, and then fall back to the Rényi divergence using
lemma 4.

4 Applications

In this section we provide five applications of our results. In all the cases studied,
we manage to claim 256 bits of security while lowering the precision requirements
to be less than 53 bits (or 61 bits for the last application). All the concrete bounds
are obtained for A < 256 and ¢, < 254

This bound of 53 bits is important. Floating-point with 53 bits of precision
corresponds to the double precision type in the IEEE 754 standard, and is is
very often available in software — see e.g. the type double in C. In many cases,
it can also be simulated using fixed-point numbers of 64 bits of precision, which
can be done easily and efficiently, in particular over 64-bit architectures.

4.1 Tighter Analysis of the Micciancio-Walter Sampler

The first application of our results is also arguably the simplest. A new Gaussiam
sampler over Z was recently introduced by Micciancio and Walter [MW17]. They
provide a security analysis using the max-log distance [MW17, Lemma 5.5].

Later, at the end of [MW17, Section 5.3], this lemma is used to argue that
for a given set of parameters, if we note Q a perfect Gaussian distribution and P
the output of the new sampler, we have Ay, (P||Q) < 27°2. This in turn allows
them to claim about 100 bits of security.
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A tighter analysis. We now prove that a Rényi divergence-based analysis gives
tighter bounds than the max-log distance-based analysis from [MW17]. This
analysis is done completely in black box, as we do not need to know anything
about the sampler, except the fact that Ay (P||Q) < 2752, Applying the reverse
Pinsker inequality (lemma 4) yields R, (P|Q) <1+ 279 for any a < 512.
Following the security argument of section 3.3 and in particular equations 4
and 6, this allows us to claim that the use of this sampler is secure for 256 bits
of security and ¢, = 2%* queries. This remains the case even if we ask up to 2%
queries, which we believe is more than enough for any practical application.

4.2 Revisiting the Table Approach

We now study a more generic problem, namely sampling distributions over Z.
We consider situations where the use of precomputed tables is practical: this
includes but is not limited to (pseudo-)Gaussians with parameters known in
advance.

We revisit the table-based approach. First, we show that the standard ap-
proach based on the cumulative distribution function (see e.g. [Peil0]) suffers
from precision issues for a large class of distributions: light-tailed distributions.
Informally, these are distributions which tails have a negligible weight (like Gaus-
sians). They also happen to be widespread in lattice-based cryptography.

We then introduce a new approach based on the conditional density function.
We show that for light-tailed distributions, it behaves in a much nicer way.
To conclude, we take a real-life example and show that in terms of space, the
new approach allows to gain an order of magnitude compared to the standard
approach.

Definition 3. For a distribution D over S C Z, we call cumulative distribution
function of D and note CDFp the function defined over S by

CDFp(z) = Y _D(2)

i<z

Classical CDF sampling. To sample from D, a standard approach is to store
a precomputed table of CDFp, draw a uniform deviate u < [0,1] and output
z = min{i € S|CDFp(i) > u}. In practice, we will not store the complete
CDF table. If D = Dy ., is a discrete Gaussian, then we store the values for
z € (¢ — koo, c+ koo) NZ with a given precision pg; here, ko is a “tailcut bound”
which we can fix by either a SD or Rényi divergence argument. We now estimate
the requirements in the context of A bits of security and m - ¢5 queries.*

SD-based analysis. Using [GPV08, Lemma 4.2], we have kg = 1/2(\ + log, m).
Each D(z) = CDFp(z) — CDFp(z—1) should be known with absolute precision
A+ logy m, so we may take pg = A + logy m.

4 The call to a sampler over Z is often done several times per query. In the context of
signatures, we typically have m = the lattice dimension. Here we take m = 2'°.



13

Rényi divergence-based analysis. From the tailcut lemma (see also (5)), it is suf-
ficient to take kg = 1/2log,(4mgs). From the relative error lemma, each D(z)
should be known with relative precision log, ¢ verifying (6). For our choices of A
and gs, this yields ko < /2(66 + log, m) and logy § < 37 + log, m.

For A = 256, we divide the number of precomputed elements by about 1.87.
A naive interpretation of the analyses above may also lead us to divide the
precision pg by (A + log, m) /(37 + logy m) = 6.9. However, the next paragraph
will expose why we cannot simply do that.

Precision issues in the case of light-tailed distributions. In the previ-
ous paragraph, there is a slight but important difference between the SD and
Rényi divergence analyses. The precision is given absolutely in the first case, and
relatively in the second case. It is actually this relativity that allows us to use
the relative error lemma in the second case, but it comes at a price: it is not
efficient anymore to use the CDF table.

We present here an example explaining why this is the case: let D be the
distribution defined over N* by Do(k) = 27%. One can show that CDFp, (k) =
1 —27% so from a machine perspective, CDFp, (k) will be rounded to 1 as
soon as k > pg. As a consequence, the probability output of the CDF table-
based algorithm will be 0 for any k£ > pg + 1 and we will not be able to use
the relative error lemma at all.

This problem is common to light-tailed distributions, including Gaussian-like
distributions. As the CDF converges very fast to 1, we have to store it in high
precision in order for it to be meaningful. This is not satisfactory from a practical
viewpoint.

Conditional density sampling. A simple way around the aforementioned
problem is to use the conditional density function instead of the CDF. First, we
give its definition.

Definition 4. For a distribution D over N, we call conditional density function
of D and note CODFp the function defined by CODF(2) = D(2)/(>_;>. D(4)).

In other words, CODF(z) is the probability that a random variable X of
distribution D takes the value z, conditioned to the fact that X is bigger or
equal to 2.° A way to use the CODF to sample from D is given by algorithm 1,
a variation of the CDF sampler.

It is easy to show that the expected number of loops in algorithm 1 is the
mean of D. It outputs z with probability [].__ [l — CODFp(i)] - CODFp(2),
which by a telescopic product is equal to

Zi>0 D(i) % Zi>1 D(i) VIR Zi>z—1D(i) % D(z)
Yiso D) i1 D) Yis.—1 D) X5, D(i)

5 We note that the support is now S C N instead of S C Z, but switching between
the two cases is algorithmically easy.

i<z[

=D(z) (7)
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Algorithm 1 CODF sampler

Require: A precomputed table of CODFp
Ensure: z < D
z+0
u < [0, 1] uniformly
while v > CoDFp(z) do
z+—2z+1
u < [0, 1] uniformly

Return 2z

and therefore, algorithm 1 is correct. However, in practice algorithm 1 will be
used with precomputed values which are only correct up to a given precision.
Lemma 5 provides an analysis of the algorithm is this case.

Lemma 5. For a distribution D of support S C N, let f = CoDFp be the
CODF of D, and fs be an approzimation of f such that, over S:

1—6< L <145
_1—ff _ (8)
1-6< T <1490

Let Dy be the output distribution of the algorithm 1 using a precomputed table
of fs instead of f. Then, for any z € S:

1f&0~(1f®Z§D“@

< ~
~ ) S(1+0)°  1+62

z
5—

Proof. We have

= (1-0)* Tl - £ /() < Ds(a) < (L4 TL 1= 0] 12
= (1-9)*-D(z) <Ds(z) < (140)*-D(z)
The first implication comes from (8), the second one from (7). O

Provided that the CODF is stored with enough precision, lemma 5 gives us an
inequality that allows to use the relative error lemma. Now, the interesting part
is that for light-tailed distributions, the CODF does not converge to 1 as fast as
the CDF, which is important if we want the lower part of (8) to be true. For
example, if D = Dy 1, we have CDFp(z) — CDFp(z — 1) = 0(6*22/2), whereas
1 — CoDFp(z) = O(e ?). This allows to store CODFp in small precision and
still remain able to use lemma 5.

Of course, one may argue that z can be arbitrarily big. However, in practice
we will not sample from a distribution D of infinite support directly but rather
from a tailcut distribution of D, in the bounds provided by the tailcut lemma, so
z will not take too large values and we will be able to store CODFp efficiently.
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Solving the precision issues. Going back to the example of the distribution
Ds, the table 4.2 shows how CDFp, (k) and CoODFp, (k) are stored in machine
precision, and how it impacts the associated sampler.

For the CDF-based sampler, due to precision issues, it samples from a distri-
bution D} which has a probability 0 for elements in the tail of Ds. In contrast,
the CoDF-based sampler approximates Dy correctly even for elements in the
tail of Ds.

k 1 2 3 54 55

CDFp,(k) || 1/2 | 3/4 | 7/8 | ... 1 1

Dj(k) 1/2 | 1/4 | 1/8 | ... 0 0
CoDFp, (k)| 1/2 | 1/2 | 1/2 | ... /2 | 1/2
Do (k) 1/2 | 1/4 | 1/8 | ... |27 | 27%°

Table 1. Precomputed values of CDF and CODF of Ds as stored in 53 bits precision.
The stored value of CDFp, (k) quickly becomes 1, leading to the associated algorithm
sampling from some incorrect distribution D% instead of Da.

Application: sampling over DZGZ in BLISS. An important step of the
signature scheme BLISS consists of sampling z Dg #,» Where oo ~ (0.85.

In BLISS, this is done in a bitwise rejection sampling fashion [DDLL13,
algorithm 10], which is very efficient in hardware but not so much in software.
In addition, the structure of the algorithm 10 from [DDLL13] exposes it to side-
channel attacks in the lines of [EFGT17] (see also section 4.3). Instead, one can

sample efficiently from D% +, Using a precomputed table 7"

— With a CDF+SD approach, T' must have 20 elements of 266 bits each, which
amounts to about 5 300 bits.

— With a CoODF+Rényi divergence approach and using lemma 5, T" must have
11 elements of about 53 bits each, which amounts to about 600 bits.%

Here, the CODF+Rényi divergence approach makes us gain an order of mag-
nitude in storage requirements. Another notable advantage is that it is particu-
larly fit to a fixed-point implementation, which might make it easier to implement
in hardware. In addition, it is generic in the sense that it can be applied to a
large class of distributions over N (or Z).

An open question is how to make algorithm 1 constant-time and protected
against side-channel attacks. The trivial way to make it constant-time is to
always read the whole table, but this may incur a significant overhead.

5 Actually, storing the 11 elements as 64-bit integers yields better relative precision
and is easier to handle in practice.
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4.3 Simpler and More Secure Rejection Sampling in BLISS

We recall that the context and motivation of doing rejection sampling in lattice-
based cryptography is exposed in section 1.1. We now focus our attention on
the signature scheme BLISS [DDLL13]. In BLISS, the final step of the signature
consists of this step:

Sc||? S
Accept with probability p =1/ (M exp(— ||2CL| ) cosh( (= 2C> )) (9)
o o
where S is the secret key, o, M are public parameters and c,z are part of the
signature. In the original scheme and all the implementations that we are aware
of [LD13,Pop14,Str14], this step is implemented by the means of combining
several Bernoulli distributions dependent of the bits of ||Sc||? and (z, Sc).

There are two drawbacks from this approach. First, the algorithm described
in [DDLL13] for performing this step is rather sophisticated, and as a result it
takes a significant portion of the coding effort in [LD13,Pop14,Str14].

The second drawback is that this algorithm is actually vulnerable to side-
channel attacks: Espitau et al. [EFGT17] have shown that a side-channel analysis
of the signature traces can recover both ||Sc||? and (z, Sc), and from it the secret
key. Interestingly, it might be possible to extend this attack to a timing attack,
in which case the implementation of Strongswan [Str14], deployed on Windows,
Linux, Mac OS, Android and iOS platforms, could also suffer from it.

Simple Rejection Sampling. We observe that the step 9 doesn’t need to be
made exactly. We can simply compute a value ps such that 1 —§ < %5 <146,
sample u <+ [0,1] uniformly and accept if and only if ps > u. By (6), it is
sufficient that p is computed with a relative error 2737, This can be done easily:

1. In software, one may simply resort to a standard implementation of the
exp function, such as the one provided math.h for the C language. As long
as the relative precision provided is more than 37 bits of precision, we can
use (6). We note that implementations of exp(-) usually provide at least 53
bits of precision, which is more than enough for our purposes.

2. In hardware, an implementation of the exp function may not always be
available. There are many ways around this issue, we present two of them:

— One may use Padé approximants as an efficient way to compute exp.
Padé approximants are generalizations of Taylor series: they approximate
a function f by a polynomial fraction 5; instead of a polynomial P,.
They usually converge extremely fast, and in the case of the exp function,
the relative error between exp(z) and its Padé approximant is less than
2737 for an approximation of order 4 and |z| < 1/2.7 A more detailed
analysis is provided in appendix, section A.1.

" Tt is easy reduce any input z to the case |z| < 1/2 by taking 2’ +~ z mod (In2) and
observing that e™? = 2. The precision loss is negligible.
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— Another solution is to precompute the values exp(%) for a small number
of values i € N. This then allows to compute exp(5Zs) for any z =
> 22", since exp(52z) = [1.._; exp(%z).8 For the parameters given
by [DDLL13], ||Sc||? and (z,Sc) are integers and are less than 37 bits,
which means that we would need to store at most 37 precomputed values.
For the two proposed solutions, a very pessimistic analysis estimates that
we perform less than 80 elementary floating-point operations to compute p.
While it might seem a lot for 3 exponentials, it is negligible compared to
the total cost of a signature, which is around O(nlogn) for n = 512 in the
BLISS scheme. In addition, all the techniques we propose are easy to protect
against side-channel attacks.

We note that our software solution and our hardware solution based on Padé
approximants do not require to store any precomputed table.

In BLISS, explicitely computing the rejection bound as we did was discarded
because of precision concerns. We note that all the security analysis in BLISS
was performed using the SD, with only subsequent work [PDG14,BLL*T15] us-
ing more adequate measures of divergence. Using the SD in our case would
have required us compute transcendental functions with a precision 2*, which
is impractical. The relative error lemma is the key which allows to argue that a
floating-point approach is secure.

4.4 Squeezing the Standard Deviation of Trapdoor Samplers

Context. The two last sections are related to the most generic and powerful
type of Gaussian sampling: trapdoor sampling. Algorithms for performing trap-
door sampling [K1e00,GPV08,Peil0,MP12] are essentially randomized variants of
Babai’s round-off and nearest plane algorithms [Bab85,Bab86]. For suitable pa-
rameters, they are statistically indistinguishable from a perfect Gaussian D g 4 c.

For a cryptographic use, we want o to be as small as possible in order to have
the highest security guarantees. However, o cannot be too small: if it is, then the
trapdoor samplers will not behave anymore like perfect Gaussian oracles.” At the
extreme case o = 0, the samplers become deterministic and leak the shape of the
basis used for sampling, exposing the associated schemes to key-recovery attacks
described earlier. To avoid that, samplers usually come with lower bounds on o
for using it securely (see e.g. theorem 1 for Klein’s sampler [Kle00,GPV08]).

Roadmap. Before continuing, we establish the roadmap for this section and
the next one. In this section, we show that, if ¢ is large enough, a Gaussian
sampler with infinite precision is as secure as an ideal Gaussian. In the next one,

8 For negative values, exp may be computed by inversion, or if it is not available, by
also precomputing exp(—%).

9 If they did behave like perfect Gaussians when o — 0, then they would effectively
solve the closest vector problem, which is a NP-hard problem.
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we show that a Gaussian sampler with finite precision is as secure as one with
infinite precision. Of course, such analyses are already known. Our contribution
here is to use the Rényi divergence to have more aggressive parameters for o
and the precision of the sampler.

- Lemma 6 Gaussian sampler, Lemma & | Gaussian sampler
Ideal Gaussian | &———| .. . . .. | . . -
with infinite precision with finite precision

Fig. 2. Roadmap for asserting the security of a practical Gaussian sampler

Klein’s sampler. We cannot analyse all the existing samplers in this article,
so we now focus our attention on Klein’s sampler [K1e00,GPVO08]. It is described
in algorithm 2.

Algorithm 2 KLEINY, ,(t)

Require: ¢ > 7.(Z") - ||B|/cs, the Gram-Schmidt orthogonalization B = L - B and
the values o; = o/||b;|| for j € {1,...,n}
Ensure: A vector z such that zB < D,B),-tB
1. for j =n,...,1 do
2t ity 20,0t — z) L
3: Zj DZJ].’CJ
4

. return z

An associated lower bound on o for using algorithm 2 is given in theorem 1.

Theorem 1 ([DN12a, Th. 1], concrete version of [GPV08, Th. 4.1]).
Let € = 27, If 0 > n.(Z") - |B||gs, then the SD between KLEINL, ,(t) - B and
the perfect discrete Gaussian D yB),o¢B 1S upper bounded by 274,

Combined to a standard SD-based argument, theorem 1 establishes that o
must be proportional to v/ in order to claim X bits of security when using algo-
rithm 2. A better bound was established in [DLP14] but it remains proportional
to v/A. In lemma 6, we establish a bound that is both (almost) independent of
A and smaller.

Lemma 6 (Rényi divergence of Klein’s sampler). For any e € (0,1/4), if
o = n(Z") - |Bllas then the Rényi divergence between D = D y(B),o+B and the
output distribution D, of KLEINL, ,(t) - B verifies

a(a o 1)52 ﬁ a52
< YRR ~ 9
Ra(D||D) < <1 + 2(1 — 6)atl S0t T

where § = (1+6/n)n — 1~ 2.

l—e€/n
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Proof. We note v = zB and ¢ = tB. As detailed in [GPVO08], the probability
that KLEINT, ,(t) outputs a given z is proportional to

17

for 0; = 0/||c;|| and some ¢; € R that depends on t and B. By assumption, o; >

Ne(Z™) > 1ejn(Z), therefore py, . (Z) € [1;32, 1] po, (Z) by [MR04, Lemma 4.4].

Since D(v) is proportional to ps.c(v) and D, D, both sum up to one, we have

(am) <2< ()’

from which we may conclude by using the relative error lemma. O

( ) * Po,c (V)

pUJ,CJ

Plugging this result with the relative error lemma, we may use Klein’s sam-
pler with & ~ 2¢ verifying (6), instead of ¢ < 27 with the SD and e < 9=A/2
with the KLD [DLP14]. Compared to a SD-based analysis, this allows to squeeze
o by a factor 1/A/38 that can be as large as = 2.60 for A\ = 256.

While it might seem a small gain, the security of trapdoor samplers is very
sensitive to standard deviations variations. We estimate that this factor 2.60
allows to gain up to 30 bits of security (this claim is supported by e.g. [Prel5,
Table 6.1]). A similar analysis for Peikert’s sampler [Peil0] yields a similar gain.

4.5 Trapdoor Sampling in Standard Precision

For our last application of the Rényi divergence, we conclude our analysis of
Klein’s sampler (algorithm 2), by performing its precision analysis. This section
shows that it can be used safely in small precision.

First, we give a lemma that bounds the ratio of two Gaussian sums in Z with
slightly different centers and standard deviations.

Lemma 7 (Ratio of Gaussian Sums in Z). Let two arbitrary centers t,t € R
and standard deviations 0,6 > 0. Let the Gaussian functions p(z) = psi(2),

p(2) = ps.i(z) and the distributions D(z) = p(z)/p(Z), D(z) = p(z)/p(Z). Let
u(z) = % (Z t) . Then

= 5%2 = e “)D(2)
= 2@ = Eseple )]

= % Z e_]EzeD[u(z)]
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Where the last inequality comes from Jensen’s inequality: since e is convex,
E[e—*] > Fl=4. Following the same reasoning, one gets

(P = 35) = (Becell =5 = Gy =)

O

This lemma is useful in the sense that it provides a relative error bound,
which will be used in the next lemma in order use the relative error lemma. We
now give a bound on the required precision for using safely Klein’s sampler.

Lemma 8. Let D (resp. D) be the output distribution of algorithm 2 over the
input t (resp. t), using precomputed values (L, (0;);) (resp. (L, (5;);)). Let é,e €
(0,.01). We note:

— T = n||L||max (1.1 + 0v/27 - | B71||2)
TV 27
— C'=13nd(; 5 +2m +1)
If we have the following (error) bounds on the input of algorithm 2:

— te[-5,.5"
HE - t”oo < 4]
— |oj — 0| < do; for all j
HL - LHmax < 5||L||max

Then we have this inequality:

e ¢ < < eC.

VIR

The lemma 8 covers — but is not limited to — the case where L and the (o;);’s
are known up to a relative error, and t up to an absolute error. For any z € Z",
Dyn g5+t =2+ Dgn o, S0 it is perfectly reasonable to suppose t € [—.5,.5]".

Proof. This proof is rather long, so we explain its outline first. In @, we establish

a bound A < gg; < B, for some expressions A, B. In @, we establish |A| < C

and ®, we establish |B| < C'. We conclude in ®.

@ Let z = Zj Z; € Z™ be a possible output of both samplers. We note v = zB
and ¢ = tB. There exist a unique n-tuple (c;); (vesp. (¢;);) such that at each
step j, € (resp. £) samples a discrete Gaussian in Z around c; (resp. ¢;).

The probability that z is output by & is D(z) = [[; D;(%;) = [; ppj_((ézj)),
where p; = pz.5;.¢; is uniquely defined by z. Similarly, D(z) = j ’;j,((ézj)), where
" J

Pj = pr5;,c;- We have

D(z) _yyri) pi(2) _ e
f)(z)_H : D ._Ha
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N C

553 207 Lemma 7 yields:

e E.p;[u;] < ﬁJ(Z) < e*]Eu—Dj [u;]
~opi(Z) T
So that we have
. D(z .
3 lus(5) ~Beco o] <tos (557 ) < 30 [us5) ~Bucoyul] (10

Let A and B be the left and right terms of (10). If we can bound A and B, then
we will be able to conclude by the relative error lemma.

@ Now, we bound A. We write 6; = (1 + é,,)0;, where each [§,,| < 0 by
hypothesis. Developing u; yields:

520 = sy (=) (e =) (55 =)= (280,487 ) (35 —5)’] (11)

In order to bound ¢;—¢;, we note that numerically, ¢; is exactly t;+(t — z,1;),
where 1; is the j-th row of (L' — I,). Noting t = t + &, 1; = 1; 4+ ), and
L = ||L||max, we have:

Cj = ¢j + 0¢j + (0, 1;) + (t — z,01,) + (J¢,01,)

Thus
¢ =il < 0e; + Sl +  llon [t — 2]+ [l6e ][]0,
< §(nL+1) +dénLovV2r- B~y + 60l (12)
< 5-T

In (12), we used the fact that:

= [0l < dv/n

= Ny, I < 81141 < 6v/nL

— |t —z|] < |lc—=v]-[B7t2 < ov2mn - ||B7Y2, with the last inequality
coming from [MR07, Lemma 4.4] (see lemma 10 in the appendix)

We have:

A=3 m [2(ci =) (25— =Exj o lz—es)) — (200,402 )(25—¢5)* —Ex; e, [(25=2;)?]]

Al <Y 5 20 [21¢; =112 —¢; |+ 27eay) +26[(2;—¢;)+ 02 +2meo?]]
<Y [6T(IB;112-125 —c; | +11B; [ Vamea)  +6[IIB; 11> (25 —e;) 40 +2mea?]]
< ip [T max; B | (lv—clli+V2reon)  +lv—cl*+no>+2mnea?]]
<1.16 [T (nv2r+V2men) /ne(Z7) +[27ntn+t2mne]
<1.20mn [TV27 /ne(Z™)+2m+1]

(13)
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In (13), the first line develops the formula for A by using (11). For the second
line, we use [MR07, Lemma 4.2] (see Lemma 9) to bound the two expected values
and the term 1.1 to absorb parasitic terms in d,, and e.

The third line replaces o; by o/||b;| and |¢; — &/ by the bound § - T' from
(12). For the fourth line, we notice that >_; b, - 125 — ¢j| = |lv — ¢/ and
> Ibj[12- (2 — ¢;)? = ||v —<c||3 (both equalities follow directly from the lemma
4.4 of [GPV03]).

In the fifth line, we use the bounds ||[v—cl|z < 0v/27n, and ||v—c|; < ony/27:
the first one comes from [MR07, Lemma 4.4], and the second one follows from
the fact that there exists a vector u with coefficients being only +1 such that
lv—cl|l1 = |{v — ¢, u)|. Applying the Cauchy-Schwartz theorem yields the bound.
The last line simplifies as much as possible the expression.

® We now bound B, the right part of (10). We can write u; as follows:
wj(2) =2 [~ (1465,)% (c; =) *+2(1464,)2 (¢; = 5) (25— e5)— (26, +32 )z —)? | (14)

To bound B, we replace the u; in each u;(Z;) by the expression in (11), and the
uj in each E,_p [u;] by the expression of (14). This yields:

1Bl < 305 = 57 dek loles -l —eq 2lo, 12—l

1 _ _ _
+ 325 27 [2les =1 Be 5 =51142000, | E. o, [(25-)°1]

2
< % +1.1n8[Tv/Z /0. (Z7) +27+1]

+1.16€[TV2r /0. (Z™)+27],

where the bound over |B| is obtained using the same techniques as for |A|.
Overall, we see that |A|,|B| < C.

@ To conclude, we have —C < log(gg;) <(C,s0e ¢ < gg: < e, O

—

—

Practical implications of Lemma 8. We can now easily — given a few sim-
plifications — apply the relative error lemma. Even though in theory we have
[IM||2 < n||M]||gs, this is a worst-case bound [Peil0, Lemma 5.1]. In practice, it
is reasonable to assume ||B||z = O(v/logn) - ||B||gs, with a small constant factor
in the big O [Prel5, Section 6.5.2].1°

In addition, we make the simplification |B™!|qs ~ ||B||gs,'" which gives
a||B7Y|2 = VIogn - n.(Z™). It is also easy to make ||L||lmax = 1, so we consider
that this is the case. Removing negligible terms, and since e® o 1+C, we

have B
D
1—C’§5g1+c’, with C’' ~ 8 -n?y/logn - 6. (15)
For typical values of n (say, n = 1024), we can take § = 2737/C’ ~ 276! which

is secure as per the argument of section 3.3. Therefore, precision 61 is sufficient
to securely use Klein’s sampler.

10 Or alternatively, ||B|l2 = O(vIogq) - | Bllgs (see e.g. [Peil0, Lemma 5.2])
' As an example, for NTRU matrices, this is true up to a factor 1.17% [DLP14]
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5 Conclusion and Open Problems

To conclude, we expose a few perspectives and open problems that we have
encountered. Most of them are related to implementing the techniques we have
introduced, but in our opinion extending our techniques to decision problems is
probably the most challenging question.

The revisited table approach. It remains to see how the CODF-based algo-
rithm we proposed in section 4.2 can be efficiently implemented and protected
against side-channel attacks. Our approach also seems highly composable with
existing techniques, and it would be interesting to find combinations that achieve
better overall efficiency.'? For example, a natural question would be to see how
to combine it with Knuth-Yao trees (see e.g. [DG14]).

Rejection sampling in practice. The techniques that we described in sec-
tion 4.3 remain to be implemented, to assess their efficiency and whether they
can easily be made impervious against side-channel attacks.

Precision analysis of trapdoor samplers. It would be interesting to apply
the precision analysis of section 4.5 to other samplers, such as the one of [Peil0)].
A promising candidate would be a randomized variant of Ducas and Prest’s fast
Fourier nearest plane [DP16]. The fast Fourier transform is known to be very
stable numerically, and since this algorithm has the same structure, it seems
likely that it will inherit this stability and require less than 53 bits of precision.

Decision problems. All the applications that we give are in the context of
search problems. We would like to achieve the same efficiency for decision prob-
lems: as of today, one can use decision-to-search tricks in the random oracle
model as in e.g. [DLP14, Section 4] or the results from [BLL*15, Section 4]. How-
ever, none of these solutions is fully satisfying and having efficient and generic
Rényi security arguments for decision problems remain open.
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12 Tn a sense, this is what we did at the end of section 4.2, as the algorithm 10 from
[DDLL13] is meant to be used in conjunction with two other algorithms (11 and 12).
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A Appendix

A.1 Padé Approximants

In this section, we give a very succinct explanation of Padé approximants in
the context that interests us. A more detailed introduction can be found in
e.g. [Ass06]. Informally, Padé approximants can be described as generalizations
of Taylor series, as the latter approximate (n + 1)-differentiable functions as

f(@) = Pa(w) + O(z"11),

with P, a polynomial of degree n, whereas Padé approximants provide an ap-
proximation of the form

Qm(@)f(z) = Pa(z) + 0",

with P, and @Q,, being polynomials of degree n and m.

While Padé approximants are in general much trickier to compute than their
Taylor series counterparts, such approximants are well known for the exponential
function. Let m = n and

_ & (2n—k)inl®
Then we have [Pad92]:
P (x) e (n!)2g2ntler
‘Qn(x) T mmo(l)) (17)

Since our goal is to have a relative error less than 2737, taking (m, |z|) <
(4,.5) or (m,|z|) < (5,1) is sufficient.

A.2 Classical Lemmas

Lemma 9. [MR07, Lemma 4.2] Let A be a n-dimensional lattice, ¢ € R",
u € R™ a vector of norm 1 and reals € € (0,1), o > 2n.(A). The following
inequalities hold:

2meo
’EXHDA,U,C [<x —-C u>” — 1 — €
9 9 2meo?
B eellx = )] 02 < T2

Lemma 10. [MRO0O7, Lemma 4.4] Let A be a n-dimensional lattice, ¢ € R™, and
reals € € (0,1), 0 > n(A). We have:

1
+62,n
1—e€

Pxe Dy olllx =€l 2 0v2mn] <
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