
NON-LINEAR POLYNOMIAL SELECTION FOR THE NUMBER
FIELD SIEVE

THOMAS PREST AND PAUL ZIMMERMANN

Abstract. We present an algorithm to find two non-linear polynomials for the
Number Field Sieve integer factorization method. This algorithm extends Mont-
gomery’s “two quadratics” method; for degree 3, it gives two skewed polynomials
with resultant O(N5/4), which improves on Williams O(N4/3) result [12].

1. Introduction

The Number Field Sieve (NFS) is the best-known algorithm to factor integers
with no small factor. Since the factorization of RSA-130 in 1996, it has been used
to break new factorization records, the last one being the RSA-768 challenge [5]. To
factor an integer N , the first stage of NFS finds two irreducible polynomials f, g ∈
Z[x] with a common root modulo N ; this stage is known as “polynomial selection”.
Much algorithmic progress has been done recently in the polynomial selection
stage, due to the work of Murphy [9] and Kleinjung [3, 4]. Those algorithms
produce a non-linear polynomial f — of degree 6 for the factorization of RSA-768
— and a linear polynomial g. No efficient method is known to generate two non-
linear polynomials, apart from Montgomery’s two-quadratics method, described in
[1] and [9, Section 2.3.1], which is competitive for numbers up to 110− 120 digits
only [9]. This article presents an algorithm giving two non-linear polynomials
with small coefficients, making progress towards the ultimate goal of generating
two such polynomials whose resultant is N .

The plan of the article is the following. Section 1.1 defines the notations used
and introduces some useful background on lattice reduction and resultants, then
§2 recalls the current algorithms known, namely Montgomery’s two quadratics
method (§2.2) and Williams algorithm (§2.4). We then present in §3 our main
contributions, together with concrete examples, and conclude in §4.

1.1. Notation and Background. Let N be the number we want to factor. We
note ||a|| the Euclidean norm of a vector a. In the whole article we use some well-
known results about lattice reduction. A lattice is a set of d independent vectors
b1, ...,bd over Zn, with n ≥ d. We represent a (column) vector bj by its transpose

Date: October 15, 2010. Affiliation: ENS Cachan and INRIA Nancy - Grand Est.
1

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

http://hal.inria.fr/inria-00540483/fr/
http://hal.archives-ouvertes.fr

2 THOMAS PREST AND PAUL ZIMMERMANN

[b1,j, ..., bn,j]t, and a lattice by the corresponding matrix

L =


b1,1 ... b1,d
...
bn,1 ... bn,d

 .
The volume of a lattice L (identifying a lattice and its matrix) is vol(L) =
det(LtL)1/2, where Lt is the transpose of L. When d = n, we have vol(L) = | detL|.
It is known that the LLL algorithm [6] can find a short non-zero vector of a d-
dimensional lattice with norm at most 2(d−1)/4vol(L)1/d [2, Theorem 2]1.

It is known by Minkowski’s second theorem that
√
λ1(L)λ2(L) ≤ √γdvol(L)1/d,

where γd ≤ 1 + d/4 [10, Theorem 5 p. 35], λ1(L) is the norm of the shortest non-
zero vector of L, and λ2(L) is the second minimum. Also, Theorem 9 p. 48 from
[10] states that the second vector returned by LLL satisfies ||b2|| ≤ 2(d−1)/2λ2(L)
with the parameter δ = 3/4 (used by default by most LLL implementations). This
proves that LLL finds at least two short non-zero vectors of norm about vol(L)1/d,
with a constant multiplicative factor depending only on the dimension d. More
details about lattice reduction and the LLL algorithm can be found in [10].

1.1.1. Known Facts About Resultants. In this article, we consider the resultant
Res(f, g) of two polynomials f = ∑d

i=0 aix
i and g = ∑d

i=0 bix
i with integer coeffi-

cients. If we consider ai, bi as symbolic variables, the resultant in x is an homo-
geneous polynomial of total degree 2d in the variables ad, . . . , a0, bd, . . . , b0. This
can be seen easily since the resultant is the determinant of the Sylvester matrix
associated to f and g [11, Chapter 6], which in this case is (here for d = 3):

a3 0 0 b3 0 0
a2 a3 0 b2 b3 0
a1 a2 a3 b1 b2 b3

a0 a1 a2 b0 b1 b2

0 a0 a1 0 b0 b1

0 0 a0 0 0 b0


.

The Sylvester matrix contains first d columns with coefficients from f , then d
columns with coefficients from g. A decomposition by column of the determinant
clearly shows the resultant is homogeneous of degree 2d. For example for d = 2
the resultant is:

a2
0b

2
2 − a1a0b2b1 + a2a0b

2
1 + a2

1b2b0 − 2a2a0b2b0 − a2a1b1b0 + a2
2b

2
0,

1There is a typo in formula (6.1) of [2], where vol(L) should read vol(L)1/d.

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

NON-LINEAR POLYNOMIAL SELECTION FOR THE NUMBER FIELD SIEVE 3

and for d = 3:
a1a

2
0b

2
3b2 − a30b33 − a2a20b3b22 + a3a20b32 − a21a0b23b1 + 2a2a20b23b1 + a2a1a0b3b2b1

− 3a3a20b3b2b1 − a3a1a0b22b1 − a22a0b3b21 + 2a3a1a0b3b21 + a3a2a0b2b21 − a23a0b31 + a31b23b0
− 3a2a1a0b23b0 + 3a3a20b23b0 − a2a21b3b2b0 + 2a22a0b3b2b0 + a3a1a0b3b2b0 + a3a21b22b0
− 2a3a2a0b22b0 + a22a1b3b1b0 − 2a3a21b3b1b0 − a3a2a0b3b1b0 − a3a2a1b2b1b0 + 3a23a0b2b1b0
+ a23a1b

2
1b0 − a32b3b20 + 3a3a2a1b3b20 − 3a23a0b3b20 + a3a22b2b20 − 2a23a1b2b20 − a23a2b1b20 + a33b30.

In the whole article we write x� y for x = O(y), x� y for y = O(x), and x ≈ y
for x = Θ(y), where those big-O estimates might include constants depending on
the degree d. When we write x mod N , we consider a symmetric remainder, for
example −N/2 ≤ x mod N < N/2.

2. State of the Art

The first stage of NFS consists in finding two irreducible polynomials f, g ∈ Z[x]
whose resultant equals N , or a small multiple of N . (Equivalently, f and g admit
a common root m modulo N .) Assume both f and g have degree d. We also want
f = ∑d

i=0 aix
i and g = ∑d

i=0 bix
i to have coefficients as small as possible. More

generally, we can use skewed polynomials, with |ai|, |bi| ≈ s−i|a0|, and a skewness
s ≥ 1, in which case we want to miminize maxi(|ai|si−d/2, |bi|si−d/2). In the whole
article, we use the following running example:

c59 = 71641520761751435455133616475667090434063332228247871795429

2.1. The base-(`,m) method. For the sake of completeness, we recall this method,
which is currently the best-known one [3]. It was used for the factorization of RSA-
768 [5]. It produces a polynomial f = adx

d + · · · + a0 of degree d and a linear
polynomial g = `x − m. Choose the leading coefficient ad > 0 of f , choose an
integer ` > 0, and choose m near from (N/ad)1/d such that N ≡ adm

d mod `.
Then we can find a decomposition

N = adm
d + ad−1m

d−1`+ · · ·+ a1m`
d−1 + a0`

d,

such that |ad−1| < dad+ `, and the remaining coefficients |ai| for 0 ≤ i ≤ d− 2 are
bounded by m+ `. We then use the polynomials

f =
d∑
i=0

aix
i, g = `x−m.

For example with N = c59, d = 3, ad = 60, ` = 46189, we obtain with m =
10608920182166101507:

f = 60x3 + 21156x2 − 4861197312110223827x− 1010717931351678842,
whose resultant with g = `x−m equals −N .

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

4 THOMAS PREST AND PAUL ZIMMERMANN

2.2. Montgomery’s “Two Quadratics” Algorithm. This algorithm, due to
Montgomery, is described in [1]; see also [9, Section 2.3.1]. It yields two quadratic
polynomials with coefficients of optimal size. So far, nobody has managed to
generalize it to larger degrees, with Res(f, g) = |N |. The idea is the following: let
f = a2x

2 + a1x+ a0 and g = b2x
2 + b1x+ b0. We consider the vectors

a =

a0
a1
a2

 and b =

b0
b1
b2

 .
The polynomials f and g admit a common root m modulo N if and only if a and
b are both orthogonal (over ZN) to the vector 1

m
m2

 .
Montgomery’s two quadratics algorithm works as follows:

(1) choose a prime p such that p < N1/2 and
(
N

p

)
= 1. The second condition

guarantees the existence of a square root of N modulo p;
(2) let c be a square root of N modulo p such that |c−N1/2| ≤ p/2;
(3) the vector

c =

c0
c1
c2

 :=

 p
c

(c2 −N)/p

 = p

 1
m
m2

 mod N

withm = c/p mod N , corresponds to a geometric progression (GP) modulo
N , whose terms satisfy ci = O(N1/2), i = 0, 1, 2;

(4) let s = 1/c mod p. Then, with t = c2s mod p, the vectors

a′ =

 c
−p
0

 and b′ =

(ct− c2)/p
−t
1


are both orthogonal to c over ZN ;

(5) an LLL-reduction on {a’,b’} yields a short basis {a,b} with a = [a0, a1, a2]t
and b = [b0, b1, b2]t. We then consider the polynomials f = a2x

2 + a1x+ a0
and g = b2x

2 + b1x+ b0.
The volume of the lattice spanned by a′ and b′ is about cp, thus we can expect
short vectors of norm about √cp. If we take p = O(1), since c = O(N1/2), this
yields ‖a‖, ‖b‖ = O(N1/4). Each prime p yields two distinct pairs of polynomials
(indeed we have two possible choices for c, one for each square root of N modulo
p). Therefore we can generate many pairs of polynomials, among which we just
have to look for the best pair.
Example. With N = c59:

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

NON-LINEAR POLYNOMIAL SELECTION FOR THE NUMBER FIELD SIEVE 5

(1) Let us choose for example p = 7; we indeed have
(
N

p

)
= 1.

(2) This yields c = 267659337146589069735395147282; we indeed have c2 =
1 (mod p) = N (mod p).

(3) c =

 7
267659337146589069735395147282
−106229264412112666619057115415


(4) a′ =

[267659337146589069735395147282
−7
0

]
, b′ =

[168123801856924135080091100649
−4
1

]
(5) An LLL-reduction yields two vectors:

a =

−391799550615569
−155498322989920
−23601103928385

 and b =

 196400087271641
77947726478583
−671323072887913


(6) finally f = −23601103928385x2 − 155498322989920x − 391799550615569

and g = −671323072887913x2+77947726478583x+196400087271641 admit
m = c/p as common root modulo N , and we have Res(f, g) = N .

2.3. Using Geometric Progressions. In [9, page 38] Murphy presents another
idea from Montgomery to find non-linear polynomials, based on a personal com-
munication from Montgomery [7]; see also [8]. The starting point is a small GP of
2d− 1 terms modulo N .

In fact, it turns out that a GP of d + 1 terms is enough. Given such a GP, we
can obtain two non-linear polynomials of degree d with a common root modulo
N as follows. Assume we have a GP c0, c1, . . . , cd of d + 1 terms, such that ci =
c0m

i mod N . We then form the matrix:

L =



1 0 ... 0 0
0 1 ... 0 0
0 0 ... 0 0
...
0 0 ... 1 0
0 0 ... 0 1
Kc0 Kc1 ... Kcd−1 Kcd


.

For K a large enough integer, LLL-reducing this matrix gives short vectors of the
form [a0, a1, ..., ad−1, ad, 0]t, since the last coordinate has to be a multiple of K,
and for K larger than the expected norm of the shortest vector, the only possible
multiple ofK is zero. Since the last coordinate is zero, it yields a0c0+· · ·+adcd = 0,
thus f = adx

d + · · ·+ a0 admits m as root modulo N .
The volume of the lattice generated by L is given by

det(LtL)1/2 =
√
K2(c2

0 + · · ·+ c2
d) + 1 ≈ Kc,

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

6 THOMAS PREST AND PAUL ZIMMERMANN

if c denotes the maximal value of the |ci|. We can thus expect short vectors of norm
about (Kc)1/(d+1). To ensure the last coordinate is zero, we need K � (Kc)1/(d+1),
i.e., K � c1/d. This gives short vectors of norm about c1/d, which gives a resultant
about c2 (see §1.1.1). With this method, if we want a resultant near N , we thus
need to find a GP with terms O(N1/2), independently of the degree d. This is easy
with degree d = 2, but seems more difficult for degree d ≥ 3.

Reciprocally, assume we have found two polynomials f, g of degree d with com-
mon root m modulo N and small coefficients. Then a = [a0, a1, . . . , ad]t and
b = [b0, b1, . . . , bd]t are both orthogonal to [1,m, . . . ,md]t modulo N . Thus the GP
ci = mi mod N should yield the short vectors a and b by the above algorithm.
However there is no reason why the mi mod N would be small, thus we are not
sure the “small GP” idea can generate optimal polynomials for d ≥ 3.

Note that if c0 = 1, we can remove the first column and the first row of the
matrix L, and replace K by 1. Indeed, if [a1, . . . , ad, a1c1 + · · · + adcd]t is a short
vector, then it suffices to take a0 = −a1c1 − · · · − adcd. We use that simpler form,
following Williams (see below).

2.4. Williams Algorithm. In [12, §4.2], Williams presents another algorithm
producing two O(N1/4) quadratic polynomials. It works as follows. First take
r1 = bN1/2e+ k with |k| small, and r2 = r2

1 mod N . Then LLL-reduce the matrix

L =

 r1 r2
−1 0
0 −1

 .
Since det(LtL) = r2

1+r2
2+1, we can expect short vectors of norm about det(LtL)1/4 ≈

N1/4. A short vector [a0 := a1r1 + a2r2,−a1,−a2]t corresponds to a polynomial
f = a2x

2+a1x+a0 with root r1 moduloN . In fact, it is easy to see that Williams al-
gorithm corresponds to Montgomery’s two quadratics method with p = 1. Indeed,
for p = 1, we have s = t = 0 in Montgomery’s algorithm, which leads to the vectors
a′ = [c,−1, 0]t and b′ = [−c2 mod N, 0, 1]t. With r1 = c and r2 = c2 mod N , this
is essentially Williams algorithm.

In [12, §4.3], Williams proposes yet another algorithm, producing two O(N2/9)
cubics, which proceeds along the same lines. Choose r1 = bN1/3e + k with |k|
small, then compute r2 = r2

1 mod N and r3 = r3
1 mod N , and reduce the matrix

L =


r1 r2 r3
−1 0 0
0 −1 0
0 0 −1

 .
The determinant of LtL is r2

1 + r2
2 + r2

3 + 1 = O(N4/3), thus the short vectors
have norm O(N2/9). Let [a0, a1, a2, a3]t be a short vector, then by construction
we have a0 = −a1r1 − a2r2 − a3r3, thus a3r3 + a2r2 + a1r1 + a0 = 0, i.e., f =
a3x

3 + a2x
2 + a1x+ a0 admits r1 as root modulo N .

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

NON-LINEAR POLYNOMIAL SELECTION FOR THE NUMBER FIELD SIEVE 7

For example, with N = c59, take r1 = dN1/3e = 41532518328905347816, the
LLL-reduced matrix is:

8794918866367 8342133927919 −7843456792789
4558622527656 −12431783167 15752444867166
−4793408682249 9745365241781 1613475175274
3460228261843 −7034907821749 −1164722804033

 .
If we consider the first two columns, this yields the polynomials

f = 3460228261843x3 − 4793408682249x2 + 4558622527656x+ 8794918866367,
g = 7034907821749x3 − 9745365241781x2 + 12431783167x− 8342133927919,

whose resultant is a 79-digit number, multiple of N , and about N1.33.

3. Our Contribution

3.1. Heuristic Evidence. Before we present our algorithm, we give heuristic ev-
idence that their exist pairs of polynomials of degree d with coefficients O(N1/(2d)),
and whose resultant is N . Consider two polynomials of degree d, say f = adx

d +
· · · + a0 and g = bdx

d + · · · + b0. As seen in §1.1.1, their resultant is an homoge-
neous polynomial of total degree 2d in the variables ad, . . . , a0, bd, . . . , b0. Assume
we choose ad, . . . , a0, bd, . . . , b0 to be random O(N1/(2d)) values, then the resultant
is O(N). Since we have 2d+2 coefficients, there are ≈ N1+1/d different choices for
the coefficients, and we expect ≈ N1/d resultants to be equal to N , assuming uni-
formity of the resultant values. This uniformity assumption does not seem to hold
exactly in practice. For example if we consider all 28 choices for a3, ..., a0, b3, ..., b0
modulo 2 for d = 3, then in 160 cases (62.5%) of them the resultant is divisible by 2,
and in only 96 cases (37.5%) it is 1 mod 2. For p = 3 we have the following proba-
bilities for the three residue classes: 40.7% for 0 mod 3, and 29.6% for {1, 2} mod 3.
For p = 5 we have 23.2% for 0 mod 5 and 19.2% for {1, 2, 3, 4} mod 5. For exam-
ple, with N = 1000003, d = 3, and 0 ≤ a3, . . . , a0, b3, . . . , b0 ≤ 20 ≈ 2N1/(2d), we
find 3744 resultants equal to N .

3.2. Generalizing Montgomery’s Method. We present an algorithm which
generalizes Montgomery’s “Two quadratics” method to higher degrees. This algo-
rithm also generalizes Williams algorithm [12] (which corresponds to the particular
case S = 1 of our algorithm). This algorithm is based on Montgomery’s GP idea
(§2.3), but differs since we consider here a GP of d+1 terms instead of 2d−1, and
also consider skewed polynomials. Consider the GP of d+ 1 elements modulo N

1, c, ..., cd−2, cd−1, cd −N,

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

8 THOMAS PREST AND PAUL ZIMMERMANN

where c is near from N1/d, such that cd − N = O(N (d−1)/d). We perform an
LLL-reduction of the matrix

(1) L =


c ... cd−1 cd −N
S ... 0 0
...
0 ... Sd−1 0
0 ... 0 Sd

 .

Assume we get a short vector [−a0, Sa1, S
2a2, . . . , S

dad]t. Then by construction
we have a0 + a1c + a2c

2 + · · · + ad−1c
d−1 + ad(cd − N) = 0, thus the polynomial

f = adx
d + · · · + a1x + a0 admits c as a root modulo N . Two short vectors yield

two polynomials with common root c modulo N .
We detail below this algorithm in the case d = 3. The matrix we obtain is:

L =


c c2 c3 −N
S 0 0
0 S2 0
0 0 S3

 .
LLL-reducing this matrix yields a vector of the form:

−a0
a1S
a2S

2

a3S
3

 .
If K is the norm of the shortest vector, the ai satisfy K ≈ |ai|Si, and our goal
here is to minimize the medium size of the coefficients, which corresponds to√
a0a3 ≈ KS−3/2. From §1.1, we know that LLL can find a short non-zero vector

of L with norm at most 2(d−1)/4vol(L)1/d. Neglecting constant factors, we thus
have K ≈ det(LtL)1/6 where
det(LtL) = (N2+S6+S4c2+S2c4+c6−2Nc3)S6 = ((c3−N)2+S6+S4c2+S2c4)S6.

Assume S � N1/3 (we obtain a stronger condition on S below). In that case,
the dominant term in S6 + S4c2 + S2c4 is S2c4, and det(LtL) ≈ S8c4. Thus
K ≈ det(LtL)1/6 ≈ S4/3N2/9. The medium coefficient value is then KS−3/2 ≈
S−1/6N2/9.

How large can we choose S? To get the medium coefficient value (and thus the
resultant) as small as possible, we want S as large as possible. With a1 = 1 and
a2 = a3 = 0, we obtain the vector [c, S, 0, 0]t, which corresponds to the linear
polynomial x − c. Since we are looking for non-linear polynomials, we want to
avoid finding this polynomial, thus the expected norm of the short vectors should
be smaller than the norm of this vector, which is about c ≈ N1/3 (recall S � N1/3).
We thus need K � N1/3, i.e., S4/3N2/9 � N1/3, which gives S � N1/12. This
yields for S ≈ N1/12 a medium coefficient value O(N5/24), and a resultant O(N5/4).

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

NON-LINEAR POLYNOMIAL SELECTION FOR THE NUMBER FIELD SIEVE 9

Example. If we take N = c59, c = dN1/3e = 41532518328905347816, S = 4 · 104,
we obtain:

f = 42044x3 − 58243x2 + 216589713956652x+ 309824665860518028,

g = 189599x3 − 262649x2 − 11115144906243x− 3123165185295940301,
whose resultant is a 73-digit number, multiple ofN , and aboutN1.22. The obtained
resultant is 6 digits less than with Williams algorithm. On the 91-digit input from
[12], with the same value of c used by Williams (denoted r1 in [12]) and S = 108,
we get a resultant of 113 digits instead of 120 digits.

3.3. Analysis of the Generic Case. In the case of degree d, the determinant of
LtL in Eq. (1) has the general form:

Se+2d + Se+2d−2c2 + · · ·+ Se+2c2d−2 + Se(N − cd)2,

where e = d(d−1) and c ≈ N1/d. Since N−cd ≈ cd−1, the last term is ≈ Sec2(d−1).
Assuming S � N1/d, the largest term in the sum Se+2d+Se+2d−2c2+· · ·+Se+2c2d−2

is Se+2c2d−2, which is larger than Sec2(d−1) for S � 1. The determinant is thus
about Se+2c2d−2 ≈ Se+2N2−2/d. Since the shortest vector has norm about K =
det(LtL)1/(2d), we have K2d ≈ Se+2N2−2/d, thus K ≈ S(d2−d+2)/(2d)N1/d−1/d2 . The
medium coefficient value is KS−d/2 ≈ S1/d−1/2N1/d−1/d2 . The norm corresponding
to the linear polynomial x− c is about c ≈ N1/d, to avoid it we need K � N1/d,
thus S(d2−d+2)/(2d)N1/d−1/d2 � N1/d, which gives S � N2/d/(d2−d+2). (This is
in accordance with our assumption S � N1/d.) With the maximal value of S,
we finally get a medium coefficient value ≈ N (d2−2d+2)/(d3−d2+2d), and a resultant
≈ N2(d2−2d+2)/(d2−d+2). This yields N5/4 for d = 3, N10/7 for d = 4 and N17/11 for
d = 5. (With S = 1, we would get a resultant ≈ N2(d−1)/d, i.e., respectively N4/3

for d = 3 — which is Williams result —, N3/2 for d = 4 and N8/5 for d = 5.)

4. Concluding Remarks

We have presented a new algorithm that generates two non-linear polynomials
for the Number Field Sieve integer factorization algorithm. This algorithm extends
Montgomery’s two quadratics method to higher degrees, and improves on Williams
algorithm in the two-cubics case, where it finds two polynomials with resultant
O(N5/4) instead of O(N4/3). We have analyzed the generic case of degree d.

We have made progress towards the goal of producing two optimal non-linear
polynomials, i.e., with resultant O(N1+ε). Our algorithm might still be improved:
in the example at the end of §3.2 the coefficient of x2 is much smaller than what
is allowed by the skewness bound; if we knew how to produce a larger coefficient
of x2, we can hope it could decrease the size of the other coefficients, and thus
decrease the size of the resultant.

Another open question is how to produce two non-linear polynomials of different
degrees, say degrees d and d − 1. This might be interesting for several reasons.

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

10 THOMAS PREST AND PAUL ZIMMERMANN

Firstly, going from two polynomials of degree d − 1 to two polynomials of degree
d yields an increase of 2 in the sum of the degrees, which is the main complexity
parameter of NFS. If we know how to generate good polynomials of degrees d and
d − 1, we would increase the degree sum by 1 only. Secondly, when using lattice
sieving, we could use special-q’s on the degree-d side, which might leave cofactors
of comparable size on the degree-d side — after dividing out by the special-q —
and on the degree-(d− 1) side.
Acknowledgements. This work was initiated while the second author visited Peter
L. Montgomery in June 2009; this visit was partly supported by Microsoft Re-
search. Both authors thank Peter L. Montgomery and Damien Stehlé for very
fruitful discussions about non-linear polynomial selection and lattice reduction al-
gorithms. We thank Jason Papadopoulos who pointed out Williams work [12].
The second author is grateful to Joachim von zur Gathen who influenced his re-
search, in particular during his sabbatical visit at the University of Paderborn in
1994-1995, and of course for the wonderful book [11].

References
[1] Elkenbracht-Huizing, M. An implementation of the number field sieve. Experimental

Mathematics 5, 3 (1996), 231–253.
[2] Hanrot, G. The LLL Algorithm. Survey and Applications. In Nguyen and Vallée [10], 2010,

ch. LLL: A Tool for Effective Diophantine Approximation, pp. 215–263.
[3] Kleinjung, T. On polynomial selection for the general number field sieve. Mathematics of

Computation 75 (2006), 2037–2047.
[4] Kleinjung, T. Polynomial selection. Slides presented at the CADO workshop, Nancy,

France, 2008. 30 pages, available at http://cado.gforge.inria.fr/workshop/slides/.
[5] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W.,

Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik, D. A., te Riele, H., Tim-
ofeev, A., and Zimmermann, P. Factorization of a 768-bit rsa modulus. In CRYPTO
2010 Advances in Cryptology - CRYPTO 2010 (Santa Barbara, USA, 2010), T. Rabin, Ed.,
vol. 6223 of Lecture Notes in Computer Science, Springer-Verlag, pp. 333–350.

[6] Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with rational
coefficients. Mathematische Annalen 261 (1982), 515–534.

[7] Montgomery, P. L. Small geometric progressions modulo n. Unpublished note of 2 pages.
December 1993, revised 1995 and 2005.

[8] Montgomery, P. L. Searching for higher-degree polynomials for the general number field
sieve. http://www.ipam.ucla.edu/publications/scws1/scws1_6223.ppt, 2006. Power-
Point presentation, 34 pages.

[9] Murphy, B. A. Polynomial Selection for the Number Field Sieve Integer Factorisation
Algorithm. PhD thesis, Australian National University, 1999. 144 pages.

[10] Nguyen, P. Q., and Vallée, B., Eds. The LLL Algorithm. Survey and Applications.
Springer-Verlag, 2010.

[11] von zur Gathen, J., and Gerhard, J. Modern Computer Algebra, 2nd ed. Cambridge
University Press, 2003.

[12] Williams, R. S. Cubic polynomials in the number field sieve. MSc Thesis, Texas Tech
University, 2010. 27 pages, http://www.math.ttu.edu/~cmonico/research/Williams_
Ronnie_Thesis.pdf.

in
ria

-0
05

40
48

3,
 v

er
si

on
 1

 -
26

 N
ov

 2
01

0

