pandas.testing.assert_extension_array_equal#
- pandas.testing.assert_extension_array_equal(left, right, check_dtype=True, index_values=None, check_exact=<no_default>, rtol=<no_default>, atol=<no_default>, obj='ExtensionArray')[source]#
Check that left and right ExtensionArrays are equal.
This method compares two
ExtensionArrayinstances for equality, including checks for missing values, the dtype of the arrays, and the exactness of the comparison (or tolerance when comparing floats).- Parameters:
- left, rightExtensionArray
The two arrays to compare.
- check_dtypebool, default True
Whether to check if the ExtensionArray dtypes are identical.
- index_valuesIndex | numpy.ndarray, default None
Optional index (shared by both left and right), used in output.
- check_exactbool, default False
Whether to compare number exactly.
Changed in version 2.2.0: Defaults to True for integer dtypes if none of
check_exact,rtolandatolare specified.- rtolfloat, default 1e-5
Relative tolerance. Only used when check_exact is False.
- atolfloat, default 1e-8
Absolute tolerance. Only used when check_exact is False.
- objstr, default ‘ExtensionArray’
Specify object name being compared, internally used to show appropriate assertion message.
Added in version 2.0.0.
See also
testing.assert_series_equalCheck that left and right
Seriesare equal.testing.assert_frame_equalCheck that left and right
DataFrameare equal.testing.assert_index_equalCheck that left and right
Indexare equal.
Notes
Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked.
Examples
>>> from pandas import testing as tm >>> a = pd.Series([1, 2, 3, 4]) >>> b, c = a.array, a.array >>> tm.assert_extension_array_equal(b, c)