pandas.arrays.IntegerArray#
- class pandas.arrays.IntegerArray(values, mask, copy=False)[source]#
Array of integer (optional missing) values.
Uses
pandas.NAas the missing value.Warning
IntegerArray is currently experimental, and its API or internal implementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
data: contains a numpy integer array of the appropriate dtype
mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, use
pandas.array()with one of the integer dtypes (see examples).See Nullable integer data type for more.
- Parameters:
- valuesnumpy.ndarray
A 1-d integer-dtype array.
- masknumpy.ndarray
A 1-d boolean-dtype array indicating missing values.
- copybool, default False
Whether to copy the values and mask.
Attributes
None
Methods
None
- Returns:
- IntegerArray
See also
arrayCreate an array using the appropriate dtype, including
IntegerArray.Int32DtypeAn ExtensionDtype for int32 integer data.
UInt16DtypeAn ExtensionDtype for uint16 integer data.
Examples
Create an IntegerArray with
pandas.array().>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
>>> pd.array([1, None, 3], dtype="Int32") <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype="UInt16") <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16