pandas.api.typing.DataFrameGroupBy.max#
- DataFrameGroupBy.max(numeric_only=False, min_count=-1, skipna=True, engine=None, engine_kwargs=None)[source]#
Compute max of group values.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
Changed in version 2.0.0: numeric_only no longer accepts
None.- min_countint, default -1
The required number of valid values to perform the operation. If fewer than
min_countnon-NA values are present the result will be NA.- skipnabool, default True
Exclude NA/null values. If the entire group is NA and
skipnaisTrue, the result will be NA.Changed in version 3.0.0.
- enginestr, default None None
'cython': Runs rolling apply through C-extensions from cython.'numba'Runs rolling apply through JIT compiled code from numba.Only available when
rawis set toTrue.
None: Defaults to'cython'or globally settingcompute.use_numba
- engine_kwargsdict, default None None
For
'cython'engine, there are no acceptedengine_kwargs- For
'numba'engine, the engine can acceptnopython,nogil and
paralleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}and will be applied to both thefuncand theapplygroupby aggregation.
- For
- Returns:
- Series or DataFrame
Computed max of values within each group.
See also
SeriesGroupBy.minReturn the min of the group values.
DataFrameGroupBy.minReturn the min of the group values.
SeriesGroupBy.maxReturn the max of the group values.
DataFrameGroupBy.maxReturn the max of the group values.
SeriesGroupBy.sumReturn the sum of the group values.
DataFrameGroupBy.sumReturn the sum of the group values.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b', 'b'] >>> ser = pd.Series([1, 2, 3, 4], index=lst) >>> ser a 1 a 2 b 3 b 4 dtype: int64 >>> ser.groupby(level=0).max() a 2 b 4 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"]) >>> df a b c tiger 1 8 2 leopard 1 2 5 cheetah 2 5 8 lion 2 6 9 >>> df.groupby("a").max() b c a 1 8 5 2 6 9