pandas.CategoricalIndex#
- class pandas.CategoricalIndex(data=None, categories=None, ordered=None, dtype=None, copy=False, name=None)[source]#
Index based on an underlying
Categorical.CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (categories). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, …) are not possible.
- Parameters:
- dataarray-like (1-dimensional)
The values of the categorical. If categories are given, values not in categories will be replaced with NaN.
- categoriesindex-like, optional
The categories for the categorical. Items need to be unique. If the categories are not given here (and also not in dtype), they will be inferred from the data.
- orderedbool, optional
Whether or not this categorical is treated as an ordered categorical. If not given here or in dtype, the resulting categorical will be unordered.
- dtypeCategoricalDtype or “category”, optional
If
CategoricalDtype, cannot be used together with categories or ordered.- copybool, default False
Make a copy of input ndarray.
- nameobject, optional
Name to be stored in the index.
Attributes
The category codes of this categorical index.
The categories of this categorical.
Whether the categories have an ordered relationship.
Methods
rename_categories(new_categories)Rename categories.
reorder_categories(new_categories[, ordered])Reorder categories as specified in new_categories.
add_categories(new_categories)Add new categories.
remove_categories(removals)Remove the specified categories.
Remove categories which are not used.
set_categories(new_categories[, ordered, rename])Set the categories to the specified new categories.
Set the Categorical to be ordered.
Set the Categorical to be unordered.
map(mapper[, na_action])Map values using input an input mapping or function.
- Raises:
- ValueError
If the categories do not validate.
- TypeError
If an explicit
ordered=Trueis given but no categories and the values are not sortable.
See also
IndexThe base pandas Index type.
CategoricalA categorical array.
CategoricalDtypeType for categorical data.
Notes
See the user guide for more.
Examples
>>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"]) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category')
CategoricalIndexcan also be instantiated from aCategorical:>>> c = pd.Categorical(["a", "b", "c", "a", "b", "c"]) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category')
Ordered
CategoricalIndexcan have a min and max value.>>> ci = pd.CategoricalIndex( ... ["a", "b", "c", "a", "b", "c"], ordered=True, categories=["c", "b", "a"] ... ) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') >>> ci.min() 'c'