

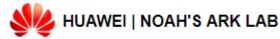
Al未来之光

第一届北京高校人工智能学术论坛 2019 Beijing Universities Academic Forum of Artificial Intelligence

北京理工大学自动化学院研究生会 北京邮电大学自动化学院研究生会 中国科学院计算技术研究所研究生会

Deep Fitting Degree Scoring Network for Monocular 3D Object Detection

Lijie Liu, Jiwen Lu, Chunjing Xu, Qi Tian, Jie Zhou



目录 / CONTENTS

O1 Problem

02

Motivation

03

Approach

04

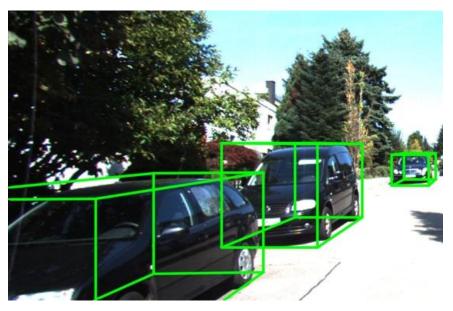
Experiments

01

Problem

Monocular 3D Object Detection

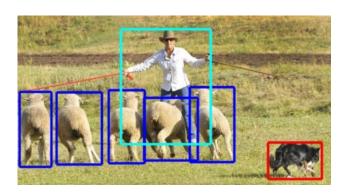
"Perception is our best guess as to what is in the world given our current sensory input and our prior experience"

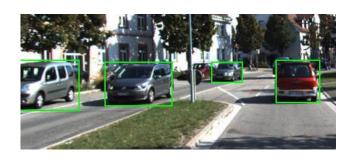


- Helmholtz (1866)

Problem Setting: Monocular 3D Object Detection

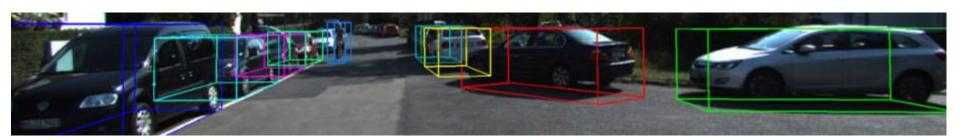
- ➤ Input: A single RGB image & camera intrinsic
- > Solve: 9 DoF, including orientation, dimension, location
- Cue: Appearance (sensory input) & Projection Law (prior experience)





Why 3D perception

- > 3D perception is the key to human intelligence
- > Autonomous driving & Robotic grasping

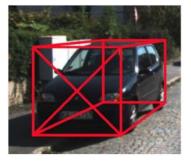


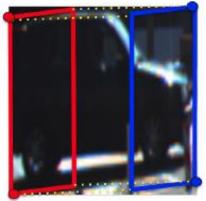
Challenges in Location Estimation

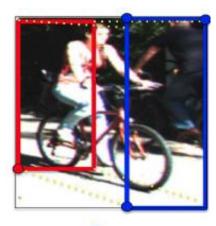
- Dimension and orientation estimation are easier than location estimation
- > Ambiguities arising from 2D-3D mapping
- > Real 3D information unavailable
- Occlusions, Truncation, Scale variation......

02

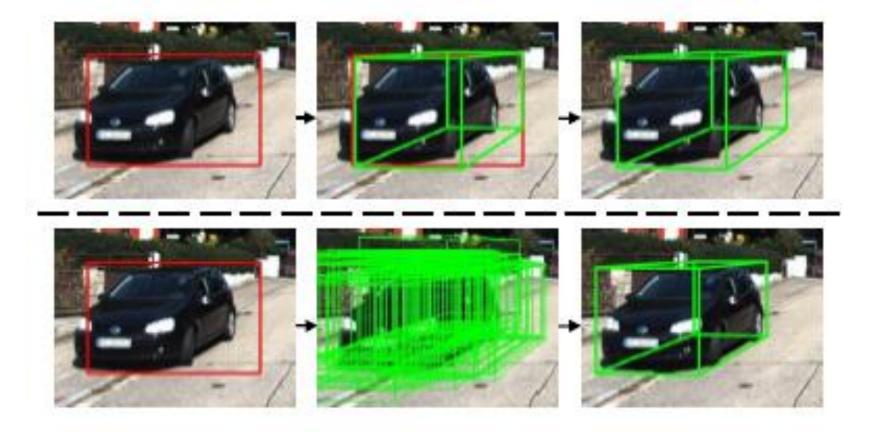
Motivation


How we come up with our idea


Previous Methods

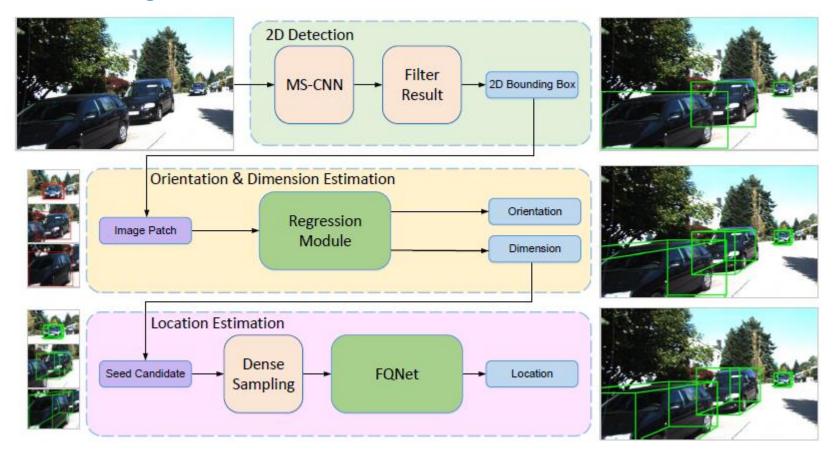

- ➤ Tight Constraints (CVPR17)
- Solves the location by placing the 3D proposal in the 2D bounding box compactly.

Drawbacks:


- 1) Image appearance clue is not used
- 2) Performance highly depends on the 2D detection accuracy

How do human do?

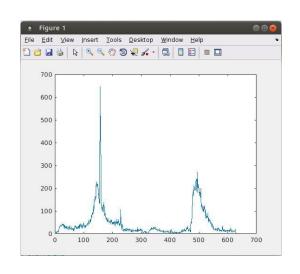
➤ Hypothesize-and-Verify

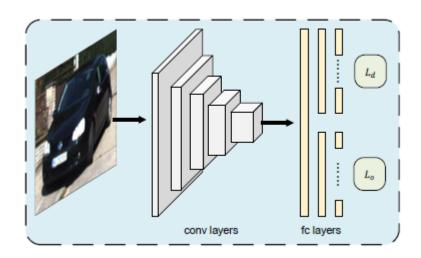

03

Approach

Some details

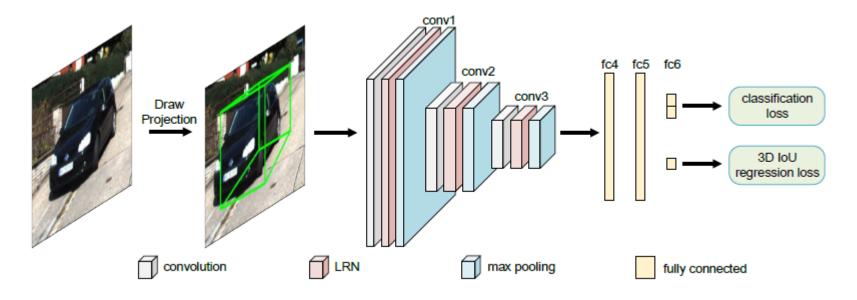
Overall framework


> Three-stage



Regression Module

> Anchor cuboid & Anchor angle


$$L_d = -\log \sigma(c_{i^*}) + [1 - IoU(\boldsymbol{A}_{i^*} + [\Delta w_{i^*}, \Delta h_{i^*}, \Delta h_{i^*}, \Delta l_{i^*}], \boldsymbol{G})]$$

$$L_o = -\log \sigma(c_{i^*}) + [1 - \cos(\Theta_{i^*} + \Delta\theta_{i^*} - \theta_G)]$$

Location Estimation

- Dense sampling
- > FQNet

$$\Theta^{\star} = \arg\min_{\Theta} ||\mathcal{F}(\boldsymbol{I}, \boldsymbol{S}_{i}|\Theta) - IoU(\boldsymbol{I}, \boldsymbol{S}_{i})||$$

04

Experiments

Some demonstration

Experimental Results on KITTI dataset

> Orientation & Dimension

Table 1. Comparisons of the Average Orientation Similarity (AOS) with the state-of-the-art methods on the KITTI dataset.

Method		Easy]	Moderate		Hard			
Wiethod	train/val 1	train/val 2	test	train/val 1	train/val 2	test	train/val 1	train/val 2	test	
3DOP [9]	91.58	-	91.44	85.80	-	86.10	76.80	-	76.52	
Mono3D [8]	91.90	-	91.01	86.28	-	86.62	77.09	-	76.84	
3DVP [42]	-	78.99	86.92	-	65.73	74.59	-	54.67	64.11	
SubCNN [43]	-	94.55	90.67	-	85.03	88.62	-	72.21	78.68	
Deep3DBox [31]	-	97.50	92.90	-	96.30	88.75	-	80.40	76.76	
3D-RCNN [23]	90.70	97.70	89.98	89.10	96.50	89.25	79.50	80.70	80.07	
Our Method	97.28	97.57	92.58	93.70	96.70	88.72	79.25	80.45	76.85	

Method	train/val 1	train/val 2
3DOP [9]	0.3527	-
Mono3D [8]	0.4251	-
Deep3DBox [31]	-	0.1934
Our Method	0.1698	0.1465

Experimental Results on KITTI dataset

Location

Table 2. Comparisons of the 2D AP with the state-of-the-art methods on the KITTI Birds Eyed View validation dataset.

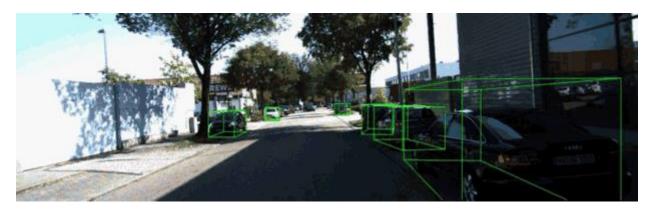
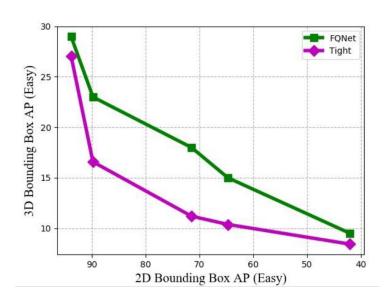
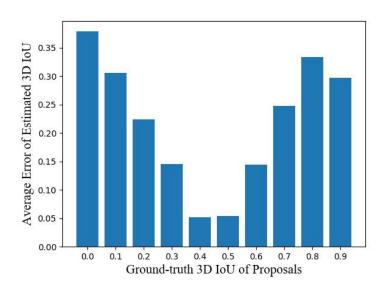

	IoU = 0.5							IoU = 0.7						
Method	Method Easy		Moderate		Hard		Easy		Moderate		Hard			
	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2		
3DOP [9]	55.04	-	41.25	-	34.55	-	12.63	-	9.49	-	7.59	-		
Mono3D [8]	30.50	-	22.39	-	19.16	-	5.22	-	5.19	-	4.13	-		
Deep3DBox [31]	-	30.02	-	23.77	-	18.83	-	9.99	-	7.71	-	5.30		
Our Method	32.57	33.37	24.60	26.29	21.25	21.57	9.50	10.45	8.02	8.59	7.71	7.43		

Table 4. Comparisons of the 3D AP with the state-of-the-art methods on the KITTI 3D Object validation dataset.

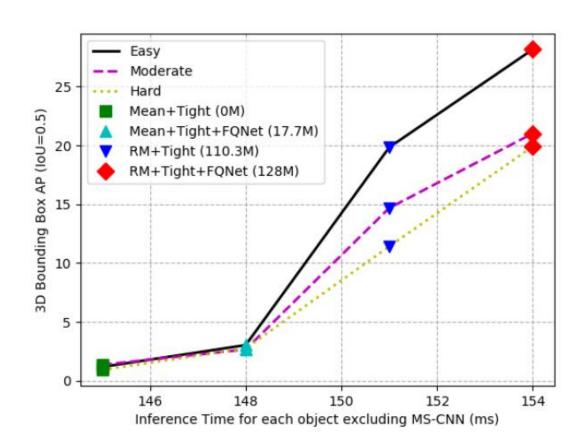
	IoU = 0.5							IoU = 0.7					
Method	Easy		Moderate		Hard		Easy		Moderate		Hard		
	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	t/v 1	t/v 2	
3DOP [9]	46.04	-	34.63	-	30.09	-	6.55	-	5.07	-	4.10	-	
Mono3D [8]	25.19	-	18.20	-	15.52	-	2.53	-	2.31	-	2.31	-	
Deep3DBox [31]	-	27.04	-	20.55	-	15.88	-	5.85	-	4.10	-	3.84	
Our Method	28.16	28.98	21.02	20.71	19.91	18.59	5.98	5.45	5.50	5.11	4.75	4.45	

Qualitative Results





Effectiveness


- ➤ Not sensitive to 2D detection precision
- ➤ 3D IoU regression

Accuracy vs Speed

- > Ablation study
- Efficiency

THANK YOU

