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Abstract

We explore the task of multi-source mor-
phological reinflection, which generalizes
the standard, single-source version. The
input consists of (i) a target tag and (ii)
multiple pairs of source form and source
tag for a lemma. The motivation is that it
is beneficial to have access to more than
one source form since different source
forms can provide complementary infor-
mation, e.g., different stems. We further
present a novel extension to the encoder-
decoder recurrent neural architecture, con-
sisting of multiple encoders, to better solve
the task. We show that our new archi-
tecture outperforms single-source reinflec-
tion models and publish our dataset for
multi-source morphological reinflection to
facilitate future research.

1 Introduction

Morphologically rich languages still constitute a
challenge for natural language processing (NLP).
The increased data sparsity caused by highly in-
flected word forms in certain languages causes
otherwise state-of-the-art systems to perform
worse in standard tasks, e.g., parsing (Ballesteros
et al., 2015) and machine translation (Bojar et al.,
2016). To create systems whose performance is
not deterred by complex morphology, the devel-
opment of NLP tools for the generation and anal-
ysis of morphological forms is crucial. Indeed,
these considerations have motivated a great deal
of recent work on the topic (Ahlberg et al., 2015;
Dreyer, 2011; Nicolai et al., 2015).

In the area of generation, the most natural task
is morphological inflection—finding an inflected
form for a given target tag and lemma. An ex-
ample for English is as follows: (trg:3rdSgPres,

Present Ind Past Ind Past Sbj
Sg Pl Sg Pl Sg Pl

1 treffe treffen traf trafen träfe träfen
2 triffst trefft trafst traft träfest träfet
3 trifft treffen traf trafen träfe träfen

Table 1: The paradigm of the strong German verb TREFFEN,
which exhibits an irregular ablaut pattern. Different parts of
the paradigm make use of one of four bolded theme vowels:
e, i, a or ä. In a sense, the verbal paradigm is partitioned into
subparadigms. To see why multi-source models could help
in this case, starting only from the infinitive treffen makes it
difficult to predict subjunctive form träfest, but the additional
information of the fellow subjunctive form träfe makes the
task easier.

bring) 7→ brings. In this case, the 3rd per-
son singular present tense of bring is generated.
One generalization of inflection is morphological
reinflection (MRI) (Cotterell et al., 2016), where
we must produce an inflected form from a triple of
target tag, source form and source tag. The inflec-
tion task is the special case where the source form
is the lemma. As an example, we may again con-
sider generating the English past tense form from
the 3rd person singular present: (trg:3rdSgPres,
brought, src:Past) 7→ brings (where trg = “target
tag” and src = “source tag”). As the starting point
varies, MRI is more difficult than morphological
inflection and exhibits more data sparsity. How-
ever, it is also more widely applicable since lex-
ical resources are not always complete and, thus,
the lemma is not always available. A more com-
plex German example is given in Table 1.

In this work, we generalize the MRI task to
a multi-source setup. Instead of using a single
source form-tag pair, we use multiple source form-
tag pairs. Our motivation is that (i) it is often bene-
ficial to have access to more than one source form
since different source forms can provide comple-
mentary information, e.g., different stems; and (ii)
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in many application scenarios, we will have en-
countered more than one form of a paradigm at
the point when we want to generate a new form.

We will make the intuition that multiple source
forms provide complementary information pre-
cise in the next section, but first return to
the English verb bring. Generating the form
brings from brought may be tricky—there is
an irregular vowel shift. However, if we had
a second form with the same theme vowel,
e.g., bringing, the task would be much easier,
i.e., (trg:3rdSgPres, form1:brought, src1:Past,
form2:bringing, src2:Gerund). A multi-source
approach clearly is advantageous for this case
since mapping bringing to brings is regular even
though the verb itself is irregular.

The contributions of the paper are as follows. (i)
We define the task of multi-source MRI, a gener-
alization of single-source MRI. (ii) We show that a
multi-source MRI system, implemented as a novel
encoder-decoder, outperforms the top-performing
system in the SIGMORPHON 2016 Shared Task
on Morphological Reinflection on seven out of
eight languages, when given an additional source
form. (iii) We release our data to support the de-
velopment of new systems for MRI.

2 The Task: Multi-Source Reinflection

Previous work on morphological reinflection has
assumed a single source form, i.e., an input con-
sisting of exactly one inflected source form (poten-
tially the lemma) and the corresponding morpho-
logical tag. The output is generated from this in-
put. In contrast, multi-source reinflection (MRI),
the task we introduce, is a generalization in which
the model receives multiple form-tag pairs. In
effect, this gives the model a partially annotated
paradigm from which it predicts the rest.

MRI is a more natural problem than single-
source morphological reinflection since we often
have access to more than just one form.1 For ex-
ample, corpora such as the universal dependency
corpus (McDonald et al., 2013) that are anno-
tated on the token level with inflectional features
often contain several different inflected forms of
a lemma. Such corpora would provide an ideal

1Scenarios where a single form is available and that form
is the lemma are perhaps not infrequent. In high-resource
languages, an electronic dictionary may have near-complete
coverage of the lemmata of the language. However, paradigm
completion is especially crucial for neologisms and low-
resource languages.

source of data for the multi-source MRI task.
Formally, we can think of a morphological

paradigm as follows. Let Σ be a discrete alphabet
for a given language and T be the set of morpho-
logical tags in the language. The inflectional table
or morphological paradigm π of a lemmaw can be
formalized as a set of pairs:

π(w) = {(f1, t1), (f2, t2), . . . , (fN , tN )}, (1)

where fi ∈ Σ+ is an inflected form of w, and ti ∈
T is the morphological tag of the form fi. The
integer N is the number of slots in the paradigm
that have the syntactic category (POS) of w.

Using this notation, single-source morpholog-
ical reinflection (MRI) can be described as fol-
lows. Given a target tag and a pair of source form
and source tag (ttrg, (fsrc, tsrc)) as input, predict
the target form ftrg. There has been a substantial
amount of prior work on this task, including sys-
tems that participated in Task 2 of the SIGMOR-
PHON 2016 shared task (Cotterell et al., 2016).
Thus, we may define the task of multi-source
morphological reinflection as follows: Given a
target tag and a set of k form-tag source pairs
(ttrg, {(f1src, t

1
src), . . . , (f

k
src, t

k
src)}) as input, predict

the target form ftrg. Note that single-source MRI
is a special case of multi-source MRI for k = 1.

2.1 Motivating Examples
Figure 1 gives examples for four different config-
urations that can occur in multi-source MRI.2 We
have colored the source forms green and drawn a
dotted line to the target if they contain sufficient
information for correct generation. If two source
forms together are needed, the dotted line encloses
both of them. Source forms that provide no infor-
mation in the configuration are colored red (no ar-
row); note these forms could provide (and in most
cases will provide) useful information for other
combinations of source and target forms.

2Figure 1 is not intended as a complete taxonomy of pos-
sible MRI configurations, e.g., there are hybrids of ANY-
FORM and NOFORM (some forms are informative, others
are suppletive) and fuzzy variants (a single form gives pretty
good evidence for how to generate the target form, but an-
other single form gives better evidence). All of our exam-
ples make additional assumptions, e.g., that we have not seen
other similar forms in training either of the same lemma
(siente) or of a similar lemma (consientes). Hopefully, the
examples are illustrative of the main conceptual distinc-
tion: several single forms each are sufficient by themselves
(ANYFORM), a single, but a carefully selected form is suffi-
cient (SINGLEFORM), multiple forms are needed to generate
the target (MULTIFORM) and the target form cannot be pre-
dicted (irregular) from the source forms (NOFORM).
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lift

1stSgPres

lifts
3rdSgPres

lifted
PstPart

lifting
PresPart

(a) ANYFORM

treffe
1SgIndPres

traf
1stSgIndPst

triff
2ndSgImp

trafen
1stPlIndPst

(b) SINGLEFORM

pondré
1stSgFt

pongo
1stSgIndPres

poner
Inf

ponga
3rdSgSubPres

(c) MULTIFORM

go
1stSgPres

goes
3rdSgPres

gone
PstPart

went
1stSgPst

(d) NOFORM

Figure 1: Four possible input configurations in multi-source morphological reinflection (MRI). In each subfigure, the target
form on the right is purple. The source forms are on the left and are green if they can be used to predict the target form (also
connected with a dotted line) and red if they cannot. There are four possible configurations: (i) ANYFORM is the case where
one can predict the target form from any of the source forms. (ii) SINGLEFORM is the case where only one form can be used to
regularly predict the target form. (iii) MULTIFORM is the case where multiple forms are necessary to predict the target form.
(iv) NOFORM is the case where the target form cannot be regularly derived from any of the source forms. Multi-source MRI
is expected to perform better than single-source MRI for the configurations SINGLEFORM and MULTIFORM, but not for the
configurations ANYFORM and NOFORM.

The first type of configuration is ANYFORM:
each of the available source forms in the subset
of the English paradigm (lift, lifts, lifted) contains
enough information for a correct generation of the
target form lifting. The second configuration is
SINGLEFORM: there is a single form that contains
enough information for correct generation, but it
has to be carefully selected. Inflected forms of the
German verb treffen ‘to meet’ have different stem
vowels (see Table 1). In single-source reinflection,
producing a target form with one stem vowel (a in
trafe in the figure) from a source form with another
stem vowel (e.g., e in treffe) is difficult.3

In contrast, the learning problem for the
SINGLEFORM configuration is much easier in
multi-source MRI. The multi-source model does
not have to learn the possible vowel changes of
this irregular verb; instead, it just needs to pick
the correct vowel change from the alternatives of-
fered in the input. This is a relatively easy task
since the theme vowel is identical. So we only
need to learn one general fact about German mor-
phology (which suffix to add) and will then be able
to produce the correct form with high accuracy.
This type of regularity is typical of complex mor-
phology: there are groups of forms in a paradigm
that are similar and it is highly predictable which
of these groups a particular target form for a new
word will be a member of. As long as one repre-
sentative of each group is part of the multi-source
input, we can select it to generate the correct form.

3It is not impossible to learn, but treffen is an irregular
verb, so we cannot easily leverage the morphology we have
learned about other verbs.

In the MULTISOURCE configuration, we are
able to use information from multiple forms if no
single form is sufficient by itself. For example,
to generate ponga, 3rdSgSubPres of poner ‘to put’
in Spanish, we need to know what the stem is
(ponga, not pona) and which conjugation class (-
ir, -er or -ar) it is part of (ponga, not pongue).
The single-source input pongo, 1stSgIndPres, does
not reveal the conjugation class: it is compatible
with both ponga and pongue. The single-source
input poner, Inf, does not reveal the stem for the
subjunctive: it is compatible with both ponga and
pona—we need both source forms to generate the
correct form ponga.

Again, such configurations are frequent cross-
linguistically, either in this “discrete” variant or in
more fuzzy variants where taking several forms to-
gether increases our chances of producing the cor-
rect target form. Finally, we call configurations
NOFORM if the target form is completely irregu-
lar and not related to any of the source forms. The
suppletive form went is our example for this case.

2.2 Principle Parts
The intuition behind the MRI task draws inspira-
tion from the theoretical linguistic notion of prin-
ciple parts (Finkel and Stump, 2007; Stump and
Finkel, 2013). The notion is that a paradigm has
a subset that allows for maximum predictability.
In terms of language pedagogy, the principle parts
would be a minimial set of forms a student has
to learn in order to be able to generate any form
in the paradigm. For instance for the partial Ger-
man paradigm in Table 1, the forms treffen, trifft,
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trafen, and träfen could form one potential set of
principle parts.

From a computational learning point of view,
maximizing predictability is always a boon—we
want to make it as easy as possible for the system
to learn the morphological regularities and subreg-
ularities of the language. Giving the system the
principle parts as input is one way to achieve this.

3 Model Description

Our model is a multi-source extension of MED,
Kann and Schütze (2016b)’s encoder-decoder net-
work for MRI. In MED, a single bidirectional re-
current neural network (RNN) encodes the input.
In contrast, we use multiple encoders to be able to
handle multiple source form-tag pairs. In MED, a
decoder RNN produces the output from the hidden
representation. We do not change this part of the
architecture, so there is still a single decoder.

3.1 Input and Output Format

For k source forms, our model takes k different in-
puts of parallel structure. Each of the 1 ≤ i ≤ k
inputs consists of the target tag and the source
form fi and its corresponding source tag ti. The
output is the target form. Each source form is rep-
resented as a sequence of characters; each char-
acter is represented as an embedding. Each tag—
both the target tag and the source tags—is repre-
sented as a sequence of subtags; each subtag is
represented as an embedding.

More formally, we define the alphabet Σlang as
the set of characters in the language and Σsubtag as
the set of subtags that occur as part of the set of
morphological tags T of the language; e.g., if 1st-
SgPres ∈ T , then 1st, Sg and Pres ∈ Σsubtag. Each
of the k inputs to our system is of the following
format: SstartΣ

+
subtagΣ

+
langΣ

+
subtagSend where the first

subtag sequence is the source tag ti and the sec-
ond subtag sequence is the target tag. The output
format is: SstartΣ

+
langSend, where the symbols Sstart

and Send are predefined start and end symbols.

3.2 Multi-Source Encoder-Decoder

The encoder-decoder is based on the machine
translation model of Bahdanau et al. (2014) and all
specifics of our model are identical to the original
presentation unless stated otherwise. Whereas in
model of Bahdanau et al. (2014), there is only one
encoder, our model consists of k ≥ 1 encoders
and processes k sources simultaneously. The k

sources have the form Xm = (ttrg, f
m
src , t

m
src), rep-

resented as SstartΣ
+
subtagΣ

+
langΣ

+
subtagSend as described

above. Characters and subtags are embedded.
The input to encoder m is Xm. Each encoder

consists of a bidirectional RNN that computes a
hidden state hmi for each position, the concatena-
tion of forward and backward hidden states. De-
coding proceeds as follows:

p(y|X1, . . . , Xk) =

|Y |∏

t=1

p(yt|{y1, ..., yt−1}, ct)

=

|Y |∏

t=1

g(yt−1, st, ct), (2)

where y = (y1, ..., y|Y |) is the output sequence (a
sequence of |Y | characters), g is a nonlinear func-
tion, st is the hidden state of the decoder and ct is
the sum of the encoder states hmi, weighted by at-
tention weights αmi(st−1) that depend on the de-
coder state:

ct =

k∑

m=1

|Xm|∑

i=1

αmi(st−1)hmi. (3)

A visual depiction of this model may be found in
Figure 2. A more complex hierarchical attention
structure would be an alternative, but this sim-
ple model in which all hidden states contribute
on the same level in a single attention layer (i.e.,∑k

m=1

∑|Xm|
i=1 αmi = 1) works well as our experi-

mental results. The k encoders share their weights.

4 Multi-Source Reinflection Experiment

We evaluate the performance of our model in an
experiment based on Task 2 of the SIGMOR-
PHON Shared Task on Morphological Reinflec-
tion (Cotterell et al., 2016). This is a single-source
MRI task as outlined in Section 1.

4.1 Experimental Settings
Datasets. Our datasets are based on the data
from the SIGMORPHON 2016 Shared Task
on Morphological Reinflection (Cotterell et al.,
2016). Our experiments cover eight languages:
Arabic, Finnish, Georgian, German, Hungarian,
Russian, Spanish and Turkish. The languages
were chosen to represent different types of mor-
phology. Finnish, German, Hungarian, Russian,
Turkish and Spanish are all suffixing. In addition
to being suffixing, three of these languages em-
ploy vocalic (German, Spanish) and consonantal
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Figure 2: Visual depiction of our multi-source encoder-decoder RNN. We sketch a two encoder model, where the left encoder
reads in the present form treffen and the right encoder reads in the past tense form trafen. They work together to predict the
subjunctive form träfen. The shadowed red arcs indicate the strength of the attention weights—we see the network is focusing
more on a because it helps the decoder better predict ä than e. We omit the source and target tags as input for conciseness.

(Russian) stem changes for many inflections. The
members of the remaining sub-group are aggluti-
native. Georgian makes use of prefixation as well
as suffixation. Arabic morphology contains both
concatenative and templatic elements. We build
multi-source versions of the dataset for Task 2 of
the SIGMORPHON shared task in the following
way. We use data from the UNIMORPH project,4

containing complete paradigms for all languages
of the shared task. The shared task data was sam-
pled from the same set of paradigms; our new
dataset is a superset of the SIGMORPHON data.

We create our new dataset by uniformly sam-
pling three additional word forms from the
paradigm of each source form in the original data.
In combination with the source and target forms
of the original dataset, this means that our dataset
is a set of 5-tuples consisting each of four source
forms and one target form.5 Ideally, we would
like to keep the experimental variable k, the num-
ber of sources we use in multi-source MRI, con-
stant for a particular experiment or vary it sys-
tematically across other experimental conditions.
Table 2 gives an overview of the number of dif-
ferent source forms per language in our dataset.

4http://unimorph.org
5One thing to note is that the original shared task data was

sampled depending on word frequency in unlabeled corpora.
We do not impose a similar condition, so the frequency dis-
tributions of our data and the shared task data are different.
Also, we excluded Maltese and Navajo due to a lack of data
to create the additional multi-source datasets.

1 2 3 ≥ 4
ar 0 0 0 12,800
fi 0 0 0 12,800
ka 1015 84 2 11,699
de 0 0 0 12,800
hu 0 0 0 19,200
ru 0 0 5 12,794
es 1575 25 877 10,323
tu 0 0 0 12,800

Table 2: Number of target forms in the training set for which
1, 2, 3 or ≥ 4 source forms (in the training set) are available
for prediction. The tables for the development and test splits
show the same pattern and are omitted.

Our dataset is available for download at http:
//cistern.cis.lmu.de.

Hyperparameters. We use embeddings of size
300. Our encoder and decoder GRUs have 100
hidden units each. Following Le et al. (2015), we
initialize all encoder and decoder weights as well
as the embeddings with an identity matrix. All
biases are initialized with zero. We use stochas-
tic gradient descent, Adadelta (Zeiler, 2012) and a
minibatch size of 20 for training. Training is done
for a maximum number of 90 epochs. If no im-
provement occurs for 20 epochs, we stop training
early. The final model we run on test is the model
that performs best on the development data.

Baselines. For the single-source case, we apply
MED, the top-scoring system in the SIGMOR-
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source form(s) used

1 2 3 4 1–2 1–4
ar .871 .813 .796 .830 .905 .944
fi .956 .929 .941 .934 .965 .978
ka .967 .943 .942 .934 .969 .979
de .954 .922 .931 .912 .959 .980
hu .992 .962 .963 .963 .988 .989
ru .876 .795 .824 .817 .888 .911
es .975 .961 .963 .968 .977 .984
tu .967 .928 .947 .944 .970 .983

Table 3: Accuracy on MRI for single-source (1, 2, 3, 4) and
multi-source (1–2, 1–4) models. Best result in bold.

PHON 2016 Shared Task on Morphological Rein-
flection (Cotterell et al., 2016; Kann and Schütze,
2016b). At the time of writing, MED constitutes
the state of the art on the dataset. For Arabic, Ger-
man and Turkish, we run an additional set of ex-
periments to test two additional architectural con-
figurations of multi-source encoder-decoders: (i)
In addition to the default configuration in which all
encoders share parameters, we also test the option
of each encoder learning its own set of parameters
(shared par’s: yes vs. no in Table 4). (ii) Another
way of realizing a multi-source system is to con-
catenate all sources and give this to an encoder-
decoder with a single encoder as one input (en-
coders: k = 1 vs. k > 1 in Table 4).

Evaluation Metric. We evaluate on 1-best ac-
curacy (exact match) against the gold form. We
deviate from the shared task, which also evalu-
ates under mean reciprocal rank and edit distance.
We omit the later two, ince all these metrics were
highly correlated (Cotterell et al., 2016).

4.2 Results

Table 3 shows the results of the MRI experiment
on test data. We compare using a single source,
the first two sources and all four sources. The
first source (in column “1”) is the original source
from the SIGMORPHON shared task. Recall
that we used uniform sampling to identify addi-
tional forms whereas the sampling procedure of
the shared task took into account frequency. We
suspect that this is the reason for the worse perfor-
mance of the new sources compared to the original
source; e.g., in German there are rarely used sub-
junctive forms like befähle that are unlikely to help
generate related forms that are more frequent.

The main result of the experiment is that multi-

encoders: k = 1 k = 4
par’s shared: yes no

ar .944 .944 .920
language de .980 .980 .975

tu .985 .983 .969

Table 4: Results of different architectures for the dataset with
4 source forms being available for prediction. The best result
for each row is in bold.

source MRI performs better than single-source
MRI for all languages except for Hungarian and
that, clearly, the more sources the better: us-
ing four sources is always better than using two
sources. This result confirms our hypothesis, il-
lustrated in Figure 1, that for most languages, dif-
ferent source forms provide complementary infor-
mation when generating a target form and thus
performance of the multi-source model is better
than of the single-source model. Table 3 demon-
strates that the two configurations we identified as
promising for multi-source MRI, SINGLEFORM

and MULTIFORM, occur frequently enough to
boost the performance for seven of the eight lan-
guages, with the largest gains observed for Arabic
(7.3%) and Russian (3.5%) and the smallest for
Spanish (0.9%) and Georgian (2.0%) (comparing
using source form 1 with using source forms 1–4).

Hungarian is the only language for which per-
formance decreases, by a small amount (.03%).
We attribute this to overfitting: the multi-source
model has a larger number of parameters, so it is
more prone to overfitting. We would expect the
performance to be the same in a comparison of two
models that have the same size.

Error Analysis. We compare errors of single-
source and multi-source models for German on
development data. Most mistakes of the multi-
source model are stem-related: versterbst for
verstirbst, erwerben for erwürben, Apfelsinen-
baume for Apfelsinenbäume, lungenkränkes for
lungenkrankes and übernehmte for übernähme. In
most of these cases, the stem of the lemma was
used, which is correct for some forms, but not for
the form that had to be generated. In one case, the
multi-source model did not use the correct inflec-
tion rule: braucht for gebraucht—the inflectional
rule that the past participle is formed by ge- was
not applied.

Errors of the single-source model that were
“corrected” by the multi-source model include
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Figure 3: Learning curves for single-source and multi-source models for Arabic, German and Turkish. We observe that the
multi-source model generalizes faster than the single soure case—this is to be expected since the multi-source model often
faces an easier transduction problem.

empfahlt for empfiehl, Throne for Thron and be-
fielen for befallen. These are all SINGLEFORM

cases: the multi-source model will generate the
correct form if it succeeds in selecting the most
predictive source form. The single-source model
is at a disadvantage if this most predictive source
form is not part of its input.

4.3 Comparison of Different Architectures

Table 4 compares different architectural configura-
tions. All experiments use 4 sources. We see that
sharing parameters is superior as expected. Using
a single encoder on 4 sources performs as well as
4 encoders (and very slightly better on Turkish).
Apparently, it has no difficulty learning to under-
stand an unstructured (or rather lightly structured)
concatenation of form-tag pairs; on the other hand,
this parsing task, i.e., learning to parse the se-
quence of form-tag pairs, is easy, so this is not a
surprising result.

4.4 Learning Curves

Figure 3 shows learning curves for Arabic, Ger-
man and Turkish. We iteratively halve the train-
ing set and train models for each subset. In this
analysis, we train all models for 90 epochs, but
use the numbers from the main experiment for
the full training set. For the single-source model,
we use the SIGMORPHON source. The figure
shows that the single-source model needs more in-
dividual paradigms in the training data to achieve
the same performance as the multi-source model.
The largest difference between single-source and
multi-source is > 20% for Arabic when only 1/8
of the training set is used. This suggests that
multi-source MRI is an attractive option for low-
resource languages since it exploits available data
better than single-source.

4.5 Attention Visualization

Figure 4 shows for one example, the generation
of the German form wögen, 3rdPlSubPst, the at-
tention weights of the multi-source model at each
time step of the decoder, i.e., for each character
as it is being produced by the decoder. For char-
acters that simply need to be copied, the main
attention lies on the corresponding characters of
the input sources. For example, the character g
is produced when attention is on the characters
g in wögest, wöge and wogen. This aspect of
the multi-source model is not different from the
single-source model, offering no advantage.

However, even for g, the source form that is
least relevant for generating wögen receives al-
most no weight: wägst is an indicative singular
form that does not provide helpful information for
generating a plural form in the subjunctive; the
model seems to have learned that this is the case.
In contrast, wogen does receive some weight; this
makes sense as it is a past indicative form and
the past subjunctive is systematically related to the
past indicative for many German verbs. These ob-
servations suggest that the network has learned to
correctly predict (at least in this case) which forms
provide potentially useful information. For the last
two time steps (i.e., characters to be generated), at-
tention is mainly focused on the tags. Again, this
indicates that the model has learned the regularity
in generating this part of the word form: the suffix,
consisting of en, is predictable from the tag.

5 Related Work

Recently, variants of the RNN encoder-decoder
have seen widespread adoption in many areas of
NLP due to their strong performance. Encoder-
decoders with and without attention have been ap-
plied to tasks such as machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et
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learns to focus most of its attention on forms that share the irregular subjunctive stem wög in addition to the target subtags 3 and
P that encode that the target form is 3rd person plural. We omit the tags from the diagram to which the model hardly attends.

al., 2014), parsing (Vinyals et al., 2015) and auto-
matic speech recognition (Graves and Schmidhu-
ber, 2005; Graves et al., 2013).

The first work on multi-source models was pre-
sented for machine translation. Zoph and Knight
(2016) made simultaneous use of source sentences
in multiple languages in order to find the best
match possible in the target language. Unlike our
model, they apply transformations to the hidden
states of the encoders that are input to the de-
coder. Firat et al. (2016)’s neural architecture for
MT translates from any of N source languages to
any of M target languages, using language spe-
cific encoders and decoders, but sharing one sin-
gle attention-mechanism. In contrast to our work,
they obtain a single output for each input.

Much ink has been spilled on morphological re-
inflection over recent years. Dreyer et al. (2008)
develop a high-performing weighted finite-state
transducer for the task, which was later hybridized
with an LSTM (Rastogi et al., 2016). Durrett and
DeNero (2013) apply a semi-CRF to heuristically
extracted rules to generate inflected forms from
lemmata using data scraped from Wikitionary. Im-
proved systems for the Wiktionary data were sub-
sequently developed by Hulden et al. (2014), who
used a semi-supervised approach, and Faruqui et
al. (2016), who used a character-level LSTM. All
of the above worked has focused on the single
input case. Two important exceptions, however,
have considered the multi-input case. Both Dreyer
and Eisner (2009) and Cotterell et al. (2015) define
a string-valued graphical model over the paradigm
and apply the missing values.

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection (Cotterell et al., 2016),
based on the UNIMORPH (Sylak-Glassman et al.,
2015) data, resulted in the development of nu-
merous different methods. RNN encoder-decoder
models (Aharoni et al., 2016; Kann and Schütze,
2016a; Östling, 2016) obtained the strongest per-
formance and are the current state of the art on the

task. The best-performing model made use of an
attention mechanism (Kann and Schütze, 2016a),
first popularized in machine translation (Bahdanau
et al., 2014). We generalize this architecture to the
multi-source case in this paper for the reinflection
task.

6 Conclusion and Future Work

Generation of unknown inflections in morpholog-
ically rich languages is an important task that re-
mains unsolved. We provide a new angle on
the problem by considering systems that are al-
lowed to have multiple inflected forms as input.
To this end, we define the task of multi-source
morphological reinflection as a generalization of
single-source MRI (Cotterell et al., 2016) and pre-
sented a model that solves the task. We extended
an attention-based RNN encoder-decoder archi-
tecture from the single-source case to the multi-
source case. Our new model consists of multiple
encoders, each receiving one of the inputs. We
showed that our model improves over the state of
the art for seven out of eight languages, demon-
strating the promise of multi-source MRI. Addi-
tionally, we publically released our implementa-
tion.6

We created and publically released a dataset
for multi-source morphological reinflection that is
a superset of the dataset of the SIGMORPHON
2016 Shared Task on Morphological Reinflection
to facilitate research on morphological genera-
tion. One focus of future work should be the con-
struction of more complex datasets, e.g., datasets
that have better coverage of irregular words and
datasets in which there is no overlap in lemmata
between training and test sets. Further, for diffi-
cult inflections, it might be interesting to find an
effective way to include unsupervised data into the
setup. For example, we could define one of our k
inputs to be a form mined from a corpus that is not

6http://cistern.cis.lmu.de
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guaranteed to have been correctly tagged morpho-
logically, but likely to be helpful.
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