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7.3. Converse theorems 49

1. INTRODUCTION

1.1. Basic notation. The modular group, sometimes denoted I'(1), is
SLy(Z) = {(i Z) :a,b,c,d € Z,ad — bc = 1}.

The upper half plane is H = {r € C : Im(7) > 0}. We can define an action of I'(1) on H

as follows
a b _ar+b
cd T a+d

FEzercise 1. Check that this action preserves H and is a group action. Hint: first show that

Im(7)
I T) = —
m(y- 1) ler + d|?
Definition 1.1. Let k£ be an integer and I' a finite index subgroup of I'(1). A meromorphic
function f : H — C is weakly modular of weight k and level T if

fly-7) = (er +d)*f(r)
for all v = (2 z,) €’ and 7 € H.

Remark 1.2. Made more precise later: A function f being weakly modular of weight 0
and level I' means it gives a meromorphic function on I'\{. A function f being weakly
modular of weight 2 means f(7)dr gives a meromorphic differential on I'\A.

Modular forms will be defined precisely in the next couple of lectures, but for now I will
say that a weakly modular function of weight k and level I' is a modular form (of weight
k and level I') if it is holomorphic on H and satisfies some other condition.

When I'' = I'(1), this ‘other condition’ is that there exist constants C,Y € Ry with

[f(nI<C
for all 7 with Im(7) > Y.

1.2. Some motivating examples.
e Representation numbers for quadratic forms
For an integer £ > 1 and n > 0 write rx(n) for the number of distinct ways of
writing n as a sum of k squares, allowing zero and counting signs and orderings. For
example, we have r5(1) =4 since 1 =02+12=0%2+ (-1)2=12+0% = (—-1)2+ 0%
Define a function 8 on H by taking

9(7_) — E e2ﬂin2-r_
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We write ¢ for the variable e2™". Then for a positive integer k > 1

()" =Y re(n)q".
n=>0
It turns out that for even integers k, 6(7)* is a modular form, and we will see
later that one can obtain information about the function r(n) using this. It allows
you to write 7x(n) as ‘nice formula’+‘error term’ For example,

T4 (n) =8 Z d
0<d|n
4d
(in this case there’s no error term!).
Complex uniformisation of elliptic curves
If we have a lattice (rank two discrete subgroup) A C C the Weierstrass p-
function p(z, A) is a holomorphic function C/A — P!(C) and the map

z 0 (p(2,A),9'(2,A))
gives an isomorphism between C/A and complex points E,(C) of an elliptic curve
E, over C with equation

y? = 4z® — 60G4(A) — 140Gg(A)

where
1

Gr(A) = %

wel
— these are examples of modular forms (if we consider the function 7+ G(Z7 &
Z)). We write A, for the lattice Zr & Z. Similarly, any homogeneous polynomial

in G4, Gg is a modular form, for example the discriminant function
7 (60G4(A;))® — 27(140G6(A))>.
Dirichlet series and L-functions
Recall the Riemann zeta function

O

n=1 ne
(this is the definition for Re(s) > 2). It has a meromorphic continuation to all of C
and satisfies a functional equation relative {(s) and ((1 — s). In the course we will

prove Hecke’s converse theorem: if we are given a set of complex numbers {an}n>1

such that the Dirichlet series
Ay

Z(s)= ), —
n>1 ns
is absolutely convergent for Re(s) >> 0, with suitable analytic continuation and
functional equation, then the function

f(’r) - E ane%rin'r

n>1
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is a modular form.
Given E/Q an elliptic curve, the Hasse-Weil L-function of E, L(E, s) is given by

Qp,
];‘[Lp(E,S) - 'T—l;

where for p a prime of good reduction (with E reducing to E‘p) L,(E,s) =(1-
ayp~* +p'"%)71, and a, = p+ 1 — | E,(F,)| (and one can also write down the local
factors at the primes of bad reduction). A very deep theorem (due to Wiles, Breuil,
Conrad, Diamond and Taylor) is that f(7) = 3,5 a,€*™"" is also a modular form.
This is not proved using the converse theorem! Indeed, the only proof that L(E, s)
has analytic continuation and functional equation is to first show that L(E, s) comes
from a modular form in this way.

2. MODULAR FORMS OF LEVEL ONE

In this section we will be interested in weakly modular functions of weight k and level
r'(1).

2.1. Fourier expansions. Note that the definition of a weakly modular function of level
I'(1) implies that f(r + 1) = f(r) for all 7 € H. Suppose f is holomorphic on the region
{Im(7) > Y} for some Y € R. Denote by D* the punctured unit disc {g € C: 0 < |g| < 1}.

The map 7 +— > defines a holomorphic, surjective, map from H to D* and we can
define a function F on D* by F(q) = f(r) where 7 € H is something satisfying ¢ = e2™".
The function F' is well-defined since the value of f(7) is independent of the choice of .
Moreover, F is holomorphic on the region {0 < |g| < 2"}, since f is holomorphic on the
corresponding region in H and we can define F(q) = f(5% log(g)) for appropriate branches
of log on open subsets of D*.

Therefore we obtain a Laurent series expansion F(q) = 3 ,cz an(f)q", with a,(f) € C.
This is called the Fourier expansion, or g-expansion, of f.

2.2. Modular forms.

Definition 2.1. Suppose f is a weakly modular function of weight k and level I'(1).

e We say that f is meromorphic (resp. holomorphic) at oo if f is holomorphic for
Im7 >> 0 and a,(f) = 0 for all n << 0 (resp. for all n < 0). Equivalently, F
extends to a meromorphic (resp. holomorphic) function on an open neighbourhood
of 0 in the unit disc D.

e If f is meromorphic at co we say that f is a meromorphic form of weight k (non-
standard, but will need them later).

e If f is holomorphic on H and at co we say that it is a modular form of weight k,
and if moreover ag(f) = 0 we say that it is a cusp form.

Lemma 2.2. Suppose f is weakly modular of level I'(1). Then f is holomorphic at oo if
and only if there exists C,Y € R such that |f(7)| < C for all T with ImT > Y.
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Proof. Suppose f is holomorphic at co. Then the function F' extends to a holomorphic
function on an open neighbourhood of 0 in D. Therefore F' is bounded on some sufficiently
small disc in D with centre 0. This implies the desired boundedness statement for f.
Conversely, suppose there exists C,Y € R such that |f(r)| < C for all 7 with Im7 > Y.
This implies that f is holomorphic for Im7 > Y (since it is bounded and meromorphic)
and so we get a holomorphic function F on the region {0 < |g| < e 2"} satisfying
F(e*™™) = f(7). The boundedness condition on f implies that ¢F'(g) tends to zero as ¢
tends to 0, so F' has a removable singularity at 0 and we are done. a

Definition 2.3. We denote the set of modular forms of weight k by M(I'(1)), and denote
the set of cusp forms of weight k by Si(I'(1)) (sometimes Mj and Sy for short).

Ezercise 2. (1) My, and Sj are C-vector spaces (obvious addition and scalar multipli-
cation)
(2) f € Mka gec Mi} then fg € Mk-}-i
(3) f e My, = f(—7)=(-1)¥f(r),s0 k odd = M, = {0}.
We will later show that M; and Si are finite dimensional and compute their dimensions
(main goal of the first half of the course). One of the reasons for imposing the ‘holomorphic
at oo’ condition is to ensure these spaces are finite dimensional.

2.3. First examples of modular forms.

Definition 2.4. Let k > 2 be an even integer. Then the Eisenstein series of weight k is a
function on H, defined, for 7 € H, by

Gi(r)= ¥ (C'?’—id)_’;

(c,d)eZ?
Here the ’ on the summation sign tells us to omit the (0,0) term.

Lemma 2.5. This sum is absolutely convergent for 7 € H, and converges uniformly on
compact subsets of H, hence Gy is a holomorphic function on H.

Proof. Let’s fix a compact subset C' of H and think of 7 varying over this compact set.
Consider the parallelogram P, in C with vertices 14+ 7,1 —7, —1 —7 and —1+ 7. Denote
by D(7) the minimum absolute value of a point in the boundary of P; (i.e. the length of
the shortest line joining the origin and the boundary of P;). As 7 varies over the compact
set C, D(r) attains a minimum, which we denote by r.

For m € Zs; denote by P, the parallelogram whose vertices are m times the vertices
of P,. It is clear that as 7 varies over C' the minimum absolute value of a point in the
boundary of P, is mr.

Now let’s consider how many points of the lattice Z @ Z7 lie in each of the P,. The
parallelogram P,, contains a (2m+1) % (2rm+1) grid of these lattice points, so the boundary
of P, contains (2m + 1)? — (2m — 1)? = 8m lattice points.

For M € Zx, let’s consider the sum

Z 1
ler + d|*

(e, d)ESH
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where Sy is the set of pairs of integers (c, d) such that ¢ + d is in the boundary of P, for
some m > M.
For 7 € C we have

1 X 8m
, M g
(c.d)E€SMm |er + d* mgM mr)k
B2 AL
T opk e mk—1

and if £ > 2 the final expression tends to 0 as M tends to oco. Therefore the Eisenstein
series is uniformly absolutely convergent for 7 € C.

A slightly different proof of this Lemmna is suggested in Exercise 1.1.4 of the book by
Diamond and Shurman. O

Proposition 2.6. The holomorphic function Gy is weakly modular of weight k.

Proof. Let v = (‘;’ 2) e T(1). Now
e ' (et + d)* " k ' 1
Gy} = (m‘nz);w (m(at +b) + n(cr +d))F (er+4) {m,nz):ezi ((am + en)t + (bm + dn))*

Right multiplication by + gives a bijection from Z? — {0,0} to itself. Therefore the last
term in the displayed equation is equal to (¢ + d)*Gy(7) as required. O

Proposition 2.7. The g-ezpansion of Gy, is
2m
Gi(r) = 2¢(k) + Z or-1(n)q"

where ((k) = Y,>1 o s the Riemann zeta functwn and

Ok— 1?’6) ka-.

min
m>0

In particular, Gy is a modular form of weight k (we just had holomorphy at oo left to
show).

The proof of this is postponed to the end of this section.
Definition 2.8. A normalisation: Ei(7) = Gi(7)/2¢(k).
Fact 2.9. Proved later: dim(Ms(I'(1))) = 1.

Application of this fact: E? and Eg are both in Mg and their g-exapnsions have the same
constant term (namely 1), so they are equal.

Corollary 2.10. We deduce from E} = Ej that
e ((4) =7%/90, ¢(8) =7%/2-3%-5%.7
e g7(n) = a3(n) + 120 Z;-‘;f a3(j)os(n — 7).
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Proof. For first part, compare a; and ay terms of g-expansions. Then compare general
term to get the second part. O

Some more interesting examples. A cusp form:

Definition 2.11. The Ramanujan delta function

ES_E2
A6 _g-2¢+..=) 7(n)"

Ar) = =
1728 <

We will later see that A = ¢JI32,(1 — (ﬁé Ay any rate, from its definition we have
A € S;p(I'(1)).
Now I'll give the proof of Proposition 2.7. We will use Poisson summation:

Fact 2.12. Let h : R — C be a continuous function such that
e his L', ie. [ |h(z)|dz < oo.
e the sum S(z) = Y4z h(z + d) converges absolutely and uniformly as z varies in a
compact subset of R, and S(z) is an infinitely differentiable function in z.

Then, if we denote by h the Fourier transform
h(t) = / h(z)e *"*tdx

we have

S h(z +d) = Y h(m)e*™me.

deZ meL

Idea of the proof: the sum S(z) satisfies S(z) = S(z + 1) and the right hand side of the
final equality is the Fourier expansion for S.
Now let’s apply this to the case we're interested in. We have

Gl =23 +2 2%

e=1 dez
For ¢ and 7 fixed, let’s define
1

he(z) = 3

Now we can compute ¥ 4cz —% by applying Poisson summation to h.. Exercise: check
deZ orraF Y

that h. satisfies the conditions for Poisson summation.
We have

2mimzx o e—2mmcu

/(cr+$)’° c"1 oo('r+u)’“

For the last equality we substitute z = cu.
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To compute this integral we use Cauchy’s residue theorem applied to the complex func-
tion f,(2) = 5-_-;2 For n € Z, denote by I, the integral of f,,(2) along the horizontal line
from 7 — 0o to 7 + co. Then we have
e2ﬂmc1‘

he(m) = Fias

ck—1

Lemma 2.13. We have I, =0 for n < 0. For n > 0, we have I, = ﬂ(’r:—_)k—lf)'{i

Proof. The residue of f, at z = 0 is Zg;(—2min)*~" (consider the Taylor expansion of

e~2"nz) So it follows that —27iRes,—ofn(2) = %‘{—?F

For n < 0 we integrate over rectangles with vertices at 7—C,7+C,7+C+iC,7—C+iC,
for C € R tending to co. These integrals are all equal to zero, and it’s easy to see that the
integrals over the upper horizontal and vertical sides tend to zero.

For n > 0 integrate (clockwise) over rectangles with vertices at 7 — C,7 + C,7 + C —
iC,7 — C —iC. Now the integrals (for C' large enough that the rectangle contains z = 0)

—2mi)knk—1

are all equal to LW—I}'; and the integrals over three of the sides tend to zero. O

So now we conclude that f.(m) = 0 for m < 0 and
(—2mi)*mb-1
(k—1)!
for m > 0. Now applying Poisson summation, we can deduce Proposition 2.7 (recall that

k is assumed even, so (—2mi)* = (27i)F).

2mimer

he(m) =

2.4. Fundamental domain for I'(1). We want to study some of the properties of the
action of I'(1) on H.

Definition 2.14. Suppose a group G acts continuously on a topological space X. Then a
fundamental domain for G is an open subset .# C X such that no two distinct points of
& are equivalent under the action of G and every point z € X is equivalent (under G) to
a point in the closure .Z.

Proposition 2.15. The set
1
F={reH:|r|>1|Re(r)| < 5}

is a fundamental domain for the action of I'(1) on H.
More precisely, if we set

§=§U{TE'H:|'r|2l,Re(T)z—%}U{TE’H:|1'|=1,——%§Re(1')§0}

then Z contains a unique representative for every I'(1)-orbit.
The group T'(1) is generated by the elements

=3 5= (% )
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Proof. We let G be the subgroup of SLy(Z) generated by S and 7. Fix 7 € H. For y € G
have Im(y7) = 1—'1(5%5 Since ¢ and d are integers, |cr + d|? attains a minimum as ¢ and d
vary over possible bottom rows of matrices in G. Therefore Im(y7) attains a maximum as
~ varies over G. So there is a o € G with Im(y7) > Im(y7) for all v € G.

In particular

Im(yo7)
70T

which implies that |y7| > 1. Since applying T' does not change the imaginary part we
have |T"~o7| > 1 for all n, and for some n we have Re(T"7)| € [-1/2,1/2).

If TPy € ?\‘? then ST"y,7 € .Z so we have proven that every G-orbit has a
representative in Z. This immediately implies that every I'(1)-orbit has a representative
in Z.

It remains to prove that every I'(1)-orbit has a unique representative in Z.

Suppose that we have two distinet but I'(1)-equivalent points 7 # 72 = 71 in Z . Since
both 7;’s have real part < 1/2 we have v # £T™, so ¢ # 0. Moreover, Im7 > v/3/2 for all
T €.F, 80

- Im(.,;;;) = Im(Svo7) < Im(n07)

V3 Im(7) Im(7) 2
2 = m(r2) lers +dJ? ~ 2Im(71)? ~ ¢2v/3’
which implies that ¢ = +1. So we have

IIII(TI
I g
m(m) = 155 1 P
but |27y +d| > |71 > 1 which implies that Im(7z) < Im(71). But everything was symmetric
between 7; and 73, so we have Im(7y) < Im(m) and |r1| = || = 1. Since 71,73 € Z this

implies that 7, = 7. So there are no distinct but I'(1)-equivalent points in Z and F
indeed contains a unique representative of every I'(1)-orbit.
Now we can deduce that T'(1) = G. Let v € I'(1) and consider the action on 2i € &#.

There exists a g € G such that gvy(2i) € #F. We write gy = (2’ ;) and observe that

2 V3
I > —.
This implies that ¢ = 0 and d = %1, hence gy = 7™ for some integer n and therefore

v € G. O

Ezercise 3. Suppose 7 € H is such that y7 = « for v € I'(1) with v # +I. Then 7 is in
the I'(1) orbit of ¢ or w = —1/2 + V3/2. If we define n, = |Stabrg)/+7(7)| then n, = 2,3
if 7 is in the orbit of i, w respectively.

Note that to do the above exercise, it is enough to compute the stabilisers for 7 € Z.

Definition 2.16. If 7 is a point of A such that Stabp(y/+7(7) is non-trivial, we say that
7 is an elliptic point, of order n, = |Stabr(1)/+1(7)|-
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Note that the value of n, only depends on the orbit I'(1)7.
2.5. Zeros and poles of meromorphic forms.

Definition 2.17. If f is a weight & meromorphic form and € H we write ord,(f) for
the order of vanishing of f at 7 (i.e. it is the order of the zero if f vanishes at 7, 0 if f is
holomorphic and non-vanishing at 7 and it is the negative of the order of the pole if f has

a pole at 7).
We write ord(f) for the smallest n such that a,(f) # 0, where f(7) = Y nez an(f)q™

Since f is weakly modular, the integer ord,(f) depends only on the I'(1)-orbit I'(1)7.

Proposition 2.18. Let f be a non-zero meromorphic form of weight k. Then

1 k
ordo(f)+ > —ord,(f)zﬁ.
P(1)rer()\K T
Note that the sum in the above has finitely many non-zero terms — fixing Y’ € Ry, f
has finitely many zeros and poles in the compact region 7 € % N {Im(7) < Y}, and by
meromorphy at oo it has finitely many zeros and poles in the region + € Z N Im(7) > Y.

Proof. We drew a complicated contour and integrated f'()/f(7) around it. See Serre, ‘A
Course in Arithmetic’, Chapter VII, Theorem 3. O

Here are some immediate consequences of Proposition 2.18. Recall the weight 12 cusp
form 5 )
e |
1728

We can also define a meromorphic formn of weight 0:
; Ey(r)?
Corollary 2.19. A is non-vanishing on H. The weight 0 meromorphic form j(7) is
holomorphic on ‘H and induces a bijection

I(1)\H — C.

Proof. The g-expansion of A is ¢ — 24¢> + ---. In particular, we have orde.(A) = 1. It
follows immediately from Proposition 2.18 that A has no zeros in H. This implies that j
is indeed holomorphic on H. To show that it induces a bijection

I'(1)\H — C,
fix z € C and consider the weight 12 modular form f,(7) = E4(7)? — 2A(7). By definition,
we have f,(7) = 0 if and only if j(7) = 2. So to show that j induces a bijection it suffices
to show that the zeros of f, are given by a single I'(1)-orbit.
By considering the g-expansion of f., we see that ord,(f.) = 0. So Proposition 2.18
implies that we have an equality

iord.,(f) = 1.

r()rer()\H "V
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Now we see that the possibilities for the zeros of f, are that there is a simple zero at a
single non-elliptic orbit, a double zero at I'(1)¢ or a triple zero at I'(1)w. In any case, the
zeros form a single I'(1)-orbit, as required. O

2.6. Dimension formula.
Lemma 2.20. M; = {0} for k < 0. My = C, and is given by constant functions.

Proof. Suppose k < 0. Then if f € M} is non-zero, Proposition 2.18 implies that f cannot
be holomorphic on H and at oo. So f is zero.

Suppose f € My. Then the constant term in the g-expansion of f, ag(f), is also in My,
so g = f —ao(f) € Sy. Applying Proposition 2.18 to g tells us that g is zero, so f is
constant. L

Lemma 2.21. For even k > 0 we have
dim M (T'(1)) < |k/12]

if k =2 mod 12 and
dim My (T'(1)) < |k/12] + 1

otherwise.

Proof. For general even k, we set m = |k/12] + 1, and fix m distinct non-elliptic orbits
P, ..., Py in ['(1)\H. Suppose fi,..., fm+1 € Mg(I'(1)). Then we can find a linear combi-
nation of the f;, denoted f, such that f has a zero at each of the m points F;. Applying
Proposition 2.18 implies that f = 0, so dim M} < m.

Now we suppose we are in the special case k = 12/ + 2, | € Z3o. We now set m = [,
choose [ non-elliptic points as before, and suppose we have [ + 1 elements fi, ..., f+1 of
M (T(1)). We denote by f a linear combination of the f; with a zero at the I chosen
points, therefore if f is non-zero we now have an equation

1
ordo (f) +1+ D MzH—
P+P; npe 6
which is impossible. So f = 0 and we conclude that dim M <1 = [k/12]. O

Ezercise 4. Consider the graded ring @;>o M. Show that this direct sum injects into
the ring of holomorphic functions on H. In other words, there are no non-trivial linear
dependence relations between modular forms of different weights.

Theorem 2.22. Let R: C[X,Y]| — M be the map given by sending X to E4 andY to Eg.
Then R is an isomorphism of rings (and respects the graded, if we give X degree 4 and' Y
degree 6).

Corollary 2.23. The set
{ESE? :a,b>0,4a +6b =k}

is a basis for M.
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dim Mj, = | k/12]
if k=2 mod 12 and
dim M, = |k/12] +1
otherwise.

Proof. This is an exercise. O

Proof of Theorem 2.22. The proof of the above Corollary, together with Lemma 2.21 tells
us that, appropriately graded, the degree k part of C[X, Y] has dimension > the dimension
of M. So it’s enough to show that R is an injection.

In other words we must show that E4 and Eg are algebraically independent, considered
as elements of the field of meromorphic functions on H. It is enough to show that Ej and
E} are algebraically independent. Suppose there is a dependence relation

NoNaBTEY =0

a,b
By considering parts of fixed degree we can assume that the sum is only over a,b with
3a + 2b fixed. Dividing by a suitable power of Eg, we see that Ej/E? is the root of a
polynomial with coefficients in C, which implies that Ej/E? is a constant function. This
implies that (Egs/E,)? is a constant multiple of Ey, but E, is holomorphic so this would
imply that Es/Ey € M, = {0}, which gives a contradiction. O

3. MODULAR FORMS FOR CONGRUENCE SUBGROUPS

3.1. Definitions.

Definition 3.1. Suppose N € Zs;, then we define the principal congruence subgroup of
level N
['(N)={y€SLy(Z): y=Id mod N}.

Definition 3.2. A subgroup I' C SLy(Z) is a congruence subgroup if I'(N) C T for some
N.

It follows immediately that congruence subgroups have finite index in SLy(Z) (the con-
verse is false — c.f. congruence subgroup problem).

Definition 3.3. I'y(/N): upper triangular mod N I';(/N): upper triangular with 1,1 on
diagonal mod N

Recall that we already defined weak modularity with respect to a finite index subgroup of
SLy(Z). For this course, we will only consider weak modularity with respect to congruence
subgroups, although much of the theory goes through for any finite index subgroup.

Definition 3.4. Let k be an integer and I' a congruence subgroup of SLy(Z). A meromor-
phic function f : H — C is weakly modular of weight k and level T" if

fy-7) = (er +d)*f(r)
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forall'y——-(i 2) €land 7 € H.

A fundamental domain for I' acting on A can be obtained by taking a union of translates
of Z (the level one fundamental domain) by coset representatives for SLy(Z)/T'. If you
look at a picture of such a fundamental domain (e.g. use the applet at http://www.math.
1su.edu/~verrill/fundomain/ written by Helena Verrill), then you'll see that there are
(a finite number of) boundary points, known as cusps, on the real line (actually rational
numbers). To get finite dimensional spaces of modular forms, we will need to impose
conditions on the behaviour of weakly modular functions as 7 approaches each of these
limit points, as well as when 7 has imaginary part going to oo.

Definition 3.5. Suppose I is a congruence subgroup. We define the period of the cusp oo
by

h(T') = min{h € Zxo : ((1) }IL) eT}.

Definition 3.6. Suppose f : H — C weakly modular of weight k and level I, and that f
is holomorphic for Im(7) >> 0. Set g, = €2™"/*, and define a function F' on the punctured
unit disc by
F(gn) = f(7).

As before, F is holomorphic and has a Laurent series expansion

F(gn) = )_ angj.

nEL

We say that f is meromorphic (resp. holomorphic) at oo if F' extends to a meromorphic
(resp. holomorphic) function around 0 (i.e. if the appropriate condition holds on vanishing
of the negative coeffients in the Laurent series for F).

Definition 3.7. The slash operator of weight k is defined as follows: for v € GL3 (R),
f:H — Cand k € Z, define f|, 4 : H — C by flyk(r) = (et +d)*f(v- 7).

Remark 3.8. If f : H — C is meromorphic and I is a congruence subgroup, then f is
weakly modular of weight k and level T' if and only if

f|’r.k=f

for all v €T

To show that f is weakly modular of weight k and level T, it suffices to show that
flvix = f for a set of generators v1,..., Vn ok 1

If @ € SLy(Z) and f is weakly modular of weight £ and level T, then flak is weakly
modular of weight k and level o 'T'a. Moreover, the function f|,x only depends on the
coset [ € T'\SLy(Z).
Definition 3.9. Let I' be a congruence subgroup, k¥ € Z and f weakly modular of weight

k and level T'. We say that f is meromorphic at the cusps (resp. holomorphic at the cusps)
if f|a is meromorphic at co (resp. holomorphic at oo) for all a € SLy(Z).
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Definition 3.10. If f is weakly modular of weight & and level I' and meromorphic at the
cusps, we say that f is a meromorphic form of weight k and level I.

If f is weakly modular of weight &k and level I', holomorphic on H and holomorphic at the
cusps, we say that f is a modular form of weight k and level I'. If moreover ag(f|ax) = 0
for all @ we say that f is a cusp form.

We denote the space of modular forms of weight k and level I' by M;(I'), and denote
the subspace of cusp forms by Si(T').

Here is a usual condition in practice for checking that a weakly modular function is a
modular form:

Proposition 3.11. IfI'(N) C T, f holomorphic on H and weakly modular of weight k and
level T, with f(1) = 225 an(f)e*™™/N and |a,(f)| < Cn" for some constants C,r € Ry,
then f is holomorphic at the cusps. Therefore f is a modular form of weight k and level
I

Proof. See Diamond and Shurman Exercise 1.2.6 O

3.2. Examples: 6-functions. Recall the definition 8(r) = 2 __ ¢™. It is straightfor-
ward to show that this series is absolutely and uniformly convergent on compact subsets
of H. We have

o0

0(r, k) = 6(7)*F = E r(n, k)q"

n=0

where 7(n, k) is the number of ways of writing n as the sum of k squares.

Proposition 3.12. We have 0(r + 1) = 0(r) and 6(—1/47) = /27/i6(7). Here by ,/ we
mean the branch on Re(z) > 0 extending the positive square root on the positive real azis.

Proof. The first equality is clear. For the second we use Poisson summation. Set h(z) =
e~ with t € Rso. We have

oo oo
ﬁ(y) = /e'”zg'%wydmze_"‘ﬁ” / e~ Vit /VO? g
—00 —o0

; - Caiy 2 % 2
We substitute u = vtz +iy/v/t, use [ e™ du = 1, and conclude that h(y) = e/t /\/1.
So Poisson summation tells us that

Ze—wtdg = Z e—frmzjt/\/z

deZ meZ

whence 6(it/2) = 71?9(1 /2t) for t € R > 0. Now uniqueness of analytic continuation implies
that the conclusion of the Proposition. O

Corollary 3.13. 0(r/47 + 1)? = (47 + 1)6(7)?

Proof. Easy computation. O
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We conclude that for even k 8(7/47+1, k) = (47+1)¥/20(r, k). In particular, for positive
integers k, 0(r, 4k) is weakly modular of weight 2k and level T', where I' is the subgroup of

SLy(Z) generated by
LS | 10
(o 1) (3 5)

In the first example sheet, it is shown that I' = I'g(4), so 8(7,4k) € Mar(To(4)).

3.3. Examples: old forms. It's worth noting that if I' C I" then if a function f is a
modular form of weight k and level I" it is also a modular form of weight k and level I'.

Lemma 3.14. Suppose f € My(T'o(N)) and M € Z>,. Then
fu 17— f(MT)
is in Mg(To(MN)).
Proof. First we check that fy is weakly modular. We can write far(7) = fl,,,(7), where

M 0

So fur is weakly modular of weight k and level (37 To(N)var) N SLa(Z) = o(MN).
To check holomorphy at the cusps, let

a= ({; z) € SLy(Z)

and observe that

cMt+d .
lax(T) = (m") flatphak(MT)
$0 flatpha,k and fur|ok have the same behaviour as Im(7) tends to oo. O

Similarly, we have
Lemma 3.15. Suppose f € My(T'1(N)) and M € Z>1. Then
fu T f(MT)
is in M(T'1(MN)).
Definition 3.16. Fix N € Zs,. For each divisor M | N, let i)y be the map
is : Mi(T1(N/M)) & Mi(T1(N/M)) = Mi(T1(N))
(f,9) = f+gm

We define the space of oldforms at level N, My(T'1(N))*® to be the span of the union of
the images of ips as M > 1 varies over divisors of N.
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3.4. Examples: weight 2 Eisenstein series. We would like to define an Eisenstein

series of weight 2 by
GQ(T)
go d? c%%; er+ d)2

The above sum is not absolutely convergent, so we cannot interchange the order of sum-
mation over ¢ and d (recall that this was used to prove the Gy was weakly modular for
k > 2). However, the Poisson summation argument still allows us to compute the sums
over d and conclude that this sum converges, and

Ga(r) = 2¢(2) + 2(2mi)? i a1(n)g”

n=1
where this latter series is absolutely and uniformly convergent on compact subsets.
We use something known as ‘Hecke’s trick’ to determine how G, transforms under the
action of I'(1). This will then allow us to define some weight 2 modular forms of higher
levels.

Definition 3.17. For € € R, we define
1

!
G(t,¢) = 7
(7€) (c,%;ZZ (e + d)?|er + d|%

The point is that we have perturbed G»(7) a little, to obtain a double sum which is now
absolutely convergent. Now in exactly the same way as for the higher weight Eisenstein
series we deduce

G(yr,€) = (cr +d)*|er + d[*G(7,€)
for v € T(1).
Theorem 3.18 (non~exam.mable) For any T € H, the limit li lim o G(7,€) exists and is
equal to G3(r) = Ga(r) — -

As a consequence, we have G3(y7) = (c7+d)*G3(7), but note that G% is not holomorphic.
However, we can use G to get higher level modular forms.

Corollary 3.19. For N a positive integer we let G(N)( ) = Ga(r) — NG5(N7). Then
GMe M,(To(N)), and its q-expansion is given by

21— N)¢(2) - 8n* Y (Y d)g"
n=1 0<d|n
Nid
Proof. We deduce that GEN) is weakly modular of weight 2 from the equality Gon =

G3 — Nun(G3) and our discussion of oldforms. To show that GS" is holomorphic at
the cusps we either show it directly or apply Proposition 3.11. The computation of the
g-expansion is easily deduced from the g-expansion of GS. O

Fact 3.20. The space M5(I'y(4)) has dimension 2.
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It follows from this fact that G(2) G () is a basis for M5(T'9(4)), and by comparing g-
expansions we see that

1
9(1", 4) = ~FG2‘4(7)
and as a consequence we obtain:

Theorem 3.21. For integers n > 1

r(n,4) =8 ) d.

0<d|n
44d

Finally, I should sketch the proof of Theorem 3.18. Unfortunately, it’s a little painful...
Similarly to the higher weight case, we apply Poisson summation to the sums
1

(;z (et + d)?|er +d|?

We write A (z) = (¢t + z)~?|cr + 2|72 and then we have Fourier coefficients

o0

}‘l e—Zfrimz q 1 g~ 2micme 4
E — I =
o (m) _/ (et + z)?|eT + z|* gltae _{0 (T + z)?|7 + z|% =

so we can write
Gale,7) = 22 — + 22 > hee(m) +2Ehu(0)
d . c=1m#0
The following Lemma tells us that the second of these sums is nice enough that we can
compute its limit as e — 0 by exchanging the limit and the summation:

Lemma 3.22. Suppose m # 0 and € < 1. Then there ezists a constant K € Rsq (inde-
pendent of €, ¢, depending on T) such that

|ﬁc,e(m)| = W

Proof. It’s enough to show that there exists K with
K

— c2m?2 i

—21’r‘:cm:':
dz
L (7 + z)?|7 + z|%

This follows from observing that |7 +z|* > |Im(7)[* > min{1, [Im(7)|*} and then showing

that v _
e—‘chm K
b o i
LZO (7 +:1:)2d$ = 2m?

This last estimate is derived by integrating by parts twice — it comes down to the fact
that

o0

!
_[0 |T+ x|4d$
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is finite. O

So for the m # 0 terms we take the limit inside the sum and we can also interchange
the limit with the integral defining h.(e, m). To prove the theorem, it is now sufficient to

show that .

- ™
lim2) he(e,0) =———
liog ;}( J=—s

We do this as follows: first, translating the variable z and using |z — i|* = (z +1)*(z — i)*

(these powers are defined using the principal branch of the logarithm) we obtain

mr

hc(€1 0) = (CImT)1+2E / (x L 1‘)2-0-((2'; — i)cdx,

Integration by parts tells us that this integral is equal to

€ o 1 1+e€
- / dz
1+e€ 1+ a2

—00

so we have
o0

. o Cl4%de 1 1
Zafell ) == (Im)mﬂ_{o AT

Since ((s) has a simple pole with residue 1 at s = 1 the first fraction tends to 1/2 as
€ — 0, whilst the integral tends to m. This gives us the desired result.

3.5. Finite dimensionality. Now we can give a cheap proof that M (I') is finite dimen-
sional for all congruence subgroups I'. We won’t determine the dimensions for a while,
however!

Suppose I is a normal subgroup of I', and denote the quotient group I"\I" by G (I'm
thinking of the elements as right cosets, hence the notation). We define a right action of
G on My(T") by setting f9 = f|,x for ¢ = Iy € G. The action of g is well-defined (i.e.
independent of the choice of coset representative 7).

Now we can see that My (T') = My (I")¢, where by © we mean the invariants under the
action of G (i.e. a function in M} (I") is I'-invariant under the slash operator if and only if
it is G-invariant).

Lemma 3.23. Suppose I is a normal subgroup of T and f € My(I'). Then there exist
modular forms h; € M (T) fori=1,...,[T : T'] with
P4hf 4 +h, =0

Proof. Consider the identity

IH(f-f9=0.

ge@G
Expanding out the product we get a monic polynomial in f with the coefficient of f"*
given by a symmetric polynomial of degree ¢ in the f9. This coefficient is therefore in
Miy(T")¢ = Mi(T). O
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Lemma 3.24. (1) for k <0, M(I') =0
(2) Mp(T") = C (the constant functions)

Proof. Since I' is a congruence subgroup, we have I'(V) C I for some N. Note that T'(N)
is a normal subgroup of I'(1). To show the Lemma, it is enough to prove it for I' = T'(N).
Suppose f € Mi(T) and k < 0. Then Lemma 3.23 gives us some h; € M;x(T'(1)) which are
all zero, since ik < 0. so we have f* = 0 for some n. Hence f = 0.

If k =0, then h; € My(I'(1)) = C for all 7, so f is a root of a polynomial with constant
coefficients. Hence f is constant. O

To prove that the spaces My(I') are finite dimensional we will use some commutative
algebra. The key ingredient is the notion of integral extensions of rings.

Definition 3.25. Let A be a subring of B. An element b € B is said to be integral over
A if b satisfies a monic polynomial b" + a;b" ! + - - - a, = 0 with coefficients in A.

The ring B is said to be integral over A if every element of B is integral over A.

The integral closure A of A in B is defined to be the set of elements of B which are
integral over A.

Ezercise 5. Show that b is integral over A if and only if there exists a ring C' with A C
C C B and b € C, such that C is a finitely generated A-module.
Deduce that A is a subring of B (i.e. the set A is closed under the ring operations).
Show that if we have an extension of rings A C B with B integral over A and B a finitely
generated A-algebra, then B is a finitely generated A-module.

Remark 3.26. It follows from Lemma 3.23 and the above exercise that if we set A =
®r>0Mi(T') and B = @My (I”) then B is integral over A (we think of A as a subring of
B via the natural inclusions M (T") C My(I") for each k).

Here’s an important general result in commutative algebra (due to E. Noether)

Theorem 3.27. Let F be a field and let A be a finitely generated F-algebra. Suppose A is
an integral domain and denote the field of fractions Frac(A) by K. Suppose L is a finite
extension field of K and denote by A the integral closure of A in L. Then A is a finitely
generated A-module (and is in particular a finitely generated F-algebra).

Proof. See Corollary 13.13 in Eisenbud’s book ‘Commutative algebra.... O
As a consequence, we obtain the following useful lemma:

Lemma 3.28. Let F be a field, B a commutative F-algebra, and assume B is an inte-
gral domain. Let A C B be a sub F-algebra and assume that B is integral over A and
Frac(B)/Frac(A) is a finite extension of fields. Then B is a finitely generated F-algebra if
and only if A is a finitely generated F-algebra.

Proof. First we suppose that A is a finitely generated F-algebra. Then Theorem 3.27
implies that A, the integral closure of A in Frac(B), is a finite generated A-module. We
have A C B C A.



20 JAMES NEWTON

Now A is Noetherian, so a submodule of a finitely generated A-module is finitely gen-
erated, hence B is a finitely generated A-module. Therefore B is a finitely generated
F-algebra.

For the reverse implication, we now suppose that B is a finitely generated F-algebra.
Pick generators by, ..., b, for B and pick monic polynomials with coefficients in A with b;
as a root. Let C be the finitely generated sub F-algebra of A generated by the coefficients
of these polynomials. By construction B is integral over C and it is a finitely generated
C-algebra (since it is a finitely generated F-algebra).

By the exercise above, we know B is a finitely generated C-module. So A is a submod-
ule of a finitely generated C-module, and is hence itself a finitely generated C-module.
Therefore A is a finitely generated F-algebra. O

Finally, we can give the desired result about finite dimensionality of spaces of modular
forms.

Theorem 3.29. Let I' be a congruence subgroup. Then
(1) for k <0, Mi(T) =0
(2) My(T') = C (the constant functions)
(3) M(T) := ®r>0Mi(T") is a finitely generated C-algebra

Proof. Since I' is a congruence subgroup, we have I'(N) C I for some N. Note that ['(NV)
is a nornal subgroup of I'(1). Set C = M(T"), B = M(I'(N)) and A = M(I'(1)).

Denote by G the finite group I'(V)\I'(1) which acts on B, with invariants B¢ = A (we
let G act on each graded piece My(I'(N)) by the weight k slash operator we discussed
earlier).

We can extend the G action to the fraction field Frac(B) by letting G act on the numer-
ator and denominator of a fraction.

We first check that

Frac(A) = (Frac(B))€.

This is because, if we write z € (Frac(B))® as £ with p,q € B, then
e[ € B¢ =4

geCG
so z is in Frac(A).

Now Artin’s lemma (as in Galois theory) implies that Frac(B)/Frac(A) is a finite exten-
sion of fields (indeed, it is Galois with Galois group G). This also implies that Frac(B) is
a finite extension of Frac(C).

Now we can apply Lemma 3.28: we know that A is a finitely generated C-algebra, so
we deduce that B is a finitely generated C-algebra. Applying Lemma 3.28 once more, we
deduce that C is a finitely generated C-algebra, as required. O

Corollary 3.30. For k > 0, Mi(T') is a finite dimensional C-vector space.

Proof. We have shown that @x>0Mj(T') is a finitely generated C-algebra. By decomposing
a generator into its components of fixed weight, we obtain a generating set whose elements
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are modular forms fi,..., f, of weights k; ..., k,. This implies that My(I') is spanned by

the monomials
{er" (2 O:Zkﬂfi =k}

4., MODULAR CURVES AS RIEMANN SURFACES
4.1. Recap on Riemann surfaces.

Definition 4.1. Suppose X is a Hausdorff topological space (topological space for short).
A complez chart on X is a homeomorphism ¢ : U — V from U C X open to V' C C open.
Two charts ¢; : U; — V; are compatible if

¢2 0 ¢7" : $1(U1 N Uz) — ¢2(Ur NU3)

is biholomorphic.

An atlas on X is a family

AZ{(j‘ﬁgUt'—)V,_EEI}

of compatible charts, with X = U;erU;.

We define an equivalence relation on pairs of topological spaces and atlases by (X, A) ~
(X, A') if every chart in A is compatible with every chart in A".

A Riemann surface is defined to be an equivalence class of pairs (X, A’). We will usually
work with connected Riemann surfaces.

For X a Riemann surface, a function f : ¥ — C on an open subset ¥ C X is defined to
be holomorphic if for all charts (in some atlas) ¢ : U — V/,

fool:p(UNY)—C
is holomorphic. The set of holomorphic functions on Y is denoted by &x(Y).

In fact the assignment Y +— &x(Y) determines the Riemann surface structure on the
topological space X. We'll develop this viewpoint a little, as it’s convenient for talking
about quotients of Riemann surfaces.

Definition 4.2. Let X be a topological space. A presheaf (of Abelian groups) on X is a
pair (&, p) comprising

e for any U C X open, an Abelian group .#(U)

e for any V C U C X open, a group homomorphism

Py FU)F(V)
called ‘restriction from U to V'’ such that pf, = id and ply0p = pl, for W c V C U.
For f € #(U) we usually write f|y for p}(f) € Z(V).

The group % (U) is called the sections of .# on U. Examples of presheafs are given by
Z(U) = continuous functions from U to C. Denote this presheaf by O, Also, for X a
Riemann surface, we have the presheaf of holomorphic functions .Z (U) = Ox(U).
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Definition 4.3. A presheaf .# on X is a sheaf if for every open U C X, and every covering
fa.mily {U,‘},‘E} of U (1e Ui c U with U = Uiefyi); we have
o if fge F(U) and f|y, = g|y, for all i, then f =g
e given f; € aﬂ"‘(Ui),i € I such that fi|U.-I"lUj = fj‘Uir]Uj for all ¢,5 € I, then there
exists a section f € #(U) such that f|y, = f; for every i € I.

The first point says sections are determined by local data (i.e. restriction to covers
by small open sets), the second says that we can define a section on U by ‘gluing’ sec-
tions defined on an open cover. Note that these statements are obviously satisfied by any
reasonable presheaf of functions.

In particular, it’s easy to check that the presheaves €¢° and €y defined above are in
fact sheaves.

Definition 4.4. A C-space is a Hausdorff topological space X, equipped with a sheaf %
such that #(U) is a sub C-algebra of 6¢* for all U, and the restriction maps p{ are given
by restriction of functions.

A morphism of C-spaces (X,.#) — (Y,¥) is a continuous map f : X — Y such that for
allopens V CY, g€ 4(V), we have go f € Z(f~1(V)).

For example, if ¢ : U — V is a chart of a Riemann surface X, then ¢ : (U, Ox|y) =
(V, Oy). Here Ox|y denotes the sheaf on U given by Ox|y(U’) = €x(U') for U’ C U.

Definition 4.5. A sheafy Riemann surface is a C-space (X, %) such that there is an open
cover Uie;U; = X and isomorphisms of C—spaces

@i : (Ui, Flv,) = (V;, Ov;)
with V; C C open.

Proposition 4.6. The map sending a Riemann surface X to the sheafy Riemann surface
(X, Ox) identifies Riemann surfaces with sheafy Riemann surfaces, and identifies holo-
morphic maps between Riemann surfaces with C-space morphisms between their associated
sheafy Riemann surfaces.

Proof. The inverse map takes (X, &x) to an atlas provided by the definition of a sheafy
Riemann surface. Now just check everything: for example to check compatibility of the
charts, we need to show that 7 = ¢y 0 ¢7" : ¢1(Uy N Us) — ¢2(Uy N Uy) is holomorphic, but
we know that 7 identifies the holomorphic functions on these two open subsets of C, and in
particular it’s composition with the identity map is holomorphic, so 7 is holomorphic. [

4.2. Group actions on Riemann surfaces. Let X be a Riemann surface, and G a group,
with a homomorphism 7 : G — Aut™(X) (i.e. if v € G then r(v) is a biholomorphic map
from X to itself.

Definition 4.7. We say that the group G acts properly on X if for all compact subsets
A, B C X the set
{veG:r(v)An B # 0}

is finite.
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In particular for each z € X the stabiliser G is finite.

Ezercise 6. The group G acts properly if and only if the map o : G x X = X x X taking
(v,z) to z,r(y)z is proper: i.e. when we give G the discrete topology and products the
product topology, (K is compact for any compact subset K of X x X.

Lemma 4.8. Suppose G acts properly on X. Then for each z € X there exists a connected
open neighbourhood U, of x with compact closure satisfying

r(NU:NU; #0 <= r(v)r ==z

Proof. First note that we can find a connected open neighbourhood U of z with compact
closure such that 7(v)U NU # 0 for only finitely many . We do this by taking A = B
to be (the pre-image under some chart of) a small closed ball around z in the definition
of acting properly (U is then the interior of this closed ball). Let g, ..., g, enumerate the
elements of G such that r(7)U NU # 0. We want to show that for each ¢ with g,z # z we
can find an open subset z € U; C U such that U; N g;U; = 0. We will then set U, = NU;
(or the connected component of z in this intersection, 1f this intersection is disconnected).
By the Hausdorff property of X (so U is also Hausdorff), if giz # = we can find disjoint
open neighbourhoods V;, V! of x, gz in U. Since G acts continuously on X we can find an
open neighbourhood W; of z in X such that g;W; C V/'. We set U; = V; N W;. Then U; is
disjoint from V7, yet g;U; C V/, so U; N g;U; = 0. O

Lemma 4.9. Suppose G acts properly on X. We topologise the set of orbits G\X by saying
that a subset of G\X is open if and only if its preimage in X is open. With this definition,
the maps 7 : X — G\X is continuous and open, and the quotient topological space G\X
18 Hausdorff.

In fact the above topology is the unique topology such that the quotient map = : X —
G\ X is continuous and every continuous map of topological spaces f : X — Y satisfying
f(gz) = f(x) for all g € G factors uniquely (and continuously) through 7.

Proof. First we show that 7 is open (it is obviously continuous). If U C X is an open set,
then 7~ (m(U)) = UgeggU is a union of open sets gU, hence it is open, so by definition
m(U) is open.

Now we show that G\ X is Hausdorff. Let Gz, Gy be two distinct points of the quotient
G\X. Let K,, K, be two distinct compact neighbourhoods of z,y (say given by small
closed balls with respect to some chart), and denote the interiors by U,, U,. We know that
gK. N K, # 0 only for g in a finite subset Gy C G. By shrinking the neighbourhoods K,
K, we can assume that y is not in gK, for any g € Go.

Let V, be the open neighbourhood of y given by the intersection U, N (X \ Ugeg, 9Kz)-
Now gU NV, =0 for all g € G, so n(U,) and m(V,) are disjoint open neighbourhoods of

Gz and Gy. O
Note that we are just using the fact that X is a Hausdorff and locally compact topological
space.

The next lemma tells everything we’ll need to know about the structure of these quotient
spaces.
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Lemma 4.10. Let G, X be as above, and let € X. Then there exists an open neigh-
bourhood U, of z (connected with compact closure) such that gU, = U, for all g € G, and

satisfies
@)= 1 9(Ua).
9G-€G/Gy
Proof. First we take U a neighbourhood of z with compact closure such that gU NU #
0 <= g € G,. Then we define U, to be the connected component of z in Ny, gU (each
g € G, maps a connected set containing z to a connected set containing x, so we have

gUs = Uy). 0

Now for U an open subset in G\ X, consider the set of holomorphic functions &x (=1 (U)).
This set has a natural right action of G, given by

fiz > f(gz).
If we consider the invariants under the G-action, &x(r~1(U))®, then we have a set of
G-invariant continuous functions on X. By the definition of the quotient topology on
G\X, this set naturally embeds in &y (U). This means that we can make the following
definition:

Definition 4.11. We given G\X the structure of a C-space by setting O\ x(U) =
Ox(rm~}(U))€ for U an open subset of G\ X.

It’s easy to see that &g\ x is a sheaf on the topological space G\ X.

Theorem 4.12. The pair (G\X, Og\x) defines a Riemann surface. The map  is holo-
morphic, and for x € X, there exist charts around z,7(x) such that m is locally given

by
Z 2™

where ny = |r(G;)| (moreover, r(G;) is cyclic of order n).

The Riemann surface structure we have defined on G\ X satisfies the universal property
that every holomorphic map of Riemann surfaces f : X — Y which satisfies f(gz) = f(z)
for all g € G factors uniquely (and holomorphically) through .

Proof. We can immediately assume that G is a subgroup of Aut(X). Let z € X. We are
going to define a chart on a neighbourhood of 7(z). Denote by U the open neighbourhood
(connected with compact closure) of z provided by Lemma 4.10. Possibly shrinking U, we
can assume that U is biholomorphic to an open subset of C. Denote by V' the image «(U).
Since 7 is open, this an open neighbourhood of 7(z). Also, since 7=(V) = [1,6,e¢/c. 9(U),
we have Og\x (V) = Ox(U)% (the datum of a G, invariant function on U is equivalent to
a G-invariant function on the disjoint union of the gU). This tells us that it is enough to
consider the case where G is a finite group fixing 0 € X C C, with X a connected open
subset of C (recall we are interested in the local structure of G\ X in a neighbourhood of
7(x), and here we have mapped z to 0).

Now we claim that there is a biholomorphic map f from a neighbourhood U of 0 in
X to the open unit disc D such that f(0) = 0, gU = U for all g € G and for every g,
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f~logo f is given by a rotation z — {(g)z (¢(g) a root of unity). In particular, the group
G is isomorphic to Z/n,Z.

Let’s assume this claim for the moment. Then we are reduced to the case where X is
the open unit disc and G = Z/n,Z acts via i - z (*z with ¢ a primitive ngyth root of
unity. Now the chart G\X — X sending Gz to 2" gives an isomorphism of C-spaces.

Finally we prove the claim. The key point is that for a sufficiently small open disc Dk,
centred at 0, in X, the set gD, is convez for every g € G. See the Lemma below for a
proof of this.

Then the intersection U = NyeggD. is convex, hence simply connected, and moreover
gU = U for all g € G. Since U is simply connected (with compact closure), it is biholo-
morphic to D via a map sending 0 to 0, and now we use the fact that biholomorphic maps
from the unit disc to itself, fixing a point, are given by rotations (the Schwarz lemma). [

Remark 4.13. The fact that this works for non-free group actions is special to one-dimensional
complex manifolds. An alternative presentation of this material is given by Miranda III.3.

Lemma 4.14. Let X be an open subset of C, containing 0, and suppose that f is an
automorphism of X with f(0) = 0. Then there is an € € Ry such that f maps every disc
D, = {|z| < r} with r < € onto a convez region (of course, we take € small enough so that
all the D, are contained in X ).

Proof. See Farkas-Kra, I11.7.7. The region f(D,) is convex if and only if the curves C; =
{f(2) : |2| = r} are all convex. Suppose arg(z) + arg(f'(2)) is an increasing function of
arg(z) on {|z| = r}. Then we claim that the curve C, is convex — this is because the
tangent to the curve C, at f(z) has direction

d i o
@ =i2f2),

where z = re'’.
So we compute the derivative of 8 + arg(f'(re?)) = 8 + Re(log(—if'(re))) with respect
to @, and get 1+ Re(zf"(2)/f'(z)). Since f'(z) # 0 (as f is biholomorphic), this derivative

is positive for |z| small. a
Proposition 4.15. The action of I'(1) on H is proper.

Proof. Recall that Im(y7) = Im(7)/|c7 + d|?. Suppose we have A, B compact subsets of
7. We are interested in the set Gy of v € I'(1) such that yAN B # 0. Now, since B is
compact, the set {Im(7) : T € B} is contained in some compact interval I = [c;,ca] C Rso
(with ¢; > 0). So if 4> € B then Im(y7) € I so we have inequalities

Im(7)/cy < |er +d|* < Im(7)/ey,
which imply that there are only finitely many possibilities for the integers ¢ and d (since

the real and imaginary parts of 7 are also bounded). Suppose that two elements 7,4 of
I'(1) have the same c,d. Then a computation shows that

= 1 n
L ‘i(o 1)
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for some n € Z. Since A and B are compact, there are only finitely many possibilities for
n. So we have shown that G| is finite. O

Definition 4.16. For I a congruence subgroup, we denote by Y (I') the Riemann surface
obtained from the quotient I'\H.

Corollary 4.17. The map j : Y(I'(1)) = C is a biholomorphic map.

Proof. We showed before that j is a bijection. It is holomorphic since it is induced by a I'(1)-
invariant holomorphic function on H, and holomorphic bijections are biholomorphisms. [

4.3. Cusps and compactifications.

Definition 4.18. Suppose I' is a congruence subgroup. Then the set of cusps of Y(I') is
defined to be the set of orbits Cr := I'\P}(Q) where the action of an element of SLy(Z) on
(z :y) € P(Q) is given by

¥(z :y) = (az + by : cz + dy).

We denote the cusp I'(1 : 0) by co. As usual, we think of P!(Q) bijecting with Q U {oo}
by sending (z : y) to z/y (or oo if y = 0).

For s € Cr, we define the width of the cusp s = I'z to be the index of the subgroup
{£I}T; in the stabiliser I'(1),. We denote this positive integer by h, (Exercise: this is
independent of the choice of representative z for s).

For example, when I' = I'(1) we have a single cusp, since the action of SLy(Z) on P}(Q)
is transitive.

For I' = I'y(p) there are two cusps, one of width 1 and the other of width p.

If we denote by H* the disjoint union H [[P*(Q) then we define (first as a set) X(T) =
M\eH* =¥Y(T') 1 Cr.

Now we make H* into a topological space. We will list a bunch of open sets, and take
the topology generated by them. First we let the usual open sets in H be open in H*. The
sets Uy = {7 € H : Im(7) > A}U{oc}are also declared to be open: they are the preimages
of the open discs centred at 0 under the map 7 +» €2™7).

Finally, we declare to be open sets of the form gUy4 for g € I'(1) — these will be open
neighbourhoods of the point g(1 : 0) € P!(Q), and they are regions bounded by circles
touching the real line at g(1 : 0) (if g does not stabilise (1 : 0)).

We define a topology on the quotient X (I") as usual, by saying an set is open if and only
if its preimage in H* is open.

Lemma 4.19. Let = be an element of P(Q). Then there ezists an open neighbourhood U
of x in H* such that
I,:={g€v:9z=z}={gel:9gUNU # 0}
Proof. First we do this for z = co. Let A € R5y. We have g
Im(7)

merrdE s

gUa={r€H:Im(g77) > A}={T€H:
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Since | — 7 +d|? > ¢XIm(7)?, if ¢ # 0 we have
7 € gUsx = Im(7) > Alm(7)? => Im(7) < 1/A

so, for large enough A, U and gUy are disjoint for all g with ¢ # 0. Now ¢ = 0 if and only
if goo = oo, so we are done.

Now for general z we fix go with gooo = z, and take U = goUj for A large enough (as in
the above paragraph). O

Proposition 4.20. Let I' be a congruence subgroup, then the topological space X (I') s
connected, Hausdorff and compact.

Proof. First we check that #* is connected, since H is connected, and each element of P*(Q)
has a base of open neighbourhoods having non-trivial intersection with #. It follows that
the continuous image X (T'") of H* is connected.

To show that X (T") is Hausdorff, first recall that X (I'(1)) is homeomorphic to the Rie-
mann sphere (elementary way to see this is to stare at the funamental domain). For
general I' we know we can separate points of Y/(I'). Suppose we have a cusp s and a point
y € Y(I'). The image of s in X (I'(1)) is co and the image of y in X(I'(1)) is in Y'(T'(1)).
Since the image of these points can be separated by open neighbourhoods, s and y can be
separated by the pre-images of these opens. The fact that two cusps can be separated by
open neighbourhoods follows from Lemma 4.19.

For compactness, first note that the extended fundamental domain ZF' =ZF U{cc}is
a compact subset of H*. Now X(T') is a continuous image of the finite union of compact

sets Uparer'\[‘(l)"{?*, so it is compact. O

Lemma 4.21. Let T' be a congruence subgroup. There exist open neighbourhoods U, of
each cusp s in X (T') such that the U, are pairwise disjoint, and are all homeomorphic to
the unit disc D, via maps sending s to 0 which are biholomorphisms from U,\{s} C Y (T')
to the punctured unit disc D*.

Proof. Let 7 be the quotient map H* — X(I'). It follows from Lemma 4.19 that for A
large enough, if we choose g, € I'(1) with gsco = z and T'z = s for each cusp s, then
U(gs, A) = m(gsUa) gives a pairwise disjoint set of open neighbourhoods of the cusps.

Set U* = g,U, and denote by U the intersection U*N#H. The natural inclusion U* — H*
induces a map I';\U* — X(I'). For A large enough, Lemma 4.19 tells us that this map
is injective. Its image is the open neighbourhood U(gs, A) of the cusp s. Recall that a
holomorphic function on V = U(gs, A)\s is by definition a I'-invariant holomorphic function
on 7=1(V) which is the same thing as a I';-invariant holomorphic function on U.

Let h, be the width of the cusp s. Then

{£I}T, = {+I}g, ((1) h’iz) g5

and the map sending 7 — €270 /hs for 7 € T,\U and z to 0 sends I';\U* homeomor-
phically to an open disc.
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Rescaling gives a homeomorphism from U*/T', to the unit disc, and so we get a home-
omorphism from U(g,, A) to the unit disc. Restricting this map to U(gs, A)\s gives a
biholomorphism to the punctured unit disc, since it is a homeomorphism induced by a
I';-invariant holomorphic function on U. O

Definition 4.22. We define a Riemann surface structure on X (T') extending the Riemann
surface structure on Y'(I') by adding the charts on the neighbourhoods of the cusps given
by Lemma 4.21.

Since a continuous function on the unit disc which is holomorphic on the punctured unit
disc is holomorphic everywhere, we can define the Riemann surface structure sheaf theoret-
ically by saying that a continuous function on an open subset U of X (T') is holomorphic if
and only if its restriction to U NY (") is holomorphic. Equivalently, we say such a function
is holomorphic if and only if it defines a holomorphic function of D when we apply the
homeomorphisms of Lemma 4.21.

Note that it follows from the proof of Lemma 4.21 that the map X (') — X(I'(1)) has
the form z = 2" with respect to some charts around s and oo.

5. DIFFERENTIALS AND DIVISORS ON RIEMANN SURFACES
5.1. Meromorphic differentials.

Definition 5.1. For U C C open, n € Z, we define the space of meromorphic differentials
of degree n on U by

Q®(U) == {f(2)dz" : f meromorphic on U}.
For ¢ : Uy — U; holomorphic, define
¢* : Q¥ (Us) — Q¥™(Uy)
by ¢*(f(22)(dz2)") = f(#(21))(#'(21))"(d=1)".

So Q®(U) is a C-vector space, isomorphic to the space of meromorphic functions on
U (but note that the pullback by ¢* of a differential is not the same as the pullback of a
function).

Definition 5.2. Suppose X is a Riemann surface. Suppose we have two open subsets
U, U of X, with charts ¢; : U; = D; C C. Denote by 7;; the transition functions
@; o ;71 di(U; N U;) = ¢;(U;NU;). Then a meromorphic differential (of degree n) on X
is a rule sending charts ¢ : U —+ D on X to meromorphic differentials of w(¢) of degree n
on D, such that for any two charts ¢, ¢, the differentials w(¢;) and w(¢s) are compatible:
Le. 75(w(ds)lg;winvy) = w(@i)lguwinyy for 4,5 € {1,2}.

The set of differentials on X has an obvious structure of a C-vector space.

Remark 5.3. By sending an open subset U of X to the C-vector space of degree n mero-
morphic differentials on U, we can define a sheaf Q%" on X. To check the sheaf property
you need the following lemma:
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Lemma 5.4. Let X be a Riemann surface, and A an atlas on X. Suppose we have a
collection of compatible meromorphic differentials for just the charts in A. Then there exists
a unique meromorphic differential on X extending the given meromorphic differentials on
the charts.

Proof. Given any chart ¢ : U — D on X we can define a meromorphic differential on D
by appropriate tranformations of the meromorphic differentials associated to charts in the
atlas: if ¢; : U; — D; is a chart then we get a biholomorphism ¢(U NU;) = ¢;(U; NU) and
pulling back a differential on ¢;(U; N U) gives a differential on ¢(U N U;). Doing this for
all 7 gives a collection of compatible differentials on an open cover of D, which glue to the
desired differential on D. O

It is now straightforward, given a holomorphic map of Riemann surfaces ¢ : X — Y to
define the pullback map ¢* : QZ"(V) — Q%" (¢~*(V)) for any open V C Y.

5.2. Meromorphic differentials and meromorphic forms. In this section we let I' be
a congruence subgroup. Recall that we have a holomorphic map 7 : # — Y/(I') < X(T).

Definition 5.5. Suppose w is an element of Q®k(X (T')). We denote by f,, the meromorphic
function on H given by 7w = f,(7)(d7)*.
Theorem 5.6. Suppose w € Q®*(X(T")). Then f,, is a meromorphic form of weight 2k and

level T'. Moreover, the map w + f,, is an isomorphism of C-vector spaces from Q®*(X(T'))
to the space of meromorphic forms of weight 2k and level T.

Proof. First we check that f, is weakly modular of weight 2k and level I'. Let v € T.
We have a biholomorphism ~ from #H to H which descends to the identity map on Y (T').
Consider the meromorphic differential on H given by v*7*w. On the one hand, this is equal
to (w0 7)*(w) = 7*w, since w oy = m. On the other hand, we have

k
() = o) (5] (@) = fulomer + &) P

so we deduce that f,(y7)(cr +d)~%* = f(7) and f, is indeed weakly modular of weight 2k

and level T'.

Next we check that f,, is meromorphic at the cusps. Let a € SLy(Z). The map a : H* —
H* descends to a biholomorphism a : X (o 'T'a) = X(T'). It follows from a calculation
as above that forn, = fulak. So it suffices to show that f, is meromorphic at oo. For
large enough A, the image of Us U {occ0} in X(T') is biholomorphic to an open disc via
7+ e2™7/h — g, so the fact that f,, is meromorphic at co follows immediately from the
fact that w is a meromorphic differential: if the differential on this chart in a neighbourhood
of 0o is g(gn)(dgr)* then f, satisfies

£ = (211;:'%) A a(an).

The map w + f, is clearly C-linear. We show it is an isomorphism by writing down
an inverse. For f a meromorphic form of weight 2k and level I' we want to define a
meromorphic differential w(f) on X (I') which pulls back to f(7)(dr)* on H.
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Let £ € H. Then, from the proof of Theorem 4.12 we know that there are charts from
neighbourhoods U of z and V of n(z) to the unit disc such that 7 is the map z + 2™ in
this coordinate and I, acts via z — ('z, with ¢ a primitive n,th root of unity.

Since f(7)(dr)* defines a I',-invariant meromorphic differential on U, in the new co-
ordinate we have a meromorphic differential g(z)(dz)* on the open unit disc, such that
9(¢*2)(d(¢'2))* = g(2)(dz)* for all i. Therefore we have g(¢'z) = (~*g(z) for all i, so the
function 2*g(z) is [',-invariant and is equal to h(2z"+) for a meromorphic function A on the
open unit disc.

Now we define a meromorphic differential on the open unit disc by

w = (ng2)"*h(2)(d2)*.
This pulls back under z +— 2™ to
(ne2"=) *h(2") (ng2"= ") (d2)* = 27*h(2")(d2)* = g(2)(d2)¥,

so we define w(f) on the chart from V to the open unit disc to be given by w — by
construction, it pulls back to f(7)(d7)* on the neighbourhood U of z.

Finally, we need to define our meromorphic differential in neighbourhoods of the cusps.
It is enough to cousider the cusp I'oo, since for a general cusp s = 'z with £ = aoo we can
define a meromorphic differential w in a neighbourhood of s by taking the meromorphic
differential w(f|q2k) defined in a neighbourhood of (o 'I'a)oo in X (@ 'I'a) and pulling
back by the biholomorphism X (I') & X (o 'Ta).

Recall that associated to f(7) we have a meromorphic function on the unit disc, extend-
ing the holomorphic function F on the punctured unit disc defined by F(e?™/*) = f(r).
Here h is the width of the cusp oo.

Recall that the chart of Lemma 4.21 is also given in terms of the biholomorphism 7 —
e*™it /h = qp, from U, /T to an open disc. We define a meromorphic differential on this
disc

W= (%;%)_k F(qn)(dgn)*.

Then w pulls back to the meromorphic differential f(7)(d7)* on Us under the map 7
e?™it /h.

We just have to check that the meromorphic differentials we have defined are all com-
patible. However, they all pull back to restrictions of the same meromorphic differential,
f(7)(d7)* on H, so this follows from the next lemma. O

Lemma 5.7. Suppose w: X — Y is a non-constant morphism of Riemann surfaces, with
Y connected. Then the map ©* is an injection from Q®"(Y) to Q*"(X).

Proof. We can assume that X and Y are open subsets of C, with Y connected. So we have
w = f(2)(dz)®" and f(m(2))(n'(z))"* = 0 for all z € X. Since 7 is non-constant, the zeroes
of 7’ are discrete, and so f(7(z)) = 0 on an open subset of X. Hence f is zero on an open
subset of Y (since 7 is an open map by the open mapping theorem), and f is therefore
Zero. O
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There is a natural definition of the order of vanishing of a meromorphic differential at a
point:
Definition 5.8. Let X be a Riemann surface, and w a meromorphic differential on X.

Let 7 € X be a point. Then we define v,(w) to be the order of vanishing of f(z) at z = 2,
where w is given by f(2)(dz)" on a chart defined on a neighbourhood of z sending z to 2.

It’s an exercise to check that v, is well-defined (i.e. it doesn’t matter what chart we
choose). Recall that for f € My(I'(1))\{0} we previously defined ord, for z € X (I'(1)) —
this was just the order of vanishing of f at z € Y(I'(1)), or the natural order of vanishing
of f at oo defined in terms of its g-expansion.

Ezercise 7. By considering the proof of Theorem 5.6, show that for f € Ma(I'(1)) non-zero
we have

Voo (wf) = ordeo(f) — k
_ ord,(f) — k(ny — 1)
Mg

Vg (wf)

for z € Y(I').
Deduce that the equality

o)+ Y —ordy(f) =

ey () Mz 12
of Proposition 2.18 is equivalent to the equality

> va(wy) = —2k.
zeX(T)
The last equality is a statement that the degree of the divisor associated to wy is equal
to —2k = (2g — 2)k, where g = 0 is the genus of X (I'(1)).

5.3. Divisors. We assume X is a compact connected Riemann surface throughout this
section.

Definition 5.9. Recall the definition of the group of divisors on a Riemann surface X: it
is the free Abelian group generated by the points of X, i.e. formal sums Y ;¢ x a.[z] with
a, = 0 for almost all z. A divisor D has a degree deg(D) = ¥ a,, where D = ¥, x az[z].

We say a divisor is effective if a, > 0 for all z, and write D > 0 if D is effective.

For f a non-zero meromorphic function on X we define the divisor of f to be

div(f) = Y va(f)[z]
zeX

where v, is the order of vanishing at z. Note that since X is compact this sum is finite.

Similarly, we define div(w) for a meromorphic differential w.

For D a divisor on X, we also define a C-vector space

L(D) = {f a non-zero meromorphic function on X : div(f) + D > 0} U {0}.
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The vector space structure is given by scalar multiplication and addition of meromorphic
functions.

In fact L(D) is the group of sections of a sheaf on X.

Definition 5.10. For D = ¥ a,[z] a divisor on X and U an open subset of X, denote by
D|y the divisor on U given by Y,cy a.[z] and define

Ox(D)(U) = {f a non-zero meromorphic function on U : div(f) + D|y > 0} U {0}.

Note that we’re abusing notation a bit, since U is not necessarily compact, so div(f)
might be an infinite formal sum.

We can also denote the sheaf of holomorphic differentials on X by Q% (it is the subsheaf of
the meromorphic differentials of degree 1 given by demanding that in the local expressions
f(2)dz, f is holomorphic).

Ezercise 8. Supposing wy is a non-zero meromorphic differential of degree 1 on X, then we
have

x (U) = Ox(div(wo))(U)
via the map w — w/wy.
Remark 5.11. Every compact Riemann surface has a non-constant meromorphic function.
In fact, for the Riemann surfaces X (I") this is easy to see: we have the function X (I') —
X(T'(1)) = P'. We obtain a non-zero meromorphic differential by pulling back a non-zero
meromorphic differential on P!.

The Riemann-Roch theorem:

Theorem 5.12. Let X be a compact connected Riemann surface, and let D be a divisor
on X. Denote by g the genus of X. Denote by K the divisor div(wy) for a non-zero
meromorphic differential of degree 1 on X. Then

dim L(D) — dim L(K — D) = deg(D) +1 — g.
Remark 5.13. By Serre duality we can write the above equality as
dim H°(X, 6x(D)) — dim HY(X, 6x(D)) = deg(D) +1 — g
so this is an Euler characteristic formula for the cohomology of the sheaf &x (D).
Corollary 5.14. We have dim H°(X,Q)) = g and deg(K) = 2g — 2.
Proof. Set D =0and D =K. [
Lemma 5.15. Suppose w € Q®*(X). Then div(w) has degree (29 — 2)n.

Proof. Let wy be a non-zero meromorphic differential of degree one. If wy is locally given
by f(z)dz it is easy to check that the local expressions f(z)"(dz)" define a non-zero mero-
morphic differential of degree n, which we denote by wf§. Now w/wf defines a meromorphic
function, whose associated divisor has degree 0, so the degree of div(w) is n times the
degree of div(wp) which is (2g — 2)n.
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5.4. The genus of modular curves. We can compute the genus of modular curves using
the Riemann-Hurwitz formula:

Theorem 5.16. Suppose f : X — Y is a holomorphic map between compact connected
Riemann surfaces. Then
2 — 2g9(X) = deg(f)(2—29(Y)) — > (ez— 1).
reX

Here g() denotes the genus and e, denotes the ramification index of the map f at the
point  (i.e. locally around z, f looks like z > z°).

Our modular curves X (I') come equipped with maps to X(I'(1)) = P!, so we apply
Riemann-Hurwitz to these maps.

Set ro = |{z € Y(I') : n, = 2}| and 3 = |[{z € Y(T') : ny = 3}|. As before, we set r to
be the number of cusps of X (I').

Theorem 5.17. We have

_ ., [PSLy(Z):T] 2 13 Teo
g XM)=1+—7—-"FT~ 35 "7

Proof. Let f : X(I') = X(I'(1)) be the natural map. First note that deg(f) = [PSL2(Z) :
T]. We denote this integer by d for the rest of the proof. Set g = g(X(T).

Now we compute some ramification indexes. Let z € Y'(I') with image f(z) € Y(I'(1)).
Recall that the quotient map H — Y(I') looks like z — 2"+ around a pre-image of z,
whilst the map H — Y(I'(1)) looks like z > 2™/, This implies that the map f looks like
z > 2M@/M= 50 we have ez = Ny(z) /N

For a cusp s a similar computation shows that we have e, = A, the width of s.

Now Riemann-Hurwitz says that

2—-29g=2d— ) (ez—1)=2d- S (ea—-1)— > (e2—1)— > (ez—1).
zeX(I) flz)=i flz)=w f(z)=c0

For P =i or w we have 3 ;)—p(€z — 1) = (np — 1)(|f7'(P)| = Tnp). On the other hand,
we have d = ¥ ;(s)=p €2 = np(|f 7 (P)| = Tnp) + Tnp. So we deduce that

Y = =" e T,
f(@)=P np

Therefore we have
1 2
2—2g=2d— —2-(d—'r2) - g(d"’*"ns) —d+7Te
which rearranges to give the desired result. O

Note that if follows from this result that

T2 2rs d
BgDfn 4 =2 ~ 50
g +2+3—|—T°@ 6>U
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5.5. Riemann-Roch and dimension formulae. Now we have everything we need to
compute the dimensions of the C-vector spaces My (T').

Recall that we have proved that meromorphic forms of weight 2k and level I" correspond
to meromorphic differentials of degree k on X(I'). We want to identify the image of the
subspace of modular forms.

Suppose f is a meromorphic form and w(f) its associated differential. It follows just as
in Exercise 7 that for z € Y(I') we have

ord;(f) — k(ns — 1)

() = :
and for s =I'z a cusp of X(I') with az = 0o (e € I'(1)) we have
Us(w(f)) = ordoo(fla,2x) —

Here the order of vanishing of f|, 2 at oo is in terms of the variable g;,, where h; is the
width of the cusp s. Note that f|, o has a Fourier expansion in the variable g5, because
its weight is even.

We deduce the following

Proposition 5.18. Suppose f is a meromorphic form of weight 2k and level T, with
associated differential w(f). Then f is a modular form if and only if nyv.(w(f)) + k(ng —
1) 20 for all z € Y(T') and vs(w(f)) + &k = 0 for all cusps s.

The modular form f is cuspidal if and only if we moreover have vs(w(f)) +k—1>0
for all cusps s.

Note that the first condition is equivalent to
k(ng —1)
walua() + | A2

Definition 5.19. Let wy be a non-zero differential on X (I‘), set K = div(wp) and define
divisors

|=6

Dk)=kK+k > [s]+ EL ) [z]

sEX(D)\Y(T) xeY () L
and
De(k)=kK+(k—-1) > [sJ+ Y} |—— 2]
SEX(D\Y(T) z€Y () N
on X (T).

Theorem 5.20. We have isomorphisms My, (T') = L(D(k)) and Sax(T') = L(D.(k)) given
by f = w(f)/wg.
Proof. This follows immediately from Proposition 5.18. |

Corollary 5.21. Denote by ro the number of cusps of X (I'), and denote by g the genus
of X(I'). Then we have, for k > 1

dim M (T) = kroo + Y [ l)J+(2k—1)( -1)
zeY (T) Tz
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and for k > 2
k(ng

dim Sy (T) = (k — D)rec + D I_————l)J +(2k—1)(g —1).

zeY (T) &
We have dim My(T') = 1, dim So(T") = 0 and dim S3(T) = g.

Proof. This all follows from Riemann-Roch and the fact that a holomorphic function on a
compact connected Riemann surface is constant. We also use the observation that

ro 213 "d
29 2+2+ 3 +rw—6>0.

O

Recall that we used the fact that dim(M2(I'9(4))) = 2 a few lectures ago. We can now
prove this:

Corollary 5.22. Let k > 0. We have dim My (I'o(4)) =k + 1.

Proof. We have [['(1) : Ty(4)] = 6,0 g = 1+ % — 3.8 — 8. We also have two
forms G?) and Ggl] which give linearly independent elements of the quotient vector space
M;(To(4))/S2(To(4)) (see this by looking at the constant terms of their g-expansions at
the cusps), so dim Ma(T') — dim S5(T") =10 — 1 2 2.

So g £ —2 — %, which implies that g = r; = r3 =0 and ro, = 3. Now apply the
dimension formula.

In fact, it’s probably easier just to determine the cusps of X (T'g(4)), which immediately

gives Too = 3... ]

6. HECKE OPERATORS

In this section we will define Hecke operators on spaces of modular forms of level I'; (V).
To give the cleanest description, we begin by giving an alternative description of modular
forms in terms of functions on lattices.

6.1. Modular forms and functions on lattices.

Definition 6.1. A lattice in C is a Z-module L C C generated by two elements of C which
are linearly independent over R.

For N > 1 a I'y(N)-level structure on a lattice L C C is a point t € C/L of exact order
N (i.e. a point of the elliptic curve C/L of exact order N).

Denote the set {(L,t)} comprising pairs of lattices with a I';(V)-level structure by Ly.

Suppose k € Z and F is a function from Ly to C. We say that F' has weight k if
F(AL,Xt) = A*F(L, ) for all (L,t) € Ly and A € C*.

Remark 6.2. For example, the function Gi(L) = YoxeL % for k > 2 even is a function of
weight k on £;. Note that Gx(Z7 & Z) = Gi(r) where G (1) is previously defined usual
Eisenstein series.
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Denote by M the set of pairs w = (wy,ws) of elements of C* such that w;/w, € H. To
such a pair we can associate a lattice L(wy,ws) = Zw; ® Zw, with T';(N)-level structure
t(w1,ws) = wa/N + L(wy,ws). This defines a surjective map from M to Ly. The group
GLj (R) acts on M by sending (w;,ws) to (aw; + buws, cw; + duws).

Lemma 6.3. The map M — Ly identifies Ly with the quotient of M by the action of
Iy (N).

Proof. We first check that the map is surjective. Suppose (L,t) € Ly.
Let wy,w) be any basis for L. We have

1
t=F(m;+bw;)+L

where ged(a,b, N) = 1. We can then find a’, ¥, congruent to a,b mod N, such that a’, t/
are coprime. Now set wy = a'w] + b'wj. Since a’ and ¥V are coprime, we have a basis wy, wsy
for L, and t = £2 + L. If w;/w, is not in #, replace w; with —w;.

To show that this map identifies Ly with the quotient of M by I'1(N), suppose we have
two elements (wy,ws), (wi,ws) of M with the same image in Ly. In particular, we have
v € SLy(Z) with

the two elements of M span the same lattice L. Moreover, since wh/N = wy/N mod L, the
matrix v lies in I'y (V). O

We also have an action of A € C* on M by mapping (w1, ws) to (Aw;, \ws), so we can
define a notion of weight k for complex functions on M. The quotient of M by this action
can be identified with H via the map (wy,ws) — w;/ws. This identifies L /C* with the
quotient 'y (N)\H.

_ The left action of GL; (R) on M induces a right action on functions on M, by setting
F-y(w) = F(yw).

On making the above observations, there is a natural way to pass between functions
on M,Ly and H. Given F : Ly — C of weight k we first define F: M = Chby
F(w) = F(L(w), t(w)). Then we define f(7) = F(tau,1) for r € H.

Proposition 6.4. Let k € Z. The above association of F' with F' and f gives a bijective

correspondence between the following sets of complez-valued functions:

(1) functions F : Ly — C of weight k
(2) functions F : M — C of weight k which are invariant under the action of T'1(N)
(3) functions f : H — C which are invariant under the slash operator |\ fory € T'1(N)

Proof. Exercise. O

Now we say that a function F on Ly of weight k is weakly modular/a modular form/a
cusp form if the associated function f on H is.
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6.2. Hecke operators.

Definition 6.5. Suppose F is a function Ly — C and n € Zs;. Then we define a function
T.F by

1
ToF(L,t) = = S F(Lt)
L!

where the sum is over lattices L' D L with index [L’ : L] = n such that ¢ + L' is a point of
exact order N in C/L’.
For n coprime to N, we also define

Ty F(L,t) = %F(%L, ).

Proposition 6.6. We have the following identities:
(1) if m and n are coprime, then T, o T, = Tpy
(2) if p is prime and divides N and n > 1 then Tpn = T}
(3) for p prime and coprime to N, n > 1, Tyn 0 Ty, = Tpn+1 + pIpn-1 0 Tpp
(4) /PR Tm,m = Tm,m oTy,
(5) Tm,m o Tn,n = Lmnmn-

Proof. The last two properties are easy to check, and are left to the reader. Now we
consider the first claim. Let (L,t) € Ly. We observe that Tpn(L,t) is a sum over lattices
L" containing L with index mn, such that ¢ still has exact order N when reduced modulo
L". Since m and n are coprime, there is a unique lattice L’ such that

L

and L has index n in L'. Indeed, L'/L is the unique subgroup of L”/L of order n. Clearly
t has exact order N when reduced modulo L".
Conversely, given
Let el

where L has index n in L’ and L' has index m in L”, and ¢t € C/L such that ¢ has exact
order N modulo L” we see that L C L” has index mn. So we see that the elements of
Ly occuring in Tpn(L,t) and T,y 0 Tp(L,t) = = 31 To(L',t) are the same and we have
T =T 610

Now we consider the second item. By induction, it suffices to show that Tpn-1T), = T
for n > 2. Let t' = (N/p)t. Then Tpn(L,t) = p" X[(L/,t)] where the summation is over
L' > L such that L'/L C pi,,L /L has order p" and does not contain t'. Now we claim that
L'/L is cyclic. This is because if it is not cyclic it contains %L/ L which contains ¢ (since
pt' = 0). We may now argue as in the previous part, since a cyclic subgroup of order p"
contains a unique subgroup of order p.

For the third claim, first note that Tpn o Ty(L,t), Tpns1(L,t) and Tpn-1Tp,(L, t) are all
given by linear combinations of lattices containing L with index p™*'. Let L” be such a
lattice. Denote its coefficient in the three terms by a,b,c. Then we want to show that
a = b+ pe. We can immediately observe that b = 1. There are now two cases:
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(1) L" 2 éL: this implies that ¢ = 0. Now a is the number of lattices L’ contained in
L" with index p™. Such an L’ is contained in L” N ;l,L. Since L" 2 ;%L we actually
have L' = L" N 2L and so a = 1 and we are done.

(2) LF > ;IJL: in this case ¢ = 1, and L’ as above can be any sublattice of %L of index

p. So a = 1+ p and we are again done.
O

Corollary 6.7. The T, are polynomials in the elements T, and T, for p|n.

Proof. This follows from induction on n. O

Corollary 6.8. The C-subalgebra T of End({F : Ly — C}) generated by the T, and T,
Jor p prime is commutative and contains all the T,, and T,, .

Proof. This follows from the above proposition and corollary. O

The above relations between the T;, and T}, , can be nicely summarised as indentities of
formal power series with coeflicients in T. For p| N we have (in the ring T[[X]]) an identity
o0
1
T X™ = .
Y e v

For pt N we have

e 1
TinX™ = .
nz=t:) ! 1 =T, X + pTpp X?

If we replace X in these identities with p~* we get
1

Tn—5= Tﬂ—?’lS:
St =8 T = T s

P n=0 p|N

i

plf_}[V T o Tpp—s 4 Tp,ppl—h ®

Definition 6.9. For d € Z coprime to N and F : Ly — C denote by (d)F the function
defined by (d)F(L,t) = F(L,dt). Since t has order N this depends only on the class of d
in (Z/NZ)*.

Lemma 6.10. The actions of T,,, Ty, and (d) take weight k functions on Ly to weight k
functions on Ly. If F is a weight k function on Ly then T, ,F = n*~2(n)F.
Proof. Left to the reader. O

As a consequence, we have actions of T, T, , and (d) on the vector space of functions
on H invariant under I'; (V) acting by the weight & slash operator. There is a more matrix
theoretic description of the Hecke operators, as follows.

Definition 6.11. Let SV be the set of matrices (with integer entries) ( b) with ad = n,

a
0 d
a>1,acoprimeto Nand 0 < b <d.

Suppose o € SN and (L,t) € Ly.Write L = Zw; @ Zw, with w;/wy € H and t = wy/N.
Then we denote by L, the lattice with basis (%wl - %wg, %wz).
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Remark. The choice of wy,wy in the above definition is well-defined up to multiplication
of the column vector Sl by an element of I';(N) (this is Lemma 6.3). The lattices
2

L, depend on the choice of wy,wy but the following lemma shows that the set of lattices
{L, : o € SY'} is independent of this choice.

Lemma 6.12. The map o — L, is a bijection from SY to the set of lattices L' O L with
[L' : L) = n such that t has order N when reduced modulo L'.

Proof. Since det(c) = n we see that L has index n in L,. Since a is coprime to N, wy/N
still has order N in C/L,. Conversely, suppose L has index n in a lattice L' and ¢ has
order N modulo L'. Then we let a and d be the cardinality of Y; = 1L/(L’' + 1Zw,) and

Yy = 2Zw,y/L'N 1Zws respectively.
There is a short exact sequence of abelian groups

1
0—>Y2—+EL/L’—>Y1—+0

so ad = n. Since t = wy/N and L'N %ng = %ng = ész, the condition that t has order
N modulo L' is equivalent to the condition that a is coprime to N. Since Zw; has image
zero in Yj, there exists b € Z such that Zw; + %wz € L'. Since %wg € L', we can find
a unique such b in the range 0 < b < d. We have now associated a,b,d to L' such that
Sy + %wg and %wg are in L'. Since these elements span a lattice which contains L with

index n, they span L’. Now we have constructed a map L' — (g 3) which is an inverse
to the map o — L,. |

Proposition 6.13. The actions of T, T, , and (d) preserve the spaces My(T'1(N)) and
Sk(T'1(N)).

Proof. We saw above that T}, ,F' = n*~2(n) F for weight k functions F, so it is enough to
consider the operators (d) and T,.
First we consider (n), for n coprime to N. Let f € My (T'1(N)), with associated weight

k function F on Ly. Let 0, = 2 z € I'(1) be an element which is congruent mod N to

-1

(n(} 2) . Such an element exists because I'(1) surjects onto SLy(Z/NZ). Observe that

flonk(T) = (c74+d)*F(Zo,7+Z,1/N) = F(Z(at+b)+Z(ct+d),n/N) = F(Zr+Z,n/N).
Now we have

(n)f(r) = (n)F(Zr + Z,1/N) = F(Z7 + Z,n/N) = flo,x(7),

and the statement of the proposition for (n) follows.
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The case of T;, uses the set of matrices Sf:f . For 7 € ‘H we have the lattice L, = Z7 + Z.
By definition, f(r) = F(L,,1/N) and

Taf(r) = TaF(Lr,YN) = = 3 F(Log 1/N).

aeSN

b

For o = (g d) € SN we have (L. ,,1/N) = (L,r,a/N) so

F(L;4,1/N) = a*F(Lyr,a/N) = a*{a) F(L,.,1/N) = a*(a) f(oT).

We can write this as

Tuf(r) =n*"1 3 ((@)f)low(7).

oeSY

From here we can deduce the proposition. O

Remark 6.14. The above proof shows that the action of (Z/NZ)* on Mi(I'1(N)) can
be identified with the action of I'4(N)/T'1(NN) by the weight k slash operator, via the
isomorphism (Z/NZ)* = I'o(N)/T1(N) given by

d' 0
d+ NZ ( A d) I (N).

The finite Abelian group (Z/NZ)* now acts on the finite dimensional C-vector space
Mi(T1(N)) by the (-) action. So this vector space decomposes into a direct sum indexed
by characters x : (Z/NZ)* — C*:

M (T'y(N)) = €@ My(T'1(N), x)

where M (I';(V), x) denotes the subspace of M}, (I';(N)) on which (d) acts as multiplication
by x(d) for every d € (Z/NZ)*. We write My(N, x) to abbreviate M (T'1(N), x).

We now consider the effect of the Hecke operator T;, on the g-expansion at oo of a
modular form f € Mi(N, x).

Proposition 6.15. Let f € My(N, x) with f(T) = X520 angq™ and let T, f(7) = 352 bng™.
Then

b = Qnp +r X(p)pk_lanfp
where we take x(p) =0 if p|N and an/p, =0 if p{ n.

Proof. The set of matrices S, has a simple description. If p|N then S, consists of matrices

(S 2) witha=1,d=pand b=0,1,...,p — 1. Therefore we have

g=1 T+b
Tpf(f)=%b§]f( - )
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Since the sum

271'%1!1(1r by 1 n/p 2minb/p
Z =y ZB
P y=o P b0

is equal to zero if p does not divide n and equals q™? if p does divide n, we see that b, = anp
as required.

Now suppose that p { N. Then we have one additional element of S, given by a = p,
d=1and b= 0. So we have

Tpf(r) = (Z i (T = b) +p’°(p)f(pf)) :

Since (p) f = x(p)f we obtain the desired result. O

We will write the above formula for the effect of 7}, on g-expansions in terms of some
operators on the ring of formal power series C[[g]]. For m > 1 an integer we write Uy, for
the operator which takes 3,50 anq" to E,m) ang™™ (where g™ is zero if m 1 n). We write
V,, for the operator which takes .50 @ng" t0 L >0 ang™. We have Uy, o Vi, equals the
identity and V,, o U,, equals the operator given by retammg only the ¢" terms where m/|n.
The above Proposition just says that

T =Up+ %",
as operators on g-expansions. This allows us to write a formal factorisation
1-T,X + x(p)p* X% = (1 — UpX)(1 — x(p)p" ' V;.X).

If you like, this equality takes place in the (non-commutative) ring of C-linear endomor-
phisms of C[[q]].
Recall that we also have a formal identity

1 1

o]
Mm% = ;
n;l n j]i:‘[\( s Tpp—s p]-}—}IV ) Tpp—s =1 Tp’pp1—2s

Here the right hand side is equal to
H[ (1= Upp™®)(1 = x(p)p* Vop*)] H(l x®)pV,p=) (1 = Upp™) ™.

Note the change in order of the product when we compute the inverse, since U, and V;, do
not commute. Since for distinct p and p/, U, and Vjy do commute, we can collect all the
V, and U, terms. Doing the standard geometric series expansion, we obtain an equality

i Tan ™ = (g x(n)nk_lvﬂn_s) (2 Uﬂn_s) .

n=1

From this we deduce

Proposition 6.16.
T, = E X(d)dk_lvn o Un/d‘

0<d|n
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Corollary 6.17. Let f € My(N,x) with f(7) = L2y ang™ and let Tpf (1) = 32, bag™.
Then

b= Z x(d,)d"‘lamn,dz.
d| ged(m,n)

Proof. We have

Tnf = > x(d)d* Vo Unaf = 3 x(d)d* WVa 3 ang™™ =S x(d)d* ¥ ang™™/™.
dlm dlm m/d|n dlm m/dln

Now we set r = d?n/m so we have

Tt = Y_ ™YY sy

dm djr
From here we can immediately obtain the statement of the corollary. O

Definition 6.18. We say that f € My(N,x) is an eigenform if T,,f = \,f for some
An €C, for all n € Z>,. We also say thaat f is normalised if a; = 1.

Lemma 6.19. Suppose f is a non-constant eigenform with Hecke eigenvalues \,. Then

ai(f) # 0 and A, = an(f)/ai(f). Moreover, if ag(f) # 0 then Ay = X4, x(d)d*~* for all
n=>1.

Proof. Since Aqa;1(f) = ai(Tnf) = an(f) (by Corollary 6.17), if a;(f) = 0 and f is an
eigenform then a,(f) = 0 for all n > 1, so f is constant.

Suppose that ag(f) # 0. We have Anao(f) = ao(Tnf) = Ty x(d)d*ao(f), so An =
an X(d)d*! as required. O

Here are some examples of eigenforms:

(1) The level one Eisenstein series Ex(7) for k > 2 even. The Hecke eigenvalues )\, are
equal to 34, x(d)d**.

(2) For characters x with x(—1) = (—1)* and k > 2 there are Eisenstein series Ef €
M;,(N, x) with Hecke eigenvalues 34, x(d)d*~*.

(3) Whenever a space of modular forms (or cusp forms) is one-dimensional, an element
of this space is automatically a eigenform. For example A € Si5(I'(1)) and 6(7)? €
Mi(T1(4)).

Let’s consider the final example of f = 6% € M;(4,x) a little more closely. Here x
is the unique non-trivial character of (Z/4Z)*. We have ao(f) = 1 and a:(f) = 4, so
T (f) = (Xam x(d))f. In particular, for odd primes p the Hecke eigenvalue ), is equal to
1+ (‘?I) where (:p—l-) denotes the Legendre symbol (it is 1 if —1 is a square mod p and —1
otherwise).

This means we can interpret the Hecke eigenvalues as the traces of certain elements of
Gal(Q(¢)/Q) acting on a two-dimensional C-vector space by the direct sum of characters
1@ x. Here X is the unique non-trivial character of Gal(Q(¢)/Q).
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These elements are Frobenius elements at places dividing p. More explicitly, if p splits
in Q(¢), i.e. if (;1) = 1, then we take the identity element. If p is inert in Q(¢), i.e

(;1) —1, then we take the non-trivial element (given by complex conjugation).
This is an example of a general theorem of Deligne and Serre which attaches two-
dimensional Galois representations to all eigenforms f € Mg(N, x).

Proposition 6.20. Let f € My(N,x). Then f is a normalised (i.e. a;(f) = 1) eigenform
if and only if:

e a(f) =1
e for p prime, n > 1, apn(f)ap(f) = ap““(f) + X(p)pk_lap"—l(f)
e apn(f) = am(f)an(f) when m and n are coprime.

Proof. We already know that if f is a normalised eigenform then these properties are
satisfied. For the other direction, we now suppose that f satisfies these properties. It is
enough to show that f is an eigenform for every T}, or indeed to show that a,(7,f) =
ap(f)an(f) for every n € Z;.

Let’s suppose n > 1. We know that we have a,(T,f) = ap(f) if pt n and a,(Tpf) =
apn + X(0)PFan/p(f) if pln.

In the first case, we get a,(f)an(f) as desired. In the second case, we write n = p"m
with p{ m and then we have

an(Tpf) = Qpr+im 4= X(p)pkalap"lm(f) = am(f) (ap“'*’l (f) - X(p)pk_lap“‘l(f))
= am(f)ay (f)ap(f) = ap(f)an(f)-

So we have proved that T, f —a,(f)f is a constant. It is also an element of M(N, x), so
if k > 0 we have T, f = a,(f)f as desired. If k = 0 then everything is constant and there
are no normalised eigenforms! (Since a; = 1 is impossible). O

6.3. Petersson inner product. We define a measure du on H by du(r) = d{gy, where
7 = z + 4y. This measure is actually GLJ (R)-invariant, so defines a measure on I'\H{ for
any congruence subgroup I' C I'(1). Integrating over Y'(I') is the same as integrating over
a fundamental domain for I' in H.

For simplicity we will only consider fundamental domains of the form [[,, a;% (1), where
Z(1) is the standard fundamental domain for I'(1) and o; € PSLy(Z) are coset represen-
tatives for PSLy(Z)/T.

Lemma 6.21. Let Z be a fundamental domain for ' and define p(I') = %—gﬂ Then

(1) The integral #(F) conueryes and is independent of the choice of 53' .
(2) [PSLy(Z) : T] = p(T) /(T (1))

Proof. Write [PSLy(Z) : 1"] d. Let PSLy(Z) = [1%, Te; and take (1) to be the standard
fundamental domain for I'(1). Then we let ﬁf = U .alpha;#(1). This is a fundamental
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domain for I'. We can easily bound x(I'(1)) by

1/2 o
f dxfy & j / Yy 2dydz = %
Z(1) q -1/2 /3/2

Under the change of variables z +» a;z the measure %gﬂ is invariant so we get u(I') =
dp(I'(1)). The invariance of the measure under the action of I'(1) likewise enables us to
easily show independence of the integral on the choice of a fundamental domain. O

Definition 6.22. Let f,g € M;(I'), with at least one of f, g a cusp form. We define

_ Q) oo
o =5 ({) Qromnm

Lemma 6.23. The integral in the above definition is absolutely convergent, and can be
computed as an integral over a fundamental domain & for I'. IfI" C T is another congru-
ence subgroup then the definition of (f,g) is independent of whether f, g are considered in
My (T) or Mi(T").

Proof. The convergence follows from the following lemma, since fg € So;(I'). We leave the
rest of the lemma as an exercise. |

Lemma 6.24. Suppose f € Si(T'). Then |f()| < C(Im(7))~*?2 for some constant C
independent of T.

Proof. First we set ¢(z +iy) = | f(z + iy)|y*/%. It is easy to check that ¢ is I-invariant, so
we just need to show that it is bounded on Y (I"). Suppose s is a cusp with aco = s. We
have flax(T) = X502 bagh = qu0(qn) for some A/, and a holomorphic function 6 on the
open unit disc. So
¢(ar) = | fax(T)|Iy*? = B (an ) e/ y*/2

tends to zero uniformly in = as y tends to oo. So in fact ¢ defines a continuous function
on the compact topological space X (I') (with value zero at the cusps), so it is in particular
bounded on Y (I). O

Here is another useful corollary of this lemma:

Corollary 6.25. Suppose f € Sk(I"), with f(7) = Xpey angh. Then there is a constant C
such that |a,| < Cn*’? for alln > 1.

Proof. Exercise. O
Lemma 6.26. For a € GL; (Q)
(£,9) = (det @)*(flak, glak).

Proof. Set I' =T'Nal'a~!. We have f,g € Mi(I") and f|ak, glak € Mr(a™'T"a).
Suppose Z (I') is a fundamental domain for I". Then a~'.%# (I") is a fundamental domain
for o e
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It follows from the GLJ (Q)-invariance of the measure p that p(a™'I"a) = u(I").
We compute

ur{1)) Flosglar(det o Imr)*dy

(det Oz) (f|ct ks gla k)

M) iz
pIr@)) f7 E
() (fp lor + dPF (det o Ima™"7)"dp
#(I(1)) k
I
o ([ fa(tmr)du = (£,9),
since det o Im7 = |cr + d|*Imar. O

I messed up the proof of the following corollary in lectures, sorry!

Corollary 6.27. If f,g € My(N, x), with one of f,g a cusp form, and n € Z>, coprime
to N, then (T.f, g) = x(n){f, Tng)-

Proof. Tt suffices to prove the corollary when n = p is prime. Recall that we have a matrix

op € To(N) with o, = (K, g)

Consider the set of matrices
b
== (2 4) €M) N V] (a= 1), dettr) =p.}
We can check that

AN =T,(N) (1 O)I‘l(N) {u ((1) E)U:U,UEFI(N)}
0

= 1 I‘(N)(l j')]_[I“l(j\ra,,(o 1)

7=0,....p—1

Now suppose v € AN We have (f, gl,-1x) = P*(f|y,9) by the above Lemma. More-
over, the values of (f |~,’k, ) and (f, g|,.x) are actually independent of the choice of vy € AN
if v = uyv with u,v € I'y(N), then

f|u~w k:g (fl'v k;9|v—1 -’c) (f|'v,k,g>-

A similar argument applies to (f, g|,.x)-
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Since T,f = p*~1 | 025 fl/v -\ + f] we have
’ e CH R (T

<Tpfs9) =Pk_l(p+ 1)(f|((1} U)J\s’g) = p_l(P + 1)(f=9|(é 91)!’9)
=p" o+ (£, glg;lap(p u)_k> = x(@)p* " (p + (, 9, (z0)u!

=x(p)P* ' (p+ 1)(f,gl(é 0) ) = x(0){f, Tpg)-

k

Here we use the observation that o, (g ?) € Af :

d

Corollary 6.28. The space Sk(N, x) has a basis (orthonormal with respect to the Petersson
inner product) consisting of simultaneous eigenvectors for the Hecke operators T, with n
coprime to N.

Proof. For each n choose a square root ¢, of x(n). Then for all f, g € Sx(N, x) we have
(chnfa g) = <.f: CnTng>

So the operators c¢,7,, are Hermitian and so have an orthonormal basis of eigenvectors.
Since all the Hecke operators T;, with n coprime to N commute, we have a basis of simul-
taneous eigenvectors. O

Remark 6.29. Note that the eigenvalues of ¢, T, are real. In particular, if x is a real valued
character (i.e. it is either trivial or quadratic) then the eigenvalues of the T}, are real.

If we want to find a basis of eigenforms (i.e. eigenvectors for all the Hecke operators)
then we have to restrict to certain subspaces of Si(N, x). Recalling definition 3.16, we can
define Sk(N, x)°¥ = My (T'1(N))* N Si(T'1(N)).

Definition 6.30. Define S (N, x)™" to be the orthogonal complement of Si(V, x)°¢ under
the Petersson inner product.

An important property of the new subspace is that it has a basis of eigenforms:

Theorem 6.31. The space Si(N, x)™¥ is stable under the action of the Hecke operators.
If f € Sp(N, x)"™ is an eigenvector for the T,, with n coprime to N, then f is an eigenform
(i.e. an eigenvector for all then T,).

Corollary 6.32. Suppose two non-zero elements f,g of Sk(N, x)"*V are eigenvectors for
the T,, with n coprime to N with the same eigenvalues. Then f and g are scalar multiples
of each other.

Proof. The Theorem implies that both f and g are eigenforms. By rescaling we can assume
that they are both normalised eigenforms. Now f — g is also an eigenform, but has first
g-expansion coefficient a; = 0. Therefore f — g = 0. O
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Remark 6.33. The above Corollary is a version of a ‘multiplicity one’ theorem. Various
stronger forms of this theorem can be proven: for example, in Miyake’s book ‘Modular
Forms’ it is proven by fairly elementary arguments that if f, g have the same T, eigenvalue
for all but finitely many primes p, then f and g are scalar multiples of each other.

7. L-FUNCTIONS

Definition 7.1. For f € My(T') and s € C set L(f,s) = Xp51 2.

Lemma 7.2. Suppose f € Si(I') The series defining L(f,s) converges absolutely and
uniformly on compact subsets of {Re(s) > k/2+ 1}.

Proof. By Corollary 6.25, we have |a,| < Cn*/2. This suffices to prove the lemma. O

Remark 7.3. We can explicitly write down Eisenstein series which give the rest of the space
M;(T'). These have Fourier coefficents of order n®1 so for f € My(T) the L-function
converges nicely for Re(s) > k.

7.1. Functional equation. Now we are going to find a functional equation for L(f,s).
’ 0 % ; 0 -1/v/N
1]. _ . = F
For simplicity we will assume that ' = I';(IV). Set wy ( i 0\/_) Note that

'w;rlf‘l (N)UJN = I‘I(N), S0 f|wN,k € Sk(l"l(N))
Explicitly, we have fly, x(7) = N=¥27=%f(—1/N7).
Theorem 7.4. Let f € Si(T'1(N)) and set g = i*fluyp- If [ = Tns100q" then the
Dirichlet series L(f,s) = Y1 an/n° can be extended to a holomorphic function on s € C.
Setting
A(f,s) = N*2(2m)~*T(s) L(f, 5)

we have a functional equation
A(f: S) = A(gs k— 5)'

Here T'(s) is meromorphic continuation of the function defined by
Tlg) = / o le~tdt,
0

Proof. We let ¢ be the function on Rsq given by ¢(y) = f(iy). Consider the Mellin
transform

F(s) = [ o)y dy.

Now ¢(y) tends to zero exponentially fast as y tends to co. We also have ¢(1/y) =

f(=1/iy) = (iy)*fl;y _y\ (). Since fl _,y is also a cusp form, ¢(1/y) tends to
(95 (95)+
zero like y* times an exponential in —y as y tends to infinity. So this integral converges

absolutely (at both upper and lower limits) for all s.
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We have ¢(y) = ¥,51 ane™ ™, and we can switch the sum and integral in F(s) to get

F(s)=)_ay /e_z’myys_ldy.

Substituting ¢ = 27ny into the integral gives us

oo

/e'gmyy"_ldy = (Qﬂn)""/e_‘ts_ldt = (27n)°T'(s).
0 0

Therefore the switched expression also converges absolutely for Re(s) > k/2 + 1, to
N—4/2A(f,s), and we have F(s) = N~*/2A(f,s) (for Re(s) > k/2 + 1). Since F(s) ex-
tends to a holomorphic function for all s € C, A(f, s) does. Moreover, I'(s) has no zeroes,
so L(f,s) also extends to a holomorphic function on the whole complex plane.

To prove the functional equation, let’s substitute u = 1/Ny in the integral defining F'(s).
We get

N=IA(f,8) = F(s) = N~ [ ¢(1/Nuju™"*du = N=* [ f(~1/Niuju™"*du
0 0

= Nh2- / gliu)u1"0dy = N¥2-sN~(k=9)2\(g | — 5) = N*/2A(g, k — s).
0

O
7.2. Euler products.

Theorem 7.5. Suppose f € Si(N,x). Then f is a normalised eigenform if and only if
(for Re(s) sufficiently large)

L(S! f) = H(l — app_s + X(p)pk'-l—Zg)-]-

Proof. By Proposition 6.20, it is enough to show that
L(s, f) = [I(Q1 = agp™ + x(p)p* %)~
p
if and only if
e ai(f)=1

o for p prime, n > 1, apn(f)ap(f) = apnsi (f) + x(p)p" ' apn-1(f)
® 0y (f) = am(f)an(f) when m and n are coprime.

We leave it as an exercise to show this, using the following lemma. O
Lemma 7.6. Suppose we have two Dirichlet series 3,51 %2 and 3,5 %‘- which converge

absolutely to the same function on Re(s) > o for some positive real o. Then a, = by, for
all n.

Proof. Exercise. O
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7.3. Converse theorems. Suppose f € Sk(N, x). We have shown F(s) = N~*/2A(f, s),
where F(s) is the Mellin transform

F(s) = [ f(iy)y*dy.
0

The following Proposition establishes an inversion formula for the Mellin transform.

Proposition 7.7. Suppose g : Rog — C is twice continuously differentiable, and that c
is a real number such that y*'g(y), ¥°d'(y) and y**'g"(y) are all in L'(Rso). Then the
integral

G(s) = [y*“lg('y)dy
0

converges for Re(s) = ¢ and satisfies G(c +it) = O((1+ |t|)~2) (i.e. it is bounded and as
t approaches oo it decays like |t|~2).
Moreover, we have

c+ico

o) =5~ [ vC(s)ds

c—ioo
where the integral is up the vertical line Re(s) = c.

Proof. If we set s = ¢ — 2wiz and substitute y = e* then we have
Gls) = Flz) = /e“g(e“)e‘g’r”“du.
R

Now everything follows from standard properties of the Fourier transform applied to the
function f(u) = eg(e®). In particular, f is twice continuously differentible and f, f’ and
f" are absolutely integrable. The Fourier transform of f” is (2miz)?F(z), so #*F(z) is
bounded, which gives the growth condition on G(s).

The following theorem, which is a converse to Theorem 7.4 (when the level N = 1), is
now a simple consequence of Mellin inversion.

Theorem 7.8. Let a, be a sequence in C with a, < Cn®*9™ for some o € Rsg. Set
. — an
Z(s):= 3. —
n=0

and A(s) := (2r)~°T(s)Z(s). Suppose that A(s) eztends to a holomorphic function on C
which is bounded on vertical strips (i.e. regions of the form Re(s) € [a,b]) and satisfies

A(s) = i*A(k — s).
Then f(1) = Ln>1 ang™ is in Sk(I'(1)).
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Proof. We define a holomorphic function on H by f(7) := ¥,5; anq". We need only to
prove that f(—1/7) = (7)¥f(7). By uniqueness of analytic continuation, it suffices to prove
that f(i/y) = (iy)* f(iy) for y € Rso.

Set ¢(y) = f(iy). We have |[¢(y)| < C¥,>1n7e *™, and (possibly increasing o) we
can assume that o is a natural number. Since

1 1
—2mrny = =
g;]e l—e2v 2y +90)
with g(y) holomorphic at y = 0, differentiating o times gives
E nae—2my — §(y—(1+ﬂ'J)

n=1

as y approaches 0. A similar argument shows that ¢(y) is &(e~?") as y approaches oo,
so the hypotheses of Proposition 7.7 are satisfied by ¢ (for any ¢ > o + 1). The Mellin
transform of ¢ is given by A(s). Therefore
1 c+ico
o) = %jm y~*A(s)ds
for ¢ > 1+ 0. Fix such a ¢ (which we also assume is > k/2) and consider the strip
Re(s) € [k — ¢, c|. For Re(s) = ¢ we have
|A(k = )| = |A(s)| = O((1 + [Im(s)])™2),
and by hypothesis A(s) is bounded on the region Re(s) € [k — ¢,¢]. So the Phragmén—
Lindel6f principle (see Lemma 4.3.4 in Miyake) implies that we have A(s) = &((1 +
IIm(s)|)~2) uniformly for Re(s) € [k — ¢, c|. This allows us to move the line of integration
to get

1 k/2+ico ] k/2+ico
s —8 o —s:k -
¢) = 5— f y~*A(s)ds = o— f Y% A(k — s)ds.
k/2—ico k/2—ico
Substituting t = k — s we have
1 k/2+ico
o) =5 [ v AR = Fye(1/y).
k/2—ico

This establishes that f(—1/7) = (=1)%¥(7)*f(7). We didn’t assume a priori that k was
even, so we need to check this. We have

f(r) = f(=1/(=1/7)) = (-1)*=1/7)* f(=1/7) = (-1)*f(7)

so if f is non-zero then k is even. This completes the proof. (]



