
Efficient Multi-Exponentiation

Jonathan Bootle
jbt@zurich.ibm.com

IBM Research – Zurich

This document explains a special case of Pippenger’s algorithm [Pip80] for efficient multi-exponentiation.

1 Goal

Let G be a group of prime order p ≈ 2λ. Let g0, . . . , gN−1 be elements of G and let e0, . . . , eN−1 be elements
of Zp. Assume that λ ≥ N . Let G =

∏N−1
i=0 geii .

Problem: Given g0, . . . , gN−1 ∈ G, and e0, . . . , eN−1 ∈ Zp, compute G.

2 Reduction to Multi-Products

We call the case where e0, . . . , eN−1 ∈ {0, 1} a multi-product rather than a multi-exponentiation. The first
step will be to reduce the computation of G to the computation of many multi-products.

Set s ≈
√

λ
N and t ≈

√
λN . Let ei,l be the binary digits of ei.

G =
∏N−1

i=0 geii

=
∏N−1

i=0

∏λ−1
l=0 g

ei,l2
l

i

=
∏N−1

i=0

∏s−1
j=0

∏t−1
k=0 g

ei,j+sk2
j+sk

i

=
∏t−1

k=0

(∏N−1
i=0

∏s−1
j=0 g

ei,j+sk2
j

i

)2sk

Set g′i,j = g2
j

i for 0 ≤ j ≤ s− 1.
Set e′i,j,k = ei,j+sk.

Set G′
k =

∏N−1
i=0

∏s−1
j=0 g

e′i,j,k2
j

i for 0 ≤ k ≤ t− 1.
Then, we have

G =
∏t−1

k=0G
′2sk
k

G′
k =

∏N−1
i=0

∏s−1
j=0 g

′e
′
i,j,k

i,j

We will now consider a new multi-product problem.

1



New Problem: Given {g′i,j}, {e′i,j,k}, compute {G′
k}.

The new problem has Ns = t input group elements g′i,j and t output group elements G′
k.

2.1 Visualisation

This approach to computing G can be visualised by arranging the binary digits in a matrix.

e0

e1

...

eN−1



e0,0 e0,s e0,2s · · · e0,(t−1)s

e0,1 e0,s+1 e0,2s+1 · · · e0,(t−1)s+1
...

...
...

. . .
...

e0,s−1 e0,2s−1 e0,3s−1 · · · e0,λ−1

e1,0 e1,s e1,2s · · · e1,(t−1)s

e1,1 e1,s+1 e1,2s+1 · · · e1,(t−1)s+1
...

...
...

. . .
...

e1,s−1 e1,2s−1 e1,3s−1 · · · e1,λ−1

...
...

...
...

...

eN−1,0 eN−1,s eN−1,2s · · · eN−1,(t−1)s

eN−1,1 eN−1,s+1 eN−1,2s+1 · · · eN−1,(t−1)s+1
...

...
...

. . .
...

eN−1,s−1 eN−1,2s−1 eN−1,3s−1 · · · eN−1,λ−1



g0
g20
...
g2

s−1

0

g1
g21
...
g2

s−1

1

...

gN−1

g2N−1
...
g2

s−1

N−1

G′
0 G′

1 G′
2 · · · G′

t−1

The input values for the new problem are shown to the right of the matrix in the same row as the binary
digits that they correspond to. The output values are shown below the matrix in the same column as the binary
digits that they correspond to.

Computing the multi-exponentiation of the inputs with a column of the matrix gives the output below that
column.

2.2 Efficiency

The simplest method of computing the new inputs g′i,j is using s squarings of gi, for each 0 ≤ i ≤ N − 1,
which gives a cost of

√
λN group operations.

3 Computing the Multi-Products

The new problem has the same number of inputs and outputs, so we relabel to simplify notation. Set
M =

√
λN = sN = t.

2



Problem: Given {g′i}
M−1
i=0 , {e′i,j}

M−1
i,j=0, compute G′

j =
∏M−1

i=0 g′
e′i,j
i .

Let b be some parameter to be determined later. We partition the input group elements into sets
S0, . . . , SM/b−1, each consisting of at most b elements. Then, for each set Si, we compute the set Ti,
containing all possible multi-products of elements in Si. For example, if S0 = {g0, g1, g2}, then T0 =
{g0, g1, g2, g0g1, g0g2, g1g2, g0g1g2}.

Now, we use the elements of the Ti to compute the G′
j . Note that in order to compute the G′

i, we only
need to use one element from each Ti.

3.1 Visualisation
S0 S1 · · · SM/b−1

g′0 g′1 · · · g′b−1 g′b · · · g′2b−1 · · · g′M−b−1 · · · g′M−1

T0 T1 · · · TM/b−1

g′0 g′1 · · ·
∏b−1

i=0 g
′
i g′b · · ·

∏2b−1
i=b g′i · · · g′M−b−1 · · ·

∏M−1
i=M−b−1 g

′
i

G′
0 G′

1 · · · G′
M−1

3.2 Efficiency

Given Si, which contains b elements, we can compute all possible multi-products using 2b group operations.
There are M/b sets Si, so computing all of the Ti costs at most 2bM/b group operations.

Given all of the Ti, each G′
j uses at most one element from each, so it costs at most M/b group operations.

There are M of the G′
j , so computing all of them costs at most M2/b group operations.

4 Recombining Inputs

Given the outputs of the multi-product step, we can now compute the final output G. Recall that G =∏t−1
k=0G

′2sk
k

This can be done using st = λ squarings, starting with G′
t−1, squaring it s times, multiplying by G′

t−2,
squaring s times, and continuing for each k until we multiply by G′

0 to get G. This is essentially Horner’s
method for evaluating polynomials.

5 Efficiency Analysis

This approach can be used to compute
∏N−1

i=0 geii using λ+M + 2bMb + M2

b , where M =
√
λN .

Set b = logM − log logM . This becomes

λ+M +
M2

(logM − log logM)(logM)
+

M2

logM − log logM

which is

λ+ (1 + o(1))
M2

logM

3



Since M =
√
λN , we arrive at a cost of

λ+ (1 + o(1))
2λN

log λN
.

References
[Pip80] Nicholas Pippenger. “On the Evaluation of Powers and Monomials”. In: SIAM Journal on Computing 9.2

(1980), pp. 230–250. ISSN: 0097-5397. DOI: 10.1137/0209022. URL: http://epubs.siam.org/
doi/abs/10.1137/0209022.

4

https://doi.org/10.1137/0209022
http://epubs.siam.org/doi/abs/10.1137/0209022
http://epubs.siam.org/doi/abs/10.1137/0209022

	Abstract
	1 Goal
	2 Reduction to Multi-Products
	2.1 Visualisation
	2.2 Efficiency

	3 Computing the Multi-Products
	3.1 Visualisation
	3.2 Efficiency

	4 Recombining Inputs
	5 Efficiency Analysis
	References

