Efficient Multi-Exponentiation

Jonathan Bootle
jbt@zurich.ibm.com
IBM Research — Zurich

This document explains a special case of Pippenger’s algorithm [Pip80] for efficient multi-exponentiation.

1 Goal

Let G be a group of prime order p ~ 2*. Let go, . .., gn—1 be elements of G and let eg, . . . , exr—1 be elements
of Z,. Assume that A > N. Let G = [[,' g%

i

Problem: Given gg,...,gn—1 € G,and eg,...,eny_1 € Zjp, compute G.

2 Reduction to Multi-Products

We call the case where €y, ...,eny_1 € {0, 1} a multi-product rather than a multi-exponentiation. The first
step will be to reduce the computation of G to the computation of many multi-products.

Set s ~ 4/ % and ¢ =~ v AN. Let ¢; ; be the binary digits of e;.

N—1 &
G =1l 95

2

H )\ 1915112

j+sk

H H kfo € j+sk2]
'L

1 e 9i zsk
- ko(n IS

Setg;] :gizj for0<j<s—1.
Set e” g = €ij+tsk-
27
Set G =TT TI5g 9; " for0 <k <t—1.
Then, we have

,QSk
G =TIl 6%

GZ; H Hsl /z]k

We will now consider a new multi-product problem.



New Problem: Given {g; ;}, {€] ; ;. }, compute {G} }.
The new problem has Vs = ¢ input group elements gg, ; and ¢ output group elements G-

2.1 Visualisation

This approach to computing GG can be visualised by arranging the binary digits in a matrix.

€0,0 €0,s €0,2s Tt €0 (t—1)s 90

2

€o €0,1 €0,s+1 €0,25+1 Tt €0,(t—1)s+1 90
’ 25—1

€0,5—1 €0,25—1 €0,35—1 T € A—1 90

€1,0 €1,s €1,2s o CL(t-1)s g1

e 2

1 e1,1 €1,5+1 €1,25+1 Tt e1(t—1)s+1 91
’ 2571

€1,5—1 €1,25—1 €1,35—1 Tt e1a—1 99
eN—_1 EN-1,0 EN—-1,s EN-1,2s Tt EN—1,(t—1)s 912V—1
EN-1,1 EN-1,s+1 EN-12s+1 """ EN—1(t—1)s+1 IN-1
’ 25—1
€EN-1,5—1 €EN-1,2s—1 €EN-1,3s—1 " EN—-1A-1 IN_1

! / ! !
Gy G Gy T t—1

The input values for the new problem are shown to the right of the matrix in the same row as the binary
digits that they correspond to. The output values are shown below the matrix in the same column as the binary
digits that they correspond to.

Computing the multi-exponentiation of the inputs with a column of the matrix gives the output below that
column.

2.2 Efficiency

The simplest method of computing the new inputs g’ ;,j 1s using s squarings of g;, foreach 0 <i < N — 1,
which gives a cost of VAN group operations.

3 Computing the Multi-Products

The new problem has the same number of inputs and outputs, so we relabel to simplify notation. Set
M =+VAN =sN =1t.



. M-1 M-1 M—1 /%,
Problem: Given {¢;};"", {€] compute G, = [[;[Z," ;.

i,ji,j=0° i
Let b be some parameter to be determined later. We partition the input group elements into sets
S0,y S0s /b—1 each consisting of at most b elements. Then, for each set S;, we compute the set 7j,

containing all possible multi-products of elements in S;. For example, if Sy = {go, g1, g2}, then Ty =

{90, 91, 92: 9091, 9092, 9192, G0g192}-
Now, we use the elements of the 7; to compute the G}. Note that in order to compute the G, we only

need to use one element from each T;.

3.1 Visualisation

So S1 E Sn/b—1
/ / / / / / /
9 91 " b1 9y 0 Y21 T Ipm—b—1 Ipm—1
Ty T e Thijp
b—1 201 M—1
9 91 - llicogi|a - 1L 9 T b1 [Lca—19
Gy Gi -1

3.2 Efficiency

Given S;, which contains b elements, we can compute all possible multi-products using 2° group operations.
There are M /b sets S;, so computing all of the T} costs at most 2° M /b group operations.
Given all of the T;, each G;- uses at most one element from each, so it costs at most M /b group operations.

! ; 2 :
There are M of the G}, so computing all of them costs at most M /b group operations.

4 Recombining Inputs

Given the outputs of the multi-product step, we can now compute the final output G. Recall that G =
et
This can be done using st = \ squarings, starting with G’;_1, squaring it s times, multiplying by G’;_2,
squaring s times, and continuing for each % until we multiply by G’q to get G. This is essentially Horner’s
method for evaluating polynomials.

S Efficiency Analysis

This approach can be used to compute Hfial g;* using A + M + 21’% + MT2, where M = Vv AN.
Set b = log M — loglog M. This becomes
M2 M2
(log M — loglog M)(log M) + log M — loglog M

A+ M+
which is
2

A+ (14 o)




Since M = v/ AN, we arrive at a cost of

2AN
log AN

A+ (1+0(1))

References

[Pip80] Nicholas Pippenger. “On the Evaluation of Powers and Monomials”. In: SIAM Journal on Computing 9.2
(1980), pp. 230-250. 1SSN: 0097-5397. DO1: 10.1137/0209022. URL: http://epubs.siam.org/
doi/abs/10.1137/0209022.


https://doi.org/10.1137/0209022
http://epubs.siam.org/doi/abs/10.1137/0209022
http://epubs.siam.org/doi/abs/10.1137/0209022

	Abstract
	1 Goal
	2 Reduction to Multi-Products
	2.1 Visualisation
	2.2 Efficiency

	3 Computing the Multi-Products
	3.1 Visualisation
	3.2 Efficiency

	4 Recombining Inputs
	5 Efficiency Analysis
	References

