Double-Odd Elliptic Curves

Thomas Pornin
NCC Group, thomas.pornin@nccgroup. com

13 December, 2020

Abstract. This article explores the use of elliptic curves with order 27 = 2 mod 4,
which we call double-odd elliptic curves. This is a very large class, comprising about
1/4th of all curves over a given field. On such curves, we manage to define a prime
order group with appropriate characteristics for building cryptographic protocols:

— Element encoding is canonical, and verified upon decoding. For a 27-bit group
(with 7-bit security), encoding size is 272 +1 bits, i.e. as good as compressed points
on classic prime order curves.

— Unified and complete formulas allow secure and efficient computations in the
group.

— Efficiency is on par with twisted Edwards curves, and in some respects slightly bet-
ter; e.g. half of double-odd curves have formulas for computing point doublings
with only six multiplications (down to 1IM+5S$ per doubling on some curves).

We describe here various formulas and discuss implementations. We also define two
specific parameter choices for curves with 128-bit security, called do255¢ and do255s.
Our own implementations on 64-bit x86 (Coffee Lake) and low-end ARM Cortex
MO+ achieve generic point multiplication in 76696 and 2.19 million cycles, respec-
tively, with curve do255e.

Note. A summary of the results presented here, and links to all implementations in
various languages, can be found on the double-odd curves site:

https://doubleodd.group/

1 Introduction

1.1 Motivation

A number of cryptographic functionalities, such as key exchange (Diffie-Hellman[13]) and
signatures (ECDSA[1,21], Schnorr[35]), can be built on top of a suitable group. Informally,
proper security can be achieved if:

— the group order is a large enough prime number;

— computations over the group can be performed efficiently (encoding and decoding of
elements, applying the group law);

— but discrete logarithm in the group is computationally infeasible.

It is unknown whether such a group can exist, in absolute terms, because there is no proof
that discrete logarithm can ever be “infeasible”. However, we know of some candidates which

https://doubleodd.group/

tulfill the first two properties, and for which no efficient enough method to solve discrete loga-
rithm is known. Among such candidates, elliptic curves offer good performance, in particular
in terms of encoding size: a curve may offer “z-bit security”, i.e. a discrete logarithm cost of at
least 2” simple operations, with only 22" elements, which can be represented over about 27
bits. This is the best that can be hoped for, since there are known algorithms for computing
discrete logarithm over any group, with cost proportional to the square root of the group size.

Several kinds of elliptic curves have been explored, with various characteristics and draw-
backs. The two main classes in wide usage are dubbed WeserstrafS curves and twisted Edwards
curves.

Weierstrafl curves. Given a base finite field F,, the curve is the set of points (x,y) €
F, x F, that fulfill the short Weierstrafs equation y2 = 2% + Ax + B for two given constants
Aand BinF, such that 44 3 +27B% # 0;an extra formal point with no defined coordinates,
called the point-at-infinity (denoted Q), is adjoined to the curve and is used as the neutral
element in the group law!.

The group law (traditionally called “addition”) is defined geometrically, as illustrated on
figure 1. For two points P and Q on the curve, the line (PQ) is drawn; it intersects the curve
at a third point, which is —=(2 + Q). The sum P + Q is the opposite of this point, which is
defined to be its image by the symmetry relative to the horizontal axis.

)

r+Q

\

Fig. 1: Point addition on a Weierstrafd curve.

This law can be expressed with a few arithmetic operations on the x and y coordinates.
Since these operations include divisions, which are in practice much more expensive to com-
pute than additions or multiplications, it is customary to use some sort of fractional repre-

1 the whole of this document, we assume that the characteristic of Fyis neither 2 or 3. When the
characteristic is 2 or 3, the short Weierstrafl equation and the formulas are different.

sentation (often Jacobian or projective coordinates). This yields practical formulas, whose
main problem is that they have exceptional cases which must be handled difterently:

— The point-at-infinity does not have defined coordinates, and requires a specific represen-
tation and formulas.

— When addinga point P to its opposite —P, both points have the same x coordinate, so the
line from P to —P is vertical and cannot be expressed as an equation y = Cx + D. More-
over, in that case, the third point of intersection with the curve is the point-at-infinity,
again with no well-defined coordinates.

— When adding a point P to itself, the line (PP) is not defined; different formulas must be
used to obtain the tangent to the curve on P.

Exceptional cases are a source of implementation issues if not properly handled; ad hoc
tests can be added, but they usually lead to vulnerabilities through side channels leaks (non
constant-time implementation), or to inefficiency (if all possible code paths are executed and
the correct one selected with constant-time selection routines). There are known formulas
working over projective coordinates that are complete, i.c. with no exceptional case[34]; these,
however, are more expensive than the traditional incomplete formulas.

It is customary to express formula cost in terms of the number of multiplications and
squarings involved in point addition and point doubling. The traditional Jacobian coordi-
nates (with incomplete formulas) lead to a cost of 122M+4S for general point addition, and
4M+4S for point doubling3. With complete formulas in projective coordinates, general point
addition cost is lowered to 12M, but doubling cost raises to 8M+3S; since multiplication of
a point by a scalar uses way more point doublings than general additions, this makes these
formulas less efficient.

Weierstraf curves can have a prime order, and z-bit security is obtained with a curve order
of size 27 bits, and whose elements can be encoded to, and decoded from, a compact repre-
sentation in 27z + 1 bits (27 bits for the x coordinate of the point, and one extra bit to allow
unambiguous reconstruction of the y coordinate).

Twisted Edwards curves. Twisted Edwards curves[5] use a degree-4 equation Cx* +
y2 =1+ szyz, for two constants C and D. They are, in fact, birationally equivalent to
some Weierstraf§ curves, specifically Montgomery curves (with equation Byz =% + A +
x). Twisted Edwards curves have the advantage of leading to a representation and formulas
which are both complete and efficient: there is no exceptional case; general point addition is
computed with cost 8M, and doubling with cost 4M+4S (using “extended coordinates”[20]).
With some alternate coordinate representations, doublings can be made faster (3M+4S) but
it makes general point addition slower (9M).

While the complete formulas for twisted Edwards curves are roughly 1.5 times faster than
complete formulas for Weierstrafl curves, they have a drawback known as the cofactor: the
number of elements in such a curve is necessarily a multiple of 4, and therefore cannot be

21n some specific fields defined as extensions of smaller fields, it is possible to compute inversions
efficiently enough to use affine coordinates, but this depends on the implementation architecture and
tends to have suboptimal performance on CPUs with large registers[30].

3Subject to the additional condition that 4 = —3, which can be achieved on most curves through
the use of an isomorphic or at worst isogenous representation of the curve.

a large prime. At best, such curves can have order 47, with being the prime order of the
(sub)group on which cryptographic functionality can be expressed; the cofactor is the ratio
between the total curve order and the prime order of the target subgroup. An immediate
consequence is that 7-bit security needs 7 to be a 2z-bit integer, thus a total curve order of at
least 272 + 2 bits, with elements encoded over 27 + 3 bits. This slight inefficiency (2 extra bits)
is rarely significant in practice, although it can be burdensome in some cases, e.g. when trying
to encode meaningful data into curve points.

Less anecdotally, the non-trivial cofactor can lead to difficulties, and even security vulner-
abilities, depending on the situation. The main cause is that there is no known efficient way
to verify that a given point is part of a specific subgroup4. For instance, the Ed25519 signature
algorithm, built over a twisted Edwards curve with cofactor 8, has two different verification
equations; in the words of RFC 8032[23]:

Check the group equation 8sB = 8R + 8kA'. It s sufficient, but not required, to instead
check sB = R + kA’

With valid signatures, the two equations will both be fulfilled; moreover, building a case
where the first equation matches but the second does not requires knowledge of the private
key. Therefore, this feature does not contradict the assertion that Ed25519 is a secure signa-
ture algorithm. However, the possibility to craft malicious values such that different verifier
implementations disagree on the signature validity is enough to induce serious issues in some
applications, in particular consensus-based distributed systems[40]. More serious breaches
exploiting the non-trivial cofactor have been reported[27]. Generally speaking, the cofactor
may cause issues that must be mitigated in the protocol that uses the curve as base group;
the solution is usually a generous application of extra multiplications by the cofactor in some
places, along with some filtering of low-order points. Such extra operations are not expensive,
but complicate the design and security analysis of cryptographic protocols. It can be said that
the overall simplicity of use of complete point addition formulas has been obtained not by
removing complexity, but by foisting it into upper design layers. When available, prime order
groups with no cofactor issue are preferable[12].

Decaf and Ristretto. Decaf[19] andits successor Ristretto[3] are encoding and decoding
maps that aim at solving the cofactor issues of twisted Edwards curves with cofactor 4 (for
Decaf) or 8 (for Ristretto). A given curve point P can be encoded into a base field element;
when decoding, this yields a point 2 which will not necessarily be the point 2, but which will
be such that " — P is a low-order point. All points that differ with each other by a low-order
point encode into the same sequence of bits. This process allows using the curve of order 47
or 87 as if it were a group of order 7.

Decaf and Ristretto remove security issues related to the cofactor, without introducing
any new security hypothesis, since they work over an existing twisted Edwards curve and are
provably as secure as that curve. However, they have some remaining (but smaller) drawbacks:

— The encoding size is not fully optimal, in that #-bit security will need a curve defined
over a field of at least 2%z + 2 bits (27 + 3 bits with Ristretto), and use as many bits for
encoding. This is close, but not equal to the 272+1 bits achievable with Weierstrafl curves.

4By “efficient” we mean here having cost negligible with regard to that of a generic point multipli-
cation by a scalar.

— Both the decoding and encoding process require the computation of an inverse square
root in the field, which needs an exponentiation with an exponent of about the same size
as the field. “Normal” twisted Edwards curves require a similar operation for decoding
from compressed coordinates, but encoding only needs an inversion. Constant-time in-
version is traditionally performed with Fermat’s little theorem, at a cost similar to that of
asquare root, but faster solutions are known[32], especially on embedded systems, where
the cost of inversion can be as low as 1/5Sth of the cost of a square root or an inverse square
root, for a typical 255-bit field[33].

Goal. Wewantto find curve equations and formulas that improve on the currently known
solutions. Specifically, we would like to obtain the following desirable properties:

— A group of order 7 prime, backed by an elliptic curve of order » (or possibly a multiple of
7, aslong as the extra cofactor is tamed through an appropriate encoding, as in Ristretto).

— Group clements should have a canonical encoding into at most 27 + 1 bits, for a security
level of 7 bits (i.e. » having a size of 2z bits).

— The decoding process should be efficiently verifiable: it should be easy to check (with
negligible overhead) that the sequence of bits that was used as input is indeed exactly
what would be obtained as output if the decoded element were to be encoded again.

— The group law should be computable with efficient complete formulas, amenable to fast
and secure implementations (notably, constant-time implementations). The efficiency
of point doublings is critical, since most of the cost in usual cryptographic operations
(multiplication of a curve point by a scalar) is spent in computing sequences of successive
doublings.

— The underlying elliptic curve should be from a large class, so that the usual well-studied
assumptions of resistance to discrete logarithm may be leveraged without introducing
any new cryptographic hypothesis.

In this document, we explore such a class of elliptic curves, and show how they fulfill all
these goals (and some more).

1.2 Core Ideas

Let F; be a given finite field where operations are efficient. It can be any field of character-
istic different from 2 and 3, but, for the purposes of this introduction, let’s imagine that we
use integers modulo a prime which is close to a power of 2, such g = 2%55 — 19, as used in
Curve25519[4]. All elliptic curves can be described as Weierstraf§ curves with a short Weier-
straf§ equation, and, as we explained, we can choose curves with a prime order. This is how
most standard elliptic curves have historically been defined. Relevant classic standards (e.g.
ANSI X9.62[1]) support arbitrary curves with both trivial and non-trivial cofactors, but if
we are to use the generic short Weierstrafl equation, then it makes little sense not to choose a
curve with prime order, to at least remove cofactor issues. 4 contrario, when using a twisted
Edwards curve (or its Montgomery counterpart), the cofactor is at least 4. This raises the fol-
lowing question: what of the “intermediate” curves with a cofactor of 2, i.e. with a total order
which is not prime, but still a cofactor lower than 423

5We have not studied the case of elliptic curves with a cofactor equal to 3. This is an open research
area.

This document explores the class of elliptic curves with order 27, with » being an odd
integer (in practical situations, we will choose curves such that 7 is prime). For want of a
better name, we call them double-odd elliptic curves.

On a short Weierstraf$ curve, points of order 2 are points that have y = 0. A double-odd
elliptic curve has, by construction, a single point of order 2; let’s call it N. We first apply a
simple change of variable to make it so that the x coordinate of I\ is also zero. This is illus-
trated on figure 2. This change of variable transforms the curve equation into a similar but
not identical form: > = x(x* + ax + b), for two constants 2 and &.

Fig. 2: Change of variable on a double-odd elliptic curve.

Let’s call E[7] the subgroup of points of 7-torsion on the curve (i.e. the points that, mul-
tiplied by 7, yield Q). It is a group of order 7, thus a good candidate for a foundation for the
prime order group we are looking for. All curve points can be separated into two disjoint sets:
E[r], and points P + N where P € E[r]. In other words, if a point Pis in E[r], then P + N
is not, and vice versa.

For a point P = (x, y) on the curve, distinct from N and O, let’s consider the addition
P + N from a geometric point of view. The line (PN) has a well-defined slope w = y/x
and intersects the curve on a third point, which is, by definition, the point —(P + N). The
important remark here is that if 7 € E[r], then —(P + N) ¢ E[r], and vice versa. This is
illustrated on figure 3.

P € E[r]

-(P+N) ¢ E[r]
\slope w=y/i
N = (0,0)

Fig. 3: Adding the point N (of order 2) to a point P.

The consequence of that addition is that for a given slope value w, there is a unique line
with that slope that goes through N. That line might not intersect the curve at any other
point; but if it does, then it will intersect the curve in two points, exactly one of which is
part of E[]. This implies that any point (x, y) € E[7] can be encoded into a field element
w = y/x, which is the slope of the line from NN to that point, and this encoding is injective6.

For decoding, we use w to define the line (PIN') and resolve the equation that yields the
coordinates of both P and —(P + N); this is a degree-2 equation, so it is solvable, in all gen-
erality, with a square root computation. To finalize decoding, we need a way to distinguish
between P and —(P + N), i.e. find out which of the two solutions is the point which is part
of E[r]. It turns out (this is not obvious geometrically) that for all points 2 = (x; y) (distinct
from O and) on a double-odd elliptic curve, P is in E[7] if and only if x is a quadratic
residue in the field. Thus, we can find the correct P by way of testing the quadratic residue,
which can be done with relative ease with a Legendre symbol computation.

At that point, we have the following:

— For a 2n-bit odd prime integer 7, we use a curve with order 27, based on a field F, of size
27 + 1 bits.

— E[r] is a prime order group suitable for cryptographic functionalities. Each element
(% 7) € E[r] can be encoded into the value w = y/x. This encoding requires a division,
which we can hope to be implicit in the use of fractional coordinates; this is similar to
what is done for other curves (short Weierstrafl and twisted Edwards), and more efficient
than Decaf/Ristretto.

— Decoding is intrinsically verified and involves a square root and a Legendre symbol com-
putation. Depending on target architectures, the Legendre symbol may have minor over-
head; on ARM Cortex M0+ CPUs, we find for instance that the cost of a Legendre sym-
bol is less than 1/6th of that of a square root[33].

6Since the slope is never zero, we can use the value zero to encode the neutral O.

This is a promising debut. Now, we want at least unified formulas, i.e. formulas for which
addition of a point to itself is not an exceptional case. This could be done generically by using
a change of variable after decoding (the reverse of the one illustrated on figure 2) and then
using the known complete formulas for short Weierstraf§ curves[34]. However, we can do
better, leveraging again the point N.

Consider the situation of adding a point P to itself, shown on figure 4. On the left side,
the classical solution involves detecting that case and then using the tangent to the curve. This
leads to incomplete formulas and thus implementation safety issues. However, on a double-
odd elliptic curve, we can use the point I\ to instead add point P with point P+ N, as shown
on the right side of figure 4 (blue lines); 2 and P + N are distinct and have distinct x coordi-
nates, therefore the normal addition method works. More generally, when adding points P
and Q together, and P and Q are both on E[r], then we compute P+ Q = (P+(Q+N))+N.
Points P and Q + N necessarily have distinct x coordinates, since P is in £[7] but Q + N is
not. This avoids the exceptional cases related to adding a point to itself, and naturally leads to
at least unified formulas.

T -(p+P) O -(p+)
P P ~(P+N)
N N \
P+N
P+P P+P
-(P+(P+N))

Fig. 4: Point doubling, without and with the help of the point N.

A turther trick will help: instead of working with points in £{7], we will work with points
which are not in E[r]; we will define our group lawas (P + N) * (Q+N) = (P+ Q) + N.
This is equivalent to saying that we represent point P € E[r] by point P + N we are still
conceptually working with points on the prime order group E[7], but through their dual
points. This small transform has the nice side-effect of making N the neutral point in the
group, i.e. a point with well-defined x and y coordinates. This will help in making complete
formulas, that handle the neutral just like any other point.

It remains to be seen whether all this leads to efficient formulas. As will be described in
the rest of this document, it does.

1.3 Summary of Results

We

summarize here the results which will be explained at length in the remaining pages:

Double-odd elliptic curves are exactly (up to isomorphism) curves of equation:
y2 =x(x* +ax +b)

where « and b are two field elements such that neither b nor 2> —4bisa quadratic residue.
This is a large class; about 1/4th of all curves are double-odd curves (this is similar to, for
instance, Montgomery curves).

A group of order 7 is defined as G = {P + N | P € E[r]}. The group is homomorphic
to the curve subgroup of points of 7-torsion; its neutral elementis N = (0, 0). Addition
inGof P+ N and Q + N is performed as:

(P+N)*(Q+N)=P+(Q+N)

Group element (x;, y) is canonically encoded as the value w = y/x (value zero for the
neutral N). A group with z-bit security is encoded over 2% + 1 bits, which is about the
best that can be hoped for with elliptic curves, and matches what can be achieved with
prime order short Weierstraf§ curves. Decoding is intrinsically verified; invalid encodings
can be reliably detected and rejected. When decoded, the obtained element is necessarily
in the right prime order group.

Several coordinate systems can be used. We define (x, w) and (x, #) systems (withw = y/x
and# = x/y). With (x, w), we get unified formulas (that can be implemented in complete
routines); in (x, u) coordinates, we achieve complete formulas.

With Jacobian (x, w) coordinates, we represent points in G as triplets (X: :Z) such that
x=X/Z?andw = W /Z. These coordinates lead to unified addition formulas with cost
8M+6S, and complete doubling formulas with cost 2M+5S (generically on all curves)
that can be reduced to IM+6S or even 2M+4S on some curves. Moreover, in sequences
of successive doublings, marginal cost per doubling is 4M+2S for half of double-odd
elliptic curves, and as low as 2M+4S or even IM+5S for some curves (a sequence of 7
doublings on these last curves can be done in cost 1S+2(1M+55)). This doubling cost is
lower than the fastest known doublings on twisted Edwards curves.

With fractional (x, #) coordinates, we represent points in G as quadruplets (X:Z:U:T)
such thatx = X/Z and » = U/T. With this representation, generic point addition cost
is 10M, with complete formulas (for mixed addition, with one operand in affine (x, #)
coordinates, cost is 8M). Doubling cost is 3M+6S. Just like in Jacobian (x, w) coordi-
nates, sequences of successive doublings can be done with a low per-doubling marginal
cost (on some curves, cost of z doublings is 3M+#(1M+5S)).

Last but notleast, the family of double-odd curves includes the GLV curves y2 =3 +bx
(in a field F, with g = 1 mod 4), which have been described in 2001[16]. Such curves
are precisely those for which we achieve the lowest per-doubling cost (IM+5S), and they
also feature an efficient endomorphism that can be used to further speed up point mul-
tiplication by a scalar”.

7This optimization method has long been rumoured to be patented, but it seems that the relevant

patents have expired in September 2020; see discussion in section 5.3.

Following these results, we define and implement two curves (called do255¢ and do255s)
that operate over 255-bit fields (integers modulo 22°° — 18651 and 22%° — 3957, respectively)
and offer the usual “128-bit” security level®. Curve do255¢eis a GLV curve; curve do255s is an
ordinary curve with no fast endomorphism. On 64-bit x86 systems (Coffee Lake core), with
curve do255e, we get generic point multiplication in less than 77k cycles (fully constant-time).
This translates to the following performance for high-level operations:

— Key pair generation: 49122 cycles (including public key encoding into 32 bytes).

— Key exchange: 105340 cycles (this is a multiplication of the point from the peer by our
private key; this cost includes the 18220 cycles for the decoding of the peer’s point from
its compact 32-byte representation, and the key derivation process with SHAKE256).

— Signature generation: 53584 cycles.

— Signature verification: 111900 cycles on average (including the 18220 cycles for decoding
the public key from its compact 32-byte encoding).

We also implement our curves in ARMv6-M assembly (for the Cortex M0+), and obtain the
following:

— Key pair generation: 1.42m cycles9.

— Key exchange: 2.62m cycles.

— Signature generation: 1.50m cycles.

Signature verification: 3.26m cycles (average).

These performance figures compare favourably to other existing fast curves. For instance,
with Curve25519 on ARM Cortex MO+, the fastest reported key exchange has cost 3.23m
cycles[33].

We also support a constant-time hash-to-curve process, by using a mapping function, ap-
plied twice (two 32-byte chunks are derived from the input with a suitable hash function, each
chunk is mapped to a curve point, and the two points are added together). Most double-odd
elliptic curves can use Elligator2[7], which is efficient. For GLV curves with 2 = 0, Elligator2
is not applicable; we instead describe a novel map function applicable to such curves.

1.4 Article Outline

In the next section (section 2), we study the structure of double-odd elliptic curves; in partic-
ular, we establish their equation and formally define the prime order group G.

In section 3, we establish several formulas for computing the group law in various affine
coordinate systems that apply to double-odd elliptic curve. We also show that double-odd
elliptic curves can be viewed as a subgroup of a twisted Edwards curve in a degree-2 field
extension, and we describe some isogenies which are useful in deriving fast formulas for com-
puting point doublings. We finally describe two maps from arbitrary field elements to curve
points (one is Elligator2, the other is a new map applicable to GLV curves with equation

y* = x(x* +b)).

8Technically, they have only 127-bit security level, but that’s still more than the 126 bits from
Curve25519.
IWe are using “m” to denote one million.

10

Section 4 details the application of these formulas in several fractional coordinate systems,
which allow computations to proceed with only multiplications but no division (except a
single one, at the end, when encoding a point into bytes). These algorithms represent the
template for practical implementations.

Specific parameter sets for curves do255¢ and do255s are defined in section 5. The criteria
which led to these specific choices are explained. We also provide in this section a succinct
specification of key exchange and signature algorithms using these curves.

Implementation details and issues are covered in section 6. There we describe our imple-
mentation techniques for both 64-bit x86 (C code with intrinsics and some inline assembly)
and ARM Cortex M0+ (mostly assembly code).

2 Structure of Double-Odd Elliptic Curves

2.1 Notations

In all the subsequent analysis, we will work in the finite field F, of cardinal g = p™ for a prime
p = 5 (the field characteristic) and integer 7 > 1. Integer constants such as 4 or 27 are to
be understood as elements of F, when appropriate (all such constants will be products of
powers of 2 and 3 only, therefore non-zero in Fq).

QR(K) is the set of quadratic residues in field K: QR(K) = {x*|x € K}. Note that
0 € QR(K). Most of the time, we will work with the field F, and will use the shorthand QR
to designate QR(F,).

X, 9, #, w... designate point coordinates, i.e. elements of F,.In this section, X is the sym-
bolic identifier for the generator of the ring of polynomials IF, [X], which is used for some of
the demonstrations (in some other later sections, X will be used to denote some point coor-
dinates in various projective representations; the context should make it clear).

2.2 Curve Characterization

In this section, we characterize the set of curves over F,, with order 27 for an odd integer .
All elliptic curves on F, can be transformed through changes of variables into a short
WeierstrafS curve, i.e. the set of points (x, y) € F, X F, such that:

yz =x+Ax+B

for two given constants 4 and B in F,. The curve also includes an extra “point-at-infinity”
which we will denote Oj that point does not have x and y coordinates. The curve is an Abelian
group with the following addition law:

— The neutral element is O.

— The opposite of P = (x, y) is =P = (x, —y).

— For any two points P; and P, such that P; # O, P, # O and P, # —P», the line going
through P; and P, will intersect the curve on a third point, which is —(P; + P,). When
Py = P, the line to consider is the tangent to the curve on P;.

When adding point P; = (x1, y1) to P> = (x2, y2), the slope of the line from P; to P, can be
computed as A = (y2 — y1)/(x2 — x1). If P; = P,, this expression is not usable; instead, we
use the tangent, whose slope is 1 = (3x* + 4) /2.

11

The three following properties are equivalent to each other:

— There is no point (x, y) on the curve such that both 3x%+ A4 =0and 2y=0.

— 443+ 2782 £ 0.

— The polynomial X3 + AX + B € F,[X] does not have a multiple root (i.e. it is relatively
prime to its derivative 3X* + 4).

If these properties are met, then the law is well-defined and imbues the curve with an Abelian
group structure.

We now want to study double-odd curves, i.e. curves whose order is equal to 27 for an
odd integer 7. The fundamental theorem of finitely generated Abelian groups10 states that
any finite Abelian group is homomorphic to:

Ly X Ly X oo X Ly,
for some integers 7, such that #; divides ;41 for all in 1 to k£ — 1. This implies that:

— Any Abelian group with an even order must have at least one element of order 2 (if the
product of all ; is even, then at least one of them is even).

— Any Abelian group whose order is a multiple of 4 must include at least one element of
order 4, or at least three elements of order 2 (if the product of all #; is a multiple of 4,
and 7, = 2 mod 4, then 7;_; must be even as well).

Therefore, curves with order 27 = 2 mod 4 are the curves which contain a single element of
order 2, and no element of order 4. Elements of order 2 are points (#, 0) for some integer
which is a root of X3 + AX + B. We can then write:

X3+ AX +B= X —u)(X* +uX + (4 + %))

We will now apply the change of variable x > x + #; this is an isomorphism between curves,
since it preserves lines (straight lines are mapped to straight lines) and therefore also preserves
the structure induced by the group law. This turns the curve equation into:

yz = x(x* +ax+b)
for constants 2 and b such that:
a=3u
b=A+3u"

From now on, we will consider curves using this alternate equation. Conversely, any curve
using that equation can be turned back into a short Weierstrafd equation by applying the x
x — a/3 change of variable, yielding:

A=0Bb-a*/3
B=a(24* - 9b)/27

The curve is well-defined if and only if there is no double root to the polynomial X SyaX?+
bX, i.c. if and only if the two following properties hold:

10The history of the discovery and proof of this theorem is complicated, especially since it predates
the formal definition of groups. Here, we use the sub-case of finite groups, for which the theorem was
proven by Kronecker[24].

12

— b # 0 (otherwise, 0 would be a double root).
— 4% — 4b # 0 (otherwise, X? + 2X + b would have a double root).

The point N = (0, 0) is part of the curve, and has order 2. This is, by construction, the
only point with x = 0. As will be detailed below (section 2.3), for any point P = (x, y) with
%9 # 0, the point P + N has coordinates (b/x, —by/x?).

For the curve to have order 2 = 2 mod 4, N must be the only point of order 2, i.e. there
should be no other root to X> + 2X? + bX. This implies that At —4b ¢ OR. Moreover, if
b € QR, then let ¢ be a square root of 4; in that case:

a* —4b=(a+20)(a—20)

Since 2% — 4b ¢ QOR, then one of @ + 2¢ and 2 — 2¢ must be a quadratic residue. Without
loss of generality, suppose that 2 + 2c € QR. Then, points (+¢, £cVa + 2c) are on the curve,
and have order 4: each such point P is such that P + N = —P. Therefore, a curve of order
27 =2 mod 4 must have b ¢ QR.

Conversely, consider a curve with equation y* = x(x* + ax + &) forany 4, b € [, such
that & # 0 and 2> — 4 # 0. Such a curve contains the point N = (0, 0), and thus its order
is even. If its order is a multiple of 4, then either:

— there is atleast another point of order 2, which implies that X 2+ 4X + bhasrootsin F,
and therefore 2> — 46 € QR; or

— the curve contains a point Q = (x4, y4) of order 4 such that 2Q = N, which means that
Q+ N = -0, which implies that x4 = b/x4, and thus & € QR.

All these facts can be summarized into the following:

Characterization of double-odd elliptic curves:

Elliptic curves E, over a finite field F, of characteristic p > 5, and whose order is equal to 2
modulo 4, are exactly, up to isomorphisms, the curves with equation:

yz = x(x* +ax+b)
for two constants 4, b € F, such that:

— 4> —4bisnota quadratic residue;

— bisnota quadratic residue.

2.3 Core Addition Formulas

Let Py = (x1, y1) and P, = (x, y2) two points on a curve E of equation yz =x(x® +ax+b);
neither point is the special point-at-infinity (O) since that point does not have coordinates.
Let P3 = P + P,. The coordinates (x3, y3) of P3 can be obtained as follows:

— Ifx; = xp and y; = —y, then P3 = O (with no defined coordinates).
— Otherwise, if %1 = xy, then y; = y, and Py = P»; define the slope of the tangent to the

curve on Pj as:
3x12 +2ax1+b

= o

13

and the coordinates of P; are:
w3 =A% —a—2x
73 =Ax —x3) = n
— Otherwise, x; # x, and we can compute the slope 4 of the line from P; to P, as:
sk
Xy — X1
and the coordinates of P; are:
vm=A—a—x-x
3= l(xl - xs) -Nn
From these formulas, we now consider two important sub-cases. The first one is when
adding a point P = (%, y) to N = (0, 0) (the point of order 2). If P # NN, then x # 0 and the

slope of the line (PN) is:
1=2

x
yielding the coordinates (x',) of P" = P+ N:
2

’

X =;—d—x
_x3+ﬂx2+bx—ax2—x3
2
b
T x

The second sub-case is that of point doubling, i.e. adding a point to itself. Let P = (x,) #
N, and P, = 2P. The coordinate x of P, is computed as:

(3x2 + 2ax + b)z
Xy = —ﬂ_zx

2y
B 9xt + 12ax> + (4a® + 6b)x* + dabx + b?
- (29)?
4ax® — 4a’x? — dabx 8x* — 8ax® — Sbx?
B (2)? @
_ x* = 2bx% + VP
(29)?
2 —b\
) (2y)

Therefore, the x coordinate of 2, for any point P # O, N, is a quadratic residue.

14

2.4 A Prime Order Group

Let £ be a curve of order 27 = 2 mod 4; 7 is an odd integer. We will now define a group of or-
der 7, homomorphic to a subgroup of size in E, with a canonical encoding as field elements.
All the analysis here works for any odd integer 7, but most cryptographic applications (e.g.
signatures) will require to be prime; we then assume that the curve parameters (F,, 2 and b)
are chosen so that 7 is a prime of appropriate length.

Let E[7] be the set of points of 7-torsion in E, i.e. the points which, multiplied by 7, yield
0. This is a subgroup of E. In fact, any point on E can be decomposed into a sum of two
points P, + P, where P, € E[r] and P, € {O, N'}; points P, and P; can be computed as:

P.=(r+1)P
P, =rP

This decomposition is unique. Note that N ¢ E[r].

Suppose that P = (x,y) € E[r] and P # Oj; consider the line that goes from N to
P. Since N is the only point on the curve with x = 0, and also the only point on the curve
with y = 0, the line (PN) has a defined non-zero slope w = y/x. This line, by construction,
intersects the curve ata third point which is =P+ N. In particular, —-P+ N ¢ E[r]. Similarly,
if we had started from P* ¢ E[r] and P* # N, then the line (»"/N) has slope w’ = 3’ /x" and
intersects the curve on a third point, which is —P” + N, and which is part of E[7]. Thus, any
given slope w # 0 may correspond to only two points on the curve, exactly one of which is
in E[r].

IfP € E[r],then P = P, = (r+1)P = 2((r +1)/2) P: every point in E[] is the double
of some other point. As we saw in section 2.3, this implies that the x coordinate of any point
P e E[r] (P # O)is a quadratic residue. Conversely, for any point 7 = (x, ") ¢ E[r] (and
P’ # N),wesaw that P’ = P+ N withx’" = b/x, for some point P which will then be a point
of r-torsion. Thus, x € QR. Since b ¢ QR, it follows thatx” ¢ QR. These properties lead to
the following important fact:

Characterization of r-torsion points

For any point P = (x, y) € Esuchthat P # O, N, P € E[r] ifand only if x € QR.

We will now define a group of order » whose elements can be uniquely encoded to, and
decoded from, field elements. The group will be homomorphic to E[7], but we choose to
represent elements by points which are 7ot in E[7] for reasons which will be explained below.
Here is the group definition:

15

Group of odd order r
Elements of G are the curve points which are not in E[7]:
G={P+N|PeE[r]}

These are exactly the points of £ whose x coordinate is either 0 (for point V) or not a
quadratic residue in FF,,.
For Py + N and P, + N in G, the group law yields:

(P1+N) * (P2+N) = (P1+P2)+N

The neutral point is N. The opposite of Py + N is =Py + N = —(P1 + N).

Elements of G can be encoded into field elements with the following map:

@ G—F,
(P1+N)I—)0 if(P1+N)=N
y/x i (PL+N)=(xy) #N

As we saw above, this map is injective: any value w = y/x # 0 corresponds to only two points
on the curve, only one of which being in G. The decoding process, from a given w € F, is as
follows:

— Ifw =0, then the pointis N.

— Otherwise, consider the equation x* — (w* — a)x + b = 0 (this is a rewriting of the
curve equation, replacing y with wx, and dividing by x). This is a quadratic equation in
x, whose discriminantis A = (w? — 4)? — 4b; note that A # 0 (otherwise, it would imply
thatb € QR).If A ¢ QR, then there is no solution (the provided w is not the image of a
group element by ¢); otherwise, there are two distinct solutions:

w —a+ VA
2

The two solutions are such that their product is &, which is not a quadratic residue; thus,

X =

exactly one of the solutions is not a quadratic residue: this is the x coordinate of the point
P+ N such that (P + N) = w. The y coordinate of P + N is obtained as: y = xw.

We could have defined G to be E[7], using point addition as group law, and with the
same mapping to field elements (decoding would then have chosen the solution x which is a
quadratic residue). However, we prefer the formulation above for the following reasons:

— Every element of G has defined (x, y) coordinates. The neutral element is N = (0, 0);
the curve point-at-infinity O is not in G.
— The group law can be computed as:

(P1+N)>k (P2+N) = (P1+P2)+N=P1+(P2+N)

Noticethat P; € E[r] but P,+N ¢ E[r]. Therefore, it cannot happen that P, = P,+N.
This means that addition formulas can be applied without encountering the special case
of adding a point to itself. This will help in establishing unified and complete formulas,
as will be detailed in section 3.

16

2.5 Curve Isomorphisms
For any non-zero value ¢ in F,, the mapping (x, y) — (x’,y") = (x£%, y¢°) is an isomorphism
from curve y* = x(x + ax + b) to curve y* = ' (x'* + (ae®)x’ + (be*)) (this is the usual
isomorphism on Weierstraf§ curves, applied to our curve equation).

The j-invariant of an elliptic curve is a quantity which is conserved by such isomor-
phisms. For a short Weierstrafl curve yz = x> + Ax + B, the j-invariant is defined as:

3
443 + 2782
In our case, for curves y* = x(x* + ax + b), we obtain:
. 256(3b—a?)?
I TG - a7y
Whenj # 0and; # 1728, there are exactly two curves (up to isomorphism) that have

this j-invariant, and they are quadratic twists of each other (i.e. they become the same curve
when lifted into the extension field F2). For curve y* = x(x* + ax + b), the quadratic twist

j=1728

has equation y* = x(x? + adx + bd*) for any d ¢ QR. If a curve has order 27, then its twist
has order 2g + 2 — 27, which is then also equal to 2 modulo 4.

The case j = 0 is not very interesting to us. Indeed, such a curve is isomorphic to the
short Weierstrafl curve yz = x> + Bfor some B # 0. If 4 = 1 mod 3, then such a curve has
either no point of order 2, or three distinct points of order 2; in both cases, the curve order
cannot be equal to 2 modulo 4. If g = 2 mod 3, the curve is supersingular with order exactly
g + 1; this can be equal to 2 modulo 4 if ¢ = 1 mod 4 (which, combined with g = 2 mod 3,
implies ¢ = S mod 12). However, such a supersingular curve has embedding degree 2: the
Weil pairing maps discrete logarithm on the curve into the discrete logarithm problem on
the multiplicative subgroup of F2, for which sub-exponential algorithms are known[28]. In
order to obtain a decent level of security, one would have to make ¢ quite large (at least 1024
bits), implying poor computing performance and large values.

Curves with j = 1728 are more useful: this situation is obtained with 2 = 0. Note that
the condition 4 — 46 ¢ QR then implies that —b ¢ QR. Since we also need b ¢ QR, a curve
of order 2 modulo 4 can havej = 1728 only if g = 1 mod 4 (indeed, if g = 3 mod 4, then the
curve would be supersingular and its order would be a multiple of 4). A non-supersingular
curve with j = 1728 admits one quadratic twist and two quartic twists that share the same
j-invariant; if { is a non-quadratic residue in F,, then the twists of curve y* = x(x* + b) can
be obtained as:

— quadratic twist: y* = x(x* + 60*)

— quartic twists: y* = x(x* + &) and y* = x(x* + &)
This works from any { ¢ QR, in particular {’ = 4. Note thatif & ¢ QR, then & and 5> are
quadratic residues, which means that the quartic twists are zor curves with order 2 modulo
4,

Curves with j = 1728 are a type of GLV curve[16]: the map (x,y) +— (—x,), for
a primitive 4-th root of unity in F,, can be very efliciently computed, and it is an endomor-
phism of the curve, corresponding to multiplication of the point by a certain constant . This
endomorphism can be used to speed up point multiplication; this will be explained in more
details in section 6.2.

17

3 Formulas

In this section, we derive several addition formulas for our group G, defined in section 2.4,

using various representations of coordinates. We still stick to “affine” coordinates; practical

implementations would rather use one of the fractional systems which will be detailed in

section 4. Thus, this section is still concerned with laying out mathematical foundations.
We use the following conventions:

— Group element Py + N has coordinates (1, y1). Take care that (w1, y1) are the coordinates
of Pi + N, not of P;.

— We seek formulas to compute the coordinates (3, y3) of point P3 + N, which is equal to
(P +N) * (Pz +N).

— When explicitly considering element doubling (applying the law on a point and itself),
the point P + N has coordinates (z, y), and its double 2P + N has coordinates (', y).

@, »

The group law in G is denoted with the “+” operator; in the rest of the article, we will call
it “addition in G”. Conversely, in the few instances where we refer to the traditional addition
of curve points, we will use the expression “addition on the curve”.

3.1 On Formula Completeness

In all generality, formulas that work for most input points may have exceptional cases, for
which they do not return the right result. Following the terminology in [8], we will say that:

— Formulas with no exceptional case are complete.
— Formulas whose only exceptional cases are such that one of the input points, or the out-
put poing, is the group neutral element (), are unifed.

On standard Weierstrafl curves, with affine (%, y) coordinates, the formulas for adding
two points together are neither complete nor unified, since they must make a special case for
adding a point to itself. Thanks to our definition of the group G and its law, we will naturally
avoid such issues, since we compute the addition of P; + N and P, + N in G as the addition
on the curve of points P and P, + IN; these two points are always distinct since P, € E[r]
but P, + N ¢ E[r]. All our formulas are thus always unified, and we will see that some of
them are complete.

Non-unified formulas can be a problem for secure implementation: correct handling of
exceptional cases will imply either side channels (some of the code will be executed condition-
ally, depending on the input points) or substantial execution overhead (the general and the
exceptional cases being both executed systematically). In some cases, it can be shown that op-
erations cannot be exceptional. For instance, suppose that a routine multiplies a given curve
point by a scalar, the point being part of a curve of prime order and different from the point-
at-infinity, and the scalar being non-zero and lower than the curve order (this is the classic situ-
ation of a Diffie-Hellman key exchange). In that situation, a classic double-and-add algorithm
will involve explicit doublings, and extra additions; it can be shown that none of the extra ad-
ditions can be a doubling, and therefore a routine that cannot handle that exceptional case
is usable. However, most implementations of point multiplications will improve the double-
and-add algorithm with window optimizations, and will furthermore apply Booth recoding
on the scalar[9] to reduce the size of the individual digits; in that case, it is no longer true that

18

all point additions are exception-less. More generally, this kind of analysis depends on how
the point addition is used, and cannot necessarily be extended to all protocols.

Unified formulas avoid most of these issues. A complete 7outine can be made out of uni-
fied formulas, by handling the remaining exceptional cases with a pair of constant-time con-
ditional copy operations (adding an element with the neutral element should yield back the
first element). Using complete formulas can avoid even such conditional copies. Generally
speaking, unified routines are sufficient for most secure implementations; complete formulas
are helpful in some specific contexts, such as the following:

— Some hardware platforms may provide eflicient accelerators for arithmetic operations on
field elements, but not for making efficient constant-time comparisons and conditional
copies.

— Insomehomomorphic encryption or zero-knowledge proof systems, coordinates are not
directly accessible, but manipulated through a blinding layer that allows arithmetic op-
erations on field elements, but not constant-time conditional copies.

Additionally, in some cases, formulas which are only unified with affine coordinates be-
come complete when used with some fractional coordinate systems, leading to complete al-
gorithms (and implementations). Some such examples will be seen in section 4.

3.2 Affine (x, y) Coordinates

Let Py + N = (x1, 31), P2 + N = (%2, y2), and their sum (in G) P3 + N = (a3, y3). We first
suppose that neither P, + N nor P + N is the neutral element N; thus, x1, y1, x2 and y, are
non-zero. The curve point P, has coordinates (&/x,, —by,/ x%) The slope of the line from
P+ N to P, is:

2y

2—

b _
X2 X1

2
_ X1X3)1 + bxlyz

B X1X2 (x1x2 - b)

l:

The coordinates of P3 + N are then:
b

X3=2.2—ﬂ—xl——
X2

93 = A —x3) = n

Applying the expression of A above, and simplifying (replacing ylz = x13 + axlz + bxy, and
similarly for y%, and taking into account that x1x, # 0), yields the following formulas:

Addition in G ((x, y) coordinates, complete)

B b((x1 + x2) (2122 + b) + 2ax100 + 2y192)
5 =
(%102 — b)?
)y = b(2a(xys + xo91) (21262 + b) + (xlzyz + x%yl)(xlxz +3b) + (91 + y2) (Bbxyxy + b))
5=
(2120 — b)S

19

These formulas are complete: they are unified by construction, and it is easily seen that if
(21, 1) = (0, 0) or (x2, y2) = (0, 0), the correct result is obtained.
Noticing that:

()’1962 +yzx1)2

= (a1 +x2) (102 + b) + 2ax10 + 29192
X1X2

and that:

(1262 + y221) ((yry2 + axixz) (01262 + b) + 2bx1262 (31 + x2)) =
%1262 (2a (2617 + %291) (w2 + b) + (a0y2 + x591) (2122 + 36) + (31 + 92) (3bxyap + b7))

we can simplify the formulas into:

- b(y1x2 + yox1)*
} X1X2 (x1x2 - 5)2

b= =b(y12 + y221) ((y1y2 + axixz) (01262 + b) + 2631262 (31 + %2))
5=

X1X2 (x1x2 - b)3

However, these alternate formulas are only unified, not complete, since setting x; = 0 or
x» = 0 implies an undefined division by zero.

3.3 Affine (x, w) Coordinates

Since group elements are encoded as the ratio w = y/x, we may try to use w itself as a coordi-
nate. In (x, w) coordinates, the curve equation is:

wx=x"+ax+b

The neutral point N cannot be represented in (x, w) coordinates: that point does not
have a defined w coordinate. Therefore, we will not obtain complete formulas as long as we
keep to affine representation (we may still get complete formulas when switching to fractional
representations, e.g. Jacobian coordinates; this will be investigated in section 4.1).

(%, w) coordinates have a number of properties which are useful for deriving formulas:

— No point with defined (x, w) coordinates hasx = 0 orw = 0.
— Ifpoint P # O, N has coordinates (x, w), then:

P = (x,—w)
P+ N = (b/x,—w)
—P+N = (b/x,w)

— Ifx #0,thenx + b/x = w?* —aandx — b/x = 2x + a — w?.

We now derive formulas in (x, w) coordinates. We consider two group elements 2 + N =
(%1, w1) and Py + N = (x2, w), and their sum P3 + N = (3, w3) in the group G. For now,
we assume that Py + N # N, P, + N # N,and P; + N # N. This implies that x1, x5, w1, w

20

and w; + w; are non-zero. Using the alternate formulas from the previous section, replacing
each y with xw and simplifying fractions by removing common non-zero factors, we obtain
the following unified formulas (they are not complete since /N does not have a well-defined w
coordinate).

Addition in G ((x, w) coordinates, unified)

by 262 (wn + w2)2
X3 = ———————
T (um - b)?

(wywy + a) (x10 + b) + 2b(x1 + x7)
w3 = —

(w1 + w2) (21202 — b)

When adding a point to itself, the generic formulas above can be simplified. Suppose that
we want to compute 2P + N = (x', w”) from P+ N = (x, w); the generic formulas become:

, 4bx*w?
, (w? +a) (x> + b) + 4bx
T 2w(x2 — b)

Dividing numerator and denominator in both fractions by x, and replacing (x* + &) /x and
(x* = b) /x with w* — 2 and 2x + 2 — w?, respectively, yields the following doubling formulas:

Doubling in G ((x, w) coordinates, unified)

, 4bw?
X=——-
(2x +a — w?)?
;o w* + (4b — 4°)

N 2w(2x +a — w?)

Note thatif P+ N # N, then 2P + N # N, since we work in a group G of odd order.
Therefore, the only exceptional case to worry about for doublings is when the input point is
already the neutral point N.

3.4 Mapping to a Twisted Edwards Curve Subgroup

Double-odd curves are zor equivalent to twisted Edwards curves over the same field, since the
order of a twisted Edwards curve is always a multiple of 4. However, a double-odd curve can
be mapped into a subgroup of a twisted Edwards curve in a field extension of degree 2, using
the formulas described in this section.

Let 7 such that 72 = 4. Since & ¢ QR, 7 cannot exist in Fy; therefore, 7 defines a field
extension F 2. An element v € F,2 can be uniquely written as:

v=R(v) +:I(v)

for two values R (v) and J(v) in F,, which we will call, by analogy with complex numbers,
the “real part” and “imaginary part” of the value .

21

For a point P = (x, y) € E, we define the two coordinates # and v as follows:

v = -
X+

If P = N, the fraction x/y is undefined, and we set # = 0. In that case, v = 1. If P = O, we
set # = 0 and v = 1. Note that:

— u € F, forall points P € G; moreover, # # 0 when P # N, Q.
— v ¢ F, except when P = N or O, in which case v = £1.

This transformation is reversible; the original x and y can be recomputed with:

d1+v
Xx=1
1-v
X
y_u

(and the mapping to N or O when v € F.)

Note that if P € E is mapped to (%, v), then P + N is mapped to (—#, —v). This is true
for all points of E, including N and O.

Replacing x and y with their expressions in # and v into the curve equation y* = x(x* +
ax + b) leads to the following:

(a+20)u® +0* =1+ (a — 20)u*o?

which is the equation of a twisted Edwards curve.
Twisted Edwards curves are defined and analyzed in [S]. If points P; and P; have coordi-
nates (#y, v1) and (#y, v2), respectively, and Py + P has coordinates (#, 1), then:

U0y + urvy

>
Il

1+ (a = 20)muyviv,
vy — (a+ 20)muy

<>
Il

1= (a — 2)uiurv10;

Take care that we are here talking about point addition, i.e. not the composition law in our
group G. We will investigate the formulas for G later on.

[S] shows that these formulas are complete provided that the first curve equation constant
(here 2 — 27) is a quadratic residue, and the second constant (here @ + 27) is not. However,
this is not the case here; indeed, none of the four values 4 + 27 can be a quadratic residue in
F,2, because that would imply that a* —4b € QR (F,), which would be incompatible with
our initial curve construction.

We can still show that the formulas, while not necessarily complete 7z general, are still
complete for the subset of points which are the mapping of points from our original curve
E. As explained in [S], the twisted Edwards curve is isomorphic to a non-twisted curve by
the mapping # +—= u/Va — 2i;sincea — 27 ¢ QR(]qu), such a mapping requires lifting the

curve into another field extension, this time into Fj+. Then, the demonstration in [8] (section

22

3) applies and shows that the formulas are correct for all inputs such that the denominators
(1 £ (@ — 2£)muav10; in our case) are non-zero. Thus, we only need to prove that there are
no points (x1, y1) and (x2, y2) in E, such that their mappings into coordinates (i, v1) and
(#2, v2) would lead to 1 £ (2 — 28)myurv102 = 0.

First, notice thatif P, = N or O, then #; = 0 and 1 = (2 — 27)ujusv10, =1 # 0. This is
also the case if P, = N or O. We can thus restrict ourselves to the case where P; # N, O and
P, # N,Q,ie. x1, %2, #1 and #, are non-zero. Replacing v with (x — 7)/(x + £), we obtain
that:

A —2%1ﬂ2x1x2 1 2
IJ((a-2 = - — 4b
((a = 20)muzv102) @ b2 -b) (%fug (a))

which is non-zero, since 2> — 4b ¢ QR(F,). Therefore, the denominators can never be zero
for the points mapped from E, and the formulas are complete for these points.

3.5 Affine (x, u) Coordinates

We now use the twisted Edwards curve formulas to derive additional formulas for G. As pre-
viously, we consider two points P; + N and P, + N in G, and their sum (in G) P3 + N =
(P+N)*(Py+N). Since this means that P; = (P +P,)+ NN, we can use the formulas above,
then apply the +/N operation, which, in (%, v) coordinates, is just negation of the values:

u1vy + urv;
u3z = — E
1+ (ﬂ - 2l)141%21)11)2
vivy — (a + 20)uyn;
U3 =

1- (a = 20)murv102

For better performance, we want to work only in F,, and thus we need to use x instead of v
as input, and revert to x on output. Applying the map v = x into the equation for v3 yields
the following (after multiplying numerator and denominator by (x; — 7) (x — 7), which is
always non-zero since x1, X, €]Fq):

_ (01 = 2) (%2 — 7) — (@ + 20)myur (w1 +7) (202 +)
(w1 +7) (202 +2) = (@ = 20)muz (1 —) (w2 — £)

Developing this expression, then multiplying numerator and denominator by 7 and inserting
the minus sign in the numerator leads us to:

C—-iD

C+:D

U3
with:

C = b((x1 +x2) (1 + amyuy) + 2u1u (122 + b))
D= (x1x2 + b) (1 - ﬂuluz) - Zbuluz(xl +x2)

Since we know that v3 = (x3 —) /(x3 + £) for some x3 € F,, it follows that x3 = C/D.

23

A similar treatment to the expression of #3 yields:
F+iG
H+4

Uz =

with:
F = (a1 +u3) (152 — b)
G = (w1 — u2) (%2 — x1)
H = (x100 + b)) (1 + amuny) + 2buius (x1 + x2)
J = (o +x2) (1 = anyuy) — 2u105 (%1% + b)

We always have x1x, # b, since x102 € QR(F,) and b ¢ QR(F,). If uy + uy # 0, then the
real part of the numerator (F) is non-zero. Since the expression of #3 is known to be well-
defined and to yield an element of F, it follows that the real part of the denominator (/) is
also non-zero, and #3 = —F /H.

Incase #; +u> = 0, then P+ N = —P, + N, which means thatx; = x, and P3+ N = N
we then have F' = 0, and we should get #3 = 0.If x; = 0, then H = b # 0. If x; # 0, then:

H= (x12 +b)(1- zmlz) - 4bufx1

uixy (31 + bfx1) (1/ui — a) — 4b)
u%xl((xl +b/x1)? — 4b)

= iz (v — b/xy)*

= ui(x; —)’/

which is a non-zero value, since b ¢ QR(]Fq). Thus, even when #; + #, = 0, we always have
H # 0; the fraction —F/ H is well-defined and has the correct value (0).
We therefore have obtained complete formulas for addition in G

Addition in G ((x, #) coordinates, complete)

_ b((xl +2x)(1+ /mluz) + 2uy07 (10 + 17))
2T (%1200 + b) (1 — amuy) — 2buyny (2 + x)
43 = —(u1 + 1) (100 — b)
(21200 + b) (1 + auyuy) + 2buyus (x1 + x2)

We may note that the expression for #3 could have been obtained by simply replacing w
with 1/ in the expression for w3 shown in section 3.3; however, the proof above also shows
that the formula is complete.

Another, different formula for #3 can be obtained. Split vinto its real and imaginary parts:

xX—1

x+7
_ (x—1)?
)

P+b —2x

= 4
x2—b x*-b

24

We write m = R (v) and # = T (v), respectively. Replacing v inside the expression of #3, and
multiplying numerator and denominator by (x12 -b) (x% —b) (which is always non-zero, since

b ¢ QR(F,)) yields:

(rmy + uamy) + i(uiny + usny)
L+iM

u3z =
with:

L =1+ wmuy(a(mymy + bnyny) — 2b(myny + mony))
M = uluz(ﬂ(mlﬂz + leﬂl) - 2(7}117/12 + bﬂlnz))
Note that M = (xl2 - b) (x% — b)3((a — 27)muzv1v2), which we proved (in section 3.4) to
be non-zero when #; and #, are non-zero. We will now assume that #; # 0 and #, # 0, i.e.

that P + N # N and P, + N # Nj; this also implies thatx; # 0 and x» # 0.
We can multiply numerator and denominator by L — 7A4:

(u1m2 + Mzml)L - b(ulnz + Mzﬂl)M

Uz =

L2 — bAf?
Nwiny +uany) L — (uymy + uymy) M
! 12— b2

Since #3 € F,, its imaginary part is zero, which implies that:

(m1na + uam) L
M

uymy +urmy; =

Replacing this value in the expression of #3 leads to:

(nrna + uany) (L> — bM?)
ML - bM?)
_ uiny +urny
=

u3z =

Replacing 2, m2, 71 and 7, with their expressions in x; and x,, and using the fact that x +
b/x = 1/u* — a (by the curve equation), we can then obtain the following:

uy (2 — x%) +uy (%7 — x%)

Uz = —
1
uluz(—uzuz + 4b — a2)
172

Then, replacing x — b/x = 2x — x — b/x = 2x — 1/u® + a, we get to:

_ul((sz +a)u§ —1) +u((2x; +4z)1¢12 -1)

1+ (4b — a®)uiu;

U3 =

We derived this formula under the assumption that Py + N # N and P, + N # N, butit
can be easily verified that if P, + N = N, then it yields #3 = #5, which is correct; similarly,
if P, + N = N, then it yields #3 = #;, which is again correct. Therefore, this formula is
complete.

25

3.6 Some Isogenies

We present here a family of isogenies that apply to double-odd elliptic curves, and are helpful
for building efficient implementations. For the presentation in this section, we work in (x, w)
coordinates.

Warning: in this section, we are considering point addition on the curve, not in the
group G. We will denote points Py = (x1, w;) and P, = (x, w2), and consider their sum on
the curve Pz = (x3, w3).

We denote E(a, b) the double-odd elliptic curve with equation w?x = x* + ax + b. Our
odd-order group G, when defined as the non-7-torsion points of E(a, b), will be referred to
as G(a, b).

Forany 7z € F, such that 7 # 0, we define the following function:

2

Ve E(a,b) — E(=2ar?, 7*(a® - 4b))
Pr— O ifP=0QorN
(7[2 2 _7r(x— b/x)

w", ——— | otherwise
w

This function is well-defined, because the output is indeed on the expected curve:

- 2

(_ 7(x = b/x))2 _ mH((w? - a)® - 4b)

w w

72 (w* = 2aw? + a® — 4b)
2

w
7*(a* — 4b)
2w

= 2w? — 2an’ +

The ¥, function is an isogeny between curves E(a, b) and E(—2an?* 7*(a® — 4b)). To
prove it, we need to show that for points P} = (x1, w1), Py = (%2, w2), and P3 = (x3, w3) =
Pi+ Py, then ¢ (P1+P2) = ¢ (P1) + ¢ (P2). Reusing the formulas described in sections 3.3
and the alternate formula obtained at the end of section 3.5, and taking into account that we
are here using addition on the curve, not addition in G, we can derive the following formulas:

(w122 — [7)2
x10 (w1 + w2)?
wiws — (a* — 4b)
wy(x2 = b/x2) + wa(x1 — b/x1)

X3 =

Such formulasare valid on the curve £ (a4, b) aslongas P;, P, and Py+P, are distinct from both
O and N. Using these formulas, it is straightforward (but tedious) to show that ¢ (P + P,)
and ¢ (P1) + ¥ (P2) have the same w coordinate. Note that the x coordinate of ¥ (P) is a
quadratic residue for all points P; this implies that ¢, (P) is an 7-torsion point. As we saw in
section 2.4, a value w may correspond to at most one point of 7-torsion; therefore, a match
on w coordinates is sufficient to prove the equality of the points, which completes the proof.

26

In general, E(—2az? 7*(a* — 4b)) is not isomorphic to E(a, b). As explained in sec-
tion 2.5, these two curves are isomorphic if and only if there exists ¢ € F such that:

—2an® = as

7 (a® - 4b) = b*
This may happen only in the following situations:

— ifa = 0, in which case the j-invariant of the curve E(4, b) is j = 1728;
— ifa # 0 and 4% = 84, in which case the j-invariant of the curve E(a, b) is j = 8000.

In such situations, ¥_1/ is an endomorphism over the curve, which can be used to speed
up some curve operations, in particular multiplication of a point by a scalar, with the GLV
method[16]. For curves with j = 1728, this is not very interesting in practice, since faster
endomorphisms exist.

While £(a, b) and E(—2an?, 7* (a* — 4b)) are not, in general, isomorphic to each other,
applying ¥, twice will bring us back to a curve isomorphic to E(4, b), even if using distinct
constants 7 and 7’. Indeed:

—2(=2a7*)7"* = 277)*a
74 ((~2an?)? — 47* (a® — 4b)) = 277’)*b
If 277" = 1, then we will be back to the original curve E(a, b) itself.
Using these properties, we define the following functions:
¥ : E(a, b)) — E(-24, a* — 4b)
2 _M)

(x,w)l—)(w, ”

1/1’/2 : E(=2a,a* — 4b) — F(a,b)

(JC,ZU) N (w2/4)_(x_ (42_4b)/x))
2w

with ¢1(0) = y1(IN) = O, and similarly for %/2'
Since all these functions output points in £[7] and we prefer to work with our group G
which consists in, precisely, the points which are not in £[7], we also define dual functions:

6, : E(a,b) — G(-2a,a> — 4b)
(42 —4b (x— b/x))
(% w) —

2)
9{/2 : E(=2a,a* — 4b) — G(a, b)
4_17 (x— (2% - 419)/x))
2)

(x’w)'—)(w 2w

w w

with 6;(0) = 6;(IN) = N’ (neutral of the destination group G(—24, 2* — 4b)), and similarly

for 4] s The 6, functions are the composition of ¥, with an addition (on the curve) of N

27

thus, 6; is an homomorphism from G(a, b) to G(—24, a*—4b),and A P isan homomorphism
from G(—24, 4> — 4b) to G(a, b).

By using the formulas above, we straightforwardly obtain the following results for any
P e E(a,b):

%/2(171(1))) = %1//2(!91(]))) =2P
61/2(¢1(P)) = 5{/2((91(1))) =2P+N

This leads to possible variants for computing point doublings in G, and, in particular, to
optimize sequences of successive doublings in G, depending on whether ¥ or & happens to
be more efficient to compute in any particular system of coordinates for a specific curve.

3.7 Mappings Into Double-Odd Curves

We consider here deterministic functions that map from arbitrary field elements into points
on a double-odd elliptic curve. Such mappings are not bijective (if only because the field F,
and the curve do not have the same number of elements). The main use of a mapping is the
implementation of a hash-to-curve process, in which an arbitrary binary input is mapped into
a curve point which is indifferentiable from a point chosen at random and uniformly on the
curve; in order to obtain indifferentiability, the following algorithm is used:

1. Hash the input into two distinct field elements with an appropriate collision-resistant
hash function. Practically, if the target field size is # bits, we can produce two sequences
of #n +128 bits from the input, with an extensible output function such as SHAKE[22],
then interpret each sequence as a big integer, which we reduce modulo the field order 4.

2. Map each obtained field element into a curve point with the deterministic mapping.

3. Add the two points together.

A generic method for defining such a mapping over any short Weierstraf§ curve has been
published by Shallue and van de Woestijne[36], and a simplified version thereof by Ulas[38].
The original method is, by definition, applicable to double-odd elliptic curves, since we can
always use the changes of variable defined in section 2.2 to convert between equation y2 =
%(x* + ax + b) and the short Weierstral equation y* = x> + Ax + B. The simplified method
is applicable (and faster) to most curves, provided that they lead to 4B # 0. In particular, it
does not work for GLV curves with j = 1728, whichlead to 4 = b # 0 and B = 0.

A different mapping function is Elligator2[7], which is applicable to all curves with even
order, including double-odd curves, except, again, GLV curves with j = 1728. Since Elliga-
tor2 is somewhat simpler and faster than the SW and SWU mappings, we use it for double-
odd curves with j # 1728. We recall it below. For GLV curves with j = 1728, we define a
custom mapping, which builds on the same ideas as the original Shallue-van de Woestijne
mapping, but tailored to the specificities of the curve.

Elligator2. This mapping is applicable to double-odd curves as long asa # 0. Let d be a
conventional fixed value in F, such thatd ¢ QR (e.g. we can used = —1wheng = 3 mod 4).
Foran inpute € Fy:

1. If1 4 de* = 0, then return the point-at-infinity O.

28

2. Otherwise, setv = 2/ (1+de*) and z = v(v* +av+b), and compute the Legendre symbol
of z (the Legendre symbol of avalue is 0 if = 0,1if # # O and ¢z € QR, or-1ifz ¢ QR).
Note that v # 0, and therefore z # 0 (otherwise, the curve would not be double-odd).
Then:

— Ify(z) =1, thensetx = o.
— Otherwise, setx = —v — 4.

3. Atthat pointitis guaranteed that x(x? +ax +) is a square, and a square root is extracted
from it. A fixed convention is used to select one of the two square roots. In the original
Elligator2, that square root is then multiplied by y(2) to obtain the coordinate y.

GLV curves with j = 1728. When 4 = 0, Elligator2 cannot be applied (and neither
can the simplified SWU mapping). We define here a custom mapping. Letd € F, such that
d? = -1 (d must exist since, in that case, g =1 mod 4). Foran inpute € F,:

1. If e = 0 then return the point-at-infinity O.
2. Otherwise, define:

xp=e+ (1-10)/(4e)
xp =d(e— (1-0)/(4¢))

With such definitions, then it is easy to show that:
3 b 3 b _ 3 b
(] + b)) (x5 + bxn) = (x1202)” + by

Therefore, at least one of x1, x» and x1x, is the x coordinate for a point on the curve:
— Ifx; € QR, then setx = ;.
— Otherwise, if x; € QR, then setx = x,.
— Otherwise, set x = x1x7.
3. Once x is chosen, use a square root extraction to compute y. A fixed convention is used
to deterministically select one of the two square roots.

An alternate method (proposed in [39]) to the one exposed just above would be to find an
isogeny between the target double-odd elliptic curve and an alternate curve for which 2z # 0
and Elligator2 can be applied. Depending on the curve parameters and the target architecture,
that alternate method may or may not be more efficient. Elligator2 involves one Legendre
symbol and one square root computation; our custom map needs two Legendre symbols and
one square root computation. Thus, using an isogeny from an alternate curve with J #1728
may provide a faster process if the isogeny itself is faster than a Legendre symbol computation.
As described in [33], on ARM Cortex M0+ processors with the field of integers modulo
2255 — 19, the cost of a constant-time Legendre symbol computation is lower than that of
30 multiplications in the base field; for many curves, there is no suitable isogeny that can be
computed with that few multiplications. On the other hand, on larger architectures (e.g. 64-
bit x86), cost of Legendre computation rises to more than 100M.

Mapping to G. Since we will want, in general, to map to the prime order group G and not
the complete curve, we need to “clear the cofactor”. The simplest way is to apply the mapping
not to the curve E(a, b), but to the dual curve E(—24, 2> — 4b). Once a point on that curve is
obtained, the isogeny 0{ 1 (defined in section 3.6) can be applied, to obtain a point in G(a,).

29

Inversions. The mappings described above involve divisions in Fy,in the computation of
the value v (for Elligator2) or (1—) /(4e) (for the mapping for GLV curves). It is possible to
combine that inversion with a square root computation in order to perform both at the cost
of a single modular exponentiation; this is leveraged in, for instance, Ristretto[3]. However,
this is not especially useful in our case, because even if the affine coordinates of the curve point
on £ are obtained, the application of] P introduces further inversions. Moreover, in general,
such mappings are used as part of a hash-to-curve process, where the mapping is applied twice,
and the two points added together, which will again involve some inversions. It is thus more
efficient to make each mapping produce a point in fractional coordinates, and convert back
to affine only after the final point addition; or, even, not to convert to affine coordinates at
all, if the obtained point is to be used in further computations on G.

4 Algorithms

In section 3, we saw various formulas for computing operations in G. These formulas involve
arithmetic operations on field elements, notably inversions. In general, inversion is much
more expensive than multiplication, and implementations strive to reduce the number of
required inversions, even if that implies making more multiplicationsu. The usual trick is to
represent coordinates as fractions, and then apply arithmetic operations on numerators and
denominators. Using fractions makes operations more expensive (e.g. an addition on frac-
tions requires, in general, three multiplications in the field) but removes all inversions from
the computation, except a single one at the end of the algorithm, when the fractional result
must be reduced to an affine value (usually for encoding purposes). Various coordinate sys-
tems using fractions have been defined, e.g. projective and Jacobian coordinates.

In this section, we describe algorithms for generic point addition and specialized point
doubling in several systems of coordinates. All the algorithms presented here are complete;
some achieve completeness by using complete formulas, while others rely on some inexpen-
sive conditional copy operations to handle exceptional cases. We use CONDCOPY (m, #, ¢) to
denote the action of overwriting the contents of 7 with the value of 7 is ¢ is true, or leaving 7
untouched if ¢ is false. This operation can be implemented with constant-time selection in an
efficient manner, with a cost roughly similar to that of an addition in the field when operands
m and z are field elements.

All algorithm costs are expressed with the notation eM+£S, with ¢ and f being integers;
“M?” represents a multiplication in the field, and “S” is a squaring. Depending on the used
field, used software and hardware architecture, and implementation strategy, a squaring may
have the same cost as a multiplication, or it may be somewhat faster; in typical software im-
plementations, squaring cost will typically be between 65 and 85% of that of a multiplication.
A squaring can always be computed as a multiplication; thus, the cost of a squaring cannot
exceed that of a multiplication. Conversely, any multiplication can be computed with two
squarings and some additions and subtractions, using 4mn = (m + n)* — (m — n)?; thus,
squaring cost cannot really be less than half that of a multiplication.

Thus, algorithms described below strive primarily to reduce the total number of multipli-
cations and squarings, and, for a given total number, favour squarings over multiplications. It

1 A shown in [30], this is not always true; in some field extensions, inversions are efficient enough,
relatively to multiplications, that sticking to affine coordinates is a reasonable implementation strategy.

30

must be noted that all these costs are estzmates, which, in particular, do not take into account
the costs of additions, subtractions, and conditional copies. These operations are less expen-
sive than multiplications and squarings, but not necessarily negligible, especially on “fast”
systems (e.g. 64-bit x86 CPUs). Therefore, on any given target system, an algorithm that (for
instance) has cost IM+6S may turn out to be less efficient than another with cost 2M+5S,
if the latter uses fewer of these cheap operations, or has a lower computing depth and more
easily maps to the computing resources of a superscalar CPU.

An additional effect is that modern “large” CPUs use heavily pipelined and out-of-order
evaluation, to the point that interdependencies between values become more important than
raw operation counts. As a rule of thumb, counts of multiplications and squarings yield rea-
sonably accurate estimates of actual performance on small embedded CPUs (say, within 10%
of the actual value), but less so on large superscalar CPUs, where two algorithms with seem-
ingly equivalent costs may differ in performance by 20% or more. Only real implementations
and benchmarks can provide better accuracy.

In all cost estimates, we systematically consider that the curve constants 2 and & are chosen
such that multiplication by either, or by any constant value derived from 4 and 4, is inexpen-
sive.

4.1 Jacobian (x, w) Coordinates

Jacobian coordinates are a fractional representation of x and w that is analogous to curve iso-
morphisms: a point P + N € G will be represented by a triplet of field elements (X:17:2)
such that:

It can be verified that these coordinates are analogous to the usual Jacobian coordinates in
(%) representation, and that they can be interpreted as an application of the isomorphism
presented in section 2.5 (with ¢ = 1/2).

Jacobian coordinates can represent the neutral point N by setting Z = 0; for any point
in G distinct from NN, Z will be a non-zero field element. However, we can be a bit more
restrictive, which will be helpful in some cases: we define that valid representations of N are
triplets (0:747:0), where 77 # 0. This implies that /7 is never equal to 0 for any element of
G. These Jacobian coordinates will be extended later to cover all curve points, not just G; in
that case, we will represent the point-at-infinity O as (7W2: :0) for any W # 0.

4.1.1 Addition in Jacobian (x, w) Coordinates

Using the formulas from section 3.3, we can express the sum in Jacobian coordinates of group
elements P+ N = (Xl: Wl:Zl) and P,+N = (Xz: Wz:Zz) as point P3 +N = (X3: W3:Z3)

31

with:

X3 = bXi Xo(WhZo + WaZy)*
W3 = —((W1 Wz + lezz) (X1X2 + beZ%) + 252122 (XlZg + Xzle))
Zy = (X1 Xo — bZIZ3)(WhZo + WaZy)

These values can be computed in cost 8M+6S (eight multiplications and six squarings in ;)
as shown in algorithm 1.

Algorithm 1 Addition (Jacobian (x, w)) (cost: M +6S)

Require: Pj + N = (X1:W1:Z1) and Py + N = (Xp:W2:2;)
Ensure: (P1 + Pz) +N = (X3:W3:Z3)

1:
D — Z%
st = (Z+ 20—t —1)/)2 >3 =212

i e
N DN = O

151 (—le

t4 4—12

— 7272
3 l>t4—ZlZ2

Lty — W,
: g — X1Xp

t7 — (M +2)(Wr+Zy)—t3—t5 >t = W12y + WhZy

D Ig — (X1 + tl)(Xz + t2) —Il4— 1 > g :X1Z§ +X2212
2 Z3 — (tg — bty)ty

D tg — t;* >t9 = (W1 Zy + WzZl)4
s X3 btgty

T o — (t5 + ﬂt:;)(lg + b[4) >0 = (Wl Wy + oZZlZz)(XlXZ + bZ%Z%)
s W3 «— —t19 — 2bt3tg

: CONDCOPY((X3:W3:23), (X1:W1:21), Z3 = 0)

. CONDCOPY ((X3:W3:23), (Xo:W>:25), Z1 = 0)

If either (or both) Py + N or P, + N is N, then the CONDCOPY calls set the output to

one of the inputs, therefore valid by definition. If neither P; + N nor P, + N is N, but their
sum in G is N, then:

— Coordinates are such that w; + w, = 0, therefore W12, + W,Z; = 0, which implies

that X3 and Z3 are set to 0.

— Similarly, x; = x, thus #3 is set to:

W3 = —ZfZ;((—wl2 +a) (xl2 + b) + 4bx)
= —ZfZ;(—(wl2 - a)(wlle —axy) + 4bxy)
= —lefZg (46— (wf -2)%)

Since, in that situation, x1, Z; and Z, are non-zero, and 46 ¢ QR, it follows that W3 is
set to a non-zero value.

Thus, if the output is N, then what is returned is a valid representation of N (X3 and Z3 are
zero, W is not). We conclude that algorithm 1 is complete.

32

The cost of algorithm 1 is SM+6S. If point P; is really in affine coordinates (Z, statically
known to be equal to 1), then £, = 1, #3 = Z; and #4 = #;, thereby saving three squarings; in
that case (often called “mixed addition”), the cost is 8M+3S. If bozh input points are in affine
coordinates, thenyy =, =13 = t4, = 1,8, = W + W, ts = Xj + X,, and the multiplication
t3tg in the computation of 13 is trivial, leading to a total cost of SM+2S.

Note that the first two operations are squarings of Z; and Z,, respectively; each depends
on the coordinates of only one operand, not the other. We may therefore cache these val-
ues, with an alternate representation which is reminiscent of Chudnovsky coordinates[10]: a
point (X:17:Z) can be represented and stored as a quadruplet (X: 17:2:22). If Chudnovsky
coordinates are used in algorithm 1, then the first two steps (computations of # and #,) are
free, since these values are directly provided as inputs; on the other hand, an extra squaring
must be performed at the end, to compute Z%, so that the returned point is also in Chud-
novsky coordinates. Overall, this decreases the cost of addition in G to 8M+5S. We do not
use this representation in our implementation because it increases RAM usage (which can
be a problem on RAM-constrained embedded systems), and also because these savings are
subsumed under the use of window normalization and mixed addition.

4.1.2 Doubling in Jacobian (x, w) Coordinates

While the generic point addition, with cost SM+6S, is not especially fast for an addition rou-
tine, point doublings can be made much faster. Using formulas from section 3.3, we find that
ifP+N=X:W:Z)and 2P+ N = (X":W':.Z":), then:

X' =16bW*Z*
W' =—(W*+ (4b — a*) 2%
Z' =2WZ(2X +aZ? - W?)

Even though the corresponding affine formulas are only unified, we find that these formulas
are complete: if P+ N # N, then 2P+ N # N (since the order of G is odd); if P+ N = N,
then X = Z = 0but W # 0, whichleadsto X’ =2’ = 0and W’ = —W* # 0, i.e. avalid
representation of the neutral point V. Therefore, any algorithm leveraging these formulas
will be complete, without needing any invocation of CONDCOPY.

Point doublings in G can be computed with these formulas in cost 2M+5S, as shown in
algorithm 2.

33

Algorithm 2 Doubling (Jacobian (x, w)) (cost: 2M+5S)

Require: P+ N = (X:WW:2)
Ensure: 2P+ N = (X":W".Z")

Iy 22

21 bty =24
3: 13 w2

4oty — 12 bty = W4
S: X« 16btrt,

6: W' — —(t4 + (46— a®)t2) > This step does not require any expensive operation.
7: t5<—(W+Z)2—11—[3 >t5 =2WZ
8: Z — ts(2X +at; — t3)

Doubling can be further optimized if there exists ¢ € F, such that 4b—a% = ¢*. Note that
since (by construction of the curve) 4> — 4b ¢ QR, a square root of 46 — 4” exists if and only
if 4 = 3 mod 4. Using the value ¢, cost can be turned into IM+6S as shown on algorithm 3.

Algorithm 3 Doubling (Jacobian (x, w)) with ¢ = 3 mod 4 (cost: IM+6S)

Require: P+ N = (X:W:2)
Ensure: 2P+ N = (X":W":Z")
Ity « 22
D — w2
= (W+2)?%-1-1 >3 =2WZ
X« btg‘
W —(e/2)t3 — (1 +€t2)2
: 2 — 132X +at; — 1)

AN N N

Algorithm 3 is complete since it computes exactly the same output values as algorithm 2,
which is complete.

As previously explained, cost IM+6S can be lower than 2M+5S, depending on implemen-
tation target and strategy. Note that even if @ and & are small integers, the value ¢ (a square
root of 46 — 4 in field [F,) may be a “non-simple” value, and multiplications by ¢ and e/2
may be considerably more expensive, nullifying the savings induced by this algorithm. To use
algorithm 3 efficiently, the curve parameters @ and & must be chosen so that the constant ¢
leads to fast multiplications by ¢ and ¢/2.

Another possible optimization is in the specific case of 26 = 2. This implies that 46 —
at e OR, hence ¢ = 3 mod 4; moreover, this case requires that 2 ¢ QR. These conditions
can be metif and only if 4 = 3 mod 8. Note thatif 25 = 42, then the j-invariant of the curve
is:

. 256(3b-2b)°
 b2(4b - 2b)

Therefore, there are only two curves (up to isomorphisms) in a given field that match these
conditions. We can thus enforce the curve equation to be either y* = x(x* + x + 1/2) or

=128

34

y* = x(x* — x + 1/2); we furthermore assume that the latter equation is used. On such a

curve, we can compute point doubling with cost 2M+4S, as described in algorithm 4.

Algorithm 4 Doubling (Jacobian (x, w)), curve y* = x(x* — x + 1/2) (cost: 2M+4S)

Require: P+ N = (X:W:Z)
Ensure: 2P+ N = (X":W".Z")
1. h e WZ
: tz<—t12 bty = W2Z2
X — 81%
s 3 — (W+2)?2 -2 by = W2+22=W?-aZ?
w’ (—2[2—1‘%
1 72— 20(2X — 13)

AN I R)

Algorithm 4 again computes the same output values as algorithm 2, and is thus com-
plete; it simply leverages the specific choice of curve parameters to compute the values more
efficiently.

While the generic addition routine, with cost 8M+6S, is relatively slow by modern stan-
dards (e.g. there are generic complete formulas, on any subgroup of odd order of a Weierstrafl
curve, that can compute point addition in projective coordinates in 12M[34]), the compu-
tation of doublings in 2M+4S is very fast; it is, in fact, faster than the best known doubling
formulas in twisted Edwards curves (3M+4S in inverted coordinates[5]). When computing a
multiplication of a group element by a scalar, a generic double-and-add algorithm with win-
dow optimizations will consist mostly of doublings; e.g, with a 5-bit window, there will be
only one extra addition for every five doublings, making any saving in the doubling procedure
much more important than the overhead of the point addition.

4.1.3 Successive Doublings in Jacobian (x, w) Coordinates

When computing a sequence of successive doublings, we can obtain additional savings (de-
pending on the curve) by leveraging the isogenies described in section 3.6. The morphism ¥,
that maps (X:W:Z) (arbitrary curve point) to (X":W":Z’) (on E(—2a, 4> — 4b)[r]) can be
computed with the following formulas:

X =w*
W'=-(2X +aZ> - W?)
Z =Wz

while %/2 (X' Ww".Z") = (X" W":Z") is computed with:

X/r — W/4
W/r — _(ZX/ _ 242/2 _ W/Z)
z'=2w'z

35

and 0 (X" W":Z") = (X" W'":Z") uses:

1/2
X" =16b2"*
W// — 2X/ _ 242/2 _ W/Z
z'=2w'z

To discuss completeness of these formulas, we must define what is a valid representation
of the point-at-infinity. Indeed, we only specified that (0:777:0) (for any /% # 0) represents
the point N (the point of order 2 on the curve, with coordinates (x, y) = (0, 0)). We formally
define that the point-at-infinity is O = (W?2:W:0) for any W # 0. It is easily verified that
when applied on either IV or O, then ¥; and ;ﬁl’ 1 yield a valid representation of O, while 191’ P
yields a valid representation of N. Therefore, all these formulas are complete.

By using 2WZ = (W + Z)* = W?* — Z2, all three functions can be computed with
cost 4S. Since 2P + N = 4] /2(;&1 (P)), this naturally leads to an algorithm with cost 8S. This
is rarely competitive with the 2M+5S cost of algorithm 2; however, on some specific curves,
additional savings can be obtained.

In particular, if 2 = 0 (i.e. curves with j = 1728), then ¢ and ;kl’ / can both be computed
in cost IM+2S each. In the context of computing 7 > 1 successive doublings, we can use ¥
and ¢/ 1 alternately, with only one final 4] At the end to get back to G. Moreover, the compu-
tation of Z’ (in ¢1) then Z” (in ¢ /2) can be slightly optimized, replacing one multiplication
with one squaring. This leads to algorithm 5:

Algorithm 5 7 doublings (Jacobian (x, w)), curve y* = x(x” + b) (cost: 2(IM+5S)+1S)

Require: P+ N = (X:W:Z),integern > 1
Ensure: 2"P+ N = (X":-W":.Z")

1. (Xp:WpZy) — (X:W:2)
: forl<i<n-1do
1 — I/Vt2
f — 1 —2X; bty = W2 -2X,= W]
t3 l‘% >13 = VVt’z
Zi — (Wi+0)* -1 - 13)Z, > 2l = 2W, W] Z,
W 13- 21 > Note that 2 = X/?

2
Xt(_t:,,

D — VVtZ > Final computation of ¥7.
2 2y — W2z,

: Wy —1n-2X

Xy — tlz

¥ NN D

P —
o= o

—
SN}

X — lébe > Final computation of 6’{/2.
: W 2X, - WP

: 7 < 2WiZ,

: return (X':W'.Z")

— =
[WAYAREN

36

With algorithm S, a sequence of 7z doublings on a GLV curve y2 = %% + bx can be com-
puted with cost IM+5S per doubling, and only 1S of overhead for the whole sequence. For
a single doubling (z = 1 in algorithm 5), we get a cost of IM+6S, which is marginally better
than 2M+5S and similar to that of algorithm 3 (which we cannot use on such GLV curves,
since they require ¢ = 1 mod 4).

A per-doubling cost of 4M+2S can also be obtained on a large class of double-odd elliptic
curves, provided that the curve equation constants are chosen appropriately. This relies on the
observation that application of &; or 91' P yields a value of X which is the square of a known
value, multiplied by a small constant. Suppose now that we work in a field]Fq such that 2 ¢
QR; this is equivalent to saying that ¢ = 3 or 5 mod 8. In that case, for a point (x, w) € G,
there exists values F, W and Z such thatx = 2(F?/Z?) and w = W /Z. The X coordinate
(in Jacobian coordinates) is then X = 2F2. The application of 6 on the point can then be
computed as:

F = (\/(42 —4b) /2)22
W' = (2F + W)(2F — W) + aZ*
Z =Wz

Similarly, application of &] j2 00 the result will use:

P = (Vi)
W' = QF + W')QF - W') - 242"
Z// = ZW,Z,
These formulas hinge on the fact that if 2 ¢ QR, then (2> — 46)/2 € QR and 26 € QR.
Both 4 and 9{ /2 can be computed in cost 2M+1S, leading to a per-doubling cost of 4M+25,

i.e. “six multiplications”. Note though that on small architectures, the relative costs of mul-
tiplications and squarings is likely to make it so that an algorithm in IM+6S per doubling is

preferable. Moreover, the requirement that /(22 — 44) /2 and V2b are “small” (so that mul-

tiplication by these constants has low cost) may be restrictive in curve choice.

37

Algorithm 6 7 doublings (Jacobian (x, w)) withg = 3 or 5 mod 8 (cost: #(4M+2S)+1M)

Require: P+ N = (X:W:Z), integer n > 1
Ensure: 2"P+ N = (X":W":.Z")
It « W2 > Application of 4.
D — z?
3 (W2 -1-1 >13=2W2
D B (V(a? - 40)[2)n
Wy «—2X+at) —
2 Zp —13/2
forl</<n-1do
1 — QF + W) (2F - W) > Application ofﬂ{/z.
1y — th
Z, —2W.Z,
F (@)fz
Wy «— t1 — 2aty
1 — (2F + Wy) (2F; — W) > Application of 4.
1y — Z[2
Zy — WiZy
Fy e ((a? - 4b)[2)ry
Wy e—ti+at
sty F+ W) (25— W) > Final application ofﬁi/z.
D — th
2 2N < 2W2,
X — 451‘%
Wt —2aty
: return (X":W':Z")

e
Nk b=

—
o]

NN NN =
W N = O\

4.2 Fractional (x, u) Coordinates

In order to apply the formulas in (x; %) coordinates without having to compute a division in
I, for each point addition, we will use fractional coordinates: point (x, #) is represented by a
quadruplet (X:Z:U:T') which is such that:

X
YTz
U
nw=—
T

ZT #0

4.2.1 Addition in Fractional (x, u) Coordinates

With the fractional (x, #) representation, using the formulas from section 3.5, the sum of
group elements Py + N = (Xi:Z1:U:Th) and P, + N = (X5:Z5:Us:T) is P3 + N =

38

(X3 :Z3:U3:T3) such that:

X3 = b((X12: + X220) (W T + aUy Up) + 20, UL (X1 X + 02,25))
Z3 = (X1Xo + 021 2,) (11T — alh Up) = 2bU0Up (X125 + X2 2y)
Us = —(UiTa + U Th) (X1 Xz — b2, 25)

T3 = (X1 Xo + 021 2,)(T1 Ty + aU Uh) + 26U Uy (X122, + X0 Z4)

Since the original affine formulas are complete, these fractional formulas are equally complete,
and guarantee that Z3 and T3 are non-zero. These formulas are evaluated by algorithm 7:

Algorithm 7 Addition (fractional (x, #)) (cost: 10M)

Require: P; + N = (X1:Z1:U1:T1) and P + N = (X2:25:U:T>)
Ensure: (P1 + Pz) +N = (X3:Z3:U3:T3)

1: 1 «— X1 Xp
Rl AV
D13 — U1Uy
sty — 11Ty
DIy — (X1 +Zl)(X2 +Zz) -1 -1 >t = X1Z2, + X024
st = (1 +T1) (U +Ta) —t3-14 vt =U1Tr + U Th
Lty —)+ bty >t = X1Xo + b21 2,
T Ig — t4ly
: tg «— t3(2bts + aty)
2 10 — (t4+at3)(ts +17) > Using constant & = (46 — a®)] (2b - a)
¢ X3 — b(tip — 13 + fto) > Using constant 8 = (a — 2)/(2b —)
1 23— t3— 1y
2 Uz «— —t5(t1 — bt)
T3 —tg+1y

O 0 N GO\ Nk W IN

— = —
RN RO

Algorithm 7 has cost 10M. This assumes that multiplications by the constants « and 3
are inexpensive, i.e. that the curve parameters 2 and 4 are chosen such that « and 4 are small
integers or fractions. For instance, if ¢ = —=land & = 1/2,thena = 1/2 and 8 = -3/2.
When working with a given curve, it is possible to use an isomorphic curve, by applying the
isomorphism described in section 2.5 when input data is converted into or out of fractional
coordinates. For instance, still withz = —1and 6 = 1/2, we can use ¢ = V=2 (square root in
the field F,), which turns the curve equation into yz = x(x2+2x+2) and leads, in algorithm 7,
to« = 2 and # = 0, making operations involving £ even simpler.

Similarly, if the curve parameters are such that 26 = 4, then and j are not defined, and
algorithm 7 cannot be applied as is. In that case, the curve can be converted to an isomorphic
curve by applying a change of variable, as we just described. More simply, we will avoid that
case when selecting our curve parameters.

If the second input P, + N is in affine coordinates, i.e. Z, = 7> = 1 (mixed addition),
then computations of #, and #4 become trivial and the total cost drops to 8M. If both inputs
are in affine coordinates, then #,, #4, #5 and ¢4 are inexpensive and the total cost is 6M.

39

4.2.2 Doubling in Fractional (x, u) Coordinates

Ifapplying algorithm 7 on a point and itself, to compute a doubling, then computations of #;
to ¢ are actually squarings, making the cost 4M+6S, which can be lower than 10M if squar-
ings are faster than multiplication on a specific architecture. However, one can do better by
temporarily switching to Jacobian coordinates, and converting back to fractional (x, #) coor-
dinates on output. Specifically, given a point P + N = (X:Z:U:T') on the group G on curve
E(a, b), we can apply the isogeny ¥1 (described in section 3.6) to obtain a point (X": W":Z")
in Jacobian coordinates on curve E(—24, a* — 4b) [7], with the following formulas:

X/ — ZZT4
W'=ZT* - (2X +aZ)U?
z'=zUur

These formulas are obtained straightforwardly, by applying the expression of 1. They are
moreover complete: if P+ N = N, thenX = U = 0and ZT # 0, hence W' = ZT? # 0,
X’ = W% and Z’ = 0, which is a valid representation of the point-at-infinity O in Jacobian
coordinates, as we defined it in section 4.1.3.

On such a point, we can then apply &] 2 with an output back in G (on curve £(a, b)) and
expressed in fractional (x, #) coordinates (X"':Z"":U"":T""), with these formulas:

X" = 462"
Z// — W/Z
U/I = ZW/Z,

T// — ZX, _ ZﬂZIZ _ WIZ

We can again verify that these formulas are complete: if (X":77":Z") is either N or O, then a
valid representation of N is obtained (with X”" = U” = 0and Z”" T" # 0).

Since 6] /2 (1(P+ N)) = 2P + N, the composition of these two isogenies computes the
double in G of the source point P + N. This is expressed by algorithm 8:

Algorithm 8 Doubling (fractional (x, %)) (cost: 4M+5S)

Require: P+ N = (X:Z:U:T)
Ensure: 2P+ N = (X"":Z2":U":T")

1: 4« ZT > Start of ¥
2: 1) —nT

3 X 1 > X' =224
4 7' —nU >Z = ZUT
St 13« U?

6 W —1t)—(2X+aZ)t3 > W =ZT? — (2X +aZ)U?
7ty — 2" > Start of&{/z
8: X" — 4bty > X" = 4bZ'
9: 2/ — Ww’*
10: £5 «— W2

1: U — (W' +2Z)2 =t — 15 > U =22
12: T" « 2X" — 2at4 — 5 > T =2X' — 242" — W2

40

As explained above, algorithm 8 is complete; it has cost 4M+5S, which is better than the
4M+6S cost resulting from the application of algorithm 7 on two identical operands.

We can do better by using a different way to compute the x coordinate of isogenies. Con-
sider that when applying 6 on a point (x, w) to obtain (x/, w’), then &’ = (4 — 4b) /w?. We
can use the curve equation to replace w* with x + 2 + b/x, yielding the following formulas:

X' = (4% - 4b)XZ

Z' = X*+aXZ + bZ?
X" =4bX' 7’

2" =X"?-2aX'7 + (a* — 4b) 2"
U"” =2(a* — 4b)(X? - bZ*)Z'U
TN — (XIZ _ (42 _ 4b)Z/2)T

It can be easily verified that these formulas are complete (because X? + 2XZ + bZ* cannot be
zero if Z # 0). These formulas lead to a point doubling algorithm with cost 3M+6S:

Algorithm 9 Doubling (fractional (x, #)) (cost: SM+6S)

Require: P+ N = (X:Z:U:T)
Ensure: 2P+ N = (X"":2":U"":T")

1: 11 « X2

2: 1) — z?

33— (X+2)2-t-0 13 =2XZ
4: X — ((a% - 4b))2)t3

S: Z —t+btr+ (a/2)t3

6ty — X'

7 ts — Z'2

8 1o — (X' +2)% — 14— 15 b1g=2X'2"
9: X" «— 2btg
10: Z” « 4+ (dz - 4b)t5 —atg

11: U — 2(a® — 4b) (11 — b2)Z' U

—
[\

: T — (t4 — (a® — 4b)ts) T

4.2.3 Successive Doublings in Fractional (x, u) Coordinates

Algorithm 8 naturally extends to the case of computing 7 successive doublings by noticing
that extra doublings on E(—24, 2> —4b) [] can be inserted between the initial 1 and the final
A 2 Each such doubling can be computed as ¢1 (¢, 1 (P)), which is generically computable in
8S (since both ¥; and ;kl’ / can be computed in 4S each). On some curves, better performance
can be obtained. In particular, for GLV curves (with 2 = 0), the inner doublings can be done
in only IM+5S. This leads to the following algorithm:

41

Algorithm 10 7 doublings (fractional (x, %)), curve y* = x(x* + b) (cost: n(IM+5S)+3M)

Require: P+ N = (X:Z:U:T), integer n > 1
Ensure: 2"P+ N = (X"":2".U":T")
1. 4 <ZT > Start of ¥
ttp —nT
c X~ > X' =2°T*
7' —nU > 7' = ZUT
13 U2
W' — ty —2Xr3 > W' =ZT? - (2X +aZ)U?, witha = 0.
forl </ <n-1do
1 — I/V’2
1y — 1 —2X;

13— 13
Z'— (W' +1)* - -1n)Z
W' — 13— 2[12
X « t%
oty — 2 > Start of&{
D ts — W2
s X" — 4bty > X" = 4b7'2
U — (W +2Z)% =15 — 15 >U"” =202
A
C T — 22X — 15 > T" =2X' —24Z"* — W2, witha = 0.

— —

—
'S

/2

e e
o ® N &\ W

We note that algorithm 10 has only moderate overhead compared to algorithm 5 (+3M
but -18S). Since addition in fractional (x, #) coordinates is faster than addition in Jacobian
(x w) coordinates (10M instead of 8M+6S), this makes fractional (x, #) coordinates nomi-
nally competitive with Jacobian (x, w) coordinates for point multiplication by a scalar. This
also holds when multiplying a base point in affine coordinates (or using a window optimiza-
tion with window points normalized to affine coordinates).

For other curves, we can use the following generic technique:

with result in Jacobian (x, w) coordi-

— First doubling is performed is ¢1 followed by] 2
nates.
— Next z — 2 doublings are done in Jacobian (x, w) coordinates.

— Last doubling includes the conversion back into fractional (x, #) coordinates.

In the first doubling, ¥1 is computed in cost 4M+2S, then 6’{ P in cost 4S. The next n — 2
doublings can use any of the algorithms from section 4.1.2 with cost 2M+5S (algorithm 2,
for all curves), IM+6S (algorithm 3, when ¢ = 3 mod 4) or 2M+4S (algorithm 4, for curve
y* = x(x* — x + 1/2)). The last doubling must include the conversion back to fractional
(x, #) coordinates; this can be done in cost 2M+5S for all curves, and 2M+4S for curve yz =
x(x? —x+1/2).

We show below the generic case (valid for all double-odd curves) in algorithm 11, and the
specialized case for curve y* = x(x* — x + 1/2) in algorithm 12.

42

Algorithm 11 7 doublings (fractional (x, #)) (cost: #(2M+5S)+2M+1S)

Require: P+ N = (X:Z:U:T), integer n > 2
Ensure: 2"P+ N = (X"":2":U":T")

1: 54 ZT

tp —nTl

X —z
7' —nU

13 U2

W' —t) — (2X +aZ)t3

by — W/2

st <—ZI2

: X — 16bt

s W 2X' = 2ats —t4

CZ = (W 422 — 14— 15

s for1<i<n-2do

I3 (—ZZ

1

3 — W?

ty — 12

ts %(W+Z)2—t1—t3
X/<—lébt2t4

W' —(t4 + (4b— a®)tp)
Z' —ts(2X +aty — t3)

T — w2

) — 72

3= (W+2)2%-1n-1
W~ —2X —an
:X”(—bt%

72— W

U — W’

T <—2t1(l‘1—ﬂlz)—Z”

RN B A Al

NN DD NN DNDNRNDNRFE = = = e e
N I NV N = G I NR VI CNRET SR e =

> Start of ¥4

> X =2Z2T%
»7Z' = ZUT

> W' =2ZT% - (2X +aZ)U?
> Start of 5{/2, output in Jacobian (x, w).

> X = 16624
> W =2X' =247 - W'?
>Z=2W'7

> Simple doubling with algorithm 2.

> 1) :Z4
>t = w4
>ts =2WZ

> Final doubling with result in fractional (x, #).

> /3 =2WZ
> W' = W2 -2X —aZ?
> X" = 4h W72

»U"” =2WW'Z
> TV = 2W4 =24 W22 — W'

43

Algorithm 12 7 doublings (fractional (x, #)), curve y* = x(x* — x +1/2)

(cost: n(2M+4S)+2M+2S)

Require: P+ N = (X:Z:U:T), integer n > 2
Ensure: 2"P+ N = (X":2"":U":T")

1. 4 ZT

) —nT

¢ <—t§
z' —nU

3 — U?

W o—t) - (2X - 2)t3
ty — VV/2

ts — 77

: X — 8[52

s W —2X + 25 — t4

WX NN WD

—
(=]

1 Z— (W +2) —t4—1ts
12: forl1 < <n-2do

132 ne WZ

4 et

15 53— (W+2)2-24
16: W2t -1

17: Ze<24(2X = 1)

18: X 8

19: 1y « WZ

20: £y — £

21 13 — (W +2)% -2
22: X" — 4ty

23: 7" — (2X —13)?

24: U « 242X — 13)

25

3

> Start of ¥

> X = Z2T%
»2' = ZUT

> W' =ZT? — (2X +aZ) U2, witha = —1.
> Start of 19{/2, output in Jacobian (x, w).

> X =16b2"%, with b =1/2.
> W =2X' = 247" — W'?, witha = —1.
sZ=2W'7

> Simple doubling with algorithm 4.
>ty = W2Z2
br3= W2+ 2% = W? - az? witha = 1.

> Final doubling with result in fractional (x, #).
>ty = W2Z2

bty = W2 —aZ?, witha = -1,

> X" = 4bW2 22

> 7" = (2X +aZ% - W?)2, witha = —1.

> U = 2WZ(2X +aZ? — W?),witha = —1.

c TV 2ty — 12 > T = (W4 = (2% — 4b)Z%), witha = —1and b = 1/2.

Algorithms 10, 11 and 12 are complete, since they only use complete formulas.

In the case of using a base field such that ¢ = 3 mod 4 and computing 7 doublings
with algorithm 11, the # — 2 inner doublings can use algorithm 3 (with cost IM+6S each)
instead of algorithm 2 (with cost 2M+5S each), which can yield a slight speed-up on archi-
tectures where squarings are faster than generic multiplications. Similarly, when ¢ = 3 or
S mod 8, the formulas used in algorithm 6 can also be applied here, leading to an overall cost

of n(4M+2S)+2M+2S.

4.3 Ladders

Ladder algorithms are a type of point multiplication algorithm in which scalar bits are pro-
cessed one by one, in a succession of steps which are identical to each other save for a condi-
tional exchange of some state values, controlled by the current scalar bit. The main example is
that of Montgomery curves, such as the well-known Curve25519[4]. A comprehensive sur-

vey of formulas pertaining to Montgomery curves and some other curves is presented in [11].
The gist of the ladder on Montgomery curves is the following:

— The successive steps are a double-and-add algorithm, starting with a base point 2. Each
step modifies the current point P, replacing it with either 2P or 2P + P;.

— The current point is not stored as a pair of coordinates, but represented by the x coordi-
nates of two points P and P, which are such that P, = Pand P, = Py + P,.

— Thex coordinate of either 2 (respectively 2;) can be computed from the x coordinate
of Py (respectively P,) directly. The x coordinate of P3 = P; + P; can be computed with
relatively simple formulas from the x coordinates of P, P, and Py.

An important feature of this algorithm is that only x coordinates are used. The formu-
las typically use a fractional representation (each x coordinate is provided as a fraction). On
Montgomery curves, the overall cost is SM+4S per scalar bit, assuming that curve equation
constants are small integers, and that the x coordinate of the base point Py is provided as a
single non-fractional value xy.

In [11], the general case of short Weierstraf$ curves, and the more specific case of curves of
even order (a class of curves that includes both double-odd curves and Montgomery curves),
are briefly studied. In there, it is asserted that for curves with equation y* = x(x* + ax + b),
the corresponding ladder has a cost of 7M+6S (2M+4S for computing 2;, and SM+2S for
Py + P,, assuming a non-fractional xg). We can, however, do better on double-odd curves.
First, consider a source point P = (x, w) in G. The ¢, isogeny (defined in section 3.6) maps
Py to (x', w'), with:

_42—4b
- 2

’
X

w
_ (a? — 4b)x
T2 +ax+b

If x is expressed as the fraction X /Z, and similarly x” = X’ /Z’, then we get:

X' = (a* - 4b)XZ
7' = X? +aXZ + bZ*

Note that these expressions are complete, since, on a double-odd curve, X 2+ aXZ + bZ?
cannot be zero as long as Z # 0. We can rewrite Z” as:

Z =(X+2) (X +b2) +(a-1-bXZ

which implies that, in that representation, ¢, can be computed in cost 2M. The same applies

, . .. ;. . . . L
to 91 J2 Since the composition of ¢, and z91 J2 1 equivalent to a point doubling, this implies
that we can compute the x coordinate of 2., from the x coordinate of Pj, in cost 4M (take
care that we are considering here doubling in G).

For the addition P; = P; + P,, we can use the formulas from section 3.3:

_ by, (wy + ;)
BT T G - b

45

and, similarly, for Py = P, — Py:
_ by (wr — wl)z

*0 = (w1200 — b)z
Multiplying the two values together, and simplifying with xw?* = x% +ax + b, we obtain that:
by (w5 — w}))?

(w1207 — b)4
_ b((axa = 0) (o = x2))?
(w1202 — b)4

b —x)?

- (w1205 — [7)2
Applying a fractional representation of x1, ¥, and x3 (but assuming that xy is non-fractional),
we obtain the following:

X3X0 =

X3 = b(X1Z, - X221)*
Zs = x0(Xi X — b222,)*

We derived these expressions assuming that none of the points Py, 1, P, or P3 was the neutral
N, but it can easily be seen that the formulas are still correct if Py, P, and/or P3 is N, as long
as Py # N,ie.xy # 0.

These formulas can be computed in cost 4M+2S by noticing that:

X2, -XZ1 = (X1 - Z)(Xo + Z) - XiXo + 212,

In total, these formulas lead to a ladder algorithm with cost 8M+2S per scalar bit. This
is slower than the SM+4S achievable with Montgomery ladders, but quite faster than the
previously reported 7M+6S.

Using only w. Wesaw in section 2.4 that elements of G are encoded as their w coordinate.
While it is possible to recover the x coordinate from w, this has a non-negligible cost (a square
root and a Legendre symbol) which we would prefer to avoid when using a ladder implemen-
tation. In Montgomery curves, no point decompression is needed as long as the x coordinate
of Py is provided, and the required final result is not the complete point &P (for scalar £) but
only the x coordinate thereof; this is sufficient for key exchange with Diffie-Hellman, which
is traditionally defined to only use the x coordinate of the resulting point as shared key.

We can obtain similar characteristics if we define that a key exchange over a double-odd
curve should use, as final shared secret, the value w?, for the w coordinate of £P;. Indeed:

— For any point P = (x, w) in G(a, b), the x coordinate of 6, (P) is (2> — 4b) /w?*. We can
thus apply the ladder not in G(«, &), but in the dual curve G(—24, 4* — 4b).

— The value xg is obtained as xy = (2 — 4b)/ wé, which seems fractional, but does not in-
duce any additional overhead in practice: in the computation of X3 and Zs, this merely
implies that the multiplication by xo on the denominator is replaced with a multiplica-
tion by w% /(a* — 4b) on the numerator.

— The final value is obtained as a fraction. Since it contains (2> — 4b) /w?, where w? is the
sought value, it suffices to reduce the inverse of the fraction instead of the fraction, with
no extra overhead.

46

Input validation and “twist security”. Curve25519[4] avoids any validation on the
input by selecting the curve such that it has order 87 for some prime 7, but its quadratic twist
also has order 47’ for some other prime . It can be shown that when a value x is received and
itis 7ot the x coordinate of a point on the curve in the base field, then it is the x coordinate of
apoint on the same curve but in a quadratic field extension IF, 2. The x-only ladder algorithm
can thus proceed, but it really computes in a subgroup of the curve over Ep, and that specific
subgroup happens to be homomorphic to a subgroup of the quadratic twist of the curve on
the base field . Since the algorithm takes care to always use a scalar (private key) which is
a multiple of 8, this usage is safe within the context of a Diffie-Hellman key exchange: even
if an attacker sends an invalid point which is not on the curve, the computation proceeds in
another group of large prime order, which is sufficient to avoid leaking information about
the private key.

This trick has been called “twist security”, and presented as an extra security feature of the
curve. It could have equally been described as a constraint on curve selection, made necessary
by the absence of input validation in the scalar multiplication algorithm. It must be noted,
also, that x-only algorithms are the only situation where that constraint is useful: the “twist
security” is zot a general protection against invalid curve attacks. For instance, on short Weier-
straf$ curves but also on twisted Edwards curves, accepting an invalid input does not imply
that subsequent operations will run over a curve subgroup homomorphic to a subgroup of
the quadratic twist.

In the case of double-odd elliptic curves, our goal is to provide a verifiable prime order
group, free of extra issues that may complicate design and analysis of protocols built upon
it. In the case of a Diffie-Hellman key exchange, this stance would call for proper input vali-
dation, instead of implicitly using the quadratic twist, because the latter would require extra
analysis to show that it is safe in the context of the protocol that uses this key exchange. There-
fore, we prefer to verify that the input value w is correct. This can be done relatively efficiently
by noticing that point decoding involves computing the discriminant A = (w? — 2)* — 4b
of a quadratic equation (see section 2.4); the value w is decodable, i.e. correct, if and only
if A is a quadratic residue. This can be tested with a Legendre symbol computation; there
is no need for a square root computation. As previously described, on some architectures
(especially small embedded systems), Legendre symbol computations are much cheaper than
square roots. This input validation would cost less than 2% of the overall point multiplication
on an ARM Cortex MO+ with a 256-bit field.

Aslong as we perform input validation, there is no need to select a curve with “twist secu-
rity”. This is not a bad property that should be avoided, but it has a definitely lower priority in
the curve selection process than, for instance, choosing the curve parameters 2 and 4 so that
the multiplications by the constants involved in the various formulas are efficient.

4.4 Formula Summary

Table 1 shows a summary of the costs of the formulas presented in the previous sections. For
half of possible field choices (specifically, fields F, where ¢ = 3 or 5 mod 8), we can compute
sequences of successive doublings with a cost of six multiplications per doubling (4M+2S
generally, but down to IM+5S for GLV curves with j = 1728). The overhead for such a
sequence is higher when working in fractional (x, #) coordinates than in Jacobian (x, w) co-

47

ordinates; 2 contrario, fractional (x, #) coordinates have better performance for generic point
addition and mixed point addition.

Point additions (but not doublings) in Jacobian coordinates use unified formulas and
can be implemented into complete routines by way of using a few inexpensive CONDCOPY
calls to properly handle situations when one of the inputs is the neutral N. All other formu-
las, including doublings in Jacobian coordinates, are complete, and their implementation is
straightforward from the arithmetic formulation.

The x-only addition (called “X-add” in table 1) relies on the specific relationship between
the operands maintained in the ladder algorithm (namely, that the x coordinate of the differ-
ence of the two points is known and a non-fractional value).

Coordinates |Curve Addition|Mixed add|Doubling| n doublings
Jacobian (x, w) |any 8M+6S 8M+3S 2M+5S n(2M+5S)
g =3 mod 4 8M+6S 8M+3S IM+6S n(IM+6S)
g=3o0r5 mod8 8M+6S | 8M+3S 2M+5S | n(4M+2S)+IM
a =0(GLV) 8M+6S 8M+3S IM+6S n(IM+5S)+1S
% = x(x? —x+1/2)| SM+6S | SM+3S | 2M+4S n(2M+4S)
Fractional (x, #) |any 10M M 3M+6S | n(2M+58)+2M+1S
g =3 mod 4 10M M 3M+6S | n(IM+6S)+4M-1S
g=3or5mod8 10M M 3M+6S | n(4M+2S)+2M+2S
a =0(GLV) 10M M 3M+6S n(IM+5S8)+3M
2 = x(x? —x+1/2)| 10M 8M 3M+6S | n(2M+4S)+2M+2S
Coordinates |Curve X-add | X-double Ladder (per scalar bit)
Fractional x any 4M+2S 4M 8M+2S

Table 1: Summary of formula costs.

5 Curve Choices

In this section, we select and describe two specific curves that leverage the algorithms ex-
plained in section 4.

5.1 Selection Criteria

Curve parameters should be chosen so as to maximize performance for a given security level.
“Performance” is a polysemic term; it covers consumption of many resource types such as
computation time, RAM, power, and ROM/Flash size, and these values greatly vary depend-
ing on the target architecture. Here, we focus on software architectures, with the three follow-
ing classes of hardware platforms:

— Small embedded systems, whose internal multiplier cannot handle operands larger than
16 bits without truncation. This category includes the ARM Cortex M0+ CPU, whose
muls opcode accepts 32-bit operands, but returns only the low 32 bits of the result.

48

— Larger embedded systems that can compute 32 X 32 — 64 multiplications with relative
ease. In this category, one will find the ARM Cortex M4, many microcontrollers based
on MIPS or RISC-V cores, and others 32-bit platforms.

— Big desktop and server systems with 64-bit registers and efficient 64 x 64 — 128 multi-
pliers. Such systems offer what can practically be viewed as infinite R AM, but with heavy
access penalties when reaching values which are not in L1 cache. These architectures also
often have extensive SIMD instruction sets that can help with parallel implementations.
This category also includes powerful mobile devices such as laptop computers and smart-
phones.

We are aiming for the “128-bit” security level, which, in practice, means that the prime
order group G should have order » > 2250 5r 5012 Typical existing curves in that category in-
clude NIST P-256 (order about 22°¢), secp256k1 (order about 2%°¢) and Curve25519 (order
about 22). We favour fields of integers modulo a prime g = 22%° — m for a very small integer
m; this format has some advantages:

— Reduction of a large integer modulo g is inexpensive, thanks to the choice of 7. The
best choice of 7 would be 1, but this is not possible since 2255 _1isnot prime. The next
best choice is a small 7 < 21%; on small systems with the ARM Cortex M0+ CPU, all
multipliers 7 up to 15 bits yield basically equivalent performance.

— Use of the exponent 255 instead of 256 makes the curves more directly comparable to
Curve25519 (which uses g = 22°° — 19) and can enable some alternate representations,
e.g. using S1-bit limbs (since 255 = 5 x 51). Even when representing values over 32-bit
or 64-bit limbs, the use of a 255-bit modulus 4 means that an extra bit is available to spill
carries, which is convenient in some corner cases.

In all our algorithms, we made cost estimates under the assumption that multiplication
by the curve constants and &, and derived constants such as 2 = (4b — 4%) /(26 — a) and
B = (a—2)/(2b—a), areinexpensive. Best constant values are then, in increasing order of cost:
0,+1,1/2,+2, 2" for ¢ < 16, other small integers. Keeping to these “optimal” constants means
that our primary selection variable is the field order, rather than the constants themselves.

We do not aim specifically for “twist security”, i.e. choosing a curve of order 27 (with »
prime) such that the quadratic twist has order 27" with 7’ being also prime; see section 4.3 for
a discussion about this feature and its usefulness in our case.

5.2 do255e

Our first choice isa GLV curve, withj = 1728. We saw that such curves allow for some of our
most efficient algorithms, especially for repeated doublings; moreover, such curves come with
efficiently computable endomorphisms that yield substantial performance improvements for

12The “128-bit” level means that attacks should require at least 2128 simple operations. Generic al-
227 elements require 2” operations, where
each operation is an application of the group law. However, application of the group law implies quite a
few “simple operations”; e.g. on double-odd curves, it requires at least 6 multiplications or squarings in

gorithms for computing discrete logarithm in a group with

the field, and each such multiplication or squaring itself needs a substantial amount of work, and close
to 40 cycles on modern large 64-bit CPUs. This is why we can normally claim to reach the traditional

level of “128 bits” with fewer than 2256 group elements.

49

some operations (see section 6.2). We explore moduli g = 2> — with increasing values of

m, aiming for curve)/2 = x(x2 + b) with order 27, with » prime. The following shall be noted:

— As was noted in section 2.5, we need g = 1 mod 4, since otherwise the curve would be
supersingular, and weak. We further require that 4 = 5 mod 8 because it helps with the
implementation of square roots, compared with g4 = 1 mod 8.

— We want & = +2, in order to minimize the cost of multiplying by 4. We cannot have
b = 0, L or —1, since all of these are quadratic residues in F, when g = 1 mod 4, so the
next best choice is £2. This is not, in fact, a restrictive condition: for a given g, there are
only four possible curves with j = 1728 (up to isomorphism) and only two of them will
have & ¢ QR; using & = +2 exhausts all possibilities for double-odd curves.

With such criteria, we find that the first match is for 7 = 18651. This gives use our first
curve, which we call do255¢ (“do” stands for “double-odd”, “255” is the field width, and “¢”
is for “endomorphism”, i.e. the defining characteristic of a GLV curve):

Curve do255e:

— Field F, with g = 2*%> - 18651

Curve equation: y* = x(x* — 2)

Curve order: 27, with » = 225% — 131528281291764213006042413802501683931
— Conventional generator G:

G.=2
G, =2

The conventional generator G was chosen by selecting the group element with the lowest
non-zero # coordinate (when interpreted as an integer in the 0 to g — 1 range); in this case,
= 1 corresponds to a valid element on G withx = 2 and y = 2.

The embedding degree is the minimal field extension degree required for definition of Weil
pairings (and similar constructions). For a random curve, this is expected to be very high, close
to the group order itself. This is the case here: embedding degree s (»—1) /12 ~ 22°%42 Thus,
the MOV attack[28] is not applicable to do255e.

It so happens that the prime order » which we obtain is slightly below
venient for scalar decomposition, as will be explained in section 6.2.

225% which is con-

5.3 do255s

GLYV curves have some internal structure which is not found in randomly selected curves,
namely the small complex multiplication (CM) discriminant. For any curve defined over field
F, and with cardinal 7, the quantity (4 +1 - n)* — 4q is a negative integer. If we factorize
that integer and remove all squares of prime factors, then what remains is the CM discrimi-
nant; i.e. we write the integer as DV’ 2 where D is square-free. For randomly selected curves,
D is normally very large, close to g itself in size. However, for curves with j = 1728, D is
minimal: the discriminant is D = —1. This small discriminant is the reason why there are ef-
ficiently computable endomorphisms on the curve (roughly speaking, the smallest degree of
any endomorphism on a curve, as a rational function, rises with D).

50

This small discriminant has historically generated some unease about GLV curves. Most
of the reluctance was in fact related to the patents which cover the acceleration technique
with endomorphisms; however, the relevant patents seem to have expired worldwide in 2019,
and in the US in September 2020([17]"3. Another well-known GLV curve (with j = 0) is
secp256k1, which has been extensively used in Bitcoin, and no weakness has been detected
in it so far, despite its visibility. Nevertheless, there might still be some lingering resistance
to such curves, which is why we propose another double-odd curve which has a large CM
discriminant.

We saw (e.g. algorithm 4) that there are some advantages to aim for a curve such that
4% = 2b. As was pointed out in section 4.1.2, such curves require 4 = 3 mod 8 and have
7 = 128; therefore, for any g, there are only two potential curves to test, with equation y2 =
x(x* £ x + 1/2). Moreover, we prefer to have 2 = —1 (so that — is a square), so we end up
with only a single equation to test, which is y* = x(x* — x +1/2).

We thus explore fields of integers modulo ¢ = 2255 — g for increasing values of .z, such
that g is prime and ¢ = 3 mod 8, until we find a field such that curve y* = x(x* — x +1/2)
has order 27 over that field, for a prime integer 7. The first match is for m = 3957, yielding
the curve do255s:

Curve do255s:

Field F, with g = 2255 — 3957

Curve equation: y* = x(x* — x + 1/2)

— Curve order: 27, with » = 225% + 56904135270672826811114353017034461895
Conventional generator G:

G, =26116555989003923291153849381583511726
884321626891190016751861153053671511729

G, =28004200202554007000979780628642488551
173104653237157345493551052336745442580

As with do255e, the conventional generator G has been chosen as the element of G with
the lowest non-zero # coordinate; in this case, the first match is for z = 3.
It can be noticed that the curve order » = 27 induces:

(g+1—n)* — 4q = — 2% X 4733 X 21559 X 4008140143618905971
X 66821379857449408346450655102995637941435764209893

leading to the CM discriminant D = ((g + 1 — n)* — 4¢) /4 ~ —2%*°Y which is very large,
as is expected of any “non-special” curve.

The embedding degree of do255sis » — 1 = 225400, just like do255e, do255s is not
vulnerable to pairing-based attacks.

13 This assertion is not legal advice, and does not constitute a guarantee that no patent is applicable.
In any case, the nature of patent law is such that no such guarantee can really exist; patent registration
authorities emphatically do 7oz establish whether any given process implementation infringes on any
specific patent or not.

S1

6 Implementations and Benchmarks
In this section we discuss implementation issues. In particular:

— A succinct specification for high-level cryptographic operations (key exchange, signa-
tures) over do255¢e and do255s is given in section 6.1.

— Section 6.2 shows how the GLV endomorphism applies to curve do255e to speed up
multiplications of points by scalars.

— Our implementation on 64-bit x86 (Coffee Lake) is described in section 6.3. The imple-
mentation on the much smaller ARM Cortex MO+ is described in section 6.4.

6.1 High-Level Cryptographic Operations

While do255e and do255s are, by nature, generic groups usable in arbitrarily many high-level
protocol designs, it is beneficial to specify the core functionalities of key pair generation, pub-
lic and private key encoding, key exchange (Diffie-Hellman) and signatures. In the case of
Curve25519 and Ed25519, this was historically not done in the initial publications, and it led
to a large variety of behaviours of implementations when faced with edge cases such as keys
with value zero, low-order points, ignored bits and malleability[40]. We would prefer to avoid
such a situation for do255e and do255s, hence this section.

6.1.1 Bytes and Encoding Formats

We use 8-bit bytes (formally, octets) and every encoding format is an ordered sequence of
bytes with a fixed length. Two types of primitive elements are encoded: elements of the base
field F, (integers modulo g), and scalars (integers modulo the prime 7). The following rules

apply:

— The value is encoded as an integer on the 0 to 4 — 1 (for base field elements) or 0 to » — 1
(for scalars) range. Encoding convention is unsigned little-endian over exactly 32 bytes
(size does not depend on the numerical value); the least significant byte comes first, the
last significant comes last.

— When decoding, the value MUST be verified to be in the proper range. Any value which
is not strictly lower than the modulus MUST be rejected.

— It so happens that g and 7 are lower than 2255 for both curves. Therefore, the most sig-
nificant bit of the last encoding byte is always zero. However, this bit MUST NOT be
ignored when decoding; the encoding has length exactly 32 bytes and all bits of all bytes
are taken into account'®.

In the specifications below, we use literal strings in various places as domain separation
tags. The strings are listed with double-quote characters, e.g. “do255e-ecdh:”; this must
be understood as a sequence of bytes, one per string character, without the double quotes.
There is no length prefix, and no terminating null bytes; thus, this example string has length
12 bytes, the first byte is 0x64, and the last byte is 0x3A.

471¢ §s of course feasible for any application to apply further encoding layers and to leverage the fact
that the top bit is always zero to, for instance, encode some other data in that bit. However, in that case,
the top bit MUST be cleared before considering the value as an encoded base field element or scalar.

52

6.1.2 Group Elements, Private and Public Keys

An element of the group G is a point with coordinates (x, w), or the neutral N. The encoding
of'a group element is the encoding of its w coordinate, which is a base field element (for point
N, the value is zero). The decoding process is described in section 2.4 and involves computing
a square root, then a Legendre symbol. The square root computation may fail, in which case
the input sequence of bytes is not a valid point encoding. All point decoding activities MUST
reject invalid encodings. Note that all rules for field element encoding apply as well; thus,
a sequence of bytes may be successfully decoded into a group element only if that element
would be encoded back into that exact sequence of bytes, and none other. In other words,
encoding is always canonical.

Public keys are group elements which are distinct from the neutral N. If the decoding
process specified above succeeds but the obtained group element is N, then it MUST be ex-
plicitly rejected.

Private keys are scalars, and encoded as scalars (over 32 bytes). A private key of value zero
is NOT valid, and it MUST be rejected if encountered.

The public key corresponding to a private key d is the point 4G, where G is the conven-
tional generator for the group. Since d is a non-zero scalar, the public key is a non-neutral
group element, and every non-neutral group element corresponds to a single private key. Ap-
plications may find it convenient, for performance reasons, to store key pairs (4, 4G), instead
of just private keys: the public key corresponding to a given private key can always be recom-
puted from the private key, but retrieval from storage is usually faster. If an application uses
key pair storage, then it is up to it to ensure that stored public keys match the corresponding
stored private keys.

6.1.3 Private Key Generation

A properly generated private key is chosen uniformly at random among non-zero integers
modulo the prime group order 7. The source of randomness must be cryptographically strong
and have suflicient entropy for the target security level (128 bits). In the case of do255e and
do255s, 7 is very close to a power of two (in both cases, | — 225%| < 2127); this implies that
it is acceptable to obtain only 256 bits (32 bytes) from a source of uniformly random bytes,
interpret that value as an integer in the 0 to 2256 _ 1 range, then reduce it modulo 7 (which
can be done with only two conditional subtractions).

6.1.4 Key Exchange

Key exchange happens between two parties. Each party has generated its own key pair, de-
noted (dy, d1G) and (d, d»G) for parties 1 and 2, respectively. The parties send their public
keys to each other. Party 1 computes Py = d;(d2G), while party 2 computes P, = d»(d1G);
if no communication error or alteration happened, then P; = P,. This is a Diffie-Hellman
process[13]. The resulting shared secret is the field element w?, for the coordinate w of the
shared element P; = P,.

The following rules apply:

— Elements are private and public keys; thus, the relevant rules apply. In particular, private
keys are non-zero, and public keys are not the neutral. Parties MUST reject public keys
with invalid encodings, notably public keys that are the valid encoding of the neutral N.

53

— Ifthe process succeeds, then the key rules imply that the resulting point is not the neutral
N. Therefore, its w coordinate is well-defined. We use w?, not w, as the shared secret, in or-
der to allow use of w-only ladders as described in section 4.3 (these ladder algorithms are
not as efficient as “normal” point multiplication, but they lead to simpler implementa-
tions with very low RAM requirements, and thus may be preferable in some situations).

— The shared secret is not used as is; it must be derived into shared key material. For key
derivation, we use the SHAKE256[22] function. The input to SHAKE256 is the con-
catenation of the following elements:

1. The ASCII-encoded string “do265e-ecdh:” or “do255s-ecdh: ”, depending on
whether the used curve is do255e or do255s.

2. If the key exchange process succeeded (local private key was properly encoded and
non-zero; peer public key was properly encoded and non-neutral), then:

(a) A single byte of value 0x00.

(b) The encoding of the field element w? (shared secret).

Otherwise:

(a) Asingle byte of value OxFF.

(b) The encoding of the local private key (d; for party 1, d, for party 2).

3. The two public keys involved in the exchange, each as a 32-byte sequence. For this
step, the two public keys are interpreted as integers (with unsigned little endian con-
vention), and the numerically lower of the two is injected first.

The SHAKE256 output is then the shared key material resulting from the exchange.
Since SHAKE256 output length is unbounded, an arbitrary amount of key material can
thus be obtained, depending on the requirements of the protocol that leverages this key
exchange.

The key derivation mechanism specified above was designed so that it is possible to hide
from outsiders whether the key exchange succeeded or not. This can be useful in some pro-
tocols where the sent public keys are not visible to attackers, and it more closely matches the
behaviour of Curve25519, albeit with the important difference that the two parties are here
perfectly aware of whether the exchange actually worked or not. The use of the local private
key in lieu of the shared secret makes the resulting key material unpredictable by attackers,
but still reproducible for a given input public key. Since public and private keys are both en-
coded over exactly 32 bytes, the implementation can make it so that the success status cannot
be detected through timing-based side channels.

SHAKE?256 processes data by chunks of 136 bytes; the key derivation process above in-
jects only 109 bytes, and thus requires only a single invocation of the internal Keccak permu-
tation.

6.1.5 Signatures

We define an application of Schnorr signatures. Such a signature is the concatenation of a
group element R and a scalar s; its length is 64 bytes. Take care that the group element R is
not a public key, i.e. it can be the neutral /N; similarly, the scalar 5 can be zero. For an input
data 7 which is to be signed, we define the hashed message (b) as the concatenation of:

1. An identifier for the used hash function. This is the ASCII encoding of the decimal-
dotted format of the object identifier (OID) that designates the hash function, followed

54

by a colon (“:”). Forinstance, if using SHA3-256 (as specified in [22]), then the identifier
isthestring“Q. 16.840.1.101.3.4.2.8:”.

2. The binary output of the identified hash function, when applied to the message 7. The
length is uniquely determined by the hash function; for instance, a SHA3-256 output
always has length exactly 32 bytes.

It is possible the use the “raw” data without prehashing. In that case, the value of 4 is the
concatenation of a single byte of value 0x3A (this is the ASCII encoding of a colon character)
and the message itself. Using raw unhashed data can help in making the signature process
resilient to weaknesses in hash functions with regard to collisions; however, it also makes sig-
nature processing harder for RAM-constrained systems (either generation or verification, or
both, will require buffering of the whole message). We therefore recommend that input data
be hashed with a collision-resistant hash function'.

The signature process goes as follows:

1. The private key is the scalar d; the public key is Q = dG.

2. A per-signature scalar k is generated. This can nominally be obtained with any method
that ensures that £ is chosen uniformly at random in the 0 to » — 1 range and kept fully
secret from outsiders, and that a new scalar £ is generated for each signature in a way
unrelated to previously produced values £. These rules can be hard to guarantee, espe-
cially in embedded systems. The following process can be used. Apply SHAKE256 on
the concatenation of the following elements:

(a) The ASCII encoding of the string “do255e-sign-k:” or “do255s-sign-k:”
(depending on the used curve).

(b) The encoding of the private key d (32 bytes).

(c) Some optional extra seed with a length prefix. A non-constant seed value can be in-
jected here; it will make signatures non-deterministic and may help in providing ad-
ditional protection against some physical attacks such as fault attacks. The extra seed
needs not be secret or unpredictable. Signatures are still secure if the seed is absent.
The seed encoding format is the concatenation of:

i. The seed length (expressed in bytes), encoded over 64 bits (8 bytes) in unsigned
little-endian format.
ii. The seed value.
If no optional seed is provided, then this is considered equivalent to a zero-length
seed: the length prefix is still injected into SHAKE256 and then consists of eight
bytes of value 0x00.

(d) The hashed message b, as specified above.

A SHAKE256 output of length 32 bytes is then extracted, and interpreted as an integer

(unsigned little-endian convention) in the 0 to 2%5¢

modulo 7, which requires at most two conditional subtractions (of 27, then

The use of this process to obtain £ is not mandatory, but following it exactly has the addi-

tional benefit of making the implementation testable against precomputed test vectors.

— 1 range, which is then reduced
)16.

157 e.: don’t use MDS or SHA-1! SHA-256, SHA-512, or all SHA3 variants should be fine.

16 A in the case of private key generation, we leverage here the fact that » is very close to a power of
two; thus, the modular reduction will not induce any statistically significant bias. In full generality, for
arbitrary double-odd curves, one would need to generate more data with SHAKE256, e.g. an excess of
at least 128 bits over the size of 7, and then perform full modular reduction.

55

It also ensures signature safety even if the local hardware source for randomness is biased
or unavailable at signature time.

3. Once k is obtained, the group element R = £G is computed.

4. The challenge value (denoted ¢) is computed. This process again uses SHAKE256 over a
concatenation of elements:
(a) The ASCIIstring “do255e-sign-e:” or “do255s-sign-e:” (dependingon the

used curve).

(b) The 32-byte encoding of R.
(c) The 32-byte encoding of the signer’s public key Q.
(d) The hashed message 4 (as specified above).
A 32-byte output is then obtained from SHAKE256; it is interpreted as an integer (un-
signed little-endian convention) in the 0 to 2256 _ 1 range, which is reduced modulo 7.
This yields the scalar value e.

5. The scalar s = £ + de mod 7 is computed.

As stated above, the signature is the concatenation of the encodings of R and s, in that
order. A signature always has length 64 bytes.
The verification process is the following:

1. The signer’s public key is Q = 4G. This is an input to the process. We assume here that
some assurance has been obtained that the public key is indeed owned by the expected
signer, and that the public key has been validly decoded and is thus not the neutral point
N.

2. Thesignature s parsed into its two elements R and s, which are both decoded. All rules on
canonical encodings apply. Note that it is allowed (though very improbable in practice)
that R = N and/or thats = 0.

3. The challenge value ¢ is computed using the same process as in the signature generation
(see above).

4. The signature is valid if and only if the following equation is fulfilled:

sG—-eQ=R

Note that we are using here addition in the group G, not classic addition of points on
the curve.

There are several ways in which that equation can be verified, but they do not impact the
definition of what is a valid signature.

These signatures are not malleable: without knowledge of the private key, it is not com-
putationally feasible to modify an existing signature over a given message into another valid
signature over the same message and verifiable against the public key. However, since each sig-
nature involves a signer-generated value £, the private key owner can produce many different
signature values over the same message 7z, all verifiable against the public key. This is a known
feature of all Schnorr and similar signatures (e.g. ECDSA).

6.1.6 Hash-to-curve

To support hash-to-curve operations, we use the mappings defined in section 3.7. For both
curves, the process is as follows, for an input message 7:

56

1. Use SHAKE256 over the the concatenation of the following elements:

(a) Thestring “do255e-hash-to-curve:” or “do255s-hash-to-curve:” (again
depending on which curve is used).

(b) Thehashed message b. This value contains either the input data 2, or a hash thereof,
with a prefix identifying the used hash function. Refer to the specification of signa-
tures above for the value of 4.

Then 64 bytes of output are obtained from SHAKE256.

2. The first 32 bytes of output of SHAKE256 are mapped into a group element P; with
the mappings defined below. The remaining 32 bytes of output are also mapped into a
group element P,.

3. The hash output is the group element P; + P, (this is addition in the group G, not on
the curve).

Square root normalization. The mappings below use square roots. Since any non-zero
quadratic residue has two distinct square roots, a rule must be chosen to select which root to
keep. In this specification, we define that the primary square root of a field element is the
unique square root which, as an integer in the 0 to g — 1 range, is even (i.e. its least significant
bit is 0).

Mapping for do255e. Letd be the square root of —1in the field; with the normalization
rule, the value of 4 is:

d =76560637424630265686798235723953257990
27601838558345258426535816504372595438

We apply the mapping into the dual curve y’ 2 = 4B 4+ bx, withd = —4b = 8. The
input bytes are interpreted as an integer in unsigned little-endian convention; this integer is
then reduced modulo ¢, yielding the field elemente. If e = 0, then the mapping output is N
and all subsequent steps may be skipped17. Otherwise, define the following values:

E =4¢* -7
E, =d(4¢* +7)
F = 4e

Gy = 64¢/ +176¢° — 308> — 343¢
G,y = —d(64¢ —176¢° — 308¢> + 343¢)
H =8

It can be shown that none of these values may be zero at this point.

We compute Legendre symbols on G; and G; each symbol will be either 1 (value is a
quadratic residue) or —1 (value is not a quadratic residue). Then:

— If G € QR, thensetx’ = Ej/Fandy’ = (\G)/H.

17Alth0ugh in practice all other steps SHOULD be performed nonetheless, and the value adjusted
at the end, so that the whole process is constant-time.

57

— Otherwise, if G, € QR, thensetx’ = E>/Fandy’ = (VGy)/H.
— Otherwise, setx’ = (E1E2)/F* andy’ = (VG G,) | H?.

The square root computation MUST be normalized as explained above.
The obtained («", ") is a point on the dual curve. We apply the J isogeny to obtain

(x, w) on G on curve do255e:

x = —8.96,2/)/,2

w=x"(x*-8)/(2xy)

Mapping for do255s. We apply the mapping into the dual curve y’* = &’ (x'* +a’x+¥'),
witha’ = =24 = 2and & = 4*> — 4b = —1. The input bytes are interpreted as an integer
in unsigned little-endian convention; this integer is then reduced modulo ¢, yielding the field
elemente. If e = +1, then the mapping outputis /N and all subsequent steps may be skippedls.
Otherwise, define the following values:

E=-2
E2=2€2
F=1-¢

Gy = —2¢° + l4e* — 146> + 2
Gy = 26 — 14¢° + 14¢* — 262
H=(1-¢)?

None of Gy, F and H can be zero; however, G, can be zero (but only if ¢ = 0). We compute
a Legendre symbol on Gi:

— If G € QR, thensetx’ = Ej/Fandy = (\Gy)/H.
— Otherwise, setx’ = E>/Fandy = (—VG,)/H.

The obtained («’, y") is a point on the dual curve. We apply the & J, isogeny to obtain
(x w) on G on curve do255s:

x= 2x/2/y/2
w=x(x"*+ 1)/(2x'y")

Take care that if e = 0 then we get the neutral N, with no defined w coordinate.

6.2 The GLV Method

The GLV method[16] leverages an easily computed endomorphism on the curve to speed up
point multiplication by a scalar. This is applicable to curve do255e, as described here.

18 A5 in the case of the do255e mapping, all other steps SHOULD still be performed, to achieve a
constant-time implementation.

58

Let 7 be a square root of —1in IF,. There are two such square roots; we use the one whose
least significant bit is 0:

7 =76560637424630265686798235723953257990
27601838558345258426535816504372595438

We use it to define the function d such that d(XN) = N and d(x, w) = (—x —yw) (in (x, #)
coordinates, this yields d(x, #) = (—x, y«)). d is an endomorphism on the group G therefore,
d(P) = pP for a constant ¢ which is a square root of =1 modulo ». With our choice of 7, we
have:

© =23076176648693837106500022901799924463
072024427516564762134831823525232195341

Suppose that we have a scalar &; we can decompose it into two smaller scalars ko and 4;
such that £ = ko +uk; mod 7. To do that, we consider the lattice of dimension two with basis
vectors (¢, 1) and (7, 0). The original GLV article[16] describes a method that heuristically
finds a short basis, but we can also apply Lagrange’s algorithm to obtain a shortest basis[31].
It may additionally be noted that since » = 1 mod 4, it can be written as a sum of two squares
7 = s>+ 1%, which means that z = s/t or ¢ /5. Therefore, the vectors (# 5) and (—s, #) are a short
and orthogonal basis for the lattice; this is thus a shortest basis, and Lagrange’s algorithm will
reveal it. For do255e, we have:

s = 34978546233976132960203755786038370577
t =166506827525740345966246169588540045182

Given k, we can compute integers ¢ and d as:

c= |kt/7]
d = |ks/7r]

Integers ¢ and d are nonnegative, and less than 2127,
We can then compute kg and 4;:

ko =k —ds—ct
ki =dt —cs

Note that kg and 4; are signed integers; they may be negative. As shown in [16], we always
have /e% + /elz < 5%+ 2. Since the latter sum is equal to 7 which is slightly below 2%5% in the case
of do255¢, this guarantees that ko and 4; will fit over 128 bits each (including the sign bit).
This allows us to compute the products and subtractions over 128 bits only, ignoring upper
bits.

Computing ¢ and 4 involves rounded divisions. A generic method due to Grandlund
and Montgomery[18] allows computing these rounded divisions with only multiplications
and shifts. In the case of do255¢, we can leverage the fact that 7 is close to 2%%% to specialize
that method into the following process. Let x be an integer such thatx < (7 — 1)max(s, ¢),
and we want to compute |x/7]:

59

l. Settz —x+(r—1)/2

2. Set:y lz/2%%%] +1

3. If yr > g, thenset: y <y — 1
4. Returny

This process relies on the fact that | z/2%>*] (which is a simple right shift) is a good approxi-
mation of z/7. Indeed, if we write z = 2 + 224z, with 0 < 2o < 22°4, then it can be shown
that z17 < z < (21 + 3/2)r; therefore, the rounded division result is either z; or z; + 1.

The most expensive operation above is the computation of the product y7, but this can be
again optimized by noticing that we don’t actually need that product; we just need to know
whether it is greater than z. Moreover, if we write 7 = 2254 — pyy (with 7y < 21%7), then we can
write:

Z—yr= 2254(;/ —1)+z0— 2254)/ + 979
=20 +yro— 2254
This reduces the cost of the product yr to that of yry, with both y and 7y fitting on 127 bits
each.
Once we have decomposed & into kg + ki, we can compute £P for a point P as:

kP = k()P + kg (/zp)
= kP + /613(1))

The point d(P) is inexpensively computed with a single multiplication by a constant (7). In
a classic double-and-add algorithm, these two scalar multiplications can share the doublings,
using the method often called “Shamir’s trick” but first described by Straus[37]; namely, after
one doubling, P and/or §(P) is added to the current accumulator. This is compatible with
window optimizations. Since ko and #; are half the size of £, the total number of extra point
additions is unchanged, but the number of point doublings is halved, thus making the whole
point multiplication process substantially faster.

In general, such speed-ups can be achieved when multiplying a fixed, conventional point
for which appropriate windows may be precomputed (e.g. when doing key pair generation,
or signature generation). The GLV method also handles the case of a dynamically obtained
point P, in particular during a Diffie-Hellman key exchange.

6.3 64-bit x86 Implementation

Our x86 implementations are written mostly in C; one variant includes a few assembly rou-
tines to leverage the mulx and adcx/adox opcodes on x86 CPUs that support them. Base
field elements are represented as 256-bit integers over four 64-bit limbs; all routines accept
integer inputs in the complete range 0 to 2256 _ 1, but they don’t enforce full reduction of
the result on output. Reduction of an intermediate 512-bit integer (e.g. the result of multi-
plication or squaring) modulo 225> — m is performed as follows:

— The value to reduce is split into a low half 2 (four limbs) and a high half 4, (also four
limbs).

60

— Using 2256 = 2 mod g, the value 2ma, is added to a¢. This results in a value that fits
in five limbs; moreover, the highest limb value cannot exceed 2. Let’s write this value
as b+ 2%°¢), with b < 22°¢ and b being the high limb.

— bis truncated to 255 bits, while its former top bit is injected into b; i.e.:

b 2h+b/255]

b «— b mod 2%

— The value & + hm is computed and returned. At that point, the value of hm is at most
m(4m +1), and therefore fits on a single limb, since we work in fields such that m < 2.
Since b < 2753, the addition result will necessarily fit in 256 bits.

Our implementation of operations on fields, especially multiplications and squaring, is
very similar to that of Nath and Sarkar[29] for the field of integers modulo 2%°> — 19, and
offers similar performance. For inversion in the field, we use a constant-time optimized binary
GCD, as described in [32]; a variant of that algorithm is used to compute Legendre symbols,
still in constant-time, and with similar performance: we perform an inversion or a Legendre
symbol with a cost of approximately 2/3rd of that of a square root, which uses a modular
exponentiation. For square roots, optimized addition chains are used on the exponent, so that
the exponentiation uses 251 squarings and 13 multiplications (for do255e), or 252 squarings
and 12 multiplications (for do255s).

For key pair generation and signature generation, when multiplying the conventional
generator, a double-and-add algorithm with 5-bit windows is used; four windows are pre-
computed, corresponding to G, 295G, 213G and 21%° G, so that only 60 doublings are needed,
along with 51 point additions. The doublings are performed as 12 sequences of S successive
doublings, for which we have described optimized formulas. Window points use affine coor-
dinates, so that mixed addition formulas are used, and each point uses only 64 bytes of storage
for two coordinates. Since Booth recoding[9] is used, each window contains 16 points, so the
total size of these precomputed tables is about 4 kilobytes. Some marginal speed-ups could
be obtained by using larger tables and/or more of them; the current 4-way split seems to be
a good compromise that avoids putting too much pressure on the L1 cache. Of course, all
lookups in the tables are done in a fully constant-time way.

For multiplying a random point by a scalar, we use dynamically generated windows, again
with S5-bit windows and Booth recoding. For do255¢, the GLV method (described in sec-
tion 6.2) is applied to reduce the number of doublings. Windows are also normalized to affine
coordinates; we can invert all Z coordinates with a single shared inversion, using a trick due to
Montgomery: for all non-zero x and y, we have 1/x = y/(xy) and 1/y = x/(xy), so it suffices
to invert xy. This trick can be applied recursively. Once the windows are normalized to affine
coordinates, mixed addition formulas can be used. Moreover, using affine coordinates makes
points smaller in RAM, and thus lowers the cost of constant-time lookups.

For signature verification, we use a combined 4-way scalar multiplication with half-size
scalars, again with 5-bit windows and Booth recoding. For do255¢, the GLV scalar splitting
method is used; for do255s, we use the Antipa ez 2/ method[2], along with the implementa-
tion of Lagrange’s lattice basis reduction in dimension two described in [31]. Signature verifi-
cation nominally operates on public data (public key and signature value) and thus does not
require a constant-time implementation; this helps in making window lookups.

61

For all operations, we have the choice between the Jacobian (x, w) coordinates and the
fractional (x, #) coordinates. It is not easy to predict in advance which representation is best.
Raw multiplication and squaring counts only provide an approximate estimate of perfor-
mance. Modern x86 CPUs have deep pipelines with out-of-order execution, and will freely
and dynamically mix opcodes from several arithmetic operations, on top of the optimiza-
tions already performed by the compiler; this implies that dependencies between operations
are also an importantaspect. In our code, after some benchmarks, we settled on the following:

— For do255¢, we use (x, #) coordinates for multiplying G (key pair generation, signature
generation) and for verifying signatures; we use (x, w) coordinates for multiplying a dy-
namically received point by a scalar.

— For do255s, we use (x, w) coordinates for all operations.

For signature verification on do255s, we furthermore use wNAF to reduce the average
number of point additions. We do noz apply the wNAF techniques to signature verification
on do255¢, because they would imply shorter sequences of doublings and thus a greater over-
head with our optimized formulas in (%, #) coordinates.

Our test machine is an Intel Core i5-8295U clocked at 2.3 GHz (“Coffee Lake”), run-
ning Linux (Ubuntu 20.04). TurboBoost was disabled. Performance was measured by first
running 1000 “blank” runs, then 1000 other runs, and using the median cycle count from
the latter. For signature verification, the algorithms and implementations are not constant-
time, so we use random signatures, leading to some extra variance; the reported value is thus
less precise. Obtained performance measurements are shown on table 2 (code compiled with
Clang 10.0, flags -02 and -march=skylake).

Operation do255e|do255s
Key pair generation (with public key encoding) 49122| 52146
Key exchange (with decoding and key derivation)| 105340| 141688
Signature generation 53584| 56872
Signature verification (with public key decoding) | 111894| 158602

Table 2: Measured performance on 64-bit x86 (clock cycles). Note: point encoding (about
7000 cycles) and decoding (about 18000 cycles) costs are included.

6.4 ARM Cortex M0+ Implementation

Compared with large 64-bit x86 CPUs, the ARM Cortex M0+ is at the other end of the
spectrum, and one of the smallest and least-powered on which implementing elliptic curve
cryptography still makes sense. Our implementation is written mostly in assembly. Values are
represented over 8 limbs of 32 bits. Multiplication and squaring in the field use a three-level
signed Karatsuba decomposition, using techniques very similar to those described in [14]; we
indeed obtain very similar performance as well (1464 cycles for multiplication, 997 cycles for
squaring).

Our implementation is fully constant-time (except for signature verification, which is as-
sumed to use only public data). In particular, we do zot assume that RAM accesses don’t

62

leak information about the target address. Indeed, while the Cortex M0+ core does not by it-
self include a cache, it is integrated into a microcontroller circuit which may provide a cache;
that circuit will also route all memory accesses from the core into an interconnection ma-
trix which arbitrates between accesses from the core and from peripherals, in ways which are
rarely documented. Therefore, we cannot in general guarantee that even on a specific target
microcontroller model, all RAM accesses are free of such side channels. It is safer to use a
fully constant-time strategy. The overhead is not great: about 40k cycles for a complete point
multiplication, i.e. less than 2% of the overall cost.

All our external functions comply with the standard ABI for ARMv6-M. Notably, none
of our assembly-written functions touches the r9 register, which, depending on the target
system, may be reserved for all purposes. On some systems (e.g. iOS up to and including ver-
sion 2), r9 may even be reserved at all times, and cannot be used by any function even if the
original value is restored on exit. For maximum portability, we thus shun that register com-
pletely.

Algorithms are mostly the same as in the x86 code, with some notable differences:

— We use 4-bit windows instead of 5-bit windows. This is made so in order to lower RAM
usage; RAM is typically a scarce resource on small microcontrollers. With Booth recod-
ing, a 4-bit window contains 8 points, hence 512 bytes with affine coordinates, but extra
room is needed for temporaries in order to fill the window and invert the Z coordinates.
Our target RAM usage is 1.5 kB of stack space.

— All operations on do255¢ use (x, #) coordinates, including generic point multiplication.
The window is computed in (x, w) coordinates, but converted to (x, #) during normal-
ization to affine coordinates. On the other hand, all operations on do255s use (x, w) co-
ordinates.

— On the ARM Cortex M0+, inversions (with the binary GCD) and Legendre symbol
computations are much faster than square roots; their costs are similar to, respectively,
37 and 30 multiplications in the field.

We verified correctness of the implementation and performed benchmarks on an Atmel
(now Microchip) SAMD20 Xplained Pro board, using an ATSAMD20]J18 microcontrol-
ler[26]. The board was clocked at 8 MHz; Flash access did not incur any wait state, and
all measures are reproducible with 1-cycle accuracy (signature verification is still intrinsically
variable-time, and the reported value is an average). Measured performance is shown in ta-

ble 3.

Operation do255e| do255s
Key pair generation (with public key encoding) |1422257| 1572978
Key exchange (with decoding and key derivation)| 2616600| 3591395
Signature generation 1502127|1653043
Signature verification (with public key decoding) [3255000|3747000

Table 3: Measured performance on ARM Cortex M0+ (clock cycles). Note: point encoding
(about 57000 cycles) and decoding (about 325000 cycles) costs are included.

63

7 Conclusion

In this document, we studied double-odd elliptic curves, an hitherto neglected class of el-
liptic curves. This class is large, since it includes about 1/4th of all curves; algorithms using
these curves do not rely on any new security hypothesis about elliptic curves (in that respect,
double-odd elliptic curves are very similar to Montgomery curves when they were first intro-
duced). We showed that double-odd elliptic curves can offer the comfortable abstraction of
a prime order group, which simplifies usage and analysis in various cryptographic protocols.
This property is similar to what Decaf and Ristretto provide over twisted Edwards curves;
however, double-odd elliptic curves are slightly more economical in space (27 + 1 bits for
n-bit security, instead of 2% + 2 or 2z + 3 for Decaf / Ristretto).

At the same time, safe (complete) formulas for operations on that prime order group
are described, and we show that they can achieve performance levels which are on par with
what can be obtained from twisted Edwards curves. This makes double-odd elliptic curves
attractive.

Many subjects related to double-odd elliptic curves remain to be explored; for instance:

— Parallel implementations, leveraging SIMD opcodes such as AVX2 or AVX512, have not
been studied.

— There may be other coordinate systems with better formulas. Intuitively, the four uncon-
strained values in fractional (x, #) coordinates seem wasteful; there may exist a more con-
strained system (similar to extended coordinates for twisted Edwards curves[20]) with
lower cost.

— Proper use of the formulas, and benchmarks, for batch signature verification should be
studied.

— Some of the ideas developed here might be applicable to other kinds of curves. In par-
ticular, using the (0, 0) point as pivot to make unified formulas might be usable, under
some conditions, on Montgomery curves. General binary curves (curves over fields of
characteristic 2) may also benefit from similar techniques.

— Nothing prevents definition of double-odd elliptic curves on field extensions, and po-
tentially use of combinations of GLV and GLS endomorphisms[15] for even better per-
formance.

Acknowledgements

Paul Bottinelli, Gérald Doussot and Eric Schorn provided reviews of this text and are working
on extra implementations. Samuel Neves sent me the links to the (presumed expired) GLV
patents. Filippo Valsorda helped with the design of the Go implementation API.

My employer, NCC Group, provided the most important resource for research: free time
(although many week-ends were also used, because science happens when it happens).

64

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Accredited Standard Committee X9, Inc., ANSI X9.62: Public Key Cryprography for the Finan-
cial Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik and S. Vanstone, Accelerated Verification
of ECDSA signatures, Selected Areas in Cryptography - SAC 2005, Lecture Notes in Computer
Science, vol 3897, pp- 307-318, 2005.

. T. Arcieri, I. Lovecruft and H. de Valence, The Ristretto Group,

https://ristretto.group/

. D. Bernstein, Curve25519: new Diffie-Hellman speed records, PKC 2006, Lecture Notes in Com-

puter Science, vol. 3958, pp- 207-228, 2006.

. D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards Curves,

https://eprint.iacr.org/2008/013

. D. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, High-speed high-security signatures,

Journal of Cryptographic Engineering, vol. 2, issue 2, pp. 77-89, 2012.

. D. Bernstein, M. Hamburg, A. Krasnova and T. Lange, Elligator: elliptic-curve points indistin-

guishable from uniform random strings, Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, 2013,
https://doi.org/10.1145/2508859.2516734

. D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Advances in Cryp-

tology - ASTACRYPT 2007, Lecture Notes in Computer Science, vol. 4833, pp. 29-50, 2007.
https://eprint.iacr.org/2007/286

. A.Booth, 4 Signed Binary Multiplication Technique, The Quarterly Journal of Mechanics and

Applied Mathematics, vol. 4, issue 2, pp. 236-240, 1951.

D. Chudnovsky and G. Chudnovsky, Sequences of numbers generated by addition in formal
groups and new primality and factorization tests, Advances in Applied Mathematics, vol. 7, is-
sue 4, pp. 385-434, 1986.

C. Costello and B. Smith, Montgomery curves and their arithmetic, Journal of Cryptographic
Engineering, vol. 8, issue 3, pp. 227-240, 2018.

C. Cremers and D. Jackson, Prime, Order Please! Revisiting Small Subgroup and Invalid Curve
Attacks on Protocols using Diffie-Hellman, IEEE 32nd Computer Security Foundations Sympo-
sium (CSF), 2019.

W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transactions on Information
Theory, vol. 22, issue 6, pp. 644-654, 1976.

M. Diill, B. Haase, G. Hinterwilder, M. Hutter, C. Paar, A. Sdnchez and P. Schwabe, High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers, Designs, Codes and Cryptography,
vol. 77, issue 2-3, pp-493-514, 2015.

S. Galbraith, X. Lin and M. Scott, Endomorphisms for faster elliptic curve cryptography on a large
class of curves Journal of Cryptology, vol. 24, issue 3, pp. 446-469, 2011.

R. Gallant, J. Lambert and S. Vanstone, Faster Point Multiplication on Elliptic Curves with Ef-
ficient Endomorphisms, Advances in Cryptology - CRYPTO 2001, Lecture Notes in Computer
Science, vol. 2139, pp- 190-200, 2001.

R. Gallant, R. Lambert and S. Vanstone; R. Lambert and A. Vadekar, Method for accelerating
cryprographic operations on elliptic curves,
https://patents.google.com/patent/US7110538B2/en
https://patents.google.com/patent/US7995752B2/en

T. Grandlund and P. Montgomery, Division by Invariant Integers using Multiplication, ACM
SIGPLAN Notices, vol. 29, issue 6, pp. 61-72, 1994.

M. Hamburg, Decaf: Eliminating cofactors through point compression, Advances in Cryptology -
CRYPTO 2015, Lecture Notes in Computer Science, vol. 9215, pp. 705-723, 2015.

65

https://ristretto.group/
https://eprint.iacr.org/2008/013
https://doi.org/10.1145/2508859.2516734
https://eprint.iacr.org/2007/286
https://patents.google.com/patent/US7110538B2/en
https://patents.google.com/patent/US7995752B2/en

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

H. Hisil, K. Wong, G. Carter and E. Dawson, Twisted Edwards Curves Revisited, Advances in
Cryptology - ASTACRYPT 2008, Lecture Notes in Computer Science, vol. 5350, pp. 326-343,
2008.

Information Technology Laboratory, Digital Signature Standard (DSS), National Institute of
Standard and Technology, FIPS 186-4, 2013.

Information Technology Laboratory, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, National Institute of Standard and Technology, FIPS 202, 2015.
S. Josefsson and L. Liusvaara, Edwards-Curve Digital Signature Algorithm (EdDSA),
https://tools.ietf.org/html/rfc8032

L. Kronecker, Auseinandersetzung einiger Eigenschaften der Klassenzabl idealer complexen
Zablen, 1870.

L. Lovecruft and H. de Valence, Dalek cryprography,

https://dalek.rs/

Microchip, SAM D20 Family (microcontroller datasheet), http: //wwl.microchip.com/
downloads/en/DeviceDoc/SAM_D20_%20Family_Datasheet_DS60001504C.pdf
luigil111 and R. Spagni, Disclosure of a Major Bug in CryptoNote Based Currencies,
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-
cryptonote-based-currencies.html

A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to a finite field,
IEEE Transactions on Information Theory, vol. 39, issue 5, pp. 1639-1646, 1993.

K. Nath and P. Sarkar, Efficient Arithmetic In (Pseudo-)Mersenne Prime Order Fields,
https://eprint.iacr.org/2018/985

T. Pornin, Efficient Elliptic Curve Operations On Microcontrollers With Finite Field Extensions,
https://eprint.iacr.org/2020/009

T. Pornin, Optimized Lattice Basis Reduction In Dimension 2, and Fast Schnorr and EdDSA
Signature Verification,

https://eprint.iacr.org/2020/454

T. Pornin, Optimized Binary GCD for Modular Inversion,
https://eprint.iacr.org/2020/972

T. Pornin, Faster Modular Inversion and Legendre Symbol, and an X25519 Speed Record,
https://research.nccgroup.com/2020/09/28/faster-modular-inversion-
and-legendre-symbol-and-an-x25519-speed-record/

J. Renes, C. Costello and L. Batina, Complete addition formulas for prime order elliptic curves,
Advances in Cryptology — Eurocrypt 2016, Lecture Notes in Computer Science, vol. 9665,
pp. 403-428, 2016.

C.-P. Schnorr, Efficient Identification and Signatures for Smart Cards, Advances in Cryptology -
CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, pp. 239-252, 1989.

A. Shallue and C. van de Woestijne, Construction of rational points on elliptic curves over finite
fields, Algorithm Number Theory Symposium - ANTS 2006, Lecture Notes in Computer Sci-
ence, vol. 4076, pp. 510-524, 2006.

E. Straus, Addition chains of vectors (problem 5125), American Mathematical Monthly, vol. 70,
pp. 806-808, 1964

M. Ulas, Rational Points on Certain Hyperelliptic Curves over Finite Fields, Bulletin of the Polish
Academy of Sciences - Mathematics, vol. 55, issue 2, pp. 97-104, 2007.

R. Wahby and D. Boneh, Fast and simple constant-time bashing to the BLS12-381 elliptic curve,
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019, issue 4,
pp. 154-179, 2019.

H. de Valence, ZIP 215: Explicitly Defining and Modifying Ed25519 Validation Rules,
https://zips.z.cash/zip-0215

66

https://tools.ietf.org/html/rfc8032
https://dalek.rs/
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D20_%20Family_Datasheet_DS60001504C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D20_%20Family_Datasheet_DS60001504C.pdf
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://eprint.iacr.org/2018/985
https://eprint.iacr.org/2020/009
https://eprint.iacr.org/2020/454
https://eprint.iacr.org/2020/972
https://research.nccgroup.com/2020/09/28/faster-modular-inversion-and-legendre-symbol-and-an-x25519-speed-record/
https://research.nccgroup.com/2020/09/28/faster-modular-inversion-and-legendre-symbol-and-an-x25519-speed-record/
https://zips.z.cash/zip-0215

	1 Introduction
	1.1 Motivation
	1.2 Core Ideas
	1.3 Summary of Results
	1.4 Article Outline

	2 Structure of Double-Odd Elliptic Curves
	2.1 Notations
	2.2 Curve Characterization
	2.3 Core Addition Formulas
	2.4 A Prime Order Group
	2.5 Curve Isomorphisms

	3 Formulas
	3.1 On Formula Completeness
	3.2 Affine (x, y) Coordinates
	3.3 Affine (x, w) Coordinates
	3.4 Mapping to a Twisted Edwards Curve Subgroup
	3.5 Affine (x, u) Coordinates
	3.6 Some Isogenies
	3.7 Mappings Into Double-Odd Curves

	4 Algorithms
	4.1 Jacobian (x, w) Coordinates
	4.1.1 Addition in Jacobian (x, w) Coordinates
	4.1.2 Doubling in Jacobian (x, w) Coordinates
	4.1.3 Successive Doublings in Jacobian (x, w) Coordinates

	4.2 Fractional (x, u) Coordinates
	4.2.1 Addition in Fractional (x, u) Coordinates
	4.2.2 Doubling in Fractional (x, u) Coordinates
	4.2.3 Successive Doublings in Fractional (x, u) Coordinates

	4.3 Ladders
	4.4 Formula Summary

	5 Curve Choices
	5.1 Selection Criteria
	5.2 do255e
	5.3 do255s

	6 Implementations and Benchmarks
	6.1 High-Level Cryptographic Operations
	6.1.1 Bytes and Encoding Formats
	6.1.2 Group Elements, Private and Public Keys
	6.1.3 Private Key Generation
	6.1.4 Key Exchange
	6.1.5 Signatures
	6.1.6 Hash-to-curve

	6.2 The GLV Method
	6.3 64-bit x86 Implementation
	6.4 ARM Cortex M0+ Implementation

	7 Conclusion

