Rate this Page

(beta) Building a Simple CPU Performance Profiler with FX#

Created On: Mar 04, 2021 | Last Updated: Jul 14, 2025 | Last Verified: Not Verified

Author: James Reed

In this tutorial, we are going to use FX to do the following:

  1. Capture PyTorch Python code in a way that we can inspect and gather statistics about the structure and execution of the code

  2. Build out a small class that will serve as a simple performance “profiler”, collecting runtime statistics about each part of the model from actual runs.

For this tutorial, we are going to use the torchvision ResNet18 model for demonstration purposes.

import torch
import torch.fx
import torchvision.models as models

rn18 = models.resnet18()
rn18.eval()
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

Now that we have our model, we want to inspect deeper into its performance. That is, for the following invocation, which parts of the model are taking the longest?

input = torch.randn(5, 3, 224, 224)
output = rn18(input)

A common way of answering that question is to go through the program source, add code that collects timestamps at various points in the program, and compare the difference between those timestamps to see how long the regions between the timestamps take.

That technique is certainly applicable to PyTorch code, however it would be nicer if we didn’t have to copy over model code and edit it, especially code we haven’t written (like this torchvision model). Instead, we are going to use FX to automate this “instrumentation” process without needing to modify any source.

First, let’s get some imports out of the way (we will be using all of these later in the code).

import statistics, tabulate, time
from typing import Any, Dict, List
from torch.fx import Interpreter

Note

tabulate is an external library that is not a dependency of PyTorch. We will be using it to more easily visualize performance data. Please make sure you’ve installed it from your favorite Python package source.

Capturing the Model with Symbolic Tracing#

Next, we are going to use FX’s symbolic tracing mechanism to capture the definition of our model in a data structure we can manipulate and examine.

traced_rn18 = torch.fx.symbolic_trace(rn18)
print(traced_rn18.graph)
graph():
    %x : torch.Tensor [num_users=1] = placeholder[target=x]
    %conv1 : [num_users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
    %bn1 : [num_users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
    %relu : [num_users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
    %maxpool : [num_users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
    %layer1_0_conv1 : [num_users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
    %layer1_0_bn1 : [num_users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
    %layer1_0_relu : [num_users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
    %layer1_0_conv2 : [num_users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
    %layer1_0_bn2 : [num_users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
    %add : [num_users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
    %layer1_0_relu_1 : [num_users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
    %layer1_1_conv1 : [num_users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
    %layer1_1_bn1 : [num_users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
    %layer1_1_relu : [num_users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
    %layer1_1_conv2 : [num_users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
    %layer1_1_bn2 : [num_users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
    %add_1 : [num_users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
    %layer1_1_relu_1 : [num_users=2] = call_module[target=layer1.1.relu](args = (%add_1,), kwargs = {})
    %layer2_0_conv1 : [num_users=1] = call_module[target=layer2.0.conv1](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_bn1 : [num_users=1] = call_module[target=layer2.0.bn1](args = (%layer2_0_conv1,), kwargs = {})
    %layer2_0_relu : [num_users=1] = call_module[target=layer2.0.relu](args = (%layer2_0_bn1,), kwargs = {})
    %layer2_0_conv2 : [num_users=1] = call_module[target=layer2.0.conv2](args = (%layer2_0_relu,), kwargs = {})
    %layer2_0_bn2 : [num_users=1] = call_module[target=layer2.0.bn2](args = (%layer2_0_conv2,), kwargs = {})
    %layer2_0_downsample_0 : [num_users=1] = call_module[target=layer2.0.downsample.0](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_downsample_1 : [num_users=1] = call_module[target=layer2.0.downsample.1](args = (%layer2_0_downsample_0,), kwargs = {})
    %add_2 : [num_users=1] = call_function[target=operator.add](args = (%layer2_0_bn2, %layer2_0_downsample_1), kwargs = {})
    %layer2_0_relu_1 : [num_users=2] = call_module[target=layer2.0.relu](args = (%add_2,), kwargs = {})
    %layer2_1_conv1 : [num_users=1] = call_module[target=layer2.1.conv1](args = (%layer2_0_relu_1,), kwargs = {})
    %layer2_1_bn1 : [num_users=1] = call_module[target=layer2.1.bn1](args = (%layer2_1_conv1,), kwargs = {})
    %layer2_1_relu : [num_users=1] = call_module[target=layer2.1.relu](args = (%layer2_1_bn1,), kwargs = {})
    %layer2_1_conv2 : [num_users=1] = call_module[target=layer2.1.conv2](args = (%layer2_1_relu,), kwargs = {})
    %layer2_1_bn2 : [num_users=1] = call_module[target=layer2.1.bn2](args = (%layer2_1_conv2,), kwargs = {})
    %add_3 : [num_users=1] = call_function[target=operator.add](args = (%layer2_1_bn2, %layer2_0_relu_1), kwargs = {})
    %layer2_1_relu_1 : [num_users=2] = call_module[target=layer2.1.relu](args = (%add_3,), kwargs = {})
    %layer3_0_conv1 : [num_users=1] = call_module[target=layer3.0.conv1](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_bn1 : [num_users=1] = call_module[target=layer3.0.bn1](args = (%layer3_0_conv1,), kwargs = {})
    %layer3_0_relu : [num_users=1] = call_module[target=layer3.0.relu](args = (%layer3_0_bn1,), kwargs = {})
    %layer3_0_conv2 : [num_users=1] = call_module[target=layer3.0.conv2](args = (%layer3_0_relu,), kwargs = {})
    %layer3_0_bn2 : [num_users=1] = call_module[target=layer3.0.bn2](args = (%layer3_0_conv2,), kwargs = {})
    %layer3_0_downsample_0 : [num_users=1] = call_module[target=layer3.0.downsample.0](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_downsample_1 : [num_users=1] = call_module[target=layer3.0.downsample.1](args = (%layer3_0_downsample_0,), kwargs = {})
    %add_4 : [num_users=1] = call_function[target=operator.add](args = (%layer3_0_bn2, %layer3_0_downsample_1), kwargs = {})
    %layer3_0_relu_1 : [num_users=2] = call_module[target=layer3.0.relu](args = (%add_4,), kwargs = {})
    %layer3_1_conv1 : [num_users=1] = call_module[target=layer3.1.conv1](args = (%layer3_0_relu_1,), kwargs = {})
    %layer3_1_bn1 : [num_users=1] = call_module[target=layer3.1.bn1](args = (%layer3_1_conv1,), kwargs = {})
    %layer3_1_relu : [num_users=1] = call_module[target=layer3.1.relu](args = (%layer3_1_bn1,), kwargs = {})
    %layer3_1_conv2 : [num_users=1] = call_module[target=layer3.1.conv2](args = (%layer3_1_relu,), kwargs = {})
    %layer3_1_bn2 : [num_users=1] = call_module[target=layer3.1.bn2](args = (%layer3_1_conv2,), kwargs = {})
    %add_5 : [num_users=1] = call_function[target=operator.add](args = (%layer3_1_bn2, %layer3_0_relu_1), kwargs = {})
    %layer3_1_relu_1 : [num_users=2] = call_module[target=layer3.1.relu](args = (%add_5,), kwargs = {})
    %layer4_0_conv1 : [num_users=1] = call_module[target=layer4.0.conv1](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_bn1 : [num_users=1] = call_module[target=layer4.0.bn1](args = (%layer4_0_conv1,), kwargs = {})
    %layer4_0_relu : [num_users=1] = call_module[target=layer4.0.relu](args = (%layer4_0_bn1,), kwargs = {})
    %layer4_0_conv2 : [num_users=1] = call_module[target=layer4.0.conv2](args = (%layer4_0_relu,), kwargs = {})
    %layer4_0_bn2 : [num_users=1] = call_module[target=layer4.0.bn2](args = (%layer4_0_conv2,), kwargs = {})
    %layer4_0_downsample_0 : [num_users=1] = call_module[target=layer4.0.downsample.0](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_downsample_1 : [num_users=1] = call_module[target=layer4.0.downsample.1](args = (%layer4_0_downsample_0,), kwargs = {})
    %add_6 : [num_users=1] = call_function[target=operator.add](args = (%layer4_0_bn2, %layer4_0_downsample_1), kwargs = {})
    %layer4_0_relu_1 : [num_users=2] = call_module[target=layer4.0.relu](args = (%add_6,), kwargs = {})
    %layer4_1_conv1 : [num_users=1] = call_module[target=layer4.1.conv1](args = (%layer4_0_relu_1,), kwargs = {})
    %layer4_1_bn1 : [num_users=1] = call_module[target=layer4.1.bn1](args = (%layer4_1_conv1,), kwargs = {})
    %layer4_1_relu : [num_users=1] = call_module[target=layer4.1.relu](args = (%layer4_1_bn1,), kwargs = {})
    %layer4_1_conv2 : [num_users=1] = call_module[target=layer4.1.conv2](args = (%layer4_1_relu,), kwargs = {})
    %layer4_1_bn2 : [num_users=1] = call_module[target=layer4.1.bn2](args = (%layer4_1_conv2,), kwargs = {})
    %add_7 : [num_users=1] = call_function[target=operator.add](args = (%layer4_1_bn2, %layer4_0_relu_1), kwargs = {})
    %layer4_1_relu_1 : [num_users=1] = call_module[target=layer4.1.relu](args = (%add_7,), kwargs = {})
    %avgpool : [num_users=1] = call_module[target=avgpool](args = (%layer4_1_relu_1,), kwargs = {})
    %flatten : [num_users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
    %fc : [num_users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
    return fc

This gives us a Graph representation of the ResNet18 model. A Graph consists of a series of Nodes connected to each other. Each Node represents a call-site in the Python code (whether to a function, a module, or a method) and the edges (represented as args and kwargs on each node) represent the values passed between these call-sites. More information about the Graph representation and the rest of FX’s APIs ca be found at the FX documentation https://pytorch.org/docs/master/fx.html.

Creating a Profiling Interpreter#

Next, we are going to create a class that inherits from torch.fx.Interpreter. Though the GraphModule that symbolic_trace produces compiles Python code that is run when you call a GraphModule, an alternative way to run a GraphModule is by executing each Node in the Graph one by one. That is the functionality that Interpreter provides: It interprets the graph node- by-node.

By inheriting from Interpreter, we can override various functionality and install the profiling behavior we want. The goal is to have an object to which we can pass a model, invoke the model 1 or more times, then get statistics about how long the model and each part of the model took during those runs.

Let’s define our ProfilingInterpreter class:

class ProfilingInterpreter(Interpreter):
    def __init__(self, mod : torch.nn.Module):
        # Rather than have the user symbolically trace their model,
        # we're going to do it in the constructor. As a result, the
        # user can pass in any ``Module`` without having to worry about
        # symbolic tracing APIs
        gm = torch.fx.symbolic_trace(mod)
        super().__init__(gm)

        # We are going to store away two things here:
        #
        # 1. A list of total runtimes for ``mod``. In other words, we are
        #    storing away the time ``mod(...)`` took each time this
        #    interpreter is called.
        self.total_runtime_sec : List[float] = []
        # 2. A map from ``Node`` to a list of times (in seconds) that
        #    node took to run. This can be seen as similar to (1) but
        #    for specific sub-parts of the model.
        self.runtimes_sec : Dict[torch.fx.Node, List[float]] = {}

    ######################################################################
    # Next, let's override our first method: ``run()``. ``Interpreter``'s ``run``
    # method is the top-level entry point for execution of the model. We will
    # want to intercept this so that we can record the total runtime of the
    # model.

    def run(self, *args) -> Any:
        # Record the time we started running the model
        t_start = time.time()
        # Run the model by delegating back into Interpreter.run()
        return_val = super().run(*args)
        # Record the time we finished running the model
        t_end = time.time()
        # Store the total elapsed time this model execution took in the
        # ``ProfilingInterpreter``
        self.total_runtime_sec.append(t_end - t_start)
        return return_val

    ######################################################################
    # Now, let's override ``run_node``. ``Interpreter`` calls ``run_node`` each
    # time it executes a single node. We will intercept this so that we
    # can measure and record the time taken for each individual call in
    # the model.

    def run_node(self, n : torch.fx.Node) -> Any:
        # Record the time we started running the op
        t_start = time.time()
        # Run the op by delegating back into Interpreter.run_node()
        return_val = super().run_node(n)
        # Record the time we finished running the op
        t_end = time.time()
        # If we don't have an entry for this node in our runtimes_sec
        # data structure, add one with an empty list value.
        self.runtimes_sec.setdefault(n, [])
        # Record the total elapsed time for this single invocation
        # in the runtimes_sec data structure
        self.runtimes_sec[n].append(t_end - t_start)
        return return_val

    ######################################################################
    # Finally, we are going to define a method (one which doesn't override
    # any ``Interpreter`` method) that provides us a nice, organized view of
    # the data we have collected.

    def summary(self, should_sort : bool = False) -> str:
        # Build up a list of summary information for each node
        node_summaries : List[List[Any]] = []
        # Calculate the mean runtime for the whole network. Because the
        # network may have been called multiple times during profiling,
        # we need to summarize the runtimes. We choose to use the
        # arithmetic mean for this.
        mean_total_runtime = statistics.mean(self.total_runtime_sec)

        # For each node, record summary statistics
        for node, runtimes in self.runtimes_sec.items():
            # Similarly, compute the mean runtime for ``node``
            mean_runtime = statistics.mean(runtimes)
            # For easier understanding, we also compute the percentage
            # time each node took with respect to the whole network.
            pct_total = mean_runtime / mean_total_runtime * 100
            # Record the node's type, name of the node, mean runtime, and
            # percent runtime.
            node_summaries.append(
                [node.op, str(node), mean_runtime, pct_total])

        # One of the most important questions to answer when doing performance
        # profiling is "Which op(s) took the longest?". We can make this easy
        # to see by providing sorting functionality in our summary view
        if should_sort:
            node_summaries.sort(key=lambda s: s[2], reverse=True)

        # Use the ``tabulate`` library to create a well-formatted table
        # presenting our summary information
        headers : List[str] = [
            'Op type', 'Op', 'Average runtime (s)', 'Pct total runtime'
        ]
        return tabulate.tabulate(node_summaries, headers=headers)

Note

We use Python’s time.time function to pull wall clock timestamps and compare them. This is not the most accurate way to measure performance, and will only give us a first- order approximation. We use this simple technique only for the purpose of demonstration in this tutorial.

Investigating the Performance of ResNet18#

We can now use ProfilingInterpreter to inspect the performance characteristics of our ResNet18 model;

interp = ProfilingInterpreter(rn18)
interp.run(input)
print(interp.summary(True))
Op type        Op                       Average runtime (s)    Pct total runtime
-------------  ---------------------  ---------------------  -------------------
call_module    maxpool                          0.00485635             8.16969
call_module    conv1                            0.00463676             7.80029
call_module    layer1_0_conv1                   0.00338912             5.70142
call_module    layer1_0_conv2                   0.00322509             5.42547
call_module    layer4_0_conv2                   0.00317121             5.33483
call_module    layer4_1_conv1                   0.00294328             4.95139
call_module    layer1_1_conv1                   0.00290251             4.8828
call_module    layer1_1_conv2                   0.00289297             4.86676
call_module    layer4_1_conv2                   0.00289154             4.86435
call_module    layer2_1_conv2                   0.00269008             4.52544
call_module    layer2_1_conv1                   0.00249147             4.19133
call_module    layer3_1_conv1                   0.00236368             3.97635
call_module    layer2_0_conv2                   0.00229502             3.86084
call_module    layer3_0_conv2                   0.00229478             3.86044
call_module    layer3_1_conv2                   0.00209951             3.53195
call_module    layer4_0_conv1                   0.00189781             3.19263
call_module    layer3_0_conv1                   0.00145459             2.44702
call_module    bn1                              0.00137854             2.31907
call_module    layer2_0_conv1                   0.00126791             2.13297
call_module    layer2_0_downsample_0            0.00077939             1.31115
call_module    layer4_0_downsample_0            0.00050211             0.844684
call_module    layer3_0_downsample_0            0.000460625            0.774895
call_function  add                              0.000433922            0.729974
call_function  add_1                            0.000392914            0.660987
call_module    layer1_0_bn1                     0.000322819            0.543068
call_module    layer1_1_bn2                     0.000308275            0.518602
call_module    layer1_0_bn2                     0.000286818            0.482505
call_module    relu                             0.000284195            0.478093
call_function  add_3                            0.000205278            0.345334
call_module    fc                               0.000194311            0.326884
call_module    layer2_1_bn2                     0.000166893            0.280759
call_module    layer1_1_bn1                     0.000156403            0.263111
call_module    layer1_0_relu_1                  0.000153542            0.258298
call_module    layer2_0_downsample_1            0.000129938            0.218591
call_module    avgpool                          0.000120878            0.20335
call_module    layer4_1_bn2                     0.000114679            0.192922
call_module    layer3_1_bn2                     0.000114202            0.192119
call_module    layer2_1_bn1                     0.000109196            0.183697
call_module    layer2_0_relu                    9.98974e-05            0.168054
call_module    layer1_0_relu                    9.77516e-05            0.164445
call_module    layer2_0_bn2                     9.39369e-05            0.158027
call_module    layer4_0_bn2                     9.39369e-05            0.158027
call_module    layer2_0_bn1                     9.10759e-05            0.153214
call_module    layer4_1_bn1                     8.34465e-05            0.14038
call_module    layer1_1_relu_1                  8.32081e-05            0.139979
call_module    layer3_0_bn2                     8.32081e-05            0.139979
call_module    layer1_1_relu                    7.98702e-05            0.134363
call_function  add_2                            7.96318e-05            0.133962
call_module    layer3_1_bn1                     7.82013e-05            0.131556
call_function  add_5                            7.67708e-05            0.129149
call_module    layer4_0_downsample_1            7.53403e-05            0.126743
output         output                           7.36713e-05            0.123935
call_module    layer4_0_bn1                     6.8903e-05             0.115913
call_module    layer3_0_downsample_1            6.84261e-05            0.115111
call_module    layer3_0_bn1                     6.4373e-05             0.108293
call_function  add_7                            6.41346e-05            0.107892
call_function  add_6                            6.03199e-05            0.101474
call_function  add_4                            5.53131e-05            0.0930516
call_module    layer4_1_relu                    5.24521e-05            0.0882386
call_module    layer4_0_relu                    4.88758e-05            0.0822223
call_module    layer2_0_relu_1                  4.69685e-05            0.0790137
call_module    layer2_1_relu_1                  4.64916e-05            0.0782115
call_module    layer4_0_relu_1                  4.50611e-05            0.075805
call_module    layer4_1_relu_1                  4.43459e-05            0.0746017
call_module    layer2_1_relu                    4.19617e-05            0.0705909
call_module    layer3_1_relu                    3.79086e-05            0.0637724
call_module    layer3_1_relu_1                  3.60012e-05            0.0605638
call_module    layer3_0_relu                    3.55244e-05            0.0597616
call_module    layer3_0_relu_1                  3.52859e-05            0.0593605
call_function  flatten                          2.52724e-05            0.042515
placeholder    x                                1.81198e-05            0.0304824

There are two things we should call out here:

Conclusion#

As we can see, using FX we can easily capture PyTorch programs (even ones we don’t have the source code for!) in a machine-interpretable format and use that for analysis, such as the performance analysis we’ve done here. FX opens up an exciting world of possibilities for working with PyTorch programs.

Finally, since FX is still in beta, we would be happy to hear any feedback you have about using it. Please feel free to use the PyTorch Forums (https://discuss.pytorch.org/) and the issue tracker (pytorch/pytorch#issues) to provide any feedback you might have.

Total running time of the script: (0 minutes 0.327 seconds)