Note
Go to the end to download the full example code.
Transfer Learning for Computer Vision Tutorial#
Created On: Mar 24, 2017 | Last Updated: Jan 27, 2025 | Last Verified: Nov 05, 2024
Author: Sasank Chilamkurthy
In this tutorial, you will learn how to train a convolutional neural network for image classification using transfer learning. You can read more about the transfer learning at cs231n notes
Quoting these notes,
In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.
These two major transfer learning scenarios look as follows:
Finetuning the ConvNet: Instead of random initialization, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual.
ConvNet as fixed feature extractor: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained.
# License: BSD
# Author: Sasank Chilamkurthy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
cudnn.benchmark = True
plt.ion() # interactive mode
<contextlib.ExitStack object at 0x7f0a0e836740>
Load Data#
We will use torchvision and torch.utils.data packages for loading the data.
The problem we’re going to solve today is to train a model to classify ants and bees. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.
This dataset is a very small subset of imagenet.
Note
Download the data from here and extract it to the current directory.
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
Using cuda device
Visualize a few images#
Let’s visualize a few training images so as to understand the data augmentations.
def imshow(inp, title=None):
"""Display image for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
![['ants', 'bees', 'ants', 'bees']](/live/im_/https://docs.pytorch.org/tutorials/_images/sphx_glr_transfer_learning_tutorial_001.png)
Training the model#
Now, let’s write a general function to train a model. Here, we will illustrate:
Scheduling the learning rate
Saving the best model
In the following, parameter scheduler
is an LR scheduler object from
torch.optim.lr_scheduler
.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# Create a temporary directory to save training checkpoints
with TemporaryDirectory() as tempdir:
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_params_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
return model
Visualizing the model predictions#
Generic function to display predictions for a few images
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
Finetuning the ConvNet#
Load a pretrained model and reset final fully connected layer.
model_ft = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to ``nn.Linear(num_ftrs, len(class_names))``.
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
0%| | 0.00/44.7M [00:00<?, ?B/s]
88%|████████▊ | 39.2M/44.7M [00:00<00:00, 411MB/s]
100%|██████████| 44.7M/44.7M [00:00<00:00, 414MB/s]
Train and evaluate#
It should take around 15-25 min on CPU. On GPU though, it takes less than a minute.
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6010 Acc: 0.6844
val Loss: 0.2630 Acc: 0.9020
Epoch 1/24
----------
train Loss: 0.5260 Acc: 0.7459
val Loss: 0.1744 Acc: 0.9150
Epoch 2/24
----------
train Loss: 0.6230 Acc: 0.7664
val Loss: 0.2028 Acc: 0.9085
Epoch 3/24
----------
train Loss: 0.5234 Acc: 0.7787
val Loss: 0.2164 Acc: 0.9281
Epoch 4/24
----------
train Loss: 0.6832 Acc: 0.7418
val Loss: 0.2535 Acc: 0.8954
Epoch 5/24
----------
train Loss: 0.4053 Acc: 0.8320
val Loss: 0.2064 Acc: 0.9281
Epoch 6/24
----------
train Loss: 0.3929 Acc: 0.8238
val Loss: 0.4418 Acc: 0.8497
Epoch 7/24
----------
train Loss: 0.4170 Acc: 0.8074
val Loss: 0.2969 Acc: 0.8824
Epoch 8/24
----------
train Loss: 0.3056 Acc: 0.8689
val Loss: 0.2911 Acc: 0.8824
Epoch 9/24
----------
train Loss: 0.2768 Acc: 0.9016
val Loss: 0.2468 Acc: 0.9085
Epoch 10/24
----------
train Loss: 0.3056 Acc: 0.8566
val Loss: 0.2464 Acc: 0.9020
Epoch 11/24
----------
train Loss: 0.2533 Acc: 0.8893
val Loss: 0.2471 Acc: 0.9085
Epoch 12/24
----------
train Loss: 0.3200 Acc: 0.8730
val Loss: 0.2437 Acc: 0.9085
Epoch 13/24
----------
train Loss: 0.2498 Acc: 0.8893
val Loss: 0.2196 Acc: 0.9150
Epoch 14/24
----------
train Loss: 0.2961 Acc: 0.8648
val Loss: 0.2224 Acc: 0.9216
Epoch 15/24
----------
train Loss: 0.2773 Acc: 0.8811
val Loss: 0.2279 Acc: 0.9216
Epoch 16/24
----------
train Loss: 0.4074 Acc: 0.8279
val Loss: 0.2435 Acc: 0.9020
Epoch 17/24
----------
train Loss: 0.2832 Acc: 0.8975
val Loss: 0.2208 Acc: 0.9150
Epoch 18/24
----------
train Loss: 0.2351 Acc: 0.9139
val Loss: 0.2395 Acc: 0.9150
Epoch 19/24
----------
train Loss: 0.3115 Acc: 0.8566
val Loss: 0.2235 Acc: 0.9150
Epoch 20/24
----------
train Loss: 0.2861 Acc: 0.8770
val Loss: 0.2343 Acc: 0.9085
Epoch 21/24
----------
train Loss: 0.2282 Acc: 0.9057
val Loss: 0.2307 Acc: 0.9281
Epoch 22/24
----------
train Loss: 0.2379 Acc: 0.9016
val Loss: 0.2198 Acc: 0.9346
Epoch 23/24
----------
train Loss: 0.2652 Acc: 0.9098
val Loss: 0.2362 Acc: 0.9085
Epoch 24/24
----------
train Loss: 0.2274 Acc: 0.9098
val Loss: 0.2364 Acc: 0.9150
Training complete in 0m 34s
Best val Acc: 0.934641
visualize_model(model_ft)

ConvNet as fixed feature extractor#
Here, we need to freeze all the network except the final layer. We need
to set requires_grad = False
to freeze the parameters so that the
gradients are not computed in backward()
.
You can read more about this in the documentation here.
model_conv = torchvision.models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
Train and evaluate#
On CPU this will take about half the time compared to previous scenario. This is expected as gradients don’t need to be computed for most of the network. However, forward does need to be computed.
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6500 Acc: 0.6311
val Loss: 0.1972 Acc: 0.9608
Epoch 1/24
----------
train Loss: 0.4726 Acc: 0.7828
val Loss: 0.1576 Acc: 0.9542
Epoch 2/24
----------
train Loss: 0.5731 Acc: 0.7418
val Loss: 0.1581 Acc: 0.9542
Epoch 3/24
----------
train Loss: 0.3397 Acc: 0.8484
val Loss: 0.2111 Acc: 0.9346
Epoch 4/24
----------
train Loss: 0.6174 Acc: 0.7828
val Loss: 0.1893 Acc: 0.9412
Epoch 5/24
----------
train Loss: 0.5276 Acc: 0.7910
val Loss: 0.2630 Acc: 0.9150
Epoch 6/24
----------
train Loss: 0.5067 Acc: 0.8033
val Loss: 0.2675 Acc: 0.9020
Epoch 7/24
----------
train Loss: 0.3642 Acc: 0.8443
val Loss: 0.1356 Acc: 0.9673
Epoch 8/24
----------
train Loss: 0.2843 Acc: 0.8770
val Loss: 0.1571 Acc: 0.9608
Epoch 9/24
----------
train Loss: 0.3888 Acc: 0.8443
val Loss: 0.1969 Acc: 0.9281
Epoch 10/24
----------
train Loss: 0.3848 Acc: 0.8197
val Loss: 0.1855 Acc: 0.9608
Epoch 11/24
----------
train Loss: 0.3933 Acc: 0.8361
val Loss: 0.1836 Acc: 0.9477
Epoch 12/24
----------
train Loss: 0.4084 Acc: 0.8320
val Loss: 0.1899 Acc: 0.9542
Epoch 13/24
----------
train Loss: 0.3889 Acc: 0.8238
val Loss: 0.1745 Acc: 0.9542
Epoch 14/24
----------
train Loss: 0.2673 Acc: 0.8934
val Loss: 0.1802 Acc: 0.9477
Epoch 15/24
----------
train Loss: 0.2769 Acc: 0.8811
val Loss: 0.1832 Acc: 0.9542
Epoch 16/24
----------
train Loss: 0.3020 Acc: 0.8770
val Loss: 0.1727 Acc: 0.9542
Epoch 17/24
----------
train Loss: 0.3457 Acc: 0.8566
val Loss: 0.1721 Acc: 0.9608
Epoch 18/24
----------
train Loss: 0.3702 Acc: 0.8566
val Loss: 0.1546 Acc: 0.9608
Epoch 19/24
----------
train Loss: 0.5122 Acc: 0.7828
val Loss: 0.1814 Acc: 0.9542
Epoch 20/24
----------
train Loss: 0.2892 Acc: 0.8770
val Loss: 0.1712 Acc: 0.9608
Epoch 21/24
----------
train Loss: 0.3547 Acc: 0.8525
val Loss: 0.1724 Acc: 0.9608
Epoch 22/24
----------
train Loss: 0.3297 Acc: 0.8811
val Loss: 0.1769 Acc: 0.9542
Epoch 23/24
----------
train Loss: 0.3066 Acc: 0.8730
val Loss: 0.1856 Acc: 0.9542
Epoch 24/24
----------
train Loss: 0.3817 Acc: 0.8402
val Loss: 0.1596 Acc: 0.9608
Training complete in 0m 27s
Best val Acc: 0.967320
visualize_model(model_conv)
plt.ioff()
plt.show()

Inference on custom images#
Use the trained model to make predictions on custom images and visualize the predicted class labels along with the images.
def visualize_model_predictions(model,img_path):
was_training = model.training
model.eval()
img = Image.open(img_path)
img = data_transforms['val'](img)
img = img.unsqueeze(0)
img = img.to(device)
with torch.no_grad():
outputs = model(img)
_, preds = torch.max(outputs, 1)
ax = plt.subplot(2,2,1)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[preds[0]]}')
imshow(img.cpu().data[0])
model.train(mode=was_training)
visualize_model_predictions(
model_conv,
img_path='data/hymenoptera_data/val/bees/72100438_73de9f17af.jpg'
)
plt.ioff()
plt.show()

Further Learning#
If you would like to learn more about the applications of transfer learning, checkout our Quantized Transfer Learning for Computer Vision Tutorial.
Total running time of the script: (1 minutes 3.256 seconds)