by Josef Strzibny

st edition

Version 1.1

Contents

1 Introduction 14
1.1 Acknowledgment 15
1.2 Expectations 16
1.3 Conventions 17
1.4 Feedback 18

2 Bird’s Eye 19
2.1 High-Level Concepts 20

3 Operating Systems 23
3.1 Fedoraand Friends 24
3.2 Terminalsand Shells 26

32.1 Commands 26
3.2.2 Standard Streams 30
323 FileEditing L. 34
324 Navigation 35
325 Pipelines. 37
33 Summary 39

4 Little Bit of Network Theory
Mental Model

Signals and Waves

Applications

4.2 Summary

Secure Connections

SSH and OpenSSH

A First Server

Remote Shell

File Transfers

SSH on Servers

SSH Tunneling

Hands-On Networking
Network Interfaces

MAC and IP Addresses

Sending and Receiving Traffic
Portsand Sockets

40
41
42
44
50
52
55

56
57
58
60
62
64
65
69
71

7 Server Configuration 101 93

8

7.1 Software Packages 94
7.2 System Managers 95
7.3 Package Repositories, 98
7.3.1 Package Modules 104
7.3.2 Repository Configuration 106
7.3.3 RepositoryData 109
74 Audits. ... 110
7.5 Changing Configuration 111
7.6 Automation 117
7.6.1 BashOptions 119
7.6.2 Working Directory 121
7.6.3 Conditionals 123
7.64 Functions 125
7.6.5 Shebangs 127
7.7 SUMMATY oo vt e e e e 128
Filesystems 129
81 DeviceFiles 130
8.2 Paths, Paths, Paths 133
8.2.1 Web Applications, 136
822 Profiles 138
823 FHSLayout 139
83 LostandFound 140
84 Summary 142

9 User Roles

9.1

9.2
9.3

9.1.1 Switching Users.

9.1.2 Running Commands as Superuser

10 Permissions

10.1

10.2
10.3

Discreet Permissions
10.1.1 FileMode
10.1.2 Changing Permissions
10.1.3 Changing Ownership
Access Control List

Summary

11 Processes

11.1
11.2
11.3
11.4

11.5
11.6
11.7
11.8

Computers
Daemons
Process Managers
Monitoring oo
11.4.1 [proc. . . . oo
1142 ps oo oo e
11.43 topandhtop
11.4.4 w, pstreeand uptime
Logging
Tracing
Termination

Capabilities

143
144
148
149
154
158

159
160
164
167
169
171
175

T1I0SWap . . . o oo ot 205
11.11Recurring Runs L 206
11.12Syncing Time 210
I1.13Summary o vttt e 212
12 Web Servers 213
12.1 Kinds of Web Servers 214
12.2 Running a Web Server 215
12.3 NGINX Configuration 215
12.4 Static Websites L. 227
125 NiceURLs o o o 229
12.6 Configuring Redirects 230
12.7 Separating Multi-Site Configurations 232
12.8 Reverse Proxy 233
12.8.1 Using TCP Sockets 234
12.8.2 Using UNIX Sockets 235
12.8.3 Server References. 238

12.9 Restricting Access vttt 239
12.10Logging 240
12.10.1 Log Rotation With logrotate 241
[2.11Summary oo v e e 244
13 Domain Names and Certificates 245
13.1 Domains 246
132 DNSRecords, 247
13.2.1 Looking-up Records 249
13.2.2 Changing Records 251

13.3 HTTPS and Certificates 252

13.4 Implementing HTTPS 254
13.4.1 Security Options 256
13.4.2 Redirecting HTTP 258

13.5 Let’s Encrypt Certificates 259
1351 Renewals 261

13.6 Summary 263

14 Firewalls 264

14.1 firewalld 265
14.1.1 Installation 265
14.1.2 Overseeing firewalld 266
14.1.3 Changing firewalld Rules 268
14.1.4 Creating Custom Zones 270
14.1.5 Defining Services 271
141.6 RichRules. 273
1417 ICMP 274

14.2 Scanning ports withnmap 275

143 fail2zban. L L 278

14.4 Service Provider Firewalls 281

14.5 Summary 282

15 Bashful Configuration Management 283

15.1 Convention over Configuration 284

15.2 Building a Framework 288

153 Structure 296

1544 Conclusion L 298

16 Language Runtime 299

16.1 Interpreters and Compilers 300
162 RUDY « o oo oo e e 302
16.2.1 System Ruby 302
16.2.2 ruby-install L oo 304
16.2.3 chruby 305
1624 Bundler 307

16.3 Python 310
16.3.1 System Python 310
16.3.2 pyenv 312
1633 venv 314

16,4 Summary 317
17 Application Servers 318
17.1 Threads or Processes? 319
17.1.1 Concurrency and Parallelism 319
17.1.2 Threading, 321

17.2 Zero-Downtime Deployment 323
17.3 Configuration 324
17.4 Ruby Applications 326
17.4.1 Puma Configuration 328

17.5 Python Applications, 333
17.5.1 Gunicorn Configuration 334

17.6 Summary 338

18 Building Services 339

18.1 Defining Serviceso 340
18.1.1 Service Units 343
18.1.2 User Serviceso 351

18.2 Application Services oL 352
18.2.1 Socket Activation 353
18.2.2 Puma Configuration 355
18.2.3 Gunicorn Configuration 356

18.3 Modifying Services L. 357

18.4 Cgroups v o i i 359

18.5 Summary 363

19 Databases and Key-Value Stores 364

19.1 Running PostgreSQL 365
19.1.1 Installation 365
19.1.2 System Service 366
19.1.3 Databases 368
19.1.4 Client Authentication 370
19.1.5 Secure Connection 375
19.1.6 Database Roles 377
19.1.7 Backups 378
19.1.8 Upgrades 380

19.2 Running Redis, 382
19.2.1 Installation 382
19.2.2 System Service, 383
19.2.3 Databases 384
19.2.4 Connections. 386
19.2.5 Security 388

19.2.6 Backups 392

19.2.7 Restoring Backups 395
19.2.8 Performance 396

19.3 Summary 398
20 SELinux 399
20.1 Policies o e 400
20.2 Targeted SELinux 402
20.2.1 User and Role Enforcement 405
20.2.2 Type Enforcement 406

203 File Contexts v v v vt 408
20.4 SELinux Booleans 409
20.5 SELinux Modes 410
20.6 Troubleshooting SELinux 411
20.6.1 auditdlogs 412
20.6.2 sealert and audit2allow. 413

20.7 Writing Policy Files, 416
20.7.1 PolicyRules 418
20.7.2 Custom Policy Modules 421

20.8 Summary 423
21 Storage Concerns 424
21.1 Storage 425
21.1.1 Block Storage 426
21.1.2 NFS .« . o e 430

21.2 Summary e 434

10

22 Backups and Restores 435

22.1 Collection and Compression 436
22.2 Encryption 438
22.3 Summary e e 441
23 Secrets Management 442
23.1 Keeping Secrets 443
23.2 Environment Variables, 444
23.3 Rails Encrypted Credentials 445
234 Summary e e e e 447
24 Application Deployment 448
24.1 Deployment Strategies 449
24.2 Typical Concerns i 450
24.2.1 Loading the Environment 451
24.2.2 Installing Dependencies 451
24.2.3 Running Migrations 454
24.2.4 Preparing Assets 454
24.2.5 Restarting Services L. 455

24.3 Deployingwith Git 457
24.3.1 gitinit 457
2432 gitpush 458
2433 gitcheckout. 459
24.3.4 post-receive 459

244 SUMMATY o c v e e e e 461

11

25

26

Email Delivery 462

25.1 What'sinanemail? 463
252 Sending emails L 464
2521 FirstTry o o o000 oo 464
2522 Reverse DNS 467
25.2.3 SPF, DKIM, and DMARC 468
2524 Relay Servers, 470
25.3 Receivingemails Lo oL 472
254 SUMMATIY oo e e e e 475
Linux Containers 476
26.1 Runtimes and Images 477
26.2 Container Blueprint 478
26.3 Running Containers 480
26.3.1 Podman 483
2632 Volumes 486
264 Networks 487
26.5 Restricting Containers 491
26.6 Building Containers 493
26.6.1 Containerfiles 494
26.6.2 Rootless Containers 497
26.6.3 Application Containers 499
26.6.4 Multi-Target Builds 501
267 Cleaning Up ittt 505
26.8 Summary 506

12

27 Scaling 507

27.1 Considerations and Misconceptions 508
27.2 Single Server 512
27.3 Multiple Servers 514
274 Load Balancing L 516
27.4.1 Implementation 518
2742 Failover L Lo 521

27.5 Multi-Server Deployment, 521
27.6 Instance Types 525
27.7 Summary e e e e 528
28 Fortune Telling 529
28.1 Next Steps 530
282 ClosingWords 532

13

Chapter 1

Introduction

If you are like me, you like to see the applications you write running in pro-
duction. You get excited when you finally see your hard work delivering real
value to people. But web applications don’t run in a vacuum, not even the
serverless ones.

We need servers with compatible processor architecture and connectivity. On
them, we run operating systems, web servers, databases, and firewalls. We
make backup copies of user data. Scale services up and down.

Maybe you are not running this show currently, but you could be.

Together, we’ll get a full-stack web application up and running on a virtual
server in the cloud and focus on transferable skills that you can depend on in
your career for a long time to come.

Apart from a detailed look at systems configuration, we’ll automate typical
deployment tasks. You’ll see how things fit together.

There is a lot to learn, but remember, you don’t have to master it all from the
get-go. Improve as you go.

Josef

14

1.1 Acknowledgment
These people helped me a lot to make this book a reality:

+ Chan Tan-Lui is a talented graphic designer and animator who draw
and animated Tiger the Cat for me.

+ Hannibal helped me tremendously in the beginning to realize a lot
about my early drafts.

+ Dave Woodall helped me polish the book in later stages of my writing.

I am also thankful for any comment, reply, or feedback I got to make this book.
If you helped me in any way or form, know that I am incredibly grateful.

15

1.2 Expectations

This book is meant to be read from the beginning to the end and the knowl-
edge from the previous chapters will be always assumed. If you are already
more experienced, feel free to cherry-pick chapters that interests you.

[expect you have already seen a UNIX-like system before. If you are on macOS
or Windows, you’ll need to set up the SSH tooling on your workstation and
be already familiar with your system shell. Everything else will be done on a
Linux system in the cloud.

I target CentOS 8 and Rocky Linux 8. If your provider doesn’t have images
for them, you can also use CentOS Stream 8 or Fedora. You can also use
RHEL 8, but you need to have a subscription (consult official documentation
on how to use the subscription manager).

16

1.3 Conventions

There are a couple of conventions in the book.

The code, snippets, and command output comes in the following boxes:

$ who
strzibny tty2 2020-09-30 16:20 (tty2)

Please note that I had to sometimes edit the outputs for clarity. Also, I had to
wrap lines myself from time to time. As a result, they might continue on the
following line.

Concepts and references come inside the following grey box:

Linux is a UNIX-like POSIX-based operating system kernel, the part
of your system providing the abstraction of hardware and means to
TUn concurrent programs.

And finally, commentary of Tiger the Cat comes in the yellow box:

Don’t mind me, I am extra.

17

1.4 Feedback

Please e-mail me any feedback, errata, and questions you might have.

The e-mail is strzibny@strzibny.name.

18

Chapter 2

Bird’s Eye

The process of deploying web applications from scratch involves three kinds
of activities: provisioning hardware, installing and configuring software, and
deploying application code. There are multiple ways of how we can do this.
Manual to automated, dedicated servers to cloud, vertical and horizontal scal-
ing, virtual machines, or container orchestration.

There is no single right way of doing deployments, but there are certain traits
of a job well done. Security is one of those. So is performance and a handful of
others. But what is the quality we should strive for? A thorough understanding
of what we are doing. That’s where our focus will be. But now, let’s start with
a bird’s-eye view of a general deployment process.

19

2.1 High-Level Concepts

Deployment in the context of this book is preparing the web application for
use. In other words, it’s the steps, processes, and activities necessary for
making the application to start accepting requests. We usually talk about
the deployment in the following stages that sometimes overlap: Provisioning,
Configuration, and Application Deployment.

Server provisioning is the process of setting up infrastructure and the essen-
tial system software. Be it bare-metal dedicated servers or virtual machines in
the cloud; provisioning means getting them up and running. This involves in-
stalling an operating system, configuring networking, and preparing the SSH
access. With providers like Digital Ocean, a newly provisioned virtual machine
is just a few clicks away.

You may have heard about Infrastructure as Code (IaC), which aims to
automate this initial setup with code. Infrastructure as code allows us to
write a machine-readable definition of what servers have to be provided. By
specifying their compute size, count, provider, and region we can do for in-
frastructure what we’ll do for the system configuration in this book.

You can imagine IaC as writing a program consuming a server provider’s API.
The program would call an endpoint /servers with a payload of what kind
of servers you want. You would get back their IP addresses. An example of
a popular tool in this space is Terraform, which implements popular cloud
providers’ APIs.

The real power behind 1aC is the ability to consolidate a lot of
things together. Depending on the tool and provider in question,
you could define DNS, firewalls, object storage, load balancers,
and more.

But automating everything every single time might not be the best use of our
time. When the application architecture and incoming traffic don’t require
more than a few virtual servers, we can create new machines by hand. A lot
of applications can run sufficiently on a machine or two. With managed load
balancers and databases, there might be little incentive to add the complexity
of yet another tool.

Soon, we'll provision virtual servers from providers like Digital Ocean, Vultr,
and Hetzner from their customer admin area. It’s an ideal place to start and

20

- to the disbelief of many — sufficient for a lot of businesses out there. Once
reaching a certain level of complexity, I recommend to start looking into IaC.

Don'’t feel like you have to know every term or tool mentioned. We'll
get to everything just in time.

Once the resources have been provisioned, the next step is the configuration.
Configuration management is about maintaining a desired state. It’s pur-
pose is to configure the already provisioned servers to a specific state that
can support the application at hand. Think application dependencies, NGINX
configuration, the PostgreSQL pg_hba. conf file, or firewalld settings.

WEe’ll learn how to configure various components to the desired state over
the course of this book. To achieve that, we’ll automate this process using
Bash and SSH connection. Some well-known tools in this space, including
Ansible, are based on the same idea of executing shell commands and scripts
over an SSH connection. They add a little bit more ceremony to make a larger
multi-node deployment more manageable.

Then they are tools like Chef or Puppet that, by default, expect a master node
that acts as a hub for configuration data (holding the desired state). The
other nodes run lightweight agents that can fetch the newly applied state and
configure the node accordingly. This approach might be faster when a higher
number of nodes are considered, but the former feels closer to doing things
yourself with Bash.

Some tools can support more than one stage of deployment.
Sometimes they overlap in functionality. Ansible started as a
configuration management tool but will happily provision your
servers in the IaC fashion today.

The last step is the application deployment. Its simplest form is most likely
copying files over SFTP. In the case of Ruby and Python applications, it is
perhaps uploading the files with scp and restarting the application server.
But for a typical web application today, there are few more tasks to solve,
from updating runtime dependencies to pre-compiling front-end assets.

As you can imagine, we might need a short script or take advantage of a
specialized tool like Capistrano to handle all that. Also, deployment is not

21

always forward. We need to be able to roll back to a previous version of the
application if things go haywire. We could send a different revision over or do
what Capistrano does; keep older versions around and symlink to the desired
one. On the following pages, we'll configure the virtual server to deploy static
sites with a short wrapper around scp and full-featured web applications with
git (a deployment popularized by Heroku):

$ SERVER=165.227.158.200 server/setup.sh
$ git push production v1.0.0

Then there are Linux containers that significantly change how we build the
dependencies and approach the application delivery. A container can be sim-
ilarly pushed to a server as code, or built from this code on the server side.
However, most use containers in combination with a centralized repository
that hosts all releases. Application deployment is then pulling the new version
and replacing the previous running container without any build steps. We’ll
see how to build containers from scratch, and how they change the delivery
of applications.

Automation of running containerized services is container orchestration.
It’s partly provisioning, partly deployment. This approach was originally in-
vented for cloud providers and the consolidation of many services in corpo-
rations. It usually involves moving and scaling container workloads across
many nodes. Today, many developer teams adopt tools like Kubernetes and
OpenShift with the availability of the tools’ managed offerings.

In the end of the book, we'll discuss the next steps you can take with your
application deployment.

22

	Introduction
	Acknowledgment
	Expectations
	Conventions
	Feedback

	Bird's Eye
	High-Level Concepts

	Operating Systems
	Fedora and Friends
	Terminals and Shells
	Commands
	Standard Streams
	File Editing
	Navigation
	Pipelines

	Summary

	Little Bit of Network Theory
	Mental Model
	Signals and Waves
	Internet
	Transport
	Applications

	Summary

	Secure Connections
	SSH and OpenSSH
	SSH Keys

	A First Server
	Remote Shell
	File Transfers
	SSH on Servers
	SSH Tunneling
	Summary

	Hands-On Networking
	Network Interfaces
	MAC and IP Addresses
	Sending and Receiving Traffic
	Hostnames
	Ports and Sockets
	Reboots
	Summary

	Server Configuration 101
	Software Packages
	System Managers
	Package Repositories
	Package Modules
	Repository Configuration
	Repository Data

	Audits
	Changing Configuration
	Automation
	Bash Options
	Working Directory
	Conditionals
	Functions
	Shebangs

	Summary

	Filesystems
	Device Files
	Paths, Paths, Paths
	Web Applications
	Profiles
	FHS Layout

	Lost and Found
	Summary

	User Roles
	Users
	Switching Users
	Running Commands as Superuser

	Groups
	Summary

	Permissions
	Discreet Permissions
	File Mode
	Changing Permissions
	Changing Ownership

	Access Control List
	Summary

	Processes
	Computers
	Daemons
	Process Managers
	Monitoring
	/proc
	ps
	top and htop
	w, pstree and uptime

	Logging
	Tracing
	Termination
	Capabilities
	Niceness
	Swap
	Recurring Runs
	Syncing Time
	Summary

	Web Servers
	Kinds of Web Servers
	Running a Web Server
	NGINX Configuration
	Static Websites
	Nice URLs
	Configuring Redirects
	Separating Multi-Site Configurations
	Reverse Proxy
	Using TCP Sockets
	Using UNIX Sockets
	Server References

	Restricting Access
	Logging
	Log Rotation With logrotate

	Summary

	Domain Names and Certificates
	Domains
	DNS Records
	Looking-up Records
	Changing Records

	HTTPS and Certificates
	Implementing HTTPS
	Security Options
	Redirecting HTTP

	Let's Encrypt Certificates
	Renewals

	Summary

	Firewalls
	firewalld
	Installation
	Overseeing firewalld
	Changing firewalld Rules
	Creating Custom Zones
	Defining Services
	Rich Rules
	ICMP

	Scanning ports with nmap
	fail2ban
	Service Provider Firewalls
	Summary

	Bashful Configuration Management
	Convention over Configuration
	Building a Framework
	Structure
	Conclusion

	Language Runtime
	Interpreters and Compilers
	Ruby
	System Ruby
	ruby-install
	chruby
	Bundler

	Python
	System Python
	pyenv
	venv

	Summary

	Application Servers
	Threads or Processes?
	Concurrency and Parallelism
	Threading

	Zero-Downtime Deployment
	Configuration
	Ruby Applications
	Puma Configuration

	Python Applications
	Gunicorn Configuration

	Summary

	Building Services
	Defining Services
	Service Units
	User Services

	Application Services
	Socket Activation
	Puma Configuration
	Gunicorn Configuration

	Modifying Services
	Cgroups
	Summary

	Databases and Key-Value Stores
	Running PostgreSQL
	Installation
	System Service
	Databases
	Client Authentication
	Secure Connection
	Database Roles
	Backups
	Upgrades

	Running Redis
	Installation
	System Service
	Databases
	Connections
	Security
	Backups
	Restoring Backups
	Performance

	Summary

	SELinux
	Policies
	Targeted SELinux
	User and Role Enforcement
	Type Enforcement

	File Contexts
	SELinux Booleans
	SELinux Modes
	Troubleshooting SELinux
	auditd logs
	sealert and audit2allow

	Writing Policy Files
	Policy Rules
	Custom Policy Modules

	Summary

	Storage Concerns
	Storage
	Block Storage
	NFS

	Summary

	Backups and Restores
	Collection and Compression
	Encryption
	Summary

	Secrets Management
	Keeping Secrets
	Environment Variables
	Rails Encrypted Credentials
	Summary

	Application Deployment
	Deployment Strategies
	Typical Concerns
	Loading the Environment
	Installing Dependencies
	Running Migrations
	Preparing Assets
	Restarting Services

	Deploying with Git
	git-init
	git-push
	git-checkout
	post-receive

	Summary

	Email Delivery
	What's in an email?
	Sending emails
	First Try
	Reverse DNS
	SPF, DKIM, and DMARC
	Relay Servers

	Receiving emails
	Summary

	Linux Containers
	Runtimes and Images
	Container Blueprint
	Running Containers
	Podman
	Volumes

	Networks
	Restricting Containers
	Building Containers
	Containerfiles
	Rootless Containers
	Application Containers
	Multi-Target Builds

	Cleaning Up
	Summary

	Scaling
	Considerations and Misconceptions
	Single Server
	Multiple Servers
	Load Balancing
	Implementation
	Failover

	Multi-Server Deployment
	Instance Types
	Summary

	Fortune Telling
	Next Steps
	Closing Words

