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Chapter 1

Introduction

If you are like me, you like to see the applications you write running in pro-
duction. You get excited when you finally see your hard work delivering real
value to people. But web applications don’t run in a vacuum, not even the
serverless ones.

We need servers with compatible processor architecture and connectivity. On
them, we run operating systems, web servers, databases, and firewalls. We
make backup copies of user data. Scale services up and down.

Maybe you are not running this show currently, but you could be.

Together, we’ll get a full-stack web application up and running on a virtual
server in the cloud and focus on transferable skills that you can depend on in
your career for a long time to come.

Apart from a detailed look at systems configuration, we’ll automate typical
deployment tasks. You’ll see how things fit together.

There is a lot to learn, but remember, you don’t have to master it all from the
get-go. Improve as you go.

Josef

14



1.1 Acknowledgment
These people helped me a lot to make this book a reality:

+ Chan Tan-Lui is a talented graphic designer and animator who draw
and animated Tiger the Cat for me.

+ Hannibal helped me tremendously in the beginning to realize a lot
about my early drafts.

+ Dave Woodall helped me polish the book in later stages of my writing.

I am also thankful for any comment, reply, or feedback I got to make this book.
If you helped me in any way or form, know that I am incredibly grateful.

15



1.2 Expectations

This book is meant to be read from the beginning to the end and the knowl-
edge from the previous chapters will be always assumed. If you are already
more experienced, feel free to cherry-pick chapters that interests you.

[ expect you have already seen a UNIX-like system before. If you are on macOS
or Windows, you’ll need to set up the SSH tooling on your workstation and
be already familiar with your system shell. Everything else will be done on a
Linux system in the cloud.

I target CentOS 8 and Rocky Linux 8. If your provider doesn’t have images
for them, you can also use CentOS Stream 8 or Fedora. You can also use
RHEL 8, but you need to have a subscription (consult official documentation
on how to use the subscription manager).
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1.3 Conventions

There are a couple of conventions in the book.

The code, snippets, and command output comes in the following boxes:

$ who
strzibny tty2 2020-09-30 16:20 (tty2)

Please note that I had to sometimes edit the outputs for clarity. Also, I had to
wrap lines myself from time to time. As a result, they might continue on the
following line.

Concepts and references come inside the following grey box:

Linux is a UNIX-like POSIX-based operating system kernel, the part
of your system providing the abstraction of hardware and means to
TUn concurrent programs.

And finally, commentary of Tiger the Cat comes in the yellow box:

Don’t mind me, I am extra.

17



1.4 Feedback

Please e-mail me any feedback, errata, and questions you might have.

The e-mail is strzibny@strzibny.name.
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Chapter 2

Bird’s Eye

The process of deploying web applications from scratch involves three kinds
of activities: provisioning hardware, installing and configuring software, and
deploying application code. There are multiple ways of how we can do this.
Manual to automated, dedicated servers to cloud, vertical and horizontal scal-
ing, virtual machines, or container orchestration.

There is no single right way of doing deployments, but there are certain traits
of a job well done. Security is one of those. So is performance and a handful of
others. But what is the quality we should strive for? A thorough understanding
of what we are doing. That’s where our focus will be. But now, let’s start with
a bird’s-eye view of a general deployment process.

19



2.1 High-Level Concepts

Deployment in the context of this book is preparing the web application for
use. In other words, it’s the steps, processes, and activities necessary for
making the application to start accepting requests. We usually talk about
the deployment in the following stages that sometimes overlap: Provisioning,
Configuration, and Application Deployment.

Server provisioning is the process of setting up infrastructure and the essen-
tial system software. Be it bare-metal dedicated servers or virtual machines in
the cloud; provisioning means getting them up and running. This involves in-
stalling an operating system, configuring networking, and preparing the SSH
access. With providers like Digital Ocean, a newly provisioned virtual machine
is just a few clicks away.

You may have heard about Infrastructure as Code (IaC), which aims to
automate this initial setup with code. Infrastructure as code allows us to
write a machine-readable definition of what servers have to be provided. By
specifying their compute size, count, provider, and region we can do for in-
frastructure what we’ll do for the system configuration in this book.

You can imagine IaC as writing a program consuming a server provider’s API.
The program would call an endpoint /servers with a payload of what kind
of servers you want. You would get back their IP addresses. An example of
a popular tool in this space is Terraform, which implements popular cloud
providers’ APIs.

The real power behind 1aC is the ability to consolidate a lot of
things together. Depending on the tool and provider in question,
you could define DNS, firewalls, object storage, load balancers,
and more.

But automating everything every single time might not be the best use of our
time. When the application architecture and incoming traffic don’t require
more than a few virtual servers, we can create new machines by hand. A lot
of applications can run sufficiently on a machine or two. With managed load
balancers and databases, there might be little incentive to add the complexity
of yet another tool.

Soon, we'll provision virtual servers from providers like Digital Ocean, Vultr,
and Hetzner from their customer admin area. It’s an ideal place to start and

20



- to the disbelief of many — sufficient for a lot of businesses out there. Once
reaching a certain level of complexity, I recommend to start looking into IaC.

Don'’t feel like you have to know every term or tool mentioned. We'll
get to everything just in time.

Once the resources have been provisioned, the next step is the configuration.
Configuration management is about maintaining a desired state. It’s pur-
pose is to configure the already provisioned servers to a specific state that
can support the application at hand. Think application dependencies, NGINX
configuration, the PostgreSQL pg_hba. conf file, or firewalld settings.

WEe’ll learn how to configure various components to the desired state over
the course of this book. To achieve that, we’ll automate this process using
Bash and SSH connection. Some well-known tools in this space, including
Ansible, are based on the same idea of executing shell commands and scripts
over an SSH connection. They add a little bit more ceremony to make a larger
multi-node deployment more manageable.

Then they are tools like Chef or Puppet that, by default, expect a master node
that acts as a hub for configuration data (holding the desired state). The
other nodes run lightweight agents that can fetch the newly applied state and
configure the node accordingly. This approach might be faster when a higher
number of nodes are considered, but the former feels closer to doing things
yourself with Bash.

Some tools can support more than one stage of deployment.
Sometimes they overlap in functionality. Ansible started as a
configuration management tool but will happily provision your
servers in the IaC fashion today.

The last step is the application deployment. Its simplest form is most likely
copying files over SFTP. In the case of Ruby and Python applications, it is
perhaps uploading the files with scp and restarting the application server.
But for a typical web application today, there are few more tasks to solve,
from updating runtime dependencies to pre-compiling front-end assets.

As you can imagine, we might need a short script or take advantage of a
specialized tool like Capistrano to handle all that. Also, deployment is not
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always forward. We need to be able to roll back to a previous version of the
application if things go haywire. We could send a different revision over or do
what Capistrano does; keep older versions around and symlink to the desired
one. On the following pages, we'll configure the virtual server to deploy static
sites with a short wrapper around scp and full-featured web applications with
git (a deployment popularized by Heroku):

$ SERVER=165.227.158.200 server/setup.sh
$ git push production v1.0.0

Then there are Linux containers that significantly change how we build the
dependencies and approach the application delivery. A container can be sim-
ilarly pushed to a server as code, or built from this code on the server side.
However, most use containers in combination with a centralized repository
that hosts all releases. Application deployment is then pulling the new version
and replacing the previous running container without any build steps. We’ll
see how to build containers from scratch, and how they change the delivery
of applications.

Automation of running containerized services is container orchestration.
It’s partly provisioning, partly deployment. This approach was originally in-
vented for cloud providers and the consolidation of many services in corpo-
rations. It usually involves moving and scaling container workloads across
many nodes. Today, many developer teams adopt tools like Kubernetes and
OpenShift with the availability of the tools’ managed offerings.

In the end of the book, we'll discuss the next steps you can take with your
application deployment.
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