Linux kernel and driver development training
101

Linux kernel and driver

development training bOOtll'h

© Copyright 2004-2026, Bootlin
Creative Commons BY-SA 3.0 license.
Latest update: February 06, 2026

Document updates and training details
https://bootlin. con/training/Linux-kernel

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering

Send them to feedback@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/436


https://bootlin.com/training/linux-kernel
mailto:feedback@bootlin.com

ao Linux kernel and driver development training
o0

o%e]

These slides are the training materials for Bootlin's Linux kernel
and driver development training course.

If you are interested in following this course with an experienced
Bootlin trainer, we offer:

Public online sessions, opened to individual registration. Dates @
announced on our site, registration directly online.

Dedicated online sessions, organized for a team of engineers

from the same company at a date/time chosen by our customer.

Dedicated on-site sessions, organized for a team of engineers m
from the same company, we send a Bootlin trainer on-site to
deliver the training. Icon by Eucalyp, Flaticon

Details and registrations:
https://bootlin.com/training/linux-kernel

Contact: training@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/436


https://bootlin.com/training/linux-kernel

About Bootlin

bootlin

About Bootlin

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/436



a Bootlin introduction
o)
Engineering company
In business since 2004
Before 2018: Free Electrons
Team based in France and ltaly

Serving customers worldwide
Highly focused and recognized expertise
Embedded Linux
Linux kernel
Embedded Linux build systems
Strong open-source contributor
Activities
Engineering services
Training courses

https://bootlin.com

bootlin

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/436


https://bootlin.com

o%e]

Bootloader /
firmware
development

U-Boot, Barebox,
OP-TEE, TF-A, .../

Embedded Linux
build systems

Yocto, OpenEmbedded,
Buildroot, ...

a Bootlin engineering services
o)

Linux kernel
porting and
driver
development

Embedded Linux
integration
Boot time, real-time,

security, multimedia,
networking

Linux BSP
development,
maintenance
and upgrade

Open-source
upstreaming

Get code integrated
in upstream
Linux, U-Boot, Yocto,
Buildroot, ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/436



Bootlin training courses

Embedded Linux Linux kernel Yocto Project Buildroot
system driver system system Embedded Linux
development development development development networking
On-site: 4 or 5 days On-site: 5 days On-site: 3 days On-site: 3 days On-site: 3 days
Online: 7 * 4 hours Online: 7 * 4 hours Online: 4 * 4 hours Online: 5 * 4 hours Online: 4 * 4 hours
Understandin . Real-Time Linux Linux debugging,
) 9 Embedded Linux ) } 9ging
the Linux — with tracing, profiling
graphics stack PREEMPT_RT and performance
analysis
On-site: 2 days On-site: 2 days On-site: 2 days On-site: 3 days
Online: 4 * 4 hours Online: 4 * 4 hours Online: 3 * 4 hours Online: 4 * 4 hours

All our training materials are freely available
under a free documentation license (CC-BY-SA 3.0)
See https://bootlin.com/training/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/436



a@ Bootlin, an open-source contributor
o0

o%e]

Strong contributor to the Linux kernel
In the top 30 of companies contributing to Linux worldwide
Contributions in most areas related to hardware support
Several engineers maintainers of subsystems/platforms
9000 patches contributed
https://bootlin.com/community/contributions/kernel-contributions/
Contributor to Yocto Project
Maintainer of the official documentation
Core participant to the QA effort
Contributor to Buildroot
Co-maintainer
6000 patches contributed
Significant contributions to U-Boot, OP-TEE, Barebox, etc.

Fully open-source training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/436


https://bootlin.com/community/contributions/kernel-contributions/

a Bootlin on-line resources
o)

o%e]

Website with a technical blog:
https://bootlin.com

Engineering services:
https://bootlin.com/engineering \’\,
Training services:

https://bootlin.com/training

LinkedlIn:

https://www.linkedin.com/company/bootlin

L. . ) Icon by Freepik, Flaticon
Elixir - browse Linux kernel sources on-line:

https://elixir.bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/436


https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course bOOtIl'n

information

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/436



4@} Beaglebone Black / Beaglebone black wireless shopping list

> BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org

¢ Texas Instruments AM335x (ARM Cortex-A8 CPU)

512 MB of RAM

4 GB of on-board eMMC storage

Plenty of peripherals and features

2 x 46 pins headers, with access to many expansion buses (12C,
SPI, UART and more)

MicroUSB cable

USB Serial Cable - 3.3 V - Female ends (for serial console) *

Nintendo Nunchuk with UEXT connector 2

Breadboard jumper wires - Male ends (to connect the Nunchuk)
MicroSD card

vV VvVvVvYyVvVvyy

https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3 . .

https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/436


https://beagleboard.org
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

4@} Beagleplay shopping list

> BeaglePlay, from BeagleBoard.org

® Texas Instruments AM625x (4xARM Cortex-A53 CPU)
® 2 GB of RAM

® 16 GB of on-board eMMC storage

® Plenty of peripherals: SPI, 12C, UART, USB...

» USB-C cable for the power supply

» A USB-FTDI cable

» RJ45 cable for networking

» A micro SD card with at least 2G of capacity
> Nintendo Nunchuk with UEXT connector *

> Breadboard jumper wires - Male ends (to connect the Nunchuk) 2

1
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
2
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/436


https://beagleboard.org
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

% IMX93 FRDM shopping list

> NXP i.MX93 11x11 FRDM board Available from Mouser (76 EUR + VAT)

NXP i.MX 93 (Dual ARM Cortex-Ab5 + Cortex-M33)
2 GB LPDDR4

32 GB of on-board eMMC storage

Plenty of peripherals: 12C, SPI, UART, USB...

» 2 USB-C cable for the power supply and the serial console

» RJ45 cable for networking

> USB Serial Cable - 3.3 V - Female ends (for serial labs, two if possible) *
imx93-frdm-nunchuk

imx93-frdm-
nunchuk

v

Nintendo Nunchuk with UEXT connector 2

v

Breadboard jumper wires - Male/Female ends (to connect the Nunchuk) 3

v

RJ45 cable for networking

1
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
2 ..
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3https ://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-200x10-FM/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/436


https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-200x10-FM/

a Training quiz and certificate
b

o%e]

To get your training certificate you must

Attend all sessions of this training course
Achieve more than 50% of correct answers at our final quiz
The final quiz questions are identical to the pre-training quiz
The final quiz must be completed within two weeks of the session end’s date

The training certificate will be sent to you two weeks after the session end'’s date.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/436



Participate!
s

o%e]

During the lectures...
Don't hesitate to ask questions. Other people in the audience may have similar
questions too.
Don't hesitate to share your experience too, for example to compare Linux with
other operating systems you know.
Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer's.
In on-line sessions

Please always keep your camera on!
Also make sure your name is properly filled.
You can also use the "Raise your hand” button when you wish to ask a question but

don't want to interrupt.
All this helps the trainer to engage with participants, see when something needs
clarifying and make the session more interactive, enjoyable and useful for everyone.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/436



Collaborate!
o

o
@ ¢ embedded-inuc-nov2020

QD -

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
Use the dedicated Matrix channel for this session to add
questions.
If your session offers practical labs, you can also report issues,
share screenshots and command output there.
Don't hesitate to share your own answers and to help others
especially when the trainer is unavailable.

The Matrix channel is also a good place to ask questions outside
of training hours, and after the course is over.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/436



a@ Practical lab - Training Setup

o%e]

Prepare your lab environment

Download and extract the lab archive

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/436



Linux Kernel Introduction

Linux Kernel bOOtIl'n

Introduction

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/436



4@,? Origin

» The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

® Linux quickly started to be used as the kernel for free software
operating systems
> Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

> As of today, about 2,000+ people contribute to each kernel

release, individuals or companies big and small. Linus Torvalds in 2014
Image credits (Wikipedia):

https://bit.1ly/2UIa1TD

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/436


https://bit.ly/2UIa1TD

4@3 Linux kernel in the system

User app B
Library A User app A
C library
Call to services Event notification,
information exposition
Linux kernel
Manage hardware Event notification
Hardware

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

19/436



a Linux kernel main roles
o)

o%e]

Manage all the hardware resources: CPU, memory, 1/0.

Provide a set of portable, architecture and hardware independent APIs to
allow user space applications and libraries to use the hardware resources.
Handle concurrent accesses and usage of hardware resources from different
applications.
Example: a single network interface is used by multiple user space applications
through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/436



System calls
s

o%e]

The main interface between the kernel and user space is
the set of system calls
About 400 system calls that provide the main kernel
services
File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.
This interface is stable over time: only new system calls
can be added by the kernel developers This system call
interface is wrapped by the C library, and user space Image credits (Wikipedia):
applications usually never make a system call directly https://bit.ly/2U2rdGB
but rather use the corresponding C library function

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/436


https://bit.ly/2U2rdGB

a Pseudo filesystems
o)

o%e]

Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel
The two most important pseudo filesystems are
proc, usually mounted on /proc:
Operating system related information (processes, memory management
parameters...)
sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/436



a Linux Kernel Introduction
o)

g

Linux kernel sources

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/436



60 Location of the official kernel sources
o0

o%e]

The mainline versions of the Linux kernel, as released by Torvalds
These versions follow the development model of the kernel (master branch)
They may not contain the latest developments from a specific area yet
A good pick for products development phase
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/436


https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

a Linux versioning scheme
o)

o%e]

Until 2003, there was a new “stabilized” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).
Since 2003, there is a new official release of Linux about every 10 weeks:

Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)
Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)
Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)
Versions 5.0 (Mar. 2019) to 5.19 (July 2022)
Version 6.0 was released in Oct. 2022.

Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/436



a Linux development model
o)

o%e]

Each new release starts with a two-week merge window for new features
Follow about 8 release candidates (one week each)

Until adoption of a new official release.

2 weeks 6-10 weeks
A > A
< P >
Merge window Bug-fixing period "master" branch
A
I >
6.0 6.1-rcl 6.1-rc2 6.1-rc3 6.1-rc4 6.1-rc5 6.1

(rc: Release Candidates)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/436



o%e]

ao Need to further stabilize the official kernels

Issue: bug and security fixes only merged into the master branch, need to update
to the latest kernel to benefit from them.

Solution: a stable maintainers team goes through all the patches merged into
Torvald's tree and backports the relevant ones into their stable branches for at

least a few months.

2 weeks

6-10 weeks

& 3y & 3y
< > < >
Merge window Bug-fixing period “master" branch
(Torvalds)
>
6.0 6.1-rcl 6.1-rc2 6.1-rc3 6.1-rc4 6.1-rc5 6.1
: (rc: Release Candidates) ! 6.1 stable branch
E E (stable team
1 6.0 stable branch
1 (stable team) 6.11
3
| | | ”
6.0.1 6.0.2 6.0.3 6.0.4

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

27/436



a@ Location of the stable kernel sources
o0

o%e]

The stable versions of the Linux kernel, as maintained by a maintainers group
These versions do not bring new features compared to Linus’ tree
Only bug fixes and security fixes are pulled there
Each version is stabilized during the development period of the next mainline kernel
A good pick for products commercialization phase
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
Certain versions will be maintained much longer

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/436


https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

o%e]

60 Need for long term support

Issue: bug and security fixes only released for most recent kernel versions.

Solution: the last release of each year is made an LTS (Long Term Support)
release, and is supposed to be supported (and receive bug and security fixes) for

up to 6 years.

Longterm release kernels

Version Maintainer Released Projected EOL
6.12 Greg Kroah-Hartman & Sasha Levin 2024-11-17 Dec, 2026
6.6 Greg Kroah-Hartman & Sasha Levin 2023-10-29 Dec, 2026
6.1 Greg Kroah-Hartman & Sasha Levin 2022-12-1 Dec, 2027
5.15 Greg Kroah-Hartman & Sasha Levin 2021-10-31 Dec, 2026
5.10 Greg Kroah-Hartman & Sasha Levin 2020-12-13 Dec, 2026
5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 Dec, 2025

Captured on https://kernel.org in Nov.
2023, following the Releases link.

Example at Google: starting from Android O (2017), all new Android devices have
to run such an LTS kernel.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

29/436


https://kernel.org
https://www.kernel.org/category/releases.html

60 Need for even longer term support
o0

o%e]

You could also get long term support from a commercial embedded Linux
provider.

Wind River Linux can be supported for up to 15 years.

Ubuntu Core can be supported for up to 10 years.
"If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10 and 6.1) on selected architectures. See
https://wiki.linuxfoundation.org/civilinfrastructureplatform/start.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/436


https://wiki.linuxfoundation.org/civilinfrastructureplatform/start

a@ Location of non-official kernel sources
o0

Many chip vendors supply their own kernel sources
Focusing on hardware support first
Can have a very important delta with mainline Linux
Sometimes they break support for other platforms/devices without caring
Useful in early phases only when mainline hasn't caught up yet (many vendors invest
in the mainline kernel at the same time)
Suitable for PoC, not suitable for products on the long term as usually no updates
are provided to these kernels
Getting stuck with a deprecated system with broken software that cannot be
updated has a real cost in the end
Many kernel sub-communities maintain their own kernel, with usually newer but
fewer stable features, only for cutting-edge development
Architecture communities (ARM, MIPS, PowerPC, etc)
Device drivers communities (12C, SPI, USB, PCl, network, etc)
Other communities (filesystems, memory-management, scheduling, etc)
Not suitable to be used in products

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/436



a Linux kernel size and structure
o)

Jo3e!

Linux v5.18 sources: close to 80k files, 35M lines, 1.3GiB
But a compressed Linux kernel just sizes a few megabytes.

So, why are these sources so big?

Because they include numerous device drivers, network protocols, architectures,

filesystems... The core is pretty small!

As of kernel version v5.18 (in percentage of total number of lines):

drivers/: 61.1% include/: 3.5%

arch/: 11.6% Documentation/:

fs/: 4.4% 34%

sound/: 4.1% kernel/: 1.3%

tools/: 3.9% Lib/: 0.7%
usr/: 0.6%

net/: 3.7%
mm/: 0.5%

scripts/, security/, crypto/,
block/, samples/, ipc/, virt/,
init/, certs/: <0.5%

Build system files: Kbuild,
Kconfig, Makefile

Other files: COPYING, CREDITS
MAINTAINERS, README

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/436


https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/usr/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/ipc/
https://elixir.bootlin.com/linux/latest/source/virt/
https://elixir.bootlin.com/linux/latest/source/init/
https://elixir.bootlin.com/linux/latest/source/certs/
https://elixir.bootlin.com/linux/latest/source/Kbuild
https://elixir.bootlin.com/linux/latest/source/Kconfig
https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/COPYING
https://elixir.bootlin.com/linux/latest/source/CREDITS
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS
https://elixir.bootlin.com/linux/latest/source/README

a@ Practical lab - Downloading kernel source code
o0

o%e]

Clone the mainline Linux source tree with git

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/436



a Linux Kernel Introduction
o)

g

Linux kernel source code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/436



ao Programming language

Jo3e!

Implemented in C like all UNIX systems
A little Assembly is used too:

CPU and machine initialization, exceptions
Critical library routines.

No C++ used, see https://1kml.org/1kml/2004/1/20/20

Rust support is currently being introduced: drivers/net/phy/ax88796b_rust.rs
is a first driver written in Rust.

All the code compiled with gcc

Many gcc specific extensions used in the kernel code, any ANSI C compiler will not
compile the kernel
See https://gcc.gnu.org/onlinedocs/gecc-10.2.0/gcc/C-Extensions. html

A subset of the supported architectures can be built with the LLVM C compiler
(Clang) too: https://clangbuiltlinux.github.io/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/436


https://lkml.org/lkml/2004/1/20/20
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/ax88796b_rust.rs
https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/C-Extensions.html
https://clangbuiltlinux.github.io/

N li
Q@ o C library

o%e]

The kernel has to be standalone and can't use user space code.

Architectural reason: user space is implemented on top of kernel services, not the
opposite.

Technical reason: the kernel is on its own during the boot up phase, before it has
accessed a root filesystem.

Hence, kernel code has to supply its own library implementations (string utilities,
cryptography, uncompression...)

So, you can't use standard C library functions in kernel code (printf(),

memset (), malloc(),...).

Fortunately, the kernel provides similar C functions for your convenience, like
printk(), memset(), kmalloc(), ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/436


https://elixir.bootlin.com/linux/latest/ident/printk
https://elixir.bootlin.com/linux/latest/ident/memset
https://elixir.bootlin.com/linux/latest/ident/kmalloc

Portabilit
Q@ ortability

o%e]

The Linux kernel code is designed to be portable

All code outside arch/ should be portable
To this aim, the kernel provides macros and functions to abstract the architecture
specific details

Endianness

[/O memory access

Memory barriers to provide ordering guarantees if needed
DMA API to flush and invalidate caches if needed

Never use floating point numbers in kernel code. Your code may need to run on a
low-end processor without a floating point unit.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/436


https://elixir.bootlin.com/linux/latest/source/arch/

60 Linux kernel to user API/ABI stability

038!

Linux kernel to userspace APl is stable

Source code for userspace applications will not have to
be updated when compiling for a more recent kernel

System calls, /proc and /sys content cannot be
removed or changed. Only new entries can be added.

Linux kernel to userspace ABI is stable

Binaries are portable and can be executed on a more
recent kernel

The way memory is accessed, the size of the variables in
memory, how structures are organized, the calling
convention, etc, are all stable over time.

Linux kernel to user API

API stability is guaranteed, source code
is portable!

Linux kernel to user ABI
compatible ABI can be guaranteed,

binaries are portable
-
A _’-

compiled against —)
LSB 5.0 for x86-64

compiled against

LSB 5.0 for x86-64
Modified Image from Wikipedia:
https://bit.1ly/2U2rdGB

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

38/436


https://bit.ly/2U2rdGB

% Linux internal API/ABI instability

Linux internal APl is not stable

» The source code of a driver is not portable across
versions
In-tree drivers are updated by the developer proposing
the API change: works great for mainline code
® An out-of-tree driver compiled for a given version may
no longer compile or work on a more recent one
® See process/stable-api-nonsense for reasons why

Linux internal ABI is not stable

» A binary module compiled for a given kernel version
cannot be used with another version
® The module loading utilities will perform this check
prior to the insertion

Linux internal API

X API stability is not guaranteed,
source code portability is not given

."’."’.
. .

Linux internal ABI

X no stable ABI over Linux kernel releases,
binaries are not portable

)

in Linux v5.19

=

compiled for in Linux v5.18

Linux v5.17 .
in Linux v5.17

Modified Image from Wikipedia:
https://bit.1ly/2U2rdGB

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

39/436


https://www.kernel.org/doc/html/latest/process/stable-api-nonsense.html
https://bit.ly/2U2rdGB

a Kernel memory constraints
b

o%e]

No memory protection

The kernel doesn't try to recover from attemps to access illegal memory locations.
It just dumps oops messages on the system console.

Fixed size stack (8 or 4 KB). Unlike in user space, no mechanism was
implemented to make it grow. Don't use recursion!

Swapping is not implemented for kernel memory either
(except tmpfs which lives completely in the page cache and on swap)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/436



60 Linux kernel licensing constraints
o0

o%e]

The Linux kernel is licensed under the GNU General Public License version 2
This license gives you the right to use, study, modify and share the software freely
However, when the software is redistributed, either modified or unmodified, the

GPL requires that you redistribute the software under the same license, with the
source code

If modifications are made to the Linux kernel (for example to adapt it to your
hardware), it is a derivative work of the kernel, and therefore must be released under

GPLv2.
The GPL license has been successfully enforced in courts:
https://en.wikipedia.org/wiki/Gpl-violations.org#Notable_victories
However, you're only required to do so

At the time the device starts to be distributed
To your customers, not to the entire world

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/436


https://en.wikipedia.org/wiki/Gpl-violations.org#Notable_victories

ao Proprietary code and the kernel

o%e]

It is illegal to distribute a binary kernel that includes statically compiled
proprietary drivers

The kernel modules are a gray area: unclear if they are legal or not

The general opinion of the kernel community is that proprietary modules are bad:
process/kernel-driver-statement
From a legal point of view, each driver is probably a different case:

Are they derived works of the kernel?

Are they designed to be used with another operating system?

Is it really useful to keep drivers secret anyway?

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/436


https://www.kernel.org/doc/html/latest/process/kernel-driver-statement.html

a@ Abusing the kernel licensing constraints
o0

o%e]

There are some examples of

proprietary drivers The current trend is to hide the logic

in the firmware or in userspace. The
GPL kernel driver is almost empty and
either:

Nvidia uses a wrapper between their
drivers and the kernel
They claim the drivers could be used

Blindl i i ing fl f
with a different OS with another ind y writes an incoming flow o
bytes in the hardware

wrapper .
PP . . Exposes a huge MMIO region to
Unclear whether it makes it legal or
userspace through mmap
not
kernel | userspace
|
Ui K [ [(empy Binary
inar, INUX kKerne {u] blob
Linux kernel [ unux \ &3 module

wrapper CEN

Userspace
GPL

library

GPL

a0 Non GPL

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/436



a@ Advantages of GPL drivers

o%e]

You don't have to write your driver from scratch. You can reuse code from similar
free software drivers.

Your drivers can be freely and easily shipped by others (for example by Linux
distributions or embedded Linux build systems).

Legal certainty, you are sure that a GPL driver is fine from a legal point of view.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/436



ao Advantages of mainlining your kernel drivers
o0

o%e]

The community, reviewers and maintainers will review your code before accepting
it, offering you the opportunity to enhance it and understand better the internal
APls.

Once accepted, you will get cost-free bug and security fixes, support for new
features, and general improvements.

Your work will automatically follow the APl changes.
Accessing your code will be much easier for users.
Your code will remain valid no matter the kernel version.

This will for sure reduce your maintenance and support work

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/436



ao User space device drivers 1/2

o%e]

The kernel provides some mechanisms to access hardware from userspace:
USB devices with libusb, https://1libusb.info/
SPI devices with spidev, spi/spidev
12C devices with i2cdev, i2c/dev-interface
GPIOs with libgpiod, https://libgpiod.readthedocs.io
Memory-mapped devices with UIO, including interrupt handling,
driver-api/uio-howto
These solutions can only be used if:
There is no need to leverage an existing kernel subsystem such as the networking

stack or filesystems.
There is no need for the kernel to act as a “multiplexer” for the device: only one

application accesses the device.
Certain classes of devices like printers and scanners do not have any kernel
support, they have always been handled in user space for historical reasons.
Otherwise this is not how the system should be architectured. Kernel drivers
should always be preferred!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/436


https://libusb.info/
https://www.kernel.org/doc/html/latest/spi/spidev.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://libgpiod.readthedocs.io
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html

ao User space device drivers 2/2

o%e]

Advantages
No need for kernel coding skills.
Drivers can be written in any language, even Perl!
Drivers can be kept proprietary.
Driver code can be killed and debugged. Cannot crash the kernel.
Can use floating-point computation.
Potentially higher performance, especially for memory-mapped devices, thanks to the
avoidance of system calls.

Drawbacks
The kernel has no longer access to the device.
None of the standard applications will be able to use it.
Cannot use any hardware abstraction or software helpers from the kernel
Need to adapt applications when changing the hardware.
Less straightforward to handle interrupts: increased latency.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/436



ao Practical lab - Kernel Source Code - Exploring

o%e]

Explore kernel sources manually

Use automated tools to explore the source code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/436



Linux Kernel Usage

bootlin

Linux Kernel Usage

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/436



a Linux Kernel Usage
o)

o%e]

Kernel configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/436



a Kernel configuration
o)

o%e]

The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

Thousands of options are available, that are used to selectively compile parts of
the kernel source code

The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled
The set of options depends

On the target architecture and on your hardware (for device drivers, etc.)
On the capabilities you would like to give to your kernel (network capabilities,
filesystems, real-time, etc.). Such generic options are available in all architectures.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/436



a@ Kernel configuration and build system
o0

o%e]

The kernel configuration and build system is based on multiple Makefiles

One only interacts with the main Makefile, present at the top directory of the
kernel source tree
Interaction takes place
using the make tool, which parses the Makefile
through various targets, defining which action should be done (configuration,
compilation, installation, etc.).
Run make help to see all available targets.
Example
cd linux/
make <target>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/436


https://elixir.bootlin.com/linux/latest/source/Makefile

a@ Specifying the target architecture

o%e]

First, specify the architecture for the kernel to build

Set ARCH to the name of a directory under arch/:
ARCH=arm or ARCH=arm64 or ARCH=riscyv, etc

By default, the kernel build system assumes that the kernel is configured and built
for the host architecture (x86 in our case, native kernel compiling)
The kernel build system will use this setting to:

Use the configuration options for the target architecture.
Compile the kernel with source code and headers for the target architecture.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/436


https://elixir.bootlin.com/linux/latest/source/arch/

a Choosing a compiler
o)

o%e]

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc
Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.
When compiling natively

Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host
architecture using gcc.

When using a cross-compiler

Specify the prefix of your cross-compiler executable, for example for
arm-linux-gnueabi-gcc:
CROSS_COMPILE=arm-1linux-gnueabi-

Set LLVM to 1 to compile your kernel with Clang.

See our LLVM tools for the Linux kernel presentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/436


https://bootlin.com/pub/conferences/2022/lee/opdenacker-llvm-tools-for-linux-kernel/opdenacker-llvm-tools-for-linux-kernel.pdf

ao Specifying ARCH and CROSS_COMPILE

Jo3e!

There are actually two ways of defining ARCH and CROSS_COMPILE:

Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux-

Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

Define ARCH and CROSS_COMPILE as environment variables:

export ARCH=arm

export CROSS_COMPILE=arm-linux-

Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project, see
also the https://direnv.net/ project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/436


https://direnv.net/

a Initial configuration
o)

o%e]

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!

Desktop or server case:
Advisable to start with the configuration of your running kernel:
cp /boot/config-‘uname -r* .config

Embedded platform case:
Default configurations stored in-tree as minimal configuration files (only listing
settings that are different with the defaults) in arch/<arch>/configs/
make help will list the available configurations for your platform
To load a default configuration file, just run make foo_defconfig (will erase your
current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/436



ao Create your own default configuration
o0

Use a tool such as make menuconfig to make changes to the configuration

Saving your changes will overwrite your .config (not tracked by Git)
When happy with it, create your own default configuration file:
Create a minimal configuration (non-default settings) file:
make savedefconfig
Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig
Add this file to Git.
This way, you can share a reference configuration inside the kernel sources and
other developers can now get the same .config as you by running
make myown_defconfig

When you use an embedded build system (Buildroot, OpenEmbedded) use its
specific commands. E.g. make linux-menuconfig and
make linux-update-defconfig in Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/436



a Built-in or module?
o)

o%e]

The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration
This is the file that gets loaded in memory by the bootloader
All built-in features are therefore available as soon as the kernel starts, at a time
where no filesystem exists

Some features (device drivers, filesystems, etc.) can however be compiled as
modules

These are plugins that can be loaded/unloaded dynamically to add/remove features
to the kernel

Each module is stored as a separate file in the filesystem, and therefore access
to a filesystem is mandatory to use modules

This is not possible in the early boot procedure of the kernel, because no filesystem
is available

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/436



a Kernel option types
b

There are different types of options, defined in Kconfig files:
bool options, they are either

true (to include the feature in the kernel) or
false (to exclude the feature from the kernel)

tristate options, they are either

true (to include the feature in the kernel image) or
module (to include the feature as a kernel module) or
false (to exclude the feature)

int options, to specify integer values

hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

string options, to specify string values

Example: CONFIG_LOCALVERSION=-no-network

Useful to distinguish between two kernels built from different options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

4@3 Kernel option dependencies

Enabling a network driver requires the network stack to be enabled, therefore
configuration symbols have two ways to express dependencies:

> depends on dependency: > select dependency:
config B config A

depends on A select B

® B is not visible until A is ® When A is enabled, B is enabled too (and
enabled cannot be disabled manually)

® Works well for dependency ® Should preferably not select symbols with
chains depends on dependencies

® Used to declare hardware features or select
libraries

config SPI_ATH79
tristate "Atheros AR71XX/AR724X/AR913X SPI controller driver”
depends on ATH79 || COMPILE_TEST
select SPI_BITBANG
help
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/436



4@3 Kernel configuration details

» The configuration is stored in the .config file at
the root of kernel sources

® Simple text file, CONFIG_PARAM=value

¢ Options are grouped by sections and are prefixed
with CONFIG_

® "No" value is encoded as
# CONFIG_FOO is not set

® Included by the top-level kernel Makefile

® Typically not edited by hand because of the
dependencies

#

# CD-ROM/DVD Filesystems

#

CONFIG_IS09660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y

# end of CD-ROM/DVD Filesystems

#

# DOS/FAT/EXFAT/NT Filesystems
#

CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y

# CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
# CONFIG_EXFAT_FS is not set

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

61/436



4@} xconfig

make xconfig

> A graphical interface to configure the
kernel.

> File browser: easy to load
configuration files

> Search interface to look for
parameters ([Ctrl] + [f])

» Required Debian/Ubuntu packages:
gtbase5-dev on Ubuntu 22.04

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/436



% menuconfig

make menuconfig

» Useful when no graphics are available.
Very efficient interface.

» Same interface found in other tools:
BusyBox, Buildroot...

» Convenient number shortcuts to jump
directly to search results.

» Required Debian/Ubuntu packages:
libncurses-dev

> Alternative: make nconfig
(now also has the number shortcuts)

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/436



Kernel configuration options

You can switch from one tool to another, they all load/save the same .config file,
and show the same set of options

Compiled as a module:
CONFIG_IS09660_FS=m

Additional driver options:\ -21SO 9660 CDROM file system support <€—>» M SO 9660 CDROM file system support

CONFIG_JOLIET=y €= -sMicrosoft Joliet COROM extensions <€—» [*] Microsoft Joliet CDROM extensions
CONFIG_Z1SOFS=y €= | LaTransparent decompression extension €—» [*] Transparent decompression extension
L=UDF file system support <€—>» <*> UDF file system support
Statically built: /

CONFIG_UDF_FS=y

Values in resulting config file Parameter values as displayed by xconfig Parameter values as displayed by menuconfig

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/436



ke oldconfi
Qo make oldconfig

o%e]

make oldconfig
Useful to upgrade a .config file from an earlier kernel release
Asks for values for new parameters.

. unlike make menuconfig and make xconfig which silently set default values
for new parameters.

If you edit a .config file by hand, it's useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/436



60 Undoing configuration changes

o%e]

A frequent problem:

After changing several kernel configuration settings, your kernel no longer works.

If you don't remember all the changes you made, you can get back to your
previous configuration:
$ cp .config.old .config

All the configuration tools keep this .config.old backup copy.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/436



a Linux Kernel Usage
o)

o%e]

Compiling and installing the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a Kernel compilation
b

Jo3e!

make
Only works from the top kernel source directory
Should not be performed as a privileged user

Run several jobs in parallel. Our advice: $(nproc) to
fully load the CPU and I/Os at all times.
Example: make -3j20

To recompile faster (7x according to some benchmarks),
use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Benefits of parallel compile jobs (make -j<n>)

Tests on Linux 5.11 on arm
make allnoconiig configuration
anome-systen-monitor showing the load on 4 threads / 2 CPUS

5%
A
VaVavAl *
) s0%
< AASA )~
S A A S ACA ANV O, 25%

10

make
Command: make
Total time: 129's

ndke -38
Command: make -j8
Total time: 67 s

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

68/436



a Kernel compilation results
o)

Jo3e!

arch/<arch>/boot/Image, uncompressed kernel image that can be booted
arch/<arch>/boot/*Image*, compressed kernel images that can also be booted

bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

arch/<arch>/boot/dts/<vendor>/*.dtb, compiled Device Tree Blobs
All kernel modules, spread over the kernel source tree, as . ko (Kernel Object) files.

vmlinux, a raw uncompressed kernel image in the ELF format, useful for
debugging purposes but generally not used for booting purposes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/436



a Kernel installation: native case
o)

o%e]

sudo make install
Does the installation for the host system by default
Installs
/boot/vmlinuz-<version>
Compressed kernel image. Same as the one in arch/<arch>/boot
/boot/System.map-<version>
Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)
/boot/config-<version>
Kernel configuration for this version

In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/436



60 Kernel installation: embedded case
o0

o%e]

make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

Another reason is that there is no standard way to deploy and use the kernel
image.

Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/436



a Module installation: native case
o)

Jo3e!

sudo make modules_install
Does the installation for the host system by default, so needs to be run as root
Installs all modules in /1ib/modules/<version>/
kernel/
Module .ko (Kernel Object) files, in the same directory structure as in the sources.
modules.alias, modules.alias.bin
Aliases for module loading utilities , see next slide
modules.dep, modules.dep.bin
Module dependencies. Kernel modules can depend on other modules, based on the
symbols (functions and data structures) they use.
modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to (related to module dependencies).
modules.builtin
List of built-in modules of the kernel.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/436



Module alias: modules.alias

Kernel compiling

static const struct usb_device_id  products [] = { .
{ The device driver
source code lists
which devices

J/ Linksys USB200M
USB_DEVICE (0x077b, 0x2226),
driver_info = (unsigned long) &ax8817x_info,

it supports

J/ Netgear FA120

USB_DEVICE (0x0846, 0x1040),

driver_info = (unsigned long) &netgear_fa120_info,
h

i /I END
b
MODULE_DEVICE_TABLE(usb, products);
drivers/net/usb/asix_devices.c

Module file
make modules
asix.ko

Containing the list of supported devices
(module metadata)

alias usb:v077Bp2226d*dc*dscrdpFictiscHiptin® asix
e mesiEs sl alias usb:v0846p1040d*dcrdsc dp¥ictiscriptin® asix
(depmod) B
modules.alias

System operation

—_ The USB controller
driver reads
USB device attributes:
vendor id, product id, etc

A new
USB device
is plugged-in

The USB bus driver sends a MODALIAS string
encoding these attributes to the udev process
MODALIAS =usb:v077bp2226d0001dcFFdscFFdpO0icFFiscFFp00in00

udev has a rule
for when MODALIAS
is set

“7%, RUN{builtin}

ENV{MODALIAS} kmod load $env{MODALIAS}"

/lib/udev/rules.d/80-drivers.rules

Thanks to
aliases, the
asix module
is loaded

kmod I0ad usb:v077bp2226d0001dcFFdscFFdpOIcFFisCFFip00in00

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

73/436



ao Module installation: embedded case
o0

Jo3e!

In embedded development, you can't directly use make modules_install as it
would install target modules in /1ib/modules on the host!

The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root

filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/436



Kernel cleanup targets

» From make help:

Cleaning targets:

clean - Remove most generated files but keep the config and

enough build support to build external modules
mrproper - Remove all generated files + config + various backup files
distclean - mrproper + remove editor backup and patch files

> If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

75/436



Kernel building overview

Environment setup Kernel building
and configuration and deployment

Specify target architecture
(if different from host)

Kernel

_ Compile the kernel

export ARCH=arm > and the modules
Specify cross-compiler make

(if cross-compiling)

export CROSS_COMPILE=arm-linux-

Kernel
configuration

Install the kernel Install modules

Get reference configuration:
make soc_defconfig (ARM example) make install make modules install
or manual copy -
Customize configuration:

make menuconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/436



a Linux Kernel Usage
o)

o%e]

Booting the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/436



a Hardware description
o)

o%e]

Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, 12C, Nand flash, USB controllers...)
This hardware needs to be described and passed to the Linux kernel.
The bootloader/firmware is expected to provide this description when starting the
kernel:

On x86: using ACPI tables

On most embedded devices: using an OpenFirmware Device Tree (DT)
This way, a kernel supporting different SoCs knows which SoC and device
initialization hooks to run on the current board.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/436



60 Booting with U-Boot

o%e]

On ARM32, U-Boot can boot zImage (bootz command)
On ARM®64 or RISC-V, it boots the Image file (booti command)
In addition to the kernel image, U-Boot should also pass a DTB to the kernel.

The typical boot process is therefore:

Load zImage at address X in memory

Load <board>.dtb at address Y in memory
Start the kernel with boot[z|i] X - Y
The - in the middle indicates no initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/436



a Kernel command line
o)

o%e]

In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line
The kernel command line is a string that defines various arguments to the kernel

It is very important for system configuration

root= for the root filesystem (covered later)

console= for the destination of kernel messages

Example: console=ttyS@ root=/dev/mmcblk@p2 rootwait
Many more exist. The most important ones are documented in
admin-guide/kernel-parameters in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/436


https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

ao Passing the kernel command line
o0

Jo3e!

U-Boot carries the Linux kernel command line string in

See the "Understanding U-Boot Falcon

its bootargs environment variable Mode" presentation from Michael

) . i A Opdenacker, for details about how U-Boot
Right before starting the kernel, it will store the boots Linux.
contents of bootargs in the chosen section of the

{7 Booting from raw NAND - Resuls and notes

Device Tree

The kernel will behave differently depending on its
configuration:
If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader
If CONFIG_CMDLINE_FORCE is set:
The kernel will only use the string received at fj‘s:;1“i;tl‘;z:m/pub/mferences/2021/be/
configuration time in CONFIG_CMDLINE Video: https:
If CONFIG_CMDLINE_EXTEND is set: i youtibe confustehtL Fenagihse
The kernel will concatenate both strings

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

a Kernel log
b

o%e]

The kernel keeps its messages in a circular buffer in memory
The size is configurable using CONFIG_LOG_BUF_SHIFT

When a module is loaded, related information is available in the kernel log.

Kernel log messages are available through the dmesg command (diagnostic
message)

Kernel log messages are also displayed on the console pointed by the console=
kernel command line argument
Console messages can be filtered by level using the loglevel parameter
Example: console=ttyS0 loglevel=5
It is possible to write to the kernel log from user space:
echo "<n>Debug info"” > /dev/kmsg

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOG_BUF_SHIFT

ao Practical lab - Kernel compiling and booting

o%e]

1st lab: board and bootloader setup:
Prepare the board and access its serial port
Configure its bootloader to use TFTP

2nd lab: kernel compiling and booting:
Set up a cross-compiling environment

Cross-compile a kernel for an ARM target
platform

Boot this kernel from a directory on your

workstation, accessed by the board through
NFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/436



a Linux Kernel Usage
o)

o%e]

Using kernel modules

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/436



a Advantages of modules
o)

Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only
need later.

Caution: once loaded, have full control and privileges in
the system. No particular protection. That's why only
the root user can load and unload modules.

To increase security, possibility to allow only signed
modules, or to disable module support entirely.

Using kernel modules to support
many different devices and setups

Kernel

Intermediate root filesystem (initramfs)

No special driver required to access it
Contains all the modules to access the specific
storage and filesytem of the device
Load such modules
and mount the new root filesystem

b

Final root filesystem

Regular system startup

The modules in the initramfs are updated every time
a kernel upgrade is available

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

85/436



a@ Module utilities: extracting information
o0

Jo3e!

<module_name>: name of the module file without the trailing .ko

modinfo <module_name> (for modules in /1ib/modules)
modinfo <module_path>.ko

Gets information about a module without loading it: parameters, license,
description and dependencies.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

86/436



a Module utilities: loading
o)

Jo3e!

sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module object file must be
given.

sudo modprobe <top_module_name>

Most common usage of modprobe: tries to load all the dependencies of the given
top module, and then this module. Lots of other options are available. modprobe
automatically looks in /1ib/modules/<version>/ for the object file
corresponding to the given module name.

1smod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/436



4@3 Understanding module loading issues

» When loading a module fails, insmod often doesn't give you enough details!

> Details are often available in the kernel log.

> Example:
$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/436



a Module utilities: removals
o)

o%e]

sudo rmmod <module_name>

Tries to remove the given module.

Will only be allowed if the module is no longer in use (for example, no more
processes opening a device file)

sudo modprobe -r <top_module_name>
Tries to remove the given top module and all its no longer needed dependencies

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/436



4@} Passing parameters to modules

> Find available parameters:
modinfo usb-storage

Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

Through the kernel command line, when the module is built statically into the

kernel:
usb-storage.delay_use=0
® ush-storage is the module name
® delay_use is the module parameter name. It specifies a delay before accessing a
USB storage device (useful for rotating devices).
® 0 is the module parameter value

DOOLIIN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin. com

90/436



ao Check module parameter values
o0

o%e]

How to find/edit the current values for the parameters of a loaded module?
Check /sys/module/<name>/parameters.
There is one file per parameter, containing the parameter value.

Also possible to change parameter values if these files have write permissions
(depends on the module code).

Example:
echo @0 > /sys/module/usb_storage/parameters/delay_use

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/436



Developing kernel modules

Developing kernel bOOtIl'n

modules

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/436



4% Hello module 1/2

// SPDX-License-Identifier: GPL-2.0
/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{
pr_alert(”"Good morrow to this fair assembly.\n");
return 0;

3

static void __exit hello_exit(void)
{

pr_alert(”"Alas, poor world, what treasure hast thou lost!\n");

}

module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(”Greeting module”);
MODULE_AUTHOR("William Shakespeare");

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/436



4@} Hello module 2/2

> Code marked as __init:

® Removed after initialization (static kernel or module.)
® See how init memory is reclaimed when the kernel finishes booting:

L

L
L
L

2.689854] VFS: Mounted root (nfs filesystem) on device 0:15.
2.698796] devtmpfs: mounted

2.704277] Freeing unused kernel memory: 1024K

2.710136] Run /sbin/init as init process

> Code marked as __exit:

¢ Discarded when module compiled statically into the kernel, or when module
unloading support is not enabled.

> Code of this example module available on

https://raw.githubusercontent.com/bootlin/training-materials/master/code/hello/hello.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/436


https://elixir.bootlin.com/linux/latest/ident/__init
https://elixir.bootlin.com/linux/latest/ident/__exit
https://raw.githubusercontent.com/bootlin/training-materials/master/code/hello/hello.c

o%e]

a Hello module explanations
o)

Headers specific to the Linux kernel: 1inux/xxx.h
No access to the usual C library, we're doing kernel programming
An initialization function
Called when the module is loaded, returns an error code (@ on success, negative
value on failure)
Declared by the module_init() macro: the name of the function doesn’'t matter,
even though <modulename>_init() is a convention.
A cleanup function
Called when the module is unloaded
Declared by the module_exit() macro.
Metadata information declared using MODULE _LICENSE (), MODULE_DESCRIPTION()
and MODULE_AUTHOR()

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/436


https://elixir.bootlin.com/linux/latest/ident/module_init
https://elixir.bootlin.com/linux/latest/ident/module_exit
https://elixir.bootlin.com/linux/latest/ident/MODULE_LICENSE
https://elixir.bootlin.com/linux/latest/ident/MODULE_DESCRIPTION
https://elixir.bootlin.com/linux/latest/ident/MODULE_AUTHOR

ao Symbols exported to modules 1/2

o%e]

From a kernel module, only a limited number of kernel functions can be called

Functions and variables have to be explicitly exported by the kernel to be visible
to a kernel module
Two macros are used in the kernel to export functions and variables:

EXPORT_SYMBOL (symbolname), which exports a function or variable to all modules
EXPORT_SYMBOL _GPL (symbolname), which exports a function or variable only to GPL

modules
Linux 5.3: contains the same number of symbols with EXPORT_SYMBOL () and

symbols with EXPORT_SYMBOL _GPL ()

A normal driver should not need any non-exported function.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/436


https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL
https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL_GPL

o%e]

Kernel

void funcl() {...}

void func2() {...}
EXPORT_SYMBOL(func2);

void func3() {...}

ao Symbols exported to modules 2/2

GPL Module A

Non-GPL Module B

EXPORT_SYMBOL_GPL(func3);

void func4() {...}

EXPORT_SYMBOL_GPL(funcé);

funcl(); OK
func2(); OK
func3(); OK
funca(); NOK

funcl(); NOK
func2(); OK
func3(); OK
funca(); OK

funcl() NOK
func2(); OK
func3() NOK
func4() NOK
GPL Module C
funcl(); NOK
func2(); OK
func3(); OK
func4(); OK

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin. com

97/436



Q} Module license
q

> Several usages

® Used to restrict the kernel functions that the module can use if it isn’'t a GPL
licensed module.

m Difference between EXPORT_SYMBOL () and EXPORT_SYMBOL_GPL ().
® One reason a kernel can become “tainted” is proprietary modules, among others.

m See admin-guide/tainted-kernels for other taint flags.
m This attribute is visible in kernel crashes and oopses for bug reports.

© Useful for users to check that their system is 100% free (for the kernel, check
/proc/sys/kernel/tainted; run vrms to check installed packages).
> Values

® GPL compatible (see include/linux/license.h: GPL, GPL v2,
GPL and additional rights, Dual MIT/GPL, Dual BSD/GPL, Dual MPL/GPL)
® Proprietary

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/436


https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL
https://elixir.bootlin.com/linux/latest/ident/EXPORT_SYMBOL_GPL
https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html
https://elixir.bootlin.com/linux/latest/source/include/linux/license.h

C ili dul
Q@ ompiling a module

o%e]

Two solutions
Out of tree, when the code is outside of the kernel source tree, in a different
directory
Not integrated into the kernel configuration/compilation process
Needs to be built separately
The driver cannot be built statically, only as a module
Inside the kernel tree

Well integrated into the kernel configuration/compilation process
The driver can be built statically or as a module

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/436



ao Compiling an out-of-tree module 1/2

o%e]

The below Makefile should be reusable for any single-file out-of-tree Linux
module

The source file is hello.c

Just run make to build the hello.ko file

ifneq ($(KERNELRELEASE),)

obj-m := hello.o

else

KDIR := /path/to/kernel/sources

all:
<tab>$(MAKE) -C $(KDIR) M=$$PWD
endif

KDIR: kernel source or headers directory (see next slides)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/436



ao Compiling an out-of-tree module 2/2

o%e]

)

Module Sources Kernel Sources
/path/to/module_source /path/to/kernel_source
include
hello.c kernel
hello.ko Makefile
Makefile -config
A

The module Makefile is interpreted with KERNELRELEASE undefined, so it calls
the kernel Makefile, passing the module directory in the M variable

The kernel Makefile knows how to compile a module, and thanks to the M
variable, knows where the Makefile for our module is. This module Makefile is
then interpreted with KERNELRELEASE defined, so the kernel sees the obj-m
definition.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/436



a Modules and kernel version
o)

o%e]

To be compiled, a kernel module needs access to kernel headers, containing the
definitions of functions, types and constants.
Two solutions
Full kernel sources (configured 4+ make modules_prepare)
Only kernel headers (1inux-headers-* packages in Debian/Ubuntu distributions, or
directory created by make headers_install).
The sources or headers must be configured (.config file)
Many macros or functions depend on the configuration

You also need the kernel Makefile, the scripts/ directory, and a few others.

A kernel module compiled against version X of kernel headers will not load in
kernel version Y
modprobe / insmod will say Invalid module format

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/436


https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/scripts/

ao New driver in kernel sources 1/2
o0

o%e]

To add a new driver to the kernel sources:

Add your new source file to the appropriate source directory. Example:
drivers/usb/serial/navman.c

Single file drivers in the common case, even if the file is several thousand lines of
code big. Only really big drivers are split in several files or have their own directory.
Describe the configuration interface for your new driver by adding the following lines
to the Kconfig file in this directory:

config USB_SERIAL_NAVMAN
tristate "USB Navman GPS device”
depends on USB_SERIAL
help
To compile this driver as a module, choose M
here: the module will be called navman.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/436


https://elixir.bootlin.com/linux/latest/source/drivers/usb/serial/navman.c

60 New driver in kernel sources 2/2
o0

Jo3e!

Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

It tells the kernel build system to build navman.c when the USB_SERIAL_NAVMAN
option is enabled. It works both if compiled statically or as a module.
Run make xconfig and see your new options!
Run make and your new files are compiled!
See kbuild/ for details and more elaborate examples like drivers with several source
files, or drivers in their own subdirectory, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/436


https://www.kernel.org/doc/html/latest/kbuild/

4% Hello module with parameters 1/2

// SPDX-License-Identifier: GPL-2.0
/* hello_param.c */

#include <linux/init.h>

#include <linux/module.h>

MODULE_LICENSE("GPL");

static char *whom = "world";
module_param(whom, charp, 0644);
MODULE_PARM_DESC(whom, "Recipient of the hello message");

static int howmany = 1;
module_param(howmany, int, 0644);
MODULE_PARM_DESC (howmany, "Number of greetings”);

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/436



4@,‘} Hello module with parameters 2/2

static int __init hello_init(void)

{
int i;
for (i = 0; i < howmany; i++)
pr_alert(”(%d) Hello, %s\n”, i, whom);
return 0;
}
static void __exit hello_exit(void)
{
pr_alert("Goodbye, cruel %s\n", whom);
}

module_init(hello_init);
module_exit(hello_exit);

Thanks to Jonathan Corbet for the examples

Source code available on: https://github.com/bootlin/training-materials/blob/master/code/hello-param/hello_param.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/436


https://github.com/bootlin/training-materials/blob/master/code/hello-param/hello_param.c

4% Declaring a module parameter
A

module_param(
name, /* name of an already defined variable =*/
type, /* standard types (different from C types) are:
* byte, short, ushort, int, uint, long, ulong
* charp: a character pointer
* bool: a bool, values 0/1, y/n, Y/N.
* invbool: the above, only sense-reversed (N = true). */
perm /* for /sys/module/<module_name>/parameters/<param>,
* @: no such module parameter value file */

/* Example: drivers/block/loop.c */

static int max_loop;

module_param(max_loop, int, 0444);

MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"”);

Modules parameter arrays are also possible with module_param_array().

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/436


https://elixir.bootlin.com/linux/latest/ident/module_param_array

a@ Practical lab - Writing modules
o0

o%e]

Create, compile and load your first module
Add module parameters

Access kernel internals from your module

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/436



Describing hardware devices

Describing hardware bOOtIl'n

devices

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/436



a Describing hardware devices
o)

g

Discoverable hardware: USB and PCI

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



a Discoverable hardware
o)

o%e]

Some busses have built-in hardware discoverability mechanisms

Most common busses: USB and PClI

Hardware devices can be enumerated, and their characteristics retrieved with just
a driver or the bus controller

Useful Linux commands

1susb, lists all USB devices detected
1spci, lists all PCl devices detected
A detected device does not mean it has a kernel driver associated to it!

Association with kernel drivers done based on product ID/vendor ID, or some
other characteristics of the device: device class, device sub-class, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/436



a Describing hardware devices
o)

g

Describing non-discoverable hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



o%e]

Directly in the
OS /bootloader

code

a@ Describing non-discoverable hardware
o0

Using compiled data structures, typically in C
How it was done on most embedded platforms in Linux,
U-Boot.

Considered not maintainable/sustainable on ARM32,
which motivated the move to another solution.

113/436

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a@ Describing non-discoverable hardware
o0

o%e]

On x86 systems, but also on a subset of ARM64
platforms

Using ACPI tables Tables provided by the firmware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/436



a@ Describing non-discoverable hardware
o0

o%e]

Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC

That's why many Linux/U-Boot functions related to
DT have a of _ prefix

Now used by most embedded-oriented CPU
architectures that run Linux: ARC, ARM®64, RISC-V,
ARM32, PowerPC, Xtensa, MIPS, etc.

Using a Device Tree Writing /tweaking a DT is necessary when porting Linux
to a new board, or when connecting additional
peripherals

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/436



a@ Device Tree: from source to blob
o0

o%e]

A tree data structure describing the hardware is written
by a developer in a Device Tree Source file, .dts

Processed by the Device Tree Compiler, dtc

Produces a more efficient representation: Device Tree
Blob, .dtb

Additional C preprocessor pass

.dtb — accurately describes the hardware platform in
an OS-agnostic way.

.dtb &~ few dozens of kilobytes

DTB also called FDT, Flattened Device Tree, once
loaded into memory.

fdt command in U-Boot
fdt_ APls

Device Tree Source
.dts

Device Tree Compiler
dtc

4

Device Tree Blob
.dtb

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

114/436



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/436



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

$ dtc -I dts -0 dtb -o foo.dtb foo.dts

$ 1s -1 foo.dtx

-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

115/436



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

$ dtc -I dts -0 dtb -o foo.dtb foo.dts

$ 1s -1 foo.dtx

-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -0 dts foo.dtb
/dts-v1/;

/A

33

welcome = <@xbadcafe>;

bootlin {

webinar = "great";

demo = <0xQ1 0x02 0x03>;
i

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

115/436



a@ Where are Device Tree Sources located?
o0

o%e]

Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

Often discussed, never done
In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files

arch/<ARCH>/boot/dts/<vendor>/

arch/arm/boot/dts (on ARM 32 architecture before Linux 6.5)

~ 4500 Device Tree Source files (.dts and .dtsi) in Linux as of 6.0.
Duplicated/synced in various projects

U-Boot, Barebox, TF-A

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/436



a Device Tree base syntax
o)

o%e]

Tree of nodes

Nodes with properties

Node = a device or IP block
Properties =~ device characteristics
Notion of cells in property values

Notion of phandle to point to other
nodes

dtc only does syntax checking, no
semantic validation

Node name

Unit address

y Property name
Property value
node@o { v

a-string-property = "A string";

a-string-list-property = "first string”, “"second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node@d {

first-child-property;

L Bytestring
second-child-property = <1>;

a-reference-to-something = <&nodel>;

h

child-node@l {

Label i
};

nodel: node@l {
an-empty-property;
a-cell-property = <1 2 3 4>;

L Four cells (32 bits values)

Properties of node@0

A phandle,
(reference to another node)

child-node@® {
i

14
i

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

117/436



DT overall structure: simplified example

=
System-on-chip
CPU core
) Cortex A8
#address-cells = <1>;
#size-cells = <1>;
model = "TI AM335x BeagleBone Black”;
compatible = "ti,am335x-bone-black”, "ti,am335x-bone”, "ti,am33xx"; TI IRQ
controller
cpus { ... };
memory@80000000 { ... }; L4 peripheral
chosen { ... }; domain
ocp {
intc: interrupt-controller@48200000 { ... };
usb@: usb@47401300 { ... };
14_per: interconnect@44c00000 { TI12C TI USB DDR
, 12c0: 12c@40012000 { ... }; controller controller controller
3
. I I I
| | |
Atmel USB DDR
EEPROM device memory

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/436



Q} DT overall structure: simplified example

System-on-chip

a CPU core
cpus {
#address-cells = <1>;
#size-cells = <0>; Cortex A8
cpud: cpu@d {
compatible = "arm,cortex-a8";

enable-method = "ti,am3352";

device_type = "cpu"”;
reg = <0>; TIIRQ
}; controller
b L4 peripheral
memory@0x80000000 { domain
device_type = "memory”;
reg = <0x80000000 0x10000000>; /x 256 MB */
b
TI12C TI USB DDR
chosen { controller controller controller
bootargs = "";
stdout-path = &uarto; I I I
B | | |
ocp { ... X Atmel USB DDR
b EEPROM device memory

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/436



Q} DT overall structure: simplified example

/{
cpus { ... 35
memory@ox80000000 { ... };
chosen { ... };
ocp {

intc: interrupt-controller@48200000 {
compatible = "ti,am33xx-intc”;
interrupt-controller;
#interrupt-cells = <1>;

reg = <0x48200000 0x1000>;

};

usb@: ush@47401300 {
compatible = "ti,musb-am33xx”;
reg = <0x1400 0x400>, <0x1000 0x200>;
reg-names = "mc"”, "control”;
interrupts = <18>;
dr_mode = "otg";
dmas = <&cppi4ldma @ 0 &cppid4ldma 1 0 ...>;
status = "okay";

35

14_per: interconnect@44c00000 {
i2c0: 12c@40012000 { ... };
};
};
};

System-on-chip

CPU core
Cortex A8
TIIRQ
controller
L4 peripheral
domain
TI12C TI USB DDR
controller controller controller
I I I
| | |
Atmel uUsB DDR
EEPROM device memory

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

118/436



Q} DT overall structure: simplified example

/€ System-on-chip
cpus { ... };
memory@0x80000000 { ... }; CPU core
chosen { ... };
D Cortex A8
compatible = "simple-pm-bus”;
clocks = <&13_clkctrl AM3_L3_L3_MAIN_CLKCTRL ©>;
clock-names = "fck";
#address-cells = <1>; TI IRQ
#size-cells = <1>; controller
intc: interrupt-controller@48200000 { ... }; L4 peripheral
usbh@: usb@47401300 { ... }; domain
14_per: interconnect@44c00000 {
compatible = "ti,am33xx-14-wkup"”, "simple-pm-bus”;
reg = <0x44c00000 0x800>, <0x44c00800 0x800>, T 12C T1 USB DDR
<0x44c01000 0x400>, <0x44c01400 0x400>; el aomaallar )
reg-names = "ap”, "la", "ia@", "ial";
#address-cells = <1>;
#size-cells = <1>; ! ! !
12c0: 12c@40012000 { ... };
3 Atmel UsB DDR
B EEPROM device memory
)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/436



Q} DT overall structure: simplified example

/{

cpus { ... 35

memory@ox80000000 { ... };

chosen { ... };

ocp {
intc: interrupt-controller@48200000 { ... };
usb@: usb@47401300 { ... };
14_per: interconnect@44c00000 {

i2c0: 12c@40012000 {
compatible = "ti,omap4-i2c”;
#address-cells = <1>;
#size-cells = <0>;
reg = <0x0 0x1000>;
interrupts = <70>;
status = "okay";
pinctrl-names = "default”;
pinctrl-0 = <&i2c@_pins>;
clock-frequency = <400000>;

baseboard_eeprom: eeprom@50 {
compatible = "atmel, 24c256";
reg = <0x50>;

};

System-on-chip

CPU core
Cortex A8
TIIRQ
controller
L4 peripheral
domain
TI12C TI USB DDR
controller controller controller
I I I
| | |
Atmel uUsB DDR
EEPROM device memory

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

118/436



a Device Tree inheritance
o)

o%e]

Device Tree files are not monolithic, they can be split in several files, including
each other.
.dtsi files are included files, while .dts files are final Device Trees
Only .dts files are accepted as input to dtc
Typically, .dtsi will contain
definitions of SoC-level information
definitions common to several boards
The .dts file contains the board-level information

The inclusion works by overlaying the tree of the including file over the tree of
the included file, according to the order of the #include directives.

Allows an including file to override values specified by an included file.

Uses the C pre-processor #include directive

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/436



4@3 Device Tree inheritance example
A

Definition of the AM33xx SoC family Definition of the Bone Black board Compiled DTB
5 " . &14_wkup {
s14_wkup { #include "an33xx-14.dtsi target-module@b00® {

i2c0: i2ced {

target-module@b000 { &i2c0 ; . -
LR AL : Cpigctrl—names = "default"; CIEENG 2 O
compatible = "ti,omap4-i2c"; pinctrl-0 = <&i2c0 pins>-' reg = <0x0 0x1000>;
reg = <0x0 0x1000>; G = ey ! interrupts = <76>;
interrupts = <70>; v pinctrl-names = "default";
status = "disabled"; baseboard_eeprom: eeprome50 { — p;n:trl»e —k<&12507p1n5>;
3 — status = "okay";
Y Y compatible = "atmel,24c256"; Y
= ' o res= <6x50>; baseboard_eeprom: eeprom@s0 {
b compatible = "atmel,24c256";
i reg = <0x50>;
+
+
b
i
am33xx-14.dtsi am335x-boneblack.dts am335x-boneblack.dtb
Note 1 Note 2
The actual Device Trees for this The real DTB is in binary format.
platform are more complicated. Here we show the text equivalent of the
This example is highly simplified. DTB contents.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/436



4@3 Inheritance and labels

Doing:

soc.dtsi
/ {
ocp {
uart@: serial@o {
compatible = "ti,am3352-uart”, "ti,omap3-uart”;

reg = <0x0 0x1000>;
status = "disabled”;

board.dts

#include "soc.dtsi”

/{
ocp {
serial@o {
status = "okay";
};
};
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

121/436



4@3 Inheritance and labels

Doing:

soc.dtsi
/{
ocp {
uart@: serial@o {
compatible = "ti,am3352-uart”, "ti,omap3-uart”;

reg = <0x0 0x1000>;
status = "disabled”;

board.dts

#include "soc.dtsi”

/ {
ocp {
serial@o {
status = "okay";
};
};
3

Is exactly equivalent to:

soc.dtsi
/{
ocp {
uart@: serial@e {
compatible = "ti,am3352-uart”, "ti,omap3-uart”

reg = <0x0 0x1000>;
status = "disabled”;

board.dts

#include "soc.dtsi”
&uart@ {

status = "okay";
3

— this solution is now often preferred

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

121/436



DT inheritance in Bone

Black support

SoC : Board

am33xx-clocks.dtsi

Defines clocks I

am335x-bone-common.dtsi

Definitions common
to all the Beagle Bone boards:
Bone Black, Bone Blue, Bone Green

am33xx.dtsi |

#include am33xx-clocks.dtsi
#include am33xx-14.dtsi |

am335x-boneblack-common.dtsi

Definitions common
to the two Beagle Bone Black boards:
regular and wireless

am335x-boneblack.dts

Definitions
specific to the BBB board

#include am33xx.dtsi

#include am335x-bone-common.dtsi
#include am335x-boneblack-common.dtsi|
#include am335x-boneblack-hdmi.dtsi

l |

am33xx-14.dtsi |

Defines most peripherals |

am335x-boneblack-hdmi.dtsi

Multimedia additions
for Beagle Bone Black boards

am335x-boneblack-wireless.dts

Definitions
specific to the BBBW board

#include am33xx.dtsi

#include am335x-bone-common.dtsi
#include am335x-boneblack-common.dtsi)
#include am335x-boneblack-hdmi.dtsi

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin. com

122/436



ao Device Tree design principles

o%e]

Describe hardware (how the hardware is), not configuration (how | choose to
use the hardware)
0OS-agnostic
For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or
Linux
There should be no need to change the Device Tree when updating the OS
Describe integration of hardware components, not the internals of hardware
components
The details of how a specific device/IP block is working is handled by code in device
drivers

The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

Like all beautiful design principles, these principles are sometimes violated.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/436



4@3 The properties

Device tree properties can:
> Be generic and apply to most nodes
® Their meaning is usually described in one place: the core DT schema available at
https://github.com/devicetree-org/dt-schema.
® compatible, reg, #address-cells, etc
> Cover common consumer-provider relationships
® Their meaning is either described in the dt-schema GitHub repository or under
Documentation/devicetree/bindings.
® clocks, interrupts, regulators, etc
> Subsystem specific
® All devices of a certain class may use them, often starting with the class name
® spi-cpha, i2c-scl-internal-delay-ns, nand-ecc-engine, mac-address, etc
» Vendor/device specific
® To describe uncommon or very specific properties
¢ Always described in the device's binding file and prefixed with <vendor>,
® ti,hwmods, x1nx, num-channels, nxp, tx-output-mode, etc

> Some of them are deprecated, watch out the bindings!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/436


https://github.com/devicetree-org/dt-schema
https://github.com/devicetree-org/dt-schema
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings

60 The compatible property

Is a list of strings
From the most specific to the least specific

Describes the specific binding to which the node complies.
It uniquely identifies the programming model of the device.

Practically speaking, it is used by the operating system to find the appropriate
driver for this device.

When describing real hardware, the typical form is vendor,model

Examples:
compatible = "arm,armv7-timer";
compatible = "st,stm32mp1-dwmac”, "snps,dwmac-4.20a";
compatible = "regulator-fixed";

compatible = "gpio-keys”;
Special value: simple-bus — bus where all sub-nodes are memory-mapped
devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/436



ao compatible property and Linux kernel drivers

o%e]

Linux identifies as platform devices:

. . . /1
Top-level DT nodes with a compatible string timer { > Platform device
Sub-nodes of simple-bus . compatible = *
Instantiated automatically at boot time soc {
compatible = "simple-bus"
Sub-nodes of 12C controllers — 12C devices uarte1000 —> Platform device
compatible = cee 3
. .
Sub-nodes of SPI controllers — SPI devices Taca2000 ¢ > Plattom device
H H H compatible = "..."
Each Linux driver has a table of compatible cepranass { > 12 device
strings 1t supports , compatible = "
struct of_device_id[] o
}
When a DT node compatible string matches a b

given driver, the device is bound to that driver.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/436


https://elixir.bootlin.com/linux/latest/ident/of_device_id

Matching with drivers in Linux: platform driver

drivers/i2c/busses/i2c-omap.c

static const struct of_device_id omap_i2c_of_match[] = {

{
.compatible = "ti,omap4-i2c"”,
.data = &omap4_pdata,

3,

{
.compatible = "ti,omap3-i2c”,
.data = &omap3_pdata,

3,

[...]

{1

MODULE_DEVICE_TABLE(of, omap_i2c_of_match);

[...]
static struct platform_driver omap_i2c_driver = {
.probe = omap_i2c_probe,
.remove = omap_i2c_remove,
.driver ={
.name = "omap_i2c”,
.pm = &omap_i2c_pm_ops,

.of _match_table = of_match_ptr(omap_i2c_of_match),
3,
¥

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

127/436


https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/i2c-omap.c

4@,‘3 Matching with drivers in Linux:

[2C driver

sound/soc/codecs/cs42151.c

const struct of_device_id cs42151_of_match[] = {
{ .compatible = "cirrus,cs42151", },
{1

MODULE_DEVICE_TABLE (of, cs42151_of_match);

sound/soc/codecs/cs42151-i2c.c

static struct i2c_driver cs42151_i2c_driver
.driver = {

=

.name "cs42151",
.of _match_table

cs42151_of _match,
.pm = &cs42151_pm_ops,

3,

.probe = cs42151_i2c_probe,
.remove = cs42151_i2c_remove,
.id_table =

cs42151_1i2c_id,
¥

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

128/436


https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51.c
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51-i2c.c

re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

iE

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/436



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.

&i2cl {
hdmi-transmitter@39 {
reg = <0x39>;
Ye

cs42151: cs42151@4a {
reg = <0x4a>;

B

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/436



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.
SPI devices: chip select number

&aspi {
flash@: mx661512351@0 {
reg = <0>;
};
flash1l: mx661512351@1 {
reg = <1>;
};

s

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/436



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.
SPI devices: chip select number

The unit address must be the address of the first reg entry.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

g

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/436



4@3 cells property

> Property numbers shall fit into 32-bit containers called cells
> The compiler does not maintain information about the number of entries, the OS
just receives 4 independent cells
® Example with a reg property using 2 entries of 2 cells:

reg = <0x50027000 0x4>, <0x500273f0 0x10>;
® The OS cannot make the difference with:

reg = <0x50027000>, <0x4>, <0x500273f0>, <0x10>;
reg = <0x50027000 0x4 0x500273f0>, <0x10>;

reg = <0x50027000>, <0x4 0x500273f0 0x10>;

reg = <0x50027000 0x4 0x500273f0 0x10>;

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/436



cells t
Qo proper y

Property numbers shall fit into 32-bit containers called cells
The compiler does not maintain information about the number of entries, the OS

just receives 4 independent cells
Need for other properties to declare the right formatting:
#address-cells: Indicates the number of cells used to carry the address

#size-cells: Indicates the number of cells used to carry the size of the range
The parent-node declares the children reg property formatting

Platform devices need memory ranges

module@a0000 {
#address-cells = <1>;
#size-cells = <1>;

serial@1000 {
reg = <0x1000 0x10>, <0x2000 0x10>;
35
bE

130/436

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



cells t
Qo proper y

Property numbers shall fit into 32-bit containers called cells
The compiler does not maintain information about the number of entries, the OS

just receives 4 independent cells

Need for other properties to declare the right formatting:
#address-cells: Indicates the number of cells used to carry the address

#size-cells: Indicates the number of cells used to carry the size of the range
The parent-node declares the children reg property formatting

Platform devices need memory ranges
SPI devices need chip-selects

Spi@300000 {
#address-cells = <1>;

#size-cells = <0>;

flash@1l {
reg = <1>;
bE
iE

130/436

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a Status property
o)

o%e]

The status property indicates if the device is really in use or not
okay or ok — the device is really in use
any other value, by convention disabled — the device is not in use

In Linux, controls if a device is instantiated

In .dtsi files describing SoCs: all devices that interface to the outside world have
status = "disabled”;

Enabled on a per-device basis in the board .dts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/436



Jo3e!

Common pattern for resources shared
by multiple hardware blocks

Interrupt lines

Clock controllers
DMA controllers
Reset controllers

A Device Tree node describing the
controller as a device

References from other nodes that use
resources provided by this controller

ao Resources: interrupts, clocks, DMA, reset lines,
od

intc: interrupt-controller@a0021000 {

b

rcc:

};

compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;

interrupt-controller;

reg = <0xa0021000 0x1000>, <0xa0022000 0x2000>;

rcc@50000000 {

compatible = "st,stm32mp1-rcc”, "syscon”;
reg = <0x50000000 0x1000>;

#clock-cells = <1>;

#reset-cells = <1>;

dmamux1: dma-router@48002000 {

};

compatible = "st,stm32h7-dmamux";
reg = <0x48002000 0x1c>;
#dma-cells = <3>;

clocks = <&rcc DMAMUX>;

resets = <&rcc DMAMUX_R>;

spi3: spi@4000c000 {

interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc SPI3_K>;
resets = <&rcc SPI3_R>;

dmas = <&dmamux1 61 0x400 0x05>, <&dmamux1 62 0x400 0x05>;

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

132/436



4@,? Generic suffixes

P> xxx-gpios
® When drivers need access to GPIOs
® May be subsystem-specific or vendor-specific
® Examples: enable-gpios, cts-gpios, rts-gpios
P> xxx-names
® Sometimes naming items is relevant
® Allows drivers to perform lookups by name rather than ID
® The order of definition of each item still matters
® Examples: gpio-names, clock-names, reset-names

uart0@4000c000 {
dmas = <&edma 26 0>, <&edma 27 0>;

n n

dma-names = "tx", "rx";

bE

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/436



ao How to validate Device Tree content? 1/2
o0

o%e]

compatible properties enforce a specific programming model
OS expect a specific set of properties in each node

The syntax is fixed
The content is defined (number of items, their size, their meaning)
Some properties are mandatory

How do | check the validity of a DT snippet?

How do | avoid losing half a day on a typo?
Looking at drivers to understand the DT structure tends to make it OS-specific

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/436



ao How to validate Device Tree content? 2/2
o0

Jo3e!

Device Tree Specifications — base Device Tree

syntax 4+ number of standard properties.
https://www.devicetree.org/specifications/
Not sufficient to describe the wide variety of hardware.

Device Tree Bindings — describes how a piece of HW
should be described
Common bindings are defined in an external repository
https://github.com/devicetree-org/dt-
schema/tree/main/dtschema/schemas
Generic properties: reg or #address-cells
Consumer bindings: interrupts, clocks, dmas, etc
Device-specific descriptions are in the Linux kernel
sources Documentation/devicetree/bindings/

i

Devicetree Specification
Release v0.3

devicetree.org

13 Fobruary 2020

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

135/436


https://www.devicetree.org/specifications/
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/

ao Device Tree bindings

o%e]

Bindings are improved as part of the Linux kernel contribution process
They are carefully reviewed by DT binding maintainers and can only be merged

once approved by them

Need for automated verifications:
Legacy: human readable .txt documents, hardly parsable by tools
Current norm: YAML-written specifications, easy to parse by humans and tools at

the same timel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/436



4@,‘} Device Tree binding: legacy style

Documentation/devicetree/bindings/i2c/i2c-omap.txt

I2C for OMAP platforms

-Required properties :

- compatible : Must be
"ti,omap2420-i2c"” for OMAP2420 SoCs
"ti,omap2430-i2c” for OMAP2430@ SoCs
"ti,omap3-i2c” for OMAP3 SoCs
"ti,omap4-i2c” for OMAP4+ SoCs
"ti,am654-i2c”, "ti,omap4-i2c” for AM654 SoCs
"ti,j721e-i2c", "ti,omap4-i2c” for J721E SoCs
"ti,am64-i2c”, "ti,omap4-i2c” for AM64 SoCs

- ti,hwmods : Must be "i2c<n>", n being the instance number (1-based)

- #address-cells = <1>;

- #size-cells = <@>;

Recommended properties :
- clock-frequency : Desired I2C bus clock frequency in Hz. Otherwise
the default 100 kHz frequency will be used.

Optional properties:
- Child nodes conforming to i2c bus binding

Note: Current implementation will fetch base address, irq
and dma from omap hwmod data base during device registration.
Future plan is to migrate hwmod data base contents into
device tree blob so that, all the required data will be used
from device tree dts file.

Examples :

i2c1: i2ceo {
compatible = "ti,omap3-i2c"”;
#address-cells = <1>;
#size-cells = <0>;
ti,hwmods = "i2c1";
clock-frequency = <400000>;
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

137/436


https://elixir.bootlin.com/linux/v5.13.19/source/Documentation/devicetree/bindings/i2c/i2c-omap.txt

YAML style

4@,‘3 Device Tree binding:

Documentation/devicetree/bindings/i2c/ti, omap4-i2c.yaml

# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2

$id: http://devicetree.org/schemas/i2c/ti,omap4-i2c.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: I2C controllers on TI's OMAP and K3 SoCs

maintainers:
- Vignesh Raghavendra <vigneshr@ti.com>

properties:
compatible:
one0f :
- enum:
- ti,omap2420-i2c
- ti,omap2430-i2c
- ti,omap3-i2c
- ti,omap4-i2c
- items:
- enum:
- ti,am4372-i2c
- ti,am64-i2c
- ti,am654-i2c
- ti,j72le-i2c
- const: ti,omap4-i2c
reg:

maxItems: 1

interrupts:
maxItems: 1

clocks:
maxItems: 1

clock-names:
const: fck

clock-frequency: true
power-domains: true

"#address-cells":
const: 1

"#size-cells":
const: @

ti,hwmods:
description:
Must be "i2c<n>", n being [...]
$ref: /schemas/types.yaml#/definitions/string
deprecated: true

required:
- compatible
- reg
- interrupts

additionalProperties: false

if:
properties:
compatible:
enum:
- ti,omap2420-i2c
- ti,omap2430-i2c
- ti,omap3-i2c
- ti,omap4-i2c
then:
properties:
ti, hwmods:
items:
- pattern: "*i2c([1-91)$"
else:
properties:

ti,hwmods: false

examples:
-
#include <dt-bindings/interrupt-controller/irq.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>

main_i2c@: i2c@2000000 {
compatible = "ti,j721e-i2c"”, "ti,omap4-i2c”;
reg = <0x2000000 0x100>;
interrupts = <GIC_SPI 200 IRQ_TYPE_LEVEL_HIGH>;
b

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

138/436


https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/ti,omap4-i2c.yaml

60 Validating Device Trees

Jo3e!

dtc only does syntactic validation
YAML bindings allow to do semantic validation
Linux kernel make rules:

make dt_binding_check

verify that YAML bindings are valid, particularly useful if you write examples!

make dtbs_check

validate DTs currently enabled against YAML bindings
The combination of DTS and bindings growing, it may sometimes be relevant to
only check against a subset of matching schema by adding the DT_SCHEMA_FILES
specifier on the make command line:

eg. make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-

devices.yaml dtbs_check
Can be used with both dt_binding_check and dtbs_check

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/436



a Bindings syntax: base
o)

Each

structure

YAML file defines one DT hierarchical level

(up to two when there are children nodes expected)

# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
BYAML 1.2

$id: http://devicetree.org/schemas/<path>/<file-name.yaml>#
$schema: http://devicetree.org/meta-schemas/core. yanli

title: <Type and name of the device>

maintainers:
- John Doe <johnédoe.com>

description: |
Some multiline text.

At an additional indentation level.
# This line is a comment

properties:
prop-a:

prop-b:

%YAML defines the expected language version
$id maybe not a real URL, but a unique
identifier

$schema refers to the base meta-schema this
file should be validated against (in the Github
repository mentioned previously)
properties: where the definitions start

All possible properties should be listed

dash-separated lowercase names
names followed by a colon ":" and a new line

Every indentation level is 2 spaces

An empty line between property definitions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

140/436



60 Bindings syntax: types

Jo3e!

Properties must be typed, either with the

properties: . .
# A bootean property, basically a yes o no type: or the ref: keyword.
pin-x-not-wired: # pin-x-not-wired; ) .
type: boolean Boolean properties require no value
# Expects a single 32-bit numerical value Numerical values can be signed or unsigned
start-offset: # start-offset: <0x1000>; R .
$ref: /schemas/types.yaml#/definitions/uint32 but Should always be 32-b|t W|de
# The suffix already enforces a numerical value! Strmgs should always be fully defined (see
# In this case if there is no additional constraint .
# we set the property to 'true’ next Slldes)
my-freq-hz: true # my-freq-hz = <100000>;

Arrays and matrices are possible as well

# Expects an array of 32-bit numerical values

SHparETREs O SUPTREIAEES = S, CP Generic bindings already set the type for many

$ref: /schemas/types.yaml#/definitions/uint32-array

# A string value is expected propertles
instruction-set: # instruction-set = "extended”; . .
$ref: /schemas/types.yaml#/definitions/string Their values/ltems numbers can be
£ iErdiics gl (e emEsict constrained further
sampling-lines: # sampling-lines = <&pioA 1>, <&pioA 5>;
Sref: /schenas/types. yanl#/def ini tions/phandle-array The types don't need to be repeated however
# Hi well, but d t t the traint H
s BB o P o ) W i IR dt-schema will enforce a type based on the

reset-gpios: true # reset-gpios = <&gpio SOC_SPEC_IDX>;

property name suffix, eg: -hz, -ohms, -us

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/436



60 Bindings syntax: child nodes

o%e]

From a yaml-schema perspective, children
nodes are just another property
A specific type shall however be enforced:

properties:

# The sub-node can only be named: child-node type: object
chlld-node:.
() e Under the main properties keyword,
atternProperties: 1
’ ;tihc Suzfngdc name is flexible, eg: child@100@, child@2a, etc property/SUb-nOde names are flxed

'“childe[a-f@-91+$":

e e If the sub-node name is dynamic, we shall
define it under another top-level keyword,
patternProperties and use pattern-matching
regexes for the naming

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/436



a@ Bindings syntax: expressing constraints
o0

o%e]

Besides defining precisely the different properties and their type, the content of the
property values must also be constrained.

All properties can get an additional description parameter, which is only
readable by humans

We try to maximize the constraints to minimize human errors

One new line per constraint

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/436



4@3 Bindings syntax: numerical constraints

properties:
# The numerical value is bounded
This is valid:

#

# frequency-hz = <100000>;

# frequency-hz = <0x40000>; /* 262144 Hz */

# This is not: H .

T & < » Example of constraints:

# frequency-hz = <&gpio 10>; . . . .

frequency-h: ® minimum: /maximum: min/max values for a
minimum: 10000 .
maximum: 400000 S|ng|e Va|Ue

default: 100000
® default: for a default value

# This is an array with either 1 or 2 members . .
# This 1s valid: ® minItems:/maxItems: min/max number of
# cs-gpios = <&gpioA 1>; . .
# cs=gpios = <8gpioA 1>, <gpioA 5> items In an array
# This is not:
# cs-gpios = <&gpioA 1>, <gpioA 5>, <gpioA 6>;
# cs-gpios = <50>;
cs-gpios:
minItems: 1

maxItems: 2

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/436



Jo3e!

properties:
# This is a very common compatible definition
# The only allowed combinations are (order matters):
# compatible = "vendor1,compat”, "generic,compat”;
# compatible = "vendor2,compat”, "generic,compat”;
# compatible = "legacy-compat”;
compatible:
oneOf :
- items:
- enum:
- vendor1,compat
- vendor2,compat
- const: generic,compat
- items:
- const: legacy-compat

# Property name is known by dt-schema, type will be inferred
# No need for minItems/maxItems, 2 will be implied from
# the main items list!
clocks:
items:
- description: Interconnect
- description: External bus

# This is valid: strength = <@>, <5>;
# This is invalid: strength = <@>;
# strength = <0>, <8>;
strength:
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 2
maxItems: 2
items:
maximum: 5

ao Bindings syntax: lists and dictionaries
o0

Expressing several possible property values
(works with numbers and strings):

Force a single expected value: const
Allow taking one value from a list: enum

watch out the indentation: 2 spaces from
the previous keyword and a dash
const/enum can be grouped within an items
list, where each items sub-entry must be
observed
We can build abstract conditional lists (eg. on
top of items rather than proper values like
with const/enum:
XOR using one0f
OR using anyOf
AND using allof

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin.com 145/436



ao Bindings syntax: referencing other bindings

o%e]

It is possible to write "common" constraints in

# ALL properties/constraints defined in generic-controller.yaml

# will apply (but they can be tuned/overwritten below) a YAML f||e and refer to it
allof:

= 7Rl AT Very usual when describing a certain type of
properties:

# Tune a property defined in generic-controller.yaml ContrO”er

prop-a: H B H

o e 1 Refer to the generic constraints with a
) top-level allof

# Allow a new, more specific property .

vendor, specific-prop: true Add constraints which are specific to the

# common-child-constraints.yaml will enforce a base set of hardware implementation

# properties and rules

child-node:

neds Possible to constrain children nodes by
type: object
$ref: common-child-constraints.yaml referencing another YAML flle

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/436



a@ Bindings syntax: altering on presence of properties
o0

o%e]

properties:
compatible:
enum:
- compat1
- compat2

prop-a: true
prop-b: true
prop-c: true

dependencies:
prop-a: [ 'prop-b’ ]
prop-b: [ 'prop-a’ ]

allof:
= iifs
properties:
compatible:
contains:
const: compat1
then:
properties:
prop-c: false

Sometimes more dynamic descriptions are
needed
Dependencies between properties
A property may be needed if there is another
property
If both or none shall be present, the
dependency should be expressed twice (in
both directions)
Changing constraints based on a property
Can be expressed using if/else statements
under the top-level all0f
Typical case: a compatible implies tweaking
a constraint

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

147/436



o%e]

allof:
- $ref: generic-file.yaml

properties:
prop-a: true

prop-b: true

child-node:
type: object
properties:
prop-c: true
prop-d: true

required:
- prop-c

# No additional property than the ones above
# will be allowed inside child-node
additionalProperties: false

required:
- prop-a

# Only properties defined below or coming from
# generic-file.yaml will be allowed
unevaluatedProperties: false

60 Bindings syntax: enforcing correct properties only
o0

YAML files list properties and add constraints
to them
It is still possible to add undefined properties
It is still possible to forget defining a
mandatory property

We need further constraints to spot typos and

unexpected properties
required forces the presence
additionalProperties prevents any property
not defined in this file to be used
unevaluatedProperties prevents any
property not defined in this file nor referenced
(through allof or $ref) to be used

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/436



ao Bindings syntax: validating your own bindings

o%e]

properties:
prop-a: true
prop-b: true

child-node:

e A It is very recommended to test your bindings
iren. before testing your DTS
- e Add examples at the end of your file!
LGRS R G Examples are indented with 4 spaces
example:

node@1000 {
prop-a;

%

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/436



a References
o)

o%e]

Device Tree 101 webinar, Thomas Petazzoni
(2021):

Slides: https://bootlin.com/blog/device-
tree-101-webinar-slides-and-videos/

Video: https://youtu.be/a9CZ1Uk30YQ Besil
@} Agenda

Kernel documentation

driver-api/driver-model/
devicetree/
filesystems/sysfs

https://devicetree.org

The kernel source code

Full of examples of other drivers!
Reference DT binding implementation:
Documentation/devicetree/bindings/
example-schema.yaml

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/436


https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ
https://www.kernel.org/doc/html/latest/driver-api/driver-model/
https://www.kernel.org/doc/html/latest/devicetree/
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html
https://devicetree.org
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/example-schema.yaml
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/example-schema.yaml

a@ Practical lab - Describing hardware devices
o0

o%e]

Browse and update Device Trees.

Use GPIO LEDs.

Modify the Device Tree to enable an 12C
controller and describe an 12C device.
Write a yaml binding to validate a device
description.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/436



Introduction to pin muxing

Introduction to pin bOOtIl'n

muxing

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/436



ao What is pin muxing?

o%e]

Modern SoCs (System on Chip) include more and more hardware blocks, many of
which need to interface with the outside world using pins.

However, the physical size of the chips remains small, and therefore the number of
available pins is limited.

For this reason, not all of the internal hardware block features can be exposed on

the pins simultaneously.

The pins are multiplexed: they expose either the functionality of hardware block

A or the functionality of hardware block B.

This multiplexing is usually software configurable.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/436



Pin muxing diagram

Configuration
GPI00
GPIO
UART3 RX \E
M Uy —
>
UART 3 12C0 SCL
UART3 TX
SPI 1 GPIO1
—)
M Uy —
N
12C 0 I 12C0 SDA
SOC Configuration

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

154/436



a Pin muxing in the Linux kernel
o)

o%e]

Since Linux 3.2, a pinctrl subsystem has been added.

This subsystem, located in drivers/pinctrl/ provides a generic subsystem to
handle pin muxing. It offers:

A pin muxing driver interface, to implement the system-on-chip specific drivers that
configure the muxing.
A pin muxing consumer interface, for device drivers.

Most pinctrl drivers provide a Device Tree binding, and the pin muxing must be
described in the Device Tree.

The exact Device Tree binding depends on each driver. Each binding is defined in
Documentation/devicetree/bindings/pinctrl.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/436


https://elixir.bootlin.com/linux/latest/source/drivers/pinctrl/
https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl

pinctrl subsystem diagram

| Device driver

I—

| Device driver

Request pin muxing

| Device driver

E—

SoC .dtsi file

Provides list of

Board .dts file

pin groups

Provides associations between

pin groups and devices

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

156/436



ao Device Tree properties for consumer devices
o0

Jo3e!

The devices that require certains pins to be muxed will use the pinctrl-<x> and
pinctrl-names Device Tree properties.

The pinctrl-9, pinctrl-1, pinctrl-<x> properties link to a pin configuration
for a given state of the device.
The pinctrl-names property associates a name to each state. The name

default is special, and is automatically selected by a device driver, without
having to make an explicit pinctrl function call.

See Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt for
details.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/436


https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt

4@3 Device Tree properties for consumer devices - Examples
A

12c0: 12c@11000 {

pinctrl-0 = <&pmx_twsi0>;
pinctrl-names = "default”;

3
Most common case (arch/arm/boot/dts/
marvell/kirkwood.dtsi)

12c0: 12c@f8014000 {

pinctrl-names = "default”, "gpio”;
pinctrl-0 = <&pinctrl_i2c0>;
pinctrl-1 = <&pinctrl_i2c@_gpio>;

35
Case with multiple pin states (arch/arm/
boot/dts/microchip/sama5d4.dtsi)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

158/436


https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/kirkwood.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/kirkwood.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/sama5d4.dtsi
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/sama5d4.dtsi

60 Defining pinctrl configurations
o0

o%e]

The different pinctrl configurations must be defined as child nodes of the main
pinctrl device (which controls the muxing of pins).
The configurations may be defined at:

the SoC level (.dtsi file), for pin configurations that are often shared between
multiple boards
at the board level (.dts file) for configurations that are board specific.

The pinctrl-<x> property of the consumer device points to the pin configuration
it needs through a DT phandle.

The description of the configurations is specific to each pinctrl driver. See
Documentation/devicetree/bindings/pinctrl for the pinctrl bindings.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/436


https://kernel.org/doc/Documentation/devicetree/bindings/pinctrl

4@} Example on OMAP /AM33xx

/* Excerpt from am335x-bone-common.dts */
&am33xx_pinmux {

i2c2_pins: pinmux_i2c2_pins {

» On OMAP/AM33xx, the pinctrl-single pinctrl-single,pins = <
. } . . AM33XX_PADCONF (AM335X_PIN_UART1_CTSN, PIN_INPUT_PULLUP, M
driver is used. It is common between multiple /% uarti_ctsn.i2c2_sda */
S . | ” f . AM33XX_PADCONF (AM335X_PIN_UART1_RTSN, PIN_INPUT_PULLUP, M
oCs and simply allows to configure pins by /% uartl risn.i2c2 scl +/
writing a value to a register. y 7
® In each pin configuration, a 5
pinctrl-single, pins value gives a list &i2e2 {
. . pinctrl-names = "default”;
of (register, value) pairs needed to pinctrl-o = <&i2c2_pins>;
configure the pins. status = "okay";

lock-f = <400000>;
» To know the correct values, one must use the cosrTreaueney

SoC and board datasheets.

pressure@76 {
compatible = "bosch,bmp280";
reg = <0x76>;

3

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/436



_Qb Example on the Allwinner A20 SoC

SoC level Board level

arch/arm/boot/dts/sun7i-a20.dtsi

arch/arm/boot/dts/sun7i-a2@-olinuxino-micro.dts

-
DbOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. con 161/436



ao Practical lab - Setup pinmuxing to enable 12C communication
o0

o%e]

Configure the pinmuxing for the 12C bus used
to communicate with the Nunchuk

Validate that the 12C communication works
with user space tools.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/436



Linux device and driver model

Linux device and driver bOOtIl'n

model

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/436



a Linux device and driver model
o)

o%e]

Introduction

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/436



ao The need for a device model?

o%e]

The Linux kernel runs on a wide range of architectures and hardware platforms,
and therefore needs to maximize the reusability of code between platforms.

For example, we want the same USB device driver to be usable on a x86 PC, or
an ARM platform, even though the USB controllers used on these platforms are
different.

This requires a clean organization of the code, with the device drivers separated
from the controller drivers, the hardware description separated from the drivers
themselves, etc.

This is what the Linux kernel Device Model allows, in addition to other
advantages covered in this section.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/436



a Kernel and device drivers
o)

Jo3e!

In Linux, a driver is always interfacing with:

a framework that allows the driver to expose the
hardware features in a generic way.

a bus infrastructure, part of the device model, to
detect/communicate with the hardware.

This section focuses on the bus infrastructure, while kernel
frameworks are covered later in this training.

Application

A

\ 4

System Call
Interface

A
\ 4

Framework

A

User space

Kernel

Driver

A
Y

Bus infra

structure

Y

Hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

166/436



a Device model data structures
o)

o%e]

The device model is organized around three main data structures:

The struct bus_type structure, which represents one type of bus (USB, PClI, 12C,
etc.)

The struct device_driver structure, which represents one driver capable of
handling certain devices on a certain bus.

The struct device structure, which represents one device connected to a bus

The kernel uses inheritance to create more specialized versions of
struct device_driver and struct device for each bus subsystem.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/436


https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/device

Bus drivers
o

o%e]

The first component of the device model is the bus driver
One bus driver for each type of bus: USB, PCI, SPI, MMC, 12C, etc.
It is responsible for

Registering the bus type (struct bus_type)

Allowing the registration of adapter drivers (USB controllers, 12C adapters, etc.),
able to detect the connected devices (if possible), and providing a communication
mechanism with the devices

Allowing the registration of device drivers (USB devices, 12C devices, PCl devices,
etc.), managing the devices

Matching the device drivers against the devices detected by the adapter drivers.
Provides an API to implement both adapter drivers and device drivers

Defining driver and device specific structures, eg. struct usb_driver and
struct usb_interface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/436


https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/usb_interface

ao sysfs

o%e]

The bus, device, drivers, etc. structures are internal to the kernel

The sysfs virtual filesystem offers a mechanism to export such information to
user space

Used for example by udev to provide automatic module loading, firmware loading,
mounting of external media, etc.
sysfs is usually mounted in /sys

/sys/bus/ contains the list of buses

/sys/devices/ contains the list of devices

/sys/class enumerates devices by the framework they are registered to (net,
input, block...), whatever bus they are connected to. Very useful!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/436



a Linux device and driver model
o)

o%e]

Example of the USB bus

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



% Example: USB bus 1/3

USB 2.0

FTDI 232H

Linksys USB200M

DWC2 Bus
Controller

FTDI 4232H

Apple keyboard

USB 3.0

ASIX AX88772B

DWC3 BUS
Controller

Serial adapters
supported by ftdi-sio

Keyboard

supported by hid-apple

Hardware view of the bus

Ethernet adapters
supported by asix

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

171/436



% Example: USB bus 2/3

USB Core
Registers the bus_type structure
A A 1t
y Y
USB Adapter USB Adapter USB Device USB Device USB Device
driver A driver B driver 1 driver 2 driver 3
(dwe3) (dwe2) (ftdi-sio) (hid-apple) (asix)
T . : v T
: A Y :
H DEV1 i DEV2 g
—>» USBL 0 | : | 0
Y Y Y
DEV3 DEV4 DEV5
» USB2 I [ I
System

Device model view of the bus

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

172/436



ao Example: USB bus 3/3

Jo3e!

Core infrastructure (bus driver)

drivers/usb/core/
struct bus_type is defined in drivers/usb/core/driver.c and registered in
drivers/usb/core/usb.c

Adapter drivers

drivers/usb/host/
For EHCI, UHCI, OHCI, XHCI, and their implementations on various systems
(Microchip, IXP, Xilinx, OMAP, Samsung, PXA, etc.)

Device drivers
Everywhere in the kernel tree, classified by their type (Example: drivers/net/usb/)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/436


https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/
https://elixir.bootlin.com/linux/latest/ident/bus_type
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/driver.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/usb.c
https://elixir.bootlin.com/linux/latest/source/drivers/usb/host/
https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/

a Example of device driver
o)

o%e]

Application
User space

To illustrate how drivers are implemented to work with the — ______A______
device model, we will study the source code of a driver for a
USB network card e
It is USB device, so it has to be a USB device driver
It exposes a network device, so it has to be a network driver
Most drivers rely on a bus infrastructure (here, USB) and
register themselves in a framework (here, network)

Network framework

Kernel

We will only look at the device driver side, and not the
adapter driver side

The driver we will look at is drivers/net/usb/rtl18150.c

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/436


https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/rtl8150.c

4@} Device identifiers

> Defines the set of devices that this driver can manage, so that the USB core
knows for which devices this driver should be used

» The MODULE_DEVICE_TABLE() macro allows depmod (run by
make modules_install) to extract the relationship between device identifiers and
drivers, so that drivers can be loaded automatically by udev. See
/lib/modules/$(uname -r)/modules.{alias,usbmap?}

static struct usb_device_id rtl8150_table[] = {
{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) 3},
{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) 1},
{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) 1},
{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },
[...]
{3
i
MODULE_DEVICE_TABLE(usb, rt18150_table);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/436


https://elixir.bootlin.com/linux/latest/ident/MODULE_DEVICE_TABLE

Q} Instantiation of usb_driver

> struct usb_driver is a structure defined by the USB core. Each USB device
driver must instantiate it, and register itself to the USB core using this structure

> This structure inherits from struct device_driver, which is defined by the

device model.

static struct usb_driver rtl8150_driver

.name = "rtl8150",

.probe = rtl8150_probe,
.disconnect = rtl8150_disconnect,
.id_table = rtl18150_table,
.suspend = rtl8150_suspend,
.resume = rtl8150_resume

g

{

DOOLIIN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin. com

176/436


https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver

a Driver registration and unregistration

b
When the driver is loaded / unloaded, it must register / unregister itself to / from the
USB core

Done using usb_register() and usb_deregister(), provided by the USB core.

static int __init usb_rtl18150_init(void)

{

return usb_register(&rtl8150_driver);
¥
static void __exit usb_rtl8150_exit(void)
{

usb_deregister(&rtl8150_driver);
¥

module_init(usb_rtl8150_init);
module_exit(usb_rtl8150_exit);

All this code is actually replaced by a call to the module_usb_driver() macro:

module_usb_driver(rtl8150_driver);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/436


https://elixir.bootlin.com/linux/latest/ident/usb_register
https://elixir.bootlin.com/linux/latest/ident/usb_deregister
https://elixir.bootlin.com/linux/latest/ident/module_usb_driver

At Initialization
o

Jo3e!

The USB adapter driver that corresponds to the USB controller of the system

registers itself to the USB core

The rt18150 USB device driver registers itself to the USB core

USB Core

usb_add_hcd()

ohci-at91

usb_register()

rtl8150

The USB core now knows the association between the vendor/product IDs of
rt18150 and the struct usb_driver structure of this driver

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

178/436


https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/usb_driver

4@} When a device is detected

Step 2: USB core looks
up the registered IDs, and
finds the matching driver

USB Core

Step 1: a new
USB device is
detected with

ID X:Y

ohci-at91

Step 3: The USB core calls
the probe() method of the
usb_driver structure registered
by the rtI8150 driver

rtI8150

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

179/436



P h
Q@ robe method

o%e]

Invoked for each device bound to a driver

The probe() method receives as argument a structure describing the device,
usually specialized by the bus infrastructure (struct pci_dev,

struct usb_interface, etc.)

This function is responsible for

Initializing the device, mapping |/O memory, registering the interrupt handlers. The
bus infrastructure provides methods to get the addresses, interrupt numbers and
other device-specific information.

Registering the device to the proper kernel framework, for example the network
infrastructure.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/436


https://elixir.bootlin.com/linux/latest/ident/pci_dev
https://elixir.bootlin.com/linux/latest/ident/usb_interface

4@,‘} Example: probe() and disconnect() methods

static int rtl8150_probe(struct usb_interface *intf,

{

const struct usb_device_id *id)

rtl8150_t *dev;
struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rt18150_t));
[...]

dev = netdev_priv(netdev);
tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);
spin_lock_init(&dev->rx_pool_lock);

Cocodl

netdev->netdev_ops = &rtl8150_netdev_ops;
alloc_all_urbs(dev);

Loood

usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);
register_netdev(netdev);

return 0;

Source: drivers/net/usb/rtl8150.c

static void rtl8150_disconnect(struct usb_interface *intf)

rtl8150_t *dev = usb_get_intfdata(intf);

usb_set_intfdata(intf, NULL);

if (dev) {
set_bit(RTL8150_UNPLUG, &dev->flags);
tasklet_kill(&dev->tl);
unregister_netdev(dev->netdev);
unlink_all_urbs(dev);
free_all_urbs(dev);
free_skb_pool(dev);
if (dev->rx_skb)

dev_kfree_skb(dev->rx_skb) ;

kfree(dev->intr_buff);
free_netdev(dev->netdev);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

181/436


https://elixir.bootlin.com/linux/latest/source/drivers/net/usb/rtl8150.c

The model is recursive

| ALSA | | Network Stack | | 110 subsystem |
A A

System

110 Driver
12C Device i
12C Core
T

PCI Controler

USB Controler

Network Driver 12C Adapter Driver
USB Device Driver USB Device Driver

12¢
Controler

USB Core
USB Net
f Device
ALSA Driver USB Adapter Driver
PCI Device Driver PCI Device Driver

PCI Core

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/436



a Linux device and driver model
o)

o%e]

Platform drivers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/436



a Platform devices
o)

o%e]

Amongst the non-discoverable devices, a huge family are the devices that are
directly part of a system-on-chip: UART controllers, Ethernet controllers, SPI or
I12C controllers, graphic or audio devices, etc.

In the Linux kernel, a special bus, called the platform bus has been created to
handle such devices. Those get controlled through memory-mapped registers.

It supports platform drivers that handle platform devices.

It works like any other bus (USB, PCl), except that devices are enumerated
statically instead of being discovered dynamically.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/436



4@} Implementation of a platform driver (1)

The driver implements a struct platform_driver structure (example taken from
drivers/tty/serial/imx.c, simplified)

static struct platform_driver serial_imx_driver = {

.probe = serial_imx_probe,
.remove = serial_imx_remove,
.id_table = imx_uart_devtype,
.driver ={
.name = "imx-uart”,
.of_match_table = imx_uart_dt_ids,
.pm = &imx_serial_port_pm_ops,

b5

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/436


https://elixir.bootlin.com/linux/latest/ident/platform_driver
https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/imx.c

4@} Implementation of a platform driver (2)

. and registers its driver to the platform driver infrastructure

static int __init imx_serial_init(void) {
return platform_driver_register(&serial_imx_driver);

}

static void __exit imx_serial_cleanup(void) {
platform_driver_unregister(&serial_imx_driver);

3

module_init(imx_serial_init);
module_exit(imx_serial_cleanup);

Most drivers actually use the module_platform_driver() macro when they do
nothing special in init() and exit() functions:

module_platform_driver(serial_imx_driver);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/436


https://elixir.bootlin.com/linux/latest/ident/module_platform_driver

60 Platform device instantiation
o0

o%e]

As platform devices cannot be detected dynamically, they are defined statically
Legacy way: by direct instantiation of struct platform_device structures, as done
on a few old ARM platforms. The device was part of a list, and the list of devices
was added to the system during board initialization.

Current way: by parsing an "external” description, like a device tree on most
embedded platforms today, from which struct platform_device instances are
created.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/436


https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/platform_device

a@ Using additional hardware resources
o0

o%e]

Regular DT descriptions contain many information. It includes phandles
(pointers) towards additional hardware blocks which cannot be discovered.
I/O register addresses and IRQ lines are available through a struct resource array
associated to each struct platform_device.
Information relevant to a given subsystem is parsed by that specific subsystem.
Examples are clocks, GPIOs or DMA. A subsystem is responsible for:

instantiating its components,
offering an API to use those objects from device drivers.

Specific properties are directly retrieved by device drivers, through (expensive) DT
lookups.
All these methods allow the same driver to be used with multiple devices
functioning similarly, but with different addresses, IRQs, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/436


https://elixir.bootlin.com/linux/latest/ident/resource
https://elixir.bootlin.com/linux/latest/ident/platform_device

4@3 Using resources
A

P The platform driver has access to the resources provided by the platform bus:

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = ioremap(res->start, PAGE_SIZE);
sport->rxirq = platform_get_irq(pdev, 0);

> As well as the various subsystem-provided dependencies through individual APIs:
® clk_get()
® gpio_request()
® dma_request_channel()

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/436


https://elixir.bootlin.com/linux/latest/ident/clk_get
https://elixir.bootlin.com/linux/latest/ident/gpio_request
https://elixir.bootlin.com/linux/latest/ident/dma_request_channel

Driver data
o

In addition to the per-device resources and information, drivers may require
driver-specific information to behave slightly differently when different flavors of
an IP block are driven by the same driver.

A const void *data pointer can be used to store per-compatible specificities:

static const struct of_device_id marvell_nfc_of_ids[] = {

{

.compatible = "marvell,armada-8k-nand-controller”,
.data = &marvell_armada_8k_nfc_caps,
I
35

Which can be retrieved in the probe with:

/* Get NAND controller capabilities x/
if (pdev->id_entry) /* legacy way */

nfc->caps = (void *)pdev->id_entry->driver_data;
else /* current way */

nfc->caps = of_device_get_match_data(&pdev->dev);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/436



a@ Introduction to the 12C subsystem
o0

o%e]

Introduction to the 12C
subsystem

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

191/436



What is 12C?
Q@ at is 12C

o%e]

A very commonly used low-speed bus to connect on-board and external devices to
the processor.

Uses only two wires: SDA for the data, SCL for the clock.

It is a master/slave bus: only the master can initiate transactions, and slaves can
only reply to transactions initiated by masters.

In a Linux system, the 12C controller embedded in the processor is typically the
master, controlling the bus.

Each slave device is identified by an 12C address (you can't have 2 devices with
the same address on the same bus). Each transaction initiated by the master
contains this address, which allows the relevant slave to recognize that it should
reply to this particular transaction.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/436



4@,‘3 An 12C bus example

Processor

12C

controller ¢

12C
touchscreen
controller

addr = 0x2C

v

v

12C 12C
GPIO audio
expander codec
addr = Ox1A addr = Ox6E

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

193/436



Q@ The 12C bus driver

o%e]

Like all bus subsystems, the 12C bus driver is responsible for:

Providing an API to implement 12C controller drivers
Providing an API to implement 12C device drivers, in kernel space
Providing an API to implement 12C device drivers, in user space

The core of the 12C bus driver is located in drivers/i2c/.
The 12C controller drivers are located in drivers/i2c/busses/.

The 12C device drivers are located throughout drivers/, depending on the
framework used to expose the devices (e.g. drivers/input/ for input devices).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/436


https://elixir.bootlin.com/linux/latest/source/drivers/i2c/
https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/
https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/drivers/input/

ao Registering an [2C device driver

o%e]

Like all bus subsystems, the 12C subsystem defines a struct i2c_driver that
inherits from struct device_driver, and which must be instantiated and
registered by each 12C device driver.

As usual, this structure points to the ->probe() and ->remove() functions.

It also contains a legacy id_table, used for non-DT based probing of 12C devices.
The i2c_add_driver() and i2c_del_driver() functions are used to
register/unregister the driver.
If the driver doesn't do anything else in its init()/exit() functions, it is advised
to use the module_i2c_driver() macro instead.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/436


https://elixir.bootlin.com/linux/latest/ident/i2c_driver
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_add_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_del_driver
https://elixir.bootlin.com/linux/latest/ident/module_i2c_driver

4@,? Registering an 12C device driver: example

static const struct i2c_device_id adx1345_i2c_id[] = {
{ "adx1345”, ADXL345 },
{ "adx1375", ADXL375 },
{3

X

MODULE_DEVICE_TABLE(i2c, adx1345_i2c_id);

static const struct of_device_id adx1345_of_match[] = {
{ .compatible = "adi,adx1345" },
{ .compatible = "adi,adx1375" },
{3}

3

MODULE_DEVICE_TABLE(of, adx1345_of_match);

static struct i2c_driver adx1345_i2c_driver = {
.driver = {
.name = "adx1345_i2c",
.of _match_table = adx1345_of_match,

3

.probe = adx1345_i2c_probe,
.remove = adx1345_i2c_remove,
.id_table = adx1345_i2c_id,

X

module_i2c_driver(adx1345_i2c_driver);

From drivers/iio/accel/adx1345_i2c.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

196/436


https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/adxl345_i2c.c

ao Registering an 12C device: non-DT

o%e]

On non-DT platforms, the struct i2c_board_info structure allows to describe

how an 12C device is connected to a board.

Such structures are normally defined with the T2C_BOARD_INFO() helper macro.
Takes as argument the device name and the slave address of the device on the bus.

An array of such structures is registered on a per-bus basis using
i2c_register_board_info(), when the platform is initialized.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/436


https://elixir.bootlin.com/linux/latest/ident/i2c_board_info
https://elixir.bootlin.com/linux/latest/ident/I2C_BOARD_INFO
https://elixir.bootlin.com/linux/latest/ident/i2c_register_board_info

% Registering an 12C device, non-DT example

arch/arm/mach-iop32x/em7210.c

static struct i2c_board_info __initdata em7210_i2c_devices[] = {
{ I2C_BOARD_INFO("rs5c372a"”, 0x32) },
};

static void __init em7210@_init_machine(void)

{
register_iop32x_gpio();
platform_device_register(&em7210_serial_device);
platform_device_register(&iop3xx_i2c@_device);
platform_device_register(&iop3xx_i2c1_device);
platform_device_register(&em7210_flash_device);
platform_device_register(&iop3xx_dma_0_channel);
platform_device_register(&iop3xx_dma_1_channel);

i2c_register_board_info(@, em7210_i2c_devices,
ARRAY_SIZE(em7210_i2c_devices));

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/436


https://elixir.bootlin.com/linux/v6.2.16/source/arch/arm/mach-iop32x/em7210.c

ao Registering an 12C device, in the DT

o%e]

In the Device Tree, the 12C controller device is typically defined in the .dtsi file
that describes the processor.

Normally defined with status = "disabled”.
At the board/platform level:

the 12C controller device is enabled (status = "okay")

the 12C bus frequency is defined, using the clock-frequency property.

the 12C devices on the bus are described as children of the 12C controller node,
where the reg property gives the 12C slave address on the bus.

See the binding for the corresponding driver for a specification of the expected DT
properties. Example:
Documentation/devicetree/bindings/i2c/ti, omap4-i2c.yaml

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/436


https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/ti,omap4-i2c.yaml

4@} Registering an 12C device, DT example (1/2)

Definition of the I12C controller
i2c@: i2c@d1c2ac00 {
compatible = "allwinner,sun7i-a20-i2c”,
"allwinner,sun4i-al0-i2c”;
reg = <0x01c2ac0d 0x400>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&apbl1_gates 0>;
status = "disabled”;
#address-cells = <1>;
#size-cells = <0>;

33

From arch/arm/boot/dts/allwinner/sun7i-a20.dtsi

#address-cells: number of 32-bit values needed to encode the address fields
#size-cells: number of 32-bit values needed to encode the size fields

See details in https://elinux.org/Device_Tree_Usage

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/436


https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/allwinner/sun7i-a20.dtsi
https://elinux.org/Device_Tree_Usage

4@,? Registering an 12C device, DT example (2/2)

Definition of the I12C device

&i2co {
pinctrl-names = "default”;
pinctrl-0 = <&i2c@_pins_a>;
status = "okay";

axp209: pmic@34 {
compatible = "x-powers,axp209”;
reg = <0x34>;
interrupt-parent = <&mmi_intc>;
interrupts = <@ IRQ_TYPE_LEVEL_LOW>;

interrupt-controller;
#interrupt-cells = <1>;
if
¥

From arch/arm/boot/dts/allwinner/sun7i-a20-olinuxino-micro.dts

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/436


https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/allwinner/sun7i-a20-olinuxino-micro.dts

a@ probe() and remove()

o%e]

The ->probe() function is responsible for initializing the device and registering it
in the appropriate kernel framework. It receives as argument:
An struct i2c_client pointer, which represents the 12C device itself. This
structure inherits from struct device.
On older kernels (< v6.4), ->probe() was taking a second (unused) argument, the

removal of this other argument implied the use of another probe function for some
kernel releases, called ->probe_new().

The ->remove() function is responsible for unregistering the device from the
kernel framework and shut it down. It receives as argument:

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/436


https://elixir.bootlin.com/linux/latest/ident/i2c_client
https://elixir.bootlin.com/linux/latest/ident/device

4@3 Probe example

static int da311_probe(struct i2c_client *client)

{

3

struct iio_dev *indio_dev; // framework structure
da311_data *data; // per device structure

// Allocate framework structure with per device struct inside
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
data = iio_priv(indio_dev);

data->client = client;

i2c_set_clientdata(client, indio_dev);

// Prepare device and initialize indio_dev

// Register device to framework
ret = iio_device_register(indio_dev);

return ret;

From drivers/iio/accel/da311.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/436


https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/da311.c

4@3 Remove example
A

static int da311_remove(struct i2c_client *client)

{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
// Unregister device from framework
iio_device_unregister(indio_dev);
return da311_enable(client, false);

3

From drivers/iio/accel/da311.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/436


https://elixir.bootlin.com/linux/latest/source/drivers/iio/accel/da311.c

ao Communicating with the 12C device: raw API

o%e]

The most basic APl to communicate with the 12C device provides functions to either
send or receive data:

Send a buf to the 12C device with:
int i2c_master_send(const struct i2c_client *client, const char *buf, int count);
Receive a count bytes from the 12C device and save them in buf with:
int i2c_master_recv(const struct i2c_client *client, char *buf, int count);

Both functions return a negative error number in case of failure, otherwise the number
of transmitted bytes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/436



60 Communicating with the 12C device: message transfer
o0

o%e]

The message transfer AP allows to describe transfers that consists of several
messages, with each message being a transaction in one direction:

int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg xmsgs, int num);

The struct i2c_adapter pointer can be found by using client->adapter

The struct i2c_msg structure defines the length, location, and direction of the
message.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/436


https://elixir.bootlin.com/linux/latest/ident/i2c_adapter
https://elixir.bootlin.com/linux/latest/ident/i2c_msg

4@3 12C: message transfer example

static int st1232_ts_read_data(struct st1232_ts_data *ts)
{

struct i2c_client *client = ts->client;
struct i2c_msg msg[2];
int error;

u8 start_reg = ts->chip_info->start_reg;
u8 xbuf = ts->read_buf;

/* read touchscreen data */
msg[@].addr = client->addr;
msgl0].flags = 0;

msgl0].len = 1;

msg[0].buf = &start_reg;
msg[1].addr = ts->client->addr;
msg[1].flags = I2C_M_RD;
msgl[1].len = ts->read_buf_len;
msg[1].buf = buf;

error = i2c_transfer(client->adapter, msg, 2);

From drivers/input/touchscreen/st1232.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

207/436


https://elixir.bootlin.com/linux/latest/source/drivers/input/touchscreen/st1232.c

MB Il
Q@ SMBus calls

SMBus is a subset of the 12C protocol.

It defines a standard set of transactions, such as reading/writing from a
register-like interface.

Linux provides SMBus functions that should preferably be used instead of the raw
API with devices supporting SMBus.
Such a driver will be usable with both SMBus and 12C adapters

SMBus adapters cannot send raw 12C commands

[2C adapters will receive an SMBus-like command crafted by the core
Example: the i2c_smbus_read_byte_data() function allows to read one byte of
data from a device “register”.

It does the following operations:

S Addr Wr [A] Comm [A] Sr Addr Rd [A] [Data] NA P

Which means it first writes a one byte data command (Comm, which is the
“register” address), and then reads back one byte of data ([Data)).

See i2c/smbus-protocol for details.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/436


https://elixir.bootlin.com/linux/latest/ident/i2c_smbus_read_byte_data
https://www.kernel.org/doc/html/latest/i2c/smbus-protocol.html

4@,‘3 List of SMBus functions

> Read/write one byte
® s32 i2c_smbus_read_byte(const struct i2c_client *client);

® s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value);

> Write a command byte, and read or write one byte

® $32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command);
® $32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command, u8 value);

P> Write a command byte, and read or write one word

® s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command);
® s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command, ul6 value);

» Write a command byte, and read or write a block of data (max 32 bytes)

® $32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command, u8 *values);
® $32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command, u8 length, const u8 *values);

» Write a command byte, and read or write a block of data (no limit)

® $32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command, u8 length, u8 xvalues);
® s$32 i2c_smbus_write_i2c_block_data(const struct i2c_client xclient, u8 command, u8 length, const u8 xvalues);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/436



12C functionalit
Q@ unctionality

o%e]

Not all 12C controllers support all functionalities.
The 12C controller drivers therefore tell the 12C core which functionalities they
support.

An 12C device driver must check that the functionalities they need are provided by
the 12C controller in use on the system.

The i2c_check_functionality() function allows to make such a check.

Examples of functionalities: I2C_FUNC_I2C to be able to use the raw [2C
functions, T2C_FUNC_SMBUS_BYTE_DATA to be able to use SMBus commands to
write a command and read/write one byte of data.

See include/uapi/linux/i2c.h for the full list of existing functionalities.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/436


https://elixir.bootlin.com/linux/latest/ident/i2c_check_functionality
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_I2C
https://elixir.bootlin.com/linux/latest/ident/I2C_FUNC_SMBUS_BYTE_DATA
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/i2c.h

4@3 References
q

> https://en.wikipedia.org/wiki/I2C, general presentation of the 12C protocol
P i2c/, details about Linux support for 12C
® j2c/writing-clients
How to write 12C kernel device drivers
® i2c/dev-interface
How to write 12C user-space device drivers
® i2c/instantiating-devices
How to instantiate devices
® i2c/smbus-protocol
Details on the SMBus functions
® i2c/functionality
How the functionality mechanism works

> See also Luca Ceresoli's introduction to 12C (slides, video).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/436


https://en.wikipedia.org/wiki/I2C
https://www.kernel.org/doc/html/latest/i2c/
https://www.kernel.org/doc/html/latest/i2c/writing-clients.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/instantiating-devices.html
https://www.kernel.org/doc/html/latest/i2c/smbus-protocol.html
https://www.kernel.org/doc/html/latest/i2c/functionality.html
https://bootlin.com/pub/conferences/2022/elce/ceresoli-basics-of-i2c-on-linux/ceresoli-basics-of-i2c-on-linux.pdf
https://www.youtube.com/watch?v=g9-wgdesvwA

ao Practical lab - Communicate with the Nunchuk
o0

o%e]

Explore the content of /dev and /sys and the
devices available on the embedded hardware
platform.

Implement a driver that registers as an 12C
driver.

Communicate with the Nunchuk and extract
data from it.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/436



60 Kernel frameworks for device drivers
o0

o%e]

Kernel frameworks for
device drivers

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

213/436



a Kernel and Device Drivers
o)

Jo3e!

In Linux, a driver is always interfacing with:

a framework that allows the driver to expose the
hardware features to user space applications.

a bus infrastructure, part of the device model, to
detect/communicate with the hardware.

This section focuses on the kernel frameworks, while the bus
infrastructure was covered earlier in this training.

Application

A

System Call
Interface

A
\ 4

Framework

A
Y

Driver

Y

Bus infra

structure

Hardware

User space

Kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

214/436



ao Kernel frameworks for device drivers
o0

o%e]

User space vision of devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/436



T f devi
@0 ypes of devices

o%e]

Under Linux, there are essentially four types of devices:

Network devices. They are represented as network interfaces, visible in user
space using ip a

Block devices. They are used to provide user space applications access to raw
storage devices (hard disks, USB keys). They are visible to the applications as
device files in /dev.

Character devices. They are used to provide user space applications access to all
other types of devices (input, sound, graphics, serial, etc.). They are also visible
to the applications as device files in /dev.

Sysfs devices. They don't have any of the above user space interfaces, only a
representation in sysfs. "Internal” device drivers fall under this (e.g. pinctrl), but
also some user-space accessible devices. E.g. gpio (deprecated), |0 (Industrial

1/0).

— Most devices are character devices, so we will study these in more details.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/436



a Major and minor numbers
o)

o%e]

Within the kernel, all block and character devices are identified using a major and
a minor number.

The major number typically indicates the family of the device.
The minor number allows drivers to distinguish the various devices they manage.

Some major numbers are statically allocated, and identical across all Linux
systems.

Since approximately 2016, new frameworks use dynamically allocated major
numbers when possible.

Minor numbers are almost always (partially) dynamically allocated by the
framework itself. Allocation happens in order of enumeration of the devices.

Pre-defined values, ranges and rules can be found in admin-guide/devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/436


https://www.kernel.org/doc/html/latest/admin-guide/devices.html

a Devices: everything is a file
o)

o%e]

A very important UNIX design decision was to represent most system objects as
files

It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

So, devices had to be represented as files to the applications
This is done through a special artifact called a device file

It is a special type of file, that associates a file name visible to user space
applications to the triplet (type, major, minor) that the kernel understands

All device files are by convention stored in the /dev directory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/436



4@3 Device files examples
A

Example of device files in a Linux system

$ 1s -1 /dev/ttyS@ /dev/ttyl

brw-rw---- 1
brw-rw---- 1
brw-rw----1
brw-rw----1
Crw-—-=---- 1
crw-rw---- 1

crw-rw-rw- 1

root
root
root
root
root
root
root

disk
disk
disk
disk
root
dialout
root

/dev/sda /dev/sdal /dev/sda2 /dev/sdc1 /dev/zero

0
1
2
32
1
64
5

2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27

08:
08:
08:
08:
08:
08:
08:

56
56
56
56
57
56
56

/dev/sda
/dev/sdal
/dev/sda2
/dev/sdc
/dev/ttyl
/dev/ttySe
/dev/zero

Example C code that uses the usual file APl to write data to a serial port

int fd,;

fd = open("”/dev/ttyS@", O_RDWR);

write(fd, "Hello"”, 5);

close(fd);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

219/436



a Creating device files
b

o%e]

Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

mknod /dev/<device> [c|b] major minor

Needed root privileges

Coherency between device files and devices handled by the kernel was left to the

system developer
The devtmpfs virtual filesystem can be mounted on /dev and contains all the
devices registered to kernel frameworks. The CONFIG_DEVTMPFS_MOUNT kernel
configuration option makes the kernel mount it automatically at boot time, except
when booting on an initramfs.
devtmpfs can be supplemented by userspace tools like udev or mdev to adjust

permission /ownership, load kernel modules automatically and create symbolic
links to devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

ao Kernel frameworks for device drivers
o0

o%e]

Character drivers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/436



a@ A character driver in the kernel
o0

o%e]

From the point of view of an application, a character device is essentially a file.

Character device drivers therefore implement operations that let applications
think the device is a file.

In order to achieve this, a character driver implements the operations it wants
from the struct file_operations structure: read, write, ioctl, etc.

The Linux filesystem layer will ensure that the driver's operations are called when
a user space application makes the corresponding system call.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/436


https://elixir.bootlin.com/linux/latest/ident/file_operations

Q} From user space to the kernel: character devices
A

User space

| Read Buffer | Write String |

\

/dev/foo

| |
v v

Major / Minor |

[\
=]

Read Handler Write Handler
read \ / write

| Device |

user space

kernel space

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/436



4@3 File operations

Here are the most important operations for a character driver, from the definition of
struct file_operations:

struct file_operations {

struct module *owner;

ssize_t (*read) (struct file *, char
size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user x,
size_t, loff_t x);

long (*unlocked_ioctl) (struct file *, unsigned int,
unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode %, struct file x);

int (*release) (struct inode %, struct file *);

_user *,

3

Many operations exist, they are all optional.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/436


https://elixir.bootlin.com/linux/latest/ident/file_operations

Qo open() and release()

o%e]

int foo_open(struct inode *i, struct file =*f)

Called when user space opens the device file.
Only implement this function when you do something special with the device
at open() time.
struct inode is a structure that uniquely represents a file in the filesystem (be it a
regular file, a directory, a symbolic link, a character or block device)
struct file is a structure created every time a file is opened. Several file structures
can point to the same inode structure.

Contains information like the current position, the opening mode, etc.

Has a void *private_data pointer that one can freely use.

A pointer to the file structure is passed to all other operations

int foo_release(struct inode *i, struct file =f)

Called when user space closes the file.
Only implement this function when you do something special with the device
at close() time.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/436


https://elixir.bootlin.com/linux/latest/ident/inode
https://elixir.bootlin.com/linux/latest/ident/file
https://elixir.bootlin.com/linux/latest/ident/file

ao read() and write()

ssize_t foo_read(struct file *f, char __user xbuf, size_t sz, loff_t *off)

Called when user space uses the read() system call on the device.

Must read data from the device, write at most sz bytes to the user space buffer buf,
and update the current position in the file of f. f is a pointer to the same file
structure that was passed in the open() operation

Must return the number of bytes read.

0 is usually interpreted by userspace as the end of the file.

On UNIX, read() operations typically block when there isn't enough data to read
from the device

ssize_t foo_write(struct file *f, const char __user *buf, size_t sz, loff_t *off)
Called when user space uses the write() system call on the device

The opposite of read, must read at most sz bytes from buf, write it to the device,
update of f and return the number of bytes written.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/436



a@ Exchanging data with user space 1/3

o%e]

Kernel code isn't allowed to directly access user space memory, using memcpy () or
direct pointer dereferencing
User pointer dereferencing is disabled by default to make it harder to exploit
vulnerabilities.
If the address passed by the application was invalid, the kernel could segfault.
Never trust user space. A malicious application could pass a kernel address which
you could overwrite with device data (read case), or which you could dump to the
device (write case).
Doing so does not work on some architectures anyway.

To keep the kernel code portable, secure, and have proper error handling, your
driver must use special kernel functions to exchange data with user space.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/436


https://elixir.bootlin.com/linux/latest/ident/memcpy

4@3 Exchanging data with user space 2/3

> A single value
® get_user(v, p);

m The kernel variable v gets the value pointed by the user space pointer p
® put_user(v, p);

m The value pointed by the user space pointer p is set to the contents of the kernel
variable v.

> A buffer

® unsigned long copy_to_user(void __user *to, const void *from,
unsigned long n);
® unsigned long copy_from_user(void *to, const void __user *from,
unsigned long n);
> The return value must be checked. Zero on success, non-zero on failure. If
non-zero, the convention is to return ~EFAULT.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/436


https://elixir.bootlin.com/linux/latest/ident/EFAULT

60 Exchanging data with user space 3/3

o%e]

OxFFFFFFFF

void *to

Y

void *from

0xC0000000

kernel space

copy__from__user

void user *from

User and kernel addresses
don't overlap, to avoid
itching MMU tabl
switehing page tabies 0x00000000
every time we make a copy

user space

copy__to__user

void user *to

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

220/436



a@ Zero copy access to user memory
o0

o%e]

Having to copy data to or from an intermediate kernel buffer can become
expensive when the amount of data to transfer is large (video).
Zero copy options are possible:

mmap () system call to allow user space to directly access memory mapped 1/0 space.
See our mmap() chapter.

get_user_pages() and related functions to get a mapping to user pages without
having to copy them.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/436


https://elixir.bootlin.com/linux/latest/ident/get_user_pages

locked__ioctl
Qo unlocked_ioctl()

o%e]

long unlocked_ioctl(struct file *f, unsigned int cmd, unsigned long arg)

Associated to the ioctl() system call.

Called unlocked because it didn't hold the Big Kernel Lock (gone now).

Allows to extend the driver capabilities beyond the limited read/write API.

For example: changing the speed of a serial port, setting video output format,
querying a device serial number... Used extensively in the V4L2 (video) and ALSA
(sound) driver frameworks.

cmd is a number identifying the operation to perform.

See driver-api/ioctl for the recommended way of choosing cmd numbers.

arg is the optional argument passed as third argument of the ioctl() system call.
Can be an integer, an address, etc.

The semantic of cmd and arg is driver-specific.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/436


https://www.kernel.org/doc/html/latest/driver-api/ioctl.html

ioctl() example: kernel side

#include <linux/phantom.h>

static long phantom_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)

{
struct phm_reg r;
void __user *argp = (void __user *)arg;

switch (emd) {
case PHN_SET_REG:
if (copy_from_user(&r, argp, sizeof(r)))
return -EFAULT;
/* Do something */
break;

case PHN_GET_REG:
if (copy_to_user(argp, &r, sizeof(r)))
return -EFAULT;
/* Do something */
break;
default:
return -ENOTTY;
3

return 0;

3

Selected excerpt from drivers/misc/phantom.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/436


https://elixir.bootlin.com/linux/latest/source/drivers/misc/phantom.c

4@3 loctl() Example: Application Side

#include <linux/phantom.h>

int main(void)

{
int fd, ret;
struct phm_reg reg;
fd = open("/dev/phantom”);
assert(fd > 0);
reg.fieldl = 42;
reg.field2 = 67;
ret = ioctl(fd, PHN_SET_REG, &reg);
assert(ret == 0);
return 0;

}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/436



ao Kernel frameworks for device drivers
o0

o%e]

The concept of kernel frameworks

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



ao Beyond character drivers: kernel frameworks
o0

o%e]

Many device drivers are not implemented directly as character drivers

They are implemented under a framework, specific to a given device type
(framebuffer, V4L, serial, etc.)
The framework allows to factorize the common parts of drivers for the same type of
devices
From user space, they are still seen as character devices by the applications
The framework allows to provide a coherent user space interface (ioctl, etc.) for
every type of device, regardless of the driver

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/436



4@3 Example: Some Kernel Frameworks

Application Application Application
Y
System Call Interface
\ 4 Y Y ; ;
Character Framebuffer V4L TTY Block
Driver Core Core Core Core
Y Y ; ; ; ;
Framebuffer V4L TTY Serial IDE SCsI
Driver Driver Driver Core Core Core
Y Y Y
Serial IDE S:’(J):Be
Driver Driver . £
Driver

236/436

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



4@} Example: Framebuffer Framework

> Kernel option CONFIG_FB
® menuconfig FB
m tristate "Support for frame buffer devices”
> Implemented in C files in drivers/video/fbdev/core/
> Defines the user/kernel API
¢ include/uapi/linux/fb.h (constants and structures)

> Defines the set of operations a framebuffer driver must implement and helper
functions for the drivers

® struct fb_ops
® include/linux/fb.h

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_FB
https://elixir.bootlin.com/linux/latest/source/drivers/video/fbdev/core/
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/fb_ops
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h

Framebuffer driver operations

=

ere are the operations a framebuffer driver can or must implement, and define them in a
struct fb_ops structure (excerpt from drivers/video/fbdev/skeletonfb.c)

static struct fb_ops xxxfb_ops = {
.owner = THIS_MODULE,
.fb_open = xxxfb_open,
.fb_read = xxxfb_read,
.fb_write = xxxfb_write,
.fb_release = xxxfb_release,
.fb_check_var = xxxfb_check_var,
.fb_set_par = xxxfb_set_par,
.fb_setcolreg = xxxfb_setcolreg,
.fb_blank = xxxfb_blank,
.fb_pan_display = xxxfb_pan_display,

.fb_fillrect = xxxfb_fillrect, /* Needed !!! x/
.fb_copyarea = xxxfb_copyarea, /* Needed !!! %/
.fb_imageblit = xxxfb_imageblit, /* Needed !!! x/
.fb_cursor = xxxfb_cursor, /* Optional !!! =%/

.fb_rotate = xxxfb_rotate,
.fb_sync = xxxfb_sync,
.fb_ioctl = xxxfb_ioctl,
.fb_mmap = xxxfb_mmap,

1

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/436


https://elixir.bootlin.com/linux/latest/ident/fb_ops
https://elixir.bootlin.com/linux/latest/source/drivers/video/fbdev/skeletonfb.c

4@} Framebuffer driver code

> In the probe() function, registration of the framebuffer device and operations
static int xxxfb_probe (struct pci_dev *dev, const struct pci_device_id *ent)

{
struct fb_info *info;
L...]
info = framebuffer_alloc(sizeof (struct xxx_par), device);
[...]
info->fbops = &xxxfb_ops;
L...]
if (register_framebuffer(info) < 0)
return -EINVAL;
[...]
}

> register_framebuffer() will create a new character device in devtmpfs that can
be used by user space applications with the generic framebuffer API.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/436


https://elixir.bootlin.com/linux/latest/ident/register_framebuffer

ao Kernel frameworks for device drivers
o0

g

Device-managed allocations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/436



a Device managed allocations
o)

o%e]

The probe() function is typically responsible for allocating a significant number
of resources: memory, mapping |/O registers, registering interrupt handlers, etc.
These resource allocations have to be properly freed:

In the probe() function, in case of failure

In the remove () function
This required a lot of failure handling code that was rarely tested

To solve this problem, device managed allocations have been introduced.

The idea is to associate resource allocation with the struct device, and
automatically release those resources

When the device disappears
When the device is unbound from the driver

Functions prefixed by devm_
See driver-api/driver-model/devres for details

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/436


https://www.kernel.org/doc/html/latest/driver-api/driver-model/devres.html

Device managed allocations: memory allocation example

> Normally done with kmalloc(size_t, gfp_t), released with kfree(void =*)

P Device managed with devm_kmalloc(struct device *, size_t, gfp_t)

Without devm functions
int foo_probe(struct platform_device *pdev)

struct foo_t *foo = kmalloc(sizeof(struct foo_t),
GFP_KERNEL) ;

/* Register to framework, store

* reference to framework structure in foo */

if (failure) {
kfree(foo);
return -EBUSY;

}
platform_set_drvdata(pdev, foo);
return 0;

3

void foo_remove(struct platform_device *pdev)
struct foo_t *foo = platform_get_drvdata(pdev);
/% Retrieve framework structure from foo

and unregister it */

l’d”;ee(foo);
}

With devm functions
int foo_probe(struct platform_device *pdev)

struct foo_t *foo = devm_kmalloc(&pdev->dev,
sizeof(struct foo_t),
GFP_KERNEL) ;

/* Register to framework, store

* reference to framework structure in foo */

if (failure)

return -EBUSY;
platform_set_drvdata(pdev, foo);
return 0;

3

void foo_remove(struct platform_device *pdev)
struct foo_t *foo = platform_get_drvdata(pdev);
/* Retrieve framework structure from foo

and unregister it */

};Foo automatically freed */

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

242/436



60 Device managed allocations caveats
o0

o%e]

Cleanup is done when the struct device is cleaned up. There is no reference
counting or anything like that.

Don't use if the allocated memory is used outside of the device node. E.g. if the
userspace device file is still open after remove.

Be very careful when there are circular references.

"Why is devm_kzalloc() harmful and what can we do about it”, Laurent
Pinchart, LPC 2022

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/436


https://lpc.events/event/16/contributions/1227/
https://lpc.events/event/16/contributions/1227/

ao Kernel frameworks for device drivers
o0

g

Driver data structures and links

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/436



a@ Driver-specific Data Structure
o0

o%e]

Each framework defines a structure that a device driver must register to be
recognized as a device in this framework
struct uart_port for serial ports, struct net_device for network devices,
struct fb_info for framebuffers, etc.

In addition to this structure, the driver usually needs to store additional
information about each device

This is typically done
By subclassing the appropriate framework structure
By storing a reference to the appropriate framework structure
Or by including your information in the framework structure

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/436


https://elixir.bootlin.com/linux/latest/ident/uart_port
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/ident/fb_info

4@3 Driver-specific Data Structure Examples 1/2

> i.MX serial driver: struct imx_port is a subclass of struct uart_port
struct imx_port {
struct uart_port port;
struct timer_list timer;
unsigned int old_status;
int txirqg, rxirqg, rtsirq;
unsigned int have_rtscts:1;

[...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/436


https://elixir.bootlin.com/linux/latest/ident/imx_port
https://elixir.bootlin.com/linux/latest/ident/uart_port

4@,‘3 Driver-specific Data Structure Examples 2/2

> ds1305 RTC driver: struct ds1305 has a reference to struct rtc_device
struct ds1305 {

struct spi_device *spi;
struct rtc_device *rtc;
[...]
b
static int ds1305_alarm_irg_enable(struct device *dev, unsigned int enabled)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
[..]
¥

> rtl8150 network driver: struct rtl8150 has a reference to struct net_device

and is allocated within that framework structure.
struct rtl8150 {

unsigned long flags;

struct usb_device *udev;

struct tasklet_struct tl;

struct net_device *netdev;

[...]
b

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/436


https://elixir.bootlin.com/linux/latest/ident/ds1305
https://elixir.bootlin.com/linux/latest/ident/rtc_device
https://elixir.bootlin.com/linux/latest/ident/rtl8150
https://elixir.bootlin.com/linux/latest/ident/net_device

60 Links between structures 1/4
o0

o%e]

The framework structure typically contains a struct device x pointer that the
driver must point to the corresponding struct device
It's the relationship between the logical device (for example a network interface) and
the physical device (for example the USB network adapter)

The device structure also contains a void * pointer that the driver can freely use.

It's often used to link back the device to the higher-level structure from the
framework.

It allows, for example, from the struct platform_device structure, to find the
structure describing the logical device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/436


https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/platform_device

4% Links between structures 2/4

static int serial_imx_probe(struct platform_device xpdev)

{

}

struct imx_port *sport; /x per device structure */

[...]

sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);

[...]

/* setup the link between uart_port and the struct
* device inside the platform_device */
sport->port.dev = &pdev->dev;

[...]

/* setup the link between the struct device inside
* the platform device to the imx_port structure x/
platform_set_drvdata(pdev, sport);

[...]

uart_add_one_port(&imx_reg, &sport->port);

static int serial_imx_remove(struct platform_device *pdev)

{

/* retrieve the imx_port from the platform_device */
struct imx_port *sport = platform_get_drvdata(pdev);
[...]

uart_remove_one_port(&imx_reg, &sport->port);

[...]

// Arrow 1

// Arrow 2

Y

imx_port

uart_port

struct device*

platform_device

Y

device

void *
driver_data

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

249/436



Links between

structures 3/4

static int ds1305_probe(struct spi_device *spi)

{

}

struct ds1305
[...]

/* set up driver data */

ds1305 = devm_kzalloc(&spi->dev,

if (!ds1305)

return -ENOMEM;
ds1305->spi = spi;
spi_set_drvdata(spi, ds1305);

[...1

ds1305->rtc = devm_rtc_allocate_

*ds1305;

sizeof (*ds1305), GFP_KERNEL);

// Arrow 1
// Arrow 2

device(&spi->dev);
// Arrows 3 and 4

static int ds1305_remove(struct spi_device #*spi)

{

struct ds1305 *ds1305 = spi_get_drvdata(spi);

[...]

struct ds1305

spi
rtc

vy |

struct rtc_device

device

parent

struct spi_device

A

device

A

void *
driver_data

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

250/436



Links between structures 4 /4

static int rtl8150_probe(struct usb_interface *intf,

A

const struct usb_device_id *id) 2
{ netdev

struct usb_device *udev = interface_to_usbdev(intf);

rtl8150_t *dev; struct device*

struct net_device *netdev;

3 Ll
netdev = alloc_etherdev(sizeof (rtl8150_t)); il
dev = netdev_priv(netdev);
netdev

[...] udev —|

dev->udev = udev; // Arrow 1 <

dev->netdev = netdev; // Arrow 2 . 1

usb_device

[...]

usb_set_intfdata(intf, dev); // Arrow 3

SET_NETDEV_DEV(netdev, &intf->dev); // Arrow 4

[...] usb_interface
}

1 4

static void rtl8150_disconnect(struct usb_interface xintf) device D

rtl8150_t *dev = ush_get_intfdata(intf); = driver_data

[...]
}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/436



The input subsystem

bootlin

The input subsystem

© Copyright 2004-2026, Bootlin. . . .
Crentive Commons BY-SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/436



a@ What is the input subsystem?
o0

o%e]

The input subsystem takes care of all the input events coming from the human
user.

Initially written to support the USB HID (Human Interface Device) devices, it
quickly grew up to handle all kinds of inputs (using USB or not): keyboards, mice,
joysticks, touchscreens, etc.

The input subsystem is split in two parts:

Device drivers: they talk to the hardware (for example via USB), and provide
events (keystrokes, mouse movements, touchscreen coordinates) to the input core
Event handlers: they get events from drivers and pass them where needed via
various interfaces (most of the time through evdev)

In user space it is usually used by the graphic stack such as X.Org, Wayland or
Android’s InputManager.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/436



User space application

User space

System call interface

v

Character driver API

v

Event Handlers

L = = e
subsystem
Input drivers
input input input
driver A driver B driver C

Kernel

254/436

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



4@3 Input subsystem overview

> Kernel option CONFIG_INPUT

® menuconfig INPUT

m tristate "Generic input layer (needed for keyboard, mouse, ...)"

> Implemented in drivers/input/

® input.c, input-poller.c, evdev.c...
> Defines the user/kernel API

® include/uapi/linux/input.h
> Defines the set of operations an input driver must implement and helper functions

for the drivers

® struct input_dev for the device driver part
® struct input_handler for the event handler part
® include/linux/input.h

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/drivers/input/input.c
https://elixir.bootlin.com/linux/latest/source/drivers/input/input-poller.c
https://elixir.bootlin.com/linux/latest/source/drivers/input/evdev.c
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/input.h
https://elixir.bootlin.com/linux/latest/ident/input_dev
https://elixir.bootlin.com/linux/latest/ident/input_handler
https://elixir.bootlin.com/linux/latest/source/include/linux/input.h

4@3 Input subsystem API 1/3

An input device is described by a very long struct input_dev structure, an excerpt is:

struct input_dev {
const char *name;

[ |
struct input_id id;
Cooo]

unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
ool
int (xgetkeycode)(struct input_dev *dev,

struct input_keymap_entry *ke);

ool
int (*open)(struct input_dev *dev);
Cocodl

int (xevent)(struct input_dev *dev, unsigned int type,
unsigned int code, int value);
[
X

Before being used, this structure must be allocated and initialized, typically with:
struct input_dev xdevm_input_allocate_device(struct device xdev);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/436


https://elixir.bootlin.com/linux/latest/ident/input_dev

ao Input subsystem API 2/3

Jo3e!

Depending on the type of events that will be generated, the input bit fields evbit
and keybit must be configured: For example, for a button we only generate
EV_KEY type events, and from these only BTN_@ events code:

set_bit(EV_KEY, myinput_dev.evbit);
set_bit(BTN_0, myinput_dev.keybit);

Once the input device is allocated and filled, the function to register it is:
int input_register_device(struct input_dev *);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/436


https://elixir.bootlin.com/linux/latest/ident/EV_KEY
https://elixir.bootlin.com/linux/latest/ident/BTN_0

ao Input subsystem API 3/3

o%e]

The events are sent by the driver to the event handler using
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
The event types are documented in input/event-codes

An event is composed by one or several input data changes (packet of input data
changes) such as the button state, the relative or absolute position along an axis,
etc..

The input subsystem provides other wrappers such as:
input_report_key()
input_report_abs()

After submitting potentially multiple events, the input core must be notified by calling:

void input_sync(struct input_dev xdev)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/436


https://www.kernel.org/doc/html/latest/input/event-codes.html
https://elixir.bootlin.com/linux/latest/ident/input_report_key
https://elixir.bootlin.com/linux/latest/ident/input_report_abs

4@3 Example from drivers/hid/usbhid /usbmouse.c

static void usb_mouse_irq(struct urb *urb)

{
struct usb_mouse *mouse = urb->context;
signed char *data = mouse->data;
struct input_dev *dev = mouse->dev;
input_report_key(dev, BTN_LEFT, datal0] & 0x01);
input_report_key(dev, BTN_RIGHT, datal0] & 0x02);
input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);
input_report_key(dev, BTN_SIDE, data[0] & 0x08);
input_report_key(dev, BTN_EXTRA, data[0] & 0x10);
input_report_rel(dev, REL_X, datal11);
input_report_rel(dev, REL_Y, data[2]);
input_report_rel(dev, REL_WHEEL, data[3]);
input_sync(dev);

3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/436



4@} Polling input devices

> The input subsystem provides an API to support simple input devices that do not
raise interrupts but have to be periodically scanned or polled to detect changes in
their state.

> Setting up polling is done using input_setup_polling():
int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev));

> poll_fn is the function that will be called periodically.

P The polling interval can be set using input_set_poll_interval() or
input_set_min_poll_interval() and input_set_max_poll_interval()

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/436


https://elixir.bootlin.com/linux/latest/ident/input_setup_polling
https://elixir.bootlin.com/linux/latest/ident/input_set_poll_interval
https://elixir.bootlin.com/linux/latest/ident/input_set_min_poll_interval
https://elixir.bootlin.com/linux/latest/ident/input_set_max_poll_interval

a evdev user space interface
b

o%e]

The main user space interface to input devices is the event interface

Each input device is represented as a /dev/input/event<X> character device
A user space application can use blocking and non-blocking reads, but also
select() (to get notified of events) after opening this device.

Each read will return struct input_event structures of the following format:

struct input_event {
struct timeval time;
unsigned short type;
unsigned short code;
unsigned int value;

A very useful application for input device testing is evtest, from
https://cgit.freedesktop.org/evtest/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/436


https://elixir.bootlin.com/linux/latest/ident/input_event
https://cgit.freedesktop.org/evtest/

a@ Practical lab - Expose the Nunchuk to user space
o0

o%e]

Extend the Nunchuk driver to expose the
Nunchuk features to user space applications, as
an input device.

Test the operation of the Nunchuk using
evtest

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/436



Memory Management

bootlin

Memory Management

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/436



h Physical and virtual memory
o)

Illustration on 32 bit systems

[
Kernel
0 0xC0000000
Process 1
0x00000000
€« MMU €« CPU [ S—
Kernel
0xC0000000
Process 2
0x00000000
0x00000000
Physical addresses Virtual addresses

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/436



o%e]

PAGE_OFFSET

0x0

Kernel

Process n

a Virtual memory organization
b

The top quarter reserved for kernel-space
Contains kernel code and core data structures
Allocations for loading modules
All kernel physical mappings
Identical in all address spaces

The lower part is a per user process exclusive mapping
Process code and data (program, stack, ...)
Memory-mapped files
Each process has its own address space!

The exact virtual mapping in-use is displayed in the
kernel log early at boot time

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/436



a@ Physical /virtual memory mapping on 32-bit systems

o%e]

Virtual Address Space Physical Address Space
OxFFFFFFFF
vmalloc area, 1/O mappings,
temporary and persistent highmem mappings I
1/0 Memory
dentit _ Kernel
entity mapping q
(1:1 with low memory) (lGIB)
RAM
0xC0000000
R ZONE_HIGHMEM
Process n
(3GiB)
ZONE_NORMAL
0x00000000

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/436



o%e]

a 32-bit systems limitations
o)

Only less than 1GB memory addressable directly through kernel virtual addresses

If more physical memory is present on the platform, part of the memory will not
be accessible by kernel space, but can be used by user space

To allow the kernel to access more physical memory:

Change the 3GB/1GB memory split to 2GB/2GB or 1GB/3GB (CONFIG_VMSPLIT_2G
or CONFIG_VMSPLIT_1G) = reduce total user memory available for each process
Activate highmem support if available for your architecture:

Allows kernel to map parts of its non-directly accessible memory
Mapping must be requested explicitly
Limited addresses ranges reserved for this usage

See Arnd Bergmann's 4GB by 4GB split presentation (video and slides) at Linaro
Connect virtual 2020.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VMSPLIT_2G
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VMSPLIT_1G
https://resources.linaro.org/en/resource/TXkzgNDFp3HiJKdfQjbssL

o%e]

Virtual Address Space

OxFFFFFFFFFFFFFFFF

vmalloc area, 1/O mappings,
(128TiB available)

Identity mapping
(128TiB available)

0xFFFF000000000000

0x0000FFFFFFFFFFFF

0x0000000000000000

a@ Physical /virtual memory mapping on 64-bit systems (4kiB-pages)

Physical Address Space

Kernel

1/0O Memory

(256TiB)

= 16M TiB

Process n
(256TiB)

RAM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

268/436



o%e]

When a process
starts, the executable
code is loaded in
RAM and mapped
into the process

virtual address space.
PAGE_OFFSET

During execution,

memory mapping

additional mappings mmap'ed physica range |

can be created:
Memory
allocations memory mapping
Memory mapped
files
mmap'ed areas

0x0

ao User space virtual address space
o0

Virtual Address Space

Kernel

Physical Address Space

1/0 Memory

RAM

Process n

ZONE_HIGHMEM

ZONE_NORMAL

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

260/436



ao Userspace memory allocations
o0

o%e]

Userspace mappings can target the full memory
When allocated, memory may not be physically allocated:

Kernel uses demand fault paging to allocate the physical page (the physical page is
allocated when access to the virtual address generates a page fault)
. or may have been swapped out, which also induces a page fault

See the mlock/mlockall system calls for workarounds
User space memory allocation is allowed to over-commit memory (more than
available physical memory) = can lead to out of memory situations.
Can be prevented with the use of /proc/sys/vm/overcommit_x

OOM killer kicks in and selects a process to kill to retrieve some memory. That's
better than letting the system freeze.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/436



Kernel memory allocators
o)

!

kmalloc allocator

Uses a set of anonymous
SLAB caches

Some Kernel Code

SLAB Allocator

Allows to create caches, each cache storing
objects of the same size. Size can be lower or
greater than a page size.

vmalloc Allocator

Non-physically contiguous
memory

\ 4 l A

Page Allocator

Allows to allocate contiguous areas of physical pages (4k, 8k, 16k, 32k, etc)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

271/436



a Page allocator
o)

o%e]

Appropriate for medium-size allocations

A page is usually 4K, but can be made greater in some architectures (sh, mips: 4,
8, 16 or 64 KB, but not configurable in x86 or arm).

Buddy allocator strategy, so only allocations of power of two number of pages are
possible: 1 page, 2 pages, 4 pages, 8 pages, 16 pages, etc.

Typical maximum size is 8192 KB, but it might depend on the kernel
configuration.

The allocated area is contiguous in the kernel virtual address space, but also maps
to physically contiguous pages. It is allocated in the identity-mapped part of the
kernel memory space.

This means that large areas may not be available or hard to retrieve due to physical
memory fragmentation.

The Contiguous Memory Allocator (CMA) can be used to reserve a given amount of
memory at boot (see https://lwn.net/Articles/486301/).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/436


https://lwn.net/Articles/486301/

4@} Page allocator API

> unsigned long get_zeroed_page(gfp_t gfp_mask)

® Returns the virtual address of a free page, initialized to zero
® gfp_mask: see the next pages for details.

> unsigned long __get_free_page(gfp_t gfp_mask)
® Same, but doesn't initialize the contents
> unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

® Returns the starting virtual address of an area of several contiguous pages in physical
RAM, with order being log2(number_of_pages).Can be computed from the size
with the get_order () function.

> void free_page(unsigned long addr)
® Frees one page.
> void free_pages(unsigned long addr, unsigned int order)

® Frees multiple pages. Need to use the same order as in allocation.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/436


https://elixir.bootlin.com/linux/latest/ident/get_order

a Page allocator flags
o)

o%e]

The most common ones are:

GFP_KERNEL
Standard kernel memory allocation. The allocation may block in order to find
enough available memory. Fine for most needs, except in interrupt handler context.

GFP_ATOMIC
RAM allocated from code which is not allowed to block (interrupt handlers or
critical sections). Never blocks, allows to access emergency pools, but can fail if no
free memory is readily available.

Others are defined in include/linux/gfp_types.h.

See also the documentation in core-api/memory-allocation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/436


https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://elixir.bootlin.com/linux/latest/source/include/linux/gfp_types.h
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html

ao SLAB allocator 1/2

o%e]

The SLAB allocator allows to create caches, which contain a set of objects of the
same size. In English, slab means tile.

The object size can be smaller or greater than the page size

The SLAB allocator takes care of growing or reducing the size of the cache as
needed, depending on the number of allocated objects. It uses the page allocator
to allocate and free pages.

SLAB caches are used for data structures that are present in many instances in
the kernel: directory entries, file objects, network packet descriptors, process
descriptors, etc.

See /proc/slabinfo
They are rarely used for individual drivers.
See include/linux/slab.h for the API

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/436


https://elixir.bootlin.com/linux/latest/source/include/linux/slab.h

_Qb SLAB allocator 2/2

Allocated 512 bytes object

Free 1024 bytes object

v
DbOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. con 276/436



60 Different SLAB allocators

o%e]

There are different, but APl compatible, implementations of a SLAB allocator in the Linux
kernel. A particular implementation is chosen at configuration time.

CONFIG_SLUB: the default allocator, a good generic choice. It scales well and creates little
fragmentation.

CONFIG_SLUB_TINY: configure SLUB to achieve minimal memory footprint, sacrificing
scalability, debugging and other features. Not recommended for systems with more than
16 MB of RAM.

.config - Linux/arm 6.7.0 Kernel Confiquration
Choose SLAB allocator

SLAB (DEPRECATED)

<X> SLUB (Unqueued Allocator)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLUB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SLUB_TINY

a kmalloc allocator
o)

) The kmalloc allocator is the general purpose memory allocator in the Linux kernel
For small sizes, it relies on generic SLAB caches, named kmalloc-XXX in
/proc/slabinfo
For larger sizes, it relies on the page allocator
The allocated area is guaranteed to be physically contiguous
The allocated area size is rounded up to the size of the smallest SLAB cache in
which it can fit (while using the SLAB allocator directly allows to have more
flexibility)

It uses the same flags as the page allocator (GFP_KERNEL, GFP_ATOMIC, etc.) with
the same semantics.

Maximum sizes, on x86 and arm (see https://j.mp/YIGq6W):

- Per allocation: 4 MB

- Total allocations: 128 MB

Should be used as the primary allocator unless there is a strong reason to use
another one.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/436


https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://j.mp/YIGq6W

% kmalloc API 1/2

» #include <linux/slab.h>
> void *kmalloc(size_t size, gfp_t flags);

¢ Allocate size bytes, and return a pointer to the area (virtual address)
® size: number of bytes to allocate
® flags: same flags as the page allocator

> void kfree(const void *objp);
® Free an allocated area
» Example: (drivers/infiniband/core/cache.c)

struct ib_port_attr *tprops;
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);

kfree(tprops);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/436


https://elixir.bootlin.com/linux/latest/source/drivers/infiniband/core/cache.c

% kmalloc API 2/2

> void *kzalloc(size_t size, gfp_t flags);

® Allocates a zero-initialized buffer
> void *kcalloc(size_t n, size_t size, gfp_t flags);

¢ Allocates memory for an array of n elements of size size, and zeroes its contents.
> void *krealloc(const void *p, size_t new_size, gfp_t flags);

¢ Changes the size of the buffer pointed by p to new_size, by reallocating a new
buffer and copying the data, unless new_size fits within the alignment of the
existing buffer.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/436



4@3 devm_kmalloc functions

Allocations with automatic freeing when the corresponding device or module is
unprobed.
> void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp);
> void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp);
» void xdevm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags);
> void *devm_kfree(struct device *dev, void *p);
Useful to immediately free an allocated buffer

For use in probe() functions, in which you have access to a struct device structure.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/436


https://elixir.bootlin.com/linux/latest/ident/device

a vmalloc allocator
o)

The vmalloc() allocator can be used to obtain memory zones that are contiguous
in the virtual addressing space, but not made out of physically contiguous pages.

The requested memory size is rounded up to the next page (not efficient for small
allocations).

The allocated area is in the kernel space part of the address space, but outside of
the identically-mapped area
Allocations of fairly large areas is possible (almost as big as total available
memory, see https://j.mp/YIGq6W again), since physical memory fragmentation
is not an issue.
Not suitable for DMA purposes.
APl in include/linux/vmalloc.h

void *vmalloc(unsigned long size);

Returns a virtual address
void vfree(void *addr);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/436


https://elixir.bootlin.com/linux/latest/ident/vmalloc
https://j.mp/YIGq6W
https://elixir.bootlin.com/linux/latest/source/include/linux/vmalloc.h

60 Kernel memory debugging

o%e]

KASAN (Kernel Address Sanitizer)
Dynamic memory error detector, to find use-after-free and out-of-bounds bugs.
Available on most architectures
See dev-tools/kasan for details.

KFENCE (Kernel Electric Fence)

A low overhead alternative to KASAN, trading performance for precision. Meant to
be used in production systems.

Available on most architectures.

See dev-tools/kfence for details.

Kmemleak

Dynamic checker for memory leaks
This feature is available for all architectures.
See dev-tools/kmemleak for details.

KASAN and Kmemleak have a significant overhead. Only use them in development!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/436


https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

60 Kernel memory management: resources
&\«

Virtual memory and Linux, Alan Ott and Matt Porter, 2016
Great and much more complete presentation about this topic
https://bit.1ly/2Af1G2i (video: https://bit.ly/2BwwveC)

Kernel Virtual Addresses (Small Mem)

Virtual Addre c
ual Address Space Physical Address Space

- OXFFFFFFFF
Kernel Virtual Addresses | (4GB)

Kernel Logical Addresses

Userspace Addresses

Embedded Linux
Conference Europe

° OpenloTSummit
Europe

> o 2

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/436


https://bit.ly/2Af1G2i
https://bit.ly/2Bwwv0C

1/O Memory

4
/0 Memory bootlin

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/436



60 Memory-Mapped 1/0

o%e]

Same address bus to address memory and 1/O device
registers

Access to the 1/O device registers using regular instructions

Most widely used 1/O method across the different
architectures supported by Linux

MMIO Registers

RAM

Physical Memory
address space, accessed with
normal load/store instructions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

286/436



4@,‘3 Requesting 1/O memory

> Tells the kernel which driver is using which 1/0O registers

> struct resource *request_mem_region(unsigned long start,
unsigned long len, char *name);

> void release_mem_region(unsigned long start, unsigned long len);

> Allows to prevent other drivers from requesting the same 1/0O registers, but is
purely voluntary.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/436



4% /proc/iomem example - ARM 32 bit (BeagleBone Black, Linux 5.11)

40300000-4030ffff : 40300000.sram srame@o 48046000-480463ff : 48046000.timer timer@e
44€00c00-44€00cff : 44€00c00.prm prm@coo 48048000-480483ff : 48048000.timer timer@o
44€00d00-44€00dff : 44€00d00.prm prme@doo 48042000-4804a3ff : 4804a000.timer timer@o
44€00e00-44€00eff : 44€00e00.prm prmee0d 4804c000-4804cfff : 4804c000.gpio gpio@d
44e00f00-44e00fff : 44e00f00.prm prmefoo 48060000-48060fff : 48060000.mmc mmc@d
44e01000-44€010ff : 44€01000.prm prm@1000 4819c000-4819cfff : 4819c000.i2c i2c@0
44€01100-44€011ff : 44€01100.prm prm@1100 481a8000-481a8fff : 481a8000.serial serial@e
44€01200-44€012ff : 44€01200.prm prm@1200 481ac000-481acfff : 481ac000.gpio gpio@d
44e07000-44€07fff : 44€07000.gpio gpio@d 4812e000-481aefff : 4812e000.gpio gpio@d
44e09000-44€0901f : serial 481d8000-481d8fff : 481d8000.mmc mmcEo
44e0b000-44e0bfff : 44e0b000.i2c i2ce0 4 4900ffff : .dma edma3_cc
44e10800-44e10a37 : pinctrl-single 4a100000-4a1007ff : 4a100000.ethernet ethernet@o
44e10f90-44e10fcf : 44e10f90.dma-router dma-router@f9o 4a101200-4a1012ff : 4a100000.ethernet ethernet@o
48024000-48024fff : 48024000.serial serial@o 80000000-9fdfffff : System RAM
48042000-480423ff : 48042000.timer timer@@ 80008000-80cfffff : Kernel code
48044000-480443ff : 48044000.timer timereo 80e00000-80f3d807 : Kernel data

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/436



60 Mapping |/O memory in virtual memory

Jo3e!

Load/store instructions work with virtual addresses

To access |/O memory, drivers need to have a virtual address that the processor
can handle, because /O memory is not mapped by default in virtual memory.

The ioremap function satisfies this need:
#include <linux/io.h>

void __iomem *ioremap(phys_addr_t phys_addr, unsigned long size);
void iounmap(void __iomem *addr);

Caution: check that ioremap() doesn't return a NULL address!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/436


https://elixir.bootlin.com/linux/latest/ident/ioremap

ioremap()

MMIO
registers

RAM

RAM

Physical Memory
Address Space

ioremap (OxAFFEBCQQ, 4096) =

Virtual Memory
Address Space

Kernel

User

0xCDEFAQ00

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

290/436



% Managed API

Using request_mem_region() and ioremap() in device drivers is now deprecated. You
should use the below "managed” functions instead, which simplify driver coding and
error handling:
> devm_ioremap(), devm_iounmap()
> devm_ioremap_resource()
® Takes care of both the request and remapping operations!
> devm_platform_ioremap_resource()

® Takes care of platform_get_resource(), request_mem_region() and ioremap()
® Caution: unlike the other devm_ functions, its first argument is of type
struct platform_device, not a pointer to struct device:

base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/436


https://elixir.bootlin.com/linux/latest/ident/request_mem_region
https://elixir.bootlin.com/linux/latest/ident/ioremap
https://elixir.bootlin.com/linux/latest/ident/devm_ioremap
https://elixir.bootlin.com/linux/latest/ident/devm_iounmap
https://elixir.bootlin.com/linux/latest/ident/devm_ioremap_resource
https://elixir.bootlin.com/linux/latest/ident/devm_platform_ioremap_resource
https://elixir.bootlin.com/linux/latest/ident/platform_get_resource
https://elixir.bootlin.com/linux/latest/ident/request_mem_region
https://elixir.bootlin.com/linux/latest/ident/ioremap
https://elixir.bootlin.com/linux/latest/ident/platform_device
https://elixir.bootlin.com/linux/latest/ident/device

a@ Accessing MMIOQO devices: using accessor functions
o0

g

Care must be taken when accessing MMIO registers
Memory mapped 1/0O can be weakly ordered
Developer's responsibility to enforcing proper ordering
Endianness of the device may be different than the CPU endianness
Endianness conversions might be required
Directly reading from or writing to addresses returned by ioremap() (pointer
dereferencing) may not work on some architectures.
A family of architecture-independent accessor functions are available covering

most needs.
A few architecture-specific accessor functions also exists.

292/436

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com


https://elixir.bootlin.com/linux/latest/ident/ioremap

Orderi
Qo rdering

o%e]

Reads/writes to MMIO-mapped registers of given device are done in program
order
However reads/writes to RAM can be re-ordered between themselves, and
between MMIO-mapped read/writes
Some of the accessor functions include memory barriers to help with this:
Write operation starts with a write memory barrier which prior writes cannot cross
Read operation ends with a read memory barrier which guarantees the ordering with
regard to the subsequent reads
Sometimes compiler/CPU reordering is not an issue, in this case the code may be
optimized by dropping the memory barriers, using the raw or relaxed helpers

See Documentation/memory-barriers.txt

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/436


https://elixir.bootlin.com/linux/latest/source/Documentation/memory-barriers.txt

4@3 MMIO access functions

>

read[b/w/1/q] and write[b/w/1/q] for access to little-endian devices, includes
memory barriers

ioread[8/16/32/64] and iowrite[8/16/32/64] are very similar to read/write
but also work with port 1/O (not covered in the course), includes memory barriers

ioread[8/16/32/64]be and iowrite[8/16/32/64]1be for access to big-endian
devices, includes memory barriers

__raw_read[b/w/1/q] and __raw_write[b/w/1/q] for raw access: no endianness
conversion, no memory barriers

read[b/w/1/q]_relaxed and write[b/q/1/w]_relaxed for access to
little-endian devices, without memory barriers

All functions work on a void __iomem *

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. com 294/436



4@3 MMIO access functions summary

Name Device endianness | Memory barriers
read/write little yes
ioread/iowrite little yes
ioreadbe/iowritebe big yes
__raw_read/__raw_write native no
read_relaxed/write_relaxed little no

More details at https://docs.kernel.org/driver-api/device-io.html

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

295/436


https://docs.kernel.org/driver-api/device-io.html

ao /dev/mem

o%e]

Used to provide user space applications with direct access to physical addresses.

Usage: open /dev/mem and read or write at given offset. What you read or write
is the value at the corresponding physical address.

Used by applications such as the X server to write directly to device memory.
Easy to use from a shell with the devmem?2 program

For security reasons, on x86, arm, arm64, riscv, powerpc, parisc, s390:

CONFIG_STRICT_DEVMEM restricts /dev/mem to non-RAM addresses (from v5.12)
CONFIG_IO_STRICT_DEVMEM goes beyond and only allows to access idle |/0O ranges
(not appearing in /proc/iomem).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_STRICT_DEVMEM
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IO_STRICT_DEVMEM

a@ Practical lab - 1/0O memory and ports

o%e]

Add UART devices to the board device tree

Access 1/0 registers to control the device and
send first characters to it.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/436



The misc subsystem

bootlin

The misc subsystem

© Copyright 2004-2026, Bootlin. . . .
Crentive Commons BY-SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/436



a Why a misc subsystem?
o)

The kernel offers a large number of frameworks covering a wide range of device
types: input, network, video, audio, etc.
These frameworks allow to factorize common functionality between drivers and offer
a consistent AP to user space applications.

However, there are some devices that really do not fit in any of the existing
frameworks.

Highly customized devices implemented in a FPGA, or other weird devices for which
implementing a complete framework is not useful.

The drivers for such devices could be implemented directly as raw character
drivers (with cdev_init() and cdev_add()).

But there is a subsystem that makes this work a little bit easier: the misc
subsystem.

It is really only a thin layer above the character driver API.
Another advantage is that devices are integrated in the Device Model (device files
appearing in devtmpfs, which you don't have with raw character devices).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/436


https://elixir.bootlin.com/linux/latest/ident/cdev_init
https://elixir.bootlin.com/linux/latest/ident/cdev_add

o%e]

a Misc subsystem diagram
o)

User space application

I User space
* Kernel
System call interface
Character driver API
I
| ] ]
input watchdog misc
subsystem subsystem subsystem
| I
] ] | ]
input input watchdog misc misc
driver 1 driver 2 driver A driver a driver b

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

300/436



4@,? Misc subsystem APl (1/2)

> The misc subsystem APl mainly provides two functions, to register and unregister
a single misc device:

® int misc_register(struct miscdevice x misc);
® void misc_deregister(struct miscdevice *misc);

> A misc device is described by a struct miscdevice structure:

struct miscdevice {
int minor;
const char *name;
const struct file_operations *fops;
struct list_head list;
struct device *parent;
struct device xthis_device;
const char *nodename;
umode_t mode;

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/436


https://elixir.bootlin.com/linux/latest/ident/miscdevice

ao Misc subsystem APl (2/2)

o%e]

The main fields to be filled in struct miscdevice are:

minor, the minor number for the device, or MISC_DYNAMIC_MINOR to get a minor
number automatically assigned.

name, name of the device, which will be used to create the device node if
devtmpfs is used.

fops, pointer to the same struct file_operations structure that is used for
raw character drivers, describing which functions implement the read, write, ioctl,
etc. operations.

parent, pointer to the struct device of the underlying “physical” device
(platform device, 12C device, etc.)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/436


https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/MISC_DYNAMIC_MINOR
https://elixir.bootlin.com/linux/latest/ident/file_operations

ao User space API for misc devices
o0

o%e]

misc devices are regular character devices
The operations they support in user space depends on the operations the kernel
driver implements:

The open() and close() system calls to open/close the device.

The read() and write() system calls to read/write to/from the device.

The ioctl() system call to call some driver-specific operations.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/436



ao Practical lab - Output-only serial port driver
o0

o%e]

Extend the driver started in the previous lab by
registering it into the misc subsystem.

Implement serial output functionality through
the misc subsystem.

Test serial output using user space applications.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/436



ao Processes, scheduling and interrupts
o0

o%e]

Processes, scheduling
and interrupts

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

305/436



a@ Processes, scheduling and interrupts
o0

o%e]

Processes and scheduling

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/436



a Process, thread?
o d.)

o%e]

Confusion about the terms process, thread and task
In UNIX, a process is created using fork() and is composed of
An address space, which contains the program code, data, stack, shared libraries, etc.
A single thread, which is the only entity known by the scheduler.
Additional threads can be created inside an existing process, using
pthread_create()
They run in the same address space as the initial thread of the process
They start executing a function passed as argument to pthread_create()

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/436



a Process, thread: kernel point of view
o)
In kernel space, each thread running in the system is represented by a structure of
type struct task_struct
From a scheduling point of view, it makes no difference between the initial thread
of a process and all additional threads created dynamically using
pthread_create()

Thread Thread Thread

Address Space Address Space
Same process after

Process after fork()
pthread_create()

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/436


https://elixir.bootlin.com/linux/latest/ident/task_struct

ao Relation between execution mode, address space and context
od

o%e]

When speaking about process and thread, these concepts need to be clarified:
Mode is the level of privilege allowing to perform some operations:
Kernel Mode: in this level CPU can perform any operation allowed by its architecture;
any instruction, any |/O operation, any area of memory accessed.
User Mode: in this level, certain instructions are not permitted (especially those that
could alter the global state of the machine), some memory areas cannot be accessed.
Linux splits its address space in kernel space and user space
Kernel space is reserved for code running in Kernel Mode.
User space is the place were applications execute (accessible from Kernel Mode).
Context represents the current state of an execution flow.
The process context can be seen as the content of the registers associated to this
process: execution register, stack register...
The interrupt context replaces the process context when the interrupt handler is
executed.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/436



A thread life

EXIT_ZOMBIE
Task terminated but its resources
Thread created are not freed yet. Waiting for its
by fork() or parent to acknowledge
pthread_create() its death
The thread is elected
by the scheduler -~
>
TASK_RUNNING TASK_RUNNING
Ready but not running Actually running
<
Y
The thread is preempted by
the scheduler to run a higher
priority task
The thread is woken up or it . .
receives a signal. The thread TASK_INTERRUPTIBLE Decides t(? F\eep on a wait queue
becomes runnable again. TASK_UNINTERRUPTIBLE for a specific event
or TASK_KILLABLE
Waiting

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/436



a Execution of system calls
o)

o%e]

Process continuing in user space...
(or replaced by a higher priority process)
(can be preempted)

Process executing in user space...
(can be preempted)
System call
or exception

_— —_— —_— —_— —_— —_— — _ — — —_ — = — — - — >

Kernel code executed
on behalf of user space
(can be preempted too!)

The execution of system calls takes place in the context of the thread requesting them.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/436



ao Processes, scheduling and interrupts
o0

o%e]

Sleeping

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/436



4@,? Sleeping

User space process. ser Space Process
A

| |
| |
| |
Read Device File 1 1 return
| |
Y | | Other threads
Other threads can be scheduled
Spiam Gl are scheduled | I until the scheduler =y )
1 | elects the thread
Sleep | 1 1 1
| | | |
. | |
Ask device Interrupt Handler
for data [ P [
Wake up
the thread
Y Data Ready Notification
Device

Sleeping is needed when a process (user space or kernel space) is waiting for data.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/436



4@} How to sleep with a wait queue 1/3

> Must declare a wait queue, which will be used to store the list of threads waiting
for an event
» Dynamic queue declaration:

¢ Typically one queue per device managed by the driver
® It's convenient to embed the wait queue inside a per-device data structure.
® Example from drivers/net/ethernet/marvell/mvmdio.c:

struct orion_mdio_dev {

wait_queue_head_t smi_busy_wait;
Y

struct orion_mdio_dev *dev;

init_waitqueue_head(&dev->smi_busy_wait);
> Static queue declaration:

® Using a global variable when a global resource is sufficient
® DECLARE_WAIT_QUEUE_HEAD(module_queue);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/436


https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvmdio.c

4@} How to sleep with a waitqueue 2/3

Several ways to make a kernel process sleep
> void wait_event(queue, condition);

® Sleeps until the task is woken up and the given C expression is true. Caution: can’t
be interrupted (can't kill the user space process!)

> int wait_event_killable(queue, condition);

® Can be interrupted, but only by a fatal signal (SIGKILL). Returns ~ERESTARTSYS if
interrupted.

> int wait_event_interruptible(queue, condition);

® The most common variant
® Can be interrupted by any signal. Returns ~ERESTARTSYS if interrupted.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/436


https://elixir.bootlin.com/linux/latest/ident/SIGKILL
https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS
https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS

4@3 How to sleep with a waitqueue 3/3

> int wait_event_timeout(queue, condition, timeout);

¢ Also stops sleeping when the task is woken up or the timeout expired (a timer is
used).
® Returns 0 if the timeout elapsed, non-zero if the condition was met.

> int wait_event_interruptible_timeout(queue, condition, timeout);

® Same as above, interruptible.
® Returns 0 if the timeout elapsed, ~-ERESTARTSYS if interrupted, positive value if the
condition was met.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/436


https://elixir.bootlin.com/linux/latest/ident/ERESTARTSYS

4@3 How to sleep with a waitqueue - Example

sig = wait_event_interruptible(ibmvtpm->wq,
libmvtpm->tpm_processing_cmd);
if (sig)
return -EINTR;

From drivers/char/tpm/tpm_ibmvtpm.c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/436


https://elixir.bootlin.com/linux/latest/source/drivers/char/tpm/tpm_ibmvtpm.c

Waki !
Q@ aking up

o%e]

Typically done by interrupt handlers when data sleeping processes are waiting for
become available.
wake_up(&queue);
Wakes up all processes in the wait queue
wake_up_interruptible(&queue);
Wakes up all processes waiting in an interruptible sleep on the given queue

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/436



a Exclusive vs. non-exclusive
o)

Jo3e!

wait_event_interruptible() puts a task in a non-exclusive wait.
All non-exclusive tasks are woken up by wake_up() / wake_up_interruptible()
wait_event_interruptible_exclusive() puts a task in an exclusive wait.

wake_up() / wake_up_interruptible() wakes up all non-exclusive tasks and only
one exclusive task

wake_up_all() / wake_up_interruptible_all() wakes up all non-exclusive and all
exclusive tasks

Exclusive sleeps are useful to avoid waking up multiple tasks when only one will
be able to “consume” the event.

Non-exclusive sleeps are useful when the event can “benefit” to multiple tasks.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/436


https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible
https://elixir.bootlin.com/linux/latest/ident/wake_up
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible
https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible_exclusive
https://elixir.bootlin.com/linux/latest/ident/wake_up
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible
https://elixir.bootlin.com/linux/latest/ident/wake_up_all
https://elixir.bootlin.com/linux/latest/ident/wake_up_interruptible_all

o%e]

v

Task in TASK_RUNNING
state

wait_event()

v

Put task in state
TASK_UNINTERRUPTIBLE

Evaluate
condition

true

Something runs
wake_up()
N
Sleeping

schedule()

Put task in state
TASK_RUNNING

v

Continue execution

ao Sleeping and waking up - Implementation

The scheduler doesn’t keep evaluating the
sleeping condition!
wait_event(queue, cond);
The process is put in the
TASK_UNINTERRUPTIBLE state.
wake_up (&queue) ;
All processes waiting in queue are
woken up, so they get scheduled later
and have the opportunity to evaluate
the condition again and go back to
sleep if it is not met.

See include/linux/wait.h for
implementation details.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

320/436


https://elixir.bootlin.com/linux/latest/ident/TASK_UNINTERRUPTIBLE
https://elixir.bootlin.com/linux/latest/source/include/linux/wait.h

ao How to sleep with completions 1/2

o%e]

Use wait_for_completion() when no particular condition must be enforced at
the time of the wake-up

Leverages the power of wait queues

Simplifies its use

Highly efficient using low level scheduler facilities
Preparation of the completion structure:

Static declaration and initialization:

DECLARE_COMPLETION(setup_done);

Dynamic declaration:

init_completion(&object->setup_done);

The completion object should get a meaningful name (eg. not just “done™).
Ready to be used by signal consumers and providers as soon as the completion
object is initialized
See include/linux/completion.h for the full API

Internal documentation at scheduler/completion

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/436


https://elixir.bootlin.com/linux/latest/ident/wait_for_completion
https://elixir.bootlin.com/linux/latest/source/include/linux/completion.h
https://www.kernel.org/doc/html/latest/scheduler/completion.html

4@} How to sleep with completions 2/2

> Enter a wait state with
void wait_for_completion(struct completion xdone)
® All wait_event() flavors are also supported, such as:
wait_for_completion_timeout(),
wait_for_completion_interruptible() / _timeout(),
wait_for_completion_killable() / _timeout(), etc.
> Wake up consumers with
void complete(struct completion xdone)
® Several calls to complete() are valid, they will wake up the same number of threads
waiting on this object (acts as a FIFO).
® A single complete_all() call would wake up all present and future threads waiting
on this completion object
P Reset the counter with
void reinit_completion(struct completion *done)

® Resets the number of “"done” completions still pending
® Mind not to call init_completion() twice, which could confuse the enqueued tasks

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/436


https://elixir.bootlin.com/linux/latest/ident/wait_event
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_timeout
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_interruptible
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_interruptible_timeout
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_killable
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion_killable_timeout
https://elixir.bootlin.com/linux/latest/ident/complete
https://elixir.bootlin.com/linux/latest/ident/complete_all
https://elixir.bootlin.com/linux/latest/ident/init_completion

Blocki
Q@ ocking

o%e]

Use helpers which implement software loops or use hardware timers
udelay() waste CPU cycles in order to save a couple of context switches, suitable
for < 10us or in atomic situations
usleep()/usleep_range()/msleep() put the process in sleep for a given amount of
micro/milliseconds (not suitable in atomic contexts)
If in doubt, use fsleep(), which will use the more suitable internal function
depending on the period you've asked!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/436


https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/usleep
https://elixir.bootlin.com/linux/latest/ident/usleep_range
https://elixir.bootlin.com/linux/latest/ident/msleep
https://elixir.bootlin.com/linux/latest/ident/fsleep

ao Waiting when hardware is involved
o0

o%e]

When hardware is involved in the waiting process
but there is no interrupt available
or because a context switch would be too expensive
Specific polling 1/0O accessors may be used:
Exhaustive list in include/linux/iopoll.h
int read[bwlq]l_poll_timeout[_atomic](addr, val, cond,
delay_us, timeout_us)

addr: 1/O memory location

val: Content of the register pointed with

cond: Boolean condition based on val

delay_us: Polling delay between reads

timeout_us: Timeout delay after which the operation fails and returns -ETIMEDOUT

_atomic variant uses udelay() instead of usleep().

Avoid implementing custom busy-wait loops if possible

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/436


https://elixir.bootlin.com/linux/latest/source/include/linux/iopoll.h
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/usleep

a@ Processes, scheduling and interrupts
o0

g

Interrupt Management

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/436



ao Registering an interrupt handler 1/2

Jo3e!

The managed APl is recommended:
int devm_request_irq(struct device *dev, unsigned int irqg, irg_handler_t handler,
unsigned long irq_flags, const char *devname, void *dev_id);

device for automatic freeing at device or module release time.
irq is the requested IRQ channel. For platform devices, use platform_get_irq()
to retrieve the interrupt number.
handler is a pointer to the IRQ handler function
irg_flags are option masks (see next slide)
devname is the registered name (for /proc/interrupts). For platform drivers,

good idea to use pdev->name which allows to distinguish devices managed by the
same driver (example: 44e0b000.12c).

dev_id is an opaque pointer. It can typically be used to pass a pointer to a
per-device data structure. It cannot be NULL as it is used as an identifier for
freeing interrupts on a shared line.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/436


https://elixir.bootlin.com/linux/latest/ident/platform_get_irq

ao Registering an interrupt handler 2/2

o%e]

Here are the most frequent irq_flags bit values in drivers (can be combined):
IRQF_SHARED: interrupt channel can be shared by several devices.
When an interrupt is received, all the interrupt handlers registered on the same
interrupt line are called.
This requires a hardware status register telling whether an IRQ was raised or not.
IRQF_ONESHOT: for use by threaded interrupts (see next slides). Keeping the
interrupt line disabled until the thread function has run.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/436


https://elixir.bootlin.com/linux/latest/ident/IRQF_SHARED
https://elixir.bootlin.com/linux/latest/ident/IRQF_ONESHOT

a@ Interrupt handler constraints
o0

o%e]

No guarantee in which address space the system will be in when the interrupt
occurs: can't transfer data to and from user space.

Interrupt handler execution is managed by the CPU, not by the scheduler.
Handlers can't run actions that may sleep, because there is nothing to resume
their execution. In particular, need to allocate memory with GFP_ATOMIC.

Interrupt handlers are run with all interrupts disabled on the local CPU (see
https://lwn.net/Articles/380931). Therefore, they have to complete their job
quickly enough, to avoiding blocking interrupts for too long.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/436


https://elixir.bootlin.com/linux/latest/ident/GFP_ATOMIC
https://lwn.net/Articles/380931

4@} /proc/interrupts on Raspberry Pi 2 (ARM, Linux 4.19)

CPUQ
17: 1005317
18: 36
40: 0
42: 427715
56: 478426356
80: 411468
81: 502
161: 0
162: 10963772
165: 0
FIQ:
IPIO: 0
IPIT: 0
IPI2: 2625198
IPI3: 3140
IPI4: Q
RIS 2167923
IPI6: 0
Err: 0

CPU1

637871

S~ oo

()

()
4404191
56405

()
477097
0

CPU2
0
Q
0
()
0
0
o
o
3

1658335
o

()

()
7634127
49483

0
5350168
0

CPU3
0
()
()
()
0
()
()
()
5

640662
()

()

()
3993714
59648

()
412699
()

ARMCTRL-1evel 1 Edge
ARMCTRL-1evel 2 Edge
ARMCTRL-1level 48 Edge
ARMCTRL-1level 50 Edge
ARMCTRL-level 64 Edge
ARMCTRL-1level 88 Edge
ARMCTRL-1level 89 Edge
bcm2836-timer @ Edge
bcm2836-timer 1 Edge
bcm2836-pmu 9 Edge
usb_fiq

CPU wakeup interrupts

Timer broadcast interrupts
Rescheduling interrupts
Function call interrupts

CPU stop interrupts
IRQ work interrupts
completion interrupts

3f00b880.mailbox

VCHIQ doorbell

bcm2708_fb DMA

DMA IRQ

dwc_otg, dwc_otg_pcd, dwc_otg_hcd:usb
mmco

uart-pleiil

arch_timer

arch_timer

arm-pmu

Note: interrupt numbers shown on the left-most column are virtual numbers when the Device Tree is

used. The physical interrupt numbers can be found in /sys/kernel/debug/irq/irqgs/<nr> files when
CONFIG_GENERIC_IRQ_DEBUGFS=y.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

320/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GENERIC_IRQ_DEBUGFS

60 Interrupt handler prototype
o0

Jo3e!

irgreturn_t foo_interrupt(int irqg, void *dev_id)

irqg, the IRQ number
dev_id, the per-device pointer that was passed to devm_request_irq()
Return value
IRQ_HANDLED: recognized and handled interrupt
TRQ_NONE: used by the kernel to detect spurious interrupts, and disable the interrupt
line if none of the interrupt handlers has handled the interrupt.
IRQ_WAKE_THREAD: handler requests to wake the handler thread (see next slides)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/436


https://elixir.bootlin.com/linux/latest/ident/devm_request_irq
https://elixir.bootlin.com/linux/latest/ident/IRQ_HANDLED
https://elixir.bootlin.com/linux/latest/ident/IRQ_NONE
https://elixir.bootlin.com/linux/latest/ident/IRQ_WAKE_THREAD

60 Typical interrupt handler’s job

o%e]

Acknowledge the interrupt to the device (otherwise no more interrupts will be
generated, or the interrupt will keep firing over and over again)

Read/write data from/to the device

Wake up any process waiting for such data, typically on a per-device wait queue:
wake_up_interruptible(&device_queue);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/436



60 Threaded interrupts

Jo3e!

The kernel also supports threaded interrupts:
The interrupt handler is executed inside a thread.

Allows to block during the interrupt handler, which is often needed for 12C/SPI
devices as the interrupt handler needs time to communicate with them.

Allows to set a priority for the interrupt handler execution, which is useful for
real-time usage of Linux

int devm_request_threaded_irq(struct device *dev, unsigned int irq,
irg_handler_t handler, irg_handler_t thread_fn,
unsigned long flags, const char *name,
void *dev);

handler, “hard IRQ"” handler

thread_fn, executed in a thread

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/436



ao Top half and bottom half processing

o%e]

Splitting the execution of interrupt handlers in 2 parts
Top half

This is the real interrupt handler, which should complete as quickly as possible since
all interrupts are disabled. It takes the data out of the device and if substantial
post-processing is needed, schedule a bottom half to handle it.

Bottom half
Is the general Linux name for various mechanisms which allow to postpone the
handling of interrupt-related work. Implemented in Linux as: softirgs, tasklets,
threaded handlers or workqueues.
And yet, the abbreviation "bh" often means "softirgs"...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/436



ao Top half and bottom half diagram

o%e]

IRQ12 IRQ42 Once all softirgs are finished,
is is control is given back to the
triggered triggered scheduler
Handler Handler Softirq Softirq Softirq Process
IRQ12 IRQ42 HI NET_RX TASKLET foo a
_SOFTIRQ _SOFTIRQ _SOFTIRQ
................................................................ >»
IRQs 1RQs Once all IRQ IRQs
disabled disabled enabled
handlers have been

executed, softirgs are
executed

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/436



Softi
Q@ oftirgs

Jo3e!

Softirgs are a form of bottom half processing

The softirgs handlers are executed with all interrupts enabled, and a given softirq
handler can run simultaneously on multiple CPUs

They are executed once all interrupt handlers have completed, before the kernel
resumes scheduling processes, so sleeping is not allowed.

The number of softirgs is fixed in the system, so softirgs are not directly used by
drivers, but by kernel subsystems (network, etc.)

The list of softirgs is defined in include/linux/interrupt.h: HI_SOFTIRQ,
TIMER_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ, BLOCK_SOFTIRQ,
TRQ_POLL_SOFTIRQ, TASKLET_SOFTIRQ, SCHED_SOFTIRQ, HRTIMER_SOFTIRQ,
RCU_SOFTIRQ

HI_SOFTIRQ and TASKLET_SOFTIRQ are used to execute tasklets

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/436


https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TIMER_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/NET_TX_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/NET_RX_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/BLOCK_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/IRQ_POLL_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/SCHED_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/HRTIMER_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/RCU_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ

ao Example usage of softirgs - NAPI

o%e]

Interface in the Linux kernel used for interrupt mitigation in network drivers

Principle: when the network traffic exceeds a given threshhold ("budget”), disable
network interrupts and consume incoming packets through a polling function,
instead of processing each new packet with an interrupt.

This reduces overhead due to interrupts and yields better network throughput.
The polling function is run by napi_schedule(), which uses NET_RX_SOFTIRQ.
See https://en.wikipedia.org/wiki/New_API for details

See also our commented network driver on
https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/436


https://elixir.bootlin.com/linux/latest/ident/napi_schedule
https://elixir.bootlin.com/linux/latest/ident/NET_RX_SOFTIRQ
https://en.wikipedia.org/wiki/New_API
https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

Tasklets
o

o%e]

Tasklets are executed within the HI_SOFTIRQ and TASKLET_SOFTIRQ softirgs.

They are executed with all interrupts enabled, but a given tasklet is guaranteed to
execute on a single CPU at a time.

Tasklets are typically created with the tasklet_init() function, when your driver
manages multiple devices, otherwise statically with DECLARE_TASKLET(). A
tasklet is simply implemented as a function. Tasklets can easily be used by
individual device drivers, as opposed to softirgs.
The interrupt handler can schedule tasklet execution with:
tasklet_schedule() to get it executed in TASKLET_SOFTIRQ
tasklet_hi_schedule() to get it executed in HI_SOFTIRQ (highest priority)
Note: new kernel code should not introduce any new tasklet, because tasklets are now deprecated

(since 6.9) and being slowly replaced by the new BH workqueue (Bottom Half workqueue)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/436


https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/tasklet_init
https://elixir.bootlin.com/linux/latest/ident/DECLARE_TASKLET
https://elixir.bootlin.com/linux/latest/ident/tasklet_schedule
https://elixir.bootlin.com/linux/latest/ident/TASKLET_SOFTIRQ
https://elixir.bootlin.com/linux/latest/ident/tasklet_hi_schedule
https://elixir.bootlin.com/linux/latest/ident/HI_SOFTIRQ

a Workqueues
b

Jo3e!

Workqueues are a general mechanism for deferring work. It is not limited in usage
to handling interrupts. It can typically be used for background jobs.
Functions registered to run in workqueues are called works:

They can be created with the macro INIT_WORK()

When scheduled, they become threads (called workers) running in process context,
which means:

All interrupts are enabled
Sleeping is allowed
Works can be queued on:
The default workqueue, with schedule_work()
A workqueue allocated by the subsystem or the drivers, with alloc_workqueue ()
The complete APl is in include/linux/workqueue.h

Example (drivers/crypto/atmel-i2c.c):

INIT_WORK (&work_data->work, atmel_i2c_work_handler);
schedule_work (&work_data->work) ;

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/436


https://elixir.bootlin.com/linux/latest/ident/INIT_WORK
https://elixir.bootlin.com/linux/latest/ident/schedule_work
https://elixir.bootlin.com/linux/latest/ident/alloc_workqueue
https://elixir.bootlin.com/linux/latest/source/include/linux/workqueue.h
https://elixir.bootlin.com/linux/latest/source/drivers/crypto/atmel-i2c.c

60 Interrupt management summary
o0

o%e]

Device driver
In the probe() function, for each device, use devm_request_irq() to register an
interrupt handler for the device's interrupt channel.

Interrupt handler

Called when an interrupt is raised.

Acknowledge the interrupt

If needed, schedule a per-device tasklet taking care of handling data.
Wake up processes waiting for the data on a per-device queue

Device driver

In the remove() function, for each device, the interrupt handler is automatically
unregistered.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/436


https://elixir.bootlin.com/linux/latest/ident/devm_request_irq

a Practical lab - Interrupts
o)

o%e]

Adding read capability to the character driver
developed earlier.

Register an interrupt handler for each device.

Waiting for data to be available in the read file
operation.

Waking up the code when data are available
from the devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/436



ao Concurrent Access to Resources: Locking
o0

o%e]

Concurrent Access to b OOtl N

Resources: Locking

OO\«

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/436



a Sources of concurrency issues
o)

o%e]

In terms of concurrency, the kernel has the same constraint as a multi-threaded
program: its state is global and visible in all executions contexts
Concurrency arises because of
Interrupts, which interrupts the current thread to execute an interrupt handler. They
may be using shared resources (memory addresses, hardware registers...)
Kernel preemption, if enabled, causes the kernel to switch from the execution of one
thread to another. They may be using shared resources.
Multiprocessing, in which case code is really executed in parallel on different
processors, and they may be using shared resources as well.

The solution is to keep as much local state as possible and for the shared
resources that can't be made local (such as hardware ones), use locking.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/436



4@3 Concurrency protection with locks

Process 1 — — Process 2

Try Again
Acquire Lock

Failure
Wait Lock Release

Success

Critical code section

v

Release Lock

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/436



a Linux mutexes
o)

o%e]

mutex = mutual exclusion

The kernel’s main locking primitive. It's a binary lock. Note that counting locks
(semaphores) are also available, but used 30x less frequently.
The process requesting the lock blocks when the lock is already held. Mutexes
can therefore only be used in contexts where sleeping is allowed.
Mutex definition:
#include <linux/mutex.h>
Initializing a mutex statically (unusual case):
DEFINE_MUTEX(name);
Or initializing a mutex dynamically (the usual case, on a per-device basis):
void mutex_init(struct mutex *lock);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/436



4@,? Locking and unlocking mutexes 1/2

> void mutex_lock(struct mutex *lock);

® Tries to lock the mutex, sleeps otherwise.
® Caution: cannot be interrupted, resulting in processes you cannot kill!

> int mutex_lock_killable(struct mutex *lock);

® Same, but can be interrupted by a fatal (SIGKILL) signal. If interrupted, returns a
non zero value and doesn’t hold the lock. Test the return value!!!

> int mutex_lock_interruptible(struct mutex xlock);
® Same, but can be interrupted by any signal.
> void mutex_unlock(struct mutex xlock);

® Releases the lock. Do it as soon as you leave the critical section.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/436


https://elixir.bootlin.com/linux/latest/ident/SIGKILL

Spinlock
@0 pinlocks

o%e]

Locks to be used for code that is not allowed to sleep (interrupt handlers), or that
doesn’t want to sleep (critical sections). Be very careful not to call functions
which can sleep!

Originally intended for multiprocessor systems
Spinlocks never sleep and keep spinning in a loop until the lock is available.

The critical section protected by a spinlock is not allowed to sleep.

Still Locked ?

Spinlock

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/436



% The spinlock API

> Spinlocks can be initialized:
e Statically (unusual)
m DEFINE_SPINLOCK (my_lock);
¢ Dynamically (the usual case, on a per-device basis)
m void spin_lock_init(spinlock_t *lock);
P They can be acquired and released with:
® void spin_lock(spinlock_t *lock);
m Used for locking in process context (critical sections in which you do not want to
sleep) as well as atomic sections.
® void spin_unlock(spinlock_t *lock);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/436



ao Using spinlocks 1/2

o%e]

Manipulating spinlocks implies some care:

Tries to acquire

K | @ad Critical section K | d spinlock A, but
ernel code E—T ernel code might wait forever
(process 1) spinlock A (process 2) in an endless loop
("deadlock")

Preemption

So, kernel preemption on the local CPU is disabled. We need to avoid deadlocks

(and unbounded latencies) because of preemption from processes that want to get
the same lock.

Disabling kernel preemption also disables migration to avoid the same kind of
issue as pictured above from happening.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/436



4@3 Using spinlocks 2/2

> We also need to avoid deadlocks because of interrupts that could want to get the

same lock:
Interrupt Tries to acquire
handler spinlock A, but
waits forever in
an endless loop
Interrupt ("deadlock")
Critical section
Kernel code protected by
spinlock A

> void spin_lock_irgsave(spinlock_t *lock, unsigned long flags);
> void spin_unlock_irqgrestore(spinlock_t *lock, unsigned long flags);

¢ Disables/restores IRQs on the local CPU.
¢ Typically used when the lock can be accessed in both process and interrupt context.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/436



60 Using spinlocks 3/3

o%e]

void spin_lock_bh(spinlock_t *lock);
void spin_unlock_bh(spinlock_t *lock);

Disables software interrupts, but not hardware ones.

Useful to protect shared data accessed in process context and in a soft interrupt
(bottom half).
No need to disable hardware interrupts in this case.

Note that reader/writer spinlocks also exist, allowing for multiple simultaneous
readers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/436



4@} Spinlock example

> From drivers/tty/serial/uartlite.c

> Spinlock structure embedded into struct uart_port

struct uart_port {
spinlock_t lock;
/* Other fields */
I

> Spinlock taken/released with protection against interrupts

static unsigned int ulite_tx_empty(struct uart_port *port) {
unsigned long flags;

spin_lock_irgsave(&port->lock, flags);
/* Do something */
spin_unlock_irqgrestore(&port->lock, flags);

b

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/436


https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/uartlite.c
https://elixir.bootlin.com/linux/latest/ident/uart_port

4@3 More deadlock situations

They can lock up your system. Make sure they never happen!

Rule 1: don't call a function that can try to Rule 2: if you need multiple locks, always
get access to the same lock acquire them in the same order!

Get Lock 1 —)| Call to Function 2
Get Lock 1 Get Lock 2
Deadlock!
Deadlock!

Wait for Lock 1

Get Lock 2 Get Lock 1

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/436



ao Debugging locking

o%e]

Lock debugging: prove locking correctness

CONFIG_PROVE_LOCKING

Adds instrumentation to kernel locking code
Detect violations of locking rules during system life, such as:

Locks acquired in different order (keeps track of locking sequences and compares
them).
Spinlocks acquired in interrupt handlers and also in process context when interrupts
are enabled.

Not suitable for production systems but acceptable overhead in development.

See locking/lockdep-design for details

CONFIG_DEBUG_ATOMIC_SLEEP allows to detect code that incorrectly sleeps in
atomic section (while holding lock typically).

Warning displayed in dmesg in case of such violation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PROVE_LOCKING
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_ATOMIC_SLEEP

a Concurrency issues
b

o%e]

Kernel Concurrency SANitizer framework

CONFIG_KCSAN, introduced in Linux 5.8.

Dynamic race detector relying on compile time instrumentation.

Can find concurrency issues (mainly data races) in your system.

See dev-tools/kcsan and https://lwn.net/Articles/816850/ for details.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 354/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KCSAN
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://lwn.net/Articles/816850/

a Alternatives to locking
o)

o%e]

As we have just seen, locking can have a strong negative impact on system
performance. In some situations, you could do without it.
By using lock-free algorithms like Read Copy Update (RCU).

RCU API available in the kernel
See https://en.wikipedia.org/wiki/Read-copy-update for a coverage of how it
works.

When relevant, use atomic operations.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 355/436


https://en.wikipedia.org/wiki/Read-copy-update

a@ RCU API

Jo3e!

Conditions where RCU is useful:

Frequent reads but infrequent writes

Focus on getting consistent data rather than getting the latest data
Kind of enforces ownership by enforcing space/time synchronization
RCU API (Documentation/RCU/whatisRCU.rst):

rcu_read_lock() and rcu_read_unlock(): reclaim/release read access
synchronize_rcu(), call_rcu() or kfree_rcu(): wait for pre-existing readers
rcu_assign_pointer(): update RCU-protected pointer

rcu_dereference(): load RCU-protected pointer

RCU mentorship session by Paul E. McKenney: https://youtu.be/K-4TI5gFsig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/436


https://elixir.bootlin.com/linux/latest/source/Documentation/RCU/whatisRCU.rst
https://elixir.bootlin.com/linux/latest/ident/rcu_read_lock
https://elixir.bootlin.com/linux/latest/ident/rcu_read_unlock
https://elixir.bootlin.com/linux/latest/ident/synchronize_rcu
https://elixir.bootlin.com/linux/latest/ident/call_rcu
https://elixir.bootlin.com/linux/latest/ident/kfree_rcu
https://elixir.bootlin.com/linux/latest/ident/rcu_assign_pointer
https://elixir.bootlin.com/linux/latest/ident/rcu_dereference
https://youtu.be/K-4TI5gFsig

4@} RCU example: ensuring consistent accesses (1/2)

Unsafe read/write

struct myconf { int a, b; } *shared_conf; /* initialized */

unsafe_get(int *cur_a, int *cur_b)

{
*cur_a = shared_conf->a;
/* What if *shared_conf gets updated now? The assignement is inconsistent! */
*cur_b = shared_conf->b;
3
unsafe_set(int new_a, int new_b)
{
shared_conf->a = new_a;
shared_conf->b = new_b;
)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/436



4@} RCU example: ensuring consistent accesses (2/2)

Safe read/write with RCU
struct myconf { int a, b; } *shared_conf; /* initialized */

safe_get(int *cur_a, int *cur_b)

{
struct myconf *temp;
rcu_read_lock();
temp = rcu_dereference(shared_conf);
*cur_a = temp->a;
/* If xshared_conf is updated, temp->a and temp->b will remain consistent! */
*cur_b = temp->b;
rcu_read_unlock();
3
safe_set(int new_a, int new_b)
{
struct myconf xnewconf = kmalloc(...);
struct myconf *oldconf;
oldconf = rcu_dereference(shared_conf);
newconf->a = new_a;
newconf->b = new_b;
rcu_assign_pointer(shared_conf, newconf);
/* Readers might still have a reference over the old struct here... */
synchronize_rcu();
/* ...but not here! No more readers of the old struct, kfree() is safe! */
kfree(oldconf);
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/436



4@} Atomic variables 1/2

#include <linux/atomic.h>

> Useful when the shared resource is an integer value
> Even an instruction like n++ is not guaranteed to be atomic on all processors!

> ldeal for RMW (Read-Modify-Write) operations

» Main atomic operations on atomic_t (signed integer, at least 24 bits):
® Set or read the counter:
m void atomic_set(atomic_t *v, int i);
m int atomic_read(atomic_t *v);
® Operations without return value:

m void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/436


https://elixir.bootlin.com/linux/latest/ident/atomic_t

4@,‘3 Atomic variables 2/2

> Similar functions testing the result:
® int atomic_inc_and_test(...);
® int atomic_dec_and_test(...);
® int atomic_sub_and_test(...);
> Functions returning the new value:
® int atomic_inc_return(...);
® int atomic_dec_return(...);
® int atomic_add_return(...);
® int atomic_sub_return(...);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/436



4@3 Atomic bit operations

Supply very fast, atomic operations

On most platforms, apply to an unsigned long * type.

>
>
> Apply to a void * type on a few others.
> ldeal for bitmaps
> Set, clear, toggle a given bit:

® void set_bit(int nr, unsigned long *addr);

® void clear_bit(int nr, unsigned long *addr);

® void change_bit(int nr, unsigned long *addr);
> Test bit value:

® int test_bit(int nr, unsigned long *addr);
» Test and modify (return the previous value):

® int test_and_set_bit(...);

® int test_and_clear_bit(...);

® int test_and_change_bit(...);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/436



4@3 Kernel locking: summary and references
A

Further reading: see the classical
. . dining philosophers problem for a
» Use mutexes in code that is allowed to sleep nice illustration of synchronization

. . . d i .
> Use spinlocks in code that is not allowed to sleep and concurrency 1Ssues

(interrupts) or for which sleeping would be too
costly (critical sections)

> Use atomic operations to protect integers or
addresses

See kernel-hacking/locking in kernel documentation
for many details about kernel locking mechanisms.

Image source: https://en.wikipedia.org/wiki/
Dining_philosophers_problem)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/436


https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem

ao Practical lab - Locking

o%e]

Add locking to the driver to prevent concurrent
accesses to shared resources

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/436



Direct Memory Access

bootlin

Direct Memory Access

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/436



a Direct Memory Access
o)

o%e]

DMA main principles

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/436



- DMA integration

DMA (Direct Memory Access) is used to copy data directly between devices and RAM,

without going through the CPU.

CPU
Data Cache DMA
Bus
Peripheral
Memory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

366/436



Peripheral DMA
Qo eriphera

Jo3e!

Some device controllers embedded their own DMA controller and therefore can do
DMA on their own.

Descriptor Buffer

DMA
Controller

Random Device Controller

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/436



a DMA controllers
o)

Other device controllers rely on an external DMA controller (on the SoC). Their drivers
need to submit DMA descriptors to this controller.

RAM
Descriptor Buffer Descriptor Buffer Descriptor Buffer
A A A A A A
A
L
DMA controller >
—_—
»
A
\ 4 \ 4 \ 4
FIFO FIFO FIFO
SPI Audio Network
Controller Interface Controller

Request Lines

368/436

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



DMA i
Qo descriptors

o%e]

DMA descriptors describe the various attributes of a DMA transfer, and are chained.

> > >
Source Source Source End
Destination Destination Destination
Size Size Size
Configuration Configuration Configuration
Next — Next — Next —

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/436



a Cache constraints
o)

Jo3e!

The CPU can access memory through a data cache
Using the cache can be more efficient (faster accesses to the cache than the bus)
But the DMA does not access the CPU cache, so one needs to take care of cache
coherency (cache content vs. memory content):
When the CPU reads from memory accessed by DMA, the relevant cache lines must
be invalidated to force reading from memory again
When the CPU writes to memory before starting DMA transfers, the cache lines
must be flushed/cleaned in order to force the data to reach the memory

Read before invalidation Read after invalidation Write without flush Write with flush
CPU CPU CPU CPU
Data Cache [stale datal Data Cache ‘ Data Cache Im| Data Cache |
[ Bus [ [ Bus | [ Bus ]
| e o) | | ey el | | venoy g | | wenoy eval |

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/436



60 DMA addressing constraints
o0

o%e]

Memory and devices have physical addresses: phys_addr_t
CPUs usually access memory through an MMU, using virtual pointers: void *
DMA controllers do not access memory through the MMU and thus cannot
manipulate virtual addresses, instead they access a dma_addr_t through either:
physical addresses directly
an IOMMU, in which case a specific mapping must be created

virtual phys_addr_t mapping
void * mapping buffer by 10-MMU
ffe
e memory dma_addr_t
[ buffer
CPU
virtual Bus
cPu address MY 10-MMU address DMA
space CPU space
physical

address
space

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/436


https://elixir.bootlin.com/linux/latest/ident/phys_addr_t
https://elixir.bootlin.com/linux/latest/ident/dma_addr_t

a@ DMA memory allocation constraints
o0

o%e]

The APIs must remain generic and handle all cases transparently, hence:
Each memory chunk accessed by the DMA shall be physically contiguous, which
means one can use:
any memory allocated by kmalloc() (up to 128 KB)
any memory allocated by __get_free_pages() (up to 8MB)
block 1/0 and networking buffers, designed to support DMA
Unless the buffer is smaller than one page, one cannot use:

kernel memory allocated with vmalloc()

user memory allocated with malloc()
Almost all the time userspace relies on the kernel to allocate the buffers and mmap ()
them to be usable from userspace (requires a dedicated user API)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/436


https://elixir.bootlin.com/linux/latest/ident/kmalloc
https://elixir.bootlin.com/linux/latest/ident/__get_free_pages
https://elixir.bootlin.com/linux/latest/ident/vmalloc
https://elixir.bootlin.com/linux/latest/ident/mmap

a Direct Memory Access
o)

o%e]

Kernel APls for DMA

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com 373 /436



60 dma-mapping vs. dmaengine vs. dma-buf

Joye!

The dma-mapping API:
Allocates and manages DMA buffers
Offers generic interfaces to handle coherency
Manages |[O-MMU DMA mappings when relevant
See core-api/dma-api and core-api/dma-api-howto
The dmaengine API:
Abstracts the DMA controller
Offers generic functions to configure, queue, trigger, stop transfers
Unused when dealing with peripheral DMA
See driver-api/dmaengine/client and
The dma-buf API:
Enables sharing DMA buffers between devices within the kernel
Not covered in this training

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/436


https://www.kernel.org/doc/html/latest/core-api/dma-api.html
https://www.kernel.org/doc/html/latest/core-api/dma-api-howto.html
https://www.kernel.org/doc/html/latest/driver-api/dmaengine/client.html

ao dma-mapping: Coherent or streaming DMA mappings

o%e]

Coherent mappings

The kernel allocates a suitable buffer and sets the mapping for the driver
Can simultaneously be accessed by the CPU and device
So, has to be in a cache coherent memory area
Usually allocated for the whole time the module is loaded
Can be expensive to setup and use on some platforms
Typically implemented by disabling cache on ARM

Streaming mappings
Use an already allocated buffer

The driver provides a buffer, the kernel just sets the mapping
Mapping set up for each transfer (keeps DMA registers free on the hardware)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/436



ao dma-mapping: memory addressing constraints
o0

o%e]

The default addressing capability of the DMA controllers is assumed to be 32-bit.
If the platform supports it, the DMA addressing capability can be:

increased (eg. need to access highmem)
decreased (eg. ISA devices, where kmalloc() buffers can also be allocated in the
first part of the RAM with GFP_DMA)

Linux stores this capability in a per-device mask, DMA mappings can fail because
a buffer is out of reach
In all cases, the DMA mask shall be consistent before allocating buffers

int dma_set_mask_and_coherent(struct device *dev, u64 mask)

Maximum and optimal buffer sizes can also be retrieved to optimize
allocations/buffer handling

size_t dma_max_mapping_size(struct device *dev);
size_t dma_opt_mapping_size(struct device *dev);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 376/436


https://elixir.bootlin.com/linux/latest/ident/kmalloc
https://elixir.bootlin.com/linux/latest/ident/GFP_DMA

4@,‘3 dma-mapping: Allocating coherent memory mappings

The kernel takes care of both buffer allocation and mapping:

#include <linux/dma-mapping.h>

void x /* Output: buffer address x/
dma_alloc_coherent(
struct device *dev, /* device structure */

size_t size, /* Needed buffer size in bytes x/
dma_addr_t *handle, /* Output: DMA bus address =*/
gfp_t gfp /* Standard GFP flags x/

)5

void dma_free_coherent(struct device xdev,
size_t size, void *cpu_addr, dma_addr_t handle);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 377/436



4@,‘3 dma-mapping: Setting up streaming memory mappings (single)

Works on already allocated buffers:

#include <linux/dma-mapping.h>

dma_addr_t dma_map_single(

struct device x*, /* device structure */
void *, /* input: buffer to use */
size_t, /* buffer size x/

enum dma_data_direction /x Either DMA_BIDIRECTIONAL,
* DMA_TO_DEVICE or
* DMA_FROM_DEVICE =x/

)5

void dma_unmap_single(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 378/436



4@,‘3 dma-mapping: Setting up streaming memory mappings (multiples)

A scatterlist using the scatter-gather library can be used to map several buffers
and link them together

#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>

struct scatterlist sglist[NENTS], *sg;
int i, count;

sg_init_table(sglist, NENTS);
sg_set_buf(&sglist[0], buf@, leno);
sg_set_buf(&sglist[1], buf1, lenl);

count = dma_map_sg(dev, sglist, NENTS, DMA_TO_DEVICE);
for_each_sg(sglist, sg, count, i) {
dma_address[i] = sg_dma_address(sg);
dma_len[i] = sg_dma_len(sg);
3

dma_unmap_sg(dev sglist, count, DMA_TO_DEVICE);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 379/436



4@,‘3 dma-mapping: Setting up streaming /O mappings

Physical addresses with MMIO registers might need to be remapped in order to be
accessed through an 10-MMU:

#include <linux/dma-mapping.h>

dma_addr_t dma_map_resource(

struct device *, /%
phys_addr_t, /*
size_t, /*

enum dma_data_direction, /*
*
*
unsigned long attrs, /*

)5

device structure */
input: resource to use */
buffer size */

Either DMA_BIDIRECTIONAL,
DMA_TO_DEVICE or
DMA_FROM_DEVICE =*/
optional attributes */

void dma_unmap_resource(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir, unsigned long attrs);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 380/436



4@,? dma-mapping: Verifying DMA memory mappings

> All mapping helpers can fail and return errors

> The right way to check the validity of the returned dma_addr_t is to call:
int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)

® May give additional clues if CONFIG_DMA_API_DEBUG is enabled.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 381/436


https://elixir.bootlin.com/linux/latest/ident/dma_addr_t
https://elixir.bootlin.com/linux/latest/ident/CONFIG_DMA_API_DEBUG

4@} dma-mapping: Syncing streaming DMA mappings

> In general streaming mappings are:
® mapped right before use with DMA
m MEM_TO_DEV: caches are flushed
® unmapped right after
m DEV_TO_MEM: cache lines are invalidated

> The CPU shall only access the buffer after unmapping!

> If however the same memory region has to be used for several DMA transfers, the
same mapping can be kept in place. In this case the data must be synchronized
before access:

® The CPU needs to access the data:
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
dma_sync_sg_for_cpu(dev, sglist, nents, direction);

® The device needs to access the data:
dma_sync_single_for_device(dev, dma_handle, size, direction);
dma_sync_sg_for_device(dev, sglist, nents, direction);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 382/436



ao Starting DMA transfers

o%e]

If the device you're writing a driver for is doing peripheral DMA, no external API
is involved.
If it relies on an external DMA controller, you'll need to

Ask the hardware to use DMA, so that it will drive its request line
Use Linux dmaengine framework, especially its slave API

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 383/436



4@} The dmaengine framework

Device driver

Uses the slave dmaengine API
to retrieve capabilities,
set configurations,
trigger transfers, etc

— >

Example: the 8250 UART

drivers/tty/serial/8250/8250_dma.c

Uses the various callbacks
(same name as the consumer API,
but prefixed with device_*)

Register a dma_device
with many callbacks

DMA controller
driver A

DMA controller

dmaengine framework

Describes:

- DMA controllers

- Which channels are needed
for the different devices

Device Tree

\4

driver B

DMA controller
driver C

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

384/436



Q} dmaengine: Slave API: Initial configuration

Steps to start a DMA transfer with dmaengine:

1. Request a channel for exclusive use with dma_request_chan(), or one of its
variants

® This channel pointer will be used all along
® Returns a pointer over a struct dma_chan which can also be an error pointer

2. Configure the engine by filling a struct dma_slave_config structure and passing
it to dmaengine_slave_config():

struct dma_slave_config txconf = {};

/* Tell the engine what configuration we want on a given channel:

* direction, access size, burst length, source and destination).

* Source being memory, there is no buswidth or maxburst limitation
* and each buffer will be different. */

txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
txconf.dst_maxburst = TX_TRIGGER;
txconf.dst_addr = fifo_dma_addr;

ret = dmaengine_slave_config(dma->txchan, &txconf);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 385/436


https://elixir.bootlin.com/linux/latest/ident/dma_request_chan
https://elixir.bootlin.com/linux/latest/ident/dma_chan
https://elixir.bootlin.com/linux/latest/ident/dma_slave_config
https://elixir.bootlin.com/linux/latest/ident/dmaengine_slave_config

4@,? dmaengine: Slave API: Per-transfer configuration (1/2)

1. Create a descriptor with all the required configuration for the next transfer with:

struct dma_async_tx_descriptor *
dmaengine_prep_slave_single(struct dma_chan *chan, dma_addr_t buf,
size_t len, enum dma_transfer_direction dir,
unsigned long flags);
struct dma_async_tx_descriptor *
dmaengine_prep_slave_sg(struct dma_chan *chan, struct scatterlist =*sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags);
struct dma_async_tx_descriptor *
dmaengine_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t buf_len,
size_t period_len, enum dma_data_direction dir);

> A common flag is:
© DMA_PREP_INTERRUPT: Generates an interrupt once done

> The descriptor returned can be used to fill-in a callback:

desc->callback = foo_dma_complete;
desc->callback_param = foo_dev;

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 386/436


https://elixir.bootlin.com/linux/latest/ident/DMA_PREP_INTERRUPT

4@} dmaengine: Slave API: Per-transfer configuration (2/2)

2. Queue the next operation:

dma_cookie_t cookie;

cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret)

3. Trigger the queued transfers

dma_async_issue_pending(chan);

3bis. In case anything went wrong or the device should stop being used, it is possible to
terminate all ongoing transactions with:

dmaengine_terminate_sync(chan);

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 387/436



4@3 Examples

> Commented network driver, whith both streaming and coherent mappings:
https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c

> Example of usage of the slave API: look at the code for stm32_i2c_prep_dma_xfer().

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 388/436


https://bootlin.com/pub/drivers/r6040-network-driver-with-comments.c
https://elixir.bootlin.com/linux/latest/ident/stm32_i2c_prep_dma_xfer

Practical lab - DMA
Qo ractical lab

o%e]

Setup streaming mappings with the
dma-mapping API

Configure a DMA controller with the
dmaengine API

Configure the hardware to trigger DMA
transfers

Wait for DMA completion

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 389/436



Kernel debugging

bootlin

Kernel debugging

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/436



ao Debugging/tracing using logs 1/4

o%e]

Good old printk()!
Works in all contexts

Can specify a log level ranging from @ (emergency) to 7 (debug)
Be careful of the delays introduced when logs are spitted out on a serial console at
115200 bauds

A *_ratelimited() version exists to limit the amount of print if called too often
Not recommended for upstream contributions

Example:
printk("in probe\n");

Here's what you get in the kernel log:
L 1.878382] in probe

All other logging facilities are based on it.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/436


https://elixir.bootlin.com/linux/latest/ident/printk

4@3 Debugging/tracing using logs 2/4

> The pr_*() family of functions
® They include the log level in the name:

pr_emerg(), pr_alert(), pr_crit(), pr_err(), pr_warn(), pr_notice(),
pr_info(), pr_cont() and the special pr_debug() (see next pages)

® They allow setting a manual prefix (eg. eases grepping):
#tdefine pr_fmt(fmt) "foo: " fmt

> Also defined in include/linux/printk.h
Example:
pr_info(”in probe\n");

Here's what you get in the kernel log:
[ 1.878382] in probe
or similarly with a manual format:

[ 1.878382] foo: in probe

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 392/436


https://elixir.bootlin.com/linux/latest/ident/pr_emerg
https://elixir.bootlin.com/linux/latest/ident/pr_alert
https://elixir.bootlin.com/linux/latest/ident/pr_crit
https://elixir.bootlin.com/linux/latest/ident/pr_err
https://elixir.bootlin.com/linux/latest/ident/pr_warn
https://elixir.bootlin.com/linux/latest/ident/pr_notice
https://elixir.bootlin.com/linux/latest/ident/pr_info
https://elixir.bootlin.com/linux/latest/ident/pr_cont
https://elixir.bootlin.com/linux/latest/ident/pr_debug
https://elixir.bootlin.com/linux/latest/source/include/linux/printk.h

4@3 Debugging/tracing using logs 3/4

P The dev_x() family of functions

® They include a formatted standard prefix with the device name:
dev_emerg(), dev_alert(), dev_crit(), dev_err(), dev_warn(), dev_notice(),
dev_info() and the special dev_dbg() (see next pages)

® They additionally take a pointer to struct device as first argument

¢ Defined in include/linux/dev_printk.h

® To be used in device drivers

Example:
dev_info(&pdev->dev, "in probe\n");

Here's what you get in the kernel log:

L 1.878382] serial 48024000.serial: in probe
L 1.884873] serial 481a8000.serial: in probe

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 393/436


https://elixir.bootlin.com/linux/latest/ident/dev_emerg
https://elixir.bootlin.com/linux/latest/ident/dev_alert
https://elixir.bootlin.com/linux/latest/ident/dev_crit
https://elixir.bootlin.com/linux/latest/ident/dev_err
https://elixir.bootlin.com/linux/latest/ident/dev_warn
https://elixir.bootlin.com/linux/latest/ident/dev_notice
https://elixir.bootlin.com/linux/latest/ident/dev_info
https://elixir.bootlin.com/linux/latest/ident/dev_dbg
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/source/include/linux/dev_printk.h

ao Debugging/tracing using logs 4/4

o%e]

The kernel defines many more format specifiers than the standard printf ()
existing ones.
%p: Display the hashed value of pointer by default.
%px: Always display the address of a pointer (use carefully on non-sensitive
addresses).
%pK: Display hashed pointer value, zeros or the pointer address depending on
kptr_restrict sysctl value.
%pOF: Device-tree node format specifier.
%pr: Resource structure format specifier.
%pa: Physical address display (work on all architectures 32/64 bits)
%pe: Error pointer (displays the string corresponding to the error number)

See core-api/printk-formats for an exhaustive list of format specifiers

Also features a helper to dump entire buffers with a hexdump like display:
print_hex_dump()

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/436


https://www.kernel.org/doc/html/latest/core-api/printk-formats.html
https://elixir.bootlin.com/linux/latest/ident/print_hex_dump

ao pr_debug() and dev_dbg()

Jo3e!

When the driver is compiled with DEBUG defined, all these messages are compiled
and printed at the debug level. DEBUG can be defined by #define DEBUG at the
beginning of the driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG in the
Makefile

When the kernel is compiled with CONFIG_DYNAMIC_DEBUG, then these messages
can dynamically be enabled on a per-file, per-module or per-message basis, by
writing commands to /proc/dynamic_debug/control. Note that messages are
not enabled by default.

Details in admin-guide/dynamic-debug-howto
Very powerful feature to only get the debug messages you're interested in.

When neither DEBUG nor CONFIG_DYNAMIC_DEBUG are used, these messages are not
compiled in.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 395/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG

4@} Configuring the priority

> Each message is associated to a priority, as specified in
include/linux/kern_levels.h.
> All the messages, regardless of their priority, are stored in the kernel log ring buffer
® Typically accessed using the dmesg command

P Messages with a priority lower than the loglevel also appear on the console

> The loglevel can be changed:
® in the kernel configuration using CONFIG_CONSOLE_LOGLEVEL_DEFAULT)
® on the cmdline with loglevel= (see admin-guide/kernel-parameters)
® at runtime through /proc/sys/kernel/printk (admin-guide/sysctl/kernel)

> Examples:
® loglevel=0: no message on the console (see also: quiet)
® loglevel=8: all messages on the console (see also: ignore_loglevel)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 396/436


https://elixir.bootlin.com/linux/latest/source/include/linux/kern_levels.h
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CONSOLE_LOGLEVEL_DEFAULT
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html

4@} DebugFS

A virtual filesystem to export debugging information to user space.
> Kernel configuration: CONFIG_DEBUG_FS
® Kernel hacking -> Debug Filesystem
> The debugging interface disappears when Debugfs is configured out.
» You can mount it as follows:
® sudo mount -t debugfs none /sys/kernel/debug
> First described on https://lwn.net/Articles/115405/

> APl documented in the Linux Kernel Filesystem API: filesystems/debugfs The
debugfs filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 397/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_FS
https://lwn.net/Articles/115405/
https://www.kernel.org/doc/html/latest/filesystems/debugfs.html

% DebugFS API

> Create a sub-directory for your driver:
struct dentry *debugfs_create_dir(const char xname,
struct dentry *parent);
> Expose an integer as a file in DebugFS. Example:
struct dentry *debugfs_create_u8(const char *name, mode_t mode,
struct dentry *parent, u8 *value);

® u8, ul6, u32, ub4 for decimal representation
® x8, x16, x32, x64 for hexadecimal representation
> Expose a binary blob as a file in DebugFS:
struct dentry *debugfs_create_blob(const char *name,
mode_t mode, struct dentry xparent,
struct debugfs_blob_wrapper *blob);
> Also possible to support writable DebugFS files or customize the output using the
more generic debugfs_create_file() function.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 398/436


https://elixir.bootlin.com/linux/latest/ident/debugfs_create_file

ao Using Magic SysRq

Functionnality provided by serial drivers
Allows to run multiple debug / rescue commands even when the kernel seems to
be in deep trouble

On PC: press [Alt] 4+ [Prnt Scrn] + <character> simultaneously

(CSysRql = [Alt] + [Prnt Scrn])

On embedded: in the console, send a break character

(Picocom: press [Ctrl] + a followed by [Ctrl] + \ ), then press <character>

Example commands:

show available commands

sync all mounted filesystems

reboot the system

makes RT processes nice-able.

shows the kernel stack of all sleeping processes
: shows the kernel stack of all running processes
You can even register your own!

23003

Detailed in admin-guide/sysrq

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 399/436


https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

60 kgdb - A kernel debugger

o%e]

CONFIG_KGDB in Kernel hacking.

The execution of the kernel is fully controlled by gdb from another machine,
connected through a serial line.

Can do almost everything, including inserting breakpoints in interrupt handlers.
Feature supported for the most popular CPU architectures

CONFIG_GDB_SCRIPTS allows to build GDB python scripts that are provided by the
kernel.

See process/debugging/kgdb for more information

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 400/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GDB_SCRIPTS
https://www.kernel.org/doc/html/latest/process/debugging/kgdb.html

4@} Using kgdb (1/2)

> Details available in the kernel documentation: process/debugging/kgdb

» You must include a kgdb /O driver. One of them is kgdb over serial console
(kgdboc: kgdb over console, enabled by CONFIG_KGDB_SERIAL_CONSOLE)
> Configure kgdboc at boot time by passing to the kernel:
® kgdboc=<tty-device>, <bauds>.
® For example: kgdboc=ttySo, 115200
> Or at runtime using sysfs:

® echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc
® |f the console does not have polling support, this command will yield an error.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 401/436


https://www.kernel.org/doc/html/latest/process/debugging/kgdb.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KGDB_SERIAL_CONSOLE

ao Using kgdb (2/2)

o%e]

Then also pass kgdbwait to the kernel: it makes kgdb wait for a debugger
connection.

Boot your kernel, and when the console is initialized, interrupt the kernel with a
break character and then g in the serial console (see our Magic SysRq
explanations).
On your workstation, start gdb as follows:

arm-linux-gdb ./vmlinux

(gdb) set remotebaud 115200
(gdb) target remote /dev/ttySe

Once connected, you can debug a kernel the way you would debug an application
program.

On GDB side, the first threads represent the CPU context (ShadowCPU<x>),
then all the other threads represents a task.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 402/436



a@ Debugging with a JTAG interface

Joye]

Two types of JTAG dongles

The ones offering a gdb compatible interface, over a serial port or an Ethernet

connection. gdb can directly connect to them.
The ones not offering a gdb compatible interface are generally supported by

OpenOCD (Open On Chip Debugger): https://openocd.sourceforge.net/

OpenOCD is the bridge between the gdb debugging language and the JTAG

interface of the target CPU.
See the very complete documentation:

https://openocd.org/pages/documentation.html

For each board, you'll need an OpenOCD configuration file (ask your supplier)

Development PC

USB

gdb ¥ openocd 4|_>

JTAG
interface

JTAG

ARM board

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

403/436


https://openocd.sourceforge.net/
https://openocd.org/pages/documentation.html

a Early traces
b

o%e]

If something breaks before the tty layer, serial driver and serial console are
properly registered, you might just have nothing else after "Starting kernel..."
On ARM, if your platform implements it, you can activate (CONFIG_DEBUG_LL and
CONFIG_EARLY_PRINTK), and add earlyprintk to the kernel command line
Assembly routines to just push a character and wait for it to be sent
Extremely basic, but is part of the uncompressed section, so available even if the
kernel does not uncompress correctly!
On other platforms, hoping that your serial driver implements
OF _EARLYCON_DECLARE(), you can enable CONFIG_SERIAL_EARLYCON
The kernel will try to hook an appropriate earlycon UART driver using the
stdout-path of the device-tree.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 404/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_LL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EARLY_PRINTK
https://elixir.bootlin.com/linux/latest/ident/OF_EARLYCON_DECLARE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SERIAL_EARLYCON

a@ More kernel debugging tips 1/2

o%e]

Make sure CONFIG_KALLSYMS_ALL is enabled
To get oops messages with symbol names instead of raw addresses
Turned on by default
Make sure CONFIG_DEBUG_INFO is also enabled
This way, the kernel is compiled with $(CROSSCOMPILE)gcc -g, which keeps the
source code inside the binaries.
If your device is not probed, try enabling CONFIG_DEBUG_DRIVER

Extremely verbose!
Will enable all the debug logs in the device-driver core section

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 405/436


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_KALLSYMS_ALL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_DRIVER

4@,‘} More kernel debugging tips 2/2

Device Tree output can be better understood with the in-tree dtx_diff script

» Show the origin of each property/node: scripts/dtc/dtx_diff -T <dts>
main_i2c3: 12c@20030000 { /* arch/arm64/boot/dts/ti/k3-am62-main.dtsi:450:26-460:4,
arch/armé4/boot/dts/ti/k3-am625-beagleplay.dts:820:12-825:3,
arch/armé64/boot/dts/ti/k3-am625-beagleplay-custom.dts:20:12-25:3 */

reg = <0x00 0x20030000 0x00 0x100>; /* arch/arm64/boot/dts/ti/k3-am62-main.dtsi:452:3-452:38 */
status = "okay"; /x arch/arm64/boot/dts/ti/k3-am625-beagleplay.dts:824:2-824:18 x/

joystick@52 { /x arch/armé64/boot/dts/ti/k3-am625-beagleplay-custom.dts:21:14-24:4 */
compatible = "nintendo,nunchuk”; /* arch/armé64/boot/dts/ti/k3-am625-beagleplay-custom.dts:23
reg = <0x52>; /* arch/arm64/boot/dts/ti/k3-am625-beagleplay-custom.dts:22:3-22:16 */
b
B

> Can also be used to diff DTS

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 406/436



a Getting help and reporting bugs
o)
If you are using a custom kernel from a hardware vendor, contact that company.
The community will have less interest supporting a custom kernel.
Otherwise, or if this doesn't work, try to reproduce the issue on the latest version
of the kernel.
Make sure you investigate the issue as much as you can: see
admin-guide/bug-bisect
Check for previous bugs reports. Use web search engines, accessing public mailing
list archives.
If you're the first to face the issue, it's very useful for others to report it, even if
you cannot investigate it further.
If the subsystem you report a bug on has a mailing list, use it. Otherwise, contact
the official maintainer (see the MAINTAINERS file). Always give as many useful
details as possible.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 407/436


https://www.kernel.org/doc/html/latest/admin-guide/bug-bisect.html
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS

4@} Debugging resources

Checkout Bootlin's debugging training!

» Linux debugging, profiling, tracing and performance
analysis training

> https://bootlin.com/doc/training/debugging/

» Slides and labs are available for free

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

408/436


https://bootlin.com/doc/training/debugging/
https://bootlin.com/doc/training/debugging/debugging-slides.pdf
https://bootlin.com/doc/training/debugging/debugging-labs.pdf

ao Practical lab - Kernel debugging

o%e]

Use the dynamic debug feature.
Add debugfs entries
Load a broken driver and see it crash

Analyze the error information dumped by the
kernel.

Disassemble the code and locate the exact C
instruction which caused the failure.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 409/436



Power Management

bootlin

Power Management

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 410/436



Q@ PM building blocks

o%e]

Several power management building blocks
Clock framework
CPUidle (system wide)
Frequency and voltage scaling (system wide)
Suspend and resume (system wide)
Runtime power management (peripheral specific)
Power domains (SoC specific)

Independent building blocks that can be improved gradually during development

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 411/436



ao Clock framework (1)

o%e]

Generic framework to manage clocks used by devices in the system

Allows to reference count clock users and to shutdown the unused clocks to save
power
Simple API described in include/linux/clk.h.

clk_get() to lookup and obtain a reference to a clock producer

clk_put() to free the clock source

clk_prepare_enable() to inform the system when the clock source should be
running

clk_disable_unprepare() to inform the system when the clock source is no longer
required.

clk_get_rate() to obtain the current clock rate (in Hz) for a clock source
clk_set_rate() to set the current clock rate (in Hz) of a clock source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 412/436


https://elixir.bootlin.com/linux/latest/source/include/linux/clk.h
https://elixir.bootlin.com/linux/latest/ident/clk_get
https://elixir.bootlin.com/linux/latest/ident/clk_put
https://elixir.bootlin.com/linux/latest/ident/clk_prepare_enable
https://elixir.bootlin.com/linux/latest/ident/clk_disable_unprepare
https://elixir.bootlin.com/linux/latest/ident/clk_get_rate
https://elixir.bootlin.com/linux/latest/ident/clk_set_rate

ao Clock framework (2)

o%e]

The common clock framework

Allows to declare the available clocks and their association to devices in the
Device Tree

Provides a debugfs representation of the clock tree

Is implemented in drivers/clk/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 413/436


https://elixir.bootlin.com/linux/latest/source/drivers/clk/

Diagram overview of the common clock framework
101

Uses the public clock API
clk_get(), clk_put()
clk_prepare(), clk_unprepare()
clk_enable(), clk_disable()

clk_get_rate(), etc. -
Device driver >

Example:
drivers/i2c/busses/i2c-omap.c

Uses the
clk_ops
operations
Clock framework

Describes:

- Clocks and their
relationships

- Which clocks are needed
for the different devices

Device Tree

SRR A A

Clock driver
fixed factor

Clock driver
fixed-rate

Clock driver
gate

Clock driver
mux

Clock driver
divider

Clock driver
foo

Clock driver
bar

Provided by
the base clock
framework

Provided by
the clock driver code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin. com

414/436



ao Clock framework (3)

o%e]

The interface of the CCF divided into two halves:
Common Clock Framework core

Common definition of struct clk

Common implementation of the clk.h API (defined in drivers/clk/clk.c)
struct clk_ops: operations invoked by the clk APl implementation

Not supposed to be modified when adding a new driver

Hardware-specific
Callbacks registered with struct clk_ops and the corresponding hardware-specific
structures
Has to be written for each new hardware clock
Example: drivers/clk/mvebu/clk-cpu.c

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

415/436


https://elixir.bootlin.com/linux/latest/ident/clk
https://elixir.bootlin.com/linux/latest/source/drivers/clk/clk.c
https://elixir.bootlin.com/linux/latest/ident/clk_ops
https://elixir.bootlin.com/linux/latest/ident/clk_ops
https://elixir.bootlin.com/linux/latest/source/drivers/clk/mvebu/clk-cpu.c

ao Clock framework (4)

o%e]

Hardware clock operations: device tree

The device tree is the mandatory way to declare a clock and to get its
resources, as for any other driver using DT we have to:
Parse the device tree to setup the clock: the resources but also the properties are
retrieved.
Declare the compatible clocks and associate each to an initialization function
using CLK_OF _DECLARE ()
Example: arch/arm/boot/dts/marvell/armada-xp.dtsi and
drivers/clk/mvebu/armada-xp.c

See our presentation about the Clock Framework for more details:
https://bootlin.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 416/436


https://elixir.bootlin.com/linux/latest/ident/CLK_OF_DECLARE
https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/marvell/armada-xp.dtsi
https://elixir.bootlin.com/linux/latest/source/drivers/clk/mvebu/armada-xp.c
https://bootlin.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/

60 Saving power in the idle loop

Jo3e!

The idle loop is what you run when there’s nothing left to run in the system.

arch_cpu_idle() implemented in all architectures in
arch/<arch>/kernel/process.c

Example: arch/arm/kernel/process.c

The CPU can run power saving HLT instructions, enter NAP mode, and even
disable the timers (tickless systems).

See also https://en.wikipedia.org/wiki/Idle_loop

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 417/436


https://elixir.bootlin.com/linux/latest/ident/arch_cpu_idle
https://elixir.bootlin.com/linux/latest/source/arch/arm/kernel/process.c
https://en.wikipedia.org/wiki/Idle_loop

M ing idl
Q@ anaging idle

o%e]

Adding support for multiple idle levels
Modern CPUs have several sleep states offering different power savings with
associated wake up latencies
The dynamic tick feature allows to remove the periodic timer tick to save power,
and to know when the next event is scheduled, for smarter sleeps.
CPUidle infrastructure to change sleep states

Platform-specific driver defining sleep states and transition operations

Platform-independent governors
Available in particular for x86/ACPI and most ARM SoCs

See admin-guide/pm/cpuidle in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 418/436


https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html

P TOP
Qo owerTO

o%e]

https://en.wikipedia.org/wiki/PowerTOP

With dynamic ticks, allows to fix parts of kernel code and applications that wake
up the system too often.

PowerTOP allows to track the worst offenders
Now available on ARM cpus implementing CPUidle
Also gives you useful hints for reducing power.

Try it on your x86 laptop:
sudo powertop

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 419/436


https://en.wikipedia.org/wiki/PowerTOP

ao Frequency and voltage scaling (1)

Jo3e!

Frequency and voltage scaling possible through the cpufreq kernel infrastructure

Generic infrastructure: drivers/cpufreq/cpufreq.c and
include/linux/cpufreq.h

Generic governors, responsible for deciding frequency and voltage transitions
performance: maximum frequency
powersave: minimum frequency
ondemand: measures CPU consumption to adjust frequency
conservative: often better than ondemand. Only increases frequency gradually
when the CPU gets loaded.
schedutil: Tightly integrated with the scheduler, making per-policy decisions, RT
tasks running at full speed.
userspace: leaves the decision to a user space daemon.

This infrastructure can be controlled from
/sys/devices/system/cpu/cpu<n>/cpufreq/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 420/436


https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/cpufreq.c
https://elixir.bootlin.com/linux/latest/source/include/linux/cpufreq.h

4@} Frequency and voltage scaling (2)

> CPU frequency drivers are in drivers/cpufreq/. Example:
drivers/cpufreq/omap-cpufreq.c
» Must implement the operations of the cpufreq_driver structure and register
them using cpufreq_register_driver()
® init() for initialization
® exit() for cleanup
¢ verify() to verify the user-chosen policy
® setpolicy() or target() to actually perform the frequency change

> See documentation in cpu-freq/ for useful explanations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 421/436


https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/
https://elixir.bootlin.com/linux/latest/source/drivers/cpufreq/omap-cpufreq.c
https://elixir.bootlin.com/linux/latest/ident/cpufreq_register_driver
https://www.kernel.org/doc/html/latest/cpu-freq/

ao Suspend and resume (to / from RAM)

Jo3e!

Infrastructure in the kernel to support suspend and resume

System on Chip hooks
Define operations (at least valid() and enter()) struct platform_suspend_ops
structure. See the documentation for this structure for details about possible
operations and the way they are used.
Registered using the suspend_set_ops() function
See arch/arm/mach-at91/pm.c

Device driver hooks
pm operations (suspend() and resume() hooks) in the struct device_driver as a
struct dev_pm_ops structure in (struct platform_driver, struct usb_driver,
etc.)
See drivers/net/ethernet/cadence/macb_main.c
Hibernate to disk is based on suspend to RAM, copying the RAM contents (after
a simulated suspend) to a swap partition.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 422/436


https://elixir.bootlin.com/linux/latest/ident/platform_suspend_ops
https://elixir.bootlin.com/linux/latest/ident/suspend_set_ops
https://elixir.bootlin.com/linux/latest/source/arch/arm/mach-at91/pm.c
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://elixir.bootlin.com/linux/latest/ident/platform_driver
https://elixir.bootlin.com/linux/latest/ident/usb_driver
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/cadence/macb_main.c

4@3 Triggering suspend / hibernate

> struct suspend_ops functions are called by the enter_state() function.
enter_state() also takes care of executing the suspend and resume functions for
your devices.

> Read kernel/power/suspend.c

> The execution of this function can be triggered from user space:

® echo mem > /sys/power/state (suspend to RAM)
® echo disk > /sys/power/state (hibernate to disk)
> Systemd can also manage suspend and hibernate for you, and offers
customizations
® systemctl suspend or systemctl hibernate.

® See https://www.man7.org/linux/man-pages/man8/systemd-
suspend.service.8.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 423/436


https://elixir.bootlin.com/linux/latest/ident/suspend_ops
https://elixir.bootlin.com/linux/latest/ident/enter_state
https://elixir.bootlin.com/linux/latest/ident/enter_state
https://elixir.bootlin.com/linux/latest/source/kernel/power/suspend.c
https://www.man7.org/linux/man-pages/man8/systemd-suspend.service.8.html
https://www.man7.org/linux/man-pages/man8/systemd-suspend.service.8.html

a Runtime power management
o)

o%e]

Managing per-device idle, each device being managed by its device driver
independently from others.

According to the kernel configuration interface: Enable functionality allowing 1/0
devices to be put into energy-saving (low power) states at run time (or
autosuspended) after a specified period of inactivity and woken up in response to
a hardware-generated wake-up event or a driver’s request.

New hooks must be added to the drivers: runtime_suspend(),
runtime_resume(), runtime_idle() in the struct dev_pm_ops structure in
struct device_driver.

API and details on power/runtime_pm

See drivers/net/ethernet/cadence/macb_main.c again.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/436


https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://elixir.bootlin.com/linux/latest/ident/device_driver
https://www.kernel.org/doc/html/latest/power/runtime_pm.html
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/cadence/macb_main.c

a@ Generic PM Domains (pmdomain, ex-genpd)

Jo3e!

Generic infrastructure to implement power domains based on Device Tree
descriptions, allowing to group devices by the physical power domain they belong
to. This sits at the same level as bus type for calling PM hooks.

All the devices in the same PD get the same state at the same time.

Specifications and examples available at
Documentation/devicetree/bindings/power/power_domain. txt

Driver example: drivers/pmdomain/rockchip/pm-domains.c

See _pd_power_on(), _pd_power_off(), _pm_add_one_domain()

DT example: look for rockchip, px30-power-controller
(arch/arm64/boot/dts/rockchip/px30.dtsi) and find PD definitions and
corresponding devices.

See Kevin Hilman's talk at Kernel Recipes 2017:
https://youtu.be/SctfvoskABM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 425/436


https://kernel.org/doc/Documentation/devicetree/bindings/power/power_domain.txt
https://elixir.bootlin.com/linux/latest/source/drivers/pmdomain/rockchip/pm-domains.c
https://elixir.bootlin.com/linux/latest/ident/rockchip_pd_power_on
https://elixir.bootlin.com/linux/latest/ident/rockchip_pd_power_off
https://elixir.bootlin.com/linux/latest/ident/rockchip_pm_add_one_domain
https://elixir.bootlin.com/linux/latest/B/ident/rockchip%2Cpx30-power-controller
https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/rockchip/px30.dtsi
https://youtu.be/SctfvoskABM

a Useful resources
o)

o%e]

power/ in kernel documentation.
Will give you many useful details.

Introduction to kernel power management, Kevin Hilman (Kernel Recipes 2015)
https://www.youtube.com/watch?v=juJJZORgVwI

Linux Power Management Features, Their Relationships and Interactions —

Théo Lebrun (Embedded Linux Conference Europe 2024)
https://www.youtube.com/watch?v=_jb6U407CZk

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 426/436


https://www.kernel.org/doc/html/latest/power/
https://www.youtube.com/watch?v=juJJZORgVwI
https://www.youtube.com/watch?v=_jb6U40ZCZk

Kernel Resources

bootlin

Kernel Resources

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 427/436



a Kernel Development News
o)

o%e]

Linux Weekly News
https://lwn.net/

The weekly digest off all Linux and free software
information sources

In depth technical discussions about the kernel

Coverage of the features accepted in each merge
window

Subscribe to finance the editors ($7 / month)

Articles available for non subscribers after 1 week.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

428/436


https://lwn.net/

a Useful Online Resources
o)

Jo3e!

Kernel documentation
https://kernel.org/doc/
Linux kernel mailing list FAQ
https://subspace.kernel.org/etiquette.html
Complete Linux kernel FAQ
Read this before asking a question to the mailing list
Linux kernel mailing lists
https://lore.kernel.org/
Easy browsing and referencing of all e-mail threads
Easy access to an mbox in order to answer to e-mails you were not Cc'ed to
Kernel Newbies
https://kernelnewbies.org/
Articles, presentations, HOWTOs, recommended reading, useful tools for people
getting familiar with Linux kernel or driver development.
Glossary: https://kernelnewbies.org/KernelGlossary
In depth coverage of the new features in each kernel release:
https://kernelnewbies.org/LinuxChanges

The https://elinux.org wiki

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 429/436


https://kernel.org/doc/
https://subspace.kernel.org/etiquette.html
https://lore.kernel.org/
https://kernelnewbies.org/
https://kernelnewbies.org/KernelGlossary
https://kernelnewbies.org/LinuxChanges
https://elinux.org

a@ International Conferences (1)
o0

Embedded Linux Conference:

https://embeddedlinuxconference.com/
Organized by the Linux Foundation MEmbedded Linux
Once per year, alternating North America/Europe Y Conference
Very interesting kernel and user space topics for embedded
systems developers. Many kernel and embedded project
maintainers are present.

Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

Linux Plumbers

https://lpc.events/

About the low-level plumbing of Linux: kernel, audio, power
management, device management, multimedia, etc.

Not really a conventional conference with formal
presentations, but rather a place where contributors on each
topic meet, share their progress and make plans for work
ahead.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 430/436


https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://lpc.events/

4@3 International Conferences (2)

» Kernel Recipes: https://kernel-recipes.org/
® Well attended conference in Europe (Paris), only one
track at a time, with a format that really allows for
discussions.
> linux.conf.au:
https://linux.org.au/linux-conf-au/
® In Australia / New Zealand
® Features a few presentations by key kernel hackers.

» Currently, most conferences are available on-line. They
are much more affordable and often free. CONF

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 431/436


https://kernel-recipes.org/
https://linux.org.au/linux-conf-au/

a After the course
o)

o%e]

Hobbyists can make their first
contributions by:

Continue to learn:

Run your labs again on your own
hardware. The Nunchuk lab should be
rather straightforward, but the serial
lab will be quite different if you use a
different processor.

Learn by reading the kernel code by
yourself, ask questions and propose
improvements.

Implement and share drivers for your
own hardware, of course!

Helping with tasks keeping the kernel
code clean and up-to-date
https://kernelnewbies.org/
KernelJanitors/Todo

Proposing fixes for issues reported by
the Coccinelle tool:

make coccicheck

Participating to improving drivers in
drivers/staging/

Investigating and do the triage of
issues reported by Coverity Scan:
https://scan.coverity.com/
projects/linux

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

432/436


https://kernelnewbies.org/KernelJanitors/Todo
https://kernelnewbies.org/KernelJanitors/Todo
https://elixir.bootlin.com/linux/latest/source/drivers/staging/
https://scan.coverity.com/projects/linux
https://scan.coverity.com/projects/linux

4@3 Contribute your changes

Recommended resources

> See process/submitting-patches for guidelines and
https://kernelnewbies.org/UpstreamMerge for very helpful advice to have your
changes merged upstream (by Rik van Riel).

» Watch the Write and Submit your first Linux kernel Patch talk by Greg. K.H:
https://www.youtube.com/watch?v=LLBrBBImJt4

> How to Participate in the Linux Community (by Jonathan Corbet).
A guide to the kernel development process.
https://www.static.linuxfound.org/sites/1fcorp/files/How-Participate-Linux-Community_0@.pdf

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 433/436


https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://kernelnewbies.org/UpstreamMerge
https://www.youtube.com/watch?v=LLBrBBImJt4
https://www.static.linuxfound.org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf

Last slides

bootlin

Last slides

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 434/436



Last slide
o

o%e]

Thank you!
And may the Source be with you

00tliN - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



Rights t
Q@ ights to copy

o%e]

© Copyright 2004-2026, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions:
Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 436/436


https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Backup slides

bootlin

Backup slides

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/16



Backup slides

mmap

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/16



mmap
Uo

o%e]

Possibility to have parts of the virtual address space of a program mapped to the
contents of a file

Particularly useful when the file is a device file

Allows to access device |/O memory and ports without having to go through
(expensive) read, write or ioctl calls

One can access to current mapped files by two means:

/proc/<pid>/maps
pmap <pid>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/16



4% /proc/<pid>/maps

start-end

7f4516d04000-7f4516d06000
7f4516d07000-7f4516d0b000

7f4518728000-7f451874f000
7f451874f000-7f451894f000
7f4518941000-7f4518951000
7f4518951000-7f4518952000

7f451da4f000-7f451dc3f000
7f451de3e000-7f451de41000
7f451de41000-7f451de4c000

perm

rw-s
rw-s

r-xp
P
r--p
rw-p

r=xp
r--p
rw-p

offset major:minor inode mapped file name

115222000 00:05 8406
120f9e000 00:05 8406

00000000
00027000
00027000
00029000

00000000
001ef000
00112000

08:
08:
08:
08:

08:
08:
08:

01
01
01
01

01
01
01

268909
268909
268909
268909

1549
1549
1549

/dev/dri/cardo
/dev/dri/card@

/1ib/x86_64-1inux-gnu/libexpat.so.
/1ib/x86_64-1inux-gnu/libexpat.so.
/1ib/x86_64-1inux-gnu/libexpat.so.
/1ib/x86_64-1inux-gnu/libexpat.so.

—_ a4
(S NG, I, BN,
NN NN

/usr/bin/Xorg
/usr/bin/Xorg
/usr/bin/Xorg

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/16



mmap
System
Call
Process >
Access
Virtual
Memory
MMU

Virtual
Address Space

Device Driver

mmap fop called
initializes the mapping

Access
Physical
Address

Physical Address

Space

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/16



4@3 How to Implement mmap - User space

> Open the device file

> Call the mmap system
void * mmap(

void *start, /*
size_t length, /x
int prot, /*
int flags, /*

int fd, /*
of f_t offset /*
);

call (see man mmap for details):

Often @, preferred starting address */
Length of the mapped area */

Permissions: read, write, execute */
Options: shared mapping, private copy... */
Open file descriptor */

Offset in the file */

> You get a virtual address you can write to or read from.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/16



4@3 How to Implement mmap - Kernel space

> Character driver: implement an mmap file operation and add it to the driver file
operations:
int (*mmap) (
struct file *, /* Open file structure */
struct vm_area_struct * /* Kernel VMA structure =/
);
P Initialize the mapping.

® Can be done in most cases with the remap_pfn_range() function, which takes care
of most of the job.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/16


https://elixir.bootlin.com/linux/latest/ident/remap_pfn_range

% remap_pfn_range()

b pfn: page frame number

> The most significant bits of the page address (without the bits corresponding to

the page size).
#include <linux/mm.h>

int remap_pfn_range(

struct vm_area_struct *,
unsigned long virt_addr,

unsigned long pfn,

unsigned long size,
pgprot_t prot
);

/*
/*

*
/*

*
/*
/*

VMA struct *x/
Starting user
virtual address */
pfn of the starting
physical address */
Mapping size =*/
Page permissions =*/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/16



Q} Simple mmap implementation

static int acme_mmap
(struct file * file, struct vm_area_struct *vma)

size = vma->vm_end - vma->vm_start;

if (size > ACME_SIZE)
return -EINVAL;

if (remap_pfn_range(vma,
vma->vm_start,
ACME_PHYS >> PAGE_SHIFT,
size,
vma->vm_page_prot))
return -EAGAIN;

return 0;

}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/16



devmem?2
o

Jo3e!

https://bootlin.com/pub/mirror/devmem2.c, by Jan-Derk Bakker

Very useful tool to directly peek (read) or poke (write) I/O addresses mapped in
physical address space from a shell command line!

Very useful for early interaction experiments with a device, without having to code
and compile a driver.
Uses mmap to /dev/mem.
Examples (b: byte, h: half, w: word)
devmem2 0x000c0004 h (reading)
devmem2 0x000c0008 w Oxffffffff (Writing)

devmem is now available in BusyBox, making it even easier to use.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/16


https://bootlin.com/pub/mirror/devmem2.c

a mmap summary
bdh)

o%e]

The device driver is loaded. It defines an mmap file operation.
A user space process calls the mmap system call.

The mmap file operation is called.

It initializes the mapping using the device physical address.

The process gets a starting address to read from and write to (depending on
permissions).

The MMU automatically takes care of converting the process virtual addresses
into physical ones.

Direct access to the hardware without any expensive read or write system calls

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/16



Backup slid
Q@ ackup slides

o%e]

Useful general-purpose kernel APIs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/16



% Memory /string utilities

» In include/linux/string.h
® Memory-related: memset (), memcpy (), memmove (), memscan(), memcmp (), memchr ()
® String-related: strcpy(), strcat(), stremp(), strchr(), strrchr(), strlen()
and variants
® Allocate and copy a string: kstrdup(), kstrndup()
® Allocate and copy a memory area: kmemdup ()
> In include/linux/kernel.h
® String to int conversion: simple_strtoul(), simple_strtol(),
simple_strtoull(), simple_strtoll()
® Other string functions: sprintf(), sscanf()

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/16


https://elixir.bootlin.com/linux/latest/source/include/linux/string.h
https://elixir.bootlin.com/linux/latest/ident/memset
https://elixir.bootlin.com/linux/latest/ident/memcpy
https://elixir.bootlin.com/linux/latest/ident/memmove
https://elixir.bootlin.com/linux/latest/ident/memscan
https://elixir.bootlin.com/linux/latest/ident/memcmp
https://elixir.bootlin.com/linux/latest/ident/memchr
https://elixir.bootlin.com/linux/latest/ident/strcpy
https://elixir.bootlin.com/linux/latest/ident/strcat
https://elixir.bootlin.com/linux/latest/ident/strcmp
https://elixir.bootlin.com/linux/latest/ident/strchr
https://elixir.bootlin.com/linux/latest/ident/strrchr
https://elixir.bootlin.com/linux/latest/ident/strlen
https://elixir.bootlin.com/linux/latest/ident/kstrdup
https://elixir.bootlin.com/linux/latest/ident/kstrndup
https://elixir.bootlin.com/linux/latest/ident/kmemdup
https://elixir.bootlin.com/linux/latest/source/include/linux/kernel.h
https://elixir.bootlin.com/linux/latest/ident/simple_strtoul
https://elixir.bootlin.com/linux/latest/ident/simple_strtol
https://elixir.bootlin.com/linux/latest/ident/simple_strtoull
https://elixir.bootlin.com/linux/latest/ident/simple_strtoll
https://elixir.bootlin.com/linux/latest/ident/sprintf
https://elixir.bootlin.com/linux/latest/ident/sscanf

Linked i
Q@ inked lists

Jo3e!

Convenient linked-list facility in include/linux/list.h
Used in thousands of places in the kernel

Add a struct list_head member to the structure whose instances will be part of
the linked list. It is usually named node when each instance needs to only be part
of a single list.

Define the list with the LIST_HEAD() macro for a global list, or define a
struct list_head element and initialize it with INIT_LIST_HEAD() for lists
embedded in a structure.

Then use the 1ist_x() API to manipulate the list

Add elements: list_add(), list_add_tail()

Remove, move or replace elements: list_del(), list_move(), list_move_tail(),
list_replace()

Test the list: list_empty()

Iterate over the list: 1ist_for_each_x() family of macros

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/16


https://elixir.bootlin.com/linux/latest/source/include/linux/list.h
https://elixir.bootlin.com/linux/latest/ident/list_head
https://elixir.bootlin.com/linux/latest/ident/LIST_HEAD
https://elixir.bootlin.com/linux/latest/ident/list_head
https://elixir.bootlin.com/linux/latest/ident/INIT_LIST_HEAD
https://elixir.bootlin.com/linux/latest/ident/list_add
https://elixir.bootlin.com/linux/latest/ident/list_add_tail
https://elixir.bootlin.com/linux/latest/ident/list_del
https://elixir.bootlin.com/linux/latest/ident/list_move
https://elixir.bootlin.com/linux/latest/ident/list_move_tail
https://elixir.bootlin.com/linux/latest/ident/list_replace
https://elixir.bootlin.com/linux/latest/ident/list_empty

4@,‘3 Linked lists examples 1/2

drivers/i2c/busses/i2c-stm32f7.c

* struct stm32f7_i2c_timings - private I2C output parameters
* @node: List entry

* @presc: Prescaler value

* @scldel: Data setup time

* @sdadel: Data hold time

* @sclh: SCL high period (master mode)

* @scll: SCL low period (master mode)

struct stm32f7_i2c_timings {
struct list_head node;
u8 presc;
u8 scldel;
u8 sdadel;
u8 sclh;
u8 scll;
};

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/16


https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/i2c-stm32f7.c

4@,‘3 Linked lists examples 2/2

drivers/i2c/busses/i2c-stm32f7.c

static int stm32f7_i2c_compute_timing(/* ... */)
{
struct stm32f7_i2c_timings *v;
struct list_head solutions;
INIT_LIST_HEAD(&solutions);
VA V)

for (p = @; p < STM32F7_PRESC_MAX; p++) {
for (1 = 0; 1 < STM32F7_SCLDEL_MAX; 1++) {
v = kmalloc(sizeof (*v), GFP_KERNEL);
v->presc = p;

v->scldel = 1;
list_add_tail(&v->node, &solutions);
}
b
list_for_each_entry(v, &solutions, node) {
VA 7
}

}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/16


https://elixir.bootlin.com/linux/latest/source/drivers/i2c/busses/i2c-stm32f7.c

	About Bootlin
	Generic course information
	Linux Kernel Introduction
	Linux kernel sources
	Linux kernel source code

	Linux Kernel Usage
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel
	Using kernel modules

	Developing kernel modules
	Describing hardware devices
	Discoverable hardware: USB and PCI
	Describing non-discoverable hardware

	Introduction to pin muxing
	Linux device and driver model
	Introduction
	Example of the USB bus
	Platform drivers

	Introduction to the I2C subsystem
	Kernel frameworks for device drivers
	User space vision of devices
	Character drivers
	The concept of kernel frameworks
	Device-managed allocations
	Driver data structures and links

	The input subsystem
	Memory Management
	I/O Memory
	The misc subsystem
	Processes, scheduling and interrupts
	Processes and scheduling
	Sleeping
	Interrupt Management

	Concurrent Access to Resources: Locking
	Direct Memory Access
	DMA main principles
	Kernel APIs for DMA

	Kernel debugging
	Power Management
	Kernel Resources
	Last slides
	Appendix
	Backup slides
	mmap
	Useful general-purpose kernel APIs



