
Linux kernel and driver development

BeaglePlay variant variant

Practical Labs

https://bootlin.com

February 06, 2026

https://bootlin.com

Linux kernel and driver development

About this document
Updates to this document can be found on https://bootlin.com/training/linux-kernel.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2026, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license
. This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com/training/linux-kernel
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

Linux kernel and driver development

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/linux-kernel/linux-kernel-beagleplay-labs.tar.xz
$ tar xvf linux-kernel-beagleplay-labs.tar.xz

Lab data are now available in an linux-kernel-beagleplay-labs directory in your home directory. This
directory contains directories and files used in the various practical labs. It will also be used as working
space, in particular to keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

• You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2026 Bootlin, CC BY-SA license 3

https://bootlin.com

Linux kernel and driver development

• If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Downloading kernel source code
Get your own copy of the mainline Linux kernel source tree

Setup
Create the $HOME/linux-kernel-beagleplay-labs/src directory.

Installing git packages
First, let’s install software packages that we will need throughout the practical labs:

sudo apt install git gitk git-email

Git configuration
After installing git on a new machine, the first thing to do is to let git know about your name and e-mail
address:

git config --global user.name 'My Name'
git config --global user.email me@mydomain.net

Such information will be stored in commits. It is important to configure it properly when the time comes to
generate and send patches, in particular.

It can also be particularly useful to display line numbers when using the git grep command. This can be
enabled by default with the following configuration:

git config --global grep.lineNumber true

Cloning the mainline Linux tree
To begin working with the Linux kernel sources, we need to clone its reference git tree, the one managed by
Linus Torvalds.

However, this requires downloading more than 2.8 GB of data. If you are running this command from home,
or if you have very fast access to the Internet at work (and if you are not 256 participants in the training
room), you can do it directly by connecting to https://git.kernel.org:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
cd linux

If Internet access is not fast enough and if multiple people have to share it, your instructor will give you a
USB flash drive with a tar.gz archive of a recently cloned Linux source tree.

You will just have to extract this archive in the current directory, and then pull the most recent changes over
the network:

tar xf linux-git.tar.gz
cd linux
git checkout master
git pull

Of course, if you directly ran git clone, you won’t have to run git pull, as git clone already retrieved the
latest changes. You may need to run git pull in the future though, if you want to update a newer Linux
version.

© 2004-2026 Bootlin, CC BY-SA license 5

https://git.kernel.org
https://bootlin.com

Linux kernel and driver development

Accessing stable releases
The Linux kernel repository from Linus Torvalds contains all the main releases of Linux, but not the stable
versions: they are maintained by a separate team, and hosted in a separate repository.

We will add this separate repository as another remote to be able to use the stable releases:
git remote add stable https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux
git fetch stable

As this still represents many git objects to download (2.4 GiB when 6.9 was the latest version), if you are
using an already downloaded git tree, your instructor will probably have fetched the stable branch ahead of
time for you too. You can check by running:

git branch -a

We will choose a particular stable version in the next labs.

Now, let’s continue the lectures. This will leave time for the commands that you typed to complete their
execution (if needed).

6 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Kernel source code
Objective: Get familiar with the kernel source code

After this lab, you will be able to:

• Create a branch based on a remote tree to explore a particular stable kernel version (from the stable
kernel tree).

• Explore the sources and search for files, function headers or other kinds of information…

• Browse the kernel sources with a tool like Elixir.

Choose a particular stable version
Let’s work with a particular stable version of the Linux kernel. It would have been more logical to do this in
the previous lab, but we wanted to get back to lectures while the fetch command was running.

First, let’s get the list of branches on our stable remote tree:

cd ~/linux-kernel-beagleplay-labs/src/linux
git branch -a

As we will do our labs with the Linux 6.7 stable branch, the remote branch we are interested in is remotes/stable/linux-6.7.y.

First, execute the following command to check which version you currently have:

make kernelversion

You can also open the Makefile and look at the beginning of it to check this information.

Now, let’s create a local branch starting from that remote branch:

git checkout -b bootlin-labs stable/linux-6.7.y

Check the version again using the make kernelversion command to make sure you now have a 6.7.y version.

Exploring the sources manually
As a Linux kernel user, you will very often need to find which file implements a given function. So, it is
useful to be familiar with exploring the kernel sources.

1. Find the Linux logo image in the sources2.

2. Find who the maintainer of the MVNETA network driver is.

3. Find the declaration of the platform_device_register() function.

Tip: if you need the grep command, we advise you to use git grep. It is similar to grep but ignores Git
internal files and generated files (as declared by .gitignore).

Use a kernel source indexing tool
Now that you know how to do things in a manual way, let’s use more automated tools.

Try Elixir at https://elixir.bootlin.com and choose the Linux version closest to yours.

As in the previous section, use this tool to find where the platform_device_register() function is declared,
implemented and even used.

2Look for files with logo in their name. It’s an opportunity to practise with the find command.

© 2004-2026 Bootlin, CC BY-SA license 7

https://elixir.bootlin.com/linux/latest/ident/platform_device_register
https://elixir.bootlin.com
https://elixir.bootlin.com/linux/latest/ident/platform_device_register
https://bootlin.com

Linux kernel and driver development

Board setup
Objective: setup communication with the board and configure the bootloader.

After this lab, you will be able to:

• Access the board through its serial line.

• Configure the U-boot bootloader and a tftp server on your workstation to download files through tftp.

Getting familiar with the board
Take some time to read about the board features and connectors:

https://docs.beagleboard.org/latest/boards/beagleplay/01-introduction.html

Don’t hesitate to share your questions with the instructor.

Download technical documentation
We are going to download documents which we will need during our practical labs.

The first document to download is the datasheet for the TI AM62x SoC family, available on https://www.
ti.com/lit/gpn/am625. This document will give us details about pin assignments.

Secondly, download the Technical Reference Manual (TRM) for the TI AM62x SoC family, available on
https://www.ti.com/lit/pdf/spruiv7. This document is more than 15000 pages long! You will need it too
during the practical labs.

Last but not least, download the schematics for the BeaglePlay board:

https://openbeagle.org/beagleplay/beagleplay/-/blob/main/BeaglePlay_sch.pdf

Setting up serial communication with the board
The Beagle Play serial connector is a 3-pin header located right next to the board’s USB-C port. Using your
special USB to Serial adapter provided by your instructor, connect the ground wire (blue) to the pin labeled
”G”, the TX wire (red) to the pin labeled ”RX” and the RX wire (green) to the pin labeled ”TX” 3.

You always should make sure that you connect the TX pin of the cable to the RX pin of the board, and vice
versa, whichever board and cables you use.

3See https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F for details about the USB to Serial adapter
that we are using.

8 © 2004-2026 Bootlin, CC BY-SA license

https://docs.beagleboard.org/latest/boards/beagleplay/01-introduction.html
https://www.ti.com/lit/gpn/am625
https://www.ti.com/lit/gpn/am625
https://www.ti.com/lit/pdf/spruiv7
https://openbeagle.org/beagleplay/beagleplay/-/blob/main/BeaglePlay_sch.pdf
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://bootlin.com

Linux kernel and driver development

Once the USB to Serial connector is plugged in, a new serial port should appear: /dev/ttyUSB0. You can
also see this device appear by looking at the output of dmesg.

To communicate with the board through the serial port, install a serial communication program, such as
picocom:

sudo apt install picocom

If you run ls -l /dev/ttyUSB0, you can also see that only root and users belonging to the dialout group
have read and write access to this file. Therefore, you need to add your user to the dialout group:

sudo adduser $USER dialout

Important: for the group change to be effective, you have to completely log out from your session and log
in again (no need to reboot). A workaround is to run newgrp dialout, but it is not global. You have to run
it in each terminal.

Now, you can run picocom -b 115200 /dev/ttyUSB0, to start serial communication on /dev/ttyUSB0, with
a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

There should be nothing on the serial line so far, as the board is not powered up yet.

Remove any SD card from the Beagle Play, we will be booting from the board’s eMMC.

It is now time to power up your board by plugging in the USB-C cable supplied by your instructor to your
PC.

See what messages you get on the serial line. You should see U-boot start.

Bootloader interaction
Reset your board. Press the space bar in the picocom terminal to stop the U-boot countdown. You should
then see the U-Boot prompt:

=>

You can now use U-Boot. Run the help command to see the available commands.

Type the help saveenv command to make sure that the saveenv command exists. We use it in these labs
to save your U-Boot environment settings to the eMMC.

env default -f -a
saveenv

If you don’t have this U-Boot prompt, it’s probably because you are doing these labs on your own (i.e.
without participating to a Bootlin course), you’ll have to flash the eMMC from recovery mode.

Flashing the bootloader from recovery mode
This section can be skipped if you already have a U-Boot prompt.

Follow the installation instructions at https://github.com/bootlin/snagboot to install snagboot.

Make sure to install the snagboot udev rules as specified in the instructions:

$ snagrecover --udev > 50-snagboot.rules
$ sudo cp 50-snagboot.rules /etc/udev/rules.d/
$ sudo udevadm control --reload-rules
$ sudo udevadm trigger

Go to the bootloader folder where boot images have been precompiled for you:

$ cd ~/linux-kernel-beagleplay-labs/bootloader

© 2004-2026 Bootlin, CC BY-SA license 9

https://github.com/bootlin/snagboot
https://bootlin.com

Linux kernel and driver development

First uncompress the boot.img.gz file in the current directory.

Put the Beagle Play into recovery mode by unplugging and replugging the USB-C power cable while pressing
the USR button. Please beware that a warm reset performed with the reset button won’t work!

Wait about 10 seconds for the board’s recovery mode to start, then check that the following USB device is
present:

$ lsusb | grep AM62x
Bus 003 Device 021: ID 0451:6165 Texas Instruments, Inc. AM62x DFU

Run snagrecover:

snagrecover -s am625 \
-F "{'tiboot3': {'path': 'tiboot3.bin'}}" \
-F "{'tispl': {'path': 'tispl.bin'}}" \
-F "{'u-boot': {'path': 'u-boot.img'}}"

After snagrecover is done, you should get a U-Boot console on the serial port. Using this console, start DFU:

=> setenv dfu_alt_info '0=system raw 0 524288000;1=system raw 0 307133 mmcpart 1'
=> dfu 0 mmc 0

Don’t be upset by the following message, it’s expected...

generic_phy_get_bulk : no phys property

Then from the host, flash the image:

$ snagflash -P dfu -p 0451:6165 -D 1:tiboot3_emmc.bin -D 0:boot.img

Once snagflash is done writing the boot image to eMMC, reset the board. You should get a U-Boot prompt!

Setting up networking
The next step is to configure U-boot and your workstation to let your board download files, such as the
kernel image and Device Tree Binary (DTB), using the TFTP protocol through a network connection.

For these next steps, make sure that your beagleplay board is directly connected to your host PC through its
ethernet port. If your computer already has a wired connection to the network, your instructor will provide
you with a USB Ethernet adapter. A new network interface should appear on your Linux system.

Network configuration on the target
Let’s configure networking in U-Boot:

• ipaddr: IP address of the board

• serverip: IP address of the PC host

=> setenv ipaddr 192.168.1.100
=> setenv serverip 192.168.1.1

Of course, make sure that this address belongs to a separate network segment from the one of the main
company network.

To make these settings permanent, save the environment:

=> saveenv

10 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Network configuration on the PC host
To configure your network interface on the workstation side, we need to know the name of the network
interface connected to your board.

Find the name of this interface by typing:

ip a

The network interface name is likely to be enxxx4. If you have a pluggable Ethernet device, it’s easy to
identify as it’s the one that shows up after pluging in the device.

Then, instead of configuring the host IP address from NetWork Manager’s graphical interface, let’s do it
through its command line interface, which is so much easier to use:

nmcli con add type ethernet ifname en... ip4 192.168.1.1/24

Setting up the TFTP server
Let’s install a TFTP server on your development workstation:

sudo apt install tftpd-hpa

You can then test the TFTP connection. First, put a small text file in the directory exported through TFTP
on your development workstation. Then, from U-Boot, do:

=> tftp 0x80000000 textfile.txt

In case the download fails, make sure your host interface is correctly configured and if a firewall is enabled
make sure it does not filter out our requests:

sudo ufw allow from 192.168.1.100

The tftp command should have downloaded the textfile.txt file from your development workstation into
the board’s memory at location 0x800000005.

You can verify that the download was successful by dumping the content of the memory:

=> md 0x80000000

4Following the Predictable Network Interface Names convention: https://www.freedesktop.org/wiki/Software/systemd/
PredictableNetworkInterfaceNames/

5This location is part of the board SDRAM. If you want to check where this value comes from, you can check the SoC
TRM at https://www.ti.com/lit/ug/spruiv7a/spruiv7a.pdf. It’s a big document (more than 12,000 pages). In this document,
look for Memory Map and you will find the SoC memory map. You will see that the address range for the memory controller
(DDR16SS0_SDRAM) starts at the address we are looking for. You can also try with other values in the RAM address range.

© 2004-2026 Bootlin, CC BY-SA license 11

https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.ti.com/lit/ug/spruiv7a/spruiv7a.pdf
https://bootlin.com

Linux kernel and driver development

Kernel compiling and booting
Objective: compile and boot a kernel for your board, booting on a directory on
your workstation shared by NFS.

After this lab, you will be able to:

• Cross-compile the Linux kernel for the ARM platform.

• Boot this kernel on an NFS root filesystem, which is somewhere on your development workstation6.

Lab implementation
While developing a kernel module, the developer wants to change the source code, compile and test the new
kernel module very frequently. While writing and compiling the kernel module is done on the development
workstation, the test of the kernel module usually has to be done on the target, since it might interact with
hardware specific to the target.

However, flashing the root filesystem on the target for every test is time-consuming and would use the flash
chip needlessly.

Fortunately, it is possible to set up networking between the development workstation and the target. Then,
workstation files can be accessed through the network by the target, using NFS.

Setup
Go to the $HOME/linux-kernel-beagleplay-labs/src/linux directory.

Install packages needed for configuring, compiling and booting the kernel for your board:

sudo apt install libssl-dev bison flex

Cross-compiling toolchain setup
We are going to install a cross-compiling toolchain provided by Ubuntu:

sudo apt install gcc-aarch64-linux-gnu

Now find out the path and name of the cross-compiler executable by looking at the contents of the package:

dpkg -L gcc-aarch64-linux-gnu

6NFS root filesystems are particularly useful to compile modules on your host, and make them directly visible on the target.
You no longer have to update the root filesystem by hand and transfer it to the target (requiring a shutdown and reboot).

12 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Kernel configuration
Set the ARCH and CROSS_COMPILE definitions for the arm64 platform and your cross-compiler.

There is only one default configuration for arm64 platforms, which is called defconfig. Apply this configu-
ration, then run make menuconfig.

• Disable CONFIG_GCC_PLUGINS if it is set. This will skip building special gcc plugins, which would require
extra dependencies for the build.

• In the Platform Selection menu, remove support for all the SoCs except for the Texas Instruments
Inc. K3 multicore SoC architecture.

• Disable CONFIG_DRM, which will skip support for many display controller and GPU drivers.

• Disable CONFIG_LEDS_GPIO, we will reenable it later as a demonstration.

Make sure that this configuration has CONFIG_ROOT_NFS=y (support booting on an NFS exported root direc-
tory).

Kernel compiling
Compile your kernel and generate the Device Tree Binaries (DTBs) (running 8 compile jobs in parallel):

make -j 8

Now, copy the Image.gz and k3-am625-beagleplay.dtb files to the TFTP server home directory (as specified
in /etc/default/tftpd-hpa).

Setting up the NFS server
Install the NFS server by installing the nfs-kernel-server package. Once installed, edit the /etc/exports
file as root to add the following lines, assuming that the IP address of your board will be 192.168.1.100:
/home/<user>/linux-kernel-beagleplay-labs/modules/nfsroot 192.168.1.100(rw,no_root_squash,no_subtree_check)

Of course, replace <user> by your actual user name.

Make sure that the path and the options are on the same line. Also make sure that there is no space between
the IP address and the NFS options, otherwise default options will be used for this IP address, causing your
root filesystem to be read-only.

Then, restart the NFS server:

sudo exportfs -r

If there is any error message, this usually means that there was a syntax error in the /etc/exports file. Don’t
proceed until these errors disappear.

Boot the system
First, boot the board to the U-Boot prompt. Before booting the kernel, we need to tell it which console to
use and that the root filesystem should be mounted over NFS, by setting some kernel parameters.

Do this by setting U-boot’s bootargs environment variable (all in just one line):

setenv bootargs root=/dev/nfs rw ip=192.168.1.100:::::eth0 console=ttyS2,115200n8
nfsroot=192.168.1.1:/home/<user>/linux-kernel-beagleplay-labs/modules/nfsroot,nfsvers=3,tcp

Once again, replace <user> by your actual user name.

Now save this definition:

saveenv

If you later want to make changes to this setting, you can type the below command in U-boot:

© 2004-2026 Bootlin, CC BY-SA license 13

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GCC_PLUGINS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DRM
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LEDS_GPIO
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS
https://bootlin.com

Linux kernel and driver development

editenv bootargs

Now, download the kernel image through tftp:

tftp 0x80000000 Image.gz

You’ll also need to download the device tree blob:

tftp 0x83000000 k3-am625-beagleplay.dtb

Now, boot your kernel:

booti 0x80000000 - 0x83000000

This last command should show you an error message of this type:

kernel_comp_addr_r or kernel_comp_size is not provided!

This is because the boot image that we use, Image.gz, is compressed, and therfore, needs to be uncompressed
by U-Boot before continue booting. To do so U-Boot needs to know the maximum size of the uncompressed
image and where to store it.

If you look at the size of the uncompressed kernel (Image file), you can estimate that 32 MB (0x2000000) is a
reasonable upper bound for the size of the uncompressed kernel, even with a more exhaustive configuration.

This gives us,

=> setenv kernel_comp_addr_r 0x85000000
=> setenv kernel_comp_size 0x2000000
=> saveenv

Now you can retry the booti command and see the kernel be uncompressed and then loaded.

If everything goes right, you should reach a login prompt (user: root, password: root). Otherwise, check
your setup and ask your instructor for support if you are stuck.

If the kernel fails to mount the NFS filesystem, look carefully at the error messages in the console. If this
doesn’t give any clue, you can also have a look at the NFS server logs in /var/log/syslog.

Checking the kernel version
It’s often a good idea to make sure you booted the right kernel. By mistake, you could have booted a kernel
previously stored in flash (typically through a default boot command in U-Boot), or forgotten to update the
kernel image in the TFTP server home directory.

This could explain some unexpected behavior.

There are two ways of checking your kernel version:

• By looking at the first kernel messages

• By running the uname -a command after booting Linux.

In both cases, you will not only know the kernel version, but also the date when the kernel was compiled and
the name of the user who did it.

Similarly, you can also check the command line actually received by the kernel, either by looking at the first
boot messages, or once you have reached a command line shell, by running cat /proc/cmdline.

Automate the boot process
To avoid typing the same U-boot commands over and over again each time you power on or reset your board,
you can use U-Boot’s bootcmd environment variable:
setenv bootcmd 'tftp 0x80000000 Image.gz; tftp 0x83000000 k3-am625-beagleplay.dtb; booti 0x80000000 - 0x83000000'
saveenv

14 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Don’t hesitate to change it according to your exact needs.

We could also copy the Image.gz file to the eMMC flash and avoid downloading it over and over again.
However, detailed bootloader usage is outside of the scope of this course. See our Embedded Linux system
development course and its on-line materials for details.

Save your kernel configuration
Now that you have a working (and satisfying) kernel configuration, you can save it under the configs folder:

make savedefconfig
cp defconfig arch/arm64/configs/beagleplay_defconfig

So if you later overwrite the .config file inadvertently, you can just get back to a working configuration by
running:

make beagleplay_defconfig

© 2004-2026 Bootlin, CC BY-SA license 15

https://bootlin.com/training/embedded-linux/
https://bootlin.com/training/embedded-linux/
https://bootlin.com

Linux kernel and driver development

Writing modules
Objective: create a simple kernel module

After this lab, you will be able to:

• Compile and test standalone kernel modules, which code is outside of the main Linux sources.

• Write a kernel module with several capabilities, including module parameters.

• Access kernel internals from your module.

• Set up the environment to compile it.

• Create a kernel patch.

Setup
Go to the ~/linux-kernel-beagleplay-labs/modules/nfsroot/root/hello directory. Boot your board if
needed.

Writing a module
Look at the contents of the current directory. All the files you generate there will also be visible from the
target. That’s great to load modules!

Add C code to the hello_version.c file, to implement a module which displays this kind of message when
loaded:

Hello World. You are currently using Linux <version>.

... and displays a goodbye message when unloaded.

Suggestion: you can look for files in kernel sources which contain version in their name, and see what they
do.

You may just start with a module that displays a hello message, and add version information later.

Caution: you must use a kernel variable or function to get version information, and not just the value of a C
macro. Otherwise, you will only get the version of the kernel you used to build the module.

Building your module
The current directory contains a Makefile file, which lets you build modules outside a kernel source tree.
Compile your module.

Testing your module
Load your new module file on the target. Check that it works as expected. Until this, unload it, modify its
code, compile and load it again as many times as needed.

Run a command to check that your module is on the list of loaded modules. Now, try to get the list of loaded
modules with only the cat command.

Adding a parameter to your module
Add a who parameter to your module. Your module will say Hello <who> instead of Hello World.

Compile and test your module by checking that it takes the who parameter into account when you load it.

16 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Adding time information
Improve your module, so that when you unload it, it tells you how many seconds elapsed since you loaded
it. You can use the ktime_get_seconds() function to achieve this.

You may search for other drivers in the kernel sources using the ktime_get_seconds() function. Looking for
other examples always helps!

Following Linux coding standards
Your code should adhere to strict coding standards, if you want to have it one day merged in the mainline
sources. One of the main reasons is code readability. If anyone used one’s own style, given the number of
contributors, reading kernel code would be very unpleasant.

Fortunately, the Linux kernel community provides you with a utility to find coding standards violations.

First install the python3-ply and python3-git packages.

Then run the scripts/checkpatch.pl -h command in the kernel sources, to find which options are available.
Now, run:

~/linux-kernel-beagleplay-labs/src/linux/scripts/checkpatch.pl --file --no-tree hello_version.c

See how many violations are reported on your code, and fix your code until there are no errors left. If there
are many indentation related errors, make sure you use a properly configured source code editor, according
to the kernel coding style rules in process/coding-style.

Adding the hello_version module to the kernel sources
As we are going to make changes to the kernel sources, first create a special branch for such changes:

git checkout 6.7.bootlin
git checkout -b hello

Add your module sources to the drivers/misc/ directory in your kernel sources. Of course, also modify
kernel configuration and building files accordingly, so that you can select your module in make xconfig and
have it compiled by the make command.

Run one of the kernel configuration interfaces and check that it shows your new driver lets you configure it
as a module.

Run the make command and make sure that the code of your new driver is getting compiled.

Then, commit your changes in the current branch (try to choose an appropriate commit message):

cd ~/linux-kernel-beagleplay-labs/src/linux
git add <files>
git commit -as

• git add adds files to the next commit. It is mandatory to use for new files that should be added under
version control.

• git commit -a creates a commit with all modified files that already under version control

• git commit -s adds a Signed-off-by: line to the commit message. All contributions to the Linux
kernel must have such a line.

Create a kernel patch
You can be proud of your new module! To be able to share it with others, create a patch which adds your
new files to the mainline kernel.

Creating a patch with git is extremely easy! You just generate it from the commits between your branch
and another branch, usually the one you started from:

© 2004-2026 Bootlin, CC BY-SA license 17

https://elixir.bootlin.com/linux/latest/ident/ktime_get_seconds
https://elixir.bootlin.com/linux/latest/ident/ktime_get_seconds
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://bootlin.com

Linux kernel and driver development

git format-patch 6.7.bootlin

Have a look at the generated file. You can see that its name reused the commit message.

If you want to change the last commit message at this stage, you can run:

git commit --amend

And run git format-patch again.

18 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Describing Hardware Devices
Objective: learn how to describe hardware devices.

Goals
Now that we covered the Device Tree theory, we can explore the list of existing devices and make new ones
available. In particular, we will create a custom Device Tree to describe the few extensions we will make to
our BeaglePlay board.

Setup
Stay in the ~/linux-kernel-beagleplay-labs/src/linux directory, you should be in the bootlin-labs
branch.

Download a useful document sharing useful details about the Nunchuk and its connector:
https://bootlin.com/labs/doc/nunchuk.pdf

Create a custom device tree
To let the Linux kernel handle a new device, we need to add a description of this device in the board device
tree.

As the Beagle Play device tree is provided by the kernel community, and will continue to evolve on its own,
we don’t want to make changes directly to the device tree file for this board.

The easiest way to customize the board DTS is to create a new DTS file that includes the Beagle Play DTS,
and adds its own definitions.

So, create a new arch/arm64/boot/dts/ti/k3-am625-beagleplay-custom.dts file in which you just include
the regular board DTS file. We will add further definitions in the next sections.

// SPDX-License-Identifier: GPL-2.0
#include "k3-am625-beagleplay.dts"

Modify the arch/arm64/boot/dts/ti/Makefile file to add your custom Device Tree, and then have it compiled
with (make dtbs). Now, copy the new DTB to the tftp server home directory, change the DTB file name in
the U-Boot configuration7, and boot the board.

Setting the board’s model name
Modify the custom Device Tree file to override the model name for your system. Set the model property to
Training Beagle Play. Don’t hesitate to ask your instructor if you’re not sure how.

Recompile the device tree, and reboot the board with it. You should see the new model name in two different
places:

• In the first kernel messages on the serial console.

• In /sys/firmware/devicetree/base/model. This can be handy for a distribution to identify the device
it’s running on.

Driving LEDs
The BeaglePlay features five user LEDs (LED_USR0, …, LED_USR4) in the corner near the USB-C port.

7Tip: you just need to run editenv bootcmd and saveenv.

© 2004-2026 Bootlin, CC BY-SA license 19

https://bootlin.com/labs/doc/nunchuk.pdf
https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/ti/Makefile
https://bootlin.com

Linux kernel and driver development

Start by looking at the different description files and look for a node that would be defining the LEDs.

The five LEDs are actually supposed to be triggered by a driver matching the compatible gpio-leds. This
is a generic driver which acts on LEDs connected to GPIOs. But as you can observe, despite being part
of the in-use Device Tree, the LEDs remain off. The reason for that is the absence of driver for this node:
nothing actually drives the LEDs even if they are described. So you can start by recompiling your kernel
with CONFIG_LEDS_GPIO=y.

You should now see USR_LED0 blink with the CPU activity, USR_LED1 staying on, and the others staying
off. If you look at the bindings documents Documentation/devicetree/bindings/leds/common.yaml and
Documentation/devicetree/bindings/leds/leds-gpio.yaml, you’ll notice we can tweak the default-state
in order to make the three inactive user LEDs bright.

You will need to modify a shared DTSI file in order to do that. But because we do not want to impact other
boards also using that same DTSI file, we might instead add a label to the leds container node. We could
then reference this new label in our custom DTS and overwrite the default-state property of each LED
subnode.

Reboot the board using the new DTS and observe the LEDs default states change. If you look again at the
common file defining the LEDs, they are actually all linked to a linux,default-trigger. The default state
only applies until the trigger starts its activity.

USR_LED0 is a heartbeat which you can enable or disable with CONFIG_LEDS_TRIGGER_HEARTBEAT. USR_LED1 is
triggered by disk activity.

Managing I2C buses and devices
The next thing we want to do is connect an Nunchuk joystick to an I2C bus on our board. The I2C bus is
very frequently used to connect all sorts of external devices. That’s why we’re covering it here.

Enabling an I2C bus

As shown on the below picture found on https://docs.beagleboard.org/latest/boards/beagleplay/03-
design.html, the BeaglePlay has 3 I2C busses available through different connectors:

• I2C3: available on the mikroBUS connector

• I2C1: available on the Grove connector

• I2C2: available on the Qwiic connector

The AM62x SoC has three others I2C controllers, but they are not used on the BeaglePlay board. However
because the default device-tree we are using enables all the I2C controllers except one, we expect the kernel
to detect five I2C buses in total.

20 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LEDS_GPIO
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/leds/common.yaml
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/leds/leds-gpio.yaml
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LEDS_TRIGGER_HEARTBEAT
https://docs.beagleboard.org/latest/boards/beagleplay/03-design.html
https://docs.beagleboard.org/latest/boards/beagleplay/03-design.html
https://bootlin.com

Linux kernel and driver development

In this lab we will be using the I2C3 bus to connect the nunchuk because it is located on the mikroBUS
connector and is easily accessible.

So, let’s see which I2C buses are already enabled:

i2cdetect -l
i2c-3 i2c OMAP I2C adapter I2C adapter
i2c-1 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-0 i2c OMAP I2C adapter I2C adapter
i2c-5 i2c OMAP I2C adapter I2C adapter

As the bus numbering scheme in Linux doesn’t always match the one on the datasheets, let’s check the base
addresses of the registers of these controllers:

ls -l /sys/bus/i2c/devices/i2c-*
lrwxrwxrwx 1 root root 0 Jan 1 02:02 /sys/bus/i2c/devices/i2c-0 -> ../../../devices/platform/
bus@f0000/20000000.i2c/i2c-0
lrwxrwxrwx 1 root root 0 Jan 1 02:02 /sys/bus/i2c/devices/i2c-1 -> ../../../devices/platform/
bus@f0000/20010000.i2c/i2c-1
lrwxrwxrwx 1 root root 0 Jan 1 02:02 /sys/bus/i2c/devices/i2c-2 -> ../../../devices/platform/
bus@f0000/20020000.i2c/i2c-2
lrwxrwxrwx 1 root root 0 Jan 1 02:02 /sys/bus/i2c/devices/i2c-3 -> ../../../devices/platform/
bus@f0000/20030000.i2c/i2c-3
lrwxrwxrwx 1 root root 0 Jan 1 02:02 /sys/bus/i2c/devices/i2c-5 -> ../../../devices/platform/
bus@f0000/bus@f0000:bus@4000000/4900000.i2c/i2c-5

Interpreting this output is not completely straightforward, but you can suppose that:

© 2004-2026 Bootlin, CC BY-SA license 21

https://bootlin.com

Linux kernel and driver development

• I2C0 is at address 0x20000000

• I2C1 is at address 0x20010000

• I2C2 is at address 0x20020000

• I2C3 is at address 0x20030000

• I2C5 is at address 0x04900000

Now let’s double check the addressings by looking at the TI AM62x SoC datasheet, in the Memory Map section:

• I2C0 is indeed at address 0x20000000

• I2C1 is indeed at address 0x20010000

• I2C2 is indeed at address 0x20020000

• I2C3 is indeed at address 0x20030000

• I2C4 doesn’t exist in the reference manual but corresponds to WKUP_I2C0 at address 0x2b200000

• I2C5 doesn’t exist in the reference manual but corresponds to MCU_I2C0 at address 0x04900000

So luckily, the first 4 Linux I2C names correspond to the first 4 datasheet names.

Prepare the I2C device DT description
Before describing your nunchuk device, let’s think about what will be needed:

• The device node should follow a standard pattern.

The node name should be joystick@addr, the convention for node names is <device-type>@<addr>.

• We want to be able to fully identify the programming model.

This is usually done using a unique compatible string. The compatible contains a vendor prefix and
then a more specific string. We will use nintendo,nunchuk.

• We need to identify how to reach the device.

This is the reg property and we should set it to the I2C address of the nunchuk. You will find the I2C
slave address of the Nunchuk on the nunckuk document that we have downloaded earlier8.

• (Optional) There are two types of nunchuks.

There are white and black nunchuks, which don’t expect the same initialization flow. We could imagine
a boolean property named nintendo,alternate-init which will change the initialization logic. See the
nunchuk pdf for details about the alternate flow.

Stopping here is sufficient as writing device-tree bindings is not strictly required to continue the labs, but if
you feel comfortable you may want to write your own binding file, eg:

Documentation/devicetree/bindings/misc/nintendo,nunchuk.yaml

Once you are confident with your bindings, you can even copy the examples from the wrong-nunchuk-
examples.yaml (in the nunchuk labs folder) inside your bindings and verify they all pass/fail as expected!

make DT_SCHEMA_FILES=misc/nintendo,nunchuk.yaml dt_binding_check

8This I2C slave address is enforced by the device itself. You can’t change it.

22 © 2004-2026 Bootlin, CC BY-SA license

https://www.ti.com/lit/ug/spruiv7a/spruiv7a.pdf
https://bootlin.com

Linux kernel and driver development

Declare the Nunchuk device
As a child node to the i2c3 bus, now declare an I2C device for the Nunchuk, following the above rules.

If you wrote an optional YAML binding, you can also double check your node:

make DT_SCHEMA_FILES=misc/nintendo,nunchuk.yaml dtbs_check

After updating the running Device Tree, explore /sys/firmware/devicetree, where every subdirectory cor-
responds to a DT node, and every file corresponds to a DT property. You can search for presence of the new
joystick node:
find /sys/firmware/devicetree -name "*joystick*"
/sys/firmware/devicetree/base/bus@f0000/i2c@20030000/joystick@52

You can also check the whole structure of the loaded Device Tree, using the Device Tree Compiler (dtc),
which we put in the root filesystem:

dtc -I fs /sys/firmware/devicetree/base/ > /tmp/dts
grep -C10 nunchuk /tmp/dts

Once your new Device Tree seems correct, commit your changes. As you modified a shared file and a custom
file, it is good practice to commit these changes in two different patches.

© 2004-2026 Bootlin, CC BY-SA license 23

https://bootlin.com

Linux kernel and driver development

Configuring the pin muxing
Objective: learn how to declare and use a muxing state.

Goals
As part of the previous lab, we enabled an I2C controller and described a device plugged on the bus. In this
lab we will cover how to ensure a proper communication between the two and be able to declare and use
pinctrl settings.

Setup
Continue using the bootlin-labs branch in the ~/linux-kernel-beagleplay-labs/src/linux directory.

Probing the different busses
The Beagle Play device tree already correctly configures the pinmuxing state for the I2C3 bus. Before
proceeding with this lab, we ask you to delete this pinmuxing configuration by adding two lines in your
custom device tree:

&main_i2c3 {
+ /delete-property/ pinctrl-0;
+ /delete-property/ pinctrl-names;
};

Reboot your board with these changes.

Now, let’s use i2cdetect’s capability to probe a bus for devices. The I2C bus has no real discovery capability,
but yet, the tool exploits a feature of the specification: when the master talks to a device, it starts by sending
the target address on the bus and expects it to be acked by the relevant device. Iterating through all the
possible addresses without sending anything after the address byte, looking for the presence of an Ack is
what uses the tool to probe the devices. That is also why we get a warning when using it.

Let’s start by probing the bus associated to i2c-0:

i2cdetect -r 0
i2cdetect: WARNING! This program can confuse your I2C bus
Continue? [y/N] y

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

We can see three devices on this internal bus:

• One at address 0x30, indicated by UU, which means that there is a kernel driver actively driving this
device.

• Two other devices at addresses 0x50 and 0x68. We just know that they are currently not bound to a
kernel driver.

24 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Now try to probe I2C3 with i2cdetect -r 3.

You will see that the command will fail to connect to the bus. That’s because the corresponding signals are
not exposed yet to the outside connectors through pin muxing.

Find pin muxing configuration information for i2c3
Now that our i2c bus is available, we can try to access the nunchuk.

However, to access the bus data and clock signals, we need to configure the pin muxing of the SoC.

If you open the Beagle Play hardware schematics and go to sheet 13, you’ll see that the I2C3_SCL and
I2C3_SDA signals are routed to pins A15 and B15 on the AM625 SoC.

Now open the AM625 datasheet (not the reference manual!) and go to table 6.1 in the ”Pin Attributes”
section. Search for pins A15 and B15 in this table, using the first column, not the second one.

Once you’ve found pins A15 and B15, you’ll see that mux mode number 2 corresponds to the I2C3_SCL and
ISC3_SDA signals.

In the third column, you’ll find the addresses of the pad configuration registers for these pins. Register
0x000F41D0 configures A15 and register 0x000F41D4 configures B15.

We now know which registers we can write to to enable i2c3 signals.

Multiplexing the I2C controller outputs correctly
Now that we know the register offsets, let’s try to understand how they are used in existing code. Open the
original device tree for the Beagle Play board and go to the main_i2c3 node. You’ll see a handle to a pinctrl
node: mikrobus_i2c_pins_default. Look for this pinctrl node; you’ll see the following description:

mikrobus_i2c_pins_default: mikrobus-i2c-default-pins {
pinctrl-single,pins = <

AM62X_IOPAD(0x01d0, PIN_INPUT_PULLUP, 2) /* (A15) UART0_CTSn.I2C3_SCL */
AM62X_IOPAD(0x01d4, PIN_INPUT_PULLUP, 2) /* (B15) UART0_RTSn.I2C3_SDA */

>;
};

Here are details about the values:

• 0x01d0 and 0x01d4 are the offsets of the pad configuration registers to control muxing on the corre-
sponding package pins. They correspond to the two register addresses that we previously found in the
datasheet.

• Muxing mode 2, is set for both pins, which follows what we saw in the datasheet.

• PIN_INPUT_PULLUP puts the pin in pull-up mode (remember that our pins support both pull-up and
pull-down). By design, an I2C line is never actively driven high, devices either pull the line low or let it
floating. As we plug our device directly on the bus without more analog electronics, we need to enable
the internal pull-up.

Now that pin muxing settings have been explained, you can remove the two delete-property lines that you
added to your custom device tree.

Rebuild and update your DTB, then reboot the board. You should now be able to probe your bus:

i2cdetect -r 3
i2cdetect: WARNING! This program can confuse your I2C bus
Continue? [y/N] y

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

© 2004-2026 Bootlin, CC BY-SA license 25

https://elixir.bootlin.com/linux/latest/ident/PIN_INPUT_PULLUP
https://bootlin.com

Linux kernel and driver development

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

No devices are detected, because we did not wire the nunchuk yet.

Wiring the I2C device
Let’s connect the Nunchuk provided by your instructor to the I2C3 bus on the board, using breadboard
wires:

PWR

GND SDA

SCL

Nunchuk i2c pinout
(UEXT connector from Olimex, front view)

In this case, most of the labels on the Mikrobus connector correspond to the Nunchuk pin names. Just make
sure that the PWR Nunchuk pin is connected to the 3.3V mikrobus pin.

If you didn’t make any mistakes, your new device should be detected at address 0x52:

i2cdetect -r 3
i2cdetect: WARNING! This program can confuse your I2C bus
Continue? [y/N] y

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- 52 -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

We will later compile an out-of-tree kernel module to support this device.

26 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

Using the I2C bus
Objective: Use the I2C bus to implement communication with the Nunchuk
device

Goals
After this lab, you will be able to:

• Find your driver and device in /sys.

• Implement basic probe() and remove() driver functions and make sure that they are called when there
is a device/driver match.

• Access I2C device registers through the bus.

Setup
Stay in the ~/linux-kernel-beagleplay-labs/src/linux directory for kernel and DTB compiling (stay in
the bootlin-labs branch).

In a new terminal, go to ~/linux-kernel-beagleplay-labs/modules/nfsroot/root/nunchuk/. This direc-
tory contains a Makefile and an almost empty nunchuk.c file.

Exploring /dev
Start by exploring /dev on your target system. Here are a few noteworthy device files that you will see:

• Terminal devices: devices starting with tty. Terminals are user interfaces taking text as input and
producing text as output, and are typically used by interactive shells. In particular, you will find
console which matches the device specified through console= in the kernel command line. You will
also find the ttyS2 device file.

• MMC device(s) and partitions: devices starting with mmcblk. You should here recognize the MMC
device(s) on your system and the associated partitions.

• If you have a real board (not QEMU) and a USB stick, you could plug it in and if your kernel was built
with USB host and mass storage support, you should see a new sda device appear, together with the
sda<n> devices for its partitions.

Don’t hesitate to explore /dev on your workstation too and ask any questions to your instructor.

Exploring /sys
The next thing you can explore is the Sysfs filesystem.

A good place to start is /sys/class, which exposes devices classified by the kernel frameworks which manage
them.

For example, go to /sys/class/net, and you will see all the networking interfaces on your system, whether
they are internal, external or virtual ones.

Find which subdirectory corresponds to the network connection to your host system, and then check device
properties such as:

• speed: will show you whether this is a gigabit or hundred megabit interface.

• address: will show the device MAC address. No need to get it from a complex command!

© 2004-2026 Bootlin, CC BY-SA license 27

https://bootlin.com

Linux kernel and driver development

• statistics/rx_bytes will show you how many bytes were received on this interface.

Don’t hesitate to look for further interesting properties by yourself!

You can also check whether /sys/class/thermal exists and is not empty on your system. That’s the thermal
framework, and it allows to access temperature measures from the thermal sensors on your system.

Next, you can now explore all the buses (virtual or physical) available on your system, by checking the
contents of /sys/bus.

In particular, go to /sys/bus/mmc/devices to see all the MMC devices on your system. Go inside the directory
for the first device and check several files (for example):

• serial: the serial number for your device.

• preferred_erase_size: the preferred erase block for your device. It’s recommended that partitions
start at multiples of this size.

• name: the product name for your device. You could display it in a user interface or log file, for example.

• date: apparently the manufacturing date for the device.

Don’t hesitate to spend more time exploring /sys on your system and asking questions to your instructor.

Implement a basic I2C driver for the Nunchuk
It is now time to start writing the first building blocks of the I2C driver for our Nunchuk.

Relying on explanations given during the lectures, fill the nunchuk.c file to implement:

• probe() and remove() functions that will be called when a Nunchuk is found. For the moment, just
put a call to pr_info() inside to confirm that these functions are called.

• Initialize a i2c_driver structure, and register the i2c driver using it. Make sure that you use a
compatible property that matches the one in the Device Tree.

You can now compile your module and reboot your board, to boot with the updated DTB.

Driver tests
You can now load the /root/nunchuk/nunchuk.ko file. You need to check that the probe() function gets
called then, and that the remove() function gets called too when you remove the module.

List the contents of /sys/bus/i2c/drivers/nunchuk. You should now see a symbolic link corresponding to
our new device.

Also list /sys/bus/i2c/devices/. You should now see the Nunchuk device, which can be recognized through
its 0052 address. Follow the link and you should see a symbolic link back to the Nunchuk driver.

Device initialization
Now that we have checked that the probe() and remove() functions are called, remove the messages that
you added to trace the execution of these functions.

The next step is to read the state of the nunchuk registers, to find out whether buttons are pressed or not,
for example.

Before being able to read nunchuk registers, the first thing to do is to send initialization commands to it.
That’s also a nice way of making sure I2C communication works as expected.

In the probe routine (run every time a matching device is found):

1. Using the I2C raw API (i2c_master_send() and i2c_master_recv()), send two bytes to the device:
0xf0 and 0x559. Make sure you check the return value of the function you’re using. This could reveal

9The I2C messages to communicate with a wiimote extension are in the form: <i2c_address> <register> for reading and

28 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/pr_info
https://elixir.bootlin.com/linux/latest/ident/i2c_driver
https://elixir.bootlin.com/linux/latest/ident/i2c_master_send
https://elixir.bootlin.com/linux/latest/ident/i2c_master_recv
https://bootlin.com

Linux kernel and driver development

communication issues. Using Elixir, find examples of how to handle failures properly using the same
function.

(Optional) If you defined a nintendo,alternate-init property, you may want to check it’s presence in
the device tree using device_property_read_bool(), and derive the right initialization bytes from it.

2. Let the CPU wait for 1 ms by using fsleep() (more on sleeping mechanisms later in the training).10

3. In the same way, send the 0xfb and 0x00 bytes now. This completes the nunchuk initialization.

Recompile and load the driver, and make sure you have no communication errors.

Read nunchuk registers
As the nunchuk does not feature any type of external signaling nor any internal bit to advertize a possible
end-of-conversion status, the user is required to regularly poll the registers, each read triggering the next
conversion. This leads to a specific situation: the first read triggers the first conversion but returns some
data which can be considered garbage and safely discarded.

As a consequence, we will need to read the registers twice the first time!

To keep the code simple and readable, let’s create a nunchuk_read_registers() function to read the registers
once. In this function:

1. Start by putting a 10 ms sleep. Such waiting time is needed to add time between the previous i2c
operation and the next one.

2. Write 0x00 to the bus. That will allow us to read the device registers.

3. Add another 10 ms sleep.

4. Read 6 bytes from the device, still using the I2C raw API. Check the return value as usual.

Reading the state of the nunchuk buttons
Back to the probe() function, call your new function twice.

After the second call, compute the states of the Z and C buttons, which can be found in the sixth byte that
you read.

As explained on https://bootlin.com/labs/doc/nunchuk.pdf:

• bit 0 == 0 means that Z is pressed.

• bit 0 == 1 means that Z is released.

• bit 1 == 0 means that C is pressed.

• bit 1 == 1 means that C is released.

<i2c_address> <register> <value> for writing. The address, 0x52 is sent by the i2c framework so you only have to write the
other bytes, the register address and if needed, the value you want to write. There are two ways to set up the communication.
The first known way was with data encryption by writing 0x00 to register 0x40 of the nunchuk. With this way, you have to
decrypt each byte you read from the nunchuk (not so hard but something you have to do). Unfortunately, such encryption
doesn’t work on third party nunchuks so you have to set up unencrypted communication by writing 0x55 to 0xf0 instead. This
works across all brands of nunchuks (including Nintendo ones).

10fsleep() is a flexible function that finds out what is the best internal waiting function for the delay requested. It will either
enter a busy-wait state (eg. udelay()) or will block by entering a sleep state (eg. usleep_range() or msleep()).

As a going further task, you can use Elixir to find the right C headers to include if you wanted to use a function like udelay()
directly. The Elixir results may be a bit confusing here, because udelay() is defined in arch/<arch>/include/asm/delay.h files,
and not in include/linux/delay.h> that would normally be the canonical place. However, look at include/linux/delay.h and
you will see that it includes asm/delay.h which corresponds to the specific headers for the current architecture. So you would
indeed need to include linux/delay.h anyway!

General rule: whenever the symbol you’re looking for is defined in arch/<arch>/include/asm/<file>.h, you should include
linux/<file>.h in your kernel code.

© 2004-2026 Bootlin, CC BY-SA license 29

https://elixir.bootlin.com/linux/latest/ident/device_property_read_bool
https://elixir.bootlin.com/linux/latest/ident/fsleep
https://bootlin.com/labs/doc/nunchuk.pdf
https://elixir.bootlin.com/linux/latest/ident/fsleep
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/usleep_range
https://elixir.bootlin.com/linux/latest/ident/msleep
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/ident/udelay
https://elixir.bootlin.com/linux/latest/source/include/linux/delay.h>
https://elixir.bootlin.com/linux/latest/source/include/linux/delay.h
https://bootlin.com

Linux kernel and driver development

Using boolean operators, write code that initializes a zpressed integer variable, which value is 1 when the Z
button is pressed, and 0 otherwise. Create a similar cpressed variable for the C button11.

The last thing is to test the states of these new variables at the end of the probe() function, and log a
message to the console when one of the buttons is pressed.

Testing
Compile your module, and reload it. No button presses should be detected. Remove your module.

Now hold the Z button and reload and remove your module again:

insmod /root/nunchuk/nunchuk.ko; rmmod nunchuk

You should now see the message confirming that the driver found out that the Z button was held.

Do the same over and over again with various button states.

At this stage, we just made sure that we could read the state of the device registers through the I2C bus.
Of course, loading and removing the module every time is not an acceptable way of accessing such data. We
will give the driver a proper input interface in the next slides.

11You may use the BIT() macro, which will make your life easier. See Elixir for details.

30 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/BIT
https://bootlin.com

Linux kernel and driver development

Input interface
Objective: make the I2C device available to user space using the input subsys-
tem.

After this lab, you will be able to:

• Expose device events to user space through an input interface, using the kernel based polling API for
input devices (kernel space perspective).

• Handle registration and allocation failures in a clean way.

• Get more familiar with the usage of the input interface (user space perspective).

Add input event interface support to the kernel
This lab requires static input event interface support (CONFIG_INPUT_EVDEV) to be enabled in your kernel
configuration, which is the default in the ARM64 default configuration file. You can therefore continue to
the next step.

Register an input interface
The first thing to do is to add an input device to the system. Here are the steps to do it:

• Declare a pointer to an input_dev structure in the probe routine. You can call it input. You can’t use
a global variable because your driver needs to be able to support multiple devices.

• Allocate such a structure in the same function, using the devm_input_allocate_device() function.

• Still in the probe() function, add the input device to the system by calling input_register_device();

At this stage, first make sure that your module compiles well (add missing headers if needed).

When the module is loaded, you should get:

input: Unspecified device as /devices/platform/ocp/48000000.interconnect/48000000.interconnect
:segment@0/4802a000.target-module/4802a000.i2c/i2c-1/1-0052/input/input0

This Unspecified device string is actually expected as we haven’t filled the fields of the input structure yet.

Handling probe failures
In the code that you created, make sure that you handle failure situations properly.

• Of course, test return values properly and log the causes of errors.

• In our case, we only allocated resources with devm_ functions. Thanks to this, in case of failure, all the
corresponding allocations are automatically released before destroying the device structure for each
device. This greatly simplifies our error management code!

Implement the remove() function
In this function, we need to unregister and release the resources allocated and registered in the probe()
routine.

Fortunately, in our case, there’s nothing to do, as everything was allocated with devm_ functions. Even the
unregistration of the input_dev structure is automated.

© 2004-2026 Bootlin, CC BY-SA license 31

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT_EVDEV
https://elixir.bootlin.com/linux/latest/ident/input_dev
https://elixir.bootlin.com/linux/latest/ident/devm_input_allocate_device
https://elixir.bootlin.com/linux/latest/ident/input_register_device
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/input_dev
https://bootlin.com

Linux kernel and driver development

Recompile your module, and load it and remove it multiple times, to make sure that everything is properly
registered and automatically unregistered.

Add proper input device registration information
As explained before, we actually need to add more information to the input structure before registering it.
So, add the below lines of code (still before device registration, of course):

input->name = "Wii Nunchuk";
input->id.bustype = BUS_I2C;

set_bit(EV_KEY, input->evbit);
set_bit(BTN_C, input->keybit);
set_bit(BTN_Z, input->keybit);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/input-device-attributes.c)

Recompile and reload your driver. You should now see in the kernel log that the Unspecified device type
is replaced by Wii Nunchuk.

Implement a polling routine
The nunchuk doesn’t have interrupts to notify the I2C master that its state has changed. Therefore, the only
way to access device data and detect changes is to regularly poll its registers.

So, it’s time to implement a routine which will poll the nunchuk registers at a regular interval.

Create a nunchuk_poll() function with the right prototype (find it by looking at the definition of the input_
setup_polling() function.)

In this function, you will have to read the nunchuk registers. However, as you can see, the prototype
of the poll_fn() routine doesn’t carry any information about the i2c_client structure you will need to
communicate with the device. That’s normal as the input subsystem is generic, and can’t be bound to any
specific bus.

This raises a very important aspect of the device model: the need to keep pointers between physical devices
(devices as handled by the physical bus, I2C in our case) and logical devices (devices handled by subsystems,
like the input subsystem in our case).

This way, when the remove() routine is called, we can find out which logical device to unregister (though
that’s not necessary in our case as logical device unregistration is automatic). Conversely, when we have
an event on the logical side (such as running the polling function), we can find out which I2C device this
corresponds to, to communicate with the hardware.

This need is typically implemented by creating a per device, private data structure to manage our device and
implement such pointers between the physical and logical worlds.

Add the below global definition to your code:

struct nunchuk_dev {
struct i2c_client *i2c_client;

};

Now, in your probe() routine, declare an instance of this structure:

struct nunchuk_dev *nunchuk;

Then allocate one such instead for each new device:

nunchuk = devm_kzalloc(&client->dev, sizeof(*nunchuk), GFP_KERNEL);
if (!nunchuk)

return -ENOMEM;

32 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/input
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/input-device-attributes.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/input-device-attributes.c
https://elixir.bootlin.com/linux/latest/ident/input_setup_polling
https://elixir.bootlin.com/linux/latest/ident/input_setup_polling
https://elixir.bootlin.com/linux/latest/ident/i2c_client
https://bootlin.com

Linux kernel and driver development

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/private-data-alloc.c)

Note that we haven’t seen kernel memory allocator routines and flags yet.

Also note that here there’s no need to write an ”out of memory” message to the kernel log. That’s already
done by the memory subsystem.

Now implement the pointers that we need:

nunchuk->i2c_client = client;
input_set_drvdata(input, nunchuk);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/device-pointers.c)

Making the parallel with the lectures, here are the current links (the dotted lines show missing links that
could be added in the future):

Make sure you add this code before registering the input device. You don’t want to enable a device with
incomplete information or when it is not completely initialized yet (there could be race conditions).

So, back to the nunchuk_poll() function, you will first need to retrieve the I2C physical device from the
input_dev structure. That’s where you will use your private nunchuk structure.

Now that you have a handle on the I2C physical device, you can move the code reading the nunchuk registers
to this function. You can remove the double reading of the device state, as the polling function will make
periodic reads anyway12.

At the end of the polling routine, the last thing to do is post the events and notify the input core. Assuming
that input is the name of the input_dev parameter of your polling routine:

12During the move, you will have to handle communication errors in a slightly different way, as the nunchuk_poll() routine
has a void type. When the function reading registers fails, you can use a return; statement instead of return value;

© 2004-2026 Bootlin, CC BY-SA license 33

https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/private-data-alloc.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/private-data-alloc.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/device-pointers.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/device-pointers.c
https://elixir.bootlin.com/linux/latest/ident/input_dev
https://bootlin.com

Linux kernel and driver development

input_report_key(input, BTN_Z, zpressed);
input_report_key(input, BTN_C, cpressed);
input_sync(input);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/input-notification.c)

Now, back to the probe() function, the last thing to do is to declare the new polling function (see the slides
if you forgot about the details) and specify a polling interval of 50 ms.

At this stage, also remove the debugging messages about the state of the buttons. You will get that infor-
mation from the input interface.

You can now make sure that your code compiles and loads successfully.

Testing your input interface
Testing an input device is easy with the evtest application that is included in the root filesystem. Just run:

evtest

The application will show you all the available input devices, and will let you choose the one you are
interested in (make sure you type a choice, 0 by default, and do not just type [Enter]). You can also type
evtest /dev/input/event0 right away. On some boards, the correct event device will be event1.

Press the various buttons and see that the corresponding events are reported by evtest.

Going further
Stopping here is sufficient, but if you complete your lab before the others, you can try to achieve the below
challenges (in any order):

Supporting multiple devices
Modify the driver and Device Tree to support two nunchuks at the same time. You can borrow another
nunchuk from the instructor or from a fellow participant.

Making sure that your driver does indeed support multiple devices at the same time is a good way to make
sure it is implemented properly.

Use the nunchuk as a joystick in an ascii game
In this optional, challenge, you will extend the driver to expose the joystick part of the nunchuk, i.e. x and
y coordinates.

We will use the nInvaders game, which is already present in your root filesystem.

Connect through SSH

nInvaders will not work very well over the serial port, so you will need to log to your system through ssh in
an ordinary terminal:

ssh root@192.168.1.100

The password for the root user is root.

You can already play the nInvaders game with the keyboard!

Note: if you get the error Error opening terminal: xterm-256color. when running nInvaders, issue first
the export TERM=xterm command.

34 © 2004-2026 Bootlin, CC BY-SA license

https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/input-notification.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/input-notification.c
https://bootlin.com

Linux kernel and driver development

Recompile your kernel

Recompile your kernel with support for the joystick interface (CONFIG_INPUT_JOYDEV).

Reboot to the new kernel.

Extend your driver

We are going to expose the joystick X and Y coordinates through the input device.

Add the below code to the probe routine:

set_bit(ABS_X, input->absbit);
set_bit(ABS_Y, input->absbit);
input_set_abs_params(input, ABS_X, 30, 220, 4, 8);
input_set_abs_params(input, ABS_Y, 40, 200, 4, 8);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/declare-x-and-y.c)

See input/input-programming for details about the input_set_abs_params() function.

For the joystick to be usable by the application, you will also need to declare classic buttons:

/* Classic buttons */

set_bit(BTN_TL, input->keybit);
set_bit(BTN_SELECT, input->keybit);
set_bit(BTN_MODE, input->keybit);
set_bit(BTN_START, input->keybit);
set_bit(BTN_TR, input->keybit);
set_bit(BTN_TL2, input->keybit);
set_bit(BTN_B, input->keybit);
set_bit(BTN_Y, input->keybit);
set_bit(BTN_A, input->keybit);
set_bit(BTN_X, input->keybit);
set_bit(BTN_TR2, input->keybit);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-
interface/declare-classic-buttons.c)

The next thing to do is to retrieve and report the joystick X and Y coordinates in the polling routine. This
should be very straightforward. You will just need to go back to the nunchuk datasheet to find out which
bytes contain the X and Y values.

Time to play

Recompile and reload your driver.

You can now directly play nInvaders, only with your nunchuk. You’ll quickly find how to move your ship,
how to shoot and how to pause the game.

Have fun!

© 2004-2026 Bootlin, CC BY-SA license 35

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT_JOYDEV
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/declare-x-and-y.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/declare-x-and-y.c
https://www.kernel.org/doc/html/latest/input/input-programming.html
https://elixir.bootlin.com/linux/latest/ident/input_set_abs_params
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/declare-classic-buttons.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-i2c-input-interface/declare-classic-buttons.c
https://bootlin.com

Linux kernel and driver development

Accessing I/O memory and ports
Objective: read / write data from / to a hardware device

Throughout the upcoming labs, we will implement a character driver allowing to write data to additional
CPU serial ports available on the BeaglePlay, and to read data from them.

After this lab, you will be able to:

• Add UART devices to the board device tree.

• Access I/O registers to control the device and send first characters to it.

Setup
Go to your kernel source directory and continue working with the bootlin-labs branch, this way we can
keep the same custom Device Tree we already created, and build on top of it.

Add UART devices
In the following labs, we will be using UART5 and UART6, which are both routed to the Mikrobus connector.

Before developing a driver for these additional UARTs on the board, we need to find the corresponding
Mikrobus pins.

First, open the Beagle Play hardware schematics and search for references to UART5_RX, UART5_TX, UART6_RX
and UART6_TX. If you follow the UART5 signals, you’ll see that they are already routed to the pins labeled
”TX” and ”RX” on the Mikrobus connector. For UART6, you’ll see that the corresponding pins are used by
the SPI2 bus by default, and that the pins for UART6_TX and UART6_RX are respectively routed to the MOSI
(COPI) and MISO (CIPO) pins on the Mikrobus connector.

Go to the AM625 datasheet and find the pinmuxing settings for UART6_TX and UART6_RX.

The pinmuxing configuration is already done for UART5. For UART6, you’ll have to add a pinmuxing section
using the information you found in the datasheet. You’ll also have to disable the main_spi2 by setting its
status property to "disabled" in your custom device tree.
&main_pmx0 {

/* Pins COPI (TX) and CIPO (RX) of the mikrobus connector */
main_uart6_pins: main_uart6_pins {

pinctrl-single,pins = <
AM62X_IOPAD(0x0198, PIN_INPUT_PULLUP, 3) /* (A19) MCASP0_AXR2.UART6_TXD */
AM62X_IOPAD(0x0194, PIN_INPUT_PULLUP, 3) /* (B19) MCASP0_AXR3.UART6_RXD */

>;
};

};

&main_spi2 {
status = "disabled";

};

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-

iomem-beagleplay/uarts-pinctrl.dts)

Using a new USB-serial cable with male connectors, provided by your instructor, connect your PC to UART5.
The wire colors are the same as for the cable that you’re using for the console.

Then, declare the corresponding devices:

&main_uart5 {
compatible = "bootlin,serial";

36 © 2004-2026 Bootlin, CC BY-SA license

https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uarts-pinctrl.dts
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uarts-pinctrl.dts
https://bootlin.com

Linux kernel and driver development

};

&main_uart6 {
compatible = "bootlin,serial";
pinctrl-names = "default";
pinctrl-0 = <&main_uart6_pins>;

};

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-

iomem-beagleplay/uarts.dts)

This is a good example of how we can override definitions in the Device Tree. uart5 and uart6 are already
enabled and muxed in arch/arm64/boot/dts/ti/k3-am625-beagleplay.dts. In the above code, we just
override the compatible property to use our driver instead of using the default one.

Compile and update your DTB.

Operate a platform device driver
Go to the ~/linux-kernel-imx93-frdm-labs/modules/nfsroot/root/serial/ directory. You will find a
serial.c file which already provides a platform driver skeleton.

Add the code needed to match the driver with the devices which you have just declared in the device tree.

Compile your module and load it on your target. Check the kernel log messages, that should confirm that
the probe() routine was called13.

Create a device private structure
In the same way as in the nunchuk lab, we now need to create a structure that will hold device specific
information and help keeping pointers between logical and physical devices.

As the first thing to store will be the base virtual address for each device, let’s declare this structure as
follows:

struct serial_dev {
void __iomem *regs;

};

The first thing to do is allocate such a structure at the beginning of the probe() routine. Let’s do it with the
devm_kzalloc() function again as in the previous lab. Again, resource deallocation is automatically taken
care of when we use the devm_ functions.

So, add the below line to your code:

struct serial_dev *serial;
...
serial = devm_kzalloc(&pdev->dev, sizeof(*serial), GFP_KERNEL);
if (!serial)

return -ENOMEM;

Get a base virtual address for your device registers
You can now get a virtual address for your device’s base physical address, by calling:

serial->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(serial->regs))

return PTR_ERR(serial->regs);

13Don’t be surprised if the probe() routine is actually called twice! That’s because we have declared two devices. Even if we
only connect a serial-to-USB dongle to one of them, both of them are ready to be used!

© 2004-2026 Bootlin, CC BY-SA license 37

https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uarts.dts
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uarts.dts
https://elixir.bootlin.com/linux/latest/source/arch/arm64/boot/dts/ti/k3-am625-beagleplay.dts
https://elixir.bootlin.com/linux/latest/ident/devm_kzalloc
https://bootlin.com

Linux kernel and driver development

What’s nice is that you won’t ever have to release this resource, neither in the remove() routine, nor if there
are failures in subsequent steps of the probe() routine.

Make sure that your updated driver compiles, loads and unloads well.

Device initialization
Now that we have a virtual address to access registers, we are ready to configure a few registers which will
allow us to enable the UART devices. Of course, this will be done in the probe() routine.

Accessing device registers
As we will have multiple registers to read, create a reg_read() routine, returning a u32 value, and taking a
serial pointer to a serial_dev structure and an unsigned int register offset.

Your prototype should look like:

static u32 reg_read(struct serial_dev *serial, unsigned int reg);

In this function, read from a 32 bits register at the base virtual address for the device, plus the register offset
multiplied by 4.

All the UART register offsets have standardized values, shared between several types of serial drivers (see
include/uapi/linux/serial_reg.h). This explains why they are not completely ready to use and we have
to multiply them by 4 for K3 SoCs.

Create a similar reg_write() routine, writing an int value at a given register offset (don’t forget to multiply
it by 4) from the device base virtual address. The following code samples are using the writel() convention
of passing the value first, then the offset. Your prototype should look like:

static void reg_write(struct serial_dev *serial, u32 val, unsigned int reg);

In the next sections, we will tell you what register offsets to use to drive the hardware.

Power management initialization
Add the below lines to the probe function:

pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);

And add the below line to the remove() routine:

pm_runtime_disable(&pdev->dev);

Line and baud rate configuration
After these lines, let’s add code to initialize the line and configure the baud rate. This shows how to get a
special property from the device tree, in this case clock-frequency:

/* Configure the baud rate to 115200 */
clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(clk)) {

ret = PTR_ERR(clk);
goto disable_runtime_pm;

}

uartclk = clk_get_rate(clk);

baud_divisor = uartclk / 16 / 115200;
reg_write(serial, 0x07, UART_OMAP_MDR1);

38 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/serial_reg.h
https://elixir.bootlin.com/linux/latest/ident/writel
https://bootlin.com

Linux kernel and driver development

reg_write(serial, 0x00, UART_LCR);
reg_write(serial, UART_LCR_DLAB, UART_LCR);
reg_write(serial, baud_divisor & 0xff, UART_DLL);
reg_write(serial, (baud_divisor >> 8) & 0xff, UART_DLM);
reg_write(serial, UART_LCR_WLEN8, UART_LCR);
reg_write(serial, 0x00, UART_OMAP_MDR1);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-

iomem-beagleplay/uart-line-init.c)

Declare baud_divisor and uartclk as unsigned int.

FIFOs reset
The last thing to do is to reset the FIFOs:

/* Clear UART FIFOs */
reg_write(serial, UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT, UART_FCR);

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-

iomem-beagleplay/uart-line-reset.c)

We are now ready to transmit characters over the serial ports!

If you have a bit of spare time, you can look at section 12.2.4 of the AM62x TRM for details about how to
use the UART ports, to understand better what we are doing here.

Standalone write routine
Implement a C routine taking a pointer to a serial_dev structure and one character as parameters, and
writing this character to the serial port, using the following steps:

1. Wait until the UART_LSR_THRE bit gets set in the UART_LSR register. You can busy-wait for this condition
to happen. In the busy-wait loop, you can call the cpu_relax() kernel function to ensure the compiler
won’t optimise away this loop.

2. Write the character to the UART_TX register.

Add a call to this routine from your module probe() function, and recompile your module.

Open a new picocom instance on your new serial port (not the serial console):

picocom -b 115200 /dev/ttyUSB1

Load your module on the target. You should see the corresponding character in the new picocom instance,
showing what was written to UART5.

You can also check that you also get the same character on UART6 (just connect to the UART6 pins instead
of the UART5 ones).

Driver sanity check
Remove your module and try to load it again. If the second attempt to load the module fails, it is probably
because your driver doesn’t properly free the resources it allocated or registered, either at module exit time,
or after a failure during the module probe() function. Check and fix your module code if you have such
problems.

© 2004-2026 Bootlin, CC BY-SA license 39

https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uart-line-init.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uart-line-init.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uart-line-reset.c
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-iomem-beagleplay/uart-line-reset.c
https://elixir.bootlin.com/linux/latest/ident/UART_LSR_THRE
https://elixir.bootlin.com/linux/latest/ident/UART_LSR
https://elixir.bootlin.com/linux/latest/ident/cpu_relax
https://elixir.bootlin.com/linux/latest/ident/UART_TX
https://bootlin.com

Linux kernel and driver development

Output-only misc driver
Objective: implement the write part of a misc driver

After this lab, you will be able to:

• Write a simple misc driver, allowing to write data to the serial ports of your Board.

• Write simple file_operations functions for a device, including ioctl controls.

• Copy data from user memory space to kernel memory space and eventually to the device.

• You will practice kernel standard error codes a little bit too.

You must have completed the previous lab to work on this one.

Misc driver registration
In the same way we added an input interface to our Nunchuk driver, it is now time to give an interface to
our serial driver. As our needs are simple, we won’t use the Serial framework provided by the Linux kernel,
but will use the Misc framework to implement a simple character driver.

Let’s start by adding the infrastructure to register a misc driver.

The first thing to do is to create:

• A serial_write() write file operation stub. See the slides or the code for the prototype to use. Just
place a return -EINVAL; statement in the function body, to signal that there is something wrong with
this function.

• Similarly, a serial_read() read file operation stub.

• A file_operations structure declaring these file operations.

The next step is to create a miscdevice structure and initialize it. However, we are facing the same usual
constraint to handle multiple devices. Like in the Nunchuk driver, we have to add such a structure to our
device specific private data structure (serial_dev):

struct miscdevice miscdev;

To be able to access our private data structure in other parts of the driver, you need to attach it to the pdev
structure using the platform_set_drvdata() function. Look for examples in the source code to find out how
to do it.

Now, at the end of the probe() routine, when the device is fully ready to work, you can now initialize the
miscdevice structure for each found device:

• To get an automatically assigned minor number.

• To specify a name for the device file in devtmpfs. We propose to use:

struct resource *res;
[...]
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
/* Error handling */
[...]
name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "serial-%x", res->start);

40 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/file_operations
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/platform_set_drvdata
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://bootlin.com

Linux kernel and driver development

devm_kasprintf() allocates a buffer and runs kasprintf() to fill its contents. platform_get_resource()
is used to retrieve the device physical address from the device tree. A much simpler solution to get a
unique name for the device file would have been to use &pdev->name, but this would create unusual
names for device files (e.g. 48024000.serial).

• To pass the file_operations structure that you defined.

• To set the parent pointer to the appropriate value.

See the lectures for details if needed!

The last things to do (at least to have a misc driver, even if its file operations are not ready yet), are to
add the registration and deregistration routines. That’s typically the time when you will need to access the
serial_dev structure for each device from the pdev structure passed to the remove() routine.

Make sure that your driver compiles and loads well, and that you now see two new device files in /dev.

At this stage, make sure you can load and unload the driver multiple times. This should reveal registration
and deregistration issues if there are any.

Check in /sys/class/misc for an entry corresponding to the registered devices, and within those directories,
check what the device symbolic link is pointed to. Check the contents of the dev file as well, and compare
it with the major/minor number of the device nodes created in /dev for your devices.

Implement the write() routine
Now, add code to your write function, to copy user data to the serial port, writing characters one by one.

The first thing to do is to retrieve the serial_dev structure from the miscdevice structure itself, accessible
through the private_data field of the open file structure (file).

At the time we registered our misc device, we didn’t keep any pointer to the serial_dev structure. However,
as the struct miscdevice structure is accessible through file->private_data, and is a member of the
serial_dev structure, we can use a magic macro to compute the address of the parent structure:

struct miscdevice *miscdev_ptr = file->private_data;
struct serial_dev *serial = container_of(miscdev_ptr, struct serial_dev, miscdev);

See https://radek.io/2012/11/10/magical-container_of-macro/ for interesting implementation details
about this macro.

This wouldn’t have been possible if the struct miscdevice structure was allocated separately and was just
referred to by a pointer in serial_dev, instead of being a member of it.

Another possibility, but more complicated, would have been to access the parent device pointer in struct
miscdevice, which then through the platform_get_drvdata() function would have given us access to the
serial_dev structure containing the virtual address of the device. There are always multiple possibilities in
kernel programming!

Now, add code that copies (in a secure way) each character from the user space buffer to the UART device.

Once done, compile and load your module. Test that your write function works properly by using:

echo "test" > /dev/serial-<...>

The test string should appear on the remote side (i.e. in the picocom process connected to one of the
UARTS.

If it works, you can triumph and do a victory dance in front of the whole class!

Make sure that both UART devices work on the same way.

© 2004-2026 Bootlin, CC BY-SA license 41

https://elixir.bootlin.com/linux/latest/ident/devm_kasprintf
https://elixir.bootlin.com/linux/latest/ident/kasprintf
https://elixir.bootlin.com/linux/latest/ident/platform_get_resource
https://elixir.bootlin.com/linux/latest/ident/file_operations
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://radek.io/2012/11/10/magical-container_of-macro/
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/miscdevice
https://elixir.bootlin.com/linux/latest/ident/platform_get_drvdata
https://bootlin.com

Linux kernel and driver development

You’ll quickly discover that newlines do not work properly. To fix this, when the user space application sends
"\n", you must send "\n\r" to the serial port14.

Module reference counting
Start an application in the background that writes nothing to the UART:

cat > /dev/serial-<...> &

Now, with lsmod, look at the reference count of your module: it is still 0, even though an application has
your device opened. This means that you can rmmod your module even when an application is using it, which
is not correct and can quickly cause a kernel crash.

To fix this, we need to tell the kernel that our module is in charge of this character device. This is done by
setting the .owner field of struct file_operations to the special value THIS_MODULE.

After changing this, make sure the reference counter of your module, visible through lsmod, gets incremented
when you run an application that uses the UART.

Ioctl operations
We would like to maintain a count of the number of characters written through the serial port. In order to
do this, register a counter variable in the main driver structure, and increment it when appropriate. Then,
we need to implement two unlocked_ioctl() operations:

• SERIAL_RESET_COUNTER, which as its name says, will reset the counter to zero

• SERIAL_GET_COUNTER, which will return the current value of the counter in a variable passed by address.

Two test applications (in source format) are already available in the root/serial/ NFS shared directory.
They assume that SERIAL_RESET_COUNTER is ioctl operation 0 and that SERIAL_GET_COUNTER is ioctl operation
1.

Compile them:

aarch64-linux-gnueabi-gcc -static -o serial-get-counter serial-get-counter.c

aarch64-linux-gnueabi-gcc -static -o serial-reset-counter serial-reset-counter.c

The new executables are then ready to run on your target. They take as argument the path to the device
file corresponding to your UART.

14See https://en.wikipedia.org/wiki/Newline for details about the newline (\n) and carriage return (\r) characters

42 © 2004-2026 Bootlin, CC BY-SA license

https://en.wikipedia.org/wiki/Newline
https://bootlin.com

Linux kernel and driver development

Sleeping and handling interrupts
Objective: learn how to register and implement a simple interrupt handler,
and how to put a process to sleep and wake it up at a later point

During this lab, you will:

• Register an interrupt handler for the serial controller of the board.

• Implement the read() operation of the serial port driver to put the process to sleep when no data are
available.

• Implement the interrupt handler to wake-up the sleeping process waiting for received characters.

• Handle communication between the interrupt handler and the read() operation.

Setup
This lab is a continuation of the Output-only misc driver lab. Use the same kernel, environment and paths!

Register the handler
Declare an interrupt handler function stub. Then, in the module probe function, we need to register this
handler, binding it to the right IRQ number.

Nowadays, Linux is using a virtual IRQ number that it derives from the hardware interrupt number. This
virtual number is created through the irqdomain mechanism. The hardware IRQ number to use is found in
the device tree.

First, retrieve the unique IRQ number to request:

int irq;
irq = platform_get_irq(pdev, 0);

Then, pass the interrupt number to devm_request_irq() along with the interrupt handler to register your
interrupt in the kernel.

Then, in the interrupt handler, just print a message and return IRQ_HANDLED (to tell the kernel that we have
handled the interrupt).

To enable reception and its associated interrupt, the UART control register must be configured accordingly.
This configuration is done within the probe function by setting the following bits:

reg_write(serial, UART_IER_RDI, UART_IER);

Compile and load your module. Send a character on the serial link (just type something in the corresponding
picocom terminal, and look at the kernel logs: they are full of our message indicating that interrupts are
occurring, even if we only sent one character! It shows you that interrupt handlers should do a little bit more
when an interrupt occurs.

Enable and filter the interrupts
In fact, the hardware will replay the interrupt until you acknowledge it. Linux will only dispatch the interrupt
event to the rightful handler, hoping that this handler will acknowledge it. What we experienced here is called
an interrupt flood.

© 2004-2026 Bootlin, CC BY-SA license 43

https://elixir.bootlin.com/linux/latest/ident/devm_request_irq
https://elixir.bootlin.com/linux/latest/ident/IRQ_HANDLED
https://bootlin.com

Linux kernel and driver development

Now, in our interrupt handler, we want to acknowledge the interrupt. On the UART controllers that we drive,
it’s done simply by reading the contents of the UART_RX register, which holds the next character received.
You can display the value you read to see that the driver will receive whatever character you sent.

Compile and load your driver. Have a look at the kernel messages. You should no longer be flooded with
interrupt messages. In the kernel log, you should see the message of our interrupt handler. If not, check your
code once again and ask your instructor for clarification!

Load and unload your driver multiple times, to make sure that there are no registration / deregistration
issues.

Sleeping, waking up and communication
Now, we would like to implement the read() operation of our driver so that a user space application reading
from our device can receive the characters from the serial port.

First, we need a communication mechanism between the interrupt handler and the read() operation. We
will implement a very simple circular buffer. So let’s add a device-specific buffer to our serial_dev structure.

Let’s also add two integers that will contain the next location in the circular buffer that we can write to, and
the next location we can read from:

#define SERIAL_BUFSIZE 16

struct serial_dev {
...
char rx_buf[SERIAL_BUFSIZE];
unsigned int buf_rd;
unsigned int buf_wr;

};

In the interrupt handler, store the received character at location buf_wr in the circular buffer, and increment
the value of buf_wr. If this value reaches SERIAL_BUFSIZE, reset it to zero.

In the read() operation, if the buf_rd value is different from the buf_wr value, it means that one character
can be read from the circular buffer. So, read this character, store it in the user space buffer, update the
buf_rd variable, and return to user space (we will only read one character at a time, even if the user space
application requested more than one).

Now, what happens in our read() function if no character is available for reading (i.e., if buf_wr is equal to
buf_rd)? We should put the process to sleep!

To do so, add a wait_queue_head_t wait queue to our serial_dev structure, named for example wait. In
the read() function, keep things simple by directly using wait_event_interruptible() right from the start,
to wait until buf_wr is different from buf_rd15.

Last but not least, in the interrupt handler, after storing the received characters in the circular buffer, use
wake_up() to wake up all processes waiting on the wait queue.

Compile and load your driver. Run cat /dev/serial-<...> on the target, and then in picocom on the
development workstation side, type some characters. They should appear on the remote side if everything
works correctly!

Don’t be surprised if the keys you type in Picocom don’t appear on the screen. This happens because they
are not echoed back by the target.

15A single test in the wait_event_interruptible() function is sufficient. If the condition is met, you don’t go to sleep and read
one character right away. Otherwise, when you wake up, you can proceed to the reading part.

44 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/UART_RX
https://elixir.bootlin.com/linux/latest/ident/wait_queue_head_t
https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible
https://elixir.bootlin.com/linux/latest/ident/wake_up
https://elixir.bootlin.com/linux/latest/ident/wait_event_interruptible
https://bootlin.com

Linux kernel and driver development

Locking
Objective: practice with basic locking primitives

During this lab, you will:

• Practice with locking primitives to implement exclusive access to the device.

Setup
Continue to work with the serial driver.

You need to have completed the previous two labs to perform this one.

On the kernel side, recompile it with the following option:

• CONFIG_DEBUG_ATOMIC_SLEEP: this will allow you to be (loudly) warned if a function which may sleep
is called from atomic context, while sleeping is not allowed. Otherwise, in practice, if the function that
may sleep does not need to, you might not notice it!

Adding appropriate locking
We have two shared resources in our driver:

• The buffer that allows to transfer the read data from the interrupt handler to the read() operation.

• The device itself. It might not be a good idea to mess with the device registers at the same time and
in two different contexts.

Therefore, your job is to add a spinlock to the driver, and use it in the appropriate locations to prevent
concurrent accesses to the shared buffer and to the device.

Please note that you don’t have to prevent two processes from writing at the same time: this can happen
and is a valid behavior. However, if two processes write data at the same time to the serial port, the serial
controller should not get confused.

© 2004-2026 Bootlin, CC BY-SA license 45

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_ATOMIC_SLEEP
https://bootlin.com

Linux kernel and driver development

DMA
Objective: learn how to use the dma-mapping API to handle DMA buffers
and coherency, as well as the dmaengine API to deal with DMA controllers
through a generic abstraction

During this lab, you will:

• Setup streaming mappings with the dma API

• Configure a DMA controller with the dmaengine API

• Configure the hardware to trigger DMA transfers

• Wait for DMA completion

Setup
This lab is a continuation of all the previous serial labs. Use the same kernel, environment and paths!

Preparing the driver
We will use DMA in the write path. As we will receive data from userspace, we will need a bounce buffer, so
we can create a second buffer named tx_buf of the same size as rx_buf in our serial_dev structure.

As we will also need the resource structure with the MMIO physical addresses from outside of the ->probe(),
it might be relevant to save the resource pointer used to derive the miscdev name into the serial_dev
structure.

Finally, the device-model struct device * contained in the platform device will soon be very useful as well,
so we can save it in our struct serial_dev * object.

Before going further, re-compile and test your driver.

The serial_write callback and serial_fops can now be renamed serial_write_pio and serial_fops_pio,
while we will implement a new callback named serial_write_dma and a new set of file operations called
serial_fops_dma which uses this callback for .write and keeps the same values for other fields. This new
set of file operations should be used by default.

Let’s now create two helpers supposed to initialize and cleanup our DMA setup. We will call serial_init_
dma() right before registering the misc device. In the ->probe() error path and in the remove callback, we
will call serial_cleanup_dma(). Make sure that errors are handled correctly and returned to the caller. A
special case may be handled when no DMA channel is available (with the -ENODEV code returned) in order
to fallback to a serial_fops_pio file operations alternative.

Prepare the DMA controller
The AM62x UART controller is internally wired to a DMA controller named PKTDMA. So we will have to
deal with the dmaengine API in order to prepare DMA transfers on the controller side. The idea of this API
is to fully abstract the characteristics of the DMA controller.

In a complete driver we should probably use the helpers checking capabilities. Let’s just skip this part and
assume the two IPs are compatible and the addressing masks properly set to 32-bit.

The BeaglePlay device tree does not describe DMA channels for UART5 and UART6, so we will have to add
the channels to our custom device tree. References to DMA channels in the device tree have the following
form:

46 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Linux kernel and driver development

dmas = <[controller reference] [dma-cells parameters]>

Go to your kernel source tree and open the Documentation/devicetree/bindings/dma/ti/k3-pktdma.yaml
file, which contains the bindings for the AM62x PKTDMA controller. Find the description of the #dma-cells
property. You will see that two cells are required: the first one is the thread ID for the UART controller and
the second one is the ASEL value for the channel.

ASEL is an AM62 acronym for ”address selection” and takes a 4-bit value related to the I/O coherency
requirements. The TRM indicates to use 0 for regular SoC memory mappings, which is what we are going
to do. The thread ID value however is a bit harder to find, and is currently not listed in the TRM. It
is however available on TI’s website: https://software-dl.ti.com/tisci/esd/latest/5_soc_doc/am62x/
psil_cfg.html#psi-l-source-and-destination-thread-ids Following the table mentioned in the above
link, we are going to need the following values:

• UART_5 has a TX thread ID of 0xc405

• UART_6 has a TX thread ID of 0xc406

With this information in hand, we can add the description of the DMA channels in the device tree:

&main_uart5 {
compatible = "bootlin,serial";
dmas = <&main_pktdma 0xc405 0>;
dma-names = "tx";

};

&main_uart6 {
compatible = "bootlin,serial";
pinctrl-names = "default";
pinctrl-0 = <&main_uart6_pins>;
dmas = <&main_pktdma 0xc406 0>;
dma-names = "tx";

};

(Source code link: https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-

dma/uarts-dma-beagleplay.dts)

Don’t forget to update your device tree and reboot your board!

These channels need to be retrieved by the device driver in order to be used with all the dmaengine helpers,
so better save each of them in our serial_dev structure.

struct serial_dev {
...
struct dma_chan *txchan;

};

We can now configure the DMA controller with details about the upcoming transfers:

• memory to device transfers

• the source will be memory, we will map buffers when they come, there is no particular constraint on
this side

• the destination is the UART Tx FIFO, we will ask the DMA to transfer the bytes one after the other
(hardware signaling already handles the internal “flow”)

• we shall not use the UART Tx FIFO directly, to be generic we shall use dma_map_resource() first (and
save it in serial_dev to be able to unmap it later)

struct dma_slave_config txconf = {};
serial->fifo_dma_addr = dma_map_resource(serial->dev, serial->res->start + UART_TX * 4,

© 2004-2026 Bootlin, CC BY-SA license 47

https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/dma/ti/k3-pktdma.yaml
https://software-dl.ti.com/tisci/esd/latest/5_soc_doc/am62x/psil_cfg.html#psi-l-source-and-destination-thread-ids
https://software-dl.ti.com/tisci/esd/latest/5_soc_doc/am62x/psil_cfg.html#psi-l-source-and-destination-thread-ids
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-dma/uarts-dma-beagleplay.dts
https://raw.githubusercontent.com/bootlin/training-materials/master/labs/kernel-serial-dma/uarts-dma-beagleplay.dts
https://elixir.bootlin.com/linux/latest/ident/dma_map_resource
https://bootlin.com

Linux kernel and driver development

4, DMA_TO_DEVICE, 0);
if (dma_mapping_error(serial->dev, serial->fifo_dma_addr)) ...

txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
txconf.dst_addr = serial->fifo_dma_addr;
ret = dmaengine_slave_config(serial->txchan, &txconf);
if (ret) ...

The cleanup helper should on its side call dmaengine_terminate_sync() just to be sure no transfer is ongoing,
right before un-mapping the FIFO with dma_unmap_resource() and releasing the DMA channel with dma_
release_channel().

It is time to recompile your driver and see if any header is missing...

Prepare the UART controller
On its side, the UART controller must assert some signals to drive the DMA flow. We must enable the
controlling logic on the Tx DMA channel, by enabling DMACTL in mode 3. We also configure the UART to
transmit all the bytes as soon as they get in.

#define OMAP_UART_SCR_DMAMODE_CTL3 0x7
#define OMAP_UART_SCR_TX_TRIG_GRANU1 BIT(6)

/* Enable DMA */
reg_write(serial, OMAP_UART_SCR_DMAMODE_CTL3 | OMAP_UART_SCR_TX_TRIG_GRANU1,

UART_OMAP_SCR);

Process user write requests
It is now time to deal with user buffers again.

Before doing anything in the write hook, we shall fill-in the serial_dev structure with:

• a bool txongoing flag to prevent concurrent uses of the same Tx DMA channel (would be possible by
queuing new requests, but let’s keep this implementation simple) while not holding any lock for the full
duration of the operation.

• a struct completion txcomplete object to asynchronously inform the write thread that the DMA
transaction is over (very much like we did with the waitqueue in the interrupt lab). This object shall
be initialized with init_completion(&serial->txcomplete).

struct serial_dev {
...
struct dma_chan *txchan;
bool txongoing;
struct completion txcomplete;

};

In order to simplify the code, we will no longer deal with concurrent operations. In order to safely serialize
writes, we can start and end the write hook with something like:

unsigned long flags;

/* Prevent concurrent Tx */
spin_lock_irqsave(&serial->lock, flags);
if (serial->txongoing) {

spin_unlock_irqrestore(&serial->lock, flags);
return -EBUSY;

}

48 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/dmaengine_terminate_sync
https://elixir.bootlin.com/linux/latest/ident/dma_unmap_resource
https://elixir.bootlin.com/linux/latest/ident/dma_release_channel
https://elixir.bootlin.com/linux/latest/ident/dma_release_channel
https://bootlin.com

Linux kernel and driver development

serial->txongoing = true;
spin_unlock_irqrestore(&serial->lock, flags);

...

spin_lock_irqsave(&serial->lock, flags);
serial->txongoing = false;
spin_unlock_irqrestore(&serial->lock, flags);

The first step in this ->write() hook is to use serial->tx_buf as bounce buffer by copying the user data
using copy_from_user(). Let’s handle up to SERIAL_BUFSIZE bytes at a time. One can use min_t() to derive
the right amount of bytes to deal with.

Now we can remap the buffer. We have a single buffer so we can use dma_map_single(). The output
value is a dma_addr_t. Save this value as we will reuse it. Also do not forget to check its validity with
dma_mapping_error().

We now have all the missing information compared to the serial_init_dma step, like the dma_addr_t of the
buffer and its length. Let’s create a descriptor filled with all the default information known by the DMA
controller plus the additional details we can now provide:

struct dma_async_tx_descriptor *desc;

desc = dmaengine_prep_slave_single(serial->txchan, dma_addr, len,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);

if (!desc) ...

We can now use the returned descriptor to register a callback. This callback will just call complete() over
the completion object. Which also means this completion object could be re-initialized while we register the
callback, just in case.

The DMA transfer contained in the descriptor can now be queued into the DMA controller queue:

dma_cookie_t cookie;

cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) ...

The transfer can be triggered. This is usually an operation that is only required on the DMA controller side,
but remember here we also need to trigger it on the UART controller side:

dma_async_issue_pending(serial->txchan);

The transfer being asynchronous, it is finally required to wait for completion with one of the wait_for_
completion() variants, and to call dma_unmap_single() right after it.

You can now test your driver. Writing a single character is of course not relevant as our driver would just
use the previous method to send it. Try with a string instead!

© 2004-2026 Bootlin, CC BY-SA license 49

https://elixir.bootlin.com/linux/latest/ident/copy_from_user
https://elixir.bootlin.com/linux/latest/ident/min_t
https://elixir.bootlin.com/linux/latest/ident/dma_map_single
https://elixir.bootlin.com/linux/latest/ident/dma_addr_t
https://elixir.bootlin.com/linux/latest/ident/dma_mapping_error
https://elixir.bootlin.com/linux/latest/ident/dma_addr_t
https://elixir.bootlin.com/linux/latest/ident/complete
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion
https://elixir.bootlin.com/linux/latest/ident/wait_for_completion
https://elixir.bootlin.com/linux/latest/ident/dma_unmap_single
https://bootlin.com

Linux kernel and driver development

Kernel debugging mechanisms and ker-
nel crash analysis
Objective: Use kernel debugging mechanisms and analyze a kernel crash

In this lab, we will continue to work on the code of our serial driver.

dev_dbg() and dynamic debugging
Add a dev_dbg() call in the write() operation that shows each character being written (or its hexadecimal
representation) and add a similar dev_dbg() call in your interrupt handler to show each character being
received.

Check what happens with your module. Do you see the debugging messages that you added? Your kernel
probably does not have CONFIG_DYNAMIC_DEBUG set and your driver is not compiled with DEBUG defined, so
you shouldn’t see any message.

Now, recompile your kernel with the following options:

• CONFIG_DYNAMIC_DEBUG: this will allow you to see debugging messages.

• CONFIG_DEBUG_INFO: this option will make it possible to see source code in disassembled kernel code.
We will need it in a later part of this lab, but enabling it now will allow to avoid recompiling the whole
kernel again.

Also recompile the kernel module to have it built against the updated kernel config in order to take in account
the new enabled options.

Once this is done, in U-Boot, add loglevel=8 to the kernel command line to get the debugging messages
directly in the console (otherwise you will only see them in dmesg).

Now boot your updated kernel.

The dynamic debug feature can be configured using debugfs, so you’ll have to mount the debugfs filesystem
first. Then, after reading the dynamic debug documentation in the kernel sources, do the following things:

• List all available debug messages in the kernel.

• Enable all debugging messages of your serial module, and check that you indeed see these messages.

• Enable just one single debug message in your serial module, and check that you see just this message
and not the other debug messages of your module.

Now, you have a good mechanism to keep many debug messages in your drivers and be able to selectively
enable only some of them.

debugfs
After using debugfs for controlling the dynamic debug feature, let’s add a new entry in this filesystem.
Modify your driver to add:

• A directory called after a unique name per device in the debugfs filesystem.

• And file called counter inside this directory of the debugfs filesystem. This file should allow to see the
contents of the counter variable of your module.

50 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/ident/dev_dbg
https://elixir.bootlin.com/linux/latest/ident/dev_dbg
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DYNAMIC_DEBUG
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://bootlin.com

Linux kernel and driver development

Recompile and reload your driver, and check that in /sys/kernel/debug/<unique name>/counter you can
see the amount of characters that have been transmitted by your driver.

Kernel crash analysis
Setup
Go to the ~/linux-kernel-beagleplay-labs/modules/nfsroot/root/debugging/ directory.

Compile the drvbroken in this directory, and load it on your board. See it crashing in a nice way.

Analyzing the crash message
Analyze the crash message carefully. Knowing that on ARM, the PC register contains the location of the
instruction being executed, find in which function does the crash happen, and what the function call stack
is.

Using Elixir or the kernel source code, have a look at the definition of this function. This, with a careful
review of the driver source code should probably be enough to help you understand and fix the issue.

Locating the exact line where the error happens
Even if you already found out which instruction caused the crash, it’s useful to use information in the crash
report.

If you look again, the report tells you at what offset in the function this happens. Let’s disassemble the code
for this function to understand exactly where the issue happened.

That’s where we need a kernel compiled with CONFIG_DEBUG_INFO as we did at the beginning of this lab. This
way, the kernel is compiled with $(CROSSCOMPILE)gcc -g, which keeps the source code inside the binaries.

You could disassemble the whole vmlinux file and work with the PC absolute address, but it is going to take
a long time.

Instead, using Elixir, you’ll find that the crash happens in an function defined in assembly, called by a
function implemented in C. Find the .c source file where the C function is implemented.

In the kernel sources, you can then find and dissassemble the corresponding .o file:

aarch64-linux-gnu-objdump -DS file.o > file.S

Another way to do this is to use gdb-multiarch16:

sudo apt install gdb-multiarch
gdb-multiarch vmlinux
(gdb) set arch aarch64
(gdb) set gnutarget elf64-littlearm
(gdb) disassemble function_name

Then, in the disassembled code, find the start address of the function, and using an hexadecimal calculator,
add the offset that was provided in the crash output. That’s how you can find the exact assembly instruction
where the crash occured, together with the C code it was compiled from. Looking at the addresses handled
by this code, you can now guess what is wrong in the data passed to the stack of kernel functions called by
the broken module.

A little understanding of assembly instructions on the architecture you are working on helps, but seeing the
original C code should answer most questions. Anyway, it is also possible to get an automated translation of
the symbol offsets using scripts/decode_stacktrace.sh (in the kernel sources).

16gdb-multiarch is a new package supporting multiple architectures at once. If you have a cross toolchain including gdb, you
can also run arm-linux-gdb directly.

© 2004-2026 Bootlin, CC BY-SA license 51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEBUG_INFO
https://bootlin.com

Linux kernel and driver development

Note that the same technique works if the error comes directly from the code of a module. Just dissassemble
the .o file the .ko file was generated from.

52 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Downloading kernel source code
	Setup
	Installing git packages
	Git configuration
	Cloning the mainline Linux tree
	Accessing stable releases

	Kernel source code
	Choose a particular stable version
	Exploring the sources manually
	Use a kernel source indexing tool

	Board setup
	Getting familiar with the board
	Download technical documentation
	Setting up serial communication with the board
	Bootloader interaction
	Flashing the bootloader from recovery mode

	Setting up networking
	Network configuration on the target
	Network configuration on the PC host

	Setting up the TFTP server

	Kernel compiling and booting
	Lab implementation
	Setup
	Cross-compiling toolchain setup
	Kernel configuration
	Kernel compiling
	Setting up the NFS server
	Boot the system
	Checking the kernel version
	Automate the boot process
	Save your kernel configuration

	Writing modules
	Setup
	Writing a module
	Building your module
	Testing your module
	Adding a parameter to your module
	Adding time information
	Following Linux coding standards
	Adding the hello_version module to the kernel sources
	Create a kernel patch

	Describing Hardware Devices
	Goals
	Setup
	Create a custom device tree
	Setting the board's model name
	Driving LEDs
	Managing I2C buses and devices
	Enabling an I2C bus
	Prepare the I2C device DT description
	Declare the Nunchuk device

	Configuring the pin muxing
	Goals
	Setup
	Probing the different busses
	Find pin muxing configuration information for i2c3
	Multiplexing the I2C controller outputs correctly
	Wiring the I2C device

	Using the I2C bus
	Goals
	Setup
	Exploring /dev
	Exploring /sys
	Implement a basic I2C driver for the Nunchuk
	Driver tests
	Device initialization
	Read nunchuk registers
	Reading the state of the nunchuk buttons
	Testing

	Input interface
	Add input event interface support to the kernel
	Register an input interface
	Handling probe failures
	Implement the remove() function
	Add proper input device registration information
	Implement a polling routine
	Testing your input interface
	Going further
	Supporting multiple devices
	Use the nunchuk as a joystick in an ascii game

	Accessing I/O memory and ports
	Setup
	Add UART devices
	Operate a platform device driver
	Create a device private structure
	Get a base virtual address for your device registers
	Device initialization
	Accessing device registers
	Power management initialization
	Line and baud rate configuration
	FIFOs reset

	Standalone write routine
	Driver sanity check

	Output-only misc driver
	Misc driver registration
	Implement the write() routine
	Module reference counting
	Ioctl operations

	Sleeping and handling interrupts
	Setup
	Register the handler
	Enable and filter the interrupts
	Sleeping, waking up and communication

	Locking
	Setup
	Adding appropriate locking

	DMA
	Setup
	Preparing the driver
	Prepare the DMA controller
	Prepare the UART controller
	Process user write requests

	Kernel debugging mechanisms and kernel crash analysis
	dev_dbg() and dynamic debugging
	debugfs
	Kernel crash analysis
	Setup
	Analyzing the crash message
	Locating the exact line where the error happens

