Course duration

5 days — 40 hours

Language

Materials English

Oral Lecture English

French

Trainer

One of the following engineers

= Grégory Clement
= Maxime Chevallier
= Miquel Raynal

= Théo Lebrun

Contact

training@bootlin.com

+33 484 258 097

pbootlin

bootlin.com

O

00 O

EEE

Onsite
People developing devices using the Linux kernel training
People supporting embedded Linux system developers.

= Be able to configure, build and install the Linux kernel on an embedded system.

= Be able to understand the overall architecture of the Linux kernel, and how user-
space applications interact with the Linux kernel.

= Be able to develop simple but complete Linux kernel device drivers, thanks to the
development from scratch of two drivers for two different hardware devices, that
illustrate all the major concepts of the course.

= Be able to navigate through the device drivers mechanisms of the Linux kernel:
Device Tree, device model, bus infrastructures.

= Be able to develop device drivers that communicate with hardware devices.

= Be able to develop drivers that expose functionality of hardware devices to Linux
user-space applications: character devices, kernel subsystems.

= Be able to use the major kernel mechanisms needed for device driver development:
memory management, locking, interrupt handling, sleeping, DMA.

= Be able to debug Linux kernel issues, using a variety of debugging techniques and
mechanisms.

= Solid experience with the C programming language: participants must be
familiar with the usage of complex data types and structures, pointers, function
pointers, and the C pre-processor.

= Knowledge and practice of UNIX or GNU/Linux commands: participants must
be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

= Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin's Embedded Linux course allows to fulfill this pre-requisite.

= Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

= Lectures delivered by the trainer: 50% of the duration

= Practical labs done by participants: 50% of the duration

= Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/linux-kernel
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/theo-lebrun/
mailto:training@bootlin.com
https://bootlin.com

Required equipement

For on-site session delivered at our customer location, our customer must provide:

Video projector

One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in
a free partition of at least 30 GB

Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or
protocols.

PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

BeagleBone Black

BeagleBone Black or BeagleBone Black

Wireless board
= An ARM AM335x (single Cortex-A8) pro-

= USB powered

= 512 MB of RAM

= 2 or 4 GB of on-board eMMC storage

= USB host and device

= HDMI output

= 2 x 46 pins headers, to access UARTSs, SPI

= Ethernet or WiFi

cessor from Texas Instruments

buses, 12C buses and more.

BeaglePlay

BeaglePlay board
= Texas Instruments AM625x (4xARM

= SoC with 3D acceleration, integrated
= 2 GB of RAM

= 16 GB of on-board eMMC storage

= USB host and USB device, microSD,
= 2.4 and 5 GHz WiFi, Bluetooth and also

= 1 MicroBus Header (SPI, 12C, UART, ...),

Cortex-A53 CPU)

MCU and many other peripherals.

HDMI
Ethernet

OLDI and CSI connector.

NXP i.MX93 FRDM

NXP FRDM-IMX93 development board

NXP i.MX93 SoC (Dual Cortex-A55 +
Cortex-M33)

2 GB LPDDR4X, 32 GB eMMC

Dual Gigabit Ethernet

USB 2.0 Type-C 4+ USB Type-A

CAN interface

MicroSD slot, EEPROM

Wi-Fi 6 + Bluetooth 5.4 + 802.15.4
(MAYA-W276)

HDMI output (via LVDS), MIPI DSI and
csl

Audio jack (MQS), buttons and LEDs
SWD and UART debug

Training Schedule

Day 1 - Morning

Lecture Introduction to the Linux kernel Roles of the Linux kernel
Kernel user interface (/proc and /sys)
Overall architecture
Versions of the Linux kernel
Kernel source tree organization

Lab Downloading the Linux kernel Download the Linux kernel code from Git

source code

Lecture Linux kernel source code Specifics of Linux kernel development
Coding standards
Stability of interfaces
Legal aspects, licensing
Organization of the kernel community
The release schedule and process: release candidates, stable releases,
long-term support, etc.

Lab Kernel sources Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds
of information.

Using the UNIX command line and then kernel source code browsers.

Day 1 - Afternoon

Lecture Configuring, compiling and boot- Kernel configuration.
ing the Linux kernel Native and cross compilation. Generated files.
Booting the kernel. Kernel booting parameters.
Mounting a root filesystem on NFS.

Lab Kernel configuration, Cross- Configuring, cross-compiling and booting a Linux kernel with NFS

compiling and booting on NFS boot support.

Lecture Linux kernel modules Linux device drivers
A simple module
Programming constraints
Loading, unloading modules
Module dependencies
Adding sources to the kernel tree

Lab Writing modules Write a kernel module with several capabilities.

Access kernel internals from your module.
Set up the environment to compile it
Day 2 - Morning
Lecture Describing hardware devices Discoverable hardware: USB, PCl
Non-discoverable hardware
Extensive details on Device Tree: overall syntax, properties, design
principles, examples
YAML bindings and meta hardware description to verify Device Tree
content
Lab Describing hardware devices Create your own Device Tree file

Configure LEDs connected to GPIOs
Describe an 12C-connected device in the Device Tree

Day 2 - Afternoon

Lecture Pin muxing Understand the pinctrl framework of the kernel
Understand how to configure the muxing of pins
Lab Pin muxing Configure the pinmuxing for the 12C bus used to communicate with
the Nunchuk
Validate that the 12C communication works using user space tools
Lecture Linux device model Understand how the kernel is designed to support device drivers

The device model

Binding devices and drivers
Platform devices, Device Tree
Interface in user space: /sSys

Day 3 - Morning

The 12C subsystem of the kernel
Details about the API provided to kernel drivers to interact with 12C
devices

Explore the content of /dev and /sys and the devices available on
the embedded hardware platform.

Implement a driver that registers as an 12C driver.

Communicate with the Nunchuk and extract data from it.

Lecture Introduction to the 12C API

Lab Communicate with the Nunchuk
over 12C

Lecture Kernel frameworks

Block vs. character devices

Interaction of user space applications with the kernel

Details on character devices, file_operations, ioct1(), etc.
Exchanging data to/from user space

The principle of kernel frameworks

Day 3 - Afternoon

Lecture The input subsystem

Principle of the kernel input subsystem

API offered to kernel drivers to expose input devices capabilities to
user space applications

User space API offered by the input subsystem

Lab Expose the Nunchuk functionality
to user space

Extend the Nunchuk driver to expose the Nunchuk features to user
space applications, as a input device.
Test the operation of the Nunchuk using evtest

Lecture Memory management

Linux: memory management - Physical and virtual (kernel and user)
address spaces.

Linux memory management implementation.

Allocating with kmalloc().

Allocating by pages.

Allocating with vmalloc().

Day 4 - Morning

Lecture [/O memory

I/O memory range registration.
[/O memory access.
Memory ordering and barriers

Lab

Minimal platform driver and access
to 1/0 memory

Implement a minimal platform driver

Modify the Device Tree to instantiate the new serial port device.
Reserve the 1/0 memory addresses used by the serial port.

Read device registers and write data to them, to send characters on
the serial port.

Lecture

The misc kernel subsystem

What the misc kernel subsystem is useful for
API of the misc kernel subsystem, both the kernel side and user space
side

Lab

Output-only serial port driver

Extend the driver started in the previous lab by registering it into the
misc subsystem

Implement serial port output functionality through the misc subsystem
Test serial output from user space

Day 4 - Afternoon

Lecture

Processes, scheduling, sleeping
and interrupts

Process management in the Linux kernel.

The Linux kernel scheduler and how processes sleep.

Interrupt handling in device drivers: interrupt handler registration and
programming, scheduling deferred work.

Lab

Sleeping and handling interrupts in
a device driver

Adding read capability to the character driver developed earlier.
Register an interrupt handler.

Waiting for data to be available in the read () file operation.
Waking up the code when data is available from the device.

Lecture

Locking

Issues with concurrent access to shared resources

Locking primitives: mutexes, semaphores, spinlocks.

Atomic operations.

Typical locking issues.

Using the lock validator to identify the sources of locking problems.

Lab

Locking

Add locking to the current driver

Day 5 - Morning

Lecture DMA: Direct Memory Access Peripheral DMA vs. DMA controllers

DMA constraints: caching, addressing

Kernel APIs for DMA: dma-mapping, dmaengine, dma-buf
Lab DMA: Direct Memory Access Setup streaming mappings with the dma API

Configure a DMA controller with the dmaengine API
Configure the hardware to trigger DMA transfers
Wait for DMA completion

Day 5 - Afternoon

Lecture

Driver debugging techniques

Debugging with printing functions
Using Debugfs

Analyzing a kernel oops

Using kgdb, a kernel debugger
Using the Magic SysRq commands

Lab

Investigating kernel faults

Studying a broken driver.
Analyzing a kernel fault message and locating the problem in the
source code.

Lecture Power management = Overview of the power management features of the kernel
= Topics covered: clocks, suspend and resume, dynamic frequency scal-
ing, saving power during idle, runtime power management, regulators,
etc.

Lecture If time left = mmap

The practical labs of this training session use the following hardware peripherals to illustrate the development of Linux device
drivers:

= A Wii Nunchuk, which is connected over 12C. Its driver will use the Linux input subsystem.
= An additional UART, which is memory-mapped, and will use the Linux misc subsystem.

While our explanations will be focused on specifically the Linux subsystems needed to implement these drivers, they will always be
generic enough to convey the general design philosophy of the Linux kernel. The information learnt will therefore apply beyond
just 12C, input or memory-mapped devices.

