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Abstract

Deep Neural Networks (DNNs) have been successfully applied to many problems in the medical domain.
However, the common assumption of having access to the complete training data may not always hold true.
Instead, data could be provided by different sources at different points in time. Especially in the medical
field, privacy regulations can exacerbate this problem by prohibiting storage of old data. In such scenarios,
proper incremental training for DNNs becomes essential to not forget previously learned knowledge. To
this end, a recently published method called Deep Model Consolidation (DMC) proposes knowledge dis-
tillation with auxiliary data. We use this method as a benchmark and propose improvements on top of it.
Furthermore, we present a novel approach to transform auxiliary images to look more like images from old
datasets. With experiments on known benchmark datasets as well as a dataset for tissue type classification,
we show that DMC and our image transformer-based method can reduce forgetting of previously acquired
knowledge.
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Chapter 1

Introduction

Image Classification is the problem of categorizing images into certain predefined classes. Deep Neural
Networks (DNNs) are one of the most successful machine learning algorithms for this task. A common
assumption while training any DNN is that the data from all image classes to be learned are available at the
same time. Hence, network parameters are adapted to differentiate between all image categories for a given
classification problem. However, this assumption is broken when all the classes for a given problem are not
available at the same time and potentially arrive in different batches. In this incremental training scenario,
when a neural network is trained on new data, previously adapted weights are overwritten. Hence, the neural
network learns to classify new images, but forgets the classification task on previously trained data. This
phenomenon known as Catastrophic Forgetting [21] is a fundamental limitation for DNN applications.

The ability to train DNNs incrementally is crucial, especially in the medical domain. An example
problem is tissue type classification in microscopic images. DNNs are successfully applied in solving tissue
type classification problems [12, 27, 10]. However, at training time, not all tissue categories are necessarily
available. Often there are multiple providers for the tissue data and each one may only provide images
of certain categories. If a DNN is trained only on currently available data, this will result in catastrophic
forgetting of previous categories. An easy solution to overcome catastrophic forgetting would be to store
the old data and keep retraining the network as the new data arrives along with the stored data. However,
these datasets usually cannot be stored due to privacy concerns or legal obligations limiting usage of the data
only to a certain project. Considering these restrictions, the successful deployment of DNNs in the medical
domain requires more sophisticated methods that allow them to learn incrementally without forgetting. This
underscores the importance of the research field of continual learning and in particular, class-incremental
learning.

A large part of the research in continual learning follows these three directions: (1) replay a subset of
samples from previous tasks to learn shared features, (2) isolate the unused parameters from the model and
train new data only on those parameters, (3) regularize the network parameters to prevent large shifts in their
values when moving to a new task. While these methods to a certain extent reduce forgetting in DNNs, the
performance remains inferior to joint training on data of all classes.

Overall, replay-based methods are outperforming the other two types of methods [5]. However, since
storing data in medical applications is usually prohibited due to privacy concerns, such methods cannot be
used. Parameter-isolation methods work well in practice, but at the test time, usually require a task oracle
that indicates to which task a given image belongs to. On the other hand, regularization-based approaches
can work with a fixed network capacity and without using previous task data. Unlike parameter-isolation
methods, regularization methods do not require a task-oracle at the test time and regularize the parame-
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CHAPTER 1. INTRODUCTION

ters rather than freezing them. This helps in keeping the network size fixed and potentially only learning
the features in addition to what already has been learned. Therefore, regularization-based methods are a
compelling alternative for the class incremental learning in medical applications.

1.1 Focus of this Work

In this work we focus on Class-Incremental learning (CIL) for the tissue type classification problem. Class-
Incremental learning is a much harder problem than task-incremental learning, since the network needs to
differentiate between all learned class without any task oracle at test time. This setting is also known as
single-head prediction in the literature [29]. Even though more difficult, the single-head setting is arguably
more relevant in practice e.g., in the medical domain.

As for many types of medical data, privacy is also a major concern while working with microscopic
images of human tissue. Since indefinitely storing the tissue data obtained from different providers is
not feasible, we cannot rely on pure replay-based methods. Hence, in this work, we study data-focused
regularization-based [5] methods. These methods use knowledge distillation [8] from the previous model
while learning a new model with the new data. Knowledge distillation provides a learning signal for the
previous tasks and ensures that the network does not completely forget the older tasks. We focus on the re-
cently introduced Deep Model Consolidation (DMC) [32] method, which uses auxiliary data from a similar
domain to consolidate knowledge from the old and the new model in a single model using distillation. This
is particularly interesting for the tissue type classification, since tissue slices are very large, and only small
parts of these slices are annotated for training. Hence, the remaining parts of these slices can be used as
an auxiliary dataset for model consolidation. We study the limitations of this method when the task size is
small (e.g., 2 or 3 classes per task). Furthermore, we analyze how the choice of the auxiliary data affects
class-incremental learning on various datasets. Based on our findings, instead of directly using the auxiliary
images, we propose to transform them so that they are more suitable for class-incremental learning.

1.2 Thesis Organization

In the chapter 2, we discuss prior work in the domain of continual learning, especially regularization-based
methods. In chapter 3, we discuss DMC [32] and LwF [18] in detail and propose different modifications.
We also propose a new method to transform auxiliary images for CIL. We present our results in chapter 4
and conclude in chapter 5
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Chapter 2

Related Work

Incremental learning has been a long-standing research topic even before the popularity of Deep Neural Net-
works [28, 3]. McCloskey et al.[21] first identified catastrophic forgetting, where old memory is overwritten
when a neural network is trained on new data. Similar forgetting effect in DNNs has been empirically shown
by Goodfellow et al. [6]. Since then, the research in this field follows three directions:

2.1 Replay-Based Methods

Many replay-based methods have been shown to work well in incremental learning settings [24, 25, 4,
11] by storing samples from the previous tasks. In the medical domain, replay-based method had been
used to incrementally build segmentation models for anatomical structures [22]. However, data-sensitive
applications often do not allow users to store or in many cases even combine data from multiple providers.
It is also possible to train generative models on the previous task data and use these models to replay samples
while training classifier on the current dataset [2, 15, 23]. However, GAN training requires careful finetuning
for the given dataset and is computationally expensive.

2.2 Parameter-Isolation Methods

Within constrained settings of the medical domain, parameter isolation methods with a fixed architecture
[20, 19, 26] can also be used. These methods find less important parameters in the network and train only
those parameters for the new data while keeping other parameters fixed. So, the current task uses previously
learned important parameters, but do not update them. This approach allows parameter sharing between
tasks, but they require a task oracle at test time to activate relevant parameters for a particular task. Aljundi
et al. [1] proposed to learn multiple classifiers and an expert gate that at test time identifies the task an image
belongs to. Once the task is identified, a designated classifier can be used to solve the task. However, since
the number of classifiers grows with the number of tasks, this method is not scalable.

2.3 Regularization-Based Methods

Regularization-based methods are more suited for the class-incremental settings we are focusing on. Meth-
ods such as EWC [13], SI [31], and IMM [17] regularize the parameters of the network based on the priors
from older tasks. Prior-based regularization ensures that, while training a network with the current data,
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CHAPTER 2. RELATED WORK

parameters do not deviate from the previous values by a large margin. However, such a soft penalty does
not necessarily allow the network to remember previous tasks. On the other hand, in LwF [18], the authors
proposed to use knowledge distillation of the previous tasks while fine-tuning classifier on the most recent
data. Combining a cross-entropy loss of the current data with the distillation loss based on the output of
previous classifier let the network to adapt current parameters for all the tasks. However, this method is
highly biased towards the most recent task, because during training the authors only used current task data.
In DMC [32], the authors attempted to alleviate this problem by using auxiliary data from a similar domain
but potentially from a different distribution (to reduce forgetting of the older tasks). The authors train a
separate network only on the most recent data, and then use the auxiliary data to consolidate knowledge of
both the classifiers in a single model by knowledge distillation. Once a consolidated model is trained it can
be used to classify all the classes of both the models.

It is important to mention that, combining multiple heterogeneous classifiers has been studied in other
work [30] but in a different setting. The authors focus on a problem similar to DMC, but they assume that
during consolidation, the model had access to all individual classifiers with the goal of combining them into
one. Also, they used images from test data (of training data on which individual classifiers were trained) as
an auxiliary data. Images from this test set come from the same distribution as the training set, that give the
consolidation model more information than the images which are taken from a different distribution. Also,
it is not practical to use test images for consolidation in CIL setting, since we do not have access to the test
set of the current classes. Hence, this method is not suitable for CIL setting. Furthermore, while combining
different models, the logits of the individual models might differ in scale. In [9], authors discussed the
problem with imbalanced logits when combining multiple classifiers, and proposed cosine normalization
techniques for the logits. However, this work has been tested in a setting with exemplar replay.

We use DMC [32] as a reference method since it works particularly well in CIL scenarios. Through
extensive experiments we show the limitations of the current DMC approach and propose improvements by
combining ideas from previous work [30, 9]. We also propose a new approach to use auxiliary data more
effectively by learning useful transformations.
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Chapter 3

Materials and Methods

As mentioned before, we focus on CIL for tissue type classification. In this domain, we cannot store samples
from previous classes and therefore cannot employ pure replay-based methods. Moreover, at test time we do
not have access to a task oracle to differentiate between tasks. Thus, we focus on distillation-based methods
in a class-incremental setting, which is defined as follows.

3.1 Problem Definition

Assume that for an image classification problem, the image domain is X and we have N different categories
such that Xi ⊂ X denotes the set of images belonging to class i. In CIL, we are given access to only a subset
of these categories at a time. Assume that we have trained a model on the first s categories, and we receive
new data with the images from categories s+1 to t. The goal of class-incremental learning is to further train
the model without using the data of the previous s categories such that the classifier is able to accurately
classify all t classes. In a practical scenario, data might arrive in many small batches of different classes, in
which this method can easily be extended for more than 2 steps we presented here. It is crucial to notice that
at test time we do not know which task a given image belongs to. Consequently, the network can classify all
categories only if it learns discriminative features among all of them.

3.2 Methods

Within the CIL setting, we discuss Learning without Forgetting (LwF) [18] and DMC [32] to understand
how knowledge distillation can be used to defy catastrophic forgetting in Deep Neural Networks.

3.2.1 LwF

This was the first work that demonstrated the effectiveness of knowledge distillation in a CIL setting. First,
authors train a classifier C1 on the previous data (fig. 3.1a), and a copy of this model is saved for the
knowledge distillation. While tuning this classifier for the current data (called as C2), authors remember the
previous task using knowledge distillation loss (fig. 3.1b). Distillation loss forces the classifier C2 to output
the probabilities for the previous classes (p̂1) similar to the output probabilities of C1 (p1). Concurrently,
the classifier C2 also learns the current task via cross-entropy loss. Knowledge distillation from the previous
model provides a learning signal to the current model such that the parameters are adapted to fit all the
classes. However, notice that while training C2, authors only used the data from the current task. Though,
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CHAPTER 3. MATERIALS AND METHODS

the neurons for the previous classes are also forced to be activated by a distillation loss, while the data
belongs to the current classes. This might create a conflicting signal for the classifier C2. Also, C2 is biased
towards the current task because it has seen images only from this task.

3.2.2 DMC

DMC tries to overcome the bias in the training of LwF by using an auxiliary datasetW for distillation (fig.
3.3). Assume that we have a model C1 trained on the previous s classes, and we get new data with images
from classes s+1 to t. A classifier C2 is trained from scratch only on the current data. Afterwards, both the
classifiers (C1 and C2) are consolidated into a single classifier (Ccon) by minimizing a double-distillation
loss, defined for a single auxiliary sample as follows:

Ldd(y, ẙ) =
1

t

t∑
j=1

(yj − ẙj)2. (3.1)

Here, yj denotes logits produced by the consolidated model, and ẙ is the concatenation of mean-
normalized logit outputs of C1 and C2. Since these models have been trained individually, without any
normalization, their logits can have very different values. The authors proposed the following mean normal-
ization of logits:

ẙj =

{
ŷj − 1

s

∑s
i=1 ŷi, 1 ≤ j ≤ s

ŷj − 1
t−s

∑t
i=s+1 ŷi, s < j ≤ t

, (3.2)

where ŷj represents the logits produced by the original models. Shifting all logits by the mean does not
affect the final probabilities of individual classifiers, but ensures that the logits in both the models have zero
mean. However, even with the mean normalization, it is not guaranteed that both the models’ logits will
have the same scales. The consolidated model will still be biased towards the logits that have a larger scale.

As we can see in fig. 3.2, logits normalized by their mean still can have large scale differences. The
logits for class 2 and 3 have median close to 0 compared to other class logits. One idea is to further normalize
these logits or use other loss formulations to reduce the impact of logit scales. For balanced training of the
consolidation model we propose the following normalization tricks:

3.2.3 Logit normalization tricks

To unify the scales of the logits from two different models, we applied the following normalization tricks.
(1) Variance normalization: One simple way to make sure that the logits from both the models have

the same scale is to apply variance normalization in addition to mean normalization as in eq 3.3.

ẙnormj =


ẙj

V ari=s
i=1(ẙi)

, 1 ≤ j ≤ s
ẙj

V ari=t
i=s+1(ẙi)

, s < j ≤ t
(3.3)

(2) Cross-Entropy normalization : Similar to the previous work [30], we also use the probability
normalization. To implement this, we first need to convert the logits of the individual models and the
consolidated model into probabilities by applying a softmax layer. For the individual models, we apply
softmax activation to the respective model outputs independently and get the target probability p̊j for each
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class. For the consolidation model, we divide the logits into two parts corresponding to the output classes
of two individual models as follows:

pj =


eyj∑s
i=1 e

yi
, 1 ≤ j ≤ s

eyj∑t
i=s+1 e

yi
, s < j ≤ t

, (3.4)

and can then apply the cross-entropy loss:

Ldd(y, ẙ) =
t∑

j=1

−p̊j ∗ log pj . (3.5)

(3) Cosine normalization : Instead of applying normalization post computation of the logits, authors in
[9] proposed to generate normalized logits. Suppose, the final layer input features are f(x) and the weights
are θ and bias b, and logits are defined as

yj = θTj f(x) + bj . (3.6)

Without normalization, scale of the individual logits depends a lot on the scale of the weight vector θj , the
scale of the embedding f(x), and bias values for each output neuron. We can generate normalized individual
logits by normalizing weight and embedding vectors as follows:

yj = θ̄Tj f̄(x), (3.7)

where, v̄ = v
||v||2 , denotes a normalized vector.

Note that in eq. 3.7, we do not use bias term unlike in eq. 3.6. In addition, we use the dot product of the
normalized weights and the embedding which ensures that all logits are within the range -1 to 1.

3.2.4 Image Transformer Networks

Another limitation of the DMC method is that two models are trained independently on the images from
different classes. After that, the consolidated model is trained using auxiliary data and it never observes the
images for the classes it needs to classify. This training approach might not learn discriminative features
useful for classification among all the classes. Hence, instead of using two separate classifiers, we propose
to use a single classifier similar to LwF [18]. Moreover, in DMC authors used the auxiliary data directly and
they did not have control over bias in the auxiliary data towards certain classes. We propose to transform the
auxiliary images such that they are more representative of the previous image categories, instead of using
them directly for the distillation. A schema for this method is shown in Fig. 3.4. We define this method for
the two steps of incremental training, but can be extended for more than two steps.

We train a classifier C1 on the first task. After the classifier training, we train a transformer T1 on
auxiliary data xaux such that the output x’

aux of the transformer, when passed through the classifier C1,
matches the output of the actual task 1 data x1. We use a moment matching loss on individual output
probabilities to train the transformer T1. We try to reduce the L2 distance between the mean and the variance
vectors µ1,aux, σ1,aux and µ1, σ1, which is defined in eq. 3.8 This transformed auxiliary data x’

aux should
be more similar to x1 than xaux to x1. After transformer training, we expand C1 to accommodate additional
image categories of the current dataset. This model C2 is initialized with the weights of C1 and during
training, the transformed auxiliary data is used for the knowledge distillation of C1. Since we are using only
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CHAPTER 3. MATERIALS AND METHODS

a single classifier all the time, the classifier C2 should learn to classify all image categories seen until now,
as long as xaux

’ is sufficiently similar to the actual x1.

Lmoment = (µ1 − µ1,aux)2 + (σ1 − σ1,aux)2 (3.8)

where µ1 and σ1 are obtained on full data x1, while µ1,aux and σ1,aux are statistics of a single batch of the
auxiliary data.
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CHAPTER 3. MATERIALS AND METHODS

(a) (b)

Figure 3.1: Learning without forgetting (LwF). The first classifier is trained using method (a). All sub-
sequent classifiers are trained using method (b). After training of (b) C1 is replaced by C2 for the next
step.
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class-id
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Figure 3.2: Model logits for individual models. Class 0, 1, 2, 3 belongs to C1 and 4, and 5 belongs to C2

(a) (b)

Figure 3.3: Deep Model Consolidation (DMC) method has two steps. On the left two classifiers are trained
independently on different class of images. On the right, a consolidated model is trained using auxiliary
data and double distillation. Green = trainable modules, striped = frozen modules

9
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(a) (b)

(c) (d)

Figure 3.4: Knowledge Distillation with transformed auxiliary data. (a) represents first classifier training,
while (c) represents all subsequent classifiers training. Similary, (b) represents first transformer training
and (d) all subsequent transformers training. In (b) and (d) we use L2-loss to match moments of output
probabilities. green = trainable modules, striped = frozen modules.
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Chapter 4

Experiments and Results

4.1 Datasets

In this work, we specifically focus on evaluating CIL in a small task setting, which is more challenging.
Networks trained to classify a small number of image categories may only learn features that are sufficient
to distinguish these categories, and they might not generalize to future tasks. Furthermore, small tasks
provide more flexibility for medical applications, since each data provider is not required to annotate a large
number of different classes. We evaluate the different methods described in Section 3 on the following three
datasets.

(1) Split-MNIST: The MNIST [16] dataset has 60,000 training images and 10,000 test images of 28x28
pixels. We divide the training set into two parts. The images from class 0 to 5 are used for incremental
training and the remaining 4 categories (6 to 9) serve as auxiliary data. We further divide the training
images into three tasks with two classes each.

(2) Split-CIFAR10: CIFAR-10 [14] consists of 60,000 images of size 32x32 pixels from 10 different
categories. Out of these, 50,000 images are part of the training set and 10,000 images are part of the test set.
Similar to Split-MNIST, we use images from the first 6 classes for the CIL setting of three tasks, and images
from the remaining 4 categories as auxiliary data.

(3) Tissue Classification: We use the Tissue Classification data from [12] that comprises 100,000
non-overlapping image patches from hematoxylin & eosin (H&E) stained histological images of human
colorectal cancer (CRC) and normal tissues. The dataset has images for 9 tissue types. We divide the 6
categories debris (DEB), cancer-associated stroma (STR), background (BACK), lymphocytes (LYM), adi-
pose (ADI), and mucus (MUC) into three tasks with two categories each. The images from the remaining
3 tissue types, i.e., smooth muscle (MUS), normal colon mucosa (NORM), and colorectal adenocarcinoma
epithelium (TUM), are used as auxiliary data.

4.2 Network Architecture and Training details

We design different architectures for each dataset. These architecture have been chosen based on complexity
of the dataset.

For Split-MNIST, we use a simple LeNet architecture with 3 convolution layers of filter sizes 5x5 with
6, 16, and 120 filters per layer, respectively. After the first and the second convolution layer, we add a max-
pool layer of size 2x2, and after the last convolution layer, we add a dense layer with 84 neurons. The final
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CHAPTER 4. EXPERIMENTS AND RESULTS

layer has as many output neurons as there are classes and is followed by a softmax layer that converts them
into probabilities. We use ReLU activations everywhere except for the final layer.

For Split-CIFAR10, we use three convolutional blocks followed by a dense layer. Each block has 2
convolution layers with filter-size 3x3. The first layer has stride 1 and preserves the input size. The second
layer has stride 2 and reduces the input size by half. Each block has 64, 128, and 256 channels, respectively.
The flattened output of the last convolutional block is fed to a dense layer with 128 hidden units, followed
by an output layer with the number of neurons being equal to the number of output classes. All layers have
ReLU activations, except for the output layer where we use the standard softmax activation.

For Tissue Classification dataset we use a pretrained ResNet-18 [7] feature extractor followed by the
output layer with the number of neurons being equal to the number of output classes.

For DMC, while doing consolidation, we use the same model architecture as the individual classifiers
and we start the consolidated model training from scratch. For the transformer, we use three convolution
layers with filter size 3x3. The first and second layer have 16 and 32 channels, respectively. The final
layer has the same number of channels as the input image. However, without any kind of regularization,
the transformers can considerably modify the images such that they no longer look realistic. Hence, we use
L2-loss between transformed and an original image as a regularizer. This regularizer allows transformer to
learn statistics of the original model without shifting the images by a large margin.

For all the experiments we use stochastic gradient descent (SGD) with 0.01 learning rate, 0.9 momentum
and 0.0005 weight decay, for 50 epochs. We use a batch-size of 128 for all the datasets except for the
transformer training. For transformers training, we use a batch-size of 2048 for Split-MNIST and Split-
CIFAR-10, and 256 for the Tissue Classification data (due to memory constraints).

4.3 Results

We compare different variants of DMC on the small tasks with our transformer-based method on three
datasets. Results for these variants are shown in Table 4.1, 4.2, and 4.3. In these tables, each column
represents for how many classes a classifier is trained on. Each row represents the accuracy of a CIL variant
on the test data after each incremental training step. The method finetune represents incremental training of
the same classifier only using the current data. This should be the lower bound for any CIL method. On the
other hand, upper bound is obtained by training a classifier jointly on the classes up to and including the
ones mentioned in corresponding columns. The best CIL variant is marked in blue.

The images in the Split-MNIST dataset are rather simpler since they have only one channel. In this
setting, we can see that our transformer-based method outperforms DMC for three steps of incremental
training (Table 4.1). As we have discussed in Chapter 3, the accuracy of DMC for a particular task depends
on whether the auxiliary data is unbiased. In Table 4.4, we see that DMC suffers from severe forgetting for
task-2 compared to task-1 and task-3. This can also be explained by the logit scale difference we shown in
fig. 3.2. However, by transforming the auxiliary data, we observe a graceful forgetting for these tasks. In
addition, the final accuracy of the classifier is better than DMC. In fig. 4.1 we show transformed auxiliary
images for Split-MNIST after the first transformer training. The labels on top of the images represent
classifier output which is trained to classify images as 0 or 1. These images are visually similar to actual
auxiliary images, because of the regularization loss. But, we can see that the digits with curved edges are
more likely to be classified as 0 than the digits with the straight edges, which are classified as 1. This suggests
that the transformer activated some parts of the images more than the others, and hence our transformed data
is better for the distillation of the previous tasks than the original auxiliary data.

For Split-CIFAR10 and the Tissue Classification data, the content of the images varies considerably
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Figure 4.1: Transformed auxiliary images for Split-MNIST dataset

from one class to the other. In this setting, transformer-based methods are not on par with DMC. One reason
could be that the transformed images are not representative of the previous tasks. Since the transformers
are trained using a moment matching loss, there is no signal to learn if the transformed images are actually
similar to the training images. In additional, the moment matching loss only matches the output probabilities,
leaving many degrees of freedom for transformations in the input space. Transformed auxiliary images are
shown in fig. 4.2 after the first transformer training. The labels on top of the images represents output of the
classifier trained to classify images as aeroplane or automobile. Since there is less feature overlap between
training images and auxiliary images, we can not observe any pattern for the transformed images unlike for
split-MNIST.

We see that for all the datasets, DMC with variance normalization is comparable to the original DMC
accuracy. However, cosine and cross-entropy normalization decrease the accuracy of the classifier in all
three datasets. This can be explained by the fact that these normalization techniques have been proposed for
different settings than CIL. For example cross-entropy normalization in eq. 3.4 assumes that the probabilities
of the consolidated model add up to 2 because we apply two individual softmax to the final layer. On the
other hand, in cosine normalization logits for both the model (C1 and C2) are between range -1 to 1. It is
possible that auxiliary images activate logits for both the models and they might create conflicting signals
for the consolidated model.
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Figure 4.2: Transformed auxiliary images for Split-CIFAR dataset

Method Number of classes
2 4 6

DMC 0.999 0.943 0.733
DMC+var norm 0.999 0.941 0.716

DMC+cross-entropy 0.999 0.753 0.162
DMC+cosine norm 0.999 0.771 0.426

Transformer 0.999 0.900 0.833
Finetune 0.999 0.490 0.311

Upper bound 0.999 0.997 0.993

Table 4.1: Split-MNIST

Method Number of classes
2 4 6

DMC 0.957 0.593 0.461
DMC+var norm 0.957 0.598 0.466

DMC+cross-entropy 0.957 0.393 0.167
DMC+cosine norm 0.957 0.568 0.408

Transformer 0.957 0.6435 0.404
Finetune 0.957 0.432 0.308

Upper bound 0.957 0.849 0.806

Table 4.2: Split-CIFAR-10

Method Number of classes
2 4 6

DMC 0.976 0.809 0.712
DMC + var norm 0.976 0.822 0.710

DMC + cross-entropy 0.976 0.484 0.426
DMC + cosine norm 0.976 0.273 0.607

Transformer 0.976 0.371 0.461
Finetune 0.976 0.661 0.513

Upper bound 0.976 0.965 0.974

Table 4.3: Tissue type Classification
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Train
Test task-0 task-1 task-2

task-0 0.999 0.964 0.904
task-1 - 0.921 0.400
task-2 - - 0.901

Train
Test task-0 task-1 task-2

task-0 0.999 0.806 0.742
task-1 - 0.998 0.779
task-2 - - 0.994

Table 4.4: Task level accuracy for DMC (left) and Transformer based method (right) on Split-MNIST
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Chapter 5

Conclusion

Distillation-based regularization approaches provide a good alternative to other CIL methods. These ap-
proaches can use auxiliary data from a different distribution than the training data, which gives us more
flexibility to apply these methods, e.g., in the medical domain. Furthermore, distillation does not require
labels for the auxiliary data, that are much harder to obtain in the medical domain (compared to natural
images). However, we observed that the auxiliary data can be biased towards certain classes of the training
set and DMC does not present a way to choose unbiased auxiliary images. We proposed to use auxiliary data
combined with a transformation model. This model learns to transform the auxiliary images more similar to
the previous task images. We showed that such a transformation can remove the bias towards certain classes
in the auxiliary data. Unbiased auxiliary images show a graceful forgetting of the previous tasks which is
more predictable than DMC.

We see that transformer training is not effective for the images with a complex structure, since these
images give a transformer many degrees of freedom to modify them. Even though these images are visu-
ally similar to the original auxiliary images, we believe that for the classifier, the images produced by the
transformer are too different from the previous task images. One possible argument for this deteriorating
behavior is that the transformer needs to learn a better objective than moment matching. Generative Adver-
sarial Networks (GANs) allow us to generate images from a specific distribution post-training. However,
most of the approaches until now train GAN to produce images from a random noise vector. As the next
steps, one can explore GAN and other image transformation architectures.

17



CHAPTER 5. CONCLUSION

18



Bibliography

[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a net-
work of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3366–3375, 2017.

[2] Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-recursal: Solving
the catastrophic forgetting problem in deep neural networks. arXiv preprint arXiv:1802.03875, 2018.

[3] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine learn-
ing. In Advances in neural information processing systems, pages 409–415, 2001.

[4] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Doka-
nia, Philip HS Torr, and M Ranzato. Continual learning with tiny episodic memories. 2019.

[5] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to defy forgetting
in classification tasks. arXiv preprint arXiv:1909.08383, 2(6), 2019.

[6] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical inves-
tigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[9] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 831–839, 2019.

[10] Osamu Iizuka, Fahdi Kanavati, Kei Kato, Michael Rambeau, Koji Arihiro, and Masayuki Tsuneki.
Deep learning models for histopathological classification of gastric and colonic epithelial tumours.
Scientific Reports, 10(1):1–11, 2020.

[11] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. arXiv preprint
arXiv:1802.10269, 2018.

19



BIBLIOGRAPHY

[12] Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting survival
from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS
medicine, 16(1), 2019.

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[15] Frantzeska Lavda, Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Continual classi-
fication learning using generative models. arXiv preprint arXiv:1810.10612, 2018.

[16] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[17] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming catas-
trophic forgetting by incremental moment matching. In Advances in neural information processing
systems, pages 4652–4662, 2017.

[18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

[19] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 67–82, 2018.

[20] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7765–7773, 2018.

[21] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Academic Press, Psychology of Learning and Motivation, 24:109 – 165,
1989.

[22] Firat Ozdemir and Orcun Goksel. Extending pretrained segmentation networks with additional
anatomical structures. International journal of computer assisted radiology and surgery, 14(7):1187–
1195, 2019.

[23] Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative modeling. arXiv
preprint arXiv:1705.09847, 2017.

[24] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: In-
cremental classifier and representation learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010, 2017.

[25] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems, pages 350–360,
2019.

20



BIBLIOGRAPHY
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