
Zcash Protocol Speci�cation
Version 2025.6.3-12-ge6b7f9 [NU6.1]

Daira-Emma Hopwood†

Sean Bowe† — Taylor Hornby† — Nathan Wilcox†

January 14, 2026

1

Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security �xes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs) . It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This speci�cation de�nes the Zcash consensus protocol at launch, and after each of the upgrades
codenamed Overwinter, Sapling, Blossom, Heartwood, Canopy, N​U​5, N​U​6, and N​U​6.1. It is a work in
progress. Protocol differences from Zerocash and Bitcoin are also explained.

Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment,
�nancial privacy, proof of work, zero knowledge.

Contents 1

1 Introduction 7
1.1 Caution . 8
1.2 High-level Overview . 8

2 Notation 10

† Electric Coin Company
1 Jubjub bird image credit: Peter Newell 1902; Daira-Emma Hopwood 2018.

1

3 Concepts 13
3.1 Payment Addresses and Keys . 13
3.2 Notes . 14

3.2.1 Note Plaintexts and Memo Fields . 15
3.2.2 Note Commitments . 16
3.2.3 Nulli�ers . 17

3.3 The Block Chain . 18
3.4 Transactions and Treestates . 18
3.5 JoinSplit Transfers and Descriptions . 19
3.6 Spend Transfers, Output Transfers, and their Descriptions . 20
3.7 Action Transfers and their Descriptions . 20
3.8 Note Commitment Trees . 21
3.9 Nulli�er Sets . 22
3.10 Block Subsidy, Funding Streams, and Founders’ Reward . 22
3.11 Coinbase Transactions . 22
3.12 Mainnet and Testnet . 22

4 Abstract Protocol 23
4.1 Abstract Cryptographic Schemes . 24

4.1.1 Hash Functions . 24
4.1.2 Pseudo Random Functions . 25
4.1.3 Pseudo Random Permutations . 26
4.1.4 Symmetric Encryption . 26
4.1.5 Key Agreement . 26
4.1.6 Key Derivation . 27
4.1.7 Signature . 28

4.1.7.1 Signature with Re-Randomizable Keys . 29
4.1.7.2 Signature with Signing Key to Validating Key Monomorphism 30

4.1.8 Commitment . 31
4.1.9 Represented Group . 32
4.1.10 Coordinate Extractor . 33
4.1.11 Group Hash . 33
4.1.12 Represented Pairing . 34
4.1.13 Zero-Knowledge Proving System . 34

4.2 Key Components . 36
4.2.1 Sprout Key Components . 36
4.2.2 Sapling Key Components . 36
4.2.3 Orchard Key Components . 38

4.3 JoinSplit Descriptions . 39
4.4 Spend Descriptions . 40
4.5 Output Descriptions . 41
4.6 Action Descriptions . 42
4.7 Sending Notes . 43

4.7.1 Sending Notes (Sprout) . 43
4.7.2 Sending Notes (Sapling) . 44

2

4.7.3 Sending Notes (Orchard) . 45
4.8 Dummy Notes . 46

4.8.1 Dummy Notes (Sprout) . 46
4.8.2 Dummy Notes (Sapling) . 47
4.8.3 Dummy Notes (Orchard) . 48

4.9 Merkle Path Validity . 49
4.10 SIGHASH Transaction Hashing . 50
4.11 Non-malleability (Sprout) . 51
4.12 Balance (Sprout) . 51
4.13 Balance and Binding Signature (Sapling) . 52
4.14 Balance and Binding Signature (Orchard) . 54
4.15 Spend Authorization Signature (Sapling and Orchard) . 56
4.16 Computing ρ values and Nulli�ers . 57
4.17 Chain Value Pool Balances . 58
4.18 Zk-SNARK Statements . 60

4.18.1 JoinSplit Statement (Sprout) . 60
4.18.2 Spend Statement (Sapling) . 61
4.18.3 Output Statement (Sapling) . 62
4.18.4 Action Statement (Orchard) . 63

4.19 In-band secret distribution (Sprout) . 65
4.19.1 Encryption (Sprout) . 65
4.19.2 Decryption (Sprout) . 66

4.20 In-band secret distribution (Sapling and Orchard) . 67
4.20.1 Encryption (Sapling and Orchard) . 67
4.20.2 Decryption using an Incoming Viewing Key (Sapling and Orchard) 68
4.20.3 Decryption using an Outgoing Viewing Key (Sapling and Orchard) 70

4.21 Block Chain Scanning (Sprout) . 71
4.22 Block Chain Scanning (Sapling and Orchard) . 72

5 Concrete Protocol 73
5.1 Integers, Bit Sequences, and Endianness . 73
5.2 Bit layout diagrams . 73
5.3 Constants . 74
5.4 Concrete Cryptographic Schemes . 75

5.4.1 Hash Functions . 75
5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions 75
5.4.1.2 BLAKE2 Hash Functions . 76
5.4.1.3 Merkle Tree Hash Function . 76
5.4.1.4 hSig Hash Function . 77
5.4.1.5 CRHivk Hash Function . 77
5.4.1.6 DiversifyHashSapling and DiversifyHashOrchard Hash Functions 78
5.4.1.7 Pedersen Hash Function . 79
5.4.1.8 Mixing Pedersen Hash Function . 81
5.4.1.9 Sinsemilla Hash Function . 81
5.4.1.10 PoseidonHash Function . 84

3

5.4.1.11 Equihash Generator . 85
5.4.2 Pseudo Random Functions . 86
5.4.3 Symmetric Encryption . 88
5.4.4 Pseudo Random Permutations . 88
5.4.5 Key Agreement And Derivation . 88

5.4.5.1 Sprout Key Agreement . 88
5.4.5.2 Sprout Key Derivation . 89
5.4.5.3 Sapling Key Agreement . 89
5.4.5.4 Sapling Key Derivation . 89
5.4.5.5 Orchard Key Agreement . 90
5.4.5.6 Orchard Key Derivation . 90

5.4.6 Ed25519 . 90
5.4.7 RedDSA, RedJubjub, and RedPallas . 92

5.4.7.1 Spend Authorization Signature (Sapling and Orchard) 95
5.4.7.2 Binding Signature (Sapling and Orchard) . 95

5.4.8 Commitment schemes . 95
5.4.8.1 Sprout Note Commitments . 95
5.4.8.2 Windowed Pedersen commitments . 96
5.4.8.3 Homomorphic Pedersen commitments (Sapling and Orchard) 97
5.4.8.4 Sinsemilla commitments . 98

5.4.9 Represented Groups and Pairings . 99
5.4.9.1 BN-254 . 99
5.4.9.2 BLS12-381 . 101
5.4.9.3 Jubjub . 102
5.4.9.4 Coordinate Extractor for Jubjub . 104
5.4.9.5 Group Hash into Jubjub . 104
5.4.9.6 Pallas and Vesta . 105
5.4.9.7 Coordinate Extractor for Pallas . 106
5.4.9.8 Group Hash into Pallas and Vesta . 107

5.4.10 Zero-Knowledge Proving Systems . 110
5.4.10.1 BCTV14 . 110
5.4.10.2 Groth16 . 111
5.4.10.3 Halo 2 . 112

5.5 Encodings of Note Plaintexts and Memo Fields . 112
5.6 Encodings of Addresses and Keys . 113

5.6.1 Transparent Encodings . 113
5.6.1.1 Transparent Addresses . 113
5.6.1.2 Transparent Private Keys . 114

5.6.2 Sprout Encodings . 114
5.6.2.1 Sprout Payment Addresses . 114
5.6.2.2 Sprout Incoming Viewing Keys . 114
5.6.2.3 Sprout Spending Keys . 115

5.6.3 Sapling Encodings . 115
5.6.3.1 Sapling Payment Addresses . 115
5.6.3.2 Sapling Incoming Viewing Keys . 116

4

5.6.3.3 Sapling Full Viewing Keys . 116
5.6.3.4 Sapling Spending Keys . 117

5.6.4 Uni�ed and Orchard Encodings . 117
5.6.4.1 Uni�ed Payment Addresses and Viewing Keys . 117
5.6.4.2 Orchard Raw Payment Addresses . 118
5.6.4.3 Orchard Raw Incoming Viewing Keys . 118
5.6.4.4 Orchard Raw Full Viewing Keys . 118
5.6.4.5 Orchard Spending Keys . 119

5.7 BCTV14 zk-SNARK Parameters . 119
5.8 Groth16 zk-SNARK Parameters . 119
5.9 Randomness Beacon . 120

6 Network Upgrades 120

7 Consensus Changes from Bitcoin 122
7.1 Transaction Encoding and Consensus . 122

7.1.1 Transaction Identi�ers . 124
7.1.2 Transaction Consensus Rules . 124

7.2 JoinSplit Description Encoding and Consensus . 128
7.3 Spend Description Encoding and Consensus . 128
7.4 Output Description Encoding and Consensus . 129
7.5 Action Description Encoding and Consensus . 130
7.6 Block Header Encoding and Consensus . 131
7.7 Proof of Work . 133

7.7.1 Equihash . 133
7.7.2 Dif�culty �lter . 134
7.7.3 Dif�culty adjustment . 134
7.7.4 nBits conversion . 136
7.7.5 De�nition of Work . 136

7.8 Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’ Reward 136
7.9 Payment of Founders’ Reward . 137
7.10 Payment of Funding Streams, Deferred Lockbox, and Lockbox Disbursement 139

7.10.1 ZIP 214 Funding Streams . 140
7.11 Changes to the Script System . 142
7.12 Bitcoin Improvement Proposals . 142

8 Differences from the Zerocash paper 142
8.1 Transaction Structure . 142
8.2 Memo Fields . 142
8.3 Uni�cation of Mints and Pours . 143
8.4 Faerie Gold attack and �x . 143
8.5 Internal hash collision attack and �x . 145
8.6 Changes to PRF inputs and truncation . 146
8.7 In-band secret distribution . 147
8.8 Omission in Zerocash security proof . 148
8.9 Miscellaneous . 149

5

9 Acknowledgements 149

10 Change History 151

11 References 185

Appendices 200

A Circuit Design 200
A.1 Quadratic Constraint Programs . 200
A.2 Elliptic curve background . 200
A.3 Circuit Components . 201

A.3.1 Operations on individual bits . 201
A.3.1.1 Boolean constraints . 201
A.3.1.2 Conditional equality . 202
A.3.1.3 Selection constraints . 202
A.3.1.4 Nonzero constraints . 202
A.3.1.5 Exclusive-or constraints . 202

A.3.2 Operations on multiple bits . 202
A.3.2.1 [Un]packing modulo 𝑟S . 202
A.3.2.2 Range check . 203

A.3.3 Elliptic curve operations . 205
A.3.3.1 Checking that Af�ne-ctEdwards coordinates are on the curve 205
A.3.3.2 ctEdwards [de]compression and validation . 205
A.3.3.3 ctEdwards↔Montgomery conversion . 205
A.3.3.4 Af�ne-Montgomery arithmetic . 206
A.3.3.5 Af�ne-ctEdwards arithmetic . 207
A.3.3.6 Af�ne-ctEdwards nonsmall-order check . 208
A.3.3.7 Fixed-base Af�ne-ctEdwards scalar multiplication . 208
A.3.3.8 Variable-base Af�ne-ctEdwards scalar multiplication 209
A.3.3.9 Pedersen hash . 210
A.3.3.10 Mixing Pedersen hash . 212

A.3.4 Merkle path check . 213
A.3.5 Windowed Pedersen Commitment . 213
A.3.6 Homomorphic Pedersen Commitment . 213
A.3.7 BLAKE2s hashes . 214

A.4 The Sapling Spend circuit . 217
A.5 The Sapling Output circuit . 219

B Batching Optimizations 220
B.1 RedDSA batch validation . 220
B.2 Groth16 batch veri�cation . 221
B.3 Ed25519 batch validation . 223

List of Theorems and Lemmata 224

Index 224

6

1 Introduction #introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security �xes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs) .

In this document, technical terms for concepts that play an important rôle in Zcash are written in slanted text ,
which links to an index entry. Italics are used for emphasis and for references between sections of the document.
The symbol § precedes section numbers in cross-references.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document
are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear in
this document in lower case as plain English words, absent their normative meanings.

The most signi�cant changes from the original Zerocash are explained in section 8 ‘Differences from the Zerocash paper’
on page 142.

Changes speci�c to the Overwinter upgrade are highlighted in bright blue.

Changes speci�c to the Sapling upgrade following Overwinter are highlighted in green.

Changes speci�c to the Blossom upgrade following Sapling are highlighted in red.

Changes speci�c to the Heartwood upgrade following Blossom are highlighted in orange.

Changes speci�c to the Canopy upgrade following Heartwood are highlighted in purple.

Changes speci�c to the N​U​5 upgrade following Canopy are highlighted in slate blue.

Changes speci�c to the N​U​6 upgrade following N​U​5 are highlighted in pink.

Changes speci�c to the N​U​6.1 upgrade following N​U​6 are highlighted in burgundy.

All of these are also changes from Zerocash.

The name Sprout is used for the shielded protocol de�ned prior to the Sapling upgrade.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Network Upgrades — the strategy for upgrading the Zcash protocol.

• Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

• Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].

• Appendix: Circuit Design — details of how the Sapling circuits are de�ned as quadratic constraint programs.

• Appendix: Batching Optimizations — improvements to the ef�ciency of validating multiple signatures and
verifying multiple proofs.

7

https://zips.z.cash/protocol/protocol.pdf#introduction

1.1 Caution #caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The speci�c cause will not
matter to the users of your software whose wealth is lost.

Having said that, a speci�cation of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you �nd any mistake in this speci�cation, please �le an
issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.

1.2 High-level Overview #overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is not
part of the normative protocol speci�cation. This overview applies to Sprout, Sapling, and Orchard, differences in
the cryptographic constructions used notwithstanding.

All value in Zcash belongs to some chain value pool . There is a single transparent chain value pool , a chain value
pool for each shielded protocol (Sprout or Sapling or Orchard), and a deferred development fund chain value
pool . Transfers of transparent value work essentially as in Bitcoin and have the same privacy properties. Value
in a shielded chain value pool is carried by notes 2, which specify an amount and (indirectly) a shielded payment
address, which is a destination to which notes can be sent. As in Bitcoin, this is associated with a private key that
can be used to spend notes sent to the address; in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment . Once the transaction creating a note has
been mined, the note is associated with a �xed note position in a tree of note commitments, and with a nulli�er2

unique to that note . Computing the nulli�er requires the associated private spending key (or the nulli�er deriving
key for Sapling or Orchard notes). It is infeasible to correlate the note commitment or note position with the
corresponding nulli�er without knowledge of at least this key. An unspent valid note , at a given point on the block
chain, is one for which the note commitment has been publically revealed on the block chain prior to that point,
but the nulli�er has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol]. It
also can include JoinSplit descriptions, Spend descriptions, Output descriptions and Action descriptions. Together
these describe shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For
Sprout, each JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling,
each shielded input or shielded output has its own description. For Orchard, each Action description handles up
to one shielded input and up to one shielded output .) It is also possible for value to be transferred between chain
value pools, either transparent or shielded ; this always reveals the amount transferred.

In each shielded transfer, the nulli�ers of the input notes are revealed (preventing them from being spent again)
and the commitments of the output notes are revealed (allowing them to be spent in future).

A transaction also includes computationally sound zk-SNARK proofs and signatures, which prove that all of the
following hold except with insigni�cant probability:

For each shielded input ,

• [Sapling onward] there is a revealed value commitment to the same value as the input note;3

• if the value is nonzero, some revealed note commitment exists for this note;

• the prover knew the proof authorizing key of the note;

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nulli�ers were called “serial numbers”.
3 For Orchard, each Action reveals a single value commitment to the net value spent by the Action, rather than one value commitment for

the input note and one for the output note.

8

https://zips.z.cash/protocol/protocol.pdf#caution
https://github.com/zcash/zips/issues
https://zips.z.cash/protocol/protocol.pdf#overview

• the nulli�er and note commitment are computed correctly.

and for each shielded output ,

• [Sapling onward] there is a revealed value commitment to the same value as the output note;3

• the note commitment is computed correctly;

• it is infeasible to cause the nulli�er of the output note to collide with the nulli�er of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling and Orchard, the value
commitments corresponding to the inputs and outputs are checked to balance (together with any net transparent
input or output) outside the zk-SNARK .

In addition, various measures (differing between Sprout and Sapling or Orchard) are used to ensure that the
transaction cannot be modi�ed by a party not authorized to do so.

Outside the zk-SNARK , it is checked that the nulli�ers for the input notes had not already been revealed (i.e. they
had not already been spent).

A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a
holder of the corresponding private key, which in this context is called the receiving key. This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes.

In Sapling and Orchard, for each spending key there is a full viewing key that allows recognizing both incoming
and outgoing notes without having spending authority. This is implemented by an additional ciphertext in each
Output description or Action description.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.4 This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets.

The nulli�ers are necessary to prevent double-spending : each note on the block chain only has one valid nulli�er,
and so attempting to spend a note twice would reveal the nulli�er twice, which would cause the second transaction
to be rejected.

4 We make this claim only for fully shielded transactions. It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions, see [Peterson2017],
[Quesnelle2017], and [KYMM2018].

9

2 Notation #notation

B means the type of bit values, i.e. {0, 1}. BY means the type of byte values, i.e. {0 .. 255}.

N means the type of nonnegative integers. N+ means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

𝑥 ◦
◦ 𝑇 is used to specify that 𝑥 has type 𝑇 . A cartesian product type is denoted by 𝑆 × 𝑇 , and a function type by

𝑆 → 𝑇 . An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by 𝑆 →R 𝑇 . The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given 𝑓 ◦

◦ 𝑆 →R 𝑇 and 𝑠 ◦
◦ 𝑆, sampling a variable 𝑥 ◦

◦ 𝑇 from the output of 𝑓

applied to 𝑠 is denoted by 𝑥 ←R 𝑓(𝑠).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if 𝑥 ◦
◦ 𝑋 , 𝑦 ◦

◦ 𝑌 , and
𝑓 ◦

◦ 𝑋 × 𝑌 → 𝑍 , then an invocation of 𝑓(𝑥, 𝑦) can also be written 𝑓𝑥(𝑦).

{𝑥 ◦
◦ 𝑇 | 𝑝𝑥}means the subset of 𝑥 from 𝑇 for which 𝑝𝑥 (a boolean expression depending on 𝑥) holds.

𝑇 ⊆ 𝑈 indicates that 𝑇 is an inclusive subset or subtype of 𝑈 .

𝑆 ∪ 𝑇 means the set union of 𝑆 and 𝑇 .

𝑆 ∩ 𝑇 means the set intersection of 𝑆 and 𝑇 , i.e. {𝑥 ◦
◦ 𝑆 | 𝑥 ∈ 𝑇}.

𝑆 ∖ 𝑇 means the set difference obtained by removing elements in 𝑇 from 𝑆, i.e. {𝑥 ◦
◦ 𝑆 | 𝑥 /∈ 𝑇}.

𝑥 ◦
◦ 𝑇 ↦→ 𝑒𝑥

◦
◦ 𝑈 means the function of type 𝑇 → 𝑈 mapping formal parameter 𝑥 to 𝑒𝑥 (an expression depending

on 𝑥). The types 𝑇 and 𝑈 are always explicit.

𝑥 ◦
◦ 𝑇 ↦→ ̸∈𝑉 𝑒𝑥

◦
◦ 𝑈 means 𝑥 ◦

◦ 𝑇 ↦→ 𝑒𝑥
◦
◦ 𝑈 ∪ 𝑉 restricted to the domain {𝑥 ◦

◦ 𝑇 | 𝑒𝑥 ̸∈ 𝑉 } and range 𝑈 .

P
(︀
𝑇
)︀

means the powerset of 𝑇 .

⊥ is a distinguished value used to indicate unavailable information, a failed decryption or validity check, or an
exceptional case.

𝑇 [ℓ], where 𝑇 is a type and ℓ is an integer, means the type of sequences of length ℓ with elements in 𝑇 . For example,
B[ℓ] means the set of sequences of ℓ bits, and BY[𝑘] means the set of sequences of 𝑘 bytes.

BY[N] means the type of byte sequences of arbitrary length.

length(𝑆) means the length of (number of elements in) 𝑆.

truncate𝑘(𝑆) means the sequence formed from the �rst 𝑘 elements of 𝑆.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]ℓ means the sequence of ℓ zero bytes.

“...” means the given string represented as a sequence of bytes in US-ASCII . For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63].

[0]ℓ means the sequence of ℓ zero bits. [1]ℓ means the sequence of ℓ one bits.

𝑎..𝑏, used as a subscript, means the sequence of values with indices 𝑎 through 𝑏 inclusive. For example, anew
pk,1..Nnew

means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew]. (For consistency with the notation in [BCGGMTV2014] and in [BK2016],

this speci�cation uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{𝑎 .. 𝑏}means the set or type of integers from 𝑎 through 𝑏 inclusive.

[𝑓(𝑥) for 𝑥 from 𝑎 up to 𝑏] means the sequence formed by evaluating 𝑓 on each integer from 𝑎 to 𝑏 inclusive, in
ascending order. Similarly, [𝑓(𝑥) for 𝑥 from 𝑎 down to 𝑏] means the sequence formed by evaluating 𝑓 on each
integer from 𝑎 to 𝑏 inclusive, in descending order.

𝑎 || 𝑏 means the concatenation of sequences 𝑎 then 𝑏.

10

https://zips.z.cash/protocol/protocol.pdf#notation

concatB(𝑆) means the sequence of bits obtained by concatenating the elements of 𝑆 as bit sequences.

sorted(𝑆) means the sequence formed by sorting the elements of 𝑆.

F𝑛 means the �nite �eld with 𝑛 elements, and F*
𝑛 means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of 𝑎 ◦
◦ F𝑛 in the range {0 .. 𝑛− 1}

(or the unique representative of 𝑎 ◦
◦ F*

𝑛 in the range {1 .. 𝑛− 1}) as 𝑎 mod 𝑛. Conversely, we denote the element of F𝑛

corresponding to an integer 𝑘 ◦
◦ Z as 𝑘 (mod 𝑛). We also use the latter notation in the context of an equality 𝑘 = 𝑘′

(mod 𝑛) as shorthand for 𝑘 mod 𝑛 = 𝑘′ mod 𝑛, and similarly 𝑘 ̸= 𝑘′ (mod 𝑛) as shorthand for 𝑘 mod 𝑛 ̸= 𝑘′ mod 𝑛.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between �eld
elements and their representatives, since the meaning is normally clear from context.)

F𝑛[𝑧] means the ring of polynomials over 𝑧 with coef�cients in F𝑛.

𝑎 + 𝑏 means the sum of 𝑎 and 𝑏. This may refer to addition of integers, rationals, �nite �eld elements, or group
elements (see section 4.1.9 ‘Represented Group’ on page 32) according to context.

−𝑎 means the value of the appropriate integer, rational, �nite �eld, or group type such that (−𝑎) + 𝑎 = 0 (or when 𝑎
is an element of a group G, (−𝑎) + 𝑎 = 𝒪G), and 𝑎− 𝑏 means 𝑎 + (−𝑏).

𝑎 · 𝑏 means the product of multiplying 𝑎 and 𝑏. This may refer to multiplication of integers, rationals, or �nite �eld
elements according to context (this notation is not used for group elements).

𝑎/𝑏, also written 𝑎

𝑏
, means the value of the appropriate integer, rational, or �nite �eld type such that (𝑎/𝑏) · 𝑏 = 𝑎.

𝑎 mod 𝑞, for 𝑎 ◦
◦ N and 𝑞 ◦

◦ N+, means the remainder on dividing 𝑎 by 𝑞. (This usage does not con�ict with the notation
above for the unique representative of a �eld element.)

𝑎 ⊕ 𝑏 means the bitwise-exclusive-or of 𝑎 and 𝑏, and 𝑎 î 𝑏 means the bitwise-and of 𝑎 and 𝑏. These are de�ned
on integers (which include bits and bytes), or elementwise on equal-length sequences of integers, according to
context.

N∑︁
𝑖=1

𝑎𝑖 means the sum of 𝑎1..N .
N∏︁

𝑖=1
𝑎𝑖 means the product of 𝑎1..N .

N⨁︁
𝑖=1

𝑎𝑖 means the bitwise-exclusive-or of 𝑎1..N .

When 𝑁 = 0 these yield the appropriate neutral element, i.e.
∑︀0

𝑖=1
𝑎𝑖 = 0,

∏︀0

𝑖=1
𝑎𝑖 = 1, and

⨁︀0

𝑖=1
𝑎𝑖 = 0 or the

all-zero bit sequence of length given by the type of 𝑎.
+√𝑎 , where 𝑎 ◦

◦ F𝑞 , means the positive square root of 𝑎 in F𝑞 , i.e. in the range
{︀

0 .. 𝑞−1
2
}︀

. It is only used in cases where
the square root must exist.

?√𝑎 , where 𝑎 ◦
◦ F𝑞 , means an arbitrary square root of 𝑎 in F𝑞 , or⊥ if no such square root exists.

𝑏 ? 𝑥 : 𝑦 means 𝑥 when 𝑏 = 1, or 𝑦 when 𝑏 = 0.

𝑎𝑏, for 𝑎 an integer or �nite �eld element and 𝑏 ◦
◦ Z, means the result of raising 𝑎 to the exponent 𝑏, i.e.

𝑎𝑏 :=

⎧⎪⎨⎪⎩
∏︀𝑏

𝑖=1
𝑎, if 𝑏 ≥ 0∏︀−𝑏

𝑖=1
1
𝑎
, otherwise.

The [𝑘] 𝑃 notation for scalar multiplication in a group is de�ned in section 4.1.9 ‘Represented Group’ on page 32.

The convention of af�xing ⋆ to a variable name is used for variables that denote bit sequence representations of
group elements.

The binary relations <, ≤, =, ≥, and > have their conventional meanings on integers and rationals, and are de�ned
lexicographically on sequences of integers.

floor(𝑥) means the largest integer≤ 𝑥. ceiling (𝑥) means the smallest integer≥ 𝑥.

bitlength(𝑥), for 𝑥 ◦
◦ N, means the smallest integer ℓ such that 2ℓ > 𝑥.

11

The following integer constants will be instantiated in section 5.3 ‘Constants’ on page 74:

MerkleDepthSprout, MerkleDepthSapling, MerkleDepthOrchard, ℓSprout
Merkle, ℓSapling

Merkle , ℓOrchard
Merkle , Nold, Nnew, ℓvalue, ℓhSig, ℓSprout

PRF ,

ℓPRFexpand, ℓPRFnfSapling, ℓSprout
rcm , ℓSeed, ℓask

, ℓSprout
ϕ , ℓsk, ℓd, ℓdk, ℓSapling

ivk , ℓovk, ℓSapling
scalar , ℓOrchard

scalar , ℓOrchard
base , MAX_MONEY,

BlossomActivationHeight, CanopyActivationHeight, ZIP212GracePeriod, NUFiveActivationHeight, SlowStartInterval,
PreBlossomHalvingInterval, MaxBlockSubsidy, NumFounderAddresses, PoWLimit, PoWAveragingWindow,
PoWMedianBlockSpan, PoWDampingFactor, PreBlossomPoWTargetSpacing, and PostBlossomPoWTargetSpacing.

The rational constants FoundersFraction, PoWMaxAdjustDown, and PoWMaxAdjustUp; the bit-sequence constants
UncommittedSprout ◦

◦ B[ℓSprout
Merkle] and UncommittedSapling ◦

◦ B[ℓSapling
Merkle]; and the constant UncommittedOrchard ◦

◦ {0 .. 𝑞P − 1} will
also be de�ned in that section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
section 5.4.9.3 ‘Jubjub’ on page 102).

12

3 Concepts #concepts

3.1 Payment Addresses and Keys #addressesandkeys

Users who wish to receive shielded payments in the Zcash protocol must have a shielded payment address, which
is generated from a spending key.

The following diagrams depict the relations between key components in Sprout and Sapling and Orchard. Arrows
point from a component to any other component(s) that can be derived from it. Double lines indicate that the same
component is used in multiple abstractions.

Image description: three diagrams showing the derivation of Sprout, Sapling, and Orchard key components. The key components are shown by their mathematical abbreviations. They are collected into rounded boxes for each named abstraction, which are colour-coded from purple to green in the direction of derivation, or from more secret to less secret values. The information in the diagram is otherwise mostly redundant with the textual description of the key components and their derivation that follows it.

[Sprout] A Sprout receiving key skenc, incoming viewing key ivk = (apk, skenc), and shielded payment address
addrpk = (apk, pkenc) are derived from the spending key ask, as described in section 4.2.1 ‘Sprout Key Components’ on
page 36.

[Sapling onward] A Sapling expanded spending key is composed of a Spend authorizing key ask, a nulli�er private
key nsk, and an outgoing viewing key ovk. From these components we can derive a proof authorizing key (ak, nsk), a
full viewing key (ak, nk, ovk), an incoming viewing key ivk, and a set of diversi�ed payment addresses addrd = (d, pkd),
as described in section 4.2.2 ‘Sapling Key Components’ on page 36.

The consensus protocol does not depend on how an expanded spending key is constructed. Two methods of doing
so are de�ned:

1. Generate a spending key sk at random and derive the expanded spending key (ask, nsk, ovk) from it, as shown
in the diagram above and described in section 4.2.2 ‘Sapling Key Components’ on page 36.

2. Obtain an extended spending key as speci�ed in [ZIP-32]; this includes a superset of the components of an
expanded spending key. This method is used in the context of a Hierarchical Deterministic Wallet .

[N​U​5 onward] An Orchard spending key sk is used to derive a Spend authorizing key ask, and a full viewing key
(ak, nk, rivk). From the full viewing key we can also derive an incoming viewing key (composed of a diversi�er
key dk and a KAOrchard private key ivk), an outgoing viewing key ovk, and a set of diversi�ed payment addresses
addrd = (d, pkd), as described in section 4.2.3 ‘Orchard Key Components’ on page 38.

* The derivations of ask and rivk shown are not the only possibility. For further detail see section 4.2.3 on page 38.

Non-normative note: Most Zcash wallets derive Sapling and Orchard keys and addresses according to [ZIP-32].

13

https://zips.z.cash/protocol/protocol.pdf#concepts
https://zips.z.cash/protocol/protocol.pdf#addressesandkeys

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations
should be provided to obtain a shielded payment address, incoming viewing key, or full viewing key from a spending
key or extended spending key.

Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling and Orchard provide a mechanism to allow the ef�cient creation of diversi�ed payment
addresses with the same spending authority. A group of such addresses shares the same full viewing key and
incoming viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of
scanning the block chain for relevant transactions.

Note: It is conventional in cryptography to call the key used to encrypt a message in an asymmetric encryption
scheme a “public key”. However, the public key used as the transmission key component of an address (pkenc or pkd)
need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned
above, limiting the distribution of the shielded payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see section 4.19
‘In-band secret distribution (Sprout)’ on page 65 and section 4.20 ‘In-band secret distribution (Sapling and Orchard)’
on page 67), since an adversary would have to know pkenc or some pkd in order to exploit a hypothetical weakness in
that cryptosystem.

3.2 Notes #notes

A note (denoted n) can be a Sprout note or a Sapling note or an Orchard note. In each case it represents that
a value v is spendable by the recipient who holds the spending key corresponding to a given shielded payment
address.

Let MAX_MONEY, ℓSprout
PRF , ℓPRFnfSapling, ℓd, and ℓvalue be as de�ned in section 5.3 ‘Constants’ on page 74.

Let NoteCommitSprout be as de�ned in section 5.4.8.1 ‘Sprout Note Commitments’ on page 95.

Let NoteCommitSapling be as de�ned in section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96.

Let KASapling be as de�ned in section 5.4.5.3 ‘Sapling Key Agreement’ on page 89.

Let DiversifyHashSapling be as de�ned in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78.

Let NoteCommitOrchard be as de�ned in section 5.4.8.4 ‘Sinsemilla commitments’ on page 98.

Let KAOrchard be as de�ned in section 5.4.5.5 ‘Orchard Key Agreement’ on page 90.

Let DiversifyHashOrchard be as de�ned in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78.

Let PRFnfOrchard be as de�ned in section 5.4.2 ‘Pseudo Random Functions’ on page 86.

Let 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

A Sprout note is a tuple (apk, v, ρ, rcm), where:

• apk
◦
◦ B[ℓSprout

PRF] is the paying key of the recipient’s shielded payment address;

• v ◦
◦ {0 .. MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 10 to the 8 zatoshi);

• ρ ◦
◦ B[ℓSprout

PRF] is used as input to PRFnfSprout
ask

to derive the nulli�er of the note;

• rcm ◦
◦ NoteCommitSprout.Trapdoor is a random commitment trapdoor as de�ned in section 4.1.8 ‘Commitment’ on

page 31.

14

https://zips.z.cash/protocol/protocol.pdf#notes

Let NoteSprout be the type of a Sprout note , i.e.

NoteSprout := B[ℓSprout
PRF] × {0 .. MAX_MONEY} × B[ℓSprout

PRF] × NoteCommitSprout.Trapdoor.

A Sapling note is a tuple (d, pkd, v, rcm), where:

• d ◦
◦ B[ℓd] is the diversi�er of the recipient’s shielded payment address;

• pkd
◦
◦ KASapling.PublicPrimeOrder is the diversi�ed transmission key of the recipient’s shielded payment address;

• v ◦
◦ {0 .. MAX_MONEY} is an integer representing the value of the note in zatoshi;

• rcm ◦
◦ NoteCommitSapling.Trapdoor is a random commitment trapdoor as de�ned in section 4.1.8 ‘Commitment’ on

page 31.

Let NoteSapling be the type of a Sapling note , i.e.

NoteSapling := B[ℓd] × KASapling.PublicPrimeOrder × {0 .. MAX_MONEY} × NoteCommitSapling.Trapdoor.

An Orchard note is a tuple (d, pkd, v, ρ,ψ, rcm), where:

• d ◦
◦ B[ℓd] is the diversi�er of the recipient’s shielded payment address;

• pkd
◦
◦ KAOrchard.PublicPrimeOrder is the diversi�ed transmission key of the recipient’s shielded payment address;

• v ◦
◦ {0 .. 2ℓvalue−1} is an integer representing the value of the note in zatoshi;

• ρ ◦
◦ F𝑞P

is used as input to PRFnfOrchard
nk as part of deriving the nulli�er of the note;

• ψ ◦
◦ F𝑞P

is additional randomness used in deriving the nulli�er;

• rcm ◦
◦ NoteCommitOrchard.Trapdoor is a random commitment trapdoor as de�ned in section 4.1.8 ‘Commitment’ on

page 31.

Let NoteOrchard be the type of an Orchard note , i.e.

NoteOrchard := B[ℓd] × KAOrchard.PublicPrimeOrder × {0 .. 2ℓvalue−1} × F𝑞P
× F𝑞P

× NoteCommitOrchard.Trapdoor.

Creation of new notes is described in section 4.7 ‘Sending Notes’ on page 43.

3.2.1 Note Plaintexts and Memo Fields #noteptconcept

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm described in section 3.2.2 ‘Note Commitments’ on page 16.

A note plaintext also includes a 512-byte memo �eld associated with this note . The usage of the memo �eld is by
agreement between the sender and recipient of the note. RECOMMENDED non-consensus constraints on the
memo �eld contents are speci�ed in [ZIP-302].

For Sprout, the note plaintexts in each JoinSplit description are encrypted to the respective transmission keys
pknew

enc,1..Nnew , as speci�ed in section 4.7.1 ‘Sending Notes (Sprout)’ on page 43.

Each Sprout note plaintext (denoted np) consists of

(leadByte ◦
◦ BY, v ◦

◦ {0 .. 2ℓvalue−1}, ρ ◦
◦ B[ℓSprout

PRF], rcm ◦
◦ NoteCommitSprout.Trapdoor, memo ◦

◦ BY[512]).

The �eld leadByte is always 0x00 for Sprout. The �elds v, ρ, and rcm are as de�ned in section 3.2 ‘Notes’ on page 14.

[Sapling onward] For Sapling and Orchard, the note plaintext in each Output description or Action description is
encrypted to the diversi�ed payment address (d, pkd), as speci�ed in section 4.7.2 ‘Sending Notes (Sapling)’ on page 44 or
section 4.7.3 ‘Sending Notes (Orchard)’ on page 45.

15

https://zips.z.cash/protocol/protocol.pdf#noteptconcept

Each Sapling or Orchard note plaintext (denoted np) consists of

(leadByte ◦
◦ BY, d ◦

◦ B[ℓd], v ◦
◦ {0 .. 2ℓvalue−1}, rseed ◦

◦ BY[32], memo ◦
◦ BY[512])

The �eld leadByte indicates the version of the encoding of a Sapling or Orchard note plaintext .

Let the constants CanopyActivationHeight and ZIP212GracePeriod be as de�ned in section 5.3 ‘Constants’ on page 74.

Let protocol ◦
◦ {Sapling, Orchard} be the shielded protocol of the note.

Let height be the block height of the block containing the transaction having the encrypted note plaintext as an
output, and let txVersion be the transaction version number.

De�ne allowedLeadBytesprotocol(height, txVersion) :=⎧⎪⎨⎪⎩
{0x01}, if height < CanopyActivationHeight
{0x01, 0x02}, if CanopyActivationHeight ≤ height < CanopyActivationHeight + ZIP212GracePeriod
{0x02}, otherwise.

The leadByte of a Sapling or Orchard note MUST satisfy leadByte ∈ allowedLeadBytesprotocol(height, txVersion). Senders
SHOULD choose the highest note plaintext lead byte allowed under this condition.

Non-normative notes:

• [N​U​5 onward] Since Orchard was introduced after the end of the [ZIP-212] grace period, note plaintexts for
Orchard notes MUST have leadByte ≥ 0x02.

• It is intentional that the de�nition of allowedLeadBytes does not currently depend on protocol or txVersion. It
might do so in future.

The �elds d and v are as de�ned in section 3.2 ‘Notes’ on page 14.

The use of the �eld rseed is described in [ZIP-212].

Encodings are given in section 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on page 112. The result of encryption
forms part of a transmitted note(s) ciphertext . For further details, see section 4.19 ‘In-band secret distribution (Sprout)’
on page 65 and section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67.

3.2.2 Note Commitments #notecommitmentconcept

When a note is created as an output of a transaction, only a commitment (see section 4.1.8 ‘Commitment’ on page 31) to
the note contents is disclosed publically in the associated JoinSplit description or Output description or Action
description. If the transaction is entered into the block chain, each such note commitment is appended to the
note commitment tree of the associated treestate . This allows the value and recipient to be kept private, while the
commitment is used by the zk-SNARK proof when the note is spent, to check that it exists on the block chain.

Treestates are described in section 3.4 ‘Transactions and Treestates’ on page 18, and note commitment trees are described
in section 3.8 ‘Note Commitment Trees’ on page 21.

A Sprout note commitment on a note n = (apk, v, ρ, rcm) is computed as

NoteCommitmentSprout(n) = NoteCommitSprout
rcm (apk, v, ρ),

where NoteCommitSprout is instantiated in section 5.4.8.1 ‘Sprout Note Commitments’ on page 95.

16

https://zips.z.cash/protocol/protocol.pdf#notecommitmentconcept

A Sapling note commitment on a note n = (d, pkd, v, rcm) is computed as

gd := DiversifyHashSapling(d)

NoteCommitmentSapling(n) :=
{︃
⊥, if gd = ⊥
NoteCommitSapling

rcm (reprJ(gd), reprJ(pkd), v), otherwise.

where NoteCommitSapling is instantiated in section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96.

Notice that the above de�nition of a Sapling note does not have a ρ component. There is in fact a ρ value associated
with each Sapling note, but this can only be computed once its position in the note commitment tree (see section 3.4
‘Transactions and Treestates’ on page 18) is known. We refer to the combination of a note and its note position pos,
as a positioned note.

For a positioned note , we can compute the value ρ as described in section 4.16 ‘Computing ρ values and Nullifiers’ on
page 57.

A Sapling note commitment is represented in an Output description by the 𝑢-coordinate of a Jubjub curve point,
as speci�ed in section 4.5 ‘Output Descriptions’ on page 41.

An Orchard note commitment on a note n = (d, pkd, v, ρ,ψ, rcm) is computed as

gd := DiversifyHashOrchard(d)
NoteCommitmentOrchard(n) := NoteCommitOrchard

rcm (reprP(gd), reprP(pkd), v, ρ,ψ)
where NoteCommitOrchard is instantiated in section 5.4.8.4 ‘Sinsemilla commitments’ on page 98.

If NoteCommitOrchard returns ⊥ (which happens with insigni�cant probability), the note is invalid and should be
recreated with a different rseed.

Unlike in Sapling, the de�nition of an Orchard note includes the ρ component; the note ’s position in the note
commitment tree does not need to be known in order to compute this value.

An Orchard note commitment is represented in an Action description by the 𝑥-coordinate of a Pallas curve point,
as speci�ed in section 4.6 ‘Action Descriptions’ on page 42.

3.2.3 Nulli�ers #nulli�erconcept

The nulli�er for a note, denoted nf , is a value unique to the note that is used to prevent double-spends. When
a transaction that contains one or more JoinSplit descriptions or Spend descriptions or Action descriptions is
entered into the block chain, all of the nulli�ers for notes spent by that transaction are added to the nulli�er set of
the associated treestate . A transaction is not valid if it would have added a nulli�er to the nulli�er set that already
exists in the set.

Treestates are described in section 3.4 ‘Transactions and Treestates’ on page 18, and nulli�er sets are described in section 3.9
‘Nullifier Sets’ on page 22.

In more detail, when a note is spent, the spender creates a zero-knowledge proof that it knows (ρ, ask) or (ρ, ak, nsk)
or (ρ, ak, nk), consistent with the publically disclosed nulli�er and some previously committed note commitment .

Because each note can have only a single nulli�er, and the same nulli�er value cannot appear more than once in a
valid block chain, double-spending is prevented.

The nulli�er for a Sprout note is derived from the ρ value and the recipient’s spending key ask.

The nulli�er for a Sapling note is derived from the ρ value and the recipient’s nulli�er deriving key nk.

The nulli�er for an Orchard note is derived from the ρ and ψ values, the recipient’s nulli�er deriving key nk, and
the note commitment .

The nulli�er computation uses a Pseudo Random Function (see section 4.1.2 ‘Pseudo Random Functions’ on page 25), as
described in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

17

https://zips.z.cash/protocol/protocol.pdf#nullifierconcept

3.3 The Block Chain #blockchain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the
genesis block , where each node in the tree refers to its parent via the hashPrevBlock block header �eld (see section 7.6
‘Block Header Encoding and Consensus’ on page 131).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height . The block height of the genesis block is 0, and the block height of each
subsequent block in the block chain increments by 1. Implementations MUST support block heights up to and in-
cluding 231−1. As of N​U​5, there is a consensus rule that all coinbase transactions (see section 3.11 ‘Coinbase Transactions’
on page 22) MUST have the nExpiryHeight �eld set to the block height , and this limits the maximum block height to
232 − 1, absent future consensus changes.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as de�ned
in section 7.7.5 ‘Definition of Work’ on page 136, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received
�rst.

The consensus protocol is designed to ensure that for any given block height , the vast majority of well-connected
nodes should eventually agree on their best valid block chain up to that height. A full validator5 SHOULD attempt
to obtain candidate blocks from multiple sources in order to increase the likelihood that it will �nd a valid block
chain that re�ects a recent consensus state.

A network upgrade is settled on a given network when there is a social consensus that it has activated with a
given activation block hash. A full validator that potentially risks Mainnet funds or displays Mainnet transaction
information to a user MUST do so only for a block chain that includes the activation block of the most recent settled
network upgrade , with the corresponding activation block hash. Currently, there is social consensus that N​U​6.1 has
activated on the Zcash Mainnet and Testnet with the activation block hashes given in section 3.12 ‘Mainnet and Testnet’
on page 22.

A full validator MAY impose a limit on the number of blocks it will “roll back” when switching from one best valid
block chain to another that is not a descendent. For zcashd and zebra this limit is 100 blocks.

3.4 Transactions and Treestates #transactions

Each block contains one or more transactions.

Each transaction has a transaction ID. Transaction IDs are used to refer to transactions in tx_out �elds, in leaf
nodes of a block ’s transaction tree rooted at hashMerkleRoot, and in other parts of the ecosystem; for example they
are shown in block chain explorers and can be used in higher-level protocols. Version 5 transactions also have
a wtxid , which is used instead of the transaction ID when gossiping transactions in the peer-to-peer protocol
[ZIP-239]. The computation of transaction IDs and wtxids is described in section 7.1.1 ‘Transaction Identifiers’ on page 124.
For more detail on the distinction between these two identi�ers and when to use each of them, see [ZIP-239] and
[ZIP-244].

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. The effect of Sprout JoinSplit transfers, Sapling
Spend transfers and Output transfers, and Orchard Action transfers on the transparent transaction value pool are
speci�ed in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60, section 4.13 ‘Balance and Binding Signature (Sapling)’
on page 52, and section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54 respectively.

As in Bitcoin, the remaining value in the transparent transaction value pool of a non-coinbase transaction is
available to miners as a fee. That is, the sum of those values for non-coinbase transactions in each block is treated as
an implicit input to the transparent transaction value pool balance of the block ’s coinbase transaction (in addition
to the implicit input created by issuance).

5 There is reason to follow the requirements in this section also for non-full validators, but those are outside the scope of this protocol
speci�cation.

18

https://zips.z.cash/protocol/protocol.pdf#blockchain
https://zips.z.cash/protocol/protocol.pdf#transactions

The remaining value in the transparent transaction value pool of coinbase transactions in blocks prior to N​U​6
is destroyed. From N​U​6, this remaining value is required to be zero; that is, all of the available balance MUST be
consumed by outputs of the coinbase transaction.

Consensus rule: The remaining value in the transparent transaction value pool MUST be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling and for Orchard. Each treestate
consists of:

• a note commitment tree (section 3.8 ‘Note Commitment Trees’ on page 21);

• a nulli�er set (section 3.9 ‘Nullifier Sets’ on page 22).

Validation state associated with transparent inputs and outputs, such as the UTXO (unspent transaction output) set ,
is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchor is a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree or the Orchard
tree). It uniquely identi�es a note commitment tree state given the assumed security properties of the Merkle tree’s
hash function. Since the nulli�er set is always updated together with the note commitment tree , this also identi�es
a particular state of the associated nulli�er set .

In a given block chain, for each of Sprout and Sapling and Orchard, treestates are chained as follows:

• The input treestate of the �rst block is the empty treestate.

• The input treestate of the �rst transaction of a block is the �nal treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The �nal treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling or for Orchard.

3.5 JoinSplit Transfers and Descriptions #joinsplit

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-speci�c operation performed by transactions.

A JoinSplit transfer spends Nold notes nold
1..Nold and transparent input vold

pub, and creates Nnew notes nnew
1..Nnew and

transparent output vnew
pub . It is associated with a JoinSplit statement instance (section 4.18.1 ‘JoinSplit Statement (Sprout)’

on page 60), for which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

The total vnew
pub value adds to, and the total vold

pub value subtracts from the transparent transaction value pool of the
containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the Nold shielded inputs, a nulli�er is revealed. This allows detection of double-spends as described in
section 3.9 ‘Nullifier Sets’ on page 22.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nulli�ers speci�ed in that JoinSplit description to the input treestate referred to by its anchor.
This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block . Therefore the anchors that it uses must be independent of its eventual position.

The input and output values of each JoinSplit transfer MUST balance exactly. This is not a consensus rule since it
cannot be checked directly; it is enforced by the Balance rule of the JoinSplit statement .

19

https://zips.z.cash/protocol/protocol.pdf#joinsplit

Consensus rules:

• For the �rst JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block .

• The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block ’s �nal Sprout
treestate , or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions #spendsandoutputs

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded
input , and a separate Output transfer for each shielded output .

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers, respectively.

A Spend transfer spends a note nold. Its Spend description includes a Pedersen value commitment to the value of
the note . It is associated with an instance of a Spend statement (section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) for
which it provides a zk-SNARK proof .

An Output transfer creates a note nnew. Similarly, its Output description includes a Pedersen value commitment to
the note value. It is associated with an instance of an Output statement (section 4.18.3 ‘Output Statement (Sapling)’ on
page 62) for which it provides a zk-SNARK proof .

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and
subtracted, as elliptic curve points (section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on
page 97). The result of adding two Pedersen value commitments, committing to values v1 and v2, is a new Pedersen
value commitment that commits to v1 + v2. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all of
the value commitments for shielded outputs, and proving by use of a Sapling binding signature (as described in
section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52) that the result commits to a value consistent with the
net transparent value change. This approach allows all of the zk-SNARK statements to be independent of each
other, potentially increasing opportunities for precomputation.

A Spend description speci�es an anchor, which refers to the output Sapling treestate of a previous block . It also
reveals a nulli�er, which allows detection of double-spends as described in section 3.2.3 ‘Nullifiers’ on page 17.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

• The Spend transfers and Action transfers of a transaction MUST be consistent with its vbalanceSapling value as
speci�ed in section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52.

• The anchor of each Spend description MUST refer to some earlier block ’s �nal Sapling treestate . The anchor
is encoded separately in each Spend description for v4 transactions, or encoded once and shared between all
Spend descriptions in a v5 transaction.

3.7 Action Transfers and their Descriptions #actions

Orchard introduces Action transfers, each of which can optionally perform a spend, and optionally perform an
output.

Action descriptions are data included in a transaction that describe Action transfers.

20

https://zips.z.cash/protocol/protocol.pdf#spendsandoutputs
https://zips.z.cash/protocol/protocol.pdf#actions

An Action transfer spends a note nold, and creates a note nnew. Its Action description includes a Pedersen value
commitment to the net value, i.e. the value of the spent note minus the value of the created note. It is associated
with an instance of an Action statement (section 4.18.4 ‘Action Statement (Orchard)’ on page 63) for which it provides a
zk-SNARK proof .

Each version 5 transaction has a sequence of Action descriptions. Version 4 transactions cannot contain Action
descriptions.

As in Sapling, we use the homomorphic property of Pedersen commitments to enforce balance: we add all of the
value commitments and prove by use of an Orchard binding signature that the result commits to a value consistent
with the net transparent value change (as described in section 4.14 ‘Balance and Binding Signature (Orchard)’ on
page 54). This approach allows all of the zk-SNARK statements to be independent of each other, potentially increasing
opportunities for precomputation.

The �elds of an Action description are essentially a merger of the �elds of a Spend description and an Output
description, but with only a single value commitment . Also, the zk-SNARK proof is encoded outside the Action
description, in order to more easily take advantage of space and performance optimizations in the Halo 2 proof
system (section 5.4.10.3 ‘Halo 2’ on page 112) that apply when multiple proofs are aggregated. Each Action description does
not encode a separate anchor �eld, because that is encoded once in the anchorOrchard �eld of the transaction.

Non-normative note: As with Sapling, interstitial treestates are not necessary for Orchard, because an Action
transfer in a given transaction cannot spend any of the shielded outputs of the same transaction.

Consensus rules:
• The Action transfers of a transaction MUST be consistent with its vbalanceOrchard value as speci�ed in section 4.14

‘Balance and Binding Signature (Orchard)’ on page 54.

• The anchorOrchard �eld of the transaction, whenever it exists (i.e. when there are any Action descriptions),
MUST refer to some earlier block ’s �nal Orchard treestate.

3.8 Note Commitment Trees #notecommitmenttrees

Let ℓSprout
Merkle, MerkleDepthSprout, ℓSapling

Merkle , MerkleDepthSapling, ℓOrchard
Merkle , and MerkleDepthOrchard be as de�ned in section 5.3 ‘Constants’

on page 74.

A note commitment tree is an incremental Merkle tree of �xed depth used to store note commitments that JoinSplit
transfers or Spend transfers or Action transfers produce. Just as the UTXO (unspent transaction output) set used in
Bitcoin, it is used to express the existence of value and the capability to spend it. However, unlike the UTXO set , it is
not the job of this tree to protect against double-spending , as it is append-only.

A root of a note commitment tree is associated with each treestate (section 3.4 ‘Transactions and Treestates’ on page 18).

Each node in the incremental Merkle tree is associated with a hash value of size ℓSprout
Merkle or ℓSapling

Merkle or ℓOrchard
Merkle bits. The

layer numbered ℎ, counting from layer 0 at the root , has 2ℎ nodes with indices 0 to 2ℎ − 1 inclusive. The hash value
associated with the node at index 𝑖 in layer ℎ is denoted Mh

𝑖 .

The index of a note’s commitment at the leafmost layer (MerkleDepthSprout or MerkleDepthSapling or MerkleDepthOrchard)
is called its note position.

21

https://zips.z.cash/protocol/protocol.pdf#notecommitmenttrees

Consensus rules:

• A block MUST NOT add Sprout note commitments that would result in the Sprout note commitment tree

exceeding its capacity of 2MerkleDepthSprout

leaf nodes.

• [Sapling onward] A block MUST NOT add Sapling note commitments that would result in the Sapling note

commitment tree exceeding its capacity of 2MerkleDepthSapling

leaf nodes.

• [N​U​5 onward] A block MUST NOT add Orchard note commitments that would result in the Orchard note

commitment tree exceeding its capacity of 2MerkleDepthOrchard

leaf nodes.

3.9 Nulli�er Sets #nulli�erset

Each full validator maintains a nulli�er set logically associated with each treestate. As valid transactions contain-
ing JoinSplit transfers or Spend transfers or Action transfers are processed, the nulli�ers revealed in JoinSplit
descriptions and Spend descriptions and Action descriptions are inserted into the nulli�er set associated with the
new treestate . Nulli�ers are enforced to be unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nulli�er MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling and Orchard nulli�ers are considered disjoint, even if they have the same bit pattern.

3.10 Block Subsidy, Funding Streams, and Founders’ Reward #subsidyconcepts

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy.

[Pre-Canopy] The block subsidy is composed of a miner subsidy and a Founders’ Reward .

[Canopy onward] The block subsidy is composed of a miner subsidy and a series of funding streams.

As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, Founders’ Reward , and funding streams depend on the block
height , as de�ned in section 3.3 ‘The Block Chain’ on page 18.

section 7.8 ‘Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’ Reward’ on page 136
describes these calculations.

3.11 Coinbase Transactions #coinbasetransactions

A transaction that has a single transparent input with a null prevout �eld, is called a coinbase transaction. Every
block has a single coinbase transaction as the �rst transaction in the block . The purpose of this coinbase transaction
is to collect and spend any miner subsidy, and transaction fees paid by other transactions included in the block .

[Pre-Canopy] section 7.9 ‘Payment of Founders’ Reward’ on page 137 speci�es that the coinbase transaction MUST also
pay the Founders’ Reward .

[Canopy onward] section 7.10 ‘Payment of Funding Streams, Deferred Lockbox, and Lockbox Disbursement’ on page 139
speci�es that the coinbase transaction MUST also pay the funding streams.

3.12 Mainnet and Testnet #networks

The production Zcash network , which supports the ZEC token, is called Mainnet . Governance of its protocol is by
social consensus on which full validator implementations are considered to be faithful implementations of the
intended Mainnet consensus rules (currently, zebra maintained by the Zcash Foundation, and zcashd maintained

22

https://zips.z.cash/protocol/protocol.pdf#nullifierset
https://zips.z.cash/protocol/protocol.pdf#subsidyconcepts
https://zips.z.cash/protocol/protocol.pdf#coinbasetransactions
https://zips.z.cash/protocol/protocol.pdf#networks

by the Electric Coin Company), and on how those implementations should be modi�ed. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of the Zcash
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block : 00040fe8ec8471911baa1db1266ea15dd06b4a8a5c453883c000b031973dce08

Mainnet N​U​6.1 activation block : 0000000000b98a7d8f390793fa113bf6755935f0c14ea817af07d2c16f2c3ef4

There is also a public test network called Testnet . It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in section 6 ‘Network Upgrades’ on page 120) before
Mainnet , in order to allow for errors or ambiguities in their speci�cation and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block : 05a60a92d99d85997cce3b87616c089f6124d7342af37106edc76126334a2c38

Testnet N​U​6.1 activation block : 01b947c7556b23040dc6840e9d3e4c6d9478c67a87b9737a83be848729d6e0af

We call the smallest units of currency (on either network) zatoshi .6

On Mainnet , 1 ZEC = 10 to the 8 zatoshi . On Testnet , 1 TAZ = 10 to the 8 zatoshi .

Other networks using variants of the Zcash protocol may exist, but are not described by this speci�cation.

4 Abstract Protocol #abstractprotocol

‘We all know that the only mental tool by means of which a very finite piece of reasoning
can cover a myriad cases is called “abstraction”; as a result the effective exploitation of
[their] powers of abstraction must be regarded as one of the most vital activities of a
competent programmer. In this connection it might be worth-while to point out that the
purpose of abstracting is not to be vague, but to create a new semantic level in which
one can be absolutely precise.’

— Edsger Dijkstra, “The Humble Programmer” [EWD-340]

Abstraction is an incredibly important idea in the design of any complex system. Without abstraction, we would
not be able to design anything as ambitious as a computer, or a cryptographic protocol. Were we to attempt it, the
computer would be hopelessly unreliable or the protocol would be insecure, if they could be completed at all.

The aim of abstraction is primarily to limit how much a human working on a piece of a system has to keep in mind
at one time, in order to apprehend the connections of that piece to the remainder. The work could be to extend or
maintain the system, to understand its security or other properties, or to explain it to others.

In this speci�cation, we make use wherever possible of abstractions that have been developed by the cryptography
community to model cryptographic primitives: Pseudo Random Functions, commitment schemes, signature
schemes, etc. Each abstract primitive has associated syntax (its interface as used by the rest of the system) and
security properties, as documented in this part. Their instantiations are documented in part section 5 ‘Concrete Protocol’
on page 73.

In some cases this syntax or these security requirements have been extended to meet the needs of the Zcash
protocol. For example, some of the PRFs used in Zcash need to be collision-resistant , which is not part of the usual
security requirement for a PRF; some signature schemes need to support additional functionality and security
properties; and so on. Also, security requirements are sometimes intentionally stronger than what is known to be
needed, because the stronger property is simpler or less error-prone to work with, and/or because it has been
studied in the cryptographic literature in more depth.

6 “tazoshi” may be used for the smallest units of currency on Testnet, but it is usually more convenient to use a network-independent term.

23

https://zips.z.cash/protocol/protocol.pdf#abstractprotocol

We explicitly do not claim, however, that all of these instantiations satisfying their documented syntax and security
requirements would be suf�cient for security or correctness of the overall Zcash protocol, or that it is always
necessary. The claim is only that it helps to understand the protocol; that is, that analysis or extension is simpli�ed by
making use of the abstraction. In other words, a good way to understand the use of that primitive in the protocol
is to model it as an instance of the given abstraction. And furthermore, if the instantiated primitive does not in fact
satisfy the requirements of the abstraction, then this is an error that should be corrected –whether or not it leads to
a vulnerability– since that would compromise the facility to understand its use in terms of the abstraction.

In this respect the abstractions play a similar rôle to that of a type system (which we also use): they add a form of
redundancy to the speci�cation that helps to express the intent.

Each property is a claim that may be incorrect (or that may be insuf�ciently precisely stated to determine whether
it is correct). An example of an incorrect security claim occurs in the Zerocash protocol [BCGGMTV2014]: the
instantiation of the note commitment scheme used in Zerocash failed to be binding at the intended security level
(see section 8.5 ‘Internal hash collision attack and fix’ on page 145).

Another hazard that we should be aware of is that abstractions can be “leaky”: an instantiation may impose conditions
on its correct or secure use that are not captured by the abstraction’s interface and semantics. Ideally, the abstraction
would be changed to explicitly document these conditions, or the protocol changed to rely only on the original
abstraction.

An abstraction can also be incomplete (not quite the same thing as being leaky): it intentionally –usually for
simplicity– does not model an aspect of behaviour that is important to security or correctness. An example would
be resistance to side-channel attacks; this speci�cation says little about side-channel defence, among many other
implementation concerns.

4.1 Abstract Cryptographic Schemes #abstractschemes

4.1.1 Hash Functions #abstracthashes

Let MerkleDepthSprout, ℓSprout
Merkle, MerkleDepthSapling, ℓSapling

Merkle , MerkleDepthOrchard, ℓOrchard
Merkle , ℓSapling

ivk , ℓd, ℓSeed, ℓSprout
PRF , ℓhSig, and Nold

be as de�ned in section 5.3 ‘Constants’ on page 74.

Let J, J(𝑟), J(𝑟)*, 𝑟J, and ℓJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let P* be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

The following hash functions are used in section 4.9 ‘Merkle Path Validity’ on page 49:

MerkleCRHSprout ◦
◦ {0 .. MerkleDepthSprout− 1} × B[ℓSprout

Merkle] × B[ℓSprout
Merkle] → B[ℓSprout

Merkle]

MerkleCRHSapling ◦
◦ {0 .. MerkleDepthSapling− 1} × B[ℓSapling

Merkle] × B[ℓSapling
Merkle] → B[ℓSapling

Merkle]

MerkleCRHOrchard ◦
◦ {0 .. MerkleDepthOrchard− 1} × {0 .. 𝑞P − 1} × {0 .. 𝑞P − 1} → {0 .. 𝑞P − 1}.

MerkleCRHSprout is collision-resistant except on its �rst argument. MerkleCRHSapling and MerkleCRHOrchard are collision-
resistant on all their arguments.

These functions are instantiated in section 5.4.1.3 ‘Merkle Tree Hash Function’ on page 76.

hSigCRH ◦
◦ B[ℓSeed] × B[ℓSprout

PRF][Nold] × JoinSplitSig.Public → B[ℓhSig] is a collision-resistant hash function used in section 4.3
‘JoinSplit Descriptions’ on page 39. It is instantiated in section 5.4.1.4 ‘hSig Hash Function’ on page 77.

EquihashGen ◦
◦ (𝑛 ◦

◦ N+) × N+ × BY[N] × N+ → B[𝑛] is another hash function, used in section 7.7.1 ‘Equihash’ on page 133 to
generate input to the Equihash solver. The �rst two arguments, representing the Equihash parameters 𝑛 and 𝑘, are
written subscripted. It is instantiated in section 5.4.1.11 ‘Equihash Generator’ on page 85.

CRHivk ◦
◦ B[ℓJ]×B[ℓJ] → {1 .. 2ℓ

Sapling
ivk −1} is a collision-resistant hash function used in section 4.2.2 ‘Sapling Key Components’

on page 36 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend
statement (section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) to con�rm use of the correct keys for the note being
spent. It is instantiated in section 5.4.1.5 ‘CRHivk Hash Function’ on page 77.

24

https://zips.z.cash/protocol/protocol.pdf#abstractschemes
https://zips.z.cash/protocol/protocol.pdf#abstracthashes

MixingPedersenHash ◦
◦ J× {0 .. 𝑟J − 1} → J is a hash function used in section 4.16 ‘Computing ρ values and Nullifiers’ on

page 57 to derive the unique ρ value for a Sapling note. It is also used in the Spend statement to con�rm use of the
correct ρ value as an input to nulli�er derivation. It is instantiated in section 5.4.1.8 ‘Mixing Pedersen Hash Function’ on
page 81.

DiversifyHashSapling ◦
◦ B[ℓd] → J(𝑟)* ∪{⊥} and DiversifyHashOrchard ◦

◦ B[ℓd] → P* are hash functions instantiated in section 5.4.1.6
‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78, satisfying the Unlinkability security property
described in that section. They are used to derive a diversi�ed base from a diversi�er, which is speci�ed in section 4.2.2
‘Sapling Key Components’ on page 36 and in section 4.2.3 ‘Orchard Key Components’ on page 38.

4.1.2 Pseudo Random Functions #abstractprfs

PRF𝑥 denotes a Pseudo Random Function keyed by 𝑥.

Let ℓask
, ℓhSig, ℓSprout

PRF , ℓSprout
ϕ , ℓsk, ℓovk, ℓPRFexpand, ℓPRFnfSapling, Nold, and Nnew be as de�ned in section 5.3 ‘Constants’ on page 74.

Let Sym be as de�ned in section 5.4.3 ‘Symmetric Encryption’ on page 88.

Let ℓJ and J⋆
(𝑟)

be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ℓP and 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

For Sprout, four independent PRF𝑥 are needed:

PRFaddr ◦
◦ B[ℓask

] × BY → B[ℓSprout
PRF]

PRFpk ◦
◦ B[ℓask

] × {1..Nold} × B[ℓhSig]→ B[ℓSprout
PRF]

PRFρ ◦
◦ B[ℓSprout

ϕ] × {1..Nnew} × B[ℓhSig]→ B[ℓSprout
PRF]

PRFnfSprout ◦
◦ B[ℓask

] × B[ℓSprout
PRF] → B[ℓSprout

PRF]

These are used in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60; PRFaddr is also used to derive a shielded payment
address from a spending key in section 4.2.1 ‘Sprout Key Components’ on page 36.

For Sapling, three additional PRF𝑥 are needed:

PRFexpand ◦
◦ B[ℓsk] × BY[N] → BY[ℓPRFexpand/8]

PRFockSapling ◦
◦ BY[ℓovk/8] × BY[ℓJ/8] × BY[ℓJ/8] × BY[ℓJ/8] → Sym.K

PRFnfSapling ◦
◦ J⋆

(𝑟)
× B[ℓJ] → BY[ℓPRFnfSapling/8]

For Orchard, we need PRFexpand, and also:

PRFockOrchard ◦
◦ BY[ℓovk/8] × BY[ℓP/8] × BY[ℓP/8] × BY[ℓP/8] → Sym.K

PRFnfOrchard ◦
◦ F𝑞P

× F𝑞P
→ F𝑞P

PRFexpand is used in the following places:

• section 4.2.2 ‘Sapling Key Components’ on page 36, with inputs [0x00], [0x01], [0x02], and [0x03, 𝑖 ◦
◦ BY];

• [N​U​5 onward] in section 4.2.3 ‘Orchard Key Components’ on page 38, with inputs [0x06], [0x07], [0x08], and with �rst
byte 0x82 (the last of these is also speci�ed in [ZIP-32]);

• in the processes of sending (section 4.7.2 ‘Sending Notes (Sapling)’ on page 44 and section 4.7.3 ‘Sending Notes (Orchard)’
on page 45) and of receiving (section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67) notes, for
Sapling with inputs [0x04] and [0x05], and for Orchard [𝑡] || ρwith 𝑡 ∈ {0x05, 0x04, 0x09};

• in [ZIP-32], with inputs [0x00], [0x01], [0x02] (intentionally matching section 4.2.2 on page 36), [0x10], [0x13], [0x14], and
with �rst byte in {0x11, 0x12, 0x15, 0x16, 0x17, 0x18, 0x80, 0x81, 0x82, 0x83};

• in [ZIP-316], with �rst byte 0xD0.

25

https://zips.z.cash/protocol/protocol.pdf#abstractprfs

PRFockSapling and PRFockOrchard are used in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67.

PRFnfSapling is used in section 4.18.2 ‘Spend Statement (Sapling)’ on page 61.

PRFnfOrchard is used in section 4.18.4 ‘Action Statement (Orchard)’ on page 63.

All of these Pseudo Random Functions are instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86.

Security requirements:

• Security de�nitions for Pseudo Random Functions are given in [BDJR2000, section 4].

• In addition to being Pseudo Random Functions, it is required that PRFaddr
𝑥 , PRFρ𝑥 , PRFnfSprout

𝑥 , PRFnfSapling
𝑥 and

PRFnfOrchard
𝑥 be collision-resistant across all 𝑥 — i.e. �nding (𝑥, 𝑦) ̸= (𝑥′, 𝑦′) such that PRFaddr

𝑥 (𝑦) = PRFaddr
𝑥

′ (𝑦′)
should not be feasible, and similarly for PRFρ, PRFnfSprout, PRFnfSapling, and PRFnfOrchard.

• See the note in section 4.2.3 ‘Orchard Key Components’ on page 38 for a security caveat about the use of PRFexpand.

Non-normative note: PRFnfSprout was called PRFsn in Zerocash [BCGGMTV2014], and just PRFnf in some previous
versions of this speci�cation.

4.1.3 Pseudo Random Permutations #abstractprps

PRP𝑥 denotes a Pseudo Random Permutation keyed by 𝑥.

Let ℓdk and ℓd be as de�ned in section 5.3 ‘Constants’ on page 74.

One Pseudo Random Permutation is used for Orchard, to generate diversi�ers from a diversi�er key and index (an
identical construction is also used for Sapling in [ZIP-32]):

PRPd ◦
◦ BY[ℓdk/8] × B[ℓd] → B[ℓd].

It is instantiated in section 5.4.4 ‘Pseudo Random Permutations’ on page 88.

Security requirement: PRPd is a keyed Pseudo Random Permutation as de�ned in [BKR2001].

4.1.4 Symmetric Encryption #abstractsym

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦
◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.

Sym.Decrypt ◦
◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the decryption algorithm, such that for any K ∈ Sym.K and

P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

4.1.5 Key Agreement #abstractkeyagreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA de�nes a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also de�nes a type KA.PublicPrimeOrder ⊆ KA.Public.

26

https://zips.z.cash/protocol/protocol.pdf#abstractprps
https://zips.z.cash/protocol/protocol.pdf#abstractsym
https://zips.z.cash/protocol/protocol.pdf#abstractkeyagreement

Optional: Let KA.FormatPrivate ◦
◦ B[ℓSprout

PRF] → KA.Private be a function to convert a bit string of length ℓSprout
PRF to a KA

private key.

Let KA.DerivePublic ◦
◦ KA.Private×KA.Public→ KA.Public be a function that derives the KA public key corresponding

to a given KA private key and base point.

Let KA.Agree ◦
◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.

Optional: Let KA.Base ◦
◦ KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:

• KA.FormatPrivate must preserve suf�cient entropy from its input to be used as a secure KA private key.

• The key agreement and the KDF de�ned in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, De�nition 3].

More precise formalization of these requirements is beyond the scope of this speci�cation.

4.1.6 Key Derivation #abstractkdf

A Key Derivation Function is de�ned for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling and Orchard KDFs:

KDFSprout takes as input an output index in {1..Nnew}, the value hSig, the shared Dif�e–Hellman secret sharedSecret,

the ephemeral public key epk, and the recipient’s public transmission key pkenc. It is suitable for use with KASprout

and derives keys for Sym.Encrypt.

KDFSprout ◦
◦ {1..Nnew} × B[ℓhSig] × KASprout.SharedSecret× KASprout.Public× KASprout.Public→ Sym.K

KDFSapling takes as input the shared Dif�e–Hellman secret sharedSecret and the ephemeral public key epk. (It does
not have inputs taking the place of the output index, hSig, or pkenc.) It is suitable for use with KASapling and derives
keys for Sym.Encrypt.

KDFSapling ◦
◦ KASapling.SharedSecret× BY[ℓJ/8] → Sym.K

As in Sapling, KDFOrchard takes as input the shared Dif�e–Hellman secret sharedSecret and the ephemeral public key
epk. It is suitable for use with KAOrchard and derives keys for Sym.Encrypt.

KDFOrchard ◦
◦ KAOrchard.SharedSecret× BY[ℓP/8] → Sym.K

Security requirements:

• The asymmetric encryption scheme in section 4.19 ‘In-band secret distribution (Sprout)’ on page 65, constructed
from KASprout, KDFSprout and Sym, is required to be IND-CCA2-secure and key-private.

• The asymmetric encryption scheme in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67,
constructed from KASapling, KDFSapling and Sym or from KAOrchard, KDFOrchard and Sym, is required to be IND-
CCA2-secure and key-private.

Key privacy is de�ned in [BBDP2001].

27

https://zips.z.cash/protocol/protocol.pdf#abstractkdf

4.1.7 Signature #abstractsig

A signature scheme Sig de�nes:

• a type of signing keys Sig.Private;

• a type of validating keys Sig.Public;

• a type of messages Sig.Message;

• a type of signatures Sig.Signature;

• a randomized signing key generation algorithm Sig.GenPrivate ◦
◦ () →R Sig.Private;

• an injective validating key derivation algorithm Sig.DerivePublic ◦
◦ Sig.Private→ Sig.Public;

• a randomized signing algorithm Sig.Sign ◦
◦ Sig.Private× Sig.Message →R Sig.Signature;

• a validating algorithm Sig.Validate ◦
◦ Sig.Public× Sig.Message× Sig.Signature→ B;

such that for any signing key sk ←R Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any 𝑚 ◦

◦ Sig.Message and 𝑠 ◦
◦ Sig.Signature ←R Sig.Signsk(𝑚), Sig.Validatevk(𝑚, 𝑠) = 1.

Zcash uses four signature schemes:

• one used for signatures that can be validated by script operations such as OP_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

• one called JoinSplitSig which is used to sign transactions that contain at least one JoinSplit description
(instantiated in section 5.4.6 ‘Ed25519’ on page 90);

• [Sapling onward] one called SpendAuthSig which is used to sign authorizations of Spend transfers (instantiated
in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95);

• [Sapling onward] one called BindingSig. A Sapling binding signature is used to enforce balance of Spend
transfers and Output transfers, and to prevent their replay across transactions. Similarly, an Orchard binding
signature is used to enforce balance of Action transfers and to prevent their replay. BindingSig is instantiated
for both Sapling and Orchard in section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95.

The signature scheme used in script operations is instantiated by ECDSA on the secp256k1 curve. JoinSplitSig is
instantiated by Ed25519. SpendAuthSig and BindingSig are instantiated by RedDSA; on the Jubjub curve in Sapling,
and on the Pallas curve in Orchard.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSig are
de�ned in the next section, section 4.1.7.1 ‘Signature with Re-Randomizable Keys’ on page 29. An additional requirement
for BindingSig is de�ned in section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30.

Security requirement: JoinSplitSig and each instantiation of BindingSig must be Strongly Unforgeable under
(non-adaptive) Chosen Message Attack (SU-CMA), as de�ned for example in [BDEHR2011, De�nition 6].7 This allows
an adversary to obtain signatures on chosen messages, and then requires it to be infeasible for the adversary to
forge a previously unseen valid (message, signature) pair without access to the signing key.

Non-normative notes:

• We need separate signing key generation and validating key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen ◦

◦ () →R Sig.Private×Sig.Public, to support the key
derivation in section 4.2.2 ‘Sapling Key Components’ on page 36 and in section 4.2.3 ‘Orchard Key Components’ on page 38.

The de�nitions of schemes with additional features in section 4.1.7.1 ‘Signature with Re-Randomizable Keys’ on
page 29 and in section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30 also become
simpler.

7 The scheme de�ned in that paper was attacked in [LM2017], but this has no impact on the applicability of the de�nition.

28

https://zips.z.cash/protocol/protocol.pdf#abstractsig

• A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see section 4.11 ‘Non-malleability (Sprout)’ on page 51), a one-time signature
scheme would suf�ce for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key.

• [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments. This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions or Action descriptions.

• SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and Sapling binding signatures and
Orchard binding signatures are intended to be nonmalleable in the sense of [BIP-62].

• The terminology used in this speci�cation is that we “validate” signatures, and “verify” zk-SNARK proofs.

4.1.7.1 Signature with Re-Randomizable Keys #abstractsigrerand

A signature scheme with re-randomizable keys Sig is a signature scheme that additionally de�nes:

• a type of randomizers Sig.Random;

• a randomizer generator Sig.GenRandom ◦
◦ () →R Sig.Random;

• a signing key randomization algorithm Sig.RandomizePrivate ◦
◦ Sig.Random× Sig.Private→ Sig.Private;

• a validating key randomization algorithm Sig.RandomizePublic ◦
◦ Sig.Random× Sig.Public→ Sig.Public;

• a distinguished “identity” randomizer 𝒪Sig.Random
◦
◦ Sig.Random

such that:

• for any 𝛼 ◦
◦ Sig.Random, Sig.RandomizePrivate𝛼

◦
◦ Sig.Private→ Sig.Private is injective and easily invertible;

• Sig.RandomizePrivate𝒪Sig.Random
is the identity function on Sig.Private.

• for any sk ◦
◦ Sig.Private,

Sig.RandomizePrivate(𝛼, sk) : 𝛼 ←R Sig.GenRandom()
is identically distributed to Sig.GenPrivate().

• for any sk ◦
◦ Sig.Private and 𝛼 ◦

◦ Sig.Random,

Sig.RandomizePublic(𝛼, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(𝛼, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys” in [FKMSSS2016, De�nition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message Attack
(SURK-CMA)

For any sk ◦
◦ Sig.Private, let

Osk
◦
◦ Sig.Message× Sig.Random→ Sig.Signature

be a signing oracle with state 𝑄 ◦
◦ P
(︀
Sig.Message× Sig.Signature

)︀
initialized to {} that records queried messages

and corresponding signatures.

29

https://zips.z.cash/protocol/protocol.pdf#abstractsigrerand

Osk := let mutable 𝑄← {} in (𝑚 ◦
◦ Sig.Message, 𝛼 ◦

◦ Sig.Random) ↦→
let 𝜎 = Sig.SignSig.RandomizePrivate(𝛼,sk)(𝑚)
set 𝑄← 𝑄 ∪ {(𝑚, 𝜎)}
return 𝜎 ◦

◦ Sig.Signature.

For random sk ←R Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
a new instance of Osk to �nd (𝑚′, 𝜎′, 𝛼′) such that Sig.ValidateSig.RandomizePublic(𝛼

′
,vk)(𝑚

′, 𝜎′) = 1 and (𝑚′, 𝜎′) ̸∈ Osk.𝑄.

Non-normative notes:

• The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

• The requirement for the identity randomizer 𝒪Sig.Random simpli�es the de�nition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O1 in [FKMSSS2016], is a special case of
the oracle for randomized keys).

• Since Sig.RandomizePrivate(𝛼, sk) : 𝛼 ←R Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized validating key and signature(s)
under that key do not reveal the key from which it was re-randomized .

• Since Sig.RandomizePrivate𝛼 is injective and easily invertible, knowledge of Sig.RandomizePrivate(𝛼, sk) and 𝛼
implies knowledge of sk.

4.1.7.2 Signature with Signing Key to Validating Key Monomorphism #abstractsigmono

A signature scheme with key monomorphism Sig is a signature scheme that additionally de�nes:

• an abelian group on signing keys, with operation ◦
◦ Sig.Private× Sig.Private→ Sig.Private and identity𝒪 ;

• an abelian group on validating keys, with operation ◦
◦ Sig.Public× Sig.Public→ Sig.Public and identity𝒪 .

such that for any sk1..2
◦
◦ Sig.Private, Sig.DerivePublic(sk1 sk2) = Sig.DerivePublic(sk1) Sig.DerivePublic(sk2).

In other words, Sig.DerivePublic is a monomorphism (that is, an injective homomorphism) from the signing key
group to the validating key group.

For N ◦
◦ N+,

•
N

𝑖=1
sk𝑖 means sk1 sk2 · · · skN;

•
N

𝑖=1
vk𝑖 means vk1 vk2 · · · vkN.

When N = 0 these yield the appropriate group identity, i.e.
0

𝑖=1
sk𝑖 = 𝒪 and

0

𝑖=1
vk𝑖 = 𝒪 .

sk means the signing key such that (sk) sk = 𝒪 , and sk1 sk2 means sk1 (sk2).

vk means the validating key such that (vk) vk = 𝒪 , and vk1 vk2 means vk1 (vk2).

With a change of notation from 𝜇 to Sig.DerivePublic, + to , and · to , this is similar to the de�nition of a “Signature
with Secret Key to Public Key Homomorphism” in [DS2016, De�nition 13], except for an additional requirement for
the homomorphism to be injective.

Security requirement: For any sk1
◦
◦ Sig.Private, and an unknown sk2 ←

R Sig.GenPrivate() chosen independently
of sk1, the distribution of sk1 sk2 is computationally indistinguishable from that of Sig.GenPrivate(). (Since

is an abelian group operation, this implies that for 𝑛 ◦
◦ N+,

𝑛

𝑖=1
sk𝑖 is computationally indistinguishable from

Sig.GenPrivate() when at least one of sk1..𝑛 is unknown.)

30

https://zips.z.cash/protocol/protocol.pdf#abstractsigmono

4.1.8 Commitment #abstractcommit

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

• no information is revealed about it without the trapdoor (“hiding ”); and

• given the trapdoor and input, the commitment can be veri�ed to “open” to that input and no other (“binding ”).

A commitment scheme COMM de�nes a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM.Trapdoor, and a trapdoor generator COMM.GenTrapdoor ◦

◦ () →R COMM.Trapdoor.

Let COMM ◦
◦ COMM.Trapdoor × COMM.Input → COMM.Output be a function satisfying the following security

requirements.

Security requirements:

• Computational hiding : For all 𝑥, 𝑥′ ◦
◦ COMM.Input, the distributions {COMM𝑟(𝑥) | 𝑟 ←R COMM.GenTrapdoor() }

and {COMM𝑟(𝑥′) | 𝑟 ←R COMM.GenTrapdoor() } are computationally indistinguishable.

• Computational binding : It is infeasible to �nd 𝑥, 𝑥′ ◦
◦ COMM.Input and 𝑟, 𝑟′ ◦

◦ COMM.Trapdoor such that 𝑥 ̸= 𝑥′

and COMM𝑟(𝑥) = COMM𝑟
′(𝑥′).

Notes:

• COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

• If it were only feasible to �nd 𝑥 ◦
◦ COMM.Input and 𝑟, 𝑟′ ◦

◦ COMM.Trapdoor such that 𝑟 ̸= 𝑟′ and COMM𝑟(𝑥) =
COMM𝑟

′(𝑥), this would not contradict the computational binding security requirement. (In fact, this is feasible

for NoteCommitSapling and ValueCommitSapling because trapdoors are equivalent modulo 𝑟J, and the range of a

trapdoor for those algorithms is {0 .. 2ℓ
Sapling
scalar −1}where 2ℓ

Sapling
scalar > 𝑟J.)

Let ℓSprout
rcm , ℓSprout

Merkle, ℓSprout
PRF , and ℓvalue be as de�ned in section 5.3 ‘Constants’ on page 74.

De�ne NoteCommitSprout.Trapdoor := B[ℓSprout
rcm] and NoteCommitSprout.Output := B[ℓSprout

Merkle].

Sprout uses a note commitment scheme

NoteCommitSprout ◦
◦ NoteCommitSprout.Trapdoor × B[ℓSprout

PRF] × {0 .. 2ℓvalue−1} × B[ℓSprout
PRF]

→ NoteCommitSprout.Output,

instantiated in section 5.4.8.1 ‘Sprout Note Commitments’ on page 95.

Let ℓSapling
scalar be as de�ned in section 5.3 ‘Constants’ on page 74.

Let J(𝑟), ℓJ, and 𝑟J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

De�ne:

NoteCommitSapling.Trapdoor := {0 .. 2ℓ
Sapling
scalar −1} and NoteCommitSapling.Output := J;

ValueCommitSapling.Trapdoor := {0 .. 2ℓ
Sapling
scalar −1} and ValueCommitSapling.Output := J.

Sapling uses two additional commitment schemes:

NoteCommitSapling ◦
◦ NoteCommitSapling.Trapdoor × B[ℓJ] × B[ℓJ] × {0 .. 2ℓvalue−1} → NoteCommitSapling.Output

ValueCommitSapling ◦
◦ ValueCommitSapling.Trapdoor ×

{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀

→ ValueCommitSapling.Output

NoteCommitSapling is instantiated in section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96, and ValueCommitSapling is
instantiated in section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97.

31

https://zips.z.cash/protocol/protocol.pdf#abstractcommit

Non-normative note: NoteCommitSapling and ValueCommitSapling always return points in the subgroup J(𝑟). However,
we declare the type of these commitment outputs to be J because they are not directly checked to be in the
subgroup when ValueCommitSapling outputs appear in Spend descriptions and Output descriptions, or when the cmu
�eld derived from a NoteCommitSapling appears in an Output description.

Let ℓOrchard
scalar be as de�ned in section 5.3 ‘Constants’ on page 74.

Let P, ℓP, 𝑞P, and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

De�ne:

NoteCommitOrchard.Trapdoor := {0 .. 2ℓ
Orchard
scalar −1} and NoteCommitOrchard.Output := P ∪ {⊥};

ValueCommitOrchard.Trapdoor := {0 .. 2ℓ
Orchard
scalar −1} and ValueCommitOrchard.Output := P.

Commitivk.Trapdoor := {0 .. 2ℓ
Orchard
scalar −1} and Commitivk.Output := {0 .. 𝑞P − 1} ∪ {⊥}.

Orchard uses three additional commitment schemes:

NoteCommitOrchard ◦
◦ NoteCommitOrchard.Trapdoor × B[ℓP] × B[ℓP] × {0 .. 2ℓvalue−1}

× F𝑞P
× F𝑞P

→ NoteCommitOrchard.Output
ValueCommitOrchard ◦

◦ ValueCommitOrchard.Trapdoor ×
{︀
− 𝑟P−1

2 .. 𝑟P−1
2
}︀

→ ValueCommitOrchard.Output
Commitivk ◦

◦ Commitivk.Trapdoor × {0 .. 𝑞P − 1} × F𝑞P
→ Commitivk.Output

Notes:
• NoteCommitOrchard and Commitivk can return ⊥ (with insigni�cant probability).

• Commitivk can return 0 (with insigni�cant probability) even though that is not a valid KAOrchard private key.
The use of Commitivk to obtain an Orchard incoming viewing key in section 4.2.3 ‘Orchard Key Components’ on
page 38 explicitly accounts for the 0 and ⊥ cases. Use of Commitivk in the Action circuit does not require special
handling of the 0 case.

NoteCommitOrchard and Commitivk are instantiated in section 5.4.8.4 ‘Sinsemilla commitments’ on page 98. ValueCommitOrchard

is instantiated in section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97.

4.1.9 Represented Group #abstractgroup

A represented group G consists of:

• a subgroup order parameter 𝑟G
◦
◦ N+, which must be prime;

• a cofactor parameter ℎG
◦
◦ N+;

• a group G of order ℎG · 𝑟G, written additively with operation + ◦
◦ G ×G → G, and additive identity𝒪G ;

• a bit-length parameter ℓG
◦
◦ N;

• a representation function reprG ◦
◦ G → B[ℓG] and an abstraction function abstG ◦

◦ B[ℓG] → G ∪ {⊥}, such that
abstG is a left inverse of reprG , i.e. for all 𝑃 ∈ G, abstG

(︀
reprG(𝑃)

)︀
= 𝑃 .

Note: Ideally, we would also have that for all 𝑆 not in the image of reprG , abstG(𝑆) = ⊥. This may not be true in all
cases, i.e. there can be non-canonical encodings 𝑃⋆ such that reprG

(︀
abstG(𝑃⋆)

)︀
̸= 𝑃⋆.

De�ne G(𝑟) as the order-𝑟G subgroup of G, which is called a represented subgroup. Note that this includes 𝒪G . For

the set of points of order 𝑟G (which excludes 𝒪G), we write G(𝑟)*.

De�ne G⋆
(𝑟)

:= {reprG(𝑃) ◦
◦ B[ℓG] | 𝑃 ∈ G(𝑟)}. (This intentionally excludes non-canonical encodings if there are any.)

For 𝐺 ◦
◦ G we write −𝐺 for the negation of 𝐺, such that (−𝐺) + 𝐺 = 𝒪G . We write 𝐺−𝐻 for 𝐺 + (−𝐻).

We also extend the
∑︁

notation to addition on group elements.

32

https://zips.z.cash/protocol/protocol.pdf#abstractgroup

For 𝐺 ◦
◦ G and 𝑘 ◦

◦ Z we write [𝑘] 𝐺 for scalar multiplication on the group, i.e.

[𝑘] 𝐺 :=

⎧⎪⎨⎪⎩
∑︀𝑘

𝑖=1
𝐺, if 𝑘 ≥ 0∑︀−𝑘

𝑖=1
(−𝐺), otherwise.

For 𝐺 ◦
◦ G and 𝑎 ◦

◦ F𝑟G
, we may also write [𝑎] 𝐺 meaning [𝑎 mod 𝑟G] 𝐺 as de�ned above. (This variant is not de�ned

for �elds other than F𝑟G
.)

4.1.10 Coordinate Extractor #abstractextractor

A coordinate extractor for a represented group G is a function ExtractG(𝑟)
◦
◦ G(𝑟) → 𝑇 for some type 𝑇 .

Note: Unlike the representation function reprG , ExtractG(𝑟) need not have an ef�ciently computable left inverse.

4.1.11 Group Hash #abstractgrouphash

Given a represented subgroup G(𝑟), a family of group hashes into the subgroup, denoted GroupHashG(𝑟)

, consists of:

• a type GroupHashG(𝑟)

.URSType of Uniform Random Strings;

• a type GroupHashG(𝑟)

.Input of inputs;

• a function GroupHashG(𝑟)
◦
◦ GroupHashG(𝑟)

.URSType× GroupHashG(𝑟)

.Input→ G(𝑟).

In section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104, we instantiate a family of group hashes into the Jubjub curve de�ned
by section 5.4.9.3 ‘Jubjub’ on page 102.

Security requirement: For a randomly selected URS ◦
◦ GroupHashG(𝑟)

.URSType, it must be reasonable to model

GroupHashG(𝑟)

URS (restricted to inputs for which it does not return ⊥) as a random oracle.

In section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107, we instantiate group hashes into the Pallas and Vesta
curves. These are not strictly speaking families of group hashes, because they have a trivial URS, and so the above
security de�nition does not apply. Nevertheless, they can be heuristically modelled as random oracles.

Non-normative notes:

• GroupHashJ(𝑟)*

is used to obtain generators of the Jubjub curve for various purposes: the bases 𝒢Sapling and
ℋSapling used in Sapling key generation, the Pedersen hash de�ned in section 5.4.1.7 ‘Pedersen Hash Function’ on
page 79, and the commitment schemes de�ned in section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96 and in
section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97.

The security property needed for these uses can alternatively be de�ned in the standard model as follows:

Discrete Logarithm Independence: For a randomly selected member GroupHashG(𝑟)

URS of the family, it is infeasible

to �nd a sequence of distinct inputs 𝑚1..𝑛
◦
◦ GroupHashG(𝑟)

.Input[𝑛] and a sequence of nonzero 𝑥1..𝑛
◦
◦ F*

𝑟G
[𝑛]

such that
∑︀𝑛

𝑖=1

(︁
[𝑥𝑖] GroupHashG(𝑟)

URS(𝑚𝑖)
)︁

= 𝒪G .

• Under the Discrete Logarithm assumption on G(𝑟), a random oracle almost surely satis�es Discrete Logarithm
Independence. Discrete Logarithm Independence implies collision resistance , since a collision (𝑚1, 𝑚2) for

GroupHashG(𝑟)

URS trivially gives a discrete logarithm relation with 𝑥1 = 1 and 𝑥2 = −1.

33

https://zips.z.cash/protocol/protocol.pdf#abstractextractor
https://zips.z.cash/protocol/protocol.pdf#abstractgrouphash

• GroupHashJ(𝑟)*

is used in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78 to in-
stantiate DiversifyHashSapling. We do not know how to prove the Unlinkability property de�ned in that section

in the standard model, but in a model where GroupHashJ(𝑟)*

(restricted to inputs for which it does not return
⊥) is taken as a random oracle , it is implied by the Decisional Dif�e–Hellman assumption on J(𝑟), and similarly
for GroupHashP.

• URS is a Uniform Random String ; we chose it veri�ably at random (see section 5.9 ‘Randomness Beacon’ on page 120),
after �xing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored. For Orchard, we considered a URS to be unnecessary, because we
follow [ID-hashtocurve] which does not use one.

4.1.12 Represented Pairing #abstractpairing

A represented pairing PAIR consists of:

• a group order parameter 𝑟PAIR
◦
◦ N+ which must be prime;

• two represented subgroups PAIR(𝑟)
1,2, both of order 𝑟PAIR;

• a group PAIR(𝑟)
𝑇 of order 𝑟PAIR, written multiplicatively with operation · ◦

◦ PAIR(𝑟)
𝑇 × PAIR(𝑟)

𝑇 → PAIR(𝑟)
𝑇 and group

identity 1PAIR;

• three generators 𝒫PAIR1,2,𝑇
of PAIR(𝑟)

1,2,𝑇 respectively;

• a pairing function 𝑒PAIR
◦
◦ PAIR(𝑟)

1 × PAIR(𝑟)
2 → PAIR(𝑟)

𝑇 satisfying:

– (Bilinearity) for all 𝑎, 𝑏 ◦
◦ F*

𝑟 , 𝑃 ◦
◦ PAIR(𝑟)

1 , and 𝑄 ◦
◦ PAIR(𝑟)

2 , 𝑒PAIR([𝑎] 𝑃, [𝑏] 𝑄)= 𝑒PAIR(𝑃, 𝑄)𝑎·𝑏; and

– (Nondegeneracy) there does not exist 𝑃 ◦
◦ PAIR(𝑟)*

1 such that for all 𝑄 ◦
◦ PAIR(𝑟)

2 , 𝑒PAIR(𝑃, 𝑄)= 1PAIR.

4.1.13 Zero-Knowledge Proving System #abstractzk

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement , dependent
on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement . The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

A preprocessing zk-SNARK instance ZK de�nes:

• a type of zero-knowledge proving keys, ZK.ProvingKey;

• a type of zero-knowledge verifying keys, ZK.VerifyingKey;

• a type of primary inputs ZK.PrimaryInput;

• a type of auxiliary inputs ZK.AuxiliaryInput;

• a type of zk-SNARK proofs ZK.Proof;

• a type ZK.SatisfyingInputs ⊆ ZK.PrimaryInput× ZK.AuxiliaryInput of inputs satisfying the statement ;

• a randomized key pair generation algorithm ZK.Gen ◦
◦ () →R ZK.ProvingKey × ZK.VerifyingKey;

• a proving algorithm ZK.Prove ◦
◦ ZK.ProvingKey × ZK.SatisfyingInputs→ ZK.Proof;

• a verifying algorithm ZK.Verify ◦
◦ ZK.VerifyingKey × ZK.PrimaryInput× ZK.Proof → B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) ←R ZK.Gen().

34

https://zips.z.cash/protocol/protocol.pdf#abstractpairing
https://zips.z.cash/protocol/protocol.pdf#abstractzk

Security requirements:

• Completeness: An honestly generated proof will convince a veri�er: for any (𝑥, 𝑤) ∈ ZK.SatisfyingInputs, if
ZK.Provepk(𝑥, 𝑤) outputs 𝜋, then ZK.Verifyvk(𝑥, 𝜋) = 1.

• Knowledge Soundness: For any adversary 𝒜 able to �nd an 𝑥 ◦
◦ ZK.PrimaryInput and proof 𝜋 ◦

◦ ZK.Proof
such that ZK.Verifyvk(𝑥, 𝜋) = 1, there is an ef�cient extractor ℰ𝒜 such that if ℰ𝒜(vk, pk) returns 𝑤, then the
probability that (𝑥, 𝑤) ̸∈ ZK.SatisfyingInputs is insigni�cant.

• Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator 𝒮 such that, for all stateful distinguishers 𝒟, the following two probabilities are not
signi�cantly different:

Pr

⎡⎢⎢⎣ (𝑥, 𝑤) ∈ ZK.SatisfyingInputs
𝒟(𝜋) = 1

⃒⃒⃒⃒
⃒⃒⃒⃒ (pk, vk) ←R ZK.Gen()

(𝑥, 𝑤) ←R 𝒟(pk, vk)
𝜋←R ZK.Provepk(𝑥, 𝑤)

⎤⎥⎥⎦ and Pr

⎡⎢⎢⎣ (𝑥, 𝑤) ∈ ZK.SatisfyingInputs
𝒟(𝜋) = 1

⃒⃒⃒⃒
⃒⃒⃒⃒ (pk, vk) ←R 𝒮()

(𝑥, 𝑤) ←R 𝒟(pk, vk)
𝜋←R 𝒮(𝑥)

⎤⎥⎥⎦
These de�nitions are derived from those in [BCTV2014b, Appendix C], adapted to state concrete security for a �xed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to 𝑃 , ZK.Verify corresponds
to 𝑉 , and ZK.SatisfyingInputs corresponds toℛ𝐶 in the notation of that appendix.)

The Knowledge Soundness de�nition is a way to formalize the property that it is infeasible to �nd a new proof
𝜋 where ZK.Verifyvk(𝑥, 𝜋) = 1 without knowing an auxiliary input 𝑤 such that (𝑥, 𝑤) ∈ ZK.SatisfyingInputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to �nd a new proof 𝜋 where
ZK.Verifyvk(𝑥, 𝜋) = 1 without there existing an auxiliary input 𝑤 such that (𝑥, 𝑤) ∈ ZK.SatisfyingInputs.

Non-normative notes:

• The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using
the zero-knowledge proving system must take this into account.

• The terminology used in this speci�cation is that we “validate” signatures, and “verify” zk-SNARK proofs.

Zcash uses three proving systems:

• BCTV14 (section 5.4.10.1 ‘BCTV14’ on page 110) is used with the BN-254 pairing (section 5.4.9.1 ‘BN-254’ on page 99), to prove
and verify the Sprout JoinSplit statement (section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60) before Sapling
activation.

• Groth16 (section 5.4.10.2 ‘Groth16’ on page 111) is used with the BLS12-381 pairing (section 5.4.9.2 ‘BLS12-381’ on page 101), to
prove and verify the Sapling Spend statement (section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) and Output
statement (section 4.18.3 ‘Output Statement (Sapling)’ on page 62). It is also used to prove and verify the JoinSplit
statement after Sapling activation.

• [N​U​5 onward] Halo 2 (section 5.4.10.3 ‘Halo 2’ on page 112) is used with the Vesta curve (section 5.4.9.6 ‘Pallas and Vesta’ on
page 105) to prove and verify the Orchard Action statement (section 4.18.4 ‘Action Statement (Orchard)’ on page 63).

These specializations are:

• ZKJoinSplit for the Sprout JoinSplit statement (with BCTV14 and BN-254, or Groth16 and BLS12-381);

• ZKSpend for the Sapling Spend statement and ZKOutput for the Sapling Output statement ;

• [N​U​5 onward] ZKAction for the Orchard Action statement .

We omit key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the BCTV14 proving
key and verifying key de�ned in section 5.7 ‘BCTV14 zk-SNARK Parameters’ on page 119, or the sprout-groth16.params
Groth16 proving key and verifying key de�ned in section 5.8 ‘Groth16 zk-SNARK Parameters’ on page 119, according to
whether the proof appears in a block before or after Sapling activation.

We omit subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be the
relevant Groth16 proving keys and verifying keys de�ned in section 5.8 ‘Groth16 zk-SNARK Parameters’ on page 119.

We also omit subscripts on ZKAction.Prove and ZKAction.Verify. For Halo 2, parameters for a given circuit imple-
mentation are generated on the �y by the halo2 library, and do not require parameter �les.

35

4.2 Key Components #keycomponents

4.2.1 Sprout Key Components #sproutkeycomponents

Let ℓask
be as de�ned in section 5.3 ‘Constants’ on page 74.

Let PRFaddr be a Pseudo Random Function, instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86.

Let KASprout be a key agreement scheme , instantiated in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

A new Sprout spending key ask is generated by choosing a bit sequence uniformly at random from B[ℓask
].

apk, skenc and pkenc are derived from ask as follows:

apk := PRFaddr
ask

(0)
skenc := KASprout.FormatPrivate(PRFaddr

ask
(1))

pkenc := KASprout.DerivePublic(skenc, KASprout.Base).

4.2.2 Sapling Key Components #saplingkeycomponents

Let ℓPRFexpand, ℓsk, ℓSapling
ivk , ℓovk, and ℓd be as de�ned in section 5.3 ‘Constants’ on page 74.

Let J(𝑟), J(𝑟)*, J⋆
(𝑟)

, reprJ, and 𝑟J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102, and let FindGroupHashJ(𝑟)*

be as de�ned in
section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104.

Let PRFexpand and PRFockSapling, instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86, be Pseudo Random
Functions.

Let KASapling, instantiated in section 5.4.5.3 ‘Sapling Key Agreement’ on page 89, be a key agreement scheme.

Let CRHivk, instantiated in section 5.4.1.5 ‘CRHivk Hash Function’ on page 77, be a hash function.

Let DiversifyHashSapling, instantiated in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78,
be a hash function.

Let SpendAuthSigSapling, instantiated in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95,
be a signature scheme with re-randomizable keys.

Let LEBS2OSP ◦
◦ (ℓ ◦

◦ N) × B[ℓ] → BY[ceiling(ℓ/8)] and LEOS2IP ◦
◦ (ℓ ◦

◦ N | ℓ mod 8 = 0) × BY[ℓ/8] → {0 .. 2ℓ−1} be as
de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

De�neℋSapling := FindGroupHashJ(𝑟)*

(“Zcash_H_”, “”).

De�ne ToScalarSapling(𝑥 ◦
◦ BY[ℓPRFexpand/8]) := LEOS2IPℓPRFexpand

(𝑥) (mod 𝑟J).

A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from B[ℓsk].

From this spending key, the Spend authorizing key ask ◦
◦ F*

𝑟J
, the proof authorizing key nsk ◦

◦ F𝑟J
, and the outgoing

viewing key ovk ◦
◦ BY[ℓovk/8] are derived as follows:

ask := ToScalarSapling(︀PRFexpand
sk ([0])

)︀
nsk := ToScalarSapling(︀PRFexpand

sk ([1])
)︀

ovk := truncate(ℓovk/8)
(︀
PRFexpand

sk ([2])
)︀

If ask = 0, discard this key and repeat with a new sk.

ak ◦
◦ J(𝑟)*, nk ◦

◦ J(𝑟), and the incoming viewing key ivk ◦
◦ {1 .. 2ℓ

Sapling
ivk −1} are then derived as:

ak := SpendAuthSigSapling.DerivePublic(ask)
nk := [nsk]ℋSapling

ivk := CRHivk(︀reprJ(ak), reprJ(nk)
)︀
.

If ivk = 0, discard this key and repeat with a new sk.

36

https://zips.z.cash/protocol/protocol.pdf#keycomponents
https://zips.z.cash/protocol/protocol.pdf#sproutkeycomponents
https://zips.z.cash/protocol/protocol.pdf#saplingkeycomponents

As explained in section 3.1 ‘Payment Addresses and Keys’ on page 13, Sapling allows the ef�cient creation of multiple
diversi�ed payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key and incoming viewing key.

To create a new diversi�ed payment address given an incoming viewing key ivk, repeatedly pick a diversi�er d
uniformly at random from B[ℓd] until the diversi�ed base gd = DiversifyHashSapling(d) is not ⊥. Then calculate the
diversi�ed transmission key pkd:

pkd := KASapling.DerivePublic(ivk, gd).

The resulting diversi�ed payment address is (d ◦
◦ B[ℓd], pkd

◦
◦ KASapling.PublicPrimeOrder).

For each spending key, there is also a default diversi�ed payment address with a “random-looking” diversi�er.
This allows an implementation that does not expose diversi�ed addresses as a user-visible feature, to use a default
address that cannot be distinguished (without knowledge of the spending key) from one with a random diversi�er
as above. Note however that the zcashd wallet picks diversi�ers as in [ZIP-32], rather than using this procedure.

Let first ◦
◦ (BY→ 𝑇 ∪ {⊥})→ 𝑇 ∪ {⊥} be as de�ned in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104. De�ne:

CheckDiversifier(d ◦
◦ B[ℓd]) :=

{︃
⊥, if DiversifyHashSapling(d) = ⊥
d, otherwise

DefaultDiversifier(sk ◦
◦ B[ℓsk]) := first

(︀
𝑖 ◦

◦ BY ↦→ CheckDiversifier(truncate(ℓd/8)(PRFexpand
sk ([3, 𝑖]))) ◦

◦ J(𝑟)* ∪ {⊥}
)︀
.

For a random spending key, DefaultDiversifier returns⊥with probability approximately 2−256; if this happens, discard
the key and repeat with a different sk.

Notes:
• The protocol does not prevent using the diversi�er d to produce “vanity” addresses that start with a meaningful

string when encoded in Bech32 (see section 5.6.3.1 ‘Sapling Payment Addresses’ on page 115). Users and writers of
software that generates addresses should be aware that this provides weaker privacy properties than a
randomly chosen diversi�er, since a vanity address can obviously be distinguished, and might leak more
information than intended as to who created it.

• Similarly, address generators MAY encode information in the diversi�er that can be recovered by the recipient
of a payment to determine which diversi�ed payment address was used. It is RECOMMENDED, instead of
directly encoding information in the diversi�er, to encode it in the diversi�er index speci�ed in [ZIP-32]. This
ensures that the information is only accessible to a holder of the diversi�er key dk.

Non-normative notes:

• Assume that PRFexpand is a PRF with output range BY[ℓPRFexpand/8], where 2ℓPRFexpand is large compared to 𝑟J.

De�ne 𝑓 ◦
◦ B[ℓsk] × BY[N] → F𝑟J

by 𝑓sk(𝑡) := ToScalarSapling(︀PRFexpand
sk (𝑡)

)︀
.

𝑓 is also a PRF since LEOS2IPℓPRFexpand
◦
◦ BY[ℓPRFexpand/8] → {0 .. 2ℓPRFexpand−1} is injective; the bias introduced by reduc-

tion modulo 𝑟J is small because section 5.3 ‘Constants’ on page 74 de�nes ℓPRFexpand as 512, while 𝑟J has length 252 bits.

It follows that the distribution of ask, i.e. PRFexpand
sk ([0]) : sk ←R B[ℓsk], is computationally indistinguishable from

SpendAuthSigSapling.GenPrivate() de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’
on page 95.

• The distribution of nsk, i.e. ToScalarSapling(︀PRFexpand
sk ([1])

)︀
: sk ←R B[ℓsk], is computationally indistinguishable

from the uniform distribution on F𝑟J
. Since nsk ◦

◦ F𝑟J
↦→ reprJ

(︀
[nsk]ℋSapling ◦

◦ J⋆
(𝑟))︀

is bijective, the distribution of

reprJ(nk)will be computationally indistinguishable from uniform on J⋆
(𝑟)

(the keyspace of PRFnfSapling).

37

4.2.3 Orchard Key Components #orchardkeycomponents

Let ℓPRFexpand, ℓsk, ℓovk, ℓd, and ℓdk be as de�ned in section 5.3 ‘Constants’ on page 74.

Let P, reprP, ℓP, 𝑞P, and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let ExtractP be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let GroupHashP be as de�ned in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

Let PRFexpand and PRFockOrchard be as de�ned in section 5.4.2 ‘Pseudo Random Functions’ on page 86.

Let DeriveInternalFVKOrchard be as de�ned in [ZIP-32, Orchard internal key derivation].

Let PRPd ◦
◦ BY[ℓdk/8] × B[ℓd] → B[ℓd] be as de�ned in section 5.4.4 ‘Pseudo Random Permutations’ on page 88.

Let KAOrchard, instantiated in section 5.4.5.5 ‘Orchard Key Agreement’ on page 90, be a key agreement scheme.

Let Commitivk, instantiated in section 5.4.8.4 ‘Sinsemilla commitments’ on page 98, be a commitment scheme.

Let DiversifyHashOrchard be as de�ned in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78.

Let SpendAuthSigOrchard instantiated in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95
be a signature scheme with re-randomizable keys.

Let I2LEBSP, I2LEOSP, and LEOS2IP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

De�ne ToBaseOrchard(𝑥 ◦
◦ BY[ℓPRFexpand/8]) := LEOS2IPℓPRFexpand

(𝑥) (mod 𝑞P).

De�ne ToScalarOrchard(𝑥 ◦
◦ BY[ℓPRFexpand/8]) := LEOS2IPℓPRFexpand

(𝑥) (mod 𝑟P).

A new Orchard spending key sk is generated by choosing a bit sequence uniformly at random from B[ℓsk].

From this spending key, the Spend authorizing key ask ◦
◦ F*

𝑟P
, the Spend validating key ak ◦

◦ {0 .. 𝑞P − 1}, the nulli�er

deriving key nk ◦
◦ F𝑞P

, the Commitivk randomness rivk ◦
◦ F𝑟P

, the diversi�er key dk ◦
◦ BY[ℓdk/8], the KAOrchard private key

ivk ◦
◦ {1 .. 𝑞P − 1}, the outgoing viewing key ovk ◦

◦ BY[ℓovk/8], and corresponding “internal” keys are derived as follows:

let mutable ask← ToScalarOrchard(︀PRFexpand
sk ([6])

)︀
let nk = ToBaseOrchard(︀PRFexpand

sk ([7])
)︀

let rivk = ToScalarOrchard(︀PRFexpand
sk ([8])

)︀
if ask = 0, discard this key and repeat with a new sk.

let akP = SpendAuthSigOrchard.DerivePublic(ask)
if the last bit (that is, the 𝑦 bit) of reprP(akP) is 1:

set ask← −ask
let ak = ExtractP(akP)
let ivk = Commitivk

rivk
(︀
ak, nk

)︀
if ivk ∈ {0,⊥}, discard this key and repeat with a new sk.

let 𝐾 = I2LEBSPℓsk
(rivk)

let 𝑅 = PRFexpand
𝐾

(︀
[0x82] || I2LEOSP256(ak) || I2LEOSP256(nk)

)︀
let dk be the �rst ℓdk/8 bytes of 𝑅 and let ovk be the remaining ℓovk/8 bytes of 𝑅.

let (akinternal, nkinternal, rivkinternal) = DeriveInternalFVKOrchard(ak, nk, rivk)
let ivkinternal = Commitivk

rivkinternal

(︀
akinternal, nkinternal

)︀
if ivkinternal ∈ {0,⊥}, discard this key and repeat with a new sk.

let 𝐾internal = I2LEBSPℓsk
(rivkinternal)

let 𝑅internal = PRFexpand
𝐾internal

(︀
[0x82] || I2LEOSP256(akinternal) || I2LEOSP256(nkinternal)

)︀
let dkinternal be the �rst ℓdk/8 bytes of 𝑅internal and let ovkinternal be the remaining ℓovk/8 bytes of 𝑅internal.

38

https://zips.z.cash/protocol/protocol.pdf#orchardkeycomponents

Note: akinternal = ak and nkinternal = nk.

As explained in section 3.1 ‘Payment Addresses and Keys’ on page 13, Orchard allows the ef�cient creation of multiple
diversi�ed payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key, incoming viewing key, and outgoing viewing key.

To create a new diversi�ed payment address given an incoming viewing key (dk, ivk), pick a diversi�er index index
uniquely from B[ℓd]. Then calculate the diversi�er d and the diversi�ed transmission key pkd:

d := PRPd
dk(index)

gd := DiversifyHashOrchard(d)
pkd := KAOrchard.DerivePublic(ivk, gd).

The resulting diversi�ed payment address is (d ◦
◦ B[ℓd], pkd

◦
◦ KAOrchard.PublicPrimeOrder).

The diversi�ed payment address with diversi�er index 0 is called the default diversi�ed payment address.

Notes:

• Diversi�er indices SHOULD NOT be chosen at random. [ZIP-32] speci�es their usage in the context of
hierarchical deterministic wallets.

• Address generators MAY encode information in the diversi�er index that can be recovered by the recipient
of a payment, given the diversi�er key.

• rivk is used both as a randomizer for Commitivk, and as a key for PRFexpand to derive dk and ovk. If dk and
ovk are known to an adversary, then this reuse prevents proving that the use of Commitivk in this context is
perfectly hiding . It is also not suf�cient to model PRFexpand only as a PRF. In practice, we believe it would be
extremely surprising if there were an exploitable interaction between scalar multiplication used in Commitivk,
and BLAKE2b used to instantiate PRFexpand. It is possible, albeit somewhat inelegantly, to model this usage by
a joint assumption on Pallas scalar multiplication and PRFexpand.

Non-normative notes:

• The uses of ToScalarOrchard and ToBaseOrchard produce output that is uniform on F𝑟P
and F𝑞P

respectively when
applied to random input, by a similar argument to that used in section 4.2.2 ‘Sapling Key Components’ on page 36.

• The output of Commitivk is the af�ne-short-Weierstrass 𝑥-coordinate of a Pallas curve point, which we then
use as a KAOrchard private key ivk for note encryption. The fact that ivk is non-uniform on F𝑟P

(since it can only
take on roughly half of the possible values) is not expected to cause any security issue.

4.3 JoinSplit Descriptions #joinsplitdesc

A JoinSplit transfer, as speci�ed in section 3.5 ‘JoinSplit Transfers and Descriptions’ on page 19, is encoded in transactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions. When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public validating key and signature.

Let ℓSprout
Merkle, ℓSprout

PRF , ℓSeed, Nold, Nnew, and MAX_MONEY be as de�ned in section 5.3 ‘Constants’ on page 74.

Let hSigCRH be as de�ned in section 4.1.1 ‘Hash Functions’ on page 24.

Let NoteCommitSprout be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let KASprout be as de�ned in section 4.1.5 ‘Key Agreement’ on page 26.

Let Sym be as de�ned in section 4.1.4 ‘Symmetric Encryption’ on page 26.

Let ZKJoinSplit be as de�ned in section 4.1.13 ‘Zero-Knowledge Proving System’ on page 34.

39

https://zips.z.cash/protocol/protocol.pdf#joinsplitdesc

A JoinSplit description comprises (vold
pub, vnew

pub , rtSprout, nfold
1..Nold , cmnew

1..Nnew , epk, randomSeed, h1..Nold , 𝜋ZKJoinSplit, Cenc
1..Nnew)

where

• vold
pub

◦
◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent transaction

value pool ;

• vnew
pub

◦
◦ {0 .. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent transaction value

pool ;

• rtSprout ◦
◦ B[ℓSprout

Merkle] is an anchor, as de�ned in section 3.4 ‘Transactions and Treestates’ on page 18, for the output treestate
of either a previous block , or a previous JoinSplit transfer in this transaction.

• nfold
1..Nold

◦
◦ B[ℓSprout

PRF][Nold] is the sequence of nulli�ers for the input notes;

• cmnew
1..Nnew ◦

◦ NoteCommitSprout.Output[Nnew] is the sequence of note commitments for the output notes;

• epk ◦
◦ KASprout.Public is a key agreement public key, used to derive the key for encryption of the transmitted

notes ciphertext (section 4.19 ‘In-band secret distribution (Sprout)’ on page 65);

• randomSeed ◦
◦ B[ℓSeed] is a seed that must be chosen independently at random for each JoinSplit description;

• h1..Nold
◦
◦ B[ℓSprout

PRF][Nold] is a sequence of tags that bind hSig to each ask of the input notes;

• 𝜋ZKJoinSplit
◦
◦ ZKJoinSplit.Proof is a zk proof with primary input (rtSprout, nfold

1..Nold , cmnew
1..Nnew , vold

pub, vnew
pub , hSig, h1..Nold)

for the JoinSplit statement de�ned in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60 (this is a BCTV14 proof
before Sapling activation, and a Groth16 proof after Sapling activation);

• Cenc
1..Nnew ◦

◦ Sym.C[Nnew] is a sequence of ciphertext components for the encrypted output notes.

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

The value hSig is also computed from randomSeed, nfold
1..Nold , and the joinSplitPubKey of the containing transaction:

hSig := hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey).

Consensus rules:

• Elements of a JoinSplit description MUST have the types given above (for example: 0 ≤ vold
pub ≤ MAX_MONEY

and 0 ≤ vnew
pub ≤ MAX_MONEY).

• The proof 𝜋ZKJoinSplit MUST be valid given a primary input formed from the relevant other �elds and hSig — i.e.

ZKJoinSplit.Verify
(︀
(rtSprout, nfold

1..Nold , cmnew
1..Nnew , vold

pub, vnew
pub , hSig, h1..Nold), 𝜋ZKJoinSplit

)︀
= 1.

• Either vold
pub or vnew

pub MUST be zero.

• [Canopy onward] vold
pub MUST be zero.

4.4 Spend Descriptions #spenddesc

A Spend transfer, as speci�ed in section 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on page 20, is
encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions.

Each Spend description is authorized by a signature, called the spend authorization signature.

Let ℓSapling
Merkle and ℓPRFnfSapling be as de�ned in section 5.3 ‘Constants’ on page 74.

Let 𝒪J, abstJ, reprJ, and ℎJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ValueCommitSapling.Output be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let SpendAuthSigSapling be as de�ned in section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 56.

Let ZKSpend be as de�ned in section 4.1.13 ‘Zero-Knowledge Proving System’ on page 34.

40

https://zips.z.cash/protocol/protocol.pdf#spenddesc

A Spend description comprises (cv, rtSapling, nf, rk, 𝜋ZKSpend, spendAuthSig) where

• cv ◦
◦ ValueCommitSapling.Output is the value commitment to the value of the input note;

• rtSapling ◦
◦ B[ℓSapling

Merkle] is an anchor, as de�ned in section 3.4 ‘Transactions and Treestates’ on page 18, for the output
treestate of a previous block ;

• nf ◦
◦ BY[ℓPRFnfSapling/8] is the nulli�er for the input note;

• rk ◦
◦ SpendAuthSigSapling.Public is a randomized validating key that should be used to validate spendAuthSig;

• 𝜋ZKSpend
◦
◦ ZKSpend.Proof is a zk-SNARK proof with primary input (cv, rtSapling, nf, rk) for the Spend statement

de�ned in section 4.18.2 ‘Spend Statement (Sapling)’ on page 61;

• spendAuthSig ◦
◦ SpendAuthSigSapling.Signature is a spend authorization signature , validated as speci�ed in section 4.15

‘Spend Authorization Signature (Sapling and Orchard)’ on page 56.

Consensus rules:

• Elements of a Spend description MUST be valid encodings of the types given above.

• cv and rk MUST NOT be of small order, i.e. [ℎJ] cv MUST NOT be 𝒪J and [ℎJ] rk MUST NOT be 𝒪J.

• The proof 𝜋ZKSpend MUST be valid given a primary input formed from the other �elds except spendAuthSig —

i.e. ZKSpend.Verify
(︀
(cv, rtSapling, nf, rk), 𝜋ZKSpend

)︀
= 1.

• Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as de�ned in
section 4.10 ‘SIGHASH Transaction Hashing’ on page 50 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSigSapling signature over SigHash using rk as the
validating key— i.e. SpendAuthSigSapling.Validaterk(SigHash, spendAuthSig) = 1.

[N​U​5 onward] As speci�ed in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92, the validation of the 𝑅
component of the signature changes to prohibit non-canonical encodings. This change is also retrospectively
valid on Mainnet and Testnet before N​U​5.

Non-normative notes:

• As stated in section 5.4.8.3 on page 97, an implementation of HomomorphicPedersenCommitSapling MAY resample the
commitment trapdoor until the resulting commitment is not 𝒪J.

• The rule that cv and rk MUST not be small-order has the effect of also preventing non-canonical encodings
of these �elds, as required by [ZIP-216]. That is, it is necessarily the case that reprJ

(︀
abstJ(cv)

)︀
= cv and

reprJ
(︀
abstJ(rk)

)︀
= rk.

4.5 Output Descriptions #outputdesc

An Output transfer, as speci�ed in section 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on page 20, is
encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions. There are no signatures associated
with Output descriptions.

Let ℓSapling
Merkle be as de�ned in section 5.3 ‘Constants’ on page 74.

Let 𝒪J, abstJ, reprJ, and ℎJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ValueCommitSapling.Output be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let KASapling be as de�ned in section 4.1.5 ‘Key Agreement’ on page 26.

Let Sym be as de�ned in section 4.1.4 ‘Symmetric Encryption’ on page 26.

Let ZKOutput be as de�ned in section 4.1.13 ‘Zero-Knowledge Proving System’ on page 34.

41

https://zips.z.cash/protocol/protocol.pdf#outputdesc

An Output description comprises (cv, cm𝑢, epk, Cenc, Cout, 𝜋ZKOutput) where

• cv ◦
◦ ValueCommitSapling.Output is the value commitment to the value of the output note;

• cm𝑢
◦
◦ B[ℓSapling

Merkle] is the result of applying ExtractJ(𝑟) (de�ned in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on

page 104) to the note commitment for the output note;

• epk ◦
◦ KASapling.Public is a key agreement public key, used to derive the key for encryption of the transmitted

note ciphertext (section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67);

• Cenc ◦
◦ Sym.C is a ciphertext component for the encrypted output note;

• Cout ◦
◦ Sym.C is a ciphertext component that allows the holder of the outgoing cipher key (which can be

derived from a full viewing key) to recover the recipient diversi�ed transmission key pkd and the ephemeral
private key esk, hence the entire note plaintext ;

• 𝜋ZKOutput
◦
◦ ZKOutput.Proof is a zk-SNARK proof with primary input (cv, cm𝑢, epk) for the Output statement

de�ned in section 4.18.3 ‘Output Statement (Sapling)’ on page 62.

Consensus rules:

• Elements of an Output description MUST be valid encodings of the types given above.

• cv and epk MUST NOT be of small order, i.e. [ℎJ] cv MUST NOT be 𝒪J and [ℎJ] epk MUST NOT be 𝒪J.

• The proof 𝜋ZKOutput MUST be valid given a primary input formed from the other �elds except Cenc and Cout —
i.e. ZKOutput.Verify

(︀
(cv, cm𝑢, epk), 𝜋ZKOutput

)︀
= 1.

Non-normative notes:

• As stated in section 5.4.8.3 on page 97, an implementation of HomomorphicPedersenCommitSapling MAY resample the
commitment trapdoor until the resulting commitment is not 𝒪J.

• The rule that cv and epk MUST not be small-order has the effect of also preventing non-canonical encodings
of these �elds, as required by [ZIP-216]. That is, it is necessarily the case that reprJ

(︀
abstJ(cv)

)︀
= cv and

reprJ
(︀
abstJ(epk)

)︀
= rk.

4.6 Action Descriptions #actiondesc

An Action transfer, as speci�ed in section 3.7 ‘Action Transfers and their Descriptions’ on page 20, is encoded in trans-
actions as an Action description. Each version 5 transaction includes a sequence of zero or more Action descriptions.
(Version 4 transactions cannot contain Action descriptions.)

Each Action description is authorized by a signature, called the spend authorization signature .

Let ℓOrchard
Merkle be as de�ned in section 5.3 ‘Constants’ on page 74.

Let 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let ExtractP be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let ValueCommitOrchard.Output be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let SpendAuthSigOrchard be as de�ned in section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 56.

Let KAOrchard be as de�ned in section 4.1.5 ‘Key Agreement’ on page 26.

Let Sym be as de�ned in section 4.1.4 ‘Symmetric Encryption’ on page 26.

Let ZKAction be as de�ned in section 4.1.13 ‘Zero-Knowledge Proving System’ on page 34.

42

https://zips.z.cash/protocol/protocol.pdf#actiondesc

An Action description comprises (cvnet, rtOrchard, nf, rk, spendAuthSig, cm𝑥, epk, Cenc, Cout, enableSpends, enableOutputs,
𝜋) where

• cvnet ◦
◦ ValueCommitOrchard.Output is the value commitment to the value of the input note minus the value of

the output note;

• rtOrchard ◦
◦ {0 .. 𝑞P − 1} is an anchor, as de�ned in section 3.4 ‘Transactions and Treestates’ on page 18, for the output

treestate of a previous block ;

• nf ◦
◦ {0 .. 𝑞P − 1} is the nulli�er for the input note;

• rk ◦
◦ SpendAuthSigOrchard.Public is a randomized validating key that should be used to validate spendAuthSig;

• spendAuthSig ◦
◦ SpendAuthSigOrchard.Signature is a spend authorization signature , validated as speci�ed in section 4.15

‘Spend Authorization Signature (Sapling and Orchard)’ on page 56;

• cm𝑥
◦
◦ {0 .. 𝑞P − 1} is the result of applying ExtractP to the note commitment for the output note;

• epk ◦
◦ KAOrchard.Public is a key agreement public key, used to derive the key for encryption of the transmitted

note ciphertext (section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67);

• Cenc ◦
◦ Sym.C is a ciphertext component for the encrypted output note;

• Cout ◦
◦ Sym.C is a ciphertext component that allows the holder of the outgoing cipher key (which can be

derived from a full viewing key) to recover the recipient diversi�ed transmission key pkd and the ephemeral
private key esk, hence the entire note plaintext ;

• enableSpends ◦
◦ B is a �ag that is set in order to enable non-zero-valued spends in this Action;

• enableOutputs ◦
◦ B is a �ag that is set in order to enable non-zero-valued outputs in this Action;

• 𝜋 ◦
◦ ZKAction.Proof is a zk-SNARK proof with primary input (cv, rtOrchard, nf, rk, cm𝑥, enableSpends, enableOutputs)

for the Action statement de�ned in section 4.18.4 ‘Action Statement (Orchard)’ on page 63.

Note: The rtOrchard, enableSpends, and enableOutputs components are the same for all Action transfers in a trans-
action. They are encoded once in the transaction body (see section 7.1 ‘Transaction Encoding and Consensus’ on page 122),
not in the ActionDescription structure. 𝜋 is aggregated with other Action proofs and encoded in the proofsOrchard
�eld of a transaction.

Consensus rules:

• Elements of an Action description MUST be canonical encodings of the types given above.

• Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as de�ned in
section 4.10 ‘SIGHASH Transaction Hashing’ on page 50 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSigOrchard signature over SigHash using rk
as the validating key— i.e. SpendAuthSigOrchard.Validaterk(SigHash, spendAuthSig) = 1. As speci�ed in section 5.4.7
‘RedDSA, RedJubjub, and RedPallas’ on page 92, validation of the 𝑅 component of the signature prohibits non-
canonical encodings.

• The proof 𝜋 MUST be valid given a primary input (cv, rtOrchard, nf, rk, cm𝑥, enableSpends, enableOutputs) — i.e.
ZKAction.Verify

(︀
(cv, rtOrchard, nf, rk, cm𝑥, enableSpends, enableOutputs), 𝜋

)︀
= 1.

Non-normative notes:

• cv and rk can be the zero point 𝒪P. epk cannot be 𝒪P.

• nf and cm𝑥 are not checked to be valid af�ne-short-Weierstrass 𝑥-coordinates on the Pallas curve; they are
only checked to encode integers in {0 .. 𝑞P − 1}.

4.7 Sending Notes #send

4.7.1 Sending Notes (Sprout) #sproutsend

In order to send Sprout shielded value, the sender constructs a transaction containing one or more JoinSplit
descriptions.

43

https://zips.z.cash/protocol/protocol.pdf#send
https://zips.z.cash/protocol/protocol.pdf#sproutsend

Let JoinSplitSig be as speci�ed in section 4.1.7 ‘Signature’ on page 28.

Let NoteCommitSprout be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let ℓSeed and ℓSprout
ϕ be as speci�ed in section 5.3 ‘Constants’ on page 74.

Sending a transaction containing JoinSplit descriptions involves �rst generating a new JoinSplitSig key pair:

joinSplitPrivKey ←R JoinSplitSig.GenPrivate()
joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).

For each JoinSplit description, the sender chooses randomSeed uniformly at random on B[ℓSeed], and selects the input
notes. At this point there is suf�cient information to compute hSig, as described in the previous section. The sender
also chooses ϕ uniformly at random on B[ℓSprout

ϕ]. Then it creates each output note with index 𝑖 ◦
◦ {1..Nnew}:

• Choose uniformly random rcm𝑖 ←
R NoteCommitSprout.GenTrapdoor().

• Compute ρ𝑖 = PRFρϕ(𝑖, hSig).

• Compute cm𝑖 = NoteCommitSprout
rcm𝑖

(apk,𝑖, v𝑖, ρ𝑖).

• Let np𝑖 = (0x00, v𝑖, ρ𝑖, rcm𝑖, memo𝑖).

np1..Nnew are then encrypted to the recipient transmission keys pkenc,1..Nnew , giving the transmitted notes ciphertext
(epk, Cenc

1..Nnew), as described in section 4.19 ‘In-band secret distribution (Sprout)’ on page 65.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes. Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this speci�cation.

After generating all of the JoinSplit descriptions, the sender obtains dataToBeSigned ◦
◦ BY[N] as described in section 4.11

‘Non-malleability (Sprout)’ on page 51, and signs it with the private JoinSplit signing key:

joinSplitSig ←R JoinSplitSig.SignjoinSplitPrivKey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the peer-to-peer network .

[Canopy onward] Note: [ZIP-211] speci�es that nodes and wallets MUST disable any facilities to send to Sprout
addresses. This SHOULD be made clear in user interfaces and API documentation.

The facility to send to Sprout addresses is in any case OPTIONAL for a particular node or wallet implementation.

4.7.2 Sending Notes (Sapling) #saplingsend

In order to send Sapling shielded value, the sender constructs a transaction with one or more Output descriptions.

Let ValueCommitSapling and NoteCommitSapling be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let KASapling be as speci�ed in section 4.1.5 ‘Key Agreement’ on page 26.

Let DiversifyHashSapling be as speci�ed in section 4.1.1 ‘Hash Functions’ on page 24.

Let ToScalarSapling be as speci�ed in section 4.2.2 ‘Sapling Key Components’ on page 36.

Let reprJ and 𝑟J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ovk be a Sapling outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:

• the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;

• the outgoing viewing key for all payments associated with an “account ”, to be de�ned in [ZIP-32];

• ⊥, if the sender should not be able to decrypt the payment once it has deleted its own copy.

44

https://zips.z.cash/protocol/protocol.pdf#saplingsend

Note: Choosing ovk = ⊥ is useful if the sender prefers to obtain forward secrecy of the payment information with
respect to compromise of its own secrets.

Let leadByte be the note plaintext lead byte , chosen according to section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15
with protocol = Sapling.

For each Output description, the sender selects a value v ◦
◦ {0 .. MAX_MONEY} and a destination Sapling shielded

payment address (d, pkd), and then performs the following steps:

Check that pkd is of type KASapling.PublicPrimeOrder, i.e. it MUST be a valid ctEdwards curve point on the Jubjub
curve (as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102), [𝑟J] pkd = 𝒪J, and pkd ̸= 𝒪J.

Calculate gd = DiversifyHashSapling(d) and check that gd ̸= ⊥.

Choose a uniformly random commitment trapdoor rcv ←R ValueCommitSapling.GenTrapdoor().

If leadByte = 0x01:

Choose a uniformly random ephemeral private key esk ←R KASapling.Private ∖ {0}.
Choose a uniformly random commitment trapdoor rcm ←R NoteCommit.GenTrapdoor().

Set rseed := I2LEOSP256(rcm).

else:

Choose uniformly random rseed ←R BY[32].

Derive rcm = ToScalarSapling(︀PRFexpand
rseed ([4])

)︀
.

Derive esk = ToScalarSapling(︀PRFexpand
rseed ([5])

)︀
.

Let cv = ValueCommitSapling
rcv (v).

Let cm = NoteCommitSapling
rcm (reprJ(gd), reprJ(pkd), v).

Let np = (leadByte, d, v, rseed, memo).

Encrypt np to the recipient diversi�ed transmission key pkd with diversi�ed base gd, and to the outgoing
viewing key ovk, giving the transmitted note ciphertext (epk, Cenc, Cout). This procedure is described in section 4.20.1
‘Encryption (Sapling and Orchard)’ on page 67; it also uses cv and cmu to derive ock, and takes esk as input.

Generate a proof 𝜋ZKOutput for the Output statement in section 4.18.3 ‘Output Statement (Sapling)’ on page 62.

Return (cv, cm, epk, Cenc, Cout, 𝜋ZKOutput).

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this speci�cation. The encoded transaction is submitted to the peer-to-peer network .

4.7.3 Sending Notes (Orchard) #orchardsend

In order to send Orchard shielded value, the sender constructs a transaction with one or more Action descriptions.
This section describes how to produce the output-related �elds of an Action description.

Let ValueCommitOrchard and NoteCommitOrchard be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let PRFexpand be as speci�ed in section 4.1.2 ‘Pseudo Random Functions’ on page 25.

Let KAOrchard be as speci�ed in section 4.1.5 ‘Key Agreement’ on page 26.

Let DiversifyHashOrchard be as speci�ed in section 4.1.1 ‘Hash Functions’ on page 24.

Let ToScalarOrchard and ToBaseOrchard be as speci�ed in section 4.2.3 ‘Orchard Key Components’ on page 38.

Let reprP, 𝑟P, and the Pallas curve be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let Extract⊥P be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let I2LEOSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

45

https://zips.z.cash/protocol/protocol.pdf#orchardsend

Let ovk be an Orchard outgoing viewing key that is intended to be able to decrypt this payment. The considerations
for choosing outgoing viewing keys are as described for Sapling in section 4.7.2 ‘Sending Notes (Sapling)’ on page 44.

Let leadByte be the note plaintext lead byte , chosen according to section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15
with protocol = Orchard.

For each Action description, the sender selects a value v ◦
◦ {0 .. MAX_MONEY} and a destination Orchard shielded

payment address (d, pkd), and performs the following steps:

Check that pkd is of type KAOrchard.PublicPrimeOrder.
Calculate gd = DiversifyHashOrchard(d).

Choose a uniformly random commitment trapdoor rcv ←R ValueCommitOrchard.GenTrapdoor().

Choose uniformly random rseed ←R BY[32].

Let ρ = nfold from the same Action description, and let ρ = I2LEOSP256(ρ).

Derive esk = ToScalarOrchard(︀PRFexpand
rseed ([4] || ρ)

)︀
.

If esk = 0 (mod 𝑟P), repeat the above steps using a different rseed.

Derive rcm = ToScalarOrchard(︀PRFexpand
rseed ([5] || ρ)

)︀
.

Derive ψ = ToBaseOrchard(︀PRFexpand
rseed ([9] || ρ)

)︀
.

Let cvnet be the value commitment to the value of the input note minus the value v of the output note for this
Action transfer, using rcv, as described in section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54.

Let cm𝑥 = Extract⊥P
(︀
NoteCommitOrchard

rcm (reprP(gd), reprP(pkd), v, ρ,ψ)
)︀
.

If cm𝑥 = ⊥, repeat the above steps using a different rseed.

Let np = (leadByte, d, v, rseed, memo).

Encrypt np to the recipient diversi�ed transmission key pkd with diversi�ed base gd, and to the outgoing
viewing key ovk, giving the transmitted note ciphertext (epk, Cenc, Cout). This procedure is described in section 4.20.1
‘Encryption (Sapling and Orchard)’ on page 67; it uses cvnet and cm𝑥 to derive ock, and takes esk as input.

Fill in the spending side of the Action transfer (section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’
on page 56), and generate a proof 𝜋 for the Action statement in section 4.18.4 ‘Action Statement (Orchard)’ on page 63.

Return (cv, cm𝑥, epk, Cenc, Cout, 𝜋).

If no real Orchard note is being spent in the same Action transfer, the sender SHOULD create a dummy note
to spend as described in section 4.8.3 ‘Dummy Notes (Orchard)’ on page 48, and use that dummy note ’s nulli�er as the ρ
value.

In order to minimize information leakage, the sender SHOULD randomize the order of Action descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this speci�cation. The encoded transaction is submitted to the peer-to-peer network .

Note: The domain separators [4] and [5] used in the input to PRFexpand
rseed are swapped for Orchard relative to Sapling.

This was due to an oversight and there is no good reason for it.

4.8 Dummy Notes #dummynotes

4.8.1 Dummy Notes (Sprout) #sproutdummynotes

The �elds in a JoinSplit description allow for Nold input notes, and Nnew output notes. In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes. This is achieved using dummy notes.

Let ℓask
and ℓSprout

PRF be as de�ned in section 5.3 ‘Constants’ on page 74.

46

https://zips.z.cash/protocol/protocol.pdf#dummynotes
https://zips.z.cash/protocol/protocol.pdf#sproutdummynotes

Let PRFnfSprout be as de�ned in section 4.1.2 ‘Pseudo Random Functions’ on page 25.

Let NoteCommitSprout be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

A dummy Sprout input note , with index 𝑖 in the JoinSplit description, is constructed as follows:

• Generate a new uniformly random spending key aold
sk,𝑖 ←

R B[ℓask
] and derive its paying key aold

pk,𝑖.

• Set vold
𝑖 = 0.

• Choose uniformly random ρ
old
𝑖 ←R B[ℓSprout

PRF] and rcmold
𝑖 ←R NoteCommitSprout.GenTrapdoor().

• Compute nfold
𝑖 = PRFnfSprout

aold
sk,𝑖

(ρold
𝑖).

• Let path𝑖 be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).

• When generating the JoinSplit proof , set enforceMerklePath𝑖 to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address.

4.8.2 Dummy Notes (Sapling) #saplingdummynotes

In Sapling there is no need to use dummy notes simply in order to �ll otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes.

Let ℓsk be as de�ned in section 5.3 ‘Constants’ on page 74.

Let ValueCommitSapling and NoteCommitSapling be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let DiversifyHashSapling be as speci�ed in section 4.1.1 ‘Hash Functions’ on page 24.

Let ToScalarSapling be as speci�ed in section 4.2.2 ‘Sapling Key Components’ on page 36.

Let reprJ and 𝑟J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let PRFnfSapling be as de�ned in section 4.1.2 ‘Pseudo Random Functions’ on page 25.

Let NoteCommitSapling be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

A Spend description for a dummy Sapling input note with note plaintext lead byte 0x02 is constructed as follows:

• Choose uniformly random sk ←R B[ℓsk].

• Generate the ak and nk components of a full viewing key and a diversi�ed payment address (d, pkd) for sk, as
described in section 4.2.2 ‘Sapling Key Components’ on page 36.

• Let v = 0 and pos = 0.

• Choose uniformly random rcv ←R ValueCommitSapling.GenTrapdoor().

• Choose uniformly random rseed ←R BY[32].

• Derive rcm = ToScalarSapling(︀PRFexpand
rseed ([4])

)︀
.

• Let cv = ValueCommitSapling
rcv (v).

• Let cm = NoteCommitSapling
rcm

(︀
reprJ(gd), reprJ(pkd), v

)︀
.

• Let ρ⋆ = reprJ
(︀
MixingPedersenHash(cm, pos)

)︀
.

• Let nk⋆ = reprJ(nk).

• Let nf = PRFnfSapling
nk⋆ (ρ⋆).

• Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because v = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address.

47

https://zips.z.cash/protocol/protocol.pdf#saplingdummynotes

4.8.3 Dummy Notes (Orchard) #orcharddummynotes

As for Sapling, it may be useful for privacy to obscure the number of real shielded inputs from Orchard notes.

Let ℓsk be as de�ned in section 5.3 ‘Constants’ on page 74.

Let ValueCommitOrchard and NoteCommitOrchard be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let DiversifyHashOrchard be as speci�ed in section 4.1.1 ‘Hash Functions’ on page 24.

Let ToScalarOrchard and ToBaseOrchard be as speci�ed in section 4.2.3 ‘Orchard Key Components’ on page 38.

Let reprP and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let DeriveNullifier be as de�ned in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

Let NoteCommitOrchard be as de�ned in section 4.1.8 ‘Commitment’ on page 31.

Let I2LEOSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

Let leadByte be the note plaintext lead byte , chosen according to section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15
with protocol = Orchard.

The spend-related �elds of an Action description for a dummy Orchard input note are constructed as follows:

• Choose uniformly random sk ←R B[ℓsk].

• Generate a full viewing key (ak, nk, rivk) and a diversi�ed payment address (d, pkd) for sk as described in section 4.2.3
‘Orchard Key Components’ on page 38.

• Let v = 0.

• Choose uniformly random rseed ←R BY[32].

• Choose uniformly random ρ
P ←R P.

• Let ρ = ExtractP(ρP) and ρ = I2LEOSP256(ρ).

• Derive rcm = ToScalarOrchard(︀PRFexpand
rseed ([5] || ρ)

)︀
.

• Derive ψ = ToBaseOrchard(︀PRFexpand
rseed ([9] || ρ)

)︀
.

• Let cm = NoteCommitOrchard
rcm

(︀
reprP(gd), reprP(pkd), v, ρ,ψ

)︀
.

• If cm = ⊥, repeat the above steps using a different rseed.

• Let nf = DeriveNullifiernk(ρ,ψ, cm).

• Construct a dummy Merkle path path for use in the auxiliary input to the Action statement (this will not be
checked, because v = 0).

As in Sprout and Sapling, a dummy Orchard output note is constructed as normal but with zero value, and sent to
a random shielded payment address.

Note: The domain separators [4] and [5] used in the input to PRFexpand
rseed are swapped for Orchard relative to Sapling.

This was due to an oversight and there is no good reason for it.

48

https://zips.z.cash/protocol/protocol.pdf#orcharddummynotes

4.9 Merkle Path Validity #merklepath

Let MerkleDepth be MerkleDepthSprout for the Sprout note commitment tree , or MerkleDepthSapling for the Sapling note
commitment tree, or MerkleDepthOrchard for the Orchard note commitment tree. These constants are de�ned in
section 5.3 ‘Constants’ on page 74.

Similarly, let MerkleCRH be MerkleCRHSprout for Sprout, or MerkleCRHSapling for Sapling, or MerkleCRHOrchard for Or-
chard.

The following discussion applies independently to the Sprout and Sapling and Orchard note commitment trees.

Each node in the incremental Merkle tree is associated with a hash value , which is a bit sequence.

The layer numbered ℎ, counting from layer 0 at the root , has 2ℎ nodes with indices 0 to 2ℎ − 1 inclusive.

Let Mh
𝑖 be the hash value associated with the node at index 𝑖 in layer ℎ.

The nodes at layer MerkleDepth are called leaf nodes. When a note commitment is added to the tree, it occupies
the leaf node hash value MMerkleDepth

𝑖 for the next available 𝑖.

As-yet unused leaf nodes are associated with a distinguished hash value UncommittedSprout or UncommittedSapling or
UncommittedOrchard. It is assumed to be infeasible to �nd a preimage note n such that NoteCommitmentSprout(n) =
UncommittedSprout. (No similar assumption is needed for Sapling or Orchard because we use a representation for
UncommittedSapling that cannot occur as an output of NoteCommitmentSapling, and similarly for Orchard.)

The nodes at layers 0 to MerkleDepth− 1 inclusive are called internal nodes, and are associated with MerkleCRH
outputs. Internal nodes are computed from their children in the next layer as follows: for 0 ≤ ℎ < MerkleDepth and
0 ≤ 𝑖 < 2ℎ,

Mh
𝑖 := MerkleCRH(ℎ, Mh+1

2𝑖 , Mh+1
2𝑖+1).

A Merkle path from leaf node MMerkleDepth
𝑖 in the incremental Merkle tree is the sequence

[Mh
sibling(ℎ,𝑖) for ℎ from MerkleDepth down to 1],

where

sibling(ℎ, 𝑖) := floor
(︂

𝑖

2MerkleDepth−ℎ

)︂
⊕ 1

Given such a Merkle path, it is possible to verify that leaf node MMerkleDepth
𝑖 is in a tree with a given root rt = M0

0.

Notes:
• For Sapling, Merkle hash values are speci�ed to be encoded as bit sequences, but the root rtSapling is encoded

for the primary input of a Spend proof as an element of F𝑞J
, as speci�ed in section A.4 ‘The Sapling Spend circuit’

on page 217. The Spend circuit allows inputs to MerkleCRHSapling at each node to be non-canonically encoded, as
speci�ed in section A.3.4 ‘Merkle path check’ on page 213.

• For Orchard, Merkle hash values have type {0 .. 𝑞P − 1} as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’
on page 106. Similarly to Sapling, the Action circuit allows inputs to MerkleCRHOrchard at each node to be non-
canonically encoded.

• The Action circuit is permitted to be implemented in such a way that the Merkle path validity check can
pass if any hash value on the path, including the root , is 0. This can only happen if SinsemillaHash returned
⊥ for that hash, because 0 is not the af�ne-short-Weierstrass 𝑥-coordinate of any point on the Pallas curve
(as shown in a note at section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106), and SinsemillaHashToPoint cannot
return 𝒪P. Allowing the validity check to pass in that case models the fact that incomplete addition is used
to implement Sinsemilla in the circuit. As proven in Theorem 5.4.4 on page 84, a ⊥ output from SinsemillaHash
yields a nontrivial discrete logarithm relation. Since we assume �nding such a relation to be infeasible, we
can argue that it is safe to allow an adversary to create a proof that passes the Merkle validity check in such a
case.

49

https://zips.z.cash/protocol/protocol.pdf#merklepath

4.10 SIGHASH Transaction Hashing #sighash

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the speci�c input, to give a SIGHASH transaction hash which is then used for
the Spend authorization. The means of authorization differs between transparent inputs, inputs to Sprout JoinSplit
transfers, and Sapling Spend transfers or Orchard Action transfers, but for a given transaction version the same
SIGHASH transaction hash algorithm is used.

In the case of Zcash, the BCTV14 and Groth16 and Halo 2 proving systems used are malleable , meaning that there is
the potential for an adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create
a new proof involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability
attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of
a related plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks,
as described in section 4.11 ‘Non-malleability (Sprout)’ on page 51, section 4.13 ‘Balance and Binding Signature (Sapling)’ on
page 52, and section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 56.

To provide additional �exibility when combining spend authorizations from different sources, Bitcoin de�nes sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-speci�c signatures, i.e. JoinSplit signatures, spend authorization signatures, Sapling binding
signatures, and Orchard binding signatures. In these cases the SIGHASH transaction hash is not associated with a
transparent input , and so the input to hashing excludes all of the scriptSig �elds in the non-Zcash-speci�c parts
of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-speci�c �elds nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These �elds are described in section 7.1 ‘Transaction Encoding and Consensus’ on page 122. The hash
does not cover the �eld joinSplitSig. After Overwinter activation, all SIGHASH types are also extended to cover
transaction �elds introduced in that upgrade, and similarly after Sapling activation and after N​U​5 activation.

The original SIGHASH algorithm de�ned by Bitcoin suffered from some de�ciencies as described in [ZIP-143]; in
Zcash these were addressed by changing this algorithm as part of the Overwinter upgrade.

Orchard and the N​U​5 network upgrade introduce transaction version 5, which MUST be used if any Action transfers
are present. This version also provides nonmalleable transaction identi�ers, and MAY be used for that reason
whether or not Action transfers are present.

Consensus rules:

• [N​U​5 onward] Any SIGHASH type encoding used in a version 5 transaction MUST be the canonical encoding
of one of the de�ned SIGHASH types, i.e. one of 0x01, 0x02, 0x03, 0x81, 0x82, or 0x83. (Previously, unde�ned
bits of a SIGHASH type encoding were ignored.)

• [Pre-Overwinter] The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2
transactions, will be de�ned in [ZIP-76] (to be written).

• [Overwinter only, pre-Sapling] The SIGHASH algorithm used after Overwinter activation and before Sapling
activation, i.e. for version 3 transactions, is de�ned in [ZIP-143].

• [Overwinter only, pre-Sapling] All transactions MUST use the Overwinter consensus branch ID 0x5BA81B19
as de�ned in [ZIP-201].

• [Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions, is
de�ned in [ZIP-243].

• [Sapling only, pre-Blossom] All transactions MUST use the Sapling consensus branch ID 0x76B809BB as
de�ned in [ZIP-205].

• [Blossom only, pre-Heartwood] All transactions MUST use the Blossom consensus branch ID 0x2BB40E60 as
de�ned in [ZIP-206].

• [Heartwood only, pre-Canopy] All transactions MUST use the Heartwood consensus branch ID 0xF5B9230B
as de�ned in [ZIP-250].

50

https://zips.z.cash/protocol/protocol.pdf#sighash

• [Canopy only, pre-N​U​5] All transactions MUST use the Canopy consensus branch ID 0xE9FF75A6 as de�ned
in [ZIP-251].

• [N​U​5 onward] The SIGHASH algorithm used for version 5 transactions introduced by the N​U​5 network
upgrade is de�ned in [ZIP-244]. Version 4 transactions continue to use the SIGHASH algorithm de�ned in
[ZIP-243].

• [N​U​5 only, pre-N​U​6] All transactions MUST use the N​U​5 consensus branch ID 0xF919A198 as de�ned in
[ZIP-252].

• [N​U​6 only, pre-N​U​6.1] All transactions MUST use the N​U​6 consensus branch ID 0xC8E71055 as de�ned in
[ZIP-253].

• [N​U​6.1 only] All transactions MUST use the N​U​6.1 consensus branch ID 0x4DEC4DF0 as de�ned in [ZIP-255].

4.11 Non-malleability (Sprout) #sproutnonmalleability

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vnew

pub and vold
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key
of this key pair. The corresponding public validating key is included in the transaction encoding as joinSplitPubKey.

JoinSplitSig is instantiated in section 5.4.6 ‘Ed25519’ on page 90.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig �elds are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.ValidatejoinSplitPubKey(dataToBeSigned, joinSplitSig) = 1.

Let hSig be computed as speci�ed in section 4.3 ‘JoinSplit Descriptions’ on page 39.

Let PRFpk be as de�ned in section 4.1.2 ‘Pseudo Random Functions’ on page 25.

For each 𝑖 ∈ {1..Nold}, the creator of a JoinSplit description calculates h𝑖 = PRFpk
aold

sk,𝑖

(𝑖, hSig).

The correctness of h1..Nold is enforced by the JoinSplit statement given in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on

page 60. This ensures that a holder of all of the aold
sk,1..Nold for every JoinSplit description in the transaction has authorized

the use of the private signing key corresponding to joinSplitPubKey to sign this transaction.

4.12 Balance (Sprout) #joinsplitbalance

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs. The net value of transparent inputs minus transparent outputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block .

Zcash Sprout extends this by adding JoinSplit transfers. Each JoinSplit transfer can be seen, from the perspective of
the transparent transaction value pool , as an input and an output simultaneously.

vold
pub takes value from the transparent transaction value pool and vnew

pub adds value to the transparent transaction

value pool . As a result, vold
pub is treated like an output value, whereas vnew

pub is treated like an input value.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vold

pub to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

51

https://zips.z.cash/protocol/protocol.pdf#sproutnonmalleability
https://zips.z.cash/protocol/protocol.pdf#joinsplitbalance

As stated in section 4.3 ‘JoinSplit Descriptions’ on page 39, either vold
pub or vnew

pub MUST be zero. No generality is lost because,

if a transaction in which both vold
pub and vnew

pub were nonzero were allowed, it could be replaced by an equivalent

one in which min(vold
pub, vnew

pub) is subtracted from both of these values. This restriction helps to avoid unnecessary
distinctions between transactions according to client implementation.

4.13 Balance and Binding Signature (Sapling) #saplingbalance

Sapling adds Spend transfers and Output transfers to the transparent and JoinSplit transfers present in Sprout.
The net value of Spend transfers minus Output transfers in a transaction is called the Sapling balancing value,
measured in zatoshi as a signed integer vbalanceSapling.

vbalanceSapling is encoded in a transaction as the �eld valueBalanceSapling. For a v4 transaction, vbalanceSapling is always
explicitly encoded. For a v5 transaction, vbalanceSapling is implicitly zero if the transaction has no Spend descriptions
or Output descriptions. Transaction �elds are described in section 7.1 ‘Transaction Encoding and Consensus’ on page 122.

A positive Sapling balancing value takes value from the Sapling transaction value pool and adds it to the transparent
transaction value pool . A negative Sapling balancing value does the reverse. As a result, positive vbalanceSapling is
treated like an input to the transparent transaction value pool , whereas negative vbalanceSapling is treated like an
output from that pool.

Consistency of vbalanceSapling with the value commitments in Spend descriptions and Output descriptions is enforced
by the Sapling binding signature. This signature has a dual rôle in the Sapling protocol:

• To prove that the total value spent by Spend transfers, minus that produced by Output transfers, is consistent
with the vbalanceSapling �eld of the transaction;

• To prove that the signer knew the randomness used for the Spend and Output value commitments, in order
to prevent Output descriptions from being replayed by an adversary in a different transaction. (A Spend
description already cannot be replayed due to its spend authorization signature .)

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Spend
descriptions and Output descriptions of the transaction, and the Sapling balancing value.

Let J(𝑟), J(𝑟)*, and 𝑟J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97 instantiates:

ValueCommitSapling ◦
◦ ValueCommitSapling.Trapdoor ×

{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀
→ ValueCommitSapling.Output;

𝒱Sapling ◦
◦ J(𝑟)*, the value base in ValueCommitSapling;

ℛSapling ◦
◦ J(𝑟)*, the randomness base in ValueCommitSapling.

BindingSigSapling, , and are instantiated in section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95.

section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30 speci�es these operations and

the derived notation ,
N

𝑖=1
, , and

N

𝑖=1
, which in this section are to be interpreted as operating on the

prime-order subgroup of points on the Jubjub curve and on its scalar �eld.

Suppose that the transaction has:

• 𝑛 Spend descriptions with value commitments cvold
1..𝑛, committing to values vold

1..𝑛 with randomness rcvold
1..𝑛;

• 𝑚 Output descriptions with value commitments cvnew
1..𝑚, committing to values vnew

1..𝑚 with randomness rcvnew
1..𝑚;

• Sapling balancing value vbalanceSapling.

In a correctly constructed transaction, vbalanceSapling =
∑︀𝑛

𝑖=1
vold

𝑖 −
∑︀𝑚

𝑗=1
vnew

𝑗 , but validators cannot check this directly

because the values are hidden by the commitments.

52

https://zips.z.cash/protocol/protocol.pdf#saplingbalance

Instead, validators calculate the transaction binding validating key as:

bvkSapling :=
(︃ 𝑛

𝑖=1

cvold
𝑖

)︃ (︃ 𝑚

𝑗=1

cvnew
𝑗

)︃
ValueCommitSapling

0
(︀
vbalanceSapling)︀.

(This key is not encoded explicitly in the transaction and must be recalculated.)

The signer knows rcvold
1..𝑛 and rcvnew

1..𝑚, and so can calculate the corresponding signing key as:

bskSapling :=
(︃ 𝑛

𝑖=1

rcvold
𝑖

)︃ (︃ 𝑚

𝑗=1

rcvnew
𝑗

)︃
.

In order to check for implementation faults, the signer SHOULD also check that

bvkSapling = BindingSigSapling.DerivePublic(bskSapling).

Let SigHash be the SIGHASH transaction hash as de�ned in [ZIP-243] for a version 4 transaction or [ZIP-244] for a
version 5 transaction, not associated with an input, using the SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSigSapling.ValidatebvkSapling (SigHash, bindingSigSapling) = 1.

We now explain why this works.

A Sapling binding signature proves knowledge of the discrete logarithm bskSapling of bvkSapling with respect toℛSapling.
That is, bvkSapling = [bskSapling]ℛSapling. So the value 0 and randomness bskSapling is an opening of the Pedersen
commitment bvkSapling = ValueCommitSapling

bskSapling (0). By the binding property of the Pedersen commitment , it is

infeasible to �nd another opening of this commitment to a different value.

Similarly, the binding property of the value commitments in the Spend descriptions and Output descriptions
ensures that an adversary cannot �nd an opening to more than one value for any of those commitments, i.e. we
may assume that vold

1..𝑛 are determined by cvold
1..𝑛, and that vnew

1..𝑚 are determined by cvnew
1..𝑚. We may also assume, from

Knowledge Soundness of Groth16, that the Spend proofs could not have been generated without knowing rcvold
1..𝑛

(mod 𝑟J), and the Output proofs could not have been generated without knowing rcvnew
1..𝑚 (mod 𝑟J).

Using the fact that ValueCommitSapling
rcv (v) = [v]𝒱Sapling [rcv]ℛSapling, the expression for bvkSapling above is equivalent

to:

bvkSapling =
[︃(︃ 𝑛

𝑖=1

vold
𝑖

)︃ (︃ 𝑚

𝑗=1

vnew
𝑗

)︃
vbalanceSapling

]︃
𝒱Sapling

[︃(︃ 𝑛

𝑖=1

rcvold
𝑖

)︃ (︃ 𝑚

𝑗=1

rcvnew
𝑗

)︃]︃
ℛSapling

= ValueCommitSapling
bskSapling

(︃
𝑛∑︁

𝑖=1
vold

𝑖 −
𝑚∑︁

𝑗=1
vnew

𝑗 − vbalanceSapling

)︃
.

Let v* =
𝑛∑︁

𝑖=1
vold

𝑖 −
𝑚∑︁

𝑗=1
vnew

𝑗 − vbalanceSapling.

Suppose that v* = vbad ̸= 0 (mod 𝑟J). Then bvkSapling = ValueCommitSapling
bskSapling (vbad). If the adversary were able to �nd

the discrete logarithm of this bvkSapling with respect toℛSapling, say bsk′ (as needed to create a valid Sapling binding
signature), then (vbad, bskSapling) and (0, bsk′) would be distinct openings of bvkSapling to different values, breaking
the binding property of the value commitment scheme.

53

The preceding argument shows only that v* = 0 (mod 𝑟J); in order to show that v* = 0, we will also demonstrate

that it does not over�ow
{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀

.

The Spend statements (section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) prove that all of vold
1..𝑛 are in {0 .. 2ℓvalue−1}. Sim-

ilarly the Output statements (section 4.18.3 ‘Output Statement (Sapling)’ on page 62) prove all of vnew
1..𝑚 are in {0 .. 2ℓvalue−1}.

vbalanceSapling is encoded in the transaction as a signed two’s complement 64-bit integer in the range {−263 .. 263 − 1}.
ℓvalue is de�ned as 64, so v* is in the range {−𝑚 · (264 − 1)− 263 + 1 .. 𝑛 · (264 − 1) + 263}. The maximum transaction
size is 2 MB, and the minimum contributions of a Spend description and an Output description to transaction size
are (in a v5 transaction) 352 bytes and 948 bytes respectively, limiting 𝑛 to at most floor

(︀ 2000000
352

)︀
= 5681 and 𝑚 to at

most floor
(︀ 2000000

948
)︀

= 2109.

This ensures that v* ∈ {−38913406623490299131842 .. 104805176454780817500623}, a subrange of
{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀

.

Thus checking the Sapling binding signature ensures that the Spend transfers and Output transfers in the transaction
balance, without their individual values being revealed.

In addition this proves that the signer, knowing the -sum of the Sapling value commitment randomnesses,
authorized a transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the Sapling value commitment randomnesses to other parties
that are cooperating to create the transaction. If all of the value commitment randomnesses are revealed, that
could allow replaying the Output descriptions of the transaction.

Non-normative note: The technique of checking signatures using a validating key derived from a sum of Pedersen
commitments is also used in the Mimblewimble protocol [Jedusor2016]. The private key bskSapling acts as a “synthetic
blinding factor”, in the sense that it is synthesized from the other blinding factors (trapdoors) rcvold

1..𝑛 and rcvnew
1..𝑚;

this technique is also used in Bulletproofs [Dalek-notes].

4.14 Balance and Binding Signature (Orchard) #orchardbalance

Orchard introduces Action transfers, each of which can optionally perform a spend, and optionally perform an
output. Similarly to Sapling, the net value of Orchard spends minus outputs in a transaction is called the Orchard
balancing value , measured in zatoshi as a signed integer vbalanceOrchard.

vbalanceOrchard is encoded in a transaction as the �eld valueBalanceOrchard. If a transaction has no Action descriptions,
vbalanceOrchard is implicitly zero. Transaction �elds are described in section 7.1 ‘Transaction Encoding and Consensus’ on
page 122.

A positive Orchard balancing value takes value from the Orchard transaction value pool and adds it to the transparent
transaction value pool . A negative Orchard balancing value does the reverse. As a result, positive vbalanceOrchard is
treated like an input to the transparent transaction value pool , whereas negative vbalanceOrchard is treated like an
output from that pool.

Consistency of vbalanceOrchard with the value commitments in Action descriptions is enforced by the Orchard binding
signature . The rôle of this signature in the Orchard protocol is to prove that the net value spent (i.e. the total value
spent minus the total value produced) by Action transfers is consistent with the vbalanceOrchard �eld of the transaction.

Non-normative note: The other rôle of Sapling binding signatures, to prove that the signer knew the randomness
used for commitments in order to prevent them from being replayed, is less important in Orchard because all
Action descriptions have a spend authorization signature. Still, an Orchard binding signature does prove that the
signer knew this commitment randomness; this provides defence in depth and reduces the differences of Orchard
from Sapling, which may simplify security analysis.

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Action
descriptions of the transaction, and the Orchard balancing value.

54

https://zips.z.cash/protocol/protocol.pdf#orchardbalance

Let P, P*, and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97 instantiates:

ValueCommitOrchard ◦
◦ ValueCommitOrchard.Trapdoor ×

{︀
− 𝑟P−1

2 .. 𝑟P−1
2
}︀
→ ValueCommitOrchard.Output;

𝒱Orchard ◦
◦ P*, the value base in ValueCommitOrchard;

ℛOrchard ◦
◦ P*, the randomness base in ValueCommitOrchard.

BindingSigOrchard, , and are instantiated in section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95.

section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30 speci�es these operations and

the derived notation ,
N

𝑖=1
, , and

N

𝑖=1
, which in this section are to be interpreted as operating on the Pallas

curve and its scalar �eld.

Suppose that the transaction has:

• 𝑛 Action descriptions with value commitments cvnet
1..𝑛, committing to values vnet

1..𝑛 with randomness rcvnet
1..𝑛;

• Orchard balancing value vbalanceOrchard.

In a correctly constructed transaction, vbalanceOrchard =
∑︀𝑛

𝑖=1
vnet

𝑖 , but validators cannot check this directly because
the values are hidden by the commitments.

Instead, validators calculate the transaction binding validating key as:

bvkOrchard :=
(︃ 𝑛

𝑖=1

cvnet
𝑖

)︃
ValueCommitOrchard

0
(︀
vbalanceOrchard)︀.

(This key is not encoded explicitly in the transaction and must be recalculated.)

The signer knows rcvnet
1..𝑛, and so can calculate the corresponding signing key as:

bskOrchard :=
𝑛

𝑖=1

rcvnet
𝑖 .

In order to check for implementation faults, the signer SHOULD also check that

bvkOrchard = BindingSigOrchard.DerivePublic(bskOrchard).

A transaction containing Action descriptions is necessarily a version 5 transaction. Let SigHash be the SIGHASH
transaction hash for a version 5 transaction as de�ned in [ZIP-244] as modi�ed by [ZIP-225], not associated with an
input, using the SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSigOrchard.ValidatebvkOrchard(SigHash, bindingSigOrchard) = 1.

The security argument is very similar to that for Sapling binding signatures, but for completeness we spell it out,
since there are minor differences due to the net value commitments, and a different bound on the net value sum v*.

An Orchard binding signature proves knowledge of the discrete logarithm bskOrchard of bvkOrchard with respect to
ℛOrchard. That is, bvkOrchard = [bskOrchard]ℛOrchard. So the value 0 and randomness bskOrchard is an opening of the
Pedersen commitment bvkOrchard = ValueCommitOrchard

bskOrchard(0). By the binding property of the Pedersen commitment ,
it is infeasible to �nd another opening of this commitment to a different value.

Similarly, the binding property of the value commitments in the Action descriptions ensures that an adversary
cannot �nd an opening to more than one value for any of those commitments, i.e. we may assume that vnet

1..𝑛 are
determined by cvnet

1..𝑛. We may also assume, from Knowledge Soundness of Halo 2, that the Action proofs could not
have been generated without knowing rcvnet

1..𝑛 (mod 𝑟P).

55

Using the fact ValueCommitOrchard
rcv (v) = [v]𝒱Orchard [rcv]ℛOrchard, the expression for bvkOrchard above is equivalent

to:

bvkOrchard =
[︃(︃ 𝑛

𝑖=1

vnet
𝑖

)︃
vbalanceOrchard

]︃
𝒱Orchard

[︃ 𝑛

𝑖=1

rcvnet
𝑖

]︃
ℛOrchard

= ValueCommitOrchard
bskOrchard

(︃
𝑛∑︁

𝑖=1
vnet

𝑖 − vbalanceOrchard

)︃
.

Let v* =
𝑛∑︁

𝑖=1
vnet

𝑖 − vbalanceOrchard.

Suppose that v* = vbad ̸= 0 (mod 𝑟J). Then bvkOrchard = ValueCommitOrchard
bskOrchard(vbad). If the adversary were able to �nd

the discrete logarithm of this bvkOrchard with respect toℛOrchard, say bsk′ (as needed to create a valid Orchard binding
signature), then (vbad, bskOrchard) and (0, bsk′) would be distinct openings of bvkOrchard to different values, breaking
the binding property of the value commitment scheme.

The preceding argument shows only that v* = 0 (mod 𝑟P); in order to show that v* = 0, we will also demonstrate
that it does not over�ow

{︀
− 𝑟P−1

2 .. 𝑟P−1
2
}︀

.

The Action statements (section 4.18.4 ‘Action Statement (Orchard)’ on page 63) prove that all vnet
1..𝑛 are in {−264 + 1 .. 264 − 1}.

vbalanceOrchard is encoded in the transaction as a signed two’s complement 64-bit integer in the range {−263 .. 263 − 1}.
Therefore, v* is in the range {−𝑛 · (264 − 1)− 263 + 1 .. 𝑛 · (264 − 1) + 263}. 𝑛 is limited by consensus rule to at most
216 − 1 (this rule is technically redundant due to the 2 MB transaction size limit, but it suf�ces here).

This ensures that v* ∈ {−1208916596242592319864832 .. 1208916596242592319864833}, a subrange of
{︀
− 𝑟P−1

2 .. 𝑟P−1
2
}︀

.

Thus checking the Orchard binding signature ensures that the Action transfers in the transaction balance, without
their individual net values being revealed.

In addition this proves that the signer, knowing the -sum of the Orchard value commitment randomnesses,
authorized a transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the Orchard value commitment randomnesses to other parties
that are cooperating to create the transaction.

4.15 Spend Authorization Signature (Sapling and Orchard) #spendauthsig

SpendAuthSig is used in Sapling and Orchard to prove knowledge of the spending key authorizing spending of an
input note. It is instantiated in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

We use SpendAuthSigSapling to refer to the spend authorization signature scheme for Sapling, which is instantiated
on the Jubjub curve. We use SpendAuthSigOrchard to refer to the spend authorization signature scheme for Orchard,
which is instantiated on the Pallas curve. The following discussion applies to both.

Knowledge of the spending key could have been proven directly in the Spend statement or Action statement ,
similar to the check in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60 that is part of the JoinSplit statement . The
motivation for a separate signature is to allow devices that are limited in memory and computational capacity, such
as hardware wallets, to authorize a Sapling or Orchard Spend. Typically such devices cannot create, and may not
be able to verify, zk-SNARK proofs for a statement of the size needed using the Groth16 or Halo 2 proving systems.

The validating key of the signature must be revealed in the Spend description so that the signature can be checked
by validators. To ensure that the validating key cannot be linked to the shielded payment address or spending key
from which the note was spent, we use a signature scheme with re-randomizable keys. The Spend statement or
Action statement proves that this validating key is a re-randomization of the spend authorization address key ak
with a randomizer known to the signer. The spend authorization signature is over the SIGHASH transaction hash,
so that it cannot be replayed in other transactions.

56

https://zips.z.cash/protocol/protocol.pdf#spendauthsig

Let SigHash be the SIGHASH transaction hash as de�ned in [ZIP-243] or as de�ned in [ZIP-244] modi�ed by [ZIP-225],
not associated with an input, using the SIGHASH type SIGHASH_ALL.

Let ask be the spend authorization private key as de�ned in section 4.2.2 ‘Sapling Key Components’ on page 36 or in section 4.2.3
‘Orchard Key Components’ on page 38.

Let SpendAuthSig be SpendAuthSigSapling or SpendAuthSigOrchard as applicable.

For each Spend description or Action description, the signer chooses a fresh spend authorization randomizer 𝛼:

1. Choose 𝛼 ←R SpendAuthSig.GenRandom().

2. Let rsk = SpendAuthSig.RandomizePrivate(𝛼, ask).

3. Let rk = SpendAuthSig.DerivePublic(rsk).

4. Generate a proof 𝜋 of the Spend statement (section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) or Action statement
(section 4.18.4 ‘Action Statement (Orchard)’ on page 63), with 𝛼 in the auxiliary input and rk in the primary input .

5. Let spendAuthSig = SpendAuthSig.Signrsk(SigHash).

The resulting spendAuthSig and 𝜋 are included in the Spend description, or in the vSpendAuthSigsSapling or
vSpendAuthSigsOrchard �eld of a version 5 transaction.

Note: If the spender is computationally or memory-limited, step 4 (and only step 4) MAY be delegated to a
different party that is capable of performing the zk-SNARK proof . In this case privacy will be lost to that party
since it needs ak and the proof authorizing key nsk; this allows also deriving the nk component of the full viewing
key. (In Orchard, that party needs the nk directly to make the zk-SNARK proof .) Together ak and nk are suf�cient
to recognize spent notes and to recognize and decrypt incoming notes. However, the other party will not obtain
spending authority for other transactions, since it is not able to create a spend authorization signature by itself.

4.16 Computing ρ values and Nulli�ers #rhoandnulli�ers

In Sprout and Orchard, each note has a ρ component, de�ned as part of the note.

In Sapling, each positioned note (as de�ned in section 3.2.2 ‘Note Commitments’ on page 16) has an associated ρ value,
which is computed from its note commitment cm and note position pos as follows:

ρ := MixingPedersenHash(cm, pos).

MixingPedersenHash is de�ned in section 5.4.1.8 ‘Mixing Pedersen Hash Function’ on page 81.

Let PRFnfSprout and PRFnfSapling and PRFnfOrchard be as instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86.

For a Sprout note , the nulli�er (see section 3.2.3 ‘Nullifiers’ on page 17) is derived as PRFnfSprout
ask

(ρ), where ask is the spending
key associated with the note.

For a Sapling note , the nulli�er is derived as PRFnfSapling
nk⋆ (ρ⋆), where nk⋆ is a representation of the nulli�er deriving

key associated with the note and ρ⋆ = reprJ(ρ).

The derivation of nulli�ers for Orchard notes is a little more complicated.

Let P and 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let ExtractP be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let GroupHashP be as de�ned in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

De�ne 𝒦Orchard := GroupHashP(“z.cash:Orchard”, “K”).

57

https://zips.z.cash/protocol/protocol.pdf#rhoandnullifiers

To avoid repetition, we de�ne a function DeriveNullifier ◦
◦ F𝑞P

× F𝑞P
× F𝑞P

× P→ F𝑞P
as follows:

DeriveNullifiernk(ρ,ψ, cm) = ExtractP
(︀[︀

(PRFnfOrchard
nk (ρ) +ψ) mod 𝑞P

]︀
𝒦Orchard + cm

)︀
.

where nk is the nulli�er deriving key associated with the note; ρ and ψ are part of the note; and cm is the note
commitment .

Notes:

• The addition of PRFnfOrchard
nk (ρ) and ψ is intentionally done modulo 𝑞P, even though the scalar multiplication is

on the Pallas curve which has scalar �eld F𝑟P
.

• For correctness, the ρ and ψ inputs must always be consistent with the note committed to by cm.

Security requirement: For each shielded protocol , the requirements on nulli�er derivation are as follows:

• The derived nulli�er must be determined completely by the �elds of the note , and possibly its position, in a
way that can be checked in the corresponding statement that controls spends (i.e. the JoinSplit statement ,
Spend statement , or Action statement).

• Under the assumption that ρ values are unique, it must not be possible to generate two notes with distinct note
commitments but the same nulli�er. (See section 8.4 ‘Faerie Gold attack and fix’ on page 143 for further discussion.)

• Given a set of nulli�ers of a priori unknown notes, they must not be linkable to those notes with probability
greater than expected by chance, even to an adversary with the corresponding incoming viewing keys (but
not full viewing keys), and even if the adversary may have created the notes.

4.17 Chain Value Pool Balances #chainvaluepoolbalances

The transparent chain value pool balance for a given block chain is the sum of the values of all UTXOs in the UTXO
(unspent transaction output) set for that chain. It is denoted by ChainValuePoolBalanceTransparent(height).

As de�ned in [ZIP-209], the Sprout chain value pool balance for a given block chain is the sum of all vold
pub �eld

values for transactions in the block chain, minus the sum of all vnew
pub �eld values for transactions in the block chain.

It is denoted by ChainValuePoolBalanceSprout(height).

Consensus rule: If the Sprout chain value pool balance would become negative in the block chain created as a
result of accepting a block , then all nodes MUST reject the block as invalid.

As de�ned in [ZIP-209], the Sapling chain value pool balance for a given block chain is the negation of the sum of all
valueBalanceSapling values for transactions in the block chain. It is denoted by ChainValuePoolBalanceSapling(height).

Consensus rule: If the Sapling chain value pool balance would become negative in the block chain created as a
result of accepting a block , then all nodes MUST reject the block as invalid.

Similarly to the Sapling chain value pool balance de�ned in [ZIP-209], the Orchard chain value pool balance for a
given block chain is the negation of the sum of all valueBalanceOrchard �eld values for transactions in the block
chain. It is denoted by ChainValuePoolBalanceOrchard(height).

Consensus rule: If the Orchard chain value pool balance would become negative in the block chain created as a
result of accepting a block , then all nodes MUST reject the block as invalid.

De�ne totalDeferredOutput and totalDeferredInput as in section 7.8 on page 136.

Then, consistent with [ZIP-207], the deferred development fund chain value pool balance for a block chain up to
and including height height is given by:

ChainValuePoolBalanceDeferred(height) :=
height∑︁
h=0

totalDeferredOutput(h) − totalDeferredInput(h)

58

https://zips.z.cash/protocol/protocol.pdf#chainvaluepoolbalances

Consensus rule: If the deferred development fund chain value pool balance would become negative in the block
chain created as a result of accepting a block , then all nodes MUST reject the block as invalid.

Non-normative notes:

• totalDeferredOutput(h) is necessarily zero for heights h prior to N​U​6 activation.

• totalDeferredInput(h) is necessarily zero for heights h prior to N​U​6.1 activation.

The total issued supply of a block chain at block height height is given by the function:

IssuedSupply(height) := ChainValuePoolBalanceTransparent(height)
+ ChainValuePoolBalanceSprout(height)
+ ChainValuePoolBalanceSapling(height)
+ ChainValuePoolBalanceOrchard(height)
+ ChainValuePoolBalanceDeferred(height)

59

4.18 Zk-SNARK Statements #snarkstatements

4.18.1 JoinSplit Statement (Sprout) #joinsplitstatement

Let ℓSprout
Merkle, ℓSprout

PRF , MerkleDepthSprout, ℓvalue, ℓask
, ℓSprout
ϕ , ℓhSig, Nold, Nnew be as de�ned in section 5.3 ‘Constants’ on page 74.

Let PRFaddr, PRFnfSprout, PRFpk, and PRFρ be as de�ned in section 4.1.2 ‘Pseudo Random Functions’ on page 25.
Let NoteCommitSprout be as de�ned in section 4.1.8 ‘Commitment’ on page 31, and let NoteSprout and NoteCommitmentSprout be
as de�ned in section 3.2 ‘Notes’ on page 14.

A valid instance of a JoinSplit statement , 𝜋ZKJoinSplit, assures that given a primary input :(︀
rtSprout ◦

◦ B[ℓSprout
Merkle],

nfold
1..Nold

◦
◦ B[ℓSprout

PRF][Nold],

cmnew
1..Nnew ◦

◦ NoteCommitSprout.Output[Nnew],

vold
pub

◦
◦ {0 .. 2ℓvalue−1},

vnew
pub

◦
◦ {0 .. 2ℓvalue−1},

hSig
◦
◦ B[ℓhSig],

h1..Nold
◦
◦ B[ℓSprout

PRF][Nold])︀,
the prover knows an auxiliary input :(︀

path1..Nold
◦
◦ B[ℓSprout

Merkle][MerkleDepthSprout][Nold],

pos1..Nold
◦
◦ {0 .. 2MerkleDepthSprout

−1}[Nold],

nold
1..Nold

◦
◦ NoteSprout[Nold],

aold
sk,1..Nold

◦
◦ B[ℓask

][Nold],

nnew
1..Nnew ◦

◦ NoteSprout[Nnew],

ϕ ◦
◦ B[ℓSprout

ϕ],

enforceMerklePath1..Nold
◦
◦ B[Nold])︀,

where:

for each 𝑖 ∈ {1..Nold}: nold
𝑖 = (aold

pk,𝑖, vold
𝑖 , ρold

𝑖 , rcmold
𝑖);

for each 𝑖 ∈ {1..Nnew}: nnew
𝑖 = (anew

pk,𝑖, vnew
𝑖 , ρnew

𝑖 , rcmnew
𝑖)

such that the following conditions hold:

Merkle path validity for each 𝑖 ∈ {1..Nold} | enforceMerklePath𝑖 = 1: (path𝑖, pos𝑖) is a valid Merkle path (see section 4.9
‘Merkle Path Validity’ on page 49) of depth MerkleDepthSprout from NoteCommitmentSprout(nold

𝑖) to the anchor rtSprout.

Note: Merkle path validity covers conditions 1. (a) and 1. (d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement for each 𝑖 ∈ {1..Nold}, if vold
𝑖 ̸= 0 then enforceMerklePath𝑖 = 1.

Balance vold
pub +

∑︀Nold

𝑖=1
vold

𝑖 = vnew
pub +

∑︀Nnew

𝑖=1
vnew

𝑖 ∈ {0 .. 2ℓvalue−1}.

Nulli�er integrity for each 𝑖 ∈ {1..Nold}: nfold
𝑖 = PRFnfSprout

aold
sk,𝑖

(ρold
𝑖).

Spend authority for each 𝑖 ∈ {1..Nold}: aold
pk,𝑖 = PRFaddr

aold
sk,𝑖

(0).

Non-malleability for each 𝑖 ∈ {1..Nold}: h𝑖 = PRFpk
aold

sk,𝑖

(𝑖, hSig).

Uniqueness of ρnew
𝑖 for each 𝑖 ∈ {1..Nnew}: ρnew

𝑖 = PRFρϕ(𝑖, hSig).

Note commitment integrity for each 𝑖 ∈ {1..Nnew}: cmnew
𝑖 = NoteCommitmentSprout(nnew

𝑖).

For details of the form and encoding of proofs, see section 5.4.10.1 ‘BCTV14’ on page 110.

60

https://zips.z.cash/protocol/protocol.pdf#snarkstatements
https://zips.z.cash/protocol/protocol.pdf#joinsplitstatement

4.18.2 Spend Statement (Sapling) #spendstatement

Let ℓSapling
Merkle , ℓPRFnfSapling, ℓSapling

scalar , and MerkleDepthSapling be as de�ned in section 5.3 ‘Constants’ on page 74.

Let ValueCommitSapling and NoteCommitSapling be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let SpendAuthSigSapling be as de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

Let J, J(𝑟), reprJ, 𝑞J, 𝑟J, and ℎJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ExtractJ(𝑟)
◦
◦ J(𝑟) → B[ℓSapling

Merkle] be as de�ned in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on page 104.

LetℋSapling be as de�ned in section 4.2.2 ‘Sapling Key Components’ on page 36.

A valid instance of a Spend statement , 𝜋ZKSpend, assures that given a primary input :(︀
rtSapling ◦

◦ B[ℓSapling
Merkle],

cvold ◦
◦ ValueCommitSapling.Output,

nfold ◦
◦ BY[ℓPRFnfSapling/8],

rk ◦
◦ SpendAuthSigSapling.Public

)︀
,

the prover knows an auxiliary input :(︀
path ◦

◦ B[ℓSapling
Merkle][MerkleDepthSapling],

pos ◦
◦ {0 .. 2MerkleDepthSapling

−1},
gd

◦
◦ J,

pkd
◦
◦ J,

vold ◦
◦ {0 .. 2ℓvalue−1},

rcvold ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

cmold ◦
◦ J,

rcmold ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

𝛼 ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

ak ◦
◦ SpendAuthSigSapling.Public,

nsk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1}

)︀
such that the following conditions hold:

Note commitment integrity cmold = NoteCommitSapling
rcmold (reprJ(gd), reprJ(pkd), vold).

Merkle path validity Either vold = 0; or (path, pos) is a valid Merkle path of depth MerkleDepthSapling, as de�ned in
section 4.9 ‘Merkle Path Validity’ on page 49, from cm𝑢 = ExtractJ(𝑟)(cmold) to the anchor rtSapling.

Value commitment integrity cvold = ValueCommitSapling
rcvold (vold).

Small order checks gd and ak are not of small order, i.e. [ℎJ] gd ̸= 𝒪J and [ℎJ] ak ̸= 𝒪J.

Nulli�er integrity nfold = PRFnfSapling
nk⋆ (ρ⋆) where

nk⋆ = reprJ
(︀
[nsk]ℋSapling)︀

ρ⋆ = reprJ
(︀
MixingPedersenHash(cmold, pos)

)︀
.

Spend authority rk = SpendAuthSigSapling.RandomizePublic(𝛼, ak).

Diversi�ed address integrity pkd = [ivk] gd where
ivk = CRHivk(ak⋆, nk⋆)
ak⋆ = reprJ(ak).

For details of the form and encoding of Spend statement proofs, see section 5.4.10.2 ‘Groth16’ on page 111.

61

https://zips.z.cash/protocol/protocol.pdf#spendstatement

Notes:
• Primary and auxiliary inputs MUST be constrained to have the types speci�ed. In particular, see section A.3.3.2

‘ctEdwards [de]compression and validation’ on page 205, for required validity checks on compressed repre-
sentations of Jubjub curve points.

The ValueCommitSapling.Output and SpendAuthSigSapling.Public types also represent points, i.e. J.

• In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0 .. 𝑞J − 1}) of the integer from the previous layer.

• It is not checked in the Spend statement that rk is not of small order. However, this is checked outside the
Spend statement , as speci�ed in section 4.4 ‘Spend Descriptions’ on page 40.

• It is not checked that rcvold < 𝑟J or that rcmold < 𝑟J.

• SpendAuthSigSapling.RandomizePublic(𝛼, ak) = ak + [𝛼]𝒢Sapling.

(𝒢Sapling is as de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.)

4.18.3 Output Statement (Sapling) #outputstatement

Let ℓSapling
Merkle and ℓSapling

scalar be as de�ned in section 5.3 ‘Constants’ on page 74.

Let ValueCommitSapling and NoteCommitSapling be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let J, reprJ, and ℎJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ExtractJ(𝑟)
◦
◦ J(𝑟) → B[ℓSapling

Merkle] be as de�ned in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on page 104.

A valid instance of an Output statement , 𝜋ZKOutput, assures that given a primary input :(︀
cvnew ◦

◦ ValueCommitSapling.Output,
cm𝑢

◦
◦ B[ℓSapling

Merkle],

epk ◦
◦ J
)︀
,

the prover knows an auxiliary input :

(gd
◦
◦ J,

pk⋆d
◦
◦ B[ℓJ],

vnew ◦
◦ {0 .. 2ℓvalue−1},

rcvnew ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

rcmnew ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

esk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1})

such that the following conditions hold:

Note commitment integrity cm𝑢 = ExtractJ(𝑟)
(︀
NoteCommitSapling

rcmnew (g⋆d, pk⋆d, vnew)
)︀
, where g⋆d = reprJ(gd).

Value commitment integrity cvnew = ValueCommitSapling
rcvnew (vnew).

Small order check gd is not of small order, i.e. [ℎJ] gd ̸= 𝒪J.

Ephemeral public key integrity epk = [esk] gd.

For details of the form and encoding of Output statement proofs, see section 5.4.10.2 ‘Groth16’ on page 111.

62

https://zips.z.cash/protocol/protocol.pdf#outputstatement

Notes:
• Primary and auxiliary inputs MUST be constrained to have the types speci�ed. In particular, see section A.3.3.2

‘ctEdwards [de]compression and validation’ on page 205, for required validity checks on compressed repre-
sentations of Jubjub curve points. The ValueCommitSapling.Output type also represents points, i.e. J.

• The validity of pk⋆d is not checked in this circuit (which is the reason why it is typed as a bit sequence rather
than as a point).

• It is not checked that rcvold < 𝑟J or that rcmold < 𝑟J.

4.18.4 Action Statement (Orchard) #actionstatement

Let ℓOrchard
Merkle , ℓOrchard

scalar , and MerkleDepthOrchard be as de�ned in section 5.3 ‘Constants’ on page 74.

Let ValueCommitOrchard, NoteCommitOrchard, and Commitivk be as speci�ed in section 4.1.8 ‘Commitment’ on page 31.

Let SpendAuthSigOrchard be as de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

Let P, P*, reprP, 𝑞P, and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let 𝑥, 𝑦, ExtractP, and Extract⊥P be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let DeriveNullifier be as de�ned in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

A valid instance of an Action statement , 𝜋, assures that given a primary input :(︀
rtOrchard ◦

◦ {0 .. 𝑞P − 1},
cvnet ◦

◦ ValueCommitOrchard.Output,
nfold ◦

◦ {0 .. 𝑞P − 1},
rk ◦

◦ SpendAuthSigOrchard.Public,

cm𝑥
◦
◦ {0 .. 𝑞P − 1},

enableSpends ◦
◦ B,

enableOutputs ◦
◦ B
)︀
,

the prover knows an auxiliary input :(︀
path ◦

◦ {0 .. 𝑞P − 1}[MerkleDepthOrchard],

pos ◦
◦ {0 .. 2MerkleDepthOrchard

−1},
gold

d
◦
◦ P*,

pkold
d

◦
◦ P*,

vold ◦
◦ {0 .. 2ℓvalue−1},

ρ
old ◦

◦ F𝑞P
,

ψ
old ◦

◦ F𝑞P
,

rcmold ◦
◦ {0 .. 2ℓ

Orchard
scalar −1},

cmold ◦
◦ P,

𝛼 ◦
◦ {0 .. 2ℓ

Orchard
scalar −1},

akP ◦
◦ P*,

nk ◦
◦ F𝑞P

,

rivk ◦
◦ Commitivk.Trapdoor,

gnew
d

◦
◦ P*,

pknew
d

◦
◦ P*,

vnew ◦
◦ {0 .. 2ℓvalue−1},

ψ
new ◦

◦ F𝑞P
,

rcmnew ◦
◦ {0 .. 2ℓ

Orchard
scalar −1},

rcv ◦
◦ {0 .. 2ℓ

Orchard
scalar −1}

)︀
such that the following conditions hold:

63

https://zips.z.cash/protocol/protocol.pdf#actionstatement

Old note commitment integrity NoteCommitOrchard
rcmold (reprP(gold

d), reprP(pkold
d), vold, ρold,ψold) ∈ {cmold,⊥}.

Merkle path validity Either vold = 0; or (path, pos) is a valid Merkle path of depth MerkleDepthOrchard, as de�ned in
section 4.9 ‘Merkle Path Validity’ on page 49, from ExtractP(cmold) to the anchor rtOrchard.

Value commitment integrity cvnet = ValueCommitOrchard
rcv (vold − vnew).

Nulli�er integrity nfold = DeriveNullifiernk(ρold,ψold, cmold).

Spend authority rk = SpendAuthSigOrchard.RandomizePublic(𝛼, akP).

Diversi�ed address integrity ivk = ⊥ or pkold
d = [ivk] gold

d where ivk = Commitivk
rivk
(︀
ExtractP(akP), nk

)︀
.

New note commitment integrity Extract⊥P
(︀
NoteCommitOrchard

rcmnew (reprP(gnew
d), reprP(pknew

d), vnew, ρnew,ψnew)
)︀
∈ {cm𝑥,⊥},

where ρnew = nfold (mod 𝑞P).

Enable spend �ag vold = 0 or enableSpends = 1.

Enable output �ag vnew = 0 or enableOutputs = 1.

For details of the form and encoding of Action statement proofs, see section 5.4.10.3 ‘Halo 2’ on page 112.

Notes:

• The primary inputs are encoded as the following sequence of type F𝑞P
[9]:[︀

rtOrchard (mod 𝑞P),𝑥
(︀
cvnet)︀, 𝑦(︀cvnet)︀, nfold (mod 𝑞P),𝑥(rk), 𝑦(rk), cm𝑥 (mod 𝑞P), enableSpends (mod 𝑞P),

enableOutputs (mod 𝑞P)
]︀
.

(Recall from section 2 ‘Notation’ on page 10 that “(mod 𝑞P)” interprets an integer as an F𝑞P
element.)

• Primary and auxiliary inputs MUST be constrained to have the types speci�ed. In particular, gold
d , pkold

d , gnew
d ,

pknew
d , and akP cannot be 𝒪P. The ValueCommitOrchard.Output and SpendAuthSigOrchard.Public types represent

Pallas curve points, i.e. P.

• The scalar multiplication used in ValueCommitOrchard must operate correctly on the range {−264 + 1 .. 264 − 1},
which is different to the range {−263 .. 263 − 1} of vbalanceOrchard.

• In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0 .. 𝑞P − 1}) of the integer from the previous layer.

• As speci�ed in section 4.9 ‘Merkle Path Validity’ on page 49, the validity check is permitted to be implemented in such
a way that it can pass if any MerkleCRHOrchard hash on the Merkle path outputs 0. This allows nondeterministic,
incomplete addition to be used in the circuit for SinsemillaHash.

• It is not checked that rcv < 𝑟P or that rcmold < 𝑟P or that rcmnew < 𝑟P.

• SpendAuthSigOrchard.RandomizePublic(𝛼, akP) = akP + [𝛼]𝒢Orchard.

(𝒢Orchard is as de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.)

• The validity of g⋆d and pk⋆d are not checked in this circuit. Also, rtOrchard and cm𝑥 are not checked to be Pallas
af�ne-short-Weierstrass 𝑥-coordinates or 0.

• When a value given as a �eld element in the Action circuit is used as a scalar for scalar multiplication, it
involves witnessing the scalar as a sequence of bits or window indices, typically for a total of 255 bits (except
in the case of multiplying by the value difference vold − vnew). This raises the possibility that the witnessed
255-bit representation may match the original �eld element modulo 𝑞P, but not modulo 𝑟P. Unless it can be
proven to result in an equivalent statement, the decomposition of each scalar value MUST be canonical.

The cases in which not checking canonicity results in an equivalent statement are those where the state-
ment only requires to prove knowledge of the scalar, without using it elsewhere — i.e. the multiplica-
tions by rcmold or rcmnew in NoteCommitOrchard, by rcv in ValueCommitOrchard, by rivk in Commitivk, and by 𝛼 in

64

SpendAuthSigOrchard.RandomizePublic. In particular, the representation of (PRFnfOrchard
nk (ρ) + ψ) mod 𝑞P that is

used for the scalar multiplication in DeriveNullifier MUST be checked to be canonical in order to avoid a
potential double-spend vulnerability, and similarly for the representation of ivk in [ivk] gold

d .

Non-normative notes:

• The procedure in section 4.2.3 ‘Orchard Key Components’ on page 38 will always produce a spend authorization
address key that effectively has the compressed 𝑦-coordinate, 𝑦, set to 0. The Action statement , on the other
hand, allows the prover to witness akP with 𝑦 set to 0 or 1. This is harmless because if the prover and signer(s)
of the spend authorization signature collectively know rsk and 𝛼, we can conclude that they collectively know
ask up to sign, which is suf�cient for spend authorization.

• There is intentionally no equivalent to the Ephemeral public key integrity check from the Sapling Output
statement . It is unnecessary for the sender of an Orchard note to prove knowledge of esk, because the
potential attack this originally addressed for Sapling is prevented by checks added at Canopy activation in
[ZIP-212]. These checks are required after the end of the ZIP 212 grace period, which precedes N​U​5 activation.

• If NoteCommitOrchard returns ⊥ for the old or new note , then the corresponding note commitment integrity
check is satis�ed. Similarly, if Commitivk returns⊥, then the diversi�ed address integrity check is satis�ed. This
models the fact that the implemented circuit uses incomplete point addition to compute SinsemillaHashToPoint.
If an exceptional case were to occur, the prover could arbitrarily choose the intermediate 𝜆 value in an addition,
which must be assumed to allow them to control the output. (The formal output of SinsemillaHashToPoint
is ⊥ in such a case, while the output computed by the circuit would be nondeterministic.) But as proven
in Theorem 5.4.4 on page 84, these exceptional cases allow immediately �nding a nontrivial discrete logarithm
relation. If the Discrete Logarithm Problem is hard on the Pallas curve, then �nding such a case is infeasible.

4.19 In-band secret distribution (Sprout) #sproutinband

In Sprout, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, ρ,
and rcm. A memo �eld (section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pkenc is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo �eld .

A single ephemeral public key is shared between encryptions of the Nnew shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

For both encryption and decryption,

• let Sym be the scheme instantiated in section 5.4.3 ‘Symmetric Encryption’ on page 88;

• let KDFSprout be the Key Derivation Function instantiated in section 5.4.5.2 ‘Sprout Key Derivation’ on page 89;

• let KASprout be the key agreement scheme instantiated in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88;

• let hSig be the value computed for this JoinSplit description in section 4.3 ‘JoinSplit Descriptions’ on page 39.

4.19.1 Encryption (Sprout) #sproutencrypt

Let KASprout be the key agreement scheme instantiated in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

Let pkenc,1..Nnew be the transmission keys for the intended recipient addresses of each new note.

Let np1..Nnew be Sprout note plaintexts de�ned in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15.

65

https://zips.z.cash/protocol/protocol.pdf#sproutinband
https://zips.z.cash/protocol/protocol.pdf#sproutencrypt

Then to encrypt:
• Generate a new KASprout (public, private) key pair (epk, esk).

• For 𝑖 ∈ {1..Nnew},
– Let Penc

𝑖
◦
◦ BY[585] be the raw encoding of np𝑖.

– Let sharedSecret𝑖 = KASprout.Agree(esk, pkenc,𝑖).

– Let Kenc
𝑖 = KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pkenc,𝑖).

– Let Cenc
𝑖 = Sym.EncryptKenc

𝑖
(Penc

𝑖).

The resulting transmitted notes ciphertext is (epk, Cenc
1..Nnew).

Note: It is technically possible to replace Cenc
𝑖 for a given note with a random (and undecryptable) dummy

ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions. This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band , which are not addressed in this document.

4.19.2 Decryption (Sprout) #sproutdecrypt

Let ivk = (apk, skenc) be the recipient’s incoming viewing key, and let pkenc be the corresponding transmission key
derived from skenc as speci�ed in section 4.2.1 ‘Sprout Key Components’ on page 36.

Let cm1..Nnew be the note commitments of each output coin.

Then for each 𝑖 ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component (epk, Cenc
𝑖) as follows:

let sharedSecret𝑖 = KASprout.Agree(skenc, epk)
let Kenc

𝑖 = KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pkenc)
let Penc

𝑖 = Sym.DecryptKenc
𝑖

(Cenc
𝑖)

if Penc
𝑖 = ⊥, return ⊥

return ExtractNoteSprout(Penc
𝑖 , cm𝑖, apk).

ExtractNoteSprout(Penc
𝑖

◦
◦ BY[585], cm𝑖

◦
◦ BY[32], apk

◦
◦ B[ℓSprout

PRF]) is de�ned as follows:

extract np𝑖 = (leadByte𝑖
◦
◦ BY, v𝑖

◦
◦ {0 .. 2ℓvalue−1}, ρ𝑖

◦
◦ B[ℓSprout

PRF], rcm𝑖
◦
◦ NoteCommitSprout.Trapdoor, memo𝑖

◦
◦ BY[512])

from Penc
𝑖

let n𝑖 = (apk, v𝑖, ρ𝑖, rcm𝑖)
if leadByte𝑖 ̸= 0x00 or NoteCommitmentSprout(n𝑖) ̸= cm𝑖, return ⊥
return (n𝑖, memo𝑖).

Notes:

• The decryption algorithm corresponds to step 3 (b) i. and ii. (�rst bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2].

• To test whether a note is unspent in a particular block chain also requires the spending key ask; the coin is
unspent if and only if nf = PRFnfSprout

ask
(ρ) is not in the nulli�er set for that block chain.

• A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See section 8.7 ‘In-band secret distribution’ on page 147 for further discussion of the security and engineering rationale
behind this encryption scheme.

66

https://zips.z.cash/protocol/protocol.pdf#sproutdecrypt

4.20 In-band secret distribution (Sapling and Orchard) #saplingandorchardinband

In Sapling and Orchard, the secrets that need to be transmitted to a recipient of a note so that they can later spend
it, are d, v, and rcm or rseed. A memo �eld (section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
diversi�ed transmission key pkd is used to encrypt them. The recipient’s possession of the associated KASapling or
KAOrchard private key ivk is used to reconstruct the original note and memo �eld .

Unlike in Sprout, each Sapling or Orchard shielded output is encrypted by a fresh ephemeral public key.

For both encryption and decryption,

• let ℓovk be as de�ned in section 5.3 ‘Constants’ on page 74;

• let Sym be the encryption scheme instantiated in section 5.4.3 ‘Symmetric Encryption’ on page 88;

• let KA be the key agreement scheme KASapling or KAOrchard instantiated in section 5.4.5.3 ‘Sapling Key Agreement’
on page 89 or section 5.4.5.5 ‘Orchard Key Agreement’ on page 90;

• let KDFbe the Key Derivation Function KDFSapling or KDFOrchard instantiated in section 5.4.5.4 ‘Sapling Key Derivation’
on page 89 or section 5.4.5.6 ‘Orchard Key Derivation’ on page 90;

• let G, ℓG , and reprG be instantiated as J, ℓJ, and reprJ de�ned in section 5.4.9.3 ‘Jubjub’ on page 102, or P, ℓP, and reprP
de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105;

• let ExtractG(𝑟) be ExtractJ(𝑟) as de�ned in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on page 104 or ExtractP as

de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106;

• let PRFock be PRFockSapling or PRFockOrchard instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86;

• let DiversifyHash be DiversifyHashSapling in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’
on page 78, or DiversifyHashOrchard in the same section;

• let NoteCommitmentbe NoteCommitmentSapling or NoteCommitmentOrchard de�ned in section 3.2.2 ‘Note Commitments’
on page 16;

• let ToScalar be ToScalarSapling de�ned in section 4.2.2 ‘Sapling Key Components’ on page 36 or ToScalarOrchard de�ned
in section 4.2.3 ‘Orchard Key Components’ on page 38;

• LEBS2OSP, LEOS2IP, I2LEBSP, and I2LEOSP are de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’
on page 73.

4.20.1 Encryption (Sapling and Orchard) #saplingandorchardencrypt

Let pkd
◦
◦ KA.PublicPrimeOrder be the diversi�ed transmission key for the intended recipient address of a new

Sapling or Orchard note, and let gd
◦
◦ KA.PublicPrimeOrder be the corresponding diversi�ed base computed as

DiversifyHash(d).

Since Sapling note encryption is used only in the context of section 4.7.2 ‘Sending Notes (Sapling)’ on page 44, and similarly
Orchard note encryption is used only in the context of section 4.7.3 ‘Sending Notes (Orchard)’ on page 45, we may assume
that gd has already been calculated and is not ⊥. Also, the ephemeral private key esk has been chosen.

Let ovk ◦
◦ BY[ℓovk/8] ∪ {⊥} be as described in section 4.7.2 on page 44 or section 4.7.3 on page 45, i.e. the outgoing viewing key of the

shielded payment address from which the note is being spent, or an outgoing viewing key associated with a [ZIP-32]
account, or⊥.

Let np = (leadByte, d, v, rseed, memo) be the Sapling or Orchard note plaintext . np is encoded as de�ned in section 5.5
‘Encodings of Note Plaintexts and Memo Fields’ on page 112.

Let cv be the value commitment for the Output description or Action description (for Orchard, this also depends
on the value of the note being spent), and let cm be the note commitment . These are needed to derive the outgoing
cipher key ock in order to produce the outgoing ciphertext Cout.

67

https://zips.z.cash/protocol/protocol.pdf#saplingandorchardinband
https://zips.z.cash/protocol/protocol.pdf#saplingandorchardencrypt

Then to encrypt:

let Penc be the raw encoding of np
let epk = KA.DerivePublic(esk, gd)
let ephemeralKey = LEBS2OSPℓG

(︀
reprG(epk)

)︀
let sharedSecret = KA.Agree(esk, pkd)
let Kenc = KDF(sharedSecret, ephemeralKey)
let Cenc = Sym.EncryptKenc(Penc)
if ovk = ⊥:

choose random ock ←R Sym.K and op ←R BY[(ℓG+256)/8]

else:

let cv = LEBS2OSPℓG

(︀
reprG(cv)

)︀
let cm* = LEBS2OSP256

(︀
ExtractG(𝑟)(cm)

)︀
let ock = PRFock

ovk(cv, cm*, ephemeralKey)
let op = LEBS2OSPℓG+256

(︀
reprG(pkd) || I2LEBSP256(esk)

)︀
let Cout = Sym.Encryptock(op)

The resulting transmitted note ciphertext is (ephemeralKey, Cenc, Cout).

Note: It is technically possible to replace Cenc for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other Output descriptions. This mode of operation raises further security considerations, for example of how
to validate a Sapling or Orchard note received out-of-band , which are not addressed in this document.

4.20.2 Decryption using an Incoming Viewing Key (Sapling and Orchard) #decryptivk

Let ivk ◦
◦ {1 .. 2ℓ

Sapling
ivk −1} (in Sapling) or {1 .. 𝑞P − 1} (in Orchard) be the recipient’s KASapling or KAOrchard private key, as

speci�ed in section 4.2.2 ‘Sapling Key Components’ on page 36 or in section 4.2.3 ‘Orchard Key Components’ on page 38.

Let (ephemeralKey, Cenc, Cout) be the transmitted note ciphertext from the Output description. Let cm* be the cmu
or cmx �eld of the Output description or Action description respectively. (This encodes the af�ne-ctEdwards
𝑢-coordinate or af�ne-short-Weierstrass 𝑥-coordinate of the note commitment , i.e. ExtractG(𝑟)(cm).)

Let protocol and allowedLeadBytes be as de�ned in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15.

Let height be the block height of the block containing this transaction, and let txVersion be the transaction version
number.

68

https://zips.z.cash/protocol/protocol.pdf#decryptivk

The recipient will attempt to decrypt the ephemeralKey and Cenc components of the transmitted note ciphertext :

let epk = abstG(ephemeralKey). if epk = ⊥, return ⊥
let sharedSecret = KA.Agree(ivk, epk)
let Kenc = KDF(sharedSecret, ephemeralKey)
let Penc = Sym.DecryptKenc(Cenc). if Penc = ⊥, return ⊥
extract np = (leadByte ◦

◦ BY, d ◦
◦ B[ℓd], v ◦

◦ {0 .. 2ℓvalue−1}, rseed ◦
◦ BY[32], memo ◦

◦ BY[512]) from Penc

if leadByte ̸∈ allowedLeadBytesprotocol(height, txVersion), return ⊥
for Sapling, let pre_rcm = [4] and pre_esk = [5]

for Orchard, let ρ = I2LEOSP256
(︀
nfold from the same Action description

)︀
, pre_rcm = [5] || ρ, and pre_esk = [4] || ρ

let rcm =
{︃

LEOS2IP256(rseed), if leadByte = 0x01
ToScalar

(︀
PRFexpand

rseed (pre_rcm)
)︀
, otherwise

if rcm ≥ 𝑟G, return ⊥
let gd = DiversifyHash(d). if (for Sapling) gd = ⊥, return ⊥
[Canopy onward] if leadByte ̸= 0x01:

esk = ToScalar
(︀
PRFexpand

rseed (pre_esk)
)︀

if reprG
(︀
KA.DerivePublic(esk, gd)

)︀
̸= ephemeralKey, return ⊥

let pkd = KA.DerivePublic(ivk, gd)
for Sapling, let n = (d, pkd, v, rcm)
for Orchard, let n = (d, pkd, v, ρ,ψ, rcm) where ψ = ToBaseOrchard(︀PRFexpand

rseed ([9] || ρ)
)︀

let cm′
* = NoteCommitment(n). if (for Orchard) cm′

* = ⊥, return ⊥
if I2LEOSP256

(︀
ExtractG(𝑟)(cm′

*)
)︀
̸= cm*, return ⊥

return (n, memo).

Notes:

• gd has already been computed when applying NoteCommitment, and need not be computed again.

• For Sapling, as explained in the note in section 5.4.9.3 ‘Jubjub’ on page 102, abstJ accepts non-canonical compressed
encodings of Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey �eld
as encoded in the transaction as input to KDFSapling, and (if Canopy is active and leadByte ̸= 0x01) in the
comparison against reprG

(︀
KA.DerivePublic(esk, gd)

)︀
. For consistency this is also what is speci�ed for Orchard.

• Normally only transmitted note ciphertexts of transactions in blocks need to be decrypted. In that case,
any received Sapling note is necessarily a positioned note , so its ρ value can immediately be calculated per
section 4.16 ‘Computing ρ values and Nullifiers’ on page 57. To test whether a Sapling or Orchard note is unspent
in a particular block chain also requires the nulli�er deriving key nk; the coin is unspent if and only if the
nulli�er computed as in section 4.16 on page 57 is not in the nulli�er set for that block chain.

• A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

• A client MAY attempt to decrypt a transmitted note ciphertext of a transaction in the mempool , using the
next block height for height. However, in that case it MUST NOT assume that the transaction will be mined
and MUST treat the decrypted information as provisional, and private.

• [N​U​5 onward] It is a consensus rule (in section 4.6 ‘Action Descriptions’ on page 42) that each Action description �eld
MUST be a valid encoding of its declared type, which in the case of ephemeralKey is KAOrchard.Public (i.e. P*),
and therefore epk cannot be 𝒪P.

• [N​U​5 onward] The domain separators [4] and [5] used in the input to PRFexpand
rseed are swapped for Orchard

relative to Sapling. This was due to an oversight and there is no good reason for it.

69

4.20.3 Decryption using an Outgoing Viewing Key (Sapling and Orchard) #decryptovk

Let ovk ◦
◦ BY[ℓovk/8] be the outgoing viewing key, as speci�ed in section 4.2.2 ‘Sapling Key Components’ on page 36 or section 4.2.3

‘Orchard Key Components’ on page 38, that is to be used for decryption. (If ovk = ⊥ was used for encryption, the
payment is not decryptable by this method.)

Let the constants CanopyActivationHeight and ZIP212GracePeriod be as de�ned in section 5.3 ‘Constants’ on page 74.

Let height be the block height of the block containing this transaction, and let txVersion be the transaction version
number.

Let (ephemeralKey, Cenc, Cout) be the transmitted note ciphertext .

For a Sapling transmitted note ciphertext , let cv and cm* be the cv and cmu �elds of the Output description.

For an Orchard transmitted note ciphertext , let cv and cm* be the cv and cmx �elds of the Action description.

The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:

let ock = PRFock
ovk(cv, cm*, ephemeralKey)

let op = Sym.Decryptock(Cout) . if op = ⊥, return ⊥
extract (pk⋆d

◦
◦ B[ℓG], esk ◦

◦ BY[32]) from op
let esk = LEOS2IP256

(︀
esk
)︀

and pkd = abstG(pk⋆d)
if esk ≥ 𝑟G or pkd = ⊥, return ⊥
if reprP

(︀
pkd
)︀
̸= pk⋆d, return ⊥

let sharedSecret = KA.Agree(esk, pkd)
let Kenc = KDF(sharedSecret, ephemeralKey)
let Penc = Sym.DecryptKenc(Cenc). if Penc = ⊥, return ⊥

extract np = (leadByte ◦
◦ BY, d ◦

◦ B[ℓd], v ◦
◦ {0 .. 2ℓvalue−1}, rseed ◦

◦ BY[32], memo ◦
◦ BY[512]) from Penc

if leadByte ̸∈ allowedLeadBytesprotocol(height, txVersion), return ⊥
for Sapling, let pre_rcm = [4] and pre_esk = [5]

for Orchard, let ρ = I2LEOSP256
(︀
nfold from the same Action description

)︀
, pre_rcm = [5] || ρ, and pre_esk = [4] || ρ

[Canopy onward] if leadByte ̸= 0x01 and ToScalar
(︀
PRFexpand

rseed (pre_esk)
)︀
̸= esk, return ⊥

let rcm =
{︃

LEOS2IP256(rseed), if leadByte = 0x01
ToScalar

(︀
PRFexpand

rseed (pre_rcm)
)︀
, otherwise

if rcm ≥ 𝑟G, return ⊥
let gd = DiversifyHash(d). if (for Sapling) gd = ⊥ or pkd ̸∈ J(𝑟)* (see note below), return ⊥
for Sapling, let n = (d, pkd, v, rcm)
for Orchard, let n = (d, pkd, v, ρ,ψ, rcm) where ψ = ToBaseOrchard(︀PRFexpand

rseed ([9] || ρ)
)︀

let cm′
* = NoteCommitment(n). if (for Orchard) cm′

* = ⊥, return ⊥
if I2LEOSP256

(︀
ExtractG(𝑟)(cm′

*)
)︀
̸= cm*, return ⊥

if reprG
(︀
KA.DerivePublic(esk, gd)

)︀
̸= ephemeralKey, return ⊥

return (n, memo).

70

https://zips.z.cash/protocol/protocol.pdf#decryptovk

Notes:
• gd has already been computed when applying NoteCommitment, and need not be computed again.

• A previous version of this speci�cation did not have the requirement for the decoded point pkd of a Sapling
note to be in the set of prime-order points J(𝑟)* (i.e. “if ... pkd ̸∈ J(𝑟)*, return ⊥”). That did not match the
implementation in zcashd. In fact the history is a little more complicated. The current speci�cation matches
the implementation in librustzcash as of [librustzcash-109], which has been used in zcashd since zcashd v2.1.2.
However, there was another implementation of Sapling note decryption used in zcashd for consensus checks,
speci�cally the check that a shielded coinbase output decrypts successfully with the zero ovk. This was
corrected to enforce the same restriction on the decrypted pkd in zcashd v5.5.0, originally set to activate in a
soft fork at block height 2121200 on both Mainnet and Testnet [zcashd-6459]. (On Testnet this height was
in the past as of the zcashd v5.5.0 release, and so the change would have been immediately enforced on
upgrade.) Since the soft fork was observed to be retrospectively valid after that height, the implementation was
simpli�ed in [zcashd-6725] to use the librustzcash implementation in all cases, which re�ects the speci�cation
above. zebra always used the librustzcash implementation.

• As explained in the note in section 5.4.9.3 ‘Jubjub’ on page 102, abstJ accepts non-canonical compressed encodings of
Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey �eld as encoded in the
transaction as input to PRFock and KDFSapling, and in the comparison against reprG

(︀
KASapling.DerivePublic(esk, gd)

)︀
.

For consistency this is also what is speci�ed for Orchard.

• For Sapling outgoing ciphertexts, pk⋆d could also be non-canonical . The above algorithm explicitly returns
⊥ if reprP

(︀
pkd
)︀
̸= pk⋆d. However, this is technically redundant with the later check that returns ⊥ if pkd ̸∈

J(𝑟)*, because only small-order Jubjub curve points have non-canonical encodings. This check is enforced
retrospectively for consensus by current zcashd and zebra versions, and for wallet rescanning by current
zcashd. Versions of zcashd prior to [zcashd-6725] could however have accepted notes for which the outgoing
ciphertext contains either a canonical or a non-canonical encoding of 𝒪J for pkd.

• [N​U​5 onward] For Orchard outgoing ciphertexts, it is not possible for pk⋆d to be non-canonical .

• [N​U​5 onward] The domain separators [4] and [5] used in the input to PRFexpand
rseed are swapped for Orchard

relative to Sapling. This was due to an oversight and there is no good reason for it.

• The comments in section 4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on page 68
concerning calculation of ρ, detection of spent notes, and decryption of transmitted note ciphertexts for
transactions in the mempool also apply to notes decrypted by this procedure.

Non-normative note: Implementors should pay close attention to similarities and differences between this
procedure and section 4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on page 68, especially
that:

• in this procedure, the ephemeral private key esk′ derived from rseed is checked to be identical to that obtained
from op (when leadByte ̸= 0x01);

• in this procedure, pkd is obtained from op rather than being derived as KASapling.DerivePublic(ivk, gd);

• in this procedure, the check that KASapling.DerivePublic(esk, gd) = epk is unconditional rather than being
dependent on leadByte ̸= 0x01, and it uses the esk obtained from op;

• [N​U​5 onward] for the same reason as in section 4.20.2 on page 68, epk cannot be 𝒪P.

4.21 Block Chain Scanning (Sprout) #sproutscan

Let ℓSprout
PRF be as de�ned in section 5.3 ‘Constants’ on page 74.

Let NoteSprout be as de�ned in section 3.2 ‘Notes’ on page 14.

Let KASprout be as de�ned in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

Let ivk = (apk
◦
◦ B[ℓSprout

PRF], skenc
◦
◦ KASprout.Private) be the incoming viewing key corresponding to ask, and let pkenc be

the associated transmission key, as speci�ed in section 4.2.1 ‘Sprout Key Components’ on page 36.

71

https://github.com/zcash/zcash/releases/tag/v2.1.2
https://github.com/zcash/zcash/releases/tag/v5.5.0
https://zips.z.cash/protocol/protocol.pdf#sproutscan

The following algorithm can be used, given the block chain and a Sprout spending key ask, to obtain each note sent
to the corresponding shielded payment address, its memo �eld , and its �nal status (spent or unspent).

let mutable ReceivedSet ◦
◦ P
(︀
NoteSprout× BY[512])︀← {}

let mutable SpentSet ◦
◦ P
(︀
NoteSprout)︀← {}

let mutable NullifierMap ◦
◦ B[ℓSprout

PRF] → NoteSprout← the empty mapping

for each transaction tx:

for each JoinSplit description in tx:

let (epk, Cenc
1..Nnew) be the transmitted notes ciphertext of the JoinSplit description

for 𝑖 in 1..Nnew:
Attempt to decrypt the transmitted notes ciphertext component (epk, Cenc

𝑖) using ivk with the
algorithm in section 4.19.2 ‘Decryption (Sprout)’ on page 66. If this succeeds with (n, memo):

Add (n, memo) to ReceivedSet.
Calculate the nulli�er nf of n using ask as in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

Add the mapping nf → n to NullifierMap.

let nf1..Nold be the nulli�ers of the JoinSplit description

for 𝑖 in 1..Nold: if nf𝑖 is present in NullifierMap, add NullifierMap(nf𝑖) to SpentSet

return (ReceivedSet, SpentSet).

4.22 Block Chain Scanning (Sapling and Orchard) #scan

In Sapling and Orchard, block chain scanning requires only the nk and ivk key components, rather than a spending
key as in Sprout. Typically, these components are derived from a full viewing key (section 4.2.2 ‘Sapling Key Components’
on page 36 or section 4.2.3 ‘Orchard Key Components’ on page 38).

Let ℓPRFnfSapling be as de�ned in section 5.3 ‘Constants’ on page 74.

Let Note be NoteSapling or NoteOrchard as de�ned in section 3.2 ‘Notes’ on page 14.

Let KA be either KASapling as de�ned in section 5.4.5.3 on page 89, or KAOrchard as de�ned in section 5.4.5.5 on page 90.

Let NullifierType be BY[ℓPRFnfSapling/8] for Sapling, or F𝑞P
for Orchard.

The following algorithm can be used, given the block chain and (nk, ivk), to obtain each note sent to the corre-
sponding shielded payment address, its memo �eld , and its �nal status (spent or unspent).

let mutable ReceivedSet ◦
◦ P
(︀
Note× BY[512])︀← {}

let mutable SpentSet ◦
◦ P
(︀
Note

)︀
← {}

let mutable NullifierMap ◦
◦ (NullifierType→ Note)← the empty mapping

for each transaction tx:

for each Output description or Action description in tx:

Attempt to decrypt the transmitted note ciphertext components epk and Cenc using ivk with the algorithm
section 4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on page 68.
If this succeeds with (n, memo):

Add (n, memo) to ReceivedSet.
Calculate the nulli�er nf of n using nk as in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.
(This also requires pos from the Output description for Sapling notes.)

Add the mapping nf → n to NullifierMap.

for each nulli�er nf of a Spend description or Action description in tx:

if nf is present in NullifierMap, add NullifierMap(nf) to SpentSet

return (ReceivedSet, SpentSet).

72

https://zips.z.cash/protocol/protocol.pdf#scan

Non-normative notes:
• The above algorithm does not use the ovk key component, or the Cout transmitted note ciphertext component.

When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption
using ovk as described in section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’ on
page 70, is that it allows recovering information about the note plaintexts sent in a transaction from that trans-
action alone.

• When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption
of Cout components for each transaction, in order to obtain information about notes that were spent in the
scanned period but received outside it.

• The above algorithm does not detect notes that were sent “out-of-band” or with incorrect transmitted note
ciphertexts. It is possible to detect whether such notes were spent only if their nulli�ers are known.

5 Concrete Protocol #concreteprotocol

5.1 Integers, Bit Sequences, and Endianness #endian

All integers in Zcash-speci�c encodings are unsigned, have a �xed bit length, and are encoded in little-endian byte
order unless otherwise specified .

The following functions convert between sequences of bits, sequences of bytes, and integers:

• I2LEBSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B[ℓ], such that I2LEBSPℓ(𝑥) is the sequence of ℓ bits representing 𝑥 in
little-endian order;

• I2LEOSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → BY[ceiling(ℓ/8)], such that I2LEBSPℓ(𝑥) is the sequence of ceiling (ℓ/8) bytes
representing 𝑥 in little-endian order;

• I2BEBSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B[ℓ] such that I2BEBSPℓ(𝑥) is the sequence of ℓ bits representing 𝑥 in
big-endian order.

• LEBS2IP ◦
◦ (ℓ ◦

◦ N)× B[ℓ] → {0 .. 2ℓ−1} such that LEBS2IPℓ(𝑆) is the integer represented in little-endian order
by the bit sequence 𝑆 of length ℓ.

• LEOS2IP ◦
◦ (ℓ ◦

◦ N | ℓ mod 8 = 0) × BY[ℓ/8] → {0 .. 2ℓ−1} such that LEOS2IPℓ(𝑆) is the integer represented in
little-endian order by the byte sequence 𝑆 of length ℓ/8.

• BEOS2IP ◦
◦ (ℓ ◦

◦ N | ℓ mod 8 = 0) × BY[ℓ/8] → {0 .. 2ℓ−1} such that BEOS2IPℓ(𝑆) is the integer represented in
big-endian order by the byte sequence 𝑆 of length ℓ/8.

• LEBS2OSP ◦
◦ (ℓ ◦

◦ N)×B[ℓ] → BY[ceiling(ℓ/8)] de�ned as follows: pad the input on the right with 8 · ceiling (ℓ/8)− ℓ
zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the
least signi�cant bit �rst, and concatenate the resulting bytes in the same order as the groups.

• LEOS2BSP ◦
◦ (ℓ ◦

◦ N | ℓ mod 8 = 0)× BY[ceiling(ℓ/8)] → B[ℓ] de�ned as follows: convert each byte to a group of 8
bits with the least signi�cant bit �rst, and concatenate the resulting groups in the same order as the bytes.

5.2 Bit layout diagrams #bitlayout

We sometimes use bit layout diagrams, in which each box of the diagram represents a sequence of bits. Diagrams
are read from left to right, with lines read from top to bottom; the breaking of boxes across lines has no signi�cance.
The bit length ℓ is given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0]ℓ
representing the sequence of ℓ zero bits, or for the output of LEBS2OSPℓ).

The entire diagram represents the sequence of bytes formed by �rst concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant . Thus
the most significant bit in each byte is toward the left of a diagram. (This convention is used only in descriptions
of the Sprout design; in the Sapling and Orchard additions, bit sequence/byte sequence conversions are always
speci�ed explicitly.) Where bit �elds are used, the text will clarify their position in each case.

73

https://zips.z.cash/protocol/protocol.pdf#concreteprotocol
https://zips.z.cash/protocol/protocol.pdf#endian
https://zips.z.cash/protocol/protocol.pdf#bitlayout

5.3 Constants #constants

De�ne:

MerkleDepthSprout ◦
◦ N := 29

MerkleDepthSapling ◦
◦ N := 32

MerkleDepthOrchard ◦
◦ N := 32

ℓSprout
Merkle

◦
◦ N := 256

ℓSapling
Merkle

◦
◦ N := 255

ℓOrchard
Merkle

◦
◦ N := 255

Nold ◦
◦ N := 2

Nnew ◦
◦ N := 2

ℓvalue
◦
◦ N := 64

ℓhSig
◦
◦ N := 256

ℓSprout
PRF

◦
◦ N := 256

ℓPRFexpand
◦
◦ N := 512

ℓPRFnfSapling
◦
◦ N := 256

ℓSprout
rcm

◦
◦ N := 256

ℓSeed
◦
◦ N := 256

ℓask
◦
◦ N := 252

ℓSprout
ϕ

◦
◦ N := 252

ℓsk
◦
◦ N := 256

ℓd
◦
◦ N := 88

ℓdk
◦
◦ N := 256

ℓSapling
ivk

◦
◦ N := 251

ℓovk
◦
◦ N := 256

ℓSapling
scalar

◦
◦ N := 252

ℓOrchard
scalar

◦
◦ N := 255

ℓOrchard
base

◦
◦ N := 255

UncommittedSprout ◦
◦ B[ℓSprout

Merkle] := [0]ℓ
Sprout
Merkle

UncommittedSapling ◦
◦ B[ℓSapling

Merkle] := I2LEBSP
ℓ

Sapling
Merkle

(1)
UncommittedOrchard ◦

◦ {0 .. 𝑞P − 1} := 2

MAX_MONEY ◦
◦ N := 2.1·1015 (zatoshi)

BlossomActivationHeight ◦
◦ N :=

{︃
653600, for Mainnet

584000, for Testnet

CanopyActivationHeight ◦
◦ N :=

{︃
1046400, for Mainnet

1028500, for Testnet

ZIP212GracePeriod ◦
◦ N := 32256

NUFiveActivationHeight ◦
◦ N :=

{︃
1687104, for Mainnet

1842420, for Testnet

74

https://zips.z.cash/protocol/protocol.pdf#constants

SlowStartInterval ◦
◦ N := 20000

PreBlossomHalvingInterval ◦
◦ N := 840000

MaxBlockSubsidy ◦
◦ N := 1.25·109 (zatoshi)

NumFounderAddresses ◦
◦ N := 48

FoundersFraction ◦
◦ Q := 1

5

PoWLimit ◦
◦ N :=

{︃
2243 − 1, for Mainnet

2251 − 1, for Testnet

PoWAveragingWindow ◦
◦ N := 17

PoWMedianBlockSpan ◦
◦ N := 11

PoWMaxAdjustDown ◦
◦ Q := 32

100

PoWMaxAdjustUp ◦
◦ Q := 16

100

PoWDampingFactor ◦
◦ N := 4

PreBlossomPoWTargetSpacing ◦
◦ N := 150 (seconds).

PostBlossomPoWTargetSpacing ◦
◦ N := 75 (seconds).

5.4 Concrete Cryptographic Schemes #concreteschemes

5.4.1 Hash Functions #concretehashes

5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions #concretesha

SHA-256 and SHA-512 are de�ned by [NIST2015].

Zcash uses the full SHA-256 hash function to instantiate NoteCommitmentSprout.

SHA-256 ◦
◦ BY[N] → BY[32]

[NIST2015] strictly speaking only speci�es the application of SHA-256 to messages that are bit sequences, producing
outputs (“message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a
byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the �rst bit of the associated bit sequence. (In the NIST speci�cation “�rst” is con�ated with “leftmost”.)

SHA-256d, de�ned as a double application of SHA-256, is used to hash block headers:

SHA-256d ◦
◦ BY[N] → BY[32]

Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and
excludes the padding step speci�ed in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding”. The
Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRHSprout.

SHA256Compress ◦
◦ B[512] → B[256]

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.

Ed25519 uses SHA-512:

SHA-512 ◦
◦ BY[N] → BY[64]

The comment above concerning bit vs byte-sequence interfaces also applies to SHA-512.

75

https://zips.z.cash/protocol/protocol.pdf#concreteschemes
https://zips.z.cash/protocol/protocol.pdf#concretehashes
https://zips.z.cash/protocol/protocol.pdf#concretesha

5.4.1.2 BLAKE2 Hash Functions #concreteblake2

BLAKE2 is de�ned by [ANWW2013]. Zcash uses both the BLAKE2b and BLAKE2s variants.

BLAKE2b-ℓ(𝑝, 𝑥) refers to unkeyed BLAKE2b-ℓ in sequential mode, with an output digest length of ℓ/8 bytes, 16-byte
personalization string 𝑝, and input 𝑥.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDFSprout. From Overwinter onward, it is used to compute
SIGHASH transaction hashes as speci�ed in [ZIP-143], or as in [ZIP-243] after Sapling activation, or as in [ZIP-244]
for version 5 transactions. For Sapling, it is also used to instantiate PRFexpand, PRFockSapling, KDFSapling, and in the
RedJubjub signature scheme which instantiates SpendAuthSigSapling and BindingSigSapling.

BLAKE2b-ℓ ◦
◦ BY[16] × BY[N] → BY[ℓ/8]

Note: BLAKE2b-ℓ is not the same as BLAKE2b-512 truncated to ℓ bits, because the digest length is encoded in the
parameter block.

BLAKE2s-ℓ(𝑝, 𝑥) refers to unkeyed BLAKE2s-ℓ in sequential mode, with an output digest length of ℓ/8 bytes, 8-byte
personalization string 𝑝, and input 𝑥.

BLAKE2s is used to instantiate PRFnfSapling, CRHivk, and GroupHashJ(𝑟)*

.

BLAKE2s-ℓ ◦
◦ BY[8] × BY[N] → BY[ℓ/8]

5.4.1.3 Merkle Tree Hash Function #merklecrh

MerkleCRHSprout and MerkleCRHSapling and MerkleCRHOrchard are used to hash incremental Merkle tree hash values for
Sprout and Sapling and Orchard respectively.

MerkleCRHSprout Hash Function #sproutmerklecrh

MerkleCRHSprout ◦
◦ {0 .. MerkleDepthSprout− 1} × B[ℓSprout

Merkle] × B[ℓSprout
Merkle] → B[ℓSprout

Merkle] is de�ned as follows:

MerkleCRHSprout(layer, left⋆, right⋆) := SHA256Compress
(︁

256-bit left⋆ 256-bit right⋆
)︁

.

SHA256Compress is de�ned in section 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on
page 75.

Security requirement: SHA256Compress must be collision-resistant , and it must be infeasible to �nd a preimage
𝑥 such that SHA256Compress(𝑥) = [0]256.

Notes:

• The layer argument does not affect the output.

• SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

MerkleCRHSapling Hash Function #saplingmerklecrh

Let PedersenHash be as speci�ed in section 5.4.1.7 ‘Pedersen Hash Function’ on page 79.

MerkleCRHSapling ◦
◦ {0 .. MerkleDepthSapling− 1} × B[ℓSapling

Merkle] × B[ℓSapling
Merkle] → B[ℓSapling

Merkle] is de�ned as follows:

MerkleCRHSapling(layer, left⋆, right⋆) := PedersenHash(“Zcash_PH”, 𝑙⋆ || left⋆ || right⋆)

where 𝑙⋆ = I2LEBSP6
(︀
MerkleDepthSapling− 1− layer

)︀
.

Security requirement: PedersenHash must be collision-resistant .

76

https://zips.z.cash/protocol/protocol.pdf#concreteblake2
https://zips.z.cash/protocol/protocol.pdf#merklecrh
https://zips.z.cash/protocol/protocol.pdf#sproutmerklecrh
https://zips.z.cash/protocol/protocol.pdf#saplingmerklecrh

Note: The pre�x 𝑙⋆ provides domain separation between inputs at different layers of the note commitment
tree . NoteCommitSapling, like PedersenHash, is de�ned in terms of PedersenHashToPoint, but using a pre�x that cannot
collide with a layer pre�x, as noted in section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96.

MerkleCRHOrchard Hash Function #orchardmerklecrh

Let SinsemillaHash be as speci�ed in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81.

MerkleCRHOrchard ◦
◦ {0 .. MerkleDepthOrchard− 1} × {0 .. 𝑞P − 1} × {0 .. 𝑞P − 1} → {0 .. 𝑞P − 1} is de�ned as follows:

MerkleCRHOrchard(layer, left, right) :=
{︃

0, if hash = ⊥
hash, otherwise

where hash = SinsemillaHash(“z.cash:Orchard-MerkleCRH”, 𝑙⋆ || left⋆ || right⋆)
𝑙⋆ = I2LEBSP10

(︀
MerkleDepthOrchard− 1− layer

)︀
left⋆ = I2LEBSP

ℓ
Orchard
Merkle

(︀
left
)︀

right⋆ = I2LEBSP
ℓ

Orchard
Merkle

(︀
right

)︀
.

Security requirements:

• SinsemillaHash must be collision-resistant .

• It must be infeasible to �nd a input of length 10 + 2 · ℓOrchard
Merkle bits to SinsemillaHash that yields output ⊥.

Note: The pre�x 𝑙⋆ provides domain separation between inputs at different layers of the note commitment tree .

5.4.1.4 hSig Hash Function #hsigcrh

hSigCRH is used to compute the value hSig in section 4.3 ‘JoinSplit Descriptions’ on page 39.

hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSigInput)

where

hSigInput := 256-bit randomSeed 256-bit nfold
1 ... 256-bit nfold

Nold 256-bit joinSplitPubKey .

BLAKE2b-256(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, 𝑥) must be collision-resistant on 𝑥.

5.4.1.5 CRHivk Hash Function #concretecrhivk

CRHivk is used to derive the incoming viewing key ivk for a Sapling shielded payment address. For its use when
generating an address see section 4.2.2 ‘Sapling Key Components’ on page 36, and for its use in the Spend statement see
section 4.18.2 ‘Spend Statement (Sapling)’ on page 61.

It is de�ned as follows:

CRHivk(ak⋆, nk⋆) := LEOS2IP256(BLAKE2s-256(“Zcashivk”, crhInput)) mod 2ℓ
Sapling
ivk

where

crhInput := LEBS2OSP256(ak⋆) LEBS2OSP256(nk⋆)

BLAKE2s-256(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

77

https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh
https://zips.z.cash/protocol/protocol.pdf#hsigcrh
https://zips.z.cash/protocol/protocol.pdf#concretecrhivk

Security requirement: LEOS2IP256(BLAKE2s-256(“Zcashivk”, 𝑥)) mod 2ℓ
Sapling
ivk must be collision-resistant on a 64-

byte input 𝑥. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete
security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design,
structure, and cryptanalysis to date of BLAKE2s.

Non-normative note: BLAKE2s has a variable output digest length feature, but it does not support arbitrary
bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-speci�c
personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHashSapling and DiversifyHashOrchard Hash Functions #concretediversifyhash

DiversifyHashSapling ◦
◦ B[ℓd] → J(𝑟)* ∪ {⊥} is used to derive a diversi�ed base in section 4.2.2 ‘Sapling Key Components’ on

page 36.

Let GroupHashJ(𝑟)*

and 𝑈 be as de�ned in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104.

De�ne

DiversifyHashSapling(d) := GroupHashJ(𝑟)*

𝑈

(︀
“Zcash_gd”, LEBS2OSPℓd

(d)
)︀
.

DiversifyHashOrchard ◦
◦ B[ℓd] → P* is used to derive a diversi�ed base in section 4.2.3 ‘Orchard Key Components’ on page 38.

Let GroupHashP be as de�ned in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

De�ne

DiversifyHashOrchard(d) :=
{︃

GroupHashP(“z.cash:Orchard-gd”, “”), if 𝑃 = 𝒪P

𝑃, otherwise

where 𝑃 = GroupHashP(︀“z.cash:Orchard-gd”, LEBS2OSPℓd
(d)
)︀
.

The following security property and notes apply to both Sapling and Orchard.

Security requirement: Unlinkability: Given two randomly selected shielded payment addresses from different
spend authorities, and a third shielded payment address which could be derived from either of those authorities,
such that the three addresses use different diversi�ers, it is not possible to tell which authority the third address
was derived from.

Non-normative notes:

• Suppose that GroupHashJ(𝑟)*

(restricted to inputs for which it does not return⊥) is modelled as a random oracle
from diversi�ers to points of order 𝑟J on the Jubjub curve. In this model, Unlinkability of DiversifyHashSapling

holds under the Decisional Dif�e–Hellman assumption on the prime-order subgroup of points on the Jubjub
curve.

To prove this, consider the ElGamal encryption scheme [ElGamal1985] on this prime-order subgroup, re-
stricted to encrypting plaintexts encoded as the group identity𝒪J. (ElGamal was originally de�ned for F*

𝑝

but works in any prime-order group.) ElGamal public keys then have the same form as diversi�ed payment

addresses. If we make the assumption above on GroupHashJ(𝑟)*

, then generating a new diversi�ed payment
address from a given address pk, gives the same distribution of (gd

′, pkd
′) pairs as the distribution of ElGamal

ciphertexts obtained by encrypting 𝒪J under pk. TODO: check whether this is justified. Then, the de�nition
of key privacy (IK-CPA as de�ned in [BBDP2001, De�nition 1]) for ElGamal corresponds to the de�nition
of Unlinkability for DiversifyHashSapling. (IK-CCA corresponds to the potentially stronger requirement that
DiversifyHashSapling remains Unlinkable when given Dif�e–Hellman key agreement oracles for each of the
candidate diversi�ed payment addresses.) So if ElGamal is key-private , then DiversifyHashSapling is Unlinkable
under the same conditions. [BBDP2001, Appendix A] gives a security proof for key privacy (both IK-CPA and
IK-CCA) of ElGamal under the Decisional Dif�e–Hellman assumption on the relevant group. (In fact the proof
needed is the “small modi�cation” described in the last paragraph in which the generator is chosen at random
for each key.)

78

https://zips.z.cash/protocol/protocol.pdf#concretediversifyhash

• It is assumed (also for the security of other uses of the group hash, such as Pedersen hashes and commitments)
that the discrete logarithm of the output group element with respect to any other generator is unknown. This
assumption is justi�ed if the group hash acts as a random oracle. Essentially, diversi�ers act as handles to
unknown random numbers. (The group hash inputs used with different personalizations are in different
“namespaces”.)

• Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage
from being able to query an oracle for additional (gd, pkd) pairs with the same spending authority as an existing
shielded payment address, since they could also create such pairs on their own. This justi�es only considering
two shielded payment addresses in the security de�nition.

TODO: FIXME This is not correct, because additional pairs don’t quite follow the same distribution as an address
with a valid diversifier. The security definition may need to be more complex to model this properly.

• An 88-bit diversi�er cannot be considered cryptographically unguessable at a 128-bit security level; also,
randomly chosen diversi�ers are likely to suffer birthday collisions when the number of choices approaches
244.

If most users are choosing diversi�ers randomly (as recommended in section 4.2.2 ‘Sapling Key Components’ on
page 36), then the fact that they may accidentally choose diversi�ers that collide (and therefore reveal the fact
that they are not derived from the same incoming viewing key) does not appreciably reduce the anonymity
set.

In [ZIP-32] and section 4.2.3 ‘Orchard Key Components’ on page 38 an 88-bit Pseudo Random Permutation, keyed
differently for each node of the derivation tree, is used to select new diversi�ers. This resolves the potential
problem, provided that the input to the Pseudo Random Permutation does not repeat for a given node.

• If the holder of an incoming viewing key permits an adversary to ask for a new address for that incoming
viewing key with a given diversi�er, then it can trivially break Unlinkability for the other diversi�ed payment
addresses associated with the incoming viewing key (this does not compromise other privacy properties).
Implementations SHOULD avoid providing such a “chosen diversi�er” oracle.

5.4.1.7 Pedersen Hash Function #concretepedersenhash

PedersenHash is an algebraic hash function with collision resistance (for �xed input length) derived from assumed
hardness of the Discrete Logarithm Problem on the Jubjub curve. It is based on the work of David Chaum, Ivan
Damgård, Jeroen van de Graaf, Jurgen Bos, George Purdy, Eugène van Heijst and Birgit P�tzmann in [CDvdG1987],
[BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Sha� Goldwasser in [BGG1995], with optimiza-
tions for ef�cient instantiation in zk-SNARK circuits by Sean Bowe and Daira-Emma Hopwood.

PedersenHash is used in the de�nitions of Pedersen commitments (section 5.4.8.2 ‘Windowed Pedersen commitments’ on
page 96), and of the Pedersen hash for the Sapling incremental Merkle tree (section 5.4.1.3 ‘MerkleCRHSapling Hash Function’
on page 76).

Let J, J(𝑟), 𝒪J, 𝑞J, 𝑟J, 𝑎J, and 𝑑J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let ExtractJ(𝑟)
◦
◦ J(𝑟) → B[ℓSapling

Merkle] be as de�ned in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on page 104.

Let FindGroupHashJ(𝑟)*

be as de�ned in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104.

Let UncommittedSapling be as de�ned in section 5.3 ‘Constants’ on page 74.

Let 𝑐 be the largest integer such that 4 · 24·𝑐 − 1
15 ≤ 𝑟J − 1

2 , i.e. 𝑐 := 63.

De�ne ℐ ◦
◦ BY[8] × N→ J(𝑟)* by:

ℐ(𝐷, 𝑖) := FindGroupHashJ(𝑟)*(︁
𝐷, 32-bit 𝑖− 1

)︁
.

79

https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash

De�ne PedersenHashToPoint(𝐷 ◦
◦ BY[8], 𝑀 ◦

◦ B[N+])→ J(𝑟) as follows:

Pad 𝑀 to a multiple of 3 bits by appending zero bits, giving 𝑀 ′.

Let 𝑛 = ceiling
(︁

length(𝑀 ′)
3 · 𝑐

)︁
.

Split 𝑀 ′ into 𝑛 segments 𝑀1 .. 𝑛 so that 𝑀 ′ = concatB(𝑀1 .. 𝑛), and each of 𝑀1 .. 𝑛−1 is of length 3·𝑐 bits. (𝑀𝑛 may
be shorter.)

Return
∑︀𝑛

𝑖=1
[⟨𝑀𝑖⟩] ℐ(𝐷, 𝑖) ◦

◦ J(𝑟).

where ⟨∙⟩ ◦
◦ B[3·{1 .. 𝑐}] →

{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀
∖ {0} is de�ned as:

Let 𝑘𝑖 = length(𝑀𝑖)/3.

Split 𝑀𝑖 into 3-bit chunks 𝑚1 .. 𝑘𝑖
so that 𝑀𝑖 = concatB(𝑚1 .. 𝑘𝑖

).

Write each 𝑚𝑗 as [𝑠𝑗
0, 𝑠𝑗

1, 𝑠𝑗
2], and let enc(𝑚𝑗) = (1− 2·𝑠𝑗

2) · (1 + 𝑠𝑗
0 + 2·𝑠𝑗

1) ◦
◦ Z.

Let ⟨𝑀𝑖⟩ =
∑︀𝑘𝑖

𝑗=1
enc(𝑚𝑗) · 24·(𝑗−1).

Finally, de�ne PedersenHash ◦
◦ BY[8] × B[N+] → B[ℓSapling

Merkle] by:

PedersenHash(𝐷, 𝑀) := ExtractJ(𝑟)
(︀
PedersenHashToPoint(𝐷, 𝑀)

)︀
.

See section A.3.3.9 ‘Pedersen hash’ on page 210 for rationale and ef�cient circuit implementation of these functions.

Security requirement: PedersenHash and PedersenHashToPoint are required to be collision-resistant between
inputs of �xed length, for a given personalization input 𝐷. No other security properties commonly associated with
hash functions are needed.

Non-normative note: These hash functions are not collision-resistant for variable-length inputs.

Theorem 5.4.1. The encoding function ⟨∙⟩ is injective. #thmpedersenencodeinjective

Proof. We �rst check that the range of
𝑘𝑖∑︁

𝑗=1
enc(𝑚𝑗) · 24·(𝑗−1) is a subset of the allowable range

{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀
∖ {0}.

The range of this expression is a subset of {−Δ .. Δ} ∖ {0}where Δ = 4 ·
𝑐∑︁

𝑖=1
24·(𝑖−1) = 4 · 24·𝑐 − 1

15 .

When 𝑐 = 63, we have

4 · 24·𝑐 − 1
15 = 0x444

𝑟J − 1
2 = 0x73EDA753299D7D483339D80809A1D8053341049E6640841684B872F6B7B965B

so the required condition is met. This implies that there is no “wrap around” and so
∑︀𝑘𝑖

𝑗=1
enc(𝑚𝑗) · 24·(𝑗−1) may be

treated as an integer expression.

enc is injective. In order to prove that ⟨∙⟩ is injective, consider ⟨∙⟩Δ ◦
◦ B[3·{1 .. 𝑐}] → {0 .. 2·Δ} such that ⟨𝑀𝑖⟩

Δ = ⟨𝑀𝑖⟩+Δ.

With 𝑘𝑖 and 𝑚𝑗 de�ned as above, we have ⟨𝑀𝑖⟩
Δ =

∑︀𝑘𝑖

𝑗=1
enc′(𝑚𝑗) · 24·(𝑗−1) where enc′(𝑚𝑗) = enc(𝑚𝑗) + 4 is in

{0 .. 8} and enc′ is injective. Express this sum in hexadecimal; then each 𝑚𝑗 affects only one hex digit, and it is easy

to see that ⟨∙⟩Δ is injective. Therefore so is ⟨∙⟩.

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not
including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant
under the same assumptions and security bounds. Because ExtractJ(𝑟) is injective, it follows that PedersenHash is
equally collision-resistant .

80

https://zips.z.cash/protocol/protocol.pdf#thmpedersenencodeinjective

5.4.1.8 Mixing Pedersen Hash Function #concretemixinghash

A mixing Pedersen hash is used to compute ρ from cm and pos in section 4.16 ‘Computing ρ values and Nullifiers’ on
page 57. It takes as input a Pedersen commitment 𝑃 , and hashes it with another input 𝑥.

De�ne 𝒥 Sapling := FindGroupHashJ(𝑟)*

(“Zcash_J_”, “”).

We de�ne MixingPedersenHash ◦
◦ J× {0 .. 𝑟J − 1} → J by:

MixingPedersenHash(𝑃, 𝑥) := 𝑃 + [𝑥]𝒥 Sapling.

Security requirement: The function

(𝑟, 𝑀, 𝑥) ◦
◦ {0 .. 𝑟J − 1} × B[N+] × {0 .. 𝑟J − 1} ↦→ MixingPedersenHash(WindowedPedersenCommit𝑟(𝑀), 𝑥) ◦

◦ J

must be collision-resistant on (𝑟, 𝑀, 𝑥).

See section A.3.3.10 ‘Mixing Pedersen hash’ on page 212 for ef�cient circuit implementation of this function.

5.4.1.9 Sinsemilla Hash Function #concretesinsemillahash

SinsemillaHash is an algebraic hash function with collision resistance (for �xed input length) derived from assumed
hardness of the Discrete Logarithm Problem. It is designed by Sean Bowe and Daira-Emma Hopwood. The
motivation for introducing a new discrete-logarithm-based hash function (rather than using PedersenHash) is to
make ef�cient use of the lookups available in recent proof systems including Halo 2.

SinsemillaHash is used in the de�nition of SinsemillaCommit (section 5.4.8.4 ‘Sinsemilla commitments’ on page 98), and for
the Orchard incremental Merkle tree (section 5.4.1.3 ‘MerkleCRHOrchard Hash Function’ on page 77).

Let P, 𝒪P, 𝑞P, 𝑟P, and 𝑏P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let Extract⊥P ◦
◦ P ∪ {⊥} → {0 .. 𝑞P − 1} ∪ {⊥} be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let GroupHashP be as de�ned in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

Let UncommittedOrchard be as de�ned in section 5.3 ‘Constants’ on page 74.

Let I2LEOSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → BY[ceiling(ℓ/8)] and LEBS2IP ◦
◦ (ℓ ◦

◦ N) × B[ℓ] → {0 .. 2ℓ−1} be as de�ned in section 5.1
‘Integers, Bit Sequences, and Endianness’ on page 73.

Let 𝑘 := 10.

Let 𝑐 be the largest integer such that 2𝑐 ≤ 𝑟P − 1
2 , i.e. 𝑐 := 253.

De�ne𝒬 ◦
◦ BY[N] → P* and 𝒮 ◦

◦ {0 .. 2𝑘−1} → P* by:

𝒬(𝐷) := GroupHashP(︀“z.cash:SinsemillaQ”, 𝐷
)︀

𝒮(𝑗) := GroupHashP(︀“z.cash:SinsemillaS”, I2LEOSP32(𝑗)
)︀
.

De�ne � ◦
◦ P ∪ {⊥} × P ∪ {⊥} → P ∪ {⊥} as incomplete addition on the Pallas curve:

⊥ � ⊥ = ⊥
⊥ � 𝑃 = ⊥
𝑃 � ⊥ = ⊥
𝒪P � 𝒪P = ⊥
𝒪P � (𝑥′, 𝑦′) = ⊥

(𝑥, 𝑦) � 𝒪P = ⊥

(𝑥, 𝑦) � (𝑥′, 𝑦′) =
{︃
⊥, if 𝑥 = 𝑥′

(𝑥, 𝑦) + (𝑥′, 𝑦′), otherwise.

81

https://zips.z.cash/protocol/protocol.pdf#concretemixinghash
https://zips.z.cash/protocol/protocol.pdf#concretesinsemillahash

De�ne pad(𝑛 ◦
◦ {0 .. 𝑐}, 𝑀 ◦

◦ B[{𝑛·(𝑘−1)+1 .. 𝑛·𝑘}])→ {0 .. 2𝑘−1}[𝑛] as follows:

pad 𝑀 to 𝑛 · 𝑘 bits by appending zero bits, giving 𝑀padded.

split 𝑀padded into 𝑛 pieces 𝑀pieces
1 .. 𝑛 , each of length 𝑘 bits, so that 𝑀padded = concatB(𝑀pieces

1 .. 𝑛).

return [LEBS2IP𝑘(𝑀pieces
𝑖) for 𝑖 from 1 up to 𝑛].

De�ne SinsemillaHashToPoint(𝐷 ◦
◦ BY[N], 𝑀 ◦

◦ B[{0 .. 𝑘·𝑐}])→ P ∪ {⊥} as follows:

let 𝑛 ◦
◦ {0 .. 𝑐} = ceiling

(︁
length(𝑀)

𝑘

)︁
let 𝑚 = pad𝑛(𝑀)
let mutable Acc← 𝒬(𝐷)
for 𝑖 from 1 up to 𝑛:

set Acc←
(︀
Acc � 𝒮(𝑚𝑖)

)︀
� Acc

return Acc.

Finally, de�ne SinsemillaHash ◦
◦ BY[N] × B[{0 .. 𝑘·𝑐}] → {0 .. 𝑞P − 1} ∪ {⊥} by:

SinsemillaHash(𝐷, 𝑀) := Extract⊥P
(︀
SinsemillaHashToPoint(𝐷, 𝑀)

)︀
.

See [Zcash-Orchard, section “Sinsemilla”] for rationale and ef�cient circuit implementation of these functions.

Security requirement: SinsemillaHash and SinsemillaHashToPoint are required to be collision-resistant between
inputs of �xed length, for a given personalization input 𝐷. It must also be infeasible to �nd inputs (𝐷, 𝑀) such
that SinsemillaHashToPoint(𝐷, 𝑀) = ⊥. No other security properties commonly associated with hash functions are
needed.

Non-normative notes:

• These hash functions are not collision-resistant across variable-length inputs for the same 𝐷 (that is, it is
assumed that a single input length will be used for any given 𝐷).

• The intermediate value [2] GroupHashP(︀“z.cash:SinsemillaQ”, 𝐷
)︀

for the �rst iteration of the loop can be
precomputed, if 𝐷 is known in advance.

Security argument #sinsemillasecurity

We show a correspondence between Sinsemilla and a vector Pedersen hash, which allows using the security
argument from [BGG1995] to show that collision-resistance can be tightly reduced to the Discrete Logarithm
Problem in P.

De�ne 𝛿(𝑎, 𝑏) =
{︃

0, if 𝑎 ̸= 𝑏

1, if 𝑎 = 𝑏.

Lemma 5.4.2. An injectivity property for Sinsemilla. #lemmasinsemillaonetoone

Let 𝑛 ◦
◦ {0 .. 𝑐}, and consider a sequence of message pieces 𝑚 ◦

◦ {0 .. 2𝑘−1}[𝑛]. Collect the scalars by which each
generator 𝒮(𝑗) is multiplied in the algorithm for SinsemillaHashToPoint:

De�ne 𝜒(𝑚) =
[︂

 𝑛∑︁

𝑖=1

(︀
2𝑛−𝑖 · 𝛿(𝑚𝑖, 𝑗)

)︀
(mod 𝑟P) for 𝑗 from 0 up to 2𝑘 − 1

]︂

.

The mapping 𝑚 ◦
◦ {0 .. 2𝑘−1}[𝑛] ↦→ 𝜒(𝑚) ◦

◦ F𝑟P
[2𝑘] is injective.

Proof. There is an injective mapping from 𝑚 to the matrix of bits with 2𝑘 columns and 𝑛 rows, such that the bit at
(1-based) column 𝑗 + 1 and row 𝑖 is set if and only if 𝑚𝑖 = 𝑗. Then the binary representations of the elements of
𝜒(𝑚) are given by the columns of this matrix, and they do not over�ow due to the requirement that 2𝑛 ≤ 2𝑐 ≤ 𝑟P−1

2 .
The claim follows.

82

https://zips.z.cash/protocol/protocol.pdf#sinsemillasecurity
https://zips.z.cash/protocol/protocol.pdf#lemmasinsemillaonetoone

Theorem 5.4.3. Collision resistance of SinsemillaHash and SinsemillaHashToPoint. #thmsinsemillacr

Let 𝐷 ◦
◦ BY[N] be a personalization input, and let ℓ ◦

◦ {0 .. 𝑘 · 𝑐}. Finding a collision 𝑀, 𝑀 ′ ◦
◦ B[ℓ] with 𝑀 ̸= 𝑀 ′ such that

SinsemillaHashToPoint(𝐷, 𝑀) = SinsemillaHashToPoint(𝐷, 𝑀 ′) ̸= ⊥ ef�ciently yields a nontrivial discrete logarithm
relation, and similarly for SinsemillaHash(𝐷, 𝑀) = SinsemillaHash(𝐷, 𝑀 ′) ̸= ⊥.

Proof. Without loss of generality we can restrict to the case where ℓ is a multiple of 𝑘: since pad𝑛 is injective on
inputs of a given bit length, collision resistance for ℓ = 𝑛 · 𝑘 bits implies collision resistance for each length that
pads to 𝑛 · 𝑘 bits. Since ℓ ∈ {0 .. 𝑘 · 𝑐}we have 𝑛 ∈ {0 .. 𝑐}. Then whenever SinsemillaHashToPoint(𝐷, 𝑀) ̸= ⊥,

SinsemillaHashToPoint(𝐷, 𝑀) = [2𝑛]𝒬(𝐷) +
∑︀2𝑘−1

𝑗=0
[𝜒(𝑚)𝑗+1]𝒮(𝑗), where 𝑚 = pad𝑛(𝑀).

(The 𝑗 + 1 is just because sequence indices are 1-based.)

This is a Pedersen vector hash of the 𝜒(𝑚) elements, with a �xed offset [2𝑛]𝒬(𝐷). The �xed offset does not affect
collision resistance in this context. (See below for why it cannot be eliminated for SinsemillaHash, or when using
incomplete addition.) Theorem 5.4.4 on page 84 will prove that a⊥ output from SinsemillaHashToPoint yields a nontrivial
discrete log relation. It follows that the collision resistance of SinsemillaHashToPoint can be tightly reduced, via the
proof in [BGG1995, Appendix A], to the Discrete Logarithm Problem over P.

Note that [BGG1995] requires for their main scheme that the scalars are nonzero, which is not necessarily the case
in our context. However, their proof in Appendix A does not depend on this, given that 𝑛 is �xed. The restriction
that scalars are nonzero appears to have been motivated by wanting to support variable-length messages and
incremental hashing, which we do not.

Now we consider SinsemillaHash. We want to prove that, for given 𝐷, if we can �nd two distinct messages 𝑀 and
𝑀 ′ such that Extract⊥P

(︀
SinsemillaHashToPoint(𝐷, 𝑀)

)︀
= Extract⊥P

(︀
SinsemillaHashToPoint(𝐷, 𝑀 ′)

)︀
̸= ⊥ then we can

ef�ciently extract a discrete logarithm.

The inputs to Extract⊥P are not ⊥, therefore they are in P. Extract⊥P maps 𝑃, 𝑄 ∈ P to the same output if and
only if 𝑃 = ±𝑄. So either SinsemillaHashToPoint(𝐷, 𝑀) = SinsemillaHashToPoint(𝐷, 𝑀 ′) (in which case use the
original Pedersen hash proof) or SinsemillaHashToPoint(𝐷, 𝑀) = −SinsemillaHashToPoint(𝐷, 𝑀 ′). In the latter case,
let 𝑚 = pad𝑛(𝑀) and 𝑚′ = pad𝑛(𝑀 ′), then we have

[2𝑛]𝒬(𝐷) +
∑︀2𝑘−1

𝑗=0
[𝜒(𝑚)𝑗+1]𝒮(𝑗) = −

(︁
[2𝑛]𝒬(𝐷) +

∑︀2𝑘−1

𝑗
′=0

[𝜒(𝑚′)𝑗
′+1]𝒮(𝑗′)

)︁
[2𝑛+1]𝒬(𝐷) +

∑︀2𝑘−1

𝑗=0
[𝜒(𝑚)𝑗+1 + 𝜒(𝑚′)𝑗+1]𝒮(𝑗) = 0

Because 2𝑛+1 ≤ 𝑟P− 1, the coef�cients (mod 𝑟P) are not all zero, and therefore this is a nontrivial discrete logarithm
relation between independent bases.

Non-normative notes:

• [JT2020, Lemma 3] proves a tight reduction from �nding a nontrivial discrete logarithm relation in a prime-
order group to solving the Discrete Logarithm Problem in that group.

• The above theorem easily extends to the case where additional scalar multiplication terms with independent
bases may be added to the SinsemillaHashToPoint output before applying Extract⊥P . This is needed to show secu-
rity of the SinsemillaShortCommit commitment scheme de�ned in section 5.4.8.4 ‘Sinsemilla commitments’ on page 98.
It is also needed to show security of nulli�er derivation de�ned in section 4.16 ‘Computing ρ values and Nullifiers’
on page 57 against Faerie Gold attacks, as described in section 8.4 ‘Faerie Gold attack and fix’ on page 143.

• Assuming that GroupHashG acts as a random oracle , it can also be proven that SinsemillaHashToPoint and
SinsemillaHash are collision-resistant across different personalization inputs (regardless of input length).

83

https://zips.z.cash/protocol/protocol.pdf#thmsinsemillacr

Theorem 5.4.4. A⊥ output from SinsemillaHashToPoint yields a nontrivial discrete log relation. #thmsinsemillaex

Proof. For convenience of reference, we repeat the algorithm for SinsemillaHashToPoint in terms of the message
pieces 𝑚 ◦

◦ {0 .. 2𝑘−1}[𝑛], with indexing of the intermediate values of Acc:

let Acc0 ← 𝒬(𝐷)
for 𝑖 from 1 up to 𝑛:

let Acc𝑖 ←
(︀
Acc𝑖−1 � 𝒮(𝑚𝑖)

)︀
� Acc𝑖−1

return Acc𝑛.

We have an exceptional case if and only if Acc𝑖−1 = ±𝒮(𝑚𝑖) or Acc𝑖−1 + 𝒮(𝑚𝑖) = ±Acc𝑖−1. (Since none of𝒬(𝐷) or{︀
𝒮(𝑗) | 𝑗 ∈ {0 .. 2𝑘 − 1}

}︀
are 𝒪P, no intermediate results can be 𝒪P unless one of the preceding conditions occurs.)

If Acc𝑖−1 + 𝒮(𝑚𝑖) = Acc𝑖−1, then we have 𝒮(𝑚𝑖) = 𝒪P contrary to assumption. So exceptional cases occur
only if [𝛼] Acc𝑖−1 + 𝒮(𝑚𝑖) = 𝒪P for some 𝑖 ∈ {1 .. 𝑛}, and 𝛼 = −1 (for the case Acc𝑖−1 = 𝒮(𝑚𝑖)) or 𝛼 = 1 (for
Acc𝑖−1 = −𝒮(𝑚𝑖)) or 𝛼 = 2 (for Acc𝑖−1 + 𝒮(𝑚𝑖) = −Acc𝑖−1).

Acc𝑖 has a representation [2𝑖]𝒬(𝐷) +
∑︀2𝑘−1

𝑗=0
[𝑋𝑖,𝑗+1]𝒮(𝑗) for some 𝑋𝑖

◦
◦ {0 .. 2𝑖−1}[2𝑗]. So given 𝑚 that results in an

exceptional case, the nontrivial discrete logarithm relation [𝛼 · 2𝑖]𝒬(𝐷) +
(︁∑︀2𝑘−1

𝑗=0
[𝛼 ·𝑋𝑖,𝑗+1]𝒮(𝑗)

)︁
+ 𝒮(𝑚𝑖) = 𝒪P

is easily computable from 𝑚. The coef�cients in this representation do not over�ow since 𝑋𝑖,𝑗+1 < 2𝑖 for all

𝑖 ∈ {1 .. 𝑛} and 𝑗 ∈ {0 .. 2𝑘−1}; and |𝛼 · 2𝑖| ≤ 𝑟P − 1 for all 𝑖 ∈ {1 .. 𝑛} and 𝛼 ∈ {−1, 1, 2}.

Similarly, a ⊥ output from SinsemillaHash yields a nontrivial discrete logarithm relation, because Extract⊥P only
returns ⊥when its input is ⊥.

Since by assumption it is hard to �nd a nontrivial discrete logarithm relation, we can argue that it is safe to use
incomplete additions when computing Sinsemilla inside a circuit.

5.4.1.10 PoseidonHash Function #poseidonhash

Poseidon is a cryptographic permutation described in [GKRRS2019]. It operates over a sequence of �nite �eld
elements, which we instantiate as F𝑞P

[3].

The following speci�cation is intended to follow [GKRRS2019] and Version 1.1 of the Poseidon reference implemen-
tation [Poseidon-1.1].8

The S-box function is 𝑥 ↦→ 𝑥5. The number of full rounds 𝑅𝐹 is 8, and the number of partial rounds 𝑅𝑃 is 56.

We use Poseidon in a sponge con�guration [BDPA2011] (with elementwise addition in F𝑞P
replacing exclusive-or of

bit strings9) to construct a hash function. The sponge capacity is one �eld element, the rate is two �eld elements, and
the output is one �eld element. We use the “Constant-Input-Length” mode described in [GKRRS2019, section 4.2]:

for a 2-element input, the initial value of the capacity element is 265, and no padding of the input message is needed.

That is, if 𝑓 ◦
◦ F𝑞P

[3] → F𝑞P
[3] is the Poseidon permutation, then the hash function PoseidonHash ◦

◦ F𝑞P
× F𝑞P

→ F𝑞P
is

speci�ed as:

PoseidonHash(𝑥, 𝑦) = 𝑓([𝑥, 𝑦, 265])1 (using 1-based indexing).

The MDS matrix and round constants are generated by generate_parameters_grain.sage in Version 1.1 of the
reference implementation. The number of full and partial rounds are as calculated by calc_round_numbers.py in
that implementation, for a 128-bit security level “with margin”.

8 Previous versions of the reference implementation were inconsistent with the paper. For verifying the parameters used in Zcash, we
recommend the fork [Poseidon-Zc1.1] which avoids use of the obsolete PyCrypto library.

9 The sponge construction was originally proposed as operating on an arbitrary group. [BDPA2007]

84

https://zips.z.cash/protocol/protocol.pdf#thmsinsemillaex
https://zips.z.cash/protocol/protocol.pdf#poseidonhash

Non-normative notes:

• The choice of MDS matrix and the number of rounds take into account cryptanalytic results in [KR2020] and
[BCD+2020]. A detailed analysis of related matrix properties is given in [GRS2020].

• [BCD+2020] says that “... �nite �elds F𝑞 with a limited number of multiplicative subgroups might be preferable,
i.e. one might want to avoid 𝑞−1 being smooth. This implies that the �elds which are suitable for implementing
FFT may be more vulnerable to integral attacks.” F𝑞P

is such a �eld; the factorization of 𝑞P − 1 is 232 · 3 · 463 ·
539204044132271846773 · 8999194758858563409123804352480028797519453.

Furthermore, previous cryptanalysis of Poseidon has focussed mainly on the case of S-box 𝑥 ↦→ 𝑥3. That variant
cannot be used in F𝑞P

because 𝑥 ↦→ 𝑥3 would not be a permutation. 𝛼 = 5 is the smallest integer for which
𝑥 ↦→ 𝑥𝛼 is a permutation in F𝑞P

.

On the other hand, the number of rounds chosen includes a signi�cant security margin, even taking into
account these considerations. For small 𝑡, such as 𝑡 = 3 as used here, the results of [KR2020] are positive
for security since they indicate that the number of active S-boxes through the middle rounds is larger than
originally estimated by the Poseidon designers (and the number of rounds is based on this original conservative
estimate).

Also note that the use of Poseidon in Orchard is very conservative. First, the sponge mode limits an adversary
to only being able to in�uence part of the Poseidon permutation input, and we use it only to construct a
PRF (PRFnfOrchard as described in section 5.4.2 ‘Pseudo Random Functions’ on page 86). Half of the sponge input is a
random key nk, known only to holders of a full viewing key, and the remaining half ρ comes from a previous
nulli�er which is effectively a random af�ne-short-Weierstrass 𝑥-coordinate on the Pallas curve. Then
the PRF is used to enhance the security of a discrete-logarithm-based nulli�er construction (described in
[Zcash-Orchard, Section 3.5 Nulli�ers]) against a potential discrete-log-breaking adversary. Given the weak
assumption that the PoseidonHash sponge produces output that preserves suf�cient entropy from the inputs
nk and ρ, this nulli�er construction would still be secure under a Decisional Dif�e–Hellman assumption on
the Pallas curve, even if the Poseidon-based PRF were distinguishable from an ideal PRF.

• The constant 265 comes from [GKRRS2019, section 4.2]: “Constant-Input-Length Hashing. The capacity value
is length · (264) + (𝑜− 1) where 𝑜 is the output length.” In this case the input length (length) is 2 �eld elements,
and the output length is 1 �eld element.

5.4.1.11 Equihash Generator #equihashgen

EquihashGen𝑛,𝑘 is a specialized hash function that maps an input and an index to an output of length 𝑛 bits. It is
used in section 7.7.1 ‘Equihash’ on page 133.

Let powtag := 64-bit “ZcashPoW” 32-bit 𝑛 32-bit 𝑘 .

Let powcount(𝑔) := 32-bit 𝑔 .

Let EquihashGen𝑛,𝑘(𝑆, 𝑖) := 𝑇ℎ+1 .. ℎ+𝑛, where

𝑚 = floor
(︀ 512

𝑛

)︀
;

ℎ = (𝑖− 1 mod 𝑚) · 𝑛;

𝑇 = BLAKE2b-(𝑛 ·𝑚)
(︀
powtag, 𝑆 || powcount(floor

(︀
𝑖−1
𝑚

)︀
)
)︀
.

Indices of bits in 𝑇 are 1-based.

BLAKE2b-ℓ(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

85

https://zips.z.cash/protocol/protocol.pdf#equihashgen

Security requirement: BLAKE2b-ℓ(powtag, 𝑥) must generate output that is suf�ciently unpredictable to avoid
short-cuts to the Equihash solution process. It would suf�ce to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (section 7.7.1 ‘Equihash’
on page 133), the number of calls to BLAKE2b can be reduced by a factor of floor

(︀ 512
𝑛

)︀
in the best case (which is a factor

of 2 for 𝑛 = 200).

5.4.2 Pseudo Random Functions #concreteprfs

Let SHA256Compress be as given in section 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’
on page 75.

The Pseudo Random Functions PRFaddr, PRFnfSprout, PRFpk, and PRFρ from section 4.1.2 ‘Pseudo Random Functions’ on
page 25, are all instantiated using SHA256Compress:

PRFaddr
𝑥 (𝑡) := SHA256Compress

(︁
1 1 0 0 252-bit 𝑥 8-bit 𝑡 [0]248

)︁
PRFnfSprout

ask
(ρ) := SHA256Compress

(︁
1 1 1 0 252-bit ask 256-bit ρ

)︁
PRFpk

ask
(𝑖, hSig) := SHA256Compress

(︁
0 𝑖-1 0 0 252-bit ask 256-bit hSig

)︁
PRFρϕ(𝑖, hSig) := SHA256Compress

(︁
0 𝑖-1 1 0 252-bit ϕ 256-bit hSig

)︁
Security requirements:

• SHA256Compress must be collision-resistant .

• SHA256Compress must be a PRF when keyed by the bits corresponding to 𝑥, ask orϕ in the above diagrams,
with input in the remaining bits.

Note: The �rst four bits –i.e. the most signi�cant four bits of the �rst byte– are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see section 5.4.8.1 ‘Sprout Note Commitments’
on page 95.

(The speci�c bit patterns chosen here were motivated by the possibility of future extensions that might have
increased Nold and/or Nnew to 3, or added an additional bit to ask to encode a new key type, or that would have
required an additional PRF. In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives,
these extensions are unlikely to be necessary.)

PRFexpand is used in section 4.2.2 ‘Sapling Key Components’ on page 36 to derive the Spend authorizing key ask and the
proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76:

PRFexpand
sk (𝑡) := BLAKE2b-512(“Zcash_ExpandSeed”, LEBS2OSP256(sk) || 𝑡)

Security requirement: BLAKE2b-512(“Zcash_ExpandSeed”, LEBS2OSP256(sk) || 𝑡) must be a PRF for output range
BY[ℓPRFexpand/8] when keyed by the bits corresponding to sk, with input in the bits corresponding to 𝑡.

PRFockSapling is used in section 4.20.1 ‘Encryption (Sapling and Orchard)’ on page 67 to derive the outgoing cipher key ock
used to encrypt an outgoing ciphertext .

It is instantiated using the BLAKE2b hash function de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76:

PRFockSapling
ovk (cv, cmu, ephemeralKey) := BLAKE2b-256(“Zcash_Derive_ock”, ockInput)

where ockInput = LEBS2OSP256(ovk) 32-byte cv 32-byte cmu 32-byte ephemeralKey .

86

https://zips.z.cash/protocol/protocol.pdf#concreteprfs

Security requirement: BLAKE2b-512(“Zcash_Derive_ock”, ockInput) must be a PRF for output range Sym.K (de-
�ned in section 5.4.3 ‘Symmetric Encryption’ on page 88) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmu, and ephemeralKey.

PRFnfSapling is used to derive the nulli�er for a Sapling note. It is instantiated using the BLAKE2s hash function
de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76:

PRFnfSapling
nk⋆ (ρ⋆) := BLAKE2s-256

(︁
“Zcash_nf”, LEBS2OSP256(nk⋆) LEBS2OSP256(ρ⋆)

)︁
.

Security requirement: The function BLAKE2s-256
(︁

“Zcash_nf”, LEBS2OSP256(nk⋆) LEBS2OSP256(ρ⋆)
)︁

must be a collision-resistant PRF for output range BY[32] when keyed by the bits corresponding to nk⋆, with input

in the bits corresponding to ρ⋆. Note that nk⋆ ◦
◦ J⋆

(𝑟)
is a representation of a point in the 𝑟J-order subgroup of the

Jubjub curve, and therefore is not uniformly distributed on B[ℓJ]. J⋆
(𝑟)

is de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

PRFockOrchard is used in section 4.20.1 ‘Encryption (Sapling and Orchard)’ on page 67 to derive the outgoing cipher key ock
used to encrypt an outgoing ciphertext .

It is instantiated using the BLAKE2b hash function de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76:

PRFockOrchard
ovk (cv, cmx, ephemeralKey) := BLAKE2b-256(“Zcash_Orchardock”, ockInput)

where ockInput = LEBS2OSP256(ovk) 32-byte cv 32-byte cmx 32-byte ephemeralKey .

Security requirement: BLAKE2b-512(“Zcash_Orchardock”, ockInput) must be a PRF for output range Sym.K (de-
�ned in section 5.4.3 ‘Symmetric Encryption’ on page 88) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmx, and ephemeralKey.

Let 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

PRFnfOrchard ◦
◦ F𝑞P

× F𝑞P
→ F𝑞P

is used as part of deriving the nulli�er for an Orchard note.

It is instantiated using the PoseidonHash hash function [GKRRS2019] de�ned in section 5.4.1.10 ‘PoseidonHash Function’
on page 84:

PRFnfOrchard
nk (ρ) := PoseidonHash(nk, ρ).

Security requirement: PoseidonHash ◦
◦ F𝑞P

× F𝑞P
→ F𝑞P

must be a PRF when keyed by its �rst argument, with its
second argument as input.

Non-normative notes:

• This construction of a PRF from a sponge is described in [BDPA2011, section 3.12]. It is called “outer-keyed
sponge” in [ADMA2015], or “black-box keying” in [GPT2015]. The results of these papers do not directly apply
because the key is smaller than the rate. However, the result of [GG2015] provides evidence for the security of
this construction (even if it technically considers a situation in which the distinguishing adversary cannot
evaluate the full permutation).

• See section 5.4.1.10 ‘PoseidonHash Function’ on page 84 for further security discussion of how Orchard uses Poseidon.

87

5.4.3 Symmetric Encryption #concretesym

Let Sym.K := B[256], Sym.P := BY[N], and Sym.C := BY[N].

Let the authenticated one-time symmetric encryption scheme Sym.EncryptK(P) be authenticated encryption using
AEAD_CHACHA20_POLY1305 [RFC-7539] encryption of plaintext P ∈ Sym.P, with empty “associated data", all-zero
nonce [0]96, and 256-bit key K ∈ Sym.K.

Similarly, let Sym.DecryptK(C) be AEAD_CHACHA20_POLY1305 decryption of ciphertext C ∈ Sym.C, with empty
“associated data", all-zero nonce [0]96, and 256-bit key K ∈ Sym.K. The result is either the plaintext byte sequence ,
or⊥ indicating failure to decrypt.

Note: The “IETF" de�nition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original de�nition of ChaCha20.

5.4.4 Pseudo Random Permutations #concreteprps

Let ℓdk and ℓd be as de�ned in section 5.3 ‘Constants’ on page 74.

PRPd ◦
◦ BY[ℓdk/8]×B[ℓd] → B[ℓd] is a Pseudo Random Permutation speci�ed in section 4.1.3 ‘Pseudo Random Permutations’

on page 26. In this speci�cation, it is used to generate diversi�ers for Orchard shielded payment addresses in section 4.2.3
‘Orchard Key Components’ on page 38. ([ZIP-32] uses an identical construction to generate diversi�ers for Sapling
shielded payment addresses.)

Let FF1-AES256𝐾(tweak, 𝑥) be the FF1 format-preserving encryption algorithm [NIST2016] using AES with a 256-bit
key 𝐾 , and parameters radix = 2, minlen = 88, maxlen = 88. It will be used only with the empty string “” as the
tweak . 𝑥 is a sequence of 88 bits, as is the output.

De�ne PRPd
𝐾(d) := FF1-AES256𝐾(“”, d).

Security requirement: FF1-AES256 with tweak �xed to “” must be a secure Pseudo Random Permutation.

Non-normative note: [DKLS2020] describes attacks against FF1 that are practical for some parameterizations.
However, for an 88-bit domain, and 10 rounds as speci�ed in [NIST2016], even the distinguishing attack is no better
than a brute force search for the 256-bit key. Speci�cally we have 𝑟 = 5 (half the number of rounds) and 𝑛 = 44
(half the domain size in bits), so according to [DKLS2020, section 4.2] the data complexity is 22𝑛((𝑟−1)− 1

2)−𝑛 = 2264,

and the time complexity is 22𝑛((𝑟−1)− 1
2) = 2308.

5.4.5 Key Agreement And Derivation #concretekaandkdf

5.4.5.1 Sprout Key Agreement #concretesproutkeyagreement

KASprout is a key agreement scheme as speci�ed in section 4.1.5 ‘Key Agreement’ on page 26.

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let KASprout.Public and KASprout.SharedSecret be the type of Curve25519 public keys (i.e. BY[32]), and let KASprout.Private
be the type of Curve25519 secret keys.

Let Curve25519(𝑛, 𝑞) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence 𝑞 by the Curve25519 secret key represented by the byte sequence 𝑛, as de�ned in [Bernstein2006, section 2].

Let KASprout.Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampCurve25519(𝑥) take a 32-byte sequence 𝑥 as input and return a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the �rst byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit 𝑏 has numeric
weight 2𝑏.

88

https://zips.z.cash/protocol/protocol.pdf#concretesym
https://zips.z.cash/protocol/protocol.pdf#concreteprps
https://zips.z.cash/protocol/protocol.pdf#concretekaandkdf
https://zips.z.cash/protocol/protocol.pdf#concretesproutkeyagreement

De�ne KASprout.FormatPrivate(𝑥) := clampCurve25519(𝑥).

De�ne KASprout.DerivePublic(𝑛, 𝑞) := Curve25519(𝑛, 𝑞).

De�ne KASprout.Agree(𝑛, 𝑞) := Curve25519(𝑛, 𝑞).

5.4.5.2 Sprout Key Derivation #concretesproutkdf

KDFSprout is a Key Derivation Function as speci�ed in section 4.1.6 ‘Key Derivation’ on page 27.

It is instantiated using BLAKE2b-256 as follows:

KDFSprout(𝑖, hSig, sharedSecret𝑖, epk, pknew
enc,𝑖) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit 𝑖−1 [0]56

kdfinput := 256-bit hSig 256-bit sharedSecret𝑖 256-bit epk 256-bit pknew
enc,𝑖 .

BLAKE2b-256(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

5.4.5.3 Sapling Key Agreement #concretesaplingkeyagreement

KASapling is a key agreement scheme as speci�ed in section 4.1.5 ‘Key Agreement’ on page 26.

It is instantiated as Dif�e–Hellman with cofactor multiplication on Jubjub as follows:

Let J, J(𝑟), J(𝑟)*, and the cofactor ℎJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

De�ne KASapling.Public := J.

De�ne KASapling.PublicPrimeOrder := J(𝑟)*.

De�ne KASapling.SharedSecret := J(𝑟).

De�ne KASapling.Private := F𝑟J
.

De�ne KASapling.DerivePublic(sk, 𝐵) := [sk] 𝐵.

De�ne KASapling.Agree(sk, 𝑃) := [ℎJ · sk] 𝑃 .

5.4.5.4 Sapling Key Derivation #concretesaplingkdf

KDFSapling is a Key Derivation Function as speci�ed in section 4.1.6 ‘Key Derivation’ on page 27.

It is instantiated using BLAKE2b-256 as follows:

KDFSapling(sharedSecret, ephemeralKey) := BLAKE2b-256(“Zcash_SaplingKDF”, kdfinput).

where:

kdfinput := LEBS2OSP256
(︀
reprJ(sharedSecret)

)︀
ephemeralKey .

BLAKE2b-256(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

89

https://zips.z.cash/protocol/protocol.pdf#concretesproutkdf
https://zips.z.cash/protocol/protocol.pdf#concretesaplingkeyagreement
https://zips.z.cash/protocol/protocol.pdf#concretesaplingkdf

5.4.5.5 Orchard Key Agreement #concreteorchardkeyagreement

KAOrchard is a key agreement scheme as speci�ed in section 4.1.5 ‘Key Agreement’ on page 26.

It is instantiated as Dif�e–Hellman on Pallas as follows:

Let P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

De�ne KAOrchard.Public := P*.

De�ne KAOrchard.PublicPrimeOrder := P*.

De�ne KAOrchard.SharedSecret := P*.

De�ne KAOrchard.Private := F*
𝑟P

.

De�ne KAOrchard.DerivePublic(sk, 𝐵) := [sk] 𝐵.

De�ne KAOrchard.Agree(sk, 𝑃) := [sk] 𝑃 .

5.4.5.6 Orchard Key Derivation #concreteorchardkdf

KDFOrchard is a Key Derivation Function as speci�ed in section 4.1.6 ‘Key Derivation’ on page 27.

It is instantiated using BLAKE2b-256 as follows:

KDFOrchard(sharedSecret, ephemeralKey) := BLAKE2b-256(“Zcash_OrchardKDF”, kdfinput).

where:

kdfinput := LEBS2OSP256(reprP(sharedSecret)) ephemeralKey .

BLAKE2b-256(𝑝, 𝑥) is de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

5.4.6 Ed25519 #concreteed25519

Ed25519 is a signature scheme as speci�ed in section 4.1.7 ‘Signature’ on page 28. It is used to instantiate JoinSplitSig as
described in section 4.11 ‘Non-malleability (Sprout)’ on page 51.

Let PreCanopyExcludedPointEncodings ◦
◦ P
(︀
BY[32])︀ = {

[0x00, 0x00],
[0x01, 0x00],
[0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05],
[0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a],
[0x13, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x85],
[0xb4, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0xfa],
[0xec, 0xff, 0x7f],
[0xed, 0xff, 0x7f],
[0xee, 0xff, 0x7f],
[0xd9, 0xff],
[0xda, 0xff]

}.

Let 𝑝 = 2255 − 19.

Let 𝑎 = −1.

Let 𝑑 = −121665/121666 (mod 𝑝).

Let ℓ = 2252 + 27742317777372353535851937790883648493 (the order of the Ed25519 curve’s prime-order subgroup).

90

https://zips.z.cash/protocol/protocol.pdf#concreteorchardkeyagreement
https://zips.z.cash/protocol/protocol.pdf#concreteorchardkdf
https://zips.z.cash/protocol/protocol.pdf#concreteed25519

Let 𝐵 be the base point given in [BDLSY2012].

De�ne the notation ?√
∙ as in section 2 ‘Notation’ on page 10.

De�ne I2LEOSP, LEOS2BSP, and LEBS2IP as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

De�ne reprBytesEd25519
◦
◦ Ed25519→ BY[32] such that reprBytesEd25519((𝑥, 𝑦))= I2LEOSP256

(︀
(𝑦 mod 𝑝)+2255·𝑥̃

)︀
, where

𝑥̃ = 𝑥 mod 2.10

De�ne abstBytesEd25519
◦
◦ BY[32] → Ed25519 ∪ {⊥} such that abstBytesEd25519

(︀
𝑃
)︀

is computed as follows:

let 𝑦⋆ ◦
◦ B[255] be the �rst 255 bits of LEOS2BSP256

(︀
𝑃
)︀

and let 𝑥̃ ◦
◦ B be the last bit.

let 𝑦 ◦
◦ F𝑝 = LEBS2IP255(𝑦⋆) (mod 𝑝).

let 𝑥 = ?
√︂

1− 𝑦2

𝑎− 𝑑·𝑦2 . (The denominator 𝑎− 𝑑·𝑦2 cannot be zero, since 𝑎

𝑑
is not square in F𝑝.)

if 𝑥 = ⊥, return ⊥.

if 𝑥 mod 2 = 𝑥̃ then return (𝑥, 𝑦) else return (𝑝− 𝑥, 𝑦).

Note: This de�nition of point decoding differs from that of [RFC-8032, section 5.1.3, as corrected by the errata].
In the latter there is an additional step “If x = 0, and x_0 = 1, decoding fails.”, which rejects the encodings {

[0x01, 0x00, 0x80],
[0xee, 0xff],
[0xec, 0xff]

}.
In this speci�cation, the �rst two of these are accepted as encodings of (0, 1), and the third is accepted as an
encoding of (0,−1).

Ed25519 is de�ned as in [BDLSY2012], using SHA-512 as the internal hash function, with the additional requirements
below. A valid Ed25519 validating key is de�ned as a sequence of 32 bytes encoding a point on the Ed25519 curve.

The requirements on a signature (𝑅, 𝑆) with validating key 𝐴 on a message 𝑀 are:

• 𝑆 MUST represent an integer less than ℓ.

• 𝑅 and 𝐴 MUST be encodings of points 𝑅 and 𝐴 respectively on the Ed25519 curve;

• [Pre-Canopy] 𝑅 MUST NOT be in PreCanopyExcludedPointEncodings;

• [Pre-Canopy] The validation equation MUST be equivalent to [𝑆] 𝐵 = 𝑅 + [𝑐] 𝐴.

• [Canopy onward] The validation equation MUST be equivalent to [8] [𝑆] 𝐵 = [8] 𝑅 + [8] [𝑐] 𝐴 for single-
signature validation.

where 𝑐 is computed as the integer corresponding to SHA-512(𝑅 ||𝐴 ||𝑀) as speci�ed in [BDLSY2012].

If these requirements are not met or the validation equation does not hold, then the signature is considered invalid.

The encoding of an Ed25519 signature is:

256-bit 𝑅 256-bit 𝑆

where 𝑅 and 𝑆 are as de�ned in [BDLSY2012].

10Here we use the (𝑥, 𝑦) naming of coordinates in [BDLSY2012], which is different from the (𝑢, v) naming used for coordinates of ctEdwards
curves in section 5.4.9.3 ‘Jubjub’ on page 102 and in section A.2 ‘Elliptic curve background’ on page 200.

91

Notes:

• It is not required that the integer encoding of the 𝑦-coordinate10 of the points represented by 𝑅 or 𝐴 are less
than 2255 − 19.

• It is not required that 𝐴 ̸∈ PreCanopyExcludedPointEncodings.

• [Canopy onward] Appendix section B.3 ‘Ed25519 batch validation’ on page 223 describes an optimization that MAY
be used to speed up validation of batches of Ed25519 signatures.

Non-normative note: The exclusion, before Canopy activation, of PreCanopyExcludedPointEncodings from 𝑅 is
due to a quirk of version 1.0.15 of the libsodium library [libsodium] which was initially used to implement Ed25519
signature validation in zcashd. (The ED25519_COMPAT compile-time option was not set.) The intent was to exclude
points of order less than ℓ; however, not all such points were covered.

[Canopy onward] Non-normative note: Because the post-Canopy rules for Ed25519 signatures are a relaxation
of the pre-Canopy rules, a full validator implementation that checkpoints on the Canopy activation block MAY
validate using the post-Canopy rules for the whole chain (and zcashd does so since zcashd v4.2.0). We retain the
pre-Canopy rules in the speci�cation in order to accurately document the history of consensus changes.

5.4.7 RedDSA, RedJubjub, and RedPallas #concretereddsa

RedDSA is a Schnorr-based signature scheme , optionally supporting key re-randomization as described in section 4.1.7.1
‘Signature with Re-Randomizable Keys’ on page 29. It also supports a Secret Key to Public Key Monomorphism as
described in section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30. It is based on a
scheme from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the Jubjub curve (section 5.4.9.3 ‘Jubjub’ on page 102), using the BLAKE2b-512 hash
function.

The spend authorization signature scheme SpendAuthSigSapling is instantiated by RedJubjub, using parameters de�ned
in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

The binding signature scheme BindingSigSapling is instantiated by RedJubjub without key re-randomization, using
parameters de�ned in section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95.

RedPallas is a specialization of RedDSA to the Pallas curve de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105, using the
BLAKE2b-512 hash function.

The spend authorization signature scheme SpendAuthSigOrchard is instantiated by RedPallas, using parameters de�ned
in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

The binding signature scheme BindingSigOrchard is instantiated by RedPallas without key re-randomization, using
parameters de�ned in section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95.

Let I2LEBSP, I2LEOSP, LEOS2IP, and LEBS2OSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’
on page 73.

We �rst describe the scheme RedDSA over a general represented group. Its parameters are:

• a represented group G, which also de�nes a subgroup G(𝑟) of order 𝑟G, a cofactor ℎG, a group operation +, an
additive identity𝒪G , a bit-length ℓG , a representation function reprG , and an abstraction function abstG , as
speci�ed in section 4.1.9 ‘Represented Group’ on page 32;

• 𝒫G , a generator of G(𝑟);

• a bit-length ℓH
◦
◦ N such that 2ℓH−128 ≥ 𝑟G and ℓH mod 8 = 0;

• a cryptographic hash function H ◦
◦ BY[N] → BY[ℓH/8].

92

https://github.com/zcash/zcash/releases/tag/v4.2.0
https://zips.z.cash/protocol/protocol.pdf#concretereddsa

Its associated types are de�ned as follows:

RedDSA.Message := BY[N]

RedDSA.Signature := BY[ceiling(ℓG/8) + ceiling(bitlength(𝑟G)/8)]

RedDSA.Public := G
RedDSA.Private := F𝑟G

.

RedDSA.Random := F𝑟G
.

De�ne H~ ◦
◦ BY[N] → F𝑟G

by:

H~(𝐵) = LEOS2IPℓH

(︀
H(𝐵)

)︀
(mod 𝑟G)

De�ne RedDSA.GenPrivate ◦
◦ () →R RedDSA.Private as:

Return sk ←R F𝑟G
.

De�ne RedDSA.DerivePublic ◦
◦ RedDSA.Private→ RedDSA.Public by:

RedDSA.DerivePublic(sk) := [sk]𝒫G .

De�ne RedDSA.GenRandom ◦
◦ () →R RedDSA.Random as:

Choose a byte sequence 𝑇 uniformly at random on BY[(ℓH+128)/8].

Return H~(𝑇).

De�ne 𝒪RedDSA.Random := 0 (mod 𝑟G).

De�ne RedDSA.RandomizePrivate ◦
◦ RedDSA.Random× RedDSA.Private→ RedDSA.Private by:

RedDSA.RandomizePrivate(𝛼, sk) := sk + 𝛼 (mod 𝑟G).

De�ne RedDSA.RandomizePublic ◦
◦ RedDSA.Random× RedDSA.Public→ RedDSA.Public as:

RedDSA.RandomizePublic(𝛼, vk) := vk + [𝛼]𝒫G .

De�ne RedDSA.Sign ◦
◦ (sk ◦

◦ RedDSA.Private)× (𝑀 ◦
◦ RedDSA.Message) →R RedDSA.Signature as:

Choose a byte sequence 𝑇 uniformly at random on BY[(ℓH+128)/8].

Let vk = LEBS2OSPℓG

(︀
reprG(RedDSA.DerivePublic(sk))

)︀
.

Let 𝑟 = H~(𝑇 || vk ||𝑀).

Let 𝑅 = [𝑟]𝒫G .

Let 𝑅 = LEBS2OSPℓG

(︀
reprG(𝑅)

)︀
.

Let 𝑆 = (𝑟 + H~(𝑅 || vk ||𝑀) · sk) mod 𝑟G.

Let 𝑆 = I2LEOSPbitlength(𝑟G)(𝑆).

Return 𝑅 ||𝑆.

De�ne RedDSA.Validate ◦
◦ (vk ◦

◦ RedDSA.Public)× (𝑀 ◦
◦ RedDSA.Message)× (𝜎 ◦

◦ RedDSA.Signature)→ B as:

Let 𝑅 be the �rst ceiling
(︀
ℓG/8

)︀
bytes of 𝜎, and let 𝑆 be the remaining ceiling (bitlength(𝑟G)/8) bytes.

Let 𝑅 = abstG
(︀
LEOS2BSPℓG

(𝑅)
)︀
, and let 𝑆 = LEOS2IP8·length(𝑆)(𝑆).

Let vk = LEBS2OSPℓG

(︀
reprG(vk)

)︀
.

Let 𝑐 = H~(𝑅 || vk ||𝑀).

[N​U​5 onward] If reprG(𝑅) ̸= 𝑅, return 0.

Return 1 if 𝑅 ̸= ⊥ and 𝑆 < 𝑟G and [ℎG]
(︀
−[𝑆]𝒫G + 𝑅 + [𝑐] vk

)︀
= 𝒪G , otherwise 0.

93

Notes:

• The validation algorithm does not check that 𝑅 is a point of order at least 𝑟G.

• After the activation of [ZIP-216] with N​U​5, validation returns 0 if 𝑅 is a non-canonical compressed point
encoding. This change is also retrospectively valid on Mainnet and Testnet before N​U​5.

• The value 𝑅 used as part of the input to H~ MUST be exactly as encoded in the signature.

• Appendix section B.1 ‘RedDSA batch validation’ on page 220 describes an optimization that MAY be used to speed up
validation of batches of RedDSA signatures.

Non-normative notes:

• The randomization used in RedDSA.RandomizePrivate and RedDSA.RandomizePublic may interact with other
uses of additive properties of keys for Schnorr-based signature schemes. In the Zcash protocol, such properties
are used for binding signatures but not at the same time as key randomization. They are also used in [ZIP-32]
when deriving child extended keys, but this does not result in any practical security weakness as long as the
security recommendations of ZIP 32 are followed. If RedDSA is reused in other protocols making use of these
additive properties, careful analysis of potential interactions is required.

• It is RECOMMENDED that, for deployments of RedDSA in other protocols than Zcash, the requirement for 𝑅
to be canonically encoded is always enforced (which was the original intent of the design).

The two abelian groups speci�ed in section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on
page 30 are instantiated for RedDSA as follows:

• 𝒪 := 0 (mod 𝑟G)
• sk1 sk2 := sk1 + sk2 (mod 𝑟G)
• 𝒪 := 𝒪G

• vk1 vk2 := vk1 + vk2.

As required, RedDSA.DerivePublic is a group monomorphism, since it is injective and:

RedDSA.DerivePublic(sk1 sk2) = [sk1 + sk2 (mod 𝑟G)]𝒫G

= [sk1]𝒫G + [sk2]𝒫G (since 𝒫G has order 𝑟G)

= RedDSA.DerivePublic(sk1) RedDSA.DerivePublic(sk2).

A RedDSA validating key vk can be encoded as a bit sequence reprG(vk) of length ℓG bits (or as a corresponding byte
sequence vk by then applying LEBS2OSPℓG

).

The scheme RedJubjub specializes RedDSA with:

• G := J as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102;

• ℓH := 512;

• H(𝑥) := BLAKE2b-512(“Zcash_RedJubjubH”, 𝑥) as de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

The scheme RedPallas specializes RedDSA with:

• G := P as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105;

• ℓH := 512;

• H(𝑥) := BLAKE2b-512(“Zcash_RedPallasH”, 𝑥) as de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

The generator 𝒫G
◦
◦ G(𝑟) is left as an unspeci�ed parameter, different between BindingSigSapling, SpendAuthSigSapling,

BindingSigOrchard, and SpendAuthSigOrchard.

94

5.4.7.1 Spend Authorization Signature (Sapling and Orchard) #concretespendauthsig

Let RedJubjub be as de�ned in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92.

De�ne 𝒢Sapling := FindGroupHashJ(𝑟)*

(“Zcash_G_”, “”).

The spend authorization signature scheme SpendAuthSigSapling is instantiated as RedJubjub with key re-randomization
and with generator 𝒫G = 𝒢Sapling.

Let RedPallas be as de�ned in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92.

De�ne 𝒢Orchard := GroupHashP(“z.cash:Orchard”, “G”).

The spend authorization signature scheme SpendAuthSigOrchard is instantiated as RedPallas with key re-randomization
and with generator 𝒫G = 𝒢Orchard.

See section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 56 for details on the use of this signature
scheme.

Security requirement: Each instantiation of SpendAuthSig must be a SURK-CMA-secure signature scheme with
re-randomizable keys as de�ned in section 4.1.7.1 ‘Signature with Re-Randomizable Keys’ on page 29.

5.4.7.2 Binding Signature (Sapling and Orchard) #concretebindingsig

Let RedJubjub and RedPallas be as de�ned in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92.

The Sapling binding signature scheme , BindingSigSapling, is instantiated as RedJubjub without key re-randomization,
using generator𝒫G = ℛSapling de�ned in section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’
on page 97. See section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52 for details on the use of this signature
scheme.

The Orchard binding signature scheme , BindingSigOrchard, is instantiated as RedPallas without key re-randomization,
using generator𝒫G = ℛOrchard de�ned in section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’
on page 97. See section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54 for details on the use of this signature
scheme.

Security requirement: Each instantiation of BindingSig must be a SUF-CMA-secure signature scheme with key
monomorphism as de�ned in section 4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on page 30.
A signature must prove knowledge of the discrete logarithm of the validating key with respect to the baseℛSapling or
ℛOrchard.

5.4.8 Commitment schemes #concretecommit

5.4.8.1 Sprout Note Commitments #concretesproutnotecommit

The note commitment scheme NoteCommitSprout speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated using
SHA-256 as follows:

NoteCommitSprout
rcm (apk, v, ρ) := SHA-256

(︁
1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit rcm

)︁
NoteCommitSprout.GenTrapdoor() generates the uniform distribution on NoteCommitSprout.Trapdoor.

Note: The leading byte of the SHA-256 input is 0xB0.

95

https://zips.z.cash/protocol/protocol.pdf#concretespendauthsig
https://zips.z.cash/protocol/protocol.pdf#concretebindingsig
https://zips.z.cash/protocol/protocol.pdf#concretecommit
https://zips.z.cash/protocol/protocol.pdf#concretesproutnotecommit

Security requirements:

• SHA256Compress must be collision-resistant .

• SHA256Compress must be a PRF when keyed by the bits corresponding to the position of rcm in the second
block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

5.4.8.2 Windowed Pedersen commitments #concretewindowedcommit

section 5.4.1.7 ‘Pedersen Hash Function’ on page 79 de�nes a Pedersen hash construction. We construct “windowed”
Pedersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see
section 5.4.9.3 ‘Jubjub’ on page 102):

WindowedPedersenCommit𝑟(𝑠) := PedersenHashToPoint(“Zcash_PH”, 𝑠) + [𝑟] FindGroupHashJ(𝑟)*

(“Zcash_PH”, “r”)

See section A.3.5 ‘Windowed Pedersen Commitment’ on page 213 for rationale and ef�cient circuit implementation of this
function.

The note commitment scheme NoteCommitSapling speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated as follows
using WindowedPedersenCommit:

NoteCommitSapling
rcm (g⋆d, pk⋆d, v) := WindowedPedersenCommitrcm

(︁
[1]6 || I2LEBSP64(v) || g⋆d || pk⋆d

)︁
NoteCommitSapling.GenTrapdoor() generates the uniform distribution on F𝑟J

.

Security requirements:

• WindowedPedersenCommit, and hence NoteCommitSapling, must be computationally binding and at least com-
putationally hiding commitment schemes.

(They are in fact unconditionally hiding commitment schemes.)

Notes:

• MerkleCRHSapling is also de�ned in terms of PedersenHashToPoint (see section 5.4.1.3 ‘MerkleCRHSapling Hash Function’
on page 76). The pre�x [1]6 distinguishes the use of WindowedPedersenCommit in NoteCommitSapling from the layer
pre�x used in MerkleCRHSapling. That layer pre�x is a 6-bit little-endian encoding of an integer in the range
{0 .. MerkleDepthSapling− 1}; because MerkleDepthSapling < 64, it cannot collide with [1]6.

• The arguments to NoteCommitSapling are in a different order to their encodings in WindowedPedersenCommit.
There is no particularly good reason for this.

Theorem 5.4.5. UncommittedSapling is not in the range of NoteCommitSapling. #thmuncommittedsapling

Proof. UncommittedSapling is de�ned as I2LEBSP
ℓ

Sapling
Merkle

(1). By injectivity of I2LEBSP
ℓ

Sapling
Merkle

and de�nitions of ExtractJ(𝑟) ,

WindowedPedersenCommit, and NoteCommitSapling, I2LEBSP
ℓ

Sapling
Merkle

(1) can be in the range of NoteCommitSapling only if

there exist rcm ◦
◦ NoteCommitSapling.Trapdoor, 𝐷 ◦

◦ BY[8], and 𝑀 ◦
◦ B[N+] such that𝑢(WindowedPedersenCommitrcm(𝐷, 𝑀))

= 1. The latter can only be the af�ne-ctEdwards 𝑢-coordinate of a point in J. We show that there are no points in J
with af�ne-ctEdwards 𝑢-coordinate 1. Suppose for a contradiction that (𝑢, v) ∈ J for 𝑢 = 1 and some v ◦

◦ F𝑟S
. By

writing the curve equation as v2 = (1− 𝑎J·𝑢
2)/(1− 𝑑J·𝑢

2), and noting that 1− 𝑑J·𝑢
2 ̸= 0 because 𝑑J is nonsquare, we

have v2 = (1− 𝑎J)/(1− 𝑑J). The right-hand-side is a nonsquare in F𝑟S
(for the Jubjub curve parameters), so there

are no solutions for v (contradiction).

96

https://zips.z.cash/protocol/protocol.pdf#concretewindowedcommit
https://zips.z.cash/protocol/protocol.pdf#thmuncommittedsapling

5.4.8.3 Homomorphic Pedersen commitments (Sapling and Orchard) #concretehomomorphiccommit

The windowed Pedersen commitments de�ned in the preceding section are highly ef�cient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52 and
section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54.

Useful background is given in section 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on page 20 and section 3.7
‘Action Transfers and their Descriptions’ on page 20.

In order to support this property, we also de�ne homomorphic Pedersen commitments for Sapling:

HomomorphicPedersenCommitSapling
rcv (𝐷, v) := [v] FindGroupHashJ(𝑟)*

(𝐷, “v”)+ [rcv] FindGroupHashJ(𝑟)*

(𝐷, “r”)

ValueCommitSapling.GenTrapdoor() generates the uniform distribution on F𝑟J
.

See section A.3.6 ‘Homomorphic Pedersen Commitment’ on page 213 for rationale and ef�cient circuit implementation of
this function.

We also de�ne homomorphic Pedersen commitments for Orchard:

HomomorphicPedersenCommitOrchard
rcv (𝐷, v) := [v] GroupHashP(𝐷, “v”)+ [rcv] GroupHashP(𝐷, “r”)

ValueCommitOrchard.GenTrapdoor() generates the uniform distribution on F𝑟P
.

De�ne:

𝒱Sapling := FindGroupHashJ(𝑟)*

(“Zcash_cv”, “v”)

ℛSapling := FindGroupHashJ(𝑟)*

(“Zcash_cv”, “r”)
𝒱Orchard := GroupHashP(“z.cash:Orchard-cv”, “v”)
ℛOrchard := GroupHashP(“z.cash:Orchard-cv”, “r”)

The commitment scheme ValueCommitSapling speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated as follows
using HomomorphicPedersenCommitSapling on the Jubjub curve:

ValueCommitrcv(v) := HomomorphicPedersenCommitSapling
rcv (“Zcash_cv”, v).

which is equivalent to:

ValueCommitSapling
rcv (v) := [v]𝒱Sapling + [rcv]ℛSapling.

The commitment scheme ValueCommitOrchard speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated as follows
using HomomorphicPedersenCommitOrchard on the Pallas curve:

ValueCommitOrchard
rcv (v) := HomomorphicPedersenCommitOrchard

rcv (“z.cash:Orchard-cv”, v).

which is equivalent to:

ValueCommitOrchard
rcv (v) := [v]𝒱Orchard + [rcv]ℛOrchard.

Security requirements:

• HomomorphicPedersenCommitSapling and HomomorphicPedersenCommitOrchard must be computationally binding
and at least computationally hiding commitment schemes, for a given personalization input 𝐷.

• ValueCommitSapling and ValueCommitOrchard must be computationally binding and at least computationally hiding
commitment schemes.

(They are in fact unconditionally hiding commitment schemes.)

97

https://zips.z.cash/protocol/protocol.pdf#concretehomomorphiccommit

Non-normative note: The output of HomomorphicPedersenCommitSapling may (with negligible probability for a
randomly chosen commitment trapdoor) be the zero point of the curve,𝒪J. This would be rejected by consensus
if it appeared as the cv �eld of a Spend description (section 4.4 ‘Spend Descriptions’ on page 40) or Output description
(section 4.5 ‘Output Descriptions’ on page 41). An implementation of HomomorphicPedersenCommitSapling MAY resample the
commitment trapdoor until the resulting commitment is not 𝒪J.

5.4.8.4 Sinsemilla commitments #concretesinsemillacommit

Let ℓOrchard
base be as de�ned in section 5.3 ‘Constants’ on page 74.

Let P and 𝑟P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let Extract⊥P be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

Let SinsemillaHashToPoint be as de�ned in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81.

We construct Sinsemilla commitments by reusing the Sinsemilla hash construction, and adding a randomized
point on the Pallas curve (see section 5.4.9.6 ‘Pallas and Vesta’ on page 105):

SinsemillaCommit𝑟(𝐷, 𝑀) :=
{︃

𝑀 ′ + [𝑟] GroupHashP(𝐷 || “-r”, “”), if 𝑀 ′ ̸= ⊥
⊥, otherwise

where 𝑀 ′ = SinsemillaHashToPoint(𝐷 || “-M”, 𝑀).

SinsemillaShortCommit𝑟(𝐷, 𝑀) := Extract⊥P
(︀
SinsemillaCommit𝑟(𝐷, 𝑀)

)︀
.

See [Zcash-Orchard, section 3.7.1.2] for rationale and ef�cient circuit implementation of this function.

The probability of SinsemillaHashToPoint returning⊥ is insigni�cant (and would yield a nontrivial discrete logarithm
relation). The binding property of SinsemillaCommit follows from collision resistance of SinsemillaHashToPoint
proven in Theorem 5.4.3 on page 83, given that GroupHashP(𝐷 || “-r”, “”) is independent of any of the bases used in
SinsemillaHashToPoint. The binding property of SinsemillaShortCommit can be proven by a similar argument to that
used for SinsemillaHash.

Provided that SinsemillaHashToPoint does not return ⊥, SinsemillaCommit is perfectly hiding because the output
distribution is perfectly indistinguishable from a random point in P, given that 𝑟 is a uniformly random scalar on
[0, 𝑞). It follows that SinsemillaShortCommit is also perfectly hiding under the same condition, since hiding cannot
be affected by applying any �xed function to the output of SinsemillaCommit.

The note commitment scheme NoteCommitOrchard speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated as follows
using SinsemillaCommit:

NoteCommitOrchard
rcm (g⋆d, pk⋆d, v, ρ,ψ) :=

SinsemillaCommitrcm
(︀
“z.cash:Orchard-NoteCommit”,
g⋆d || pk⋆d || I2LEBSP64(v) || I2LEBSP

ℓ
Orchard
base

(ρ) || I2LEBSP
ℓ

Orchard
base

(ψ)
)︀

NoteCommitOrchard.GenTrapdoor() generates the uniform distribution on F𝑟P
.

Note: The arguments to NoteCommitOrchard are the same order as their encodings in the input to SinsemillaCommit;
this is different to NoteCommitSapling.

The commitment scheme Commitivk speci�ed in section 4.1.8 ‘Commitment’ on page 31 is instantiated as follows using
SinsemillaShortCommit:

Commitivk
rivk(ak, nk) := SinsemillaShortCommitrivk

(︀
“z.cash:Orchard-CommitIvk”,
I2LEBSP

ℓ
Orchard
base

(ak) || I2LEBSP
ℓ

Orchard
base

(nk)
)︀

Commitivk.GenTrapdoor() generates the uniform distribution on F𝑟P
.

98

https://zips.z.cash/protocol/protocol.pdf#concretesinsemillacommit

Security requirements:

• SinsemillaCommit and SinsemillaShortCommit, and hence NoteCommitOrchard and Commitivk, must be computa-
tionally binding and at least computationally hiding commitment schemes. They are in fact unconditionally
hiding commitment schemes provided that no ⊥ output is observed.

Theorem 5.4.6. UncommittedOrchard is not in the range of NoteCommitOrchard. #thmuncommittedorchard

Proof. UncommittedOrchard is de�ned as 2. By the de�nitions of Extract⊥P , SinsemillaShortCommit, and NoteCommitOrchard,
2 can be in the range of NoteCommitOrchard only if there exist rcm ◦

◦ NoteCommitOrchard.Trapdoor, 𝐷 ◦
◦ BY[N], and 𝑀 ◦

◦ B[N+]

such that Extract⊥P
(︀
SinsemillaCommitrcm(𝐷, 𝑀)

)︀
= 2. Extract⊥P

(︀
SinsemillaCommitrcm(𝐷, 𝑀)

)︀
can only be ⊥ or 0 or the

af�ne-short-Weierstrass 𝑥-coordinate of a point in P. But 0 ̸= 2 (mod 𝑞P), and there are no points in P with
af�ne-short-Weierstrass 𝑥-coordinate 2 (mod 𝑞P), since 23 + 𝑏P = 13 is not square in F𝑞P

.

Non-normative notes:

• Although the given theorem is correct for the de�nition of NoteCommitOrchard in this speci�cation, the imple-
mentation in the Action circuit constrains the result to an unspeci�ed set of values when an input results in
an exceptional case for any incomplete addition. If this occurs then it yields a nontrivial discrete logarithm
relation for the Pallas curve, as proven in Theorem 5.4.4 on page 84. We can therefore assume that it is infeasible
to �nd such inputs with nonnegligible probability.

• There are also no points in P with af�ne-short-Weierstrass 𝑥-coordinate 0 (mod 𝑞P), as shown in a note
at section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106. We do not choose UncommittedOrchard = 0 because
MerkleCRHOrchard returns 0 in exceptional cases. Although the hash values of leaf nodes are separated from
the hash values at other layers by the layer input to MerkleCRHOrchard, it would arguably be confusing to rely on
that.

5.4.9 Represented Groups and Pairings #concretepairing

5.4.9.1 BN-254 #bnpairing

The represented pairing BN-254 is de�ned in this section.

Let 𝑞G := 21888242871839275222246405745257275088696311157297823662689037894645226208583.

Let 𝑟G := 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Let 𝑏G := 3.

(𝑞G and 𝑟G are prime.)

Let G(𝑟)
1 be the group (of order 𝑟G) of rational points on a Barreto–Naehrig ([BN2005]) curve 𝐸G1

over F𝑞G
with

equation 𝑦2 = 𝑥3 + 𝑏G. This curve has embedding degree 12 with respect to 𝑟G.

Let G(𝑟)
2 be the subgroup of order 𝑟G in the sextic twist 𝐸G2

of 𝐸G1
over F

𝑞G
2 with equation 𝑦2 = 𝑥3 + 𝑏G

𝜉 , where
𝜉 ◦

◦ F𝑞G
2 .

We represent elements of F
𝑞G

2 as polynomials 𝑎1 · 𝑡 + 𝑎0
◦
◦ F𝑞G

[𝑡], modulo the irreducible polynomial 𝑡2 + 1; in this
representation, 𝜉 is given by 𝑡 + 9.

Let G(𝑟)
𝑇 be the subgroup of 𝑟G

th roots of unity in F*
𝑞G

12 , with multiplicative identity 1G.

Let 𝑒G be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type G(𝑟)
1 ×G(𝑟)

2 → G(𝑟)
𝑇 .

For 𝑖 ◦
◦ {1 .. 2}, let 𝒪G𝑖

be the point at in�nity (which is the additive identity) in G(𝑟)
𝑖 , and let G(𝑟)*

𝑖 := G(𝑟)
𝑖 ∖ {𝒪G𝑖

}.

99

https://zips.z.cash/protocol/protocol.pdf#thmuncommittedorchard
https://zips.z.cash/protocol/protocol.pdf#concretepairing
https://zips.z.cash/protocol/protocol.pdf#bnpairing

Let 𝒫G1
◦
◦ G(𝑟)*

1 := (1, 2).

Let 𝒫G2
◦
◦ G(𝑟)*

2 := (11559732032986387107991004021392285783925812861821192530917403151452391805634 · 𝑡 +
10857046999023057135944570762232829481370756359578518086990519993285655852781,

4082367875863433681332203403145435568316851327593401208105741076214120093531 · 𝑡 +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

𝒫G1
and 𝒫G2

are generators of G(𝑟)
1 and G(𝑟)

2 respectively.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B[ℓ] as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

For a point 𝑃 ◦
◦ G(𝑟)*

1 = (𝑥𝑃 , 𝑦𝑃):

• The �eld elements 𝑥𝑃 and 𝑦𝑃
◦
◦ F𝑞 are represented as integers 𝑥 and 𝑦 ◦

◦ {0 .. 𝑞−1}.
• Let 𝑦 = 𝑦 mod 2.

• 𝑃 is encoded as 0 0 0 0 0 0 1 1-bit 𝑦 256-bit I2BEBSP256(𝑥) .

For a point 𝑃 ◦
◦ G(𝑟)*

2 = (𝑥𝑃 , 𝑦𝑃):

• De�ne FE2IP ◦
◦ F𝑞G

[𝑡]/(𝑡2 + 1)→ {0 .. 𝑞G
2−1} such that FE2IP(𝑎𝑤,1 · 𝑡 + 𝑎𝑤,0) = 𝑎𝑤,1 · 𝑞 + 𝑎𝑤,0.

• Let 𝑥 = FE2IP(𝑥𝑃), 𝑦 = FE2IP(𝑦𝑃), and 𝑦′ = FE2IP(−𝑦𝑃).

• Let 𝑦 =
{︃

1, if 𝑦 > 𝑦′

0, otherwise.

• 𝑃 is encoded as 0 0 0 0 1 0 1 1-bit 𝑦 512-bit I2BEBSP512(𝑥) .

Non-normative notes:

• Only the 𝑟G-order subgroups G(𝑟)
2,𝑇 are used in the protocol, not their containing groups G2,𝑇 . Points in G(𝑟)*

2
are always checked to be of order 𝑟G when decoding from external representation. (The group of rational

points G1 on 𝐸G1
/F𝑞G

is of order 𝑟G so no subgroup checks are needed in that case, and elements of G(𝑟)
𝑇 are

never represented externally.) The (𝑟) superscripts on G(𝑟)
1,2,𝑇 are used for consistency with notation elsewhere

in this speci�cation.

• The points at in�nity𝒪G1,2
never occur in proofs and have no de�ned encodings in this protocol.

• A rational point 𝑃 ̸= 𝒪G2
on the curve 𝐸G2

can be veri�ed to be of order 𝑟G, and therefore in G(𝑟)*
2 , by checking

that 𝑟G · 𝑃 = 𝒪G2
.

• The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-

tocol. The encodings for G(𝑟)*
1,2 are consistent with the de�nition of EC2OSP for compressed curve points

in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points in G(𝑟)*
1 , and the

SORT compressed form (i.e. EC2OSP-XS) for points in G(𝑟)*
2 .

• Testing 𝑦 > 𝑦′ for the compression of G(𝑟)*
2 points is equivalent to testing whether (𝑎𝑦,1, 𝑎𝑦,0) > (𝑎−𝑦,1, 𝑎−𝑦,0)

in lexicographic order.

• Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8] for

G(𝑟)*
1 , and [IEEE2004, Appendix A.12.11] for G(𝑟)*

2 .

When computing square roots in F𝑞G
or F

𝑞G
2 in order to decompress a point encoding, the implementation MUST

NOT assume that the square root exists, or that the encoding represents a point on the curve.

100

5.4.9.2 BLS12-381 #blspairing

The represented pairing BLS12-381 is de�ned in this section. Parameters are taken from [Bowe2017].

Let 𝑞S := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.

Let 𝑟S := 52435875175126190479447740508185965837690552500527637822603658699938581184513.

Let 𝑢S := −15132376222941642752.

Let 𝑏S := 4.

(𝑞S and 𝑟S are prime.)

Let S(𝑟)
1 be the subgroup of order 𝑟S of the group of rational points on a Barreto–Lynn–Scott ([BLS2002]) curve 𝐸S1

over F𝑞S
with equation 𝑦2 = 𝑥3 + 𝑏S. This curve has embedding degree 12 with respect to 𝑟S.

Let S(𝑟)
2 be the subgroup of order 𝑟S in the sextic twist 𝐸S2

of 𝐸S1
over F

𝑞S
2 with equation 𝑦2 = 𝑥3 + 4(𝑖 + 1), where

𝑖 ◦
◦ F𝑞S

2 .

We represent elements of F
𝑞S

2 as polynomials 𝑎1 · 𝑡 + 𝑎0
◦
◦ F𝑞S

[𝑡], modulo the irreducible polynomial 𝑡2 + 1; in this
representation, 𝑖 is given by 𝑡.

Let S(𝑟)
𝑇 be the subgroup of 𝑟S

th roots of unity in F*
𝑞S

12 , with multiplicative identity 1S.

Let 𝑒S be the optimal ate pairing of type S(𝑟)
1 × S(𝑟)

2 → S(𝑟)
𝑇 .

For 𝑖 ◦
◦ {1 .. 2}, let 𝒪S𝑖

be the point at in�nity in S(𝑟)
𝑖 , and let S(𝑟)*

𝑖 := S(𝑟)
𝑖 ∖ {𝒪S𝑖

}.

Let 𝒫S1
◦
◦ S(𝑟)*

1 :=

(3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,

1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569).

Let 𝒫S2
◦
◦ S(𝑟)*

2 :=

(3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 · 𝑡 +
352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160,

927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 · 𝑡 +
1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905).

𝒫S1
and 𝒫S2

are generators of S(𝑟)
1 and S(𝑟)

2 respectively.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B[ℓ] as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

For a point 𝑃 ◦
◦ S(𝑟)*

1 = (𝑥𝑃 , 𝑦𝑃):

• The �eld elements 𝑥𝑃 and 𝑦𝑃
◦
◦ F𝑞S

are represented as integers 𝑥 and 𝑦 ◦
◦ {0 .. 𝑞S−1}.

• Let 𝑦 =
{︃

1, if 𝑦 > 𝑞S − 𝑦

0, otherwise.

• 𝑃 is encoded as 1 0 1-bit 𝑦 381-bit I2BEBSP381(𝑥) .

101

https://zips.z.cash/protocol/protocol.pdf#blspairing

For a point 𝑃 ◦
◦ S(𝑟)*

2 = (𝑥𝑃 , 𝑦𝑃):

• De�ne FE2IPP ◦
◦ F𝑞S

[𝑡]/(𝑡2 + 1)→ {0 .. 𝑞S−1}[2] such that FE2IPP(𝑎𝑤,1 · 𝑡 + 𝑎𝑤,0) = [𝑎𝑤,1, 𝑎𝑤,0].

• Let 𝑥 = FE2IPP(𝑥𝑃), 𝑦 = FE2IPP(𝑦𝑃), and 𝑦′ = FE2IPP(−𝑦𝑃).

• Let 𝑦 =
{︃

1, if 𝑦 > 𝑦′ lexicographically

0, otherwise.

• 𝑃 is encoded as 1 0 1-bit 𝑦 381-bit I2BEBSP381(𝑥1) 384-bit I2BEBSP384(𝑥2) .

Non-normative notes:

• Only the 𝑟S-order subgroups S(𝑟)
1,2,𝑇 are used in the protocol, not their containing groups S1,2,𝑇 . Points in S(𝑟)*

1,2

are always checked to be of order 𝑟S when decoding from external representation. (Elements of S(𝑟)
𝑇 are

never represented externally.) The (𝑟) superscripts on S(𝑟)
1,2,𝑇 are used for consistency with notation elsewhere

in this speci�cation.

• The points at in�nity𝒪S1,2
never occur in proofs and have no de�ned encodings in this protocol.

• In contrast to the corresponding BN-254 curve, 𝐸S1
over F𝑞S

is not a prime-order curve.

• A rational point 𝑃 ̸= 𝒪S𝑖
on the curve 𝐸S𝑖

for 𝑖 ∈ {1, 2} can be veri�ed to be of order 𝑟S, and therefore in S(𝑟)*
𝑖 ,

by checking that 𝑟S · 𝑃 = 𝒪S𝑖
.

• The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this protocol.

• The encodings for S(𝑟)*
1,2 are speci�c to Zcash.

• Algorithms for decompressing points from the encodings of S(𝑟)*
1,2 are de�ned analogously to those for G(𝑟)*

1,2 in
section 5.4.9.1 ‘BN-254’ on page 99, taking into account that the SORT compressed form (not the LSB compressed form)

is used for S(𝑟)*
1 .

When computing square roots in F𝑞S
or F

𝑞S
2 in order to decompress a point encoding, the implementation MUST

NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.9.3 Jubjub #jubjub

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:

Still keeping one principal object in view—
To preserve its symmetrical shape.”

— Lewis Carroll, “The Hunting of the Snark” [Carroll1876]

Sapling uses an elliptic curve, Jubjub, designed to be ef�ciently implementable in zk-SNARK circuits. The represented
group J of points on this curve is de�ned in this section.

A complete twisted Edwards elliptic curve , as de�ned in [BL2017, section 4.3.4], is an elliptic curve 𝐸 over a non-
binary �eld F𝑞 , parameterized by distinct 𝑎, 𝑑 ◦

◦ F𝑞 ∖ {0} such that 𝑎 is square and 𝑑 is nonsquare, with equation
𝐸 : 𝑎·𝑢2 + v2 = 1 + 𝑑·𝑢2 ·v2. We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic
curves and coordinates.

Let 𝑞J := 𝑟S, as de�ned in section 5.4.9.2 ‘BLS12-381’ on page 101.

Let 𝑟J := 6554484396890773809930967563523245729705921265872317281365359162392183254199.

(𝑞J and 𝑟J are prime.)

Let ℎJ := 8.

102

https://zips.z.cash/protocol/protocol.pdf#jubjub

Let 𝑎J := −1.

Let 𝑑J := −10240/10241 (mod 𝑞J).

Let J be the group of points (𝑢, v) on a ctEdwards curve 𝐸J over F𝑞J
with equation 𝑎J ·𝑢

2 + v2 = 1 + 𝑑J ·𝑢
2 ·v2. The

zero point with coordinates (0, 1) is denoted 𝒪J. J has order ℎJ ·𝑟J.

Let ℓJ := 256.

De�ne the notation ?√
∙ as in section 2 ‘Notation’ on page 10.

De�ne I2LEBSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B[ℓ] as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73, and
similarly for LEBS2IP ◦

◦ (ℓ ◦
◦ N)× B[ℓ] → {0 .. 2ℓ−1}.

De�ne reprJ ◦
◦ J→ B[ℓJ] such that reprJ

(︀
(𝑢, v)

)︀
= I2LEBSP256

(︀
(v mod 𝑞J) + 2255 ·𝑢̃

)︀
, where 𝑢̃ = 𝑢 mod 2.

De�ne abstJ ◦
◦ B[ℓJ] → J ∪ {⊥} such that abstJ(𝑃⋆)is computed as follows:

let v⋆ ◦
◦ B[255] be the �rst 255 bits of 𝑃⋆ and let 𝑢̃ ◦

◦ B be the last bit.

if LEBS2IP255(v⋆) ≥ 𝑞J then return ⊥, otherwise let v ◦
◦ F𝑞J

= LEBS2IP255(v⋆) (mod 𝑞J).

let 𝑢 = ?
√︂

1− v2

𝑎J − 𝑑J · v
2 . (The denominator 𝑎J − 𝑑J ·v

2 cannot be zero, since
𝑎J

𝑑J
is not square in F𝑞J

.)

if 𝑢 = ⊥, return ⊥.

if 𝑢 mod 2 = 𝑢̃ then return (𝑢, v) else return (𝑞J − 𝑢, v).

Note: In earlier versions of this speci�cation, abstJ was de�ned as the left inverse of reprJ such that if 𝑆 is not in
the range of reprJ, then abstJ(𝑆)= ⊥. This differs from the speci�cation above:

• Previously, abstJ
(︁

I2LEBSP256
(︀
2255 + 1

)︀)︁
and abstJ

(︁
I2LEBSP256

(︀
2255 + 𝑞J − 1

)︀)︁
were de�ned as ⊥.

• In the current speci�cation, abstJ
(︁

I2LEBSP256
(︀
2255 + 1

)︀)︁
= abstJ

(︀
I2LEBSP256(1)

)︀
= (0, 1) = 𝒪J, and also

abstJ
(︁

I2LEBSP256
(︀
2255 + 𝑞J − 1

)︀)︁
= abstJ

(︀
I2LEBSP256

(︀
𝑞J − 1

)︀)︀
= (0,−1).

De�ne J(𝑟) as the order-𝑟J subgroup of J. Note that this includes𝒪J. For the set of points of order 𝑟J (which excludes

𝒪J), we write J(𝑟)*.

De�ne J⋆
(𝑟)

:=
{︀

reprJ(𝑃) ◦
◦ B[ℓJ] | 𝑃 ∈ J(𝑟)}︀.

Non-normative notes:

• The ctEdwards compressed encoding used here is consistent with that used in EdDSA [BJLSY2015] for
validating keys and the 𝑅 element of a signature.

• [BJLSY2015, “Encoding and parsing curve points”] gives algorithms for decompressing points from the encod-
ing of J.

• [BJLSY2015, “Encoding and parsing integers”] describes several possibilities for parsing of integers; the speci-
�cation of abstJ above requires “strict” parsing.

When computing square roots in F𝑞J
in order to decompress a point encoding, the implementation MUST NOT

assume that the square root exists, or that the encoding represents a point on the curve.

Note that algorithms elsewhere in this speci�cation that use Jubjub may impose other conditions on points, for
example that they have order at least 𝑟J.

103

5.4.9.4 Coordinate Extractor for Jubjub #concreteextractorjubjub

Let 𝑢
(︀
(𝑢, v)

)︀
= 𝑢 and let v(︀(𝑢, v)

)︀
= v.

De�ne ExtractJ(𝑟)
◦
◦ J(𝑟) → B[ℓSapling

Merkle] by

ExtractJ(𝑟)(𝑃) := I2LEBSP
ℓ

Sapling
Merkle

(︀
𝑢(𝑃)

)︀
.

Facts: The point (0, 1) = 𝒪J, and the point (0,−1) has order 2 in J. J(𝑟) is of odd-prime order.

Lemma 5.4.7. Let 𝑃 = (𝑢, v) ∈ J(𝑟). Then (𝑢,−v) /∈ J(𝑟). #lemmasubgroupnegation

Proof. If 𝑃 = 𝒪J then (𝑢,−v) = (0,−1) /∈ J(𝑟). Else, 𝑃 is of odd-prime order. Note that v ̸= 0. (If v = 0 then 𝑎 · 𝑢2 = 1,
and so applying the doubling formula gives [2] 𝑃 = (0,−1), then [4] 𝑃 = (0, 1) = 𝒪J; contradiction since then

𝑃 would not be of odd-prime order.) Therefore, −v ̸= v. Now suppose (𝑢,−v) = 𝑄 is a point in J(𝑟). Then by
applying the doubling formula we have [2] 𝑄 = −[2] 𝑃 . But also [2] (−𝑃) = −[2] 𝑃 . Therefore either 𝑄 = −𝑃 (then
v(𝑄)= v(−𝑃); contradiction since −v ̸= v), or doubling is not injective on J(𝑟) (contradiction since J(𝑟) is of odd
order [KvE2013]).

Theorem 5.4.8. 𝑢 is injective on J(𝑟). #thmselectuinjective

Proof. By writing the curve equation as v2 = (1− 𝑎·𝑢2)/(1− 𝑑·𝑢2), and noting that the potentially exceptional case
1 − 𝑑·𝑢2 = 0 does not occur for a ctEdwards curve, we see that for a given 𝑢 there can be at most two possible
solutions for v, and that if there are two solutions they can be written as v and −v. In that case by the Lemma, at
most one of (𝑢, v) and (𝑢,−v) is in J(𝑟). Therefore, 𝑢 is injective on points in J(𝑟).

Since I2LEBSP
ℓ

Sapling
Merkle

is injective, it follows that ExtractJ(𝑟) is injective on J(𝑟).

5.4.9.5 Group Hash into Jubjub #concretegrouphashjubjub

Let URS be the MPC randomness beacon de�ned in section 5.9 ‘Randomness Beacon’ on page 120.

Let BLAKE2s-256 be as de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

Let LEOS2IP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

Let J(𝑟), J(𝑟)*, and abstJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let GroupHashJ(𝑟)*

.Input := BY[8] × BY[N], and let GroupHashJ(𝑟)*

.URSType := BY[64].

(The input element with type BY[8] is intended to act as a “personalization” parameter to distinguish uses of the
group hash for different purposes.)

Let 𝐷 ◦
◦ BY[8] be an 8-byte domain separator, and let 𝑀 ◦

◦ BY[N] be the hash input.

The hash GroupHashJ(𝑟)*

URS (𝐷, 𝑀) ◦
◦ J(𝑟)* ∪ {⊥} is calculated as follows:

let 𝐻 = BLAKE2s-256(𝐷, URS || 𝑀)
let 𝑃 = abstJ

(︀
LEOS2BSP256(𝐻)

)︀
if 𝑃 = ⊥ then return ⊥
let 𝑄 = [ℎJ] 𝑃

if 𝑄 = 𝒪J then return ⊥, else return 𝑄.

104

https://zips.z.cash/protocol/protocol.pdf#concreteextractorjubjub
https://zips.z.cash/protocol/protocol.pdf#lemmasubgroupnegation
https://zips.z.cash/protocol/protocol.pdf#thmselectuinjective
https://zips.z.cash/protocol/protocol.pdf#concretegrouphashjubjub

Notes:

• The use of GroupHashJ(𝑟)*

URS for DiversifyHashSapling and to generate independent bases needs a random oracle
(for inputs on which GroupHashJ(𝑟)*

URS does not return ⊥); here we show that it is suf�cient to employ a simpler
random oracle instantiated by BLAKE2s-256 in the security analysis.

𝐻 ◦
◦ BY[32] ↦↛∈{⊥, 𝒪J, (0,−1)} abstJ

(︀
LEOS2BSP256(𝐻)

)︀
◦
◦ J is injective, and both it and its inverse are ef�ciently

computable.

𝑃 ◦
◦ J ↦→ ̸∈{𝒪J} [ℎJ] 𝑃 ◦

◦ J(𝑟)* is exactly ℎJ-to-1, and both it and its inverse relation are ef�ciently computable.

It follows that when
(︀
𝐷 ◦

◦ BY[8], 𝑀 ◦
◦ BY[N])︀ ↦→ BLAKE2s-256(𝐷, URS || 𝑀) ◦

◦ BY[32] is modelled as a random

oracle ,
(︀
𝐷 ◦

◦ BY[8], 𝑀 ◦
◦ BY[N])︀ ↦↛∈{⊥} GroupHashJ(𝑟)*

URS
(︀
𝐷, 𝑀

)︀
◦
◦ J(𝑟)* also acts as a random oracle.

• The BLAKE2s-256 chaining variable after processing URS may be precomputed.

De�ne first ◦
◦ (BY→ 𝑇 ∪ {⊥})→ 𝑇 ∪ {⊥} so that first(𝑓) = 𝑓(𝑖) where 𝑖 is the least integer in BY such that 𝑓(𝑖) ̸= ⊥,

or⊥ if no such 𝑖 exists.

De�ne FindGroupHashJ(𝑟)*(︀
𝐷, 𝑀

)︀
:= first(𝑖 ◦

◦ BY ↦→ GroupHashJ(𝑟)*

URS (𝐷, 𝑀 || [𝑖]) ◦
◦ J(𝑟)* ∪ {⊥}).

Note: For random input, FindGroupHashJ(𝑟)*

returns⊥with probability approximately 2−256. In the Zcash protocol,

most uses of FindGroupHashJ(𝑟)*

are for constants and do not return ⊥; the only use that could potentially return ⊥
is in the computation of a default diversi�ed payment address in section 4.2.2 ‘Sapling Key Components’ on page 36.

5.4.9.6 Pallas and Vesta #pallasandvesta

Orchard uses two elliptic curves, Pallas and Vesta, that form a cycle: the base �eld of each is the scalar �eld of the
other. In Orchard, we use Vesta for the proof system (playing a similar rôle to BLS12-381 in Sapling), and Pallas for
the application circuit (similar to Jubjub in Sapling). Both curves are designed to be ef�ciently implementable in
zk-SNARK circuits, although we only use Pallas in that way for Orchard.

The represented groups P and V of points on Pallas and Vesta respectively are de�ned in this section.

A short Weierstrass elliptic curve over a �eld F𝑞 of characteristic greater than 3, as de�ned for example in
[Hışıl2010, De�nition 2.3.1], is an elliptic curve 𝐸 over F𝑞 , parameterized by 𝑎, 𝑏 ◦

◦ F𝑞 such that 4 · 𝑎3 + 27 · 𝑏2 ̸= 0, with
equation 𝐸 : 𝑦2 = 𝑥3 + 𝑎 · 𝑥 + 𝑏. The curve has a distinguished zero point 𝒪, also called the “point at in�nity”. For
Pallas and Vesta we have 𝑎 = 0 and so we will omit that term below.

Let 𝑞P := 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001.

Let 𝑞V := 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001.

(𝑞P and 𝑞V are prime.)

Let 𝑟P := 𝑞V and 𝑟V := 𝑞P.

Let 𝑏P = 𝑏V := 5.

Let P be the group of points (𝑥, 𝑦) with zero point 𝒪P, on a short Weierstrass curve 𝐸P over F𝑞P
with equation

𝑦2 = 𝑥3 + 𝑏P. P has order 𝑟P.

Let V be the group of points (𝑥, 𝑦) with zero point 𝒪V, on a short Weierstrass curve 𝐸V over F𝑞V
with equation

𝑦2 = 𝑥3 + 𝑏V. V has order 𝑟V.

For the set of points on Pallas of order 𝑟P (which excludes 𝒪P), we write P*.

For the set of points on Vesta of order 𝑟V (which excludes 𝒪V), we write V*.

Let ℓP = ℓV := 256.

De�ne the notation ?√
∙ as in section 2 ‘Notation’ on page 10.

105

https://zips.z.cash/protocol/protocol.pdf#pallasandvesta

De�ne I2LEBSP ◦
◦ (ℓ ◦

◦ N) × {0 .. 2ℓ−1} → B[ℓ] as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73, and
similarly for LEBS2IP ◦

◦ (ℓ ◦
◦ N)× B[ℓ] → {0 .. 2ℓ−1}.

Let G be either P or V.

De�ne reprG ◦
◦ G → B[ℓG] such that

reprG
(︀
𝒪G
)︀

= I2LEBSP256(0)
reprG

(︀
(𝑥, 𝑦)

)︀
= I2LEBSP256

(︀
(𝑥 mod 𝑞G) + 2255 ·𝑦

)︀
, where 𝑦 = 𝑦 mod 2.

De�ne abstG ◦
◦ B[ℓG] → G ∪ {⊥} such that abstG(𝑃⋆)is computed as follows:

let 𝑥⋆ ◦
◦ B[255] be the �rst 255 bits of 𝑃⋆ and let 𝑦 ◦

◦ B be the last bit.

if LEBS2IP255(𝑥⋆) ≥ 𝑞G then return ⊥, otherwise let 𝑥 ◦
◦ F𝑞G

= LEBS2IP255(𝑥⋆) (mod 𝑞G).

let 𝑦 = ?
√︁

𝑥3 + 𝑏G .

if 𝑥 = 0 and 𝑦 = 0, return 𝒪G .

if 𝑦 = ⊥, return ⊥.

if 𝑦 mod 2 = 𝑦 then return (𝑥, 𝑦) else return (𝑥, 𝑞G − 𝑦).

Notes:

• There is no solution to 0 = 𝑥3 + 5 in either F𝑞P
or F𝑞V

, and so 𝑦 cannot be zero. Therefore there is only one valid
representation of each point on Pallas and of each point on Vesta; in particular abstP(nc)= ⊥ and abstV(nc)= ⊥
for nc = I2LEBSP256

(︀
2255)︀. This differs from the corresponding case of abstJ(nc)for Jubjub, for example.

• When computing square roots in F𝑞P
or F𝑞V

in order to decompress a point encoding, the implementation
MUST NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.9.7 Coordinate Extractor for Pallas #concreteextractorpallas

Let P, 𝒪P, 𝑞P, and 𝑏P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

De�ne 𝑥 ◦
◦ P→ F𝑞P

and 𝑦 ◦
◦ P→ F𝑞P

such that:

𝑥
(︀
𝒪P
)︀

= 0
𝑥
(︀
(𝑥, 𝑦)

)︀
= 𝑥

𝑦
(︀
𝒪P
)︀

= 0
𝑦
(︀
(𝑥, 𝑦)

)︀
= 𝑦.

De�ne ExtractP ◦
◦ P→ {0 .. 𝑞P − 1} such that

ExtractP(𝑃) = 𝑥(𝑃) mod 𝑞P.

We also de�ne Extract⊥P ◦
◦ P ∪ {⊥} → {0 .. 𝑞P − 1} ∪ {⊥} such that

Extract⊥P
(︀
⊥
)︀

= ⊥

Extract⊥P
(︀
𝑃 ◦

◦ P
)︀

= ExtractP(𝑃).

Note: There is no solution to 𝑦2 = 03 + 5 in F𝑞P
, and so ExtractP(𝑃) can only be 0 when 𝑃 = 𝒪P.

106

https://zips.z.cash/protocol/protocol.pdf#concreteextractorpallas

5.4.9.8 Group Hash into Pallas and Vesta #concretegrouphashpallasandvesta

Orchard uses the “simpli�ed SWU” algorithm for random-oracle hashing to elliptic curves with 𝑗-invariant 0,
consistent with [ID-hashtocurve, section 6.6.3], based on a method by Riad Wahby and Dan Boneh [WB2019]. It is
adapted from work of Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi in [BCIMRT2010]; Andrew Shallue and Christiaan van de Woestijne in [SvdW2006]; and Maciej Ulas in
[Ulas2007].

Let P and V be the represented groups of points on the Pallas curve and the Vesta curve respectively, as de�ned in
section 5.4.9.6 ‘Pallas and Vesta’ on page 105. Let G be either P or V according to the desired target curve.

Also de�ne 𝒪G , G*, 𝑞G, and abstG by replacing G with P or V, using de�nitions from section 5.4.9.6 ‘Pallas and Vesta’ on
page 105. Let curveNameG be “pallas” when G = P, or “vesta” when G = V.

The algorithm makes use of a curve 𝐸iso-P, called iso-Pallas, that is isogenous11 to 𝐸P; or 𝐸iso-V, called iso-Vesta, that is
isogenous to 𝐸V.

Let 𝑎iso-P := 0x18354a2eb0ea8c9c49be2d7258370742b74134581a27a59f92bb4b0b657a014b.

Let 𝑎iso-V := 0x267f9b2ee592271a81639c4d96f787739673928c7d01b212c515ad7242eaa6b1.

Let 𝑏iso-P = 𝑏iso-V := 1265.

Let iso-P be the group of points (𝑥, 𝑦) with zero point𝒪iso-P, on a short Weierstrass curve 𝐸iso-P overF𝑞P
with equation

𝑦2 = 𝑥3 + 𝑎iso-P · 𝑥 + 𝑏iso-P. Since 𝐸iso-P is isogenous to 𝐸P, it has the same order 𝑟iso-P = 𝑟P = 𝑞V.

Let iso-V be the group of points (𝑥, 𝑦) with zero point𝒪iso-V, on a short Weierstrass curve 𝐸iso-V overF𝑞V
with equation

𝑦2 = 𝑥3 + 𝑎iso-V · 𝑥 + 𝑏iso-V. Since 𝐸iso-V is isogenous to 𝐸V, it has the same order 𝑟iso-V = 𝑟V = 𝑞P.

Let 𝒞P ◦
◦ F𝑞P

[13] := [
0x0e38e38e38e38e38e38e38e38e38e38e4081775473d8375b775f6034aaaaaaab,
0x3509afd51872d88e267c7ffa51cf412a0f93b82ee4b994958cf863b02814fb76,
0x17329b9ec525375398c7d7ac3d98fd13380af066cfeb6d690eb64faef37ea4f7,
0x1c71c71c71c71c71c71c71c71c71c71c8102eea8e7b06eb6eebec06955555580,
0x1d572e7ddc099cff5a607fcce0494a799c434ac1c96b6980c47f2ab668bcd71f,
0x325669becaecd5d11d13bf2a7f22b105b4abf9fb9a1fc81c2aa3af1eae5b6604,
0x1a12f684bda12f684bda12f684bda12f7642b01ad461bad25ad985b5e38e38e4,
0x1a84d7ea8c396c47133e3ffd28e7a09507c9dc17725cca4ac67c31d8140a7dbb,
0x3fb98ff0d2ddcadd303216cce1db9ff11765e924f745937802e2be87d225b234,
0x025ed097b425ed097b425ed097b425ed0ac03e8e134eb3e493e53ab371c71c4f,
0x0c02c5bcca0e6b7f0790bfb3506defb65941a3a4a97aa1b35a28279b1d1b42ae,
0x17033d3c60c68173573b3d7f7d681310d976bbfabbc5661d4d90ab820b12320a,
0x40000000000000000000000000000000224698fc094cf91b992d30ecfffffde5

].

Let 𝒞V ◦
◦ F𝑞V

[13] := [
0x38e38e38e38e38e38e38e38e38e38e390205dd51cfa0961a43cd42c800000001,
0x1d935247b4473d17acecf10f5f7c09a2216b8861ec72bd5d8b95c6aaf703bcc5,
0x18760c7f7a9ad20ded7ee4a9cdf78f8fd59d03d23b39cb11aeac67bbeb586a3d,
0x31c71c71c71c71c71c71c71c71c71c71e1c521a795ac8356fb539a6f0000002b,
0x0a2de485568125d51454798a5b5c56b2a3ad678129b604d3b7284f7eaf21a2e9,
0x14735171ee5427780c621de8b91c242a30cd6d53df49d235f169c187d2533465,
0x12f684bda12f684bda12f684bda12f685601f4709a8adcb36bef1642aaaaaaab,
0x2ec9a923da239e8bd6767887afbe04d121d910aefb03b31d8bee58e5fb81de63,
0x19b0d87e16e2578866d1466e9de10e6497a3ca5c24e9ea634986913ab4443034,
0x1ed097b425ed097b425ed097b425ed098bc32d36fb21a6a38f64842c55555533,
0x2f44d6c801c1b8bf9e7eb64f890a820c06a767bfc35b5bac58dfecce86b2745e,
0x3d59f455cafc7668252659ba2b546c7e926847fb9ddd76a1d43d449776f99d2f,
0x40000000000000000000000000000000224698fc0994a8dd8c46eb20fffffde5

].

11 For a brief introduction to isogenies between elliptic curves, see [Cook2019]. For deeper mathematical background, see the notes for
lectures 4, 5, and 6 at [Sutherland2021].

107

https://zips.z.cash/protocol/protocol.pdf#concretegrouphashpallasandvesta

Let iso_mapG ◦
◦ iso-G→ G be the isogeny map given by:

iso_mapG(︀𝒪iso-G
)︀

= 𝒪G

iso_mapG(︀(𝑥, 𝑦)
)︀

=
(︂
𝒞G1 · 𝑥

3 + 𝒞G2 · 𝑥
2 + 𝒞G3 · 𝑥 + 𝒞G4

𝑥2 + 𝒞G5 · 𝑥 + 𝒞G6
,

(︀
𝒞G7 · 𝑥

3 + 𝒞G8 · 𝑥
2 + 𝒞G9 · 𝑥 + 𝒞G10

)︀
· 𝑦

𝑥3 + 𝒞G11 · 𝑥
2 + 𝒞G12 · 𝑥 + 𝒞G13

)︂
.

Let BLAKE2b-512 ◦
◦ BY[16] × BY[N] → BY[ℓ/8] be as de�ned in section 5.4.1.2 ‘BLAKE2 Hash Functions’ on page 76.

De�ne the notation ?√
∙ as in section 2 ‘Notation’ on page 10.

Let BEOS2IP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

De�ne hash_to_field
F𝑞G

[2]

XMD:BLAKE2b(msg ◦
◦ BY[N], DST ◦

◦ BY[{0 .. 255}])→ F𝑞G
[2] as follows:

let DST′ = DST || [length(DST)]
let msg′ = [0x00]128 ||msg || [0, 128] || [0] ||DST′

let 𝑏0 = BLAKE2b-512
(︀
[0x00]16, msg′)︀

let 𝑏1 = BLAKE2b-512
(︀
[0x00]16, 𝑏0 || [1] ||DST′)︀

let 𝑏2 = BLAKE2b-512
(︀
[0x00]16, (𝑏0 ⊕ 𝑏1) || [2] ||DST′)︀

return [BEOS2IP512(𝑏1) (mod 𝑞G), BEOS2IP512(𝑏2) (mod 𝑞G)].

Non-normative notes:

• This algorithm is intended to correspond to hash_to_field(msg, 2) de�ned in [ID-hashtocurve, section 5.3],
using as its expand_message parameter the function XMD:BLAKE2b corresponding to expand_message_xmd
de�ned in [ID-hashtocurve, section 5.4.1], and with domain separation tag DST. In expand_message_xmd, H is
instantiated as BLAKE2b-512 with b_in_bytes = 64 and r_in_bytes = 128, and we specialize to len_in_bytes = 128
since that is the only case we need. In the event of any discrepancy or change to the Internet Draft, the
de�nition here takes precedence.

• The “security level” 𝑘 in the Internet Draft is taken to be 256. Although this is greater than the conjectured
126-bit security of the Pallas curve against generic (e.g. Pollard rho) attacks [Hopwood2020], this design choice
is consistent with other instances of extracting a uniformly distributed �eld element from a hash output in
the Orchard protocol, such as ToScalarOrchard and ToBaseOrchard de�ned in section 4.2.3 ‘Orchard Key Components’
on page 38, and H~ de�ned in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92.

• Unlike other uses of BLAKE2b in Zcash, zero bytes are used for the BLAKE2b personalization, in order to
follow the Internet Draft which encodes DST in the hash inputs instead.

• The conversion from bytes to �eld elements uses big-endian order, again in order to follow the Internet Draft.

• A minor optimization is to cache the state of the BLAKE2b-512 instance used to compute 𝑏0 after processing
[0x00]128, since this state does not depend on the message.

Let 𝜆G be any �xed nonsquare in F𝑞G
. De�ne sqrt_ratioF𝑞G

(num, div) ◦
◦ F𝑞G

× F*
𝑞G
→ F𝑞G

× B as follows:

sqrt_ratioF𝑞G
(num, div) =

{︃(︀ ?√︀num/div , 1
)︀
, if num/div is square in F𝑞G(︀ ?√︀𝜆G · num/div , 0
)︀
, otherwise.

108

Non-normative notes:

• An arbitrary square root may be chosen in either case of the de�nition. The result is never⊥.

• The choice of the nonsquare 𝜆G is also arbitrary and will not affect the output of map_to_curve_simple_swuiso-G

de�ned below.

• The computation of sqrt_ratioF𝑞G
can be optimized as described in [Zcash-halo2, section 3.2.1 Fields].

De�ne 𝑍iso-G := −13 (mod 𝑞G). (This value is suitable for both iso-Pallas and iso-Vesta.)

Precompute 𝜃iso-G := ?√︀𝑍iso-G/𝜆G , which is not ⊥.12

By de�nition we have that 𝐸G is the short Weierstrass curve with equation 𝑦2 = 𝑥3 + 𝑏G, and 𝐸iso-G is the short

Weierstrass curve with equation 𝑦2 = 𝑥3 + 𝑎iso-G · 𝑥 + 𝑏iso-G.

De�ne map_to_curve_simple_swuiso-G(𝑢 ◦
◦ F𝑞G

)→ iso-G as follows:

let Zuu = 𝑍iso-G · 𝑢
2

let ta = Zuu2 + Zuu
let x1num = 𝑏iso-G · (ta + 1)
let xdiv = 𝑎iso-G ·

(︀
(ta = 0) ? 𝑍iso-G : −ta

)︀
compute x2

div and x3
div

let U = (x12
num + 𝑎iso-G · x2

div) · x1num + 𝑏iso-G · x3
div

let x2num = Zuu · x1num

let (y1, is_gx1_square) = sqrt_ratioF𝑞G
(U, x3

div)
let y2 = 𝜃iso-G · Zuu · 𝑢 · y1
let xnum = is_gx1_square ? x1num : x2num

let y′ = is_gx1_square ? y1 : y2
let y = (𝑢 mod 2 = 𝑦 mod 2) ? y′ : −y′

return the 𝐸iso-G point with af�ne-short-Weierstrass coordinates (xnum/xdiv, y).

Let GroupHashG .Input := BY[N] × BY[N]. The �rst input element acts as a domain separator to distinguish uses of the
group hash for different purposes; the second input element is the message.

This hash-to-curve algorithm does not have a URS, i.e. GroupHashG .URSType := ().

The hash GroupHashG(𝐷 ◦
◦ BY[N], 𝑀 ◦

◦ BY[N]) ◦
◦ G is calculated as follows:

let DST = 𝐷 || “-” || curveNameG || “_XMD:BLAKE2b_SSWU_RO_”

fail if length(DST) > 255
let [𝑢0, 𝑢1] = hash_to_field

F𝑞G
[2]

XMD:BLAKE2b(𝑀, DST)

let 𝑄𝑖 = map_to_curve_simple_swuiso-G(𝑢𝑖) for 𝑖 ∈ {0, 1}
return iso_mapG(𝑄0 + 𝑄1).

12Both 𝑍iso-G and 𝜆G are nonsquare, and so their ratio is square in F𝑞G
. An arbitrary square root may be chosen.

109

Non-normative notes:

• The length of 𝐷 is in practice limited to 233 − length(curveNameG) bytes due to the restriction of DST to at
most 255 bytes. This limit is not exceeded by any use of GroupHashP or GroupHashV in this speci�cation.

• GroupHashP and GroupHashV are intended to be instantiations of hash_to_curve using “Simpli�ed SWU for
𝐴𝐵 = 0” described in [ID-hashtocurve, section 6.6.3]. In the event of any discrepancy or change to the Internet
Draft, the de�nition here takes precedence.

• It is not necessary to use the clear_cofactor function speci�ed in the Internet Draft, because Pallas and Vesta
(and therefore iso-Pallas and iso-Vesta) are prime-order curves.

• The above description incorporates optimizations from [WB2019] that avoid inversions and unnecessary
square tests in the computation of map_to_curve_simple_swuiso-G. In order to fully avoid inversions, the output
of map_to_curve_simple_swuiso-G can be expressed in Jacobian coordinates, as can the input and output of
iso_mapG . It is outside the scope of this document to describe Jacobian coordinates, but for example, the 𝐸iso-G
point with af�ne-short-Weierstrass coordinates

(︀
xnum/xdiv, y

)︀
, has Jacobian coordinates

(︀
xnum·xdiv : y·x3

div : xdiv
)︀
.

Note: The uses of GroupHashP for DiversifyHashOrchard, and of both GroupHashP and GroupHashV to generate indepen-
dent bases, need a random oracle . The hash_to_curve algorithm in [ID-hashtocurve] is designed to be indifferentiable
from a random oracle (in the framework of [MRH2003]), given that XMD:BLAKE2b satis�es the requirements of
[ID-hashtocurve, section 5.5.4]. The security of the Brier et al. construction on which this algorithm is based is
analysed in [FFSTV2013] and [KT2015], with a veri�ed proof in [BGHOZ2013].

5.4.10 Zero-Knowledge Proving Systems #concretezk

5.4.10.1 BCTV14 #bctv

Before Sapling activation, Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14
proving system described in [BCTV2014a], which is a modi�cation of the systems in [PHGR2013] and [BCGTV2013].

A BCTV14 proof comprises (𝜋𝐴
◦
◦ G(𝑟)*

1 , 𝜋′
𝐴

◦
◦ G(𝑟)*

1 , 𝜋𝐵
◦
◦ G(𝑟)*

2 , 𝜋′
𝐵

◦
◦ G(𝑟)*

1 , 𝜋𝐶
◦
◦ G(𝑟)*

1 , 𝜋′
𝐶

◦
◦ G(𝑟)*

1 , 𝜋𝐾
◦
◦ G(𝑟)*

1 , 𝜋𝐻
◦
◦ G(𝑟)*

1).
It is computed as described in [BCTV2014a, Appendix B], using the pairing parameters speci�ed in section 5.4.9.1 ‘BN-254’
on page 99.

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement , or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not speci�ed in this document. In 2015, Bryan Parno found a bug in this transla-
tion, which is corrected by the libsnark implementation13 [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In
practice it will be necessary to use the speci�c proving and verifying keys that were generated for the Zcash
production block chain, given in section 5.7 ‘BCTV14 zk-SNARK Parameters’ on page 119, together with a proving system
implementation that is interoperable with the Zcash fork of libsnark , to ensure compatibility.

Vulnerability disclosure: BCTV14 is subject to a security vulnerability, separate from [Parno2015], that could allow
violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The consequence
for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade , although
there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed to have
been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs that
were made prior to the Sapling network upgrade.

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

13Confusingly, the bug found by Bryan Parno was �xed in libsnark in 2015, but that �x was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].

110

https://zips.z.cash/protocol/protocol.pdf#concretezk
https://zips.z.cash/protocol/protocol.pdf#bctv

The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

[Sapling onward] An implementation of Zcash that checkpoints on a block after Sapling MAY choose to skip
veri�cation of BCTV14 proofs. Note that in section 3.3 ‘The Block Chain’ on page 18, there is a requirement that a full
validator that potentially risks Mainnet funds or displays Mainnet transaction information to a user MUST do so
only for a block chain that includes the activation block of the most recent settled network upgrade , with its known
block hash as speci�ed in section 3.12 ‘Mainnet and Testnet’ on page 22. Since the most recent settled network upgrade is
after the Sapling network upgrade , this mitigates the potential risks due to skipping BCTV14 proof veri�cation.

Encoding of BCTV14 Proofs #bctvencoding

A BCTV14 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

264-bit 𝜋𝐴 264-bit 𝜋′
𝐴 520-bit 𝜋𝐵 264-bit 𝜋′

𝐵 264-bit 𝜋𝐶 264-bit 𝜋′
𝐶 264-bit 𝜋𝐾 264-bit 𝜋𝐻

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2014a, Appendix B], the veri�er MUST check, for the encoding
of each element, that:

• the lead byte is of the required form;

• the remaining bytes encode a big-endian representation of an integer in {0 .. 𝑞S−1} or (for 𝜋𝐵) {0 .. 𝑞S
2−1};

• the encoding represents a point in G(𝑟)*
1 or (for 𝜋𝐵) G(𝑟)*

2 , including checking that it is of order 𝑟G in the latter
case.

5.4.10.2 Groth16 #groth

After Sapling activation, Zcash uses zk-SNARKs with the Groth16 proving system described in [BGM2017], which is
a modi�cation of the system in [Groth2016]. An independent security proof of this system and its setup is given in
[Maller2018].

Groth16 zk-SNARK proofs are used in transaction version 4 and later (section 7.1 ‘Transaction Encoding and Consensus’
on page 122), both in Sprout JoinSplit descriptions and in Sapling Spend descriptions and Output descriptions. They
are generated by the bellman library [Bowe-bellman].

A Groth16 proof comprises (𝜋𝐴
◦
◦ S(𝑟)*

1 , 𝜋𝐵
◦
◦ S(𝑟)*

2 , 𝜋𝐶
◦
◦ S(𝑟)*

1). It is computed as described in [Groth2016, section 3.2],
using the pairing parameters speci�ed in section 5.4.9.2 ‘BLS12-381’ on page 101. The proof elements are in a different order
to the presentation in [Groth2016].

Note: The quadratic constraint programs verifying the Spend statement and Output statement are described
in Appendix section A ‘Circuit Design’ on page 200. However, many other details of the proving system are beyond the
scope of this protocol document. For example, certain details of the translations of the Spend statement and
Output statement to Quadratic Arithmetic Programs are not speci�ed in this document. In practice it will be
necessary to use the speci�c proving and verifying keys generated for the Zcash production block chain (see section 5.8
‘Groth16 zk-SNARK Parameters’ on page 119), and a proving system implementation that is interoperable with the
bellman library used by Zcash, to ensure compatibility.

Encoding of Groth16 Proofs #grothencoding

A Groth16 proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this is:

384-bit 𝜋𝐴 768-bit 𝜋𝐵 384-bit 𝜋𝐶

The resulting proof size is 192 bytes.

111

https://zips.z.cash/protocol/protocol.pdf#bctvencoding
https://zips.z.cash/protocol/protocol.pdf#groth
https://zips.z.cash/protocol/protocol.pdf#grothencoding

In addition to the steps to verify a proof given in [Groth2016], the veri�er MUST check, for the encoding of each
element, that:

• the leading bit�eld is of the required form;

• the remaining bits encode a big-endian representation of an integer in {0 .. 𝑞S−1} or (in the case of 𝜋𝐵) two
integers in that range;

• the encoding represents a point in S(𝑟)*
1 or (in the case of 𝜋𝐵) S(𝑟)*

2 , including checking that it is of order 𝑟S in
each case.

5.4.10.3 Halo 2 #halo2

For Orchard Action descriptions in version 5 transactions, Zcash uses zk-SNARKs with the Halo 2 proving system
described in [Zcash-halo2].

Encoding of Halo 2 Proofs #halo2encoding

Halo 2 proofs are de�ned as byte sequences, and so the encoding is the proof itself.

5.5 Encodings of Note Plaintexts and Memo Fields #noteptencoding

As explained in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15, transmitted notes are stored on the block chain
in encrypted form. The components and usage of note plaintexts, and which keys they are encrypted to, are de�ned
in that section.

The encoding of a Sprout note plaintext consists of:

8-bit leadByte 64-bit v 256-bit ρ 256-bit rcm memo (512 bytes)

• A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying rcm.

• 512 bytes specifying memo.

The encoding of a Sapling or Orchard note plaintext consists of:

8-bit leadByte 88-bit d 64-bit v 256-bit rseed memo (512 bytes)

• A byte, 0x01 or 0x02 as speci�ed in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15, indicating this version
of the encoding of a Sapling or Orchard note plaintext .

• 11 bytes specifying d.

• 8 bytes specifying v.

• 32 bytes specifying rseed.

• 512 bytes specifying memo.

112

https://zips.z.cash/protocol/protocol.pdf#halo2
https://zips.z.cash/protocol/protocol.pdf#halo2encoding
https://zips.z.cash/protocol/protocol.pdf#noteptencoding

5.6 Encodings of Addresses and Keys #addressandkeyencoding

This section describes how Zcash encodes shielded payment addresses, incoming viewing keys, and spending keys.

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . For Sprout shielded
payment addresses, this byte sequence can then be further encoded using Base58Check . The Base58Check layer is
the same as for upstream Bitcoin addresses [Bitcoin-Base58].

For Sapling-speci�c key and address formats, Bech32 [ZIP-173] is used instead of Base58Check .

Non-normative note: ZIP 173 is similar to Bitcoin’s BIP 173, except for dropping the limit of 90 characters on an
encoded Bech32 string (which does not hold for Sapling viewing keys, for example), and requirements speci�c to
Bitcoin’s Segwit addresses.

Orchard introduces a new address format called a uni�ed payment address. This can encode an Orchard ad-
dress, but also a Sapling address, a transparent address, and potentially future address formats, all in the same
uni�ed payment address. It is RECOMMENDED to use uni�ed payment addresses for all new applications, unless
compatibility with software that only accepts previous address formats is required.

Uni�ed payment addresses and Orchard spending keys are encoded with Bech32m [BIP-350] rather than Bech32 .

Payment addresses MAY be encoded as QR codes; in this case, the RECOMMENDED format for a Sapling payment
address is the Bech32 form converted to uppercase, using the Alphanumeric mode [ISO2015, sections 7.3.4 and 7.4.4].
Similarly, the RECOMMENDED format for a uni�ed payment address is the Bech32m form converted to uppercase,
using the Alphanumeric mode.

5.6.1 Transparent Encodings #transparentencodings

5.6.1.1 Transparent Addresses #transparentaddrencoding

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

8-bit 0x1C 8-bit 0xBD 160-bit script hash

• Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on Mainnet . (Addresses
on Testnet use [0x1C, 0xBA] instead.)

• 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

8-bit 0x1C 8-bit 0xB8 160-bit validating key hash

• Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on Mainnet . (Addresses
on Testnet use [0x1D, 0x25] instead.)

• 20 bytes specifying a validating key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash
[NIST2015] of a compressed ECDSA key encoding.

Notes:
• In Bitcoin a single byte is used for the version �eld identifying the address type. In Zcash two bytes are used.

For addresses on Mainnet , this and the encoded length cause the �rst two characters of the Base58Check
encoding to be �xed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does not imply that a
transparent Zcash address can be parsed identically to a Bitcoin address just by removing the “t”.)

• Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

113

https://zips.z.cash/protocol/protocol.pdf#addressandkeyencoding
https://zips.z.cash/protocol/protocol.pdf#transparentencodings
https://zips.z.cash/protocol/protocol.pdf#transparentaddrencoding

5.6.1.2 Transparent Private Keys #transparentkeyencoding

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both Mainnet and Testnet .

5.6.2 Sprout Encodings #sproutencodings

5.6.2.1 Sprout Payment Addresses #sproutpaymentaddrencoding

Let KASprout be as de�ned in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

A Sprout shielded payment address consists of apk
◦
◦ B[ℓSprout

PRF] and pkenc
◦
◦ KASprout.Public.

apk is a SHA256Compress output. pkenc is a KASprout.Public key, for use with the encryption scheme de�ned in section 4.19
‘In-band secret distribution (Sprout)’ on page 65. These components are derived from a spending key as described
in section 4.2.1 ‘Sprout Key Components’ on page 36.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 8-bit 0x9A 256-bit apk 256-bit pkenc

• Two bytes [0x16, 0x9A], indicating this version of the raw encoding of a Sprout shielded payment address on
Mainnet . (Addresses on Testnet use [0x16, 0xB6] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying pkenc, using the normal encoding of a Curve25519 public key [Bernstein2006].

Note: For addresses on Mainnet , the lead bytes and encoded length cause the �rst two characters of the
Base58Check encoding to be �xed as “zc”. For Testnet , the �rst two characters are �xed as “zt”.

5.6.2.2 Sprout Incoming Viewing Keys #sproutinviewingkeyencoding

Let KASprout be as de�ned in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

A Sprout incoming viewing key consists of apk
◦
◦ B[ℓSprout

PRF] and skenc
◦
◦ KASprout.Private.

apk is a SHA256Compress output. skenc is a KASprout.Private key, for use with the encryption scheme de�ned in section 4.19
‘In-band secret distribution (Sprout)’ on page 65. These components are derived from a spending key as described
in section 4.2.1 ‘Sprout Key Components’ on page 36.

The raw encoding of a Sprout incoming viewing key consists of:

8-bit 0xA8 8-bit 0xAB 8-bit 0xD3 256-bit apk 256-bit skenc

• Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on Mainnet . (Addresses on Testnet use [0xA8, 0xAC, 0x0C] instead.)

• 32 bytes specifying apk.

• 32 bytes specifying skenc, using the normal encoding of a Curve25519 private key [Bernstein2006].

skenc MUST be “clamped” using KASprout.FormatPrivate as speci�ed in section 4.2.1 ‘Sprout Key Components’ on page 36. That
is, a decoded incoming viewing key MUST be considered invalid if skenc ̸= KASprout.FormatPrivate(skenc).

KASprout.FormatPrivate is de�ned in section 5.4.5.1 ‘Sprout Key Agreement’ on page 88.

Note: For addresses on Mainnet , the lead bytes and encoded length cause the �rst four characters of the
Base58Check encoding to be �xed as “ZiVK”. For Testnet , the �rst four characters are �xed as “ZiVt”.

114

https://zips.z.cash/protocol/protocol.pdf#transparentkeyencoding
https://zips.z.cash/protocol/protocol.pdf#sproutencodings
https://zips.z.cash/protocol/protocol.pdf#sproutpaymentaddrencoding
https://zips.z.cash/protocol/protocol.pdf#sproutinviewingkeyencoding

5.6.2.3 Sprout Spending Keys #sproutspendingkeyencoding

A Sprout spending key consists of ask, which is a sequence of 252 bits (see section 4.2.1 ‘Sprout Key Components’ on
page 36).

The raw encoding of a Sprout spending key consists of:

8-bit 0xAB 8-bit 0x36 [0]4 252-bit ask

• Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on Mainnet .
(Addresses on Testnet use [0xAC, 0x08] instead.)

• 32 bytes: 4 zero padding bits and 252 bits specifying ask.

The zero padding occupies the most signi�cant 4 bits of the third byte.

Notes:

• If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRFaddr, PRFnfSprout, and PRFpk without need for bit-shifting.

• For addresses on Mainnet , the lead bytes and encoded length cause the �rst two characters of the Base58Check
encoding to be �xed as “SK”. For Testnet , the �rst two characters are �xed as “ST”.

5.6.3 Sapling Encodings #saplingencodings

5.6.3.1 Sapling Payment Addresses #saplingpaymentaddrencoding

Let KASapling be as de�ned in section 5.4.5.3 ‘Sapling Key Agreement’ on page 89.

Let ℓd be as de�ned in section 5.3 ‘Constants’ on page 74.

Let J(𝑟), abstJ, and reprJ be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let LEBS2OSP ◦
◦ (ℓ ◦

◦ N)× B[ℓ] → BY[ceiling(ℓ/8)] be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on
page 73.

A Sapling shielded payment address consists of d ◦
◦ B[ℓd] and pkd

◦
◦ KASapling.PublicPrimeOrder.

pkd is an encoding of a KASapling public key of type KASapling.PublicPrimeOrder, for use with the encryption scheme de-
�ned in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67. d is a diversi�er. These components
are derived as described in section 4.2.2 ‘Sapling Key Components’ on page 36.

The raw encoding of a Sapling shielded payment address consists of:

LEBS2OSP88(d) LEBS2OSP256
(︀
reprJ(pkd)

)︀
• 11 bytes specifying d.

• 32 bytes specifying the ctEdwards compressed encoding of pkd (see section 5.4.9.3 ‘Jubjub’ on page 102).

When decoding the representation of pkd, the address MUST be considered invalid if abstJ returns⊥, or the encoding
of pkd is a non-canonical encoding as de�ned in section 4.1.9 ‘Represented Group’ on page 32, or the resulting pkd is not in
J(𝑟)*.

115

https://zips.z.cash/protocol/protocol.pdf#sproutspendingkeyencoding
https://zips.z.cash/protocol/protocol.pdf#saplingencodings
https://zips.z.cash/protocol/protocol.pdf#saplingpaymentaddrencoding

Non-normative notes:

• There are no non-canonical encodings of Jubjub curve points in J(𝑟)*.

• The restriction on pkd re�ects its current type KASapling.PublicPrimeOrder = J(𝑟)*. In versions of this speci�cation
prior to v2025.6.0, pkd had type KASapling.PublicPrimeSubgroup = J(𝑟), i.e. including 𝒪J. Implementations of
consumers for this encoding may need to be updated to exclude 𝒪J, and should be checked for consistency
with the current version of [ZIP-216].

For addresses on Mainnet , the Human-Readable Part (as de�ned in [ZIP-173]) is “zs”. For addresses on Testnet , the
Human-Readable Part is “ztestsapling”.

5.6.3.2 Sapling Incoming Viewing Keys #saplinginviewingkeyencoding

Let KASapling be as de�ned in section 5.4.5.3 ‘Sapling Key Agreement’ on page 89.

Let ℓSapling
ivk be as de�ned in section 5.3 ‘Constants’ on page 74.

A Sapling incoming viewing key consists of ivk ◦
◦ {1 .. 2ℓ

Sapling
ivk −1}.

ivk is a KASapling.Private key (restricted to ℓSapling
ivk bits), derived as described in section 4.2.2 ‘Sapling Key Components’ on

page 36. It is used with the encryption scheme de�ned in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’
on page 67.

The raw encoding of a Sapling incoming viewing key consists of:

256-bit ivk

• 32 bytes (little-endian) specifying ivk, padded with zeros in the most signi�cant bits.

ivk MUST be in the range {1 .. 2ℓ
Sapling
ivk −1} as speci�ed in section 4.2.2 ‘Sapling Key Components’ on page 36. That is, a decoded

incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on Mainnet , the Human-Readable Part is “zivks”. For incoming viewing keys on Testnet ,
the Human-Readable Part is “zivktestsapling”.

Non-normative notes:

• The diversi�er key is not present in this encoding, so it does not provide suf�cient information to decrypt the
diversi�er to obtain a diversi�er index . This encoding is therefore deprecated: the preferred way to encode a
Sapling incoming viewing key is as a component of a uni�ed incoming viewing key using the IVK Encoding
speci�ed in [ZIP-316], which does include the diversi�er key.

• In versions of this speci�cation prior to v2025.6.0, the range of ivk was de�ned as {0 .. 2ℓ
Sapling
ivk −1}, i.e. including

0. Implementations of consumers for this encoding may need to be updated to exclude 0.

5.6.3.3 Sapling Full Viewing Keys #saplingfullviewingkeyencoding

Let KASapling be as de�ned in section 5.4.5.3 ‘Sapling Key Agreement’ on page 89.

A Sapling full viewing key consists of ak ◦
◦ J(𝑟)*, nk ◦

◦ J(𝑟), and ovk ◦
◦ BY[ℓovk/8].

ak and nk are points on the Jubjub curve (see section 5.4.9.3 ‘Jubjub’ on page 102). They are derived as described in section 4.2.2
‘Sapling Key Components’ on page 36.

116

https://zips.z.cash/protocol/protocol.pdf#saplinginviewingkeyencoding
https://zips.z.cash/protocol/protocol.pdf#saplingfullviewingkeyencoding

The raw encoding of a Sapling full viewing key consists of:

LEBS2OSP256
(︀
reprJ(ak)

)︀
LEBS2OSP256

(︀
reprJ(nk)

)︀
32-byte ovk

• 32 bytes specifying the ctEdwards compressed encoding of ak (see section 5.4.9.3 ‘Jubjub’ on page 102).

• 32 bytes specifying the ctEdwards compressed encoding of nk.

• 32 bytes specifying the outgoing viewing key ovk.

When decoding this representation, the key MUST be considered invalid if abstJ returns ⊥ for either ak or nk, or if

ak /∈ J(𝑟)*, or if nk /∈ J(𝑟).

For full viewing keys on Mainnet , the Human-Readable Part is “zviews”. For full viewing keys on Testnet , the
Human-Readable Part is “zviewtestsapling”.

5.6.3.4 Sapling Spending Keys #saplingspendingkeyencoding

A Sapling spending key consists of sk ◦
◦ B[ℓsk] (see section 4.2.2 ‘Sapling Key Components’ on page 36).

The raw encoding of a Sapling spending key consists of:

LEBS2OSP256(sk)

• 32 bytes specifying sk.

For spending keys on Mainnet , the Human-Readable Part is “secret-spending-key-main”. For spending keys on
Testnet , the Human-Readable Part is “secret-spending-key-test”.

5.6.4 Uni�ed and Orchard Encodings #orchardencodings

5.6.4.1 Uni�ed Payment Addresses and Viewing Keys #uni�edencodings

Rather than de�ning a Bech32 string encoding of Orchard shielded payment addresses, we instead de�ne, in
[ZIP-316], a uni�ed payment address format that is able to encode a set of payment addresses of different types. This
enables the consumer of an address to choose the best address type it supports, providing a better user experience
as new formats are added in the future.

Similarly, uni�ed incoming viewing keys and uni�ed full viewing keys are de�ned to encode sets of incoming
viewing keys and full viewing keys respectively.

Since [ZIP-316] includes a full speci�cation of encoding, decoding, and other processing of uni�ed payment
addresses, uni�ed incoming viewing keys, and uni�ed full viewing keys, we give only a summary here.

A uni�ed payment address includes zero or one address of each type in the following Priority List:

• typecode 0x03 – section 5.6.4.2 ‘Orchard Raw Payment Addresses’ on page 118;

• typecode 0x02 – section 5.6.3.1 ‘Sapling Payment Addresses’ on page 115;

• typecode 0x01 – transparent P2SH address, or typecode 0x00 – transparent P2PKH address.

with the restrictions that there MUST be at least one shielded payment address (typecodes ≥ 0x02), and that both
P2SH and P2PKH cannot be present.

When sending a payment, the consumer of a uni�ed payment address MUST use the most preferred address
type that it supports from the set, i.e. the �rst in the above list. See [ZIP-316] for additional requirements, and for
discussion of uni�ed incoming viewing keys and uni�ed full viewing keys.

Note that there is intentionally no typecode de�ned for a Sprout shielded payment address (or Sprout viewing
keys). Since it is no longer possible (since activation of [ZIP-211] in the Canopy network upgrade) to send funds into
the Sprout chain value pool , this would not be generally useful.

117

https://zips.z.cash/protocol/protocol.pdf#saplingspendingkeyencoding
https://zips.z.cash/protocol/protocol.pdf#orchardencodings
https://zips.z.cash/protocol/protocol.pdf#unifiedencodings

The format uses Bech32m [BIP-350] (ignoring any length restrictions) for the checksum algorithm and string
encoding. This is chosen over Bech32 in order for the checksum to better handle variable-length inputs.

A “jumbling” algorithm is used in order to mitigate address replacement attacks given that a user might only check
part of the address. See [ZIP-316] for full details.

5.6.4.2 Orchard Raw Payment Addresses #orchardpaymentaddrencoding

Let KAOrchard be as de�ned in section 5.4.5.5 ‘Orchard Key Agreement’ on page 90.

An Orchard shielded payment address consists of d ◦
◦ B[ℓd] and pkd

◦
◦ KAOrchard.PublicPrimeOrder.

pkd is an encoding of a KAOrchard public key of type KAOrchard.PublicPrimeOrder, for use with the encryption scheme
de�ned in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67. d is a sequence of 11 bytes. These
components are derived as described in section 4.2.3 ‘Orchard Key Components’ on page 38.

The raw encoding of an Orchard shielded payment address consists of:

LEBS2OSP88(d) LEBS2OSP256
(︀
reprP(pkd)

)︀
• 11 bytes specifying d.

• 32 bytes specifying the short Weierstrass compressed encoding of pkd (see section 5.4.9.6 ‘Pallas and Vesta’ on page 105).

When decoding the representation of pkd, the address MUST be considered invalid if abstP returns ⊥ or𝒪P.

There is no Bech32[m] encoding de�ned for an individual Orchard shielded payment address; instead use a uni�ed
payment address as de�ned in [ZIP-316].

5.6.4.3 Orchard Raw Incoming Viewing Keys #orchardinviewingkeyencoding

Let KAOrchard be as de�ned in section 5.4.5.5 ‘Orchard Key Agreement’ on page 90.

An Orchard incoming viewing key consists of a diversi�er key dk, and a KAOrchard.Private key ivk restricted to the
range {1 .. 𝑞P − 1}. It is derived as described in section 4.2.3 ‘Orchard Key Components’ on page 38, and is used with the
encryption scheme de�ned in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67.

Let I2LEOSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

The raw encoding of an Orchard incoming viewing key consists of:

dk I2LEOSP256(ivk)
• 32 bytes specifying dk.

• 32 bytes (little-endian) specifying ivk.

ivk MUST be in the range {1 .. 𝑞P − 1} as speci�ed in section 4.2.3 ‘Orchard Key Components’ on page 38. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

There is no Bech32[m] encoding de�ned for an individual Orchard incoming viewing key; instead use a uni�ed
incoming viewing key as de�ned in [ZIP-316].

5.6.4.4 Orchard Raw Full Viewing Keys #orchardfullviewingkeyencoding

Let KAOrchard be as de�ned in section 5.4.5.5 ‘Orchard Key Agreement’ on page 90.

Let ExtractP be as de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106.

An Orchard full viewing key consists of ak ◦
◦ {0 .. 𝑞P − 1}, nk ◦

◦ F𝑞P
, and rivk ◦

◦ F𝑟P
.

ak is the Spend validating key, a result of applying ExtractP to a point on the Pallas curve (see section 5.4.9.6 ‘Pallas and Vesta’
on page 105). nk is the nulli�er deriving key, a �eld element in F𝑞P

. rivk is the Commitivk randomness, a �eld element in
F𝑟P

. They are derived as described in section 4.2.3 ‘Orchard Key Components’ on page 38.

Let I2LEOSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

118

https://zips.z.cash/protocol/protocol.pdf#orchardpaymentaddrencoding
https://zips.z.cash/protocol/protocol.pdf#orchardinviewingkeyencoding
https://zips.z.cash/protocol/protocol.pdf#orchardfullviewingkeyencoding

The raw encoding of an Orchard full viewing key consists of:

I2LEOSP256(ak) I2LEOSP256(nk) I2LEOSP256(rivk)

• 32 bytes (little-endian) specifying ak.

• 32 bytes (little-endian) specifying nk.

• 32 bytes (little-endian) specifying rivk.

When decoding this representation, the key MUST be considered invalid if ak, nk, or rivk are not canonically encoded
elements of their respective �elds, or if ak is not a valid af�ne 𝑥-coordinate of a Pallas curve point in P*, or if either
the external or internal incoming viewing keys derived as speci�ed in section 4.2.3 ‘Orchard Key Components’ on page 38
are 0 or⊥.

There is no Bech32[m] encoding de�ned for an individual Orchard full viewing key; instead use a uni�ed full
viewing key as de�ned in [ZIP-316].

5.6.4.5 Orchard Spending Keys #orchardspendingkeyencoding

An Orchard spending key consists of sk ◦
◦ B[ℓsk] (see section 4.2.3 ‘Orchard Key Components’ on page 38).

The raw encoding of an Orchard spending key consists of:

LEBS2OSP256(sk)

• 32 bytes specifying sk.

Orchard spending keys are encoded using Bech32m (not Bech32).

For spending keys on Mainnet , the Human-Readable Part is “secret-orchard-sk-main”. For spending keys on
Testnet , the Human-Readable Part is “secret-orchard-sk-test”.

5.7 BCTV14 zk-SNARK Parameters #bctvparameters

The SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit circuit , encoded in libsnark format,
are:

8bc20a7f013b2b58970cddd2e7ea028975c88ae7ceb9259a5344a16bc2c0eef7 sprout-proving.key
4bd498dae0aacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fc5df82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc] and [BGG2017]. They are
used only before Sapling activation. Due to the security vulnerability described in section 5.4.10.1 ‘BCTV14’ on page 110,
it is not recommended to use these parameters in new protocols, and it is recommended to stop using them in
protocols other than Zcash where they are currently used.

5.8 Groth16 zk-SNARK Parameters #grothparameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters �le.
The BLAKE2b-512 hashes of this �le for the Sapling Spend circuit and Output circuit , and for the implementation
of the Sprout JoinSplit circuit used after Sapling activation, are respectively:

8270785a1a0d0bc77196f000ee6d221c9c9894f55307bd9357c3f0105d31ca63
991ab91324160d8f53e2bbd3c2633a6eb8bdf5205d822e7f3f73edac51b2b70c sapling-spend.params
657e3d38dbb5cb5e7dd2970e8b03d69b4787dd907285b5a7f0790dcc8072f60b
f593b32cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4a171744d028 sapling-output.params
e9b238411bd6c0ec4791e9d04245ec350c9c5744f5610dfcce4365d5ca49dfef
d5054e371842b3f88fa1b9d7e8e075249b3ebabd167fa8b0f3161292d36c180a sprout-groth16.params

These parameters were obtained by a multi-party computation described in [BGM2017].

119

https://zips.z.cash/protocol/protocol.pdf#orchardspendingkeyencoding
https://zips.z.cash/protocol/protocol.pdf#bctvparameters
https://zips.z.cash/protocol/protocol.pdf#grothparameters

5.9 Randomness Beacon #beacon

Let URS := “096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0”.

This value is used in the de�nition of GroupHashJ(𝑟)*

in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104, and in the multi-
party computation to obtain the Sapling parameters given in section 5.8 ‘Groth16 zk-SNARK Parameters’ on page 119.

It is derived as described in [Bowe2018]:

• Take the hash of the Bitcoin block at height 514200 in RPC byte order, i.e. the big-endian 32-byte representation
of 0x00000000000000000034b33e842ac1c50456abe5fa92b60f6b3dfc5d247f7b58.

• Apply SHA-256 242 times.

• Convert to a US-ASCII lowercase hexadecimal string.

Note: URS is a 64-byte US-ASCII string, i.e. the �rst byte is 0x30, not 0x09.

6 Network Upgrades #networkupgrades

Zcash launched with a protocol revision that we call Sprout.

A �rst upgrade, called Overwinter, activated on Mainnet on 26 June, 2018 at block height 347500 [Swihart2018]. Its
speci�cations are described in this document, [ZIP-201], [ZIP-202], [ZIP-203], and [ZIP-143].

A second upgrade, called Sapling, activated on Mainnet on 28 October, 2018 at block height 419200 [Hamdon2018].
Its speci�cations are described in this document, [ZIP-205], and [ZIP-243].

A third upgrade, called Blossom, activated on Mainnet on 11 December, 2019 at block height 653600 [Zcash-Blossom].
Its speci�cations are described in this document, [ZIP-206], and [ZIP-208].

A fourth upgrade, called Heartwood, activated on Mainnet on 16 July, 2020 at block height 903000 [Zcash-Heartwd].
Its speci�cations are described in this document, [ZIP-250], [ZIP-213], and [ZIP-221].

A �fth upgrade, called Canopy, activated on Mainnet on 18 November, 2020 at block height 1046400 (coinciding
with the �rst block subsidy halving) [Zcash-Canopy]. Its speci�cations are described in this document, [ZIP-251],
[ZIP-207], [ZIP-211], [ZIP-212], [ZIP-214], and [ZIP-215]. Additional information and rationale is given in [ZIP-1014].

A sixth upgrade, called N​U​5, activated on Mainnet on 31 May, 2022 at block height 1687104 [Zcash-Nu5]. Its speci�-
cations are described in this document, [ZIP-252], [ZIP-216], [ZIP-221], [ZIP-224], [ZIP-225], [ZIP-239], [ZIP-244], and
[ZIP-316], with updates to [ZIP-32], [ZIP-203], [ZIP-209], [ZIP-212], [ZIP-213], and [ZIP-221]. Additional information
and rationale is given in [Zcash-Orchard] and [Zcash-halo2].

A seventh upgrade, called N​U​6, activated on Mainnet on 23 November, 2024 at block height 2726400 (coinciding
with the second block subsidy halving) [Zcash-Nu6]. Its speci�cations are described in this document, [ZIP-253],
[ZIP-236], and [ZIP-2001], with updates to [ZIP-207] and [ZIP-214]. Additional information and rationale is given in
[ZIP-1015].

This draft speci�cation describes the set of changes proposed for the N​U​6.1 network upgrade [Zcash-Nu6.1], for
which the Mainnet activation block height has not yet been set. Its speci�cations are described in this document,
[ZIP-255], and [ZIP-271], with updates to [ZIP-214]. Additional information and rationale is given in [ZIP-1016].

This section summarizes the strategy for upgrading from Sprout to subsequent versions of the protocol (Overwinter,
Sapling, Blossom, Heartwood, Canopy, N​U​5, N​U​6, and N​U​6.1), and for future upgrades.

The network upgrade mechanism is described in [ZIP-200].

Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,

• there is an activation block height at which the consensus rule change takes effect;

120

https://zips.z.cash/protocol/protocol.pdf#beacon
https://zips.z.cash/protocol/protocol.pdf#networkupgrades

• blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height ;

• blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height .

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol . At the
planned activation block height , nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter
upgrade, for example.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will �nd themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height .

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.

121

7 Consensus Changes from Bitcoin #consensusfrombitcoin

7.1 Transaction Encoding and Consensus #txnencoding

The Zcash transaction format up to and including transaction version 4 is as follows (this should be read in the
context of consensus rules later in the section):

Version* Bytes Name Data Type Description

1 .. 4 4 header uint32 Contains:
· fOverwintered �ag (bit 31)
· version (bits 30 .. 0) – transaction version.

3 .. 4 4 nVersionGroupId uint32 Version group ID (nonzero).

1 .. 4 Varies tx_in_count compactSize Number of transparent inputs.

1 .. 4 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.

1 .. 4 Varies tx_out_count compactSize Number of transparent outputs.

1 .. 4 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.

1 .. 4 4 lock_time uint32 Unix-epoch UTC time or block height , encoded as in
Bitcoin.

3 .. 4 4 nExpiryHeight uint32 A block height after which the transaction will expire, or
0 to disable expiry. [ZIP-203]

4 8 valueBalanceSapling int64 The net value of Sapling spends minus outputs.

4 Varies nSpendsSapling compactSize The number of Spend descriptions in vSpendsSapling.

4 384·
nSpendsSapling

vSpendsSapling SpendDescriptionV4
[nSpendsSapling]

A sequence of Spend descriptions, encoded per section 7.3
‘Spend Description Encoding and Consensus’ on
page 128.

4 Varies nOutputsSapling compactSize The number of Output descriptions in vOutputsSapling.

4 948·
nOutputsSapling

vOutputsSapling OutputDescriptionV4
[nOutputsSapling]

A sequence of Output descriptions, encoded per section 7.4
‘Output Description Encoding and Consensus’ on
page 129.

2 .. 4 Varies nJoinSplit compactSize The number of JoinSplit descriptions in vJoinSplit.

2 .. 3 1802·
nJoinSplit

vJoinSplit JSDescriptionBCTV14
[nJoinSplit]

A sequence of JoinSplit descriptions using BCTV14
proofs, encoded per section 7.2
‘JoinSplit Description Encoding and Consensus’ on
page 128.

4 1698·
nJoinSplit

vJoinSplit JSDescriptionGroth16
[nJoinSplit]

A sequence of JoinSplit descriptions using Groth16
proofs, encoded per section 7.2
‘JoinSplit Description Encoding and Consensus’ on
page 128.

2 .. 4 † 32 joinSplitPubKey byte[32] An encoding of a JoinSplitSig public validating key.

2 .. 4 † 64 joinSplitSig byte[64] A signature on a pre�x of the transaction encoding,
validated using joinSplitPubKey as speci�ed in section 4.11
‘Non-malleability (Sprout)’ on page 51.

4 ‡ 64 bindingSigSapling byte[64] A Sapling binding signature on the SIGHASH transaction
hash, validated as speci�ed in section 5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on page 95.

* Version constraints apply to the effectiveVersion, which is equal to min(2, version) when fOverwintered = 0 and
to version otherwise. If effectiveVersion ≥ 5 once header has been parsed, the remainder of the transaction
encoding MUST be parsed according to the v5 format described in the next table. The consensus rules later in
this section specify constraints on nVersionGroupId depending on effectiveVersion.

† The joinSplitPubKey and joinSplitSig �elds are present if and only if effectiveVersion ≥ 2 and nJoinSplit > 0.

‡ bindingSigSapling is present if and only if effectiveVersion = 4 and nSpendsSapling + nOutputsSapling > 0.

Note that the valueBalanceSapling �eld is always present for these transaction versions.

Several Sapling �elds have been renamed from previous versions of this speci�cation:
valueBalance→ valueBalanceSapling; nShieldedSpend→ nSpendsSapling; vShieldedSpend→ vSpendsSapling;
nShieldedOutput→ nOutputsSapling; vShieldedOutput→ vOutputsSapling; bindingSig→ bindingSigSapling.

122

https://zips.z.cash/protocol/protocol.pdf#consensusfrombitcoin
https://zips.z.cash/protocol/protocol.pdf#txnencoding

The Zcash transaction format for transaction version 5 is as follows (this should be read in the context of consensus
rules later in the section):

Note Bytes Name Data Type Description

4 header uint32 Contains:
· fOverwintered �ag (bit 31, always set)
· version (bits 30 .. 0) – transaction version.

4 nVersionGroupId uint32 Version group ID (nonzero).

4 nConsensusBranchId uint32 Consensus branch ID.

4 lock_time uint32 Unix-epoch UTC time or block height , encoded as in
Bitcoin .

4 nExpiryHeight uint32 A block height after which the transaction will expire, or 0
to disable expiry. [ZIP-203]

Varies tx_in_count compactSize Number of transparent inputs.

Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.

Varies tx_out_count compactSize Number of transparent outputs.

Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.

Varies nSpendsSapling compactSize The number of Spend descriptions in vSpendsSapling.

96·
nSpendsSapling

vSpendsSapling SpendDescriptionV5
[nSpendsSapling]

A sequence of Spend descriptions, encoded per section 7.3
‘Spend Description Encoding and Consensus’ on page 128.

Varies nOutputsSapling compactSize The number of Output descriptions in vOutputsSapling.

756·
nOutputsSapling

vOutputsSapling OutputDescriptionV5
[nOutputsSapling]

A sequence of Output descriptions, encoded per section 7.4
‘Output Description Encoding and Consensus’ on page 129.

† 8 valueBalanceSapling int64 The net value of Sapling spends minus outputs.

‡ 32 anchorSapling byte[32] A root of the Sapling note commitment tree at some block
height in the past, LEBS2OSP256

(︀
rtSapling)︀.

192·
nSpendsSapling

vSpendProofsSapling byte[192]
[nSpendsSapling]

Encodings of the zk-SNARK proofs for each Sapling Spend
description.

64·
nSpendsSapling

vSpendAuthSigsSapling byte[64]
[nSpendsSapling]

Authorizing signatures for each Sapling Spend description.

192·
nOutputsSapling

vOutputProofsSapling byte[192]
[nOutputsSapling]

Encodings of the zk-SNARK proofs for each Sapling Output
description.

† 64 bindingSigSapling byte[64] A Sapling binding signature on the SIGHASH transaction
hash, validated per section 5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on page 95.

Varies nActionsOrchard compactSize The number of Action descriptions in vActionsOrchard.

820·
nActionsOrchard

vActionsOrchard ActionDescription
[nActionsOrchard]

A sequence of Action descriptions, encoded per section 7.5
‘Action Description Encoding and Consensus’ on page 130.

S 1 flagsOrchard byte Contains:
· enableSpendsOrchard �ag (bit 0)
· enableOutputsOrchard �ag (bit 1)
· Reserved, zeros (bits 2 .. 7).

S 8 valueBalanceOrchard int64 The net value of Orchard spends minus outputs.

S 32 anchorOrchard byte[32] A root of the Orchard note commitment tree at some block
height in the past, LEBS2OSP256

(︀
rtOrchard)︀.

S Varies sizeProofsOrchard compactSize The length of the aggregated zk-SNARK proof 𝜋ZKAction.
Value is 2720 + 2272 · nActionsOrchard.

S sizeProofsOrchard proofsOrchard byte[sizeProofsOrchard] The aggregated zk-SNARK proof 𝜋ZKAction (see section 5.4.10.3
‘Halo 2’ on page 112).

64·
nActionsOrchard

vSpendAuthSigsOrchard byte[64]
[nActionsOrchard]

Authorizing signatures for each spend of an Orchard Action
description.

S 64 bindingSigOrchard byte[64] An Orchard binding signature on the SIGHASH transaction
hash, validated per section 5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on page 95.

† The �elds valueBalanceSapling and bindingSigSapling are present if and only if nSpendsSapling + nOutputsSapling > 0. If
valueBalanceSapling is not present, then vbalanceSapling is de�ned to be 0.

‡ The �eld anchorSapling is present if and only if nSpendsSapling > 0.

S The �elds flagsOrchard, valueBalanceOrchard, anchorOrchard, sizeProofsOrchard, proofsOrchard, and bindingSigOrchard are
present if and only if nActionsOrchard > 0. If valueBalanceOrchard is not present, then vbalanceOrchard is de�ned to be 0.

Transaction version 5 does not support JoinSplit transfers. Several �elds are reordered and/or renamed relative to prior versions.

123

7.1.1 Transaction Identi�ers #txnidenti�ers

The transaction ID of a version 4 or earlier transaction is the SHA-256d hash of the transaction encoding in the
pre-v5 format described above.

The transaction ID of a version 5 transaction is as de�ned in [ZIP-244]. A v5 transaction also has a wtxid (used for
example in the peer-to-peer protocol) as de�ned in [ZIP-239].

7.1.2 Transaction Consensus Rules #txnconsensus

Consensus rules:

• The transaction version number MUST be greater than or equal to 1.

• [Pre-Overwinter] The fOverwintered �ag MUST NOT be set.

• [Overwinter onward] The fOverwintered �ag MUST be set.

• [Overwinter onward] The version group ID MUST be recognized.

• [Overwinter only, pre-Sapling] The transaction version number MUST be 3, and the version group ID MUST
be 0x03C48270.

• [Sapling to Canopy inclusive, pre-N​U​5] The transaction version number MUST be 4, and the version group
ID MUST be 0x892F2085.

• [N​U​5 onward] The transaction version number MUST be 4 or 5. If the transaction version number is 4 then
the version group ID MUST be 0x892F2085. If the transaction version number is 5 then the version group ID
MUST be 0x26A7270A.

• [N​U​5 onward] If effectiveVersion ≥ 5, the nConsensusBranchId �eld MUST match the consensus branch ID
used for SIGHASH transaction hashes, as speci�ed in [ZIP-244].

• [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.

• [N​U​5 onward] nSpendsSapling, nOutputsSapling, and nActionsOrchard MUST all be less than 216.

• [Pre-Sapling] If effectiveVersion = 1 or nJoinSplit = 0, then both tx_in_count and tx_out_count MUST be
nonzero.

• [Sapling onward] If effectiveVersion < 5, then at least one of tx_in_count, nSpendsSapling, and nJoinSplit
MUST be nonzero.

• [Sapling onward] If effectiveVersion < 5, then at least one of tx_out_count, nOutputsSapling, and nJoinSplit
MUST be nonzero.

• [N​U​5 onward] If effectiveVersion ≥ 5 then this condition MUST hold: tx_in_count > 0 or nSpendsSapling > 0
or (nActionsOrchard > 0 and enableSpendsOrchard = 1).

• [N​U​5 onward] If effectiveVersion ≥ 5 then this condition MUST hold: tx_out_count > 0 or nOutputsSapling > 0
or (nActionsOrchard > 0 and enableOutputsOrchard = 1).

• [N​U​5 onward] If effectiveVersion ≥ 5 and nActionsOrchard > 0, then at least one of enableSpendsOrchard and
enableOutputsOrchard MUST be 1.

• A transaction with one or more transparent inputs from coinbase transactions MUST have no transparent
outputs (i.e. tx_out_count MUST be 0). Inputs from coinbase transactions include Founders’ Reward outputs
and funding stream outputs.

• If effectiveVersion ≥ 2 and nJoinSplit > 0, then:
– joinSplitPubKey MUST be a valid encoding (see section 5.4.6 ‘Ed25519’ on page 90) of an Ed25519 validating key.

– joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as de�ned
in section 4.11 ‘Non-malleability (Sprout)’ on page 51.

124

https://zips.z.cash/protocol/protocol.pdf#txnidentifiers
https://zips.z.cash/protocol/protocol.pdf#txnconsensus

• [Sapling onward] If effectiveVersion ≥ 4 and nSpendsSapling + nOutputsSapling > 0, then:

– let bvkSapling and SigHash be as de�ned in section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52;

– bindingSigSapling MUST represent a valid signature under the transaction binding validating key
bvkSapling of SigHash — i.e. BindingSigSapling.ValidatebvkSapling (SigHash, bindingSigSapling) = 1. [N​U​5 onward]
As speci�ed in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92, the validation of the 𝑅 component
of the signature changes to prohibit non-canonical encodings. This change is also retrospectively valid
on Mainnet and Testnet before N​U​5.

• [Sapling onward] If effectiveVersion = 4 and there are no Spend descriptions or Output descriptions, then
valueBalanceSapling MUST be 0.

• [N​U​5 onward] If effectiveVersion ≥ 5 and nActionsOrchard > 0, then:
– let bvkOrchard and SigHash be as de�ned in section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54;

– bindingSigOrchard MUST represent a valid signature under the transaction binding validating key
bvkOrchard of SigHash — i.e. BindingSigOrchard.ValidatebvkOrchard(SigHash, bindingSigOrchard) = 1. As speci�ed
in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92, validation of the 𝑅 component of the signature
prohibits non-canonical encodings.

• Let totalDeferredOutput and totalDeferredInput be as de�ned in section 7.8 on page 136. For the block at block height
height:

– de�ne the total output value of its coinbase transaction to be the total value in zatoshi of its transparent
outputs, minus vbalanceSapling, minus vbalanceOrchard, plus totalDeferredOutput(height);

– de�ne the total input value of its coinbase transaction to be the value in zatoshi of the block subsidy,
plus the transaction fees paid by transactions in the block , plus totalDeferredInput(height).

[Pre-N​U​6] The total output value of a coinbase transaction MUST NOT be greater than its total input value.

[N​U​6 onward] The total output value of a coinbase transaction MUST be equal to its total input value.

• A coinbase transaction MUST NOT have any JoinSplit descriptions.

• A coinbase transaction MUST NOT have any Spend descriptions.

• [Pre-Heartwood] A coinbase transaction MUST NOT have any Output descriptions.

• [N​U​5 onward] In a version 5 coinbase transaction, the enableSpendsOrchard �ag MUST be 0.

• [N​U​5 onward] In a version 5 transaction, the reserved bits 2 .. 7 of the flagsOrchard �eld MUST be zero.

• A coinbase transaction for a block at block height greater than 0 MUST have a script that, as its �rst item,
encodes the block height height as follows. For height in the range {1 .. 16}, the encoding is a single byte of
value 0x50 + height. Otherwise, let heightBytes be the signed little-endian representation of height, using the
minimum nonzero number of bytes such that the most signi�cant byte is < 0x80. The length of heightBytes
MUST be in the range {1 .. 5}. Then the encoding is the length of heightBytes encoded as one byte, followed
by heightBytes itself. This matches the encoding used by Bitcoin in the implementation of [BIP-34] (but the
description here is to be considered normative).

• A coinbase transaction script MUST have length in {2 .. 100} bytes.

• A transparent input in a non-coinbase transaction MUST NOT have a null prevout .

• Every non-null prevout MUST point to a unique UTXO in either a preceding block , or a previous transaction
in the same block .

• A transaction MUST NOT spend a transparent output of a coinbase transaction from a block less than 100
blocks prior to the spend. Note that transparent outputs of coinbase transactions include Founders’ Reward
outputs, transparent funding stream outputs [ZIP-207], and lockbox disbursement outputs [ZIP-271].

• A transaction MUST NOT spend an output of the genesis block coinbase transaction. (There is one such
zero-valued output, on each of Testnet and Mainnet .)

• [Overwinter to Canopy inclusive, pre-N​U​5] nExpiryHeight MUST be less than or equal to 499999999.

125

• [N​U​5 onward] nExpiryHeight MUST be less than or equal to 499999999 for non-coinbase transactions.

• [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight �eld is nonzero,
then it MUST NOT be mined at a block height greater than its nExpiryHeight.

• [N​U​5 onward] The nExpiryHeight �eld of a coinbase transaction MUST be equal to its block height .

• [Sapling onward] valueBalanceSapling MUST be in the range {−MAX_MONEY .. MAX_MONEY}.
• [N​U​5 onward] valueBalanceOrchard MUST be in the range {−MAX_MONEY .. MAX_MONEY} for version 5

transactions.

• [Heartwood onward] All Sapling and Orchard outputs in coinbase transactions MUST decrypt to a note
plaintext , i.e. the procedure in section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’
on page 70 does not return ⊥, using a sequence of 32 zero bytes as the outgoing viewing key. (This implies that
before Canopy activation, Sapling outputs of a coinbase transaction MUST have note plaintext lead byte
equal to 0x01.)

• [Canopy onward] Any Sapling or Orchard output of a coinbase transaction decrypted to a note plaintext
according to the preceding rule MUST have note plaintext lead byte equal to 0x02. (This applies even during
the “grace period” speci�ed in [ZIP-212].)

• TODO: Other rules inherited from Bitcoin.

The types speci�ed in section 7.1 ‘Transaction Encoding and Consensus’ on page 122 are part of the consensus rules.

Consensus rules associated with each JoinSplit description (section 7.2 ‘JoinSplit Description Encoding and Consensus’
on page 128), each Spend description (section 7.3 ‘Spend Description Encoding and Consensus’ on page 128), each Output
description (section 7.4 ‘Output Description Encoding and Consensus’ on page 129), and each Action description (section 7.5
‘Action Description Encoding and Consensus’ on page 130) MUST also be followed.

Notes:

• Previous versions of this speci�cation de�ned what is now the header �eld as a signed int32 �eld which was
required to be positive. The consensus rule that the fOverwintered �ag MUST NOT be set before Overwinter
has activated, has the same effect.

• The semantics of transactions with version number not equal to 1, 2, 3, 4, or 5 is not currently de�ned.

• The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before
Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to
version 2 transactions.

• [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number
are consensus rules.

• The transaction version number 0x7FFFFFFF, and the version group ID 0xFFFFFFFF, are reserved for use in
experimental extensions to transaction format or semantics on private testnets. They MUST NOT be used on
the Zcash Mainnet or Testnet .

• Note that a future upgrade might use any transaction version number or version group ID . It is likely that an
upgrade that changes the transaction version number or version group ID will also change the transaction
format, and software that parses transactions SHOULD take this into account.

• [Overwinter onward] The purpose of version group ID is to allow unambiguous parsing of “loose” transactions,
independent of the context of a block chain. Code that parses transactions is likely to be reused between
consensus branches as de�ned in [ZIP-200], and in that case the fOverwintered and version �elds alone may
be insuf�cient to determine the format to be used for parsing.

• A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for OP_CHECKSEQUENCEVERIFY as speci�ed in [BIP-68]. Zcash was forked from Bitcoin Core v0.11.2 and
does not currently support BIP 68.

• [Sapling onward] Because coinbase transactions have no Spend descriptions, the valueBalanceSapling �eld
of a coinbase transaction must have a negative or zero value. The negative case can only occur after Heartwood
activation, for transactions with [ZIP-213] shielded outputs.

126

• Prior to the Heartwood network upgrade , it was not possible for coinbase transactions to have shielded
outputs, and therefore the “coinbase maturity” rule and the requirement to spend coinbase outputs only in
transactions with no transparent outputs, applied to all coinbase outputs.

• [Canopy onward] The rule that Sapling outputs in coinbase transactions MUST decrypt to a note plaintext
with lead byte 0x02, also applies to funding stream outputs that specify Sapling shielded payment addresses,
if there are any.

• [N​U​5 onward] The �ags in flagsOrchard allow a version 5 transaction to declare that no funds are spent from
Orchard notes (by setting enableSpendsOrchard to 0), or that no new Orchard notes with nonzero values are
created (by setting enableOutputsOrchard to 0). This has two primary purposes. First, the enableSpendsOrchard
�ag is set to 0 in version 5 coinbase transactions to ensure that they cannot spend from existing Orchard
outputs. This maintains a restriction present in coinbase transactions for transparent , Sprout, or Sapling
funds, which would not otherwise be enforceable in the combined Action transfer design. Second, if a security
vulnerability were found that affected only the input side, or only the output side of the Action circuit , it
would be possible to use these �ags in a soft fork (i.e. a strictly contracting consensus change) to effectively
“switch off” non-zero-valued transfers only on the relevant side. Setting either of these �ags to 0 does not
affect the presence or validation of spend authorization signatures, or other consensus rules associated with
Action descriptions. These note spending and creation consensus rules are speci�ed as part of the Orchard
Action statement (section 4.18.4 ‘Action Statement (Orchard)’ on page 63).

• [N​U​5 onward] Because enableSpendsOrchard is set to 0 in version 5 coinbase transactions –which disables
non-zero-valued Orchard spends– the valueBalanceOrchard �eld of a coinbase transaction must have a
negative or zero value. The negative case can only occur for transactions with [ZIP-213] shielded outputs.

• [N​U​5 onward] The rule that nSpendsSapling, nOutputsSapling, and nActionsOrchard MUST all be less than
216, is technically redundant because a transaction that could violate this rule would not �t within the 2 MB
block size limit. It is included in order to simplify the security argument for balance preservation.

• [N​U​5 onward] The rule that from N​U​5 activation, the nExpiryHeight �eld of a coinbase transaction MUST be
equal to the block height , is needed to maintain the property that all transactions have unique transaction
IDs. All non-coinbase transactions necessarily have some effecting data that is unique across all transactions
in a valid block chain: either a tx_in referring to a previous unique tx_out, or a Spend description or Action
description referring to a unique nulli�er. However, coinbase transactions do not necessarily have any such
unique effecting data; the block height encoded in the coinbase script is unique in a valid block chain, but for
v5 transactions, it is not included in the transaction ID hash speci�ed by [ZIP-244]. Requiring nExpiryHeight
to be set to the block height ensures that the effecting data that contributes to the transaction ID is unique,
even for v5 coinbase transactions. In order to avoid the block height being limited to 499999999, we also
remove that bound on nExpiryHeight for coinbase transactions. For consistency, these changes apply to all
coinbase transactions, not just v5 coinbase transactions.

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:

• Transaction version 0 is not supported.

• A version 1 transaction is equivalent to a version 2 transaction with nJoinSplit = 0.

• The �elds nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig have been added.

• [Overwinter onward] The �eld nVersionGroupId has been added.

• [Sapling onward] The following �elds have been added: nSpendsSapling, vSpendsSapling, nOutputsSapling,
vOutputsSapling, and bindingSigSapling.

• [N​U​5 onward] In version 5 transactions, these �elds have been added: nConsensusBranchId, nActionsOrchard,
vActionsOrchard, flagsOrchard, valueBalanceOrchard, anchorOrchard, sizeProofsOrchard, proofsOrchard,
bindingSigOrchard, and vSpendAuthSigsOrchard.

• In Zcash it is permitted for a transaction to have no transparent inputs, provided at least one of nJoinSplit,
nSpendsSapling, nOutputsSapling, and nActionsOrchard are nonzero.

• A consensus rule limiting transaction size has been added. In Bitcoin there is a corresponding standard rule
but no consensus rule.

127

7.2 JoinSplit Description Encoding and Consensus #joinsplitencodingandconsensus

An abstract JoinSplit description, as described in section 3.5 ‘JoinSplit Transfers and Descriptions’ on page 19, is encoded
in a transaction as an instance of a JoinSplitDescription type:

Bytes Name Data Type Description

8 vpub_old uint64 A value vold
pub that the JoinSplit transfer removes from the

transparent transaction value pool .

8 vpub_new uint64 A value vnew
pub that the JoinSplit transfer inserts into the

transparent transaction value pool .

32 anchor byte[32] A root rtSprout of the Sprout note commitment tree at
some block height in the past, or the root produced by
a previous JoinSplit transfer in this transaction.

64 nullifiers byte[32][Nold] A sequence of nulli�ers of the input notes nfold
1..Nold .

64 commitments byte[32][Nnew] A sequence of note commitments for the output notes
cmnew

1..Nnew .

32 ephemeralKey byte[32] A Curve25519 public key epk.

32 randomSeed byte[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs byte[32][Nold] A sequence of message authentication tags h1..Nold

binding hSig to each ask of the JoinSplit description,
computed as described in section 4.11
‘Non-malleability (Sprout)’ on page 51.

296 † zkproof byte[296] An encoding of the zk-SNARK proof 𝜋ZKJoinSplit (see
section 5.4.10.1 ‘BCTV14’ on page 110).

192 ‡ zkproof byte[192] An encoding of the zk-SNARK proof 𝜋ZKJoinSplit (see
section 5.4.10.2 ‘Groth16’ on page 111).

1202 encCiphertexts byte[601][Nnew] A sequence of ciphertext components for the
encrypted output notes, Cenc

1..Nnew .

† BCTV14 proofs are used when the transaction version is 2 or 3, i.e. before Sapling activation.

‡ Groth16 proofs are used when the transaction version is ≥ 4, i.e. after Sapling activation.

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext , which is computed
as described in section 4.19 ‘In-band secret distribution (Sprout)’ on page 65.

Consensus rules applying to a JoinSplit description are given in section 4.3 ‘JoinSplit Descriptions’ on page 39.

7.3 Spend Description Encoding and Consensus #spendencodingandconsensus

Let LEBS2OSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

Let reprJ and 𝑞J be as de�ned in section 5.4.9.3 ‘Jubjub’ on page 102.

Let spendAuthSig be the spend authorization signature for this Spend transfer, and let 𝜋ZKSpend be the zk-SNARK
proof of the corresponding Spend statement . In a version 4 transaction these are encoded in the spendAuthSig
�eld and zkproof �eld respectively of the Spend description. In a version 5 transaction, spend authorization
signatures in vSpendAuthSigsSapling and proofs in vSpendProofsSapling are in one-to-one correspondence with
Spend descriptions in vSpendsSapling.

128

https://zips.z.cash/protocol/protocol.pdf#joinsplitencodingandconsensus
https://zips.z.cash/protocol/protocol.pdf#spendencodingandconsensus

An abstract Spend description, as described in section 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’
on page 20, is encoded in a transaction as an instance of a SpendDescriptionV4 or SpendDescriptionV5 type:

Bytes Name Data Type Description

32 cv byte[32] A value commitment to the value of the input note ,
LEBS2OSP256

(︀
reprJ(cv)

)︀
.

32 † anchor byte[32] A root of the Sapling note commitment tree at some block
height in the past, LEBS2OSP256

(︀
rtSapling)︀.

32 nullifier byte[32] The nulli�er of the input note , nf .

32 rk byte[32] The randomized validating key for spendAuthSig,
LEBS2OSP256

(︀
reprJ(rk)

)︀
.

192 † zkproof byte[192] An encoding of the zk-SNARK proof 𝜋ZKSpend (see section 5.4.10.2
‘Groth16’ on page 111).

64 † spendAuthSig byte[64] A signature authorizing this Spend.

† The anchor, zkproof, and spendAuthSig �elds are only present in a Spend description if the transaction version is
4. For v5 transactions, all Spend descriptions share the same anchor, which is encoded once as the anchorSapling
�eld of the transaction as described in section 7.1 ‘Transaction Encoding and Consensus’ on page 122. The zkproof and
spendAuthSig �elds have been moved into vSpendProofsSapling and vSpendAuthSigsSapling respectively for v5.

Consensus rule: LEOS2IP256(anchorSapling), if present, MUST be less than 𝑞J.

Other consensus rules applying to a Spend description are given in section 4.4 ‘Spend Descriptions’ on page 40.

7.4 Output Description Encoding and Consensus #outputencodingandconsensus

Let LEBS2OSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

Let reprJ and 𝑞J be as in section 5.4.9.3 ‘Jubjub’ on page 102, and ExtractJ(𝑟) as in section 5.4.9.4 ‘Coordinate Extractor for Jubjub’ on
page 104.

Let 𝜋ZKOutput be the zk-SNARK proof of the Output statement for this Output statement . In a version 4 transaction
this is encoded in the zkproof �eld of the Spend description. In a v5 transaction, proofs in vOutputProofsSapling
are in one-to-one correspondence with Output descriptions in vOutputsSapling.

An abstract Output description, described in section 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’
on page 20, is encoded in a transaction as an instance of an OutputDescriptionV4 or OutputDescriptionV5 type:

Bytes Name Data Type Description

32 cv byte[32] A value commitment to the value of the output note ,
LEBS2OSP256

(︀
reprJ(cv)

)︀
.

32 cmu byte[32] The 𝑢-coordinate of the note commitment for the output note ,
LEBS2OSP256(cm𝑢) where cm𝑢 = ExtractJ(𝑟)(cm).

32 ephemeralKey byte[32] An encoding of an ephemeral Jubjub public key,
LEBS2OSP256

(︀
reprJ(epk)

)︀
.

580 encCiphertext byte[580] A ciphertext component for the encrypted output note , Cenc.

80 outCiphertext byte[80] A ciphertext component that allows the holder of the outgoing
cipher key to recover the diversi�ed transmission key pkd and
ephemeral private key esk, hence the entire note plaintext .

192 † zkproof byte[192] An encoding of the zk-SNARK proof 𝜋ZKOutput (see section 5.4.10.2
‘Groth16’ on page 111).

† The zkproof �eld is only present in a Spend description if the transaction version is 4. This �eld has been moved
into the vOutputProofsSapling �eld of version 5 transactions.

129

https://zips.z.cash/protocol/protocol.pdf#outputencodingandconsensus

The ephemeralKey, encCiphertext, and outCiphertext �elds together form the transmitted note ciphertext , which
is computed as described in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67.

Consensus rule: LEOS2IP256(cmu) MUST be less than 𝑞J.

Other consensus rules applying to an Output description are given in section 4.5 ‘Output Descriptions’ on page 41.

7.5 Action Description Encoding and Consensus #actionencodingandconsensus

Let LEBS2OSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

Let reprP and 𝑞P be as de�ned in section 5.4.9.6 ‘Pallas and Vesta’ on page 105.

Let spendAuthSig be the spend authorization signature for this Action transfer from vSpendAuthSigsOrchard, and
let 𝜋ZKAction be the zk-SNARK proof of the corresponding Action statement . Spend authorization signatures in
the vSpendAuthSigsOrchard �eld of a version 5 transaction and aggregated proofs in the proofsOrchard �eld are in
one-to-one correspondence with Action descriptions in vActionsOrchard.

An abstract Action description, as described in section 3.7 ‘Action Transfers and their Descriptions’ on page 20, is encoded
in a transaction as an instance of an ActionDescription type:

Bytes Name Data Type Description

32 cv byte[32] A value commitment to the net value of the input note minus
the output note , LEBS2OSP256

(︀
reprP(cv)

)︀
.

32 nullifier byte[32] The nulli�er of the input note , nf .

32 rk byte[32] The randomized validating key for spendAuthSig,
LEBS2OSP256

(︀
reprP(rk)

)︀
.

32 cmx byte[32] The 𝑥-coordinate of the note commitment for the output note ,
LEBS2OSP256(cm𝑥) where cm𝑥 = ExtractP(cm).

32 ephemeralKey byte[32] An encoding of an ephemeral Pallas public key,
LEBS2OSP256

(︀
reprP(epk)

)︀
.

580 encCiphertext byte[580] A ciphertext component for the encrypted output note , Cenc.

80 outCiphertext byte[80] A ciphertext component that allows the holder of the outgoing
cipher key (which can be derived from a full viewing key) to
recover the recipient diversi�ed transmission key pkd and the
ephemeral private key esk, hence the entire note plaintext .

The ephemeralKey, encCiphertext, and outCiphertext �elds together form the transmitted note ciphertext , which
is computed as described in section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67.

Consensus rule: LEOS2IP256(cmx) MUST be less than 𝑞P.

Other consensus rules applying to an Action description are given in section 4.6 ‘Action Descriptions’ on page 42.

130

https://zips.z.cash/protocol/protocol.pdf#actionencodingandconsensus

7.6 Block Header Encoding and Consensus #blockheader

The Zcash block header format is as follows (this should be read in the context of consensus rules later in the
section):

Bytes Name Data Type Description

4 nVersion int32 The block version number indicates which set of
block validation rules to follow. The current and
only de�ned block version number for Zcash is 4.

32 hashPrevBlock byte[32] A SHA-256d hash in internal byte order of the
previous block ’s header. This ensures no previous
block can be changed without also changing this
block ’s header.

32 hashMerkleRoot byte[32] A SHA-256d hash in internal byte order. The merkle
root is derived from the hashes of all transactions
included in this block , ensuring that none of those
transactions can be modi�ed without modifying
the header.

32 hashReserved /
hashFinalSaplingRoot /
hashLightClientRoot /
hashBlockCommitments

byte[32] [Pre-Sapling] A reserved �eld, to be ignored.

[Sapling and Blossom only, pre-Heartwood] The
root LEBS2OSP256

(︀
rtSapling)︀ of the Sapling note

commitment tree corresponding to the �nal
Sapling treestate of this block .

[Heartwood and Canopy only, pre-N​U​5] The
hashChainHistoryRoot of this block [ZIP-221].

[N​U​5 onward] The hashBlockCommitments of this
block [ZIP-244].

4 nTime uint32 The block timestamp is a Unix epoch time (UTC)
when the miner started hashing the header
(according to the miner).

4 nBits uint32 An encoded version of the target threshold this
block ’s header hash must be less than or equal to,
in the same nBits format used by Bitcoin.
[Bitcoin-nBits]

32 nNonce byte[32] An arbitrary �eld that miners can change to modify
the header hash in order to produce a hash less
than or equal to the target threshold .

3 solutionSize compactSize The size of an Equihash solution in bytes (always
1344).

1344 solution byte[1344] The Equihash solution.

A block consists of a block header and a sequence of transactions. How transactions are encoded in a block is part
of the Zcash peer-to-peer protocol but not part of the consensus protocol.

Let ThresholdBits be as de�ned in section 7.7.3 ‘Difficulty adjustment’ on page 134, and let PoWMedianBlockSpan be the
constant de�ned in section 5.3 ‘Constants’ on page 74.

De�ne the median-time-past of a block to be the median (as de�ned in section 7.7.3 ‘Difficulty adjustment’ on page 134)
of the nTime �elds of the preceding PoWMedianBlockSpan blocks (or all preceding blocks if there are fewer than
PoWMedianBlockSpan). The median-time-past of a genesis block is not de�ned.

131

https://zips.z.cash/protocol/protocol.pdf#blockheader

Consensus rules:

• The block version number MUST be greater than or equal to 4.

• For a block at block height height, nBits MUST be equal to ThresholdBits(height).

• The block MUST pass the dif�culty �lter de�ned in section 7.7.2 ‘Difficulty filter’ on page 134.

• solution MUST represent a valid Equihash solution as de�ned in section 7.7.1 ‘Equihash’ on page 133.

• For each block other than the genesis block , nTime MUST be strictly greater than the median-time-past of
that block .

• For each block at block height 2 or greater on Mainnet , or block height 653606 or greater on Testnet , nTime
MUST be less than or equal to the median-time-past of that block plus 90 · 60 seconds.

• The size of a block MUST be less than or equal to 2000000 bytes.

• [Sapling and Blossom only, pre-Heartwood] hashLightClientRoot MUST be LEBS2OSP256
(︀
rtSapling)︀where

rtSapling is the root of the Sapling note commitment tree for the �nal Sapling treestate of this block .

• [Heartwood and Canopy only, pre-N​U​5] hashLightClientRoot MUST be set to the hashChainHistoryRoot
for this block , as speci�ed in [ZIP-221].

• [N​U​5 onward] hashBlockCommitments MUST be set to the value of hashBlockCommitments for this block , as
speci�ed in [ZIP-244].

• A block MUST have at least one transaction.

• The �rst transaction in a block MUST be a coinbase transaction, and subsequent transactions MUST NOT be
coinbase transactions.

• TODO: Other rules inherited from Bitcoin.

In addition, a full validator MUST NOT accept blocks with nTime more than two hours in the future according to its
clock. This is not strictly a consensus rule because it is nondeterministic, and clock time varies between nodes.
Also note that a block that is rejected by this rule at a given point in time may later be accepted.

Notes:
• The semantics of blocks with block version number not equal to 4 is not currently de�ned. Miners MUST

NOT create such blocks.

• The exclusion of blocks with block version number greater than 4 is not a consensus rule; such blocks may
exist in the block chain and MUST be treated identically to version 4 blocks by full validators. Note that a
future upgrade might use block version number either greater than or less than 4. It is likely that such an
upgrade will change the block header and/or transaction format, and software that parses blocks SHOULD
take this into account.

• The nVersion �eld is a signed integer. (It was speci�ed as unsigned in a previous version of this speci�cation.)
A future upgrade might use negative values for this �eld, or otherwise change its interpretation.

• There is no relation between the values of the version �eld of a transaction, and the nVersion �eld of a block
header.

• Like other serialized �elds of type compactSize, the solutionSize �eld MUST be encoded with the minimum
number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid a potential
attack in which a miner could test several distinct encodings of each Equihash solution against the dif�culty
�lter, rather than only the single intended encoding.

• As in Bitcoin, the nTime �eld MUST represent a time strictly greater than the median of the timestamps
of the past PoWMedianBlockSpan blocks. The Bitcoin Developer Reference [Bitcoin-Block] was previously in
error on this point, but has now been corrected.

• The rule limiting nTime to be no later than 90 · 60 seconds after the median-time-past is a retrospective
consensus change, applied as a soft fork in zcashd v2.1.1-1. It had not been violated by any block from the given
block heights in the consensus block chains of either Mainnet or Testnet .

• There are no changes to the block version number or format for Overwinter.

132

https://github.com/zcash/zcash/releases/tag/v2.1.1-1

• Although the block version number does not change for Sapling, the previously reserved (and ignored) �eld
hashReserved has been repurposed for hashFinalSaplingRoot. There are no other format changes.

• There are no changes to the block version number or format for Blossom.

• For Heartwood, the hashFinalSaplingRoot �eld is renamed to hashLightClientRoot. Once Heartwood acti-
vates, the meaning of this �eld changes according to [ZIP-221].

• There are no changes to the block version number or format for Canopy.

• For N​U​5, the hashLightClientRoot �eld is renamed to hashBlockCommitments. Once N​U​5 activates, the
meaning of this �eld changes according to [ZIP-244].

• There are no changes to the block version number or format for N​U​6.

• There are no changes to the block version number or format for N​U​6.1.

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:

• Block versions less than 4 are not supported.

• The hashReserved / hashFinalSaplingRoot / hashLightClientRoot / hashBlockCommitments, solutionSize,
and solution �elds have been added.

• The type of the nNonce �eld has changed from uint32 to byte[32].

• The maximum block size has been doubled to 2000000 bytes.

7.7 Proof of Work #pow

Zcash uses Equihash [BK2016] as its proof-of-work . The original motivations for changing the proof-of-work from
SHA-256d used by Bitcoin were described in [WG2016].

A block satis�es the proof-of-work if and only if:

• The solution �eld encodes a valid Equihash solution according to section 7.7.1 ‘Equihash’ on page 133.

• The block header satis�es the dif�culty check according to section 7.7.2 ‘Difficulty filter’ on page 134.

7.7.1 Equihash #equihash

An instance of the Equihash algorithm is parameterized by positive integers 𝑛 and 𝑘, such that 𝑛 is a multiple of
𝑘 + 1. We assume 𝑘 ≥ 3.

The Equihash parameters for Mainnet and Testnet are 𝑛 = 200, 𝑘 = 9.

Equihash is based on a variation of the Generalized Birthday Problem [AR2017]: given a sequence 𝑋1 .. N of 𝑛-bit

strings, �nd 2𝑘 distinct 𝑋𝑖𝑗
such that

⨁︀2𝑘

𝑗=1
𝑋𝑖𝑗

= 0.

In Equihash, N = 2
𝑛

𝑘+1 +1, and the sequence 𝑋1 .. N is derived from the block header and a nonce.

Let powheader :=
32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot

256-bit hashReserved 32-bit nTime 32-bit nBits 256-bit nNonce

For 𝑖 ∈ {1 .. 𝑁}, let 𝑋𝑖 = EquihashGen𝑛,𝑘(powheader, 𝑖).

EquihashGen is instantiated in section 5.4.1.11 ‘Equihash Generator’ on page 85.

De�ne I2BEBSP ◦
◦ (ℓ ◦

◦ N)× {0 .. 2ℓ−1} → B[ℓ] as in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

133

https://zips.z.cash/protocol/protocol.pdf#pow
https://zips.z.cash/protocol/protocol.pdf#equihash

A valid Equihash solution is then a sequence 𝑖 ◦
◦ {1 .. 𝑁}2𝑘

that satis�es the following conditions:

Generalized Birthday condition
2𝑘⨁︁

𝑗=1
𝑋𝑖𝑗

= 0.

Algorithm Binding conditions

• For all 𝑟 ∈ {1 .. 𝑘−1}, for all 𝑤 ∈ {0 .. 2𝑘−𝑟−1} :
2𝑟⨁︁

𝑗=1
𝑋𝑖𝑤·2𝑟+𝑗

has 𝑛·𝑟
𝑘+1 leading zeros; and

• For all 𝑟 ∈ {1 .. 𝑘}, for all 𝑤 ∈ {0 .. 2𝑘−𝑟−1} : 𝑖
𝑤·2𝑟+1..𝑤·2𝑟+2𝑟−1 < 𝑖

𝑤·2𝑟+2𝑟−1+1..𝑤·2𝑟+2𝑟 lexicographically.

Notes:

• This does not include a dif�culty condition, because here we are de�ning validity of an Equihash solution
independent of dif�culty.

• Previous versions of this speci�cation incorrectly speci�ed the range of 𝑟 to be {1 .. 𝑘−1} for both parts of the
algorithm binding condition. The implementation in zcashd was as intended.

An Equihash solution with 𝑛 = 200 and 𝑘 = 9 is encoded in the solution �eld of a block header as follows:

I2BEBSP21(𝑖1 − 1) I2BEBSP21(𝑖2 − 1) · · · I2BEBSP21(𝑖512 − 1)

Recall from section 5.2 ‘Bit layout diagrams’ on page 73 that the bits in the above diagram are ordered from most to least
signi�cant in each byte. For example, if the �rst 3 elements of 𝑖 are [69, 42, 221], then the corresponding bit array is:

I2BEBSP21(68) I2BEBSP21(41) I2BEBSP21(221 − 1)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit 10 8-bit 127 8-bit 255 · · ·

and so the �rst 7 bytes of solution would be [0, 2, 32, 0, 10, 127, 255].

Note: I2BEBSP is big-endian, while integer �eld encodings in powheader and in the instantiation of EquihashGen
are little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin,
but little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only shifting).

7.7.2 Dif�culty �lter #dif�culty

Let ToTarget be as de�ned in section 7.7.4 ‘nBits conversion’ on page 136.

Dif�culty is de�ned in terms of a target threshold , which is adjusted for each block according to the algorithm
de�ned in section 7.7.3 ‘Difficulty adjustment’ on page 134.

The dif�culty �lter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header (including
solutionSize and solution). The result is interpreted as a 256-bit integer represented in little-endian byte order,
which MUST be less than or equal to the target threshold given by ToTarget(nBits).

7.7.3 Dif�culty adjustment #diffadjustment

The desired time between blocks is called the block target spacing . Zcash uses a dif�culty adjustment algorithm
based on DigiShield v3/v4 [DigiByte-PoW], with simpli�cations and altered parameters, to adjust dif�culty to target
the desired block target spacing . Unlike Bitcoin, the dif�culty adjustment occurs after every block .

The constants PoWLimit, PreBlossomHalvingInterval, PoWAveragingWindow, PoWMaxAdjustDown, PoWMaxAdjustUp,
PoWDampingFactor, PreBlossomPoWTargetSpacing, and PostBlossomPoWTargetSpacing are speci�ed in section section 5.3
‘Constants’ on page 74.

134

https://zips.z.cash/protocol/protocol.pdf#difficulty
https://zips.z.cash/protocol/protocol.pdf#diffadjustment

Let ToCompact and ToTarget be as de�ned in section 7.7.4 ‘nBits conversion’ on page 136.

Let nTime(height) be the value of the nTime �eld in the header of the block at block height height.

Let nBits(height) be the value of the nBits �eld in the header of the block at block height height.

Block header �elds are speci�ed in section 7.6 ‘Block Header Encoding and Consensus’ on page 131.

De�ne:

mean(𝑆) :=
∑︀length(𝑆)

𝑖=1
𝑆𝑖

length(𝑆)

median(𝑆) := sorted(𝑆)ceiling((length(𝑆)+1)/2)

bound upper
lower (𝑥) := max(lower, min(upper, 𝑥)))

trunc(𝑥) :=
{︃

floor(𝑥) , if 𝑥 ≥ 0
−floor(−𝑥) , otherwise

IsBlossomActivated(height ◦
◦ N) := (height ≥ BlossomActivationHeight)

BlossomPoWTargetSpacingRatio := PreBlossomPoWTargetSpacing
PostBlossomPoWTargetSpacing

PostBlossomHalvingInterval := floor(PreBlossomHalvingInterval · BlossomPoWTargetSpacingRatio)

PoWTargetSpacing(height ◦
◦ N) :=

{︃
PreBlossomPoWTargetSpacing, if not IsBlossomActivated(height)
PostBlossomPoWTargetSpacing, otherwise

AveragingWindowTimespan(height ◦
◦ N) := PoWAveragingWindow · PoWTargetSpacing(height)

MinActualTimespan(height ◦
◦ N) := floor(AveragingWindowTimespan(height) · (1− PoWMaxAdjustUp))

MaxActualTimespan(height ◦
◦ N) := floor(AveragingWindowTimespan(height) · (1 + PoWMaxAdjustDown))

MedianTime(height ◦
◦ N) := median([nTime(𝑖) for 𝑖 from max(0, height− PoWMedianBlockSpan) up to height− 1])

ActualTimespan(height ◦
◦ N) := MedianTime(height)−MedianTime(height− PoWAveragingWindow)

ActualTimespanDamped(height ◦
◦ N) :=

AveragingWindowTimespan(height) + trunc
(︁

ActualTimespan(height)− AveragingWindowTimespan(height)
PoWDampingFactor

)︁
ActualTimespanBounded(height ◦

◦ N) := bound MaxActualTimespan(height)
MinActualTimespan(height) (ActualTimespanDamped(height))

MeanTarget(height ◦
◦ N) :=

⎧⎪⎨⎪⎩
PoWLimit, if height ≤ PoWAveragingWindow
mean([ToTarget(nBits(𝑖)) for 𝑖 from height−PoWAveragingWindow up to height−1]),

otherwise.

The target threshold for a given block height height is then calculated as:

Threshold(height ◦
◦ N) :=

⎧⎪⎪⎨⎪⎪⎩
PoWLimit, if height = 0
min(PoWLimit, floor

(︁
MeanTarget(height)

AveragingWindowTimespan

)︁
· ActualTimespanBounded(height)),

otherwise

ThresholdBits(height ◦
◦ N) := ToCompact(Threshold(height)).

Notes:

• The convention used for the height parameters to the functions MedianTime, MeanTarget, ActualTimespan,
ActualTimespanDamped, ActualTimespanBounded, Threshold, and ThresholdBits is that these functions use only
information from blocks preceding the given block height .

135

• When the median function is applied to a sequence of even length (which only happens in the de�nition of
MedianTime during the �rst PoWAveragingWindow − 1 blocks of the block chain), the element that begins the
second half of the sequence is taken. This corresponds to the zcashd implementation, but was not speci�ed
correctly in versions of this speci�cation prior to v2019.0.0.

On Testnet from block height 299188 onward, the dif�culty adjustment algorithm is changed to allow minimum-
dif�culty blocks, as described in [ZIP-205]. The Blossom network upgrade changes the minimum-dif�culty time
threshold to 6 times the block target spacing , as described in [ZIP-208]. These changes do not apply to Mainnet .

7.7.4 nBits conversion #nbits

Deterministic conversions between a target threshold and a “compact" nBits value are not fully de�ned in the
Bitcoin documentation [Bitcoin-nBits], and so we de�ne them here:

size(𝑥) := ceiling
(︁

bitlength(𝑥)
8

)︁
mantissa(𝑥) := floor

(︁
𝑥 · 2563−size(𝑥)

)︁
ToCompact(𝑥) :=

{︃
mantissa(𝑥) + 224 ·size(𝑥), if mantissa(𝑥) < 223

floor
(︁

mantissa(𝑥)
256

)︁
+ 224 ·(size(𝑥) + 1), otherwise

ToTarget(𝑥) :=
{︃

0, if 𝑥î 223 = 223

(𝑥î (223 − 1)) · 256floor(𝑥/224)−3, otherwise.

7.7.5 De�nition of Work #workdef

As explained in section 3.3 ‘The Block Chain’ on page 18, a node chooses the “best” block chain visible to it by �nding the
chain of valid blocks with the greatest total work.

Let ToTarget be as de�ned in section 7.7.4 ‘nBits conversion’ on page 136.

The work of a block with value nBits for the nBits �eld in its block header is de�ned as floor
(︂

2256

ToTarget(nBits) + 1

)︂
.

7.8 Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’
Reward #subsidies

In section 3.10 ‘Block Subsidy, Funding Streams, and Founders’ Reward’ on page 22 the block subsidy, miner subsidy,
Founders’ Reward , and funding streams are de�ned. Their amounts in zatoshi are calculated from the block height
using the formulae below.

Let the constants SlowStartInterval, PreBlossomHalvingInterval, PostBlossomHalvingInterval, BlossomActivationHeight,
MaxBlockSubsidy, and FoundersFraction be as de�ned in section 5.3 ‘Constants’ on page 74.

Let FundingStreams be as speci�ed in section 7.10.1 ‘ZIP 214 Funding Streams’ on page 140.

Let ZIP271ActivationHeight and ZIP271DisbursementAmount be as de�ned in [ZIP-271].

SlowStartShift ◦
◦ N := SlowStartInterval

2

SlowStartRate ◦
◦ N := MaxBlockSubsidy

SlowStartInterval

Halving(height ◦
◦ N) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if height < SlowStartShift
floor

(︁
height− SlowStartShift

PreBlossomHalvingInterval

)︁
, if not IsBlossomActivated(height)

floor
(︁

BlossomActivationHeight− SlowStartShift
PreBlossomHalvingInterval + height− BlossomActivationHeight

PostBlossomHalvingInterval

)︁
, otherwise

136

https://zips.z.cash/protocol/protocol.pdf#nbits
https://zips.z.cash/protocol/protocol.pdf#workdef
https://zips.z.cash/protocol/protocol.pdf#subsidies

BlockSubsidy(height ◦
◦ N) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SlowStartRate · height, if height < SlowStartShift

SlowStartRate · (height + 1), if SlowStartShift ≤ height
and height < SlowStartInterval

floor
(︁

MaxBlockSubsidy
2Halving(height)

)︁
, if SlowStartInterval ≤ height

and not IsBlossomActivated(height)

floor
(︂

MaxBlockSubsidy
BlossomPoWTargetSpacingRatio · 2Halving(height)

)︂
, otherwise

FoundersReward(height ◦
◦ N) :=

{︃
BlockSubsidy(height) · FoundersFraction, if Halving(height) < 1
0, otherwise

for fs ∈ FundingStreams, fs.Value(height) :=⎧⎪⎪⎨⎪⎪⎩
0, if height < CanopyActivationHeight
floor

(︁
BlockSubsidy(height) · fs.Numerator

fs.Denominator

)︁
, if fs.StartHeight ≤ height and height < fs.EndHeight

0, otherwise

totalDeferredOutput(height) :=
∑︀

fs ∈ FundingStreams : fs.Recipient(height) = DEFERRED_POOL
fs.Value(height)

totalDeferredInput(height) :=
{︃

ZIP271DisbursementAmount, if height = ZIP271ActivationHeight
0, otherwise.

MinerSubsidy(height) := BlockSubsidy(height)− FoundersReward(height)−
∑︀

fs ∈ FundingStreams
fs.Value(height).

7.9 Payment of Founders’ Reward #foundersreward

The Founders’ Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses
transparent addresses, depending on the block height .

For Mainnet , FounderAddressList1..NumFounderAddresses is:

[“t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd”, “t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3”,
“t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR”, “t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF”,
“t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx”, “t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S”,
“t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb”, “t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB”,
“t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2”, “t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk”,
“t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ”, “t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD”,
“t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG”, “t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD”,
“t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4”, “t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4”,
“t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi”, “t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY”,
“t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X”, “t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj”,
“t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLxrVY”, “t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU”,
“t3P5KKX97gXYFSaSjJPiruQEX84yF5z3Tjq”, “t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9”,
“t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj”, “t3fJZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX”,
“t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW”, “t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF”,
“t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME”, “t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec”,
“t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm”, “t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r”,
“t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR”, “t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo”,
“t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP”, “t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z”,
“t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV”, “t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r”,
“t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY”, “t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN”,
“t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L”, “t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx”,
“t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME”, “t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa”,
“t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f”, “t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M”,
“t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv”, “t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN”]

137

https://zips.z.cash/protocol/protocol.pdf#foundersreward

For Testnet , FounderAddressList1..NumFounderAddresses is:

[“t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi”, “t2N9PH9Wk9xjqYg9iin1Ua3aekJqfAtE543”,
“t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2”, “t2ENg7hHVqqs9JwU5cgjvSbxnT2a9USNfhy”,
“t2BkYdVCHzvTJJUTx4yZB8qeegD8QsPx8bo”, “t2J8q1xH1EuigJ52MfExyyjYtN3VgvshKDf”,
“t2Crq9mydTm37kZokC68HzT6yez3t2FBnFj”, “t2EaMPUiQ1kthqcP5UEkF42CAFKJqXCkXC9”,
“t2F9dtQc63JDDyrhnfpzvVYTJcr57MkqA12”, “t2LPirmnfYSZc481GgZBa6xUGcoovfytBnC”,
“t26xfxoSw2UV9Pe5o3C8V4YybQD4SESfxtp”, “t2D3k4fNdErd66YxtvXEdft9xuLoKD7CcVo”,
“t2DWYBkxKNivdmsMiivNJzutaQGqmoRjRnL”, “t2C3kFF9iQRxfc4B9zgbWo4dQLLqzqjpuGQ”,
“t2MnT5tzu9HSKcppRyUNwoTp8MUueuSGNaB”, “t2AREsWdoW1F8EQYsScsjkgqobmgrkKeUkK”,
“t2Vf4wKcJ3ZFtLj4jezUUKkwYR92BLHn5UT”, “t2K3fdViH6R5tRuXLphKyoYXyZhyWGghDNY”,
“t2VEn3KiKyHSGyzd3nDw6ESWtaCQHwuv9WC”, “t2F8XouqdNMq6zzEvxQXHV1TjwZRHwRg8gC”,
“t2BS7Mrbaef3fA4xrmkvDisFVXVrRBnZ6Qj”, “t2FuSwoLCdBVPwdZuYoHrEzxAb9qy4qjbnL”,
“t2SX3U8NtrT6gz5Db1AtQCSGjrpptr8JC6h”, “t2V51gZNSoJ5kRL74bf9YTtbZuv8Fcqx2FH”,
“t2FyTsLjjdm4jeVwir4xzj7FAkUidbr1b4R”, “t2EYbGLekmpqHyn8UBF6kqpahrYm7D6N1Le”,
“t2NQTrStZHtJECNFT3dUBLYA9AErxPCmkka”, “t2GSWZZJzoesYxfPTWXkFn5UaxjiYxGBU2a”,
“t2RpffkzyLRevGM3w9aWdqMX6bd8uuAK3vn”, “t2JzjoQqnuXtTGSN7k7yk5keURBGvYofh1d”,
“t2AEefc72ieTnsXKmgK2bZNckiwvZe3oPNL”, “t2NNs3ZGZFsNj2wvmVd8BSwSfvETgiLrD8J”,
“t2ECCQPVcxUCSSQopdNquguEPE14HsVfcUn”, “t2JabDUkG8TaqVKYfqDJ3rqkVdHKp6hwXvG”,
“t2FGzW5Zdc8Cy98ZKmRygsVGi6oKcmYir9n”, “t2DUD8a21FtEFn42oVLp5NGbogY13uyjy9t”,
“t2UjVSd3zheHPgAkuX8WQW2CiC9xHQ8EvWp”, “t2TBUAhELyHUn8i6SXYsXz5Lmy7kDzA1uT5”,
“t2Tz3uCyhP6eizUWDc3bGH7XUC9GQsEyQNc”, “t2NysJSZtLwMLWEJ6MH3BsxRh6h27mNcsSy”,
“t2KXJVVyyrjVxxSeazbY9ksGyft4qsXUNm9”, “t2J9YYtH31cveiLZzjaE4AcuwVho6qjTNzp”,
“t2QgvW4sP9zaGpPMH1GRzy7cpydmuRfB4AZ”, “t2NDTJP9MosKpyFPHJmfjc5pGCvAU58XGa4”,
“t29pHDBWq7qN4EjwSEHg8wEqYe9pkmVrtRP”, “t2Ez9KM8VJLuArcxuEkNRAkhNvidKkzXcjJ”,
“t2D5y7J5fpXajLbGrMBQkFg2mFN8fo3n8cX”, “t2UV2wr1PTaUiybpkV3FdSdGxUJeZdZztyt”]

Note: For Testnet only, the addresses from index 4 onward have been changed from what was implemented at
launch. This re�ects an upgrade on Testnet , starting from block height 53127. [Zcash-Issue2113]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.

Let SlowStartShift and Halving be de�ned as in the previous section.

De�ne:

FounderAddressChangeInterval := ceiling
(︁

SlowStartShift + PreBlossomHalvingInterval
NumFounderAddresses

)︁
FounderAddressAdjustedHeight(height ◦

◦ N) :={︃
height, if not IsBlossomActivated(height),
BlossomActivationHeight + floor

(︁
height− BlossomActivationHeight
BlossomPoWTargetSpacingRatio

)︁
, otherwise

FounderAddressIndex(height ◦
◦ N) := 1 + floor

(︁
FounderAddressAdjustedHeight(height)

FounderAddressChangeInterval

)︁
FoundersRewardLastBlockHeight := max({height ◦

◦ N | Halving(height) < 1}).

Let FounderRedeemScriptHash(height ◦
◦ N) be the standard redeem script hash, as speci�ed in [Bitcoin-Multisig], for

the P2SH multisig address with Base58Check form given by FounderAddressList FounderAddressIndex(height).

Consensus rule: [Pre-Canopy] A coinbase transaction at height ∈ {1 .. FoundersRewardLastBlockHeight}MUST
include at least one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form
OP_HASH160 FounderRedeemScriptHash(height) OP_EQUAL as its scriptPubKey.

138

Notes:

• No Founders’ Reward is required to be paid for height > FoundersRewardLastBlockHeight (i.e. after the �rst
halving), or for height = 0 (i.e. the genesis block), or after Canopy activation.

• The Founders’ Reward addresses are not treated specially in any other way, and there can be other outputs
to them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with
height ∈ {1 .. FoundersRewardLastBlockHeight} to have other outputs, possibly to the same address, that do not
meet the criterion in the above consensus rule, as long as at least one output meets it.

• The assertion FounderAddressIndex(FoundersRewardLastBlockHeight) ≤ NumFounderAddresses holds, ensuring
that the Founders’ Reward address index remains in range for the whole period in which the Founders’
Reward is paid.

Non-normative notes:

• [Blossom onward] FoundersRewardLastBlockHeight = 1046399.

• Blossom is not intended to change the total Founders’ Reward or the effective period over which it is paid.

7.10 Payment of Funding Streams, Deferred Lockbox, and Lockbox Disbursement
#fundingstreams

Let PostBlossomHalvingInterval be as de�ned in section 5.3 ‘Constants’ on page 74.

Let Halving be as de�ned in section 7.8 on page 136.

Let ZIP271ActivationHeight, ZIP271DisbursementAmount, ZIP271DisbursementChunks, and ZIP271DisbursementAddress
be as de�ned for the relevant network (Mainnet or Testnet) in [ZIP-271].

[ZIP-207] de�nes a consensus mechanism to require coinbase transactions to include funding stream outputs,
intended to provide funds from issuance for Zcash development. [ZIP-2001] extended this mechanism to support
directing funds from issuance into a reserve, the deferred development fund lockbox . [ZIP-271] de�nes a one-time
disbursal of funds from this lockbox in order to support the Community And Coinholder Funding Model [ZIP-1016].

The funding streams are paid to one of a pre-de�ned set of recipients, depending on the block height . Each
recipient identi�er is either the string encoding of an address to be paid by an output in the coinbase transaction,
or the identi�er DEFERRED_POOL. The latter indicates that the value is to be paid into the deferred development
fund lockbox .

A funding stream fs is de�ned by a block subsidy fraction (represented as a numerator and denominator), a start
block height (inclusive), an end block height (exclusive), and a sequence of recipients:

fs.Numerator ◦
◦ N+

fs.Denominator ◦
◦ N+

fs.StartHeight ◦
◦ N

fs.EndHeight ◦
◦ N

fs.Recipients ◦
◦

(︀
BY[N] ∪{DEFERRED_POOL}

)︀[N+].

De�ne:

HeightForHalving(halving ◦
◦ N+) := min({height ◦

◦ N | Halving(height) = halving})
FSRecipientChangeInterval := PostBlossomHalvingInterval/48

FSRecipientPeriod(height) := floor
(︁

height− (HeightForHalving(1)− PostBlossomHalvingInterval)
FSRecipientChangeInterval

)︁
.

139

https://zips.z.cash/protocol/protocol.pdf#fundingstreams

For each funding stream fs, de�ne:

fs.RecipientIndex(height) := 1 + FSRecipientPeriod(height)− FSRecipientPeriod(fs.StartHeight)
fs.Recipient(height) := fs.Recipients fs.RecipientIndex(height)

fs.NumRecipients := fs.RecipientIndex(fs.EndHeight− 1).

fs.Recipients MUST be of length fs.NumRecipients. Each element of fs.Recipients MUST represent either a transparent
P2SH address as speci�ed in section 5.6.1.1 ‘Transparent Addresses’ on page 113, or a Sapling shielded payment address as
speci�ed in section 5.6.3.1 ‘Sapling Payment Addresses’ on page 115, or the identi�er DEFERRED_POOL.

A funding stream fs is “active” at block height height when fs.Value(height) > 0, where fs.Value is de�ned in section 7.8
‘Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’ Reward’ on page 136.

Consensus rule: [Canopy onward] In each block with coinbase transaction cb at block height height, cb MUST
contain at least the given number of distinct outputs for each of the following:

• for each funding stream fs active at that block height with a recipient identi�er other than DEFERRED_POOL
given by fs.Recipient(height), one output that pays fs.Value(height) zatoshi in the prescribed way to the address
represented by that recipient identi�er;

• [N​U​6.1 onward] if the block height is ZIP271ActivationHeight, ZIP271DisbursementChunks equal outputs paying
a total of ZIP271DisbursementAmount zatoshi in the prescribed way to the Key-Holder Organizations’ P2SH
multisig address represented by ZIP271DisbursementAddress, as speci�ed by [ZIP-271].

The term “prescribed way” is de�ned as follows:

• The prescribed way to pay a transparent P2SH address is to use a standard P2SH script of the form OP_HASH160
fs.RedeemScriptHash(height) OP_EQUAL as the scriptPubKey. Here fs.RedeemScriptHash(height) is the standard
redeem script hash for the recipient address for fs.Recipient(height) in Base58Check form.

Standard redeem script hashes are de�ned in [ZIP-48] for P2SH multisig addresses, or [Bitcoin-P2SH] for
other P2SH addresses.

• The prescribed way to pay a Sapling or Orchard payment address is de�ned in [ZIP-213], using the post-
Heartwood consensus rules speci�ed for Sapling and Orchard outputs of coinbase transactions in section 7.1.2
‘Transaction Consensus Rules’ on page 124.

Notes:

• The funding stream addresses are not treated specially in any other way, and there can be other outputs to
them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction to have other
outputs, possibly to the same address, that do not meet the criterion in the above consensus rule, as long as
there is at least the given number of distinct outputs that meet it, disjointly for each funding item.

• For clari�cation, if there are multiple active funding streams or lockbox disbursements with the same recipient
identi�er and/or value, there MUST be at least the given number of distinct outputs for each of them.

• Up to and including N​U​6.1 there have been no funding streams or lockbox disbursements de�ned with a
shielded payment address as a recipient. That might change in future, so implementations are encouraged to
support Sapling and Orchard outputs as recipients, as permitted by [ZIP-213] and [ZIP-207].

7.10.1 ZIP 214 Funding Streams #zip214fundingstreams

Let CanopyActivationHeight be as de�ned in section 5.3 ‘Constants’ on page 74.

[ZIP-214] Revision 0 de�nes these funding streams for Mainnet :

140

https://zips.z.cash/protocol/protocol.pdf#zip214fundingstreams

Stream Numerator Denominator Start height End height
FS_ZIP214_BP 7 100 1046400 2726400
FS_ZIP214_ZF 5 100 1046400 2726400
FS_ZIP214_MG 8 100 1046400 2726400

It also de�nes these funding streams for Testnet :

Stream Numerator Denominator Start height End height
FS_ZIP214_BP 7 100 1028500 2796000
FS_ZIP214_ZF 5 100 1028500 2796000
FS_ZIP214_MG 8 100 1028500 2796000

Notes:

• The block heights of halvings are different between Testnet and Mainnet , as a result of different activation
block heights for the Blossom network upgrade (which changed the block target spacing). The end height of
these funding streams corresponds to the second halving on each network .

• On Testnet , the activation block height of Canopy is before the �rst halving . Therefore, the consequence of
the above rules for Testnet is that the amount sent to each Zcash Development Fund recipient address will
initially (before Testnet block height 1116000) be double the number of currency units as the corresponding
initial amount on Mainnet . This reduces to the same number of currency units as on Mainnet , from Testnet
block heights 1116000 (inclusive) to 2796000 (exclusive).

[N​U​6 onward] [ZIP-214] Revision 1 de�nes these funding streams for Mainnet :

Stream Numerator Denominator Start height End height

FS_FPF_ZCG 8 100 2726400 3146400
FS_DEFERRED 12 100 2726400 3146400

It also de�nes these funding streams for Testnet :

Stream Numerator Denominator Start height End height

FS_FPF_ZCG 8 100 2976000 3396000
FS_DEFERRED 12 100 2976000 3396000

Note: The new funding streams begin at the second halving for Mainnet, but the second halving on Testnet
occurred prior to the introduction of the new funding streams. For both new funding streams on each network, the
associated duration corresponds to approximately one year’s worth of blocks.

[N​U​6.1 onward] [ZIP-214] Revision 2 de�nes these funding streams for Mainnet :

Stream Numerator Denominator Start height End height

FS_FPF_ZCG_H3 8 100 3146400 4406400
FS_CCF_H3 12 100 3146400 4406400

It also de�nes these funding streams for Testnet :

Stream Numerator Denominator Start height End height

FS_FPF_ZCG_H3 8 100 3536500 4476000
FS_CCF_H3 12 100 3536500 4476000

141

7.11 Changes to the Script System #scripts

The OP_CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of SIGHASH
transaction hashes.

7.12 Bitcoin Improvement Proposals #bips

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise speci�ed in this section.

All of the BIPs referenced below should be interpreted by replacing “BTC”, or “bitcoin” used as a currency unit, with
“ZEC”; and “satoshi” with “zatoshi”.

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the Zcash genesis block , i.e. any activation rules or exceptions for particular
blocks in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-65], [BIP-66].

The effect of [BIP-34] has been incorporated into the consensus rules (section 7.1.2 ‘Transaction Consensus Rules’ on
page 124). This excludes the Mainnet and Testnet genesis blocks, for which the “height in coinbase” was inadvertently
omitted.

[BIP-13] applies with the changes to address version bytes described in section 5.6.1.1 ‘Transparent Addresses’ on page 113.

[BIP-111] applies from peer-to-peer protocol version 170004 onward; that is:

• references to protocol version 70002 are to be replaced by 170003;

• references to protocol version 70011 are to be replaced by 170004;

• the reference to protocol version 70000 is to be ignored (Zcash nodes have supported Bloom-�ltered connec-
tions since launch).

8 Differences from the Zerocash paper #differences

8.1 Transaction Structure #trstructure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition to
the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).

In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-speci�c operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a
shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent , and value
stored in output notes of JoinSplit transfers or Output transfers) as shielded .) This was not possible in the Zerocash
design without using multiple transactions. It also allows transparent and shielded transfers to happen atomically
— possibly under the control of nontrivial script conditions, at some cost in distinguishability.

Computation of SIGHASH transaction hashes, as described in section 4.10 ‘SIGHASH Transaction Hashing’ on page 50,
was changed to clean up handling of an error case for SIGHASH_SINGLE, to remove the special treatment of
OP_CODESEPARATOR, and to include Zcash-speci�c �elds in the hash [ZIP-76].

8.2 Memo Fields #memodiffs

Zcash adds a memo �eld sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15.

142

https://zips.z.cash/protocol/protocol.pdf#scripts
https://zips.z.cash/protocol/protocol.pdf#bips
https://zips.z.cash/protocol/protocol.pdf#differences
https://zips.z.cash/protocol/protocol.pdf#trstructure
https://zips.z.cash/protocol/protocol.pdf#memodiffs

8.3 Uni�cation of Mints and Pours #mintsandpours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes:

• a “Mint” transaction takes value from UTXOs (unspent transaction outputs) as input and produces a new
shielded note as output.

• a “Pour” transaction takes up to Nold shielded notes as input, and produces up to Nnew shielded notes and a
UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

[Pre-Sapling] In Zcash, the sequence of operations added to a transaction (see section 8.1 ‘Transaction Structure’ on
page 142) consists only of JoinSplit transfers. A JoinSplit transfer is a Pour operation generalized to take a UTXO as input,
allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash transaction
that takes input from a UTXO can produce up to Nnew output notes, improving the indistinguishability properties of
the protocol. A related change conceals the input arity of the JoinSplit transfer: an unused (zero-valued) input is
indistinguishable from an input that takes value from a note.

This uni�cation also simpli�es the �x to the Faerie Gold attack described below, since no special case is needed for
Mints.

[Sapling onward] In Sapling, there are still no “Mint” transactions. Instead of JoinSplit transfers, there are Spend
transfers and Output transfers. These make use of Pedersen value commitments to represent the shielded values
that are transferred. Because these commitments are additively homomorphic, it is possible to check that all Spend
transfers and Output transfers balance; see section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52 for detail.
This reduces the granularity of the circuit, allowing a substantial performance improvement (orthogonal to other
Sapling circuit improvements) when the numbers of shielded inputs and outputs are signi�cantly different. This
comes at the cost of revealing the exact number of shielded inputs and outputs, but dummy (zero-valued) outputs
are still possible.

8.4 Faerie Gold attack and �x #faeriegold

When a shielded note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nulli�er of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor rcm, as well as ρ. However nothing prevents
creating multiple notes with different v and rcm (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are veri�ed as valid by
Receive (as de�ned in [BCGGMTV2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security de�nitions given in [BCGGMTV2014]. The issue could be framed as a
problem either with the de�nition of Completeness, or the de�nition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nulli�er does
not appear on the ledger. This does not take into account the possibility that distinct notes, which are validly
received, could have the same nulli�er. That is, the security de�nition depends on a protocol detail –nulli�ers–
that is not part of the intended abstract security property, and that could be implemented incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another note
for which the adversary does not know the spending key, which violates an intuitive conception of global
balance.

143

https://zips.z.cash/protocol/protocol.pdf#mintsandpours
https://zips.z.cash/protocol/protocol.pdf#faeriegold

These problems with the security de�nitions need to be repaired; how to do so is discussed in [Hopwood2022], but
that is outside the scope of this speci�cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key.

[Sprout] Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the
fact that all of the nulli�ers in JoinSplit descriptions that appear in a valid block chain must be distinct. This is true
regardless of whether the nulli�ers corresponded to real or dummy notes (see section 4.8.1 ‘Dummy Notes (Sprout)’
on page 46). The nulli�ers are used as input to hSigCRH to derive a public value hSig which uniquely identi�es the
transaction, as described in section 4.3 ‘JoinSplit Descriptions’ on page 39. (hSig was already used in Zerocash in a way that
requires it to be unique in order to maintain indistinguishability of JoinSplit descriptions; adding the nulli�ers
to the input of the hash used to calculate it has the effect of making this uniqueness property robust even if the
transaction creator is an adversary.)

[Sprout] The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRFρϕ. The
correct construction of ρ for each output note is enforced by section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60 in
the JoinSplit statement .

[Sprout] Now even if the creator of a JoinSplit description does not choose ϕ randomly, uniqueness of nulli�ers
and collision resistance of both hSigCRH and PRFρ will ensure that the derived ρ values are unique, at least for any
two JoinSplit descriptions that get into a valid block chain. This is suf�cient to prevent the Faerie Gold attack.

A variation on the attack attempts to cause the nulli�er of a sent note to be repeated, without repeating ρ. However,
since the nulli�er is computed as PRFnfSprout

ask
(ρ) or PRFnfSapling

nk (ρ⋆) (for Orchard, see below); this is only possible if

the adversary �nds a collision across both inputs on PRFnfSprout or PRFnfSapling, which is assumed to be infeasible —
see section 4.1.2 ‘Pseudo Random Functions’ on page 25.

[Sprout] Crucially, “nulli�er integrity” is enforced whether or not the enforceMerklePath𝑖 �ag is set for an input note
(section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60). If this were not the case then an adversary could perform the
attack by creating a zero-valued note with a repeated nulli�er, since the nulli�er would not depend on the value.

[Sprout] Nulli�er integrity also prevents a “roadblock attack” in which the adversary sees a victim’s transaction,
and is able to publish another transaction that is mined �rst and blocks the victim’s transaction. This attack would
be possible if the public value(s) used to enforce uniqueness of ρ could be chosen arbitrarily by the transaction
creator: the victim’s transaction, rather than the adversary’s, would be considered to be repeating these values. In
the chosen solution that uses nulli�ers for these public values, they are enforced to be dependent on spending
keys controlled by the original transaction creator (whether or not each input note is a dummy), and so a roadblock
attack cannot be performed by another party who does not know these keys.

[Sapling onward] In Sapling, uniqueness of ρ is ensured by making it dependent on the position of the note
commitment in the Sapling note commitment tree . Speci�cally, ρ = cm+ [pos]𝒥 Sapling, where 𝒥 Sapling is a generator
independent of the generators used in NoteCommitSapling. Therefore, ρ commits uniquely to the note and its position,
and this commitment is collision-resistant by the same argument used to prove collision resistance of Pedersen
hashes. Note that it is possible for two distinct Sapling positioned notes (having different ρ values and nulli�ers,
but different note positions) to have the same note commitment , but this causes no security problem. Roadblock
attacks are not possible because a given note position does not repeat for outputs of different transactions in the
same block chain. Note that this depends on the fact that the value is bound by the note commitment : it could
be the case that the adversary uses a dummy note that is not required to have a note commitment in the note
commitment tree when it is spent. If this happens and the victim’s note is not a dummy, the note commitments
will differ and so will the nulli�ers. If both notes are dummies, the adversary cannot know the inputs to the note
commitment since they are generated at random for the victim’s spend, regardless of the adversary’s potential
knowledge of viewing keys.

[N​U​5 onward] In Orchard, the nulli�er is computed using a construction that combines elliptic curve cryptography
and the Poseidon-based PRFnfOrchard in a way that, for privacy, aims to provide defence in depth against potential
weaknesses in either (see [Zcash-Orchard, Section 3.5 Nulli�ers] and section 4.16 ‘Computing ρ values and Nullifiers’
on page 57).

144

Resistance to Faerie Gold attacks, on the other hand, depends entirely on hardness of the Discrete Logarithm
Problem. The ρ value of a note created in a given Action transfer is obtained from the nulli�er of the note spent
in that Action transfer; this ensures (without any cryptographic assumption) that all ρ values of notes added to
the note commitment tree are unique. Then, the nulli�er derivation can be considered as computing a vector
Pedersen commitment on input that includes ρ, so that the binding property of that commitment scheme ensures
that Orchard nulli�ers will be unique. (Speci�cally, this is a Sinsemilla commitment with an additional term having
base 𝒦Orchard, truncated to its 𝑥-coordinate. The 𝑥-coordinate truncation cannot harm collision resistance because,
assuming hardness of the Discrete Logarithm Problem on the Pallas curve, section 5.4.1.9 ‘Security argument’ on page 82
covers the case where the additional term is added.) Roadblock attacks are not possible because ρ does not repeat
for notes in the note commitment tree , and by a corresponding argument to Sapling for dummy notes.

8.5 Internal hash collision attack and �x #internalh

The Zerocash security proof requires that the composition of COMMrcm and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMrcm and COMMs in section 5.1 of the
paper did not meet the de�nition of a binding commitment at a 128-bit security level. Speci�cally, the internal hash
of apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to �nd distinct pairs (apk, ρ) and (apk

′, ρ′) with colliding outputs of the truncated
hash, and therefore the same note commitment . This would have allowed such an attacker to break the Balance
property by double-spending notes, potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single hash evaluation for the commitment: SHA-256 for Sprout notes,
PedersenHashToPoint for Sapling notes, and SinsemillaHashToPoint for Orchard notes. The motivation for the nested
construction in Zerocash was to allow Mint transactions to be publically veri�ed without requiring zk-SNARK proofs
([BCGGMTV2014, section 1.3, under step 3]). Since Zcash combines “Mint” and “Pour” transactions into generalized
JoinSplit transfers (for Sprout), or Spend transfers and Output transfers (for Sapling), or Action transfers (for
Orchard), and each transfer always uses a zk-SNARK proof , Zcash does not require the nesting. A side bene�t is that
this reduces the cost of computing the note commitments: for Sprout it reduces the number of SHA256Compress
evaluations needed to compute each note commitment from three to two, saving a total of four SHA256Compress
evaluations in the JoinSplit statement .

[Sprout] Note: The full SHA-256 algorithm is used for NoteCommitSprout, with randomness appended after the
commitment input. The commitment input can be split into two blocks, call them 𝑥 of length 64 bytes, and 𝑦 of the
remaining length (9 bytes). Let COMM′

𝑟(𝑧 ◦
◦ BY[41]) be the commitment scheme that applies SHA256Compress with the

�rst 32 bytes of 𝑧 in the IV, and the rest of 𝑧 (9 bytes), the randomness 𝑟 (32 bytes), and padding up to 64 bytes in the
SHA256Compress input block. Then we have NoteCommitSprout

𝑟 (𝑥 || 𝑦) = COMM′
𝑟(SHA256Compress(𝑥) || 𝑦). Suppose

we make the reasonable assumption that COMM′ is a computationally binding and hiding commitment scheme.
If SHA256Compress is collision-resistant with the standard IV14, then NoteCommitSprout is as secure for binding as
COMM′. Also NoteCommitSprout is as secure for hiding as COMM′ (without any assumption on SHA256Compress). This
effectively rules out potential concerns about the Merkle–Damgård structure [Damgård1989] of SHA-256 causing
any security problem for NoteCommitSprout.

[Sprout] Note: Sprout note commitments are not statistically hiding , so for Sprout notes, Zcash does not support
the “everlasting anonymity” property described in [BCGGMTV2014, section 8.1], even when used as described in
that section. While it is possible to de�ne a statistically hiding , computationally binding commitment scheme for
this use at a 128-bit security level, the overhead of doing so within the JoinSplit statement was not considered to
justify the bene�ts.

[Sapling onward] In Sapling, Pedersen or Sinsemilla commitments are used instead of SHA256Compress. These
commitments are statistically hiding , and so “everlasting anonymity” is supported for Sapling and Orchard notes
under the same conditions as in Zerocash (by the protocol, not necessarily by zcashd). Note that diversi�ed payment
addresses can be linked if the Decisional Dif�e–Hellman Problem on the Jubjub curve or the Pallas curve can be
broken.

14If SHA256Compress is not collision-resistant with the standard IV, then SHA-256 is not collision-resistant for a 2-block input.

145

https://zips.z.cash/protocol/protocol.pdf#internalh

8.6 Changes to PRF inputs and truncation #truncation

The format of inputs to the PRFs instantiated in section 5.4.2 ‘Pseudo Random Functions’ on page 86 has changed relative
to Zerocash. There is also a requirement for another PRF, PRFρ, which must be domain-separated from the others.

In the Zerocash protocol, ρold
𝑖 is truncated from 256 to 254 bits in the input to PRFsn (which corresponds to PRFnfSprout

in Zcash). Also, hSig is truncated from 256 to 253 bits in the input to PRFpk. These truncations are not taken into
account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in
[BCGGMTV2014, Appendix D].

In more detail:

• In the argument relating H and a2, it is stated that in a2, “for each 𝑖 ∈ {1, 2}, sn𝑖 := PRFsn
ask

(ρ) for a random
(and not previously used) ρ”. It is also argued that “the calls to PRFsn

ask
are each by de�nition unique”. The latter

assertion depends on the fact that ρ is “not previously used”. However, the argument is incorrect because the
truncated input to PRFsn

ask
, i.e. [ρ]254, may repeat even if ρ does not.

• In the same argument, it is stated that “with overwhelming probability, hSig is unique”. In fact what is required

to be unique is the truncated input to PRFpk, i.e. [hSig]253 = [CRH(pksig)]253. In practice this value will be unique
under a plausible assumption on CRH provided that pksig is chosen randomly, but no formal argument for
this is presented.

Note that ρ is truncated in the input to PRFsn but not in the input to COMMrcm, which further complicates the
analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider a
slightly modi�ed protocol in which ρ is truncated in the input to COMMrcm but not in the input to PRFsn. In that
case, it would be possible to violate balance by creating two notes for which ρ differs only in the truncated bits.
These notes would have the same note commitment but different nulli�ers, so it would be possible to spend the
same value twice.

[Sprout] For resistance to Faerie Gold attacks as described in section 8.4 ‘Faerie Gold attack and fix’ on page 143, Zcash
depends on collision resistance of hSigCRH and PRFρ (instantiated using BLAKE2b-256 and SHA256Compress re-
spectively). Collision resistance of a truncated hash does not follow from collision resistance of the original hash,
even if the truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the
computation of hSig to the uses of ρ.

[Sprout] Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which
256 bits are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size
of the PRF key to 252 bits. The key is set to ask in the case of PRFaddr, PRFnfSprout, and PRFpk, and to ϕ (which does
not exist in Zerocash) for PRFρ, and so those values have been reduced to 252 bits. This is preferable to requiring
reasoning about truncation, and 252 bits is quite suf�cient for security of these cryptovalues.

Sapling uses Pedersen hashes and BLAKE2s where Sprout used SHA256Compress. Pedersen hashes can be ef�ciently
instantiated for arbitrary input lengths. BLAKE2s has an input block size of 512 bits, and uses a �nalization �ag rather
than padding of the last input block; it also supports domain separation via a personalization parameter distinct
from the input. Therefore, there is no need for truncation in the inputs to any of these hashes. Note however that
the output of CRHivk is truncated, requiring a security assumption on BLAKE2s truncated to 251 bits (see section 5.4.1.5
‘CRHivk Hash Function’ on page 77).

Orchard replaces Pedersen hashes by Sinsemilla hashes which can also be ef�ciently instantiated for arbitrary input
lengths. It replaces uses of BLAKE2s in the circuit by the commitment scheme Commitivk, and by a construction for
nulli�er derivation that uses the Poseidon-based PRFnfOrchard (along with scalar multiplication on the Pallas curve).
Again, there is no need for truncation in the inputs to any of these functions, and the need for truncation in the
derivation of ivk is removed.

146

https://zips.z.cash/protocol/protocol.pdf#truncation

8.7 In-band secret distribution #inbandrationale

Zerocash speci�ed ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-band
secret distribution. This has been changed to a key agreement scheme based on Curve25519 (for Sprout) or Jubjub
(for Sapling) and the authenticated encryption algorithm AEAD_CHACHA20_POLY1305. This scheme is still loosely
based on ECIES, and on the crypto_box_seal scheme de�ned in libsodium [libsodium-Seal].

The motivations for this change were as follows:

• The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has signi�cant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bernstein2006]. For Sapling, the Jubjub curve was designed according
to a similar design process following the “Safe curves” criteria [BL-SafeCurves] [Hopwood2018]. This retains
Curve25519’s advantages while keeping shielded payment address sizes short, because the same public key
material supports both encryption and spend authentication. For Orchard, we de�ne a prime-order curve
Pallas [Hopwood2020], with similar advantages to Jubjub.

• ECIES permits many options, which were not speci�ed. There are at least –counting conservatively– 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that de�ne ECIES variants [MÁEÁ2010].

• Although the Zerocash paper states that ECIES satis�es key privacy (as de�ned in [BBDP2001]), it is not clear that
this holds for all curve parameters and key distributions. For example, if a group of non-prime order is used,
the distribution of ciphertexts could be distinguishable depending on the order of the points representing
the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 (and Jubjub) key
agreement is de�ned in a way that avoids these concerns due to the curve structure and the “clamping” of
private keys (or explicit cofactor multiplication and point validation for Sapling). The Pallas curve is prime-
order, but we still validate points, and use a similar key agreement scheme to Sapling for consistency and
ease of analysis.

• Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspeci�ed, leading to incompatible implementations.)
The scheme we use for Sprout has both the ephemeral and recipient public key encodings –which are
unambiguous for Curve25519– and also hSig and a nonce as described below, as input to the KDF. For Sapling
and Orchard, it is only possible to include the ephemeral public key encoding, but this is suf�cient to retain
the original security properties of DHAES. Note that being able to break the Elliptic Curve Dif�e–Hellman
Problem on Curve25519 or Jubjub or Pallas (without breaking AEAD_CHACHA20_POLY1305 as an authenticated
encryption scheme or BLAKE2b-256 as a KDF) would not help to decrypt the transmitted note(s) ciphertext
unless pkenc or pkd is known or guessed.

• [Sprout] The KDF also takes a public seed hSig as input. This can be modeled as using a different “randomness
extractor” for each JoinSplit transfer, which limits degradation of security with the number of JoinSplit
transfers. This facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a
security proof that can be applied to this construction under the assumption that single-block BLAKE2b-256
is a “weak PRF”. Note that hSig is authenticated, by the zk-SNARK proof , as having been chosen with knowledge

of aold
sk,1..Nold , so an adversary cannot modify it in a ciphertext from someone else’s transaction for use in a

chosen-ciphertext attack without detection. (In Sapling and Orchard, there is no equivalent to hSig, but the
binding signature and spend authorization signatures prevent such modi�cations.)

• [Sprout] The scheme used by Sprout includes an optimization that reuses the same ephemeral key (with
different nonces) for the two ciphertexts encrypted in each JoinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as
de�ned in that paper does not pass the recipient public key or a public seed to the hash function 𝐻 , this does not
impair the proof because we can consider 𝐻 to be the specialization of our KDF to a given recipient key and seed.

147

https://zips.z.cash/protocol/protocol.pdf#inbandrationale

(Passing the recipient public key to the KDF could in principle compromise key privacy, but not con�dentiality of
encryption.) [Sprout] It is necessary to adapt the “HDH independence” assumptions and the proof slightly to take
into account that the ephemeral key is reused for two encryptions.

Note that the 256-bit key for AEAD_CHACHA20_POLY1305 maintains a high concrete security level even under
attacks using parallel hardware [Bernstein2005] in the multi-user setting [Zaverucha2012]. This is especially neces-
sary because the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the
encryption algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before
the upgrade. Other cryptovalues that could be attacked to break the privacy of transactions are also suf�ciently
long to resist parallel brute force in the multi-user setting: for Sprout, ask is 252 bits, and skenc is no shorter than ask.

In Sapling, ivk is an output of CRHivk, which is a 251-bit value. In Orchard, ivk is an 𝑥-coordinate on the Pallas curve.
This degree of divergence from a uniform distribution on the scalar �eld is not expected to cause any weakness in
note encryption.

For all shielded protocols, the checking of note commitments makes partitioning oracle attacks [LGR2021] against
the transmitted note ciphertext infeasible, at least in the absence of side-channel attacks. The following argument
applies to Sapling and Orchard, but can be adapted to Sprout by replacing ivk with skenc, pkd with pkenc, and using
a �xed base. The decryption procedure for transmitted note ciphertexts in Sapling and Orchard is speci�ed
in section 4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on page 68; it ensures that a suc-
cessful decryption cannot occur unless the decrypted note plaintext encodes a note consistent with the note
commitment (encoded as the cm𝑢 �eld of the Output description or the cm𝑥 �eld of the Action description). Suppose
that it were feasible to �nd a pair of transmitted note ciphertext and note commitment that decrypts successfully
for two different incoming viewing keys ivk1 and ivk2. Assuming that the note commitment scheme is binding and
that note commitment opens to a note with pkd and gd, we must have pkd = KA.Agree(ivk1, gd) = KA.Agree(ivk2, gd).
But this is impossible given that gd has order greater than the maximum value of ivk that can be an output of CRHivk

or Commitivk.

There is also a decryption procedure making use of outgoing ciphertexts in Sapling and Orchard, as speci�ed in
section 4.20.3 on page 70. It checks (via KA.DerivePublic, and also via PRFexpand

rseed in the case of post-[ZIP-212] ciphertexts with
note plaintext lead byte ̸= 0x01) that the decrypted esk value is consistent with the transmitted note ciphertext ,
which is protected from partitioning oracle attacks as described above. It also checks that the pkd value is consistent
with the note commitment . Since these are the only �elds in an outgoing ciphertext , even if a partitioning oracle
attack occurred against an outgoing ciphertext , it could not result in any equivocation of the decrypted data.
Because ovk and ock are each 256 bits, partitioning oracle attacks that speed up a search for these keys (analogous
to the attacks against Password-based AEAD in [LGR2021]) are infeasible, even given knowledge of ivk.

8.8 Omission in Zerocash security proof #crprf

The abstract Zerocash protocol requires PRFaddr only to be a PRF; it is not speci�ed to be collision-resistant . This
reveals a �aw in the proof of the Balance property.

Suppose that an adversary �nds a collision on PRFaddr such that a1
sk and a2

sk are distinct spending keys for the same
apk. Because the note commitment is to apk, but the nulli�er is computed from ask (and ρ), the adversary is able to
double-spend the note, once with each ask. This is not detected because each Spend reveals a different nulli�er.
The JoinSplit statements are still valid because they can only check that the ask in the witness is some preimage of
the apk used in the note commitment .

The error is in the proof of Balance in [BCGGMTV2014, Appendix D.3]. For the “𝒜 violates Condition I” case, the
proof says:

“(i) If cmold
1 = cmold

2 , then the fact that snold
1 ̸= snold

2 implies that the witness 𝑎 contains two distinct openings of
cmold

1 (the �rst opening contains (aold
sk,1, ρold

1), while the second opening contains (aold
sk,2, ρold

2)). This violates the
binding property of the commitment scheme COMM."

In fact the openings do not contain aold
sk,𝑖; they contain aold

pk,𝑖. (In Sprout cmold
𝑖 opens directly to (aold

pk,𝑖, vold
𝑖 , ρold

𝑖), and in

Zerocash it opens to (vold
𝑖 , COMMs(aold

pk,𝑖, ρ
old
𝑖).)

148

https://zips.z.cash/protocol/protocol.pdf#crprf

A similar error occurs in the argument for the “𝒜 violates Condition II” case.

The �aw is not exploitable for the actual instantiations of PRFaddr in Zerocash and Sprout, which are collision-
resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRFaddr

(on both its arguments) to argue that distinctness of aold
sk,1 and aold

sk,2, together with constraint 1(b) of the JoinSplit

statement (see section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60), implies distinctness of aold
pk,1 and aold

pk,2, therefore
distinct openings of the note commitment when Condition I or II is violated.

8.9 Miscellaneous #miscdiffs

• The paper de�nes a note as ((apk, pkenc), v, ρ, rcm, s, cm), whereas this speci�cation de�nes a Sprout note as
(apk, v, ρ, rcm). The instantiation of COMMs in section 5.1 of the paper did not actually use s, and neither does

the new instantiation of NoteCommitSprout in Sprout. pkenc is also not needed as part of a note: it is not an input
to NoteCommitSprout nor is it constrained by the Zerocash POUR statement or the Zcash JoinSplit statement . cm
can be computed from the other �elds. (The de�nition of notes for Sapling is different again.)

• The length of proof encodings given in the paper is 288 bytes. [Sprout] This differs from the 296 bytes speci�ed
in section 5.4.10.1 ‘BCTV14’ on page 110, because both the 𝑥-coordinate and compressed 𝑦-coordinate of each point
need to be represented. Although it is possible to encode a proof in 288 bytes by making use of the fact that
elements of F𝑞 can be represented in 254 bits, we prefer to use the standard formats for points de�ned in
[IEEE2004]. The fork of libsnark used by Zcash uses this standard encoding rather than the less ef�cient
(uncompressed) one used by upstream libsnark . In Sapling, a customized encoding is used for BLS12-381
points in Groth16 proofs to minimize length, and similarly for Pallas and Vesta points in Orchard.

• The range of monetary values differs. In Zcash this range is {0 .. MAX_MONEY}, while in Zerocash it is
{0 .. 2ℓvalue−1}. (The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit
transfer is in the latter range; this enforcement is technically redundant given that the Balance property holds.)

9 Acknowledgements #acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza.

The designers of the Zcash protocol are the Zerocash inventors and also Daira-Emma Hopwood, Sean Bowe, Jack
Grigg, Simon Liu, Taylor Hornby, Nathan Wilcox, Zooko Wilcox, Jay Graber, Eirik Ogilvie-Wigley, Ariel Gabizon,
George Tankersley, Ying Tong Lai, Kris Nuttycombe, Jack Gavigan, Steven Smith, and Greg Pfeil. The Equihash
proof-of-work algorithm was designed by Alex Biryukov and Dmitry Khovratovich.

The authors would like to thank everyone with whom they have discussed the Zerocash and Zcash protocol designs;
in addition to the preceding, this includes Mike Perry, isis agora lovecruft, Leif Ryge, Andrew Miller, Ben Blaxill,
Samantha Hulsey, Alex Balducci, Jake Tarren, Solar Designer, Ling Ren, John Tromp, Paige Peterson, jl777, Alison
Stevenson, Maureen Walsh, Filippo Valsorda, Zaki Manian, Kexin Hu, Brian Warner, Mary Maller, Michael Dixon,
Andrew Poelstra, Benjamin Winston, Josh Cincinnati, Kobi Gurkan, Weikeng Chen, Henry de Valence, Deirdre
Connolly, Chelsea Komlo, Zancas Wilcox, Jane Lusby, teor, Izaak Meckler, Zac Williamson, Vitalik Buterin, Jakub
Zalewski, Oana Ciobotaru, Andre Serrano, Brad Miller, Charlie O’Keefe, David Campbell, Elena Giralt, Francisco
Gindre, Joseph Van Geffen, Josh Swihart, Kevin Gorham, Larry Ruane, Marshall Gaucher, Ryan Taylor, Sasha Meyer,
Conrado Gouvêa, Aditya Bharadwaj, Andrew Arnott, Arya, Andrea Kobrlova, Lukáš Korba, Honza Rychnovský, Schell
Scivally, and no doubt others. We would also like to thank the designers and developers of Bitcoin and Bitcoin Core.

Zcash has bene�ted from security audits performed by NCC Group, Coinspect, Least Authority, Mary Maller,
Kudelski Security, QEDIT, and Trail of Bits. We also thank Mary Maller for her work on reviewing the security proofs
for Halo 2 (any remaining errors are ours).

149

https://zips.z.cash/protocol/protocol.pdf#miscdiffs
https://zips.z.cash/protocol/protocol.pdf#acknowledgements

The Faerie Gold attack was found by Zooko Wilcox (who also came up with the name) and Brian Warner. The �x for
this attack in Sprout was proposed by Daira-Emma Hopwood; subsequent analysis of variations on the attack was
performed by Daira-Emma Hopwood and Sean Bowe.

The internal hash collision attack was found by Taylor Hornby.

The error in the Zerocash proof of Balance relating to collision resistance of PRFaddr was found by Daira-Emma
Hopwood.

The errors in the proof of Ledger Indistinguishability mentioned in section 8.6 ‘Changes to PRF inputs and truncation’
on page 146 were also found by Daira-Emma Hopwood.

The 2015 Soundness vulnerability in BCTV14 [Parno2015] was found by Bryan Parno. An additional condition
needed to resist this attack was documented by Ariel Gabizon [Gabizon2019, section 3]. The 2019 Soundness
vulnerability in BCTV14 [Gabizon2019] was found by Ariel Gabizon.

The design of Sapling is primarily due to Matthew Green, Ian Miers, Daira-Emma Hopwood, Sean Bowe, Jack Grigg,
and Jack Gavigan. A potential attack linking diversi�ed payment addresses, avoided in the adopted design, was
found by Brian Warner.

The design of Orchard is primarily due to Daira-Emma Hopwood, Sean Bowe, Jack Grigg, Kris Nuttycombe, Ying Tong
Lai, and Steven Smith.

The observation in section 5.4.1.6 ‘DiversifyHashSapling and DiversifyHashOrchard Hash Functions’ on page 78 that diversi�ed
payment address unlinkability can be proven in the same way as key privacy for ElGamal, is due to Mary Maller.

We thank Ariel Gabizon for teaching us the techniques of [BFIJSV2010] used in section B.2 ‘Groth16 batch verification’
on page 221, by applying them to BCTV14.

The arithmetization used by Halo 2 is based on that used by PLONK [GWC2019], which was designed by Ariel
Gabizon, Zachary Williamson, and Oana Ciobotaru.

Numerous people have contributed to the science of zero-knowledge proving systems, but we would particularly
like to acknowledge the work of Sha� Goldwasser, Silvio Micali, Oded Goldreich, Mihir Bellare, Charles Rackoff,
Joe Kilian, Yael Tauman Kalai, Guy Rothblum, Rosario Gennaro, Bryan Parno, Jon Howell, Craig Gentry, Mariana
Raykova, Jens Groth, Rafail Ostrovsky, and Amit Sahai.

We thank the organizers of the ZKProof standardization effort and workshops; and also Anna Rose, Fredrik
Harrysson, Terun Chitra, James Prestwich, Josh Cincinnati, Tanya Karsou, Henrik Jose, Chris Ward, and others for
their work on the Zero Knowledge Podcast, ZK Summits, and ZK Study Club. These efforts have enriched the zero
knowledge community immeasurably.

Many of the ideas used in Zcash —including the use of zero-knowledge proofs to resolve the tension between
privacy and auditability, Merkle trees over note commitments (using Pedersen hashes as in Sapling), and the use
of “serial numbers” or nulli�ers to detect or prevent double-spends— were �rst applied to privacy-preserving
digital currencies by Tomas Sander and Amnon Ta-Shma. To a large extent Zcash is a re�nement of their “Auditable,
Anonymous Electronic Cash” proposal in [ST1999].

We thank Alexandra Elbakyan for her tireless work in dismantling barriers to scienti�c research.

This document is set in the beautiful Quattrocento font designed by Pablo Impallari. The New Century Schoolbook
font by URW Type Foundry, based on Century Schoolbook designed by Morris Fuller, is used for italics.

Finally, we would like to thank the Internet Archive for their scan of Peter Newell’s illustration of the Jubjub bird,
from [Carroll1902].

150

10 Change History #changehistory

2025.6.3 2025-12-02 #2025.6.3

• Specify in section 3.3 ‘The Block Chain’ on page 18 that N​U​6.1 is the most recent settled network upgrade on Testnet
and Mainnet .

• Update the description in section 3.12 ‘Mainnet and Testnet’ on page 22 of protocol governance.

2025.6.2 2025-11-11 #2025.6.2

• In section 4.16 ‘Computing ρ values and Nullifiers’ on page 57, add a note that the ρ and ψ inputs to DeriveNullifier
must be consistent with the note committed to by cm.

• Fix an error in the statement of Merkle Path Validity for Orchard: the Merkle path should be from the leaf
value ExtractP(cmold) rather than cmold. This was implemented as intended in the orchard crate.

• Add a note to the Orchard key components diagram in section 3.1 ‘Payment Addresses and Keys’ on page 13, say-
ing that the derivations of ask and rivk shown there are not the only possibility, and referencing section 4.2.3
‘Orchard Key Components’ on page 38. Also change the existing note in that section to say that “most Zcash
wallets”, not just zcashd, derive Sapling and Orchard keys and addresses according to [ZIP-32].

• Fix type errors in section 4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on page 68
and in section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’ on page 70: ToScalar re-
turns an integer, not a byte sequence, and so cannot be assigned to rcm. This was implemented as intended in
the zcash_note_encryption crate.

• Rename section 4.20.3 on page 70 from “Decryption using a Full Viewing Key (Sapling and Orchard)” to “Decryption
using an Outgoing Viewing Key (Sapling and Orchard)”.

• De�ne allowedLeadBytes in section 3.2.1 ‘Note Plaintexts and Memo Fields’ on page 15, and use it to refactor the con-
straints on note plaintext lead bytes.

• Correct the accents on Lukáš Korba’s name.

• Add acknowledgements to Joe Kilian, Yael Tauman Kalai, and Guy Rothblum for contributions to the science
of zero-knowledge proving systems.

2025.6.1 2025-10-08 #2025.6.1

• Update N​U​6.1 consensus changes with the one-time lockbox disbursement addresses, the splitting of the
disbursement into ZIP271DisbursementChunks chunks, and other updates to [ZIP-271].

• Remove "proposal" from the version string.

2025.6.0 2025-09-17 #2025.6.0

• Apply N​U​6.1 consensus changes from [ZIP-271].

• Add boilerplate support for N​U​6.1.

• Specify in section 3.3 ‘The Block Chain’ on page 18 that N​U​6 is the most recent settled network upgrade.

• Clarify section 3.4 ‘Transactions and Treestates’ on page 18, taking into account the N​U​6 consensus changes from
[ZIP-236].

• Adjust the recommendation in section 4.2.2 ‘Sapling Key Components’ on page 36 not to encode information in the
diversi�er, to recommend instead using a [ZIP-32] diversi�er index .

• Deprecate the encoding of a Sapling ivk in section 5.6.3.2 ‘Sapling Incoming Viewing Keys’ on page 116, in favour of
using a uni�ed incoming viewing key with a Sapling component that includes the diversi�er key dk.

151

https://zips.z.cash/protocol/protocol.pdf#changehistory
https://zips.z.cash/protocol/protocol.pdf#2025.6.3
https://zips.z.cash/protocol/protocol.pdf#2025.6.2
https://zips.z.cash/protocol/protocol.pdf#2025.6.1
https://zips.z.cash/protocol/protocol.pdf#2025.6.0

• Tighten the type of ivk in Sapling to {1 .. 2ℓ
Sapling
ivk −1}, and the type of pkd in Sapling to KASapling.PublicPrimeOrder,

in order to make the exclusion of the zero point for pkd more obvious [Zips-Issue664]. This also has the
effect that a Sapling incoming viewing key section 5.6.3.2 ‘Sapling Incoming Viewing Keys’ on page 116 or a Sapling
IVK Encoding in a uni�ed incoming viewing key [ZIP-316] that encodes the zero ivk MUST be considered
invalid when imported. Notes have been added in section 5.6.3.1 ‘Sapling Payment Addresses’ on page 115 and section 5.6.3.2
‘Sapling Incoming Viewing Keys’ on page 116 calling out these changes.

• In section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’ on page 70, retrospectively
enforce the check for canonicity of pkd. This has no effect on consensus relative to the previous version,
because only small-order Jubjub curve points have non-canonical encodings, and so the check that returns
⊥ if pkd ̸∈ J(𝑟)* would catch all such cases.

• Document in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92, section 4.4 ‘Spend Descriptions’ on page 40, and
section 7.1.2 ‘Transaction Consensus Rules’ on page 124 that the canonicity restriction on the encoding of 𝑅 in RedDSA
signature validation is retrospectively valid on Mainnet and Testnet before N​U​5.

• So that Sapling and Orchard are consistent, section 5.4.5.5 ‘Orchard Key Agreement’ on page 90 now also de�nes
KAOrchard.PublicPrimeOrder, which is used instead of KAOrchard.Public as the type of an Orchard pkd. This has no
effect on conformance since both KAOrchard.PublicPrimeOrder and KAOrchard.Public are de�ned as P*.

• In section 5.6.4.4 ‘Orchard Raw Full Viewing Keys’ on page 118, clarify the requirement on ak by rewording “valid
Pallas 𝑥-coordinate“ to “valid af�ne 𝑥-coordinate of a Pallas curve point in P*“. Implementations might use
(0, 0) to represent 𝒪P, but 0 is not a valid 𝑥-coordinate in the sense required here.

• Change incorrect uses of “block reward“ to block subsidy.

• Added dark mode rendering (https://zips.z.cash/protocol/protocol-dark.pdf).

• Add an acknowledgement to Schell Scivally for discussions on the Zcash protocol.

2024.5.1 2024-09-26 #2024.5.1

• Apply N​U​6 consensus changes from [ZIP-2001] and [ZIP-236].

• Collect the de�nitions of balances for each chain value pool into section 4.17 ‘Chain Value Pool Balances’ on page 58.

• Add a de�nition of total issued supply.

• Add acknowledgements to Aditya Bharadwaj, Andrew Arnott, Arya, Andrea Kobrlova, Lukáš Korba, and Honza
Rychnovský for discussions on the Zcash protocol.

2024.5.0 2024-08-28 #2024.5.0

• Add the hyphen in Daira-Emma Hopwood.

• Correct some author lists in the References.

• Prevent incorrect line-breaking on hyphens.

• In section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81, declare use of LEBS2IP instead of LEOS2IP.

• Add an acknowledgement to Conrado Gouvêa for discussions on the Zcash protocol.

• Add boilerplate support for N​U​6.

152

https://zips.z.cash/protocol/protocol-dark.pdf
https://zips.z.cash/protocol/protocol.pdf#2024.5.1
https://zips.z.cash/protocol/protocol.pdf#2024.5.0

2023.4.0 2023-12-19 #2023.4.0

• The domain separators [4] and [5] used in the input to PRFexpand
rseed for Sapling were accidentally swapped in

the protocol speci�cation relative to [ZIP-212]. The implementation in zcashd followed [ZIP-212], using [4] to
derive rcm and [5] to derive esk. This has been corrected in the protocol speci�cation.

For Orchard, the implementation in the orchard crate (and therefore in zcashd) followed the protocol spec-
i�cation, using [5] || I2LEOSP256(ρ) to derive rcm and [4] || I2LEOSP256(ρ) to derive esk. This cannot now be
changed, and so [ZIP-212] has been updated to follow this implementation. Notes have been added pointing
out the discrepancy.

• Document that the attacks in [DKLS2020] are no better than brute force key search against FF1-AES256 as
speci�ed in section 5.4.4 ‘Pseudo Random Permutations’ on page 88.

• In the table of section 7.6 ‘Block Header Encoding and Consensus’ on page 131, clarify that hashLightClientRoot is
used in Heartwood and Canopy, but not in N​U​5 or later.

• The return type of GroupHashJ(𝑟)*

in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104 was incorrectly given as J(𝑟)*,
rather than the correct J(𝑟)* ∪ {⊥}.

• In the discussion of partitioning oracle attacks on note encryption in section 8.7 ‘In-band secret distribution’ on
page 147, we now use the fact that gd has order greater than the maximum value of ivk, rather than assuming
that gd is a non-zero point in the prime-order subgroup. (In the case of Sapling, the circuits only enforce
that gd is not a small-order point, not that it is in the prime-order subgroup. It is true that honestly generated
addresses have prime-order gd which would have been suf�cient for the security argument against this class
of attacks, but the chosen �x is more direct.)

• Delete a confusing claim in section 4.4 ‘Spend Descriptions’ on page 40 that “The check that rk is not of small order is
technically redundant with a check in the Spend circuit ...”. The small-order check excludes the zero point 𝒪J,
which the Spend authority check that this claim was intending to reference does not.

• An implementation of HomomorphicPedersenCommitSapling MAY resample the commitment trapdoor until the
resulting commitment is not 𝒪J, in order to avoid it being rejected as the cv �eld of a Spend description
or Output description. Add notes in section 4.4 ‘Spend Descriptions’ on page 40, section 4.5 ‘Output Descriptions’ on page 41,
and section 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on page 97 to that effect.

• Rename the section “Note Commitments and Nulli�ers” to section 4.16 ‘Computing ρ values and Nullifiers’ on
page 57, to more accurately re�ect its contents.

• Split some of the content of the section “Notes” into subsections section 3.2.2 ‘Note Commitments’ on page 16 and
section 3.2.3 ‘Nullifiers’ on page 17. Make the descriptions of how note commitments and nulli�ers are used more
precise and explicit, and add forward references where helpful.

• Remove redundancy in the de�nition of note plaintexts between section 3.2.1 ‘Note Plaintexts and Memo Fields’
on page 15 and section 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on page 112.

• The abstract no longer describes the N​U​5 version of the speci�cation as a draft.

• Acknowledge Greg Pfeil as a co-designer of the Zcash protocol.

• Acknowledge Daira-Emma Hopwood for the �x to the Faerie Gold attack in Sprout, and add a reference to hir
Explaining the Security of Zcash talk at Zcon3 [Hopwood2022] for repairs to the Zerocash security de�nitions.

• Acknowledge the font designers Pablo Impallari and Morris Fuller.

• Change Daira-Emma Hopwood’s name.

2022.3.8 2022-09-15 #2022.3.8

• Correct Jurgen Bos’ name.

153

https://zips.z.cash/protocol/protocol.pdf#2023.4.0
https://zips.z.cash/protocol/protocol.pdf#2022.3.8

2022.3.7 2022-09-10 #2022.3.7

• Remove a now-unused sampling of rcv in section 4.8.3 ‘Dummy Notes (Orchard)’ on page 48.

• Specify in section 3.3 ‘The Block Chain’ on page 18 that N​U​5 is the most recent settled network upgrade.

2022.3.6 2022-09-01 #2022.3.6

• Correct Kexin Hu’s name.

• Correct cross-references for the de�nition of an anchor.

• Remove a calculation of cv in section 4.8.3 ‘Dummy Notes (Orchard)’ on page 48 that is not applicable to Orchard
(since cv for an Action description depends on both the spent and output notes).

• Clarify that the recommended format for a QR code starts with a Bech32 encoding for a Sapling payment
address and with a Bech32m encoding for a uni�ed payment address.

• Replace ResearchGate links for [CDvdG1987] and [BDPA2007] with alternatives that do not cause false-positive
link checker errors.

• In protocol/README.rst: update the build dependency documentation for Debian Bullseye, mention the
“make linkcheck” target, and correct the description of “make all”.

• Update the Makefile to build correctly with newer versions of latexmk.

2022.3.5 2022-08-02 #2022.3.5

• ZIP 244 is not modi�ed by ZIP 225.

• section 5.4.1.5 ‘CRHivk Hash Function’ on page 77 incorrectly cross-referenced BLAKE2b-256 rather than BLAKE2s-256.
The actual speci�cation was correct.

2022.3.4 2022-06-22 #2022.3.4

• Document in section 5.4.6 ‘Ed25519’ on page 90 that a full validator implementation that checkpoints on the Canopy
activation block MAY validate Ed25519 signatures using the post-Canopy rules for the whole chain.

• Update references for [ECCZF2019] and [ZIP-302] and [ZIP-252].

2022.3.3 2022-06-21 #2022.3.3

• In section 3.12 ‘Mainnet and Testnet’ on page 22, update the settled activation block hashes to be those for N​U​5 on
Mainnet and Testnet .

• Correct the history entry for v2022.3.2 to include the entry about the calculation for sizeProofsOrchard.

• Rename ExcludedPointEncodings to PreCanopyExcludedPointEncodings.

• In section 5.6.2.3 ‘Sprout Spending Keys’ on page 115, remove the statement that future key representations might use
the padding bits of Sprout spending keys.

• Give a full-text URL for [Nakamoto2008].

2022.3.2 2022-06-06 #2022.3.2

• Set NUFiveActivationHeight for Testnet and Mainnet .

• An [N​U​5 onward] consensus rule requiring the nConsensusBranchId �eld to match the consensus branch ID
used for SIGHASH transaction hashes, should apply only when effectiveVersion ≥ 5 (since v4 transactions did
not explicitly encode the nConsensusBranchId �eld).

• Correction in section 5.3 ‘Constants’ on page 74: UncommittedOrchard ◦
◦ {0 .. 𝑞P − 1} is not a bit sequence.

154

https://zips.z.cash/protocol/protocol.pdf#2022.3.7
https://zips.z.cash/protocol/protocol.pdf#2022.3.6
https://zips.z.cash/protocol/protocol.pdf#2022.3.5
https://zips.z.cash/protocol/protocol.pdf#2022.3.4
https://zips.z.cash/protocol/protocol.pdf#2022.3.3
https://zips.z.cash/protocol/protocol.pdf#2022.3.2

• In section 7.1 ‘Transaction Encoding and Consensus’ on page 122, add the calculation for sizeProofsOrchard to the
v5 transaction format table.

• Make section 1.2 ‘High-level Overview’ on page 8 more precise about chain value pools.

2022.3.1 2022-04-28 #2022.3.1

• In section 4.2.3 ‘Orchard Key Components’ on page 38, do not allow construction of Orchard spending keys such
that the corresponding internal incoming viewing key is 0 or⊥. (This was already speci�ed for the external
incoming viewing key.) Similarly in section 5.6.4.4 ‘Orchard Raw Full Viewing Keys’ on page 118, do not consider a
decoded key valid if either its external or internal incoming viewing key would be 0 or⊥.

• Clarify how to determine which table in section 7.1 ‘Transaction Encoding and Consensus’ on page 122 to use for
transaction parsing, depending on the effectiveVersion as determined by the header �eld.

• Correct “block chain branch” to “consensus branch” to match [ZIP-200].

• Add an acknowledgement to Mary Maller for reviewing the Halo 2 security proofs.

• Add an acknowledgement to Josh Cincinnati for discussions on the Zcash protocol.

• Add acknowledgements to more people associated with the ZK Podcast.

2022.3.0 2022-03-18 #2022.3.0

• Correct a type error in the usage of Commitivk: the output type Commitivk.Output includes 0, but the type
of incoming viewing keys should not include 0 because KAOrchard.Private does not. This is now handled by
explicitly rejecting 0 as output from Commitivk when generating ivk in section 4.2.3 ‘Orchard Key Components’ on
page 38. An encoding of ivk as 0 is also rejected in section 5.6.4.3 ‘Orchard Raw Incoming Viewing Keys’ on page 118
when parsing an incoming viewing key. The Action circuit needed no changes because pkd already could not
be 𝒪P, and therefore the Diversi�ed address integrity condition fails when ivk = 0.

• In section 3.3 ‘The Block Chain’ on page 18, de�ne what a settled network upgrade is, specify requirements for check-
pointing, and allow nodes to impose a limitation on rollback depth.

• In section 5.4.10.1 ‘BCTV14’ on page 110, note that the above checkpointing requirement mitigates the risks of not
performing BCTV14 zk proof veri�cation.

• Document the consensus rule that coinbase script length MUST be {2 .. 100} bytes.

• section 3.11 ‘Coinbase Transactions’ on page 22 effectively de�ned a coinbase transaction as the �rst transaction in
a block . This wording was copied from the Bitcoin Developer Reference [Bitcoin-CbInput], but it does not
match the implementation in zcashd that was inherited from Bitcoin Core. Instead, a coinbase transaction
should be, and now is, de�ned as a transaction with a single null prevout . The speci�cations of consensus
rules have been clari�ed and adjusted (without any actual consensus change) to take this into account, as
follows:

– a block MUST have at least one transaction;

– the �rst transaction in a block MUST be a coinbase transaction, and subsequent transactions MUST
NOT be coinbase transactions;

– a transparent input in a non-coinbase transaction MUST NOT have a null prevout ;

– every non-null prevout MUST point to a unique UTXO in either a preceding block , or a previous trans-
action in the same block (this rule was previously not given explicitly because it was assumed to be
inherited from Bitcoin);

– the rule that “A coinbase transaction MUST NOT have any transparent inputs with non-null prevout
�elds” is removed as an explicit consensus rule because it is implied by the corrected de�nition of
coinbase transaction.

155

https://zips.z.cash/protocol/protocol.pdf#2022.3.1
https://zips.z.cash/protocol/protocol.pdf#2022.3.0

2022.2.19 2022-01-19 #2022.2.19

• In section 4.10 ‘SIGHASH Transaction Hashing’ on page 50, add a consensus rule that SIGHASH type encodings
MUST be canonical for v5 transactions.

• In section 3.5 ‘JoinSplit Transfers and Descriptions’ on page 19, clarify that balance for JoinSplit transfers is enforced
by the JoinSplit statement , and that there is no consensus rule to check it directly.

• In section 8.5 ‘Internal hash collision attack and fix’ on page 145, add a security argument for why the SHA-256-
based commitment scheme NoteCommitSprout is binding and hiding , under reasonable assumptions about
SHA256Compress.

2022.2.18 2022-01-03 #2022.2.18

• Change the types of cm𝑥, UncommittedOrchard, and ak in Orchard to {0 .. 𝑞P − 1}, avoiding type errors and
re�ecting the implementation in zcashd. This eliminates all uses of P𝑥 (except that ak in an Orchard full viewing
key is still required to be a valid Pallas af�ne-short-Weierstrass 𝑥-coordinate).

• Re�ne the security argument about partitioning oracle attacks in section 8.7 ‘In-band secret distribution’ on page 147:
– The argument for decryption with an incoming viewing key does not need to depend on the Decisional

Dif�e–Hellman Problem, since gd is committed to by the note commitment as well as pkd.

– It is necessary to say that the note commitment is always checked for a successful decryption.

– Pedantically, it was not correct to conclude from the given security argument that partitioning oracle
attacks against an outgoing ciphertext are necessarily prevented, according to the de�nition in [LGR2021].
Instead, the correct conclusions are that such attacks could not feasibly result in any equivocation of the
decrypted data, or in recovery of ovk or ock.

• Correct the note about domain separators for PRFexpand in section 4.1.2 ‘Pseudo Random Functions’ on page 25, and
ensure that new domain separators for deriving internal keys from [ZIP-32] and [ZIP-316] are included.

2021.2.17 2021-12-01 #2021.2.17

• Add notes in section B.1 ‘RedDSA batch validation’ on page 220, section B.2 ‘Groth16 batch verification’ on page 221 and section B.3
‘Ed25519 batch validation’ on page 223 that 𝑧𝑗 may be sampled from {0 .. 2128 − 1} instead of {1 .. 2128 − 1}.

• Add note in section 8.7 ‘In-band secret distribution’ on page 147 about resistance of note encryption to partitioning
oracle attacks [LGR2021].

• Add acknowledgement to Mihir Bellare for contributions to the science of zero-knowledge proofs.

• Add acknowledgement to Sasha Meyer.

2021.2.16 2021-09-30 #2021.2.16

• Use complete addition in SinsemillaCommit.

• Correct the proof of Theorem 5.4.6 on page 99.

• Change the type of cmold in Orchard to P rather than P*, i.e. allow the identity point.

• Change the type of rtOrchard from P𝑥 (i.e. a Pallas 𝑥-coordinate or 0) to {0 .. 𝑞P − 1}. This re�ects the existing
zcashd implementation; also checking rtOrchard ∈ P𝑥 would require a square root and is unnecessary.

• Witness gnew
d and pknew

d in the Orchard Action circuit asP*, i.e. non-identity Pallas points, rather than witnessing
their representations as bit sequences. This re�ects the existing zcashd implementation.

• Note that akP in Orchard cannot be the identity.

• Correct the consensus rule about the maximum value of outputs in a coinbase transaction: it should reference
the block subsidy rather than the miner subsidy.

156

https://zips.z.cash/protocol/protocol.pdf#2022.2.19
https://zips.z.cash/protocol/protocol.pdf#2022.2.18
https://zips.z.cash/protocol/protocol.pdf#2021.2.17
https://zips.z.cash/protocol/protocol.pdf#2021.2.16

2021.2.15 2021-09-01 #2021.2.15

• Correct a minor error in the proof of Theorem 5.4.3 on page 83: the condition SinsemillaHashToPoint(𝐷, 𝑀) ̸= ⊥
is required in the proof. (The case SinsemillaHashToPoint(𝐷, 𝑀) = ⊥ is covered by Theorem 5.4.4 on page 84.)
The proof had not been updated correctly when the statement was revised in v2021.2.0. Also add a missing 𝐷
argument to SinsemillaHashToPoint in that proof.

• Fix a reference to nonexistent version 2019.0-beta-40 of this speci�cation (in section 7.7.3 ‘Difficulty adjustment’
on page 134) that should be v2019.0.0.

• Fix URL links to [BBDP2001] and [BDJR2000].

• Improve protocol/links_and_dests.py to eliminate false positives when checking DOI links.

2021.2.14 2021-08-12 #2021.2.14

• Fix the URL for [ZIP-239] in the References.

• Reword the reference to a Sapling full viewing key in section 4.8.2 ‘Dummy Notes (Sapling)’ on page 47 (the full
viewing key would include ovk, although it is not used in that section).

2021.2.13 2021-07-29 #2021.2.13

• Add consensus rules in section 3.8 ‘Note Commitment Trees’ on page 21 that, for each note commitment tree , a block
MUST NOT add note commitments that exceed the capacity of that tree.

2021.2.12 2021-07-29 #2021.2.12

• Change the number of partial rounds, 𝑅𝑃 , for Poseidon from 58 to 56. This matches the number calcu-
lated by calc_round_numbers.py (for 128-bit security “with margin”) in Version 1.1 of the Poseidon reference
implementation [Poseidon-1.1] [Poseidon-Zc1.1].

2021.2.11 2021-07-20 #2021.2.11

• Change the de�nition of inputs to the Action circuit to split enableSpends and enableOutputs into two �eld
elements.

2021.2.10 2021-07-13 #2021.2.10

• Clarify that decomposition of scalars for scalar multiplication in the Action circuit MUST be canonical, unless
a non-canonical decomposition can be proven to result in an equivalent statement – and clarify for which
multiplications the latter case applies.

• The encoding of the block height in the scriptSig of a coinbase transaction is now at most 5 bytes (rather
than 9 bytes), because block height MUST also be encoded in the 32-bit nExpiryHeight �eld of coinbase
transactions after N​U​5 activation.

• Clarify in section 3.4 ‘Transactions and Treestates’ on page 18 that the remaining value in a transparent transaction
value pool is only available to miners as a fee in the case of non-coinbase transactions, and that the remaining
value in the transparent transaction value pool of a coinbase transaction is destroyed.

• Remove a spurious reference to rseed in section 4.19 ‘In-band secret distribution (Sprout)’ on page 65. There were no
changes for Sprout in [ZIP-212].

157

https://zips.z.cash/protocol/protocol.pdf#2021.2.15
https://zips.z.cash/protocol/protocol.pdf#2021.2.14
https://zips.z.cash/protocol/protocol.pdf#2021.2.13
https://zips.z.cash/protocol/protocol.pdf#2021.2.12
https://zips.z.cash/protocol/protocol.pdf#2021.2.11
https://zips.z.cash/protocol/protocol.pdf#2021.2.10

2021.2.9 2021-07-01 #2021.2.9

• Add a consensus rule for version 5 or later transactions, that if nActionsOrchard > 0 then at least one of
enableSpendsOrchard and enableOutputsOrchard MUST be 1.

• Delete the consensus rule in section 3.4 ‘Transactions and Treestates’ on page 18 that required checking that each
intermediate root of the note commitment tree is not ⊥. Checking this rule would have imposed a signi�cant
performance penalty, since intermediate roots do not otherwise need to be computed.

• Change the type of MerkleCRHOrchard to have {0 .. 𝑞P − 1} in place of {0 .. 𝑞P − 1} ∪ {⊥} for the inputs and
output, and map a ⊥ output from SinsemillaHash to 0. (We retain the original de�nitions of SinsemillaHash
and SinsemillaHashToPoint both because it would be disruptive to change them at this point in the Network
Upgrade Process, and because it is necessary to track⊥ outputs in order to correctly model non-determinism
in the Action circuit .)

• Allow the Merkle path validity check in the Action circuit to pass if any output of MerkleCRHOrchard is 0, and
add a note in section 4.9 ‘Merkle Path Validity’ on page 49 arguing that this is safe.

• Fix a typo in the Security Requirements for section 5.4.1.3 ‘MerkleCRHOrchard Hash Function’ on page 77: the length of
the input to SinsemillaHash is 10 + 2 · ℓOrchard

Merkle bits, not 6 + 2 · ℓOrchard
Merkle bits.

• Replace “must” with “MUST” in two consensus rules speci�ed in section 7.1 ‘Transaction Encoding and Consensus’
on page 122.

• Add a clari�cation in section 7.1.2 ‘Transaction Consensus Rules’ on page 124 that after Heartwood and before Canopy
activation, Sapling outputs of a coinbase transaction MUST have note plaintext lead byte equal to 0x01. This
was implied by the existing rule that such outputs MUST decrypt successfully with an all-zero outgoing
viewing key.

• Correct 𝑙 to 𝑙⋆ in two places in section 5.4.1.3 ‘MerkleCRHSapling Hash Function’ on page 76.

• Correct an erroneous statement in section 3.4 ‘Transactions and Treestates’ on page 18 that claimed transaction IDs
are not part of the consensus protocol.

2021.2.8 2021-06-29 #2021.2.8

• Change one of the [Sapling onward] consensus rules in section 7.1.2 ‘Transaction Consensus Rules’ on page 124 to
have the correct applicability: [Sapling to Canopy inclusive, pre-N​U​5].

• Describe transaction IDs and wtxids in section 3.4 ‘Transactions and Treestates’ on page 18.

• Add a section section 7.1.1 ‘Transaction Identifiers’ on page 124 on how to compute transaction IDs and wtxids.

• Split the transaction-related consensus rules into their own subsection section 7.1.2 ‘Transaction Consensus Rules’
on page 124, for more precise cross-referencing.

2021.2.7 2021-06-28 #2021.2.7

• Correct the type of UncommittedOrchard, which should be P𝑥 rather than a bit sequence.

• Explicitly say that padding in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81 is by appending zero bits.

• Add a step to the algorithm for generating an Orchard note in section 4.7.3 ‘Sending Notes (Orchard)’ on page 45, to
restart if esk = 0.

2021.2.6 2021-06-26 #2021.2.6

• Require that from N​U​5 activation, the nExpiryHeight�eld of a coinbase transaction is set to the block height .
This is needed to maintain the property that all transactions have unique transaction IDs, as explained in a
note in section 7.1.2 ‘Transaction Consensus Rules’ on page 124. In order to avoid the block height being limited to
499999999, we also remove that bound on nExpiryHeight for coinbase transactions.

• Remove the recommendation to support 63-bit block heights in section 3.3 ‘The Block Chain’ on page 18 (since it is
incompatible with the above consensus rule for coinbase nExpiryHeight).

158

https://zips.z.cash/protocol/protocol.pdf#2021.2.9
https://zips.z.cash/protocol/protocol.pdf#2021.2.8
https://zips.z.cash/protocol/protocol.pdf#2021.2.7
https://zips.z.cash/protocol/protocol.pdf#2021.2.6

• Ensure that the layer number is passed to MerkleCRH in section 4.9 ‘Merkle Path Validity’ on page 49.

• Re�ne the key components diagram in section 3.1 ‘Payment Addresses and Keys’ on page 13 to show that Orchard
incoming viewing keys include both dk and ivk.

• Clarify that the {−MAX_MONEY .. MAX_MONEY} range restriction applies to both valueBalanceSapling and
valueBalanceOrchard.

• Update section 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on page 112 for Orchard.

• Add [ZIP-203], [ZIP-212], and [ZIP-213] to the list of ZIPs updated for N​U​5.

• Give cross-references to section 2 ‘Notation’ on page 10 where ?√
∙ and +√

∙ are used.

2021.2.5 2021-06-19 #2021.2.5

• Change the consensus rule that requires at least one input to, and at least one output from a v5 or later
transaction, to take into account the enableSpendsOrchard and enableOutputsOrchard �ags.

• Correct the type of Extract⊥P imported in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81 (from P → P𝑥 to
P ∪ {⊥} → P𝑥 ∪ {⊥}).

• Add [ZIP-209] to the list of ZIPs updated for N​U​5.

2021.2.4 2021-06-08 #2021.2.4

• Add an explicit consensus rule in section 7.1.2 ‘Transaction Consensus Rules’ on page 124 that the reserved bits of the
flagsOrchard �eld MUST be zero.

• Correct a cut-and-paste error in the algorithm for section 4.8.3 ‘Dummy Notes (Orchard)’ on page 48, which should
refer to the Action statement rather than the Spend statement .

2021.2.3 2021-06-06 #2021.2.3

• Specify (as a note in section 4.18.4 ‘Action Statement (Orchard)’ on page 63) the encoding of primary inputs to the
Action circuit . This uses new helper functions 𝑥 and 𝑦 de�ned in section 5.4.9.7 ‘Coordinate Extractor for Pallas’
on page 106. The speci�cation of ExtractP has also been refactored to use 𝑥 (this does not change the Orchard
protocol).

• In section 5.4.1.10 ‘PoseidonHash Function’ on page 84, say that the round constants as well as the MDS matrices are
generated according to Version 1.1 of the reference implementation.

• Clarify that epk encoded in an Action description cannot be 𝒪P.

• Specify that Orchard spending keys are encoded using Bech32m.

• Add [ZIP-239] to the list of ZIPs included in N​U​5.

• Move the section on abstraction (previously section 5.1) to section 4 ‘Abstract Protocol’ on page 23. Section 5.2 has
been split into two (section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73 and section 5.2 ‘Bit layout diagrams’
on page 73) to avoid renumbering later subsections.

• Correct an error in the encoding of height-in-coinbase for blocks at heights 1 .. 16.

• Clarify, in section 3.3 ‘The Block Chain’ on page 18, requirements on the range of block heights that should be sup-
ported.

• Delete the sentence “All conversions between Ed25519 points, byte sequences, and integers used in this
section are as speci�ed in [BDLSY2012].” from section 5.4.6 ‘Ed25519’ on page 90. This sentence was misleading given
that the conversions in [BDLSY2012] are not suf�ciently well-speci�ed for a consensus protocol; it should
have been deleted earlier when explicit de�nitions for reprBytesEd25519 and abstBytesEd25519 were added.

• Make the N​U​5 speci�cation the default.

159

https://zips.z.cash/protocol/protocol.pdf#2021.2.5
https://zips.z.cash/protocol/protocol.pdf#2021.2.4
https://zips.z.cash/protocol/protocol.pdf#2021.2.3

2021.2.2 2021-05-20 #2021.2.2

• Clarify in section 4.10 ‘SIGHASH Transaction Hashing’ on page 50 that v4 transactions continue to use the [ZIP-243]
SIGHASH algorithm after N​U​5 activation.

2021.2.1 2021-05-20 #2021.2.1

• Correct the size of vActionsOrchard in section 7.1 ‘Transaction Encoding and Consensus’ on page 122.

• Change the type of Orchard Merkle hash values to {0 .. 𝑞P − 1}, with a corresponding change to the signature of
MerkleCRHOrchard. Add a note to section 4.9 ‘Merkle Path Validity’ on page 49 clarifying that non-canonical encodings
are allowed as input to MerkleCRHOrchard.

• Clarify the distinction between Orchard incoming viewing keys and KAOrchard private keys.

• Add a note in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81 that [JT2020, Lemma 3] proves a tight reduction
from �nding a nontrivial discrete logarithm relation to the Discrete Logarithm Problem.

• Add a note to section 4.9 ‘Merkle Path Validity’ on page 49 clarifying the encoding of rtSapling as a primary input to the
Sapling Spend circuit , and that non-canonical encodings are allowed as input to MerkleCRHSapling.

• Change the notation ℐ𝐷
𝑖 for a Sapling Pedersen generator to ℐ(𝐷, 𝑖).

2021.2.0 2021-05-07 #2021.2.0

• Include ρ as an input to the derivation of ψ, esk, and rcm in Orchard. This was originally intended and as
described in [Zcash-Orchard, Section 3.5 Nulli�ers].

• Change the statement of Theorem 5.4.3 on page 83 to exclude ⊥ outputs from SinsemillaHashToPoint. This does
not affect security given Theorem 5.4.4 on page 84, but the ⊥ case is only handled by the latter proof and not the
former.

• Delegate to [ZIP-316] for the speci�cation of uni�ed payment addresses, uni�ed incoming viewing keys, and
uni�ed full viewing keys (section 5.6.4.1 ‘Unified Payment Addresses and Viewing Keys’ on page 117).

• Specify that diversi�er indices for Orchard payment addresses should be chosen uniquely, not randomly.

• Vanity diversi�ers are not an issue for Orchard given that it does not have its own payment address format,
and given the use of “jumbling” ([ZIP-316]) in uni�ed payment addresses. Remove the corresponding note
from section 4.2.3 ‘Orchard Key Components’ on page 38.

• Clarify that the change to use hashBlockCommitments in a block header for N​U​5 is a consensus rule.

• Clarify that transparent inputs are prohibited in coinbase transactions only if they have a non-null prevout
�eld.

• Caveat how the result of [GG2015] applies to analysis of PRFnfOrchard in section 5.4.2 ‘Pseudo Random Functions’ on
page 86.

• Unlinkability of diversi�ed payment addresses depends on the Decisional Dif�e–Hellman Problem, not the
Discrete Logarithm Problem.

• Add a paragraph to section 8.6 ‘Changes to PRF inputs and truncation’ on page 146 covering Orchard.

• Clarify the de�nition of pad in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81 by disambiguating 𝑀pieces from
𝑀padded.

• State explicitly that valueBalanceOrchard can only be negative in a coinbase transaction if it has [ZIP-213]
shielded outputs.

• Update the list of ZIPs relevant to N​U​5 in section 6 ‘Network Upgrades’ on page 120.

• Clarify notation by changing ℓrcm to ℓSprout
rcm .

160

https://zips.z.cash/protocol/protocol.pdf#2021.2.2
https://zips.z.cash/protocol/protocol.pdf#2021.2.1
https://zips.z.cash/protocol/protocol.pdf#2021.2.0

2021.1.24 2021-04-23 #2021.1.24

• Add the nConsensusBranchId �eld to v5 transactions, matching the consensus branch ID used for SIGHASH
transaction hashes.

• Include the diversi�er key in an encoded Orchard Incoming Viewing Key.

• Remove an unused precomputation in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

• Clarify that only an outgoing cipher key is strictly needed to decrypt an outgoing ciphertext .

• Explicitly say that coinbase transactions MUST NOT have transparent inputs (this is a consensus rule inherited
from Bitcoin which has been present since launch).

2021.1.23 2021-04-19 #2021.1.23

• Correct errors in the de�nitions of ExtractP and Extract⊥P in section 5.4.9.7 ‘Coordinate Extractor for Pallas’ on page 106:
ExtractP(𝒪P) should be 0, and Extract⊥P(⊥) should be ⊥.

• Change the type of KAOrchard public keys and shared secrets to P* (i.e. exclude 𝒪P), and the type of KAOrchard

private keys to F*
𝑟P

(i.e. exclude 0).

• Change the type of an Orchard ivk to {1 .. 𝑞P − 1} (i.e. exclude 0).

• Change the types of pkold
d , cmold and akP to P* in the auxiliary inputs to the Action statement .

• When creating Orchard notes, repeat with another rseed if cm is ⊥.

• Add a note in section 4.2.3 ‘Orchard Key Components’ on page 38 about non-uniformity of ivk.

• Fix a typo: “Decription” to “Description”.

• Add Action descriptions to the introduction of section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

• Use a different footnote symbol for each Sapling �eld cardinality rule in v5 transactions.

• Fix some URLs in references.

2021.1.22 2021-04-05 #2021.1.22

• Specify that a uni�ed payment address MUST contain at least one shielded payment address.

• Further clari�cations to Theorem 5.4.3 on page 83.

• Correct ZKSpend.Verify to ZKOutput.Verify in section 4.5 ‘Output Descriptions’ on page 41.

• Make sure that Change History entries are URL destinations.

2021.1.21 2021-04-01 #2021.1.21

• Correct and clarify Theorem 5.4.3 on page 83 and Theorem 5.4.4 on page 84.

• Clarify that a dummy note should be created if no real Orchard note is being spent in an Action transfer.

• Add a caveat in section 4.2.3 ‘Orchard Key Components’ on page 38 about reuse of rivk between PRFexpand and Commitivk.

• Expand the set of ZIPs associated with N​U​5 in section 6 ‘Network Upgrades’ on page 120, and reference [Zcash-halo2]
and [Zcash-Orchard] there.

• Section section 5.4.5.6 ‘Orchard Key Derivation’ on page 90 should be in slate blue.

• Explicitly note that the end of the [ZIP-212] grace period precedes N​U​5 activation.

• Change the condition for presence of anchorSapling in a version 5 transaction to vSpendsSapling > 0.

• Fix type error in kdfinput for KDFSapling and KDFOrchard (ephemeralKey is already a byte sequence).

• Make a note in section 8.7 ‘In-band secret distribution’ on page 147 of the divergence of ivk for Sapling and Orchard
from a uniform scalar.

161

https://zips.z.cash/protocol/protocol.pdf#2021.1.24
https://zips.z.cash/protocol/protocol.pdf#2021.1.23
https://zips.z.cash/protocol/protocol.pdf#2021.1.22
https://zips.z.cash/protocol/protocol.pdf#2021.1.21

• Correct the set of inputs to PRFexpand used for [ZIP-32] and Orchard in section 4.1.2 ‘Pseudo Random Functions’ on
page 25.

• Write the caution about linkage between the abstract and concrete protocols in section 4 ‘Abstract Protocol’ on
page 23.

• Update the Sprout key component diagram in section 3.1 ‘Payment Addresses and Keys’ on page 13 to remove magenta
highlighting.

2021.1.20 2021-03-25 #2021.1.20

• Credit Eirik Ogilvie-Wigley as a designer of the Zcash protocol. Add Andre Serrano, Brad Miller, Charlie
O’Keefe, David Campbell, Elena Giralt, Francisco Gindre, Joseph Van Geffen, Josh Swihart, Kevin Gorham,
Larry Ruane, Marshall Gaucher, and Ryan Taylor to the acknowledgements.

• Add proof of collision resistance for Sinsemilla.

• Correct some interim �ndings of the NCC speci�cation audit:
– Fix typos.

– Correct the de�nition of 𝑐 in section 5.4.1.9 ‘Sinsemilla Hash Function’ on page 81.

– Propagate ⊥ intermediate results to the output of Sinsemilla primitives.

– Change the output types of NoteCommitOrchard and Commitivk to re�ect that these can return⊥, and change
the Action statement to be satis�ed if they do.

– Propagate ⊥ from the inputs of MerkleCRHOrchard to its output, and add an explicit consensus rule that
rtOrchard computed from appending a note commitment is not ⊥.

– Correct the de�nition of PRFnfOrchard in section 5.4.2 ‘Pseudo Random Functions’ on page 86 by changing Poseidon
to PoseidonHash.

– Restrict the de�nition of a short Weierstrass elliptic curve in section 5.4.9.6 ‘Pallas and Vesta’ on page 105 to base
�elds of characteristic greater than 3.

– De�ne G in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107.

– Fix type confusion between integers and �eld elements (including additional cases not found in the
audit, involving nulli�ers and cm𝑥).

– Fix a discrepancy between section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107 and [ID-hashtocurve]:
the zero padding in expand_message_xmd should be 128 bytes (matching the input block size of BLAKE2b),
rather than 64 bytes.

– Document that the use of 𝑘 = 256 when extracting �eld elements in hash_to_field is intentional, despite
the Pallas curve only having 126-bit conjectured security against generic attacks.

– Correct the output type of sqrt_ratioF𝑞G
.

– Document that the choice of nonsquare for 𝜆G in section 5.4.9.8 ‘Group Hash into Pallas and Vesta’ on page 107
makes no difference to the output of map_to_curve_simple_swuiso-G.

– Document the limitation on the domain separation string for the group hash into Pallas and Vesta.

– Correct the sizes of SpendDescriptionV5 and OutputDescriptionV5 in the version 5 transaction format.

– Make the description of when �elds are included in v5 transactions consistent between the protocol
speci�cation and [ZIP-225].

– Make the naming of enableSpends and enableOutputs consistent.

• Change the speci�cations of note decryption in section 4.19 ‘In-band secret distribution (Sprout)’ on page 65 and
section 4.20 ‘In-band secret distribution (Sapling and Orchard)’ on page 67 to return the note and memo �eld ,
rather than a note plaintext .

• Generalize the block chain scanning algorithm in section 4.22 ‘Block Chain Scanning (Sapling and Orchard)’ on
page 72 to support Orchard.

• Update the hashFinalSaplingRoot/hashLightClientRoot/hashBlockCommitments �eld for N​U​5.

162

https://zips.z.cash/protocol/protocol.pdf#2021.1.20

• Update speci�cation of Poseidon.

• Fix errors in Orchard due to cut-and-paste from Sapling.

• Add references to [Zcash-halo2].

• Correct the description of length in section 5.6.4.1 ‘Unified Payment Addresses and Viewing Keys’ on page 117.

• Correct the type signature of DiversifyHashOrchard in section 4.1.1 ‘Hash Functions’ on page 24.

• Various rationale updates for N​U​5.

• Other �xes to the Orchard speci�cation, including generation of dummy notes and output notes.

• Describe the recommended way to encode a Sapling or uni�ed payment address as a QR code.

• Move the de�nition of ⊥ to before its �rst use.

• Delete a confusing part of the de�nition of concatB that we don’t rely on.

• Add a de�nition for the § symbol in section 1 ‘Introduction’ on page 7, before its �rst use.

• Remove speci�cation of memo �eld contents, which will be in [ZIP-302].

• Remove support for building the Sprout-only speci�cation (sprout.pdf).

• Remove magenta highlighting of differences from Zerocash.

2021.1.19 2021-03-17 #2021.1.19

• Correct the range of input to ValueCommitOrchard in the Action statement , and the corresponding security
argument in section 4.14 ‘Balance and Binding Signature (Orchard)’ on page 54.

• Update the consensus rules that prevent trivial transactions (with no inputs or outputs) to take into account
Action transfers in the v5 transaction format.

• Make DiversifyHashOrchard total, by replacing an output of 𝒪P with another base.

• Fix a type error in the non-normative note at the end of section 5.4.8.4 ‘Sinsemilla commitments’ on page 98.

2021.1.18 2021-03-17 #2021.1.18

• De�ne uni�ed payment addresses in place of the Bech32 form of Orchard shielded payment addresses.

• Remove Sprout-speci�c �elds from the v5 transaction format.

• The ρ value for an Orchard output note was incorrectly described as being derived from rseed, instead of
being set to the nulli�er from the same Action description as intended.

• The ψ value is now derived using the PRFexpand input [9], instead of [10].

• Correct a note about the range of the Merkle hash inputs in section 4.18.4 ‘Action Statement (Orchard)’ on page 63.

• Correct the validity condition for ak in section 5.6.4.4 ‘Orchard Raw Full Viewing Keys’ on page 118.

• Add a de�nition for𝒦Orchard in section 4.16 ‘Computing ρ values and Nullifiers’ on page 57.

• Correct the number of full and partial rounds for Poseidon.

• Add a note explaining the origin of the 265 constant in the de�nition of PoseidonHash.

• The subgroup check added to section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’
on page 70 for Sapling in v2021.1.17 was applied to the wrong variable (gd, when it should have been pkd), despite
being described correctly in the Change History entry below.

163

https://zips.z.cash/protocol/protocol.pdf#2021.1.19
https://zips.z.cash/protocol/protocol.pdf#2021.1.18

2021.1.17 2021-03-15 #2021.1.17

• Draft N​U​5 speci�cation.

• In the consensus rule that a transaction with one or more transparent inputs from coinbase transactions
MUST have no transparent outputs, explicitly say that inputs from coinbase transactions include funding
stream outputs.

• The de�nition of an abstraction function in section 4.1.9 ‘Represented Group’ on page 32 incorrectly required canon-
icity, i.e. that abstG does not accept inputs outside the range of reprG . While this was originally intended, it
is not true of abstJ. (It is also not true of abstBytesEd25519, but Ed25519 is not strictly de�ned as a represented
group in this speci�cation.)

• Correct Theorem 5.4.5 on page 96, which was proving the wrong thing. It needs to prove that NoteCommitSapling

does not return UncommittedSapling, but was previously proving that PedersenHash does not return that value.

• The note about non-canonical encodings in section 5.4.9.3 ‘Jubjub’ on page 102 gave incorrect values for the encodings
of the point of order 2, by omitting a 𝑞J term.

• The speci�cation of decryption in section 4.20.3 on page 70 differed from the zcashd implementation in two respects:
– The speci�cation had a type error in that it failed to check whether abstJ(pk⋆d)= ⊥, which is needed in

order for its use as input to KASapling.Agree to be well-typed.

– The speci�cation did not require pkd to be in the subgroup J(𝑟), while the implementation in zcashd
did. This check is not needed for security; however, since Jubjub public keys are normally of type
KASapling.PublicPrimeOrder, we change the speci�cation to match zcashd.

• Correct the procedure for generating dummy Sapling notes in section 4.8.2 ‘Dummy Notes (Sapling)’ on page 47.

• Add a note in section 5.4.10.1 ‘BCTV14’ on page 110 describing conditions under which an implementation that check-
points on Sapling can omit verifying BCTV14 proofs.

• Rename “hash extractor” to coordinate extractor. This is a more accurate name since it is also used on
commitments.

• Rename char to byte in �eld type declarations.

2021.1.16 2021-01-11 #2021.1.16

• Add macros and Makefile support for building the N​U​5 draft speci�cation.

• Clarify the encoding of block heights for the “height in coinbase” rule. The description of this rule has also
moved from section 7.6 on page 131 to section 7.1.2 ‘Transaction Consensus Rules’ on page 124.

• Include the activation dates of Heartwood and Canopy in section 6 ‘Network Upgrades’ on page 120.

• Section links in the Heartwood and Canopy versions of the speci�cation now go to the correct document
URL.

• Attempt to improve search and cut-and-paste behaviour for ligatures in some PDF readers.

2020.1.15 2020-11-06 #2020.1.15

• Add a missing consensus rule that has always been implemented in zcashd: there must be at least one
transparent output , Output description, or JoinSplit description in a transaction.

• Add a consensus rule that the (zero-valued) coinbase transaction output of the genesis block cannot be spent.

• De�ne Sprout chain value pool balance and Sapling chain value pool balance , and include consensus rules
from [ZIP-209].

• Correct the Sapling note decryption algorithms:
– ephemeralKey is kept as a byte sequence rather than immediately converted to a curve point; this matters

because of non-canonical encoding.

164

https://zips.z.cash/protocol/protocol.pdf#2021.1.17
https://zips.z.cash/protocol/protocol.pdf#2021.1.16
https://zips.z.cash/protocol/protocol.pdf#2020.1.15

– The representation of pkd in a note plaintext may also be non-canonical and need not be in the prime-
order subgroup.

– Move checking of cm𝑢 in decryption with ivk to the end of the algorithm, to more closely match the
implementation.

– The note about decryption of outputs in mempool transactions should have been normative.

• Reserve transaction version number 0x7FFFFFFF and version group ID 0xFFFFFFFF for experimental use.

• Remove a statement that the language consisting of key and address encoding possibilities is pre�x-free. (The
human-readable forms are pre�x-free but the raw encodings are not; for example, the raw encoding of a
Sapling spending key can be a pre�x of several of the other encodings.)

• Use “let mutable” to introduce mutable variables in algorithms.

• Include a reference to [BFIJSV2010] for batch pairing veri�cation techniques.

• Acknowledge Jack Gavigan as a co-designer of Sapling and of the Zcash protocol.

• Acknowledge Izaak Meckler, Zac Williamson, Vitalik Buterin, and Jakub Zalewski.

• Acknowledge Alexandra Elbakyan.

2020.1.14 2020-08-19 #2020.1.14

• The consensus rule that a coinbase transaction must not spend more than is available from the block subsidy
and transaction fees, was not explicitly stated. (This rule was correctly implemented in zcashd.)

• Fix a type error in the output of PRFnfSapling; a Sapling nulli�er is a sequence of 32 bytes, not a bit sequence.

• Correct an off-by-one in an expression used in the de�nition of 𝑐 in section 5.4.1.7 ‘Pedersen Hash Function’ on
page 79 (this does not change the value of 𝑐).

2020.1.13 2020-08-11 #2020.1.13

• Rename the type of Sapling transmission keys from KASapling.PublicPrimeOrder to KASapling.PublicPrimeSubgroup.
This type is de�ned as J(𝑟), which re�ects the implementation in zcashd (subject to the next point below); it
was never enforced that a transmission key (pkd) cannot be 𝒪J.

• Add a non-normative note saying that zcashd does not fully conform to the requirement to treat transmission
keys not in KASapling.PublicPrimeSubgroup as invalid when importing shielded payment addresses.

• Retrospective note: Changing KASapling.PublicPrimeOrder to KASapling.PublicPrimeSubgroup was a mistake and
has since been reverted in speci�cation version v2025.6.0. As discussed in notes added in version v2023.4.0 at
section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’ on page 70, librustzcash changed
in [librustzcash-109] to enforce that pkd is not𝒪J. zcashd also used a different implementation for a consensus
check on shielded coinbase outputs. The missing check on pkd for the latter was corrected in [zcashd-6459],
and simpli�ed when it was observed to be retrospectively valid in [zcashd-6725]. However [ZIP-216] was only
corrected later [Zips-Issue664], at the same time as the publication of v2025.6.0.

• Set CanopyActivationHeight for Testnet .

• Modify the tables and notes in section 7.10.1 ‘ZIP 214 Funding Streams’ on page 140 to re�ect changes in [ZIP-214].

• Updates to re�ect [ZIP-211]: add a consensus rule on vold
pub in section 4.3 ‘JoinSplit Descriptions’ on page 39, and a rule

about node and wallet support for sending to Sprout addresses in section 4.7.1 ‘Sending Notes (Sprout)’ on page 43.

• Re�ne the domain of HeightForHalving from N to N+.

• Make Halving(height) return 0 (rather than −1) for height < SlowStartShift. This has no effect on consensus
since the Halving function is not used in that case, but it makes the de�nition match the intuitive meaning of
the function.

• Rename sections under section 7 ‘Consensus Changes from Bitcoin’ on page 122 to clarify that these sections do not
only concern encoding, but also consensus rules.

165

https://zips.z.cash/protocol/protocol.pdf#2020.1.14
https://zips.z.cash/protocol/protocol.pdf#2020.1.13

• Make the Canopy speci�cation the default.

2020.1.12 2020-08-03 #2020.1.12

• Include SHA-512 in section 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on page 75.

• Add a reference to [BCCGLRT2014] in section 4.1.13 ‘Zero-Knowledge Proving System’ on page 34.

• Use abstBytesEd25519 and reprBytesEd25519 for conversions in section B.3 ‘Ed25519 batch validation’ on page 223, and �x
a missing requirement that 𝑆𝑗 < ℓ for all signatures.

2020.1.11 2020-07-13 #2020.1.11

• Change instances of “the production network” to “Mainnet ”, and “the test network” to Testnet . This follows
the terminology used in ZIPs.

• Update stale references to Bitcoin documentation.

• Add changes for [ZIP-207] and [ZIP-214].

2020.1.10 2020-07-05 #2020.1.10

• Corrections to a note in section 5.4.6 ‘Ed25519’ on page 90.

2020.1.9 2020-07-05 #2020.1.9

• Add section 3.12 ‘Mainnet and Testnet’ on page 22.

• Acknowledge Jane Lusby and teor.

• Precisely specify the encoding and decoding of Ed25519 points.

• Correct an error introduced in v2020.1.8; “−𝒪J” was incorrectly used when the point (0,−1) on Jubjub was
meant.

• Precisely specify the conversion from a bit sequence in abstJ.

2020.1.8 2020-07-04 #2020.1.8

• Add Ying Tong Lai and Kris Nuttycombe as Zcash protocol designers.

• Change the speci�cation of abstJ in section 5.4.9.3 ‘Jubjub’ on page 102 to match the implementation.

• Repair the argument for GroupHashJ(𝑟)*

URS being usable as a random oracle , which previously depended on abstJ
being injective.

• In RedDSA veri�cation, clarify that 𝑅 used as part of the input to H~ MUST be exactly as encoded in the
signature.

• Specify that shielded outputs of coinbase transactions MUST use v2 note plaintexts after Canopy activation.

• Correct a bug in section 4.20.3 ‘Decryption using an Outgoing Viewing Key (Sapling and Orchard)’ on page 70:
esk is only to be checked against ToScalar

(︀
PRFexpand

rseed ([4])
)︀

when leadByte ̸= 0x01. [Later edit: this should have

been ToScalar
(︀
PRFexpand

rseed ([5])
)︀
.]

166

https://zips.z.cash/protocol/protocol.pdf#2020.1.12
https://zips.z.cash/protocol/protocol.pdf#2020.1.11
https://zips.z.cash/protocol/protocol.pdf#2020.1.10
https://zips.z.cash/protocol/protocol.pdf#2020.1.9
https://zips.z.cash/protocol/protocol.pdf#2020.1.8

2020.1.7 2020-06-26 #2020.1.7

• Delete some ‘new’ superscripts that only added notational clutter.

• Add an explicit lead byte �eld to Sprout note plaintexts, and clearly specify the error handling when it is
invalid.

• De�ne a Sapling note plaintext lead byte as having type BY (so that decoding to a note plaintext always
succeeds, and error handling is more explicit).

• Fix a sign error in the �xed-base term of the batch validation equation in section B.1 ‘RedDSA batch validation’ on
page 220.

• Fix a sign error in the �xed-base term of the batch validation equation in section B.3 ‘Ed25519 batch validation’ on
page 223.

2020.1.6 2020-06-17 #2020.1.6

• Incorporate changes to Sapling note encryption from [ZIP-212].

• Correct an error in the speci�cation of Ed25519 validating keys: they should not have been speci�ed to be
checked against PreCanopyExcludedPointEncodings, since libsodium v1.0.15 does not do so.

• Incorporate Ed25519 changes for Canopy from [ZIP-215].

• Add Appendix section B.3 ‘Ed25519 batch validation’ on page 223.

• Consistently use “validating” for signatures and “verifying” for proofs.

• Use the symbol +√
∙ for positive square root.

2020.1.5 2020-06-02 #2020.1.5

• Reference [ZIP-173] instead of BIP 173.

• Mark more index entries as de�nitions.

2020.1.4 2020-05-27 #2020.1.4

• Reference [BIP-32] and [ZIP-32] when describing keys and their encodings.

• Network Upgrade 4 has been given the name Canopy.

• Reference [ZIP-211], [ZIP-212], and [ZIP-215] for the Canopy upgrade.

• Improve LaTeX portability of this speci�cation.

2020.1.3 2020-04-22 #2020.1.3

• Correct a wording error transposing transparent inputs and transparent outputs in section 4.12 ‘Balance (Sprout)’
on page 51.

• Minor wording clari�cations.

• Reference [ZIP-251], [ZIP-207], and [ZIP-214] for the Canopy upgrade.

167

https://zips.z.cash/protocol/protocol.pdf#2020.1.7
https://zips.z.cash/protocol/protocol.pdf#2020.1.6
https://zips.z.cash/protocol/protocol.pdf#2020.1.5
https://zips.z.cash/protocol/protocol.pdf#2020.1.4
https://zips.z.cash/protocol/protocol.pdf#2020.1.3

2020.1.2 2020-03-20 #2020.1.2

• The implementation of Sprout Ed25519 signature validation in zcashd differed from what was speci�ed in
section 5.4.6 ‘Ed25519’ on page 90. The speci�cation has been changed to match the implementation.

• Add consensus rules for Heartwood.

• Remove “pvc” Makefile targets.

• Make the Heartwood speci�cation the default.

• Add macros and Makefile support for building the Canopy speci�cation.

2020.1.1 2020-02-13 #2020.1.1

• Resolve con�icts in the speci�cation of memo �elds by deferring to [ZIP-302].

2020.1.0 2020-02-06 #2020.1.0

• Specify a retrospective soft fork implemented in zcashd v2.1.1-1 that limits the nTime �eld of a block relative to
its median-time-past .

• Correct the de�nition of median-time-past for the �rst PoWMedianBlockSpan blocks in a block chain.

• Add acknowledgements to Henry de Valence, Deirdre Connolly, Chelsea Komlo, and Zancas Wilcox.

• Add an acknowledgement to Trail of Bits for their security audit.

• Change indices in the incremental Merkle tree diagram to be zero-based.

• Use the term “monomorphism” for an injective homomorphism, in the context of a signature scheme with
key monomorphism.

2019.0.9 2019-12-27 #2019.0.9

• No changes to Sprout or Sapling.

• Specify the height at which Blossom activated.

• Add Blossom to section 6 ‘Network Upgrades’ on page 120.

• Add a non-normative note giving the explicit value of FoundersRewardLastBlockHeight.
• Clarify the effect of Blossom on SIGHASH transaction hashes.

• Makefile updates for Heartwood.

2019.0.8 2019-09-24 #2019.0.8

• Fix a typo in the generator 𝒫S1
in section 5.4.9.2 ‘BLS12-381’ on page 101 found by magrady.

• Clarify the type of vnew in section 4.7.2 ‘Sending Notes (Sapling)’ on page 44.

2019.0.7 2019-09-24 #2019.0.7

• Fix a discrepancy in the number of constraints for BLAKE2s found by QED-it.

• Fix an error in the expression for Δ in section A.3.3.9 ‘Pedersen hash’ on page 210, and add acknowledgement to Kobi
Gurkan.

• Fix a typo in section 4.9 ‘Merkle Path Validity’ on page 49 and add acknowledgement to Weikeng Chen.

• Update references to ZIPs and to the Electric Coin Company blog.

• Makefile improvements to suppress unneeded output.

168

https://zips.z.cash/protocol/protocol.pdf#2020.1.2
https://zips.z.cash/protocol/protocol.pdf#2020.1.1
https://zips.z.cash/protocol/protocol.pdf#2020.1.0
https://github.com/zcash/zcash/releases/tag/v2.1.1-1
https://zips.z.cash/protocol/protocol.pdf#2019.0.9
https://zips.z.cash/protocol/protocol.pdf#2019.0.8
https://zips.z.cash/protocol/protocol.pdf#2019.0.7

2019.0.6 2019-08-23 #2019.0.6

• No changes to Sprout or Sapling.

• Replace dummy Blossom activation block height with the Testnet height, and a reference to [ZIP-206].

2019.0.5 2019-08-23 #2019.0.5

• Note the change to the minimum-dif�culty threshold time on Testnet for Blossom.

• Correct the packing of nfold into input elements in section A.4 ‘The Sapling Spend circuit’ on page 217.

• Add an epigraph from [Carroll1876] to the start of section 5.4.9.3 ‘Jubjub’ on page 102.

• Clarify how the constant 𝑐 in section 5.4.1.7 ‘Pedersen Hash Function’ on page 79 is obtained.

• Add a footnote that zcashd uses [ZIP-32] extended spending keys instead of the derivation from sk in section 3.1
‘Payment Addresses and Keys’ on page 13.

• Remove “optimized” Makefile targets (which actually produced a larger PDF, with TeXLive 2019).

• Remove “html” Makefile targets.

• Make the Blossom spec the default.

2019.0.4 2019-07-23 #2019.0.4

• Clicking on a section heading now shows section labels.

• Add a List of Theorems and Lemmata.

• Changes needed to support TeXLive 2019.

2019.0.3 2019-07-08 #2019.0.3

• Experimental support for building using LuaTEX and XeTEX.

• Add an Index.

2019.0.2 2019-06-18 #2019.0.2

• Correct a misstatement in the security argument in section 4.13 ‘Balance and Binding Signature (Sapling)’ on
page 52: binding for a commitment scheme does not imply that the commitment determines its randomness.
The rest of the security argument did not depend on this; it is simpler to rely on knowledge soundness of the
Spend and Output proofs.

• Give a de�nition for complete twisted Edwards elliptic curves in section 5.4.9.3 ‘Jubjub’ on page 102.

• Clarify that Theorem 5.4.5 on page 96 depends on the parameters of the Jubjub curve.

• Ensure that this document builds correctly and without missing characters on recent versions of TEXLive.

• Update the Makefile to use Ghostscript for PDF optimization.

• Ensure that hyperlinks are preserved, and available as “Destination names” in URL fragments and links from
other PDF documents.

2019.0.1 2019-05-20 #2019.0.1

• No changes to Sprout or Sapling.

• Minor �x to the list of integer constants in section 2 ‘Notation’ on page 10.

• Use IsBlossomActivated in the de�nition of FounderAddressAdjustedHeight for consistency.

169

https://zips.z.cash/protocol/protocol.pdf#2019.0.6
https://zips.z.cash/protocol/protocol.pdf#2019.0.5
https://zips.z.cash/protocol/protocol.pdf#2019.0.4
https://zips.z.cash/protocol/protocol.pdf#2019.0.3
https://zips.z.cash/protocol/protocol.pdf#2019.0.2
https://zips.z.cash/protocol/protocol.pdf#2019.0.1

2019.0.0 2019-05-01 #2019.0.0

• Fix a speci�cation error in the Founders’ Reward calculation during the slow start period.

• Correct an inconsistency in dif�culty adjustment between the spec and zcashd implementation for the �rst
PoWAveragingWindow − 1 blocks of the block chain. This inconsistency was pointed out by NCC Group in
their Blossom speci�cation audit.

• Revert changes for funding streams from Withdrawn ZIP 207.

2019.0-beta-39 2019-04-18 #2019.0-beta-39

• Change author af�liations from “Zerocoin Electric Coin Company” to “Electric Coin Company”.

• Add acknowledgement to Mary Maller for the observation that diversi�ed payment address unlinkability can
be proven in the same way as key privacy for ElGamal.

2019.0-beta-38 2019-04-18 #2019.0-beta-38

• Update the following sections to match the current draft of [ZIP-208]:
– section 7.7.3 ‘Difficulty adjustment’ on page 134

– section 7.8 ‘Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’ Reward’
on page 136

• Specify funding streams, along with the draft funding streams de�ned in the current draft of ZIP 207.

• Update the following sections to match the current draft of ZIP 207:
– section 3.10 ‘Block Subsidy, Funding Streams, and Founders’ Reward’ on page 22

– section 3.11 ‘Coinbase Transactions’ on page 22

– section 7.8 ‘Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders’ Reward’
on page 136

– section 7.9 ‘Payment of Founders’ Reward’ on page 137

• Correct the generators 𝒫S1
and 𝒫S2

for BLS12-381.

• Update README.rst to include Makefile targets for Blossom.

• Makefile updates:
– Fix a typo for the pvcblossom target.

– Update the pinned git hashes for sam2p and pdfsizeopt.

2019.0-beta-37 2019-02-22 #2019.0-beta-37

• The rule that miners SHOULD NOT mine blocks that chain to other blocks with a block version number
greater than 4, has been removed. This is because such blocks (mined nonconformantly) exist in the current
Mainnet consensus block chain.

• Clarify that Equihash is based on a variation of the Generalized Birthday Problem, and cite [AR2017].

• Update reference [BGG2017] (previously [BGG2016]).

• Clarify which transaction �elds are added by Overwinter and Sapling.

• Correct the rule about when a transaction is permitted to have no transparent inputs.

• Explain the differences between the system in [Groth2016] and what we refer to as Groth16.

• Reference Mary Maller’s security proof for Groth16 [Maller2018].

• Correct [BGM2018] to [BGM2017].

170

https://zips.z.cash/protocol/protocol.pdf#2019.0.0
https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-39
https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-38
https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-37

• Fix a typo in section B.2 ‘Groth16 batch verification’ on page 221 and clarify the costs of Groth16 batch veri�cation.

• Add macros and Makefile support for building the Blossom speci�cation.

2019.0-beta-36 2019-02-09 #2019.0-beta-36

• Correct isis agora lovecruft’s name.

2019.0-beta-35 2019-02-08 #2019.0-beta-35

• Cite [Gabizon2019] and acknowledge Ariel Gabizon.

• Correct [SBB2019] to [SWB2019].

• The [Gabizon2019] vulnerability affected Soundness of BCTV14 as well as Knowledge Soundness.

• Clarify the history of the [Parno2015] vulnerability and acknowledge Bryan Parno.

• Specify the dif�culty adjustment change that occurred on Testnet at block height 299188.

• Add Eirik Ogilvie-Wigley and Benjamin Winston to acknowledgements.

• Rename zk-SNARK Parameters sections to be named according to the proving system (BCTV14 or Groth16),
not the shielded protocol construction (Sprout or Sapling).

• In section 6 ‘Network Upgrades’ on page 120, say when Sapling activated.

2019.0-beta-34 2019-02-05 #2019.0-beta-34

• Disclose a security vulnerability in BCTV14 that affected Sprout before activation of the Sapling network
upgrade (see section 5.4.10.1 ‘BCTV14’ on page 110).

• Rename PHGR13 to BCTV2014.

• Rename reference [BCTV2015] to [BCTV2014a], and [BCTV2014] to [BCTV2014b].

2018.0-beta-33 2018-11-14 #2018.0-beta-33

• Complete section A.4 ‘The Sapling Spend circuit’ on page 217.

• Add section A.5 ‘The Sapling Output circuit’ on page 219.

• Change the description of window lookup in section A.3.3.7 ‘Fixed-base Affine-ctEdwards scalar multiplication’
on page 208 to match sapling-crypto.

• Describe 2-bit window lookup with conditional negation in section A.3.3.9 ‘Pedersen hash’ on page 210.

• Fix or complete various calculations of constraint costs.

• Adjust the notation used for scalar multiplication in Appendix A to allow bit sequences as scalars.

2018.0-beta-32 2018-10-24 #2018.0-beta-32

• Correct the input to H~ used to derive the nonce 𝑟 in RedDSA.Sign, from 𝑇 ||𝑀 to 𝑇 || vk ||𝑀 . This matches the
sapling-crypto implementation; the speci�cation of this input was unintentionally changed in v2018.0-beta-20.

• Clarify the description of the Merkle path check in section A.3.4 ‘Merkle path check’ on page 213.

171

https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-36
https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-35
https://zips.z.cash/protocol/protocol.pdf#2019.0-beta-34
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-33
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-32

2018.0-beta-31 2018-09-30 #2018.0-beta-31

• Correct some uses of 𝑟J that should have been 𝑟S or 𝑞.

• Correct uses of LEOS2IPℓ in RedDSA.Validate and RedDSA.BatchValidate to ensure that ℓ is a multiple of 8 as
required.

• Minor changes to avoid clashing notation for Edwards curves 𝐸Edwards(𝑎,𝑑), Montgomery curves 𝐸Mont(𝐴,𝐵),
and extractors ℰ𝒜.

• Correct a use of J that should have been M in the proof of Theorem A.3.4 on page 206, and make a minor tweak
to the theorem statement (𝑘2 ̸= ±𝑘1 instead of 𝑘1 ̸= ±𝑘2) to make the contradiction derived by the proof
clearer.

• Clarify notation in the proof of Theorem A.3.3 on page 206.

• Address some of the �ndings of the QED-it report:
– Improved cross-referencing in section 5.4.1.7 ‘Pedersen Hash Function’ on page 79.

– Clarify the notes concerning domain separation of pre�xes in section 5.4.1.3 ‘MerkleCRHSapling Hash Function’
on page 76 and section 5.4.8.2 ‘Windowed Pedersen commitments’ on page 96.

– Correct the statement and proof of Theorem A.3.2 on page 206.

• Add the QED-it report to the acknowledgements.

2018.0-beta-30 2018-09-02 #2018.0-beta-30

• Give an informal security argument for Unlinkability of diversi�ed payment addresses based on reduction to
key privacy of ElGamal encryption, for which a security proof is given in [BBDP2001]. (This argument has gaps
which will be addressed in a future version.)

• Add a reference to [BGM2017] for the Sapling zk-SNARK parameters.

• Write section A.4 ‘The Sapling Spend circuit’ on page 217 (draft).

• Add a reference to the ristretto_bulletproofs design notes [Dalek-notes] for the synthetic blinding factor
technique.

• Ensure that the constraint costs in section A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’
on page 205 and section A.3.3.6 ‘Affine-ctEdwards nonsmall-order check’ on page 208 accurately re�ect the implemen-
tation in sapling-crypto.

• Minor correction to the non-normative note in section A.3.2.2 ‘Range check’ on page 203.

• Clarify non-normative note in section 4.1.8 ‘Commitment’ on page 31 about the de�nitions of ValueCommitSapling.Output
and NoteCommitSapling.Output.

• Clarify that the signer of a spend authorization signature is supposed to choose the spend authorization
randomizer, 𝛼, itself. Only step 4 in section 4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 56
may securely be delegated.

• Add a non-normative note to section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92 explaining that RedDSA key
randomization may interact with other uses of additive properties of Schnorr keys.

• Add dates to Change History entries. (These are the dates of the git tags in local, i.e. UK, time.)

2018.0-beta-29 2018-08-15 #2018.0-beta-29

• Finish section A.3.2.2 ‘Range check’ on page 203.

• Change section A.3.7 ‘BLAKE2s hashes’ on page 214 to correct the constraint count and to describe batched equality
checks performed by the sapling-crypto implementation.

172

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-31
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-30
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-29

2018.0-beta-28 2018-08-14 #2018.0-beta-28

• Finish section A.3.7 ‘BLAKE2s hashes’ on page 214.

• Minor corrections to section A.3.3.8 ‘Variable-base Affine-ctEdwards scalar multiplication’ on page 209.

2018.0-beta-27 2018-08-12 #2018.0-beta-27

• Notational changes:

– Use a superscript (𝑟) to mark the subgroup order, instead of a subscript.

– Use G(𝑟)* for the set of 𝑟G-order points in G.

– Mark the subgroup order in pairing groups, e.g. use G(𝑟)
1 instead of G1.

– Make the bit-representation indicator ⋆ an af�x instead of a superscript.

• Clarify that when validating a Groth16 proof, it is necessary to perform a subgroup check for 𝜋𝐴 and 𝜋𝐶 as well
as for 𝜋𝐵 .

• Correct the description of Groth16 batch veri�cation to explicitly take account of how veri�cation depends on
primary inputs.

• Add Charles Rackoff, Rafail Ostrovsky, and Amit Sahai to the acknowledgements section for their work on
zero-knowledge proofs.

2018.0-beta-26 2018-08-05 #2018.0-beta-26

• Add section B.2 ‘Groth16 batch verification’ on page 221.

2018.0-beta-25 2018-08-05 #2018.0-beta-25

• Add the hashes of parameter �les for Sapling.

• Add cross references for parameters and functions used in RedDSA batch validation.

• Makefile changes: name the PDF �le for the Sprout version of the speci�cation as sprout.pdf, and make
protocol.pdf link to the Sapling version.

2018.0-beta-24 2018-07-31 #2018.0-beta-24

• Add a missing consensus rule for version 4 transactions: if there are no Sapling Spends or Outputs, then
valueBalanceSapling MUST be 0.

2018.0-beta-23 2018-07-27 #2018.0-beta-23

• Update RedDSA validation to use cofactor multiplication. This is necessary in order for the output of batch
validation to match that of unbatched validation in all cases.

• Add section B.1 ‘RedDSA batch validation’ on page 220.

173

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-28
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-27
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-26
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-25
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-24
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-23

2018.0-beta-22 2018-07-18 #2018.0-beta-22

• Update section 6 ‘Network Upgrades’ on page 120 to take account that Overwinter has activated.

• The recommendation for transactions without JoinSplit descriptions to be version 1 applies only before
Overwinter, not before Sapling.

• Complete the proof of Theorem A.3.5 on page 211.

• Add a note about redundancy in the nonsmall-order checking of rk.

• Clarify the use of cvnew and cmnew, and the selection of outgoing viewing key, in sending Sapling notes.

• Delete the description of optimizations for the af�ne twisted Edwards nonsmall-order check, since the Sapling
circuit does not use them. Also clarify that some other optimizations are not used.

2018.0-beta-21 2018-06-22 #2018.0-beta-21

• Remove the consensus rule “If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than
SIGHASH_ALL.”, which was never implemented.

• Add section on signature hashing.

• Brie�y describe the changes to computation of SIGHASH transaction hashes in Sprout.

• Clarify that interstitial treestates form a tree for each transaction containing JoinSplit descriptions.

• Correct the description of P2PKH addresses in section 5.6.1.1 ‘Transparent Addresses’ on page 113 — they use a hash of
a compressed, not an uncompressed ECDSA key representation.

• Clarify the wording of the caveat4 about the claimed security of shielded transactions.

• Correct the de�nition of set difference (𝑆 ∖ 𝑇).

• Add a note concerning malleability of zk-SNARK proofs.

• Clarify attribution of the Zcash protocol design.

• Acknowledge Alex Biryukov and Dmitry Khovratovich as the designers of Equihash.

• Acknowledge Sha� Goldwasser, Silvio Micali, Oded Goldreich, Rosario Gennaro, Bryan Parno, Jon Howell,
Craig Gentry, Mariana Raykova, and Jens Groth for their work on zero-knowledge proving systems.

• Acknowledge Tomas Sander and Amnon Ta-Shma for [ST1999].

• Acknowledge Kudelski Security’s audit.

• Use the more precise subgroup types G(𝑟) and J(𝑟) in preference to G and J where applicable.

• Change the types of auxiliary inputs to the Spend statement and Output statement , to be more faithful to the
implementation.

• Rename the cm �eld of an Output description to cmu, re�ecting the fact that it is a Jubjub curve 𝑢-coordinate.

• Add explicit consensus rules that the anchorSapling �eld of a Spend description and the cmu �eld of an
Output description must be canonical encodings.

• Enforce that esk in outCiphertext is a canonical encoding.

• Add consensus rules that cv in a Spend description, and cv and epk in an Output description, are not of small
order. Exclude 0 from the range of esk when encrypting Sapling notes.

• Add a consensus rule that valueBalanceSapling is in the range {−MAX_MONEY .. MAX_MONEY}.

• Enforce stronger constraints on the types of key components pkd, ak, and nk.

• Correct the conformance rule for fOverwintered (it must not be set before Overwinter has activated, not
before Sapling has activated).

• Correct the argument that v* is in range in section 4.13 ‘Balance and Binding Signature (Sapling)’ on page 52.

174

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-22
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-21

• Correct an error in the algorithm for RedDSA.Validate: the validating key vk is given directly to this algorithm
and should not be computed from the unknown signing key sk.

• Correct or improve the types of GroupHashJ(𝑟)*

, FindGroupHashJ(𝑟)*

, ExtractJ(𝑟) , PRFexpand, PRFockSapling, and

CRHivk.

• Instantiate PRFockSapling using BLAKE2b-256.

• Change the syntax of a commitment scheme to add COMM.GenTrapdoor. This is necessary because the
intended distribution of commitment trapdoors may not be uniform on all values that are acceptable trapdoor
inputs.

• Add notes on the purpose of outgoing viewing keys.

• Correct the encoding of a full viewing key (ovk was missing).

• Ensure that Sprout functions and values are given Sprout-speci�c types where appropriate.

• Improve cross-referencing.

• Clarify the use of BCTV14 vs Groth16 proofs in JoinSplit statements.

• Clarify that the +√𝑎 notation refers to the positive square root. (This matters for the conversion in section A.3.3.3
‘ctEdwards↔Montgomery conversion’ on page 205.)

• Model the group hash as a random oracle. This appears to be unavoidable in order to allow proving unlink-
ability of DiversifyHashSapling. Explain how this relates to the Discrete Logarithm Independence assumption
used previously, and justify this modelling by showing that it follows from treating BLAKE2s-256 as a random

oracle in the instantiation of GroupHashJ(𝑟)*

.

• Rename CRS (Common Random String) to URS (Uniform Random String), to match the terminology adopted
at the �rst ZKProof workshop held in Boston, Massachusetts on May 10–11, 2018.

• Generalize PRFexpand to accept an arbitrary-length input. (This speci�cation does not use that generalization,
but [ZIP-32] does.)

• Change the notation for a multiplication constraint in Appendix section A ‘Circuit Design’ on page 200 to avoid
potential confusion with cartesian product.

• Clarify the wording of the abstract.

• Correct statements about which algorithms are instantiated by BLAKE2s and BLAKE2b.

• Add a note explaining which conformance requirements of BIP 173 (de�ning Bech32) apply.

• Add the Jubjub bird image to the title page. This image has been edited from a scan of Peter Newell’s original
illustration (as it appeared in [Carroll1902]) to remove the background and Bandersnatch, and to restore the
bird’s clipped right wing.

• Change the light yellow background to white (indicating that this Overwinter and Sapling speci�cation is no
longer a draft).

2018.0-beta-20 2018-05-22 #2018.0-beta-20

• Add Michael Dixon and Andrew Poelstra to acknowledgements.

• Minor improvements to cross-references.

• Correct the order of arguments to RedDSA.RandomizePrivate and RedDSA.RandomizePublic.

• Correct a reference to RedDSA.RandomizePrivate that was intended to be RedDSA.RandomizePublic.

• Fix the description of the Sapling balancing value in section 4.13 ‘Balance and Binding Signature (Sapling)’ on
page 52.

• Correct a type error in section 5.4.9.5 ‘Group Hash into Jubjub’ on page 104.

• Correct a type error in RedDSA.Sign in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92.

175

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-20

• Ensure 𝒢Sapling is de�ned in section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95.

• Make the validating key pre�x part of the input to the hash function in RedDSA, not part of the message.

• Correct the statement about FindGroupHashJ(𝑟)*

never returning ⊥.

• Correct an error in the computation of generators for Pedersen hashes.

• Change the order in which NoteCommitSapling commits to its inputs, to match the sapling-crypto implementa-
tion.

• Fail Sapling key generation if ivk = 0. (This has negligible probability.)

• Change the notation H⋆ to H~ in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on page 92, to avoid confusion with
the ⋆ convention for representations of group elements.

• cmu encodes only the 𝑢-coordinate of the note commitment , not the full curve point.

• rk is checked to be not of small order outside the Spend statement , not in the Spend statement .

• Change terminology describing constraint systems.

2018.0-beta-19 2018-04-23 #2018.0-beta-19

• Minor clari�cations.

2018.0-beta-18 2018-04-23 #2018.0-beta-18

• Clarify the security argument for balance in Sapling.

• Correct a subtle problem with the type of the value input to ValueCommitSapling: although it is only directly
used to commit to values in {0 .. 2ℓvalue−1}, the security argument depends on a sum of commitments being
binding on

{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀

.

• Fix the loss of tightness in the use of PRFnfSapling by specifying the keyspace more precisely.

• Correct type ambiguities for ρ.

• Specify the representation of 𝑖 in group G2 of BLS12-381.

2018.0-beta-17 2018-04-21 #2018.0-beta-17

• Correct an error in the de�nition of DefaultDiversifier.

2018.0-beta-16 2018-04-21 #2018.0-beta-16

• Explicitly note that outputs from coinbase transactions include Founders’ Reward outputs.

• The point represented by 𝑅 in an Ed25519 signature is checked to not be of small order; this is not the same
as checking that it is of prime order ℓ.

• Specify support for [BIP-111] (the NODE_BLOOM service bit) in peer-to-peer protocol version 170004.

• Give references [Vercauter2009] and [AKLGL2010] for the optimal ate pairing.

• Give references for BLS [BLS2002] and BN [BN2005] curves.

• De�ne KASprout.DerivePublic for Curve25519.

• Caveat the claim about note traceability set in section 1.2 ‘High-level Overview’ on page 8 and link to [Peterson2017]
and [Quesnelle2017].

• Do not require a generator as part of the speci�cation of a represented group; instead, de�ne it in the
represented pairing or scheme using the group.

176

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-19
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-18
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-17
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-16

• Refactor the abstract de�nition of a signature scheme to allow derivation of validating keys independent of
key pair generation.

• Correct the explanation in section 1.2 ‘High-level Overview’ on page 8 to apply to Sapling.

• Add the de�nition of a signing key to validating key homomorphism for signature schemes.

• Remove the output index as an input to KDFSapling.

• Allow dummy Sapling input notes.

• Specify RedDSA and RedJubjub.

• Specify Sapling binding signatures and spend authorization signatures.

• Specify the randomness beacon.

• Add outgoing ciphertexts and ock.

• De�ne DefaultDiversifier.

• Change the Spend circuit and Output circuit speci�cations to remove unintended differences from sapling-
crypto.

• Use ℎJ to refer to the Jubjub curve cofactor, rather than 8.

• Correct an error in the 𝑦-coordinate formula for addition in section A.3.3.4 ‘Affine-Montgomery arithmetic’ on
page 206 (the constraints were correct).

• Add acknowledgements for Brian Warner, Mary Maller, and the Least Authority audit.

• Makefile improvements.

2018.0-beta-15 2018-03-19 #2018.0-beta-15

• Clarify the bit ordering of SHA-256.

• Drop _t from the names of representation types.

• Remove functions from the Sprout speci�cation that it does not use.

• Updates to transaction format and consensus rules for Overwinter and Sapling.

• Add speci�cation of the Output statement .

• Change MerkleDepthSapling from 29 to 32.

• Updates to Sapling construction, changing how the nulli�er is computed and separating it from the randomized
Spend validating key (rk).

• Clarify conversions between bit sequences and byte sequences for sk, reprJ(ak), and reprJ(nk).

• Change the Makefile to avoid multiple reloads in PDF readers while rebuilding the PDF.

• Spacing and pagination improvements.

2018.0-beta-14 2018-03-11 #2018.0-beta-14

• Only cosmetic changes to Sprout.

• Simplify FindGroupHashJ(𝑟)*

to use a single-byte index.

• Changes to diversi�cation for Pedersen hashes and Pedersen commitments.

• Improve security de�nitions for signatures.

177

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-15
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-14

2018.0-beta-13 2018-03-11 #2018.0-beta-13

• Only cosmetic changes to Sprout.

• Change how (ask, nsk) are derived from the spending key sk to ensure they are on the full range of F𝑟J
.

• Change PRFnr to produce output computationally indistinguishable from uniform on F𝑟J
.

• Change UncommittedSapling to be a 𝑢-coordinate for which there is no point on the curve.

• Appendix A updates:
– categorize components into larger sections

– �ll in the [de]compression and validation algorithm

– more precisely state the assumptions for inputs and outputs

– delete not-all-one component which is no longer needed

– factor out xor into its own component

– specify [un]packing more precisely; separate it from boolean constraints

– optimize checking for non-small order

– notation in variable-base multiplication algorithm.

2018.0-beta-12 2018-03-06 #2018.0-beta-12

• Add references to Overwinter ZIPs and update the section on Overwinter/Sapling transitions.

• Add a section on re-randomizable signatures.

• Add de�nition of PRFnr.

• Work-in-progress on Sapling statements.

• Rename “raw” to “homomorphic” Pedersen commitments.

• Add packing modulo the �eld size and range checks to Appendix A.

• Update the algorithm for variable-base scalar multiplication to what is implemented by sapling-crypto.

2018.0-beta-11 2018-02-26 #2018.0-beta-11

• Add sections on Spend descriptions and Output descriptions.

• Swap order of cv and rt in a Spend description for consistency.

• Fix off-by-one error in the range of ivk.

2018.0-beta-10 2018-02-26 #2018.0-beta-10

• Split the descriptions of SHA-256 and SHA256Compress, and of BLAKE2, into their own sections. Specify
SHA256Compress more precisely.

• Add Kexin Hu to acknowledgements (for the idea of explicitly encoding the root of the Sapling note commitment
tree in block headers).

• Move bit/byte/integer conversion primitives into section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

• Refer to Overwinter and Sapling just as “upgrades” in the abstract, not as the next “minor version” and “major
version”.

• PRFnr must be collision-resistant .

• Correct an error in the Pedersen hash speci�cation.

• Use a named variable, 𝑐, for chunks per segment in the Pedersen hash speci�cation, and change its value from
61 to 63. Add a proof justifying this value of 𝑐.

178

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-13
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-12
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-11
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-10

• Specify Pedersen commitments.

• Notation changes.

• Generalize the distinct-𝑥 criterion (Theorem A.3.4 on page 206) to allow negative indices.

2018.0-beta-9 2018-02-10 #2018.0-beta-9

• Specify the coinbase maturity rule, and the rule that coinbase transactions cannot contain JoinSplit descriptions,
Spend descriptions, or Output descriptions.

• Delay lifting the 100000-byte transaction size limit from Overwinter to Sapling.

• Improve presentation of the proof of injectivity for ExtractJ(𝑟) .

• Specify GroupHashJ(𝑟)*

.

• Specify Pedersen hashes.

2018.0-beta-8 2018-02-08 #2018.0-beta-8

• Add instantiation of CRHivk.

• Add instantiation of a hash extractor (later renamed to coordinate extractor) for Jubjub.

• Make the background lighter and the Sapling green darker, for contrast.

2018.0-beta-7 2018-02-07 #2018.0-beta-7

• Specify the 100000-byte limit on transaction size. (The implementation in zcashd was as intended.)

• Specify that 0xF6 followed by 511 zero bytes encodes an empty memo �eld .

• Reference security de�nitions for Pseudo Random Functions and Pseudo Random Generators.

• Rename clamp to bound and ActualTimespanClamped to ActualTimespanBounded in the dif�culty adjustment
algorithm, to avoid a name collision with Curve25519 scalar “clamping”.

• Change uses of the term full node to full validator. A full node by de�nition participates in the peer-to-peer
network , whereas a full validator just needs a copy of the block chain from somewhere. The latter is what
was meant.

• Add an explanation of how Sapling prevents Faerie Gold and roadblock attacks.

• Sapling work in progress.

2018.0-beta-6 2018-01-31 #2018.0-beta-6

• Sapling work in progress, mainly on Appendix section A ‘Circuit Design’ on page 200.

2018.0-beta-5 2018-01-30 #2018.0-beta-5

• Specify more precisely the requirements on Ed25519 validating keys and signatures.

• Sapling work in progress.

2018.0-beta-4 2018-01-25 #2018.0-beta-4

• Update key components diagram for Sapling.

179

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-9
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-8
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-7
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-6
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-5
https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-4

2018.0-beta-3 2018-01-22 #2018.0-beta-3

• Explain how the chosen �x to Faerie Gold avoids a potential “roadblock” attack.

• Update some explanations of changes from Zerocash for Sapling.

• Add a description of the Jubjub curve.

• Add an acknowledgement to George Tankersley.

• Add an appendix on the design of the Sapling circuits at the quadratic constraint program level.

2017.0-beta-2.9 2017-12-17 #2017.0-beta-2.9

• Refer to skenc as a receiving key rather than as a viewing key.

• Updates for incoming viewing key support.

• Refer to Network Upgrade 0 as Overwinter.

2017.0-beta-2.8 2017-12-02 #2017.0-beta-2.8

• Correct the non-normative note describing how to check the order of 𝜋𝐵 .

• Initial version of draft Sapling protocol speci�cation.

2017.0-beta-2.7 2017-07-10 #2017.0-beta-2.7

• Fix an off-by-one error in the speci�cation of the Equihash algorithm binding condition. (The implementation
in zcashd was as intended.)

• Correct the types and consensus rules for transaction version numbers and block version numbers. (Again,
the implementation in zcashd was as intended.)

• Clarify the computation of h𝑖 in a JoinSplit statement .

2017.0-beta-2.6 2017-05-09 #2017.0-beta-2.6

• Be more precise when talking about curve points and pairing groups.

2017.0-beta-2.5 2017-03-07 #2017.0-beta-2.5

• Clarify the consensus rule preventing double-spends.

• Clarify what a note commitment opens to in section 8.8 ‘Omission in Zerocash security proof’ on page 148.

• Correct the order of arguments to COMM in section 5.4.8.1 ‘Sprout Note Commitments’ on page 95.

• Correct a statement about indistinguishability of JoinSplit descriptions.

• Change the Founders’ Reward addresses, for Testnet only, to re�ect the hard-fork upgrade described in
[Zcash-Issue2113].

2017.0-beta-2.4 2017-02-25 #2017.0-beta-2.4

• Explain a variation on the Faerie Gold attack and why it is prevented.

• Generalize the description of the InternalH attack to include �nding collisions on (apk, ρ) rather than just on ρ.

• Rename enforce𝑖 to enforceMerklePath𝑖.

180

https://zips.z.cash/protocol/protocol.pdf#2018.0-beta-3
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.9
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.8
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.7
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.6
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.5
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.4

2017.0-beta-2.3 2017-02-12 #2017.0-beta-2.3

• Specify the security requirements on the SHA256Compress function, in order for the scheme in section 5.4.8.1
‘Sprout Note Commitments’ on page 95 to be a secure commitment.

• Specify G2 more precisely.

• Explain the use of interstitial treestates in chained JoinSplit transfers.

2017.0-beta-2.2 2017-02-11 #2017.0-beta-2.2

• Give de�nitions of computational binding and computational hiding for commitment schemes.

• Give a de�nition of statistical zero knowledge.

• Reference the white paper on MPC parameter generation [BGG2017].

2017.0-beta-2.1 2017-02-06 #2017.0-beta-2.1

• ℓMerkle is a bit length, not a byte length.

• Specify the maximum block size.

2017.0-beta-2 2017-02-04 #2017.0-beta-2

• Add abstract and keywords.

• Fix a typo in the de�nition of nulli�er integrity.

• Make the description of block chains more consistent with upstream Bitcoin documentation (referring to
“best“ chains rather than using the concept of a block chain view).

• De�ne how nodes select a best valid block chain.

2016.0-beta-1.13 2017-01-20 #2016.0-beta-1.13

• Specify the dif�culty adjustment algorithm.

• Clarify some de�nitions of �elds in a block header.

• De�ne PRFaddr in section 4.2.1 ‘Sprout Key Components’ on page 36.

2016.0-beta-1.12 2017-01-09 #2016.0-beta-1.12

• Update the hashes of proving and verifying keys for the �nal Sprout parameters.

• Add cross references from shielded payment address and spending key encoding sections to where the key
components are speci�ed.

• Add acknowledgements for Filippo Valsorda and Zaki Manian.

2016.0-beta-1.11 2016-12-19 #2016.0-beta-1.11

• Specify a check on the order of 𝜋𝐵 in a zk-SNARK proof .

• Note that due to an oversight, the Zcash genesis block does not follow [BIP-34].

181

https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.3
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.2
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2.1
https://zips.z.cash/protocol/protocol.pdf#2017.0-beta-2
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.13
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.12
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.11

2016.0-beta-1.10 2016-10-30 #2016.0-beta-1.10

• Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the
section discussing potential ASIC implementations is substantially expanded.)

• Clarify the discussion of proof size in “Differences from the Zerocash paper”.

2016.0-beta-1.9 2016-10-28 #2016.0-beta-1.9

• Add Founders’ Reward addresses for Mainnet .

• Change “protected” terminology to “shielded”.

2016.0-beta-1.8 2016-10-04 #2016.0-beta-1.8

• Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the Testnet Founders’ Reward
addresses.

• Add a section on which BIPs apply to Zcash.

• Specify that OP_CODESEPARATOR has been disabled, and no longer affects SIGHASH transaction hashes.

• Change the representation type of vpub_old and vpub_new to uint64. (This is not a consensus change be-
cause the type of vold

pub and vnew
pub was already speci�ed to be {0 .. MAX_MONEY}; it just better re�ects the

implementation.)

• Correct the representation type of the block nVersion �eld to uint32.

2016.0-beta-1.7 2016-10-02 #2016.0-beta-1.7

• Clarify the consensus rule for payment of the Founders’ Reward , in response to an issue raised by the NCC
audit.

2016.0-beta-1.6 2016-09-26 #2016.0-beta-1.6

• Fix an error in the de�nition of the sortedness condition for Equihash: it is the sequences of indices that are
sorted, not the sequences of hashes.

• Correct the number of bytes in the encoding of solutionSize.

• Update the section on encoding of transparent addresses. (The precise pre�xes are not decided yet.)

• Clarify why BLAKE2b-ℓ is different from truncated BLAKE2b-512.

• Clarify a note about SU-CMA security for signatures.

• Add a note about PRFnfSprout corresponding to PRFsn in Zerocash.

• Add a paragraph about key length in section 8.7 ‘In-band secret distribution’ on page 147.

• Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

2016.0-beta-1.5 2016-09-22 #2016.0-beta-1.5

• Update the Founders’ Reward address list.

• Add some clari�cations based on Eli Ben-Sasson’s review.

182

https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.10
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.9
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.8
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.7
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.6
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.5

2016.0-beta-1.4 2016-09-19 #2016.0-beta-1.4

• Specify the block subsidy, miner subsidy, and the Founders’ Reward .

• Specify coinbase transaction outputs to Founders’ Reward addresses.

• Improve notation (for example “·” for multiplication and “𝑇 [ℓ]” for sequence types) to avoid ambiguity.

2016.0-beta-1.3 2016-09-16 #2016.0-beta-1.3

• Correct the omission of solutionSize from the block header format.

• Document that compactSize encodings must be canonical.

• Add a note about conformance language in the introduction.

• Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and
Coinspect security audits.

2016.0-beta-1.2 2016-09-11 #2016.0-beta-1.2

• Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b-ℓ.

• Correct the security requirement for EquihashGen.

2016.0-beta-1.1 2016-09-05 #2016.0-beta-1.1

• Add a speci�cation of abstract signatures.

• Clarify what is signed in the “Sending Notes” section.

• Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1 2016-09-04 #2016.0-beta-1

• Major reorganization to separate the abstract cryptographic protocol from the algorithm instantiations.

• Add type declarations.

• Add a “High-level Overview” section.

• Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the encoding
of points in proofs to follow IEEE Std 1363[a].

• Add a section on consensus changes from Bitcoin, and the speci�cation of Equihash.

• Complete the “Differences from the Zerocash paper” section.

• Correct the Merkle tree depth to 29.

• Change the length of memo �elds to 512 bytes.

• Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hSig.

• Fix the lead bytes in shielded payment address and spending key encodings to match the implemented
protocol.

• Add a consensus rule about the ranges of vold
pub and vnew

pub .

• Clarify cryptographic security requirements and added de�nitions relating to the in-band secret distribution.

• Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts,
several crypto papers for security de�nitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several
references to Bitcoin documentation.

• Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.

183

https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.4
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.3
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.2
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1.1
https://zips.z.cash/protocol/protocol.pdf#2016.0-beta-1

• Add JoinSplit transfers to the Concepts section.

• Add a section on Coinbase Transactions.

• Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake
Tarren.

• Fix a Makefile compatibility problem with the escaping behaviour of echo.

• Switch to biber for the bibliography generation, and add backreferences.

• Make the date format in references more consistent.

• Add visited dates to all URLs in references.

• Terminology changes.

2016.0-alpha-3.1 2016-05-20 #2016.0-alpha-3.1

• Change main font to Quattrocento.

2016.0-alpha-3 2016-05-09 #2016.0-alpha-3

• Change version numbering convention (no other changes).

2.0-alpha-3 2016-05-06 #2.0-alpha-3

• Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate.

• Add change history.

2.0-alpha-2 2016-04-21 #2.0-alpha-2

• Change from truncated BLAKE2b-512 to BLAKE2b-256.

• Clarify endianness, and that uses of BLAKE2b are unkeyed.

• Minor correction to what SIGHASH types cover.

• Add “as intended for the Zcash release of summer 2016" to title page.

• Require PRFaddr to be collision-resistant (see section 8.8 ‘Omission in Zerocash security proof’ on page 148).

• Add speci�cation of path computation for the incremental Merkle tree.

• Add a note in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60 about how this condition corresponds to con-
ditions in the Zerocash paper.

• Changes to terminology around keys.

2.0-alpha-1 2016-03-30 #2.0-alpha-1

• First version intended for public review.

184

https://zips.z.cash/protocol/protocol.pdf#2016.0-alpha-3.1
https://zips.z.cash/protocol/protocol.pdf#2016.0-alpha-3
https://zips.z.cash/protocol/protocol.pdf#2.0-alpha-3
https://zips.z.cash/protocol/protocol.pdf#2.0-alpha-2
https://zips.z.cash/protocol/protocol.pdf#2.0-alpha-1

11 References #references

[ABR1999] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An Encryption Scheme Based on the
Dif�e–Hellman Problem. Cryptology ePrint Archive: Report 1999/007. Received March 17, 1999.
September 1998. URL: https://eprint.iacr.org/1999/007 (visited on 2016-08-21) (↑ p27, 147).

[ADMA2015] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of Keyed Sponge
Constructions Using a Modular Proof Approach. Team Keccak web page, https://keccak.
team/papers.html. URL: https://keccak.team/files/ModularKeyedSponge.pdf (visited
on 2021-03-01). Originally published in Fast Software Encryption - Proceeedings of the 22nd
International Workshop (Istanbul, Turkey, March 8–11, 2015), pages 364–384; Springer, 2015.
Note that the pre-proceedings version contained an oversight in the analysis of the outer-keyed
sponge. (↑ P87).

[AGRRT2017] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Ef�cient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. Cryp-
tology ePrint Archive: Report 2016/492. Received May 21, 2016. January 5, 2017. URL: https:
//eprint.iacr.org/2016/492 (visited on 2018-01-12) (↑ p216).

[AKLGL2010] Diego Aranha, Koray Karabina, Patrick Longa, Catherine Gebotys, and Julio López. Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. Cryptology ePrint Archive: Report
2010/526. Last revised September 12, 2011. URL: https://eprint.iacr.org/2010/526 (visited
on 2018-04-03) (↑ p99, 176).

[ANWW2013] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox, and Christian Winnerlein. BLAKE2:
simpler, smaller, fast as MD5. January 29, 2013. URL: https://blake2.net/#sp (visited on
2016-08-14) (↑ p76, 214).

[AR2017] Leo Alcock and Ling Ren. “A Note on the Security of Equihash”. In: CCSW ’17. Proceedings of the
2017 Cloud Computing Security Workshop (Dallas, TX, USA, November 3, 2017); post-workshop
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM. URL:
https://sci-hubtw.hkvisa.net/10.1145/3140649.3140652 (visited on 2021-04-05) (↑ p133,
170).

[BBDP2001] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-Privacy in Public-
Key Encryption. September 2001. URL: https://cseweb.ucsd.edu/~mihir/papers/anonenc.
pdf (visited on 2021-09-01). Full version. (↑ P27, 78, 147, 157, 172).

[BBJLP2008] Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards
Curves. Cryptology ePrint Archive: Report 2008/013. Received January 8, 2008. March 13, 2008.
URL: https://eprint.iacr.org/2008/013 (visited on 2018-01-12) (↑ p206, 207).

[BCCGLRT2014] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha� Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The Hunting of the SNARK. Cryptology ePrint Archive: Report 2014/580. Received
July 24, 2014. URL: https://eprint.iacr.org/2014/580 (visited on 2020-08-01) (↑ p34, 166).

[BCD+2020] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Gaëtan Leurent, María
Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo, and Friedrich Wiemer. Out of Oddity —
New Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof
Systems. Cryptology ePrint Archive: Report 2020/188. Last revised November 11, 2020. URL:
https://eprint.iacr.org/2020/188 (visited on 2021-03-01). Originally published (with major
differences) in Advances in Cryptology - CRYPTO 2020, Vol. 12172 pages 299–328; Lecture Notes
in Computer Science; Springer, 2020. (↑ P85).

[BCGGMTV2014] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended ver-
sion). Cryptology ePrint Archive: Report 2014/349. Received May 19, 2014. URL: https://eprint.
iacr.org/2014/349 (visited on 2021-04-05). A condensed version appeared in Proceedings of
the IEEE Symposium on Security and Privacy (Oakland) 2014, pages 459–474; IEEE, 2014. (↑ P7, 8,
10, 24, 26, 51, 60, 66, 143, 145, 146, 148).

185

https://zips.z.cash/protocol/protocol.pdf#references
https://eprint.iacr.org/1999/007
https://keccak.team/papers.html
https://keccak.team/papers.html
https://keccak.team/files/ModularKeyedSponge.pdf
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2010/526
https://blake2.net/#sp
https://sci-hubtw.hkvisa.net/10.1145/3140649.3140652
https://cseweb.ucsd.edu/~mihir/papers/anonenc.pdf
https://cseweb.ucsd.edu/~mihir/papers/anonenc.pdf
https://eprint.iacr.org/2008/013
https://eprint.iacr.org/2014/580
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349

[BCGTV2013] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for
C: Verifying Program Executions Succinctly and in Zero Knowledge. Cryptology ePrint Archive:
Report 2013/507. Last revised October 7, 2013. URL: https://eprint.iacr.org/2013/507 (vis-
ited on 2016-08-31). An earlier version appeared in Proceedings of the 33rd Annual International
Cryptology Conference, CRYPTO 2013, pages 90–108; IACR, 2013. (↑ P110).

[BCIMRT2010] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. “Ef�cient Indifferentiable Hashing into Ordinary Elliptic Curves”. In: Advances in
Cryptology - CRYPTO 2010. Proceedings of the 30th Annual International Cryptology Conference
(Santa Barbara, California, USA, August 15–19, 2010). Ed. by Tal Rabin. Vol. 6223. Lecture Notes in
Computer Science. Springer, 2010, pages 237–254. ISBN: 978-3-642-14623-7. DOI: 10.1007/978-
3-642-14623-7_13. URL: https://www.iacr.org/archive/crypto2010/62230238/62230238.
pdf (visited on 2021-01-27) (↑ p107).

[BCP1988] Jurgen Bos, David Chaum, and George Purdy. “A Voting Scheme”. Unpublished. Presented at
the rump session of CRYPTO ’88 (Santa Barbara, California, USA, August 21–25, 1988); does not
appear in the proceedings. (↑ p79).

[BCTV2014a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive
Zero Knowledge for a von Neumann Architecture. Cryptology ePrint Archive: Report 2013/879.
Last revised February 5, 2019. URL: https://eprint.iacr.org/2013/879 (visited on 2019-02-
08) (↑ p110, 111, 171, 200).

[BCTV2014a-old] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive
Zero Knowledge for a von Neumann Architecture (May 19, 2015 version). Cryptology ePrint
Archive: Report 2013/879. Version: 20150519:172604. URL: https://eprint.iacr.org/2013/
879/20150519:172604 (visited on 2019-02-08) (↑ p110).

[BCTV2014b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowledge
via Cycles of Elliptic Curves (extended version)”. In: Advances in Cryptology - CRYPTO 2014.
Vol. 8617. Lecture Notes in Computer Science. Springer, 2014, pages 276–294. URL: https://www.
cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf (visited on 2016-09-01) (↑ p35,
171).

[BDEHR2011] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On the
Security of the Winternitz One-Time Signature Scheme (full version). Cryptology ePrint Archive:
Report 2011/191. Received April 13, 2011. URL: https://eprint.iacr.org/2011/191 (visited on
2016-09-05) (↑ p28).

[BDJR2000] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A Concrete Security Treatment of
Symmetric Encryption: Analysis of the DES Modes of Operation. September 2000. URL: https:
//cseweb.ucsd.edu/~mihir/papers/sym- enc.pdf (visited on 2021-09-01). An extended
abstract appeared in Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (Miami Beach, Florida, USA, October 20–22, 1997), pages 394–403; IEEE Computer Society
Press, 1997; ISBN 0-8186-8197-7. (↑ P26, 157).

[BDLSY2012] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-speed high-
security signatures”. In: Journal of Cryptographic Engineering 2 (September 26, 2011), pages 77–
89. URL: https://cr.yp.to/papers.html#ed25519 (visited on 2021-04-05). Document ID:
a1a62a2f76d23f65d622484ddd09caf8. (↑ P91, 159, 221).

[BDPA2007] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions. ECRYPT
Hash Workshop (May 2007), also available as a public comment to NIST as part of the Hash
Algorithm Requirements and Evaluation Criteria for the SHA-3 competition. URL: https://
keccak.team/files/SpongeFunctions.pdf (visited on 2022-08-31) (↑ p84, 154).

[BDPA2011] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge
functions. Team Keccak web page, https://keccak.team/sponge_duplex.html. Version 0.1,
January 14, 2011. URL: https://keccak.team/files/CSF-0.1.pdf (visited on 2021-03-01) (↑ p84,
87).

186

https://eprint.iacr.org/2013/507
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13
https://www.iacr.org/archive/crypto2010/62230238/62230238.pdf
https://www.iacr.org/archive/crypto2010/62230238/62230238.pdf
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879/20150519:172604
https://eprint.iacr.org/2013/879/20150519:172604
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://www.cs.tau.ac.il/~tromer/papers/scalablezk-20140803.pdf
https://eprint.iacr.org/2011/191
https://cseweb.ucsd.edu/~mihir/papers/sym-enc.pdf
https://cseweb.ucsd.edu/~mihir/papers/sym-enc.pdf
https://cr.yp.to/papers.html#ed25519
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/sponge_duplex.html
https://keccak.team/files/CSF-0.1.pdf

[Bernstein2001] Daniel Bernstein. Pippenger’s exponentiation algorithm. December 18, 2001. URL: https://
cr.yp.to/papers.html#pippenger (visited on 2018-07-27). Draft. Error pointed out by Sam
Hocevar: the example in Figure 4 needs 2 and is thus of length 18. (↑ P221, 222).

[Bernstein2005] Daniel Bernstein. “Understanding brute force”. In: ECRYPT STVL Workshop on Symmetric Key
Encryption, eSTREAM report 2005/036. April 25, 2005. URL: https://cr.yp.to/papers.
html#bruteforce (visited on 2016-09-24). Document ID: 73e92f5b71793b498288efe81fe55dee.
(↑ P148).

[Bernstein2006] Daniel Bernstein. “Curve25519: new Dif�e-Hellman speed records”. In: Public Key Cryptogra-
phy – PKC 2006. Proceedings of the 9th International Conference on Theory and Practice in
Public-Key Cryptography (New York, NY, USA, April 24–26, 2006). Springer, February 9, 2006.
URL: https://cr.yp.to/papers.html#curve25519 (visited on 2021-04-05). Document ID:
4230efdfa673480fc079449d90f322c0. (↑ P27, 88, 114, 147).

[BFIJSV2010] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and
Damien Vergnaud. Batch Groth–Sahai. Cryptology ePrint Archive: Report 2010/040. Last revised
February 3, 2010. URL: https://eprint.iacr.org/2010/040 (visited on 2020-10-17) (↑ p150,
165, 221).

[BGG-mpc] Sean Bowe, Ariel Gabizon, and Matthew Green. GitHub repository ‘ zcash/mpc’ : zk-SNARK
parameter multi-party computation protocol. URL: https://github.com/zcash/mpc (visited on
2017-01-06) (↑ p119).

[BGG1995] Mihir Bellare, Oded Goldreich, and Sha� Goldwasser. “Incremental Cryptography: The Case
of Hashing and Signing”. In: Advances in Cryptology - CRYPTO ’94. Proceedings of the 14th
Annual International Cryptology Conference (Santa Barbara, California, USA, August 21–25, 1994).
Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, October 20, 1995,
pages 216–233. ISBN: 978-3-540-48658-9. DOI: 10.1007/3- 540- 48658- 5_22. URL: https:
//cseweb.ucsd.edu/~mihir/papers/inc1.pdf (visited on 2018-02-09) (↑ p79, 80, 82, 83, 210).

[BGG2017] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive: Report 2017/602. Last
revised June 25, 2017. URL: https://eprint.iacr.org/2017/602 (visited on 2019-02-10) (↑ p111,
119, 170, 181).

[BGHOZ2013] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, Frederico Olmedo, and Santiago
Zanella-Béguelin. “Veri�ed indifferentiable hashing into elliptic curves”. In: Journal of Computer
Security, Security and Trust Principles 21.6 (2013), pages 881–917. URL: https://software.imdea.
org/~szanella/Zanella.2012.POST.pdf (visited on 2021-01-28) (↑ p110).

[BGM2017] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for zk-SNARK
Parameters in the Random Beacon Model. Cryptology ePrint Archive: Report 2017/1050. Last
revised November 5, 2017. URL: https://eprint.iacr.org/2017/1050 (visited on 2018-08-31)
(↑ p111, 119, 170, 172).

[BIP-11] Gavin Andresen. M-of-N Standard Transactions. Bitcoin Improvement Proposal 11. Created Oc-
tober 18, 2011. URL: https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
(visited on 2020-07-13) (↑ p142).

[BIP-13] Gavin Andresen. Address Format for pay-to-script-hash. Bitcoin Improvement Proposal 13.
Created October 18, 2011. URL: https : / / github . com / bitcoin / bips / blob / master / bip -
0013.mediawiki (visited on 2020-07-13) (↑ p113, 142).

[BIP-14] Amir Taaki and Patrick Strateman. Protocol Version and User Agent. Bitcoin Improvement
Proposal 14. Created November 10, 2011. URL: https://github.com/bitcoin/bips/blob/
master/bip-0014.mediawiki (visited on 2020-07-13) (↑ p142).

[BIP-16] Gavin Andresen. Pay to Script Hash. Bitcoin Improvement Proposal 16. Created January 3, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0016.mediawiki (visited on
2020-07-13) (↑ p142).

187

https://cr.yp.to/papers.html#pippenger
https://cr.yp.to/papers.html#pippenger
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#curve25519
https://eprint.iacr.org/2010/040
https://github.com/zcash/mpc
https://doi.org/10.1007/3-540-48658-5_22
https://cseweb.ucsd.edu/~mihir/papers/inc1.pdf
https://cseweb.ucsd.edu/~mihir/papers/inc1.pdf
https://eprint.iacr.org/2017/602
https://software.imdea.org/~szanella/Zanella.2012.POST.pdf
https://software.imdea.org/~szanella/Zanella.2012.POST.pdf
https://eprint.iacr.org/2017/1050
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki

[BIP-30] Pieter Wuille. Duplicate transactions. Bitcoin Improvement Proposal 30. Created February 22,
2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki (visited
on 2020-07-13) (↑ p142).

[BIP-31] Mike Hearn. Pong message. Bitcoin Improvement Proposal 31. Created April 11, 2012. URL: https:
//github.com/bitcoin/bips/blob/master/bip-0031.mediawiki (visited on 2020-07-13)
(↑ p142).

[BIP-32] Pieter Wuille. Hierarchical Deterministic Wallets. Bitcoin Improvement Proposal 32. Created
February 11, 2012. Last updated January 15, 2014. URL: https://github.com/bitcoin/bips/
blob/master/bip-0032.mediawiki (visited on 2020-07-13) (↑ p113, 167).

[BIP-34] Gavin Andresen. Block v2, Height in Coinbase. Bitcoin Improvement Proposal 34. Created July 6,
2012. URL: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki (visited
on 2020-07-13) (↑ p125, 142, 181).

[BIP-35] Jeff Garzik. mempool message. Bitcoin Improvement Proposal 35. Created August 16, 2012.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0035.mediawiki (visited on
2020-07-13) (↑ p142).

[BIP-37] Mike Hearn and Matt Corallo. Connection Bloom �ltering. Bitcoin Improvement Proposal 37.
Created October 24, 2012. URL: https://github.com/bitcoin/bips/blob/master/bip-
0037.mediawiki (visited on 2020-07-13) (↑ p142).

[BIP-61] Gavin Andresen. Reject P2P message. Bitcoin Improvement Proposal 61. Created June 18, 2014.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0061.mediawiki (visited on
2020-07-13) (↑ p142).

[BIP-62] Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62. Withdrawn Novem-
ber 17, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
(visited on 2020-07-13) (↑ p29).

[BIP-65] Peter Todd. OP_CHECKLOCKTIMEVERIFY . Bitcoin Improvement Proposal 65. Created October 10,
2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited
on 2020-07-13) (↑ p142).

[BIP-66] Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66. Created January 10, 2015.
URL: https://github.com/bitcoin/bips/blob/master/bip- 0066.mediawiki (visited on
2020-07-13) (↑ p142).

[BIP-68] Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Relative lock-time using
consensus-enforced sequence numbers. Bitcoin Improvement Proposal 68. Last revised Novem-
ber 21, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
(visited on 2020-07-13) (↑ p126).

[BIP-111] Matt Corallo and Peter Todd. NODE_BLOOM service bit. Bitcoin Improvement Proposal 111. Created
August 20, 2015. URL: https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
(visited on 2020-07-13) (↑ p142, 176).

[BIP-350] Pieter Wuille. Bech32m format for v1+ witness addresses. Bitcoin Improvement Proposal 350.
Created December 16, 2020. URL: https://github.com/bitcoin/bips/blob/master/bip-
0350.mediawiki (visited on 2021-03-17) (↑ p113, 118).

[Bitcoin-Base58] Base58Check encoding — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Base58Check_
encoding (visited on 2020-07-13) (↑ p113, 114).

[Bitcoin-Block] Block Headers — Bitcoin Developer Reference. URL: https : / / developer . bitcoin . org /
reference/block_chain.html#block-headers (visited on 2020-07-13) (↑ p132, 133).

[Bitcoin-CbInput] Coinbase Input — Bitcoin Developer Reference. URL: https : / / developer . bitcoin . org /
reference/transactions.html#coinbase-input-the-input-of-the-first-transaction-
in-a-block (visited on 2022-03-17) (↑ p155).

188

https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://developer.bitcoin.org/reference/transactions.html#coinbase-input-the-input-of-the-first-transaction-in-a-block
https://developer.bitcoin.org/reference/transactions.html#coinbase-input-the-input-of-the-first-transaction-in-a-block
https://developer.bitcoin.org/reference/transactions.html#coinbase-input-the-input-of-the-first-transaction-in-a-block

[Bitcoin-CoinJoin] CoinJoin — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/CoinJoin (visited on 2020-07-13)
(↑ p9).

[Bitcoin-Format] Raw Transaction Format — Bitcoin Developer Reference. URL: https://developer.bitcoin.
org / reference / transactions . html # raw - transaction - format (visited on 2020-07-13)
(↑ p127).

[Bitcoin-Multisig] Transactions: Multisig — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#multisig (visited on 2020-07-13) (↑ p138).

[Bitcoin-nBits] Target nBits — Bitcoin Developer Reference. URL: https://developer.bitcoin.org/reference/
block_chain.html#target-nbits (visited on 2020-07-13) (↑ p131, 136).

[Bitcoin-P2PKH] Transactions: P2PKH Script Validation — Bitcoin Developer Guide. URL: https://developer.
bitcoin.org/devguide/transactions.html#p2pkh-script-validation (visited on 2020-07-
13) (↑ p113).

[Bitcoin-P2SH] Transactions: P2SH Scripts — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#pay-to-script-hash-p2sh (visited on 2020-07-13) (↑ p 113,
140).

[Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_
documentation (visited on 2020-07-13) (↑ p8).

[Bitcoin-SigHash] Signature Hash Types — Bitcoin Developer Guide. URL: https://developer.bitcoin.org/
devguide/transactions.html#signature-hash-types (visited on 2020-07-13) (↑ p50).

[BJLSY2015] Daniel Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for
more curves. Technical Report. July 4, 2015. URL: https://cr.yp.to/papers.html#eddsa
(visited on 2018-01-22) (↑ p92, 103).

[BK2016] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the
Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last
revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30)
(↑ p10, 133, 182).

[BKR2001] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of the Cipher Block Chaining Message
Authentication Code”. In: Journal of Computer and System Sciences 61.3 (December 2000),
pages 362–399. DOI: 10.1006/jcss.1999.1694. URL: https://cseweb.ucsd.edu/~mihir/
papers/cbc.pdf (visited on 2021-03-08). Updated September 12, 2001. (↑ P26).

[BL-SafeCurves] Daniel Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptogra-
phy. URL: https://safecurves.cr.yp.to (visited on 2018-01-29) (↑ p147, 192).

[BL2017] Daniel Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. Cryptology
ePrint Archive: Report 2017/293. Received March 30, 2017. URL: https://eprint.iacr.org/
2017/293 (visited on 2017-11-26) (↑ p102, 200, 206, 207).

[BLS2002] Paulo Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves with Prescribed Em-
bedding Degrees. Cryptology ePrint Archive: Report 2002/088. Last revised February 22, 2005.
URL: https://eprint.iacr.org/2002/088 (visited on 2018-04-20) (↑ p101, 176).

[BN2005] Paulo Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. Cryptology
ePrint Archive: Report 2005/133. Last revised February 28, 2006. URL: https://eprint.iacr.
org/2005/133 (visited on 2018-04-20) (↑ p99, 176).

[BN2007] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among notions
and analysis of the generic composition paradigm. Cryptology ePrint Archive: Report 2000/025.
Last revised July 14, 2007. URL: https://eprint.iacr.org/2000/025 (visited on 2016-09-02)
(↑ p26).

[Bowe-bellman] Sean Bowe. bellman: zk-SNARK library. URL: https://github.com/ebfull/bellman (visited on
2018-04-03) (↑ p111, 119).

189

https://en.bitcoin.it/wiki/CoinJoin
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/devguide/transactions.html#multisig
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/reference/block_chain.html#target-nbits
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#p2pkh-script-validation
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://developer.bitcoin.org/devguide/transactions.html#pay-to-script-hash-p2sh
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://developer.bitcoin.org/devguide/transactions.html#signature-hash-types
https://cr.yp.to/papers.html#eddsa
https://eprint.iacr.org/2015/946
https://doi.org/10.1006/jcss.1999.1694
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
https://safecurves.cr.yp.to
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2000/025
https://github.com/ebfull/bellman

[Bowe2017] Sean Bowe. ebfull/pairing source code, BLS12-381 – README.md as of commit e726600. URL:
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/
src/bls12_381 (visited on 2017-07-16) (↑ p101).

[Bowe2018] Sean Bowe. Random Beacon. March 22, 2018. URL: https://github.com/ZcashFoundation/
powersoftau-attestations/tree/master/0088 (visited on 2018-04-08) (↑ p120).

[Carroll1876] Lewis Carroll. The Hunting of the Snark. With illustrations by Henry Holiday. MacMillan and
Co. London. March 29, 1876. URL: https://www.gutenberg.org/files/29888/29888-h/29888-
h.htm (visited on 2018-05-23) (↑ p102, 169).

[Carroll1902] Lewis Carroll. Through the Looking-Glass, and What Alice Found There (1902 edition). Illustrated
by Peter Newell and Robert Murray Wright. Harper and Brothers Publishers. New York. October
1902. URL: https://archive.org/details/throughlookinggl00carr4 (visited on 2018-06-20)
(↑ p150, 175).

[CDvdG1987] David Chaum, Ivan Damgård, and Jeroen van de Graaf. “Multiparty computations ensuring
privacy of each party’s input and correctness of the result”. In: Advances in Cryptology -
CRYPTO ’87. Proceedings of the 14th Annual International Cryptology Conference (Santa Barbara,
California, USA, August 16–20, 1987). Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer
Science. Springer, January 1988, pages 87–119. ISBN: 978-3-540-48184-3. DOI: 10.1007/3-540-
48184- 2_7. URL: https://link.springer.com/content/pdf/10.1007%2F3- 540- 48184-
2_7.pdf (visited on 2022-08-31) (↑ p79, 154).

[Cook2019] John D. Cook. What is an isogeny? Blog post. April 21, 2019. URL: https://www.johndcook.com/
blog/2019/04/21/what-is-an-isogeny/ (visited on 2021-02-10) (↑ p107).

[CVE-2019-7167] Common Vulnerabilities and Exposures. CVE-2019-7167. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-7167 (visited on 2019-02-05) (↑ p110).

[CvHP1991] David Chaum, Eugène van Heijst, and Birgit P�tzmann. Cryptographically Strong Undeniable
Signatures, Unconditionally Secure for the Signer. February 1991. URL: https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570 (visited on 2021-04-05). An extended
abstract appeared in Advances in Cryptology - CRYPTO ’91: Proceedings of the 11th Annual
International Cryptology Conference (Santa Barbara, California, USA, August 11–15, 1991); Ed. by
Joan Feigenbaum; Vol. 576, Lecture Notes in Computer Science, pages 470–484; Springer, 1992;
ISBN 978-3-540-55188-1. (↑ P79, 210).

[Dalek-notes] Cathie Yun, Henry de Valence, Oleg Andreev, and Dimitris Apostolou. Dalek bulletproofs notes,
module r1cs_proof. URL: https://doc- internal.dalek.rs/bulletproofs/notes/r1cs_
proof/index.html (visited on 2021-04-07) (↑ p54, 172).

[Damgård1989] Ivan Damgård. “A Design Principle for Hash Functions”. In: Advances in Cryptology - CRYPTO ’89.
Proceedings of the 9th Annual International Cryptology Conference (Santa Barbara, California,
USA, August 20–24, 1989). Ed. by Giles Brassard. Vol. 435. Lecture Notes in Computer Science.
Springer, 1990, pages 416–427. ISBN: 978-0-387-34805-6. DOI: 10.1007/0-387-34805-0_39.
URL: https://link.springer.com/chapter/10.1007/0-387-34805-0_39 (visited on 2022-01-
19) (↑ p145).

[deRooij1995] Peter de Rooij. “Ef�cient exponentiation using precomputation and vector addition chains”. In:
Advances in Cryptology - EUROCRYPT ’94. Proceedings, Workshop on the Theory and Appli-
cation of Cryptographic Techniques (Perugia, Italy, May 9–12, 1994). Ed. by Alfredo De Santis.
Vol. 950. Lecture Notes in Computer Science. Springer, pages 389–399. ISBN: 978-3-540-60176-0.
DOI: 10.1007/BFb0053453. URL: https://link.springer.com/chapter/10.1007/BFb0053453
(visited on 2018-07-27) (↑ p221, 222).

[DGKM2011] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational Extrac-
tors and Pseudorandomness. Cryptology ePrint Archive: Report 2011/708. December 28, 2011.
URL: https://eprint.iacr.org/2011/708 (visited on 2016-09-02) (↑ p147).

190

https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/src/bls12_381
https://github.com/ebfull/pairing/tree/e72660056e00c93d6b054dfb08ff34a1c67cb799/src/bls12_381
https://github.com/ZcashFoundation/powersoftau-attestations/tree/master/0088
https://github.com/ZcashFoundation/powersoftau-attestations/tree/master/0088
https://www.gutenberg.org/files/29888/29888-h/29888-h.htm
https://www.gutenberg.org/files/29888/29888-h/29888-h.htm
https://archive.org/details/throughlookinggl00carr4
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7
https://link.springer.com/content/pdf/10.1007%2F3-540-48184-2_7.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-48184-2_7.pdf
https://www.johndcook.com/blog/2019/04/21/what-is-an-isogeny/
https://www.johndcook.com/blog/2019/04/21/what-is-an-isogeny/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7167
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8570
https://doc-internal.dalek.rs/bulletproofs/notes/r1cs_proof/index.html
https://doc-internal.dalek.rs/bulletproofs/notes/r1cs_proof/index.html
https://doi.org/10.1007/0-387-34805-0_39
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://doi.org/10.1007/BFb0053453
https://link.springer.com/chapter/10.1007/BFb0053453
https://eprint.iacr.org/2011/708

[DigiByte-PoW] DigiByte Core Developers. DigiSpeed 4.0.0 source code, functions GetNextWorkRequiredV3/4
in src/main.cpp as of commit 178e134. URL: https://github.com/digibyte/digibyte/blob/
178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587 (visited on 2017-01-20)
(↑ p134).

[DKLS2020] Orr Dunkelman, Abhishek Kumar, Eran Lambooij, and Somitra Kumar Sanadhya. Cryptanalysis
of Feistel-Based Format-Preserving Encryption. Cryptology ePrint Archive: Report 2020/1311.
Received October 20, 2020. URL: https://eprint.iacr.org/2020/1311 (visited on 2023-03-
02) (↑ p88, 153).

[DS2016] David Derler and Daniel Slamanig. Key-Homomorphic Signatures and Applications to Multiparty
Signatures and Non-Interactive Zero-Knowledge. Cryptology ePrint Archive: Report 2016/792.
Last revised February 6, 2017. URL: https://eprint.iacr.org/2016/792 (visited on 2018-04-09)
(↑ p30).

[DSDCOPS2001] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Guiseppe Persiano, and Amit
Sahai. “Robust Non-Interactive Zero Knowledge”. In: Advances in Cryptology - CRYPTO 2001.
Proceedings of the 21st Annual International Cryptology Conference (Santa Barbara, California,
USA, August 19–23, 2001). Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer Science. Springer,
2001, pages 566–598. ISBN: 978-3-540-42456-7. DOI: 10.1007/3-540-44647-8_33. URL: https:
//www.iacr.org/archive/crypto2001/21390566.pdf (visited on 2018-05-28) (↑ p35, 50).

[ECCZF2019] Electric Coin Company and Zcash Foundation. Zcash Trademark Donation and License Agree-
ment. November 6, 2019. URL: https://electriccoin.co/wp-content/uploads/2019/11/
Final-Consolidated-Version-ECC-Zcash-Trademark-Transfer-Documents-1.pdf (visited
on 2022-06-22) (↑ p154).

[ElGamal1985] Taher ElGamal. “A public key cryptosystem and a signature scheme based on discrete logarithms”.
In: IEEE Transactions on Information Theory 31.4 (July 1985), pages 469–472. ISSN: 0018-9448.
DOI: 10.1109/TIT.1985.1057074. URL: https://people.csail.mit.edu/alinush/6.857-
spring-2015/papers/elgamal.pdf (visited on 2018-08-17) (↑ p78).

[EWD-340] Edsger W. Dijkstra. The Humble Programmer. ACM Turing Lecture. August 14, 1972. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html (visited on
2021-03-29) (↑ p23).

[EWD-831] Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on
2016-08-09) (↑ p10).

[FFSTV2013] Reza Farashahi, Pierre-Alain Fouque, Igor Shparlinski, Mehdi Tibouchi, and J. Felipe Voloch.
“Indifferentiable deterministic hashing to elliptic and hyperelliptic curves”. In: Mathematics
of Computation 82 (2013), pages 491–512. DOI: 10.1090/S0025- 5718- 2012- 02606- 8. URL:
https://www.ams.org/journals/mcom/2013-82-281/S0025-5718-2012-02606-8/ (visited on
2021-01-27) (↑ p110).

[FKMSSS2016] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Ef�cient Unlinkable Sanitizable Signatures from Signatures with Re-
Randomizable Keys. Cryptology ePrint Archive: Report 2012/159. Last revised February 11, 2016.
URL: https://eprint.iacr.org/2015/395 (visited on 2018-03-03). An extended abstract
appeared in Public Key Cryptography – PKC 2016: 19th IACR International Conference on Practice
and Theory in Public-Key Cryptography (Taipei, Taiwan, March 6–9, 2016), Proceedings, Part 1; Ed.
by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang; Vol. 9614, Lecture
Notes in Computer Science, pages 301–330; Springer, 2016; ISBN 978-3-662-49384-7. (↑ P29, 30,
92).

[Gabizon2019] Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant. Draft. February 5,
2019. URL: https://github.com/arielgabizon/bctv/blob/master/bctv.pdf (visited on
2019-02-07) (↑ p110, 150, 171).

191

https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://github.com/digibyte/digibyte/blob/178e1348a67d9624db328062397fde0de03fe388/src/main.cpp#L1587
https://eprint.iacr.org/2020/1311
https://eprint.iacr.org/2016/792
https://doi.org/10.1007/3-540-44647-8_33
https://www.iacr.org/archive/crypto2001/21390566.pdf
https://www.iacr.org/archive/crypto2001/21390566.pdf
https://electriccoin.co/wp-content/uploads/2019/11/Final-Consolidated-Version-ECC-Zcash-Trademark-Transfer-Documents-1.pdf
https://electriccoin.co/wp-content/uploads/2019/11/Final-Consolidated-Version-ECC-Zcash-Trademark-Transfer-Documents-1.pdf
https://doi.org/10.1109/TIT.1985.1057074
https://people.csail.mit.edu/alinush/6.857-spring-2015/papers/elgamal.pdf
https://people.csail.mit.edu/alinush/6.857-spring-2015/papers/elgamal.pdf
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://doi.org/10.1090/S0025-5718-2012-02606-8
https://www.ams.org/journals/mcom/2013-82-281/S0025-5718-2012-02606-8/
https://eprint.iacr.org/2015/395
https://github.com/arielgabizon/bctv/blob/master/bctv.pdf

[GG2015] Shoni Gilboa and Shay Gueron. Distinguishing a truncated random permutation from a random
function. Cryptology ePrint Archive: Report 2015/773. Received August 3, 2015. URL: https:
//eprint.iacr.org/2015/773 (visited on 2021-03-01) (↑ p87, 160).

[GGM2016] Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy for Decentralized
Anonymous Payments. Cryptology ePrint Archive: Report 2016/061. Last revised January 24,
2016. URL: https://eprint.iacr.org/2016/061 (visited on 2016-09-02) (↑ p144).

[GKRRS2019] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. Cryptology ePrint Archive:
Report 2019/458. Last updated December 16, 2020. URL: https://eprint.iacr.org/2019/458
(visited on 2021-02-28) (↑ p84, 85, 87).

[GPT2015] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. “The Exact PRF Security of Truncation: Tight
Bounds for Keyed Sponges and Truncated CBC”. In: Advances in Cryptology - CRYPTO 2015.
Proceedings of the 35th Annual International Cryptology Conference (Santa Barbara, California,
USA, August 16–20, 2015), Part I. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9215. Lecture
Notes in Computer Science. Springer, August 1, 2015, pages 368–387. ISBN: 978-3-662-47989-6.
DOI: 10.1007/978-3-662-47989-6_18. URL: https://iacr.org/cryptodb/data/paper.php?
pubkey=27279 (visited on 2021-03-01) (↑ p87).

[Groth2016] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Cryptology ePrint Archive:
Report 2016/260. Last revised May 31, 2016. URL: https://eprint.iacr.org/2016/260 (visited
on 2017-08-03) (↑ p111, 112, 170, 222).

[GRS2020] Lorenzo Grassi, Christian Rechberger, and Markus Schofnegger. Proving Resistance Against
In�nitely Long Subspace Trails: How to Choose the Linear Layer. Cryptology ePrint Archive:
Report 2020/500. Last revised January 27, 2021. URL: https://eprint.iacr.org/2020/500
(visited on 2021-03-23) (↑ p85).

[GWC2019] Ariel Gabizon, Zachary Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive:
Report 2019/953. Last revised September 3, 2020. URL: https://eprint.iacr.org/2019/953
(visited on 2021-01-28) (↑ p150).

[Hamdon2018] Elise Hamdon. Sapling Activation Complete. Electric Coin Company blog. June 28, 2018. URL:
https://electriccoin.co/blog/sapling- activation-complete/ (visited on 2021-01-10)
(↑ p120).

[Hışıl2010] Hüseyin Hışıl. “Elliptic Curves, Group Law, and Ef�cient Computation”. PhD thesis. Queensland
University of Technology, 2010. URL: https://core.ac.uk/download/pdf/10898289.pdf
(visited on 2021-04-08) (↑ p105).

[Hopwood2018] Daira-Emma Hopwood. GitHub repository ‘daira/jubjub’: Supporting evidence for security of
the Jubjub curve to be used in Zcash. URL: https://github.com/daira/jubjub (visited on
2018-02-18). Based on code written for SafeCurves [BL-SafeCurves] by Daniel Bernstein and
Tanja Lange. (↑ P147).

[Hopwood2020] Daira-Emma Hopwood. GitHub repository ‘zcash/pasta’: Generator and supporting evidence for
security of the Pallas/Vesta pair of elliptic curves suitable for Halo. URL: https://github.com/
zcash/pasta (visited on 2021-03-23). Based on code written for SafeCurves [BL-SafeCurves] by
Daniel Bernstein and Tanja Lange. (↑ P108, 147).

[Hopwood2022] Daira-Emma Hopwood. Explaining the Security of Zcash. Presentation at Zcon3. Slides and a link
to the video are available at: GitHub repository ‘daira/zcash-security’: Code and documentation
supporting security analysis of Zcash. URL: https://github.com/daira/zcash- security
(visited on 2023-10-30) (↑ p144, 153).

[HW2016] Taylor Hornby and Zooko Wilcox. Fixing Vulnerabilities in the Zcash Protocol. Electric Coin
Company blog. April 26, 2016. URL: https://electriccoin.co/blog/fixing-zcash-vulns/
(visited on 2019-08-27). Updated December 26, 2017. (↑ P145).

192

https://eprint.iacr.org/2015/773
https://eprint.iacr.org/2015/773
https://eprint.iacr.org/2016/061
https://eprint.iacr.org/2019/458
https://doi.org/10.1007/978-3-662-47989-6_18
https://iacr.org/cryptodb/data/paper.php?pubkey=27279
https://iacr.org/cryptodb/data/paper.php?pubkey=27279
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2020/500
https://eprint.iacr.org/2019/953
https://electriccoin.co/blog/sapling-activation-complete/
https://core.ac.uk/download/pdf/10898289.pdf
https://github.com/daira/jubjub
https://github.com/zcash/pasta
https://github.com/zcash/pasta
https://github.com/daira/zcash-security
https://electriccoin.co/blog/fixing-zcash-vulns/

[ID-hashtocurve] Armando Faz-Hernández, Sam Scott, Nick Sullivan, Riad Wahby, and Christopher Wood. Internet
Draft: Hashing to Elliptic Curves, version 10. Internet Research Task Force (IRTF) Crypto Forum
Research Group (CFRG). Work in progress. Last revised December 22, 2020. URL: https://www.
ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html (visited on 2021-01-27)
(↑ p34, 107, 108, 110, 162).

[IEEE2000] IEEE Computer Society. IEEE Std 1363-2000: Standard Speci�cations for Public-Key Cryptog-
raphy. IEEE, August 29, 2000. DOI: 10.1109/IEEESTD.2000.92292. URL: https://ieeexplore.
ieee.org/document/891000 (visited on 2021-04-05) (↑ p100).

[IEEE2004] IEEE Computer Society. IEEE Std 1363a-2004: Standard Speci�cations for Public-Key Cryptogra-
phy – Amendment 1: Additional Techniques. IEEE, September 2, 2004. DOI: 10.1109/IEEESTD.
2004.94612. URL: https://ieeexplore.ieee.org/document/1335427 (visited on 2021-04-05)
(↑ p100, 147, 149).

[Jedusor2016] Tom Elvis Jedusor. Mimblewimble. July 19, 2016. URL: https://diyhpl.us/~bryan/papers2/
bitcoin/mimblewimble.txt (visited on 2021-04-05) (↑ p54).

[JT2020] Joseph Jaeger and Stefano Tessaro. Expected-Time Cryptography: Generic Techniques and
Applications to Concrete Soundness. Cryptology ePrint Archive: Report 2020/1213. Received
October 2, 2020. URL: https://eprint.iacr.org/2020/1213 (visited on 2021-05-19) (↑ p83,
160).

[KR2020] Nathan Keller and Asaf Rosemarin. Mind the Middle Layer: The HADES Design Strategy Revisited.
Cryptology ePrint Archive: Report 2020/179. Received February 13, 2020. URL: https://eprint.
iacr.org/2020/179 (visited on 2021-03-01) (↑ p85).

[KT2015] Taechan Kim and Mehdi Tibouchi. “Improved Elliptic Curve Hashing and Point Representation”.
In: Proceedings of WCC2015 - 9th International Workshop on Coding and Cryptography (Paris,
France, April 2015). Ed. by Anne Canteaut, Gaëtan Leurent, and Maria Naya-Plasencia. URL:
https://hal.inria.fr/hal-01275711 (visited on 2021-01-28) (↑ p110).

[KvE2013] Kaa1el and Hagen von Eitzen. If a group 𝐺 has odd order, then the square function is injective
(answer). Mathematics Stack Exchange. URL: https://math.stackexchange.com/a/522277/
185422 (visited on 2018-02-08). Version: 2013-10-11. (↑ P104).

[KYMM2018] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An Empirical Analysis of
Anonymity in Zcash. Preprint, to be presented at the 27th Usenix Security Syposium (Baltimore,
Maryland, USA, August 15–17, 2018). May 8, 2018. URL: https://smeiklej.com/files/usenix18.
pdf (visited on 2018-06-05) (↑ p9).

[LG2004] Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden
Ireland. TarcherPerigee, February 2004, pages 109–110. ISBN: 1-58542-206-1 (↑ p143).

[LGR2021] Julia Len, Paul Grubbs, and Thomas Ristenpart. “Partitioning Oracle Attacks”. In: Proceedings
of the 30th USENIX Security Symposium (USENIX Security 21, August 11–13, 2021). USENIX
Association, August 2021, pages 195–212. ISBN: 978-1-939133-24-3. URL: https://www.usenix.
org/conference/usenixsecurity21/presentation/len (visited on 2021-10-12) (↑ p148, 156).

[librustzcash-109] Jack Grigg. librustzcash PR 109: PaymentAddress encapsulation. URL: https://github.com/
zcash/librustzcash/pull/109 (visited on 2023-08-25) (↑ p71, 165).

[libsodium] libsodium documentation. URL: https://libsodium.org/ (visited on 2020-03-02) (↑ p92).

[libsodium-Seal] Sealed boxes — libsodium. URL: https : / / download . libsodium . org / doc / public - key _
cryptography/sealed_boxes.html (visited on 2016-02-01) (↑ p147).

[LM2017] Philip Lafrance and Alfred Menezes. On the security of the WOTS-PRF signature scheme. Cryp-
tology ePrint Archive: Report 2017/938. Last revised February 5, 2018. URL: https://eprint.
iacr.org/2017/938 (visited on 2018-04-16) (↑ p28).

193

https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html
https://doi.org/10.1109/IEEESTD.2000.92292
https://ieeexplore.ieee.org/document/891000
https://ieeexplore.ieee.org/document/891000
https://doi.org/10.1109/IEEESTD.2004.94612
https://doi.org/10.1109/IEEESTD.2004.94612
https://ieeexplore.ieee.org/document/1335427
https://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble.txt
https://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble.txt
https://eprint.iacr.org/2020/1213
https://eprint.iacr.org/2020/179
https://eprint.iacr.org/2020/179
https://hal.inria.fr/hal-01275711
https://math.stackexchange.com/a/522277/185422
https://math.stackexchange.com/a/522277/185422
https://smeiklej.com/files/usenix18.pdf
https://smeiklej.com/files/usenix18.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://github.com/zcash/librustzcash/pull/109
https://github.com/zcash/librustzcash/pull/109
https://libsodium.org/
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://download.libsodium.org/doc/public-key_cryptography/sealed_boxes.html
https://eprint.iacr.org/2017/938
https://eprint.iacr.org/2017/938

[MÁEÁ2010] V. Gayoso Martínez, F. Hernández Álvarez, L. Hernández Encinas, and C. Sánchez Ávila. “A
Comparison of the Standardized Versions of ECIES”. In: Proceedings of Sixth International
Conference on Information Assurance and Security (Atlanta, Georgia, USA, August 23–25,
2010). IEEE, 2010, pages 1–4. ISBN: 978-1-4244-7407-3. DOI: 10.1109/ISIAS.2010.5604194.
URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.819.9345 (visited on
2021-04-08) (↑ p147).

[Maller2018] Mary Maller. A Proof of Security for the Sapling Generation of zk-SNARK Parameters in the
Generic Group Model. November 16, 2018. URL: https : / / github . com / zcash / sapling -
security- analysis/blob/master/MaryMallerUpdated.pdf (visited on 2018-02-10) (↑ p 111,
170).

[ISO2015] ISO/IEC. International Standard ISO/IEC 18004:2015(E): Information Technology – Automatic
identi�cation and data capture techniques – QR Code bar code symbology speci�cation. Third
edition. February 1, 2015. URL: https://raw.githubusercontent.com/yansikeim/QR-Code/
master/ISO%20IEC%2018004%202015%20Standard.pdf (visited on 2021-03-22) (↑ p113).

[MRH2003] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. Cryptology ePrint Archive:
Report 2003/161. Received August 8, 2003. September 2003. URL: https://eprint.iacr.org/
2003/161 (visited on 2021-02-10) (↑ p110).

[Nakamoto2008] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.9986 (visited on
2022-06-17) (↑ p7, 154).

[NIST2015] NIST. FIPS 180-4: Secure Hash Standard (SHS). August 2015. DOI: 10.6028/NIST.FIPS.180-4.
URL: https://csrc.nist.gov/publications/detail/fips/180/4/final (visited on 2021-03-
08) (↑ p75, 113).

[NIST2016] NIST. NIST SP 800-38G — Recommendation for Block Cipher Modes of Operation: Methods
for Format-Preserving Encryption. March 2016. DOI: 10.6028/NIST.SP.800-38G. URL: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf (visited on
2021-03-08) (↑ p88).

[Parno2015] Bryan Parno. A Note on the Unsoundness of vnTinyRAM’s SNARK. Cryptology ePrint Archive:
Report 2015/437. Received May 6, 2015. URL: https://eprint.iacr.org/2015/437 (visited on
2019-02-08) (↑ p110, 150, 171).

[Peterson2017] Paige Peterson. Transaction Linkability. Electric Coin Company blog. January 25, 2017. URL:
https://electriccoin.co/blog/transaction-linkability/ (visited on 2019-08-27) (↑ p9,
176).

[PHGR2013] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly Practical Veri�-
able Computation. Cryptology ePrint Archive: Report 2013/279. Last revised May 13, 2013. URL:
https://eprint.iacr.org/2013/279 (visited on 2016-08-31) (↑ p110).

[Poseidon-1.1] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon reference implementation, Version 1.1. March 7, 2021. URL: https://extgit.iaik.
tugraz.at/krypto/hadeshash/-/commit/7ecf9a7d4f37e777ea27e4c4d379443151270563 (vis-
ited on 2021-03-23) (↑ p84, 157).

[Poseidon-Zc1.1] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, Markus Schofnegger,
and Daira-Emma Hopwood. Poseidon reference implementation, Zcash fork, Version 1.1. July 28,
2021. URL: https://github.com/daira/pasta-hadeshash (visited on 2021-07-29) (↑ p84, 157).

[Quesnelle2017] Jeffrey Quesnelle. On the linkability of Zcash transactions. arXiv:1712.01210 [cs.CR]. December 4,
2017. URL: https://arxiv.org/abs/1712.01210 (visited on 2018-04-15) (↑ p9, 176).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://www.rfc-editor.org/
rfc/rfc2119.html (visited on 2016-09-14) (↑ p7).

194

https://doi.org/10.1109/ISIAS.2010.5604194
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.819.9345
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://github.com/zcash/sapling-security-analysis/blob/master/MaryMallerUpdated.pdf
https://raw.githubusercontent.com/yansikeim/QR-Code/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://raw.githubusercontent.com/yansikeim/QR-Code/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://eprint.iacr.org/2003/161
https://eprint.iacr.org/2003/161
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.9986
https://doi.org/10.6028/NIST.FIPS.180-4
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://doi.org/10.6028/NIST.SP.800-38G
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
https://eprint.iacr.org/2015/437
https://electriccoin.co/blog/transaction-linkability/
https://eprint.iacr.org/2013/279
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/commit/7ecf9a7d4f37e777ea27e4c4d379443151270563
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/commit/7ecf9a7d4f37e777ea27e4c4d379443151270563
https://github.com/daira/pasta-hadeshash
https://arxiv.org/abs/1712.01210
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc2119.html

[RFC-7539] Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF
Protocols. Internet Research Task Force (IRTF). May 2015. URL: https://www.rfc-editor.org/
rfc/rfc7539.html (visited on 2016-09-02). As modi�ed by veri�ed errata at https://www.rfc-
editor.org/errata_search.php?rfc=7539 (visited on 2016-09-02). (↑ P88).

[RFC-8032] Simon Josefsson and Ilari Liusvaara. Request for Comments 8032: Edwards-Curve Digital Sig-
nature Algorithm (EdDSA). Internet Engineering Task Force (IETF). January 2017. URL: https:
//www.rfc-editor.org/rfc/rfc8032.html (visited on 2020-07-06). As corrected by errata at
https://www.rfc-editor.org/errata_search.php?rfc=8032 (visited on 2020-07-06). (↑ P91).

[RIPEMD160] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160, a strengthened version
of RIPEMD. URL: https://homes.esat.kuleuven.be/~bosselae/ripemd160.html (visited on
2021-04-05) (↑ p113).

[ST1999] Tomas Sander and Amnon Ta-Shma. “Auditable, Anonymous Electronic Cash”. In: Advances in
Cryptology - CRYPTO ’99. Proceedings of the 19th Annual International Cryptology Conference
(Santa Barbara, California, USA, August 15–19, 1999). Ed. by Michael Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pages 555–572. ISBN: 978-3-540-66347-8. DOI:
10.1007/3-540-48405-1_35. URL: https://link.springer.com/content/pdf/10.1007/3-
540-48405-1_35.pdf (visited on 2018-06-05) (↑ p150, 174).

[Sutherland2021] Andrew Sutherland. MIT Open Courseware, Mathematics 18.783 Elliptic Curves, Lecture Notes.
Massachusetts Institute of Technology. Spring 2021. March 1, 2021. URL: https://ocw.mit.
edu/courses/mathematics/18-783-elliptic-curves-spring-2021/lecture-notes-and-
worksheets/index.htm (visited on 2022-01-01) (↑ p107).

[SvdW2006] Andrew Shallue and Christiaan E. van de Woestijne. “Construction of Rational Points on Elliptic
Curves over Finite Fields”. In: Algorithmic Number Theory: 7th International Symposium, ANTS-
VII (Berlin, Germany, July 23–28, 2006). Ed. by Florian Hess, Sebastian Pauli, and Michael Pohst.
Vol. 4076. Lecture Notes in Computer Science. Springer, 2006, pages 510–524. ISBN: 978-3-
540-36076-6. DOI: 10.1007/11792086_36. URL: https://digitalcommons.iwu.edu/math_
scholarship/72/ (visited on 2021-01-28) (↑ p107).

[SVPBABW2012] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Muqeet Ali, Andrew J. Blumberg, and
Michael Wal�sh. Taking proof-based veri�ed computation a few steps closer to practicality
(extended version). Cryptology ePrint Archive: Report 2012/598. Last revised February 28, 2013.
URL: https://eprint.iacr.org/2012/598 (visited on 2018-04-25) (↑ p202).

[SWB2019] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash Counterfeiting Vulnerability Successfully
Remediated. February 5, 2019. URL: https://electriccoin.co/blog/zcash-counterfeiting-
vulnerability-successfully-remediated/ (visited on 2019-08-27) (↑ p110, 171).

[Swihart2018] Josh Swihart. Overwinter Activated Successfully. Electric Coin Company blog. June 26, 2018.
URL: https://electriccoin.co/blog/overwinter- activated- successfully/ (visited on
2021-01-10) (↑ p120).

[Ulas2007] Maciej Ulas. “Rational Points on Certain Hyperelliptic Curves over Finite Fields”. In: Bulletin of the
Polish Academy of Sciences - Mathematics 55.2 (2007), pages 97–104. DOI: 10.4064/ba55-2-1.
URL: https://www.impan.pl/shop/publication/transaction/download/product/85475
(visited on 2021-01-27) (↑ p107).

[vanSaberh2014] Nicolas van Saberhagen. CryptoNote v 2.0. Date disputed. URL: https://bytecoin.org/old/
whitepaper.pdf (visited on 2021-04-07) (↑ p9).

[Vercauter2009] Frederik Vercauteren. Optimal pairings. Cryptology ePrint Archive: Report 2008/096. Last revised
March 7, 2008. URL: https://eprint.iacr.org/2008/096 (visited on 2018-04-06). A version of
this paper appeared in IEEE Transactions of Information Theory, Vol. 56, pages 455–461; IEEE,
2009. (↑ P99, 176).

[WB2019] Riad Wahby and Dan Boneh. Fast and simple constant-time hashing to the BLS12-381 elliptic
curve. Cryptology ePrint Archive: Report 2018/403. Last revised September 30, 2019. URL: https:
//eprint.iacr.org/2019/403 (visited on 2021-01-27) (↑ p107, 110).

195

https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/rfc/rfc7539.html
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/errata_search.php?rfc=7539
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/errata_search.php?rfc=8032
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://doi.org/10.1007/3-540-48405-1_35
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48405-1_35.pdf
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2021/lecture-notes-and-worksheets/index.htm
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2021/lecture-notes-and-worksheets/index.htm
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2021/lecture-notes-and-worksheets/index.htm
https://doi.org/10.1007/11792086_36
https://digitalcommons.iwu.edu/math_scholarship/72/
https://digitalcommons.iwu.edu/math_scholarship/72/
https://eprint.iacr.org/2012/598
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/overwinter-activated-successfully/
https://doi.org/10.4064/ba55-2-1
https://www.impan.pl/shop/publication/transaction/download/product/85475
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://eprint.iacr.org/2008/096
https://eprint.iacr.org/2019/403
https://eprint.iacr.org/2019/403

[WCBTV2015] Zooko Wilcox, Alessandro Chiesa, Eli Ben-Sasson, Eran Tromer, and Madars Virza. A Bug in
libsnark. Least Authority blog. May 16, 2015. URL: https://leastauthority.com/blog/a-bug-
in-libsnark/ (visited on 2021-04-07) (↑ p110, 200).

[WG2016] Zooko Wilcox and Jack Grigg. Why Equihash? Electric Coin Company blog. April 15, 2016. URL:
https://electriccoin.co/blog/why-equihash/ (visited on 2019-08-27). Updated August 21,
2019. (↑ P133).

[Zaverucha2012] Gregory M. Zaverucha. Hybrid Encryption in the Multi-User Setting. Cryptology ePrint Archive:
Report 2012/159. Received March 20, 2012. URL: https://eprint.iacr.org/2012/159 (visited
on 2016-09-24) (↑ p148).

[Zcash-Blossom] Electric Coin Company. Blossom. December 11, 2019. URL: https://z.cash/upgrade/blossom/
(visited on 2021-01-10) (↑ p120).

[Zcash-Canopy] Electric Coin Company. Canopy. November 18, 2020. URL: https://z.cash/upgrade/canopy/
(visited on 2021-01-10) (↑ p120).

[Zcash-halo2] Daira-Emma Hopwood, Sean Bowe, Jack Grigg, Kris Nuttycombe, Ying Tong Lai, and Steven
Smith. The halo2 Book. URL: https://zcash.github.io/halo2/ (visited on 2021-03-23) (↑ p109,
112, 120, 161, 163).

[Zcash-Heartwd] Electric Coin Company. Heartwood. July 16, 2020. URL: https://z.cash/upgrade/heartwood/
(visited on 2021-01-10) (↑ p120).

[Zcash-Issue2113] Simon Liu. GitHub repository ‘ zcash/zcash’ : Issue 2113 – Upgrade testnet to �x bug in test
and update fr addresses. URL: https://github.com/zcash/zcash/issues/2113 (visited on
2017-02-20) (↑ p138, 180).

[Zcash-libsnark] libsnark: C++ library for zkSNARK proofs (Zcash fork). URL: https://github.com/zcash/zcash/
tree/v2.0.7-3/src/snark (visited on 2021-04-07) (↑ p110).

[Zcash-Nu5] Electric Coin Company. Network Upgrade 5. May 31, 2022. URL: https://z.cash/upgrade/nu5/
(visited on 2022-05-11) (↑ p120).

[Zcash-Nu6] Electric Coin Company. Network Upgrade 6. August 20, 2025. URL: https://z.cash/upgrade/
nu6/ (visited on 2025-08-20) (↑ p120).

[Zcash-Nu6.1] Electric Coin Company. Network Upgrade 6.1. August 20, 2025. URL: https://z.cash/upgrade/
nu6.1/ (visited on 2025-08-20) (↑ p120).

[Zcash-Orchard] Daira-Emma Hopwood, Sean Bowe, Jack Grigg, Kris Nuttycombe, Ying Tong Lai, and Steven
Smith. The Orchard Book. URL: https://zcash.github.io/orchard/ (visited on 2021-03-02)
(↑ p82, 85, 98, 120, 144, 160, 161).

[zcashd-6459] Jack Grigg and Daira-Emma Hopwood. zcashd PR 6459: Migrate to zcash_primitives 0.10. URL:
https://github.com/zcash/zcash/pull/6459 (visited on 2023-08-25) (↑ p71, 165).

[zcashd-6725] Jack Grigg. zcashd PR 6725: Retroactively use Rust to decrypt shielded coinbase before soft fork.
URL: https://github.com/zcash/zcash/pull/6725 (visited on 2023-08-25) (↑ p71, 165).

[ZIP-32] Jack Grigg and Daira-Emma Hopwood. Shielded Hierarchical Deterministic Wallets. Zcash
Improvement Proposal 32. URL: https://zips.z.cash/zip- 0032 (visited on 2019-08-28)
(↑ p13, 25, 26, 37, 38, 39, 44, 67, 79, 88, 94, 120, 151, 156, 162, 167, 169, 175).

[ZIP-48] Kris Nuttycombe, Jack Grigg, Daira-Emma Hopwood, and Arya. Transparent Multisig Wallets.
Zcash Improvement Proposal 48. URL: https://zips.z.cash/zip-0048 (visited on 2025-10-08)
(↑ p140).

[ZIP-76] Jack Grigg and Daira-Emma Hopwood. Transaction Signature Validation before Overwinter.
Zcash Improvement Proposal 76 (in progress). (↑ P50, 142).

[ZIP-143] Jack Grigg and Daira-Emma Hopwood. Transaction Signature Validation for Overwinter. Zcash
Improvement Proposal 143. Created December 27, 2017. URL: https://zips.z.cash/zip-0143
(visited on 2019-08-28) (↑ p50, 76, 120).

196

https://leastauthority.com/blog/a-bug-in-libsnark/
https://leastauthority.com/blog/a-bug-in-libsnark/
https://electriccoin.co/blog/why-equihash/
https://eprint.iacr.org/2012/159
https://z.cash/upgrade/blossom/
https://z.cash/upgrade/canopy/
https://zcash.github.io/halo2/
https://z.cash/upgrade/heartwood/
https://github.com/zcash/zcash/issues/2113
https://github.com/zcash/zcash/tree/v2.0.7-3/src/snark
https://github.com/zcash/zcash/tree/v2.0.7-3/src/snark
https://z.cash/upgrade/nu5/
https://z.cash/upgrade/nu6/
https://z.cash/upgrade/nu6/
https://z.cash/upgrade/nu6.1/
https://z.cash/upgrade/nu6.1/
https://zcash.github.io/orchard/
https://github.com/zcash/zcash/pull/6459
https://github.com/zcash/zcash/pull/6725
https://zips.z.cash/zip-0032
https://zips.z.cash/zip-0048
https://zips.z.cash/zip-0143

[ZIP-173] Daira-Emma Hopwood. Bech32 Format. Zcash Improvement Proposal 173. Created June 13, 2018.
URL: https://zips.z.cash/zip-0173 (visited on 2020-06-01) (↑ p113, 116, 167).

[ZIP-200] Jack Grigg. Network Upgrade Mechanism. Zcash Improvement Proposal 200. Created January 8,
2018. URL: https://zips.z.cash/zip-0200 (visited on 2019-08-28) (↑ p120, 126, 155).

[ZIP-201] Simon Liu and Daira-Emma Hopwood. Network Peer Management for Overwinter. Zcash Im-
provement Proposal 201. Created January 15, 2018. URL: https://zips.z.cash/zip- 0201
(visited on 2019-08-28) (↑ p50, 120, 121).

[ZIP-202] Simon Liu and Daira-Emma Hopwood. Version 3 Transaction Format for Overwinter. Zcash
Improvement Proposal 202. Created January 10, 2018. URL: https://zips.z.cash/zip-0202
(visited on 2019-08-28) (↑ p120).

[ZIP-203] Jay Graber and Daira-Emma Hopwood. Transaction Expiry. Zcash Improvement Proposal 203.
Created January 9, 2018. URL: https://zips.z.cash/zip-0203 (visited on 2019-08-28) (↑ p120,
122, 123, 159).

[ZIP-205] Simon Liu and Daira-Emma Hopwood. Deployment of the Sapling Network Upgrade. Zcash
Improvement Proposal 205. Created October 8, 2018. URL: https://zips.z.cash/zip-0205
(visited on 2019-08-28) (↑ p50, 120, 136).

[ZIP-206] Simon Liu and Daira-Emma Hopwood. Deployment of the Blossom Network Upgrade. Zcash
Improvement Proposal 206. Created July 29, 2019. URL: https://zips.z.cash/zip- 0206
(visited on 2019-08-28) (↑ p50, 120, 169).

[ZIP-207] Jack Grigg and Daira-Emma Hopwood. Funding Streams. Zcash Improvement Proposal 207.
Created January 4, 2019. URL: https://zips.z.cash/zip-0207 (visited on 2019-08-28) (↑ p58,
120, 125, 139, 140, 166, 167).

[ZIP-208] Daira-Emma Hopwood and Simon Liu. Shorter Block Target Spacing. Zcash Improvement
Proposal 208. Created January 10, 2019. URL: https://zips.z.cash/zip- 0208 (visited on
2019-08-28) (↑ p120, 136, 170).

[ZIP-209] Sean Bowe and Daira-Emma Hopwood. Prohibit Negative Shielded Value Pool Balances. Zcash
Improvement Proposal 209. Created February 25, 2019. URL: https://zips.z.cash/zip-0209
(visited on 2020-11-05) (↑ p58, 120, 159, 164).

[ZIP-211] Daira-Emma Hopwood. Disabling Addition of New Value to the Sprout Value Pool. Zcash Im-
provement Proposal 211. Created March 29, 2019. URL: https://zips.z.cash/zip-0211 (visited
on 2020-06-01) (↑ p44, 117, 120, 165, 167).

[ZIP-212] Sean Bowe. Allow Recipient to Derive Sapling Ephemeral Secret from Note Plaintext. Zcash
Improvement Proposal 212. Created March 31, 2019. URL: https://zips.z.cash/zip-0212
(visited on 2020-06-01) (↑ p16, 65, 120, 126, 148, 153, 157, 159, 161, 167).

[ZIP-213] Jack Grigg. Shielded Coinbase. Zcash Improvement Proposal 213. Created March 30, 2019. URL:
https://zips.z.cash/zip-0213 (visited on 2020-03-20) (↑ p120, 126, 127, 140, 159, 160).

[ZIP-214] Daira-Emma Hopwood. Consensus rules for a Zcash Development Fund. Zcash Improvement
Proposal 214. Created February 28, 2020. URL: https://zips.z.cash/zip-0214 (visited on
2020-03-24) (↑ p120, 140, 141, 165, 166, 167).

[ZIP-215] Henry de Valence. Explicitly De�ning and Modifying Ed25519 Validation Rules. Zcash Improve-
ment Proposal 215. Created April 27, 2020. URL: https://zips.z.cash/zip-0215 (visited on
2020-05-27) (↑ p120, 167, 223).

[ZIP-216] Jack Grigg and Daira-Emma Hopwood. Require Canonical Point Encodings. Zcash Improvement
Proposal 216. Created February 11, 2021. URL: https://zips.z.cash/zip- 0216 (visited on
2021-02-25) (↑ p41, 42, 94, 116, 120, 165).

[ZIP-221] Ying Tong Lai, James Prestwich, Georgios Konstantopoulos, and Jack Grigg. FlyClient - Consensus-
Layer Changes. Zcash Improvement Proposal 221. Created March 30, 2019. URL: https://zips.
z.cash/zip-0221 (visited on 2020-03-19) (↑ p120, 131, 132, 133).

197

https://zips.z.cash/zip-0173
https://zips.z.cash/zip-0200
https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0202
https://zips.z.cash/zip-0203
https://zips.z.cash/zip-0205
https://zips.z.cash/zip-0206
https://zips.z.cash/zip-0207
https://zips.z.cash/zip-0208
https://zips.z.cash/zip-0209
https://zips.z.cash/zip-0211
https://zips.z.cash/zip-0212
https://zips.z.cash/zip-0213
https://zips.z.cash/zip-0214
https://zips.z.cash/zip-0215
https://zips.z.cash/zip-0216
https://zips.z.cash/zip-0221
https://zips.z.cash/zip-0221

[ZIP-224] Daira-Emma Hopwood, Jack Grigg, Sean Bowe, Kris Nuttycombe, and Ying Tong Lai. Orchard
Shielded Protocol. Zcash Improvement Proposal 224. Created February 27, 2021. URL: https:
//zips.z.cash/zip-0225 (visited on 2021-03-21) (↑ p120).

[ZIP-225] Daira-Emma Hopwood, Jack Grigg, Sean Bowe, Kris Nuttycombe, and Ying Tong Lai. Version 5
Transaction Format. Zcash Improvement Proposal 225. Created February 28, 2021. URL: https:
//zips.z.cash/zip-0225 (visited on 2021-03-21) (↑ p55, 57, 120, 162).

[ZIP-236] Daira-Emma Hopwood. Blocks should balance exactly. Zcash Improvement Proposal 236. Cre-
ated July 2, 2024. URL: https://zips.z.cash/zip-0236 (visited on 2024-09-24) (↑ p120, 151,
152).

[ZIP-239] Daira-Emma Hopwood and Jack Grigg. Relay of Version 5 Transactions. Zcash Improvement
Proposal 239. Created May 29, 2021. URL: https://zips.z.cash/zip-0239 (visited on 2021-06-
06) (↑ p18, 120, 124, 157, 159).

[ZIP-243] Jack Grigg and Daira-Emma Hopwood. Transaction Signature Validation for Sapling. Zcash
Improvement Proposal 243. Created April 10, 2018. URL: https://zips.z.cash/zip-0243
(visited on 2019-08-28) (↑ p50, 51, 53, 57, 76, 120, 160).

[ZIP-244] Kris Nuttycombe, Daira-Emma Hopwood, and Jack Grigg. Transaction Identi�er Non-Malleability.
Zcash Improvement Proposal 244. Created January 6, 2021. URL: https://zips.z.cash/zip-
0244 (visited on 2021-01-10) (↑ p18, 51, 53, 55, 57, 76, 120, 124, 127, 131, 132, 133).

[ZIP-250] Daira-Emma Hopwood. Deployment of the Heartwood Network Upgrade. Zcash Improvement
Proposal 250. Created February 28, 2020. URL: https://zips.z.cash/zip-0250 (visited on
2020-03-20) (↑ p50, 120).

[ZIP-251] Daira-Emma Hopwood. Deployment of the Canopy Network Upgrade. Zcash Improvement
Proposal 251. Created February 28, 2020. URL: https://zips.z.cash/zip-0251 (visited on
2020-03-24) (↑ p51, 120, 167).

[ZIP-252] teor and Daira-Emma Hopwood. Deployment of the NU5 Network Upgrade. Zcash Improvement
Proposal 252. Created February 23, 2021. URL: https://zips.z.cash/zip-0252 (visited on
2022-06-22) (↑ p51, 120, 154).

[ZIP-253] Arya. Deployment of the NU6 Network Upgrade. Zcash Improvement Proposal 253. Created
July 17, 2024. URL: https://zips.z.cash/zip-0253 (visited on 2024-09-24) (↑ p51, 120).

[ZIP-255] Arya. Deployment of the NU6.1 Network Upgrade. Zcash Improvement Proposal 255. Created
May 6, 2025. URL: https://zips.z.cash/zip-0255 (visited on 2025-08-20) (↑ p51, 120).

[ZIP-271] Daira-Emma Hopwood, Kris Nuttycombe, and Jack Grigg. Deferred Dev Fund Lockbox Disburse-
ment. Zcash Improvement Proposal 271. Created February 19, 2025. URL: https://zips.z.cash/
zip-0271 (visited on 2025-08-20) (↑ p120, 125, 136, 139, 140, 151).

[ZIP-302] Jay Graber and Jack Grigg. Standardized Memo Field Format. Zcash Improvement Proposal 302.
Created February 8, 2017. URL: https://zips.z.cash/zip-0302 (visited on 2022-06-22) (↑ p15,
154, 163, 168).

[ZIP-316] Daira-Emma Hopwood, Nathan Wilcox, Taylor Hornby, Jack Grigg, Sean Bowe, Kris Nuttycombe,
Greg Pfeil, and Ying Tong Lai. Uni�ed Addresses and Uni�ed Viewing Keys. Zcash Improvement
Proposal 316. Created April 7, 2021. URL: https://zips.z.cash/zip-0316 (visited on 2021-04-
29) (↑ p25, 116, 117, 118, 119, 120, 152, 156, 160).

[ZIP-1014] Andrew Miller and Zooko Wilcox. Establishing a Dev Fund for ECC, ZF, and Major Grants. Zcash
Improvement Proposal 1014. Created November 10, 2019. URL: https://zips.z.cash/zip-1014
(visited on 2024-09-24) (↑ p120).

[ZIP-1015] Jason McGee, @Peacemonger, and Kris Nuttycombe. Block Subsidy Allocation for Non-Direct
Development Funding. Zcash Improvement Proposal 1015. Created August 26, 2024. URL: https:
//zips.z.cash/zip-1015 (visited on 2024-09-24) (↑ p120).

198

https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0236
https://zips.z.cash/zip-0239
https://zips.z.cash/zip-0243
https://zips.z.cash/zip-0244
https://zips.z.cash/zip-0244
https://zips.z.cash/zip-0250
https://zips.z.cash/zip-0251
https://zips.z.cash/zip-0252
https://zips.z.cash/zip-0253
https://zips.z.cash/zip-0255
https://zips.z.cash/zip-0271
https://zips.z.cash/zip-0271
https://zips.z.cash/zip-0302
https://zips.z.cash/zip-0316
https://zips.z.cash/zip-1014
https://zips.z.cash/zip-1015
https://zips.z.cash/zip-1015

[ZIP-1016] Josh Swihart. Community and Coinholder Funding Model. Zcash Improvement Proposal 1016.
Created February 19, 2025. URL: https://zips.z.cash/zip-1016 (visited on 2025-08-20)
(↑ p120, 139).

[ZIP-2001] Kris Nuttycombe. Lockbox Funding Streams. Zcash Improvement Proposal 2001. Created July 2,
2024. URL: https://zips.z.cash/zip-2001 (visited on 2024-09-24) (↑ p120, 139, 152).

[Zips-Issue664] Daira-Emma Hopwood. GitHub repository ‘zcash/zips’: Issue 664 – [protocol spec] [ZIP 216]
Sapling pk_d should not allow the zero point. URL: https://github.com/zcash/zips/issues/
664 (visited on 2025-09-07) (↑ p152, 165).

199

https://zips.z.cash/zip-1016
https://zips.z.cash/zip-2001
https://github.com/zcash/zips/issues/664
https://github.com/zcash/zips/issues/664

Appendices #appendices

A Circuit Design #circuitdesign

A.1 Quadratic Constraint Programs #constraintprograms

Sapling de�nes two circuits, Spend and Output, each implementing an abstract statement described in section 4.18.2
‘Spend Statement (Sapling)’ on page 61 and section 4.18.3 ‘Output Statement (Sapling)’ on page 62 respectively. It also adds
a Groth16 circuit for the JoinSplit statement described in section 4.18.1 ‘JoinSplit Statement (Sprout)’ on page 60.

At the next lower level, each circuit is de�ned in terms of a quadratic constraint program (specifying a Rank 1
Constraint System), as detailed in this section. In the BCTV14 or Groth16 proving systems, this program is translated
to a Quadratic Arithmetic Program [BCTV2014a, section 2.3] [WCBTV2015]. The circuit descriptions given here are
necessary to compute witness elements for each circuit, as well as the proving and verifying keys.

Let F𝑟S
be the �nite �eld over which Jubjub is de�ned, as given in section 5.4.9.3 ‘Jubjub’ on page 102.

A quadratic constraint program consists of a set of constraints over variables in F𝑟S
, each of the form:(︀

𝐴
)︀ (︀

𝐵
)︀

=
(︀
𝐶
)︀

where
(︀
𝐴
)︀
,
(︀
𝐵
)︀
, and

(︀
𝐶
)︀

are linear combinations of variables and constants in F𝑟S
.

Here and · both represent multiplication in the �eld F𝑟S
, but we use for multiplications corresponding to gates

of the circuit, and · for multiplications by constants in the terms of a linear combination. should not be confused
with ×which is de�ned as cartesian product in section 2 ‘Notation’ on page 10.

A.2 Elliptic curve background #ecbackground

The Sapling circuits make use of a complete twisted Edwards elliptic curve (“ctEdwards curve”) Jubjub, de�ned in
section 5.4.9.3 ‘Jubjub’ on page 102, and also a Montgomery elliptic curve M that is birationally equivalent to Jubjub. Following
the notation in [BL2017] we use (𝑢, v) for af�ne coordinates on the ctEdwards curve , and (𝑥, 𝑦) for af�ne coordinates
on the Montgomery curve.

A point 𝑃 is normally represented by two F𝑟S
variables, which we name as (𝑃 𝑢, 𝑃 v) for an af�ne-ctEdwards point,

for instance.

The implementations of scalar multiplication require the scalar to be represented as a bit sequence. We there-
fore allow the notation [𝑘⋆] 𝑃 meaning [LEBS2IPlength(𝑘⋆)(𝑘⋆)] 𝑃 . There will be no ambiguity because variables
representing bit sequences are named with a ⋆ suf�x.

The Montgomery curve M has parameters 𝐴M = 40962 and 𝐵M = 1. We use an af�ne representation of this curve
with the formula:

𝐵M ·𝑦
2 = 𝑥3 + 𝐴M ·𝑥

2 + 𝑥

Usually, elliptic curve arithmetic over prime �elds is implemented using some form of projective coordinates,
in order to reduce the number of expensive inversions required. In the circuit, it turns out that a division can
be implemented at the same cost as a multiplication, i.e. one constraint. Therefore it is bene�cial to use af�ne
coordinates for both curves.

We de�ne the following types representing af�ne-ctEdwards and af�ne-Montgomery coordinates respectively:

AffineCtEdwardsJubjub := (𝑢 ◦
◦ F𝑟S

)× (v ◦
◦ F𝑟S

) : 𝑎J ·𝑢
2 + v2 = 1 + 𝑑J ·𝑢

2 ·v2

AffineMontJubjub := (𝑥 ◦
◦ F𝑟S

)× (𝑦 ◦
◦ F𝑟S

) : 𝐵M ·𝑦
2 = 𝑥3 + 𝐴M ·𝑥

2 + 𝑥

200

https://zips.z.cash/protocol/protocol.pdf#appendices
https://zips.z.cash/protocol/protocol.pdf#circuitdesign
https://zips.z.cash/protocol/protocol.pdf#constraintprograms
https://zips.z.cash/protocol/protocol.pdf#ecbackground

We also de�ne a type representing compressed, not necessarily valid , ctEdwards coordinates:

CompressedCtEdwardsJubjub := (𝑢̃ ◦
◦ B)× (v ◦

◦ F𝑟S
)

See section 5.4.9.3 ‘Jubjub’ on page 102 for how this type is represented as a byte sequence in external encodings.

We use af�ne-Montgomery arithmetic in parts of the circuit because it is more ef�cient, in terms of the number of
constraints, than af�ne-ctEdwards arithmetic.

An important consideration when using Montgomery arithmetic is that the addition formula is not complete, that
is, there are cases where it produces the wrong answer. We must ensure that these cases do not arise.

We will need the theorem below about 𝑦-coordinates of points on Montgomery curves.

Fact: 𝐴M
2 − 4 is a nonsquare in F𝑟S

.

Theorem A.2.1. (0, 0) is the only point with 𝑦 = 0 on certain Montgomery curves. #thmmontynotzero

Let 𝑃 = (𝑥, 𝑦) be a point other than (0, 0) on a Montgomery curve 𝐸Mont(𝐴,𝐵) over F𝑟 , such that 𝐴2−4 is a nonsquare
in F𝑟 . Then 𝑦 ̸= 0.

Proof. Substituting 𝑦 = 0 into the Montgomery curve equation gives 0 = 𝑥3 + 𝐴 · 𝑥2 + 𝑥 = 𝑥 · (𝑥2 + 𝐴 · 𝑥 + 1). So
either 𝑥 = 0 or 𝑥2 + 𝐴 ·𝑥 + 1 = 0. Since 𝑃 ̸= (0, 0), the case 𝑥 = 0 is excluded. In the other case, complete the square
for 𝑥2 + 𝐴 · 𝑥 + 1 = 0 to give the equivalent (2 · 𝑥 + 𝐴)2 = 𝐴2 − 4. The left-hand side is a square, so if the right-hand
side is a nonsquare, then there are no solutions for 𝑥.

A.3 Circuit Components #cctcomponents

Each of the following sections describes how to implement a particular component of the circuit, and counts the
number of constraints required. Some components make use of others; the order of presentation is “bottom-up”.

It is important for security to ensure that variables intended to be of boolean type are boolean-constrained; and
for ef�ciency that they are boolean-constrained only once. We explicitly state for the boolean inputs and outputs
of each component whether they are boolean-constrained by the component, or are assumed to have been
boolean-constrained separately.

Af�ne coordinates for elliptic curve points are assumed to represent points on the relevant curve, unless otherwise
speci�ed.

In this section, variables have type F𝑟S
unless otherwise speci�ed. In contrast to most of this document, we use

zero-based indexing in order to more closely match the implementation.

A.3.1 Operations on individual bits #cctbitops

A.3.1.1 Boolean constraints #cctboolean

A boolean constraint 𝑏 ∈ B can be implemented as:(︀
1− 𝑏

)︀ (︀
𝑏
)︀

=
(︀
0
)︀

201

https://zips.z.cash/protocol/protocol.pdf#thmmontynotzero
https://zips.z.cash/protocol/protocol.pdf#cctcomponents
https://zips.z.cash/protocol/protocol.pdf#cctbitops
https://zips.z.cash/protocol/protocol.pdf#cctboolean

A.3.1.2 Conditional equality #cctcondeq

The constraint “either 𝑎 = 0 or 𝑏 = 𝑐” can be implemented as:(︀
𝑎
)︀ (︀

𝑏− 𝑐
)︀

=
(︀
0
)︀

A.3.1.3 Selection constraints #cctselection

A selection constraint (𝑏 ? 𝑥 : 𝑦) = 𝑧, where 𝑏 ◦
◦ B has been boolean-constrained, can be implemented as:(︀

𝑏
)︀ (︀

𝑦 − 𝑥
)︀

=
(︀
𝑦 − 𝑧

)︀

A.3.1.4 Nonzero constraints #cctnonzero

Since only nonzero elements of F𝑟S
have a multiplicative inverse, the assertion 𝑎 ̸= 0 can be implemented by

witnessing the inverse, 𝑎inv = 𝑎−1 (mod 𝑟S):(︀
𝑎inv
)︀ (︀

𝑎
)︀

=
(︀
1
)︀

This technique comes from [SVPBABW2012, Appendix D.1].

Non-normative note: A global optimization allows to use a single inverse computation outside the circuit for
any number of nonzero constraints. Suppose that we have 𝑛 variables (or linear combinations) that are supposed

to be nonzero: 𝑎0 .. 𝑛−1. Multiply these together (using 𝑛−1 constraints) to give 𝑎* =
∏︀𝑛−1

𝑖=0
𝑎𝑖; then, constrain 𝑎* to

be nonzero. This works because the product 𝑎* is nonzero if and only if all of 𝑎0 .. 𝑛−1 are nonzero. However, the
Sapling circuit does not use this optimization.

A.3.1.5 Exclusive-or constraints #cctxor

An exclusive-or operation 𝑎⊕ 𝑏 = 𝑐, where 𝑎, 𝑏 ◦
◦ B are already boolean-constrained, can be implemented in one

constraint as:(︀
2·𝑎
)︀ (︀

𝑏
)︀

=
(︀
𝑎 + 𝑏− 𝑐

)︀
This automatically boolean-constrains 𝑐. Its correctness can be seen by checking the truth table of (𝑎, 𝑏).

A.3.2 Operations on multiple bits #cctmultibitops

A.3.2.1 [Un]packing modulo 𝑟S #cctmodpack

Let 𝑛 ◦
◦ N+ be a constant. The operation of converting a �eld element, 𝑎 ◦

◦ F𝑟S
, to a sequence of boolean variables

𝑏0 .. 𝑛−1
◦
◦ B[𝑛] such that 𝑎 =

∑︀𝑛−1

𝑖=0
𝑏𝑖 · 2

𝑖 (mod 𝑟S), is called “unpacking ”. The inverse operation is called “packing ”.

In the quadratic constraint program these are the same operation (but see the note about canonical representation
below). We assume that the variables 𝑏0 .. 𝑛−1 are boolean-constrained separately.

We have 𝑎 mod 𝑟S =
(︃

𝑛−1∑︁
𝑖=0

𝑏𝑖 · 2
𝑖

)︃
mod 𝑟S =

(︃
𝑛−1∑︁
𝑖=0

𝑏𝑖 · (2
𝑖 mod 𝑟S)

)︃
mod 𝑟S.

202

https://zips.z.cash/protocol/protocol.pdf#cctcondeq
https://zips.z.cash/protocol/protocol.pdf#cctselection
https://zips.z.cash/protocol/protocol.pdf#cctnonzero
https://zips.z.cash/protocol/protocol.pdf#cctxor
https://zips.z.cash/protocol/protocol.pdf#cctmultibitops
https://zips.z.cash/protocol/protocol.pdf#cctmodpack

This can be implemented in one constraint:(︃
𝑛−1∑︁
𝑖=0

𝑏𝑖 · (2
𝑖 mod 𝑟S)

)︃ (︀
1
)︀

=
(︀
𝑎
)︀

Notes:

• The bit length 𝑛 is not limited by the �eld element size.

• Since the constraint has only a trivial multiplication, it is possible to eliminate it by merging it into the boolean
constraint of one of the output bits, expressing that bit as a linear combination of the others and 𝑎. However,
this optimization requires substitutions that would interfere with the modularity of the circuit implementation
(for a saving of only one constraint per unpacking operation), and so we do not use it for the Sapling circuit.

• In the case 𝑛 = 255, for 𝑎 < 2255 − 𝑟S there are two possible representations of 𝑎 ◦
◦ F𝑟S

as a sequence of 255
bits, corresponding to I2LEBSP255(𝑎) and I2LEBSP255(𝑎 + 𝑟S). This is a potential hazard, but it may or may not
be necessary to force use of the canonical representation I2LEBSP255(𝑎), depending on the context in which
the [un]packing operation is used. We therefore do not consider this to be part of the [un]packing operation
itself.

A.3.2.2 Range check #cctrange

Let 𝑛 ◦
◦ N+ be a constant, and let 𝑎 =

∑︀𝑛−1

𝑖=0
𝑎𝑖 · 2

𝑖 ◦
◦ N. Suppose we want to constrain 𝑎 ≤ 𝑐 for some constant

𝑐 =
∑︀𝑛−1

𝑖=0
𝑐𝑖 · 2

𝑖 ◦
◦ N.

Without loss of generality we can assume that 𝑐𝑛−1 = 1, because if it were not then we would decrease 𝑛 accordingly.

Note that since 𝑎 and 𝑐 are provided in binary representation, their bit length 𝑛 is not limited by the �eld element
size. We do not assume that the bits 𝑎0 .. 𝑛−1 are already boolean-constrained.

De�ne Π𝑚 =
∏︀𝑛−1

𝑖=𝑚
(𝑐𝑖 = 0 ∨ 𝑎𝑖 = 1) for 𝑚 ∈ {0 .. 𝑛− 1}. Notice that for any 𝑚 < 𝑛− 1 such that 𝑐𝑚 = 0, we have

Π𝑚 = Π𝑚+1, and so it is only necessary to allocate separate variables for the Π𝑚 such that 𝑚 < 𝑛− 1 and 𝑐𝑚 = 1.
Furthermore if 𝑐𝑛−2 .. 0 has 𝑡 > 0 trailing 1 bits, then we do not need to allocate variables for Π0 .. 𝑡−1 because those
variables will not be used below.

More explicitly:

Let Π𝑛−1 = 𝑎𝑛−1.

For 𝑖 from 𝑛− 2 down to 𝑡,

• if 𝑐𝑖 = 0, then let Π𝑖 = Π𝑖+1;

• if 𝑐𝑖 = 1, then constrain
(︀
Π𝑖+1

)︀ (︀
𝑎𝑖

)︀
=
(︀
Π𝑖

)︀
.

Then we constrain the 𝑎𝑖 as follows:

For 𝑖 from 𝑛− 1 down to 0,

• if 𝑐𝑖 = 0, constrain
(︀
1−Π𝑖+1 − 𝑎𝑖

)︀ (︀
𝑎𝑖

)︀
=
(︀
0
)︀
;

• if 𝑐𝑖 = 1, boolean-constrain 𝑎𝑖 as in section A.3.1.1 ‘Boolean constraints’ on page 201.

Note that the constraints corresponding to zero bits of 𝑐 are in place of boolean constraints on bits of 𝑎𝑖.

This costs 𝑛 + 𝑘 constraints, where 𝑘 is the number of non-trailing 1 bits in 𝑐𝑛−2 .. 0.

203

https://zips.z.cash/protocol/protocol.pdf#cctrange

Theorem A.3.1. Correctness of a constraint system for range checks. #thmrangeconstraints

Assume 𝑐0 .. 𝑛−1
◦
◦ B[𝑛] and 𝑐𝑛−1 = 1. De�ne 𝐴𝑚 :=

∑︀𝑛−1

𝑖=𝑚
𝑎𝑖 · 2

𝑖 and 𝐶𝑚 :=
∑︀𝑛−1

𝑖=𝑚
𝑐𝑖 · 2

𝑖. For any 𝑚 ∈ {0 .. 𝑛− 1},
𝐴𝑚 ≤ 𝐶𝑚 if and only if the restriction of the above constraint system to 𝑖 ∈ {𝑚 .. 𝑛− 1} is satis�ed. Furthermore
the system at least boolean-constrains 𝑎0 .. 𝑛−1.

Proof. For 𝑖 ∈ {0 .. 𝑛− 1} such that 𝑐𝑖 = 1, the corresponding 𝑎𝑖 are unconditionally boolean-constrained. This
implies that the system constrains Π𝑖 ∈ B for all 𝑖 ∈ {0 .. 𝑛− 1}. For 𝑖 ∈ {0 .. 𝑛− 1} such that 𝑐𝑖 = 0, the constraint(︀
1−Π𝑖+1 − 𝑎𝑖

)︀ (︀
𝑎𝑖

)︀
=
(︀
0
)︀

constrains 𝑎𝑖 to be 0 if Π𝑖+1 = 1, otherwise it constrains 𝑎𝑖 ∈ B. So all of 𝑎0 .. 𝑛−1 are
at least boolean-constrained.

To prove the rest of the theorem we proceed by induction on decreasing 𝑚, i.e. taking successively longer pre�xes
of the big-endian binary representations of 𝑎 and 𝑐.

Base case 𝑚 = 𝑛− 1: since 𝑐𝑛−1 = 1, the constraint system has just one boolean constraint on 𝑎𝑛−1, which ful�ls
the theorem since 𝐴𝑛−1 ≤ 𝐶𝑛−1 is always satis�ed.

Inductive case 𝑚 < 𝑛− 1:

• If 𝐴𝑚+1 > 𝐶𝑚+1, then by the inductive hypothesis the constraint system must fail, which ful�ls the theorem
regardless of the value of 𝑎𝑚.

• If 𝐴𝑚+1 ≤ 𝐶𝑚+1, then by the inductive hypothesis the constraint system restricted to 𝑖 ∈ {𝑚 + 1 .. 𝑛− 1}
succeeds. We have Π𝑚+1 =

∏︀𝑛−1

𝑖=𝑚+1
(𝑐𝑖 = 0 ∨ 𝑎𝑖 = 1) =

∏︀𝑛−1

𝑖=𝑚+1
(𝑎𝑖 ≥ 𝑐𝑖).

– If 𝐴𝑚+1 = 𝐶𝑚+1, then 𝑎𝑖 = 𝑐𝑖 for all 𝑖 ∈ {𝑚 + 1 .. 𝑛− 1} and so Π𝑚+1 = 1. Also 𝐴𝑚 ≤ 𝐶𝑚 if and only if
𝑎𝑚 ≤ 𝑐𝑚.
When 𝑐𝑚 = 1, only a boolean constraint is added for 𝑎𝑚 which ful�ls the theorem.
When 𝑐𝑚 = 0, 𝑎𝑚 is constrained to be 0 which ful�ls the theorem.

– If 𝐴𝑚+1 < 𝐶𝑚+1, then it cannot be the case that 𝑎𝑖 ≥ 𝑐𝑖 for all 𝑖 ∈ {𝑚 + 1 .. 𝑛− 1}, so Π𝑚+1 = 0.
This implies that the constraint on 𝑎𝑚 is always equivalent to a boolean constraint, which ful�ls the
theorem because 𝐴𝑚 ≤ 𝐶𝑚 must be true regardless of the value of 𝑎𝑚.

This covers all cases.

Correctness of the full constraint system follows by taking 𝑚 = 0 in the above theorem.

The algorithm in section A.3.3.2 ‘ctEdwards [de]compression and validation’ on page 205 uses range checks with 𝑐 = 𝑟S−1
to validate ctEdwards compressed encodings. In that case 𝑛 = 255 and 𝑘 = 132, so the cost of each such range
check is 387 constraints.

Non-normative note: It is possible to optimize the computation of Π𝑡 .. 𝑛−2 further. Notice that Π𝑚 is only used
when 𝑚 is the index of the last bit of a run of 1 bits in 𝑐. So for each such run of 1 bits 𝑐𝑚 .. 𝑚+𝑁−2 of length 𝑁 − 1,

it is suf�cient to compute an 𝑁-ary AND of 𝑎𝑚 .. 𝑚+𝑁−2 and Π𝑚+𝑁−1: 𝑅 =
∏︀𝑁−1

𝑖=0
𝑋𝑖. This can be computed in 3

constraints for any 𝑁 ; boolean-constrain the output 𝑅, and then add constraints(︁
𝑁 −

∑︀𝑁−1

𝑖=0
𝑋𝑖

)︁ (︀
inv
)︀

=
(︀
1−𝑅

)︀
to enforce that

∑︀𝑁−1

𝑖=0
𝑋𝑖 ̸= 𝑁 when 𝑅 = 0;(︁

𝑁 −
∑︀𝑁−1

𝑖=0
𝑋𝑖

)︁ (︀
𝑅
)︀

=
(︀
0
)︀

to enforce that
∑︀𝑁−1

𝑖=0
𝑋𝑖 = 𝑁 when 𝑅 = 1.

where inv is witnessed as
(︁

𝑁 −
∑︀𝑁−1

𝑖=0
𝑋𝑖

)︁
−1 if 𝑅 = 0 or is unconstrained otherwise. (Since 𝑁 < 𝑟S, the sums cannot

over�ow.)

In fact the last constraint is not needed in this context because it is suf�cient to compute an upper bound on each
Π𝑚 (i.e. it does not bene�t a malicious prover to witness 𝑅 = 1 when the result of the AND should be 0). So the
cost of computing Π variables for an arbitrarily long run of 1 bits can be reduced to 2 constraints. For example, for
𝑐 = 𝑟S − 1 the overall cost would be reduced to 255 + 68 = 323 constraints.

These optimizations are not used in Sapling.

204

https://zips.z.cash/protocol/protocol.pdf#thmrangeconstraints

A.3.3 Elliptic curve operations #cctelliptic

A.3.3.1 Checking that Af�ne-ctEdwards coordinates are on the curve #cctedvalidate

To check that (𝑢, v) is a point on the ctEdwards curve , the Sapling circuit uses 4 constraints:(︀
𝑢
)︀ (︀

𝑢
)︀

=
(︀
𝑢𝑢
)︀(︀

v
)︀ (︀

v
)︀

=
(︀
vv
)︀(︀

𝑢𝑢
)︀ (︀

vv
)︀

=
(︀
𝑢𝑢vv

)︀(︀
𝑎J ·𝑢𝑢 + vv

)︀ (︀
1
)︀

=
(︀
1 + 𝑑J ·𝑢𝑢vv

)︀
Non-normative note: The last two constraints can be combined into

(︀
𝑑J ·𝑢𝑢

)︀ (︀
vv
)︀

=
(︀
𝑎J ·𝑢𝑢 + vv− 1

)︀
. The

Sapling circuit does not use this optimization.

A.3.3.2 ctEdwards [de]compression and validation #ccteddecompressvalidate

De�ne DecompressValidate ◦
◦ CompressedCtEdwardsJubjub→ AffineCtEdwardsJubjub as follows:

DecompressValidate(𝑢̃, v) :
// Prover supplies the 𝑢-coordinate.

Let 𝑢 ◦
◦ F𝑟S

.

// section A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’ on page 205.

Check that (𝑢, v) is a point on the ctEdwards curve.

// section A.3.2.1 ‘[Un]packing modulo 𝑟S’ on page 202.

Unpack 𝑢 to
∑︀254

𝑖=0
𝑢𝑖 · 2

𝑖, equating 𝑢̃ with 𝑢0.

// section A.3.2.2 ‘Range check’ on page 203.

Check that
∑︀254

𝑖=0
𝑢𝑖 · 2

𝑖 ≤ 𝑟S − 1.

Return (𝑢, v).

This costs 4 constraints for the curve equation check, 1 constraint for the unpacking, and 387 constraints for the
range check (as computed in section A.3.2.2 ‘Range check’ on page 203) for a total of 392 constraints. The cost of the range
check includes boolean-constraining 𝑢0 .. 254.

The same quadratic constraint program is used for compression and decompression.

Non-normative note: The point-on-curve check could be omitted if (𝑢, v) were already known to be on the curve.
However, the Sapling circuit never omits it; this provides a consistency check on the elliptic curve arithmetic.

A.3.3.3 ctEdwards↔Montgomery conversion #cctconversion

De�ne the notation +√
∙ as in section 2 ‘Notation’ on page 10.

De�ne CtEdwardsToMont ◦
◦ AffineCtEdwardsJubjub→ AffineMontJubjub as follows:

CtEdwardsToMont(𝑢, v) =
(︁

1 + v
1− v

, +√−40964 · 1 + v
(1− v) · 𝑢

)︁
[1− v ̸= 0 and 𝑢 ̸= 0]

De�ne MontToCtEdwards ◦
◦ AffineMontJubjub→ AffineCtEdwardsJubjub as follows:

MontToCtEdwards(𝑥, 𝑦) =
(︁

+√−40964 · 𝑥

𝑦
,

𝑥− 1
𝑥 + 1

)︁
[𝑥 + 1 ̸= 0 and 𝑦 ̸= 0]

205

https://zips.z.cash/protocol/protocol.pdf#cctelliptic
https://zips.z.cash/protocol/protocol.pdf#cctedvalidate
https://zips.z.cash/protocol/protocol.pdf#ccteddecompressvalidate
https://zips.z.cash/protocol/protocol.pdf#cctconversion

Either of these conversions can be implemented by the same quadratic constraint program:(︀
𝑦
)︀ (︀

𝑢
)︀

=
(︁

+√−40964 · 𝑥
)︁

(︀
𝑥 + 1

)︀ (︀
v
)︀

=
(︀
𝑥− 1

)︀
The above conversions should only be used if the input is guaranteed to be a point on the relevant curve. If that is
the case, the theorems below enumerate all exceptional inputs that may violate the side-conditions.

Theorem A.3.2. Exceptional points (ctEdwards→Montgomery). #thmconversiontomontnoexcept

Let (𝑢, v) be an af�ne point on a ctEdwards curve 𝐸ctEdwards(𝑎,𝑑). Then the only points with 𝑢 = 0 or 1− v = 0 are
(0, 1) = 𝒪J, and (0,−1) of order 2.

Proof. The curve equation is 𝑎·𝑢2 + v2 = 1 + 𝑑·𝑢2 ·v2 with 𝑎 ̸= 𝑑 (see [BBJLP2008, De�nition 2.1]). By substituting
𝑢 = 0 we obtain v = ±1, and by substituting v = 1 and using 𝑎 ̸= 𝑑 we obtain 𝑢 = 0.

Theorem A.3.3. Exceptional points (Montgomery→ ctEdwards). #thmconversiontoedwardsnoexcept

Let (𝑥, 𝑦) be an af�ne point on a Montgomery curve 𝐸Mont(𝐴,𝐵) over F𝑟 with parameters 𝐴 and 𝐵 such that 𝐴2 − 4 is
a nonsquare in F𝑟 , that is birationally equivalent to a ctEdwards curve. Then 𝑥 + 1 ̸= 0, and the only point (𝑥, 𝑦)
with 𝑦 = 0 is (0, 0) of order 2.

Proof. That the only point with 𝑦 = 0 is (0, 0) is proven by Theorem A.2.1 on page 201.

If 𝑥+1 = 0, then subtituting 𝑥 = −1 into the Montgomery curve equation gives 𝐵 ·𝑦2 = 𝑥3 +𝐴 ·𝑥2 +𝑥 = 𝐴−2. So in
that case 𝑦2 = (𝐴−2)/𝐵. The right-hand-side is equal to the parameter 𝑑 of a particular ctEdwards curve birationally
equivalent to the Montgomery curve (see [BL2017, section 4.3.5]). For all ctEdwards curves, 𝑑 is nonsquare, so this
equation has no solutions for 𝑦, hence 𝑥 + 1 ̸= 0.

(When the theorem is applied with 𝐸Mont(𝐴,𝐵) = M de�ned in section A.2 ‘Elliptic curve background’ on page 200, the
ctEdwards curve referred to in the proof is an isomorphic rescaling of the Jubjub curve.)

A.3.3.4 Af�ne-Montgomery arithmetic #cctmontarithmetic

The incomplete af�ne-Montgomery addition formulae given in [BL2017, section 4.3.2] are:

𝑥3 = 𝐵M ·𝜆
2 −𝐴M − 𝑥1 − 𝑥2

𝑦3 = (𝑥1 − 𝑥3)·𝜆− 𝑦1

where 𝜆 =

⎧⎪⎨⎪⎩
3·𝑥2

1 + 2·𝐴M ·𝑥1 + 1
2·𝐵M ·𝑦1

, if 𝑥1 = 𝑥2

𝑦2 − 𝑦1
𝑥2 − 𝑥1

, otherwise.

The following theorem helps to determine when these incomplete addition formulae can be safely used:

Theorem A.3.4. Distinct-𝑥 theorem. #thmdistinctx

Let 𝑄 be a point of odd-prime order 𝑠 on a Montgomery curve M = 𝐸Mont(𝐴M,𝐵M) over F𝑟S
. Let 𝑘1 .. 2 be integers

in
{︀
− 𝑠−1

2 .. 𝑠−1
2
}︀
∖ {0}. Let 𝑃𝑖 = [𝑘𝑖] 𝑄 = (𝑥𝑖, 𝑦𝑖) for 𝑖 ∈ {1 .. 2}, with 𝑘2 ̸= ±𝑘1. Then the non-uni�ed addition

constraints(︀
𝑥2 − 𝑥1

)︀ (︀
𝜆
)︀

=
(︀
𝑦2 − 𝑦1

)︀(︀
𝐵M ·𝜆

)︀ (︀
𝜆
)︀

=
(︀
𝐴M + 𝑥1 + 𝑥2 + 𝑥3

)︀(︀
𝑥1 − 𝑥3

)︀ (︀
𝜆
)︀

=
(︀
𝑦3 + 𝑦1

)︀
implement the af�ne-Montgomery addition 𝑃1 + 𝑃2 = (𝑥3, 𝑦3) for all such 𝑃1 .. 2.

206

https://zips.z.cash/protocol/protocol.pdf#thmconversiontomontnoexcept
https://zips.z.cash/protocol/protocol.pdf#thmconversiontoedwardsnoexcept
https://zips.z.cash/protocol/protocol.pdf#cctmontarithmetic
https://zips.z.cash/protocol/protocol.pdf#thmdistinctx

Proof. The given constraints are equivalent to the Montgomery addition formulae under the side condition that
𝑥1 ̸= 𝑥2. (Note that neither 𝑃𝑖 can be the zero point since 𝑘1 .. 2 ̸= 0 (mod 𝑠).) Assume for a contradiction that
𝑥1 = 𝑥2. For any 𝑃1 = [𝑘1] 𝑄, there can be only one other point −𝑃1 with the same 𝑥-coordinate. (This follows
from the fact that the curve equation determines ±𝑦 as a function of 𝑥.) But −𝑃1 = [−1] [𝑘1] 𝑄 = [−𝑘1] 𝑄. Since
𝑘 ◦

◦

{︀
− 𝑠−1

2 .. 𝑠−1
2
}︀
↦→ [𝑘] 𝑄 ◦

◦ M is injective and 𝑘1 .. 2 are in
{︀
− 𝑠−1

2 .. 𝑠−1
2
}︀

, then 𝑘2 = ±𝑘1 (contradiction).

The conditions of this theorem are called the distinct-𝑥 criterion.

In particular, if 𝑘1 .. 2 are integers in
{︀

1 .. 𝑠−1
2
}︀

then it is suf�cient to require 𝑘2 ̸= 𝑘1, since that implies 𝑘2 ̸= ±𝑘1.

Af�ne-Montgomery doubling can be implemented as:(︀
𝑥
)︀ (︀

𝑥
)︀

=
(︀
𝑥𝑥
)︀(︀

2·𝐵M ·𝑦
)︀ (︀

𝜆
)︀

=
(︀
3·𝑥𝑥 + 2·𝐴M ·𝑥 + 1

)︀(︀
𝐵M ·𝜆

)︀ (︀
𝜆
)︀

=
(︀
𝐴M + 2·𝑥 + 𝑥3

)︀(︀
𝑥− 𝑥3

)︀ (︀
𝜆
)︀

=
(︀
𝑦3 + 𝑦

)︀
This doubling formula is valid when 𝑦 ̸= 0, which is the case when (𝑥, 𝑦) is not the point (0, 0) (the only point of
order 2), as proven in Theorem A.2.1 on page 201.

A.3.3.5 Af�ne-ctEdwards arithmetic #cctedarithmetic

Formulae for af�ne-ctEdwards addition are given in [BBJLP2008, section 6]. With a change of variable names to
match our convention, the formulae for (𝑢1, v1) + (𝑢2, v2) = (𝑢3, v3) are:

𝑢3 =
𝑢1 ·v2 + v1 ·𝑢2

1 + 𝑑J ·𝑢1 ·𝑢2 ·v1 ·v2

v3 =
v1 ·v2 − 𝑎J ·𝑢1 ·𝑢2

1− 𝑑J ·𝑢1 ·𝑢2 ·v1 ·v2

We use an optimized implementation found by Daira-Emma Hopwood making use of an observation by Bernstein
and Lange in [BL2017, last paragraph of section 4.5.2]:(︀

𝑢1 + v1
)︀ (︀

v2 − 𝑎J ·𝑢2
)︀

=
(︀
𝑇
)︀(︀

𝑢1
)︀ (︀

v2
)︀

=
(︀
𝐴
)︀(︀

v1
)︀ (︀

𝑢2
)︀

=
(︀
𝐵
)︀(︀

𝑑J ·𝐴
)︀ (︀

𝐵
)︀

=
(︀
𝐶
)︀(︀

1 + 𝐶
)︀ (︀

𝑢3
)︀

=
(︀
𝐴 + 𝐵

)︀(︀
1− 𝐶

)︀ (︀
v3
)︀

=
(︀
𝑇 −𝐴 + 𝑎J ·𝐵

)︀
The correctness of this implementation can be seen by expanding 𝑇 −𝐴 + 𝑎J ·𝐵:

𝑇 −𝐴 + 𝑎J ·𝐵 = (𝑢1 + v1) · (v2 − 𝑎J ·𝑢2)− 𝑢1 ·v2 + 𝑎J ·v1 ·𝑢2

= v1 ·v2 − 𝑎J ·𝑢1 ·𝑢2 + 𝑢1 ·v2 − 𝑎J ·v1 ·𝑢2 − 𝑢1 ·v2 + 𝑎J ·v1 ·𝑢2

= v1 ·v2 − 𝑎J ·𝑢1 ·𝑢2

207

https://zips.z.cash/protocol/protocol.pdf#cctedarithmetic

The above addition formulae are “uni�ed”, that is, they can also be used for doubling. Af�ne-ctEdwards doubling
[2] (𝑢, v) = (𝑢3, v3) can also be implemented slightly more ef�ciently as:(︀

𝑢 + v
)︀ (︀

v− 𝑎J ·𝑢
)︀

=
(︀
𝑇
)︀(︀

𝑢
)︀ (︀

v
)︀

=
(︀
𝐴
)︀(︀

𝑑J ·𝐴
)︀ (︀

𝐴
)︀

=
(︀
𝐶
)︀(︀

1 + 𝐶
)︀ (︀

𝑢3
)︀

=
(︀
2·𝐴

)︀(︀
1− 𝐶

)︀ (︀
v3
)︀

=
(︀
𝑇 + (𝑎J − 1)·𝐴

)︀
This implementation is obtained by specializing the addition formulae to (𝑢, v) = (𝑢1, v1) = (𝑢2, v2) and observing
that 𝑢 · v = 𝐴 = 𝐵.

A.3.3.6 Af�ne-ctEdwards nonsmall-order check #cctednonsmallorder

In order to avoid small-subgroup attacks, we check that certain points used in the circuit are not of small order. In
practice the Sapling circuit uses this in combination with a check that the coordinates are on the curve (section A.3.3.1
‘Checking that Affine-ctEdwards coordinates are on the curve’ on page 205), so we combine the two operations.

The Jubjub curve has a large prime-order subgroup with a cofactor of 8. To check for a point 𝑃 of order 8 or less,
the Sapling circuit doubles three times (as in section A.3.3.5 ‘Affine-ctEdwards arithmetic’ on page 207) and checks that
the resulting 𝑢-coordinate is not 0 (as in section A.3.1.4 ‘Nonzero constraints’ on page 202).

On a ctEdwards curve , only the zero point 𝒪J, and the unique point of order 2 at (0,−1) have zero 𝑢-coordinate.
The point of order 2 cannot occur as the result of three doublings. So this 𝑢-coordinate check rejects only𝒪J.

The total cost, including the curve check, is 4 + 3 · 5 + 1 = 20 constraints.

Note: This does not ensure that the point is in the prime-order subgroup.

Non-normative notes:

• It would have been suf�cient to do two doublings rather than three, because the check that the 𝑢-coordinate
is nonzero would reject both 𝒪J and the point of order 2.

• It is possible to reduce the cost to 8 constraints by eliminating the redundant constraint in the curve point
check (as mentioned in section A.3.3.1 ‘Checking that Affine-ctEdwards coordinates are on the curve’ on page 205);
merging the �rst doubling with the curve point check; and then optimizing the second doubling based on the
fact that we only need to check whether the resulting 𝑢-coordinate is zero. The Sapling circuit does not use
these optimizations.

A.3.3.7 Fixed-base Af�ne-ctEdwards scalar multiplication #cct�xedscalarmult

If the base point 𝐵 is �xed for a given scalar multiplication [𝑘] 𝐵, we can fully precompute window tables for each
window position.

It is most ef�cient to use 3-bit �xed windows. Since the length of 𝑟J is 252 bits, we need 84 windows.

Express 𝑘 in base 8, i.e. 𝑘 =
83∑︁

𝑖=0
𝑘𝑖 ·8

𝑖.

Then [𝑘] 𝐵 =
83∑︁

𝑖=0
𝑤(𝐵, 𝑖, 𝑘𝑖), where 𝑤(𝐵, 𝑖, 𝑘𝑖) = [𝑘𝑖 ·8

𝑖] 𝐵.

We precompute all of 𝑤(𝐵, 𝑖, 𝑠) for 𝑖 ∈ {0 .. 83}, 𝑠 ∈ {0 .. 7}.

208

https://zips.z.cash/protocol/protocol.pdf#cctednonsmallorder
https://zips.z.cash/protocol/protocol.pdf#cctfixedscalarmult

To look up a given window entry 𝑤(𝐵, 𝑖, 𝑠) = (𝑢𝑠, v𝑠), where 𝑠 = 4·𝑠2 + 2·𝑠1 + 𝑠0, we use:(︀
𝑠1
)︀ (︀

𝑠2
)︀

=
(︀
𝑠
î

)︀(︀
𝑠0
)︀ (︀

− 𝑢0 ·𝑠î + 𝑢0 ·𝑠2 + 𝑢0 ·𝑠1 − 𝑢0 + 𝑢2 ·𝑠î− 𝑢2 ·𝑠1 + 𝑢4 ·𝑠î− 𝑢4 ·𝑠2 − 𝑢6 ·𝑠î
+ 𝑢1 ·𝑠î− 𝑢1 ·𝑠2 − 𝑢1 ·𝑠1 + 𝑢1 − 𝑢3 ·𝑠î + 𝑢3 ·𝑠1 − 𝑢5 ·𝑠î + 𝑢5 ·𝑠2 + 𝑢7 ·𝑠î

)︀
=(︀

𝑢𝑠 − 𝑢0 ·𝑠î + 𝑢0 ·𝑠2 + 𝑢0 ·𝑠1 − 𝑢0 + 𝑢2 ·𝑠î− 𝑢2 ·𝑠1 + 𝑢4 ·𝑠î− 𝑢4 ·𝑠2 − 𝑢6 ·𝑠î
)︀(︀

𝑠0
)︀ (︀

− v0 ·𝑠î + v0 ·𝑠2 + v0 ·𝑠1 − v0 + v2 ·𝑠î− v2 ·𝑠1 + v4 ·𝑠î− v4 ·𝑠2 − v6 ·𝑠î
+ v1 ·𝑠î− v1 ·𝑠2 − v1 ·𝑠1 + v1 − v3 ·𝑠î + v3 ·𝑠1 − v5 ·𝑠î + v5 ·𝑠2 + v7 ·𝑠î

)︀
=(︀

v𝑠 − v0 ·𝑠î + v0 ·𝑠2 + v0 ·𝑠1 − v0 + v2 ·𝑠î− v2 ·𝑠1 + v4 ·𝑠î− v4 ·𝑠2 − v6 ·𝑠î
)︀

For a full-length (252-bit) scalar this costs 3 constraints for each of 84 window lookups, plus 6 constraints for each
of 83 ctEdwards additions (as in section A.3.3.5 ‘Affine-ctEdwards arithmetic’ on page 207), for a total of 750 constraints.

Fixed-base scalar multiplication is also used in two places with shorter scalars:

• section A.3.6 ‘Homomorphic Pedersen Commitment’ on page 213 uses 64 bits for the v input to ValueCommitSapling, re-
quiring 22 windows at a cost of 3·22− 1 + 6·21 = 191 constraints;

• section A.3.3.10 ‘Mixing Pedersen hash’ on page 212 uses 32 bits for the pos input to MixingPedersenHash, requiring 11
windows at a cost of 3·11− 1 + 6·10 = 92 constraints.

None of these costs include the cost of boolean-constraining the scalar.

Non-normative notes:
• It would be more ef�cient to use arithmetic on the Montgomery curve , as in section A.3.3.9 ‘Pedersen hash’ on

page 210. However since there are only three instances of �xed-base scalar multiplication in the Spend circuit
and two in the Output circuit 15, the additional complexity was not considered justi�ed for Sapling.

• For the multiplications with 64-bit and 32-bit scalars, the scalar is padded to a multiple of 3 bits with zeros.
This causes the computation of 𝑠

î
in the lookup for the most signi�cant window to be optimized out, which

is where the “− 1” comes from in the above cost calculations. No further optimization is done for this lookup.

A.3.3.8 Variable-base Af�ne-ctEdwards scalar multiplication #cctvarscalarmult

When the base point 𝐵 is not �xed, the method in the preceding section cannot be used. Instead we use a naïve
double-and-add method.

Given 𝑘 =
∑︀250

𝑖=0
𝑘𝑖 ·2

𝑖, we calculate 𝑅 = [𝑘] 𝐵 using:

// Base𝑖 = [2𝑖] 𝐵

let Base0 = 𝐵

let Acc𝑢
0 = 𝑘0 ? Base𝑢

0 : 0
let Accv

0 = 𝑘0 ? Basev
0 : 1

for 𝑖 from 1 up to 250:
let Base𝑖 = [2] Base𝑖−1

// select Base𝑖 or𝒪J depending on the bit 𝑘𝑖

let Addend𝑢
𝑖 = 𝑘𝑖 ? Base𝑢

𝑖 : 0
let Addendv

𝑖 = 𝑘𝑖 ? Basev
𝑖 : 1

let Acc𝑖 = Acc𝑖−1 + Addend𝑖

let 𝑅 = Acc250.

This costs 5 constraints for each of 250 ctEdwards doublings, 6 constraints for each of 250 ctEdwards additions, and
2 constraints for each of 251 point selections, for a total of 3252 constraints.

15A Pedersen commitment uses �xed-base scalar multiplication as a subcomponent.

209

https://zips.z.cash/protocol/protocol.pdf#cctvarscalarmult

Non-normative note: It would be more ef�cient to use 2-bit �xed windows, and/or to use arithmetic on the
Montgomery curve in a similar way to section A.3.3.9 ‘Pedersen hash’ on page 210. However since there are only two
instances of variable-base scalar multiplication in the Spend circuit and one in the Output circuit , the additional
complexity was not considered justi�ed for Sapling.

A.3.3.9 Pedersen hash #cctpedersenhash

The speci�cation of the Pedersen hashes used in Sapling is given in section 5.4.1.7 ‘Pedersen Hash Function’ on page 79. It is
based on the scheme from [CvHP1991, section 5.2] –for which a tighter security reduction to the Discrete Logarithm
Problem was given in [BGG1995]– but tailored to allow several optimizations in the circuit implementation.

Pedersen hashes are the single most commonly used primitive in the Sapling circuits. MerkleDepthSapling Pedersen
hash instances are used in the Spend circuit to check a Merkle path to the note commitment of the note being spent.
We also reuse the Pedersen hash implementation to construct the note commitment scheme NoteCommitSapling.

This motivates considerable attention to optimizing this circuit implementation of this primitive, even at the cost of
complexity.

First, we use a windowed scalar multiplication algorithm with signed digits. Each 3-bit message chunk corresponds
to a window; the chunk is encoded as an integer from the set Digits = {−4 .. 4} ∖ {0}. This allows a more ef�cient
lookup of the window entry for each chunk than if the set {1 .. 8} had been used, because a point can be conditionally
negated using only a single constraint.

Next, we optimize the cost of point addition by allowing as many additions as possible to be performed on the
Montgomery curve. An incomplete Montgomery addition costs 3 constraints, in comparison with a ctEdwards
addition which costs 6 constraints.

However, we cannot do all additions on the Montgomery curve because the Montgomery addition is incomplete. In
order to be able to prove that exceptional cases do not occur, we need to ensure that the distinct-𝑥 criterion from
section A.3.3.4 ‘Affine-Montgomery arithmetic’ on page 206 is met. This requires splitting the input into segments (each
using an independent generator), calculating an intermediate result for each segment, and then converting to the
ctEdwards curve and summing the intermediate results using ctEdwards addition.

Abstracting away the changes of curve, this calculation can be written as:

PedersenHashToPoint(𝐷, 𝑀) =
𝑁∑︁

𝑗=1
[⟨𝑀𝑗⟩] ℐ(𝐷, 𝑗)

where ⟨∙⟩ and ℐ(𝐷, 𝑗) are de�ned as in section 5.4.1.7 ‘Pedersen Hash Function’ on page 79.

We have to prove that:

• the Montgomery-to-ctEdwards conversions can be implemented without exceptional cases;

• the distinct-𝑥 criterion is met for all Montgomery additions within a segment.

The proof of Theorem 5.4.1 on page 80 showed that all indices of addition inputs are in the range
{︀
− 𝑟J−1

2 ..
𝑟J−1

2
}︀
∖ {0}.

Because the ℐ(𝐷, 𝑗) (which are outputs of GroupHashJ(𝑟)*

) are all of prime order, and ⟨𝑀𝑗⟩ ≠ 0 (mod 𝑟J), it is
guaranteed that all of the terms [⟨𝑀𝑗⟩] ℐ(𝐷, 𝑗) to be converted to ctEdwards form are of prime order. From
Theorem A.3.3 on page 206, we can infer that the conversions will not encounter exceptional cases.

We also need to show that the indices of addition inputs are all distinct disregarding sign.

210

https://zips.z.cash/protocol/protocol.pdf#cctpedersenhash

Theorem A.3.5. Concerning addition inputs in the Pedersen circuit. #thmpedersendistinctabsindices

For all disjoint nonempty subsets 𝑆 and 𝑆′ of {1 .. 𝑐}, all 𝑚 ∈ B[3][𝑐], and all Θ ∈ {−1, 1}:∑︁
𝑗∈𝑆

enc(𝑚𝑗) · 24·(𝑗−1) ̸= Θ ·
∑︁

𝑗
′∈𝑆

′
enc(𝑚𝑗

′) · 24·(𝑗
′−1).

Proof. Suppose for a contradiction that 𝑆, 𝑆′, 𝑚, Θ is a counterexample. Taking the multiplication by Θ on the right
hand side inside the summation, we have:∑︁

𝑗∈𝑆

enc(𝑚𝑗) · 24·(𝑗−1) =
∑︁

𝑗
′∈𝑆

′
Θ · enc(𝑚𝑗

′) · 24·(𝑗
′−1).

De�ne enc′ ◦
◦ {−1, 1} × B[3] → {0 .. 8} ∖ {4} as enc′

𝜃(𝑚𝑖) := 4 + 𝜃 · enc(𝑚𝑖).

Let Δ = 4 ·
∑︀𝑐

𝑖=1
24·(𝑖−1) as in the proof of Theorem 5.4.1 on page 80. By adding Δ to both sides, we get∑︁

𝑗∈𝑆

enc′
1(𝑚𝑗) · 24·(𝑗−1) +

∑︁
𝑗∈{1 .. 𝑐}∖𝑆

4 · 24·(𝑗−1) =
∑︁

𝑗
′∈𝑆

′
enc′

Θ(𝑚𝑗
′) · 24·(𝑗

′−1) +
∑︁

𝑗
′∈{1 .. 𝑐}∖𝑆

′
4 · 24·(𝑗

′−1)

where all of the enc′
1(𝑚𝑗) and enc′

Θ(𝑚𝑗
′) are in {0 .. 8} ∖ {4}.

Each term on the left and on the right affects the single hex digit indexed by 𝑗 and 𝑗′ respectively. Since 𝑆 and 𝑆′

are disjoint subsets of {1 .. 𝑐} and 𝑆 is nonempty, 𝑆 ∩ ({1 .. 𝑐} ∖ 𝑆′) is nonempty. Therefore the left hand side has at
least one hex digit not equal to 4 such that the corresponding right hand side digit is 4; contradiction.

This implies that the terms in the Montgomery addition –as well as any intermediate results formed from adding a
distinct subset of terms– have distinct indices disregarding sign, hence distinct 𝑥-coordinates by Theorem A.3.4 on
page 206. (We make no assumption about the order of additions.)

We now describe the subcircuit used to process each chunk, which contributes most of the constraint cost of the
hash. This subcircuit is used to perform a lookup of a Montgomery point in a 2-bit window table, conditionally
negate the result, and add it to an accumulator holding another Montgomery point.

Suppose that the bits of the chunk, [𝑠0, 𝑠1, 𝑠2], are already boolean-constrained.

We aim to compute 𝐶 = 𝐴 + [(1− 2 · 𝑠2) · (1 + 𝑠0 + 2 · 𝑠1)] 𝑃 for some �xed base point 𝑃 and accumulated sum 𝐴.

We �rst compute 𝑠
î

= 𝑠0 î 𝑠1:(︀
𝑠0
)︀ (︀

𝑠1
)︀

=
(︀
𝑠
î

)︀
Let (𝑥𝑘, 𝑦𝑘) = [𝑘] 𝑃 for 𝑘 ∈ {1 .. 4}. De�ne each coordinate of (𝑥𝑆 , 𝑦𝑅) = [1 + 𝑠0 + 2 · 𝑠1] 𝑃 as a linear combination
of 𝑠0, 𝑠1, and 𝑠

î
:

let 𝑥𝑆 = 𝑥1 + (𝑥2 − 𝑥1) · 𝑠0 + (𝑥3 − 𝑥1) · 𝑠1 + (𝑥4 + 𝑥1 − 𝑥2 − 𝑥3) · 𝑠
î

let 𝑦𝑅 = 𝑦1 + (𝑦2 − 𝑦1) · 𝑠0 + (𝑦3 − 𝑦1) · 𝑠1 + (𝑦4 + 𝑦1 − 𝑦2 − 𝑦3) · 𝑠
î

We implement the conditional negation as
(︀
2 · 𝑦𝑅

)︀ (︀
𝑠2
)︀

=
(︀
𝑦𝑅 − 𝑦𝑆

)︀
. After substitution of 𝑦𝑅 this becomes:(︀

2 · (𝑦1 + (𝑦2 − 𝑦1) · 𝑠0 + (𝑦3 − 𝑦1) · 𝑠1 + (𝑦4 + 𝑦1 − 𝑦2 − 𝑦3) · 𝑠
î
)
)︀ (︀

𝑠2
)︀

=(︀
𝑦1 + (𝑦2 − 𝑦1) · 𝑠0 + (𝑦3 − 𝑦1) · 𝑠1 + (𝑦4 + 𝑦1 − 𝑦2 − 𝑦3) · 𝑠

î
− 𝑦𝑆

)︀

211

https://zips.z.cash/protocol/protocol.pdf#thmpedersendistinctabsindices

Then we substitute 𝑥𝑆 into the Montgomery addition constraints from section A.3.3.4 ‘Affine-Montgomery arithmetic’
on page 206, as follows:(︀

𝑥1 + (𝑥2 − 𝑥1) · 𝑠0 + (𝑥3 − 𝑥1) · 𝑠1 + (𝑥4 + 𝑥1 − 𝑥2 − 𝑥3) · 𝑠
î
− 𝑥𝐴

)︀ (︀
𝜆
)︀

=
(︀
𝑦𝑆 − 𝑦𝐴

)︀(︀
𝐵M ·𝜆

)︀ (︀
𝜆
)︀

=
(︀
𝐴M + 𝑥𝐴 + 𝑥1 + (𝑥2 − 𝑥1) · 𝑠0 + (𝑥3 − 𝑥1) · 𝑠1 + (𝑥4 + 𝑥1 − 𝑥2 − 𝑥3) · 𝑠

î
+ 𝑥𝐶

)︀(︀
𝑥𝐴 − 𝑥𝐶

)︀ (︀
𝜆
)︀

=
(︀
𝑦𝐶 + 𝑦𝐴

)︀
(In the sapling-crypto implementation, linear combinations are �rst-class values, so these substitutions do not
need to be done “by hand”.)

For the �rst addition in each segment, both sides are looked up and substituted into the Montgomery addition, so
the �rst lookup takes only 2 constraints.

When these hashes are used in the circuit, the �rst 6 bits of the input are �xed. For example, in the Merkle tree
hashes they represent the layer number. This would allow a precomputation for the �rst two windows, but that
optimization is not done in Sapling.

The cost of a Pedersen hash over ℓ bits (where ℓ includes the �xed bits) is as follows. The number of chunks is
𝑐 = ceiling

(︁
ℓ

3

)︁
and the number of segments is 𝑛 = ceiling

(︁
ℓ

3 · 63

)︁
.

The cost is then:

• 2·𝑐 constraints for the lookups;

• 3·(𝑐− 𝑛) constraints for incomplete additions on the Montgomery curve;

• 2·𝑛 constraints for Montgomery-to-ctEdwards conversions;

• 6·(𝑛− 1) constraints for ctEdwards additions;

for a total of 5·𝑐 + 5·𝑛− 6 constraints. This does not include the cost of boolean-constraining inputs.

In particular,

• for the Merkle tree hashes ℓ = 516, so 𝑐 = 172, 𝑛 = 3, and the cost is 869 constraints;

• when a Pedersen hash is used to implement part of a Pedersen commitment for NoteCommitSapling (section 5.4.8.2
‘Windowed Pedersen commitments’ on page 96), ℓ = 6 + ℓvalue + 2·ℓJ = 582, 𝑐 = 194, and 𝑛 = 4, so the cost of the
hash alone is 984 constraints.

A.3.3.10 Mixing Pedersen hash #cctmixinghash

A mixing Pedersen hash is used to compute ρ from cm and pos in section 4.16 ‘Computing ρ values and Nullifiers’ on
page 57. It takes as input a Pedersen commitment 𝑃 , and hashes it with another input 𝑥.

Let 𝒥 Sapling be as de�ned in section 5.4.1.8 ‘Mixing Pedersen Hash Function’ on page 81.

We de�ne MixingPedersenHash ◦
◦ {0 .. 𝑟J − 1} × J→ J by:

MixingPedersenHash(𝑃, 𝑥) := 𝑃 + [𝑥]𝒥 Sapling.

This costs 92 constraints for a scalar multiplication (section A.3.3.7 ‘Fixed-base Affine-ctEdwards scalar multiplication’
on page 208), and 6 constraints for a ctEdwards addition (section A.3.3.5 ‘Affine-ctEdwards arithmetic’ on page 207), for a total
of 98 constraints.

212

https://zips.z.cash/protocol/protocol.pdf#cctmixinghash

A.3.4 Merkle path check #cctmerklepath

Checking each layer of a Merkle authentication path, as described in section 4.9 ‘Merkle Path Validity’ on page 49, requires
to:

• boolean-constrain the path bit specifying whether the previous node is a left or right child;

• conditionally swap the previous-layer and sibling hashes (as F𝑟 elements) depending on the path bit;

• unpack the left and right hash inputs to two sequences of 255 bits;

• compute the Merkle hash for this node.

The unpacking need not be canonical in the sense discussed in section A.3.2.1 ‘[Un]packing modulo 𝑟S’ on page 202; that
is, it is not necessary to ensure that the left or right inputs to the hash represent integers in the range {0 .. 𝑟S − 1}.
Since the root of the Merkle tree is calculated outside the circuit using the canonical representations, and since the
Pedersen hashes are collision-resistant on arbitrary bit-sequence inputs, an attempt by an adversarial prover to
use a non-canonical input would result in the wrong root being calculated, and the overall path check would fail.

For each layer, the cost is 1 + 2·255 boolean constraints, 2 constraints for the conditional swap (implemented as two
selection constraints), and 869 constraints for the Merkle hash (section A.3.3.9 ‘Pedersen hash’ on page 210), for a total of
1380 constraints.

Non-normative note: The conditional swap (𝑎0, 𝑎1) ↦→ (𝑐0, 𝑐1) could be implemented in only one constraint by
substituting 𝑐1 = 𝑎0 + 𝑎1 − 𝑐0 into the uses of 𝑐1. The Sapling circuit does not use this optimization.

A.3.5 Windowed Pedersen Commitment #cctwindowedcommit

We construct windowed Pedersen commitments by reusing the Pedersen hash implementation described in
section A.3.3.9 ‘Pedersen hash’ on page 210, and adding a randomized point:

WindowedPedersenCommit𝑟(𝑠) = PedersenHashToPoint(“Zcash_PH”, 𝑠) + [𝑟] FindGroupHashJ(𝑟)*

(“Zcash_PH”, “r”)

This can be implemented in:

• 5·𝑐 + 5·𝑛 − 6 constraints for the Pedersen hash applied to ℓ = 6 + length(𝑠) bits, where 𝑐 = ceiling
(︁

ℓ

3

)︁
and

𝑛 = ceiling
(︁

ℓ

3 · 63

)︁
;

• 750 constraints for the �xed-base scalar multiplication;

• 6 constraints for the �nal ctEdwards addition.

When WindowedPedersenCommit is used to instantiate NoteCommitSapling, the cost of the Pedersen hash is 984 con-
straints as calculated in section A.3.3.9 ‘Pedersen hash’ on page 210, and so the total cost in that case is 1740 constraints. This
does not include the cost of boolean-constraining the input 𝑠 or the randomness 𝑟.

A.3.6 Homomorphic Pedersen Commitment #ccthomomorphiccommit

The windowed Pedersen commitments de�ned in the preceding section are highly ef�cient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

In order to support this property, we also de�ne homomorphic Pedersen commitments as follows:

HomomorphicPedersenCommitSapling
rcv (𝐷, v) = [v] FindGroupHashJ(𝑟)*

(𝐷, “v”) + [rcv] FindGroupHashJ(𝑟)*

(𝐷, “r”)

213

https://zips.z.cash/protocol/protocol.pdf#cctmerklepath
https://zips.z.cash/protocol/protocol.pdf#cctwindowedcommit
https://zips.z.cash/protocol/protocol.pdf#ccthomomorphiccommit

In the case that we need for ValueCommit, v has 64 bits16. This value is given as a bit representation, which does not
need to be constrained equal to an integer.

ValueCommit can be implemented in:

• 750 constraints for the 252-bit �xed-base multiplication by rcv;

• 191 constraints for the 64-bit �xed-base multiplication by v;

• 6 constraints for the ctEdwards addition

for a total cost of 947 constraints. This does not include the cost to boolean-constrain the input v or randomness
rcv.

A.3.7 BLAKE2s hashes #cctblake2s

BLAKE2s is de�ned in [ANWW2013]. Its main subcomponent is a “𝐺 function”, de�ned as follows:

𝐺 ◦
◦ {0 .. 9} × {0 .. 232−1}[4] → {0 .. 232−1}[4]

𝐺(𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) = (𝑎′′, 𝑏′′, 𝑐′′, 𝑑′′) where

𝑎′ = (𝑎 + 𝑏 + 𝑥) mod 232

𝑑′ = (𝑑⊕ 𝑎′)≫ 16
𝑐′ = (𝑐 + 𝑑′) mod 232

𝑏′ = (𝑏⊕ 𝑐′)≫ 12
𝑎′′ = (𝑎′ + 𝑏′ + 𝑦) mod 232

𝑑′′ = (𝑑′ ⊕ 𝑎′′)≫ 8
𝑐′′ = (𝑐′ + 𝑑′′) mod 232

𝑏′′ = (𝑏′ ⊕ 𝑐′′)≫ 7

The following table is used to determine which message words the 𝑥 and 𝑦 arguments to 𝐺 are selected from:

𝜎0 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
𝜎1 = [14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3]
𝜎2 = [11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4]
𝜎3 = [7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8]
𝜎4 = [9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13]
𝜎5 = [2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9]
𝜎6 = [12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11]
𝜎7 = [13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10]
𝜎8 = [6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5]
𝜎9 = [10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]

The Initialization Vector is de�ned as:

IV ◦
◦ {0 .. 232−1}[8] := [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A

0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19]

16It would be suf�cient to use 51 bits, which accomodates the range {0 .. MAX_MONEY}, but the Sapling circuit uses 64.

214

https://zips.z.cash/protocol/protocol.pdf#cctblake2s

The full hash function applied to an 8-byte personalization string and a single 64-byte block, in sequential mode
with 32-byte output, can be expressed as follows.

De�ne BLAKE2s-256 ◦
◦ (𝑝 ◦

◦ BY[8])× (𝑥 ◦
◦ BY[64])→ BY[32] as:

let PB ◦
◦ BY[32] = [32, 0, 1, 1] || [0x00]20 || 𝑝

let [𝑡0, 𝑡1, 𝑓0, 𝑓1] ◦
◦ {0 .. 232−1}[4] = [0, 0, 0, 0xFFFFFFFF, 0]

let ℎ ◦
◦ {0 .. 232−1}[8] = [LEOS2IP32(PB4·𝑖 .. 4·𝑖 + 3)⊕ IV𝑖 for 𝑖 from 0 up to 7]

let 𝑚 ◦
◦ {0 .. 232−1}[16] = [LEOS2IP32(𝑥4·𝑖 .. 4·𝑖 + 3) for 𝑖 from 0 up to 15]

let mutable 𝑣 ◦
◦ {0 .. 232−1}[16] ← ℎ || [IV0, IV1, IV2, IV3, 𝑡0 ⊕ IV4, 𝑡1 ⊕ IV5, 𝑓0 ⊕ IV6, 𝑓1 ⊕ IV7]

for 𝑟 from 0 up to 9:
set (𝑣0, 𝑣4, 𝑣8, 𝑣12)← 𝐺(𝑣0, 𝑣4, 𝑣8, 𝑣12, 𝑚𝜎𝑟,0

, 𝑚𝜎𝑟,1
)

set (𝑣1, 𝑣5, 𝑣9, 𝑣13)← 𝐺(𝑣1, 𝑣5, 𝑣9, 𝑣13, 𝑚𝜎𝑟,2
, 𝑚𝜎𝑟,3

)
set (𝑣2, 𝑣6, 𝑣10, 𝑣14)← 𝐺(𝑣2, 𝑣6, 𝑣10, 𝑣14, 𝑚𝜎𝑟,4

, 𝑚𝜎𝑟,5
)

set (𝑣3, 𝑣7, 𝑣11, 𝑣15)← 𝐺(𝑣3, 𝑣7, 𝑣11, 𝑣15, 𝑚𝜎𝑟,6
, 𝑚𝜎𝑟,7

)

set (𝑣0, 𝑣5, 𝑣10, 𝑣15)← 𝐺(𝑣0, 𝑣5, 𝑣10, 𝑣15, 𝑚𝜎𝑟,8
, 𝑚𝜎𝑟,9

)
set (𝑣1, 𝑣6, 𝑣11, 𝑣12)← 𝐺(𝑣1, 𝑣6, 𝑣11, 𝑣12, 𝑚𝜎𝑟,10

, 𝑚𝜎𝑟,11
)

set (𝑣2, 𝑣7, 𝑣8, 𝑣13)← 𝐺(𝑣2, 𝑣7, 𝑣8, 𝑣13, 𝑚𝜎𝑟,12
, 𝑚𝜎𝑟,13

)
set (𝑣3, 𝑣4, 𝑣9, 𝑣14)← 𝐺(𝑣3, 𝑣4, 𝑣9, 𝑣14, 𝑚𝜎𝑟,14

, 𝑚𝜎𝑟,15
)

return LEBS2OSP256(concatB([I2LEBSP32(ℎ𝑖 ⊕ 𝑣𝑖 ⊕ 𝑣𝑖+8) for 𝑖 from 0 up to 7]))

In practice the message and output will be expressed as bit sequences. In the Sapling circuit, the personalization
string will be constant for each use.

Each 32-bit exclusive-or is implemented in 32 constraints, one for each bit position 𝑎 ⊕ 𝑏 = 𝑐 as in section A.3.1.5
‘Exclusive-or constraints’ on page 202.

Additions not involving a message word, i.e. (𝑎 + 𝑏) mod 232 = 𝑐, are implemented using 33 constraints and a 33-bit

equality check: constrain 33 boolean variables 𝑐0 .. 32, and then check
∑︀𝑖=31

𝑖=0
(𝑎𝑖 + 𝑏𝑖) · 2

𝑖 =
∑︀𝑖=32

𝑖=0
𝑐𝑖 · 2

𝑖.

Additions involving a message word, i.e. (𝑎 + 𝑏 + 𝑚) mod 232 = 𝑐, are implemented using 34 constraints and a 34-bit

equality check: constrain 34 boolean variables 𝑐0 .. 33, and then check
∑︀𝑖=31

𝑖=0
(𝑎𝑖 + 𝑏𝑖 + 𝑚𝑖) · 2

𝑖 =
∑︀𝑖=33

𝑖=0
𝑐𝑖 · 2

𝑖.

For each addition, only 𝑐0 .. 31 are used subsequently.

The equality checks are batched; as many sets of 33 or 34 boolean variables as will �t in a F𝑟S
�eld element are

equated together using one constraint. This allows 7 such checks per constraint.

Each 𝐺 evaluation requires 262 constraints:

• 4 · 32 = 128 constraints for⊕ operations;

• 2 · 33 = 66 constraints for 32-bit additions not involving message words (excluding equality checks);

• 2 · 34 = 68 constraints for 32-bit additions involving message words (excluding equality checks).

215

The overall cost is 21006 constraints:

• 10 · 8 · 262− 4 · 2 · 32 = 20704 constraints for 80 𝐺 evaluations, excluding equality checks (the deduction of
4 · 2 · 32 is because 𝑣 is constant at the start of the �rst round, so in the �rst four calls to 𝐺, the parameters 𝑏
and 𝑑 are constant, eliminating the constraints for the �rst two XORs in those four calls to 𝐺);

• ceiling
(︁

10 · 8 · 4
7

)︁
= 46 constraints for equality checks;

• 8 · 32 = 256 constraints for �nal 𝑣𝑖 ⊕ 𝑣𝑖+8 operations (the ℎ𝑖 words are constants so no additional constraints
are required to exclusive-or with them).

This cost includes boolean-constraining the hash output bits (done implicitly by the �nal ⊕ operations), but not the
message bits.

Non-normative notes:

• The equality checks could be eliminated entirely by substituting each check into a boolean constraint for 𝑐0,
for instance, but this optimization is not done in Sapling.

• It should be clear that BLAKE2s is very expensive in the circuit compared to elliptic curve operations. This is
primarily because it is inef�cient to use F𝑟S

elements to represent single bits. However Pedersen hashes do
not have the necessary cryptographic properties for the two cases where the Spend circuit uses BLAKE2s.
While it might be possible to use variants of functions with low circuit cost such as MiMC [AGRRT2017], it
was felt that they had not yet received suf�cient cryptanalytic attention to con�dently use them for Sapling.

216

A.4 The Sapling Spend circuit #cctsaplingspend

The Sapling Spend statement is de�ned in section 4.18.2 ‘Spend Statement (Sapling)’ on page 61.

The primary input is

(︀
rtSapling ◦

◦ B[ℓSapling
Merkle],

cvold ◦
◦ ValueCommitSapling.Output,

nfold ◦
◦ BY[ℓPRFnfSapling/8],

rk ◦
◦ SpendAuthSigSapling.Public

)︀
,

which is encoded as 8 F𝑟S
elements (starting with the �xed element 1 required by Groth16):[︀

1,𝑢(rk), v(rk),𝑢(cvold), v(cvold), LEBS2IP
ℓ

Sapling
Merkle

(︀
rtSapling)︀, LEBS2IP254

(︀
nf⋆

old
0 .. 253

)︀
, LEBS2IP2

(︀
nf⋆

old
254 .. 255

)︀]︀
where nf⋆

old
= LEOS2BSPℓPRFnfSapling

(︀
nfold)︀.

The auxiliary input is

(︀
path ◦

◦ B[ℓSapling
Merkle][MerkleDepthSapling],

pos ◦
◦ {0 .. 2MerkleDepthSapling

−1},
gd

◦
◦ J,

pkd
◦
◦ J,

vold ◦
◦ {0 .. 2ℓvalue−1},

rcvold ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

cmold ◦
◦ J,

rcmold ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

𝛼 ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

ak ◦
◦ SpendAuthSigSapling.Public,

nsk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1}

)︀
.

ValueCommitSapling.Output and SpendAuthSigSapling.Public are of type J, so we have cvold, cmold, rk, gd, pkd, and ak that
represent Jubjub curve points. However,

• cvold will be constrained to an output of ValueCommitSapling;

• cmold will be constrained to an output of NoteCommitSapling;

• rk will be constrained to [𝛼]𝒢Sapling + ak;

• pkd will be constrained to [ivk] gd

so cvold, cmold, rk, and pkd do not need to be explicitly checked to be on the curve.

In addition, nk⋆ and ρ⋆ used in Nulli�er integrity are compressed representations of Jubjub curve points. TODO:
explain why these are implemented as section A.3.3.2 ‘ctEdwards [de]compression and validation’ on page 205 even though
the statement spec doesn’t explicitly say to do validation.

Therefore we have gd, ak, nk, and ρ that need to be constrained to valid Jubjub curve points as described in section A.3.3.2
‘ctEdwards [de]compression and validation’ on page 205.

217

https://zips.z.cash/protocol/protocol.pdf#cctsaplingspend

In order to aid in comparing the implementation with the speci�cation, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost Reference

ak is on the curve TODO: FIXME also
decompressed below

ak ◦
◦ SpendAuthSigSapling.Public 4 section A.3.3.1 on page 205

ak is not small-order Small order checks 16 section A.3.3.6 on page 208

𝛼⋆ ◦
◦ B[ℓSapling

scalar] 𝛼 ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

𝛼′ = [𝛼⋆]𝒢Sapling Spend authority 750 section A.3.3.7 on page 208

rk = 𝛼′ + ak 6 section A.3.3.5 on page 207

inputize rk TODO: not ccteddecompress-
validate => wrong count

rk ◦
◦ SpendAuthSigSapling.Public 392? section A.3.3.2 on page 205

nsk⋆ ◦
◦ B[ℓSapling

scalar] nsk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

nk = [nsk⋆]ℋSapling Nulli�er integrity 750 section A.3.3.7 on page 208

ak⋆ = reprJ(ak ◦
◦ J) Diversi�ed address integrity 392 section A.3.3.2 on page 205

nk⋆ = reprJ(nk)TODO: spec doesn’t say
to validate nk since it’s calculated

Nulli�er integrity 392 section A.3.3.2 on page 205

ivk⋆ = I2LEBSP251
(︀
CRHivk(ak, nk)

)︀
† Diversi�ed address integrity 21006 section A.3.7 on page 214

gd is on the curve gd
◦
◦ J 4 section A.3.3.1 on page 205

gd is not small-order Small order checks 16 section A.3.3.6 on page 208

pkd = [ivk⋆] gd Diversi�ed address integrity 3252 section A.3.3.8 on page 209

v⋆
old

◦
◦ B[64] vold ◦

◦ {0 .. 264−1} 64 section A.3.1.1 on page 201

rcv⋆ ◦
◦ B[ℓSapling

scalar] rcv ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

cv = ValueCommitrcv
(vold) Value commitment integrity 947 section A.3.6 on page 213

inputize cv ?

rcm⋆ ◦
◦ B[ℓSapling

scalar] rcm ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

cm = NoteCommitSapling
rcm (gd, pkd, vold) Note commitment integrity 1740 section A.3.5 on page 213

cm𝑢 = ExtractJ(𝑟)(cm) Merkle path validity 0
rt′ is the root of a Merkle tree with
leaf cm𝑢, and authentication path
(path, pos⋆)

32 · 1380 section A.3.4 on page 213

pos⋆ = I2LEBSPMerkleDepthSapling(pos) 1 section A.3.2.1 on page 202

if vold ̸= 0 then rt′ = rtSapling 1 section A.3.1.2 on page 202

inputize rtSapling ?
ρ = MixingPedersenHash(cmold, pos) Nulli�er integrity 98 section A.3.3.10 on page 212

ρ⋆ = reprJ(ρ)TODO: spec doesn’t say to
validate ρ since it’s calculated

392 section A.3.3.2 on page 205

nfold = PRFnfSapling
nk⋆ (ρ⋆) 21006 section A.3.7 on page 214

pack nfold
0 .. 253 and nfold

254 .. 255 into two
F𝑟S

inputs
input encoding 2 section A.3.2.1 on page 202

218

† This is implemented by taking the output of BLAKE2s-256 as a bit sequence and dropping the most signi�cant
5 bits, not by converting to an integer and back to a bit sequence as literally speci�ed.

Note: The implementation represents 𝛼⋆, nsk⋆, ivk⋆, rcm⋆, rcv⋆, and v⋆
old

as bit sequences rather than integers. It
represents nf as a bit sequence rather than a byte sequence.

A.5 The Sapling Output circuit #cctsaplingoutput

The Sapling Output statement is de�ned in section 4.18.3 ‘Output Statement (Sapling)’ on page 62.

The primary input is(︀
cvnew ◦

◦ ValueCommitSapling.Output,
cm𝑢

◦
◦ B[ℓSapling

Merkle],

epk ◦
◦ J
)︀
,

which is encoded as 6 F𝑟S
elements (starting with the �xed element 1 required by Groth16):[︀

1,𝑢(cvnew), v(cvnew),𝑢(epk), v(epk), LEBS2IP
ℓ

Sapling
Merkle

(cm𝑢)
]︀

The auxiliary input is

(gd
◦
◦ J,

pk⋆d
◦
◦ B[ℓJ],

vnew ◦
◦ {0 .. 2ℓvalue−1},

rcvnew ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

rcmnew ◦
◦ {0 .. 2ℓ

Sapling
scalar −1},

esk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1})

ValueCommitSapling.Output is of type J, so we have cvnew, epk, and gd that represent Jubjub curve points. However,

• cvnew will be constrained to an output of ValueCommitSapling;

• epk will be constrained to [esk] gd

so cvnew and epk do not need to be explicitly checked to be on the curve.

Therefore we have only gd that needs to be constrained to a valid Jubjub curve point as described in section A.3.3.2
‘ctEdwards [de]compression and validation’ on page 205.

Note: pk⋆d is not checked to be a valid compressed representation of a Jubjub curve point.

219

https://zips.z.cash/protocol/protocol.pdf#cctsaplingoutput

In order to aid in comparing the implementation with the speci�cation, we present the checks needed in the order
in which they are implemented in the sapling-crypto code:

Check Implements Cost Reference

v⋆
old

◦
◦ B[64] vold ◦

◦ {0 .. 264−1} 64 section A.3.1.1 on page 201

rcv⋆ ◦
◦ B[ℓSapling

scalar] rcv ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

cv = ValueCommitSapling
rcv (vold) Value commitment integrity 947 section A.3.6 on page 213

inputize cv ?
g⋆d = reprJ(gd

◦
◦ J) Note commitment integrity 392 section A.3.3.2 on page 205

gd is not small-order Small order checks 16 section A.3.3.6 on page 208

esk⋆ ◦
◦ B[ℓSapling

scalar] esk ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

epk = [esk⋆] gd Ephemeral public key integrity 3252 section A.3.3.8 on page 209

inputize epk ?
pk⋆d

◦
◦ B[ℓJ] pk⋆d

◦
◦ B[ℓJ] 256 section A.3.1.1 on page 201

rcm⋆ ◦
◦ B[ℓSapling

scalar] rcm ◦
◦ {0 .. 2ℓ

Sapling
scalar −1} 252 section A.3.1.1 on page 201

cm = NoteCommitSapling
rcm (gd, pkd, vold) Note commitment integrity 1740 section A.3.5 on page 213

pack inputs ?

Note: The implementation represents esk⋆, pk⋆d, rcm⋆, rcv⋆, and v⋆
old

as bit sequences rather than integers.

B Batching Optimizations #batching

B.1 RedDSA batch validation #reddsabatchvalidate

The reference validation algorithm for RedDSA signatures is de�ned in section 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’
on page 92.

Let the RedDSA parameters G (de�ning a subgroup G(𝑟) of order 𝑟G, a cofactor ℎG, a group operation +, an additive
identity 𝒪G , a bit-length ℓG , a representation function reprG , and an abstraction function abstG); 𝒫G

◦
◦ G; ℓH

◦
◦ N;

H ◦
◦ BY[N] → BY[ℓH/8]; and the derived hash function H~ ◦

◦ BY[N] → F𝑟G
be as de�ned in that section.

Implementations MAY alternatively use the optimized procedure described in this section to perform faster
validation of a batch of signatures, i.e. to determine whether all signatures in a batch are valid. Its input is a sequence
of 𝑁 signature batch entries, each of which is a (validating key, message, signature) triple.

Let LEOS2BSP, LEOS2IP, and LEBS2OSP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

De�ne RedDSA.BatchEntry := RedDSA.Public× RedDSA.Message× RedDSA.Signature.

220

https://zips.z.cash/protocol/protocol.pdf#batching
https://zips.z.cash/protocol/protocol.pdf#reddsabatchvalidate

De�ne RedDSA.BatchValidate ◦
◦ (entry0 .. 𝑁−1

◦
◦ RedDSA.BatchEntry[𝑁])→ B as:

For each 𝑗 ∈ {0 .. 𝑁 − 1}:
Let (vk𝑗 , 𝑀𝑗 , 𝜎𝑗) = entry𝑗 .

Let 𝑅𝑗 be the �rst ceiling
(︀
ℓG/8

)︀
bytes of 𝜎𝑗 , and let 𝑆𝑗 be the remaining ceiling (bitlength(𝑟G)/8) bytes.

Let 𝑅𝑗 = abstG
(︀
LEOS2BSPℓG

(𝑅𝑗)
)︀
, and let 𝑆𝑗 = LEOS2IP8·length(𝑆𝑗)(𝑆𝑗).

Let vk𝑗 = LEBS2OSPℓG

(︀
reprG(vk𝑗)

)︀
.

Let 𝑐𝑗 = H~(𝑅𝑗 || vk𝑗 ||𝑀𝑗).

Choose random 𝑧𝑗
◦
◦ F*

𝑟G
←R {1 .. 2128 − 1}.

Return 1 if

• for all 𝑗 ∈ {0 .. 𝑁 − 1}, 𝑅𝑗 ̸= ⊥ and 𝑆𝑗 < 𝑟G; and

• [ℎG]
(︁
−
[︁∑︀𝑁−1

𝑗=0
(𝑧𝑗 · 𝑆𝑗) (mod 𝑟G)

]︁
𝒫G +

∑︀𝑁−1

𝑗=0
[𝑧𝑗] 𝑅𝑗 +

∑︀𝑁−1

𝑗=0
[𝑧𝑗 · 𝑐𝑗 (mod 𝑟G)] vk𝑗

)︁
= 𝒪G ,

otherwise 0.

The 𝑧𝑗 values MUST be chosen independently of the signature batch entries.

Non-normative note: It is also acceptable to sample each 𝑧𝑗 from {0 .. 2128 − 1}, since the probability of obtaining
zero for any 𝑧𝑗 is negligible.

The performance bene�t of this approach arises partly from replacing the per-signature scalar multiplication of
the base 𝒫G with one such multiplication per batch, and partly from using an ef�cient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos–Coster method [deRooij1995], as explained
in [BDLSY2012, section 5].

Note: Spend authorization signatures (section 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on page 95)
and binding signatures (section 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on page 95) use different bases 𝒫G . It is

straightforward to adapt the above procedure to handle multiple bases; there will be one−
[︁∑︀

𝑗
(𝑧𝑗 · 𝑆𝑗) (mod 𝑟G)

]︁
𝒫

term for each base 𝒫 . The bene�t of this relative to using separate batches is that the multiscalar multiplication can
be extended across a larger batch.

B.2 Groth16 batch veri�cation #grothbatchverify

The reference veri�cation algorithm for Groth16 proofs is de�ned in section 5.4.10.2 ‘Groth16’ on page 111. The batch veri�ca-
tion algorithm in this section applies techniques from [BFIJSV2010, section 4].

Let 𝑞S, 𝑟S, S(𝑟)
1,2,𝑇 , S(𝑟)*

1,2,𝑇 , 𝒫S1,2,𝑇
, 1S, and 𝑒S be as de�ned in section 5.4.9.2 ‘BLS12-381’ on page 101.

De�ne MillerLoopS
◦
◦ S(𝑟)

1 × S(𝑟)
2 → S(𝑟)

𝑇 and FinalExpS
◦
◦ S(𝑟)

𝑇 → S(𝑟)
𝑇 to be the Miller loop and �nal exponentiation

respectively of the 𝑒S pairing computation, so that:

𝑒S(𝑃, 𝑄)= FinalExpS(MillerLoopS(𝑃, 𝑄))

where FinalExpS(𝑅)= 𝑅𝑡 for some �xed 𝑡.

De�ne Groth16S.Proof := S(𝑟)*
1 × S(𝑟)*

2 × S(𝑟)*
1 .

A Groth16S proof comprises a tuple (𝜋𝐴, 𝜋𝐵 , 𝜋𝐶) ◦
◦ Groth16S.Proof .

221

https://zips.z.cash/protocol/protocol.pdf#grothbatchverify

Veri�cation of a single Groth16S proof against an instance encoded as 𝑎0 .. ℓ
◦
◦ F𝑟S

[ℓ+1] requires checking the equation

𝑒S(𝜋𝐴, 𝜋𝐵) = 𝑒S(𝜋𝐶 , Δ) · 𝑒S
(︁∑︀ℓ

𝑖=0
[𝑎𝑖] Ψ𝑖, Γ

)︁
· 𝑌

where Δ = [𝛿]𝒫S2
, Γ = [𝛾]𝒫S2

, 𝑌 = [𝛼·𝛽]𝒫S𝑇
, and Ψ𝑖 =

[︁
𝛽 ·𝑢𝑖(𝑥) + 𝛼·𝑣𝑖(𝑥) + 𝑤𝑖(𝑥)

𝛾

]︁
𝒫S1

for 𝑖 ∈ {0 .. ℓ} are elements of

the veri�cation key, as described (with slightly different notation) in [Groth2016, section 3.2].

This can be written as:

𝑒S(𝜋𝐴,−𝜋𝐵) · 𝑒S(𝜋𝐶 , Δ) · 𝑒S
(︁∑︀ℓ

𝑖=0
[𝑎𝑖] Ψ𝑖, Γ

)︁
· 𝑌 = 1S.

Raising to the power of random 𝑧 ̸= 0 gives:

𝑒S([𝑧] 𝜋𝐴,−𝜋𝐵)· 𝑒S([𝑧] 𝜋𝐶 , Δ)· 𝑒S
(︁∑︀ℓ

𝑖=0
[𝑧 · 𝑎𝑖] Ψ𝑖, Γ

)︁
· 𝑌 𝑧 = 1S.

This justi�es the following optimized procedure for performing faster veri�cation of a batch of Groth16S proofs.
Implementations MAY use this procedure to determine whether all proofs in a batch are valid.

De�ne a type Groth16S.BatchEntry := Groth16S.Proof × Groth16S.PrimaryInput representing proof batch entries.

De�ne Groth16S.BatchVerify ◦
◦ (entry0 .. 𝑁−1

◦
◦ Groth16S.BatchEntry[𝑁])→ B as:

For each 𝑗 ∈ {0 .. 𝑁 − 1}:
Let ((𝜋𝑗,𝐴, 𝜋𝑗,𝐵 , 𝜋𝑗,𝐶), 𝑎𝑗, 0 .. ℓ) = entry𝑗 .

Choose random 𝑧𝑗
◦
◦ F*

𝑟S
←R {1 .. 2128 − 1}.

Let Accum𝐴𝐵 =
∏︀𝑁−1

𝑗=0
MillerLoopS

(︀
[𝑧𝑗] 𝜋𝑗,𝐴,−𝜋𝑗,𝐵

)︀
.

Let AccumΔ =
∑︀𝑁−1

𝑗=0
[𝑧𝑗] 𝜋𝑗,𝐶 .

Let AccumΓ,𝑖 =
∑︀𝑁−1

𝑗=0
(𝑧𝑗 · 𝑎𝑗,𝑖) (mod 𝑟S) for 𝑖 ∈ {0 .. ℓ}.

Let Accum𝑌 =
∑︀𝑁−1

𝑗=0
𝑧𝑗 (mod 𝑟S).

Return 1 if

FinalExpS

(︂
Accum𝐴𝐵 ·MillerLoopS

(︀
AccumΔ, Δ

)︀
·MillerLoopS

(︁∑︀ℓ

𝑖=0
[AccumΓ,𝑖] Ψ𝑖, Γ

)︁)︂
· 𝑌 Accum𝑌 = 1S,

otherwise 0.

The 𝑧𝑗 values MUST be chosen independently of the proof batch entries.

Non-normative note: It is also acceptable to sample each 𝑧𝑗 from {0 .. 2128 − 1}, since the probability of obtaining
zero for any 𝑧𝑗 is negligible.

The performance bene�t of this approach arises from computing two of the three Miller loops, and the �nal
exponentiation, per batch instead of per proof. For the multiplications by 𝑧𝑗 , an ef�cient algorithm for multiscalar
multiplication such as Pippinger’s method [Bernstein2001] or the Bos–Coster method [deRooij1995] may be used.

Note: Spend proofs (of the statement in section 4.18.2 ‘Spend Statement (Sapling)’ on page 61) and output proofs (of
the statement in section 4.18.3 ‘Output Statement (Sapling)’ on page 62) use different veri�cation keys, with different
parameters Δ, Γ, 𝑌 , and Ψ0 .. ℓ. It is straightforward to adapt the above procedure to handle multiple veri�cation
keys; the accumulator variables AccumΔ, AccumΓ,𝑖, and Accum𝑌 are duplicated, with one term in the veri�cation
equation for each variable, while Accum𝐴𝐵 is shared.

222

Neglecting multiplications in S(𝑟)
𝑇 and F𝑟S

, and other trivial operations, the cost of batched veri�cation is therefore

• for each proof: the cost of decoding the proof representation to the form Groth16S.Proof , which requires

three point decompressions and three subgroup checks (two for S(𝑟)*
1 and one for S(𝑟)*

2);

• for each successfully decoded proof: a Miller loop; and a 128-bit scalar multiplication by 𝑧𝑗 in S(𝑟)
1 ;

• for each veri�cation key: two Miller loops; an exponentiation in S(𝑟)
𝑇 ; a multiscalar multiplication in S(𝑟)

1 with

𝑁 128-bit scalars to compute AccumΔ; and a multiscalar multiplication in S(𝑟)
1 with ℓ + 1 255-bit scalars to

compute
∑︀ℓ

𝑖=0
[AccumΓ,𝑖] Ψ𝑖;

• one �nal exponentiation.

B.3 Ed25519 batch validation #ed25519batchvalidate

The reference validation algorithm for Ed25519 signatures is de�ned in section 5.4.6 ‘Ed25519’ on page 90.

[Canopy onward] Implementations MAY alternatively use the optimized procedure described in this section to
perform faster validation of a batch of signatures, i.e. to determine whether all signatures in a batch are valid.
The correctness of this procedure is dependent on the Ed25519 validation changes made for the Canopy network
upgrade in [ZIP-215] (in particular the change to use the cofactor variant of the validation equation). The input is a
sequence of 𝑁 signature batch entries, each of which is a (validating key, message, signature) triple.

Let ℓ, 𝐵, abstBytesEd25519, and reprBytesEd25519 be as de�ned in section 5.4.6 ‘Ed25519’ on page 90.

Let LEOS2IP be as de�ned in section 5.1 ‘Integers, Bit Sequences, and Endianness’ on page 73.

SHA-512 is de�ned in section 5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on page 75.

De�ne Ed25519.BatchEntry := Ed25519.Public× Ed25519.Message× Ed25519.Signature.

De�ne Ed25519.BatchValidate ◦
◦ (entry0 .. 𝑁−1

◦
◦ Ed25519.BatchEntry[𝑁])→ B as:

For each 𝑗 ∈ {0 .. 𝑁 − 1}:
Let (𝐴𝑗 , 𝑀𝑗 , 𝜎𝑗) = entry𝑗 .

Let 𝑅𝑗 be the �rst 32 bytes of 𝜎𝑗 , and let 𝑆𝑗 be the remaining 32 bytes.

Let 𝑅𝑗 = abstBytesEd25519(𝑅𝑗), and let 𝑆𝑗 = LEOS2IP256(𝑆𝑗).

Let 𝐴𝑗 = reprBytesEd25519(𝐴𝑗).

Let 𝑐𝑗 = LEOS2IP512
(︀
SHA-512(𝑅𝑗 ||𝐴𝑗 ||𝑀𝑗)

)︀
.

Choose random 𝑧𝑗
◦
◦ F*

ℓ ←
R {1 .. 2128 − 1}.

Return 1 if

• for all 𝑗 ∈ {0 .. 𝑁 − 1}, 𝑅𝑗 ̸= ⊥ and 𝑆𝑗 < ℓ; and

• [8]
(︁
−
[︁∑︀𝑁−1

𝑗=0
(𝑧𝑗 · 𝑆𝑗) (mod ℓ)

]︁
𝐵 +

∑︀𝑁−1

𝑗=0
[𝑧𝑗] 𝑅𝑗 +

∑︀𝑁−1

𝑗=0
[𝑧𝑗 · 𝑐𝑗 (mod ℓ)] 𝐴𝑗

)︁
= 𝒪Ed25519,

otherwise 0.

The 𝑧𝑗 values MUST be chosen independently of the signature batch entries.

Non-normative note: It is also acceptable to sample each 𝑧𝑗 from {0 .. 2128 − 1}, since the probability of obtaining
zero for any 𝑧𝑗 is negligible.

The performance bene�ts of this approach are the same as for section B.1 ‘RedDSA batch validation’ on page 220.

223

https://zips.z.cash/protocol/protocol.pdf#ed25519batchvalidate

List of Theorems and Lemmata #theorems

Theorem 5.4.1 The encoding function ⟨∙⟩ is injective . 80

Lemma 5.4.2 An injectivity property for Sinsemilla . 82

Theorem 5.4.3 Collision resistance of SinsemillaHash and SinsemillaHashToPoint 83

Theorem 5.4.4 A⊥ output from SinsemillaHashToPoint yields a nontrivial discrete log relation 84

Theorem 5.4.5 UncommittedSapling is not in the range of NoteCommitSapling . 96

Theorem 5.4.6 UncommittedOrchard is not in the range of NoteCommitOrchard . 99

Lemma 5.4.7 Let 𝑃 = (𝑢, v) ∈ J(𝑟). Then (𝑢,−v) /∈ J(𝑟) . 104

Theorem 5.4.8 𝑢 is injective on J(𝑟) . 104

Theorem A.2.1 (0, 0) is the only point with 𝑦 = 0 on certain Montgomery curves 201

Theorem A.3.1 Correctness of a constraint system for range checks . 204

Theorem A.3.2 Exceptional points (ctEdwards→Montgomery) . 206

Theorem A.3.3 Exceptional points (Montgomery→ ctEdwards) . 206

Theorem A.3.4 Distinct-𝑥 theorem . 206

Theorem A.3.5 Concerning addition inputs in the Pedersen circuit . 211

Index #index

account, 44

Action circuit, 32, 49, 64, 99, 127, 155–159

Action description, 8, 9, 15–17, 20, 21, 22, 29, 42, 43, 45,
46, 48, 54, 55, 57, 67–70, 72, 112, 123, 126, 127,
130, 148, 154, 159, 161, 163

Action statement, 21, 35, 43, 46, 48, 56–58, 63, 64, 65,
127, 130, 159, 161–163

Action transfer, 18, 20, 21–22, 28, 42, 43, 46, 50, 54, 56,
127, 130, 145, 161, 163

activation block, 18, 23, 92, 111, 154

activation block height, 120, 121, 141, 169

ALL CAPS, 7

anchor, 19, 20–21, 40, 41, 43, 60, 61, 64, 129, 154

authenticated one-time symmetric encryption, 26,
27, 88

auxiliary input, 34, 35, 47, 48, 50, 57, 60–64, 161, 174

Base58Check, 113–115, 138, 140

BCTV14, 35, 40, 50, 110, 111, 122, 128, 150, 155, 164, 171,
175, 200

Bech32, 37, 113, 117–119, 154, 163, 175

Bech32m, 113, 118, 119, 154, 159

bellman, 111, 119

best valid block chain, 18, 66, 69, 181

big-endian, 100, 102, 108, 111, 112, 120, 134, 204

bilateral consensus rule change, 120

binding (commitment scheme), 24, 31, 53, 55, 56,
96–99, 145, 148, 156, 169, 176, 181

binding signature, 94, 147

binding signature (Orchard), 21, 28, 29, 50, 54, 55–56,
123

binding signature (Sapling), 20, 28, 29, 50, 52, 53–55,
122, 123, 177

binding signature scheme, 92, 95

bit sequence, 11, 12, 36, 38, 49, 62–64, 66, 68, 73, 75, 94,
154, 156, 158, 165, 166, 171, 177, 200, 213, 215, 219,
220

Bitcoin, 1, 7, 8, 18, 19, 21, 22, 28, 50, 51, 113, 114, 120, 122,
123, 125–127, 131–134, 142, 149, 155, 161, 166, 181,
183

224

https://zips.z.cash/protocol/protocol.pdf#theorems
https://zips.z.cash/protocol/protocol.pdf#index

Bitcoin Core, 126, 149, 155

block, 16, 18–23, 35, 40, 41, 43, 51, 58, 59, 68–70, 111, 120,
121, 125, 127, 131, 132–136, 140, 142, 155, 157, 159,
168, 170, 181, 182

block chain, 8, 9, 14–17, 18, 19, 23, 58, 59, 66, 69, 72, 73,
110–112, 126, 132, 136, 142, 144, 162, 168, 170, 179,
181

block chain reorganization, 66, 69, 121

block hash, 23, 111, 154

block header, 18, 75, 131, 132–136, 160, 178, 181, 183

block height, 16, 18, 22, 59, 68–71, 120–123, 125–129, 132,
135–141, 157–159, 164, 171

block subsidy, 22, 120, 125, 136, 139, 152, 156, 165, 183

block target spacing, 134, 136, 141

block timestamp, 131

block version number, 131, 132–133, 170, 180

Blossom, 1, 7, 50, 120, 131–133, 136, 139, 141, 168–171

BLS12-381, 35, 101, 105, 111, 149, 176

BN-254, 35, 99, 102, 111

Bulletproofs, 54

byte sequence, 10, 73, 76, 88, 93, 94, 112, 113, 159, 161,
164, 177, 201, 219

Canopy, 1, 7, 22, 40, 44, 50, 51, 65, 69, 70, 91, 92, 117, 120,
124–127, 131–133, 138–141, 153, 154, 158, 164,
166–168, 223

chain value pool, 8, 117, 152, 155

chain value pool balance (deferred development fund),
58, 59

chain value pool balance (Orchard), 58

chain value pool balance (Sapling), 58, 164

chain value pool balance (Sprout), 58, 164

chain value pool balance (transparent), 58

chunk (of a Pedersen hash input), 80

coinbase transaction, 18, 19, 22, 51, 124–127, 132,
137–140, 155–158, 160, 161, 164–166, 176, 179, 183

coins (in Zerocash), 8

collision resistance, 23, 24, 26, 33, 76–83, 86, 87, 96, 98,
144–146, 148–150, 162, 178, 184, 213

Commitivk randomness, 38, 118

commitment scheme, 23, 31, 32–33, 38, 83, 96–99, 145,
146, 148, 156, 169, 175, 181

commitment trapdoor, 14, 15, 31, 41, 42, 45, 46, 54, 98,
143, 153, 175

complete twisted Edwards af�ne coordinates, 68, 96,
200, 201, 207, 208

complete twisted Edwards compressed encoding,
103, 115, 117, 204

complete twisted Edwards elliptic curve, 12, 45, 91,
102, 103–104, 169, 200, 205, 206, 208, 210

consensus branch, 126, 155

consensus branch ID, 50, 51, 123, 124, 154, 161

consensus rule change, 120

coordinate extractor, 33, 164, 179

CryptoNote, 9, 183

ctEdwards, 12, 102, 209, 210, 212–214

Decentralized Anonymous Payment scheme, 1, 7

Decisional Dif�e–Hellman Problem, 34, 78, 85, 145,
156, 160

default diversi�ed payment address, 37, 39, 105

deferred development fund chain value pool, 8

deferred development fund lockbox, 139

Discrete Logarithm Problem, 33, 65, 79, 81–83, 145, 160,
210

distinct-𝑥 criterion, 179, 207, 210

diversi�ed base, 25, 37, 45, 46, 67, 78

diversi�ed payment address, 13, 14–15, 37, 39, 47, 48,
78, 79, 145, 150, 160, 170, 172

diversi�ed transmission key, 15, 37, 39, 42, 43, 45, 46,
67, 129, 130

diversi�er, 15, 25, 26, 37, 39, 78, 79, 88, 115, 116, 151, 160

diversi�er index, 37, 39, 116, 151, 160

diversi�er key, 13, 26, 37–39, 116, 118, 151, 161

double-spend, 9, 17, 19–22, 65, 145, 148, 150, 180

dummy note, 46, 47–48, 143–145, 161, 163, 164

ECDSA, 28, 113, 174

Ed25519, 28, 75, 90–92, 124, 154, 159, 164, 166–168, 176,
179, 183, 223

ephemeral private key, 42, 43, 45, 67, 129, 130

ephemeral public key, 27, 65, 67, 147

Equihash, 1, 24, 86, 131, 132, 133, 134, 149, 170, 174, 180,
182, 183

expanded spending key, 13

extended spending key, 13, 14, 169

family of group hashes into a subgroup, 33

Founders’ Reward, 22, 124, 125, 136, 137, 139, 170, 176,
180, 182, 183

full node, 179

full validator, 18, 22, 92, 111, 132, 154, 179

full viewing key, 9, 13, 14, 37, 39, 42, 43, 47, 48, 57, 58, 72,
85, 116, 117, 118, 119, 130, 156, 157, 175

225

funding stream, 22, 124, 125, 127, 136, 139, 140–141, 164,
170

genesis block, 18, 23, 125, 131, 132, 139, 142, 164, 181

Groth16, 35, 40, 50, 53, 56, 111, 122, 128, 149, 170, 171, 173,
175, 200, 217, 219, 221

group hash, 33, 104, 109, 162

Halo 2, 21, 35, 50, 55, 56, 81, 112, 149, 150, 155

halo2, 35

halving, 120, 139, 141

hash function, 19, 24, 25, 36, 75, 79–82, 84–87, 91, 92,
147, 176

hash value (of a Merkle tree node), 21, 49, 76, 99, 160

hash-to-curve, 109

Heartwood, 1, 7, 50, 120, 125–127, 131–133, 140, 153, 158,
164, 168

hiding (commitment scheme), 31, 39, 96–99, 145, 156,
181

Hierarchical Deterministic Wallet, 13

homomorphic Pedersen commitment, 97, 213

Human-Readable Part, 116, 117, 119

in-band, 147, 183

incoming viewing key, 13, 14, 24, 32, 36, 37, 39, 58, 65,
66, 71, 77, 79, 113, 114, 116, 117, 118, 119, 148, 152,
155, 156, 159, 160, 180

incremental Merkle tree, 21, 49, 76, 79, 81, 168, 184

index (of a Merkle tree node), 21, 49

internal node (of a Merkle tree), 49

iso-Pallas, 107, 109, 110

iso-Vesta, 107, 109, 110

IVK Encoding (in a Uni�ed Incoming Viewing Key),
116, 152

JoinSplit circuit, 119

JoinSplit description, 8, 15–17, 19, 20, 22, 28, 29, 39, 40,
43, 44, 46, 47, 51, 65, 66, 72, 111, 122, 125, 126,
128, 142, 144, 147, 164, 174, 179, 180

JoinSplit proof, 47

JoinSplit signature, 29, 50, 51, 183

JoinSplit signing key, 44

JoinSplit statement, 9, 19, 35, 40, 47, 51, 56, 58, 60, 110,
144, 145, 148, 149, 156, 175, 180, 200

JoinSplit transfer, 18, 19, 20–22, 39, 40, 46, 50–52, 123,
128, 142, 143, 145, 147, 149, 156, 181, 184

Jubjub, 17, 28, 33, 45, 52, 56, 62, 63, 69, 71, 78, 79, 87, 89,
92, 96, 97, 102, 103, 105, 106, 116, 129, 145, 147,
152, 164, 166, 169, 174, 177, 179, 180, 200, 206,
208, 217, 219

key agreement scheme, 26, 27, 36, 38, 65, 67, 88–90,
147

Key Derivation Function, 27, 65, 67, 89, 90

key privacy, 9, 27, 78, 147, 148, 150, 170, 172

layer (of a Merkle tree), 21, 49, 62, 64, 99, 159

leaf node (of a Merkle tree), 18, 22, 49, 99

librustzcash, 71, 165

libsnark (Zcash fork), 110, 111, 119, 149

linear combination, 200, 202

little-endian, 96, 116, 118, 119, 125, 134

lockbox disbursement, 125, 140, 151

Mainnet, 18, 22, 23, 41, 71, 74, 75, 94, 111, 113–117, 119, 120,
125, 126, 132, 133, 136, 137, 139–142, 151, 152, 154,
166, 170, 182

MAY, 7, 18, 37, 39, 41, 42, 50, 54, 56, 57, 69, 92, 94, 98, 111,
113, 153, 154, 220, 222, 223

median-time-past, 131, 132, 168

memo �eld, 15, 65, 67, 72, 142, 162, 163, 168, 179, 183

mempool, 69, 71, 165

Merkle path, 47, 48, 49, 60, 61, 64, 151, 210

Mimblewimble, 54

miner subsidy, 22, 51, 136, 156, 183

monomorphism, 30, 168

Montgomery af�ne coordinates, 200, 201, 206, 207

Montgomery elliptic curve, 172, 200, 201, 206, 209,
210, 212, 224

multi-party computation, 119, 120

MUST, 7, 16, 18–22, 40–45, 50–52, 58, 59, 62–66, 68, 69,
71, 91, 94, 111, 112, 114–119, 121, 122, 124–127, 129,
130, 132, 134, 138, 140, 152, 155–159, 161, 164, 166,
173, 221–223

MUST NOT, 7, 22, 41, 42, 69, 91, 100, 102, 103, 106, 110,
124–126, 132, 155, 157, 161, 174

network, 18, 22, 23, 141

network upgrade, 18, 23, 50, 51, 110, 111, 117, 120, 121, 127,
136, 141, 151, 154, 155, 171, 223

node (of a Merkle tree), 21, 49

non-canonical (compressed encoding of a point), 32,
41, 43, 69, 71, 94, 115, 116, 125, 152, 164, 165

226

non-canonical (encoding of a �eld element), 41, 42, 49,
160, 213

nonmalleability (of proofs), 35

nonmalleability (of signatures), 29

note, 8, 9, 14, 15–17, 19–21, 24, 25, 29, 39–44, 46–49, 51,
56–58, 65–69, 71–73, 87, 112, 127–130, 142–146,
148, 149, 153, 154, 156, 158, 161–164, 167, 177, 210

note commitment, 8, 9, 15, 16, 17, 19, 21, 22, 24, 40, 42,
43, 49, 57, 58, 66–68, 128–130, 143–146, 148, 149,
153, 156, 157, 162, 176, 180, 210

note commitment scheme, 31, 95, 96, 98, 148, 210

note commitment tree, 16, 17, 19, 21, 22, 49, 77, 123, 128,
129, 131, 132, 144, 145, 157, 158, 178

note plaintext, 15, 16, 42, 43, 65, 67, 73, 112, 126, 127, 129,
130, 148, 153, 162, 165–167

note plaintext lead byte, 16, 45–48, 126, 148, 151, 158, 167

note position, 8, 17, 21, 57, 144

note traceability set, 9, 176

NU5, 1, 7, 13, 16, 18, 22, 25, 35, 41, 50, 51, 65, 69, 71, 93, 94,
120, 124–127, 131–133, 144, 152–154, 157–164

NU6, 1, 7, 19, 51, 59, 120, 125, 133, 141, 151, 152

NU6.1, 1, 7, 18, 23, 51, 59, 120, 133, 140, 141, 151

nulli�er, 8, 9, 14, 15, 17, 19, 20, 22, 25, 40, 41, 43, 46, 57,
58, 69, 72, 73, 83, 85, 87, 127–130, 143–146, 148,
150, 153, 162, 165, 177, 181

nulli�er deriving key, 8, 17, 38, 57, 58, 69, 118

nulli�er private key, 13

nulli�er set, 17, 19, 22, 66, 69

one-time (authenticated symmetric encryption), 26

one-time (signature scheme), 29

open (a commitment), 31

OPTIONAL, 7, 44

Orchard, 8, 9, 13–22, 25–28, 32, 34, 35, 38, 39, 45, 46,
48–50, 54, 56, 57, 65, 67–73, 76, 78, 81, 85, 87,
88, 95, 97, 105, 107, 108, 112, 113, 117–119, 123,
126, 127, 140, 144–156, 158–163

Orchard balancing value, 54, 55

out-of-band, 65–68, 73

outgoing cipher key, 42, 43, 67, 86, 87, 129, 130, 161

outgoing ciphertext, 67, 71, 86, 87, 148, 156, 161, 177

outgoing viewing key, 13, 36, 38, 39, 44–46, 67, 70, 117,
126, 158, 174, 175

Output circuit, 119, 177, 209, 210

Output description, 8, 9, 15–17, 20, 21, 29, 32, 41, 42, 44,
45, 52–54, 67, 68, 70, 72, 98, 111, 122, 123, 125,
126, 129, 130, 148, 153, 164, 174, 178, 179

Output statement, 20, 35, 42, 45, 54, 62, 65, 111, 129, 174,
177

Output transfer, 18, 20, 28, 41, 52, 54, 142, 143, 145

Overwinter, 1, 7, 50, 76, 120, 121, 124–127, 132, 170, 174,
175, 178–180

packing, 202

Pallas, 17, 28, 33, 39, 43, 45, 49, 55, 56, 58, 64, 65, 81, 85,
90, 92, 97–99, 105, 106–108, 110, 118, 119, 130,
145–149, 152, 156, 162

partitioning oracle attack, 148, 156

paying key, 14, 47

payment address, 113, 117, 140, 154, 160, 163

Pedersen commitment, 20, 21, 53–55, 79, 81, 96, 145,
177–179, 209, 212

Pedersen hash, 33, 79, 81, 96, 144, 146, 176–179, 210, 212,
213

Pedersen value commitment, 20, 21, 143

peer-to-peer protocol, 18, 44–46, 121, 124, 131, 142, 176,
179

piece (of a Sinsemilla hash input), 82

PLONK, 150

point at in�nity, 105

positioned note, 17, 57, 69, 144

prescribed way (to pay a funding recipient), 140

prevout (previous output), 125, 155

primary input, 34, 40–43, 49, 57, 60–64, 159, 160, 173

prime order (of a group element), 71, 153, 176, 210

prime-order curve, 102, 110, 147

prime-order group, 78, 83

prime-order subgroup, 52, 78, 90, 153, 165, 208

private key, 8, 9, 13, 26, 27, 29, 32, 38, 39, 54, 67, 68, 71,
88, 114, 147, 160, 161

proof authorizing key, 8, 13, 36, 57, 86

proof batch entry, 222

proof-of-work, 1, 133, 149

proving key (for a zk-SNARK), 34, 35, 119

proving system (preprocessing zk-SNARK), 1, 7–9, 20,
21, 34, 35, 110–112, 143, 150, 151, 171, 172, 174, 183

Pseudo Random Function, 17, 23, 25, 26, 26, 36, 37, 75,
86, 87, 96, 146, 148, 179

Pseudo Random Permutation, 26, 79, 88

public key, 14, 26, 27, 40, 42, 43, 66, 68, 78, 88, 114, 115,
118, 128–130, 147, 148

Quadratic Arithmetic Program, 110, 111, 200

quadratic constraint program, 7, 110, 111, 180, 200, 202,
205, 206

227

random oracle, 33, 34, 78, 79, 83, 86, 105, 107, 110, 166,
175

randomized Spend validating key, 177

randomizer, 29, 30, 56

Rank 1 Constraint System, 200

raw encoding, 66, 68, 113, 114–119, 165

re-randomized, 29, 30, 56, 92, 95

receiving key, 9, 13, 180

RECOMMENDED, 7, 15, 37, 94, 113

represented group, 32, 33, 92, 102, 105, 164, 176

represented pairing, 34, 99, 101, 176

represented subgroup, 32, 33, 34

root (of a Merkle tree), 21, 49, 123, 128, 129, 131, 132, 158

RPC byte order, 23, 120

Sapling, 1, 7–9, 13, 14–22, 24–29, 31, 33, 35–37, 40,
44–50, 52, 54, 56, 57, 65, 67–73, 76–79, 86–88,
95, 97, 102, 105, 110–113, 115–117, 119, 120,
122–129, 131–133, 140, 143–154, 157, 158, 160, 161,
163–165, 167–180, 200, 202–205, 208–210,
212–217, 219

Sapling balancing value, 52, 175

secp256k1, 28

segment (of a Pedersen hash input), 80

serial numbers (in Zerocash), 8

settled, 18, 111, 151, 155

SHA-256, 75, 76, 86, 95, 96, 119, 120, 145, 156, 178

SHA-256d, 75, 124, 131, 133, 134

SHA-512, 75, 91, 166, 223

SHA256Compress, 75, 76, 86, 96, 114, 145, 146, 149, 178, 181

shielded, 8, 19, 43–45, 71, 127, 142, 143, 165

shielded input, 8, 19, 20, 47, 48

shielded output, 8, 9, 20, 21, 65, 67, 126, 127, 160, 166

shielded payment address, 8, 9, 13, 14, 15, 24, 25, 45–48,
56, 67, 72, 77–79, 88, 113, 114, 115, 117, 118, 127,
140, 147, 161, 163, 165, 181, 183

shielded protocol, 7, 16, 58, 148, 171

shielded transfer, 8

short Weierstrass af�ne coordinates, 39, 43, 49, 64, 68,
85, 99, 109, 110, 156

short Weierstrass compressed encoding, 118

short Weierstrass elliptic curve, 105, 107, 109, 162

SHOULD, 7, 16, 18, 44–46, 53, 55, 79, 110, 126, 132

SHOULD NOT, 7, 39, 170

side-channel, 24, 147, 148

SIGHASH algorithm, 50, 51, 160

SIGHASH transaction hash, 41, 43, 50, 53–57, 76,
122–124, 142, 154, 161, 168, 174, 182

SIGHASH type, 50, 51, 53, 55, 57, 156, 174, 184

signature batch entry, 220, 221, 223

signature scheme, 23, 28, 29–30, 76, 90, 92, 95, 177

signature scheme with key monomorphism, 30, 95,
168

signature scheme with re-randomizable keys, 29, 36,
38, 56, 95

signing key, 28, 29–30, 51, 53, 55, 175, 177

Sinsemilla commitment, 98, 145

Sinsemilla hash, 98, 146

slanted text, 7

small order (of a group element), 41, 42, 61, 62, 71, 153,
174, 176, 178, 208, 218, 220

spend authorization address key, 56, 65

spend authorization private key, 57

spend authorization randomizer, 57, 172

spend authorization signature, 40, 41, 42, 43, 50, 52,
54, 56, 57, 65, 127, 128, 130, 147, 172, 177

spend authorization signature scheme, 56, 92, 95

Spend authorizing key, 13, 36, 38, 86

Spend circuit, 49, 119, 153, 160, 177, 209, 210, 216

Spend description, 8, 17, 20, 21–22, 29, 32, 40, 41, 47,
52–54, 56, 57, 72, 98, 111, 122, 123, 125–129, 153,
174, 178, 179

Spend proof, 49

Spend statement, 20, 24, 25, 35, 41, 47, 54, 56–58, 61, 62,
77, 111, 128, 159, 174, 176

Spend transfer, 18, 20, 21–22, 28, 40, 50, 52, 54, 128, 143,
145

Spend validating key, 38, 118

spending authority, 9, 14, 37, 39, 57, 79

spending key, 8, 9, 13, 14, 17, 25, 36–38, 47, 56, 57, 66, 72,
113, 114, 115, 117, 119, 143, 144, 148, 155, 159, 165,
178, 181, 183

Sprout, 7–9, 13, 14–20, 22, 25, 27, 31, 35, 36, 43, 44,
47–52, 57, 65–67, 72, 73, 76, 111–115, 117, 119,
120, 127, 128, 144–150, 153, 154, 157, 162, 163,
165, 167–169, 171, 173–175, 177, 178

standard P2SH script, 138, 140

standard redeem script, 138, 140

statement, 20, 21, 34, 56, 60, 149, 178, 200, 217, 219, 222

synthetic blinding factor, 54

target threshold, 131, 134, 135, 136

TAZ, 23

tazoshi, 23

228

Testnet, 18, 23, 41, 71, 74, 75, 94, 113–117, 119, 125, 126, 132,
133, 136, 138, 139, 141, 142, 151, 152, 154, 165, 166,
169, 171, 180, 182

total input value, 125

total issued supply, 59, 152

total output value, 125

transaction, 8, 9, 16–22, 29, 39–46, 50–57, 66, 68–73, 111,
122, 123, 124–130, 132, 142–144, 155, 158, 159,
161–164, 170, 174, 179, 184

transaction binding validating key, 53, 55, 125

transaction fee, 22, 125, 165

transaction ID, 18, 124, 127, 158

transaction value pool (Orchard), 54

transaction value pool (Sapling), 52

transaction value pool (transparent), 18, 19, 40, 51, 52,
54, 128, 157

transaction version number, 16, 50, 68, 70, 111, 122, 123,
124, 126–129, 165, 180

transactions, 9, 14, 18, 19–22, 28, 29, 39–42, 44–46,
50–52, 56–58, 66, 69, 71, 76, 112, 121, 125–127,
129, 131, 132, 144, 154–158, 160–162, 165, 173, 174

transmission key, 9, 14, 15, 27, 44, 65, 66, 71, 165

transmitted note ciphertext, 68–70, 148

transmitted note ciphertext (Orchard), 43, 46, 70, 130

transmitted note ciphertext (Sapling), 42, 45, 68,
69–73, 130

transmitted notes ciphertext (Sprout), 40, 44, 65, 66,
72, 128

transparent, 8, 9, 19–21, 51, 113, 122, 123, 125, 127, 142, 164,
170, 182

transparent address, 113, 137, 182

transparent address (P2PKH), 113, 117, 174, 182

transparent address (P2SH multisig), 138, 140

transparent address (P2SH), 113, 117, 140, 182

transparent input, 18, 19, 22, 50, 51, 122–125, 127, 155,
160, 161, 167

transparent output, 18, 19, 51, 122–125, 127, 137, 164, 167

treestate, 16, 17, 19, 20–22, 40, 41, 43, 131, 132, 174, 181,
184

uni�ed full viewing key, 117, 119, 160

uni�ed incoming viewing key, 116, 117, 118, 151, 152, 160

uni�ed payment address, 113, 117, 118, 154, 160, 161, 163

Uniform Random String, 33, 34, 175

unpacking, 202

US-ASCII, 10, 120

UTXO (unspent transaction output), 58, 125, 142, 143,
155

UTXO (unspent transaction output) set, 19, 21, 58

valid block chain, 17, 18, 22, 127, 144

valid Equihash solution, 132, 133, 134

validating key (for a signature scheme), 28, 29–30, 39,
41, 43, 51, 54, 56, 91, 94, 95, 103, 113, 122, 124, 129,
130, 167, 175–177, 179, 220, 223

value commitment, 8, 9, 20, 21, 29, 41–43, 46, 52–56,
67, 129, 130

value commitment scheme, 53, 56

verifying key (for a zk-SNARK), 34, 35, 119

version group ID, 124, 126, 165

Vesta, 33, 35, 105, 106–107, 110, 149, 162

weak PRF, 147

windowed, 96

windowed Pedersen commitment, 213

wtxid, 18, 124, 158

zatoshi, 14, 15, 23, 52, 54, 74, 75, 125, 136, 138, 140

Zcash, 1, 7–9, 13, 18, 19, 22–24, 28, 34, 35, 50, 51, 73, 75,
76, 94, 102, 105, 108, 110–115, 119, 120, 122, 123,
126, 127, 131, 133, 134, 141–146, 148–151, 153, 165,
166, 174, 181, 182, 184

zcashd, 18, 22, 37, 71, 92, 134, 136, 145, 151, 153, 155, 156,
164, 165, 168–170, 179, 180

zebra, 18, 22, 71

ZEC, 14, 22, 23

Zerocash, 1, 7, 8, 24, 26, 51, 142–150, 153, 163, 180,
182–184

zk-SNARK circuit, 79, 102, 105, 119

zk-SNARK proof, 16, 17, 19–21, 29, 34, 35, 40–43, 56, 57,
111, 123, 128–130, 145, 147, 150, 155, 156, 173, 174,
181

229

	Title page
	Contents
	1 Introduction
	1.1 Caution
	1.2 High-level Overview

	2 Notation
	3 Concepts
	3.1 Payment Addresses and Keys
	3.2 Notes
	3.2.1 Note Plaintexts and Memo Fields
	3.2.2 Note Commitments
	3.2.3 Nullifiers

	3.3 The Block Chain
	3.4 Transactions and Treestates
	3.5 JoinSplit Transfers and Descriptions
	3.6 Spend Transfers, Output Transfers, and their Descriptions
	3.7 Action Transfers and their Descriptions
	3.8 Note Commitment Trees
	3.9 Nullifier Sets
	3.10 Block Subsidy, Funding Streams, and Founders' Reward
	3.11 Coinbase Transactions
	3.12 Mainnet and Testnet

	4 Abstract Protocol
	4.1 Abstract Cryptographic Schemes
	4.1.1 Hash Functions
	4.1.2 Pseudo Random Functions
	4.1.3 Pseudo Random Permutations
	4.1.4 Symmetric Encryption
	4.1.5 Key Agreement
	4.1.6 Key Derivation
	4.1.7 Signature
	4.1.7.1 Signature with Re-Randomizable Keys
	4.1.7.2 Signature with Signing Key to Validating Key Monomorphism

	4.1.8 Commitment
	4.1.9 Represented Group
	4.1.10 Coordinate Extractor
	4.1.11 Group Hash
	4.1.12 Represented Pairing
	4.1.13 Zero-Knowledge Proving System

	4.2 Key Components
	4.2.1 Sprout Key Components
	4.2.2 Sapling Key Components
	4.2.3 Orchard Key Components

	4.3 JoinSplit Descriptions
	4.4 Spend Descriptions
	4.5 Output Descriptions
	4.6 Action Descriptions
	4.7 Sending Notes
	4.7.1 Sending Notes (Sprout)
	4.7.2 Sending Notes (Sapling)
	4.7.3 Sending Notes (Orchard)

	4.8 Dummy Notes
	4.8.1 Dummy Notes (Sprout)
	4.8.2 Dummy Notes (Sapling)
	4.8.3 Dummy Notes (Orchard)

	4.9 Merkle Path Validity
	4.10 SIGHASH Transaction Hashing
	4.11 Non-malleability (Sprout)
	4.12 Balance (Sprout)
	4.13 Balance and Binding Signature (Sapling)
	4.14 Balance and Binding Signature (Orchard)
	4.15 Spend Authorization Signature (Sapling and Orchard)
	4.16 Computing ρ values and Nullifiers
	4.17 Chain Value Pool Balances
	4.18 Zk-SNARK Statements
	4.18.1 JoinSplit Statement (Sprout)
	4.18.2 Spend Statement (Sapling)
	4.18.3 Output Statement (Sapling)
	4.18.4 Action Statement (Orchard)

	4.19 In-band secret distribution (Sprout)
	4.19.1 Encryption (Sprout)
	4.19.2 Decryption (Sprout)

	4.20 In-band secret distribution (Sapling and Orchard)
	4.20.1 Encryption (Sapling and Orchard)
	4.20.2 Decryption using an Incoming Viewing Key (Sapling and Orchard)
	4.20.3 Decryption using an Outgoing Viewing Key (Sapling and Orchard)

	4.21 Block Chain Scanning (Sprout)
	4.22 Block Chain Scanning (Sapling and Orchard)

	5 Concrete Protocol
	5.1 Integers, Bit Sequences, and Endianness
	5.2 Bit layout diagrams
	5.3 Constants
	5.4 Concrete Cryptographic Schemes
	5.4.1 Hash Functions
	5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions
	5.4.1.2 BLAKE2 Hash Functions
	5.4.1.3 Merkle Tree Hash Function
	5.4.1.4 hSig Hash Function
	5.4.1.5 CRHivk Hash Function
	5.4.1.6 DiversifyHashSapling and DiversifyHashOrchard Hash Functions
	5.4.1.7 Pedersen Hash Function
	5.4.1.8 Mixing Pedersen Hash Function
	5.4.1.9 Sinsemilla Hash Function
	5.4.1.10 PoseidonHash Function
	5.4.1.11 Equihash Generator

	5.4.2 Pseudo Random Functions
	5.4.3 Symmetric Encryption
	5.4.4 Pseudo Random Permutations
	5.4.5 Key Agreement And Derivation
	5.4.5.1 Sprout Key Agreement
	5.4.5.2 Sprout Key Derivation
	5.4.5.3 Sapling Key Agreement
	5.4.5.4 Sapling Key Derivation
	5.4.5.5 Orchard Key Agreement
	5.4.5.6 Orchard Key Derivation

	5.4.6 Ed25519
	5.4.7 RedDSA, RedJubjub, and RedPallas
	5.4.7.1 Spend Authorization Signature (Sapling and Orchard)
	5.4.7.2 Binding Signature (Sapling and Orchard)

	5.4.8 Commitment schemes
	5.4.8.1 Sprout Note Commitments
	5.4.8.2 Windowed Pedersen commitments
	5.4.8.3 Homomorphic Pedersen commitments (Sapling and Orchard)
	5.4.8.4 Sinsemilla commitments

	5.4.9 Represented Groups and Pairings
	5.4.9.1 BN-254
	5.4.9.2 BLS12-381
	5.4.9.3 Jubjub
	5.4.9.4 Coordinate Extractor for Jubjub
	5.4.9.5 Group Hash into Jubjub
	5.4.9.6 Pallas and Vesta
	5.4.9.7 Coordinate Extractor for Pallas
	5.4.9.8 Group Hash into Pallas and Vesta

	5.4.10 Zero-Knowledge Proving Systems
	5.4.10.1 BCTV14
	5.4.10.2 Groth16
	5.4.10.3 Halo 2

	5.5 Encodings of Note Plaintexts and Memo Fields
	5.6 Encodings of Addresses and Keys
	5.6.1 Transparent Encodings
	5.6.1.1 Transparent Addresses
	5.6.1.2 Transparent Private Keys

	5.6.2 Sprout Encodings
	5.6.2.1 Sprout Payment Addresses
	5.6.2.2 Sprout Incoming Viewing Keys
	5.6.2.3 Sprout Spending Keys

	5.6.3 Sapling Encodings
	5.6.3.1 Sapling Payment Addresses
	5.6.3.2 Sapling Incoming Viewing Keys
	5.6.3.3 Sapling Full Viewing Keys
	5.6.3.4 Sapling Spending Keys

	5.6.4 Unified and Orchard Encodings
	5.6.4.1 Unified Payment Addresses and Viewing Keys
	5.6.4.2 Orchard Raw Payment Addresses
	5.6.4.3 Orchard Raw Incoming Viewing Keys
	5.6.4.4 Orchard Raw Full Viewing Keys
	5.6.4.5 Orchard Spending Keys

	5.7 BCTV14 zk-SNARK Parameters
	5.8 Groth16 zk-SNARK Parameters
	5.9 Randomness Beacon

	6 Network Upgrades
	7 Consensus Changes from Bitcoin
	7.1 Transaction Encoding and Consensus
	7.1.1 Transaction Identifiers
	7.1.2 Transaction Consensus Rules

	7.2 JoinSplit Description Encoding and Consensus
	7.3 Spend Description Encoding and Consensus
	7.4 Output Description Encoding and Consensus
	7.5 Action Description Encoding and Consensus
	7.6 Block Header Encoding and Consensus
	7.7 Proof of Work
	7.7.1 Equihash
	7.7.2 Difficulty filter
	7.7.3 Difficulty adjustment
	7.7.4 nBits conversion
	7.7.5 Definition of Work

	7.8 Calculating Block Subsidy, Funding Streams, Lockbox Disbursement, and Founders' Reward
	7.9 Payment of Founders' Reward
	7.10 Payment of Funding Streams, Deferred Lockbox, and Lockbox Disbursement
	7.10.1 ZIP 214 Funding Streams

	7.11 Changes to the Script System
	7.12 Bitcoin Improvement Proposals

	8 Differences from the Zerocash paper
	8.1 Transaction Structure
	8.2 Memo Fields
	8.3 Unification of Mints and Pours
	8.4 Faerie Gold attack and fix
	8.5 Internal hash collision attack and fix
	8.6 Changes to PRF inputs and truncation
	8.7 In-band secret distribution
	8.8 Omission in Zerocash security proof
	8.9 Miscellaneous

	9 Acknowledgements
	10 Change History
	11 References
	Appendices
	A Circuit Design
	A.1 Quadratic Constraint Programs
	A.2 Elliptic curve background
	A.3 Circuit Components
	A.3.1 Operations on individual bits
	A.3.1.1 Boolean constraints
	A.3.1.2 Conditional equality
	A.3.1.3 Selection constraints
	A.3.1.4 Nonzero constraints
	A.3.1.5 Exclusive-or constraints

	A.3.2 Operations on multiple bits
	A.3.2.1 [Un]packing modulo rS
	A.3.2.2 Range check

	A.3.3 Elliptic curve operations
	A.3.3.1 Checking that Affine-ctEdwards coordinates are on the curve
	A.3.3.2 ctEdwards [de]compression and validation
	A.3.3.3 ctEdwards ↔ Montgomery conversion
	A.3.3.4 Affine-Montgomery arithmetic
	A.3.3.5 Affine-ctEdwards arithmetic
	A.3.3.6 Affine-ctEdwards nonsmall-order check
	A.3.3.7 Fixed-base Affine-ctEdwards scalar multiplication
	A.3.3.8 Variable-base Affine-ctEdwards scalar multiplication
	A.3.3.9 Pedersen hash
	A.3.3.10 Mixing Pedersen hash

	A.3.4 Merkle path check
	A.3.5 Windowed Pedersen Commitment
	A.3.6 Homomorphic Pedersen Commitment
	A.3.7 BLAKE2s hashes

	A.4 The Sapling Spend circuit
	A.5 The Sapling Output circuit

	B Batching Optimizations
	B.1 RedDSA batch validation
	B.2 Groth16 batch verification
	B.3 Ed25519 batch validation

	List of Theorems and Lemmata
	Index

