T s e e

VLD 82024

GUANGZHOU

Spectrum: Speedy and Strictly-Deterministic
Smart Contract Transactions for Blockchain Ledgers

Zhihao Chen, Tianji Yang, Yixiao Zheng, Zhao Zhang,
Cheqing Jin, Aoying Zhou

East China Normal University
Presented at VLDB 2024
DIE 4 B SCHOOL OF DATA

N\ 2 &% / .3
éﬁ@m -7 s SCIENCE&ENGINEERING

EAST CHINANORMALUNIVERSITY [N #4i=7) 5 5 T 122

VLDB 2024, Guangzhou, China 08/27/2024

1

Outline

= Motivation

m Background

m Goals & Contributions
m Methodology

= Evaluation

m Conclusion & Future work

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 2

Motivation

= Unlike tranditional databases, blockchain ledgers concern ordering fairness
m Existing deterministic execution schemes fail to preserve both ordering fairness

and high performance

Prevents transaction Gi : :
. . . iven the fair ordering, s :
ordering manipulation Node 2 9 Eﬁ‘ {o} Fairness </

execution is required to
T,<T,<T, -~ g@i S preserve such fairness Serial Execution Efficiency X

@ g (in the OE paradigm)
= Node 1 =% » {o}{a}
To oo \g _Node 3 @@{é}b Fairess X

Qﬁ Concurrent Deterministic

Node 4 Execution Efficiency Vv’

scale up

Block

Modern Byzantine consensus, e.g., Pompe [OSDI’ 20].
Themis [CCS’ 23] incorporate fairness designs

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 3

Motivation

» They merely guarantee deterministic serializability, which can lead to a deterministic

(consistent across replicas), yet different serial order than the agreed-upon ordering

e.g., AccessControl contract: A caller with access Initially, only A has permission; 7;: A->B, 7,: B->C, 75: C->D

permission can grant it to a specified address The Fair Consensus Ordering: T:— Ty T Execution Preserves
. N Ordering Fairness
W7 % (i) 2 8
contract AccessControl { £ po £ —e &0
)5 8 After 8 8
mapping(address => bool) public access; A B c D exec. =P =P
function grantAccess(address to) public {
_ Diverged
If (access[msg.sender] I= false) A Deterministic Execution Serial Order: 7,— 71— T @ Execution Disrupts results
i)7: 7 (i) T Ordering Fairness
access|to] = access[msg.sender]; g2 = B o Op
A B
8 8 After
} Ap B C D exec. % %

Merely Determinism Does NOT
Preserve Ordering Fairness

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 4

Background

m Problem Definition: Strictly-Deterministic Serializability (SDS)

» Given an agreed ordering of transactions, O. {7, ..., 7,}, an execution schedule of

transactions S satisfies strictly-deterministic serializability iff its effect is equivalent to the

sequential execution of O, which adheres to the transactions commit order, {7, ..., 7,}

An agreed-upon ordering

T

T>

Ts

ga T, || T,]| T,

Sequential execution results

é%» T4 T, || T3 satisfies SDS

Concurrent execution results
remain consistent with

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024

5

Background

» For blockchain ledgers, ensuring SDS in an execution scheme preserves ordering fairness

» But most Deterministic Concurrency Control (DCC) schemes fail to ensure SDS when

processing smart contracts with runtime-determined accesses Kindly refer to the paper
Deterministic for an In-depth analysis_
Concurrency
Control Calvin Orthrus Sparkle QStore Caracal i"" x %
(Database)[siIGMOD’ 12] [SIGMOD’ 16] [DSN’19] [EDBT’ 20] [SOSP’ 21] e A B
Bohm PWV QueCC Aria Lotus EEE“, A A
[VLDB’ 15] [VLDB' 17] [Middleware’ 18] [VLDB’ 20] [VLDB’ 22] T P
Before 2020 2021 2022 2023 2024
Fabric & Fabric(++,#) Block-SSI SChain NeuChain Harmony Spectrum
Parallelizing [EuroSys’ 18] [VLDB’ 19] [VLDB’ 21, [VLDB’22] [SIGMOD’ 23] (Ours)
Transactional [SIGMOD’ 19, 20] ICDE’23]
Smart Contracts OXIl Primary-Follower ~ OCC-DA Block-STM

(Blockchain) [ICDCS’ 19] [TKDE’'21] [ICSE’'22] [PPoPP’ 23]

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 6

Background

» Quasi-Turing-complete smart contracts have runtime-determined access patterns

pragma solidity >=0.8.2 <0.9.0;
contract MutableRW {
mapping(uint256 => uint256) public store;

function add(uint256 key®, uint256 keyl) public {

uint256 bale = store[key@];

uint256 ball = store[keyl];

if (bale < ball) store[key@] += balil;
else store[keyl] += balo;

}
}
T & add(keyO, keyl) mmR pal0 < bal ?
Branch 1 Branch 2

Snapshot; — (bal0 < bal1)

T’s R_Set: { store[key1]} == T’sR_Set: { store[key0] }
Mutable
T’s RW_Set: { store[keyO] }R/\;JV sets 1iS RW_Set: { store[key1] }

Snapshot, —> (bal0 >= bal1)

A Transaction with mutable read/write sets

Runtime-determined nature

\ 4

whose read/write sets can vary

across different snapshots
(Mutable read/write sets)

\ 4

Most DCC schemes CAN NOT guarantee
SDS when handling mutable r/w sets

For inaccurate pre-acquisition or inherent
scheme limitations (reordering, violations, etc.)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers

08/27/2024 7

Goals & Contributions

m Design goal
» Spectrum, a DCC scheme that ensures both strict determinism and high performance (across

diverse workloads) for blockchain ledgers

m Key points and contributions

Leverages speculative execution to ensure SDS for concurrent smart contract transactions

Proposes a partial rollback mechanism with efficient impl. Two novel optimizations to maintain

Designs a predictive transaction scheduling method high performance under contention

v WV WV 'V

Evaluates by running EVM-Based smart contracts on YCSB, SmallBank and TPC-C alike

benchmarks

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 8

Methodology

m #1 Speculative transaction execution

>

>

Multi-Version Concurrency Control with runtime conflict detection
Lets each thread independently execute Txns in speculation => high inter-thread concurrency

Transaction lifecycle: 1) Execution; 2) Speculative Commit; 3) Final Commit

Total Ordering of Transactions: D : . : * : X
Detects and aborts any order-violating Txns at runtime ~ ™<7<%-T oot | Commit 1 Commiti 0"

rb) r@) w(a) Execute | Commit | Commiti
1 () O)
r@ r(b) ' ra) r(b)
(T, —o—o0—@—x 5]_0_0_04
) A) e
Upholds SDS . v : v

B

Re-executes them with their original seq. numbers

MVCC View (a) at t,
WAR

MVCC View (a) at t,

Ehe‘:k Dependency - | H] | El
Al . i
Version List
- 1

append
Speculative transaction execution

Read .
Dependency "

Version List
Header

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers

08/27/2024 9

Methodology

m #1 Speculative transaction execution
» Transaction lifecycle: 1) Execution; 2) Speculative Commit; 3) Final Commit

1) Execution: runs OPs, reads from shared storage (if not found locally), writes to T"’s local storage

Total Ordering of Transactions: (] | o * | X Read operations:

76 < 7-1 < 7-2 Tn Start | SpeCUIative. Final , Abort T’S Iocal Storage => Shared Storage
ExecuteI Commit I Commit I

r@ r(b) (reads the largest preceding version
. *—o b, : . before T and records read dep.)
. . . |me‘h
& - N\ Enables aborting T if a conflict

_ _ _
MVCC View (a) at t, is detected later

Read
Dependency *

Shared storage

e.g., Trreads Ty's w(a) Write operations:
merely inserts to local storage

PR

Version List
Header

Speculative transaction execution

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 10

Methodology

m #1 Speculative transaction execution
» Transaction lifecycle: 1) Execution; 2) Speculative Commit; 3) Final Commit

2) Specuative Commit: makes writes visible & detects conflicts & aborts order-violating Txns
Total Ordering of Transactions: D | . | * | x

To<Ty<Tp.. Ty Start | Speculative; Final Abort
ExecuteI Commit I Commit I
r(b) r(@) w(a)) ') :
o—O0—@—%& Inserts all local writes to shared storage
r(a) r{b} l
2 @ . .
.2 o—F¢ ® 3=(_ . o Detects missed reads on newly-inserted
- “{; : > writes
———"'_"_Z ’ . y
MVCC View (3) at T, e.g.,T,’s read missed T;’'s w(a)
WAR
Read . . .
Dependency ° heck Aborts those order-violating Txns
f‘é'—‘\
Version List
Header _J_t‘_:

Speculative transaction execution

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 11

Methodology

m #1 Speculative transaction execution

» Transaction lifecycle: 1) Execution; 2) Speculative Commit; 3) Final Commit

3) Final Commit: updates the tracking counter, cleans redundant versions & deps
Total Ordering of Transactions: D | . | * | x

To<Thi<Ty.. T, Start ; Speculative] Final ;| Abort
ExecuteI Commit I Commit I
r(b) r{a) w(a) -
K FC condition (i): all Txns preceding T
r(a) r{b) r(@) r(b) have been finally committed
.—o—o—.—x (T, oo @* y
i i time ” . :
- > FC condition (ii): T remains unaborted
__.-—-""'"-.—;"f :
MVCC View (a) at t, MVCC View (a) at t, _
JIAR R T Promises T no longer to be aborted
Read Read || T
Dependency \hECK Dependency * 11_. __': . _2:','
fé'_'\ & s f_l_‘\
i i V List . .
version List 4T Hoader *—1_?}_ «— After T,, T, finally committed
append

Speculative transaction execution

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024

12

Methodology

m Conflict types
» Mis-speculations lead to write-after-read (WAR) conflict (but no WAW or RAW conflicts)
» WAR conflict: Txn T;'s write W, (visible til T{'s spec. commit) is missed by T;'s read R;, where
Wi, conflicts with Ryand i <j
» Become scaling bottlenecks under contended workloads

~
both the Overhead and the Number of mis-speculations

WAR Conflict (Case 1) WAR Conflict (Case 2)

w(a) w(b)
7] @k (L}—o—@—k
} war r(b)w(c) abort{ WAR
abort l

r(c) cascading
abort

Total Ordering: T, < T, < T

|
|
|
|
r(a) ')
(T, —o X
:
|

Total Ordering : T, < T,
Exemplifying the WAR Conflict

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 13

Methodology

Traditionally: Complete Complete

} l

» When a WAR conflict occurs, the aborted transaction(s) need rollback and re-execute
Expensive and wasteful for smart contract Txns !!!

m #2 Fine-Grained transaction rollback

> Partial rollback mechanism: c:) w{c
. I) t Executed Re-Executed . Reverted
Only the operations impacted by the conflict r(b) r(a) WAR o [a
& x _ _
need tO be roIIbaCked and re-executed . Transaction-Level Rollback ! Operation-Level Rollback

reveri T, T.

Abort Tz -
e mRa
_ W, \ J
R

Complete Complete
Rollback Re-Excution

™\
A
™
A

» Avoids wasting CPU resources

& Saves re-execution overhead

Partial Rollback &
Partial Re-execution
Comparison of transation- and operation-level rollback

Reduces the overhead per mis-speculation

WA

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 14

Methodology

= Implementing partial rollback in stack-based EVM CoW at the ‘segment’ level
/' (consecutive stack elements)

» pStack, a persistent stack with Copy-on-Write (CoW) mechanism <=> replacing EVM’s Stack
» Efficiently restores and operates on multiple stack snapshots, (i.e., checkpoints)

Exposes three primitives: 1. write(elementindex, value); 2. fork(); 3. rollback(snapshotID)

——— Snapshot, - SF(2) —— p Intra-transaction
, : l— Snapshot; - SF(1) —| Persistent Stack (pStack)
Rep|aceS EVM’s Stack with pStaCk for >OP,>OP2> >OP >OP >OP > >
ff i nt h k 'nt'n . Stack Frames
erncie chec p0| | g Smart Contract Opcodes : D ERECEEEEEEEEEEEEEEEEEEEE \
[I State T write(’) Iwrlte() | SF(1) SF(@2) SF(n) !
256-bit ate Tree Physical . . :
PC : > I }1024: Meynswlgg fork) - ! 256 bits i . .
limit ! b - .
I I . ' oid i new i b N D
I Runtime Stack : _ d‘"‘_ta’ | data, ANCX

old | i [new

OpCode(s) ._I.. _________ ,
data,| ~7'| data,

1 — | | P s
— S| R s s
Memory] SEgMENt copyonwiite

SF(1) SF(2) SF(@2) SF(@) N J

Ethereum Virtual Machine (EVM) structure pStack-based stack frame management

\ﬁ_}

juswbas /
sjuawala W

Copy-on-Write

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 15

Methodology

Integrates partial rollback implementation with speculative execution
Makes a checkpoint before an external read, i.e., SLOAD with the read not in local storage

Rollbacks to a checkpointed state right before the conflict occurs

v WV WV 'V

Low checkpoint memory cost & cache-friendly

conflict key: b

r@ w(@) r(b) wib) r@ w@ ro)wp) |
|T2}tootoo. \Tzltootoo
A makeCheckpoint(-): revertStateTo(+) the latest checkpoint
prior to any of the conflicts
- EVM.pStack.fork() - EVM.getCheckpoint(-)
- Records PC, Memory - Sets PC, Memory
- EVM.addCheckpoint(-) - EVM.pStack.rollback(-)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 16

Methodology

m #3 Predictive transaction SCheduling/serving as ‘hints’
» Only requires partial a-priori read/write sets to pre-schedule potentially conflicting transactions
» If the prediction is correct, it effectively reduces the number of runtime mis-speculations

» Independent scheduling across replicas (ensures SDS despite different predictions)

/ Predictive Transaction Scheduling \ /épeculative Exec.\
""""""""""" SR Contention Table

¢ the predictive partial order "~ (partial ordered scheduling) Worker Threads

! i

! \ hotspot

i ! @ W T R} e T R} | maintain g

| ' 1 Jila_ils Jils i <

i : ~4__ :> notify

' Ol a+o—*

! |)T, | schedule

I]

i : () Wl R .r(.b)l wait #r(.a

i : ﬁ__ S proceed
e , e time
P D executing L waiting >

e Y,

Predictive scheduling optimization

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 17

Methodology

> Key intution: wait for preceding conflicting Txns to be finally committed => avoid WAR conflicts
» Sched. Algorithm (efficiency and correctness): concurrent maintenance and sequential granting
> Schedules only highly-conflicted keys and predicted WAR conflicts
» Superior parallelism than Calvin’s single-threaded ordered lock pre-scheduling
2. Runtime scheduling
/ Predictive Transaction Scheduling \ /épeculative Exec.| ©
Example: /the predictive partial order <. - maﬁ’,";‘rt:g:;”;ﬁt;'gu"ng) Worker Threads Schedules reads,
pre-acquired rw_set | ! | hotspot [—— =00 o finer than Txns
Toow@) | O DRI || mer| STeoex
T (@) | - — ! = 50 T Tg's r(a) waits for
8 - ; ¥ | OJ[iA schedule 6 To-e "‘; T5's final commit
i | Yot (0) it ir(2)
1. Pre-maintenance| Jore-sehesing ! @ LU __S_.**—"______,med
— \~. _____________________ et C] executing i':::: waiting / ﬁglé

Predictive scheduling optimization

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 18

Evaluation

m Testbed
> 2X Intel Xeon Gold 6330 CPU (28C56T each) with 256GB DRAM

m Benchmarks
» YCSB & SmallBank & TPC-C alike smart contracts (written in Solidity)

» Uniform workload and Skewed workload (controlled by Zipf)

m Baselines (incl. SOTA DCC schemes)

> Serial Benchmark Transaction Type (# of reads/writes) call ratio
> Calvin YCSB Get&Set (5r5w) 100%
_ _ SmallBank Six standard functions equal
» Aria, AriaFB (2rOw, 2riw, 1riw * 2, 2r2w * 2) probability
> Sparkle TPC-C Nerrder, Qelivew, Payment N:I.D:P.z
(4r5w/orderline, deliver 10 orderlines, 1r1w) 11:11:1

Kindly refer to our paper for further impl. and experiments

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 19

Evaluation

®= Throughput of varying threads superior parallelism, no locking and phase synchronization
e
» Under the uniform workload, both Spectrum and Sparkle scale well within 36 threads, and

outperform Aria (1.3x~2.1x), AriaFB (1.4x~2.1x), Calvin (1.7x~1.9x) and Serial (12.7x~24.2x)

—e— Spectrum —¥%— Aria —<— Calvin —o— Spectrum —¥%— Aria —< Calvin —e— Spectrum —¥%— Aria —< Calvin
—— Sparkle —A— AriaFB —— Serial —— Sparkle —A— AriaFB —»— Serial —— Sparkle —A— AriaFB —»— Serial
600K+ 1200K - 52K
@ Q @
€ 450K c c
900K — —
L.’: E L_>: 39K
5 5 5
300K — _
_g- _g- 600K _g-ZGK
()} o) (*)}
2 150K 2 o
= = 300K = 13K
0 T T T T T 0 T T T T T 0— I I | | |
6 12 18 24 30 36 6 12 18 24 30 36 6 12 18 24 30 36
Threads Threads Threads
YCSB (Uniform) SmallBank (Uniform) TPC-C (10 orderlines/order)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 20

Evaluation

= Throughput of varying threads

only applies partial rollback

» Under the skewed workload, Spectrum achieves the highest peak throughput

» Upto 1.6x, 2.1x and 5.0x higher throughput than Sparkle, Aria, and Calvin

—o— Spectrum —¥%— Aria —< Calvin —o— Spectrum —¥%— Aria —< Calvin
—— Sparkle —4— AriaFB —p— Serial —— Sparkle —4— AriaFB —p— Serial
360K — 560K —
0 0
E 270K - E 420K —
=} =}
5 5
Q. 180K — Q. 280K
L L
(o)} (o)}
3 3
= 90K- — 2 140K -
0— T I I I I 0— T I I I I
6 12 18 24 30 36 6 12 18 24 30 36
Threads Threads

YCSB (Zipf = 0.9) SmallBank (Zipf = 1.1)

Troughput(Txn/s)

—o— Spectrum —¥%— Aria —< Calvin

—— Sparkle —A— AriaFB —»— Serial
24K
18K —
12K
6K

0— I T | I |
6 12 18 24 30 36
Threads

TPC-C (20 orderlines/order)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers

08/27/2024 21

Evaluation

m Transaction and Block latency

» Serial has the lowest tx latency, then Spectrum, Sparkle, Aria variants, and Calvin (the highest)
» Spectrum realizes the lowest block latency, reducing it by 28.3%, 32.8%, 33.1%, 80.0%,

and 93.5% compared to Sparkle, Aria, AriaFB, Calvin, and Serial, respectively

BEZZ Spectrum OO Aria B Calvin B2 Spectrum Aria EE Calvin
KNl Sparkle E= AriaFB XA Serial NN Sparkle == AriaFB EX3 Serial
4400
800 —
3800 = - 1
= 600 — = 1600 T
S o>
9 G'1200-
g 400 g
5 ® 800
200
400
50% 95% Spec. Spar. Aria AriaFBCalvin Serial
Percentile Execution Schemes
p50, p95 Tx latency (YCSB, Zipf = 0.9) Block latency (YCSB, Zipf = 0.9)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 22

Evaluation

m Evaluation of partial rollback (re-execution overhead)

» Partial rollback effectively reduces the number of operations to be rollbacked and re-executed,
by 79.8%(YCSB), 57.6%(Smallbank) and 64.9%(TPC-C), compared to complete rollback

Scheme throughput

in varying Zipf

Rollback operations
per committed tx

Troughput(Txn/s)

Rollbank OPs / Commiit

—o— Spectrum-C —#— Spectrum-P

380K

- N
o]
o ul
~ ~
| |

1.86x 1 70x

T T T T T
0.9 1.0 1.1 1.2 1.3

Contention Degree (Zipf)
BN Spectrum-C EZA Spectrum-P

20K

15K

10K

v
~
|

o
|

0.9 1.0 1.1 1.2 1.3
Contention Degree (Zipf)

YCSB

—e— Spectrum-C —#— Spectrum-P

1.03x

1.2M
Q)
S

0.9M —
£
-
A

s 0.6M —
=)
>

2 0.3M-

0— T T T T
0.9 1.0 1.1 1.2 1.3
Contention Degree (Zipf)
B Spectrum-C EZA Spectrum-P

x
£
£
o
V)
~N
v
a
o
X
c
]
2
&

0.9 1.0 1.1 1.2 1.3
Contention Degree (Zipf)

SmallBank

Troughput(Txn/s)

Rollbank OPs / Commit

—e— Spectrum-C =~ —#— Spectrum-P

52K —

- N w
w 2 ©
~ ~ ~
| | |

o

T T T T T
10 15 20 25 30
Number of Items
BN Spectrum-C EZA Spectrum-P

<1—with complete rollback

60K

45K

30K
— with partial rollback

15K

10 15 20 25 30
Number of Items

TPC-C

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers

08/27/2024 23

Evaluation

strawman: copies all stack elements when checkpointing

B Evaluation Of partlal rO”baCk (efﬂC'ency Of pStaCk) pStack: uses Copy-on-Write mechanism for checkpointing

> pStack saves 84.8% checkpointing memory cost and largely reduces creation time

» pStack enhances throughput by 31.2% compared to the strawman approach
™ efficient impl. and cache-friendness

EA EVMStraw EN EVMCoW A EVMStraw BN EVMCoWw EVM — EVMStraw — EVMCoW
+ (Complete) (Partial) (Partial)
€ 220K :
£ o 380K
S £ _
| — ("2}
< 165K X € 285K
™ g =
Q el ~
£ 110K+ 5 5
) 2 2 190K -
~ L
> = o
S 55K~ £ S o5k~
: 5 P
= 0- | T | T I 0 , , | . .
EVMStraw EVMCoW 0 1 2 3 4 5 6 12 18 24 30 36
Partial Rollback Impl. Time (us) / Checkpoint Threads
Memory Cost Checkpointing Time Cost Integrated YCSB Throughput

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 24

Evaluation

Spectrum-Pg.,.q implements both predictive scheduling and partial rollback

m Evaluation of predictive scheduling Spectrum- only applies partial rollback

Spectrum-C employs neither of these optimizations

» Spectrum-Pg.,., outperforms Spectrum-P by 2.3x and Spectrum-C by 6.8x

» Predictive scheduling further reduces aborts (number of mis-speculations) by 28.2% to 62.3%

—@— Spectrum-Pscpeq == Spectrum-P —%— Spectrum-C BN Spectrum-Pscheq EEA Spectrum-P EEE Spectrum-C
—&— Sparkle =& AriaFB =p—Calvin IEm Sparkle AriaFB EEE Calvin
360K 28
0 x
E 270K — £
E g 21—
= V]
o 180K ~ 14 -
= 2
% 90K -§
= < 77
0_
| I | | | 0
0.9 1.0 1.1 1.2 1.3 0.9 1.0 1.1 1.2 1.3
Contention Degree (Zipf) Contention Degree (Zipf)
Throughput of varying Zipf (YCSB) Aborts/Commit in Varying Zipf (YCSB)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 25

Evaluation

m Ablation Studies on Integrated Optimizations

» The improvement of using only pre-scheduling (Spectrum-Cg,.,.,,1.6X) is less than that of

using only partial rollback (Spectrum-P, 1.8x), but leveraging both yields the best performance

(Spectrum-P .y, 2.8x than Spectrum-C).

—8— Spectrum-Pscheq —¥— Spectrum-Cscped —<— Sparkle-Pscpeq »— Spectrum-Pscpeq®

—=— Spectrum-P —&— Spectrum-C —>— Sparkle-C —#— Spectrum-Pscpeq™™
120K — Spectrum-Pg 4
v
S~
c
IE 90K —
S
= — Spectrum-P
3 ——Spectrum-Cg ;o4
- 60K
(*)]
=] — Spectrum-C
O 30k
=

0 I I I

Threads
Throughput of Varying Threads (YCSB, Zipf = 1.1)

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024

Conclusion & Future work

m Spectrum achieves both fair smart contract execution (by ensuring strict

determinism) and high performance for blockchain ledgers
» Speculative execution produces the same agreed-upon serial order with superior parallelism
» Two novel optimizations: operation-level rollback & predictive scheduling

> 1.4x ~ 4.1x higher throughput than SOTA DCC schemes (on YCSB,SmallBank, TPC-C alike smart contracts)

m Future work

https://qgithub.com/jacklightChen/spectrum

> Intra-transaction parallelism (@) i (e) OESEHEHO!

> Data-partitioned sharding settings

Thank you for listening! EEERL @
Q&A chenzh@stu.ecnu.edu.cn Paper Details Source Code

Spectrum: Speedy and Strictly-Deterministic Smart Contract Transactions for Blockchain Ledgers 08/27/2024 27

https://github.com/jacklightChen/spectrum

