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ABSTRACT We start by empirically evaluating the security posture of the

It is notoriously difficult to securely configure HTTPS, and poor
server configurations have contributed to several attacks including
the FREAK, Logjam, and POODLE attacks. In this work, we empir-
ically evaluate the TLS security posture of popular websites and
endeavor to understand the configuration decisions that operators
make. We correlate several sources of influence on sites’ security
postures, including software defaults, cloud providers, and online
recommendations. We find a fragmented web ecosystem: while
most websites have secure configurations, this is largely due to
major cloud providers that offer secure defaults. Individually con-
figured servers are more often insecure than not. This may be in part
because common resources available to individual operators—server
software defaults and online configuration guides—are frequently
insecure. Our findings highlight the importance of considering SaaS
services separately from individually-configured sites in measure-
ment studies, and the need for server software to ship with secure
defaults.
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1 INTRODUCTION

HTTPS provides the foundation for secure web communication,
however, configuring HTTPS securely has proven to be notoriously
difficult [56]. This is largely due to the complexity of the underlying
TLS transport protocol, which requires server operators to make
a wide range of configuration decisions. Most web servers do not
ship with optimal TLS settings, and many come with insecure
options configured by default. To make matters worse, there are
hundreds of options to select from. As of early 2020, there are over
360 cryptographic ciphers, 44 elliptic curves, 40 protocol extensions,
and 6 protocol versions [27]. Seemingly benign settings like session
ticket lifetime have nuanced security implications [29, 70], and
recommendations continually change as vulnerabilities (e.g., [9, 29,
29, 34, 35, 41]) are discovered.

The security community has released hundreds of configura-
tion guides [4, 18], online tools for verifying configuration cor-
rectness [67], and third-party software to automatically configure
servers [7]. Despite these solutions, large swaths of the web have
been vulnerable to attacks because they continue to use insecure
configurations. For example, when the FREAK attack was disclosed
in 2015, 10% of popular websites and 37% of browser-trusted web-
sites still supported export-grade ciphers, which had been depre-
cated decades earlier [41]. In this paper, we try to better understand
whether servers remain misconfigured today, and if so, why.
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Tranco Top Million sites [63]. We reverse-engineer the configura-
tion of each website by performing a series of TLS handshakes with
varying cryptographic parameters and grade the user-configurable
components of each configuration. We find that approximately 40%
of sites have optimal settings and 90% of sites have secure settings.
While this initially appears promising, these aggregate statistics
mask the coexistence of two distinct ecosystems with dramatically
different security postures. One ecosystem consists of optimal con-
figurations defined by SaaS (Software as a Service) providers that
use secure-by-default options for all hosted sites. The other consists
of individual operators who are likely manually configuring servers
and struggling to do so securely. Unfortunately, the adoption of
SaaS masks that operators still cannot achieve secure configura-
tions, despite aggregate ecosystem health improving.

To better understand why individually configured sites are much
less likely to be secure, we quantify the influence of several fac-
tors on configuration security that operators make decisions about
when manually setting up TLS: provider, web server software, and
online recommendations. We investigate the default security of
the two most popular web servers, Apache and Nginx, as well as
online recommendations for configuring them on Ubuntu. We find
that most online recommendations are incomplete and insecure:
89% recommend TLS 1.0, 55% deprecated ciphers, 28% insecure ci-
phers, and 8% are vulnerable to known attacks. Similarly, defaults
provided by Nginx and Apache provide sub-optimal security. Our
work suggests that the current approach of sub-optimal defaults
along with online recommendations that guide operators to fix
those settings, is fundamentally broken. We echo previous stud-
ies’ calls for fixing systems to be secure by default [36, 57]. We
also encourage future studies to consider SaaS services separately
from individually-configured services since aggregate statistics can
otherwise be misleading.

2 RELATED WORK

The HTTPS ecosystem and Web PKI has been subject to much
attention and there is a large body of prior work analyzing server
usability and misconfiguration [36, 57], TLS clients and intercep-
tion [40, 46, 51, 54], server configuration [42, 43, 56, 60, 70], TLS
attacks [10, 29-31, 34, 35, 37, 38, 45, 50, 71, 72], and Web PKI [32,
39, 44, 52, 74]. We highlight relevant prior work below.

HTTPS Deployment Difficulty. In 2014, Fahl et al. investigated
common reasons that websites have certificate errors [48]. Later, in
2017, Krombholz et al. [57] showed that technically proficient users
encounter challenges deploying TLS correctly. In 2019, Bernhard
et al. [36] analyzed how 10 operators deployed HTTPS on Apache 2
with and without Let’s Encrypt [28]. Both Krombholz and Bernhard
use Qualys SSL Labs server test [67] to grade deployments. Bernhard
did not find significant evidence to suggest that Let’s Encrypt led to
more secure HTTPS deployments. Our study is complimentary and



focuses on real-world deployment difficulties rather than analyzing
laboratory participants.

TLS Measurements. Feltetal. [49] track the evolution of HTTPS
adoption on the Web from 2016-2017 from both a user perspective
(via aggregate user metrics from Google Chrome and Mozilla Fire-
fox), as well as server support for HTTPS among top and long-tail
websites. Kotzias et al. [56] fingerprint TLS clients connecting to
servers at several academic institutions in North America from
2012-2017 and document trends in support for cipher suites, pro-
tocol versions, and vulnerabilities over time. They similarly find
a long tail in TLS deployment that suggests the demand for back-
wards compatibility. Their results provide insights into popular
client configurations incoming into servers in a certain geographi-
cal area, such as browsers and OS-provided libraries, but provides
limited visibility into the server ecosystem, which is the focus of
our study. More recently, Holz et al. [53] track the deployment
of TLS 1.3 from 2017-2019-a small subset of our measurements.
ICSI SSL Notary [33] similarly provided high level statistics of TLS
sessions from 10 participating organizations. SSL Pulse [65] is a
dashboard for monitoring the quality of TLS support over time
across 150K HTTPS websites sample from the Alexa Top Million.
For this subset of sites, they present the distribution of grades as
well as support for a number of individual directives (e.g., protocol
support, ciphers, key exchange strength, etc.) and the number of
sites being vulnerable to various attacks (e.g., DROWN, ROBOT,
POODLE, etc.) Most recently, Lee et al. investigate the spatial differ-
ences in TLS configurations and security of 7M domains hosted on
content delivery networks (CDNs) and other web hosting services.
They find that it is possible to redirect TLS handshake messages
to weak TLS servers of which both the origin server and the client
may not be aware of [59].

While measuring the support for directives is helpful in assisting
operators in understanding the deprecation of specific features,
they do not provide insight into the higher level decisions made
by operators (e.g., to keep system defaults, to follow recommen-
dations, or to migrate to a cloud provider). Rather than focus on
individual components Qualys’ SSL Labs Test and SSL Pulse [65]
do, we consider a site’s configuration as our unit of analysis. Our
focus is on the various sources of influence on the security of the
HTTPS ecosystem (defaults, providers, and online recommenda-
tions). While we analyze specific configuration choices in order to
determine whether a server is set up securely, this is a first step
in understanding how operators arrive at a configuration, rather
than the end result of our analysis. As far as we are aware, no prior
work has analyzed server operator decisions at scale or with this
intent. As we will show, analyzing individual directives provides a
misleading picture of the security posture of the HTTPS ecosystem,
as it masks many notable differences among web server software
and provider.

SSL Grading. Qualys’ SSL Server Test [67] provides numeric and
letter grades for SSL servers. Qualys’ scheme [64, 66] grades sites
on their protocol support, cipher suite support and strength, key
exchange support and strength, and TLS vulnerabilities. Our grad-
ing scheme is based on SSL Lab’s, but differs in a few ways. First,
Qualys rates servers on their certificate and HTTP configuration in

addition to TLS configuration. We do not grade servers on these cat-
egories as our focus is on TLS directives that are user-configurable
for servers like Nginx and Apache. Certificate values are not config-
ured by server operators, and the introduction of the CA/Browser
Forum Baseline Requirements has resulted in certificates being
consistently issued by authorities [58]. Our grading schemes are
comparable in leniency: Qualys’ A+ and A grades roughly corre-
spond with our A grade, their A and B grades with our Bs, their Cs
and Ds with our Cs, and their Fs with our Fs.

3 BACKGROUND

TLS Handshake. In HTTPS, communication is encrypted using
the Transport Layer Security (TLS) protocol [25]. TLS handshakes
are initiated when the client sends a ClientHello message, which
specifies the TLS version, cipher suites, and extensions that the
client supports. Each cipher suite consists of four components: au-
thentication algorithm, key exchange method, symmetric cipher,
and message authentication code (MAC). The client may choose to
list these cipher suites in its preferred order. The server replies to
the client with a ServerHello message that contains the server’s
selection of TLS options (e.g., protocol version, cipher suite, ex-
tensions) from the client’s presented list of support. For a more
detailed reference, we refer the readers to RFC 5246.

Web Server Configuration. Server operators are faced with sev-
eral decisions when configuring a web server. While some operators
choose to host websites on cloud providers like Cloudflare, which
leave a limited amount of configuration options for users, others
use popular open source software such as Apache [2], Nginx [19],
and Lighttpd [16], which come equipped with a default config-
uration. Beyond acquiring and installing a certificate, operators
often choose to manually configure the default settings, by en-
abling more secure features such as server cipher preference and
disabling insecure ones like RC4 ciphers. Operators can draw on
several sources for guidance in this process: official server specific
documentation [8, 20], online recommendations such as the Mozilla
SSL Configuration Generator [18], personal blogs by security ex-
perts, and automatic tools that configure servers [7]. Online tests
such as SSL Labs’ SSL Server Test [67] provide a means of testing
the security of TLS configurations and identifying security issues.

4 METHODOLOGY AND DATA COLLECTION

We start our analysis by collecting and grading the HTTPS con-
figurations of the Tranco Top Million websites. In this section, we
describe our HTTPS scanner and grading methodology. To note,
we build a scanner instead of using SSL Labs’ due to the scale of our
study—we scan several million sites, which would not have been
possible in a reasonable time frame using SSL Labs’ API.

4.1 Defining a Configuration

We define a configuration in terms of the TLS options that are
configurable in the four most common user-configurable web sites:
Nginx, Apache, Lighttpd, and IIS. This includes TLS version, ci-
pher suites, session ID resumption, extension session ticket, ticket
lifetime hint, compression support, server cipher preference, Diffie-
Hellman (DH) group size, and Diffie-Hellman group, but excludes
library-controlled settings like TLS Heartbeat support. To avoid the



exponential explosion of variable space and because cipher suites
are typically introduced by cipher, we analyze cipher components
(e.g., ECDHE, 3DES, RC4, MD5) rather than individual TLS cipher
suites. All features are binary indicators, with the exception of DH
group size and ticket lifetime hint, which we discretize.

4.2 Collecting Server Configurations

To collect configurations, we introduce a scanner that reverse en-
gineers the HTTPS settings of websites by performing a series
of HTTPS handshakes that present varying sets of cryptographic
parameters. We detail the scanner and handshakes below:
HTTP(S) Support. We first attempt a TLS handshake that emu-
lates a modern browser by offering TLS 1.2 support and the union
of ciphers present in the recent versions of Chrome, Safari, Firefox,
and Edge.l If this handshake succeeds, we attempt an HTTP GET /
over TLS. We exclude hosts that do not complete these two hand-
shakes from our study as they would not be accessible to normal
users. We also note the certificate signature algorithm to decide
whether to offer ECDSA or RSA ciphers in future handshakes.
TLS Version. We check SSLv3-TLSv1.2 protocol support by iter-
atively sending TLS Client Hello messages that indicate support for
progressively older TLS versions. For every message, we present
the set of versions older than the server’s last indicated support. For
example, if a server selects TLSv1.1 in response to our TLS1.2 hand-
shake, we would present TLSv1, and if successful, SSLv3. We offer
commonly supported cipher suites and curves in each handshake.
We test support for SSLv2 and TLSv1.3 separately because they use
different handshakes or mechanisms for indicating version support.
Cipher Suite Support. We test support for DES, 3DES, RC4,
IDEA, SEED, Camellia, ARIA, ChaCha, and AES symmetric ciphers,
MD5, SHA-1, SHA-256, and SHA-384 MACs, and NULL or EXPORT
components. We do not test for widespread support of PSK, SRP,
ECCPWD, KRB, DSS, DH, or ECDH-based key exchange methods,
MD2 MACs, or Anon signature algorithms, because we find that
less than 0.1% of sites in the Tranco Top Million support these algo-
rithms.? To measure cipher suite support, we send a Client Hello
that indicates support for all cipher suites compatible with the pre-
sented certificate (i.e., ECDSA or RSA) and iteratively remove the
server selected cipher until the handshake fails. Although browsers
typically present fewer than 30 cipher suites, we find that including
97 cipher suites (the maximum we offer in our first handshake) does
not preclude any server from completing a handshake.
Extensions. We test support for TLS extensions by sending a
single handshake that indicates support for the following exten-
sions: server name, heartbeat, session ticket, ALPN, OCSP stapling,
secure renegotiation, extended master secret, and signed certifi-
cate timestamp, and checking for selection in the Server Hello.
If the server indicates support for heartbeat, we also test for the
Heartbleed vulnerability.

TLS Compression. We attempt a handshake with TLS compres-
sion methods deflate and LZS [55].

IWe specifically use the TLS 1.2-compatible cipher suites specified by Chrome 65,
Safari 13.0.1, Firefox 66, and Microsoft Edge 18.18363.

ZPrior to doing our large-scale scan of Tranco and CT, we scanned Tranco for support
of the comprehensive set of ciphers supported by IANA.

Session Resumption. We test support for session ID resumption
and session tickets by sending two handshakes each, to establish
and attempt to resume sessions.

We implemented our scanner in Go, using the ZCrypto TLS li-
brary [26]. We have released our scanner at https://github.com/
stanford-esrg/tls-webserver-configuration-scanner under the Apache
2.0 license. In total, our algorithm completes 14-93 handshakes per
server. The large range is primarily due to the large number of
cipher suites that a server can theoretically support. On average,
we perform 40-43 handshakes per site.

4.3 Grading Configurations

Inspired by Qualys’ SSL Server Test [67], we define a grading
scheme to quantitatively compare the security provided by dif-
ferent configurations (see Section 2 for a comparison between our
algorithm with Qualys’ SSL Server Test). We assign a grade of A (op-
timal), B (non-optimal but safe), C (weak, vulnerable to academic
attacks), and F (severely broken, simple MITM possible) grades
to websites. We grade sites based on 7 categories and assign the
minimum score across the categories:

Protocol Support. To receive an A, sites must support TLSv1.2
or 1.3 and must not support SSLv2 or 3. Sites that support SSLv2
receive an F; sites that do not support TLSv1.2 or 1.3 receive a C.
Key Exchange. Sites must only support ECDHE key exchange
for an A; sites must support a minimum 2048-bit DHE group or an
uncommon 1024-bit group for a B. Sites with 768-bit DHE groups
receive a C, and sites with smaller DHE groups receive an F.
Symmetric Ciphers & MAC Algorithm. To receive an A, sites
must support AEAD ciphers, and not support any of: Camellia,
ARIA, IDEA, SEED, RC4, or DES ciphers, MD5, NULL or EXPORT
ciphers. For a B, sites must not support any of: RC4 or DES ciphers,
MD5 MACs, NULL or EXPORT components. To receive a C, sites
must not support DES ciphers or any NULL or EXPORT compo-
nents. Otherwise, sites will receive an F for supporting DES ciphers
or any NULL or EXPORT components.

Preferred Cipher. Sites must support server cipher preference
and must prefer an AEAD cipher and Perfect Forward Secrecy (PFS)
to receive an A. All other sites receive a B.

Compression. Sites that support TLS compression receive a C,
otherwise, they receive an A.

Ticket Lifetimes. Sites with session ticket hints longer than a
week receive a C; 1-7 days, B; and under 24 hours, A. While a
session ticket hint can differ from the ticket lifetime, Springall et al.
showed that they are nearly always the same in practice [70].
Vulnerabilities. Sites vulnerable to CRIME[10], POODLE[35], or
FREAK][71] receive a C. Sites vulnerable to Heartbleed receive an F.
Sites not vulnerable to any TLS attacks to receive an A3

4.4 Data Collection and Annotation

We analyze 1.16M websites that appeared in the Tranco Top Mil-
lion [63] in August 2019. We performed our scan between Septem-
ber 4-8, 2019 from 3 servers at Stanford University. We completed

3We do not consider elliptic curve support in our definition of a configuration as there
are no known curve-based vulnerabilities (despite downgrade attacks [73]) and there
have been bugs in Nginx related to curve selection, where even if specific curves are
specified, they may not end up being used [61] [62].
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Figure 1: CDF of site count by grade and ASN rank.—
Cloudflare’s dominance and its small set of A-grade config-
uration is responsible for approximately 50% of As, lifting
the average grade for all sites.

handshakes over a 102 hour period and waited a random 0-2400 sec-
ond period between each handshake in order to prevent overloading
sites. Of the 1.16M candidate sites, we were able to resolve 1.06M
names and successfully complete a TCP handshake on port 443 with
890K. Of those, 678K sites presented a browser-trusted certificate
that matched the name on the website and responded to an HTTPS
GET / request. In the event of a non-TLS related error, our scanner
attempts another handshake before proceeding. This extra attempt
accounts for potential network loss. We followed the best practices
set forth by Durumeric et al. [47], configuring the HTTP page on
scan hosts to redirect to a website that explained our study. We
received only one exclusion request.

We extract the server software from the HTTP Server header [24]
and use MaxMind GeoIP2 GeoLite [13] to geolocate sites at the
country-level. We identify Content Delivery Networks (CDNs) and
Software as a Service (SaaS) providers from their Autonomous
System (AS) number and name.

Finally, to understand whether different types of sites have dif-
fering security profiles, we map a random sample of 100K sites to
the Alexa Top Sites [1] 17 categories.* We were able to successfully
map approximately 67% of our sample to categories.

5 HTTPS ECOSYSTEM SECURITY

Across the 678K sites in our study, we find 7.7K unique configura-
tions in over 16K ASes. The most popular configuration accounts
for 14% of sites and belongs to Cloudflare. The long tail begins
thereafter, with the next most popular configuration being adopted
by only 3.3% of sites and hosted across 1,421 ASes. Nearly 90% of
all sites have secure HTTPS settings (A or B). Nearly 40% receive
an optimal A grade, 10% receive Cs, and only 1% Fs. While this ini-
tially appears very promising, the aggregate number masks notable

4We limit our analysis to 100K sites instead of the complete list due to resource
constraints. Alexa Top Sites categorizes websites into the following categories: Adult,
Arts, Business, Computers, Games, Health, Home, Kids and Teens, News, Recreation,
Reference, Regional, Science, Shopping, Society, Sports, and World.
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Figure 2: CDF of site count by grade and configuration
rank.— Sites receiving As concentrate in higher-ranking con-
figurations, whereas configurations that are less commonly
used are more insecure.

differences in the distribution of grades across server software and
provider, which we detail in the remainder of this section.

5.1 CDN Providers

A small number of CDNs and unique configurations account for
the majority of secure sites (A or B grade). Ten ASes account for
approximately 72% of sites with As and 38% of Bs; 100 ASes account
for 86% of As and 67% of Bs. At first glance, this concentration may
not appear surprising. Infrastructure providers host a large number
of all sites. The top 10 and vast majority of the top 100 ASes belong
to SaaS companies, cloud providers, and CDNs. Indeed nearly 73%
of all websites—regardless of grade—are hosted in 100 ASes and
33% of sites are hosted in 10 ASes. However, as can be seen in
Figure 1, sites with poor security do not see this concentration, and
are widely spread across a large number of ASes: 100 ASes account
for only 57% of Cs and 30% of Fs.

We investigate the sites in the top 100 ASes and find that in
many cases, there is a single or small handful of configurations in
popular SaaS/CDN/cloud networks that account for a significant
fraction of sites. This suggests that providers exert influence on
operators’ choice of configuration options, whether it be via a
default configuration, limiting configuration options, or providing
clear recommendations that operators use in practice. Within the
top ten ASes, the most popular configuration in each AS is used
by a significant proportion of sites, and in each case, it is secure
(i.e., receives either an A or B grade). At the extreme, a single
Cloudflare configuration accounts for 52% of all sites in our study
that receive an A grade. The top 100 configurations that receive
an A grade account for 97% of all A websites. In contrast, the top
100 configurations that receive an F grade account for only 18% of
sites with Fs.

In some cases, this is due to the provider offering their own SaaS
service, even when the top configuration does not account for the
majority of sites on the provider. For example, the most popular
configuration in Amazon ASes belongs to Cloudfront, which offers
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Table 1: Primary reasons for grade downgrades—Primary
factors contributing to downgrades from each grade to the
next lower one. Each value represents the proportion of sites
downgraded to each grade (from better grades) by reason.

clients six possible security policies to choose from [21]. The domi-
nant configuration accounts for 14% of Amazon sites and 5.6% of
all sites in Tranco. We also see evidence of smaller SaaS providers
operating within the cloud providers. For example, Google’s most
dominant configuration is used in 39% of its sites and belongs to
a hosted third-party provider, WP Engine [22, 23]. We empirically
infer the default configurations for providers, and provide the five
most popular configurations within each of the top 10 ASes in
Tranco in Table 4. The default TLS settings are typically not adver-
tised online and we found it intractable to create accounts for each
provider, especially as each provider typically offers multiple plans,
including enterprise policies. Some CDNs may provide more or less
than five default configurations, however, as can be seen in Table 4,
any defaults we have missed are only used by a small proportion
of sites in the tail of the distribution and are thus less impactful
on the ecosystem as a whole. We find that all of the dominant
configurations are secure, receiving either an A or B grade.

While we cannot exactly quantify the improvement in secu-
rity that SaaS providers are responsible for due to the tremendous
number of providers globally, we observe an unambiguous posi-
tive contribution to improving the security of the overall HTTPS
ecosystem from even the ten most popular. There is a clear disparity
in the security profile for sites hosted on large, well-known SaaS
providers versus individually-configured sites, which are likely
manually configured servers by operators. We confirm this finding
more generally by considering the top configurations independent
of the AS they are in. A pairwise T-test with a Bonferroni adjustment
for multiple comparisons confirms that configuration dominance
(i.e., the proportion of sites that use a configuration) is correlated
with grade: the unique configurations that receive higher grades
are used by a larger number of sites than configurations that are
insecure. Figure 2 shows the complete distributions of configuration
rank in terms of the proportion of sites using each configuration.
At the other extreme, we find that for uniquely configured sites,
the odds of the configuration being insecure (receiving a grade of
C or F) is 1.30 times higher than being secure—57% versus 43% of
uniquely configured sites are insecure. The same qualitative result
holds even if we relax this threshold and consider configurations
used in more than one site, although the effect is attenuated. For
example if considering configurations used in at least 10 sites, the
odds of having an insecure configuration is 1.09 times that of having
a secure configuration.

5.2 Drivers of Insecurity

Next, we investigate the main reasons why sites are insecure, which
are summarized in Table 1. Of sites that received a B, the primary
reasons why servers were downgraded was a lack of cipher prefer-
ence (12% of sites) and support for at least one suboptimal cipher
(13%). Sites were downgraded to a C for key exchange (20% of sites
used 1024 bit common DH parameters and are susceptible to Log-
jam) and support for ciphers (40% of sites supported RC4 and 32%
supported MD5 MACs). To prevent a majority of downgrades to C,
servers can generate fresh 2048 bit DH parameters with OpenSSL
or use Mozilla’s predefined ffdhe2048 parameter [18] and remove
support for RC4 and MD5 macs. Last, of sites that were down-
graded to an F, 44% were downgraded due to support for SSLv2,
29% were downgraded due to a weak key exchange strength, 29%
were downgraded due to supporting insecure ciphers (80-89% of
these supported export grade ciphers, NULL cipher components,
and DES ciphers), and 5% were due to having vulnerabilities (all
sites receiving an F were vulnerable to Heartbleed, 90% supported
compression and CBC ciphers). Patching Heartbleed requires an
update of the cryptographic library. A comprehensive description
of individual directive support is included in the Appendix. We
caution that our analysis only captures a snapshot of the current
state of the HTTPS ecosystem, and results may be volatile over
time.

Of sites that were downgraded to B because of their cipher pref-
erence, 74% did not have server cipher preference and 56% first ne-
gotiated with non-AEAD ciphers. Of servers that were downgraded
to B because of their cipher suite support, over 74-99% supported
older, uncommon, and non-AEAD ciphers: ARIA, Camellia, SEED,
or IDEA. This suggests that enabling server cipher preference and
removing support for uncommon ciphers are simple changes that
could upgrade servers to optimal security without affecting client
compatibility. While we cannot confirm for certain whether an
insecure site is left so intentionally, for example, in order to sup-
port legacy clients, previous work has documented the difficulties
that operators face when configuring servers [36, 48, 57], so it is
likely that a significant portion, if not all, of these issues are attrib-
utable to configuration mistakes or are configurations that have
become outdated over time. Further, many of the misconfigurations
made do not improve compatibility with any version of mainstream
browsers.

5.3 Ordinal model

To more quantitatively confirm our finding that cloud providers
are primarily responsible for secure configurations, we model the
relationship between server security and several variables related to
the provider, server software, geographic location, site content, and
site popularity in Tranco. For example, it could be that popular sites
are more secure than unpopular ones, and popular sites use SaaS
providers. We exclude Cloudflare sites as there are few configura-
tion choices left to the user and little variance in the grade—virtually
all sites obtain an A.

We treat the set of sites measured as a random sample of the
most popular sites. We fit a generalized ordered logistic regression
model using R’s oglmx package [11] to understand the relationship
between a server’s grade and several variables related to the server



F/C B A F/C B A
Nginx 094 099 1.07 .org 099 100 1.01
JIN] 1.10 1.01 0.90 net  1.01  1.00 0.99
Litespeed 0.73 0.81 1.71 de 098 1.00 1.03
OpenResty 0.88 095 1.20 .uk 0.99 1.00 1.02
CPanel 110 1.00 0.90 jp 105 1.01 0094
BigIP 0.87 095 1.20 .ae 1.02 1.00 0.98
Cloudfront 072 079 177 au 097 099 1.03
Varnish 083 092 1.32 JAr 1.03  1.00 0.97
ATS 092 098 1.11 it 1.03  1.00 0.97
AWSelb/2.0 073 079 1.72 .co 097 099 1.04
SquareSpace 0.98 1.00 1.03 ua 096 099 1.05
Akamai 0.75 0.82 1.64 .io 094 098 1.09
GHS 097 099 1.03 .es 1.02 1.00 0.98
Other 087 096 1.20 .vn 1.05 1.01 095

Table 2: Marginal effect sizes in terms of odds for ordinal
logistic regression. Only significant predictors, with an ab-
solute effect size greater than 1% are shown. The baseline
categories for server is Apache, and “.com”. All coefficient
are significant at the 0.05 confidence level.

software, geographic location, site content, and site popularity in
Tranco. As is usual in these contexts, we assume that, underlying
the observed discrete grade categories of a site i, Y;, there is a
continuous latent variable Y; that captures the security posture of
a site. We assume that the mean of the underlying latent variable
may be modeled as a linear combination of explanatory variables:

Yi = Po + PseroerSi + Priati + Pmedian™i + Pfsadi + € (1)

where fp is an intercept term, s; represents the server software,
t; represents the top level domain of the site; m; and d; represent
the median and standard deviation of the site rank across the one
month period, respectively; and ¢; is a mean zero error assumed to
be logistically distributed across observations.

We find that server software and TLDs (especially country-level
TLDs) are highly correlated with grade, while the other covariates
have minimal effect. Microsoft-IIS and CPanel in particular stand
out. The odds of obtaining a high grade decrease, from 1.10 times
greater for a F/C, to 0.88 lower for an A. There is some evidence
that top level domain and geographical location of the site matters.
Sites with Japanese and Vietnamese TLDs are more likely to obtain
a low grade. The odds of obtaining an F/C is 1.05 times higher for
Japan and Vietnam, and the odds of obtaining an A is 0.94 lower
for Japan, and 0.95 lower for Vietnam. In contrast, sites with .io,
.co, and .ua are more likely to get an A, with odds of 1.09, 1.05,
and 1.04 respectively. The popularity of the site does not seem to
matter. The median rank was not found to be significant, and the
effect sizes for standard deviation of rank were small, even when
significant. In contrast, sites hosted on LiteSpeed, BigIP, Varnish, as
well as several cloud providers: Amazon CloudFront, AWS elb/2.0,
and Akamai increase the odds of obtaining an A. The effects are
large and significant. For example, the odds of obtaining an A (as
opposed to a lower grade) is 1.77 times higher for a site hosted
on Cloudfront, than for one one hosted on Apache. The complete
model output including significance results are given in Table 6.

5.4 Ubuntu Defaults

To better understand why so many individually configured sites
receive B, C, and F grades, we investigate the default settings and on-
line recommendation guides for the two most popular web servers,
Apache and Nginx. Together, Apache and Nginx account for 70%
of non-Cloudflare Tranco sites. We primarily investigate Ubuntu
defaults as Ubuntu is the most commonly identifiable OS, account-
ing for 48% of sites that identify an OS in their server string in
Tranco. 3. To identify default Ubuntu settings, we installed the last
four Ubuntu LTS releases (12.04-18.04) with all compatible combi-
nations of packaged OpenSSL (1.0.1-1.1.1) and Nginx (1.1.19-1.14.0)
or Apache (2.2.22-2.4.29) packages. In total, we analyze 2,069 com-
binations and extract 11 unique configurations (Table 3) consistent
with our definition of a configuration.

We find that no default receives an A grade; the majority (5/11)
receive a B.% All Ubuntu defaults support TLS 1.0-1.2, session tick-
ets valid for 300 seconds, AES-128, AES-256, and AES-GCM ciphers,
AEAD, CBC, Camellia and ARIA ciphers, RSA key exchange, as
well as SHA-1 MACs. Five defaults on older Ubuntu versions sup-
port SSL 3.0 and two on the most recent version (18.04) support
TLS 1.3. Two Apache on Ubuntu configurations support RC4 and
three support 3DES ciphers; no defaults support DES or IDEA ci-
phers, MD5 MACs, or NULL or EXPORT components. We note that
default security has improved over time, with the most recent ver-
sions obtaining B-grades. Nevertheless—they still lag behind cloud
providers and servers that offer secure TLS settings by default like
Caddy [5] of which 99% of sites receive an A grade.

Both Nginx and Apache on Ubuntu fall short of an A because they
support uncommon ciphers (e.g., CAMELLIA). Additionally, Apache
configurations are capped at a B because they do not have server
cipher preference. Encouragingly, the latest versions of Apache on
18.04 have TLSv1.3 support by default. Nginx on 18.04 has intermit-
tent support for TLSv1.3. Only a small number of sites in Tranco
use these exact default values—1.7% of sites. Of sites that identify
as using Nginx, 1.8% support an Nginx default; of sites that identify
as using Apache, 4% support an Apache default. It is unclear why
operators change settings that do not improve site security. It may
be a misguided attempt to improve security, or an attempt to fix
unrelated problems.

The Ubuntu configurations of Nginx and Apache differ in several
ways. Nginx on Ubuntu by default has server cipher preference
in 16.04 onward. We note that this is a Ubuntu specific choice
rather than an Nginx default [17], which has server cipher pref-
erence turned off. Other OSes such as Fedora [12] and Centos [6]
do not set server cipher preference. Apache on Ubuntu does not
use server preference in its defaults [3]. Additionally, Apache on
Ubuntu by default supports session ID resumption [3] whereas Ng-
inx on Ubuntu does not [17]. Starting with version 18.04, Nginx on
Ubuntu also removed support for finite-field-based Diffie-Hellman
key exchange.

SWe are able to identify the OS from the server string on only 10% of sites in Tranco
©A server supports a TLS feature by default if: (1) the server software implements the
feature, (2) the feature is enabled through compilation, and (3) the feature is turned on
in the configuration file.
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Table 3: Default configurations for Ubuntu and OpenSSL on Nginx and Apache. A circle represents support, an empty circle
indicates no support. Values represent the proportion of domains supporting each default out of the subset of sites running
Ubuntu and each server in Tranco and CT (n=15K Apache and n=9.6K Nginx in Tranco; n=13K Apache and n=9.4K Nginx in
CT). Several defaults had multiple server types as indicated by the footnotes: [1] includes Ubuntu versions 12.04, 14.04; [2]
includes OpenSSL versions 1.1.0g, 1.1.1; [3] includes OpenSSL versions 1.0.1, 1.0.1f.

5.5 Online Recommendations

With only a fraction of sites matching defaults and with defaults
receiving Bs or lower, we turn our attention to HT TPS configuration
guides to understand how operators try to securely configure sites.
We collect a sample of likely-found recommendations by having
four researchers independently compile a list of relevant search
terms for Nginx and Apache, and then analyze the configuration
guides from the first three pages of Google results for each search.
In total, the team generated 16 unique search terms for Nginx
and 9 for Apache e.g., “secure SSL configuration apache”, “secure
nginx ssl settings”.). In cases where websites recommended multiple
configurations (e.g., for modern and legacy, or wide compatibility),
we extracted all recommendations. To ensure our results are not
biased towards English recommendations, we also searched for
Nginx TLS recommendations in the next top three languages (after
English): German, Russian, and French. These languages correspond
to the countries where the highest number of non-Cloudflare sites
geolocated. We performed our searches over ExpressVPN using the
country-specific Google search engine for each. Another concern is
that the exact recommendations on each site may have changed over
time and what we observe today may not be reflective of what server
operators may have seen when they were setting up web servers,
potentially several years ago. For this reason, we also compiled
a list of historical recommendations. Specifically, we selected a
random sample of 50 unique URLs for which we inspected historical
snapshots from WayBack Machine [14]—a free online service that
stores snapshots of websites over time.

In total, we collected 1,162 search results, from which we ex-
tracted 466 unique recommendation sites, including 57 URLs in
French, 76 URLs in German, and 58 URLs in Russian. About 40%
of sites do not contain a recommendation. These sites tend to be
websites related to SSL configurations but do not contain a specific,
ready-to-use recommendation. For example, a large number of sites

cover topics related to installing SSL certificate or setting up an
SSL proxy. Usable recommendations typically specify a handful of
settings (e.g., version, ciphers, and server cipher preference), but
most do not account for all configurable options. About 26% of
recommendations are from commercial sites (e.g., official documen-
tation and cloud tutorials), 63% are blogs (73% of which are personal
and 27% corporate), and 12% are forum posts on sites like Stack
Overflow. The highest ranked URLs tend to be official sources. The
SSL Mozilla configuration generator and an official Nginx documen-
tation page show up most frequently in search results, followed by
posts from TechRepublic, DigitalOcean, CyberCiti, Apache, Linode,
TechMint, and GeekFlare. The first non-official URL is “hayden-
james.io”, which appears in results from 6 of the 38 search terms.
Measuring which websites follow a specific recommendation is
complicated by the fact that applying recommendations to differ-
ent versions of Apache, Nginx, and OpenSSL can lead to different
TLS feature support. First, different versions of OpenSSL support
different TLS versions, cipher suites, and extensions. Second, recom-
mendations of SSL protocol versions and ciphers are often stated
in terms of exclusions (e.g., A11 -SSLv2) and components (e.g.,
ECDHE+AESGCM). For this reason, we check consistency with recom-
mendations and check for support of allowed or disallowed options
and cipher components instead of the exact cipher strings. For
example, given the recommendation ECDHE+AESGCM: !RC4, a con-
figuration would be consistent with it if at least one ECDHE+AESGCM
cipher suite is supported, no non-ECDHE+AESGCM cipher suite is
supported, including no RC4 cipher suites. We thus offer an upper
bound estimate on the number of sites that follow a recommen-
dation. We limit our analysis to non-Cloudflare sites hosted on
Apache and Nginx. We find that 4% of Apache sites and 20% of
Nginx sites in Tranco are consistent with a recommendation. Of
sites that identify themselves as running on Ubuntu, 18% of Apache
sites are consistent with a recommendation and 7.3% of Nginx sites



are consistent. Because we know the default values of Ubuntu, we
can calculate the exact options for each recommendation by apply-
ing them to the defaults from all versions of Apache, Nginx, and
OpenSSL on Ubuntu 14.04-18.04. In the case of a recommendation
that is missing directives, we substitute the default setting. We find
almost no matches when searching for exact recommendations
in our data—under 1% of both Tranco and CT sites. While many
sites running Ubuntu likely do not include the OS in the Server
header, the result confirms that our consistent metric significantly
overestimates the number of sites that follow a recommendation
and should only be treated as a high upper bound.

Security of online recommendations. We apply our grading
scheme to the recommendations we collect to understand how
they would affect server security. Interestingly, only 7.3% of unique
recommendations receive a grade of A. The large majority—88%,
receive either a grade of B or C, and 4.0% receive an F. We find
that secure recommendations rank higher than insecure recom-
mendations. The average rank for recommendations receiving an
A is 9.8, versus 14.4 for B and 12.6 for C (differences are statisti-
cally significant using an ANOVA test with a significance level 0.05,
p<0.001).

In terms of individual TLS parameter support, several findings
stand out. First, only a small proportion of recommendations would
result in a modern, A-grade configuration with only the most up-to-
date security parameters (only 22% recommend TLSv1.3, 30% rec-
ommend ChaCha ciphers). If applied to the default configuration of
a server, many would not exclude insecure options. Specifically, 8%
of recommendations support SSLv3, 3% support DES, 18% support
3DES, 13% support RC4, and 8% support MD5. More recommenda-
tions still allow ciphers that are not widely used (38% Camellia, 16%
SEED and ARIA ciphers).

There are several options that are consistently recommended
across the majority of sources. Just under a third of recommen-
dations mention session tickets (31%). Where mentioned, few rec-
ommendations suggest that session tickets be turned on (11% of
current). This is contrary to the wide support that we observe
empirically—74% of non-Cloudflare domains support session tick-
ets in Tranco. Another option where recommendations are gener-
ally unanimous is ssl_prefer_server_ciphers. This directive is
mentioned in 75% of recommendations, 91% of which recommend
that it be turned on. This is higher than the level of support we
empirically observe in Tranco (63%). Historical recommendations
follow a qualitatively similar patterns and are omitted for brevity.
We do not find significant differences between current and histori-
cal recommendations in terms of security posture, and they do not
result in a higher proportion of matches.

One possible explanation for observing such a larger number
of insecure recommendations may be that they are outdated. The
majority of sites display the publication date (77%), and we investi-
gate whether the publication date has any impact on the security
posture of the recommendation. Despite a long tail of publication
years dating back to 2010, we find that 39% of recommendations
are “current”, meaning that they were published on or after January
1, 2019. Of sites that are current, 46% are secure, versus 56% of
secure sites published prior to 2019. A Chi-square test confirms
that there is no statistically significant relationship between the

security posture of a recommendation (secure versus not) and pub-
lication date (current versus not), (d.f.=1, p = 3.0112, p = 0.0827).
This result points to a worrying trend that the security posture of
recommendations is not improving over time. This may be in part
due to the fundamental nature of the TLS protocol, which makes
it such that servers wishing to support older clients need to adopt
legacy recommendations that are inevitably less secure.

These results highlight a surprising amount of variance and a
high degree of inconsistency across recommendations—a pattern
that has been observed in other areas of security as well [68, 69].
Moreover, they do not consistently point users to the most se-
cure configurations. This may be in part, because server operators
must also consider backwards compatibility. Nevertheless, approxi-
mately 10% of recommendations still allow MD5 MACs and RC4 ci-
phers, neither of which are needed to support the modern browsers
(Chrome, Safari, Edge, Firefox).

6 DISCUSSION

We initially expected to find large clusters of sites using the same
configurations. We hoped that we would be able to match these
common configurations to online recommendation guides, Stack
Overflow posts, blogs, server defaults, and administration tools like
Certbot [7]. Instead, we find a complex and fragmented ecosystem
of HTTPS configurations with a long tail of individually configured
sites. Our attempts to cluster configurations and find commonalities
were largely unsuccessful—there are simply a large number of
unique, seemingly unrelated configurations deployed. In nearly all
cases, when a large number of sites use the same configuration, it
is due to SaaS providers deploying the same configuration on all
sites. Despite the complexity of the ecosystem, there are several
important high-level takeaways for the security community.

Our results highlight the importance of doing analysis at the
configuration-level, as opposed to adopting a uni-dimensional view
that considers support for an individual directive at a time. Adopting
such a uni-dimensional view may mask patterns that only emerge
at the configuration-level, such as the influence of geography, cloud
providers, provider defaults, and online recommendations. We find
that using a cloud provider is one of the strongest predictors for a
site being configured correctly. Most individually managed servers
struggle to achieve secure configurations. It is an important dis-
tinction that operators are not getting better at configuring servers,
but are instead migrating to platforms where they can sidestep
the process. Although we cannot quantify exactly how much Saa$S
providers pull up the overall security of the internet, we provide a
lower bound by manually labeling configurations from the largest
and most well-known Saa$S providers, and show that it is significant
enough in order for security researchers to distinguish it when
evaluating the security posture of the overall internet. This may be
relevant for a number of research directions: when the aim is to
understand the decision-making process of server operators, when
evaluating the adoption of new security features or technologies,
as well as the overall security posture of the internet.

It is unclear why we find such little evidence of online recom-
mendations being used in practice. It may be because very few
server operators use online recommendations exactly as specified,
or another component of the ecosystem that we do not observe



is contributing to the process. For example, server operators may
individually remove cipher suites over time as vulnerabilities are
announced, they may use online grading tools such as SSL Labs and
edit their recommendations to obtain good grades, or they may use
additional software that automatically configures TLS (e.g., Cert-
bot). Our results may also add important context to endeavors to
invest in tools and resources to improve online recommendations,
such as a recent effort from the Internet Society (ISOC), who is
actively investing in and developing recommendations for a variety
of server software [15].

Lastly, our results point to the importance of secure defaults that
do not require operators to seek out trustworthy sources for how to
securely configure sites post-installation—a system which appears
to be fundamentally broken. Echoing previous studies [36, 57], we
encourage the security community to build future systems that
prioritize being secure “out of the box”.

7 CONCLUSION

We find a complex and fragmented ecosystem of HTTPS configura-
tions with a long tail of individually configured websites. While the
majority of sites are securely configured, this is primarily due to
cloud providers, which provide secure configurations for all hosted
websites. Using a cloud provider is one of the strongest predictors
for a site being configured correctly. Most individually managed
servers, however, continue to struggle to achieve secure conﬁgura—
tions. Few operators use server defaults for Nginx and Apache, and
there is a lack of adherence to online recommendations, which may
be in part because these are often incomplete and insecure. Our
findings point to the need for future analysis of HTTPS security
to take into account these two disparate ecosystems, and for the
security community to invest in solutions that bridge the security
gap between the two.
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35
3.2

7,446
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SingleHop
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Table 4: The five most dominant configuration from the top 10 most popular ASs in terms of the proportion of sites hosted on

the AS (% AS).
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Tranco Top 1 Million Certificate Transparency Sample

TLS Configuration All Apache Nginx IIS Other | Al Apache Nginx IS Other
Version Support
TLS v13 0.28  0.04 0.15 001 023 012 0.02 0.11 0.01 021
TLS v12 0.99  0.99 0.99 091 099 099 1 1 086 1
TLS v11 0.81 0.78 0.85 075 0.7 075 074 0.87 0.78  0.69
TLS v10 0.68  0.64 0.64 0.76  0.53 0.68  0.67 0.71 0.88  0.62
SSL v30 0.04 0.01 0.03 0.21  0.02 0.02 0.01 0.01 029 0.01
SSL v20 001 0 0 006 0 0 0 0 011 0
HTTP/2 0.57  0.26 0.66 0.23  0.63 0.56  0.42 0.75 0.24  0.64
Compression
TLS compression 0 0 0 0 0 0 0 0 0 0
HTTPS compression gzip 042 0.38 0.48 0.29 0.36 0.5 0.47 0.51 036 0.57
HTTP2 compression gzip 0.28 0.14 0.32 0.06 0.27 0.3 0.23 0.38 0.08 0.37
Extensions
server name 0.61 089 0.86 0.45 0.52 0.75 097 0.88 0.47 044
status request 0.41 030 0.19 0.45 0.36 042 042 0.13 0.4 0.53
signed certificate timestamp 0 0 0 0 0 0 0 0 0 0
heartbeat 045 084 0.6 0.03 0.24 0.65 0.93 0.57 0.03 038
extended master secret 0.45  0.09 0.32 0.84 051 0.28  0.05 0.39 0.85 0.47
session ticket 0.83 089 0.87 0.06 0.73 0.88  0.94 0.83 0.06 087
renegotiation info 099 0.99 1 0.99 099 099 099 1 0.99 099
server preference support 0.63 059 0.91 099 0.9 0.67  0.54 0.93 098  0.77
session id resumption 0.82 091 0.68 0.86  0.64 0.83 095 0.73 0.9 0.69
alpn 0.77  0.07 0.81 0.26  0.78 0.88 089 0.9 0.27 088
Ciphers
RC4 0.08 0.14 0.01 0.41  0.06 0.08  0.08 0.01 0.57  0.09
DES 0 0.01 0 001 0 0 0 0 001 0
3DES 0.30 043 0.24 0.67 035 032 031 0.26 0.78 037
EXPORT 0 0 0 0 0 0 0 0 0 0
SEED 0.07  0.15 0.03 0.01  0.05 0.07 0.1 0.02 0.01  0.07
CAMELLIA 029 043 0.46 0.04 0.25 027 026 0.41 0.03 024
ARIA 0.05  0.02 0.15 0 0.01 0.05 0.01 0.24 0 0.01
IDEA 0.04 0.11 0.01 0 0.04 0.06  0.08 0.01 0.01  0.06
AES 1 1 1 1 1 1 1 1 1 1
MD5 0.07 0.11 0.01 0.4 0.06 0.07  0.07 0.01 0.56  0.06
SHA1 094 086 0.96 0.99 0.96 0.87  0.79 0.96 0.99 087
SHA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Curves
sect283k1/r1/s 0.25 051 0.26 0.02  0.16 053 038 0.29 0.01 033
sect409k1/r1/s 0.25 051 0.26 0.02  0.16 053 038 0.29 0.01 033
sect571k1/r1/s 0.25 0.51 0.26 0.02  0.16 053 08 0.29 0.01 033
quad secp224r1/s 0.21  0.01 0.01 0.02  0.03 003 0 0 0.01  0.01
secp256k1 031 059 0.38 0.03  0.19 0.56  0.82 0.39 0.02 034
secp256rl 096 097 0.9 0.97 098 097  0.99 0.91 098 098
secp256s 031 059 0.38 0.03 0.19 0.56  0.82 0.39 0.02 034
secp384rl 0.80 0.71 0.75 093 0.8 086  0.87 0.82 0.9 0.86
secp521rl 0.66  0.68 0.63 0.26  0.43 073 0.86 0.71 0.17 054
brainpool 256r1, 384r1, 512r1 ~ 0.25  0.51 0.26 0.02  0.16 053 038 0.3 0.01 033
x25519 0.39  0.08 0.28 0.21 047 0.27  0.04 0.35 0.21  0.52
x448 0.08  0.05 0.16 0.01 0.12 0.08  0.03 0.27 0 0.06
Key Exchange
RSA 0.68 0.71 0.78 0.95 081 0.56 0438 0.65 0.96 0.64
DHE 0.44 071 0.54 0.49 031 055 07 0.58 054 035
ECHDE 0.99 097 0.99 0.98 0.99 099  0.99 1 098 1
Common DH group 032 0.66 0.23 046  0.18 0.46  0.68 0.25 051 029
DH group size 0-1024 0 0 0 0 0 0 0 0 0 0
DH group size 1024-2048 0.05 0.03 0.07 0.3 0.05 0.02 0.01 0.03 036  0.01
DH group size 2048+ 039  0.67 0.47 0.2 0.27 0.53  0.69 0.54 0.17 034

Table 5: Support for select TLS configuration components by server. Each value represents the proportion of domains in each
server within Tranco and CT, respectively.



F/C B A

Marg. Odds  tvalue  Pr(> |t|) | Marg.Odds  tvalue Pr(> |t]) | Marg. Odds ~ tvalue Pr(> |t])
servernginx 0.94 -46.67 < 0.00 1 0.99 -35.67 < 0.00 e 1.07 45.74 < 0.00 e
serverother 0.87 -95.46 < 0.00 1 0.96 -57.49 < 0.00 e 1.2 86.55 < 0.00 e
servermicrosoft-iis 1.1 37.19 < 0.00 101 21.86 < 0.00 0.9 -40.93 < 0.00 e
serverlitespeed 0.73 -261.56 < 0.00 081 -243.73 < 0.00 e 1.71 295.08 < 0.00 e
serveropenresty 0.88 -41.38 < 0.00 0.95 -25.16 < 0.00 119 35.7 < 0.00 i
servercpanel 1.1 19.45 < 0.00 1 12.84 < 0.00 109 -21.56 <0.00 o
serverbigip 0.87 -39.52 < 0.00 *10.95 -23.92 < 0.00 e 1.2 33.94 < 0.00 e
servercloudfront 0.72 -491.91 < 0.00 079 -910.96 < 0.00 el 177 688.48 < 0.00 o
servervarnish 0.83 -50.58 < 0.00 0.92 -27.87 < 0.00 e 1.32 40.46 < 0.00 i
serverats 0.92 -15.67 < 0.00 10.98 -10.66 < 0.00 i 1.11 14.24 < 0.00 i
serverawselb/2.0 0.73 -236.95 < 0.00 079 -194.89 < 0.00 e 1.72 239.89 < 0.00 e
serversquarespace  0.98 -3.32 0.0009 1 -2.86 0.0043 - 1.03 3.24 0.0012 -
serverakamai 0.75 -131.25 < 0.00 10.81 -69.02 < 0.00 ol 1.64 98.22 < 0.00 e
serverghs 0.97 -3.2 0.0014 * 0.99 -2.7 0.0069 . 1.03 3.11 0.0019 -
median rankQ2 1 1.16 0.2479 1 1.17 0.2437 1 -1.16 0.2473
median rankQ3 1 0.73 0.4666 1 0.75 0.4547 1 -0.73 0.465
median rankQ4 1 0.78 0.4373 1 0.78 0.4345 1 -0.78 0.4369
median rankQ5 1 0.04 0.9715 1 0.04 0.9715 1 -0.04 0.9715
sd rankQ2 1.01 4.36 < 0.00 e 1 4.49 < 0.00 r0.99 -4.38 0 i
sd rankQ3 1.01 3.5 0.0005 e 1 3.64 0.0003 r0.99 -3.52 0.0004 e
sd rankQ4 1 1.71 0.0881 1 1.76 0.0789 1 -1.71 0.0868
sd rankQ5 1 1.45 0.147 1 1.47 0.1424 1 -1.45 0.1464
tld org 0.99 -4.98 < 0.00 e 1 -4.65 < 0.00 e 1.01 4.93 0 e
tld net 1.01 4.12 < 0.00 e 1 4.55 < 0.00 *0.99 -4.18 0 i
tld ru 1 -0.38 0.7008 1 -0.38 0.7033 1 0.38 0.7011
tld de 0.98 -6.01 < 0.00 o 1 -5.23 < 0.00 e 1.03 5.87 0 o
tld uk 0.99 -3.11 0.0019 > 1 -2.84 0.0045 * 1.02 3.07 0.0022 *
tld jp 1.05 9.74 < 0.00 e 1.01 20.13 < 0.00 o 0.94 -10.29 < 0.00 e
tld br 1.01 1.94 0.0522 0 1 2.12 0.0341 * 0.99 -1.96 0.0497 *
tld in 1.01 2.3 0.0217 * 1 2.57 0.0102 * 0.99 -2.33 0.0199 *
tld ae 1.02 2.63 0.0087 > 1 3.02 0.0025 > 0.98 -2.67 0.0076 *
tld nl 0.97 -5.81 < 0.00 1 0.99 -4.79 < 0.00 ol 1.04 5.61 < 0.00 e
tld fr 1.01 1.98 0.0481 * 1 2.19 0.0282 * 0.99 -2 0.0453 *
tld au 0.97 -4.24 < 0.00 0.9 -3.58 0.0004 i 1.03 4.11 < 0.00 i
tld pl 1 -0.26 0.7936 1 -0.26 0.7962 1 0.26 0.794
tld ir 1.03 3.82 0.0001 o 1 5.2 < 0.00 097 -3.94 < 0.00 o
tld it 1.03 4.74 < 0.00 M 6.77 < 0.00 097 -4.9 < 0.00 e
tld info 1 -0.47 0.6362 1 -0.46 0.6447 1 0.47 0.6374
tld ca 0.99 -1 0.318 1 -0.95 0.3432 1.01 0.99 0.3217
tld co 0.97 -4.26 < 0.00 = 0.99 -3.53 0.0004 e 1.04 4.12 0 e
tld ua 0.96 -5.37 < 0.00 = 0.99 -4.26 < 0.00 e 1.05 5.14 < 0.00 o
tld edu 1.01 0.73 0.4635 1 0.77 0.4411 0.99 -0.74 0.4606
tld io 0.94 -8.82 < 0.00 10.98 -6.31 < 0.00 . 1.09 8.16 < 0.00 e
tld es 1.02 2.51 0.012 * 1 3.11 0.0019 - 0.98 -2.57 0.0101 *
tld vn 1.05 4.95 < 0.00 o 1 10.82 < 0.00 1095 -5.22 < 0.00 e
tld cz 1.01 1.44 0.151 1 1.61 0.1076 0.99 -1.46 0.1454
tld other 1.01 4.63 < 0.00 e 1 4.85 < 0.00 0.99 -4.66 < 0.00 e

Table 6: Generalized ordinal model results in terms of marginal odds for each grade category (F/C, B, and A). Signif. codes: 0
*%%0.001, ** 0.01, * 0.05, . 0.1

A SEARCH TERMS FOR RECOMMENDATIONS

The search terms used to search for recommendations (n=26 English terms) are as follows: secure ssl configuration nginx®, secure ssl
configuration apache, nginx set up tls, apache set up tls, secure apache ssl settings, secure nginx ssl settings®, best nginx ssl config, best
apache ssl config, ssllabs a plus apache, ssllabs a plus nginx, configure SSL nginx*, nginx https, nginx https configuration, nginx conf file ssl
settings”, nginx secure configuration, nginx secure ssl configuration, nginx A ssl labs, nginx secure ciphers, disable weak ciphers nginx, nginx
ssl configuration, nginx configure tls, apache config tls, apache set up https, setup apache secure tls configuration, harden tls configuration
apache web server. Four of the search terms were translated into French, German, and Russian, for a total of 38 search terms (asterisked
terms were translated).
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