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 Modeling news propagation paths on Twitter according to tweets and
retweets information

]

« Crawling 20 million user historical tweets and encoding them as users
news consumption preference

* Proposing an end-to-end fake news classification model with text and
graph encoders

* Opensource all baselines and datasets as a benchmark for fake news
detection and graph classification
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« People tend to consume news that confirm their existing viewsl]

« An account engaged in a fake news post on social media may have
shared similar news before

« The information in users’ historical posts could help verify the truthfulness
of the news they engaged

[1] Nickerson, Raymond S. "Confirmation bias: A ubiquitous phenomenon in many guises." Review of general psychology 2, no. 2 (1998): 175-220.
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* The proposed UPFD model outperforms various fake news detection
baselines

« The user preference information plays a significant role in fake news
classification

« Different graph encoders and text encoders are in favor of different news
datasets
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« The graph data built in this paper has been released as a graph
classification/anomaly detection benchmark

O

« Two sets of tree-structured graph, four types of node features, binary
classification task

* Hosted on PaperWithCode, integrated with PyG and DGL

Data #Graphs #Fake News #Total Nodes #Total Edges #Avg. Nodes per Graph

Politifact 314 157 41,054 40,740 131

Gossipcop 5464 2732 314,262 308,798 58
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