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Abstract. Prediction is an important foundation of cognitive and in-
telligent behavior. Recent advances in deep learning heavily depend on
prediction, in the form of self-supervised learning based on prediction
and reinforcement learning (reward prediction). However, how such pre-
dictive capabilities emerged from simple organisms has not been investi-
gated fully. Prior works have shown the relationship between input delay
and predictive function to compensate for such delay. In this paper, we
investigate other key factors that may contribute to the emergence of
predictive behavior in evolving neural networks. We set up a delayed
reaching task with a two-segment articulated arm. The arm is controlled
to reach a moving target, where the target’s coordinate information is re-
ceived with a delay. Following our previous work, we introduced a tool to
extend the reach, when the target is beyond the arm’s reach. In this task,
without predicting the trajectory of the moving target, the controller
cannot reach the target. For the controller, we used the NeuroEvolution
of Augmenting Topologies (NEAT) algorithm. Our results indicate that
an important fitness criterion for the emergence of predictive behavior is
that of reduced energy usage (in the form of economy of motion). Further
analysis shows that the number of recurrent loops correlates with target
reaching performance, but more strongly so with the energy constraint.
We expect our findings to lead to further investigations on the role of
energy constraints on the evolution of predictive behavior.

Keywords: Prediction - Evolution - Neuroevolution - Fitness !

1 Introduction

Prediction forms an important foundation of cognitive and intelligent behavior
[1,18,17]. Recent advances in deep learning heavily depend on prediction, in the
form of self-supervised learning based on prediction and reinforcement learning
(e.g., reward prediction) [13,14].
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However, how such predictive capabilities emerged from simple organisms
through evolution has not been investigated sufficiently [7,12]. Furthermore,
what kind of external /internal factors and constraints could have influenced the
development of prediction is unclear. Prior works have suggested the relationship
between input delay and predictive function for its compensation [10, 11].

In this paper, we investigate other key factors that may contribute to the
emergence of predictive behavior in evolving neural networks. We set up a reach-
ing task with a two-segment articulated arm, with added input delay [9]. (Note
that predicting an unknown true location like this is different from predicting the
sensory consequence of action, which requires the true sensory input to compute
the prediction error, as in [17].) The arm is controlled to reach a moving target,
where the target’s coordinate information is received with a fixed delay. Follow-
ing our previous work [9], we introduced a tool to extend the reach, when the
target is beyond the arm’s reach. This task is not solvable without predicting the
trajectory of the moving object, since reaching for the coordinate location based
on the immediate input would lead to a location previously occupied by the
moving object. For the controller, we used the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm [15] (cf. CTRNN [17] and FORCE [16, 6]).

Our results indicate that an important (auxiliary) fitness criterion for the
emergence of predictive behavior is that of reduced energy usage (in the form of
economy of motion). Further analysis shows that the number of recurrent loops
correlate with target reaching performance, but more strongly so with the energy
constraint. We expect our findings to lead to further investigations on the role
of energy constraints on the evolution of predictive behavior.

2 Background

In this section, we will briefly review existing works relating to the evolution of
prediction, and provide an overview of the NEAT algorithm, which we will use.

2.1 Evolution of Prediction

In our previous works, we show that predictive dynamics emerge in evolved neu-
ral network controllers when environmental conditions change [8, 21]. Aside from
these, the few papers that discuss prediction in an evolutionary context include
[7] and [12]. [7] mentioned the lack of computational studies on evolution of
prediction, and proceed to propose how utility and predictive capabilities can
co-evolve in a simulated agent. The work is based on the “Gap Theory” in evolu-
tionary economics which exactly states the co-evolutionary nature of utility and
prediction. [12], on the other hand, observed that curiosity (a form of intrinsic
motivation) helps in the improvement of prediction, and these developmental
structures can constrain evolution in return. Thus, the work is more about the
emergent predictive ability shaping evolution, not about how evolution gives rise
to predictive abilities.
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2.2 NeuroEvolution of Augmenting Topologies (NEAT)

Topological neuroevolution methods evolve both topology and weights of neural
networks. Our perspective is that natural evolution includes changes in the net-
work topology in the brain, thus they mimic the natural evolution better than
traditional weight-only neuroevolution methods. Moreover because the function-
ality of a neural network can be constrained by its topology, allowing the topology
to evolve will set free the structural constraints and result in new capabilities
such as recurrent dynamics. Amongst many variations of such an approach [19,
2,20], we will use NeuroEvolution of Augmenting Topologies (NEAT) because
of its advantages over other topological evolution methods [15]. Fig. 1 illustrates
the main concepts of NEAT.
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Fig.1. NEAT. (a) Nodes and connections are separately encoded. (b) Connections
with the same innovation number can be crossed over. Adapted from [15].

Historical marking is a major feature in the NEAT algorithm. By enumer-
ating each innovation, NEAT solves the competing conventions problem, which
is one of the main problems in neuroevolution [19, 15]. The crossover operation
in NEAT happens between two genomes with identical historical marking (also
called “innovation number”), regardless of their locations and size in the network
(fig. 1). NEAT encodes the genome in two arrays, node genes and connection
genes. Innovation number is assigned to each connection gene according to the
order of its appearance throughout the evolutionary stages. The connections can
also be enabled or disabled through mutation. Since connections can be gener-
ated arbitrarily between neurons, recurrent connections can also be generated.
There are several other important facilities such as speciation, where a subpop-
ulation of individuals are isolated from other subpopulations, forming a species.

3 Methods

In this section, we will discuss the details of the task and how NEAT is hooked
up to the environment. We will also discuss the various fitness factors we used,
and the performance metrics we employed for the evaluation.
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3.1 Delayed Reaching Task

The delayed reaching task is illustrated in fig. 2. A two-segment arm with two
joints can be controlled by its two joint angles (61, 62) to reach a moving target
(black square). To test the predictive capability, the task is modified so that the
coordinate of the target object is fed to the controller with a delay (red square).
If the controller tries to reach the delayed target, based on the delayed input,
it will not be able to reach the true target. An additional obstacle is that the
movement of the target can take it beyond the reach of the arm. The controller
can decide to pick up a stick (green) to extend its reach. The stick automatically
snaps onto the hand (circle) and extends the arm’s reach once the stick handle
is touched by the hand.
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Fig. 2. Delayed Reaching Task. The task is to control the limb angles 6; and 62 to
reach the moving target (black square). The location of the target is received by the
controller with a delay (red square). If the target is beyond the arm’s reach (R1), the
controller needs to pick up the stick (green) to extend the reach.

The target was initially placed randomly within one of four regions (upper
left, lower left, lower right, upper right), and moved in one of four directions (0°,
45°, 135Y, and 180°, respectively). The target was moved for 500 simulations
steps in the beginning (which was the amount of delay), before the controller
can start movement.

3.2 NEAT Controller

For control of the arm, we used NEAT. Fig. 3 shows the initial topology of the
controller network. The 9 inputs and 2 outputs of the network were as follows.

Input: (1) 61: joint angle 1, (2) 02: joint angle 2, (3) target_dist: distance
between hand and delayed target, (4) target _angle angle from hand to delayed
target, (5) tool _dist distance between hand and tool handle (not delayed, since
the tool is static), (6) tool angle angle from hand to tool handle, (7) 61jimas:
triggered when joint 1 limit is reached, (8) 02jimis: triggered when joint 2 limit is
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reached, (9) target touch: tactile sensor triggered when hand touches the true
target.

Output: (1) 61: joint angle 1 adjustment, (2) 6o: joint angle 2 adjustment.
The adjustments were limited to —1.5° < #; < 1.5°.

Fig. 3. Initial NEAT Topology. The initial NEAT controller topology is shown.
Red: input, Green: output. Note that there are no hidden neurons, since this is the
initial topology. See text for details.

3.3 Fitness

We tested a combination of different fitness factors, each scaled between 0.0 and
1.0, and the factors multiplied, as shown below (see the Appendix for details):

F:axHFi, (1)

where « is a product of common factors used in all experimental conditions, and
[L; Fi a product of the fitness factors that are to be compared. The common
factor « is defined as a = D x N x C, where D is based on the mean square
distance between the true target and the hand location (1 - this quantity), N
is the average number of abrupt change of direction to discourage oscillating
behavior (1 - this quantity), and C is the total hit count in each behavioral
attempt. The main factors we compared were F; € {E, R, T}, where E is the
energy factor (1 - normalized total hand travel distance), R the predictive reach
factor (number of 5 or more consecutive hits), and T the tool factor (tool pick
up). In our case, we tested these factor combinations: R, RT, ER, and ERT.

3.4 Performance Metrics

Other than the fitness, each individual was tested in multiple random behavioral
attempts (Np,q = 100) to measure the performance.

The first metric is the total number of “hits” (touching the target) in each
behavioral attempt. (Note that all attempts were 5,000 steps. Also, the maxi-
mum value of total hits in each attempt depends on the relative position of the
randomly initialized hand, tool, and target positions.) Although this is a good
general metric, it does not measure the predictive capability.



6 W. Kang et al.

Nmaw
total _hits = Z total number of all hits in attempt n (2)
n=1
Metric 1 _hit measures the number of attempts in which the agent had
reached the target at least once. The 1 hit is computed with equation 3. While
this metric is standardized and can show the effectiveness of a network, it cannot
distinguish between an accidental hit vs. predictive reach.

Nona: . . .
Uiig 1 if target hit at least once in attempt n
1_hit = Y hy, where h, = & P
= 0 else

(3)

Hence, we also introduce the 5_hit metric (eq. 4) which counts the number

of attempts in which the agent had reached the target at least 5 consecutive

time steps (a different value may also be used, e.g., 10). This is to ensure that

the reach of a target was intentional and therefore is used as our main metric to
measure the predictive capabilities of the agents.

N,
. e 1 if target hit 5+ consec. steps in attempt n
5 hit = Z h,, where h,, = & P P
— 0 else

(4)
All the metrics mentioned above apart from the fitness scores, act as a stan-
dard metric to compare the successes of different agents. They share common
extremes ([0, 500,000] for the number of reaches and [0, 100] for 1_ hit or 5_ hit)
and are computed using the same equations resulting in standardized scores.

4 Experiments and Results

Each of the four fitness types (R, RT, ER, ERT) was evolved for 150 generations.

4.1 Population Average over Generations

Fig. 4 shows the population average of the fitness and the number of reaches
over the generations. We find that the E'R factor combination significantly out-
performs the others (note that in this case, the evolutionary “trial” ended early,
since it exceeded the preset fitness threshold).

4.2 Performance of Best Individuals

Next, we tested the best individuals for each fitness type, using the 1 _hit and
5 hit metric (note that E is not a good metric due to trival cases: e.g., when the
agent did not move). For each individual tested, we ran the individual in a task
100 times (“attempts”), and counted the number of times it was able to hit the
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Average Fitness vs # of Generations

Average Number of Reaches vs # of Generations
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Fig. 4. Population Average of Fitness and Total Number of Hits.

target once or five consecutive times, respectively. We repeated n (= 31) such
“runs” to measure the performance (fig. 5). Note that 1 _hit and 5_hit can be
at the most 100 (Npyq, = 100). For 1_ hit, the results are mixed (fig 5(a)). ERT
shows the best performance, followed by R, FR, then RT. Thus, there is no
clear difference between (R, RT) vs. (FR, ERT). However, fig. 5(b) shows that
for 5_hit, (ER, ERT) clearly outperforms (R, RT). Furthermore, fig. 5(c) shows
that most of the 1 _hit events are also 5 hit events for (ER, ERT), showing that
most reaching behavior is prediction based. However, this is not the case for the
(R, RT) condition, where most reaching behavior is blind waving.

Considering that 5 hit is an indicator of predictive behavior (continuously
and intentionally tracking the true target location, rather than randomly waving
to hit the target by luck), we can conclude that the fitness types that include
the Energy factor facilitates the emergence of predictive behavior.
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Fig. 5. Performance of Best Individuals. The (a) 1 _hit and (b) 5_ hit results are
shown for the four fitness types. In (b): Mann-Whitney test: ERT > RT [n=31,p =
1.36e—11], ER > R [n = 31,p = 9.71e—07]. (c) Compares (a) and (b) in a single plot.

4.3 Behavior

Observing the behavior can provide some insights on the relevance of our 1 _hit
and 5 hit metrics. Fig. 6 show some typical behaviors by fitness type. We plotted
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the behavior in time lapse (vivid color = most recent frame). We can also see
the target’s moving direction (black — true target, red — delayed target): For
example, in fig. 6(b), the target is moving from lower left to upper right. For each
fitness type, representative behavior that exhibit predictive property (a through
d) and those that do not (e through h) are shown. For the top row (predictive),
we see that the hand dwells close to the true target location (black square), ahead
of the delayed target (red square). This kind of behavior may not be possible
without some form of prediction, and may score high on the 5 _hit criterion. For
the bottom row (non-predictive), the hand makes broad sweeping gestures. This
could lead to a high 1 _hit score, but a low 5 hit score. With this, we can view
the results in fig 5(c) in a new light: The fitness types that involve the Energy
factor may be exhibiting predictive behavior, while those that do not are merely
successful in reaching the target through undirected broad sweeping behavior.

(a) ER predictive  (b) ERT predictive (c) RT predictive (d) R predictive
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Fig. 6. Representative Behaviors. Time lapse of representative behaviors are shown
(vivid color = most recent frame). Black square: true target. Red square: delayed input.
Top row (a~d): predictive behavior. Bottom row (e~h): non-predictive behavior. Note
that in (g) and (h), the tool is picked up, so the reach is extended. See text for details.

4.4 Network Topology

The evolved network topology also gave us further insights on how different fit-
ness types shaped the controller’s behavior (fig. 7). At first glance, there are no
distinguishable differences in appearance, other than some having more hidden
neurons than others. Further analysis reveals an interesting property. Our pre-
vious work on analyzing evolved network topology showed a positive correlation
between the number of loops and the performance [9]. We conducted the same
kind of analysis, by counting the number of simple cycles in the evolved network
(we used NetworkX for this [3]). The results are shown in fig. 8. Interestingly,
for the fitness types that include the Energy factor (ER, ERT'), the number of
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loops are strongly correlated with the success rate (r = 0.59 and 0.51, respec-
tively). However, for those without the Energy factor (RT, R), the correlation is
weak (r = 0.17 and 0.38, respectively). These results suggest that the recurrent
loops in the networks evolved with the energy constraints may be supporting
predictive function better than those without. How these loops contribute to
prediction need to be investigated (for initial attempts, see lesion studies in [5]).

Fig. 7. Typical Evolved Topologies. Typical evolved topologies are shown for the
different fitness types. Neurons: Red = input, Orange = hidden, Green = output.
Connections: Solid lines with arrows = excitatory, Dashed lines with discs = inhibitory.

5 Discussion

The main contribution of this paper is the identification of constraint on energy
as a major factor in the emergence of predictive behavior in the context of
evolution. With naive performance metrics such as the number of times the
target has been reached, evolution found equally effective strategies to reach the
target such as broad sweeping, but the behavior was not indicative of prediction.
It is also interesting to note that even with the addition of a fitness factor that
explicitly rewards predictive behavior (the R factor, which basically uses 5 hit),
that alone was not able to give rise to predictive behavior, i.e., F was needed.
What could be some other factors that contributed to prediction? As men-
tioned in the introduction, delay in the input could be one such factor [10,11].
Due to delay in the sensory input, the need to compensate for this arises, which
may be resolved by prediction: prediction of the present from the past. We have
also found another curious factor that may be involved, which is environmental
change, as briefly mentioned in the background. In a simple 2D pole balancing
task, we found that individuals with predictive internal dynamics can be more
robust in a changing environment (in this case, the change in the initial pole an-
gle from 6 < 5° to 6 < 10°) [8,21]. With our research reported here, we can now
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Fig. 8. Number of Loops vs. Success Rate. The number of loops (simple cycles
in graph theory) in an individual vs. its success rate is plotted. The r values are the
correlation coefficients. Each point corresponds to one individual in the population.
We can see that the correlation is higher for the fitness types that includes the Energy
factor (ER and ERT), compared to those that do not include this factor (RT and R).

summarize the seemingly unrelated factors that contribute to the emergence of
prediction as (1) energy constraint, (2) delay, (3) environmental change.

6 Conclusion

In this paper, we investigated factors contributing to the emergence of predictive
behavior in an evolutionary context. We used a delayed reaching task, where
reaching the true target requires some form of prediction based on the delayed
input from the past. We found that the energy factor plays an important role,
allowing the evolved controllers to be more successful in the reaching task, and
to exhibit more focused predictive reaching behavior. The controllers evolved
without the energy factor were moderately successful, but the strategy were
mostly based on undirected, systematic sweeping, not indicative of any prediction
of the target’s trajectory. Furthermore, we found that structural innovations like
recurrent loops in the evolved controllers play a more cohesive role in support
of the predictive function, when the energy factor was included. These results
suggest a key role of energy constraints in the evolution of predictive behavior.
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Appendix

The fitness factors were computed as follows. All factors were computed from
Npnao behavioral attempts (= 100) using the same individual chromosome, with
each attempt running for a maximum of M,,,, simulation steps. W is the width
of the arena (= 512 pixels), and L is the initial lead up steps which corresponds
to the delay (= 500 steps). The factors were D: distance, N: turn, C: total hit
count, E: energy, R: predictive reaches, T": tool.

_ Nmax Mmax dpm? T Nmaz Ny
D=1-3010" 25 (WhNmao Mmaz)? N=1-3,5 NimaeMmaz

— Nrnam Cp, _ _ Nmam €n
C =201 Moo E=1-30 N0 D)

_ N\ Vmaz _ry — N\ Vmaz _ty
R = Zn:l Nrmw T= Zn:l Nmaz
where, in each attempt, d,,, —distance between hand and true target in attempt
n at time step m, n, = number of sharp turns (= reversal of hand movement
direction > 90°), ¢,, = total number of hits, e,, = consumed energy (= cumulated

hand travel distance), r,, = 5_hit, t,, = 1 if tool is held and 0 otherwise.

Table 1. NEAT (ANJI) Hyper-parameters

Evolution

num.generations = 150 popul.size = 100
topology.mutation.classic = false add.connection.mutation.rate = 0.02
remove.connection.mutation.rate = 0.01 |remove.connection.max.weight = 100
add.neuron.mutation.rate = 0.01 prune.mutation.rate = 1.0
weight.mutation.rate = 0.75 weight.mutation.std.dev = 1.5
weight.max = 10.0 weight.min = -10.0

survival.rate = 0.2 selector.elitism = true
selector.roulette = false selector.elitism.min.specie.size = 1
Speciation

chrom.compat.excess.coeff = 1.0 chrom.compat.disjoint.coeff = 1.0
chrom.compat.common.coeff = 0.4 speciation.threshold = 0.25

Fitness Function

stimulus.size = 9 response.size = 2
fitness.func.adjust.for.netw.size.factor = 0|fitness.threshold = 1000
fitness.target = 1200

Activation Function

initial.topology.activation = sigmoid [

Network Architecture

initial.topology.fully.connected = true init.topology.num.hidden.neurons = 0
initial.topology.activation.input = linear |recurrent — best guess

recurrent.cycles = 1 ann.type = anji
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