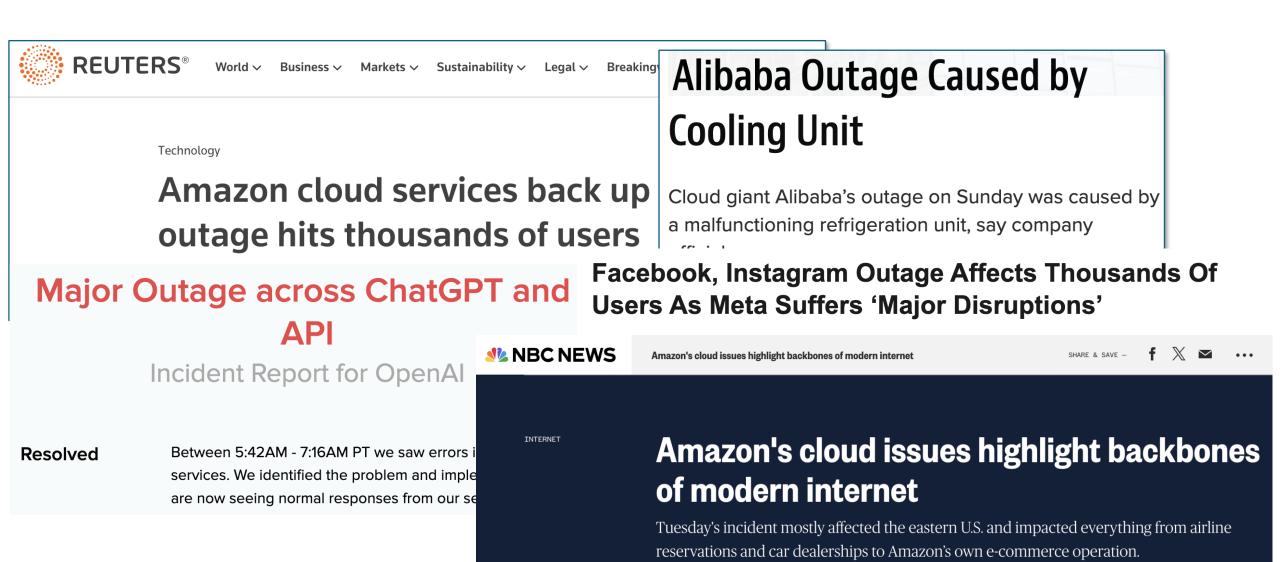
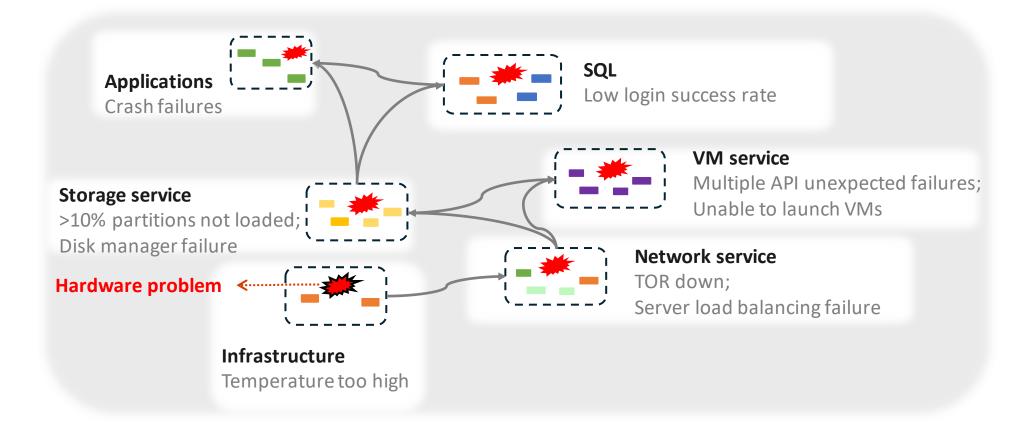
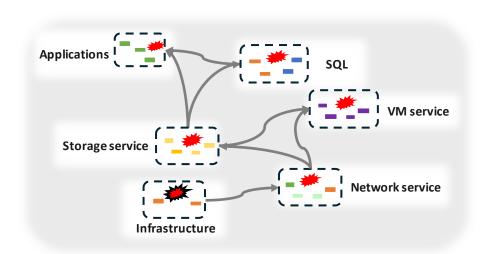
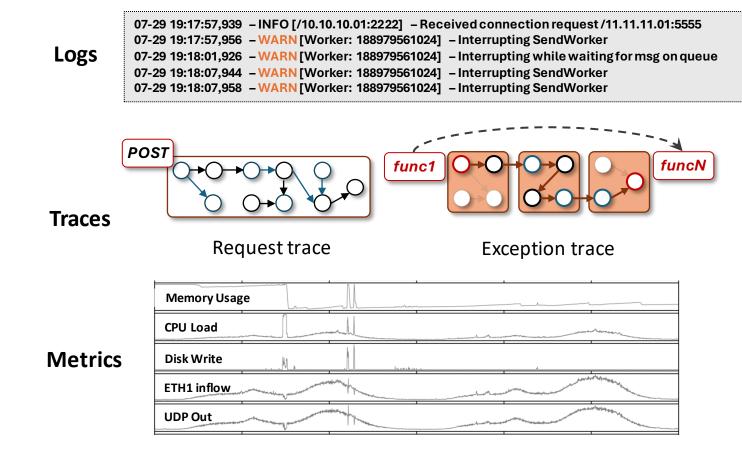

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo Ghosh, Xuchao Zhang, Chaoyun Zhang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Tianyin Xu






Cloud Incidents are on the Rise

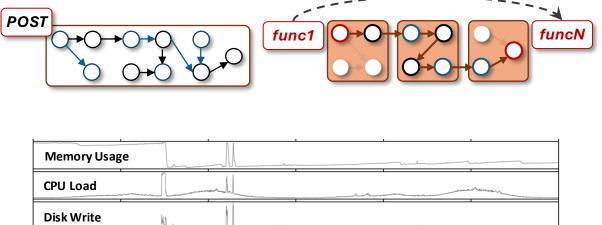

Incident Root Cause Analysis (RCA)

Challenges of Incident Root Cause Analysis

To win this war in fog, we have ...

Collection Challenge: The diagnostic information is hard to collect and could be **too little** or **overwhelming** for engineers.

Troubleshooting Guide is Insufficient



Troubleshooting Guide for Poisoned Messages

- 1. Go to the Poisoned Message Dashboard. This page gives a real-time, high-level view of the Poison Message feature. The charts should indicate whether the problem has resolved itself or is ongoing, as well as some sense of where it is occurring ...
- 2. The Dashboard newly implements an Exception Table that has poisoned messages within a time frame. In most cases, whatever exception is causing an alert will rise to the top of the table ...
- 3. You may also check the Poison Message Logs ...
- Wordy and hard to understand
- Complicated to follow it step by step

Collection Challenge: The diagnostic information is hard to collect and could be too little or overwhelming for engineers.

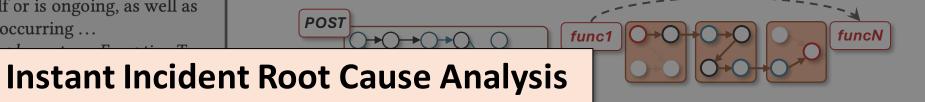
07-29 19:17:57,939 – INFO [/10.10.10.01:2222] – Received connection request /11.11.11.01:5555
07-29 19:17:57,956 – WARN [Worker: 188979561024] – Interrupting SendWorker
07-29 19:18:01,926 – WARN [Worker: 188979561024] – Interrupting while waiting for msg on queue
07-29 19:18:07,944 – WARN [Worker: 188979561024] – Interrupting SendWorker
07-29 19:18:07,958 – WARN [Worker: 188979561024] – Interrupting SendWorker

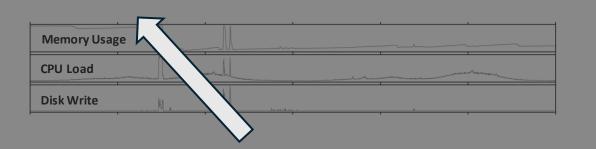
Analysis Challenge: It is time-consuming for engineers to analyze and interpret the information.

Troubleshooting Guide is Insufficient

Troubleshooting Guide for Poisoned Messages

- 1. Go to the Poisoned Message Dashboard. This page gives a real-time, high-level view of the Poison Message feature. The charts should indicate whether the problem has resolved itself or is ongoing, as well as some sense of where it is occurring ...
- 2. The Dashboard newly ble that has poisoned m In most cases, whatever


will rise to the top of the table \dots


3. You may also check the Poison Mes ...

- Wordy and hard to y derstand
- Complicated to follow it step by step

Collection Challenge: The diagnostic information is hard to collect and could be too little or overwhelming for engineers.

07-29 19:17:57,939 – INFO [/10.10.10.01:2222] – Received connection request /11.11.11.01:5555
07-29 19:17:57,956 – WARN [Worker: 188979561024] – Interrupting SendWorker
07-29 19:18:01,926 – WARN [Worker: 188979561024] – Interrupting while waiting for msg on queue
07-29 19:18:07,944 – WARN [Worker: 188979561024] – Interrupting SendWorker
07-29 19:18:07,958 – WARN [Worker: 188979561024] – Interrupting SendWorker

Analysis Challenge: It is time-consuming for engineers to analyze and interpret the information.

Contributions

- A study of the *production incidents* from a Microsoft email service
 - Derive insights on how to do effective root cause analysis
- RCACOPILOT, an automated end-to-end on-call system for cloud incident root cause analysis
 - Incident-specific automatic workflows for efficient data collection
 - Integration of LLMs to predict root cause categories with explanations
- Production deployment of RCACOPILOT within Microsoft

Goals of RCACOPILOT

Collection Challenge: The diagnostic information is hard to collect and could be too little or overwhelming for engineers.

Incident Handler

Automatically and precisely collect incident diagnostic data

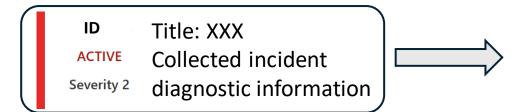
Analysis Challenge: It is time-consuming for engineers to analyze and interpret the information.

Large Language Model

Automatically analyze the diagnostic information & predict the root cause

Automatic Diagnostic Information Collection

Diagnostic information collection is a resemble of a decision tree Implemented by the incident handler of RCACOPILOT


RCACOPILOT will:

- match the corresponding handler
- execute the handler
- output diagnostic information

Root Cause Prediction with LLMs

- Automatic few-shots chain-of-thoughts (CoT) prompt construction
- Root cause category prediction and explanation

Root Cause Category: HubPortExhaustion **Root cause details**: The UDP hub ports on the machine [machine-XXX] had been run out ...

Few-shots Chain-of-Thoughts (CoT) Prompting

Few-shots CoT:

- A few demonstrations: historical incidents
 - Question (Q): diagnostic information
 - Reasoning/Answer (R/A): root cause category label
- Test Question: incoming incident's diagnostic information

Root Cause Prediction with LLM

- Automatic few-shots chain-of-thoughts (CoT) prompt construction
- Root cause category prediction and explanation

The collected incident information cannot fit into the prompt directly:

- Long diagnostic information
- Hundreds of root cause categories
- Token limit of Large Language Models

gpt-3.5-turbo

Currently points to gpt-3.5
turbo-0613. Will point to gpt
3.5-turbo-1106 starting Dec 11,

2023. See

gpt-4

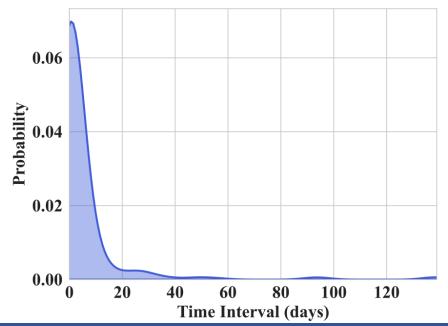
Currently points to gpt-4-0613. See

8,192 tokens

A single incident information could contain more than 1000 tokens.

chine [machine-XXX] had been run out ...

Solution:


- Similar incident retrieval
- Incident summarization

Similar Incident Retrieval

On-call engineers refer to historical incidents – Provide examples for LLM

How to measure the similarity?

 Study insight: incidents stemming from the same root cause often recur within a short period – Time locality

Most recurring incidents (93.8%) tend to reappear within 20 days.

When retrieving:

- Embedding vector distance between diagnostic informtion
- Temporal distance between incidents

Incident Summarization

Original diagnostic data collected by incident handler

```
DatacenterHubOutboundProxyProbe probe log result from
[MachineID].
Total Probes: 2, Failed Probes: 2
    Level Created
                                      Description
            11/21/2022 2:04:20 AM Probe result
           11/21/2022 1:49:20 AM Probe result
Failed probe error:
Name: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
Count: 2
Exceptions:
InformativeSocketException: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
at TcpClientFactory.Create(...)
at SimpleSmtpClient.Connect(...)
Total UDP socket count: 15276
Total UDP socket count by process and processId (top
5 only):
```

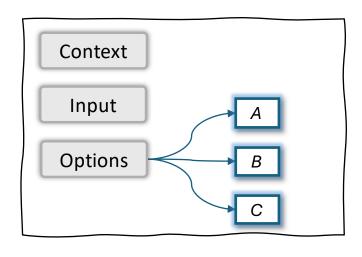
1000+

tokens

Prompt used in summarization:

Please summarize the above diagnostic information. The summary results should be about 120 words ...

RCACOPILOT Summary result:


The Datacenter Hub Probe has failed twice on the backend machine, ...

This error was encountered while attempting to connect to the host ...

The total UDP socket count is <u>15276</u>, with the majority being used by the serviceX.exe process.

... ...

Automatic Chain-of-Thoughts Prompting

Context: The following description shows ...

Please select ... the same root cause and give explanation ...

Input: The DatacenterHubOutboundProxyProbe probe result from [BackEndMachine] is a failure...

Options:

• A: *Label*: Delivery hang.

Summary: There are 62 managed threads in process [MSExchangeDelivery]...

• B: *Label*: Code regression.

Summary: The DatacenterHubOutboundProxyProbe probe failed with ...

• C: Label: None

Evaluation

- Is RCACOPILOT effective and efficient as an on-call system?
- How different components of RCACOPILOT facilitate its diagnosis and prediction?

Evaluation Results

RCACOPILOT achieves 0.766 F1-score when predicting the root causes.

Method	F1-score		Prediction Stage Time (sec.)	
	Micro	Macro	Train.	Infer.
XGBoost	0.022	0.009	11.581	1.211
Fine-tune GPT	0.103	0.144	3192	4.262
GPT-4 Prompt	0.026	0.004	-	3.251
GPT-4 Embed.	0.257	0.122	1925	3.522
RCACOPILOT (GPT-3.5)	0.761	0.505	10.562	4.221
RCACOPILOT (GPT-4)	0.766	0.533	10.562	4.205

Evaluation Results

RCACOPILOT has been deployed in an email service (150 billion messages delivered daily) at Microsoft.

Data Source			F1-score	
AlertInfo	DiagnosticInfo	ActionOutput	Micro	Macro
	\checkmark		0.689	0.510
	✓ sum.		0.766	0.533
\checkmark			0.379	0.245
$\overline{\checkmark}$			0.525	0.511
\checkmark		\checkmark	0.431	0.247
			0.501	0.449
$\overline{\checkmark}$	\checkmark	$\overline{\checkmark}$	0.440	0.349

Teams using Collection Module					
Team	Exec Time (sec.)	# Handler			
1	841	213			
2	378	204			
3	106	88			
4	449	42			
5	136	41			

Conclusion

- A study of the *production incidents* from a Microsoft email service
 - Derive insights on how to do effective root cause analysis
- RCACOPILOT, an automated end-to-end on-call system for cloud incident root cause analysis
 - Incident-specific automatic workflows for efficient data collection
 - Integration of LLMs to predict root cause categories with explanations
- Production deployment of RCACOPILOT within Microsoft

Automatic Root Cause Analysis via Large Language Models for Cloud Incidents